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1. 1NT'ROVUCT10N 

In this monograph we study the control of Markov chains with incompletely 

known transition law. The Bayes criterion, which is used explains the name 

of the monograph. We start this chapter with a short historical overview of 

the problem field (section 1.1) ~ In section 1.2 we give an informal descrip­

tion of the model we are dealing with. 

Then we st1mmarize the contents of the following chapters (section 1.3) • We 

conclude this chapter with a s,1mmary of notations and prerequisites (section 

1. 4) . 

After A. Wald founded (statistical) sequential analysis, it was R. Bell­

man who recognized that the technique of backward induction, which is fre­

quently used in sequential analysis, is also applicable to a wide range of 

non-statistical sequential decision problems (cf. [Wald (1947)], [Bellman 

(1957) ]) • Bellman fuLmdlized the technique and called it dynamic programming. 

In [Howard (1960)] the first extensive treatment is found on the relations 

between dynamic programming and the control of Markov cl1ains .. Independent­

ly, in [Shapley (1953)] sequential control probJerns concerning Markov chains 

are studied, using a game theoretic foLmulation. Later on, in [Blackwell 

(1965)] and [Derman (1966)] the results of Howard are refined and extended 

for the criterion of expeeted totaZ rewards and the criterion of expected 

average rewaPds, respectively. Blackwell and Deiman started an explosive 

developnent of the theory of control of Markov chains. 

Before enclosing the problem field we first specify what is meant by a 

dynam·ic program or a Markov decision proaees. A dynar.1ic program is a system 

that is detennined by a sta.te spao?,, an action space, a 1,eward function and 

a tra:nsition Zco.v, such that for each pair (state, action) a probability 

distribution on the state space is specified. At discrete points in time, 

called moments or sta,ges, the cont;roZZer or decision maker chooses an ac­

tion from the action space. Then, according to the transition law, the 

system moves to a new state and an j .. mmediate reward is obtained, depending 

on the state before the transition, on the action itself and on the new 

state. A recipe for choosing an action at each stage, is called a s-t:Pategy. 

To apply the resultsof d1·namic programming in practice, one has to kno·{~ the 

transition law. Unfortunately it seldcm happens that these probability 

distributions are known. So the controller has to estjmate the transition 
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law during the course of the process. Therefore, apart from the control prob­

lem, there is an estimation problem. 

From now on we ass11me that the transition law depends on an unknown param­

ete~, which belongs to some paPameter set. Therefore the expected return 

at each stage depends on the unknown parameter and so we have to choose a 

criterion to measure the return at each stage. In literature the Bayes ari­

terion is mainly used (cf. section 1.2 for a definition). The first attempts 

in the field of dynamjc programming with an incompletely known transition 

law have been made by Bellman (see [Bellman (1961)]). He used the te.tm 

adaptive aontroi of Markov chains. Bellman noticed that, if the Bayes cri­

terion is used, the problem can be transfozmed into an equivalent dynamj_c 
• 

program with a completely known transition law and with a state space which 

is the Cartesian product of the original one and the set of all probability 

distributions on the parameter set. This transfoLmation is also suggested 

in [Shiryaev (1964) ], [Dynkin (1965)] and [Aoki (1967)] for models, which 

allow unobservability of the states, and in [Wessels (1971), (1972)]. In 

[Hinderer (1970)] the first systematic proof is given for the case that the 

state and action spaces are both countable, and afterwards in (Rieder {1972), 

(1975) J the transformation is given for complete separable metric state 

and action spaces. In fact it is shown that, for the Bayes criterion, the 

poatePior distributions of the unknown parameter are sufficient statistics. 

In [Wessels (1968)], among other things, the problem of sufficient statis­

tics is studied in connection with several other criteria, such as the minima,:,:; 

ariterion. Almost all other authors considered only the Bayes criterion and 

studied the equivalent dynamjc program, mentioned above. In [Martin (1967)], 

[Rieder (1972)], [Satia and Lave (1973)], and [Waldmann (1976)] the method 

of successive approximations for the equivalent dynamic program is studied. 

Only Satia and Lave tried to exploit the special structure of this dynamic 
' 

program. In [Fox and Rolph (1973)], [Mandl (1974), (1976)], and in [Rose 

(1975)] optimal strategies are constructed for the criterion of expected 

average return. Here it is possible to construct strategies which are at 

least as good as all other strategies, for all parameter values, hence it 

is not necessary to work with the Bayes criterion or anything like' it. 

Special models, arising in control theory are studied in [Sworder {1966)] 

and [Aoki (1967) J. Inventory control models with an incompletely known de­

mand distribution are studied in [scarf (1959)], [Iglehart (1964)], 

[Wessels (1971), (1972)], [Rieder (1972)], [Zacks and Fennel (1973)] and in 
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[Waldmann (1976) ]. A n1.1mber of other problems can be found in the literature. 

The most famous one is the two-ar1ned bandit problem. We will return to most 

of the contributions of the above-mentioned authors in the other chapters 

of this monograph. The n.,1mber of publications in the field of dynamic pro­

graxmning with an incompletely known transition law is very small compared 

with the overwhelming amount of literature on dynamic programming with a 

known transition law. 

We conclude this section with a sketch of the problems we examine in this 

monograph. We choose the Bayes criterion too. From a mathematical point of 

view this criterion has the advantage, as compared with the minimax cri­

terion, that the model can be transformed into the so-called equivalent 

dyn mic program. Further it has the nice property that the decision maker 

may express his opinion on the importance of the various parameter values, 

which characterize the unknown transition law, by a weight function. Even 

if the model with known transition law has finite state and action spaces, 

the equivalent dynamic program has a state space which is eseentiaZZy infinite. 

However, the method of successive approximations to determine the optimal 

expected total return is workable, since in order to determine then-th 

approximation we have to consider all possible paths through n stages of 

which there are a finite n,.,mber, if the state and action spaces are finite. 

The effort needed to obtain good approximations proved to be very large in 

the studies of Martin and Satia and Lave (in [Martin (1967)] examples with 

only two states and two actions turn out to be very time-cons11mi..ng and in 

[satia and Lave (1973)] examples with four states and two actions are con­

sidered to be of ''moderate-size''). One of the objectives of our study is 

to show that the method of successive approximations can be applied success­

fuliy to rather large models, that have a suitable parameter structure. 

Our analysis is based on the construction of special scrap-vectors for the 

successive approximation method and on the exploitation of the convergence 

of the posterior distributions. We note that some results of our analysis are 

also interesting for the pr0blem of robustness of the model under variations 

in the para.meter value. In section 1. 3 we specify the approximation methods 

we advocate, in an inforrnal way. 

Another objective of our study is to show that there are easy-to-handle 

optimal strategies for maximizing the average expected return, and also for 

some practical e~amples of our model for maximizing the expected total re­

turn. At the end of section l.2 we consider this matter in more detail. 
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We start this section with a motivation of the choice of the model we study 

in this monograph: the Bayesian aontroi modeZ. 

consider a dynamic program with finite state and action spaces. It sometimes 

happens that a transition is affected by a random variable which is observ­

able for the decision maker, but the value of which cannot be reconstructed 

from the state values of the process. For eY:diuple consider a waiti·ng-line 

model in discrete time, where Yn+l is the n11mb~r of arrivals in the time 

period [n,n .+ 1) and where X is the n1..1mber of customers in the system at n 
tima n. Then it is obvious that the value of Y 

1 
is not dete1111ined by X 

n+ n 
and Xn+l' if the n11mber of services completed in each time interval is 

random. If the distribution of the random variable Y is incompletely known, n 
then it is useful to keep this random variable as a suppZementary st~te 

va~abZ.e. confining ourselves to the state values of the original process 

only, means that we throw away information concer11i.ng the transition law. 

In our model we assume that for each state and action the transition may 

be affected by a random variable, the value of which is observed by the 

decision maker irm'nediately afte'X' the transition. The value of this random 

variable is obtained by a random drawing from a distribution, depending 

only on the actual. state and action. There are at most countably many dif­

ferent distributions from which is sampl.ed. Further we ass1.1rne that only 

these distributions are incompletely known. We call these random variables 

suppZ.ementary state va.Piahles. In case the transition, for some state and 

action, is not affected by a supplementary state variable we may consider 

the next state variable itself as a supplementary state variable. we re­

turn to this point in chapter 2. 

we now continue with the model description. For simplicity, we ass\1me here 

that all considered sets are finite. Let the state space be denoted by X 

and the action space by A. FUrther let the random variables X and A de-n n 
note the state and action at stage n, respectivel.y. The transition to state 

xn+l' given xn 
state variable 

and A is also affected by the outcome of 
n 

Yn+l which is observed at stage n + 1 and 

the supplementary 

which takes on 

values in the set Y. This works in the foll.owing way. The conditional pro-

bability of X +1' n 

• 

• given X n 

lP[Xn+1 = x' I 

= x, A n = a and Yn+l = y, is 

X = x, A =a, Y 1 = y] = P(x'lx,a,y) n n n+ 
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where the function Pis assumed to be known. 

However, the random variables Y 1 , X and A are dependent, while the con-n+ n n 
ditional distribution of Yn+l' given Xn and 

meter e, which belongs to a given parameter 

A depends on some unknown para­
n 

set 0, i.e. we have 

X =x, 
n 

A 
n 

=a]= l 1K (x,a) p,(y!e) 
. I . J. J.E J. 

where {K., i e I} is a partition of Xx A, and I is some index set. Hence 
l. 

the distribution in the set {p. (•je), i er} from which the random variable 
.l. 

Yn+l is sampled depends on the state and action at stage n. Further, if 

X = x, A = a and Y = y there is an immediate, possibly negative, re-
n n n+l 

ward: r (x,a,y). 

Although the model may seem to be rather artificial, there are many well­

known models which fit into this framework. For example, inventory control 

models, where X is 
n 

the inventory level at time n and Y 1 is the demand 
n+ 

during the interval [n,n + 1). Here we always sample Y from the same dis­
n 

tribution, hence I is a singleton. Also the ordinary dynamic program with 

finite state and action spaces and all transition probabilities unknown, is 

included in our model. We return to this matter in chapter 2. 

We note that, if the parameter e is known, we are dealing with a dynamic 

program with state space X, action space A, transition law: 

IP [Xn+l = x' IX = x, A = a] n n 

and reward function: 

,..,, 
= P{x' lx,a) := l 1 (x,a) l P(x' lx,a,y)pi (yje), 

. I K. .1.E 1. yEY 

-r{x,a) : = l lK (x, a) L p. (y I e) r (x, a, y) • 
ie:I i yE.Y 

1 

In this monograph X,Y,A and 0 are complete separabl.e metric spaces, but the 

index set I is at most countabl.e. Hence we do not allow more than countably 

many unknown distributions p. <•le>, i ~ I and e E 9. 
l. 

A strategy~ is a procedure which chooses at each stage nan action, based 

on the history of the process, i .. e. x0 ,A0 ,Y 1 ,x 1 ,A1 , ••• ,yn,xn. 

Each strategy~, each parameter value e, and each starting state x to­

gether detern1i ne a probability on the sample spaoe of the process • The 

expectation with respect to this probability of the immediate reward at 

stage n is denoted by: 
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JE'lT 6[r(X ,A ,Y +l)] • x, n n n 

The e:x:peated total discounted retux?i v (x, e ,1r) 
• is: 

where e € [0,1) is called the discou:n.t factor. 
* Only in trivial situations there is a strategy n such that 

* v(x,e,n) ~ v(x,6,n) for all x Ex, e € 8 and all strategies 1r. So it is un-

wise to use thi .. s as a criterion fo·r a strategy to be optimal. Criteria for 

which there are always (nearly) optimal strategies, are the already mentioned 

* mip:J,max and Bayes criteria. A strategy n is. called £-optimal, £ ~ O, for the 

miPimax criterion, if I 

* min v(x,e,n) 2: v(x,0,n) -£ for all Xe x, a€ e 
8€0 

and all strategies n. we do not use this criterion. In appendix B we consider an 

eJra11i)le, which shows that the use of this criterion has some odd implications· 

We use the Bayes criterion. 

parameter set 0 and we call 

l q ( e) V (x' e, 7T *> 
9c0 

So, we fix some probability distribution q onthe 

* a strategy n £-optimal,, £ ~ 0, if 

q(S)v(x,e,n) - e 

for all x EX and all strategies n. If a strategy is 0-optimal we call it 

optimal. We note again that the so-called prior distribu-tion q can be con­

sidered as a weight function, expressing the importance of the various para­

meter values in the opinion of the decision maker. 

In chapter 4 we consider the average expected return, instead of the expected 

* total discounted return. We call a strategy 1r E-optimal., £ ~ O, with respect 

to this criterion,if 

1 liminf .. , 
N+o.?N 

N-1 * 
l er ce> l lE '1r a 

8E:8 n=O x, 

liminf 1 

N+a> 
l 

N 6€0 
q (0) 

[r(X ,A ,Y 
1
)] ~ 

n n n+ 

- € 

for all x e X and all strategies ,r (again, a 0-optimal strategy is called 

optimal,,). 
• 

The Bayes criterion allows us to consider another interpretation of the 

Bayesian control model. In this interpretation we consider the unknown para-
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meter as a random variable with distribution q. The posterior distributions 

of this random variable, or in other words the conditional distributions of 

this random variable, given the history of the process,play an important 

role in this monograph. It is well-known that the name of Bayes is connected 

with the criterion since he suggested to consider the unknown parameter of 

a distribution as a random variable itself in statistical inference. It turns 

. out that the Bayesian control model is equivalent to a dynamic program with 

a known transition law and with a compound state space Xx w, where Wis 

the set of all probability distributions on 0. For each starting state and 

each strategy, we are dealing with a stochastic process (X ,Q ,A) where n n n 
Q is n the actual posterior distribution of the random variable that repre-

sents the parameter. 

It is desirable to have good strategies that are easy to handle, i.e. to 

have a formula or a simple recipe which yields an action as a function of 

the actual state x EX and the actual posterior distribution q E w. A way 

of deriving easy to handle strategies is based on the following idea. If 

the parameter is known to bee and if there is an optimal strategy then an 

opt.imal action in state x EX often is a maximizer of F(x,8,•) where 

F: xx 8 x A-+ m.. Note that the action depends on the pa:raroP.ter 8 and 

that the function F is ass1Jmed to be known. Now let the pararoP.ter be unknown. 

Then we may use an action a which maximizes the function a-+ f q(d0)F(x,0,a) 

if the actual state is x and the actual posterior clistribution is q (pro­

vided that integration is possible and the ma:gjmum exists). Such a rule is 

called a Bayesian equivalent rule. It will be proved that such a rule yields 

an optimal strategy, if we are maximizing the average expected return, under 

conditions which guarantee that in the long run the decision maker obtains 

enough infoxmation about the unknown parameter, i.e. the sets Ki have to be 

recurrent. For maximizing the expected discounted total return we do not 

know a Bayesian equivalent rule that is optimal in general, however for some 

special models, such as the linear system with quadratic cost and a sjmple 

inventory control model, there is an optimal Bayesian equivalent rule. For 

the linear system with quadratic cost this rule can be considered as a 

generalization of the well-known certainty equivalent rule. 
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1. 3 SummMy on .the 6oU.owlng chap.:teM 

In chapter 2 we start with a formal description 9£ the Bayesian control 

model and we consider some examples. Then we study the process of posterior 

distributions. The maln result is the convergence of the posterior distri­

butions to a degenerate distribution, under each strategy which assures the 

number of visits to each set Ki, i EI to be infinite, with probability one. 

This result is used in several places in chapters 4 and 6. 

In chapter 3 we deal with two rather technical points. First we show that 

the Bayesian control model is equivalent to a dynamic program (see section 

1.2) and after that we study a class of optimal reward operators for dynamic 

programs in general. Here we consider optimal reward operators based on 

stopping times, for dynamic programs as introduced by Wessels {cf. [van 

Nunen and Wessels (1977) ]) • We generalize the operators for dyna.mj c programs 

with complete separable state and action space and we derive some new 

properties of these operators. These operators deter111i ne the maximal ex­

pected total return until some stopping time, and with a ter1aj nal reward 

at the stopping time, depending on the state at the time. Successive ap­

plications of these operators yield a sequence of functions on the state 

space, which converges to the function of optimal values. we use these 

operators in chapter 6 where we consider the method of successive approx­

imations for the equivalent dynamic program. 

In chapter 4 we first introduce the Bayesian equivalent rules. Then we 

construct optimal strategies in order to maximjze the average expected re­

ward. 

Chapter 5 is devoted to the study of optimal strategies for the expected 

total-return criterion. For three examples of our model we show that a · 

Bayesian equivalent rule provides an optimal strategy. The first example we 

call the independent case since the rewards are independent of the state, 

i.e. r is constant in the first coordinate. In all examples it is assumed 

that theindexsetiis a singleton, sotherandomvariables Yn, n E JN are 

sampled from the same (unknown) distribution at each stage. The second 

example is the linear system with quadratic cost and the last one is a 

simple inventory control mo~el. For this inventory model the Bayesian equi­

valent rule is not always optimal. However, we give an upper bound for the 

loss we incur by using this rule when it is not optimal. 

In chapter 6 we consider approximations for the 11 function of optimal values 11 

when maximizing the expected discounted total return. This function is called 



the value function and is defined on xx w by: 

v(x,q) := sup l q{S)v{x,6,n) 
;r e 

9 

where the supremum is taken over all strategies. We first indicate an upper 

bound on v and several lower bounds. These bounds have simple interpretations 

and are computable if the parameter set is finite or equivalently, if the 

prior distribution is concentrated on a finite set. We study the use of 

these bounds for successive approximations of the value function. We also 

give a lower bound on the expected discounted total return if a special 

Bayesian equivalent rule is used and we construct an other easy-to-handle 

strategy which is not a Bayesian equivalent rule but which l)ehaves nicely. 

Further we specialize the parameter structure as follows: there is a sub-

set B of the state space X with the property that,if X E 
n 

sampled from the same unknown distribution for all actions 

Xn E X\ B the distribution of Yn+l is known (hence K
1 

= B x 

B then Yn+l is 

chosen, for 

A and e -+ p . ( • I e ) is 
J. 

constant for i -/; 1). A special e>eample of this structure arises in the model 

where B = X, e.g. the models studied in chapter 5. Here we use an oprimal 

reward operator as studied in chapter 3, with the entrance time in the set 

B as stopping time. In fact, this operator allov1s us to consider the pro­

eess which is embedded on the set B. For this parameter structure we use 

the convergence of the posterior distributions to a degenerate distribution, 

and also the upper and lower bounds, to compute in advance an error estimate 
• • on then-th successive approximation, starting with a fixed prior distri-

bution. If the error estimate for then-th approximation is small enough, 

then we may compute t11e value function for this prior distribution by back­

ward induction. The effort needed for the computation of then-th error 

estimate is small compared with the backward induction procedure. Since 

usually the computed quantities to dete.r·111i ne the n-th approximation cannot 

be used to compute the n + 1-st approximation, it is nice to know in advance 

whether then-th approximation is sufficiently accurate. 

We also consider i11 this chapter another type of approximations, namely 

discPetizations of the parameter set. Here we split up the parameter set 

into a finite partition, and in each set of the partition we choose a re­

presentative point. We give bounds for the error caused by replacing the 

given prior distribution q by the discrete prior distribution which attributes 

probabilities to the representative points equal to the qi ven probabilities 

of the corresponding sets. In [Fox {1973)] and [Whitt (1976)] also discre-
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tizations of dynami,c: programs are studied. To apply their method, we would 

have to split up the set of all distributions on the parameter set into a 

finite partition and, in the equivalent dynamic program, the process would 

then j11mp between representative points in these partition sets. However, 

we then loose the nice property that the second state-coordinate of the 

process (i.e. Qn) is the posterior distribution of the unknown parameter, 

at every stage. 

our discretizations are of interest, since in general we can compute the 

upper and lower bounds, mentioned above, only if the prior distribution is 

concentrated on a finite set of parameters. As·a byproduct of our analysis 

of discretizations we obtain a bound for the difference between the value 

function of the Bayesian control model and the model that is obtained by 

replacing in advance the distributions pi (•I e> by their Bayes estimates 

based on the prior distribution and considering these estimates as the true 

distributions. This last model is used very frequently in practice, in­

stead of the Bayesian model. 

Finally, in chapter 7 we construct algorithin.s, based on the approximations 

of chapter 6, which compute the value function v (x,q) for a fixed prior 

distribution, and which also dete.r:mine e:-optimal strategies. We illustrate 

the quality of the algorithms by ntnnerical data for some examples. 

In appendix A we collect some results of measure theory which are used in 

chapter 3. In appendix B we illustrate the odd implications of the minimax 

criterion by an example. 

We note that it is possible to start reading at chapter 4 after reading the 

model description in chapter 2 and the assertions of the theorems and 

corollaries of chapters 2 and 3. 

1. 4 No.ta.tloM, c.onven.Uon6 a.nd plteJtU[tLi.t>Uu 

We start with some conventions. A numbered sentence indicates a definition 

a result or a formula. Such a sentence may occupy several lines, each one 

of which is indicated by an indentation. Synibols used for objects, which 

are defined in a n,1mbered sentence have a global,, meaning, i.e. if we use 

a symbol without defining it in the theorem proof, example or comment where 

it is used, then it has the meaning given in the n,unbered sentence where 

it is defined. References to lexnmas, theorems, corollaries, examples, sections 

and chapters are preceded by the words ''ler11111a'', ''theorem'', etc. Each chapter 

has its own numbering, for example 2. 4 is the fourth n11mbered sentence in 
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chapter 2. References to appendix A are preceded by the capital: A. Tl1e end 

of a proof is indicated by: □. If there is no ambiguity concerning the domain 

of some index or variable, we omit the domain in the notations. 

We continue with a list of notations. 

1 .. 1 lN := {0,1,2, .•• }, JN' :=JN u {co}, ll {ro}. 

1 .. 2 IR is the set of real n1Jmbers, JR : = IR u {-o:>, 00 }. 

1.3 o (•, ·) is the Kronecker symbol, i .. e. o (i,i) = 1 and 6 (i,j) = 0 if if: j. 

1.4 # A is the cardinality of the set A. 

1 .. 5 + 
X 

-
:= max(x,O), x := -min(x,O). 

1.6 Let (X. ,X.) be measurable spaces for i EI, where I is a countable 
l. l. 

set then X := TIX. is the Cartesian product and X 
. I l. l.E 

product-a-field on x. If µi is a probability on Xi 

is the product measure on X, if I is finite andµ, 
l. 

on Xi thenµ is also the product measure on X. 

Let A, X and Y be sets, such that Ac Xx Y then 

:= 0 X. the 
l. ie:I 

then µ : = 0 1,.1 • 
. I l. .LE 

a o-finite measure 

1.7 projx(A) := {x EX I there is some y E Y with (x,y) EA}. 

1. 8 i. i. d. means• 'independent and identically distributed'', iff means 

''if and only if'' and a. s. means ''almost surely''. 

Let (X,X) and {Y,Y) be measurable spaces and let f: X ➔ Y be measurable 

then 

1.9 o(f) is the sub-o-field of X induced by f, i.e. 

o(f) := {A E X I A= f-l {B), B c Y}, wl1ere f-l (B) := 1:x E x I .t (x) E B}. 

1.10 P(X) is the set of all probabilities on a measurable space (X,X). 

Let f be a function on a set X then 

1.11 

1.12 

X f(x), x €Xis a notation for this function. 

is the empty set. 

Let x 1 , x2 , x 3 , .•. be a sequence of real n\1robers, tl1en 

1 .. 1 3 inf{x, 
l. 

1 i €. ~1 := oo, :x. := 0 
~ ..... 

and IT 

i 1 . 0 
):. . 

l 
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Let (X,X) be a measurable space and let q be a measure on X and fa non­

negative Borel measurable functio.n on (X ,X) , then 

1.14 f(x)q(dx) is a notation for the measureµ defined by 

µ (A) := f(x)q(dx), A€ X. 
A 

1.15 Let· f and g be functions on some set X with range m. and 

f s g if and only if f(x) S g(x) for all x € X, f Sy if 

let y e JR, 
• 

and only if 

f(x) s y for all x ex. The analogous convention is used ifs is re-

placed by<,~,> or=. . 

We continue w.ith some pertinent facts on transition probabil.ities and 

conditional expectations. Let ( n, F, lP) be a probability space, (A, A) a 

measurable space, and let Y : 0-+ A be measurable. Then we call Y a random 

variabie and we write 

1.16 (i) JP[Y € B] := lP[{w e: 

(ii) JE [Y] := Y (w) lP (dw) • 

l Y(w) € B}] , Be: A. 

A real-valued function on n is called F-measurable or simply measurable, 

if it is measurable with respect to the Borel a-field on :m. The following 

l~mma is well-known (cf. [Bauer (1968) lemma 55.1]). 

Lernrn.11 1.1 

Let (O,F) and (A,A) be measurable spaces,and let f: n-+ A be measurable. 

Then a real-valued function g on Q is a(f)-measurable iff there is a real­

valued measurable function hon A such that g = h(f). If f is a surjection 

then the function h is unique. 

1.17 A measurable space (A,A) is called BoreZ space if A is a non-empty 

Borel subset of a complete separable metric space and A is the Borel 

c~field on A {note that in [Hinderer (1970) page 187] such a space 

is called a standard Borel space and in [Blackwell ( 1965)] a Borel 

set). 

1.18 The topological product of at most countably many Borel spaces which, 

because of the separability of the spaces, coincides with the measure 

theoretic product, is again a Borel space (cf.[Parthasarathy (1967) 

p. 135]). 
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Let {n,F) and (A,A) be measurable spaces, then a function p from Ax n 
to [0,1] is called a transition probabiZity from cn,F) to (A,A), or simply 

from to A, if 

1.19 (i) P (BI •) is F-measurable for each B € A. 

(ii) P(•lw> is a probability on A, for each w En. 

Let (rl, F, JP) be a probability space, let B be a sub-cr-f ield of F and :iet x be 

a real.-valued measurable function on n, with JE [X+] < ex, • 

1.20 (i) The conditional expectation of x given B is denoted by IE [x I BJ 

and defined as a real-valued B-measurable function on n such 

that lE [XlB] == IE [IE [xj BJ 1B] for all B E B .. 

(Here 18 is the indicator function of the set B.) 

(ii) If Y is another a real-valued measurlU.)le function on n we 

define lE [XI Y J : = JE [XI o {Y) J • 

(iii) For every A€ F we define the conditional probability of A gi­

ven B, respectively the aonditional probability of A given Y 

by JP[AjBJ := JE[1AIBJ, respectively lP[AIYJ := lE[1AjY]. 

Note that the conditional expectation is not uniquely defined, however two 

versions of it are equal lP -a. s. 

Theorem 1.2 

Let cn,F) be a Borel space and let lP be a probability on F. Then for every 

sub-a-field B of F the conditional probability is regular, i.e. there exists 

a transition probability P from (Q,B) to cn,F) such that for every real­

valu~d F-measurable function X that is bounded from above, we have 

w -+ J X(~)P(d~lw) is a version of JE [xi BJ • If P' is another transition 

probability from (n,B) to (n,F) with this property, then 

JP[{wlPC• !w) ~ P' (• jw) }] = 0 • 

For a proof cf. [Bauer (1968) th. 56.5]. 

we sometimes need the following corollary of th. 1.2. 

corol.lary 1.3 

• 
Let (Q, F) be a Borel space, let lP be a probability on F, let (A, A) be a 

measurable space and let Y be a measurable map from to A. The proba­

bility Q on A is defined by Q(B) := JP [Y e: B], B E A. Then there is a 
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trawa:i,.Uon pr · ..... ··. ·• lity p from (A,A) to cn,F) such that 

for al.l B c A and De F. 

B 

If p• 18 another transition probability from (A,A} to (0, f) with this prop­

erty, the,n 

g{{y i P(•ly) ~ P' (•\y)}] • 0 • 

. 1 1 ii -.A . . . "!I -- ·--• ;:a.. "' M ~ ii"',( 'f p-1.. ab•,,,• "1,; +, J g,; "l 'l- }[ 1 . a 04 ' ..Ji,)~ a N(l'U M:.U"' O'u,n,yt, ~·~vi ·"W"' .• · $VV' ·· · · ""'£i. u "'11 .. · ""vvr,. · ~ y and we usual.ly 

vz-1• JP'[• IY • y) for t ( • ly) • 

-_, th. 1.2 thar. is a transition pr,obebility P from (O,o:(Y)) to (0,F) such 

._t ·fr:or a,ll D t F and B E A: 

-1 y (B) 

1W ·.... •··•·• .. . 1.1 tnere is for each D e: F a real-valued measurable function on A, 

dreaotad by P (DI • ) such th.at 

~ • P(Dfw) , for we O. 

lt is euy to verify that P, considered as a function on A x F is a transition 

p~ilit:N from (A,A) to ('2, F) with property (*). 

Let I'' be another transition probability on A x F with property (*), and 

4d1• H :• {y ( AIP(•fy) ~ P' (•(y) }. Then 

-1 I Y (N) • {r.e E OP(• (Y(w)) ,& P' (• )Y(w)) }. 

ay th. 1.2 » [Y-l (N)] = O. Bence Q[N] = 0. 

Let the U;SlHltJ?tions of corollary 1.3 hold and let X be a real-valued 

•u1irable f 1l1notion on O, bo1,1nded from above. Then we define 

□ 

It 1• easy to v•rify that f(Y) is a version of the conditional expectation 
..... ,,,., ar<~ -.,n. v -
~ ~i ;,:4;.. •. ,~ ·. .I. ·""" 
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We frequently use the following theorem of Ionescu Tulcea (cf. [Neveu (1965} 

page 165]) • 

Theorem 1. 4 

Let (X ,X} , n E ~J be measurable spaces and n n let Q 1 be a transition 
n+ 

X ) n E JN • Further let 
n+l ' 

on X i . e • ~ ( X) : = X , X = 
n n 

and let ~ 0 ,, 1 , ••• be the coordinate functions 

(x0 ,x
1

, .•. ) € X. Then 

(i) for all n E JN there is an unique transition probability P from 

(nn x , ®n X ) to. (X ,X) d d { I ) X 
0 t O enote by p B Xor••·,xn, BE IX. EX. t= t= t l. l. 

• 
i = 0, ..• ,n, such that for cylinder sets of the for1n 

B := A x ••• x A xx x X x ••• and m ~ n: 
0 m m+l m+2 

= 1A A (xO, • • • , x ) lx ••• x n n 

• • • 

A m 

An+l 

••• 

(ii) for every probability p on X
0 

there is a unique probability .IP P on X 

given by lP [BJ = J p (dx0 ) P (BI x 0 ) , B E X and for any measurable 
p XO 

function Yon X that is bounded from above, J P(dx/ ~
0

, •.• ,~n)Y(x) is 

a version of the conditional expectation of Y given the a-field 

o(~0 , ••• ,~n). Hence one may define: (cf. lemma 1.1) 

or 

JE [Y I p 

lE [YI '01•••1,; J := P n 

= X ] := 
n 

Finally we summarize some pertinent facts concerning the set P(X) of all 

probabilities on a Borel space (X,X). 

1.22 On P (X) ,-ve l1ave the topology of weak eonver1gence; this is the 

' 
' 

' 

i, 

' ' k e 
' " f 

'111 



ooarsest .... · ... · logy such th.at for functions f € c {X) the map 

µ ~ J f (x) ~ {dx) is continuo11s, ll ~ P (X) , where C (X) is the set of 

bounded real-valued continuous functions on X (cf. [Parthasarathy 

(1967)]). 

Lew 1.s 

Let E be the topology of weak convergence on P (X) and F the a-field gener-

""' ...... A h,,, i: ~·- ·F i• •l•o·" -·~ wz· '~ • ··~.,-~. · V Q O • 

(1) 'the ael,,leet c-field such that the functions l.l -+ µ (B) are measurable, 

lit C , C() I B E X. 
(ii) th• ••llest a-field such that the functions l.l -+ f f (x) µ (rue) are 

••·•Urable, µ € p ()(), f E;'. C(X). 

~ proof of statement (i) can be found in [Rieder (1975) lemma 6. 1]. Note 

that. th:1,e implies that F is also the smallest O'-field such that µ -+ f fdµ, 

ll c ;, (X) are meuurJU)le for all real-valued bounded measurable functions 

f Oil x. 
:Proof of a,tat ·•· t (ii). Let B be the smallest a-field in P (X) such that 

.. + f t (x) µ ,(dx) is measurable, for f e: C (X) • For each Borel subset D c IR 

ud eftry f ( C(X) we hav,e { µ l J f (x) µ {dx) E: o} E: 8, for f € C (X) • This is 

~· a parti,cular for all open sets of m. Hence the topology E is contained 

1n ! , i-••• F c B. On the other hand, since for all open subsets D c :m 

{~I ./ f {:x), (<!bit) E D} E: F and since the Borel a-field on JR is generated by 

tb.e ••• sets, we have { µ ·t J f (x) µ {dx) € o} e: f for all Borel subsets D c :m • 

Ia lwqm 1 .. 6 we collect some miscellaneous results. 

{i) Let (X,X) be a Borel space and F the o-field on P 0() , generated by 

the topology of weak convergence, then (P (X) ,F) is a Borel space. 

(i.1) The identifi.cation of elements of X with the point measures in p (X) 

is a ·· .... · .. , rphlsm .. 

□ 

(iii) Let (X,X) and (Y ,Y) be Borel spaces and f a nonnegative measurable 

function on Xx Y, then the function 

(x,q) -+ •· f(x,y)q(dy) , X E: x, q € p CY) 

i.$ measurable. 
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The proof of (i) is found in [Hinderer (1970) th. 12.13], the proof of 

part (ii) in [Parthasarathy (1967) lemma 6.1 page 42] and part (iii) is 

an im111ediate consequence of lemma 1.5 (i) (cf. [Rieder (1975) lennna 6.2]} • 

• 

, 
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2. THE MOVEL ANV THE PROCESS OF POSTERIOR V1STRIBUTIONS 

In section 2.1 we define the Bayesian control model, the model we study in 

this monograph, and we present some examples. In section 2.2 the posterior 

distributions of the random variable, which represents the unknown parameter, 

are defined and some properties are derived. Finally, in section 2.3 the 

limit behaviour of the posterior distributions is studied and also the 

differences of successive posterior distributions. 

2.1 The Baye.o~an con.tit.al model 

Our model is similar to models described in [Shiryaev (1964), (1967)], 

[Dynkin (1965)], [Martin (1967)] and [Hinderer (1970)]. In fact, it 

special case of the model considered in [Rieder (1975)], which will 

• 
l.S a 

be 

shown later on in this section. In this monograph several models are con­

sidered, which are special cases of the Bayesian control model we des­

cribe now. 

model 1: Bayesian controZ. modBZ 

The modelconsists of the following objects. 

2.1 Ca) 

(b) 

(c) 

(X,X) 

(Y, Y) 

(A,A) 

a Borel space.xis called the state spaae. 

a Borel space. Y is called the supplementary state space. 
• a Borel space. A is called the act~on spaae. 

(d) D, a function from X to the non-empty subsets of A such that 

K := {(x,a) Ix EX, a E D(x)} is an element of X ®A. 
D(x) is called the set of admissible ac~ions in state x. It is 

assi1med that K contains the graph of some measurable function from 

X to A. 

(e) I is a countable set, called the index set. 

(f) For all i € I there is a Borel space (8i,Ti) and 9
1 

is called the 

pet.l:'ameter space of index i. The Bor€ll space (0, T) is defined by 

0 := rrie:I 91 , T := ®i€I Ti. The set 0 is called the pal'ame·ter sz,aae. 
(g) {K1 , i e: I} is a measurable partition of xx A. 

(h) Pis a transition probability from Xx Ax to X (Cf • 1 • 1 9) • 

(i) vis a a-finite measure on V. If Y is countable then vis assumed 

to be the counting measure. 

(j) p 1 is a nonnegative measurable function on 

such that /y p 1 Cy!e1 )v(dy) = 1 for all ei E 

y X ei, for all 

0. and i € I. 
1. 

i f: I 
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For all i EI 
,.._, 

and e. ,a. 
l. J. 

~ 
€ a1 , e. 'f' e. 

l. l. 
we ass11rn~ 

V ({y € Y I P. (y I 0. ) F P. <YI 8.) } ) > 0 • 
1 1 l. l. 

T s property is called: the separr.z.tion property. 

(k) r is a real-valued measurable function on X x A x Y, bounded from 

ab·ove, and called the :rBWaPd function. 

we continue with some definitions which clarify the meaning of the objects 

defined in 2.1. 

Each e € 8 can be 

coordinate of e. 
described bye= ce 1). I where e. E 

1€: l. 
• 

8. 
l. 

is called the i-th 

For each e € 8 we define a t:raa:n.sition probability 

by 

from X x A to Y x x, 

2.2 x FI x,a) := l 
i€I 

E 

P (dx' }x,a,y) 

F 

where E e Y, F e: X, x € x, a E: A and ei the i-th coordinate Qf S E 0. 
-(Note that Pe satisfies all requirem,:m,ts for a transition pi:obability (cf. 

1.19)). 

2.3 The set of histories B at stage n is defi.ne,d by n 

{i) 

(ii) 

:= x, H :=XX (AX y 
n 

is the product-a-field 

-* n E: lN • 

on H induced by X, n A and Y for n E lN • 

2.4 A strategy~ is a sequence:~= (rr
0

,rr1 , ••• ) where nn is a transition 

probability from (H ,H ) to (A,A) such that n n 
~nc·lxo,ao,Y1,x1,a1,·••1Yn,xn} 
is concentrated on the set D(x). The set of all possible strategies n 
is denoted by Il. 

It is easy to verify, by the condition on K (cf. 2.1 (d)), that IT is non­

empty. 

2.5 The sample space of the Bayesian control process is := 0 x H , and 
00 

on Owe have the product-a-field H := T 0 ff • 
00 

Note that (9,T) and (O,H) are Borel spaces (cf. 1.18). On n we define the 

aoor>dinate funations z, x , Y , A , n E JN , also called random variah les: n n n 



z (w) : = 8 , X (w) : = x , Y (w) : = 
n n n 

2.6 

w = (8,x0 ,a
0

,y1 ,x1 ,a 1 , ... ) en. 
A (W) := 

n 
a n 

21 

for 

According to the Ionescu Tulcea theorem (cf. th. 1.4) we have for each so­

called starting distr-ibution p € PcX), each so-called pnor distribution 

q e: P (T) and each strategy 7T E: II, a probahi Zity JP TT on en ,H) , defined by 
P,q 

2.7 

q(d8) 

B C 

-rr O (da0 I x 0 ) P 0 ( d Cy 
1

, x
1 

> I x
0

, a
0

) ••• 

DO El 

E ] := 
n 

••• P0 (d(y ,x >Ix 1 ,a 
1

> 
n n n- n-

2.8 

2.9 

D n-1 E 
n 

where B r:: T, C e: X, D E A and E € Y ® X , n e: JN • 
n n 

1T 1T 
The expeatation with respect to JP is denoted by JE 

P,q p,q • 

Define W := PCT) and 

(cf. 1. 22) • 

let W be the o-field on w generated by 

topology 

the weak 

we identif~" each e e: 9 with the element of w which is degene-Pate in e , 
i.e. e represents the probability that is concentrated on {a}. 

(By lemma 1.6(ii) this identification is a homeomorphism). And similarly 

we identify each x e: X with the degenerate distribution in P(X). Hence, for 

1T € TI, x e: X, 6 c: 0 the probability JP 1T e is well-defined .. x, 
Using th. 1.4 and the identification we easily derive: 

2.10 The conditional probability may be chosen as: 

JPn [•lz =OJ 
p ,q 

or 

JP-rr [•lzJ = 
p ,q 

= ]Pll' [•] 
p,6 

7T 
JP [·]. 

P,Z 

Note that the difference in these expressions is that the first one is a 

function on 0, while the second one is a function on n, depending on the 

first coordinate only. 

Using 2.10 we find, for BET and CE H 
00 

• • 
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2.11 

€ cJ • 

B 

Further we define criterion functions for the discrimination of strategies. 

2 .12 (i) The Bayesian discounted totaZ. return v is a real-valued function 

on Xx W x Il: 

00 

v(x,q,,r) 1T [ \' n J := lE l S r (X ,A , Y +l) 
x,q n=O n n n 

where 8 € [0,1) is the discount factor. 

(ii) The vaZ.ue function v is a real-val.ued function on X x W: 

v(x,q) := sup v(x,q,1r)~ 
,re: II 

Note that we use the symbol v for two different, but related functions, 

and note that we use the name ''value function'' only in connection with the 

discounted total return .• 

2.13 The Bayesian average return g is a real-valued function on Xx W x IT: 

g (x,q,,r) 1 
:= liminf N 

N >co 

N-1 
m 1T c i: 

x,q n=O 
r(X ,A ,Y +l)] • n n n 

Final.ly we define {nearly) optimal strategies. Let e ~ O. 
'\ 

2 .14 (i) A strate ,r is called E-optimaZ for the total return en tenon 

in x EX and q € w, if v(x,q,1T) 2!: v(x,q) - e. 

(ii) A strategy 1T is called £-optimal for the average return criterion 
,,..,_,. 

in x € X and q € W, if g(x,q,1T}~sup g(x,q,~) - E. 
NJ 

-rre:IT 
A 0-optimal strategy is simply cal.led optimal. 

Now the Bayesian control. model has been described completely. Note that for 

each starting distribution p e P(X}, each prior distribution q €Wand each 
1T strategy ,r € II the probability JP and the stochastic process p,q 

(z,x0 ,A0 ,Y1 ,x1 ,A1 , ••• )are completely described. Only in chapter 4 we shall 

consider the average-return criterion, everywhere el.se we consider the 

total-return criterion. 

' ,, ·-. •.-

/_'.'_)). 

:;-· 
... -/.' 

. ' .. 
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The Bayesian control model is an example of the so-called Bayesian. 

mod.e,l studied in [Rieder (1975)]. This relationship is not used in our mono-

graph. However, it simplifies comparisons of our results with the literature. 

To substantiate this we introduce the following notations. 

2. 15 (i) 

(ii) 

s := y XX, s := y ® X. 
* P
0 

is a transition probability from s x Atos, defined by 

for all y € Y, E tE y, 

FE: X and e e 0. 

* (iii) D is a function from S to the non-empty subsets of A, such 

* that D ((y,x)) := D(x) for ally€ y. 

(iv) * r is a real-valued function on S x Ax S defined by 

r* ( (y,x) ,a, (y' ,x•)) := r(x,a,y') , x,x' e x, a e: A, y,y' E: Y. 

* * * * * The 8-tupl.e ((S,S), (A,A) ,D, (8,T),P
0

,q,p ,r ) , where p E P(S) and q ~ w, 

satisfies all. ass11mptions of the model of Rieder. Note that, in our model 

the starting distribution pis specified only on X and in Rieder's foLmul-

* ation of our model the starting distribution p on Y x X is re ired. Bow-

* ever, only the marginal distribution of p on X pl.ays a role, since the 

* transition probability P
8 

has the property: y P; (B l {y ,x) , a) is consta.nt, 

by 2 • 15 (ii) • 

We conclude this section with some examples, illustrating the applicability 

of our model.. 

Example 2 .1 

:Cf the parameter set 8 is a singleton, or equivalently if the prior distri­

bution q E w is degenerate in e E 8, the Bayesian control model is an or­

d1nary dy~ami.c program, with state space (X,X),action space (A,A) and trans-
-ition probability P 0 , given by 

...., 
I x, a> : = I 

i€:I 

and reward function r 0 : 

:= l 1K. (x,a) 
iEI l. 

P ( dx' I x, a, y) , 

B 

v ( dy) p . ( y \ e . ) , r ( x , a , y) • 
1 1 

B e: X 
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EJCamvle 2.2 
....., 

Each dynamic program with countable state space X, countable action space A 
,...,, "" rw ,..._,, 

and incompletely known transition probability P from Xx A to X and real-
~ valued reward function r on Xx A can be transformed into a Bayesian control 

...., ,..., ~ 
model. To verify this define X := X, Xis the power set of X, A :=A, A is 

~ -the power set of A, Y := X, Y := X and r (x,a,y) := r (x,a) for all x € X, a€ A 

and y € Y. Further define I:= Xx A, K. 
l. 

:= {i}, i E I and 0. := P (X) • 
1 

Note that I is countable and that (0. , T. > 
l. 1 

is a Borel space if T. is the 
l. 

a-field on 8. generated by the weak topology (cf. lemma 1.6). Finally define 

X, XI € X' a E: A, y € y and pi (y I e i) : = e i ( { y} ) , y E y, 
l. 

P ( { x • } l x, a, y) : = o (x' , y) , 

ei E: 81 , i E I. 

It is straightforward to verify 

• 

assumptions of 2.1 are satisfied. that all 

P(• lx,a) If, for some pair x,a EX x A, is known, then the marginal distri-
,..., 

bution on 0 of q € W has to be degenerate in P(•lx,a). Sjmilarly, if 
x,a 

P(•lx,a) is unknown but belongs to some famjly of probabilities on (X,X) 

then the marginal on 8 of q e W has to be concentrated on this family. 
x,a 

consequently the models described in [Martin (1967)], [Wessels (1968)], 

[Rose (1975)] can be regarded as special cases of our model. 

Example 2.3 

The class of rnodels considered here is specified by Euclidean spaces x, Y 

and A, and a measurable function F 

t1.me n • l.S a function of the action 

time n - 1, and a random variable 

X = F {X l , A l , Y ) , n n- n- n 

from XX AX 

A 

y 
n 

n-1 
at time 

such that 

* n e: lN 

y 

n 

to x. The state X at 
n 

1, the state X at - n-1 

where X C X, A E: A and y € y. The random * variables {y, n € lN } are 
n n n n 

i.i.d. and cannotbe controL'led by the decision maker, however they can always 

be obsewed by hj_m. For that reason the sequence {Y , n E J} is called n 
the e~ternai process. The external process can be considered as a nuisance 

process. It is ass1Jmed that the distribution of Y is not completely known: n 
p ( • la) is the probability density of Y with respect to the cr-f ini te measure n 
\,l on Y for all e e: 0 where (0, T) is a Borel space. We also ass11me 

v({y e YI p(yJe> ~ p(y\8)}) >afore Fe. It is easy to transfoxm these 

models into our fraro~work. To th.is end let P({F(x,a,y) })x,a,y} = 1 for 

x ex, a€ A and y ~ Y, and let X be the Borel a-field on X, and let A and 
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Y be the Borel a-fields on A and Y respectively. Further let I be a single­

ton, i.e. I:= {1} and K1 :=Xx A. At each stage Yn is sampled from the 

distribution with density p{•le>, e E 8. 

Let there be a reward function satisfying 2.1 (k). Then all conditions of 

2.1 are satisfied. 

Examples of this class are the linear system with unknown disturbance dis­

tribution as studied in [Aoki (1968)], and inventory models with unknown 

demand distribution with or without backlogging (in chapter 5 we study such 

a model extensively). Another example of these models is the replacement 

model with additive damage as considered in [Taylor (1975) J where the distri­

bution of the so-called shooks is not completely known (in chapter 7 we 

consider this model too). 

Example 2 .4 

A model that satisfies all conditions 2 .1 (a) - 2 .. 1 ( j) , but for which the re­

ward function is not bounded from above, can sometimes be transfor1ned into 

a model satisfying all conditions of 2.1. For this purpose we replace 2.l(k) 

by another condition which is due to Wessels (cf. [Wessels (1977]), who 

assumes the existence of a so-called bounding function b, i.e. a positive 

measurable function on x, and a positive n1.1mber M such that for all x e:: x, 
a€ A and y E Y: 

(i) P(dx'lx,a,y)b(x') S b(x) 

(ii) r(x,a,y) s l--0:>(x) • 

we sllall carry out this transformation for the case where X is countable. 

It is easy to extend the arg1lment to the general case. Define: 

P * (x' jx,a,y) 
-1 

:= P({x'}!x,a,y)b(x')b(x) 

* -1 r (x,a,y) := r(x,a,y)b(x) , for x,x' e: X, a e: A, y E Y. 

* *I * P (x x ,a,y) ·- 1 .- , * *I P (x x, a, y) : = 1 - I P({x'}lx,a,y) , 
x'e.X 
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* * * r (x ,a,y) := 0 and b(x) := 1. 

Each strategy for the original model is also a strategy for the new mode1-

(except in state x *) • We denote the expectation for the transfor111ed mode1 

* by JE • Note that for xj E X, aj E A, y. € Y: 
J 

b(x0) { n P({x.+1 } x.,a.,y.+1)}b(x) -
j=O J J J J n 

n-1 
= n 

j=O 

And therefore 

n-1 
= { II 

j=O 
* * 

-1 

• 

n n 

n-1 
= II 

j=O 

--

• 

Now it is straightforward to verify that for x e X, q €Wand 'Tr E II: 

-1 'Tr 
b(x) E [r(X ,A ,Y . 1)] = x,q n n n+· 

*'IT * 
JE [r (X ,A ,Y +l)] • x,q n n n 

This shows the equivalence of both models. • 

2. 2 Po.6:te/UOJt ci.l6.tJubu.,t,.i_o M 

As already announced, the posterioP distribution of the random variable z, 
which represents the unknown parameter, plays an important role in this 

monograph. We define random variables on {n, H) with range the set W, the 

set of distributions on (8,T) and aftex:wards we show that these random 

variables are versions of the conditional distribution of z, given the 

observed histories of the process. This property justifies calling these 

random variables the posterior dietr>ibutione~ 

We start with some defin.itions. 

2.16 On Owe define, for i e I, the 

= (S,x
0
,a

0
,y1 ,x1 ,a1 , ••• ) En 

function z: z (w) = e .. . i i i where 

and where e = {8.)i r· . l. € 

Hence Z = (Zi)ie:I and we may interpret the random variable z1 , i € I as 

the parameter of the distribution from which Yn is ~ampled, if 
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(X l, A l) E K .• n- n- 1. 

On n we define, for i € I, a sequence of stopp~ng t~mes {T(" ) } 
v . ,.,. , i,n , n € :l\l' : 

2.17 T (i,O) (w) : = 0 , -r ( i , n) ( w ) : = inf { m E JN I m > T ( i , n - 1 ) ( w) , 

for n e: * ]N 

(Xm-i (w) ,Am-l (w)) e: Ki} 

and w E ~ .. 

Note that then-th observation from the distribution determined by p. <•le.), 
1. l. 

occurs at stage T(i,n) and note also that far each w € n and each 

there is exactly one pair (i ,n) , with i E I, * n E lN such that 

T(i,n) (w) = k. 

In the rest of this chapter the sub-a-fields in H, induced by the observable 

random variables, are used frequently, therefore we introduce the notation: 

2.18 n E JN • 

For the stopping times T{i,n) we define the usual a-fields F ( . ) : T 1,n 

., 10 "' . .,, F :={Be: HI B n {1:(i,n) = k} EFk for all k 
'I (i, n) 

e: JN} • 

* Note that {T(i,n) = k} e Fk-l for n,k E lN • 

Since (0,T) is a product space we define, for each q E W the marginal dis­

tributions q. on (0. tT.), for i e: I: 
l. l. l. 

2.20 Let BET. then 

q. (B) 
l. 

l. 

-­.- q (d0) • 

{0(0.E:B} 
1. 

It seems to be quite natural to work with prior distributions q that are 

product-measures, • i.e. q = * q .• However most results of this monograph 
i€I 1 

are valid without this ass1.1mption. Note that the 

is equivalent with the assumption·that 

th. 2 .1 we return to this matter. 

z., i 
l. 

€ I 

assumption that q = i& q. 
·,r:I 1 • l. -are independent. In 

* In order to define the posterior distributions we define, for n € JN , the 

functions a on 
n 

(8, T) and for i 

with range the set of measures on the parameter space 

€ I the random variables a 1 on n with range the set of ,n 
measures on {8. ,T.): 

l. 1. 

2.21 (i) a (B) 
n 

n 
·- n .-

j=l 
B 
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n 
(ii) ai (B.) := ,n J. 

JI { 1K <x. 1 ,A. 1) pi (Y. I a. > 
. J- J- J l. j =1 l. B . 

i 

where Be T, Bi€ T1 and ei the i-th coordinate of 6 € 0 {for nota-

tional convenience we have omitted the dependence on w € 

The integrand of 2.21 (i) may be considered as the likelihood 

in 2.21). 

ction of 

th,e parameter e at tj me n and Sti mi larly the integrand of 2. 21 (ii) as the 

likelihood function of the parameter-coordinate ei, at time n. 

The following equality clarifies this. It is easy to verify that on n we 

have 

2.22 --

= . n p (Y I e > , 
{k>Ol-r(i,k)~} i T(i,k) 1 

i e I • 

We shall use the convention: 

2.23 For any real-valued function f on Yanda stopping time T 

f {Y ( u>) ) : = 0 
'[ (al) if T (tu) - co - I for w € n. 

• Finally, we are ready to define the posterior distribution Q for the 
n 

di.et'Xlibution q E: W, as a random variable on n with range the set w: 
pr-z..or 

2.24 Let Be: T, 

Q (B) (oo) 
n 

then Q (B) := q(B) and for w 
0 

, -1 
:== a (B) {w) {a (9) (w)} , n · n · 

:== q(B) otherwise. 

* e n and n (; lN : 

if a (0) (w) > 0 n 

(la th. 2 .1 it tu;r:ns out th,at a (0) > O, JP TI" -a. s.) • 
n P,q . 

And. $:11ni.lax-ly we .. ctetine the 'tfV'Jet:erio':t' distributions Qi for i e: I, n E JN : . ~- .. ,n 

E'. Ti' . then Qi ,O (B) := qi (B) · and for * w E: 0 and n € lN 

NOte that 2n<•> (~) and Qi,n (•) (w) are probabilities for all w e: n. 
Tbe ~:a~1t.tt«bil.1:1.:y of ~ and Qi,n 1$ a direct consequence of len11na 1. s (i) • 

The nallle t•poste,::to~ · cll..sb:ibU;t.ion'' ·. is justified in· th. 2 .1. 
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In th. 2.1 we collect some obvious properties of the random variables Q 
n 

and Q .• Throughout this chapter we fix a starting distribution p € P(X), i,n 
a prior distribution q E Wand a strategy n E IT, and for notational con-

venience we write lP and JE instead of 1T 
JP 

p ,q 

Theorem 2.1 

Let BET and Bi E Ti, for i e I. Then: 

II? [z € BI F J = Q (B) , lP -a. s. 
n n 

(i) 

(ii) if q = then Q = n ® Q. • 
. I 1,n 
l.€ 

and 
1T 

lE • p ,q 

(iii) if q = q. 
l. 

then lP [z. 
l. 

JP -a.s. 

(iv) 

(v) 

(vi) 

Proof. 

Let C 

where 

iEI 

if q = 
iEI 

on { t" (i ,n) 

qi then lP [zi 

< 00 } lP -a. s. 

1 1K {X ,A ) 
ie:I i n n f p. CY +l I ei > Q (dB) e l. n n 

(on the subset of n where the denominator is positive). 

lE [Q (B) IF ] = Q (B) if n > m, n m m lP -a.s .. 

== e X E X F 
0 0 

Y, E. € X 
l. 

X D X 
1 

and F. 
1 

El X Fl X ••• X 

e: A for i e: JN .. 

D XE 
n n 

Then CE 

X F X (Y 
n 

F and 
n 

X X X A) JN 

JP [ z € B I F J dJP = JP E z e B , x
0 

E: E 0 , A0 
E F

0 
, ••• , Y € o , x € E , A € F J = 

n nnn nnn 
C 

= q(d8) p(dxo) lTO(daolxo) v(dy1) P(dx1lxo,ao,Y1) ••• 

B Ea Fo D1 El 
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We introduce some notations which are useful in the following chapters. 

on y x w we define real-valued functions p. , i e: I: 
l. 

2.27 y € Y, q E W .• 

Notice that these functions may be considered as extensions of the functions 

defined in 2.l(j), by the embedding of 0 in w, in fact pi (y,8) ::::pi {y(0i), 

e E: e. 
It is a consequence of le110:r1a 1. 6 (iii) that the function (y ,q) -+ p. {y ,q) 

1. 

is measurable, i E:: I. 
• 

Note that pi { • ,q) is a probability density with respect to the measure v, 

for i € I and q € w. 
E~rther we define functions Ti on Y x W with range the set w, for i € I: 

2 .. 28 Ti {q) is a probability on 8 such that, for B e: 0 ,y 

if pi(y,q) > 0 

B 

:= q (B) , othe:rwise. 

Again, 11sing 1~1,a11a. 1.6 (iii) we find the measurability of 

{y ,q) + Ti (q) (B) , ,y B c T, i € I • 

• 

Bence Ti is a transition probability from Y x W to 8. we may interpret 

Ti (q) as the posterior distribution, if q is the prior ,y 
y E: Y is observed from the distribution belonging to the 

following formula is easily verified: 

2.29 0 +l • L lv (X ,A )Ti (Q ) • 
"'n i€I ~i n n ,Yn+1 n 

distribution and 

set K .• The 
l. 

Por q E: W we define the functions 4a,q1 ,q2 , ••• recursively: 

2. 30 (i) 

(ii) 

: w • w , q 0 <c;i> : = q .. 

such that 

*· n e: lN 
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: = t 1 K ( X 1 , a 1 ) T . ( q 1 ( q , XO , aO , • • .. , y 1 ) ) .l . n- n- i y n- n-
1EI 1 'n 

for q E W, x ! e: X, y £ E. Y and a .f. E A, i E JN . 

It is straightforward to verify that, for BET 

n-1 

f 
= B J ~~ ~EI l. ~ J" ,. , "' , 

n-1 

8 j=O iEI i J J 1 

provided that the denominator is positive. 

Using the notations above, we may write: 

on n. 

We conclude this section with a few remarks: 

Remarks. 

(i) If~ and n are independent random variables, defined on some pro­

bability space, and B is a sub-a-field, tl~en in general 

lE [ ~ • n I BJ :/- lE [ ~ I BJJE [ n I BJ • 

However in th. 2.1(ii) we proved that equality holds lP-a.s., if 

33 

~ := f(Zi), n := g(Zj) and B := Fn for i ~ j, i,j, EI, f and g non­

negative measurable functions on 8 i and Sj respectively, and if q = i~I qi. 

(ii) Instead of defining the posterior distributions Q by 2.25 we could 
n 

define them directly as conditional distributions (cf. th. 2.l(i)). 

However the conditional distribution JP [z € •IF ] is undete.r1r1ined 
n 

on some set with JP -measure zero. 

(iii) If the prior distribution q is concentrated on a set of finitely 

many points then all posterior distributions are concentrated on 

this set. 

2.3 behavioUJt. 06 ~he po-0~Vt,,lo~ cll6:tlubu.t..ion.6 

The main result of this section is the convergence of the posterior distri-

butions 

Q (B) 
n 

of z {cf. 2.16 and 2.25) to a degenera~e distribution, i.e. 

converges almost surely to 1B(Z) for all BET, provided that the 
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strategy, by which the system is controlled, ensures that the n11mber of 

visits to the set K1 c X x A is infini t~, with probability one. our proof of 

this statement is similar to the proof of a theorem in [ Doob (1949) J. In 

fact, our result .. extends Doob's result to a more abstract setting. 

Another result of this section concerns the expected differences of the 

successive posterior distributions. In the proofs of the above mentioned 

results, elementary martingale theory plays an important role. As a 

corollary of the next lemma we shall show that given z, the sequence 

identically distributed random variables (cf. [Neveu (1965) page 129]), 

* provided that lP [-r (i ,n) < CID] === 1 for all n £ JN • This le11ma is also used 
• 

in chapter 6 (remembP.r that p e P (X), q E: W and 11' € II are fixed). 

Leikllt\A 2 • 2 

Let f be a nonnegat~ve measurable function on Yn. Then 

JS [ f (Y (1 1 ) ' • • • , y ( . ) ) J 't' I. 1' 1. ,n 

with equality if 

!IP ( { l" (i, n) < co}]= 1 

(we use convention 2.23, note that -r (i,k) < -r {i,n), k < n). 

Proof. 

It suffice.a to consider functions f of the fo1.m: 

n 
Il lE (yj) , 

j=l j 

It is easy to verify that for E E: Y we have JP-a.s. (cf. th. 1.4): 



Leth be a nonnegative measurable function on 8 .• consider 
1. 

n 00 n-1 
JE[h(Z.) IT lE (Y c· .))] = 

l. . 1 . T J.,J 
]= J k l. . l . T ,J T 1,n 

=n J= J n 

00 n-1 
= 

k=n J=l J n 

co n-1 
--

k 1 • l . T ,] T 1.,n 
v(dy)pi <ylzi)1E (y)] ~ 

=n J= J 

n-1 
IE [ h (Z i) IT 1 E (Y ( . . ) ) 

. 1 . "(' 1.,J 
J= J 

n 

v(dy)p. <ylz.) 1E Cy) J 
l. ]. 

n 

with equality if IP[{-r(i,n) < 00 }] =1. Note that the third equality is a 

consequence of (*) and the fact that (Xk~ 
1
,¾_1 ) c: Ki on {-r(i,n) = k} • 

Now we may repeat the arg1Jment for -r ( i, n-1) with the function 

h (Z.) := h (Z.) J \) (dy} p. (y I Z.) 1E (y) • So we find putting h = 1 
1. l. l. l. 

n 
JE [ TI 1E (Y (. . ) ) ] 

. 1 . '[ l.,J 
J= J 

which proves the lemma. 

n 

n 
~ JE[ IT 

j=l 

The following corollary is immediate. 

Corollary 2.3 

J 

Let lP[-r(i,n) < o:,J = 1. Then for E 1 , ••• ,En E Ywe have q-a.s. 

lP 7T [Y 
p, e T Ci, 1 > € El , ••• , y (. ) € 

"t l. ,n 
E ] = 

n 

or similarly as functions on n we have lP -a. s. 

1T 
lP [Y (. l) P ,Z T l., 

Hence 

E ] = 
n 

n 
II 

j=l 
E. 

J 

Y c· l) , ••• ,Y c· ) are, conditionally given Z, i.i.d. 
T l. 1 T J.,n 

35 

--

□ 
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Theorem 2.4 

If lP [ { (i ) < } ] = 1, then for all bounded real-valued measurable . n T ,n ~ 

* n E::N 
functions f on 8 i: 

lim f(8i)Qn(d8) = f(Z1 ) 
n) 

lP -a.s. 

Rec,ark .. 

·Ihi s holds in particular for all bounded continuous functions f • Hence Qn 
• 

conver,ges 1.ueakly to the distr1l>Ution which is degenerate in z1 , lP -a.s. 

Proof. The proof is divided into five parts. 

a) We first reduce the problem. 

JP-a.s. (cf. 

th. 2 .1) by considering indicator functions first. Since { F , n € JN} is n 
an increasing oequence of a-fields with J i mi t F 

00
, and since the sequence 

respect to { F , n € JN } , 
n 

we have (cf.[Neveu (1972) th. II-2-11]): 

lim 

* Let F be the COwI:Jletion of F in H , i.e. m co 

F: :={A ...... A NIAe: F
00

, Ne: H, lP[N] = O}. Obviously, it is sufficient to 

JP-a.s. 

So we proceed with proving 

* b) We define on O := n {-r (i,n) < 00 } the empinaaZ distributions on (Y ,Y): 

1 
F (E) := -

n n 

ne:JN 

First we verify that F ( •) 
n 

where P ( Y) is endowed with 

E € y (note that n* e F ) • 
00 

is a meas~rable function * from n to P(Y) , 

the a-field generated by the weak topology. 



'l'h s a-field is generated by sets of the form (cf. J emmF1. 1. 5) 

E € Y, a E JR • 

Since 

s a} e: F , 
00 

the measurabili ty of F n (_•) has been verified. 

c) Next we consider the limit behaviour of F 
* ,..,, . n • Let F be the restriction 

_*n 
of F on n, 

00 00 ,..,, 

for n -+- 00 , as functions 

i.e. F :={An n*I A e 
co 
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on 

F }. 
00 

* Since 0 E F we have F c F 
00 ClO 00 

• By corollary 2.3 we have, for q-almost 

all 6: YT(i,1)'···,YT(i,n) are 

common distribution P8 , where 
i 

* ,..,, ,r * i.i.d. on (0 ,F ,lP 8 ) for n E: lN with 
co p, 

P: 01 + P(Y) is defined by 

for E E: Y • 

E 

Let C(Y) be the set of all bounded continuous functions on Y. Since (Y,Y) 

is a Borel space we may use a generalization of the Glivenko-Cantelli 

len1111a (cf. [Parthasarathy (1967) th. 7.1 page 53]). This lemma states 
,r 

that F converges weakly to Pe , lP 8-a.s. 
n i P, 

Hence, for q-almost all e, we have 

1r 
lP 

8 
C{w 

p, 
g (y) F n (dy) = g(y)P8 (dy) 

i 

Since TI' 
JP [Z. = 0.] = p,e i .i 

1 , we have for 

for all g € C(Y)}] = 

o ** := { w e: n * 111m 
n ~ oo 

g(y)F
0

(dy) = g(y)Pz (dy) for all g € C(Y)} 
i 

that JP ,r [ n**] = 1 and using 2 .10 we find 
. o,8 ** ** * 

Bence, since JP [n J = 1 we have n e: F 00 • 

• 

1 • 

d) FUrther we prove that the function Pzi from n to P(Y) 

member that the a-field on PCY) is also generated by 

(cf. lemma 1.5): 

* is F -measurable. Re-
co 

sets of the fo~m 

{ µ € p (Y) I g(y)µ(dy) ~ a} , g E: C (Y) , a e JR .. 

l""I ** ~ F* Since a6 ~ we have 
Cl) 

' 
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Bence {w E nl J g(y>Pz (dy) 
i 

' 

} F* s a E: 
CIO 

* Pz : n + P(Y) is F
00

-measurable. 

g(y)F (dy) n 

and therefore 

i * e) Finally we show that zi is F=-measurable. 

F*. 
00 

By the separation property (cf. 2.1(j)) we have P: 0. + P(Y) is a one­
i 

one map into P(Y) • Since this mapping is measurable we have by Kuratowski • s 

theorem (cf. A7) 

P-l(P ) : 0 + 
z 

-1 
that P is also measurable. Hence, since the function 

* -1 81 is F00-measurable and since P (Pz) = z. 
we havi * ** i l. that z1 is F 

00 
-meas1,1rable on O • Therefore, l;>y part (a) , the 

theorem is proved. 

Corollary 2.5 

implies 

Proof. 

k 
JP [ n 

j=1 

lim 
n t00 

e I and let f be a bounded measurable function on 
-* , k E lN • Then: 

< m}] = 1 

f(8i , ••• ,e
1 

)Q (d8) = 
1 k n 

JP -a.s. 

~ 

□ 

We extend f to a function on 8 by defining £(8) := fore E 9 

with e1 
As in p 

as ij-coordinate. Let(*) hold. 

t (a) of the proof of th. 2.4 we have: 

lim 
n-+oo 

f (9)~ (d9) 

It suffices to consider functions f of tbe fo:t:m 

JP -a.s. 



£Ce. , .•• ,e. > = 
1.1 1 k 

m 

IT lE (0. ) 
j=1 j 1.j 

where E. ET. , 
J l. . 

J 
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m ~ k , m E * :N 

In the proof of th. 2.4 we showed that (*) implies that 

1 s; j ~ k. 
z. 

l. . 
* is F -measurable, 
00 

J 
rw 

Hence f (Z) * is F -measurable here, which proves the statement. 
00 D 

Corollary 2. 6 

Let q be concentrated on a countable subset of 8. Then JP [ n *{T(i,n)<a>}]=1 
nEJN 

i.mpJ.ies lim e E 0 
1. n l. P, with q({6}) > 0 

n >00 

and for any bounded measurable function f on 0 i. 

To prove this, note that for B = 8 x c, c e: H 
00 

JP ,r [BJ == 1 for all 0 E 0 with q ({ 0}) > 0 (cf. p,a 

: JP 11 [BJ = 
p ,q 

2.11). 

1 implies 

The countability condition in corollary 2.6 is essential. In [Freedman 

(1963),(1965)] and [Fabius (1964)] this problem is studied for the situation 

of real-valued i. i .. d. random variables. 

In th. 2.7 we consider a slight extension of th. 2.4, to be used in section 

4.2. 

Theorem 2. 7 

-* Let i 1 , ••• , ik E I, with k E :tJ and let 

ping times, such that for m e: 

the a-field F be defined as a 
n 

k CIC) 

:tJ , { cr = 
n 

in 2.19. 

{O I n 
m} E 

n E: :tJ } be a sequence of stop-

F and cr : = 
m 0 o, crn+l > cr • n Let 

Assume: lP [ n 
j=l 

n { -r (i . ,n) 
n=l J 

< ~}] = 1. Then, for all bounded measurable func-

tions f on ei 
1 

X • • • we have, on {a 
n 

• 
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lim QO' ( d8 ) f {8 i , •.• , 8 i ) 
n 1 k 

= f (Z i , •.. , Z i ) 
1 k 

lP -a. s. 

(by convention is the zero-measure). 

Proof. 
a) We first consider the a-fields 

B n 

B n 

{a =k} n == fa if k < n since 

k} E f' k. Hence F n c 

in more detajl. Let B € Fn, then 

= k} = fiJ. If k ~ n then 

{o = , n e lN • Now, let B E F • Then 
er n n 

B n {a • JQ==B n ( u {cr = R..}) 
n+l ~i<k n 

~ k} c: Fk , • since 

B n ( u {an = .t} ) € F k- l • Bence the 
DS!<k 

S.:lnoe F c F c F , n E: lN we have n cr oo 
n 

F 
00 

is the smallest a-field containing 

sequence 

u 
nE: lN 

u 
n€lN 

F C n 

F 
<J n 

• 

{ F , n e: lN } is increasing. 
on 

u 
ne: lN 

C F • 
00 

Therefore 

b) P1lrther we consider . q,. (de) f (6 ) where f is a bounded measurable function 

on 8 • Let B € T. Then: n 

co 

- I 

co 

%, (B) 
n 

l{ cr =m} P [ Z e: Bj Fm] = JP [ Z € 

n 
I lP-a.s. 

(for the last eq11ality cf. [Neveu (1972) prop. II 1-3]). 
• 

Bence, ,,sing standard arg11ments I we find for each bounded measurable 

function f: 

. a a <oo 
n n n 

c) Note that, by the conclusion of part (a): lim 

lP a.s .. n • co 

JE [f {Z) IF a J = JE [f (Z) IF 
00

] 

n 

Since { a < 00 } , n E: JN is a nonincreasing sequence with J.imi t n 

n {an< 00 } we have, JP-a.s.: 
nEJN 



lim JE[f{Z)IF ]1{ } = 
(j (1 <OO 

n·>co n n 
JE [f {Z) IF Ql)]1 n {cr <co} • 

ne:JN n 

In exactly the same way as in the proof of corollary 2.5 we find 

lE [f (Z} IF 
00

] = f (Z) , ::ll' -a. s., which proves the theorem. 
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□ 

we conclude this section with a theorem concerning the expected quadratic 

differences of successive posterior distributions. This result, which might 

be used to obtain approximations of the value function (cf. chapters 6 and 7) 

is of some interest in its own right. 

Theorem 2.8 

Let B1 ,B2 , ••• be a measurable 

JP[ n *{T(i,n) < 00}] = 1. 
nt::lN 

Then 

0, 00 

l lE [ l {Q. +1 (B.) 
. 1 l. ,n J n-m J= 

in particular, form= 0 

00 00 

2 JE [ l {Qi +1 (B.) 
0 . 1 ,n J n= J= 

Proof. 

partition of 8 . , let q = 
.J. 

2 
- Q. (B.)} J = 

i ,n J 

00 

= 1 - I 
j=1 

00 

1 - I 
j=l 

@ q. 
. I i .J.E 

and assume 

2 
Q. (B . ) 

J.. ,m J 

According to th. 2.1 Q. (B.) = lP [z. E B. I F J, :n:> -a. s. For n 2:: m 2: 0: 
i ,n J i J n 

--

2 
+ Qi (B.) -,n J 2JE[Q. +l(B.)Q. (B.)jF JIF] = i,n J i,n J n m 

- Q~ (B ) IF J, 
i,n j m 

• since 

• 

JP -a.s. (cf. th. 2 .1 (vi)) • Hence 

N 2 2 
JE [ { Q . + 1 ( B . ) - Qi ( B . ) } I F J = 1,n J ,n J m 1, J m n...:.m 

- Q. (B.) • i,m J 

By th. 2.4 we have lim 
n ► 0:3 

Q. {B.) 
l. ,n J 

lP -a. s. Hence by the dominated 
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convergence theorem for conditional expectations 

l.im 
0 )CO 

,n · m j i, 

consequently, by changing the order of s111,m1ation 

00 ClO 

= 
• 1 I J= 

which proves the theo:rem. D 

co • 

The quantity is a meas1,re of degeneration ~or the distribution qi. 

(II) 

2{1 \ 2 
- l q {B ) } 

j==1 i j 

is the · · .. • ' o'Lia entrap. .. fl··· ofq .... · with :respect to the partition B ,B , • • • if .. · ···1 .·· · .· .. 1 2 . . . ' ' ' 
. ' . ' "• . . 

the 
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3. THE EQUIVALENT DYNAMIC PROGRAM ANV OPTIMAL REWAR:D OPERATORS 

In section 3.1 we show that the Bayesian control model is equivalent to a 

dynamic program with a state space that is the Cartesian product of the 

original state space X and the set W of all distributions on the parameter 

set. This property is used frequently in the remaining chapters. In section 

3. 2 we study a class of opt-imal reward operators based on stopping times, 

as introduced by Wessels (cf. [van Nunen and Wessels (1977)]). Here we con­

sider general dyna.mj c programs and therefore the section may be of some in­

dependent interest. However in section 3 .. 3 we return to the Bayesian control 

model and we specialize the results of section 3.2 for the equivalent dynamic 

program. Further we give some useful properties of the value function (cf. 

2.12). We note that the results of section 3.2 are used in chapters 6 and 7. 

Before discussing in detail the methods and results of this section, we 

define the dynamic program, that turns out to be equivalent to the Bayesian 

control model. 

model 2: Equivalent dynamic program 

The model is defined in terms of the objects of model 1 (cf .. 2.1) .. 

3.1 (a) xx w is the state spaae endowed with the a-field X ~ W. 
(b) A is the action space endowed with the o-field A. 

,..,, 
(c) o is a function from Xx w to the non-empty subsets of A such that 

_, 

D((x,q)) := D(x), x ex, q E W (the sets of 
,..,, 

(d) Pis a transition probability from Xx W x A to Xx W such that 

,,..., 
P(B x clx,q,a} := \ 1 (x,a) v(dy)p. (y,q) P(ax• Jx,a,y) l K l. 

iE'.I i {ye:YIT. {q)EC} B 
1. ,y 

(x e X, q € w, a EA, Be X, CE W) (cf. 2.28). 
,..,, 

(e) the reward fu.nction r: xx w x A~ m. is defined by 

...., 
r (x ,q, a) := I 1 (x,a) 

. I K. 
l.t J. 

v(dy)p1 {y,q)r(x,a,y) • 



a. ta actioo 1.2 we define the sets of histories, the strategies, the ran­

._ •axiAblea and the probabt.li ties on the sample space. 

J .. 2 !be aet of n:i,stonaa at stage n, is defined by: 

(X x W 
n x A) x x x w, n * e: lN , 

W and A, n e: 
,..., -

JN • Let H : = H • 
00 

- r,,I ,..,, ,.., r-, -

A atN·t.w 1r is a sequence ,r = (i:r
0

, n 1 , 11'2 , ••• ) , where ,rn is a transition 

·· 11ty from B to A such that 1r ( • I x0 ,q0 , a0 , ••• , x ,q_..) is concen-
n n n u ,.., -t:raited a t>(x

0 
,4n). The set of all strategies is denoted by II. 

-·Ca Q w 4-fine the coordinate tions-or 
-
A (w) := a 

n n 

~ ,..., 

where 

X I n 

....., 

Po:£ nch 1-l t P(X} , ea.ch q e W and each n e: IT there is a probability 
,_ I' N 

I> . oo R aeterml.ned by (cf. th. 1.4): ,,. 
"' B , Q 

n n 
e: C , 

n A n E E J := n 

- -
,rn(danfxo,qo,ao,·••1Xn'4n) 

·-~ a · 'Ii E 
n 

i € 

a. lat.J:'eiduce • aequenoe of transforrna.tions t : 

hlat,;Ol'1,ea for lltiJ.4el 1 to histories for model n2. 

·- q .- . 

....., 
W x H + H which relate 

n n 

(cf. 2.30 {ii)) , for i = 1, ••• ,n. 

and 

---., ll t\l I W 1a the, ~tor distribution of Z, 

at t.iaia a tr W. anly QPe•x~ th'8 states X . , the 
then t (q,h) is the history 

n n 
actions a. and the posterior 

l. 

~· . . . ~ . . •. n .. :n ·• 

• C •o ltf ·-..~ .18 !~ eeeb q E w a ; E: n such 
II C 8 it 

that for all h n e: H , 
n 
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nn C • I h ) = :;; ( • I t (q, h ) ) • n n n n 

-The strategy ;r is called the corresponding etra.tegy of ;r {with respect 

to q). 

Notice that the strategies n e n
0 

base the choice of the action at time n 

only on x0 ,Q0 ,A0 , ... ,Xn,Qn• 

In this section we show that we may restrict our attention to the subset 

of strategies n0 when we are looking for ''good'' strategies for model 1, (cf. th. 3 .4). 

i.e. sup v(x,q,n) = v(x,q) for all x EX and q e w. 
1T€ no 

,..,, ,.._, 

Moreover we shall show that for each n ~ n
0 

and its corresponding 1T e TI 

the following equality is valid for all p € PcX) and q € W: 
,..., 

1T 
E [r (X ,A , Y l)] = 

p ,q n n n+ 
- Tr - ,...,, - -

E [r{X ,Q ,A)] 
p ,q n n n 

for all n e lN .. 

This implies that we may apply techniques of dynamic progra1111r1ing to the 

equivalent dynamj c program in order to deter1oj ne or to approximate the value 

function v and nearly opti.mal strategies. 

Transformations of this type are well-known, see for exa114:>le [Martin (1967) J, 
[Wessels (1968)], [Hinderer (1970)], [Fu1.ukawa (1970)], [Yushkevich (1976)]. 

As far as we know the most general result is proved in [Rieder (1975)]. 

Translated to our situation Rieder's result implies that the Bayesian control 

model is equivalent to 

words that the process 

a dynamic program with state space Xx Y x w, in other 

{ (X , Y ,Q ,A ) , n E: :N} is a Markov decision process. 
n n n n 

To this end Rieder transfo.tn1~ the Bayesian equivalent model into a so-called 

non-Markovian decision model, as defined in [Hinderer (1970)] and afterwards 

he shows, using Hinderer's concept of sufficiency, that the non-Markovian 

decision model is equivalent to the dynamic program with state space X x Y x w. 
However, we need the equivalence of the Bayesian control model to model 2, a 

dynamic program with state space Xx w. Therefore we prefer a direct proof. 

Our approach employs the same idea in [Strauch (1966) th. 4.1], which is also 

the basis of Hinderer's sufficiency concept. 

We start with some preliminaries. 

Note that, according to th. 1 .. 4, we have a r•natural" regular conditional 

p,q n n n 
w, 1T E TI. 

We always choose this version without co11Jrr1ent. For real-valued measurable 

functions f on n that are bounded fozm above we always define 

as in th. 1.4(ii). 
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Note that we are working in model 1 until th. 3.5. Recall that in 2.24 we 

defined the mapping 2n: n-+- w. On w we have the Borel a-field W, generated 

by the weak topology, which is the smallest a-field on W such that the maps 

B + µ (B) are measurable (cf. le1,at1d 1.5) for every B € T. Since for every 

B e: T the mapping w-+- Q (B) (w) is measurable 
n 1T 

= Q (B), JP -a.s. n p,q 

Lem,aa 3.1 

Fix p e P (X) , q E: W, n € H and n e: lN • 

it follows that 

(i) Let f be a real-valued meas1:1rable function on 0 x x x w x A, bounded 

from above. Then 

• 

1T Tr 
lE 

P, f(Z,xn,Q ,A >Ix ,Q ,A J = 
n n n n n £(8,X ,Q ,A )0 {d8) 

n n n -n , JP -a. s. 
P,q 

(ii) Let f be a real-valued measurable function on 8 x (X x w x A) n+l, 

bounded above. Then, for V : = (x0 , Q0_,.A0 , ••• , xn, Qn, An) , we have 

Proof. 

We start with 

£(8,x ,er ,a) 
n -n n 

f ce , v> 2n (de > , 
1T 

lP -a.s. p,q 

iT assertion (i). All eq1:1alit.ies hold JP -a.s. We may 
P,q 

:= 18 (8) 1c (x
0

,4n,an) with B E T and c e: X • W & A 
suppose 

lc<x ,Q ,A )JP 1r [z e: Blx ,Q ,A J. n n n p,q n n n 

Note that a(X ,o ,A) c F. Hence 
n -n n n 

1T JP . [Z 
p,q e: Bjxn,o ,A J = lE,r [JP 1r [z e: BIF Jlx ,Q ,A J = -n n p,q P,q n n n n 

= E ,r [Q (B) IX ,Q ,A J = 
P,q n n n n 

Therefore we have 

1B(8)1C(X ,Q ,A )Q (d8) = 
n n n n 

= 1C(X ,Q ,A )Q (B) = n n n n 

f (8,X ,Q ,A )Q (d9) • 
n n n n 
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The cr(X ,Q ,A )-measurability off f(0,X ,Q ,A )Q (d0) follows from lemma n n n n n n n 
1.6(iii). The proof of assertion (ii) is analogous. O 

In le111r11a 3. 2 we employ syvibols we used before, but here we do not use their 

interpretation. 

Lemma 3.2 

Let (n,H), (U,X) and (V,r) be Borel spaces, let X: n ➔ U and Y: n ➔ V be 

measurable. Let IP. be a probability on H. Further let JP [•Ix = x] be 

a regular conditional probability given X = x (cf. corollary 1.3) and let f 

be a real-valued measurable function on U xv, that is bounded above. 

Define m (C) : = :n, [y e: c IX = x] for all x E u and c E r. 
X 

Then J £ (X,y)~ (dy) is a version of lE [ f (X, Y} Ix]. 

Proof. 

First let f(x,y) := lA (x)1B(y) with A EX, BE r. By corollary 1.3 and by 

1.21 we have JE [1
8

(Y) Ix] = f 1
8

(y)mx(dy), lP-a.s. Hence 

JE [f ex, Y) I xJ = 1A (X) f (X,y)mx {dy) • 

By standard arguments the statement can be proved in general. 

In th. 3.4 we shall show that we may restrict attention to the subset of 

strategies n0 c rr, defined in 3.7. In fact we shall show more: the only 

interesting strategies are those, where for all n E lN the choice of the 

distribution of the action at time n depends only on the values of X and 
n 

Q. Here we use the same construction as in [Strauch (1966) th. 4.1]. The n 

□ 

idea of this construction can also be found in [Derman and Strauch (1966)], 

[Wessels (1968) th. 7.4 and th. 7.5] and in [Hinderer (1970) th. 18.1]. 

We start with a lemma where this construction is carried out. 

Lem111a 3. 3 

Fix p E P(X), q €Wand 7T E IT. For all n € lN we fix a regular conditional 

probability lP 7T [•IX = x , Q = q ] , such that 
p,q n n n n 

IP 1T [A E D {x ) IX = x , Q = q J = 1 for xn e: X and ~ E vl. We define 
p,q n n n n n i1 



the 

n · · · . n · p, n 
B c A, where~:• ~(q,x0 ,a0 ,y1, .•• ,y

0
) (cf. 2.30). 

Then for each real-valued measurable function f on X x w x A x X x W that is 

bound:ed above, we have sim:ult.aneously for all n E: :ti: 

* 
• • • • 

B . [f(X ,a ,A ,x +l'o+1)] = E n[f(Xn,Qn,An,xn+l'Q +l) J • p ,q n -n n n . -n p ,.,, . n 

'lb• existence of a . . ar con.di tional p · · 

with th• desired property can be proved as 
· P,q n n n 

in [Hinderer (1970) th. 18.1 and 

ao..:ollary 12. 7] .. 'Ne proceed by induction on n. R~r Q0 = q on 11. Hence 

a (x0) • a <x.a,Q0) .. Sance for all B e:: A and x 0 E X: 

Bence the atatMent is proved for n • 0. Ass1•e it holds for n - 1 and for all 

functioos f aatisfying the ass1:auptions of the lemma. Define for notational 

oon..nience the function Fon Q by F :• f(Xn,Qn,~'xn+l'Qn+l). 

'.First . · show that for all 'ff' f II we have ll? ir' -a. s. : 
p,q 

(a) 

P(dxfX ,A ,y)pi(y,Q )f(X ,Q ,A ,x,T
1
. (Q )) =: g(X ,Q ,A) • n n . n 11 n n · ,y n n n n 

1'o prove this note that (according to th. 1.4): 

1r t . 

B p (FI I ,XO ,JL, yl , ..... , Y ,x ,A ]= ~ 1 .. (X ,A ) v (dy) 
. ,q · o n n n i~I K

1 
n n 

P(dxlx ,A ,y)p. (yjzi)f(X ,Q ,A ,x,T (Q )) =: h(z,x ,Q ,A) • 
n n J. . n n n i,y n n n n 

'If I 

= JBP [h{z,x ,Q ,A >Ix ,Q ,A J = · ,q n n n n n n 



where the last equality follows from le1u1na 3. 1 • This proves (a) • Next we 

prove that there are versions of the conditional expectations such that 

(b) 

Note 

* 
lE n [Fix ,Q J = lE 1T [Fix ,Q ] .. 

p,q n n p,q n n 

1T 
that, by (a) , lP -a. s. p ,q 

IE,r [FIX ,Q] 
p,q n n 

Let m (B) := JP n [A 
P ,q n E Blx = x, Q = q J • 

xn'4n n n n -ri 

Hence, by lemma 3.2, we have 
1T 

JP -a.s. 
p ,q 

JE 7T [FIX , Q J = 
p,q n n g(X ,Q ,a)mx Q (da) • n n , 

n n 

Remember that by definition we have for all BE B 

Hence 

* 
ll? 1T [A € B I F J = 

p,q n n 

* 1T 
JP -a. s. , 

p ,q 
by len:ana 3 • 2 : 

* -- g(X ,Q ,a)mx Q (da) • 
n n , 

n n 

This proves n n n n , * n n 

= mx Q (B) • 
n' n 

is a version of 

49 

P ,q n P ,q n n 
the final step. 

lE 7T [F] 
p ,q 

= lE 1T [ lE 1T [FI X , Q ] J = lE 7T [ g (X , Q ) J = 
p,q p,q n n p,q n n 

* = 1E,r [g(X ,Q )] 
p,q n n 

* * = lE;r [lElf [Fix ,Q ]] 
p ,q p ,q n n 

* = lE ,r [ Fl 
p,q 

where the third eq11ality follows from the induction asst11r,ption, if we define 

f (X · 
1 

, Q 
1 

, A 
1 

, X , o ) : = g ( Xn , Qn) • D 
n- n- n- n -n 

• 

Theorem 3.4 

Let p E P (X) , q E w, TI' E TI, n e: lN and let ,r * be as in 3. 8. Then 

1T 
lE [r(X ,A ,Y 1 )] 

p,q n n n+ 
-(r is defined in 3.l(e)). 

7T ...., = JE [ r (X ,Q ,A ) ] = 
p ,q n n n 

* 1f ,...,, 
lE [r{X ,Q ,A)] 

p,q n n n 



so 

~ eeoood equality follows d:.irectly from lemma 3.3. We proceed with the 

proof of the first eqtia li ty. According to th. 1 • 4 we have 

E" [r(X ,A ,Y +l) lz,x0 ,A0 ,Y 1 , .... ,Y ,xn,An] p,q n n n ·. n = l 1K (X ,A ) 
ieI i n n 

Dy t,ui ng · · ... •.. . tional expectations with respect to 
. 'I 
JP - ... .. 

o(X ,o ,A) we obtain n -n n 
p ,q .. . 

. t . 
• .. (r(X .,An,Y +l) Jxn,Q ,A J p,q n · n n n 

..... 
• r(X ,o ,A) • 

n -n n 

'Ir . 
- :m [f (Z ,x ,A ) IX ,Q ,A J = p,q n n n n n 

V(dy)r(X ,A ,y)p1 (y,Q) = 
n n n 

Be · integration of the first and the last memMr of (*) with respect to 

» llf yields the desired result. D 
p,.Q 

In. tll.. 3. 5 we prove the announced 

n0 for ~l 1 and the strategies 

correspondence between the strategies of 
-of H for model 2. 

Note that according to th. 1.4, we have for model 2 a ''natural 11 regular -• .,- - - - - -aonditional probability JP ( • x_ ,Q. ,A , ••• ,x ,Q ,A J. · p,q o O O n n n 

Let p ' p ( X) I q E w' ,r E: no and 

(of. 3. 7). ·1:t;aien, for all n ~ JN 

- -let ,re: II be the corresponding 

and all measurable functions f 

that are bounded from above, we have 

-

strategy 

: (Xx w x A)n+l-+JR 

- 11" . - ....., .,..... - - -
= E [f (XO ,Qo ,Ao, ••• ,x ,Q ,A ) ] • p,q n n n 

Proof. 

Let n • O .. In th.is case the statement is valid, since 1r
0 

(•Ix> == :;;
0 

(•I x,q) for 

all x , X. Assume the statcea,aent is valid for n and all admissible functions 

f. It ie st:ra..igbtforward to verify that 



•"' t f < x0 , Q0 , A0 , ••• , x + 1 , Q + 1 , A + 1 > I z , x0 , A0 , Y 1 , ••• , Y , x , A J = · p ,q · n . n n n n n 

t 1.., (X ,A ) l s;-. n n 
iE: I i . 

V(dy) P(dxlx ,A ,y) 
n n 

where the second equality is a consequence of 3.7. 
11' 

By le11~111.a 3 • 1 (ii) we have lP -a.s. p,q 

• l l (X ,A) v(dy) 
ieI Ki n n 

P(axlx ,A ,y> 
n n 

.... 
• • 'I' + 1 ( da I XO, Qo , Ao, ••• , X , Q , A , x, Ti ( Q ) ) · n · n n n ,y n 
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• p 1 Cy , Q > f c x0 , Q0 
, A0 , ••• , x , Q , A , :x , T . < Q ) > = : g c x

0 
, Q

0 
, A , ••• , x , Q , A > • 

n n n n 1,y n o n n n 

For model 2 we have, according to th. 1.4: 

-,,.,,.,, 1T ~ ,.,._, ,..,_, "' r..1 r-.,,1 r-.J ,..,_, rw ~ rw """ 

= 

""'-' ~ ,,,,.,,,,,. "" ,.,,,., ~ 

= g(X
0

,Q0 ,A0 , .•• ,X ,Q ,A) • · · n n n 

Hence, using the induction hypothesis we have 

= E n [ g c x0 , Q0 
, A0 , ••• , x , Q , A > J = p,q · n n n 

- ,,.., 
-.-,,,,, 1J' r..J ,.,,_, ,.._, ,..,.,,, ,..._, rw 

]\B [g(Xo,Qo,Ao,·••1X ,Q ,A)]= p,q n n n 

,-.., 1T rw ,._,, ,-..., ....,, "'-' ,-,,,J 

Ep,q[f(XO,QO,AO, ••• ,Xn+l'Qn+l'An+l}] .. □ 

In fact we proved by th. 3.5 the following result. 
-Let q E'. Wand let F: 0 4- n be defined by 
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where := 4n(q,x0 ,a0 ,y1 , ••• ,yn). 
-

Then for all BE: H: 

JP ,r [{w J F(w) e: B}] = 
p,q 

-,r 
JP [BJ • p,q 

The following corollary is an i1111r1ediate consequence of theorems 3. 4 and 3 • 5 • 

Corollary 3.6 

Let p € P{X) and q e: w. Then for all 7t € n0 and its correspondi.ng 7T (cf. 3.7) 

(i) P(dx)v{x,q,1r) = (cf. 2.12) 

and 

(ii) lim inf 
1 

N N 

N-1 
lE 11' [ l r (X ,A , Y +l) J 

p,q n-O n n n 

Moreover I the suprem,1m over all ,r e: rr0 6n the left hand si.de equals the 
,..,, ,..,, 

suprero11m over al.l ,r E: IT on the right hand side, in (i) and also in (ii) • 
,,.._, ,..., ....., 

(To verify this, note that for each rr e: TI there is air e rr0 such that n is 

the corresponding strategy for 1r). 

Remlirk. 

In case q e W is concentrated at e € 0 then all posterior distributions 

are degenerate in e (cf. the remarks at the end of section 2.2). Hence, • in 

this sit11ation the Bayesian control model is equivalent to a dynamic program 

with state space x* := { (x,8) lx e: x}. So we have shown here that observation 

of the supplementary state variables Y1 ,Y2 ,Y3 , ••• of the system is super­

fluous , in case the transition law is completely known, i. e • all inf or1na.tion 

needed to control the system is contained in the state variables x
0

,x1 ,x2 , ••• 

Since modei 1 and model, 2 are equiva"lent we shaZZ. omit the tiZ.de in the 

notations for model 2 and we shaZ.t ewitch between these mode"ls without com · 

ment. 

We conclude this section with the introducti.on of some t~Lminology. 

In the class ·Of strategies II0 we shall consider two nested subsets, that are 

of special interest in the rernaining chapters. 
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3.9 Each measurable function f: X + A such that f(x) E D(x) for all x EX, 

is called a Markov poliay and the strategy TIE n
0

, defined by 

nn({a}lxo,ao,Y1,x1,···,Yn'xn) := 
• stat~onary strategy. 

1 if f(x) 
n 

= a, n E JN is called a 

3.10 Each measurable function f: Xx W ➔ A such that f(x,q) E D(x) for all 

x Ex and q E w, is called a Bayesian M~kov policy and the strategy 

TI€ IT
0 

defined by 

rrn ({a} lx0 ,a0 ,y1 ,x1 , ••• ,yn,xn) := 1 if f (xn,~) = a, n e JN where 

qi= qi(4a,x0 ,a0 ,y1 , ••• ,yi)v is called a Bayesian stationary strategy. 

Remarks .. 

(i) Each stationary strategy is also a Bayesian stationary strategy. 

(ii) It is easy to verify that, under each Bayesian stationary strategy, 

the process { (X ,Q ) , n E lN} forms a Markov chain .. This is well-known n n 
if we are considering model 2, however for model 1 it is a consequence 

of the equivalence between the two models. 

(iii) As a consequence of the equivalence between the models 1 and 2 we may 

apply the numerous results for dynamic programs to model 1. We only 

mention one of these results: if r is bounded then the supremum over 

all Bayesian stationary strategies of the Bayesian discounted total 

return equals the optimal value (cf. [Blackwell (1965)]). In other 

words it suffices to consider only the Bayesian stationary strategies. 

(iv) If the action space A is a finite set then any Bayesian Markov policy 

f such that, f(x,q) is a maximizer in the set D(x) of 

a ➔ ,l 1K (x,a) 
iEI i 

v(dy)p. (y,q){r(x,a,y) + S P(dx' lx,a,y)v(x' ,T. (q))} 
1. 1,y 

for (x,q) c Xx Wis optimal (cf. [Blackwell (1965) th. 7]). 

3 • 2 A Ult.6.6 o o o p.t.lma.£. 1te.wa.Jtd op 

In this section we study optimal reward operators for dynamic programs with 

complete separable metric state and action spaces. These operators are based 

on stopping times. They generalize the well-known optimal reward operator 

introduced in [Blackwell (1965) ]. In [Wessels (1974)] these operators have 

been studied for dynamic programs with finite state and action spaces and 

they have ~een generalized for models with a countable state space and an 
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arbitraxy action space in [van Nunen and Wessels (1977) J. Van Nunen and 

Wessels show that a nualb,er of well-known approximation methods for the value 

function in discounted dynamic programini ng, such as the Gauss - Seidel i ter-

a tion a.re equivalent to successive applications of an optimal reward operator 

corresponding to a suitable stopping time. We prove some new results on these 

optimal reward operators. First we show that if such an operator is applied 

t.o a function on the state space that is upper semi.-analytic and bounded from 

above, then the result of the operation is again an upper semi -analytic func­

tion which is bounded from above. This generalizes a rather theoretical resul.t 

in [Blackwell, Freedman and Orkin (1974)] and [Shreve (1977) J for the optimal 

rewalxl ope.rater introduced by Blackwell, to a sjmj lar result for all optimal 
• 

reward operators of the class we consider • 

.hlrther ve show that.successive applications of two of these operators, possi­

bly for different stopping times, have the same result as one application of 

the optimal reward operator which belongs to the composed stopping time 

(cf. 3 .14 for a definition). This property has s01,e interesting consequences, 

one of which is that we can generalize results proved by Van Nunen and 

Wessels for discounted dynam:i c program,s, using the fixed point theorem for 

(>,a.b:action ma.ppings, to more general models • 

In chapter 6 we use another consequence of this property for the equivalent 

dyrra:111ic prog~a• (model 2). There we study the optimal reward operator, car-

re :»: · · to the entrance time in a subset of the state space. 

Oatng th1 • operator is equivalent to transfor1,,1 ng the model into a dynamic 

program with this subset as a state space. 

Since we are dealing with a g1eneral dynamic program here, we have to intro-

duc,e some nw notatio,ns. ( ..... · s used in this section do not have the inter-

p.retati<:m, given in the foregoing part of the monograph). 

mot!el 3, ,c.nerai tlynamio praogram. 

l.ll (a) (S,S) is a Borel space, called the state space. 

(.b) (A,A), is a BOrel space, called the action space. 

(c) D is a function from. S to the non-empty subsets of A such that 

JC =• { (s,a) Is e: S, a e D{s)} is an element of S ® A, and it is 

••1aed that IC conta:i.ns the graph of some measurable function. 

f~ S to l. 

(dl P is a transition probability from s x A to s. 
('e,:) •t' i . .t a real-valued measurable function on s x A, that is bounded 

:ftoa 11lber,e. S E' [0,1} is the discount factor. 
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The sets of histories, the strategies, the random variables and the probab­

ilities on the sample space are defined analogous to model 2 (cf. 3.2-3.5). 

We even use the same notations, with the exception that we omit the tilde 

and that the coordinate functions on the state space are denoted by 

n €: JN. 

We start with some definitions: 

s 
n 

3.12 A stopping time Tis a measurable function from n to JN such that 

{-r = n} € H • 
n 

3 .13 The shift operator lJ; is a function from Q to Q such that 

1.JJ(so,ao,s1,a1,···> := (s1,a1,s2,a2,···> 

The iterates of$ are defined by: ~O(w) 

for w € n and n E * ]N • 

3.14 The set of all stopping times is denoted by E, and on Ewe define 

the operation: o, by 

:= 00 if Ti (W) - 00 - I 

if 

• 

,: (w) < oc 
1 

The function -r 1 ° -r 2 on n is called the composed stopping time. 

It is easy to verify that T 1 ° -r 2 EE (cf. [Revuz (1976) page 22]). 

for 

3.15 {i) B (S) is the set of real-valued measurable functions on S, which m 
are bounded from above. 

{ii) Ba {S) is the set of upper eemi-a:naZ.y-tic (u • s •a•) functions on s, 
which are bounded from above. 

In appendix A we give a definition of u.s.a.functions and there we also 

collect some useful properties of these functions. Note that B (S) c B {S) • 
m a 

Finally we define for each -r E I: the correspondirLg optimal reward operator. 

3.16 The optimal raeward operatoP u 
"t 

is defined for functions b ~ 

(U b) (s} := sup 
't' 1T€II 

-r-1 
JE1Tc l 

s n=O 

n 
8 r (S ,A } 

n n 

use the convention b(S) = 0 
-r 

on {-r = 00 } (cf. 2. 23) ) • 

B (S} by: 
a 

The usual optimal reward operator u, introduced by Blackwell, can be defined by 

3.17 U := u1 where 1 is the stopping time identically one on n. 
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Nette that, (Ub) (s) = sup {r (s ,a) + af p (ds I Is ,a) b (s I)}, 
aE:D (s) 

for b € B (S). 
a 

~ 

It is well-known that Ub need not to be an element of Bm (S) if b ·E Bm {S) 

(cf .. [Bl.ac.kwell (1965) ]) .. However in [Strauch {1966) J it is shown that the 

value :function is u.s.a. and in [Blackwell, Freedman and Orkin (1974) J it 

has been proved that Ob t£ Ba (S) if b € Ba (S}. In [Shreve (1977) J the same 

result is obtained.. We show this property for all operators U -r, -r E: l:. 

. -r-1 . n 't Define on n Y :• t -"' B r (S ,A ) + 8 b (S ) • It is straightforward to verify 
n~ n n -r 

that Y :S: M(1 - fs)-1, where M := sup r(s,a) + sup b(s) • 
(s,a)ESXA s€S 

(lfe di'Vide the proof into three parts.) 

(•) we f.1ret.show that Y is u.s.a. on n. Define for c E IR: 

•c 
B • u . ({T = n} n {b(S ) > c8-n}). Note that b{S ) is u.s .. a. (cf. A9). 

·. c nE::11 n n 

cons. ·• r tly E is analytic (cf.. A2) .. Let c s O • Then: .. . C 

B = O ({t • n} n {b(S ) > c8-n}) u {T 
C n°f!'.S n 

= 00}. Hence in this case E 
C 

ia also analytic. Therefore 8-rb(S) is 
l" 

u.s.a. on n and so Y is u.s.a. 

on a (cf. A 8). 

(b) o:»lsi'.cler the function on P(,(A x S) JN) x S defined by: 

(:IP ,a) + J Y(s,~•) JP (deo'), (w' t:: (A x S) JN). We show that this function 

1e u .... e. (Mote that P{ (A x S) lN) is endowed with the topol.ogy of weak 

,e0ft"'$~ce.) 'I'o this end we define the function Y on P ( {A x S) JN) x Q 

- -
by: Y(lP· ,~) ;• Y(w). To show that Y is u.s.a. note that, for c E m.: 

{(JP,¥) JY(lP ,l:.t)) > c} = P( (A x S) lN) x {w e: GI Y (w) > c} • 

lN 
Since P( (A >c S) · ) is a measurable set and by part (a) {w E n I y (w) > c} 

L• -..lyt.j,c ve have by A2 that Y is u.s.a. Further we define a transition 

~~iUq, p from 'P( (.A x S) JN) x .s to (A x s) JN by 

·'!Di) V'•~ify t.hat P is inde,ed a tran,sition probability, note that 
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{ (JP ,s) lp(B(lP ,s) s c} = {JP e: P( (Ax S)m) jJP (B) s c} x s 

for B e: {A ® S) lN and c E IR • Hence, by lemma 1 • 5 (i) this 

able. Finally we note that, by A10 the function on P((A x 

roJ 

(JP , s) Y(JP,s,w')p(dw'llP,s) = Y ( s , w ' ) IP ( dw ' ) 

is u.s.a. 

set is measur­
JN 

S) ) X s: 

(c) Introduce the set ll := { {IP ,s) Is e: s, JP € P( (A x S) lN) such that for a 

1r E II : JP [B] = lJ? 1T [s x BJ for all B e (A ® S) lN } • 
s 

It has been proved in [Hinderer (1970) lemma 13.1] that 6 is a Borel 

subset of P( (A x S) JN) x s. {Note that model 3 is an e,cample of Hinderer's 

model.) Hence it is straightforward to verify that 

(JP ,s) -+ F(lP ,s) := Y ( s , w • } JP ( dW ' ) 1 A ( JP , s ) - 1 1::,.c ( JP , s ) • 00 

is u. s • a. on P ( (A x s) JN ) x s • 

Finally we remark 

taken over all lP 

Hence, since {s € 

that (UTb) (s) = 

€ p ( (A X S) lN ) • 

SI (U"t'b) (s) > c} 

we have by A4 : U bis u.s.a. 
"t' 

sup F(JP ,s), where the suprern11m is 
IP 

= proj
5

{ (JP ,s) IF (JP ,s) > c} for c e: m., 

□ 

It has been shown in [Blackwell (1965) e:xa111ple 1] that even if b e: B (S) it 
m 

is not necessarily true that for every c: > 0 there is a strategy 1T <:: II such 

that 

for alls es. 

However, in [Blackwell, Freedman and Orkin (1974)] it has been shown that 

there always exists a ''univePea'lZy meas -:;:,cl,e strategy'' 1r with this property 

(i.e. v (Bl•> is universally measurable for all BE A, see appendix A). n 
Moreover in [Shreve (1977)] the same property is proved for the stopping 

time that is identically infinite. It should be possbile to establish a 

similar result for arbitrary stopping times in!. However, we do not need 

such a result, as we have the following lerr111rt. 

Lemnia 3. 8 

If b € 8 (S), TEE, p E P(S) and c: > 0, then there is a strategy n E II such m 
that 
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'C'-1 
7T \' n T ] } 3.18 p ({lE [ l S r (S ,A ) + B b (S ) 2= {U b) (s) - e ) = 1 • 
s O n n T -r 

n= 

Proof. 

This statement is a simple consequence of th. 14.1 in [Hinderer (1970)], 

which is a generalization of th. 8.1 in [Strauch (1966)] to non-stationary 

models. To verify this, we note that the function l{'t'=n} on Q is Hn-measur­

able. Hence by lemm'\ 1.1 there are real-valued measurable functions fn and 

t on (S x A)n x S such that: 
n 

3.19 (i) f (So,Ao,·••1S):::: n · n 1 {T=n} 

if 

on n. 

= 0 otherwise, 

Si€ s, ai € A and i = o, ... ,n. 

• 

= 0 

Hence t cs0 ,A0 , ••• ,s ) = 1 if and only if T > n. Further we define, for n E JN: n n 

for si e- s, ai c A and i = O, ••• ,n. It is straightforward to verify that 

0() T-1 
l r cs0 ,A0 , ..• ,s ,A)= 

n=On n n 
l Bnr(S ,A)+ 

n=O n n 

Hence we are dealing with a total-retui:11 model in the sense of Hinderer and 

the assertion follows from the above mentioned result of Hinderer. □ 

The main result of this section is th. 3.11 which states that for each pair 

of stopping times T 1 ,'t'2 € E and each function b € Bm(S) the following identity'" 

is valid: 

u 
T 

b = U {U b) • 
1°T2 1'1 T2 

To prove this we need some preparations. 

3.20 For any pair of strategies 
T strategy 7T € II by: 

( 1) (2) 
7T , lr € II and any TEL we define a new 
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for s . E S , a . E A and i E JN 
l.. l.. 

(f and l are defined in 3.19). 
k n 

Note h 
T (1) .

1 
. 

tat TI uses TI rmti. time T and n{ 2 ) afterwards. It is easy to verify 

is (S ® A)n-l ® S-measurable for all B € A. 

3. 21 Let -r E E. The a-field H is defined as usual by: 
-r 

H :={BE H I B n {T = n} EH} . 
"I' n 

Lemma 3.9 

Let f be a real-valued measurable function on n, which is bounded from above. 

Let 1r(l) ,~< 2> E IT, -r E E and let TIT be defined by 3.20. Then we have on 

{-r < 00} : 

7f (2) 
= JE s [ f] , 

't 

7f ( 1) 
JP -a.s. 

s 

(By convention the both sides vanish on { T = 00 } ~ ) 

Proof. 

Let n E: JN , B 1 e: H n and B2 € H. For the stopping time n, which is identically 

equal ton, it is straightforward to verify, using th. 1.4: 

Let f 

n 
'IT 

JP s [Bl 

't n 
Then SJ.• nee JP~ [BJ = JP 1T [BJ , 

s s 

(2) 't CQ 

-- I 
'[ n=O 

• 

• 

if B c {-r = n} , B € H we have 

(2) n 
1T 1T 

JPS [B2 ]dlP s I for s Es. 
B

1
n{T=n} n 

On the other hand, by the definition of conditional expectations (cf. l.2Q(i)) 

't T co 

(***) ]E 1T [ f ( tµ T ) I H J dJP 1T 
s 1' s = 1 

n=O 
• 
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Bence, using(*) we conclude that the left-hand sides of (**) and (***) are 

identical. By standard arguments the assertion is proved in general. D 

Remark. 

In fact we proved here the strong Markov property for a special stopping 

time and a special non-Markovian process. 

2 ) ) k+l d f. 3. 2 For each ,re: TI and each (s0 ,a0 , ••• ,sk'¾ E (S x A we e ine a new 
,,..,, ,.., -

strategy ,r (s0 , a 0 , ••• , sk, ~) = (1r
0

, 1r
1 

, • • •) by: 

-
-rrn ( • )hn) := 7rn+k+1< • I 5 0 ,ao, ... ,sk '~'hn)' h e: B , n n n € JN • 

• ,,..., 

Note that ,r cs0 ,a0 , ••• ,sk,ak) e TI. -
acts like 

the strategy 1T if the process has 

Lemma 3.10 

....., 
Let 1r e Il and let 1r(s0 ,a0 , ••• ,sk'¾) be defined in 3.22 for each 

k+l 
(s0 ,a0 , • •• ,sk,~) E: CS x A) • Further let f be a real-valued measiirable 

function on n, which is bounded from above, and let Te: 1: • 

Then 
,.._, 

1T(So,Ao,·••1A -1> 
, 

T 

(By ·convention both expressions vanish on { T = co},. ) 

Proof. 

'TT 
lP -a.s. 

s 
on {T < 00 } • 

It is easy to verify 

able, k E lN. Let Bl 

that 

(cf. 

e H 
n 

th. 1.4) 

and B2 e: 

1rcso,Ao,···,~-1> 
that lE S [£] is Hk -measur-

k 

1f 
JP [B 

s 1 

Now we let B1 € HT and f := 

(**) 

H. Again using th. 1.4 one easily verifies 

Then 

00 

I 
n=O 
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and on the other hand (cf. 1.20{i)): 

00 

I 
n=O 

00 

From(*) we conclude that (**) and (***) are identical. Hence the assertion 

has been verified for indicator functions, and it can be proved in general 

by standard arguments. 

Now we are ready to prove th. 3.11. Note that U b EB (S) if o EE and a a 
b € B (S) .. 

m 

Theorem 3.11 

Let "C,a e: 

Proof. 

and let be: B (S). Then we have 
m 

□ 

(a) Fix £ > 0 and let s 0 E: s, 1T e: IT and b e: B m (S) • First we ass,1me: 
1T 

lP [T = ~J < 1. Then it is easily verified that the set-function p on 
so 

.S, defined by 

p (B) : = 

* is a probability on p. By le1rima 3 .8 there exists a strategy -rr E TI such 

that 

Define: 1T 
(1) := 1T, 11'(2) := 

Then we have 

"C "C O a-1 

* 1T .. Let 

(U b) (s} - £, p-a.s. on s. 
(1 

"C 
,r be defined by 3.20. 

Y(s,1r) : = lE 1T [ l f3n r ( S , A ) + 
s n=O n n 

• 



Using 1-.a. 3.9 we find 

t t-1 
'I . , n 

ll [ l S r(S ,A ) s n n 
n-0 

T 

* o-1 
TT l n lE S [ 8 r (S ,A ) · n n 

T n•O 

Note "'[ ] 'I[ ] that lP B ·• • P B for B tt s s 
(To verify this note that 

~ - t ~ 

JP ,r [B] • \" JP 'I' [B n {,. • nl] = l JP ;r[B n 
s l s s 

"fl 
{ T = nl J = lP [BJ since 

· n-0 n=O "(' s 

B n {t = nl £ H ). Therefore we also have 
n 

1T ,r 
JE [f] = lE [f] for a real-

s s 
valued H -measurable function£, which is 

T 
bounded from above. Using 

(•), (**) and the definition of P w·e find: 

Row w asstune . . 
00 ) = 1. Then 

ClO 

11' \ n 
• E ( L $ r (S ,A ) ] = 

so O n n n== 

Hence 

sup Y (s0 ,1r) ;z: (U-r (U
0
b)) (s

0
} - £ 

,r~II 

-r-1 
11' \ n 

lE [ l 6 r {S ,A ) 
so n=O n n 

and since s0 e: S and e: are a.rbitrary we conclude: 

sup Y (s,v} ~ (U (U b)} (s) , 
11:e:rr 't a 

s E'. s • 

(b) We show that(***) is val.id withs instead of~. 
-

Let w E: II and let w(s0 ,a0 , ••• ,sk,¾_:) 
k+l 

(s,o,ao,·••1Sk'8Jc) 4f (S X A) • Note 

Consider for s e S: 

't 0 a-1 ,.. \' n 
lB [ l B r (S ,A ) 

s · n n n=O 

t-1 
11'[ t n • lE . l 6 r (S ,A ) 
s n n n=O 

be defined by 3. 22 for 

that S = S (WT) On {TS 
n n--r n}. 

--



,.._, 

~<so,Ao,···,A 1) 1 -r·,- cr-

T n= 0 n n cr 

'T-1 
~ 1E1r[ I f3°r(S ,A) 

s O n n n= 
+ f3T(U b)(S )] s 

0 T 

The second equality is justified by leri1111a 3. l O and the inequality by the 

definition of U
0

• This proves the theorem. 

To be able to apply th. 3. 11 we need the following ler11ar1a. 

Le11J1na. 3 • l 2 

The operation° on tis associative. 

Proof. 

Let 'T,cr,p Et. By 3.14 we have: -r 
T 

0 0 a L + cr(w) and so 

T 

( ) ( ,I, T) p ("'' T+O" (t4J ) ) • T O O 0 p = 'T + 0 o/ + o/ 

On the other hand 

T o (a o p) 
T 

+ ( 0 o p) (lJJ T) = L + 0 ('VT) + p ($ (J ($ ) (l/J T) ) • 
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□ 

'T 
1l1 T +O (tµ ) 

we have "" 

T 

-= $ 0 ('1> ) (i.JJ T) which proves the le1111.11a • □ 

Hence 0 ••• 0 -r is defined now. As a consequence of th. 3.11 and 
n 

J e11rn1a we find: 

coroll.ary 3.13 

Let be B (S) 
m 

and let 

U b 
T o-r o •• OT 

1 2 n 

To prove this, note that 

€ E.. Then 

T o T o 
1 2 • • • o T = T o n 1 

b), 
••• 't 

and the assertion 
n 

(-r 2 ° .•• o -rn). Hence 

follows by iteration. 



We continue with two definitions: 
* Let T, I. The stopping time 'tn, n E ~ is defined by: 

1 n n-1 2 3 t' :== 1: 1 T :• t O T, n = , . 1••• • 

3.24 Let ,: E I:. Then u11 is defined on B (S) by: . ,: a 1 
1 ~..n . n-u b : = U b for all b e B (S) and u-~b : = 0 (U b) 
t -r a t' -r -r 

and n == 2 ,3,... • 

In th. 3 .. 14 we collect some consequences of th. 3.11. 

8 (S), 
m 

' C ' I 

o b, • · .·· · {cf. 3 .. 23) • ,:a ,.. ' 

for all b € B (S) 
a 

(i) 

(ii) Tb.e value f·unction v for model 3 is u.s.a. and satisfies the optimali-

ty equation: 

otv • v, on s. 

(iii) If the reward function r and b are bounded and if -r (w) :2: 1 for all 

Note the.t (1) is an :iui~oo:i .. ate oo - ,ce of 3. 23, 3. 24 and corollary 3 .13. 

we prooeed vi.th (ii) .. Ko'be that v-.(s) = (Uciov) (s), s e S by definition, where 

(• re,._.. . t$ tlbe stopping time that is .GQ with probability one). Bence by 

th. 3. 7 v is u.s.a •. By· th .• l.11 we find., for all b e B (S) 
m 

It is weU-k, " .... ··. tae.t lia (U~) (s) • v(s) (see e.g. [Hinderer (1970), th. 
a,•-°" 

14 .. 5]} .. u.aoe we have, by t•): 

11• · ){s).• v(e),. s « s. 
n-+ . 

. . ' . ·,' 

- .. 
b i• l) + K. Let D't l)e the. ope~1t\QZ !or tb.te ~el. with ~ewaro function r • in-- . 
s teo4 of r .- and let v ba tb• "1-.l~ . ~~l~ b. tb.i<S Qase.. Bence we have 



(U b) (s) + 
n r 

,_, 

(U b) (s) 
n 

T 
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+ 1 
M 

and we have also v(s) = 

Bence we find: 

lim 
n ► co 

(U b) (s) 
n 

'f 

= lim 
fr+OO 

M ,..., N 
-- 'i . ..'.. B = v ( s) - 1 -$ • V (s), S € S • [7 

conclude this section with some remarks. 

Rea.arks. 

(i) The theoriems th. 3. 11 and th. 3. 14 can easily be generalized to models 

{ii) 

with weaker conditions on the reward functions .. In fact th. 3.14(iii) 

is valid for models where a strong convergenae condition is satisfied 

(cf. [Van Hee, Bordijk and Van der Wal (1977)]). 

If there is a (none1npty) subset B {S) of B (S) such that for all ,: e: 
m 

u b E B (S) if b E: B(s) then {u , T € I:} is a semi-group of operators 
T T 

on B(s). If Sis countable then the set of all real-valued functions 

on S that are bounded from above will do for B{s). In section 3.3 we 

show that there is such a set B(s) for the equivalent dynamic program 

(model 2). 

(iii) There need not be, 

wen such that: 

for each b ~ B (S), p E P(S) and e > 0 a strategy 
a 

p({s E: SI 1 • 

However, 

p e: p (S) 

fy this . I 

if b = u b for some b € B (S) and a EE then for each cr m 
and each e: > 0 there is a 1T € IT such that(*) holds. To veri-

-
note that by th. 3 .11 U b = U b. 

T ,:oa 
Hence by lemma 3.9 we 

have the desired property. 

(iv) Th.. 3.14(ii) and (iii) are also proved in [van Nunen and Wessels 

(1976)] by use of the fixed point theorem for contraction mappings, 

for d~amic programs with countable state space. 

In this section we first study the optirna1. reward operators for the Bayesian 

oontro,l model (model 1) .. We show that these operators applied to functions 

that are lower semi-continuot,ls (l .. s.c.) in the second coordinate, i.e. l.s.c .. 



OD W, yield tunct.! .. ona that are again l. s .. c. in the second coordinate • 

1.n the rut of thia section w · nsider the value function (cf. 2 .12) in 

110n detail.. W. show that thG value function v is convex in the second co­

ordinate. Finally, we consider another consequence of the convexity of v, 

-ly a,n uppo:cbound on the value function. we note that the second part of 

thie •••et.ion 1e inde t of the first part. 

(l!ill!lne:liber that th• • · :. · ls 1.ised in section 3. 2 have a local meaning only.) 

l. 2·5 .. ••t. of s · ·· ... · · •. ti.JMs t for the Bayesian control model consists 

of ell aeaaurel• functions -r from a to .:N suoh that 

I. {I: M W) is the aet of real-valued bounded measurable functions on I. . . . . .. 

:I~ W, ~icb are lower ••••i-oontinuous (l.s.c.) on W (cf. appendix A). 

ro,=' MCI,, t c I we define the optimal reward operator UT on B1 (X x W) 

tt;r tor. 3.16) 

program, 
• 

. ,. ' ., . . . . . 

fU"liJl la"w · • .· · .... .·.. .. . · :1a,c1· 
,· . . 

X W) .. 

- . ' - ' r _: ... _·- -

.. , • .. ~. .,.. ' •.••. •• • • in ~;1, •'l. L:.i...• \ ' . • -Ji, ,_,.. • .. ·.· . . .'. . · · · · ·· ·· · ·· · ·· ·· · ··· · · •. ··· · ·· ·. · · · I ;;iri ~ 1' I" ~' '. ' · ' ~ ~ ~.M :eent.1.nuous for all 

· · · · · · · i' , . · • · I \ ···•·.··· · ' ' ,; · · · · · 1 es; uT.··. b e B
1
. {X x w) • 

. : . ' . ' 
, . . , . C,. . . 

' . . •, . -- . . " ' . 
. . ' 

>' • .: ' . '. . . 
. . ' . . . . . 



67 

Proof. 

(a) Fix the prior distribution q E 

tion at stage n. Then we have: 

W, and let Q be the posterior distribu­
n 

r(Xn,An,Yn+1)1{T>n} + b{Xn,Qn)l{T=n} is 

(b) 

measurable with respect to the O-field 

there are measurable functions F : W x (X x A x Y) -+ JR such that on n: 
n 

F {q, XO, Ao, yl , ••• , X , A , Y l) = r (X , A , Y l) 1 {.,. > } + b (X , Q ) 1 {.,.. } n n n n+ n n n+ L n n n L=n 

(cf. lemma 1.1). Hence we have 

T-1 (X) 

2 Bnr(X ,A ,Y 1) 
n=O n n n+ 

n 

Further we show that F is l.s.c. in the first coordinate. To this end n 
we first prove that Q is a continuous function of q in the sence of n 
weak convergence. Let the sequence {qk, k E :::N} c W converge weakly to 

(Y xx x A)n-l x Y x X and let: 

(cf. 2.30(i)) • 

we have to show n n 
Let f be a bounded and continuous 

function on 0. Notice that, by 2.30: 

where 

Hence, since 

n-1 
e 

n-1 
f ce > rr I 

j=O iEI 

n-1 

1K (x.,a.)p. (y.+1 1e.)qk(d8) 
. J J i J i 
i 

II l 
j=O ie:I i 

J=O it::I i J 

is bounded and continuous, we have J f(8)gn(qk) (dS) tends to 

J f(0)g (q) (d0) if k tends to infinity, provided that n 
An(q,xo,ao,Y1,•••1Yn) > 0. 

Hence q + b(x ,g {q)) is l.s.c. (cf. A 15) and so n n 
q + Fn(q,x0 ,a0 ,y1 , ••• ,xn,an,Yn+l) is l.s.c. if ~n(q,x0 ,a0 ,y1 , •.• ,yn) > O. 

Consequently: 
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is l.s.c. since 6n(q,x0 ,a8 ,y1 , ••• ,yn) = 0 implies 

An+l (q,xO,ao,Y11•••1Yn+1) = O. 
(c) Next we show that 

1r 
q -+E [F (q,x

0
,A

0
,Y 1 , ••• ,Y +l)] is l.s.c. 

x,q n . n 

Note that 

'IT 
E·, [F {q,Xo,Ao,Y.1,····y 1>] = x,q n n+ 

• 

1T (da IX ) 0 0 0 
P (dx Ix 

1
, a 

1
,y ), 

n n- n- n 

Since F is bounded, it follows fr01a n .. Fatou' s len11ua, applied in (*) that 

·. . ., -· 

'Jr 
E [ F ( q, XO , AO, y 1 , •• , y ·+1) )~ x,q n n .· 

{d) Finally we c·onsider q -+ (U'tb) (x,q). Let the sequence {qk, k e: :N} converge 

ve,akly to q e: W. Again by Fatou • s lemarta we have : 

00· 

lilninf 1 
k·~l)O n-0 

CIO 

2:: X 
n-0 

Note that 

is l.s.c. . . D 



... ' el. (0, l t ½ ( (l~l + (I, - ~)qJ) (B) :~ lqt (8) 

r.r~,I' v .-t;l sf 1 u tli;e il:r~AA, 11 ty i 

••• 
'tr,tl ' 

-.•. ·t1p· ' > ' ' 
• I < ' 

•' ' ' 

•itl 

11M Lni-.~lit:, l .. l9 ia • d.iroct 00/ft~enc• c;llf the e'Ollv .. 1ty of q +v(:=,q) 

1a e_.. l.&J.a :fun,ction i • c~tilli~ ,, 

-.,1,:,, lf P 1a • ~ttn,~• aft4 convex f\m!et.:l1'1D oo II vl\,icb 1• ~1,did trca 

.,.. ~ tthe fl4'>l leNino 1.~M.11 t:y c,a:n a p~ect a 

{ 11i\ilt "&l, ·A~~ 1 ~· t ·~ ; q ( 11o11<'"" , 
J 
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4. BAYESIAN EQUIVALENT RULES ANV THE AVERAGE-RETURN CRITERION 

In section 4.1 we consider procedures to construct good strategies. Special 

attention is given to strategies that are generated by so-called Bayesian 

equivalent rules. In section 4.2 we consider the average-return criterion 

and we give sufficient conditions for the existence of optimal strategies, 

based on such rules. In chapter 5 these rules will be considered in connection 

with the total-return criterion. 

4 .1 Ba.yu..i.a.n equ...i..va..e.en.t Jc.U.lu and o.theJt appJtoa.c.hu 

we first consider the total discounted retur11 criterion for models with 

finite sets X, Y and A. If the parameter value 0 is known the usual technique 

to deter111i ne an optimal strategy is solving the optimality equation 

v(x,0) = (Uv) (x,8) for all x EX. Then each Markov policy for which the 

maximum in this equation is attained, is optimal (cf. [Blackwell (1965) 

th. 7]).It seldom happens that an analytic solution of the optimality equation 

can be found and that the value function e -+ v (x, 8) , x e:: X is found in an 

explicit foxm. In chapter 1 we noted that even if 0 is a finite set, the 

equivalent dynamic program (model 2) has an uncountable state space Xx W 

and for each starting state {x,q) €Xx W there is a countable subset of 

Xx w that can be reached in the long run. Hence it is even impossible 

to deter111j ne the value function v for all (x ,q) € X x W. However there are 

rather complicated algorithms to detexmine v(x,q) for any fixed pair 

(x,q) EX x W (cf. chapters 6 and 7). 

Hence it is possible to determine in each state (x,q) EX x w the action 

f(x,q), corresponding to an optimal Bayesian Markov policy fin the following 

way. First dete~mine 

which there is an a E: 

function 

l lK (x,a) 
iEI i 

4.1 a 

v (x' , T. {q) ) for 
l. ,y 

D(x) with (x,a) € 

all x' € X, y E Y and all i EI for 

K .• Then f(x,q) is maximizing the 
1. 

v(dy)p.(y,q){r(x,a,y) +S P(dx'jx,a,y)v{x',T. (q))} 
1. 1.,y 

on the set D(x), {x,q) EX x W (cf. the remarks at the end of section 3.1). 

Since this is in general a very complicated procedure, it would be preferable 

to have a simple recipe to determine in each state (x,q) EX x Wan action 

that corresponds to a good, not necessarily optimal, strategy. 

For example, in practice one often uses the following recipe: 
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4.2 At eaah stage estimate the unknown parameteP e using the available 

data~ by a. Then aompute an (nea:Ply) optimal strategy for the model 

where the pal1/11Tleter is known and equai to e. Then use the aation 

corresponding to this strategy in the aatuai state. Repeat this proce­

dure at the next stage. 

The computation of an optimal strategy for a fixed parameter value is carried 

out much faster than the dete.tmlnation of v (x' ,T. · (q)) for x' e: x, y E Y 
l. ,y 

and the relevant i €I.Bence the recipe 4.2 is sjmpler than the procedure 

given by 4.1. However, the strategy specified in 4.2 is not optimal in 

general. Under some conditions it is optimal when we are dealing with the 

average-return criterion (cf. section 4.2). 
• 

We consider the following method to construct simple recipes. Now we con­

sider the average-ret,1rn criterion too. If e E 8 is known, an action corres­

ponding to an (nearly) optimal strategy is often found by maximizing some 

real-valued function Fon Xx 8 x A, over all available actions a e: D(x). 

For example, if A is finite and r is bounded then we may define F by 

4.3 a F (x, 0, a) := 

in case we work with the total discounted return criterion (cf. 4.1). 

Sometimes there exist bounded measurable functions hand g such that 

4.3 b h(x,8) + g(6) = 

I 

max 
aED(x) 

p (dx' lx,a,y}h(x' ,e)} 

(cf.section 4.2). 

Then each strategy that chooses in state x a maximizing action in the equa­

tion 4. 3 b is optimal with respect to the average-retur11 criterion (cf. 

section 4.2). Hence in this situation we have 



F(x,6,a) ·­.-

. l 1K. (x,a) 
l.€ I l. 

v ( dy) p . (y I a. ) {r (x, a, y) + 
J. l. 

P (dx' Ix, a, y) h (x' , 0) } • 

We now ass11roe that such a function F is known .. In the two examples above F 

can be computed by standard methods, if X,Y,A and 8 are finite sets (cf. 

chapter 7). Using this function F we construct a Bayesian Markov policy f 

such that for some E > 0: 

4.4 q(d6)F(x,6,f(x,q)) ~ sup 
aED(x) 

q(d0)F(x,6,a) - E , 
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for all (x,q) €xx w. 

We call such a Bayesian Markov policy a Bayesian equivalent rule since we 

are maximj zing the ''Bayesian equivalent'' of the function we have to maximize 

in case the parameter is known. Note that we may choose€= 0 if there is a 

maximizer of a ➔ J q(d0)F(x,e ,a) for all (x,q) E X x W (cf. the inforn1dl 

definition in section 1.2). 

If q €Wis degenerate, then the Bayesian equivalent rule is (nearly) optimal. 

But Bayesian equivalent rules are not optimal in general. However in section 

4.2 we give sufficient conditions for optjmality in case we are considering 

the average-return criterion, and in chapter 5 we consider examples of the 

Bayesian control model where a Bayesian equivalent rule i-s opt.imal for the 

total-returr1 criterion. 

Consider again the model with finite action space A and bounded reward func­

tion with respect to the total. discounted return criterion. Then we may 

define a Bayesian equivalent rule using the function F defined in 4.3 a. 

This rule has the following interpretation. Consider a modified model where 

the decision-maker is told the true parameter value after one transition. It 

is easy to verify that this rule would be optjmal in that situation. 

In th. 6.4 (chapter 6) we give a lower bound on the Bayesian discounted 

total return of this strategy. In th. 6.3 we consider another simple ~ecipe 

to construct a good strategy for the total discounted return criterion. 

We conclude this section with an overview of procedures suggested by other 

authors for the average-return criterion. 
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In [Ma.ndl (1974), (1976) J the strategy described in 4.2 is studied. 

Mandl used minirrrum contrast estimators and in his model the paramP.ter struc­

ture ensures the consistency of these estimators, under each strategy. Mandl 

considers the following average retux.11 criterion: a strategy 7T is optimal if 

for all 0 € 9 and x ex 

lim inf 
N4<'° 

N-1 
7T [ 1 

JE 6 
x, N n=O 

r(X ,A ,Y +l)] 
n n n 

is maximal. Note that this criterion is stronger than ours and not depending 

on the choice of a prior distribution. Mandl shows that the strategy described 

in 4.2 is optimal in the model where Xis a finite set, A a compact subset 
• 

of a Euclidean space and where for each stationary strategy (cf .. 3.9) the 

resulting Markov chain is irreducibl.e. We show a similar resul.t in section 

4.2 for a Bayesian equivalent rule. In [Fox and Rolph (1973) J an optimal 

strategy is constructed for Markov renewal program~ where also the recipe 

4.2 is used. However, in their situation they have to ensure the consistency 

of the est:i.mators for the unknown parameter. This problem is sol.ved by so­

called forced choice actions. These actions do not necessarily agree with 

the recipe of 4.2, but they are perfox111ed to get info.cmation. Fox and Rolph 

also use the stronger optimality criterion discussed above. In [Rose (1975)] 

another strategy is proposed. Rose assumes that for each parameter val.ue 

an opt:i.mal Markov policy is known. At each stage an action is sel.ected by 

rand.omizing over the actions belonging to some Markov policy that is optimal 

for some parameter value, according to the current posterior distribution. 

Rose also needs forced choice actions to ensure degeneration of the posterior 

distributions. 

4.2 0 9i..u 601t.. :the. a.ve.Jr.a.g e-tr..e.twr.n 

In this section we construct optimal strategies for the average return 

criterion. Bayesian equivalent rules play an important role. we first con­

sider an example showing that, even in case of finite state and action spaces, 

there need not be an optimal strategy. 

Example 4.1 

Consider the following model: X = {1,2,3,4,5,6}, A= D(l) = D(2) ={1,2,3} 

D(x) = {1} for x E {3,4,5,6}. The transition probabilities p(x' lx,a) from x 



to x' if 

p<3l3,1> 

p<4l3,1> 
p <3 I 1, 2 > 

action a is chosen are: 

--
--
--

p(414,1) 

pc3l4,1> 
p(SI 1,3) 

e 

4 

e 

- p(SI 5,1) -- -
- P<6l6,1> -- -
- p<312,2> -- -

p(SJ6,1) - p(lll,1) p c2 l 2, 1, e - -- - -
p(6IS,1) - p(211,1) p(ll2,1) 1 - e - -- - -
p(Sl2,3) - 1 -

e 

I 
' 

I 

2 6 

a 1-8 

Only in the states 3,4,5 and 6 a reward is obtained: r(3) = r(S) = 7 and 

r(4) = r(6) = 3. Let 9 = (0,1). It is easy to transform this example into 

the framework of the Bayesian decision model. 

The average return in the subchain {3,4} is: ~(7 + 3) = 5 and in the sub­

chain {S,6}: 78 + 3(1 - 8) = 40 + 3. Consider a starting state x € {1,2}. 
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For fixed e e 0 the optimal action is a ma.}Cimizer of So(2,a) + {46 +3}o(3,a), 

a e {2,3}. Hence,the corresponding Bayesian equivalent rule for the distri­

bution q on (0,1) is the maximizerof5o(2,a) +{4f6q(d6) +3}o(3,a), a e {2,3}. 

It is easy to verify that if we have to choose one of the actions 2 or 3 

and if q is the prior distribution, then this Bayesian equivalent rule is 
n 

the best one. Let n be the strategy that chooses action 1 the first n times 

and in states 1 and 2 the maximizer of 5o(2,a) + {4f 0Q (d9) + 3}o(3,a), 
n 

a e {2,3} thereafter, where Q is the posterior distribution at time n, if 
n 

the system starts in state 1 with prior q E w. Then the Bayesian average 

return in states 1 and 2 is: 

lE [max {5, 4 0Q (d6) + 3}] 
q n 

(note that this expression does not depend on the starting state and the 

strategy). Note that: 



' 
" ' ' :i, 

_·- {, 

J, f 

!'.- ii 
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~ max{S,4 E [ 
q 

8Q 
1

(d8) lQ1 , ••• ,Q] + 3} = max{S,4 
n+ n 

6Q (d8) + 3} 
n 

with equality if and only if 5 ~ 4 e Q (d0) + 3, lP. -a.s. However if q 
n+1 q 

gives positive mass to the set {e e ale>~} then equality never holds. Hence 
n n+l 1 th · in this case the strategy 7r is worse than 7f and consequent Y ere is no 

optimal strategy. 

In this section we need the following ass11mpt:ions : 

Assumptions 

4.5 (i) r is bounded on Xx Ax Y. 

(ii) D(x) = A for all X € x. 

4.6 There are bounded measurable functions g and hon 0 and Xx 9 respec­

tively such that 

h(x,e) + g(6) = sup L(x,0,a} 
aE:A 

where 

L(x,8,a) := I 1K (x,a) 
iEI i 

+ P(dx'lx,a,y)h(x' ,6)} for x e: x, a€ A and 8 E 0. 

4.7 For all E > 0 there is a Bayesian Markov policy f such that 

q(d8)L(x,8,f(x,q)) ~ sup 
ae:A 

q(d0)L(x,8,a) - £ for (x,q) e: Xx W. 

Note that assumption 4.6 is identical to 4.3b. The assumption 4.S(ii) is not 

essential, but it makes things more transparant. Further it seems possible 

to weaken ass11mption 4. 5 (i) • The only serious assumption is 4. 6. For models 

with known parameter value e and finite action space A, assumption 4.6 

guarantees the existence of a stationary optimal strategy. This has been 

proved for finite X in [Dexman (1966)] and for arbitrary X in [Ross (1968) ]. 
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In fact the strategy that chooses the maximizer of a ➔ L(x,0,a) at each 

stage is optimal with average return g(0). In [Ross (1968)] several situa­

tions are given where, for fixed parameter value 8 a solution of 4.6 exists. 

For instance, if X and A are finite and for each stationary strategy the 

process is an irreducible Markov chain, then 4.6 is valid. The results of 

Derman and Ross follow from th. 4.1 below. Ass,1n:1ption 4. 7 is a regularity 

condition to guarantee a measurable selection. In lemmas 4.4 and 4.5 we 

give some sufficient conditions guaranteeing 4.7. 

Note that a Bayesian Markov policy satisfying 4.7 is a Bayesian equivalent 

rule. 

In th. 4.1 we derive a sufficient condition for a strategy to be optimal. 

In the rest of this section we consider model ass11mptions which guarantee 

this condition for strategies generated by the Bayesian equivalent rules of 

the form 4.7. 

Reroemb~r that the ft1nctions -J an....i. 11 are easy to co1npute by standard metr-.:.ods 

(cf. [De:tr11an ( 1970) ]) if 4. 6 holds and X and A are finite sets. 

First we introduce some notations: 

4.8 (i) cp(x,0,a) := L(x,0,a) - h(x,6) - g(8) , x EX, 6 E 9 and a€ A. 

. 

(ii) q,(x,q,a) := q(d6)cf>{x,8,a) , x Ex, q E wand a EA. 

4.9 (i) h(x,q) 

(ii) g (q) := 

-­.- q(d9)h(x,0) , 

q(d6)g{6) , 

XE X and q € W. 

The definitions 4 .a (i) and (ii) are consistent, since we embf:3dded 1
~· in W, 

similarly the definitions of hand gin 4.9 are consistent. 

Theorem 4.1 

* AsS\lroe 4.5, 4.6 and the existence of a strategy 1T E rr0 such that 

N-1 
4.10 l 

n=O 

Then: 

* 1T 
lE [~(X ,Q ,A)]= x,q n n n 

0 • 
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sup 
1TE; 11 

0 

N-1 
lim inf -

W-00 N n=O x,q n n n 
= g(q) 

* and 'TT 

Proof .. 

is opt--imal. 

First note that 

ie: I i 

= l 1K (x,a)p1 (y,q)h(x', 
iEI i 

since by 4.9(i) and 2.28 

h(x',T. (q)) = { 
l. ,Y 

• 

= l 1K (x,a) p. (y,q)h(x' ,Ti y(q)) = 
iE I i l.. 

1 

}: 1K (x, a) T. (q) ) 
ieI i i,y 

if P, (y I q) > 0 • 
J. 

Hence, by definitions 4.8(ii) and 3.l(e) we have for all 1T E 11 0 : 

Therefore, by first conditioning on cr (X , Q , A ) , 
n n n 

we have 

- h (X ,Q:) n n 

for all N E * JN 

N-1 
l 

1T ,..., 
JE [r (X ,Q ,A ) 

x,q n n n 
- h{X ,Q) - g(Q) - ¢{Xn,Q ,A)]= 0 n n n n n 

n=O 

Since g(Q) = 
n 

Q (d0)g{0), we have (cf. th. 2.1) 
n 

1T 
lE [ g ( Q ) ] = g ( q) • 

x,q n 

Using the boundedness of h we find for 1T E n0 : 

N-1 
lim inf 1 2 

N n=O 

71' ,.., 
lE (r(X ,Q ,A)]= g(q) + x,q n n n 

N-1 
ljm inf 1 l 

N N) 00 n=O 
lE,r [q>(X ,Q ,A ) ] • 

x,q n n n 

Note that ~(x,6,a) SO by 4.6. Hence, for all 71' E rr0 , g{q) is an upperbound 

for the Bayesian average return. On the other hand, if 4.10 holds, then g(q) 

* is the optimal value and Tr is optimal. 0 
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Rem~rks. 

(i) In [Mandl (1974) th. 3] a similar result has been obtained. 

In fact, Mandl's result, fo~mulated in our terminology, reads: 

l N-1 
l lim 

N 
N-+-00 n=O 

r (X ,A , Y +l) n n n 

if and only if 

N-1 

n=O 
¢ (X ,8 ,A ) = 0 

n n 

= g (8) , 

, 

Tr 
JP e -a. s. x, 

1T 
JP e-a. s" x, 

(note that one limjt exists iff the other exists). 

(ii) We conclude from th. 4.1 that if there is a E >Osuch that for all 

n c: no 

lim inf 
N-+-oo 

l N-1 
I N 

n=O 

1T 
JE [<f, (X ,Q ,A )] 

x,q n n n ~ e: ' 
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then the optimal Bayesian average return is at most equal to g(q) - e:, 

in state (x,q) Ex x w. 
(iii) According to corollary 3.6 we may replace n0 by IT in th. 4.1. 

We need the following obvious le11m,a. 

Lemma 4.2 

Let { e: · , n e: :t-1 } 
. n. 1 N-1 

then: 1,m N In=O 
Ntoo 

be a sequence of bounded real numbers such that l.im e: 

E - 0. n 

= 0 n 

The following corollary to~~- 4.1 includes the ~lready mentioned results of 

. oerroan and Ross • 

Corollary 4.3 

Let {e:, n E lN} be a non-increasing sequence of positive numbers such that 
n 

lim E = O, and let f be a Markov policy such that for fixed 6 E 0: 
n n n-~ oo 

L{x,8,f {x)) 
n 

* 

sup L(x,6,a) -
aEA 

e: , 
n 

Then the strategy 1T that uses Markov policy 

for this parameter value 0. 

n E JN • 

f at stage n, n e: JN, is optimal 
n 



80 

Proof. 

Note that, if we start with a prior distribution which is degenerate at 0, 

* then Q is degenerate in a for n € JN • Hence, using 1T we find: 
n 

q> (X ,Q ,A ) = L (Xrf e ,f (Xn)) - h (X , 0) - g (6) s E for n E lN. Therefore, 
n n n n n n 

using leroma 4.2 

N-1 

N-+<» n=O 

Now th. 4.1 applies. 

• 

* 1T 
lE e(<f>(X ,Q ,An)] x, n n 

N-1 
lim inf -

N> 00 n=O 
E n = 0 • 

□ 

We contin1-ie with some conditions guaranteeing. 4. 7. Note that if X is countable 

then 4.7 is fulfilled. 

Let1voa 4.4 

If A is countable then 4.7 is valid. 

Proof. • 

Fix E > O. Let a1,a2 , ••• be an enumeration of A and define 

B ·- n { (x,q) 1 .-
at::A 

€xx w[ 

and, fork= 2,3, ••• 

q(d8)L(x,6,a) - €} 

k-1 
Bk := n { (x,q) 

ae:A 
E: x x wl (x,q) ~ U B , 

i=1 i 
q(d0)L(x,8,~) ~ q(d0)L(x,0,a) - €}. 

* Note that Bk is measurable, for k € JN and Bk n BR, = ~ if k '# .t. Further 

* note that for each (x,q) there is at least one k € JN such that (x,q) € Bk. 

Hence the function f: Xx w ~ A defined by f(x,q) := °le iff (x,q) e Bk is 

a Bayesian Markov policy satisfying 4.7. □ 

Lemma 4.5 

Let the following assumptions hold: 
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A is compact. 

(ii) a-+ P(•jx,a,y) is a continuous mapping from A to P(X),where PcX) 

is endowed with the weak topology, for all x c: X and y E: Y. 

(iii) a-+ r(x,a,y) is continuous for all x € X and y c Y. 

(iv) x-+ h(x,6) is continuous for all e E 0. 

(V) a -+ lK. (x,a) is continuous for all x EX and i € I. 
l. 

Tben there is a Bayesian Markov policy f such that 

Proof. 

q(d8)L(x,0,;(x,q)) = sup 
aE:A 

q(d6)L(x,0,a) , for (x,q) E: Xx w • 

since hand rare bounded, we have (x,8,a)-+ L(x,8,a) is bounded. And, since 

this mapping is measurable, we have (x,q,a)-+ J q(d8)L(x,0,a) is bounded and 

measurable. 

Purther, since a-+- J v(dy)pi (yle
1
)r(x,a,y) and a ➔ f P{dx' lx,a,y)h(x' ,0) 

ere continuous, we have a-+ f q(d8)L(x,8,a) is continuous. Hence all conditions 

for SchAl's, selection theorem {cf. A17) are satisfied, which proves the 

The condition 4. 11 ( v) is fulfilled in the following situation: 

4.12 A 
n 

Nk' ·= u • k=l 

X 
m 

~I 
• u • k=l 

where Nk is compact with Nk 

where is measurable and 

M X 
i 

N j and I : = { ( i , j ) I i = 

Nt if k n -- , 

~ M if k n --1 I· 

1, ••• ,m, j = 1, ••• , n} • 

If A is finite then 4.12 is valid, and therefore 4.11(i), (ii) and (iii). 

□ 

AD.other exatnple of 4.11 (v) is the situation where 

* i E: JN where M1 , M2 
, • • • is a measurable partition 

A is compact and Ki = Mi x A, 

of x. 

Theorem 4.6 

AsSlJ!JlBe 4 • 5 1 4. 6 and 4. 7. Let { e: , n € lN } be a nonincreasing sequence of 
n 

positive n1n11bers such 

for n e JN, such that 

that lime: 
n•>co n 

for (x,q) € 

= o. Let 

XX W: 

f be a Bayesian Markov policy 
n 
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4.13 q(dB)L(x,0,f (x,q)) ~ sup 
n 

aEA 
q(d0)L(x,6,a) - e {cf. 4.7). n 

* Further let n be the strategy that uses f at stage n, ri e: lN • Assume for n 
fixed (x0 ,q0 } EX x W: 

• 

4.14 < 00}] = 1 • 

Finally ass11me the existence of a finite set F of Markov policies such that· 

e -+- inf 4> (x, e, f (x) ) is measurable for f e: F and 
XeX 

4.15 ma,r inf cp (x, e , f (x) ) = 0 , 
fEF X€X 

• 

for all 0 € 0. 

* Then condition 4.10 holds and therefore n is optjmal with Bayesian average 

ret11rt1 g(4a) , in (x0 ,4a) (cf. 2.13). 

Proof. 

* * Note that ,r € n0 • Under 

and 4.8: 

the strategy n we have A n = f (X ,Q) and there­
n n n 

fore, by 4.6 

0 ~ cp (Xn, Q , A ) 
n n 

sup 
aEA 

Q (d8)$(X ,6,a) - € ~ 
n n n 

max 
f€F 

Q (d6)cp(X ,0,f(X )) - E 
n n n n max 

fEF 
Q (d0)inf ~(x,0,f(x)) - e 

n X€X n 

Using 4.14, the boundedness of and corollary 2.5 we find 

Q (dS)inf cp(x,6,f(x)) = inf cp(x,Z,f(x)) n 
xex xEX 

And since Fis a finite set we have ~y 4.15 

, 

lim Diax 
n·> f e:F 

Q (d9)inf cp(x,8,f(x)) n 
XEX 

= max inf ¢(x,Z,f(x)) = 0. 
fE:F XEX 

Since lim E = 0 we finall.y have Jjm 
n>~ n n-+<x> 

therefore, by the boundedness of q>: 

cp (X ,Q ,A ) = 0 , n n n And 

• 



1 
lim -

N 
N~ 

N-1 

! 
n=O 

* 
JE 1r c <1> ex , Q , A > J -= 

xo,qo n n n 

This proves the theorem. 
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0 • 

□ 

Although, at first glance the number of assumptions in th. 4.6 is over­

wheJming, only 4.14 and 4.15 are serious restrictions on the applicability 

* of the theorem. ·:r;n 4.14 it is required that the strategy TT guarantees that 

we obtain enough ''inforrnation'' concerning the ''true'' param~ter. If there is 

a finite collection of Markov policies, which contains an optimal one for 

all models with known parameter value, then 4.15 is fulfilled. In th. 4.8 

we consider more appealing conditions guaranteeing all requirements of th. 4.6. 

We start with a l~mma, the truth of which is intuitively clear. 

' 

Let X and A be finite sets and assume that, for all 6 E 0 and each stationary 

strategy, the resul.ting Markov chain {x, n € :N} is irreducible. Then, for 
n 

all 6 E 8 , x e: X and if e: II, the n1.1mber of visits to each state x' € X is in-

finite, 

Proof. 

'1T 
IP 0-a.s. x, 

Fix e ~ 0 and x' Ex. 
a) We first prove there is at least one visit, 

transfo1111 the transition law in such a way 

1T 
IP 8-a. s. To show this, x, 

that x' becomes absorbing: 

i.e. P({x'}Jx1 ,a,y) := 1 for all a EA, y E Y. Further consider the reward 

function: 

r(x,a) := l 1K (x,a) 
iE:I i 

:= 0 if X = X' 

v (dy)P({x'} lx,a,y)p. (yj 8.), if x :f: x' 
1 l. 

In this model the total expected return is defined as usual: 

V (X 1 0 ,'IT) 

00 

-- \ .- l 
n=O 

1T 
lE 0 [r(X ,A)] , 

x, n n 
~ E TI and x EX. 

* According to th. 3.4 there is a strategy tr E: rr0 such that 

* v(x,6,tr) = v(x,0,n ). However since we start with a degenerate prior 

distribution, all posterior distributions are degenerate. Hence IT 0 is the 
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set of strategies such that the action at time n only depends on 

xo,Ao, •.. ,xn 
ourselves to 

(cf. the remark following corollary 3.6). Now we restrict 

strategies in II0 • Note that 

r(X ,A)= IPn 8 [x +l = x'lx ,A J, n n x, n n n 

Bence, for x #, x', it E n
0

: 

CIO 

v(x,8,n) = I 
n=O 

CIO 

• 

1T 
JP e-a.s. x, 

if X ~ XI • 
n 

• 

= l 
n=O 

'1f [ - I 
lP x,0 Xn+l -x ' X ,'x'] 

n 
1T = JP e[x =x' x, n 

• 

for some n]. 

Since this last probability does not depend on the transition law in x', 

the probability JP 1T 8 [x = x • for some n] is not affected by the trans-x, n 
formation of the model. We retur1·1 to the transfoxmed model. Minimizing 

v(x,8,n) over all 1r € n0 is a negative dynamic pT'Ogramming probJem with 

state space X and action space A. Therefore we have, by [Strauch (1966) 
-th. 9 .1] for all Tr € rr0 v (x, e, 1T) ~ m!n v (x, a ,1T) , where the minimum has to 

1T -be taken over all stationary strategies Tr in rr
0

• 

Since by assumption the Markov chain is irreducible under each stationary 

strategy, this mi nim11m equals one, if x -:/:, x' . Therefore v (x ,e ,,r ) = 1 for 

all 1T E II and x ~ x'. So we have in the original model for x ,' x': 

(*) JP 'IT [X = x' for some n > O]. = 1 for all rt e: rr • x,e n 
It is easy to verify that(*) is also valid for x = x' in the original 

model. 

b) Consider the original model. By conditioning on the first visit to x' we 

obtain: 

JP 
11 

[X = x' for at least two n11mbers n > OJ = x,e n 

00 

= I I 
k=l X11•••1"k-1 ao,···,ak-1 

X ~x• 
j 

. I lK (x.,a.)p. (yj+1la,)1r. ({a.}!xo,ao,Y1,x1,·••1Y,,X.)} 
ie:I i J J J. 1 J J J J 

• 11? ,r [ X = x ' for some O I x,6 n+k n > Xo==x, 

Analogous to the construction in 3.22, there is for each 
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,.... 

a strategy 1T E IT such that 

,.., 
1T = lP [ X =x ' for some n > 0] • x' ,s n 

1T 
This last tern1 is equal to 1 , by part (a) • Therefore there are, lP 0 -a.s., x, 
at I.east 

1T 

two visits to x'. Repeating the argument yields 

JP e[x x, n = x 1 for at least k n11mbers n > OJ = 1 and therefore 

1T 
JP 

6
[x = x• infinitely often]= 1 • x, n 

Theorem 4.8 

Let X and A be finite sets and let the Markov chain {x, n € JN} be irre­
n 

ducible for each stationary strategy and all 6 E 0. Let M
1

, •.• ,Mm be a 

partition of X and Ki 

* Then the strategy 1T, 

Proof. 

:= M x A, i = 1, ••• ,m. 
i 

defined in th. 4.6, is optimal. 

□ 

We only have to verify the ass,1mptions of th. 4.6. As already noted, it has 

been proved in [Ross (1970) corollary 6.20] that 4.6 is true, here. FUrther 

4. 7 is a consequence of le1tirna 4 .4. Since for each known parameter value 

e € the Bayesian control model reduces to a dynamj.c program with state 

space X and action space A (cf. the proof of lemma 4.7) we have for each 

8 € 0 an optimal stationary strategy (cf. corollary 4.3). 

Since there 

Finally, by 

4.14 holds. 

Remarks. 

are finitely many of these strategies 4.15 is fulfilled. 

le1111aa 4. 7, we have :n, 7T 
8 
[x E M. infi:ni tely often] = 1. Hence x, n i 

t) The conditions of th. 4.8 are satisfied in particular if, for 

X = {x1 , ••• ,xm} we have Mi = {xi} , i = 1, ••• ,m and if for all e E 0 , 

E: X: 

v < dy) P C { x . } I x . , a , y > p . (y I e . ) > o • 
J l. l. i 

□ 

ii) In the situation of th. 4.8 we may use at each stage a Bayesian equivalent 

rule maximizing a~ J q(dS)L{x,8,a) in (x,q) EX x W, since A is finite. 



86 

In th. 4.8 we assumed that, if we are in state x € Mi, then the infoxmation 

we get after the next transition does not depend on the action chosen. In 

th. 4.9 we relax this assumption. We shall assume there, besides 4.6 and 

4.7: 

4.16 (i) 

(ii) 

A is a finite set and N1 , ••• ,Nn is a partition of A. 

M1 , ••• , Mm is a measurabl'e partition of x and Ki, j = 
(i,j) €I= {(i,j)li = 1, ••• ,m, j = 1, ••• ,n}. 

M. 
l. 

X N. , 
J 

(iii) For each X € x, a€ e and 1T E rro 
1T 

lPx, 6[xn E Mi infinitely often]= 1 , i = 1, ••• ,m. 

(iv) There is a finite set F of Markov policies such that 

9-+ inf ~ (x, 0, f (x)) is measurable., for f e: F and 
XE:X 

max inf cf> (x, e, f (x)) = 0 (cf. 4 .15) • 
fE:F XEX 

First, we discuss the fo~m of a reasonable strategy for this situation. Then, 

in th. 4.9, we prove the optimality of such a strategy and afterwards, in 

th. 4.10 we consider a practical situation where 4.16 is satisfied in a 

natural way. 

Although 4.16 (iii) guarantees 

* often under the strategy v 

that we returr1 to Mi, 

defined in th. 4.6, it 

i = 1, ••• ,m, infinitely 

is not sure that we ret11rn 

to each set K. j 
1., 

infinitely often. Hence we have to modify the * strategy 1T 

of th. 4.6. 

The idea for the modification is found in [Mallows and Robbins {1964)]. In 

[Fox and Rolph (1973)] and in [Rose (1975)] this idea is worked out for 

Markov renewal programs and Markov decision processes respectively, in a way 

similar to our approach here. The idea is, that we make forced ahoiae actions 
to guarantee that we retur11 to all sets 

do this with a frequency that is so low 

average retur11. 

We start with some preparations. 

. 

K. j infinitely often. However, we 
l., 

as not to influence the Bayesian 

We define a (double) sequence of stopping times { cr (i, 1;.) It E lN , i = 1 , ••• ,m}: 

4.17 a ( i , 0) Cw) : = 0 , o { i , ~) ( w) : = inf { k > a (1 , t - 1 ) ( w) I ~ ( w) E: M.} 
l. 

for w € n, i = 1, ••• ,m, * t e: ]N • 

Hence cr(i,t) is the time of the t-th visit to set 

4.18 An increasing sequence S = 
said to be of ity zero 

(s1,s2,s3,•••> 

if 

M., after stage zero. 
1 

of positive integers is 



lim sup 
k-+<x> 

1 max{ i e: JN *Is. s 
k i 

k} = 

E~aroples of such sequences are: s. = 
1. 

* . 2 
k 1 { . log lN j 2 1 < k} < k max i E - - k 

and .2 since s. = 1. , 
l. 

1 JN*j12 k} < -~ 
k max{i E'. < k • - -

** 
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0 • 

* i E JN • , since 

, 

• • We define the strategy TI , which will be considered in th. 4.9, in an in-

formal way. 

4.19 Fix • each set N . in 
J 

s - (s
1
,s2 ,s3 , ••• ) -

an 

of 

action a. for 
J 

density zero. 

j = 1, .•• ,n and fix some sequence 

If for t E JN there are 

* {1, .•. ,m} • € and k E lN such that l. t = o(i,sk) then dete.cxx1ine £. e: lN 

such that k = bm + i with 1 s fl ~ m, b E lN. 

In that case action ai is chosen at stage t. 

If t ~ a(i,sk) at stage t, for all i = 1, •.• ,m and all k E * lN then 

the Bayesian Markov policy ft, defined in 4.13 is used to select an 

action. 

It is straightforward to make this definition more rigorous in a way similar 

to definition 3.20. 

** Note that TI tries the actions a 1 , ••• ,an successively at the forced choice 

stages: a(i,t), i = 1, ••• ,m, t ~ s. 

Since it is ass1Jmed in 4 .16 (iii) , that the process visits each set 

finitely often, almost surely under every strategy, we have alII19st 

* 

M. in-
1 

surely: 

a (i ,sk) < 00 for all i = 1, ••• ,m and k c: :N • Hence each set K. . 1,J is visited 

infinitely often almost surely, under all strategies. 

Theorem 4.9 

** ·Ass11m.e 4.5, 4.6 and 4 .. 16. Then the strategy 7T defined in 4.19 is optimal 

with Bayesian average return g(q) in each starting state (x,q) €Xx w. 

Proof. 

Fix (x ,q) E X x W. For notational convenience we write JP instead of 

a) As noted above, we have by 4.16{iii) and definition 4.19: 

** lP -rr 
x,q 

.. 



88 

n {,:((i,j) ,k) < o:>}] = 
* ke::N' 

1 • 

Using th. 2.7 for the stopping times cr(i,O), cr(i,1), ••• we find in exactly 

the same way as in the proof of th. 4. 6 that JP -a. s. 

= 0 , for i = 1 , ••• ,m • 
• 

b) For notational convenience we write B"(i,k) instead of 

4> (X ( . k) ,Q (. k) ,A (. k) ) • The following assertion is easy to verify 
a i, cr 1, cr 1, * 

(cf. 4.17). For all t € JN there is exactly one pair i,k such that 

cr(i,k) = t, i e {1, ••• ,m}, k € {1, ••• ,t} . 
• 

Hence it is easy to verify that on n: 

N m N 

l <P(Xt,Qt,At) = 2 
t=1 i=1 

--

m N m 

z: 
i=l 

I ac1,k>1{ c· k)<N k=l cr 1, - , 
z: 

i=l 

* Notice that cr (i ,k) ~ k for k e: lN • Hence we have 

;¥ {k € s(cr(i,k) ~ N} 

Let M := inf cp(x,6,a). Then - ~<Ms O, since r is bounded and by 4.5. 
x,e ,a 

Therefore we have for i = 1, ••• ,m: 

1 
N 

N 

which tends to zero as N tends to infinity by the definition of S (cf. 4.18). 

Now we consider the last teim of(**). Since, by(*), B(i,k) tends lP-a.s. 

to zero, if k;. Sand if k tends to infinity, we have by lemma 4.2: 

lim l 
N 

N ► co 

N 

Finally we conclude from(**): 

1 
lim -

N N; co 

N 

l cp{Xk,Qk,Ak) = 0, 
k-=1 

= Q I JP -a. s. 

lP -a. s. 

And therefore 4.10 is satisfied. Hence by th. 4 .1 the theorem is proved. 0 
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In the following theorem we give more appealing conditions, which imply all 

** conditions of th. 4.9. Hence the strategy n defined in 4.19 is optimal 

here. 

Theorem 4 .10 

Let X and A be finite sets and let the Markov chain { X , n E lN} be 
n 

Further I.et I= 

• irre-

ducible for all e E 9 and each stationary strategy. 

** and I.et K = {(x,a) }. Then the strategy~ defined in 4.19 is optimal. x,a 

The proof of this theorem proceeds along the same lines as the proof of 

th. 4.8. 

We conclude this section with some remarks. 

Remarks. 

i) Consider the situation of th. 4.9. 

** The strategy n is easy to handle. For 

decision maker has to keep count of the 

each set M., i = 
J. 

number of visits. 

1, ••• ,m the 

If this num-

ber is equal to a n11mber in the sequence S of density zero, then he 

has to select the next action from {a1 , ••• ,an} in cyclical order 

(cf. 4.19). If the number of the visits does not belong to S, then the 

* decision maker has to compute in state (x,q) an action a, such that 

* $(x,q,a) = max $(x,q,a). 
ae:A 

ii) If we are dealing with a dynamic program with finite state space X and 

finite action space A and if for all x,x• EX and all a EA: P(x' lx,a) 

is positive but unknown, then we can transfo1.1n this model into our 

Bayesian control model (cf. example 2.2), and by th. 4.10 the strategy 

** iT is optimal. 

iii) Th. 4.10 is more general then the results in [Rose (1975)], since we 

** allow arbitrary prior distributions. Further, the strategy~ is 

easier to handle than the strategy Rose proposes, if 8 is finite. 

iv) It is not clear whether all situations considered in [Mandl (1974)] are 

covered by th. 4. 6 or not. Mandl assumes that 8 -+ ¢ (x, 8, a) is continuous 

(cf. [Ma.ndl (1974) th. 8]), moreover he assumes the existence of minimum 

contrast estimators. Although we conjecture that under the ass1l11!ptions 

of th. 4.8 minimum contrast estimators exist, it is easy to show that 

under the assumptions of th. 4.10 they do not exist. 
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5. BAYESIAN EQUIVALENT RULES ANV THE TOTAL-RETltRN CRITERION 

We do not know Bayesian equivalent rules that are optimal with respect to 

the discounted total-return criterion, in general. Example 5.1 shows that a 

''natural'' Bayesian equivalent rule fails to be optimal. However, in section 

5.1, we prove the optimality of a Bayesian equivalent rule for the so-called 

independent case, and in section 5.2 for the linear system with quadratic 

costs. Finally, in section 5.3, we study a simple inventory model for which 

a Bayesian equivalent rule is sometimes optimal. Here we also study the be­

haviour of this rule when it is not optimal. 

In the models we study in this chapter, there is only one unknown parameter, 

i.e. the index set I is a singleton. This implies that the decision maker 

obtains informdtion about the same parameter in each state x Ex, regardless 

of the action chosen. Since I is a singleton we shall omit the subscript i 

in the notations 0., p. (yj e.), p. (y ,q) and T. (q). Note that -r (1 ,n) = n 
1 1 1 1 i,y 

(on Q) , for all n E N and therefore, by le1r11oa 2. 2, the distribution of 

Y1 , .•• ,Yn, n EN only 

starting state or the 

depends on the prior distribution and not on the 

strategy. Hence the distribution of Q (cf. 2. 24) n de-

pends only on the prior distribution and on Y1 , ••• ,Yn. For that reason we 
. 1T 1T 

shall write P and E instead of lP and E , when we are dealing with q q x,q x,q 
the random variables Y and Q. 

n n 
We start with an example. In this example the Bayesian equivalent rule, 

based on the function: 

F{x,6,a) := p (dx' IX, a, y) V (x' I e) } 

tur11s out to be non-optimal. 

We rem~rk that this example has some similarity to example 4.1. 

E}cample 5. 1 

Consider the following model. X = { 1, 2, ••• , 6}, Y = { 0, 1}, D ( 1) = A = { 1, 2, 3}, 

D(x) := {1}, x € {2,3, ••• ,6}, 8 := {0,1}. The function p(yf6) is given by: 

p(1{0) = 1-p(ole> = e, 8 E 0. And P({x'}lx,a,y) is (we identify here x and 

{x}): 

PC3l3,1,o> =P<3!4,1,0) =P{6ls,1,o> =PC6IG,1,o> =Pc2!1,1,o>· = 

=P(ll2,1,0) = 1 
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P(413,1,1) =P(4l 4,1,1) =P(SI 5,1,1) =P(SI 6,1,1) =P(ll l,1,1) = 

=P{2l 2,1,1) = 1 

P(3(1,2,y) = 1, P(Sj1,3,y) = 1, for y E Y • 

e 1 

• 

Only in the states 3,4,5 and 6 a reward is obtained independent of y E Y: 

r(3) = r(S) = c; r(4) = r(6) = b, c > b ~ 0. The prior distribution q is: 

q(O) = q(l) =~-The discounted total retuzn v(x,8) for discount factor S 

is: 

V (3, 0) C = v(S,1) = --- ; v(3,1) = v(S,O) 
1 - B = C 

C 

+ 1 - 13 c1 - e > 
c f!b 

and V ( 5 , 8 ) = l _ $ 6 + ( C + l _ f3 ) ( ·1 - 0 ) • 

a c1 - e > FUrther v ( 2 , 0) = 1 _ Se v ( 1 , 8 ) , hence 

v(l,8) = max{B8v{1,6) v ( 1 , 8} , 8v (3 , 6) , Sv ( 5, 8) } • 

The first term equals: 

a 6 + 8 - 286 (1 a) 
..., 1 - ae v ' < v(l,0) for S E (0, 1) , 0 E 8 • 

The Bayesian equivalent rule is based on the function F specified by: 

and 

F(l,0,1) =8 e + a - 2ae 
1 - se 

F ( 1 , 0 , 3) = Sv ( 5 , 8 ) • 

v(l,8), F{l,0,2) = Sv (3, 9) 

Hence the Bayesian equivalent rule in state (1,q) chooses action 2 or 3, 

• Now we 

consider another strategy for starting in state 1. 

At stage l take action 1 and thereafter take the best of actions 2 and 3, 

in state 1. Note that under this strategy the system remains in state 1 at 

stage 1, or it returns to state 1 
0 3 C be.-,omes: µ 1 _ 

at stage 2. The discounted total return 

l ~ S if 6 = 1. Hence the Bayesian dis-
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if for instance c = 2, b = 1 

and 8 = 0.9, then this strategy is better than the Bayesian equivalent rule. 

It is straightforward to show that the latter strategy is optimal, in this 

case. 

we proceed with a theorem. In this theorem we show that the process of poste­

rior distributions is a Markov chain. 

Theorem 5.1 

(i) Let f be a real-valued measurable function on W x Y that is bounded 

* from above. Then, for n EN: 

f(Q ,y)p(y,Q }V(dy), l? -a.s. 
n n q 

(ii) The process {Q, n € N} is a (homogeneous) Markov chain. n 

Proof. 

(i) Define 

n 
4n(d6) :=q(d8) II 

j=1 
P <y. I e > • { 

J 

n 
q(d6) IT 

j=l 
I -1 

p (y. 6}} 
J 

if the denominator is non-zero. Let B E yn. Using le11xcr1rt 2. 2 (T = 1) we 

have 

-- q(d0){ 

Note that 

n 
P Cy 1 I e) rr 

n+ . 1 
]= 

• • • 

p(y.,6)q(d8){ 
J 

! Y l , ••• , Y ) ]d IP 
n q 

n+l 
f(q ,y +1' JI 

-n n . 1 

n 
rr 

j=l 

J= 

' 

--

-1 

if the factor between braces is non-zero. Hence(*) equals: 

• • • 

(y 1, ••• ,y n+ 1) c:BxY 
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(ii) 

. { 
n 
IT 

j=1 

which proves part (i). 

n 

• 

The first equality follows from the fact that~ is a function of q and 

Y1 , ••• ,Ym. The second equality is a consequence of part (i) and the 

other equalities are obvious. D 
n+ 

In th. 5.3 we prove the optimality of a Bayesian equivalent rule in the in­

dependent case. Here the reward function r is constant in the first coordi­

nate, i.e. at each stage the reward only depends on the chosen action and 

the value of the supplementary state variable. FUrther it is assumed that 

all actions are available in 

given z, the sequence {Y, n 
n 

(cf. lenima 2. 2) we call this 

every state, i.e. D(x) = A, for x € X. Since, 

* € N} is a sequence of i.i.d. random variables 

case the independent case. It will play an im-

portant role in section 5.3. We start with a lPmma. 

Lettnna S. 2 

Let G be an upper semi-continuous (u.s.c.) function on Ax Y, that is bound­

ed from above. Let A be compact. Then there is a measurable function f: w -+ A 

such that: 

Proof. 

G(f(q),y)p(y,q)V{dy) = max 
ae:A 

G(a,y)p(y,q)v(dy) • 

We show that all conditions of Schal's selection theorem (cf. A17) are sa­

tisfied. Let G be u.s.c. and bounded above by M € JR. Then there are bounded 

continuous functions Gk on A x Y, such that the sequence {Gk, k e N} is non-
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increasing and lim Gk= G (see A12). 
k>oo 

Without loss of generality we may assume that 
,..., ,..., 

G ~ M, k € N, since otherwise 
k 

we may define Gk:= min{Gk,M} and then {Gk, k EN} is also a nonincreasing 

sequence of bounded continuous functions with limit G. Hence, by the mono­

tone convergence theorem we have 

lim 
k >oo 

{-Gk (a,y) + M}p (y ,q) v (dy) = {-G (a,y) + M}p (y ,q) V (dy) 

and so {J Gk(a,y)p(y,q)V(dy), k € :N} is a nonincreasing sequence with limit 

j G(a,y)p(y,q)V(dy). 

By the dominated convergence theorem the function 

(a,q) ➔ 

is continuous in a, and for fixed kit is bounded since Gk is bounded. Using 

lemm~ 1.6 (iii) we find that this function is measurable, since 

(a, e) ➔ 

is measurable. Hence we proved that f Gk(a,y)p{y,q)v(dy) E L(W x A) and 

therefore J G {a,y) p (y ,q) v (dy} E L (W x A) (cf. A17) • 

Hence all conditions of A1 7 are satisfied. This proves the lenn11a .. 

Theorem 5.3 

D 

Let I be a singleton, let A be compact and let D(x) = A, x Ex. Further let 

x ~ r(x,a,y) be constant for all a€ A, y € Y and let (a,y) ➔ r(x,a,y) be 

u.s.c. (We write r(a,y) := r(x,a,y), a EA, y E Y.) 

Then there is a strategy~*€ rr0 that choses a ma~imizer of 

a+ J r(a,y)p(y,q)V(dy) in each state (x,q} EX x w. 
This strategy is optimal, and 

where, 

5.1 

00 

v(x,q) = I s~ [e<Q >J 
n=O q n 

e (q) := max 
aeA 

r(a,y)p(y,q)v(dy), 
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Proof. 

Remember that r is bounded from above. Let x EX, q E wand Tr r:: rr 0 • We have: 

rw 

Since TI€ rr
0

, there 
TI 

,.._, 
is a corresponding strategy n E TI (cf. 3.7). Therefore 

we have P -a.s .. : x,q 

--

sup 
a€A 

• 

v(dy)p(y,Q )r(a,y) • 
n 

• 

By le1,,1r,a 5. 2 there is a measurable function f from W to Y such that 

max 
ae:A 

Note that the distribution of e(Q) does n not depend on x and n. Hence 

for all x € X, n € TI
0 

, 

* with equality if the strategy 'TT is used. This proves the theorem. 

* 

□ 

The strategy ,r defined in th. 5.3 uses a Bayesian equivalent rule. To veri-

fy this, note that an optimal strategy for the model with known par eter e 

is obtained by using a maxirnj_!-7.er of a + F (x,e ,a) at each stage, where 

F(x,B,a) := v(dy)p(yj8)r(a,y) • 

Hence a Bayesian equivalent rule may be defined as a maximizer of 

a+ J q(d0)F(x,8,a), in * each state (x,q) €xx w. Hence TI uses a Bayesian 

equivalent rule at each stage. Note that each maxi.mizer of 

a+ J q(d8)F{x,8,a) is also a maximizer of 

a+ q(d0)p(y{8){r{a,y) + S 

since x + v{x,6) is constant for all e E 

sian equivalent rule. 

p ( dx ' I X , a , y) V (x ' , e ) } 

* 0. Hence 1T uses a ''natural'' Baye-

In th. 5.4 we give an upper and a lower bound for the value function of the 

model. These provide a measure for the loss of ret11rn, due to the lack of 

inforn1ation concerning the ''true'' parameter value. 



Theorem 5.4 

under the conditions of th. 5.3 we have: 

5.2 

Proof. 

e (q), < 
1 - S - v(x,q) s 

f q(d0)e{8) 

1 - S • 
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The right hand inequality follows from th. 3.16. To prove the left hand in­

equality, note that: 

E [e (Q ) J ~ sup E [ 
q n aEA q 

Q (d6){ 
n v(dy)p{yfe)r(a,y)}] = 

= sup 
aEA 

q(d8){ v(dy)p(yJe)r(a,y)} = e(q) • 

The first equality follows 

for real-valued measurable functions on 9, which are bounded from above. 0 

we conclude this section with an example which has som~ relationship with 

the inventory control model we study in section 5.3. The model we consider 

in this example can be transfoimed into the model we called the independent 

case. 

Example 5.2 

Let I be a singleton, D(x) = A for all x EX and let A be compact. Further 

let r(x,a,y) = b(x) + c(a), x EX and a EA, where band care u.s.c. and 

bounded from above on X and A respectively. Finally let P ({G(a,y)} I x,a,y) = 1 

for all x Ex, a€ A and y E Y where G is a continuous function from Ax Y 

to x. 
For each x € x, q E wand 1T € rr 0 we have 

CX) 

v(x,q,n) = E7r [ I 
x,q n=O 

n S r(X ,A ,Y 1)] = n n n+ 

'IT = E [b (X
0

) x,q 

00 

= b(x) + l 
n=O 

00 

+ I 
n=O 

e~1T [c(A) 
x,q n + $b(G(A ,Y 1))] . 

n n+ 
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-Define r(a,y) := c(a) + Sb(G(a,y)), a EA, y E Y. Then 

00 

v(x,q,11') == b(x) + E 11 
[ l f3° 

x,q n=O 
r (A , Y l)] • n n+ 

-Note that (a,y) + r(a,y) is u.s.c. {cf. A15). Hence, by th. 5.3, we find 

that an optjmal strategy is obtained by choosing in each state (x,q) €Xx W 
• 

a maximizer of 

and 

where 

a+ {c(a) + S b(G{a,y))p(y,q)V(dy)} 

v(x,q) = b(x) + 

e{q) := max{c(a) + 6 
aE:A 

b(G(a,y))p(y,q)V(dy)} • 

As in th. 5.4 we have the inequalities: 

b{x) +e(q) (l-8)-1 Sv(x,q) Sb(x) + e(0)q(d0) (1-s,-1 , {x,q) EX x w. 

In the following sections we study models which have some practical rele­

vance. As this is more natural, in these models we shall minimize costs ra­

ther than maximize rewards. 

Note that all results up to here carry over if we define 

5.3 {i) 

(ii) 

c(x,a) := -r(x,a) 

T-1 
: = inf En- [ l an 

ne:II x,q n=O 
0 

c (X ,A ) + 
n n 

for real-valued measurable functions b, that are bounded from below. 

(iii) V (x,q) = (UOC)O) (x,q) • 

s . 2 U..nea1t.. .o y.6.tem qua_ 

In this chapter we consider a linear system with quadratic costs and with a 

disturbance process of i.i.d. random variables with an incompletely known 

distribution. We show the optimality of a Bayesian equivalent rule. In fact 

this rule can also be considered as a so-called certainty equivalent rule. 

we generalize results of M. Aoki on this topic in several ways: first we 

allow other disturbance processes than normal processes, secondly we allow 

general prior distributions. Finally we allow the costs to be a quadratic 
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function of the control variable (cf. [Aoki (1967), page 94]. 

The concepts and techniques we use here, are fami.liar in the theory of li­

near systems (cf. [Kushner (1971), chapter 9] and [Bertsekas (1976) ]) • We 

remark that the greater part of this section appeared in [van Hee (1976)]. 

We shall use syrnbols that we used before. However, they loose their previous 

interpretation here. we start with the specifications of the model. We pro­

ceed with some preliminary results, and in th. 5.9 we obtain one of the main 

results of this section: an explicit expression for the optjrnal strategy and 

also for the value function. 

In this section x' means the transpose of x, where xis a column vector or 

a matrix. 

Model 

5.4 

4: the Zinear system 

(i) X y ~1 ·- ·- JR nl .- •- I 

{ii) D(x) A 
n2 

·- ·- JR .- • - I 
* n

2 
E :N for all x E x, 

{iii) c(x,a) := x'Rx + a'Sa where Risa nonnegative definite n 1 x n 1-

matrix and S. a positive definite n
2 

x n 2-matrix, 

(iv) P({Cx +Ba+ y} I x,a,y) = 1, x EX, a EA, y E Y where C is a 

n 1 x n 1-matrix and Ba n 1 x n 2-matrix satisfying the aon~PolZ.a­

biZity assumption 

(v) 

n 1-1 
rank[B,CB, ••• ,c B] = nl , 

f v (dy) is bounded on 8 where y. is the i-th com­
.1. 

ponent of y E Y, for all i,j E {1, ••• ,n1 }. 

For q e W we define the vector m and the matrices M and E : q q q 

5. 5 (i) 

(ii) 

m (i) := 
q 

M {i,j) := 
q 

(iii) t: (i,j) := 
q 

Note that E - M 
q q 

• is the covanance 

By ass11mption 5. 4 {v) m , M and E 
q q q 

• • .l.,J € 

matrix of Y averaged over 0 with q. 
n 

are bounded on W. 

In le111rna 5. 5 we give some properties of m 
q 

and M • 
q 
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Lie,1:ana 5 • 5 

For q f.: W we have 

(i) 

(ii) 

Proof. 

Hence 

and 

~ () (i)p(y,q)V(dy) = mq(i), 
y q 

i E { 1, .•• ,n
1

} . 

Y-~ ( ) (i)p(y,q)'J (dy) .== M (i,j), 
J y q q 

~ (q} (i)p (y ,q) = p (y ,q) 
y 

y. { 
l. 

--

mT () (i)p(y,q)V(dy) = 
y q 

YJ·ll\r () (i)p(y,q)V(dy) = 
y q 

{ 

• 

= { y.pCyle)v(dy)}.{ y.p(yle)v(dy)}q(d8) = M Ci,j) • 
J l. q 

Note that all changes of integration order are allowed by 5.4 {v). 

--

D 

Lermi1a 5.6 states that the optimal reward operator U (cf. 5.3(i)) maps the set 

of functions f on Xx W of the foxm given in 5.6 below, into itself. The 

proof proceeds in a familiar way (cf. [Kushner (1971), section 9.2.2]). 

:temma 5.6 

Let the real-valued function f on Xx W be defined by: 

5.6 f(x,q) := x'Kx + x'Lm + H(q), q 
X € X, q E W 1 

where K is a nonnegative definite matrix, Lan arbitrary n 1 x n 1-matrix and 

Ha bounded and measurable function on w. Then: 

(Uf) (x,q) 

where 
,..,, 

5. 7 (i) K : = 

(ii) 

,..,, ,.,., ,,..., 
:= x'Kx + x'Lm + H(q), 

q 
X € X, q € W, 

: = 2 Sc' K + 8c • L - 8 2 c • KB cs + SB ' KB) - l c 2B • K + B ' L > • 
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-(iii) H (q) 
q q 

+ s H (T (q)) p {y ,q)V (dy) + 13 trace (Ict: ) + S trace (LM ) 
y q q 

and the minimizing action a(x,q) in (x,q) is: 

5.8 -1 -1 
a(x,q) = -8 {S +SB'KB) B'KCX- B (S +BB'KB) (B'K+~B'L)m • 

q 
"-' 

FUrther: K is nonnegative definite and H ( •) is bounded and measurable on w. 

Proof. 

(1) By some straightforward calculations, using Jemma 5.5 we get: 

(2) 

(Of) (x,q) = inf {a' (S +SB'KB)a + (2Sx'C'KB +2/3m'KB +Sm'L'B)a} + 
aEA q q 

+ x' (R + SC ' KC) x + S x ' ( 2 C ' K + C ' L) m + S H (T ( q) ) p (y , q) v ( dy) + q y 

+ S trace(KI) + S trace(LM) • q q 

Since K is nonnegative definite and Sis positive definite we have 

S + SB'KB is positive definite and therefore (S + 8B'KB)-l exists and is 

positive definite. Hence by standard argt21nents for the minimj,zation of 

quadratic foxms we find 5.7 and 5.8. 
,.._, 

We shall prove that K is 
,..,, 

lue of K does not depend 

nonnegative definite 

on L, Hor p(y[9), y 

prove this, we may assume that H vanishes and 

again. Note that the va-

E Y, 8 € 9. Hence, to 

for all i,j 
J ,..., 

0. In that case (Uf) (x,q) = x'Kx, since 

rq, Mq and mq contain only zeros for all q € w. By the definition of 

(Of) (x,q) we have 

(Uf) (x,q) =inf {x'Rx+a'Sa+ f3 (CX+Ba+y)'K(Cx+Ba+y)p(y,q)V(dy)} 
at::A 

and therefore (Uf) (x,q) ~ 0 for all (x,q) c: Xx w since R, sand Kare 
r,J 

nonnegative definite. Hence x'Kx ~ 0 for all x £ X. It is easy to verify 
,..,, ,..., 

that K is sytrimetric. Hence K is nonnegative definite. 
,.., 

(3) Finally we consider the function q-+ H(q). Using leTT)ffl;:i 1.6 (iii) we have 

q + m (i), q-+ M (i,j) and q-+ I: (i,j) are bounded and measurable. So 
q q q 

all terms in 5.7 (iii), except the second one, are bounded and measura-

ble on w. We consider the second teim separately. To show that 
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(y,q) + T (q) is measurable, it suffices to prove that the set y 
{ (y,q) IT (q) (B) ~ c} is measurable for BET and c E lR (cf. lemma 1.5). 

y 
Hence it suffices to show that (y ,q) + T (q) (B) is meas11rabl.e, B e: T. 

y 
Note that (y,q) ➔ BJ p:yl8)q(d8) and (y,q) + p(y,q) are measurable (cf. 

len11,ia 1. 6 (iii)) • Bence (y ,q) + Ty (q) (B) is measurable since 

T (q). (B) = y 
B 

. 1 
p (!' I e) q cae) { p Cy, q)} -

= q(B) 

if p {y ,q) > 0 

if p(y,q) = 0. 

Therefore (y,q) 

bility of (y,q) 

-+ H (T (q) ) is also measurable. This proves the meas11ra­
y 

f H (T (q)) p (y ,q) \l (dy) • 0 
y 

• 

The equation G1 (K) = K is called the Ricaati-equation. 

Now we shall consider the sequence of successive approximations; 

V (x,q) := n 
n (U 0) (x,q) , X € X, q c W .. 

We define 

functions 

x n1-matriGes Kn 

on w, for n EE: 

and L n and a sequence of bounded measurable 

5. 9 (i) 

(ii) K ·-.-n 

H (q) n 

• 

L := G2 (L l' K 1)., n n- n-

:= G3(q,H l'K 1'L 1), q e: n- n- n-
* w, n € :N 

(G1 , G2 and G3 are defined in 5.7). 

It is a direct consequence of le111r11a 5. 6 that 

5.10 + x'L m n q nE:N. 

In lerrroir\ 5. 7 we prove that K and 
* n 

Ln 

K n 

* converge elementwise to matrices K 

and L respectively. The proof of * + K can also be found in [Kushner 

(1971), section 9.2.3]. In our proof we use the same arg1.1ments. In leJTIJ•\a 

5.8 we show the pointwise convergence of H n as n tends to infinity. 

Le11u11a 5 • 7 

Ci) 

(ii) 

K converges, elementwise, n 
fying the Riccati-equation 

L converges, eJementwise, n 

* to a nonnegative definite matrix K satis-

* * (K = Gi (K ) ) • 

* * * * to a matrix L satisfying L = G2 (L ,K ) • 
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Proof. 

Since K n and Ln do not depend on the measure v, to study the limit behaviour 

we may ass1Jrne * that~ is concentrated in a point m 
n1 

E JR • Hence m = 
q 

* m for 

q E W, and we are dealing with a deter:ministic system. Let us denote the 

value function of this system by v and the sequence of successive approxima­

tions by {vn(x), n EN} (note that we omit the dependence on q E W). We 

first show that this value function vis finite. Let x = x
0 

be the starting 

state. Note that 

hence 

n -1 
1 
I 

k=O 

n -1 
1 

I 
k=O 

n -1 
k k * Cm , C Ban -1-k + 

1 k=O 

k * Cm 
k 

C Ba 1 k • n - -1 

By the controllability ass1.1mption 5. 4 (iv) we can find actions a
0

, ••• ,an _
1 

1 
such that X 

n1 
= 0. So there is, for the deterministic linear system, a stra-

* tegy lT such that xkn = 0 for k E N , and such that each cycle from xk = 0 
1 nl 

until * 0 passes through the same states and actions {k EN). X = (k+l) n
1 

Hence the discounted total costs of the system under ,r is finite. Since the 

one-step costs are nonnegative,v (x) is nondecreasing inn. Note that, by n 
a simple dynamic programming argument, v (x) ~ v(x) for all n E l'1 and x Ex. 

n 
Hence v (x) converges if n tends to infinity. Note that, by 5.7(iii) and n 
the special form of v, 

V (X) n + H n 

where H is constant on W (therefore we omit the dependence on q £ W). 
n * 

Since vn(O) converges, we find that lim En exists and is finite. Let m = 0. 
n >oo 

So we find that lim x'K x 
n exists for all x Ex, since K 

n 
does not depend on 

n >oo 

* the value of m. It is straightforward to show that this implies that K 
n 

* * converges elementwise. Consequently, for arbitrary m, x'L m 
n converges for 

all x Ex. Hence Ln converges 

~ 0 for all x Ex, 

elementwise. As K is nonnegative definite we n 
have x'K x 

n* 
we have K 

* hence x'K x ~ 0 for all x EX. Since K = 
* *' = K and therefore K is nonnegative definite. 

-1 * -1 Finally, since (S +BB' K B) converges elementwise to (S +SB' K B) n 
* * * * * K = G1 (K) and L = G2 (L ,K). 

n 

we 

K' 
n 

find 

n 
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LE=11u:rJa 5. 8 

The sequence of functions B, defined in 5.9, converges pointwise to a 
n * * * * * bounded measurable function H (on W), such that H (•) = G3 (•,H ,K ,L ). 

Proof. 

Let 

s.11 (a) 

' 

b (q) := -J:d3 2m• (2K B +L'B) (S +8B'K B)-l (2B 8 K +B'L )m + 
n qn n n n nq 

+ a trace(K r) + 8 trace(L M) • nq ·nq 

It follows from . lenrma 

Denote: 

5.7 that b (q} 
n 

converges if n tends to infinity. 

5.11 (b) b(q) :=limbn(q), 
rt ➔ QC) 

q € w . 

By definition 5. 7 we have Hm+l (q) = bm (q) + S f Hm (T (q) ) p Cy ,q) v (dy) , m € ::N. . y 
Note that J H (T (q)) p (y ,q) v (dy) = E [H (Q

1
)]. Therefore, by th. 5 .1 and · m y q m 

the measurability of (y,q) .:+ Bm(Ty(q)) (cf. the proof of lemma 5.6): 

* kE:N,mE:N. 

Bence we have 

= b (q) + SE [b l (Q1) + SE [H 1 (Q2) l yl J J = n q ~ q ~ 

= bn {q) + f3Eq[bn-1 (Ql)] q n-

And by iteration, using(*) we find:. 

n 
(**) 8 n+1 (q) = • 

are The last term vanishes since, by definition, a
0 

= 
bounded in n (elementwise; see the proof of le111ma 

O. Since Kn and Ln 

5.7), and since q -+ m , 
q 

q-+ M and q-+ E are bounded functions (eJementwise}, q q we have (cf. 5.11) 

the boundedness of (n,q)-+ bn(q). Hence, for all e: > O there is a Ne: € N 

such that: 

CIO 

By the domjnated convergence theorem, for fixed R. we now have: 



Hence, using (**) we find: 

* 5.12 H (q) := lim H (q) = n n-+«> 

105 

I 
k=O 

* * Since bis bounded, H is also bounded. The measurability of H is immedia-

te. Finally, note that 5.12 and the Markov property of the process 

(cf. th. 5.1) imply: 

{Q , ne:N} 
n 

co 

* H (q) = b {q) + f3 I 
k=O 

00 

= b (q) + SE [ l 
q k=O 1 q 

* * * * Hence H (q) = G3(q,H ,K ,L ). 0 

The next theorem is one of the main results of this section. It is an imme­

diate consequence of the foregoing Jemmas and a well-known argument for ne­

gative dynamic programnnng {cf. [Strauch (1966)]). 

Theorem 5.9 

(i) The value function satisfies 

v(x,q) = x'K * * x + x'L m q 
* + B (q) • 

(ii) In state (x,q) the optimal strategy chooses the action: 

* -1 * * -1 * * a (x, q) = - S ( S + BB ' K B) B ' K ex - 8 ( s + SB ' K B) ( B • K •+- ~B • L ) m 
q 

* * * (where K and L are defined in len.a11a 5 .. 7 and H ( •) in 5. 12) • 

Proof. 

From the lemmas 5.6, 5.7 and 5.8 it follows that 

* v
00

(x,q) := 1:im 
n >oo 

V (x,q) n * * = x'K x + x'L xr. q + H {q), X ( X, q CW 

and also that, for x € x, q E W: 

v
00

(x,q) = ( Uv w) ( x , q) = c ( x , a ( x , q) ) 
* 1T 

+ SE [ v (Xl , r,,1 ) J , X ,q co )..: 
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* where 1' is the strategy that chooses in (x,q) action a (x,q) (defined above) .. 

* Since the process { (Xn ,~), n E: :N} is a Markov chain under 11' we find by 

iteration of(*): 

* 

Note t:.hat acoording to a simple dynamic progra1saoj ng arg1,ment v n (x ,q) s; v (x ,q) 

for all n t: B, since c is a nonnegative function. Bence 

* (:I() 

~ E"' [ l enc (X , a (X ,Q ) ) ] ~ V (x ,q) • 
x,q n-O n n n 

:Sere the second inequality follows from (**) since v
00 

(x,q) ~ O, 

(x,q) « X x W .. D 

The following theorem provides a bound for the extra costs we inc11r due to 

lack of info:r1ution about the pa.ramete.r value e € 0. 

Theorem 5 .1 O 

0 S: v(x,q) - v(x,8)q(d8) 
1 

- I I 

1 -
B {b (q} - • b (0) q (d0) } , (x ,q) e X x W 

(where b is defined in 5 .. 11 (b) ) .. 

Proof. 

By th. 3.16 we have v(x,q) ~ J v(x,8)q(d8). (Reotember that we are minimizing 

here.) Note that, by th. 5.9: 

0C) 

I . * XL :m + e 

since all posterior distributions are concentrated in e, if the prior dis-

tribution 
have 

v{x,q) -
00 

v(x,6)q(d8) = I 
n=O 

Note that b(q), satisfies 5.11 (a), with K and L 
n n 

respectively. Note that the matrix E, defined by 

* * we 

b(8)q(d0)} • 

* * replaced by K and L, 

* + B'L ) , 
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* is positive definite, since {S+BB'K B) is. Therefore E can be written as 

E = J'AJ, where J is an orthogonal matrix and A is a diagonal matrix with 

positive entries A1, ••• ,A on the diagonal. 
nl 

Hence 

m 'Exn q q 
-- J .. m c·)} 2 

l.J q J • 

And, by Schwarz's inequality, we find 

n 
nl 

E [ l 
q j=1 

Bence we have 

Note that 

* trace(L M) 
q 

and 

* trace(K E ) 
q 

Bence we find: 

nl 

I --
i=l 

nl 

I --
i=l 

nl 

A.1.E [ l 
l. q j=l 

n1 
* 

J .. m (j) • 
l.J q 

J .. m {j) }2 = 
1.J q 

m'Er' IJ • q q 

I L (i, j) m8 (i}m0 (j)q(d0) 
J j=l 

nl 

I * { K (i,j) 
J j=l 

• 

* * E [trace {L MQ ) ] = trace{L M ) 
q n q 

* * and E [trace {K i:Q ) ] = trace (K I: ) • 
q n q 

So we have 

E [b{Q )] S b(q) . q n . 

This proves the theorem. r 

Rerearks. 

(i; The linear system with (known) transition law given by: 
,.._, 

P(Dlx,a) = p{y,q)V{dy) I D € X 

{cx+Ba+ye:o} 
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and the same cost structure as in model 4 has the value function 

defined by: 

~ * v (x) := x' K x 
q 

* + x'L m q 

Hence, by th. 5.10, we have 

v(x,S)q{d8) ~ v(x,q) 

+ 
b (q) 
1 - f3 • 

,-.., 
s; V (X) • 

q 

r,J 

V (•) 
q 

' 

(ii) The optimal strategy we found in th. 5.9 is a Bayesian equivalent rule 

(iii) 

• 

(cf .. 4.4), since the action in state (x,q) EX x Wis the minimjzer 

of the function {cf. the proof of lemma 5.6) 

a-+ * * * * q(d6){a• (S + 8B'K B)a + (28x'C'K B + 2Sm6K B + Sm6L 'B)a} • 

Since m (i} = J m
6

(i)q(d8), m (i) is the Bayes estimate of m0 (i) when 
q q 

q is the prior distribution. Hence the optimal strategy we found in 

th. 5.9 can also be formulated as: at each moment use the Bayes esti­

ma.te for m
8 

in the fo1.mula for the optimal action instead of m6 , which 

should be used if e were known. In the linear system with known tran­

sition law, i.e. with 8 = {e}, it turns out that the optimal strategy 

is the same as if vis concentrated at m6 • In that situation we are 

dealing with a dete.ra1j_nistic system. This property, which we used in 

the proof of lemma 5.7, is called the certainty equivalent principle 

(cf. [Bertsekas (1976)]). We showed that in each state (x,q) we may 

act as if vis concentrated on m. 
q 

s. 3 A -6 i.mp.f.e .lnventoJty c.ontlr..ol modei. 

In this section we consider an inventory control model which in closely re­

lated to the model described in example 5.2: the main difference is that 

D(x) :/:, A for all x EX. Further we shall specify here the functions b, c 

and G of the example. The model we shall deal with is extensively studied 

by several authors: [Scarf (1959)], 

[Zacks and Fennel (1973)] and[Wal......u~~-. 

[Iglehart (1964)], [Rieder (1972)], 

(1976)]. Except for Zacks and FenneJ 

all these authors prove structural properties of the optj fl"'-:.2. ;::. era tegy under 

various conditions. Only Zacks and Fennel considered an easy-to-handle sub­

optimal strategy and they studied its behaviour using Monte Carlo methods. 

We also study a suboptimal strategy, namely a Bayesian equivalent rule, and 

we give bounds on the difference of its Bayesian total discounted return 

and the optimal value. Further we consider conditions under which this stra­

tegy is optimal. We start with a sketch of the model. 



Model SA: inventory aon-trol modeZ 

S.13 (i) X := A := (- 00,M], M > 0 is called the capacity. 

(ii) D(x) := [x,M], a is the inventory after ordering. 

(iii) P ({ a -y} I x, a,y) = 1, y represents the demand. 

<iv> Y = = { y € E. I y ~ o} • 

109 

(v) c(x,a) := hx+ + px- + k(a - x) where his the hoiding cost, p 

the penalty cost for shortage and k the pr,oduationaost; h,p,k > 0 

and k < 8 {k + p) • 

(It is easy to verify that, if k ~ S (k + p) never ordering is opt:imal.) 

We shall compare this model with model SB. 

Model SB. 

5.14 D(x) := [O,M] • 

Further all specifications as in 5.13. 

It is easy to verify that all assumptions of example 5.2 are fulfilled. The 

optimal action in (x,q) for model SB is the minimizer in [O,M] of: 

5.15 a+ [ka + f3 {h (a - y) + + p (a - y) - - k (a - y) }p (y ,q) V (dy)} J • 

We shall deter111ine the minimizer. The te1:m between braces equals 

5.16 {k- S (p +k) }a +m S {p +k) + B (h +p) (a -y)p(y,q)'V (dy) 
q 

where 

5.17 yp (y ,q) v (dy) • 

It is easy to verify that 

f (a) := (a - y) p (y ,q) \) (dy) = 

[0,a] 

[O,a] 

0 

a 

du{ p (y ,q) v (dy) } • 

[O,u] 

Hence the function f is continuous and f (~(a+ b)) s ',{£ (a) + f (b)}. There­

fore f is convex. So 5. 16 has a minim11m in 

5 .18 (a) -s (q} := inf{a E lR I p (y ,q) "(dy) ~ 
p - 1 - 8 k 

f3 } • 
p + h 

[0,a] 
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,-o,J 

According to 5.13 (v) there always is minimum of 5.16. Note that q + s(q), 

q E: W is measurable. 

Consequently 

5.18 (b) s (q) := min{M,s (q)}, q E W 

is a minimizer of S.16 in the set [o·,M]. 

' 

It is well known that for the inventory control model SA with known parame-

ter value e, the strategy: 

''oPde:r upto "level s (6) each pePiod or wait if the invento:r>y is Z.arge:r than s (9) '' 

is opt-.:lmal (cf. [Iglehart (1964) ]) • 

To define a Bayesian equivalent rule for mod~l. SA, define the function F by: 

F(x,6,a) := ka + {h(a -y) + + p(a -y)- - k(a. -y) }p(yf S}v (dy} • 

Bence, in state (x,q) €Xx W this Bayesian equivalent rule chooses a mini­

mizer of a ➔ J q(d8}F(x,6,a) on the set [x,M]: 

S.18 (c) the Bayesian equivalent rule chooses the action a(x,q), 

a(x,q) = max{x,s(q)} in state (x,q} ~Xx w. 

We proceed with a definition: 

5.19 Let v be the value function of model SA, w the value function of model 

SB and let v be the Bayesian discounted total costs under the Bayesian 

equivalent rule defined in 5.18 (c). 

Note that the Bayesian equivalent rule 5.18 (c) defines a Bayesian stationa­

ry strategy for model SA and also for model SB. Note also that the Bayesian 

discounted total costs for both models is the same under this strategy, name­

ly v(x,q), if (x,q) c Xx Wis the starting state. 

There is an optimal strategy for model SA of the fo1.m ''ahoose the action 
• 

max{x,t (q)} in state (x,q) '', where t : W + A is a measurable function such that: 

5.20 t(q) is a minimizer of 

a -+ ka + S 

on the set [0,M]. 

v(a-y,T (q})p(y,q)v(dy)} 
y 

This is proved in [Rieder (1972), th. 7.2 and th. 7.3] under the additional 

assumption that e -+ m8 is bounded. For practical p1Jrposes this result is 

only interesting if the value function v is known. I,emm,a 5. 11 shows that 

• 
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t(q) S s(q) for q E w, which is intuitively clear, since if it is not al­

lowed to reduce the inventory, you will order more carefully. 

Lemma 5.11 

Lett: W ➔ Abe measurable such that t(q) satisfies 5.20 for q E w. Then 

s(q) ~ t(q), for q l w. 

Proof. 

Define 

f(x,q) := v(x,q) - {hx+ + px- - kx}, (x,q) EX x W. 

From the optimality equation, v = uv, for model SA it follows that 

f(x,q) = inf {ka + B 
xSaSM 

V (a - y ,T (q)) p (y ,q) V (dy)} • 
y 

Bence x + f(x,q) is nondecreasing for all q E w. By (*) we have: 

f (x ,q) = inf [ka + S {h (a - y) + + p (a - y) - - k (a - y) }p (y ,q) v (dy) + 
x~a<M 

+ B f (a -y,T (q) )p(y,q)v (dy)] • 
y 

Remember that the function (cf. 5.15) 

a-+ ka + S {h (a - y) + + p (a - y) - - k (a - y) }p (y ,q) v (dy) 

is convex and attains a minim11m in [O ,M] {cf. 5 .18 (a)) • 

The last term of (**) is a nondecreasing function of a, since x ➔ f(x,q) 

is nondecreasing, for all q E w. Hence a minimizer t(q) of 

a ➔ ka+S v(a-y,T (q))p(y,q)V{dy) y 

in the set a€ [0,M] must satisfy t(q) s s(q), q E w. □ 

In th. 5.12 we give bounds for tr.Le difference v -w (cf. 5 .. 19). This diffe­

rence is an upper bound for v - v, the loss due to controlling the system 

with the Bayesian equivalent rule. The bounds are derived by comparing two 

strategies for model SB. We compare the optimal strategy for this model, 
,,...., 

where A = s(Q) for all n ~ :N, with the strategy where A = max{x,~(Q )}, 
n n n n 

the Bayesian equivalent rule defined in 5.18 (c). Note that the production 

costs at time n for these two strategies, differ if s(Q 1) - Y - s(Q) > O. 
n- n n 
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Theorem 5.12 

The functions v, wand v defined in 5.19, satisfy the following inequali­

ties: 

(i) w (x,q) S v (x,q) S: v (x,q), (x,q) E X x w • 

• 

0) 

+ I 
n=1 q n- n n 

Proof. 
• 

(i) Note that for model SB the lower bound for the action space is not es-
,.., 

sential, since s(q) > 0 (see 5.18 {a)). Hence it is obvious that 

w{x,q) s v(x,q). The right-hand side of the inequality is trivial. 

(ii) Let Xn denote the inventory at time n when the action at time n 
,..,, -

A := max{s(Q ),X} is used, and X the inventory if A := s(Q) is n n n n n n ...., 
used. F,1rther let x 0 = x0 = x. Since Xn+l = An - Yn+l and 
,...,, - ,..,, 
Xn+l = An - Yn+i it is easily verified that: xn s xn, n E :N. :t.et 

Sn:= s(Qn)' n EN, and consider the difference in immediate costs at 

time n: 

+ -+ - ,..,,_ ,.._, 
h (X - X ) + p (X - X ) - k (X - X ) + k (max{ X , S } - S ) S nn nn nn nn n 

h (X --X ) + 
n n 

,..,, 
k (max { X - S , 0} - X + X ) , n E :N , 

n n n n 

- • ..-r 

since X s X for n E :N. We consider the term with coefficient k first. n n 
We establish: 

k (max{x - s ,o} n n 
,..,, + 

- X + X ) S k (S l - S - Y ) , n n n n- n n • 

To prove (**), let X > S • Then (**) holds, since n n 
And if X S S , we get max{X -S ,O} - X +X S 0, n n n n n n 
For n = 0 we have 

,..., 
- X + X ) 0 0 

+ = k (x - s (q) ) • 

Hence if h = 0: 

00 

v{x,q) - w(x,q) s k{(x-s(q))++}: 
n=1 

,..., 
X = S n n-1 - y • 

n 
and so {**) holds. 



,,...,, 
For h > 0 we consider h (Xn - Xn), n E :N. 

Note that x
0 

-= X 
0 

= x and 

-X 1 - X 1 = max{ x , s ( q) } - Y - s(q) + Y = {x - s(q)}+. 
1 1 

We shall prove 

(***) X 
n 

,.._, 

- X n 
~ {x - s(q)}+ + 

(an empty s11m vanishes) • 

n-1 
I 

k=l 
n E 

* 
N 

We already verified (***} for n = 1. Assi,J:ne it holds for n. Consider: 

- y - s + y = 
n+l n n+1 

(X - S } + • 
n n 

By the induction hypothesis: 

Hence 

n-1 
X :S X 

n n + {x - + I 
k=1 

= {x - s{q)}+ + 
n-1 

I 

(X -

k=l 

n 
s {x - s(q)}+ + I 

+ - y - s } + s - y 
k k n-1 n 

n 
k=1 

which proves (***). 

Now we add the upperbounds for the differences in holding costs: 

00 

• 
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h I 8n(X -X) :Sh 
n n 

s { + 
1 _ S x - s (q)} + h 

co n-1 
l Bn l { S - Y - S } + == 

n=l k=l k-1 k k n=l 

-- hS + 
a {x - s (q) } 

1 - S 

00 

+ h I 
k=l 

hl3 
l - 13 

00 

I 
k=l 

00 

l 
n=k+l 

which accounts for the term with h in the right-hand side of {ii). 0 
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Corollary 5.13 

If for all q ~ W: 

s.21 p{y,q)V(dy) = 1 

• 

then, for x s s(q), we have v{x,q) = w(x,q) and therefore the Bayesian 

equivalent rule (defined in 5.18 (c)) is optimal. 

E"ample 5.3 

We define (cf. 5.18 (a)}: 
• 

...., 
s i := inf 
m n 0E6 

s (8) , s max := sup 
8E0 

s (0) and o := s 
max - s . 

Since 

[O,s ] 
max 

for all e E 8, we have 

~ s max 

p-1-13k 
a 

p + h 
[0,s i) m n 

for all q E W. 

p(yl 0)v (dy) 

Note that s{q) = min{s{q),M} for q E W. Further note that 

s.22 

Bence 

min 

+ 
E [ { s ( Q ! ) - s ( Q ) - Y } ] S Eq[ p ( y, Qn- l } V ( dy) ] = q n- n n 

[O,o] 

-- p (y ,q) V (dy) • 

[O,o] 

Therefore we have by th. 5.12 

v(x,q) - w(x,q) 

[O,c] 

• 

Hence, if x s s (q) and f p (yl 6) v {dy)-= 0 for all e e: 0, then the Bayes­
[O, o] 

ian equivalent rule is optimal. 
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Remarks. 

(i) The statement of corollary 5.13 is not new. In [Veinott (1965), sec­

tion 6] a simjlar condition is considered for a multi-product inven­

tory model with dependent demand, to prove an analogous statement. 

In [Rieder (1972)] Veinott's result has been translated to the Bayes­

ian inventory model. However, the inequality of th. 5.12 (ii) seems 

to be new. 

(ii} For the problem with known parameter, i.e. when q E Wis degenerate 

ate E 0, all posterior distributions are degenerate ate and there­

fore 5.21 holds. So we actually proved the optimality of the rule: 

''order up to level s (0) at each stage'' for this situation. 

(iii) Condition for lenaoa 5.13 can be weakened by requiring 5.21 only for 

(iv) 

all possible posterior distributions of a given q 

In [van Hee (1976)] a different proof of th. 5.12 

€ w. 
• • is given. 

We conclude this section with an extensive study of the behaviour of the 

Bayesian equivalent rule (5.18 (c)) for the inventory model with exponen­

tially distributed demand, where we assume the parameter of the demand dis­

tribution to have a ga11rma prior distribution. We shall compute the bound 

given in th. 5.12 {ii). 

we also consider an upper boW1d for the relative error if we use the Bayes­

ian equivalent rule (5.18 (c)) instead of an optimal rule. This reZative 

el":r-'OP is defined by: 

5.23 {v(O,q) - v(O,q)}/v(O,q) • 

Remember that model SB satisfies all assumptions of example 5.2, and note 

that we are minimizing now. • 

Hence (cf. e~ample 5.2) we have 

1 
w(O,q) ~ l _ 

...., 
q(d0)e(0) 

where 

5.24 
...., 
e {8) := min [ka + S + - I {h (a - y) + p {a -y) - k (a - y) }p (y e) \) (dy) J • 

aeA 

Note that v(O,q) ~ w(O,q). Therefore we have the following upper bound for 

5. 23 (cf. th. 5 .. 12 (ii)) : 
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5.25 

00 

h +k) I 8~ [{s(Q 1 ) -
q n-n=1 6(S,k,h,p,q) := _______ ;._ _______________ _ 

1 
1-8 

-q(d6)e(0) 

- -

• 

we first give, in le1nma 5.14, conditions guaranteeing that 

P -a.s. Under these conditions we have, by 5.22 

lim s { Q ) = s ( Z) 
n 

q 

5.26 lim 6(8,k,O,p,q) = 0 
Stl 

since 

lim 
~+1 

00 

(1-S) l 
n=l 

~ = lim E [ {s (~-l) - Yn 
n>co q . 

n ►oo 

--

0 • 

Hence the relative error (cf. 5.23) tends to zero in this case. 

1.emma 5.14 

Let for all e E 8, the function a~ f p(y)B)v(dy) be continuous and 
[O,a] - ,...,, 

(strictly) increasing in a neighbourhood (s (0) - ~, s (6) + o) for o > 0 {cf. 

5 • 18 (a) • Then 

- ,...,, lim s(Q) = s(Z), P -a.s. 
n➔~ n q 

for all q E W • 

Proof. 

Define for q E Wand a€ JR, F (a) := f p{y,q)v(dy). Note that 
q [0,a] 

• 

all e € 0 the func-

tion a~ F (a) is continuous for all q e w. 
q 

According to th. 2.4 we have for each function a ➔ F8 (a) a set na € H such 

that P [n J = 1 and q a 

(*) 

* Let R be the set of rational nim.bers in JR. Define n := n n • Note that 
a 

* p [S1 J = 1. 

Q * Fix w € S1 • 

Let 1 :== (p - --
-1 + h) • Then 
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l"V 

Hence 

Therefore we have,for n sufficiently large 

Hence 

,.._, 

a 1 ~ s(Qn(w)) $ a 2 • 

...., ,..,, 
lim s (Q (w) ) = s (Z (w) ) • 

n n) 

Example 5.4 Exponential de.ma:nd, gamr1a prior distribution 

In this example we consider the inventory control model (model SA), with 

0 

an exponential demand distribution and a gamma distribution for the unkno~n 

parameter of the demand distribution. 

Let p(yle) := 8e-0Y, y := 8 := (0, 00 ) and let q = f(A,N), where 

f (;\ ,N) (B) := 

B 

for a Borel subset B of JR. It is easy to verify that 

p(y,q) = and 

a 

p(y,q)dy = 1 - { A 
0 

Let 

5.27 
-1 -1 

c := (p+h){h+(l-S)S k} • 

Then the * minimizer a of 5.15 • 
l.S a * = A (cl /N - 1 ) • So we have here 

5.28 for q = f(A,N) • 

Further we consider the posterior distribution 

ward to verify that 

T (q) .. 
y 

5.29 T (q) = f ( A + y ,N + 1) 
y 

if q = f(A,N) • 

It is straightfor-

Therefore the posterior distribution after n observations is 

5.30 Q = r (A + 
n 

n 
I 

i=1 
y • I 

l.. 
N + n) • 
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Bence, using 5.28 we find: 

1 1 1 
n 

5.31 {)._ + l Y }{cN+n _ 
i 

Y N+n+l 
- n+1° • 

i=1 

For a fixed e € 0 we compute, for positive constants a and b: 

• 

5.32 y + b - y }+] 
i n+l 

an 
=-a-+b-

-Sb 
1 + e 
8 ----

e (a+ 1) n 

n 
(remember here that, given 6, Y. 

J. 

is rce,n)-distributed). 

is exponentially distributed and l Yi 
i=1 

Now we integrate both t~:x:ms in 5.32 over 6, _with respect to the r {A ,N) -dis­

tribution: 

5.33 E [{a 
q 

n 
I 

i=l 

+ A A 1 1 

N-1 

Finally we substitute for a and b the appropriate values (cf. 5.31). Hence 

5.34 E c{scQ) - s<Q +l> -q n n 

1 
A { N+n = " 1, (n + N - 1 ) C -

N -

According to 5.22 we have 

5.35 

1 

(n + N) CN+n+l 

2(n + N) - 1 
(n+N) (n-f-N+l} } + C • 

with equality if M = ~ (Mis the capacity cf. 5.13). 

Note that the minim11m in 5. 24 is nonincreasing if M tends to infinity. 

Bence t(S,k,h,p,q) is nondecreasing if M tends to infinity. Therefore we 

shall assume M = ~. 
It is easy to verify that: 

5.36 

Integration with respect to q = r(A,N) yields: 

5.37 + Sh (log c - 1) + 6k} • 

Finally !::,.{S,k,h,p,q) is determined by 5.34 and 5.36. 

In the table below we display 6(S,k,h,p,r(1,N)) for various pararnP.ter va­

lues. We also display the upperbound of th. 5.12 (ii): 
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00 

5.38 B(B,k,h,p,q) h +k} l 
n=l 

B~ [ { s (Q 
1

) - Y - s (Q ) } +], 
q n- n n 

q = r ( 1,N) • 

Remember that M =~and A= 1 in the table. 

a k h p N C B ( 6, k, h, p,rc 1 ,N) ) ~(S,k,h,p,f(l,N)) in% 
.. 

0 .. 90 10 0 2 5 1.8 2.22 8 

0.90 10 0 2 15 1 .. 8 0.33 4 
' 

0.90 10 0 10 5 9 10.39 34 

0.90 10 2 10 5 3.8 15.89 46 

0.90 10 2 10 15 3.8 2.21 22 

0.95 10 0 1 5 1.9 3.79 7 

0.95 10 2 1 5 1.2 4.61 9 

0.95 10 2 5 15 2.8 4.76 26 

0.95 100 2 10 5 1 .. 6 40.29 8 

0.95 100 2 10 15 1 .. 6 6.56 4 

0.99 10 0 1 5 9.9 31.85 12 

0.99 10 0 10 15 99.0 12.54 16 

0.99 10 2 5 15 3.3 60.28 67 

0.99 100 1 2 5 1. 4 95.22 4 

0.99 100 1 5 5 2.9 274.41 10 

0.999 10 0 1 5 99.9 130.83 5 

0.999 10 0 2 5 199.8 157.38 6 

0.999 10 0 5 5 499.5 196.55 7 
• 

' -·- .. -- .. 
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6. AppnownM..loM 

In this chapter we give several approximations to the value function of the 

Bayesian control model (cf. 2.12). Special attention is paid to the situa-

tion where there is only one unknown parameter, i.e. 

ton for all indices i EI except one. In section 6.1 

where 0. is a single-
1 

we consider upper and 

lower bounds on the value function and their use in successive approxima­

tions. These approximations are computable when x, Y, A and 0 are finite. 

In chapter 7 we shall consider algorithms based on these approximations. 

In section 6.1 we also give a lower bound on the Bayesian discounted total 

return when a certain Bayesian equivalent rule is used and we also consider 

another easy-to-handle Bayesian Markov policy. Since in practice the set 0 

is seldom finite, we study the consequences of approximating of 0 by a fi­

nite subset in section 6 .. 2. Throughout this chapter we asst1me that r is 

bowided and I finite. 

6.1 Bound-6 on .:the va.t'.tLe 6u.nction and -0uc.c.u-0.lve appMx.hna.tlon6 

The bounds we consider require the knowledge of the value function of the 

dynamjc program with known parameter value e for all a€ 0 and of the ex­

pected discounted total return under several stationary strategies, also 

for all 8 E 9. First we introduce some notations: 
...., 

6.1 (i) Fis the set of Bayesian Markov policies (cf. 3.10). 
,..,, 

(ii) Fis the set of Markov policies (cf. 3.9 and note that F c F) • 

We identify each Bayesian Markov policy with the Bayesian stationary stra-
-tegy which is determined by it (hence we write v(x,q,f), f c F). An impor-

-tant role is played by a subset F of F satisfying: 

6.2 inf sup {v(x,8) - v(x,8,f)} = 0 for all e E 0. -fEF XEX 

we shall ass11me that such a set F is given and that v (x, e, f) is known for 

all x Ex, 6 E 0 and f E F. Note that, if there exists for all e € 8 a 

fe E F that is optimal for all x ~ X for the dynamic program with known pa­

rameter value e, then the set {£ 8 , e E 9} satisfies 6.2 • 
...., 

For each f E F we define the (non-linear) operator Lf on the set of bounded 

measurable functions b on Xx Was follows: 



122 

6.3 (i) 

(ii) 

·- \ .- l 

+ f3 

1K {x,f(x,q)) 
i 

\J (dy)p. {y,q){r(x,f(x,q) ,y) + 
l. 

P(dx'lx,f(x,q),y)b(x',T
1 

(q))} • ,y 

* 0 is the n~th iterate of Lf, n € ::N and L~ := b. 

Note that sup Lt1' = Ub for each boun·ded measurable function b on X x W (cf. 
fe'r ,.._, 

the remark followi.ng 3 .10). We further note that, for f E F 

lim .J.J) (x,q) = v(x,q,f) • 
ll >00 

Although this is 

th. 3.14 (iii) if 

easily proved directly, it is an i1nmediate consequence of 
• 

we consider the model with D(x,q) = {f (x,q)}, x,q e: Xx w. 
For f e F and e EB 6.3 (i) reduces to 

(L~) cx,e > = l 
iEI 

+S 

1K. (x, f (x) ) 
l. 

P(dx'lx,f(x),y)b(x',6)} 

which is the usual return operator for the discounted dynamic program with 

known transition law (cf. [Blackwell (1965)]). 

On Xx W we define two functions: 

6.4 (i) w (x, q) : = q ( d6 ) v (x, 8) • 

(ii) i(x,q) := sup q(d8)v(x,0,f) • -fe:F 

Note that R. 

* for n e: E , 

-depends on the choice of the aubset F of F. Further we define 

6.5 

8 e 0 and f e: F: 

, 

:= sup {v(x,8) -
X 

q> 00 ( 6 t f) : = SUp { V ( X 1 0 ) - V (X 1 6 1 f) } • 
X 

Note that, if Xis finite, lim ~ (6,f) = ~
00

(9,f) since 
n>oo n 

lim 



Theorem 6.1 

For x e: X, q e: W , 1r E II and n e: we have: 

(i) 

(ii) 

(iii) 

Proof. 

9.. (x, q) :s; v (x, q) 

'IT 
E 

x,q 1 - i3 fe.F 

w (x,q). 

1 -S fe:F 

is nonincreasing inn and if 

P 1r [ n n { }] T (i I n) < CX) = 1 
x,q iEI n~* 

then it tends to zero. 

In th. 3ol6 we proved v(x,q) ~ w(x,q). Further we have 

9., {x ,q) = sup -fEF 
q(d6)v(x,8,f) = sup v(x,q,f) $ v(x,q) • 

fE~ 

* We proceed with assertion (ii). Note that for NE ::N 

00 

v(x,8) - v(x,8,f) = l 
k=O 

kN 
{ (Lf v) (x,6) -

123 

since lim (L;v) (x,8) = v(x,0,f). For bounded measurable functions band c 
n· )00 

on Xx 8 we find in a familiar way (cf. [Denardo {1967), th. 1]) 

sup 
X 

and therefore 

sup 
X 

kN 
{ {Lf v) ex, e) 

consequently, using (*), we find: 

v(x,8) - v{x,6,f) $ 

Note that, for N = 00 (**) also holds. 

sup {b(x,8) - c(x,0)} 
X 
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By 6.4 we have 

w(x,q) - i(x,q) s inf - q(d0){v(x,0) - v(x,0,f)} 
fEF 

and so, using(**) we find the desired result. 

We proceed with assertion (iii). 
• 

E,r [inf 
x,q fe:F n- feF x,q 

I F ]= n-1 

= inf -fe:F 

1T 
Q l ( d 0 ) q>N ( 6 , f) , J? - a. s • (cf . th • 2 • 1 ) • n- x,q 

Hence the sequence {in! J Qn(d6)q>N(0,f) I n ~ N} is a super martingale, 
fEF 

which establishes the first part of (iii) and the existence of 

lim inf -ll ➔ c:., fE F 

* Ass,1me that -r (i ,n) < 00 for all n e N 
1T 

and i E I , JP -a .. s • 
x,q 

From(**) it follows that ~N(S,f) ~ 0 and from corollary 2.5 that 

lim 
n >00 

1T 
Hence we haveP -a.s.: 

x,q 

0 slim inf -n >00 fEF 

Note that: 

1T 
cpN(Z,f), P -a.s. 

x,q 

~ inf lim -fEF n > oc 
= inf -fEF 

-~ v (x, 8, f) , x € X, 8 e: 0 and f e: F. 

Hence: 

o s in! cp N Ca , f) 
feF 

Therefore we have 

lim 
n~ 

inf -fe:F 

~ inf sup {v(x,9) - v(x,8,f)} = 0 (cf. 6.2) • -fEF X 

1T 
JP -a.s. x,q 

Since (8~f) ~ q>N(0,f) is bounded, the dominated convergence theorem yields 

the desired result. □ 
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Remark .. 

The bound given in th. 6.1 (ii) has significance only, if either ~N(6,f) it-
-self, or an approximation of it, is known fore E 0 and f E F. 

If v(x,0) is computed for all x Ex and e € 8, and if optimal Markov poli­

cies f 6 e: F, a E 9 are deter1r1i ned, then it requires more work to compute 

v(x,0',fe) than to compute (Lf v) (x,0') 
e 

sup { v (x,6) 
X 

for x EX, 6,8' E 0. However, 

sup {v(x,0) - (Lfv) (x,8)} 
X 

(cf. (**) in the proof of th. 6.1). So for more work we get a better bound. 

In th. 6.2 we consider successive approximations of the value function. 

Theorem 6.2 

For XE x, q E. w 

(i) 
n n (U R,) (x,q) ~ v(x,q) :s: (U w) (x,q) • 

(ii) {~w) {x,q) is nonincreasing and (~i) (x,q) is nondecreasing inn. 

Proof. 

Part (i) is a direct consequence of th. 6.1 (i) since u is monotone. To 

prove part (ii) it suffices to show UW ~wand ut 2 £. Using 

and 6.4 (i) we find 

(Uw) (x ,q) = sup 
aeD(x) 

q(d8) l 
iE:I 

+S P(dx' lx,a,y)v(x' ,e)} :s: q(d0)v(x,0) =w(x,q) 

where the inequality follows from exchanging sup and J q(ci8), and the op­
aED(x} 

timality equation of the dynamic program with known parameter value, 

V (X, 6 ) = (UV) (X , 0 ) • Using 

we find 

v(x',T. (q) ,f) = 
l., y 

Ti (q) (d8)v(x' ,8,f) ,y 

• i.e. 
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(Ui) (x,q) = sup 
ae D(x) 

v (dy)p1 (y,q){r(x,a,y) + 

+ 13 P(dx'lx,a,y)supv(x',T
1 

(q),f)} ~ 
fe:F ,y 

sue sup 
feF aED(x) 

q (de> l 
ieI 

+ a P C dx • I x, a, y} v (x' , e , f) } 

v (dy) p. (yj e . ) { r (x ,a ,y) + 
J. l. 

sup v(x,q,f} = t(x,q) • 
fE:F 

D 

In th. 6.3 we consider for each E > 0 a Bayesian stationary strategy, which 

is easy to handle, and which is (nearly} as good as all stationary strate-
-gies in 

unknown 

,:(i,n) < 

F. Moreover the strategy processes new information concerning the 

parameter in the following sence. If, under the strategy f, 
f * co, P -a.s. for all i e: I and n e: :N , then we have x,q 

f 
lim supE [v (X ,Q ) 

x,q n n 

Theorem 6.3 

- v(X ,Q ,f)] ~ n n 
E 

1 - a · 

Fix e > 0 and let f be a Bayesian Markov policy such that for (x,q) e Xx W 

Then 

v(x,q,f) 

and if Pf [ n 
x,q iE:I 

e 
~ R.(x,q) - 1 - S 

< 00}] = 1, then 

f lim supE [{v (X ,Q } 
x,q n n n >00 

Proof. 

Let 1 be the function on Xx W which is identically equal. to one. By the 

proof of th. 6.2 (ii): 

Lft ~ U! - el~ t - el • 

Assi1me: 
1 - an 

Jl - E{l + 
n 

6 ( 1 - S ) }1 = t -
1 - 13 

1 - an+1 
€( 1 - S )l. 
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Hence, if we let n tend to infinity, we get: 

v(x,q,f) = lim 
~ 

This proves the first statement. 

The second statement is a consequence of th. 6.1 (iii), since 

v(X ,Q) - v(X ,Q ,f) S w(X ,Q) - i(X ,Q) + nn nn nn nn 

£ + -1--- s inf 
- B - -fE:F 

For the Bayesian equivalent rule considered in section 4.1 (cf. 4.3a) we 

give in th. 6.4 a lower bound on its Bayesian discounted total return. 

Hence we consider in th. 6.4 a Bayesian Markov policy such that 

+ 

q(d6) l lK (x,a) 
ieI i 

P(dx'jx,a,y)v(x',6)} 

is maximized within an e:-bound. 

The strategy is ''adaptive '1 in the same sence as the strategy in th. 6. 3. 

Theorem 6.4 

D 

Let £ > 0 and let f be a Bayesian Markov policy such that, for (x,q) e: X >< W: 

Then f is a Bayesian equivalent rule as considered above, and 

If Pf [ n 
x,q ie:I 

Proof. 

1 
v(x,q,f) ~ w(x,q) - 1 _ 

n {T(i,n) < ~}J = 1, 
nm* 

then 

f 
Jjm supE [{v(X ,Q ) 

x,q n n 
- v(X ,Q ,f)}] S 

n n n )00 

+ e:} • 

E 

1 - a · 

To verify that f is a Bayesian equivalent rule as considered above note that 

q(d6) l 
ie:I 

V ( dy) p. (y I e . ) { r (x, a, y) + 
l. l. 
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We have 

+ B P ( dx ' I x, a , y) v ( x ' ,8 ) } • 

f 
JP -a.s.: x,q 

(Lfw) (X ,Q ) n n 

~ (cf. 3 .1 (e) for the definition of r) • Hence: 

CX) 00 

f n~ 

I X ,Q J n n 

00 

E [ l B r (X ,Q ,A ) J 
x,q n=O n n n x,q n=O n n 

And therefore, by the definition off we have: 

00 

v(x,q,f) =w(x,q) 
x,q n=O n n 

00 

~ w (x,q) +Ef [ 2 Sn{ (Uw} {X ,Q ) 
x,q n=O n n 

Since 

- w{X ,Q )}] 2: n n 

(OW) (x,q) = sup 
fE:t:' 

(Lfv) (x,e )q (d8), (x,q) E X x W , 

we have: 

(ow)· {x,q) - w (x ,q) ~ sup - -ft:::F 

~ -inf - -fE:F 

And therefore: 

q(d8){ (L_v) (x,0) 
f 

-q (d8) cpl (0 , f) • 

- V {X, 0)} ~ 

-f E [ (Uw) (X ,Q ) - w (X ,Q ) ] ;?!; x,q n n n n 
Q (d6) rD. (0, f) ] ~ 

n 1 

-inf Ef [ 
- - x,q 
fE:F 

-inf - - q(d0) q,
1 

(0 ,f) . 

Combination of (*) and (**) yields the first sta~ement. 

To prove the second statement assume that T(i,n) < 

by the first statement: 

f 
00 , F -a. s. x,q 

tJote that, 

v(X ,Q) - v(X ,Q ,f) ~ w(X ,Q) - v(X ,Q ,f) $ n n n n n n n n 

feF 

Bence the desired result follows from th. 6.1 (iii). 0 
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Note that, by th. 6.1 {ii), 

1 
w{x,q) - 1 _ 
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-q (d0) q:i
1 

(8 ,f) s Q, (x ,q) • 

Hence the lowerbound on v(x,q,f) in th. 6.4 is not better than the lower­

bound we found for the strategy in th. 6.3. 

In practise, when we are dealing with finite sets X, Y and A we often have 

to approximate the value function v. Th. 6.2 gives us the opportunity to 

do this as accurately as we like. However it is impossible to compute, for 

example, ctfw) (x,g) for all (x,q) EX x w, since Wis not finite. Neverthe-
N 

less it is possible to compute (U w) (x,q) for a fixed q € w, since the num-

ber of possible posterior distributions after N transitions is finite. 

Hence we have to deteLmine a horizon NE N such that 

where E > 0 is the maximal allowed error in the approximation for v(x,q). 

Then we compute~{ (UNw) (x,q) + (~t) (x,q)}, which is an acceptable approxi­

mation for v(x,q) (cf. th. 6.2). To deteLznjne N we have to compute first 

(tflw) (x,q) - (Unt) (x,q) for n = n 0 ,n0 + 1, ••• ,N, where n
0 

is a lowerbound 

on the horizon. In general the horizon determination in this way is very 

time cons11mi.ng compared to the backward induction to compute 

itf{12 {w + .l) }) (x,q), another acceptable approximation of v(x,q). To see this, 

we note that in general the sets Wn (q) and Wm (q) of possible posterior dis­

tributions of q after n and m transitions, respectively, are disjoint if 

m ~ n (cf. the remarks at the end of this section). 

Hence, to compute cu¾) (x ,q). for some bounded measurable function b on X x w, 
,..., ,.._, 

we first have to compute (Ub) (x,q) for x EX and all q E W 
1

(q) and after­
n-

wards (Ub) (x,q) for x EX and q E Wn_
2

(q) etc. So we have computed, toge-

ther with (U~) (x,q), the set of values 

n-1 
u 

m=l 
IX€ x, q € w (q) } • 

n-m 

However, to compute n+1 
(U b) (x,q), we need the values: 
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n 
U { (U~) (x,q) ) x E X, q E W l (q) } 

n+ -m 
m=l 

and since Wn+l-m(q) 

computed values for 

n W (q) =~in general, we cannot use the 
n-m 

the computation of (Unb) (x,q), to determine 

(We return to this matter in the next chapter.) 

already 
n+l 

(U b) (x,q) • 

It will be clear that it would be nice to have a simpler method to dete:cmine 

a suitable horizon. Indeed such a procedure exists when we are dealing with 

the simple parameter structure that we introduce below. 

Assumption on the parameter structure 

6.6 Let I:= {1,2, ..• ,t} and let 0. be a singleton for i = 2, ••• ,t. Fur­
l. 

ther let {L1 ,L2} be a measurable partition of X and let K1 := L1 x A. 

The models 4 and 5, considered in chapter 5, satisfy 6.6 in a trivial way: 

there we have L 
2 

= 0. In chapter 7 we consider other models satisfying 6.6 

(cf. examples 7.4 and 7.5). In the rest of this section we assume that 6.6 

holds. 

Note that for states x i:: L2 the transition law is completely known and for 

x E L1 it is incompletely known but the chosen action does not influence 

the kind of info.c:mation we get after the transition. It is easy to verify 

that: q = ® 

all i ~ 2. it:: I 

q. for all q € w, in this situation, since q. ({0.}) = 1 for 
J. 1 1 

consider the stopping time a 

6.7 

We shall use the optimal reward operator u
0 

(cf .. section 3.2) .. Let x E L 2 
and let b be a bounded measurable function on Xx w .. Recall: 

cr-1 
= sup En [ l 

rrEII x,q n=O 
0 

n S r (X ,A , Y 
1

) 
n n n+ + S0 b(X ,Q )] • a a 

Next we discuss a nice property of this operator. 

0£ the first term does 

u (X ,A ) € n n 
2~i::;;t 

not depend on q 

K. for n < cr. Hence the expectation 
J. 

E W (however, it does depend on the 

known parameter values e2 , ••. ,8t). Further we note that 
' 
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6.8 

(cf. 2.17 for the definition of 't). Hence, if x
0 

€ L
2 

then Q
0 

= Q
0 

= q, and 

therefore we may write: 

6.9 (U b) (x ,q) a 
n 

S r {X ,A , Y 
1

) 
n n n+ 

since the expectation does not depend on q. 

The computation of {U0 b).(x,q) for x E L 2 is an ordinary dynamic programming 

problem which is feasible if X, Y and A are finite (this will be clarified 

in chapter 7). 

In th. 6. 5 we assiiroe that the function b on X x W is an approximation of v, 

such that 

lvcx,q) - b(x,q)! $ E(q), XE x, q € w. 

First we introduce some notations: 

6.10 (i) For q €Wand y 1 , ••• ,yn € Y we define the probability 

X (y1 , ••• ,y) on 9 by q n 

X (y1 , ••• , y ) {B) : = q n 

n 
rr 

n 
II 

B 
j==1 e j=l 

if the denominator is positive; 

: = q (B) otherwise (B € T) • 

(ii) E (q,E ,n) := q(d6){ • • • 

n 
• n 

j=1 

where Eis a real-valued, bounded measurable function on w. 

It is easy to verify that, 

T(1,n) = n for all n * € N , 

if L 2 =~then E(q,E,n) = E [£(Q )] since q n 
in this situation (note that here the expecta-

tion is independent of the starting state and the strategy). 

inf -
fE:F 

q(d6)sup {v(x,8) - v(x,9,f)}; 
X€Ll 
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(ii) 

Theorem 6 .. 5 

{i) Let b be a bounded measurable function on Xx Wand let c be a bounded 

nonnegative measurable function on W such that for x ~ L1 and q E W: 

6.12 

6.13 

lvcx,q) - b(x,q) I ~ e::(q) • 

* Then, £or x e X, q e W, n € N: 

Iv {x,q) - , ... ~ > ex ,q> l 
CJ 

n 
S S E(q,e:,n) 

n-1 
S (3 E(q,E,n-1) 

-(ii) In particular the functions bk and Ek (cf. 6.11) fork E :N satisfy 

6.12 and E(q,ck,n) is nonincreasing inn with lim E(q,ek,n) = 0, for 
n >co 

q € w. 

Proof. 

...... 
Part (i). Define the operator 

X X w by: 

u 
0 

on the bounded measurable functions on 

(UO'f) (x,q) := 

Note that this is an optimal reward operator of the kind we studied in sec-

tion 3.2, for the model with r identically zero. We * define e: (x,q) 

x e X, q e: w. Using corollary 3.13 and th. 3.14 (ii), we find: 

v = Unv = u v 
(J (J 

n 
* s; u (b + E ) 

(j 
n 

S (U b) 
<:n 

,._, * + (U E.: ) , a 
n 

: = £ (q) I 

where cr 1 : = a and CJ 
n 

• - rT 
•- V 0 (J 

n-1 
(cf. 3.14 and 3.23). And similarly 

Hence 

V = U 
(J 

n 
* V ~ U (b - E ) 

CJ n 

lvcx,q> - c CJ-~> cx, 4 > I s 

,..., 
* 

{U 
CJ 

n 
b) -

~ 
(U a 

n 
* e:: ) • 

(U 
a n 

* £ ) (XI q) / X E: X, q E: W • 

Next we consider (U 
cr 

n 
e ) (x,q) in more detail. 
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Note that t' (1 ,1) = cr + 1 if x 0 € L 2 and -r (1,2) = cr + 1 if x
0 

E L
1 

(remember 

that T(l,1) = 1 if x0 E L 1). By induction it is easy to verify that 

We show, using * induction, that for n E :N: 

T ( 1 ,n) = cr n + 1 if XO E L2 and T ( 1 , n + 1) ;:;;: an+ 1 if XO E Ll .. 

For n = 1 the statement is true, so ass11me it holds for n (n 2!: 2) • If 

x
0 

e: L2 we have 

T ( 1 , n + 1 ) = inf { k > t' ( 1 , n) I Xk- l € L 1 } = 

= inf{k > an+ 1 I ~-l E L 1 } = 1 + inf{k > crn I xk € L 1 } = cr n + 1 + 1 • 

Similarly if x0 e L 1 • Remember that T(l,n) ~ n for n E :H*. Bence 

...., 
* e: ) (x,q) = 

with k = n if x E L2 and k = n + 1 if x e: L 1 • 

Note that Q = $ Q1 and Q. ({0 1}) = 1 for i ~ 2. According to 2.26 we 
n . I ,n 1 ,n 

J..E 

have for BET pir -a. s. (cf. the proof of th. 2 .1) : x,q 

B 

• { II 

0 {R, >O IT ( 1, £) :5:n} 

Bence fork= 2,3, ••• we 
'TT 

have :JP -a.s.: x,q 

k-1 

QT(l,k)-1 (B) - II -
j=l 

B 
k-1 

. { IT 

8 j=l 

Therefore 

QT (1,k) -1 = Xq (Y,: ( 1 , l) ~ • • • 'y T { 1 , k-1) ) ' 

-1 
• 

1T 
P -a.s. x,q 
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By lemma 2.2 we find: 

1T 
E [ e: { Q ( l k) 1 ) ] :S E ( q, e: , k-1) , k = 2, 3, • • • • x,q 1" 1 -

This proves part (i). We proceed with part (ii}. 

-It is easy to verify that 6.12 holds for the functions bk and Ek' k EN. 

Hence 6.13 holds by part (i). As already noted we have 

E(q,e:,n) =E [e:(Q )] 
q n 

for the model with L2 = ~ (note that the expectation is independent of the 

starting state x and the strategy 1T, here) • For this model the ass,lmption 

of th. 6.3 (iii) is true, which implies that E(q,e:,n) converges monotoni-

cally to zero, as n tends 

is analogous. 

-* to infinity, in case k E N • For k = 0 the proof 

D 

In chapter 7 we discuss algorithms in which the horizon determination is 

based on th. 6.5 (ii). It turns out that computation of E(q,e,n) is rather 

easy compared with the backward induction. 

Corollary 6.6 

If L2 = ~ (and 6.6 holds) we have 

]v(x,q) - ( s B~ [e:k(Q )], n q n 
-k € N 

(bk and e:k are defined in 6.11). 

This statement is already proved in the proof th. 6.5 (ii). 

-For the functions e:k, k € E defined in 6.11, 6 .10 (ii) reclt1ces to: 

6.14 

• inf -fEF 

-* and for k e: N : 

• inf -feF 

n 
q(d0) TI 

j=l 

n 

• • • 

1 

v ( dy l ) ••• v ( dy n) 

• • • 

q {d6) . TI P1 (y .1 e 1) <pk ( e 1 I£) • 
J=l J 



To verify this, note that 

n 
q(d8) IT 

--1-- inf _______ J~·=_l;;;;.__,_,_,_,_, ______ _ 
1 - sk fEF n 

q(d6) IT p 1 (y.[8) 
j=l J 

if the denominator is positive. 

:Further note that, for all q E W: 

€0<4 > ~ E~<4 > ~ 8k+1 Cq> ~ 8kCq), 

and note that ~0 (q) = €
00

(q) if L 2 = ~-

* for k E ::N I 
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, 

We conclude this section with some remarks. The first four remarks comple­

ment the results we derived in this section. The last three remarks concern 

other approaches, not treated here. 

Remarks. 

(i) In most situations the sets of possible posterior distributions at 

successive stages are disjoint. However the following example shows 

that this is not always the case. 

Let 6.6 hold and let L 2 = ~- Further let 0
1 

:= {t,1 -t}, 0 < t < ~ 

is easy to verify that if q({t}) :=~,then the posterior distribu­

tion after n transitions is: 

n 

Q ({t}) = 
n 

{1 + 

cn-2 I y. > 
i=l 1 (1 

• 

n 
n - m 

Hence if n > m and """"' Y = then Qn = ~-
-(ii) We have already suggested a choice for the set F (see 6.2). Now we 

consider: 

F := {f E F I £or some e E 8: v(x,6) = v(x,6,f) for all x Ex} • 

At first sight one may expect that the best Markov policy for the 
-Bayes criterion can be found in F. However for an example we show 

that 

sup v(x,q,f) < 
f€~ 

sup v{x,q,f) • 
fE:F 
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(iii) 

Counterexample 

1 

0 

1-e 
3 

1 

3 

1 

4 0 

1-8 

3 

X := {0,1,2,3,4}, D(O) :=A:= {1,2,3}, D{x) := {1}, x # 0. 

0 := - - transition probability P(x'Jx,a) from 

X x A to X: 

Pc1lo,1> = 1-PC3lo,1> = 0', PC3lo,J> = 1-Pc1lo,3> = e 

P{2j0,2) = P(411,1) = P(4!2,1) = P(4l3,1) = P(4!4,1) := 1 • 

Only in the states 1, 2 and 3 a reward is obtained: 110, 70 and 10 

respectively. It is easy to fit this example into our framework. In 

case of known parameter values actions 1 or 3 are optimal in state 

0 but action 2 is never optimal. We identify the three possible Mar­

kov policies with the actions chosen in state 0. Hence F = {1,3}. 

Let q € W be such that q({8}) =~for 6 E 8 and let B =~.Then 

v(O,q,2) = 35 and v(O,q,1) = v(O,q,3) = 30 • 

If there exists a f* E F 

e E 0 then v(x,q,f*) = J 
* such that v(x,0,f) = v(x,6) for all x Ex, 

q(d0)v(x,0) = w(x,q), for x EX and q E W 

and * therefore f is optimal. 

(iv) If bis a bounded measurable function on Xx W such that 

b(x,q) = f b(x,0)q(d6) for all x EX, q E W then 

{ ....,) {x,q) s q ( d 8 ) (U~) ( x , 8 ) , n • 

To prove this note that using arg1Jments of the proof of th. 6. 2 we 

find: (Ub) (x,q) :s; J q(d6) (Ub) (x,8). Hence, by putting 

b' (x,q) := J q(d0) (Ub) (x,0) and repeating the argument, i..,e have 

2 
{U b) (X ,q) ~ 

since (Ub') (x, 0) 

(Ub' ) (x, q) :S 

2 = {U b) (x, 8) • 

2 q(d6) (U b) (x,8) , 

The statement follows by induction. 
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(v) In [Martin (1967)] the usual method of successive approximations is 

described for Bayesian control models with finite state and action 

spaces. Martin suggested the use of ''scrap functions'' b on X x w 

* that are constant on W (in fact Martin specifies a function b on X 

* and he sets b(x,q) := b (x) for q € W). Then he approximates v(x,q) 

by (U~) (x,q). The difficulty of this method is the choice of the 

horizon such that lv(x,q) - ( ) (x,q) j is sufficiently small. He 

gives the following bound for this difference (cf. [Martin (1967), 

th. 3.4.3]): 

n -S max{b - m M 
1 - S ' 1 -

where 

M .-.- sup r{x,a,y), m 

and X1a,y 

* b -- inf b (x) .- • 
X 

To verify this, note: 

- b} B 

. -.- inf 
x,a,y 

- * r (x, a ,y) , b := sup b {x) 
X 

n n m 
(U 0) (x ,q) + t3 l _ n n M 

:S (U 0) (x,q) + 8 

and 

n Since v = U v we have 

n m - 1 S {1 _ S - b s v(x,q) 

It is 

b ·-.-m 

obvious that this bound(*) is minimized 
M+m 

bM := ~ 1 _ S. Then the bound becomes~ 

1 -

M 
- S - b} • 

by setting 
sn 

1 _ (3 (M - m) which is 

poor, in general. In our approach a 1::etter scrap function is sugges-

ted for the special parameter structure given in 6.6, and the con­

vergence of the posterior distributions is used to get a smaller 

horizon (see th. 6.5) (see also chapter 7 for some examples). 

(vi) The use of upper and lower bounds is also suggested in [Satia and 

Lave (1973)]. The authors consider bounds of the foxm: 

ub (x,q) 

tb(x,q) 

:= sup 
fE:F 

• := sup 
f€F 

sup 
ee:0 

q 

inf 
0e0 

q 

M v(x,0,f) (1 - e:) + 
1 

_ 

m 
V (X 1 0 1 f) { 1 - E) + l _ f3 C 
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(vii) 

where 0 c 8 such that P [z E: 0 J ~ 1 - £ for some fixed £ > 0 and m 
q q q 

and Mare defined in the foregoing remark. 

They comp1.1te their bounds with very time-consuming algorithms for 

Markov aames. It is clear that ub (x ,q) ~ w (x ,q) and .Q,b (x ,q) ~ 2 {x ,q) , -
if Fis defined as in remark (ii). 

In [Waldmann (1976)] the space Wis approximated by a finite subset 

of w, i.e. a finite (measurable) partition of Wis constructed, and 

in each set of this partition a representative is chosen. Then the 

transition law is modified such that the process only visits these 

representative points. Waldmann suggests to solve the modified dyna-
~ ~ mic program with state space X x W, where vl is the set of represen­

tative points. The value function of this dynamic program is an ap­

proximation for the value function of the original model. The idea 

of approximating a dy.namic program with an uncountable state space 

by one with a finite state space is also found in [Whitt (1976)]. 

Whitt also provides bounds on the approximation. 

(viii) In [Van Hee (1977)] a generalization of the well-known MacQueen ex­

trapolation is considered (see [MacQueen (1966)]) £or the situation 

where 6.6 holds and L 2 = ¢. 

6 • 2 V.l.6 cJc.etiza:tlo n.6 

Although most of the material presented in section 6.2 is valid if X, Y 

and A are noncountable, the results have practical relevance only if these 

sets are finite. However, we do not assume that 8 is finite, but rather we 

study the problems caused by 0 being infinite. 

First we consider the deterxnj nation of the t:.pper a.nd lower bounds given in 

th. 6.1. We recall that, if x, 
n 

Y and A are finite, the computation of 

* {U
0

~ (w + i)) (x,q) for fixed q E W and n c N is rather simple if w (x' ,q') 

and 1(x' ,q') are known, for x' € X, q' E W. To approximate these upper and 

lower bound we approximate J v (x, e) q cae) and f v (x, e, f) q (d6) using straight-· 

forward n\JroP.rical integration methods .. 

Afterwards we shall consider another approach, namely the ''fini tization'' 

of the para.meter set in advance. This means that we only consider prior 

distributions that are concentrated in finitely many points. It is easy t.o 

verify that in that situation, all posterior distributions are also concen­

trated on this finite subset of i:,. 
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For both cases we give bounds on the errors caused by the discretizations. 

We start with a result on perturbations of the function 8 ➔ v(x,6}. In the 

proof of th. 6.7 we use the same technique as used in [Whitt (1976), th. 

6. 3]. 

Theorem 6.7 

-. Let 6 , 0 E 0 • Then: 

where 

sup {v(x,8) 
xe:x 

,..., 
6.15 6 (6 ,0) := max 

iE:I 
and 

_ B span (r) 
1 

span (r) := sup r (x,a,y) - inf r (x,a,y) • 
x,a,y x,a,y 

Proof. 

" I 

First assume inf r (s ,a,y) = 0. For each E > 0 there is an action a e: D (x) 

such that 

Hence: 

x,a,y 

v(x,6) :s; e: + l 
iEI 

• {r (x, a,y) + 

,.., 

P(dx' lx,a,y)v(x' ,e)} • 

V (X, 8) - V (X, 6) :s; E + l 
iEI 

1K. (x,a) 
l. 

+ B 

~ e: + I 
ie:I 

\) ( dy) { p . ( y I e . ) - p . ( y I e . ) } + sup r ( X , a , y) + 
1 1 1 J. x,a,y 
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Remember that J v(dy)p1 (ylei) = 1. Note that, for i EI 

1 - I,_, + 
v (dy) {p. Cy I e . > - p

1
. Cy e . > } = 

J.. 1 l. 

v cay> l p. <y I e . > - p. Cy le. > I . 
l. l. l. l. 

,.._. 
Let A:= A(6,8) and M := sup r(x,a,y). Then 

Note that 

Hence 

x,a,y 

v(x,0) - v(x,6) s e +¼AM+ B l 
iE:I 

• [ sup I v (x ' , 0 ) - v (x ' , 0) J { 1 - ~ 
x' 

sup 
x' 

S M • 

-
V (x I e) - V (x, a) ~ e: + ~llM + a sup Iv (x' , 6) - v (x' , 6) J + 

x' 

Iv (x' , 8) - v (x' , 6) I } • 
x' 

And therefore, by rearranging tezms and omitting s, we find: 

sup {v{x,0) 
X 

l".J 1,A 
-v(x,8)}s

1
_

6 M + S ( 1 - 1,A) sup 
X 

IV {x, e ) - V (x, e) I . 

If m := inf r(x,a,y) r O then we first subtract m from rand afterwards 
x,a,y 

we add m again. This causes M to be replaced by span(r). Now we exchange 6 
,.._. 

and e. Then we get 

sup 
X 

I V (x I a ) - V (x, a) l s ~ 

which proves the theorem. 

Remarks. 

/.l 
1 - B span (r) + B ( 1 - ~fl) sup 

X 

lvcx,e>-v<x,e> I 

□ 

(i) If { e -+pi (y I 6 i) ; y e: Y} is equicontinuous for all i e: I then the func­

tion {a-+ v(x,e); x e: X} is equicontinuous. This is an immediate con-

sequence of th. 6.7. ' 



(ii) If f E F then 

sup ·Iv (x,e, f) 
X 

,_ 

-v(x,0,f}I 
1 - s +~enc e, e > • 

The proof is exactly the same if we assume D(x) = {f(x)}, x € x. 
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Assume 6.6 and identify 0 1 and 0. We shall split up the parameter space in­

to a measurable partition {a1 , ••• ,Bn} and we assume that in each set Bj a 

point of disa:r,etization b. is fixed. Further we suppose that, for j = 1, •• ,n 
J 

and x e X, v(x,bj) is known and also that for j = 1, ••• ,n a Markov policy 

fj E: Fis known such that v(x,bj) = v(x,bj,fj) for all x Ex. 
-It is easy to verify that, if fk E F fork= 1, ••• ,n, then 

6.16 (i) l (x,q) 2: 

n 
(ii) w (x,q) s I 

j=1 

where t:,. : = max 
1Sjsn 

V (x , b . ) q (B . ) 
J J 

+ ~an(r) 
1 - 8 

span(r) 
1 - B 

Hence we derived an upper and a lower bound for v(x,q) involving only the 

points of discretization. Statements similar to 6.16 are possible with the 

other bounds considered in th. 6.1. Note that the difference in the bounds 

of 6.16 is positive , even if q is degenerate. If we assume more struc­

ture we may derive better bounds. Let 0 be an interval on the real line: 

0 := [b0 ,bn] and let b 0 < b 1 < ••• < bn be the points of discretization. 

Further ass11me that a -+ v (x, e, f.) is nondecreasing for x E x, j = 1, ••• ,n 
J 

(an e~arople of this situation is considered in example 6.4). Then it is 

straightforward to verify that, for (x,q) EX x W: 

6.17 max 
1sksn 

n 
I 

j==l 
v(x,b.)q([b. 

1
,b.)). 

J J- ] 

Even if q is degenerate, the upp,er and lower bound in 6 .1 7 differ at least: 

min {v(x,bj) - v(x,bj_1 )} • 
1~jSn 

Now we shall consider the discretization in advance. We only treat the si­

tuation where I is a singleton. We omit the dependence on i e I in the no­

tations. 
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Theorem 6.8 

Let I be a singleton, let b 1 , ••• ,bn 

and let { B1 , ••• ,Bn} be a measurable 

j = 1, ••• ,n. Let q € W and define cp 

j = 1, ••• ,n. Then: 

€ 0 be the points of discretization 

partition of 0 such that bj E Bj, 

where 

6.18 

E w such that cp ({ b . } ) = q ( B . ) , 
J ' J 

sup I v (x ,q) - v {x ,cp ) ) S 

X 

an (r) 

1 -

n 
·- \ .- l 

j=l 
B. 

J 

s s an {r) 
1 -

q(dS)li (0 ,b.) 
J 

n ~ (6 ,b.) 
I --,:---=-~ ~-s; 

j=l 
B. 

J 

1-,A 

(t,.(8,bj) has been defined in 6.15; note that I is a singleton). 

eroof. 

Fix e: > 0. There is a 1T E: IT O such that for a fixed x € X 

v(x,q) - v(x,cp) ~ E + v(x,q,1T) - v(x,cp,n) • 

Bence 

v(x,q) -v(x,cp) s 

Let 

• P( 

00 

e: + I 
k=O 

n 
I { 

j=l 
B. 

l. 

It is easy to verify that f(y1 , ••• ,yk+l) is a version of 

y = 
1 for all e Ee. 

Note that m ~ f ~ M where M := sup r(x,a,y) and m := inf r(x,a,y). 

Then we have x,a,y x,a,y 



v (x, q) - v (x ,q>) s e + • • • v (dy 1 ) .... v (dyk+l) 

n k+l 

i=l j=l 
B. 

l. 

k+l 
9) - TI 

j==l 
p (y. 

J 

k+l 
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• • • 

n 
v(dyl) ••• v(dyk+l) I 

i=l 
{ TI 
j=l 

Bi 

p <y. I a> 
J 

k+l 
- II 

j=l 
p (y . I b . ) } + M -

J l. 

- • • • 

k+l 
- rr 

j=l 

(Here we use 

• • • 

k+l 
q(d6) I TI 

j=l 

n 

B. 
l. 

span (r) 

p <Y. I e > -
J 

k+l 
n 

j=1 

k+l 
q(d6){ IT 

j=l 

k+l 
V{dy1 ) ••• V{dyk+l) IT 

j=l 
p(y. le>= 1, for all e c 8) • 

J 

* * * Likewise there is a ,r E 1bsuch that v(x,cp} -v(x,q) s e: +v(x,<p,n ) -v(x,q,n ). 

Therefore we have: 

0) 

(*) 

x k=O 

n 
. l 
i=l 

Let 

••• 

B. 
l. 

k+l 
q(d6)l TI 

j=l 

k+l 
TI 

j=l 
• 

k+1 k+l 

j=l j=l J 
1 

Fu1 ther let c 1 , ••• ,ck+l ,a1 , ... ,dk+l be nonnegative n1.1mbers. The following 

inequa1i ty is i 1r11nedia te 

k+l 
min{ TI 

j=l 
d.} ~ 

J 

k+l 
TI 

j=l 
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It is easy to verify that 

• 

k+l 

= 1 - ••• 

n 
I 

i=l 
B. 

l. 

q ( d6 ) min{ IT p (y . l e ) , 
. 1 J 

k+1 
rr 

j=l 
p (y. I b. ) } • 

J l. 
J= 

Using (**) we find, after changing the order of integration 

n 
1 - I q (dB) [ I I k+l 

\)(dy)min{p(y 0), p(y b.)}] • 
1 

i=l 
B. 

J. 

Hence (*) becomes: 

sup 
X 

[v(x,q) -v(x,cp) I 

where F(6,b.) := f \)(dy)min{p(yje) ,p(yjb.)}. 
.l. J. 

and F(0,b.) = 1 - ~~(6,b.). 
J. l. 

Hence we get the first inequality: 

sup 
X 

n 
[v{x,q) -v(x,rp) I~ span(r} 1 

i=l 

F(8,b.) 
e i } 

q(d)1-SF(0,b.) ' 
l. i=l 

B. 
1. 

n 
Note that I 

i=l 

B. 
l. 

B. 
l. 

q(d0) = 1 

~s Since the functions+----- is concave on [0,1] we find using Jensen's 
1 - 6 + ¼8s 

inequality: 

sup lv{x,q) - v(x,cp) I 
X 

~ ~pan(r) 
1 - B 

which proves the second inequality. 

Remarks. 

1 - s + ~$6 I 

(i) we can also use the proof of th. 6. 8 to compare the original model 
,..,, 

D 

with a slightly different :Bayesian control model. Let 9 := {1,2, ••• ,n} 

be the parameter space of the modified model and let p(•le) be a pro-
,,...,, 

babili ty density with respect to the measure \), for 6 E 0. Further let 
,.._, ,..._, 

q> ( { j } ) : = q (B . ) , 
J 

j = 1, ••• ,n be the prior distribution on e and v {x, <P) 

be the value of the modified model. All other specifications of the 

modified model are as in the original model. Then the statement of 

th. 6.8 remains valid with v(x,~) replaced 

replaced by J v{dy) \p{yje) - p(yjj) l. 
by v(x,~) and with ~(6,b.) 

J 
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(ii) Note that, in case I is a singleton, th. 6.7 is a consequence of th. 

6.8. To verify this let q € W be degenerate ate and let the partition 

of 6.16 consist of 0 only with discretization point e. Then apply the 

first inequality of th. 6.8. 

Corollary 6.9 

,.._, 
Let I be a singleton and let v(x,q) be the value of the model with known 

transition law, given by V(dy)P(dx' lx,a,y)p(y,q). Then we have 

sup lv<x,q> - vcx,q> I $ se~<r> 
X 1 - 8 * 1 - S + ~Sb 

where 

* A •-L.l .- q(d6) v c dy) IP Cy I e > - P Cy, q) I • 

Note that this is an e~ample of the situation considered in remark (i) 

above, if we set 0 := {1} and p(•jl) := p(•,q). 

If there is ab E 0 such that p(•jb) = p(•,q) for some q E w, then corolla­

ry 6.9 is a special case of th. 6.8. 
~ 

In practice one often considers the value v(x,q), defined in corollary 6.9 

as an approximation to v(x,q). This is justified by the following interpre­

tation. In the Bayesian approach the prior distribution q is determined, 

using data from the past. Then the Bayes estimation of the density is com­

puted: p(y,q) = J q(d6)p{yl6), for ye Y, and finally this density is con­

sidered to be the true one. 

we conclude this section with some examples and remarks. 

Example 6.1 

The first bound in th. 6.8 is tight. 

Consider the model with only one action in each state, and with X := {1,2}, 

Y := {0,1}, A:= {1}, 8 := {0,1} 

P(1j1,1,1) := 1, P(211,1,0) := 1, P(2!2,1,0) := P(2l2,1,1) := 1 

p(1j8) := 6, r(1,1,1) := 1, r(l,1,0) := r(2,1,0) := r{2,1,1) :=O. 

e 
1 - e 

2 A 1 
,, 
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Let the only point of discretization be O, hence B1 = 8. Let q € W be de-

The prior Q) defined in th. 6.8 has all mass in the point O. Hence v(l ,cp) = 0 
1 

and v (1,q) - v (1,cp) = ~ 
1 

_ S • Now we consider the first bound of th. 6 .8. 

we have 

v (dy) Ip (y le> - p Cy IO) I = j e - o I + I 1 - e - 1 I = 2e, e E a • 

Hence the bound becomes¼ 
1 

1 - $ • 

Example 6.2 

The bound of th. 6.7 is tight. Consider the example above and let e := 0 
,..., 

and 8 : = 1 • Then and 

v(dy> 1pcy e, - p<yle> 1 = 210 - el = 2 • 

1 
Hence the bound is 1 _ S also. 

E,cam_ple 6.3 

The bounds of th. 6. 8 behave badly if tends to 1. Consider the model of 

example 6.1 and modify it as follows: 8 := [0,1], r(l,1,1) := r(l,1,0) := 1. 

Let the only point of discretization 
1 

Hence v(1,0) = 1 _ BS and so v(l,q) = 
The first bound of th. 6.8 becomes: 

1 

be !.1 and let q E W be homogeneous. 
1 1 - 13 log ( 1 - S) and v ( 1 , rp) = 1 _ ¼S • 

1 _e - ~ 
1 ·- 8 1 - f3 + '3 e - ~ 

ae = . 1, { 1 _ 2 c 1 - e > 
1 - S 8 82 

0 

Note that lv(l,q) - v(1,rp) I = a< 1 

In the next example we consider a situation where e + v(x,8,£.) is monotone 
J. 

(cf. 6.17). 

Example 6.4 

Consider the inventory model: model SB v1here the demand is exponentially· 

distributed: 

I -ey 
p(y 0) = ee , e E [a,b], o <a< b < 00 • 
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For each 0 E: [ a ,b] the optimal strategy is characterized by a n1.1mber s0 , 

s 6 E [a,b], such that, at time zero the inventory level is brought to s 9 
and afterwards at each stage the demand is supplied. For a fixed s E [a,b] 

we deter111j ne the total expected costs corresponding to the strategy as des­

cribed above withs instead of s
8

~ 

v(x,8,s) + -= hx + px + k ( s - x) • 

It is easy to verify that 

[ + -E 0 h Cs - Y ) + p {s -Y ) 
n n 

1 
- ps + (p+k)e • 

If k > h, then this function is decreasing in e. 
Hence for each point of discretization and each x € X, 9 ➔ v(x,0,f.) is de-

1. 

creasing. (Remember that we considered costs instead of rewards in this example.) 

Remarks. 

(i) If 0 c]R and for some f E F, e + v{x,6,f) is aonVe$ then 

q(d8)v(x,9,f) ~ v(x, q(d6)8,f) , 

by Jensen's ineq1.J.alij:'.y, and if a ➔ v (x, 8) is aonaave then 

w(x,q) s v{x,J q(d6)6). These properties are sometimes useful in ap­

proximating upper and lower bounds. 

(ii) In [Whitt (1976)] discretizations of the state and action spaces are 

considered for discounted dynamic programs. If we apply Whitt's ap­

proach here we have to discretize the set of posterior distributions 

W, i.e. we have to fix a finite measurable partition B1 , ••• ,Bn of W 
• 

and in each set Bi a representant b 1 • Then the original model is com-

pared with the model with a perturbed transition law, which causes 

the process to visit the points bi, i E {1, ••• ,n} only. However, if 
,-.., ,v rv 

(X ,Q) is the state at time n of this new process, then Q is not n n n 
the posterior distribution of z, in general. 

So th. 6.5 is not valid anymore. 
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7. COMPUTATIONAL ASPECTS ANV EXAMPLES 

In this chapter we consider algorithms for the computation of the value 

function {cf. 2.12) in two special cases of the Bayesian control model. In 

section 7.1 we consider the model where the index set I is a singleton. 

Here we also consider the rate of convergence of the algorithm. In section 

7.2 we consider Bayesian control models where assumption 6.6 holds and 

where in addition the set L 1 is a singleton (cf. 6.6) .. Finally, in section 

7.3, we study some examples of the models considered in sections 7.1 and 

7.2, and we illustrate the quality of the algorithms by n11merical data. 

The algorithms are based on the approximations given in th. 6.5. Throughout 

this chapter we ass11me that X, Y, A and 0 are finite sets. (For notational 

convenience we write q(8) instead of q({6}).) 

7.1 m f,oJt.. model.6 whe..tte. 1 iA a. -6ing.te;tan 

In this section we assume that the index set I is a singleton. 

We consider an algorithm, based on th. 6.5, to approximate v(x,q) for all 

x € X and one fixed prior distribution q E W. The accuracy of the approxi­

mation has to be given in advance. In section 6.1 we already considered 

the set of all possible posterior distributions after n transitions 

7.1 

Since I is a singleton we omit the subscript i € I in this section. we first 

give the algorithm and afterwards we discuss each of its steps .. Let fl> 0 

be given, and 

max (v(x,q) -

...., 
let v(x,q) be the approximation to v(x,q). If 

v (x,q) I s I:,, for a fixed q € W then we say that the acc1Jracy 
X 

of the approximation is (at least) l. 

In the algorithms the s 

nition. 

AZ.gorithm 1 

part 1 : parameter influence 

1 II• -11 .- denotes an assignment instead of a defi-

(a) For all e E 0 and x EX determine v(x,8) and an optimizing t 8 E F (i.e. 

v(x,0) = v{x,0,fe) for 0 € 8). Let F := {fe, 8 e 8} (cf. 6.2). 

(b) For all e € 0 and f € F dete.t.·1nine cp (8,f) =max {v(x,8) - v(x,0,f)}. 
•00 

X 
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part 2: honzon detemzination 

(c) set n := n0 (a lower estimate of the horizon, e.g. n 0 := 0). 

(d) Compute (cf. 6.14): 

n 
:= E (q,e; ,n) = ~ 

00 

• min -fEF 
I qce> rr 
e j=l 

(e) If enc s 6 then go to (f), otherwise set n := n +1 and go to (d). 

part 3: baakuJard induction 

(f) 

(g) 

(h) 

For 

Set 

all q' E W (q) 
n 

k := n-1. 

For all q' 

for x € X: 

max 
at::D(x) 

set V (x,q•) := 
n 

~{w(x,q 1
) + i(x,q')}, x EX. 

compute p(y,q 1
) and T (q 1

) for ally E 
y 

1 p {y, q • ) { :tr·-(x, a, y) + B l 
y x' 

Y, and then, 

(i) If k > 0 then set k := k - 1 and go to (h). 

Otherwise: stop. 

,_, 
At the end of the algorithm the values v (x, q) : = v O (x ,q) , x € X have been 

computed and it follows from th. 6.5 that the accuracy is at least~-

We proceed with a discussion of each of the steps of the algorithm. 

Remarks on algorithm 1 

(i} The computations of step {a) can be carried out by a standard method, 

such as the policy iteration aZgorithm or the method of successive 

approximations with the MacQueen extrapolation (cf. [Ross (1970), 

section 6.8], [MacQueen (1966)]). More sophisticated methods can be 

found in [van Nunen {1976), section 7.3] and in [Hastings and Van 

Nunen (1977)]. Note that Fin step (a) satisfies 6.2. 

It often occurs that, if the differences between the parameter values 

are small then also the differences in the value function are small 

(cf. th. 6.7}. Hence if £6 E Fis optimal, if e E 0 is the true para-
,... 

meter and if e E 0 is near toe, then it is wise to s~art the policy 
,...,, 

iteration for the para;meter value e with the policy £ 6 • And likewise 
-we recommend to start the successive approximations fore with the 

scrap function v(•,0). 
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(ii) In step (b) we have to deter1nj,ne v(x,6 ,f) for all x e x, e e: 9 and 
-f e F .. If N := 6 then it requires the solution of at most N (N - 1) 

systems of linear equations, in fact we only have to solve them all 

if we found for each e E 0 a different optimal policy. Instead of the 

function ~~{0,f) we may 

~l (0,f) = max {v(x,0) -

step (d). X 

also use the function 

if we replace e: (•) by 
00 

e: 1 ( ·) in 

It is easy to verify that the computation of (Lfv) (x,8) for x EX, 
-e E 0 and f e: F requires less effort than the computation of v(x,8,f) 

-for x EX, e E 0 and f e: F. However we have to do more work in part 2 

of the algorithm in this case (cf. th. 6.1). 

(iii) Let Y = {0,1, ••• ,m}. we may compute E(q,e ,n) in the following way: 
(,)0 

7.2 

7.3 

7.4 

=~ }: n! min 
m -kO, ••.,km feF IT k. ! 

j=O J 

with s1.1rrJioation over all 

2 
e 

m k. 
q(0) IT p(jl6) ]~~(6,f) 

j=O 

m 
EN such that l k = n. j 

j=O m+n Note that we have to s11m over ( ) term::; here, so the amount of work ':' 
n 

to compute o in this way is very large if n 

suggest another approach in case {p(•}e), e 
is large. Therefore we 

E 9} is an exponential 

family of the following form 

p (y { 8) = a ca) b {y) exp{ c ca) y}, e E 0, y e Y = { 0, 1, ••• ,m} 

where a and bare nonnegative functions such that 

l a(0)b(y)exp{c(0)y} = 1, 
y 

for all a e: 0. 

In this case the posterior distribution of q E Wafter n observations 

y 1 , ••• ,yn becomes: 

yj}q(6) 

---· _,, -----· _i_~-· --■ --·-·--· 

I 
e' 

n 
a(8') 0 exp{c(6t) l y.}q(8') 

j=1 J 

(provided that the denominator does not vanish). 

Hence the n11mber of different posterior distributions is: 

= 1, ••• ,n} = nm+ 1 • 
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7.5 

7.6 

{This number is 

Note that there 

m+n 
small c0111pared to ( ) , the number of 

n 
is a one-to-one correspondence between 

due to relation 7.4. Instead of computing E(q,£ 00 ,n} as 

step (d) we approximate this quantity in the following 

here 

tex:ms in 7.2.) 

En 
j=1 Yj and Qn, 

proposed in 

way. Note that 

= JE [E (Q )] = l JP [Q = q']e:oo(q') • 
q ® n q n 

q • E:W (q) 
n 

It is relatively easy to compute E~(q 1
) for each q' € Wn(q). Instead 

of computing JP q[Qn = q'] directly, we approximate this probability by 

the nor1nal probability in the following way. Let q' E wn (q) correspond 

let 

and 
2 

a e := 

m 
I (j 

j=O 

Then we have 

JP [Q = q' J q n 

and therefore 

n 
= l qce>JP ec l 

6 j=l 
Y. = s] 

J 

s + ¼ - nµe 
JP [Q =q•J~Iqce>{4><-----> 

q n e oern 

y. = s, 
J 

s - '2 - nll 
- ~ <-----e-, } 

cram 

(where t is the standard nor1nal distribution function) • 

Note that µ 0 and a 0 can be ca11'!)uted in advance, also in part 1. 

Since# Wn(q') is relatively small it is easy to approximate E(q,£
00

,n) 

in• this way. 

(iv) Besides the convergence due to the discount factor 8, we also use in 

step Ce) the convergence of the posterior distributions. In fact we 

might replace the stop criterion, by ''o :s; 6. '' without loosing conver­

gence of the algorithm {cf. th. 6.5). 

Instead of an absolute stop criterion we might use a relative criter­

ion. For instance we could use the inequality 

ano{1 + maxlt<x,q> l}-1 :s; ~ 
X 

instead of Bno :s; ~,instep (e). 
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(v) The backward induction in part 3 requires the following storage capa­

city for n1Jmbers 

{#Wn(q) + # Wn-l (q)} # X = { (2n - 1)m + 2} # x 
• 

if Y = {0,1, ••• ,m}, {p(•(e), a E 8} is an exponential family of the 

form 7.3, and n is the horizon determined in part 2. 

We note that the work in part 1 has to be carried out only once, while we 

have to perform part 2 and part 3 for each prior distribution q E W for 

which we want to approximate v(x,q) , x € x. 

We continue with the discussion of a simple modification of the algorithm 

to determine in part 3 upper and lower bounds on v(x',q'), 

q' € u Wk(q) • These bounds shall allow us to exclude some sub-
k=l, ••. ,n-1 

optimal actions, during the backward induction procedure. To derive these 

bounds we proceed as follows. Let n be the horizon deter111ined in part 2 

and rem·ember that 

vn (x' ,q') = ¼{w(x' .,q') + R.(x' ,q')} 

According to corollary 6.6 we have 

7.7 f v (x' ,q') - n-k f (U V ) (x' ,q') 
n 

for q' E w (q), x' EX. 
n 

for q' e wk (q} , k E { O, 1, ••• , n - 1} and x' e: X • 

FUrther note that, according to the Markov property of {Qk, k E :n-a-} (cf. 

th. 5.1): 

7.8 
y y 

for q' € wk (q) , k E {O, 1, ••• ,n - 1} and x' € X • 

Hence the val.ues lE , [ e: (Q k) ] for q' E: Wk (q) are upper and lower bounds on q co n-
v(x',q'), for x' ~ x. 
These values are easy to compute by 7.9. 

7.9 (i) Let 

(ii) For 

y (q' ) : = e: (q') for q' € W {q) • 
n 00 n 

k = n - 1 , n - 2 , ••• , 1 compute 

·- \ • - l 
y 

for q' E wk (q) • 
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Note that the computations of 7.9(ii) can be incorporated in step (h) of 

the algorithm. 

If we use the noi:11,al approximation, as suggested in remark (iii), then we 

loose our exact accuracy. However if we incorporate the computations of ~9, 

then we have exact bounds after the execution of step 3. 

It is obvious that an action a€ D(x) is sub-optimal in state {x,q') 

q ' E: wk ( q' ) , x E: x and k e { O , 1 , .... , n - 1 } if 

7.10 
y x' y 

We conclude this section with a qualitative statement concerning the rate 

of convergence of the algorithm. 

We start with some preparations. Remember that X, Y, A and 0 are finite sets. 

7.11 A mazimum ZikeZihood estimator M of the parameter based on the ob­
n 

servations Y1 ,Y2 , ••• ,Yn is a 0-valued function of Y
1

, ••• ,Yn such that 

n 
II p (Yj IM ) 

j=1 n 
on n, for all. e e 0 • 

Le11111a 7 • 1 

There are numbers k and a, k,a > 0 such that for all e E 0 

Proof. 

Define on 0: 

(let log O = 
Note that 

-co 
I 

p CY.le> 
:= log{ (Y )} , 

p j cp 

log 00 = 00 and let 0• 00 

n 
{M r; e} c 

n 
{max n p (Y. I cp) 

cp#8 j=l J 

* n € JN • 

* j E: ]N , 

= 0). 

n 

e,cp € 0. 

--
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= {min 
cp,'6 

n 
II 

j=1 

p(Y la> 
p (Y. cp) 

J 

:s: 1} = u 
cp;69 

n 
{ 2 Z.(0,cp) SO}. 

. 1 J J= 

By a Chebyshev-type inequality we have for all ts O and e E 8: 

--

Note 
I -t 

· ,cp y P YI 
* t :s= 0, e ,q, € 8 and independent of j e: :N • 

is finite for 

F'Urther note that fe (0) = fe (-1) = 1, for e,cp € a. 
I (p -t I cp 

Since the function t ➔ x (x > 0) is strictly convex, except when x = 1, 

we conclude that for each pair e,cp ~ 0 there is a n1Jmber t, -1 

ally with p(yle> 

< t <·Q such 
' 

,cp P Yl<P 
= 1 for > O. However, 

if p Cy I 0) == p (y I cp) for all y e: Y then, by the separation ass11mption (cf. 

2.1), we have e = cp. 

Hence there is for each pair e,cp e: 

-1 ~ t 6 so and £6 Ct8 > < 1. ,cp ,cp ,cp 
Hence by (*) and(**) we have: 

JP [M # 8] S e n 

Finally let m 

Then we have 

:= max f 8 ct8 >, a ,cp ,cp 

0, cp ;I:, e a n,imber t 0 such that , cp 

O] s 
cp;i&a , , <P 

: = - l.og m and k 

for all e € 0. □ 

The statement of lemma 7.1 is contained in th. 5.3.1 given in [Zacks {1971)], 

with a proof that is incorrect but easy to repair. Since our situation is 

less general our proof is easier. However, the idea has been borrowed from 

zacks. 

In th. 7 .4 we use the ma~im11m l.ikelihood estimator to choose a Markov policy 
-f € F such that on 0: 

M 
n 

l max{v{x,8) 
0 X 

- v(x,6,fM }Qn(0) 
n 

min l cp 
00 

( e , f) Qn C e ) • 
fe:F 8 
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This bound is used implicitly to show that one has e:x:ponentiaZ aonvergenae 

in part 2 of the algorithm. 

Theorem 7.2 

-Let f 9 € F be an optimal policy for 8 € 0 and let F := {f0 ,e E 0}. 

There are positive n11rnbers k and ~ such that 

Proof. 

For f 

B ·= f • 

lE [min }: max{ v (x,e) 
q ft::F e x 

- v(x,0,f)}Q (9)] ~ k exp{-an} • n 

c F define Af := {e E 0lvcx,0) = v(x,9,f) 

8\Af • 

for all x E'. x} 

FUrther let /1 := max max: max {v(x,0) - v(x,6,f)} • 
X 

-fe:F 8 

Note that 

lE [min l max{v(x,0) - v(x,0,f)}Q (9)] 
q fE:F e X n 

Note further that: 

min 
, -
fe:F 

JP [Z 
q 

and, since Mn is a function of Y1 , ••• ,Yn {cf. 7.11), we obtain: 

lE [min l max{v(x,6) 
q fe:F e x 

- v(x,8,f)}Q (0)] ~ /1•JP [z 
n q 

and 

Since e € Af for all a e: 9, we conclude that e ~ implies 0 ~~.Hence 

M n 
n 

Finally the desired result follows from lemma 7.1. □ 
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7.2 AlgollJ.;thm 604 rnodeR.-6 known .l:tlon .law exc.e.p-t 6oJc. one. -6-t.a.x.e 

In this section we ass11me that ass11mption 6.6 holds and that the set L
1 

is 

a singleton (cf. 6.6). Hence the transition law is known except for one 

state. 

Throughout this section X = {0,1, ••• ,N} and L1 = {O}. Hence L
2 

= {1,2, ••• ,N}. 

The algorithm is also based on th. 6.5 and it consists of three parts again. 

Each part is a modification of the corresponding part of algorithm 1. 

We start with a discussion of these parts and afterwards we describe the 

al.gorithm. 

We start with part 1. 

If we want to co111pute JE f [ I:a-l 
. x,q n=O 

n a 
B r{X ,A ,Y 

1
) + S b(X, Q )] (cf. 6.7) 

n n n+ cr o 
for solr1e f € F then we only have to specify the actions in the states of L

2
• 

we shall use this property and therefore we introduce some useful notations: 

:= {f 7.12 (i) 

(ii) 

{iii) 

f ..a-1 n 
:= E [~ 0 8 r(X ,A ,Y +l)] , x n= n n n f € * F , 

f € * F , 

(iv) g (x, e) : = max* { cf (x) + df (x) e} , 
fEF 

As already noted in section 6.1 (cf. 6.9), the detexmination of (U
0

b) (x,q) 

x e: L2 is an ordinary dynaroi c progra1111nlng prob] em .. To see this, extend the 

state space to {-1,0,1, ••• ,N} and let P({-1}10,a,y) := P({-1}1-1,a,y) := 1 

for all a€ A and y € Y. Further we define for this model r{O,a,y) := b(O,q) 

and r(-1,a,y) := O for a€ A and ye Y, where q €Wis fixed. It is easy to 

verify that the value function of this model in x e L2 equals (U
0

b) (x,q} of 

the original model. Therefore we have 

7.13 

Let two numbers e and -

= max* {cf(x) + df(x)b(O,q)} = g(x,b(O,q)) , 
fE:F 

- -e be fixed such that: es v(O,q) Se for all q € W. -
Note that, if ms rs M, o)-1 d - (1 a)-1 m, M € JR then e : = m ( 1 - µ an e : = M - µ -
will do. 

-It is easy to compute g(x,e) for all~ s e Se and x e L2 • This is due to 

the following properties. 

Lernma 7. 3 

For each x € x the function e -+ g.(x,e) is nondecreasing, convex and piece­

wise J.inear. 
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The proof of this le1·10·11a is trivial. 

* It is a consequence of le11111c1. 7. 3 that for each f e: F the set 

{el! s e ~ e, g(x,e) = cf(x) + df(x)e} is a closed interval. 

F~r x € L2 and a e: D(x) we define 

7.14 (i) ; (x,a) : = l 1K (x,a) 
i€I i 

l pi <YI e1 ) r (x,a,y) • 
y 

(ii) P(x' jx,a) := 2 1K (x,a) l pi (yl Si)P({x'} Jx,a,y) • 
ie:I i y 

• 

(note that these definitions are consistent with definitions 3.1 (d) and (e), 

since 8. is a singleton for i ~ 1, i € I). 
l. 

Lec11111a 7. 4 

* Let f € F be optimal for some e 1 , -!: s e 1 s e, i.e. g(x,e1 ) =cf(x) +df(x)e
1

, 

for x € L2 • 

Then f is optimal for all e e: [e1 ,e2 J and non-optimal fore> e 2 where 

7.15 

Proof. 

e2 : = IT1ax [min 
XEL2 

r(x,a) 
{ I 7 7 1 7 7 XI € L~ O • } J , 

x' e:L 
2 

where the minimlJm ·has to be taken over all a € D{x) for which the 

denominator is positive (the minimum over the empty set is infinite). 

* Note that, for f E F and x e: L2 : 

x'e:L 
2 

Moreover for a= f(x) the denominator in 7.15 vanishes. 

By Howard's policy improvement routine (cf. [Ross (1970), corollary 6.4]) 

* the policy f € F is optimal if and only if for all a E D(x) and x € L
2

: 
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,..., 
r{x,a) + t3 

x' €L 
2 

-+ df(x')e} + 6P(Olx,a)e. 

* Hence f E F is optimal if and only if for all a E D{x) and x E L
2

: 

-- r (x, a) - f3 
x' EL 

2 

So, if the denominator in 7.15 is less than or equal to zero, then(*) holds 

for all e > e 1 , if it holds for e 1 • On the other hand, if the denominator 

in 7.15 is greater than zero, then(*) holds for all e > e 1 such that e is 

less than or equal to the e2 • 

This proves the lemma. □ 

According to lemma 7.4 we now have the following procedure to determine 

* g(x,•) for x € L2 • Compute for e 1 :=!an optimal f E F. Then determine e 2 
- * by 7 .15. If e 1 < e 2 < e then compute for e 2 a new optimal policy f E F and 

repeat this procedure. So e 1 ,e2 ,e3 , ••• are computed. If during this process 

en= en-l then we have to determine another optimal policy for the value 

en-l such that en > en-l. Note that there always is such a policy (cf. le1111na 

7.3) and that we have to examine only finitely many Markov policies since X 

and A are finite. 

Let us denote the set of optimal Markov policies determined in this way by 

-* F. Using the values cf(x) and df(x) for x 

determine v(0,0) and optimal policies f 0 
F = {fe ,e c 0} and v(0,8,f) for 0 E 8 

This concludes the discussion of part 1. 

-* E L2 and f E F it is easy to 

€ F fore E 0. so, 
-and f €Fare easy to compute. 

In part 2 of the a1gorithm a suitable horizon is detezmined. 

Here we have to compute for q' E Wn(q) the value e 0 {q') and afterwards 

E ( q, e 
O 

, n) ( cf • 6. 11 and th. 6 • 5) • 

However, 8 0 (q') has a simple form in this case: 

£o(q') =~mi!! 
fEF 

q(0) {v(0,9) - v(0,9,f)} • 

Therefore we have, in a way similar to 6.14: 

=~{ I qce>v(o,e> -
e E:0 

max -fEF 
l 

e €0 

n 
q(0} TI p 1 (y.le 1)v(0,0,f)}. 

j=1 J 
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If {p1 C•fe 1), e1 € 0 1 } is an exponential family, then we might use the nor­

mal approximation to approximate E{q,E0 ,n) (cf. remark (iii) section 7.1). 

In the final part of the algorithm the backward induction is carried out. 

Here we use 

7.17 (U b) (0 ,q) 
(J 

= max 
ae:D(O) y 

Finall.y we su11:anarize the steps of the algorithm. 

AZgo-.rithm 2 

• 

(a) 

part 1 : parameter infZuenae .. 

Detert111,ne for all e E [e, e] an - * opt:i mal f E F (cf. 7.12) and simultaneous-
-* So F and g (x ,e) are detex:n1ined for x € L ..... 

- ~ 

and es es e. -
(b) For all e e 0 comp,1te v (0 ,6) and an optjmal £8 E F (using the results 

-of step (a) ) • Hence F is deter1i,j ned .. 
-(c) For all e e: 8 and f € F deter1nine v (0, e, f) 

part 2 : horizon deteim-ination. 

(d) compute w(O,q) = Eaee q(8) v(0,8). 

(e) Set n := n0 (n0 is a lower estimate of the horizon). 

(f) Compute cS: 

·­.- I I min -y 1 , ••• ,yn fEF 0E8 

n 
q(S)• TI p 1 (y.j8 1)v(0,6,f)} 

j=l J 
(cf. 7.16). 

(g) If ~Sn{w(O,q) - o} ~~then go to step (h), otherwise set n := n + 1 

(h) 

(i) 

(j) 

and go to step (f) (A is the desired acc11racy) • 

part 3: backward induction. 

For q' E W (q) set 
n 

Set k := n - 1. 

For all <I' € Wk(q) 

compute 

: vn (O,q') ::= ¼{w(O,q') + .fl. (O,q')} • 

compute p (y ,q' ) and T1 (q' ) for all y E: Y, and then 
,y 



= max l p 1 (y,q)[r(O,a,y) + 
aED(O) y 

+S l P{{x}lo,a,y) 
XEL2 

(k) If k > 0 then set k := k - 1 and go to (j), otherwise go to (!). 

(t) For x E L
2 

compute 

Note that v(x,q) := v 0 (x,q) is an approximation of v(x,q) of the desired 

accuracy. 
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Finally we note that a modification to determine upper and lower bounds in 

part 3 of algorithm 2 can be incorporated in a way similar to the modifi­

cation of algorithm 1. It is straightforward to modify th. 7.2 to show that 

we have exponential convergence in part 2 of algorithm 2. 

7. 3 NumeJt-lc..al.. e.x.amp.lu 

In this section we present 5 examples. The first three e~amples illustrate 

algorithm 1 (cf. section 7.1), and the last two examples illustrate algorithm 

2 (cf. section 7.2). 

Example 7 .1 Inventory control. 

We consider a well-known inventory control model. The model we studied in 

section 5.3 (model SA) is a special. case. 

The cost function is 

c (x,a) + -
:= bx + px + k(a - x) + K{l - o(a,x)}, K ~ 0 • 

Here K represents the ordeP cost or the cost for starting the production. 

Note that the cost K is incured only if the inventory is brought to a higher 

level. If K = 0 then we are dealing with model SA again. In.[Rieder (1972)] 

it is proved that there is an optimal Bayesian Markov policy f of the follow­

ing foxm: 
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7.18 f(x,q) = S(q) if x < s(q) 

= X if X 2: S (q) , (x,q) e: X x w 

wheres and Sare measurable functions from W to the interval [0,M]. 

(Note that s = S if K = 0). We specify the n11merical data of the model. 

In,~this e~ample the demand is binomially distributed. 

pCy) e > = 

and e € 0 = {0.1,0.2, ••• ,0.9}. 

The prior distribution q is unifozm on 0, 

The various costs are: 

h = 0.1, p = s, k = 3 • 

y e:y={o,1, ••• ,s}, 

• 1.e. q({8}) = 1 
9 

for a e: a. 

We consider two cases: K = 0 and K = 1. Finally the discount factor is 

a = o.9. 
In the tables below, we display the optimal strategies s(0) and (s(e),s(e)) 

for the models with known parameter values and the value function, at start­

ing-inventory level zero for the various parameter values. Further we dis­

piay, for several horizons, the value E(q,£~ 1 n) and finally we display the 

optimal actions for the first 3 stages and the value function at inventory 
2 level zero for the prior distributions q' € un=O Wn(q). 

table 1 (K = 0) 

e 0.1 0.2 0.3 0.4 o.s 0.6 0.7 0.8 0.9 

s (0) 1 2 3 4 4 4 5 5 5 

V (0,0) 21 37 52 68 82 97 111 124 137 

(The optimal strategy, if 8 is known, is ''order up to level s (6) iff x < s (8) ") 

table 2 (K = O) 

horizon n 0 1 2 3 4 5 6 7 

E :q,€ ,n) 3.6 
00 

1.7 1.1 0.8 0.6 o.s 0.4 0.3 



table 3 (K == 1 ) 

a 0.1 0.2 0.3 0.4 o.s 0.6 0.7 0.8 0.9 
s (8) 1 2 2 3 3 4 4 5 5 
S (0) 2 3 4 4 4 5 5 5 5 
v(0,0) 24 42 59 76 91 107 121 134 147 

.. (The optimal strategy here • l.S: ''order up to S (9) iff x < s (6) '') • 

' 

table 4 (K = 1) 

• 

horizon n 0 1 2 3 4 5 6 7 . 

E (q,e; ,n) 
00 3.2 1.5 1.0 0.8 0.6 o.s 0.4 0.3 

In table 5 we represent the posterior distributions 

Yi E Y (cf. r~mark (iii) section 7.1). 

q' E W (q) by 
n 

table 5 

.. 
n 

Ii;:lyi 0 1 2 3 4 5 6 7 8 9 

n K 
.. 

0 s (q) 0 5 

0 V (0,q) 0 82 

0 s(q) 1 4 

0 s (q) 1 5 

0 V (0,q) 1 90 

1 s (q') 0 2 3 4 5 5 5 

1 V (q'} 0 36 52 72 93 111 125 

1 s (q') 1 2 2 3 4 4 5 

1. s (q') 1 3 3 4 5 5 5 

1 v(O,q') 1 41 58 80 101 120 134 

2 s (q') 0 2 2 3 3 4 4 5 5 5 5 

2 V {q') 0 27 34 45 58 70 83 94 106 117 126 

2 s (q') 1 1 2 2 2 3 3 4 4 4 5 

2 s (q I) 1 2 3 3 4 4 5 5 5 5 5 

2 V (O,q') 1 31 39 51 65 78 91 104 116 127 136 

10 

5 

132 

5 

5 

142 

163 

• 
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(The optimal strategies are, if K = 0: ''order up to s (q') iff x < s (q') '' 

and if K = 1 : ''order up to s (q •) iff x < s (q' ) ••) • 

Note that max{t(x,q) - w(x,q)} = E(q,E ,0). 
X oo 

It is remarkable that, although the variations in 6 + v(0,6) are large, the 

upper and lower bounds on v(O,q) are very close. 

Example 7.2 RepZacement underi ad.ditive damage 

We consider the following replacement problem. In each time interval (n - 1,n], 

* n E lN , there is a random shock Y, which is observed at time n. The random 
n 

variables Y
1

,Y2 ,Y3 , ••• are i.i.d., 

the system in the following way: 

Y E Y = [0, 00) and they act on the state of 
n 

7 .19 

where X n 

= min{o{A ,O)X + 
n n 

is the state of the system at 

,ne:JN, 

time n, X e: X = [o,x*] and A is 
n n 

the action at time n. The action space is A = { 0, 1}. Action O means ''do not 

replace•• and action 1 

* 
* means ''replace'' the machine. D (x) := A for x E [O,x ) , 

D(x) := {1}. Replacement takes place instanteneous. 

If the system is in state * X then replacement is more expensive than in the 

other states. The costs are: 

c (x,a) = m {x) o (a, 0) + RO (a, 1 ) , 

* = R , 

if 

if 

0 ~ X * < X 

* X = X 

, a € A 

I a € A 

where * R > R. Here m(x) are the maintenance costs for one period, if the 

state of the system is x. We assume that x + m(x), x €Xis real-valued, 

* measurable and nondecreasing, and O ~ m(O), m(x) < R. It is further as-

f:11med that the distribution of Y is incompletely known with density p ( • I e) n 
with respect to a a-finite meas11re v on Y, with e e: a where 0 is a complete 

separable metric space called the parameter space. 
' 

It is easy to transform this model into a Bayesian control model with index 

set I a singleton (cf. e~ample 2.3). 

Before we consider numerical data we first establish a property concerning 

the form of an optimal strategy for this Bayesian · control model. In lerr1n1a 

7.5 we show that the optimal strategy is characterized by so-called aont~oz 

Z·imitB in the following way. There is an optimal Bayesian Markov policy f 

such that 

.,, 



7.20 f (x,q) = 0 if X S S (q) 

= 1 if X > S(q) , (x,q) E X X W 1 

wheres is a measurable function from W to x. 
(The values s(q) are called control limits). 

The proof proceeds in a familiar way (cf.[Ross (1970), th. 6.9]). 

LemJtla 7. 5 

There is an optimal strategy of the form, given in 7.20. 

Proof. 

• 
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We first show that the value function vis nondecreasing in the first co­

ordinate. 

Consider the sequence of successive approximations v 0 ,v1 ,v2 , ••• 

th. 3.14 we have lim v (x,q) = v(x,q), n 

of v where 

for VQ := 0, Vn := 

{x,q) E x x w. 
UV 1 • n- By 

n >00 

* * Note that, for O s x < x , q E W and n E: JN : 

v (x,q) = min{m (x) + S n 

R+S 

* \J(dy)p(y,q)v 1 (min(x+y,x ),T (q)) , 
n- Y 

* \J(dy)p(y,q)v 1 Cmin(y,x ),T (q))} • 
n- Y 

It is easily verified that * for q E W and n e: :N : 

· Bence x 

all q e: 

by(*), 

* v(dy)p(y,q)v 1 (min(y,x ),T (q)) • 
n- Y 

-+ v 1 (x,q) is nondecreasing , since x -+ m (x) is nondecreasing for 

W. Suppose that x -+ v 1 {x,q) is nondecreasinq for all q E w. Then, n-
x-+ v (x,q) is n nondecreasing for all q E w. Hence, by induction, 

x-+ v (x,q) is 
n nondecreasing for all q E: Wand n € lN and therefore x-+ v(x,q) 

is nondecreasing for al.l q E w. 
It is straightforward to verify that (x,q) -+ v 1 (x,q) is measurable and there­

fore, by (*) and an induction argument, {x,q) + v(x,q) is measurable (cf. 

lAmma 1.6 (iii)). Define, for x E: X and q E: W: 

d{x,q) := m(x) + S 

and 

* v(dy)p(y,q)v(min(x + y,x ),Ty(q)) 
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b (q) := R + 8 
* 

'V (dy) p (y ,q) V (min (y ,x ) ,Ty (q) ) • 

It is easy to verify that q + d (x,q) and q 4-- b (q) are measurable for x E X. 

Note that v satisfies the functional equation: 

(***) v(x,q) = min{d(x,q),b(q)} , * 0 S X < X I q € w. 

It is straightforward to prove that a strategy which chooses in each state 

* (x,q), o s x < x and q € w, a minimizing action in (***) is optimal. 

Let 

s(q) := sup{x(O * s x < x , d(x,q) ~ b(q)} • 

If q + s{q) is measurable, then the policy f defined in 7.20 is optimal. 

* To verify the measurability of q + s (q) note that for O s a < x : 

{q ~ wls(q) >a}= {q E w!d(x,q) 

= {q E wjd(x,q) 

b(q) for some x >a}= 

b(q} for some rational num­

ber x > al. 

Since q-+ d(x,q) and q-+ b(q) are measurable for all x E X we conclude that"' 

q -+ s (q) , q E W is measurable. □ 

* In the numerical exa11·tple the following data are used: x 

al1 x .s: x, R = 75, R* = 125 and (3 = 0.95 .. Further p{yle> = 

for y ~ Y = {0,1, ••• ,9} and a E: 8 = {0.1,0.2, ••• ,0.9}. 

= 25, m(x) = 0 for 

cg > e 9 c 1 - a > g-y y , 

Bence, if we start the system in an integer x, 0 $ x s 25 then the state 

is always an integer (cf. 7.19). 

-

X 
n 

1 
The prior distribution q on 8 is the unifoxm distribution, i.e. q({0}) - 9 I 

fore e 0. 

:Cn table 6 we display the optimal strategies for the models with known para­

meter values and the value function for a new machine, i.e. in x = O, for 

the various parameter values. 

table 6 

e 0.1 0.2 0.3 0.4 o.s 0.6 0.7 0.8 0.9 

.. s (8) 5 7 9 10 11 12 13 13 14 

V (0, 8) 461 546 60·0 639 670 693 714 731 745 

(the optimal strategy, when 8 is the true parameter, is '' replace if f x > s ( e) '') • 
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In table 7 we show for several horizons n: E(q,~ ,n). 
00 

table 7 

horizonn 0 1 2 3 4 5 6 7 8 9 10 

E(q,e; ,n) 6 .. 7 2.9 
ClO 

1.9 1.5 1 .. 2 1.0 0.9 0.8 0.7 0.6 0 .. 5 

Finally we show in table 8 for all q' € 

s(q') and the optimal value v(O,q'). As 

2 
un=O Wn(q) the optimal control limit 

in table 5 we represent q' E W (q) 
n 

by 

table 8 
• 

n n 
}: Yi n = 0 n = 1 n - 2 I Yi n - 2 - -

i==1 .. =1 

s {q') V (0 ,q 8 ) (q') v{O,q') S (q I) v(O,q') (q') V (O,q I) 

0 10 645 6 495 5 472 10 11 679 

1 7 529 6 483 11 12 691 

2 8 574 6 506 12 13 702 

3 9 615 7 535 13 13 712 

4 10 649 8 566 14 13 721 

5 11 675 9 593 15 13 730 

6 12 698 9 615 16 14 736 

7 13 716 10 634 17 14 740 

8 13 730 11 651 18 14 743 

9 14 738 11 666 

), 

E:ica1t1ple 7 • 3 Heade o:r tai Z.a 

We consider a simple gam~ with only one player, who may choose heads (action 1) 

or tails {action 2) of a coin with unknown probabilities: the probability 

of heads is e, o s e 1. The system has two states and 

pl.ayer has a choice. In state 2, the system stays there 

only in state 1 the 

with probability e 
or it goes to state 1 with probability 1 - a. If ''heads'' has been chosen then 

the system stays in state 1 with probability 0 and if ''tails'' has been chosen 

then it remains in state 1 with probability 1 - e. Otherwise the system 

moves to state 2. 
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Qnly in state 1 an :1.11m·,P,diate reward 100 is obtained, independent of the 

action chosen. The discount factor is B = 0.9, and the prior distribution q 
• 

on 9 • ( 0 , 1] is: 
• 

for i = 1,2, ••• ,9. 

It is easy to transfo:rm this problem into a model considered in section 7.1. 

At fi.rst glance one might think that the optimal strategy is: ''if the system 

is in (1,q) then choose heads if J eq (de) 2: ¼ and choose tails otherwise'' 

-(q E W). 

However, if we co11sider a prior distribution which is concentrated on the 

set {0,1}, then it is straightforward to verify that the action ''heads'' is 

:In table 9 the optimal. actions and the value function are displayed for the 

models with known parameter values. In table 10 we present, for four horizons 

and all possible posterior distributions, the value function in state 1, the 

upper and lower bound in state 1 and the optimal action. Note that there is 

a a1e•to-one correspondence between the posterior distributions and the 

nu11,tlb~r of ••beads 11 for each horizon. 
table 9 

e 0.1 0.2 0.3 0.4 o.s 0.6 0.7 0.8 0.9 

action (in 1) 2 2 2 2 1 or 2 1 1 1 1 
' 
' 

·. v(1,8) 910 820 730 640 550 561 578 609 678 
' 

table 10 

·_; horizon n number of R.(1,•) v(l,•) w(1,·) action ' 

' heads 

' 0 0 568 639 675 1 (heads) ' 

1 0 589 611 631 1 ' 
' 

' 1 670 687 718 2(tails) ' 
' 

2 i 0 604 611 622 1 
' 

' 1 562 ' 616 649 1 
! ! 

2 739 744 758 2 
. 

3 0 616 618 623 1 
" 1 575 595 617 1 

2 ' 636 652 682 2 

3 781 783 788 2 
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For the horizon n = 14 we have lE [ £ (Q ) ] = 8 .. 5. Note that the range be-
g: oo n 

tween the upper and lower bounds are relatively large compared with the 

ex.a1raples 7. 1 and 7. 2. 

Exa1nple 7 ... 4 · Tax1: driver's prob Zem 

We consider a model that fits into the setting of sec·tion 7. 2 .. At the cab-

rank a taxi driver is offered a run of 

If he accepts this run he will be away 

size Y E Y c JN , at each stage n. n 
for Y stages and if he refuses the n 

run he remains in the cab-rank .. The random variables Y
1

,Y
2

,Y
3

, ••• are i.i.d. 

and observable if and only if the taxi driver is in the cab-rank. The distri­

bution of Y is incompletely known. Only at the cab-rank the taxi driver n 
chooses an action a £ A = Y .. Action a means: ''accept all runs larger than 

or equal to a and refuse the runs smaller than a''. Only if he accepts a run 

of size y E Y he obtains a reward r(y), where y 7 r(y) is nondecreasing. 

To transform this model into a Bayesian control model define the state space 

X by 

X := {O}· u { (n,k) I k = 1, ..... ,n - 1, 

and the transition law by: 

* n E JN } 

P({n, k + 1) }I {n,k) ,a,y) = 1 

P({O} I (n,n -1) ,a,y) = 1 

P({(n,l)}lo,a,n) = 1 

for 1 ~k< n-1, 

for n E * JN 

* for n E lN • 

I 

Note that, if the system is in state (n,k), 1 k ~ n - 1 , the taxi has been 

away fork time units on a trip of n time units in total. Further p(• le) 
is the probability density of Y with respect n to the counting measure on JN, 

fore E 8, where 8 is the parameter space. • • 

We consider the operator u
0 

(cf .. 6 .. 7) and we obtain the optimality equation 

for the taxi driver's problem: 

V (0 ,q) = sup[ l p(y,q){r(y) 
ae:A y2a 

+ f3Yv(O,T (q))} 
y + S l p(y,q)v{O,T (q))]. 

y<a y 

In the nwnerical example we used the following data: 

where b(0) 

Y = {1,2, ••• ,10}, r(y) = eY, 

p(yle> = b(0) •exp{- (y - 0) 2 }, 

ye: 

y E Y, 

y E Y, 

= 0.9 , 

e € 0 = {1,2, ••• ,10} 
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The prior distribution q is unifoxm, i.e. q(S) = 0.1, 6 ~a. 
Note that {p(•}e), e E 0} is an exponential family and there is a one-to-

11 

we display optimal strategies and the value function v in state O for the 

models with known parameter values. 

In table 12 we display for several horizons n the value E (q,e: 0 ,n) (cf. 7 .16). 

This quantity is obtained using nu.r:mal approximation (cf. remark {iii), 

. section 7.1) for n > S. 

table 11 

e 1 2 3 4 5 6 7 8 9 10 

action 2 3 4 5 6 7 8 9 10 10 

v(0,8) 6 16 43 118 321 874 2376 6448 15997 21207 

table 12 

• 

horizon n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
• 

. 

E(q,£0 ,n) 327 253 153 125 80 64 44 36 25 20 13 11 8 6 

For all q• E w1 (q) u w2 (q) the value function in (O,q'), v(O,q') and the 

optimal actions are shown. (Note that each posterior distribution is re­
n 

presented by ri=l y 1 , y1 € Y.) 

table 13 

n • 0 v(q) - 4508 -

n = 1 Y1 1 2 3 4 5 6 7 8 -~ 9 10 
.. 

v(O,q 4
) 8 17 49 134 366 995 2697 6992 14960 19859 

action 3 4 5 6 7 8 9 10 10 10 

n = 2 Y1 + Y2 2 3 4 5 6 7 8 9 10 

v(O,q') 6 9 15 28 44 76 120 209 326 

action 2 3 3 4 4 5 5 6 6 

Y1 + Y2 11 12 13 14 15 16 17 18 19 20 

v(O,q') .. 68 887 1544 2412 4187 6493 10665 15704 19100 20798 

action 7 7 8 8 9 9 10 10 10 10 

15 

5 
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Example 7. 5 Compound rep tacement 

We consider another model that fi~s into the setting of section 7.2. Con­

sider a replacement problem with two types of machines. If the controller 

decides to replace his machine he is not sure of what type the new machine 

will be. The probabilistic behaviour of both types of machines is known. 

However the probability of obtaining a machine of type 1 is 0 E(0,1), and 

a machine of type 2 is 1 - e. The parameter e is unknown. We first describe 

the machines. The life time of a machine of type i (i = 1 or 2) is geometric 

with parameter p 1 , p 1 = 0.9 and p 2 = 0.8. If a machine is ''alive•• at stage n 

the controller may replace it (action 1) by a new one (of type 1 with pro­

bability e and of type 2 with probability 1- 0). The costs of such a re­

placement are Ci for machine i: c 1 = 10, c2 = 21. If the controller decides 

to ~eep the machine i at stage n he has to pay maintenance costs m1 (n) with 

probability p. and he has to pay costs for an emergency replacement R. with 
i 1 

n 2 * probability (1 - pi). Here m
1 

(n) = 3(
10 

+ 1) - 3 for n € lN , 

n 2 * m2 (n) = 4 ( 10 + 1) , n e lN , R1 = 10 and ~ = 2 5. 

The discount factor is 8 = 0.9. 

we transfor111 this model into a Bayesian control model. in the following way. 

Let Y = { o, 1 } and p (y I e) = eY C 1 - e) l -y, y e Y, a i:: Co, 1 ) • Let 

I { } "'-T *} { } (i ) th t X = { 0} u { ( i , n) i = 1 , 2 , n e: .a.'11 and A = 0 , 1 • State , n means a 

we have a machine of type i of age n. State O means that we are replacing 

the machine .. The actions have the same meaning as in exaniple 7.2. The trans­

ition law is given by 

P({ (i,n + 1)} I (i,n) ,O,y) = p. • 
l. 

P({O} I {i,n) ,O,y) = 1 - pi . 

' 

* '\ P ( { 0} I Ci ,n) , 1 ,y) = 1 , i E {1,2}, n e: JN and all y E Y • 

Pc { <Y, 1 > l Io, o, Y> = Pc { cy, 1 > 1 I a, 1 , y> = 1 , 

The cost function is: 

c( (i,n) ,1) = C. , 
l.. 

c(O,O) = c(0,1) = O. 

i e: {1,2 }, n e: 

y € y • 

* JN • 

We consider the 

to the proof of 

operator u 0 (cf. 6. 7) • It is easy to show, in a way si.milar 

* lemma 7. 5 that the 11 interesting'' strategies in the set F 

(cf. 7.12(i)) are characterized by two control limits n
1

,n
2 

* € JN such that 

the controller chooses action O if and only if the system is in state (i,n) 
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* with n < ni, i ! {1,2}. This means that in 7.13 the maximizing f E F is 

found in this class, for all adm1$sible scrapfunctions b. 

using this property, we find the optimality equation (cf. 7.17): 

7.21 v(O,q) = 8p(l,q)min *{A1 (n) + B1 (n)v(O,T1 (q))} + 
nEJN' 

where 

A. {n) = 
l. 

+ 8p(O,q)min *{A2 (n) + B2 (n)v(O,T0 (q))} 
ne:lN 

, i € { 1,2} , n E 

• 

(here A1 (n) equals 

are defined in 7.12 and 

and 

* f e: F 

Bi (n) equals df({i,1}) where cf and df 

is the strategy that replaces only in 

states (i,k) with k ~ n). 

I.n the n1nnP-rical example we have modified the model in such a way that the 

state space X becomes finite: in states (i,10}, i € {1,2} we allow only the 

action 1, i.e. we always replace the system in these states. 

The prior distribution q is given 

Bence all posterior distributions 

In tah1.e 14.we display the values 

1 9 
are concentrated on the set { 10 , ••• , 101. 
v (0 ,e) , e e: 0 and the optimal strategies 

for these parameter values. The strategies are characterized by pairs of 

n1imbers (n
1 

,n
2

) indicating the control limits for both machines. 

After that, in table 15 we display the values E(q,E 0 ,n) (cf. 7.16) for 

several horizons n. 

table 14 

e 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 .. 9 

V (0, 9) 87 79 71 64 57 51 45 39 34 

nl ,n2 10,6 10,5 10,5 9,4 9,4 8,3 7,2 7,2 6,2 
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table 15 

horizon 1 2 3 4 5 6 7 8 9 10 11 12 

E (q, e:
0 

,n) 56 46 40 35 30 27 25 23 20 19 18 17 

X 0.01 

,..,, 
Note that each posterior distribution q of q is completely characterized by 

the r,.11rober of times y i deter-

mines the posterior distribution. In table 16 we display, for the first 7 
,..., "" ,..._, 6 

stages, the value function in (O,q), v (0 ,q) for q E un=O Wn {q) and the 

optimal control limits the two types of machines (for example 
-

i= 
then n 1 = 7 , n 2 == ,3 and v ( 0 , q) = 4 8) • 

table 16 

n 
1:.=1yi 0 1 2 3 4 5 6 

n 

0 49 

7,3 

1 56 42 

7,3 6,2 

2 60 48 38 

8,3 7,3 6,2 

3 63 53 43 35 

8,4 7,3 6,2 6,2 

4 65 57 48 40 34 

8,4 8,3 7,3 6,2 6,2 
• 

5 66 60 52 45 38 33 

8,4 8,3 7,3 7,2 6,2 6,2 

6 67 62 55 48 42 36 .32 

9,4 8,4 7,3 7,3 6,2 6,2 6,2 
•• 
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APPENVIX A. RESULTS FROM ANALYSIS 

1. .l.,V ytic. .o e.t.6, .6 eml-an.a.£.ytic. ou.ndlon..6 and 1t..eletted .oubj e.c;u 

We s 11mmarize some pertinent facts about analytic sets and semi-analytic 

functions. For analytic sets we refer to [Parthasarathy (1967)]. Similar 

su111111aries are found in [Blackwell, Freedman and Orkin (197 4) J and [Shreve 

(1977) ]. 

Let N be the 

endowed with 

* * Cartesian product of countably many copies of lN where lN 

the discrete topology and N with the product topology. Let X 

be a complete separable metric space. 

• 
J.S 

A subset Ac Xis called anaty~ic if there is a continuous function from N 

to X with f(N) = A, moreover~ is analytic. The following properties hold. 

The proofs are found in [Parthasarathy (1967) chapter I section 3]). 

Al Each Borel subset of a Borel space is analytic. 

A2 countable unions, intersections and Cartesian products of analytic sets 

are analytic. 

A3 If A and Bare analytic subsets of Borel spaces (X,X) and (Y,Y) respect­

ively and if f is a Borel measurable function from X to Y then f(A) 
-1 

and f (B) are analytic. 

As a consequence of A3 we have: 

A4 If A is an analytic subset of Xx Y then projx(A) is analytic. 

Let (X,X) be a Borel space. For each p € P(X) we have the o-field 

X :={Bu AIB € X, and there is a C € X such that Ac C and p(C) = O}. 
p 

\, is called the aorrrp"letion of X with respect to p. The universal a-field 

UX is defined by UX := n X. A€ Ux is called universat.ty measurable. 
pe:P (X) P 

AS Every analytic subset of a Borel space is universally measurable. 

For a proof see [Christensen (1974) th. 1.5 or th. 1.7]. 

A6 For each probability pc P(X) where (X,X) is a Borel space, there is a 

* unique extension p on U. And for each real-valued function f on X 
X 

which is U -measurable there is for each p e P {X) an X-measurable function 
X ,..., -

f such that f = f p-a.s. (the proof is straightforward). 

A7 Kura.towski theopem (see [Parthasarathy (1967) chapter I corollary 3.3]). 

If (X,X) and (Y,Y) are Borel spaces and f: X + Y is Borel measurable 
-1 

and one-to-one, then f(X) is a Borel subset of Y and f is Borel 

measurable. 
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Let (X,X) be a Borel-space. A real-valued 

semi-analytic (l.s.a.) if {xi f{x) < c} is 

function f on Xis called ZoweP 
• 

analytic, for c E IR, and f is 

called upper- senti-ana 1,ytia (u. s • a.. ) if -f is 1. s • a .. 

The following properties hold. 

AB If f and g are l.s.a.. (u.s.a.) then f + g is l.s.a. (u.s.a.) If fk, 

k E: JN are 1. s. a. then inf fk is 1. s • a. and if fk , k € JN are u. s •a• 
k 

thens~ fk is u.s.a. 
k 

Proof. 

Note that: {xf f (x) + g (x) < c} = u {x If (x) < y, g (x) < c - y} where Q is 
ye:Q 

the set of rational numbers. Further {xlinf fk(x) 
k 

So by A2 the statement has been proved for 1. s • a. functions. For u. s • a. 

functions the proof follows from the definition. D 

A9 Let (x,X) and (Y, Y) be Borel space, and let g : X ➔ Y he a Borel function 

and fa l.s.a.. (u.s.a.) function on Y. Then f O g is l.s.a. (u.s.a.). 

Proof. 

Let f be l.s.a.. 

Then {ylf(y) < c} is analytic, force: JR. Hence {xlf(g{x)) < c} = 
{xlg(x) E {ylf (y) < cl} is analytic, by A3. 

Simi larl..y if f is u.s.a. 0 

•• .. 
Al O Let (X ,X) and (Y, Y) be Borel spaces and f : X x Y + JR be bounded from 

above and meas11rable /1.s.a./u.s.a. Further let P be a transition prob­

ability from X to Y. Th.en the function x -+ f £ (x ,y) P (dy l x) is measurable/ 

l.s.a./u.s.a. 

Proof. 

J:f f is l.s.a./u.s.a. the proof can be found in [Shreve (1977) th. 2.4]. 

Note that a function is measurable if and only if it is both l. s. a. and 

u.s.a., which proves the statement if f is measurable. □ 
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All If f is l.s.a. or u.s.a. then f is unive.rsally measurable .. 

(the proof is trivial}. 

2. Seml-c.on.u.nu.oc.u, 6u.n.c.tloM a.nd me.MUJta.b.te -6el..~c.Uon6 

Let X be a metric space. A real-valued function f on Xis called upper semi-
• aont~nuous (u.s.c.) at x0 ex if Jim sup f(xn) ~ f(x0 ) for any sequence 

n ),CO 

{x Ix e: X, n e: JN } such that n n 
wus (l.s.c.) if -f is u.s.c. 

lim xn = x 0 and f is called Zower semi-aontin­
n-+00 

A12 Let f be u.s.c. on the metric space x. Then there is a non1ncreasing 

sequence of bounded continuous functions {fk, k e: ::N} on X such that 

ljm fk =: f. 
k >oo 

For a proof see [Hausdorff (1957) section 4.2]. 

A13 If f and g a.re u.s.c. (l.s.c.) then f + g is u.s.c. (l.s.c.). If 

{fk, k e: ::N} is a nonincreasing sequence of nonpositive u.s.c. func­

tions then f := lim fk is u.s.c. 
k )CO 

For a proof see [Hinderer (1970) page 32]. 

A14 Let g be continuous and nonneqative, and let f be u.s.c. {l.s.c.) and 

bounded. Then f. g is u. s • c. ( 1 • s • c • ) • 

For a proof cf. [Hinderer (1970) lern111a S.S(ii)]. 

A15 Let X and Y be metric spaces, g a continuous function from X to Y and 

f is u.s.c. (l.s.c.) on Y. Then go f is also u.s.c. (l.s.c.). 

Proof. 

Let X n 
E X (n E JN) with lim X n 

lim sup 
n• ►OO 

n• >CX> 

f(g(x )) n 

= x
0

• Then,since lim 
n·•➔ oc 

g(x) 
n 

D 

A16 Let A be an index set and let fk, k e A be l.;.s.c. Then sup fk is l.s.c. 
kEA 

Proof. 

Let X E x, 
n 

lim inf sup 
n• ➔ OO keA 

n 

€ A is u.s.c. then inf fk is u.s.c. 
keA 

€ JN and lim xn = X • 0 
Then 

n•>oo 

fk(xn) lim inf fk (xn) > fk (xO) for all k -
n >co 

E A. □ 
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We continue with a result of Schal on measurable selections. We first intro­

duce some notations. 

, 

Let (X,X) and (A,A) be Borel spaces. 

L(X x A) := {f: Xx A+ :IR! f is bounded Borel measurable and a+ f(x,a) is 

continuo,1s } • 

L(X x A) := {f: Xx A+ :ml f is Borel measurable, bounded from above and 

f is the limit of some noninczeasing sequence of functions 

-

f E: L(X x A)}. n 

A17 Let A be compact and f ~ L(X x A). Then there is a measurable mapping 

g: X -t- A such that 

• 

• 

f (x,g (x)) = max f (x,a) • 
ae:A 

For a proof see [Schal (1975) th. 12.1]. 

•• 
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APPENVIX B. REMARKS ON THE MINIMAX CRITERION 

Consider the Bayesian control model (cf. 2.1). Instead of rating the 

strategies 7T ~ TI by their Bayesian discounted total returns (cf 2.12) we 

* might say 7T is at least as good as ,r in state x, if 

inf 
0E8 

* v(x,8,,r) inf 
8€8 

V (X, 6, 7T) • ,. 

* Let e ~ O. A strategy n ~ TI is called e:-minimax in state x € x, if 

inf 
ee:e 

* V (x, 8 ,,r ) 2:: sup 
ire: rr 

inf 
6e:0 

V (X, 8, 'Tr) - E: • 

A a-minimax strategy is simply called minima:c. 

A te1.1n ''maximin'' woul.d be preferable, however in statistical decision theory 

the te.r10. ''minimax'' is current since one is interested in minimizing the ex­

pected 1oss instead of maximizing the expected return (cf. [Wald (1947)]). 

We shall discuss a nice property of the Bayes criterion, which the minimax 

criterion does not have. Let 1T = (Tr
0

,Tr
1

, ••• ) e IT be an optimal strategy for 

the Bayes criterion, if the process is started in state x e X and if 

q e: Wis the prior distribution. Let the history at stage 1 be (x,a,y,x') 

and define similar to 3. 22 the ''tail-strategy'' * TI' * * = ( 7T O ' ;r 1 ' • • • ) by 

* for k E: lN .. Then it is easy to verify that the strategy Tr is opt.imal. for 

the Bayes criterion if the process is started in x' with respect to the 

prior distribution r. I 1K (x,a)T. (q). 
l.€ i i,y 

Hence the decision maker, who chooses a strategy that is optimal for the 

Bayes criterion, uses at each stage a strategy that is optimal for the Bayes 

criterion from that stage on, with respect to an ''updated'' prior distribution. 

In fact this property is the well-known ''principle of optimality'', for the 

equivalent dynamj,c program (model 2) • In [Groenewegen (1978) J this principle 

is studied extensively. The property discussed above, enables us to compute 

the value function and the optimal actions by backward induction. 

However, we show by an example that the mi,nimax criterion does not have this 

property. A decision maker, who prefers the minimax criterion might be con­

sidered as a pessjmi.st. However in the e:>rample he seems to forget his pes­

simism after one transition. 

Another unpleasant property of the minimax criterion is that we may not 
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restrict our attention to the nonrandom1zed strategies. In the eJCaropl.e it 

turns out that none of the nonrandomized strategies is optimal. 

E>tample. 

3 We start with an infor1nal description. 

, 

0 

2 
4 

Only in states O and 1 there are two 

actions. In all other states the tran­

sitions are deterr11i nistic. If the decision 

maker chooses action 1 in state O then the 

next state will be 1 with probability e 
and 2 with probability 1 - e. If he 

chooses act.ion 2, then the system moves to state 1 with probability 1 - 6 

and to state 2 with probability e. In state 1 the two actions have-the sam~ 

effect with respect to the states 3 and 4. The parameter 6 is unknow11. In 

state 2 the reward is large comp,ared with the rewards in the other states. 

~hi• causes the 11 least favo11rable 11 parameter value for each strategy to 

C'!ompletely dete.ct11i.ned by the action chosen in state O, if he starts there. 

We continue with a formal description of the example in te.rms of model 1. 

X • {0,1,2,3,4}, Y = {0,1}, A= {1,2}, D(O) = D(l) = A, 0(3) = D(2) = 
• D(4) = {1}, 8 = {0.1,0.9} and I is a singleton. The transition probab~ . 

ill ties are deternii ned by a function F : X x A x Y -+- X in the following 

way P({F(x,a,y)}jx,a,y) = 1 (cf. example 2.3 chapter 1): 

F{0,1,y> = 1oc1,y> + 20co,y> , FC0,2,y> = 2oc1,y> + 1aco,y) 

P(l,1,y) • 3~(1,y) + 4o(O,y), F(l,2,y) = 4o(1,y) + 3o(O,y) and F(2,1,y) = 4, 

F ( 3, 1 , y) = 3 , F ( 4 , 1 , y) = 4 for al 1 y E Y. 

Flll'ther p (y I 6) = eY ( 1 - 8) l -y for y E: Y and e t: 8 • 

'l'be reward function r is given by •• 

r(0,1,y) = 8, r(0,2,y) = 1, r(1,1,y) = 25, r(l,2,y) = 20 

r(2,1,y) = 20,0, r(3,1,y) = 2, r(4,1,y) = 14 for ally e: Y, and the discount 

factor B = ~. We omit y in the notation for r. First we consider a decision 

maker who starts in state O. Any strategy for him can be characterized by 

three n111,nber~ a, b, and c. Here a is the probability of choosing action 1 

in state O, b the probability of choosing 1 in state 1 if in state O action 

"1 is chosen, and c is the probability of choosing action 1 in state 1 if in 

state O action 2 is chosen. 

Let v(0,8,(a,b,c)) be the expected discounted total return in state O for 

the stra gy given by a, h and c, if e is the true parameter value. It is 

, 
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straightforward to verify that 

e v(0,9, (a,b,c)) 

0.1 a(0.73b - 6.57c + 83.32) + 6.57c + 22.14 

0.9 a(-2.07b + 0.23c - 65.48) - 0.23c + 98.94 

Note that, for fixed b and c, the maxim1.lm over a e: [ 0, 1 J of 

· is attained for 

min 
8€0 

v(O,e, (a,b,c)) 

76.8 - 6.8c a= 
148.8 - 6.8c + 2.8b 

and 

f(b,c) := max min v(0,6,(a,b,c)) 
a a 

76.8 - 6.8c + = 148 • B _ G • B c + 2 • Sb ( 0 • 7 3b - 6 • 5 7 c + 8 3 • 3 2) 

+ 6.57c + 22.14. 

FUrther note that f(b,c) attains its maximum over (b,c) 
2 

E [ 0 , 1 J in a bound-

ary point. It turns out that the opt-imal pair (b ,c) is (0, 1), and 

f{0,1) = 65.54 •••• 

Bence the optimal strategy is: a= 0.49 ••• , b = 0 and c = 1. 

:It is easy ta verify that all nonrandomized strategies are less good than 

this strategy. 

Next we consider the minimax strategy for the situation that a second deci­

sion maker starts in state 1. Suppose this second decision maker has 

the same infoxmation concerning the unknown parameter as the first decision 

maker, i.e. he perfo.t ,ris a Bernoulli trial with parameter 6 • Hence he works 

with the cond.itiona1 distribution, given this observation. However, since 

this experiment is independent of the process, it does nqt change the tran­

sition law for the second decision maker. 

(Note that if the parameter set would be {0,1} then the observation of the 

experiment woul.d reduce the parameter set to a singleton.) 

The strategies for the second decision maker are characterized by the prob­

ability d of choosing action 1. Note that 

e v(1,8, (d)) 

0.1 37.Bd + 23.2(1 - d) 

0.9 28.2d + 32. 8 (1 - d) 
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Bence the opt:i,il\al strategy is: d = 2:1. 

so, if the first decision maker reaches state 1, he does not randomjze but he 

chooses action 2 if he has chosen action l in state O, otherwise he chooses 
• 

acUon 1, and the second decision maker randomizes between the two actions 

with probability~- The first decision maker acts in state 1 as if he knows 

the true parameter in state 1. 

• • 

• 



• 
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