K.M. VAN HEE

MATHEMATISCH CENTRUM AMSTERDAM 1978



gﬁﬁ%@@w
AMS (MOS) Classification scheme (1970): primary 90C40, c2C10, 49D99,;
secondary _62€10

ISBN: 90 6196 163 7



1.
1.1

7.3

CONTENTS

Acknowledgement

INTRODUCTION

Historical perspective

Informal descriplion o4 the model
Summary o4 the {ollowing chaptens
Notations, conventions and prerequisites

THE MODEL AND THE PROCESS OF POSTERIOR DISTRIBUTTIONS
The Bayesian controlf model

Posterion distrnibutions

Limit behaviour of the posterion distrnibutions

THE EQUIVALENT DYNAMIC PROGRAM AND OPTIMAL REWARD OPERATORS
Trans formation into a dynamic program

A class of optimal rewarnd operalorns

Miscellaneous rnesults forn the Bayesian contrnol model

BAVESIAN EQUIVALENT RULES AND THE AVERAGE-RETURN CRITERION
Bayesian equivalent rules and other approaches
Optimal strhategies forn the average-retuwn crniterion

BAYESTAN EQUIVALENT RULES AND THE TOTAL-RETURN CRITERION
Preliminanies and the independent case

Linean sysitem with quadratic costs

A simple inventory control model

APPROXIMATIONS

Bounds on the value function and successive approximations
Discrnetizations

COMPUTATIONAL ASPECTS AND EXAMPLES

Algornithm for models where 1 48 a singleton
Algornithm for models witn kRnown trans«tion Law
excepl fon one statle

Numestical examplesd

VII

10

19
26
33

43
53
65

71
74

91
98
108

121
138

149
157

161



V1

APPENDIX A. RESULTS FROM ANALYSIS 175
APPENDIX B. REMARKS ON THE MINIMAX CRITERION 179

REFERENCES ' 183

LIST OF SYMBOLS 189



VII

Acknowlfedgement

This monograph contains a part of the results of my research, carried out

at the department of mathematics of the Eindhoven University of Technology,
during the years 1974 until 1978.

I am very grateful to my thesis advisor prof. dr. Jaap Wessels for his
encouragement and many stimulating discussions, and to my co-promotor

dr. Fred Steutel for his very careful reading of the manuscript which led

to many improvements.

To prof. dr. Arie Hordijk I wish to express my gratitude for arousing my
enthusiasm for Bayesian decision theory and dynamic programming. I am in-
debted to dr. Fred Simons for his support tc the measure theoretical problems
that appeared during my research.

Further I would like to thank prof. dr. Jaap Wessels and my colleagues in his
group dr. Luuk Groenewegen, dr. Jo van Nunen, Jan van der Wal and dr. Jacob
Wijngaard for creating an excellent working atmosphere.

I thank Ruth Kool for his computing assistance and Lieke Janson and Mareése
Wolfs for their excellent typing of the manuscript.

Finally I am indebted to the Mathematical Centre for the opportunity to
publish this monograph in their series: Mathematical Centre Tracts, and to

all those at the Mathematical Centre who have contributed to its technical

realization.



1. INTRODUCTION

In this monograph we study the control of Markov chains with incompletely
known transition law. The Bayes criterion, which is used explains the name
of the monograph. We start this chapter with a short historical overview of
the problem field (section 1.1), In section 1.2 we give an informal descrip-
tion of the model we are dealing with.

Then we summarize the contents of the following chapters (section 1.3). We

conclude this chapter with a summary of notations and prerequisites (section
1.4).

1.1 Hustorical perspective

After A. Wald founded (statistical) sequential analysis, it was R. Bell-
man who recognized that the technique of backward induction, which is fre-
quently used in sequential analysis, is also applicable to a wide range of
non-statistical sequential decision problems (cf. [Wald (1947) ], [Bellman
(1957) ]) . Bellman formalized the technique and called it dynamic programming.
In [Howard (1960) ] the first extensive treatment is found on the relations
between dynamic programming and the control of Markov chains. Independent-
ly, in [Shapley (1953) ] sequential control problems concerning Markov chains
are studied, using a game theoretic formulation. Later on, in [Blackwell
(1965) ] and [Derman (1966) ] the results of Howard are refined and extended
for the criterion of expected total rewards and the criterion of expeeted
average rewards, respectively. Blackwell and Derman started an explosive
development of the theory of control of Markov chains.

Before enclosing the problem field we first specify what is meant by a
aynamic program or a Markov decision process. A dynanic program is a system
that is determined by a state space,an action space, a reward function and
a transition law, such that for each pair (state, action) a probability
distribution on the state space is specified. At discrete points in time,
called moments or stages, the controller or decision maker chooses an ac-
tion from the action space. Then, according to the transition law, the

; system moves to a new state and an immediate reward is obtained, depending
on the state before the transition, on the action itself and on the new
state. A recipe for choosing an action at each stage, is called a strategy.
To apply the resultsof dinamic programming in practice, one has to know the
transition law. Unfortunately it seldom happens that these probability

distributions are known. So the controller has tco estimate the transition



law during the course of the process. Therefore, apart from the control prob-
lem, there is an estimation problem. }

From now on we assume that the transition law depends on an unknown param-—
eter, which belongs to some parameter set, Therefore the expected return

at each stage depends on the unknown parameter and so we have to choose a
criterion to measure the return at each stage. In literature the Bayes cri-
terton is mainly used (cf. section 1.2 for a definition). The first attempts
in the field of dynamic programming with an incompletely known transition
law have been made by Bellman (see [Bellman (1961)]). He used the term
adaptive control of Markov chains. Bellman noticed that, if the Bayes cri-
terion is used, the problem can be transformed into an equivalent dynamic
program with a completely known transition law and with a state space which
is the Cartesian product of the original one and the set of all probability
distributions on the parameter set. This transformation is also suggested

in [Shiryaev (1964)], [Dynkin (1965)1 and [Acki (1967)] for models, which
allow unobservability of the states, and in [Wessels (1971), (1972) ]. In
[Hinderer (1970)] the first systematic proof is given for the case that the
state and action spaces are both countable, and afterwards in [Rieder (1972),
(1975) ] the transformation is given for complete separable metric state
and action spaces. In fact it is shown that, for the Bayes criterion, the
posterior distributions of the unknown parameter are sufficient statistics.
In [Wessels (1968) 1, among other things, the problem of sufficient statis-
tics is studied in connection with several other criteria, such as the minimax
criterion. Almost all other authors considered only the Bayes criterion and
studied the equivalent dynamic program, mentioned above. In [Martin (1967)],
[ Rieder (1972)], [Satia and Lave (1973)], and [Waldmann (1976)] the method
of successive approximations for the equivalent dynamic program is studied.
Only Satia and Lave tried to exploit the special structure of this dynamic
program. In [ Fox and Rolph (1973)], [Man&l (1974), (1976)7], and in [Rose
(1975) 7] optimal strategies are constructed for the criterion of expected
average return. Herxre it is possible to construct strategies which are at
least as good as all other strategies, for all parameter values, hence it

is not necessary to work with the Bayes criterion or anything like it.
Special models, arising in control theory are studied in [Sworder (1966) ]
and [Aoki (1967)]. Inventory control models with an incompletely known de-
mand distribution are studied in [Scarf (1959)], [Iglehart (1964) ],

[Wessels (1971), (1972)], [Rieder (1972)]1, [Zacks and Fennel (1973)] and in



[Waldmann (1976) 1. A number of other problems can be found in the literature.
The most famous one is the two-armed bandit problem. We will return to most
of the contributions of the above-mentioned authors in the other chapters
of this monograph. The number of publications in the field of dynamic pro-
gramming with an incompletely known transition law is very small compared
with the overwhelming amount of literature on dynamic programming with a
known transition law.

We conclude this section with a sketch of the problems we examine in this
monograph. We choose the Bayes criterion too. From a mathematical point of
view this criterion has the advantage, as compared with the minimax cri-
terion, that the model can be transformed into the so-called equivalent
dynamic program. Further it has the nice property that the decision maker
may express his opinion on the importance of the various parameter values,
which characterize the unknown transition law, by a weight function. Even
1f the model with known transition law has finite state and action spaces,
the equivalent dynamic program has a state space whichis essenticzZZy infinite.
However, the method of successive approximations to determine the optimal
expected total return is workable, since in order to determine the n-th
approximation we have to consider all possible paths through n stages of
which there are a finite number, if the state and action spaces are finite.
The effort needed to obtain good approximations proved to be very large in
the studies of Martin and Satia and Lave (in [Martin (1967) ] examples with
only two states and two actions turn out to be very time-consuming and in
[satia and Lave (1973)] examples with four states and two actions are con-
sidered to be of "moderate-size"). One of the objectives of our study is

to show that the method of successive approximations can be applied success-
fully to rather large models, that have a suitable parameter structure.

Our analysis is based on the construction of special scrap-vectors for the
successive approximation method and on the exploitation of the convergence
of the posterior distributions. We note that some results of our analysis are
also interesting for the problem of robustrness of the model under variations
in the parameter value. In section 1.3 we specify the approximation methods
we advocate, in an informal way.

Another objective of our study is to show that there are easy-to-handle
optimal strategies for maximizing the average expected return, and also for
some practical examples of our model for maximizing the expected total re-

turn. At the end of section 1.2 we consider this matter in more detail.



1.2 Infoamal description of Lthe model

We start this section with a motivation of the choice of the model we study

in this monograph: the Bayesian control model.

Consider a dynamic program with finite state and action spaces. It sometimes
happens that a transition is affected by a random variable which is observ-
able for the decision maker, but the value of which cannot be reconstructed

from the state values of the process. For example consider a waiting—line

model in discrete time, where Yn is the number of arrivals in the time

+1
period Ln,n+ 1) and where Xn is the number of customers in the system at

‘ . rmined b
n+1 is not determine Y Xn

, 1if the number of services completed in each time interval 1is

time n. Then it is obvious that the value of Y

and xn+1

random. If the distribution of the random variable Yn is incompletely known,
then it is useful to keep this random variable as a supplementary stqte
varitable. Confining ourselves to the state values of the original process
only, means that we throw away information concerning the transition law.
ITn our model we assume that for each state and action the transition may

be affected by a random variable, the value of which is observed by the
decision maker immediately after the transition. The value of this random
variable is obtained by a random drawing from a distribution, depending
only on the actual state and action. There are at most countably many 4dif-
ferent distributions from which is sampled. Further we assume that only
these distributions are incompletely known. We call these random variables
supplementary state variables. In case the transition, for some state and
action, is not affected by a supplementary state variable we may consider
the next state variable itself as a supplementary state variable. We re-
turn to this point in chapter 2.

We now continue with the model description. For simplicity, we assume here
that all considered sets are finite. Let the state space be denoted by X
and the action space by A. Further let the random variables X and A de-
note the state and action at stage n, respectively. The transition to state

Xn +17 given Xn and An is also affected by the outcome of the supplementary

state variable Yn +1 which is cobserved at stage n + 1 and which takes on
values in the set Y. This works in the following way. The conditional pro-
bability of Xn+1, given Xn = X, An = a and Yn+1 =y, 1s

P [X = x' X =x , 42 =a , X my]mp(}{'lx,a,y)

n+1 n n n+1l



whexre the function P is assumed to be known.

However, the random variables Yn+1' Xn and An are dependent, while the con-

diticonal distribution of Yn+1’ given Xn and Ah depends on some unknown para-

meter 6, which belongs to a given parameter set 8, i.e. we have

r [y = Y l X =x, A = al] = E lK‘(x:a) pi(Yie)
1€l 1

where {K,, i € I} is a partition of X X A, and I is some index set. Hence

i
the distribution in the set {pi('le), i € I} from which the random variable

Y is sampled depends on the state and action at stage n. Further, if

n+1
X =X , A = aand Y = y there is an immediate, possibly negative, re-

n n n+1
ward: r(x,a,vy).
Although the model may seem to be rather artificial, there are many well-

known models which fit into this framework. For example, inventory control

models, where X is the inventory level at time n and Yn+1 is the demand

n
during the interval [n,n + 1). Here we always sample Y_from the same dis-

n
tribution, hence I is a singleton. Also the ordinary dynamic program with
finite state and action spaces and all transition probabilities unknown, is
included in our model. We return to this matter in chapter 2.

We note that, if the parametexr 68 is known, we are dealing with a dynamic

program with state space X, action space A, transition law:

PLx = x' X =x, A_ = al =J;(x‘lx,aj 1= z 1., (x,a) Z P(x"x,a,y)p*(yle)r
n+1 n n . K, 1
1€l 1 VEY

K

r(x,a) := z 1 (x,a) z pi(yle)r(x,a,y) .
€l 1 veEY

In this monograph X,Y¥,A and Y are complete separable metric spaces, but the

index set I is at most countable. Hence we do not allow more than countably

many unknown distributions pi(-le), i eI and 6 € 9,

A strategy m™ is a procedure which chooses at each stage n an action, based

on the history of the process, i.e. XO’AO’Yl‘xl’AI"”’Yn’xn'
Each strategy 7, each parameter value 06, and each starting state x to-
gether determine a probability on the sample space of the process . The

expectation with respect to this probability of the immediate reward at

stage n is denoted by:



-

) I I

The expected total discounted return v(x,6,m) is:

v >
T ‘ n
v(x,0,m) := mx’8[n£08 (X ,A_,¥ )]

where B ¢ [0,1) is called the discount factor.

Only in trivial situations there is a strategy " such that

v(x,e,w*) > v(x,0,7) for all x € X, 6 € 8 and all strategies T. So it is un-
wise to use this as a criterion for a strategy to be optimal. Criteria for
which there are always (nearly) optimal strategies, are the already mentioned
minimax
minimax criterion, if

o .
and Bayes criteria. A strategy ™ 1is. called e-optimal, € 2 0, for the

min v(x,e,n‘*) 2 min v(x,0,7) -€ for all x e X, 0 € 8
6eB 0B

and all strategies m. We do not use this criterion. In appendix B we consider an
example, which shows that the use of this criterion has some odd implications-
We use the Bayes criterion. So, we fix some probability distribution g on the

* . 1.
parameter set 8 and we call a strategy ™ e-optimal, € 2 0, if

Y q(8)v(x,8,m) =) q(8)v(x,8,m) - €

6eB feB
for all x € X and all strategies 1. If a strategy is O-optimal we call it
optimal. We note again that the so-called prior distribution q can be con-
sidered as a weight function, expressing the importance of the various para-
meter values in the opinion of the decision maker.
In chapter 4 we consider the average expected return instead of the expected
total discounted return. We call a strategy T e-optimal, € 2 0, with respect
to this criterion,if

N-1 _*
1 '-rr
liminf = ) q(8) ) E_ ., [x(x ,a ,vy )12
Ao N 0ed n=0 x,0 n n n+l
1 Z N-il m
2 liminf = q) ) ®E [rx ,A,Y )] -c¢

for all x € X and all strategies 7 (again, a O-optimal strategy is called
cptimal) .

The Bayes criterion allows us to consider another interpretation of the

Bayesian control model. In this interpretation we consider the unknown para-



meter as a random variable with distribution g. The posterior distributions
of this random variable, or in other words the conditional distributions of
this random variable, given the history of the process,play an important
role in this monograph. It is well-known that the name of Bayes is connected
with the criterion since he suggested to consider the unknown parameter of
a distribution as a random variable itself in statistical inference. It turns
. out that the Bayesian control model is egquivalent to a dynamic program with
a known transition law and with a compound state space X X W, where W is
the set of all probability distributions on 8. For each starting state and
each strategy, we are dealing with a stochastic process (Xn,Qn,An) where

Qh 1s the actual posterior distribution of the random variable that repre-
sents the parameter.

It is desirable to have good strategies that are easy to handle, i.e. to
have a formula or a simple recipe which yields an action as a function of
the actual state x € X and the actual posterior distribution g € W. A way
of deriving easy to handle strategies is based on the following idea. If

the parameter is known to be 6 and if there is an optimal strategy then an
optimal action in state x € X often is a maximizer of F(x,9,°) where

F : X X 8 x A > IR. Note that the action depends on the parameter 6 and
that the function F is assumed to be known. Now let the parameter be unknown.
Then we may use an action a which maximizes the function a**'f q(dB)F(x,0,a)
if the actual state is x and the actual posterior distribution is gq {(pro-
vided that integration is possible and the maximum exists). Such a rule is
called a Bayesian equivalent rule. It will be proved that such a rule yields
an optimal strategy, if we are maximizing the average expected return, under
conditions which guarantee that in the long run the decision maker obtailns
enough information about the unknown parameter, i.e. the sets Ki have to be
recurrent. For maximizing the expected discounted total return we do not
know a Bayesian equivalent rule that is optimal in general, however for some
special models, such as the linear system with guadratic cost and a simple
inventory control model, there is an optimal Bayesian equivalent rule. For
the linear system with quadratic cost this rule can be considered as a

generalization of the well-known certainty equivalent rule.



1.3 Summarny o4 the following chapless

In chapter 2 we start with a formal description of the Bayesian control
model and we consider some examples. Then we study the process of posterior
distributions. The main result is the convergence of the posterior distri-
butions to a degenerate distribution, under each strategy which assures the
number of visits to each set Ki’ 1 € I to be infinite, with probability one.
This result is used in several places in chapters 4 and 6.

In chapter 3 we deal with two rather technical points. First we show that
the Bayesian control model is equivalent to a dynamic program (see section
1.2) and after that we study a class of optimal reward operators for dynamic
programs in general. Here we consider optimal reward operators based on
stopping times, for dynamic programs as introduced by Wessels (cf£. [van
Nunen and Wessels (1977)]). We generalize the operators for dynamic programs
with complete separable state and action space and we derive some new
properties of these operators. These operators determine the maximal ex-
pected total return until some stopping time, and with a terminal reward

at the stopping time, depending on the state at the time. Successive ap-
plications of these operators yield a sequence of functions on the state
space, which converges to the function of optimal values. We use these
operators in chapter © where we consider the method of successive approx-
imations for the equivalent dynamic program.

In chapter 4 we first introduce the Bayesian equivalent rules. Then we
construct optimal strategies in order to maximize the average expected re-
ward.

Chapter 5 is devoted to the study of optimal strategies for the expected
total-return criterion. For three examples of our model we show that a
Bayesian equivalent rule provides an optimal strategy. The first example we
call the independent case since the rewards are independent of the state,
i.e. r 1s constant in the first coordinate. In all examples it is assumed
that the indexset I is a singleton, so the randomvariables Yn y N € W are
sampled from the same (unknown) distribution at each stage. The second
example is the linear system with quadratic cost and the last one is a
simple inventory control model. For this inventory model the Bayesian equi-
valent rule is not always optimal. However, we give an upper bound for the
loss we incur by using this rule when it is not optimal.

In chapter 6 we consider approximations for the "function of optimal values”

when maximizing the expected discounted total return. This function is called



the value function and is defined on X X W by:

v(x,q) := sup ) q(8)v(x,6,m)
™ 6

where the supremum is taken over all strategies. We first indicate an upper
bound on v and several lower bounds. These bounds have simple interpretations
and are computable if the parameter set is finite or equivalently, if the
prior distribution is concentrated on a finite set. We study the use of
these bounds for successive approximations of the value function. We also
give a lower bound on the expected discounted total return if a special
Bayesian equivalent rule is used and we construct an other easy-to-handle
strategy which is not a Bayesian equivalent rule but which behaves nicely.
Further we specialize the parameter structure as follows: there is a sub-

set B of the state space X with the property that,if Xn € B than‘§n+1 is

sampled from the same unknown distribution for all actions chosen, for

Xn € X\ B the distribution of Y

is known (hence K, = B X A and 6 —*pi(' B) is

+ 1

constant fori # 1). A special exanllple of this structure arises in the model
where B = X, e.g. the models studied in chapter 5. Here we use an optimal
reward operator as studied in chapter 3, with the entrance time in the set
B as stopping time. In fact, this operator allows us to consider the pro-
cess which is embedded on the set B. For this parametexr structure we use
the convergence of the posterior distributions to a degenerate distribution,
and also the upper and lower bounds, to compute in advance an error estimate
on fie n—-th successive approximation, starting with a fixed prior distri-
bution. If the error estimate for the n-th approximation is small enough,
then we may compute the value function for this prior distribution by back-
ward induction. The effort needed for the computation of the n-th error
estimate is small compared with the backward induction procedure. Since
usually the computed quantities to determine the n-th approximation cannot
be used to compute the n + l1-st approximation, it is nice to know in advance
whether the n-th approximation is sufficiently accurate.

We also consider in this chapter another type of approximations, namely
digeretizations of the parameter set. Here we split up the parameter set
into a finite partition, and in each set of the partition we choose a re-
presentative point. We give bounds for the error caused by replacing the
given prior distribution q by the discrete prior distributionwhich attributes
probabilities to the representative points equal to the given probabilities
of the corresponding sets. In [Fox (1973)] and [Whitt (1976)] also discre-
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tizations of dynamic programs are studied. To apply their method, we would
have to split up the set of all distributions on the parameter set into a
finite partition and, in the equivalent dynamic program, the process would
then jump between representative points in these partition sets. However,
we then loose the nice property that the second state-coordinate of the
process (i.e. Qn) is the posterior distribution of the unknown parameter,
at every stage.

Our discretizations are of interest, since in general we can compute the
upper and lower bounds, mentioned above, only if the prior distribution 1is
concentrated on a finite set of parameters. As a byproduct of our analysis
of discretizations we obtain a bound for the ‘difference between the wvalue
function of the Bayesian control model and the model that is obtained by
replacing in advance the distributions p i(* l 0) by their Bayes estimates
based on the prior distribution and considering these estimates as the true
distributions. This last model is used very frequently in practice, in-
stead of the Bayesian model.

Finally, in chapter 7 we construct algorithms, based on the approximations
of chapter 6, which compute the value function v(x,q) for a fixed prior
distribution, and which also determine e-optimal strategies. We illustrate
the quality of the algorithms by numerical data for some examples.

In appendix A we collect some results of measure theoxry which are used in

chapter 3. In appendix B we illustrate the odd implications of the minimax

criterion by an example. .

We note that it is possible to start reading at chapter 4 after reading the

model description in chapter 2 and the assertions of the theorems and

corollaries of chapters 2 and 3.

1.4 Notations, conventions and prerequisites

We start with some conventions. A numbered sentence indicates a definition
a result or a formula. Such a sentence may occupy several lines, each one
of which is indicated by an indentation. Symbols used for objects, which

are defined in a numbered sentence have a global meaning, i.e. if we use

a symbol without defining it in the theorem proof, example or comment where
it is used, then it has the meaning given in the numbered sentence where

it is defined. References to lemmas, theorems, corollaries, examples, sections
and chapters are preceded by the words "lemma",'"theorem", etc. Each chapter

has its own numbering, for example 2.4 is the fourth numbered sentence in
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chapter 2. References to appendix A are preceded by the capital: A. The end

of a proof is indicated by: [l. If there is no ambiguity concerning the domain

of some index or variable, we omit the domain in the notations.

We continue with a list of notations.

S * w—— e *
1.1 N := {0,1,2,...}, N :=WN v {«}, W := {1,2,3,...}, N := N u {w},
1.2 IR is the set of real numbers, IR := IR U {—e0, 0},
1.3 6(*,*) is the Kronecker symbol, i.e. §(i,i) = 1 and 8§(i,j) = Oifi#7.
1.4 # A is the cardinality of the set A.
+ - :
1.5 X := max(x,0), x := -min(x,0).
1.6 Let (Xi,Xi) be measurable spaces for i € I, where I is a countable
set then X := 1 X; is the Cartesian product and X := eixi the
iel i€l
product-o-field on X. If H, 1s a probability on Xi then u 1= @ M
1eT

is the product measure on X, if I is finite and W, a o-finite measure

on Xi then y is also the product measure on X.

Let A, X and Y be sets, such that A € X X Y then

1.7 pron(A) := {x € X l there is some y ¢ Y with (x,y) € A}l.

1.8 i.i.d. means'independent and identically distributed'!, iff means

"if and only if" and a.s. means "almost surely”.

Let (X,X) and (¥,Y) be measurable spaces and let £ : X - Y be measurable
then

1.9 0(f) is the sub-o-field of X induced by f, i.e.

1.10 P(X) is the set of all probabilities on a measurable space (X,X).

Let £ be a function on a set X then

1.11 X > £f(x), x ¢ X is a notation for this function.

1.12 @ is the empty set.

Let xl,xz,XB,aﬁ. be a sequence of real numbers, then
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Let (X,X) be a measurable space and let g be a measure on X and £ a non-

negative Borel measurable function on (X,X), then

1.14 f(x)g(dx) is a notation for the measure U defined by

L(A) := j f(x)g(dx), A € X.
A

1.15 Let' £ and g be functions on some set X with range R and let Vv € IR /
f < g if and only if £(x) < g(x) for all x € X, £ £ y if and only if

f(x) £ v for all x € X. The analogous convention is used if < is re-

placed by «, 2, > or = .

We continue with some pertinent facts on transition probabilities and
conditional expectations. Let (Q,F,IP) be a probability space, (A,A) a

measurable space, and let Y : Q> A be measurable. Then we call Y a random
variable and we write

1.16 (1) LY € B] := P[{w € Q l Y(w) e B}] , B e A.
(ii) =E (Y] := jY(w)P (dw) .

A real-valued function on Q is called F-measurable or simply measurable,

if it is measurable with respect to the Borel o~field on IR. The following
lemma is well-known (cf. [Bauer (1968) lemma 55.1]).

Lemma 1.1

Let (Q,F) and (A,A) be measurable spaces, and let £ : Q >+ A be measurable.
Then a real-valued function g on {{ is o (f)-measurable iff there is a real-

valued measurable function h on A such that g = h(f). If £ is a surjection

then the function h is unique.

1.17 A measurable space (A,A) is called Borel space if A is a non-empty
Borel subset of a complete separable metric space and A is the Borel
c~-field on A (note that in [Hinderer (1970) page 187] such a space

is called a standard Borel space and in [Blackwell (1965)] a Borel
set).

1.18 The topological product of at most countably many Borel spaces which,
because of the separability of the spaces, coincides with the measure

theoretic product, is again a Borel space (cf.[Parthasarathy (1967)
p. 135]).



13

Let (Q,F) and (A,A) be measurable spaces, then a function P from A x @

to [0,1] is called a transition probability from (Q,F) to (a,A), or simply
from Q to A, if

1.19 (i) P(B

*) is F-measurable for each B ¢ A.

(1i) P('lw) is a probability on A, for each w ¢ f.

Let (Q,F,P) be a probability space, let Bbe a sub-o-field of F and iet X be

a real-valued measurable function on 0, with ﬂE[X+] < ®

1.20 (i) The conditional expectation of X given B is denoted by IE[x|B]

and defined as a real-valued B-measurable function on  such

that E[X1 ] = E[E [x{BhB] for all B ¢ B.
(Here 1 is the indicator function of the set B.)

It

(ii) If Y is another a real-valued measurable function on  we
define E[X|¥] := E[x|o(x)] .

(iii) For every A ¢ F we define the conditional probability of A gi-
ven B, respectively the conditional probability of A given Y
by [a|B] := IE[lA!B], respectively P [AlY] := IE[lAlY].

Note that the conditional expectation is not uniquely defined, however two

versions of it are equal P -a.s.

Theorem 1.2

Let (2,F) be a Borel space and let P be a probability on F. Then for every
sub-og~field B of F the conditional probability is regular, i.e. there exists
& transition probability P from (,B) to (2,F) such that for every real-
valued F-measurable function X that is bounded from above, we have
w * [ X(aﬁP(dalm) 1s a version of HE[X]B] . If P' is another transition
probability from (2,B) to (Q,F) with this property, then

Pl{w|P(-|w) #P' (-|)}] =0 .

For a proof cf. [Bauer (1968) th. 56.5].

We sometimes need the following corcllary of th. 1.2.

Corxollary 1.3

Let (2,F) be a Borel space, let IP be a probability on F, let (A,A) be a
measurable space and let Y be a measurable map from @ t© A, The proba-

bility Q on A is defined by Q(B) := IP[Y € B], B ¢ A. Then there is a



for all B ¢ A and D € F.

(a,A) to (Q,F) with this prop-

riven Y = y and we usually

(R,0(¥)) to (Q,F) such

o

) = P {D ! w) P for w € 1.

erify that P, considered as a function on A X F is a transition
(A,A)
ransition probability on A X F with property (%), and

AlB(-|y) # 2'(+]y) }. Then

(Q,F) with property ().

IP(e|Y(w)) # P'(|Y(w))}.
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We frequently use the following theorem of Ionescu Tulcea (cf. [ Neveu (1965)

page 165]).

Theorem 1.4

Let (xn,Xn) » N € IN be measurable spaces and let Q.41 Pe a transition

probability from.(ﬂn X @ X ) to (X Xn+1)’ n € IN. Further let

Y t=0 "t’ +t=0 "t n+1’
(X,X) := (Htmo Xt; @Z=O‘xt) and let 50,51,‘.. be the coordinate functions

on X i.e. En(x) s = x5¢ X =-(x0,x1,...) € X. Then

(1) for all n € IN there is an unique transition probability P from
n n
X

S | |
(Htmo th £=0 t) to (X,X) denoted by P(B!xo,...,xn), B ¢ X, x. € X,

L X

= 0,...,n, such that for cylinder sets of the form

i
B 2= A X _,.. X xX X X X eaae = :
0 Am 1 Xm+2 and m n

P(B‘xogﬁ-.;xn)f—'l (dx ’XO,.t.,Xn) « o

A X,..XA (XO""’xn)- Qn+1

1 n ] n+1

n+1

cae J Qm(dxm!xo,...,xm_l).
A

(1i) for every probability p on XO there is a unique probability IP on X

o
given by E?p[B] = p(de)P(leo) , B € X and for any measurable

I

O
function ¥ on X that is bounded from abave,if P(dx[&o,...,an)Y(x) is
a version of the conditional expectation of Y given the o-field

G(EO,...,EH). Hence one may define: (cf. lemma 1.1)

IEp[Y’! EO = xO,...,gn = xn] = J P(dxlxo,...,anY(x)

Or

IEQ[Y ' Eora---:gn] = f P(dxlgoltn-agn)y(x) .

. Finally we summarize some pertinent facts concerning the set P(X) of all

probabilities on a Borel space (X,X).

1.22 On P(X) we have the topology of weak convergernce; this is the

Fir

T W




rhat for functions f € C(X) the map

s continuous, U € P(X), where C (X) is the set of

ed continuous functions on X (cf. [ Parthasarathy

4 such that the functions u = f f(x)H (dx) are
PIX), £ € C(X).

statement (i) can be found in [Rieder (1975) lemma 6. 1]. Note

llest 0~field such that U f fdu,

that F is also the sms

measurable for all real-valued bounded measurable functions

statement (ii1). Let B be the smallest o~field in P (X) such that
s measurable, for £ € C(X). For each Borel subset D © IR

we have {u} f f(x)u(dx) € D} €¢ B, for £ €C(X). This is

sets of IR. Hence the topology £ is contained
the other hand, since for all open subsets D < IR

F and since the Borel ¢0-field on IR is generated by
{u] [£(x)u(ax) € D} € F for all Borel subsets D € IR.

L

miscellaneous results.

Borel spaces and £ a nonnegative measurable

the function

’ X € X, g €P)
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The proof of (i) is found in [Hinderer (1970) th. 12.13], the proof of
part (ii) in [Parthasarathy (1967) lemma 6.1 page 42] and part (iii) is

an immediate consequence of lemma 1.5 (i) (cf. [Rieder (1975) lemma 6.2]) .
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2. THE MODEL AND THE PROCESS OF POSTERIOR DISTRIBUTIONS

In section 2.1 we define the Bayesian control model, the model we study in
this monograph, and we present some examples. In section 2.2 the posterior
distributions of the random variable, which represents the unknown parameter,
are defined and some properties are derived. Finally, in section 2.3 the

limit behaviour of the posterior distributions is studied and also the

differences of successive posterior distributions.

2.1 The Bayesian contrnof model

Our model is similar to models described in [Shiryaev (1964), (1967)1],
[Dynkin (1965) ], [Martin (1967)] and [Hinderer (1970)]. In fact, it is a
speclal case of the model considered in [Rieder (1975) ], which will be
shown later on in this section. In this monograph several models are con-

sidered, which are special cases of the Bayesian control model we des-

cribe now.

model 1: Bayesian control model

The modelconsists of the following objects.

2.1 (a) (X,X) a Borel space. X is called the state space.

(b) (¥,Y) a Borel space. Y is called the supplementary state space.,

(c) (A,A) a Borel space. A is called the action space.

(d) D, a function from X to the non~empty subsets of A such that
K := {(x,a) | x € X, a € D(x)} is an element of X ® A .
D(x) is called the set of admissible actions in state x. It is
assumed that K contains the graph of some measurable function from
X to A.

(e) I is acountable set, called the Zndex set.

(£) For all i € I there is a Borel space (Gi,Ti) and 81 is called the
parameter space of index i. The Borel space (8,T) is defined by
8 := I, < Bi, T := B, 1 Ti. The set 8 is called the parameter space.

(g) {Ki, i € I} is a measurable partition of X x A.

(h) P is a transition probability from X X A X Y to X (cf. 1.19).

(i) v is a o-finite measure on Y. If Y is countable then v is assumed
to be the counting measure.

(3) P is a nonnegative measurable function on Y X Bi, for all i ¢ I

such that IY pi(y|8i)v(dy) = 1 for all 81 € Bi and i e I.
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ot

For all i € I and ei,ei € 91, ei # Gi we assume

v({y € ¥ ! pi(ylei) # pi(ylgi)}) > 0 .

This property is called: the separation property.
(k) r is a real-valued measurable function on X X A X ¥, bounded from

above, and called the reward function.

We continue with some definitions which clarify the meaning of the objects

defiHEd in 2 % 1 »

Each 6 € 8 can be described by 6 = (Bi) €T where ei € Gi is called the i-th

coordinate of 6.

8 we define a transition probability 56 from X X A to ¥ X X,

For each 6 €
by

e i

1€l i B

where E € V, F‘ € _X, X € X, a € A and i the i

(Note that P, satisfies all requirements for a transition probabi
1 » 19) ) -

2.3 The set of histories Hn at stage n is defined by

8

—— e

(1) HO:HX,Hn:mxx(Axyxx)n, n € N .

(i1) Hn is the product-c-field on H_ induced by X, A and Y for n ¢ IN.

R

2.4 A strategy © is a sequence: T = ('rro,wl,.. .) where m is a transition

Il
probability from (Hn,Hn) to (A,A) such that

‘ﬂ' L
n

is concentrated on the set D(xn) . The set of all possible strategies

XO;aO,Y1;X1 ,31, a & .,yn;xn)

is denoted by II.
It is easy to verify, by the condition on K (cf. 2.1 (d)), that II is non-
empty.

2.5 The sample space of the Bayesian control process is Q := 8 x H_ , and

on  we have the product-o-field H := T ® H .

Note that (8,7) and (Q,H) are Borel spaces (cf. 1.18). On Q we define the

coordinaqte functions Z, XY ,A,neN, also called random variables:
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According to the Ionescu Tulcea theorem (cf. th. 1.4) we have for each so-
called starting distribution 0 € P(X), each so—called;prﬂﬁf‘detPﬂbutiOH

g € P(T) and each strategy m € II, a probability T  on (2,H), defined by

rq

2.7 B [Z € B, X

P,qg 0

€ C, A, € D

0 OI (Ylfxl) € Elfsuq»p (Yn;xn) € En] .

J q (46) fﬂ (dxo) f Wo(daolxo) f 59 (d(yl,xl)[xo,ao) con

B C DO E1

L B fﬂnﬂl (dan-lixO'ao’y]_ pxlfal p.¢.;yn_1,}c

Dn-- 1 n

n-1" n-1

n-l)f Ee(d(yn;xn)[x ra )
E

where B e T, C € X, DneAandEneV®X, n € IN.

2.8 The expectation with respect to E’: q is denoted by IE;r q °
4 ’

2.9 Define W := P(T) and let W be the o-field on W generated by the weak
topology (cf. 1.22).

We ldentifyr each 6 € 8 with the element of W which is degenerate in 86,

i.e. O represents the probability that is concentrated on {6}.

(By lemma 1.6(ii) this identification is a homeomorphism). And similarly

we ldentify each x € X with the degenerate distribution in P(X). Hence, for

mTel, xe€ X, 6 € 8 the probability P is well—-defined.

X, 0
Using th. 1.4 and the identification we easily derive:

2.10 The conditional probability may be chosen as:

T

1P e {Z=0] = 1P Ce]
pfq[ ] p:9
oY
M m
P |27 = IP «] .
qu[ l J Q;Z[

Note that the difference in these expressions is that the first one is a

function on 8, while the second one is a function on §{, depending on the

first coordinate only.

Using 2.10 we find, for B € T and C € H_ :
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2.11 ™" [Z € B, (xO,A

P4

Y. . X ,Al,...) e Cl] =

1

0" 1

IY IX }A ;uit) GC] °

"
J g(ds)m® o' Y1 ¥ 1By

0,8[ (XOIA
B

Further we define criterion functions for the discrimination of strategies.

2.12 (i) The Bayesian discounted total return v is a real-valued function

on X X W x II:
m n
v(x,q,m) = E_ [ ) B r(X,A ,Y

where B € [0,1) is the discount factor.

(1i) The value function v is a real-valued function on X X W:

Note that we use the symbol v for two different, but related functions,
and note that we use the name "value function" only in connection with the

discounted total xreturn.
2.13 The Bayesian average returmn g is a real-valued function on X X W x II:

N-1
g(x,q,m) := liminf 'f%:' E" [ ) x(x_,n,¥
Nro o F'9 p=g non

)1 .

n+l

Finally we define (nearly) optimal strategies. Let € = O.
_ .

2.14 (1) A strategy T is called e-optimal for the total return criterion
inx € Xand q € W, if v(x,q,7T) =2 v(x,q) - €.
(11) A strategy m is called e-opitimal for the average return criterion

in x ¢ X and g € W, if g(x,q,w)zgup g(x,q,;) - €
mell
A O-optimal strategy is simply called optimal.

Now the Bayesian control model has been described completely. Note that for

each starting distribution p € P(X), each prior distribution g € W and each
T

P:g
O’AO'Y1’XI'A1"")are completely described. Only in chaptexr 4 we shall

strategy 7 € Il the probability 1P and the stochastic process

(Z,X

consider the average-return criterion, everywhere else we consider the

’;ota.l—- return criterion.
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The Bayesian control model is an example of the so-called Bayesian decigion
model studied in [Rieder (1975)1. This relationship is not used in our mono-

graph. However, it simplifies comparisons of our results with the literature.

To substantiate this we introduce the following notations.
2.15 (i) S :=Y¥YxX, S :=Ve X.

*
(ii) Pe is a transition probability from S X A to S, defined by

> 4 o
PS(E X F l (X,y¥) ,2) := Pe(E X F I X,a) for all yeY,

F e X and 8 €
Y.

D is a function from S to the non-empty subsets of A, such

that D ((y,x)) := D(x) for all y € Y-
%

(iv) r 1is a real-valued function on S X A X § defined by

(iii)

* ' ¢ ¢ ’ ¢
r ((y,x),a,(y ,x")) := r(x,a,y ) » X,x' € X, a € A, Yy, ¥ € Y.

* * x
The 8-tuple ((s,S), (a,A),D, (B,T),P;,q,p*:r ), where p € P(S) and q € W,
satisfies all assumptions of the model of Rieder. Note that, in our model

the starting distribution p is specified only on X and in Rieder's formul-

ation of our model the starting distribution p* on ¥ x X is required. How-
ever, only the marginal distribution of p* on X plays a role, since the
transition probability P; has the property: y = P;(B ‘ (v,x),a) is constant,
by 2.15(ii).

We conclude this section with some examples, illustrating the applicability

of our model.

Example 2.1

If the parameter set 8 is a singleton, or equivalently if the prior distri-
bution g € W is degenerate in 0 ¢ 8, the Bayesian control model is an oOr-

dinary dynamic program, with state space (x,X),action space (A,A) and trans-

ition probability ;e' given by

™t

PS(B l X,a) 1= (x,a) [ v(dy)pi(ylei) J P(dx’ l x,a,y), B e X

B

y 1
ieX I(j.

and reward function re:

? (Xx,a) :=

5 11( (x,a) J v(dy)pi (y\@i), r(x,a,y) .

L g,
iel 1
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Example 2.2

Each dynamic program with countable state space X, countable action space 2
and incompletely known transition probability P from x X A to X and real-

valued reward function r on X x A can be transformed into a Bayesian control

£

model. To verify this define X := 32, X is the power set of ;{, A :=2a, A is
the power set of K, vy := X, ¥ := X and x(x,a,y) :m?(x,a) for all x € X, a € A
and y € Y. Further define I := X X A, K, 1= {i}, i € T and 6, := P(X) .

Note that I is countable and that (8., T.) is a Borel space if Ti is the
o-field on @ generated by the weak topology (cf lemma 1.6). Finally define
P({x* }lx,a,y) = §(x',y), x,x' €X, a€hA, y€eYandp, (Yle ) :=6, ({y}), v E Y,
ei € Bi, i € I.

It is straightforward to verify that all assumptions of 2.1 are satisfied.

1f, for some pair x,a € X X A, P(° lx,a) is known, then the marginal distri-

bution on 8 . of q € W has to be degenerate in P(°
I'

P( lx,a) is unknown but belongs to some family of probabilities on (X, X)

a). Similarly, if

then the marginal on Qx o of g € W has to be concentrated on this family.
7
Consequently the models described in [Martin (1967) 1, [Wessels (1968) ],

[Rose (1975)] can be regarded as special cases of our model.

Example 2.3

The class of models considered here is specified by Euclidean spaces X, Y
and A, and a measurable function F from X X A X Y to X. The state Xn at
time n is a function of the action A at time n - 1, the state X at

n-1 n—1
time n - 1, and a random variable Yn such that

*

An__l,Y), n € NN

X =PF({X
n

n n-1"'

where xn € X, An € A and Yn € Y. The random variables {Yn, n € :IN*} are

1.1 d and cannotbe controlled by the decision maker, however they can always
be observed by him. For that reason the sequence {Yn, ne N} is called

the external process. The external process can be considered as a nuisance
process. It is assumed that the distribution of Yn is not completely known:
p(* ‘6) is the probability density of Y with respect to the o-finite measure
vonY for all 6 € 8 where (8,T) is a Borel space. We also assume

v({y € ¥ ‘ p(yle) # p(y‘g)}) > Q0 for 0 # 3 It is easy to transform these
models into our framework. To this end let P({F(x,a,y) }lx,a,y) = 1 for

x € X, a€cBAandy € Y, and let X be the Borel o-field on X, and let A and
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Y be the Borel o¢-fields on A and Y respectively. Further let I be a single-
ton, i.e. I := {1} and K, := X x A. At each stage Y is sampled from the
e) y O € 8.

Let there be a reward function satisfying 2.1 (k). Then all conditions of

distribution with density p(<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>