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1. INTRODUCTION 

1.1. DEFINITION. Let F be a field containing the rational numbers. An el­

ement I; of F .is called algebraic if there is a polynomial P * O with ra­

tional coefficients such that P (/;) = 0; I; is called transcendenta.I if I; 

is not algebraic. 

Transcendental number theory is the branch of nwnber theory that 

studies the relationship between transcendental and algebraic elements of 

the field of complex numbers, and of certain other fields such as the one 

introduced in 6.3 below. Many theorems in transcendental number theory 

have the following form: a set X of n-tuples of complex numbers and a 

complex function f, defined on X, are given and it is stated that for all 

(a 1 , ... ,an) that belong to X the set {a1 , ... ,an, f (a 1 , ... , } contains at 

least one transcendental number. The two most famous examples of such 

theorems are: 

1. 2. 'l'HEOREM (Hermite-Lindemann) . Let a * 0 be a complex number. Then the 

set {a,exp(a)} contains at least one transcendental number. 

[Waldsclnr,idt 1974], Theoreme 3.1.L The original memoirs are 

[Hermite 1873] and [Lindemann 1882]. □ 

1. 3. '.r'HEOREM (Gel' fond-Schneider) . Let a and b be complex numbers; sup­

pose that a* 0 and that bis not rational. Let t(a) * 0 be a value of 
b b 

the logaritlrm of a and put a := exp(bt(a)). Then the set {a,b,a} con-

tain.s at least one transcendental number. 

PROOF. [Waldschmidt 1974], Theoreme 2.Ll. The original memoirs are 

[Gel'fond 1934] and [Schneider 1934]. □ 

The theory of approximation measures provides a quantitative gener­

alization to theorems of this type. 'I'his is achieved by introducing the 

concepts of degree and height of an algebrai.c number; instead of merely 

stating that some number is transcendental, we are enabled to estimate 

how well i.t can be approximated by algebraic numbers of given degree and 

height. 

1.4. DEFINITION. (a) Let P be a polynomial in one variable with complex 

coefficients. Then the height of P, denoted h(P), is defined as the max-
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imum of the absolute values of the coeffi.ci.ents of P. 

(b) Let F be a field containing the rational numbers; assumes E Fis 

algebraic. The minimal polynomial of sis defined as the unique irreduc­

ible polynomial P with rational integer coefficients and positive leading 

coefficient that satisfies P(s) = 0. 

(c) Let F be a field containing the rational numbers; assumes E Fis 

algebraic. The degree of s, denoted dg(s), is the degree of the minimal 

polynomial of S• 

(d) Let F be a field containing the rational nu.1Jlbers; assumes E Fis 

algebraic. The height of s, denoted h(s), is the height of the minimal 

polynomial of s. 

An approximation measure for a transcendental complex number a is a 

positive function g of two positive integer variables, such that for all 

d and H the inequality 

la - a[ > g(d,H) 

is satisfied for all a belonging to the set of algebraic complex numbers 

of degree at most d and height at most H (note that for fixed d and H 

this set is finite). Again, many theorems are known of the following 

form: a set X of n-tuples of algebraic complex numbers and a complex 

function f, defined on X, are given and it is stated that for all 

, ., .,an) that belong to X the number f(a 1 , ... ,an) possesses a certain 

approximation measure g. In such results, however, the symmetry between 

, ... ,an and f(a 1,... is lost; the object of the following chapters 

is to investigate whether a.nalogous theorems that preserve this symmetry 

can be derived. Let , ... ,an be transcendental complex numbers; a sim­

ultaneous approximation measure for the set {a1 , ... ,an} is a positive 

function g of two positive integer variables, such that for all d and H 

the inequali.ty 

max( [ [, ... ,la -a [l > g(d,H) 
n n 

is satisfied for all algebraic complex numbers of degree at 

most d and height at most H. The results we desire are of the following 

form: a set X of n-tuples of complex numbers and a complex function f, 

defined on X, are given and it is stated that for all , ... , a ) that 
n 
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belong to X the set {a1 , ... ,an,f(a1 , ... ,an)} possesses a certain simul­

taneous approximation measure g. In order to simplify the problem, we 

shall limit ourselves to approximation by algebraic numbers of fixed 

degree; in other words, only the dependence of g on the second variable 

will be considered. Moreover, we relax the definition of a simultaneous 

approximation measure in that we allow that (1.1) is not satisfied for fi-

nitely many n-tuples (a 1 , ... ,an); if necessary, the validity of (1.1) may 

be extended to all (a 1 , ... ,an) by multiplying g(d,H) by a sufficiently 

large factor that depends only on a 1 , ••. ,an,d and not on H. 

The generalization of the Hermite-Lindemann theorem to a result of 

this form has essentially been achieved; for instance, Cijsouw [1975] 

proved that for every positive number E, positive integer d and complex 

number a, there exist only finitely many pairs (a,/3) of algebraic complex 

numbers of degree at most d such that 

where H = max(2,h(a) ,h(/3)). (The notation log2 is an abbreviation for 

loglog.) 

The case of the Gel' fond-Schneider theorer.1 presents more diffi­

culties. After some initial results (see [Ricci 1935], [Franklin 1937]) 

the following statement appeared in [Schneider 1957]: suppose Eis a 

positive real number, dis a positive integer and a and bare complex 

n1.1t'T!bers such that a * 0, a * and bis not rational; suppose that i(a) is 

a value of the logarithm of a. Then there exist only finitely many triples 

(a,S,y) of algebraic complex numbers of degree at most d such that 

max ( I a---al, lb-Bl, I ab-y I) < exp (-log5+EH), 

where H = max(h(a.) ,h(/3) ,h(y)) and ab= exp(bt(a)). Bundschuh [1973] re­

marked that in Schneider's proof a condition like "Snot rational" is 

needed and tried to prove a theorem without such a restriction. His 

assertion is that, in the situation described above, there are only fi­

nitely many triples (a,8,y) with 

-2+E 
H)' 
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where H = max(2,h(a),h(S) ,h(y)). However, there is an error at the begin­

ning of the proof of his Satz 2a, so that his result, too, is only valid 

under some extra assumption. 

Earlier $melev [1971] had proved that, in the situation described 

above, only finitely many triples (a,S,y) with Snot rational have the 

property 

Cijsouw and Waldschmidt [1977] recently improved upon the above results by 

demonstrating the following theorem. 

1.5. THEOREM. Let E: be a positive real number, d a pos.it.ive integer. Let 

a and b be complex numbers with a* O; let 9-(a) * 0 be a value of the 

logarithm of a and put ab:= exp(bl(a)). Then there are only f.initely many 

triples (a, S,y), with S not rat.ional, of algebraic complex numbers of 

degree at most d f01: which 

where H = max(2,h(a) ,h(i:l) ,h(y)). 

PROOF'. [Cijsouw-Waldschmidt 1977], 'I'heorem 2. □ 

In [Bijlsma 1977], the present author showed that from all these 

theorems the condition that Snot be rational cannot be omitted. More 

precisely, the following was proved: 

1.6. THEOREM. For any fixed positive integer K, there exist irrational 

real numbers a and b with O < a < 1 and O < b < 1 such that for .infinite­

ly many tr.ip.Ies (a,S,y) of rational numbers 

where H max(h(a) ,h(S) ,h(y)). 

PROOF. lsma 1977], Theorem 1. □ 

In theorems 1.i.ke 1 .. 5, the· occurrence of a condition upon the num---



ber 13 is undesirable and one would naturally want to replace it by a con­

dition upon the given number b. This is certainly possible: for instance, 

it is quite easy to see that the estimate in 1.5 holds for arbitrary 

triples (a,13,y) if one assumes that, for real b, the convergents pn/qn of 

the continued fraction expansion of b satisfy 

(Note that the real numbers b for which this condition is not fulfilled, 

are U*-numbers (see [Schneider 1957], III §3) and thus form a set of 

Lebesgue measure zero.) A sharper result in the same direction is given 

by the next theorem. 

L 7. THEOREM. Let E be a pos.i ti ve real number, d a positive integer. Let 

5 

a and b be complex numbers; suppose that a * 0 and that b is not rationa.I. 

Let -~ (a) * 0 be a value of the logarithm of a and put ab : = exp (bt (a)) • I.f 

b is not rea.I, or i.f b is real such that the convergents pn/qn of the con·­

tinued fraction expansion of b satisfy 

(1. 2) 

there are on.ly finitely many triples (a,S,y) of algebraic complex numbers 

of degree at most d with 

where H = max(2,h{a) ,h(S) ,h(y)). 

-~-~9oi::_. [Bijl.sma 1977], Theorem 2. □ 

The purpose of Chapter 2 below is to make this last assertion still 

more precise: it will be proved that the sufficient condition (1.2) may 

be sharpened to 

limsup 0, 
n+oo 

while a necessary condition is given by 



6 

limsup 
n-+oo 

log qn+l 

3 4+E 
qnlog qn 

< 00 

In Chapter 3 we consider the question whether these conditions on b may 

be replaced by analogous assumptions as to the nature of a. 

Chapter 4 is based on the following results of Fel'dman [1964] and 

~melev [1970]: 

L8. THEOREM. Let E be a positive real number, d a posit.ive integer. Let 

a and b be complex numbers; suppose that a* 0 and that bis algebraic but 

not rational. Let Jl(a) be a value of the logarithm of a; put ·= 

exp (b!l (a) ) . Let P be an .irreducible polynomial of two variables, with 

rational integer coefficients, of degree at least one in each var.iable, 

such that P(O,O) * 0 and P(l,1) * 0. If P(a,ab) = O, there exist only fi­

nitely many algebraic complex numbers a of degree at most d for which 

la - a 

where H = max(2,h(a)). 

PROOF. [Fel.'dman 1964]. □ 

1.9. THEOREM. Let c be a positive real number, d a positive integer. Let 

a and b be complex numbers; suppose that a* 0, a* 1, a is a.Igebraic and 
b 

b is not rational. Let Jl (a) be a value of the logari t.hm of a; put a : = 
exp(bll(a)). Let P be a polynomial of two variables, with rational integer 

coefficients, of degree at least one in each variable, such that Pis not 

divisible by a polynomial containing only the first variable. If 

P(b,ab) = O, there exist only finitely many algebraic complex numbers S 

of degree at most d with 

I I 3 5+E 
b - S < exp (-·log H log 2 H) , 

where H = max(2,h(8)). 

PROOF. [~melev 1970], 'I'heorem L □ 

In Chapter 4 below, 1.8 and 1.9 are generalized to obtain simulta­

neous approximation measures for subsets of {a,b,P(a,b,ab)}; we also con-



sider the case that £(a) = 1 and the case where P does not remain fixed. 

Now let a 1 , ... ,an,b1 , .•• ,bn be complex numbers such that none of 

a 1 , ••• ,an is zero; let £ 1 (a 1), ... ,£n(an) be non-zero values of the loga­

rithms of a 1 , .•. ,an respectively and put 

Wallisser [1973] derived a simultaneous approximation measure for 

{b1 , ... ,bn} in case a 1 , ... ,an and ~e are algebraic; Bundschuh [1975] 

gave a simultaneous approximation measure for {b1 , •.• ,bn,~:e} in case 

a 1 , ••. ,an are algebraic (however, this proof depends on the erroneous 

statement in [Bundschuh 1973]). Again, Cijsouw and Waldschmidt [1977] 

improved upon these results. For non-zero b 0 , they established simulta­

neous approximation measures for {b0 ,b1 , ..• ,bn'~eexp(b0 )} in case of al··· 
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b 
gebraic a 1 , ... ,an and for {a 1 , .•• ,an,b0 ,b1 , •.. ,bn'~-exp(b0 )}. Furthermore, 

they proved the following theorems. 

1.10. THEOREM. Let E be a positive real. number, d a positive integer. Let 

, ... ,an,b1 , ... ,bn be compl.ex numbers such that , ... ,an are al.gebraic 

and none of a 1 , ..• , an .is zero; let £ 1 (a 1), •.. , 9,n (an) be non-zero values 

of the logarithms of a 1 , ••• ,an respectively and put 

Then there are only f.initely many (n+l)-tuples (6 1 , •.• , ,y) of algebra.ic 

comp.lex numbers of degree at most d such that 1, s1 , ... , Sn are linearl.y 

independent over the rationals and 

where H 

PROOF. souw-Waldschmidt 1977], Theorem 3 and the remark following 

Theorem 4. □ 

1.11. 'l'HEOREM. Let c be a positive real number, d a positive integer. Let 

, ... ,an, , ... ,bn be complex numbers such that none of a 1 , ... ,an is 

zero; let 9, 1 (a 1), ... , 9,n (an) be non-zero values of the .logarithms of 
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al' ... 'an respectively and put a1=' := exp(b1 JJ, 1 (a1 )+ ... +b JJ, (a ) ) . Then 
- n n n 

there are only finitely many (2n+l)-tuples (a 1 , ... ,an,S 1 , ... ,Sn,y) of 

algebraic complex numbers of degree at most d such that 1., i\, ... , Sn are 

linear.ly independent over the rationa.ls and 

n+2 l+E: 
exp(-log H log2 H), 

where H = max(2,h ,h(y))" 

PROOF. [Cijsouw-Waldschmidt 1977], Theorem 5. □ 

Because of the unnatural condition on the numbers 61 , ... ,Bn' 1.10 

and 1.11 cannot be called simultaneous approximation measures in the 

strict sense. Again, it would be preferable if it could be replaced by a 

condition on the given numbers. This is achieved in Chapter 5: there 

analogues of 1.10 and 1.11 are proved in which the condition that 

1,61 , ... ,Sn be linearly independent over the rationals is replaced by 

conditions depending on a 1 , ... ,an and their logarithms and on b 1 , ... 

In the case of 1.10, it turns out to be sufficient to demand that 

JJ,l (a1 ) , ... ,JJ,n(an) or 1,b1 , ... ,bn be linearly independent over the 

rationals. In the case of 1.11, it is sufficient if there exists a C > 

such that for rational integer x 0 , ... ,xn that are not all zero we have 

(L3) 

where p = (4n+8)/(n2+2n+1), u = (3n2+6n-1)/(n2+2n+1), and X denotes the 

maximum of 2 and the absolute values of x 0 , ... , The case that b 1 , ... ,bn 

are fixed algebraic numbers is also considered; the results of this chap·· 

ter enable us to derive many-variable analogues of the theorems in Chapter 

Finally, Chapter 6 gives an analogue of 1.7 in which the complex 

numbers have been replaced by an algebraically closed, complete field 

with a non-archimedian valuation. 



2. A TEST FOR "rHE SIMULTANEOUS APPROXIMABILITY OF a, b AND ab 

As sta.ted in the Introduction, the purpose of the present chapter is 

to prove a sharpened version of 1.7. This is achieved in 2.24 below; be­

fore that, however, we need to give a number of auxiliary results. First 

of all we introduce some definitions to simplify the phrasing of what 

follows. 

2. 1. DEFINITION. ( a) By JN , 2Z , gJ, JR , 11: we denote the sets of all pos­

itive integers, of all rational integers, and of all rational, real and 

complex numbers respectively. By ]a,b[ we denote the open, by the 

closed interval from a to b. 

(b) By JA we denote the set of all algebraic complex numbers, by 

JAd the set of all algebraic complex numbers of degree at most d. 

(c) If R is some :i;:ing, R[X1, • • • ,xnJ denotes the ring of all poly­

nomials inn variables with coefficients from R; instead of R[x1 ] we 

write 

2.2. DEFINITION. (a) Let F be a field containing g); assume n E Fis al­

gebraic. Then n is called an algebrai.c i.nteger if its minimal polynomial 

has leading coefficient 1. 

(b} Let F be a field containing Ql; assume n E Fis algebraic. The 

denominator of n, denoted den(n), is the least m E JN such that mn is an 

algebraic integer. 

(c) Let F be a field containing~; assume n E F, n' E Fare algebra­

ic. Then n and n' are called conjugate if n and n' have the same minimal 

polynomial. 

(d) F'or n E JA, by ml we denote the maximum of the absolute values 

of the conjugates of n in .IA . 

2.3. DEFINITION. (a) A field Fis called a normal extensi.on of \1?, if 

9 

(!) c F and if every n E F that is algebraic of degreed has exactly d con­

jugates in F; .it .is called a finite normal extension of \1?, if it is a norm­

al extension of(!) and has finite degree over~-

(b) If Fis a finite normal extension of(!), Gal(F/\1?,) denotes the set 

of automorphisms CY of F that satisfy a(E;) = s for alls E (!). 

2A. LEMMA. (a) Let F be an algeb.t:aically closed field containing (!); as-
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sume n1, ••• ,n E Fare algebraic. Then there exists a fin.ite normal exten-
. n 

sion F1 of (Q such that F• c F and F• contains n1 , ••• , 

(b) Let F be a finite normal extension of (Q. Then n,n' E Fare conju­

gate if and only if there exists a CT E Gal(F/9)) w.ith o(n) ~ n'. 

PROOF. [van der waerden 1966], §§ 41, 57. □ 

2.5. LEMMA. (a) Let F be a field containing (12; assume n E F is algebraic. 

Then den(n),;;, h(n). 

(b) For n E 1A we have ml ,;;, h(n) + L 

(c) For '" • ., E 1A we have Jn 1+ ... +nnl < 

and I n 1 •.. nn I ,;;, Jn;T ... ~ . 

_PROOF. (a) [Schneider 1957], Hilfssatz 2. 

(b) [Schneider 1957], Hilfssa.tz 1. 

(c) According to 2.4(a), (t contains a finite normal extension F of~ 

containing n1 , •.. , put G := Gal(F/©). According to 2.4(b), 

Ve, E F: m max Jami. 
oEG 

Thus, if n := n1 + ... + nn' we have 

[ril = max I cr ( n) I 
oEG 

max 
oEG 

max Jo(n 1)+ ..• +cr(nnl I~ 
cr E G 

ln;T + ... + inJ 

E JA we have e.i ther n 0 o.r 

I n I ~ exp ( -2dg ( n) max ( log ml , log den ( n) ) ) . 

PROOF. [Waldschmidt1974], (1.2.3). □ 

2. 7. LEMMA (Siegel) . Let F be a fie.Id such that \)1 c F c (t and F has 

degreed over©- Suppose a .. E F for i = 1, ... ,n and j = 1, ... ,m such 
l,J 

that 

,;, A, i = 1, ... ,n, j 



If n > dm, there exist 

n 

I 
i=l 

and 

a, ,X, 
.l.,J l 

, ... ,x E 2Z, not all zero, such that 
n 

o, j l,., .. .., ,m, 

I) < (Ii nA) dm/ (n-dm). 

PROOF. [Waldschmidt 1974], Lemme 1.3.1. □ 

11 

The next lemma gives a connexion between the rate of growth of an en­

tire function and its number of zeros. Results of such a type are funda­

mental i.n transcendence proofs. 

2.8. LEMMA. Let f be an entire function. Suppose S,T E JN, A,R E :IR such 

that A> 2 and R ~ 2S. If f(t) (s) = 0 for s = 0" •. ,s-J. and t = 0, .•. ,T-1, 

it follows that 

max !f(zll~2 max !f(zll(¾)ST_ 
lz lzl~AR 

PRO~_. [Cijsouw 1974], Lemma 7. □ 

2.9. DEFINITION. A branch of the logar.ithm is a function fl, defined on a 

set K c (I;, { 0}, such that fl is holomorphic on K and exp ( !l ( z) ) = z for all 

z E K. 

Now we give two lemmas about vanishing linear forms in the logarithms 

of algebraic numbers. 

2 .10. LE~. Suppose d E JN , K a compact subset of the complex plane not 

conta.in.ing 0, J\ and 22 branches of the logar.ithm, def'.ined on K, such that 

fl 1 does not take the value 0. Then only f.initely many pairs (a,y) E of 

a.lgebraic numbers of degree at most d have the property that a /3 E g) ex­

ists with 

and 
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h(f3) _:>_ log H, 

where H = max(h(a),h(y)). 

PROOF. [Bijlsma 1977], Lemma 3. D 

2.11. LEMMA. For every d E ]IJ, there exists an effectively computable 

C > 1, depending only on d, with the following property. Let K be a com­

pact subset of the complex plane not containing O, \ and 9, 2 branches of 

the logarithm, defined on K, such that 9, 1 does not take the value 0. Then 

only .finitely many pairs (o:,y) E K2 o.f algebraic numbe.r:s o.f degree at most 

d have the property that a SE~ exists with 

and 

(2 .1) Clog H <Blog B, 

where H max(h(o:) ,h(y)) and B h(f3). 

PRO(_).E:_. L Suppose the assertion of the lemma to be false. Let C be some 

real number greater than 1; additional restrictions on the choice of C 

will be formulated at later stages of the proof. Let K,9, 1 ,9, 2 ,a,S,y satis­

fy the conditions of the lemma. By c 1 ,c2 , ... we shall denote real numbers 

greater than 1 that depend only on d. Throughout the proof we shall assume 

that l-l is sufficiently large in terms of d,K,9, 1 ,9, 2 and C, which will lead 

to a contradiction. It is clear that 19, 1 (a) I is bounded above and below 

by positive constants depending on Kand J!, 1 ; thus we may assume 

(2. 2) -112 I I 112 log H < J!, 1 (a) < log H. 

S.i.mi.larly, I (y) I is bounded above by a constant depending on Kand J!, 2 ; 

thus we may assume 

(2. 3) <rl I < 

Define L B -- 1. We introduce the auxiliary function 



where 

L 
<l>(z) ,= I 

A =0 
1 

and where p(A 1 ,A 2 ) are rational integers to be determined later. We have 

Now put a 

<!> (t) (z) 
L 

I 
\=O 

z E 11:, t E 1N U {O}. 

:= den(a), b :== den (fl) , 

s := r4a-1 1121 112 
2 B og B 

T [4a_-1 3/21 -1/2 
2 B og B 

C := den(y), 

-1/2 
log H], 

log1/ 2H] 

and consider the system of linear equations 

0, s = 0, ... ,S-1, t 

These are S'r equations in the (L+1) 2 unknowns p(A 1 ,>. 2J; the coefficients 
2 

are algebraic integers and lie in a field with degree at most d over~-

The absolute values of the conjugates of the coefficients are less than 

or equal to 

LS T I I '[' r:1 LS r:::, LS (ac) b max(l, \+>-2 13 )max(l, l°'I )max(1, 1Y1 ) < 

4LS 2T T LS+T 3/2 1/2 1/2 
H B L c 1 ,;_;, exp(c2B log B log H). 

As (L+1) 2 > ½n 2 > d 2ST, there exists, by 2.7, a non-trivial choice for 

the p(A 1 ,>. 2 ), such that 

(2 .4) <I> (t) (s) 0, s o,.,"s-1, t 0, ... ,T-1, 

while 

13 
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3/2 1/2 1/2 
exp(c4B log Blog H). 

II. For k E JN U {O} we put 

2k 1/41 1/4 l -1/4 . ~ B .og B og H. 

Then, for our special choice of the p(\ 1 ,\2) we have 

(2. 5) 

This is proved by induction; fork= 0 the assertion is precisely (2.4). 

Now suppose that (2.5) holds for some k, whi.le 

k+l 1/41 1/4 -1/4 
2 ~ B og Blog H. 

By 2.8 we have 

(2.6) 

where A 

(2. 7) 

max l<!>(z) I ~ 2 
lz 1~2S 

1/2 
log H. Here (2.2) and (2.3) show 

max I<!> (z) I ~ (L+l) 2P exp (4LS log H) < 

lz l~2AS 

3/2 1/2 1/2 
exp(c 5B log Blog H). 

Furthermore, 

the last estimate by 2.10. Now (2.1) gives 

3/21 1/2 . 1/2 -1/2 2 c 5B og Blog H < c 5c Blog B; 



-1/2 -1 
therefore, if we choose C so large that c 5c < c 6 , substitution in 

(2.6) shows 

max 
lzlgs 

I I -1 2 
<jJ(z) ~ exp(-c7 Blog B). 

Using the formula 

<jJ (t) (s) ti 
21ri J <jJ (z) 

(z-s)t+l 
lz-sl=1 

dz, 

we see that for s = O, ..• ,S-1, t 

( 7/41 3/4 l 1/4H exp c 8B og B og -
-1 2 

B log BJ. 

Now (2.1) gives 

7/41 3/4 1/4 -1/4 2 
cBB og Blog H < cBC Blog B; 

-1/4 -1 
therefore, if we choose C so large that cBC < c 7 , we may conclude 

(2.8) 

However, i;t(a)<jl(t) (s) is algebraic and for s 

t = O, ... ,Tk+l-1 we have 

o, ... ,s-1, 

-t (t) < (ac)LSbTk+l < H2LSBTk+1 < den(£ 1 (a)<P (s)) 

7/4 3/4 1/4 
exp(c 10n log Blog· HJ, 

I t (t) I ( 1) 2P 2LS Tk+lLTk+l LS+Tk+l 
Q,~ (a)<P (s) ~ L+ .H B c 11 < 

exp 7/41 3/4 l 1/4 ) 
2B og B og H 

15 
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(here (2.1) is used), so, by 2.6, either ~(t) (s) 0 or 

I -t <t> I 7/4 3/4 1;4 t 1 (a)~ (s) ~ exp(-c13B log Blog H). 

In the latter case, (2.2) shows that 

(2.9) I <t> I 7/4 3/4 1;4 
~ (s) ~ exp(-c 14B log Blog H) > 

-1/4 2 
exp(-c 14c Blog B). 

-1/4 -1 
Combining (2.8) and (2.9), and choosing C so large that c 14c < c 9 , 

gives ~(t) (s) = 0 for s = O, ..• ,S-1, t = O, .•. ,Tk+l-1. This completes the 

proof of (2.5). 

III. Now let k be the largest natural number with 

From (2.5) it follows that 

~(t)(s) =O, s=O, ..• ,S-1, t 

Once more apply 2.8; this gives (2.6) again and (2.7) also remains un­

changed, but from the maximality of k we now get 

-1 9/4 5/4 -1/4 
exp(-c 15B log Blog H), 

the last estimate by 2.10. Using (2.1) we find 

3/21 1/2 1 1/2 c-3/4 9/41 5/4 1 -1/4 
c 5B og B og H < c 5 B og B og H; 

1.'f C' h 1 ht - 3/ 4 -l 1.s c osen so arge ta c 5c < c 15 , we see 

Nuw 

max 
lzl~2S 

I I -1 9/4 5/4 -1/4 
~(z) ~ exp(-c 16B log Blog H). 



f 
lzl=l 

<l>(z) d 
t+l z, 

z 

2 
whence fort= 0,1, ... ,(L+l) -1 we have 

lm<ti I < -1 9/41 5/4 1 -1;4 > 
~ (0) ~ exp t log t - c 16B og B og H < 

2 -1 9/41 5/4 -1/4 exp(c17B log B - c 16B og Blog H). 

By ( 2 • 1 ) we know 

2 -1/4 9/41 5/4 log-1/4H,· 
cl7B log B < c17c B og B 

if C 
-1/4 -1 

is chosen so large that c 17c < c 16 , we conclude 

(2 .10) I (t> I -1 9/4 s/4 -1;4 
<P (0) ~ exp(-c 18B log Blog H), t 

For these values oft we have 

dg (9,~t (a)<!> (t) (0)) 1, 

-t (t) 8 (L+1) 2 2 
den(t 1 (a)<P (0)) < ~ exp(c19B log BJ, 

I t (t) I ( J) 2 (L+l) 2 (L+l) 2 (L+1) 2 i; (a)<!> (0) < L+. PB L c20 < 

(once more (2.1) is used), so according to 2.6 either <I> (t) (0) 0 or 

I -t (t> I 2 i 1 (a)<!> (0) ~ exp (-c22B log B). 

In the latter case, (2.2) shows that 

( 2. 11) I <ti I 2 <!> (0) ~ exp(-c 23 B log B) > 

-1/4 9/4 5/4 -1/4 
exp(-c23c B log. Blog H). 

17 
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C-l/4 < -1 
Combining (2.10) and (2.11), and choosing C so large that c 23 , · c 18 , 

gives 

(jl (t) (0) 0, t 

IV. Fort 0, ... ,(L+1) 2-1 we now have 

(2.12) 0. 

As the pC\ ,11 2 ) are not. all zero, it. follows that the coefficient matrix 

of the system (2.12), which is of the Vandermonde type, must be singular. 

From this we deduce the existence of 1-. 1 ,>- 2 ,Ai,"-2 E {0, ... ,L} with 

"1 + "28 = "i + "28, or 

"1 - "1 
"2 - "2. 8 

This gives 

B h(8) ~ L B - 1, 

so we get a contra.diction. □ 

2. 12. DEFINITION. For E > 0, b E JR'-~ we define 

where 

W(E,b) -~ limsup 
n-+ oo 

are the convergents of the continued fraction expansion of b. 

2.13. LEMMA_ (Bertrand's postulate). If n > 1, there is at least one prime 

p such that n < p ~ 2n. 

[Hardy-Wright 1960], Theorem 418. □ 

2. 14. LEMMA. If b E JR , v E 2Z , w E 2Z '- { 0} and 

--, 



the number v/w is a convergent of the continued fraction expansion of b. 

PROOF. [Perron 1954], Satz 2.11. □ 

2.15. LEMMA. Suppose b E JR'-lll. By (p /q ,"' 0 we denote the sequence of 
n n n= 

convergents of the continued fraction expansion of b; here pn E 2Z, 

qn E ]'.J, (pn,qn) = 1. Then 

PROOF. [Perron 1954], § 13, (12). □ 

2.16. LEMMA. Let E,:\ > 0 be given. Then there exists an irrational number 

b with O < b < 1 and\~ w(E,b) ~ 5\. 

PROOF. I. By induction we define a sequence (13n) :=l of rational numbers 

in the interval ]O,1[. Take 13 1 1/w1 , where w1 is a natural number de-

pending on\, to be determined later. Now suppose 13n has already been 

chosen; put 13n = vn/wn' where vn,wn E lN and (vn,wn) = 1. Consider the 

partition 

D (o 

of the interval ]0,1[, where w 1 is the smallest prime number greater 
3 4+E n+ . . 

than exp(4\wnlog wn). By 2.13, J.t is clear that 

(2 .13) 
3 4+E 

exp(4:\w log w) 
n n 

3 4+E 
The width of the partition Dis less than exp(-4:\wnlog wn); thus there 

exists a vn+l E {1, ... ,wn+l-1} with 

(2 .14) ls -n 

Now define Sn+l as vn+/wn+i" Note that (vn+l'wn+l) = 1 because is 

prime and 1. ~ vn+l < wn+l" If w1 is chosen sufficiently large, (2.13) en­

sures that the sequence (wn):=l is strictly increasing. 

II. The sequence (i3n)n=l has the property 

(2 .15) Vm > n: I 

19 
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To prove th.is, put Ik := {x € lR: j Sk - x/ < 

(2.15) can be written as Vm > n: S €I. By 

3 4+E 
exp(-2Awklog wk)}. Then 

m n 
(2.14) /3 EI 1 , so it is 

m m-
sufficient to prove Vk > n: Ik c Ik_1 • Take x E 

3 4+E 
1k, which means J - xJ < 

exp(-2Awklog wk). Then, by (2.13) and (2.14), 

if w1 is chosen sufficiently large in relation to A, so x E Ik-l. 

IIL From (2.15) we see that (Sn)~=l is a Cauchy sequence; it con­

verges to a limit, which we shall call b. Then b E [0,1] and 

(2 .16) 

By 2.14, this implies that 

expansion of b, say 

is a convergent of the continued fraction 

Thus bis i.rrationaL Now suppose w(s,b) < L By 2.15 a.nd the definition 

of w(s,b), we then have for sufficiently large n, 

3 4+E 
qk (qk +exp(Aqk log qk )) 

> 

n n n n 

3 4+E 
exp(···2Aqk log qk 

n n 

which contradicts (2.16). 

If, on the other hand, w(E,b) > SA, there are infinitely many con-

vergents of b with 
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(2 .17) 

00 

As all the Sn are convergents of band (wn)n=l is increasing, for every k 

satisfying (2.17) we can find an nk with 

thus 

which contradicts (2.13). □ 

2.17. DEFINITION. Suppose E: > 0, d E JN. Then the set Pd(E:) is defined as 

the set of all b E (I: such that there exist an a E ct:'- {O}, a value 9- (a) * 0 
3 

of the logarithm of a, and infinitely many triples (a,S,y) E JAd with 

where H = max(2,h(a),h(S),h(y)) and ab exp(M(a)). 

2.18. LEMMA. For every d E lN, n E lN, there exists an effectively com­

putable C > 1, depend.ing only on d and n, with the following property. 

Suppose a 1 , .• °'etn E .JAd'-{O}, 13 0 , ... ,Sn E JAd; let .11, 1 (a 1), •.. , (an) be 

values of the logar.ithms of a 1 , ••• ,an respectively. For 1 ~ j ;;, n, let 

~ 6 be an upper bound for h(a.) and exp( I ,Q,. (cr .) I). Put 
J J J 

Then either~ 0 or 

[A[ > exp(-C51 log 0' (log B + log .ll)), 

where 51 = (log ) .•. (log An) , 51' (log A1) ... (log An-l), 

B ,~ max(6,h(S O), .. .,h(S11)). 

PROOJ:':_. [Baker 1977]; see also souw-Waldschmidt 1977], Theorem 1 and 

the remark following i L □ 
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2.19. LEMMA. Suppose a 1 , ••• ,an E JA'-{0}; let R- 1 (a 1), •.. ,J1.n(an) be values 

of the logarithms of a 1 , ••• ,an respectively. Then R- 1 (a 1), ..• ,J1.n(an) are 

linearly independent over m if and only if they are linearly independent 

over 1A. 

PROOF. [Baker 1967], Theorem 1. □ 

2.20. LEMMA. For every d E JN, there exists an effectively computable 

c > 1, depending only on d, such that, if E > 0, no number b E JR'-m 
-1 

with w(E,b) < C belongs to Pd(E). 

PROOF. Suppose b E JR'-m belongs to Pd (E). This gives the existence of an 

a* O, a value R.(a) * 0 of the logarithm of a, and infinitely many triples 

(a,S,y) E JA! with 

(2.18) 

b 
where a = exp(bR.(a)) and H = max(h(a) ,h(S),h(y)). 

Let (a,S,y) be such a triple and assume that His large enough in 

terms of d,a,b,R.(a) and E. Let I be a branch of the logarithm, defined 

on a disk K1 , centred at a, such that 1(a) = i(a). Then 

from R.(a) * 0 we thus get I(a) * 0. Let R-* be a branch of the logarithm, 

defined on a disk K2 , centred at ab, such that 

Together with (2.18), these formulas show 

In case Si(a) - i*(y) * 0, 2.18 would imply 

which is a contradiction. Therefore f31(a) - R-*(y) O, so 2(a) and 
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£*(y) are linearly dependent over JA; 2.19 now states that these numbers 

must also be linearly dependent over m. This gives the existence of s,n E 

m, not both zero, such that sI(a) + nt*(y) = o. Here n * 0 because 

I<al * o, so 

13 t*(y) = - f E 111. 
n 

Applying 2 .11 then shows that 

-1 
log H > c Blog B, 

where B = h(S) and c > 1 depends only on d. 

Put g := den(S); then q must tend to infinity with B, so log H > 

-1 
c q log q ~ q for H large enough. This gives 

{2 .19) I I 3 l+E -3 3 4+E 
b - S < exp(-log H log2 H) < exp(-c q log q); 

thus, by 2.14, Sis a convergent of the continued fraction expansion of 

b, say S p /q. By 2.15 we have, if w(E,b) < c-1 , and n is large 
·n n 

enough, 

(2.20) 
1 ------> 

-1 3 4+£ 
exp(-2C q log q). 

------------- > 

Comparison of (2.19) and (2.20) gives a contradiction if 2C-l < 
-3 

C 

2.21. LEMMA. All rational numbers s satisfy the following inequality: 

PRoor. If Isl,:';, 1, we have h(sl = den(s); otherwise h(s) = lslden(s). □ 

2. 22. LEMMA. Suppose b E JR'- Ill • By (p /q ) 00 

0 we denote the sequence of 
--- n n n= 

convergents of the continued fraction expansion of b; here pn E 2Z, 

qn E JN, (pn,qn) ~ L Then 
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PROOF. [Perron 1954], Satz 2.10. □ 

2. 23. LEMMA. For every M E JN , there exists an effectively computable 

C > 1, depending only on M, such that, if s > 0 and d E JN , every nwnber 

b E lR'-\!2 with [b[ ;;, Mand w(s,b) > C belongs to Pd(E:}. 

PROOF. I. Let C > 1 be some number depending only on M, to be determined 

later; supposes> 0, jb[;;, Mand w(s,b) > C. By c 1 ,c 2 , ... we shall denote 

real numbers greater than 1 that depend only on M. By 2.21 and 2.22, we 

have for infinitely many n E JN, 

1 
< ---- < 

3 4+s 
exp (Cqnlog qn) 

-1 3 4+s 
exp(-c 1 Ch (pn/qn}log h(pn/qn)). 

< 

Consequently, there exists a sequence (S11):=l of rational numbers with 

the properties 

(2.21) 

(2 .22) 

Furthermore, it is no restriction to assume that h(S 1 ) is greater than 

some bound depending only on M. 

II. We now use induct.ion to define a sequence 

numbers in the interval ]0,1[ with the properties 

(2 .23) 

(2.24) 

(2. 25) 

(2.26) 

Choose 

1/2 3 
- an+lf < exp(-2C log h 

h (a ) > 
n+l 

2h(S ) 
h < (2h(S )} n 

n 

1/den( 

n=l of rational 



Now suppose a 1 , ••• ,an have already been chosen and possess the desired 

properties. By 2.13, there is a prime number u with 

We observe 

If C is chosen large enough in terms of c 1 , we may write 

(2. 27) 

16c112h3 (S ) log3 (2h (S ) ) (log (2h ( S ) ) + .log2 (2h ( n · n n 

by (2.25) the right hand member of (2.27) is greater than 

so 

(2.28) 
u 1/2 3 . 1+£ 

> exp(2C log h(a Jlog2 h(a )). 
den(Sn+l) n _ n 

Write w : = den (Sn+ 1.) and consider the partition 

1 2w (u-1) w D = ( 0 ,---,-, ••• ,--, 1) 
w w w 

U 11 U 

of the interval ]0,1[. Take t E {O, ... ,u-1}. Then 

w 
u 

w 

therefore the width of the partition D does not exceed w/u. 

By (2.28), the interval 

) ) l.+£; 

25 
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has a length greater than w/u, so that this interval. contains at least one 

of the points of D. This proves the existence of a t E { 1, .... , u-1} with 

la n 
u 

If one defines an+l := (t/u) w, (2.23) is satisfied, a 1 E ]O, 1[ and 
1~ M 

furthermore an+l E ~- Finally, 

h(S l 
(2h2(S )) n+1 

n+1 

2h(i3 ) 
< (2h (13n+1)) n+l ' 

and, by 2.21, 

-1 3 
exp (2c 2 exp (Ch (Sn)); 

here (2.22) is used a.nd it is supposed that h(S 1 ) is large enough in 
2 

terms of c 1 and c 2 . Ash (an) < exp(4h(i3n)log(2h(Sn))), this proves 

h(an~l) > h 2 (an). The construction of the sequence (a11 )~=l is now 

completed. 

III. The sequence (a11);=l has the property 

h . . 1/21 3. ( ) l+Eh( ) I '£0 prove t is, put J.k := C og n ak log2 ak and k := 

{x E JR: [ak - xi < exp(-ik) L Then (2.29) can be written as \Im> n: 

a E I . 
Ill n 

By (2.23), a EI , so it is sufficient to prove Vk > n: 
Ill D1···1 

Ik c Ik-l" Take 

and (2.24), 

x E Ik, which means /ak - xi < exp(-ik). Then, by (2.23) 

exp(-i) + exp(-2i ) < 
k k-1 



) < 2 exp(-2ik_ 1J < exp(-ik_1), 

if h(S 1 ) is sufficiently large, so x ~ Ik_ 1 . 

IV. From (2.29) we see that (an)n=l is a Cauchy sequence; .i.t con­

verges to a limit, which we shall call a. Then 

(2 .30) 

If we define 

we have y11 E ~ and log h(y11 ) < c 3log h(cv.n). Furthermore, from (2.26) it 

follows that h(S11 ) < c 4log h(a11). From this we conclude that, if C is 

large enough in terms of c 1 , c 3 and c 4 , (2.21) and (2.30) give 

where H = max(2,h(a ) ,h(i3 ) ,h(y ) ) . As the function (x,y) I-> xy is con--
n n n n 

tinuously differentiable on every compact subset of ]0,1[ x ]-M-1,M+l[, 

there is a Jc> l, depending only on a and b, such that 

\fn: lab - y J < Jc max(la-a J,jb-S ll. 
n n n 

Consequently, if n is large enough in terms of C and Jc, we have 

which proves the lemma. □ 

2.24. THEOREM. Suppose£ > o, d E JN, b E \!:. 

(i) If" b (f. JR, then b Ef. pd(£). 

(ii) If" b E JR'-~ and w(E,b) = 0, then b Ef. Pd(£). 

(iii) If" b E JR'-~ and w(;:,b) ~ 00 , then b E Pd(E). 

(iv) If" b E Ill, then b E Pd(;:). 

(v} In case b E JR'-(ll with 0 < w(c,b) < 00 , no general assertion is 

pnssible. 

27 
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PROOF. In case b E fil, taking z Ed: such that 

for infinitely many I; E .lAd (which is possible by 1.6) and writing 

a 
den(b) 

z (a, S,y) ( den(b) b den(b)) 
c; ,b,;:; 

shows that b E Pd ( c) ; this proves (iv) . 

The assertion (i) is a trivial consequence of 1.5. We may therefore 

assume that b E IR'-@, in which case w(s,b) is defined. According to 2.20, 
-1 

there exists an effectively computable c 0 > such that if w(s,b) < c 0 , 

then b Et Pd(E); this proves (ii). By 2.16, it is also clear that there 
-1 

exists a b E IR'-@ with O < w(c,b) < c 0 and so there is a b with 

0 < w(s,b) < 00 that does not belong to Pd(E). 

Furthermore, 2.23 asserts that for every ME JN, there exists an 

effectively computable cM > 1 such that, if [b[ <(_Mand w(s,b) > cM, then 

b E Pd (E). In case w (E: ,b) we may choose M = [ b [ and (iLi) is proved. 

Again by 2.16, it i.s clear that for any M E JN there exists a b with 

[b[ ~Mand + 1 < w(E,b) < c-o; so there is ab with O < w(s,b) < 00 that 

does belong to Pd(s). □ 

It has been pointed out to the author by A.A. Balkema that 2.11 can 

also be proved by purely algebraic means, without recourse to Gel'fond 

theory. The main tool in such a proof :Ls the inequality stated as Lemma 4 

of [Baker-Stark 1971], which follows from Gauss' lemma in algebraic number 

fields. 
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3. THE NON-IN'I'ERCHANGEABILITY OF a AND b 

Lets> O, d E lN be given. In Chapter 2 our aim was to establish 

a criterion to decide for which b E il:: there exist an a E <!:'- {O} and a 

value Jl(a) * O of the logarithm of a such that for infinitely many triples 
3 

(a, S, y) E JAd the inequality 

(3 .1) 

is satisfied (here H denotes the maximum of 2 and the heights of a, Sand 

y, and ab= exp(bJl(a))). 

Let us now consider the converse problem, namely to investigate for 

which a E <l:'-{O} there exist ab Ea:: and a value Jl(a) * 0 of the logarithm 
3 

of a, such that for infinitely many triples (a, S,y) E .1Ad inequali.ty (3. l.) 

is satisfied. 

3. 1. LE~. If n E IA and k E lN , the following assertions ho.Id: 

(3. 2) 

(3. 3) 
k k 

den(n) ~ den(n) ~ den (n). 

PROOF. I. According to 2. 4( a) , a: contains a finite normal extension F of Ill 

that contains n; put G := Gal(F/\1!). According to 2.4(b), 

VE, E F: m 

Therefore 

max [am 1. 
0EG 

( max I 0 (n) I l 
aEG 

II. If m : = den (nk) , the number mnk is an algebraic integer. 'l'he same 

must then be true for mk-lmnk = (mn)k; therefore there is a monic polynom­

ial P E 2Z[X} such that P( (mn)k) = 0. This shows that mn is an algebraic 

integer. 

III. The last inequality in (3.3) is triviaL □ 
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3. 2. LEMMA. Suppose n E JA • Then 

h(n) 
d (n) 

< ( 2 den ( n) max (1 , Inf ) ) g . 

PROOF. [Cijsouw-Tijdeman 1973], Lemma 1. □ 

3.3. LEMMA. Suppose d,j,k E ~! with j,:;, k, n E . Then 

PROOF. It is clear that den(nj) ~ den(nk). Indeed, if m := den , the 

mb k. lb·· h th b t f nu er mn is an a.ge raic integer.Te same must en e ·rue or 
k-j k j _ j k [ ] m (mn ) -- (mn ) ; therefore there is a monic polynomial P E 2Z X such 

that P((mnj)k) = 0. This shows that mnj is an algebraic integer. 

Applying 3.1 and 3.2, we find 

□ 

3.4. LEMM!:." For each a E JA'- {0}, there exists an effectively computable 

C > 1, depending only on a, with the following property: Lf SE Ill and 

y E JA, whi.le 21 (a), 

spectively r,1ith 

(3.4) (a) -

it follor;Ts that 

(y) are values of the logarithms of a and y re-

(y) 0, 

log h(y) < C dg(y)h(S). 

_PROOF'_. By c 1 ,c 2 , ... we shall denote real numbers greater than 1 depending 

only on a. Let S,y,9. (a) and (y) be such that (3.4) is satisfied; put 

B = v/w, where v E 2Z, w E JN, (v,w) = 1. If P = I:d a _Xj is the minimal 
j=O J 

polynomial of y, the minimal polynomial of 1/y is either P* := 

or -P*. Thus h(y) = h(l/y); replacing y if necessary by 1/y 



and observing that -£2 (y) is a value of the logarithm of 1/y will ensure 

that v > 0. We have 

and 

exp(wf3£ 1 (a)) 

applying 3.1 gives 

and 

den(y) ,"'._ denv(a). 

According to 3.2, 

h(y) ~ (2 den(y)max(l,mJ)d 

w 
y 

exp (v9, 1 (a) ) 
V 

exp (t 1 (a)) 
V 

a ; 

v r::7v/w d 
< (2 den (a)max(1,1a1 )) < 

□ 

3.5. LEMMA. Supposed E JN, a E IA'- {O}, \ {a) * 0 a value o.f the ]oga­

rithm of a. Suppose K is a compact subset of the comp]ex plane, not con­

taining 0, t 2 a branch of the logarithm defined on K. Then on.ly finitely 

many rational numbers f3 have the property that an a.lgebraic number y EK 

of degree at most d ex.ists with 

(3. 5) 0. 

31 

PROOF. Suppose the assertion of the lemma to be false. Let f3 be a rational 

number and y EK algebraic with dg(y) ~ d such that (3.5) holds. By c 1 , 

we shall denote real numbers greater than 1 depending only on d,a, 

K, i 1 (a) and we assume that h (S) is greater than such a number, which 

will lead to a contradicti.on. It is no restriction to assume dg(a) < d. 

By 2.11, we see that either 
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(3 .6) 
-1 

log max(h(a) ,h(y)) ~ c 1 h(S)log h(S) 

or 

(3. 7) max(h(a),h(y)) ~ c 2 . 

As there are only finitely many rationals of the form /l, 2 (y) (a), where 

dg(y) ~ d and h(y) ~ c 2 , we may henceforth assume that (3.6) holds and 

even that 

(3 .8) 
-1 

log h(y) ~ c 1 h(S)log h(S). 

On the other hand, by 3.4 we see that 

(3. 9) 

Comparing (3.8) and (3.9) gives a contradiction if h(i3) is sufficiently 

large. o 

Now we are able to solve the problem stated in the introduction to 

this chaptero If there are infinitely many a E JAd with 

(3 .10) 

where A= h(a), taking b = S = 1, y = a shows that (3.l) holds for in­

finitely many triples (a,S,y). Suppose, on the other hand, tha.t infinitely 

many such triples satisfy (3 .1), yet for only finitely many a E 1Ad in­

equality (3.10) holds. If His taken large enough, (3.1) then implies that 

a= a. Let K be a closed disk in the complex plane, centred at ab, that 

does not contain 0. It is clear that there exists a branch 1* of the 

logarithm, defined on K, such that l*(ab) = bl(a). From (3.1) we deduce 

that y EK and that the inequality 

I I 3 l l+s/2) Sl(a) - l*(y) < exp(-log H og 2 H 

holds .. If it were the case that Sl (a) - 1* (y) * 0, 2.18 would imply 

I si(a) - l*(y) I 2 l+s/2 
> exp(-log H log2 H), 
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which gives a contradiction. Therefore 

(3 .11) l3Q, (a) ... Q,* (y) o. 

We have now proved that Q,(a) and Q,*(y) are linearly dependent over the 

field of all algebraic numbers; using 2.19, we find that these numbers 

must al.so be linearly dependent over~- In other words, there are s,n E ~. 

not both zero, such that s,Q,(a) + nl*(y) = 0. Here n * 0 because Q,(a) * 0, 

so 

13 

Using 3.5, we see that in the triples (a,13,y) satisfying (3.1) occur only 

finitely many values of 13. From (3.11) we see that the number of values 

of y must also be finite and we arrive at a contradiction. Thus we have 

proved 

3. 6. THEOREM. Suppose E > 0, d E JN , a E il::, { 0}. Then the following two 

assertions are equivalent: 

(i) There exist a b E a:: and a value Jl(a) * 0 of the logarithm of a, 

such that for infinite.ly many triples (a, 13,y) of algebraic numbers of 

degree at most d 

I b 3 l+E 
max(la-a ,lb-Sl,!a -yll < exp(-log H log2 H), 

b 
where H = max(2,h(a),h(l3),h(;y)) and a := exp(b,Q,(a)). 

( ii) There exist infinitely many a E JAd such that 

I I 3 l+E 
a - a < exp(-log·A log2 A), 

where A max(2,h(a)). □ 

A more interesting problem occurs if we demand that the triples 

(a,13,y) contain infinitely many values of S, or, in other words, that 

3. 7. DEFINITION. Suppose E > 0, d E JN • Then the set Pd ( s) is defined 

as the set of all a E a;,{o} such that there exist ab E <l:'-\11, a value 
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3 
9,(a) * 0 of the logarithm of a, and infinitely many triples (a,S,y) E .IAd 

with 

3 l+E 
< exp(-log H log 2 H), 

where H = max(2,h(a) ,h(S) ,h(y)) and ab exp (b,Q, (a)) • 

In this case the condition (3.10) turns out to be no longer sufficient 

and there appears an extra condition on the nature of the numbers a occur­

ring in (3.10). 

3.8. THEOREM. For every fixed d E JN, there exists an effectively comput­

able C > 1 with the following property. If E > O, a E <l:'- {O} and Q,l is a 

branch of the logarithm, defined on a neighbourhood of a, such that for 

infinitely many k E JN an a E JA, depending on k, exists with 

( 3 .12) 
-1 

exp(k £, 1 (a)) E JAd '- {1}, 

(3 .13) I I 3 1 +E 
a - a < exp(··C log A log2 A), 

where A max(2,h(a)), the number a necessarily belongs to (E) • 

PROOF. I. Let C > 1 be given and suppose E > 0, a E <t: '- { 0}; let 
00 

and (an)n=l be sequences from JN and IA, respectively, such that 

(3 .14) 

(3 .15) 

where 

and 

lim k oo, 
n n + oo 

Vn: /a -

max(2,h(a )) . Put 
n 

k 
n 

Furthermore, 3.3 states 

n=l 



h(O ) 
n 

From this it follows that 

lim A oo; 
n n+ oo 

indeed, the opposite would imply that there is an a E 1A such that for 

infinitely many pairs (k,m) of natural numbers with k * m 

(3. 16) exp 

so 

(3 .17) 

-1 
exp(t1 ,Q, 1 (a)) * 1, 

- l) ,Q, (a) __ 0 (mod 211i) . 
m 1 

By choosing min(k,m) in such a way that the left hand member of (3.17) 

has absolute value less than 2'IT, one proves that ,Q, 1 (ot) = 0 and thus 
-1 

exp(k ,Q,l (ot)) = 1, which contradicts (3.16). 

By taking partial sequences if necessary, we can ensure that 

(3 .18) Vn: 

(3 .19) 

Furthermore, it is no restri.ction to assume that A1 is sufficiently large 

in relation to C. 
-1 00 

II. Put s1 := k 1 ; the sequence (Sn)n=l of rational numbers from the 

interval ]0,1( will be defined inductively. Suppose s1 , ... , have been 

chosen; by (3.18) we see that there is a j E {1,... } with 
n+l 

(3. 20) ~_n+l I 3 l+s 
0 < I S - < exp (-·C log Anlog2_ An) . 

n kn+l 

00 

Define • It follows from (3.20) that (Sn)n=l is a Cauchy 

sequence, and that its limit b satisfies 

(3. 21) Vn: lb - S 
n 

35 
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To prove this, it will be sufficient to show 

(3. 22) 

Put i 
r 

Vm > n: Is - s I m n 

1 3 l+s 
:= 2-c log A log2 A, I 

r r r 
< exp 

(3. 22) can be written as Vm > n: 

:= {x E JR: I Sr - xi 
13 EI. By (3.20), 
m n E Im-l' so it is 

sufficient to prove Vr > n: Ir c Ir_1 • Take x E , which means Is - xi < r 
exp(-ir). Then, by (3.19) and (3.20), 

< I fl - x I + I 13 1 - f3 I < exp (-i ) + exp (--2j_ 1 ) < 
r r- r r r-. 

if A1 is sufficiently large in relation to C. This proves (3.22). 
-1 

III. Define yn := exp(SnJ/,l (an)) exp(jnkn £ 1 (an)); then 

00 00 

By (3.15) and (3.21), it is clear that the sequences (an)n=l and (yn)n=l 

are bounded and remain uniformly away from O; applying 2.10, together with 

the fact that lim A = oo shows h ( Sn) ~ log An for sufficiently large n. 
n ➔ co n 

From (3.20) one sees that (13 ) 00 

1 does not become eventually constant, 
n n= 

so that lb·· 13 I > 0 for infini.tely many n; by (3.21) and 2.14, b must be 
n 

irrational. 

IV. By 3.3, 

therefore 

for almost all n; hence, if C is sufficiently large in relation to d, 

( 3. 15) and ( 3. 21) imply 

max ( I a--a I , I 
fl 
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for almost all n. 

As the function (x,y) I-> exp(y,Q, 1 (x)) is continuously differentiable on 

a compact neighbourhood of (a,b), there exists a A, independent of n, such 

that 

lexp(bQ, 1.(a)) - exp(S Q, 1 (a ))I<;\ max(Ja-a l,[b-S Ji 
n n n n 

and therefore 

for almost all n. Thus a E P~ (E). □ 

3.9. THEOREM. If E > 0, d E 1N and a E <I:'- {0} belongs to P~(E), there is 

a branch £ 1 of" the logarithm, defined on a neighbourhood of" a, such that 

for infinitely many k E JN an a E TA, depending on k, exists with 

(3. 23) 
-1 

exp(k i 1 (a)) E JA 2 ·, {1} 
d 

(3.24) 

where A max(2,h(a)). 

PROOF. L Suppose b E <l:'-\l;! and i(a) * 0 a value of the logarithm of a, 

such that there exist infinitely many triples (a,/3,y) of algebraic numbers 

of degree at most d satisfying 

(3.25) 
b 3 l+E 

max(!a-al,Jb-S[,la -yl) < exp(-log H log2 H), 

where H == max(2,h(a) ,h(S) ,h(y)) and ab = exp(b,Q,(a)). From this it is 

immediately clear that (3.24) holds; we now proceed to prove (3.23), 

Let I,Q,* be branches of the logarithm, defined on disks K1 ,K2 , 

centred at a and ab respectively, such that :i(a) = J/,(a) and Q,*(ab) = b,Q,(a). 

Let (a,/3,y) be a triple satisfying (3.25); we suppose H to be greater than 

a certain bound depending on E,d,a,b and l(a). As a* 0 and ab* 0, we may 

assume a* 0 and y * 0. Clearly 

(3. 26) 
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(3.27) I 3 1+2s/3 
!M(a) - R.*(y) < exp(-log H log2 H); 

from 9,(a) * 0 we thus get £(a) * 0. As a consequence of (3.26), (3.27) and 

I 3 l+E 
Jb - S < exp(-log H log2 H) 

we have 

3 l+E/3 
(a) - £* (y) [ < exp(-log H log2 H). 

If it were the case that S£(a) - R.*(y) * 0, 2.18 would imply 

I - [ 3 1+E/3 S£{a) - £*(y) > exp(-log H log2 H), 

which is a contradict.ion. Therefore Sii(a) - £*(y) = 0. 

IL We have just proved that ii(a) and £*(y) are linearly dependent 

over the field of all algebrai.c numbers; using 2 .19 we find that these 

numbers must also be linearly dependent over \1/. In other words, there are 

s,n E \1/, not both zero, such that sR(a) + n£*(y) = 0. Here n * 0 because 

ii (a) * O, so 

s 

Put S = v/w, where v E Zs, w E JN, (v,w) = 1. Let: x,y E Zs satisfy 

xv+ yw = 1 and take 8 := yxay; clearly dg (0) ~ d 2 and 

8 exp(xR*(y)+y:ii(a)) 
-1-- -

exp(xvw £(a)+y£(a)) 

As 9, (ad is bounded and unequal to zero, we have now proved 

exp(w (ct)) E JA 2 , { 1} 
d. 

-1-
exp (w 9. (ct) ) • 

if w is sufficiently large. That the number w occurring in this formula 

tends to infinity with H, immediately results from (3.25) and the fact 

that b (t: \Q. o 

It could be asked whether ·the condi. t:ion ( 3 .12) on the special nature 

of the numbers a approximating a might be dispensed with if the approx.ima-·· 
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tion measure itself is strengthened. That, at least in cased= 1, such a 

result does not even hold when the right hand side of (3.13) is replaced 

by a very rapidly decreasing function of the height, follows from 3.12 be­

low. 

3.10. LEMMA (Dirichlet's Theorem). Tf a,b E 2Z such that b * 0 and 

(a,b) = 1, the residue class {a+bn: n E 2Z} contains infinite.Zy many 

prime numbers. 

PROOF. [Apostol 1976], Theorem 7.9. □ 

3.11. LEMMA. Let (an):=l be a sequence of positive integers, suppose 

a 0 E 2Z • Define 

, n E Jl'L 

Then for each n E JN U { 0} we have p E 2Z , q E JN , (p , q ) = 1; and 
n n n n 

there exists a number b E JR, II/ such that (pn/qn) :=O is the sequence of 

convergents of the continued fraction expansion of b • 

. The first assertion follows from Satz 2.1, the second one from 

Satz 2.6 of [Perron 1954]. □ 

3.12. THEOREM. For any f: JN + ]0, 00 [ and E > 0, there exists an 

a E JR'-{O} such that inf.i.n.i.tely many rationa.I numbers!; sati.sfy 

I a - i; I < f (h m ) ' 

PROOF. I. By induction we define two sequences (an):=O and (qn):=O 

of non-negative integers. 'l'ake a 0 := 0, q 0 := 1 and let = q 1 be a 

prime number greater than 1/f(l). Now suppose a 0 , .. .,an and q 0 , ... 

have already been defined in such a way that q 1 , ... ,qn are prime numbers 

> 1/f(qk_1 ) fork= 1, ... ,n. According to 3.10, the residue class 

x E Zl} contains infinitely many prime numbers, including one 

greater than 1/f(qn). This prime number we shall call qn+l' the correspond-
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ing value of x will be an+l· 
00 

The sequence {qn)n=O we have now constructed has the property that 

> 1/f (~-l) and qn prime for n E 1N, while (qn) :=O and (an) :=O are 

connected by 

(3.28) 

Using 3. 11 we see that the numbers qn are the denominators of the con·­

vergents of the continued fraction expansion of some irrational number a. 

II. Let pn be the numerator of the n-th convergent of a. According 

to 3 .11, 

Comparison with (3.28) shows that Vn: pn < qn' so we have h(pn/qn) 

Now 2.22 states that 

pn 
la - -I< --

qn qnqn+l 
< 

I a - I; I < f (h ( I; ) ) , n E ]N • 
n n 

q . 
n 

III. Now suppose a E P1(s); according to 3.9, there is a branch t 1 of 

the logarithm such that, for infinitely many positive integers k, an alge­

braic number a exists with 

(3. 29) exp 

(3. 30) I I ( 3 l l+E: a - a <exp-log A og2 A), 

where A= h(a). By 2.14, (3.30) implies that a. is a convergent of the con­

tinued fraction expansion of a; thus 3n: a= l;n p /q, where q is prime. 
nk n ·n 

On the other hand, from (3.29) it follows that a= 8 with 8 E \f2"-{l}, 

which gives a contrad.iction if k > 1. □ 
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4. SIMULTANEOUS APPROXIMA'rION MEASURES FOR SUBSETS OF {a,b,P(a,b,ab)} 

The purpose of this chapter is to generalize 1.8 and 1.9 in order to 

obtain simultaneous approximation measures for subsets of {a,b,P(a,b,ab)}, 

where Pis a polynomial with rational integer coefficients. As a further 

generalization, our results will not depend on the precise coefficients 

of P, but only on the degree and height of P. Our main theorem is 4. 2; 

the other theorems in this chapter treat various special cases. In 4.8 and 

4.10 we consider the case that a is a fixed algebraic nwuber, in 4.11 the 

case that this is true for b. In 4.7 we assume that ab: exp(b); this re­

sult was independently proved by Vaananen [19 .. ], who used the method of 

Siegel and ~idlovski~. 

4.1. ~EMMA. Suppose P0 E: 2Z[X], its height and degree bounded by H0 and n0 

respectively, with n0 < log H0 • If there exist a real number A> 6 and a 

transcendental number ( such that 

there also exist a positive integer s ~ n 0 and an .irreducible div:isor 
1 -1 

P 1 E: zz[x] 
-1 

of P0 , its height and degree bounded by exp(s- log H0 + 2s n 0 ) 

ands n0 respectively, satisfying 

PROOF. The assertion is proved as Lemma VI' in Chapter III of (Gel'fond 

1952] under the extra assumption that the coefficients of P0 have greatest 

common divisor 1. This, however, is no restriction; indeed, if this 

greatest common divisor ism> 1, the polynomial m- 1P0 has still height 

and degree bounded by H0 and n 0 respectively, while m- 1P0 (() I < (~) I. 
Moreover, a.ny irreducible divisor of m- 1P0 also div.ides P0 . □ 

4.2. LEI~'-'lA. Suppose E: 2Z[X] separable, its height bounded by a1 , its 

degree exactly k. Let a> 0 be the leading coefLicient of P 1 and e1 , ... ,8k 

its roots; .let ( be an arbitrary comp.lex number. Then 

2 
exp(-2k -k log H1) min 

i=J., .•. ,k 
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PROOF. [Fel'dman 1951), Lemma 5. □ 

(n) 
4.3. DEFINITION. By Sd we denote the set of all polynomials PE 

:zz[x1 , •.• ,xn] such that the degree of P in each variable does not exceed 

d, while for all. (i; 1, ... ,i;n-l) E JA;-l the degree of P(i; 1 , ... ,i;n-l'X) E 

lA[X] is at least one, Instead of Sd ) we usually write Sd. 

4.4. LEMMA. Let F be a finite normal extension of \12; suppose i; E F. Then 

i; E \!) i.f and only if a(E;) = c; for all a E Gal(F/(12). 

PROOF'. [ Van der Waerden 1966] , § 5 7. □ 

4.5. LEMMA. Suppose d,n E JN, a 1 , ... ,an E (1:, b E 11:'-JA. Then there ex_ist 

effectively computable c 1 , ... ,c5 , greater than 1, depending only on 

d,n,a 1 , ..• ,an and b, such that the following holds. Suppose , .. .,an E 

.IAd, y E JAd, PE S~n+l) with 

(4 .1) 

(4. 2) max(ia 1-a 1 1, ... ,la -a l,IP(a1 , ••. ,a ,b)-yi) < exp(-c2J.og HJ. 
. n n . n 

Then· there exists a number S E JA of degree at most c3 and height at most 

exp(C4log H) with 

-a l,JP(a1 , ... ,a ,b)-yj). 
n . n 

(n+l) 
_PROOF. suppose c 1 ,c2 > 1, a 1 ,. •. ,an E JAd, y E JAd, PE Sd are such 

that (4.1) and (4.2) are satisfied. By c 1 ,c2 , ... we shall denote real 

numbers greater than 1 depending only on d,n,a1 , ... ,a11 and b; throughout 

the proof we shall without further mention assume that c 1 and c 2 are 

greater than such a number. Put 

l, ... ,la -a !,IP(a1 , ... ,a ,bl-rll. 
n n n 

Remark that the transcendency of b ensures that U is well-defined; from 

(4.2) it follows that U > c 2log H. 

Denoted. := dg(a,), m ·= den 
J J j . 

) for j = 1, ... ,n; denote 

dg(y), m0 ,~ den(y), D ,~ d 0ct 1 ." .. dn. 'I'hen D ~c 1 , max(m0 < H. 

Let R0 be the polynomial 



do d 
n 

TT TT RO 
60=1 0 =1 

n 

where 

a. 
J 

(1) 
a. 

J 

(2) 
a. 

J 

are the conjugates of a. for j 
J 

(1) (2) 
y y y 

((\) (o ) (00) n 
,X) (P (a 1 , g" g ,a -y ) ' n 

1, ... ,n, and 

are the conjugates of y. Now, if F c <tis a finite normal extension of<,!) 

containing a 1 , ••• ,an and y (such an extension always exists by 2.4(a)) 

and CT E Gal(F/\)2), the coefficients of R0 are clearly invariant under o; 

this implies that R0 E g:>[x], by 4.4. Cunsequently, the polynomial R 
D dD dD 

m0m1 ... mn RO has rational integer coefficients; the degree of this poly-

nomial is bounded by dD ~ c 2 and its height by 

D dD n dn D 
H (H ) c 3 (c4H(H+1) +H+l) ~ exp(c5log H). 

Furthermore, we have 

and 

thus 

•••• ,a ,b) - rl < n 

c 6 H max I a j - a j I + I P ( a 1 , ••• , an , b) - y I < exp ( -c 7 
j=l, ... ,n 

[R(b) I -1 
< exp(-c 7 U+c 1 < exp( 

< 

43 
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h d f . . . f S(n+l) b Byte e inition o d , R cannot ea constant. 

Now apply 4.1 with PO= R, n 0 = c 2 , HO= exp(c 5log H), A= 
-1 -1 -1 -1 

c 2 c 5 c 11 u log H, ~ = b. We deduce the existence of a positive integer 

s;;, c 2 and an irreducible divisor Q E ZZ(X] of R, such that the degree of Q 
-1 -1 -1 

is bounded by s c 2 ;;, c 2 and its height by exp(s c 5 log H + 2s c 2 ) < 

exp(c 121og H), while 

Apply 4.2 with P 1 = Q, H1 = exp(c 12 log H), ~ = b. Note that Q is separable 

because Q is irreducible. Let e1 , ... ,8k be the zeros of Q; then k;;, c2" 

We find 

min Jb - eiJ ;;, exp(2k2 +kc 12log H) JQ(b) J < 
i=1, ... ,k 

Moreover, for i = 1,.,. ,k we have h (8 1 ) ;;, exp (c 12log H) , dg (8 1 ) ;;
0 

c 2 ; 

thus there ex.ists an algebraic number f3 of degree at most c 2 and he.ight 

at most exp 2109 H) with 

4.6. LEMMA. Suppose d,M E JN. Then there exists an effectively computable 

C > 1, depending only on d and M, such that only Linitely many pairs 

(S,y) E IA~ with I 13 I ;;; M satisfy 

I I 2 -1 
exp(/3) - y < exp(-C log H log2 H), 

,11here H = max(2,h{f3) ,h(y)). 

PROOF. [Cijsouw 1975], Theorem 2. 0 



4. 7. THEOREM. Suppose c > 0, d E JN , b E <l: '- { 0}. 'l'hen there are only 
2 

f.initely many triples (S,y,P) E 111.d x Sd such that 

(4. 3) 

where H max(2,h(S) ,h(y) ,h(P)). 

~ROOF. I. Suppose the assertion of the theorem to be false; from this a 

contradiction will be derived. By c 1 ,c 2 , ... we shall denote real numbers 

greater than 1 depending only on c, d and b. 

First we show that under this assumption exp (b) must be transcen-· 
2 

dental. Suppose (S,y,P) E JAd x Sd such that (4.3) is satisfied; assume 

45 

that His sufficiently large in terms of£, d and b. Suppose also that 

exp(b) is algebraic; as bis a value of the logarithm of exp(b), applica­

tion of 2.18 shows that either S - b = 0 or 

(4.4) I I 1+£ 
S - b > exp(-log H). 

It is no restriction to assume that£ is so small that (4.3) and (4.4) 

cannot hold simultaneously; therefore we need only consider the case that 

S ··· b = 0. However, in this case the number b is algebraic but unequal to 

O; thus exp(b) is transcendental by 1.2. 

IL Apply 4.5; this gives the existence of an algebraic number 11 of 

degree at most and height at most exp(c 21og H) satisfying 

I -1 2 -i+c 
lexp(b) - TJ < exp(-c 3 log H log2 H), 

which contradicts 4.6. □ 

4.8. THEOREM. Suppose£> 0, d E JN, a E JA'-{O}, b E <t'-g). Let £(a) * 0 

be a value of the logarithm of a. Then there are only finitely many 

triples (fl,y,P) E ]Ad X sd such that 

(4.6) 

where H max(2,h(B) ,h(y) ,h(P)) and a.b = exp(bJl(a)). 

PROOF. I. Suppose the assertion of· the theorem to be false; from this a 
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contradiction will be derived. By c 1 ,c 2 , ... we shall denote real numbers 

greater than 1 depending only on s,d,a,b and /l(a). 

First we show that ab must be transc~ndental. Let K be a closed disk 

in the complex plane, centred at ab, that does not contain 0. It is clear 

that there exists a branch il* of the logarithm, defined on K, such that 

(4.7) b!l (a) 

Suppose (S,y,P) E Jl:\! x Sd such that (4.6) is satisfied; assume that H is 

sufficiently large in terms of s,d,a,b and /l(a). From (4.6) and (4.7) it 

is clear that 

I b I 2 s/2 Sll(a) - il*(a) < exp(-log H log2 H). 

Now suppose that ab is algebraic. If it were the case that f3/l(a) - il*(ab) * 
O, 2.18 would .imply 

I b I l+E S£(a) ·· il*(a ) > exp(-log H), 

which gives a contradiction, because we may assume E to be arbitrarily 

smalL Therefore Sil (a) ·· il* (ab) = 0 and so, by (4. 7), we find that S = b; 

accordingly, b E JA"-11! and so ab E <J::,JA. by 1.3. 

II. Apply 4. 5; this gives the existence of an algebraic number n of 

degree at most and height at most exp(c 2log H) satisfying 

(4.8) - nl 

From (4. 7) and (4.8) we then deduce that n E K a.nd that the inequality 

holds, which, by 2.18, implies Sil(a) - il*(n) = O. 

III. We have proved that /l(a) and £*(11) are linearly dependent over 

IA ; using 2 .19 we find that these numbers must also be linearly dependent 

over \ll. In other words, there are 1; 1 ,1; 2 E II!, not both zero, such that 

!;1 !l {a) + (17) = 0. Here * 0 because /l(a) * 0, so 
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s 

Using 3.5 we see that h(S) < c 4 ; from (4.6) it then follows that b 

This contradicts the conditions of the theorem. □ 

S E 1). 

4. 9. LEMMA. Suppose d E JN , a E IA . Then there exists an et'fecti vely com­

putable C > 1, depending only on d and a, such that only finitely many 

a E .1Ad satisfy 

la - al < exp(-C log H), 

where H = h(a). 

PROOF'. [Brauer 1929], Satz 1. □ 

4.10. THEOREM. Suppose E > 0, d E 1N, a E 1A, {0} , b E (t, P E Let 

,Q,(a) * 0 be a va.Iue of the logarithm of a. Then there are only finite,7.y 

E 2 
many pairs (13,y) JAd such that 

where H = max(2,h(S),h(y)) and ab= exp(bJl,(a)). 

_!:ROOF_. The proof is completely analogous to that of 4.8, up to the end of 

part I, where the Gel'fond-Schneider theorem was used to establish the 

transcendency of ab. This time, having proved that S = b, we deduce that 

H = h(y) and that P(b,ab) is algebraic, while from (4.6) we see that 

which contradicts 4. 9. T'herefore the assumption that ab be algebraic is 

disproved, it follows that b (¼:Wand we may proceed as in the case of 

4.8. □ 

Thus, in case Pis taken fixed, the condition that b (£~may be 

dropped from 4.8. In the same way it is possible to remove the restriction 

b * 0 from 4.7. 

4.11. THEOREM. Suppose E: > 0, d E JN, a E \t'-{0}, b E IA'-1!/. Let J!,(a) ic 0 



48 

be a value of the logarithm of a. Then there are only finitely many 

triples (a,y,P) E .11>.! X sd with 

(4.9) b J 2 2+E max([a-a[ ,[P(a,a )-y) < exp(-log H log2 H), 

where 
b 

H = max(2,h(a),h(y),h(P)) and a = exp(b,Q,(a)). 

PROOF. I. Suppose the assertion of the theorem to be false; from th.is a 

contradiction will be derived. By ,c2 , ... we shall denote real numbers 

greater than 1 depending only on E,d,a,b and ,Q,(a). 

First we show that must be transcendental. Let £, _Q, * be branches of 
b 

the logarithm, defined on disks 

such that 

K1 ,K2, centred at a and a respectively, 

(4.10) 

(4 .11) 

. 2 
Suppose (a,y,P) E JAd x Sd such that (4.9) is satisfied; assume that H is 

sufficiently large in terms of E,d,a,b and ,Q,(a). From (4.10) and (4.11) i.t 

is clear that a E K1 and 

b [ 2 2+E/2 (a) - ,Q,*(a) < exp(-log H log2 H). 

Now suppose that ab is algebraic. If it were the case that b:f(a) - ,Q,*(ab) * 
O, 2.18 would imply 

which gives a contradiction because we may assume E to be arbitrarily 

smalL The.cefore bi(a) - ,Q,*(ab) = 0 and so, by (4.10) and (4.11), we find 

a = a; accordingly, the number a is algebra.le and so ab E tt '1A. by 1 .. 3 ~ 

II. Apply 4.5; this gives the existence of an algebraic number 17 of 

degree at most and height at most exp(c2log H) satisfying 

(4 .12) 
-1 2 2+E 

< exp(-c 3 log H log2 H). 

From (4.11) and (4 2) we deduce that 17 E K2 and that the inequality 
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holds; comparison with (4.9) and (4.10) gives 

If it were the case that bI(a) - t*(nl * 0, 2.18 would imply 

which gives a contradiction. Therefore bI(a) - t*(n) = 0. 

III. We have proved that I(a) and t*(n) are linearly dependent over 

JA; using 2.19 we find that these numbers must also be linearly dependent 

over~- In other words, there are ~1,~ 2 E ©, not both zero, such that 

~1I(a) + ~2t*(n) = 0. Here ~2 * 0 because, by (4.10), I(a) * 0, so 

b 

This contradicts the conditions of the theorem. □ 

4.12. THEOREM. Suppose E > 0, d E JN, a E \t'-{0}, b E \t. Let i(a) * 0 be 

a value of the logarithm of a. If b E lR, or if b E lR'-© such that the 

convergents pn/qn of the continued fraction expansion of b satisfy 

(4.13) 

there are only finitely many quadruples (a,S,y,P) E JA! x S~3) such that 

(4.14) 

b where H = max(2,h(a),h(Sl,h(y),h(P)) and a = exp(bi(a)). 

PROOF. I. Suppose that b has the required properties, but that neverthe­

less there exist infinitely many quadruples (a,S,y,P) E JA! x sl3) that 

satisfy (4.14). 

From this it follows that ab must be transcendental. If both a and b 

are algebraic, this is precisely the Gel'fond-Schneider theorem 1.3. Now 
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suppose that at least one of a and bis transcendental; then (4.14) implies 
2 

that there are infinitely many pairs (a, SJ E JAd that satisfy 

where H ~max(2,h{a),h(/3)). If ab is a.lgebraic, this contradicts 1.7. 

II. Apply 4.5; this gives the existence of infinitely many triples 

(a,/3,n) of algebraic numbers, their degrees bounded by some constant de­

pending only on s,d,a,b and £(a) such that 

where H' ~ max(2,h(a) ,h(/3) ,h(n)). Once again we get a contradiction with 

L 7. □ 

It is clear that the use of 2.24 instead of 1.7 would replace con­

dition (4.13) by the slightly sharper w(E,b) = 0. 
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5. MANY·-VARIABLE ANALOGUES 

In the present chapter we give analogues of 1.10 and 1.11 in which 

the condition that 1,S1 , .•. ,Sn be linearly independent over Ill is replaced 

by conditions on a 1 , ... ,an,b1, ... ,bn. As proved in 5.5 and 5.7, the es­

timate of 1.10 holds whenever Q, 1 (a 1), .•. ,Q.n(an) or 1,b1 , ••• ,bn are linear­

ly independent over \[l. In 5.8 and 5.10 it is proved that a similar result 

can be obtained in case the roles of a 1 , ... ,an and b 1 , ... ,bn in L 10 are 

interchanged; here we need the additional restriction that b 1 , ... ,bn may 

not all be rational. Under these conditions, it is also possible to prove 

many-variable analogues of 4.8 and 4.11; this is done in 5.11 and 5.12. 

Finally, in 5.15 we give an analogue of 1.11 in which the condition that 

,S 1 , ••• ,Sn be linearly independent is replaced by the strong linear in­

dependence condition (1.3). In 5.13 it is shown that 5.15 may also be re­

garded as a generalization of the type of theorem of which 1.7 is an ex­

ample; 5.16 uses 5.15 to give a many-variable analogue of 4.12. 

5. L LEMMA_. Suppose d,n E JN; then there exists an effectively computabJ.e 

C > 1, depending only on d and n, such that for all n-·tupJ.es (n 1 , ••. ,nn) 

of algebraic complex numbers of height at most H > 2 the fol.lowing asser­

tions hold: 

dg 

PROO~. Suppose dg(n 1+ ... +nn) _:::_ d; put n n 1 + ... + nn E .lAd. The 

minimal. polynomial of n is 

k 
a n (X-n(jl), 

j=1 

(1) (k) 
where a E JN and where Tl , ••• , Tl are the different conjugates of Tl 

(thus k ~d). By 2.S(c) we have, for j = 1, ... ,k, 

According to 2.4(a), <t contains a.finite normal extension F of Ill, such 

E F. Put G := Gal(F/~). By 2.4(b), 
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k 
a < TT 

( j) 
den(n ) < ( max 

,k 
den er (n) J < 

j=l o E G 

max (den cr(n 1)• ... •den o(nn))k < 
o E G 

k 
max den o(n 1)• ••. • max 
crEG crEG 

The first assertion of the lemma follows from the trivial fact that the 

height of a product of polynomials is less than the product of their 

heights times a constant depending only on their number and their degrees. 

The second assertion is proved analogously, with the obvious replace­

ments. □ 

5.2. LEMMA_. Suppose d,n E JN. Then there exists an effectively computable 

C > 1, depending only on d and n, with the following property. Suppose 

O\, ... ,an E JAd are multiplicatively dependent; then there ex.ist 

t 1 , ••• , tn E 2Z , not all zero, such that: 

and 

PROOF. [van der Poorten-Loxton 1977], Theorem 1. □ 

5.3. LEMMA. Suppose R > 0, , ••• ,w9, E 0:, z 0 E O:. Let P1 , •• ., 

denote non-triv.ial polynomiaJ.s of degree at most d. Define 

9, 

<l> (z) := l Pk (z) exp (wkz), z E <t. 
k=l 

If 1' .i.s not .identica.IJ.y zero, the number of zeros of 1' in 

{z E <t: I z - I~ R} does not exceed 

PROOF. [Tijdeman 1971], Theorein 1, Corollary. □ 

E a:[x] 



The following lemma is a generalization of 2.10 and 2.11 to an 

arbitrary number of logarithms; it has been brought to our attention that 

Waldschmidt [19 •• ], in an as yet unpublished paper, proved a slightly 

sharper version of the second assertion of the lemma. 
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5.4. LEMMA. Suppose d,n E lN, K a compact subset of the complex plane not 

containing 0, i 1 , ••• ,in branches of the logarithm, defined on K. Then 

there exist effectively computable C,H0 > 1, depending only on d,n,K and 

i 1 , ••• ,in, with the following property. Let a 1 , ..• ,an EK be algebraic of 

degree at most d and heights at most H1 , .•• ,Hn respectively, such that 

t 1 (a1), ••. ,ln(an) are linearly dependent over m. If H ~ max(H0 ,H1 , ••. ,Hn)' 

then there exist x1 , ••• ,xn E 2Z, not all zero, such that 

while 

lxjl n+l 
TI log ~c log2 H Hi, j 1, ••• ,n. 

i*j 

In case H1 H n' this inequality may be sharpened to 

lxjl ~c 
n-1 log H log2H, j 1, ..• ,n. 

PROOF. I. Let a 1 , .•• ,a EK be algebraic of degree at most d and heights 
--- n 
at most H1, .•• ,Hn respectively, such that i 1 (a1), ... ,tn(an) are linearly 

dependent over m; let H be a number greater than max(H1 , .•. ,Hn). By c 1 , 

c 2 , ••. we shall denote real numbers greater than 1 that depend only on 

d,n,K and t 1, ••• ,tn. By C we shall denote some number greater than l; 

additional restrictions on the choice of C will be formulated at later 

stages of the proof. Throughout the proof we shall assume that His suf­

ficiently large in terms of d,n,K,t1 , •.• ,in and C. 

II. First we shall prove that there exist u1 , •.. ,un E 2Z , not all 
2n-3 zero, their absolute values bounded by c 1log H, such that 

It is clear that there exist r 1 , .. ;,rn E 2Z, not all zero, such that 
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(5.1) 0. 

By 5.2, there exist 
n-1 

E 2Z , not all zero, their absolute values 

bounded by c 2log H, such that 

suppose for instance that sn * 0. Thus there is a E 2Z with 

(5. 2) 

n-1 
As /tj(aj) / ~c 3 for j = 1, ••. ,n, we have /sn+l/ ~ c 4log H. If sn+i = 0, 

there is nothing left to prove; assume sn+l * 0. Comparison of (5.1) and 

(5.2) yields 

(r1-ss1)9,1(a1) + ... + 
n 

r 
n s 0 2Tii 0. 

s n+l 
n 

s 
11 

Again by 5. 2, there exist t 1 , ••• , E 2Z , not all zero, their absolute 
n-2 . 

values bounded by c 5log H, such that 

L 

Thus there is a t E 2Z with 
11 

(5. 3) 

there is nothing left to prove; assume 

(5.3) yields 

st 9, 0. 
n n n 

If we define u. := s.t 
J J n 

s t. for j 
n+l J 

o. 

* 0. Comparison of (5.2) and 

1, ..• ,n-1 and u := 
l1 

, the 
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numbers u 1 , •.• ,un possess all the desired properties; in particular un * 0 

because s * 0 and t * 0. n n 
III. For convenience's sake, in the remainder of the proof we shall 

assume that un * 0 and write Sj := -u./u for j = 1,~~~,n-1; we have 
J n 

and 

(5.4) 

Define Q := (log H1) •.• (log Hn) and 

for j 1, ... ,n. Define 

·= [en logn+lH 1 -nA] 1 J0 

"j 2 .og2 - ' 

where 

. - { B if Ht= ... = Hn, 
A .- e 

e otherwise. 

We introduce the auxili.ary functi.on 

where 

q, (z) 

A.z 
J 

:= 

LO L 
n 

I I p(A 0 , ••• ,A11 )z 
A0=0 A =O 

n 

exp(A.zJl.(a.)), j 
J J J 

>,o z 

al ... a ' z E a:' n 

and where p(A 0 , ... ,An) are rati.onal integers to be determi.ned later. We 

have 

(5. 5) <P (t) (z) (z)' 
T 
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where the summation ranges over all n-tuples ! = (T 0 , ..• ,Tn_1) of non-

negative integers satisfying TO+ .•. + Tn-l 

<I> (z) 
T 

T n-1 
n 

V=1 
( 11 +11 S ) v 

v n v 

L 
n 

I 
11 =O 

n 

t, and where 

••.CL 

11 z 
n 

n 

Now put a. := den(a.) for j = 1, •.. ,n, b. = den(S.) for j = 1, .•. ,n-1, 

X 

1/ti 2 21 1 -1 1+1/rl n+2J -n-1 s := [c log2H log2 A], T := [¥ c n log2 H log2 A], and consider 

the system of linear equations 

0, s o, ... ,s-1, ! E V(T), 

where V(T) is the set of all n-tuples T (T 0 , •.• ,Tn_1) of non-negative 

integers satisfying TO+ + Tn-l ~ T - 1. These are fewer than STn 

equations in the (L0+1) ..• (Ln+l) unknowns p(ll0 , ... ,lln); the coefficients 

are algebraic integers in the number field ~(a1 , ... ,an) of degree at most 

dn. The absolute values of the conjugates of the coefficients are less 

than or equal to 

max 
v=l, ••. ,n-1 

LS+TLL08 LO T 2T 
c 7 O LB 

2L.S 
J 

TI Hj 
j=l 

n 

2.7 states that there is a non-trivial choice for the p(ll0 , ••. ,lln) such 

that 

(5.6) 

while 

<I> (s) 
T 

0, s O, ••• ,S-1, :E E V(T), 
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P := max IPC.'- 0 , .• ,, < 

Ao,···•An 

IV. Define K := [n2log2H/log 2] + 1. Fork= O, ... ,K we put Sk := 

2kS, := T - k[T/2K]. Then, for our special choice of the p(:\0 , ••• ,An), 

we have 

(5. 7) 0, s 

This is proved by induction; fork= 0 the assertion is precisely (5.6). 

Now suppose that. (5. 7) holds for some k ;SK - 1. 'l'hen, for :.1: E ll(Tk+ll 

and m < [T/2K] we have 

(m) (z) 

where the summation ranges over all n-t.uples 1:: 

negative integers satisfying µ 0 + .•. + µn-l m, and where T + µ 

(T 0+1-1 0 , •. " ) . Clearly :.1: + !: E V(Tk) and thus, by the induction 

hypothesis, 

(m) (s) 0, s 

By 2.8 we have, for EE V(Tk+l)' 

(5.8) 

Here 

max I w <z) I < 2 
T 

I z l~sk+l 

max 

I z I ;S3Sk+ 110g 
L0+LSk+llog 

ell 

A 

I w czi I < 
T 

A+ Tk+l 
(L0+1) ... (Ln+1)PL0 ! (Sk+llog 

k 1+1/n n+3 -n-1 
exp(2 c 12c ~ log2 H log2 A) 

L 'l' 
A) O(BL) k+l < 
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and 

-1 1/2n 
therefore, if we choose C so large that c 13c > c 12 , substitution in 

(5.8) shows that 

max 

I z l,;;,sk+l 

T E V(T ) 
- k+l ' 

and thus 

(5. 9) I I ( 2k ··1 1+3/2nn 1 n+3 -n-1 
<!> 1 (s) ~exp- .. c 14c "og2 Hlog2 A), 

However, <!>T(s) is algebraic and for s 

s 

k 1+1/n n+3 -n-1 
exp(2 c 15c D log2 H log2 A), 

LSk l +Tk 1 LO T.·+J 
~1 ~ c16 +. + (Lo+l) H• (Ln+l)PLO!Sk+l (BL) K . X 

L S L S 
1 k+1 n k+l k 1+1/n n+3 -n-1 

H1 •.• Hn ,;;, exp(2 c 17c D log2 H 1og2 A), 

so, by 2. 6, either <I> ( s) 0 or 
T 

(5 .10) I k 1+1/n n+3 -n-1 
(s) ~ exp(-2 c 18c D 1og2 H log2 A). 

. -1 1/2n 
Combining (5.9) and (5.10), and choosing C so large that c 14c > 8 , 

gives <!> 1 (s) = 0 for s = O, ... ,sk+l-1, :£ E V(Tk+l). This completes the 

proof of (5. 7). 

V. Taking k Kin (5.7) ·yields 

< 



<!> (s) 
T 

0, s 

Substitution in (5.5) shows that 

<!> (t) (s) 0, s 

Thus the number of zeros of<!> in W := {z EI!:: lzl ~ SK-1} is at least 

2 
1~'1' l n ST ~;f' og H > 

However, if <Ji is not identically zero, from 5.3 we see that the number of 

zeros of <Ji in W does not exceed 

2 2 2 
3cn+1+1/n,., n ··n 1 n +2n+2 -n -n-1 

,, log H .og2 H log2 A+ 

2 
Cl+l/nn logn .H 1 n+3 1 -n-1 c 20 " og2 H og2 A< 

In this case, comparison of the two estimates for the number of zeros of 

<!> in W yields 

1.a.-1 1+2/n12 
2 

n+4 -n-2 
log 

n 
4 C H log2 H log2 A < 

2 
log;+:i -n-1 

log 
n 

H H log2 A, 

so 

C < 

59 

If C is sufficiently large, there is a contradiction; thus<!> is identical-
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ly zero. As the p(:\0 , ••• ,Jen) are not all zero, it follows that two of the 

frequencies of <lo must be equal. This shows that there exist two non-iden-

tical n-tuples (:\ 1 , ... , 

satisfy 

and (Ai,···,;\~) of non-negative integers that 

while 

max 

'raking x. : = A . - ;\' proves the lemma. □ 
J J j 

(a l' n 

5.5. THEOREM. Suppose£> 0, d E JN, a 1 ,. .. ,an E JA '-{O}, b 1 , .•• ,bn E <t, 

£ 1 (a 1 ), ... ,Q.n (an) values of the logarithms of a 1 , ... ,an respectively such 

that £1 (a1 ) , ... ,!ln(an) are linearly independent over~- Put 

Then there are only finitely many (n+1)-tuples (!3 1 , ... , 

which 

n+l 
y) E JAd for 

(5. 11) 

where H 

_l"ROO_E:_. I. Suppose the assertion of the theorem to be false; from this a 

contradiction will be derived. Let (!3 1 ,'". ,Sn,y) be an (n+1)-tuple satis­

fying (5.11). By ,c2 , ... we shall denote real numbers greater than l 

depending only on £,d,n, , .. .,an,b1 , ... ,bn and JZ. 1 (a 1 ), ... ,J!,n 

assume H to be greater than such a nrnnber. Let Q. be a branch 

rithrn, defined on a disk K, centred at a1::, such that Q. (a1::) = 

; we 

of the loga-

. From ( 5 . 11 ) we deduce that y E K and that the inequality 

) + ... + < ) < ) I ( i 2 i r-12 ) an - Q. y < exp - og H og 2 H 

holds. If it were the case that_ s1 i 1 

2.18 would imply 
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which gives a contradiction. Therefore 

(5 .12) 

II. We have now proved that t 1 (a 1 ), ... ,tn(an) ,t(y) are linearly de­

pendent over JA ; using 2. 19 we find that these numbers must also be 

linearly dependent over Ql. By 5.4, there exist :x1 , ••• ,xn+l E 2Z, not all 

zero, such that x 1 Q, 1 (a1 ) + ... + x t (a)+ x 1t(y) = 0, while Ix 1 [ ~ 
n+2 n n n n+ n+ -

c 11og2 H. Adding xn+l times (5.12) gives 

IIL By the conditions of the theorem i 1 (a 1 ) ,. .. ,tn(an) are linear­

ly independent over Ql; 2.19 states that then t 1 (a 1),.. 01 tn(an) are linear-

ly independent over IA . Thus for all j E { 1, •.. ,n} we have + 

0. Now xn+l = 0 would imply x 1 = xn+l = 0, which we have assumed to 

be not the case; therefore xn+l * 0. From this it follows that for all 

j E {1,."",n} we have 

By 2.21 this implies h(S.) < 
J 

(5 .13) 1, ...... ,n .. 

Apply 5.1 with = exp(S.£.(a.)). We have 
J J J 

so, by 3 .4, 

and thus 

, and thus 
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(5.14) 

However, (5.13) and (5. 14) show that 

which gives a contradiction for sufficiently large H. □ 

5.6. LEMMA. Suppose , ••• , a. , S , .•• , S E JA, { 0} such that 1, S 1 , .. ., S 
n 1 n n 

are linearly independent over q;>, l\ (a 1), ... , ,Q,n (a.11 ) val11es of the 1ogarithms 

o.f respectively that are not a11 zero. Then 

is transcendental. 

) + ••. +/3 ,Q, 
11 11 

PROOF. The lemma follows from Theorem 2 of [Baker 1967] in case none of 

a 1 , ... ,a.n equals 1. However, Baker's proof only uses the less restrictive 

condition that none of £ 1 (a. 1) , ..• ,Jcn(a.n) is zero; and this assumption we 

may make without impairing the generality of the proof. To see this, 

assume that this special case has been proved and rearrange the given 

numbers in such a way that ,Q,m+l(am+l) = ... = ,Q,n(an) = 0, while none of 

9. 1 ), .•• ,Jcm(a.rn) equals zero. As the linear independence of 1,13 1 , •.• ,Sn 

entails that of 1,S 1, .•. ,Sm, the special case of the lemma yields the 

transcendence of 

)+ .•• +s ,Q, (a)) 
In Ill Ill 

)+ ... +s 9, (a)). □ 
n n n 

5.7. THEOREM. Supposes> 0, d E JN, a 1 , .. .,an E JA'-{0}, E <t 

such that 1,b1 , ••. ,bn are linearly independent over q;>, 1 1 (a 1 ), ..• ,111 

values of the logarithms of a 1 , ••• ,an respectively that are not all zero. 
b 

Put a- exp(b 1 9. 1 (a 1 )+ ... +bn,Q,n(a )) . Then there are only f.in.itely many 

(n+1)-tup1es (S 1 ,. .. , -y) E JA~+f for which 

(5 .15) 

where H 

max( I 

max ( 2 , h (fl ) , ••• , h ( S ) , h ( -y) ) • 
n 
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PROOF. In case n = 1, the assertion of the theorem follows from 5.5. We now 

proceed by induction and assume that the assertion has been proved for all 

natural numbers less than n, while it does not hold for n itself; from this 

a contradiction will be derived. Let (S 1, ••• ,Sn,y) be an (n+l)-tuple satis­

fying (5.15). By c 1 ,c2 , ••• we shall denote real numbers greater than 1 de­

pending only on E,d,n,a1 , ..• ,an,b1, •.. ,bn and i 1 (a1) , ..• ,in(an); we suppose 

H to be greater than such a number. If i 1 (a1), ••• ,in(an) are linearly in­

dependent over m, the assertion is proved in 5.5; therefore we may suppose 

that there exist n1, ••. ,nn Em, not all zero, their heights bounded by a 

constant c 1 , such that n1i 1 (a1 ) + ••. + nnin(an) = 0. It is no restriction 

to assume nn * O; thus we may write 

n-1 n. 
i (a ) I -1. ij (aj), n n j=l nn 

from which it follows that i 1 (a1), ••• ,in-l (an_ 1 ) cannot be all zero. If, 

for j = 1, .•. ,n-1, we define 

(5.16) 

we have 

b '. : = b. - nj b , S '. : = 
J J nn n J 

n-1 
TI exp(b?J· (aj)) 

j=l 

b 
a-

and, for j = 1, .•• ,n-1, 

n. 
I b '. - s '. I .s. I b. - s . I + 1-1.1 • I b - s I < 

J J - J J nn n n 

(1+lnjl) exp(-log2H log~H). 
nn 

Furthermore, the numbers 1,b1, ... ,b~_1 are linearly independent over@, as 

may be seen from (5.16). The numbers s1, ... ,S~_ 1 are algebraic of degree 

at most d2 , while their heights are bounded by exp(c2log H) (here 5.1 is 

used). Thus 

(5.17) 

where H' := exp(c2log H) ~ max(h(Si), .•. ,h(S~_1),h(y)). From the induction 
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hypothesis it now follows that 

(5. 18) 

from {5.17) and {5.18) we see that 

b 
a-. 

Thus ', ... ,b~-l and al::> are algebraic; however, by means of 5.6 this leads 

to a contradiction with the linear independence of 1 

From the proof it is clear that the theorem remains valid when the 

condition that 1,b1 , ... ,b be linearly independent over Ill is replaced by 
b n 

the condition <':- Et 1A d. 

5.8. THEOREM. Suppose s > 0, d E JN, a 1 , .•• , , .• "'bEJA 
n 

such that 1,b1 , ••• ,bn are linearly independent over (11, i\ ) ' ••• ,JI, (a ) 
n n 

values o.f the logarithms o[ a 1 , ... ,an respectively that are not all zero. 
b 

Put a- := exp(b1!l 1 (a1 )+ ... +b !l (a ) ) . Then there are only i'initely many 
n n fl 

(n+l.)-tuples (a 1, ... ,an,y) E JA~+ [or r,.rhich 

(5.19) 
n+l 2+s 

< exp(-log H log2 H), 

!:_1322.1'-:.· Suppose the assertion of the theorem to be false; from this a con­

tradiction will be derived. Let (a 1 , ... ,an,y) be an (n+l)-tuple satisfying 

(5.19); asswne that His sufficiently large in terms of c,d,n,a1 , ... , 

(a ) . Let E1 , ... , I 
n n 

and 9. be brandies of the 

logarithm, defined on disks K1 , ... ,Kn and K, centred at a 1 , ... , and al::> 

respectively, such that 

(5. 20) !l. Q,. 
J J 

(5. 21) 

) ' j 

(a ) • 
n 

From (5.19), (5.20) and (5.21) we deduce that a. E 
J 

for j = 1, ... ,n and 

) ' -- . ' are not all zero; also that y EK and that the in-
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equality 

holds. If it were the case that b 1 £ 1 (a: 1 ) + ... +bf (a:) - J/,(y) * 0, 2.18 
n n n 

would imply 

which gives a contradiction. Therefore 

- -
and thus exp(b 1£ 1 (a: 1 )+ ... +bn£11 (a:n)) is algebraic. This contradicts 5.6. 0 

5.9. LEMMA. Suppose d E JN, b E \ll. Then there _is an effectively computable 

C > 1, depending only on d and b, with the following property: if a:,y E 

JAd, while £ 1 (et) ,£2 (y) are values of the logarithms oi' a and y respective­

ly w.ith 

(5. 22) (y) 0, 

_it .fol.lows that 

log h(y) <Clog max(2,h{a:)). 

!::~Oqi,_'_ (cf. 3.4). Let a:,y,£ 1 (a:) and £ 2 (y) be such that (5.22) is satisfi.ed; 
d 

put b = v/w, where v E ZZ:, w E JN, (v,w) = 1. If P = :[j=O is the 

minimal polynomial of y, the minimal polynomial of 1/y is either P* 

I:d 0 a . Xj or -P*. Thus h (y) = h (1/y) ; replacing y if necE'ssary by 1/y 
F d·-J 

and observing that --JI,'.! (y) is a value of the logarithm of 1/y shows that it 

is sufficient to prove the lemma in case v ~ 0. We have 

exp (w9. 2 (y) ) 
w 

exp (£ 2 (y)) 

and 

exp {y)) exp (a:) ) 
V 

exp (9. 1 (a)) 
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applying 3.1 gives 

and 

r:i r:;iv/w 
I Y I = I a I 

den (y) < den v (ct). 

According to 3.2, 

r::l dg (y) V ,---rv/w d 
h(y) < (2 den(y)max(i, 1Y1ll < (2 den (ot)max(l,ja )) < 

□ 

5.10. THEOREM. Suppose E > O, d E JN, a 1 , ..• ,an E <l:'-{0}, b 1 , ... ,bn E: IA, 

not all rational, t 1 (a 1 ), •.. ,J/,n(an) values of the logarithms of a 1 , .• .,an 

respectively such that J/. 1 (a 1 ) , ... ,J/,n(an) are linearly independent over IQ. 

Define a!:!:= exp(b 1 J/. 1 (a 1 )+ ••• +b J/, (an)). 'I'hen there are only fin.itely many 

(n+l)-tuples (a 1 , ... ,an,y) E: JA~~f for which 

where H 

PROOF. I. In case n = 1, the assertion of the theorem follows from 5.8. We 

now proceed by induction and assume that the assertion has been proved for 

all natural numbers less than n, while it does not hold for n itself; from 

this a contradiction will be derived. Let (a 1 , ... ,an,y) be an (n+l)-tuple 

satisfying (5.23). By c 1 ,c2 , ... we shall denote real numbers greater than 

1 depending only on E,d,n,a1 , ... ,an,bl, ... ,bn and t 1 (a 1), ... ,in(an); we 

suppose H to be greater than such a number. If 1,b1 , ... ,bn are linearly 

independent over <l2, the assertion is proved in 5.8; therefore we may sup­

pose that there exist n0 , ... ,nn f IQ, not all zero, their heights bounded 

by a constant c 1 , such that n0 + 11 1b 1 + •.• + nnbn 0. As n1 = ... = nn 

0 would imply no -· 0, H is no restriction to assume n n 
* O; thus we may 

write 

no n-1 n . 
(5. 24) b I ..i b .. 

n n j=l nn J n 



Let JI, and f be branches of the logarithm, defined on disks 
nb 

centred at a- and an respectively, such that 

(5. 25) 

(5.26) JI, (a ) JI, (a ) . 
n n n n 

From (5.23) and (5.26) we deduce that an E K2 ; from (5.23) and (5.25) we 

deduce that y E K1 and that the inequality 

(5. 27) 

holds. For j 1, ... ,n-1 we define 

~ a ' : = a . exp ( -
j J nn 

(a'.) 
J 

:= exp(b. 
J 

(a ) ) , JI,~ (a'.) 
n J J 

n. 
:= Jl,J. (aJ.) - ....2 JI, (a ) , n n n 

n 

Then the numbers Jl,i(ai) , •.. ,Jl,~-l (a;_1) are non-zero values of the loga­

rithms of a;,, ••• ,a;_ 1 respectively, and are linearly independent over \11. 

We also define 

no -
y' :=yexp(n-Jl,n(an)), Jl,*(y') := 

no -
Jl,(y) + - Q, (a). 

n n n 
n n 

Then Jl,*(y') is a value of the logarithm of y'. Using (5.24) we obtain 

n-1 

I I 
j=l 
n-1 

c 2 I I 
j=1 
n 

I_Q < 
nn 

JI,* <r') I 

n. n0 
b.(Jl,.(a.)--J..JI, (a)) - Jl,(y) --I (a JI< 

J J J n11 n n nn n n 

ca i - Q. <ri I + 
n 
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the last inequality by (5.23) and (5.27). Finally, we define 

a '. : ~ a . exp ( - £ ( a ) ) , j 
J J nn n n 

1, ... ,n-·1. 

Then, for j 1, ... ,n-1, we have 

'I'he numbers ai" . .,a;1_ 1 ,y• are algebraic of degree at most lnnl ~ c 8 , 

while their heights are bounded by exp(c9 log H) (here 5.1 and 5.9 are 

used). Thus 

(5.28) 
b b 

1 < , ) n-1 , I) ... a 1 -y < n-

n+l 2+t:/3 
exp(-log H'log2 H'), 

where H' := exp(c9 log H) ~max(h(o:1), ... ,h(o:~_ 1 ),h(y')). From the induc-· 

tion hypothesis it now follows that 

(5.29) 

from (5.28) and (5.29) we see that 

(5. 30) 0: ' 
1 

0:' 
n·-1 

II. From (5.30) we see that 

(5.31) 

Thus 

b 

(ai) 1 •.. (a~-1) 

0. 

2.1.9 we find that these numbers must also be linearly dependent over f. 

In other words, there are I; 1 , ... , 1; 11 E 'Ill, not all zero, such that 

s1 (ail + ... + 1;11_ 1t~_ 1 (a~_ 1 ) + (y') = O. Adding times (5.31) 

glves 



(5.32) (a:' ) 
n-1 

0. 

By (5.30), £i<a:i), •.. ,£~_ 1 (a:~_1 ) are linearly independent over@; 2.19 

states that then £j'(a1) , ... ,£~-l (a:~_ 1 ) are linearly 

'l'hus for all j E {1, ... ,n-1} we have I;.+ I; b. = 0. 
J n J 

= 0 and thus 1; 1 

dependent over JA • 

Now I; 
n 

= 0 would im-

... = I; = 0, which 
n 
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we have assumed to be not the case; therefore i;n * 0. From this it follows 

that for a.11 j E {1, ... ,n-1} we have 

(5.33) b. 
J 

Substitution in (5.24) gives bn E @; we have derived a contradiction with 

the conditions of the theorem. □ 

not all rational, £ 1 (a 1), •.. , £n (an) values of the logarithms of 

respectively, not all zero, such that 

(5. 34) 

or 

(5. 35) 

(5.36) 

where H 

1,b1 , •.. ,bn linearly independent over Q2 

(a ) .Linearly independent over @. 
n 

PROOF. I. Suppose the assertion of the theorem to be false; from this a 

contradiction will be derived. Let (S 1 , ... ,Sn,y,P) be an (n+2)-tuple sat­

isfying (5.36). By c 1 ,c2 , ... we shall denote real numbers greater than 1 

depending only on E,d,n,a1 ,. .. ,a11 ,b1 , ... ,bn and £1 (a 1 ), ... , (a); we 
B 

assume H to be greater than such a number. First we show that a- must be 
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transcendental. Suppose this number to be algebraic; then 5.5 and 5.7, 

together with the inequality 

(5. 37) max( I 

'l'ogether with (5.37) this shows 13. = b. for j = 1, ... ,n. Accordingly, the 
J J b 

numbers , •.• ,bn are algebraic. If (5.34) holds, the transcendancy of a-

follows from 5.6. Now suppose that (5.35) holds. Define 

(a ) ) ; 
n 

then Jl(a!?) is a value of the logarithm of al:? and Jl 1 (a 1J, •• .,Jln(an),,Q,(';3:!::l 

are linearly dependent over IA . Using 2 .19, we find that these numbers 

must also be linearly dependent over g). In other words, there are 

i:; 1 , ••• ,!n+l E If!, not all zero, such that i; 1R- 1 (a 1) + ... + l;nJln(an) + 

£(a-) = 0. Thus 

By (5.35) and 2.19, this implies I;.+ I; 1b. = 0 for all j E {1, ... ,n}. 
. J n+ J 

Now sn+l = 0 would imply s 1 = ••• = sn+l = 0, which we have assumed to be 

not the case; therefore l;n+l * 0. From this it follows that for all j E 

{l,. •. ,n} we have 

which contradicts the conditions of the theorem. 

II. Apply 4.5; this gives the existence of an algebraic number n of 

degree at most c 2 and height at most exp(c 3log H) satisfying 

As H may be taken arbitrarily , there exist infinitely many (n+l)-



tuples U\, ... , Sn, 11) of algebraic numbers of degree at most c 5 satisfying 

where H';;;,, max(2,h(S 1), ..• ,h(Sn) ,h(q)). This contradicts 5.5 or 5.7. □ 

E IA• 

not all rational, 9, 1 (a 1), •• °',\',n(an) values of the logarithms o.f a 1 , •. .,an 

respectively, not all zero, such that (5.34) or (5.35) holds. Define 

Then there are only finitely many (n+2)-tup1es (a 1 , ••• ,an,y,P) E 

JAn+l x s<n+l) with 
d d 

(5.38) 

where H 

n+l l 2+E ) exp(-log H og 2 H 

PROOF. I. Suppose the assertion of the theorem to be false; from this a 

contradiction will be derived. Let (a1 , .•• ,an,y,P) be an (n+2)-tuple sat-

isfying (5.38). By ,c 2 , ... we shall denote real numbers greater than 1 

depending only on E,d,n,a1 , ... ,an,bl, ... ,bn and t 1 (a 1), ..• , (ag); we 

assume H to be greater than such a nwnber. First we show that a- must be 

transcendental. Suppose this number to be algebraic; then 5.8 and 5.10, 

together with the inequality 

(5.39) I I b bl . n+1 2+E , '.:--::3:- ) < exp (-log H log2 H), 

where H ~ max(h 

'rogether with (5.39) this shows a.= 
J 

for j = 1, ... ,n. Accordingly, 

the numbers are algebraic. If (5.34) holds, the transcendency 

71 
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b 
of a- follows from 5.6. Now suppose that (5.35) holds. Define 

b b 
then 1(a-) is a value of the logarithm of a- and 11 (a 1), ... , 

are linearly dependent over IA . Using 2 .19 we find that these numbers 

must also be linearly dependent over m. In other words, there are 

1; 1 , •.• ,1; 1 E \11, not all zero, such that 1; 111 1a1 ) + ... +I; 1 (a) + 
bn+ n n n 

l;n+l1(~-) = 0. Thus 

By (5.35) and 2.19, this implies I;.+ I; 1b. = 0 for all j E {1, ... ,nL 
J n+ J 

Now l;n+l = 0 would imply 1; 1 = ... = 0, which we have assumed to be 

not the case; therefore l;n+l * 0. From this it follows that for all j E 

{1, ... ,n} we have 

I;. 
b . - ~ E \12 , 

J "n+l 

which contradicts the conditions of the theorem. 

II. Apply 4.5; this gives the existence of an algebraic number n of 

degree at most. c 2 and height at. most. exp(c 3log H) satisfying 

-1 n+1 2+E: 
< exp(-c4 log H log2 H). 

As H may be taken arbitrarily large, there exist infinitely many (n+1)­

max ( I 

where H' ~ max(2,h 

n) of algebraic nwnbers of degree at most c 5 satisfying 

n+l 2H;/2 
< exp(-log H'log2 H'), 

), ... ,h(a ),h(n)). This contradicts 5.8 or 5.10. □ 
n 

'rhat a result similar to 5.5, 5. 7, 5.8 and 5.10 does not hold with­

out some extra condition if 

simultaneously, is evident from 1.6. One approach to obtain such a con-

di ti.on was demonstrated by Wustholz [ 1976, 19 .. ], who assumed a 1 ,... to 

be u*-numbers with a suffi_ciently dense sequence of algebraic numbers con­

verging to them; here, however, we shall frame a condition that is close-· 



ly analogous to the one we found for n = 1. Indeed, in case n = 1, 1.7 

states that (i) in 5.13 is a sufficient condition; in order to generalize 

this to arbitrary values of n, it is necessary to bring it into the form 

(ii) in 5.13. 

5.13. LEMMA. For b Et the following assertions are equivalent: 

(i) b (£ lR or b E lR'- 111 such that the convergents p /q of the con­
n n 

tinued fraction expansion of b satisfy 

(5.40) 

(ii) there exists a C > 1 such that for all x0 ,x1 E 2Z that are not 

both zero we have 

(5.41) 

PROOF. I. Suppose (i) holds. First we consider the case b ( lR; we have 

b = b 1 + b2i with b2 * 0. Now for all (x0 ,x1) E zz 2 we have 

and therefore (ii) holds. 

Now consider the case that b E JR'- th such that the convergents p /q 
l!! n n 

of the continued fraction expansion of b satisfy (5.40). Then there is a 

number c 1 such that for all n the inequality 

holds. Suppose (ii) is not true, thus for all c 2 > 1 there exist x0 ,x1 E 

ZZ: , not both zero, such that 

(5.42) 

If c 2 is chosen large enough, (5.42) implies x 1 * 0 and 

and thus, by 2.14, -x0/x1 is a continued fraction convergent of b, say 

73 



74 

P /q, so qn < lx1 1. Then, by 2.15, 
n n 

> 

If c 2 is chosen sufficiently large in terms of c 1 , this contradicts (5.42). 

IL Suppose that (ii) holds. If b E qi, we immediately get a contra-­

diction; if b If: TI<, there is nothing left to prove. Thus we may assume 

that b E JR'-\!). Let pn/qn denote the convergents of the continued fraction 

expansion of b and suppose that (5.40) does not hold, Le. for all c 3 

there exists an n E JN such tha.t 

For such an n we have, by 2.22, 

which contradicts (5.41) if c 3 is chosen sufficiently large in terms of 

C. Cl 

5.14. ~MMA. Suppose d,n E JN, Ka compact subset of the complex plane not 

containing 0, Q, 1 , ••• ,Q,n branches of the logarithm, defined on K. 'I'hen there 

exist effectively computable C,H0 > 1, depending only on d,n,K and Q, 1 , ... , 

Q,n' with the following property. Let , ... ,an EK be algebraic of degree 

at most d and height at most H ~ n0 , such that 9, 1 (a 1), ••• , are not 

all zero and Q,n(an) is linearly dependent of Q,l (a 1) , ••• , (an_ 1 ) over 1A. 

Then there is a subset Q,kl (ak 1 ), .•• , Q,km (akm) of Q, 1 (a1 ), .•• , (an-l) 

that is li.nearly independent over 1A such that for every j E {1, ••• ,n} '-

(j) (j) E = there ex.ist x 1 , • . . = sati.sfying 

(j) (j) Q, ( Cl, ) + (j) Q, ( ) 
k k xm+l j aj 

m m 

0 

while (j) * 0 and 

I (j) I I (j) I m max( x 1 , ... , xm+l) <Clog H log/L 
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PROOF. By Folgesatz 3 in§ 20 of [Van der Waerden 1966], it is possible to 

choose a linearly independent subset J/,k 1 (ak 1), ... ,Q,¾i(akm) of Q, 1 (a 1), •.. , 

J/,n-l (an_ 1 ) such that all of Q,l (a 1), ... ,Q,n-l (an_ 1) can be expressed as a 

linear combination of (ak 1), ••• ,Q,¾i(a¾i) with algebraic coefficients. 

Take j E {1, ..• ,n},{k1 , ••• ,k }. As Jl.(a.) is linearly dependent of Q, 1 (a 1), 
. m J J 

••• , Q, 1 (a 1 ) over ]A , Jl. (a.) is also linearly dependent. of J/,kl (ak 1 ) , ... , 
n- n- J J . (j) (j) 

!ly"m (akm) over 1A. By 2.19 and 5.4, there exist x 1 , .•. ,xm+l E 2Z, not all 

zero, with 

(j) (j) + x(j)"_(~.) 9·1 ( ak ) + · · · + xm Q,k ( ak ) • ,., ~ 
'1 1 m m m+l J J 

0 

= 0 and thus, by 

of Q,k 1 (ak 1 ), ••. ,Q,km(akm) it would follow that x(j) 

X b) 

depends only on d,m,K 

= 0, thi.s would imply 

the linear independence 

X (j) 0 h' h 
m+1 = , W .lC 

we have assumed to be not the case. Therefore 
m+l * o. □ 

5.15. THEOREM. Suppose E > 0, d E JN, , ... ,a E G:'-{O}, b 1 , .•• ,b E <J:, 
n n 

Jl 1 (a1), •.• ,Q,n(an) values o.f the logarithms of a 1 , ••• ,an respective1y that 
b 

are not al.1 zero. Put a-:= exp(b1\ (a 1)+ ••• +bnQ,n(an)). Suppose that there 

is a C > 1 such that for all x0 , ... 

where 

Ix + 
0 

p 
4n+8 

2 ' 0 
n'+2n+1 

3n2+6n-1 
2 ' n +2n+l 

E 2Z that are not a11 zero we have 

Then there are on1y finitely many (2n+1)-tuples (a 1 , ... ,an,13 1 , .• .,13n,y) E 
2n+1 

.!Ad for which 

(5.43) 

n+2 1+E 
exp(-log H log2 H), 

where H max(2,h 
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?ROOF. I. Suppose the assertion of the theorem to be false; from this a 

contradiction will be derived. Let , ... ,an,B 1 , ... ,Bn,y) be a (2n+l)­

tuple satisfying (5.43). By c 1 ,c2 , ... we shall denote real numbers greater 

than 1 depending only on E,d,n,a 1 , ..• ,an,b1 , •.. ,bn,C and J/, 1 (a 1), ... ,9,n(an). 

'rhroughout the proof we shall without further mention assume that H is 

sufficiently large in terms of these numbers. 
- -

Let ,Q, 1 , ... ,,Q,n and ,Q, be branches of the logarithm, defined on disks 

, ... ,K and K, centred at a , ... ,a and a~ respectively, such that 

(5.44) 

(5.45) 

n 1 n -

I. (a. J 
J J 

Q,. (a.)• j 
J J 

From (5.43), (5.44) and (5.45) we deduce that a. EK. for j 1, .... ., ,n, 

that y EK and that the inequality 

holds. If it were the case that s111 (a 1) 

would imply 

which gives a contradiction. Therefore 

(5.46) 

J J 

+ ... + B ,Q, 
n n 

0. 

- 9,(y) * 0, 2.18 

II. As £1 (a 1 ), ... , (an) are not all zero, neither are 11 ) , ... , 

I . Thus from 5.14, after a suitable renumbering, we find an m E 1N 
n 

such that (a 1 ) , ... , I (a ) are linearly independent over JA ; we also find 
m m 

s 1 , ... , sm+l E 2Z satisfying 

(5.47) 0 

while sm+l * 0 and 

(5.48) 



(k) (k) 
finally, for every k E {m+1, .. .,n}, we find t 1 , ... , tm+l E 2Z satisfying 

(5. 49) 

while t(k) * 0 and 
m+1 

(5.50) ( I (k) I I (k) I) < c logmH 1 H max , ... , tm+l 1 og2 • 

Comparison of (5.46) and (5.47) yields 

(5.51) 
m 

l (s,+s 1S,) 
j=l J m+ J 

(a, l + 
J 

n 
l sm+lf:\ik (ak) 

k=m+l 

Substitution of (5.49) in (5.51) shows that 

which can also be written as 

(5. 52) 

0. 

0. 

III. From (5. 52) and the linear independence of 11 (a 1 ), ... , 

conclude 

multiplying by the product of the denominators we get 

+ 0, 

where 

X 0, 
m 

0, 

(a ) we 
m 
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Vj > m: x. 
J 

s t (j) 
m+l 1 

n 
n 

k=m+l 
ktj 

t (k). 
m+1' 

thus x 0 , .•. ,xn E 2Z, x 1 * 0. Furthermore, by (5.48) and (5.50), 

max ( J x 0 [, ... , I xn [) ;;, (c 1 logrnH log ill n-m+l ;;, 

m(n-m+l) n-m+l 
c 21og H log2 H 1 (n2+2n+1)/4H n 

< c 2 og log2H. 

IV. Define X := max(exp(cr/p), Jx0 J, ... , Jxn[). Then 

(5. 53) exp(cr/p);;, X 

As the function x I-> xp log 

that 

and thus 

is .increasing for x > exp(cr/p), (5.53) shows 

n+.2 1 l+s/2 ) exp(-log H og2 H < 

-1 p 
exp(-c4 X log 

E/2 -1 p -a 
log2 H) < C exp(-X log X) 

if His sufficiently large. This contradicts the conditions of the 

theorem. 

5.16. THEOREM. Suppose E > 0, d E JN, a 1 , .. _,an E <l:'-{0}, b 1 , ... ,bn E <!:, 

£ 1 (a 1J, •• .,9.n (an) value~ of the logarithms of , ,, .,an respective.Iy that 

are not all zero. Put a-·,= exp(b 1 £ 1 (a 1)+ ... +bnJ!,n(an)). Suppose that there 

is a c > 1 such that for all x 0 , •.. E 2Z that are not all zero ,ve have 
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(5.54) Ix + x b + ... + x b I 
0 1 1 n n 

-1 p -o 
> C exp(-X log X), 

where 

4n+8 3n2+6n-1 
p 2 • 0 

n +2n+1 
2 • X 

n +2n+1 

Then there are only finitely many (2n+2)-tuples (ci, 1, .•. ,an,1\•···•13n,y,P) E 

JA2n+l x s( 2n+l) such that 
d d 

(5. 55) 

where H 

PROOF'. I. Suppose the assertion of the theorem to be false; from this a 

contradiction will be derived. Let (a 1 , ... ,an,S 1 , ... ,Sn,y,P) be a (2n+2)­

tuple satisfying (5.55). By c 1 ,c 2 , ... we shall denote real numbers greater 

than 1 depending only on E,d,n,a 1 , ••• ,an,bl, ... ,bn and 1 1 (a 1 ) , .•. , 

we assume H to be greater than such a number. 

(a ) ; 
n 

First we show tha.t a~ must be transcendental. Suppose this number to 

be algebraic; then 5.15, together with (5.54) and the inequality 

(5. 56) I, --. , I 

n+2 l+E 
exp(·-log H log2 H), 

where H implies 

max(h ), ... ,h(a ),h(S 1J, .•• ,h(S ),h(a~)) < c 1 . 
n . n -

Together with (5.56) this shows a,= a and S. = b, for j = 1, ... ,n. 
J j J J 

Accordingly, the nwnbers 

sequence of (5.54), moreover, 1,b1 , ... ,b are linearly independent over 
b n 

~; the transcendency of~- now follows from 5.6. 

IL Apply 4.5; this gives the existence of an algebraic number n of 

degree at most and height at most exp(c 3log H) satisfying 
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I b I -1 n+2 l+E ~- - n < exp(-c4 log H log2 H). 

As H may be taken arbitrarily large, there exist infinitely many (2n+1)­

tuples (a 1 , ... ,an,S 1 , ..• ,Sn,n) of algebraic numbers of degree at most c 5 

satisfying 

n+2 l+E/2 
exp(-log H'log2 H'), 

where H' ~ max(2,h(a 1 ) , ... ,h(an) ,h(S1 ) , ... ,h(S0 ) ,h(n)). This contradicts 

5.15. □ 
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6. THE p-ADIC CASE 

6. 1. DEFINITION. ( a) Let F be a field. A function v: f ➔ JR is called a 

non-archimedian valuation of F if it satisfies the following requirements: 

{i) Vn E F: v(n) ~ O; 

{ii) Vn E F: v(n) = O • n = O; 

(iLi) \fn,n' E F, v(nn') v(n)v(n'); 

(iv) Vn,n' E F: v(n+n'l ~ max(v(n) ,v(n')). 

{b) Let F be a field, v a non-archimedian valuation of F. The func­

tion (n,n') I-> v(n-n') is called the distance .function induced by v. 

A trivial consequence of {i)-{iv), which we shall frequently use, is 

that for all n,n' E F such that v(n) * v(n') we have v(n+n') = 

max(v(n) ,v(n')). 

The distance function induced by v makes it possible to consider F 

as a metric space. Thus one can ask whether or not Fis complete, and if 

not, construct the completion of F. 

6.2. ( a) Let F be a f.ield, v a non-archimedian valuation of F, 

F• the completion of F with respect to the distance function induced by v. 

1'hen there exists exactly one non-archimedian valuation w of F• such that 

w/F = v; and F• is complete with respect to the distance function induced 

by w. 

(b) Let F be a field, v a non-archimedian valuation of F; suppose 

that Fis complete with respect to the distance function induced by v. 

Let F• be the a.l.gebraic c.l.osure of F. Then there exists exact.Iy one non-

archimedian va.Iuation w of F• such that w/F ·- v. 

(c) Let p be a prime number. F'or I; E \i! define (/;) 
-m 

where we V :::;:;: p 
p 

f: m E ZZ, X 
y 

E 2Z • y E :JN ' p t x, p + y. Then the function i.s 

non-arch.imedian va.l.uation of g). 

{d) Let p be a prime number, v the non-archimedian va.Iuat.ion of \i! 
p 

de.fined in ( c} . Let be the unique non-archimedian valuation of the 

a 

a.Igebraic c.Iosure of the completion o.f \i! with respect to the distance 

function induced by v satisfying /gi v. Then the comp.Ietion of this 
p p 

fie.Id with respect to the distance function induced by w is al.gebraica.I.Iq 
p 

c.l.osed. 
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PROOF. (a) [Amiee 1975], Proposition 2.3.1. (b) [Amiee 1975], Proposi­

tion 2.6.10. (c) Trivial. (d) [Amiee 1975], Corollaire 2.7.3. o 

From now on p will denote a fixed prime number; the purpose o:E this 

chapter is to prove an analogue to 1.7 in which the complex numbers have 

been replaced by the algebraically closed, complete field described in 

6.2(d). 

6.3. DEFINITION. (a) Let v be the non-archimedian valuation of \11 defined 
p 

.in 6.2(c), w the unique non-archimedian valuation of the algebraic closure 
p 

of the completion of Sil with respect to the distance function induced by 

v satisfying w /Ill= v. Then the completion of this field with respect to 
p p p 

the distance function induced by w is denoted by (I:. 
p p 

(b) Let v be the non-archirnedian valuation of~ defined in 6.2(c); 
p 

take ri E (I:. Then [ri[ , also called the p-adic valuation of n, denotes 
p p 

the value at n of the unique non-archimedian valuation of ct: satisfying 
p 

/I;/ p = v p (I;) for all I; E \11. 

(c) For a E (t R E lR , R ~ 0 we write p' 

B(a,R) : = { z E <t : [ z - a [ < R}, 
p p 

B(a,R) := {z E It : [ z - a[ ~ R). 
p p 

(d) If f r;=O akxk i.s a power series with coefficients i.n <tp, 

while R E JR, R > 0, we denote 

[ f / : = sup{ / ak [ Rk: k E JN U { 0}} . 
R p 

6.4. LEMMA. Let M,R be positive real numbers. Consider f(z) = 

where a 0 ,a 1 , ••. E <tp; suppose the power series converges for 

8(0,RL Let r E B(0,R) be such that jf(z)[ < M for all z E 
p 

I z I = [ r [ . 'I'hen 
p p 

n E JN U {O}, z E B(O,[r[ ). 
p 

PROOF. [Adams 1966] , Appendix, Theorem C). □ 

r,.;ith 
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6.5. LEMMA. Let R be a positive real number. Consider f(z) = r:=O akzk, 

where a 0 , a 1 , ••. E <l:p; suppose the poi,rer series converges for all z E 

B(0,R). Taker E B(0,R) and put R' /rl • Then /fl , is finite and 
p R 

(6.1) sup 
lzl <R' p= 

If <z) I 
p 

PROOF. As /rip< R, the series r:=O akrk converges, and consequently 

/akl lrlk takes a maximum for some k; thus the right hand member of (6.1) 
p p 

is finite. 

so 

u lzl 

If <z) I 

sup 

p 

p 

< lrl , 
p 

we have 

lzl <lrl 
p= p 

If (z) I < 
p 

In particular, the left hand member is finite. 

Application of 6.4 shows that for every k E JN U {0} and every E > 0, 

Therefore 

/akl lrlk p p 

f(k) (0) k 

I k ! I /r Ip < 

sup 
lzl <lrl 

p= p 

sup 
lz rl 

p 

/Hz)/, 
p 

which proves the lemma. □ 

6.6. LEMMA. Let R be a positive real number, a E 
00 k 

rk=O ak (z-a) , iv.here ao,a1,··· E (t ; suppose the 
p 

for all z E B(a, R). Take b E B(a,R). Then 

' k 
f(z) L bk(z-b), zEB(a,R), 

k=0 

r,1here 

1 (n) n·--k 
l ak k (b-·a) , k E :IN U { 0}. 

n=k 

j f(z) I + L 
p 

(t Consider 
p 

power series 

PROOF. The proof is based on the obvious fact that a series in 

f(z) = 

converges 

satis-· 
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fies Cauchy's condition if and only if the general term tends to zero, and 

therefore convergence is conserved under rearrangement of terms. For z E 

B(a,R) we have 

f(z) I a (z-a) n = I a (z-b+b-a) n 
n=O 

n 
n=O 

n 

n 00 

I I (:J ( z-b? (b-a) n-k I I (n) n-k a (z-b) an k (b-a) 
n=O 

n 
k=O k=O n=k 

6.7. LEMMA. Let R be a positive real number, a Ea::. Consider f(z) = 
. -- k p 

L.k=O ak (z-a) , where a 0 ,a1 , ... E <tp; suppose the power series converges 

for al.l z E B(a,R). Take b E B(a,R) and suppose that f(b) = 0. Then there 

ex.ist: b 0 ,b1 , ••. E a::p such that: 

and 

00 

f(z) (z-b) L bk(z-a)k, z E B(a,R), 

k=O 

Ip~ sup 
n~k+1 

I I I I n-k-1 
a b-a , k E JN U { 0} • 

n P P 

PROOF. Applying 6.6 twice, we see that for z E B(a,R) we have 

f(z) 

I 
k=l 

(z-b) 

(z-b) 

(z-b) 

where 

I (z-b) k r (n) n-k 
L, an k (b-a) 

I 
k=O 

I 
k=O 

I 
k=O 

k=O n=k 

n=k 
an(:) (b-a)n-k 

(z-b) k l 
n=k+l 

(z-a)k I 

( n ) n-k-1 a (b-a) = 
n k+1 

I a n) (b-a)n-j-1 

j=k n=j+l 
n 

k 
bk (z··a) , 

1 1 ( n ) n--·j-1 (j) j-k 
l l a . 1 lb-a) k (a-b) 

j=k n=j+l n J+ · 

(a-b)j-k 
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I 
n=k+l 

so 

lbkJ ~ sup 
p n~k+l 

□ 

6 8 "d ' f 00 k . ff. . . • • LEMMA. Cons.1. er the power series = L akx with coe 1.c1.ents in 
7c=O 

d::p. Take O < R' <Rand suppose JfJR < 00 • Then f converges on /3(0,R') to 

a function, which we shall again denote by f. If f has at least h zeros on 

B(0,R'), mult.ipl.ic.ities included, we have 

PROOF. 'l'he first assertion of the lemma is trivial; we now proceed to 

prove the second one. Let a E 8(0,R') be such that f(a) = 0. By 6.7, we 

may write 

with 

thus 

(6.2) 

00 

f(z) (z-a) l bkzk, z E B(0,R'), 
k=O 

sup 
n~k+l 

Ja I JaJn-k-1 < 
n p p 

lb I Rk < sup sup 
kp = 

k~O n~k+1 

R sup 
n~O 

I a J Rn = 1-J f I · 
n p R R 

then 

sup 
n~k+1 

sup 
k ~ 0 

lb I Rk < llf[ < oo. 
kp ,~R R 

On the other hand, for z E B(O,R') we have f(z) 

uni.city of power series development we conclude 

, k > 0, 

I I n-k-1 
a R ; 

n p 

R sup 
n~l 

la [ Rn < 
n p 

(z-a)g(z); from the 
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where b_ 1 := 0. Thus 

/ ak / .<'.__ max ( I bk 1 I , I a ) ) b1 I ) , k ~ 0 , 
p- - p p <P 

and 

so 

max( sup 
k~O 

max( sup 
k~O 

I I k+l 
bl R , 

C p 

From (6.2) and (6.3) we see that f 

Similarly it is proved that 

(X-a)g with 

If , ... ,ah are the zeros off on 8(0,R'), repeating the argument gives 

with 

'rhus 

h 
f = f* n 

j=l 
(X-a .) 

J 
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6.9. COROLLARY. Let R be a positive real number. Consider f(zl = L:=O akzk, 

where a 0 ,a1, ••• E ~; suppose the power series converges for all z E 

8(0,R). If lr1 1p < lr2 1p <Rand f has at least h zeros in B(O,lr1 lpl' 

multiplicities included, we have 

( lr1 I )h 
sup lf(z) I ~ rr-=f 

lzl <lr1 1 P 2 p p= p 

sup 
lzl ~lr2 1 

p- p 

I f(zl I . p 

6.10. LEMMA. The set of all z E ~ for which L00 

0 zn/nl converges, is 
-- 1/( 1) p n= 00 n-1 n 

exactly 8(0,p- p- ). The set of all z E tp for which Ln=l (-1) z /n 

converges, is exactly 8(0,1). 

PROOF. [Amiee 1975], Proposition 3.5.5(v). □ 

6.11. DEFINITION. For 

For z E 8(1,1) define 

-1/ (p-1) 
z E 8(0,p ) define e (z) 

co n-1 np 
R, (z) := L 1 (-1) (z-1) /n. 
p n= 

6.12. LEMMA. (a) 

(b) For z E 

(c) For z E 

(d) For 

(e) 

(f) 

PROOF. (a) [Amiee 1975], Proposition 3.5.5(ii). 

(b) For n E :JN, n ~ 2, z E B(O,p-l/(p-1)) we have 

n k lzlk 

I L : I I ~ max TkTr- < max 
k=2 p k=2, ..• ,n p k=2, ... ,n 

here we use the inequality 

I I -(k-1)/(p-1) 
kl > p , 

p= 

-(k-1)/(p-1) 

lzlp p-(k-1)/(p-1); 
p 

which follows from Lemme 3.5.6 of [Amiee 1975]. We conclude that 

n k 

I I :, Ip= l 2 lp; 
k=l . 

thus 
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k 
I e (z) - 11 = I 1 ~, 

p p l kl p 
k=l n+ '° 

(c) follows from (b) and the formal identity of the power series 

involved. 

(d) [Amiee 197 5], Proposition 3.5.S(iii). 

(e) Similar to (b)' observing that !kip~ lk! I . p 
(f) follows from (e) and the formal identity of the power series 

involved. D 

We remark that in 1. 4 (c), 1. 4 (d) and 2. 2 (b), we have already defi.ned 

dg(n), h(n) and den(n) for all algebrai.c n E <I:. In order to give p-adic 
p 

analogue of our earlier reasoning, it is also necessary to define 

6.13. DEFINITION. Let n E (t be algebraic with minimal polynomial P. Then 
p 

fril denotes the maximum of the absolute values of the zeros of P in d:. 

6.14. LEMMA. Let F be a finite normal extension of Qi; suppose n E F has 

minimal polynomial P E 2Z[X] • 'l'hen n' E <I: has minima.l polynomial P if and 

only if there exists an injective homomorphism CJ: F +<!:such that CJ(n) ~ 

n' and CJ (I;) E, for all E, E Qi. 

~ROOF. [Van der Waerden 1966], § 41. o 

!'._~_?OF. According to 2.4(a), there exists a finite normal extension F of Qi 

such that F c (tp and F contains n1 , ... ,n11 • Let G be the set of all injec­

U. ve homomorphisms CJ: F -->- cl:: such that CJ ( E,) = E, for all E, E \Q; according to 

6.14 we have 

Thus, if n 

Ve, E F: ~l 

:= Ti 1 + ... + 

max ICJ(t,) I -
CJ E G 

Tin' we have 

1ril max I CJ(n) I max 
oEG CJ E G 

max I CJ <n 1 l I + . . . + max 
oEG oEG 

ICJ(n 1)+ ... +CJ(nn) [ < 

jo(n) [ rn;·r + ... + lnJ n 



and similarly I n1 ... fin\ ~ ~ • · · rn;J · o 

6 .16. LEMMA. Let n E <l:p be an algebraic integer. Then In Ip ~ 1. 

PROOF. Suppose n E (t is an algebraic integer such that lnl > 1. There 
p p 

exist a 0 ,a1 , ••. ,ad-l E 2Z such that 

Now for j 

Therefore 

0 

0,1, ... ,d-1 we have aJ, E 2Z and so [a, I < 1; thus 
J p 

and we have arrived at a contradiction. □ 

6.17. LEMMA. Let n E <t: be algebraic of degree at most d. Then either 
p 

n = 0 or 

I I -·d r:,7 -d 
n P ~ den (n) 1n1 . 

89 

PROOF. Put 

1, we have 

polynomial 

n' := den(n)•n; then n' is an algebraic integer. As [aen(n) I < 
p 

I n [ 2:. j n' I . Let a E 2Z be the constant term in the minimal 
p - p 

of n'. Then a :Ls the product of the zeros of this polynomial 

in (t (apart from a possible factor -1). By 6.16, we may conclude In' I > 
p p 

la! But a is also plus or minus the product of the zeros of this poly-

nomial in <t:; thus I a j ~ [n'l d. Let F be a finite normal extension of \!! 

such that F c <t: and F contains n. Then, by 6.14, 
p 

den(n) 

sup [0(den(n) •n) I 
(J 

den(n) •sup [ 0 (n) [ 
(J 

where CT runs through the injective homomorphisms of Finto (t that leave 
, -I 

ill fixed. The lemma now follows upon observing that I a [ 2: [ a [ . □ p-
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6.18. LEMMA. Let F be a field containing\)); assume n E F i.s algebraic. Let 

the minimal polynomial of n have leading coefficient a, height H, degreed. 

J. (j) (j) -
Then, for each E JN U {O}, there exist a 0 , ... ,ad-l E :;z such that 

(an) j a (j) + a(j)n (j) d-1 
O 1 + ··• + ad-ln ' 

while 

I (j) I I (j) I max( a 0 , •.• , ad-l) < (2H) j. 

.!:_~OF. [Baker 1975], § 2.3. o 

6.19. LEMMA. Supposed E JN, 0 < o < 1, 0 < c < l. Put A·= 

{zE<I:: o < Jz -1J <p-l/(p-l)L Thenonlyf' · 1 · ( ) E p p inite y many pairs a,y 

of algebraic numbers of degree at most d have the property that a SE Ill 

exists 1dth 

and 

(6.4) 

where H 

Sil (a) -
p 

-1 
Blog 

(y) 0 

~ log H, 

max(h(a) ,h(y)) and B = max(2,h(S)). 

!:_ROOF. I. Suppose a,y E A, 13 E \j:l, such that the conditions of the lemma 

are fulfilled. By c 1 ,c2 , ... we shall denote real numbers greater than 

depending only on p,d,o and E; we suppose that His greater than such a 

number, which will lead to a contradiction. 

where 

Define L ·= B - 1. We introduce the auxiliary function 

¢ (z) .-

;\ z 
a (a))' y e ( 

p 

zEB(0,1), 

(y)) 

and where q(\ 1 , ) are rational integers to be determined later. We have 



Now puts 

<I> (t) (z) 
L 

z: 
A =0 

2 

z E B(0,1), t E JN U {O}. 

[ 1,.,-1 l+E:/2 ] 
:= 2--u log B, T := 

system of linear equations 

(6.5) <l> (t) (ps) 0, s O, ... ,S-1, t 0 f • • • ,•r-1 

2 
in the (L+l) unknowns q(A 1 ,A 2); we shall show that it has a non-trivial 

integer solution. Multiplying (6.5) by (ac)pLsbtQ,-t(a), where a,b,c are 
p 
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the leading coefficients in the minimal polynomials of a, i3 and y respec-

tively, gives 

X 

Substitution of 

t 

z: 
T=O 

transforms this into 

(j) ( j) 
According to 6.18, for each j E JN U {O}, there exist a 0 , .. .,ad-l' 

(j) (j) i 
c 0 , •.• ,cd-l E 2Z, their absolute values bounded by (2H)-, such that 

(aa)j a (j) a (j) a (j) d-1 
0 

+ 1 + ... + ad-la ' 

(cy) j ( j) ( ') C (j) + C J y + + 1 
... 

d-

Our set of equations thus becomes 
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0, 

where 

(L-A 1 )ps (,\ 1ps) 
a a 0 

1 

X 

We see that (6.5) is certainly satisfied if A(li 1 ,6 2 ,s,t) = 0 for 6 1 

O, ... ,d-1; 62 = O, ... ,d-1; s = 0, ... ,S-1; t = O, ... ,T-1. These are 

linear equations in the (L+l) 2 unknowns q(A 1 ,,\ 2 ) with rational integer 

coefficients, whose absolute values are at most 

( (6 4) . ( )2 1 2 2 2 7 h h . here . is used). As L+l < 2'3 < d ST, . states tat t ere is a 

non-trivial choice for the q(,\ 1 ,.\ 2 ), such that (6.5) holds, while 

2 -r./2 
exp(c4B log B). 

IL For k € JN U {O} we put 

of the q(,\ 1 ,.\ 2 ), we have 

:= 2kT. T'hen, for our special choice 

(6.6) O, ••• ,S-1, t 

This is proved by induction; fork= 0 the assertion is precisely (6.5). 

Now suppose that (6.6) holds for some k; thus <P has at least ST1 zeros in 

,p- 1 ). Moreover, as /a - 1/ and /y - 1/ are less than p-l/ p-l), the 
p p 

power series for¢ converges, by 6.12, on some 13(0,r) with r > l. Now 6.9 

states that 

sup _ 1 
lzl .:':P 

p· 

sup 
I z I <1 

p"~ 

I 0 <2 ) I . p 



Here 

sup !<P(z)jp;;,1, 
I z I <1 p-~ 

as is evident from 6.12 and the fact that q{;\ 1 ,A 2 ) E zz:. Furthermore 

Thus 

sup _ 1 
lzl <p p= 

I I k -1 2 
(j) ( z) p ;;, exp ( ·- 2 c 5 B ) ; 

by 6.4 this implies 

and so 

(6. 7) 

However, 

I (t) I t k -1 2 
<l> (ps) p ;s p exp(-2 c 5 B ) , s,t E ]N U {O}, 

I (t) I k -1 2 
<l> (ps) ~ exp(-2 c 6 B ), s E JN U {O}, t = O, •.• ,T' 1-1. p- ~ 

J/,-t(a)<P(t) (ps) is algebraic and for s 
p 

dg (J/,-t (a) <I> (t) (ps)) 
p 

2 
:S d ' 

k 2 -E/2 
exp(2 c 7B log B); 

O, ... ,S-1, t 

r--------, LS+T T +2 T 
1 0 -t( )"'(t) ( ) I k+l k+l 2pLS k+l ~P a~ ps ~ Qc8 L H B < 

exp( 
-E/2 

B). 

Applying 6 .1 7 gives <l> ( t) (ps) 0 or 

(t) I k 2 -E/2 
(a)<Ji (ps) p ;'" exp(-2 c 10B log B). 

93 
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Furthermore, by 6.12, 

t 
la - 1 I p 

t k 2 -1 
> o > exp(-2 c 11 B log 

so in the latter case we have 

(6.8) I (t) I k 2 -s/2 
<l> (ps) p ~ exp (-2 c 12B log B). 

Combining (6.7) and (6.8) gives <l>(t) (ps) = 0 for s = 0, ... ,S-1, t 

0, ... ,'l'k+l-1. This completes the proof of (6.6). 

III. From (6.6) it follows that <l>(t) (0) = 0 fort 

in other words, that 

(6.9) 0. 

As the q ( ;\, A2 ) are not all zero, it follows that the coefficient matrix 

of the system (6.9), which is of the Vandermonde type, must be singular. 

From this we deduce the existence of Al, A2 , Ai, A2 E {O, •.• ,L} with 

Al -+ A2 S = Al + A2 S, or 

s 

This gives 

B 

"i - \ 
A2 - \2° 

h( S) < L B ·- 1, 

so we get the desired contradiction. o 

6.20. Let R be a positive real number, a E Consider f(z) = 
oo k 

~=O (z-a) , where a 0 ,a1 , ••. E itp; suppose the power series converges 

for all z E B(a,R). 'l'ake b,r E B(a,R) and define 

g(z) := 
f(z) - f(b) 

z - b 
z E B(a,R), {b}. 

Then g is bounded on B(a, Ir-al ) -....{b}. 
p 

PROOF. For z E B(a,R) we have 



with 

Thus 

f(z) - f(b) I I ( k l ak z-a) , 
k=0 

g(z) 
f(z) - f(b) 

z - b 
l bk(z-a)k, z E B(a,R)'-{b}, 

k=O 

I I I I n-k-1 
a' b-a ,kEJNU{0L 

n p p 

sup sup 
k ~ 0 n:,•_k+1 

la' I lb n p 
ln-k-ll lk - a r - a < 
p p 

sup sup 
k ~O n~k➔-1 

\a'I max(lb-al ,Ir-al )n-l 
n p p p 

As max(lb-al ,Ir-al l < R, the right hand member is finite. Application 
p p 

of 6.5 shows thac g is bounded on B(a,lr--al ) '-{b}. □ 
p 
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6.21. LEMMA. For every d E lN, n E JN, there exists an effectively comput­

able C > 1, depending only on d and n, with the following property. Sup-

pose E 6(1,1) algebraic of degree at most d, i3 0 , ... ,/3n-l E 13"(0,1) 

al.gebraic of degree at most d, 13 E <t: algebraic of degree at most d w.ith 
n p 

Ip= 1. Put/\ := B0 + f\£p(a 1 ) + ... + Sn£p(an). Then either/\= 0 or 

IA.I> exp(-CQ log Q'(log B+log '2)), 

where Q = {log A1 ) ... (log An), Q' = (log A1 ) ..• (log An_ 1 ), 

max{16,h )) for j = 1, .. "'n, B = max(6,h(i30 ), ... ,h(Sn)). 

PROOF. See the remark preceding Theorem 3 in [van der Poorten 1977]. □ 

6.22. LEMMA. Suppose a 1 , ... ,an E 8(1,1) algebraic. Then (a 1), ... , (an) 

are linearly independent over \I? if and only if they are linearly independ-

ent over the fie.ld o.f al..l al.gebrai_c numbers in <t: • 
p 
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PROOF. [ Brwner 196 7] , Theorem 1 . □ 

6.23. THEOREM. Suppose E > 0, d E JN, a E 8(1,p-l/(p-l))'-{1}, b E 8(0,1). 

Suppose that there exists a c > 

not both zero we have 

such that for all x0 , E 2Z that are 

(6 .10) 

where X 

(a, S,y) E 

where H 

I -1 3 -2 
~ C exp(-X log X), 

p-

max (2, I x 0 I, I x 1 I). Then there are only finitely many 

<t 3 of algebraic numbers of degree at most d with 
p 

b 
max(2,h(a),h(f3),h(y)) and a = e (bi (a}). 

p p 

triples 

PROOF. I. Let (a,(3,y) be a triple satisfying the conditions of the theo­

rem; we suppose H to be greater than a certain bound depending only on 

E,d,a and b. 'l'his will lead to a contradiction. From 6.20 we see 

(6. 11) (a) - ( ) I ( 1 3 l 1 +E/2 ) a p < exp - og H og2 H, 

(6 .12) (a) - I 3 l+E/2 
(y) p < exp(-log H log 2 H). 

As a consequence of (6.11), (6.12) and 

(6 .13) 

we have 

I I 3 l+E 
b - f3 < exp(-log H log2 H) 

p 

I 3 l+E/3 
(a) - 1 (y) < exp(-log H log2 H). p p . 

If it were the case that (a) - £ (y) * 0, 6.21 would imply 
p 

js I 3 l+E/3 
(a) - -~ (y) > exp(-log H log2 H), 

p p 

which is a contradiction. Therefore (3£ (a) - £ (y) = 0. 
p p 

II. We have just proved that (a) and! (y} are linearly dependent " p 
over the field of all algebraic numbers in (t; using 6.22, we find that 

p 



with 

'I'hus 

f(z) - f(b) ' k l a{ (z-a) , 
k=O 

ak fork> 1. According to 6.7, 

00 

g (z) 
f(z) - f(b) 

z - b 
l bk(z-a)k, z E B(a,R),{b}, 

k=O 

I I I ln-k-1 
a' b-a ,kEJNU{O}. 

n p p 

sup sup 
k~O n:,._k+l 

sup sup 
k~O n~k+l 

As max(lb-al ,Ir-a/ ) < R, the right hand member is finite. Application 
p p 

of 6.5 shows that g is bounded on B(a, Ir-al ) '- {b}. □ 
p 
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6.21. LEMMA. For every d E JN, n E JN, there exists an effectively comput­

able C > 1, depending only on d and n, with the following property. Sup­

pose o: 1 , ... ,o:n E B(l,1) a.lgebraic of degree at most d, 80 , •.. ,811 _ 1 E B(O, 

algebraic of degree at most d, 8 E <I:: alqebraic of degree at most d with n p . 
!snip= 1. Put/\ := 13 0 + i\11,p(o: 1 ) + ... + SnQ,p(an). Then either/\ 00 O or 

!Al> exp(-CD log D'(log B+log D)), 

where D = ( log 

PROOF. See the remark preceding Theorem 3 in [Van der Poorten 1977]. □ 

6.22. LEMMA. Suppose E B(l,1) algebraic. Then (al) ' •.. 'Jo (a ) p 11 

are linearly independent over \12 if and only if they are linear.ly indepencl·· 

ent over the fiel.d of all algebraic numbers in <l::. 
p 
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PROOF. [ Brumer 196 7] , Theorem 1 . o 

6.23. THEOREM. Suppose c > O, d E Thi, a E 8(1,p-l/(p-1))'-{lL b E B(0,1). 

Suppose that there exists a C > 

not both zero we have 

(6.10) 

where X 

(a, 8,y) E 

where H 

max ( 2, J x J , J I) . Then there are only finitely many 
3 0 

(t of algebraic numbers of degree at most d with 
p 

b 
max(2,h(a),h(8),h(y)) and a = e (b2 (a)). 

p p 

that are 

triples 

PROOF. I. Let (a,S,y) be a triple satisfying the conditions of the theo­

rem; we suppose H to be greater than a certain bound depending only on 

c,d,a and b. This will lead to a contradiction. From 6.20 we see 

(6. 11) f 2 (a) - 2 cai I 
p p p 

( 1 3 l l+c/2) < exp -- og H og 2 H , 

(6 .12) I 3 l+c/2 
(y) p < exp(-log H log2 HJ. 

As a consequence of (6 .11) , (6 .12) and 

(6.13) 

we have 

( ) n ( ) / ( l 3 l l+E/3 ) a - Np y p < exp - og H og2 H. 

If it were the case that S2 (a) -- 2 (y) ct 0, 6.21 would i.rnply 
p p 

(a) - 2 (y) [ > exp(-log3H 1 l+c/3 ) p p og2 H, 

which is a contradiction. Therefore (a) -· (y) = 0. 

II. We have just proved that (a) and (y) are linearly dependent 

over the field of all algebraic numbers in (t using 6.22, we find that 
p 



these numbers must also be linearly dependent over(!). In other words, 

there are s,n E ~, not both zero, such that (2 (a) + nt (y) = 0. As 
p p 

I I 3 1+E ) I a - a < exp(-log H log2 H) < a - 1 , 
p p 

we have 

(6.14) I a - 1 ) < I a - 1 ) -l / (p-l) p p < p . 

Thus, by 6.12, 2 (a) * 0 and we may conclude 
p 

2 (y) 
_P __ =-IEm 
2 (a) n )!!• 

p 
13 

Using 6.19 with o = .!.la - 1j gives that log H > 
. 2 P 1/2 

B = max(2,h(i3)). 'rhen, a fortiori, log H > B , so log2H 

-1-€/10 . 
Blog B, where 

1 
> 210g B; thus 

3 l l+E/3) 1 3 -2+E/30 exp(-log H og2 H < exp(-4B log Bl < 

3 -2+E/31 
exp(-B log B). 

From (6.13) we see that 

I I 3 -2+E/31 
b - S < exp(-B log B), 

p 

and so, if we put B 1 ' 

I I I I I 3 -2+€/31 
b - S ~ b - S < exp(-B log B), p p -- p 

97 

where B ~ max(2,)x0 1,)x1 )). From (6.10) we know that b cannot be rational; 

from (6.13) it then follows that B tends to infinity with H. Therefore 

(6.15) contradicts (6.10). □ 
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