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1. INTRODUCTION

1.1. DEFINITION. Let F be a field containing the rational numbers. An el-
ement £ of F is called algebraic if there is a polynomial P # O with ra-
tional coefficients such that P(£) = 0; & is called transcendental if &

is not algebraic.

Transcendental number theory is the branch of number theory that
studies the relationship between transcendental and algebraic elements of
the field of complex numbers, and of certain other fields such as the one
introduced in 6.3 below. Many theorems in transcendental number theory
have the following form: a set X of n-tuples of complex numbers and a
complex function £, defined on X, are given and it is stated that for all

(al,...,an) that belong to X the set {al,...,an,f(a ,.,.,an)} contains at

1
least one transcendental number. The two most famous examples of such

theorems are:

1.2. THEOREM (Hermite-Lindemann). Let a #%# 0 be a complex number. Then the

set {a,exp(a)} contains at least one transcendental number.

PROOF. [Waldschmidt 1974], Théoréme 3.1.1. The original memoirs are

[Hermite 1873] and [Lindemann 1882]. o

1.3. THEOREM (Gel'fond~Schneider). Let a and b be complex numbers; sup-
pose that a # 0 and that b is not rational. Let %{(a) # 0 be a value of
the logarithm of a and put ab := exp(bi(a)). Then the set {a,b,ab} con~

tains at least one transcendental number.

PROOF. [Waldschmidt 1974], Théoréme 2.1.1. The original memoirs are

[Gel'fond 1934] and [Schneider 1934]. o

The theory of approximation measures provides a quantitative gener-
alization to theorems of this type. This is achieved by introducing the
concepts of degree and height of an algebraic number; instead of merely
stating that some number is transcendental, we are enabled to estimate
how well it can be approximated by algebraic numbers of given degree and

height.

1.4. DEFINITION. (a) Let P be a polynomial in one variable with complex

coefficients. Then the height of P, denoted h(P), is defined as the max-



imum of the absolute values of the coefficients of P.

(b) Let F be a field containing the rational numbers; assume & € F is
algebraic. The minimal polynomial of & is defined as the unique irreduc-
ible polynomial P with rational integer coefficients and positive leading
coefficient that satisfies P(£) = 0.

(c) Let F be a field containing the rational numbers; assume £ € F is
algebraic. The degree of £, denoted dg(f), is the degree of the minimal
polynomial of §&.

(d) Let F be a field containing the rational numbers; assume & € F is
algebraic. The height of &, denoted h(§), is the height of the minimal

polynomial of £.

An approximation measure for a transcendental complex number a is a
positive function g of two positive integer variables, such that for all

d and H the inequality
la - a| > g(a,n)

is satisfied for all o belonging to the set of algebraic complex numbers
of degree at most d and height at most H- (note that for fixed d and H
this set is finite). Again, many theorems are known of the following
form: a set X of n-tuples of algebraic complex numbers and a complex
function £, defined on X, are given and it is stated that for all
(al,...,an) that belong to X the number f(al,...,an) possesses a certain
approximation measure g. In such results, however, the symmetry between
al,...,an and f(al,...,an) is lost; the object of the following chapters
is to investigate whether analogous theorems that preserve this symmetry
can be derived. Let al,..,,,an be transcendental complex numbers; a sim-
ultaneous approximation measure for the set {al,.,.,an} is a positive
function g of two positive integer variables, such that for all d and H

the inequality
(1.1) max(lal—all,...,lan—ani) > g(d,H)

is satisfied for all algebraic complex numbers o ,..‘,an of degree at

1
most d and height at most H. The results we desire are of the following

form: a set X of n-tuples of tomplex numbers and a complex function f,

defined on X, are given and it is stated that for all (a ...,an) that

11



belong to X the set {al,...,an,f(a .,an)} possesses a certain simul-

P
taneous approximation measure g. Ii order to simplify the problem, we
shall limit ourselves to approximation by algebraic numbers of fixed
degree; in other words, only the dependence of g on the second variable
will be considered. Moreover, we relax the definition of a simultaneous
approximation measure in that we allow that (1.1) is not satisfied for fi-

nitely many n-tuples (o .,an); if necessary, the validity of (1.1) may

R
be extended to all (al,...,an) by multiplying g(d,H) by a sufficiently
large factor that depends only on al""’an'd and not on H.

The generalization of the Hermite-Lindemann theorem to a result of
this form has essentially been achieved; for instance, Cijsouw [1975]
proved that for every positive number e, positive integer d and complex

number a, there exist only finitely many pairs (a,B8) of algebraic complex

numbers of degree at most d such that
-1+
max(‘a—a[,lexp(a)~8]) < exp(—long log21 EH),

where H = max(2,h(a),h(B)). (The notation log2 is an abbreviation for
loglog.)

The case of the Gel'fond-Schneider theorem presents more diffi-
culties. After some initial results (see [Ricci 1935], [Franklin 1937])
the following statement appeared in [Schneider 1957]: suppose € is a
positive real number, d is a positive integer and a and b are complex
numbers such that a # 0, a # 1 and b is not rational; suppose that f(a) is
a value of the logarithm of a. Then there exist only finitely many triples
(0.,B,Y) of algebraic complex numbers of degree at most d such that

max([a~a!,]b-8],|ab—yl) < exp(—log5+€H),

where H = max(h(a),h(B8),h(y)) and ab = exp(b%(a)). Bundschuh [1973] re-
marked that in Schneider's proof a condition like "B not rational" is
needed and tried to prove a theorem without such a restriction. His
assertion is that, in the situation described above, there are only fi-
nitely many triples (o,B,y) with

max(|a—u],lb—8[,]ab~Yl) < exp(«log4H log;2+€H),



where H = max{(2,h(a),h(B),h(y)). However, there is an error at the begin-
ning of the proof of his Satz 2a, so that his result, too, is only valid
under some extra assumption.

Earlier gmelev [1971] had proved that, in the situation described
above, only finitely many triples (o,B,y) with B not rational have the

property
max(fa—al,]b—ﬁl,lab~yl) < exp(—log4H 1oggH).

Cijsouw and Waldschmidt [1977] recently improved upon the above results by

demonstrating the following theorem.

1.5. THEOREM. Let € be a positive real number, d a positive integer. Let

a and b be complex numbers with a % 0; let 2(a) # O be a value of the
logarithm of a and put ab := exp(bl(a)). Then there are only finitely many
triples (o,B,v), with B not rational, of algebraic complex numbers of

degree at most d for which

max (|a-a|, [b-8], |aP-y|) < exp(-log’H 1og;+EH),

where H = max(2,h(a),h(B) ,h(y)).
PROOF. [Cijsouw-Waldschmidt 1977], Theorem 2. O

in [Bijlsma 1977], the present author showed that from all these
theorems the condition that B not be rational cannot be omitted. More

precisely, the following was proved:

1.6. THEOREM. For any fixed positive integer k, there exist irrational
real numbers a and b with 0 < a <1 and O < b < 1 such that for infinite-

ly many triples (a,B,y) of rational numbers
i b K
max(la-a[,|b~sl,]a —y]) < exp(~log H),

where H = max(h(a),h(B),h{(y)).
PROOF. [Bijlsma 1977], Theorem 1. o

In theorems like 1.5, the occurrence of a condition upon the num-



ber B is undesirable and one would naturally want to replace it by a con-
dition upon the given number b. This is certainly possible: for instance,
it is quite easy to see that the estimate in 1.5 holds for arbitrary

triples (o,B,y) if one assumes that, for real b, the convergents pn/qn of

the continued fraction expansion of b satisfy
q << exp(log3q ), N > o
n+1 n’’ .

{(Note that the real numbers b for which this condition is not fulfilled,
are U¥-numbers (see [Schneider 1957], III §3) and thus form a set of
Lebesgue measure zero.) A sharper result in the same direction is given

by the next theorem.

1.7. THEOREM. Let € be a positive real number, d a positive integer. Let

a and b be complex numbers; suppose that a # 0 and that b is not rational.
Let f(a) #0 be a value of the logarithm of a and put ab := exp(bl(a)). If
b is not real, or if b is real such that the convergents pn/qn of the con-
tinued fraction expansion of b satisfy

3
(1.2) a << exp(qn), n - o,

n+1
there are only finitely many triples (a,B,y) of algebraic gomplex numbers

of degree at most d with

1+e

P H) ,

max(la—al,lb—ﬁl,[ab—y]) < exp(—log3H log

where H = max(2,h(a),h(B8),h(y)).
PROOF, [Bijlsma 1977], Theorem 2. o

The purpose of Chapter 2 below is to make this last assertion still
more precise: it will be proved that the sufficient condition (1.2) may

be sharpened to

tog qn+1
limsup Tre

n > ® qnlog q

= 0,

n

while a necessary condition is given by



log qn+1

limsup o < e
n+® g log g

n
In Chapter 3 we consider the question whether these conditions on b may
be replaced by analogous assumptions as to the nature of a.

Chapter 4 is based on the following results of Fel'dman [1964] and
$melev [1970]:

1.8. THEOREM. Let ¢ be a positive real number, d a positive integer. Let

a and b be complex numbers; suppose that a *# 0 and that b is algebraic but
not rational. Let 2{(a) be a value of the logarithm of a; put ab =
exp(bl(a)). Let P be an irreducible polynomial of two variables, with
rational integer coefficients, of degree at least one in each variable,
such that P(0,0) # 0 and P(1,1) * 0. If P(a,ab) = 0, there exist only fi-
nitely many algebraic complex numbers o of degree at most d for which

i -1+
Ia - aI < exp(~log2H log21 €H),

where H = max{2,h(a)).
PROOF. [Fel'dman 1964]. o

1.9. THEOREM. Let € be a positive real number, d a positive integer. Let
a and b be complex numbers; suppose that a * 0, a ¥ 1, a is algebraic and
b is not rational. Let %(a) be a value of the logarithm of a; put ab s
exp(bl(a)). Let P be a polynomial of two variables, with rational integer
coefficients, of degree at least one in each variable, such that P is not
divisible by a polynomial containing only the first variable. If

P(b,ab) = 0, there exist only finitely many algebraic complex numbers
of degree at most d with

Ib - 3} < exp(~log3H log2+€H),

where H = max(2,h(B)).
PROOF. [&melev 1970}, Theorem 1. o

In Chapter 4 below, 1.8 and 1.9 are generalized to obtain simulta-

neous approximation measures for subsets of {a,b,P(a,b,ab)}; we also con-



sider the case that 2(a) = 1 and the case where P does not remain fixed.

Now let a "’an'bl""'bn be complex numbers such that none of

1"
al,...,an is zero; let Zl(al),...,ﬂn(an) be non-zero values of the loga-
rithms of Byree-idy respectively and put

b
a- = exp(bill(a1)+...+bn2n(an)).

Wallisser [1973] derived a simultaneous approximation measure for
{bl,...,bn} in case agree-sa and gé are algebraic; Bundschuh [1975]
gave a simultaneous approximation measure for {bl,...,bn,ég} in case
al,...,an are algebraic (however, this proof depends on the erroneous
statement in [Bundschuh 1973]). Again, Cijsouw and Waldschmidt [1977]

improved upon these results. For non-zero b they established simulta-

OI

neous approximation measures for {bO,bl,...,bn,égexp(b )} in case of al-

0
. b
gebraic al,...,an and for {al,...,an,bo,bl,...,bn,é—exp(bo)}. Furthermore,

they proved the following theorems.

1.10. THEOREM. Let € be a positive real number, d a positive integer. Let
al""'an’bl""’bn be complex numbers such that al,...,an are algebraic
and none of al,..,,,an is zero; let Rl(al)}...,ln(an) be non-zero values

of the logarithms of Agreeeray respectively and put
a? = exp(b, L, (a,)+ +b 2 (a_))
s R T R e R L

Then there are only finitely many (n+l1)-tuples (B ..,Bn,y) of algebraic

17
complex numbers of degree at most d such that 1,81,...,8n are linearly

independent over the rationals and
b 2 €
max(lbl-Bll,...,[bn—Bn[,!g—-Y]) <exp(-log™H long),

where H = max(2,h(81),..-,h(Bn),h(Y)).

PROOF. [Cijsouw-Waldschmidt 19771, Theorem 3 and the remark following

Theorem 4. O

1.11. THEOREM. Let € be a positive real number, d a positive integer. Let

al""'an’b "’bn be complex numbers such that none of al,...,a is

17" n
zero; let Rl(al),...,ln(an) be non-zero values of the logarithms of



. b
eoa - = oot .
ays ra respectively and put a exp(blll(a1)+ bnzn(an)) Then
there are only finitely many (2n+l)-tuples (al"°"an'81""'8n'Y) of
algebraic complex numbers of degree at most d such that 1’81"'°'Bn are

linearly independent over the rationals and

b
maX(lal‘all""’Ian_an,’lbl'sll"'“'lbn_sn[’[§_~Yl) <

+2 +
exp(—logn H log; EH),

where H = max(2,h(a1),...,h(an),h(Bl),...,h(Bn),h(Y)).
PROOF. [Cijsouw-Waldschmidt 1977], Theorem 5. O

Because of the unnatural condition on the numbers 81,...,Bn, 1.10
and 1.11 cannot be called simultaneous approximation measures in the
strict sense. Again, it would be preferable if it could be replaced by a
condition on the given numbers. This is achieved in Chapter 5: there
analogues of 1.10 and 1.11 are proved in which the condition that
1,81,..

conditions depending on a

.,Sn be linearly independent over the rationals is replaced by
1,...,an and their logarithms and on bl'""’bn'
In the case of 1.10, it turns out to be sufficient to demand that
ll(al),..,,zn(an) or l,bl,.,.,bn be linearly independent over the
rationals. In the case of 1.11, it is sufficient if there exists a C > 1

such that for rational integer x 'Xn that are not all zero we have

ore

-1 P e)
(1.3) ]xo b+ xnbnl > C “exp(~X log X).

where p = (4n+8)/(n2+2n+1), g = (3n2+6n-1)/(n2+2n+1), and X denotes the
maximum of 2 and the absolute values of x ,...,xn. The case that b

0 1’
are fixed algebraic numbers is also considered; the results of this chap-

N o
n

ter enable us to derive many-variable analogues of the theorems in Chapter
4,

Finally, Chapter 6 gives an analogue of 1.7 in which the complex
numbers have been replaced by an algebraically closed, complete field

with a non-archimedian valuation.



b
2. A TEST FOR THE SIMULTANEOUS APPROXIMABILITY OF a, b AND a

As stated in the Introduction, the purpose of the present chapter is
to prove a sharpened version of 1.7. This is achieved in 2.24 below; be-
fore that, however, we need to give a number of auxiliary results. First
of all we introduce some definitions to simplify the phrasing of what

follows.

2.1. DEFINITION. (a) By N, Z, ®, IR, ¢ we denote the sets of all pos-
itive integers, of all rational integers, and of all rational, real and
complex numbers respectively. By la,bl we denote the open, by [a,b] the
closed interval from a to b.

(b) By A we denote the set of all algebraic complex numbers, by
jad the set of all algebraic complex numbers of degree at most d.

(c) If R is some ring, R[Xlr---:Xn] denotes the ring of all poly-
nomials in n variables with coefficients from R; instead of R[Xil we

write R[x].

2.2. DEFINITION. (a) Let F be a field containing ®; assume n € F is al-
gebraic. Then n is called an algebraic integer if its minimal polynomial
has leading coefficient 1.

(b) Let F be a field containing @; assume n € F is algebraic. The
denominator of n, denoted den(n), is the least m € IN such that mn is an
algebraic integer.

(c) Let F be a field containing @; assume n € F, n' € F are algebra-
ic. Then n and n' are called conjugate if n and n' have the same minimal
polynomial.

(d) For n € A, by fﬁT we denote the maximum of the absolute values

of the conjugates of n in A .

2.3. DEFINITION. (a) A field F is called a normal extension of @ if
® @ F and if every n € F that is algebraic of degree d has exactly d con-
jugates in F; it is called a finite normal extension of @ if it is a norm-
al extension of @ and has finite degree over Q.

(b) If F is a finite normal extension of @, Gal(F/@) denotes the set

of automorphisms o of F that satisfy o(§) = & for all & € Q.

2.4. LEMMA. (a) Let F be an algebraically closed field containing @; as-
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sume Nyyewerny € F are algebraic. Then there exists a finite normal exten-
sion F' of @ such that F' « F and F*' contains Myreesrl -
(b) Let F be a finite normal extension of ®. Then n,n' € F are conju-

gate if and only if there exists a o € Gal(F/Q) with o(n) = n'.
PROOF. [Van der wWaerden 1966], §§ 41, 57. ©

2.5. LEMMA. (a) Let F be a field containing Q; assume n € F is algebraic.
< hm.

Then den(n)
(b) For n € A we have fﬁT < h(n) + L.
(c) For Myreoerny € » we have n1+.,.+nn é:[ﬁIT R fﬁ;]
and ]"nT——ﬁ;T < [n_lIm

n

PROOF. (a) [Schneider 1957], Hilfssatz 2.
(b) [Schneider 19571, Hilfssatz 1.
(c) According to 2.4(a), € contains a finite normal extension F of [0)

containing nl,aﬁ.,nn; put G .= Gal(F/Q). According to 2.4(b),

ve € F: [E] = max |o(8)].

gEG
Thus, if n := nl + oee. + nn, we have
Fﬂ = max lc(n)] = max Ic(n1)+...+d(nn)[ <
cEG c€EG

max Ic(nl)] + ...+ max Ic(nn)| = rﬁ;{ .k Fi]
cEG 0g€EG

and similarly Ny=eely é:r;ZT.,.fﬁ;T. o

2.6. LEMMA, For n € A we have either n = 0 or

Inl g:exp(~2dg(n)max(logfﬁT,log den(n))).

PROOF. [Waldschmidt 19741, (1.2.3). o

2.7. LEMMA (Siegel). Let F be a field such that ¢ « F < ¢ and F has
degree d over . Suppose a; 3 € Ffori=1,...,nand 3 = 1,...,m such

that

ai";T <A, i=1,...,0, 3= 1,...,m.

v
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If n > dm, there exist X EERYE N € % , not all zero, such that

1

n
a, . x, =0, j=1,...,m
izl l,J i 14 :J 1 14 ¥

and

max ([ | vonoofx ) < (/2 o) @/ 0

PROOF. [Waldschmidt 1974], Lemme 1.3.1. O

The next lemma gives a connexion between the rate of growth of an en-
tire function and its number of zeros. Results of such a type are funda-

mental in transcendence proofs.

2.8. LEMMA. Let £ be an entire function. Suppose S,T € N, A,R € R such

that A > 2 and R > 25. If f(t)(s) =0 for s = 0,...,5~1 and t = 0,...,7T~1,

it follows that

max [f(z) ] < 2 max |f(z) ] (%)ST.
fzlzr lzl<AR

PROOF. [Cijsouw 1974], Lemma 7. O

2.9. DEFINITION. A branch of the logarithm is a function %, defined on a
set K @ ¢~{0}, such that & is holomorphic on K and exp(%(z)) = z for all
z € K.

Now we give two lemmas about vanishing linear forms in the logarithms

of algebraic numbers.

2.10. LEMMA. Suppose 4@ € N, K a compact subset of the complex plane not
containing O, 21 and 22 branches of the logarithm, defined on K, such that

2
21 does not take the value 0. Then only finitely many pairs (a,y) € K~ of

algebraic numbers of degree at most d have the property that a B € @ ex-

ists with
Bll(a) - lz(y) =0

and



12
h(B) > log H,

where H = max(h{(a),h(y)).
PROOF. [Bijlsma 1977], Lemma 3. O

2.11. LEMMA. For every d € N, there exists an effectively computable
C > 1, depending only on d, with the following property. Let K be a com-

pact subset of the complex plane not containing O, 21 and Qz branches of

the logarithm, defined on K, such that 21 does not take the value 0. Then

only finitely many pairs (o,y) € K2 of algebraic numbers of degree at most

d have the property that a B € @ exists with
Bll(a) - Q2(y) =0

and

(2.1) C log H < B log B,

where H = max(h{(a),h(y)) and B = h(B).

PROOF. I. Suppose the assertion of the lemma to be false. Let C be some
real number greater than 1; additional restrictions on the choice of C

will be formulated at later stages of the proof. Let K,Rl,l 0,8,y satis~

2
fy the conditions of the lemma. By cl,cz,.,, we shall denote real numbers

greater than 1 that depend only on d. Throughout the proof we shall assume

that H is sufficiently large in terms of d,K,El,Q and C, which will lead

2
to a contradiction. It is clear that Ill(a)! is bounded above and below

by positive constants depending on K and 2 thus we may assume

1;

-1/2 1/2

(2.2) log H < lzl(a)[ < log ’“H.

Similarly, Ilz(y){ is bounded above by a constant depending on K and 22;

thus we may assume
1/2
(2.3) ]mz(y)! < log /2.

Define L := B -~ 1. We introduce the auxiliary function



L L Alz Az
°(z) := ] ] pOyA)e v ,z€¢,
A,=0 A_=0
1 2
where
Az Xzz
a = exp(Alzll(a)), Y = EXP(Azzlz(Y))

and where p(ll,Xz) are rational integers to be determined later. We have

L L Az A,z
2
o @ =0t T L pyapammtely?,
11=O X2=O

z € ¢, t € wWw U {0}.

Now put a := den(a), b := den(B), ¢ := den(y),

S := [%d_lBl/zlogl/zB log—l/zH},

T = [%d_1B3/2log_1/2B logl/zﬂ]

and consider the system of linear equations

() (s) =0, s =0,...,8-1, t =0,...,T-1.

(ac)LSthIt(a)Q
These are ST equations in the (L+1)2 unknowns p(Al,A2); the coefficients
are algebraic integers and lie in a field with degree at most d2 over 0.
The absolute values of the conjugates of the coefficients are less than

or equal to

fia

(ac)LSbTmax(l,|A1+x23|T)max(1,[&TLS)max(1,[“TLS)

+
H4LSBZTLTC?S T ;:exp(c2B3/2logl/2B logl/zﬁ).

As (L+1)2 > %82 > dZST, there exists, by 2.7, a non-trivial choice for

the p(Al,AZ), such that
(2.4) 0 (s) =0, s=0,....8-1, t = 0,...,7=1,

while

13
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P := max !p(llrxz)f <

PN
e 2 2 .2
/2., d7sT/ ((L+1) “-d"ST)

3/2 1/2 H))

(c3L2exp(czB log B log1

exp(c4B3/2log1/2B logl/ZH).

II. For k € W U {0} we put T, = ZkT; suppose

k 1/4 1/4

B log 1/4

2 B log_ H.

in

Then, for our special choice of the p(Al,Az) we have
(t) _ _ -
(2.5) 4] (s) =0, s=0,...,5-1, t = O,...,Tk—l.

This is proved by induction; for k = 0 the assertion is precisely (2.4).

Now suppose that (2.5) holds for some k, while

2k+1 < B1/4log1/4B log'1/4H.
By 2.8 we have
25Tk
(2.6) max [o(z)] £2 max [e@]|(3) ©,
lzl<2s lzl<2ns
1/2
where A = log H. Here (2.2) and (2.3) show
(2.7) max  |0(z)| < (L+1)2P exp(4LS log H) <
lzl<2as
exp(cSB3/2log1/2B log1/2H).
Furthermore,
ST,
2 k -1_2 -1_2
ﬁd éexp(»c6 B long) ;exp(—c6 B log B),
the last estimate by 2.10. Now (2.1) gives
c5B3/210g1/2B log1/2H < CSC_1/2B210g B;



therefore, if we choose C so large that csc_l/2 < cgl, substitution in
(2.6) shows
-1_2
max [@(z)| < exp(--c7 B"log B).

lzl<2s

Using the formula
(t) _tl b (z)

v = (2-5) EH1 da

lz-sl=1
we see that for s = 0,...,S-1, t = O""’Tk+1_1'

]q)(t) (s)]| < exp(t log t - c;lelog B) <

exp(c8B7/4log3/4B log1/4H - c;lelog B).
Now (2.1) gives

c8B7/4log3/4B log1/4H < c8C"1/4B210g B;

. ~-1/4 -1
therefore, if we choose C so large that CBC < c, ¢ we may conclude
(2.8) o' (s)] < exp(—c;Ileog B) .

-t (t) . .
However, ll (a)d (s) is algebraic and for s = 0,...,5~1,
t = O,...,Tk+1—1 we have
-t t

agi;"@e ™ (s)) < &2,

T T
den(th(u)Q(t)(s)) < (ac)st k+1 < H2LSB k+1 <
exp(clOB7/4log3/4B 1091/4H),

T T LS+T
llt(a)fb(t) (S)I < (L+1)2PH2LSB k+1L k+1011 k+1 <
exp(clzB7/4log3/4B log}/4H)

15
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(here (2.1) is used)}, so, by 2.6, either Q(t)(s) = 0 or

(s)| = exp(—c1387/4log3/4B logl/4H)e

DRC

In the latter case, (2.2) shows that

3/4 1/4

(t) B log H) >

(2.9) K3 (s) ] ;:exp(—c14B7/4log

exp (~c C-l/4

2
14 B"log B).

Combining (2.8) and (2.9), and choosing C so large that c14C“1/4 < c;1,

. (t) _ _ _
gives @ (s) =0 for s = 0,...,5~1, t = O,..,.,Tk+1
proof of (2.5).

III. Now let k be the largest natural number with

~1. This completes the

2k < B1/4log1/4B loq—1/4H.

From (2.5) it follows that
¢(t)

(s) =0, s =0,...,81, t = OyevnyT 1.

Once more apply 2.8; this gives (2.6) again and (2.7) also remains un-

changed, but from the maximality of k we now get

g_ k -1 _9/4 1/4 -1/4 <
(A} < exp( ¢y B log " B log H logZH) =
exp(—cIéB9/4loq5/4B log"1/4H),

the last estimate by 2.10. Using (2.1) we find

cSB3/zlog1/23 logl/ZH < CSCu3/4B9/4log5/4B log_1/4H;
. . ~3/4 -1
if C is chosen so large that c5C < C s We see
max |¢(z)| < exp(—c_1B9/4log5/4B log_1/4H).

fzl<2s - 16

Now
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whence for t = O,1,...,(L+1)2—1 we have

[Q(t)(O)] < exp(t log t - c;éBg/4log5/4B log_1/4H) b
exp(cl7leog B - czé59/4logs/4B log_1/4H).

By (2.1) we know

c leog B <c¢c Cw1/4B9/4log5/4B log~1/4H;
17 17
. ; -1/4 -1
if C is chosen so large that 017C < 016, we conclude
(2.10) ]Q(t)(O)I é:exp(uczé39/4log5/4B 1og"1/4n), £ o= 0,1,..., (L) 2-1.

For these values of t we have

dg(zzt(a)fb(t) (0)) =1,

(t) (L+1) 2

den(lzt(a)@ (0) <B < exp(clnglog B),

2 2 2
et )] < @i e LD D

20 =

2
exp(cle log B)

(t

(once more (2.1) is used), so according to 2.6 either ¢ )(0) = 0 or

127 @™ (0 | > exp(-c,,Blog B).

In the latter case, (2.2) shows that

(2.11) 1% (o) | > exp(-c,,B’log B) >

3

~1/4

_1/4B9/4logs/48 log H) .

exp(~c23c



i8

Combining (2.10) and (2.11), and choosing C so large that c23Cm1/4 < cIé,

gives
08 0) =0, £t =0,..., 1+1) 1.

IV. For t = O,..,,(L+1)2—1 we now have

L L £
(2.12) I 1 pOA)(#Ae) T = 0.
A1=O A2=O

As the p(k1,12) are not all zero, it follows that the coefficient matrix
of the system (2.12), which is of the Vandermonde type, must be singular.

From this we deduce the existence of Al,k ,Aé € {0,...,L} with

2’k1
Al + A28 . Al + X28, ox

A = A

1 1
B = 57
PR
This gives
B=nh(B) <L =B~-1,

so we get a contradiction. O

2.12. DEFINITION., For € > 0, b € R~Q we define

log g
+
w(e,b) := limsup 4261

n->® qnlog qn

12

where pn/qn are the convergents of the continued fraction expansion of b.

2.13. LEMMA (Bertrand's postulate). If n > 1, there is at least one prime

p such that n < p < 2n.
PROOF. [Hardy-Wright 1960], Theorem 418. @
2,14, LEMMA. If b€ R, v € Z, w € Z~{0} and

1
2w2

o - Y <



the number v/w is a convergent of the continued fraction expansion of b.
PROOF. [Perron 1954], satz 2.11. O

2.15. LEMMA. Suppose b € R~Q . By (pn/qn):_o we denote the seguence of
convergents of the continued fraction expansion of b; here P, €z,

a, € N, (pn,qn) = 1. Then

p
!b_-—rl]> , n € W U {o}.

1
a, )

qn(qn+qn+1

PROOF. [Perron 1954], § 13, (12). o

2.16. LEMMA. Let €,A > O be given. Then there exists an irrational number

b with 0 <b <1 and X < w(g,b) < 5A.

co
PROOF. I. By induction we define a sequence (Bn)n_1 of rational numbers

in the interval ]0,1[. Take 81 = l/wl, where w1 is a natural number de-

pending on A, to be determined later. Now suppose Bn has already been

chosen; put 8 = v /w , where v.,w_ € WN and (v_,w ) = 1. Consider the
n n’ 'n n’'n n’’'n
partition
1 2 nt1”t
D= (0= ..., /1)
n+l n+i n+1

of the interval ]0,1[, where w is the smallest prime number greater

3 4+€ o+l
than exp(4kwnlog wn). By 2.13, it is clear that

3 d+e 3 4+
(2.13) exp(4kwnlog wn) < w <2 exp(4kwnlog wn).

+1

The width of the partition D is less than exp(—4kwilog4+€wn); thus there

exists a v, € {1,...,wn+1—1} with
Vn+1 3, 4+e
(2.14) g - | < exp(~4aw’log”™ ‘w ).
n w n n
n+1
Now define Bn+1 as Vn+1/wn+1' Note that (vn+1,wn+1) = 1 because wn+1 is
prime and 1 é=vn+1 < LA Ii w, is chosen sufficiently large, (2.13) en-

sures that the sequence (wn)n is strictly increasing.

=1
II. The sequence (Bn)n=1 has the property

3 4+€
(2.15) Vm > n: [sm - en{ < exp(-2Aw_log W ).

19
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4+

To prove this, put Ik := {x € R: ]Bk - x[ < exp(—2xwﬁlog ewk)}. Then

(2.15) can be written as Vm > n: B € I , By (2.14) B €1 , so it is
m n m m~1
sufficient to prove Vk > n: Ik c Ik—l' Take x € Ik' which means iﬁk - xl <

exp(—2Awilog4+€wk). Then, by (2.13) and (2.14),

By = x| < I8 = x| + |8 - 8| <

4+
log €wk_1

exp(—2xw3log4+€wk) + exp(—4kwi_

k 1

+
exp (~2X exp(lzkwi_l)) + exp(-4kw§_1log4 €w

log4+€w _1) < exp(-2kw3_ are

3
2 exp (-—4)\wk_ & -1

1

if W, is chosen sufficiently large in relation to A, so x€1

III. From (2.15) we see that (Bn):

k-1.

=1 is a Cauchy sequence; it con-

verges to a limit, which we shall call b. Then b € [0,1] ana
3 4+e
. H - - .
(2.16) Vn: |b sn] < exp(-2hw_log  “w )

By 2.14, this implies that.%]is a convergent of the continued fraction
expansion of b, say
Py
n

B, = —
n qk
n

Thus b is irrational. Now suppose w(e,b) < A. By 2.15 and the definition

of w(e,b), we then have for sufficiently large n,

1 1

b -8 |> > >

n q (q+q ) = 3 4tg Z

kn kn kn+1 a4 (qk +exp(kqk log Gy ))
n n n n
+ 4+
exp(«2kqi log4 Eqk ) = exp(~2kwilog 8wn),
n n

which contradicts (2.16).
If, on the other hand, w(e,b) > 5X, there are infinitely many con-

vergents pk/qk of b with
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4+€

(2.17) > exp(SAqilog qk).

Get1

=]
As all the Bn are convergents of b and (wn)n_ is increasing, for every k

1

satisfying (2.17) we can find an nk with

w <
n =

q, < q W ;
” k k+1 nk+1

thus

3, _4+e 3 4+e
Yoo 2= Yy eXp(5Aqklog q) ;exp(S)\wn log  w_ ),

k k

which contradicts (2.13). @

2.17. DEFINITION. Suppose € > O, d € N . Then the set Pd(e) is defined as
the set of all b € € such that there exist an a € ¢~{0}, a value 2(a) # O

of the logarithm of a, and infinitely many triples (o,8,Y7) € 1%; with

1+e

max(]a—u],[b—sl,lab—yl) < exp(—log3H log2

H) ,

where H = max(2,h(a),h(B8),h(y)) and ab = exp(bl(a)).

2.18. LEMMA. For every d € W, n € N, there exists an effectively com-
putable C > 1, depending only on & and n, with the following property.
Suppose Qpreeesa € lAd\~{O} , BO,.,.,Bn € By let Zl(al)"""gn(an) be
values of the logarithms of CIREEEYLN respectively. For 1 £ j < n, let

Aj > 6 be an upper bound for h(aj) and exp([lj(uj)[). Put
Aoi=By+ B (a) + .o+ B & (0.

Then either N = 0 or
[A] > exp(~CQ log Q' (log B + log ),

where Q = (log Al)...(log An), Q" = (log Al)...(log An
B = max(6,h(80),...,h(8n)).

_1)'

PROOF. [Baker 1977]; see also [Cijsouw-Waldschmidt 1977], Theorem 1 and

the remark following it. o
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2.19. LEMMA. Suppose CTRRRRTL € n~{0}; let Qi(ul),...,ln(un) be values
of the logarithms of CIRRREYL N respectively. Then ll(al)"'“'ln(an) are
linearly independent over @ if and only if they are linearly independent

over B .
PROOF. [Baker 1967], Theorem 1. O

2.20. LEMMA. For every d € N, there exists an effectively computable
C > 1, depending only on d, such that, if € > 0, no number b € R~Q
with w(e,b) < C_1 belongs to Pd(e).

PROOF. Suppose b € R~(@ belongs to Pd(e). This gives the existence of an

a # 0, a value f(a) # 0 of the logarithm of a, and infinitely many triples
3

(a,B,v) € B, with

1+e

5 H),

(2.18) max (|a-a|, |b-8|, |aP~y|) < exp(-log’m log
where ab = exp(bl(a)) and H = max(h(a) ,h(B) ,h{y)).

Let (a,B,Y) be such a triple and assume that H is large enough in
terms of d,a,b,%(a) and €. Let % be a branch of the logarithm, defined
on a disk Kl' centred at a, such that %(a) = 2(a). Then

3 1+2e/3H

Il(a) - E(u)[ < exp(-log™H log2 )

from £{a) # 0 we thus get z(a) + 0. Let 2% be a branch of the logarithm,

defined on a disk K2, centred at ab, such that

Ibl(a) - 25 (y)| < exp(«log3H log;+2€/3H),
Together with (2.18), these formulas show

!BE(&) - 2*(y){ < exp(—logBH logé+€/3H).
In case B(a) - &%{y) # 0, 2.18 would imply

IBE(&) - l*(y)[ > exp(~log3H logl+€/3H),

which is a contradiction. Thefefore 88 (a) - 2*(y) = 0, so % (a) and
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2% (y) are linearly dependent over B ; 2.19 now states that these numbers
must also be linearly dependent over @. This gives the existence of &,n €
®, not both zero, such that &E(a) + ni¥(y) = 0. Here n * 0 because

L(a) # 0, so

Applying 2.11 then shows that
-1
log H > ¢ "B log B,

where B = h(B) and ¢ > 1 depends only on d.
Put g := den(B); then g must tend to infinity with H, so log H >
cwlq log q > g for H large enough. This gives

(2.19) b - 8] < exp(-log’H log;+€H) < exp(-c > log ) ;

thus, by 2.14, B is a convergent of the continued fraction expansion of

b, say B = pn/qn, By 2.15 we have, if w(e,b) < Cﬁl, and n is large

enough,
1 1
(2.20) b - 8] > > >
g (g +q ) = -1 3 4+g
n n n+l qn(qn+exp(c qnlog qn))
exp(~2c_1q3log4+eq),
Comparison of (2.19) and (2.20) gives a contradiction if 2C'"1 < c~3- [a]

2.21. LEMMA. All rational numbers § satisfy the following inequality:

den(E) < h(£) < max(l,|£])den(E).

PROOF. If |£]| < 1, we have h(g) = den(f); otherwise h(f) = [E|den(§). O

2,22. LEMMA. Suppose b € R~0 . By (pn/qn): we denote the sequence of

=0
convergents of the continued fraction expansion of b; here P, €z,

q, € N, (pra,) = 1. Then
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b
b--2 «—1— , nemwu(0}.
9 qnqn+1

PROOF. [Perron 1954], Satz 2.10. @

2.23. LEMMA. For every M € N, there exists an effectively computable
C > 1, depending only on M, such that, if € > 0 and d € N, every number
b € R~Q with !bl < M and w(e,b) > C belongs to Pd(e).

PROOF. I. Let C > 1 be some number depending only on M, to be determined

later; suppose £ > 0, fb[ < M and w(e,b) > C. By cl,c we shall denote

PIAEE
real numbers greater than 1 that depend only on M. By 2.21 and 2.22, we

have for infinitely many n € W,

b
o~ 2 < - 1
a’ 9.9

fin

n+l exp(qulog4+€qn)

1.3 4+e
exp(_c1 Ch (pn/qn)log h(pn/qn)).

0
Consequently, there exists a sequence (Bn)n_1 of rational numbers with

the properties
. -1_3 L4e
(2.21) [b -8 | < exp(-c "ch™ (B )log  h(B)),
-1 3 4+
(2.22) (B, ,,) > exp(c "ch” (B )log Eh(sn)),

Furthermore, it is no restriction to assume that h(Bl) is greater than
some bound depending only on M.

II. We now use induction to define a sequence (un):=1 of rational
numbers in the interval ]0,1[ with the properties

1/2 3 1+
(2.23) Ean - un+1| < exp(~2C / log h(an)log2 eh(an)),
(2.24)  h(a_.,) > B2(a)
n+i n'’
2h(8n)
(2.25) h(an) < (2h(6n)) ’
1/den(B_)
(2.26) o o€ g.

Choose



-den(Bi)

0L1 = 2 .

Now suppose 0 ,...,an have already been chosen and possess the desired

1
properties. By 2.13, there is a prime number u with

den(f  )B(B ;) 2wz 2den(p  Ih(B ).

We observe

u -1

3 4+e
W; 11(81_1‘_‘"1) 2 exp(—cl Ch (Bn)log h(Bn))“

If C is chosen large enough in terms of C,r We may write

1 4

-1 .3
(2.27) ¢y ch’ (B ) log +€h(en) >

1+
16C1/2h3(8n)log3(2h(8n))(log(Zh(Bn)) + 1og, (2h(8)))

by (2.25) the right hand member of (2.27) is greater than

1/2 3 1+e
2C7" “log h(mn)log2 h(an),

S0
u 1/2 3 1+e

—_— >
(2.28) den(8n+1) exp (2C log h(an)log2 h(an)).
Write w := den(8n+1) and consider the partition

b= (0, 2" (u-1)" 1)

= ey Sy A 7
u u” "

of the interval ]0,1[. Take t € {0,...,u~1}. Then

)" £ wern¥?
w

w W
u u u

ia

<y—;
=u

therefore the width of the partition D does not exceed w/u.
By (2.28), the interval

1/2

tx €10,1: |a_ - x| < exp(-2c log3h(an)logé+€h(an))}
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has a length greater than w/u, so that this interval contains at least one

of the points of D. This proves the existence of a t € {1,...,u~1} with

w
Y o1/20 3 1+e
a uwl < exp(-2C"" "log h(an)log2 h(an)).
. _ w . o s
If one deflnef/an+1 2= (t/u), (2.23) is satisfied, @ g € 10,1[ ana
furthermore an+Y € ¢. Finally,
den (B )
W n+l
h(an+1) =u < (2 den(8n+1)h(8n+1)) =<
h(B ) 2h (B )
2 n+1 n+1
(2h (Bn+1)) < (2h(8n+1)) '
and, by 2.21,
w den(8n+1)
h(an+1) =u > (den(BnH)h(BnH)) >
-1
c, h(B )
-1.2 2 e’ -1 -1
(¢, 'h (Bn+1)) = e2<p(2c2 h(BnH)log(c2 h(8n+1))) >

-1
exp(2c2 exp(ChB(Bn));

here (2.22) is used and it is supposed that h(Bl) is large enough in
terms of c1 and c2. As hz(an) < exp(4h(Bn)log(2h(Bn))), this proves
h(o ) > h2(a ). The construction of the sequence (a )°° is now

n+1 n n’' n=1
completed.

III. The seguence (an)Oo has the property

n=1

1+e
2

1/2

3
(2.29) Vm > n: lam - anl < exp(-C'“log™h(a )log, h(a )).

To prove this, put ik o= Cl/zlogBh(cxk)log;+E

{x € R: Iuk - x[ < exp(—ik)}o Then (2.29) can be written as VYm > n:

h(ak) and Ik 1=

o €1 .By (2.23), o €1 , so it is sufficient to prove Yk > n:
m n m m-1

Ik [ Ik—l' Take x € Zk’ which means fak - x] < exp(nik). Then, by (2.23)
and (2.24),

o <

p I A L CURE

oy s

exp(~1k) + exp(MZik_l) <



exp(—61k_1) + exp(-21k_1) < 2 exp(—21k_1) < exp(~i Y.

k-1

if h(Bl) is sufficiently large, so x € Ik—l'

o
V. From (2.29) we see that (cxn)n is a Cauchy sequence; it con-

=1
verges to a limit, which we shall call a. Then

/2 3 1+
log h(an)log2 h(un)).

(2.30) Vn: (a - an < exp(—c1

If we define

we have Yy € @ and log h(yn) <c
follows that h(Bn) < ¢

310g h(an). Furthermore, from (2.26) it

log h(an). From this we conclude that, if C is

(2.21) and (2.30) give

4

large enough in terms of c C3 and c

1’ 4’

1/4 3 1+e
max(la«an|,|b~8n|) < exp(~C™’ "log Hnlog2 Hn),
where Hn = max(2,h(an),h(8n),h(yn)). As the function (x,y) k> %Y is con~
tinuously differentiable on every compact subset of 10,1[ x ]-M-1,m+1[,

there is a A > 1, depending only on a and b, such that
Yn: fab -y | <A max(|a~a_[,|b-B_|)
n n'’ n'’"

Consequently, if n is large enough in terms of C and A, we have

3
max(]a—an|,[b—Bn],lab~ynl) < exp(~log Hnlogé+EHn),

which proves the lemma. O

2.24. THEOREM. Suppose e > 0, d € W, b € €.
(i) If b € R, then b € P_(e).
(ii) If b € R~¢ and w(e,b) = 0, then b § Pd(a).
(iii) If b € R~ and w(e,b) = =, then b € Pd(e).
(iv) If b € @, then b € Pd(e).
(v) In case b € R~Q with 0 < w(e,b) < ®, no general assertion is

possible.

27
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PROOF. In case b € @, taking z € ¢ such that
4
|z - ¢| < exp(-log™h(z))

for infinitely many ¢ € A

3 (which is possible by 1.6) and writing

den (b)
=z .

; (@,By) = (oo

- b den(b))

b.,C
shows that b € Pd(a); this proves (iv).

The assertion (i) is a trivial consequence of 1.5. We may therefore
assume that b € R~¢Q , in which case w(e,b) is defined. According to 2.20,
> 1 such that if w(e,b) < c_1

0 0’
then b € Pd(e); this proves (ii). By 2.16, it is also clear that there

there exists an effectively computable c

exists a b € RNQ with 0 < w(e,b) < cO1 and so there is a b with
0 < w(e,b) < » that does not belong to Pd(e).

Furthermore, 2.23 asserts that for every M € IN, there exists an
effectively computable cM > 1 such that, if [bl <M and w(e,b) > CM, then
b € Pd(a). In case w(e,b) = © we may choose M = Ib[ and (iii) is proved.
Again by 2.16, it is clear that for any M € N there exists a b with
Ib] < M and CM + 1 < w(e,b) < »; so there is a b with 0 < w(e,b) < = that

does belong to Pd(e). o

It has been pointed out to the author by A.A. Balkema that 2.11 can
also be proved by purely algebraic means, without recourse to Gel'fond
theory. The main tool in such a proof is the inequality stated as Lemma 4
of [Baker-Stark 1971], which follows from Gauss' lemma in algebraic number

fields.
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3. THE NON-INTERCHANGEABILITY OF a AND b

Let ¢ > 0, d € N be given. In Chapter 2 our aim was to establish
a criterion to decide for which b € ¢ there exist an a € ¢~ {0} and a
value %(a) # 0 of the logarithm of a such that for infinitely many triples
(0, B,Y) E.Eg the inequality

(3.1) max(la—al,[b—Bl,lab—yi) < exp(—log3H logé+€H)

is satisfied (here H denotes the maximum of 2 and the heights of o, B and
Yy, and ab = exp(bl(a))).

Let us now consider the converse problem, namely to investigate for
which a € €~ {0} there exist a b € ¢ and a value %£(a) # 0 of the logarithm
of a, such that for infinitely many triples (a,8,v) € lAg inequality (3.1)

is satisfied.

3.1. LEMMA. If n € B and k € N, the following assertions hold:

e [ = s,

(3.3) den{n) < den(nk) < denk(n).

PROOF. I. According tp 2.4¢(a}), € contains a finite normal extension F of 9

that contains n; put G := Gal(F/@). Accoxding to 2.4(b),

vE € F: [E] = max Jo(&)].

cEG
Therefore
k k k k
| = max Jom)| = (max [om) )T = [n]".
cEG gEG
k k. N
IZ. If m := den(n ), the number mn is an algebraic integer. The same
must then be true for mk_lmnk = (mn)k; therefore there is a monic polynom-

ial P € m[x] such that P((mn)k) = 0. This shows that mn is an algebraic
integer.

III. The last inequality in (3.3) is trivial. @
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3.2. LEMMA. Suppose n € IA . Then

h{n) < (2 den(n)max(llfﬁT))dg(ﬂ)-

PROOF. [Cijsouw-Tijdeman 1973], Lemma 1. O
3.3. LEMMA. Suppose d,j,k € N with j <k, 1n € lAd . Then

j 2d, 24, k
n(n’) < 2°“n" ().

PROOF. It is clear that den(nj) ;zden(nk). Indeed, if m := den(nk), the

k R
number mn  is an algebraic integer. The same must then be true for

mk‘j(mnk)J = (mnj)k; therefore there is a monic polynomial P € z[x] such
k. j

that P((mn]) ) = 0. This shows that mn” is an algebraic integer.

Applying 3.1 and 3.2, we find

. . : h]
n(nd) < (2 den(ndymax(t, [n3]|)) 39

A

2 den(Fymax (1, <[ < re®) he e <

2d, 24, k
n

27 h""(n). o

3.4. LEMMA. For each a € B~ {0}, there exists an effectively computable
C > 1, depending only on a, with the following property: if B € @ and

Yy € B, while ll(a), 2.(y) are values of the logarithms of a and y re-

2
spectively with

(3.4) Bﬁl(a) - £2(Y) =0,
it follows that
log h{y) < C dg(y)h(B).

PROOF. By ¢,,C,.,... we shall denote real numbers greater than 1 depending

1772
only on a. Let B,y,ll(a) and Rz(y) be such that (3.4) is satisfied; put

J

8 =v/w, where v € Z, w € N, (v,w) = 1, If P = Zq an is the minimal

3=0
polynomial of vy, the minimal polynomial of 1/y is either P* :=
d J

Zj=O ad—jX or -P*, Thus h(y) = h(l/y); replacing y if necessary by 1/y



and observing that —lz(y) is a value of the logarithm of 1/y will ensure

that v > 0. We have

exp(wlz(y)) expw(lz(y)) = yw

and

exp(wBL, (a)) = exp(vk, (a)) = EXPV(Zl(a)) = a’;

it

exp(w%z(y))

applying 3.1 gives

N = &7
and
den (y) ;:denv(a).

According to 3.2,

v/w))d <

h(y) < (2 den(yv)max(1,[7])? < (2 den” (a)max(1, [3] <

c.d
v v/w) 3 < Cdv < cdh(B). a

(cyey =C =9

3.5. LEMMA. Suppose d € W, a € B~ {0}, El(a) + 0 a value of the loga-
rithm of a. Suppose K is a compact subset of the complex plane, not con-

taining 0, %, a branch of the logarithm defined on K. Then only finitely

2
many rational numbers B have the property that an algebraic number v € K

of degree at most d exists with

(3.5) Bll(a) - 22(Y) = 0.

31

PROOF. Suppose the assertion of the lemma to be false. Let 8 be a rational

number and y € K algebraic with dg(y) < @ such that (3.5) holds. By cyo

c,s... we shall denote real numbers greater than 1 depending only on d,a,

2

K,ll(a) and 2 _; we assume that h(B) is greater than such a number, which

2
will lead to a contradiction. It is no restriction to assume dg{(a) < d.

By 2.11, we see that either
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(3.6) log max(h(a),h(y)) > cIlh(B)lOg h(B)
or
(3.7) max (h(a) ,h(y)) §:02-

As there are only finitely many rationals of the form Rz(y)/il(a), where

dg(y) £ d and h(y) £ c,, we may henceforth assume that (3.6) holds and

2
even that

(3.8) log h(v) 2 ¢ n(8)log h().

On the other hand, by 3.4 we see that
(3.9) log h(y) < c3h(8).

Comparing (3.8) and (3.9) gives a contradiction if h(B) is sufficiently

large. O

Now we are able to solve the problem stated in the introduction to
this chapter. If there are infinitely many a € ﬂﬁi with

(3.10) la - a] < exp(vlogEA logé+EA),

where A = h(a), taking b = B =1, y = a shows that (3.1) holds for in-
finitely many triples (a,B8,Y). Suppose, on the other hand, that infinitely
many such triples satisfy (3.1), yet for only finitely many o €.md in-
equality (3.10) holds. If H is taken large enough, (3.1) then implies that
o = a. Let K be a closed disk in the complex plane, centred at ab, that
does not contain 0. It is clear that there exists a branch 2% of the
logarithm, defined on K, such that l*(ab) = bf(a). From (3.1) we deduce
that vy € K and that the inequality

!BQ(a) - 2*(Y)I < exp(—logBH log§+€/2H)

holds. If it were the case that B2(a) - L*%(y) % 0, 2.18 would imply

1+e/2
2 e/ -

[BL(a) - 2*%(y)| > exp(-log“H log, ),



33

which gives a contradiction. Therefore

(3.11) B(a) - L*(y) = 0.

We have now proved that 2(a) and 2*(y) are linearly dependent over the
field of all algebraic numbers; using 2.19, we find that these numbers
must also be linearly dependent over . In other words, there are &,n € @,
not both zero, such that £&(a) + n&*(y) = 0. Here n % O because L(a) # O,

S0

Using 3.5, we see that in the triples (a,B,y) satisfying (3.1) occur only
finitely many values of B. From (3.11) we see that the number of values
of vy must also be finite and we arrive at a contradiction. Thus we have

proved

3.6. THEOREM. Suppose ¢ > 0, 4 € W, a € ¢~{0}. Then the following two
assertions are equivalent:

(i) There exist a b € € and a value %(a) #%# 0 of the logarithm of a,
such that for infinitely many triples (a,B,y) of algebraic numbers of
degree at most d

max(la—a[,lb—s‘,[ab—yl) < exp(—log3H log§+€H),

where H = max(2,h(a),h(B) ., h{(y)) and ab := exp(bl(a)).

(ii) There exist infinitely many o € ﬂ&i such that

[a - a] < exp(—logBA log;+€A),

where A = max(2,h(a)). O

A more interesting problem occurs if we demand that the triples
(0, 8,y) contain infinitely many values of B, or, in other words, that

b & @.

3.7. DEFINITION. Suppose € > 0, d € W . Then the set Pg(e) is defined

as the set of all a € €¢~{0} such ﬁhat there exist a b € €@, a value
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3
L(a) # 0 of the logarithm of a, and infinitely many triples (a,B,Y) E.Ed

with

max(!a—al,lb—B[,]ab—y[) < exp(—log3H log;+€H),

where H = max(2,h(a),h(B8),h(y)) and ab = exp(bl(a)).

In this case the condition (3.10) turns out to be no longer sufficient
and there appears an extra condition on the nature of the numbers o occur-

ring in (3.10).

3.8. THEOREM. For every fixed d € N, there exists an effectively comput-
able C > 1 with the following property. If € > 0, a € ¢~{0} and 21 is a
branch of the logarithm, defined on a neighbourhood of a, such that for

infinitely many k € N an o € A, depending on k, exists with

(3.12) exp(k'lzl<a)) € m > (1],

(3.13) la - a| < exp(~C log°a logé+€A),

where A = max(2,h(a)), the number a necessarily belongs to Pg(s).

PROOF. I. Let C > 1 be given and suppose € > 0, a € ¢~{0}; let (kn):ﬂl

[oe]
and (un)n be sequences from IN and IA, respectively, such that

=1
lim k_ = o,
n-—>®
-1
(3.14) Vn: exp(k_ Ql(an)) € lgd\~{1},
3 i+e
(3.15) Vn: |a - o | < exp(-C log A log, a),

where A = max(2,h(a )). Put 6 := exp(k_lk (a0 )); then 6 € m_~{1}
n n n n 1 n n d

and

Furthermore, 3.3 states
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h( ) < 22dh2d(an) < 524,24

From this it follows that

lim A_ = o
n->®

indeed, the opposite would imply that there is an o € I such that for

infinitely many pairs (k,m) of natural numbers with k ¥ m

(3.16) exp(k"lzl(a)) = exp(m'lzl(a)) 1,
50
(3.17) E-Ye 0 =0 moa 2ni)

) k  m/ 71 -

By choosing min(k,m) in such a way that the left hand member of (3.17)
has absolute value less than 27, one proves that ﬁl(a) = 0 and thus
exp(knlll(a)) = 1, which contradicts (3.16).

By taking partial sequences if necessary, we can ensure that

3 1+e
(3.18) Vn: kn+1 > exp(C log Anlog2 An)'
2
(3.19) Vn: A > A .
n+1 n

Furthermore, it is no restriction to assume that A1 is sufficiently large

in relation to C.
;1; the sequence (Bn):_1 of rational numbers from the
interval ]0,1[ will be defined inductively. Suppose 81,...,Bn have been

€ {1,...,k
n

II. Put 81 =k

chosen; by (3.18) we see that there is a jn+ 1—1} with

1 +

3

kn+1

1+e
2

n+1

3
(3.20) 0 < Isn | < exp(~C log A log, 'A).

Define Bn+1 i= It follows from (3.20) that (Bn)n= is a Cauchy

n+1/kn+1'
sequence, and that its limit b satisfies

1

1+¢€

1 3
(3.21) vn: |b - Bnl < exp(-3C log”a log,

A ).
n
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To prove this, it will be sufficient to show

1 3 1+¢€
(3.22) Vm > n: ]sm - Bnl < exp(-5C log™a log, A ).

. _ 1 3 1+e L . _ s

Put i := 5C log'a log, A, Ir := {x € R: lBr x| < exp( i)}. Then

(3.22) can be written as ¥m > n: B € I . By (3.20), B € I , S0 it is
m n m m-1

sufficient to prove Vr > n: Ir [ Ir~1' Take x € Ir, which means IBr - x| <

exp(-ir). Then, by (3.19) and (3.20),

|8 - x| éler - x|+ Isr_l - sr[ < exp(-i) + exp(-2i ) <

re-1 -l

)

exp(~81rm1) + exp(—21r_1) < 2 exp(~21r_1) < exp(nlr__1

if A1 is sufficiently large in relation to C. This proves (3.22).

III. Define Yn o= exp(anl(an)) = exp(jnkglll(an)); then

I
Y, = Bn € Iﬁi\~{1}.

[=¥) o
By (3.15) and (3.21), it is clear that th¢ sequences (ocn)n____1 and (Yn)n=1
are bounded and remain uniformly away from 0; applying 2.10, together with
the fact that lim An = p shows h(Bn) < log An for sufficiently large n.

n->ro©

0
From (3.20) one sees that (Bn)n does not become eventually constant,

=1
so that [b - Bnl > 0 for infinitely many n; by (3.21) and 2.14, b must be

irrational.
IV. By 3.3,
jn 24, 24 k 23 24 34
n(y ) =h(e_ " < 2n* (e " < 279277 <’
n n ' = n = = n = 'n
therefore
3d

H = max(2,h(a ),h(B ),h(y )) <A

for almost all n; hence, if C is sufficiently large in relation to d,
(3.15) and (3.21) imply
3

max(la»anl,lb-ﬁn[) < exp (-2 log Hnlog;+€Hn)



37

for almost all n.
As the function (x,y) exp(yll(x)) is continuously differentiable on
a compact neighbourhood of (a,b), there exists a A, independent of n, such

that
[exp(bll(a)) - exp(Bnll(an))| < A max(lawanl,lb—Bn])
and therefore
3 1+e
Iexp(bﬁl(a)) - Ynl < exp(-log Hnlog2 Hn)

for almost all n. Thus a € Pg(e). o

3.9. THEOREM. If ¢ > 0, d € N and a € ¢~ {0} belongs to Pg(e), there is

a branch 21 of the logarithm, defined on a neighbourhood of a, such that

for infinitely many k € W an o € 1A, depending on k, exists with

(3.23) exp(k“121<a)) €mn, ~{1}

a

3 i+e ’
(3.24) |a - a| < exp(~log’a log, A),

max{(2,h{a)).

where A

PROOF. I. Suppose b € ¢~¢ and 2(a) % 0 a value of the logarithm of a,
such that there exist infinitely many triples (a,B8,y) of algebraic numbers

of degree at most d satisfying
1+€
(3.25) max(fa—a{,!b—Bl,]ab-yl) < exp(—logBH log, H),

where H = max(2,h(a),h(B),h{y)) and ab = exp(bf(a)). From this it is
immediately clear that (3.24) holds; we now proceed to prove (3.23).

Let £,%% be branches of the logarithm, defined on disks Kl'K2'
centred at a and ab respectively, such that E(a) = {(a) and R*(ab) = bl(a).
Let (a,B,Y) be a triple satisfying (3.25); we suppose H to be greater than
a certain bound depending on e£,d,a,b and 2(a). As a *# 0 and ab + 0, we may
assume o ¥ 0 and v % 0. Clearly

(3.26) [2(a) - Z(a)]| < exp(~log logé+2€/3H),
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1+2e/3

(3.27) [b2(a) ~ #¥(y)]| < exp(—log3H log,

H) ;

from ¢(a) # 0 we thus get 2(a) # 0. As a consequence of (3.26), (3.27) and

+
]b - BI < exp(—logBH log; EH)

we have

|8T(@) - 2%(y) | < exp(-log’® logi "’ .

If it were the case that Bz(a) - ¢¥(y) # 0, 2.18 would imply

BL(a) ~ 2¥(y)]| > exp(~log3H logl+€/3H
2

).
which is a contradiction. Therefore B8 (a) - LE(y) = 0.

IT. We have just proved that E(a) and 2% (y) are linearly dependent
over the field of all algebraic numbers; using 2.19 we find that these
numbers must also be linearly dependent over . In other words, there are
£.,n € @, not both zero, such that Ez(a) + ne*¥(y) = 0. Here n # 0 because
f(a) # 0, so

&
p=2 o Ley
2 (o) n

Put B = v/w, where v € Z, w € W, (v,w) = 1., Let x,v € Z satisfy

xv + yw = 1 and take 8 := quy; clearly dg(0) < a? and

- ] - -]
6 = exp (xL¥(y)+yL(a)) = exp(xvw ~2(a)+y{a)) = exp(w 12(&)).
as 2(a) is bounded and unequal to zero, we have now proved

expw L) € B ,~ {1}
d
if w is sufficiently large. That the number w occurring in this forxrmula
tends to infinity with H, immediately results from (3.25) and the fact
that b € ¢. O

It could be asked whether ‘the condition (3.12) on the special nature

of the numbers o approximating a might be dispensed with if the approxima-
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tion measure itself is strengthened. That, at least in case d = 1, such a
result does not even hold when the right hand side of (3.13) is replaced
by a very rapidly decreasing function of the height, follows from 3.12 be-

low.

3.10. LEMMA (Dirichlet's Theorem). If a,b € Z such that b # 0 and
(a,b) = 1, the residue class {at+bn: n € Z} contains infinitely many

prime numbers.
PROOF. [Apostol 1976], Theorem 7.9. O

0
3.11. LEMMA. Let (an)n be a sequence of positive integers, suppose

=1
ao € Z . Define

Py i=api Py i=agd + 1y p g = a Py tp g n €N

Ao #= Lidy T ags T A ,d v e nEN.
Then for each n € W U {0} we have 1 €z, a € W, (pn,qn) = 1; and
there exists a number b € R~ such that (pn/qn)°° 0 is the sequence of

n=
convergents of the continued fraction expansion of b.

PROOF. The first assertion follows from Satz 2.1, the second one from

satz 2.6 of [Perron 1954]. u

3.12. THEOREM. For any f£: N - ]0,»[ and € > 0, there exists an

a € R~{0} such that infinitely many rational numbers E satisfy
la - EI < £(h(§)),

while a € PT(E),

=0 and <qn)n=0
1= 9 be a

prime number greater than 1/£(1). Now suppose ao,...,an and qo,...,qn

0
PROOF. I. By induction we define two sequences (an)n

of non-negative integers. Take ag = 0, 9y = 1 and let a

have already been defined in such a way that qyre--0q, are prime numbers
and q > 1/f(qk~1) for k = 1,...,n. According to 3.10, the residue class
{qn_1+an: x € Z} contains infinitely many prime numbers, including one

greater than 1/f(qn). This prime number we shall call S the correspond-
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ing value of x will be a

n+1

I~
The sequence (qn)n we have now constructed has the property that

=0
@ fee]
a, > 1/f(qn_1) and q, prime for n € W, while (qn)n=O and (an)n=O are
connected by
(3-28) Qo = 1Py T Ay Gpyg T A0 T dy g n €N

Using 3.11 we see that the numbers a, are the denominators of the con-
vergents of the continued fraction expansion of some irrational number a.
II. Let pn be the numerator of the n-~th convergent of a. According

to 3.11%1,
py = 0; p, = 1; Pri1 = @p4qPy T Ppogr D € .

Comparison with (3.28) shows that Vn: pn < q,- so we have h(pn/qn) = qn.

Now 2.22 states that

b
a--2 L . < f£lq)
qn qnqn+1 qn+1
thus, if we define £, = pn/an

la-¢ | <£mE)), n€w.

III. Now suppose a € PT(E); according to 3.9, there is a branch 11 of

the logarithm such that, for infinitely many positive integers k, an alge-

braic number o exists with

(3.29) exp(k_lll(d)) € p~{1},

1+e

(3.30) [a - ul < exp(~log3A log2

A),

where A = h(a). By 2.14, (3.30) implies that o is a convergent of the con-
tinued fraction expansion of a; thus In: o = En = pn/qn, where qn is prime.
On the other hand, from (3.29) it follows that o = ek with 6 € 9~ {1},

which gives a contradiction if k > 1. ©
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b
4. SIMULTANEOUS APPROXIMATION MEASURES FOR SUBSETS OF {a,b,P(a,b,a )}

The purpose of this chapter is to generalize 1.8 and 1.9 in order to
obtain simultaneous approximation measures for subsets of {a,b,P(a,b,ab)},
where P is a polynomial with rational integer coefficients. As a further
generalization, our results will not depend on the precise coefficients
of P, but only on the degree and height of P. Our main theorem is 4.12;
the other theorems in this chapter treat various special cases. In 4.8 and
4.10 we consider the case that a is a fixed algebraic number, in 4.11 the
case that this is true for b. In 4.7 we assume that ab = exp(b); this re-
sult was independently proved by V&andnen [19..], who used the method of

Siegel and gidlovski{.

4.1. LEMMA. Suppose PO € z[X] , its height and degree bounded by HO and nO
If there exist a real number A > 6 and a

respectively, with n < log H

0 0"
transcendental number & such that

[PO(E)I < exp(~- n log H)),

0 0

there also exist a positive integer s 20, and an irreducible divisor

P1 € mlx]l of PO, its height and degree bounded by exp(snllog HO-+2sm1nO)

and s~ ng respectively, satisfying

[Pl(i)] < exp(nshl(x~6)n log HO).

0

PROOF. The assertion is proved as Lemma VI' in Chapter III of [Gel®fond

1952] under the extra assumption that the coefficients of P_ have greatest

0
common divisor 1. This, however, is no restriction; indeed, if this

greatest common divisor is m > 1, the polynomial m_lpo has still height
and degree bounded by H  and n, respectively, while |m—1PO(£)[ < ]PO(E)I,

0 0

Moreover, any irreducible divisor of m_lPO also divides PO' o

4.2. LEMMA. Suppose P, € #z[x] separable, its height bounded by H,, its

1
degree exactly k. Let a > Q0 be the leading coefficient of P

1

and 61,.,.,6

1 k

its roots; let & be an arbitrary complex number. Then

lPi(E)l > a exp (~2k° —k log H,) min g ~8.].
. 1
i=1,...,k
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PROOF, [Fel‘dman 1951], Lemma 5. o

4.3. DEFINITION. By Sén) we denote the set of all polynomials P €
Z[Xl,...,xn]such that the degree of P in each variable does not exceed

. n-1 ;
d, while for all (51,...,En_1) € n the degree of P(El,...,En_l,X) €

)

n[x] is at least one. Instead of Sd we usually write Sd.

4.4. LEMMA. Let F be a finite normal extension of Q; suppose £ € F. Then
£ € @ if and only if o(§) = & for all o € Gal(F/®).

PROOF. [Van der waerden 1966], § 57. O

4.5, LEMMA. Suppose d,n € W, ayre-eray € ¢, b € C~]A . Then there exist

effectively computable Cl"""CS' greater than 1, depending only on

d,n,al,..,,an and b, such that the following holds. Suppose al,.,.,un €
(n+1) ,

md,yEJAd,PESd with

(4.1) H := max(h(al),...,h(an),h(Y),h(P)) §:C1:

(4.2) max(|a1~a1‘,,..,]an—an[,|P(a1,.w.,an,b)~yl) < exp(—czlog H) .

Then there exists a number B € A of degree at most C, and height at most

3
exp(C4log H) with

C
5
Ib - B8] < max([a1~a1|,..,,]anmunl,[P(al,»qg,an,b)—y[),

+
PROOF. Suppose Cl’CZ > 1, Oprneer € n YE€E®m.,, PE Sén D are such

d v
that (4.1) and (4.2) are satisfied. By cl,c

d
grese we shall denote real

numbers greater than 1 depending only on d,n,a . and b; throughout

170

the proof we shall without further mention assume that C, and C2 are

1
greater than such a number. Put

U := ~log max(]al—all,...,Ian_an!,IP(al,.a.,an,b)—Yl).

Remark that the transcendency of b ensures that U is well-defined; from

(4.2) it follows that U > C, log H.

2
Denote dj s dg(uj), mj o= den(uj) for 3 = 1,...,n; denote do o=
dg (v) » my o= den(y), D := dOdl"'"dn’ Then D ézcl, max(mo,ml,..,,mn) < H.

Let RO be the polynomial



d d
0 n (S8,) (5n) (50)
R 3= i o oo i (P (o oo C IX)_Y ¥
0 1 n
§ =1 § =1
0 n
where
(a.,)
o. = (1), u?z),..., o J
J J J ]
are the conjugates of aj for j = 1,...,n, and
d
_ @ (dy)
Y = ’ recer Y

are the conjugates of y. Now, if F © ¢ is a finite normal extension of @
containing Ogreees® and vy (such an extension always exists by 2.4(a))

and ¢ € Gal(F/@), the coefficients of R, are clearly invariant under o;

0
this implies that R, € ¢0[x], by 4.4. Cunsequently, the polynomial R :=
mgm?D...miDRO has rational integer coefficients; the degree of this poly-

nomial is bounded by dD < ¢, and its height by

2
HD(HdD)nc3(C4H(H+1)dn+H+1)D ézexp(cslog H) .

Furthermore, we have

IP(Q11'0°I(1nIb) - Yl ;

|P(ayreensa sb) = Pla, .08 ,b) | + [P(ay,...0a /b) - Yl <
c H max Ia - o l + IP(a a ,b) - yl < exp(—c_lu)
6 . 3j 3 i 7
J"ll I2s}
and
(
D ao (51) ‘6n) (60)
Im myee.m T (P(a feeesQ o) -y )I <
T s L..8 1 L o )
071" """n
a -
HD(H D)n(c H(H+1)dn+H+1)D+1 < expf(c,log H) < expl(c, C 1U).
3 = 9 1072
thus

-1 -1
- +
lR(b)| < exp( <, U clOC2 U)

A

-1
exP(—CIIU)"

43
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, R cannot be a constant.

By the definition of Sén+1)

Now apply 4.1 with P

-1 -1 -1

2 %5 “11

s §:c2 and an irreducible divisor Q € Z[X] of R, such that the degree of Q
-1

is bounded by s c, §:c2 and its height by exp(s-lcslog H<+2s_1c2) <

log H), while

=R, n = exp(cslog H), A =

| 0 o~ 2 Ho
U log H, £ = b. We deduce the existence of a positive integer

exp(c12

o) ] < exp(—s_l(A—6)c2c log H) =

5

1

-1
1U+6s c2c510g H) <

-] -
exp (~s =

-1 -1 -1 -1 -1
exp(-s c11U-+6s c2c5C2 U) < exp(—clBU).

Apply 4.2 with P1 = Q, H1 = exp(clzlog H), & = b. Note that Q is separable

because Q is irreducible. Let 6 .,0._ be the zeros of Q; then k <c

10 K 5¢

We find

min |b - o, | ;:exp(Zkz-fkc log H) Q)| <

i=1,...,k 12

exp(2c2~fc c C—lU-—c~

Yoy < (-c Ly
27 %2%2% 13 EXPL=C 40 -

Moreover, for i = 1,...,k we have h(ei) < exp(clzlog H) , dg(ei) < Cyi
thus there exists an algebraic number B of degree at most c, and height

at most exp(clzlog H) with
o ~ B < exp (~c_ Lu)
147"

The lemma follows by taking C, = Cor c, =c

3 4 12" 75 14

4.6. LEMMA. Suppose d,M € N . Then there exists an effectively computable
C > 1, depending only on d and M, such that only finitely many pairs

2 . .
(B,y) € By with |B| < M satisfy

{exp(s) - yf < exp (~C logZH log;iH),

where H = max(2,h(B),h(y)).

PROOF. [Cijsouw 1975], Theorem 2. p
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4.7. THEOREM. Suppose ¢ > 0, d € N, b € ¢~{0}. Then there are only
finitely many triples (B,Y,P) € lAs X Sd such that

(4.3) max (|b-B|, |P(b,exp(b) )~y]|) cexp(-log°H log;1+EH),

where H = max(2,h(B) ,h(y) ,h(P)).

PROOF. I. Suppose the assertion of the theorem to be false; from this a
contradiction will be derived. By CI'CZ"" we shall denote real numbers
greater than 1 depending only on £, d and b.

First we show that under this assumption exp(b) must be transcen-—
dental. Suppose (B,Y,P) € 1A2

d
that H is sufficiently large in terms of €, d and b. Suppose also that

x Sd such that (4.3) is satisfied; assume

exp(b) is algebraic; as b is a value of the logarithm of exp(b), applica-

tion of 2.18 shows that either 8 -~ b = 0 or
+
(4.4) [8 - b| > exp(-log  *n).

It is no restriction to assume that ¢ is so small that (4.3) and (4.4)
cannot hold simultaneously; therefore we need only consider the case that
f - b = 0. However, in this case the number b is algebraic but unequal to
0; thus exp(b) is transcendental by 1.2.

IT. Apply 4.5; this gives the existence of an algebraic number n of

degree at most ¢, and height at most exp(czlog H) satisfying

1

(4.5) Iexp(b) - nl < exp(—cgllogzﬂ log;1+EH),

which contradicts 4.6. O

4.8. THEOREM. Suppose € > 0, d € W, a € A~{0}, b € ¢~@0. Let L(a) ¥ 0
be a value of the logarithm of a. Then there are only finitely many

triples (B,y.,P) € I X Sd such that

d

(4.6) max (|b-8|, |P (b, ~y|) < exp(-log°H log,H)

where H = max(2,h(R) ,h(y) ,h(P)) and ab = exp(bl(a)).

PROOF. I. Suppose the assertion of the theorem to be false; from this a



46

contradiction will be derived. By CprCorens we shall denote real numbers
greater than 1 depending only on e,d,a,b and 2(a).

First we show that ab must be transcendental. Let K be a closed disk
in the complex plane, centred at ab, that does not contain 0. It is clear

that there exists a branch 2* of the logarithm, defined on K, such that
= 0% (a°
(4.7) bf(a) = £¥(a”).

2
Suppose {B,Y.P) € ﬂii X Sd such that (4.6) is satisfied; assume that H is
sufficiently large in terms of e,d,a,b and %(a). From (4.6) and (4.7) it

is clear that

2 /2

[82(a) - 2*¥(a®) | < exp(-log®Hm log,’ “m).
Now suppose that ab is algebraic. If it were the case that BL(a) - 2*(ab) +
0, 2.18 would imply

|B2(a) - 2*%(a®) | > exp(-log’Cm),

which gives a contradiction, because we may assume € to be arbitrarily
small. Therefore BL(a) - Z*(ab) = 0 and so, by (4.7), we find that 8 = b;
accordingly, b € A~Q and so ab € ¢~3A by 1.3.

II. Apply 4.5; this gives the existence of an algebraic number n of

degree at most cy and height at most exp(c2log H) satisfying

b

(4.8) [a° - n| < exp(—cgllong Log H) -

From (4.7) and (4.8) we then deduce that n € K and that the inequality

lB2(a) - 2%(n)| < exp(-log’n log;/ZH)

holds, which, by 2.18, implies Bf&(a) - 2*(n) = 0.

IIT. We have proved that %(a) and 2£*(n) are linearly dependent over
A ; using 2.19 we find that these numbers must also be linearly dependent
over ¢. In other words, there are El,£2 € @, not both zero, such that

Elﬁ(a) + £2K*(n) = 0. Here 52 + 0 because %(a) * 0, so
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Using 3.5 we see that h(B) < c from (4.6) it then follows that b = B € Q.

40
This contradicts the conditions of the theorem. «©

4.9, LEMMA. Suppose d € W, a € IA. Then there exists an effectively com-
putable C > 1, depending only on d and a, such that only finitely many

o € ﬂﬁi satisfy

la - a| < exp(~C log H),

where H = h{a).
PROOF. [Brauer 1929], Satz 1. o

4.10. THEOREM. Suppose €¢ > 0, d € N, a € A~{0}, b€ ¢, P € Sd. Let
2{(a) *# 0 be a value of the logarithm of a. Then there are only finitely
many pairs (B,y) € I%i such that

max (|b-8|, [P (6,a")~v|) < exp(-log’n logim),

where H = max(2,h(8),h(y)) and a° = exp(b2(a)).

PROOF. The proof is completely analogous to that of 4.8, up to the end of
part I, where the Gel'fond-Schneider theorem was used to establish the
transcendency of ab. This time, having proved that B = b, we deduce that

H = h{y) and that P(b,ab) is algebraic, while from (4.6) we see that
IP(b,ab) - Yl < exp(-log2H logZH),

which contradicts 4.9. Therefore the assumption that ab be algebraic is
disproved, it follows that b € @ and we may proceed as in the case of

4.8. O

Thus, in case P is taken fixed, the condition that b € @ may be
dropped from 4.8. In the same way it is possible to remove the restriction

b # 0 from 4.7.

4.11. THEOREM. Suppose £ > 0, d € N, a € ¢~{0}, b € A~Q . Let 2(a) % O
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be a value of the logarithm of a. Then there are only finitely many

2
triples (a,vY,P) € lAd x Sd with

2+

2 H)I

(4.9) max(]auu[,[P(a,ab)»y]) < exp(vlong log

where H = max(2,h(a),h{y),h(P)) and ab = exp(bl(a)).

PROOF. I. Suppose the assertion of the theorem to be false; from this a

contradiction will be derived. By CyrCorens we shall denote real numbers

2
greater than 1 depending only on g,d,a,b and %(a).
First we show that ab must be transcendental. Let E,Z* be branches of

the logarithm, defined on disks Kl'KZ' centred at a and ab respectively,

such that
(4.10) 2(a) = 2(a),

b
(4.11) bl(a) = £%¥(a”).

2
a
sufficiently large in terms of €¢,d,a,b and %(a). From (4.10) and (4.11) it

Suppose (o,Y,P) € B, X Sd such that (4.9) is satisfied; assume that H is

is clear that o € Kl and

2+s/2H)

le(a) - 2*(ab)| < exp(-logZH log2

Now suppose that ab is algebraic. If it were the case that bl (a) - Z*(ab) Ed
0, 2.18 would imply

[bL (a) - 2*(ab)f > exp(—log1+€H),

which gives a contradiction because we may assume € to be arbitrarily
small. Therefore hi(a) - l*(ab) = 0 and so, by (4.10) and (4.11), we find
a = a; accordingly, the number a is algebraic and so ab € ¢~13n by 1.3.
IT. Apply 4.5; this gives the existence of an algebraic number n of
degree at most c

and height at most exp(c,log H) satisfying

1 2

(4.12) Iab - nl < exp(«cgllogZH log;+EH),

From (4.11) and (4.12) we deduce that n € K2 and that the inequality
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+
2 5/2H

[b2(a) - 2¥(m) ]| < exp(—logZH log,

)

holds; comparison with (4.9) and (4.10) gives

2 2+a/3H

Ibz(u) - 2*(n)[ < exp(-log H log2 ).

If it were the case that bf(a) - 2¥(n) # 0, 2.18 would imply

Ibz(u) - Q*(n)| > exp(~log2H log§+€/3H

)
which gives a contradiction. Therefore bi(a) - ¥(n) = 0.

IIT. We have proved that E(a) and 2% (n) are linearly dependent over
B ; using 2.19 we find that these numbers must also be linearly dependent
over §. In other words, there are El,aq € @, not both zero, such that

gli(a) + gzl*(n) = (0. Here 52 # 0 because, by (4.10), I(u) + 0, so

% (a)
This contradicts the conditions of the théorem.

4.12. THEOREM. Suppose € > 0, d € N, a € ¢~{0}, b € €. Zet %(a) % O be
a value of the logarithm of a. If b € R, or if b € IR~Q such that the
convergents pn/qn of the continued fraction expansion of b satisfy

(4.13) q << exp(q:l) ;N> o,

n+1
. 3 (3)
there are only finitely many quadruples (a,B,Y,P) € lAd X Sd such that

(4.14) max(!a—al,]bnsl,|P(a,b,ab)—Y|) < exp(—log3H logé+€H),

where H = max(2,h(a) ,h(B),h(y) ,h(P)) and a® = exp(bL(a)).

PROOF. I. Suppose that b has the required properties, but that neverthe-
less there exist infinitely many quadruples (o,B,Y,P) € I%g x Sé3) that
satisfy (4.14).

From this it follows that ab must be transcendental. If both a and b

are algebraic, this is precisely the Gel'fond-Schneider theorem 1.3. Now
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suppose that at least one of a and b is transcendental; then (4.14) implies

that there are infinitely many pairs (a,B) € 1A2 that satisfy

d
+
max([a—a],|b~8|) < exp(~log3H log; “m,
where H > max(2,h(a),h(B)). If ab is algebraic, this contradicts 1.7.

II. Apply 4.5; this gives the existence of infinitely many triples
(a;B,n) of algebraic numbers, their degrees bounded by some constant de-
pending only on ¢,d,a,b and 2(a) such that

3 1+€/2HI

max(la—al,lb—ﬁ],]ab-n|) < exp(-log H'log2 Ve

where H' > max(2,h(a),h(B),h(n)). Once again we get a contradiction with

1.7. o

It is clear that the use of 2.24 instead of 1.7 would replace con-

dition (4.13) by the slightly sharper w(e,b) = 0.
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5. MANY-VARIABLE ANALOGUES

In the present chapter we give analogues of 1.10 and 1.11 in which

the condition that 1,8 .,Sn be linearly independent over ) is replaced

17

by conditions on al,...,an,b ""’bn' As proved in 5.5 and 5.7, the es-

1
timate of 1.10 holds whenever Rl(al),...,ln(an) or 1,b1,...,bn are linear-
ly independent over @. In 5.8 and 5.10 it is proved that a similar result

can be obtained in case the rdles of al,...,an and b ,...,bn in 1.10 are

interchanged; here we need the additional restrictioi that bi""’bn may
not all be rational. Under these conditions, it is also possible to prove
many-variable analogues of 4.8 and 4.11; this is done in 5.11 and 5.12.

Finally, in 5.15 we give an analogue of 1.11 in which the condition that
1,81,...,Bn be linearly independent is replaced by the strong linear in-
dependence condition (1.3). In 5.13 it is shown that 5.15 may also be re-

garded as a generalization of the type of theorem of which 1.7 is an ex-

ample; 5.16 uses 5.15 to give a many-variable analogue of 4.12.

5.1. LEMMA. Suppose d,n € IN; then there exists an effectively computable
C > 1, depending only on d and n, such that for all n—tuples (nl,.a.,nn)

of algebraic complex numbers of height at most H > 2 the following asser-

tions hold:
dg(n,+...+n_) < d = h(n,+...+n_) < u°
1 n' = I
dg(n,...n_) £ d= h(n n)<HC
1 n = 1°°""'n" = )

F. tooat < H = e P - 2
PROOF. Suppose dg(n1 nn) < d; put n ny + + n, € Rﬂi The
minimal polynomial of n is

k .
a m (x-ny,
j=1
(1) (k) . .
where a € N and where n PP o are the different conjugates of n

(thus k £ d). By 2.5(c) we have, for j = 1,...,k,

ln(j)l < < m o+ [?;I < n(H+1).

According to 2.4(a), ¢ contains a finite normal extension F of ®, such

that Nyreserny € F. put G := Gal(F/®). By 2.4(b),
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den(n(j)) < ( max den o(n))k <
1 c€G

az
3

maw

k
max (den o(ny)e...>den a(n )] <
n =
c€G
k dn
max den G(nl)-...c max denko(nn) < H .
c€G c€EG
The first assertion of the lemma follows from the trivial fact that the
height of a product of polynomials is less than the product of their
heights times a constant depending only on their number and their degrees.
The second assertion is proved analogously, with the obvious replace-

ments. 0O

5.2. LEMMA. Suppose d,n € IN . Then there exists an effectively computable
C > 1, depending only on d and n, with the following property. Suppose
Oyreessd € lAd are multiplicatively dependent; then there exist

tl"“"tn € % , not all zero, such that

and

max (|t ,.... [t [) <c log™ 1h,

where H = max(z,h(al),,”.,h(an)).
PROOF. [Van der Poorten~Loxton 1977], Theorem 1. O

5.3. LEMMA. Suppose R > 0, Wreen sty € ¢, z, € C. Let P By € ¢[x]

1
denote non-trivial polynomials of degree at most d. Define
L
®(z) := z P, (z)exp(w, z), z € €.
k=1 k k

If ¢ is not identically zero, the number of zeros of & in

{z € ¢: |z - zol < R} does not exceed
32(d+1) - 3 + 4R max(lwll,...,!wll).

PROOF. [Tijdeman 1971], Theorem 1, Corollary. @
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The following lemma is a generalization of 2.10 and 2.11 to an
arbitrary number of logarithms; it has been brought to our attention that
Waldschmidt [19..], in an as yet unpublished paper, proved a slightly

sharper version of the second assertion of the lemma.

5.4. LEMMA. Suppose d,n € N, K a compact subset of the complex plane not
containing 0, 21,..°,Rn branches of the logarithm, defined on K. Then

there exist effectively computable C,H,. > 1, depending only on d,n,K and

0

El,..,,ln, with the following property. Let o ces® € K be algebraic of

17

degree at most d and heights at most H ,...,Hn respectively, such that

1
il(ul)'°'"'2n(an) are linearly dependent over . If H ;:max(HO,Hl,uu.,Hn),

then there exist xl,.,.,xn € % , not all zero, such that

xlll(ai) L xnln(an) = 0

while

+
lx,[ < C logn 1H M log H., 5 = 1,...,0.
it = 2 s i
i%]j

In case H1 =, . = Hn’ this inequality may be sharpened to

[xj] zcC lognulH log2H, Jo= 1l,00.sn.

PROOF. I. Let ai,..u,un € K be algebraic of degree at most d and heights
at most Hl""'Hn respectively, such that ﬁl(al),..,,ln(an) are linearly
dependent over @; let H be a number greater than max(HI,...,Hn). By Cys
Corew. We shall denote real numbers greater than 1 that depend only on
d,n,K and 21"“"Rn' By C we shall denote some number greater than 1;
additional restrictions on the choice of C will be formulated at later
stages of the proof. Throughout the proof we shall assume that H is suf-
ficiently large in terms of d,n,K,Rl,...,ln and C.

II. First we shall prove that there exist ul,...,un € 2, not all

zero, their absolute values bounded by ¢ logznu3H, such that

1
ulki(al) + ... + unln(an) = 0.

It is clear that there exist r ;,rn € Z , not all zero, such that

gree
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(5.1) rlll(al) + ... rngn(an) = 0.
By 5.2, there exist sl,...,sn € Z , not all zero, their absolute values

bounded by c logn_lﬂ, such that

2
S S

al oty
1 n

suppose for instance that sn # 0. Thus there is a sn+1 € Z with

. L . e 2mi = 0.
(5.2) sy 1(Otl) + + snzn(an) ts 2ri = 0

. n-1 _
As [Rj(aj)l <e, for j = 1,...,n, we have |sn+1| < cylog” "H. If s . =0,
there is nothing left to prove; assume sn+1 + 0. Comparison of (5.1) and

(5.2) yields

X r

n
(r -gl—l— sl)ll(al) + ... + (rn -— 3 )&% {a

1

-

n
— g «2Ti = 0.
S n+1

n

Again by 5.2, there exist ti""'tn € Z , not all zero, their absolute

-1
values bounded by cSlogn—zH, such that

t
o ! atn"l =1
g ey = 1.

Thus there is a tn € 2 with

(5.3) (a,) + ... + t (a ) + t <2mi = 0.
1 n-1 n

2
t1 1 n—12n—1

. n-2
As [lj(mj)l < cy for j =1,...,n-1, we have ]tnl < c log “H. If t =0,

6
there is nothing left to prove; assume tn * 0. Comparison of (5.2) and

(5.3) yields

(s, t -s t )2,1(&1) + ...+ (s

150751 &y )8 (a_ ) +

n—ltn_sn+1tn—1 n-1""Tn-1
st & (a) = 0.
nnn n

If we define u, := s.t - s t, for j = 1,...,n~1 and u_ := s t , the
J in n+l j n n n



numbers ul,...,un possess all the desired properties; in particular un *
because s_ % 0 and t # O.
n n
III. For convenience's sake, in the remainder of the proof we shall

assume that un + 0 and write Sj = —uj/un for § = 1,...,n~1; we have

Bpfplag) +oeee B A O y) m Ryl =0

and
2n-3
(5.4) B := max(h(B;), ... h(B_ _)) <c log” H.
Define § := (log Hl)...(log Hn) and
Q, := I log H,
T i#j +

for § = 1,...,n. Define

[C1+1/n n+2 ~n~1

L. := Q 1092 H log2 Al - 1;

0

n+1 -n .
Lj 1= [CQj 1092 H log, al -1, 3=1,...,n,

where

Hif Hy = ... = H
A a= { o 1 ns
e otherwise.

We introduce the auxiliary function

LO Ln XO Alz Anz
o(z) = ) ... ) POgreewid )z o’ oo, 2 €8,
A =0 A =0 n n
0 n
where
Ajz
Q. = exp(A.zl. (o, j = 1,...,0,
3 P ( j J( 3))’ J 3l

and where p(KO,,..,An) are rational integers to be determined later. We

have

(5.5) 6 (z) =7 —E Tyl
- [
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0
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where the summation ranges over all n~-tuples T = (T

O""'Tn—l) of non-
negative integers satisfying TO + ...+ They = t, and where
Lo Ly Al At Az Az
0 0 ¢ 1~ n
@T(z) = ) ... 2 p(AO,.qu,An) G =x T 2 G .0 X
- A =0 A =0 o 0
0 n
n-1 Tv
T (A +x B ) .
vV onv
V=1
Now put aR := den(a.) for j = 1,...,n, bg = den(Bj) for § = 1,...,n-1,
S &= [Cl/ logéH loggiA], T &= [%d—lcl+1/ Q logg+2H log;n—lA], and consider

the system of linear equations

Lls Lns Tl Tn—l

a;” ...a b l..b ¢E(s) =0, s=0,...,8-1, T € V(1),
where V(T) is the set of all n-tuples T = (TO""'Tn-l) of non-negative
integers satisfying TO + .. + Tn—l < T - 1. These are fewer than st

equations in the (LO+1)...(Ln+1) unknowns p (A An); the coefficients

AR
are algebraic integers in the number field Q(ul,.*,,an) of degree at most
a". The absolute values of the conjugates of the coefficients are less

than or equal to

Lls LnS p LO n LjS
@ @ @ @ e i &
ay an max (bl' 'bn—l)LO s (jzl max (1 Eaj )) X
max max(1,|X +A_B IT) =
vV nwv =
V=1, ... -l
L. L n 2L.S
+ + -n=-
cLS TL OS OLTB2T M H. J < exp(c C1+1/n9 logn 3H log n 1A);
7 0 =1 j = 8 2 2
here (5.4) is used and L := max(Ll,...,Ln). As
1 n+i+1/n n n2+2n+2 —n2wn—1 n.,n
(LO+1)...(Ln+1) z 5C Q log, H log, A > 2d7sT,

2.7 states that there is a non-trivial choice for the p(AO,...,An) such

that
(5.6) @T(s) =0, s=0,...,81, 1€ Vry,

while
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P := . max . |p(XO,.n.,An)| <
0" ""n
i+1/n n+3 -n-1
+1) ...
cg(LO 1) (Ln+1)exp(c8C Q log2 H 1og2 A) <
exp(c10 1+ l/nQ logg 3H 1097 _1A).
IV. Define K := [n° log H/log 2] + 1. For k = 0,...,K we put S, =

2 S, Tk := T - k[T/2K]. Then, for our special choice of the p(AO,...,An),
we have
(5.7) @I(s) =0, s = O,..,,Skvl, T € V(Tk).

This is proved by induction; for k = 0 the assertion is precisely (5.6).

Now suppose that (5.7) holds for some k < K - 1. Then, for T € V(Tk+1)

and m < [T/2Kk] we have

u n

B L Y R )

) (2) Lo T ™ n-1 ‘%n-1

)@ (2), z € ¢,

= o1

where the summation ranges over all n-tuples u = (uo,...,un 1) of non-
negative integers satisfying uO + ... + un—l = m, and where T + | =

(TO+UO,..m,T ). Clearly T + 4 € V(Tk) and thus, by the induction

.{.
n-1""n-1
hypothesis,

® (m)
T

(s) =0, s=0,...,5-1, 1€ V(Tk+1), m < [T/2K].

By 2.8 we have, for t € V(Tk+ ).

1

s [1/2x]
2 k
(5.8) max  |®_(z)]| < 2 max [o_(2) | [z .
lzl< z "~ lzl<3s,  ,log A : 3 log &
”']+1 =" "k+1
Here
max I@ (z)]
< I
tilfi:kﬂigg 2+T L T
0 k+1 k+1 0 k+1
I
cq (LO+1)...(Ln+1)PLO.(Sk+1log A) ~(BL) <
k +1/n n+3 -n-1
exp (2 c£2C Q log2 ﬁ log2 A)
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and
s, [T/2K]
2 k k -1 1+2/n n+3 -n-1
(3 Tog & <exp(-2 c13c Q log2 H log2 A);
. , -1 1/2n . . .
therefore, if we choose C so large that 013C > C12' substitution in
(5.8) shows that
-1 1+ + -n~1
max ]@T(z)[ ;:exp(~2kc14c1 B/Znﬁ 1og2 3H logzn A),
lzlss, o
T € V(Tkﬂ)’
and thus
k -1 1+3/2n n+3 -n~1
(5.9) |¢I(S)l < exp (-2 c14c Q log2 H log2 A),
s = O,ﬂ.,,Sk+1-1, T € V(Tk+1)'
However, @I(s) is algebraic and for s = O""'Sk+1_1' T € V(Tk+1) we have
dae_(s)) <d”,
L,s L s T T L,S LS T
1 n 1 n-1 17k+1 n k+1_ "k+1
<
den(éz(s)) fa; ...a b ...b 0 <H oo H B <
k i+1/n n+3 ~n=-1
exp(2 C15C Q log2 H log2 A),
LS +T L T
k+1 “k+1 0 k+1
< f
@E(s) <e,. (LO+1)°"(Ln+1)PLO'Sk+1(BL) x
L,S L S
17k+1 n k+1 k i+1/n n+3 ~n~-1
H1 ...Hn < exp(2 cl7c Q log2 H log2 A),

so, by 2.6, either @T(s) = 0 ox

k 1+1/n n+3 -n-1
(5.10) |<I>I(s)} 2 exp(-2 ¢ o C 2 log, “H log, A).
.. . -1 1/2n
Combining (5.9) and (5.10), and choosing C so large that c14C > C18'
gives ®T(s) = 0 for s = O,...,Sk+1—1, T € V(Tk+1)° This completes the

proof of (5.7).
V. Taking k = K in (5.7) yields
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0, 5= 0,...,5.-1, T € V(T).

@I(s) =

Substitution in (5.5) shows that
t
o) =0, s = 0yueesS =1, €= 0,nn, T -1,

2

Thus the number of zeros of & in W := {z € ¢: izf ;=SK—1} is at least
[nzlong/log 2] L n
ST 2 58T log H 2

SKTK > 2
1.~-1 1+2/n n2 n+4 -n=-2
C Q log H 1092 H log2 A.

=L

However, if & is not identically zero, from 5.3 we see that the number of

zeros of ¢ in W does not exceed

3(L0+1)...(Ln+1) + c19SKL <
2

2 2 n"log,H/log 2 +1

n +2n+2H log2n n IA . 0192 2 SL <

3Cn+1+1/n9nlogz
2 2 . 2
+ - + ~n" -n-
3cn+1 1/nQ logn nH logg 2n+2H lngn n IA +
1+1/n n2 n+3 -n-1
20C Q2 log H log2 H 1092 A<
2
3H log2n—1A.

1+1/n n n+
21C Q log H log2

In this case, comparison of the two estimates for the number of zeros of

¢ in W yields
1.~1 _1+2/n n2 n+4 ~-n~2
Zd C Q log H log2 H log2 A =<
i+1/n n2 n+3 =1
c21c Q log H log2 “H log2 A,

-1 n
C ;:(4dc21log2 H long) ;:022.

If C is sufficiently large, there is a contradiction; thus ¢ is identical-
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ly zero. As the p(AO,...,An) are not all zero, it follows that two of the

frequencies of ¢ must be equal. This shows that there exist two non-iden-

tical n-tuples (Al,...,kn) and (Ai,...,xé) of non-negative integers that
satisfy
.. = A} + ...+ AT

Alll(al) + . + Anln(an) Alll(al) Anln(an),
while

max(A,,A') < L..

J 3 = 3

Taking Xj o= Xj - A; proves the lemma. O

5.5. THEOREM. Suppose €¢ > 0, d € N, a eeray € m ~{0}, bl,.,.,bn €,

a respectively such

1’
El(al),...,ln(an) values of the logarithms of Byree-

that Zl(al),...,ln(an) are linearly independent over (. Put

b
a- := exp(blll(a1)+...+bn2n(an)).
+
Then there are only finitely many (n+l)-tuples (61,...,Bn,y) € lAg 1 for

which
(5.11) max(]b -B ] ]b -B ] [aé— [) < exp(~log2H logeH)
) SRR L R 27

where H = max(2,h(81),.,.,h(Bn),h(Y)).

PROOF. I. Suppose the assertion of the theorem to be false; from this a
contradiction will be derived. Let (Bl'°'"'8n'y) be an (n+1)~tuple satis-
fying (5.11). By c1,02,... we shall denote real numbers greater than 1
depending only on g,d,n,al,...,an,bl,...,brl and Zl(al),...,ln(an); we
assume H to be greater than such a number. Let £ be a branch of the loga-
rithm, defined on a disk K, centred at gg, such that Z(gg) = blli(al) +
ce. + bnln(an). From (5.11) we deduce that y € K and that the inequality

2 e/2
[Blll(al) + ...+ Bnﬁn(an) - R(y)| < exp(~log™H log2 H)
holds. If it were the case that 8,84, (a,) + ... + B & (a ) - 2(y) % O,
ST171 1 nn n

2.18 would imply
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e/2

S,

2
]Blll(al) + ...+ Bnln(an) - 2(y)| > exp(~log“H log
which gives a contradiction. Therefore
(5.12) Blll(al) + ol + Bnln(an) - 2(y) = 0.

II. We have now proved that Rl(al),...,ln(an),z(y) are linearly de=-
pendent over A ; using 2.19 we find that these numbers must also be

linearly dependent over @. By 5.4, there exist XpreeorX € Z , not all

n+1
zero, such that xlll(al) + ...+ xnkn(an) + xn+11(y) = 0, while ]xn+1]

+
c logg 2H. Adding x . times (5.12) gives

1 1

(x1+61xn+1)21(a1) L (xn+8nxn+1)2n(an) = 0.

III. By the conditions of the theorem El(al),...,ln(an) are linear-
ly independent over @; 2.19 states that then ll(al),...,ln(an) are linear-
ly independent over JA . Thus for all j € {1,...,n} we have Xj + B.x =

i n+i

0. Now x = 0 would imply x, = ... = = 0, which we have assumed to

n+1 1 *n+1

be not the case; therefore Xn+1 # 0. From this it follows that for all

j € {1,...,n} we have

ce . !
By 2.21 this implies h(Bj) < czden(ﬁj) < c2[xn+1|, and thus

n+2 .
(5.13) h(Bj) ;:c3log2 H, j=1,...,n.

Apply 5.1 with nj = exp(sjlj(aj)). We have

n+2
dgmj) < dg(aj)den(Bj) < C4log2 H,

so, by 3.4,

2n+4
h(n;) < exp(cydg(ny)h(B,)) < exp(cglogy™ H),

and thus
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2n+4

(5.14) h(y) < exp(c7log2

H) .

However, (5.13) and (5.14) show that

2n+4

2 H),

H = max(zlh(Bl)l"'lh(Bn) rh(Y)) _<__ eXP(CBlOg

which gives a contradiction for sufficiently large H. O

5.6. LEMMA. Suppose O ’“"an’81""’8n € m~{0} such that 1,81,...,8n

1
are linearly independent over @, Rl(ui),...,ln(an) values of the logarithms
of al,,..,an respectively that are not all zero. Then

exp(Blkl(a1)+...+Bnln(an))

is transcendental.

PROOF. The lemma follows from Theorem 2 of [Baker 1967] in case none of
Qpreeer®y equals 1. However, Baker's proof only uses the less restrictive
condition that none of Ql(al),,..,ln(an) is zero; and this assumption we
may make without impairing the generality of the proof. To see this,
assume that this special case has been proved and rearrange the given

(o
m+1 " m+l
ll(ul),...,lm(am) equals zerxo. As the linear independence of 1,61,«ﬁ.,8n

numbers in such a way that £ ) = ... = ln(an) = (0, while none of
entails that of 1,81,...,Bm, the special case of the lemma yields the

transcendence of
exp(Blzl(a1)+...+Bmlm(um)) = eXp(Blzi(a1)+"“°+6n2n(an))' Iul

5.7. THEOREM. Suppose € > 0, d € IN, ajseeeidy € m~{0}, b ...,bn € ¢

1!
such that 1'b1""'bn are linearly independent over @, Ql(al),...,ln(an)

values of the logarithms of a cray respectively that are not all zero.

1re"
b
but a- := exp(blll(a1)+...+bn2n(a )) . Then there are only finitely many

(n+1)-tuples (B ,...,8_,Y) € . ' for which
n d
(5.15) max(lb -B | ]b -B_| [a?uyl) < exp(«logZH logEH)
1 1 ¥ e eyp n n 1 by 2 L4

where H = max(Z,h(Bl),...,h(Bn),h(Y)).
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PROOF. In case n = 1, the assertion of the theorem follows from 5.5. We now
proceed by induction and assume that the assertion has been proved for all

natural numbers less than n, while it does not hold for n itself; from this
a contradiction will be derived. Let (Bl,.,ﬁ,Bn,Y) be an (nt+l)-tuple satis-

fying (5.15). By CyrChre-s We shall denote real numbers greater than 1 de-

pending only on e,d,n?al,...,an,bl,...,bn and Zi(al),...,ln(an); we suppose
H to be greater than such a number. If Rl(al),...,kn(an) are linearly in-
dependent over {, the assertion is proved in 5.5; therefore we may suppose
that there exist nl,.,.,nn € @, not all zero, their heights bounded by a
constant cl, such that n, 4L (al) R R nnﬁn(an) = 0. It is no restriction

171
to assume n, % 0; thus we may write

n-1 n,
g (a) =~ ] ;lz.(a.),
3=1 "n J

from which it follows that Ql(al),,,.,ln (an—l) cannot be all zero. If,

-1
for 3 = 1,...,n~1, we define
n ]
(5.16) b' := b, - b, Bl =8, - -1g,
3 ioong 3 j o on, m
we have
n-1 b
M exp(d't. (a.)) = a-
- JJ ] -
=
and, for j = 1,...,n~1,
"5
bt - Bl < |b, -~ B.| + |==|{b - B <
P R - B

n. .
[1+|;l-) exp(—long log;H).
n

Furthermore, the numbers 1,bi,...,bg_1

may be seen from (5.16). The numbers B',..Q,BA_

are linearly independent over @, as

1 are algebraic of degree

at most d2, while their heights are bounded by exp(c2log H) (here 5.1 is
used) . Thus

b 2 2
(5.17) max(,bi—ﬁil,...,lbﬁ_l—sg_ll,!é——y!) < exp(~log H'logg/ H'),

where H' := exp(czlog H) > max(h(Bi),...,h(Bgﬁl),h(y)). From the induction
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hypothesis it now follows that

(5.18) max(h(Bi),...,h(Bé_ )sh(y)) 2 ¢

1 37

from (5.17) and (5.18) we see that

b
] - ¥ = 8=
1 1hotny Bn—l bn—l' Y= an.

Thus b',...,bg_ and gé are algebraic; however, by means of 5.6 this leads

1 1

to a contradiction with the linear independence of 1’bi’“"’bé-1’ o

From the proof it is clear that the theorem remains valid when the

condition that 1'b1"'°’bn be linearly independent over { is replaced by

the condition éé ¢.md

5.8. THEOREM. Suppose ¢ > 0, d € W, al,...,an € ¢~{0}, b ,.._,bn € n

1

such that 1,b1,.,...,bn are linearly independent over @, ll(al)""’zn(an)

values of the logarithms of al,...,an respectively that are not all zero.

Put 39 i exp(blil(a1)+...+bn2n(a])). Then there are only finitely many
+

(n+1)~tuples (al,...,un,y) € JAZ for which

2
(5.19) max(lal—all,...,!an—an|,]§9—y|) < exp(—logn+1H log£+€H),

where H = max(2,h(a1),,,.,h(an),h(Y))~

PROOF. Suppose the assertion of the theorem to be false; from this a con-
tradiction will be derived. Let (al,..,,an,y) be an (n+l1)-tuple satisfying

(5.19); assume that H is sufficiently large in terms of e¢,d,n,a ,...,a .,

1 n

b,r-e-yb_and % (a,),...,% (@ ). Let &, ,...,% and & be branches of the
1 n 171 n o n 1 n b
logarithm, defined on disks Kl'"'"'Kn and K, centred at CORERRYL N and a-

respectively, such that

(5.20) T.(a) =28.(a.), 3 =1,...,n,
33 3ieyle !
b
(5.21) L(a=) =Db, % (a,) + ... + b 2 (a ).
- 17171 nn n
From (5.19), (5.20) and (5.21) we deduce that aj € Kj for j = 1,...,n and

that El(a]),...,in(an) are not.all zero; also that v € K and that the in-
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equality

= - n+1 2+e/2
+oa.. - -
[blll(al) +b 2 (a) 2(y)| < exp(~log  'H log), H)

holds. If it were the case that b % (a,) + ... + b & (a ) - L(y) # 0, 2.18
17171 n'n n

would imply

+1 2+€/2H

- = n
]blll(al) ... +b 2 (a) - 2(y)| > exp(~log H log) ),

which gives a contradiction. Therefore

blll(al) + ...+ bnln(an) - 2(y) =0

and thus exp(blil(a1)+...+bnin(an)) is algebraic. This contradicts 5.6. 0O

5.9. LEMMA. Suppose d € W, b € ®. Then there is an effectively computable
C > 1, depending only on d and b, with the following property: if a,y €
B, , while Rl(a),lz(y) are values of the logarithms of o and Yy respective-

d
ly with

(5.22) bll(a) - 22(Y) = 0,
it follows that
log h(y) < C log max(2,h(a)).

PROOF (cf. 3.4). Let a,y,ll(a) and £2(Y) be such that (5.22) is satisfied;

J

put b = v/w, where v € Z, w € N, (v,w) = 1. If P = Z?_O an is the
minimal polynomial of vy, the minimal polynomial of 1/y is either P¥* :=
Z?=O ad_jxJ or -P*. Thus h(y) = h(l/y); replacing y if necessary by 1/y

and observing that «22(Y) is a value of the logarithm of 1/y shows that it

is sufficient to prove the lemma in case v > 0. We have

exp (v, (v)) = eXPw(ﬁz(Y)) ="

and

exp (Wb, (1)) = exp (v, (a)) = exp’ (£, (@) = a’;

il

exp (Wl (V)
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applving 3.1 gives

= 7
and

den(y) < den’ (a) .
According to 3.2,

n(y) < (2 dentymax(L, [T < (2 gen” @max1, [a]/"N? <

2nY (o) @+ /"3 o

5.10. THEOREM. Suppose ¢ > 0, d € N, ajre-esay € ¢~{0}, b ..,bn € n,

1

not all rational, % (a,),...,% (a ) values of the logarithms of a,,...,a
171 n n 1 n

respectively such that £, (a ),...,Qn(an) are linearly independent over Q.

171
Define §§ = exp(blkl(a1)+,..+b 2 (an)). Then there are only finitely many
(n+1)-tuples (o ,...,a ,y) € Eg for which
b n+l 2+€
(5.23) max([al—all,...,|an—an|,[§——yi) < exp(~log H log2 H),

where H = max(2,h(u1),...,h(an),h(Y))-

PROOF. I. In case n = 1, the assertion of the theorem follows from 5.8. We
now proceed by induction and assume that the assertion has been proved for
all natural numbers less than n, while it does not hold for n itself; from
this a contradiction will be derived. Let (al,...,an,y) be an (n+1)-~tuple

satisfying (5.23). By c 1Cohren. WE shall denote real numbers greater than

1

1 depending only on e,d,n,al,._.,an,b ..,bn and ll(al),...,ln(an); we

17
suppose H to be greater than such a number. If l,bl,..,,bn are linearly
independent over @, the assertion is proved in 5.8; therefore we may sup-

pose that there exist no,...,nn € @, not all zero, their heights bounded

. + ...+ = 0. = ... 0= =
by a constant c1 such that no + nlbl nnbn 0. As nl nn
0 would imply no = 0, it is no restriction to assume nn + 0; thus we may
write

g n-1 1.,
(5.24) b =-—- ] b

nn j=1 nn J
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Let & and En be branches of the logarithm, defined on disks Kl and K2,

centred at éé and a respectively, such that
(5.25) l(aé) =Db L (a,) + + b 4 (a)
: =7 T 1T T nn n’
(5.26) 2 (a) =2 (a).
n o n n o n

From (5.23) and (5.26) we deduce that un € K2; from (5.23) and (5.25) we
deduce that y € Kl and that the inequality

n+l 2+e/2
(5.27) lblzl(al) * ...t b Lo (a) - 2(y)| < exp(-log H log, H)
holds. For j = 1,...,n~1 we define
n. n.
a' := a_.exp(- L9 @)y, @) =2.(a) -2 (a),
3 3 o Bon i i3 n, non
b

3
' e b.2¥@t)).
(aj) exp ( 3 j(aj))

Then the numbers RT(ai),...,%i_l(a;_l) are non-zero values of the loga-

respectively, and are linearly independent over .

1 ¥ )
rithms of al,.,.,a.n__1

We also define

n
[ _.Q__ (af -
Y o=y eXP(nn ln(an)), L¥(y*') == L(y) + n

Then £*(y') is a value of the logarithm of y'. Using (5.24) we obtain

b
1 n-1
[@p “...@ -y <
* L] k ) - * 8 =
cylbt¥(@) + ...+ b 2 (@ ) - 2Ry |
I’lil T]j no_
e, I b2 (a)-—22 (@a)) - 2(y) - — 2 (a)] <
2 j=1 43 o, T non
n-1 nj ﬂo
el J b a)--20 (@) - — 2 (a) - (M| +
2 =1 R n,non n, nn
n
0 -
eyl== (4 _(a)-1_ (e ] <
n n n n n
n
cplbptylap + o b a) k] +egfay -] <
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2+€/2H

c exp(—logn+%ﬁ;§6g2

4 )

the last inequality by (5.23) and (5.27). Finally, we define

- _33 I -
aj : ajexp( nn n(ocn)), 3 1,00.,n=1.

Then, for j = 1,...,n-1, we have

a! -a'l <c
-

+1 2+€
j Iaj - aj] + c6|an - anl < c7exp(—-logn H log2 CH),

5

The numbers ai,...,a;_l,y’ are algebraic of degree at most d2!nn| < Cgr

while their heights are bounded by exp(cglog H) (here 5.1 and 5.9 are

used) . Thus

b b
1 n-1
oyt P . | ¥ § —
(5.28) max(laj-ail,... ar_-a! [.]@} “..o@f ) v o<
exp(—logn+1H'log§+E/3H‘),
where HB' := exp(cglog H) > max(h(ui),...,h(a;_l),h(y')). From the induc-
tion hypothesis it now follows that
L 1] ¥ -
(5.29) max(h(al),...,h(mn_l),h(y )) £ clO'
from (5.28) and (5.29) we see that
) bl bn~1
l=l ¥ = ! I= 1 K
(5.30) al ajs eeer0l ) al 4o Y (al) "'(an—l)

II. From (5.30) we see that

* 13 7 - T —
(5.31) b 2f(a}) + ... + b (af ) = 2%(y") = 0.

*
n—lzn—l 1

Thus lf(ai),.,.,ﬁﬁ_l(a;_l),2*(Y') are linearly dependent over A ; using

2.19 we find that these numbers must also be linearly dependent over Q.
In other words, there are El,...,En E‘Q, not all zero, such that

k3 1 sk ]
EM¥(e]) + ...+ g 0% (!

K1) = . .
n-1"n-1 ) + EnQ (v") 0. Adding En times (5.31)

1
gives
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+£ b yRE (o' ) = 0.

k3 ]
(5-32) (EpFEpP R (ap) + e+ (8 HE )t P

By (5.30), ZT(ai),...,Q:_l(aﬁ_l) are linearly independent over ¢@; 2.19

states that then KT(ai)""'2§~1(a$—l) are linearly dependent over B .
Thus for all j € {1,...,n-1} we have gj + Enbj = 0. Now En = 0 would im-

* (g * : = = = = i
ply Elll(al) + e, + En—lgn—l(an-l) 0 and thus El ca En 0, which
we have assumed to be not the case; therefore En % 0, From this it follows

that for all j € {1,...,n~1} we have
(5.33) b, = - =+ € Q.

Substitution in (5.24) gives bn € @; we have derived a contradiction with

the conditions of the theorem. O

5.11. THEOREM. Suppose € > 0, d € W, ajsen-sa € m~{0}, bl,...,bn € c,
not all rational, Rl(al),...,ln(an) values of the logarithms of al,“,,an
respectively, not all zero, such that
{5.34) 1,b1,.,..,bn linearly independent over @
or
(5.35) 21(a1),...,£n(an) linearly independent over @.
Define gé a= exp(blll(a1)+.,,+bn2n(an)). Then there are only finitely
+ +
many (n+2)~tuples (B,,...,8 ,Y.P) € n" LI S(n D with
1 n a d

(5.36) max(|b, <8 |,eeo,|b -8 |, [P, ,...,b a2 —y]) <

171 ‘tn Tnl’ 1’ "n’=

exp(~log2H logZH),

where H = max(Z,h(Bl),...,h(Bn),h(Y),h(P))-

PROOF. I. Suppose the assertion of the theorem to be false; from this a
contradiction will be derived. Let (Bl,..,,Bn,Y,P) be an (n+2)~tuple sat-

isfying (5.36). By ¢ 1Crene WE shall denote real numbers greater than 1

1

depending only on e,d,n,al,e..,anhb ,...,bn and ll(al),...,ﬁn(a ) we

1
assume H to be greater than such a number. First we show that a- must be
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transcendental. Suppose this number to be algebraic; then 5.5 and 5.7,

together with the inequality
b b 2 €
(5.37) max(]bl—Bll,...,!bn—snl,lg—mé—l) < exp(~log H long),
b N
where H ;:max(h(Bl),...,h(Bn),h(é—)), imply
ax(h(8,),...,h(B ), h(aD) < c
max (e REIC 1"

Together with (5.37) this shows Bj = bj for 3 = 1,...,n. Accordingly, the

b
numbers bl,..ﬂ,bn are algebraic. If (5.34) holds, the transcendancy of a-

follows from 5.6. Now suppose that (5.35) holds. Define

b
La=) =Dt (a)) + ... + bl (@));

b
then z(gg) is a value of the logarithm of §§ and Zl(al),...,ﬂn(an),ﬁ(g—)

are linearly dependent over A . Using 2.19, we find that these numbers

must also be linearly dependent over (. In other words, there are

+
El"""gn+1 € ¢, not all zero, such that glkl(al) + .. Enﬁn(an)
En+12(é—) = (., Thus

(51+€n+1b1)21(a1) + ... (En+5n+1bn)ln(an) = 0.
By (5.35) and 2.19, this implies Ej + En+1bj = 0 for all j € {1,...,n}.
Now €n+1 = 0 would imply 51 = .. = £n+1 = 0, which we have assumed to be

not the case; therefore £n+1 4 0. From this it follows that for all j €

{1,...,n} we have

5
b, = - € 0,
J €n+1

which contradicts the conditions of the theorem.
IT. Apply 4.5; this gives the existence of an algebraic number n of

degree at most c, and height at most exp(cBlog H) satisfying

2

b - 2
a- - n| < exp(*c4llog H logZH).

As H may be taken arbitrarily large, there exist infinitely many (n+1)-
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tuples (61,...,Bn,n) of algebraic numbers of degree at most c. satisfying

5

max(lbl—sll,...,[bn—Bnl,lgg—q]) < exp(—long'logz/ZH‘),

where H' > max(2,h(sl),...,h(en),h(n)). This contradicts 5.5 or 5.7. @

5.12. THEOREM. Suppose € > 0, d € I, ajrecesa € ¢~{0}, b ...,bn € n,

11

not all rational, zl(al),...,zn(an) values of the logarithms of a ces@

1" n
respectively, not all zero, such that (5.34) or (5.35) holds. Define

b
a= = exp(blzl(al)+...+bnln(an))-

Then there are only finitely many (n+2)-tuples (al,.,.,un,Y,P) €

n+1 (n+1)
»n ><Sd

3 with

(5.38) max(|a1~a1],...,]an—anl,IP(al,...,an,gg)—y]) <

+ +
exp(—logn 1H logg 6H)

where H = max(2,h(a1),...,h(an),h(y),h(P)).

PROOF. I. Suppose the assertion of the theorem to be false; from this a
contradiction will be derived. Let (al,..,,an,y,P) be an (n+2)-tuple sat-
isfying (5.38). By cl,cz,,,. we shall denote real numbers greater than 1

depending only on e,d,n,ai,...,an,b ,.._,bn and Rl(al),...,ln(a )i we

1
assume H to be greater than such a number. First we show that a- must be
transcendental. Suppose this number to be algebraic; then 5.8 and 5.10,

together with the inequality
b b n+1 2+e
(5.39) max(!al—all,...,Ian—an[,|§——§—l) < exp(-log 'H log, H) ,
b .
where H > max(h(a,),...,h(a ),h(a=)), imply

max(h{(a,),...,h{a ),h(aE)) c
1 n -

fin

1°

Together with (5.39) this shows aj = aj for 3 = 1,...,n. Accordingly,

the numbers al,...,an are algebraic. If (5.34) holds, the transcendency
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of gé follows from 5.6. Now suppose that (5.35) holds. Define
z(aE) = Db, L. (a,) + + b L (a);
E A e n'nn’

b
then l(gé) is a value of the logarithm of a- and Ql(al),...,ln(an),l(éé)
are linearly dependent over 1A . Using 2.19 we find that these numbers

must also be linearly dependent over . In other words, there are

E1""'&n+1

: € @0, not all zero, such that Eill(al) + ... + Enﬁn(an) +
€n+12(§—) = 0. Thus

(€1+€n+1b1)21(a1) ...+ (En+5n+1bn)ﬁn(an) = 0.

By (5.35) and 2.19, this implies Ej + €n+1bj = 0 for all j € {1i,...,n}.

Now €n+1 = 0 would imply El = ... = § = (0, which we have assumed to be

n+1

not the case; therefore £n+ + 0. From this it follows that for all j €

1
{1,...,n} we have

b, = - g€,
. n+l

which contradicts the conditions of the theorem.
II. Apply 4.5; this gives the existence of an algebraic number n of

degree at most ¢, and height at most exp(c3log H) satisfying

2

b -1

] +1
a~ = n| < exp(_c4

+
log" H 1og§ “u) .

As H may be taken arbitrarily large, there exist infinitely many (n+l1)-

tuples (al,...,an,n) of algebraic numbers of degree at most CS satisfying
b n+1 2+e/2
max([al—a1|,...,]an—an|,[gm—nl) < exp (~log H'log2 '),

where H' > max(2,h(u1),,.w,h(un),h(n)), This contradicts 5.8 or 5.10. O

That a result similar to 5.5, 5.7, 5.8 and 5.10 does not hold with-

s . b .
out some extra condition if a ..,an,b "bn and a- are approximated

17" 10
simultaneously, is evident from 1.6. One approach to obtain such a con-

dition was demonstrated by Wiastholz [1976, 19,~], who assumed a ,an to

1o
be U*-numbers with a sufficiently dense sequence of algebraic numbers con-

verging to them; here, however, we shall frame a condition that is close-
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ly analogous to the one we found for n = 1. Indeed, in case n = 1, 1.7
states that (i) in 5.13 is a sufficient condition; in order to generalize
this to arbitrary values of n, it is necessary to bring it into the form

(ii) in 5.13.

5.13. LEMMA. For b € ¢ the following assertions are equivalent:
(i) b € R or b € R~ @ such that the convergents pn/qn of the con-
tinued fraction expansion of b satisfy

(5.40) q,, << exp(c), n >

n+1

(ii) there exists a C > 1 such that for all xo,x1 € Z that are not

both zero we have
-1 3
(5.41) !xo +x,b| 2 ¢ exp(«lxll ).

PROQF. I. Suppose (i) holds. First we consider the case b € R; we have
b = b1 + b2i with b2 +# 0. Now for all (XO'Xl) € 222 we have

IXO + xlb‘ = [xo + xlb1 + X1b2i| 2 [x

1b2|
and therefore (ii) holds.

Now consider the case that b € R>~@ such that the convergents Pn/qn
of the continued fraction expansion of b satisfy (5.40). Then there is a

number <y such that for all n the inequality

3
Qeg = Clexp(qn)

n+

> 1 there exist x_,x, €

holds. Suppose (ii) is not true, thus for all <, 0%y

7 , not both zero, such that

. -1 3
(5.42) IXO + x1b <c, exp(—[xll ).

If <, is chosen large enough, (5.42) implies Xy ¥ 0 and

XO + xlbl <

and thus, by 2.14, —xo/x1 is a continued fraction convergent of b, say
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- = <
xo/x1 pn/qn, soq = lel. Then, by 2.15,

T I T B e P e e

|x
n qn(qn+qn+1)

0
q
n 1 1
= > cxp(—lx
2qnqn+1 2qn+1 2C1 !

13).

If c, is chosen sufficiently large in terms of s this contradicts (5.42).
II. Suppose that (ii) holds. If b € @, we immediately get a contra-
diction; if b € R, there is nothing left to prove. Thus we may assume
that b € RN@ . Let pn/qn denote the convergents of the continued fraction
expansion of b and suppose that (5.40) does not hold, i.e. for all 03

there exists an n € W such that

q z C eXP(QB)-
n+l = 3 n

For such an n we have, by 2.22,

1 - 3
- cyexpl(-q ),
n+1

qb-p | <

which contradicts (5.41) if c_ is chosen sufficiently large in terms of

3
cC. D

5.14. LEMMA. Suppose d,n € N, K a compact subset of the complex plane not

containing 0, 2 ,...,ln branches of the logarithm, defined on K. Then there

1
exist effectively computable C,HO > 1, depending only on d,n,K and 11,...,

Qn' with the following property. Let al,...,ah € K be algebraic of degree

at most d and height at most H > H_ , such that Rl(ul),.._,Qn(an) are not

0

all zero and En(an) is linearly dependent of Rl(al),...,l B (an_l) over IA .

n-1
Then there is a subset Zkl(akl),...,lkm(akm) of Rl(al),...,kn_l(an_l)
that is linearly independent over I such that for every j € {1,...,n}>
. (3) (3) , .
{kl""'km} there exist x1 ,...,xm+1 € Z satisfying
(3) (3) (3)
+ ... =
Xy Qk (ak ) + X Zk (ak ) + xm+1lj(aj) 0
1 1 m m
. (3)
while x * 0 and
(3) (3) m
max([x1 I,...,lxm+ll) < C log H long.
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PROOF. By Folgesatz 3 in § 20 of [Van der Waerden 1966], it is possible to
choose a linearly independent subset lkl(akl),...,lkm(akm) of Zl(al),...,

Zn—l(an-l) such that all of El(al),...,ln_l(an_l) can be expressed as a
linear combination of ikl(akl),...,lkm(akm) with algebraic coefficients.

Take j € {1,...,n}\~{k ,...,k }. Aas 2,(&,) is linearly dependent of £ (al),

ceerd (an_l) over ﬂx, 2 (a ) is also llnearly dependent of lkl(akl),...,

n-1
(3)
lkm(akm) over A . By 2.19 and 5.4, there exist X, J ,.,.,x(ii € #Z , not all

zero, with

() e B
(ak ) + ...+ Xm zk (ak ) + +123(a ) =0
1 1 m m

;i;[) < ¢ log™H log,H, where ¢ depends only on d,m,K
(3)

and the branches of the logarithm involved. If X = 0, this would imply

+1
(J) (J)ka(akm) = 0 and thus, by the linear independence

(3)
X7 Ay
(j)l

and max([x1 ,...,]x

Zkl(akl) + ... + X

(3) 3 :
of Zkl(akl),...,lkm(akm) it would follow that x = ... x = 0, which

we have assumed to be not the case. Therefore Xmii + 0. 0O

5.15. THEOREM. Suppose € > 0, d € W, a,,...,a_ € ¢~{o}, bisaeesb € ¢,
El(al)""'zn(an) values of the logarithms of ajreeesay respectively that
are not all zero. Put 39 := exp(biﬂl(a1)+...+bn2n(an)). Suppose that there
is a C > 1 such that for all xo,...,xn € Z that are not all zero we have

x_ + x b, + ...+ xnbn] ;:c_lexp(—xplog-OX),

0 171
where
4n+8 3n2+6n—1
=5 P 0= ~, X = max(Z,IXOE,..,,ixni).
n +2n+1 n +2n+1

Then there are only finitely many (2n+1)-tuples (al,...,a ,B ,--.,S ;Y) €

‘m§n+1 for which
(5.43) max([ai—all,...,!an—an[,lb1—81|,,,_,ibn_gnl,lééqu) <

+2 +
exp(—logn H log; 8H),

where H = max(2,h(a1),...,h(an),h(Bl),~..,h(Bn),h(Y))-
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PROOF. I. Suppose the assertion of the theorem to be false; from this a
contradiction will be derived. Let (al,...,an,Bl,...,Bn,y) be a (2n+1) -

tuple satisfying (5.43). By cyeC we shall denote real numbers greater

PIARE
than 1 depending only on a,d,n,al,...,an,bl,...,bn,C and Qi(al),...,ln(an).
Throughout the proof we shall without further mention assume that H is
sufficiently large in terms of these numbers.

Let El""'in and % be branches of the logarithm, defined on disks

Kl,...,Kn and K, centred at agreneidy and al—3 respectively, such that

(5.44) 2.(a,) =2%.(a.), 3 =1,...,n,
i3 i3
b
(5.45) f2(a=) =b,%, (a,) + ... +b & (a ).
- 17171 nn n

From (5.43), (5.44) and (5.45) we deduce that aj € Kj for 3 = 1,...,n,
that vy € K and that the inequality

- - n+2 1+e/2
IBlﬂl(al) + ...+ Bnkn(an) - l(y)g < exp(~log 'H log2 H)

holds. If it were the case that slii(al) + o+ Bnin(an) - 2(y) % 0, 2.18
would imply

= - +2 1+e/2
[Blﬂl(al) + ...+ Bnﬁn(an) - Z(y)l > exp(—logn H log2 / H) ,
which gives a contradiction. Therefore
5.46 2 + ... +B 2 - 2(y) = 0.
( ) 81 1(Ocl) Bnln(an) L(y) 0
II. As ll(al),...,ln(an) are not all zero, neither are El(al),...,

En(an). Thus from 5.14, after a suitable renumbering, we find an m € I

such that El(al),...,im(am) are linearly independent over A ; we also find

Syree-sS € Z satisfying

m+1

(5.47) slll(al) + ... + s 2 (am) + sm+1£(y) =0

while Sm+1 + 0 and

(5.48) max([sll,...,[sm+1|) < cllogmH logZH;
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finally, for every k € {m+1,...,n}, we find t;k),...,t(k) € % satisfying
m
(k) _ (k)=
(5.49) i1 Yk () = Z £ By,
while t(k) + 0 and
m+1
(5.50) max(lt;k)l,_..,| (k)l) < ¢,1og"8 1og .

Comparison of (5.46) and (5.47) yields

m n
(5.51) Y o(sits  BOR.(a) + ) B % (a) = 0.
j=1 1 m133 g k=il Sm+17k K Ok

Substitution of (5.49) in (5.51) shows that

(s.+s B.)L. . (a.) + s B 2 (a ) =0,
e SR 0 S R T | m+l"k L& (k)
j=1 k=m+1 j=1 tm+1
which can also be written as
i ) 5 )
(5.52) s.+s B+ s B —=—] 12, (a,) = O.
) + -
j=1 J m+l" 3 k=m+1 m+1 kt;t; i3

III. From (5.52) and the linear independence of El(al),‘..,zm(am) we

conclude
. e
s, +s B, + ) s B ——=0;
1 m+l1"1 ke=mt1 m+1 kt(k)
mt+1

multiplying by the product of the denominators we get

xg * X131 + ...+ xnen = 0,
where
n
XO =g i t(ii,
k=m+1
n
(k)

X, = S i t .

1 m+1 k=m+1 m+1
X, = o0 = x =0,
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. n
Vi > m: x, = s +1ti]) " t(t;;
J " k=m+1
k*3j

thus x ,...,xn € Z, x, *+ 0. Furthermore, by (5.48) and (5.50),

0 1

max(ixol,v..,lxnl) éz(cllogmH long)n—m+1

A

2
c logm(nmm+1)H logn”m+1H <c log(n +2n+1)/4H lognH.
2 2 = "2 2
1V, Define X := max(exp(c/p),IXOI,...,IxnI). Then
(n2+2n+1)/4 n
(5.53) exp(o/p) £ X < c3log H log,H.

As the function x F*xplog—cx is increasing for x > exp(o/p), (5.53) shows

that

- +
Xplog 0X §:c4logn 28 log2H

and thus

!xo +xb o+ .t xnbnl < Ixo +x By b ann[ +

max(lxll,...,[xnl)max(lblvﬁll,---,Ibn-Bnl) <

2
+
cBlog(n +2n+1)/4H loggH exp(wlogrl 2H logé+€H) <

+ +
exp(—logn ZH log; E/21'—1) =<

/

-1 - - -
exp(~c4 xplog 0X logz 2H) < C 1exp(-—Xplog GX)

if H is sufficiently large. This contradicts the conditions of the

theorem. O

5.16. THEOREM. Suppose € > 0, d € N, agreeeian € ¢~{0}, bl"'"'bn € ¢,
Ql(al),«..,ln(an) values of the logarithms of agresesay respectively that

b
are not all zero. Put a- := exp(blkl(a1)+...+bn2n(an)). Suppose that there

is a C > 1 such that for all KogreworX € Z that are not all zero we have



79

-1 p -0
. + + ...+ > -
(5.54) Ixo b, x b | 2 C lexp(-x"1log %),
where
4n+8 3n%46n-1 ‘
p ="z 0= , X = max(2,fx0|,...,|xn]).
n +2n+1 n +2n+1

Then there are only finitely many (2n+2)-tuples (al,...,an,Bl,...,Sn,y,P) €

.m§n+1 x Sé2n+1) such that
(5.55) max(lal—all,...,Ian—anl,lblﬂﬁll,...,lbn—ﬁn[r

+E

b n+2 1
]P(ai,...,an,b ,...,bn,g—)»y]) < exp(-log H log, H),

1
where H = max(Z,h(ai),...,h(un),h(B]),...,h(sn),h(y),h(P)).

PROOF. I. Suppose the assertion of the theorem to be false; from this a
contradiction will be derived. Let (al,...,an,Bl,...,Bn,Y,P) be a (2n+2) -

tuple satisfying (5.55). By c¢,,c. ;... we shall denote real numbers greater

1
than 1 depending only on ¢€,d,n,a

2

1 17"
we assume H to be greater than such a number.

,...,an,b ..,bn and Ql(al),,..,l (a );

b .
First we show that a- must be transcendental. Suppose this number to

be algebraic; then 5.15, together with (5.54) and the ineguality

<

b b
(5.56) max (a;~a |,... |a ~a [, [o,=8 |+..o/|b -8 |.]a=-a=])

+ +
exp(wlogn 2H log; E:H),

where H ;:maX(h(al),---,h(an).h(Bl),--.,h(Bn),h(gé)), implies

max(h(ul)..-.,h(a yoh(B,)s.u. h(B ),h(ag)) <c,.
n 1 n - 1

Together with (5.56) this shows aj = aj and Bj = bj for j = 1,...,n.

Accordingly, the numbers a .,an,b .,bn are algebraic. As a con-

17 170

sequence of (5.54), moreover, 1,b1,.,.,bn are linearly independent over

b
@; the transcendency of a- now follows from 5.6.
II. Apply 4.5; this gives the existence of an algebraic number n of

degree at most ¢, and height at most exp(cBIOg H) satisfying

2
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- +
éé - | < exp(—c4llogn 2H log;+€H).

As H may be taken arbitrarily large, there exist infinitely many (2n+1)-

tuples (al,...,un,sl,...,sn,n) of algebraic numbers of degree at most cS

satisfying

b
max(|a;=o |,-.. ]a_~a [, [b =8 |,.../|b -8 [.[a=-n]) <

1

+2 1+€/2H

exp(—logn H'log2 'y,

where H' ;ﬁmax(Z,h(al),...,h(an),h(Bl),...,h(Bn),h(n)). This contradicts
5.15. @O
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6. THE p~ADIC CASE

6.1. DEFINITION. (a) Let F be a field. A function v: F >~ IR is called a

non-archimedian valuation of F if it satisfies the following requirements:

(i) Vn € F: v(n) > 0;

(ii) ¥n € F: v(n) = 0 & n = 0;

(iii) Yn,n' € F: v(mm') = v(mv(n');

(iv) ¥n,n' € F: v(n+n') < max(v(n),v(n')).

(b) Let F be a field, v a non-archimedian valuation of F. The func-

tion (n,n") k> v(n-n') is called the distance function induced by v.

A trivial consequence of (i)-(iv), which we shall frequently use, is
that for all n,n' € F such that v(n) # v(n') we have v(n+n') =
max (v(n),v(n')).

The distance function induced by v makes it possible to consider F
as a metric space. Thus one can ask whether or not F is complete, and if

not, construct the completion of F.

6.2. LEMMA. (a) Let F be a field, v a non-archimedian valuation of F,

F' the completion of F with respect to the distance function induced by v.
Then there exists exactly one non-archimedian valuation w of F' such that
w|F = v; and F' is complete with respect to the distance function induced
by w.

(b) Let F be a field, v a non-archimedian valuation of F; suppose
that F is complete with respect to the distance function induced by v.

Let F' be the algebraic closure of F. Then there exists exactly one non-
archimedian valuation w of F' such that w|F = v.

(c) Let p be a prime number. For £ € @ we define Vp(i) := pum, where
£=pm§-,m€22, x€%Z, yEN, ptx,p+ty. Then thefunctionvpisa
non-archimedian valuation of .

(d) Let p be a prime number, vp the non-archimedian valuation of @
defined in (c¢). Let wp be the unique non-archimedian valuation of the
algebraic closure of the completion of § with respect to the distance
function induced by vp satisfging wp]Q = Vv_. Then the completion of this
field with respect to the distance function induced by wP is algebraically

closed.
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PROOF. (a) [Amice 1975], Proposition 2.3.1. (b) [Amice 1975], Proposi-
tion 2.6.10. (c¢) Trivial. (d) [Amice 1975}, Corollaire 2.7.3. o

From now on p will denote a fixed prime number; the purpose of this
chapter is to prove an analogue to 1.7 in which the complex numbers have
been replaced by the algebraically closed, complete field described in
6.2(d).

6.3. DEFINITION. (a) Let Vp be the non-archimedian valuation of @ defined
in 6.2(c), wp the unique non-archimedian valuation of the algebraic closure
of the completion of @ with respect to the distance function induced by
vp satisfying wplQ = vp. Then the completion of this field with respect to
the distance function induced by w_ is denoted by € .

(b) Let v_ be the non~archimegian valuation opr defined in 6.2(c);
take n € @P. Then lnlp, also called the p-adic valuation of n, denotes
the value at n of the unique non-archimedian valuation of Cp satisfying
[glp = v (£) for all € € Q.

(c) For a € ¢p, RE€ R, R2> 0 we write

B(a,R) := {z € ¢ : |z - a|]_ < R},
P P
B(a,R) :={z € ¢ : |z - a]_ <R}
p P~
(d) 1If £ = Z:ﬂo akX is a power series with coefficients in ¢p,

while R € R, R > 0, we denote

|£]

- k.
R = sup{]ak[pR : k €N U {0}}.

6.4. LEMMA. Let M,R be positive real numbers. Consider f£(z) = Z:“O akzk,
where agrdyre.- € mp; suppose the power series converges for all z €

B(O,R). Let r € B(0,R) be such that ]f(z)[p < M for all z € ¢p with
Iz[ = ]r[ . Then
P p

<~fe nemw U (0}, z €BO,|r]).
HE g

PROOF. [Adams 1966], appendix,. Theorem 9. O
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> a zk
k=0 k= '
where a_,;a, ,... € ¢p; suppose the power series converges for all z €

6.5. LEMMA. Let R be a positive real number. Consider f(z) = Z

0'%1
B(0,R). Take r € B(O,R) and put R' := Irlp. Then |f|_, is finite and

(6.1) sup [f(z)[ = ]fl )
lzl_<Rr' P R
p—

©
. k=0 “k°
Iaklplr]p takes a maximum for some k; thus the right hand member of (6.1)

PROOF. As lr[ < R, the series X k converges, and consequently

is finite. If lzl S,Irl , we have
p = p
IS K X
le@ |, = lkzo az | < max EN LIRS
SO
sup !f(z)] < max ]akl lrlk.
Izl <lr] k>0 p'p
p p

In particular, the left hand member is finite.

Application of 6.4 shows that for every k € W U {0} and every e > O,

(k)
£ (0) k
lag | le[X = 152 (e[S < sup e+ e
K P K Pzl <lrl P
P
Therefore
max o | [r[¥ < s @],
k>0 PP p

which proves the lemma. O

6.6. LEMMA. Let R be a positive real number, a € cp. Consider f(z) =

k
Zk=0 ak(z~a) , where ao,al,...

for all z € B(a,R). Take b € B(a,R). Then

€ ¢p; suppose the power series converges

£(z) = 7§ bk(z—b)k, z € B(a,R),
k=0

where

k

ak(i)(b—a)n_ , k€ ™ U {o0}.

o
.

1t
| ~1 8

n=k

PROOF. The proof is based on the obvious fact that a series in ¢p satig~
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fies Cauchy's condition if and only if the general term tends to zero, and
therefore convergence is conserved under rearrangement of terms. For z €
B(a,R) we have

f(z) = a (z-a)" = z a (z—b+b—a)n =
n n
n=0 ’

3
(@]

o~ i1 8

Y oa
n=0 "k

z bk(z—b)k. o

e o™ = | "
=0 n

| ~18

an(i)(b—a)n_k

o
~

k

k=0
6.7. LEMMA. Let R be a positive real number, a € cp. Consider f(z) =
z:=o ak(Z~a)k, where Agrdysee- € GP; suppose the power series converges

for all z € B(a,R). Take b € B(a,R) and suppose that £(b) = 0. Then there

exist b_,b,,... € € such that
01 o)

£(z) = (z-b) J b (z-a)%, z € B(a,R),
k=0 k

and

[b < sup |a_| |pb-a , k € W U {0}.

l I n-k-1
k'p ::n;g+1 n'p P

PROOF. Applying 6.6 twice, we see that for z € B(a,R) we have

fz) = ) a zaf= ) o § a (Moo=

k 0 nek n 'k

~

0

Voo Y a () ea) ¥R =
k=1 n=k

it k n n-k-1
(z-Db) Zo (z-b) n=£+1 a () (-2) =

(z=b) J (z-a)® §J J a (D

n j+1)(b~a)n“j~l(i)(a~b)j*k =

where

b= 1T a () e e TR -



T n-k-1 5! i-k(dy( n
i E R,
sO
~k-1
]b ] < sup a b—a[n .o
P 7 okt 2l pl-2lp

k - .
6.8. LEMMA. Consider the power series f = Z;_O a X with coefficients in

mp. Take 0 < R' < R and suppose [f[R < o, Then f converges on B(O,R") to
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a function, which we shall again denote by f. If £ has at least h zeros on

B(0,R"), multiplicities included, we have

HES R

PROOF. The first assertion of the lemma is trivial; we now proceed to
prove the second one. Let a € EKO,R') be such that £(a) = 0. By 6.7, we

may write

o

£(z) = (z-a) ) bkzk, z € B(O,R"),
k=0
with
~k~-1 n-k-1
Ib] < sup ]a [ ]a[n < sup la [ R ;
k n>k+t PP n>k+1 P
thus
k n-1 1 n
sup |b | R < sup sup |a_| R == sup |a | R <
k>0 *P k>0 nxk+1 P Rop>1 P
1 n 1
= sup Ia I R = —1f] .
R n>0 n'p R R
. L k
Define g := Zk=0 ka ; then
= 1
©2 oy = sw [n ] & < Kl < o

k>0

On the other hand, for z € EKO,R') we have f(z) = (z-a)g(z); from the

unicity of power series development we conclude
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where b_1 := 0. Thus

{aklp ;max(lbk_llp'!alpibktp)' k ;0'
and
k k
lfl = sup Ia | ® < sup R max (| b | ,Ia' b, | ) =
R k>0 k'p k>0 k-1'p p' k'p
k k
b R =
max(]fzﬁ) [bk_llpR ’ la[p ]fgﬁ) l klp )
k+1 k
max ( sup [b ] R faf sup ]b ’ R) =
x>0 <P k>0 &P
max (R[g] o] lalp) = Rlg]p,
so
(6.3) ]f{R;R[g]R.
From (6.2) and (6.3) we see that f = (X-a)g with
—.}:‘ (o]
ol =Ygl < =
Similarly it is proved that
1
lal g = 2rlel -
If al,...,mh are the zeros of f on E(O,R'), repeating the argument gives
h
£f=£ 1T (X-a,)
j=1 J
with
- L - S
[l = el < = levlg = el
Thus
h ) h R'yh
£l = RO, < e Plex] = B L o
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k

co
6.9. COROLLARY. Let R be a positive real number. Consider f(z) = Zk—O az .,

where a_,a,,... € € ; suppose the power series converges for all z €

01 p -
B(O,R). If Irllp < IIZIP < R and £ has at least h zeros in B(O,!rllp),

multiplicities included, we have

sup If(z)l
lzl_<lr | P
= 1

A

|r1lp'h »
[Ir I J sup [f(z)l .
2'p lzlp;lr | P

p 2'p

n, ,
0 z /nl converges, is
n-1 n

). The set of all z € mp for which Z::1 (~1) z /n

6.10. LEMMA. The set of all z € ¢_ for which Z;_
-1/ (p-1) b i
exactly B(O,p

converges, is exactly B(0,1).

PROOF. [Amice 19751, Proposition 3.5.5(v). ©

6.11. DEFINITION. For z € B(O,pnl/(Pﬂl)) define ep(z) I~ X:to zn/ni.
For z € B(1,1) define Zp(z) i= Z:=1 (—1)n_1(z-1)n/n-

6.12. LEMMA. (a) For zl,z% € B(O,pwl/(p—i)) we have e (zl+zz)==ep(z1)e (22)‘
(b) For z € B(O,pnl/ p-1)

P
) we have Iep(z) - 1|P = [z!p.
(c) For z € B(O,pnl/(pnl)

) we have & (e (z)) = z, e'(z) = e (z).
P P P P
(d) For z, ,z., € B(1,1) we have & (z.,z.) = %
1772 -1/ (p-1) 172
(e} For z € B(i,p ' 'P
(f) For z € B(l,pwl/(p_l)

p(zl) + %p(zz).
) we have |8 (z)] = ]z - 1] .
P p p

} we have e (L (2)) = =z.
P P

PROOF. (a) [Amice 1975], Proposition 3.5.5(ii).

(b) For n € W, n > 2, z € B(O,p_l/(p—l)) we have
k
] E zk! Izlp | P—(k—l)/(P“l)
=l < max < max 7| ey
] = e (K - v
x22 ki'p k=2, ....n Ikllp k=2, ....n P o (k=1)/ (p~1)

here we use the inequality
!kllp ;:p“(k-l)/(p—l)'

which follows from Lemme 3.5.6 of [Amice 1975]. We conclude that

thus
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k

1 ’ETI = lz] -
1 p n>eo k 'P p

© n
leg (20 = 1] = [Z 2| = 1lim ]Zl
(c) follows from (b) and the formal identity of the power series
involved.
(d) [Amice 1975], Proposition 3.5.5(iii).
(e) Similar to (b), observing that [klp ;=lk!!p'
(f) follows from (e) and the formal identity of the power series

involved. o

We remark that in 1.4(c¢), 1.4(d) and 2.2(b), we have already defined
dg(n), h(n) and den(n) for all algebraic n € cp. In order to give p-adic

analogue of our earlier reasoning, it is also necessary to define |n|.

6.13. DEFINITION. Let n € ¢p be algebraic with minimal polynomial P. Then

[ﬁ] denotes the maximum of the absolute values of the zeros of P in C.

6.14. LEMMA. Let F be a finite normal extension of §; suppose n € F has
minimal polynomial P € Z{X] . Then n' € C has minimal polynomial P if and
only if there exists an injective homomorphism o: F - € such that o(n) =

n' and o(§g) = & for all & € Q.
PROOF. [van der Waerden 1966], § 41. o

6.15. LEMMA. For algebraic Nyreoesny € ¢P we have

PROOF. According to 2.4(a), there exists a finite normal extension F of @
such that F < GP and F contains Myreeern - Let G be the set of all injec-
tive homomorphisms o: F -+ ¢ such that o(£) = £ for all £ € @; according to

6.14 we have

ve € F: [E] = max |o(&)].

oEG
Thus, if n := nl R nn, we have
fﬁT = max |o(n)| = max Ic(n1)+...+o(nn)| <
0€G . CEG
max lc(nl)l + ...+ max Io(nn)l = [;IT +oe.. F fE;T

0EG c€G



and similarly nl...nn{ < fﬁIT...fﬁ;T. a

6.16. LEMMA. Let n € ¢p be an algebraic integer. Then In!p < 1.

PROOF. Suppose n € Ep is an algebraic integer such that ]n'p > 1. There

exist a 1 € Z such that

07817 8-

+ ... + aln + aO = 0.

Now for j = 0,1,...,d-1 we have ay € % and so lajlp < 1; thus
ld

< Inl2 < Inlg

)
.
=
e
A

Therefore

= %>,

0= |n + a n + ... +an-+a b

1 Olp
and we have arrived at a contradiction. @

6.17. LEMMA. Let n € cp be algebraic of degree at most d. Then either

n =0 or
lnlp > den™ % (n) [n] 9.

PROOF. Put n' := den(n)en; then n' is an algebraic integer. As Iden(n)]p
1, we have [n[p g:]n‘]p. Let a € Z be the constant term in the minimal
polynomial of n'. Then a is the product of the zeros of this polynomial
in ¢ (apart from a possible factor -1). By 6.16, we may conclude [n'l
[a]p. But a is also plus or minus the product of the zeros of this poly-
nomial in €; thus Ia! é}fﬁT]d. Let F be a finite normal extension of @

such that F < ¢p and F contains n. Then, by 6.14,
n'| = [den(n)*n| = sup |o(den(n)n)| = den(n) sup |o(n)| =
o o

den(n) [n],

where ¢ runs through the injective homomorphisms of F into € that leave

® fixed. The lemma now follows upon observing that Ia,p ;:Ial_l. a

89
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6.18. LEMMA. Let F be a field containing Q; assume n € F is algebraic. Let

the minimal polynomial of n have leading coefficient a, height H, degree d.
(3)

Then, for each 7 € W U {0}, there exist a a(J) € 7 such that

o rrrerdgly
io_ () (3 _ (3) d-1
(an)” = aO + ay n-+ ... +vad*1ﬂ v
while
(3) (3) 3
max(lao I"""lad—ll) < (2H)".

PROOF. [Baker 19751, § 2.3. o

6.19. LEMMA. Suppose d € W, 0 < 8§ < 1, 0 < e < 1. Put A =

-1/ (p-1 ,
/(P )}, Then only finitely many pairs (a,y) €

{z€¢:8<|z~1] <p
2 p I lP
A® of algebraic numbers of degree at most d have the property that a B € @

exists with
BL_(a) ~ & (y) =0
p b Y
and
-1-€
(6.4) B log B > log H,

where H = max(h(a),h(y)) and B = max(2,h(B)).

PROOF. I. Suppose o,y € A, B € @, such that the conditions of the lemma

are fulfilled. By cl,c .. we shall denote real numbers greater than 1

2"
depending only on p,d,§ and €; we suppose that H is greater than such a

number, which will lead to a contradiction.

Define L := B -~ 1. We introduce the auxiliary function
L L Alz A2z .
o(z) = ) ) e Aae ty T,z € B, 1),
A,=0 A=
1 2
where
Alz A?z
a =e (A, z2 (a)), T o= e (A.z2R )
oM p( ).y pt2 p(Y )

and where q(Al,Az) are rational integers to be determined later. We have
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L L Az ALz
¢ 12 4
2™z =2t T T a0, ety ?,
io) 1772 1 2
X1=O X2=O

z € B(0,1), t € W U {0}.

1. ~-1_2 ~1-g/2

- +
Now put S := [%d 1log1 E/ZB], T := [§d B log B] and consider the
system of linear equations »
(t) _
(6.5) ® (ps) = 0, s = 0,...,5-1, t = 0,...,T~1

in the (L+1)2 unknowns q(xl,lz); we shall show that it has a non-trivial

pLs

integer solution. Multiplying (6.5) by (ac) btlgt(a), where a,b,c are

the leading coefficients in the minimal polynomiais of ¢, B and y respec~-

tively, gives

L L A, ps A, ps
1
I 1 a0 osumien U oen ¥
}0 0
L—Xl psc(Lukz)ps

a = 0.

Substitution of

t
(X1+k28) =
T

(0"

I et

0

transforms this into

L L Alps Azps (L—Al)ps (kaz)ps

Z Z a(A,,A,) (ao) (cy) a c X
1772

=0 A2=O

ty,E-1, T T, t=-1T
(T)Ai A, (bB) b7 = 0.

I Dt

T=0

(3) (3)
) (O a-1’
21 € % , their absolute values bounded by (2H)], such that

According to 6.18, for each j € W U {0}, there exist a
(3 (
c

o reerCy
i ) (1H (j) da-1

(aa)” = aO + a1 o+ ... + ad_la .

i_ (3) (3)_d-1

(cy) cO + c1 Y + ... + cd—lY .

Our set of eguations thus becomes
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d-1 d-1 6§, 6
z A(dlrszlslt)u Y = O,
61=O 62=O
where
L L t (L—Al)ps (Alps)
AS,8,,s,0) = ] ) ] a(,)a ag x
A1=O A2=O =0 B 1
(L-A,)ps (A,ps)

2 2 t t~1, T T

c °, () )T e

We see that (6.5) is certainly satisfied if A(Gl,ﬁ ,s,t) = 0 for 61 =

2
O0yo..,d-1; 62 = 0400.,d~1; 8 = 0,...,8~1; £t =0,...,T~1. These are 4 ST
linear equations in the (L+1)2 unknowns q(kl,kz) with rational integer

coefficients, whose absolute values are at most

4 -e/2
T(clH) pLSZTLTBT ;,exp(cszlog e/ B)
) 2 1.2 2 .
(here (6.4) is used). As (L+1)~ < EB < d"sT, 2.7 states that there is a
non-trivial choice for the q(Al,Az), such that (6.5) holds, while
0 := max |gA,,A )] <
1772
AL oA,
12 2 2 .2
) a ] -
(c3L2exp(cszlog e/ B)) ST/((L+1)"-a"sT) <
2 e/2

exp(c4B log‘ B) .

II. For k € W U {0} we put Tk g= 2kT. Then, for our special choice

of the q(Al,KZ), we have
(6.6) o (s) = 0, s =0,...,5-1, t = O,...,Tk~1.

This is proved by induction; for k = 0 the assertion is precisely (6.5).
Now suppose that (6.6) holds for some k; thus ¢ has at least ST§ zeros in
-1
P ), the

power series for ¢ converges, by 6.12, on some B(0,r) with r > 1. Now 6.9

— -1 -
B(0,p ). Moreover, as |a -~ 1|p and |y - 1lp are less than p 1/

states that

~ST,
<p sup I@(z)[p.

sup 1 ]‘D(Z) ] l [
Z <1
IS

lzl < P
p:P



Here

as is evident from 6.12 and the fact that q(kl,xz) E Z . Furthermore

-ST
P < exp(—2kc;1B2).
Thus
sup _, [@(z)[p < exp(—2kc;1B2);
lzl <
p:P

by 6.4 this implies

!Q(t)(ps)]p ézptexp(—chng2), s,t € N U {0},

and so

(6.7) [®(t)(ps)[p ézexp(—ch61B2), s € WNU{0},t=0,...,T  ~1.

However, %;t(a)Q(t)(ps) is algebraic and for s = 0,...,5-1, t =

0,c..,T

k+1—1 we have

dg<m;t(a)¢(t)(ps)) < d?,

T
den(Z;t(a)®(t)(ps)) < (ac)PLSpt < y?PBSy K+ o

exp(2kc7B2log~€/2B);
LS+T T +2 T
- + ! +
th(u)Q(t)(ps) < ch k 1L k+1 H2pLSB k+1 <
exp(zkc9B2log“€/2B).

Applying 6.17 gives ¢(t)(ps) = 0 or

(t) k 2 -
(pS)lp 2 exp (-2 CIOB log

e/2

|2 e B) .
P

93
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Furthermore, by 6.12,

l-e/2g,

k 2
llg(a)lp = |a - 1[; ;:6t > exp(-2 ¢ 4B log

so in the latter case we have

(6.8) lé(t)(ps)]p ;:exp(-chlszlog—E/2B).
Combining (6.7) and (6.8) gives 7 (ps) = 0 for s = 0,...,5-1, t =
O,...,Tk+1—1. This completes the proof of (6.6).

(t)

III. From (6.6) it follows that ¢ (0) = 0 for t = O,...,(L+1)2~1,

in other words, that

L L
(6.9) I 1 a0 ) 08t = o.
X1=O X2=O

As the q(xl,xz) are not all zero, it follows that the coefficient matrix
of the system (6.9), which is of the Vandermonde type, must be singular.
From this we deduce the existence of AI,AZ,Ai,Xé € {0,...,L} with

4o = 0 L]
)\1 AyB = Ay A58, OX

1
This gives
B =h(g <L=B~-1,

so we get the desired contradiction. o

6.20. LEMMA. Let R be a positive real number, a € @p, Consider f(z) =

k -
ZQ;O ak(z~a) , where ag,a . € ¢p; suppose the power series converges

1r-
for all z € B(a,R). Take b,r € B(a,R) and define

glz) = HELZ L)y ¢ Bra,r) < o).

Then g is bounded on Eka,[r—alp)\\{b}.

PROOF. For z ¢ B(a,R) we have
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f(z) - £(b) = X ai(z—a)k,
k=0
3 o= - ° - k L . 7
where aO = a, Zk=0 ak(b a) and ak : ak for k > 1. According to 6.7,
[ee]
g(z) =f_(zlz_:_£_(blz ) bk(z—a)k, z € B(a,R) ~ {b},
k=0
with
b | < sup Jla'| |b -~ aln—kal, k € N U {0}.
kp n>k+1 nPp P
Thus
“k- k
sup lbk[ [ - alk = sup  sup Iagl b - a|n 1lr - all <
k>0 P P k>0 n>k+l P p

-1
sup sup ]a'] max(]bma[ Ir—al )T =
k>0 nxk+t P P’ P
]f;ﬁ_ lanlpmax(]bka!p,]r—a!p)nwl.

As max(|b~alp,[r—a[p) < R, the right hand member is finite. Application

of 6.5 shows that g is bounded on Eka,lr»a]p)‘~{b}. o

6.21. LEMMA. For every d € N, n € N, there exists an effectively comput-
able C > 1, depending only on d and n, with the following property. Sup-
o € B

algebraic of degree at most d, Bn € ¢p algebraic of degree at most d with

pose Oyy... 0 € B(1,1) algebraic of degree at most d, BO,.--,B

|8 | =1.pPut A :=8_ + B & (@) + ... + B & (o). Then either A = 0 or
n'p 0 1 p 1 np n

[A] > exp(~cQ log 2' (log B+1log 2)),

= ] = =
where (log Ai)"..(Log An), Q (log A,)...(log An—l)' Aj

1
max(16,h(aj)) for 3 =1,...,n, B = max(6,h(BO),...,h(Bn)),

PROOF. See the remark preceding Theorem 3 in [Van der Poorten 1977]. o

6.22. LEMMA. Suppose o EEEEL N € B(1,1) algebraic. Then zp(a Yreee 2 (a)

1 1 P n
are linearly independent over ( if and only if they are linearly independ-

ent over the field of all algebraic numbers in ¢p.
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PROOF. [Brumer 1967], Theorem 1. O

“1/®e=1y (113, b € Blo,1).

23 € 7 that are

6.23. THEOREM. Suppose € > 0, d € W, a € B(l,p
Suppose that there exists a C > 1 such that for all X,
not both zero we have

-1 3, =2
(6.10) ]xo + xlblp > ¢ “exp(-X"log “X),

where X = max(2,[x0[,[x1]). Then there are only finitely many triples

(a,B,y) € Q; of algebraic numbers of degree at most d with

max([a—a|p,[b—ﬁ]p,fab—y]p) < exp(—logBH log;+EH),

where H = max(2,h(a),h(8) ,h(y)) and a° = ep(bL_ (2)).

PROOF. I. Let (a,B,y) be a triple satisfying the conditions of the theo-
rem; we suppose H to be greater than a certain bound depending only on

e,d,a and b. This will lead to a contradiction. From 6.20 we see

3 1+e/2
(6.11 L (a) - % ( < -log™H 1 H),
) | o) o u)lp exp (~log H log, )
3 1+e/2
(6.12) lbzp(a) - lp(y)lp < exp(-log™H log, H) .

As a consequence of (6.11), (6.12) and

(6.13) b - slp < exp(~log H log;+€H)

we have

1+E/3H).

lBﬂp(u) - JLP(Y)IP < exp(—log3H log2

If it were the case that Blp(u) - Kp(y) *# 0, 6.21 would imply

3 1+e/3
iBRp(a) - Qp(y)fp > exp(~log™H log2 e/ H),

which is a contradiction. Therefore Blp(a) - 2 (y) = 0.
b
II. We have just proved that lp(a) and Qp(y) are linearly dependent

over the field of all algebraic numbers in ¢p; using 6.22, we find that
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£(z) - £(b) = ) aé(z—a)k,
k=0

67 L. 5 _k LIPS i
where ao : ao Zk=0 ak(b a)  and ak : ak for k > 1. According to 6.7,
(o]
g(z) = £15é~5_£ﬁgl = Z bk(z—a)k, z € B(a,R) ~{b},
k=0
with
b | < sup |a'| |b - aln_k_l, k € W U {0}.
k'p T n>k+1 np P
Thus
~k~- k
sup Ibk[ ]r - alk = sup sup [a;l ’b - a|n k llr - al <
k20 P P x>0 nyktl p P

-1
sup  sup la'[ max(lb—a, ,|r~a| 7=
k>0 nzk+1 P p P
,f;ﬁA ]anlpmax(!b;afp,]r—a]p)n_l.

As max([b—a[p,[r—a]p) < R, the right hand member is finite. Application

of 6.5 shows that g is bounded on Eka,lr—a|p)‘\{b}. o

6.21. LEMMA. For every d € N, n € IN, there exists an effectively comput-
able C > 1, depending only on d and n, with the following property. Sup-
pose 0y, ...,0 € B(1,1) algebraic of degree at most d, BO""'Bn~1 € B(o,1)
algebraic of degree at most d, Sn € ¢P algebraic of degree at most d with
lﬁn,p = 1. Put A := BO + Blﬂp(al) + oL+ Bnlp(an). Then either N = 0 or

IA[ > exp(~CR log Q' (log B+1log R)),

_1)1 Aj =
max(16,h(aj)) for j =1,...,n, B = max(6,h(80),...,h(6n))-

where Q = (log Al)...(log An), Q' = (log Al)...(log An

PROOF. See the remark preceding Theorem 3 in [Van der Poorten 1977]. o

6.22. LEMMA. Suppose Cpreeert € B(1,1) algebraic. Then Rp(al),...,lp(&n)
are linearly independent over @ if and only if they are linearly independ-

ent over the field of all algebraic numbers in Cp.
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PROOF. [Brumer 1967], Theorem 1. @

6.23. THEOREM. Suppose ¢ > 0, d € N, a € B(l,p—l/(P_l)) ~{1}, b € B(0,1).

Suppose that there exists a C > 1 such that for all x € Z that are

0" %1
not both zero we have

~1 3, =2
(6.10) |xq * xlblp > ¢ Texp(-X’log “X),

il

where X max(2,|xo|,|x1]). Then there are only finitely many triples

(0,B,vy) € @; of algebraic numbers of degree at most d with

max(la—a[p,lb-pr,lab—y[p) < exp(—logBH log§+EH),

i

where H = max(2,h(a),h(B),h(y)) and a® = ep(blp<a)>.

PROOF. I. Let (a,B,y) be a triple satisfying the conditions of the theo-
rem; we suppose H to be greater than a certain bound depending only on

e,d,a and b. This will lead to a contradiction. From 6.20 we see

3 1+e/2
(6.11) 2 (a) - & (a) < exp(~log H lo H)
K o) | < exp(-log™H log, .
3 i+e/2
(6.12) b2 (a) - £ (y) < exp(~log H lo H).
EXR Ll p(~log 9,

As a consequence of (6.11), (6.12) and

(6.13) b - B[p < exp(~log H logé+€H)

we have

i+e/3

P H) .

lBEp(a) - zp(Y)]p < exp(—logBH log

If it were the case that Blp(a) - Qp(y) + 0, 6.21 would imply

1+s/3H

2 )I

3
BL (o) = & _(v) > exp(~log”H lo
|62, L0l p(-log g
which is a contradiction. Therefore Bip(a) - QP(y) = 0.
II. We have just proved that Qp(a) and QP(Y) are linearly dependent

over the field of all algebraic numbers in mp; using 6.22, we find that
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these numbers must also be linearly dependent over . In other words,

there are £,n € §, not both zero, such that Ezp(a) + nzp(y) = 0. AS
3 1+e
]a - a[p < exp(~log H log2 H) < |a - 1[P,
we have
-1 -1
P /(p )_

(6.14) !a_1]P< ]a-—llp<

Thus, by 6.12, Qp(a) # 0 and we may conclude

S=QP(Y)=-§—€Q.
L (o) n
Using 6.19 with § = %1a - 1fp gives that log1§2> B log‘l—s/lﬁg, where
B = max(2,h(B)). Then, a fortiori, log H > B , SO logZH > Eiog B; thus
exp(-log3H log;+s/3H) < exp(~%B310g02+E/3oB) <
exp(—B3log-2+€/31B).
From (6.13) we see that
!b - Blp < exp(—B3log_2+€/31B),
and so, if we put B = ~x0/x1 with XO €z, X, € I, (xo,xl) =1,
(6.15) [xO + lelp = [xllplb - Blp ézlb - S!p < exp(~B3log—2+E/31B),

where B = max(2,[xol,|x1[). From (6.10) we know that b cannot be rational;
from (6.13) it then follows that B tends to infinity with H. Therefore
(6.15) contradicts (6.10). @
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