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PREFACE 

The Advanced Seminar on Markov Decision Theory was organized by the 

Mathematical Centre in cooperation with the Eindhoven University of 

Technology. The Seminar was held at the University of Amsterdam, September 

13-17, 1976. 

The main theme of this meeting was successive approximations in 

Markov decision theory. The Seminar was arranged as a series of lectures 

in which the state of affairs and recent developments were presented. 

In these proceedings the reader will find written versions of most 

of the lectures. Some of the papers contain new developments which were 

stimulated by the discussions during the meeting. We hope that this volume 

will be as stimulating for further research as the Seminar has proved to 

be. 

We are grateful to the Mathematical Centre who provided the financial 

support and in the person of A. Federgruen took charge of the organi

zation. We are indebted to the Econometric Institute of the University of 

Amsterdam for their hospitality. We further thank Professor G. de Leve and 

Dr. J.A.E.E. van Nunen who contributed in an excellent way to the success 

of the meeting. 

The editors 
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MARKOV DECISION PROCESSES WITH 

UNBOUNDED REWARDS 

J.A.E.E. van Nunen 

Graduate School of Management, Delft, The Netherlands 

J.Wessels 

Eindhoven University of Technology, Eindhoven, The Netherlands 

• 

1. INTRODUCTION 

We consider a Markov decision system with a countable state spaces. 

1 

So the states in Smay be labelled by the natural numbers S := {1,2,3, ... }. 

The system can be controlled at discrete points in time t = 0,1,2, ... by 

choosing an action a from an arbitrary nonempty action space A. Let A be 

a a-field on A, such that {a} EA for all a EA. 

The chosen action a E A and the current state i E S at time t exclu·

si vely determine the probability of occurence of state j ES at time t + 1. 

This probability is denoted by pa(i,j). If state i has been observed at 

time t and action a£ A has been chosen, the (expected) reward r(i,a) is 

earned. The objective is to find a decision rule for which the total ex

pected reward over an infinite time horizon is maximal. For the deter

mination of such a decision rule and for the computation of the total ex

pected reward we have in fact to solve a functional equation of the follow

ing form 

v(i) = sup 
aEA 

{r(i,a) + l pa(i,j)v(j) }, 
• 
J 

i ES. 

The more sophisticated methods for solving these functional equations, 

if they have a unique solution, are linear programming (D'EPENOUX [3], 

DE GHELLINCK & EPPEN [ 4 ]) and policy i tc~r.3.tion (HOWARD [ 13 ]) , which is a 
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very beautiful and elegant method. Actually, linear programming and policy 

i.teration are in a sense equivalent (MINE & OSAKI [ 18], WESSELS & VAN NUNEN 

[ 29]) • 

However, for large scaled problems, successive approximation methods 

tend to be more efficient than the known sophisticated methods (e.g. VAN 

NUNEN [ 19 ] ) • 

It appears that successive approximation methods allow for elegant and 

relatively good extrapolation and error analysis. Moreover, the incorpora

tion of su.boptimality tests can improve those methods considerably. 

Finally, it appears that policy iteration methods (there are many versions 

with differences in the policy improvement procedures, see e.g. HASTINGS 

[6], VAN NUNEN [21]) are essentially successive approximation methods. 

These methods happen to converge in finitely many iterations if state and 

action space are finite. 

For these reasons it is still interesting to investigate successive 

approximation methods for Markov decision processes and likewise for Markov 

games (see VAN DER WAL [27]). Here we will mainly be concerned with the 

conditions which allow successive approximations with guaranteed conver

gence in some strong sense allowing the construction of upper and lower 

bounds. For convergence in a weaker sense, of course, weaker conditions 

can be used we refer to SCHAL [25] and VAN HEE& VAN DER WAL [12]. 

After the introducti.on of the model and the underlying ass11mptions we 

will develop some properties. 

Moreover, we will indicate the specific successive appproximation 

algorithm. Finally we will analyse the assumptions and compare them with 

those in literature. 

Most of the assertions can be extended to nondenumerable state spaces 

in the obvious way. 

2. THE MODEL AND THE ASSUMPTIONS 

We will first introduce 01.Jr assumptions on the transition probabili

ties and the rewards. The asslJmptions will be somewhat weaker than those 

proposed in [21]. 

ASSUMPTION 2.1 

a) pa(i,j) ~ 0, l pa(i,j) $ 1, for all i,j ES and all a EA • 
• 
J 
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b) pa(i,j) is measurable for all i,j t- Sas a function of a. 

c) r ( i, a) is measurable for all i E S as a function of a. 

REMARK 2.1. We allow substochastic behaviour. Defectiveness of transition 

probabilities may be interpreted as a positive probability of leaving the 

system, which results in the stopping of all earnings. In a more formal 

set-up this may be handled by introducing an extra. state which is absorbing 

for all actions and does not give any earnings. This has been executed 

e.g. in [21] by VAN NUNEN and in [11] by HINDERER. Without such a device 

quite a lot can be achieved in a correct formal way as has been done by 

WESSELS [28]. Actually, as long as the outcomes in which one is interested 

may be expressed in terms of bounded order histories, there is no serious 

problem. In this paper we will suppose that there is such an extra state, 

without giving it a name or mentioning it explicitly. Compare section 5 

for the meaning of substochasticity. 

DEFINITION 2.1. 

(i) A decision rule TI is a sequence of transition probabilities 

~ := (q0 ,q1 , .•• ), where qt is a transition probability of 

(Ht,Ht) into (A,A), with Ht:= S x Ax S x ••• x S (t+l times S) and 

Ht is the corresponding product o-fi.eld. 

The class of all decision rules is denoted by V. 
(ii) A decision rule n will be called nonrandomized or a strategy if qt 

is degenerated for all t and all ht€ Ht. So a strategy is a non

randomized decision rule. 

( iii) A decision rule n is called k ·f l Mar ov i qt on y depends on the last 

component of ht E Ht. 

The class of (randomized) Markov decision rules is denoted by RM. 
(iv) A Markov decision rule is called stationary if q does not depend 

t 
on t. 

A policy f is a function of S into A. By F we denote the set of all 

policies. Stationary strategies correspond (one to one) to policies 

and Markov strategies correspond to sequences of policies. We will 

apply these correspondences deliberately. 

The class of Markov strategies is denoted by M. 

• 
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In an obvious way - see e.g. VAN NUNEN [21] - any starting state 

i ES and any decision rule rr EV determine a stochastic process 

{ (X ,z ) } t O on. S x A, where X denotes the state of the system at time t, t t ::: t 
and Z 

t denotes the action at time t. The relevant probability meas1.Jre on 
co 

(SXA) will be denoted by 
1f 

by E .. 
1. 

JP~. Expectations with respect to this measure 
1. 

will be denoted By JEnX we denote the columnvector with i-th 
1f 

component E.X, where Xis any random variable. 
1. 

ASSUMPTION 2. 2. We ass\1me a positive function µ on S to be given. Let W be 

the Banach space of vectors w (real valued functions on S) which satisfy 

II w II := sup 
iES 

For matrices (real valued functions on S x S) we introduce the operator

norm 
I! Bl! : = sup 11 Bwjj • 

II w II = 1 
Note that -1 

II B II = sup µ (i) IIB(i,j) 1 •µ(j). 
ieS • 

J 

ASSUMPTION 2 .. 3. 

(i) 

(ii) 

(iii) 

sup 
1f E J\! 

< 00 

where + r ( a , b) : = max { 0 , r ( a , b) } • 

SUJ2 !IP ( f) II =: p . < 1, 
fEr * 

for all i ES, 

where P(f) is the matrix with P(f)(i,j) := pf(i) (i,j). 

SU 
fE: 

M < co 
1 for some p with O < p < 1, 

- -and r is the vector with i-th component r(i) := sup r(i,a). 
aEA 

REMARK 2.3. Note -+ 
that P(f)r < oo (componentwise) 

--
< 00 • 

Moreover, P(f)r 
gE: 

< 00 as is implicitly stated in asswnption 2.2. iii. The 

model in fact corriliines the main features of the models introduced by 

HARRISON [5], WESSELS [28] and VAN HEE [9], and yields a slight extension 

with respect to the model considered by VAN NUNEN [21]. 



Since we will prove similar results as HARRISON [5], WESSELS [28], VAN 

NUNEN [21], this paper generalizes their results. 

We will first show that under assumption 2.3.i the restriction to 

5 

r-1arkov strategies is allowed if one is interested in the criterion of total 

expected rewards. 

Given that assumption 2.3.i is satisfied it will be clear that for 

any TT EM 

V(1T) .-• 

00 

l r(X ,Z) 
n=O n n 

is properly defined and that all manipulations with integration and sum

mation are allowed. However, v. (TI) may be - 00 for some i ES. Furthermore 
l. 

su-- v. (1T) < 00 • In [9] VAN HEE shows that under assumption 2.3.i v. (TI) is 
1TE l. l. 

properly defined for all n E RA-{ since 

00 00 

s-qp 
1TE 1<.M 

1T 
JE. 

l. I + r (X ,z ) 
n n 

= sup 
TTE:M 

1T 
E. 

l. 
I r + (X , Z ) • 

n=O n n n=O 

Moreover, he proves that 

sup 
1TERM 

V. (1T) = 
l 

sup 
nEM 

V. (TI) 
l. • 

It then follows straightforwardly from the generalisation of a result of 

DERMAN 

i E. s, 

Hence 

and STRAUCH [2] that V. (TI) 
l. 

is defined properly for all 1T EV and 

viz. for any i ES and any n E V * there exists a 1T E RM, such that 

7f 
JP. [x 

l. n 

00 

I 
n=O 

• = J, z 
n 

+ r (X ,z ) 
n n 

* 
= JP~ [x 

i n 

* 00 

= j, z n 

for all j E S , Ao E A, n = 0 , 1 , . . . . 

= JE~ I 
l. 

+ r (X , Z ) 
n n 

< 00, 

n=O 

* SO V. (1T) 
l. 

is properly defined and equal to V. (TI ) • 
l. 
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This implies 

sup 
TrEV 

V. (7r) = 
1. 

sup 
1fEM 

v.(iT). 
l. 

This actually means that one can restrict oneself to strategies which 

only depend on the starting state, on the time instant t and on the state at 

that time. Such strategies are sometimes called semi-Markov strategies. 

The starting state and the time instant will be proved to be superfluous 

later on. 

3. SOME PROPERrIES 

Let IR denote the set of real n11mbers with + 00 and - 00 included. 
- _oo 

Let W contain those w E IR , such that w :5 w0 for some w
0 

€ W, (w
0 

is 
-not fixed, but may depend on w, so W cw). P(f) is properly defined as an 

-
operator on Wand on W as well. P(f) maps each of these sets into itself. 

Here ''properly defined'' means that (P (f)w) (i) is independent of the order 
-of summations. It is straightforward that P(f) is monotone on Wand W. 

Moreover P (f) is contracting on W with contraction radius II P (f) II :5 p < 1. 

* The set Vis 
-1-

( 1-p) r 

00 

defined as the set of vectors v in lR such that 

V - E W. Since Wis a Banach space the set Vis a complete metric 

space with respect to the metric 

such that for some 

LEMMA 3.1 •. 

P::::<.OOF. 

:= max{p,p }. 
* 

€ V we have 

- -

similarly 

P(f2 )P(f 1 )r :5 P(f2 ) (pr+ M1-µ) 

2-
5 p r 

2-:s P r 

+ pM µ + p M µ 
1 * 1 

- _oo 
The set V contains those v E lR 

n ~ 1 



2-
~ P r - pM µ 

1 
- p M 

* 1 

The proof proceeds further in an inductive way. 0 

Corollary 3.1. 

(i) 

(ii) 
1T 

]E 

I 
n=O 

00 

I 
n=O 

-r (X ) E V 
n 

r (X , z ) 
n n 

for all TI E A1 

~ ( 1 -

= (1 -
-1-

p) r + (1 
-2 

- p ) 
0 

7 

M
1

µ EV 

for all TIE V. 

PROOF. For TIE M part (ii) follows straightforwardly from the foregoing 

lemma. Because of the results of section 2 this may be extended to TIE V. C 

- -DEFINITION 3.1. L(f) is a mapping of V into V defined by L(f)v := r(f) + 

+ P(f)v where r(f) is the vector with i-th component equal to r(i,f(i)). 
- -

L(f) maps V into V • viz. 
-r(f) ::5: r; v :;'; V 

0 
for some v

0 
Ev, therefore 

-1-
11 v 

O 
- ( 1-p ) r II = M

2 
< 00 , 

hence 

r(f) + P(f)v ~ 
- -1-
r + P ( f) ( 1-p ) r 

- -1 -
( 1-p) (pr + M µ) 

1 
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LEMMA 3.2. 

-
(i) If r(f) - r E W, then L(f) maps V into V and L(f) is contracting on V 

with contraction radius II P (f) II 5 p * < 1. The fixed point of L ( f) in V 

is v(f) := f((f,f,f, ••• )). 
-• is monotone on V. (ii) L (f} 

(iii) If V Ev, then Ln(f)v ➔ v(f) for n + 00 • 

PROOF. Part (i) can be found in [28], part (ii) of the lemma is trivial. 
-The final part is straightforward if r(f) - r E W, since in that case the 

assertion is implied by the Banach fixed point theorem and the convergence 
-

is in norm. If r(f) - r ¢ W we have 

n-1 
Ln(f)v = I Pk{f)r(f) 

k=O 

n 
+P (f)v. 

Since v can be written as 

-1-
v = (1-p) r + w with w E W 

n -1 - n 
we have P (f)v = (1-p) P(f)r + P (f)w. 

n 
However, P (f)w tends to zero for n ➔ 00 since P(f) is contracting on 

n -W (assumption 2.3 ii) and P (f)r tends to zero for n ➔ 00 as follows from 

lemma 3.1. This implies 

00 

lim Ln(f)v = l Pk(f)r(f) = v(f). D 
n-+oo k=O 

DEFINITION 3.2. U is a mapping of V into V defined by 

Uv := sup L(f)v 
fEF 

U maps V into V, viz. 

( componentwise) . 

UV= s 
fE -

-1-
{r (f) + P(f) [ (1-p) r + w ]} 

-
~ r + sup 

fEF 
sup P(f)w 
fE F 



-1-
~ ( 1-p) r + 

and 
-

+ p II w IIµ € v 
* 

Uv 2: r + inf 
fEF 

-1 -
(1-p) P(f)r + inf P(f)w 

-

LEMMA 3. 3. 

-1 -
( 1-p) pr 

(i) u is monotone on V; 

fEF 

-1 
- M µ ( 1-p) 

1 

(ii) u maps B : = { v E v I II v 
-1-

- (1-p) rll:SM1 
-1 -1 

( 1-p) ( 1-p ) } 
* 

into itself; 

(iii) U is contracting on V with contraction radius y: y :Sp < 1. 
* 

The proof proceeds in a similar way as the proof of theorem 4.3.3. in 

VAN NUNEN [21]. 0 

9 

REMARK 3.1. Suppose the supremum in uv for v EV is attained for certain f 

then 

r{f) + P(f)v EV 

hence 

-1-
r(f) + P(f) (1-p) r + P(f)w E V 

and 

r(f) + (1-p)-l; € V 

so 

--- ... -1 - - --1-
r (f) - r + r + (1-p) r = r(f) - r + (1-p) r € V 

-
consequently r(f) - r € w. 
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The same holds if L(f)v approximates Uv in norm. Then L(f)v ~Vas well. 
-Hence r(f) - r £ w so the use of a successive approximation method (even 

without computing the supremtim exactly) leads to a sequence of policies 
.... 

f E f with r(f) - r E W. 
n n 

Since u is contracting in V there exists a unique fixed point * V of 

l.J in V. This fixed point is the unique solution of the optimality equation 

irl V 

v ~ sup {r(f) + P(f)v}~ 
f€F 

Furthermore lunv 

will prove that 

* - v H + 0 for n ➔ 00 and any v EV. In the sequel we 

* V 

THEOREM 3 .. 1. 

--

(i) V(1f) 

'lTE 

* $ V 

00 

En l r (X ,z ) = 
n=O n n 

for all n t:: V 

V (1T) .. 
'IT€ 

(ii) For any c > O there exists a policy f such that 

hence 

* lv(f) - V n $ e: 

TTE 
V (1f) == SU 

fE 
* v(f) = V • 

/.foreover, if for some f holds that 

Then 

* * v - r(f) + P(f)v 

v(f) * ::::: V . 

PROOF. The proof of this theorem proceeds exactly along the same lines as 

the proof of theorem 4.3.4 in [21]. In [21] part (i) has been proved by 
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showing first that the assertion is true for TIE Mand then using the re

sults of section 2. Part (ii) follows directly if we choose f E F such that 

* * * V - oµ ~ L(f)v ~ V 

then 

* L(f)[v - 8µ] 

hence 

* v + sc1+p)µ 

iterating this inequality gives 

* V 
c 

- 1-p µ $ v(f) 

* V 

* V 

so by choosing 8 = E(l-p) the statement will be clear. D 

4. SUCCESSIVE APPROXIMATIONS 

* In the previous section we showed that the unique fixed point v of 

the contraction operator U in Vis the optimal value vector of the Markov 

* decision problem. Hence, v can be approximated by 

( v 
O 

E V and n = 1 , 2 , • . • ) • 

Furthermore, we proved the existence of stationary Markov strategies with 

value functions that approximate * V (in norm). 

* Usually one not only wishes to find v but one is also interested in 

good (stationary Markov) strategies. It may occur that the supremum in Uv 

cannot be computed exactly. Nevertheless, there are several successive 

approximation methods for the computation * Of V and the determination of 

an (e-) optimal stationary Markov strategy. We refer to [22] in this 

volume. Here, as an example, we describe a method which uses monotonicity 

of the v. Consequently the convergence of the algorithm can be shown by n 
relatively simple proofs. 
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LEMMA 4.1. Leto> 0, suppose v, v' Ev, such that Uv' - oµ s v then 

* V 

6+p II v-v • II 
* 
1-p 

* 

PROOF. The proof can also be found in [28] and proceeds as follows. 

Uv = U(v 1 +v-v 1
). 

Hence, since uv• s V + oµ we have 

Uv s Uv' + p llv - v•II µ s v + 8µ + p llv - v•llµ 
* * 

or 

UV S V + e:µ with E = o + p II v - v • II • 
* 

Similarly 

s Uv' + p !Iv - v•IIµ + p eµ 
* * 

s v + 8µ + p llv - v 1 llµ + p sµ = v + E(l+p*)µ. 
* * 

Iterating in the same way qives 

n-1 e: ( 1 +p + ... p ) µ 
* * 

This implies 

* = V µ. 

S V + 

□ 

1-p 
* 

LEMMA 4.2. If v, v' EV with L(f)v' = v, then 

-
r(f) - r E W 

µ. 



and 

where 

and 

V + 
p II v-v' II 

f -
1-p 

f 
µ:::;; v(f) $ V + 

p II v-v I II 

* 
1-p 

* 

II v-v I II := inf lJ-l(i) (v(i)-v' (i)) 
iES -

:= inf 
iES 

-1 
µ (i) \ f ( i) ( . . ) ( . ) l p i,J µ J·. 

• 
J 
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µ, 

PROOF. The proof of this lemma proceeds along the same lines as the proof 

of the foregoing lemma. D 

The convergence of the following successive approximation algorithm 

will be clear as a consequence of the foregoing two lemmas. 

ALGORITHM 4 . 1 .. 

STEP 0. Choose a> O; choose o > 0 such that 

such that v
0 

< Uv
0

; n := 1; 

STEP 1 • Determine f such that 
n 

-1 
o(l-p ) 

* 

v := L(f )v 1 ~ max{v 
1

,uv 
1
-oµ}; 

n n n- n- n-

STEP 2. If 

o+p 11 v -v 11 * n n-1 ---------
1-p 

* 

pf II V -v u 
n n n-1 -

1-pf 
n 

< Cl 

< a; choose Vo EV 

ilien go to step 3 else go to step 1 with n := n + 1; 

STEP 3. End of the algorithm. 

Lemma 4.1 and 4.2 provide that the algorithm stops after a finite 

n11rnb~r of iterations and that in the n-th iteration step of the algorithm, 



f . 
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we have 

V + 
n 

pf II V -v II 
n n n-1 - < -

1-pf 
n 

v(f) 
n 

If the algorithm ends at iteration 

~ V + 
n 

6+p II v -v II * n n-1 

then the 

* distance between v - v(f ) is at most 
no 

step n
0 

with policy f 
no 

a and the distance between upper 

and lowerbound for v(f) is less than a -
n 

-1 
o(l-p*) . 

Note that the choice of v
0 

and the way in which vn is computed assure 

* that vn converges monotonically from below to v i.e. 

and 

v $ v $ v{f) $ v* 
n-1 n n 

lim 
n""1'"()0 

V 
n 

* = V • 

For proofs we refer to [21], [28]. 

If we release the monotonicity ass11mptions and choose v O E V arbitrary 

it remains possible to give adequate successive approximation algorithms, 

see [22] in this volume. 

In all these methods a main role is played by the concept of upper 

and lowerbound. In fact the fast convergence of the algorithms is caused by 

the use of this concept, see e.g. MACQUEEN [16], PORTEUS [23], VAN NUNEN 

[11]. Moreover, upper and lowerbounds can be used to formulate sub

optimality tests which may even improve the efficiency of the algorithms 

considerably, see e.g. MACQUEEN [17], HASTINGS and VAN NUNEN [SJ, 

HASTINGS and MELLO [7], HOBNER [14]. 

5. ANALYSIS OF THE ASSUMPTIONS 

Let us first make some remarks on the assumptions. 

REMARK 5.1. 

-(i) r may be replaced by any vector b with b - r E w, so it is not -

• 



-necessary to computer exactly. Such an approach is applied in 

VAN NUNEN [21]. 
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(ii) In the model semi-Markov decision processes, discounted Markov 

decision processes and discounted semi-Markov decision processes are 

contained as well. 

(a) Semi-Markov decision processes (without discounting) are covered 

by taking the n1Jrnber of the decision instant as decision time and 

the expected reward until the next decision instant as reward. 

Alternatively spoken one considers the embedded process, see e.g. 

MINE and OSAKI [18]. 

(b) Discounted Markov decision processes are included by incorporating 

the decision factor S (if B ~ 1) in the transition probabilities 

i.e. pa(i,j) := Spa(i,j). If S > 1 the theory should be slightly 

adapted. 

However 

C0 

]E~ I 
J.. n=O 7fE 

n + S r (X ,z ) 
n n 

< (X) 

remains a sufficient condition for restriction to stationary 

Markov strategies. (See VAN HEE [9]). 

(c) For discounted semi-Markov decision processes with discount rate 

a~ 0 again incorporation in the transition probabilities is 

appropriate, for a< 0 the theory needs slight modifications. 

We now relate the use of the translation 
-1-

function (1-p} r, as intro-

duced in a slightly different way by HARRISON [5], to an approach of 

PORTEUS [ 24]. 

PORTEUS proposed, for the finite state-finite action case, that the 

,1se of a translation function might be replaced by a transformation of the 

data. 

He therefore introduced the return transformation 

r (i, a) 
-1 -

:= r(i,a) - (1-p) {r(i) - I 
jES 

P,.._,a ( i·, J' ) a ( • . ) := p J..,J • 
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For the transformed problem we have 

-,--.; 

r(i) -:s; r(i) -1-
- (1-p) r(i) -1 -+ ( 1-p) pr ( i) 

for all i ES 

similarly 

- -- . r (1) ?: r (i) -
-1-

(1-p) r(i) 

= -

Hence, we have 

-
( 1) 

,._, 
r € W 

( 2) 
,..., 

llp(f)II = IIP(f)II ;s; p < 1. 
* 

for all i Es. 

This implies that the transformed problem can be handled without using 

a translation and fits into the model in WESSELS [28] (see also VAN NUNEN 

[21]). The question remains whether for all i ES and n EV one has 

v. (n) = v. {,r) + u(i) for some function u on S which is independent of n. 
l. l. 

As a consequence of (1) and (2) we have that 

,._, 
V. (,r) 

1 

(X) 

= ]E~ I 
l. 

n=O 

,..., 
r(X ,z) = 

n n 

00 

I 
n=O 

1f ,..,., ) E. r (X ,z , 
1 n n 

and that any ,r may be replaced by a randomized Markov decision rule, 

without any effect on ~ V.(TI). 
l. 

00 z 
v. {n) = 

l. I 'IT 
JE. [r{X ,z ) - (1-p)- 1r{X) 

n 
-1 + ( 1-p) LP n ( X , j ) r ( j ) J 

n=O 1. n n n • 
J 

00 

= I 
n=O 

'IT ,r 
E. JE. [r(X ,z ) 

1. 1 n n 
-1-

- (1-p) r{X ) 
n 

-1- I + (1-p) r(X 
1

) X ,z ] 
n+ n n 

N 

= lim ). 
,r 

{JE. (r(X ,z ) -
l. n n 

-1-
(1-p) r(X) 

n 
-1-+ (1-p) r(X 

1
)} 

n+ N•>cc n=O 



N 

= lim { l 1T 
lE. r(X ,z ) -1- -1 

- (1-p} r(i) + (1-p) 
N )OO 0 n= 

i n n 

= v.(1T) 
l 

-1-
- ( 1-p) · r ( i) , 

where the third equality is allowed since 

1T + 
JE. {r (X ,z ) + 

i n n 
-1--

( 1-p) r (X ) + 
n 

and the final equality is achieved since 

lim 
N-+<x> 

11· -
JE. r(X 1 ) = 0. 

l n+ 

-1 + 
(1-p) r (Xn+l)} < oo, 
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We will illustrate now how the results of LIPPMAN [15] can be em

bedded in our theory (see also VAN NUNEN and WESSELS [20]). Lippman proves 

the convergence of successive approximations at a geometric rate under 

the following conditions which are given in our notations. 

CONDITIONS OF LIPPMAN. There exists a function u: S + [1, 00 ), an integer 

m ~ 1, and constants O ~ B < 1, b > 0 such that for all i ES, a EA 

I un(j}pa(i,j) ~ S[u(i) + b]m 
jES 

However, we then have for any p ~Band any 
* 

p* 1/m 
b[ ( f3 ) - 1] 

that for µ(i) := [u(i) + c]m 

the following holds: 

a) II p ( f) II ~ p 
* 

-1 

I 

for n = 1, ..• ,m. 
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and 

b) llr(f)II 5M. 

So we can use for Markov decision processes as described by Lippman 

the latter simpler and more general conditions a and b. 

The assumption 2.3.ii requires some transient behaviour of the 

processes involved. This may be characterized as strong excessiveness, i.e. 

for all f E F 

with p* < 1 andµ a positive function on S. 

For strong excessiveness several sufficient and necessary conditions 

can be given. In order to make assumption 2.3.ii more transparent and to 

relate the latter assumption to the assumptions of other authors we will 

give those conditions. 

• LEMMA 5.1. (VAN HEE and WESSELS [10]). The process is strongly excessive 

with µ(i) ~ o > 0 if and only if the lifetimes of the process are ex

ponentially bounded, i.e. 

for all i ES, 1T € M, where y < 1 and a is a positive function on S. 

PROOF. 11 if'' choose µ (i) 

d -1 . . an p := v , now it is 
* 

''only if'' Note that for 

:= sup I 
'ITEM n=-0 

n 7T -1 
V JP . ( X ES , X l f. S) with 1 < V < y 

i n n+ 

straightforwardly verified that P(f)µ ~ p*µ. 

rr := (fO,fl •.• ) 

= r5JP1T (X ES) 
n 

with e : = { 1 , 1 , ..• } • D 

LEMMA 5.2. (VAN HEE and WESSELS [10]). The process is strongly excessive 

with d ~ µ(i) ~ o > 0 for some constants, if and only if the lifetimes of 

the process are exponentially bounded, uniformly in i Es, 

1T n 
JP. (X ES) :;; ay 

J.. n 
( with a > 0 , 0 < y < 1 ) .. 



PROOF. The ''if'' part of the lemma follows straightforward, the ''only if'' 

part can be achieved by choosing e.g. a(i) = ~o- 1 • O 

LEMMA 5.3. (See VEINOTT [26], DENARDO [1], VAN HEE and WESSELS [10]). 
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The process is strongly excessive with~~ µ(i) ~ o > 0 for some constants 

6 ~ o > 0 if and only if the maximum expected lifetime is uniformly bounded 

in i E S, i.e .. 

00 

1T 
IP. (X ES) 

l n 
< M for sora.e M > 0, and all i ES. 

PROOF. Let µ(i) be the maximum expected lifetime if the process starts in 

state i ES. So 

µ(i) 

Clearly 

00 

:= sup I 
nc:M n=O 

1T 
JP. (X ES). 

l Il 

µ ~ e + P (f) µ, 

and 

1 
~ M µ + p ( f) µ. 

This yields 

the 

So for p 
* 

other hand 

1 
= (1- M), o := 1 and f. := M the 11 if'1-part will be clear. On 

if the process is strongly excessive with o ~ µ(i) ~ l, then 

the lifetimes are uniformly exponentially bounded and hence the maximum 

expected lifetimes are bounded. D 

COROLLARY 5.1. The following three assertions are equivalent. 

1) The process is strongly excessive with O < c ~ µ(i) ~ ~. 

2) The lifetimes of the process are uniformly exponentially bounded. 

3) The maximum expected lifetimes of the process are bounded as func~ion 

of the starting state. 
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Note that the maxim1.un expected lifetime £ (i) if the process starts in 

state i ES can be found as the smallest positive solution to 

~ s ,:- [e + P(f)Q,,]. 
fE 

There is a close relation between strong excessivity and so called 

11 N-stage•a contraction. This relation is given in the following lemma .. 

LEMMA. 5.4. (See VAN HEE and WESSELS [10]). Let; u be a positive function on 

s such that P(f)u s Mu for some M > 0 and all f € F and suppose 

P(f0) .•• P(fN_ 1)u ~ p'u, with O < p' < 1 (N-stage contraction) for all 

E F, then there exists a positive function µ on S and p with 
* 

0 < p < 1 , s ucl1 tha t: 
* 

P(f)µ ~ p µ 
* 

fox all f € F. 

PROOF. Choose p such that p' < 
* 

< 1 and choose 

co 

µ := sup l 
ire:M n=O 

1 'IT 
::IE u(X ). 

n D 

As a consequence of the foregoing lemma we see that 11 N-stage 1
' contrac

tion in one norm (the u-norm) implies one-stage contraction in another 

norm (the µ-norm). A final characterization of strongly excessive processes 

is given in the following lPmroa which can again be found in VAN HEE and 

WESSELS [10]. This lemma gives a probabilistic characterization of the 

transient behaviour of the process. 

LEMMA 5.5. A process is strongly excessive if and only if the:re exists a 

partition {skjk integer} of sand numbers a> 1, S ~ 1, such that for all 

7f E M 

co 

I for 
n=O 

PROOF. First note that the lemma states that there is necessarily a drift 

to lower Skora drift out of the system. 

The '1 if 11 part follows by defining 



µ --.- sup 
1TEM 

00 

u (X ) 
n 

where u(i) 
k 

:= (a.£) if i E sk with O < e: < 1 and Cl£ > 1. The ''only if'' 

part follows since 

• 
1. E s l < "> 

t-1 
a. < µ (i) < Q, 

- 0. with 1 < o:: < 
-1 

p • 
* □ 
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We conclude this section on the analysis of the basic assumptions by giving 

the relation between the use of weighted supremum norms (µ-norm) and the 

use of the ''similarity transfo:rmation 11 as described by PORTEUS [24]. For 

the finite state space-finite action space situation Porteus proposed the 

following transformation of the original process. Let Q be a diagonal 

matrix with positive diagonal elements 

Define 

and 

µ-1(1) 

Q --.. - µ-1(2) 

r ( f) : = Qr ( f) , 

..... 
p (f) 

-1 
:= QP(f)Q . 

... 

,...,* 
Then the optimal return vector v of the transformed problem is just equal 

* to Qv .. 

Viz. 

,..._,.* ...., -1~ -1 -1 
v = sup {I-P(f)) r(f) = sup (I-QP(f)Q ) Qr(f) 

fEF fEF 

= sup 
fEF 

-1 -1 -1 
[Q(I-P{f))Q J Q = r(f) = sup Q(I-P(f)) r{f) 

fE F 
-1 * = Q sup (I-P(f)) r(f) = Qv. 

fEF 

So the assumptions 2.3 can be replaced by the same assumptions with µ(i) = 1 

for the transfoLrned problem. 
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THE GENERATION OF SUCCESSIVE APPROXIMATIONS FOR 

MARKOV DECISION PROCESSES BY USING STOPPING TIMES 
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J .Wessels 

Eindhoven University of Technology, Eindhoven, The Netherlands 

1 .. INTRODUCTION 

In [SJ we introduced the standard successive approximation method 

25 

for Markov decision processes with respect to the total expected reward 

criterion. In fact there exist some variants of this method. These variants 

differ in the policy improvement procedure: the standard procedure may be 

replaced by a Gauss-Seidel procedure (see e.g. HASTINGS [1], Kushner and 

KI.El::tJMl\.N [ 4 ] , an overrelaxation procedure (see REETZ [ 11] and SCHELLHAAS 

[13]) or some other variants (see VAN NUNEN [8]). In [ 14] it has been shown 

that such variants can be generated by stopping times. This approach has 

been generalized in [6] .. In section 2 we will introduce the main idea of 

this approach. 

Policy interation -with its several variants- as introduced by HOWARD 

[3] is usually not viewed upon as a successive approximation technique. 

However, in [7] it has been shown to be an extreme element of a class of 

extended successive approximation techniques, the so-called value-oriented 

methods. This approach has been combined in L9] with the stopping time 

approach. In [6] a further generalization has been given (mainly with 

respect to the conditions). Value-oriented methods will be treated in 

section 3. 
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Section 4 will be devoted to upper and lower bounds for the techniques 

presented in the earlier section. Further·more some remarks on numerical 

aspects will be made. 

In this paper we will use the same notations as in [SJ, however, 

order to keep the proofs simple, we will work under somewhat stronger 

assumptions. In fact, our assumptions are the same as those in [6] .. For 

details we will refer repeatedly to [6]. 

ASSUMPTIONS. Our assumptions are the same as the assumptions in [SJ, with 

assumption 2.3 (i) replaced by 

(a) 

(b) 

3 V llr(f) - ~II ~ M 
M>O fEF 

TI 
sup JE. 

l 
TIEM 

co 

I I r ex ) I n n=O 
< 00 for all i ES. 

- -
These stronger ass11mptions make the spaces V and W superfluous. 

-As remarked in [SJ (remark 5.1) one may replacer in the assumptions 
-(and definition of V) by a vector b with b - r E W. We will do so in this 

paper in order to facilitate referring to [6] .. 

2. STOPPING TIMES AND SUCCESSIVE APPROXIMATIONS 

In this section we will show that each stopping time characterized by 
co 

a go ahead function o for the sequence {X} 
0 

induces an operator U~ on 
n n= u 

V, such that U0 is monotone and (usually) contracting. 

Furthermore all these contracting operators on V have the same unique 

* fixed point v. So we have for any v
0 

EV and any o: 

* and v ➔ v .. 
n 

for n == 1 , 2, .... 

DEFINIITON 2.1. A (randomized) go ahead function o is a function which 

maps 

• 
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G 
00 

co 
-- u .-

k=1 
into [O, 1]. 

By~ we denote the set of all go ahead functions. 

1 - o(s
0

,s
1

, ••. ,sn) will be interpreted as the probability to stoptpe 

process at time n, givon that x0 = s 0 , ... ,xn = sn and the process has not 

been stopped earlier. 

DEFINITION 2.2. 

(a) 

(b) 

(c) 

E is said to be nonrandomized if o(a) E {0,1} for all a E G; 
00 

is said to be nonzero if o(i) > E > 0 for some E and all i ES; 

is said to be transition memoryless if o(a) only depends on the 

the last two entries of a, for those a with at least two entries and 

satisfying o(s
0

, ••. ,sk) f O for all k < n, if a= s 0 , ... ,sn. 

So for a transition memoryless go ahead flll1ction the stopping probability 

only depends on the most recent transition. The relevance of this notion 

will become clear in the course of this section. 

EXAMPLES 2.1. Below some examples of nonzero go ahead functions will be 

given. These examples will be used repeatedly in this paper. 

(a) Define the go ahead function o (n = 1,2, .•. ) by o (a) := 1 if 
n n 

contains less than n + 1 entries, otherwise o (a) := 0. The go ahead 
n 

function o are nonrandomized, o is only transition memoryless if 
n n 

n = 1. 

(b) define oR by oR(s,s, •.. ,s) := 1 for alls and all sequences of finite 

length, 6R(a) := 0 otherwise. 

oR is nonrandomized and transition memoryless. 

(c) 0
8 

is defined by o8 (s
0

, •.• ,sn) := 1 if s 0 < s 1 < ••• < sn (any n), 

otherwise o
8

(a) := 0. 

(d) 

cH is nonrandomized and transition memoryless. 

o (i} = 1/2 for all i ES, o (a) := 0 elsewhere. 
r r 

o is transition memoryless. 
r 

Since we introduced a probabilistic go ahead concept, we have to 

incorporate it in the probability space and measure. Therefore we extend 
00 CO 

the space (S x A) (see [ 51 section 2) to (S x E x A) , with E := {O, 1}. 
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st.ochastic process {xt ,zt} t=O is extended 
00 

to {xt,Yt,z} 0 , t t= 
long as the process may go ahead. 

~Jt,w a:r1y starting ~itate i, go ahead function o, and any decision rule 
00 

n ,:lt~t:ermine a probability measure on (S x E x A) with the required pro-

1:>ert.i.e:r; it'A .:,n obvio11s wal'r (see [ 6 J for details) .. This probability measure 
"' 

b.y "fnitMO .. Evp..,'\.ctation l.,,.will be w i 11. be denoted .JC . • ,.,.. <! ... SI 
.l. 

'ff 

denoted 
n,o 

by IE. . Note 
l. 

ar1.d lP'' are equal for events which 
i 

do not depend on the varia-

In fact the go ahead concept induces a stopping time. 

DEF' INITI ON 2 .. 3 .. 

defir1ed by 

The random variable T taking values in {0,1, .•. , 00 } 

:•Y ·•== 
0 

.... ~ Y . = O and Y = 1 
n-1 n 

• • Yt = 0 for all t = 0,1, •.•• 

,- .is a randomized stopping time with respect to x
0 

,x
1
,... .. 

flow we will introduce our operators. 

• 
l.S 

DEFINITION 2 .. 4 .. For 

rule) n- the opera.tor 

each cc A and each strategy(= nonrandomized decision 

Ln on Vis defined by c 

1f 

L V 
0 

LEMMA 2 .. 1. L; is monotone and (for nonzero 

Therofore L; possesses a unique fixed point 

PROOF .. The contraction 

matrix with (i,j) entry 

nonzero. 

for v e V, with v (XT ) : = 0 

o) strictly contracting on v. 
• 

.in V. 

'IT 
:= p 0 , where P

0
(,r) is the 

< 1 if and only if o is 

EXAMPLES. Tak f bi . ·. · e or n an ar trary stationary strategy ( f, f, .... ) .. 

= r(i,f(i}) + l pf(i) (i,j)v(j) ; 
• 
J 
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{b) [1 f(i)(. ")]-1[ (' ") - p l,J. r l.,f(l) + \ f(i)(. ') (')]· l p l.,J VJ , 
j~l 

(c) (L; v} (i) = r(i,f(i)) + 
H 

L f (i) . . 1T • 
p ( J., J) (L

O 
v) { J) + \ f(i) (' ') (') l p i,J VJ i 

j <i H . >. J-1 

(d) + + , fCi) c· ') c·>J l p l,J VJ ; 
• 
J 

(e) let 8 be nonzero, then 
'IT 

v 0 = v(~), independent of o. 

REMAR..~ 2.1. If 'IT is a nonstationary strategy then 

{pa (i, j) , r (i, a) } and go ahead functions o I and o '' 
(see lemma 5.1.7 in [6]). 

We now come to the operators U
0

• 

DEFINITION ~- .6. The operator U
0 

on Vis defined by 

'IT 
U0v := sup L0v, 

'IT 

there exist values for 
1T 1T 

such that v O, i: v 6,, 

where the super1num is taken componentwise. 
1T 

Note that L
0 

has only bee.n defined for strategies TI, so the supermum 

is only taken over the strategies (= nonrandomized decision rules). Exten

sion to the randomized decision rules would not affect the value of U
0
v. 

THEOREM 2.1. Let 8 Eb, then U0 is monotone and (only for nonzero 8) 

strictly contracting with contraction radius v
0 

:= 

* V 

1T 
s~p p 0 . Therefore U0 

possesses (for nonzero o) a unique fixed point. is fixed point for 

all U
0 

with 8 nonzero. 

PROOF. For details we refer to the proof of theorem 5.2.1 in [6]. With 

respect to the last statement we remark: 

V('IT) if 1T = (f,f, •.• ) • 

* Since f may be chosen such that v(n) ~ v - sµ ([SJ theorem 3.1 

* * (ii)), we obtain U
0

v ~ v. If we had * * Uov > V, then it would be possible 

* to construct a strategy TI' with v(n') > V • 
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This theorem serves as the basis for a a-based successive approxi-

mation algorithm, since V 
n 

* norm to v 

In the definition of U0 we take the supermum over all strategies. One 

would naturally prefer to restrict oneself to Markov strategies and even 

use the algorithm for constructing £-optimal stationary strategies. The 

following theorem (for the proof we refer to [6] theorem 5.2.2 and 5.2.3) 

shows that the concept of transition memoryless go ahead functions plays 

a crucial role in this problem. 

THEOREM 2.2. 

(a) Let 8 be transition memoryless, E > 0, v EV. 

Then there exists a policy f, such that 

(b) Leto be not transition memoryless, then there exist values for the 

parameters {pa (i, j) , r (i, a) } , such that for some v E V and some e:: > o 
there is no f E F with 

Hence, if o is transition memoryless we have 

f sup L
0
v, 

f 

where the sup is not necessarily componentwise. Whereas if 8 is not 

transition memoryless 

f 
sup L 0v 

f 

may only be defined componentwise and may not be equal to u 
O 
v. For non

zero and transition memoryless go ahead functions we now obtain the 

following iteration procedures 
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(a) (if sup 
f • attained for f). L
0

v .1.S some 
f f 

Choose V, define V Uovn-1 and choose f such that n 
VQ E -- V -

Lo vn-1' 
-• -n n n 

then 

!IV V *II n 
V * II ( i) - < \) 0 II V 0 --n 

II V ) II -1 
V II ( ii) - v(f < ( 1 - Vo) vcSllvn --n n n-1 

( iii) if VO satisfies U0v
0 ~ VQ, then V < 

n-1 -

(b) Chooses> 0 and v 0 EV with v 0 ~ U
0

v
0 

- €µ. 

Choose f (n = 1, ... ) such that 
n 

f 
L n > 

0 V n-1 -

define 

---• 

then 

* 

V 
n 

( i) II V 
n 

- V II for n sufficiently large 

* (ii) V l ~ V ~ V(f) ~ V. 
n- n n 

* < v(f ) < V - - • n 

In fact, as in the case of o1 , more efficient lower and upperbounds can 

be obtained (see section 4). 

EXAMPT,ES 2 .. 3.. The examples 2. 2 (a) - (b) induce numerically well-executable 

policy improvement procedures. In fact o
1 

induces the standard successive 

approximation technique based on Gauss-Jordan-iteration; oR induces 

Jacobi iteration (compare Porteus [10]); 0
8 

yields Gauss-Seidel iteration; 

other choices of o yields overrelaxation and combinations of overrelaxation 

and Gauss-Seidel iteration (in this respect lemma 7.2.3 in [6] has inter

esting consequences). 
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3. VALUE ORIENTED METHODS 

In the foregoing section we developed a whole class of policy im

provement procedures or successive approximations techniques. As we saw 

in section 2, at then-th stage of any policy improvement procedure the 

best estimate for the optimal strategy is the stationary strategy fn. This 

makes the next policy improvement more efficient if the value v 
n 

• 1s nearer 

to v ( f ) • In fact the policy iteration 
n techniques owe their high efficiency 

the policy improvement part to the fact that they have v = 
n 

v(f ) . A 
n 

disadvantage of policy iteration is in fact the compl1tation of these v. 
n 

However, there is an alternative in combining the advantages of policy itera-

tion and successive approximations. Namely suppose f is chosen such that 
n 

then define 

Note that 

= v(f ) 
n 

(A E {1,2, ... ,w}) • 

, 

so by the choice of A we in fact determine how good v approximates v (f ) • 
n :l 

The choice 

the choice 

= 1 gives the successive approximation of section 2, whereas 

-- gives for any transition memoryless and nonzero go ahead 

function a variant of the policy iteration technique. 

Below we give a more forn1al treatment. 

DEFINITION 3. 1 Let 8 be nonzero and transition memoryless and suppose 

f 
assume that we have 

(t.) 
the operators U 0 

attained for some policy if v EV. Furthermore we 

a unique way of designating such a policy. We define 

on V for A= 1,2, ... , 00 by 

I 



if the sup in U0v is attained for f. 

Note that 

= V (f) . 
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It does not seem revolutionary to conjecture that v 
n converges 

* to v if v 0 E V. However, one becomes somewhat more prudent as soon as one 

1 . th t U ( A ) . . th . 1 t . rea izes a O is nei er necessari y mono one, nor necessarily con-

tracting as one can see in the following simple example for o = a 
1

, S ~ { 1, 2}, 

µ = 1, A=· {1,2} : p
1

(i,2) = p
2

(i,1) = 0.99, r(i,1) = 1, other probabili-

ties and rewards being zero. 

(A) = (100,100)T, 

h . (A) (0 O)T )..-+oo w ereas lim U0 w = , . 
11.-+oo 

We will now prove that the proposed iteration step leads to a con-

verging algorithm. 

THEOREM 3. 1 • Let the situation be such that 

VQ E 

Then 

and 

( ) 
v := U~ v 1 converges n u n-

II V 
n 

in norm to 

* - V II 

* V ~ V ~ v(f) ~ V 
n-1 n n I 

* V 

is defined and choose 

where f is the policy (unique, possibly after tie breaking) which n 
. . f 

maximizes L0vn-l• 

PROOF. By ass11mption we have 

Hence 

< .. . . -
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Since U0v 1 
- Lo(f2)v1 > Lc(fl)vl, one obtains. v

1 
< v2 ~ v(f

2
). - - -

* induction s v(f ) By this • ::;; V S V On the other hand gives V 
n-1 • n n 

n 
to v* * V > UovO, which tends for n ➔ 00 • Therefore V ➔ V and -n n 

II V 
n 

* - V II s * - V II. 

In the same way as in [5] for the standard algorithm one may obtain 

more sophisticated bounds (see section 4). Futhermore the assumption that 

the sup in U0 v is attained can be weakened as in [57 by introducing 

approximations (in norrn) of the sup. This can be extended in several ways. 

For a detailed description of these possibilities see [6). 

As already stated, the case = o::i represents a variety of policy 

iteration procedures. In fact the procedures {for any nonzero transition 

memoryless o) generate sequences of policies with increasing value. Hence 

an optimal policy is obtained after a finite n11mber of iterations if the 

state and action spaces are finite. 

If o = o1 , then we have the standard policy iteration algorithm as 

introduced by HOWARD in [3] for the finite state, finite action discounted 

case. If 

HASTINGS 

8 = o H' 
then we have the Gauss-Seidel variant as introduced by 

[ 1 J. 

4. SOME REMARKS ON NUMERICAL AND OTHER ASPECTS 

For the algorithms based on the operators U0 
(section 3) we proved goemetric convergence. However, the extrapolation 

based on the convergence rate only are usually not very good. As in the 

case of u8 (see [5]) one can obtain better bounds rather easily. For the 

case the 

based on 

is attained and exactly computed in the algorithm 

1,2, ..• , 

V 
n 

-1 
+ (1-pf ) IIL.r(f +l)v 

n+1 u n n 

V + (1 -
n 

- V II s 
n -

- V II 
n 

, 

> V . - o· 

* S V 



where 

:= inf 
f 

-1 . \ f(i) . . . 
µ ( 1. ) LP ( 1 , J ) µ ( J ) , 

• 
J 
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n u · f - 1 ·) ,.) V := 1n µ (1 V 1 • - f 

For a more detailed <:iescription we refer to [6 1. The proof in this 

case is completely similar to the proof in the case 6 = o
1

• 

For numerical experience it appears that \1al ue oriented methods can 

give a considerable gain in computational efficiency. This is especially 

true if the policy improvement requires many operations. Generally speak

ing one may say that U0-based successive approximations methods only need 

a smaller number of iterations to reach a near-optimal policy, however, 

the proof of this near-optimality requires relatively many additional 

iterations. So in quite a lot of iterations 

tially. Therefore it is efficient to choose 

f does not change substan
n 

A greater than one. In fact 

it is still more profitable to increase the value of A in subsequent 

1terations4 To give an idea of the gain in computational efficiency we 

mention that we found in a number of examples 

computing time of 20 - 40% when we took A= 5 

with o = o1 a saving 

instead of A= 1 (in 

• in 

both 

situations we used a suboptirnality test; the numbers of states ranged 

between 40 and 1000), see [8]. 

In all procedures (all and all A) the standard suboptimality test 

is allowed and also the more sophisticated and more efficient suboptimality 

test which is described in the paper by HASTINGS and VAN NUNEN [2] in 

this volume .. 

Instead of defining a-based operators U
0 

one may transform the data 

in the problem and solve the transfo:r:rned problem by the standard succes

sive approximation methods. This approach has been presented by PORTEUS 

[10]. In our notation the transfo.rrnation is 

,.., 
r (f} 

,.._, 

f o-r-i 
: = JE , I r (X , z ) , 

n=O n n 

(see proof of lemma 2.1) • 
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By introducing the matrices Q(f) with Q(f) (i,j) := pf(i,j)o(i,j) we obtian 

00 ......, 

I Qk (f) [P (f) p (f) Q(f)] - -- , 
k=O 

00 

r <f> I Qk (f) r(f) -- , 
k=O 

being exactly Porteus' preinverse transfo:rrnation. In fact we showed in 

section 2, that the transformed problem possesses the same optimal value 

vector as the original problem. 

In fact some extension is possible with respect to the conditions 
(A) 

under which the U0- and U0 -based procedures converge. We mentioned 

already the kind of conditions of [SJ. Another approach is in considering 

a fixed c and requj re strict or N-stage contraction for U 
O 

on V or W. 

In [ll]Reetz chooses such an approach for o = 0
8

• One might conjecture 

that -as in the case of o1 {see [SJ) -N-stage contraction implies 1-stage 

contraction with respect to a different norm. 
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1. INTRODUCTION 

The main purpose of this paper is to investigate the following 

question: can the theory of successive approximations for Markov decision 

processes be extended to Markov games? 

A preliminary answer to this question can be very short, since 

SHAPLEY [14] introduced already in 1953 successive approximations for 

Markov games, which were only introduced in 1957 for Markov decision 

processes [BELLMAN, 1]. However, for Markov decision processes, under 

relatively weak conditions, several types of successive approximation 

methods have been derived, together with sophisticated extrapolation 

procedures, see e.g. [8] and [9] in this volume. So the present paper will 

be mainly concerned with the question of generalizing this theory to 

Markov games. For an elementary treatment of dynamic programming in Markov 

games we refer to [20]. For other aspects of the theory of Markov games 

we refer to the recent bibliography and survey by PARTHASARATHY and 

STERN [ 10]. 

In section 2 the model will be introduced, also the finite stage 

case will be treated. We will allow unbounded rewards, but as in [8] and 

[9] contraction will be assumed. In section 3 the infinite stage case 

will be treated. In that section we will show that the standard successive 

approximations technique (extrapolations included) for the expected total 

reward criterion may be extended to contracting Markov games. In section 4 
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it will be shown that this is less easy for the policy iteration and other 

value oriented methods. However, a suitable extension will be presented. 

In section 5 positive Markov games with stopping actions for the second 

player will be considered. These games are not necessarily contracting . 
• 

Section 6 is devoted to Markov games wit'1 tr1e average reward criterion, 

and section 7 to the nonzero-sum case. 

2. THE MODEL 

As in [8] and [9], we consider a system, which is observed at descrete 

points in time t = 0,1,2, .... The system can be in one of a countable 

number of states:S = {1,2, .•. }. In each state i and at each time t the 

proceedings of the system may be influenced. This may be done by two 

players P 1 and P2 • Except in section 7 these players are supposed to have 

completely opposite aims. In each state i tr1ere are two finite (nonempty) 

sets l~i and Li of allowed actions for P 
1 

and P 
2 

respectively. If at some 

time t the system is in state i and the players choose actions k and 

from I<. and L. respectively, then this 
1. J. 

results in an immediate reward 

r(i,k,i) for P 1 (to be paid by P
2

) and it 

of the system to state 

L,p(jji,k,£) ~ 1. 

j with probability 

further results in a transition 

p(jli,k,t). We suppose 

J 
A strategy TI for P 1 specifies for all times t and all possible his

tories ht the probability nt(kjht) of choosing action k. Here the history 

ht equals the sequence of states and actions in the past: 

wheres is the state of the system at time T and k, £ are the actions 
T T T 

chosen at time T by P 1 and P2 • If these probabilities only depend on st 

instead of ht, then TI is called a 

not depend on t explicitly then TI 

Markov strategy. If, moreover, TI 
t 

is called a s~ationary strategy. 

does 

Stationary strategies correspond to policies, where a policy f for 

P 1 is any function on S such that f(i) is a probability distribution on 

we will use the notation f both for policies and stationary strategies, 

I<. , 
.l. 

by f(i,k) we denote the probability of 

is denoted by F, the set of strategies 

k E I< .• The set 
.l. 

by TI. Similarly 

tegies y Er and policies g E G for the player P
2

. 

of policies 

one defines 

for P . 
.l. 

stra-
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NaI' Arl, IONS 

r(f,g) will denote for f E F, g E Ga real valued function on S with 

r(f .g) (i) := \ to-,- f(i,k)g(i,f.)r(i,.k,£) ; 
y lk EK. l)l.,,f..JA.i. 

l. l. 

P(f,g) will denote a nonnegative ft1nction on S x S with 

P(f,g) (i,j) := lk EE. l££L. f(i,k)g(i,J~)p(jli,k,R,) . 
l. l 

Functions on S and S x S respectively will be treated as columnvectors 

and matrices, with matrix products and matrix-vector products defined in 

the obvious way. 

We will work under the following assumptions in this section and in 

sections 3-4. 

ASSUMPTIONS 

It is supposed that there is 

(as in [8] and [9]) a Banach space 

lwl = sup lw(i) lµ-
1 (i), such that 

a positive functionµ on S, which defines 

W of vectors w with the norrn 

µ . 
J. 

(a) llr(f,g)II :SM 
µ 

µ 

for some Mand all f E F, g E G. 

(b} DP(f,g)I :Sp< 1 
µ for some p and all f E F, g E G. 

In order to simplify our notations we will write Wand II II instead 

of W and D H whenever this is possible. µ µ 

REMARK 

These assumptions are somewhat more restrictive than those in [8] 

and even those in [9]. Howe,ter, as shown in [21], assumption (a) ma~, be 

weakened to 

-r ·-.- sup inf r(f,g) E W. 
ft::F gEG 

Furtl1ermore the use of the Harrison translation does not present 

essential difficulties. To avoid technical details we will stick in this 

and the following two sections to the assumptions stated before. 

As in [8] and [9] the transition probabilities may be defective, i.e. 

l.p(jli,k,1) ~ 1. This may be repaired by the introduction of an absorbing 
J 

state. We will not do this explicitly. 
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Also the condition l<i, Li finite is not very essential .. It may be 

replaced by i::., , L, compact, p ( j Ii, k, t) , r ( i, k, R.) continuous in k, 9,. 
JI,. l. 

A starting state i and strategies n E TI, YE r determine a stochastic 
Cl() 

process {(St,Kt,Lt)}t==O in an obvious way, where St is the state at time t 

and Kt, Lt the actions chosen at time t by P1 and P2 respectively. Proba

bilities 

E~•'Y'. If 
1 

referring to this process are denoted by P~'Y, expectations by 
l. 

the index i is deleted, a column vector of probabilities or 

expectations is meant. 

The assumptions guarantee (compare [8]) 

and even 

lE1r,y 
i 

< 00 

00 

l lr(S ,K ,L) IR s M(l - p)-lpN. 
t=N t t t 

Therefore the total expected reward (for P 1) is properly defined for 

any pair of strategies: 

* 

Strategies * * 
'JT I y 

00 

t=O 

are said to be optimal if 

* * * * * V(1r,y ) S V(n ,y ) =: V S V('rr ,y) 

V will b,e called the value of the game. 

for all n € IT, y Er. 

Analogous to [8] we introduce the following operators in w. 

L(f,g)w := r(f,g) + P(f,g)w 

Uw := max min L(f,g)w, 
fE:F g~G 

with max-min taken componentwise. 

Note that (Uw)(i) is the value of the matrixgarne with entries 

r(i,k,!) + I p(j)i,k,1)w(j) • 
j 



Now define w := Uw 1 (n = 1, •.. ,T) for some w0 E Wand find 
n n-

policies f and g which satisfy for n = 1, .•. ,T 
n n 

L(f,g )w 1 ~ L(f ,g )w 1 ~ L(f ,g)w 1 n n- n n n- n n-
for all f,g. 

Then we get the following result for the T-stage Markov game with 

terminal reward w (actually for this result the assumption p < 1 may be 

replaced by p < oo): 
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THEOREM 1 The T-stage Markov game with terminal reward w
0 

E W, • i.e. the 

game with criterion function 

T-1 
:= ]E1T,Y [ I 

t=O 
r(S ,K ,L) + w0 (ST)] 

t t t 

has the value w and the strategies 
T 

and ~T' which might be denoted by 

(fT, • •. ,f
1
), (gT, .. - • ,g1 ), are optimal. 

The proof proceeds by induction. For details see [20]. □ 

This shows that in the finite-stage case optimal strategies may be 

found by dynamic programming or successive approximation. In the following 

section we will extend this result of the infinite-stage case. For that case 

our methods of proof bear more heavily on the assumptions. Expecially 

(compare e.g. [21], [17]) it is very essential that the assumptions imply. 

LEMMA 1 L(f,g) and U are contracting with contraction radii IIP(f,g)II and 

v respectively, with 

v S rnaxllp(f,g)U Sp< 1 
f,g 

As a consequence of this lemma the operators L(f,g) and U possess unique 

fixed points. For L(f,g) this fixed point is exactly V(f,g), the criterion 

value for the stationary strategies f,g in the infinite-stage Markov game. 

* For U this fixed point will be shown to be equa]. to the value V of the 

game. 

3. THE 00-STAGE MARKOV GAME 

* * * Let w E W be the unique fixed point of U in W, so Uw = w. 

* * Let f, g satisfy 

I ' 

I 
I 
' 

I 
I 

I 
' ' 
! 
·l 
i 
! 
i 
! 
' ' 
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* * * * * * * L(f,g )w s L(f ,g }w ~ L(f ,g)w for all f E F, g E G. 

We will prove the following result, which has been proved already in 1953 

by SHAPLEY [14] for the finite state case with 

• 
J 

THEOREM 2 * * The stationary strategies f and g are optimal in the 00-stage 

* * * Markov game and w is the value of the game, i.e. V = w. 

* PROOF. Obviously (theorem 1) the T-stage game with terminal reward w has 

* * * value w and f, g are optimal stationary for that game. 

Suppose P
1 

* plays f and P
2 

an arbitrary strategy y. Then for all T, 

* V(f ,y) * (T) * 
~ w - p w 

T 
MP 

(T) 
where P is the matrix with (i,j) entry 

One may show 

(T) * p w ;;;; T * p llw IIµ • 

Hence 

* * * * V(f ,y) ~ w = V(f ,g ) . 

Similarly one shows 

Hence, 

* * V(1r,g) ~ w 

* * w = V • 

for all rr e II. 

* IP f ,Y 
• 

1 

D 

So the 00-stage gam~ possesses a value and optimal stationary strate

gies. It will now be investigated whether successive approximations produce 

E-optimal stationary 

close. 

* strategies and bounds for V which are arbitrarily 
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1T E TI is called £-optimal if 
E 

y Er is called £-optimal if 
E 

* 
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* V(1T ,y) ~ V - £µ for ally E f. 
£ 

V(1T,y) 
E: 

for al 1 TI e: II. 

An obvious way of app~oximating V is suggested by the fixed point property 

of U: 

THEOREM 3 

µ-norm) to 

Choose w
0 

* V and one 

w 
n 

- v(l -

E W. Then w := Uw 1 (n = 1,2, •.. ) 
n n-

converges ( in 

actually gets the following bounds 

-1 
v) II w 

n 
- w 111 µ ~ n-

* V 
-1 

~ w + v C 1 - v) II w - w 
1

11 µ. -
n n n- D 

However, somewhat better estimates can be given and one may simulta

neously give bounds for the policies fn and gn (see section 2) found in the 

n-th iteration. 

We first introduce some notations: 

A 
n 

\) 

n 

a 
n 

b 
n 

:= inf 
• 

1 

:= sup 
• 

1 

sup 
• 

J.. I g 
. ---

inf 
li,g 

inf 
i,f 

--.-
sup 
i,f 

(w (i) 
n 

(w (i) 
n 

µ-1(i) 

-1 
µ (i) 

-1 
µ (i) 

-1 
µ (i) 

-1 
- w 1 (i))µ (i) 

n-
, 

-1 
- w l (i) ) µ (i) 

n- I 

I P(f ,g) (i,j)µ(j) 
n • 

J 

P(f ,g) (i,j)µ(j) 
n 

J 

I P(f,g ) (i,j)µ(j) 
n • 

J 

I P(f,g ) (i,j)µ(j) 
n • 

J 

if >- < 0 , 
n 

A > 0 if - , 
n 

if \) < 0 , 
n 

if > 0 \) - • 
n 

THEOREM 4 Choose w
0 

E W, define w 
n := Uw l n-

(n = 1,2, ... ). Let 

g € G satisfy 
n 

• 

L(f,g )w 
1 

~ L{f ,g )w 1 = w ~ L(f ,g}w 1 . 
n n- n n n- n n n-

f 
n 

E F, 
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* Then we have the following bounds for V , V(f ,g ), V(f ,y),and 
n n n 

(a) 

(b) 

(c) 

w + a A (1 -
n n n 

-1 
a ) µ :s; 

n 

V (f ,y) 
n 

~ w + a A (1 
n n n 

V(~,g) :s; w + b v (1 
n n n n 

-1 

* V :s; w + b v (1 -
n n n 

-1 
b ) µ 

n 

-1 
- a ) µ 

n for all y E r, 

-1 
- b ) µ 

n 
for all 11' E II , 

I 

V(TI,g ): 
n 

(d) w +a;\ (1 
n n n 

- a) µ $ V(f ,g) 
n n n 

:s; w + b v (1 
n n n 

-1 
- b ) µ • 

n 

PROOF. a, dare direct consequences of band c. The proof of c will be 

sketched (for more details proofs in somewhat different situations, see 

[17], [21]). 

It suffices to prove c for stationary strategies~ (compare [8]). 

Consider a policy (or stationary strategy) f. 

Hence 

L(f,g )w l ~ w ~ w l + V µ 
n n- n n- n 

n n- L(f,g )[w l + 
n n-

(by definition) 

\) µ] 
n 

= L(f,g )w l + v P(f,g )µ 5 w +vbµ . 
n n- n n n n n 

In this way one obtains 

Hence 

N 
L (f,g )w l n n-

V(f,g ) == 
n 

lim 
N-+oo 

5 w + v (b 
n n n 

N-1 + ••• + b )µ 
n 

:s; w 
n 

+ b v (1 
n n 

• 

• □ 

In this way tl-ie standard successive approximations technique may be 

extended to Markov games. On the upper- and lowerbounds of theorem 4 one 

may base tests for suboptimality (see [16] and for a more detailed treat

ment [12]}. 
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In [9] it has been shown that an extensive class of successive 

approximation techniques may be generated by using stopping times. This 

also holds for Markov games. This will not be worked out in this paper, 

since the concepts and proofs are rather straightforward (for finite 

state discounted Markov games this has been worked out in [16] and [17]). 

4. VALUE ORIENTED METHODS 

In this volume VAN NUNEN and WESSELS [9] consider a set of value 

oriented methods for MDP which can be viewed upon as a special type of 

successive approximations method. One of these methods being Howard's 

policy iteration method. A straightforward generalization of Howard's 

method to Markov games has been proposed by POLLATSCHEK and AVI-ITZl:·JAK 

[11]. This generalization may be formulated as follows 

ALGORITHM 

step 1 v 
O 

( i) : = 0 for al 1 i E S • 

step 2 
' 

{Policy iteration). Determine policies f and g, such that 
n n 

L(f,g )v 
1 

~ L(f ,g )v 1 ~ L(f ,g)v 1 . 
n n- n n n- n n-

ste12 3 (Value determination) V := V(f ,g ) 
n n n • 

Pollatschek and Avi-Itzhak proved in the finite state case that the 

algorithm converges under the following condition 

max L{max p(jli,k,l) 
i j k,!l 

-min p(j[i,k,!l)} < 
k, .Q., 

1 -max 
i,k,9.. j 

In [18J essentially the following example has been given which 

proves that this algorithm does not converge in general for finite state 

discounted Markov games. 

EXAMPLE 

3 6 There • but state. In this state both players l''J.ave 1.S one 
3/4 1/4 

two actions. If P 1 picks action 2 and p2 action 1 then 
2 1 

3/4 3/4 P 2 pays p1 2 uni ts .::i.nr1 the system stays • state 1 with 1n 

probability 1/4, etc. 
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by the A policy f is completely deter111ined 

we apply the algorithm we find f 1 (1,1) = 
g 2 (1,1) == O, v

2 
= 4, £

3
(1,1) = g

3
(1,1) = 1 1 

probability f(l,1). If 

g 1 (1,1) = 1, v 1 = 12, £ 2 (1,1) = 

V 
3 

= 12, etc. So the algorithm 

cycles without ever finding an optimal pair of strategies. 

A somewhat more refined extension of Howard's method is the following. 

This extension has been inspired by Hoffman and Karp's method [5] for the 

average reward Markov game, and was presented by POLLATSCHEK and AVI-ITZHAK 

[11]. 

~OEE_T~' (R,K) 

step 1: Choose v0 such that uv0 s v
0

• 

s,tep 2: Determine 

step 3: Determine 
t& 

Uv 
n 

V 
n+1 

and a policy gn+l 

:= max V(f,g 
1
). 

f n+ 

with Uv 
n 

for all f. 

As in the case of MDP one may consider this algorithm as an extreme 

element of the following set of value oriented methods: 

ALGORITHM (A) 

st~p 1: Choose v 0 such that Uv
0 

$ v
0

• 

st~p 2: Determine Uv and a policy g 
1 n A n+ 

step ,? : Deterruj_ne v 
1 

: = u v , where 
with L(f,g 1)v $ uv for all f. 

n+ n n 

n+ gn+l n 
U v := max L(f,g)v. 

g f 

the operator U is defined by 
g 

For A= 1 we have again the standard successive approximations method 

treated in section 3. For A= 00 we have Hoffman and Karp's algorithm. 

One may prove, using the monotonicity of the operators and 
v converges 

n monotonically to v*. 
Uv

0 
$ v

0
, that 

For the finite state case the proof is given in [18]. The extension of 

this proof to the case we deal with here is straightforward. One just has to 
prove by induction v* ~ :s; Uv $ 

n * n * llu v O - V II ~ v llv O - V II 

V 
n n-1 v 1 , and v s unv. Since 

n- n 0 
* n. * we also have llv n - V II ~ V 11 Vo - V II • 

A possible extension is again the introduction of the stoppingtime-
based L 0 and u

0 
that instead of 

operators as has been executed in [17]. Another extension is 

in each iteration using a fixed A one may use a different A 
n 

step. Note also, that if the first player has only one action in each state 

we get the set of value oriented methods presented by VAN NUNEN and WESSELS 
[9] for MDP. 
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5. STRICTLY POSITIVE MARKOV GAMES WITH STOPPING ACTIONS 

In this section we will consider a type Markov game for which succes

sive approximations still converge but where the U and L (f ,g) operators 

are no longer strictly contracting. We release the assumptions of section 

2 and replace them by: S, :n<., 
l. 

lL . all finite 
1 

l p(j\i,k,t) $ 1, r(i,k,i} > 0 
jES 

for all i, k and i, 

and moreover 

{i E IL . I p(jji,k,t) = 0 for all k e: lK.} 
1. 1. 

for all i ES • 

By II vii we mean standard maxim1Jm norm, U vii = rnax } v ( i) l . 
iES 

So all rewards are strictly positive and -since S, lK., JL. are finite-
1. 1. 

also bounded away from zero. The assumptions allow V(n,y) (i) =~for some 

d · B t · st0P · P 1 · · d · 1 ,r, y an 1.. u since JL i is nonempty 1 can stop p ay1.ng J.mm~ 1.ate y 

in each state and thus restrict his loss to some finite amount. 

As in section 2 we have the following leraii,a. 

LEMMA. The n-stage game with te.rrn.i.nal reward w O has the value 

with optimal strategies (fn 1 ••• ,f 1) and (gn, ••• ,g1) satisfying 

L(f,gk)wk-l s L(fk,gk)wk-l =: wk S L(fk 1 g)wk-l for all f and g. 

The 

infinity. 

problem remains 

Let rSTOP(i) be 

to investigate 

defined as the 
STOP 

how w 
n 

behaves as n tends to 

value of the matrix game with 

entries r(i,k,i), k 

w 
n 

STOP 
Sr ,nElN, 

loss STOP (.) b tor 1. y 

We also have 0 

e: JK . , Ji E JL . .. Then for 
1. l. 

since in state i the second 

any w
0 

player 

we obviously have 

may restrict his 
STOP 

choosing 

~ un-10 

a good randomized action in JL. 
l. 

n < 2 3 h 11.·m uno ex1.·sts. :S: u O, - n = , , ••• , ence 

* * * * n >c:o Call it w. Hence w is a fixed point of u: w =Ow. 

THEO·REM 5 • w 
• W II I 1 NA a,.,a.lN 4 

N 
any V E IR • 

* is the unique fixed point of U and n * U V -+ W (n -+ co) for 
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PROOF. First we prove the uniqueness. Let u.and v be fixed points of U 

which have (f ,g) and {f ,g) as optimal strategies in the one-stage game 
U U V V 

with terrni. nal payoff u and v, respectively. Then 

n n 
u = U u = L (f ,g )u u u 

n n 
~ L (f ,g )u ~ L (f ,g )v + 

V U V U 

f ,g 
(S 

n 
€ S) II u - VII 2: V - IP V. U (S 

n 
E s) II u - VII • 

f ,g 
Obvi.ously for all i E: S IP . v u (S E S) ➔ 0 (n -31- co) since otherwise 

1. n 
V(f ,g) (i) = 00 contracting V{f ,g) ~ u. Hence u ~ v. 

V U V U 

Similarly u ~ 

So it remains 

v and thus u = v. 
n * to show U v + w for any v. This follows from 

unv ~ L(f *,g ) ••• L(f *,g1)v ~ 
w n w 

* L(f *,g ) ••• L(f *,g 1 )w + 
w n w 

f *, (g , ••• ,g 1) 
- IP w n (S E S) ll v - w *11 

* ;::: w 

* 

n 

* ES) llv-wll. 

Again it • obvious that lP 1.S 

f , (g , ••• ,gl) 
n (S € S) ➔ 0 (n + 00 ) • 

Therefore lim inf Unv 
fl•)OO * Hence lim unv - w - • 

* > w - • 

□ 

n 
Similarly one may show lim sup 

n >oo 

* 

n 
U V ~ * w . 

Here it is again possible to determine bounds for w using that 

IP . n' (gn, · • • , 9 1) (S E S) converges to zero geometrically. This has been 
1. n 

worked out in [ 19 J. 
It is not necessary to ass,mie that P 

2 
can quit playing in any state. 

It is sufficient to assume that P 2 can restrict his loss to some finite 

amount. This, more general case, has been treated by KUSHNER and CHAMBER

IJ\IW [6]. 

6. AVERAGE REWARD MARKOV GAMES 

In this section the state space will be assumed to be finite. In the 

previous sections we have seen that it is possible to extend many of the 

results with respect to successive approximations in MDP to Markov games. 

In the average reward case however, we encounter substantial difficulties. 

This is illustrated by the following example called the big match. It is 

• 
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due to GILLETTE [ 4] and studied by BLACKWELL a11d FERGUSON [ 3] .. 

EXAMPLE .. 

1 2 

1 

0 

2 

IlC 
1 

3 

1/ 
3 

= n.. 1 JK - Tr 2 - .u..,2 = 

If in state 1 P 1 picks action 2 and P
2 

action 1 the payoff will be zero and the 

system moves to state 2, etc. So states 

2 and 3 are absorbing. 

One easily argues that, if P 2 takes in state 1 action 1 with proba

bility 1/2, the average reward for P 1 will be 1/2, whatever, strategy P 1 

uses. But it is not very clear how P1 can guarantee himself an average 

payoff of 1/2. Any Markov strategy guarantees only O. This is seen as 

follows: Let p(n) denote the probability that P 1 has picked action 2 

before or on time n, and define p := lim p(n). Now let£> 0 be given 

arbitrarily and let !'J 
E: 

be such that 

p - p (N ) s; e: .. 
E 

n-+oo 

Then P
2
's strategy ''play action 1 until time 

after'' gives an average payoff of at most E. 

N 
E 

and action 2 there-

Blackwell and Ferguson show that P 1 can guarantee himself the 

average payoff N/2 (N + 1) by playing strategy TTN defined as follows: Let P 2 's 

first n choices be t 1, ..... ,£n, tk E {1,2}, and let en be the excess of l's 
-2 

over 2 's among t 1, ..... , in .. Then take action 2 with probability (N + c n + 1) .. 

The difficulties here arise from the fact that there are strategies 

with more than one recurrent subchain. 

Under the assumption that all pairs of stationary strategies induce 

an irreducible Markov chain (one recurrent subchain and no transient 

states) HOFFMAN and KARP [SJ show that the game has a value and that their 

algorithm (H,K) from section 4 yields c-optimal stationary strategies. 

RIOS and YANEZ [13] consider the gan1e with for all i,j,k and t p(jli,k,t)~ 

~ P > O. (Then obviously Hoffman and Karp's irreducibility assumption is 

satisfied.) They show that in this case tho standard successive approxi

mations method converges. Recently TANAY.J.\ and WAKUTA [ 15], dealing with 

compact state and action spaces under appropriate continuity assumptions, 



52 

consider the following condition: 

and all i, 7T and y. And show that 

lP~,Y (S = s
0

) ~a> 0 for some s
0 

ES 
J. n. 

in this case the game r1as a value and 

that successive approximations converge. 

7. NONZERO-SUM TWO-PERSON MARKOV GAMES 

This section show that finite-stage two-person-nonzero-sum Markov 

games do have at least one Nash equilibrium point [7] which may be deter

mined by successive approximations. 

The main difference with the zero-sum games of the previous sections 

is that now we have two reward functions r 1 (x,k,.t) and r
2

(x,k,2-), where ri 

denotes the reward for P. , i = 1 , 2. Further1nore we have two terminal 
1 

reward functions w 1 and w 2 • As a result we have to define two total expect-

ed reward functions v
1 

(n,y) and v
2

(n,y} for P
1 

and P
2 

respectively. Now 

we are looking for a Nash equilibrium pair {cf. [7]) for this game; 
' ' 

that is a pair of strategies * * * * * n, y satisfying v 1 {n,~) s v
1 

(n ,Y) and 

for all n and y. In bimatrix games (1-stage games) * * * V2(n ,y) ~ V2(n ,y) 

there can in general be more than one equilibrium pair. 

The ass1.1roptions in this section are the following: 

(i) Sis countable, JK • , JL finite 
.l. i 

(ii) There exist two positive vectors, µ
1 

and µ
2 

such that 

and for all f and g 

and for all f and g 

Analogous to section 2 we define the operators L
1 

and L
2 

on 

respectiv~ly by 

L. (f,g)w(x) := 
l. I 

keJK 
X 

I 
R-EL 

X 

f(x,k)g(x,.t)[r. (x,k,i) + 
1. 

l p(jjx,k,t).w(j)], i = 1,2. 
jt::S 
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Now for all x ES, w 1 E Wµ, 

bimatrix game. Note that ~e 

w2 E Wµ L1 (f,g)w1 and L2 (f,g)w2 determine a 

ass1.1roptfon (ii) guarantees that L. (f ,g)w. 
l. 1 

lies again in W • 
µi 

Let us consider then-stage game with terminal payoffs w
1 

and w
2 

for P 1 and P2 respectively, with wi E W • 
µi 

0 0 
Now define w1 := w1 , w2 := w2 • Let fn and gn be a pair of policies satisfying 

n-1 n-1 n-1 n-1 
L1 (f,gn)w1 S L1 (fn,gn)w1 and L 2 (fn,g)w2 s L2 (fn,gn)w

2 
for all f 

n n-1 
and g and define w. := L. (f ,g )w

1 
, i = 1,2. Then we have the following 

i 1 n n 
result: The pair of strategies Tin:= (fn, ••• ,£

1
), yn := (gn, ••• ,g

1
) is a 

Nash equilibri 11m pair of strategies for the n-stage game under consideration. 

The proof of this statement goes along the same lines as the proof in [20] 

for zero-sum games, essentially using the monotonicity of the L operators 

For infinite stage games there are a n1Jrnber of theorems about the 

existence of a pair of equilibrium strategies. See for example the survey 

paper by PARTHASARATHY and STERN [10]. BENIEST [2] considers a game with 

S finite, and 

l p(j!i,k,£) < 1 
jES 

for all i, k and t, 

under two different cooperation schemes and shows that in both cases 

* * there exist a unique pair of value vectors v 1 , v
2 

which may be detexmined 

by successive approximations. 

For the case of noncooperation the following example shows one of 

the problems we encounter when considering infinite stage games. 

EXAMPLE. 

5, 5 r 3/·4 

7,1,3/4 

1,7,3/4 

2,2,3/4 

, 

There is only one state. If P
1 

picks action 1 and P
2 

action 2 then P
1 

receives 1, P
2 

7 and the system 

vanishes with probability 1/4, etc. 

For each finite horizon game there is only one equilibrium pair of strate-

gies, namely pick always action 2. In the infinite horizon game.however 

there is still another equilibrium pair consisting of non-Markov state

gies. Namely pick action 1 until your opponent has picked action 2, then 

continue to play action 2. One easily argues that if both players use this 

strategy this is indeed an equilibri1.1m pair. 
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• 

University of Hamburg, Hamburg, West Germany 

1 • INTRODUCTION 

In this paper we are concerned a) with general thoughts on the 

appropriateness of finite-stage dynamic programs (DP's) for the descrip

tion of real-world processes, b) with recently developed solution proce

d11res for such DP' s. In order to make the paper easily accessible, we 

restrict ourselves under b) to basic ideas and the simplest kind of pro

cedures. For details and more sophisticated algorithms we shall refer to 

the pertinent literature. We shall also omit all questions of measurabi

lity; everything can be established in rigour if state and action spaces 

are standard Borel spaces. 

2. NOTATION 

The DP's to be considered are defined by the following data: the 

state space S; the action space A; the constraint set D c S x A, whose 

s-section D(s) is the set of admissible actions when being in states; 

the transition law P(s,a,B), being the probability of moving from s into 

B c Sunder the influence of action a; the one-stage reward function 

r : D + JR; the terminal reward function v0 : S + JR; the discou:ct factor 

S > O, not necessarily smaller than 1 (the case 

'' inflation'') • 

> 1 is interpreted as 

57 
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The finite horizon will usually be denoted by N, and the correspond

ing DP will be denoted by DPN. In order to give also the non-expert easy 

access to the paper, we assume 

(rather than substochastic) and 

indicated in the final section. 

for sections 2 
0 

that rand V 

to 5 that Pis stochastic 

are bounded. Extensions are 

A (measurable) map f from S into A such that f(s) E D(s) for all 

s ES is called a decision rule. Let F denote the set of all decision 

rules; then FN is the set of all N-stage (deterministic Markovian) 
_N N-1 1 

policies ,r = (f ,f , ... ,f). The expected N-stage reward under TI when 
N starting ins is defined as usual, and is denoted by v (s); if ,r = (f,f, •.. 

N 1T 
instead of V. Then 

TI 

N 
s + V (s) ---• 

1TEF 

is the N-scage value function; under ot1r ass11mption it exists and is bounde 

bounded. The notions of optimality and £-optimality of a policy are defined 

as usual. For f E F we use the abbreviations 

s 
:= pf(B) := P(s,f(s) ,B). 

Moreover, we put 

(Pv) (s ,a) 

(P fv) (s) 

:= f P(s,a,dt)v(t), ., 

:= f Pf(s,dt)v(t), 

whenever the integrals exist. 

We shall use the following three well-known operators L, uf, U, 

defined on the set M of measurable bounded functions v on S: by 

Lv := r + $Pv, 

ufv := rf + SPfv, 

Uv := sup Ufv. 
fEF 

DEFINITION. The decision rule f is called an £-maximizer of the function 

Lv, if 



( 1) 

i.e. if 

( 1 I ) 

Lv(s,f(s)) ~ sup Lv(s,a) - E, 
aE:D(s) 

In the special case that f is an E-maximizer of 

E-maximizer at stage n. 

n-1 
LV , we call it an 

Two basic results of dynamic programming may now be formulated as 

follows: 

a) The value iteration holds: 

b) 

n-1 = U V , n E JN. 

If fn is an E -maximizer at stage n, 1 $ 
n N 

. t aN-n t· l is l µ € -op ima. n 
n=l 

n $ N, then the policy 
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It is well-known that both results hold under the asstlroption stated above. 

3. SOME GENERAL THOUGHTS ON THE APPROPRIATENESS OF 

FINITE-STAGE DP's 

This section consists of an amplification of ideas first expounded 

in HINDERER [7] and [9]. 

The time span over which real-world processes run is certainly finite, 

ever if measured e.g., in microseconds. Hence it seems that the a priori 

conceptual setting for all real-world sequential decision processes should 

be DP's with finite horizon. Nevertheless, there is a strong bias in the 

research literature (both theoretical and applied) towards infinite stage 

DP's, denoted in the sequel by 

in favor of DP seem to be the 
00 

DP . The main arguments 
co 

following ones: 

(i) Often the horizon is not known. 

usuaily presented 

(ii) If N is ''large'', then DP
00 

is a good approximation for DPN. 

(iii) In many 
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expected reward for the indefinite future (beginning at stage 

which implies that DPN is (in general) formally equivalent to 

N), 

DP. 
00 

(iv) With the exception of the inefficient plain value iteration many 

solution procedures developed for DP~ (such as policy improvement, 

linear programming, etc.) are not applicable to DPN. 

(v) The time-dependence of DPN makes the theory less elegant and less 

interesting than that one for DP
00

• 

We are going to make several comments on these arguments. 

(et) Co:trm1ent on (i) : ~here are a fair n11mber of problems, where the horizon 

is either known exactly or where there are available reasonable bounds 

for it. To the examples mentioned in HINDERER [7] and [9] we add the 

following ones: In allocation problems with a given nt1mber of objects 

the horizon is exactly known; in problems of replacement (e.g. of a 

medical electronic equipment) one usually will know upper and lower 

bounds N',N" for the time point Nat which a technically improved 

version of the equipment will be installed. 

(8) Comment on (ii): Behind the common usage of DP is hidden the expecta-
oo 

tion (often not stated explicitely), that using the decision rule f* 

from an optimal (or £-optimal) stationary infinite stage policy 

(f*, f*, ••• ) as long as our process really runs will be ''nearly'' op

timal - at least if N is ''large''. 

Two critical remarks have to be made here: 

One should not use DP as an approximation 
00 for DPN unless one 

some information about the goodness of the approximation; e.g. one 

has 

should have an upper bound for the relative '1error 1• It 

is not sufficient to know that N is large, say 1000 or 10000, since 

the error will also depend substantially on the difference between 
0 00 

V and V. 

(S 2 ) There are well-known examples of the optimal stopping type, where 
oo n 

both V and V := lim V exist, but are not identical. In such cases 
n ➔ oo 

one must expect ( though one cannot be sure) that for given ''large'' 
N oo 

horizon N, V is closer to V than V , and if g is a maximizer of LV, 

we can hope that it is better to use g N times than to use the above

mentioned f* N times. Hence we propose to abandon (for practical pur

poses) DP 
00 

mizers) of 
completely and to use instead V and maximizers (or E-maxi

LV; this latter procedure will be abbreviated by '' lim DP 11 • 

n-)00 n 
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The change from DP to lim DP (or more generally to span-fixed-points 
oo n 

V* of U and maximizers of Lv*; cf. below) implies that some of the 

classical problems for DP - such as existence of stationary optimal 
00 

policies - become irrelevant for applications, and we need not care 

about the well-known ''paradoxes•• .. However, the consequences of this 

change of view are much less radical as they may appear at first sight; 

cf. our comment c,> below. 

DPN makes sense for all values of the discount factor 8, but lim DP 
n 

need not exist. This may constitute a serious problem for the following 

reason: there is always ( in particular if N is '' large '1
) some uncertain

ty about the numerical data one should use for the description of a 

given problem. (Are you s11re, e.g., which of the discount factors 

0.999, 1, 1.0005 is the appropriate one?) It would be desirable to 

find an N-stage policy n that behaves uniformly well for ''small per

t11rbations'1 of the data. Most easiest seems to be to keep the un-

certainty for 8 under control by 

of possible values of 8; but for 

''solving'' DP for a whole interval 
N 

some or all of them lim DP may not 

exist. In a typical situation Bis very near to 1 and lim vn exists 

only £or f3 < 1. 

Con11oen t on 

h . 0 
C Ol.Ce V 

(iii) : There are quite a n11mber of situations where the 

:= V
00 

(or rather v0 
:= lim Vn) is not appropriate. If e.g. 

horizon N means that the production of some item is discontinued, then 

the scrap value v0 of the production equipment will usually be much 
00 

smaller than V. 

(e:) Comment on (iv): This argument seems to be valid for most of the clas-

sical algorithms developed for the solution of DP. Note that most 
00 

iterative algorithms for DP generate in then-th step approximations 
00 

00 

vn for V (starting often with v 0 := O, irrespective of the value of 

vO), which in general are quite different from vn. Moreover, the 

suggestion of DERMAN/KT,E IN [ 3 J and DERMAN [ 2], p. 61 , to convert DP N 

into a DP (with an absorbing state) is useful only with additional 
00 

constraints or for theoretical purposes. Solving the resulting DP by 
00 

any of the well-known algorithms needs more computational effort than 

solving DPN by plain value iteration. However, argument (iv) is not 

generally true since recently procedures for solving DPN have been 

developed which are more efficient than plain value iteration. We shall 

report on those in sections 4 to 6 below. 
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(t) Co:miment on (v) : This arg,,lment is only partially true. Instead of con-

sidering problems 

below) one has to 

for DP, 
IJ!) 

consider 

for some methods (cf. sections 4B and SA 

similar problems for lim DPn (or span-fixed-

points of U) , and quite often the elegant methods developed for the 

former model are also useful for the latter one. Moreover, new inter

esting problems arise, e.g. the existence and computation of fixed 

points of U for arbitrary discount factors; cf. section 4B below. 

4 .. EXACT SOLtrrIONS 

It is well-known that some DP~s with special structure {e.g. the 

classical investment problem of PHELPS [ 18] admit ••explicit'' exact solu

tions for arbitrary horizon N and arbitrary discount factor. There is no 

hope that equally simple results hold for ''unstructured'' problems, even if 

state and action space are very small; cf. the complicated explicit solu

tion of Howard's simple toyt11aker problem given in HINDERER [ 9], p .. 235 .. 

A .. Decision exclusion 

For DP
00

, the decision exclusion algorithm (DEA) - introduced by 

MACQUEEN [ 1 7 ] and developed further by several authors - constitutes a 
' 

valuable exact method. Here we are going to report 

[11 ], [12 ], who constructed (improved) versions of 

-on results of HUBNER 

the DEA for DPN which 

may considerably accelerate plain value iteration .. At first we shall ex

plain how general DEA's work. 

DEFINITION. A subset D' of Dis called non-optimal*) at stage n, if 

(2) n-1 n-1 
LV (s,a) < UV (s) for all (s,a) € D'. 

The fo.llowing property of such sets D' is obvious: All maximizers at stage 

n, that might be contained in a set o•• c Dare also contained in the 

{hopefully small) set D •• - D • • 

Now, ass,J111ing that there exists for each stage n, 1 s n s N, some 

maximizer, and that v1 already has been computed, DEA works as follows: 

We gladly agree with Prof. Hasting's proposal to replace the usual 
(but misleading) t'sub-optimal ,,, by "non-optimal r,. 



63 

step 1: Look for a 11 large'' set Di c D, that is non-optimal for all stages 

step n: 

k, 1 < k ~ N. Then 

stages k, 1 < k ~ 

sup LV1 (s,a) 
aED 1 (s) 

Look for a ''large'' 

stages k, n < k ~ 

D 1 := D - Di 
2 

N, and V may 

contains all maximizers 
2 

be computed by V (s) = 

for 

set D' 
n 

c D 
1

, that is non-optimal for all 
n-

N. Then 

for stages k, n 
n 

D := D 1- D' contains all maximizers 
n n- n 

< k ~ N, and vn+l may be computed by vn+l(s) = 

sup LV (s,.a). 
aED (s) 

n 

At step N - 1 we arrive at 
N 

V . 

Of course, the usefulness of DEA depends in a crucial way on efficient 

methods of finding '' large'' non-optimal sets. We need several preparations. 

An important role will play the functional ''span'' defined on the 

linear space M by 

( 3) sp v := sup v - inf v. 

It is easily seen, that sp(.) is a seminorm on M, and sp v = 0 iff vis 

constant. BATHER [1] made ingenious use of the span in his investigation 

of the average cost criterion. From the well-known inequalities 

(4) $ inf(v-w) ~ Uv - Uw ~ S sup(v-w), v,w EM 

(which possibly were first used - implicitly - by MACQUEEN [16] and 

which have been generalized and improved since then; cf. e.g. PORTEUS [19], 

lemma 3, and HUBNER [12]) follows inIInediately 

(5) sp(Uv-Uw) ~ 8 sp(v-w); v,w E: M; 

cf. BATHER [1], lemma 2.1. If e.g., Sand A are finite, and the matrix 

P((s,a) ,{t}) has a positive column, inequality (5) may be improved as in 

(10) below. 

Let G be a non-empty set of decision rules and put 

(6) sup u v. 
gE.G g 
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-LEMMA 1. (Cf. IiUBNER [ 12], Theorem 4 .6) . For v,w c: M and s ,s' E S holds·: 

(7) 

where 

(8) 

Uv(s) - Uw(s) - [u v(s')-U w(s')] ~ SyG(s,s') •sp(v-w), 
G G 

:=!sup 
fEF 
gEG 

sup 
E 

X ~1 

s s 1 

~ 1 . 

REMARKS •. 1. There are other representatiorls of yG(s,s'). It follows e.g. 

from HALMOS [5], p.124, problem 7, that 

where IP; 
s s 1 

p - p • 
f g 

s I I - p 
g 

= ½ sup 
fEF, 
gEG 

s s' 
(S) , 

is the total variation of the finite signed meas11re 

2. In applications, P will have a density p with respect to some measure 

µ. Then yG(s,s 1
) has the simpler form 

(9} 1 - inf 
fEF 
gEG 

s s' dµ. 

The special cases G := F and (G := {g}) A (s=s') yield. 

COROLLARY 2. For v, w E M and g E F holds : 

(10) 

where 

( 11) 

and 

( 12) 

sp(Uv-Uw) ~ By•sp(v-w), 

.-Y -- SUf yF(s,s') 
s,s ES 

~ 1, 

Uv-U v- {Uw-u w) ~ Sy •sp(v-w), 
g g g 
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REMARKS. 1. If (µ.,iEI) is an arbitrary family of finite 
l. 

a-algebra O, then the set of measures µ on O for which µ 

measures on some 

:S µ . for all iE I 
l.. 

has a (unique) largest element, which will be denoted by 

SCHAEFER [23], II 8.3, and -HUBNER [12], p.81. 

infµ_; cf. 
iEI l. 

-Now an upper bound y' of y may be found (HUBNER [12],p. 34): 

(14) y ' : = 1 - ( · inf 
(s,a)ED 

P(s,a, .. )) (S) ::;; 1. 

2. If P has a density p with respect to a a-finite meas11re µ, then one 

gets the useful formulas 

(15) 

and 

(16) 

y = 1 - inf f min(p(s,a,•) ,p(s 1 ,a',·))dµ 
(s,a)E:D 
(s' ,a')e:D 

y• = 1 - J ess inf p(s,a,•)dµ. 
(s,a)ED 

It is not difficult to infer from (15) and (16), that e.g. in Howard's 

toymaker example we have y = y• = 0.4, whereas in Howard's automobile re

placement example one gets only y = y' = 1. 

3. The nt1mber y plays an important role as so-called '' coefficient of er

godicity'' in limit theorems for Markov processes; cf. SENETA [26] for a 

review on this and related topics. 

Making essential use of corollary 2, one may obtain e.g. the following 

(sharpened) finite-stage version of MACQUEEN's [17] DEA. 

THEOREM 3 (cf. HUBNER [12], Theorem 4.7). Assume 1 s n < N < ~

The set D' of those (s,a) ED for which n 

(17) n-1 
LV (s,a) 

n n n-1 
< V (s) - sp(V -V ) • 

is non-optimal for all stages k, n < k::;; N. 

I 

i 

i 
' ' ' ' t 
i 

I 
( 

' ; 
i 
j 

' 
( 

' ' 
' 
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More sc)phistic.:~ted DEA• s are available, and also the modified DEA• s 

of HAS1:!NGS/MELLO [6] and PORTEUS (20] have finite-stage counterparts. For 

tn();re details w-e must refer to HUBNER [ 12] .. 

If state and action spaces are finite, it may happen that a DEA stops 

after n steps, namely when the remaining constraint set 

single decision rule f*, which must then be a maximizer 

D consists of a n 
for all stages 

k > n .. It follows, that for the N-stage problem (N>n) we may use f* for 

the first N - n steps, and afterwards some n-stage (non-stationary) policy. 

This phenomenon was observed a long time ago in deterministic DP's. The 

theoretical investigation of the stochastic case was initiated by SHAPIRO 

[27], who called f* a ''turnpike'' .. 

DEFINITION .. Assume that there exists for each E > 0 and each n E ::t-J an 

t-maximizer at stage n, and let G be a non-empty set of decision rules. 

Then 

( 18) N* (G) := inf {k € :N : for all £ > 0 and all n 2: k the set G 

contains an €-maximizer at stage n} 

is called the turnpike horizon of G. 

If G is finite (e.g. if S and A are finite) , then 

N* (G} = inf {k E :N : for all n 2: k the set G contains a 

maximizer at stage n}. 

The aim is to find a •~small•' set G which has finite turnpike horizon and 

to find in add.1' t {on a good upper ~ bound n0 for N*{G). If this has been 

achieved, we know that the value iteration simplifies for all stages 

n ;:'! no to vn 

rule g, then 

n-1 
= UGV ; and if G happens to consist of a single decision 

we know that g is a maximizer at all stages n 2: n0 • Combining 

(12) with ideas of SHAPIRO [27], we get the following slight extension of 

theorem 2.3 in HINDERER/HUBNER [10]. 

THEOREM 4 .. Let we: M, and assume that the set G of maximizers of Lw is not 

empty. Then 
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(19) := inf{k E JN : 
n-1 By•sp(w-V ) < p(G) 

for all n 2! k} 

where 

(20) p(G) :=if sup (uw-u w). 
g G g 

REMARKS 1. The n1Jmber p (G) is a kind of measure how well the decision 

rules outside G behave with respect to the maximization of the function 

g ➔ U. w.2. Theorem 4 does not make an assertion about finiteness of N*(G}. 
g 
For the application of theorem 4 one needs efficient upper estimates 

for 
n-1 oo 

sp(w-V ) • If 8 < 1, sand A finite, w := V (which is the unique 

fixed point of U), and if we insert into (19) the rough estimate 

· n-1 1 1 1 0 
·y sp (V -w) s; 2 II vn- -wll ~ 2f3n- II v -v II/ ( 1-13) 

(where 11-11 is the sup-norm), then we obtain the bound n 1 (G) of SHAPIRO 

[21]. However sometimes considerable extension and improvement is possible: 

Following BATHER [1], we call v* EM a span-fixed-point of U, if sp 

(Uv*-v*) = O, i.e. if UVk-v* is constant; note that v* is an ordinary 

fixed point of U iff II Uv*-v*ll = 0 for some norm on M, and then V* is also 

a span-fixed-point of U. If v* is a span-fixed-point of U, then obviously 
n-1 n-1 n-1 0 sp(v*-V ) = sp(U v*-U V ), and hence theorem 4 and (10) lead to 

THEOREM 5 • Assume 

(i) There exists a span-fixed-point V* of U such that the set G of 

maximizers of Lv* is not empty. 

(ii) 

Then 

-1 
p(G) > 0 and B < y . 

N* (G) := inf{n E 
n 

:N : (Sy) < 

= 1 + [ log · · p ( G) / 
0 

sp(v*-V) 

+ log(Sy)] < ai. 

where[;] is ~he greatest integer function. 
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It is important for the application of theorem 5, that U may have 
' 

00 

span-fixed-points even if V does not exist. Thus e.g. in HOWARD'S toy-

maker example there exists a span-fixed-point of U for each S > 0 with the 

exception of S = 10. Table 1 shows values of N*(g), SHAPIRO's bound n 1 (g) 

and our bound n
2

(g) for the unique maximizer g of the unique span-fixed

point of U for 

a) HOWARD I s toymaker problem with v0 = { 1 O 5, 100) , 

b) HOWARD' s automobile replacement problem with v0 equal to the ''trade-in 

value''. 

automobile 
toymaker replacement 

B - 0.98 s - 1 B - 1 • 1 B = 0.97 - - -

nl (g) 320 00 00 345 

n2(g) 3 3 3 185 

N+(g) 2 2 2 29 

Table 1. 

It should be noted, that sometimes the bound n 2 (G) in theorem 5 can 

be considerably improved with little additional computation: We may first 

compute by value iteration (and DEA) vk for some ''small k'' and formulate 

our DPN as is replaced 

also useful for the approximate solutions of section 5 below, and we shall 

call it ''solving the tail of length k''. 

In HINDERER/HUBNER [10] there is also shown, how the bounds for turn-

pike horizons may be improved if the 

B cs such that C P(s,a,B) = r(s,a) = 
DP has an absorbing set, i.e. a set 

0 V (s) = 0 for s EB; application is 

made there to a lot size problem. REETZ [21] deduces turnpike theorems 

(for finite S) using the semi-norm 

V ➔ min 2 lv(s) - al· 
CL€JR SES 

instead of the span. DIRICKX [4] considers t11rnpike theorems for deter

ministic DP's and S > 1. SHAPIRO [27] has also a discussion of the case 

f3 = 1. LEMBERSKY [ 14] studied tiJrnpike-·theorems for continuous-time DP' s. 

For the applications of theorem 5 as well as of the approximation 
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method of section 5.A below, one must know span-fixed-points of u. If 
00 

B < 1, then V = V is the unique fixed-point of U, and many solution pro-

ced,.1res are known .. For S = 1 methods developed for the average reward 

criterion are applicable. In HUBNER [13] a procedure similar to that of 

MACQUEEN [16] 

values 1 < B < 

is developed for finding the 
-1 

unique fixed point of U for 

y (provided that y < 1). 

5. APPROXIMATE SOLUTIONS 

Solving DPN approximately will mean the following: (i) One must find 

a ''simple'' N-stage policy 1T* which has a chance to be ''good''. (ii) In 

order to judge the goodness of TI*, one needs upper bounds for the error 

VN-VN or - more appropriate - for the relative error 
'TT* 

( 21) 

Upper and lower bounds for N 
V may be of less direct importance for prac-

tice, but they are essential for our method of getting bounds for (21), 

cf. subsection A below. (iii) If one has decided to use TI*, one should 

know (e.g. for financial planning beyond stage N) bounds for VN. 
Tr* 

A. Approximation of DPN by span-fixed-points V* of U and maximizers 

of LV* 

Here we assume that we know some span-fixed-point V* of u, the 

constant c := UV* -

will be in teims of 

V* and 
0 v*, V 

some maxjmizer f* of Lv*. The bounds 
k (or V for ''small'' k) . 

<XI 

we derive 

If S < 1 (and therefore V is a span-fixed-point of U with c = 0} 
co N 

then one may derive a bound for V - V from the fixed point theorem for 

contractions: 

(22) II V 
00 

-VN ll :;:; ( 1-S ) - l f3 NII V l -v O II , 

which is greatly improved, using (4), to 

(23) -1 N 1 0) oo - VN :s; (1-S)-laN sup(V1-VO). (1-S) B inf(V -v ~ v µ 

( cp. section SB below) • Both bounds may be improved further by ''solving 
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k k-1 N-k+l . 
the tail of length k'' and introducing V - V and S in ( 22) and 

(23) instead of v1 - v0 and SN {resp.). Moreover, (22) and (23) do not 
00 

take into account that v is assumed to be known and therefore may be used 

f 
'(:)I) N 

,in estimates or V - V , as it is the case in the sequel. 

At first, (22) may be easily improved and extended to the case of 

arbitrary B by observing that U is Lipschitz-continuous with module 6; 

putting 

(24) 

we get 

(25) 

It is not difficult to obtain a similar 
N N 

bound for V -v f:k' when f* is 

a maximizer of Lv*. Since Uf*v* = Uv*, V* is also a span-fixed-point of 
. N N 0 uf* and u v*-V* = c. Since V = U V, we get in analogy to (25) bounds 

f* f* f* 
for~ in the form 

f* 

(26) 

and combining (25) and (26) we have 

(27) 

Finally, using the fact that x s y ~ z implies IYI + -2 max (x ,z) for 

x,y ,z E :R, we may combine (27) and (25) to obtain an upper bound for 

but we omit the somewhat complicated expression; r,11meri-

cally it is easiest evaluated by first computing (27) and (25} separately. 

The bounds (25) to (27} may be improved once more by using inequality 

(4} to obtain 

THEOREM 6. (HINDERER [9], theorems 5.4 and 6.2). 

point of U and if f* is a maximizer of Lv*, then 

satisfy 

If v* is a span-fixed-
N N 

both w := v and w := vf* 

(28) 0 N O N 
inf(V -v*)S ~ w - V* - cN s sup(V -v*)•B, 
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and moreover 

{29) 
N 0 

:S S sp (V -v*). 

The usefulness of theorem 6 (and similarly of the subsequent theorems) 

is enl.arged by the abovementioned device of ''solving the tail of 

k'' .. Thus, if o E Fk is optimal and 1r : = ( f*, ••• , f*, cr) then both 

and w := VN satisfy 
7f 

(30) 

and 

( 31) 

k N-k k N-k 
inf(V -v*)S ~ w - v* - cN ~ sup(V -v*)S ; 

N 
- V 

7T 

N-k k 
~ S sp(V -v*); 

and the bounds (30) and (31) are improving with increasing k. 

length 
N 

w := V 

The quality of (30) and (31) has been tested in HINDERER [9] for 

Howard's toyniaker with v0 = (105,100), and the results are very satisfying, 

with respect to relative errors in a whole two-sided neighbourhood of 

S = 1. 

For Howard's automobile replacement problem with S = 0.97 and v0 

equal to the trade-in value (cp. table 1) the right hand bound of (31) may 

be found in table 2 fork= 0,5,10,15,20 and N = 40,200 (note that 
0 00 

V - V RS 5300) .. 

k N = 40 N = 200 

0 37.3 0.285 

5 27.8 0.213 

10 13.6 0 .104 

15 5 .. 86 0.045 

20 2.97 0.023 

Table 2 

B. Extrapolation from DPk to DPN {k << N) 

In real problems it wil.l often happen, that span-fixed-points of U 

are not available (they may even not exist). Then one may try to carry 
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through value iteration for a ''sma1.l'' number, say k, of steps and try to 
k N 

extrapolate from V to V. 

If fn turns out to be a maximizer at stage n for 1 s n $ k, then one 

may find again with the 

"s.imple•• N-stage policy 

help of (4) an estimate for the performance of the 
k k k-1 1 . 

if* : = ( f , ..... , f , f , ••• , f ) ; in the case k = 1 
,, ' 

1T* 1s myopic .. 

THEOREM 7. (HINDERER [9], theorems 4.5 and 6.1). If 1 $ k 5 N, then both 
N N . f w := V and w:~ V satis y 

1'1'* 

(32) 
k k-1 N-k 

inf(V -V )• l 
1 

k k-1 N-k \) 
sup(V -v )· l S, 

1 

and moreover 

( 33) N 
0 S V 

k k-1 N-k \) 
sp(V -v ) . I e I 

1 

and the bounds are improving with increasing k. 

We remark, that (32) is easily derived from PORTEUS [19], lProma 5, 
00 

which was used there to obtain bounds for V. Also (32) and (33) have been 

tested for Howard's toymaker. The bounds were still good, but less precise 

than those obtained from (28) and (29); but it should be noted, that the 

latter bounds require the computation of V*. 

The proof of (32) is easily accomplished by applying (4) e.g. to the 

representation 

N-k 
(34) I 

n=l 

6 .. EXTENSIONS, IMPROVEJJ!ENTS AND FURTHER RESULTS 

(il Using representations of VN - .../- similar to (35), one may derive 

an infinite set of bounds for VN - vk, from which, however, all but 

a finite n11mber may be discarded. Among several classes of compu

tationally simple bounds of that type '1best'1 elements can be identi

fied, and finally the asymptotic behaviour of error bounds can be 

studied. Details are given in HINDERER [9] .. 

{ii) If the DP has a non-empty absorbing set, then the bounds of section 

5 may be improved; cf. HINDERER (7]. 
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(iii) Our assumption that rand v0 are bounded may be considerably relaxed. 

S) 

y) 

(35) 

One of the more easier yet important generalizations requires only 

that the DP has a bounding function, • 
J... e. a (meas11rable) function 

b : S ➔ lR + such that for some constants c 
1 

and c 
2 

:= sup sup P b(s)/b(s) < 00 • 

fEF SES f-

It seems that (special) bounding functions were first used in 

LIPPMAN [15], whereas a systematic study of them (for DP) 
00 

is made 

in WESSELS [29]. It was shown in HINDERER [8], that the approximation 

methods may be extended to DP 1 s with a bounding function. Let us 

just mention the following sample result: If v* is a fixed point of 

U and if inf(VO-v*) ~ 0 ~ sup(VO-v*), then 

b{s) (So)N inf 
0 

V -V* < 
b -

N 
V (s) - V*(s) 

-

0 
V -V* 

sup·· b . 

(iv) The recent work of HUBNER [12] constitutes a systematic study of the 

(36) 

ideas developed in sections 4 and 5 above, in particular on decision 

exclusion and extrapolation. Let us mention but a few of the problems 

dealt with there: 

a} ''Generalized DP' s 11 are considered: The transition law P need 

not be stochastic but only bounded, i.e. 

-
CL --.- sup P(s,a,S) < oo, 

(s,a)ED 

and also boundedness of r 0 and V are weakened. By this set-up it is 

possible to handle DP's with a bounding function by applying to it 

the ''similarity transfo:rrnation11 introduced by VEINOTT [28] and used 

by POR'l"ElJS [ 20] 

HINDERER [8]. 

for DP. This is another way to prove the bounds in 
co 

We like to point out that DP's with bounding functions could also 

be treated by DP's with state- and action-dependent discountfactor 

(and bounded reward functions}, a model that has been introduced by 
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SCH.AL [24], and which is in a sense equivalent to the "generalized 

DP' s '' cited above. 

b) More generally, the results of sections 4 and 5 hold for general-
-

ized DP's, if - roughly spoken - Sis replaced by aS. 

c) Many refined - though - sometimes more complicated - bounds are 

derived, and applied for DEA. 

d) Error-bounds E(N) depending on the horizon N are proposed, and 

e.g. a forecast is derived for the length of the ''tail'' in order to 

get an extrapolation of preassigned quality. 

e) Following an idea of SCHELLHAAS [25] for DP, another extra-
co 

N 
polation method for DPN is developed, where the bounds for v -

k k-1 ar~ not constants, but multiplies of the functions V - V or 
k-1 k-2 

V - V , which may yield - in particular if Pis not stochastic -

much better bounds. 

(v) Corollary 2 above was derived in HUBNER [12] under the assumption 

that Pis stochastic, yet very recently an extension to generalized 

DP's was discovered. 

(vi) Recently RIEDER [22] showed that the bound obtained for DP's with 

bounding functions may sometimes l'.)e improved by the use of ''one

sided 11 bounding functions . 
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MARTINGALES AND DYNAMIC PROGRAMMING 

R .Boel 

University of Gent, Gent, Belgium 

1 .. INTRODUCTION 

The large difference in models, used in applying dynan1ic programming 

to various fields, makes it difficult to compare the results. The purpose 

of this paper is to give a model, encompassing both the Markov decision 

model of operations research and the state space descriptions usual • 
in 

control engineering. An important class of stochastic processes, for this 

purpose, are the semimart.ingales, sums of martingales and predictable 

processes. Another important tool is the transforn1ation of measures, using 

a Girsanov type translation theorem. 

To avoid overb11rdening the paper with technical details, all proofs 

have been omitted. Except for some remarks at the end of the paper, only 

discrete time is treated. Proofs are usually straightforward calculations 

in this case. For details see [1] or [2]. 

Section 2 contains the mathematical preliminaries for the measure 

transformation model. In particular, it is shown that every discrete time 

stochastic process is a semimartingale. Section 3 introduces the measure 

transformation model of stochastic optimal control, and its relation to 

the Markov decision problem and state space descriptions. Optimality con

ditions are derived in section 4. Several martingale interpretations are 

discussed. In the final section the advantages of using martingales are 
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discussed, in particular the possibility of extending the results to the 

continuous-time case. 

The author would like to thank dr. J. van Schuppen and dr. P. Bremaud 

for helpful discussions, and for making available to him the results of 

[ 2 J, prior to its publication. Sincere thanks are due to Prof. Varaiya for 

his inspiring help. 

2.. MATHEMATICA!., PRELIMINARIES 

Throughout this paper a meastire space (0,F), a 

t £ T = N+ and an increasing family of a-algebra's 

set of time 
t 

F (cF) are 

indices 

held fixed. 

Various probability measures P will be defined on (0,F). The correspondu 
ing expected values will be denoted E • Stochastic 

t u 
processes (and random 

functions) are always at least F -adapted t F -measurable for 

all t). The a-algebras generated 

be denoted by superscripts, i.e. 

A random function At(w) is 

for all t. A stochastic process 

( 1) E 
u 

stochastic process 

o(X ,s~t) c Ft. 
s 

such as 

t-1 
is F -meas11rable 

over (Q,F,P) is 
u an Ft-martingale if 

(or equivalently = O,\lt). If (1) is replaced by E (M IFt) ~ 
u s 

~ Mt, (Mt) is called a submartingale. Reversing the inequality gives a 

supermartingale. Sub- and supermartingales are special cases of semi

martingales. A stochastic process Zt(w) over (0,F,Pu) is a semimartingale 

if it can be written as 

= z0 + A + M . t t 

measurable random variable. By the Doob decomposition theorem every 

discrete-time stochastic process {Zt) over (S1,F,Pu) can be written in a 

unique way as a semimartingale [3]: 

z = z t . t-1 

::c:: z + 
t-1 



where 

(2) 

and 

- z 1' t-
6.Au = 

t 

u t 
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are the increments of the semi-martingale z, of the 
t 

Ft-predictable process 

The predictable covariation of two Ft-martingale 

(Q,F,P) is defined as: 
u 

( 3) < M, N > 
t 

--
t 

I 
f=l 

The dependence of the Doob d.ecomposition on the probability measure P 
u 

be expressed by the martingale translation theorem (see VAN SCHUPPEN & 

WONG [5]): 

Given the Ft-martingales < 00, 

can 

2 
E 6. X < 00 6 M > -0 t ' t 
by its restriction Pt 

1 a .s. V t, define a probability meas11re P on (r2,F) 

to (r2,Ft) as: 

(4) 
dP 

t 
1 + 

t 

I 
i=l 

Then At is a positive martingale and 

where 

6 < X, M > 
t 

• > 1.S 
t 

an 

t 
IT 

1=1 

Ft-martingale on (5"2,F,P) 
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3. STOCHASTIC OPTIMIZATION MODELS 

Assume given a random function Xt(w) (the state) on (Q,F), with values 

in Rn, the family of cr-algebras Xt (the complete history) and an Xt-adapted 
t process Yt (the observations) generating the family of a-algebras Y (the 

observed history). Also given is a measurable space (V,V) of controle 

values v € v. 
A control law u = u(t,w) EV is a Yt-predictable process (i.e. at 

t-1 
information Y ) • each time ta control 

The set of admissible 

i.e. if U EU, W € U, 

value ut is chosen based on the 

(5) 

To 

p 
u 

control laws, 
n then (u ,w) E 

u, is assumed 

U where 

n 
(u ,w) (t,w) = u(t,w) t :5: n 

= w(t,w) t > n 

each admissible control law u there corresponds 

on cn,F), such that P restricted to xt depends 
u 

* relatively complete, 

a probability measure 

only on u 0 ,u1 , ..• ,ut 

while E czlxt) for z E XS depends only 
u on ut+l, 

minimized in this problem is 
ut+2' ···,us· 

given by: 

(6) 

The cost to be 

J(u} = E 
u 2. 

tET 

where c : T xv x Rn 
t 

-➔ [O,K] for simplicity (generalizations to integrable 

x -measurable functions, depending on ut, are possible) . 

The connection of this model with Markov 
' 

decision problems is obvious. 

Assume Yt 
t t 

= xt, Y = X and the probability measure P is defined by an 
u 

initial condition P0 (X
0

EA) and transition probabilities 
,uo 

Pt,u (XtEAjxt-1). 

star~ing with 

The probability measure P is constructed iteratively, 
u 

Pu(X2EA2 ,x1EA 1 ,x
0

EAO) = 

Al AO 

• P ( x
0 

Ed x
0 

) • 
o,uo 

* 
This is related to the product property introduced by HORDIJK [4]. 



Many non-Markovian problems can be defined similarly by defining Xt-l_ 

measurable transition probabilities 

automa.tically included in the above 

Pt (A,w) • Randomized controls are 
,ut 

model. 

The relation of the abstract model with the state space description, 

is obtained by apolvinq Doob decomposition: 

(7) X 1 + t-

= X 1 + t-

= X 1 + t-

I t-1 
- E (~X X ) 

u t 

and similarly for the observation equation 

(8) 

A true state description is obtained when X 
t 

= Yt is a Markov process, 
t-2 

no longer depend on X I 
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while the distribution of the noise term m(t,ut,~Xt) depends only on Xt_ 1 • 

Conditions under 

formation model, 

which one can go from a state model 
t t for X = F, (i.e. derive a unique 

and the noise distribution) will be investigated in 

4. OPTIMALITY CONDITIONS 

to a measure trans
t-1 

from f(t,ut,x ) p 
u 

a later paper .. 

For each u EU let then the value func~ion 

(9) t t 
V(t,u ,Y) = 

CX) 

inf Et 
u ,v 

is the expected minimal fut11re cost, given control. law u has been used up 

h d . h . f t· t tote present time t, an given t e in orma ion Y. 

PRINCIPLE OF OPTIMALITY 

* 

* For all O ~ s ~ t < 00 and for all u EU 

Note that Put~ p 
u 

restricted to Xt. 
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(10} 
s s 

V(s,u ,Y ) s E t 
u 

w.ith u being optimal. if and only if (10) is an equality. 

- a.s. 

This statement can be interpreted in martingale terms, by defining 

the mini .. mal expected total cost, at time t: 

t t H{t,u ,Y) == E t 
u 

t 

I 
t t tl 

t=l 

The principle of optimality is equivalent to the statement that 

is, for each u ( u, a Yt-submar.tingale, and u is optimal if and 

H(t,ut,Yt) is a Yt-martingale on (n,F,P). This is intuitively 
u 

t t H(t,u ,Y) 

only if 

obvious: 

the longer we wait before switching to an optimal control, the higher the 

expected total cost • 

Another interpret.ation uses, 

t R(t,u,Y) = E 
u 

00 

t t - V(t,u ,Y } , 

the excess expected future cost if we do not switch to the optimal control 

in the future. This is a Yt-potential (i.e. a positive Yt-supermartingale 

tending to O a.s. P for t ·-.► 00 ) and u is optimal if and only if 
t u 

R(t,u,Y) = 0 a.s. Pt· 
u t t 

Applying 
t t H(t,u ,Y) or 

the Doob decomposition to either of the processes V(t,u ,Y), 
t R(t,u,Y) leads to the standard Bellman equation: 

( 11) 0 = inf E 
vEV ut,ut+l 

t t+1 + V(t+l;u ,v,Y ) -

t t I t - V{t,u ,Y) Y • 

The difference between (11) and (10) is that the martingale increment 
. t t t-1 

8V(t,u) - Eut-l(6V{t,u )/Y ) has disappeared. It is intuitively obvious 

that only the predictable part of the value function should be taken into 

account, not the martingale part. 
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combination of equations (8), (9) and (11) shows that a value itera

tiori. method could be applied to co11trol problems. This, and the ever1 more 

diff.icult problem of explicit solutions, will be greatly simplifi.ed if the 

following conditions are met: 

(i) there exists a sufficient statistic Zt of l.ow dimension, recursively 

defined by Zt+l ~ f(t+l,Zt,Yt+l'ut+l) such that V(t,ut,Yt) = 
t 

= V(t,u ,Zt); 

(ii) the value function is independent of the past controls, i.e. 

V(t,ut,Zt) ; V(t,Zt). This happens if Xt = Yt or if u influences only 

the cost, but not the probability measure. 

5. CONCLUSIONS 

It has been shown that martingales allow interesting interpretations 

and generalizations of the optimality conditions. This advantage becomes 

even more pronounced in the continuous-time case. For example, in the 

proofs of [6,7] existence of an optimal control is not required, leading 

to proofs independent of selection theorems, or of unrealistic continuity 

assumptions. One can also hope that application of the powerful martingale 

inequalities and martingale convergence theorems [3] will lead to new 

results in dynamic programming. A first step in this direction is reported 

in [8]. It is also interesting to note that ROCKAFELLAR and WETS [9] have 

interpreted the increments of the predictable part and the martingale part 

of the value function as shadow prices (dual variables) in a convex 

programming context. 

REFERENCES 

[1] BOEL, R., Discrete-time martingales in filtering and stochastic 

control, report, NTH Trondheim, Division of engineering 

cybernetics, 1976. 

[2] BREMAUD, P. & J. VAN SCHUPPEN, Discrete time processes I: martingale 

calculus and innovations kernels, preprint, 1976. 

[3] NEVEU, J., Discrete-time martingales, North-Holland Publishing Cy, 

Amsterdam, 19 7 5. 



84 

( 4] HORDIJK, A .. , Coni)l'ergent dynamic programming, Mathematical Center, 

Amst.erdam, 1.975 .. 

SCliUPPEN, J. VAN & E .. W()NG, T1·ansformat.ion of local marti.ngales under 

,1 ch.,.'inge of law,, Anr1als of Probability, 2, pp. 879-888 11 1974. 

[ fi J DAVIS, M. & P. V1\AAIYA, D11namic programming conditions for pa.rti.all y 

c,bsertl'able stochastic system.s, SIAM J. Control, 11, pp. 226-261, 

1973 .. 

BOEL, R .. & P .. VARAIYA, Opt.imal. control of jump processes, to appear 

in SIAM J .. Control and Optimization. 

[8] GROENEWEGEN, L. & K. VAN HEE, Markov decision processes and quasi

martingales, Memorandum COSOR 76-04, Dept. Math., Eindhoven, 

University of Technology, 1976. To appear in Proceedings of the 

8th EMS (Grenoble 1976). 

ROCKAFELLAR, R. & R. WETS, Nonanticipativity and L1-martingales 

stochastic optimization problems, in ''Stochastic Systems: 

Modeling, Identification and Optimizat.ion'', ed. R. Wets, 

North-Holland Publ. Co., 1976. 
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1 . INTRODUCTION 
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In considering Markovian decision problems with no discounting the first 

interest is in general in the average costs. But if there are more average 

optimal strategies one can distinguish between these by considering the bias, 

the limit of the difference of then-period costs and n times the average 

costs. An average optimal strategy which, among all average optimal strate

gies, minimizes the bias, is called sensitive optimal. Sensitive optimality 

is equivalent with 1-optimal'ity (BLACKWELL [2]). 

Sensitive optimality and extensions are considered by VEINOTT [10], 

[11], MILLER & VEINarT [8] for a finite state space and by HORDIJK & SLADKY 

[7] for a countable state space. 

In this paper we consider the existence of sensitive optimal strategies 

for problems on a general state space. Compactness of the space of strate

gies and continuity of the transition probability and the one-period costs 

on the space of strategies are used to derive sufficient conditions for the 

existence of sensitive optimai strategies. 

2. PRELIMINARIES 

Let (V, !:) be a meast1rable space. The linear space B (V, i:) is defined as 

the space of all complex valued bounded measurable functions on V. Let 
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t1£ 
with this norm B(V,E) is a Banach space .. 

A Markov process on (v,i:} with transition probability P defines a 

bountied lir1ear operator in B("J,E) by 

f 

(Pf) ( u) = j f ( v) P ( u, dv) , f t B (V, E) .. 
J 

V 

The norm of this ooe1ator in B(V,f) is denoted by Hpl and its spectrum by 
"· 

o(P) .. Since Pis a Markov process, 1 <:: a(P) and a(P) contains no points 

outside the uni.t circle. 

For A€ t the sub-Markov process PA is defined by 

U E: V, FE I:. 

Let A~ I, B = V\A and let Q be the embedded sub-Markov process of Pon A, 

then 

00 

Q(u,E) = l (P; PA lE) (u), 
n=O 

u € V, EE :E .. 

If lim n-t<JO = o for all u ~ V then Q is a Markov process. 

Let c be a nonnegative measurable function. The pair (P,c) is called 

a Markov process with costs. If Pis quasi-compact (satisfies the Doeblin 

d . t . ) d . bo d d th "'" 11.· m -1 ln-l Pt · t con .z ion an c is un e ., e average cos1...s g : = c exis 
n,\oo n R.=O 

, . \kd+m 
l all = 0,1,2, ••• and 

m 4-()l, -
and 

ford equal to the period of P. 

Let v := l \d-l w, then vis a solution of y = c-g + Py and if P has d lm=O m 
only one ergodic set this solution is unique upto a constant. The function 

vis called the bias of (P,c). 

A stationary Markovian decision problem (SMD) is a set of Markov 

processes with costs {(P ,c )}, a€ A. The elements a(£ A are called a CL 

strategies. It is clear that if in a Markovian decision process only 

stationary policies are allowed, it can be interpreted as an SMD. An 

important property of an SMD is the product property. An SMD satisfies the 

product property if for each a 1 ,a2 EA and for each F ~ E there exists an 

a E ~4 such that 

P (u,E) 
a 

P (u,E) 
a 

and 

and 

C (u) = 
(l 

C (u) 
0. 

for u E: F, 

for u eV\F. 
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This product property is always satisfied in Markovian decision processes, 

the actions in the different states may be chosen independently of each other .. 

If the product property holds it is possible to prove that for two 

arbitrary strategies, a. 1 ,a2 EA there exists a third strategy 

is better than both. This is worked out in the next lemma. 

EA which 

LEMMA 1. Let {(P ,c )}, a EA be an SMD with P quasi-compact and c bound-
a a a a 

ed on V, uniform in a.. Assume that the product property is satisfied. Let 

0 1 102 
Then 

the corresponding average costs and bias. 

(i) there exists a strategy a.0 EA such that 

for all u E V; 

(ii) if a
1
,a

2 
are both average optimal then there exists a strategy a.0 EA 

such that 

V (U) 
ao 

for all. u E V. 

PROOF. For the proof of the first part we refer to [12], section 4.1.3. 

Now let a.
1

,a.
2 

be two average optimal strategies, g01 = g02 = g. Let 

F := {u I v 01 (u) < Va (u)} and G := V\F. Let Q be the embedded sub-Markov 
2 a2 

process of P02 on F and Q01 the embedded sub-Markov process of Pa. 1 on G. 

The strategy a.
0 

is chosen such that 

Pa. (u,E) 
0 

= Pa (u,E), 
1 

P (u,E), 
°'2 

c 0 (u) 
a 

= Ca. (u) 
1 

= C (U) 
a.2 

for u E F, 

for u € G. 

The product property implies that there is such a strategy a.0 in A. Let 

Ra,
0 

be the entry process of Pa.
0 

on F, that means that Ra.a is the sub-Markov 

process which describes the state of the system each time the set Fis 

entered, 

R (u,E) 
a.o 

R (u,E) 
et.a 

= Q (u,E) 
°'2 

, u E G 

(u,E), u e: F. 
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Define v as 
a.1na.2 

a
0 

until the set 

the bias of the (non-stationary) strategy which applies 

Fis entered for the nth time and from then on the strategy 

al. 

First consider the case that a.
0 

has only one invariant probability 

If rrN (F) > 0 and n (G) > 0 then Qa. and Q0 are Markov processes and 
'""'0 ClQ 2 1 

00 

I 
n 

(Q V ) (u) , G V (u} - P G (c -g) (u} + U E - , 
a 1 la.2 a.2 a.2 0.2 a.1 n=O 

(X) 

(u) I n 
(Q V ) (u) , U E G, V - P F (c -g) (u) + -

alla.2 a.1 al a
1 

a
1

1a
2 n=O 

and for n = 2,3,4, •.. 

o:i 

va na (u) = l 
1 2 n=O 

u E G, 

co 

I 
n=O 

n 
P F ( c -g) ( u) + 
al al 

u E F. 

in these expressions has to be 

replaced by n=O Pa2G' (c02-g) (u) + Q~va,2 , where E c G is a maximal in

variant set of Pa
2

, G' := G\E and Q' is the embedded Markov process of 
,oo n 

Pa.
2 

on Fu E. Notice that Q~ = Qa.2 • If na0 {G) = 0 the sum ln=O Pa, 1p(ca, 1-g) (u) 

has to be replaced in the same way. But in each of these cases 

{n00 (F) > 0, na,0 (G) > O; na
0

(F) = 0, rra
0

(G) = 1; na.0 (F) = 1, na.
0

(G) = 0) 

it is easy to verify that 

min{v (u),v (u)} 
a.1 a.2 

- V (u) ~ 
alna.2 

n 

I 
t=l 

a ) (u) , 
1 

U EV. 

Let gao be the average costs of the strategy a.0 . Using va,
0 

= ca.0 -ga.0 + 

+ P00va0 we get, for the case that n00 (F) > o, rr00 (G) > O, 

00 

v (u) = 2 
aO n=O 

u E G, 

cc 

v (u) = l 
a.O n=O 

U E F. 

If gao - g then V - a 1na2 
= v0 + R~ (va -va) and if ga. > g then 

0 0 1 0 0 
V + +00 for n -+ (X), a 1 na.2 
In 0. R V -v > 2= 1 ao ( a 2 et 1 ) -

but this is impossible by (*) since 
n 

Hence ga.O = g and valna
2 

= Vao + Raa<va 1-va0 ). This 



holds also for the cases n (F) = a.o 
Therefore 

n 

l 
.R.=1 

89 

n The boundedness of the sequence Ra,
0

(va.
1
-v00 ) (u) inn implies the convergence 

\(X) R, 
of the sum li Ra.

0
Cva.2 -va, 1 ) (u). But since va, 2 > va. 1 everywhere on F this 

implies that the entry process Rao is absorbing, that means na
0

CF) = 0 or 

7Ta.o (G) = 0. 
n 

Hence Ra,
0

(va.
1

-va,
0

) (u) + O and 

00 

s min{v (u),v (u)} -
a.1 a.2 

I 
£=1 

This completes the proof of (ii) for the case that Pao has only one 

ergodic set. If Pao has more disjoint ergodic sets the proof can be given 

in the same way by considering the process on each of these sets. D 

3. EXISTENCE OF AVERAGE OPTIMAL AND SENSITIVE OPTIMAL STRATEGIES 

In this section SMD { (P , c ) } , A • an Cl E J.S considered such that 
Cl Cl 

(i) p • quasi-compact for all A; J.S a. E 
a 

(ii) • bounded on V, uniform • 
C J.S in a; 

a. 
(iii) A • a metric metric such that J.S space, p, 

l.im II p -P II ➔ 0 for all etO E A I 

p (a,ao) ➔ 0 a ao 

l.im II C -c II ➔ 0 for all a 0 E A. 
P (a.,a.o> ➔ 0 

Cl ao 

Let g ,v be the average costs and the bias of (P ,c). The strategy 
Ct a. a. a. 

a.0 EA is called sensitive optimal if a.0 is average optimal and if 

va,
0

Cu) s va,(u} for all u EV and all average optimal strategies a.. We 

will derive conditions for the existence of sensitive optimal strategies 

using the compactness of A and the continuity of P and c. Define 
Ct Ct 

A, n = 1,2, ••. as the set of all a EA such that P has n disjoint ergodic 
n a 



sets .. 

ln the following l.emma the continuity of go. and 

The proof is analogous to the proof of lemn1a 1. 15 in 

v on A 
Cl n 

[12] and 

i.s stated. 

uses operator 

valued functions and perturbation theory of linear operators (see DUNFORD
,- l SC[iWARTZ L 3 _,, VI I) • 

Let { (l. } 
l. 

lim 

be a sequence in 

I i:: o a.11d 

A 
n 

• con Ve'.'.' rg 1 ng 

lim 
i-+«> a. . 

l. 

to a E 
0 

~ = 0. 

A • Then 
n 

The following example shows that the continuity of v does not hold 
CL 

on the whole space A. 

EXAMPLE. Let {(P ,c )}, a€ A be a problem with two states given by 
a a. 

Then 

and 

I 
/ 1-{l a 

p -- I -
)' Of. \ 0 1 J 

I . 

I o 
- i 

V :::.: 
a 

VQ --

I . 

\ o I 

/- fa I a 

o I 

0 \ 

l .. 
0 ) 

J 

' la -
I C - A - {a 0 s as; ½ } • - -, 

(l 
0 

for all a E [O,j], 

for all o. > 0, 

F1ence v ( 1) has a discontinuity in a = 0.. This discontinuity is due to the 
a. 

fact that for a> 0 there is only one ergodic set and for a.= 0 two. 

If in general {o.1} is a sequence in A
1 

converging to a.0 € An then in 

each neighbourhood of 1 (in the complex plane} there are eigenvalues of 

P0 .£ for _17., large enough. Ass11me that the spectrum of the operators PaQ, 

of the following structure, o(P0 l) = 1 u {A 1 } u ot where Ai ➔ 1 for£ + 00 

and o 1 is for all i a set within a circle with radius p < 1 (p independent 

oft). 

the 

be Let 9).£ 

index of AR. 

the projection of c 0 t-g0 £ on 

as eigenvalue of Pat· Then 

where vi • l.S 
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and 

In the 1 -

REMARK. The average costs g have as function of a the same sort of dis-
et 

continuities, but it is possible to define a rather general class of prob-

lems (communicating systems) where the set of all strategies A is dominated 

by the set of all strategies with a unique invariant probability. The com

municativeness is introduced by BATHER [1] for a finite state space and 

used by HORDIJK [5] for a countable state space and WIJNGAARD [12] for a 

general state space. 

To investigate the existence of sensitive optimal strategies we have 

to consider the existence of average optimal strategies first. This is done 

in the next theorem. 

THEOREM 3 • Let: A be com pa ct, 

number of ergodic sets of P 
a. 

A closed in A for all n = 1,2,3, ..• and the 
n 

bounded in a. Assume that the product property 

is satisfied. Then an average optimal strategy exist:s. 

PROOF. From lemma 2 and the assumption it follows immediately that for each 

u EV there is a strategy a EA such that 9a (u) ~ g (u) for 
u u Ct 

all a EA (the strategy a is u-optimal). Since A is a compact metric space 
u 
00 

it is separable. Let {etn}l be a countable subset of A which is dense in A. 

Then inf 9a (u) 
n n 

be such that gy
1 

The existence of 

= ga (u) for all u EV. Let the strategies 
u 

y, n = 1,2, •.• n 
= ga. and gy ~ 

1 n 
such strategies 

min{gy ,g } for all n = 2,3,4, .••. 
n-1 a.n 

gy is guaranteed by lemma 1. The sequence 
n 

gYn(u) is then monotonically non-increasing for each u EV and gYn(u} ~ga,n(u). 

Hence lim gy (u) = ga (u), u EV. The boundedness of the number of ergodic 
n> 00 n u 

sets, the compactness of A and the closedness of A for each n implies the 
n 

existence of an integer£ and a subsequence {yn} in A£ converging to some y 

in Ai. This strategy y is average optimal. 0 

A condition for closedness of A for all n = 1,2,3, •.. is given in the 
n 

next lemma. For the proof we refer to [12]. 

LEMMA 4. If there is a p, 0 < p < 1 such that for all a EA the spectrum of 
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P has no points 
a. 

n= 1,2,3, ..... 

with p < !Al < 1, then A 
n 

is closed in A for all 

If the conditions of theorem 3 are satisfied the existence of a 

sensitive optimal strategy can be proved in the same way as the existence 

of an average optimal strategy. The continuity of g 
ex 

in a: implies the 

closedness and hence compactness of the set of all average optimal strateg.·_es. 

We have the following result. 

THEOREM 5. If the conditions of theorem 3 are satisfied, a sensitive optimc1l 

strategy exists. 

If a:
0 

is a sensitive optimal strategy, it is easy to prove that 

where A' is the set of all a such that Pg= g. But even in the finite 
a. 

state space the converse is not true (see BLACKWELL [2]). That means that 

the sensitive optimal strategy cannot be approximated in general by policy 

improvement. If successive approximations can be applied depends on the 

question of Vn- ng converges to va.0 (Vn are the minimal expected n-period 

costs). For a treatment of this problem, see for instance HORDIJK, 

SCHWEITZER & TIJMS [6], TIJMS [9] and FEDERGRUEN & SCHWEITZER [4]. 
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AVERAGE PAYOFF CRITERIA 

FOR P-RECURRENT MARKOV DECISION PROCESSES 

D.Reetz 

Free University Berl in, Berlin, West Germany 

1. INTRODUCTION 

In the following investigation we consider an infinite stage Markovian 

Decision Process (MDP) with finite state space S = {1, ... ,i,j,l,m, ... ,M} 

and finite feasible decision spaces K .. A decision k E 
.1. 

der.ermines a payoff r. (k) per time 

K. in state i at 
.1. 

unit to be received stage t = 0,1,2, .•. 

over an interval of 
.1. 

pt> O time units. At the end of this interval a transi-

tion to a new state j occurs with probability 

( 1) p .. (k) $ 1 • 
.l..J 

p .. ( k) 
.1.) 

~ 0, where 

(iES,kEK.} 
1. 

A vector (k
1

, ... ,k., ... ,kM) of decisions k. EK. defines a decision function 
.1. 1. 1. 

f. A sequence of decision functions {f
0
,f1 , ... ,ft, ... } is called a policy 

co 
x. If ft= f for all t = 0,1,2, ... the policy x = f is stationary. The set 

of all decision functions is denoted by F, and that of all policies by X. 

Setting 

(2) (iES ,ke:K.) 
1. 

for some state l in the above MDP determines an !-punctuated MDP. Multistage 

transition probabilities under a policy x are given by the taboo probabilities 

passage times from i to l by the possibly divergent series 
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00 

( 3 ) l 
t=O 

If the m,~ximal first passage times 

( 4) := sup µ, 0 (x) 
1<.. 

X€X 

> 0 • (ieS) 

.. 1re f i.ni te the state l is called posi ti vel y p-recurrent; otherwise l is nul 1 

p-recurrent, cf. FERSCHL [2] and HORDIJK [4] for related results. For a 

positively p-recurrent state t the maximal first passage times to l are the 

unique solution of 

(5) = max 
kE:K, 

.l 

J1 l + jJ p .. (k) 
l.J 

• ( iES) 

Further111ore it is possible to define present payoff values for the l-punc 

tuated MDP under an arbitrary policy x by the absolutely convergent series 

00 

(6) I 
t=O 

t {t) (t) 
P oP .. (x)r. (x) . 

,c_ J.J J 

(t) 
The expression r. (x) represents the payoff per unit time in state j and 

J 
stage t under policy x. 

For each positively p-recurrent state i and policy x an average payoff 

criterion, the l-annuity of x may be defined by 

(7) 

A policy 

(8) 

* xl is called l-optimal if 

al:= sup al(x) = 
Xt::X 

We classify a MDP as positively p-recurrent if all of its states are positive-

ly p-recurrent. 

l £ s .. 

RESULTS 

* For such a MDP a policy x is optimal * if x = xl for all 

Using a corresponding theorem of transient MDP (BLACKWELL [1]) we prove 

the existence of an !-optimal policy which is stationary under the assumption 

that tis positively p-recurrent .. For an arbitrary real parameter a define 
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the parametric present payoff values of policy x by the absolutely convergent 

• series 

(9) vil(a,x) . ---
00 

I 
t=O 

t (t) (t) 
P oP .. (x) [r. (x)-a] 

-L l.J J 
(iES) 

Obviously, vu(a,x) is a continuous, monotonically decreasing function in a 

with 

( 10) lim 
a➔±oo 

-+ co • 

Hence there exists a unique zero 

(11) 

of vu<a,x): 

* Using (9), the equation (11) can be solved for a,e_(x) yielding the l-annuity 

a,e(x) of (7). 

The positive p-recurrence of l implies the transience of the l-punc-
oo 

tuated MDP. Thus for each parameter a there exists a stationary policy f,e(a) 

yielding maximal parametric present payoff values 

(12) (XEX, iES) 

(X) 

Such a policy f,e(a) along with the associated present values may be deter-

minded by solving the system 

(13) max 

kEK. 
1 

[r. (k) -a] 
l. 

+ p p .. (k) v. 0 (a) 
l] J-<... 

• (iES) 

It can be shown that v,e.e(a) is a continuous, monotonically decreasing 

function in a with 

(14) lim 
a>l.00 

vu(a) = 
-
+ oo. 

* Consequently we may infer the existence of a unique zero al of v,u_(a). 

* * Substitution of al in (13) yields a decision function f,e_ = f,e(al). Using 
00 

a previous result we see that the !-annuity of f,e coincides with the above 

zero: 

( 15) 

' 

' 
' ' I 

i 

I 
' 
' 

' ' 

' i 

i 
' 
! 
' 
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Let X = {f ,y} with y = 
0 

{f ,f ,f , •.• }bean arbitrary policy. Using (13), 
1 2 3 

(12), (9} we may write 

( 16) max 
kEK,e_ 

[r.e_(k)-a] + p 

[r.e_(k)-a] + p 

= vil(a,x). 

As an jmmediate consequence of (16) we obtain 

(17) 

The above results are summarized in the following theorem. 

(xEX) 

THEOREM 1. If l is positively p-recurrent, then there exists an l-optimai 
co 

policy f,e_ which is stationary. The maximal £-annuity al can be obtained by 

solving the system 

( 18) 

( 19) 

max 
ke:K. 

l 

r. (k) 
l 

+ p I 
jES 

p . . (k) V . O 
1] J.(.. 

The maximization procedure in (18) yields an !-optimal policy 

(iES) 

00 

fl. 

As can be observed, the positive p-recurrence of l is a fairly general 

condition guaranteeing the existence and uniqueness of the solution to the 

functio,.1al equation (18) - (19). Furthermore under this condition positive 

payoffs rare sufficient for a positive maximal !-annuity al. 
vJe compare an l-punctuated MDP with an m-punctuated MDP, both of which 

are assumed to be p-recurrent with row sums {1) identically equal to one. 

Under the last assumption the solution set of {18) consists of all expres

sions (v+c,a-(1-p)c,f) where c is an arbitrary constant parameter. This 

result may be used in proving Theorem 2. 



THEOREM 2. If l and m are positively p-recurrent: in a MDP with row sums 

( 1) identically equal to one, then 

(20) 

(21) 

(22) 

a m + (1-p)vml 

f ::::: fl) • m .(... 
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COROLLARY 1. In a positively p-recurrent MDP with row sums (1) identically 

equal to one, there exists an optimal policy which .is stationary. 

A single-chain ergodic MDP is obviously positively 1-recurrent. Hence 

an optimal stationary policy may be obtained by solving (18) (19) with 

p = 1, cf. HOWARD [5]. 

In the following we show that three different successive approximation 

schemes may be applied to obtain the maximal !-annuity and associated !-op

timal policy. First we investigate the policy iteration procedure of Howard. 

Let a be an arbitrary real member which serves as a parameter in the 

policy iteration procedure: 

Value-Determination. Given 
(n-1) fl calculate according to 

(23) 

+ p 

~9~.i9,y-Improvem~~l:.· Using the values 
(n) 

mine fl according to 

(24) 

= max 
keK. 

l. 

+ p 

[r. (k)-a] 
J. 

-1- p 

A result on p.87 in HOWARD [5] yields 

(25) 

(iES) 

obtained in (23) deter-

(n-1} 
p .. (k)v .,0(a,f O ) 

l.J J-<.. .{.. • 
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Letting 

implies 

be the unique zero of we see that inequality (25) 

(26) 
(n-1) 

al • 

{ (n) } Therefore the bounded sequence al converges to a limit, which is reached 

after some N < ffl iterations in case of finite state and decision spaces: 
(n-1) 

al 
independent of a we may 

(n-1) 
a= a in the value 

set a= 0 in (24). Furthex:rr1ore if we select 

detexmination operation (23) by 
(n-1) 

setting vu<at , 
(n-1 fl ) = 0 then Howard's policy iteration procedure is obtained, cf. p.38 

in HOWARD [5]. 

THEOREM 3. If l is positively p-recurrent, then the system (18) - (19) may 

solved using Howard/s policy iteration procedure. 

A second successive approximation method can be obtained by applying 

White's algorithm to a transfo:r::'med system (18) - (19) with invariant al and 

ft .. Let 

(27) 

(28) 

(29) 

where 

(30) 

...., 
pij(k) 

...., 

r. (k) 
l. 

µit 

. = ~ i,j (k) .. ~j:? 
• 

µil 

Pi!(k) := a - a 1 (k) ~ O 

(iES,kE:K.) 
1 

(iES,kEK.} 
1 

A positively p-recurrent ! remains positively p-recurrent under the above 

similarity transfo.tt11ation. Hence we may define mean first passage times 
-µ and present payoff values u for the transform~d MDP. The annuities of the 

transforxned MOP coincide with those of the original MDP: 
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,.._, 

(32) a,e (x) = 
uu(x)/µ.u. 

--
u,u_(x)/µ.U. • (xe:X) 

00 

Hence the maximal !-annuity al and an £.-optimal policy fl may be obtained 
....., ,..., 

by solving (18) - (19) with (r,p) replaced by (r,p). 

(33) 

Let 0: v ➔ 0v be an operator defined by 

(8v) i.t = max 
ke:K. 

l. 

- max 
ke:K,e. 

...., 
r. (k) 

l. 

rv 

+ p I 
je:S 

,.._, 

p .. (k)v . 0 
l. J J,{... 

,.._, 

+ p 

· Using the seminorm sp(v) := max (v) - min (v) it can be shown that 

(34) sp(0v-0w) $ y
8

sp(v-w) 

with 

. 

(35) • y =pa - min 
H 

l {min{p .. (k),p .. (k')} 
. S 1] 1,J 
JE 

• • f 
]_, 1. 
k,k' 

, 

cf. WHITE [10] and HUBNER [6]. Dividing the system of equations (5) 

0 one obtains pa< 1, so that yH < 1. Therefore, since 

(ie:S) 

M 
(v ,we: lR ) 

by 

= 0 for 

all v e: any vector sequence generated by 0 converges to the solution 

of the transformed system. 

THEOREM 4. If l is positively p-recurrent, then the maximal l-annuity and an 

£.-optimal policy can be obtained by applying Whiteis algorithm to the trans-
,.., ,..., 

formed system (18) - (19) where (r,p) is to be replaced by (r,p). 

As a third alternative a modified value iteration procedure may be used 

if certain criteria are satisfied. In analogy to Theorem 2 we obtain the 

following Theorem 5. 

THEOREM 5. Let£. be positively p-recurrent in a MDP with row sums (1) iden-

tically equal to 1. If 

of the value iteration 

(36) 
(n) 

w. 
l 

= max 
kEK. 

l 

there exists a vector b guaranteeing 
. (n) (n-1) 

algorithm w = $bw : 

r. (k) 
l 

+ p [p .. (k) - b. ]w ~n-l) 
J..J J J 

to a fixed point vector w, then 

the convergence 

(ie:S) 
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(37) 
(n) 

( 1-p) w ,e_ + p l 
jES 

and an .£.-optimal policy 

If we select 

(38) p 1 -

b. = min 
J i,k 

p,.(k), 
l.J 

then Doeblin's criterion 

l min p .. (k) < 1 
. . k 1.J JES 1., 

is sufficient for the convergence of (36). In this case the unique fixed 

point w may also be calculated by applying Howard's policy iteration proce-

dure to the functional equation w 

Letting 

= ~ w. 
b 

(39) 

(40) 

(41) 

select 

(42) 

£· . 
l.J 

-
p .. 

l.J 

b .. 
J.] 

:= min 
ke:K. 

l. 

·--- max 
kEK. 

l. 

p .. (k) 
l.J 

p .. (k) 
l.J 

1 
[£_ .. + p .. ] ---• 2 1] l.J 

b . = median b. . = b. * ( . ) . 
J 1:Si:SM l.J 1 J 'J 

(M odd). 

Another sufficient condition for the convergence of (36) is given by 

(43) p max 
jES 

- I £ .. - ~ . s ( . ) l.J 
1.€ 1 J 

with s
1 

(j) and s 2 (j) defined by 

(44) 

(45) 

cf. REETZ [7] .. 

i ES} 

i ES}, 

-p .. 
J..J 

< 1 

We conjecture that many properties of transient MDP with unbounded 

rewards can be extended to the class of p-recurrent MDP with unbounded 

rewards, cf. HINDERER [3] and WESSELS [9]. Furthermore it would be desirable 

to investigate the connection of the concept of annuity with the usual 

definitions of average payoff. Finally, multiple punctuations should make 
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possible the extension of some results to multiple-chain MDP, cf. SCHWEITZER 

& FEDERGRUEN [8]. 

The author has developed a third equivalent characterization of annuities 

using a generalized concept of steady-state probabilities. Details are 

omitted for lack of space. 
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SMOOTHING SYSTEM DESIGN 

AND PARAMETRIC MARKOVIAN PROGRAMMING 

B.S.Verkhovsky 

Princeton University, Princeton, USA 

1 .. INTRODUCTION 

Great number of examples of smoothing systems can be found in [1]. A 

bibliography about Markovian decision processes now has more than a thousand 

papers and books. See, for example, [2], [5] and [14]. Probabilistic analysis 

of reservoir as a smoothing system, a reader can find in [6]. Mathematical 

modelling and analysis of optimal policy for operating with reservoir has 

been described in [15], [16], and [10]. The main goal of this paper is to 

describe the smoothing system as a Markovian decision process, depending 

on a parameter. In the case of water resource system, this parameter is 

the size of the reservoir. More generally, to decrease an influence of 

uncertainty of dynamics, one can use the smoothing systems (reservoir for 

water resources system, some amount of real money for banking, national 

reserves for a co11ntrv, et("" ' . rrh P morP th~ caoaci tv of the smooth in(""' 

system, the better but how much is worthwhile co spend on it. A mathematical 

model of such systems will be given. Optimal design of smoothing systems is 

three-level-optimization (first level is the optimal usage of resource or 

optimization of singletime efforts; second level is the optimization of the 

total expected incomes for whole time of operating; and third level is the 

optimal choice of the parameter or parameters of smoothing). This three

level-optimization needs lots of calculations and the main goal of the 

paper is to represent some regular properties of the problem and to show 
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how one can exploit them to decrease essentially the necessary amount of 

computation. Special algorithms have been developed by the author for the 

case, [8, 9, 11 and 17]. The computer experiment results are given. 

2. DESCRIPTION OF A SMOOTHING SYSTEMS 

Let: be the volume of water • • at moment t .. wt in a reservoir 

ut be the volume of water taken from the • for • a water reservo-l..r use in 

resource system (for irrigation, water supply, industrial use, etc.) 

Qt be the inflow to the reservoir at moment t. Q is a stochastic value 

with given distribution of probabilities: 

(1) • • • • • • • • • • • 

Q(n) ... p 
n 

n 

I 
i=1 

P. = 1, 
l. 

P, ~ 0. 
l. 

Let w be the volume of the reservoir (i.e.: ful capacity). For such a system, 

the equation of transformation is: 

(2) 

(The possibility of overflow has to be taken into account) 

Stochastic 
------► Input Qt 

Smoothing System: ~eservoir 

... w : 

amount of water in 
reserve at moment t 

full ca acit 

3. DYNAMIC PROGRAMMING EQUATION 

Deterministic 
or Stochastic 

Output ut 

The system is controlled by the choice of Ut. The optimal pattern of 

control is to choose such u1 ,u2 , .•. ,ut-l' ut, .•• , which maximizes the 
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expected effect of operating the system for all time of operation. Let w(U) 

be the direct income if one uses a volume of water U in the water resources 

system (a single time effect). 

NOTE. w(U) may be a very complicated function and very expensive to calculate. 

But it is very important to stress that to obtain function oo(U), we have to 

consider our water resources system statically only. 

Let v. be the optimal expected income for the whole time of operation 
J_ 

of the system if at the moment t = 0, the volume of water in the reservoir 

is i. {v.} are unknowns for all i = 1,2, ... ,n, and to find them is our initial 
1. 

problem. 

Let P(k) be the transition probability matrices: {p~~)} is defined as 
1] 

the porbability that after state i, the system will be in state j if we use 

control k. All matrices {p~~)} can be found from the equation of transforma
iJ 

tion (2) and by using the distribution of probabilities (1). All {p~~)} im
J..J 

plicitly depend on the capacity of the smoothing system, w (see the table). 

From the definition of v. 
J.. 

may write the equations: 

(3) 

or 

• 

(4) 

v. = 
J_ 

-v = max 
k 

and from the principle of optimality [2], we 

n 

I 
j=l 

(k) 
p .. 

l. J 
V •}, 

J 
i = 1,2, ..• ,n 

where S with O < S < 1 is the discount factor. 

The equations (3) and (4) describe how to find the optimal control k 

as a function of state i for a given full capacity w. Later, we will con

sider the case of how to find the optimal w - this is the main subject of 

this paper. 

4. ALGORITHMS FOR EQUATION (3) 

1. The problem can be reduced to a linear programming problem, [SJ. 

2. Another approach has been suggested by R.A. HOWARD [2]. This algorithm 

converges to the solution of (3) in a finite number of iterations. How

ever, the algorithm needs to find the solution of the system of equations 

• 
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(5) at every iterative step. This means that many computations are required 

for systems with many states i (i = 1,2, ••• ,n). 

3. An iterative algorithm (B.S. VERKHOVSKY, V.A. SPIVAK), [16]. 

(5) r+l 
V = max 

k 

The scheme (6) converges to the solution of (3) if 

(6) 

(7) 

0 < S < 1. 

In this case 

if -- C 

1-8 

then, by induction 

On the other hand 

where 

r 
V .. ,..., 

0 
V 

1 
2, < • • • < 

r 
X, . -

Since 

c = max wik 
i,k 

lim 
;.....r r 

(v -v) = ~ r ➔ oo 

c li ar = 0, 1-f3 • m µ 

r ► ex, 

then 

lim (vr-v) = 0. 
r ).00 

and if 

After r iterations, the absolute error e is given by 
r 

e: r 
"'r = V 

r 
- V ...., 

0 
V ,..., = a 

As an example, for S = 0.90 and c = 

needed to decrease e to a value of 
r 

1, approximately 240 iterations are 
-10 10 . Twice as many iterations are 

needed if S = 0.95. 



5. DESIGN OF SMOOTHING SYSTEMS 

Consider a time scale: 

T 
s time 
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where Td is defined as the moment to make the decision about design of the 

proposed smoothing system and 

system starts to operate. The 

T is defined as the moment when smoothing 
s 

peculiarity is that at tjrne Td one does not 

know from which state i the system will start to operate at tjme T . 
s 

If P. is the probability that the system will start operating from 
.1. 

state i, and f(w) is the expenditure required to construct the system to 

capacity w, the expected optimal profit is: 

(8) max {l - . 
P.v. Cw) - f(w)} 

1. 1. 
w 1. 

where v. (w) is the solution, for given w, of the system of functional equa
l 

tions (3). 

6 .... PROPERTY OF THE FU!-JCTIONS v. (w) 
J... 

THEOREM. For every i, v. (w) is a concave function of w. 
1. 

PROOF. See Appendix 1. We here outline the proof. 

1. The equation (3) can be rewritten in the following form: 

(9) 

,.. 
L. 

3. 

4. 

V. (W) • 
l.S 

l. 

V. (w) • 
1.S 

l. 

V. (w) = 
.1. 

max 
Q:$;k:Si 

{w + B 
k 

m 

I 
j=l 

function of • a concave .1.. 

• • function of an increasing 

min (w, i-k+j) • function l.S a concave 

5. The systems of equations 

(r+l) 
V . 

.1. 
<w> = rnax 

Q:$;k:$;i 

converge to the solution of (9). 

p . v . ( _ . k+ . ) ( w) } 
J m.1.n w, 1.- J 

• and -l. w. 

of -w. 

m 

I 
j=l 

(r) 
pj V min (w, i-k+j) 

(w)} 
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{·}(r) are concave functions of w for all r 

(r = 0,1,2, ..... ) 

6 .. Then for every i, v. (w) 
.l 

is a concave function of w. (i = 1,2, .... ,n) 

I:r'l this case, the function 

o.v. <w> - f(w) 
l. l. 

is concave if f(w) is a linear or convex function. This is possible if $(w) 

satis.fies the inequality: 

l P. 
l. • 

l. 

2 
d v. (w) 

l. 
< 0, for all ... w . 

However, to optimize the one-dimensional search for the optimum of the func

tion $(w), the more important property is the unimodality of the function 

v,(w), [7J. 

7. ALGORITHM FOR THE MARKOVIAN PROCESS DECISIONS ( 3) 

Step 1: For given r 
V , find control k: 

( 10) max 
k 

Let for simplicity, the notations 

-= w 
* 

r 
V .. 

Step 2: Iterate: 

( 11) s+l 
X 

r 

SP XS 
* r 

cf>(I-SP*)x; 
for s = 0,1, ... , r is fixed 

h s . . 
were x is a non-negative m-dimensional column vector, r 
<P of m-dimensional row vector and 

--- C 

cw 
* 

0 _ r 
X = V 1 r 

where c is an m-dimensional non-negative row vector, and cw is the 
* inner product, I is identical matrix m x m. 
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Step 3: Stop iterative process when 

curacy. 

llxs+l -
r 

xsll ::;; 
r E where Eis a given ac-

Step 4: r+l 
V -= X 

s+l 
• r 

Step 5: If II vr+l - vrll ~ o where o is a given accuracy, then r 
V is the solu-

tion of the Markovian dynamic 

the corresponding optimal controls. Otherwise, 

programming equations (3) and k 
r 

( if II vr+l - vrll 

• 
J.S 

> 0), 

return to the Step 1, [18]. 

8. PROPERTIES OF THE ITERATIVE PROCESS (11) 

1. It converges extremely fast even if Sis very close to unity (for in

stance S = .999). For example, form= 60 to get the given accuracy 
-10 

€ = 10 one needs just 8 iterations. 

2. The process (11) converges even if Sis greater than unity. 

3. The larger the dimension m, the faster the rate of convergence. 

4. The n11mb~r of additional operations for the process ( 11) negligible when 

compared with the simplest iterative method, the Jacobi algorithm (for 

m > 10 the number of additional operations are less than 1%). 

For more details about process {11), see Appendix II. 

9. GENERALIZED DELINEARIZATION ALGORITHM 

More general algorithm can be used for solution a system of linear 

equations x = b +Ax.Let us consider the process: 

r+l 
V = b + 

3 

I 
s=1 

r 
0 y Av, s s where 

r r -1 
y 1 = [~(I-A)v] , 

r ( ¢Avr \a Al (A) 

Y2 - a -- ' ) -I 1->. 1 (A) \~vr-1 

r \d -1 r l+cpAv 
d [1-Al (A)] , Y3 - --

} I 
-r 

<f:>v 

= 1,e 
s 

2: 0 and 

where A1 (A) is largest eigenvalue of matrix A. If for some r one of the 

denominators equal zero, then corresponding e also must be equal zero. At 
s 

least, one of the three denominators will not be equal zero. For more 

details about r 
y see 

s 
[9,11,17]. This algorithm can be used with other alga-

rithms. For example, successive overrelaxation [19], Abramov's algorithm [20]. 



112 

PROPERTY OF FUNCTIONS V. (w} 
]_ 

APPENDIX I 

LEMMA. If V(u) is a concave function of u and an increasing function of u, 

and u(R) is a concave function of R, then V(R) is concave function of R. 

PROOF. 

1 • 

2 .. 

Let us consider 

since V(u) is an increasing function of u. 

On the other hand, 

= 1,A. 
J.. 

= 1,Y. ~ 0. 
J.. 

Thus, V(R) is a concave function of R. For convenience, let us rewrite equa

tion (3) in the following form: 

m 
V(x) = max {w(y) + B l p(z)•v[min(R,x-y+z)]}, 0 :5 X :5 R. 

Let 

0:5y~x z=l 

V(R,x) = 
m 
L p(z)•v[min(R,x)] 

z=1 

the V(•) is a concave function of Rand x because 

S > 0 and p(z) ~ 0 for all z. 

Consider 

+ V(R,x1 -y l) 



max 
0:Sy~A 1x 1+:x. 2x 2 

s max {w(y) + V(R,A 1x 1+~ 2x 2-y)} = v*Cl
1

x 1+~
2

x
2
). 

O$yS1i.
1

x
1

+11.
2

x
2 

Thus, v (x) is a concave function of x. Let us consider the concavity of 
* 

function V (x, R) 
* 

on R .. 

v*(x,R,) = max {w(y) +V(R1 ,x-y)}=w(y
1

) +V(R
1
,x-y

1
), 

osysx 

= max {w(y) 
osysx 

s max {w(y) +V[A 1R1 + A2R
2
,x-y)} = v*(x,A

1
R

1
+A

2
R

2
). 

osysx 

(y2~x) 

We have used the property that V [•] is a concave function of Rand x • 

• 

• 

113 
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APPENDIX II 

ANALYSIS OF CONVERGENCE 

To consider the convergence of the process (II), let is simplify the 

notations: 

(n) 
V 

s 
- X , = r A = SP , 

* 
b = w 

* 
LEMMA. The process (II) can be rewritten in the form 

(n) 
V 

where 

D = bcp(I-A) + A, h = cp(I-A). 

PROOF. (by induction) 

THEOREM. If q, ~ 0, 
(0) . -1 = 1, D ~ 0, cf>v ~ 0, and matrix (I-A) • exists, 

,.._, ,.., 
then lim n.+oo 

(n) 
V = v, where vis the solution of the equation v = b+Av. 

PROOF. 

1. cf> is the eigenvector of matrix DT, corresponding to eigenvalue 1. Indeed, 

cf>D = cf> b~(I-A) +¢A=¢. Hence, there exists another vector u 0 orthogonal 

2. 

to and such that Du
0 

- uo. Let u
0 -

n 
that <f>uo 1 • Then, -- lim D = uo<P 

and~ be normalized in such a way 

[12,13]. 
n)oo 

Thus 

uo<f>v 
(0) 

(n) ~ 

lim - • V - - V since - -{O) 
fl )CO hu

0
cpv 

It must be shown that u
0
/hu

0 
is the solution of (1) and does not depend 

on the vector¢. If hu0 ~ 0, then from nu0 = u 0 , we have 
' 

or = b + 

,.., 
Thus u 0 /hu0 =vis the solution of (1). To prove that hu

0 
~ 0, assume the 

opposite: hu0 = 0. Then u 0 = bbu0 + Au0 = Au0 • Hence u
0 

is an eigenvector 

of matrix A corresponding to a given eigenvalue 1. This means that the 
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characteristic equation IA-Yij = 0 has a root A= 1 or the deteLminant 

IA-Ij = 0. However, this contradicts with the assumption 'that matrix 

(I-A) exists. Thus hu
0 

~ 0. 

RATE OF CONVERGENCE 

Consider€ 
n 

- (n) = V - v, where vis the solution of the system v = b + Av. 

THEOREM. In the neighborhood of the solution 

£ = (D-vh)E + 0(£ ). 
n+1 n n 

PROOF. 

£ = n+l 

Evidently, (D-vh) = 0 and hv = 
small compared with 1. Thus 

£ 
n+l 

(D-vh)E. 
n 

Taking into account that 

1. If vector£ 
n is small, then 

D - vh = A(I-vh) = A[I-(I-A)-lb$(I-A)], 

one has 

where 

= ABE , 
n 

Matrices AB and A(I-b¢) have the same spectrum. 

he 
n is also 

THEOREM. If~ is eigenvector of matrix 

value A0 , and¢~ 0, A~ 0, and exists 

AT corresponding to positive eigen-
. . -1 h the inverse matrix A , ten every 

nonzero eigenvalue of matrix AB is at the same time the eigenvalue of matrix 

A, however AO is not eigenvalue of matrix AB; i.e. r(AB) < r(A). 
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0. INTRODUCTION AfJD SUMMARY 

We consider undiscounted Markov Decision Problems (MDP's) with finite 

state and action spaces. 

Q; {1, ... ,N} denotes the state space, K(i) the finite set of alter

natives in state i, q~ the one-step expected reward and P~. ~ 0 the transi-
i iJ 

tion probability to state j, when alternative k E K(i) is chosen in state i 

(i = 1, ... ,N) • 

Both the Policy Iteration Algorithm (cf. HOWARD [9]) and various 

Linear Programming fo.r111ulations (cf. e.g. DENARDO & FOX [4]) provide exact 

and finite algorithms to find maximal gain policies as well as the maximal 

gain rate vector. However, when N, the n11mber of states in the system be-

comes very large, both methods become infeasible since requiring the solution 

of large systems of equations, at each step of the procedure .. As a consequence, 

the only practical way of locating maximal gain policies in large scale 

problems, is by using some successive approximation technique (cf. part III 

of this paper) which is based upon the value iteration equations: 

(0. 1) v(n+l). = 
1 

max 
ke:K{i) 

tN k 
L. l f . v(n) . , i E n; n = 1, 2, ••. 
J= :i.J J 

where v(O) is a given N-vector. 

Note that v(n). may be interpreted as the maximal total expected reward 
1 

in a planning horizon of n epochs, when starting in state i, and given an 
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amount v{O). is 
J 

This paper 

given when ending up at state j. 

gives a survey of the state of affairs with respect to the 
co 

characterization of the asymptotic behaviour of the sequence {v(n)}n=l· 

The study of the latter is motivated by at least the following two. 

considerations: 

00 

a) the asymptotic behaviour of {v(n)}n=l has important implications for 

• • the (convergence) properties of the above mentioned successive approxi-

mation techniques, and of the sequences of policies generated by these 

methods. 

b) in most practical situations, the decisionmaker faces a planning horizon 

which is finite though large, and the exact length of which is often un

known in advance. Characterizing the behaviour of {v(n)}~=l is essential 

when considering.the infinite horizon model with the average return per 

unit time criterion as an approximation for these finite planning hori

zon models .. 

In section 1, we give some notation and preliminary results. In section 

2, a short historic review is given of the literature on this subject. 

Next we discuss some recent developments on this topic as set down 

inter alia in [21],[22] and [23]. The methods used in these papers involve the 

set of all randomized policies, and especially its chain- and periodicity 

structure. The latter are discussed in section 3, whereas in section 4 we 

give a number of properties of the solution set of the optimality equation, 

which are needed for the remainder. 

In section 5 we finally summarize what is known on the asymptotic be-
oo 

haviour of the sequence {v(n)}n=l' and in section 6 we discuss some of its 

implications with respect to the working of the value-iteration method and 

with respect to some turnpike results. 

1. NOTATION AND PRELIMINARIES 

A (stationary) randomized policy f is a tableau [fik] satisfying 

fik ~ 0 and lkEK(i} fik = 1, where fik is the probability that the k-th 

alternative is chosen when entering state i. We let SR denote the set of 

all randomized policies,.and SP the set of all pure (non-randomized) policies 

(i.e. each fik = 0 or 1). 

Associated with each f E SR, are a N-component reward vector q(f) and 

N x N-matrix P ( f) : 

• 



( 1 .. 1) q(f). = 
l. I 

kEK(i) 
p ( f) . . = 

1.J 
,·, I 

kEK ( i) 

k 
p .. , 1 

l.J 
:s;; i, 

- 1· - I Note that P(f) is a stochastic matrix (P(f) .. ~ 0, 
1] J= l.J 
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j ~ N. 

1 s i, j s N). For any f E SR, we define the stochastic matrix IT(f) as the 

Cesaro limit of the sequence {Pn(f)}:=l and the fundamental matrix Z(f) as 

[I-P(f) + Il(f)]- 1
. These matrices always exist (cf. [10]). 

Denote by n ( f) the n11mber of subchains (closed, irreducible sets of 

states) for P(f). Let R(f) = {jjIT(f) .. > O}, i.e. R(f) is the set of recur-
JJ m 

rent states for P(f). For all m = 1, .•• ,n(f) let d (f) ~ 1 denote the period 

on Cm(f), them-th subchain of P(f). In addition let {cm,B(f) IB = 1, .•. ,dm(f)} 

indicate the set of cyclically moving subsets (c.m.s.) of Cm(f) numbered 
m 

such that for any m = 1, .•• ,n(f) and S = 1, ... ,d (f) (cf. [10]): 

( 1. 2) i E cm,S(f) => P(f) .. > O only if j E cm,S+l (f) 
1.J 

with the convention 

cm,S+l{f) = cm,1(£) 

m = 1, ... , n ( f) : 

that 

ifs 

hereafter S 
m = a (f). we 

• 
l.S 

m 
taken modulo d (f), 

recall that, for all i E Cm(f), 

( 1. 3) dm(f) = greatest common divisor (g.c.d.) of {nlP(f)1:. > O} 
1.1. 

e.g. 

For each f E SR, we define the gain rate vector g(f} = IT(f)q(f), such that 

g(f). represents the long run average expected return per unit time, when the 
1. 

initial state is i, and policy f is used. Next, define the maximal gain rate 

* vector g by 

( 1. 4) sup 
fESR 

g ( f) . , 
1.. 

i = 1, ... ,N. 

We know from DERMAN [SJ that there exist pure policies f which attain the 

N suprema in (1.4) simultaneously. As a consequence we define: 

( 1 .. 5) 

as the set of all pure and the set of all randomized maximal gain policies. 

Finally we consider the well-known pair of optimality equations for 

the average return per unit time criterion: 

( 1. 6) g. = 
J_ 

max 
kE:K(i) 

I. p~. 
J l.J 

g., 
J 

i € n 
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( 1 .. 7) 

r,rhere 

L(i) = 

max 
kEL(i) 

{k € K (i) \ 

+ l· J 

g = I. 
i J 

k 
P . . V. , 

l..J ) 

k 
p .. 
l] 

g.}. 
J 

i E Q 

J 3 1) t hat there always exists a solution pair 
we recall (cf. e.g. L 21 , th.. .. 

" 

to ( l.6) and (1.7). In addition any solution pair (g,v) to (1.6) and 
(g.,v) 

(1.7) has g 

each of the 

= 9*, which implies that the g-part of the solution and hence 

sets L(i} are uniquely determined. Finally let 

{ 1 .. 8) v = {v E EN\ v satisfies {1.7)}. 

For any v e EN, define 

k k * N 

i En, k E K(i) and note that 

( 1. 9) 

2 .. HISTORICAL REVIEW 

k 
p . . V. 

l. J J 

k b(v) .. 
l 

- V., 
l 

00 

The first asymptotic property of the sequence {v(n)}n=l' is due 

[2] who showed that if every one-step transition probability 

strictly positive: 

(2.1) 

* 

v(n) . 
1 * lim --- = g , n n-+<» 

for all i e: Q 

to 
k . 

P . . 1S 
l.) 

where g is the maximal gain rate. Note that Bellman's assumption is the 

strongest possible one can make with respect to the chain- and periodicity 

structure of the problem. HOWARD [9] conjectured that there generally exist 

* * two N-vectors g and v such that 

(2. 2) lim v(n) -
n""7'(X) 

* ng * - V = o. 

However, (2.2) may clearly fail to hold, if some of the transition probabili

ty matrices (tpm's) are periodic, as is illustrated by the two-state Markov 

process which has P12 = P21 = 1 and q 1 = q 2 = O (Take e.g. v(O) = [1,0] and 
co 

note that {v(n)} 1 alternates between the two limit points [1,0] and [0,1]). 
n= 
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* co BROWN ([3], th.4.3) succeeded in showing that {v(n) - ng} 
n=l 

is bounded, 

* provided g is taken as the maximal gain rate vector. In addition he claimed 

the existence of some integer J ~ 1 such that 

( 2. 3) lim v(nJ+r) - (nJ+r)g* exists for all v(O) E EN; 
n""?"<)O 

r = 0, .... ,J-1. 

Unfortunately his proof contained an error as was pointed out in LEMBERSKY 

[13]. Sufficient conditions for the convergence result in (2.2) were estab

lished inter alia in WHITE [25] and SCHWEITZER ([18], [20]). The former used 

the assumption: there exists a states and an integer ~ 1 , such that . 

(2. 4) • • • for all 1 2 v f ,f , .•. ,f € s i i E r2 

and the latter obtained convergence for the case where all of the policies 

are unichained and aperiodic, which encompasses (2.4) as a special case. In 

addition, WHITE fines that (under his condition (2.4)) the approach to the 

limit in (2.2) is geometric (cf. part II of this paper). 

The result stated in (2.3) was next studied in all generality in LANERY 

[11]. Although [11] contains most of the elements needed in order to estab

lish th~ ~onT•ergence result, the proof given is very lengthy and seems to 

be complete only for the case where every state is recurrent for some 

maximal gain policy. A correct proof is obtained in BATHER [1] for the case 

where the maximal gain rate is independent of the initial state of the system, 

* * i .. e .. g. 
l. 

= g; however the proof in [1] does not clarify how the minimal in-

teger J for which (2 .. 3) holds, depends upon the structure of the problem. 

Related convergence results for MDP's with denumerable and general state 

spaces and for continuous time Markov Decision Processes were obtained in 

respectively HORDIJK, SCHWEITZER and T~JMS [8], TIJMS [24] and LEMBERSKY 

[13]. 
• 

• • ... 

Finally, the first approach to establish (2.3) in all generality, as 

well as the weakest sufficient condition for the convergence of {v(n)-ng~}~ 
n=l 

(cf. (2.2)) is to our knowledge due to [22]; the authors prove that the 
N 

limit in (2.2) exists for every v(O) EE, if and only if there exists a 

randomized maximal gain policy whose tpm is aperiodic (but not necessarily 

uni.chained) and has R* = {i E n I i ·is recurrent for some ma.ximal gain· policy} 

as its set of recurrent states. 

* In addition, it is shown that there exists an integer d ~ 1 such that 

(2.3) holds if and only if J is a multiple of d*, and a full characteriza-
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tion of this asy"'mptotic period d* is given in terms of the chain and periodi

city str11cture of the problem .. While the above result settles the issue if 

one demands conv"ergence . of { v (n) * 00 - ng }n=l (or some subsequence 
. *,ro 

{v(nJ+r)-(nJ+r)g r _1 ; J :?'. 1; r::::: 
n- 0, ... , J-1 ) for every v ( 0) E EN, it should 

* 00 

be noted that {v{n) - ng} =l always converges for v(O) belonging to some 
N n . 

non-empty subset W ~ E. 

In a suhsequent paper, SCHWEITZER and FEDERGRUEN [231 returned to the 

issue of the rate of convergence. As their main result 

* that if lim) v(nJ+r)-(nJ+r)g exists for some v{O) € n oo 

they obtain the 
N 

E, J ~ 1 and 

r = O, ..• ,J-1, then the approach to the limit is geometric. 

fact 

Consequently, this result shows that successive approximation methods 

which a.re based on value-iteration and which locate maximal gain policies in 

MDP's exhibit a geometric rate of convergence. 

3. THE SET OF MAXIMAL GAIN POLICIES; ITS CHAIN- AND PERIODITY STRUCruRE 

The methods used in [21] and [22] make an essential use of the entire 

set of all randomized maximal gain policies. 

As a consequence, we use this section in order to provide a charac

terization of tl1is set, and especially of its chain- and periodicity struc

ture .. 

The following lemma characterizes the correspondence between the set 

of maximal gain policies and the solutions to the optimality equations (1.6) 

and {1.7). 

LEMMA 3.1. (Properties of maximal gain policies) 

a) 

b) 

f € SRMG if and only 

Let f € S: 
R 

. * J.f g = * * P(f)g and TI(f)[q(f)-g] = 0. 

( 1) Suppose that 
k 

k € L(i) for each (i,k) wit .. ½ f.k 
J_ . 

> 0 and tl1at; for some 

and i € R(f). Then v € V, b(v)i = 0 for each (i,k) with fik > 0, 

f € SRMG" 

(2) Conversely, if f 

k € L(i) and for i 

SRMG' then for each i = 
€ R(f), fik > 0 implies 

1, .•• ,N; f.k > 0 implies 
k i 

b(v). = 0 for all v € V. 
1 

As to the proof of this lemma, we refer to [21], th.3.1, part (a) and 

(e). 

The following example 

trary randomization of two 

ma.Jeimal gain property: 

shows that the set S is non-convex, i.e. arbi-
RMG 

• 

maximal gain policies may fail to preserve the 



EXAMPLE 1. 

• 
:L k 

* 1 1 0 1 0 0 0 0 -1 ,g --
2 1 0 0 0 0 0 0 X.(i) 

2 

3 

4 

5 

6 

, 

1 

2 

1 

1 

2 

1 

1 

2 

0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

.2 

0 

0 

0 

0 

1 

0 

0 

.4 

.4 

0 

0 

1 

0 

0 

1 

.2 

.4 

0 

0 

0 

0 

1 

0 

• 2 

.2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-1 

0 

0 

0 

0 

0 

-1 

• 
l. 

The set Vis described by the·following set of equations: 

* * * v
1 

= max{-l+v2 ;v
1

} 

* * * v 2 = max{-1+v
1

;v2 } 

* * v3 = v4 

* * * v
4 

= max{v3 ;v
5

} 

* * VS= v4 

--

* * * * * * * * v
6 

= max{-1+.4v
3
+.4v

4
+.2v

5
;.2v

2
+.4v

3
+.2v

4
+.2v

5
} 

which is equivalent to: 

* * (3.2) -1 < v1 - v2 < 1 : - -

* * * v3 - V - v5 - C - - -4 

* * max{-l+c;.2v
2
+.8c}. v6 --

2 
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.(O., O, 0 ,0, 0:10) => 

- L {i) for all -
1, ••• , 6 

1 
Take f = (1,1,1,1,1,1): f = (2,2,1,2,1,2) and observe that 

Next, let 
1 2 

f = ~f + ~f, and note that 
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P(f) = 

• 

0 0 0 0 

0 0 0 0 

0 0 0 1 0 0 

0 0 0 0 

0 0 0 1 0 0 

0 .1 .4 .3 .. 2 0 

; q (f) = 

- -

such that-~= g(f) 1 = g(f) 2 < 

An action k E K(i) is called suboptimal for some solution v EV, if k i L(i) 
k 

or b(v). < 0 .. Note that for every v € V, either action 1 in state 2 or action 2 
l. 

in state 2 is suboptimal. Lemma 3.1 part (b) exhibits that the suboptimality 

of action 1 in state 2 (or action 2 in state 2} does not jeopardize the 

maximal gain-property 

transient under P(f1 ) 

of policy 
2 

and P (f ) 

1 2 
f or f since state 1 and state 2 are 

rt:sp. Observe however, that by randomizing 

the two policies recklessly both state 1 and state 2 become recurrent under 

P ( f} .. This l.mplies that for any v E V, policy f uses in at least one recur

rent state a suboptimal action, which prohibits its optimality as a conse

quence of lemma 3.1, part (b). 

We next describe a particular randomization procedure which preserves 

the maximal gain property when applied to policies in SPMG' and which in 

addition ''simplifies'' both the chain- and periodicity structure by coalescing 

su.bchains and by reducing the periods. Note that both the chain- and periodi

city structure of a policy f merely depend upon the set of positive entries 

in the tpm P(f), rather than upon the actual magnitudes of the transition 

probabilities themselves .. This implies that both the chain- and periodicity 

structure, as well as the fact whether a policy f is maximal gain or not, merely 

depend upon the set of positive entries in the tableau [fik]iEO,kEK(i), i.e. 

up~n the set of actions that are used with positive probability, rather than 

~pon the actual weights themselves. 

LEMMA 3.2. Let f 1 , 

(3.3) 

Then 

O} 

{klffk > O} 

{klflk > O} u 

for all i E 

for all • l. E 

R(f
1

) \R(f
2

) 

R(f
2

) \R(f
1

) 

otherwise. 



(a) 

(b) 

* f E SRMG 

= {cm(fl) Im= 
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1 1, ... ,n(f )} 2 = 1, ... ,n(f )} 

The * suhchains of P(f) are given by the equivalence 1 2 
classes on C{f ,f) 

as generated by the following equivalence relation: 

(3 .. 4) C"' C 1 <r> there exists {C(l) = C, c( 2 ) , ••• ,C(n) = c'} with 

c(r) E C(f 1 ,f2 ) and 

for r = 1, •.• ,n-1. 

In particu.la.r we have 

(3. 5) * 1 2 R(f) = R(f) U R(f) 

(c) F h 1 ( f *) dm ( f*) or eac m = , ... ,n : is a common divisor (c.d.) of 

(3. 6) :::; r :::; 1 
n(f )} u 

m * C (f ) , 1 

REMARK 1. We observe that, when randomizing two policies f 1 , f 2 as in (3.3), 

the period of a subchain C of the randomized policy may 

greatest common divisor of the periods of the subchains 

that are contained within C. (cf. example 1 in [22]). 

fail to be the 
1 2 

of P(f) and P(f) 

recurrent under some maximal gain policy. The following theorem which was 

proven in ([21], th.3.2) gives a characterization of the chain structure of 

the sets , by 
RMG 

showing inter 

* n so-called maximal subchains 

* that the set R 

I a * = 1, ... ,n} 

may be partitioned into 

such that 

(1) each subchain of each maximal gain poiicy is contained within one of 

*a I * the sets {R a= 1, ... ,n} 

(2) there exists a randomized maximal gain policy which has 

*a * {R I a= 1, .•. ,n} as its set of subchains. 

Moreover, there is only one partitioning of * the set R 

properties (1) and (2) (cf. th.3.2 of [21], part (f)). 

which satisfies the 
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THEOREM 3. 2. 

(a) 

(b) 

(c) 

R* = {i E O I i E: R(f), for some f E SPMG} 

R*} and define 

RMG * * 
same collection of subchains {Ra I a= 1, ... ,n} 

* f * E SRMG have the 

(d) Any subchain of any f E is contained within one of the sets 

(e) 

{ *a I *} R et= 1, ... ,n 
* * *a For any a, 1 ~a~ n, g. = g 

J. 
(say) for all i 

*ct 
E R • □ 

1 M 
REMARK. Let f , •.. ,f be an enumeration of the pure maximal gain policies 

* *a I * (in SPMG). We note that the partitioning of R into the sets {R a= 1, ..... ,n } 

may be obtained by determining the equivalence classes, generated by the 
1 2 

relation~, as defined in (3.4) with C(f ,f) replaced by: 

(3 .. 7) C = { cm ( fr) I r = 1 , ... , M; 

Moreover, by applying the randomization procedure defined in (3.3) repeated

ly, i.e. first to f
1 

and t 2
, and next to the resulting randomized policy and 

f
3

, etc. we end up with a policy f* which uses the following sets of alter

natives in the states 1, ... ,N: 

* * ·K (i) , • R l. E 

(3.8) {k I * > O} fik --
E S'l\R * L (i), • 

l. 

* * where the sets {K (i), i ER} have the following characterizations (cf.[22], 

p.11 and lemma 2.2) (for any v EV): 

(3. 9) * K (i) = {k E K(i) I there exists a f E SPMG' with i E R(f) 

= {k € L (i) I 
and fik = 1}, 

k 
b(v). = 0, 

l. 

k 
P .. = 1}, 

l.J 

• 1 E 
*ct 

R , * a.=1, ••• ,n . 

* In addition, it was shown that any policy f which satisfies (3.8) .belongs 

* to SRMG. 

We illustrate the above characterization, of the chain structure of 

SRMG' with the help of example 1: 
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Note that in example 1: 

and 

Observe that C = {{1},{2},{3,4},{4,5}} denotes the set of subchains of the 

maximal gain policies, and conclude that 

* R = {1,2,3,4,5} with * n = 3, and *3 = {2}, R = {3,4,5}. 

In addition, 

* K {1) = {2}; * K {2) = {1}; * K (3) = {1}; * K (4) = {1,2} and * K (5) = {1}. 

We finally remark that randomization plays the indispensible role of coalesc-

* ing subchains: there is no pure policy which has R as its set of subchains 

and there is no pure policy which has {3,4,5} in one subchain. 

Next, th.3.3 below describes the periodicity structure of the set of 

maximal gain policies; the theorem was proven in [22], th.3.2 and it shows 

inter alia that the partitioning of * R into the class of so-called maximal 

*a. I * subchains {R a.= 1, .•. ,n }, may be pursued so as to obtain the class 

. *CY., t I * so-called maximal cyclical moving subsets (c.m.s.) {R a.= 1, •.. ,n; 

t = 1, .•• ,d(a.)} such that 

(1) each subchain 
*O. the sets {R 

of each maximal gain policy is contained within one of 

I a.= 1, ... ,n*} 

of 

(2) each 

sets 

of each maximal gain 

I t = 1 , .... , d (a) , a. 

policy is contained within one of the 

(3) there exists a policy f ES , 

* = 1, ... ,n} 
*et t which has {R ' 

* RMG 
a.= 1, ... ,n} as its set of c.m.s. 

I t = 1, ... ,d (a.) ; 

* In addition there is only one partition of R which satisfies the properties 

(2) and (3) (cf.th.3.2, part (k) in [22]). 

We first define: 

( 3 .. 10) d (a) I f € SRMG' 1 
m 

n(f), C (f) *CJ. * c R }; a = 1 , ••• , n -
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(3 .. 11) ~ m ~ n(f), i E Cm(f)}, i * E R 

i.e. d(a) [d.] denotes the minimum of the 
1 *a 

maximal gain policies that lie within R 

periods of the subchains of 

[that contain the state i]. 

the 

THEOREM 3.3. (Periodicity structure) 

t* be defined as in (3.8); and recall that 

a * * d (f) = d(a), a= 1, ..• ,n. 

Let 

(a) 

(b) . * m Fix a E {1, ••. ,n }. Leth E SRMG and C (h) 
*a m CR . Then d (h) -

• 
J..S a 

(c) 

(d) 

(e) 

( f) 

multiple of d(a). 
m 

d(a) == g.c .. d. {d (f) I f E S , 1 ~ m ~ 
PMG * 

d. = d (a) for 
J. 

*a all i e: R , a = 1 , .•. , n . 
* Cl e: sRMG I d (f) = d(a), . ** { The se't S = f 

~G 
All f € SRMG have the same collection of 

t = 1, ..... ,d(a.)}. D 

m *et} * n(f), C (f) ~ R , a=1, ••• ,n. 

* a.= 1, ... ,n } 

{ *Ct,t 
c.m.s. R 

is non-empty • 

( a= 1, ..• ,n*; 

Part (a) of the above theorem shows that the minimal periods d(a), 

a = 1, .... ,n * * and d., i € R 
l. 

are attained * simultaneously by any policy f 

that satisfies (3.8) .. The policy that was constructed bv.a repeated apnl1ca-

tion of the randomization procedure in (3.3) to the set SPMG l remark 2), 

* and which was shown to belong to the set SRMG' 

ditional property of minimizing the periods of 

has as a consequence the ad

* each of the states in R. 

The intuitive foundation of this result is of course contained in part 

(b) of lemma 3 .. 1. The fact that for all a = 1, ... ,n * d (a.) may be calculated 

as the greatest common divisor of the periods of the subchains of the pure 
*a maximal gain policies that are contained within R , {cf. part (a)) is re-

markable in view of remark 1. 

For an illustration of this periodicity structure, we refer to examp1e 

1 in [22]. 

4. THE SOLUTION SET V 

In this section, we give a number of properties of the solution set to 

the optimality equation (1.7) which are needed in order to characterize the 
00 

asymptotic behaviour of the sequence {v(n)} • 
n=l 

For a complete description of the properties of V, in the more gene-

ral context of Markov Renewal Programs, we have to refer to [21]. 



THEOREM 4.1. (Basic Properties of V) 

{a) Vis closed and unbounded as v EV implies v + a
1

!_ + 

any scalars a 1 , a 2 (where .!. is the N-vector of ones) .. 

(b) (cf .. [11],[12], [2]), v EV, if and only if 

* 

e: V for 

(4 .1) vi= maxf S 
E PMG 

{z (f) [q {f) -g J
1 

+ IT ( f) v. } , 
1 

i = 1, ... ,N. 
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If ada.i tion , if 

(4.1} if and only 1£ 

• • v EV, then a policy f Es ~chieves all N maxima in 
PMG , 

it ~chieves the 2N maxima in (1.6) and (1.7). 

-- . .. ····- - . . ... = "'---~~--- - - ·• -

Using (4.1) it may be verified that the difference between two solutions 
0 1 

v ,v EV of the optimality equation (1.7) is a constant (say y) on each 
Ct 

of the *et sets R , Ct = * 1, ... ,n. 

THEOREM 4.2. Let v EV. The following statements are equivalent 

(a) 

(b) 

(c) 

(d) 

{4. 2) 

(4. 3) 

V +XE V 

x. 
1 

x. = maxf 8 
l. E PMG 

[b(v)~ + I. 
]. J 

[Z(f)b(v,f) 
• 

k 
P .. x.J, 

l.J J 
+ Il(f)x]., 

]. 

• 
l E 

• 
l. E 

* there are n constants (y1 , ••• ,yn*) satisfying 

x. 
]. 

Ya, 

--
maxf s 

' E PMG • ' 

2: Z(f)b(v,f). + 
J.. 

Z(f)b(v,f). 
]_ 

* n 

I 
f3=1 

+ 
* n 

I I *S S=1 jER 

I 

II(f) .. y8 I 
J..J 

* 1, .... ,n; 

• 
l. E 

• 
l. € 

• 
l. E 

*Cl 
R I f Es G . PM 

*Ct. 
R 

* 51\R 

Fix v
0 

e v. The above theorem shows that any particular solution v EV, 

* is specified by ch~osing n parameters (y1 , ••• ,yn*). In other words, by 

* sweeping out all pexmitted combinations of n -tuples (y1 , ••• ,yn*) we sweep 

out all vectors v in v. Fix v EV. Define the set of allowed parameters 

* 
(4 .4) Y(v) = {y E En I y satisfies (4.3)}. 

We note that 7Y(v) is a closed, convex and unbounded polyhedral set con

taining y = 0 .. 

After thorough analysis, we establish in addition that the set Y(v) 
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has an interior. This implies that the parameters (y
1

, .•• ,yn*) may be se-

* * lected within an -dimensional set, such that Vis an -dimensional set as 

well. 

* Note as a consequence that then parameters (y , ... ,y *)maybe chosen 
1 n 

* independently over some (finite) region, and that v has n degrees of free-

dom some of which may only be locally independent. 

5. THE ASYMPTorIC BEHAVIOUR,OF v(n) 

In this section we analyze the asymptotic behaviour of the sequence 
CX) 

{v(n)}n=l· 

First it was pointed out by BROWN [3] that v(n) grows linearly with n, 
• 1.e. 

(5 .1) v(n) * - ng is bounded. 

Next define * . d as the le.ast common multiple (l .. c.m .. ) of the integers 

_{d(a) I a= 1, .•. ,n*}_ As one of our major results we established that certain 

* 00 subsequences o~ the type {v(nJ+r)-(nJ+r)g }n=l converge, as well as the neces-

sary and sufficient condition for J,r to guarantee convergence for every 
n possible choice of the scrap-value vector v(O) EE : 

THEOREM 5.1. (cf.th.5.4 part {b) in [22]). Fix J ~ 1 and r = o, ... ,J-1: 

lim v{nJ+r) -n >oo 
* {nJ+r)g exiscs for all v(O) E ·if and only if J is a 

* multiple of d. □ 

First the authors of [22] obtained convergence of the subsequences 

* 00 {v(nd+r)-(nd+r)g }n=l for all r = 1, ••• ,d on any subchain C of a policy 

f E SRMG' where d represents the period of P(f) on C, i.e. 

(5.2) If f E SRMG and C is a subchain of P(f), with period d, then 

J_im 
n >oo 

. * v(nd+r) .-(nd+r)g. 
l. 1 

• 

exists for all i € C; r = 1, ••• ,d 

(5.2) was also established in LANERY [11], proposition 7. 

* ** * *a. I * Next, fix f, E: SRMG and.recall that f has {R et= 1, ••• ,n} as its 

* *~ * set of subchains, with d(a) denoting the period of P(f) on R ,a.= 1, .•. ,n. 

* Hence, applying (5.2) to f, we obtain: 



{5.3) lim 
n-+-oo 

* v(nd(a)+r} .-(nd(a)+r)g. 
1 J. 

exists, for all i E *°' R ; 
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r = 1, ••• ,d(et); * = 1, ..• ,n. 

Using the definition of * d we conclude that 

(5.4) lim 
n-)-o:) 

* * v(nd +r) .-(nd 
1 

* +r)g. 
1 

exists for all * i E R ; r = * 1, ... ,a. 

As far as the sufficiency part of th.5.1. is concerned, this leaves us with 

* the need to extend the convergence result in (5.4) from R ton. In fact 

this extension constitutes the hard part of the proof; a first attempt was 

made by LANERY ([11],p.23-p.52); however the proof in [11] is lengthy and 

the arguments as stated seem incomplete or incorrect (cf. also note 1 in 

[ 22]) .. 

The method of proof, as given in [22] involves both the characterizations 

with respect to the chain structu~e, the periodicity structure and the solu

tion set V of the optimality equation {1.7), as described in sections 3 and 

4. 

In addition, our approach makes an essential use of the so-called 

* ''d -step'' MDP, where for any J ~ 1, the ''J-step'' MDP is related in the fol-
J 

lowing way to Q, the J-fold application of the operator Q: 

Note that 

(5.5) J 
Q x. = 

1 

..... 
K(i} = 

max ..... 
~EK(i} 

1 J 
(f , ••• ,f) 

\ .....,~ 
l p .. 

1] • 
J 

X.} 
J 

I 1 J f , ... ,f 

, where 

1 = q{f ). + 
l. 

1 2 
p (f ) q {f ) . 

1 

1 + . • • + p (f ) ••• 

..... ~ 
p .. 

1 J = P (f ) ••• P (f ) .. ; 
J..J 

1 :s; i,j SN and 1; 
1 J ,_ = (f , ••• , f ) € K (i) . 

J..J 

Conclude that Q = QJ may be interpreted as the value iteration operator in 
,.._, 

a related ''J-step'' MDP, denoted by a tilde, with n as its state space, K(i) 

as the (finite) set of alternatives in state i € n, q~ as the one-step ex-
i 

pected reward and P~. as the transition probability to state j when alter-
1J ,,..,, 

native~ E K(i) is chosen when entering state i. 

The extension of the convergence result in (5.4) from * R ton is esta-

blished by exhibiting the correspondence between the chain - and periodicity 
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* structure of the ''d -step'' MDP and the structure of the original MDP. 

The latter is also essential when establishing the necessity part of 
~ 

th. 5.1.: Let V denote the set of solutions to the optimality equation (1.7) 
• in * the '1d -step'' MDP .. 

It is verified that Vis a subset of EN with dimension~ = * \'n 
la.= 1 d (a.) 

* which contains Vas an -dimensional subset (cf. section 4). Note that when 

d* ~ 2 at least one of the integers d(a), a. * = 1, ... ,n must be greater than 

or equal to 2 such that: 

(5. 6) * 2 ,...,* ......, * d ~ => n = dim V > n = dim V. 

,.... 
We recall from section 4 that a solution v EV is deteimined by choosing 
,...,* * n parameters y 1 , ••• ,yn* within some n -d±mensional polyhedral set. Finally 

it is shown that for some specific choice of the scrap-value vector v(O) 
r.... 

within V\V i.e. when choosing the parameters y 1 , .•• ,yn* in a special way: 

(5. 7) lim 
n~ 

* v(nJ+r)-(nJ+r)g converges only if J is a multiple * of d . 

Due to (5.1) we obtain the necessary and sufficient condition for the con-
* oo N vergence of {v(n) - ng }n=i for all v(O) EE as a simple corollary: 

COROLLARY 5.2. The following four statements are (equivalent) ~ecessary 

and sufficient; 
N 

* 00 conditions for the convergence of {v(n) - ng }n=l for all 

v(O) EE: 

(I) * d = 1 

(II) There exists an aperiodic randomized maximal gain policy f, with 

R(f) * = R 

(III) Each state i 

(IV) 

maximal gain 

For each et E 

* ER lies within an aperiodic subchain of some randomized 

pol.icy. 

* {1, ••. ,n} there exists a randomized maximal gain policy 

which has an aperiodic subchain within 

Observe that (I) {II) as a result of th.3.3. part (a); (II)• (III) and 

(III) =+ (IV) are im1aediate whereas (IV) ::o- {I) is immediate from the defini-

tions of d(a), a * = 1, •.• ,n and (cf. (3.10)). 

Example 2 below emphasizes the fact that the adjective ''randomized'' in 

conditions (II), (III) and (IV) cannot be replaced by (the more restrictive) 

''pure''. 

• 



EXAMPLE 2. 

4; K(1) 

1 
- p -- -34 

= K(3) = K(4) = 
1 r 2 

p42 = p21 = p23 

1 
k=l 

{1}; K(2) = {1,2};. 

- 1 · - I 

2 

' 

all q~ = 0, i.e. 
l. 

k=2 
3 

Figure 1 .. 
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4 

Note that the two policies in SP (and SPMG = SP) are both periodic with 

periods 2 and 3; however a randomized policy which uses both actions in 

state 2 is aperiodic and as a consequence a*= 1. Note that none of the 

conditions (II), (III) and (IV) hold when replacing ''randomized'' by ''pure'' 

(cf. also the examples in [22]) 

Example 2 shows that conditions (I) - (IV) contain the possibility that 

all of the pure policies are periodic; on the other hand, the existence of 

an aperiodic maximal gain policy f is only sufficient for the convergence of 
* 00 {v(n) - ng }n=l for all v(O) 

N 
EE, when this policy has a subchain in each 

*a one of the sets R (a= 1, ••• ,n*), e.g., when R(f) * =R. 

We conclude this section by enumerating a number of conditions that 

are sufficient for the 
N 

choices of v(O) € E. 

existence of lim v(n) - ng n· >oo 
* for all possible 

We have seen that for arbitrary J ~ 1 and some fixed v(o) the sequences 
* 00 {v(nJ+r)-(nJ+r)g }n=i may fail to converge for some (or all) i En and for 

some (or all) r € {0,1, ••• ,J-1}. We refer to section 5 of [22] for an in-

vestiqation of the various ways in which the convergence of these sequences 

interdepends. 

'l'HE:OREM 5.3. (cf. th.5.5 of [22]) 

The following conditions 
N 

for all v(O) EE: 

axe sufficient for the existence of lim n-+oo 

(I) of the transition probabilities are strictly positive: 

* v(n)-ng 

All 
k 

p .. 
l.J 

> 0 for all i,j E and k E K(i) (cf. BELLMAN [2], BROWN [3]) 

(II) For all v{O) 
N 

EE there exists an aperiodic f ESP and an integer n
0 

such that 

v(n+l) = q(f)+P(f}v(n), for all n ~ n0 (cf. MORTON (16]) 
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(III) There exists a states and an integer v ~ 1, such that 
1 v 1 2 v . 

P(f ) .... P(f ) . > 0 for all f ,f , .•. ,f E Sp; 1 E ft (cf. WHITE [25]). 
J.S 

(IV) 

(V) 

Every f E Sp is aperiodic {cf. SCHWEITZER [18] & [20]). 

Every f ES is aperiodic (cf. SCHWEITZER [18] & [20]). 
PMG 

(VI) For each i ER* there exists a pure maximal gain policy f, such that 

state i is recurrent and aperiodic for P(f). 

(VII) Every pure maximal gain policy has a unichained tpm and at least one 

of them is aperiodic. 

(X) 

6. SOME IMPLICATIONS OF THE ASYMPTOTIC BEHAVIOUR OF THE SE~UENCE {v(n)}n=l!t 

In this section we briefly en11merate a DlJmber of topics on which the 
00 

asymptotic behaviour of {v(n)}n=l has a decisive impact: 

(a) The properties of optimal or 8-optimal strategies in MDP's with a finite 

planning horizon. 

(b) The use of the value-iteration method for locating maximal-gain policies; 

as pointed out before, this is especially important when the state space 

is large in which case exact solution methods like the Policy Iteration 

Algorithm (cf. [9]) and Linear Programmjng approaches (cf. [4]) become 

infeasible. 

{c) The tightness of lower and upper bounds for the maximal gain rate 

as developed by OOONI (17] and HASTINGS [7]. 

We first need the following notation: 

* g 

A (Markov)-strategy ,r = ( •• ,fn, ••• ,£1) is an (infinite) sequence of policies 

f ESP; n = 1,2, .•.. Applying strategy 1r to then-stage model {for some 
l n ~ 1) means using action f (i) when the system is in state i, and 

there are£. periods to go (lsl.~n). Fix a scrap-value vector v(O) E 

when 
N 

E and 

for any strategy 1r, let v{n;~) denote the vector the i-th component of which 

denotes the total expected reward in then-stage model when starting in state 

i and when applying strategy 1r. 

A strategy 1f is called optimal if 

(6 .1) v(n;n). = v(n). 
J. J. 

for all i E Q and n = 1,2, •.. 

and for any E > 0 a strategy n is called E-optimal if 

(6.2) 

• 

v(n;n). 
l.. 

v(n). - e 
1 

for all i E Q and n = 1,2, •••• 

' 
' 
' 

' 
' 
' 
' ' 
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one easily verifies that a strategy n = n 1 
( .... ,f , ... ,f) is optimal if and 

only if for all l = 1,2, .•. attains the N maxima in the value-iteration 

equation (0.1) for n = l-1. Now it follows from the multichain generalization 

of OOONI [17] that any policy achieving the maxima in (0.1) for large n, is 

* maximal gain provided v = 

More specifically we have: 

lim ~ v(n)-ng* exists. n ➔co 

(6. 3) 
·A.: * 

If v = lim v(n)-ng exists, 
n-+oo 

then there exists an integer 

v(n+l) = q(f)+P(f)v(n) => f E 

that for all n 2 

where for any v EV, SP(v) = 
clusion following from lemma 

X. {k 
l. 

3.1. 

• 

= O} C -
* 00 In case {v(n)-ng }n=l converges this • im-

plies that optimal strategies only use maximal gain policies, possibly with 

the exception of a finite number of final 

is guaranteed for every v(O) E EN, if and 

Conversely it follows from example 4 
* CX) 

stages, and it follows that this 

* only if d = 1. 

in LANERY [11] that in case 

{v(n)-ng }n=l fails to converge ✓ non-maximal gain policies may appear in-

finitely often in the sequence~ 
n 1 = ( ••• ,f , ••• ,f) of an optimal strategy n. 

In [6] an e~ample was even built where every optimal strategy uses exclusive

lg non-maximal gain policies. For a more detailed investigation of the 

properties of optimal strategies both in the case of convergence and of oscil-
* 00 lation of {v(n)-ng }n=l we refer to [6]. 

A strategy~ is called asymptotically stationary if it uses the same 

policy f, at each stage of the problem, with the possible exception of a 

finite n11mber of final stages. Example 1 in BATHER [1] shows that in general 

there is no policy convergence, i.e. in general an .asymptotically stationary 

optimal policy may fail to exist. 

As a much stronger result the same example, which has every policy uni

chained and aperiodic, shows that in general no-optimal strategv 

~ = ( ••• ,fn, ... ,f1 ) exists which is asymptotically J-pexiodic for some J 2 1, 
*J *1 i.e. for which a J-tuple of policies (f , ••• ,f ) and an integer n

0 
~ 1, 

exists such that 

(6. 4) for all n·~ n, 
0 

r = 1, .... ,J .. 
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Bather's example thus falsifies the conjecture in BROWN [3] of the same tenor. 

However, it has been proven in [6] that in all generality and for all 

£ > o, a £-optimal strategy exists which is asymototicallv J -periodic for some 

J = 1,2, ..• _Tobe more specific we recall the following result from [22], 

th. 5.8: 

6.1. Fix a scrap value vector x E EN. There exists an integer JO(x) ~ 1 -----
* such that lim ~ v(nJ+r)-(nJ+r)g exists if and only if J is a multiple of 

n )00 0 . 
J (x). Moreover we have 

0 
J (x) 

0 = l .c .m.. {J (x) 
. N I X € E }. D 

Using l~xori1a 6 .1 , one obtains (cf. [ 6 J) that for all s > 0 £-optimal 

strategies can be constructed with JO(v(O)) as the asymptotic period. In 

particular we can conclude that for all E > 0, asymptotically stationary£

optimal strategies exist whenever lim v(n)-ng* = v* exists and in [6] it 
n ►oo 

was verified that in this case SP(v*) is the set of policies that may be used 

in the initially stationary part of a E-optimal strategy. In addition there 

exists for every scrap value vector x E EN an asymptotically d*-periodic 

E-optimal strategy (for every E > 0). Analogous results were obtained in 

LEMBERSKY [13], [14] and LEMBERSKY & OTT [15] for the continuous time Markov 

Decision Problems where no periodicity problems arise. 
O::> 

For the consequence of the asymptotic behaviour of {v(n)}n=l with respect 

to the working of several successive approximation schemes we refer to Part 

III of this paper. Finally we recall the bounds on g* as obtained by a straight

forward generalization of OOONI [17] & HASTINGS [7]: 

{6.5) [v(n+l)-v(n)] . 
min 

n 
$ g(f ). $ 

l. 
* g. $ 
l. 

[v(n+l}-v(n)] , n= 
max 

1, 2, ..... 

where fl, l = 1,2, ••• is any policy which attains the N maxima in the value

iteration equation with n = l-1. It is quite obvious that the sequences of 

* * bounds converge (tog. and g resp.) if and only if 
min max 

lower and upper 

1. i.m 
04<>:; 

* v(n)-ng exists and will be oscillating otherwise. This implies that 

if the maximal gain rate is independent of the initial state of the system 

* * i.e. if g = <g >1, - the lower and upper bounds will ultimately come within 

arbitrary precision * of <g >. 

(6.6) 
1 
J 

v(n+J}-v(n) • mJn 

(6.5) can easily be extended to: 

* $ g. 
l. 

1 
$ J [v(n+J)-v(n)] , n = 

max 1, 2, •.• 



where it follows from th.5.1 that for all 

bounds in (6.6) 

provided that J 
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0. SUMMARY 

In part I, a survey was given of what has become known with respect to 

both necessary and sufficient conditions for convergence of 

(0 .. 1) {v(n) -

for every possible choice of the scrap value vector v(O) E 

In (0.1), v(n). represents the total expected maximal 
l 

N 
E • 

reward for a 

planning horizon of n epochs, when starting in state i and given an amount 

* v(O). is obtained when ending up in state j. Moreover, g denotes the maxi-
] 

mal gain rate vector and it is known from BROWN [2] that the sequence in 

(0.1) is always bounded. In this context, th.5.1 of part I represents the 

* main result by stating the existence of an integer d ~ 1 such that 

(0. 2) * lim v(nJ+r)-(nJ+r)g 
n4-<X> 

exists for all v(O) E 

* if and only if J is a multiple of d. 

* 

N 
E 

In addition a characterization of d was given in terrns of the chain- and 

periodicity structure of the MDP, from which the necessary and sufficient 

* condition ford - 1 - I 
• i.e. 

lary (cf. corollary 5.2). 

for global convergence was obtained as a corol-
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Whereas part I settles the issue if one demands global convergence, i.e. 
* co N convergence of {v(n)-ng }n=l for every v(O) € E, one should observe that 

* convergence always occurs for the special choice v(O); v + Rg, where 

v € v and R is large (cf. section 4 and lemma 2.2 in [8]). In other words, 

there always exists a non-empty (closed) 
* 00 tors for which {v(n)-ng }n=l converges. 

subset W 
N 

SE of scrap-value vec-

In this part we turn to the topic of the rate of convergence. The 

notation is identical to the one used in part I. As our principal result 

we obtained in [8] the fact that if a subsequence of the type 

* co * {v(nJ+r) - (nJ+r}g }n=l converges to a limit v (for some J ~ 1 and 

* r = O, ... ,J-1) then the approach to the limit v is geometric, i.e. there 

exist numbers K(v(O)) > 0 and O ~A< 1 such that 

(0. 3) 
n 

KA, n = 1,2, ... 
• 

As a consequence various successive approximation methods which are based 

on the value-iteration scheme (0.1) of part I exhibit a geometric rate of 

convergence as well (cf. part III). We observe that this generalization of 

(1) what is known to be the case in a simple Markov Process, i.e. in a MDP 

with single policy (cf. [9]), and 

(2) White's result [12] 

holds in all generality with no restrictions imposed on either the chain-, 

periodicity- or reward structure of the problem. In addition, the result 

is to some extent surprising, since the value-iteration operator Q, defined 

by 

(0.4) Qx . = 
1 

max 
kEK(i) 

k 
{q. 

J. 
+ i: • 

J 

k 
P . . x.}, 

l.J J 

N 
E 

(which takes v(n) into v(n+l)) is not a (J step) contraction mapping for 
N 

any J = 1,2, ... on E (cf. DENARDO [3] and [4], section 1): nor is there 

in general an obvious way of reducing it to such a mapping on some sub
N 

space of E. To be more specific, note that the Q-operator has the proper-

ties: 

(0. 5) Q(x+cl) N = Qx + cl; x € E and all scalars c 

which excludes the possibility of Q having a unique fixed point and hence 
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of Q being a (J-step) contraction mapping (for some J ~ 1) as such (cf. [4] 

section 1). Even when considering the quasi-norm (cf. BATHER [1]) 

II xii = x - x . , 
d max min X E 

the usefulness of which is suggested by (0.5) it can be shown (cf. [4]) 

that Q is (J-step) contracting with respect to this quasi-norm only under 

very restrictive conditions on the chain-and periodicity structure of the 

problem. Example 1 below indicates e.g. that the uniqueness of the fixed 

point v EV (cf. part I) up to a multiple of 1, i.e. the uniqueness of 

V E V in II U - norm, which is 
d 

equivalent to 

* (Hl) n = 1, or the existence of a randomized maximal gain policy which has 

* R as its single subchain 

in combination with global convergence 
n 

of {Q X -

which is equivalent to (cf. cor. 5.2 in part I) 

* 

* C0 

ng }n=l for all x E 

(H2) d = 1, or the existence of an aperiodic randomized maximal gain policy 

* with R(f) = R 

is in itself an insufficient condition. 

EXAMPLE 1. 

S1 = { 1, 2}; K ( 1) {l}; K {2) {1,2}; 1 1 O; 2 
-1; 

k 
ojk 

- - ql - q2 - q2 - p .. -- - - - - -
J..J 

k - 1 -
1 2 k 2 -- --

Note that g* = O and V = {c1 I c E E
1

} and that every policy is aperiodic -
which guarantees (0.8). Take x = [O,X] and y = 0. Verify that 

n n 
Q x = [O, max(X-n,O)] and Q y = 0 and conclude that for all n = 1,2, ... 

n n vii I IIQ u-Q 
d 

1 II u-vll 0 > - sup -- II u-vll - -d 
d 

....... 

II Qnx-Qnyll 
max(X-n,0) 

lim d 
lirn 1 . - -

If x-yll . - -
X 

X-+<x:> d X >oo 

Thus for non= 1,2, ... is Q (n-step) contracting with respect to the II ll -
d 

norm. For necessary and sufficient conditions for Q to reduce to a contrac

tion mapping, we refer to [4]. 

The geometric convergence result in (0.3) is obtained by analyzing the 

• 
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n co 
evolution of the Q-operator in {Q x}n=l for any x E W. In fact when trying 

to establish (0.3) it suffices to consider the case J = 1. For when J ~ 2, 

the same analysis, applied to the J-step MDP as defined in section 5 of 

part I, establishes the geometric convergence result in (0.3) for all 

r = o, .... ,J-1. 

n co 
In section 1, we show for all x E W, convergence of {Q x-ng}n=l occurs 

in three phases, and we discuss the behaviour of the Q-operator during the 

first phase .. 

n * oo For all x E w, let L(x) = lim {Q x-ng} 1 . In the second and third 
n-+co n= 

phase is monotonically non-increasing and in section 2 we 

point out that the number of steps needed for strict contraction, i.e. for 

a is bounded in x E W. 

Next we explain how this was used in [8] to establish the geometric 

convergence result in (0.3). 

In addition we give a sharp upperbound for the convergence rate which 

is independent of the starting point x E w. As a contrast, a uniform (n

step) contraction factor (i.e .. an-step contraction factor which is inde

pendent of x E W) does not need to exist for any n = 1,2, .•• and we recall 

the necessary and sufficient condition for the existence of such a uniform 

contraction factor for MDP's satisfying (0.7). 

Finally we discuss upperbounds for the n11mher of steps needed for 

contraction. 

1. THE EVOLUTION OF THE Q-OPERATOR 

for 

First of all we recall from lemma 2.2 in [8] or from BROWN [2] that 
N 

all x EE there exists an integer n
1 

(x) such that 

{ 1 .. 1) 

where the T-operator is defined by: 

( 1 .. 2) Tx. = 
l. 

max 
kEL (i) 

k k 
{q.+1:.P .. x.}; 

l. J J.J J 
X E 

for all n ~ n
1 

(x) 

N 
E • 

This is due to the fact that, after a finite nt1mber of iterations, only 

alternatives k E L(i) attain the maximum in the value-iteration equation 



(0.1) in part I. Note that the T-operator has the additional properties: 

( 1. 3) * * T(x+cg) = Tx + cg 

and 

for all XE 
N 

E ; 
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( 1. 4) * II Tx-g -vU = II Tx-Tvll :s; II x-vll 
d d d 

for all XE EN and all VE v. 

In other words, after n
1 

(x) iterations the 

any v E V, as measured by the II II -norm is 
d 

Next, define for x E W: 

e(n,x) n * = Q x - ng - L(x) 

''distance'' between Qnx - * ng 

monotonically non-increasing. 

00 

and note that {e(n,x)}n=l satisfies the recursion equation: 

( 1. 5) e(n+1,x). = 
1. 

max 
kEL(i) 

{b(L(x))~+ 
1. 

k 
E.P .. e(n,x) .}, 

J J.J J 

and 

Since lim e(n,x) = 0 for all x E w, it follows that after a still larger n >00 
number of (say after n 2 (x)) iterations, only alternatives k E L(i) attain 

the maximum in the value-iteration equation (0.1) of part I, for which 
k 

b(L(x)). = 0. More specifically, for any v EV let 
1. 

( 1. 6) a (v) = min{(b(v)~I 
l. 

I i En, k E L(i), 
k 

b (v) . < 0}. 
1. 

Next, for any x e W, let n 2 (x) = inf{n I n ~ n 1 (x)1 He(m,x)lld < 8(L(x)) for 

all m ~ n} < 00 • Then for all x E Wand n ~ n
2

(x): 

( 1. 7) e(n+l,x) = U(L(x))e(n,x) 

where for any v e V, the U(v) - operator is defined by 

( 1 .. 8) 

with 

U(v)x. = 
J.. 

max 
keL(i,v) 

L(i,v) = {k E L(i} 

k 
[E.P .. x.J, 

J l.J J 

I b(v)~ = O}, 
1. 

i E f2. 

Observe that in spite of V being an infinite subset of 
N 

E , only finitely 

many distinct U(v)-operators occur since there are only finitely many 
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subsets of X.L(i). 
l. 

Note in addition that the U(v)-operators have all of the properties 

the Q- and T-operator have (property (1.3) included) but in addition the 

U(v)-operators have the extremely useful characteristic of bein positively 
• homogeneous i.e.: 

( 1. 9) u ( v} [ ax J = au ( v) x for all XE EN and a~ 0 .. 

n * oo As a consequence the convergence of {Q x-ng }n=l for any x E W occurs in 

. three phases. The first n 1 (x) iterations constitute the first phase and 

the second phase terminates after the n
2

(x)-th iteration, and is followed 

by the third phase from there on. 

We conclude this section by a short description of the behaviour of 

the Q-operator during the first phase. We first observe that this 

phase is void if, K{i) = L(i) for all i En, which is e.g. the case when 

* * g. = <g >, i En, i.e. when the maximal gain rate is independent of the 
1 

initial state of the system. On the other hand, n
1 

(x) may be 11nbounded in 

x E EN or x € w. In fact in the worst case the length of the first phase 

may be linear in ll xii d as is proven in [8], th. 3 .1. This is why the first 

phase is said to have a fini~e though linear type of convergence. 

The following example illustrates this: 

EXAMPLE 2. 

{1,2,3}; K( 1) = K(3) {1}; K(2) {1,2}; 
1 1 2 

O; 
1 n = - - ql - q2 - q2 - q3 -- - - - - -

• 

1 1 2 1 
1. Pll - p21 -

p23 - p33 -- - - -

k = 1 k = 2 
2 3 

* Note that g = (0,0,-1) and that L(2) = {1} 

1 

Let x = [O,O,X] with X >> 1 and verify that 

that n 1 (x) = Uxlld = !xi= x. 

n 
Q X = [O, max(O,X-n+1) ,x-n] 

such 

00 

may be very capricious. E.g. {lle(n,x)lid}n=l may be alternatingly increasing 

and decreasing such that the first phase is not necessarily terminated as 
n * soon as [Q x-ng ] starts coming closer in II II d-nor1n to the limit L (x) 

(cf. example 1 in [8]). In the second phase the Q-operator essentially re-
,.., N ,..., n * 

duces to the T-operator. Let W = {x e: E ·, L (x) = lim T x - ng exists} 
Il'7<X> 

• 
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,...,, ,.., 
and note that V ~ W. In analogy to e(n,x) define for n = 1,2, .•• and x E W: 

(1.10) 
,..._, 

e(n,x) n * ,..., = T x - ng - L(x). 

It follows from (1.1) that for all x E W: 

, 

(1.11) 
n >00 

lim Qn+n1 (x) x -

n-+oo 

* - ng 

* (n+n
1 

{x)) g 

--

= L (x) + 

E W, 
n1 ......, 

Q x E W. As a consequence studying the con-In other words for all x 
n * co 

vergence of {Q x-ng }n=l in the second and third phase amounts to character-
rw 

izing the behaviour of Ton w. 

2. THE SECOND AND THIRD PHASE; GEOMETRIC CONVERGENCE 

First we define for all x E EN and all n = 1,2, ... then-step contrac

tion factor f {x) by: 
n 

,.._, n * ......, n n......, 
lle(n,x)II II T x-ng -L (x) II IIT x-T L {x) U 

d d d 
if Xi. V - -- - I 

11;(0,x) II 
,...,, ,...,, 

llx-L(x)lld II x-L (x) II d 
d 

(2. 1) f (x) --n 
0 otherwise 

• 

• since II x-L (x) II = 0 can be shown to occtir only if x E V and where the equal.i
d 

ty in (2.1) follows from a repeated application of (1.3). 
,..., 

Note that for all x E w, and n = 1,2, ... , f (x) ~ 
n 

00 

1 and that {fn(x)}n=l is 

monotonically no.n-increasing 

M(x) ~ 1 with: 

towards 0, such that there exists an integer 

(2. 2) f (x) < 1 
n 

for all n ~ M(x). 

Next the key result in the geometric convergence proof is provided by 

* ~ THEOREM 1. There exists an integer M such that for all x E W: 

(2. 3) fJCx) < 1. D 
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Thus, th.1 expresses that M(x) the n11mber of steps needed for contrac-
,.._, 

tion is bounded in x E W. 

(2.4) 

,.._, 

For each m = 1,2, •.. and x € w, let 

h (x) = 
m 

sup 
n=l,2, ... 

n * f (T x-ng) s 1 
m 

where the inequality follows from (2.3). The second part of the geometric 
......, 

convergence proof consists of showing that for all x E W: 

(2. 5) h *(x) < 1 
M 

(2.5) is obtained by a detailed analysis of the U(v)-operator appearing in 

the third ph,ase of the process, and leads to: 

(2. 6) II e ( nM * + r , X) II 
d 

:S lie (nM*,x) II 
d 

* < (n-1) M * * II"' * U - fM*(T x-(n-l)M g) e«n-l)M ,x) d 

"' * s h * ( x) II e ( ( n - 1 ) M , x) II • 
M d 

Finally, some further analysis leads to the main result: 

THEOREM 2. (Geometric convergence) 

For all x E W, there exists a number K(x) such that 

(2. 7) * ng 
* 

- L(x) I s 

~vhere [x] indicates the largest integer less than or equal to x .. 

• We observe that hM*{x) does not represent the ultimate convergence 

rate or ultimate average contraction factor per step, which is defined by: 

(2., 8) 

lim 
n-?<lO 

0 

f (x)l/n = lim 
n 

Il-r<XI 

~ 

,...,, 
II e ( o, x) II 

d 

1/n 
for x IV 

for xi V. 

It can be shown that for all x E W, the ultimate convergence rate may be 

bounded by 

(2. 9) max sup 
VEV 

* M 
llu(v) yll 

II yll 
d 

d 
lim 
n >-00 

n 
U(v) y = 0 < 1 

• 
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Observe that on the right hand side of (2.9) the maximum is taken over a 

finite n,1mber of distinct U(v)-operators. Note in addition that in the case 

of a single policy this reduces to the well-known fact that the convergence 

rate is bounded by the subdominant eigenvalue of the associated transition 

• probauili ty matrix (c:t. also MORTON [6 J, who found the same result in the 
' 

1 special case of policy convergence, i.e. when there exists an integer n
0

(x) 

and a policy f E S such that: 
p 

(2.10) 
n n-1 

Q X = q(f) + P(f)Q X 

,..., 
Whereas the ultimate convergence rate is bounded on w, the same does not 

necessarily hold for then-step contraction factor 

choice for n = 1,2, ..•. That is, we may have: 

(2.11) su;e 
XEW 

f (x) 
n 

= 1 for all n = 1,2, ... 

as is illustrated by example 1. 

f (x) 
n 

whatever the 

The problem of finding conditions which in all generality are both 

necessary and sufficient for the existence of a uniform n-step contraction 

factor for some n = 1,2, ••. , has not been solved yet. However, under (Hl), 

the following necessary and sufficient condition was obtained in [8]: 

,;'\ 

(H3) There exists 

subchain. 

a randomized policy f ES which has Ras its single 
R 

where R = {i E QI i E R(f}, f ESP}. 

* Another topic of interest is the dependence of M on the size of the 

problem. Again, under (H1) it was shown that 

{2.12) * M - 2N + 2. 

The upperbound was obtained by a combinatorial proof and is sharp up to a 

term of O(N) (cf. example 2 in [8]). The quadratic upperbound obviously 

represents the worst case behaviour, and contrasts with the fact that com

putational experience as reported e.g. in SU and DEININGER [10] and TIJMS 

[11] shows that (in most cases) * M = 1 or 2. 

Obviously the bounds on g* as obtained by ODONI [7] and HASTINGS [5] 

exhibit the same geometric rate of convergence. 
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' 

With the above described geometric convergence rate, the state of the 
' 

art with respect to the undiscounted model has become paralel to the dis-

counted model, where geometric convergence of the value-iteration method 

follows immediately from the theory of contraction mappings. 

* However, as long as no upperbounds for A in (2.9) can be computed 

it seems unlikely that 

(1) bounds on L{x), or 

(2) bounds on the number of iterations needed to come within arbitrary 

precision of L'(x) , or 

(3) tests for permanent elimination of non-optimal actions 

will be obtained. 
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In this final part we show which successive approximation procedures 

can be used in order to find maximal gain policies and the maximal gain 

rate vector. For the schemes which are based upon pure value-iteration the 

convergence results obviously follow from the study of the asymptotic be

haviour of the total n-stage maximal expected reward as n tends to infinity 

and as described in parts I and II. 
* 00 In part I we observed that only in case {v(n)-ng }n=l converges will 

value-iteration be guaranteed to ultimately settle upon maximal gain poli-
00 

cies and only then can sequences be derived from {v(n)}n=l which converge 

* tog and some v Ev. 

* co 

* i.e. whenever d = 1 is not guaranteed by the structure of the problem, the 

following alternatives can be used: 

A) The modified value-iteration technique by HORDIJK and TIJMS [8]: 

This scheme is essentially a discounted value-iteration scheme with a dis-

countfactor depending upon the index of the iteration stage, and tending 

to one as the index tends to infinity: 

(1.1) w(n+1). = 
J. 

max 
kEK(i) 

k k 
{q.+f3 r.P .. w(n) .}; 

i n J J.J J 

where w(O) is a given N-vector. 

i € n 
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The scheme can only be used when 

( 1 .. 2) * * g = <g > 1 .. 

In this case 

(1.3) w(n} - * +w E V as n -+ co 

00 

where {yn}n=l is obtained recursively by 

Y = 1 + 8 y 
n+1 n n 

for n ~ 0 

provided that 

(a} 

(b) 

S ·. B 1 ... n n- S -+ 0 
1 

n 

I an 
j=2 

• - • 13. 1 I s. -R. 1 I -+ 0 
J+ J J-

with Yo= 0 

(a) and (b) essentially 
00 

express that {S} 1 should increase to one 
n n= 

at a 

low enough rate, and a computationally tractible choice is provided by 

( 1. 4) -b 
n with 0 < b ~ 1. 

The analysis of the behaviour of this scheme uses the Laurent series ex

pansion of the total maximal discounted return vector for discountfactors 

that are close enough to one (cf. MILLER and VEINOTT [9]}. 

The scheme eventually settles upon maximal gain policies, and with the 

choice (1.4) it can be shown that the ultimate convergence rate is 
-b 

O(n lnn) which is substantially slower than the geometric convergence rate 

we obtained for the ordinary value-iteration scheme. 

However the scheme has two very nice characteristics: 

(1) convergence occurs regardless of the chain- and periodicity structure 

of the problem. 

(2) For every starting point w(O) 
N 

EE the scheme converges to the same 

* limit vector w which has the following very important interpretation: 

(1.5) w -- w(f). = 
1. 

* Z(f)[q{f)-g ]., 
1. 

i e: n. 



g ( f) 
"""'' ,,,6''; ola I' : llai ~--• 1-i3 

(cf.. BLACKWELL [~ 1 _] .,_1.,nd MILLER and VEINOTT [ 9]) • 

Tl"lt:! HORDIJK-TIJMS scheme, however, doc~s not necessarily settle upon 

bias-optimal pol. ic.ies i .. e .. policiE~s which att.ain tl1t~ N maxima in ( 1. 5} 

simultaneously .. 
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* The bounds on g as obtained by ODONI [ 11] and HASTINGS [ 6 J for ordi11ary 

value-iteration (cf. also part I) have to be altered as follows. For 

t ,,.,. 1 ? 
' ·- , , ..... , ..... 

( 1 .. 7) 
' l. 

{w(l). -
l. 

< max 
• 

w(l). - 8 0 w(l-1) .} 
.1 .,(., l 

l 

where is any policy which attains the N maxima at the l-th iteration 

stage of (1.1}. Again, whenever * <g >, i En, will the outer bounds in 

(1 .. 7) * converge to <g >. 

B) A second way to deal with the periodicity-problems mentioned in part I, 

is obtained by eliminating the periodicities using the following data

transfor·mation (cf,. SCHWEITZER [11]): 

( 1 .. 8) 

where O < T < 1. 

k 
-r (P .. -o .. ) + 

1.J l.J 
u ll < N 1, J -· and k E K{i) 

This transformation makes all of the diagonal elements of all of the 

tpm's strictly positive, such that in the transformed model all of the 

policies are aperiodic. 

Moreover, the transformation turns the MOP into an equivalent one, in 

the sense that it has the same state- and policy space and that each policy 

has the same gain rate vector. 
* co Due to the obtained aperiodicities, {v(n)-ng }n=l converges 

cally fast) in the transfo1:·med mode.l for whatever choice of v (0) 

(geometri
N 

E E . 
,,.,.,, 

In addition, the following simple relationship exists between V and V, the 

solution set to the optimality equation in the transformed model. 
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( 1. 9) 
~ 
V = {v € I Tv Ev}. 

A second problem arises in both approaches due to the fact that the sequences 
(10 00 

generated ({w(n))}n=l and {v(n)}n=l) diverge linearly with n. That is, one 

has to do computations with numbers that grow linearly with the n11rnber of 

stages needed to come within the required precision. 

* * In case g = <g > 1 the problem can be eliminated using White's pro-

cedure: e.g. in approach A) we generate 

( 1. 10 ~ w(n). 
l. 

= w(n)i-w(n)N 
k N 

= max{q.+f3 l 
l. n. 1 J= 

N 
k 

max{qN + B I n 

Then 

~ w(n) * ➔ w * - <w > 1, 
N 

and 

max 
k~K(i) 

k \' k ,..., 
{q +$ l P . w (n) . } ➔ 

N n . NJ J 
J 

* <g >. 

j=1 

k r.> 

P .w(n-1) .}. 
NJ J 

In the general multichain case where (1.2) fails to hold, only approach B) 

needs to be considered. The only thing that comes to mind when trying to 

eliminate the above mentioned difficulty is the following: 

Write v(n) = ng(n) + y(n), with 

(1.11) g(n) = v(n) - n(n-1) 

(1.12) y(n) = nv(n-1) - (n-l)v(n). 

Observe that the sequence 

whenever L(v(O)) = lim 
n-"->.0000 

00 00 

{g(n)}n=l and {y(n)}n=l 

* v(n) - ng exists. Note 

y(n) can be generated from the schemes: 

* converge tog and L(v(O)) 

in addition that g(n) and 

(1.13) g(n+1). = 
1. 

max 
kEK(i) 

k 
(P .. -c .. )g(n) .+ l 

l.J l.J J 

k 
(P .. -cS .. )y(n) .} 

l.J J..J J 

( 1. 14) 

• 
J 

• 
J 

y (n+l) . = y (n) . + n[ g (n) . -
i i J.. 

max 
ke:K(i) 

k 
( P . . - o . . ) ( y ( n) . +ng ( n) . ) } ] , 

l.J 1J J J • 
J 

i E f2. 
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By generating (1.13) and (1.14) only two bounded sequences of numbers have 

to be stored. Unfortunately, however, this solves our numerical difficulty 

only partially, since it is still necessary to do computations with un

bounded terms when determining the right hand sides of (1.13) and (1.14). 

In some cases one may be interested in obtaining (as large as possible 

a subset of) the entire set S , so as to make further selections on the 
PMG 

basis of additional criteria. 

In section 6 of part I we discussed the irregulatities that may appear 

in the sequences of policies generated by the value iteration method (and 

which are identical both in approach A) and B)). Nevertheless the following 

procedure may be used to get (cf. [3]): 

* X. L(i,w ) , 
l 

X. L(i,L(V(O)), 
l 

when using approach A) 

when using approach B). 

In both approaches let K(i,n,E) be the set of actions that come within E of 

attaining the maximum at then-th stage of the iteration scheme (i € O; 

n = 1,2, ... and E > 0). By letting£ decrease to zero, as n tends to infini-

ty, we get the existence of an integer n
0 

~ 1 such that for all n 

K{i,n,e: ) = 
n 

L (i ,w *) 

L(i,L(v(O))) 

in approach A) 

in approach B) 

> n -- o· 

co 
provided the sequence of positive n11mbers { £ } 

1 
is chosen to decrease to 

n n= 
0 at a rate which is slower than the convergence rate of the particular 

value-iteration scheme. That is, choose: 

(1 .. 15) lim 
Il----r<lO 

-1 b 
(1nn) n €: ➔ co 

n 

in approach A) with the 
00 

choice (1.4) for {8} 
1

, and 
n n= 

(1.16) lim 
Il----r<lO 

-n 
E A ➔ 00 , 

n 
in approach B) . 

To satisfy (1.15) -b/2 = n and 
-1 

polynomial inn, may be chosen for£ . 
n 

take e.g. £ 
n 

to satisfy (1.16) any positive 
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We mentioned before (cf. part II, section 2) that no tests have been 

derived so far for eliminating nonoptimal actions on a permanent basis, 

since for the multi-chain case no bounds on L(v(O)) have been derived. 

Only for the unichain case where v EV is unique up to an additive constant 

have upper and lower bounds been obtained, (cf. [5]). However, HASTINGS [7] 

recently suggested a device for eliminating actions on a temporary 

basis which reduces the amount of required computations considerably. 

Using the geometric convergence result of (ordinary) value-iteration 

can show that any action k E: K(i) which does not lie within L(i,L(v(O))) 

will eventually be eliminated (cf. remark {4} in [5]). 

We finally turn to the wider class of 11 Markov Renewal Programs'' (MRP 's) 

in which the state of the system is not necessarily observed at equally 

spaced epochs, but in which the transition time between two successive ob

servations of state is a random variable the distribution of which depends 

both upon the last state observed and the action chosen. 

For all i En, k E K(i) let T~ > 0 denote the expected holding time 
1. 

in state i when choosing action k E K(i). 

Both the Policy Iteration Algorithm and the Linear Programming Ap

proaches which were originally developed for MDP's have been adapted for 

the more general MRP-model (cf. e.g. [2]). To obtain a successive approxi

mation method for undiscounted MRP's we recall the following generalization 

of the data-transformation (1.8) which turns every MRP into an equivalent 

MDP {the equivalence notion being defined above) (cf. [4] and [10]): 

(1.17) 
~k 
p .. 

l.J 

k = q. I 
l. 

= 0 .. 
J..J 

+ T (P~ . -o .. ) / 
J.J J..J 

where 'T has to be chosen such that 

( 1. 18) 0 < 'T $ min 
k 

{T. / 
l. 

(1-P~.) 
ll. 

k 
T. 

J.. 

i En; k K(i) 

i,j E Q; k E K(i) 

i € n; k E K(i) 

I (i,k) with 
k 

p .. 
J_J. 

< 1}. 

By choosing 'T strictly less than the upperbound in (1.18) the same trans

formation ensures, that every policy in the transformed MDP is aperiodic, 

such that the value-iteration method is guaranteed to converge for any 

starting point, with all of the nice consequences that were exhibited 
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above. 

In addition, the relationship between the solution set of the optimality 

equation in the MRP-model and the corresponding set in the transformed MDP

model is similar to (1.9). As a consequence, applying value-iteration to 

the transformed model will even yield us a solution to the optimality equa

tion associated with the original MRP-model. 
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1. INTRODUCTION 
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We consider a finite Markov decision chain with or without discount

ing. The state space is S, where the states are labeled i = 1,2, ... ,N. If 

the system is in state i ES at time nan action k has to be selected from 

a nonempty finite set K .. As a consequence of this action k E 
1. 

a(n) (expected) reward r(i,k) and the system moves to state j 

n + 1 with probability p(i,j,k). We ass11me l · p(i,j,k) = 1. 
J 

K. we earn 
1. 

ES at time 

The Cartesian product of all sets K. is the policy space A. For any 
J. 

policy 6 E ~ we denote by P(o) the transition probability matrix and by 

r(o) the column vector of rewards. Rewards earned in then-th period are 

discounted by a factor B > 0 (eventually S ~ 1). our goal is to find a 

strategy that maximizes the total expected reward over a time horizon 

TE JNu {00 }, and to determine the corresponding optimal reward vector vT. 

Here, a strategy TIT for a T-horizon problem is a sequence of policies 

TIT:= (o 1 ,o 2 , •.• ,oT). Note that we restrict the considerations, as is 

allowed, to nonrandomized strategies. For T = 00 it is even permitted to 

consider only stationary strategies i.e. TI := TI := (0,0,0, ... ). The opti-
oo 

* mal value vector vT can be computed by the value iteration algorithm of 

dynamic programming. For finite horizon problems we refer to HINDERER [4] 
-

and HUBNER [6]. For T = 00 we refer to e.g. HASTINGS [1] or VAN NUNEN [9]. 
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In the latter situation dynamic progr~mroing yields in the limit policies 

which can be used to constitute stationary strategies that are optimal. 

As indicated in e.g. [1], [4], [6], [10] convergence is monitored by 

* using upper and lowerbounds on the optimal return vector vT. These bounds 

are used to construct sub-optimality tests, see for e~ample references 

[8], [3], [2], [10]. The test proposed here increases the efficiency of 

the dynamic programming method considerably. A nonoptimal action for a 

given stage (iteration) is one which does not form part of an optimal 

policy for that stage. Until now, in the discounted case, tests have been 

devised whereby only those actions which can be identified as being non

optimal for all subsequent stages are eliminated. For the average reward 

situation HASTINGS [3] proposed to eliminate actions for one or more stages 

after which they may reenter the action space. Here we extend this idea 

to Markov decision processes which may be undiscounted or discounted, may 

have a finite or infinite time horizon and in the finite horizon case may 

have a discount factor that is allowed to be greater than one. 

2. THE TEST 

Let f(n,i) be the maximum total expected return generated when the 

system starts in state i ES and continues for n-stages. Then 

( 1) f(n,i) := max [r(i,k) 
kEK. 

l. 

+ S l p(i,j,k) f(n-1,j)] 
ji::S 

where f(O) is given and 8 > 0. The value iteration algorithm computes 

f(n,i) for i es and n = 1,2, ••• ,T. 

Define 

( 2) 

(3) 

(4) 

(5) 

f(n,i,k) := r(i,k) + S I p(i,j,k)f(n-1,j) 
jES 

y(n,i,k) := f(n,i) - f(n,i,k) 2 O 

e (n) 
u := max[f(n,i) - f(n-1,i)] 

iES 

:= min[f(n,i) - f(n-1,i)] 
iES 



(6) 

(7) 

Note that 

(8) 

m-1 
H(m,n,i,k) := y(n,i,k) - 2 ¢ (,Q,) 

.!l=n 

H ( m+ 1 , n , i , k) ~ H ( m, n , i , k) . 
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m > n . 

In the test we will use, any action k E 

at value iteration stage m if 

K. is nonoptimal for state i ES 
l.. 

H(m,n,i,k) > 0 .. 

3. BASIC PROPERTIES 

LEMMA 1 

a) 

b) 

c) 

d) 

e) 

¢ (m) :S S<I> (m-1) 

f(n+l,i,k) - f(n,i,k) :S se (n) 
u 

y(m,i,k) ~ H(n,i,k) form> n 

H(m,n,i,k) ~ y(n,i,k) - cp ( n) , m > n 

PROOF. Part a is a direct consequence of HUBNER [6] theorem 1.1. The 

second part of the lemma follows from 

f(n+l,i,k) - f(n,i,k) = r(i,k) + S I p(i,j,k)f(n,j) - r(i,k) -
jES 

--

l p(i,j,k)f(n-1,j). 
jES 

I p(i,j,k)[f(n,j) 
jES 

- f(n-1,j)] :s $8 (n) 
u 
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consider 

f(n+l,i) - f(n,i) BI p(i,j,k0 )f(n,j) 
jES 

- S 1 p(i,j,ko)f(n-1,j) 
jES 

= B l p(i,j,ko)[f(n,j) - f(n-1,j)] ~ sei (n), 
jES 

with k 0 that action in 

This proves part c). 

Since 

K. 
l. 

for which the maximum in f(n,i) is attained. 

y(m,i,k} = f(m,i) - f(m,i,k) ~ f(m-1,i) + 80.Q, (m-1) - f(m-1,i,k) + 

- S8 (m-1) = y(m-1,i,k) - $(m-1) u 

the result d) follows by iterating stagewise. 

The final statement of the lemma is a direct consequence of part a of 

this lemma and the definition of H (m,n, i ,k). D 
• 

THEOREM 1. 

a} Action k at state i is nonoptimal at stage m > n if H(m,n,i,k) > 0. 

b) Action k at state i is nonoptimal at stage m > n if 

y(n,i,k}- cp ( n) > 0 

c) Action k at state i is nonoptimal for all subsequent stages if 

y(n,i,k) - $(n) > 0, T > n. 

PROOF. The proof follows from the foregoing lemma. Part b) and c) can 

also be found in HUBNER [6]. 
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REMARK. For 13 = 1 the 
1-Sm-n 

term l-S has to be replaced by (m-n) . For T = co 

the theorem makes sense only if S < 1. However, the condition can be 

weakened see HUBNER [6] or Porteus [11]. 

Since in our test actions are eliminated which are nonoptimal for 

perhaps only one stage, it will be clear that the first stage at which our 

test eliminates an action for the first time will in general be much 

earlier than the first stage at which e.g. the MACQUEEN test [8] or the 

HASTINGS and MELLO test [2] eliminates that action. 

This follows directly from the foregoing theorem. 

COROLLARY 1. For O < S < 1 our test is tighter than MacQueen's test and 

the Hastings and Melio test for eliminating optimal actions. 

PROOF. MacQueen based his test on part c) of theorem 1, with T = 00 • So in 

his test an action k is nonoptimal in state i if 

y(n,i,k) -
1 

1-B ¢(n) > 0. 

In our test an action is eliminated for the first time if y(n,i,k) > ~(n). 

Clearly 

cp ( n) < 
cl> ( n} 

1-S 

• 

for O < f3 < 1. 

Since the MacQueen test is tighter than the Hastings and Mello test 

the corollary is proved. 

REMARK: From the foregoing analysis it will be clear that any action that 

fails the MacQueen-test at stage n cannot be optimal at any stage m > n. 

In our test such an action will be eliminated permanently the first time 

it passes the test after stage n. 

REMARK. Note that for$+ 1 the relative power of our test will be greater 
-1 

since (1-$) ➔ ~as S ➔ 1. 

4. COMPUTATIONAL METHOD 

To illustrate the computational method we give a flow chart of the 

test. Before drawing such a flow chart we have to give some more pre-
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limi naries. We ass,Jme the terminal values f (0) = 0 and apply the test from 

stage two onwards. We set the test quantity T(n,i,k) at zero at stage 1. 

An action fails the test if its test quantity (called flag) is positive or 

if its flag is 1'nonoptimal''. If the action fails at stage n its trial value 

f(n,i,k) is then not evaluated at that stage. For an action which passed 

the test at stage n, the flag T(n,i,k) could be reset to 

T(n,i,k) . --• 

'' nonoptima 1 '' if y ( n , i , k) - <P ( n) > 0, 

y(n,i,k) elsw .. 

For an action which fails the test at stage n - 1, the flag T(n,i,k) 

given by 

''nonoptimal 11 if T(n-1,i,k) = ''nonoptimal'', 

T(n,i,k) := 

T(n-1,i,k) - cp(n-1). 

• 
1S 

However as in [3], to avoid the making of a second pass it is prefer

able to use by resetting the 11 flag'' after an action passed the test 

f(n-1,i,k) + S0i(n-1) - f(n,i,k) 

instead of 

y(n,i,k) := f(n,i) - f(n,i,k). 

The effect of the test is to reduce the n11rnber of times that the time 

cons11roi..ng step of evaluating f (n,i,k} is carried out (this step is marked 

by a dotted line). 

The flow chart of the action elimination algorithm has the following 

structure. 



• 

flag:= nonoptimal 

5. NUMERICAL * EXAMPI,E 

YES 

YES 

YES 

• 

next action 

flag = ''nonoptimal''? 

NO 

flag := flag - (p (n - 1) 

flag> 0? 

NO ----- ------------, 
! compute f(n,i,k) ; 
i I 
1 and note if optj mal 1 1 ____________ I 

1-._ ---..------- ------ ---.J 

reset flag 

fl.ag -
l _ (3T-n+1 

1 - f3 
q,(n- 1) > o ? __ N_o_ 
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The extreme efficiency of the test will be shown by applying it to 

Howard's automobil.e replacement problem [5 p.p. 54-59] with discountfactor 

S = 0.97. We use the dynamic programmi.ng algorithm of MACQUEEN [7]. We 

compare the number of actions eliminated by the HASTINGS and MELLO test [2] 

with the number of eliminated actions by the test proposed in this paper. 

In the first test only actions which are nonoptimal for the whole future 

are eliminated. We start the dynamic programming algorithm with a starting 

vector with all components equal to zero i.e. f(O,i) = 0 for all i € S. 

In figurA 1 we see that the difference between the n11mher of actions 

that are el.iminated is significant. From iteration 8 until iteration 22 

this difference is even over 1000 actions. 

* The authors are grateful to mr. K. van der Hoeven for computational 
support. 



' 

168 

Figure 1 

Application to the automobile Replacement problem 
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In this note we have ass1Jmed the equal row s11m property. However, the 

same ideas can be used for a nonoptimality test, in the case that this 

assumption is released. We then have to exploit more sophisticated bounds 

for the values f(n+m,i). These bounds are described for example in 

PORTEUS [11] or VAN NUNEN [10]. In [10] it is shown that discounted semi-
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Markov decision processes are covered by the model without the ''equal row 

sum''-property, so also for such processes our test can be used. 

In [9] and [10] a whole set of successive approximation algorithms for 

Markov decision problems containing the Jacobi-, the Gauss Seidel- and 

overrelaxation algorithms is developed. The nonoptimality test can be in

corporated in those algorithms as well. 
-It is known see e.g. HUBNER [ 6 J, PORTEUS [ 11 J that the contraction 

factor is sometimes even smaller than the discount factor S. In that case 

the nonoptimality test can be refined by using the more sophisticated 

contraction factor. 

For infinite horizon problems (in the equal row sum case} with respect 

to the total reward criterion convergence of f(n,i) is only guaranteed if 

S < 1. However, for finite horizon problems Sis allowed to be greater then 

or equal to one. If the equal row sum property is not satisfied, conver

gence of the total expected reward may occur for S 2 1, see PORTEUS [11] 

or VAN NUNEN [10]. 
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APPROXIMATIONS IN BAYESIAN CONTROLLED MARKOV CHAINS 

K.M. van Hee 

Eindhoven University of Technology, Eindhoven, The Netherlands 

1. INTRODUCTION AND PRELIMINARIES 

For a detailed description of the model we refer to VAN HEE (1976A), 

here we only give a sketch. For statements without proof see also VAN HEE 

(1976A). Consider a Markov decision process with a finite state space Sand 

a finite action space A. Let r: S x A + JR be the reward function. 

Let X be the state of the system at time n. There is a subset B c S n . 
such that if X EB the next state is partially determined by the outcome of 

n 
a random variable y 

n+1' 
where {Y, n = 1,2,3, ... } is a sequence of i.i.d. 

n 
random variables not controllable by the decisionmaker. The process 

{Y, n = 
n 

space E. 

1,2,3, .•. } is called the external process and has a finite state 

If and only if X EB then Y 1 becomes visible 
n n+ 

to the decisionma-

ker. Let P be a transition probability from S x Ax E to S such that 

JP [x 
1 

= t I X = s, A = a, Y 1 = y] = P(tls,a,y), 
n+ n n n+ 

where A is the action at time n. (Fors E S\B P(t)s,a,·) is constant and 
n 

we omit the dependence on yin this case). Only the distribution of the ex-

ternal process; i.e .. p(y!e) := JP 0 [Yn+l = y], depends onanunknown parameter 

8 € 0 where 0 is a finite parameter space. Note that for each fixed 0 E 0 

the process forms an ordinary Markov decision process with transition prob-

bability: 
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= t I X = s, A =a]= 
n n I P<tls,a,y)•p(yje). 

yEE 

Examples of such a model can be found in inventory control, where 

demand in period (n-1,n] and also in queueing models, where 

ber of newcomers. 

y 
n 

• 
1.S 

• 

Y is the 
n 

the num-

Let IT be the set of all strategies based on the visible histories (i.e. 

for each TIE IT the action An may depend on x 0 , .•. ,xn, A0 , ••• ,An-l and on Yk 

1.• f X k-1 E B, k = 1 , 2, ... , n) • 

For each starting states€ s, each 1T € IT and 0 E 0 we have a random 

n n n+ s, Jon the 

sample space. (The expectation w.r.t. this probability is denoted by 
1f 

E a) s, 
The Bayesian expected discounted total return v(s,q,TI) w.r.t. a prior dis

tribution q on 0 is defined by 

00 

v(s,q,1T) == I ]E1T c I 
ec:e s,6 n=O 

n B r (X , A ) J •q ( e) , s E s, 1f € IT, n n 

where SE [0,1) is the discount factor. 

The set of all distributions on 0 is denoted by W, and the function 

v: S x W -+ JR, defined by v(s,q) := sup v(s,q,rr), is called the value 
1fEI1 

function. We define a sequence of stopping times: 

X EB} 
n 

X E B}, 
n k = 2,3,4, .•. 

k = 1,2,3, ••.. 

The Bayes criterion allows us to consider the parameter e E 0 as a random 

variable Z with distribution q on 0. 

Given q E w, s Es and TIES we have 

space of the 

defined by 

we have 

process {Z,(X ,A ,Y 
1
), n = 

n n n+ 

lP71" [CJ = 7T 
JP e [C]q(0) s,q s, 

a probability JF>n on the sample 
s,q 

0,1,2, ••• } and for each event C 

s ,A = a ,Y l n n n n+ 



'1T 
(the expectation w. r. t. lP is denoted 

s,q 
1T 

by JE ) • 

and 

s,q 
We define on the event {T < oo} for 

n s ES, q E w, TIE TI: 

y (0) 
n 

:= ]P7T [Z = 
s,q 

Qn ( 6 ) : = y k ( 0 ) on 

e I I • • • I y J 
T 

n 

{ Tk s n <.,. } ~k+l . 

The vector valued process {Q} with Q := {Q (6), 0 E 0} is called the 
n n n 

Bayes process. 
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Note that, since the values of the external process are not influenced 

by the starting states and the strategy TI, 

depend on sand non {T <~},and likewise 
n 

we have that y (8) does 
n 

for Q (8) if B = s. 
n 

not 

If we are in the situation that expectations or conditional expectations 

do not depend on sand TI we omit these sub- and superscript. 

We sometimes need the following conditions: 

(A) for alls ES, 7T E IT and 0 E 0 

00 

n 
n=l 

{T < oo} 
n 

(Note that B = s implies (A).) 

... 

= 1. 

(B) For each pair 0,0 E 0 there is a y EE such that 

(The only place where (B) is used is in the proof of the following theorem.) 

THEOREM 1. Assume (A,B). Then for alls ES, q E Wand TIE TI it holds that 

lim 
n-+oo 

Q (8) = 
n 

0 z, e 
'1T 

JP -a.s. 
s,q 

We need some notations p: Ex W + [0,1] such that 

pCy,q) := I q(S)•pCy!e), 
0E0 

T: w x E ➔ w such that 
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T (q) (0) 
y 

.- p(yj8)q(0)_ .-
p(y ,q) 

' 

if p(y,q) > 0, := q(0) otherwise. 

· We may reduce our Bayesian decision problem to a discounted dynamic 

program with state space S x W, action space A and reward function r, as 

stated in theorem 2. 

THEOREM 2. The value function vis the unique solution of the functional 

equation 

v(s,q) = max 
aEA 

{r(s,a) + t3 I I 
yEE tES 

P(tls,a,y)p(y,q)v(t,T {q) )} , s € B 
y 

= max {r(s,a) + t3 l P(tls,a)v(t,q)}, s E S\B. 
aEA tES 

COROLLARY 1. There is an optimal strategy * TI which is stationary, i.e. 

there is a function g: S x W + A 

(s,q) € S X W. 

2. APPROXIMATIONS 

* such that TI chooses action g(s,q) in 

In this section we shall give some approxi~ations for v(s,q), s ES 

and a fixed prior q E W. In section 3 we consider the computational aspects. 

We identify each 8 E 0 with the degenerated distribution ate. Hence v(s,0) 

is the optimal value of the Markov decision process ifs is the starting 

state and e is known. Let 

(2 .. 1) M := {f I f: s ➔ A} 

be the set of Markov policies and identify the strategy TI€ TI that chooses 

action f(s).in state (s,q) with f. 

Further let 

Fa:= {f €MI v(s,6) = v(s,0,f) for alls Es}, 0 e: 0 

and c: 0 ➔ M be such that c(6) E F
6

, e E 0. we define 

(2. 2) i) 

ii) 

F := 

--E::. -·• 

u 
0E0 

{f € M [ f = c(0) for some 9 E 0}. 



• 

On S x W we define the following functions: 

( 2. 3) 

LEMMA 3 .. 

i) 

i) w cs, q) : = I v cs, e > q < e) 
6E0 

ii) £ ( s , q) : = max l V ( s I e , f) q ( e ) 
fEF 6E0 

iii) I(s,q) := max l v(s,0,f)q(0). -fEF 8€0 

-i(s,q) ~ i(s,q) ~ v(s,q) ~ w(s,q) for alls Es, q E w. 

ii) Let (A,B) hold, then for all t ES, 1T E IT and q E W 

lim 
n-+<x> 

-

max 
SES 

{w(s,Q ) -
n 

Ics,Q >} 
n 

= 0 , JP 
11 -a . s. 
t,q 
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PROOF. 

i) i(s,q) ~ t(s,q} = max v(s,q,f) ~ I q ce> 
6E0 

sup v(s,8,rr) 
1TE11 

= w(s,q). 

ii) By theorem 1 we have 

lim 
n-+<x> 

Note that 

w(s,Q) = 
n 

lim 
n >oo 

fEF 

I 
8E0 

• 

!max l -fEF 0 
Q (6)v(s,6,f) -

n 

Hence 

lim 
n-+oo 

-
J!.(s,Q) 

n 

Define two functions: 

= v(s,Z), 

v(s,0)Q (6) = 
n 

v(s,Z), ]P
1T 

t,q 
-a .. s. . 

max v cs , z , f) I ~ max l L Q c e ) v c s , e , f > -v c s , z , f > 1-
f E F fEF e n 

]P
1T 

t,q 
-a .. s .. □ 

i) ¢(s,a,0) := r(s,a) + S L I P(t!s,a,y)p(ylB)v(t,8)-v(s,6), 

(2.4) 

ii) cp ( s , q) : = max 
aEA 

tES yEE 
s ES, a EA, 6 E 0. 

¢{s,a,8)q{0), s ES, q E W. 

Note that ¢(s,a,0) ~ O for alls Es, a€ A and 8 E 0 and note also that 

q>(s,q) = 0 if q is a degenerated distribution. 
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LEMMA 4 .. 

i) 

ii) 

v(s,q) ~ w(s,q) + 

v(s,q) ~ w{s,q) + 

1 
1-13 

1 
1-13 

max 
ae::A 

max 
fE:F 

iii) If B = S then 

span {w(s,q) - v(s,q)} $ 

s 

PROOF. By (2.4) we have for a EA: 

I 
ee:e 

]E 
q 

min 
XES 

• min 
XES 

00 

}: 
n=O 

' 

IJ)(x,a,0)q(0). 

¢(x,f(x) ,0)q(0). 

* 
f3

n 
span cp(s,Q ) • 

n 
s 

2 q(0)v(s,8)+<p(s,q) ~ r(s,a) + B 
ee:e 

Ill P(t!s,a,y)p(y!e)q(S)v(t,0). 
e t y 

Note that p(yje)q{e)~ Ty(q))(0)p(y,q). Hence by substituting 2.3i) we have 

w{s,q) + q,(s,q) ~ r(s,a) + sI l P(t s,a,y)p(y,q)w(t,T (q)), ifs€ B 
t y y 

~ r(s,a) +SI P(tjs,a)w(t,q), 
t 

ifs E S\B. 

Let 1T be a stationary strategy and define 

f(s,q) 
1T ' 

:= E [w(x
1

,Q
1

) ], s,q E s x w 
s,q 

then·, if a is the action strategy n in (s ,q) : 

r(s,a) ~ q,{s,q) + w(s,q) - Sf(s,q). 

By the Markov property we have for all (s,q) ES x W: 

Hence 

* 

f (X ,Q ) 
n n 

1T = JE [ w (X 1, Q 1) s,q n+ n+ 

span f(x) := sup f(x) - inf f(x). 
X X X 

]P
1T 

-a.s. 
s,q 
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(2. 5) v(s,q,n) :S n 
13 w (X ,Q ) + 

n n 

00 

I 
n 

n=O 
f3 w(X l'Q 1) n+ n+ = w(s,q) 

s,q n=O n 
,..._, 

Let 1T be the strategy that chooses in (s-,q) e: S x w a fixed action a, maxi-

mizing I0 q(0)~(s,a,0). Note that; is stationary and note also that equali-
,..._, 

ty holds in (2.5) if 1T = ,r. 

We first prove iii). 

* Let 1T be a stationary optimal strategy, then 

(2.6) 

But 

(2. 7) 

V (s, q) * = v(s,q,1r) 

rv 

:S w(s,q) + 

v(s,q) ~ v(s,q,n) ~ w(s,q) + 

* ]E 1T 

s,q 

,..., 

co 

I 
n=O 

00 

'i 
n=O 

max 
X€S 

• min 
XES 

¢ (x, Q ) 
n • 

¢(x,Q) 
n • 

Remark that under the condition B = S the distribution of Q is independent 
n 

of s ES and 1T E IT, hence iii) is a direct consequence of (2.6) and (2.7). 

To prove i) and ii) note that 

min 
XES 

q>(x,q) = • min 
XES 

ma~ 2 q(8)¢(x,f(x),6) ~ 
fEF· 8 

max min -fEF XES 

2 q(0)q,(x,f(x) ,e)~ 
e 

~ max - 2 q(6)min ¢(x,f(x) ,8) ~ max 
aEA 

2 q(0)min ¢{x,a,6). 
fEF 0 XES 6 XES 

Further note that the last.two expressions are convex functions on w so by 

Jensen's inequality applied to the right hand side of (2.7) we have the de-

sired result. D 

REMARK. By the proof of lemma 4 we see that the lowerbound given in ii) 

is greater than or equal to the lowerbound of i), but it requires more work 

to compute it. Further note that, if (A,B) holds 

(2 .. 8) 

since 

lim max l min ~(x,f(x),6)Q (0) 
- n n )-CO ft:F e XE s 

Q (0) ➔ 
n 0z,a' JP

1T 
-a.s. s,q 

1T = 0 I ]l? -a. S. s,q 

-
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We introduce now an operator U working on the space G of bounded continuous 

functions on S x w (measurable w.r.t. the Borel a-field on S x W): 

Let f E G: 

{ 2. 9) (Uf) (s,q) := sup 
iTETI 

]E1T 

s,q 

' 

n B r (X ,A ) 
n n 

It is shown in VAN HEE (1976A) that if f E g then also Uf E g. 

Note further that G is a Banach space w.r.t. the supremum norm. 

In WESSELS (1974) and VAN NUNEN (1976) a class of operators of this 

type is studied for models with a finite respectively countable state space. 

They both prove the following theorem. For our situation it is proved in 

van HEE (1976A). 

THEOREM 5. The operator U (defined in 2.9) is monotone and contracting. The 

value function vis the unique fixed point of u in G. 

The next theorem is important for successive approximations. Let us 
,..,, 

assume that vis an approximation of v and that the difference Iv-vi is 

bounded by a function e:. 

,....,, 
THEOREM 6. Let v be the value function and let v and EEG, such that 

I V ( s, q) - V ( s , q) I ::;-; e: ( s , q) 

then it holds that 

I n ..... 
v(s,q) - (U v) (s,q) I S sup 

'ITEIT 

for alls Es, q e W 

lE if 
s,q 

T 
n B e:(X ,Q ) • 

T T 
n n 

PROOF. First we define the operator L: G + G by 

(Lf) (s,q) := sup 
ift:II 

f € G, s € S, q E W 

(it is easy to verify that Lf is continuous on w, so Lf E G). It holds that 

(U(v+e:)) (s,q) s: (Uv) (s,q) + (Le:) (s,q) s: v(s,q) + (L£) (s,q) 



and therefore 

n 
( U ( v+ £ ) ) ( s , q) :S v(s,q) + n 

(L e:) (s,q) 

and in the same way 

n n 
(U (v-e:)) (s,q) 2'.: v(s,q) - (L £) (s,q). 

So, again by the monotonicity of U, we have 

To complete the proof we have to verify that 

'T n 
(L e:) (s ,q) :s;; sup 

1TEl1 

JE,r [8 ne:(X ,Q )] 
s,q 'T T 

n n 

for the rather technical proof of this statement we refer to VAN HEE 

( 1976A) .. 0 

,.., 
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COROLLARY 7. Suppose that B = S. Le"t v E G and let e: W + JR be a bounded 

continuous function. If 

• 

e: (q) 

then 

I v < s , q > - ( u~) < s , q) I ::;; n 
JE [f3 e:(Q )]. 

q n 

To prove this statement note that B = S implies -r = n and that the distri
n 

bution of Q is independent of the starting state and the strategy. 
n 

COROLLARY 8. Suppose that B 
,.., = S. Let v(s,q) := !{w(s,q) + i(s,q)} and 

Then: 

i) 

£ (q) • min -fEF 
I max {v(x,6) - v(x,6,f(x))}q(8). 

0E0 XES 

I v ( s , q) - (Un~) ( s , q) I 
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ii) 

iii) lim 
n--+oo 

E [e::(Q )] = 
q n 

o. 

PROOF. 

i) Note that 

lv(s,q) - ~{s,q) I ~ ½{w(s,q) - 5l (s,q)} ~ e: (q) • 

ii) Note that e::(q) is a 

martingale (see VAN 

supermartingale. 

iii) By theorem 1 we have 

concave function on W. Since {Qn, 

HEE (1976A)) we have that {e:(Q), n 

JP -a. s. 
q 

' 

n E :N } f o:rn1s a 

n E :N } fo1:·ms a 

• 

lim e:(Q) = 
n 

min max {v(x,Z) - v(x,Z,f(x))} = 0. 0 -n )CXI fEF XES 

REMARK 2.10. Let B =Sand define 

i) e: (q) : = 1 
1-B max I -fEF ee:e 

• min 
xe:S 

ii) v(s,q) := w(s,q) + e: (q). 

• 

<f,(x,f(x) ,0)q(0), 

Then the three statements of corollary 8 hold also if we replace 8 by lei. 
The proof proceeds along the same lines, using lemma 4 and 2.8. 

3. COMPUTATIONAL ASPECTS AND ADDITIONAL REMARKS 

The approximations given in section 2 are of interest for computations 

if we are prepared to determine the sets F and {v(s,f,8) I s e: S, e E 0, f E F} 

(or F replaced by F). Let k := #(0) then the determination of F requires the 

solution of k ordinary Markov decision problems with a finite state and 

action space and the determination of all optimal policies. If n := #(F) 

(or #(F)) then we have to solve (k-l)n systems of linear equations to deter

mine the second set. 

If there is a f 

for alls ES, q E w. 
M which is optimal for all e E 0 then v(s,q) = w(s,q} 
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In VAN HEE (1976B) a class of problems, including some inventory control 

models, is considered with the property that span $(s,q) = 0 for all q E W 
s 

hence by lemma 4 iii) we have that span {v(s,q) - w(s,q)} = o. 
s 

For each q E W we define 

w (q) 
n := {¢ E w I ¢ = ( ••• (T (q}) ••• ), Y

1
, ••• ,y EE} 

Yl n 

hence Wn(q) is the set of all n-stage posterior distributions of q. The sets 

W (q) and W (q), n #mare in general not disjoint (see VAN HEE (1976A)}. 
n m 

For a fixed q E Wit follows from section 2, that, loosely speaking, the ap-

proximations of v(s,¢) for¢ E W (q) are better if n is large. 
n 

Since (Unv) {s,q) requires only the values of v(s,¢) for¢ E W (q), 
n ,..,,, 

s ES we may approximate v(s,¢) by v(s,q) on W (q) and then by backward in
n 

n"" auction we can determine (U v) (s,q). The only problem is the determination 

of n, the horizon. 

For models with B = S corollary Si) shows that the error detexn1ination 

is rather easy: we have onl.y to compute f3nlE [c:: (Q ) ] , which requires the 
q n 

determination of E(cp) for all¢ E W (q), to check whether horizon n is suf
n 

ficiently accurate or not. If Bis a proper subset of Sand if (A,B) holds 

a similar result is true since 

sup 
1fEil 

viz. the distribution of Q depends only on q. 
T 

In VAN HEE (1976A) twonalgorithms are presented based on these argu-

ments, for models with B =sand for models where B consists of only one 

state. Also numerical results are given there and attention is paid to the 

determjnation of optimal actions. 

In MARTIN (1967) the usual method of successive approximations is 

proposed with a terminal function t: S 
n 

approximates v(s,q) by (U t) (s,q). The 

the choice of the horizon must be made 

➔ JR. In our terminology Martin 

difficulty of this method is that -n M-M 
on the error estimate !B 1_

8 
, where 

-M := max r(s,a}, M 
s,a 

:= min r(s,a). 
s,a 

SATIA and LAVE (1973) also suggest the use of upper and lower bounds for 

v(s,¢), cp E w (q). It is easy to see that their bounds are worse than ours• 
n 
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The main topic of this paper is the convergence of the method of succes

sive approximations for dynamic progra1mning with the expected total return 

criterion. We first sketch the framework of the dynamic programming model 

we are dealing with. Consider a countable set E, the state space, and an 

arbitrary set A, the action space, endowed with some a-field containing all 
• 

one-point sets. Let p be a 

p ( j I i, a) , i, j E E, a E A) • 

transition probability from Ex A to E (notation: 
n 

Let H := (ExA} x Ebe the set of histories 
n 

until time n (n~l) and H0 := E. 

In all generality a strategy n is a sequence (TI 0 ,TI 1 , .•• ) where ~n is a 

transition probability from H to A. The set of all strategies is denoted 
n 

by IT. The subset M of TI consists of all Markovstrategies; i.e. 

TI= (n
0

,n
1

, ••• ) EM if and only if there is a sequence of functions 

f 0 ,f1 , ... ,fn: E A, n = 0,1, ... , such that 

1T ({f (i)}jh 
1
,a 

1
,i) = 1 

n n n- n-

for all h l EH 1' a l EA, and i EE. Each i € E and n E TI determine a 
n- n- n-

oo 
probability JP. on (ExA) 

J., 1T 
and a stochastic process { (X I y ) I 

n n 
n=0,1, .... } 

where X is the state and Y the action at time n. The expectation with 
n n 

respect to 1P . is denoted by JE . 
J.,1T 1,1T -
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The reward function r is a real measurable function on Ex A. 

Throughout this paper we assume 

( 1 .. 1 ) sup 
TIE:M 

+ l r (X , Y ) J n n 
< 00 for all i EE 

' 

(note that x+ := max(x,0)). This assumption guarantees that the expected 

total return v(i,iT) := lE. [L00 

0 r(X ,Y )] is defined for all i EE and 
1,iT n= n n 

iT € TI, and in [9] it is proved, using a well-known theorem of DERMAN and 

STRAUCH [4], that 

{ 1 .. 2) sup v(i,iT) = 
1T€M 

sup v(i,TI) 
1T€II 

for all i € E. 

As a consequence of 1.2 we are mainly interested in Markov strategies and 

for that reason we introduce some notations which are especially useful for 

this class. First we define the set P of transition probabilities P from E 

to E for which there is a function f: S + A such that P{i,•) = p(•li,f(i)) 

for all i e: S; and further a function r: E x P + JR ( = the set of reals) 

Note that each ,r EM is completely determined by a sequence R = (P
0

,P
1

, ••• ), 

Pn E P, n = 0,1, ...• Hence we may identify each 

R, and express 

E . R r ( X , Y ) = PO ••• P l r ( i) , 
1., n n n- P 

n 

EM with such a sequence 

(By convention the empty product of elements of Pis the identity operator, 

and if we omit the subscript i in 

define the functions: 

]E. 
J. IR 

we mean the function on E). On Ewe 

( 1. 3) r (X , Y ) 
n n 

, the value function • I 

for a function s: E 4 JR with sup 
R 

( 1. 4) s 
V 

n := sup ER 
REM 

n-1 

l r(Xk,Yk) + 
k=O 

s(X) 
n 

for a sequence a= (a0 ,a1 , .•• ) of functions 

we define the functions w and z on E: 
a a 

a : 
n 

< 00, 

I 

E 4 

V 
n 

-
Il<. , 

k = 0,1, ..... 

0 
•- V .- • I n 

-
JR:= {x E JR I x ~ 1} 



( 1 • 5) 

( 1 • 6) 

w (i) 
a 

z (i) 
a 

. --• sup 
REM 

I 
n=O 

00 

:= sup l 
REM n=O 

a (i) 
n I JE. R[r(X ,Y >JI, 

1, n n 

a ( i) E. R Ir (X , Y ) I , n 1., n n 
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i € E 

i E E 

we write w for w and z for z if a = 1 for n = 0,1, ... 
a a n 

( 1 .. 7) := z,y 
n 

:= sup 
REM 

00 

I 
k=O 

E [y 1 (Xk) J 
R n-

n = 2,3, .... 

A dynamic programming model is said to be stable with respect to scrapfunc

tion s if 

for all i EE. 

It is well- known that positive, negative and discounted dynamic progrannuing 

models with finite E and A are stable. But this is not true in convergent 

dynamic programming, the case that z is finite (see [13], [14]), as is 

shown by the following example. 

COUNTEREXAMPLE: E = {1,2}, A= {1,2}, p(lf 1,1) = p(2f 1,2) = 1, 

r{l,1) = O, r(1,2) = 2, p(• 12,1) = p(- 12,2) = O, 

r(2,1) = r(2,2) = -1. 

r=O 
I 

r == 2 r ""'-I 

Then V O(l) -- 2 (1) and v = 1. n 

It is well-known that stability (with respect to scrapfunction 0) • 
l.S 

guaranteed, if the expected total return from time n onwards, tends to zero 

as n tends to infinity uniformly in the strategy. In 1.8 this uniform tail 

property is defined: 

( 1 .. 8) 
00 

1 im sup l I JE i , R [ r ( Xk, Y k) ] I = 0 . 
n-+oo REM k=n 

In this paper two types of assumptions are considered to guarantee this 

uniform tail convergence. In section 2 the strong convergence conditions 

are introduced. A model is called strongly convergent if w or z is finite 
a a 

for a sequence of functions a= (a
0

,a
1

, ••• ) with lim a (i) =~for all · n>® n 
i EE. It turns out that property 1.8 is equivalent to a strong convergence 



• 
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condition. In section 3 Liapunov functions are introduced and the existence 

of finite Liapunov functions is related to strong convergence. In section 

4 Liapunov functions turn out to be important tools in successive approxi

mations because they provide bounds for lv-v5 l and procedures for excluding 
n 

suboptimal actions. 

In section 5 the connection with contracting dynamic progra1mning is 

made and in section 6 a waiting line model with controllable input is pre

sented, which satisfies the strong convergence condition but which is not 

contracting. Finally in section 7 some results on (nearly) optimal strategies 

are collected. 

We conclude this section with some remarks and notations. Models with 

for each i €Ea different action space A. can easily be transformed into 
1 

our frame work. In [13] and [14] convergent dynamic programming (z<oo) was 

studied extensively. In this paper we are almost always working within this 

framework, since besides the overall assumption 1.1 we work with additional 

assumptions which are at least as strong as: w is finite. Hence with w < ~ 

and 

JE. Rjr(X ,Y >I::;; 
1, n n 

+ 
2:IE. R r (X , Y ) 

1, n n + I ]E. R r (X , Y ) I 
1, n n 

we have 

z(i) $ 2 sup 
REM 

]E. 
l., R 

6o 

I 
n=O 

+ r (X , Y ) 
n n 

+ w(i) < co .. 

For two extended real valued functions a and b on Ewe write a :s; b iff 

a ( i) S b ( i) for all i E E, and let x be an extended real n11mber then a :::; x 

iff a{i) s x for all i EE (the same holds ifs; is replaced by< or=). 

With the con'1·crgence of a sequence of functions on E we mean pointwise con

vergence and the supremum of a collection of functions is the pointwise 

supremum. With convergence of a sequence of elements of P we mean element-
• 

wise convergence. For an extended real valued function a and a positive 

function b on Ewe write~ for the function c(i) 

functionµ on Ewe introduce the set 

00 

a(i) .. -
.- b(i) 

V(µ) := {v E JR for some k €: JR } • 

On V(µ) we define the normµ by 

• For a nonnegative 

I , 



llfll = sup{µ-l (i) lf(i) I i EE, µ(i) > O}. 
µ 
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The function 

f on E with 

is called a bounding function ( cf. section 5) .. For functions 

+ sup Pf < oo 

PEP 

we define two well-known operators 

(1.10) 

Uf := sup {rp + Pf} 
PEP 

,.,., 
Uf ;= sup Pf. 

PEP 

Finally we formulate Bellman's optimality equations: 

(1 .. 11) 

(1 .. 12) 

s 
V 

n 

v = Uv. 

The Liapunov-approach was presented by Hordijk at the Advanced Seminar on 

Markov decision Theory, Amsterdam 1976. So he inspired van Hee and van der 

Wal to investigate the problem of successive approximations under very 

general conditions, which resulted in the strong convergence approach. Then 

the three of us joined the investigations which led to this paper. 

2. STRONG CONVERGENCE 

One of the main results in this section is the equivalence of the 

strong convergence condition with the uniform tail property expressed in 

1.8. We first give some simple, but useful inequalities. Throughout this 

section let a= (a
0

,a
1

, ••. ) be a nondecreasing sequence of functions, 
-a: E+JR. 

n 

• 
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THEOREM 2. 1 • 

(i) 

( ii) 

00 

sup I 
REM k=n 

00 

sup l 
REM k=n 

w 
a 

a n 

z 
a 

a 
n 

PROOF. Since ak(i) is nondecreasing ink and a
1 

(i) > 0, we have, for all 

i EE: 

sup 
REM 

00 

I 
k=n 

IE. r(Xk,Yk)I ~ 
l.. ,R 

sup 
REM 

co 

I 
k=n 

i\:(i) 
( . ) I JE . R r ( xk , A ) a 1. i, k 

n 

The proof of (ii) is similar. 

LEMMA 2.2. 

(2 .1) 

PROOF. 

sup 
REM 

lE z {X ) = 
R n 

sup 
Re:M 

lE 
R 

00 

I = u z • 
k=n 

~n 
= u z • 

And further: 

--

P ••• P 
1

z = 
0 n-

sup 
POL"p , ••• . 1 

00 

sup 
p , ••• 

n 

CX) 

l P n· .. P n+k-1 lrp I = 
k=O n+k 

l P ••• P 1 Ir I = 
k=O O n+k- Pn+k 

sup 
Re:M 

A direct consequence of theorem 2.1 and lemma 2.2 is 

(2. 2) 
z 

sup lE Iv (X ) I ~ sup ER z (X ) :S: a a • 
REM R n REM n n 

And in a similar way one may prove 

(2.3) sup 
Re:M 

w 
a 

a 
n 

-

w (i) 

I <-a __ 
- a (i) · 

n 

• 

□ 

□ 

One of the consequences of the above inequalities is that 

an = 00
, then limn >co ER Iv (Xn) I = 0 

if z < 00 for some 
a 

sequence a with lim 
n-+<:io 

for any strategy. 
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Hence any strategy is equalizing (see chapter 4 of [13]). See also theorem 

7 .. 8. 

Theorem 2.3. states that w < Q;) and lim a = 00 guarantee stability. 
a n>00 n 

Note that w s z . 
a a 

THEOREM 2.3. Let w(a) < 00 and lim ~ a = 
n>00 n 

00 • Then the problem 
+ 

supRlERs (Xn) <oo, 

is stable with 

respect to any scrapfunction s satisfying 

and sup JE s (X ) I ➔ 0 (n·> 00 ) • 
R R n 

PROOF .. 

V -
s 

V 
n = sup 

REM 

$ sup 
REM 

< -
w 

a 
a 

n 
+ sup 

REM 

Similarly one shows 

co 

l 
k=n 

I JE s ( X ) I -
R n 

s 
V 

n - V S 
w 

a 
a 

n 
+ sup I JER s (Xn) I . 

REM . 

Hence lim -'kXl I vs - v I = 0 . 
n> 00 n D 

- sup 
REM 

sup 
REM 

n-1 

L 
k=O 

I ]E s (X ) l 
R n 

So theorem 2.3 gives a new criterion for stability. 

s(X) 
n 

If z 
a 

some K 

< 00 and lim a = 00 

n-+00 n 
E JR , I s I $ K.z since 

we may use scrapfunctions s satisfying, for 

by theorem 2.1 and lemma 2.2 

lim sup M E z (X ) = 0. n-+<x> RE R n 
Consider a dynamic programming model with bounded rewards, say 

lr(i,a) Is b for all i EE, a EA and let E
0 

be an absorbing subset of E 

with r(i,a) = 0 for all i a e: A. Let T be the entrance time in E
0

• If 
2 

supREM ]ER T < (X) 

in a natural way 

then this 
• 

€ EO, 

model satisfies the strong convergence condition 
2 

:S b sup JE T for a = n + 1 , n = 0, 1 , • • .. . 

In fact Iv n 

s1nce z 
a 

- vi s b/ (n+l) 
REM R 2 n 

supREM lER T • Similar expressions can be 

derived with higher moments of the entrance time. In general one may say if 

w(a) <~then Iv (i) - v(i) I tends to zero at a rate at least as fast as 
-1 n 

[a (i)] . From the foregoing results the question arises under which conn 
ditions there exists a sequence of functions a with a + 00 and w 

n a 
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The following theorem gives the already announced characterization. 

THEOREM 2.4. There exists a nondecreasing sequence of functions 

lim a = 00 and w n->-oo n a 

00 

w < 00 and lim sup l 
n ➔oo REM k=n 

PROOF. First the if part. Define 

Obviously, 

IX) 

b (i) := 
n 

sup l 
REM k=n 

b 
n 

and 

~ b • Now let a (i) = 1 + 1 if 
n+l n -1 

N
1 

(i) := min{n I bn (i) $ 2 } , 1 

N!+l (i) 

< 00 if and only if 

= 0. 

i E E .. 

= 1,2, .•. 

< N,Q,+l {i) 

• Then 

with 

sup 
REM 

l a (i) 
n 

I E. R[r(X ,Y >JI = 1,2, .... 
n=N1 (i) 

and consequently 

w (i) $ 
a 

N
1 

(i) 

sup l 
REM n=O 

1, n n 

00 

IE. R[r(X ,Y )JI + 
1.., n n I 

1=1 

The only if part is imroediate from w $ w(a) < 00 and theorem 2.1. (i). 0 

In theorem 2. 5 we collect two sufficient conditions for stability which 

are weaker than the strong convergence condition. It is well known that 

positive dynamic programming models are stable, but the strong convergence 

condition need not be fulfilled there. The following theorem covers also 

the positive case. 

THEOREM 2.5. Each of the following conditions guarantees stability for scrap

function 0. 

(i) lim inf 
n-+<x> 

inf E v(X ) :2: 0 
REM R n 

(ii) there exists a nondecreasing sequence a= 
-

a : E -+- lR with 1 im a = oo and 
n n 

n-+<x> 

-

(a
0

,a
1

, ... ) of functions 

-(2.4) d ( i) : ::::: sup 
a Rt::M i ,R Ln=O 

a (i)r (X ,Y) 
n n n 

< 00 (x =max ( 0, -x) ) • 



PROOF. For all R E M 

V 
n 

> -

Hence lim inf v ~ v(•,R) for all REM and consequently n> 00 n 

lim inf v 
n ~ sup v(•,R} = v. 

REM 

Hence to prove stability we have to show lim 

Part (i). By the optimality equation we have 

Hence by iteration 

n-1 

I po···pk-lrP + po··-Pn-lv $ V 
k=O k 

or 

+ ]E [ V (X ) ] 
R n 

sup v :s; v. 
n>co n 

r + Pv ~ v, PEP. 
p 

Consequently, V 
n 

:IE [ V (X } ] 
R n ~ v .. So with 

lim inf inf ER [v(Xn) J ~ 0 
n-+oo REM . 

V 
n we find lim supn>oo 

Part (ii) . For R E M 

v(i,R) = 

> - - sup 
REM 

Hence, by taking the supremum over REM 

V ~ V 
n - sup 

REM 

-

00 

I • 
k=n 

• 

• 

Using 2.4 one proves in a way similar as in the proof of theorem 2.1 

sup 
REM 

d 
a 

a 
n 

• 

191 
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Hence 

lim sup v 
n 

n-+oo 
- lim 

n-+oo 

d 
a 

- = lim sup 
a n n-+m 

If for some sequence P0 ,P1 , •.• we have 

V 
n + p V 1 n n-

V . 
n □ 

then lim inf .-4,(n Pn ••• P.0v ~ 0 is sufficient for stability, since iteration of 
n >oo 

the inequality v ~ rp + Pv yields 

n 
r + \ 

p l 
n k=l 

Pp 1··-P k lrP n n- n- + 
n-k 

V 
n 

and, by the proof of theorem 2.5, lim 

ty. 

sup v ~vis sufficient for stabili-
n >00 n 

3. LIAPUNOV FUNCTIONS AND STRONG CONVERGENCE 

We first introduce Liapunov functions. Consider a sequence of non-

negative extended real functions £1 ,£2 , ••• on E satisfying for all 

the inequalities 
' 

( 3. 1) 

k = 2,3, ... 

p E p 

Finite solutions of 3.1 are called Liapunov functions. If ik is finite ik 

is called a Liapunov function of order k. Note that ik < 00 implies ik-l < 00
• 

Liapunov functions are powerfull tools in dynamic programming. They were 

first studied in a context of dynamic programming in [13] chapter 4 for 

the convergent dynamic programming model and in chapter 5 of [13] and in 

[15] Liapunov functions are studied in connection with the average return 

criterion for models in which some state is recurrent under each strategy 

and in [14] they are used to obtain (partial) Laurent expansions for the 

expected total discounted return. In section 4 the existence of a Liapunov 

function of order 2 is ass1,1med to obtain bounds for s Iv - vf. n 
The functions y 1 ,y2 , •.• defined in 1.7 satisfy Bellman's optimality 

• 



equation, hence 

and 

= sup{ I~ I + Py 1 } , 
PEP 

y = 
k 

• 

if Y < OO 

1 

k = 2,3, .•.• 

, 
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Hence, if yk is finite, y 1 , ..• ,yk are Liapunov functions and moreover it is 

easy to verify that tk <~implies£ ~ y n = 1,2, ... ,k. Although we can 
n n 

work with yk in stead of tk for theoretical purposes, it may happen in ap-

plications that one can find, in a relative simple way, Liapunov functions 

i 1 ,i2 , ... ,£k, while the functions y 1 ,y2 , •.. ,yk are hard to obtain. Since 

there is a large class of Liapunov functions there still is some freedom 

to choose an appropriate one. Specially this might improve the bounds in 

the approximation procedure (see also section 4). In this section we con

centrate on the relations between Liapunov functions and strong convergence. 

We recall that the existence of a Liapunov function of order k is 

equivalent to the finiteness of y 1 , ..• ,yk. 

THEOREM 3.1. 

2 sup 
REM 

JE 
R 

• 

l r (X , Y ) I . 
k k 

REMARK. Hence y 
n 

< 00 implies z < 00 for a sequence functions 
a 

and consequently the strong convergence condition holds. 

PROOF. By induction. For n = 1 the statement holds by definition 1.7. 

Suppose it holds for n - 1 (n22) then: 

00 

00 

> -

00 m 
-- I I 

m=O k=O 

-- □ 

Soy < 00 implies z 
n a 

( ) 0 (kn-1) , < oo for ak i = k ➔ 00 • The converse is 

not true, as shown by the following example. 
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COUNTEREXAMPLE 3.2. The states 1,2, ••• are absorbing with reward O. In the 

states n', n = 1,2, ••• , there are two actions. Action 1 yields reward O and 

a transition to state (n+l) ', action 2 yields reward 
-1 

I n and a transition to state n. Obviously we have 
t 

r=l-;t ' i 
r=-

J 
..---+-...,_-~__._ etc. 

I ' 

but since 

3 ' 

y (n I) = 
1 

-1 
n 

for all REM 

00 

I 
n=O 

we have 

(n+l)lr(X ,Y >I :S 1 n n 

* for the strategy R 

from n' to (n+l)' etc. that 

o::> 

El *- l y 1 (Xn) = a:>. 

,R n=O 

But if we make a slightly stronger assumption then 

00 

sup I 
REM n=O 

N-1 
n lE I r (X ,Y ) I < oo 

R n n 

yielding transitions 

the finiteness of the functions y
1

, ... ,yN defined in 1 .. 7 can be shown. 

THEOREM 3.3. If for a nondecreasing sequence 
-a E JR and b == n < c:o it holds that 

()0 

u := sup 
REM 

E I R 
N-11 a r (X , Y ) I < co 
n n n n=O 

then the functions y 1 , ••• ,yN defined in 1.7 are finite and satisfy the in-

= 1, .•. ,N. 

PROOF. We will prove by induction 

< k-1 k-N 
- ub a n fork= 1,2, •.. ,N-1, n = 0,1,2, •••• 

Set k = 1. Using y 1 = z (by definition) and 

sup JE z (X ) 
REM R n 

1-N 
~ ua 

n 

(from lemma 2.2 and theorem 2.l(ii) we get 

sup 
REM 

< 1-N _ ua , 
n n = 0,1, .... 
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Now let us assume 
.. 

< k-1 k-N 
- ub a 

n fork= 1, ... ,m $ N-2 and n = 0,1, ... 

and prove that the inequalities hold fork= m+l. 

sup 
REM 

--

= sup 
REM 

CX) 

sup 
r,-., 

REM 
00 

I 
.t=O 

00 

l ]E y (X (l) 
.2.=0 R m n+)(., 

00 

,_, ,..., 

m-1 
~ ub 

co 

I 
i=O 

m+N 
a 
n+i 

m+l-N 
a 

-1 
a 

n+R-
bm m+l-N 

:S: u a . 

Thus we proved 

Setting n = 0 we 

= sup 
R€M 

]E 
R 

k-1 k-N 
$ ub a , 

n 

k-1 k-N 
s; ub a 0 , k = 

00 

L 
n=O 

n n 

k = 1,2, .•. ,N-1, n = 0,1, .•.. 

1, ••. ,N-1 and with 

we get y 
N 

N-1 
~ ub • (And obviously y 1 , .•. ,yN are finite). D 

k+e 
COROLLARY 3.4. If a = n for n = 0,1, and some E > 0, then z < 00 implies 

n a 
the existence of (finite) Liapunov functions i

1
, .•. ,£k+l satisfying 3.1. 

This is immediate from theorem 3.3 with 

co 

I l+e:/k n < oo .. 

n=O 

4. LIAPUNOV FUNCTIONS AND SUCCESSIVE APPROXIMATIONS 

In this section we first fo~znulate sufficient conditions for stabili

ty in terms of Liapunov functions t
1 

and .t
2 

(of order 1 and order 2 respec

tively). 
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LEMMA 4.1. If some Liapunov function £ 1 (of order 1) exists and if in addi-

t:ion 

lim 
n-+-oo 

= 0 

then the problem is stable with respect to scrapfunctions s E V(£ 1). 

• 

PROOF. 

2.3 we 

Since z ~ £ 1 we have lim n-r<X> 
""I'l u z = 0. By lemma 2.2, theorems 2.4 and 

have the desired result. D 

LEMMA 4.2. If Liapunov functions £ 1 and £ 2 exist, then 

lim 
n ,o::, 

= o. 

,-.J 

PROOF. Consider a new reward structure: rp 

R E M we have 

Since 

we have 

lim 
n 

00 

I 
n=O 

OQ 

I 
n=O 

,..,, 

• 

= o. 

+ lim P0 ••• Pn£ 1 . 
n ,oo 

for all REM, 

Hence £
1 

is the function y 1 , defined in 1.7, for this new model. Therefore, 

by theorem 3.1, lerom~ 2.2 and theorem 2.1 we have the desired result. D 

As a direct consequence of lemma's 4.1 and 4.2 we have 

THEOREM 4.3. If Liapunov functions £1 and £2 exist, then the problem is 

stable with respect to scrapfunctions s E V(£1). 

We note that sometjmes Liapunov functions £1 and £2 can be found in a 

rather simple way, while y 1 and y 2 are difficult to obtain. 

REMARK 4.4. If we assume besides the existence of a first order Liapunov 

function t 1 , the compactness of P and the continuity of P£
1

, as function of 
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P, then a sufficient condition for lim Unt = O 
n-+«> 1 

all PEP. The proof of this statement proceeds in 

is lim Pnt = 
n-+<x> 1 

a way similar to 

0 for 

the 

proof of lemrrla 5.7 in [13]. 

THEOREM 4.5. Let t 1 and £ 2 be Liapunov functions(of order 1 and 2 respective

ly) and define for a functions E V(.Q,
1

) 

I i EE, .Q,1 (i) > O} 

-1 
:= sup{i

1 
(i) (Us-s) (i) I i EE, .Q,1 (i) > O} 

then 

( 4 .. 1) s -

PROOF. First observe thats€ V{t
1

) then also Us E V{t
1

) so the set 

{i I t 1 (i) = O} gives no trouble. Since Us~ s + b
2

t 1 and 2
1 

~ i
2 

we have 

2 u s s sup{rp 
p 

Similarly, from 
n + 

Us::;; s + b
2

.t
2 

we have v = lim 

similar. 0 

:S s + 

k u s :S s 

for n = 

n )oo 

n u s 

:S Us+ 

+ k+l < + + b 2 t 2 it follows that U s - s + b 2 t 2 , hence 

1,2, .... Since the problem is stable (theorem 4.3) 
+ 

~ s + b 2 i 2 . The proof of the left inequality is 

The following, somewhat weaker, but more elegant inequality is now 

immediate. 

(4.2) II V - s II Us -

REMARK. If we have functions t 1 and t 2 satisfying the inequalities 3.1 but 

t 2 (i) = 00 for some i then we may separate the state space into E
1 

:= 

= {i EE I t 2 (i) < 00 } and E
2 

:= E\E1 . Since t 2 (i) < 00 implies t 2 (j) < oo for 

all j EE which can be reached under some strategy from state i, we have 

that t 1 and t 2 are Liapunov functions on the smaller model with state space 

E1 • Hence all results can be generalized to that situation. 

If for some P, r + Ps = Us, Dus -p 
is small and .t2 < 00 one may 
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use the stationary strategy R := (P,P, •.• ). In section 7 th.7.2 we give 

bounds for the value of this strategy. 

It is well-known that the $-discounted dynamic programming model 

2 p(jli,a) ~ B < 1 for all i € E and lrpl ~ Me for some ME lR 
jEE 

can be brought into our framework by defining an extra absorbing state -1 

with r(-1,a) = 0 for all a EA and 

p(-1 I i,a) = 1 - 2 p(j I i,a), 
jEE 

i EE. 

In this new model we can take as Liapunov functions the functions defined 

by -k 
ik(i) = M(l-8) , i € E, 

ly weaker than the MacQueen 

stead of b 1 and b
2

• 

£k (-1) = O, k = 1, 2 and then 4.1 becomes slight-
- + bounds [19] since we work with b 1 and b

2 
in-

In the following theorems is an approximation for v with known bounds 

b
1 

and 

bounds for 

At the price of extra 
.--.Jn ,.,,,.n 

calculation of u· (b
1

) and u (b
2

) we obtain 
s 

vn. (Note that b 1 

THEOREM 4.6. Ifs - bl S v S 

and b 2 are arbitrary bounds here.) 

then s 
V 

n - i111b 
1 

s 
V 

n 

PROOF. For n = O the statement is trivial. Suppose it holds for n = k. 

Then 

V -

and 

If there is 

sup{r + Pv} -
p p 

- v ~ sup{rp + Pv:} -
p 

sup{r +Pvk5 } ~ 
p p 

sup{rp + Pv} 
p 

such that 

....,k 
sup PU b 2 = 

p 

□ 

sup{rp 
p 

+ p vs 
n+l n for n = 1,2, .•. 

then we can instead Note that we may choose 

Finally we can use these bounds to eliminate suboptimal actions. (We 

use the notation with explicitly written actions.),.. Action a is called 
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suboptimal or nonconserving if 

r(i,a) + L p(j I i,a)v{j) < sup{r(i,a) + l P(j I i,a)v(j)} 
• 
J aEA j 

Hence if b
1 

and 

suboptimal if 

are bounds on v, b
1 holds that action a is 

r(i,a) + I p(j 
jE:E 

sup{r(i,a) + 
aEA 

Below we prove that elimination of some suboptimal actions gives a new 

model with the same value function. We only assume the model satisfies some 

strong convergence condition. In [14] a similar property is proved without 

this condition. 

THEOREM 4.7. Suppose that some strong convergence condition holds. Consider 
,..,, ...., 

a new model with Pc P such that for all£> 0 there is a PEP with 

r + Pv ~ v - £. Then the new model has the same value function. p 

PROOF. Fix£> O, let £ 
n 

:= E.2-(n+l)e and choose p 
n 

,.._, 

E P such that 

+ £ 
n 

+ P V 2 V. 
n 

Iteration of this inequality yields 

N 

I 
n=O 

Hence 

00 

I 
n=O 

po···p 1(r +£) n- P n n 

PO ••• P 1 r n- P 
n 

+ 
00 

I 
n=O 

since by the strong convergence condition 

00 

I 
n=O 

po··-P lr ~ V - £, n- P 
n 

lim P
0 
•.• P v = O. Therefore 

n> 00 n 

Consequently the supremum in this model equals v. 0 

As in [7] and [8] we can also exclude actions for a finite number of 

iterations instead of all future iterations. Fix some scrapfunction s. For 

notational convenience we omit the dependence on sin the following 
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definitions: 

V { i, a) 
n 

:= r(i,a) + l p(j I 
jEE 

d (i,a) := v 8
(i) - v (i,a) 

n n n 

b 1 ,n 
:= inf{v

5
(i) 

n 
iEE 

~ := b - b . 
n 2,n 1,n 

THEOREM 4.8. 

a k 1 (i,a) 
n+ + 

- vs l(i)}, 
n-

i,a)v8 

1 (j) 
n-

b 2,n 
:= sup{vs(i) 

. E n 1E 

- vs l(i)} 
n-

(i) 

(ii) a is suboptimal at stage n+k+l. 

PROOF. (ii) is a direct consequence of (i). Since 

and 

V l(i,a) - V (i,a) = 
n+ n 

l p(j> 
jEE 

I i,a){vs(j) - v 5 

1
(j)} $ b 

n n- 2,n 

inf 2 
aEA jEE 

p(j I i,a}{vs(j) - v 8 

1 
(j)} ?:: b 

n n- 1,n 
• 

we have by subtraction of these inequalities: 

dn+l (i,a) = vs 1(i) 
n+ 

- V 1 (i,a) 
n+ 

?:: d (i,a) - ~ • 
n n 

Iteration of this inequality yields the desired result. D 

Hence, if we determine at stage n: d (i,a) 
n 

~ k' we need not compute v k 1 (i,a) as long as 
n+ n+ + 

d (i,a) -
n 

k 

I 
.t=O 

t () > o. 
n+x-

and at each following stage: 

5. CONTRACTING DYNAMIC PROGRAMMING, STRONG CONVERGENCE AND LIAPUNOV FUNCTIONS 

In this section we show how the contracting dynamic programming model 

introduced by van NUNEN [20] fits into the framework of strong convergence 

• • • 

• 
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and Liapunov functions. The model assumptions are as follows: 

There exist a finite function band a bounding functionµ and there are 

constants k,k' > 0 and p,p' with Os p,p• < 1, such that 

(5 .1) 

(i) 

(ii) 

00 

sup l 
R n=O 

II r p 
- bll 

]E [[b(X )IJ 
R n 

< co 

µ 
:5 k, P E p 

(iii) Pµ :5 pµ , p E p 

(iv) ~ k', p E P. 
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In the papers of SHAPLEY [22], BLACKWELL [1] and DENARDO [3] it is as

sumed that the rewards are bounded and that the operator u (def.1.10) is a 

contraction with respect to the suprem11m norm. VEINOTT [23] showed that 

transient models can be transformed into discounted models using a similarity 

transformation which is equivalent to working with a bounding function (see 

below). HARRISON [6] noticed that in many practical models with a countable 

state space the reward function is unbounded and he suggested a modification: 

he introduced the translation function b. But he worked withµ= 1. LIPPMAN 

[17, 18] remarked that Harrison's model is too restrictive to include for 

example the M/M/1 queueing system with quadratic cost. He introduced a 

special bounding function: a polynomial. WIJNGAARD [25] considered exponen

tial bounding functions to study inventory models with the average cost 

criterion. WESSELS [24] gave the first systematic treatment of general bound

ing functions for total return models with a countable state space. Van HEE 

and WESSELS [11] studied necessary and sufficient conditions for the exist

ence of a bounding functionµ such that for all P € P: Pµ ~ pµ, 0 ~ p < 1. 

HINDERER [12] used bounding functions for finite stage dynamic programming 

models with a general state space. We shall consider the contracting dynamic 

progra,iuning model in more detail. Let us denote 

-1 
w := (1-p) (b-Pb) 

p 

then by iteration, we find: 

N 

I 
n=O 

PO ••• P lw n- P 
n 
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Since by 5 .. l(i), liT'n 

00 

l 
n=O 

P
0 

••• P 
1

w 
n- P 

n 

-1 
= ( 1-p) b. 

,...,. 
Hence the dynamic programming model with reward function r = r - w for p p p 

P e P is equivalent to the original problem. However llr II < 00 • Indeed with 
p µ 

5.1 ii) and iv) we find 

llr II = Rr - w D = llr 
Pµ P Pµ P 

-1 
- (1-p) b + 

-1 
(1-p) Pbil --µ 

- b + Pbll = ( 1-p ) - l II ( 1 -p) ( r -b) -pb + Pbll 
µ p µ 

s ( 1-p) -l { ( 1-p) II r - bll + U Pb - pbH } < «>. 
p µ µ 

Hence the contracting dynamic programming model is equivalent to a model 

satisfying for P € P and some k > 0: 

(5. 2) 

(i) Pµ Spµ 

(ii) llr II s k. 
p µ 

Note that this model can be reduced in a similar way to a discounted dynamic 

prog:ra1i:i111lng model by the transformations: 

Q(i,j) := ..-

This is in fact the similarity transfo:r1nation studied by VEINOTT [23]. 

From 5.2(i) and ii) we have immediately 

sup 
R 

E R [ l r (X , Y ) I J 
n n 

and therefore, we have for 1 <A< 

0) 

-1 
p 

n 
:S kp µ 

l 
-1 

S k(l-11.p) µ < oo. 

n=O 

Thus the contracting dynamic prograIDining model satisfies the strong conver-

0 {An) (n· >00 ) for gence 

all k 

condition for the sequence a =An.And 
n 

~ 1 we have by corollary 3. 4 that there 

. k 
since n = 
exist Liapunov functions tk 
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satisfying 3.1 fork~ 1. Apart from this one immediately sees that 

-1 -1 
µ + ( 1-p) Pµ ~ ( 1-p) µ 

thus 

-1 -1 + k ( 1-p) Pµ ~ k ( 1-p} µ. 

-1 
Hence k(l-p) µ 

-n 
that k ( 1-p ) , 

suffices as Liapunov function i
1

, and it is easily checked 

n ~ 1 is a system of Liapunov functions satisfying 3.1. 

6. WAITING LINE MODEL WITH CONTROLLABLE INPUT; AN EXAMPLE WHICH IS STRONGLY 

CONVERGENT BUT Nor NECESSARILY CONTRACTING 

In this section we consider as an example the waiting line model with 

controllable input which was studied in chapter 5 in [13] and in [15]. In 

this queuing model the arrival process is Poisson with expected n1.1mbP.r of 

arrivals per unit time A where a denotes the service cost. We assume that 
a 

we can control the arrival process by choosing a from the interval [a1 ,a2 J. 

And we make the reasonable assumption that 

service time distribution Fis general. At 

A decreases as a increases. The 
a 

each time a customer completes 

service, the service cost may be changed. We will be looking at the embedded 
• 

Markov chain. 

The state space becomes E = {0,1, ..• } and the transition probabilities 

satisfy 

with 

0 if j < i - 1 

p(j l i,a> = 

k (a)= 
r 

00 

0 

k. '+l(a) J-1. 

-11. s 

if • 
J 

a r -1 
e (A s) (r!) dF(s). 

a 

Furthermore we assume 

A sdF (s) < 1 
al 

0 

i - 1 

and r(i,a) ~ 0 > o for i = 1,2, .•. and all a EA:= [a1 ,a2 J. If one is 
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looking for an average optimal strategy for this problem then one is inter

ested in the behaviour of the system upto the first time the system empties 

again. In order to study the behaviour until this time we modify the transi

tion probabilities and rewards in state Oas follows 

and r(O,a) := 0 

If this model is contracting then there exists a bounding functionµ satis

fying 

(i) Ir I s k 11 for some k E lR over all P E P p I-' 

(ii) Pµ ~ pµ, for some Os p < 1 and all PEP. 

Now (i) implies !r(i,a} I $ kµ(i) and with r(i,a) ~ a -1 
> 0 follows µ(i) ~ok , 

i ~ 1. Now we may use theorem 2 in [11] which states that there exists a 

functionµ satisfying (ii) and inf.>l µ(i) > 0 if and only if the lifetime 
1.-

N of the process (here the n11mber of transitions until state O is reached) 

is exponentially bounded. So in order that this model is contracting at least 

all moments of the life time must be finite and with the inequality 

CX) 

(:0 

lEN(N-1) ••• (N-k+l) ~ I t(i-1) •.. (£-k+l)dF(s) 
k 

s dF ( s) 
i=k O 0 

(cf. [15]) we see that all moments of the service time must be finite as 

well. Hence the model is certainly not contracting if not all moments of 

the service time are finite. On the other hand it is shown in [15] that if 

the k-th moment of the service time is finite and if 

sup !r(i,a) I $ Ai 1 

a 

for some A E JR and all i € S then there exist Liapunov functions 

y 1 , •.. ,yk-!' 1 < k. We will prove this here using a completely different 

approach. First one may show that if the k-th moment of the service time 

is finite then also the k-th moment of the lifetime of the embedded process 

is finite. This may be seen as follows. It is clear that the lifetime is 
-maximized if we use the strategy R which corresponds to the minimal service 

cost in each state. For that strategy we have an MjG!1 queue. And the life

time of the embedded process is now equal to the number of customers Nin 

the busy period of the M!Gj1 queue. And the lifetime of the embedded process 
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is now equal to the n11mber of customers N in the busy period of the MIGi 1 

* * queue. Let F be the Laplace transfonn of the service time and N the trans-

form of the distribution of the number of customers in a busy period. Then 

we have the following relation between 

* -t * * N (t) = e F (A-AN (t)), 

* F * and N 

t > 0 

where A is the Poisson parameter (cf. COHEN [2] p.250). Differentiating this 

equation once with respect tot gives 

(6 .1) 
*' 

N (t) = 
-t * * -e F (A-J.N (t)) 

*' * 1 +AF (A-AN (t) ) 

.. 

00 

The denominator is bounded from below by 1 - A ; 0 sdf(s) > 0. It is well-

known (see for example FRI,I,ER [SJ p.412) that N*(k) (t) has a finite limit 

fort-+ 0 if and only if 

Then 

0:, 

I 
k 

n P{N=n) < oo_ 

n=O 

a, 

l nkP(N=n) = (-l)kN*(k) (0). 
n=O 

Differentiating (6.1) 

limit fort ➔ 0 for i 

one may show by induction that if 
* (k) . . = 1, ••• ,k then N has a finite 

F*(l) (t) has a finite 

ljmit fort ➔ 0 as 

well. So we conclude that if the k-th moment of the service time is finite 

then also the k-th moment of the lifetime of the embedded process is finite. 

Now suppose 

p 

Then we have for all R 

00 

k-m-1 
$ Ai for some A E lR and all i E E. 

00 

I 
t=O 

00 

00 

= A l 

t 
]P (N=t) I 

R t=O 

t 
JP (N=t) I 

R i=1 

t=O 

m k-m-1 
t At 

00 

$ A I 
t=O 

IN = t] 

k 
t JP- (N=t) 

R 
< 00 
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Where the inequality 

t 
I JER [ Ir cx1 , YR. I 

.!2.=0 
IN=t] 

k-m-1 
:S At 

follows immP.diately from the fact that in the embedded process only one 

customer is served per unit of time. 

So we see that 

00 

k s F(s) < co and I I k-m-1 sup r (i) :S Ai 
p p 

0 

for some A E lR and all i E E imply, using corollary 3 .4, the finiteness of 

the functions y , .•. ,y. Reasoning in a similar way one may 
1 m show that for 

m = 0 the model is strongly convergent (and thus y 
1 

< 00 ) .. 

7. NEARLY OPTIMAL STRATEGIES 

In this section we collect some results with respect to nearly optimal 

strategies for the strongly convergent case. But before we do so we first 

give an example which shows that there need not exist for all£> 0 a station-

t t P (~) t· f. ary s ra egy sa 1s y1ng 

(7. 1) <
00

> I I v(•,P ) 2: v - e:(1+ v )e 

if we only ass,1me 

sup 
R 

co 

I r (X , Y ) l < oo 
n n 

but not 1.8, the uniform tail property or positivity of all r(i,a). For the 

positive case ORNSTEIN [21] proved the existence of a P(oo) satisfying 7.1 • 
• 

EXAMPLE 7.1. E{l,1',2,2', ••• }. In the states n' there is only one available 

action yielding an i1r1mediate reward 1-2n(1+!) and a transition to state n. 
n 

In state n there are two actions. Action 1 gives reward O and a transition 

n r .. 2 

n --
r = I - 2r1

( I + .!.) l 
Il 

n' 

r ""0 2n+l r= 
a. 

n 
i----- .,__---1 n + 1 

r .. 

n + l' 

to state n + 1 with probability 
-1 

an= bn/2bn+l where bn = 1 + n and 

with probability 1 - a the system 
n 

leaves E. Action 2 gives a reward 
n 

2 and the system leaves E with 

probability 1. v may be found as 

follows. 
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b b 
V (n) 

n n+l = sup(2 ,a 2 ,a a 
n n 

n+2 
1

2 , .•. ) = 
n+ 

n 
2 sup ( 1, 

n 
b 

n+1 

n 
, b 

n+2 
, ... ) 

n 1 
= 2 ( 1+ -) n , since b 

n 
t 1 as n + oo. 

Th ( ' ) 1 2n ( 1 +n-1 ) 2n ( 1 -i 1 us v n = - + +n ) = • We will show that 
(oo) (oo) 

exist a stationary strategy P for which v(n' ,P ) ~ 0 for 

there does not 

all n ~ 1. 

Any stationary strategy may be characterized by the probabilities y by which 
n 

action 2 is taken in state n, n = 1,2, ••.• (We consider randomized strate

gies since when we were looking for an example we have seen that it may occur 

that though there is no pure £-optimal strategy there does exist a randomized 

one). we see that for this strategy 

n + y 2 
n 

n 
+ ( 1-y ) 2 ( 1+ 

n 

So strategy R gives for state n' an in11nediate loss of 
n 

y 2 /n 
n 

compared to 

what could be gained. In order that this loss is smaller than 1 we must have 
-n -n 

y ~ n2 • Now let us consider an arbitrary strategy R with y ~ n2 for 
n n 

all n and see what its total expected reward for state n is. Using the in-

equa1ities a. 
n 

:s;; 2/3, 1 - y :s;; 1 and y 
n n 

-n 
:s;; n2 , n = 1,2, ..• we get 

V (n,R) 
n+l n+2 

2 + Cl a l ( 1 -y ) ( 1-y l ) Y 2 2 + • • • n n+ n n+ n+ 

~ (n+l) 2- (n+1) 2n+l + 
3 

2 = n + 3 (n+1) + 4 
9(n+2) +. - . = 3n + 6. 

+ ••• 

So for n ~ 4 v(n',R) ~ - 1. Hence no stationary strategy P(oo) exists with 

v ( i, R) ~ v ( i) - £ ( 1 + I v ( i) I ) e for 

e>eample. 

Now we continue with some positive results. 

If the model is strongly convergent then Howards' policy iteration al

gorithm converges. And as a result we conclude that in the strong conver

gence case it holds that for all i EE and all£> 0 there exists a station

ary strategy PC~) such that 

(7. 2) (cf. [10]). 
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The following results deal with uniform e-optimality on E, • in some sense. 

If for a sequence a= (a
0
,a

1
, ••• ) with an 

z < 00 , then for all E > 0 there exists a 
a 

+ 00 uniformly on E it holds that 
(oo) 

stationary strategy P such that 

~ V - E:Z 
a 

(cf.[10]). 

And if w /a ➔ 0 uniformly on Ethen there exists for all E > 0 a stationary a n 
strategy p(oo) satisfying v(•,P(

00
}) ~ v - se (cf.[10]). 

THEOREM 7.2. Let 1 1 and 

either s E V{i1 ) or lim 

then 

t 2 be Liapunov functions of order 1 and 2 and let 
T 

supT-,-o> P s ~ 0. If furthermore rp + Ps ~ Us - e£1 

PROOF. Iterating rp + Ps ~ s - s£1 
• gives us 

T-1 

I 
n=O 

T + p s ~ 

T-1 
s - £ l Pn£1 ~ 

n=O 

Letting T ➔ 00 yields the desired result. D 

The next theorem presents a result under a partly weaker and partly 

stronger asslimption than 1 • 8 • 

THEOREM 7.3. If z < 00 and 

00 

sup I 
PeP n=l 

n-1 -
nP rp 

• 

< 00 

then there exists for any state i €Sand for ail E > 0 a stationary 

strategy P(~) with 

• 

PROOF. The proof proceeds analogous to 

Fix i e E and E > O. Let strategy R be 

the proof of theorem 13.6 in [13]. 

such that V (i,R) ~ V (i) - £ • 
4 

Choose O <a< 1 such that 

00 

JE. 
i ,R l 

n=O 

n a r(X ,Y) 
n n 

and 

e: 
~ v(i) - -

4 



( 1-a) sup 
p 

00 

I 
n=O 

n -nP r {i) 
p 
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2 • 

The a-discounted problem is strongly convergent, hence by 7.2, there exists 

a Q such that 

(X) 

I 
n=O 

sup 
R 

co 

:JE. I i,R . 
n:::;;Q 

n a r (X , Y ) 
n n 

E 
- - > 4 -

£ 
v(i) - 2 . 

Since 1 - o.n::;; (1-a)n for O < o. < 1 and n = O 1 h , , .... we ave 

00 co 00 

I 2: I I 
n=O n=O n=O 

C0 

2: v(i) -
£ - -
2 I 

n=O 

Hence v(i,Q) ~ v(i) - £. 0 

Finally a result on optimal strategies. 

THEOREM 7 .4. If the model is strongly convergent then any conserving P, 

r + Pv = v, constitutes a stationary optimal strategy. 
p 

PROOF. Iterating r + Pv = v we get 
p 

Since 

N-1 

I 
n=O 

n 
Pr 

l? 

N + P V = V. 

N-1 
I Pnr + v(•,P(

00
)} (N-+co) 

n=O P 

and 
N 

Pv+ 0 (N ➔<:0) (2.3) 
(co) 

we have v(•,P ) = v. □ 

• i.e. 

Hence if the model is strongly convergent, P compact, w < 00
, rp and Pw 

continuous on P then there exists a stationary optimal strategy. Since with 

the compactness and continuity assumptions one may show the existence of a 

conserving P. See also chapter 4 in [13]. 
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A SIMPLE BANDIT PROBLEM 

J.A.Bather 

University of Sussex, Brighton, England 

1 . INTRODUCTION 

These notes provide a brief outline, without proofs, of some recent 

work. Consider two sequences of Bernoulli trials with probabilities p
1 

and 

P 2 of success. The two-armed bandit problem is usually specified by 

asstJming that p 1 and p 2 are both unknown and by fixing the total number of 

trials allowed with either process. The aim is to maximise the expected 

number of successes obtained. 

2. RESULTS 

The results here are mainly concerned with a special case .. Let a be 

a known constant½< a< 1 and write e = a/(1-a) > 1. Assume that p 2 = !. 
There are two simple hypotheses about p 1 ; 

-H 

Thus, under H+, it is preferable to carry out the trials on process 1, 
-rather than process 2, but the opposite applies under H. A policy must 

determine, at each stage, which process is used for the next trial. For 

convenience, we shall. use a criterion based on the number of ''mistakes'', 

i.e. trials on the process with the smaller probability of success. 
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Suppose that after n trials with process 1, the number of successes 

obtained on these trials is rand let j = 2r - n. Obviously, any trials 

on process 2 make no contribution to the information on H+ versus H-. In 

fact, this information can be represented by j alone. The likelihood ratio 

is ej ax1d if we start with equal prior probabilites for the two hypotheses, 

·1 f + . the posterior probabi ity o H is 

• 

eJ 
TI.=--.. 

J 1+0J 

Using a Bayesian approach, let R. ( t) be the minim1.1m expected n11mh~r of 
J 

mistakes, given state j and t further trials with either process. Let 

~j(t) be the conditional probability of choosing process 1 at the next 

trial in a (possibly randomised) optimal policy. We have 

R . ( 0) = 0 for j = 0 , ± 1 , • • • and 
J 

( 1) 

We must set 

smaller and 

equality. 

Results: 

R. (t) = 
J 

q>j(t) = 

• min 

cp[l - IT . + 
J 

( IT . a+ ( 1-II . ) ( 1-a) ) R . l ( t-1 ) 
J J J+ 

+ (II.(1-a) 
J 

+ (1-Il.)a)R. 
1
(t-1)], 

J J-

(1-<j>) [Il.+R. (t-1) ]. 
J J 

1 if the first of the terms in square brackets is 

<j> j ( t) = 0 otherwise. For simplicity, let ¢.(t) = 0 in case 
J 

1.1. There is a sequence k(l) = 0 ~ k(2) ~ ••• ~ k(t) + - oo, such that 

= 1 if j > k(t), ~.(t) = 0 if j ~ k(t). 
J 

of 

enough to consider pure strategies:$= 0 or 1 in every case. 

The optimal policy always uses process 1 first, if at all, and then 

switches to process 2 at most once. 

1.2. The limiting policy is trivial: ~.(oo) = 1 for all j. In fact the 
J 

limiting form of (1) as t + 00 has no solution. The dynamic program-

ming equation is inappropriate for investigating policies over an 

infinite period. 
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BELLMAN [1] studied a more general problem in which p
1 

is arbitrary, 

0 < p 1 < 1. The above results are special cases of his and he obtained 

similar results for the form of the optimal policy over an infinite number 

of trials, with a discount factor. 

Even for the simple bandit problem, the optimal policy is quite com

plicated and it is sensible to consider various suboptimal policies. From 

now on, let¢= ¢.(t) represent a prescribed policy with Os ~.(t) ~ 1 
1 7 

always. The corresponding Bayes risk is R
0

(t) = !(u
0

{t) + v
0

(t)), where 

U. {t) and V.(t) are the components of risk under H+ and H- respectively. 
J J 

In general, U.(O) = 0 and 
J 

(2) U.(t) = <p.(t) [a.u. 
1
(t-1) + (1-a.) U. 

1
(t-1)] 

J J J+ J-

+ ( 1-cp . ( t) ) [ 1 +U . ( t-1) ] • 
J J 

v . ( 0) = 0 for al 1 j and 
J 

(3) V. (t) = ¢. (t) [1+(1-a.) V. l (t-1) + rtV. l (t-1)] 
J J J+ J-

+ (1-cp. (t)) V. (t-1). 
J J 

We can also evaluate the error probabilities 
+ I;; • ( t) and n . ( t) under H and 

] J -H • These are associated with a given policy by demanding a final decision 

in favour of H+ or H- after t trials. For a suitable decision rule, we 

have 

(4) 

(5) n. (O) = 1 
J 

if j > 0, n. (O} = 0 
J 

if j so, 

Different policies can be compared by examining the appropriate values of 

s
0 

(t) = ! c1;;
0 

(t) +n
0 
(t)}. Note that the trivial policy, with <l>j (t) = 1 always, 

has the property that e:
0 

(t) is a minim11m for every t .. 
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ROBBINS [9] introduced a useful definition. A policy is asymptotical

ly optimal (a.o.) if the proportion of mistakes tends to zero with pro

bability 1 under either hypothesis. This means that the corresponding 

quantities 

uo ( t) 
t 

, 
VO (t) 

t 
and all -➔· 0 as t -+) 00 

• 

Stationary policies. Let¢=$., not depending 
J 

on t, 0 ~ ¢. ~ 1. 
J 

{$.} is pure if¢.= 0 or 1 for every j. It is 
J J 

worth considering 

any stationary policies have good behavio11r in the long run. 

Results: 

2.1. No pure statonary policy can be a.a. 

The policy 

whether 

2.2. Let{~.} be a stationary policy such that¢. > 0 always, $. + 1 as 
J J J 

j +~and¢.+ Oas j +-~.Then it is a.a. 
J 

Thus, randomisation is important for good long-term properties of a 

stationary policy. However, it is not easy to choose a particular policy 

from those indicated by 2.2. Intuitively, we should d~rnand that 

2.3. 

(i) 

(ii) $. = 1 
J 

Let¢.= 1 for j > 0 
J 

ponents of risk. Let 

functions such that 

* 

for all j, 

for j > 0. 

and let 

* {¢.} be 
J 

U.(t), V.(t) be the corresponding com-
J J 

any other stationary policy with risk 

for all t. 

Then~.=$. for evt~Y j. 
J J 

In other words (ii) ensures that none of the quantities u0 (t), v0 (t), 

t = 1,2, •.• , can be reduced without increasing another of them. 

A furt-..her result is concerned with the possibility of minimising the 

Bayes risk R0 {t) within the class of stationary policies. 



2 .. 4. Let {cf>.} be a stationary policy with q,. > 0 for each j. Then 
J J 

does not attain a minimum value for any particular t ~ 2. 

This applies to a.a. policies and it can be deduced that there is no 

stationary policy which minimises R
0

(t) for all sufficiently large t. 

3. COMPUTATIONS 
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If we are interested in large values oft, or if tis an unknown 

parameter as must often be the case, there is a large class of stationary 

policies which may be useful. The table below examines the behaviour of 

just two a.a. policies overt= 50 and t = 100 trials. The computations are 

based on relations (1) , •.. ,(5). We recall that 0 = a/(1-a), so that 

a = e / c 1 +e ) . 
The tabulated values for the Bayes risk R

0
(t) and the average error 

probability E 0 (t) give some idea of the relative merits of five different 

policies. Note that R0 (t) is minimised by policy (a), whereas E
0

(t) is 

mjnimised by (e). The table illustrates the incompatibility between these 

two different criteria. The optimal policy (a) depends on the value of the 

pararoP.ter e but computations not included here indicate that the effect 

of using incorrect values of 8 in the determination of the policy is 

relatively small. The effect of misjudging the total number of trials is 

illustrated by (d). This is more substantial. Policy (c) is considerably 

better than (b). It compares reasonably well with the optimal policy, 

especially when one takes into account the gain in simplicity. 



Policy 

(a) 

(b) 

(c) 

(d) 

(e) 

( a) 

(b) 

(c) 

(d) 

(e) 

(a) 

(b) 

(c) 

(d) 

(e) 

Policies: (a) 

(b) 

{c) 

(d) 

t = 50 t = 100 
e 

uo VO RO 80 u 
0 VO RO 

2 3.59 10.59 6.99 0.0500 4.25 13.21 8.73 

2 5.02 12.43 8.73 0 .0448 7.41 15.52 11.46 

2 2.14 13.93 8.04 0.0279 3.79 15.80 9.80 

2 23.51 2.99 13.25 0.2503 8.49 10.42 9.45 

2 0.00 50.00 25.00 0.0079 0.00 100.00 50.00 

1.5 7.59 16.26 11.92 0. 1391 10.57 23.53 17.05 

1.5 10 .17 16.95 13.56 0 .1468 18.48 22.83 20.65 
. 

1.5 5.83 19.76 12.80 0 .1177 12.40 24.46 18.43 

1.5 30.22 4.67 17.45 0.3353 20.30 17.06 18.68 

1.5 0.00 50 .. 00 25.00 0.0776 o.oo 100.00 50.00 

1. 1 16.74 26 .19 21.46 0.3945 30.04 50.07 40.05 

1 • 1 18.97 25.00 21.98 0.3996 42.23 41.05 41.64 

1 • 1 13. 91 29.54 21.73 0.3872 35. 32 46 .13 40.73 

1 • 1 37.66 8.58 23 .12 0.4579 47.87 34 .19 41.03 

1 • 1 0.00 50.00 25.00 0.3688 0.00 100.00 50.00 

Optimal policy$= ~.(t) determined from the solution of (1). 
J . 

Stationary policy~=¢,,~-= 1 for j ~ 0, $. = 2J for j < 0. 
J J J ·+2 

Stationary policy~=~.,~.= 1 for j ~ -2, ~- = 4J for j < -2. 
J ] J 

Lagged application of optimal policy¢= ~.(t-50) fort> 50, ¢ = ~.(1) forts 50. 
J J 

(e) Trivial policv ~ = 1 alwavs, 

€:0 

0.0252 

0.0218 

0.0160 

0.0492 

0.0003 

0.0780 

0.0956 

0.0779 

0 .1334 

0.0220 

0. 3518 

0.3713 

0.3593 

0.3896 

0. 31 'l 3 

N ...... 
co 

• 
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REMARKS 

The general two-armed bandit problem mentioned earlier has received 

a good deal of attention in the literature. Optjmal policies can be deter

mined, in principle, by assuming prior distributions for the unknown p
1 

and p 2 • Such policies are much more complicated than those discussed here 

and the danger of critical dependence on the total n11mber of trials allowed 

and the prior distributions seems greater: see Fabius and Van Zwet [3]. 

On the other hand, reasonably simple stationary policies can be devised 

which are asymptotically optimal. Of course, much more extensive compu

tations will be needed to discover really useful ones. 
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