
MATHEMATICAL CENTRE TRACTS 

• 





MATHEMATICAL CENTRE TRACTS 

II 

UNIVERSAL ORPHIS S 

P,C.BAAYEN 

Second Edit ion 





To Leny 





CONTENTS 

INTRODUCTION AND SUMMARY 9 

CONVENTIONS AND NOTATIONS 15 

1. PRELIMINARIES 19 

1.1. Concepts from the theory of categories 19 

1.2. Description of some concrete categories 25 

1.3. Categories of relational systems 31 

1.4. Universal and dually universal objects 34 

1.5. Structure of order-preserving maps between linearly 
ordered spaces 41 

1.6. Notes 

2. UNIVERSAL MORPHISMS 

2.1. Universal and dually universal morphisms 

2.2. Star functors 

2,3. The fundamental embedding theorem 

2.4. Existence theorems for universal morphisms 

2.5. Applications 

2.6. Additional results I : K(S,0) 

2.7. Additional results II: K(L0,6) 

2,8. Notes 

3. UNIVERSAL CONTINUOUS MAPS 

3.1. Categories of topological spaces 

3.2. Neat categories 

3.3, The embedding theorem for topological spaces 

3,4, Applications 

3,5, Linearization of continuous self-maps 

3.6. Notes 

54 

54 

58 

64 

68 

72 

81 

86 

97 

100 

100 

101 

110 

114 

125 

128 



8 

4. LINEARIZATION IN HILBERT SPACE 

4.1. Discussion of the methods to be used 

4.2. Weight functions and W-groups 

4.3. Linearization of CW-groups 

4.4. Linearization of transformation semi groups 

4.5. Universal linearization 

4.6. Maps of finite order 

4.7. Linear embedding; universal linear operators 

4.8. Notes 

REFERENCES 

APPENDIX: LIST OF CATEGORIES 

PE3IDME 

131 

131 

134 

138 

145 

148 

150 

154 

159 

163 

171 

175 



9 

INTRODUCTION AND SUMMARY 

A well-known theorem of A. TYCHONOV asserts that the cube {topo

logical product of segments) P of weight K (where K is any trans-
K 

finite cardinal number) is a universal completely regular space of 

weight K, More recently it has been proved that there even exists a 

universal system F of K continuous self-maps in PK: if Xis any com

pletely regular space of weight at most K, and if Sis any semigroup 

of at most K continuous self-maps of X, then the action of Sis topo

logically equivalent to the action of F, restricted to a suitable F

invariant subspace of PK (cf. [47,49] ). 

The fundamental idea on which the proof of the latter result is 

based is surprisingly simple. It is sketched in the notes of chapter 2; 

may it suffice here to say that it amounts essentially to considering 

the orbits under S of points x I> X as points of a new space. 

This basic idea turned out to be of much value in other situations 

too. Thus J. DE GROOT and the author used it to solve (in the affirm

ative) a problem raised by R.D. ANDERSON concerning the existence of 

universal homeomorphisms in the discontinuwn of Cantor (P.C. BAAYEN 

[6]), By exactly the same device G.-C.ROTA [90,91] proved the exist

ence of universal contraction operators in Hilbert spaces. 

These observations motivated an investigation of the basic con

struction in a general setUng; the theory of categories turned out 

to be suitable for this purpose. 

Let us say that a morphism a '.A+ A of a category K is equi

valent to a restriction of a morphism t:, B ➔ Bin Kif there exists 

a monomorphism µ ! A-,. B such that µi:;=aµ . We will call a morphism 

B : B-,. Bin K universal in K, if every (endo-) morphism a ! A ➔ A in 

K is equivalent to a restriction of ('i. Then, as turns out the basic 

construction alluded to above can be simulated in abstract categories 

in order to obtain a rather general sufficient condi ti.on for the 

existence of universal morphisms. 
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Before developing this theory we collect in chapter 1 several con

cepts and results from the extant literature which we need in these

quel, supplementing them where necessary. Thus in sections 1.1 and 1.2 

the basic concepts from the theory of categories are introduced, a list 

o~ concrete categories is given (to be used for concrete applications 

of the general results, and also furnishing material for some counter

examples), and the monomorphisms and epimorphisms in these categories 

are determined as far as possible. 

If~ : B ➔ Bis a universal morphism in a category K, then B 

necessarily is a universal object, in the sense that for an arbitrary 

object A of K there exists a monomorphism p : A -+ B. It is therefore 

indispensable to know about the existence of universal objects preli

minary to an exploration of universal morphisms. Fortunately many re

sults on universal objects are available in the literature; several of 

them are brought together in section 1,4. As a very important and 

powerful theorem in this direction is the one of B. JONSSON (!'0,61] 

on universal relational systems, we have inserted a section introdu

cing the relevant terminology (section 1.3). 

In section 1,5 the structure of order-preserving maps i.n linear

ly ordered sets is analysed as far as is necessary for a proof (in 

the next chapter) of the existence of universal morphisms in catego

ries of linearly ordered spaces. These categories are exceptional (we 

will return to this fact); except in section 2.7, the results of sec

tion 1,5 will nowhere be used. 

The final section of chapter 1, and more generally the final 

section of each chapter, contains notes and additions to the material 

presented in the chapter concerned; in particular, references to the 

extant literature and sources of theorems quoted are liberally and 

extensively presented, 

In chapter 2 the fundamental construction alluded to above is de

veloped and studied in the setting of category theory, First universal 

morphisms are defined, and with them universal bimorphisms and uni

versal systems of morphisms. In addition, the dual concepts are in

troduced (section 2.1). 
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In the next two sections special morphisms are considered; these 

morphisms are analogous to those self-maps of cartesian products t"' 
which only change the arrangement of the coordinates of points 

(xa)a~AE. XA, The results of these sections are used in section 2,4 

to obtain a simple sufficient condition on a category Kin order that 

it contains universal morphisms: 

THEOREM 1. If K contains a universal object u, and if moreover a 

direct join of denumerably many copies of u exists in K, then K con

tains universal morphisms. 

(We derive a more general form, dealing with universal systems of 

morphisms; the considerations are also extended to morphisms which are 

only universal with respect to a subcategory K0 of K. Dual results are 

also formulated). 

There exist many applications of the existence theorems of sec

tion 2,4. Several are treated in section 2.5. By way of example we 

mention: 

THEOREM 2. Let>< be a transfinite cardinal number, There exists an 

automorphism {endomorphism) 4> : A+ A of a group (abelian group, boole-

an algebra, distributive lattice) A which is universal for all auto

morphisms (endomorphisms) (j) : B + B of an arbitrary group (abelian 

group, boolean algebra, distributive lattice) B such that card(B) ! K. 

Ifltthe Generalized Continuum Hypothesis holds, and if furthermore 

K O = ><, it can be obtained in addition that card(A) = K, 

THEOREM 3, There exists a continuous automorphism (endomorphism) 4> 

of the infinite torus which is universal for all continuous automor

phisms (endomorphisms) of arbitrary compact metrizable abelian groups, 

Similar results are obtained concerning the existence of uni

versal continuous self-maps or autohomeomorphisms of metrizable spaces 

or compact zero-dimensional Hausdorff spaces of limited weight, and 

concerning universal order-preserving maps tn partially ordered 

spaces. All these results are extended to universal .:'~ of mor· 

phi.sms. 

Some applications of a dual nature are the following: 
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THEOREM 4. Let K be a transfinite cardinal number. There exists a 

group (abelian group, semigroup with unit, boolean algebra, distribut

ive lattice) A, with card(A) = K, and an automorphism (endomorphism) 

¢: A 4 A, with the following property. If Bis any group (abelian 

group, semigroup with unit, boolean algebra, distributive lattice) 

with card(B);; K , and if q, : B -,. Bis any automorphism (endomorphism) 

of B, then ¢ can be raised to ¢ • 

THEOREM 5. There exists a continuous automorphism (endomorphism)¢ of a 

compact solenoidal group G to which every continuous automorphism (en

domorphism) q, of an arbitrary compact solenoidal group H can be con

tinuously raised. 

Moreover, examples are given of categories K which admit universal 

objects but contain no universal morphism. It is also shown that the 

sufficient condition of theorem 1 is not necessary: in section 2.7 we 

prove that no direct joins exist in the category of all order-preserv

ing maps between linearly ordered sets (except in some trivial cases), 

and that nevertheless order-preserving self-maps exist which are uni

versal for all such self-maps of linearly ordered sets S with card(S) 

;;, K (Kan arbitrary transfinite cardinal number). 

In the third chapter attention is given to categories of topolo

gical spaces. In these categories the results of chapter 2 can be 

sharpened in the following sense: both in definitions and assertions 

we may replace the terms "monomorphism" and "epimorphism" by "topolo

gical mapping into" and "continuous mapping onto", respectively. These 

concepts are more natural, in a topological context, Similarly topolo

gical products (sums) are more interesting, from a topological point 

of view, than direct (free)joins. Therefore we call a category of to

pological spaces neat if every direct join is topologically equival

ent to a topological product with its natural projections; co-neatness 

is defined analogously, considering free joins and topological sums. 

In section 3,2 we examine several categories on neatness and co-neat

ness. For neat categories a satisfying "topologization" of theorem l 

can be obtained (section 3.3) and analogously (but not dually) the 

assertion dual to theorem l is"topologizect" for co-neat categories. 
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Several applications are presented in section 3.4. Among these 

are new proofs of some of the results on 8-compactifications in J. DE 

GROOT and R.H. MCDOWELL [51] and of a result on raising to the Cantor 

set of continuous self-maps of R.D. ANDERSON [4] ;these new proofs 

also lead to some generalizations. Universal uniformly continuous maps 

in uniform spaces and universal isometries and contractions in metric 

spaces are also considered. In section 3.5,finally, we give special 

attention to the theorem on universal continuous self-maps in complete

ly regular spaces, mentioned in the opening lines of this introduction, 

and especially to its interpretation as a result on linearization of 

mappings. 

The main result of chapter 4 (theorem 4.3.1) is a generalization 

of a theorem of J. DE GROOT [49] , asserting that the action of a com

pact group of autohomeomorphisms of a metrizable space is equivalent 

to the action of a group G of unitary operators in a Hilbert space H, 

restricted to a suitable G-invariant subset of H. We show that a lo

cally compact transformation group G acting on a metrizable space M 

can be linearized by a group of bounded linear operations in some Hil

bert space whenever G belongs to a certain class CW. This class CW, in

troduced i.n section 4 .2, not only comprises all compact groups, but 

also all countable discrete groups and the additive group of real num

bers. Moreover, every subgroup and every continuous homomorphic image 

of a group in CW is again a CW-group; topological direct products of 

finitely many CW-groups are once more CW-groups; and each locally 

compact group G, which contains a compact normal subgroup G0 such that 

G/G is discrete and countable, belongs to CW. It follows that CW con-
o 

tains all locally compact abelian groups which are either separable or 

compactly generated; of course there also exist many non-abelian CW

groups. 

In section 4.4 the (apparently rather meagre) possibilities of 

extending these results to topological transformation semigroups are 

discussed. It is shown ir. section 4.5 how the proof of theorem 4.3,1 

implies some results on universal linearizations. Section 4,6 presents 

additional information for the special case of mappings of finite or-
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der and for finite transformation semigroups. 

(The results of these first six sections of chapter 4 will also be 

published separately: P.C. BAAYEN and J. DE GROOT [10] ) . 

Section 4.7 is devoted to universal bounded linear operators of 

certain types in Hilbert spaces. G.-C. ROTA [90,91] proved that the in

finite unilateral (reverse) shift is universal for all operators T of 

spectral radius less than one. We show that there exists a bounded lin

ear operator which is universal for all T such that all iterates Tn are 

uniformly bounded in norm. Similar results are obtained for uniformly 

bounded sernigroups of linear operators. 

I wish to express my gratitude to J. de Groot, to whom I am deeply 

indebted. This tract would never have been written but for his contin-

' uous interest and encouragement. I am very grateful to G.J. Helmberg, 

who eliminated a number of errors and suggested several important im

provements. lam indebted to R.D. Anderson, Z. Hedrlin, M.A. Maurice 

and Mrs A.B. Paalman-de Miranda for many stimulating discussions. To 

Z. HedrU'.n I owe moreover the Russj_an summary at the end of this treat

ise. Finally I take the opportunity to thank Miss L.J. Noordstar and her 

staff and D. Zwarst for their typing and printing of the manuscript. 
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CONVENTIONS AND NOTATIONS 

Our considerations are based on a set theory of the J. VON NEU-· 

MANN - P. BERNAYS - K. GODEL type. Thus every entity is a class; a 

class is a set if and only if there exists another class of which it 

is a member. 

The Axiom of Choice is used without qualms, and without special 

mentioning. We postulate it in a class form: 11 If Sis a class of non

empty sets, there is a function<!> such that for each xE.S, (x)<hr,x". 

The Generalized Continuum Hypothesis is also used without in

hibitions; however, whenever the proof of an assertion relies on an 

application of this hypothesis, the number indicating this assertion .. .. 
is preceded by an asterisk; e.g. proposition 1.4,5, theorem 2,5,8, 

etc. 
The class of all cardinal numbers is denoted by CARD, the class 

of all ordinal numbers by ORD; we consider 0,to be an ordinal number. 

Because of the fact that we accept the Axiom of Choice, every trans

finite cardinal number can be represented as an }i-9 ,e ~ ORD, The car

dinality (power) of a set A is denoted by card(A). A set A is called 

denumerable if card(A) = Jr-0 , and countable if card(A)~ ft0 • 

If f is a function, Df denotes the domain off. The class Df 

need not be a set. 

In matters of category theory we use the notation of A.G. KUROSH, 

A, Kh. LIVSHITS and E.G. SHUL'GEIFER [73]; in particular, if a: a ➔ b 

and 6: b ➔ c, their product will be denoted by aB : a+ c. Correspond

ingly the arguments of a function are written before the function sym

bol, and the composition f o g of two maps f and g is the map 

x + ((x)f)g. Of course it was not possible to adhere to this rule con

sistently; notable aberrations are notations like H(a,b), S(a,A), Jt9 , 

card(A); there are many others. 

The symbollf will only be used to designate direct joins in ca

tegories, like it is used in [73]. The cartesian product of a family 

of sets (At) t E. T will be denoted by tlf T At. 
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If f. is a function and A is a class, then (A) f and Af stand for 
-1 -1 

while Af and (A)f stand for {a e. Df : af e A} • {af : a e. A 11 Df} , 
-1 

We use xf as an abbreviation for {x}f-1 . 
-1 

If f is a 1-1 map, the inverse off is denoted by f . This has 

as a consequence that our notation is inconsistent: if f is a 1-1 map 
-1 

and if x ec (Df) f, then xf can stand both for the uniquely determined 

y such that yf == x and for the set {y} ; we trust, however, that in 

all instances it is clear from the context what is meant. 

The set of all non-negative integers is denoted by N;the set of 

all integers by I; the set of all rational numbers by Q; the set of 

all real numbers by R. 

If A is a set, iA denotes the identity map on A; i.e. 
o . n+l 

If f is a map, then f = 1Df' f == 
-n n -1 

{(a,a) : ae.A} 

(n e. N). If moreover f is 1-1, 
B 

If A and Bare sets, A 

If f.:;AB and Be.B, it occurs 

then f = (f ) , for n e. N. 

denotes the set of all maps of B into A. 

frequently that we write f instead of 
e 

(13)£; then in the same context we write (ff?S<f:B for L No distinction 

is made between the set A8 and the cartesian product s1 B A6 , with 

A6 == A for each B 1:.B. 

All semigroups considered are supposed to be semigroups with unit, 

whether this is expressly mentioned in the context or not. A homomor

phism of a semigroup S into a semigroup s2 is always supposed to map 

the unit of s1 onto the unit of s2 . 
A . 

If A is a set, A becomes a semigroup if we take composition of 

functions as its law of composition; if we talk about "the semigroup 
A 

we always mean this semigroup. If Fis a subsemigroup of A , 

then is supposed to be contained in F (it then follows that iA is 

the unit of F). 

The (algebraic) weight of an algebraic system A is the least 

cardinal number of a subset of A generating A, 

Every topological space considered is supposed to be Hausdorff, 

with the exception of one instance in section 1.6 (theorem l.6.4). 

The (topological) weight of a topological space Xis the minimal car

dinal number of an open base for X. If we talk about the weight of 
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of a topological group or a topological linear space we always have in 

mind the topological weight. By the dimension of a topological space 

we always mean the small inductive dimension of the space. 

We use ::::::') as implication symbol; A and V are sparsely used :!:or 

the logical connectives "and" and "or", res pee ti vely, while 3 and ·v• 
occur occasionally as symbols for the existential and universal quan

tifiers. 





1 , PRELIMINARIES 

1.1. Concepts from the theory of categories 

In this section some definitions and :results are collected from the theory of c,,te

gories. For a more extensive exposition of this theory 1 and for proofsf we refer to the 

literature. See also the notes to this chapter (section 1.6). 

1,1.1. DEFINITION. A category K is a class of elements, called the 

morphisms of K, in which a partial product is defined, satis·· 

fying the conditions below (if the product of a e. K and 8, K is defi.ned, 

we will denote it by a.8 or a6): 

(i) The triple product <\ (a2 a3 ) is defined if and only if 

is defined. When either is defined the associative law 

(1) 

holds. This triple product will be written as '\ a 2a 3 . 

(ii) The triple product <\ a 2a 3 is defined whenever both products 

and a 2a 3 are defined. 

(iii) For each MK there exist identities c1 ,c 2 & K such that c{x 

and o.~ 2 are defined (an identity in K is a morphism £ with the proper

ty that £i;= t; whenever c:i;; is defined and t;E= s whenever i;;c is de

fined). 

(iv) If and £ 2 are identities of K, the class H of all o. 4' K for 

are both defined is a ( possibly empty) set, 

LL2, PROPOSITION. For each o.e. K the identities €1. and E: 2 such that 

\a and r.1£ 2 are defined are uniquely determined. We will call 

them the and the right identity of a, respectively; in symbols: 

e: 0 ac. A product aB is defined lf and only lf ae:=c 8 , 

J..1.3. DEFINITION. Let and be categories, and let <ll be a map 

of lnto . The map <ll ls called a covariant functor if it 
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satisfies the following conditions: 

(i) if a 1 a 2 is defined in K1 , then (a1 <P).(a 2 <!>) is defined in K2 , 

and (a1 <P).(a 2<!i) = (a1 .a 2H; 

(ii) if£ is an identity morphism in K1 , then c<!> is an identity mor

phism in K2 . 

The map <Ii is called a contravariant functor if it satisfies con

dition (ii), and also 

* (i} if \a2 is defined in K1 , then (a2 <P).(a1 ¢) is defined in K2 , 

and (a2 <!i). C\ \Jl) = CC\ a2 )¢. 

The map <!> is called an isomorphism of K1 onto K2 if it is a 1-1 

covariant functor of K1 onto K2 satisfying the additional condition: 

(iii) if ca1 <P).(a2 <!i) is defined in K2 , then a 1 a 2 is defined in K1 . 

The map¢ is called an anti-isomorphism of K1 onto K2 if it is a 

1-1 contravariant functor of K1 onto K2 satisfying the additional con

dition 

(iii if (a2 <P).(a1 ¢) is defined in K2 , then u1a 2 is defined in K1 . 

1.1.4. DEFINITIONS. A subcategory K0 of a category K is a subclass of 

K which is a category under the partial product in IL We will 

consider only such subcategories K0 of K that satisfy the additional 

condition: whenever a E- K0 , the left and right identities e:aand of 

a in K both also belong to K0 . 

A subcategory K0 of K is called full if a€ K0 whenever both 

£at K and a£ c: K . 
0 0 

* If K is a category, the dual category K is the category that 

shares with I{ the class of morphisms, whereas the composition law in If 

is inverse to the composition law in K: if we write, momentarily 

a * 1 
* 

for the product of 

K and is equal to a 3 , if 

equal to a3 . 

* a1 and a2 in K , then a1 * a2 is defined in 

and only if a 2 .a1 is defined in Kand is 

In other words, the composition law in K* is chosen in such a 

* way that the identity map K-+ K becomes an anti-isomorphism. 

A standard category is the so-called category of all sets, K(S) 

in our notation (cf. section 1.2). The morphisms of K(S) are all 
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ordered pairs (f,B), where Bis a set and f is a map of a set A into B 

(thus morphisms of K(S) are pairs of set, f being a subset of Ax B. 

Obviously the set A is completely determined by f, A=D(f); j t is as 

obvious that this is not the case with B, as it is allowed that f is 

not onto). 

If<\ 4! K(S) and o. 2 & K(S), say o. 1 (f1 ,B1 ) and a 2 = U 2 ,B2), 

then a1 .a2 is defined in K(S) if and only if B1 = D(f2 ); in that case 

we put 

(2) 

(Thus if B1 is properly contained in D(f2 ), o. 1 .a 2 is not defined al

though f 1 " f 2 is deJined. One can easily show that the class of all 

maps of one set into another, with ordinary composition of maps as 

product law, is not a category.) 

1.1,5. DEFINITION. A category K is concrete if there exists an isomor

phism of K onto a subcategory of K(S). 

If K = K(S), there is a natural 1-1 correlation between the class 

of all identities of Kand the class of all sets: if Eis an identity 

of K(S), say E = (f,X), then f = ix; conversely, if Xis an arbitrary 

set, the morphism (iX 1 X) is an identity of K(S). The set Xis called 

the object correlated with (iX,X). 

For many other categories K there exists a natural 1-1 correla

tion between the class of all identities of Kand a class~ of enti

ties, which then also are called objects. (A class of objects can al

ways be selected, for arbitrary K: just take for to/ the very class of 

all identities of K). If a e. ~, the identity of K correlated with a is 

then denoted by Ea. If a f. 6 and be 6', the set of all a 1:..K for which 
a o. 

E 
a 

c and \ = Eis denoted by H(a,b); we write a: a ➔ b synonymous-

ly with a.E.H(a,b), and we call a and b the first and second object of 

a, respectively, or also the source and the sink of a. If it is ne

cessary to indicate the category Kin which H(a,b) is formed, we write 
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1.1.6. DEFINITION. Let K be a category. A morphismµ of K is called a 

monomorphism, if, for any a 1 ,a.2 such that a 1µ, a 2µ are defined, 

a1 µ a 2 µ implies a1 = a.2 • A morphism v of K is called an epimorphism 

if, ior any a 1 ,a.2 e. K such that va. 1 , va 2 are defined, va 1 = va 2 implies 

a. 1 '" a. 2 . A bimorphism is a morphism that is both a monomorphism and an 

epimorphism. A morphism a of K is called invertible if there exists b 

b • K such that both a.p = Ea and Ba= aE. If a is invertible the mor

phism p such that ap = /1, (la. = ac is uniquely determined; it is call-
-1 

ed the inverse of a and will be denoted by a 

1.1.7. PROPOSITION. Every identity is invertible; every invertible 

morphism is a bimorphism. If µ1 and µ2 are monomorphisms, and 

if µ1 µ2 is defined, then µ1 µ2 is a monomorphism; if v1 and v2 are epi·· 

morphisms, so is v1 v2 , if this product is defined. If µ1 µ2 is a mono

morphism, so is µ1 ; if v1 v2 is an epimorphi sm, so is v2 . 

1.1.8. DEFINITION. Let K ,be a category, Ta non-void set, and let ct 

be an identity of K for each t e T. 

A direct join of the family C\)te.T is a family of morphisms (1\)t<e.T 

in K with the following properties: 

(3) 

(i) there exists an identity c in K such that 

e: 
11 

t 

for each t e T; 

(4) 

(ii) for every family of morphisms (c\) t.,. T in K such that 

Cl 
t 

for all t e T ( fl denoting a suitable identity in K) there exists a 
et a 

uniquely determined a E K, such that E = fl , E = E , and 

(5) 

for all t e: T. 

an 
t 

Suppose objects are correlated with the identities of K; say 

is correlated to Et' for each t e T and let d be correlated to c and 
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b to 11. Then, "par abus de language", we say that d is the direct join 

of the family of objects (at) t E. T by means of the projecting morphisms 

1\ : d ➔ at, if (11 t) t E. T is a direct join of (e:t) t E. T" In symbols: 

d "' lT a (71 ) 
te.T t t . 

(6) 

REMARK. It should be kept in mind that the important part in a direct 

join presentation d = t1T T at (71 t), is the fami.ly of morphisms 

(71 t) t E. T. This family determines d (or the corresponding identity mor

phism e:) completely; the converse does not hold. 

1be concept, dual to the concept of direct join, is called free 

join: 

1.1.9. DEFINITION. Let K be a category, Ta non-void set, and let e:t 

be an identity of K for each t e T. The family (nt)t e.J in K is 

a free join of the family (Et)tE!.T if in the dual category K it is a 

direct join of (e: t) t !i. T" 

If objects are correlated to the identities of K, we will say 

that the object d is a free join of the family of objects (at)t 6 T 

by means of the injecting morphisms (n t) t E. T' in symbols 

(7) d 

whenever (71 ) is a free join of (e: ) 
t t E. T at t E. T 

'fl 
t 

d,------at 

:,, /, 
', t 

'-lb 

If this is the case, then whenever a family (at)t.e. T' at : at-+ b, in 

K is given there exists a uniquely determined a! a ➔ bin K such 

that '\ =--= "\a, for all t E.T. 
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1.1.10. DEFINITION. A direct join (free join) (11t)t I!'. T of a family 

(Et)t E. T of identities in a category K is called strong if 

11s f. ,rt for distinct s,tE-T. 

The following notational convention will turn out to be useful: 

1.1.11. DEFINITION. Let K be a category and T a non-void set. If £ is 

an identity of K, we will write S(E, T) for the family (£t)t GT 

with £ = £ for all t e. T. The class of all direct joins in K of S(£,T) 
t 

will be denoted by A(E,T); of course this class may well be empty. 

If objects are correlated to the identities of K, we will write 

S(a,T) instead of S(£ ,T) and A(a,T) instead of A(£ ,T). If 
a a 

( 11 t)t 6 T~ A(a,T), and if dis the object such that cd = c11 t, for all 

t t- T, we write 

(9) 

1.1.12. PROPOSITION. Let d = t"'IT at (,rt), and let the morphisms 

~l : b + d and 82 : b + d be such that pl11t = B2nt, for all 

t E.T. Then Pl = ts2 • 

1.1.13. PROPOSITION. Let d = t7IT at (lit) and e = tlJT bt (pt), and 

let ot t : at + bt, for every t ~ T. There exists a uniquely de

termined morphism u: d ➔ e in K such that nt°'t = apt' for all te.T. 

If all at are monomorphisms, then a is also a monomorphism. 

lit 
d 

r~ I 
I 
I 

(10) I a 
I 

~ Pt 
e bt 

CONVENTION: From now on we will always assume objects to be correlated 

to the identities of the categories considered. 
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1.2. Description of some concrete categories 

A number of concrete categories that will be referred to in the sequel are collected 

and described in this section, We discuss in particular the monomorphisms and epimorphisms 

in each of these categories. 

1.2.1. List of categories 

K(S) 

K(LO) 

K(PO) 

K(La) 

K(DLa) 

K(BA) 

K(SGU) 

K(G) 

K(M) 

K(ZM) 

K(CZ) 

category of all mappings of one set into another. 

category of all order-preserving maps of one linearly 

ordered set into another one. 

category of all order-preserving maps of one partially 

ordered set into another. 

category of all lattice-homomorphisms of one lattice into 

another lattice. 

the full subcategory of K(La) obtained by admitting as 

objects only distributive lattices. 

category of all boolean homomorphisms of one boolean alge

bra into another one. 

category of all homomorphisms of one semigroup with unit 

s1 into another semigroup with unit s2 , that send the unit 

of s1 into the unit of s2 . 

the full subcategory of K(SGU) obtained by admitting only 

groups as objects. 

the full subcategory of K(SGU) obtained by admitting only 

abelian groups as objects. 

category of all continuous maps of one metrizable space 

into another one. 

category of all continuous maps of one zero-dimensional 

metrizable space into another 

category of all continuous maps of one compact zero

dimensional space into another such a space. 
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·· category of all continuous maps of one completely regular 

Hausdorff space into another. 

K(H) - category of all bounded linear operators of one Hilbert 

space into another. 

K(CMAG) - category of all continuous homomorphisms of a compact 

metrizable abelian group into another compact metrizable 

abelian group. 

K(CMoG) ··· category of all continuous homomorphisms of one compact 

monothetic group into another. 

(D. VAN DANTZIG[20] introduced the concept of a monothetic group. 

According to his definition, a topological group is called monothetic 

if it contains a dense infinite cyclic subgroup. Following current 

usage, we slightly modify his definition, and call a topological 

group monothetic if and only if it contains a dense cyclic subgroup. 

In a later publication [2s], D. VAN DANTZIG himself used "monothetic" 

in this sense.) 

1.2.2. DEFINITION. If K is a concrete category, and ti an ordinal num

ber, then K(6) denotes the full subcategory of K obtained by 

admitting as objects only those objects of K which have cardinality 

~)ta· 
Instead of K(S)(6) we write K(S,O); a similar notation is used 

for the other categories mentioned in 1.2.1. 

For topological spaces the weight of the space turns out to be a 

mo~e interesting cardinal number then its power. Therefore we intro

duce: 

1.2.3. Let O ~ ORD, and let K be one of the categories K(M),K(ZM),K(CZ), 
e 

K(CR), K(H). Then K denotes the full subcategory of K obtain-

ed by admitting as objects only those spaces that have a (topological) 

weight ,;; .N-0 • 

It is important to know which morphismsµ of a given category K 

are monomorphisms, and which morphisms v are epimorphisms. 
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1.2.4. PROPOSITION. In all categories of the list 1.2.l, and in their 

subcategories obtained as indicated in 1.2.2 and 1.2.3, the mo

nomorphisms are exactly the morphisms that are 1-1 maps. 

PROOF. 
Clearly 1-1 maps are always monomorphisms. Assume the morphism 

lJ; a+ bis not 1-1: let £,1 µ = i;, 2µ, where i::.1 ,!. 2 e.a, 1;.1 ;,<: s2 . 

If K is one of the categories K(S), K(LO), K(PO), K(M), K(ZM), 

K(CZ), K(CR). or one of their subcategories K(S,l:l), K(L0,0), K(P0,0), 

K8 (ZM), K8 (CZ), KO(CR) (81.o ORD), there exist in K morphisms <P 1 ,¢ 2 , 

both mapping a into a, such that a9 1 = {(, 1 } (i=l,2). Then Y1 ~<P 2 but 

4\JJ = 9 2 µ ; hence lJ is not a monomorphism. 

If K has algebraic systems for objects, i.e. if it is one of the 

following categories: K(La), K(DLa), K(BA), K(SGU), K(G), K(AG); 

K(La,O), ... ,K(AG,O) (Oi.o ORD), we reason as follows. Let c be an object 

of K that is a free algebraic system of the kind considered. There 

exist morphisms <1\ : c + a in K such tha l y 1 sends all free generators 

of c into l;i (i=l ,2). Then again ip 1 ,\, 2 , ¢ 1µ = 9 2µ , showing that ,1 is 

not a monomorphism 

A similar reasoning can be used if K is one of the categories 

K(H), K 8(H) (6" ORD). 

If K K(CMAG) we proceed in the following manner. Let a 0 be the 

kernel of the continuous homomorphism µ; then a 0 is an object of K. 

Let ,p1 be the canonical embedding a 0 + a, and let ,p2 map a 0 onto the 

neutral element of a. Then .;,1 ;,,92 whereas c;,1 µ = ,;,2 µ. 

Finally let K = K(CMoG). Let i,0 be an element of the kernel of 

JJ, different from the neutral element of a, and let a 0 be the closed 

subgroup of a generated by E,0 • Let T be the circle group, ta gener

ator of a dense cyclic subgroup of T, and c the closed subgroup of 

the direct product of T and a 0 generated by the element (t, i,0 ). Then 

c is a compact monotheti.c group. Let q,1 be the restriction to c of 

the canonical homomorphism T x a 0 + a 0 , considered as a map c ➔ a; let 

,p2 : c + a map c into the neutral element of a. Then ,p1 ;,,rp2 although 

<P1 \J = ip2 µ i hence µ is not a monomorphism. 
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In categories of topological spaces the interesting 1-1 maps are 

the topological mappings into. These maps are of course monomorphisms; 

but proposition 1.2 .4 shows that in general there are other monomor

phisms. However: 

1.2.5. PROPOSITION. If K is one of the categories K(CMAG), K(CMoG), 

K(CZ), K(H); K O(CZ), K O(H) (8 E. ORD), the monomorphisms of K are 

just the topological embedding maps. 

PROOF. If K is one of the categories K(H) or 

consequence of 1.2.4 and S. BANACH's Inverse 

0 
K (H), the assertion is a 

Opera tor Theorem ( [12] 

Ch.III, §3 theorem 5). In all other cases the assertion follows be

cause all objects of Kare compact spaces. 

We start the discussion of epimorphisms in the categories of 

1.2.1 by considering the cases where epimorphisms need not be mappings 

onto .. 

1.2.6. PROPOSITION. Let K be one of the categories K(M), K(ZM), K(CR); 

K , K 8(ZM), K8(CR) (0 a ORD). Then the epimorphisms of Kare 

exactly those continuous maps that have a dense image. 

PROOF. 
Clearly every continuous map with a dense image is an epimor-

phism, Now let v : a + b be a morphism oi K such that av is not 

dense in b. Taken ~b'..av, and let qi1 ,<j,2 be continuous maps of b into 

the unit segment [0,1] such that (;;:-z;)<J,. = {O} (i=l,2), while n'Jl1=1, 
1. 

n.P2=0. 'fhen vqi1 = vq,2 , but nevertheless 

an epimorphism. 

y 
l 

. Consequently vis not 

Other categories in which epimorphisrns need not be epi are 

K(SGU) and K(DLa), and their subcategories K(SGU,0) and K(DLa,0), 

0 -E,ORD. K. DRBOHLAV [30] has shown this by an example for K(SGU) and 

the K(SGU,8); below we give an example of an epimorphism in K(DLa) 

that is not onto. This example can easily be adapted to show that 

each category K(DLa, 0) ,e c ORD, contains epimorphisms that are not 

onto maps. 
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1.2.7. EXAMPLE. Let A= { a,b,c,d} be a four-element boolean algebra 

(a being its zero element and d its unit), and let B be the 

sublattice {a,b,d} of A. Then Bis a distributive lattice; let v be 

the identity map B ➔ A. Then vis not onto, but nevertheless vis an 

epimorphism of K(DLa}. 

For let 'Pi : A+ C (i=l ,2) be lattice homomorphisms of A into a 

distributive lattice C such that v.p 1 = vcp 2 . Then xq,1 = x¢ 2 for an 

x EA'\ {c} . Let a<;>l = a (=a$2), bCi\ = b (=b<P2), dli>l = d (=dt,'l2); 

c<P 1 = c 1 , c.p2 = c2 . As buc = d, bnc =awe must have 

(1) bu 

(2) 

Case 1: b = d. Then cl;;; b and c2 ! b (by (1)), and hence 

by (2). 

Case 2: b a. Then b,:;, c1 , b ~ c 2 , and we find: c 2 d. 

Case 3: b i-. a, b i d. As a< b < d it follows from (l) and (2) that 

a<ci <ct, b le Ci (i=l,2). Hence = c2, as else D would contain a 

sublattice with diagram (3), which is impossible as Dis distributive. 

(3) 

Hence in any case c1 

In all other categories of 1.2.1 epimorphisms are always onto: 

1.2.8. PROPOSITION. Let K be one of the categories K(S), K(LO), 

K(PO), K(La), K(BA), K(G), K(AG), K(CZ), K(H), K(CMAG), 

K(CMoG); K(S,8), .. ,K(AG,8), i/3(CZ), K6 (H) (8E. ORD). Then the epi·· 

morphism~ of Kare exactly the morphisms that are onto maps. 

PROOF. Clearly every morphism that is onto is an epimorphism. Suppose 

now the morphism v : a ➔ b of K is not onto, and let~~ b\ av. 

If K is one of the categories K(S) or K(S,B), K contains a mor-

phism : b + b such that b</i1cav while· .p1 Jav = Jav. Let 
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Then v¢1 = v¢2 while ¢1 f ¢2 ; hence v is not an epimorphism. 

If K is one of the categories K(LO), K(PO); K(L0,0), K(P0,6), 

then K admits as an object the (partially) ordered set c obtained 

from b by "doubling up" the element I;: c = (b'\ {I;}) u{\,112 } , where 

111 ;af112 , 1 b, 112 4 b, and where 111 < ri2 <11 if n E, bl"lc and n> I;., while 

n < n1 < ri2 if n E. b n c and n < f,. Moreover, K contains morphisms 

¢1, <),2 : b + c that coincide with ib on b l'I c while .f,q,i = lli (i=l ,2). 

Then ¢1 f ¢2 although vqi1 = v92 . 

If K is one of the categories K(AG), K(AG,6), then av is a normal 

subgroup of b. Let <;J1 be the canonical homomorphism of b onto the :fac

tor group b/av, and let 'i>z map b onto the neutral element of b/av. 

Then cp1 ,!c <1>2 whereas v¢1 =- v¢2 . 

If K is one of the categories K(G) or K(G,6), let c be a free 

product of disjoint copies of b, amalgamating the subgroups co,respond

ing to av. Then there exist distj.nct morphisms <P1 , $2 : b ➔ c such that 

v¢1 v¢2 ; thus ·vis not an epimorphism. If K is one of the categories 

K(BA) or K(BA,0) we proceed along similar lines, using lemma 1.2.9 

below. 

Let K be one of the categories K(La) or K(La, 0), (l G ORD. Then K 

admits as an object a lattice c such that bn c = av and such that 

there exists an isomorphism o of b onto c which is the identiy map on 

the common part av. According to B. J6NSSON [61] , there exists an 

amalgam d of band c. Let <J> 1 : b + d be the identity map and let 

{jl2 : b + d coincide on b with o. Then V<P1 = \J¢2 al though ¢11¢2 • 

Finally let K be one of the categories K(CMAG), K(CMoG), K(CZ), 
e e 

K(H); K (CZ), K (H) (0€0RD). As in the proof of proposition L2.6 

one shows that the image av of an epimorphism \I : a -+ b must be 

dense in b. As av is also either complete or compact, it follows 

that av= b, i.e. that vis onto. 

We used the fact that for boolean algebras, just as is the case 

for groups, free products with amalgamated subalgebras exist. In fact, 

we need only a slightly weaker result: 

l. 2. 9. LEMMA. Let A and B be two boolean algebras, and let A" B be a 

subalgebra both of A and of B. Then there exists a boolean 
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algebra C, containing A and Bas subalgebras, which is generated by 

Au B. 

This follows from the much stronger results of PH. DW1NGER and 

F .M. YAQUB [32] . 

1.3. Categories of relational systems 

The results in the second chapter concerning the existence of certain special mor

phisms (universal morphisms) in categories mentioned in 1,2.1 presuppose knowledge about 

'universal objects in these ca tego:ries. The existence of uni ve:rsal objects in the categor

ies listed in 1.2.1 will be discussed in the next section; as in this discussion we will 

make use of a theorem of B~ JONSSON on relational systems, we first introduce 1 in the 

present section, the relevant concepts. The material of this section 'is mainly taken from 

13. JONSSON [61] (slightly adapted, however, to our purposes). 

1.3.1. DEFINITION. A concrete category K will be called a category of 

relational systems if all objects of Kare relational systems 

of the same similarity type, and if all morphisms of Kare homomor

phisms between these systems. 

We recall that a relational system is a sequence 

(1) ot = (A,R ,R1 , ... ,R 1 ) 
o n-

such that A is a non-empty set, nt:.N, R ,R1 , ... ,R 1 are relations, 
k.o n-

and each relation R. is included in A 1 , for some * N (in other 
l 

words, Riis a -ary relation in A). The sequence (k0 ,k1 , ... ,kn_1 ) 

is called the stmilari ty type of Ol. Two relational systems are call

ed similar if they have the same similarity type. 

A homomorphism ¢ of a relational system Oi, as in (1) into a sim

ilar system 

{2) (B,S ,s1 , ... ,S 1 ) 
o n-

is a map of A into B with the following property: for every i, 

0 ;;;_ i ,;; n-1, and for every (a1 , a 2 , ... , ak. ) e. Rj_, we have 

¢,a2 ¢, •.. ,ak_<P) e Si. An isomorphism1 of Ol onto$ is a 1-1 homo

morphism qiofKonto$with the additional property that f 1 is also 

a homomorphism of onto Ol • 
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Examples of categories of relational systems are the categories 

K(LO), K(PO), K(La), K(BA), K(SGU), K(G) and K(AG) and their subcate

gories, and also K(H), K(CMAG), K(CMoG). 

1.3.2. DEFINITION. Let ot, be a relational system, given by (1), with 

similarity type (k ,k1 , ... ,k 1 ), and let B be a non-empty sub-o n-
set of A. The system 

(3) 

is called the restriction of otto B; in symbols: 0tlB. If~= otlB 

for some non-empty subset B of A, .:ti-· is said to be a subsystem of ot, 

and Ot. is called an extension of$ ; in symbols: .JJ,,-<:a . 

1.3.3, DEFINITION. If (It and;!;, are similar relational systems, given 

by (1) and (2) , and if A n B ,f 0, then (JC. n.:&- denotes the re

lational system 

(4) 0t I"\ $ = (An B, R n S , Rl n sl , ... , R 111 S l). o o n- n-

If e is a positive ordinal number, and if similar systems 

(5) ot. = (A , R , R l , ... , R l ) K K K,o K, K,n-

are associated with all ordinals K < 6, then 

(6) LJ ot. =( LJ A , U R , U R , ... , U R 1). 
K<6 K K<O K K<O K,o K<6 K,1 K<O K,n-

.l.3.4. PROPOSITION. Let(Jf,and.:J-be similar relational systems, as 

given by (1) and (2), and let A f'IB ~ 0. Then 

1.3.5. PROPOSITION. Let O <6 6 ORD, and let similar relational sys-

terns OI, K, as given by (5), be associated with all ordinals 

,c<B, Furthermore, let Of. --< ()(, whenever Kl< K2 < 6. Then 
Kl K2 

(8) 01, K --< -U Qt.A li<0 
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for all K < 6 

1.3.6. PROPOSITION. Each of the categories K(LO), K(PO), K(La), K(DLa), 

K(BA), K(SGU), K(G), K(AG), K(H), K(CMAG) and K(CMoG) satisfies 

the following conditions: 

I. Every monomorphism µ: {JI, -,.:tJ, of K maps Of.. isomorphically onto a 

subsystem of 

II. There ex:;.st objects ot, :#- of K such that Of, and.::&- are not iso-

morphic. 

III. If Of. :i.s an object of K and if the relational system is iso-

morphic to (Jt, then ;J;. is also an object of K. 

IV. For every two objects Ot., :tJ. of K there exists an obJect 1: of 

K such that OC and J; are isomorphic to subsystems of l:. 

V. If O is a positi·Jc ordinal number, if Ol is an object of K 

for every K < 0 , &nd if 

is an object of K. 

K 

PROOF. The validity of 1 is a consequence of proposition 1.2.4. The 

other four conditions are clearly satisfied in all cases. 

1.3.7. There are still other conditions on categories of relational 

systems that are important for our purposes. They read as fol

lows. 

VI. If Ol and :tJ, are objects of K such that Ol /'\::t,.---< Cl(, 

Ol 11 -< :/J,,, there exists an object ,C of K such that (!(,--< .C and 

-< ,t. 

VH 0 . If (It, is an object of K, J:1:--<. Ot, and card (B) < , there 

exists an object t of K such that $ --< L-<.{/£ and card (C) < }r0 

(here B and C denote the sets underlying :C- and ,C , respectively). 

We take the opportunity to introduce here still another type of 

condition, relevant for arbitrary categories: 

v111 8. If a is an arbitrary object of K, and if A is a set with 

card (A) , then b.(a le 0 (ct. definition 1.1.11). e 
The next two propositions an, proved in B. JONSSON [61] 
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1.3,8. PROPOSITION. Let K be a category of relational systems, and 

let 0 ~ ORD. If K satisfies the conditions V and v11 6 of 

1.3.6 and 1.3.7, then K satisfies condition VIIK for every ordinal 

number K > e . 

1.3.9. PROPOSI'l'ION. Condition VI is satisfied in K(PO), K(La), K(G), 

K(AG), but not in K(SGU) or K(DLa). Condition vu1 is satis

fied in K(PO), K(La), K(G) and K(AG); in K(PO) even condition VI is 

satisfied. 

Clearly condition VII 0 is not satisfied in K(La), K(DLa), K(BA), 

K(G) or K(AG), as a finite subset of an algebra of one of these kinds 

may generate an infinite subalgebra. 

1.3 .10. PROPOSITION. Both condition VI and condition VII 1 are satis

fied in K(BA). 

PROOF. 
The validity of condition VI is asserted by lemma 1.2.6. The 

fact that condition VII 1 is valid is ea~ily ~erified. 

REMARK. Except in the present section we will be extremely careless, 

writing A for a relational systemOi,~ (A,R ,R1 , ... ,R 1 ) (unless con-
o n-

fusion is inevitable). 

1.4. Universal and dually universal objects 

The problem of the existence of universal or dually uni,·ersaJ objects of certain 

types is of long and respectable standing. In this section we only mention results con

cerning the categories of section 1.2; it 1s by no means our intention to cover the whole 

field, A few other results of similar nature ar~ mentioned in the notes to this chapter 

(section 1.6). 

1.4.1. DEFINITION. Let K be a category and K0 a subcategory of JL An 

object a of K is called K -universal in K (or: universal for 

K0 in K) if for every object b of K0 there exists a monomorphism 

IJ : b ➔ a in K. The object a is called a universal object in K if it 

is K-universal in K~ 

An object a of K is called dually K 

* 
* universal in Kif it is K -
0 

universal in where and K are the dual categories of and K, 



35 

respectively; i.e. if for every object b of K0 there exists an epimor

phism v : a + b in K. The object a is cailed a dually universal ob

ject in Kif it is dually K-universal in K. 

L4.2. PROPOSITION. Let K be a concrete category, and let 0 e, ORD. If 

K admits a (dually) K(8)-universal object a with card (a)= 7't6, 

then a is a (dually) universal object in K(6) 

PROOF. Obvious. 

1.4,3. PROPOSITION. K(S,0) and K8(H) admit universal and dually uni

versal objects, for every Oe ORD. 

PROOF. u 
Every set of power .rr 0 is universal and dually universal for 

K(S, 0). As a Hilbert space H is deternnned up to a linear homeomor

phism by the cardinal number of a basis B, and as a continuous linear 

operator with H as i. ts domain is completely determined by its values 

on B, every Hilbert space of weight Jr0 is both universal and dually 
. 0 

universal for K (H). 

1.4.4. PROPOSITION. The set Q of all rational numbers, with the na-

tural order, is both a universal and a dually universal ob

ject for K{LO,O). 

PROOF. For a proof of the fact that Q is a universal. object we refer 

to [56] . We will show that Q is also a dually universal object. Let 

A be any countable linearly ordered set. The set A x Q, ordered lexi

grographically, is order-isomorphic to Q (cf. [s6] Ch .4 § 7); let µ 

be an order-isomorphism of Q onto Ax Q. Let v : Ax Q -+ A map (a,q) 

2-A xQ onto ae:A; v is an epimorphism, and so is 11v: Q + A. 

* L4.5. PROPOSITION. K(L0,6) admits a universal object, for every 

0 €. ORD. 

A short proof can be found in [so] 

i.4.6. PROPOSITION. K 6(CR) admits universal objects, for every or

dinal number 6 . 

PROOF. \, 
The Tychonov cube of weight 1r6 (i.e. the topological product 
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of N 6 copies of the unit segment [ 0, 1]) is a universal object; see 

e.g. [64] . 

1,4. 7. PROPOSITION, The Hilbert space of weight lte is a universal ob-
. 0 
Ject for K (M), for each a E. ORD. 

This theorem ~s due to C.H. DOWKER [29]. It also follows from 

the proof of Yu.M. SMIRNOV [96] of the J.-1. NAGATA - Yu.M. SMIRNOV 

metri.zation theorem (cf. [96] , remark 1 and part 3 of the main proof). 

We wi.11 need a stronger assertion in chapter 4: 

1.4.8. PROPOSITION. Let S0 be the unit sphere in a Hilbert space HO 
of weight .tr SG {x E. H : I Ix I I = 1} Then S0 is a uni.versa] 

6 \j 

object for K (M) , for every 6 (; ORD. 

PROOF. This also follows l'rom SMIRNOV' s proof in [96], but it is 

easily inferred from proposition 1.4.7 too. Let H be the Hilbert sum 

(l) 

of H0 and the one-dimensional euclidean space R, and let S be the unit 

sphere in H; Sis homeomorphic to s 0 . Then we embed H0 topologically 

in S by means of the inverse of "stereographic project.ion" with the 

"north pole" (0,1) as the center of projection. 

REMARK 1. Proposition 1.4.8 is not really stronger than proposition 

1 . 4. 7, even if this seems to be the case. V. L. KLEE [66] has proved 

that every infinite-dimensional Hilbert space is homeomorphic to its 

unit sphere. 

REMARK 2. There is a still nicer universal object for K0 (M), namely 

the Hilbert fundamental cube which, being homeomorphic to the Tycho

nov cube [0,1] N-0 , is not only bounded but even compact. 

L4.9. PROPOSITION. The Cantor discontinuum C is a universal object 

for K0 (ZM), and also both a universal and a dually universal 

object for K0 (CZ). 
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Proofs can be found in [yo] (vol. I § 21 theorem VI and vol .II 

§37, VI theorem 4). 

1.4.10. PROPOSITION. K(CMAG) admits universal objects. 
}t. 

PROOF. o d t f The infinite-dimensional torus g,·oup T .. pro uc o 

copies of the circle group T - is a universal object (see e.g. 

theorem 2 2.6). 

For many categories oL relational systems the existence of uni

versal. objects is guaranteed (under assumption of the Generalized 

Continuum Hypothesis) by the following important theorem of B. J6NS

SON [60,61] : 

L4.ll. THEOREM. Let K be a category or relational systems. If K sa

tisfies conditions I-VI and VII of 1.3.6 and 1.3.7, K(O) ad-
o 

mits a universal object. If be ORD, if conditions I-Vl and VII 0 of 

J.3.6 and 1.3.7 are satisfies in K. and if the Generalized Continuum 

Hypothesis holds, then K ( 0) aclmi ts a universal object. 

1.4.12. COROLLA.RY. K(PO,O) admits a universal object. 

PROOF. 
This follows from theorem 1.4.11 and propositions 1.3.6 and 

1.3.9. 

Similarly we iind: 

A.13. COROLLA.HY. K(BA,0), K(P0,0), K(La,u), K(G,O) and K(AG,0) ad

mit universal objects for each positive ordinal 0 

About K(BA) more can be said: 

1.4.14. PROPOSITION. K(BA,O) admits a universal object 

PROOF. As the Cantor discontinuum C is a dually universal obJect for 

(CZ) (proposition 1.4.9), it follows from the STONE duality theory 

concerning boolean algebras and boolean spaces that the free boolean 

algebra with 1f generators is a universal object for K(BA,O). (This 
0 

can also easily be shown directly). 



38 

1.4.15. COROLLARY. K(DLa,O) admits a universal object. 

PROOF. 
Every distributive lattice can be isomorphically embedded in 

a boolean algebra of the same weight. 

Similarly we conclude from .4.13: 

* 1. 4 .16. COROLLARY. K (DLa, 8) admits for every O <'- ORD a universal ob-

ject, 

* From 1. 4 .13 and the STONE duality theory we also derive: 

0 
,4.17. COROLLARY. K (CZ) admits a dually universal object, for 

every O E. ORD. 

We can assert somewhat more: 

* 1.4.18. PROPOSITION. For each GE. ORD there exists a subspace of the 
it 

generalized Cantor discontinuum {0,1) 0 which is a dually 
0 

universal object for K (CZ). 

PROOF· This follows at once from 
.. 
1.4.17 and the fact that every 

comoact Hausdorff space of weight N-0 is a continuous image of a suit-, 5t 
able subspace of {0,1} O (see [64]). 

As we saw, for O=O a dually universal object for KO(CZ) can be 

exhibited, namely C (proposition 1. 4. 9). For 0=1 a dually universal 

object for K 8 (CZ) has been exhibited by I. I. PAROVICENKO [ss] (as

suming the Continuum Hypothesis to be valid): 

.4.19. PROPOSITION .. The space i:SN'.N is a dually universal object 

for (CZ). 

(Here N denotes the set N provided with the discrete topology; if X 

is a completely regular space, l;lX denotes the CECH-STONE compact

ification of X.) 

1.4.20. PROPOSITION. All categories K(La,G), K(BA,0), K(SGU,0), 

K(G,8), K(AG,0) (0 E; ORD) admit dually universal objects. 

PROOF. 
Let K be one of these categories. If A is a free algebra with 

generators of the same kind as the objects of K, then A is a 
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dually universal object for K. 

1.4.21. COROLLARY. K6(CZ) admits universal objects, for every 6 ~ORD. 

1.4.22. PROPOSITION. K(CMoG) admits a dually universal object. 

PROOF. 
Let Td denote the circle group T, provided with the discrete 

topology. Then the character group M of Td is a dually universal ob

ject in K(CMoG) (cf. [ss] theorem (25.12) or [93] theorem 2,3.3). 

Another way to describe this dually universal object for K(CMoG), 

orally communicated to me by G. HELMBERG, is as follows. Consider the 
T T 

topological direct product T; let a be the element (t)t T' T, and 
T T "' let M 

0 
be the closure in T of the subgroup of T generated by a, Then 

M is a dually universal object for K(CMoG); in fact, M is topologic-o 0 

ally isomorphic to M. For the characters of M0 are just the projecting 

morphisms nt jM : M + T ( t ,;; T) , and hence the character group of M 
0 0 0 

is (isomorphic to) Td. 

The group Td, being divisible, is a direct sum (restricted 

direct product) of groups, each isomorphic to the additive group Q or, 

for some prime p, to the multiplicative group Z(p 00
) of all pn-th roots 

of unity, n=0,1,2, ... (I. KAPLANSKY U,3] , section 5,theorem 4). More 

exactly, if P stands for the direct sum 

then Td is isomorphic to 

of copies of Qd (we write 

are taken to be furnished 

mentioning that the group 

l Z(poo), 
p prime 

the direct sum of Pd and a continuous number 

Pd and Qd to emphasize that these groups 

with the discrete topology). It is worth 

Pis isomorphic to Q/I. 

· Let D denote the character group of Pd, and S the character 

group of Rd (here Rd stands for the additive group of real numbers; 

this group is isomorphic to the direct sum of continuously many 

copies of Qd). It follows from the VAN KAMPEN-PONTRJAGIN duality 

theory that Mis the (unrestricted) topological direct product of D 

and S (cf. [ss] theorem (23. 22)). 
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The groups D and Sare interesting dually universal groups in 

their own right, as appears from the next three propositions (proofs 

of which can be found in [58] , §25). 

1.4.23. PROPOSITION. Dis a dually universal object for the full sub

category K(ZCMoG) of K(CMoG), obtained by restricting the 

class of objects to all zero-dimensional compact monothetic groups. 

1.4.24. PROPOSITION. S is a dually universal compact solenoidal group. 

(A topological group G is called solenoidal if it contains a 

dense I-parameter subgroup; IL ANZAI and S. KAKUTANI [s] , after 

D. VAN DANTZIG [20,25].) 

A more exact formulation of proposition 1.4.24 would take the 

form: "s is a dually universal object for the category K(CS) of all 

continuous homomorphisms of one compact solenoidal group into another 

one"~ 

1.4.25. PROPOSITION. The character group of Qd is a dually universal 

object for the full subcategory of K(CMoG), obtained by re

stricting the class of objects to all connected one-dimensional com

pact monothetic groups. 

In other words, the character group of Qd ts a dually universal 

compact one-dimensional solenoid (the (v'.)-adic solenoid of D. VAN 

DANTZIG [27]; cf. also [25,26].) 

REMARK 3. In [§7] it ts shown that K(G,O) admits no universal ob

jects. 

REMARK 4. It is easily shown, using the VAN KAMPEN-PONTRJAGIN duality 

theory for locally compact abelian groups, that K(CMAG) admits no 

dually universal object. In fact, a compact abelian group is metri

zable if and only tf its character group i.s countable ( [93] theorem 

2.2.6), and there exists no universal countable group (remark 2 above). 

Similarly one can show that K(CMoG) admits no universal object. 
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REMARK 5. It is shown in ~1] that K(SGU) and its subcategories 

K(SGU, El) do not satisfy condition VI of 1.3. 7. Hence theorem 1.4 .11 

can not be applied to these categories. I do not know whether K(SGU,8)

universal semigroups exist for certain 6 E. ORD. (It is also shown in 

~1] that condition VI is not valid in K(DLa); nevertheless universal 

objects exist for K(DLa,0), as we showed above, using the possibility 

of embedding distributive lattices in boolean algebras and applying 

theorem 1.4.11 afterwards.) 

1.5. Structure of order-preserving maps between linearly ordered 

spaces 

ln one section of the next chapter we need some technical results concerning order

preserving maps, More explicitly, we want to know how an order-preserving map is built up 

from more simple maps (so-called coherent maps; sec definition 1,5.3 below), In this sec

tion we carry out an analysis of order-preserving maps as far as is necessary to our pur

poses. The results below will only be used in section 2.7. 

1.5.1. DEFINITION. Let X be a linearly ordered set. If Yc:::X, then 

(1) 
,..... 
Y = { x E X : y 1:;. x:;. y 2 for some y 1 , y 2 e Y } . 

.,.,, 
If y Y, Y is called an interval in X. For certain kinds of inter-

vals we adapt the traditional bracket notation; e.g. 

(2) 

1.5.2. DEFINITION. Let Cf,6 K(LO),<j): X + X. We put 

(3) 

and 

(4) 

If X = X~ , <j) is said to be increasing; if. X = X , cp is said to 
o/,+ ------ <j),-

be decreasing. The points x EX fl X are called the fixed points 
$,+ <1>,-

of <j) in X. A left (right) translation is a decreasing (increasing) 

order-preserving map; a translation is an order-preserving map that 
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is either increasing or decreasing. 

X 
1.5.3. DEFINITION. Let X be a set, and let¢€: X. The orbit of xE-X 

under ¢ is the set 

(5) 

and the total orbit of x under qi is the set 

(6) TO (x) 
qi 

A map qi: X + X is called coherent if TO (x) -- X for some x E-X. 
y 

The following lemma is evident: 

1.5.4. LEMMA. The total orbits under a map¢ 

tition of X. 

X + X constitute a par-

1.5.5. DEFINITION. Let(f,1::.K(LO), ¢: X ➔ x. Then 6 denotes the fol
¢ 

lowing binary relation in X: 

(7) 

The map¢ is called concurrent if there exists an Ee. X such that 

x 6 x for all x E. X. 
9 0 

1.5.6. LEMMA. x1 L1¢ x24=:i>(3n,me.N)(x2 <?n,;;.x1¢m,;;_x24n+l). 

The proof of this lemma is immediate. 

1.5.7. PROPOSITION. The relaUon l1$ is an equivalence relation in X. 

PROOF. 
Clearly x x for all x E. X. Suppose 

Then 
n+l m+l 

<x " < x ,, · hence x LI = 2-r = l" ' 2 ¢ 
x /:i x · say x ¢n <x ,,,m<x "'n+l 

2 qi 3' 2 = 1-r = 2" 
n+n1 m+m1 n+n1 +2 

¢ ~ x1 ¢ ,;;_ x 3 qi ; hence 

1.5,8. PROPOSITION. If¢ is onto, then x1 

x · say x ¢ n < x ¢ m < 
2' 2 = ·1 = 
. Finally suppose 

nl 
and x 3(j) ~ x 2 <Jl 

xl ts..¢ x3. 
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i.e. 

1.5.9. DEFINITION. Let .c K(LO), • : X + X. The li.-equivalence class 

of xe.X is denoted by li•(x); the set of all '11j)(x), xE.X, is 

denoted by X/'1$. 

1. 5 .10. PROPOSITION. For each x E. X the sets 6$(x), '1$(x) fl X$ ,+ and 

li,.(x)n X are intervals in X, each mapped into itself by¢ 
'I' qi,-

If x1 r.liq,(x) l'I x$,+ and x2 e '11j)(x)f'I x4>,-' then x1 !, x2 . Each '1.i}x) con-

tains at most one fixed point; if liq!-x) contains a fixed point a,then 

¢j'1$(x) is coherent (i.e. lilj)(x) = TO(j)(a)). If li<l>(x) contains no fixed 

point, •16.(x) is a translation. 

PROOF. 
Let x1 E' Li (x)nX +' x2 e.ll,.(x), x2 < x1 . As x2 li x1 , there are 

Cj) n <P, m .., $ 
n,mE.N such that x1 <j) ~x2 1j) • As x2 < x1 _:;, x1 9 n, ,it follows that 

x2 f,X _. Hence if x1 a Li (x)nX and x2 e. ll,p(x)nx ... _, then x1 ~x2 • 
•• 9 •• + ..,, 

As clearly ll (x) is an interval, it follows that both '1,,.(x) AX,. and cp 'I' 'I',+ 

Li (x)n X are intervals. As '1 (x), X and X are mapped into cp cp,-· cp <j),+ cp,-
themselves by$, so are L\p<x)nxcp,+ and '19(x)nxcp,-· 

It follows also that ti9 (x) contains at most one fixed point, and 

that x1 :;.a!ax2 for all x1 e '1<P(x)nx 9 ,+ and all x2 e.li<l>(x)n xcp,- if a 

is a fixed point of li•(x). We now show that in this case '1 (x) = 
~ n 

= TO•(a). Indeed, 
m+l 

a¢ = a. 

as x ll a, there are m,n e N such that a=a• < x"' < 
Cj) = 'I' = 

Finally assume that ¢16.(x) is not a translation. Let 

x1 e. Li•(x) n Xcp + and x2 e.ll<P(x)nX<P _, and let n,meN such that 
n m ' ' n x1 .p >x2 .p • Then, by what we proved already, x1 .p E. X n X ; hence = $,+ qi,-

(',<P(x) contains a fixed point under•. 

In other words: 

As X/'1$ consists of disjoint intervals we have at once: 
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1.5.12. PROPOSITION. The set X/11¢ is linearly ordered by~-

This finishes the first part of our analysis of an order-preserv

ing map ¢ : X + X. In order to know the behaviour of tj> it suffices to 

have knowledge of the linearly ordered set X//:, and of the concurrent 
9 

maps <i>ID, D.,, X/11 • 
9 

The second part of our analysis will show how a concurrent map 

¢ I ll<jl(x) is built up from coherent maps <P !To qi (y), y 4!. ll.¢ (xL 

1.5.13. PROPOSITION. Let¢ .i. K(LO), q, : X+ X, and let x < x<j). For every 

y <l. ll/x), the set TO<j)(y)f'I [x;xw) is an interval. If,moreover, 

y;;;x and y~TO¢(x), there is a unique nE-N such that y¢n e.[x; L If 

in addition q, is 1-1 and onto, then for every y E./:i (x) there exists a 
k[ -- .. <l' k 

unique kE.I such that y(/l.,. x;x9); and TO (y)n Lx;xq,) = {y¢}. 
\Ji 

PROOF. Let a,bE.T0 9{y)n [x;x¢), and let a~z~b. There are n,mE.N such 
m n n+l m+l 

that by ; then :;.,a9 ~xq, and < = aqi xq, . It fol-
n m+l m n+l . . . . 

lows that x(j) ~x<P and xq, :;. X(j) . If one of these 1nequal1 ties 1s 
n .m+l 

an equality, it follows that z1;.TO<j,(x) = TO {y). If both x¢ < xcp 
m n+l qi n 

and x<)l < x9 , then n < m+l and m < n+l, hence n=m, and z4> = 

- aqin;;;.TO_(y). Thus TO (y)n [x;xq,) is an interval. 
'I' <j, 

Now assume also that y < x and y f- TO (x). As y/J, _ x, 
n1 m1 9 n1 'i' 

~ N such that x(Jl ~ y¢ . Moreover, x~ x¢ ; hence 

there are 
m1 x.;;, y¢ . Let 

n be the smallest m<:. N such that x ~ yg;m. Then n;,eO, as y < x, and 
n n n+l 

y(J),:;xcp,asy <x.Weconcludethatyqi <x¢<y¢ ,asy,;t {x). 

This shows that for every y ,;x, y f; 

only one n e. N such that y qP £: [x; x 9) . 

(x), there exists one and 

Finally suppose ,;i is 1-1 and onto. Then we can apply the above 
-1 

results to ¢ ,and we 

unique k" I such that 

find that for every y E: b. (x) there exists a 
k qi [ . k 

yrj, e. [x;xq,). Consequently TO (y)n x;xq,) = {y¢ } . 
¢ 

If x > x (/), similar results are obtained, with ;x¢) changed into 

{x¢;x]; in fact, we need only take into account that if we reverse the 

ordering of X, then X remains linearly ordered and ¢ remains order

preserving. 
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1.5.14. DEFINITION. Let $E.K(LO), qi: X+ X, andxE.X. Then 

(9) 

while < denotes the following binary relation in A"' (x). If /J."' (x) 
"'ij),x "' 'I' 

contains a fixed point a, < is the identity relation in /1."'(x) = =ip,x .., 
= {TO$(a)}. If /J.$(x) contains no fixed point and /J.$(x)cxcp,+' then, 

for ½_ ,L2 E. /1.¢,(x): 

½_!it,,x L2<=)>(L1 = TO¢(x)) 11 

(10) 
V ((½_iTO q, (x))A(L2iTO /x))A (3n * N) (3yle Ll H3y2 E. L2) 

n n+l 
(x4> < Y1! Y2 < xcp )) • 

Finally, if /J.n(x) contains no fixed point and /J."'(x)c.X , we put, 
T 'I' cj, ,-

for ½_ ,L2 E. Acp<x): 

L < L2~(L2 = TO ,_(x)) v 
1 = q,,x .,, 

(11) 

1.5.15. PROPOSITION. The relation ~cp,x linearly orders /1.cp(x). 

PROOF, 
To simplify the notation we will write A and! instead of 

A,,(x) and < • If suffices to consider the case where /J."' (x) con-
.., =.;,,x ,., 

tains no fixed paint, while x < x<j> , 

Evidently L;;, L for all L ~ A. Let ½_, L2 t fl such that L1! L2 and 

L2 ;i, L1 • If either L1 = TO qi (x) or L2 = TO qi (x) , then L1 == L2 == TO$ (x) • 

Suppose L1 ;,f TOq,(x) and L2 ;,f TO<j',(x). Let n,m1o.N, a,bE.L1 and c,d11.L2 

such that 

(12) 

and 

(13) 

n n+l 
Xq> < a~ d < Xlj) 

Then a$m,d$m,c,t and b(j>n are all contained in [x¢n+m;x(j>n+m+l), and it 

follows from proposition 1.5,13 that L1=L2 • 



46 

Next suppose L1 ,L2 ,L3 e 11, L1 ;;,,L2 and L2 ~L3 • If L1 = 'fOcp(x), 

then L1 ;'.;; L3 • Assume L1 i TO¢ (x) ; then also L2 i TO /x) and L3 i TO cp (x). 

Let n,m<eN, ae.L1 , band cE.L2 and dE:L3 , such that 

{14) 
n 

x¢ < a ;, b < xq, 
n+l 

and 

(15) 
m 

x¢ < c;, d < x¢ 
m+l 

Then 

{16) 
n+m m m 

x¢ < atp ~ b¢ < x¢ 
n+m+l 

and 

(17) 
n+m n ~ d¢n < 

n+m+l 
Xtp < C(j) XQ 

It follows from proposition 1.5,13 that either L1 

(18) n+m m d n "'n+m+l x<P < a<;> ~ q; < x.., ; 

hence L1 ;::,, L3 • 

Finally we must show that the relation,:;, is total in/\. , Let 

,L2 e. /\; we may assume L1 i TO'+' (x), L2 i TO<P (x), Take y1 e L1 , 
n- n 

E.L2 . As Y/'¢x and Yl'cpx, there are n,n1 ,n2 E-N such that 1 :::,, x,p 
[ n n+l 

(i=1,2L It follows easily that Li/1 xcp ;xc;i ) /. 0 (i=l,2); hence 

either L1 ";,,L2 or L2 ~Ll, 

REMARK 1, As TO (x) < " L for all L e A,,_(x), in general < /. < 
(jl = 'I' ,x 'I' =cj, , X = <j) , y ' 

even if flJx) = AJy). 

REMARK 2, Suppose Ll/x) contains no fixed point; let e.g. x < x<P, Then 

by logical inversion of (10) we have for ,L2 e. i. T0 9 (x), 

/. (x): 

(19) 

From this we conclude that ~ = < if ye. TO (x), This remains 
-<j,,X ""cji,Y cj> 

true if x > xcj> and if 6 (x) has a fixed point under¢. 
(jl 
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We conclude this section with a few remarks on coherent 3rder

preserving maps. 

1.5.16. DEFINITION, Let 911:;K(LO), ¢: X ➔ X, and xE.X. Then E de-
(j),X 

notes the following equivalence relation in T0 9(x}: 

(20) 

We write E (y) for the E ··equivalence class of yeTO,.(xL 
(j),X ¢,x o/ 

1,5,17, PROPOSITION. Every E is an interval in X. For each n~N we qc,x 
have 

(21) 

If TO (x) contains no fixed point under¢ , then 
9 

(22) 

for n, m e. N, nim. 

The straightforward proof is omitted. 

1.5.18. COROLLARY. If TO/x) contains no fixed point, then TO,P(x) can 

be written as the union of countably many disjoint intervals 

(23) TO,.,(x) = LJ E 
o/ kE.I k' 

where each Ek is an E¢,x-equivalence class, while Ek¢c Ek+J.' for 

every k e. I. 

1.6. Notes 

Category theory, as ts well known was created by S. EILENBERG 

and S. MACLANE (cf. [36] and [76, 77] ) • In our exposition we have 

chosen as a guide the paper of A.G. KUROSH, A.Kb. LIVSHITS and E.G. 

SHUL' GEI FER ( ; english translation: [74] ) , Most definitions in 

1,1, and the proofs of the propositions 1.1.2, 1,1.7, 1.1.9 and 

1.1.10 can be found there. A notational aberration is our symbol * 
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for free joins; it takes the place of lf* in [ 73] • Notational addi

tions are S(a,T) and 6(a,T)(definition 1.1,8). 

The notion of a strong direct join (definition 1.1.8) is new; it 

is coined for use in section 2.2. Strong direct joins are not uncommon; 

in concrete categories they are rather the rule. For in many concrete 

categories K direct joins are (equivalent to) ca.rtesian products (pro

vided with additional structure: full direct products in categories of 

algebraic systems, topological products in categories of topological 

spaces, etc.),with the ordinary (natural) projections figuring as pro

jecting morphisms. Such a direct join b ti::. (a,T) clearly is a strong 

direct join as soon as the set a contains at least two distirict ele

ments. 

As mentioned in the "conventions" we intend our considerations 

to be based on a set theory of the kind of J. VON NEUMANN - P. BERNAYS 

- K. GODEL, maintaining a distinction between the terms "class" and 

"set". We will refrain from discussing set-theoretic problems raised 

by category theory; we only mention that axiomatizations of set theory 

are available that are expressly tailored to fit the needs of this 

theory (see e.g. J. SONNER [98] ). 

Although the categories listed in section 1.2 are indeed all con

crete, it should be pointed out that most of them are not subcatego

ries of K(S). This is due to the fa.ct that distinct structures can be 

superimposed on the same set. For instance, consider K(PO). Let~ de

note the usual ordering in Q, and let C denote the discrete ordering. 

The identity map of Q into itself gives rise to distinct morphisms of 

K(PO), such as the order-preserving maps a and i:l , where a maps (Q < 

identically into itself 6 maps (Q,C) into (Q 

for all q1:.Q, 

, while again q(l =q 

A usable definition of K(PO) whould be the following: the mor--

phisms of K(PO) are all ordered triples (Gl:1 , f ,~), where = (A1 , ~ 1 ) 

and (A2 , ~ are partially ordered sets, and where f is an order

preserving map of into A2 . If a and B are morphisms of K(PO), say 

a= (tr1 , f ,Ol2 ) and B = c.JJ- 1 , g,.'.tl- 2 ), then a. 6 is defined in K(PO) H 

and only if Ol 2 = $ 1 ; in this case, 
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(1) 

An isomorphism c\l of K(PO) onto a subcategory of K(S) can then be ob

tained in the following way. If a 6 K(PO), say a= ('\, f ,ot2 ), where 

c;r1 = (A1 , ~ 1 ) and Of.2 = (A2 , ~ 2 ) are partially ordered sets, whUe f 

is an order-preserving map of A1 into A2 , then 

(2) 

where g stands for the map of {(}f.i x A1 into { (}(, 2 1 "A2 , defined by 

(3) 

for arbitrary a E!. A1 • 

The other categories defined in section 1.2 should be interpreted 

in a similar way; then each of them can be shown to be indeed a con

crete category, just as we did for K(PO). 

It would have been confusing if we had realized all these exact 

definitions in the text; therefore we preferred to talk about these 

categories in a naive way, writing about the morphisms of K(PO) as if 

they were (order-preserving) maps, and about the morphisms of K(C.F) 

as if they were (continuous) functions, etc. 

The fact that in categories of topological spaces epimorphisms 

usually coincide with continuous maps with a dense image is mentioned 

by H.J. KOWALSKY [68] , p.251, 

The contents of section 1,3 are taken from B. JONSSON [i:n] , 
with the exception of the results concerning K(BA) and K(DLa) and the 

introduction of the conditions VIII 8 , Theorem 1,4,11 is taken from 

the same paper, and so are its corollaries 1,4,12 and ,4.13 (ex-

cept the assertion about K(BA,8)). 

The fact that K(BA,6) admits universal objects for all O was 

first proved (under the assumption that the Generalized Continuum 

Hypothesis is valid) by A. ESENIN - VOL'PIN [38] . Our proof, depend

ing on B. J6NSSON's theorem l,4,11 (together with the fraction of the 

results of PH. DWINGER and .F,M. YAQUB [32] expressed by lemma L2,9) 
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differs completely from the proof of A. ESENIN - VOL'PIN. The latter 

* makes use of this result in order to derive proposition 1,4.17; he 

also obtains the following theorem: 

* 1,6.1. THEOREM. For every O t!. ORD there exists a compact Hausdorff 

space T 8 of weight #8 with the property that every compact 

Hausdorff space of weight at most N8 is a continuous image of i.t. 

In other words, if K{C) denotes the category of all continuous 

maps of one compact Hausdorff space into another one, then K8 (c) ad

mits dually universal objects for each O.;. ORD (assuming once more 

the Generalized Continuum Hypothesis to be valid). 

The fact that Q is a universal tbject for K(LO,O) is mentioned 

already in G. CANTOR [16] , §9, as is the fact that rio ri for every 

countable order type o, The latter property of ri was used by us 

to derive the dual uni.versality of Q for K(LO,O) (proposition l.4.4). 

F. HAUSDORFF [56] proved that K(LO) always contains K(LO, 0)

universal objects, and that K(L0,8} contains universal objects if 8 

is not a limit ordinal and if the Generalized Continuum Hypothesis 

holds (see also W. SIERPINSKI [94] ) . This was extended to limit 

ordinals by N. CUESTA DUTARI [19] and L. GILLMAN [44]. A very short 

and elegant proof, applicable to both cases simultaneously, has been 

given by E. MENDELSON [so] . 
A, MOSTOWSKI [ss] constructed a 

J.B. JOHNSTON [59] proved that K(PO) 

object of cardinality 2 Jte, for each 

universal object for K(PO,O). 

contains a K(P0,0)-universal 

8 €. ORD, assuming that the 

Gener'¾lized Continuum Hypothesis holds. He also showed - under the 

same assumption - that K(PO) contains a K(P0,0)-universal object of 

power (and hence that K(P0,8) contains a universal object) if 8 is 

co final with w , B. J6NSSON [60, 61] extended these results by showing 

that K(P0,0) admits universal objects for all 0, assuming once again 

that the Generalized Continuum Hypothesis is valid, See also R. FRA1S

SE [41,42,43] for the case e~o. 
B. J6NSSON [61] also proved the existence of universal objects 

in K(La,8) and K(G,0), for positive ordinal numbers e. See also 
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N.G. de BRUIJN [15] for other embedding theorems for groups. The re

* sult 1.4.16 concerning the existence of universal objects for K(DLa,6), 

0 E ORD seems to be new. Jt-. 
The universality of [0,1] 6 for K6 (CR) was shown by A, TYCHONOV 

[101,102]. The universality of the Cantor discontinuum C for K0 (ZM) 

occurs in P. URYSON [105] (theorem 16), and the dual universality of C 

for K0 (CZ) (in fact, even for K0 (c), where K(C) is as defined above) 

is mentioned in P.S. ALEXANDROV [1] • The fact that [o,1Jh'o is uni-
8 versa! for K (CZ), for every 8~ ORD, is contained in the following 

theorem of N .B. VEDENISOV [107] 

», 
1,6.2. THEOREM. The generalized Cantor discontinuum {0,1} 8 is a 

uni versa! object for K6 (ZH), for every 6 E. ORD. 

Here K(ZH) denotes the category of all continuous maps of a Hausdorff 

space X with ind(X) = 0 into another Hausdorff space Y with ind(Y)=O. 

Proposition 1.4.7 follows for the case 6=0 from the classical 

metrization theorem of P. URYSON [104] for separable normal spaces, 

in conjunction with the theorem of A. TYCHONOV [10~ asserting that 

every regular Hausdorff space satisfying the second countability 

axiom is normal, C.H. DOWKER [29] proved that a metrizable space is 

paracompact if and only if it is homeomorphic to a subset of a suit

able Hilbert space. From this theorem proposition 1.4.7 follows in 

its full generality, in view of the theorem of A.H. STONE [9![] assert

ing that every metrizable space is paracompact. 

Proposition 1,4,10 follows from the fact that a compact abelian 

group G is metrizable if and only if its character group Xis count

able; this, in its turn, is a consequence of the theorem of S, KAKU

TANI [62] asserting that G and X have the same (topological) weight, 

Proposition 1,4.22 is essentially due to P. HALMOS and H. SAMEL

SON ( [s{I , theorem I), and, independently, to B, ECKMANN <[ 3~ , theo

rem 4); the first explicit formulation occurs in H. ANZAI and S. KA-

KUTANI [s] (theorem 12). Propositions 1.4,23, 1,4,24 and 1,4,25 

are due to H. ANZAI and S. KAKUTANI [5], anticipated in part by 

D. VAN DANTZIG [25,26,27], 
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Some additional results on universal spaces are the following. 

First, in connection withJhe universality of [o,~ ~ for K6(CR), and 

the universality of {O,l} 6 for K6 (ZH), the following result of 

P.S. ALEXANDROV [2] should be mentioned (cf, J. FlACHSMEYER [40] for a 

short proof). Let K(T) stand for the category of all continuous maps 
0 

of one T0 -space into another T0 -space. Let furthe:nnore A denote the 

space {O,l} , provided with the topology {0,{0},{0,l}}. Then: 

}(-
1.6 •. 3. THEOREM, A O is a universal object for K6 (T ) , for every 

0 

6 ® ORD. 

A different universal object for K6(T) was constructed by A. TYCHO
o. 

NOV U.03] • 

In connection with 1,4.7 (case 0=0) we observe that P. URYSON 

U-06] obtained a stronger result, solving a problem posed by 

M. FRECHET: there exists a separable metric space into which every 

separable metric space can be isometrically embedded. A very nice 

example of such an"isometrically universal" space was given by 

s. BANACH and S, MAZUR, who proved that the space c[o,1] of all real

valued continuous functions on the unit segment, with the unifo:nn 

no:nn topology, has the required property ([12] Ch.XI, theorem 9,10): 

1,6,4, THEOREM. Every separable no:nned linear space is no:nn-isomorphic 

to a linear subspace of C [o,l] 

1.6.5, THEOREM. Every separable metric space can be isometrically em

bedded in C [o,l] . 

Some results for non-separable spaces were obtained by W, SIER

PINSKI [110,113] and J. FLACHSMEYER [39] • In the set-up of W, SIER

PINSKI, the cardinal number of a space is used as a bound for the seize 

of the space, instead of the weight. Making use of the Generalized Con

tinuum Hypothesis he shows: 
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*1_.6"6" THEOREMil Let 6 ~ ORD,, There exists a metric space M with 

card(M) == h-0 , such that every metric space M0 with card(M0 ) 

::,N-8 may be isometrically embedded in M. 

From this result it easily follows that for every et; ORD there 

exists a metric space in which every metric space of weight at most Jt 
can be isometrically embedded. J. FLACHSMEYER [39] treats the follow

ing explicit specimen. If Xis a set, let B(X) denote the metric space 

of all bounded real-valued functions on X, the metric p being defined 

by 

(4) p (x,y) = sup I (i;)x - (1;,)y I , 
I;,., X 

for arbitrary x,ye. B(X}. Then ( [39] , theorem 1): 

PROPOSITION. Let Be ORD, and 

Every metric space of weight 

embedded in B(X). 

let X be a set with card(X) = Jt. e 
at most Jt8 can be isometric~lly 

It seems to be an unsolved problem (if 8 > 0) whether there E:xists 

a metric space M of weight lfe which is "isometrically universal" for 

all metric spaces of weight at most .k-6 (the space B(X) has the same 

. 2fre [ ] weight as le X, l • e. 2 L In 39 , J. FIACHSMEYER only obtains a 

parti.al result: for each 8 E. ORD there exists a certain nice family F oi 

metric spaces, each of weight .ft0 , such that every metric space of 

weight at most fre can be isometrically embedded in an Xt F. He obtains 

a ;;imilar result on uniform embeddings of uniform spaces of we:i.ght at 

most Jr0 • The arguments which he uses in establishing the latter result, 

after a straightforward adaption, also lead to 

1.6.8. PROPOSITION. For each 0 EORD there exists a uniform space X, 

with the property that each uniform space of weight at most Jt8 

can be embedded in X by means of a unifonn isomorphism. 



2. UNIVERSAL MORPHISMS 

2.1, Universal and dually universal morphisms 

In this section we define the concepts of universal and dually universal morphisms and 

bimorphisms (more properly, they are universal endomorphisms or automorphisms); we also in

troduce universal systems of morphisms. A few elementary facts concerning these concepts 

are exhibited. 

2,1.1. DEFINITION. Let K be a category, and let K0 be a subcategory of 

K. ~K0 -universal morphism in K is a morphism ~:a+ a in K 

with the following property: for every morphism~ such that EW= lji£ in 

K0 there exists a monomorphism 1J e. K such that µqi = ljiµ 

morphism in K is also called a universal morphism in K. 

(1) 

AK-universal 

morphism in K is a qi i,. K which is K*-uni
o A dual:;' K0 -universal 

versal in K, where t'" and 
0 

K* denote the dual categories of K0 and K, 

respectively, I.e. a dually K0 -universal morphism in K is a morphism 

(j): a+ a with the following property: for every morphism lji such that 

£1/J==lji£ in K0 there exists an epimorphism vi,. K such that (j)v=vw , A dual

ly universal morphism in K is a dually K-universal morphism, 

a <P a 

(2) 1, 1, 
b b 

2.1.2. DEFINITION. Let K be a category, and let K0 be a subcategory 

of K. !!:_J{-0 -universal bimorphism in K is a bimorphism <p: a+ a 

in K with the following property: for every bimorphism ljJ with £1/J==lj,£ 

in K0 there exists a monomorphism JJ e. K such that \J/j)==ljiµ A dually K0 -
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universal bimorphism in K is a bimorphism in K which is a :ir4-universal 
0 

bimorphism in the dual category K*, 

Clearly we have: 

2.1.3. PROPOSITION. If K contains a K0 -universal morphism or bimor

phism, then K also contains a K0 -universal object. If K con

tains a dually K0 -universal morphism or bimorphism, then K contains a 

dually K0 -universal object. 

Let K be a category. If a subcategory F of K happens to be a 

semigroup, there must exist an identity e: E, K such that e: =e: 4\=4>.: for 

all ¢ ~ F. In other words, Fis a subsemigroup of H(a,a), where a is 

the object correlated withe: 

If we say that Fis a (semi-)group in _ _lS, we always mean that F 

is a subcategory of K which is a sub-(semi-)group of some H(a,a) c. K, 

and which contains ca 

2.1.4. DEFINITION. Let K be a category, K0 a subcategory, andic E'.CARD. 

A J_K ,K)-universal semigroup of morphisms in K is a semigroup 

Fin K say FC::H(a a) - with the following property. For every semi-

group Gin K0 - say Gc.H(b,b) - of weight;; K there exist a monomer-

phism lJ b ➔ a in K, and an (algebraic) homomorphism h of F onto G, 

such that u.¢ = (ij;)h.JJ , for all ij; e. F. 

(3) 

A E0 -universal semigroup of morphisms in K is a semigroup Fin K 

which is a (K0 ,K)-universal semigroup of morphisms in K for every 

K 4::. CARD. A (K)-universal semigroup of morphisms in K is a (K,K)-

universal semigroup; a universal semigroup of morphisms in K is a K

universal semigroup.The dual concepts will be called dually (K0 ,!:l.: 
universal semigroups of morphisms in K, dually K0 -universal semi

groups, dually (K)-universal semigroups and dually universal semi-
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groups of morphisms in K, respectively, 

2.1.5. DEFINITION. Let K be a category, K a subcategory and K !iS, CARD, 
0 • 

A (K ,K)-universal group of bimorphisms in K is a group Fin K 

- say FcH(a,a) - with the following property, For every group of bi

morphisms Gin K - say Gc.H(b,b) - of weight~ K there exist a mono
o 

morphismµ: b ➔ a in K, and a homomorphism h of F onto G, such that 

for all 4' <ii. F. A K -universal group of bimorphisms in 

K is a group Fin K whi.ch is a (K0 ,K)-universal group for every 

K ~CARD.A (K,K)-universal group is also called (K)-universal; a K

universal group is also called a universal group of bimorphisms in K. 

The dual concepts are called dually (K ,K)-universal groups of bi.mor

phisms in K, dually K0 -universal groups, dually (K)-universal groups 

and dually universal groups of bimorphisms in K, respectively. 

The following assertion is obvious: 

2,1.6. PROPOSITION. Let K be a category and K0 a subcategory; let 

'I> & K be a K0 -universal morphism (a K0 -universal bimorphism; a 

dually K0 -universal morphism; a dually K0 -universal bimorphism). Then 

{jl generates in Ka (K ,1)-universal semigroup of morphisms (a (K ,1)-o 0 

universal group of bimorphisms; a dually (K ,1)-universal semigroup of 
0 

morphisms; a dually (K0 ,1)-universal group of bimorphisms, respective-

It is not quite obvious that the converse to proposition 2.1.6 

is false: the existence of a (K ,1)-universal group (even with a 
0 

single generator) does not guarantee the existence of a K0 -universal 

bimorphism, 

2.1.7, EXAMPLE. Let A= 1 xN, B = I; let q,: A+ A be the map trans

forming (k,n) into (k+n,n), and w: B + B the map sending k 

onto k-1 (ke 1,nE.N). Furthermore, letµ : B+ A be defined by: 
n 

(k) = (k,n} (ke.I,n€aNL 

Let K be the concrete category consisting of all iterates ¢k, 
k k 

kE-1; all iterates ljJ ,kt:I; and all maps lj) ""I-In°' , with k,lt_;I nE.N. 
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k Finally, let K0 be the subcategory of K consisting of all 141 ,k E. I. We 

will show that~ generates in Ka (K ,1)-universal group F of bimor
o 

phisms, in fact a K0 -universal group, and also that~ is not a K0 -uni-

versal bimorphism. 

Let G be any group of bimorphisms in K0 • Then G is generated by a 
k s -ks map ljl , for some k E. I. Put (9 )h = 1/1 ; then h is a homomorphism of F 

onto G. As IJk.9 = (9h).µk' and as µk is a monomorphism, it follows 

that Fis a K0 -universal group of bimorphisms. 

But$ is not a universal bimorphism: there exists no monomorphism 

µ ~ K such that IJ9= 1/'IJ. For every monomorphism µ : B + A of K is of the 

f k ,,l d 1'f I th orm µ = 1/1 o µn c .,, ; an r E. , en 

(4) 

while 

(5) 

k l+l (r)µ9 = (r) (lji o µ o 9 ) = (r-k+(l+l)n,n) 
n 

k+l l (r)i,,µ = (r)(ljl o µ 09) = (r-k-l+ln,n); 
n 

for no choice of k,lE. I and nE.N we have r-k+(l+l)n = r-k-l+ln, for 

all r E. I. 

REMARK. One easily shows that the category K of example 2,1,7 contains 

no K0 -universal bimorphism at all. Hence it can occur that there is a 

K0 -universal group of bimorphisms while no K0 -universal morphisms 

exist. Similarly, there may exist a K0 -universal semigroup of mor

phisms in a category K which contains no K -universal morphisms (this 
0 

also follows from example 2,1.7). Similar observations can be made con-

cerning the dual concepts. 

2.1.8. PROPOSITION. Let K be a category, and let F and G be semigroups 

in K, say FcH(a,a) and GcH(b,b). If there exists a monomor

phism µ : b ➔ a in K with the following properties: 

(i) for every 9 e. F there exists a y e. G such that µq, = yµ; 

(ii) for every y E.G there exists a 4 Ii F such that µq, = yµ; 

then there exists a homomorphism h of F onto G such that µq, = (q,h),µ , 

for all $E.F, 

PROOF. If 1J$= y1µ and µq, = y 2µ , then y1 = y 2 (asµ is a monomor

phism). Now for <P E. F we define <Ph to be the unique y e. G such that 
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µ<jl = yµ. By assumption, h maps F onto G, and by definition,µ¢ =(9h)µ, 

for all </> E, F. It remains to be shown that h is a homomorphism. In

deed, as µf 1 = (<P 1h)u Ct=l,2) imply 

(6) 

(7) 

2,1,9. COROLLARY. Let K be a category, and K0 a subcategory of K. Let 

F be a semigroup of morphisms (a group of bimorphisms) in K. 

In order that Fis a (K0 ,K)-universal semigroup of morphisms (a (K0 ,K)

universal group of bimorphisms) it is necessary and sufficient that F 

have the following property. If G is any semigroup of morphisms (group 

of bimorphisms) in K 
o' 

there exists a monomorphism µ ., K such that 

(i) for every ¢ €F there is a y f:. G such that U<jl= yµ; 

(ii) for every y f:.G -t;here is a <;, f:. F such that UQ= yµ. 

A dual assertion is valid for dually (K0 ,K)-universa1 (semi-)groups 

of morphisms in K, 

2,2, Star functors 

!f X is a non-void set, every t £. K(S), 4 : A + B gives rise in a natural way to a map 
* B A 'M ~ 

.P , X .,. lC, defined as follows: (x 6 ) e £. 8 ~ = (x,.$) ,,. A. Mappings like $ often have nice 

properties; they have been partly studied in [s] . In the present section we consider a .. 
generalization of the functor ~+~ of IC(S) into i tseH. 

2.2,1, DEFINITION. Let K be a category, a an object of Kand Ca sub

category of K(S). A (K,a,C)-lift is a function n, defined on 

the class of objects of C, such that 

(1) 

for every object A of C (cf, definition 1.1.8). 

Let K be a category and a an object of K. Suppose X and Y are 

non-void sets, and let (11~)1,e, XG. 6(a,X), (oi"\)lle.Y'1:. /1,(a Say 
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and 

(3) 
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y = TT S (a, Y) ( o ) • 
n 

Let q, be an arbitrary map A -• B. As a[,(/> is a morphism y ➔ a, for every 

E, eX, there exists (by the very definition of direct join, 1.1.8) a 

* unique cj, : y + x in K such that 

(4) 

for all E, 11,, X< 

Now let Z also be a non-void set; let 

(5) z =lTS(a,Z)(t ), 
i:; 

.,,. 
and let ,, be a map Y -+ Z. Writing ,;; for the uniquely determined mor-

phism z -~ y of K such that 

(6) 0 
q 

.,,. 
for all n ""Y, and (~'Ji) for the uniquely determined morphism ., + :,:: 

of K such that 

(7) 

for all f,E.X, we assert that 

(8) * * ljJ <P • 

Indeed, for arbitrary E, E- X we have 

(9) 

from (7), (9) and proposition 1.1.12, assertion (8) follows. 

2.2.2. DEFINITION, Let K be a category, a an object of Kand Ca sub-

category of K(S). Let II be a K(a,C)-lift. Then¢ denotes the 
n 

uniquely determined contravariant functor C-,. K with the following 

property, If cj,: X ➔ Y is an arbitrary morphism of C, and if 

(10) X = 1T S (a 
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and 

(11) YII= (,) , y =lTS(a,Y)(t ), 
Tl Tl ,._y Tl 

then (.P) "'si: y --,. x, and 

(12) 

for all £; i; X. A (K,a,C) star functor is a contravariant functor 

1> : C --,. K such that <I> = 1> 12 for some (K,a,C)-lift 11 . 

In many situations there is a "natural" lift il , and consequent

ly also a "natural" star functor. This is the case if in K there exist 

privileged direct joins, as e.g. the cartesian product in K(S), the 

full direct product in K(G), the topological product in K(CR), etc. 

2.2.3. PROPOSITION. Let K be a. category, a an object of Kand Ca sub

category of K(S). If l\(a,A) is a non-void set, for each object 

A of C, then there exists a (K,a,C) star functor. 

PROOF. This is an immediate consequence of the axiom of choice. 

2.2A. PROPOSITION. I:et K be a category, a an object of Kand Ca sub

category of K(S) with finitely many objects. f the class 

l\(a is non-void, for every object A of C, then there exists a 

(K,a,C) star functor. 

2.2.5. DEFINITION. Let K be a category, a an object of K, and Ca sub

category of K(S). A strong (K,a,C)-lift is a (K,a,C)-lift 52 

with the following two properties: 

(i) AO is a strong direct join of S(a,A), for every object A of 

C· 
' 

(ii) if A and Bare distinct objects of C, then the morphisms in 

An and those in Bil have distinct sources, 

A strong (K,a,C) star functor is a star functor <P such that 

<!>=<Pn for some strong (K,a,C)-lift ri 

2,2,6, PROPOSITION, A strong (K,a,C) star functor is an anti-isomor

phism of C into K, 
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PROOF. . . f h h ~~ ~ i Let <P,ljl be morphisms o C sue tat o/w = ljlw, Then necessar ly 

E:cp = E:1'1 and <PE:=IJ/E:; say both ij> and ljl map X into Y, Let xn = (n~)~~X 

and YII = (T ) Y' where ll is a strong lift such that <II= <II" , and let 
n n E " 

the objects x,y of K be given by (10), (11), If 0:4><!1 = ljl<!I, then 

(13) 

for every i,, It X; as y is a strong direct join, it follows that ~cp~ljl , 

It remains to be shown that q>•ljl is defined in C whenever (iJ,<11) ($<11) 

is defined in K, But if (1j1<!1)(~¢) is defined, then the sink ofw<II coin

cides with the source of 9¢ ; it then follows from condition (ii) in 

definition 2,2,5 that also the source of iµ coincides with the sink of 

<Pi i.e. 4>1ji is defined in C. 

2,2,7. PROPOSITION, Let K be a category, a an object of Kand Ca sub

category of K(S). Let <II be a strong (K,a,C) star functor. Then 

for arbitrary 9 6 C the following assertions are valid: 

(i) If 4' is an onto map (and hence an epimorphism) in C, then q><II 

is a monomorphism in K. 

(ii) If cpci, is a monomorphism in K, 9 is an epimorphism in C. 

(iii) If 4>¢ is an epimorphism in K, 9 is a monomorphism in C. 

PROOF. Assume cp : X + Y is a morphism of C which is onto. As <II is an 

anti-isomorphism (proposition 2.2.6), 9¢ is a monomorphism in (C)¢. 

We must show that o= cp<II even is a monomorphism in K. 

Let n be a strong lift correlated with¢ , and let the objects 

x,y of K be determined by (10) and (11). 

Suppose p1o = p2o in K. Then 

(14) 

for all for all 

n E Y, and consequently (proposition 1.1.12) that p 1 = p 2 • Hence o is 

a monomorphism in K. 

If ipci, is a monomorphism (epimorphism) in K, it is certainly also 

a monomorphism (epimorphism) in the subcategory (C)<II of K; as <II is 
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an anti-isomorphism, it follows that qi is an epimorphism (monomorphism, 

respectively) in C. 

2.2,8. PROPOSITION. Let K be a category, a an object of K, and Ca 

subcategory of K(S). If¢ is any (K,a,C) star functor, and if ¢ 

is any invertible morphism in C, then q,<P is invertible in K, hence is 

a bimorphism. 

PROOF. First we consider the case of an identity map ix, X an object 

of C, Let 

(15) 

where ("ITl;.)l;e.x is the image of X under the lift 12 correlated with<!>. 

IfE=ix<!>,then 

(16) 

for every l;.E>X; i.t follows that E= Ex (proposition l.l.12L 

Now let ¢ Es C have an inverse lj, in C. Then we have, if X is the 

source of y and Y the sink of 9: 

(17) ¢ <> \jl = ix; .µ <> 4 = iy; 

it follows that 

(18) (ij.19). (,;,<P) 
c;,<P 

C (,;,¢). (1ji<I>) E<jl¢ • 

Hence <P¢ is invertible in K. 

2,2,9. PROPOSITION. Let K be a category, µ : a ➔ b a monomorphism in 

K, and Ca subcategory of K(S). Let a1 be a (K,a,C)-lift, n2 

a (K,b,C)-lift, and let ¢1 

object of C, and if 

(19) 

(20) 

<1> 122 • If X is an arbitrary 

there exists a unique morphism µXe. K, PX : x 1 ➔ , such that 
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(21) 

for all E.. €. X, This IJX is a monomorphism, and 

(22) 

for arbitrary objects X,Y of C and arbitrary ~ : X +Yin C. 

PROOF. Th · t d . f d h f th t . e exis ence an uniqueness o IJX' an t e act a µXis a 

monomorphism, follow from proposition 1.1.13. 

It remains to be proven that (22) holds, Let 

(23) 

For arbitrary E, 4o X we have 

ll • (" ¢ ) • 11' y 'r 2 E., 

{24) 

It follows (by proposition 1.1.12) that µy. ($¢ 2) ($¢1). µX, 

x,,~ 

µX x2 

\:, 
!Jy 11 

E., y (25) 

/.' 2 

µ 
/( 

a b 

2,2.10, COROLLARY. Let both II and n be (K,a,C)-lifts.Then the star 
1 2 

functors q, = wn and q, w n are equivalent, in the follow-
1 2 

ing sense. For every obj¼ct X of C theFe exists an invertible mor-

phism µX from the common source of Xll1 , to the common source of xn2 , 

with the following property: if qi : X + Y is an arbitrary morphism 

of C, then 

(26) 
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PROOF• Let X 'l ( ) d X L ( ' ) d ,1 = nf.,f,;E.Xan L2 = 11£,;E,;E.X'an let 

(27) x1 =lfS(a,X)(nE;); x2 =lTS(a,X)(n~). 

According to proposition 2.2.9 there exist monomorphisms µX 

and vX : x2 + x1 , such that 

(28) 

(29) 

for all £,; E. X. It follows that 

(30) 

and 

(31) V I.I TI' = V Tl = Tl' 
X X £,; X £,; [, 

consequently 

(32) 

£ 
a :::: 1T~' 

£ 1T; 
X <, 

2 

Hence I.IX is invertible, with vX as its inverse. The equality (26) now 

follows from (22). 

2,3. The fundamental embedding theorem 

The main tool that will be used in constructing universal and dually universal (sem1-

groups of) morphisms or bimorphisms is developed in this section. Theorem 2.3.7 below em

bodies ins very general form the essentials of our construction; the existence theorems 

of the next section follow easily from it. 

2 ,3 .L DEFINITION. If q>0 e. F, where F is a semi group, ~o will denote 

the map F + F such that 

(1) 

for arbitrary (!) '- F, The transformation semi group of all $, q> E. F, is 
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denoted by F. 

2,3,2. PROPOSITION. If Fhas a unit, the map ¢-+¢is an anti-isomor

phism of F onto F. We then can consider Fas a concrete cate

gory, with Fas its single object. 

In fact, we will identify F with a subcategory of K(S), in the 

obvious way. 

2.3.3. DEFINITION. Let K be a category, a an object of Kand Fa semi-

group with unit, Suppose l:.(a,F) I,. 0. Every direct join 

(1l(j))¢ E FE'. l:.(a,F) determines uniquely a (K,a,F)-lift, and hence also a 

(K,a,F) star functor <I> : F-+ K. If xis the common source of the mor-

phisms n <P , we wi 11 denote by STARK, F, x the map F + K, sending q, E F 

onto °4i<I>, 

The notation STARK F xis ambiguous, as one and the same object x 
' ' . 

may serve as common source for several direct joins i.n t:.(a,F). How-

ever, all (K,a,F) star functors, obtained from these direct joins, are 

equivalent, and hence it does not matter much which particular 

STAR F is being considered (as long as it stays the same in each 
K, • ,x 

connected piece of argument). 

If it is clear from the context which K,a and Fare meant, we ... 
will simply write 9 

equations 

(2) 

(~ arbitrary in F), 

instead of ($)STARK F ;¢ 
' ,x 

... 
is determined by the 

* <JI • 11 
ljJ 

2,3.4. PROPOSITION. STAR is a homomorphism of Finto H(x,x). If 
K,F,x 

1l<Pl ic 11<1>
2 

for distinct <1> 1 ,¢ 2 €. F (Le. if (n¢\ E F is a strong 

direct join of S(a,F}), STARK F is even an isomorphism of Finto 
' ,x 

H(x,x), 

PROOF' The mapping <j, -+ ¢ of F onto F is an anti-isomorphism. Each 

star functor is a contravariant functor. Hence STARK,F,x is in any 

case a homomorphism of Finto H(x,x). If xis a strong direct join, 

it follows from proposition 2,2.6 that STARK F is even an isomor-
' ,x 
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phism, 

2,3.5, DEFINITION. Let K be a category, a and u objects of K, Fa semi

group with unit; let (TT¢)¢€.F I<: li(u,F), and let 

(3) 

For every monomorphism µ : a ➔ u and every homomorphism f of the semi

group Finto the semigroup H(a,a) such that (l)f = £a' there exists a 

uniquely determined morphism T f. K, T a ➔ x, such that 

(4) T 1T 
$ 

for all ip E F. This morphism will be called (f ,i.1 )EMBK F . If a=u we 
' ,x 

write (f)EMBK F instead of (f,c )EMBK F . If it is clear from the 
, ~x a , ,x 

context which K,F,x,µ are meant, we will write l instead of 

(f, W)EMBK F • 
~ 'X 

(5) 

a----------~a 
ljJ f 

2.3,6. PROPOSITION. Let K be a category, a an object of K, Fa semi

group with unit and fa homomorphism of Finto H(a,a) such that 

(l)f = £a· Let x be the common source of (TT$)¢ e.Flo ll.(a,F). Then 

(f)EMBK F, is a monomorphism of K; moreover 
' ,x 

(6) (f)EMBK F •(<),)STAR,{ F • 
) ,X A 1 jX 

(<j,f) • (f)EMBK,F,x' 

or, shortly 

(7) f (q,f). f 

for all $ €. F. 

(8) 

a-------+a 
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This proposition is a special case of 

2.3.7, FUNDAMENTAL EMBEDDING THEOREM. Let K be a category, a and u ob-

jects of K, Fa semigroup with unit and fa homomorphism of F 

into H(a,a) such that (l)f = Ea, Let \J : a-+ u be a monornorphism of K, 

and let x be the common source of ( 11 ¢) ¢ €. F <1: Ll(u ,F). The morphism 

(f,lJ)EMBK F is a monornorphism; moreover 
' ,x 

(9) (f, µ)EMBK F • (¢)STARK , ,x ,F,x (¢f)•(f,µ)EMBK F , 
' ,x 

or, shortly 

for all ¢ "' F. 

x-----------------x 

(11) 
f f 

u 

q,f 
a a 

i1 

(q,ij,) f iJ, f 

a 

PROOF· First we show that f is a monornorphi sm. Assume /J 1 f = /J • Then 

(12) 

and as µ is a monomorphism it follows that P 1 = P 2 • 

Now let lj, be an arbitrary element of F. Then 

(13) • ( iJi f). µ 

(cpf)•frrl/J. 
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REMARK 1. If li(a, F) j 0 one can easily derive theorem 2. 3. 7 from propo

sitions 2.3.6 and 2.2.9. 

2.3.8. PROPOSITION. Under the assumptions of 2,3,7 there exists a ho-

momorphism h of the subsemigroup F* {q, *: ¢ e. F} of H(x,x) onto 

(F) f such that 

* (14) (¢ )h = (q,)f 

for all q, e. F (in particular, 

PROOF' Let cp1 , t 2 e. F such that ¢~ 

(15) 

* ¢2 • Then 

as f is a monomorphism, it follows that ¢1 f = c/> 2 f. 

* Consequently a map h of F onto (F)f may be defined by putting 

* (¢ )h = (¢)f. This map clearly is onto; we must show that it is a ho-

momorphism. 

* * Let o1 ,o 2 e. F ; say 

* phism of F onto F (see 

o1 = ¢1 , o2 = cp 2 . As STAR is a homomor-
K,F,x 

2.3.4), we conclude that o1 o 2 = (c/>1 

Hence 

(16) (o h)•(O h). 
1 2 

REMARK 2. If xis a strong direct join, STARK F is an isomorphism of 
* ' ,x 

F onto F (proposition 2,3.4). Then we can put 

(17) 
-1 

h = (STARK F" ) o L 
I ,X 

2.4. Existence theorems for universal morphisms 

The results of the previous section a.re here applied to obtain a general existence 

theorem concerning (dually) universal (bi-)morphisms, and similar theorems about systems of 

morphisms. Combination with the theorem of ll. JONSSON, 1 .4. 11, leads to a more special ex

istence theorem for categories of relational systems. 
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2.4.1. THEOREM. Let K be a category, K0 a subcategory of K, and let 

0 E'. ORD. If K contains a K0 -universal object u such that a 

direct join of Jr..6 copies of u exists in K, then K contains a (K, }r )-
o e 

universal semigroup of morphisms and a (K0 , N0 )-universal group of bi-

morphisms. 

PROOF· Let F be a free semi group with unit with .lf genera tors, As 
6 

card(F) = .lf0 , there exists a direct join of S(u,F); say 

(l) 

Let G be any semigroup of morphisms in K of weight <lr ; say 
o = e 

Ge H(a,a), There exists a homomorphism f of F onto G (such that 

(l)f = E: ) , as F is free. There exists a monomorphism µ : a ➔· u in K, 
a 

as u is a K0 -universal object. Let f = {f,µ)EMBK F ; if¢ e F, we 
-» ' 'X 

will write¢ for (¢)STARK F . 
' ,x 

By proposition 2.3.8 there exists a homomorphism h of F°* onto G 

such that (qt)h = (qi) f for all <j) Ee F. By the fundamental embedding 

theorem, f: a-> xis a monomorphism, and f,ip*= (.pf),f, for arbitrary 

¢ t F. Consequently 

(2) 

for all ip*.;F, It follows that F* is a (K ,ll')-universal semigroup 
0 6 

of morphisms. 

A universal group of bimorphisms is obtained in a similar way, 

working with a free group F with Jt0 generators; the fact that then 

* * the morphisms ¢ t F are birnorphisms follows from proposition 2.2.8, 

2.4.2. COROLLARY. Let 0., ORD; let K be a category satisfying the con

dition VIII of 1,3,7, and let K0 be a subcategory of K, Then 

K contains a (K0 , i 0)-universal semigroup of morphisms (a (K0 ,X'8)

universal group of bimorphisms) if and only if K admits a K -univers
o 

al object. 

2.4,3, THEOREM, Let K be a category, and K0 a subcategory of K, If K 

contains a K0 -universal object u such that a direct join of 

J<y- 0 copies of u exists in K, then K contains -universal morphisms 
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and bimorphisms. 

PROOF. Let u be a K0 -universal object of K1 and let F be a free semi

group with unit with one generator ~0 • As card(F) = Jt-0 , ~(u,F) i 0; 

let 

(3) 

* We will show that 9 = (<t, )STARK F is a K -universal morphism in K. 
0 0 , ,x 0 

Let tJ; e K0 , tJ;: a -➔ a. Then if f is the homomorphism of F into 

H(a,a) such that (<t, )f = 'I', and if µ is a monomorphism a-+ u, we know 
0 

from the fundamental embedding theorem that f = (f,µ)EMBK F is a mo-
' ,x 

nomorphism a-+ x, and that 

(4) 

* This shows that ct, 0 is K -universal in K. 
0 

The existence of a K0 -universal bimorphism is shown in a similar 

way, working with a free group F with one generator. 

2.4,4. COROLLARY. Let K be a category satisfying condition VIII 0 of 

1.3.7, and let K0 be a subcategory of K. Then K contains a K0 -

universal morphism (bimorphism) if and only if K contains a K0 -univers

al object. 

In some of our applications it happens that a direct join of )f e 
copies of u exists, such that the corresponding object (common source) 

is equivalent to u. We then can slightly strengthen our results. 

2.4.5. THEOREM. Let K be a category, K0 a subcategory and 8 t ORD. Sup·-

pose K contains a K0 -universal object u, and suppose a direct 

join of lt0 copies of u exists with a source equivalent to u. Then 

H(u,u) contains a subsemigroup which is a (K0 ,.Jt-J-universal semigroup 

of morphisms, a subgroup which is a (K0 ,lfJ-universal group of bimor

phisms, and also a K0 -universal morphism and a K0 -universal bimorphism. 

PROOF: evident (cf. diagram (5)). 
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-1 * 
u E; <P E; u 

,j[c-, 
<1>* 

,lk 
(5) 

X 

I j, f 

a f a 

Dualizing, we obtain: 

2,4,6, THEOREM. Let K be a category, K0 a subcategory and 6 E. ORD. Sup-

pose K contains a dually K0 -universal object u such that a free 

join of N'e copies of u exists in K. Then K contains a dually K0 -uni

versal morphism Y, a dually K0 -univcrsal bimorphism tj,, a dually 

(K , }r )-universal semi group F of morphisms and a dually (K , )t )-uni-
o e o e 

versal group G of bimorphisms. If moreover there exists a direct join 

of N-0 copies of u with a sink which is equivalent to u, then q;, tj, ,F 

and G can be taken as contained in H(u,u). 

Corollaries 2,4,2 and 2.4,4 may be similarly dualized; we refrain 

from formulating the outcome. 

2,4.7, THEOREM. Let K be a category of relational systems, satisfying 

conditions 1-VI, VI1 0 and VIII 0 of 1,3,6 and 1,3,7. Then K con

tains K(O)-universal morphisms and bimorphisms, and also (K(O), Jr)-
o 

universal semigroups of morphisms and groups of bimorphisms, If K(O) 

itself satisfies condition VIII 0 , then K(O) contains universal mor

phisms and bimorphisms and (N )-universal semigroups of morphisms and 
0 

groups of bimorphisms . 

. 4.8. THEOREM. Let e1 , 02 t ORD, and let K be a category of relational 

systems satisfying conditions I-VI, VII and VIII of 1,3,6 
el 62 

and 

and 

1,3,7. Then K contains K(01 )-universal morphisms and bimorphisms 

(K(8 1 ), Jt.8 )-universal semigroups of morphisms and groups of bi-
2 
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morphisms. If K(61 ) itself satisfies condition VIII , then K(8 1 ) con-
62 

tains universal morphisms and bimorphisms and ()t 6 )-universal semi-
2 

groups of morphisms and groups of bimorphisms. 

These two theorems are immediate consequences of theorem 1.4.11 

and corollaries 2,4.2 and 2.4.4. 

2.5. Applications. 

Combination of the existence theorem of the previous section with the known results 

about universal and dually universal objects leads at once to a multitude of universal 

and dually universal (systems of) morphisms and bimorphisms4 Several characteristic cases 

are treated below. Some of these results arc due to J. DE GROOT; see section 2§8 for pre

cise referencesA 

2.5.L DEFINITION. Let 8,K E. ORD. We will writeK<JO if and only if 

}rK 
Jr. e (1) 

REMAillC It is known that the class of all 8 E. ORD such that O -<1 O and 

the class of all 0 E. ORD such that not O <i 0 are both cofinal in the 

class of all ordinal numbers; see e.g. [95] (or [11] ,§ 33.2). 

2.5,2. PROPOSITION. K(S) contains K(S,0)-universal morphisms and bi

morphisms, for every · 0£ ORD. If O <i O, K(S,O) contains uni

versal morphisms and bimorphisms. 

PROOF. A (A) (, b f Every set with card = JT 0 is a universal o ject or 

K(S,6). The canonical projections 1Tk: A1 + A (k EI) constitute a 
I 

direct join of denumerably many copies of A in K(S), and A is an ob-· 

ject of K(S,6) i.f and only if O <! 6. Hence, using theorem 2.4.3, 

K(S,0) contains universal morphisms and bimorphisms for all ordinal 

numbers 0 such that O <1 e. 

In the next section we will derive a stronger result: K(S,6} con

tains universal morphisms and bimorphisms for every OE> ORD (theorem 
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2.5.3. PROPOSITION: K(PO) contains K(P0,0)-universal morphisms and 

bimorphisms. 

PROOF. 
According to proposition 1.4.12, K(P0,0) admits a universal ob-

ject. Now let A be any partially ordered set. It is easily verified 

that the cardinal product AI_ i.e. the set AI provided with the fol

lowing partial ordering: if a= (ak)k~I and b = (bk)kEI are arbitrary 

elements of A1 , then a!, b if and only if ak,; bk for all k 1e I - is the 

source of a direct join of denumerably many copies of A in K(PO) (under 

the canonical projections). The assertion now follows, in view of theo

rem 2,4.3. 

.... 
In the same way it is shown, using proposition 1.4.13 instead of 

1.4.12: 

.5.4. PROPOSITION. For each 0 1e ORD, K(PO) contains K(P0,0)-universal 

morphisms and bimorphisms, If in addition O <10, then K(P0,0) 

contains universal morphisms and bimorphisms. 

2.5.5. PROPOSITION. K(BA) contains K(BA,O)-universal morphisms and 

bimorphisms; K(DLa) contains K(DLa,O)-universal morphisms and 

bimorphisms. 

PROOF. 
Both categories contain universal object:;, and direct joins 

always exist in them. 

More explicitly, let A be a free boolean algebra with Jt gener-
I o I 

ators. In A , define the boolean operations pointwise; then A is a 

boolean algebra, and it is the source of a direct join of copies 

of A. The boolean automorphism <l> of A1 , defined as follows: if 
I 

a= (ak)k E. I" A , then a¢= b = (bk)k E. I' where bk = ak+l for all 

k E.I, is a universal bimorphism both in K(BA,O) and in K(DLa,O), 

Similarly the following boolean endomorphism 'I' of AN is a universal 

morphism both for K(DLa,O) and K(BA,O): if a (a ) NE. 
n n e. , then 

Similarly we find, using proposition .,.L4 ,13: 
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* 2.5.6. THEOREM. If O < 0 ~ ORD and O ~ 0, the categories K(La,8), 

K(DLa,8) and K(BA,6) contain universal morphisms and bimor

phisms. 

2.5,7. PROPOSITION. K(G,O) contains no universal morphisms or bimor

phisms. 

PROOF. 
There are even no universal objects for K{G,O)(section 1.4, 

remark 3). 

* 2.5.8. THEOREM. If O < 8 e ORD and O <l G, the categories K(G,6) and 

K(AG,8) contain universal morphisms and bimorphisms. 

PROOF, * According to proposition 1.4.13 there exist universal objects 

for these categories. Moreover, in K(AG) and K(G) direct joins always 

exist: as such one can take the direct products (cartesian products 

with pointwise defined operations). If Oaj O, denumerable direct joins 

of objects of K( 0) are again objects of K( O), and it follows from 

theorem 2.4,3 that universal morphisms and bimorphisms exist. 

e . 
2.5,9. THEOREM. K (M) contains universal morphisms and bimorphisms, 

for every 0 E:: ORD. 

PROOF. 
According to proposi ton 1.4. 7 the Hilbert space H of weight e 

}t 0 i.s a universal object for K6 (M). The topological product of de-

numerably many copies of H0 is still metrizable and has the same 

weight, Hence, by theorem 2.4.3, K6 (M) contains universal morphisms 

and bimorphisms. 

It is worthwile to formulate separately the result for K0 (M), as 

this can be given a slightly stronger form: 

2.5.10, THEOREM. There exists an autohomeomorphism <!> of the Hilbert 

fundamental cube A which is a universal bimorphism for K0 (M). 

Similarly there exists a continuous self-map of A which is a univers

al morphism for K0 (M). 

PROOF. It is well-known that A is a universal object for K0 (M) Jr 
(P. URYSON [104] ) ; as A is homeomorphic to the Tychonov cube [0,1] 0

, 
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)to 
the denumerable topological product A is homeomorphic to A. 

A still stronger result (due to A.H. COPELAND Jr. and J. DE GROOT 

[1s]) will be proved in chapter 4 (corollary 4.5.3 and proposition 

4.5.6). 

2.5.11. THEOREM, There exists an autohomeomorphism w of the Cantor 

discontinuurn C which is a universal bimorphism for K0 (ZM), 

and a fortiori also for K0 (CZ). Similarly there exists a continuous 

self-map 'l' of C which is a universal morphism for K0 (ZM) and K0 (CZ). 

PROOF. This follows from theorem 2,4.5 and the following facts: C is 

a universal object for K0 (ZM) and.}f"ts subcategory K0 (CZ) (proposition 

1.4.9), the topological product c; serves as a direct join of de

numerably many copies of C, and C O is topologically equivalent to C. 

An explicit example of 
I I 

infinite shift W: C -,. C ; 

a universal bimorphism in K0 (ZM) is 
. I 
1f a= (ak)ke:IGC, then aij, = b 

= (bk)k 1i: I, where bk = ak+l for all k E- I. Similarly the map 

the 

'l' : cN -,. cN such that ( (an) n e: N) 'l' = (an+l) n <EN is a uni versa]. mor

phism. 

In the same way explicit illustrations for the next three theo

rems can be constructed; each of these theorems is a consequence of 

theorem 2.4.5. 

2.5.12. THEOREM. For each 6 E:.ORD there exists an auttomeomorphism 

of the generalized Cantor discontinuum { 0,1} 8 which is a 

universal bimorph~m for K 6(CZ). Similarly there exists a continuous 

self-map of {0,1} 0 which is a universal morphism for K8 (CZL 

2.5.13. THEOREM. For each 6 GORD ttre exists an autohomeomorphism 

8 
of the Tychonov cube [0,1] 8 which is a universal bimorph~m 

for K (CR). Similarly there exists a continuous self-map of [0,1] 8 
e 

which is a universal morphism for K (CR). 

2.5.14. THEOREM. There exists a topological automorphism of T which 

is a universal bimorphism in K(CMAG). Similarly there exists 



76 

»a a continuous endomorphism of T which is a universal morphism in 

K(CMAG), 

Analogous results can be obtained concerning the existence of(K)

universal semigroups of morphisms and groups of bimorphisms: 

2.5.15. PROPOSITION. Let K be one of the categories K(S), K(PO), K(DLa) 

or K(BA). For each K & CARD there exist (K(O) ,K )-universal se

mi groups of morphisms and groups of bimorphisms in K. 

PROOF, This follows from theorem 2.4.1 and propositions 1.4.3, 1.4.4, 

* 1.4.12 and 1.4.13. 

In a similar manner we obtain: 

* 2.5.16. PROPOSITION. Let K be one of the categories K(PO), K(La), 

K(DLa), K(BA), K(G) or K(AG); let O < 0 G ORD and K E CARD. 

Then K contains (K(0), K)-universal semigroups of morphisms and groups 

of bimorphisms, 

2. 5 ,17. PROPOSITION. Let K, 0 e ORD and K <IO . Then K(S, 0) contains 

(ltK)-universal semigroups of morphisms and groups of bimor

phisms. 

* 2,5,18. PROPOSITION. Let O < 6 f. ORD and let K<I0. Then K(P0,6), 

K(La,0), K(DLa,0), K(BA,0), K(G,0) and K(AG,0) contain (/t )
K 

universal semigroups of morphisms and groups of bimorphisms. 

2.5.19. THEOREM. K8(M) contains (.h'-0 )-universal semigroups of mor

phisms and groups of bimorphisms, for every 0 Ii; ORD. 

Stronger results will be obtained in chapter 4. 

2,5,20. THEOREM. K0 (ZM) contains (Jr )-universal semigroups of mor
o 

phisms and groups of bimorphisms. They can be obtained as 

subsemigroups of H(C,C). 

2,5.21. THEOREM. K 6(CZ) andK8 (CR) contain (#)-universal semigroups 
e 

of morphisms and groups of bimorphisms, for every OE. ORD. 
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N-e ire 
They can}l?e obtain~ as subsemigroups of H({O,l} , {0,1} ) and 

H( [O,:ij 6 , [0,1] 6 ), respectively. 

2.5.22. THEOREM. K(CMAG) contains ( ll' )-universal semi.groups of mor
o 

phisms and groks of bimorphisms. They can be obtained as sub-

semigroups of H(T Jt.o, T 0 ). 

We now proceed to a treatment of some dual results.It must be con

ceded that up to now the harvest is rather meagre. 

2.5.23. PROPOSITION. If 6E.ORD, then K(S,6) contains dually universal 

morphisms and bimorphisms, and also dually (1r )-universal e 
semigroups of morphisms and bimorphi.sms. 

PROOF. 
In K(S} every union ofm. disjoint copies of a set A serves as 

a free join of m copies of A (-m. E. CARD). The assertion therefore im-

mediately follows from theorem 2.4.6. 

2.5.24. THEOREM. For each 6 !!:ORO, the categories K(La,6), K(DLa,6), 

K(BA,6), K(SGU,6), K(G,6) and K(AG,0) contain dually universal 

morphisms and bimorphisms, and dually ( }t )-universal semi groups of e 
morphisms and groups of bimorphisms. 

PROOF. 
In all these categories free products serve as free joins, As 

the free product of fr 0 objects of one of these categories is still an 

object of the same category, and as they all admit dually universal 

objects, we can apply theorem 2.4.6. 

Explicit instances of dually universal (systems of) morphisms 

and bimorphisms can easily be constructed in all these categories. As 

an example we describe a dually universal bi.morphism in K(G,0). 

Let s be a set with card(S) := ke, and let G be a free group with 

the elements of s X I as free generators. Let ¢ be the uniquely deter-

mined automorphism of G such that 

(2) (s,k)¢ = (s,k+l) 

for all. (s,k) ES S x I. Then ¢ is a universal bimorphism in K(G,0). 
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2,5.25, PROPOSITION, Let 0 f<ORD. If one of the categories K8 (CR) or 

K8 (ZM) admits a dually universal object, it will also contain 

dually universal morphisms and bimorphisms, and in addition dual

ly (ft )-universal semigroups of morphisms and groups of bimorphisms 
K 

for all K 6 ORD such that K<I e . 
PROOF. 0 0 In K (ZM) and K (CR) topological sums play the role of free 

joins, As the \<tological sum of N-K spaces of weight ~.N-6 has at most 

the weight (ti's) K, the assertions follow from theorem 2.4,6. 

2,5.26, PROPOSITION. K(CZ) contains dually K0 (CZ)-universal morphisms 

and bimorphisms, and also dually (K0 (CZ),K)-universal semi

groups of morphisms and groups of bimorphisms, for each K E. CARD. 

This follows from propositions 2.5.5 and 2.5,15 and the STONE 

duality theory for boolean algebra'.s and boolean spaces. 

* Similarly we conclude from theorem 2.5.6 and proposition 

* 2,5,18: 

*2. 5. 27. THEOREM. If K < 6 4i: ORD and K <I 6, the category K6 (CZ) con-

tains dually universal morphisms and bimorphisms, and also 

dually (/t-)-universal semigroups of morphisms and groups of bimorphisms. 
I( 

However, the following intriguing problem is left unsolved: 

PROBLEM 1, Do there exist dually universal morphisms or bimorphisms 

in K0 (CZ)? 

If such morphisms exist, they can be taken as self-maps of the 

Cantor discontinuum C; cf. section 3.5. 

This almost exhausts our list of "dual applications". We know 

that there exists a dually universal object for K(CMoG); nevertheless 

the following holds: 

2,5.28. PROPOSITION. K(CMoG) contains no dually universal morphisms 

or bimorphisms, 

PROOF. Suppose <!> : G -+- G is a dually universal (bi-)morphism for 
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K(CMoG), Let X be the character group of G; X can be identified with 

a subgroup of Td, 

As the character group of Z(p 00
) (pan arbitrary but fixed prime) 

is a compact monothetic group and hence is a continuous homomorphic 

image of G, Z(p00
) must be a subgroup of X. Being divj_sible, Z(p00

) is 

a direct summand of X; moreover, every endomorphism of X, and in par

ticular, the adjoint I' oft, maps Z(pm) into itself, 

As• is dually universal, every automorphism of Z(p00
) must be 

equivalent to a restriction of I' jZ(p00
). But every isomorphic embed

ding of Z(p00
) into Z(p00

) is onto; it follows that every automorphism 

of Z(p00
) must be equivalent tot' jZ(p~). In other words, Z(p00

) would 

have only one automorphism; this is absurd. 

If K(ZCMoG) stands for the full subcategory of K(CMoG) obtained 

by restricting the class of objects to all zero-dimensional compact 

monothetic groups, as in section 1,4, we obtain at once as a corollary 

to the proof of 2.5.28: 

2,5.29, COROLLARY. K(ZCMoG) contains no dually universal morphisms or 

bimorphisms. 

The argument used is not applicable, however, to the subcategory 

K(CS) of K(CMoG) (cf, section 1.4; the objects of K(CS) are all com

pact solenoidal groups). And indeed it can be proved that in K(CS) 

dually universal morphisms and bimorphisms exist, 

2,5.30. PROPOSITION. K(CS) contains dually universal morphisms and 

birnorphisms, and also dually (it )-universal semigroups of 
0 

morphisms and groups of bimorphisms, They can be taken in H(S,S),where 

Sis the dually universal compact solenoid introduced in section 1.4. 

PROOF, 
As in 1.4, let Rd denote the discrete additive group of real 

numbers; then Sis the character group of Rd. Let K designate the ca-

tegory of all homomorphisms G -+ 
1 G2' where both Gl and G2 are dis-

crete groups isomorphic to subgroups of Rd, 

We want to show that in K(CS) a free join of it copies of S 
0 
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exists; the proposition then will follow from theorem 2.4.6. Now if G 

is any object of K(CS), its character group is isomorphic to a sub

group of Rd, hence is an object of K ( [ss], theorem 2.5.18}; conse

quently, if (j,E.K(CS), its adjoint q,' is a morphism of K. 

It is a result of the VAN KAMPEN-PONTRJAGIN duality theory that 

the operation (j, ➔ q,' of taking adjoints is a contravariant functor of 

the category of all continuous homomorphisms between locally compact 

abelian groups into itself; it is even an anti-isomorphism. It follows 

that the restriction to K(CS) of this operation is an anti-isomorphism 

of K(CS) into K. Hence if we succeed in showing that in Ka direct 

join of #0 copies of Rd exists, it will follow that in K(CS) a free 

join of /r0 copies of S exists. Jt 
Consider now the full direct product Rd O of denumerably many 

copies of Rd (with the discrete topology). It is a torsion-free divis

ible group, hence is isomorphic to the direct sum of sufficiently many 

copies of Qd, }f,n fact of continuously many copies of Qd, j/: the car

dinality of Rd O equals the power of the continuum. Thus Rd0 is isomor

phic to Rd and hence is an object of K. But this implies that in Ka 

direct join of ./f0 copies of Rd exists, with Rd itself as correspond

ing object. 

We conclude this section with two more negative results. 

2.5,31. PROPOSITION. K(L0,0) contains no dually universal morphisms 

or bimorphisms, for every e E: ORD. 

PROOF, 
Let 6 If. ORD, and let K K (LO, 6). Suppose K contains a dually 

universal (bi-)morphism <l>: A+ A. We will first prove the following 

assertion: if ,a2 are arbitrary elements of A, there exists an ne N 
n 

such that a 1 <l> > a 2 , 

Let B be the lexicographically ordered product I x A, and let 

(j, : B + B be defined as follows: 

(3) (k,a) ¢ = (k+l ,a), 

for arbitrary k e I and a E-A. Then q, is a bimorphism of K. Hence there 

must exist an order-preserving map v of A onto B such that <!J\; ,- v¢ . 



81 

Now let a1 ,a2 eA, If, say, aiv 

n = [k2-k1 j + 1 we find 

(4) 

(k. ,b.) (i=l,2), then putting 
1 1 

As '-'is order-preserving, it follows that a1.Pn>a2 • 

Next letµ be an order-preserving map of A onto B such that 

(5) 

Choose arbitrary a1 ,a2 e. A, and let m,ne.N such that a1.Pn> a 2 and 
m a2~ >a1 . We see that 

(6) 

and similarly that 

(7) 

consequently a1µ = a 2 µ. Thusµ maps all of A into one point of B. 

This contradicts the assumption thatµ is an epimorphism. 

It is in accordance with this result that it can be shown that 

no free joins exist in K(L0,6); cf. section 2,7 for a proof, 

2,5.32. PROPOSITION. K(P0,8) contains no dually universal morphisms 

or bimorphisms, for every 8 lo ORD. 

The proof of proposition 2.5.32 runs in exactly the same way as 

the proof of 2,5.31. 

2,6. Additional results I : K(S 1 6). 

In section 2.5 it was shown that K(S,8) contains dually universal morphisms and bi

morphisms for all 6 c ORD, The existence of universal morphisms and bimorphisms, however, 

followed only for those 8EORD for which 04 e. We will now give a direct proof of the 

existence of universal morphisms and bimorphisms in K(S,0) for all ordinal numbers 8. 

The results of this section were obtained in collaboration with J. DE GROOT; see [9]. 
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X 
2.6.1, DEFINITION. Let X be a set, and let qilX . A (jl-loop in Xis a 

non-void finite subset Y of X such that Y <I> = Y and qi I Y is co

herent (cf. definition 1.5.3). 

If Y is a qi-loop of n points, these points can be numbered in 

such a way that Y == {x1 ,x2 , ... ,xn}, while xk<P = xk+l' for k=l,2, ••• , 

n-1, and xn(jl= x1 . 

The following lemma is obvious. 

2.6.2. LEMMA. A total orbit contains at most one loop, 

In the next lemma we introduce certain mappings needed for the 

construction of a universal morphism. 

2.6,3. LEMMA. Let 6 E. ORD, and let x8 be a set with card(X0 ) = Jr6• For 

every n E: N there exists a coherent map an 

following properties: 

(i) x 0 contains no a 0 -loop; if n > O, x8 contains a on-loop of n 

points. 

(ii) card(xo11- 1 ) = lt8 , for all x E.X0 • 

PROOF. First we consider the case n=O. 

Let * be an element outside X , and let S = x0 u {.,.}. Let C be the sub·· 
I e I 

set of S consisting of those x = (xk)k E. 1 .; S for which there exists 

a k E.l, k=kx' such that x = * if n < k and x €. X if n,;;, k. Define 
n n e 

a C ➔ C as follows: 

(1) (x o) 11 = k l X1T 

k * 

if kfk, 
X 

if k=k • 
X 

I 
Here 11k stands for the map S ➔ S sending x == (xh)h IE. 

-1 {, 6 
There are no ;-loops in C, and card(xo ) = n-0 , for 

But card(C) = (lf'{t 0 , which will only equal .X-0 if O <l 8. 

onto xk. 

every x Ii; C, 

However, thj_s 

need not bother us, as luckily a is not yet a coherent map, 

We choose an arbitrary x 6 C, and put M = TO (x ), It is easily 
0 0 O 

verified that card(M) =N'-8 , and obviously ojM is coherent, Hence if u 

is any 1-1 map of M onto x0 , we can define o 0 by 
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-1 
1-1 o (a j M) o µ. 

Next we consider the case n=l. 

Let C,o and x 0 be as above, and let 

(3) {x <.. C 
k 

X 0 x for some k~I} 
0 

We define a map ,: + M1 in the following manner: 

(4) 

l.Jl is any 1-1 map of M1 onto x8 , the map o 1 = 

fies the requirements. 

Finally let n >1, Let Y = x6 x {1,2, ... ,n), and let { be the 

a1-loop in x0 , We definer: Y-+ Y as follows, If xeX0 , xix1 , and if 

l!k~n, we put (x,k) 1 = (xa1 ,k); if l_:;.k.::,n-1 we put (x1 ,k)T = 

(x1 ,k+l); finally (x1 ,n) t = (x1 ,l). Ifµ is any 1-1 map of Y onto x8 , 
-1 

the map an=µ or"µ is a coherent map X ·+- X with a loop of n 
8 8 

points, 

We proceed to show that on is a universal map for all coherent 

maps in K(S,8) with a loop of n points, 

2.6.4, LEMMA, Let x0 and an x0 -+ x0 be as in lemma 2.6.3. 

(6 G ORD,n 6 N). If Y is any set with card(Y)< Jr and if 
= e 

¢ : Y + Y is a coherent map with an n-point loop (without loops, if 

n=O), there exists a 1-1 map µ: Y + x6 such that µan=¢µ. 

PROOF. 
We present the proof for the case n=O; if n,;;; 1 the proof runs 

along similar lines, Clearly we may assume that Y i 0. 

Choose an arbitrary y O 1:. Y (if n > 0, y O must be chosen from the 

l)i-loop in Y) and an arbitrary x 0 6 x 8 , We put 

(5) 

Let 
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for every mc.N. The sets Am' m€. N, are pairwise disjoint, each has 

power ~Jr, and Y = UN A • We have definedµ on A ; suppose now 
m 8 mE m o m 

ll lk'Jo Ak is already defined in such a way thatµ is 1-1 on k'do Ak 

and that 

(6) yµoo yepµ 

m 
for all y E. k~O Ak. 

If m~ 1, the sets 

disjoint sets (if m=O, 

y f 1 , ye. A , partition A 1 into at most ft.8 m _1 m+ 
we use the sets yep n A1 instead). Let Be.Am 

-1 -1 
such that y1 ep n y2 ep = 0 whenever y1 i y2 , y1 " B, y2 ~ B, and such 

that Bep-1:::, A 1 For each y EB there exists a 1-1 map , of yq,-l into 
-1 m+ y 

(yµ) o0 ; we define, for each y '= B, 

(7) 
-1 

ll I yep = ly 

-1 -1 
(if m=O, we put i:;tHead: µ(yrj> f'l~) = 'y (yep nA1 )~-i-1Then ll is de-

fined and 1-1 on k~O Ak, and (6) holds for all y E. k'dO Ak. The as-

sertions now follow by induction. 

2.6.5, THEOREM. The category K(S,0) contains universal morphisms and 

bimorphisms, for every e ES ORD. 

PROOF. First we prove the existence of universal morphisms. Let 

0 
n 

x8 -+ x8 be as described in lemma 2,6.3, for each n€.N. Let 

(8) A = xe x xe x N 

and let~ be the following map A-+ A: 

(9) 

We will show that~ is a universal morphism in K(S,e). 

Take an arbitrary non-void set Y of power ~N;,, and let (J) E;; Yy 

Let C be a choice set in Y, containing exactly one point from every 

total orbit TO ep(y), y E: Y; let Cn be the subset of C consisting of all 

y such that TOq,(y) contains a ep-loop of n points (contains no ep-loop, 

if n=O). For each n, card(C) <N-0; hence for each n there is a 1-1 
n = 

map 'n of en into x 0• Moreover, by lemma 2.6,4, for each n and each 

y E: C there exists a 1-1 map µ of TO"' (y) into X 0 with the property 
n y,n o/ 
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that 

(10) zµ a = zcj>µ 
y,n n y,n 

for all z E. TOcj> (y), 

We define a mapµ: Y ➔ A in the following manner, If z ~Y. say 

za.TOcj>(y), yE.Cn, we put 

(11) zµ = (y,: ,zµ ,n). 
n y,n 

Thenµ is a monomorphism Y ➔ A, and µ\l> = cj>µ • 

Next we show that there also exist universal bimorphisms, For 

every ntN\,.{O}, let A = {1,2, ... ,n} ; let A n o =I.We write t for 
n 

the successor map modulo n in A (k)t = k+l if kin, (n),: = 1, Let 
n n n 

Xe be a set of power~. and let B be the set of all ordered triples 

(x,n,k) with xGXe, nlf:-N and kE.An. We define 'l' : B ·+ 8 as follows: 

(12) (x,n,k)'l' = (x,n,kt ). 
n 

Then 'l' is a bimorphism of K(S,6); we will show that 'l' is a universal 

bimorphism, 

Let Y be any set of power !,.k-6, and ljJ E: YY. The total orbits 

TO/y), yE.Y, partition Y into disjoint countable sets, Let C be a 

choice set, containing exactly one point from every total orbit 

TOljJ(y); let 

(13) C { y E- C card(TO (y)) n} (n EN\,.{ O}) 
n ljJ 

and 

(14) C = {yeC: card (TO iJi (y)) = }t-0 } . 
0 

For each n E. N there exists a 1-1 map t n of en into Xe. 

We define µ: Y ➔ B in the following way, If z E Y, there is exact

ly one yE.C such that zeTOljJ(y), and exactly one neN such that y€:Cn. 

We put 

(15) zµ = (y,: ,n,k), 
n 

k 
where k is the uniquely determined element of An such that ylj; = z, 

Then µ is a monomorphism, and µ'l' =WlJ • 
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2,7. Additional results II : K(LO,6) 

It will be shown below that in K(L0,8), for arbitrary a .. ORD, no direct or free join 

of two or more copies of an object exists (except in some trivial cases). Thus the methods 

of 2 .4 a.re fundamentally useless in these categories~ Correspondingly, we found (propo-

si tton 2~5~31) that no dually universal morphisms or bimorphisms exist in K(LO,O), for 

every eie: ORD. Surprisingly enough, it turns out that universal morphtsms and bimorphisms 

exist as soon as there are universal objects~ 

2.7.1. PROPOSITION. Let 0 4.ORD, and let A be a set with card(A)> L 

Then S(X,A) admits no direct join in K(L0,6), for every ob,ject 

X of this category which contains at least two elements. 

PROOF. 
Suppose Y = Tr S(X,A)(11aL Let °'1_,a2 E: A, C\;,f°2• First we show 

that tt2re exists a y "'Y such 

For take x1 ,x2 E, X, x1 < x2 , and 

4\,, 11 
(1) 

a 

that y 11 < y 11 (in the ordering of X) • 
al a2 

define• : Y + X = X as follows: 
a a 

if aia1 , aia2 ; 

y¢ xi, for all y (, y (i=l, 2) . 
a. 

1 

There exists a morphism ii, : Y _,, Y such that ,i,11c/"<i\::i , for all a,;;, 

Then it follows, for arbitrary y E. Y, that 

(2) 

Now let ¢ : A + A be the map transposing and 0\ 2 and leaving 

all other aE,A fixed, and let w"''"c= (iJJ)STARK(LO,e),F,Y' where F denotes 
A 

the subsemigroup (iA,tJ,) of A • Then, if y eY such that yn < y1r 

(3) 

... 
implying that y W < y, 

(4) 

... 

~ Clz 

is order-preserving, But similarly 

implying that ytji > y. This is contradictory, 
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2,7,2. PROPOSITION. For every 81:: ORD, there exists no free join in 

K(L0,6) of two or more objects of this category, 

PROOF. 
Let card(A) ~ 2, and let X be an object of K(LO,e) for each 

ll 

et f. A. Suppose 

(5) 

Take a 1 ,a2 EA with a 1 ia2 • Let Y be an object of K(L0,6) with at least 

two elements, and let y 1 ,y2 1::Y with y1 < y 2 . We define maps 

as follows: 

(6) 
for all XE X 

Cl 

for all xe X 
a2 

As all ¢a are morphisms of K(LO, 8) there exists a morphism @ 

in K(L0,0) such that o $= <j> , for all a e A, H follows that 
a a 

(7) 

X + y 
a 

X + y 

and all 

for all 

x 2 E X • But in the same way one can show that 
a2 

x 1 EX and x2 E': X , which is contradictory. 
al a2 

Although proposition 2.7.1 suggests the opposite, it is true that 

K(L0,0) always contains universal. morphisms and bimorphisms (provided 

that the Generalized Continuum Hypothesis holds). In order to prove 

this we need several lemmas, We refer to section 1.5 for the notation 

used. 

2,7,3, LEMMA. Let 0, K € ORD, and suppose K{LO) admits a K(L0,6)-uni-

versal object of cardinality }t . Then K(LO, K) contains a bimor-K 
phism T : B -+ B with the following property: for every bimorphisrn 

<P ; X + X in K(LO, 0) and for every x "- X there exists a 1-1 order-pre-

serving map ll: l.\,P(x) + B such that µ01 = (cp j c..p<x)) 0 µ. 

PROOF, Let E ={ -1,0,1} , ordered as usual, and let A be a K(L0,0)-uni-

versal object in K(LO) with card(A) = We put B Ex Ix A, ordered 

lexicographically, and we define T : B + B by 

(8) (e,n,a) T"" (e,n-e,a) 

for arbitrary (e,n,a)E. B. Clearly Tis a bimorphism of K(LO,K). 
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Let 4>: X + X be an arbitrary bimorphism of K(LO,e), and let xc.,X. 

If x == x c/> , then tic/> (x) = { x} , and for xµ we may take any point 

(O,n,a)E: B. Suppose xix</>; then ti<P(x) is infinite. 

As A is K(L0,0)-universal, there exists a 1-1 order-preserving 

map o: S + A, where S is the interval ;x<j>) if x < x¢, and S=(xc/>;x] 
k 

if x >x¢. Let y e:- !:iix). There is a unique k E I such that ye/> E': S (pro-

position 1.5.13); we define 

(9) 
k 

yµ = (e,e.k,y¢ o), 

where e=-1 if x /4:.X and e=+l if x E: X"' _. 
¢,+ w, 

The mapµ : ti¢(x) +Bis 1-1 and order-preserving. For let 

y 1 ,y2 E: tia}x), y 1 <y2 • Say x<x(j). There are k1 ,k2 GI such that 

k. kl k2 
yi$ 1 E. S (i=l,2). If k1 =k2 we have y1 4> · <y2 ¢ and hence y1 1J<y2 µ. l, 

kl kl k2 
we must have k1 > k2 (as < k2 ~ y l ¢ < y 2 qi < y 2 ¢ G. S ~ 

{. S); hence e.k1 < e.k2 , and again y1 µ < y 2µ • 

Finally,µ.,,= ( ¢I ti, (x))cµ, For let ye, ti (x), and let kE:l ,;uch 
k c/> ¢ 

that y¢ ES; then 

(10) yµoT 
k 

(e,e.k,y¢ o) t (e,e. (k-1), (y¢) 

2,7.4. LEMMA. Let e, K €. ORD, and suppose K(LO) admits a K(L0,8)-uni

versal object of power N-K . Then K(LO,K) contains a morphism 

T 
0 

: B0 + B0 with the following property: for every morphism 1. X + X 

in K(L0,0) with a fixed point a there exists a 1-1 order-preserving 

map I.I: l!qi(a) ➔ B0 such that µ01 0 = (</) I ll¢(a))oµ. 

PROOF. Let A be a K(LO, 0)-universal object with card(A) ~ . Let 

= {o} and, for nE. N, A 1 ::: A "A, ordered lexicographically; then 
n+ 00 n 

Ar.A ==0ifnim.LetC= U A;ifc'6C, thentNsuchthatcE.A 
n m n=O n n 

will be denoted by nc. It is immediate that C is linearly ordered by 

the following relation 

(11) 

Let a 
0 

and let o 
n+l 

in A)). 
n 

An+l ➔ An' nE.N, be defined by 
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(a' ,a)o = a' 
n 

(a' E. A , a E. A) • 
n 

Let o : C ... C be the "union" of the maps on o I An on, for each 

n E.N. The map o is an increasing translation. 

Let D be a set such that D n C = {O} , card(D) = card(C) (== ti' ) , 
K 

and let f be a 1-1 map of C \ { 0} onto D \ { 0} • We order D by defining, 

for arbitrary d1 , d2 E. D: 

(13) 

let B0 = C uD, ordered in such a way that C and D retain their order

ing while furthermore every c E. C preceeds every d E. D. The map 

10 B0 ... B0 is defined in the following manner: 

(14) 

Then card (B ) = Jt ; we wi 11 show that T has the required property. 
0 K 0 

Let ¢: X ... X be a morphism of K(LO,e) with a fixed point a. Then 

A$ (a)= TOcj)(a) (proposition 1.5,10). We will first define a 1-1 order

preserving map v: 6 (a)n X ... C such that 
cj) cj>,+ 

(15) '\loT =<4il(6,._(a)nx ))av. 
0 ~ ¢,+ 

E E { } E - 1 ,x E = E ,._-l (n"-N). The Let -1 = o = a ' 1 = acj> $,-' n+l no/ ~ 
sets E , n E> N, are disjoint and cover 6 (a) f'\ X,._ • We define v in 

n $ o/,+ 
such a way that E v c. A • Then necessarily av = O. Suppose for all 

n n 
k !n, n E:N, the map vi Ek is already defined in such a way that 

(i) vjEk is a 1-1 order-preserving map Ek+Ak; 

Then it is possible to define v IE 1 such that (i) and (ii) are also 
n+ 

satisfied for k=n+l. For let x be an arbitrary point of E ; as 
-1 o n -1 

card(x 4' ) <}f8, there exists a 1-1 order-preserving map w :x 4> ... A. 
0 "" X 0 

If now xis an arbitrary point of En+l' we put 
0 
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(16) xv= (xqiv,xw )e.A 1 . 
xqi n+ 

In this way we arrive at a 1-1 order-preserving map v , 

(t,A (a) n X )-+ C, satisfying (15). 
' 11',+ 

In the same way there exists a 1-1 order-preserving map 

p: (1\p(a)nxqi,-)-+ D such that 

( 17) 

and such that a p == O 

( 18) 

av. If we define µ 

µj ( ti<J}a) n x.p,+) == v 

µI ( ti.p(a) r, x.p,-) = p, 

then µis a 1-1 and order-preserving map, while µot 0 = ( 4>lti<P'a))o JJ, 

2,7.5. LEMMA. Let 6, KE: ORD, and suppose K(LO) admJts a K(L0,8)-uni

versal object of cardinality fr- . Then K(LO,K) contains a mor-
K 

phism , 1 : B1 ➔ B1 with the following property: if 4> : X +Xis a mor-

phism of K0 , and if x.,. x(j),+ such that TO$ (x) contains no fixed point, 

then there exists a 1-1 order-preserving mapµ : TO¢(x) ➔ B1 such that 

\.lo\ ($ITO(j)(x))o j.J, 

PROOF. Let A be a K(L0,6)-universal object with card(A) 

let A'= Ax{l,2} \J {O}, ordered as follows: 

(19) 

for arbitrary 

(20) 

ft , and 
K 

if a1 ,a2 E-A and i<:o {1,2}, Then A' is a K(L0,6)-universal object of 

power Jt with the following additional property: j_f Y is any object 
K 

of K(LO, 6) and y an arbitrary point of Y, there exists a monomorphism 

Y -+ A' with y µ' = 0. 
M 

For each kli:I, let Mk= {hE.I: h~k}, and let Ck= (A') k. Let 

U Ck; if c ~ C, we write k (;.. I 
for the uniquely determined k E. I 

such that c Ii: Ck, Furthermore, let a : C --,. C be the following map: if 
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c E. C, then 

(21) 

Let c0 be the element of C0 mapping every k E. M0 onto OE A'; let 

B1 = T0 0(c0 ) and t 1 = ajB1 . Then card(B1 ) = ~ (cf. the construction 

in the proof of lemma 2.6.3). 

If c E;C, we have 

(22) 

Hence if c1 ,c2 ~ B1 , the following integer is well-defined: 

(23) k = the smallest k e I such that k~ k I k > k 
~·~ ~ - ~ 

and c1 1Mk+l = c2 jMk+l" 

Clearly B1 is linearly ordered by the following binary relation < . ... . 

(24) 

(in A'))). 

It is easily verified that in this ordering the map t 1 is an increas

ing translation. 

Now let $: X ➔ X be an arbitrary morphism of K(L0,8), and let 

xe:x$,+ such that T0 41 (x) contains no fixed point. We must define a 

1-1 order-preserving mapµ: T0 41(x) ➔ B1 , such that 

(25) 

Let XO= 04>(x), xl 

define µl(X 0 u x1 ). 

If n ,i;. N, let 

(26) 

As cE.Y ~(k = n-l)A(cjM = c IM), the map c ➔ (n-l)c is an or-
n c n o n 

der-isomorphism of Yn onto A'. Consequently for every n E. N there 
n -1 

exists a 1-1 order-preserving map v : (x <l> ) 4> ➔ Y which maps (in 
n n 
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n-1 n-1 
case n ~l) the point X$ onto c 0 T1 We put 

(27) 

for each n If. N. Thus µ is defined on al 1 of X u Andµ is 1-1 and 
0 

order-preserving on X0 u x1 ; for let x1 , x2 E- X0 u x1 , x1 < 

n1 ,n2 E: N such that xi$ = x$ni (i=l ,2). If n1 < n2 , then 

hence x1 µ < x2 µ • If n1 =n2=n, then 

(28) 

Moreover, one verifies at once that 

x2 • Then take 

k < k and 
xlµ x21J 

(29) (µ l(X0 u x1 ))oT1 == ($ i(X0 u x1 ))o(µl(X0 u x1 )L 

n 

Assume now µ to be defined already on kldO Xk (n~ 1) in such a 

way that it is a 1-1 order-preserving map satisfying 

(30) Z 1J Tl 
n 
U -1 i, -1 

for all ZE: k=O Xk. Let zE:Xn; as card(z<j) );;;Jr0 , and as (zµ); 1 is 

order-isomorphic to A', there exists a 1-1 order-preserving map 

11 
z 

( 31) 

-1 -1 
z$ -+ (ziJ) 11 . We put 

I -1 
IJ Z$ 11 z 

and obtain in this way (letting z run through Xn) a 1-1 order-preserv
n+l 

ing map on k!;;JO Xk, satisfying (30) on that set. Using induction the 

existence of a monomorphism \.l: TO(j)(x)..,. B1 satisfying (25) follows, 

2,7,6, LEMMA. Let 8, KE. ORD, and suppose K(LO) admits a K(L0,8)-uni

versal object of power ft . Then K(LO,K) contains a morphism 
K 

B2 4 B2 with the following property: if qi : X -+ X is any morphism 

of K(LO, 6) ,and if x 1, X such that t,," (x) contains no fixed points, 
¢,+ 'I' 

then there exists a 1-1 order-preserving map µ: L'\p (x) ·+ B2 such that 

µot 2 ($16/x))oµ. 

PROOF'. C, 
Let A be a K(L0,8)-universal object with card(A) == «6, and let 
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, 1 : B1 ➔ B1 be the map defined in the proof of the previous lemma. 

Let B2 be the set B1 x A, linearly ordered as follows: if (bi,ai) E: B2 

(i=l,2),then 

(32) 

We define T 2 

(33) 

kb )v((kb =kb )A(a1 < a 2 ))v 
2 1 2 

v ( (kb =kb )A (a1 =a2 )1\(b1 ~ b2 )), 
1 2 

Then , 2 is a right translation of B2 • 

Let $G;K(L0,6), <P; X ➔ X, and let xEaX such that Li<P(x) contains 

no fixed point and x < xi;," As the set /\¢,(x), ordered by ~<P,x' is an 

object of K(L0,6), there exists a 1-1 order-preserving map A: /\¢,(x)~A, 

In the remainder of this proof we will just write/\ and;;;, for /\<P(x) and 

< respectively, 
=¢,,x 

For every L "' /\ we choose an nL"' N and 

nL+l 

an x1 E. L such that 

(34) :;, XL< X ip 

in case L = TO <P(x) we take care to choose nL = 0 and = x. By lemma 

2,7 ,5 there exists for each LE:/\ a 1-1 order-preserving map µL : L + B, 

such that 

(35) 

and 

(36) 

µ oT 
L 1 

(c stands for the same entity as in the previous proof), 
0 

We define lJ 

L = TO 

(37) 

, then 

l:\p (x) -> B2 as follows: if z e /.\ <P (x) , and if 

We will show that µ meets the requirements set forth in the lemma, 

First we show that 

(38) 
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Let z .,_ /.'; (x), and let L = TO (z). Then 
qi ¢ 

zµ, 2 (z~,L.lJ, 2 

(39) 

as TO lz ¢) = L. 

Next we show thatµ is 1-1 and order-preserving. Let z 1 ,z2 E/.';(j,(x), 

<z2 • Put TOq,(zi) = Li (i=l,2). If J-'J_ = L2 = L, then zlµL < z 2µL; it 

follows that either k µ < k - implying z 1µLc z 2µL - or 
2 1 L z21JL 

in which case it follows that z1µ < z 2 µ by the third 

k ·-
zlµL 

clause of 

Suppose now that L1 iL2 • In order to simplify the notation, we 

will writeµ_ instead 
1 

instead of xL_ 
1 

and ni instead of nL_ 
. l. 

If k 1 < k 2 , obviously z1µ < z 2 µ; suppose therefore that k1 =k2=k, 

We will show that~ <L2 ; it then follows (second clause of (32)) that 

z 1 JJ < z 2 µ, and the proof will be finished. 

Let n >k , i=l,2 (cf. (23)). Then n;,k, n1 ,n2 • Moreover, 
"" ziµi,xi 

{40) 
i 

(using (35), (36) and (23)); as is 1-1, it follows that 

(41) 

From (34) and the fact that z 1 < z 2 and L1ic'.L2 we conclude that 

(42) 

If z <Pn-k < xl+l it follows from the definition of the order in 
2 ' ,$ 

fl that L1 < , We will conclude the proof by showing that the assump-
n-k n+l 

tion z 2 qi - x(jl leads to a contradiction. 
n k n+l 

If z 2¢ - = xq, , then L2 = TOq,Cx), hence n 2 0 and • It 

follows that 

(43) 
k+l 

X(j, 

by (41) and the assumption; hence t,<P(x) contains a fixed point, con-
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trary to our hypotheses • 

2,7,7, LEMMA. Let 8,K e.ORD, and suppose K(LO) admits a K(L0,8)-uni·· 

versal object A with card(A) = N- . Then K(LO,K) contains a mor
K 

phism t : B ➔ B with the following property: if¢ : X ➔ Xis any mor-

phism of K(L0,8), and if x e: X, there exists a 1-1 order-preserving map 

PROOF, It follows from lemma 2.7.6 (reversing orderi.ngs) that there 

exi.sts a morphism t 3 : B3 ➔ B3 in K(LO,K) with the property: if 

<P : X ➔ X is a morphism of K(LO, 0), x <= X , and if ll (x) contains no 
<P,- <P 

fixed point under <P, then there exists a 1-1 order-preserving map 

I.I: ll¢(x) ➔ B3 such that \Jot3 = (<Pillq,(x))oµ, 

Let t 0 : B0 ➔ B0 and t 2 : B2 -+ B2 be morphisms of K(LO,K) satis

fying the requirements of lemma 2. 7 .4 and lemma 2. 7 .6, res pee ti vely. 

Let B be the set of all ordered pairs (n,b) with n a { 0,2,3} and 

b • Bn, ordered as fol lows: 

(44) 

(45) 

for n E. { 0,2 3 } • Then,as card(B) = N- , B is an object of K(PO, K). 
K 

Furthermore, let t: B ➔ B be defined in the following manner: 

(46) 

(O,b)t (0, bt ) for all b E: B · 
o o' 

(2, b)1 (2, bt2 ) for all b E: B2 ; 

(3,b)T = (3,b, 3 ) for all bE:B3 • 

Then 'is order-preserving, and it follows from the lemmas 2.7.4 and 

2.7.6 and our remarks above that T has the properties required. 

2.7.8. THEOREM. K(LO) contains K(L0,6)-·universal morphisms and bimor

phisms, for every e e. ORD. More exactly, if A is a K(L0,8)-

universal object of K(LO), and if Jt 
K 

card(A), then already K(LO,K) 
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contains K(LO, 6)-universal morphisms and bimorphisms. 

PROOF. First we show that K(L0,6)-universal bimorphisms exist. Let 

T : B ➔ B be a bimorphism of K(LO,K) meeting the requirements of lem

ma 2.7.3, and let C = Ax B, ordered lexicographically. We define 

<!> : C-,. C by 

(47) (a,b)<P = (a,b,) ((a,b)ec). 

It is immediate that <I> is a bimorphism of K(LO,K). 

Let$: X ➔ X be an arbitrary bimorphisrn of K(L0,6). The set 

X/l.l<j) is a linearly ordered set of cardinality at most H-6 ; hence 

there exists a 1-1 order-preserving map 6 : X/ liq, -,. A, For every 

D e:.x/Alj) , let lJD be a 1-1 order-preserving map D + B such that 

lJDot = (4>1D)olJD (the existence of these µDis guaranteed by lemma 

2.7.3). 

We now define lJ X ➔ C • I f X I:. X ' we put 

(48) X lJ = ((l.l,_ (x) /5 , Xl,J ) "' 1\ (x) • 

Then lJ is a monomorphism. For let x 1 ,x2 ,:; X, x 1 < x 2 • If l\i> (x1 )< t.$ (x2 ) 

in X/l\p, then (t.4>(x1 ))6 < (t.<j)(x2 ))6 and hence x1µ<x2µ. If x 1 t.1<j)x2 , 

then 

(49) 

and again x/1 < x 2 lJ , 

Finally u<!> = <j)µ • For let x E'. X; then 

(50) 

as AJx) = l.l<j)(x<j)), 

The proof of the existence of a K(L0,6)-universal morphism in 

K{LO,K) is almost verbally the same, now using, however, lemma 2,7,7 

instead of lemma 2,7,3, 
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2,7.9, COROLLARY. Let e E:ORD. If K(LO, e) admits a universal object, 

it contains universal morphisms and bimorphisms. 

* 2.7.10. COROLLARY. K(L0,6) contains universal morphisms and bimor-

phi sms, for every 0 E. ORD. 

2.7.11. COROLIARY. K(L0,0) contains a universal bimorphism I/): Q-+ Q 

and a universal morphism f : Q-+ Q (Q denoting the set of ra

tional numbers with its usual ordering). 

PROOF. Let I/) C ( ) Q 
0 : -+ C be a universal bimorphism in K LO,O; as is 

a universal. object in K (proposition 1.4.4), such a ¢0 exists. Then 

C xQ, ordered lexicographically, has the same order type as Q (see 

e.g. [56]Ch.4 §7 ), and <Pl: CxQ-+ CxQ, defined by 

(51) 

is again a universal. bimorphism, From this the existence of i/) follows. 

The existence of ~, is proved in a similar manner. 

2.8. Notes 

A very simple idea lies at the origin of the main constructions 

of this chapter, namely, the idea of the graph of a map. 

For example, let f be a continuous map of a topological space x1 

into a space x2 . Then, as is well-known, the graph r off, considered 

as a subspace of the topological product x1 x x2 , is topologically 

equivalent to x1 , and the map t, 

(1) x t = (x,xf) 

is a homeomorphism of x1 onto r. 
If we denote by 11 2 the canonical projection 

(2) 

then f is equivalent to the restricted map 11 2 Jr, up to the topologic

al deformation t, as ,011 = f. 
2 
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If f 1 is another continuous map x1 -+ x2 , with graph r 1 , then £1 

is equivalent to a restriction n 2 j r 1 of the same continuous map 

now up to a new topological embedding t 1 x1 -+ x1 x x2 , 

(3) 

Thus in a certain sense n2 is "universal" for all continuous maps of 

into x2 . 

Similarly, if x1 and x2 are groups and if f : x1 -+ x2 is a homo-· 

morphism, then the graph r off is a subgroup of the direct product 

x1 x x2 , the map t, defined by (1), is an isomorphism of x1 onto r, and 

n2 is a homomorphic map of x1 " x2 into x2 which is somehow "universal" 

for all homomorphisms x1 -+ x2 • 

This use of the graph is well-known, It. has, however, a serious 

draw-back, especially if the original maps f,f1 , are self-maps X-+X, 

In this case it is annoying that the new map n2 jr is no longer a self

map: it sends one copy of X (namely f) into a different copy of X 

(namely X itself). The root of the difficulty lies in the fact that no 

natural equivalence between Xx X and X exists, 

In 1959 J. DE GROOT ([47,48]; see also A.H. COPEIAND JR, and 

J, DE GROOT [17,18])and G.-C.ROTA ([90] ; see also [91,92] ) independ

ently made use of the same device to remedy this. In a final analysis 

one could say that their method is based on the fact that 1+ ft = Jt . 
0 0 

In fact, let f : X-+ X be a self-map. Instead of the map t of X 

onto the graph of f in X "X, as defined by (1), we consider the map cr 
N 

of X into X, defined as follows: 

(4) 

The projection map n2 of (2) amounts to a striking out of the first 

coordinate; we replace it by a map \J : XN + XN which formally does the 

same: 

(5) 

One verifies at once that 

(6) 
-1 

a o f o a, 



99 

If e.g. X is a topological space and f is continuous, then o is a topo-
N N N 

logical embedding of X into X ,and the mapµ: X ➔ X is in its turn con-

tinuous. Hence µ is universal for all continuous maps X + X, in the 

sense that µ contains copies of all these maps. More exactly, if 

f : X..,. Xis an arbitrary continuous map, then XN contains a topologic

al copy of X on which µ behaves exactly in the same way as f does on X, 

The map lJ defined by (4) is induced by the successor map ¢ N-,. N 

(¢ sends n into n+l, for all n.aN), in the sense that 

(7) 

Now let G be a semi group. If y E. G the left translation y : G-> G 
O b G O G 

induces in the same way a map µ: X ..,. X : if x = (x ) Gf. X , then 
y y Ea 

x lJ = y = (y ) G' where y x Considerations of this kind led 
YYe YoY 

J. DE GROOT [47] to a proof of the existence of universal bimorphisms 

and universal groups of bimorphisms in K8(CR) (theorem 2.5.13 and half 

of theorem 2.5.21); see also J. DE'GROOT [49] 

An analysis of these considerations lead to the concept of a star 

functor, and to a new formulation, in terms of category theory, Some 

partial results in this direction have been mentioned in [s]; a fur

ther analysis along the same lines resulted in the sections 2,2, 2.3 

and 2.4 of this chapter. 

We mentioned already that theorem 2.5.13 and the part of theorem 
e 

2.5.21 concerning K (CR) are due to J. DE GROOT ( [ 47,49] ). Theorem 

2.5.9 follows (in the case 8=0) from a stronger result of A.H. COPE-

LAND JR and J. DE GROOT ( [1 7 , 18] see corollary 4.5.3 and proposi-

tion 4.5,6 belowL The case 6=0 of theorem 2.5.19 is an immediate 

consequence of an unpublished result of J. DE GROOT (corollary 4,5.2 

and proposition 4.5.5 below). Theorem 2,5.11 is due to P.C. BAAYEN and 

J. DE GROOT (see [6] and [s] ), to whom its assertion was raised as a 

problem by R.D. ANDERSON. The results of 2,6 were obtained by P.C, 

BAAYEN and J. DE GROOT in collaboration; they have been published al

ready in the form of a preliminary note [9] . The results of section 

2.7 are taken from another preliminary note, P.C. BAAYEN [7] 



3. UNIVERSAL CONTINUOUS MAPS 

3.1. Categories of topological spaces 

In section 1.2 it was re111arked that in categories of topological spaces epimorphisms 

need not always be mappings ontOj likewise monomorphisms are not always topological embed

ding maps. For this reason the results of section 2.5 are not fully satisfactory as far as 

they concern top0logical spaces. In fact, the very concepts of universal and dually uni

versal morph.'.sms and systems of morphisms as defined in chapter 2 are not adequate for ca

tegories of topological spaces. 

It turns out that the constructions of chapter 2 lead, 1n the case of categories of 

topological spaces, to results stronger than expressed in that chapter. 

In this section we define the concepts obtained by adapting the definition~ of sec

tion 2.1 to the situation occurring when continuous maps are considered. 

3.1,l. DEFINITION. Let K be a category of topological spaces, i,e. a 

concrete category, the objects of which are provided with to-, 

pologies, while its morphisms are continuous maps with respect to 

these topologies. Let K0 be a subcategory of K. A topologically K0 -

universal object of K is an object A of K with the property that for 

every object B of K0 there exists a topological map IHS K, \J : B -> A. A 

topologically dually K -universal object of K is an object A of K with 

the property that for every object B of K0 there exists a continuous 

map Ve K of A onto B. 

It is easily verified that the universal and dually universal ob

jects of categories of topological spaces, mentioned in section 1.4, 

are all topologically (dually) universal: C is a topologically uni

versal object for K0 (CZ) and K0 (ZM),and a topologically dually uni

versal object for (CZ); if the Generalized Continuum Hypothesis is 

valid, a topologically dually universal object exists for each K6(CZ), 

Si; ORD; {o,1 }1113 and [0,1] H-e are topologically universal objects 

for K 8(CZ) and K8(CR), respectively (8 E ORD); each Hilbert space of 

weight k6 is both a topologically universal and a topologically dual

ly universal object for K8(H),8 E ORD, and is also a topologically 

universal object for K6 (M); Tito is a topologically universal object 
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for K(CMAG), and the groups M,S and D of section 1.4 are topologically 

dually universal objects for K(CMoG), K(CS) and K(ZCMoG), respectively. 

3.1.2. DEFINITION. Let K be a category of topological spaces, and let 

K0 be a subcategory of K. A topologically K0 -universal morphism 

in K is a morphism lj) : A + A in K with the following property: for 

every morphism W of K of which the source and sink coincide, w: B+ B, 
0 

there exists a topological map JJ E. K, JJ: B-+ A, such that JJQ) = WJJ. A 

topologically dually K0 -universal morphism in K is a morphism 

$:A+ A in K enjoying the following property: for every morphism~ 

of K0 of which the source and sink coincide, w: B+ B, there exists a 

continuous map VE. K, mapping A onto B in such a way that cpv= vw. 

Topologically K0 -universal bimorphisms and topologically dually 

K0 -universal bimorphisms are defined similarly, and also topologically 

(dually) (K, K )-universal semigroups of morphisms or groups of bimor
o 

phisms. 

The results of section 2,1 remain valid for the corresponding 

topological concepts. 

If all objects of Kare compact topological spaces, then all con

tinuous 1-1 maps belonging to K are topological, and all v E K with a 

dense image are onto. Consequently in the categories K(CZ), K(CMAG) 

and K(CMoG) and their subcategories every (dually) universal object 

(morphism, bimorphism, system of morphisms) is always topologically 

(dually) universal. The same holds for the categories K8(H) (cf. pro

positions 1.2,5 and 1.2.8). In the next sections we will exhibit other 

arguments for this, which remain valid for categories like K0 (M), 

Ko (ZM) or K 8(CR) • 

3,2. Neat categories 
The existence of universal morphisms or systems of morphisms was proved in section 

2.4 for categories in which - among other conditions - suitable direct joins exist. When 

categories of topological spaces are considered, the natural candidates for direct joins 

are the topological products, with their natural projection maps. 

We will show in this section that in the categories which interest us, direct joins, 

if they exist, are indeed equivalent to topological products; in most (but not all) of 

them free joins, if they exist, turn out to be topological sums. 
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3.2.1. DEFINITION. We will say that a category K of topological spaces 

is neat if in it the following condi.tion is satisfied; whenever 

a family (Xt) t E. T of objects of K admits a direct join in K, the topo

logical product X = t FT Xt is also an object of K, all canonical pro

jections 11t: Xt ➔ Xt' tE-T, are morphisms of K, and X == tVT Xt(11t) 

in K. 

The category K is called co-neat if it satisfies the "dual" con

dition: whenever a family (Xt)tE.T of objects of K admits a free join 

in K, then a topological sum X t ~ T Xt is also an object of K, all 

canonical injections ot : Xt -+ X (t e T) belong to K, and X == ttT (at) 

in .K. 

REMARK 1. It should be emphasized that neatness and co-neatness are 

concepts that do not belong to category theory proper; in particular, 

the property of being co-neat is not dual to the property of being 

neat. 

The following two lemma's arc evident: 

3,2.2. LEMMA. Let K be a full subcategory of the category of all Haus

dorff topological spaces. Then ii the topological product 

X = 1P. X of a family of objects (X ) T of K is itself an object 
tE.T t tt1<. 

of K, it is also a direct join of (Xt) t ,._ T in K, X = tVT Xt (n t), 

3, 2. 3. LEMMA. Let K be a full subcategory of the category of all Haus

dorff topological spaces. If a topological sum X = ti T Xt of 

a family of objects (X) T of .K is itself an object of K, then it is 
t t le. 

also a free join, X /fT Xt (ot). 

3.2,4, PROPOSITION. K 9(CZ) is neat, for each 8 € ORD. 

PROOF. T[ 
Suppose X ~ T 

t " 
duct 

(1) 

(pt); let x* designate the topological pro-

* X 

and let be the canonical projection ➔ Xt, for each t "'T. 

We define a map IJ: X ➔ as follows: if x e X, then 

(2) 
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As µont = pt' for all teT, and as all pt are continuous,µ is a con

tinuous map. We will show thatµ is a topological map of X onto x*. 
First we show thatµ is 1-1. Suppose this were not the case. Then 

xµ = yµ for some x,y e X, xiy. It follows that 

(3) xpt=ypt,foralltf;T. 

Let A be a one-element space, A = { a} , and let a 1 

a2 : A-,. X be defined as follows: 

(4) y. 

A-,. X and 

Then <\Pt = Cl p 
2 t 

for all t ET, and it follows (proposition 1,1,12) 

that Cl Cl which is absurd. 
1 2' ... 

Secondly, µ is onto. For let X (xt) t ET be an arbitrary point ... 
of X Let A = {a}' as above, let (lt A -v Xt map A onto { xt} for 

every tE.T, and let a E. K such that Of.\= at for all tf;T. Then 

(aa) µ 
.... 

X 

As Xis compact, it follows that u is a topological map. Conse

quently x* is an object of K8 (CZ); this, in its turn, implies that 
e 

lit E. K (CZ) for all t EoT. Hence (according to lemma 3.2.2) 

(5) jp X = lf X (11 ) 
tt:.T t tE:.T t t' 

as asserted. 

e 3.2.5. PROPOSITION. In K (CZ), a family of objects (Xt)t 6 T admits a 

(6) 

free join if and only if 

7T (l+wei 0 ·ht(X ))< }t · 
tET ,., t = e' 

this family of objects admits a direct join if and only if 

(7) 

PROOF. The first assertion follows from the contravariant correspond

ence between K(CZ) and K(BA) (the STONE duality theory); if At is the 

boolean algebra of all clopen subsets of Xt, then 
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(8) ft . card(A ) = ft • weight(Xt) 
0 t 0 

and the STONE space of the direct product t~ At is a free join of 

(Xt) t E. T in K(CZ). 

The second assertion is an immediate consequence of proposition 

3.2,4 together with the following proposition (to be found in M.A. 

MAURICE [78, 79]): 

3 .2 .6. PROPOSITION. The weight of a topological product t VT Xt is at 

most Jr0 if and only if the following two conditions are both 

satisfied: 

(i) weight(Xt);;, Jt0 , for every t ET; 

(ii) carct{ttT: weight(Xt)> 1}.;:. Jt-0 , 

A topological sum of infinitely many compact spaces Xt i 0 is not 

compact, However, if 6 >O a family of denumerably many one-point spaces 

does have a free join in K6(CZ), by proposition 3,2.5, Thus we find: 

3.2,7, COROLIARY. If O< 0 € ORO, K8 (CZ) is not co-neat. 

REMARK 1, We concluded from the existence of direct joins in K(BA), by 

means of the STONE duality theory, that free joins always exist in 

K(CZ). It is easy, in fact, to give an explicit description of such 

free joins. 

Let (Xt)t E.T be an arbitrary family of objects of K(CZ). Let 

t lT Xt be a topological sum of (Xt) t E. T' and let at be the canonical 

embedding of Xt in this sum (t e T). Then 

(9) b( [ X) = * X (at), t t 1o T t 
teT 

where 1:iX denotes the CECH-STONE compactification of X (PH. DWINGER 

[31] ) . 

3.2.8. PROPOSITION. K6 (CR) is both neat and co-neat, for each 0t ORD. 

PROOF. 6 We first prove that K (CR) is neat. Suppose therefore that 

(10) X 
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in .K 8 (CR) • Obviously we may assume that Xt ;I,. 0 for all t e. T. We wi 11 

show that 

(11) 

it then follows that the topological product t"IF; Xt is an object of 
e 

.K (CR) (proposition 3,2,6) and h~nce (lemma 3,2,2) that it is a direct 

join of (Xt) t E. T with respect to the canonical projections 

11to : t ~ xt..,. xt · 
0 

Assume (11) to be false, Then 

(12) card { t E. T 

for a suitable non-void open subset U of X. For suppose (12) is not 

true, for each open U i. 0. Let {U } <, be an open base for X, with 
I( I(< .IT'. 

all U" i !21; for each o< < N6 we put O 

(13) 

By assumption, card(TK) ~ ft8 , for every K < ft.0 . Hence if 

(14) S = { t f. T : weight(Xt)> l} \ Ut, T , 
K<lf' K 

e 
then card(S)> Jr..0 ; thus in any case S-/, 0. Let tEiS; then UK pt Xt 

for all K <~, and it follows that Upt -= Xt for every open set U in X, 

This contradicts the fact that weight(Xt)> 1. 

Now we show that the assumption that (11) is false leads to a con-

tradiction. Let U be a non-void open subset of X, and let { t n E. N} 
n 

be a denumerable subset of T (with t ;I,. t if n-/, m) such that n m 

(15) 

for all n .. N. Let Y be the Cantor discontinuum, yE:.Y, and let {v} N 
n nE:. 

be a sequence of clopen neighbourhoods of y such that 

(16) () V ::{y} 
n f:.N n • 

For each n E. N we construct a continuous map at y+ in the fol-

lowing manner: I€t 
n 
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(17) xt fo UPt ; x~ e Xt \ UPt ; 
n n n n n 

and let c\ map Vn onto { xt } and Y \ Vn onto {x~} . If t c. T is not 
n n n 

one of the tn, then let at be an arbitrary continuous map Y + Xt. 

As (pt)tE.T is a direct join, with X as its source, there exists 

a continuous map a: Y + X such that a opt = at for all t E: T. It fol

lows that 

(18) 

hence 

(19) () V ={y}. 
n E- N n 

Consequently y has to be an isolated point in Y; this is absurd. 

Thus we have indeed shown that KO(CR) is neat. We next turn to a 

proof of its co-neatness. 

Suppose X = *TX (p ) in K. We assert that all pt are 1-1 maps, t (: t t 
and that 

(20) 

for every t 1:, T. 

XtPt n sltT Xsps 

s ;t't 

In order to prove this, we consider a space Y = Xtu{a} , where 

a~ Xt and where the topology of Y is the sum of the topology of Xt 

and the (discrete) topology of {a) Let at denote the identity map 

Xt + Y, and let as map Xs onto { a} , for each s-. T "{ t} . There exists 

a continuous map a: X + Y such that psoa= as' for all s (, T; from 

this fact our assertion readily follows. 

It also follows that each pt : Xt + Xtpt is bi.continuous, In 

fact, its :i.nverse apparently coincides with the continuous map a I Xtp t. 

We conclude that the subspace tldT Xtpt of Xis a topological 

sum of the spaces Xt, t E.T. As it is also a completely regular space 

of weight at most X-0 , i,e. an object of K6 (CR), it follows from lem

ma 3,2,3 that tYT XtPt is a free join (in fact, it is easily seen 

that 

(21) X, 
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so that X itself turns out to be a topological sum of (Xt)t "'T). 

REMARK 2. It is much easier to show that the category K(CR) (no re

strictions on the weight) is neat: this follows at once from lemma 

3.2.2. The same holds for K(CZ); but it is not true anymore for K(M) 

and K(ZM), as in these categories topological products not always 

exist. 

e 
3 .2. 9. COROLIARY. In K (CR), a family of objects (Xt) t '= T adrni ts a 

direct join if and only if either an Xt = 0 or all Xt i 0 and 

(7) holds; and it admits a free join if and only if 

(22) 

3.2.10, PROPOSITION, Every category K8(M) or K8(ZM),6 e ORD, is both 

neat and co-neat. 

PROOF. The fact that these categories are co-neat i.s proved in the 

same way as for the categories K8(CR). 

The proof of the neatness of K8(M) and K8(ZM) is an easy adap

tation from the corresponding part of the proof of proposition 3.2.8. 

Let K be one of the categories K6(M), K8(ZM), and let X = 7T: X (p ) 
t Ii- T t t 

in K. If one of the Xt is empty, then the topological product 0 = 

TF>T Xt obviously is a direct join. Suppose therefore that i 0 for t E. . 

every t "'T. 

If 

(23) card { t E. T 

then the topological product t ~ Xt is an object of K and hence j_s 

the source of a direct join. Suppose (23} is false. Then, using the 

fact that in X the first axj_om of countability is satisfied, one 

shows as in the proof of 3.2.8 that there exists a non-void open set 

U in X such that 

(24) 

From this one deduces (exactly as in the proof of propos.i tion 3 .2. 8) 

that all points of the Cantor dj.scontinuum are isolated, which is ab-
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surd. 

3.2,11, COROLIARY. Let K be one of the categories K8(M) or K6(ZM), 

6 E. .ORD. A family of objects (Xt) t & T in K has a direct join 

in Kif and only if either an Xt = 0 or all Xt I. 0 and (23) holds; it 

admits a free join in Kif and only if (22) is satisfied. 

8 
3.2.12. PROPOSITION. K (H) is neat, for every 8 ~ ORD. 

PROOF. 
Suppose X = t Jr; Xt (pt) in H. Obviously we may assume that 

Xt I. 0 for every t G. T. We will show that then 

(25) ca rd { t % T · X I. { 0 l l < Jt0 • . t 

Assume (25) to be false; let tn,:;. T, for each n ~ N, such that 

Xt I. 0; we take care that \ 1 i. tm for n f. m. Let Y be a one-dimension

alneuclidean space, and for each neN let at be a bounded linear oper

ator y +xt with II at 11 = n II pt 11 . There exirts a bounded linear oper-
n n n 

ator a: Y + X such that Cl:"Pt 
n 

at , for all n e; N. It follows that 
n 

(26) n- II Pt II II at II =ilao pt II,; 
n n n 

for every neN. Now it is easily verified that every pt is onto; con

sequently JI Pt 11 -le O, and we arri vc at the absurdity: II a jj ,;:, n for 

every n e N. 
n 

Thus (25) is proved, 

From (25) it follows that the topological product of all Xt coin

cides with the Hilbert sum 

* (27) X 

and that x* is an object of K 8(H). As obviously 

join of (Xt)t E.T' it follows that KO(H) is neat. 

As a corollary to the proof we obtain: 

serves as a direct 

3.2.13, COROLIARY. Let 8 E>ORD. A family (X) T of objects of KB(H) 
t t E: 

has a direct join in KB (II) if and only if either some Xt = 0 

or all Xt t 0 and (25) holds. 
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3.2.14. PROPOSITION. Let 8 E. ORD. A family (Xt)t ~T of objects of 

K 8(H) has a free join in K 8(H) if and only if the following 

set Sis finite: 

(28) 

* If this is the case, the Hilbert sum X 0 Xt is a free join, 
t" s 

(29) 

where ot is the natural injection Xt + ffi X if ti.:.S; 
s'{S s at is the 

empty map if Xt = 0; and ot maps Xt onto the zero element of x* if 

xt = { o} • 

PROOF. Let X = * Xt (p ), and suppose Sis infinite. Lt ft) 
tf-T t e 'n n&N 

be a sequence of pairwise distinct elements of S. Let Y be a one-

dimensional euclidean space; for each n E: N, let an be a bounded linear 

opera tor of Xt on to Y with II a II = n. I I P II • Then every bounded 
n n t 

linear operator a: X-,. Y satisfying pt o cP== at for al] n E. N, also 

satisfies llall~n for all n E. N' which isncontradrctory. 

Hence S i.s finite. But then (29) is easily shown to be valid. 

e 
3.2.15, COROLLARY. K (H) is not co-neat, for every choice of a~0RD. 

3,2,16, PROPOSITION, The category K(CMoG) is neat, 

PROOF. 
Suppose X = tTT Xt (pt) in K(CMoG). Let 

logical direct product 

* we will show that X is an object of K, 

* 

denote the topo·· 

Let the map JJ: X "➔ X be defined by (2); clearlyµ is a contin-

uous homomorphism. We will show that µ is 1-1, 

Suppose this were not the case; then there would exist an xi 1 

in X such that xµ == 1 (we denote both the neutral element of X and the 

* neutral element of X by 1). Let Y be the closure of the subgroup of X 

generated by x; Y is again a compact monothetic group. If 1\ is the 

identity map of Y into X and if a 2 : Y + X maps every element of Y 
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onto 1, then a1 /\ = '½Pt for all tioT; hence°'.!. 

1.1,9); this is contradictory. 

a 2 (by proposition 

As Xis compact, it follows that \J is a topological isomorphism 

* of X into X , We will finish the proof by showing thatµ is onto. 

Take an arbitrary point x *= (x t) t E:. T Ii:. X . According to propo

sition 1.4.22, K(CMoG) has a dually universal object M. Let a be a 

generator of a dense subgroup of M; for each t ET there exists a con

tinuous homomorphism at : M .... Xt such that ao:t = xt. Then (aa)pt = 

* == ao:t = xt' for all t(:'f; i.e. (aa)µ= x. 

REMARK 3, K(CMoG) is not co-neat, as is shown by the following example. 
00 00 00 

Let x2 and x3 be the character groups of Z(2) and Z(3 ). As Z(2) and 
"' Z(3) are subgroups of Td (the circle group with discrete topology), 

x2 and x3 are compact monothetic groups. So is the character group X 

of zc2"") "Z(300
); moreover, X is the topological direct product of x 2 

and x3 . It is easily seen that Xis a free join of x2 and x3 , although 

obviously it i.s not a topological direct sum. 

REMARK 4. From proposition 3,~.16 a complete characterization can be 

obtained of all families (Xt)t<1:oT of objects of K(CMoG) which admit a 

direct join. Let Gt be the character group of Xt' for every t &T. It 

follows from proposition 3.2.16 that a direct join of (Xt)tE:T exists 

in K(CMoG) if and only if the topological direct product 1P is 
t 1:;T 

a compact monothetic group, and this is the case if and only if the 

direct sum (restricted direct product) of the groups Gt is isomorphic 

to a subgroup of Td. From this together with the fact that Td is i;;o-

morphic to a direct sum of continuously many copies of and of one 

copy each of the groups Z(p00
), p prime, a necessary and sufficient 

condition for the groups Gt' and hence also for the groups 

distilled, 

3,3, The embedding theorem for topological spaces 

, can be 

TI1e main result of this section is the following: if K is a neat category of topolo~· 

gical spaces, then the monomorphisms (f)EMBK,F,x are what they ought to be topological em

bedding maps. This leads to variants of the fundamental embedding theorem of section 2,3 
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and of the existence theorems of section 2,4 that are more suitable for categories of topo

logical spaces. 

Although there are not many applications, we derive - for completeness' sake - a theo

rem on the existence of topologically dually universal (systems of) morphisms in co-neat 

categories; as co-neatness is not the category-theoretical dual of neatness~ a separate 

proof is necess~ry. 

A . If Xis a topological space and A a set, then X will designate 

the topological product lPA X , with X X for all a E. A (i.e. the 
A aE. a a 

function space X with the weak topology); for each a0 E. A, the map 

(xa)a EA-,. xa will be denoted by \x 
0 0 

We will say that a map qi: A -,.Bis of finite multiplicity if 

( b)q,-l is finite for every t:i E. B. A map (/, of a topological space X 

into a topological space Y is called open if$ is open, considered as 

a map X + X</1. Under these conventions, we have: 

A 
3,3.1. PROPOSITION. Let A,B be sets, and let </lE.B. For every topo-

(1) 

.,. B A 
logical space X, the map </I : X .., X , defined by 

.... 
(j) 0 1T 

a 11a0' for all OtE. A, 

* is continuous. If <j, : A + B i.s of finite mul tipl ici ty, then .p is also 

* open. In particular, if, is a 1-1 map of A onto B, then t is a topo-

logical map of x8 onto XA 

PROOF: obvious. 

3,3 2. TOPOLOGICAL EMBEDDING THEOREM, Let X and Y be topological 

spaces, U a topological map of Y into X, Fa semigroup with 

unit and fa homomorphism of Finto the somigroup of all continuous 

maps Y ·+ Y, sending the unit element£ of F onto iy. The map 

f : Y+XF, defined by 

(2) f O 1T 
qi 

($f)" ll, 

for every ,p CF, is a topological embedding. Moreover, if we define 

* F F for every 4>0 Ii:.. F a map ¢0 : X ➔ X , in the usual way: 

(3) 
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for every qi E. F, then 

(4) 

for all qi a F. 

PROOF. The proof is similar to the proof of theorem 2.3.7; the only 

thing that must be added is a proof of the fact that l is topological, 

But this is immediate: we need only remark that f : y + Yf has as its 

the (11 IYf) O jJ 
-1 -1 

is the of inverse continuous map 
' 

where µ inverse 
£ 

the map y + Yll. 

3.3.3, PROPOSITION. Let K be a neat category of topological spaces. 

Let X,Y be objects of K, and letµ : Y + X be a topological map. 

Furthermore, let f be a homomorphism of a semigroup F into H(Y,YL Then 

for each Z a 6(X,F) the map (f,JJ)EMBK,F,Z is topological. 

PROOF, This follows from the theorems 3.3.2 and 2,2.10, 

3.3.4. THEOREM. Let K be a neat category of topologi.cal spaces, and 

suppose that K satisfies condition VIII 0 of l.3.7. Let K0 be a 

subcategory of IL Then K contains topologically K0 -universal morphisms 

and bi.morphisms if and only if it contains a topologically -univers

al object. Similarly, if V1II6 holds in K for some fJ ~ ORD, then K 

contains topologicalJ.y (K0 ,fr(t-universal semigroups of morphisms and 

groups of bimorphisms if and only if it contains a topologically K0 -

universal object. 

PROOF. This is implied by the previous proposition, taking for X a to

pologically K -universal object and for Fa free (semi-)group. 
0 

It follows that the results in section 2.5 dealing with universal 

morphisms in categories of topological spaces (sc. the propositions 

2,5.9 to 2.5.14, 2.5.19 to 2.5.22) can all be strengthened to assert 

that topologically universal (systems of) morphisms or bimorphisms 

exist. 

The argument leading up to theorem 3.3.4 can be dualized. Let X 

be a topological space, and let F be a semigroup. If we consider Fas 
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a discrete space, the topological product Xx F is at the same ti.me a 

topological sum of as many copies of X as there are elements of F. For 

each ¢ e. F, let a</> denote the following map X ➔ X x F: 

(5) XO¢== (x,q>)' for all Xe. X. 

Every o is a topological injection of X into X x F. 
qi * 

If qi0 Ii! F, we denote by $0 the map Xx F -+ Xx F satisfying 

(6) 

for all$ E F. That is, (x,qi)(jl = (x,qiqi) for arbitrary (x,qi)i xx F. 
* 0 0 * 

Then qi-+ qi is an isomorphism of F onto a semigroup F of continuous 

maps X x F ➔ X x F. 

Suppose now vis a continuous map of X onto Y, and let f be a 

homomorphism of Finto the semigroup of all continuous maps Y-,. Y. 

Let us denote by f the map X xF-,. Y, satisfying 

(7) a qi o 1' V o (qi f)' 

for all$ e. F. In other words, if (x,¢)E. Xx F, then 

(8) (x,¢)f = (xv)(<j>f). 

Clearly l' is a continuous map of Xx F onto Y; moreover 

for every $ f;. F. 

Thus we obtain the following "dual" to theorem 3. 3 .4: 

3.3.5. THEOREM. Let K be a co-neat category of topological spaces, and 

suppose every denumerable family of objects of K has a free 

join in K. Let K0 be a subcategory of K. Then K contains topologtcal

ly dually K0 -universal morphisms and bimorphisms if and only if it ad

mits a topologically dually K0 -universal object. 

Similarly, if 8 E. ORD and if every family of at most Jt objects 
e 

of K admits a free join in K, then K contains topologically dually 

(K ,fr 0 )-universal semigroups of morphisms and groups of bimorphisms 
o· V 

as soon as it contains a topologically dually universal objec.t. 
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Consequently, proposition 2.5.25 can also be strengthened, in the 
e e 

sense that a category K (CR) or K (ZM) will conta:i.n topologically dual-

ly universal morph1.sms and bimorphisms as soon as it conta1.ns a topo·· 

logically dually universal object. 

3,4. Applications 

This sectton contains several results obtained by means of the constructions leading 

to the fundamental embedding theorem and its strengthened version for neat categories. In 

the considerations below we no longer restrict these constructions to properly defined 

categoriesJ applying them now to individual spaces too. Moreover~ we also derive a number 

of results that are not of the nature of existence theorems on universal or dually uni

versal morphismst such as a generalization of e. theorem of R.D. ANDERSON on raising of 

self-maps of compact metriza.ble spaces to self-maps of the Cantor discontinuum.t or such as 

a slight strengthening of a theorem of J. DE GROOT and R.H. MC.OOVIELL on the possibility 

of obtaining countable metrizable groups as continuous isomorphic images of groups of ho

meomorphisms of the Cantor set. 

3 ,<Ll. DEFINITION. Let X and Y be topological spaces. Two continuous 

maps ¢ : X -+ X and iJ, : Y ..,. Y are called equivalent if there 
-1 

exists a topological map l of X onto Y such that iJ, = t 0¢ ot. 

X 

(1) 

y y 

3.4,2. DEFINITION. Let X,Y be topological spaces, and let¢ : X-> X and 

iJ,: y+y be continuous. We say that iJ, can be raised or lifted 

to¢ if there exists a continuous map t of X onto Y such that ti),= (j)t 

From the considerations in the previous section we derive at 

once the following two propositions: 

3,4.3, PROPOSITION. Let X be a topological space, and suppose X 1.s 
it 

homeomorphic to a topological product Y O Then there exists 

an autohomeomorphism <I> of X (a continuous self-map 'I' of X) with the 

property that every possible autohomeomorphism (continuous of 

an arbJtrary subspace of Xis equivalent to a suitable restriction of 
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<l? (of '!', respectively). Ir. 
Examples of spaces X which are homeomorphic to a product Y O are 

the Cantor discontinuum, all generalized Cantor discontinua, the space 

of all irrational numbers with the topology induced by the topology of 
k 

the real numbers (this space is homeomorphic to N °; cf.ro], Vol.I, 

ll4 V), the Hilbert fundamental cube, all Tychonov cubes of transfin-
N: 

ite weight, the infinite torus T 0 , etc. 

REMARK;l:;. A space X obviously is homeomorphic }ta topological pro

duct Y O if and only if X is homeomorphic to X 0 

REMARK 2. Let X be a h:opological space, homeomorphic to a denumerable 

topological product Y 0 • Our constructions indicate that the bilateral 

shift t: x1 + x1 , such that 

(2) 

is (equivalent to) a universal autohomeomorphism for X. 

R.D. ANDERSON pointed out to us that it is possible to describe <P 

in a different way. Let A be an arbitrary denumerable seL Then x1 is 
Ax I IXA 

homeomorphic to the space\' and hence also to Y . If we identify 
I xA 

X with , the action of <l? can be expressed in the form 

(3} (ri ) i:, = (ri ) • 
k,a ktl,aE.A k+l,a ke.I,aE:A 

Let Z , and let <P 0 : Z ➔ Z be the bilateral shift with base Y: 

(4) 

for arbitrary(;= (r\)kt 1 t Z. If we now identify YI><A with ZA, it 

turns out that ¢ is equivnlent to the autohomeomorphism A : zA_, ZA 

such that 

(5) 

A 
for arbitrary z (1; 0_) 0 EA E Z 

Similarly the unilateral shift on XN, which is a universal con

tinuous self-map, can be split up in a "product" of denumerably many 
N 

copies of the unilateral shift on Y . 
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Thus, for instance, a universal autohomeomorphism of the Cantor 

discontinuum C is obtainable as the "product" of a denumerable number 

of copies of the bilateral shift on { 0,1} 1 . This is of interest, as 

the bilateral shift with {0,1} as base space has been extensively stu

died (see e.g. W.H. GOTTSCHALK and G,A. HEDLUND [45], section 12). 

3.4.4. PROPOSITION. Let X be a topological space, and suppose Xis ho-

meomorphic to a topological sum of Jr copies of a space Y. Then 
0 

there exists an autohomeomorphism <I> of X (a continuous self-map 'l' of 

X) with the following property. If Z is any continuous image of X,then 

every possible autohomeomorphism (continuous self-map) of Z can be 

raised to <I> (to 'l' , respectively). 

Examples of spaces X which are homeomorphic to a topological sum 

of Jt copies of a space Y (or equivalently, which are homeomorphic to 
0 

a topological sum of Jt copies of X i tselO are the space of all ra-
o 

tional numbers with its usual topology, the space of all irrational 

numbers, the open Cantor discontinuum (i.e, the Cantor discontinuum 

minus one point), all infinite discrete spaces, etc, 

Every separable complete metric space is a continuous image of 

the space of all irrational numbers (cf.[7o], Vol,I, §32,II), More 

generally, every Souslin space is a continuous image of the space of 

irrationals (by a Souslin space we mean a topological space which is 

a continuous image of a separable, metrizablc, and metrically topolo

gically complete space). Hence we have: 

3A.5, COROLLARY, There exists an autohomeomorphism ij, (a conUnuous 

self-map 'l') of the space of irrational numbers to which every 

autohomeomorphism (continuous self-map, respectively) of an arbitrary 

Souslin space can be raised. 

The class of Souslin spaces comprises not only all separable com

plete metric spaces, but also all Borel subsets and even all analytic 

subsets of separable complete metric spaces (see e.g.[70] and [114]). 

Every a-compact metrizable space is a continuous image of the 

open Cantor discontinuum (this follows easily from the fact that 

every compact metrizable space is a continuous image of the Cantor 
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set; cf. the notes to chapter 1). Hence: 

3.4.6. COROLLA.RY. There exists an autohomeomorphism (a continuous self

map) of the open Cantor discontinuum to which every autohomeo

morphism (continuous self-map, respectively) of an arbitrary a-compact 

metrizable space can be raised. 

Every denumerable non-compact metrizable space may be mapped con

tinuously on every countable metrizable space (J. DE GROOT ~5*],theorem 

IV). In particular, every countable metrizable space is a continuous 

image of the space of all rational numbers. Hence, from proposition 

3.4.4: 

3.4.7. COROLLA.RY. There exists an autohomeomorphism t (a continuous 

self-map '¥) of the space of rational numbers, to which every 

autohomeomorphism (every continuous self-map, respectively) of an ar

bitrary countable metrizable space can be raised. 

REMARK 3. Let :: be a class of topological spaces. We will denote by 

:: n (:: l:) the class of all spaces Y which are homeomorphic to a topo

logical product (a topological sum, respectively) of Jt copies of a 
0 

space X E: :: • Whenever _ stands for the class of all topological 

spaces we will omit it; i.e. in that case we write i:, i::n, n i:: etc. in

stead of = l: , = E n, :: 11 l:, respectively. Furthermore we wi 11 use (within 

the confines of this remark) the notation X = Y to indicate that the 

topological spaces X and Y are homeomorphic to each other, 

For all X G Il there exist topologically universal autohomeomor

phisms and continuous self-maps (proposition 3.4,3). (More exactly, 

the category K of all continuous self-maps of X contains topologically 

universal morphisms and bimorphisms). Similarly all XE; l: have dually 

universal autohomeomorphisms and self-maps (proposition 3.4.4), It 

follows that in all spaces X ~ n /"IE there exist both topologically uni

versal autohomeomorphisms (continuous self-maps,) and topologically 

dually universal ones, 

It is therefore of interest to note that 

(6) nni: =i::n. 
I, 

In fact, l: nnc:: i::n, for if XEl: nn, then X::XxI and X::X, and hence 
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(7) X - (X x I ) I ~ l: 11 • 

Clearly I: Ile 11. And I: 11 c. l:, for if X (; I: 11 , say 

(8) 

then 

(9) 

X = (Y XI) I' 

X = (Y X I) I X (Y )( I) = ( (Y X I) I X Y) X I ~ I: • 

The simplest non-degenerate example of a space X 611 n I: is the 

space of all irrational numbers: this space can be obtained from a 

one-point space Y by applying first the I: -operation and next the 11-

operation. Other examples are the topological product of the space of 

all irrationals with the Hilbert fundamental cube, or with the infi

nite torus. Generally: if X E. 11 and Y f. I: 11 , then X x Y G. I:11 • Indeed: 

(10) 

and 

(11) 

X x Y = x1 x YI = (X x Y) I Ii:. 11 

X x Y :: X x (Y x I) : (X x Y) x I Iii. E • 

(We observe in addition that it is easily seen that the classes I: , 11, 

I: IT and IT I: are all distinct, and that no new classes can be obtained 

by applying IT or I: again). 

3,4.8, DEFINITION. Let X be a completely regular space, and let S be a 

set of continuous self-maps of X. A compact space X' is called 

an S-compactification of X if there exists a topological map T of X on-
-1 

to a dense subspace of X' such that every map T oa <> t: X1 ..,. Xt 

(a IE S) can be continuously extended to a map a' : X' -+ X', 

3.4.9. PROPOSITION. Let 6 IE ORD, let X be a completely regular space 

of weight at most Jta , and let G be a semigroup of continuous 

self-maps of X with card(G) ~ Jt6 • Then there exists a G-compactific

ation X' of X with weight at most Jta. 

PROOF. Let F be a topologically (X'a)-universal semigroup of morphisms 
a in K (CR); its existence is warranted by theorem 3,3.4 together with 

proposition 3.2.7. Say Fc:H(U,U), where U =[,0,1] fte is compact, Then 

there exists a topological map t: X ..,. U such that every y le. G is equi

valent to a map $IX1. It follows that the closure of XT in' U is a G

compactification of X. 
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Proposition 3.4,9 can be immediately sharpened to the following 

theorem: 

3.4.10. THEOREM. Let X be a completely regular space, and let S be a 

set of continuous maps o: X-> X. Then there exists an S-com

pactif'ication X' of X such that 

(12) weight(X') ;;, }t .card(S) ,weight(X). 
0 

3.4.11. COROLLARY (J. DE GROOT and R.H. MCDOWELL [s1] L If X is a 

separable metrizable space and if Sis countable, X has a 

metrizable S-compactification. 

If we make use of proposition 2,5.20 we obtain similarly: 

3.4.12. COROLLARY. If Xis a zero-dimensional separable metrizable 

space, and if Sis countable, X has a zero-dimensional metriz

able S-compactification. 

REMARK 4. Let X' be an S-compactification of X;without loss of general

ity we may assume that X' contains X as a dense subset in such a way 

that every a 4 S is the restriction to X of a continuous map 

a' : X'-+ X', Then, as X is dense, o' is uniquely determined by a; 

moreover, all algebraic relations between elements a. of S also hold 
l 

between the corresponding elements ai· In particular, if a is a re

traction of X (i.e. if a2 = a), then a' will be a retraction of X'; 

if a is of order 2, a2 = ix, then (0 1 )
2 = iX'' etc. In general, if 

Sis a (semi-)group, so is S' = {a' : a e S}, and o-> a' is an iso

morphism of S onto S'. 

A different way to arrive at this is the following, For our pre

sent purposes we are not interested in universal systems of morphisms; 

hence there is no reason for working with a free semigroup or group 

in the constructions of section 2.4. If instead we use a star functor 

constructed by means of the semigroup or group generated by S, wear

rive at once at a compactifying semigroup S' which is isomorphic with 

3.4.13. COROLLARY, Every topological group G can be topologically em

bedded as a dense subset in a compact Hausdorff space X in 



120 

such a way that all left and right translations in G can be extended 

to autohomeomorphisms of X. This can be done in such a manner that the 

weight of X equals max {card(G), weight(G)} . 

3,4.14. COROLI.ARY. Every topological semj_group G can be topologically 

embedded as a dense subset in a compact Hausdorff space X in 

such a way that all left and right translations in G can be extended 

to continuous self-maps of X. The space X can be made to satisfy the 

additional requirement: weight(X) = rnax{card(G),weight(G)}. 

In particular, if G is a countable rnetrizable group, the space X 

can be taken to be compact rnetrizable (cf. [ 51] , corollary 2. 8). 

From corollary 3 .1.12 we obtain si_milarly: 

3.4.15, COROLI.ARY. Every countable zero-dimensional metrizable topo-

logical group G (semigroup S) can be topologically embedded as 

a dense subset in a zero-dimensional compact metriza!Jle space X, i.n 

such a way that all left and right translations of G can be extended 

to autohomeomorphisms (continuous self-maps, respectively) of X, 

3,4.16. LEMMA. Let G be a topological group and suppose the space G is 

a dense subspace of a compact Hausdorff space X, Furthermore, 
·, 

suppose that for each Y G G there exists an autohomeomorphism y' of X 

extending right translation over yin G: (y )y' = y •Y , for every 
0 0 

E.G. Then the map h : y'+ y is a continuous isomorphism of the 

group G' = {y• Y ~ G } , furnished with the topology of uniform con-

vergence, onto G. 

PROOF, 
Let the neutral element of G be designated by t, and let Ube 

an arbitrary open neighbourhood of E, Let V be an open subset of X 

such that VnG = U, and let 

and V c. U. 
0 

The set 

be an open subset of X such that £ ~ V 0 

(13) w (V x V) U ( (X '\ V ) x (X \ V ) ) 
0 0 

is a neighbourhood of the diagonal le:., .. { (x,x) xE. X] in Xx X; hence 

the set 
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(14) S = {y'e.G':(x,xy')<!: W for all x,i;.X} 

is a neighbourhood of the identity ix of G' in the topology of uniform 

convergence, As obviously Sh= U, it follows that his continuous, 

3.4.17. PROPOSITION. Every topological group G is the image under a 

continuous isomorphism of a group G' of autohomeomorphisms of 

a compact Hausdorff space X, furnished with the topology of uniform 

convergence. The space X can be made to satisfy: weight(X) = 

= max{card(G),weight(G) }, If G is zero-dimensional, X can be chosen 

to be zero-dimensional too. 

PROOF. All assertions follow readily from corollaries 3.4.13, 3.4.14, 

3.4.15 and lemma 3.4.16. 

It is an open problem whether K0 (CZ) contains dually universal 

morphisms or bimorphisms (problem 1 in section 2.5). However, 

R.D. ANDERSON [4] has shown that at least every autohomeomorphism or 

continuous self-map of an arbitrary compact metrizable space X can be 

raised to the Cantor set. We will present below a different proof, 

based on the direct product constructions used in chapter 2 in order 

to obtain universal morphisms; at the same time we extend ANDERSON's 

theorem to countable systems of mappings: 

3,4.18. THEOREM. Countably many autohomeomorphisms (continuous self

maps) of a compact metrizable space X can always be simultan

eously raised to autohomeomorphisms (continuous self-maps) of the 

Cantor discontinuum C. 

In fact, we will prove somewhat more; 

3.4.19. THEOREM. Let S be a countable system of autohomeomorphisms 

(continuous self-maps) of a compact metrizable space X. Then 

there exist a system S of autohomeomorphisms (continuous self-maps) 

of the Cantor discontinuum C, a 1-1 map o ➔ o of S onto S, which is 

an open map if both Sand Sare furnished with the topology of uni

form convergence, and a continuous map 1: of C onto X, such that 

01:=1:o, for all OE:S, 
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0 

(15) 

x--------- X 
0 

PROOF. 
We only treat the case of a countable set S of autohomeomor-

phisms o '. X + X, the case of conti.nuous self-maps being entirely sim

ilar. 

If Xis a zero-dimensional space, the situation is extremely sim

ple. For then the topological product X "C is homeomorphic to C; let p 

be the usual projection Xx C ➔ X, and for each o E. S let o' ; X >< C + 

X x C be de Ii ned by 

(16) (x,c)o' = (xo,c), 

for arbitrary x E: X and c E. C. Then al ways o' <> p = p <> o, and it is irn-

mediately verified that the map o•-,, o is continuous if Sand 

S' = { 0' a 11; S} are provided wi. th the topology of uniform convergence. 

Next, let X be an arbitrary compact metrizable space. Let F be 

the group generated by S; by what we have shown already it suffices to 

raise every ¢ ~ F to an. au tohorneomorphism-:;:- of a zero-dimensional com

pact metrizable space Y, by means of one single continuous map T of Y 

onto X, in such a way that the map <P-+ ,p is open. 
• F F • For each ¢ O E F we define q, O : X ·• X in the usual way: ,p O o 11¢"" 

11~ , for each canonical projection 11 
F 

X -+ X; and we define 
"'o<P F ¢ 

the topological embedding I.!: X ·•· X (again: as usual) through the 

condition: µ,, 11 = ¢, for all q> E. F. 
4 + 

Similarly for each 40 e. F we define q, 0 CF -,, CF by the conch tion: 

¢ +" 11' 11' for each ¢ E F, 11:, denoting the canonical projection 
o F ¢ ¢oqi 'I' 

of C onto the compcnent space C correlated with the index¢. 

As C is dually universal for K0 (c) (cf, section 1,6), there 

exists a 

map v of 

y = (Xµ v 

map,= 

continuous map v of C onto X. This map induces a continuous 
F F 

C onto X , where v@ 11 = 11' o v , for al] ¢ E F. Let 
-1 (j, ¢ 

Y is a zero-dimensional compact metrizable space, the 

-1 -1 
Y) 0 µ = (v Y) o TT. is a continuous map of Y onto X, and ix 
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toiP= (cp+IY)o 't', for every cp t.F. 

Thus we have succeeded in lifting all cp t F, i.e. theorem 3.4,18 

is now proved. Now let F* ={o*lxu :cpt.F} and F+ = {c!>+IY: cj,E.F}, both 

groups furnished with the topology of uniform convergence. Clearly the 

map h: 4/jy-+ cp*lxu (,Pt.F) is an isomorphism of F+ onto F*; we must 

show that this map is continuous. 
X ---------- C 

?: Y-
(17) 

X 1!iii'----.....,.----,il-.....;;i•..,_ __ 

~ ix 

A basic neighbourhood of the idcnti ty element of F* is of the form 

(18) 
.. , .. 

U = {¢, Xu : (x,x¢ )£ W for all xEXul , 

where Wis a neighbourhood of the diagonal in Xu x XU. It is to be 
-1 + 

shown that Uh is a neighbourhood of iy in F. This is indeed the 
-1 

case: for Uh contains the open subset 

(19) + + V = {cp IY: (y,y<!J )EW' for all yEY} 

of F+ 
' 

where W' is the following neighbourhood of the diagonal in Y>< Y: 

(20) W' = { (yl,y2)E yxy (yl-:;;,y2v)E. w1 - - -1 : = (W) (v><v) • 

(The fact that W' is a neighbourhood of the diagonal - W' is even open 

in yx Y! - is a consequence of the continuity of v ) . 

REMARK 5, It follows from the proof that in the raising procedure just 

described algebraic relations are again retained. 

In particular: 
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3.4.20. COROLIARY. Every retraction of a compact metrizable space X 

can be raised to a retraction of the Cantor discontinuum C. 

From theorem 3.4.19 in conjunction with corollary 3.4.14 we ob

tain at once the following slightly strengthened version of a result 

of J. DE GROOT and R.H. MCDOWELL [51] on metrizable groups: 

3 .4 ,21. THEOREM. Every countable metrizable group G is a continuous 

isomorphic image of a group of automorphisms of C, the last 

group furnished with the topology of uniform convergence. 

Let K be the category of all uniformly continuous maps of one 

uniform space into another. In K, direct joins always exist: if Xt is 

a uniform space, for each t"T, let X = tFT Xt, furnished with the 

product uniformity, and for each t" T let 11t X -+ Xt be the cor

responding canonical projection: (E, 5 ) 5 Ea T 11t 

direct join of (X ) , 1,. t t & e 
By proposition 1.6.8, K admits a K -universal object, for each 

8 (;; ORD. Hence K contains K8-universal morphisms etc. As proposition 

1.6.8 asserts that a 
ll • l! rj . 
uniformly K -universal object exists, we even 

obtain, by arguments similar to those leading to theorem 3.3.4: 

3.4.22. PROPOSITION. Let 8 E: ORD. There exists a unii'orm space X, a 

uniformly continuous map <!> : X . .,. X and a uniform isomorphism 

t of X onto itself for which the following is true. If U is an ar

bitrary uniform space of weight at most Jt8 , and if¢ : U -+ U is uni

formly continuous (if lj, is a uniform isomorphism of U onto itself), 

there exists a uniform isomorphism t of U into X such that t<l>= ¢it 

(such that ,r ~ lj,t , respectively). 

We conclude this section with an analogous result for metric 

spaces, 

3,4,23. PROPOSITION. Let 8 ~ ORD, There exists a metric space X, a 

contraction \!> : X -+ X and an isometry f of X onto itself with 

the following properties. If Mis any metric space of weight at most 

Jt.8 , and if ¢ : M-+ M is a contraction (if lj, is an isometry of M onto 
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itself), there exists an isometry , 

that T'Ji::: 1jrr, respect:i,vely). 

M + X such that T~ = $, (such 

PROOF. As we do not know whether direct joins always exist in the cate-

gory of all contracting maps of one metric space into another, a direct 

proof is presented, We restrict ourselves to the case of isometries. 

Let Y be a metric space in which every metric space M of weight at 

most /t0 can be isometrically embedded; such a space exists', according 

to proposition 1.6.7. We will denote the metric in Y, and in all other 

metric spaces occurring in this proof, by I, I 
Let X be the subset of , consisting of all bounded functions 

(21) I x,y I = sup j£;k,11kl 
k .-: X 

This is a metric for X. Furthermore, we define '¥ 

conditions 

(22) 'jl <> TI 
k TI k+l' 

X + X through the 

for each k 6 I, where TI k stands for the map ( ~h) h E 1 -+ £; k. Clearly ~• 

is an isometry of X onto itself. 

Now let M be an arbitrary metric space of weight at most Jt6 , and 

let ~: M + M be an isometry. Letµ be an isometric embedding of Min

to Y. We define a map t: M + X by the condition that 

(23) t "rr k 
k 

1/J 0 µ ' 

for arbitrary k ~ I. Then T is an isometry, and 1 o 4' = 1/J <> 1 • 

3, 5. Linearization of continuous self··maps 

This section contains nothing essentially new. H~1tiler, it is a connecting link be

tween this chapter and the next one, showing how the problem of linearization of mappings 

is closely related to our considerations concerning universal continuou,s self-maps. 
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3,5,1. DEFINITION. Let Ebe a topological linear space. We say that a 

continuous self-map ¢ of a topological space X can be linearized 

in E if there exist a topological map T : X-+ E and a continuous lin-

ear opera tor <l> : E ➔ E such that T " ¢ = ¢ "' T • 

If ¢ can be linearized in Eby means of the embedding r, then 

clearly the subset X T of E is invariant under the linearizing operator 

¢, and .P= To(<l>IXT)o,-1 . 

3.5.2, DEFINITION. Let Ebe a topological vector space. If Xis a to-

pological space and Fa scmigroup of continuous self-maps of X, 

then an F-linearization of Xis a topological map T: X ➔ E with the 

following property: there exists an isomorphism h 0f the semigroup F 

into the semigroup of all continuous linear operators in E such that 

T" ('llh) =.P.,1, for every q,i.; F. 

E -----~qi_l_i _____ ..,.. E 

(1) /, 
x-------------x 

REMARK 1. An F-linearization could be considered as an F-equivariant 

embedding in the sense of A. HELLER l57] . 

it 'Jt. Tychonov cube X = [ 0, 1] 0 is a subspace of the space 

E = R 0, R denoting the real line. If Fis a semigroup, ¢ 0 E F, and 

* F F if qi0 : X - ➔ X is again defined by 

(2) 

for 

map 

(3) 

for all 

over R in the natural 

* then ¢ 
0 

is the restriction to XF of the 

If we consider EF as a topological linear space 

way (i.e. we consider EF as a topological direct 
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product of Jt0.card(F) linear spaces R), then each ¢ , qi & F, obviously 
F o o 

is a continuous linear operator in E . Thus we find (cL theorems 

2,5,13 and ~.3,2): 

3.5.3. PROPOSITION. Let O t: ORD. There exists a topologically (ft0)

universal semigroup S of morphisms (group G of bimorphisms) in 

K6(CR), consisting entirely of continuous linear operators in a topo

logical vector space. 

In particular, if Sis a set of continuous self-maps of a com

pletely re~tlar space X, all maps of Scan he simultaneously linear

ized in a (locally convex) linear space E of weight card(S) .weight(X). 

• }to· 

3.5,4. COHOLlAHY. For each O <E ORD, there exists a continuous linear 

operator (a linear autohomeomorphism) in a complete locally 

convex linear space E of weight .N-0 which universally linearizes all 

continuous selJ-maps (all autohomeomorphisms, respectively) of com

pletely regular spaces of weight at most .N-0 . 

If we are not interested in a universal linearization, we may 

replace the free group or semigroup Jiguring in the proofs of theorems 

2.4.1 and 3.3.2 by the given group of autohomcomorphisms or semigroup 

of continuous self-maps, In this way \\'C obtain: 

3.5.5, PROPOSITION. Let F lJe a semigroup of continuous self-maps of a 

complelely regular space X. Then there exists an F-lineariza-
K 

tion of X in the topological vector space R with K = card(F) . 

. weight(X). Jt . 
0 

If a continuous self-map <Jl : X -• X admits linearization in some 

topological linear space, then the space Xis of necessity completely 

regular: every topological group, and a fortiori every topological 

vector space, is completely regular. 

The results of this section show that conversely continuous 

self-maps of completely regular spaces always can be linearized,and 

even in topological linear spaces which are locally convex and com-
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plete and which have several other nice properties. 

If one is interested in self-maps of metrizable spaces, these re

sults are no longer satisfactory. For every metrizable space can be 

topologically embedded in some Hilbert space, and Hilbert spaces are 

much nicer generalizations, to infinite dimensions, of the finite

dimensional euclidean spaces Rn then are the spaces R N's. 
However, the methods of sections 2.4 and 3.3 can not be applied to 

Hilbert spaces, at least not without modifications: we have shown 

(corollary 3,2,12) that, in K8(H), 

(4) 

for each OE ORD and for each Hilbert space H containing more than one 

point, 

It will be shown in chapter 4 how the methods of section 2,4 can 

indeed be modified - under additional assumptions - to give results in 

Hilbert spaces, So, for instance, whereas corollary 3.5,4 asserts that 

there exists a continuous linear operator in a Frechet-space which is 

universal for all continuous self-maps of separable metrizable spaces, 

it will be shown in section 4,3 that there exists even a bounded lin

ear operator in a separable Hilbert space enjoying this property. 

3.6. Notes 

In the category of all T1-spaces, topological mappings jnto have 

been characterized by H.-J. KOWALS~ [ss] in the following manner. 

If K is an arbitrary category, and if a,~ EK, we write 

(1) 

if aE== BE, while moreover 6y1 = by2 for all Y1 ,y2 e K such that 

ay 1 = 'lly2 . The morphism \.lEK is called an injection if it is a mono

morphism satisfying the condition: wheneverµ+ a,a EK, there exists 

a ti EK such that a= D\.l. 
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(2) 

Now in the category of all T1-spaces the injections turn out to be 

exactly the topological mappings into, 

The same characterization is valid for the categories of topolo

gical spaces considered by us. As in most categories of algebraic sys

tems every monomorphism is an injection, the considerations of chapter 

3 and of chapter 4 could have been given a unified treatment by means 

of a change of the definitions of universal objects, morphisms, bimor

phisms etc. requiring the existence of suitable injections instead of 

monomorphisms. We felt, however, that this would have been an unnatur

al complication in all non-topological cases. 

H.-J. KOWALSKY calls a morphism v of K which is an injection in 
* the dual category K a surjection; in the category of all T1-spaces 

(and also in the categories of topological spaces considered by us), 

the surjections are exactly the continuous maps v of a space X onto a 

space Y such that Y has the quotient topology determined by v. t can 

easily be verified that theorem 3.3.5 remains true if in the definit

ions of topologically dually universal objects, (bi-)morphisms, sys-

terns of morphisms etc .. (definitions 301~1 and 3"1 .. 2), the words na 

surjection v are substituted for every occurrence of the words "a 

continuous map v ". 

The results of section 3.3 are essentially contained in the pre

liminary note 

The specific instances of proposition 3,4.4 embodied in corol

laries 3,4,5 and 3.4,6 were suggested to us by J. DE GROOT. 

Our definition of an S-compactification (definition 3.4,8) dif

fers from the original one by J. DE GROOT and R.H. MCDOWELL [s1] in

asmuch we do not require the compactifying space X' to be metrizable. 

Theorem 3,4.10 is due to J. DE GROOT (oral communication); the special 

case expressed by corollary 3.4.11 was first proved by J. DE GROOT and 
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R.H. MCDOWELL [51] , using entirely different methods. Corollaries 

3,4,12 and 3,4.15 are also proved in [51] again in a completely dif

ferent way. 

As mentioned, the special case of theorem 3,4.18 obtained when 

only ~ mapping needs to be raised, is due to R.D. ANDERSON [4] . Our 

proof of theorem 3.4.18 (the first part of the proof of 3,4.19) is mo

delled after a proof of J. DE GROOT of this special case. This proof, 

which was orally communicated to us, differs considerably from 

R.D. ANDERSON's original proof. 

Theorem 3,4,21 was proved by J. DE GROOT and R.H. MCTlOWELL under 

the additional assumption that G is not discrete ( [51] , corollary 

-z. 9). 

The results of section 3.5 are all due to J. DE GROOT ,49] , 



4. LINEARIZATION IN HILBERT SPACE 

4.1. Discussion of the methods to be used 

The methods of the previous chapters can be adapted in order to obtain results on lin

earization in Hilbert space oI certain topological transformation groups acting on a metriz

able space In this preliminary sections it is explained why modifications are necessary, 

and a motivation 1s given for the methods that will be used. 

In K8 (H) every direct join is equivalent to a topological direct 

product; on the other hand, the direct product of more than finitely 

many non-trivial Hilbert spaces is not itself a Hilbert space (cf. pro

position 3.2.12 and corollary 3.2.13). Therefore the methods of the 

previous two chapters do not work unmodified for Hilbert spaces. 

One could try to replace direct products by Hilbert sums. We re

call that the Hilbert sum of an arbitrary family (Ht)tE. T of Hilbert 

spaces (Ta non-void index set) is the linear subspace 

(1) EB Ht { (xt)t .:TE. 1P Ht I II 12 < ""} 
t 1c T 

t E. T 
t Ea T Ht 

of lP Ht' with the inner product of x (xt} t e. T and y 
t E. T t 1' T 

defined by 

{2) 

If Tis finite, then E9 Ht 
. teT 

under all circumstances. 

1P H · and 
t E: T t' 

is a Hilbert space 

However, this replacement is inadequate. If e.g. Sis an uncount

able semigroup acting on a Hilbert space H, and i.f we would try to 

linearize the action of S by our standard construction, embedding Hin 

K == 

s, 

(3) 

E9 H by means of the map T which sends 
ae. s 

I; e. H on to its orbit under 

then, among other things, we must have l;o= 0 for all but countably 
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many o Ea S. This imposes an extremely rigorous condition on the action 

of S. 

We therefore propose to use a kind of "Hilbert integral" instead 

of Hilbert sums. We admit as index sets only groups or semigroups on 

which a suitable integral is defined (this practically limits us to 

locally compact groups). Given such a group or semigroup G and also a 

Hilbert space H, we will consider the linear space C(G,H) of all 

square-summable continuous maps G ➔ H, made into a prehilbert space in 

a natural way. More exactly, we define (limiting us, for the moment, 

to the case where G is a locally compact group): 

4.l.l. DEFINITION. Let G be a locally compact group, and let H be a 

Hilbert space. Then C(G,H) denotes the linear space of all con

tinuous maps G ➔ H which are square-summable with respect to Haar 

measure in G. If x,y i: C(G,H), we put 

(4) 

where 

(x,y) J (x , y ) dy , 
G y y 

(y) stands for the value of the function x (of y, respect
y 

ively) in YE. G, and where dy denotes, as usual, the Haar measure in 

G. 

It is immediately verified that by (4) an inner product is de

fined in C(G,H); in other words, C(G,H) is a prehilbert space. 

The Hilbert sum of a number of copies of a Hilbert space H can 

be considered as a special case of the "Hilbert integral" C(G,H): 

4.1.2. PROPOSITION. If G is a discrete group, and if the Haar measure 

on G is normed in such a way that every one-point set has 

measure 1, then 

(5) C(G,H) 

where each H coincides with H. 
y 

4.1.3. CONVENTIONS. In the sequel, we suppose the following conditions 

satisfied: 
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(i) The Haar measure on a 1ocally compact group G is defined in 

such a way that it is left-invariant. 

(ii) If G is compact, the Haar measure is normed in such a way 

that G has norm 1. 

(iii) If G is discrete, the Haar measure is normed in such a way 

that every one-point set has measure 1, 

Suppose now that G is a locally compact transformation group, 

acting on a metrizable space X. Then X can be embedded as a bounded 

set in a Hilbert space H (proposition 1.4.8); let us suppose that X 

is already a subspace of the unit ball of H. What can we say now about 

the ·map T, sending each x E'; X onto its G-orbi t? 

If we put xT = t, where€; is the function G ➔ H such that 

(6) (y)E; = (x)y 

for every y E G (in complete accordance with ( :3)), then t certainly is 

a continuous function, but€; need not be an element of C(G,H): 

not be square-summable! 

need 

It is in order to remedy this defect that we in the next section 

introduce weight functions. Such a weight function f (there need not 

always exist one, probably) correlates a scalar to every YE.Gin 

such a way that for every x E X the map E;: G + H, defined by 

(7) (y)i; = (yf). ) ' 

for all y E G, is an element of C(G,H). Moreover, the definition of a 

weight function is carefully tailored to ensure that the mapping 

T: X + C(G,H), sending xeX onto the €;.e.C(G,H) defined by ('/),is a 

topological embedding, and that for every ye Ga bounded linear oper-

* ator Y: C 
-w 

H) ➔ C(G,H) can be defined such that Toy= yo T • In ef-

feet, the homeomorphism 

(8) 
G 

T : X -+ X T c C ( G, H) c. H 

turns out to be such that on XT the topology determined by the pre

hilbert norm coincides with the weak topology, Le. the topology in-
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G * duced by the product topology of H , and the map y is essentially a 
n n G 
permutation of the axes of H, of the same type considered already 

so often in the previous chapters. 

4.2. Weight functions and W-groups 

In this section we define weight functions! and we prove that such functions exist for 

a large class of groups. This class contains all compact groups, all countable discrete 

groups; the additive group of real numbers; moreover it is closed under finite direct pro

ducts and under group extensions of a certain type, and each subgroup of a group in the 

class itself belongs to it. It follows that a locally compact abelian group admits a weight 

if it is either separable or compactly generated. 

4.2.1. DEFINITION. Let G be a locally compact group. A weight function 

or weight on G is a continuous real-valued function f on G with 

the following properties: 

(i) (£)f = 1 (E = unit of G); (Y)f > 0 for every y E. G; 

(ii) (y1 y2 )f ,;:.(y1 )f.(y2 )f, for arbitrary Y1 ,Y2 e G; 

(iii) f is square-summable with respect to Haar measure in G. 

A locally compact group G is called a W-group if there exists a weight 

on G. 

4,2,2. LEMMA. Let Ghea locally compact group, and let f be a weight 

on G. Then there exists a sequence of compact subsets Cn of G 

such that 

(1) o. 

PROOF. 2 
As f is a non-negative measurable function such that 

f G 

2 cty < oo (condition (iii) of definition 4.2.1), there exists a 

function g defined on G such that 

(2) 
2 

0 ~ (y)g ~ (yf) , for all y.;, G; 

(3) J (y) g dy = I 
G G 

while moreover f'or each real a~ 0 the set 

2 
(yf) dy 



(4) 

is a-compact (cf. [ss] 
Then 

(5) 

hence 

(6) 

:!.35 

{yE.G: (y)g > a} 

theorem 11.40). Let A {y €. G 

f (Y)g dy 
A 

(Y)g>Ol. 

Ia(y)g dy"' 

f 

j (Yf) 2 dy 
G 

As A is a-compact, there are compact subsets 

that enc Cn+l for all nE. N while moreover A 

,c1 ,c2 , ... of G such 

U C • It follows that 
n<li. N n 

(7) 

which is equivalent to the assertion (1). 

4.2.3, PROPOSITION. Every countable discrete group is a W-group. 

PROOF. 
i. First we consider a free group F with denumerably many free 

generators an' nE.N\{O}. Let i:: be the unit of F. 

Every¢~ F, ¢I£, can be uniquely written as a reduced word 

(8) $= 
k2 

a a .• • a 
nl n2 n 

s 
s 

we put -Li\1l•n0 

(9) ((j,) f 2 cr=l 

and 

(10) (E)f = 1. 

If qi is the reduced word (8}, the length of ¢ is the J.nteger 
s 
l lk I By induction on the length of¢, one easily shows that, for 

a=1 ° 
each ne N, 

hence 
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(12) 

Thus in order to show that f is a weight on Fit only remains to prove 

that condition (ii) of definition 4.2.1 is satisfied. 

Let $1 ,¢ 2 ~ F, and first suppose that $2 has length 1. Then ¢2 is 

of the form a i, i= +1. If ¢1 = E, we have 
n -

If has (8) as its reduced form, then 

(14) { 
2n,(j) f if k =n and i •k < O· 

1 s s ' 
(,j)l,j)2)f -

2-n,¢ f otherwise. 
1 

-n 
Hence (<P1 ¢2 )f~ 2 •<P1 f = (¢1 f) • (¢ 2 0 in all cases. 

Using induction on the length of $2 , one can now easily show that 

(¢1 4l2 )f ~ (¢1 f) · (<P 2 f) for arbitrary ¢ 1 ,(j, 2 e F. 

II. Now let G be an arbitrary countable group. Then there exists a 

homomorphism h of F onto G. We define, for y E G: 

(15) yf 
0 

-1 
= sup {H :4>e.yh } . 

t follows from the way in which f was defined that not only this su

premwn exists as a finite number, but that even 

(16) 

(17) 

t follows that 

(18) 

Moreover, 

(19) 

yf 
0 

I 
y €. G 

Thus f 0 i.s a weight for G. 

max 

Y. 
l 

(j). f 
l 

Y.f 
l 0 

(i=l,2); 
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4.2.4. THEOREM. Every compact group is a W-group. 

PROOF. If G is compact, the function which is identically 1 on G is a 

weight. 

4.2.5. PROPOSITION. Let G be a locally compact group, and suppose G 

contains a compact normal subgroup G0 such that the factor 

group G/G is discrete and countable. Then G is a W-group. 
0 

PROOF. Let f be a weight for GIG • We define, for ye. G: 
0 0 

(20) yf == (yG )f 
0 0 

Then f satisfies condition (i) of definition 4.1.1; and, for arbitrary 

(21) 

(yly2Go) fo = (y G •y G )f > 1 o 2 o O = 

As f is constant on cosets and as every coset is open, f is continuous. 

Moreover, the distinct cosets partition Gin countably many measurable 

sets of finite measure; if we normalize Haar measure on G such that all 

these cosets have measure l, we find 

(22) 

I 
A e.G/G 

0 

< co 

4.2.6. PROPOSITION. The additive group R of all real numbers, with the 

usual topology, is a W-group. 

PROOF. -jx I 
The function x + e , x ER, is a weight on R. 

4.2.7. PROPOSITION. Every open subgroup of a W-group is a W-group. 

PROOF. evident. 

4.2.8. PROPOSITION. Every finite product G1 x G2 x . H x Gn of W-groups 

G1 , G2 , ... ,Gn is again a W-group. 
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PROOF, Let fk be a weight on Gk, k=l,2, .•• ,n. We define f on the pro

duct group as follows: 

(23) 

Then f is a weight (condition (Hi) follows from FUBINI 's theorem; the 

other conditions are evidently satisfied). 

4,2,9. THEOREM. Every separable locally compact abelian group is a W

group. 

PROOF. 
Let G be a separable locally compact abelian group. Then G is 

topologically isomorphic to a direct product Rn" G', where G' contains 

a compact subgroup G0 such that G'/G0 is discrete (see A. WEIL [108] 

p.110). As G is separable, G'/G0 must be countable. Now apply propo

sitions 4.2.3, 4.2.5, 4.2.6 and 4.2.8. 

4.2.10. THEOREM. Every locally compact compactly generated abelian 

group :i.s a W-group. 

PROOF, 
Let G be a locally compact compactly generated abel:i.an group. 

Then G is topologically isomorphic to a direct product Rn x Im" G , 
0 

where n,m"" N, I is the additive group of all integers and G0 is a com-

pact group (cf. e.g. [58] , theorem 9,8). Now use propositions 4.2 3, 

4,2,4, 4,2.6 and 4.2.8. 

4 ,2 .11. DEFINITION. A topological group is called a CW-group if it is 

the image of a W-group under a continuous homomorphism. 

4.3. Linearization of CW-groups 

We will now prove that CW-transformation groups acting on rnetrizable spaces can be lin~· 

earized in a Hilbert space. For compact transformation groups this is a result of J. DE 

GROOT (cf. [49] ) ; his proof, presented in [so], served as a model for the proof of theorem 

4.3.1 below. 
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4.3.1. THEOREM. Let G be a topological transformation group acting on 

a metrizable space M of weight Jt8 . If G is a CW-group, then it 

can be 1 inearized in a Hilbert space H of weight fr8 • 

PROOF. Leth be a continuous homomorphism of a W-group F onto G; and 

let f be a weight function on F. 

According to proposition 1.4.8 it is possible to embed M topo

logically into a Hilbert space H0 as a bounded set. To simplify our 

notation we suppose that Mis given at the outset as a subset of the 

unit ball of H • 
0 

If ( £ M, we define 

(1) X 

where 

As f,h and cph are continuous, xis continuous on F. As f is square

summable, while 

for all E; E: M and all cp E F, x is a square-summable function. Hence , 

is a map of Minto C(F,H ). 
0 

The map, is 1-1, for if t denotes the unit element of F, then 

(4) 

we will show that, is topological. 

First we prove that, is continuous. Take any x~ M1 , say x (,, 

and an arbitrary o > o. If y" M,, say y = rn, then 

(5) 

Let {F} N be a sequence of compact subsets of F such that 
n n E 

(6) lim f (¢if) 2 dcp 
n-+aoF'F 

n 

(cf. lemma 4.2.2) and let n e N such that 
0 

0 



140 

(7) f 
Then we have (using (3)): 

(8) !lx-yJI 2 ~ t 
n 

0 

For each ¢ e F there exists a neighbourhood U¢ of ¢h in G and a 

neighbourhood V<j> of I; in M such that 

(9) 

for all Y,,; U<j> and all n 6. V¢. It follows that, for y ii: U<j> and n,;;, V¢, 

(10) 
llsY-nYII ~ llco<¢h)-1;yl! + ll<i;H¢h)-nyl: < 

< o (4 J (¢f) 2 ct¢)-½. 
F 

The compact set Fn may be covered by finitely many of the sets 

-1 -1 o -1 -1 
U¢h , say by u¢ h , u¢ h , .•• , u¢ h Put v = vcp r. vcp r, ••. l"I vcp ; 
then 

1 2 n l 2 n 

(11) II (0 (¢h)-(n) (¢h) ll < 6• (4 f (¢f) 2ct.p) 
F 

for all ¢ i!i, F and all n ,;;. V, and hence 

(12) 

n 
0 

for every n .;. V. Combining this with (8), we obtain that ll x-yli < 6 

as soon as n eV, and it follows that T is continuous. 

Next we show that T-l is continuous. Suppose this were not the 

case at the point x = /;T. Then there must exist a sequence of points 

nn te.M and a 6 > 0 such that for all n 

(13) 



(14) 

For y E:. G we define 

w 
y 

= inf 
n 

we will show that always w > 0, 
y 
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Indeed, suppose w = 0 for some y O €. G. Then for some suitable 
Yo 

subsequence {n } of the sequence {n } we have 
nk n 

(15) 

-1 
As y 0 is a continuous map, it follows that n 

nk 

~. contradicting (13). 

Consequently, j_f 

(16) 

l 
then C is a positive constant. Taken so large that 2 < C. Then 

(using 13) 

(17) 

1 
C > 2 

n 

which is absurd. 

n 

Thus T is indeed a topological embedding of Minto C(F,H0 ). We 

shall now exhibit the linear operators in C(F ,H0 ) by which the Y €. G 

are linearized. 
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If q, 0 E. F and x £ C(F,H0 ), we put 

(20) -Xq> o = y = (y cj)) cj) E. F 

with 

(21) y = _p~f-
4> (4> cj))f 

0 

It follows from condition (ii) of definition 4,2.1 that 

(22) 

... 
hence cp0 is a bounded linear operator in C(F,H0 ), with norm 

(23) 11~11 

One verifies at once that 

-- --<24> cl>l 412 = 1!>1 •cl>2; 

... ... 
hence every ¢ is invertible, and the transformation 4>-+ 4> is a homo-

-+ 
morphism of F onto a group F of invertible bounded linear operators in 

C(F,H) (in fact, it is even an isomorphism). 
0 

We now show that 

(25) 

for arbitrary cj)t. F. In fact, let XE MT' say X CT. Then 

... ... ljlf 
(xcj)) ljl = (f,;Tcj)) ljl =-- (f,;t)cj)ljl 

(cj)I/J}f 

ljlf 
=-- (4>1/J) f (f,;) ( (cj)ljl)h) 

(26) (q,ljl)f 

for every ljlE F. Hence (G,M) and (FIMt,Mt) are equivalent, 

Let K be the linear subspace of C(F,H) spanned by MT; as Mt is 
0 

invariant under F (by (25)), so is Ke Let H be any completion of K; 
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all invertible bounded linear operators $IK can be uniquely extended 

* to invertible bounded linear operators¢ in H. As the weight of His 

at mostlt •Weight(M), this completes the proof. 
0 

REMARK 1. We announced in section 4.1 that the embedding T of Minto 

C(F,H0 ) would be such that the topology q-1 induced in MT 

coincides with the weak topology~-

by C(F,H) 
0 

This is indeed the case. The fact that ~c ~ follows from the 

continuity of T: II x-y II < e: as soon as ye: belongs to a small enough 

neighbourhood of xe: (cf.(4)). The fact that~c::~1 is implied by the 

continuity of t-1 ; for the continuity of t-l is equivalent to the con-

tinuity of the projection map n !MT, sending x onto x · as 
E E' 

(27) 

and as each ¢h : M-+ M (¢ e F) is continuous, it follows that n jMt is 
F cj) 

continuous for all cp .. F. And the product topology in H0 is exactly 

the weakest topology for which all n ,4> E. F, are continuous. 
4> 

If G is a W-group, we can take F ==Gin the proof of theorem 

4$3.,le As the group a*= {y'"":y £ G} is isomorphic to G = {;:yE.G} , and 

as this last group is isomorphic to G, we have: 

4.3.2. COROLIARY, Let G be a topological transformation group acting 

on a metrizable space M of weight at most\. If G is a W

group, there exists a G-linearization (cf. definition 3.5.2) of Min 

a Hilbert space Hof weight ft6 . 

4,3.3. COROLIARY. Let G be a compact transformation group acting on a 

metrizable space M of weight at most ft8 • Then there exists a 

G-ljnearization of Minto a Hilbert space Hof weight .N'8 such that the 

* action of G is linearized by a group G of unitary operators in H. 

PROOF, In the proof of theorem 4.3.1 we take F == G; for f we take the 

function which is identically 1 on G. It then follows from (20) and 

(21) (and from the left invariance of Haar measure) that every oper-
._ * ator ¢0 is unitary, and hence also every cj) • 
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4,3.4. COROLLARY. Let G be an abelian locally compact transformation 

group acting on a metrizable space M, and suppose G is either 

separable or compactly generated. Then there exists a G-linearization 

of Min a Hilbert space Hof weight ft· weight(M). 
0 

PROOF. · f 4 3 2 9 4 2 10 This ollows from corollary •. 2 and theorems 4 •• and ••• 

4.3.5. COROLLARY. lf G is a countable transformation group acting on a 

metrizable space M of weight at most Jt8 , there exists a G-· 

linearization of M in a Hilbert space of weight .k-8 . 

PROOF. This follows from corollary 4.3.2 together with theorem 4.2,3. 

The groups in corollary 4.3.5 need not be abelian. We do not know 

whether corollary 4,3.4 can be extended to cover also all non-commuta

tive separable or compactly generated locally compact transformation 

groups. 

REMARK 2. It follows from (23) that the Ii.near opera tors : H -+ H, 

t & F (using the notation of the proof of theorem 4.3.1) satisfy the 

condition 

(28) II 
This suggests a relation between condition (ii) of definition 4.2.1 

and the well-known norm-inequality lieu Bll.;;,ll0tll·llsll for the composition 

of two bounded linear opera tors u, ,-.• In fact, suppose G is a group of 

bounded linear operators in a Hilbert space H, topologized in such a 

way that it is a locally compact transformation group acting on H. 

Then the scalar function f on G, defined by 

(29) 

is a lower semicontinuous function satisfying the first two conditions 

of definition 4 .2 .L It would be interesting to know under which cir

cumstances f is a weight function on G. 
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4.4. Linearization of transformation semigroups 

In the preceding chapters transfonna tion groups and transformation semi groups received 

para!lel treatment: if results could be obtained for groups of bimorphisms, then also for 

semigroups of morphisms, and vice ~ersa. 

This parallelism no longer exists in our present considerations. This is a consequence 

of t.he fact that no rea J.. ly satisfactory ana 1 oguc of the Haar integral is known for, say I lo

cally compact semigroups. 

Such results as can be obtained for transfonnation semigroups by means of the methods 

of ·;;he previous two sections, are discussed below. 

Let us examine to what extent the proof of theorem 4.3.1 can be 

adapted to some class of topological transformation semigroups. 

The existence of inverses in G (or rather F) was used twice. At 

one place we will certainly no longer need 1t, sc. where we used it in 
-+ 

concluding from formula (24) in section 4.3 that every <j) is invertible 

(for of course when considering a transformation ~emigroup we no lon

ger strive for a linearization by invertible operators). More serious 

was the use made of inverses (particularly, of the continuity of tak
-1 

ing inverses) in proving that the inverse 1 of the embedding map 1 

is continuous (the step from (18) to (19) in section 4.3). 

We used extensively the existence of Haar measure in F. Close 

i~spection of the proof reveals that the properties of Haar measure 

that were used are the following three: 

(i) it is a non-negative regular Borel measure; 

(ii) its support is the whole set F; 

(iii) it is left sub-invariant, in the following (weak) sense: 

there exists a real constant c> 0 such that 

(1) 

for every non-negative real-valued continuous function f on F and for 

4,4.1. DEFINITION, An IW-semigroup is a locally compact topological 

semigroup with unit F with the following properties: 

(I) There exists a measure IJ in F satisfying conditions (i)-(Hi) 

above. 
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(II) There exists a real-valued function f on F satisfyj_ng conditions 

(i) - (iii) of definition 4.2.1 with respect to the integral defined 

by I.I, 

A topological semigroup with unit is called a CIW-semigroup if it 

is a continuous homomorphic image of an IW-semigroup. 

4.4.2. PROPOSITION. Let G be a topological transformation semigroup 

acting on a compact metrizable space M. If G is a CIW-semigroup, 

then G can be linearized in a separable Hilbert space. 

PROOF. The proof proceeds exactly as the proof of theorem 4.3.1 except 
-1 

that the continuity oft now is concluded from the compactness of M. 

IW-semigroups seem to be exceedingly rare; we know of no extensive 

class except the rather trivial one consisting of all subsemigroups of 

W-groups. A less extensive class is the one consisting of all discrete 

countable cancellation semigroups with unit: the measureµ such that 

every one-point set has measure l satisfies the conditions (i)-(iii) 

above, and the existence of a weight function follows from 

4.4.3. LEMMA. Let G be a countable semigroup, with neutral element E • 

There exists a real-valued function Jon G such that 

(i) Ef ,= 1; yf> 0 £or all YE. G; 

(ii) 

(iii} 

(Y1 Y2 )f ~ (Y1 f). (Y 20, for arbitrary y 1 , Yz" G; 

2 I c yo , m. 

y" G 

PROOF. S . . l t h £ . t . 4 2 3 , 1m1 .ar o t e proo · 01 proposi ion ... 

More generally: if G is a countable discrete semigroup tor which 

there exists a natural number n such that the set 

(2) [ y 1o G : (j y E- G) ( y y "" yl) } 
0 O 

has at most n elements, for every choice of Y1."" G, then G js an IW

semigroup. In particular, every finite semigroup is an IW-semigroup. 

As every free semigroup is a cancellation semigroup, every count

able discrete semigroup is a CIW-semigroup. Thus every countable semi-
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group of continuous self-maps of a compact metrizable space can be 

linearized in separable Hilbert space. 

More can be proved: ~n the case of a countable transformation 

.semigroup G the hypothesis th2-t the space X acted upon by G j s compact, 

is superfluous: 

4,4.4. PROPOSITION. Let G be a countable tra:1sformation semigroup act

ing continuously on a metrizahlc space M. Then the action of G 

can be linearized in a Hilbert space Hof weight h •weight(M). 
0 

PROOF, Let F be a free semigroup with unit with Jt0 generators. The 

proof of theorem 4.3.1 can easily be adapted to the discrete semi

group F, furnished with the measureµ such that every one-point sub

set of P has measure 1. The only part of the proof where dtfficulties 
-1 

arise is in showing that T is continuous. However, this is now al-

most evident: if f,,n € M, then 

(3) 

= II f,T - rn II 

In particular, countably many continuous self-maps of a metrizable 

space M can be simultaneously linearized in a Hilbert space Hof 

weight ft •weight(M). 
C 

It i. s not known whether every compact semi gro:1p is a ClW-semi

group (it seems highly improbabc.e that this will be the case). 

PROBLEM 2. To give a simple example of a compact transformation semi

group operating on a metrizable space which can not be linearized by 

a semigroup of bounded linear operators in some Hilbert space. 

If the topological transformation semigroup S, acting on a me

trizable space M, is an IW-semigroup, we see from proof 4.3.1 that 

there exists an S-linearization of M. We do not know whether every 

countable discrete semigroup is an IW-semigroup; therefore we also do 
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I!Ot know whether proposition 4.4.4 can be strengthened to assert the 

existence of a G-linearization. 

PROBLEM 3. Does there exist a G-linearization in a Hilbert space for 

every countable semigroup of continuous self-maps of a metrizable 

space? 

4,5, Universal linearization 

The considerations of the preceding two sections arc used in this one in order to show 

that each category K U(M), tJ~ ORD, contains universal morphisms and bimorphisms which are 

bounded linear operators in some Hilbert space. Some results in this direction are obtained 

~.lso for systems of morphisms. 

4 .5 .1. PROPOSITION. Let F be a W-group, and let H be a Hilbert space 

fee, * of weight 8 E ORD. There exists a group F of bounded lin-

ear operators in H, isomorphic to the group F, with the following pro-

perty. If Xis any metrizable space of weight at most ft8 , and if G is 

a topological transformation group acting on X such that G is a contin

uous homomorphic image of F, then the pair (G,X) is topologically equi-

(F.,. I ) .,. valent to a pair Y,Y for a suitable F-invariant subspace Y of 

the topological space H. 

PROOF. This follows at once .from the proof of theorem 4.3.1, 

4.5 2. COROLIARY. Let H be a Hilbert space of weight }t6 , 8e0RD. 

There exists a group F of bounded linear operators in H which 

is a topologically ( ft )-universal group of bimorphisms for the cate
o 

gory K6 (M). 

One can say that the pair (F,H) universally linearizes all pairs 

(G,X) where Xis a metrizable space of weight at most ft8 , and where 

G is a countable group of autohomeomorphisms of X. 

4.5.3. COROLLARY. Let O ~ ORD, and let H be a Hilbert space of weight 

Jt6 . There exists a linear autohomeomorphism <!> of H which is a 

topologically universal bimorphism for K8 (M). 

In other words, every autohomeomorphism qi of a metrizable space 

X of weight at most ft8 can be linearized in H by means of 0 . For 
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the case 0=0 the existence of such a linear universal autohomeomor

phism has been proved by A.H. COPEIAND Jr.and J. DE GROOT ( [1~ , 

theorem I). 

In order to prove corollary 4.5.3 one applies proposition 4.5.1, 

taking for Fan infinite cyclic group, say the additive group I of all 

integers. If one uses the weight f on F defined by 

(1) (k)f 
-k 

2 ' 

the construction in proof 4.3.1 leads to the following explicit example 
e of a linear universal autohomeomorphism t in K (M). 

Let H0 be any Hilbert space of weight /t0 ; for each k E: I, let 

Hk = H0 ; and let 

(2) H 

If X<:\ H, say X (xk\ E. I' we put 

(3} xt y (yk\ E: I 

where 

r 2x 
kd 

if k ,;:O; 

(4) I 
y 1 k lx if k < 0, 

l. 2 k+l 

Then <i> satisfies the requiremerits of corollary 4 .5 .,3. (If 8=0, this 

is exactly the operator ccmstructeci by A.H. COPELAND Jr. and J, DE 

GROOT [1s] . ) 

'K· 
4,5.4. COROLIARY, Let 8,K E: ORD, 0 < K, Let H be a Hilbert space of 

wei.ght Jt-6 • There exists a group F of linear autohomeomorphisms 

~•f H with we:ight(F) = ft K• enjoying the following property. If X is any 

metrizable space of weight at most }r0 , and if G is any abelian com

pact transformation group, acting on X, of weight at most feK , there 

exists an F-invariant subspace Y of the topological space H such that 

the pairs (G,X) and (F/Y,Y) are topologically equivalent. 

PROO?. According to ~orollary * 1. 4 .13, K (AG, K) admits a universal ob-
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ject F0 • Let F1 be the character group of the discrete group F0 • Then 

F1 is a compact group of weight JtK (cf. [58] , theorem 24.14), and 

every compact abelian group G of weight at most ft is a continuous ho-
K 

momorphic image of F (cf. [58] , proposition 24.41). As F1 is a W-

group (theorem 4.2,4), we need now only apply proposition 4.5.1. 

From the results of section 4,4 we derive in the same way the 

following two propositions: 

4. 5. 5. PROPOSITION. Let a€ ORD, and let H be a Hilbert space of weight 

}ta• There exists a semigroup S of bounded linear operators in 

H which is a topologically (ft )-universal semigroup of morphisms in 
0 

Ke (M). 

4.5.6, PROPOSITION. Let a f. ORD, and let H be a Hilbert space of weight 

}r8 . There exists a bounded linear operator~ in H which is a 

topologically universal morphism in Ka(M). 

An explicit example of such a linear universal continuous self

map ~ is again easily constructed. Let once more H0 be an arbitrary 

Hilbert space of weight Jta, let Hn H0 for each nli. N, and let 

(5) H EB H . 
nli. N n 

If X (x ) NE H, n nE 
we put 

(6) x~ = y (yn)ne:N ' 

with 

(7) yn 2x 
n+l 

for every n E. N. 

4.6. Maps of finite order 

In this section some additional remarks are made concerning linea.rizations of mappings 

of finite order and of finite semigroups of continuous self-maps. Thus, linearization in 

finite-dimensional spaces is succinctly discussed; a result of J. DE GROOT on linearization 

of retractions by orthogonal projections is exhibited, and the latter result is slightly 

generalized. 
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Let G be a finite semigroup of continuous self-maps of a metriz

able space M; say G has k elements. (As usual, we suppose that iME:.G), 

Then if His a Hilbert space into which M can be topologically embed

ded, the action of G on M can be G-linearized in the Hilbert sum 

(1) 

... 
of k copies of H. A map y 0 E G is linearized by the map y0 : K + K such 

that 

(2) (x ) G • 
YoY y E 

Suppose now that Mis separable and finite-dimensional, say of 

dimension n. Then, as is well-known, we can take for H the finite

dimensional euclidean space R2n+l. In this case it follows that there 
k(2n+l) 

exists a G-linearization in R . 

In particular, if• is an autohomcomorphism of M of finite order 

k, then • can be linearized by an orthogonal transformation in 

Rk( 2n+l). As a rule, ♦ can even be linearized in an Rm with m<k(~n+l}. 

The least value form which accommodates all autohomeomorphisms q, of 

fixed finite order k of arbitrary separable metrizable spaces of fixed 

dimension n has been determined by A.H. COPEIAND Jr. and J. DE GROOT 

[18] in case k is prime, and by J.1\1, KISTER and 1..N. MANN [65] for ar

bitrary k. 

If G is a finite group of autohomeomorphisms of M, the G···linear· 

ization in K defined by (2) linearizes the action of G by means of 

unitary operators in K (by means of orthogonal transformations, if H 

is an Rn). 

If G is a finite semigroup of continuous self-maps of M, this 

naturally is no longer true. However, in this case the bounded aper·· ... 
ators y are still of a rather special kind: each of them is a pro-

duct of a unitary operator and a projection. (We call projection each 

bounded linear operator P which is idempotent: P2=P. Thus a project

ion Pis not necessarily an orthogonal projection of H onto the closed 

linear subspace HP). 

This is a consequence of the following simple lemma: 
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4.6.1. LEMMA. Let A be a finite set. If¢ is an arbitrary map A ➔ A, 

there exist a 1-1 map ¢1 of A onto itself, and idempotent ma.ps 

¢ 2 : A ➔ A and ¢ 3 ! A ➔ A, such that¢= ¢1 o ¢2 = ¢ 3 o ¢1 . 

PROOF. Let Sc:A such that ¢Js is 1-1 while Sq,= A¢. Then there exists 

a 1-1 map a of A'.S onto A \.A<j>, and a 1-1 map 1: M -,.. s such that 

(4>01)1s 
A 

= is. We define 4>1,i/>2,¢31, A as follows: 

(3) 4> Is = i;, Is; 
1 

c/> 1 I (A '\S) = o; 

(4) <P2IM = iAIA<P; <P 2 i (A'\ M) a (j); 

If now G is a finite semigroup, the left translation y 0 defined 

by Y0 E G is the composition of a 1-1 map of G onto itself and an idem

potent map, by lemma 4.6.1, It follows that the same holds for the 

* bounded operator y0 , defined by (2). Thus we have: 

4.6,2, PROPOSITION, Let G be a finite semigroup of continuous se:if

maps of a metrizable space M of weight Jt0 • There exists a G-

* linearization by a semigroup G of bounded linear operators in a Hil-

bert space K of weight /t6 , such that every TG G.,. is simultaneously of 

the form T = UP1 and of the form T = P2 U, where U is a unitary oper~· 

ator in K while P1 ,P2 are projections. 

If 
2 .,. 

¢: M +Mis a retraction, then¢ = ¢, and hence• is a pro-

jection all by itself, J. DE GROOT, who first observed this, has indi

cated how this fact can be better set off:it is possible, through a 

suitable modification of the embedding map M ➔ H(l)H = K, to linearize 

$ by an 2rthogo~ projection. 

4,6,3, PROPOSITION. Let OE ORD, and let H be a Hilbert space of weight 

ft 0 • Let K = H © H, and let P be the orthogonal projection of K 

onto its closed linear subspace H0{O}. Then Pis an "/t6-universal 

retraction" : if Mis an arbitrary metrizable space of weight at most 
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}t0 , and if¢ is an arbitrary continuous retraction of M, then¢ can 

be linearized by P. 

PROOF. 
Letµ be a topological embedding of Minto H; then a topological 

map T: M ➔ K is defined by putting 

for arbitrary £; E. M, Clearly qn = 1 P. 

If more generally ¢ is a continuous self-map of i\,I which generates 

a finite semigroup, it is once more possible to exhib1, more clearly 
... 

the decomposition of ¢ into a unitary opera tor and a projection; once 

again it can be obtained that this projection is orthogonal. Suppose 

the maps qi, ct,2 , ..• , q,n+m-l are pairwise distinct, wh.i lt 4/Hm qin (n~ O, 

m!l), Let u again be a topological embedding of Minto H. We define a 
n+m 

map T • M -+ H as rollows i.f [, '= M, then 

(6) 
m+l 

[,qi u 
n+m-1 n-1 

[,¢µ,. ··,E,¢ µ -[,¢ µ). 

It is easily verified that tis a topological map. 

Furthermore, we define a unitary operator U : Hn+m ➔· Hn+m as fol-

l · f ( ) Hn+m th ows: 1 x ~ x1 ,x2 , ... ,xn+m G , en 

(7) xU = (x2 , x 3 , ... , x , x 1 , x 2 , x 3 , ... , x , x 1 L 
m m+ m+ m+n m+ 

Finally let P be the orthogonal projection of Hn+m onto its closed 

linear subspace spanned by the first n+m-1 coordinates: 

Then ¢, = ,UP. 

Similarly, if Q is the orthogonal projection in Hn+m defined by 

(9) xQ = (x1 , X 0 , • , , , X , 0, X 2 , X 3 , ,. • , X ) , 
~ rn m+ m+ rn+n 

then (jl, -

As an application of proposition 4.6,3 we present a new proof of 

the following result of W. NITKA [88] (generalizing a result of 
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C. KURATOWSKI [69] ) ; 

4.6.4, THEOREM, Let M be a metrizable space, A a retract of M, and pA 

a metric on A corresponding with the relative topology of A in

duced by M. Then there exists a metric p on M, inducing on lVl the given 

topology, which satisfies the following conditions: 

(i} p extends PA; i.e. (x,y)p = {x,y)pA whenever x,y"A; 

(ii) A is p-convex; Le. if x,y" A and zGc M such that (x,z)p + 

-'- (z,y)p (x, y) p , then z E. A; 

(iii) there exists a map (jl: M -,.A such that (x,A)p 

all XE. M. 

(x,xqi)p, for 

PROOF. By proposition 4.6,3 we may assume that Mis a subset of a Hil

bert space K, and that A= (M)P, where Pis the orthogonal projection 

of K onto some closed linear subspace. Then clearly a metric p inducing 

the right topology on M is defined by putting, for arbitrary x,y E- M: 

(10) (x,y)p "' (xP,yP) + ll<x-xP) - (y-yP)II ; 
PA 

it is immediately verified that p satisfies conditions (i)-(iii). 

4.7. Linear embedding; universal linear operators 

We have seen that infinite direct jolns do not exist in K(H) except in trivial cases 

(corollary 3.2.13). Therefore the standard constructions can not be used in order to ob

tain universal morphisms; it is likely that K 8(H)-uni versal morphisms ( 8 £ Ol!D) do not exist. 

However~ Hilbert sums apparently constitute a reasonably useful substitute for direct joins 

(cf. the previous sections of this chapter)i and by their use some partial results can be 

obtained. Principal among these .l'.'esults is the theorem of G.-c. RO'rAt asserting that in 

K80I) there exists a bounded linear operator which is universal for all bounded linear oper

ators with spectral radius less than one. 

We recall that the monomorphisms of K(H) are the 1-1 bounded lin

ear operators (proposition 1.2.4). If u: H + K is a monomorphism, then 

Hu is a closed linear subspace of K, and u: H + Hu has a bounded 

inverse. 

4,7.1. DEFINITION. A set S of bounded linear operators in a Hilbert 

space His called U-bounded if the semigroup generated by Sis 

bounded in norm. A linear operator T : H.,. His called U-bounded if 
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the set {Tn: ne N} is U-bounded, 

In order to abbreviate several formulations below we introduce: 

4.7.2. DEFINITION. Let H,K be Hilbert spaces, Fa semigroup of bounded 

linear operators in H, Ga semigroup of bounded linear operators 

in K. We say that G is similar to a restriction of F if there exists a 

1-1 bounded linear operator u: K ➔ Hand a homomorphism h : F ➔ G 

such that 

(1) U O ql 

for all 4> " F. 

REMARK l. Under these conditions it follows that the closed linear 
-1 

subspace Ku of H is invariant under all 4>1:. F; if we write u for the 

inverse of u: K ➔ Ku, then 

Let us re-examine the proof of theorem 4.3.1, assuming now that 

the metric space M considered there is a Hilbert space. If the trans

formation group G consists of bounded linear operators in M, and if 

moreover G is U-bounded, say II rll ,::;c for all y" G, we need not embed M 

first .in a bounded subset of H0 ; instead, we will take H0 identical 

to M. For we can replace 4.3.(3) by the inequality 

(3) 

which warrants that T rnaps Minto C(F,H L As before, T is 1-1. More·· 
0 

ove1·, Tis clearly linear; and this makes it much easier to esta-

blish the bicontinuity of T: we need only show that Tis bounded. In 

fact, as 

(4) j. 2 2 2 2 f 
F (q>f) • II (0 (,Ph)II d4>;;, C ·II ~11 . F 

we find that 

(5) 

In this way we obtain: 
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4.7.3. PROPOSITION. Let 8 E ORD, Ha Hilbert space of weight .ft.8 , and 

* Fa W-group. There exists a group F of bounded linear operators 

in H with the following property. If K is any Hilbert space of weight 

at most ft8 , and if G is an U-bounded topological transformation group 

of bounded linear operators in K which is a continuous homomorphic 

* image of F, then G is similar to a restriction of F . 

4.7.4, COROLLARY. Let 6G ORD, and let H be a Hilbert space of weight 

Jt8 . There exists a (denumerable, free) group F of bounded 

linear operators in H with the following property, If G is a countable 

U-bounded group of bounded linear operators in a Hilbert space K of 

weight at most ft6 , then G is similar to a restriction of F. 

Both the hypothesis of U-boundedness and the use of weight func

tions serve to obtain that the embedding map -r constructed in the 

proof of theorem 4.3.1 maps Minto C(F,H ). If now G has the property 
0 

(6) 1 lhlf < 00 

Y'f. G 

(which implies that G is countable and U··bounded), clearly no weight 

is needed: if Fis any countable group of which G is a homomorphic 

:i.mage, and if 

(7) 

then G is similar to a restriction of the group l'" of an :::,c,unded 
,w. 

linear operators •o in K, $ 0 varying over F, defined by 

(8) 

,w. 
Clearly these operators •o are unitary; thus we find: 

4. 7. 5. PROPOSITION. Let 6 E ORD, and let H be a Hilbert space of 

weight /t0 . There exists a (denumerable and free) group F of 

unitary operators in H with the following property. If G is a count

able group of bounded linear operators in a Hilbert space K of weight 

< ~, such that (6) holds, then G is similar to a restriction of F. "" . e 
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And also: 

4,7.6. PROPOSITION. Let 8 E ORD, and let H be a Hilbert space of 

weight f\. There exists a unitary operator U in H with the fol

lowing property. If Tis an invertible bounded linear operator in a 

Hilbert space K of weight at most ft8 , and if 

(9) 

then Tis similar to a restriction of U. 

An example of such an operator U is the bilateral infinite shift; 

this follows from (8), taking for F the additive group L Let H be a 
0 

Hilbert space of weight ft-6 ; let Hk = H0 , for each k Ee I, and put 

(10) 

Then U: H +His defined as follows: if x = (xk)kGl' then 

xU = (xk+l)k E 1 . (In the terminology of P.R. BALMOS [s2] , the inverse 

(or adjoint) of U is called the bilateral shift based on H0 , or also 

the bilateral shift of multiplicity ft6 ). 

In the same way one can show (cf. the aiscussi0n in section 4.4): 

4.7,7. PROPOSITION. Let SE ORD, and let H be a Hilbert space of 

weight ft0 • There exists a (denumerable, free) semigroup F of 

bounded linear operators in H such that every U-bounded countable semi

group G of bounded linear operators in a Hilbert space K of weight 

~ Jr-0 is s:i.milar to a restriction of F. 

4.7,8, PROPOSITION, Let 0 !!,ORD, and let H be a Hilbert space of 

we:i.ght fe0 , There exists a bounded Ii.near operator Tin H with 

the following property. If Sis any U-bounded linear operator in a 

Hilbert space K of weight at most .fr6 , then S is similar to a restr:i.ct

:i.on of T, 

REMARK 2, Let 
-n 

E > O. It follows from the fact that n + (l+E) is a 

weight on the additive semigroup N, together with remark 2 of section 

4,3, that T can be chosen in such a way that 
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(11) 

4.7.9. PROPOSITION. Let 6 E ORD, and let H be a Hilbert space of 

weight Jt.0 • There exists in H a linear operator U of norm 1 

with the following property. If Tis a bounded linear operator in a 

Hilbert space K of weight at most Jt0 , and if 

(12) I 
n=l 

then Tis similar to a restriction of U. 

In order to construct explicitly such an operator U, we suppose 

that H0 is a Hilbert space of weight k 0 , that Hn H0 for each nE N, 

and that 

(13) 

Then U 

(14) 

H • 
n 

H.., H can be defined as fol lows: 

(This operator l/ is the adjoint of the operator U+' 

(15) 

which is called by P.R. HALMOS [52] the unilateral shift based on H , 

and also the unilateral shift of multiplicity .1\). 

If the spectrum of T lies in the interior of the unit disc, then 

(12) is valid (see G.-C, ROTA [91] p.470). Hence the following is true: 

4, 7 .10. THEOREM (G.-C. ROTA [91] ) . Let 0 ~ ORD, and let H be a Hil-

bert space of weight .ft0 • There exists a bounded linear oper-

ator U tn H, which is a contraction operator, with the following pro

perty. If Tis any bounded linear operator in a Hilbert space K of 

weight at most ft0 whose spectrum is contained in the interior of the 

unit disc, then Tis similar to a restriction of U to one of its in

variant closed linear subspaces. 

Applications of this theorem are given in the papers [90,91] of 

G.-C, ROTA, 
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4.8. Notes 

Since a considerable time several authors have tried to embellish 

the action of a transformation group G operating on a metric space X 

through some modifications in X of a non-topological nature. Arche .. 

typical is a theorem of S. EILENBERG [35] , from 1936 i 

4.8.1. THEOREM. If G is a compact group of autohomeomorphisms of a 

rnetrizable space M, then M can be metrized i.n such a way that 

all transformations y E. G become isometries. 

(For an analogous result for locally compact groups, see ,I. DE GROO'l' 

For special Mand G much stronger results were subsequently ob

tained. For instance in [109] the following theorem is mentioned: 

4.8.2. THEOREM, Let G be a compact transformation group, operating 

effectively on . Suppose G is not totally disconnected and 
3 

not finite. Then R can be coordinatized in such a way that G becomes 

a closed subgroup of the orthogonal group. 

A closely related theorem is given in D. MONTGOMERY - L. ZIPPIN 

4.8.3. THEOREM. Let G be a non-thvial connected compact transform-
3 

ation group, operating effectively on R . Then the action of G 

is topologically equivalent either to the group of all rotations 

around an axis or to the group of all proper orthogonal transform

ations. 

It becomes much easier to recognize the action of G on Mas nice 

if one starts looking at things in a wider perspective; said other

wise, if one allows a topological embedding of Minto some bigger 

space. At first, this bigger space was always taken to be a finite

dimensional euclidean space, 

That this really opens up new possibilities can be seen from 

examples of R.H. BING [14] and of D. MONTGOMERY - L. ZIPPIN [81] (cf. 

also [s2] ) . R.H. BING constructed a "wild reflection", an Jnvolutory 
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3 . 
homeomorphism of the three-sphere S with a wildly embedded plane as 

set of fixed points. D. MONTGOMERY and L. ZIPPIN obtained a "wild 

rotation", a sense-preserving involution of R3 having a wildly embed

ded topological line as fixed point set. Such homeomorphisms clearly 

cannot be linearized in the space itself. They can be linearized, how·-
:.:ir 

ever, in a larger (but still finite-dimensional) space, as we saw in 

section 4.6. This also follows from results of G.D. MOSTOW (1957): 

4.8.4. THEOREM [83] . Let G be a compact Lie group operating faithful

ly on a separable finite-dimensional metrizable space M. Assume 

G has only a finite number of "inequivalent orbits" in M. Then G can 

be linearized by unitary transformations of a euclidean space Rn 

4.8.5. THEOREM [84] . Let G be a compact Lie group of homeomorphisms 

of a compact manifold M. Then G can be linearized by orthogonal 

transformations of a euclidean space Rn. 

In the case of homeomorphisms of finite order of a fini te-dirnens

ional separable metrizable space, the minimal dimension of a euclidean 

spa,::e in which linearization is always possible was determined by 

A.H. COPEIAND Jr. and J. DE GROOT [17] and J.M. KISTER and L.N. MANN 

[65] ; cf. section 4. 6. The last mentioned au tho rs also treat, more 

generally, the case of compact abelian Lie groups with a finite number 

of distinct isotropy subgroups, acting on a compact metrizable space. 

The next generalization consists in dropping the finite-dimension

ality condition on the space in which one linearizes. The study of t;he 

possibility of linearization by bounded linear operators in some Hil

bert space was originated by J. DE GROOT [4~ and A.H. COPEIAND Jr. 

and J, DE GROOT [17,18 J. Corollary 4.5.3 is taken from [18] . (It was 

also asserted by M. KLINE [67] however, the proof presented by 

M. KLINE is incorrect). To J. DE GROOT are also due corollary 4.3.5 

(oral communication; cf. also [s] ) and corollary 4.3.3 ( [49], Theo

rem I). A detailed proof of ,co,·ollary 4.3.3 was presented in the pre

liminary note J. DE GROOT and P,C. BAAYEN [5~ 
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Our proof of theorem 4. 3 .1 is model.led after J. DE GROOT' s proof 

of corollary 4,3.3 in [49] . The new element is the use of weights. A 

preliminary presentation of this proof is given in [50] 

In this preliminary version [50] , the property of weights ex

pressed by lemma 4.2.2 was incorporated in the definition; we are in

debted to G.J. HEu~BERG for pointing out to us that this property is 

a consequence of hypothesis (iii) of definition 4.2,1. 'fhe contents of 

sections 4.2 and 4.3 will also be published elsewhere (P.C. BAAYEN and 

J. DE GROOT [10] ) . 

Proposition 4.6.3 is due to J, DE GROOT (oral communication), who 

also suggested the proof presented by us of W. NITKA's theorem 4.6.4; 

cf. also [6] 

G.· C. ROTA [so] showed that for each fixed transfinite weight 

(dimension) there exist universal contract.ions, His proof depended on 

the same construction which we considered so often, representing 

points by their orbits; these orbits, in this case, are identified 

with points of an infinite Hilbert sum. Correspondingly, G.-C, ROTA's 

universal contraction is an (inverse) unilateral shift. This result 

was generalized by G,-C. ROTA to bounded linear operators of spectral 

radius <l (theorem 4.7 10) in [91] . 

The unilateral shift of mul tiplict ty 1 (ir. the Hilbert sum of a 

denurnberable number of one-dimensional spaces) was thoroughly studied 

by A. BEURLING [1~ . Unilateral shifts of finite mul tipli city are 

considered by P.D. LAX [75] . In P, R, HALMOS [52] both unilateral and 

bilatenil shifts of arbitrary multiplicity are studied and their in

variant subspaces are discussed. Shift operators in Hilbert spaces are 

also studied in connection with the theory of unitary dilations; cf. 

e.g. I. HALPERIN [s5] , also for further references. 
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APPENDIX: LIST OF CATEGORIES 

I. The following categories were introduced in section 1.2: 

K(S) - category of all mappings of one set into another. 

K(LO) - category of all order-preserving maps of one linearly ordered 
set into another one. 

K(PO) - category of all order-preserving maps of one partially order
ed set into another. 

K(La} - category of all lattice-homomorphisms of one lattice into an
other lattice. 

K(DLa) - the full subcategory of K(La) obtained by admitting as objects 
only distributive lattices. 

K(BA) - category of all boolean homomorphisms of one boolean algebra 
into another one. 

K(SGU) - category of all homomorphisms of one semigroup with unit s1 
into another semigroup with unit s2 ,which send the unit of 
s1 into the unit of s2 . 

K(G) - the full subcategory of K(SGU) obtained by admitting only 
groups as objects. 

K(AG) - the full subcategory of K(SGU) obtained by admitting only 
abelian groups as objects. 

K(M) - category of all continuous maps of one metrizable space into 
another one. 

K(ZM) - category of all continuous maps of one zero-dimensional me
trizable space into another. 

K(CZ) - category of all continuous maps of one compact zero-dimens
ional space into another such a space. 

K(CR) - category of all continuous maps of one completely regular 
Hausdorff space into another. 

K(H) - category of all bounded linear operators of one Hilbert space 
into another. 

K(CMAG)- category of all continuous homomorphisms of a compact me
trizable abelian group into another compact metrizable abel
ian group. 

K(CMoG)- category of all continuous homomorphisms of one compact mo
nothetic group into another. 
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II. In the remainder of the text the following categories are mention

ed (the numbers of the sections in which they occur are added be

tween brackets): 

K(C) 

K(ZH) 

K(T) 
0 

K(CS) 

- category of all continuous maps of one compact Hausdorff 
space into another (1.6; 3.4). 

- category of all continuous maps of one zero-dimensional 
Hausdorff space into another (1.6). 

- category of all continuous maps of one T0 -space into an
other T -space (1.6). 

0 

- category of all continuous homomorphisms of one compact 
solenoidal group into another (1.4; 2.5; 3.1). 

K(ZCMoG) - category of all continuous homomorphisms between zero
dimensional compact monothetic groups (1.4; 2.5; 3.1). 

III. If K is a concrete category and if 8 £ ORD, then K(O) denotes the 

full subcategory of K obtained by restricting the class of ob

jects of K to al 1 those which have a cardinal number< fr . Instead = 0 
of K(S)(O) we write K(S,0), etc. 

If K is a category of topological spaces and if e f ORD, then K8 

denotes the full subcategory of K obtained by restricting the 

class of objects of K to all those with weight at most N8. 

IV. In addition to the categories listed in I and II, and their sub

categories obtained as indicated under III, a few other categor

ies were mentioned or described. For these categories, however, 

no special symbols were introduced. For this reason we will not 

list them here. 







PE3IOME 

]lo H8B8CTHOA Te ope Me A. Tmxcni:o:sa BC$iUYrn K;YC5 ( TOTIOJ!O= 

l'.'liNE!CKOe r:zpO!,Uol:10,ll;E!H:11'.e OTpEHlKOB ) P :seca K ( K = H0KOTO= 
K 

poe TPBRC¢HHHTH08 :ieap,n;!i!MSJ!hHO@ qmCJXO) ~BJmE!TC~ ywm:sep~ 

CffiJXhHNB« B110Jl:IHI perynpPWM npocTp&HCTBOM B0C!l ~ K • CJI9AYS 

6oJiee H0,ll;i!ltBH'liIM peay.1!h'l.'8Tl:Uli OB:88bIB8e'!.'CS: cy~eCTBOBl!UUI'.@ 

co;o;ep:m:t1;i:i:an m:, Kpal•el Mepe K HenpepHBHHX oToC'.ipa:a:ea:HI x 

:a ce6i!!:w TO ,D;eAcTBKfJ llOJJyl'pyarm s TOrIOJXOl'bl\!0CKbl 3KBli!BffiJJ:e-

E:T~O ,11;eACTBHD F CYlir8tnIOM;Y !Hi 110,Il;XO,ll;!fut@e ~MBl!!.PMl!HTHOE! 

orpaE:Htia.®TCSJ: pacCMOTpeHHeM opC'.iHTOB TOGeR X 'ODP®AeJJ:e= 

HPWX TIOJXOrpynnol S 1 R8.K 3Jl8MCffTOB HOBoro npOCTp8HCTa&1. 

3T&I OCIH)B:IHUX M,ll;eSJ: l'IOKl!U!:!:i!Bl!!.®TCSI: OtIEHU:, [leHHOI TOlll:® a 

,n;py.i"R!X 06CTOil!:T8JlbCTB€1X. ii. JJ.8 XpO;yT ( J. DE GROOT ) Iii 

SBTOp ITOJlbaOB8Jl:R!Cb ee ITPM perueHR!R! ( ITOJXO~R!T8J!bROM) 

npoO~ew Aa~epCOH8 0 cyuteCTBOBaRmm YHHBepca~bROrO roMeO

MOp¢H8M& }.l,MCROHTmHyyMa KaHTOpa( CM. [6]).TotIHO TeM ~e 

cnoco6oM .n;crn:a::H1.ix r. U. PoTa. ( G. --c. ROTA ) [ 90 1 91] cy~ 
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ll\eCTBOBBFH'i8 ymrnepcaJihHhlX KOHTP~UCD;hlEHIHbIX 011epaTopo:B n:po

CTptU!:CTEJB rI4Jib0epTa. 3TH 4)8iCT!il n:pvmeJ.Im It CM:CT8MBTY!tleCKO!JY 

paCCMOTpei:rn:ID OCHOBi'!OM KO:S:CTPYKD;Vilii B o6w,eM BM,n;e; ).iJ'Lf! TOJ:"O 

110RaaaJic~ oqeHb Y'A06HUM Sl:a@K Teopmw KaTeropd® 

CKexew ttTO uopy:iKsM a: A__,. A KaTeropu K :l!KBWBtaJie~Tern: 

cyxe:iu-rro wrop<l)M:8M8 B: B -• B B K 9 eCJl:!il cy~eCTBY®T MOHOMOp-

q>msM µ: A-> B T!Ut '!ITO PBccap • Mopcpmau .:, : B-+ B El K Hl!!t:i.U,!= 

BaeTC.il: y:ru,i:aepcaJn,HNM s K , ecJiw mcsutw~ ( SH,1\0= hmp¢Iaw 

a : A -+ A :.HU:lliU38JieHTeM Cyil!.em,i:i:i p • B p.!'!60Tili ITOK83!il:Bl!H!ITC~, 

qTo OCKOBIQ'ID KOHCTpyK~mID MO~HO nepeaecTm Ka ~a!il:K aOcTpa

XTm;!X KSTeropd m llOJIYqWTh 00mK• 'AOCT$TOQHH@ ycJIOBMM 

cyi.r.teCTBOBaHM y1n-i::sepc!EJihHHX uop<t>RSMOB@ 

B r~$B® 1, eme AO paaamaaam~ aTo~ ireopmm, MN Afill,ll:,mM 

nepeq@Hb H@KOTOp@x ,ueA M peayJihTaTOB ma JimT@paTypM, KO

TOpH&m: MN Oy~eM fiOJih80B$TbC~ AlilJihrue, no Tpe6oaaRHD rrono= 

JIM~M mx. B aOsa~ax 1.1 m L@2 MN BBOAMM OCWOBKM® n:omaTm~ 

Teopmm KaTeropmt, nepeqeHh H®KOTOp!il:X KOHKpeTRHX KaTeropm:I 

( KOTOpE'.lUOC :wi 0y'AltM IlOJib80B8'1"bCS! B 11p~M8M0:1Ui1Ut 001.l.\14X pie= 

®Y,l!bTS.TOB Yi TOl!!:® T8KW:e 2 KOTOphle OypyT CJJY11tll!Tb Ml!aTepwa.10M 

,l!.Jr.f! !HH(OTOpii!X B.:OHTpnpin.i:epOB ) 1 B KOTOpOM no El013M0li:W:OCTM 

on:pe.n;eJI®!Uu MOHOMopi:>HaMl:l Yl 3Ill4M.OpcpH81W B COOTBeTCTEIYIDLlJ;lil:X: 

K!':ITtff'OpY!.!tX. 

EcJJ:m: ii: B -+ B - ya1-rnepca.~bRHH wopcpKaw :«:a.TiH'OPMYl K 1 

TO B fil:BJ!S[0TC.l'i: yirnBepcaJibHNM 06'.beK'i'OM B CJ:re,u;yIDUJ;eM 

CMNCJI®: ;:!;JI.ff BC£! KOr'O 06'.bE!KTS. A K8.Teropi;n1 K cym;e CTsyeT 
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MOHOMOpqlMln& ll '. A -+ B * 31rn:qwr, pa:a::ome tJeM KCKSTh YRKB8p

caJihHMe MOp¢we:M'.E! :a:eo6XO'AMMO capamMBSTh O cy~eCTBOBSHKM 

yHm:BepcaJihnoro o6~eKTS3 H ~CThID, :MHoro pesyJibTSTOB 0 

YHHBepcaJibHMX 06'heKTll MO~HO H8MTK B JJ'.MTepaType; HeKOTOpN@ 

raa :a:m:x cocpe.D;OToreRH :s aOaaa;e 1. 4. B a5aau;e 1. 3 M1i! upirn.ll

JIYI TepMMHO.-'IO:r'JiUO B. :tfo!!COHa ( B. J6NSSON ) [60, 6.JJ r Tall: xaTIC 

ero TeopeMa o yurrnepcaJJ:hHNX ClllCTeMax OTHomein1m S:tBJJ:.SUi!TC.!'i'. 

O'AHMM ma CMWX BaEHNX M ueHHUX peayJJ:hT8TOB 13 3TOM Hanpas= 

Jil!HU!!il. 

B a6aau;e 1.5 paCCMEITPll!ESeTC2 CTpyKTypa MOKOTOHHNX OTO= 

Ope:m:eHH~ Jrll!Herhro ynopa.n,ot1:e,nnix irn:oxecTB :ao Mepe HeoOxo.zi;H

MOCTm ,ll,ll ,ll,OKti\8STeJihCT!3J!ll ( B CJte.nyD~eA r'Jll:Hle ) cyJ.QeCTBOBa·~ 

Ml/l.f!: y:a:.11:sepcaJI:bKE,n:: Mopqim::nrns s KaTerop1,1;,;:x JI!l!Helhro yrropfi,n;O= 

tJ:eHHNX npocTp8HCTB. 3Tll! KaTeropll!lll ll!CKJIX)qll!TeJihH~ ( K 8T0MJf 

¢8KTY MN sepHeMC2 ); KpOMe aOaa~a 2.7 peayJibTST8Ml/l aoaa~ 

ua 1.5 MN Hl/!K,ll,e He llOJihayeMC~0 

3ernJJ::roqernw:e I'JH:H!N l, m soo6qe aetKJIID'!leHMe sc.1n:oi r11a~, 

110CBemeHO 8BM0TKl!lM liI ~06ae~eRH5'J:M K M8T8pliI&Jiy I'JI&Bl:i!o B 

qacTHOCTm, a~ech paccMOTpeHa no~po6Hee JIMTepaTypa Kaca

romMcE 3TOI r.1rasH. 

B r.1ra:ae 2 paccMBTPMBaeTCfil OCHOBHBff KOHCTPYKUMff Ha ~aN

Ke TeOpliIM KaTeropmf. Onpe~eJiffIDTCH YHliIBepcaJrbHble MOpcpmaMM, 

YHliIBepCS.JlbHlile 6MMOpcpL13MhY !II ym1:aepca.1n,HHe CMCTeMh! MOpqwrs

MOB. JJ:onOJJ:Ff!/!TeJ.n,HO, BBO,l.l;Sl'.'l'C.H ,lzy8JrbHI>le IlOH.!'J:TbUJ { a6:.:HH1 2. l) ® 

C.1re,xzy~e ~Ba a6aa~a nocMmeHN qacTHNM CJiyqa.HM MOp~Ma

MOB: 3'1'.!I! MOpcpH3MH BH8JIOf':W:tHIN 'N:i!M npeo6paaOB8H.W.!JM r!p0ll.l3BO= 
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,n;eamn: x"' ' K0T0pl>H! T0J!bK0 onpe,n;eJieHM nepeMe:S:OM K00p,ll;IUHST 

T0-IeK Cxa\:i "- A E. x1" e PesyJr:b'l.'8T8MY! 3'I'l,'1X a638[(8B MN no.1n,-

3yeMCH B a6aau:e 2.4, qTo6H TTOJIYqMTb npocToe ~OCT8T04HOe ye-

MOpq)MSM8 B K • 

eCJl:JI! B K cyw;eCTByeT np.9:MB.51 cyWJ!a C48TH0f'0 t;!MCJ.l:B (HtaeM!lJ.!51-

pOB u ' TO K CO,D;epl!CMT YH!IIBepcaJibHbTlti :i,.mpcp:w::aM. 

M'fi! o6o6w,aeM 3T0T peayJlbTBT M~ yHmBepcaJibHNX CMCTeM 

MOptpMSMOB; paCCMOTp!i!M TO~e c;nyqal,i MOp¢11I8MOB YHMBepcaJ.!bH~X 

TOJ!bKO ,n;;m no,n;KaTeropm11I Ko KaTeropmm K ❖ C~OpM;)"J.CMpOB8H~ 

TO~e ,n;JBJ!bHN® peayJibT8TH. ) 

CYuteCTByeT Mfl0f'0 npll.lM®H®HM~ TeopeM cy~eCTB0B8HII.I~ c¢op= 

Mjl'JIMpoaaY.UUJ!X B a6aa~e 2. 4. HeKOTOpble ma IU/l'.X l10lCl.9.8EHl:N B 

2 • TTycT :h K Tp!:l.HC¼lMH!IITH0e 1mp,teli.lH8Jlbli0e -'UilCJ.!0 ® 

Cyl\eCTByeT EIBTOMOpqmaM (:Hi,Ll.OM0pcp11.18M) ¢ ; A -+ A rpyn:nN 

TYPN ) A w l:COToporw ym11:sepcaJreH .I(JI.l"! Bcex BBT0M0pqJ11.13M0B 

( :Hr,n;oimpcp11.1aMOB) ¢ : B -+ B JI!D60b1 rpymw: ( a.6eJie:eolll: r'pyrmH, 

8Jlf'e6phl, ,D;!il:CTp!1!6yTIU3110M CTpyKTyp1,1 ) B T8KO~ 3 'q'1'0 

TeopeMa 3. Cy.u;ecTByeT Henpepb!BHMili aBTOMopqi1>1aM (:,ra.l(o-

) ¢ 6eCKOH0'qHOMepHOI'O 'I'Opa' KOTOpii!I YHMBepcaJieH 

lJ,Jlfl Bcex HEmpepMBHnIX 19.BTOMOpqiwa MOB ( ::JH:,Il;OMOp(pYI3MOB) J1l06hlx 
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ITOJIY'l,il.U)TCS! no,n;o6m,1e peayJib'l:'8.'!'l:,l O Cyl\eCTBOBBHM:l'/f YHMBepcaJn.,

HNX Henpep~BHhlX OT06pa~eHM~ B ce6.a:, MJJ:M 8.BTOrOMeOMOp~MSMOB 

MeTpwayewx rrpocTp8HCTB, MJJ:l'! KOMI!8KTHhlX HyJib,Il;HMeRCMOHBJ!bH!iX 

OT ,D;E!JI:!iiMh!X npocTpS.HCTB orp1u1wqeHHO.t'O :sec a 1 W O YHI(!B@pcaJ!:bHNX 

M0H0T0HMX OTOOpaxeRH.Sl:X 'q8.CT!>i'<UW yuopJi,D;0t!eirn:Xi!X npOCTpaHCTEh 

Bee ~nm peayJJ:1',TSThl 0606,1.\SHH' ,ll;JI.11!'. yHvrnepcaJIJ:,FU,!X CMCTE!M MOp= 

qJM8JKOB. 

CJJ:e,rzyro~e ~Bn TeopeMH $!BJI.a:JDTcn npwuepaMJ';i npmMeHeami 

,rzyaJU.oHoro xapaKTepa: 

TeopeM8 4, llyCTb K Tp8HC4>HH.STH08 map,n;MIHS.JihHOe tlbl:CJIO • 

Cy~eCTayeT SBTOWOpcpH8W (3H,Il;OWOp¢KaM)HeKOTOpoA rpynJ::!N 

( a6eJieaom rpynnN, rxoJiyrpymn,1 c e,n;.1unui;el, 6yJieaoM aJJ:re6pN, 

,n;HCTpa6yTHBHOH cerpy1<TypN ) A - MN 060:rnaqaeM ero w : A ➔ A - 1 

card (A) = K , 06Jra,.n,aIDUUd~ CJie,eyror.J.\YJ:M caoii'i CT BOM: eCJIM: B rpy-

nna ( a6eJieaa rpynna, noJiyrpynaa c e,n;KBHqeA, 6yJieBa~ a~re6pa, 

,Il;HCTpH6yTHBRM CTpyKTypa ) , card(B) ~ K , M 0CJ1l'! 9 : B + B -

8BTOMopq:rn:au (:rn,n;ouopcpHSM) B , TO y MOJieT Bb!Th H8Kpb!TO 

OT06pa:m:eHli1eM <P @ 

TeopeMa 5 • Cy;n,eCTByeT HenpepblBITT.lM 8BTOMOpqJ.W:3M (aH,D;OMO-

p<f,!18M) w K0MnaR·rHof.:i: coJie~orii:,n;aJihHOM rpyrum G , KOTopuA 

HSKp:m:saeT BC.liI<b!W 8BTOMOpqJI-HH4 (aa,n;ouopqll48M) JIID6oi 1-COWUI.KT= 

HOI COJreHOH,Il;8JlbHOff rpynnw H - F!SKpb!T!IIe M MOpcf,HaMN paayM®ID'I'

C!if neupepb!BHI:i!!W'.!. 
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BoJiee Toro, rroKaaaHN npmMep~ KaTeropwm o6JIB'ABID:J:t!!IX yHw

Bepca.1n,rnJM 06'beKTOM HO Heco,n;ep:m:aLttfl!X YHli!BepcaJihHn!I MOpcpli!8M .. 

To~e ITOK838HO, qTO AOCT8TQqHoe yCJIOBli!e TeopeMM 1 HeT ycJIO

Bli!eM ,n;OCTBTQqHHM: B a6aa~e 2.7 Mi,I AOK83HBaeM, qTO B KaTero

pwm acex MOHOTOHmlX OT06pwrceHJi!~ JI!i!H8MHO yrrop~,n;oqeHHhlX MHO

:m:eCTB ( KpOMe HeKOTOpHx Tpli!Bli!SJibH~X CJ:!Yli80B) H~ cy~eCTBYPl' 

rrp~MN® cyMMhr, Bee T8Kli! 8A8Ch cy~eCTBYID'l' MOHOTOHffl:i!e OTO6pa

:m:eHJi!R a ce6~, yrrwaepcaJibm.te ,n;Jifi Bcex OTo6pa~eHMi B ce6g 

~MHe~HO ynopn~oqeHHNX MHO~eCTB MOmffOCTH M8Hbme M~M pOBHO 

K { K - ~ro6oe TpSHC¢MHMTHOe KBP'AMH8~bHOe qwc~o ). 

B =nam•~~.~ rJJ:OB® MN peCCMSTpMB88M KaTeropMM TOOOJIOrwqec

KMX npocTp8HCTB. Peay~hTSTN r~BBN 2 MO~HO ycM~MTh B C~@AY

JOUi8M cr.w:c~e: B orrpeAe~eHMHX M YTBep:m:~eHMX MOJICHO 38M8HMTb 

ITOHHTMg MOHOMOp¢!i!8M8 M 8ITMMOp~M8MS ITOHHTMHM.ld roMeOMOp~M3M8 

BM Henpep@BROPO OT06pe~eHwg HS COOTBeTCTBeHHO. A6aau 3.4 

co,u;ep:m:wr HeCKOJn,:irn :apz.tMem.:nudi • :!{ :!'l:MM OTHOC.l'ITC.I!! HOB!-18 'AOKEJ= 

38T8JJ:hCTBa He.KOTOpblX peayJU;,T8T8B O S -KOMil0KTMqJl/Ul'.8D;Y!Ill: pa

OOT:bl tl • .n;e XpoyTa ( J. DE GROOT ) :&I P. r. M:n,,I'1OY::JJ.!a ( R.H. 

MCDOWELL R.D. ANDERSON 

Kacaro~eroc~ HS.KpblB8Hli!~ HerrpepNBHblX OT06pa:m:eHMV. B ce6~ npe

o6pa30B8Hlil:l:1M MHOllC0C'I'B8 HaHTOpa. ( CM. [51 , 4] •) PaCCM8.Tpr1-

BelIDTCB: TO:m:e paBHOMepHO Henpep:blBHble OT06pallCeHm:.a: B paBHOMep

H1>J'.X npOCTp8HC'I'B8:X Ji! yr-umepca~bHbie li!30MeTpwv:i bl lCOHTp8K[(l/!l,l 

B MeTp!'rtreCKli!X rtpOCTp8HCTB8X. B 3. 5 MbI o6paJJ,aeM F.HUJ:-

M8Hli!0 HS. TeopeM;Y O yHm:BepcaJ.!hHOM HenpepNBHOM OTO6pa~eHMH 
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BlIOJ!He peryJIRpHOI'O npocTpaHCTBB ( 38Me~eHHO¾ yxe B naqaJie 

pesrowie ) m oco6eJrno ee MH'repnpeTalJ,lllM KaK peayJibTBTa o JIM= 

neapMC8UMM OT06pa~eHM~. 

0CHOBHJ':>TM pesyJib'!'BTOM r'J18Bhl 4 ( TeopeMa 4 .3 .1 ) .!U3JmeTCi1 

0606:n;ei:rne Teope:w,r :t1. )1,e XpoyTa ( J. DE GROOT ) [ 49] , yT

aep:ID:,ll;Sll)~BSJ: -aTO .v;e.MCTBWe KOMlWKTHOM rpynrw 8BTOr'OM80MOpqwi:a= 

MOB MeTpwayeM0I'0 npocTpel.HCTBS :;,KBliiB/;!JIEHiTHO CTB!lilD rpynm,1 

G YHMTapm;rx oneparropoB npOCTp8HCTB8 PMJ!h6epTa, cy:m:eHHOMJI' 

Ha IlO.r(XO,lJ)t!rtee G -MHB8p!«8HTHOe !10,l'.CMHO:ll:eCTBO H .I101Caa1,rnaeT-

Cfl qTo JI0K8JihH0 lC0Mil8KTHYID rpynny npeo6paaOB8H11.li G 

.n;e~CTByIDuzyJD HB MeTpmsyeM0M rrpoc•rpaHCTBe M M0l!l:H0 JIM:Heap11.1:-

3MpOBaTb npm Il0M0~ rpynnhl JIWHe~HhTX onepaum~ B HeK0TOp0M 

npocTpBHCTBe 2 K6K T0JU,K0 G npmi:a.r1JielKMT l<J!S.Ccy 

cw K;racc cw , onpe.n;eJieHHhl~ B a6aau;e 4 .2, co,n;ep110-:1T He 

TOJH::,ICO BCe KO!,.melKTFrble rpyru:rN' HO TO:m:e c~eTmre AM:CKpeTHLle 

rpyrrnhT 2 8,1J,,D;MTJILBHyID rpyrmy .n;em:CTBMTeJH,mIX 1;urneJ1@ BoJiee TO:t'O, 

BC~Ka~ no.n;rpynna 11.1: BCflKM½ HenpephlBHhll POMOMOp~Hhli o6paa 

rpynm,1 !,13 cw rrpY!Hel.,!J;JH:)l!C:&IT l'(JIBCCY cw ; npsuaoe TOl10Jl0I'!ll1-l:8C-

,coe npow::a:ae,n;eHYie 1<01-11,rq,-w:ro -IMICJIB rpynn Ma 1cJiaccs cw To:m:e 

:a KJia c ce cw BCSUCBJ'.I JIOKBJibHO 1<01,,msKrHa.l'l: rpymrn G , CO-

G i:.TO G/G 
0 0 

RO, CW co,n;epE.11T Bee JIOKBJ!bHO KOMII8.KT:-me a6eJieBhl rpynrn,r, 

KOT0pbl8 MJ!H i1JIM !WMITBKTHO nopo:ac,v;emrae; B 

KOReqeo, B 8TOM KJIBCC8 co,v;epEBTCR ,ll;BEe. H8KOTOp@I Hea6e-
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JieBhl rpynm.r. 

B a6aaQe 4@4 paCCM8TpMB8IDTCH B08MOXHOCT!ii ( no BM,!l;MMOAJlY 

orpaHmqeHHNe) paC~MpeHM~ 3TMX peayJihT8TOB ~Jill: ITOJzyrpyun 

TorroJiormqecKmx opeo6paaoaaHmm. fioKaaMaaeTca KaKmM o6paaoM 

ma ~OK888T9JibCTBS TeopeMH 4.3.1 BhlTeKalDT HeKOTOpNe peayJib

T8Thl O yHMBepcaJibHO~ JIMHe&pmcaQmm. A6aaQ 4.6 ,n;onOJIHHTeJibHNe 

MH~OpM8Q]iIM ,n;~ qacTHOr'O CJiyqaH OT06paxeHIIIB KOHeqHoro nopH~Ka 

M ,n;JI~ KoaeqHfilX noJzyrpynn npeo6paaoaaHmi. 

( PeayJibT8TN 8TMX nep:m.IX meCTM a6aaQeB r'JIBBN 4 6y~T TOXe 

H8TUrCi8'1'8'.!Uil' OT ~eJibHO: fI Ba~:'Hl !ii 11 m ,n;e XpoyT ( P. C. BAA YEN, 

J. DE GROOT ) [10].) 

A638Q 4.7 ITOCBH~eH yHMBepcaJlhHMM orpaHMPeHHNM Jlll!HeMH~M 

onepaTopaM onpe.n;eJieHHoro BM.n;a B npocTpBHCTBe rll!Jih6epTa. 

r. u. POTS ( G.-c. ROTA ) [90,91] ,Il;OK838Jl "!iTO 0,ll,HOCTOpOHYIM 

( o6paTHbtm) c.n;:awr yHvrnepcaJieH ,nJm :ecex onepaTopoB T c pa= 

AMYCOM cnelCTpa M0Hh!lle e)J;MHll!D,I,I. MN OOK83NBSeM, 't!:TO cy;l,\eCT

ByeT orpaHx,rqeHmri JIWHemHNw onepaTop, KOTOpI,!i yHMBepcaJieH 

,Il;JIH acex T T8.Kl4X ' tl'l.'O BCe MTepau,:r,rn: Tn pa.BHOMepHO orpl.!U-l:M= 

-r.re:irn:N no :imp Me® IT0.n;o6m1e peay JlbTaThl no.iryqamc.i;: ).l.Jlfl paBHOMep

HO orparrmqeHmxx noJ.!Yrpynn Jlll!HeMH.b!X onepaTopoa 


