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PREFACE

The well known theorem of Paley-Wiener - stating that an LP function
has compact support in Igl if and only if its complex Fourier transform is
an entire function of exponential type - has an interesting history since
1934. L. Schwartz extended the theorem to distributions with compact support
in Igl and a generalization to tempered distributions with unbounded sup-
port in E¥1 was given by V.S. Vladimirov. In the latter case the Fourier
transform is holomorphic only in a subdomain of cn determined by the direc-
tions in which the support of the distribution is unbounded. Analytic func-
tionals with compact carriers may be defined as continuous linear function-
als on spaces of entire functions in Cn, and Ehrenpreis and Martineau showed
that the Paley-Wiener theorem is also valid for analytic functionals with
compact carriers.

The case of anélytic functionals with unbounded carriers has not been
investigated extensively up till now. This book continues the history of
~ the generalization of the Paley-Wiener theorem and so it is a rather com-
plete account of analytic functionals and complex Fourier transformation.

The modification of the Ehrenpreis-Martineau theorem for analytic
functionals with unbounded carriers is by no means straightforward: the
proof that different analytic functionals with unbounded carriers yield
different Fourier transforms is not trivial. For this purpose the author
needs a generalization of the socalled Ehrenpreis' fundamental principle
to spaces of non entire functions. This principle, first proved in 1961,
extends a function, holomorphic on a lower dimensional subset W of Cn to
an entire function, defined on the whole of cn and satisfying certain
bounds at infinity. Before dealing with his generalization to non entire
functions the author gives first an illuminating description of Ehrenpreis'
theory.

The first chapter of this book is an intriguing essay on causality
and localizability of particles in quantum field theory. Recent develop-
ments have shown the need for real carried analytic functionals which are
the Fourier transforms of distributions or socalled ultradistributions.

Properties of analytic functionals with real unbounded carriers have
been investigated in the second chapter where in particular the Paley-
Wiener theorem and the Edge of the Wedge theorem are generalized for ultra-
distributions.

Chapter III is devoted to the analytic functionals with unbounded



carriers in én and chapter IV to the Fundamental Principle of Ehrenpreis.

An interesting feature of this book is that the author deals also with
rather concrete applications of the theory. Fourier transformation is a
widely used tool for solving differential equations with constant coeffi-
cients. The generalization to systems of partial differential equations
with constant coefficients is not easy as it involves the solution of a
matrix equation in a ring. It is with the aid of the generalization of
Ehrenpreis' principle that the author derives in chapter V a Fourier re-
presentation of all weak solutions of the system in certain spaces which
are the dudals of spaces whose Fourier transforms consist of non entire
functions.

The Newton interpolation series has been established for entire func-
tions of exponential type by Kioustelides. Using the generalization of the
Martineau-Ehrenpreis. theorem the author has succeeded in deriving this
series also for non entire functions of exponential type of several vari-
ables.

_ It is an advantage for readers with different interests that the
chapters I, II, III and IV may be read independently from each other.

The book gives an advanced contribution to the literature on function-
al analysis, Fourier transformation and functions of several complex vaii—
ables and the results are also of importance for applications in field
theory and the theory of differential equations.

It is therefore that I recommend this book with great pleasure to all

mathematicians and physicists working and harvesting in these fields.

E.M. de Jager.
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INTRODUCTION

In distribution theory the Paley-Wiener-Schwartz theorem is well known.
It describes the Fourier transforms of distributions g with compact support
as a certain class of entire functions f. Here, distributions with compact
support in =" are continuous, linear functionals on the space E of C Ztest-
functions in TR'. Distributions with unbounded support can be defined if
the testfunctions are submitted to growth conditions at infinity. For exam-
ple, tempered distributions are obtained in this way as weak derivatives of
continuous functions of polynomial growth. The Paley-Wiener-Schwartz theorem
can easily be generalized for tempered distributions g with unbounded sup-
port. Then the function f is holomorphic only in a subdomain of ¢n determined
by the directions in which the support of g is unbounded. Similar to E'
analytic functionals with compact carriers in ¢” are defined as continuous,
linear functionals on the space of entire functions in Cn. The Ehrenpreis-
Martineau theorem describes the Fourier transforms Fu of analytic function-
als u with compact carriers as the class of entire functions of exponential
type. Martineau has dealt with analytic functionals with bounded carriers
in [48], but analytic functionals with unbounded carriers have never been
studied extensively. It is our aim to fill up this gap in the theory and
to extend the Ehrenpreis-Martineau theorem to analytic functionals with un-
bounded carriers.

The extension of the Paley-Wiener-Schwartz theorem to distributions
with unbounded support does not give rise to any new problems, cf. [68,
§ 26.2, th. 2]. In the proof the possibility of having testfunctions with
compact support is used. Since there are no such analytic testfunctions the
proof of the Ehrenpreis-Martineau theorem cannot proceed along the same
lines. For carriers which are polydiscs the proof is not very hard, cf. [65,
th. 2.22 & 2.23] or [73, §26], but it is the precise correspondence between
an arbitrary, convex, compact carrier of an analytic functional u and the
exponential type of Fu which complicates the proof. Polya has shown the
theorem for n = 1, cf. [3, ch. 5] or [30, th. 4.5.3]; using quite different
methods Ehrenpreis and Martineau proved it for the higher dimensional cases,
cf. [15], [16, th. 5.21] and [48]. Later Hoérmander applied his existence
theorems for the Cauchy-Riemann operator to give another proof, cf. [30, th.
4.5.31.
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The generalization of the Ehrenpreis-Martineau theorem is not straight-
forward and causes new difficulties: the proof that different analytic func-
‘tionals with unbounded carriers yield different Fourier transforms is not
trivial. One has to derive Ehrenpreis' fundamental principle for spaces of
non-entire functions. This principle, first announced in [15], extends a
given function f on a lower dimensional subset W of Gn to an entire function
F satisfying certain bounds at infinity and also it describes the entire
functions vanishing on W. The principle is only valid if the bounds satisfy
certain conditions. In order to derive it in [16] Ehrenpreis first extended
f to a collection of holomorphic functions in neighborhoods of all the points
of ¢” and then he showed that these functions could be changed without chang-
ing the values on W so that they can be glued together to one global func-
tion F.

For our purpose we will use Ehrenpreis' local theory, but for the
piecing together process we will use another method based on the L2—estimates
for the Cauchy-Riemann operator given by Hérmander in [30]. Furthermore, we
will extend f to a function F holomorphic only in a subdomain § of ¢ ana
' satisfying bounds also at the boundary of . In our case the conditions on
the bounds are rather weak, but this is paid by the fact that a single f on
W will be extended to different global functions each satisfying one bound,
whereas in [16] f has been extended to one function F satisfying all the
bounds simultaneously. In [56] Palamodov has derived a fundamental principle
in the same weak form as our version. It is valid for functions holomorphic
in convex tube domains {, but Palamodov's method does not yield estimates
near the boundary of Q. Therefore, although his work contains a generaliza—
tion of the Ehrenpreis-Martineau theorem [56, VI, §4.40, cor. 3], we cannot
use it for our purposes.

The Paley-Wiener-Schwartz theorem for distributions with unbounded
support is very useful in quantum field theory, where physicists are con-
cerned with distributions g in p-space with support contained in a convex
cone (the dual of the light cone). They search for properties of the Fourier
transforms f in x-space. In particular they are interested in the holomor-
phic function f itself and not so much in its boundary value f* on R" or
in the spaces of testfunctions on which f* is a continuous, linear function-
al. The distribution f* is tempered if g is. However, in [33] Jaffe remarks
that it would be desirable to have distributions g which are weak deriva-

tives of continuous functions G growing faster than polynomials. Then it
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turns out that f* is a continuous, linear functional on a space of ultra-
differentiable testfunctions; f* is called an ultradistribution. Ultradiff-
erentiable functions form a transition between ordinary C % functions and
analytic functions. If G grows too fast there are no longer testfunctions
in x-space with a compact support. A field, defined on testfunctions in x-
space which may have a compact support, is called strictly localizable.
This is a desirable property in quantum field theory that, however, restricts
the growth at infinity of the functions G in p-space. Similarly, a faster
growth at infinity of the distributions in x-space would make the testfunc-
tions in p-space ultradifferentiable or even analytic. So one might need a
Paley-Wiener theorem for continuous, linear functionals with unbounded car-
riers defined on analytic testfunction spaces.

For example, it looks reasonable to consider distributions defined on
Gauss—-functions. Since these distributions and their Fourier transforms
are in fact functionals on a space of entire functions, their carriers can
be any subset of mn. But then another difficulty arises. Unlike supports of
distributions analytic functionals do not have uniquely defined carriers
and, worse, the intersection of carriers need not be a carrier. Hence it
seems hopeless to try to generalize the notion of strictly localizable field
for this case. To overcome this difficulty the best one can do is to con-
tent oneself with distributions in x-space and p-space which are weak deri-
vatives of continuous functions growing slower than any exponential. For in
that case their Fourier transforms have real, unbounded, carriers and a
real-carried analytic functional u does have an uniquely defined, smallest
carrier, which therefore is called the support of M. Fields of this type
are called localizable, cf. [69].

Properties of real-carried analytic functionals have been studied by
Martineau in [47] for bounded carriers and by Kawai in [38] for Fourier
hyperfunctions. These are real-carried analytic functionals on the space
of exponentially decreasing analytic testfunctions. We will derive the same
properties for analytic functionals with unbounded, real carrier on spaces
of slower decreasing analytic testfunctions. We will treat all cases between
tempered distributions and Fourier hyperfunctions, i.e., all distributions
and ultradistributions whose Fourier transforms are real-carried analytic
functionals.

In chapter I the Paley-Wiener theorem will be applied in quantum field

theory. We shall not choose a particular testfunction space using only the






CHAPTER |

CONNECTIONS WITH THEORETICAL PHYSICS

It is well known (cf. [37]) that the assumption of free particles be-
ing localized in a certain volume leads to inconsistencies in the mathema-
tical description of this phenomenon. For a bounded volume this’is clearly
and shortly illustrated in [28]. We will show that under the same general
conditions as in [28] even the assumption that a particle is absent in a
bounded volume yields difficulties. For that purpose it is useful to consi-
der functions or tempered distributions and their Fourier transforms as bou-
ndary values of analytic functions. This technique (see [49]) is essentially
" the basis for the more general theory of hyperfunctions (see [31] or [43]).
In recent years this theory has been used in theoretical physics at several
places, cf. [31], [32] and [52].

For simplicity, we will first show that no positive energy solutions
in the space S' of tempered distributions of the Klein-Gordon and Dirac
equations exist which vanish in a bounded space volume at some time t. Then
the same technique reveals that any measurement of a positive observable
cannot be zero in one space-time region while, if translated to another, it
is positive. We will formulate this result in the theory of quantized fields
(see [36] or [64]) and under a reasonable condition we will even obtain that
the measurement of any observable yields a real analytic function of these
translations. Finally, we will briefly discuss the localization problem of
tachyons.

Fields satisfying the Garding-Wightman axioms [71] are defined on a
certain space of testfunctions, which themselves have no physical meaning.
Therefore, the choice of the testfunction space is not forced by nature. The
simplest choice is the space S of rapidly decreasing C>functions, but smal-
ler spaces of testfunctions with a larger class of distributions are also
possible. Then one may ask for which testfunction spaces our reasoning yield-
ing the above mentioned results remains valid. Very naturally, this leads

to problems of purely mathematical nature concerning Fourier transforms of



distributions, ultradistributions and analytic functionals. The remaining of
this thesis deals with these problems put in a more general form than the
special cases to which a physical sense might be ascribed. On the other hand,
recent developments show that the mathematical generalizations may be app-
lied to physics. again; see [33] and [11] for ultradifferentiable testfunc-
tion spaces and [10], [63] and [52] for spaces of analytic testfunctions.

Not only the above discussed impossibility of localization, but many
more physical properties such as local commutativity of microscopic causal-
ity (see [68, 29.6]) and the analytic continuation of the Wightman-functions
(see [36] or [64]) depend on the way the occurring distributions are written
as hyperfunctions. In fact, it seems that all physically interesting cases
may fit in the frame of Fourier hyperfunctions [38]. A survey of the various
cases is given in [69] and although not mentioned Fourier hyperfunctions
actually enter at several places. Later, this has been made explicite and a
Fourier hyperfunction quantum field theory has been formulated in [52].

Maybe the results of this chapter are not new to all physicists. For,
the techniques we use are so closely related to those of quantum field the-
ory, for example exposed in [72] and [4], that it is hard to believe that
the conclusions have not been drawn. However, as in [28] we apply these tech-
niques to relativistic quantum mechanics and we do not use the cyclic vacuum

state which plays such a central role in guantum field theories.
I.1. CAUSALITY

The formulation and measurement of causality is closely related to the
possibility of localization of a particle. Causality expresses the physical
law of special relativity that no particle or signal can travel faster than
light.

Let V be a space volume (an open set in Hg), then for t > 0 we denote
by V + ct the larger volume

>
Vet S8E {y | ly=xl < ot for some xel}.

Causality implies that a particle being in U at time O must be in V + ct at
time t > 0 (cf. the definition of causality in [28]). For this characteriza-
tien of causality the possibility of localization is necessary. However, if
the volume V is bounded and if the above given formulation of causality is

valid, a particle can never be localized, cf. [28]. Hence this formulation



of causality is senseless.
The next step is to assume that it might be possible that a particle
is absent in a bounded volume V. For t > 0 we denote by V - ct the largest

volume V' such that
V' +ct c V

Causality implies that a particle being absent in V at time O must be absent
in V-ct at time t > 0. However, we will show that, if this formulation of
causality is valid, a particle can never be absent in any space volume. Hence,
in order to give a meaningful formulation of causality, the above given
characterizations need to be generalized.

In fact, what is needed is a flow of an observable quantity S and by
causality this flow cannot go faster than light. To measure this it would
be desirable if no part of S is destroyed or created during the observation
time. Therefore, we assume that the density jo of S is the zero'th component

of a Lorentz-four-vector ju which satisfies the continuity equation

n
1.1 9.5 =0
(1.1) I
where
def ] 9 9 9
(30'31'32'83) ¢ ot ! ox, ' 9x., ' ¥x )
1 2 3
0 .1 .2 .3, def 9 -9 ) -3
08880 == C5g v 5] " x,  Bxy )

2

and where -u'u means the summation over y = 0,1,2,3. Formula (1.1) expresses

the property that during any time interval the change of the density jO in

a certain volume is due to what flows in and out of that volume. Furthermore,
if S, in principle, can attain every real value, it is impossible to say
whether an increase of S in a volume V is due to a flow of a positive part
of S into V or to a flow of a negative part of S out of V. Therefore, we
assume that S attains only nonnegative values, i.e., for any space-time

>
point x = (t,x)
(1.2) jo(x) > 0.

We now define causality by the (equivalent) requirements (see [24]):



for any space volume V, any time t and any amount of time T

j 30 (e, Ry % < J 3%(e, %) ax
V-ct v
(1.3)
J 3% (e, dx < J 30 (e, Xy ax .
V+ct
It is clear that (1.3) expresses causality only if jo is nonnegative, for
the part of S that is in V at time t has to be in V + cT at time t + T, but
perhaps due to a flow into V + cT from the outside during the time between
t and t + T there is more in U + cT at time t + T only if jO 2 0, or if a
surplus in V + ct flows to the outside during the time between t - T and t
there was more in V + ct at time t - T only if the surplus was positive.
Hence for a non-definite density causality cannot be defined in this way.
Thus it is meaningless to say that such a density (for example the charge
density) propagates acausally and it is not true that causality implies the
nonnegativity of the density as is pretended in [24].

In [24] it is shown that a density satisfying (1.1) and (1.2) necessarily
satisfies (1.3). For example, any probability density which is the zero'th
component of a current density satisfying (1.1) is causal. If it were possible
to localize a particle in a bounded volume or the complement of a bounded
volume, the earlier given characterizations of causality follow from (1.3)
by taking for jo(x) the probability of finding the particle at x and by taking
V bounded:

1= J % e, ax < f 39 (t+1, %) ax
v V+ct
and
(1.4) J 30 (41, D)X < J %, D = o,

V-ct

respectively. It follows that the right hand side of the first formula equals

1 and that the left hand side of (1.4) equals O. —
We remark that the assumption of a probability density which satisfies

(1.1) does not lead to acausal situations as in [28]. Another observable S

suitable for describing causality is the energy because it is always non-



negative. In general the energy does not satisfy (1.1), but in [25] and [26]

this condition has been weakened so that also energy propagates causally.
I.2. LOCALIZATION OF WAVE FUNCTIONS

We will consider free particles whose properties are' determined by
solutions of the Klein-Gordon or the Dirac equation. We only consider the
positive frequency parts of these solutions (i.e., the energy remains positive)
and we first investigate the localization of such solutions.

Let Y be a complex function (or more general a tempered distribution)

>
of the real parameters x = (xo,xl,x ,x3) = (t,x) € 1R4 indicating the time

2
and space variables and let Y be its complex conjugate. Furthermore, let Y

be a solution of the Klein-Gordon equation

(1.5) (aua“+m2)w = o.

For each t ¥ is a tempered distribution in IR3 and Y defines a continuous
map from IR into S'(IR3), (this can be seen by inspection of the Pauli-

Jordan propagator A, see [34, formula (5.10)]). Y determines uniquely two

tempered distributions Y, and Y, in Eg such that symbolically
1 2

V0.2 = >
(1.6) { (0,x) =y, (x)

oY > >

= (0,%) = v, ()

and conversely, since A belongs to S'(I§4) each wl and wz determines a solu-
tion which is a tempered distribution in R’ .
From (1.5) a first order equation, the Dirac equation, can be derived:

(1.7) (Yuiau—ml)‘!’ = 0.

Here the coefficients Yu and I are elements of a non-commutative group with

unit I satisfying
(1.8) yuyv+yvyu = 2guvI

where



uv, def
(g P

OO O
[eN e )
OI-I-'OO
= O OO

Now ¥ is no longer a single distribution, but it belongs to a certain linear
space in which the Y's act as linear transformations. For example, if the
coefficients Yu are represented as certain k x k-matrices, Y consists of k
components Y = (Wl,...,Wk), where each Wj is a tempered distribution satisfy-

ing the Klein-Gordon equation. For, in any representation of the y's we have
v Hon _ -

(-y 1av mI) (Y 1au mI)¥ =0

and hence by (1.8)
vV U 2 B, 2
93 0 +m I)¥ = (3. 0"+m )Y = O.

(“\(Y\)u ) (u )

We can write (1.7) as

3
(1.9) A4 = -imYOW - Yoyk ggL

k=1 k

Hence if W(O,;) is given, g{-(o,§) is uniquely determined and the solution

of the Dirac equation equals the solution of the Klein-Gordon ecuation with
these initial values. Therefore, we only have to consider the initial value
problem (1.5) and (1.6) and in particular we will consider only those solu-
tions belonging to positive energy.

The energy Py and impulse ; are real parameters arising as the varia-
bles in the dual IR4 of the (t,;)—space IR4. Hence Fourier transformation of
a tempered distribution in x-space yields a tempered distribution in p-space.
Thus the fact that we consider solutions Y in S' agrees with the fact that
x and p must be real.

The Fourier transform ¢ € S'(E%) of a solution Y € S'(Eﬂ) of (1.1)

satisfies
2 2 2
(1.10) (py =P  -m)e(p) = 0.

The general solution in S'(E%) of this equation determines two distributions

¢1 and ¢2 in S'(1R3), one corresponding to Py > 0 and one to po < 0, and



conversely, any two ¢1 and ¢2 in S! (]R3) determine a solution ¥ of (1.5) in

the following symbolical way

-iv 2+m2 t >

N T

(1.11) ¥(t,x) = F [ Yz |
P +m

ei11p2+m2 t

N
1 ¢2(p) ] N

) + F (x)

2 2
p +m

-1 . . . e i .
where F denotes the inverse Fourier transformation. The initial functions

(or distributions) satisfy symbolically

-
(x)

¢, @)+, ()

_ P P

¥(0,%) = F! [7—;——1 22 ]
P +m

oy [ )

= (0,%x) = F {-1¢1(§)+1¢2(§)](§<’) )

For a positive energy solution Y of (1.5) we require that ¢2 = 0. In-

stead of (1.6) the initial values now have to satisfy symbolically

W > 1 -i<p,x-8> .. A2 2 > >
5 (0% = 5 e (-i)V/p +m” ¥(0,£)dEdp,
(2m)

where only ‘l’(O,Sc’) can be chosen arbitrarily in S' (IR3) . Now Y is the inverse

Fourier transform of a distribution in S' (]R4) with support in the cone
=% > > .
r= = {(po,p) ] po 2 llp"} c :IR4. Then ¥ can be written as a boundary value

in S'(IR") of'a function:.f hoelomorphic in.IR” + il , where [ is the interior of

the lightcone in IR4, i.e., for every ¢ € S(]R4)

<Y,¢> = 1im Jf(x+iy)¢(x)dx.

y>0
yeC tecl™

Here " * is the dual cone of the open cone " ¢ JR4:

r™ = {p|<p,x> > 0,x e} c R,.



Roughly, this can be seen as follows: let g $e a distribution in S' (]Rn)
which can be written as a certain derivative of a measure u with support in

a closed cone C* c IRn satisfying

< ®

[ alu(e) |
(1+lg12)¥
c*

for some k > 0. Then for some multiindex a

£(z) 2L Fre 5 Y510 =

f (12) % E X8 Y ()

C
exists if -<g,y> < -Gy“ gl for some Gy > 0 depending on y, thus for y € C if

C* is the dual of the open cone C c IRn. Then

Flgl(x) = 1lim £(x+iy) = £(x+i0)

y>0
yeC'ccC

in s"(RY) , see [12] or [68].

Now let f+ be holomorphic in R’ + iC and £ in R -iC for C an open *
cone in an, such that f+(x+i0) and f_(x—iO) exist in S!' (]Rn) . Furthermore,
let the distributions f+(x+i0) and f-(x—iO) , considered as distributions in
D' (U) for some open set U © JRn, be equal. Then f+ is the analytic continua-
tion of £ . This theorem is the celébrated "Edge of the Wedge" theorem, see
[64], [68] or for a simple proof Ch.II §3.i of this thesis. In particular
it follows by choosing £ = O that, if £ (x+i0) = O in U, then £ = 0.

Thus every positive energy solution ¥ of the Klein-Gordon equation can-
not vanish identically in any open space-time region without vanishing every-
where. In particular, the initial values wl and IJJZ cannot vanish identically
in the same open set in IR3. For, if they do it ‘follows from the fact that
¥ satisfies the hyperbolic differential equation (1.5), that then ¥ would
vanish identically in some open set in 1R4 . Similarly, the initial values
of the Dirac equation cannot vanish identically in an open set in ]R3. For
(1.9) implies that i;% (0,x) would vanish together with ¥(0,x) in the same
open set in IR .

In the above we have shown some mathematical properties of solutions
of certain differential equations. Only a few of the used mathematical

concepts have alsc relation to physical phenomena. These phenomena cannot



be seen directly, but only by means of measurements of observable concepts
which are supposed to be influenced by them. Therefore, it may be disputable
to conclude that free particles cannot be absent in any space volume at any
time. However, the argument is quite fundamental as it applies under very
general assumptions as in [28]. The same reasoning even implies that a
measurement of a nonnegative observable cannot yield zero in one space-time
region while, if translated to another, it is positive. In the next sections
we will prove this for observable concepts described by densities which are

bilinear forms on the space of wave functions Y.
I.3 LOCALIZATION OF PARTICLES

In the last section we have shown some mathematical properties of the
solutions of the Klein-Gordon or the Dirac equation. Let us now show how
these properties react in quantities which may have a physical interpretation.

In section I.! we have seen how causality is related to a current
density ju of a nonnegative observable S. In order to define the current
density we assume that the space of solutions of the Klein-Gordon or the
Dirac equation can be transformed into a Hilbert space, cf£.[35] for other,
more fundamental reasons why a Hilbert space is chosen. Let qu be a bilinear

form defined on a dense subépace D of H and let for ¥ € H WX be defined by
def
¥ (y) £ ¥yx).

D must be such that Y € D implies Wx € D for each x € ]R4. For ¥ € D with

u

¢l = 1 a current density j° can be defined by

(1.12) M = at L)

provided that qu is such that ju transforms as a Lorentz-four-vector.
If S is a bounded observable (for example if jO is a probability den-

sity), for each t and some constant K > 0 we have

I J 3%, % ax| < k.
3

3
Hence for each volume V in IR
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sy(t) 92 f 30, % ax

v

L]

is a bounded bilinear form defined everywhere on H. If S is not bounded,

we moreover assume that for each volume V ¢ IR3 and for each t SU(t) is a
closed bilinear form on D € H. This means that, if SV(t) is defined on

{6 }"_» if ¢_ > ¢ in H and if S,(t) (9, =9 ,4, ~¢_) > 0 as k,m > =, then S,(t)
is also defined on ¢ and Sv(t)(¢m-¢,¢m-¢) -+ 0.

Before continuing with the general situation we will show by an explicit
example that such current densities j‘J exist. We first consider the Dirac
equation. Let for each x € ]R4‘!‘(x) (or actually, for each ¢ € S(IR4) <Y,¢>)
belong to a certain Hilbert space on which the y's act as a linear transforma-
tion. Usually the anti-linear functional associated to ¥(x) is denoted by
W*(x) and the inner product of ¥(x) by itself is then written as WT(x)W(x).
Let moreover for each t W+(t,;)W(t,;) be a Ll—function of ; € IR3, then the

inner product in H is defined by

o,y) %&£ J of (¢, M) v (e, ) ax .

ng

That this is independent of t fellows: from (1.7) and (1.8). In a k-dimensional
representation ¥(x) belongs to the Hilbert space ck and for every t each

Wj is a L2—function on IR3, j=1,...,k. A bounded current density satisfying
(1.1) (in distributional sense) can be defined by

(1.13) jH def ,F.0m

and clearly (1.2) is satisfied, too.

Thus the density (1.13) with p = 0 is always causal, i.e., it satisfies
(1.3). j0 equals WTW and -in.the last section it has been shown that this
density can never vanish in an open set V of If3at any time t if Y is a posi-
tive energy solution of (1.7). jO can be interpreted as the probability
density of some (bounded) observable S. Then at any time there is always a
positive chance of finding S in any space volume.

Let us now turn to the Klein-Gordon equation. The Hilbert space is

defined by the inner product

2 t

(o,¥) %&£ i—J {3(t,%) gi' (t,%) - g—i (£, %) ¥ (t,%) Jax
3
R
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which is independent of t, provided that the solutions ¢ and ¥ of (1.5) are
functions for which the above written integral exists. It should be remarked
that this is an innerproduct only in the space of positive energy solutions,

in which case (¥,¥) 2 0. Indeed

1 b 1% >
ot [L@l
(‘yl‘l’) 3 J ,ﬁﬁ dP 2 0,
(2m) R 7P Hm
3

»>2 2 -k >
where ¢ is an L2—function on IR, with respect to the measure (p +m ) %dp so

3
that by (1.11)
—in2+m2 t

>
(1.14) ¥(t,x) = F—1 [ /§3==3=91E9 1 . 1)
p +m

>
Thus the condition on the solution of (1.5) is that in (1.6) ¥(0,x) must

k)

3 =
belong to the Sobolev space H%(ng) and 3% (0,;) to H (IR3). A current

density satisfying (1.1) can be defined by

5* 2ef L gk (oM v

2

It is well known that for general solutions ¥ of (1.5) jo does not satisfy
(1.2) and it is less known that the same is true for positive frequency
solutions ¥, see [22]. However, in [23] current densities are constructed
which do satisfy (1.1) and (1.2), where in (1.2) even the > sign holds.

We will show that, in the general case for any current density, not
identically zero, arising from a bilinear form on the Hilbert space of
positive ffequency solutions of the Klein-Gordon or the Dirac equations
satisfying (1.1) and (1.2), (1.2) cannot hold with the = sign for ; in any
space volume V and for any t. This follows from the causality of the current
density and from the fact that SV(t) cannot be zero for all t with 0 < £t < T
for any T > 0 and any V. This fact will be proved in the next section. For
that purpose we have to rewrite the setting of this section so that the

formalism of the next section can be applied to it.

1) Here there is a little ambiguity in the Fourier transformation F. In (1.11)
F transforms tempered distributions in the z-space IR3 into tempered dist-
ributions in the 5—space IR3, which is defined by Parsevals relation if F

is a map from S(JR3) onto S(R3). However, in (1.14) F should be understood
in L2-sense, which can be defined by completion if F is a map from S(IR3)

onto S(]R3) , cf£.II §2.i.
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0
We have considered nonnegative densities of the form j (x) = q(Wx,Wx)
> >
such that [ jo(t,x)dx is a closed bilinear form. For the moment we do not
bother whegher this is the zero's component of a four-vector or not. Let VO

be a fixed space volume and let

5 (o g5
uo(x) SV +§(t)

0
> >
where VO + x is the over x translated volume VO. According to [58,th.VIII.15]

So(x) can be written as
So(x) = (VX,TWX)

for some selfadjoint positive operator T. We define

T, gef U_l(x)T U (x)

where U(x) is the unitary operator with

U(x)Y =’WX .

Since

o

-+ i 2+ 2 (t ) +'<+ ; v > d+
ult,x)¥(y) = J 'R | Yo/ TEPIEY4 (1) ;335;15
p+m

where ¢ is determined by ¥ agcording to (1.14), U(x) has a spectral measure
contained in {p |p0 = p2+m2}.

If in theorem 1.2 of the next section we replace T(f) by T (in fact,
here the testfunction £ is the characteristic function of VO), this theorem
shows that So(x) = (W,TXW) cannot vanish for Ixl < €& for every € > 0. Actually
the theorem gives more precise information where\so(x) can vanish. If now
Sv(t) =0 for 0 < t < 1, we choose VO cc  and theorem 1.2 shows that
SU(t) = 0 for all t and all V, hence that jO = 0. We summarize the foregoing

in the following theorem.

THEOREM 1.1. Let H be the Hilbert space of positive frequency solutions Y
of the Klein-Gordon equation or the Dirac equation. Let q(¥,¥) be a non-

vanishing bilinear form on a dense subspace D of H such that for all x € E£
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J (x) q(Wx,Wx) 20

and such that for all t and space volumes V [ j(t,;)dz is a closed bilinear

v
form on D. Let VO be an arbitrary space volume and let

def [ L. > o
st %) =5 j(t,y)dy.
V +x
otx
Then for any € > 0 So(x) cannot vanish identically for lIxl < €.

In theorem 1.1 we do not assume that the nonnegative density is causal,
but if it is, it follows that for each t So(t,;) cannot vanish identically
even for ﬂ;u < €. So also formula (1.4) cannot be used for defining causality.
For if it holds, it can never occur. Nonnegative causal densities arise, for
example, from a current density satisfying (1.1). In [25] and [26] nonnegative
densities corresponding to the energy are discussed which do not satisfy
(1.1) but 'still are causal. In [13] Dirac proposed a new wave equation yield-
ing only positive energy solutions which satisfy the Klein-Gordon equation,
téo. Moreover, he has defined a current density as in (1.12) satisfying (1.1)
and (1.2). Hence the zero's component of this density can never be localized,
contrarily to what Dirac said in [14]. Perhaps, it is also possible to define
noncausal nonnegative densities which then cannot satisfy (1.1), cf. [28].

The solutions of the Klein-Gordon or the Dirac equation are particular
cases of quantized fields. Therefore, in the next section we will passu
to the (mathematical) problem of localization of fields, although we do not
use all the axioms defining these fields. We will select only those )axioms

which imply the result that S,(x) cannot vanish identically for Il < e.
I.4. ANALYTIC PROPERTIES OF EXPECTATION VALUES

In the theory of quantized fields satisfying the G;rding—Wightman axioms
[71] we shall use the same principle as before in order to show that not
both, the testfunctions and the field operators, are localizable (cf. [72]
for a stronger result saying that the field operators are nowhere ordinary
functions, which follows from more conditions than we assume here). We remark
that from now on all concepts will have only a:mathematical meaning and the
physical interpretation, if there is any, will not be discussed.

We shall not give all axioms defining a quantized field but only those

which are needed in this section. For example, we do not need the vacuum
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state which cannot be missed in defining the general theory and properties
of quantized fields.lAlthough we introduce them no proper use will be made
of the testfunctions and therefore, our conditions are as general as in [28]
and they apply to relativistic quantum mechanics as well. For simplicity we
shall discuss the case of an observable scalar field; the case of vector and
tensor fields is similar, see [71].

Let F be a nuclear, locally convex, topological vector space of c?
testfunctions defined in x-space or in a complexification of the x-space. We
shall not specify F in this section; in [36] F equals the space S(IR4)and in
[71] F-equals ﬂ(ﬂﬁ)(cf. also [68, 29.6]); ultradifferentiable testfunctions
are discussed in [33] and in [11], whereas in [10], [63] and [52] spaces F
of analytic functions are considered. If there are testfunctions in F with
compact support the field is called strictly localizable, see [33]. Further-
more, there is a complex Hilbert space H of states with inner product < , >.
In orifr not to confuse this notation with the action <p,x> of p € IR4 to
X € IR", we shall here denote this action by x°p.

Axiom I. The field T is a linear map from F into linear operators in H. For
all £ € F the operators T(f) and T(f)* possess va commen dense domain D on
which they are defined, such that for all ¢,Y € D <9,T(*)Y¥> belongs to F'.
Moreover, for all £ e F T(f)D < D.

Axiom II. The translations over the four-vector X induce a continuous map

{x} from F into F by
def
{x}£(y) &£ £(y-x), £ e F.

An unitary, continuous representation U of the group of translations exists,

such that for all £ € F

v T U =T
where

T (5) S r({x}e).

Furthermore, U(x)D c D for all x € nﬁ.

Axiom III. U(x) has a spectral decomposition

U(x) = J eix.PdE(p)
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where the support of E is contained in the cone

™ = {pg > 1312, p, = O%.

We show that a strictly localizable field satisfying only the above
mentioned axioms, as an operator valued distribution, cannot have a support
which is not nf. First, let us assume that the field is positive 1), which
means that for all & € D <9,T(*)%> is a positive distribution in F'. Thus
for every real and nonnegative testfunction f the operator T(f) is positive,

i.e., for all & € D and for such an f
<®,T(£)%> 2 0.

Let us call such a field a positive field. Furthermore, let us call x(s) =
-> -
=(t(s) ,x(s)) a time-like curve if t and x are continuously differentiable

functions of the real variable s with
>
(t'(s),x(s)) el

where [ is the open light cone. If moreover for each A = O,1,2,3,xA is a real

analytic function of s, we call the curve an analytic time-like curve.

THEOREM 1.2. Let T be a positive field as defined by axioms I, II and III,
let £ be a real nonnegative testfunction in F and let x(s) be an analytic

time-like curve for s € IR.If for some ® € D and € > 0

(1.15) <¢,Tx(s)(f)¢> =0

for all 0 < s < €, then (1.15) vanishes for all s € IR.

> > .
In particular, if x(s) = (1s,sa) where a varies in the unit ball in

Eg and T in (1,»), it follows that S_(x), defined in theorem 1.1, cannot

0
vanish identically in an open set in Eﬁ.

9]

For some fields this would be desirable, but unfortunately a strictly
localizable field (as defined by more axioms than the above) is, in general,

not positive, see [18].
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PROOF. By Friedrichs extension theorem [58, th. X .23] the positive operator
T(f), defined on D, has a positive selfadjoint extension E(f). By the spec-
tral theorem there exists a positive selfadjoint operator A(f) such that

A(f)2 = g(f), which certainly holds on D. Since every translated f is real

and nonnegative if £ is, (1.15) implies
<0,A({x(s)}E)Aa({x(s)}£) 2> = <a({x(s)}£)?, a({x(s)}f)d> =0
for 0 < s < €. Hence A({x(s)}£f)® = 0 and so

(1.16) U(x(s))Tx (£)¢ = 0, 0 <s < e.

(s)
Therefore, for any T € IR we have I(1,s) = 0 for 0 < s < €& where

1(r,s) %&£ wix(m)e, Ux(s)T  (£)05.

(s)

According to axiom II I(t,s) can be written as

<U(x(1))8, Ux(s)T_,  (£)U(x(s)) ‘u(x(s))e> =

I(t,s) x(s)

<U(x(1))?®, T(£)U(x(s))®>

H

and by axiom III

I(t,s)

J (S Pacr (£yu(x(1)) 0, E(p)o>.

Since E has its support in the cone ™ this integral, as a distribution of
the variable x = x(s) € Eﬁ, is the boundary value of a function G holo-
morphic in ]R4+ il

Let s be the real part of the complex variable s + ip and let
u(s,u) e nﬁ and v(s,u) € ]R4 be the real and imaginary parts of the analytic
continuation of the function x(s), thus u(s,0) = x(s) and v(s,0) = 0. Then

by the Cauchy-Riemann equations

3v0 8v3
( o (s,0),..., T (s,0))=x"(s) eI,

hence for each s € IR v(s,u) €' for some " cc [T and for all p > 0 with
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Ju] sufficiently small depending on s. Thus
I(t,s+ip) = G(u(s,w)+iv(s,u))

exists and is an analytic function of s + iy for u > 0 and |ul| sufficiently
small depending on s.l) Since lim I(T,s+ip) = 0O as u + 0 for 0 < s < g, it
follows that I(t,s) £ 0, in particular I(t,t) = 0. This yields

<U(x(Tt)) ¢, U(x('r))Tx(T

(£)e> = <o,T T)(f)<1>> = 0. 0

) (

COROLLARY 1.3. A nonvanishing, strictly localizable field T satisfying only
the axioms I, II and III has support E&.

For otherwise there is a testfunction f£f and € > 0 such that for all
®eD Tx(f)® = 0 for all x € n{g with Ixl < e, so that (1.16) would hold.

We can drep the assumption of pesitivity of the field, if we impose a
condition on the state ¢ and then we get the stronger result that the expect-
ation values are analytic functions of the translations in space and time.
The condition implies that the high-energy contributions to the state may

ixe-P

not be too strong. Morevprecisely, let U(x) = e and let PO be the zero'th

component of the operator P. Then P, is a positive selfadjoint unbounded

0
operator and we assume that the state ¢ belongs to the domain of definition
of the operator e‘sPO for some § > 0. This property is equivalent to the

following definition

DEFINITION. A state ® € H is called analytic for the energy if & belongs to

the domain of definition of any Pt and if :

0
w Ip%el
I 2 oo
m=0 "

for some § > 0.

Nelson's analytic vector theorem tells us that there are many of such

vectors (namely a dense subset of H) [58, IIth. X . 39].

1)

Actually, here we have the restriction of a distribution (hyperfunction)
to an analytic curve defined by the restriction of its defining function,

here G, see [31, lemma 2.1 p.50].
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THEOREM 1.4. Let T be a field defined by axioms I, II and III and let ® € D

be an analytic vector for the energy. Then for.any £ € F the function

<®,T (£)®>
X

is analytic in x € ]R4.

PROOF. Define the function G of (x,£) € IIR4 x ]R4 by
-1
G(x,E) = <¢,U(x) "T(£)U(§)d>.
Since for all £ € F we have T(f)D c D the expression
*
<®,T(°) T(°)d>

determines a separately continuous bilinear map on F X F. By Schwartz' kernel

theorem this map is continuous on F X F, Hence for each f € F

HTE(f)¢ﬂ = T (f)ug)el = [<<I>,T({z£}f)*T({l:}f.)«»f2

is a continuous function of £ € ]R4. Also for x,& € IR4 U(E)_IU(XW varies

continuously in H. Therefore G is a continuous function:

|<U(E)_1U(x)¢,TE(f)¢> - <U(n)‘1u(y)¢,Tn(f)¢>| <
< <o) o e, T e E-Ind) 85| + 1{u(®) "tux)-um) “tuy) Yol -

T _(£)ol.
n
In particular G is measurable.

For fixed & € IR4 G can be extended as a holomorphic function of z in

the tubular domain with base (§,0,0,0)- by
G(z,E) = J e 12°P8P0 4er ()0 o, T (B U(E) 0>

satisfying there

lG(z,8)| < 1e%F0sl -IT(£)u(E) ol .
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Since IT(f)u(g)®l is continuous the right hand side is bounded if £ varies
4

in a bounded set in E#. On the other hand, for fixed x ¢ IR° G can be

extended as a holomorphic function of { in the tubular domain with base

-(6,0,0,0) + I by
G(x,7) = j 18P 0P0 ger (£)*u(x) 0,E (p) e F 00>

satisfying there
* 5?0
le(x,z)| < Im(e) u(x)ol-le” Oall.

Similarly to above, it follows that the right hand side is bounded if x
varies in a bounded set in Eﬁ. Then it follows from Hartogs theorem for
real-analytic functions (see [7], cf. also chapter II, §3.i of this thesis)
that G is an analytic function of (x{E) € Eﬁ x ﬂfi. In particular G(x,x) is

an analytic function of x 52R4. ]

Finally, we make some remarks concerning local commutativity, which
expresses the fact that two space-like separated events cannot influence
each other (sometimes also called microscopic causality). For strictly
localizable fields the ‘axiom of local commutativity is formulated as follows:
Axiom IV. Let f and g in F have their supports such that any two points x
in the support of £ and y in the support of g are space-like separated, i.e.,
lxo-yol < H;F;H, then

T(£)T(g) = T(g)T(£).

For the description of non-normalized interactions it is convenient to
work with distributions growing faster than polynomials in p-space. Hence
the functions in the Fourier transform of F must decrease more rapidly than
functions in S. If they decrease too fast at infinity, the space F consists
of non-localizable functions or even analytic functions. In the last case
the expectation values are analytic functions anyhow (by axiom II). Theorem
1.4 reveals that this is not a rare phenomenon. Thus ‘there would be no objec-
tion against analytic testfunctions. However, in that case the above given
definition of local commutativity is impossible.

In [63] the space F is taken to be Z, the Fourier transform of D, con-

sisting of certain entire functions, and local commutativity is not required,
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but another way of defining microscopic causality is given. In [10] a condi-
tion for causality is given on non-localizable functions in F, namely that

the distributions in p~space have a growth .at infinity of order one and type
zero, i.e., they are 0 (exp elpl) for any € > 0. In [69] such a field is called
localizable. In chapter II we shall see that then the Fourier transforms in
x-space are functionals on a space of real-analytic testfunctions. In spite
of this such analytic functionals have a uniquely defined support (see

chapter II, def. 2.6). As in [47] we will shﬁw {echapter II, th., 2.7) that

T, , where the analytic func-

xE1 T

tionals Tk have their supports in a priori given closed sets Uk such that

kgl Uk = Eﬂ} In a localizable, but non-strictly-localizable field T the

space F consists of real-analytic testfunctions. Then local commutativity

an analytic functional T can be written as

might be defined as follows:
For all f,g9 € F and all decompositions T = T1 + T2 + T3 where T1 and T2 have
space-like separated supports, Tl(f) and T2(g) commute.

I.5. LOCALIZATION OF TACHYONS

In the description of tachyons (partiéles travelling faster than light)
another application of the theory of functions of several complex variables
can be made. As physics intend to study phenomena which take place outside
the human mind, this section is perhaps more of mathematical interest than
that it pretends to describe something of physical reality. Therefore, we
shall not make the assumptions as general as possible, but we shall just
study the solutions of the tachyonic Klein-Gordon equation. This enables us
to explain a seeming contradiction between [66] and [50] concerning the exist-
ence of acausal solutions of certain wave equations corresponding to high-
spin-particles. As to tachyons themselves there exists an extensive literature,
see for example [51].

Let a superluminal state be described by a wave function ¥ satisfying

the tachyonic Klein-Gordon equation
(1.17) (3, 2"-u)¥ = o.

Since here positive and negative energy solutions can be transformed into
each other, we allow states which are a mixture of positive and negative
energy.

Let us investigate to which situation a solution leads,
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which is 1ocalized in a bounded volume V during some time interval lt] < T.
Then also ——-(0 x) 0 for ; ¢ V. Hence, since ¥ satisfies a hyperbolic
dlfferentlal equation, for any t ¥(t, x) as a function or distribution in *-
space has a bounded support: the support grows to the future and to the past
with velocity 1, which is the velocity of light, here. If we assume that Y
belongs to s'(nf), it follows that the Fourier transform & can be written

as
o -
d(p) = F (p+i0) - F (p-i0),

where Ft(p:tiO) are the boundary values in S' (E!) of holomorphic functions
in R, * ic® with ¢* = {(qo,q) Iq0 >ﬂq“}, see [68]. Since ¥ satisfies (1.17)
¢(p) vanishes for Ipl < m (in fact, similarly to (1.10) & is concentrated

on the hyperboloide pg = ;2-m ). The "Edge of the Wedge" theorem implies
that F+ and F_ are analytic continuations of each other.

Furthermore, it can be shown (see [68]) that any function F, which is
holomorphic in {R*+ic} v {’R"-ic} u U c ¢”, where C = {(yo,y) Iyo > alyl,

; € ni } for some o > 0 and where U is an open neighborhood in e of
{(xo,;)lﬂxﬂ<a} for some a > 0, is an entire function. Hence in the above
F+(p+iO) - F_(p-iO) vanishes everywhere. Therefore ¢, and thus ¥, is identi-
cally zero. The conclusion is that except zero no solution ¥ of (1.17) with
a bounded support during some time interval belongs to S'(Eﬂ). In particular,
the fundamental solution belongs to D'(Eﬂ) and not to S'(IR4)ande:doesnot
correspond to real energy po and impulse p, cf. [19]. Therefore, not every
pair of initial values w and wl in S'(]§ ) yields a solution corresponding
to real p. Only those w and *1 in S'(IR') whose Fourier transforms vanish
for “p" < myield a solutlon in S'(Eﬁ), see formula (1.11) with n’ replaced
by ~m2. Hence, for any wave function Y describing a superluminal state,
W(t,;) or g%—(t,;) cannot vanish identically for ; outside a bounded volume
at any time t.

‘Although equation (1.17) is supposed to describe a superluminal state,
the characteristics show that any solution localized in a bounded space-
volume cannot grow faster than with the speed of light, cf. the conclusion
in [66]. However, this phenomenon can never be "observed", since localized
solutions do not correspond to real values of energy and impulse, cf. the
conclusion in [50] that an equation like (1.17) may describe superluminal
procession.

Unlike subluminal free particles, it can happen that a solution Y of
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Y
(1.17) as well as its time derivative Ty vanishes in a bounded volume at

some time t. Then such a "hole" would be filled with the speed of light. For,

- +
if Y e S (]R4) is written as Y = ‘!’+ + ¥ where ¥ corresponds+to P~ 2 0 and

- 9
Y to Py < 0, and if we require that for any t ‘l’t(t,;) and —g—lt— (t,x) are

L2-function of ; € IRB, then the question whether ‘l’(t,;) and % (t,x) can
vanish in the same space-volume at the same time is equivalent to the follow-
ing question:

Does there exist a function f in the Sobolev space H1 (1R3) such that both
the function itself and its Fourier transform vanish identically in some

. 3 , .
open set in IR and in IR respectively?

3'
It is very easy to see that the answer is affirmative if f is a tempered
distribution, for example we can choose the fundamental solution g of the
wave equation. Now let ¢ and ¥ be C2functions with small su-pports around

the origin in IR, and ]R3, respectively. Then ¢ * Fg is a C®function of poly-

3
nomial growth and

£(5) 8L Fyce)- (6 % Fo) (£)

is a function in S(IR3) , which vanishes identically in some open set in ]R3

because Fg does. Also
def ,~-17 1 -1
£ = gm0 F e v

vanishes identically in some open set in IR3 because g does. Finally, f

1
belongs to H (IR3) because it even belongs to S(1R3) .
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CHAPTER I

REAL-CARRIED ANALYTIC FUNCTIONALS AND
BOUNDARY VALUES OF ANALYTIC FUNCTIONS

In [48] Martineau has discussed properties of analytic functionals
with bounded carrier and their Fourier transforms. Here, we shall treat
analytic functionals with unbounded carrier defined on spaces of analytic
functions satisfying certain growth conditions at infinity. Unlike in the
case of bounded carriers, these growth conditions are involved in the defin-
ition of unbounded carriers, and moreover, a class of neighborhoods has to
be specified.

In section 1 properties of real-ca¥ried:analytic functionals will be

" derived. We shall consider two types of analytic functionals, of which one
belongs to a Frechet space. The properties are similar to those given in
[47] for analytic functionals with bounded, real carriers. The proofs given
here rely on [47] as long as we deal with Frechet spaces, while in the other
case the proofs are suitably adapted.

Section 2 is concerned with Fourier transforms of real-carried analy-
tic functionals defined on spaces ZM which are subsets of Z, the space of
Fourier transforms of D. The spaces ZM are determined by growth conditions
in the real directions. As a limit case the space of exponentially decreasing
real analytic¢ functions arises and the dual of this space is just the set of
Fourier hyperfunctions [38]. Since the space of Fourier transforms of elem-
ents in ZM is a subset of D, its dual contains more general objects (namely,
ultra-distributions) than distributions in D'. As has been done in [60] for
distributions, here we shall represent such ultradistributions as boundary
values of analytic functions. So they arise very naturally between distribu-
tions and hyperfunctions on the one hand. Being boundary values of analytic
functions, too, their Fourier transforms form the transition from real-car-
ried analytic functionals in Z' to Fourier hyperfunctions on the other hand.
Since Fourier transformation is an isomorphism it is possible to define

ultradistributions completely by studying their Fourier transforms which
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are the analytic functionals we are concerned with. However, for clarity we
shall discuss ultradistributions and some properties directly, where for the
proofs we refer to [42].

Finally, the "Edge of the Wedge" theorem for distributions and for
ultradistributions as well will be the subject of section 3. We will give a
simple proof by means fo Fourier transformation, which is based on techniques

used in [4].
II.1 REAL-CARRIED ANALYTIC FUNCTIONALS
II.1.i THE SPACE Z'

We consider a familiar example of a space of analytic functionals.
The Fourier transform of the space D of CZtestfunctions with compact support
is the space Z of entire functions decreasing in the real directions faster
than each negative power of lzl and increasing exponentially in the imagin-
ary directions. The dual space Z' is a space of analytic functionals and its
Fourier transform is the space D' of distribu£ions. Tempered distributions

2n

in S'(H{B or distributions with compact support K in IR = q" are examples

of elements of Z'. For an entire function f and for a multiindex o we have

el

‘sup ]Daf(z)l < 94%§;—— sup If(z)l

zeK € zeK(g)

for every € > 0, where K(e) denotes the e-neighborhood of K in cn and € the
vector in R with components €. Hence, for all £ € 2 and every € > 0, a

distribution T with support K satisfies

(2.1) I<T,f>| <M sup ]f(z)l

' € zek(e)
for some constants Me depend;ng on € and T. We may consider K as the support
of the analytic functional T, but in general such a notion has properties
different from supports of distributions. In [30, p.105] an example has
been given of an analytic functional u which satisfies (2.1) for all sets
K in ¢2 of the form Ka = {(21'22)|!21I5a'|zzlsé4’ but which does not satisfy
(2.1) for K= (K (M is the Fourier transform of the distribution in IRZ

a>0 o
defined by the function cosh 2¢£1£2 ). Therefore a compact set K c© c”
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satisfying (2.1) for every € > 0 is called the carrier of the analytic func-
tional T. In Z' unbounded carriers can be defined, too. For that purpose we
first analyze the topology of the space Z.

Let Z(a) be the Frechet space p€8j+l%m Z(a)m, where Z(a)m is the space
of entire functions endowed with the norm

(2.2) hel def sup (1+lzl)

zeC?

me—auyll lf(Z) I .

Then 2 = igd+1&m Z(a). Elements U € Z'(a) can be written as <u,f> =
4h(x)f(x)dx for some entire function h [21, III §2.3]. Hence u is a function-
al on the space of restrictions to Rr of functions in Z(a). In general,

this is no longer true for u € Z'. For example the Fourier transform of the

(m) m imx

infinite order distribution I § (§-m) is defined by g f (ix) e £(x)dx

m
for £ € Z.

DEFINITION. An analytic functional u € Z' is carried by -the closed set Q(:cn
with respect to the decreasing seguence {Qk}:=1 of neighborhoods of Q, if
for every k y is already a functional on the space Z o of restrictions to
Qk of functions in Z, where 2 O carries the topology induced by 7, i.e.,

in (2.2) the supremum should be taken over all z ¢ Qk.

If the neighborhoods Q are the set of 1/k-neighborhoods

k

‘1/k) 2L (2]lz-z'I<1/k, 2 e}

we will just say that u is carried by Q.
According to [16, th.5.13*] a fundamental system of neighborhoods of

zero in Z is given by

Vik,0) 2L (fez|l£(2) |ox(2)},

where o > 0 and where K is a positive, continuous function of the following

form: let {aj} be a strictly increasing sequence of integers with a0 = a1 =
=a, = 0, 2442 > 2a, and let £ be a positive integer; set K(z) = (1+Hx")—£ x
£

x14y1) exp((3-2)Iyh) for a, (1+1og(1+lxh)) < Iylst 3,1 (1+10g (1+1x1)); the
definition of K is completed by requiring that K is a function of lIxl, lyl
which is continuous and such that, for fixed lxl, logk(lxl,lyl) +

+ Lllog(1+lxl) + log(l+lyl)] is Iinear in Iyl in the regions in which it is
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not already defined above. Then a fundamental system of neighborhoods of

zero in Z 2 is obtained by {erle[lf(z)lSaK(z),zeﬂk}. Now the Hahn-Banach
theorem and Reisz' representation theorem imply that for every k an analytic
functional u carried by  with respect to {Qk} can be represented as a mea-

sure uk on Qk satisfying

J K, (2) |duk(z)| <M,
O
where Kk is a function as described above depending on k.
In chapter III we shall investigate the Fourier transforms of analytic
functionals carried by convex sets § < @". In this chapter we restrict our-
selves to the case where @ is contained in r" = {z|z=x+iy,y=0,erRn}. In

this case the spaces

zF def proj lim ind 1lim Z(a)
m > a > m

Z def ind 1lim proj 1lim Z(a)m

a > « m > «

induce the same topology on Z . Indeed, according to [76, th.5.10] a

fundamental system of neighborgégés of zero in ZF is given by V(K%), where
now K'(z) = (1+lzl)™ Ki(y) with m 2 0 and with K; a positive, continuous
function dominating every exp alyl, a > 0. Z, is the Fourier transform of
DF’ the test space for the finite-order-distributions. Hence the (inverse)
Fourier transfoxms of all elements § in Z' carried by the real set Q are

finite-order-distributions and, moreover, for every € > 0 these | satisfy

|<u,£>] < M_ sup [(1+Hxﬂ)m(s)]f(z)|], f ez,
zefl ()
with Me and m(e) depending on € and u. The above given representation yields
that for every € > 0 u can be represented as a measure us on f(e) satisfy-
ing
J |du€(z)|

———(—)-SM
m(e €
a(e) (1+0xl)



27
II.1.ii. GENERAL SPACES OF REAL-CARRIED ANALYTIC FUNCTIONALS

We introduce real-carried analytic functionals in spaces defined in a
more general way of which the real-carried elements of Z' are only an exam-
ple. Real-carried analytic functionals, originally defined on some space H
of entire functions f, can be extended to the space A of restrictions of £
to e-neighboorhoods of nf’ by the Hahn-Banach theorem, where A carries the
topology induced by H. This extension is unique if H is dense in A. We shall
not treat this question, but we shall merely start with spaces A consisting
of all funcitons analytic in e-neighborhoods of n¥’, which satisfy certain
growth conditions at infinity. We shall consider two types of such spaces
A.

Let {¢j};=1 be an increasing or a decreasing sequence of continuous
functions defined on B{I, and let Qj be the open 1/j-neighborhood in a” of
the closed set © in R". Let Am(ﬁk) be the Banach space of analytic functions
£ in Qk with

. def
(2.3) "f"m X sup lf(z)exp-—¢m(x)| < o,

! zeﬂk

If {¢j} is an increasing sequence, define A(Q) by

(2.4) a@ £ ina 1in 2 (@)
K>

and if {¢j} is decreasing by

(2.5) A(R) det ind 1lim proj lim A (Qk),
k > o« m > ® m

where all needed injections are defined by restriction. If Q = r we shall
just write A.

Real-carried analytic functionals in Z' are defined on a space Z(If”
of the second type with ¢m(x) = -m log(1+lxll). In section II.2 the functions
¢j will be negative with order of growth between -j log(l+lxl) and -1/5lxl.
The limits of the spaces they define are on the one side Z(IfU and on the
other side the space of the first type (2.4) defined by 9, (%) = -1/klxl,

The duals of these limit spaces consist of Fourier transforms of certain
distributions and, by definition [38], of Fourier hyperfunctions, respective-

ly. The cases in between correspond to Fourier transforms of certain ultra-
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distributions of Roumieu type or of Beurling type, depending on the respec-
tive cases (2.4) and (2.5) (cf. section II.2.iii).

A U €A' carried by 2 can be extended to an element of A(Q)' with the
same carrier. This extension is unique if A is dense in A(Q) and then every
U € A(Q)' is uniquely determined by its action on functions of A. Again, as
we are here interested in elements of A' only, we do not bother about the

1
question whether A is dense in A(Q). )

II.1.iii. PROPERTIES OF REAL-CARRIED ANALYTIC FUNCTIONALS

First we shall show that every analytic functional in A' has a, unique-
ly defined, smallest carrier which joins some properties of supports of dist-
ributions. In order to do so we have to make some assumptions implying the
triviality of a cohomology group which will be shown in chapter VI for
spaces A of type (2.4) and in chapter VII (cor.7.5) for spaces A of type
(2.5). The result is that for each f € A(Q1 n Qz) there are fj € A(Qj),

j = 1,2, such that

(2.6) £f=f -f

The proof uses the possibility of rewriting the spaces A in a different
form. Essentially, it is based on the following property of closed sets

. n
in IR .

LEMMA 2.1. (see chapter V, lemma 5.1). For any 1/k-neighborhood Q(1/k) of
Q ‘there is an open pseudoconvex neighborhood Qk with Q(1/2k) c Qk c Q(1/k).

Hence formula's (2.4) and (2.5) with pseudoconvex sets Qk define the

1
) This happens certainly if Q is compact, because each compact set in r®

is polynomially convex (cf. chapter V, lemma 5.1), hence for f € A(R) the

function f(z)exp 22 can be approximated in every . by polynomials P

and then f is approximated by Pk(z)exp‘-z2 € A. Itkfollows from resutts
obtained in the following chapters (th.4.6 and cor.7.4, cf. also cor.3.4)
that A is dense in A(Q) if Q is convex and if {¢j} satisfies the conditions
of theorem 2.4 below. In [38, th.2.2.1] it is shown that A is dense in
every A(Q), if A(R) is a space of type (2.4) with ¢, (x) = -1/klxl and with

certain neighborhoods Qk' larger than e-neighborhoods.
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spaces A just as well. Furthermore, the spaces A should not change if the
weight functions ¢j of x are changed into plurisubharmonic functions wj of z
and if moreover the differences of the functions ¢j are not too small. More
precisely, the following condition must be satisfied: there is an a-neighbor-
hood EPK&) in €@ of R and, if {¢j} is increasing, for every j there exist
a plurisubharmonic function ¢ = wj on Efwa) and, for every N 2 0, moreover
anm=m(j,N) 2 j and C = C(j,N) 2 0, or if {¢.} is decreasing, for every m
there exist a plurisubharmonic function ¢y = wm on Ep(a) and, for every

N 2 0, moreover a j = j(m,N) 2 m and C = C(m,N) 2 0, such that
(2.7) 0,00 S Y@ + N log(1+lz1%) < 4 ) +c, Iyl <a.

In lemma 5.2 it will be shown that the spaces of the next section satisfy
this condition.

According to [73, cond. HS, and HSZ’ p.15] it follows from condition

1
(2.7) that A can be written with the L2—norms

(2.8) { J |£(z) |2 exp--zwmmauz)}12 ,

e

where A(z) denotes the Lebesgue measure in Cn, instead of the sup-norms
(2.3). We denote by H(Qk;wm) the Hilbert space of holomorphic functions in

Qk with inner product induced by the norm (2.8).
(1/m)
k

> . _ N R
Ek 0 is such that the € shrinking of Qk contains Qk—l'

because we deal with e-neighborhoods of closed sets in Bfl. Moreover, it

Furthermore, let § be the open(sk/m)—shrinking of Q , where

k
This is possible

is clear that (2.5) does not change if the functions in Am(ﬂk) have only

(1/m). Finally, since in (2.4) and (2.5) only restrictions

or to Qk(l/m), respectively, are important, we

finite norms on Qk

of functions in Qk to Qk—l

may change the functions wj of condition (2.7) near the boundary of § So

k'
we have obtained the following lemma.
LEMMA 2.2. Let condition (2.7) be satisfied. Then the space A() given by

(2.4) can also be written as

A(Q) = ind lim H(Q ;9. ) = ind lim H(R ;¥. (2) +log(1+lz1%) +
Kk Yk kY
k + o k > o

+ log(1+d(z,0) ™)
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and the space A(Q) given by (2.5) as A(Q) = ind lim B(Qk) with
k > o
1
(2.9) B(2) 2L proj 1im 2@ ™,y (2)) = proj lim H(R
k k m k
m > « m > o«

+ log(1+121%) + log(1+a(z,2D) ™),

Hh

“”";wm(z) +

where the sets {Qk] are pseudoconvex and where d(z,QE) denotes the distance

from z to the boundary of ﬂk.

Now bearing in mind that intersections of pseudoconvex sets are again
pseudoconvex and using lemma 2.1, we can choose in lemma 2.2 pseudoconvex

neighborhoods {(QllJQZ)k}, {(Ql)k} and {(Qz)k} of QllJQZ, Q

g OF 92’ respec-

tively, which satisfy
(2.10) (91 u Qz)k = (91)k u (Qz)k.

For the spaces of type (2.4) formula (2.6) now follows from lemma 2.2 (cf.
k k+1 k+1 )

cor. 7.5 with Q@ = Q and ¢k = ¢ , k=1,2,...).

LEMMA 2.3.i. Let Qi and 32 be closed sets in R" with non-empty intersection
and let condition (2.7) be satisfied. Furthermore, let A(Ql)' A(Qz) and
A(Ql.n 92) be given by (2.4), then for any f € A(Qlfwﬁz) there are

fj € A(Qj), j = 1,2, such that (2.6) holds.

!
i For spaces of type (2.5) this result is more difficult to prove and

a further condition (cf. cond. (7.3)) is needed, which implies that the
differences of the functions wm may not be too large: for every p and m with
P 2 m there exists a holomorphic function gp o in an a-neighborhood of r"

r

in Cn and, for every k, moreover a constant K = K(p,m,k) such that
* < < - - = .o
(2.11) 0 lgp,m(Z)l K exp k{wm(z) wp(z)}, Iyl <a, x = 1,2,.

For the spaces of the next section it suffices to take gp'm(z) = exp—zz,
but if, for example, ¢m(x) = exp(1/m expxz) condition (2.11) cannot be
satisfied. Now corollary 7.5 yields (2.6) for the spaces B(Qk) given by
(2.9), because for the function 0 in condition (4.22) of the corollary we

can take o(z) = -log d(z,Q;) which is plurisubharmonic [30, th. 2.6.7].
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LEMMA 2.3.ii. Let 91 and Q. be as in lemma 2.3.1 and let conditions (2.7)

2
and (2.11) be satisfied. Let the pseudoconvex neighborhoods {(Ql)k} and
{(Qz)k} of @,

of Ql u 92 are pseudoconvex. Then for k = 1,2,... and for any f € B((Szl)k n
n (Qz)k) there-are fj € B((Qj)k), j =1,2, such that (2.6) holds in

(Ql)k

and 92 be such that also the neighborhoods {(Ql)k u (Qz)k}

n (Qz)k.

THEOREM 2.4. (cf. [47, prop 1]). Let A be given by (2.4) or (2.5) and let
condition (2.7) be satisfied. If A is of type (2.5), let moreover condition
(2.11) be satisfied. If yu € A' is carried by the closed sets Q, and Q, in

1 2

R® with Ql an # @, then yu is already carried by Ql n 92.

PROOF. Since by lemma 2.1 £, U 92, ., and 92 have pseudoconvex neighborhood

1 1
bases which moreover satisfy (2.10), lemma 2.3.i and ii shows that any
function f € A(Q1 n 92) can be written as (2.6) with fj € A(Qj), j=1,2.

Hence, the following continuous map I is surjective

(2.12) I: A(Ql) x A(QZ) > A(Q1 n 92)

with I(fl'fZ) = fz-f1. The kernel of I is just {(f,f)lfeA(QllJQZ)}.

Furthermore, we assert that I is an open map. Let us first show this
for spaces A(f2) of type (2.4). It follows from lemma (2.2) that such spaces
are inductive limits of Hilbert spaces, hence DFStspaces [40] and thus duals
of reflexive Frechef spaces. Since such spaces are Ptak spaces [61, IV.

§ 8ex. 2, p.162] the open mapping theorem [61, IV. §8.3, cor 1] implies
that I is an open map. If £he spaces A(f2) are of type (2.5), we have the

more precise result (lemma 2.3.ii) that even for every k the map I defined

kl
similarly to I, is a surjective map between the Frechet spaces

Ik: B((Ql)k) x B((Qz)k) -+ B((Ql)k n (Qz)k)
where B(Q) is given by (2.9). Hence the ordinary open mapping theorem
implies that Ik is open. The maps {Ik} commute with the restriction maps,
and so lemma 2.%.and the definition of open sets in an inductive limit
(cf. the characterization of a O-neighborhood base in [20, § 23, 3.14])
imply that I is open.

Now we first extend u to an element of A(QllJQZ)' and then to elements
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1] Q L 1 ~ 1]
Hy € A(Ql) and u_ € A( 2) .Define u € A(Qlf\QZ) by

2

~ def

<u:f> = <u21f2> - <u11f1>
for some (fl’f2) € Iol(f). Since ul equals u2 on A(QllJQZ) ; is independent
of the representant in I—l(f). Furthermore, since ul and u2 are continuous,
they are bounded on some neighborhood of zero in A(Ql) and A(Qz), respec-
tively. The fact that I is an open map implies that 1 is bounded on some
neighborhood of zero in A(Qllﬁﬂz), hence that it is continuous. Finally,
for any £ € A we have

<u,f> = <u2,f

+h> - <U1,h> = <y, ,f£> = <y, £>

2 2

for some h € A(SZ1 UQZ). 0

COROLLARY 2.5. Let the conditions of theorem 2.4 be satisfied. If u is

carried by two disjunct closed sets in R" then u = 0.

PROOF. By enlarging the carriers of u suitably theorem 2.4 yields that there
is a ball § in R" such that u is carried by any closed set in S. We may

assume that S = {x|lxl<1}. For any multiindex a we have
a
<u,za> =D £(0)

where

£(zg) El_—e_f <uz,ez.c>.

f is an entire function and since U is carried by any closed subset of the

unitsphere, there are K > 0 and € > 0 with
' 1
l£@ | = K exp{~ 5 lel+elnl}.

Hence the Fourier transform of f is, on the one hand, real-analytic and,

on the other hand, by the Paley-Wiener theorem a C Z function with compact
support, thus £ = 0. Hence <u,zm> = 0 for all a. Since the polynomials are
dense in the functions holomorphic in the origin and since U is also carried

by the origin, it follows that u = O. O
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1
Now we are able to define the support ) of u € A'.
DEFINITION 2.6. Let the conditions of theorem 2.4 be satisfied. Then the
intersection of all the carriers of an analytic functional uy € A' is called

the support of u.

REMARK. In the example of [30] given earlier the set
{(z,,z )I lz, <2, |z lsl or |z Isl, |z_|<2} < ¢2
1’72 1 ' 272 172 2

is not pseudoconvex. For its holomorphically convex hull equals its logar-
ithmic convex hull {(zl,zz)||21I52, |22|S2, l21||z2|51}, see [68]. The
intersection of carriers is no carrier and hence the support cannot be
defined.

Next we shall prove that (real) carriers can be localized, a property
which is easy to show for supports of distributions (the property that for
any finite collection ochlosed sets {U }N covering =" every distribution

k k=1

g can be written as g =k£1 g, where gk has its support in Uk)'

k

THEOREM 2.7. (cf. [47, prop 2] and [60, proof of th. 4.2]). For any finite
+ 4N

k}k=l
where uy

collection of closed sets {U in ﬂf’ with union ]{1' each Y € A' can
N

. 3 = v
be written as | k£1 ! € A(Uk) .

k
PROOF. Define the continuous map
N
I: A~ I A(Uk)
k=1
by restriction. Its transposed It between the duals
£ N
I°: 1 A(Uk)' -+ A!
k=1

o

) The support of a (ultra) distribution g, defined on a space Wl of C =
testfunctions, is defined as the smallest closed set U in Hgl such that
any x ¢ U has an open neighborhood VO with <g,¢> = 0 for every ¢ € W
with ¢(x) = 0 if x ¢ VO. Since there are no analytic functions ¢ Z O sat-
isfying this, this definition of support is impossible for an analytic
functional. The reason for calling the smallest carrier the support of the
analytic functional is that this concept has similar properties to the
support of a distribution, unlike the carrier of an analytic functional

(cf. the earlier mentioned example of [30]).
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N
Z, W, , for

. . t _
is given by I (ul,...,uN) = Z1 M

N N N
<It(u1,...,uN),f> = ) <w 1) > = ) <w £ = < ) >

k=1 k=1 k=1
Clearly, I is an injective and open map from A into Im I, when Im I carries
the topology induced by HA(Uk)(this can be seen by inspection of the open
sets in the .spaces A). Then according to [65, prop. 35.4 and lemma 37.7]
It is surjective (if the duals of the spaces A are reflexive Frechet spaces,
this can be seen also by [65, th. 37.2] since clearly I has closed image,
cf. [47]). O

In general, a distribution in D' (U) where U is an open set in ="
cannot be extended to a distribution in D'(R"). We shall now show that
this property does hold for real carried analytic functionals. 1) Before
formulating this we introduce the concept of local equality of real-carried
analytic functionals, see [47].

If u € A' with A satisfying the conditions of theorem 2.4, according
M

N ~

to theorem 2.7, can be written as u = kzluk and as U = jgluj, we have

N

) L ) %, =o.

k=1 j=1 7

n
Hence for any x € IR
M - ) u, = - ) M+
{k|x € carrier {j|x € carrier 7 {remaining k}
of uk} of Uj}
+ ) W .

{remaining j} I

By theorem 2.4 the left hand side and the right hand side have their sup-
port contained in the intersection of their carriers, so that x does not
belong to the support of the left hand side. We now consider, more gener-
ally, infinite sums of analytic functionals with bounded carriers U, . There-

k
fore, no weightfunctions ¢j occur in the definition of A(Uk) and theorem

1
) This may be expressed by saying that the sheaf of real-carried analytic

functionals, and by consequence [47] the sheaf of hyperfunctions, is

flabby.
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2.4 is valid without its conditions on the weight functions, cf. [47,prop 11].
Let {Uk} and {Gk} be locally finite coverings, consisting of compact

sets, of the open set U in R® and let {uk} and {ﬁk} be analytic functionals

carried by Uk or Uk' respectively. Then we define y = I uk and 1 = I uk to

k
be locally equal if each X € U does not belong to the support of the analytic

functional

~

M- W .
k ~ k
{klerk} {klxauk}

In general, u = L y,_ is not an element of A'. However, we shall show that

k
there exists an element v € A' which is locally equal to u.

THEOREM 2.8. (cf. [47, prop. 3]). Let {Uk}:=1 be a locally finite covering

[
of the open set U c =" consisting of compact sets and let u = kgl uk,
where uk is an analytic functional carried by Uk' k=1,2,... .Furthermore,

let A be given by (2.4) or (2.5) where condition (2.7) is satisfied. Then

there exists a v € A' carried by U which is locally equal to u in U.

PROOF. It is convenient to have Frechet spaces of analytic functionals.

If A(Q) is given by (2.4), as in the proof of theorem 2.4, lemma 2.2 implies
that A(R) is a DFS fspace [40] so that the strong dual A(Q)' is a Frechet
space. If A(Q) is given by (2.5), for any fixed m we will find a v € A(Q)é

with the required properties, where

A(Q)m g§£ ind lim H(Qk;wm)
k >
Here H(Qk:wm) is the space whose definition preceeds lemma 2.2. Since for
every k = 2,3,... and any m B(Qk) defined by (2.9) is mapped by restriction
into H(Qk_l;wm), by lemma 2.2 V € A(Q)é certainly belongs to A(f)'. But
now, as before A(Q)A, as the strong dual of an inductive limit of Hilbert
spaces, is a Frechet space.

In order to contain both cases, we denote by A(R) the space A(R)

(m)
if A{Q) is of type (2.4) and the space A(Q)m if A is of type (2.5). Thus

now A{Q)"' which

(m)
is locally equal to u in U.

is a Frechet space and it suffices to find v € A(U)'

(m)

In virtue of theorem 2.7 p is locally equal to a sum k§1 ;k where
——— ©
" is carried by Vk\vk—l and where {Vk}k=0 are compact sets such that
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VO =4, Vk c int V. U Vk = U and U\Vk only contains unbounded components

k+1' k
or components intersecting 93U. Since A(U\Vk)(m) is mapped injectively by
restriction into A(BU)(m) (here we define the class of neighborhoods of 23U

as the e-neighborhoods in Cn of the complements in U of compact sets in U),

A(BU)zm) is dense in A(U\Vk)'(m). Now A(U\Vk)zm) is a Frechet space, thus
there is a distance dk to the origin defining its topology. Furthermore,
A(U\Vk)zm) can be continuously mapped into A(U\Vj)zm) for k 2 j and there-

fore, for each k there exists an element vk € A(BU)Em with

)

~ -k
- < < 5§ < k-1.
dj(uk vk) 27, 0 j £ k-1

Then
def w
v =2 ) Gy = v )
k=1
is an element of A(ﬁ)zm), because its distance do(v) to the origin is fin-

ite. Moreover, for every j we have

J j ©
v= ) B - ) Ve * ) (e = v )
k=1 k=1 k=j+1
where the last term converges in A(U\Vj)Em) and where the second term is

carried by the complement of Vj in U. Hence v is locally equal to u in

the interior of each Vj' thus in U. O

As an example we consider distributions in D'(EJH. First, let T be
a distribution with compact support K c IRn (hence T can be defined on C 2
functions). By restriction to analytic functions T can be considered as
an element of A(K)' and the support of T as analytic functional is the same
as the support K of T as distribution, see [42, lemma 7.4]. Any g ¢ D' (R")
is a locally finite sum of distributions with compact support. Hence, for
any g € D' there is a real-carried analytic functional in 2' which is loc-
a;ly equal to g, but it is difficult to write down an explicite, non-tri-

vial, example.
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II.2. FOURIER TRANSFORMS OF REAL-CARRIED ANALYTIC FUNCTIONALS.

II.2.i. FOURIER TRANSFORMATION AND BOUNDARY VALUES OF ANALYTIC FUNCTIONS.

We shall define the Fourier transformation of analytic functionals
defined on a subset ZM of Z. For a C = function ¢ with compact support in IE“
the dual of E{n the Fourier transform F¢ is defined by

(2.13) Fo(x) &£ J $(E) exp i <E,x> aE.

IR
n

Then F¢ is a function on B{I which can be extended to an entire function
belonging to Z(cn). If ¢ belongs to a certain, locally convex, topological
vector space DM of ¢ Z functions with compact support, the image ZM of F in

Z is given the topology such that F becomes a topological isomorphism from
DM(Hﬂg onto ZM(¢n). The transposed map Ft of F defines an isomorphism from
ZM(Gn)' onto DM(Bﬂs' . We may restrict Ft o ZM(Cn) or to DM(I{B and we may
identify a & € Iﬁl with an n-dimensional vector(il,...,in) in ®® so that

<g,x> becomes

<E,x> = X°§f == x1€1+...+xn£n.
Then the maps

-t . n

F IZM 12, (€) > D (R )

and
FEl D (Y -~z (c)
DM'M M ' n

are also given by (2.13) due to Parseval's relation

<y, Fo> J (0 { J 84 (g)agdax = J o (E){ J ¥y (waxdag =

<FEy, 5.
t
Hence we shall call also ¥~ Fourier transformation and denote it by

n ] 1
(2.14) F: zM(cc ) +DM(mn) .
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t t . .
The transposed of the maps F lz and F !D are isomorphisms
M M

t t ' n, ,
(F [ZM) : Dy (R ) >z, (€)

t t ' n, ,
(F IDM) : 2y, (€)' > Dy (R)

and again, restricted to Ll-functions ¢, these maps are given by (2.13).
Finally, the transposed of the restriction to ZM(Cn) of one of these maps
yields the isomorphism
t t t n,, .
C(Fo, 07,07 = DY » 2z (@),
M M
which for an Ll—function ¢ is also given by (2.13). Hence from (2.13) several
maps arise which we will call Fourier transformation and denote by F. Thus,
although we intended to deal with the Fourier transformation (2.14) only,
this map cannot be defined in this way without introducing naturally the

other maps

' 1 '

(2.15) F: oz (€)' » D (R
n, '

F: Dy(®D >z (€)

1 n 1]
F: DM(IRn) > zM(a: ).

As we will see, these definitions have the advantage that, as soon as
U € ZM(¢n)' also belongs to the dual of a space of analytic functions of [
of which exp i <7,z> is one for z in a certain open set in ¢n, F given by

(2.15) can be written as the boundary value in some sense of the function

- i< >
iz E <tz >,
C
cf. lemma 2.26. We shall call the function ﬁ the Fourier transform D of n

and 1(z) will be denoted as Fu(z).
With the aid of Fourier transformation it will be shown that real-

carried analytic functionals in Zﬁ can be written as sum of boundary values

1)

Sometimes F is called Fourier-Laplace transformation [68], Fourier-Borel
transformation [48] or even Fourier-Laplace-Carleman-Sato transformation

[43], but we shall call F merely Fourier transformation.
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of functions holomorphic in tubular radial domains, i.e., in domains of the

. n
form TC gg£ R"+iC where C is an open convex cone in IR . The boundary value

Cd_g___fTC
r
such that, for all y € C with Iyl < r, J £(x+iy)y(x)dx exists for every

is defined as follows: let f be a holomorphic function in T n {z|lyl<r}

*
Y € ZM; the boundary value £ of £ in Zﬁ is defined by
(2.16) <£*,y> 2€E 14 j £(x +iy) ¥ (x) dx
y>0 n
yeC

for ¢ € ZM' This limit exists, since the integral is independent of Imx,

so that for each ¥y €C with Hyoﬂ <r

*
(2.17) <f ,P>

lim J f(x-+iy0-+iy)w(x-+iyo)dx =
y>0
yeC

J f(x-#iyo)w(x-+iyo)dx, Y e ZM'
="

Since the testfunction space

B 2L ind 1im BE (0); - elxh)

e >0
for Fourier hyperfunctions is contained in all the spaces consisting of

restrictions to e-neighborhoods Igl(e) in Cn of nf’ of functions in Z , all

M
real-carried analytic functionals u in Z°' or Z& can be considered as Fourier
hyperfunctions in H(Bf” '. As the Fourier transform of H(D%R is just H(H{H,
the Fourier transforms Fu of real-carried analytic functionals in Z' or Zﬂ,
which are certain distributions or ultradistributions, are examples of
Fourier hyperfunctions in H(Bﬁg '. Thus the spaces of Fourier hyperfunctions
form the limit case in which all the real-carried analytic functionals in
Z' or Zﬁ and their Fourier transforms as well are contained. The other limit
case is the space of tempered distributions which is contained in all spaces
of real-carried analytic functionals and their Fourier transforms.

Now a Fourier hyperfunction can be represented as sum of boundary
values f*'(2.16) of analytic functions f in TS satisfying for all C' cc C
and all € > O

I xll
(2.18) |£(z)| < k(c',e)e® X , yec,e<lyl <r-e¢
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where K(C',e) depends on C' and &, see [38]. A tempered distribution g can
be written as sum of boundary values of analytic functions f satisfying for

all C' cc C

(2.19) l£(z)] < ke @ +IxhNMg™, gy ecr, Iyl <

with O < r' < r and with N depending on g, see [49]. In the following sec-

tions we shall give analytic representations of real-carried analytic func-
tionals ¢ in 2' or Zﬁ and of Fu as boundary values of analytic functions f

or h, respectively. So these functions certainly satisfy (2.18), whereas

functions satisfying (2.19) are examples of such functions f and h.
II.2.ii. CHARACTERIZATION OF DISTRIBUTIONS WITH REAL-CARRIED FOURIER TRANSFORMS.

Let us consider the example of real-carried analytic functionals u in
the space Z'. Then p is an element in the space A' where A is given by (2.5)
with ¢m(x) = -m log(l +lIxl) and Fu is a distribution in D(KEJ'. Now U is
the sum of boundary values of analytic functions and actually the following
theorem 2.9 holds [60]. Before formulating this theorem we introduce the

1) * . n
dual C of an open convex cone C in IR as the open convex cone

* -
c* def int{g| <g,y> > 0, y € c} = int{g] <€,y> 2 0, y € C}

Fh

*
in IR . We identify the dual of Bﬂ} with B#u and then, if C # @, the dual

of C equals C

* % *
() =c= {xl <n,x> >0, necC}

because C is open and convex.

THEOREM 2.9. For u € Z' the following four statements are equivalent:
(1) u is carried by R"

(2) For any € > 0, Fu € D' can be represented as Fu = Z p’c ,

o,€
, , , .Aulsm(s) !
where Ga e are continuous functions on IR satisfying
’ n

1 *
) In [68] ¢ stands for {£I£1y1+...+5nyn20,yeC} and then (C*)* is the

closed convex hull of C.
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le

aIE(E)I < x (e) exp elgl

(3) u is the sum of boundary values in Z' of functions fj holomorphic in
R + iC, satisfying for any Cé cc Cj and any € > 0
J

e, @] < K(Cj!,e)(1+||z|l)N(Cj’E),

y € CJ'" ||y|l > €
for j =1,...,k, where {Cj}];_1 are open convex cones in R" such that

the closure of their duals cover nﬂf
(4) Fu € D' is the sum of boundary values in D' of functions hj holomorphic
*
in nﬂ1+j.c; satisfying for any Cj' cc C; and any € > 0

Inj @] < x(cj*-,e)(1+||n||“m(€))e9"5", neck

for 3 =1,...,p, where {Cf}? are open convex cones in IR such that
J P j =1 n

the closure of their duals cover nf\

This theorem deals with boundary values in Z' in several dimensions

and in this way it generalizes the one dimensional case discussed in [46].
II.2.iii. ULTRADISTRIBUTIONS

In the following section we will pay attention to spaces A defined by
weight functions ¢j with an order of growth between -j log(l +lxl) and
-1/3 “x“. Then the Fourier transforms of elements in A' are certain ultra-
distributions of Roumieu type if A is of type (2.4) and of Beurling type if
A is of type (2.5). In section 2.iv we will give characterizations of these
ultradistributions similar to (2), (3) and (4) of theorem 2.9. Ultradistri-
butions are continuous, linear functionals on spaces of ultradifferentiable
testfunctions. It follows the lines of this chapter if ultradifferentiable
functions ¢ are defined by growth conditions on their Fourier transforms.
No direct information about ¢ is obtained in this way, and therefore in this
section we will also give a direct definition. Furthermore, some properties
of ultradistributions will be mentioned whose proofs can be found in [42].

Throughout this and the following chapter M will stand for a continuous
increasing piecewise differentiable function on [0,®) with M(0) = 0, M(®) = o,
such that M' is ctrictly decreasing and pM'(p) is increasing to ® and such

that



42

M(p)
(2.20) J =5-dp <=
1 °

and for some constants T > 1 and K > 0O
(2.21) 2M(p) < M(tp) + K.

DEFINITION 2.10.i. Let f be an entire function such that for every positive

m there is a K > 0 (there are positive constants m and K) with
(2.22) |f(z)[ < K exp{-M(nmlzl) + alyl}

for some a > 0. Then the inverse Fourier transform ¢ of £ is an ultradiff-
erentiable function with support in the ball with radius a of class M of

Beurling type (of Roumieu type), or shortly of class (M) (of class {M}).

[+
Let {Mp}p_O be an increasing sequence of positive numbers satisfying

the following properties (called M.1, M.2 and M.3 in [42]): for some positive

K and h
M2 <M M =1,2
p o p-1 p+t’ BT Srfrees
M <kh® min M M_, p=0,1,...
P 0<q<p p-q
o
z M <KpM , p=1,2,...
L g 5o
g=p+1 Mq Mp+1

An equivalent, direct definition is obtained as follows:

DEFINITION 2.10.ii. Let the sequence {Mp}:=0 satisfy the above given proper-
ties. Then a C = function ¢ with compact support S is called ultradifferen-
tiable of class M_ of Beurling type (of Roumieu type), if its derivatives
can be estimated is follows:-for every € > 0 there is a K > 0 (there are

positive € and K) with
(2.23) D% (&) ] < x £° M Ees, la] =p, p=0,1,... .
In [42] ¢ is called an ultradifferentiable function of class (MP) (of

® ©
class {Mp})' The sequence {MP}P=0 and the function M determine each other

according to
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P,
M(p) = sup log E]%Q
p P
(2.24) p
M = MO sup oxp M(p)

and this implies the equivalence of definition 2.10 i and ii [42, th. 9.1].
The properties of the sequence {Mp};=0 are equivalent to those of the func-
tion M.

As in the case of the space D of all C 2 functions with compact support,
the spaces DM of ultradifferentiable functions of class M_ with compact sup-
port in ﬂﬂl can be given locally convex topologies such that their Fourier
transforms ZM = FDM have the following topologies: in case of Beurling type
ultradifferentiable testfunctions ZM is defined by

Z(M) def ind lim proj lim Hm(mn; ~M(mlzll) +alyl)
a~>® m > ®
and in case of Roumieu type ultradifferentiable testfunctions ZM is defined
by

2 def jnd 1im ind lim H_(€®; -m(lzl/Kk) +alyl),

a > « k » o

where HW(Q;¢(Z)) denotes the Banach space of holomorphic function f in Q

with the finite norm

sup If(z)[ exp - ¢(z2).
zef

DEFINITION 2.11.i. An ultradistribution of class (M) (of class {M}) is the

Fourier transform of an analytic functional in 2 (in Z

(M)' {M}')‘

DEFINITION 2.11.ii. An ultradistribution of class (M) (of class {M}) is an

element in the dual of D(M) (of D{M})'

Just as a distribution can be locally written as a finite sum of
derivatives of a continuous function, an ultradistribution is locally an
infinite sum of derivatives of a continuous function. To explain this we

introduce differential operators of infinite order:



44

DEFINITION 2.12. An operator of the form

o

po) EE 7 ap®

lal=0 ¢
is called an ultradifferentiable operator of class (M) (of class {M}) if

there are constants L and K (for every L there is a K) with
(2.25) lp(z)] = | J a2"] <k expmlzl), zec”
o

LEMMA 2.13. [42, th. 2.12]. An ultradifferentiable operator P of class M maps

DM continuously into itself.

LEMMA 2.14. [42, th. 10.3]. Every ultradistribution of class M can locally
be written as P(D)G for some continuous function G and for some ultradiffer-

entiable operator P (D) of the same class.

Ultradifferentiable operators satisfying an additional property exist.
Before formulating this we define the following concept which plays a role

in the Roumieu type case.

DEFINITION 2.15. A positive, increasing function n on [0,®), with n(0) = 0

and with n(p)/p - 0 as p > », is called a subordinate function.

LEMMA 2.16. For every m > 0 there exists an ultradifferentiable operator
Pm(D) of class (M) with

(2.26.1) |Pm(iz)[ > exp M(ulzl), Iyl < 1.

and for every subordinate function n there exists an ultradifferentiable

operator Pn(D) of class {M} with
(2.26.i1) IPn(iz)I > exp M(nlzl), Iyl < 1.

PROOF. The existence of the operators Pm(D) and Pn(D) follows from [42, proof
of th. 10.1] where it is shown that the entire functions h and hr| in ¢,

m
whose Hadamard - factorizations are,

h (w) def il (1-+£ﬂ)
m m
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for some £ > 0 depending on m and

. L w
hoow BE § o1+
n p=1 m
for some sequence {Kp};=1 of positive numbers depending on n with ZP -0,
def
where m == M /M for M_ given by (2.24), satisf
o p/ -1 b 9 Y ' Y
n
(2.27.4) |.I, h (z.)] 2 exp M(mllzl), Re z, 20
=1 'm ) B]
and
n
(2.27.ii) |.I, h (z.)]| 2 exp M(n(lzl)), Re z, 2 O.
=1 "n 3 b

In [42, prop. 4.5 & 4.6, cf. remark on p. 60] it is shown that hm(D) and

hn(D) are ultradifferentiable operators of class (M) and {M}, respectively.
0.

Distributions can be written as sums of boundary values of analytic
functions of algebraic growth in 1/lIm zll for lim ¢l small. Ultradistribu-
tions can be represented in a similar way. For that purpose we introduce a
function M* associated to M: it follows from (2.20) that for each o > 0

(2.28) M* (o) 28 max {(M(p) - oo}

p>0

* * * *

exists. M is a convex function on (0,®) with M (0) = ©® and M («) = 0. If M
*
is a function with this properties, a function M can be associated to M ,

which equals M in (2.28) if this formula defines M*, by
(2.29) M(p) = min {M" (0) +p0}.

a>0
Indeed, for almost every p > 0 and all o > 0

*
M(p) < max {M(1) -o(t-p)} =M (o) +po

>0

and hence

*
M(p) < min {M (0) +po} < max {M(1) -M'(p) (T -p)},
o>0 >0
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where in the right hand side we have taken 0 = M'(p). There the maximum is
attained for T satisfying M'(t) = M'(p), thus since M' is monotonous, for
T = p. Then the right hand side equals M(p) and by continuity (2.29) holds

everywhere.

*
LEMMA 2.17. [42, th. 11.5]. Let f be a function holomorphic in nﬂ1+j.c for
*
some open convex cone C in nﬁl such that for every compact set S in Bgl and
*
for every C' cc C there are positive constants t = t(S,C') and K = K(S,C')

(for every t > 0 there is a K = K(S,C',t) >0) with

(2.30) sup |E(E+in)| < K exp M (thnl), nec', Inl <
£eS
*
where § > 0 may depend on S and C'. Then there is an ultradistribution £
of class (M). (of class {M}) which is the boundary value of f as n + O,

*
neC' cc C , where M is given by (2.29), i.e., for each ¢ € DM

<€",¢> = lim J £(E+in)¢(E)aE.
n>0
nec' n

REMARK. It is already sufficient for (2.30) to hold if it holds for n only
on a ray in C* [42, prop. 11.6].

The converse of lemma 2.17 is

*
LEMMA 2.18. [42, th. 11.7]. Let £ be an ultradistribution of class M and
*
let {Cj}]j:1 be open, convex coneg in ng such that the closure of their
duals cover IR'. Then for each bounded open set S in DE] there iska function
k
f holomorphic in jyl {s+i C;} which satisfies (2.30) where C' = jgl C' with
*
C3 cc Cj' such that in S
k
*
£ = ) lim f(g+in).
=1 ™0
nec!
J
*
(In [42]1 M is defined in a different way and it corresponds to our function
*
M if in the right hand side of (2.28) o is replaced by 1/0).
Similarly to finite-order-distributions, ultradistributions of "fin-

ite order" can be defined by global versions of lemma 2.14 or lemma 2.18.

DEFINITION 2.19.i. An ultradistribution is called of "finite order" if lemma

2.14 holds globally, i.e., if it can be written as P(D)G globally.
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DEFINITION 2.19.ii. An ultradistribution is called of "finite order" if it
can be represented globally as in lemma 2.18, where, in the Beurling type
case, (2.30) holds for t independent of S and where, in the Roumieu type
case, (2.30) holds with K(S,C',t) replaced by a constant of the form
K1(S)K2(C',t) for KI(S) > 0 depending on S and for K2(C',t) > 0 depending

on C' and t.

The equivalence of these definitions follows from the proofs in [42, § 10 and
§11].

We remark that due to the fact that pM'(p) is increasing and to (2.21)
the functions M and M* satisfy:
for each m > 0 and each t > 0 there is a t' = t'(m,t) 2 t and a constant
K = K(m,t) > 0, and for each m > 0 and each t' > 0 there is a positive
t =t(m,t') £ t' and a constant K = K(m,t') > 0, such that for p 2 1 and for

0<o<=1

M(p/t') + m log p < M(p/t) + K
(2.31) { *
' M (t'0) + m log 1/0 < M(to) + K.

Hence M does not increase too slowly, while by (2.20) it does not increase
too rapidly.

Condition (2.20) assures that there are ultradifferentiable functions
with compact support (Denjoy-Carlman-Mandelbrojt, cf. [42, th. 4.2]). For
example, ‘if (2.22) is satisfied only for Iyl < 1 with M(p) = p, then (2.20)
is not satisfied and ¢ is analytic in the tube {Clun" <m} or, correspondingly
if in (2.23) we set MP = p! then ¢ is analytic in the e—ngighborhood of Igf

Furthermore, it is necessary that for each € > 0 there is a K(g) > 0

such that for p 2 0
(2.32) M(p) < ep + K(ge),
but this is not sufficient for (2.20) to hold. Finally, condition (2.21)

will be used in lemma 5.2 to allow the replacement of M(lxl) by M(|x1I)+...
+M(|xn|) in the definition of the spaces A by (2.4) or (2.5).
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II.2.iv. CHARACTERIZATION OF ULTRADISTRIBUTIONS WITH REAL-CARRIED
FOURIER TRANSFORMS.

The Fourier transform of an ultradistribution of class M is an analytic
functional on the space ZM and conversely, the Fourier transforms of such
analytic functionals are ultradistributions. Now, similarly to theorem 2.9,
we shall characterize those ultradistributions g which are the Fourier trans-
forms of real-carried analytic functionals u and then, both g and u, can be
written as sum of boundary values of analytic functions. As in the case of
distributions, such ultradistributions g are of "finite order", cf. defini-
tion 2.19 i and ii.

Let here At(k) be the Banach space of functions {, holomorphic in the

open 1/k-neighbourhood of & in cn and continuous on the closure, such that

|¢(z)l exp M(Izl/t) > 0 as z » » while Iyl < 1/k, with the norm Iyl def
= sup |0(z)| exp M(Ixl/t). Then real-carried analytic functionals in Ziy)
{Ygséfﬁ}ﬂ can be extended to elements of A', where
A def ind lim proj lim At(k)
(2.33) kre v 40
(a 2L ina 1im 2 0)).

k >

THEOREM 2.20. The following four statements are equivalent:

(1) y € A', where A is given by (2.33), and g = Fu, i.e., the ultradistribu-
tion g of class M is the Fourier transform of a real-carried analytic
functional u in Z&.

(2) g is an ultradistribution of class (M) (of class {M}), which for every
€ > 0 can be represented as g = Pe(D)Ge’ where Pe(D) is an ultradiffer-
ential operator of class (M) (of class {M}) and where the continuous
function GE on Iﬁi satisfies

le_&)] < (e)ecE!

(3) u is the sum of boundary ValuesAin A' of functions £, holomorphic in
R+ icj' such that for every C' cc Cj and every e >]O there are
K = K(Cé,e) >0and t = t(C;,e) > 0 (for every t > 0 there is a
K= K(Cé,e,t) >0) with

Ifj(z)’ < K exp M(thzll), vy e Cs, Iyl > ¢
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for j =1,...,k, where {Cj}];=1 are open, convex cones in Bf] such that
the closure of their duals cover ni.
(4) g is the sum of boundary values of functlons h holomorphic in IR_+ 1C
such that for every CJ' cc C and every € > 0 there are positive numbeis
t = t(Cj',s) and K = K(Cj',e) (for every t > 0 there is a K = K(Cj',a,t)>0)

with
(2.34) Ihj(c)l < K exp(M(thnl) + elel}, n e c;',

*
for j =1,...,p, where the open, convex cones C., in Bﬂ] are such that
*
the closure of the duals cover Bfl and where M 1is determined by M

according to (2.28).

PROOF. (1) = (2). On any e-neighborhood f(€) of R" in € there exists a

measure U which represents u on proj+lém At(l/e) and which satisfies
t

(2.35.1). J exp--M(m(t-:)“x")ldue(Z)lSK(e)
Q(e)

for some positive numbers K(e) and m(e) depending on €.

(Let u satisfy for all e > 0 and t = 1,2,...

]<u,w>] < Ks(t) sup |w(z)l exp M(Ixll/t), ¢ € ind lim A_(1/¢)
yl <e t > >
x

for some Ke(t) > 0 depending on € and t with Ke(t-+1) > Ke(t) for every € >0
and t = 1,2,... . For each € > 0 we define a subordinate function ne (cf.
definition 2.15) by
def
M(n_(p)) === inf{M(p/t) +log(K_(t) )}
£ K (1)
that ne(p)/p + 0 as p > @ follows as in [42, after lemma 9.5]. Then for each

€ >0 U satisfies

Feu,9>| < K_(1) sup |[¥(z) | exp M(n_(Ixl)), ¥ € ind 1im A_(1/¢).
Iyl<e € t>o °©
x
Hence for every € > 0 u can be expressed as a measure uE on Q(e) which

satisfies

(2.35.1ii) J exp'-M(ne(ﬂxﬂ))IduE(z)l < K(e)
(

Q(e)
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for some K(e) > 0O depending on €.)

Now for any € > 0, let PE =P , where m(e) is determined by (2.35.i)

m(e)
Pn o where nE is determined by (2.35.ii)
€

and P by lemma 2.16 (let P
m(e) €

and P, by lemma 2.16). Then Pe(D) is an ultradifferentiable operator of
€
class (M) (of class {M}). For every ¢ € DM and for every ¢ > 0, we get with

o= Fo

<, ¢> = <u, Jei<g'z>¢(i)d£> =

duE(z)
dg} ——— =

PE(iz)

i<g,z>

J {J¢(€)P5(D£)e
Q(e)

ei<g,z>
= j {PE(—D)¢(E)} J EZFEET— due(z)dg.
Q(e)

Hence for every € > 0 g = Fu = Pe(D)Ge' where

def

€

i<g,z>
J e g,

P_(iz) due(z)

Q(e)

is a continuous function on B%) which according to (2.26.i) and (2.26.ii)

satisfies

le_®)] < k(e &l

(2) = (3). Let U be the closure of an open set in Bﬂl and let € > 0. If

¢ € D(M) (¢ € D{M})' for every t (for some t) the following norm is finite

el |p*
(2.36) ol o def sup &'6 l? %(s)l ,
1€ eeU t a M
o lol

where the supremu@ is taken over all nonnegative n-dimensional multiindices
a and where Mlal ﬁs determined by the function M according to (2.24). Let

Ee t(U) denote the completion in this norm of the set of such functions ¢
’

and let
E(u) def ind 1lim proj lim EE t(U)
e+ 0 t +0 !
(E(u) def ind lim ind lim Ee t(U)).

e Vv 0 t >
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k
Tae restriction map from E(IRn) into jgi E(Uj) is injective and open, when

21 Uj = JRn. So, as in the proof of theorem 2.7 its transposed is surjective.
If g satisfies condition (2) of the theorem it belongs to E(IRn)' .

J

Indeed, for every € > 0 there are t = t(e) > 0 and K = K(e) > O (for each t
there is a K = K(g,t) >0) with

n+1

(1 +10xl) |P1/3€(i2)[ < K exp M(HZH/O;f).

Hence for ¢ € DM' using (2.24) and the fact that for each z € (En and multi-

index o there is another multiindex 8 with |B| = |o| and (lzl/Vn) lal < ]zBl ;
we get
2/3¢el gl
I<gl¢>l < K' sSup e / it ]P1/3€(—D)¢(E)I <
< K' sup 32/38“5"{ inf ——1—? J |P1/3 (iz)e_i<£'Z>$(z) ]dx} <
£ Iyl<2/3¢ (2m) €
2 -
< K" sup{ inf exp[Zel&l+<g,y> +mM(lzl )1 §(2) |} <
£ lylsa/ze > /e
bzt lel BT
< M K" sup ————-I—r————|¢(z)l < M K" sup ———-———|¢(z)]s
0 o (V/nt) ¢ MI | 0 o t!OLIMl |
Iyl<2/3¢ @ Iyl <2/3¢ @
" 1 i<g,z> o
< MOK s:p ,;:H;E;_—_ | f e D ¢(E)AE]| <
Iyl <2/3¢ lal

o
< M K" sup eellF,ll I?al &)1 j exp——%e"i'lldg' < K™ "¢“1R e
o t MI n'"’

EeIRn al

Conversely, the restriction to E(IRn) of an element g € E(U)' satisfies
s -1
condition (2) of the theorem. For F ~ maps A continuously into E (an) , be-

cause for Y € A, by (2.24), we have

I ell
sup{ ! ee & 1 inf

-1
1F Lyl
g0 (2m® tv""mlal Iyll<e

1
an,e,t

A

J bat 11298022y () Jax) <



52

es"£"+<g,y>}

< sup{ inf sup J [w(z)]eXP M("zﬂ//,)dx <
n t
(2m) M, g lyl<e lyl<e
<K J (1 +ﬂx“)_(n+1)dx sup ‘w(z)lexp M(ﬂx"/é),
Iyl <e
xeIRD

where, according to (2.31) with m = n+l1, t' determines t (t determines t').
Hence F_l g belongs to A' and in the proof of (1) = (2) it has been shown
already that then g satisfies (2). K

Now chogse open, convex cones Cj c Hf% j =1,...,k such that jg1C§=imh

and let g = jg gj with gj € E(—E?)'. In lemma 2.23 it will be shown that for

1
Y € Aand y € Cj

-1
<F 7 g > = <Flg,) _,,¥p> = J £, (z)y(z)dx,
3 (2m™ it-¢ 3
where fj is the function
. -i<§,z>
£.(z) def = <(g.)_g,el<£'2>> def <(g,)£, g————:;— >
J (2m) J (2m)

which is holomorphic in ﬂfl+-ic_. For each € > 0 and C' cc C, there is a

§ = G(E,C:'.') > 0 such that <g,y> < -8llgl if g € -c; and y € Cﬁ with Iyl > e.
Then for every € > 0 and for every C3 there are K = K(g,C') > 0 and

t = t(g,C') > 0 (for every t > 0 there is a K = K(E,Cé,t) >0) such that for

y € C% with Iyl > ¢

lal
. cx sup  GSNEIH<Ey> (elal)

i<ng>“ )
-Cj,cS,l/t Eﬁ—cj M]OL'

A

|fj(z)}'_ Kle

%3

K/ﬁo exp M(thzl)

according to (2.24). Thus g satisfies condition (3) of the theorem.
(3) = (1). It is obvious that a sum of boundary values as in (3) determines

an analytic functional in A': for § € A'

D) J f‘(x+iyj)w(x+iyj)dx| <
j=1 n J

J

< K’ |l (27) |ax =

3

I o~

J exp{M(£'1231) + (n+1) log (1+lxl) }
1 Jn (140l 2L
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<K sup_ Iw(z)lexp M(thxl),
xeIlR
Iyl <e

which holds for each € > 0 by choosing y- e cJ'_ with Iyl = ¢ and for t',
hence t by (2.31), and K depending on € (for each t > 0, by choosing t'
according to (2.31) and for K depending on € and t).

p

(1) = (4). According to theorem 2.7 U € A' can be written as p = jél uj with

uj € A(Ej)', where the closures of the open, convex cones Cj c R® cover EJ&

The same proof of theorem 2.7 applies if we had taken the closed neighborhoods
Qj(e) def {zlxeaj,“yﬂSE} instead of the open e-neighborhoods of Ej in c".
(Then a space of analytic functions in Q is defined by functions holomorphic
in the interior and continuous on the closure of Q.) Thus assume that uj is

an analytic functional with respect to these neighborhoods. In lemma 2.26
(which actually deals with the map (2.15) instead of the map (2.14) we have
here) it will be shown that the Fourier transform of such an analytic func-
tional is the boundary value of the function

def i<g,z>
hj(c) = <(uj)z,e >

*
which is holomorphic in nﬂ1+-icj. For every € > 0 there is a K = K(g) > O

* * *
and for every Cj' cc Cj there is moreover a positive t = t(e,cj') (for every

t > 0 there is a K = K(e,Cj',t) >0) with

]h.(c)l < K sup exp{-<Z,y>-<n,x>+M(t'lIxl)} <
J xeaj
Iyl <
(2.37)

*
< K explel &l + suplM(t'p) - 8plinl 1} < K exp{M (thnl) +elzl}, n e Cf',
p=0 J
for t' depending on € (for every t'), § depending on C;' and with t = &/t',
where for the last inequality (2.28) has been used.
(4) = (1). This in fact will be shown in chapters III and VI. There the

function h, holomorphic in Bﬂ1+j.c*, satisfies
* *
Ih(c)[ < K expM (thnl) +elzly, nec:!
whith is more general than (2.34) and its boundary value is the Fourier

transform of an analytic functional u carried by C with respect to neigh-

borhoods larger than e-neighborhoods, namely with respect to the neighborhoods
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Q(e,cry L£ {ZI-<£,y>-<n.x><e|l§l|,nec*',EEIRn}.

Such an analytic functional u certainly belongs to A'. 0

Note that in condition (4) of theorem 2.9 m(e) depends on € only,
whereas in (2.34) in the Beurling type case t depends on both C;' and €. This
is due to the different behaviour of the function M in case of distributions,
where M(tp) has to be replaced by t log(l +p) and where for M*(o) the func-
tion logo-l, ¢ < 1, can be choosen. Then M* satisfies M*(dc) < M*(o) + K

where K depends on 8§ (cf. the use of M* in (2.37)).

REMARK. In [60] in the proof of theorem 2.9 the implication (4) = (2) instead
of (4) = (1) is shown, which is performed by integration of the functions h.
Then we get no information about the carrier of F—lh and in the above theorem
no such information is needed. A direct proof of the implication (4) = (2)

in theorem 2.20, is quite complicated and might be performed along the lines

of [42, proof of th. 11.5].
II.2.v. PALEY-WIENER THEOREMS FOR ULTRADISTRIBUTIONS.

In the proof of theorem 2.20 a certain correspondence turned up between
the boundary value of an analytic function of exponential type and the sup-
port or carrier of its Fourier transform. We shall make this correspondence
more explicit. Let C be an open, convex cone in R" and let a be a convex
function on C, homogeneous of degree one. The pair (a,C) determines uniquely
a closed convex set U(a,C), not containing a straight line, in Bﬂ] by

(2.38) U(a,C) def {g]-<€,y> <aly),y € cl.

Conversely, each closed, convex set U in Bﬂl, which does not contain a
straight line, determines uniquely an open, convex cone C.in IR" and a
homogeneous, convex function a on C such that U = U(a,C) according to (2.38),
see [60].

The following theorems (th. 2.21 and th. 2.24) give the above mentioned
correspondence explicitly. They are more general than the corresponding
theorems for tempered distributions in [68, th. 26.2], but as soon as the
occurring concepts are introduced, the proofs are very similar. They may

be considered as a version of the real Paley-Wiener theorem for ultradis-
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tributions, whereas in chapter III complex Paley-Wiener theorems will be
discussed which, actually, may be considered as versions of the Ehrenpreis-
Martineau theorem.

First we state the theorem for distributions in D', whose proof can be

found in [60, th. 4.1], and then we prove the theorem for ultradistributions.

THEOREM 2.21.i. Let C be an open, convex cone in Ig% let a be a convex
function on C, homogeneous of degree one, let U(a,C) be the convex set in
nﬁl given by (2.38) and let moreover £ be a holomorphic function in n£‘+;ic
which satisfies: for every € > 0 and C' cc C there is a m = m(g,C') > 0 and

for every € > 0 there is moreover a positive number K = K(eg,C',0) such that
|£(z)| < k(1 +1z)™ expla(y) +alyl}, yec', Iyl > e.

Then f(z) = F[e—<g’y>g5](x) for some distribution g € D' with support in
U(a,C) satisfying condition (2) of theorem 2.9 and the boundary value of £
in 2' equals Fg.

THEOREM 2.21.ii. Let C, a, U(a,C) and £ be as in theorem 2.21.i, but let £
now satisfy: for every € >0 and C' cc C there is a t = t(e,C') > 0 and for
every o > 0 there is moreover a positive number K = K(g,C',0) (for every

€>0,0>0, C'cc Cand t >0 there is a K = K(e,0,C't) >0) such that
(2.39) |[£(2)]| < K expiM(tlzl) +a(y) +olyl}, v ec', Iyl = ¢,

-<E,y>
Then f(z) = Fle &y gg](x) for some ultradistribution g of class (M) (of
class {M}) with support in U(a,C) satisfying condition (2) of theorem 2.20
and the boundary value of f equals Fg.

PROOF. In the proof of (3) = (1) of theorem 2.20 the behaviour of f only for
Iyl small has been used. Hence it follows from this and from (1) = (2) that
the inverse Fourier transform g of the boundary value of f satisfies condition
(2) of theorem 2.20. For ¢ € DM g is defined by <g,¢> = S£(z)¥(z)dx where
uv=F_1¢, and the integral is independent of y € C. The function & - exp-<&,y>

is analytic and therefore a multiplier in any space of ultradistributions.

So, for y € C we get

<ge —<£,y>,¢> x <g,e“<5'y>¢> = J f£(z) ¢ (x)dx,
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hence £(z) = F[e_<£'y>ggj(x) and it remains to prove the support property
of g.

Let Eo be a point in mn\u(a,c), hence there is an y, € C with IIyOII =1
and with —<Eo,y0> > a(yo). Furthermore, let n > 0 be so small that

-<go,y0> > a(yo) + 2n

and let ¢, eDM has its support in {E|ﬂ£—£0"5n}. Then ¢, has its support in
nﬁ]\ U(a,C), because for £ in the support of ¢0 we have

(2.40) <g,y0> = <go,yo>-+<£-£0,yo> s—a(yo) -2n+n =-a(y0) —n<—a(y0).

Let C' cc C be such that Y € C' and let o0 = %-n. Then according to lemma
2.16 there is an ultradifferentiable operator P (D) of class (M) (of class
{M}, where the construction is performed after the definition of a suitable
subordinate function as in the proof of (1) = (2) of theorem 2.20 using the

constants K(g,0,C',t) in (2.39) for e =1, 0 = l-n and C' fixed), such that

4
(2.41) J | f§§{§¥l lax < X expiM(tlyl) + a(y) + olyl}

for some K and t and for all y € C' with llyl > 1. Then we have

(2.42) <g,$ > = Elxtiy) | )6 Y7y (6)7 —%Jax.
0 P(ix) 0 (2m)
R R m

n
Furthermore there are t' and K' depending on P (depending on ¢0) with

le@e® ¥ (&)] < | RBL | 1270 (yax| <
0 (2n)n 0

< 8 Y J | 222 5 o fax < %Pk J |8, () [exp mierlzlax <
(2m
< e<E;Y>K,eM(t'Uy") J ]$0(x)|eM(t'"x")ax_

an

Now we take y = Ayo, A > 1 in (2.42) and taking into account (2.40) and
(2.41) we find

|<g,¢>0>[ < K(¢0)exp{M(t)\) +al(y) +% nA+M(t'A) -a(y) -nil.
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%-n/t', successively, and taking
the limit for A > « we finally get <g,¢0> =0. - 0O

1
Using (2.32) two times with e = Z-n/t and € =

In [60] and [68] it is shown that a @istribution g (occurring in [68,
th. 26.2] and [60, th. 4.1]) with convex (or more general, regular) support
is a sum of derivatives of measures on its support. This is proved with the
aid of Whitney's extension theorem, which says that the restriction map from
C®(L) into C®(K) is surjective if K is closed, convex (or regular) and con-
tained in the interior of L. For ultradifferentiable function spaces there
is no such theorem, except in the one-dimensiocnal case, see [9], but "it is
quite.plausible that this result can be extended to the higher dimensional
case", see [42] (indeed, cf. foot note 2)). Then we would be able to prove
a sharper theorem than just the converse to theorem 2.21, so that the esti-
mate (2.39) would be improved, see corollary 2.25 (cf. [60] for distributions
in D').

The above mentioned results on distributions with bounded regular
support have already been mentioned in [62] and for tempered distributions
with unbounded regular support in [67]. However, at some places, mostly
oriented to physics (see for example [12] and [58]) a particular 1 case of
this result is used which has been proved later [5]. It is called the lemma
of Bros - Epstein - Glaser and it says that tempered distributions with support
in a convex cone can be written as a higher order derivative of a continuous
function with support in the cone. Fortunately, it is this result that can
be generalized here, so that we are able to derive a converse to theorem
2.21 which is similar to the one for distributions, cf. [60]. Therefore, we
state the following lemma, which is a generalization of the Bros - Epstein -

Glaser lemma.z)

)

Indeed, if the support is a convex cone it is easy to see that the fact,
that a distribution is the sum of derivatives of measures on the cone, implies
that it is also the derivative of a continuous function with support in the
cone. The particularity lies in the fact that it only applies to some part-
icular, unbounded sets and not to general, regular sets.

2) On the other hand, with the aid of this lemma it can be shown that indeed

the restriction map from CQ(L) into Cg(K) is surjective in both cases (M)
and {M}, if Kcint L is closed and satisfies some conditions, not as general

as regular, but more general than convex.



58

LEMMA 2.22. Let U be the closure of an open set in n%] such that there is a
fixed, convex, open cone C* with the property that for each & ¢ U the set
{E-C*} n U is empty and let g be an ultradistribution of class (M) (of class
{M}) which satisfies condition (2) of theorem 2.20 and which has its support
in U. Then condition (2) of theorem 2.20 is satisfied for continuous functions

Ga which have their supports in U.

*
PROOF. Let C be the dual cone of C , then it is possible to choose a base
{el,...,en} in R" such that C c [, where [ is the open, convex cone
n * * n
{y|y = j§1 Yj ej,yj >0}. Then we have T < C' . Every z € € can be written
= n

n
uniquely as z = x+iy = X, e, +1 ,21 yj ej and we use these (xl,...,xn)

.z
=1 73 73 i=

as coordinates for R and {zj = xj~+iyj}?_1 as coordinates for C.

According to theorem 2.20 g is the Fourier transform of a real-carried
analytic functional u. As in the proof of (1) = (2) of theorem 2.20, let u
be represented by measures ue satisfying (2.35.i) for some m(e) > O depending
on € and p ((2.35.ii) for some subordinate function nE depending on € and 1u).

Let
2
(z,+1)" h (22, +2).
J € J

where he = hm(e) (hE = hne) is determined in the proof of lemma 2.16.
Then Pe(D) is an ultradifferentiable operator of class (M) (of class {M}),
1
I el Il . i - i
exp M(m(e)lx )/és(—ix) (exp M(ne( be ))/%g(-lx)) ;s an L -function and l/és(—iz)
is holomorphic in any o-neighborhood of IR! in € with o < 1 and in R + il,
where by (2.27.i) (by (2.27.ii)) it satisfies an even stronger estimate than

(2.39) with a = 0. According to [42, lemma 3.3] the function

A€<5)9‘-—‘3=fF1[;;%§()—J<5)

is ultradifferentiable on 331 and according to theorem 2.21 Ae has its
support in T *. We will see that Ae is "sufficiently ultradifferentiable"
such that g can be applied to it. Another property of AE is that Pe(D))\E =6,
where § is the Dirac-8-function.

Now let

Q

of def

GE(E) == g'*XE(E) <gn'xe(£ -n)>



59

which exists because 1/P€(iz) is holomorphic in Q(e) so that we have

ei<g,z> ei<g,z>
IGE(E)I = l<uz' ‘EETIEY— >I = l J —;;?IET‘ due(z)l <

Q(e)
Kee"gu J e—M(m(e)ﬂxH)ldué(z)l < K(s)esug"

X
(Keallgll J M _(xl)) |du€(z)| < K(e)eeuE")

by (2.35.i) (by (2.35.ii)). Furthermore Ge' as the Fourier transform of a

bounded measure, is a continuous function on Iﬁ‘ which has its support in
— fa— *

U, because if £ ¢ U the set {€- T *} n U is empty since ' * © C . Finally

we have
PE(D)G€=g*PE(D))\E=g*6=g. O

The condition on the set U is satisfied by the set U(a,C) given by
(2.38) if C is an open, convex cone not containing a straight line, or equi-
valently, if C* # @. In éase we have a cone E with E* = @, for example if
E = HJ% and hence U(a,E) is a bounded, convex set, we must think of U(a,E)
to be contained in a larger set U(a,C), where C is an open, convex subcone
of E containing no straight lines.

Let g 'be an ultradistribution of class M with support in the set U(a,C),
which satisfies condition (2) of theorem 2.20. It is shown in the proof of
(2) = (3) of that theorem that g belongs to E(Bﬁg‘ and the last lemma shows
that g can be considered as an element of E(U(a,C))'. Furthermore the func-

. i<g,z> ) . .
tion & > e belongs to E(U(a,C)) if y € C. Keeping these remarks in
mind we can interprete the following lemma which characterizes the Fourier

transform of g.

LEMMA 2.23. Let C, a and U(a,C) be as in theorem 2.21 and let g be as in
lemma 2.22 with U = U(a,C). Then

i<g,z>

F[e—<E'Y> >

gE] (x) = <g,e

and this is a function holomorphic in R + i C whose boundary value equals Fg.
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*
PROOF. Let | € ZM' y € C and if C = @ instead of C we take a subcone, also
denoted by C, containing y and no straight lines. Then using lemma 2.22 we

have

Fe¥g,4> = <q, j e E Py () ax> =

n
IR

GE(E)PS(-DE

y | eFE Py () axae
]Rn

U (alc)

J f GE(E)PE('Dg)ei<g'z>d£w(x)dx
R U(a,C)

J <g,e %75y (x) ax
mn

where € > 0 is chosen depending on y such that the integrals exist. It is

clear that

i< >
f(z) Sl-_i._f <g,el E,Z >

is holomorphic in n¥‘+ iC and furthermore, a similar procedure to above,

shows that for y € C

i< >
<Fg,¥> = <g, J i<tz V(z)dx> = j £(z) ¥ (z)dx.
r" R
Hence Fg is the boundary value of f in Zﬁ. a

Now we are able to prove a stronger theorem than just the converse
to theorem 2.21.ii. Again, first we mention the theorem for distributions
in D' given in [60, th. 4.2] and then we prove the theorem for ultradistri-

butions.

THEOREM 2.24.i. Let C, a and U(a,C) be as in theorem 2.21 and let g be a
distribution in D' with support in U(a,C) satisfying condition (2) of theorem
2.9. Then the function £(z) def F[e—<g'y>g£](x), whose boundary value equals
Fg, satisfies: for every € > 0 and C' cc C there are N = N(g,C') > 0O and

K = K(g,C') > 0 such that

l£(z)| < k(1 +021)%2) g ccr, Uyl = 6.
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THEOREM 2.24.ii. Let Cc, a and g be as in lemma 2.23. Then the function
£(z) def F[e_<£'y>g5](x), whose boundary value equals Fg, satisfies: for every
€ > 0 and C' cc C there are t = t(g,C') > 0 and K = K(g,C') > 0 (for every

€ >0, C' cc C and t > O there is K = K(g,C',t) >0) such that
(2.43) |£(z)| < K exp{M(tlzl) +a(y)}, yec, Iyl 2e.

PROOF. According to lemma 2.23 we have to estimate the I -l norms
= U(a,C),e,t

, defined in (2.36). For t > 0 we get

. i<e,z>
of the function e !

. M P,
—< > -< > Izl)*m
lDae1<g,z>| < lzale g,y < 1 :Z{ e £,y su (thzl)"Mg <
0t p=0,1,... P

=

1 Tlal

M, lal

< exp {M(tlzl) -<g,y>}.

o

Let C' ic C and in case C* is empty let Cj' j=1,...,2 be subcones of C
with Cj # @ covering C and such that there are Cj' cc Cj which cover C',
and let Cj' cc Cj" cc Cj' Then :here is a = 6(cj') > 0 with -<§,y> <
=Slyllel if v e Cj' and § € Cj“ . For each n > 0 there are t' = t'(n) and
K' = K'(n) (for every t' > O there is a K' = K'(n,t")) with for ¢ € DM

, j=1,...,2.

|<g,¢>] < K'"¢“U(a,cj),n,t'

It is possible that a(y) < O for some y, so in the following a ggg

=min{a(y) |y € ¢', lyl = 1} might be negative. Now in the above we choose

1 *
n=z §e and t' = T If £ ranges in Cj" while lgl > -2 %-we estimate for

y € Cj' with lyl > ¢
el - <€,y < % selgl - % selel - % slellyl < allyl < a(y).
The remaining of U(a,Cj) is compact and there by (2.38) we have
exp{nlgl - <g,y>} < K" exp aly),
where K" > 1. Hence, for y € C' with Iyl > €

i<£’Z>>| < K;K" exp{M(tlzl) +a(y)}. O

0

l<g,e
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COROLLARY 2.25. A holomorphic function £, which satisfies (2.39), satisfies

already (2.43), i.e., in (2.39) K is independent of ¢ and we may take ¢ = O.

Whether the ultradistributions g of theorem 2.24 are defined on certain
ultradifferentiable testfunctions in Iﬂl or in real e-neighborhoods of U =
U(a,C) makes no difference due to the existence of ultradifferentiable func-
tions A which are identically one on U and zero outside an e-neighborhood
of U. So we can say that the Fourier transform F is a bijective map from the
dual of a certain space, say S(U), of ultradifferentiable functions defined
on real e-neighborhoods of the convex, real set U(a,C) onto a certain space
H of functions holomorphic in R"+icC and of exponential type a in Im z.

Thus shortly

~

Fs(u)' = H.
In the next section we will discuss the case where U is replaced by a complex,
convex set Q in mn and then g becomes an analytic functional u defined on

a space of functions holomorphic in complex neighborhoods of Q.
II.2.vi. THE CASE OF COMPLEX DOMAINS

We consider the following question. Let [ be an open, convex cone in
n . .
€ and let a be a convex function on [T, homogeneous of degree one, let

Q = Q(a,l) be the closed, convex set in ¢n given by
(2.44) Qa,l) = {¢]| -Im <g,2z> < a(z), z e [},

and finally, let A(R2) be a space of analytic functions defined on certain
neighborhoods of § in cn whose growth at infinity is determined by the weight-
functions exp M(tlzll), and let H(T) be a space of analytic functions in ™

of exponential type a for Izl large whose behaviour at the vertex of I (i.e.,
for lzl small) is determined by the function M. Then one may ask whether it

is pessible to find such cond:tions that the Fourier transformation F is a

bijective map from A(Q)' onto H(T), or shortly, whether
Fa@)' =8

In chapters III and IV this question is solved affirmative. In case
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there exist testfunctions with compact support the injectivity and the sur-
jectivity of F present no problems (cf. the proof of theorem 2.21). In A(Q),
however, no such testfunctions exist and the proofs are very complicated.
Actually, using a generalization of Ehrenpreis' fundamental priciple {see
chapter IV) we will return to a situation where we do have C % functions on
real domains. For that purpose we have to identify c" with R’R” x nfl = Egn

z = x+1iy © (x,y) and ¢n with Hﬁl X nﬂl = IR by £ = £+1in ©® (n,£).Then we

2n
will deal with distributions defined on a C ®testfunction space in a neigh-

borhood of the, now real, domain < IR and with functions holomorphic in

2n 2n

]Rzni-ir c € . In the following section we will give a lemma concerning this
situation, similarly to theorems 2.21 and 2.24.

Of particular interest is the case where [ is a tubular radial domain,
i.e., a domain of the form TC = nf'+j.c with C an open convex cone in Bfl,
and where f € H([") has ultradistributional boundary values on Bgi Then, if
we interchange the variables z and [ in theorem 2.20 (1) and (4) the surject-
ivity of F yields the proof of (4) = (1) of that theorem. If a, defined on
TC, can be continued to a continuous function on ﬂ£1+-iC', with C' cc C, i.e.,

if lim a(x,y) = a(x,0) exists as y > 0 while y € C', then
C n
Q(a,T”) = {C|-<n,X> - <g,y> falx,y), xe R, y¢€ C}I
given by (2.44), is bounded in the imaginary directions, namely

C
Q(a,T) < {¢]|Inl £ max a(x,0)}.
I xll=1
Also, it may happen that @ is not bounded in the imaginary directions and
then we give A(Q) the topology induced by ZM, so that the functions ¥ € A(Q)

have to satisfy

(2.45) [v(z)| < K exp{-M(thgl) +LInl}

i<g,z> . .
""" satisfies

on a neighborhood of 2, for some £ > 0 depending on Y. Since e
. cas C .

this condition for each z € T , we can characterize the Fourier transform

of an element U € A(Q)', considered as an analytic functional in Zﬁ carried

by 2, as in lemma 2.23.

LEMMA 2.26. Let C, a, @ = Q(a,TC) and A(Q) be as above and let u € A(Q)'.

Then the Fourier transform of u is the boundary value in Dﬁ as y > 0, while
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y € C' cc C, of the function

(2.46) £(z) &£ <uc,el<c’2>>

’

which is holomorphic in R +ic.

PROOF. For ¢ € DM and y € C let

def I el<€'Z>¢(x)dx.

(%)
¢Y
The limit of Riemann sums converges in the topology of the space A(Q) and
furthermore wn > ¢0 in A(Q) as y > 0 while y € C' cc C, because -<g,y> <

<a(0,y) for all ¢ € Q. Therefore, we may write

<Fu,¢> = <u, J el<C'X>¢(X)dx> =

= lim <y, j el<€’2>¢(x)dx> = lim J <uc,el<C’Z>>¢(x)dx. 0
y>0 y0
yeC' yeC'

In view of this lemma in chapter III we will define the Fourier trans-
form of p by formula (2.46) also in the general case where [ is not a tubular
radial domain. There we will treat F as a topological isomorphism and there-
fore, it is more convenient to consider L2—norms instead of sup-norms, be-
cause the strong dual of a projective (inductive) limit of Hilbert spaces
can be written as the inductive (projective) limit of the duals, see [40].
Using Sobolev embedding theorems, see [73], one can pass from the one norm

to the other.
II.2.vii. A PALEY-WIENER TYPE THEOREM.

In chapter III we will need the lemma given in this section. It is a
Paley-Wiener type theorem treating various, rather technical, cases which
will become clear in chapter III. We will prove only the case exposing the
most typical features. This section has little connection with the other
sections of this chapter and we place it here because the proof of the
lemma proceeds along the lines of theorem 2.21 and 2.24.

First we introduce some notations and definitions whose meaning will

be made clear in chapter III. If a is a convex function on the convex, open
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. n . . N
cone ™ in € which is homogeneous of degree one, we mean by a + € the function

on [ given by

(a+e€)(z) def a(z) +elzl.

k k=1
that rk cc rk+

{r }oo denotes a sequence of open, relatively compact subcones of [T such
o

1 << [T and kgl rk =[, and

(2.47) ) 2ef

1
{z]|z € Fk, Izl > E-},
Then the neighborhoods (cf. formula.(2.44))

(2.48.1) Q

(Wl

def Q(a-+%yr)

are the %n—neighborhoods in Gn of Q = Q(a,l), k =1,2,..., whereas the
neighborhoods

. k def 1
) —_— I_
(2.48.i1i) Qc == Q(a-kk, k)

are larger neighborhoods. The subscript € expresses that we deal with e-
neighborhoods and the subscript c denotes the case of conic neighborhoods.
If not a particular case is meant we will denote these two cases by a sub-

script a. For the case o = € we will need the following set
(2.49)

where z, € pr rl is fixed.

In particular we can choose [ = Tc where C is an open, convex cone
in n¥ﬂ This is of interest because then one might consider holomorphic
functions in TC having boundary values on nfl in some sense. We will now
introduce the above given concepts for this case. For rk we will choose

(2.50) @), L Gy e o, Ixl < Ky}

o
where {Ck]k=1 is a sequence exhausting C, and

(2.51) @ 00 8 o]z ¢ @), 1y > .
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Furthermore, let yo € pr C1 be fixed and then let

C .k def T1/k YotC {z]1xl

(2.52.1) (T )E = <k, vyE€ ck}
and
(2.52.ii) (TC): def ch[(TC)k u {z|lxl <k, ye ck}]

where ch means the convex hull. For a domain B ¢ ¢n we define the tube domain

() c® x ¢ 2 ¢ by

(2.53) v £ {(6!,6%) |m 6 +1i m 6% ¢ B).

. . . C
Moreover, if a is a homogeneous, convex function on T such that a(x,0)

~ C
becomes unbounded, we change the function a into functions ak on T such that

for each k gk is a convex function satisfying

C

def Ek(z) =a(z), =zeT , Iyl 21/2¢

a, (x,y)
and for k = 1,2,...

gk(z) Kk,

IA

y € Ck' Iyl < 1/x, Ixl < x

where Kk is a positive constant depending on k and a. For then the growth
of a function f satisfying |£(z)]| < K exp{M*(t"y")-ng(z)} for Iyl small
and Ixl < x is determined completely by the factor exp M*(tﬂy"), while we
need the growth exp a(z) of f only on rays {XZIA >0} for X large and z € pr TC.
If lim a(x,y) exists as y >~ 0, t € Ck then a will not be changed and, for

convenience, in that case we denote

fol)
Hh

g e
k

o
~
[}
-
N

We now define the functions

. k def 1 1
2. . —— [ —— —
(2.54.1) aE(z) = al(x,y x yo) ' Y€ ypvyytce

k . . C ~ C
where aE should be continued as a convex function on T, just asa,k onT K, and
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[ol)
H

e

- k ~
(2.54.i1)  a'(z) 3 (2, ze (@
c k c
Finally, if Q is the closure of a domain in nf‘ and M a continuous
function on 2, let WS(Q;M(u)) denote the space of measurable functions £
in Q for which the weak derivatives D°f exist for |la] £ m as measurable

functions such that the norm

) J {|p%£ () |exp M(u)}zdu]%
la|<m a
is finite. If Q is a domain in Gn and M a continuous function on £, let
H_(Q;M(z)) denote the space of holomorphic functions f in @ such that the

norm

(2.55) sup |£(z)| exp-M(z)
zefd
is finite.

Besides the cases ¢ = € and a = ¢, in chapter III we will consider four
‘other cases, namely ultradistributional boundary values of class (M) and {M},
distributional boundary values and boundary values in the sense of Fourier
hyperfunctions. Depending on these various cases we introduce the following

spaces: If [ = € in the definition (2.47) and (2.48) of Qz, let

s (mk,t) &£ WI;I(Q];;—M(llgII/t) +kInl —m log(1+lzl))
(2.56) { ¢ def c. k., * 2 k 1
H (m,k,t) == H (T((T));M (thim 6°l) +a (Im 8) += lIm 6l +
(% L) [¢) [} k
+m log(1+lel))
and let
5, tm) def W2(95; -m Log(1+1gh) +xinl)
Uk tem 2w r (%) 109 (140 mm 6217 + a5 (m 0) +L I1m 0 +

+m log(1+lel))

. . n
for a € {e,c}. If [T is an open, convex cone in @€ , let



68

def m, k 1 I el

== ; - — - 1+l zll
sa(m,k) W2(Qa, X gl-m log( zh))

def 1 Y 2 1
He(m,k) == Hw(T(; zoﬁ_),a(Im ] 5% %o’ Im 6 2ky0) +

(2.57) )
* e Iltm 6l +m log(1+le6l))

B (mk) % 5 (1 (x));alIm 6) +% Izm 6l +m log(1+lel)).
c (o]

In the above defined S-spaces the set Qz has to be considered as a closed
set in E%n' .
If we take the projective limit of the S-spaces for m + @, we get FS -
spaces (cf. [40], weakly compact, projective sequences) which have nice
properties, for example they are reflexive. If we would have S-spaces defined
with sup-norms instead of Lz—norms, due to the fact that QZ is convex these
projective limits would even be FS-spaces (compact, projective sequences)
which, of course, have nicer properties. But the properties of FS*—spaces
are all we need and so we don't have to show that in the sup-norm case we get
FS-spaces. As a matter of fact it doesn't change much whatever norm we have,
L2—norm or sup-norm. This follows from certain Sobolev embedding theorems:
let WﬂIO(Q;M(u)) denote the space of Cm—functions f on the closed set Q (in

the sense of Whitney) with the finite sup-norm

o

sup ID f(u)lexp-—M(u)

uefd

lal<m

a

such that moreover ]D f(u)lexp-—M(u)—*O as u > « in Q for |a] < m; (by Riesz'
theorem the dual of such a space consists of weak derivatives of measures
on R); let Q' be a closed convex set such that an e-neighborhood of Q' is

contained in ©, then according to [73, p.11 condition HS, and p.14 condition

1
HS2] the embedding maps
W™ (oM (u) - (min+1) Log (1+0ul)) > W (M (w) -m log(1+hul))
00'0
wI;+n+1(Q;M(u) - (mtn+1) log (1+hul)) » W (2';M(u) -m log(1+lul))

’

are continuous.
Now similarly to theorems 2.21 and 2.24 we will obtain the following

Paley-Wiener type theorem.
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* *
LEMMA 2.27. Let the functions M and M satisfy (2.31), where M and M are
related to each other by (2.28) and (2.29). For every m and k, and for each
t there is a t' = t'(m,k,t) 2 t and for each t' there is a positive

-1 .
t = t(m,k,t') < t', such that F and F = are continuous maps

F: Sa(m,k+1,t')' > Ha(m+n+1,k,t)

F_lz Ha(m,k+1,t') > Su(m+2n+2,k,t')'.

Moreover, the maps

F: s (k+1,m)' > H (k,m+n+1)
o o

Fi. H (k+l,m) > S (k,m+2n+2) "

are continuous and for each k there is a p > k such that

F: Sa(m,p)' > Ha(m+n+1,k)

i, B (m,k+l) > S_(m+2n+2,k) "

are continuous maps for o € {e,c}. In all these cases F can be represented

as in lemma 2.23.

PROOF. We only prove the first pair, the other cases are similar. We embed

the space Sa(m,k+1,t')' into the dual of the space W2+n+1(92+1;—m(ﬂgﬂ/t.)+
’

0

Hk+1)Inl - (m+n+1)log(1+lzl)). Then as in the proof of theorem 2.24 we have
to estimate

(2.58) sup  -<n,x> -<g,y> +M(Igl/£") - (k+1) Inll + (m+n+1) Log (1+0zl)

;€Qk+1
o
C.k . . .
for z € (T )a' where z = (X,y) has to be considered as the imaginary part

of 6. Let t" < t' be such that according to (2.31)
M(p/t') + (m+n+1)log(1+p) <M(p/t") +K' (m,t")

and let Ci be such that ck cc Ci cc Ck+1' Then there is a 6k > 0 such that

*
L}
for y € Ck and & € Ck

- < =6 lyllgl,
<g,y> Gk yllg



70

We first estimate (2.58) if y € Cpr Iyl <1 ana Ixl < k. If £ varies only

*
in CL we estimate (2.58) by

—<g,y> + Mgl /£") - <n,x> - klnl - Inl + (m+n+1)log(1+inl) + K' <

*
< sup {-6kt"uyup + M(p)} + x <M (thyl) + K(m,t")
p>0

1

+
where t = § t". If ¢ varies in the remaining part of 9: then lgl is bounded

by a constant dk depending on k and also Inll is bounded, namely

V2
Inl < sup a(x,y.) + ——+ 4 .
"x“=1 0 k+1 k

Hence then (2.58) can be estimated by a constant depending on m,t'(or t")
according to (2.31) and on k, while t depends on k and on t" and t" on m and
on t' (or t' depends on m and on t" and t" on k and t).

Now let z be a point in the remaining of (TC)Z; hénce for a = ¢

1 +
z €T % Yo ¢ and for o = c there is a p > k depending on k with y € Ck,
Iyl 2 1 and Ixl < plyl. Then in both cases for sufficiently small e, and

<
0 < 62 < 81

k
(x,y-e, yy) € U,

where
Ug def ,1/2k yo+C
k def, C
Uc =T )p+1'
In the o = € case we take 52 = 1/2k and for z € Tl/k Yot+C€ we estimate (2.58)
by
—<n,x> - <E,y-e,¥> - €,<E,y > + MUIEI/E") + K" (m, £t k) <
< a(x,y-e.y.) + lzll/k+1 - ¢ 8 Nel + m(lgl/t™) + k" <
. 270 2k
(2.59.1) *
< a(x,y-1/2k yo) + lzll/xk + M (1/2k th") + K' <
< a(x,y-1/2k yo) + Izl/x + K,

where K depends on t', t" (or only t'), m and k.

If a = ¢ we proceed as follows: since a is uniformly continuous on
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U]; n {z|lzl=1}, for each 6 > 0 there is an e, with 0 < e, < e, depending

on 6§ and on k, such that

a(x,y-€.y.) < a(z) +8

2¥0

where z denotes z/lzll. Hence for all z € (TC)p n {zlllyllzl}

(2.60) a(x,y—ezyo) < a(z2)l (x,y—szyo)ll + &l (x,y—ezyo)ll <
< a(z) + 8zl +e.8 + ¢ max |a(z)]| < a(z) + &Mzl + K" (k).
2 2 C
ze (T )P

Let 8§ = 1/k ~1/k+1 then we estimate (2.58) by

a(x,y-¢€ ) + lzll/k+1 - ezdkllgll + M(lel/e") + k' <

2%

(2.59.1i) .
< a(z) + Slzl + k" + lzll/k+1 + M (ezakt") + K' < a(z) + lzl/k + K

where again K depends on t', t" (or only t"), m and k.
For the proof of the continuity of F—'1 we proceed as in the proof of

theorem 2.21. Each £ € H (m,k+1,t') is a tempered distribution in the variable

+1
Re 6 for every Im 8 € (T )]; ; denoting the inverse Fourier transform of

this tempered distribution by F;%[f(Re 6 +i Imo) ]n we get

23

(F_lf)n = exp{<(n,&), Im e>}F;f[f(Re 9 +iIm e)]n

g 23

and this is a distribution in Dr'1 £ For a C < function ¢ with compact support
’

in IRn X ]Rn and for o = € we have

i Yq

1 1.2 f
£(67,07 + = )IJ J $(n,&)
R IR
n n

2n J
(2m) IR2n

<F—1fi¢> =
(2.61.1)

Y
expl-i<(n,E) ,Re 0> + <n,Im 68> + <E,Im 6% + 2k22

>ldndg }d Re 0
whereas for o = c we have

(2.61.i1i) <F—1f,¢> = —-LZ—ITJ f(e){ J J ¢(n,&)expl-i<(n,&) ,Re 0> +
(2m) m2n R R
n n

+ <(n,&),Im 9>]dnd§}d Re 0.
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The integrals exist and are independent of Im6 € (T )§+1 because F-1[¢](6)
is an entire function which is rapidly decreasing in Re 0 for each Im 6 in
a compact set in:mzn. As in the proof of theorem 2.21 we use the growth of
|f(9)], either for lim 6l large in the set {(x,y)|y yo/k+1 € C, X € r"} if
o = € in which case [f(e 62~+1y0/2k+2)| is O(exp a(Im 8)) for Im 6 + « on
any ray in Tc, or for lim 6l large in the set {(x,y)]y € Crppr Iyl > 1/2kx+2,
Izl < (k+1)lyl} if o = ¢, to show that F_ f has its support in Qk+1
In order to find the growth at infinity of the C - functlons ¢ on which

F_lf can be defined, we write (2.61) in a different way. Let y = y(k) be so

large that
2n 2
[y + J o | >1 + IRe 6l
j=1
for
def
In 6 e B = {7y € Crpqr ¥l < 1, Uxl < k1)

Then for such Im 6 we can write (2.61) as

-1 £(B)exp-i<(n,t),0>
<F77g,¢> = j J J y; d Re 9}
(2")2n 32n (Y'*Zej )£

ﬂi
n

L
(v - An,E) $(n,E)dndg,

where we have set £ = [ (m+n)/2]+ 1. The third integral is independent of
Im6 € Bk' Hence F_lf, which is itself independent of k, is a sum (depending
on k) of derivatives up to order 2£ of a continuous function G ( depending
on k) which for each (x,y) € Bk satisfies

IG(HIE)I < K(£)K exp{M*(t'"yH) +<n,x> +<E,y>} <

*
< R(E£)K exp{M (t'lyl) +lIyllel +<n,x>3,
where K(f) denotes

K(£) def sup ]f(e)]exp{—m log (1+l6l) -M ('l 1Im 02l ) 1.

ImeeBk

By (2.29) we can choose (x,y) € B suitably with x = -(k+1)7, so that for

k
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lgl sufficiently large
letm,e)| < k(EIK expim(lel/tr) - (k+1)lnl}.

Thus if we consider the space of all ¢ with ¢ defined in the e-neighborhood

of ai*l where € = 1/k - 1/k+1 and with
!Da¢(C)| < K exp{-M(IEl/t*) + (k+1)Inl - (n+1)log(il+izl)},lal <22

for some K 2 0, then F—lf is defined and continuous on this space. Embedding
into this space the space W2+2n+2(95;—M(“£"/t') + klnl - (m+2n+2)1og(1+lzl))
we find that F—l is continuous from Ha(m,k+1,t') into Sa(m+2n+2,k,t')' for

a € {g,c}. 0O

5

II.3. THE EDGE OF THE WEDGE THEOREM

In this section we shall give a short proof of the edge of the wedge
fheorem for distributions and we shall extend it so that it applies to ultra-
distributions, too. We will be concerned with the general situation, cf, [17],
where the two cones need not be opposite each other. Our proof also applies
to the case of the Malgrange-Zerner theorem, cf. [49], where the functions
are holomorphic only in lower dimensional regions. Usually, the known proofs
of the edge of the wedge theorem are more complicated and use some functional
analysis (Schwartz' kernel theorem), see for example [64] or [8], whereas

our proof is based on Fourier transformation.
II.3.i. THE EDGE OF THE WEDGE THEOREM FOR DISTRIBUTIONS.

We shall derive the local version from a global one by a transformation
as performed by Borchers in the proof of [4, lemma 8]. In fact, [4, lemma 8]
contains already the edge of the wedge theorem for functions with continuous
boundary values, cf. for example [64, th. 2.14], which is usually needed in
the proof of the general case, cf. [64, th. 2.16]. Moreover, [4, lemma 8]
is of the type of the Malgrange-Zerner theorem, cf. [44, th. 3] or [49,
p. 286-287], i.e., it gives the analytic eentinuation of a separately holo-

morphic function defined, if n = 2, on
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{(z),2,) |1z, 1<1,¥,>0,Ix,1<1,y,=0} u

U {(zl,zz)|Ix1|<1,y1=0,T221<1,y2>0},

where this function has equal continuous boundary values for vy ¥ 0 and for
Y, ¥ 0. We shall extend the method of [4] so that we get the result for
distributional boundary values and even for ultradistributional boundary
values.

It should be remarked that [4, lemma 8], as a particular case, yields
the Cameron-Storvick theorem, cf. [44, th. 4], i.e., the analytic continua-

tion into the domain
{(21:22)|121|<Kr|22|<K}

of a function which is separately holomorphic, if n = 2, in
{(zl,zz)Ilzlf<1.lle<1,y2=0} U {(zl,zz)|!x1I<1,y1=O,lzzl<1},

where k = V2 - 1. This is a better constant than k = 1 - 1//5 of [44, th. 4]
which on its turn is better than the original k = 2/(5+2/§) of Cameron-
Storvick, cf. [44]. v

For our proof of the edge of the wedge theorem we need lemma's usually
preceding it, cf. [64]. In particular, we mention the following lemma's

whose proofs can be obtained from those in [64], cf. also the next section.

LEMMA 2.28. ([64, th. 2.6 & 2.10]). Let C be a convex cone in R® (not
necessarily open) and let CI_=g=-e-£ {yly € ¢, Iyl < x}. Let £ be a holomorphic

function in an open neighborhood in " of nfl+-icr satisfying
(2.62) [£(z)| < Mm@xm) (el Mgl ™, 3 .
*
where M(r') may depend on r' for O < r' < r, and let £ be the boundary
*
value in S' of £f as y >0, y € C. Then f ¢ S' is such that for each

vy € Cr u {0}

_<€Iy> -1 * '
(2.63) e FL[f ]E € SE .
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LEMMA 2.29. ([64, th. 2.6 & 2.10]). Let f* € S' be a tempered distribution
satisfying (2.63) for y € ((_:)r where C is an open convex cone. Then
F[e_<g'y>F-1[f*] J(x) is a holomorphic function of z = x+iy in nfl+j_cr,
which tends to F[e-<g'y>F_1[f*]E]x in s, on (BC)r and to £ in S' as y >0,

y € C.

LEMMA 2.30. ([64, th. 2.5]). Let £_ € D! be a distribution such that

13 £ -
e—<€ <g€,y>

>
Y fg esé for y € B, where B is some set in ®". Then also e f_eS!

£ €
for each y in the convex hull ch B of B.

THEOREM 2.31. (Edge of the wedge theorem for distributions).Let U be a domain
in ﬂfn let C1 and C2 be two open, connected cones in =r® and let r, > 0 and
r, > 0. If two functions fl and f2, holomorphic in U +j.Ci1*and U +-ici2,
respectively, have the same distributional boundary value £ in D(U)', then
f* is the boundary value in D(U)' of a function holomorphic in N +

+ich(cl UC2),which coincides with £, and £, on their common domains of

1 2
definition, where Q is a certain open neighborhood of U in c” not depending

on f1 and f2.

PROOF. Let y0 € ch(C1 UC2) and first assume that yO # 0. Let yl,...,yn €

€C UC be linear independent vectors such that yo € ch{yl,...,yn}. Since
analytic continuation is. unique, it is sufficient to show that f1 and f2 can
be continued analytically into & n R- + ilint ch{O,yl,...,yn}]- We choose
yl,...,yn as the new coordinate directions of I{E so that by a change of

coordinates (cf. [64, th. 2.15]) we may assume that

* . Jj .

f = lim £ (x ,...,xj~+1yj,...,xn)

40
yJ

in distributional sense in {x]lxll <1,...,|xn| <1}, where the n functions
£ are holomorphic in a neighborhood in Gn of
(2.64) {z]lxll <1,y1=0,...,|zj| <1,yj >0,...,|xn| <1'yn=0}’
and that for some M > 0 and m > 0 there

1fj(x1,...,xj-+iyj,...,xn)| < Mlyj|_m

for j = 1,...7n, c£. [49]. Let
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. 1 3j n
et def e -1 e °-1 e -1
](ul,...,wj,...,u)———— fj( peees reeer 7Y >

Then £ is holomorphic in a neighborhood in ¢ of

{w|w=u+iv,usIRn, =0,...,O<vj<1r/2,...,vn=0}

V1

and it satisfies there for some K > 0 and k > 0

kil
e
-

Ej(u cee W, 000, )]
1’ ’J, ln lv'

j

Every 'EJ has the same boundary value in D\’l and the functions

. 2.
nd o) &£ oV (W)

*
satisfy (2.62). Hence they have the same boundary value h in Sl;, cf. (2.19).
By lemma 2.28

e_<gj'vj>F_1[h*]g € Sé, 0 < vj <n/2, 3 =1,...,n

and by lemma 2.30

-< - 4d
e &g 1[h] veBéf{v|ijO,j=1,...,n,

\f"‘(

Vit oty < m/2}.
According to lemma 2.29 h* is the boundary value of a holomorphic function
in R"+1iint B which coincides with the functions hj on the parts of the
boundary of ]R + i B where these are defined, because ha (ul,...,w,,...,u ) =
Fle <£J'VJ F [h ] J(u). Since fJ (w) = 2hj (w) and since &% w? 1sjent1re,
it follows that the functions fJ can be continued analytically to the same
holomorphic function in R +iintB. By transforming back, we find that f
is the boundary value of a holomorphic function in 2 n ]Rn+ i{yly, >0,j=1,...,n}
coinciding with fj on the boundary, where  is determined by thejtransforma-
tion of the domain IRn+ iint B.

Finally, if yO = 0, we choose n vectors yi,...,yn € ch C1 such that
—yl,...,—yn € ch C2 and we perform the same steps as above such that now B

becomes {v| ]v1I+.. .+|vn] <m/2}. Then f1 and f2 can be continued analytically
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*
into a neighborhood of U in ¢ and £ is a holomorphic function there. 0

REMARK. It follows from the proof that the domain into which a function,
which is separately holomorphic in the regions (2.64) for j = 1,...,n and
which has the same boundary value for every yj ¥ 0, can be continued contains
(c£. [4])

U {z]z,ectr,,...,2 )}
3 jo1 n

Aj>0
At +A =1
1 n

where C;(Al,...,kn) is the intersection of the upper half-plane with the open
[ -1

circle with center -ip and with radius 1+p2 where p gg£ (tg 1/2Ajn) . This

yields the constant k = Y/2' - 1 in the Cameron-Storvick theorem, cf. [44, th.4].

II.3.ii. THE EDGE OF THE WEDGE THEOREM FOR ULTRADISTRIBUTIONS.

The proof of th. 2.31 relies on the fact that we can suppress the growth
at infinity of the functions Ej by a function holomorphic in a tube, namely
by e_w . Now, if f* is an ultradistribution in DM(U)', the functions Ej have
boundary values in Dﬁ, ?ecause the growth of.f1 and £, for Iyl small is the
same as the growth of EJ for v, small, but Ej(ul,...,uj-+ivj,...,un) grows
faster than exponentially for lul + «. Then we do not have a function like
e_w , holomorphic in a tube, which suppresses this growth. Therefore, we
have to generalize the lemma's 2.28, 2.29 and 2.30 such that they hold for
ultradistributions £ in Dﬁ and analytic functionals F_l[f*] in Zﬁ. The
proof of the generalization, lemma 2.32, of lemma 2.28 requires some inven-
tion, while the proofs of lemma's 2.33 and 2.34 are similar to those of
lemma's 2.29 and 2.30.
<C'y0>u € Z' that p_ can be applied to entire

If w € Z' we mean by e
M -<zT,y0> ¢ M 5 -<T,¥n>
functions of the form e ~'¥07y(g) with ¢ € Zy and that l<uC,e '10 w(;)>| <

SK“w“a for some K > 0 where “."a is one of the half norms defining the top-

ology of ZM.

LEMMA 2.32. Let C and Cr be as in lemma 2.28. Let f be a holomorphic func-

. s . , . *
tion in an open neighborhood in c® of nfl+ iCr with a boundary value £ in

d -
D& as y> 0, y e C. Then u def F 1[f*] € Zﬁ is such that

-<
e Cly>u

Zl
z € %M
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for every y € c v {0}.

o
PROOF. Let {Kk}k_1 be an increasing sequence of convex, compact sets with

union IR +-icr. Let Hk be the space of analytic functionals carried by Kk
provided with the FS-space topology defined by duals of sup-norms and

. d L . .
finally, let H =g£ iﬁd lim H , where the injection maps are obtained as
-> ©

k
transposed of restriction maps. Then f is an element of the dual H' of H.
Now the Ehrenpreis —Martineau theorem, [16, th. 5.21] or [30, th. 4.5.3],
describes the space A of Fourier transforms of elements of H very well: A

consists of entire functions h with the order of growth at infinity

exp(eﬂgﬂ +k|!n|| + sup - <g,y>)
yeSk

o]
for all € > 0 and for some k depending on h, where {Sk}k_1 is an increasing
sequence of compact subsets of Cr with union Cr' We give A the topology
which turns the Fourier transformation into a topological isomorphism. Then

there is an element u in the dual A' of A with

i<tg,z>
e

n, .
<U€, > = f(z), z € R +1Cr.

<
Y07y (z) belongs to A and,

If yo € Cr and } € ZM the function 7 - e
in fact, it is the Fourier transform of the analytic functional defined by
ixs(yo)y where @ € DM is the inverse Fourier transform of { and where G(yo)

is the Dirac-delta function concentrated in the point ¥q- Hence
-< > -~
<u€,e t1¥o y(g)> = J f(X+iy0)¢(X)dx.

Furthermore, U is also a continuous linear functional on ZM by means

of the following definition

<> 28 1im <u e Ny (0> = lim J fx+iy)bxiax, ez,
y>0 g y>0
yeC yeC

That the limit exists and indeed defines an element in Z' follows from the

'
M
last equality and the data of the lemma. Thus we have u = F—l[f*] and since
-< >
for yo € Cr the space e C,yo ZM (i.e., the space of all entire functions
-< >
$(2) = e 5'¥07y(z) with ¥ ¢ 7, provided with the half norms I¢l def

< >
e %Yo ¢"a where "'"a are the half norms defining the topology of Z,) can
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<C,y>

be continuously embedded into A, it follows that e uC € Zﬁ for y € Cr.

a

-<
LEMMA 2.33. Let u € Zﬁ be such that e C'y>u € Z' for each y in the closure

of an open, convex cone C with lyl < r. Then F[e_<c'Y>u 1(x) is a holomorphic

<z

. - >
function of z in R" + iCr, which tends to Fle Y u;] in Dﬂ on the boundary

of C and to F[ul in D& asy~+0, yeC.

PROOF. The space ZM is defined as the space of all entire functions with
certain finite, weighted, sup-norms. Let C(ZM) be the space of all continuous
functions with the same finite, weighted, sup-norms. Let i be an extension
of u to C(ZM)'. Then by Riesz' theorem for each testfunction |l can be repre-
sented as a measure p(Z) on Cn. Furthermore, let Yy € Cr' Then as in [64,
proof of th. 2.6, formula 2.70] it is shown that there is an € > 0 such that
esV1+ﬂgH2 e’<C’Y>ﬁ _ z ﬁj
4 j=1 4

for y in a neighborhood U(yo) of yo contained in Cr and for some elements

ﬁj € C(ZM)' depending on y. Then for y € U(yo)

. K .
£(z) %&£ J Mgy = ) I exp (i<g,x> - e/1+1£12) i (z)

j=1 b
n

exists and is holomorphic in ﬂ¥1+-iU(yo). By analytic continuation we get a
function £ which is holomorphic in nf’+j.cr. Now Fubini's theorem shows
that F[e—<€'y>uc](x) = f(z). Furthermore, let v, € (BC)r, let y, = 0 and
let Yyre--s¥, € C_ such that the convex hull B of {yo,...,yn} has a non-

empty interior. Then as in [64, proof of th. 2.6, formula 2.68] we can write

n
—<T,y>~ - > i
e C,y 7= Z a(y’g)e <£'y3>uce i<n,y>

t sk

for y € B, where a(y,£) is a continuous function, bounded uniformly for all

e R andy € B, cf. the proof of the next lemma. Therefore, e_<c'y>ﬁc
-< >o ~

tends to e 241 uc in C(ZM)' as y > Yy Y€ B or to uC in C(ZM)' as y » 0,

y € B. Hence the statements of the lemma follow. 0

-< >
LEMMA 2.34. Let U € 2' be such that e Ly U, e Zﬁ for y in some set B in

z
-<
R'. Then also e 24 uC € Zl\ld for all y € chB.
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PROOF. It is sufficient to show that for yl,y2 € Band y = ty1 + (1 —t)y2,
-<
0<t <1, & Yy

€ 2'. Let 01 € C(ZM)‘ be an extension of u, then also
-< > < > .
e &,y1 uc and e E'y2 uc belong to C(ZM)'. The continuous function § -

e_<gly>
e-<€,y1> + e<5rY2>

a(y,£) &£

is bounded in Bﬂl (see [64, proof of th. 2.5]). Accordingly

e—<£;,y>i],c - a(y,E)e—<€'y1>ﬁC-ea(y,E}e_<£'y2>ﬁc € C(ZM)'I

so that also e

-<z,y>
equals e &y o belongs to Z'. O

< >~
Ly u_ € C(ZM)'. Therefore, its restriction to ZM' which

M

Now the proof of the edge of the wedge theorem for ultradistributions
is obtained similarly to that of theorem 2.31 using the above given lemma's
instead. of the lemma's of the .last section. So we have got the following
theorem.

THEOREM 2.35. (Edge of the wedge theorem for ultradistributions). Let Cl'

C2, f1 and f2, u, rl and r2 be as in theorem 2.31, where now f1 and f2
*
have the same ultradistributional boundary value f in DM(U)'. Then the

conclusion of theorem 2.31 holds in DM(U)' instead of D(u)'.

REMARK. More general edge of the wedge theorems exist, where f* is a sum of
boundary values of more than two functions, see for example [31] and [43,

p. 40-81]. If distributional boundary values are concerned, this theorem
has been shown by Martineau in [49] and an easy proof by induction has been
given by Bros & Iagolnitzer in [6, section 7], where first the notion of
essential support is introduced by means of a generalized Fourier transform-
ation. This method might be extendable to ultradistributions, but a forth-
coming paper on this subject, announced in [6] and in [31], has not yet

appeared.
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CHAPTER Il

FOURIER TRANSFORMS OF ANALYTIC FUNCTIONALS
WITH COMPLEX, UNBOUNDED, CONVEX CARRIERS

The theorems of this chapter describe the Fourier transformation F as
a topological isomorphism between spaces of analytic functionals u carried
by closed, ctonvex sets Q¢ €,, and spaces of holomorphic functions f of exponent-
ial type in open, convex cones I c Cn. The functionals p are carried with
respect to some class of open neighborhoods of @ and to some class of weight
functions on these neighborhoods. This determines the behaviour of f near
the vertex of I and conversely. The convex set Q itself determines the cone
" and the type a(z) of £, and conversely. These.theorems generalize the
'Ehrenpreis-Martineau theorem, [16, th. 5.21] or [30, th. 4.5.3], where Q
is bounded and I = cn,'and the one dimensional version due to Polya, [3,
ch. 5].

In [65, th. 2.22 & 2.23] the Ehrenpreis-Martineau theorem is given
for polydiscs © and in [73] F is treated as a topological isomorphism for
this case. Then the proof can be given directly, but for general, bounded,
convex sets Q the proof is more complicated. The proof given by Ehrenpreis
in [16] is based on the case of polydiscs, which by the Oka embedding can
be extended to convex polyhedrons, using the fact that a bounded, convex set
can be approximated arbitrarily close from the inside by convex polyhedrons.
This is no longer true for general, unbounded, convex sets. H&rmander's method
which uses an existence theorem for the d-operator, see [30, ch. 4], applies
directly to general, unbounded, convex sets . Therefore, in case £ is un-
bounded we will follow the method of [30, ch. 4] for proving our theorems,
but since we deal with non-entire functions f we have to pay attention to
the growth of f near the boundary of .

Unlike in the case where Q is bounded the proof of the injectivity of
F is not trivial if Q is unbounded. In this chapter we shall reduce the
proof of the bijectivity of F to two problems, which will be solved in chap-

ter VI by a generalization of H&rmander's method of [30, ch. 7]. On the
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other hand, this is, in fact, just a version of Ehrenpreis' fundamental
principle with non-entire functions and looking at it in this way, our proof
follows Ehrenpreis' method. The generalization of Ehrenpreis fundamental
principle to non-entire functions will be treated in chapter IV, where also
the two problems of this chapter will be reformulated in a more general form.
- In particular, it is interesting if " is the open cone Tc gg£ B{1+ ic
where C is an open, convex cone in Bf& Then functions £, holomorphic in TC,
may have ultradistributional boundary values on i (or in the limiting
cases, on the one side distributional boundary values and on the other side
boundary values in the sense of Fourier hyperfunctions). They are the Fourier
transforms of analytic functionals in ZM carried by certain, convex sets §
which may be unbounded in the imaginary directions. Then a more complicated
aspect of the topology of ZM arises and the testfunctions y on which the
analytic functionals act satisfy (2.45) on a neighborhood of §f. This actually
expresses the fact that we deal with ultradistributions defined on ultra-
differentiable testfunctions with compact support, which is so if M satisfies
(2.20) . However, in this chapter we shall not need this property'and our
theorems remain valid for ultradistributions defined on quasi-analytic test-
functions. Then, if @ is unbounded in the imaginary directions, there is
perhaps no other reason for requiring the analytic testfunctions to satisfy
(2.45) on neighborhoods of Q than that the theorems are true as they are
stated here. Anyhow, we shall not deal with the ultradistributions as bound-
ary values themselves, but we shall define the Fourier transformation F mere-
ly by formula (2.46), which in case M satisfies (2.20) is justified by
lemma 2.26.

III.1, ANALYTIC FUNCTIONALS ON EXPONENTIALLY DECREASING TESTFUNCTIONS;
FOURIER TRANSFORMATION AS A SURJECTION.

In this section we consider functions f, holomorphic in a cone [T in
¢", of exponential type a(z) for lzl large, which do not satisfy growth
conditions near the vertex of I'. Such functions turn out to be Fourier trans-
forms of analytic functionals with unbounded carrier Q(a, ), cf. (2.44). We
shall discuss two cases: one, denoted by the index €, corresponds to analy-

tic functionals with carriers with respect to e-neighborhoods, i.e., with
(=]

k=1’
denoted by the index c, corresponds to conic neighborhoods, i.e., neighbor-

respect to the neighborhoods {Q(a +1/k,[7)} cf. (2.48.i), and the other,

hoods of R(a,l) of the form f(a+1/k,7,), cf. (2.48.ii). If[ = T the case
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of conic neighborhoods is perhaps more suitable for describing quantum field

theory, cf. [53].
Let ™ c & be an open, convex cone, a a convex function on " which is
(-]
homogeneous of degree one, {rk}k—l an increasing sequence of open, convex cones

exhausting [ and let z_ € l_1 be fixed with | zoﬂ = 1. Then the collection

0
{1/x zo+|—};:=1 given by (2.49) exhausts [T. In the case denoted by &, let the

convex function a]i on 1/k z +” be defined by

(3.1.14) ar () gef  pax  a(z+w)
Ilwl<s€
k
€ :
where Gk > 0 is so small that z+w € 1/k+1 z +I" for z € 1/k z +I" and

Iwl < 6]‘2. Then after a detailed inspection one can see that for each k there
are q 2 p 2 k and a constant Kk > 0 such that for z € 1/k z0 + I

a(z - 1/2q zo) < a;(z) < a(z - 1/2k zo) +(1/xk - 1/p)hzl +Kk.

" Hence we have the following equality of spaces

(3.2.1) Exp 92f proj lim H (1/k z_ +T:aS(z) +1/klzl) =
€ Kk =+ L 0 k

= proj lim H_(1/k z, +M;al(z - 1/2k zo) +1/klzly,
k >
where the space HN(Q;M(z)) has been defined in section II.2.vii by means of

the norm (2.55). According to [73, cond. HS, and Hs2] E:xpE is a nuclear FS-

1
space (it can also be written as projective limit of Hilbert spaces). If a

is a bounded function on pr [T, the space Expe may also be written as

(3.3) Exp = proj lim H (1/k z_ +I;a(z) +1/klzl),
€ © 0
kK >

cf. (2.60).

In the case denoted by c we exhaust [ by the sequence {l_(k)]';:_1 given
by (2.47). For each k let 6]‘: > 0 be so small that for z ¢ I (k) and for
lwl < &€ + r < -
w X we have z+w € I (k+1) and a(z +w) a(z) + (1/k 1/k+1)llz|| +Kk for
some Kk > 0, cf. (2.60). Then we define for z € I (k)

(3.1,ii) a]c:(z)g—-e;—f' max al(z+w)

Il wll <8C
w (Sk
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and we have the following equality of spaces

(3.2.i1)  Exp_ 2L proj lim H_(C(k);a(z) +1/klzl) =

< k > o

proj lim H (" (k);a; (2z) +1/klzl).

k » »

Furthermore, let for o = € or c

(3.4) ak def
o

Hmm’;; -1/klzl)

where Qz is given by (2.48) and let

(3.5) a 26f ;14 1im A%,
o o

k > o

According to [73, cond. HS, & H82] Aa is a nuclear DFS-space (it can also

1
be written as inductive limit of Hilbert spaces), hence the strong dual A&

is a nuclear FS-space. In particular A& is bornologic.
For both a = € and o = c the set

L def {ei<C'Z>|z e M}

is a subset of Aa and it follows from an easy estimate (as in the proof of

lemma 2.27, formula (2.59)) that the map
(3.6) F: a' > Exp
o o

is bounded, hence continuous, where F is defined by

(3.7) Fu) (z) ggg < ,ei<§,z>>

r , U e A'.

F is sometimes called the Fourier-Laplace or Fourier-Borel transform if the
factor iis-omitted, but we merely call F Fourier transform and we shall see
later that there is an analogue with the Paley-Wiener theorem if we maintain
the factor i in (3.7) as we do here. In the next section we shall pay atten-
tion to the injectivity of F and here we shall show that F is surjective.
Then it follows from the open mapping theorem that the inverse F_1 of F is

continuous.
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*
If for each p = 1,2,... GP > 0 is such that for z € rp and T € rp+1
Im<g,z> 2 Gpﬂcﬂﬂzﬂ, then for k 2 max(p-+2,p/6p) we have

(3.8.4) el<ez> A]::, z €T (p).

Similarly, for each p there is a k > p such that

i<g,z> k

(3.8.ii) €r, ze€ 1/p zg + r.

Denote

Koot kg +r, rE B,

Now in view of (3.8) for every f € Expa we have to find for each k a contin-

uous linear functional ut on AZ with
k i<g,z>
(3.9) £(2) = <Gi) ., e LiZ,, ze re,

Indeed, let Xk be the closed subspace of AE defined by completion of the

i<z,z>
set {e .2 Iz € ri} in AZ, where p is determined by k according to
(3.8), then the closed subspace Ka of Aa' defined by completion of the set

L in Aa' can be written as

A = ind 1lim A%
a k > o

cf. [20, §25.13] or [40, th. 7']. By (3.9) we have
A L

AOL Aa
so that {u:}:=1 determines an element ﬁ € K& with F(ﬁ) = f. Finally, accord-
ing to the Hahn-Banach theorem and to definition (3.7) there is a u € A&
with F(u) = f£.

As in the proof of the theorem with entire functions in [30] we try
to extend f as a holomorphic function F in 2n complex variables 6 satisfying
a certain growth condition and we apply ﬁhe Paley-Wiener theorem of lemma
2.27. If we identify cn with ]Rzn, we will write [ for both, cones in Cn or

. 2n k
in IR . Now assume that for each k we have found a function Fa of the complex
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2 k+2 .
variables 0 = (61,62) € cn X Cn = c2n holomorphic in IR “+-ira , which sat-

isfies for some M. > 0 and mk >0

k
k, 1 .2 M a
(3.10) [Fa(e 89 =< (1 +06l) “expla,  (me)+ 1/, Jdmoll,
2n

Im 6 el’k+2cm
o
and
k. . o) n
(3.11) Fa(lz,z) = f(z), z € Fu cC

where we take a different from a only if o = € and a is not bounded on

def .
(k+2)(z) == al(z -1/k+2 ZO)' cf. (3.2.i), (3.3) and

(3.2.ii). Then Fa belongs to the space Hq(m,k+2) defined by (2.57). From

a
(k+2)
pr [T, in which case a

lemma 2.27 it follows that FZ can be written as

i<n,61> +i<£,82>

k.. _ .k P
(3.12) F (8) = <(u) e >, Imo el

g

for some uz € Sa(m-+2n~+2,k-+1)', cf. (2.57). From (3.11) formula (3.9)
follows and using [73, cond. H51] for ¢ € AZ we get

< o] < Ky ] J 15% (2) | *{exp EfET Iz}
* |12] <m +2n+2  Jk+l
o
(1 40 gly 2metantd g g09% <
< Ky ) sup  |0% () |exp 1/xlel <

k+1
12] Smk+2n+2 zeQt

IA

K, supy |¢(2) [exp 17k Tzl
;eQa

because an e-neighborhood of Q§+1 is contained in QE and for any m
k.
(3.13) A"'c S (m,k+1).
o o
k : . , . ) k
Hence ua determines a continuous linear functional in (Aa)' and (3.9) is

valid, whenever we can find functions Fz satisfying (3.10) and (3.11) for

f e Expa. Then the map (3.6) would be surjective.
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Since Expu can also be written as projective limit of Hilbert spaces

and since the function ac(lk) may be changed into az given by (3.1.i) and

(3.1.ii), cf. (3.2.i) and (3.2.ii), it is sufficient if (3.10) is satisfied
€
with an L2-norm instead of a sup-norm and with weight functions exp —ak(z)

instead of exp -a® (z) . Precisely, this means that (3.10) may be replaced

(k)
by

IFk (61 ' 92) | 2exp—2{ai (Im8)+1/kl Imoll }
J 2 ar(e) s m
2n k

Iel)™
R +ich{ (1+1861)
a
for some (other) positive numbers Mk and m depending on k, where A(8)
denotes the Lebesgue measure in ¢2n. Then the extensions Fk of £ follow
®RP4ir < ¢??,

and ¢(8) =

exactly from the following theorem, if we choose there Q =
_ o2n k _ .2n k+1

91—1R +1ch|_a, Qz—JR +J.chl_0'h,s1 on

2a(Im 8) + 2/klIm 6l or in the a = € case where moreover a is not bounded on

pr T, $(8) = 2a(Im Gl—nxo, Im 92—ny0) +2/klInel with n < 6, of. (3.1.1),

=:|.en_'_1,...,sn =i6

so that these functions ¢ are convex, hence certainly plurisubharmonic.

THEOREM 3.1. Let a n-k dimensional hyperplane in ¢” be given by the linear

functions

6 )

8y = 51 ppqre--®p

(] 6)

k= Sk k1’ "n

k

or shortly w = s(z) with w € d:k, z e C. Let Ql c 92 c  be pseudoconvex

domains in Cn such that an e-neighborhood of §,, with respect to closed

1

polydiscs in the first k coordinates, is contained in Q., i.e.,

2

(3.14) {o]]o,-6°] <& for 5=1,...,x:0, = 0°
J J J J

for j = k+1,...,n;eo € Ql} c 92.

Furthermore, let ¢ be a plurisubharmonic function on  and for 6 € Ql let

def
¢E(9) == max{¢(61+w1,...,9k+w ,8

X k+1""’en)“wj| < e,

j=1,...,k}.
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Finally let Q' def {2]%é(2),z)'é Q) < Cn—k and 95 def {z|(s(2z),2) € Qj},

def
j =1,2, and let ¢' be the function in Q' given by ¢'(z) ge ¢(s(z),2z). Then
for a given function f, holomorphic in Q', there exists a function F, holo-

morphic in 91, which satisfies

(3.15) F(s(z),z) = £(2), 2z e @]

and for*some K > 0, depending only on k and sj, i=1,...,k,

|7(8) |%exp - 0_(0)

(1 +1e12)3k

Q'
! 2

(3.16)

dir(8) < K e—2k J |f(z)|2exp—¢'(z)dx(z)

(where A(8) and A(z) denote the Lebesgue measures in c” or Cq;kvrespectively),
if £ is such that the right hand side is finite. F depends besides on f also

on Ql, e and ¢.

2
PROOF. Let ¥ be a C -function in € with values between 0 and 1, which is

equal to 1 in the disc with radius 1/2 e, which vanishes outside the disc

" with radius € and which satisfies

Y K
— < =
[af)(p)|—e, pecC
for some K > 0. Define the (0,1) - form ¥'(p) 3 3y/3p {(p)dp and let for
j=1,...,k
def n-k

ll

. = p.(6,:2)
p pJ 3

6, -s,(=z), z e C
J J J

- n - - -
then dpj = dej —£=E+1 st/azz dzl. We define the function F as follows

I~/

def k
1) . -
F(6) == _H v(pj(9j19k+1,...,6n))f(9k+1,...,6n)

k
{1
J=1 j m=j+

1 1

w(pm(9m79k+1,---,9n))}pj(0j:6k+1,...,en)Uj(91,.--,9j;6k+1,...,en)
for certain functions Uj of n-k+]j complex variables, where an empty pro-
duct is defined as 1. For 0 € Q, F(8) is defined, because then

k
k .
jglw(pj(ej;z)) = 0 for z ¢ {zlﬂw e C ,|wj-sj(z)| <eg for j =1,...,k,
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(w,2) € 91} c szé. If ej = sj(ek+1,...,en), i.e., if pj =0, for j =1,...,k,

we get (3.15).
Now we will choose the functions Uj with a suitable bound such that F

is holomorphic in Q,, that is such that 3F = 0 there. First we write F in a

1
different form, namely denote

j+n-k
ory] &£ (810 s0552) ¢t

for z € ¢n—k, let

def
Go(e[OJ) = Go(z) == f(z)

and let

def
6[31) == 0.; G, 6lj-11) -p.(8.;2)U0, (6[]
Gj( 3D ¢(pj( 3 z)) 3—1( [3-1D pj( 3 z) J( 3D

for j =1,...,k successively, then

Gj is defined in

Ql31] def {6[j]|3w € ck_J, wm-sm(z)l < g form= j+l,...,k

. . . j+n-k
and (61,...,ej,wj+1,...,wk,z) € Ql} S

if Gj_1 is defined in Q[j -11].

The sets Q[j] are in general not pseudoconvex, so we will define
pseudoconvex, open sets 5[j] containing Q[j], such that G, is defined in
afj] if Gj—l is defined in 5[j—1]. For that purpose we first note that

. . (3+1,...,k)
alil = {e[:]l(61,...,6j,sj+1(z),...,sk(z);z) € 913 }

(3+1,...,k)

where Ql denotes the e-neighborhood of Ql with respect to open

polydiscs in the (6

j+1,...,ek)--space, i.e.,

Q(3*1, ... k) def

) {e|em=e;’l form=1,...,j,k+1,...,n and

Iem-egl < g for m=3j+1,...,k with 90 e Q).

1
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(3+1,...,k) (3+1,...,k)
1

In general is not pseudoconvex and we denote by H({ )

the smallest, open, pseudoconvex set containing it. Then we define

def

~e . . (3+1,...,k)
QL3 {0[3][(61,...,6j,sj+1(z)l...,sk(z),z) € H(Q

; )},

which according to [30, th. 2.5.14] is pseudoconvex. If we show that under

the projection ﬂj: 3] - o[j5-11]
(3.17) nj(ﬁtjj n {or31[le, ~s ()] < eh < QL3 -13

the stated conjecture follows.

Now

wj<§[j] n {e[j]llej -5 (2)l<eh) = {6[j—1]](91.-..,6j_1,

5.(2) ... s (2)i2) e (@ IFLre--rK)y, (3
3j k 1

where Q(J) denotes the open e-neighborhood of a domain  with respect to

discs in the ej—plane. Let denote the open e-shrinking of § with respect

(3)
to discs in the Gj-plane, i.e.,

o def

i <
(3) {z € Q](zl,...,zj~+wj,...,zn) € Q if ijl < e}.

If Q is pseudoconvex Q(J), in general, is not, but § is pseudoconvex (a

(3

similar proof to that of [57, p.97, Satz 7] shows that Q is pseudoconvex

(3)
in every direction and according to [57, p.111-112 Korollar 14.1] Q is

. (3)
pseudoconvex) . Thus (H(Q{J""'k)))(j) is pseudoconvex and clearly

Q{J+1'."'k) S (Q;j""'k))(j) c (H(Q{j""'k)))(j). Accordingly

(j+1,...,k)) - (H(Q:jr-'-'k))) and hence

B, (3)

(3+1,...,k)
1

D e (@m@Bry) )

(3)

(3) (3,...,k)

(3.18) (H(Q 1 )y

)) c H(Q

whish implies (3.17). Therefore, Gj is defined in 5[j] if Gj—l is defined
in Q[j-17.

N By (3.14) we have Q[0] c Qé and since Qé is pseudoconvex, we get
8[0] c Qé. Therefore, G0 is holgmorphic in Q[0]. Thus Gj is holomorphic in
QL3] if Gj—i is holomorphic in Q[j-1] and if Uj satisfies
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Y . def . ' . 2} ;
(3.19) BUj(GEJJ) 95 (6[31) == j 1(6[] 1hy (pj(ej,Z))/pj( j z)

in a[j]. Then F is holomorphic in Qk] = alk] = 91. Since by assumption Gj—l

is holomorphic in 5[j-1], 1/p is holomorphic cutside any neighborhood of zero,

P'(p) = 0 in a neighborhood of zero and since 3¢ (pj(e ;2)) = aaw(p (9 ;z)) =0
(because ¥ is a Cz—functlon), we get ng 0 in 9[3] Furthermore, let uJ be
k

e
the analytic map of ™ into ¢ given by

uj(e[j]) def (] +w1,...,eJ+wJ,s (z),. ..,sk(z);z)

for some w € C] with lw | <e, m=1,...,j. Then by (3.18) u (9[]]) c

cH(Q(l"' k)

) © Q, and therefore a function ¢ can be deflned on Q[J] by

2

0, (603D) def mas{¢ (ay (60310 [ 1w | e, m = 1,...,3},

For each w € cj with Iw | <€ form=1,...,j the function ¢(u (6[31)) is

plurisubharmonic in Q[]], cf. [30, th. 2.6.4] and if we show that ¢ is upper

/semlcontlnuous, it follows from [30, th. 1.6.2] that ¢ is plurlsubharmonic

in Q[j] Assuming this for the moment we continue the proof of theorem 3.1.
All the conditions of [30, th. 4.4.2] are satisfied now and this

theorem gives a solution Uj of (3.19) in 5[j] with

exp -¢. (CIEN))

lu.er37) |2 arerin <
3j 2, 3j-1
A9 (1+leC331%)
J l 2 Sty oD
= g.(6[3]) ar(eljl.
) (1+1e0371%) 37D

8l31

Next we estimate G, in terms of Gj—l’ using (a-i-b)2 < 2a2-+2b2, ij(ej;z)lz/
K1+H6[j]"2) < M depending on sj and ¢j(6[j]) > ¢j_1(e[j—1]) for every ej
with ]ej -sj(z)] < e:

2 exp-¢.(6[3])

I2 3 ar(eljl) =<

le. (8[3D) |
r57 J (1+le[31
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exp-¢j_1(6[j—1])

(1+lpr3-171% 3G~

arelj-11) +

IA

. 2
2me J IGj_1(9[3'1])|
oli-11

exp—¢j(9[j3)
2)3(j—1)

+

2M J Igj(etj])l2 arerjn <

33 (1+heC530
exp —¢j_1(9[j—1])
3(3-1)

8MnK2+2we4

2
€

IA

ar(elfij-11.

[G__l(e[j—1])12 3
0317 J (1+lel3-171%)

o = £ and Qo] < Q5. (3.16) follows. O

We still have to show the following lemma.

Since G_ = F, k] = k] = Q. 6

, n
LEMMA 3.2. Let ¢ be an upper semicontinuous function in a domain @ < IR .

Let S be a compact neighborhood of the origin in R" and let Ql c Q be a

domain such that {x[x==x W, X, te,we‘S} c Q. Then the function ¢1 on Ql

1
given by

(3.20) ¢1(X) def max ¢ (x+w)
weS

is upper semicontinuous.

PROOF. First we show that an upper semicontinuous function f in a domain U

d ©
attains a maximum on a compact set K ¢ U. Let M gdef suE f(x) and let {Mk}k_1
xeKg =

be an increasing sequence with M, + M. The sets U~ . def ¢y e U|£(x) <M&}
are open and if there is no X, € K with f(xo) = M we have K ¢ kgl Uk' Since

m
K is compact, there is a number m with K ¢ kgl U . This implies f(x) <M <M

k
for x € K, contrarily to the definition of M. Thus there is x. € K with

f(xo) = M. Hence definition (3.20) (and also the definiiton og ¢€ in theorem
3.1) is a good definition.

Now let X, € {x|¢1(x) <cln Ql, then ¢(x0'+x) < ¢ for x € S. Since ¢
is upper semicontinucus, there is an open neighborhood U of S with ¢(x0+x) <c
for x € U. In particular, since S is compact, there is € > 0 such that
¢(x0+x+w) < c for w e S and Ixl < e. Since an upper semicontinuous function
attains a maximum on a compact set, it follows from (3.20) that the set

0

{x € 91|¢1(x) < c} is open and thus ¢1 is upper semicontinuous in Ql.
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Applying theorem 3.1 for obtaining (3.10) and (3.11) we get the fol-

lowing result.

THEOREM 3.3. Let for o = € and o = c the space Au of holomorphic functions
in the unbounded convex neighborhoods QZ of Q(a,l’) be defined by (3.5) and
let Expa be defined by (3.2.i) and (3.2.ii). Then the map (3.6) F:A& bd Expa,

given by (3.7), is surjective for o € {g,c}.

III.2. ANALYTIC FUNCTIONALS ON EXPONENTIALLY DECREASING TESTFUNCTIONS;
FOURIER TRANSFORMATION AS AN INJECTION.

In this section we state the problem whose solution implies the inject-
ivity of the map (3.6).
In formula (3.13) we have embedded Ai into the space

(3.21) s];“ def roj lim s (m,k+1)

m > «
‘cf. (2.57), which is a weakly compact projective sequence. Another possibi-
lity is to take - instead of Az, defined by (3.4), the subspace AZ of SZ cons-
isting of those elements ¢ € SE with 5¢ = 0, where 3 is the Cauchy-Riemann
=t
operator. Then any element uk € (Sg)' that satisfies uk = Btok for some
->] -
ck € ((S::)')n vanishes on Ak. Therefore we define equivalent classes of
k k k
} and {u

1 2
> =t >
alent if for every k there is ok € ((S]:L)')n with u?-—ug==3t Gk. Since also

k
sequences {1} with u € (Sa)' where two sequences {u } are equiv-

(3.22) A = ind lim Ak
o
k > »

where Aa is defined by (3.5), the elements of A& can be identified with

the equivalent classes of such sequences {uk} that for any k and p there is
k k P =t gk,p

-]
ao'P ¢ ((SI;])')n with 4 - p° = 9 in (Sm)' where m = min(k,p).

o
The space (3.22) is defined by a weakly compact, injective sequence

. 2k+1
because an open set in Ag is bounded in Aa and hence relatively weakly

e

compact, for the space (3.21) is reflexive, cf. [65, th. 36.3]. Therefore,
cf. [40, th. 12] the strong dual of (3.22) equals

(3.23) A' = proj lim (Ak)'.
o o
k - o>
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By [40, th. 13] we have
~k,, _ k., ,.zk,0
(Aa) = (Sa) /(Ad)

- - -k .
where (Ag)o denotes the annihilator of AE. Furthermore, Aa is the kernel of
def

the continuous map §k == (3/321,...,3/32n)
= k k.n
ak' Sa M (sa) !

so that according to [65, prop. 35.4] (ﬁt)o is the weak* closure (cf. foot-
note on pagel85) in (Sz)' of the range of the transposed map 5; of 5k. Since
SE is reflexive the weak* closure of this range equals the closure in the
strong topology, cf. [65, prop. 35.2]. We denote the closure in (Sz)' of
the range of the map

def =t

— - k ) n k 1
T, = 3s (SN > (S)

by R(Tk). Hence we have
-k . k T
(3.24) () = (s) /R(T) .

According to lemma 2.27 for every k there is a p > k such that the

following maps are continuous

J—F: (Sg) ' H};

(3.25) 1 -1 k1 X

F': H - (8",
o o

where

Hz def ;0d 1im B (m,k)

mo>®

with Ha(m,k) defined by (2.57), and where F is defined by a formula like

def

>
(3.12). Let P = (61 -1i6 yeeosB —i62n) and let P'Hg be the subspace of

n+1 n
k
Ha consisting of functions F which can be written as

n
F(6) = 6., -1i6_  .)G. (8
(8) Z(jln+3)3()

with Gj € Hz, j=1,...,n. Then
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(3.26) F: R » oo, Flop# L R
P o [+ k

Now by (3.23), (3.24), (3.25) and (3:26) themaps (3.25) induce an isomorphism

F between

(3.27) F: a' > proj 1lim (25/p-B5).
a kK + o Q a

Furthermore, for each k there is a p > k such that

g € PUEE

p e : 2% p,n
F € H.. Then F, = P*G, with G, ¢ (H') , so that F
a 8 B B o

is a continuous injection, for let F be a Cauchy net converging to

g’ and hence F, vanishes
on the set

v def {:IR2n+il'§} n {9|9j-i9n+j=°' j=1t,...n}h

The inclusion follows if we have solved the following problem.

PROBLEM 3.1. For each k there is a p > k such that a function F € HE vanishing

on VE can be written as

F(0) = P+&(8), O ¢ m2“+ir‘;

with G € (H];)“.

Assuming that this problem has been solved we have the following com-

mutative diagram of continuous maps

pre
HP/p HP 5 H/poiF
¢} o, o o

)
g /p .2
Q. s

here the upper spaces are Hausdorff spaces, but in the lower space we do not

have to bother about the closure. Anyhow, this implies that
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def e k >k
(3.28) B 2 o5 1im @/p-F) = proj lim (H</p-E)
o [+ o o o
k > o k > o
and this is always a Hausdorff space. Its elements can be described as follows,

k k
cf. [20, §6.2]: define equivalence classes of sequences {F } with F € H

k
where {F*} ~ {5} if F*(8) - H*(0) = 2(8)-8“(0) for 6 ¢ R +il: and for
> ->]
Gk € HE; then the elements of H are the equivalence classes of such sequences

>
{F*} that for every k and p there is a gk ¢ gz with

2 m

(3.29) Fk(e) - Fp(e) = P(G)'Gk'P(e), 0 e R+ ira' m = min(k,p) .

We have to solve problem 3.1 anyway, so we don't pay attention to the
] >k k
closure of P-HZ in Ht and (3.28) is valid. Since P-Ha vanishes on Vu we can
define continuous restriction maps Ik

% w¥/pE5 o 5F VK,
a o o o

k k
Here Hzlva is the space of restrictions of functions in Hz to Vu with the

k k .
topology induced by Ha' Then I is surjective. Furthermore, there is a natural

continuous injection J

o

k. _k k
I Hy |V§ > H i,

(2) + 1/, 12

defined by (JkF)(z) def F(iz,z). Hence we can complete (3.27) as

(3.30) Al -£+H ——£+proj lim (Hk|Vk) —£;+Exp ,
o o o' o o
k >
so that JoIoF is the map F defined by (3.7). Indeed, by (3.29) if {Fk} € Ha
then for p 2 k and for 6 € V: we have Fp(e) = Fk(e). Hence the elements of

. oas kyk . .
p€?J+l%m (Hulva) are just those functions f on

VL y vk - (R4 i} nfele, - 16 =0, 3 =1,...,n)
X o J n+j

such that for any k there is a Fk € HZ with

(3.31) o, 6% = £0%), (o!,0% ¢ vE.

. . - k
Thus J is defined similarly to J and J is injective.
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k
Theorem 3.1 shows that the map J is surjective. However, the by {I'}
k . . .
induced map I is a priori not surjective, although each I is surjective.

We have the following commutative diagram

p
mP/paP | I y . HO|VP
o o ol a
a B
p/k p/k
Hk/P'-ﬁk . SN . HkIVk
o o K Y al o
I
where up K and BP k denote the restriction maps. Hence the range of I in
’ ’

k k
proj lim (H Vk) consists of those f on V which, besides (3.31) for F € H,
k > a'l o o

moreover satisfy (3.29). The solution of problem 3.1 implies that I is injec-

1
tive and surjective (actually it says that Ker P Ker ap k) ).
’
V is defined as the simultaneous zero-set of the polynomials
pj gdef ej _ien+j' j=1,...,n. These polynomials generate a prime ideal in

2
any point of a pseudoconvex, open set < € n. Therefore, according to Hil-
bert's Nullstellensatz, see [27, ch.III. A], every holomorphic function f in Q
vanishing on V' can locally, that is in a neighborhood w of any point in €,

be written as
> -> n
(3.32) f = P-gw, gw € A(w) 7,

where A(w) is the set of holomorphic functions in ®W. With the aid of Cartan's

theorem B it can be shown, see for example [27] or [30, th. 7.2.9 & th. 7.4.3],

1) If we do not assume that problem 3.1 has been solved, it still might hap-

pen that I is surjective without its injectivity being established and this
is actually the case here. Indeed, in section III.1 we have shown that for
any £ € proj lim (HZ'VE) there is a U € A& with F(u) = Jf, where F is given
by (3.7). Bu: zf we apply the maps F and I in (3.30) successively, we get
£ = Ief u € R(I). Hence I is surjective. This means that for any sequence

{F*} with 7 « Hg and F* - ¥ = 0 on Vﬁ for all k and p = k, there exists

another sequence {Fk} with Fk € Hz satisfying (3.29) and with Fk - ;k =0

k
on Vq. However, here we are not interested in the surjectivity of I, i.e.,
in the above solved statement, but in the injectivity of I, i.e., in problem

3.1.
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that £ € A(Q) satisfying (3.32) can be written globally as
> >
f = Peg, g e A(Q)n.

Problem 3.1 asks for a function E which satisfies almost the same growth
conditions as F, so it is the analogue with estimates of the above mentioned
problem. If Q = ¢n this problem is solved in [30, th. 7.6.11] and in chapter
VI we will perform the same method of proof, but there we have to take care
of the estimates near the boundary of . For the general case, as in theorem
3.1, all conditions, besides the one that ¢ is plurisubharmonic in the density
exp - ¢, will be discussed precisely in the next chapter.

Since problem 3.1 implies the injectivitv of F, its definition (3.7)

implies the following corollary.

i<C,Z>|

COROLLARY 3.4. The set {e z e} is dense in the spaces Aa given by

(3.5) for o = € or a = c.

t . t .
REMARK. Since F is surjective, F : Exp& > Aa is injective, where F~ is
given by

i<
(Fo)(2) = <o_,e™ %" %>, o cmxp!

because for u € A&

i<g,z>

i<g,z>
>> = <y_,<0_,e LIS
c z

t
<u,F o> = <o,Fp> = <GZ'<u§'e

i< >
by Fubini's theorem. Hence also the set {et trz Ic efQ(a,l )} is dense in
Expa for both o = ¢ and o = c.

So finally, we have obtained the following theorem.
THEOREM 3.5. The map F of theorem 3.3 is also injective.

REMARK. Theorems 3.3 and 3.5 state that the map (3.6) is bijective. This
fact can be considered as a generalization of the Ehrenpreis-Martineau
theorem, which gives the isomorphism (3.6) for o = ¢ if Q is compact and

M= Cn, just as the Paley-Wiener theorems of chapter II, cf. also [68, §26.4,
th. 2], can be considered as a generalization of the original Paley-Wiener-

Schwartz theorem for distributions with compact support.
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III.3. PALEY-WIENER THEOREMS FOR FOURIER HYPERFUNCTIONS.

In this section we treat the particular case of theorems 3.3 and 3.5
where [T = TC with C an open, convex cone in Bf& Again as a particular case
of this situation we may consider functions a(z) which are only functions
of y = Im z. Then Q(a,TC) is a subset of nxl and a function in Expe determines
a Fourier hyperfunction.

Let (TC)k and (TC)(k) be given by (2.50) and (2.51), respectively. If
in (3.2.i), (3.2.ii) and (3.5) [ = TC, we get the spaces

Exp_[a(2), 71 228 proj 1im m_(r'/MY0*C a0,y -1/ y ) + 1/Khz)
(3.33) € kK > 2k
a_(a,1%) 2L ina 1im B (0(a+1/K,1%); - 1/KlE])
k> e

where yo e prC, is fixed, and

1

Expc[a(z),Tc] 9ef Lroj 1im H_((T%) (k) sa(z) +1/klzl)

(3.34) ko>

U (2,1 28£ jna 1im 5 (@(a+1/k, S ); - 1/xlcl) .
¢ k > o @ k

By theorems 3.3 and 3.5, in both pairs of spaces Fourier transformation is

an isomorphism from the strong dual of the second space onto the first space.

Similarly, the same statement can be derived for the following pair of spaces,
where we have a mixture of the two foregoing cases, namely analytic function-

als. carried by Q(a,Tc) with respect to e-neighborhoods in the imaginary

directions and to conic neighborhoods in the real directions:

c, def L 1/k yo + Cy
Expelc[a(z),T ] proj lim H_(T ,a(x,y-1/2kyo)+

¢ ae ko> c + 1/klzl)
A c(a,T ) == ind lim H_(Q(a+ 1/k,T K);-1/klcl).
’ k > ®

(3.35)

Thus we obtain the following theorem.

THEOREM 3.6. In the pairs of spaces (3.33), (3.34) and (3.35) the strong dual
of the second space is topologically isomorphic to the first space by means

of the map F defined by (3.7).

The pair (3.33) will be used in chapter V to derive the Newton inter-

polation series for functions in Expe[a(z),TC], if lim a(x,y) as y > 0, y € Ck
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c . . . . .
exists for:every-k, i.e., if Q(a,T ) is bounded in the imaginary directions.
If the convex, homogeneous function a is only a function of y € C, i.e.,

if a(z) = a(y) then
c i
Q(a,T) < {¢|g=€+in,n=0}.

(o4 C
In that case for each k every function f in Expefa(y),T ] or in ExpE c[a(y),T ]
’

satisfies
[£(z)] < Kk, exp 1/klxl, yec, 1/k< Iyl < x

for some positive constants Kk depending on k and f. Hence it determines a
Fourier hyperfunction, see [38]. Then theorem 3.6 is the Paley-Wiener theorem
for Fourier hyperfunctions:

i. The elements of Expe'c[a(y),TC] are just the Fourier hyperfunctions
which are the Fourier transforms of the Fourier hyperfunctions with
support in Q(a,Tc), where the support is defined as the smallest carrier
with respect to conic neighborhoods Q(a-&l/k,TCk) in the real directions,
which is done in [38].

ii. The elements of ExpE[a(y),TC] may be considered as the Fourier transforms
of the Fourier hyperfunctions with support in Q(a,TC), where this kind
of support with respect to e-neighborhoods is.defined by means of de-
finition 2.6.

iii. In [53] analytic functionals carried by real sets with respect to conic
neighborhoods in ¢” are mentioned. They are called @ouxier hyperfunctions
of the second kind and they seem to be more useful for describing
quantum field theory. In ‘this view the elements of Expc[a(y),TC] are
the Fourier hyperfunctions of the second kind which are the Fourier
transforms of the Fourier hyperfunctions of the second kind with support
in the set Q(a,TC), where this kind of support is defined with the aid

of conic neighborhoods.

III.4. ANALYTIC FUNCTIONALS IN ZiM}; FOURIER TRANSFORMATION AS A BIJECTION;
PALEY-WIENER THEOREMS FOR ULTRADISTRIBUTIONS OF ROUMIEU TYPE.

In this section we shall mention the problems which have to be solved
in order that the Ehrenpreis-Martineau theorem can be extended to analytic

functionals in Z%M} carried by unbounded, convex sets with respect to various
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classes of neighborhoods. Now we no longer exhaust an open, pseudoconvex set

" by sets U—Z}:=1 such that an e-neighborhood of F is contained in Fk+1 as

in problem 3.1. In this section we shall get problems similar to theorem 3.1

and problem 3.1, but with estimates extending to the boundary of the domain.
As in section II.2.iii we require that M is a continuous, increasing,

piecewise differentiable function on [0,®) with M(0) = 0, M(x) = «, such

that M' is strictly decreasing. Furthermore,. in this and the following section

we only require that (2.31) is valid. Then M*, defined by (2.28), is a con-

vex function on (0,®) with M (0) = ® and M" (®) = 0, satisfying (2.29) and

(2.31). Briefly, the following formula's hold:

(3.36) M (0) = max {M(p) ~op}
p>0

(3.37) M(p) = min " (o) +pol};
o>0

¥Vt >0, Vm>0, 3t' 2t, 3K >0 and Vt' > 0, Vm > 0, 3t with
0<ts<t', IEK>0

such that for p 21 and 0 < g <1

M(p/t') +mlog p < M(p/t) +K
(3.38) {

M*(t'c) +mlog1l/0 < M*(tc) +K.

We shall fi.:st describe the analogue of sections III.1 and III.2, but
now with M = Tc. '"This will yield the most general setting of the problems
to be solved. Next we shall state the Paley-Wiener type theorems and, for
arbitrary cones [T, the Ehrenpreis—Martineau theorem. Let C be an open, ccnvex
cone in nfn let for a = € and o = ¢ (T ) be given by (2.52.i) and (2.52.ii),
9 by (2.48.1i) with [ replaced by Tc and by (2.48.1ii) with r replaced by
(T )k' defined in (2.50), and let ak be given by (2.54.i) and (2.54.ii),

respectively. Then we define the follow1ng pair of spaces

Exp [a,'ZE iM] def proj lim H_ ((T ) ,a (z) +1/klzl + M (xlyl))

(3.39) k
1 A (a,T M) def ind lim H_ (9 -m(hel/x) +xinly.,
k>

C % :
By lemma 2.17 each £ ¢ Expa[a,T ;M ] determines an ultradistribution of

Roumieu type.
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As in section III.2 formula (3.21), here too we :introduce an S-space
. k
of ¢ Zfunctions. In this section for o € {e,c} we denote by S, the space

SZ g-(-a--tg'proj lim Sa(m,k,k)

m > ®
whexe Sa(m,k,k) is defined by (2.56) and again we write the strong dual of

Aa(a,Tc;M) as

A (a,TC;M)' = proj lim (Sk)'/R(T )
o a k
k » »

where Tk is the transposed of the Cauchy-Riemann operator. Let us now denote

by Hu the space

H def proj lim (Hk/P-Hk)
o X + o o a

where HZ gg; igd+1£m Ha(m,k,k), cf. (2.56). Then by lemma 2.27 the Fourier

transformation F is an isomorphism
C
F: A (a,T ;M)" > H .
o o
As before, the maps I and J are introduced

Ha —E—*proj lim (Ht Vt) —E—*Expa[a,Tc;M*].
kK +

We shall investigate which problems have to be solved in order that I is
bijective and J surjective.

The bijectivity of I will follow from a problem similar to problem
3.1. It asks for a function g € A(Q)™ with Peg = £ if (3.32) is satisfied,
where now a is holomorphic in the same pseudoconvex domain Q as f and satis-
fies some estimates. This is only possible if some conditions are imposed
on the densities in the estimates. Therefore, we have to introduce the fol-
lowing concepts. Let 2 be a pseudoconvex domain and let ¢ be a function in
2 such that for each N there exists a plurisubharmonic function $N in Q
which satisfies

(3.40) K+9 (z) 2 ¢ (z) def max{¢(z') +N log(1+||z'||2) +1og(1+d(z',gc)-N)
N N

[lz-2'l < minlN, (e"-1)d(z,2%), (" -1)d(z',2%) 1}



103

for some K > 0 depending on ¢ and N, where d(z,Qc) denotes the distance from

z to the complement 6f Q. Furthermore, we define the plurisubharmonic function

¢ by

Q

(3.41) $(z) de $N(z) +N log(1 +||z||2) + log (1 +d(z,9c)_N)-

Then 5 satisfies the following inequalities

Let

™) &L v* (klm 621y +.;a](:(Im 8) + 1/klIm 6l + m1og (1 + 1612

if a = c for 6 € T((TC):) or if oo = € for 8 € T((Tc)t), in which case we
complete ¢k,m arbitrarily to the remaining of T(TC), cf. (2.53) for the
definition of T(B). Then in virtue of (3.38) for each q and N there are p > q
and Kq > 0 such that for o = € or o = c

WP (@) < " G

C
Ky 8eTUTHY.
For a fixed £, € pz'C* there is 6§ > 0 such that Syl < <Eqiy> < Iyl for

y € C and therefore, for each k there is a g > k with
* *
M (q<Eo,Y>) <M (k“y") ' y € C.

* .
But now M (q<£0,Im 92>) is convex, hence plurisubharmonic, in T(Tc). Hence
for each k there is a p > k such that by a suitable choice of (wp' )N we
get

AN\

(3.42) L
in ().

In the o0 = € case an extra complication arises by the fact that the
domain T((TC):) is not pseudoconvex, because by Bochners theorem its pseudo-
convex hull H(T((Tc)t)) equals T(TC). Hence every F € Ht is holomorphic in
T(Tc) and if F vanishes on Vt, it vanishes on V. Each F ¢ Hg satisfies for

some m and K
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lF@)] < x exp ¥2(0), 0 € T((T)D)

IA

|F(8)] < exp(log|F(®)]), o e T(%).

Then with ¥(0) S5 max{log|F(8) |,¥P"™(8)} for 6 € T(1°) F satisfies

(3.43) IF(E)I < K exp Y(6).

Furthermore, we make the restriction that wp,m on T((TC)E) has been extended
to T(Tc) in such a way that (3.40) can be satisfied for the function y of
formula (3.43). If o = c and F € Hi, we set ¥ = wp,m for some m depending
on F and (3.43) is satisfied for 6 ¢ T((Tc)z), which is a pseudoconvex
domain.

Now assume that for @ = € and @ = c every F ¢ Hg vanishing on V if
o = € or on‘Vg if o = c and satisfying (3.43) can be written as F = P'E for
holomorphic functions G, in T(TC) if o = € or in T((Tc)ﬁ) if a = ¢ which
satisfy there Gj(e) < K exp @(9), j=1,...,n, where ¥ is obtained from ¥
as in (3.41) for some N. Then if p is sufficiently large there is a k such
that in view of (3.42) Gj would belong to Ht. If this can be done for every
k, the bijectivity of the map I would be implied. Taking into account (3.32)
and the embedding maps between spaces with L2—norms and sup-norms (cf. [73]),

we really get the foregoing if the following problem is solved.

PROBLEM 3.2, Let 2 be a pseudoconvex domain, let ¢ be a function in Q such
that (3.40) can be satisfied for every N and let P be a vector of polynomials.
If a holomorphic function f in £ can locally, i.e., in a neighborhood W of

each point in §, be written as £ = P-aé with 3& € K(w), then
>
£(z) = P(z)°g(z), z e §
> >
for some g € A(Q) satisfying for some K independent of f

> 2 - (12
Ig(z)1“ exp-¢(2)ar(z) < K | |£(z)]|° exp - ¢(z)ar(z)
Q Q
) P 2 2 ~ .
where lg(z2)1° = Zlgj(z)| and where ¢ is given by (3.41) for some N indepen-
dent of f, provided that £ is such that the right hand side is finite.
Since in problem 3.1 an e-neighborhood of T(rg) is contained in T(FS)

and since the equalities (3.2.i) and (3.2.ii) hold, problem 3.1 follows from
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problem 3.2. Furthermore, problem 3.2 implies that (cf. (3.28) where the

spaces Hz are different from the HZ of this section)

[o})
H

O proj lim (H /P H ) = proj lim (H /P H ),
@ kK + ko>
hence we don't need to pay attention to the closure of P'g: in HZ.

We will now state the problem whose solution implies the surjectivity
of the map J. Theorem 3.1 yields local extensions {lew cc Q} of £ with
gn(iz,z) = f(z) and problem 3.3 will state that the functions Fw can be changed
and glued together to one global function F in § with F(iz,z) = £(z) and
with good bounds. The conditions on the bounds will be the same as those of
problem 3.2.

Let W be a pseudoconvex open set with w cc T((Tc)g) if o = ¢ or
W cc T(TC) if o = € and let

o £ {6|le-6'l < minl1, % ae',05)1,2=1(t%),0" € w}.

Then for some q > p and for w < T((Tc)g)
W c T((TC)E).

C %
Let f € Expa[a,T ;M ] and let the convex function ¢q be defined by

44 (@) gef ¥ (a<Egy>) +alz) +1/glzal,  z e (199,

where in case o = ¢ ¢q is extended to a convex function on TC such that for

some K > 0
|£(z)| < K exp ¢q(z)

for z € TC If o = ¢ this formula holds for z € (T )q. Let H(T((T )q)) =
-T(T ) and H(T((T )q)) T((T )q), which in both cases is a pseudoconvex
domain in ng. The function 6 - ¢ (Im 6) is a convex, hence plurisubharmonic,
function on H(T ((T )q)) Hence we can apply theorem 3.1 and for each w we
obtain a holomorphic function Fw in W with Fb(iz,z) = f(z) for

z € {zl(iz,z) € w} which, in view of (3.40) and (3.42), for some m and K

satisfies
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9 exp - 2¢ (z)

J le(e)|2 exp - 20" ™(6)ar(0) < KJ [£(z) ] 27 ax(z)

(1+lzl
(O]

{z] (iz,2)ew'}

C C. .
where £ = [n/2]+1 and where the extension of wp,m on T((T )E) to T(T) is
determined by ¢q. We select a collection U of sets w with the property that
each point in H(T((Tc)p)) is contained in at least one set w € U and each

point in H(T((Tc)z)) in not more than L sets w' for a fixed L. In section

def
VI.1 it will be shown that such a covering exists. Then with Y e zwp,m we
get
2
"{Fw}" g§£ Z J |Fw(e)|2 exp - P(6)dAr(8) < KL f ]f(z)]
well BT (1) D)
exp - 2¢ (2)
> dir(z) < =,
(14l z1%)
It is sufficient if we can find a holomorphic function F in H(T((Tc)g))

with F—Fm=00nwn V and with

[F(8) | exp-b(@)ar(e) = kI{F }I
2(T(t%)P))
o

for some K, where @ is obtained from Yy according to (3.41) for some N. For
by (3.42) if p is sufficiently large we would have F ¢ HE.
For two sets w, and wz in U le-sz vanishes on V n W N,

> . > . . .
ﬂol-ﬂnz =P G12 in wl n wz for some G12 holomorphic in m1 n wz. Now if the

following problem is solved, we can find a function F as above and the map

hence

J would be surjective.

PROBLEM 3.3. Let 2, P, ¢ and $ be as in problem 3.2 and let U be the covering
of © specified in section VI.1. Furthermore, let {fjlwj e U} be a collection

s u - -
X in fj fk
holomorphic in wj n wk. Then there is a holomorphic

of holomorphic functions fj in wj such that for each QB and W,
-> ->
Peqg, for some g,
93,k 95,k > N
function f in @ with for each mj e U f-—fj = P-gj for some gj holomorphic

in wj such that

J If(z)l2 exp - $(z)dr(z) < K z J |f.(z)|2 exp - ¢ (z)dA(z)
a w,el J
J wj



107

for some K and N independent of {fj I(oj € U}, provided that the collection {fj}
is such that the right hand side is finite.

REMARK. If o = g, T(Tc) = g T((TC)E) and the densities on T((TC)E) had first
to be extended to all of T?T ) before applying problems 3.2 and 3.3. These
extensions depended on the particular holomorphic function F or f one was
dealing with. Therefore in the a = € case we may get estimates with K depend-
ing on F or £, although in problems 3.2 and 3.3 K is independent of f or
{fj}, respectively. However, the open mapping theorem helps us to overcome
the difficulty of not getting uniform bounds. In the next chapter we will
treat the case of holomorphic functions f in @ = ﬁ Q which are bounded
with respect to some density on each 9 ' unlformly in f But the condltlon,
cf. (4. 22), which must be satisfied then, is not valid for Q= T(T ) =

=k§1 T((T )e) of this chapter.

In chapter IV problems 3.2 and 3.3 will be reformulated and in’ chapter
VI they will be solved. Therefore, the Fourier transformation F is a topo-
logical isomorphism from Aa(a,TC;M)' onto Expa[a,TC;M*] for a = € or o = ¢,
where these spaces are determined by (3.39). Similarly, the same can be de-
rived for the following pair of spaces, which is a mixture of e- and conic

neighborhoods,

Expe [a, T M ] def proj lim H_ (Tl/kyo+ck u {z|lzl <x,y €c, };

{ ke
(3.44) 1 a (z) +1/xlzl M (xlyl))
a_ _(a, T 2L ina 1im B_(@a+ 1/k,7%); ~M(lEl k) +klnl)
' C kK > o

and if @ = € or o = ¢ for the pair

Exp, [a,l ;M ] def proj lim H_ (F ,a (2) +1/kHzH-+M (xlzly)

(3.45) ko>
def
a, (a,/ ;M) == ind lim H_ (Q -m(lzl/x))y,
k >
where [ is an open, convex cone in € with rk def - k u {1/ zo+r} and
k def def k
r === -
X’ where a (z) a(z /ZE 0) for z € 1/k z, + [ and a must be

continued as a convex function on [, where a: ggﬁ a and where QZ is given
by (2.48.i) and (2.48.ii). The last pair yields the Ehrenpreis-Martineau
theorem for analytic functionals carried by arbitrary unbounded, convex

. n _ . . .
sets in € with respect to €~ or conic neighborhoods and to the class of
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weightfunctions {exp M("C"/k)}:=1'

Summarizing we get the following theorem.

THEOREM 3.7. If (3.38) is satisfied, in the pairs (3.39), (3.44) and (3.45)
the strong dual of the second space is topologically isomorphic to the first

space by means of the map F defined by (3.7).

If lim a(x,y) exists as y >~ 0, y € Ck the set.ﬂ(a,Tc) is bounded in
the imaginary directions in ¢n. Then in (3.39) for o = € and in (3.44) the
restriction Ixl < k in the definition of the first space and the term klinl
in the definition of the second space can be omitted. In both cases functions
in Expe[a,TC;M*] and in Expelc[a,TC;M*] determine- ultradistributions of

Roumeiu type of "finite order", cf. definition 2.19.ii. Hence we obtain

COROLLARY 3.8. Fourier transforms of "infinite order” ultradistributions of
. Roumieu type can never have a carrier with respect to neighborhoods which

are bounded in the imaginary directions.

If a(¥,0) exists, as in (3.3) Exps o becomes
L@ ,

*
Exp [a,TC;M*] = proj lim Hm(Tck;a(z)-+1/kﬂzH-+M (xlyly)
€,C k - o
and if a(z) = 0 for all z we get the particular case which yields the proof
of (4) = (1) of theorem 2.20.

III.5. PALEY-WIENER THEOREMS FOR ULTRADISTRIBUTIONS OF BEURLING TYPE.

As in section III.4 it can be derived that the Fourier transformation
F is an iscmorphism between a space of analytic functionals with a fixed
carrier onto a space of functions, holomorphic in a certain tubular cone
and of ‘certain exponential type, which have ultradistributional boundary
values of Beurling type. However, the topologies of the occurring spaces
become more complex, especially we don't get a space of analytic functionals .
which has the topology of the strong dual of a certain space of analytic
functions. Therefore, we only state the Fourier transformation F as a bijec-
tion. Spaces of a more simple topological structure arise if we consider
‘Fourier transforms of analytic functionals such that sufficiently small
conic neighborhoods of their carriers are contained in a given, open, convex

set. In this form we shall give extensions of the Ehrenpreis-Martineau theo-
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rem and of the Paley-Wiener theorem for ultradistributions of Beurling type.
Let now o = 1,2,3 denote the cases of analytic functionals carried
with respect to e-neighborhoods, conic neighborhoods or a mixture of these

neighborhoods, respectively. So here we denote

(Tc)1; def _1/k yg+C
C.k def , C
(T )2 = (T )k
k, . def ~ k, . def k, . def
and furthermore, cf. (2.54) a2(z) == ak(z) and al(z) == a3(z) == a(z L&k yo)

in (Tc)t or (Tc)g, respectively and these functions must be continued as
C
convex functions on Tc. Let f be a holomorphic function in T, which for

every k_and for some positive Kk and mk depending on k satisfies

(3.46) l£(2)] < & exptu™ Iyl /m) + a];(z) + 1/klzl,

C. k
z € {zl"x“ Sk,yeck} u (T )OL

for @« = 1,2, or 3. According to lemma 2.17 £ uniquely determines an ultra-
distribution of Beurling type. Now we begin with a formula like (3.23) and
we don't have to show that it is the dual of some space of holomorphic func-
tions as. the space (3.23) is of the space (3.22). Then by the same procedure
as before lemma 2.27, problem 3.2 and 3.3 show that £ can be written as
i<?;,z>>

(3.47) £(z) = <uc,e

where U is an anlytic functional in ZZM) uniquely determined by f which is

carried by Q(a,TC) with respect to neighborhoods of the form

n’; 2ef gta+1/x,15),
(3.48) Q’z‘ def Q(a+1/k,(TC)k)
9]; gef o(a+1/x,75%)

for o = 1,2 or 3, respectively; Thus U can be uniquely extended such that
it acts on functions ¢ which are holomorphic in these neighborhoods and

satisfy there
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lotz)] = K exp{-M(mlgll) +kInl}

for some k depending on ¢, for every m > 0 and for Km > 0 depending on m.
So (3.47) is defined. Furthermore, there are positive Kk and mk depending

on k and u such that for such ¢ p satisfies

(3.49) |<u,6>] < K sup |¢(C)|exp{M(mkllgu) -kinl}
Ceﬂt

for o = 1,2 or 3, respectively. Thus the following Paley-Wiener theorem for

ultradistributions of Beurling type holds.

THEOREM 3.9. If M satisfies (3.8) and £ (3.46), then (3.47) holds for a unigue

analytic functional y € ZZM) which satisfies- (3.49).

If a(x,0) exists, Q(a,TC) is bounded in the imaginary directions and
for o = 1 and 3 the condition Ixl < k in (3.46) and the term -klnl in (3.49)
can be omitted. Then f determines an ultradistribution of Beurling type of

"finite order", cf. definition 2.19.ii.

COROLLARY 3,10. Fourier transforms of "infinite order" ultradistributions
of Beurling type can never have a carrier with respect to neighborhoods

which are -bounded.in the imaginary directions.

If o = 3 and a(z) = 0 for all z, we get the particular case which yields
the proof of (4) = (1) of theorem 2.20 for ultradistributions of Beurling
type.

We will now define topological spaces of holomorphic functions and
we will treat F as a topological isomorphism from the strong dual of an A-

-] ©
space onto an Exp-space. Let {rm}m= and {Cm}m=1 be a decreasing sequence

1
n n . . : .
of convex cones in € or IR with intersection T or C, respectively, and

N m ©
with [T cc rm’ C cc C and let {am}m=1 be an increasing sequence of convex

m
functions, homogeneous of degree one, each a_defined on r or TC with

A m+1 m+T .
am(Z) e < am+1(z), z e pr ™ or pr TC for some e, > 0, converging

in any point of T or T  to the convex, homogeneous function a. Define

Exp_(a,7iM") 2L ing 1im B (zl/m) +a(2))
c n > o m
(3.50) def
A [a,/;M] == proj lim H_(Q(a ,rm); -Mmlizlly).

(o] m > ® m



In virtue of (3.38) and [73, conditions HS, and HSz] the first space is a

nuclear DFS-space and the second a nuclearlFS—space. The generalization of
the Ehrepreis-Martineau theorem states in this case that the dual of the
second space is topologically isomorphic to the first space by means of
Fourier transformation. We shall also give a Paley-Wiener version for ultra-
distributions of Beurling type. For simplicity we assume that for each m
am(x,O) exists, so that each Q(am,Tcm) is bounded in the imaginary directions.
Define

m
*
Expc(a,Tc;M ) def ind lim Hm(Tc ;M*("yﬂ/m)-kam(z))

m> e

-0 1 Ac[a,TC;M] 2ef roj lim Hw(Q(am,Tcm); —mmlel)).

m >
Again Expc(a,Tc;M*) is a nuclear DFS-space and Ac[a,TC;M] a nuclear FS-space.
It follows from an estimate as we have already met several times that for
each.m and £ > m the collection {ei<C'Z>|z € rt or z € TCK} of functions of
¢ is a subset of Hm(ﬂ(am,rm); -M(llzl)) or Hm(ﬂ(am,TCm); -M(ml&l)), respec-
tively. Therefore, the Fourier transformation can be defined by (3.7) and
it follows from the injectivity of F that these subsets are dense. Hence
the projective limits in (3.50) and (3.51) are strict, cf. [20, §26.1] so
that there strong duals can be represented as inductive limits of strong
dual spaces. In the same way as the other theorems of this chapter are de-
rived and by the fact that the open mapping theorem also holds for duals of
reflexive Frechet spaces, cf. [61, IV, §8.3, cor. 1 and ex. 2, p. 162], the

following theorem is derived

THEOREM 3.11. If M satisfies (3.38), in the pairs (3.50) and (3.51) the
strong dual of the second space is topologically isomorphic to the first

space by means of the map F defined by (3.7).

*
Note that:the -strong dual of Ac[a,Tc;M], and hence Expc(a,TC;M ), car-

ries a finer topology than the one induced by ZEM) or DEM)' respectively.

III.6. PALEY-WIENER THEOREMS FOR DISTRIBUTIONS IN D'.

The same ramarks made for ultradistributions of Beurling type can be

made for distributions in D'. Instead of (3.36) and (3.37) here we have

w (o) L& 1og1+07h, Mp) 2L 10g(14p).

h
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Let f be a holomorphic function in T which for every k satisfies

(3.52) If(z)l < IS{(l + 1yl mk)exp{a};(z) +1/klzl},

z € {z["x“ Sk,yeck} u (TC)];r

where(TC)z and at for o = 1,2 or 3 are as in section III.5. Then f determines
uniquely a distribution in D'. Lemma 2.27 and problems 3.2 and 3.3 show that

£ can be written as (3.47) for some unique, analytic functional u € Z' carried
by Q(a,Tc) with respect to the neighborhoods Q: defined by (3.48). Thus u

can be uniqgnely extended to an analytic functional acting on functions ¢

which are holomorphic in these neighborhoods and which satisfy there

H’(C)I <K M
moaslen®

for some k depending on ¢ and for every positive m and some positive Km
depending on m and ¢. Furthermore, for such a ¢ p satisfies
~xlnl
(3.53) [<u,¢>| < x_ sup |¢(;)|(1+llg||)mk e KM
k
Ceﬂu

for o = 1,2 or 3, where the positive numbers Kk and mk depend on k and u.

Now the following Paley-Wiener theorem for distributions in D' is valid.

THEOREM 3.12. Let f satisfy (3.52), then f is the Fourier transform of a

unique analytic functional y € Zﬁzcarried by Q(a,Tc), i.e., (3.53) holds.

If Q(a,Tc) is bounded in the imaginary directions, the condition
Ixl <k in (3.52) and the factor exp -klInl in (3.53) can be omitted if o = 1

or 3. Then f determines a distribution of finite order.

COROLLARY 3.13, The Fourier transform of a distribution of infinite order
can never have a carrier with respect to neighborhoods which are bounded in

the imaginary directions.

REMARK. The Fourier transform of any distribution can always be represented
as a sum of analytic functionals which are carried by the 3" sets of the

form
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(3.54) frlgg =0 or cjeﬂ(a,ci),j=1,...,n}

where ¢i are the upper and lower halfplane and where a is a convex, homo-
geneous function on ¢+ which is unbounded on pr ¢+, or the convex, homo-
geneous function on c given by a(z) = a(z), so that Q(a,mt) c cl is not
bounded in the imaginary direction. The analytic functionals are carried
with respect to any class of neighborhoods and, a fortiori, they can be re-
presented as measures on the sets (3.54), see [16, th. 5.24, where these sets

are shown to be sufficient for D'].

A theorem similar to theorem 3.12 can be derived for functions f which
are holomorphic in a cone Il c Cn, but we merely state the theorem with analy-
tic functionals such that sufficiently small, conic neighborhoods of their
carriers are contained in a fixed, open, convex set. Let the notations be

as in (3.50) and (3.51) and let

Exp_(a,") S2f ind 1im H_(ilog(1+0z1™™) + a_(2))

(3.55) def e m
A [a,l] == proj lim H_(R(a_,/ ); -m log(1+lzl)),
c 7 m o m
and
m -
Expc(a,Tc) def ind lim Hm(Tc ;log (1 + Iyl m) + am(z))
(3.56) m>e

C. def - m
A [a,T"] == proj lim H_(Q(a ,TC ; -mlog(1+lgl)).
c o o m
The first space in each pair is a nuclear DFS-space and the second a nuclear,
strict FS-space. For these pairs the Ehrenpreis-Martineau theorem can be
generalized, where in the second pair it might be considered as an extension

of the Paley-Wiener theorem:

THEOREM 3.14. In the pairs (3.55) and (3.56) the strong dual of the second
space -is topologically isomorphic to the first space by means of the Fourier

transformation F given by (3.7).

We conclude this chapter with the remark that in (3.56) the isomorphism

F acts between spaces with a finer topology than the ones induced by Z' and

Dr.
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CHAPTER IV

THE FUNDAMENTAL PRINCIPLE

In [16] Ehrenpreis and in [56] Palamodov proved, independently, a
fundamental principle in the theory of systems of linear partial differential
equations with constant coefficients. This principle completes the theory
of those systems in a very natural way, but the proof is very hard. Let W'
be a locally convex topological vector space such that the space H of Four-
ier transforms of elements of W' consists of entire functions whose growth
conditions at infinity satisfy certain properties, and let W be the dual of
W'. Briefly, the fundamental principle says that all weak solutions in W of
the homogeneous system can be represented as Fourier transforms of finite
sums of weak derivatives of measures concentrated in the zero set of the
Fourier transform of the transposed differential operator. If there is only
one ordinary linear differential equation with constant coefficients this
is just the usual representation of Euler. In [16] a space W for which the
fundamental principle is valid is called localizable. In the last chapter
we have studied spaces W (namely the Exp- and A-spaces) with H = FW', or
equivalently W = FH' 1 such that the elements of H are non-entire functions.
In this chapter the fundamental principle will be generalized so that it

applies to spaces W which are the Fourier transforms of the duals of spaces

1
) As in the foregoing sections the following definition is used: when F is

a topological isomorphism between the spaces B and FB = A, then the Fourier
transform of an element £ in the dual A' of A is the element Ff of B' defined
by

<Ff,¢>B = <f,F¢>A, Y € B.

By use of this definition the ambiguity mentioned in [16, p.140] is avoided.
Of course, as in [16], this definition corresponds to the following action

of a function £, regarded as a distribution in D', to testfunctions ¢ € D

<f£,¢> = J £(x) ¢ (x)dx.
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H consisting of functions holomorphic in pseudoconvex domains {}, not neces-
sarily Cn.

For a vector P of complex polynomials, in [16] Ehrenpreis has defined
a multiplicity variety / in the set where all the components of P vanish.
Let H(Y) be the space of restrictions to W of all entire functions satisfy-
ing on W the same growth conditions as the entire functions of H. Then for
deriving the fundamental principle Ehrenpreis showed that H modulo P-E is
isomorphic to H(WW). In order to prove this isomorphism he first constructed
a local and a semilocal (i.e., in an a priori given covering of Cn consist-
ing of bounded sets) theory and then he extended the semilocal results to
global results. The same canbe done if Pis amatrix of polynomials and if W is
an associated vector multiplicity variety. For our purpose the local and
semilocal theory remains unchanged (except for the a priori given covering
of Q), but we will use a different method for getting global results. If
then in particular Q = c” we will obtain a weaker form of the isomorphism
than in [16]. The difference is that in [16] one globally defined function,
whose restriction to [ has been given, is obtained that satisfies all the
bounds required in H, while in this chapter for every bound a different
global function will be constructed. As to this the fundamental principle
obtained by Palamodov in [56] is similar. On the other hand, here often less
restrictive conditions on the bounds are required then in [16], so that for
example the space of CZ functions in an open, convex set is localizable
here as well as in [56], where in [16] it is in general not.

Compared with [56] our conditions are simpler, -although if Q = <"
the method of HSrmander in [30] we will use cannot be applied to the space
Z because the function 1og(1+"z|12)n1 is not plurisubharmonic in €, while Z
satisfies the conditions of both [16] and [56]. If Q is a convex tube domain
(# c™) this objection is disposed of (cf. lemma 5.2) and our treatment of
this case is much more general than in [56]. Moreover, we will derive the
isomorphism H mod P-ﬁ «» H(W n Q) for general pseudoconvex domains {2, where
in [56] it is essential that Q is a convex tube domain.

Sections 1 and 2 of this chapter will give an introduction along the
lines of [16] to the problems without growth conditions. In section 3 Ehren-
preis' and Palamodov's formulations of the fundamental principle will be
discussed. The remaining part of this chapter will be devoted to derive the
weak form of the above mentioned isomorphism for spaces of non-entire func-
tions. In chapter V we will show that this implies the representation of

solutions of homogeneous systems of partial differential equations with
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constant coefficients and in chapter VII we will make some remarks concerning
the strong form of the isomorphism for certain spaces of non-entire func-'

tions.
IV.1. LOCAL THEORY

In this section we will discuss Ehrenpreis' generalization of Hilbert's
Nullstellensatz.

Let z € c® and let Az be the ring of germs at z of holomorphic func-
tions in a neighborhood of z. Consider an ideal Jz in Az generated by the
germs (hl)z,...,(hq)z at z of functions hl""’hq in a neighborhood w of z.
We define the analytic variety

(4.1) 2L {wln, ) = 0/eecih (W) =0, w e w}

and let Vz be the equivalent class of V under the equivalence relation

‘V ~ [ if there is a neighborhood of z in which they are equal. Vz is called
the germ at z of V. It is clear that the ideal Jz is not trivial only if
hl(z) = i = hq(z) = 0. When fz € Az we will denote by f a holomorphic
function in a neighborhood of z such that fz is the germ of f at z. Then

for any fz € Jz, z € V, there is a neighborhood w of z with
(4.2) f(w) =0, welno.

Conversily, consider the ideal Iz in Az of all the germs at z of holomor-

phic functions vanishing on Uz' i.e.,
(4.3) Iz def {fz | there is a neighborhood & of z such that flvnw==0}.

It is clear that Iz is an ideal and by (4.2) Jz c Iz.
Hilbert's Nullstellensatz says that for fz € Iz there is a positive

integer m with (fz)m € Jz, or
def m . '
1 =radJ == {f |(£)" € J for some m depending on f_},
z z z! Tz z z

see [27, II.E. th. 20]. Obviously, when Jz is a prime ideal this yields
[27, 1II.A. 7]
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(4-4) J = I I3
2z z

i.e., any fz can be written as, cf. (3.32),

f(w) = % gk(w)hk(w)
k=1

for w in a neighborhood w of z and for some gk € Alw, k=1,...,q9.

Ehrenpreis generalized this result in such a way that (4.4) always
holds if in (4.3) Vz is replaced by the germ Wz of a certain local
multiplicity variety W depending on the functions hl""'hq and z. In gen-
eral a local analytic multiplicity variety W in a point z € ¢” is defined
as a finite collection W = {Vl,al;...;Ur,Br} of pairs (Vj,aj), where the
V's are analytic varieties in a neighborhood of z (i.e., V. is defined by
(4.1) in a neighborhood w of z for c§rtain holomorphic fu?ctions hi in @
depending on z and j for k = 1,...,q3, where the number q:l of functions
also may depend on j and z) and where Bj is a differential operator with
coefficients holomorphic in a neighborhood of z for j = 1,...,r. If for each
j, k = 1,...,qj, j=1,...,r are the same

k
polynomials for every z and if the coefficients of the differential opera-

z € € all the defining functions h

tors. 9, are the same polynomials, W is called a polynomial multiplicity var-
iety in c®. In this case for w c ¢, W n w is the restriction of W to the
points of w. Let fz be the germ of a holomorphic function at z, then fz W’
the restriction of fz to wz, is defined as the collection of functions z
{fj}§=1' where each fj is defined oén Vj in a neighborhood w of z, by
def
(4.5) £,=12, flv_nw
J
Conversely, a collection of functions {fj}§=1 with fj defined on Vj in a

neighborhood of z is called a holomorphic function on Wz if there exists a

holomorphic function £ in a neighborhood w of z with fIan = {fj}§=1°

LEMMA 4.1 [16, th. II.2.4]. Let {hk}g=1 be a g-tuple of holomorphic functions
in W. Then it is possible for each z € W to define the germ Wz at z of a
local analytic multiplicity variety, such that for each z € W the germ at =z
of every function £, holomorphic in a neighborhood of z in w, vanishes on

Wz'if‘andnonly if it-can be written as

q
£(w) = } h (wg (w)
k=1 X Kk
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for w in a neighborhood of z in W and for functions gk holomorphic there,

k=1,...,9.

->

Thus for any vector hz € A: there exists the germ wz of a multiplicity
variety such that the subset Iz of Az of germs of functions vanishing on Wz
is always an ideal which satisfies (4.4). It should be remarked that W is not

uniquely determined by the functions h ""’hq' Instead of proving lemma

1
4.1 we shall give some examples of polynomial multiplicity varieties.

(1) Forn =2, g=1 and h(z) = zT(z -2z,.) both the multiplicity varieties

def ! 2 m-1 m-1

W* == {z, = 0, identity;...;z, = 0, 3 ~/oz iz, = 2, _,id;...;z, = z_,

tl pe 1 1 71T % 1°- %2
- ) /Bz1 }
.and
w §S£ {z, =2z, ,=0,id;...;z, =z, =0, 3m+£_1/azm+£-1;z = 0,id;...;

1 2 1 2 1 1

=0, ™t = ahhar. iz = 2, o0 et
24 ' 1 7% gf 1P iZy = 2o 1

are such that, if they replace V in (4.3), then (4.4) is satisfied
for each z € cn, cf. [16, ch II, §2, ex. 3].

. ’ 2

(ii) Letn=2, gq-=2, hl(z) =z_ - z,6 and h2(z) = 22. Then we may take

2 1 1
cf. [16, ch. II, §2, ex. 4]
WL (, =2 =0,id.;z, =2z =0, 8/9z.iz =z =0, 3/3z, ++ 32/322;
1 2 P 1 2 1 3 23 1 2 1 2 2
z1 =22 =0, 3 /821822 + g'& /822},

because obviously for every z € Cn and £ € A h f = 0 and
z z 17 |Wnw
h2f Ww = 0 for some neighborhood w of z, and if lenm = 0, we first

expand £ in a power series

= i3
f(zl,z2) z fij zy z)-
Since £(0,0) = O we have £ = = 0, since 9£/3z_(0,0) = 0 we have £_, =0,
. 1 2 OO2 2 01
since Bf/le(0,0) + E—B f/3z1(0,0) = 0 we have f10 + f02 = 0 and
. . 2 1 .3 3
finally since 9 f/azlaz2(0,0) + 3 9 f/azz(0,0) we have f11 + f03 = 0.
Next writing
2 i-2 3 j
f(z,,2z,) =z z £f.. 2 z, + z Z £,.. 2z + z z2
1772 1 i3p 13 1 2 1 20 13 20 0j "2
320
and using
2 > *
z,2, = 21(22 —zl)-!-z1 € h-Az
2 >
22 = (zz—zl) +z1 = z1 mod heA
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>
3 = 2 = +o
z, = 22(22 21) +2z,2, = 2,2, mod h Az
4 2,2 .2 2 4 >7

z, = (22+zl)(z2—zl) +z, € h Az

by the above we get N

-
fmz1 1fi1zlzz +f00 +f01z2 +f02z1 +f032122 mod h'AZ =

= 0 mod h.Az'

(iii) Finally we give an example which shows that the differential operators

f(zl,zz) =

do not necessarily have constant coefficients. Let n = 3, h1(z) =

=z, -2,z and h2(z) = zg, cf. [16, II exercise 2.2]. Then as in example

(ii) one can check that the polynomial multiplicity variety

def . _ = N - = s N
== {z2—z3--0,:|.d,22—z3 0,218/8z2+29/3z3,z1 z, 0,id. ;
z, =z, =O,'a/8z1 + z38/322}

satisfies the required properties. To see how the multiplicity variety
) could be obtained one *first-determines a multiplicity variety w1 be-

longing to the polynomial z2 -2 1z3. For that purpose, we introduce
1 +z3, v=22 and w=z1 —z3 so that any

holomorphic function f(zl,zz,z3) can be written as

the change of variables u=z

u+w u-w

=)

£f(u,v,w) = £( 5 Ve 5

and so that the polynomial z, - 2,Z, multiplied by 4 becomes

w2 - u2 + 4v,

which now is a distinguished polynomial in w. A multiplicity variety

belonging to it is
Wl get {w2—u2+4v=0,id.;w=u2—4v=0,8/3w},
which in the original coordinates is
gsi{z -z,z,=0,id.;z, -2z, =2z _22__

2 173 e B

1 1 372377 0,8/821 - 8/323}.

Now we write an analytic function f(u,v,w) as
~ 2
£(u,v,w) = Ko(u,v) +w K1 (u,v)mod(w2 -u +4v),

where Ko (u,v) and K, (u,v) are computed by the values of 'E on the

1
variety w -u +4v =0 above the point (u,v), if u2 -4v #0. Precisely,
since f(u,v,w) =K0 (u,v) +wK1 (u,v) for w=+/u? - 4v we get two equations

with two unknowns yielding the solution
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?(u,v,r/u2 -4v) + E(u,v, - u2 - 4v)
Ko (u,v) 5

'f('u,v,v’uz -4v) - 'E(u,v - Vuz - 4v)
2Vu2 - av

K1 (u,v) =

if u2 -4v #0, while for u2 =4v we have the equations
E(u,v,O) =K0(u,v) & 3;/3W (u,v,0) =K1 (u,v), u2 =4v.
Hence the functions KO and K1 can be continued analytically over
the variety u2 -4v =0. Furthermore, the multiplicity variety belonging
to the polynomial v2 is
wz def {v=0,id.;v=0,3/0v}.
So we write Ko and K1 as
K (u,v) = K__(u) +v K_, (u) mod v2
0 00 o1

- 2
K1 (u,v) = K10 () +v K“(u) mod Vv

and compute Kij(u) by the values of KO and K1 on the variety v = 0,

which yields

K. (u) = Ko(u,O)

00

Km(u) = K1 (u,0)
K01(u) = BKO/BV (u,0)
K, () = aKl/av (u,0)

Using the expressions for KO and K1 we find

_ f(u,0,u) + £(u,0,-u) _ £(u,0,0) + £(0,0,u)

K. (u)

00 2 2
£(u,0,u) - £(u,0,-u) _ £(u,0,0) - £(0,0,u)

K, (u) = =

10 2u 2u
Defining

def . .

Wr == {22 =z, =O,1c1.;z1 =z, =0,id.}
by a power series expansion of f we see that KOO and K10 can be

expressed in terms of the restriction:of £ to W'. The expressions

for K01 and K11 become
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KOl(u) = %—g (u,0,u) - %-Qé-(u O,u) + % gf (u,0,-u) +
+ %%—f; (4,0,-u) = %—az—fz- (4,0,0) - 515—51— (1,0,0) +
+%-§§- (14,0,0) +%-§zf— (0,0,u) + —l—g (0,0,u) -

3 2
- 21 az (0,0,u)
and

K, (W = %{%%% (u,0,u) - ég—f (u,0,u) - —;-g—f (u,0,-u) -

- i—-g—:fv (u,0,-u)} + %{'E(u,o,u) - £(u,0,-u)} =
u

- %{%a—"zf; (1,0,0) - 51—5—5 (1,0,0) + 2i—azf: (1,0,0) -
-%%(o,o,u) '%a , (0,0,u) +2iu3-—3—(00u)}+

+ 5 {£(,0,0) - £0,0,w}.
u
Finally, expressing u KOl(u) * u2 K11(u) in terms of f and bearing
in mind that K and K are analytic, we see that K and K can be

01 11 01 11
expressed in terms of f W and the restriction of f to the multipli-

city variety
n def iz o=z =
w { 5 =23 1 B/BZ + 8/323, il z, 0,23 8/3z2 + 8/821}.

Thus any £ can be expressed modulo h A in terms of the restriction

z =0,z

" of £to'W W* u W and clearly he A vanlshes on W for each z.

Furthermore, [16, th. 2.5] determines a procedure (called parametri-
zation) which extends the restriction to the germ of a local multiplicity
variety W of the germ of an analytic function f to the germ of an unique
analytic function E; if fz vanishes on wz then always fz = 0. Moreover,

this procedure is linear in the following sense: for a,b € C we have

— - N
(a:E+-bg) = a f + b g, In example (iii) the extension of flw is
(z +z ) +ZZK01(21 +z3) + (z1 —z3)K10(zl+z3) + (z -2z )22K11(zl+23).

The case of modules in Ag generated by a pxq—matrlx H= (hjk) of

holomorphic functions is more delicate. The difficulty is that we want to
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solve a matrix equation H';==% in a ring. In this and the next section lemma's

4.2 and 4.3 will express the following facts:

(1) Any submodule M of Ap is €-linearly isomorphic to a direct sum of p ide-
als 1 ,...,Ip in the ring A and moreover, there ex15ts a C-linear bi-

1%
Jectlve map o: Ap *‘Ap such that M is mapped onto ]®1 13. That such a
map exists can be seen by induction. For p=1 it is tr1v1al Let the A -
def
module homomorphism ¢: Ap - A be defined by ¢(f ...,f ) e fl' Then

AP 1 can be identified w1th Ker ¢ = (0 Ap . Furthermore, let M, be the
module MnKer ¢ and let the ideal I CA be the image of M under ¢. If

A and A UB are Hamel bases of M0 and M, respectlvely, this determines a

linear direct decomposition M=M, & MO’ where M, is a linear space which

1 1
is mapped by ¢ linearly and bijectively onto Iz' Moreover, by using com-
pletions of A to a Hamel basis AUC of (O,Ag_l) and of AUBUC to a Hamel
basis of A we flnd that M, is a linear subspace of a linear space N1 =

4A ,N) w1th N c AP , such that Ap is linearly decomposed as AP N @

MO,AP ), where MO can be con51dered as a submodule of AP™! . By the in-
ductive hypothesis there exists a linear bijection 9y Ag— - Ag—l which
maps Mo onto a direct sum of ideals. Let P1 be the projection of As onto

Ny, then we define o gg£ o (1-P )-+¢ °P1

(2) If M is generated by the Vectors {h } of germs at z of holomorphic

vector functions, the ideals I can depend on these vectors by

t

z ={ z 9 £|g eA , with Z 9 §==0 for j=1,...,8-1 if £>1}.

k=
. k> q >k > q
={Zz =
This follows from (1) where Iz {Ig h1|g eAz} and MO {Zg,_ h |geAz

k
h1==0}. Note that any module in Az is finitely generated because

the ring A is Noetherian [30, lemma 6.3.2 & th. 6.3.3].

with ng

1
(3) According to lemma 4. l to the vector I = (Iz,...,Iz) of ideals there is
accociated the germ W = ,...,wp) at z of a vector of local multi-
pllclty varieties, such that T consists of the vector functions vanish-

ing on Wz.

The need of Hamel bases in (1) makes it impossible to obtain ideals of func-
tions satisfying growth conditions. Therefore, with the aid of parametriza-
tion (see p.122) in the proof of lemma 4.2 we will perform the steps of (1)
in a more constructive way. However, in order to get bounds later, we will

keep some freedom in the definition of the map there. The result will be a
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map p_: Ap > AP which depends on z and is only C-linear from Ap onto AP/
/8 13 As (1) also holds for sections over-a domain, in lemma 4.3 it will
be shown that the freedom in the definition of p will not prevent us from
obtaining sections on the multiplicity varieties WJ

For a pxg-matrix H of holomorphic functions we will denote the meodule

> > >
in Az of germs at z of functions £ = H°g with g € A: by jz.

LEMMA 4.2. For each pxq-matrix H = (h ) of holomorphic functions hJ eA(w)
and for each z ¢ w, there exist a local vector multiplicity variety W and
a llnear, surjective map °, from Ap“onto Ai/IZ whase kernel is just Jz'

where Iz is the module associated to wz.

PROOF. For each z € w define W as the analytic multiplicity variety belong-
ing to the functions h11"°"h1k""’h1q by lemma 4 1. Let Mz be the sheaf
of relations at z of the first £ rows of H, i.e., g € Me if and only if

q

(4.6) k§1(hjk)z(gk)z =0, j=1,...,4.

Now by Oka's theorem [30, th. 7 1.5] M£ is locally finitely generated, hence

the functions with g satlsfylng (4.6) determine the germ wz

% Poit x %
at z of an analytic multiplicity variety according to lemma 4.1. Thus f € Az

+
vanishes on Wf ! (i.e., £ € I£+1) if and only if
q

>
(4.7) fz = k£1 (hfil k)z(gk)z for a g satisfying (4.6).

-> -
. . p. . .
Now we will define the map e, for fz € Az. (pzfz)1 is given by

* def
(szz)1 (fl)z'

Let (%1)z be the extension of f1 wl at z and let ;i be such that
El 1

(4.8) I h
k=1

1k 9 = F1 75

According to lemma 4.1 it is always possible to £ind such'Ei. Then we define

q
(4.9) (o, ? )y f ¢t) - § g

)
2z k=1

k%’ z°

Successively for £ = 2,...,p-1 let EK be the extension of the restriction
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L£=1 L £-1

at z to wﬂ of fﬂ - jél kgl hﬂkgk’ let g, € Mz be such that

q £-1 g i
(4.10) ) h, g =f£ Y ) h, g -f

ket £k "k L 551 k=1 £k °k L
and define

> def _ Jj

(4.11) (pzfz)£+1 (f£+1)z Z k-—z-l (h£+1kgk)z'

-5
The functions gz are not uniquely determined, since an arbitrary ele-
>L . > >
ment of Mﬁ can be added to gz. This changes (pzfz)£+1, although (pzfz)’@+1

Iw£+1 and (p £+J > 2, are not altered (see next section proof of lemma

4.3)" ". So p is determined by the choices of gz and we may choose suitable
gz dependlng on z €  to be determined later. Therefore, we get a map p
from Ag 1nto.A§ which can depend on. z. It is clear that pz.ls surjectlve
from Az onto Ai. Furthermore, it follows from the linearity of the map

wz > f and from the fact that a dlfferent choice of gz for £ = 1,...,p-1
has the effect of addition of an element of I to p f , that the map p is

linear from AP 1nto Ap/">
I,

>
Let fZ € J , thus f = Z h for some 3' € A:. Then (pzfz)1 vanishes

%k gi

on Wé, hence fl _0 and g for some E;ezMé depending on the choice of

ﬁz. This implies that (p f ) ﬁ which vanishes on w2 in a neighbor-

2 k 2k »{ +£_1 _
my

hood of z. Successively for L= 2,...,p—1 we find that fﬂ 0, that g

L3

in a neighborhood of z by (4.7). Thus P E, EIZ.

-mﬁ for some mﬁest and that (pzfz)£+1 = hzil]{mﬁ which vanishes on W+l

> > - P
Conversely, if p £ € I , thus if p f vanishes on W , then £, =
z z z z z z 1

1 >1 -
=E hlkgk for some g € Ag by lemma 4.1. Since fj =0 for j=1,...,p-1, by

(4.10) we get for £ = 1,...,p-1

1
) At this point [16] is a little puzzling. On page 49 it is remarked that

(p f ) w£+2 does change by a different choice of gK On the other hand

z 2+2| S
thlS should not be true if one wants to obtain global sections on W (see
next section), which is really the case in [16, p.100-105, especially p.104,
proof of b, shows that one is concerned with global sections]. The key lies
perhaps in the fact that systematically the wrong formula has been used in

[16], where in the formula's (2.19), (2.20), (2.58), (2.59) and (3.44) F, i+1,5

‘Should be replaced by F or F, ., respectively.

F 'F
e+1,37 Tee1, 37 Tket, 37 Tk,3 X,
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P LR

£, - h, g = h, g

£ yo s B Rl Bk

with 35 € Mﬁ'i and this holds also for £ = p for some 32 € Mg—l, because
(4.11) vanishes on wg if £ = p-1 there. Thus since E th 3; =0 for j > £,

f can be written as

1
£ = ) By, (gk+...+g£),

Il 1 .Q

1

->

i.e., fz € Jz' 0

REMARK. If the map lew d Ez would be multiplicative, pz would be multi-
z
plicative. It is possible, cf. [16, th. 2.5 & lemma 2.14] to give a rule
of multiplication by an element of A in Ap/f* such that p_becomes a homo-
z z/1, z

morphism of Az—modules.
IV.2. GLOBAL THEORY.

We will study the global analog of the foregoing with sections over
a pseudoconvex domain £ instead of germs at a point z.

Let J be a sheaf of ideals generated in each point of Q by holomorphic
functions K = (hl""’hq) in . Their simultaneous zero set defines a global
analytic variety V = ZEQ Vz in  (at points z where some hk(z) #0 Vz is
empty). We will define the sheaf of analytic functions on V. Let I be the

sheaf on Q

def
I = zgﬂ Iz
where Iz is defined by (4.3); Llet Iz def Az when z € Q\V. We define a sheaf
F on Q by
def
(4.12) Fz == Az/&z, z € Q,

so that the following sequence is exact

0+>1+A~>F-~>o.
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For z € Q\V Tz = Az, thus Fz = 0. Hence F is only non-trivial in points of

V, thus we may just as well consider the restriction F' of F to V

Frdef oy F
zel "z
which is a sheaf on V. By definition a section £ in I"(V,F') is a holomorphic

function in V; considered as a section £, in M (Q,F) we would have fl(Z) =

1
= f(z) for z el and fl(Z) =0 for z € Q\V. So, it makes no essential differ-
ence if we regard the sections in [M(Q,F) as the holomorphic functions on V.
-
Finally, let R be the sheaf of relations of h, so that we have the

exact sequence
0+R+AT B 750,

By [27, Iv. D.2] the sheaf I is coherent and by Oka's thoerem [30, th. 7.1.5]
or [27, IV. B.8 and IV. C.1] also R is coherent. Hence we can apply Cartan's
theorem B [27, VIII. A.14] or [30, th. 7.4.3], which says that the first
éohomoloqy groups HI(Q,I) and HI(Q,R) vanish. This means that the following

sequences of sections over Q are exact

(4.13) 0 (@1 > (R,A »r@F 82,1 =0
-5
(4.14) r@,AY B re,7 > al@,Rr =o.

(4.13) means that the restriction map from [ (Q,A) = A(Q) to V is a surject-
ion'and if (4.4) holds for all z € Q, for example if Jz is a prime ideal
for each z € Q (cf. chapter III), by (4.14) we find that in

r(e,A)

+ I (Q,A) +~ F(@Q,F

7B @,A)d r@,T)

both maps are isomorphisms. Thus any holomorphic function on V is the re-
striction of a holomorphic function in @ and any function £ in A(Q) vanish-
ing on V can be written as

q

f(z) = Z h (z)g (z), =z € Q
k=1 k k

for some gk e A(Q), k=1,...,q9.
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Now we will study the sheaf of modules J in AP generated by a matrix
H of holomgrphic functions hjk in Q. The difference with the above is that
for p > 1 3 is not equal to the sheaf T of vector functions vanishing on an
associated vector multiplicity varlety 5, but the maps p of lemma 4.2
determine a bijection between AP/J and AP/I The multlpllc1ty varieties wz,
£ =1,...,p were defined locally according to lemma 4.1. In the overlap of
two neighborhoods W, of z, and w, of z, iﬂ 2 wheri Wﬁl and Wﬁz are defined
they can be choosen to coincide, so that W = zgﬂ WZ is a global, analytic
vector multiplicity variety in Q. Moreover, in lemma 4.3 we will show that
pz¥z is the germ of a section in r(m,AP/T) if ¥z is a germ of a section
fe r(w,AP) = A(m)p. This means that pz determines a sheaf homomorphism be-

tween sheafs of linear spaces, so that the following sequence is exact

> P
0+J AP = F> 0.

‘

where, as before, we may consider

def P
F v/

zef
z

->

as the sheaf of holomorphic functions on W. As in (4.14), it follows that

the map H: I (Q,AY) +(Q,J) is surjective. So finally, since HI(Q,J), =

we cbtain an isomorphism ol between linear spaces, defined by the map p fol-
>

lowed by restriction to W/

>
(4.15) ol: I (q,AP) / + T(e,AW)),
1 (0,A%)

- -
where A(W) is the sheaf of holomorphic functions on W.

LEMMA 4.3. [16, th. 2.6]. For any matrix H of holomoiphic functions in R,
there exist an analytic vector multiplicity variety W and a local restric-

tion map pL such that (4.15) is an isemorphism between linear spaces.

PROOF. We will show that p f is the germ of a section over ® in AP/I 1f
f € A(w)p. We may assume that W is pseudoconvex. That (p f ) is the germ
of a section in A(W) follows 1mmed1ately from the deflnltlon Since (f )

is uniquely determined by f1'W it follows from (4.14) that

q
£,(z) - £ (2) = 21 hy, (2)G, (2)
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>
for a section ; € A(m)q. Thus in (4.8) _5; = a(z) - {E; for some ;i € M; and
(4.9) becomes
- g 2
(0, £), = £,(2) - ) h, (z)gk(z) + 2 hy (2) (mk) ,
k=1 =1
which is a section in M (8, A/I ), because the 1ast term belongs to Iz Let
M be a locally finitely generated subsheaf of A over ®, let h be a vector

of holomrphic functions in @ and let F be the sheaf h-M, i.e., the sequence
h
0+R>-M=>F-~>0

is exact for some coherent analytic sheaf R, cf. [30, th. 7.1.5] & [30, th.
7.1.7] or [27, Iv. B.13]. Hence as in (4.14) the map K:r(w,M) > M (w,F) is
surjective. For a function k € A(w) klﬂ/’ determines uniquely a function
]?e € A(w), hence k - l?e is a section in M (w,F) where F is determlned as above
with M = M'e.1 and h = (h£1""’h£q)‘ Therefore, k _];I, = E hﬂk mk for some
vector function m‘e'—1 € A(m)q satisfying (4.6) (with 9y replaced by mﬁ_ .
Thus for £ = 2,...,p-1, successively, we find that there is some global func-
tton 50! € a@® with

£-1 4

£p(2) - ) hzk(z)(gk - £p(2) =
j=1 k=1

q
~f-1 £-1
Z hzk(z){mk (z) + (m )z}.

hence by (4.10) that g'e !’ 1(z) +gﬁ—1 —Eﬁ for some gﬁ’eMﬁ’, and by (4.11) that
£ 4 .
O~ e ® 1 L @@ e -
j=2 k=1

q
~ 1
kzl hp, 1 (219, (2) ~(m) ) =

2-1 g

f£+1(z) -y 1 hl’,+1k(2) mk(z) -
j=1 k=1

q
~ £

3 h (z) g (z)+ )} h (z) (m))
oy ik k NP 250 e N

£+1

determines a section in A/T , because the last term vanishes on WKH.
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4
From the last formula is can also be seen that a change of g does not
> £ . £
alter (p £ ), . for j 2 2, because the choiceof m_determines the germ g .
z 2z L+ z z

0

>
Thus any holomorphic function in M (2,A(W)) is the image under pl of a

holomorphic vector function in @ and any holomorphic vector function

-> : > > ->

f e A(Q)p vanishing under pl on W can be written as £ = Heg for some

g ea@9.

REMARK. It follows that the holomorphic functions £ on a vector multiplicity
—_— >

variety W are defined as restrictions of a collection {fmlm cc Q} of locally
defined holomorphic functions, i.e., by (4.5) for all w << Q we have, if

£ = {fl,...,fr},
£.(z) = 9, fw(z), zelV, no.
J J J

Only if p = 1, a holomorphic function on W is also the restriction of an
entire function, where restriction is defined in (4.5) which in this case

defines the map pL, too.
IV.3. EHRENPREIS' AND PALAMODOV'S FUNDAMENTAL PRINCIPLE.

In this section we will mention the fundamental principle with spaces
. 0f entire functions satisfying certain growth conditions, formulated by
Ehrenpreis in [16] and by Palamodov in [56]. We shall not discuss all these
conditions in full detail, but in the next section we shall give alternative
conditions, which enables us to generalize the principle. The only purpose
of this section is to relate our work to that of Ehrenpreis and Palamodov.
If Q = ¢n, H is a matrix of polynomials and if all the functions in
(4.15) are bounded with respect to certain weighted sup-norms, then the fact
that pL is a topological isomorphism is sometimes also called the fundamental
principle. This is formulated by Ehrenpreis in [16, th. 4.2] and by Pala-
modov in [56, IV, §5. th. 2] and the difference between these two are the
conditions on the "bounds. The need for bounds makes it necessary to consider
matrices P of polynomials with associated polynomial vector multiplicity
varieties ﬁ, instead of matrices H of arbitrary entire functions. Our dis-
cussion will mainly follow the lines of [16], but at the end of this section

we will make some remarks on Palamodov's formulation, which holds in convex
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tube domains £, too.

Firstly, we remark that the sheaf of relations between a finite number
of polynomials is globally finitely generated by polynomials [30, lemma
7.6.3]. Hence the vector multiplicity variety w of lemma 4.3 will be a poly-
nomial vector multiplicity variety. Furthermore, there are only finitely
many possible polynomial vector multiplicity varieties to choose 5 from.
Unfortunately, for obtaining bounds one cannot use the same multiplicity
variety at each place. This difficulty can be overcome by taking for 5 the
union of all the possibilities, so that at every place the bounds hold for
at least one multiplicity variety. That this yields no more complications,
has been shown in [16, proof of (4.9), p. 102-105]. Moreover, the choice of
the functions 3 at every place in the definition of the map p (cf. (4.11))
can be done in such a way that we obtain good bounds. Due to this the func-
tions Ez depend on the place z (actually, 3 = {3&} depends on a priori given
bounded sets W of a covering of Cn), but in the proof of lemma 4.3 we have
seen that this produces no problems for obtaining sections on 5. We only
remark that the map pI'has been defined by restricting the entire functions
"to any set w of the covering, next by applying tﬁe map pz with the 3;§ be-
longing to that w and finally by restriction to W. This yields a section on
E which is defined by a collection of semi-local functions.

In order to discuss the conditions on the bounds, we describe the gen-
eral structure of the aliowed spaces H of entire functions. An analytical
uniform structure K on H is a collection of continuous positive functions

k on ¢n, such that for each F € H and each k € K

>0 aslzl » =

F(z)
/k(z)

and such that the sets
{F € H|F(2) < k(z),z € C"}

form a fundamental system of neighborhoods of zero in H. Then the space
W = FH', the Fourier transform of the dual H' of H, is called an analyti-
cally uniform space, AU -space, cf [16, p. 9, (a), (b) & (c)] or [2, p. 7
(1) (iii) 1.

The set K is not uniquely determined by H. We require that [16, p. 96
(a) & (b)) or [2, p. 8 (iv)]
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(i) any entire function which is O(k(z)) for all k € K is in H
(ii) for any N > 0, if we replace the analytically uniform structure K ={k}
by K = {kN} where

(4.16) Tk (2) def max k(z')(1+"z'“)N,

lz-z'l<N

then KN is again an analytically uniform structure for W.

The AU-structure K provides the space H(W) of restrictions to W sat-
isfying the bounds induced by K with a topology in a very natural way: from
(4.16) it follows that together with F also all its derivatives belong to H;
let W = {Vl,al;...;Vr,Br} and let g = (gl,...,gr) be a section on W, i.e.,
in the bounded sets w in € with w n V. # § for some j e {1,...,r} there is a
holomorphic function h® with ajh"’|vj =95+ 3= 1,...,7, cf. (4.5); then the
space H(W) is defined as the set of all sections g on W satisfying for every

k € K

(4.17) |gj(z)l/£(z) <sc, zelV, j=1,...,r

for some C 2 0 depending on k; with C > 0 and k € K fixed condition (4.17)

determines an open set of a O-neighborhood base of the topology of H(W).

LEMMA 4.4. (Ehrenpreis' fundamental principle) Let H be a space of entire
functions with an AU-structure satisfying certain conditions discussed be-
low. Then to any matrix P of polynomials there is associated a polynomial
vector multiplicity variety 5, such that the map oL, determined by lemma's

) > . >
4.2 and 4.3, is a topdlogical isomorphism from H/P-ﬁ onto H(W) .
An example shows that indeed further conditions are required.
EXAMPLE. Let H be the space of entire functions F in ¢2 satisfying for
every € > 0
[Fe)] < m_t1+4161)™ exp elmel ,

d
where m depends on F. Let W def ({(91,62)I62 —i61 = 0},id.), then the
growth conditions of H yield the space H(W) of entire functions f in

C satisfying for every € > 0O

[f(z)| < M_ exp e|z
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However, it is not true that any function in H(lV) can be extended to a

function in H. For example, the function
£(z) gef § exp(izz +1/2)dr e H(W)

cannot be written as f£(z) = F(z,iz) with F € H; since all functions in
H are polynomials, see [68, 29.1], while f is not.

An AU-space W is called localizable, LAU-space, if H satisfies such
conditions that lemma 4.4 holds. In order to let W be localizable in [16,
p. 96(c)] or [2, p. 8(v)] the following condition has been imposed: there
is a family M (BAU-structure) of continuous positive functions m on ¢” with

for every m € M and k ¢ K m(z) = O(k(z)) such that the bounded sets
{Fen||Fz)] samz),zec”, «>0,men

define a fundamental system of bounded sets in H; moreover, the functions
k € Kand m € M can be written as a product of functions ki and mi, respec-
tively, of the variable zi, i=1,...,n and these functions must satisfy
certain conditions [16, (4.3) & (4.4)] or [2, p. 21(vii) & (viii)], among

others [2, (viii)]: for every € > 0 and for every m =m, ... mn € M there

1

* * *
ism = m1 esn mn € M such that for every j = 1,...,n and any zO==x0+iyo e¢1

there exists an entire function ¢ in Cl for which

1
| < m*(z), z e .

// Tin l?(C)l 3

- <
4 z0 <e

(4.18) m, (z,) | (2)

If these conditions are satisfied the space W is called product localizable,
PLAU-space, cf. [16].
In the example we have defined the space H by the PLAU- structure

K = {k|k(8) =k, (Re 6,) k,{Im8,) k; (Re 6,) k, (Im6,), k, is a
continuous function dominating all polynomials and kz(y) =

= exp elyl, € > 0}.
Another possible PLAU-structure would be

K' = {k|k(8) = k1(|62|) k1(|62|), k, is a continuous function

dominating all polynomials}.
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A BAU-structure M belonging to K is

=
]

{n|m(8) = m (Re ) m, (Im@,) m (Re ) m,(Im6,)),m, (x) =

H

a(1+lx|)£, a >0, £ >0 and mz(y) is a continuous, positive

function which is dominated by every function exp elyl,e > 0}
and a BAU-structure M' belonging to both K and K' is
a
M' = {m|m(8) = m1(|e1l) m, (1921), m (x) = a(l+]x])",a>0,£>0}.

M' satisfies condition (4.18), but M does not satisfy it, because m, is
allowed to be a function that itself dominates all polynomials. In the
example K defined the PLAU-structure and the growth conditions of H(W).
Hence the BAU-structure, which completes the conditions for product local-
izablity, must be M'. However, M' does not induce a BAU-structure on H(W).
A BAU-structure on H(W) would be the one induced by M.

Besides condition (4.18), the condition that M induces a BAU-structure
on H(W) is used to extend a collection of semilocally defined functions
satisfying the bounds on W to a globally defined function in c” satisfying
the right bounds. Thus in the example this condition is not satisfied.

Now there are two ways to get rid of the problems exposed by the ex-
ample. Either, if one wants to define H(W) by one of the AU-structures K on
H, c£. [2], one moreover has to require that the BAU-structure M on H, be-
longing to K and satisfying the conditions for PLAU-structure (among others
condition (4.18)), induces also a BAU-structure on H(IW). This assumption has
been omitted in [2]. Or, the space H(W) should be defined as the one induced
by all the possible AU-structures on H, cf. [16]. The special condition is

satisfied then, but one has to know all the possible AU-structures on H.

REMARK. In the following sections we will present the fundamental principle
in a different way using the L2—estimates for the Cauchy-Riemann operator
given by Hérmander in [30]. Then the above mentioned problems are avoided
and less involved conditions will be required on the growth conditions for
the functions in H. These conditions and those of [16] are not always com-
parable. For example, the space D' of distributions is LAU in the sense of
[16], but our method does not work for the space H = Z. On the other hand,

the approach followed here enables us to derive the principle for the space
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E(U) of C2functions in a convex set U ¢ R, while the methods of [16] only
yields that E(U) is PLAU when U is a cube or that E(U) is LAU when U is a
convex polyhedron, cf. [16, remark 4.5]. As far as the Ehrenpreis-Martineau
theorem [16, th. 5.21] is concerned the fact that U must be a polyhedron is
not serious, because between any two e-neighborhoods of a bounded, convex
set in w® there lies a convex polyhedron P and the theorem follows by ap-
plication of the fundamental principle to the space E(P). However, in chapter
III we discussed a similar theorem for analytic functionals carried by un-
bounded convex sets with respect to e-neighborhoods and in general no poly-
hedra lie between two such neighborhoods. The Fourier transforms of these
analytic functionals are no longer entire functions and we need the funda-
mental principle for spaces H consisting of functions holomorphic in some
pseudoconvex domain and satisfying certain growth conditions there.

For some parts of our needs the fundamental principle of Palamodov in
[56] suffices. For, he does not necessarily deal with entire functions, as
the theorems of [56] are valid for functions holomorphic in convex tube do-
mains. More, precisely he considered an increasing sequence of majorants Mu

of the form

Ma(z) = Ra(z) exp Ia(y)

[56, III. § 1.10

& 403. Here Ra is an everywhere finite and positive function
in c” and Ia is a convex function which need only to be defined in a convex
set Ua in nflwith%thepropertythatan ea—neighborhood of Ua+1 is contained in
U,. Furthermore, the functions {Ra}:=1 and {Ia}:=1 have to satisfy a condi-
tion similar to (4.16), namely for y € Uu+1

(1+0zh)R (2) < KR, (2), (1+lyl)exp I (y) < K exp I (y)

o o+l
sup R (2') £ KR (z), sup exp I (y') <
lz-z'l<e o o+l ly-y'lse o
o o
<
Ka exp Ia+1(y)

and a condition somewhat similar to (4.18) but less involved. The fundamental
theorem in [56, IV. §5, th. 2], the isomorphism (4.15), has a weaker form
with respect to the bounds than in [16].
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LEMMA 4.5. (Palamodov's fundamental principle). For any matrix P of pgly—

nomials there is associated a polynomial vector multiplicity variety W, such

that any holomorphig function in w.n (nf‘+.an), which is bounded in absol-

ute value by Ma on W, can be extended under (pL)_1 to a function holomorphic
in ®*+ an+m and bounded there in absolute value by KMa+m’ for some K > 0

) and positive integer m. Moreover, any holomorphic function % in (Bf]+ an)p,

bounded in absolute value by Ma there and vanishing under pL on arw(nf1+ an),

can be written as

> ->
(4.19) f = Peg
> . n., . q ,
for some g holomorphic in (IR + an+m) and bounded there in absolute value
by KMa+m'
If Q = Cn we have U = E{] for every 0. Then the difference with [16] is

-1
that in [16] a holomorphlc function in H(W) has been extended under (%)

to one function satlsfylng all the bounds and if f vanishes on w it can be
written as (4.19) where g also satisfies all the bounds.

Now problem 3.1 of the last chapter can be solved by lemma 4.5 and
indeed it is contained in [56, III, §5, theorem and 90], but problems 3.2
and 3.3 cannot be solved in this way. Palamodov applied the fundamental
principle to the Cauchy-Riemann equations in [56, VI, § 4, 40, cor. 3] which
contains the Ehré;preis'Martineau theorem. From this corollary the theorems
of chapter III.3 can be derived 1), but we can not apply it to obtain the
remaining theorems of chapter III. The reason is that we are concerned with
holomorphlc functions in the tube domains {IR + 1F'}k 17 where the convex

k+1
sets F cl c ™ do not have the property that an e

+1
is contained in Fk

k—nelghborhood of r
In the next section we will discuss different conditions on the bounds
and the fundamental principle (in a similar weak form as in [56]) for func-
tions holomorphic in tube domains  # ¢” will be considerably more general
than in [56]. For Q = ¢” one has in fact three fundamental principles, which

supplement each other.

Actually, due to condition [56, (5.3) p. 240] one has to assume that
Q(a,l”) contains a neighborhood of the origin, i.e., a is a positive func-

tion on .
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IV.4. THE FUNDAMENTAL PRINCIPLE FOR SPACES OF NON-ENTIRE FUNCTIONS.

In this section we will formulate the fundamental principle for spaces
H of non-entire functions. As in [16] we will express the topology of H by
projective limits, i.e., H will have an AU-structure. As far as the funda-
mental principle (the isomorphism pL) is concerned this will not be neces-
sary, as the principle essentially follows from the semilocal theory of
[16, ch. III] and from theorems 4.11 and 4.12 of section 6 of this chapter,
but in chapter V it will be convenient to have spaces H whose topology is
defined by a projective limit, although an extra condition is needed then.
We will assume that the growth conditions on the functions of H can
be expressed by Lp~norms with respect to weight functions of the form exp-¢a

o
for o € A, where A is a directed set and where {¢ }a is a decreasing net

€A
of plurisubharmonic functions in a pseudoconvex domain @ ¢ € . Furthermore,

(o]
tet {Q } be an increasing sequence of relatively closed subsets of Q with

k k=1
union £. Denote for p = 1,2,... and for a function f
(4.20) Ilfllép])c def 4 J |£(2) |P exp - p¢®(z)ar(z)} /P
’
ﬂk

where A(z) is de Lebesgue measure in Gn, and for p =

©) def o
llfllo(“) = sup |£(2) |exp - 6% (2) ;
zeQ
when p = 2 we will write "'"a X instead of "*";2;. If f is bounded with
’ 1

respect to the norm

1el (P def J l£(2)|P exp -ps®(z)ar(z)} /P
Q

forp=1,2,... or

1el ) 28 i [£2) | exp - 4% (2)

zef

for p = ©», we will sometimes express this by saying that the sequence

{"f";p;}zll is bounded. For p = 1,2,...,® let
Kk k=
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o
HP(Qk,d) )

be the Banach space of functions holomorphic in int Qk' and in case p = «

also continuous on Qk' such that the norm (4.20) is finite, and let

o
B [2:6%1 2 proj lim ® (@, 5%
p kK > P
where in the projective limit the restriction maps from 9k+1 to Qk are in-
tended. When p = 2 we will just write H[Q;¢"1.
If all the sets Qk are different, the following conditions are imposed:

(4.21) Vk, 3 > k: Vz € Qk, Vz' € B(z;1/2,1) = 2' € QK’

where for 0 < § <1 and K 2 0

B(z;6,K) def {z'luz'—z" < min[K,Gd(z,Qc)]};

here d(z,Qc) denotes the distance from z to the complement of £, i.e.,

d(z,Qc) gg£ inf lz-z'll,

z'eQC

There must exist a plurisubharmonic function ¢ in  with

(4.22) 9 = {z]z € 9,0(z) < k}.
For compact sets Qk (4.22) is not a special condition on £, cf. [30, th.
2.6.7.ii], but we have in mind unbounded sets Qk.

Finally, we have to make an assumption on the net {¢a}. Although it
is not necessary, the proof of theorem 6.4 will be simpler if we would have

neighborhoods B(z;8,K) of z with the property that the neighborhood
U{B(z';e,L) | z' € B(z;6,K)}
of z itself is contained in a neighborhood B(z;n,M) of z for some n and M.

Since this is not true for the neighborhoods B we will define quite similar

neighborhoods S which do have this property. Let for € 2 0 and K =2 0
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D(z;e,K) def {z']z' e Q,lz -zl Smin[sd(z,ﬂc),ed(z',Qc),K]}.
Then
(4.23) B(z;6,K) c D(z;6/(1-8) ,K)
and
U{D(z';¢e,L) lz’ € D(z;6,K)} c D(z;je+e8+8,K+L).

So if for positive K we define the neighborhood of z

(4.24) s(ziK) 2L p(z;e-1,x,
then
(4.25) U{s(z';K) | z' € S(ziL)} © S(z;K+1L).

For a function ¢ in @ and for N,M,K =2 0 define, cf. (3.40),

[o}}
(0]
+h

(4.26) ¢ (z) max{¢(z') +N 1og(1+HZ'H2) + 1og(1+d(z',nc)'M)]

N,M,K

1

[zt € S(z;K)}.

If N=M =K we will just write ¢N and if for p = 2 in the norm (4.20) ¢a
o NMK g N
N,M,K 2 . =3 'k a,k’
respectively. The functions log(1+lzl“) and log(1+d(z,2°) ) are plurisub-
harmonic in @, [30, (4.4.6) and th. 2.6.2] and [30, th. 2.6.7 (i) and cor.

1.6.8]. For @ = € we have S(z;K) = {z'|lz-z'l < K} and then, as in the

is replaced by ¢ or ¢; we will denote that norm by Il

proof of theorem 3.1, [30, th. 1.6.2] and lemma 3.2 imply that ¢N MK (which
’ ’

in this case does not depend on M) is plurisubharmonic if ¢ is. Due to pro-

perty (4.25) for NI'N 2 0 and for a function ¢ in 2 we have

2

(4.27) (0 )y S ¢

Our final requirement is that for every N 2 0 and o € A there is a o' 2 a

and a positive constant Ca N with
’



140
(4.28) 6. <¢ +C .

We now define the space H. Condition (4.28) implies that for every
N20 '

a
(4.29) H def proj lim H [Q;¢a] = proj lim H [Q;¢N],
aea P aean P
1
where the identity maps from Hp[9;¢a ] into HP[Q:¢a], a' 2 o, determine the
projective limit. Conditions (4.21) and (4.28) imply that H is independent

of pe {1,2,...,2}, c£. [73, cond. HS, & HS,, p. 15], and that moreover

1
for £ € H, o € A and every k

(4.30) |£(z) |exp-9¢%(z) >0 as z+ 32 or Izl + = in Q.
£ Q= ¢° and k = exp ¢, then (4.26) yields that kN = exp ¢N’ where kN is
given by (4.16) and the condition on the AU-structure of H given there is
just our condition (4.29). N

Let P be a pxg-matrix of polynomials and let W be an associated poly-
nomial vector multiplicity varlety. We define the Frechet space H [W!WQ-
log k] as the space of sections g on w n Q such that for each component
g= {gl,...,g } of g (4.17) holds only for z € QZ n w and for C depending
on £, provided with the semi-norms obtained by taking from all the compon-
ents g of ; the largest supremum of the left hand side of (4.17) over z €
éQZ n Vj, j = 1;...,r. Again if Qﬂ = Q for all £ we will write Hm(a n Q;logk)
instead of Hm[w n Q;log k] and then this is a Banach space.

The fundamental principle proved in this chapter (the completions of
the proofs will be given in.chapter VI) says that the map pL

(4.31) L

P - o
= proj lim H_[W n Q;¢]

1
I a € A

f0;6%7° n perlQ; %19

is a toplogical isomorphism between linear spaces. Here pL

is defined by
restriction if p = 1 and (only semilocally) by lemma's 4.2 and 4.3 if p > 1.
In section 6, formula (4.44) we will show that the space on the left hand
side remains the same if we replace H[Q;¢a]P n P-H[Q;¢a]q in the denominator
by its closure in H[Q;¢aJP. Hence the left hand side of (4.3) is a Hausdorff

space; its elements can be .described as follows: for e H[Q;¢a]p let [?a]
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denote the equivalence class of %a’ where %a ~ Ea if %u _Ka =

;a € H[ﬂ;¢a]q; then the elements of the space on the left hand side of (4.31)

>0
Peg for some

can be identified with such nets {[%a]}aeA of equivalence classes, where
e H[Q;¢a]p for every o € A, that for every o and B in A with B 2 a there
is a ;a,B € H[Q;¢a]q with

- - pgB,

If Qk = Q for every k, we define a space H with the only requirement

that for every N 2 0 H can be written as

(4.32) 8 2 proj lim B_(2:4%) = proj lim H_(0:6%).

o €A p a € A p
Finally, if {QL}Z=1 is a decreasing sequence of pseudoconvex domains and if
{6%} is a decreasing net of plurisubharmonic functions in @, it is possible
to consider the following space H, which for every N 2 0 by assumption can

be written as

(4.33) 7 2%E 4 1im proj lim & (n£;¢a) = ind lim proj lim H (9£;¢;),
JARSRS o ean P L > o ean P

where ¢; is defined by (4.26) with Q replaced by 91. Also here the spaces
(4.32) and (4.33) are independent of p € {1,2,...,®}, provided that in the

last case
(4.34) Ve, 3k > £, 38 > 0: Vz € Q& lz-z'l Smin{1,sd(z,9§)} =z < Q.

For the spaces H given by (4.32) or (4.33) the fundamental principle yields

the isomorphisms ol

(4.35) H(R:¢6M) P L -
proj lim }-"—» proj Lim H_(W n 2:¢%)
0o € A H(Q;¢G)P n P-H(Q;¢a)q aE A
and
(4.36) : H(9£;¢°‘)P L
ind lim proj lim £

L+o o en H(Q,:¢HF n P'Hmz"*a’q}



142

L >
£ ind lim proj lim H_(W n @ ;¢%),
£ > o o €A
respectively.

THEOREM 4.6 (fundamental principle). Let Q be a pseudoconvex domain and let
{¢a} be'a decreasing net of plurisubharmonic functions in 9. To any pxq-
matrix P of pglynomials there are associated a polynomial vector multipli-
city variety W and a restriction map pL, such that (4.35) is a topological
isomorphism between linear spaces, provided that condition (4.32) is satis-
fied. If moreover, Q = kgl Qk satisfies (4.21) and (4.22), the map pL in
(4.31) is a topological isomorphism provided that (4.29) holds. Finally, if
{Ql}z=1 is a decreasing sequence of pseudoconvex domains satisfying (4.34)

and if {¢a} is a decreasing net of plurisubharmonic functions in §,, the map

1
pL in (4.36) is a toplogical isomorphism, provided that (4.33) is valid. .

In chapter VII, cor. 7.4, we will supplement this theorem.

PROOF. That pL in (4.36) is an isomorphism follows from (4.33), (4.34) and
the fact that pL in (4.35) is an isomorphism. The remaining two sections of
this chapter, as well as chapter VI, will be devoted to the proof of the

assertion that the maps (4.31) and (4.35) are topological isomorphisms. [

REMARK. Let W' be a locally convex space whose Fourier transform is topo-
logically isomorphic to one of the spaces H given by (4.29), (4.32) or
(4.33) and let W be the dual of W'. Then, as in [16], in view of theorem
4.6 we might call W localizable. In most examples it is obvious how the
Fourier transformation F is defined. In general, since the §-functions in

i<e >
the points z, € Q belong to H', their Fourier transforms et 7120 belong

0
to W. Then we can define the Fourier transform £ € H of ¢ € W' by

def i<zg,z>

£(z) = (F§) (z2) == <e ,¢;>,

cf. (2.46). Here r varies in a certain set Q" in Cn and W consists of ob-
jects (such as functions or distributions) in Q*. From the requirement that
F is a topological isomorphism from W' onto H it follows that the set
{ei<c’zo>|zo € Q} of functions of ¢ must at least be weakly* dense in W.

Furthermore, if besides this set W contains all other holomorphic functions
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of ¢ € Q* which are bounded in absolute value by |exp i<§,zo>| with z_ € @,

0
it follows from the fact, that the geometric mean is smaller than the arith-
metic mean, that for z1,z2 e and 0 £ t £ 1 also

exp i<2;,tz1 +(1_t)22> € W.

Hence then the set § would be convex. On the other hand, it may happen that

i on N
the set {el<§0'z>}co € Q' } of functions of z is contained inH, cf. the A- and

* i<COIZ>
Exp-spaces of chapter III. Then @ is convex, too and the set {e l
*
ICO € 2} is dense in H. However, all.these properties will not be used to
derive the fundamental principle of theorem 4.6, as they are only needed

when Fourier transformation comes in.
IV.5. SEMILOCAL THEORY.

In this section we shall mention the semilocal theory of [16] and we
shall indicate the differences with the theory we need.

Let U = {U.}(:1 be a certain open covering of Q with U, cc Q and let
utt be a certai; :pen shrinking of U. Then the proof in [16? proof of c,
p. 104] shows that any f € pﬁfjelim Hw[a n Q;¢a] can be extended to a col-
lection of functions c,; holomorphic in Ui and satisfying good bounds. In
fact, a method similar to theorem 3.1 can be applied, see [2]. Only now one
has to take into account coinciding roots of a polynomial. The procedure
followed in [16], [56] or [2] uses the WeierstraB division theorem and the
Lagrange interpolation formula, cf. [2, IV lemma's 1-4].

Define Cp[U,F,¢a] as the Hilbert space of all alternating p-cochains
c on the covering U with values in the analytic sheaf F that satisfy for
every k
(4.37) Iel def { z J Ilcs(z)llz-exp-—2¢u(z)d}‘(z)}12 < o,

a,k _
Isl=p+1 U_n®
s k

where I£(z)12% 885 |f1(2)|2 ...+ ]|E (z)I2 if £ = (f,...,£) is a vector-
function. The coverings U and U(l) gave to satisfy certainqproperties listed
in chapter VI, section 1, in order that the estimates can be carried over

to globally defined functions and conversely.

Let A be the sheaf in 9 of germs of holomorphic functions and let F
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be the image under P of the sheaf AY, thus F == def ;.49 c AP, Finally, let
c [U,Ap,¢;P] be the set of t-cochains c € C [U,Ap,¢] with

Sc € Ct+1(U,F)

where § is the coboundary operator.

LEMMA 4.7. For any qu—matrii P of polynomials and associated polynomial

vector multiplicity variety W the map

proj lim cOLU,AP,¢%;p]
o € A

proj 1im cOCU,AP %P1 n P+ proj 1im cOru), A%, 4%]
o € A o € A

- o
— proj lim H_[W n Q;¢ ]
a € A

given by lemma 4.3 is a topological isomorphism.

PROOF. We shall not give all the detalls, because these can be found in [16].
There a function f € prog llm H [w n ;¢ ] has been extended to a collection
of functions {c } w1th c holomorphic in U_. Firstly, in [16, proof of
c, p. 104] foreach srfls extended to a f1n1te collection of functions holo-
morphic in finitely many very small sets covering US, whose differences in
the overlaps are sections in F. Then one has to apply a piecing together
process of this collection of functions to one function cS in Us. As is re-
marked in [16] this process follows the same lines as the proof of the sim-
ilar statements for the map A we will define in the next section and even
it is simpler, because Us is a bounded set so that no convergence factors
such as ¢ arising in condition (4.18) are needed. We have not assumed this
condition, so that the proof of [16] is valid here, too. Of course, one can

also follow the piecing together process we will perform in chapter VI.

Let us briefly mention the differences with [16] arising from the
sizes of the sets of the covering of Q we have here. In [16] all the sets
of the covering of Cn have the same size. There each set Us is covereg in
such a way that the bounds for cs depend on the bounds for f on Vs nw,

where Vs»is~the-enlargement by a factor 2 of Us the center zs kept fixed.
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Furthermore, the minimal size of the sets that cover US is proportional to

a power of (1+l|zsl|)—1 and to a power of the size B_ of U_. Also, the maximal
number of sets covering U is proportional to a power of 1 +ﬂzsﬂ and to 6;1.
However, these powers do not depend on s, see [16, ch. III]. It follows from
the piecing together process of chapter VI or of [16] that cg satisfies

for some N and K independent of s

) § [z 12 N
{ J le ()1 dk(z)} <K (—_?fi—_ ) sup, l£(z)l.
s s zeV_nl
Us s

wherz "f(zé" hereﬂdenotes the maximum of ff(z) for £ =1,...,p,j = 1,...,r£
if £ = (fl""'frl) is the section on We determined by £f£. Actually, in
[16] csiis bounded in sup-norm, but [73, cond. Hsl’ p. 15] shows that this
implies the estimate we have here, because the sizes of the sets Us will be
bounded.

The sets US will be such that they have a fixed size if they are far
enough from 3Q or that the size is proportional to ds' where ds is the dis-
tance from US to 9Q. Therefore, since by (4.24) for sufficiently large N we

have zs € S(z;N) if z € Us and Vs cS(z ;N), for every a € N we get
s

{ J Il c (z)H2 exp-—2¢§(z)dx(z)}% <K sup, I£(z)l exp —¢a'(z)
s zeV _nY
Us s

where o' is determined by (4.28). Since the sets Us will be chosen such that
every z €  is contained is not more than L. different sets Vs and since Vs
will be contained in QK if US n Qk # @ for some £ > k, in virtue of (4.29)

for every k and o € A we get

(4.38) "c“a,k < LK sup I1£(2)1 exp -¢a'(z)-
zeﬂznw

A similar procedure, now with respect to the covering U(l), shows that
the map of the lemma is . injective. Finally, (4.38) implies that its inverse

is continuous. 0

If we want to derive the strong version of the fundamental principle
(i.e., all the bounds are satisfied simultaneously) as in chapter VII, we
should apply this lemma together with the strong versions of theorems 4.11

and 4.12 below, cf. corollary 7.4. But for the weak form treated in this
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chapter it is convenient to have the following isomorphism.

LEMMA 4.8. Let E denote the space on the left hand side of the isomorphism
of lemma 4.7 and let

r* 228 OrutM) AP 4% e

and
m® 98£ 2@ o el A%y,
Then there is a topological isomorphism between

E -+ proj lim (F%/M%).
a € A

PROOF. We define the map by restriction. That it is injective can be seen
as follows: any c € projelkm COEU,Ap,ia;P] that can be written as c = P<g
with g € CO(U(l),Aq) é;nishes on & n W, because also U(l) is a covering of
2, so that by lemma 4.7 c can be written as c¢ = P°g with g € proj 1lim
Co[U(l),Aq,¢a]. Similarly, it follows that M® is a closed subsggcz gf F*.
Hence the space Fa/Ma is a Frechet space, thus bornologic. In order to con-
clude the continuity of the inverse of the map we need to know that the
bounded sets in Fa/Ma arise from bounded sets in Fa. Let us assume this for
the moment. Then the method (as in the proof of lemma 4.7) of proving that
the map of the lemma is surjective shows that its inverse is continuous
(here each set US € U is covered by finitely many sets from U(l), the num-

ber and size depending only on the size of Us). 0
It remains to prove the following lemma.

LEMMA 4.9. Let Fa and M* be as in lemma 4.8. Then the bounded sets in Fa/Ma

s , o
arise from bounded sets in F .

PROOF. Let a bounded set B in Fa/Mm be determined by cochains f € Fa which
for all k satisfy

inf I £ +pegl <K .
o o
PegeM
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This means that for arbitrary k1 there are functions g; € A(Us)q for every
U, € ut yitn U, n le # @ such that

1
I gl < + 1.
f +Peg o,k Kk 1
1 1

Let k1 be so large that each set US € U(l) with Us n 91 # @ is contained in

0 q . 0 def "1

gef =k =1.

le, define g € A(Us) if Us n 91 # @ by 9 9 and set k_1 k0
Assume that "a cochain g™ has been defined .on the union of all sets

Us € U(l) with U, n ka # @ satisfying

I£+peg™ <
f +Peg o Cc

,km m
£ itive C_ and that " = g" ' if U_n @ _ # 0. Let k_, > k_be
or some positive C  an (? 9 s K2 . - n
so large that each set U_ e U with U_ n Q% # @ is contained in ka+1,
(1) . ~m+ q ; :
and for U_ € u with U_ n & o # @ let g, € A(U )" be functions which
satisfy
Ie+pog™hi

< + 1.
'km+1 Kkm+1

m+l def m m+1 def §m+1

N : . cQ L
ow we define gs gs if US K and g for the remain

+
ing s. Then gm ! is defined on the union of all sets Us € with
m+1 m ,
Us n ka+1 # @, gs =g if Us n ka-l # @, and
lge+p-g™ti L SC o tK. +1L
Gr¥net n m+1

So we obtain a cochain g € CO(U(l),Aq) with for all m = 0,1,2,...
m+2
I gl < .
g+pegl o _2 K+ m2
m  j=1 7j
This determines a bounded set in Fa whose image in Fa/Ma contains B. ]

In case Qk = Q for every k, as in lemma's 4.7 and 4.8 there is a top-

ological isomorphism between

(4.39) proj 1in|{c°(u(1),AP,¢“;p
o € A

W) AP 4%, p) np-co(u(l),Aq)} —_—

e a
—> proj lim H_(WnQ;¢ ),
o €A
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where CO(U(l),Ap,¢a;P) denotes the space of those ¢ € Fa with the norms
(4.37) bounded by a constant independent of k, i.e., instead of (4.37) we
have
(4.40) “C“a def {] J llcs(z)"2 exp--24>a(z)d)\(z)}12 < w,

s

u
S

IV.6. TRANSITION FROM SEMILOCAL TO GLOBAL RESULTS.

In this section we will formulate the two theorems which together
with lemma's 4.7 and 4.8 and formula (4.39) imply theorem 4.6. Besides,
these theorems, especially the second whose formulation is not concerned
with cochains, may be of interest by themselves, cf. chapter V.4. The main
problem is to extend the semilocally defined functions to a globally defined

function.

LEMMA 4.10. Let the conditions of theorem 4.6 be satisfied and let Fu and

M* be as in lemma 4.8. Then there is a topological isomorphism X:

HLQ; 6" 1F o o
(4.41) proj lim } —> proj lim (F /M).
A
@€ HLR:6%1° n penlq;¢*1% @ cA

A similar isomorphism exists if Q

k= Q for every k.

Let us decompose the map A into a collection of continuous restriction

maps Au. Then denoting

g 3£ H[Q;¢a3p

and

a
@ &£ 5 ) punLo;%1d

we have to show for each B there is an o 2 B and a continuous map ua such
4

B8

that the following diagram is commutative:
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I
o a,B B
HAO,. ! — 5 - H AB
Aa AB
uarﬁ
o B
F Aa. y - F AB
Il
a,B
where the maps Ia 8 and I& 8 are determined by the identity maps. We will
’ ’

define the maps v, by means of the following theorems.
’

B

o . ~0 .
For a positive number N and a function ¢ in Q let ¢N be a plurisub-

harmonic function in Q such that for some positive CN
4. < + C
(4.42) ¢N

.where ¢N = ¢ is defined by (4.26), cf. (3.40). This might not be poss-

N,N,N
ible for an arbitrary function ¢a, but if we refer to (4.22) we will always
mean that ¢a is such that there exists a plurisubharmonic function E; satis-
fying (4.42) (for example, by (4.28) this is true if ¢a belongs to the net

{¢a}ueA in the conditions of theorem 4.6).

0

THEOREM 4.11. Let Q = kg Qk be a pseudoconvex domain satisfying (4.21) and
(4.22), let the covering ul) of @ be given as in section VI.l and let ¢a
be a function on Q such that (4.42) can be satisfied for every N. Then for
any pxg-matrix P of polynomials there is a positive number N and moreover
for each sequence {Kk}:=1 of positive numbers there is another sequence
{Mk}:=1 of positive numbers, such that for every h ¢ COEU(l),Ap,¢a;P] with
"h"a <K, k=1,2,..., there is a function v € A(Q)F and a g ECO(U(l),Aq)

'k k
with

(1
(4.43) vl -h =Pg, U_ el ),
and with

k=1,2,...,

{ J lv(2)1? exp-20®(2)ar(2) 1" < M,
Q

k
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where the plurisubharmonic function ¢B is given by

B def Eﬂ + N log(1+121%) + log(t+d(z,25 ™)

~ 0,1
for ¢; determined by (4.42); thus v € B[Q;6 1P, 1£ h e 'Y AR 6%y,

ice., if (K}’ is bounded, (4.21) and (4.22) need not be satisfied and
[+

{Mk}k=1 is bounded, too, i.e., V € H(Q;¢B)p.

THEOREM -4.12, Let Q and ¢a be as in theorem 4.11. Then for any pxg-matrix P

of polynomials there is a positive number N and moreover for each sequence
o«

{Kk}:—l of positive numbers there is another sequence {Mk} of positive

k=1
numbers, such that every f € H[Q;¢a]p with “f"a K S K/ k =1,2,..., which
’
can locally be written as f = P-gw, gw € A(w)q, wece Q, b =R, can be writ-
ten globally as £ = P for some v € H[Q;¢B]q with HvllB K < Mk' k=1,2,...,
14

where ¢B is determined by ¢a and N as in theorem 4.11. Moreover, if h €

H(Q:¢P i.e., if {Kk}:=1 is bounded, then (4.21) and (4.22) need not be
satisfied and {Mk}:=1 is bounded, i.e., v € H(Q;¢B)q.

1
In chapter VI we will give the covering U( ) and we will prove these

theorems (if Q = cn, theorem 4.12 follows from [30, th. 7.6.11]). It is
clear from (3.40) and (3.41) that problem 3.2 follows from theorem 4.12 and

problem 3.3 from theorem 4.11. The map ua can now be defined by means of
’

B
theorems 4.11 and 4.12.

PROOF OF :LEMMA 4.10. According to (4.28) for each B ¢ A and N 2 0 there is

a o € A with a 2 B such that in (4.42) we can choose E; = ¢B; hence for each
B € A there is a o € A, a 2 B, such that theorems 4.11 and 4.12 hold with
the functions ¢a and ¢8 belonging to the net {d)m}mE . Now for each B € A

A

let Yy € A, vy 2 B, be such that theorem 4.12 holds if ¢a is replaced by ¢Y

there, and let o € A, o 2 y, be such that theorem 4.11 holds if ¢p is re-
placed by ¢Y there. Then for h € Fu we define

ua,S(h) = IY,BV

where v € HY is determined by h according to theorem 4.11. If h € Mu then
= po q (1) .
by (4.43) v ug = P9 for some g_ € A(U )=, U_ € U'"’", hence according to

theorem 4.12 v is mapped by I into TB. Thus u is well defined.

Y. B a,B

Moreover, it follows from lemma 4.9 and from theorem 4.11 that “a B
’
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is a bounded, hence continuous, map. Furthermore, that I Ola fol-

a8 Ma,B
lows from (4.43) and theorem 4.12, whereas (4.43) alone implies that I& =

B
=\ . Hence the diagram is commutative, so that the maps {Aa}aeA deter-

o
B ua,B
mine the map A and the maps uu its inverse. g
’

B

Finally, we show that the space on the left hand side of (4.41) is
well behaved. Let {fm};=1 c Ta be a Sauchy sequence which converges in Ha
to a function f. Then f vanishes on W n @, hence satisfies the conditions
of theorem 4.12. Therefore f can be written as f = P°g with g € HB. Thus
for each B € A there is o € A with a = B such that the following diagram is

commutatives

H/TC, s .uP/TB

%/

Therefore, the space on the left hand side of (4.41), or (4.31), is a Haus-
dorff space and equals (cf. (3.28))

(4.44) proj lim B/ = proj lim HO/T®
a € A o € A

REMARK. In our notation Ehrenpreis formulation of the fundamental principle

has the form

(4.45) proj lim H(c™;¢%)P
o € A

L >
~£— proj 1im H_(W;¢ ).
a € A
P proj lim H(e,$H)?
o €A
-
Thus a function on W satisfying the bounds is extended to one global func-

tion satisfying all the bounds simultaneously. In this chapter there is no
problem in the semilocal extension, but the transition from semilocal re-
sults to global results yields different global functions for the different
bounds. Ehrenpreis requires more conditions and, in fact, his result is

too strong, as the weaker fundamental principle, formulated here and in [56],
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satisfies quite as well, i.e., it implies the Fourier representation of all
solutions of homogeneous systems of differential equations, see chapter V.3.
For example, in our formulation and in that of Palamodov the example given
in section IV.3 presents no problems, since the weightfunctions are of the
required type. Also, this example exposes the impossibility of getting glo-
bal extensions satisfying all the bounds simultaneously without further con-
ditions.l) In chapter VII, corollary 7.4, we will give such conditions for
spaces of non-entire functions. There we will improve theorems 4.11 and
4.12 so. that they hold for functions v satisfying all the bounds. Then it
follows from lemma 4.7 that we would get a strong fundamental principle like
(4.45) . However, in that case we will not get uniform bounds as in

theorems 4.11 and 4.12. Therefore, we will have to use the open mapping

theorem for the conclusion that the inverse of the map (4.41) is continuous.

n

This example leads to a family of majorants with non-trivial cohomology
which seems to fit a similar condition to that discussed in [56, p. 121]

for the case where the bounds must be satisfied only separately.
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CHAPTER V

EXAMPLES AND APPLICATIONS

In chapter III we have introduced certain spaces of analytic functions
in pseudoconvex domains. In this chapter we will show that these spaces W
are localizable. This means that they are duals of spaces W' whose Fourier
transforms H satisfy theorem 4.6. Here the Fourier transformation F has been
given in chapter III as a generalization of the Ehrenpreis-Martineau theo-
rem. In the proof we have used theorem 4.6. So the fundamental principle
helps us to find new examples of localizable spaces W such that H = FW' con-
sists of non-entire functions. We will show that in such spaces the Fourier
iepresentation of all weak solutions of a homogeneous system of partial dif-
ferential equations, mentioned in the last chapter, is valid. This repre-
sentation is sometimes called the fundamental principle, too. For applica-
tions of this principle we refer the reader to [16]. Furthermore, we will
give the Fredholm alternative for non-homogeneous systems in localizable
spaces. In particular these theorems are valid in spaces of (ultra) distri-
butions which are the boundary values of functions of exponential type,
holomorphic in tubular cones. Finally, we will indicate how the theorems of
chapter III can be used to derive the Newton interpolation series for non-

entire functions of several complex variables.
V.1. TWO LEMMA'S ON PSEUDOCONVEX DOMAINS AND PLURISUBHARMONIC FUNCTIONS.

In chapter II we have considered spaces of holomorphic functions in
e-neighborhoods in c” of closed sets S in Bgﬂ In lemma 5.1 we will show
that such sets have a neighborhood base of pseudoconvex sets equivalent to
the neighborhood base of e-neighborhoods, a result which we have used in
lemma 2.1. In chapter II and III we had weight functions of the form
exp M(tlxl), which are not plurisubharmonic. In lemma 5.2 it will be shown

that these weight functions can be changed into plurisubharmonic functions
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without damaging the spaces they define. This is needed in order to sétisfy
the conditions of theorem 4.6.

Two systems {Qk} and {Q]'(} of neighborhoods are said to be equivalent
if for each k there is an £ such that @ «c Qé and Qﬁ c QZ' Then both systems

k
determine the same spaces A (2.4) or (2.5) and the same space H (4.29).

LEMMA 5.1. Let S be a closed set in ®® and let Ql be an e-neighborhood of

S in €". Then there is an open pseudoconvex set Q with Q< Q c 91, where

2
92 is the %e-neighborhood of S in c”.

PROOF. Define  as the holomorphic envelope of

gef {zlﬂx—xoﬂ + Iyl < e/v2}.

QI
2 X-€S

It is clear that 92 c Q. If we show that
Qc U {z]"x—xO" < g/V2, Iyl < g/V/2}
xoeS

it follows that Q < Ql'
Q is contained in the E/VELneighborhood in Cn of B{] because this is
pseudoconvex. Furthermore, let z = ;-+i; with ; ¢ Qé n nfﬁ Then the func-

tion
F(z) def exp-—(z—;)'(z—;)

is holomorphic in £, and satisfies ]F(E)l 2 1 and lF(z)I <1 for z € Qé.

2
Hence z ¢ Q, because every holomorphic function in Qé attains the same
values in its holomorphic envelope 2, see [68, §20.3]. 0

In order to show that the spaces of chapters II and III do not alter
by a change of the weight functions into a sequence of plurisubharmonic
functions we define the equivalence of two sequences of weight functions,
cf. (2.7). Two increasing or decreasing sequences {¢j} and {wj} of weight
functions on the set  are equivalent if for each j there is an m, or for
each m-an index j, depending on whether the sequences are increasing or de-

creasing, respectively, and a positive number C such that

¢j(z) < wm(z)~+c and wj(z) < ¢m(z)-+c, z € Q.
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It is clear that the spaces (2.4)and (2.5) are the same if they are definéd
by {¢j} or by {wj}.

LEMMA 5.2. The sequences {-j log(1+lxl)}, {-1/3 IxlI}, {-M(1/5 Ixl)} and
{-M(3lx1)} in an e-neighborhood Q of R in C° are equivalent to sequences

of plurisubharmonic functions, where M is a function as in section II.2.iii.

PROOF. It is clear that the sequence {-j log(1+||xl|)}°_°=1 in @ is equivalent
to {log|a2~+z'z|_j}?=
kxp -1/5 Yo2+zez

because log|f] is plurisubharmonic if f is holomorphic, see [30, cor. 1.6.6].

(-]
1 if a > e, and the sequence {-1/j Hx"}j=1 to {log

. These sequences consist of plurisubharmonic functions,

o
Vet

0 [--]
In case we deal with {—M(l/jﬂxll)}j=1 or {—M(jllxll)}j=1 we replace
-M(tlxl) by the function

n

kzl ht(Zk)r

g, (2) def

where
h (w) def max{loglexp-—Va2+w2]-+c, -M(t|ul)}
for o > € and for C so large that log|exp - VaZ+w? L%C > -M(t|ul) in an open
1
neighborhood in €  of {w|w=u+iv,u=0,|v| <ol}.Since -M(t|u]) is a convex fun-
.ction in the sets {w|lv] <e,fu >0}, the function h_ is plurisubharmonic in
the strip {w||v| <e}. Hence the function 9, is plurisubharmonic in Q.
Furthermore, the properties of M imply that

M(llxl) < M([x1|+...+lxn|) < M(|x1|)+...+M(]xnl) < n M(lxl)y.

An n times repeated application of property (2.21) yields that the last

inequality can be further estimated by
2" m(xl) < m(c"Ixl) + (2" -1k,
Finally, this together with the fact, that -M(tp) dominates -p by (2.32),

yields that the sequences {gl/j(z)};n=1 and {gj(z)};=1 are equivalent to
{—M(l/jllxll)};;1 and to {—M(jﬂxm)};=1 in Q, respectively. 0
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C
For spaces H of holomorphic functions defined in tubular cones T and
*
bounded with respect to sup-norms with densities exp-M (tlyl), t > 0, cf.
*
chapter III, we can harmless change these densities into exp-M (t<£o,y>)

for some fixed Eo e ¢* with ﬂgoﬂ= 1,because there is a § > 0 such that

syl < <Eo,y> < liyl.

Now the functions M*(t<£0,y>) are convex in TC, hence plurisubharmonic. In
case the topology of H is given by an inductive limit, H = igd*lém Hm[9;¢m],
as in [16] this can be changed into a projective limit, H = proj lim
Hw[9;¢a], where {¢%} is the collection of convex functions domi;;ting every
¢m, m=1,2,... .

Finally, let us make some remarks concerning condition (4.22) in the
space H given by (4.29). In particular this condition implies that each
set int Qk is pseudoconvex, see [68, 12.9]. So not all the Exp-spaces
of chapter III satisfy this condition, for example the space Expe[a,Tc;M*]
given by (3.39) does not satisfy it. In the other cases it is not difficult
to see that a plurisubharmonic, even convex function 0 exists such that the
sets {Qk} determined by condition (4.22) are equivalent to the sets in the

definition of the Exp- and A-spaces of chapter III.
V.2. EXAMPLES OF LOCALIZABLE SPACES.

We say that a space W is localizable if it is the dual of a space W'
whose Fourier transform H can be written as (4.29), (4.32) or (4.33), where
the conditions of theorem 4.6 are satisfied and where moreover H is

' dense in each H[Q;¢u] or in H(Q;¢a), or proj lim H(Q£;¢a) in each H(Q ;¢a)'
respectively. Some spaces W such that H =(¥W? gonsists of entire functions
are localizable here, but not in the sense of [16], cf. example 4, while
others, such as U', are localizable in [16] but not here. That D' is not
localizable here is due to the fact that -log(l+“;"2) is not plurisubharmo-
nic in C,. Below we will see that there are subsets of D' (with a finer top-
ology than the one induced by D') which are localizable in our sense. These
are the spaces of distributions in D' whose inverse Fourier transforms have 1

their carrier contained in some unbounded, convex, open set.
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EXAMPLE 1. Spaces of Fourier hyperfunctions, ultradistributions of Roumieu
type and of Beurling type, and distributions, which are the boundary values

. . C
~of functions of exponential type, holomorphic in tubular radial domains T .

These are precisely the Exp-spaces of chapter III defined in (3.33), (3.34),
(3.35), (3.39), (3.44), (3.51) and (3.56). The spaces H are given by the
corresponding A-spaces. Also the Exp-spaces (3.2.i & ii), (3.45), (3.50)

and (3.55) are examples of localizable spaces.

EXAMPLE 2. Spaces of analytic functions in convex sets decreasing at in-
finity. These are exactly the A-spaces of chapter III defined in (3.5),
(3.33), (3.34), (3.35), (3.39) for a = ¢, (3.45) for o = ¢, (3.50), (3.51),
(3.55) and (3.56). The spaces H are given by the corresponding Exp-spaces.

EXAMPLE 3. Spaces of C = functions in convex sets decreasing at infinity.
These are essentially the S-spaces of lemma 2.27. Precisely, they are the
spaces of C < functions which are the duals of the spaces of distributions
proj lim ind 1lim S (m,k,k)', S (k,m)' and S (m,k)'. The spaces H are deter-
k> o m-> o [e} o) o
mined by lemma 2.27. Also spaces of C ® functions in a fixed, open, convex
set decreasing at infinity can be localizable. For example, the spaces
m m m
j ) ;=M (ml I JRE ;- Izl .
pﬁgj*lém WZ(Q(am, );-M(miizll)) and Pﬁfj*lim WZ(Q(am, );-m log(l+igh)), cf
(3.50) and (3.55) are localizable. The spaces H are determined as in lemma
2.27.

EXAMPLE 4. The spaces of C ®functions in an open, convex set U. The space

H is given by H = i£d+lim Hm(mn;k log(1+HzH2) + sup{—<g,y>[g eUk}), where

{Uk} is an increasing sequence of compact, convex subsets of U exhausting

U. If W is the space of C ® functions in the compact set 5, in the above

we set Uk = U for every k. Cf. the remark in the next section.

V.3. REPRESENTATIONS OF SOLUTIONS OF HOMOGENEOUS SYSTEMS OF PARTIAL
DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS.

In this section we will show that the exponential representation of
[16, th. 7.1], [56, VI §4] or [2, (9), p. 93] of all solutions of a homo-
geneous system of partial differantial equations with constant coefficients
remains valid in localizable spaces W as defined in the last section. This
representation follows immediately from theorem 4.6 and therefore it is

also called the fundamental principle.
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THEOREM 5.3. Let T € W be a weak solution of the system

-> >
(5.1) P(D)T = 0

>
in the localizable space W, where P = (pl""’Pq) is a vector of complex

polynomials and

9 )
D= (i ,.00, =17/ .
351 agn
Let W = (Vl,al;,,,;Vr,ar) be a polynomial multiplicity variety associated

to the vector of polynomials g(z) according to lemma 4.1 and let W be the
dual of W' whose Fourier transform H is given by (4.29). Then there are an

index k, an index o,. € A and bounded measures uj on Vj n Qk, j=1,...,r,

0
such that symbolically

r a
(5.2) T(E) = ) J {aj exp i<£,z>} exp - ¢ O(Z)duj(z),
5=1
anﬂk
i.e., for Y € W'
g - %(z)
(5.3) <T,P> = 2 J e z (3 .Fy) (z)du, (2).
3=y, na ’ ’
3™

Conversely, if T € W is determined by (5.3) then it satisfies (5.1). If H

is given by (4.32) we just set Q = Q in (5.2) and (5.3), and if H is given

k
by (4.33), for every £ =1,2,... there are an index az € A and bounded mea-
sures (11"7'):,| on Vj niﬂz, j=1,...,r, such that any weak solution of (5.1)

in W can be represented symbolically as

r ) )
T(E) = E j {aj exp i<E,z>} exp-¢ ~(z)d(u )j(z)

j=1
anQK
for every £ = 1,2,..., and conversely as above.
PROOF. As in section IV.6 we denote

o def

Ie

H H[Q;¢a]
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If H is given by (4.29) each T € W can be written as T = Fu for some

U € (HB)' for a certain B € A. That T satisfies (5.1) means that for all

3 e wnd

(5.4) <r,B(-D)+¢> = 0,

-> > >0 .
and moreover this holds for all ¢ such that F¢ € H 0, because H is dense in
a > 20 B . .
H O and P: H + H is continuous for some ao_ 2 B.
> >0, >0, >0,
Let fuo € %0 pe such that fao(z) = P(z) g 0(z) for some g 0¢go,

Then

¢} o [¢3
> —
<u,f 0 = <u,3(z)-3 O(z)> = <T,P(-D)-F 13 0 -

a
= <;(D)T,F 1; 0, - 0.

Hence in fact

o, a.
(5.5) woefm o Oy,

Conversely, if (5.5) holds, then

<§(D)T,F_13a0> = <u,fa0> =0
for all 3“0 € guo with fao 235 3-3“0 € an, so certainly for all 3 € E.
Hence (5.4) holds.

Now the representation (5.3) follows from (4.44), the isomorphism
(4.31) and the Riesz representation theorem, where property (4.30) and the
fact that Qk is relatively closed in  are used.

The case where H is given by (4.32) is similar and if H is given by
(4.33) for T € W we have T = Fu with y € H(Q£;¢a£)' for every £ = 1,2,...
and a certain sequence {a2}2=1 c A. Then similarly to above we find that

for every £
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o

£
H(Q£7¢ ) [
ve & TEa )
H(R)i¢ £) n BeH(R,:0 2)
and the theorem follows from the isomorphism (4.36). 0

For a system of differential equations we use the local restriction
map pL determined by lemma's 4.2 and 4.3 and similarly to above we get the
following theorem, cf. [16, th. 7.3].

->
THEOREM 5.4. For a gxp-matrix P of polynomials let T € W be a weak solution
of

> >
P(D) T = 0

in the localizable space W. Let a be a vector of polynomial multiplicity
varieties W = Vm 31,..., rm’ r ), m=1,...,p, . with the local restriction
map pL associated to the pxg-matrix tP(z) of polynomials according to lem-
ma's 4.2 and 4.3, and let H be given by (4.29) . Then there are an index k,
an index o € A and bounded measures uJ on V? n Qk' m=1,...,p, J=1,...,

0
T such that for ¢ e P

m o
(5.6) T3> = f ¥ J exp - ¢ o(z)a?(sz$)m(z)du’;‘(z).
m=1 =1 gm0
j ok

Conversely, if % is determined by (5.6), it satisfies g(D)°¥ = 6. If H is
given by (4.32) we just set Qk = Q in (5.6), and if H is given by (4.33),
for every L there are an index az € A and bounded measures (U )? on V?IWQK

such that (5.6) becomes

P m o
_ % m > L, Zm
D) J exp - ¢ (z)aj(szw)m(z)d(u )j(z)

m=1 j=1 vm
, NS
3L
for every £ = 1,2,..., and conversely as above.

Note that, by construction of the map pz, there is no 1-1 correspond-
m
ence between T € W and the measure um on wm, but T" is determined by all

the measures uk on wk for k = m,m+1,...,p.
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REMARK. In [16] W is provided with the strong dual topology and there it is
shown that the integrals in (5.3) and (5.6) converge in this topology. Here
we have considered W with its weak* topology. Moreover, our condition that

H is dense in each Ha is not required in [16]. This condition restricts the
possible AU-structures. For example, the AU-structure K of the example in
section IV.3 does not satisfy it. It should be remarked that this condition
is only required if the topology of H is written as a projective limit. In
some of the examples of the last section H has been given as an inductive
limit. It is true that in these cases H can be written as a projective limit
such that H is dense in each Ha. For instance, in example 4 this follows
roughly from the fact that the intersection of all classes of ultradistribu-
tions with compact support is the set of distributions with compact support
(because any C 2? function is ultradifferentiable of some type in a compact
set) and from the fact that the space of distributions with compact support
is dense in any space of ultradistributions with compact support (which on
its turn follows from the injectivity of the embedding of the space of ultra-
differentiable functions into the space of ¢ Z functions) . However, in these
.cases theorems 5.3 and 5.4 can be proved for spaces H which are inductive
limits directly along the same lines as the proof of theorem 5.3, cf. [56,
VI. §4]. So it was right to give H as an inductive limit in example 4. The
only reason for writing H as a projective limit is to give a uniform treat-

ment of all the examples of section 2.

V.4. INHOMOGENEOUS SYSTEMS.

In the last section we have studied the kernel of the map

WP P (D) q

—_— W

here we will discuss its image. We will show that for certain spaces W the
obviously necessary - so called compatibility - conditions are also suffi-
cient. For LAU-spaces W this result has been shown by Ehrenpreis in [16, th.
6.1]; similar results have been obtained by Malgrange, Hérmander in [30, th.
7.6.13] and Komatsu in [41], cf. also [1, ch. 3]. Our spaces W are duals of
spaces the Fourier transforms of which consist of non-entire functions, such
as the examples of section 2. In particular, we get the result for spaces

of analytic functions in convex sets satisfying certain growth conditions,

whereas in [41, th. 2] it has been shown without growth conditions.
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The following theorem is valid for all the examples of section 2.
It can be seen as the Fredholm alternative for systems P of partial differ-
> -> >
ential equations with constant coefficients: Peu = v has a solution u if

and only if v is "orthogonal" to the null space of the adjoint of P.

THEOREM 5.5. Let W be a localizable space, let P be a gxp-matrix of poly-

nomials and let D = -i 3/9%. Then for 3 e w2 the equation
> ->
P(D)*u = v
. -> 3 . > . .
has a weak solution u € W if and only if v satisfies
> >
Q(D)ev = 0

>
weakly for all polynomials g-vectors Q with

tP(z)'a(z) = 3.

. ->
PROOF. It is clear that the condition Q(D)-z = 0 is necessary. Now let
>
vV € Wq satisfy this condition. We want to solve P(D)-G = 3 weakly, i.e.,
->
for all § ¢ (wh)?

> £ > > >
<u, p(—D)¢> = <v,¢>.

> > > - > >
Let u = Fuand v = Fo for some 1 € (H')P and 0 ¢ @)Y with S(z)‘g = 0 weak-
z

ly. Let H be given by (4.29). Since H is dense in HY, we may assume that
—)-Y

->
0 € (H')' for some y € A and, as in the proof of theorem 5.3, that g'vanish—
>
es on §Y n QHY. We want to find an index a 2 y and ﬁ € (ﬁa)' such that for
=
all g € E
> t -> > >
(5.8) <u,, P(z)°g(z)> = <0,:9(z)>.

N
Thug M is already defined on the subspace M of ga consisting of all % for
. . -> >8 t -> ->
which there is a g € H with P(z)°g(z) = £(z), where a 2 B 2 Y are suffi-
. ->
ciently large. If we show that 1 is continuous on M, then by the Hahn-
- >q -> >
Banach theorem we can extend U to all of H and u = Fu is the required sol-

ution.
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It is clear that an arbitrary element of the kernel of tP may be add-
ed to 3 without changing £ By [30, lemma 7.6.3] this kernel is generated
by finitely many (say r) polynomial g-vectors. So there is a rxg-matrix Q
of polynomials such that in the following sequences, where the matrices P

and tQ determine densely defined closed operators,

@y 2=, @) 2@, Gy,
ot t
(aMP 22 4B 0@ Yy

the image of one map is contained in the kernel of the other. Here the first
sequence is dual to the second and we have to show that it is exact. Theorem
4.12 implies that Ker tP = R(tQ) if B 2 y is sufficiently large, i.e., the
second sequence is exact. Denoting the range R(tP) of tP by M we get the
following inverse map

. t
(P) q
(5.9) PO S0 ) HERL //R( o -

We have to show that the map (5.9) is continuous and because M, as a
subspace of a Frechet space, is bornologic, it is sufficient to show that
t_ -1 > >0 A > t. = > >R .
("P) is a bounded map. So let £ ¢ H with £ = Peg for some g ¢ H satis-
->
fy "f“a x S K+ where this norm is defined in (4.20). According to theorem
4 > > ->
4.12 there is a g' € nb with tP'g' = F and with “;l"ﬁ k‘SMk, k=1,2,...,
’
where {Mk} depends on {Kk} but not on %, if o 2 B is sufficiently large.
Hence the map (5.9) is continuous.

->
Finally, since 0 vanishes on ﬁY n tQ-EY,

it certainly vanishes on
t *B q
R( Q) <H Therefore, we may consider c as an element of {(H ) /&( Q) 1.

Thus the functional u on M satisfying (5.8) is given by

> > > t -1 => <>
<u,f> = <o, (P) " £>, f eM,

. 'y . : : >
and this determines a continuous linear functional on M. Therefore, U can

be extended to an element of (ga)'.
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If H is given by (4.32) or (4.33) the proof is similar. In the last
case M is also bornologic, because an inspection of a O-neighborhood base
(cf. [20, §23.3.14]) shows that i%é 1lim H(Q£;¢a£) induces on its subspace

> ©

M an inductive limit topology. |

It follows from the proof that there are only finitely many conditions

>
on v.

REMARK. The condition that H is dense in Ha is not required for a strong
fundamental principle as (4.45) of [16]. In chapter VII a similar strong
isomorphism will be derived. Therefore theorems 5.3, 5.4 and 5.5 are also

valid in spaces W such that H satisfies the conditions of corollary 7.4.
>V.5. THE NEWTON INTERPOLATION SERIES.

In [39] Kioustelidis has derived the Newton interpolation series for
entire functions of exponential type in cn. This generalizes the one dimen-
tional case only partially, because in one dimension the Newton series also
holds for functions holomorphic in a half-plane, see [55]. Kioustelidis
used the Ehrenpreis-Martineau theorem for entire functions. As we have
generalized this theorem in chapter III, we are able to derive the Newton
series in several variables also for non-entire functions of exponential
type. In this section we will mention the results, where for the details
we refer to [59].

Let f be .an entire function. For h € ¢" define the operator

Q
Hh

e

Aihf(z) £(z+ih)-£(z),

so that

k
gz = T ) D P (rimn)
ih n=0 m

The Newton series expresses the value of f in an arbitrary point in terms

of the values of f at equidistant points. Precisely, for s € €

S

(5.10) £(z+ish) = ) G

k
) Aih £(z).
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The polynomials (;) = s(s-1)...(s-k+1)/k! are the Newton polynomials pk(s).
Usually, the factor i is omitted, but here it will appear to be convenient
to use formula (5.10) for the Newton interpolation series.
Inverse Fourier transformation of (5.10) yields formally
(o]

I

-s<Z,h>.
e k .

£ =F

(5.11)
© tio

It is clear that (5.11) can only hold if f is concentrated in the set where
the series converges. Denoting -<f,h> = u+iv € € for this set we find the

condition (cf£. [39] or [59, section 9])
u < log(2 cos v).

The component of this set containing the origin is a unbounded, convex set
in € which is bounded in the imaginary directions. Hence the domain of con-
vergence of (5.11) is an unbounded, convex set Q in cn depending on the
region in which h may vary. In chapter III we have seen that functions £,
which are the Fourier transforms of analytic functionals carried by unbound-
ed subsets of 2, are functions of exponential type holomorphic in cones in
e®. In [39] only those f have been considered which are the Fourier trans-
forms of analytic functionals with bounded carrier in . So in [39] the
functions f for which the series (5.10) is valid are entire, while here we
get the result for non-entire functions.

In [59, section 9] it has been shown that (5.10) can be generalized
to non-entire functions only if h varies in a subset of cn of real dimen-
sion n. So we may take h real and in particular we will require that

hec, = {h|h e C,Inl <b}

where b > 0 and C is an open, convex cone in If{ Let  be the component

containing the origin of the set
..<;'h> -
e -1] <1 cC .
{Cll ’ , h e cb} n
The other components will not give a series (5.10) for non-entire functions,

cf. [59]. Since 9 is a convex set in ¢n which is bounded in the imaginary

. . . C
directions, a function a-n on T can be defined by
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[ol)

(5.12) - {a=n)(z) 2L sup (-Im<g,z>} - nlzl,

zeQ
where n > 0 is small. The Newton series will be valid for functions f of
exponential type a -n and holomorphic in TC. Moreover in [59, section 9] it
has been shown that if Res > p 2 0 the series (5.10) does not depend on the
values of f at the points z +imh, where m = 0,1,...,p. Hence the series will
be valid also for certain points z not in TC.
According to [59, lemma 9.1 and p. 78], for h € Eb and for s € € and

C
z € Cn such that z+ish € T , the series

. N R :
el<C,Z> Z *(;)(e-<c,h>_1)k N e1<c,z-+1sh>
k=0
C
converges for N - « in the space Ae(a -n,T ) given by (3.33), where n > 0
is so small that this space is defined and where I* means that the terms

-m<g,h>

with e for m = 0,1,...,p should be taken zero if Res > p 2 0. Hence

the following theorem can be derived, see [59, th. 9.1 & 9.1*].

THEOREM 5.6. Let C be an open, convex cone in Bf], let b > 0 and let a-n
C
be given by (5.12) for n > 0 so small that the spaces Expe[a-—n,T ] and

A (a —n,TC) can be defined by (3.33). Then for any h € C,,seCandzce€ &

b
such that z +ish € Tc the series (5.10) is valid for functions f eExpefa—n,
Tc], where-if Re s > p 2 0-in the points {z-kimh|m==0,1,...,p}, at which £

is singular or undefined, we take zero instead of f(z +imh).

The series (5.10) converges uniformly for z in a compact set K ¢ ”
such that K+ish < Tc, and even in [59] a more precise result on the con-
vergence has been given. The series remains valid for functions in the other
Exp-spaces of chapter III, but since this would mainly change the rate of
convergence, we will not state the precise results here.

In [55, p. 237, first example 123] the Newton series (without the fac-
tor i) in one variable has been given for the function £(z) = 1/z and for
h = 1. It has been shown there that (in our notation) (5.10) converges if
z+is € C+, where C+ is the open upper half-plane. So obviously theorem 5.6
is the generalization to several dimensions of this one dimensional case.

The above formalism has the disadvantage that one cannot see directly
what the type of f should be in order that the series (5.10) is valid if h
varies in a given domain (for a detailed study of the correspondence be-

tween h and the type in case of entire functions f and complex h, see [39]).
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Another approach would be to start with an f € Expe[a,TC] for a given type

a and to find out what the domain of h is such that (5.10) is valid. Then

it turns out that the bounds for lhl will not be the same in every direction
in C. For a precise result, which is however not as best as possible, see
[59, cor. 9.1 & 9.2]. Here we shall only mention the case where a(z) = alzl
for a positive number a > 0. Then (5.10) holds for f € Expe[a—n,Tc] if

z +ish € TC and if

hed, uhu<£’-‘g—2

For n = 1 this condition for lhl is exactly the one given in [55, p. 237].
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CHAPTER VI

PROOFS OF THEOREMS 4.11 AND 4.12

In this chapter we shall prove theorems 4.11 and 4.12. Since problems
3.2 and 3.3 follow immediately from these theorems, in this chapter the proofs
of theorem 2.20 and of the theorems in chapter III are completed. Our method
uses the L2-estimates for the Cauchy-Riemann operator given by Hérmander in
[30]. 1n [30, ch. 7.6] cohomology with bounds in ¢" has been derived. Along
the same lines we shall derive cohomology with bounds in an arbitrary, open,
pseudoconvex set . It relies on appropriate coverings of § which will be
constructed in section 1. In [54] cohomology with bounds in a bounded, pseudo-
convex set 9 has been treated also based on the method of [30]. There the

same growth conditions at the boundary of § appear as we will get here.
VI.1. COVERINGS

We construct open coverings U(A) = {Uj(_)‘)}ieI s A =0,1,2,... of the
A

pseudoconvex open set Q that satisfy the following properties:
A
(6.1) (1) every Ui ) is pseudoconvex and Uil) cc Q;
(ii) there is a positive integer L such that more than L distinct

A
sets in U( ) have empty intersection;

)

(iii) the size of U  ’satisfies
i

diam U;A) < min[b4_kdi,B4_A],

where di is the distance from UFA)

oY)
i

to 9Q, and Uix) contains

a cube whose side for any z € U satisfies

.Y -
side > min[ad 'a(z,0%), ad™],

for some constants a < b and A < B;

. +1
(iv) for each u U(u ) is a refinement of U(U) and, moreover, each
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Ui(u) c u(u)
u. ()
1

enlarged ZU_A times with respect to some center in

(X) c U(A)

is contained in some U for every A = 0,1,...,u-1;

denote the map p between Iu and IA with p(i) = ]i by pk,u;

(v) there are positive integers L depending on A and u (u >2)

Au

such that for each j € IA there are at most LA " indices
’

i, € Iu with pl,u(i ) =3, k=1,2,...,L

k k A,u’

When Q = kgl Qk satisfies (4.21) it follows from property (iii) that

(vi) every set in U(A) that intersects Qk is contained in some §,,

where £ = £(k) > k depends on k.

The essential idea for the construction of U(O) has already been used
in [70], and it can be found in [29] too.

Divide € into a collection of closed cubes with side 1 (such that the
vertices form a retangular lattice), select those cubes in Q whose distances
to Qc are larger than the length V2n of their diagonal and call this collec-
tion UO. Divide the remaining cubes into a collection of cubes of side % ’
select those cubes-in § whose distances to Q¢ are larger than 4/2n and call
this collection Ul. Generally, when the collections UO,UI,...,Uk_1 have been
defined let U consist of those closed cubes with side %k that are not con-

tained in the union of the cubes of £U Uz, but that are contained in Q and
def « ¥ u

T k=0 k
a cube in Uk can intersect cubes of Ll‘e only if £ = k— , k or k+l1. Hence U6

whose distances to ° are larger than v2n /2k. Then U' covers  and

satisfies property (ii) (with L = 22n) and property (iii) (with A =0, A =1,
B=v2n, a=1/(4/2n) and b = 1).

Define a map o on Ué by mapping Ui € U6 to the enlargement of the in-
terior of Ui with a factor 3/2, the center kept fixed. Finally, define

U(O) def {UFO) [Ufo)'= au', U' € U'}.
i i i i 0

It is still true that U:O) n U;O) # @ if and only if o 1U(0) n —1 ;O) # 0.

Hence, the open covering U( ) of Q satisfies properties (1), (ii) (with
L = 2°®) and (iii) (with A = 3/2, B = ¥2n 3/2, a = 1/(3/2n) and b = 2) for
A= 0.

Now let U(O)

A=
U( D be defined with the properties (i), (ii), (iii),

(iv) and (v) satisfied and let each U(U) con51st of open cubes U(u), such

()

RN}

that the collection U' of the closed cubes a U covers 2, u =0,1,...,x-1,
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Define Ui as the collection of all closed cubes obtained by dividing each

cube in Ui.l into 42n closed cubes. Then define
*nd

u) gef ;) IU.()‘) =aqu!, U! € U},
i i i i A

It is clear that U(A) satisfies properties (i), (ii) and (iii) and it satis-

fies (iv), since 2 times a cube UFA) € U(A) is contained in the cube Ufk-l)
eSS -1 (), 1 oon -1 _(A-1) NN

, when o Ui is one of the 4 cubes o Uj had been divided in.
Hence (v) is satisfied with L = 42n, so that L = (42n)u—l.

A, A-1 AL u
If Q = Gn we just get the usual coverings of Gﬁ given in [30, p. 188].

VI.2. COHOMOLOGY WITH BOUNDS IN AN OPEN, PSEUDOCONVEX SET.

In this section we will prove a theorem B with bounds in an open,

pseudoconvex set , just as [30, th. 7.6.10] for Q = Cn. The following lemma

is an extension of [30, th. 4.4.2].
oo

k=1
sequence of subsets of Q satisfying (4.22) and let ¢ be a plurisubharmonic

‘LEMMA 6.1. Let Q be an open pseudoconvex set, let {Qk} be an increasing
. o . o]

function on Q. For any sequence {Kk}k=1 there is a sequence {Mk}k=1 such

that for every (0,q+l)-form g with locally square integrable coefficients

and with 5g = 0 there is a (0,q)-form u in Q with locally square integrable

coefficients, so that Ju = g and for every k = 1,2,...

2,2

J Tu(z)1? S2p=28(2) 4 () < Mﬁ,
(1+1212)

L

provided that for each k

J ﬂg(z)“2 exp - 2¢(z) di(z) < Ki.

o

Here 9 acts in distributional sense. We remark that u will depend on
the sequence {Kk}§=1' too. In the above formulation [30, th. 4.4.2] says

oo (-]
that {Mk}k=1 is bounded when {Kk}k=1 is bounded, while (4.22) need not be
satisfied (in fact, if Kk = K, then Mk =K for k = 1,2,...).
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PROOF. Let ¥ be a convex majorant of the nonnegative function ¥

def

0 for t <1
X(t) == {

k+1 2
max[0, log(2 K,)] fork st <k+l, k=1,2,... .
Then Y(z) §g£ x(o(z)) 2 0 is plurisubharmonic in £, so that we may apply

[30, th. 4.4.2] in the domain £ with the plurisubharmonic function 2¢ +¢.
This yields a (0,q)-form u in @ with ju = g and with for each k

J Ilu(z)ll2 exp-2¢(z) dx(z) <

(1+l 21 %)
gk
< X J luz)12 &pl=20(2)-¥ (=)} 5 ) ¢
2,2

0 (1+1z1%)

k
< X&) J lu (212 exp{—2¢(z);w;z)} Y

(1 +0z1%)

Q

<

X ) J lg(2)1? exp{-26(2)-p(2) }ar(2) <
Q

Sex(k){J + Z
£L=m

Q Q&+
m

X () {K2 + ) 1/2£+1} = XF 2 4 12™
m £=m m

J } Ilg(z)“z exp{~2¢ (z) -y (z) }Ar(z) <
1\%

I

X (k)

for arbitrary m € {1,2,...}. So we may take M o= [e (Kf-+1/2)]%. ]

[--]
It also follows that, if {gn}n=1 is a sequence converging in every

-]
norm "."k to zero, {un}n_ converges in every norm to zero. This follows

1
from the continuity of a bounded map from a bornological space (here a

Fréchet space) into another locally convex space, too.

REMARK. If g is such that every L2-norm on Qk with respect to a different
density exp—2¢k is finite and if the u of lemma 6.1 would have the same
~property (cf. chapter VII), then the following lemma's and theorems could
be changed in such a way that theorems 4.11 and 4.12 would hold with one
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global function v satisfying all these bounds.

The following lemma is an extension of [30, prop. 7.6.1]. The proof
follows the same lines, only here one has to look more carefully to the

estimates near the boundary of .

LEMMA 6.2. For every A and for each sequence {K }k there is a sequence

k 1
{Mk}k—l such that every cocykel c € Cp[U(A) A%, p 2 1, with lcl < K
= , A
can be written as c = 8c' for some c' € Cc° 1[U(A) A Oy ] with ﬂc'"ﬂlﬁlo M
' ’
for every k, when |- "Z M:0 genotes the L2-norm with respect to the density
’
exp - 2¢N M,0 with
¢; M o(Z) def ¢u(z) + Nlog(1+HzH2) + 1og(1+d(z,Qc)_M),
LA

where N = M = min[p,n], when the pseudoconvex open set -Q = kﬁl Qk satisfies

(4.21) and (4.22) and when the function ¢ais plurisubharmonic in , Moreover,
-] (2]

when {Kk}k=1 is bounded, (4.21) and (4.22) need not be satisfied and {Mk}k=1

is bounded.

PROOF. Let Lq be the sheaf of germs of (0,q)-forms with locally square integr-
able coefficients and let Zq be the subsheaf of d-closed forms of type (0,q).
Here 9 acts in distributional sense. By [30, th. 4.2.5] and the Sobolev em-

bedding theorem 3c = 0, weakly, for an L2

loc
1
C -function, hence a holomorphic function. Thus a section c € I (Q, Z ) is a

-function c implies that c is a

holomorphic function c € A(Q). For c € Cp[U(A) z ,¢ ] with 6c =0 and Hc"a K <

1 A
< Q{wewantto find a ¢' € &~ [U( ) .z ,¢N M, OJ such that 6c' = c and
N,M,
el gt ° < M, when g = 0. Assume that this has already been proved for
'

smaller values of p and all q, when p > 1, N =M = p and when {Mk}:—l depends
moreover on p.

We construct a partition {¢ 1. of unity subordinate to the covering

()\) EI}\
u of Q satisfying for some constant cy
= 2 Ci
(6.2) HB/¢i(z)H < ,

min[1,d(z,0%) %]

where

2 def E

136 (z) I |a/a£j b(2)]2.

i=1
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~

2
For example, let X be a nonnegative C(ffunction on ¢n r" equal to 1 in
the closed cube with center O and sides 1 and with its support contained in
the open concentric cube with sides 3/2. Let the length of the side of

Uix) € U(A) be 3/28i and let the center of Uil) be z, . then define

\

def (%%
(2 = X\
1
and let
2
def X; (2)
¢, (z) = 3% -
1
b x(2)
jeI, J

By property (6.1) (ii) for each z not more than L terms in the denominator
differ from zero and since Ui covers ! at least one term equals 1. Hence,
(6.2) follows from this and from property (6.1) (iii). Furthermore, ¢i has

its support contained in Uix).

For s € Iﬁ we set
def
gs .z ¢1 cis
lEIA

A
when ¢ € Cp[U( ),Zq,¢a]. Using Zi ¢i = 1, by computing we find 8g = c, if
§c = 0. Furthermore, writing ¢i = /$; /$; and using Cauchy-Schwartz and

again Zi ¢i = 1, for any function Y we find

2 def 2
(“gs"¢'k) == J "gs(z)" exp - 2y (z) di(z) <
(x)
Us an

< f ¢, (z) lc, (z)12 exp - 2y (z) di(z) <

iel (A) . s

A US an
2

< .Z "cis"w,k.

1€IA

By summing up for each k we get

(6.3) “g"w,k < "C"¢,k
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-1 A)
for ¥ such that the right hand side is finite, hence g ¢ cP [U( ),Lq,w].
Let 3g = £ be defined by

def = _ 5 = 3 p
fs=8gs-'§: 89, Ao, 2.2 /qTi(a/qTiAcis), s e 1Y,
iel lEIA

This yields

y
ufu°1°szf ) (HﬁfAc,nmlﬁ\z}
o,k 1151 i is o,k /

A

and by summing up, in virtue of (6.2) for every k we find

0,1,0
heh™r=r
£ o,k

< I <
2c>‘ clla’k 2c>\ Kk'

p-1-,(})
so that £ ¢ ¢& "[U Zq+1'¢0 1, 0

Now &f = 56g 3¢ = 0. If p > 1, by the inductive hypothesis (note,

that ¢N M,0 is plurisubharmonic because § is pseudoconvex) there is a cochain

f' € CP"Z[U(A) Z 1,¢ ] with 8f' = f and with for every k

p-1,p,0

he® L0 sy

(-] o
where the sequence {Mk]k 1 depends on {ZCAKk}k=1' hence on {Kk}k=1' By lemma

6.1 second part (actually [30, th. 4.4.2]) and by property (6.1) (i) for every
(O9]

s e 27! there s a (g")_ e MwM,L ) so that 5(gn_ = (£1)_ in 0" ana
s s q s

) l(gr)y IPPO < (gry 121,20
(6.4) (g ) g a £y .
By summing up by property (6.1) (vi) we get

1g IPP0 < e PlRi0
9 0,k loem =M

p-20., ()
so that e C Lu .2, .
g’ q ¢p p,O

. ; de
Finally, set c¢' == g-4g', then for every k = 1,2,... (6.3), property

I-h

(6.1) (ii) and the above estimate yield
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I

WPP0 o BP0 T g PR O
le o,k ¢ o,k pYL-p g o,k

IA

d
== Kk + pYL-p+1 Mﬂ(k) .

Furthermore, 6c' 6g = ¢ and 3c' = f-SEg' = f-8f' = £f-f = 0, hence

1
e e P 7 ot o0l
I 4
It remains to consider the case p = 1. The fact that 6f = 0 then means
that f defines uniquely a (0,g+1)-form f in Q with 9f = 0. By lemma 6.1
oo

there is a g € (9, L ) with 3g = £ and a sequence {M'} depending on

k=1
{2c Kk}k ) With
J 15 ()12 ';"‘52"24’(2) —— a\(2) < M]-(z, K=1,2,... .
(14021 %)% (1+d(z,2%) %)
&

Setting (C') def 9; -—EIU (A) we obtain a cochain with the required properties
i

(using property (6. 1) (ii) in the estimate for the cochain {glU(X)}leIA)
In fact, there are not more than n induction steps, because all
(0,n)-forms g satisfy Sg = 0. Therefore, the estimates hold already when p
is replaced by min[p,n] and the sequence {Mk}:=1 may be taken independent
of p.
The second part follows from the second part of lemma 6.1 in case
p=1. 0

2
The following lemma is a rewriting of [30, prop. 7.6.5] with L -norms

instead of sup-norms

LEMMA 6.3. Let P be a matrix of polynomials, ¢ a weight function, for some

A let V € U(A) and let u € A(Vi)q. Then there are y > )\ and positive num-

bers N and C(X) such that for UJ € U(U) with DA (j) = i there is a
v € A(U )Y with

P(w)v(w) = P(w)u(w), w € Uj

and with

J "v(w)"2 exp-—2¢N(w)dA(w) < c(A) J "P(w)u(w)“2 exp - 2¢ (w)dX (w) ,
U v

J i
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where ¢N is determined by ¢ according to (4.26).

PROOF. In [30, prop. 7.6.5] (or [16, th. III. 3.4. (3) when p = q = 1, cf.
also th. 1.4, and the general case is contained in th. III. 3.6]) it is shown
that for each pxg-matrix P with polynomial entries there are a number

0 < § < 1 and constants C, ﬁ and N' such that, when S denotes the unit cube
(actually in [30] the unit ball is used, but this only changes the constants),
for every 0 < € < 3/2 and for every u € A(S+z/e)q there is a v € A(<SS+z/E)q
with

P(ew)v(w) = P(ew)u(w), we 68+ z/e,
and with

sup  Ivwml < ce™ (14lz7eh)Y  sup  Ip(ew)u@wl.
wedS+z/e weS+z/¢e

In fact this is [30, formula (7.6.5)] and it follows from the proof given

in [30], that the constants §, C, N' and ﬁ can be taken independent of ¢,

if we write CE_N' in the above estimate. Therefore, by shrinking the variable
w with a factor €, we find again constants C, t > 1, ﬁ and ﬁ such that for

0 <n< 3/2t_1 and for every u € A(tnS+z)q there is a v € A(ns+z)q with

P(w)v(w) = P(w)u(w), wWeEnNS + z

and with

~

sup lvwl < en™a+lzhY  sup  Ipunl.

wenS+z wetnS+z

Now we change this estimate into one with Lz—norms. Let V, € U(A),
choose U > X so that 2u—A 2 t+1 and let U, € U(U) be such that ;A u(j) = 1i.
We write U, with center z, and sides n, a: U, = n,S+z,. Since by éhe con-
struction of U(U) a—luj c a_lvi we hav; tU. = tn.S + z, ¢ {zl“z—z'ﬂ <
<%diam a-lvi+diam U.} for any z' € U, and gy pro;erty %6.1) (iii) tU, <
c{zl"z—z'"~S(%A+1+&u)min[bd(z',QC),B]}. Therefore, in view of (4.23)3 b =2,

B=V2n 3/2, A 20 and y 2 2 we take K def max[log 8/3, 15/32 vY2n1 obtaining

tUj c {z]z € S(z';E)}, z' € Uj'
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where S(z;K) is given by (4.24). Also, for z € (t+1)Uj there is a z' € tUj

with lz-z'l < diam Uj' hence similarly to above

(t+1)U, c U s(z',K)
z'etUj

= def
with K = max[log 8/7, 3/32 vV2n]. Now for a weight function ¢ and for N ==

amax{N/2 + (n+1) /4, M+n, K+K} define the plurisubharmonic function ¢ by (4.26).
In virtue of [73, conditions H51 and HSZ, p. 15] property (6.1) (iii) and
(4.27) we get

[ J IIv(w)ll2 exp-—2¢N(w)dA(w)]% <

U,
J
M+n
_4.1_111 I ]
= Cl ( a ) sup v (w) exP.‘¢§/2,0,K+i(w)
weuU,
J
n 1+l z | N
I I - - <
< CZ(A)n_ sup \“f?ﬂﬂf) sup P(w)u(w)ll exp ¢0’0'K(w)
wean+zj wetan+zj

A

C()) [ J I (w)u(w) 12 exp‘zqa(W)d)\(w)]L2 ,
v,
i
where in [73, cond. HSZ' p- 15] the radius dz of the polydisc D(z,dz) is

taken dz = nj for every z € tnjs + Zj' so that the constant there depends

on n;n and where
{w!w €eD(z,n.),zetn,S+z.} c© (t+l)n.S+z, < V,, ]
J J J J J 1

The next theorem is Cartan's theorem B with bounds in an open, pseudoconvex
set . It is an extension of [30, th. 7.6.10]. Let F be either the sheaf of

relations of P on Q, thus F = RE)or the image under P of the sheaf Aq, thus
F = pAd,

THEOREM 6.4. For all polynomial matrices P there is a positive N;.for all

nonnegative integers A\ there is a U > A (depending moreover on P) and for



179

each sequence { }oo a sequence {M }co (depending moreover on A and P),
7 k=1

k=1

such that every cocykel f ¢ Cp[U(A),F,¢a], p =1, with ﬂfﬂa K S K can be
’

(s) for s € Iﬁ+1)

(]

written as 6f' = p* £ (i.e., (Sf')s

fs with s' =
for some f' € Cp_l[ U(U) F ¢B] with l£'l

' °ru
’
8.k Mk' when the pseudoconvex open
’
set Q = kgl Q satisfies (4.21) and (4.22) and when ¢ if the plurisubharmonic
function determined by ¢ and N as in theorem 4.11. Moreover, when {Kk}k 1
is bounded, (4.21) and (4.22) need not be satisfied and {Mk}k=1 is bounded.

PROOF. Conversely to lemma 6.2 this theorem is proved by induction for
decreasing p, since the theorem is true for p 2 L (see property (6.1) (ii)),
because there are no non-zero cochains f € CL[U(A),F,¢QJ. Thus assume that
the theorem has been proved for all matrices P, when p is replaced by p+l
and when the constants N, u and {Mk}°° depend moreover on p.

In case F = R there is a polynomial matrix Q, such that F = QA" in
virtue of [30, 1emma 7.6.3] and we can write f € CP[U(A) F ¢ ] as f = Q9
where g € CP(U(A) AY ), cf£. [30, lemma 7.6.4] or (4.14) where the fact that

() € U(A) 9 ye write

every U is pseudoconvex, has been used. In case F = PA
A

Q=pr and r = g, then also £ = Qg with g ¢ c®(U™) A%y, c£. [30, th. 7.2.9]

or again (4.14). According to lemma 6.3 there are v > A, N, > 0 and a cochain

1
~ P u(\)) Ar a s I, = " = * =
g~e c'L ’ :¢N1] with Qgs g, fs' where s pA,v(S)’ hence pk,vf
=g and with

N
"55"31 <cm de 0.

Al
Since (4.21) holds property (6.1) (vi) is satisfied and it follows from this

property and from property (6.1) (v) that for every k there is an £(k) > k
with

~ 1 def p+l
1 ger
H <K, (L v) C(A)"fs'"a,ﬂ(k)'

When 8f = 0, 6QF = Q8§ = 0, whence 6§ = c is a cocykel in cp+1[u(“),RQ,¢§1]

In view of (4.27) for N' = 0 we have (¢§1)N, < ¢§1+N..

By the inductive hypothesis we can find u >V, apositive N', a sequence
. R
{Mi}k 1 (belonging to { (p+2) VL-p-1 KE}:=1) and a cochain c' € Cp[U(“),RQ,

oR+,N,0] with éc' = Py, yc and le! "g'ﬁN',O M}, where the plurisubharmonic
g def

function ¢P is determined by (4.42): ¢ $N N
ef

d
We set g; == pv,u g-c e CP[U(“),Ar,¢N,,N,'O] so that &g, =
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= ptluc—p:,uc = 0. According to lemma 6.2 there is a sequence {Mﬂ}§=1 belong-
ing to {(L\,'u)P+1 KL+Mlp-1 and a cochain g' € CP"1[U(U),AI,¢£2,N2,0] with

- N2/N2,0
8g' = gg and lg'lgey

< My for some N, > N'.
Finally define f£' gef Qg' € CP'1[U(“),F,¢S2+N3,N2’QJ, where N3 depends
~ * *
on Q. Then 8f' = Q8g' = Qgg = pslqu = pﬁlupx’uf = p},uf- Furthermore, let
N denote N, +N3, then for every k and some C' depending on Q we get
N2,N2,O

N,N,0
1772 < crllgell <
8.k 9",k M

Qs
Hh

Igr =

!l

C'Mﬂ.

Here {Mk}§=1 depends on Q, A, v, M, p and {Kk}i=1' but v depends on A and

P (since t in the proof of lemma 6.3 depends on P) and u on v; N3 depends
on Q; Ny depends on p by the inductive hypothesis and on P, since the cons-
tants N and M in the proof of lemma 6.3 depend on P; Q depends on P; C' de-
pends on Q; and finally {Ki}:=1 depends on P and on {"f"a,l(k)}§=1' However,
there are only finitely many induction steps, so that we can take the larg-
est of all the constants. Therefore, the theorem is true for all p with con-
stants {Mk};=1 depending on P, A and {Kk};=1; N depending on P; p depending
on X and P.

Moreover, when {Kk};=1 is bounded, so that in the above proof we do
not use (4.21) and {Ki};=1 is bounded, it follows that {M{}.; is bounded
and by lemma 6.2 (4.21) and (4.22) need not be satisfied and {Mﬂ}:=1 is
bounded. Hence (4.21) and (4.22) need not be satisfied and {Mk};=1 is
bounded. a

VI.3. PROOF OF THEOREM 4.11.

Let F be the sheaf PAq. We can estimate the cocykel £ = 6h in terms
of h, then "f"a,k < /E:TNKE(k) and £ ¢ clfU(1),F,¢%]. According to theorem
6.4 there is a cochain £' e cOLUW) ,F,¢B] with 8£' = p?luf and a sequence
{Mk};=1 with "f'uﬁ,k < Mp for some p and for some plurisubharmonic function
'¢B determined by ¢a and by a positive integer N as in theorem 4.11.

For every i € I,, and z € Ué“) let

n

v.(z) B h (2) -£1(2)
i 3 i

. . _ % % * _ ;
where j = pl,u(l)’ Then v = plluéh—éf' = pl,uf_pl,uf = 0, thus {vi|1 € Iu}

determines a function v € A(R)P. Furthermore, using property (6.1) (v) for
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every k we obtain

[ J lv(z)12 exp—2¢3(z)dmz)]12 <

b

L, Inl + M' <M gL K+ M'.

< lvl <
e,k T Tl Bk Tk k 1,0k T Uk

©

Moreover, if {Kk} is bounded, (4.21) and (4.22) need not be satisfied and

k=1

{Mi};=1 is bounded, so that {Mk};:=1 is bounded, too. et )
For s € Iy, let I'(s) eIu be the set of those i € Iu with vy == U0y "' n

n Uél) # @. For each i € I'(s) and z € Vi we have

- = - F1 - s = N

v(z) hs(z) hj(z) fi(z) hs(z), 3j pl,u(l)'
R . : : (1) ; (1) (1)

This is a holomorphic function in Ug and since hj -hg € F(Uj n Ug B

and also fi € F(Uiu),F), we obtain

v -h € F(U(l),F).
s s

o't
s

(1)

Since the sets Vi and u, ' are pseudoconvex (property (6.1) (i)), Cartan's

theorem B yields, cf. (4.14),

v -h e per't) A9y,
S S

U(1)
s

that is v - hs = P-gs for some g € CO(U(l),Aq). O

ot
s

VI.4. PROOF OF THEOREM 4.12.

From Cartan's theorem, namely from (4.14), it follows that for every

ie Io f = Pg, in Uio) € U(o) with g € CO(U(O),Aq). According to lemma 6.3
there are positive integers v and N1 and a cochain g € Co[U(v),Aq,¢g1] with
Paj = £ in U;v) for each j € Iv and with
Nl
Ig.l * < clo)le I
gj o c(0) 0 (J) a’

0,v
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0 0 o . . .
where f is regarded as a cocykel in C [U( ),AP,¢ ]. Summing over j and using

properties (6.1) (ii) and (vi) for each k we get an £(k) > k with

N

~p 1
I'gl < I £
g o,k C(O)Lo,v £

, def
a,£(k) < Kk C(O)LO,VKK(k)'

Consider the differences c of the functions 5j in the overlaps of the

sets U;v) for j € Iv’ i.e., c = 65. Then

N

1
Il VL- '
cl, " < 2VL-1 Kk

’

and Pc = P8g = 6f = 0 and also 8c = 0, hence c is a cocykel in
1.,,(v) o
C [u IRPI¢N1]-
oo
According to theorem 6.4 and (4.27) there are U > Vv, a sequence {Mi}k=1
(depending on {2vVL-1 Ki}:=1), a plurisubharmonic function ¢B, which satisfies
the condition of theorem 4.11 for some N > N, and a cochain c' € CO[U(u),

B . . ,
RP,¢ ] with 8c' = Py, uC and with

4

el < M'.
R S
. def ~ (u)
Finally, for every s € Iu we set Vs(z) == gs,(z) —c;(z) for z € U , where
s' = (s), which defines a function v € A(R)?, because v = p* §3-p* c=
Dv'u ' ()7, cause p\)'u g pv,u

that satisfies for every k

fj 2 8 T4 ~
I - '
[ v(z)l® exp -2¢ (z)dA(z)J < "v"8,k < LV,u"g"B,k-FMk <

< = L K' +M'.
Mk v,u k k

©

-]
if {k } is bounded, (4.21) need not be satisfied and {K'} is

k k=1 k k=1
bounded, hence also (4.22) need not be satisfied and {Mi}:Ll is bounded,
so that {M }" , is bounded.

Furthermore, for every s € Iu in U;u) we have

Pv =Pv_=Pg , -Pc' = f.
v vS Ig cs £ 0
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CHAPTER VI

A COHOMOLOGY VANISHING THEOREM

In chapter II we had assumed that the map (2.12) was surjective. In
fact, this expresses the triviality of the first éech—cohomology group of
a covering consisting of two open, pseudoconvex sets with values in the sheaf
of germs of holomorphic functions satisfying countably many bounds. Explicite-
ly, let Q = 91 U 02, where Q, 91 and 92 are open, pseudoconvex sets in Cn,
let a set of countably many growth conditions in § be given and let f be a
holomorphic function in 91 n 92 satisfying these growth conditions there.
Then the question is whether there exist holomorphic functions f1 and f2 in
'91 and 92 satisfying the growth conditions in 91 and 92, respectively, such
that £ = f2 —f1 in 91 n 92. We will solve ;his problem with functions bounded
with respect to countably many, weighted L -norms instead of sup-norms. How-
ever, the conditions imposed in chapter II are such that this makes no essen-
tial difference. In chapter II the above mentioned result was also needed
for functions satisfying only one growth condition and, actually, this is
lemma 6.2. As is noticed in the remark after lemma 6.1, lemma 6.2 holds with
functions satisfying countably many bounds if lemma 6.1 does. Then a theorem
B with functions satisfying countably many bounds can be derived and the
stronger version of the fundamental principle can be given. In this chapter
we will improve lemma 6.1 by functional analytic methods.

[}

= . L n .
Let © = kgl Qk be an-open, pseudoconvex domain in € with Qk [= Qk+1 c Q.

Furthermore, let for some integer q with O £ q £ n-1 and for j = 1,2 H?(Qm)
be the Hilbert space of (0,g+j-1)-forms in Qm with square integrable coeffi-

cients with respect to the density
k . 2
(7.1) exp - 2{¢ (z) + (2-j) log (1+lz1 )},

kq® . .
where {¢ }k=1 is a decreasing sequence of plurisubharmonic functions with
k . s s j k+1
defined on . Then th tricti J i
¢. e e restr on map ﬂk+1,k from Hj (Qk+1) into

k . . .
Hj(Qk) is continuous, so that the projective limits can be defined



184

(7.2) g, 28 5 04 1im H’?(nk), j=1,2,...
j K > o 3

Often we shall write H? instead of H?(Qk).

Let £ € H? be such that Jf e H%, where 9 is defined in distributional

sense. We denote the operator which assigns to such £ the (0,g+1)-form 3f

by T,. Then T, is a closed, densely defined operator

k* k

That Tk is closed follows from the continuity of 3 in distribution theory.

This also implies that the sets

a -
F def {g € H, lag = 0 in distributional sense}

Fk def {g € H; I§g = 0 in distributional sense}

are closed subspaces of H2 and Hz, respectively. For p > k we have

2 1
™ T =T T
p/k P k p,k

so that {Tk} determines a closed, densely defined operator T from H1 into

H2. That T is densely defined follows from the fact that the space of

(0,q) -forms with c Zcoefficients with compact support in Q lies in DT and

is dense in H1 by Lebesgue's theorem. The following diagram is commutative

H, . T y H,
1 2
™ ™
P P
P o
'y ~
Hy Hg
1 2
np:k ﬂprk
.3 T LHk
1 )

Since also

F={geH ni geF ,k=1,2,...}

2 k
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we have R(T) c F. We want that R(T) = F, but by [30, th. 4.4.2] (lemma 6.1)

we only know that R(Tk) =F

k
Hz.

k for every k. In particular, R(Tk) is closed in
We will use that the range-R(T) of a closed, densely defined operator
T: E + F is closed if and only if R(T*) is weakly* closed 1 in E' provided
that E and F are Frechet spaces. This follows from [61, IV 7.3]1, cf, also
[65, lemma 37.41, [61, IV 7.4] or [65, lemma 37.6] and the open mapping
theorem for closed operators [61, IV 8.4], see also [40, th. 19(i)]. If more-
over E is reflexive the weak *topology on E' equals the weak topology and
accordingly [65, prop. 35.2] in that case R(T*) is closed in the strong top-

ology of E', because R(T*) is convex.

LEMMA 7.1. Let T: E + F be a closed, densely defined operator from the re-
flexive Frechet space E into the Frechet space F, then the following three
statements are equivalent:

(1) R(T) is closed in F

(2) R(T*) is weakly* closed in E'

*
(3) R(T ) is strongly closed in E'.

For the improvement of lemma 6.1 we will apply a similar trick as
Kawai has done in [38, lemma 2.1.2]. Besides condition (4.22) on the domains
{Qk} we impose the following condition on the weight functions {¢k} in Q:
for every k and every p > k there exists a holomorphic function wk,p in Q

and moreover for every m = 1,2,... a positive number K(k,p,m) such that
k,p k p
(7.3) 0 < |¥°"P(z2)] < K(k,p,mexp-m{¢ (z) -¢(z)}, zeQ, m=1,2,...

and such that log wk'p is holomorphic in . Since ¢k > ¢p for p 2 k it follows
that this condition cannot be satisfied if Q = Cn, unless all the functions
{¢k} are equal. Hence (7.3) is a condition on the domain , too.

Our stronger version of lemma 6.1 is based on the following lemma,
cf. [38, lemma 2.1.2].
1)

The weak *topology on the dual H' of a locally convex space H, sometimes
denoted by the o(H',H)-topology, is the one induced by the polars of finite
subsets of H. The weak topology on H', sometimes denoted by o(H',H"), is
induced by the sets in H' on which a finite number of strongly continuous
functionals are bounded. If H is reflexive the weak *and weak toplogies on

H' coincide.
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LEMMA 7.2. Let Q be a pseudoconvex domain and {¢k} be a decreasing sequence
of plurisubharmonic functions in Q satisfying condition (7.3). Furthermore,
let Hj be given by (7.2) with Qk =Q for j =1,2. If for f € DT* c Hé we
have T*f € n;*(H?)' , then there is an £, € DT; c (Hg)' with

1
PROOF. Let H]; = H}j‘(Q). If p > k, let y_(2) def (KiP(y) /m, by (7.3) these -

functions satisfy

/M exp-{5(2) -¢P(2)}, zeQ m=1,2,....

1

lv (2] < kk,p,m

Hence multiplication of each coefficient of a (0,g+j-1)-form in @ by V¥
defines a continuous map from H? into H?; we denote these map by w;. Its
adjoint (multiplication by @m) is a continuous map from (H?)' into (H?)'

which we denote by @;. We have the following diagram

*

H! ¢ T H' D f
4 2
I
1% 2%
T i
1% % p
T
1x Py, P Py,
ﬂp,kh (Hl) f . (H2) El fp
1 % =1 2 % =2
Trp,k lI)m TTp,k lpm
T*
k ] k k 1]
h e (Hl) ¢ (H2) E) fk

Here all maps m and ™ are identity maps, because Qk = Q for every k.
Since wm is holomorphic in 2, for all u € DTk we have in distributional

sense

5wm u = wmgu = wi Tk u e Hg.

1 1
Thus ¥ u € DTP and w; T, U= prm u. Therefore, if g € DT; we get

=2 2 1 1 -
B3 M = QYT = <g T = < g, Y = T g
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. =2 .
This means that wmg € DT; and that

* =2 =1 *
= T D_* .
Tk wm wm P en T
p
24 * 1 *
Now let p > k and £ € Dp % be such that £ =7 f ,and let T £ =1 h
p p P p P P p/k

for some h € (Ht)'. Then in the above we take this p and we find

* =2 =1 % -1 1 =%
= T = h.
Tk wm fp lPm P fp ¢m Trp,k

-1 1 *
Furthermore, by Lebesgue's theorem Y T X h>has m~> ® in (HT)'. Since
P/

by lemma 7.1 T; has closed range in (Hl)', it follows that there exists an

£, € Dy with T * £ = h. Hence

k 'k
Lo« 1% I Lim % * 2y *
T*T*f =m h=m7""w h=7n*T*f =T 7 "f =TI€£.
k k 'k k p p/k P PP p p

Now using lemma 6.1 we can easily prove its following extension, cf.

[38, lemma 2.1.1].

Lo
THEOREM 7.3. Let Q = kyl Qk satisfy (4.22) for a plurisubharmonic function
0 in the pseudoconvex domain Q, let {¢k} be a decreasing sequence of pluri-
subharmonic functions in Q satisfying condition (7.3) and let Hj be given

by (7.2) for j = 1,2. Then for each g € H_ with §g = 0 there is an u € H

2 1

with du = g in distributional sense.

PROOF. Let g € F be fixed. Then there are positive numbers Kk with

j llg(z)ll2 exp—2¢k(z)d)\(z) SKoo k=1,2,...

Y

As in the proof of lemma 6.1 the function ¢ and the numbers {Kk} determine

a plurisubharmonic function y. For g we get the estimates

J !Ig(z)"2 exp{-2¢k(2)-¢(2)}dk(z) <

< { j + J } lg(z)1? expl-26%(z)-v(2)}dr () <
=k

& Qp,1\p
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©

<k 4 )) (21)‘+11<2 )~ J ||g(z)||2 exp - 265 (2)dA (z) < K2+ 2 %<w,
ko pl £+1 k
P41
because {¢k} is decreasing so that
2 k 2 £+1
lg(z)I® exp-2¢ (z)dr(z) < lg(z)I” exp-2¢ (z)dA(z).
P41 Q41

e = Q and with in (7.1) ¢k

For j = 1,2, let now Hj be the space (7.2) with §
replaced by ¢k + 1/2¢, k = 1,2,... . The above estimates show that g belongs

to this space H_ . Assume that the theorem has been proved for spaces (7.2)

2

with Qk = @ for every k. This would yield an u in the above given H1 with

du = g and so (cf. the proof of lemma 6.1)

" k
J la(z)l“ exp=2¢ (z) dia(z) < ex(k) J "u(z)"2

a (1+0z1%)

X Q

exp{-2¢X(2) -y (2) }
2.2
1+l 2zl %)

dir(z) < «

for every k. Thus u would satisfy the conclusion of the theorem. It remains

to prove the theorem for spaces Hj with Q = Q for every k.

So in the remaining we assume that g? = Hj(Q).
(1) R(T) is dense in F.
Let f € Hé with <£,Tu> = 0 for all u € DT c Hl’ hence f € DT* and <T*f,u>==0.
Since D_ is dense in Hl’ we get T*f = 0. There are k and fk € DT; with

*
2 £, and T,"£ = 0. Now let g € F, then Trlz( g € F,. According to [30,

£=m kKT,
th. 4.4.2] (lemma 6.1) nk g = Tkuk for some u e DTk' So we have

2 * 2 *
< > = < > = < > = < > = £ =
£f,g9 ﬂk fk,g fk'"k g fk,Tk uk Tk fk,uk> 0.

This implies that R(T) is dense in F.

(ii) R(T) is closed in H2.

The spaces H1 and H2 are reflexive Frechet spaces, namely they are Fs*-

spaces see [40]. Therefore, by lemma 7.1 it is sufficient to show that

* *
R(T ) is weakly closed in Hi. According to the theorem of Banach-Dieudonné
[65, th. 37.1], [45, §21, 10(5)] or [61, IV. 6.4, where it is called the

s Y . 2 s * .
Krein-Smulian theorem] it suffices to prove that R(T ) n B is weakly
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*
closed in Hi for every bounded, convex, weakly closed subset B of Hi. Bear-

* *
ing in mind that Hi is a DFS -space, hence reflexive so that the weak and

weak topologies on Hi coincide, by [40, th. 6] there is a k such that B is

weakly homeomorphic with a bounded, convex, weakly closed set in (Hk)'. Thus

1 * .
there is a bounded set B, < (HT)' with m = R(T ) n B, where ﬁi is a weak

*B
k k 'k
homeomorphism. Since Bk is convex its weak closure equals its strong closure
k
in (H?)'. Thus we have to show that Bk is closed in (Hl)"
m . m
Let h - hasm~ « in (Hk)' with h € Bk. Thus for each m there

1 *
is an fm € Dx ¢ H! with T *hm =T fm. According to lemma 7.2 for each m

T 2 k
*
there is a fE € DTE c (Hg)' with T; fﬁ = h". since by lemma 7.1 R(Tk) is
‘ * s m¥ 1* *
= h. h R(T
K € DTk with Tk fk h. Hence T € R(T )

and thus Bk is closed in (Hl)'. This implies that R(T*) n B is weakly* clo-

*
sed in Hi for every bounded, convex, weakly closed subset B of Hi. There-

fore R(T) is closed in H,. 0

closed in (HK)', there is an £
1

REMARK. Unlike lemma 6.1 theorem 7.3 does not give uniform bounds. The only
thing which can be said is that, in virtue of the open mapping theorem, T
is an open map, i.e.,

-1
T ": F > Hl/Ker T is continuous.

As is remarked after lemma 6.1 using theorem 7.3 instead of leamm 6.1
one could. obtain a theorem B with countably many bounds. However, there re-
mains one difficulty. Since theorem 7.3 does not give uniform bounds, in

the proof of lemma 6.2 formula (6.4) becomes
[ (g')sll-]‘-z'P'O <o, k=1,2,...

<o, k=1,2,... . We

only, and we cannot sum over s for getting Hg'"i'i'o
’

solve this problem by a direct proof of the existence of u € prﬁj*l&m
Pru™ L ¢k

q "1,0,0
The proof is exactly that of theorem 7.3; we only have to take for H

. 5 ) .o AP (A) k
] with 3u = g for a given g € p€?1+lim ctu 'Zq+1’¢ 1.

k

2

Hilbert space of cochains ¢ with norm ||cI|k X given by (4.37). In lemma 7.2,
I

the

which is needed in this proof, H_, should be the Hilbert space of cochains c

2
with norm ﬂcﬂk given by (4.40). In both cases, the replacement of ¢k by
k . k
¢1,0’0 yields the space Hl'
Thus if condition (7.3) holds, theorems 3.1, 4.11 and 4.12 could be

derived for functions satisfying countably many bounds and we get the
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: L -1, .
strong version of the fundamental principle. The continuity of (p") in this
case follows from the open mapping theorem, because we deal with Frechet

spaces.

ca . . .
COROLLARY 7.4. Let Q = 91 Qk be a pseudoconvex domain satisfying (4.21) and
(4.22) and let {¢k}:_1 be a decreasing sequence of plurisubharmonic functions
in Q satisfying condition (7.3). Furthermore, for every k arnd N 2 0 let

there be a p 2 k and a C N > 0 with

k,

P < o¥
¢N(z) < ¢ (z) + Ck,N' z € Qk.
Then for each pxq-matrix P with polynomial entries and associated vector

->
multiplicity variety W the map pL, defined by lemma 4.3,

L > k
{proj 1lim H(Qk;¢k)}p P proj 1im H(Wan;¢ )
k » o k - o *®

Pe{proj lim H(Qk;¢k)}q
k > o«

is a topological isomorphism between linear spaces.

For the spaces in chapter II and III in condition (7.3) we may choose
wk'p(z) = exp-z2,

because Q is bounded in the imaginary directions or @ is a conic neighbor-
hood in € of a real domain, and ¢k = -M(kllxl). Here M satisfies (2.32) so

that for some K 2 0 and € > 0 we have
k p
-elxl < -{¢ (2) -¢"(2)} + K.

Moreover, lemma 5.2 shows how the difficulty that -M(lxl) is not plurisub-
harmonic can be overcome. For example, thé A=sampaces in (3.51) or (3.56) sat-
isfy the conditions of corollary 7.4, because for ¢ we can even find a con-
vex function.

In chapter II the domains { were bounded:in the imaginary directions,
so that. any holomorphic function gp,m satisfying (2.11) is such that log'gp’m

is holomorphic in Q. In lemma's 2.3.i and 2.3.ii we have used the following
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corollary, which solves the problem discussed at the beginning of this

chapter.

COROLLARY 7.5. Let Q = kgl Qk be a pseudoconvex domain satisfying (4.22)

and let {¢k}:_1 be a decreasing sequence of plurisubharmonic functions in

Q satisfying condition (7.3). Let moreover 91 and 92 be pseudoconvex open

sets with Q = 91 u 92 such that for some positive € with € < 1 and for each

d
z € 91 n 92 there is a z' € Ql n 92 with lz-z'l < g(z") def emin{l,d(z',ﬂc)}

and with

(7.4) lz' -wl < e(2') = we Ql n 92.

Then for every holomorphic function f € pﬁgj lim H(Q1 nQZINQk;¢k) there are

) for j = 1,2 with

holomorphic functions f € pﬁ?] llm H(Q] ﬂQ ¢1 1,0

£(z) = f2(z) -£,(z) fbr ze Qln 92, where

¢T 1 O(z) gef ¢k(z) + log(1+"z"2) + 109(1+d(219c)—1)_

PROOF. The proof will be that of lemma 6.2. Let for j = 1,2

Jdefy (g3 y e uMy
S S

uj‘3§=f UJ]U

for some A and let U def U ] U2 be a covering of f, where U(A) is the cov-

ering-censtructed:in sectmon ‘Vivl. Due to (7.4) for A sufficiently large
there is an embedding T of U( ) into U given by TU = U; if US c 91 and

TU = 02 for the remaining Us € U( . Hence the partition of unity subordin-
ate to the covering U A), constructed in the proof of lemma 6.2, induces a
partition of unity subordinate to the covering U of Q. We let c be the 1-
cocykel defined by c¢ = 0 on every set Ug n Uz for j = 1,2 and ¢ = £ on every

1 2
set US n Ut for all s,t € I In the proof of lemma 6.2 with p = 1 and with

2z
U as the covering of 2, we take the above given partition of unity and we
apply theorem 7.3 instead of lemma 6.1. So we find a O-cochain c¢' satisfying

good bounds (note that for p = 1 property (4.21) is not necessary) with
8c' = c.This means that on Ui n Ui we have c'(Ui) = c'(Ui) for j = 1,2 so

that c¢' determines two holomorphic functions £, in Qj, j=1,2, with f2 —f1 =
2 1 1

='(U.) - c'(U]) = fonU n U2 for all s,t € I,. Hence £_~-f, = £ in al ng?
t s s t A 2 1
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and the bounds of c' imply that fj € Pﬁ?j lim H(QJ n Qk;¢k) for j =1,2. 0O
> ©

This corollary concludes all the promised proofs of the assertions in

chapter II.

L L
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