Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.
The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O).

COMPLEX FOURIER
 TRANSFORMATION AND
 ANALYTIC FUNCTIONALS WITH UNBOUNDED CARRIERS

J.W. DE ROEVER
 46E10, 46F05, 81A06
ISBN 9061961556

CONTENTS

ACKNOWLEDGEMENTS $2 x$
PREFACE $x 2$
INTRODUCTION がて2
CHAPTER I．CONNECTIONS WITH THEORETICAL PHYSICS 1
I．1．Causality 2
I．2．Localization of wave functions 5
I．3．Localization of particles 9
I．4．Analytic properties of expectation values 13
I．5．Localization of tachyons 20
CHAPTER II．REAL－CARRIED ANALYTIC FUNCTIONALS AND BOUNDARY VALUES OF ANALYTIC FUNCTIONS 23
II．1．Real－carried analytic functionals 24
II．1．i．The space Z^{\prime} 24
II．1．ii．General spaces of real－carried analytic functionals 27
II．1．iii．Properties of real－carried analytic functionals 28
II．2．Fourier transforms of real－carried analytic functionals 37
II．2．i．Fourier transformation and boundary values of analytic functions 37
II．2．ii．Characterization of distributions with real－ carried Fourier transforms 40
II．2．iii．Ultradistributions 41
II．2．iv．Characterization of ultradistributions with real－carried Fourier transforms 48
II．2．v．Paley－Wiener theorems for ultradistributions 54
II．2．vi．The case of complex domains 62
II．2．vii．A Paley－Wiener type theorem 64
II．3．The Edge of the Wedge theorem 73
II．3．i．The Edge of the Wedge theorem for distributions 73
II．3．ii．The Edge of the Wedge theorem for ultra－ distributions 77
CHAPTER III. FOURIER TRANSFORMS OF ANALYTIC FUNCTIONALS WITH COMPLEX, UNBOUNDED, CONVEX CARRIERS 81
III.1. Analytic functionals on exponentially decreasing testfunctions; Fourier transformation as a sur- jection 82
III.2. Analytic functionals on exponentially decreasing testfunctions; Fourier transformation as an injection 93
III.3. Paley-Wiener theorems for Fourier hyperfunctions 99
III.4. Analytic functionals in $Z_{\{M\}}$; Fourier transforma- tion as a bijection; Paley-Wiener theorems for ultradistributions of Roumieu type 100
III.5. Paley-Wiener theorems for ultradistributions of Beurling type 108
III.6. Paley-Wiener theorems for distributions in D^{\prime} 111
CHAPTER IV. THE FUNDAMENTAL PRINCIPLE 115
IV.1. Local theory 117
IV.2. Global theory 126
IV.3. Ehrenpreis' and Palamodov's fundamental principle 130
IV.4. The fundamental principle for spaces of non- entire functions 137
IV.5. Semilocal theory 143
IV.6. Transition from semilocal to global results 148
CHAPTER V. EXAMPLES AND APPLICATIONS 153
V.1. Two lemma's on pseudoconvex domains and pluri- subharmonic functions 153
V.2. Examples of localizable spaces 156
V.3. Representations of solutions of homogeneous systems of partial differential equations with constant coefficients 157
V.4. Inhomogeneous systems 161
V.5. The Newton interpolation series 164
CHAPTER VI. PROOFS OF THEOREMS 4.11 AND 4.12 169
VI.1. Coverings 169
VI.2. Cohomology with bounds in an open, pseudoconvex set 171
VI.3. Proof of theorem 4.11 180
VI.4. Proof of theorem 4.12 181
CHAPTER VII. A COHOMOLOGY VANISHING THEOREM 183
REFERENCES 193
SUBJECT INDEX 199
SAMENVATTING 201

ACKNOWLEDGEMENTS

It is with great pleasure that I thank Prof. E.M. de Jager who inspired me to work at the border of mathematics and physics. His interest in the Edge of the Wedge theorem lies at the origin of this treatise.

I am also much indebted to Prof. H. Komatsu of the University of Tokyo who visited the Mathematical Centre in 1972. He aroused my interest in hyperfunctions and analytic functionals.

I appreciate it very much that Prof. W.T. van Est was willing to read parts of the manuscript and to give some useful criticism.

I am grateful to Mr. B. Dijkhuis with whom I had long conversations on physical subjects that influenced the first chapter.

I thank the Mathematical Centre for the opportunity to publish this monograph in their series Mathematical Centre Tracts and all those at the Mathematical Centre who have contributed to its technical realization.

PREFACE

The well known theorem of Paley-Wiener - stating that an L^{p} function has compact support in \mathbb{R}_{n} if and only if its complex Fourier transform is an entire function of exponential type - has an interesting history since 1934. L. Schwartz extended the theorem to distributions with compact support in \mathbb{R}_{n} and a generalization to tempered distributions with unbounded support in \mathbb{R}_{n} was given by V.S. Vladimirov. In the latter case the Fourier transform is holomorphic only in a subdomain of \mathbb{C}_{n} determined by the directions in which the support of the distribution is unbounded. Analytic functionals with compact carriers may be defined as continuous linear functionals on spaces of entire functions in \mathbb{C}_{n}, and Ehrenpreis and Martineau showed that the Paley-Wiener theorem is also valid for analytic functionals with compact carriers.

The case of analytic functionals with unbounded carriers has not been investigated extensively up till now. This book continues the history of the generalization of the Paley-Wiener theorem and so it is a rather complete account of analytic functionals and complex fourier transformation.

The modification of the Ehrenpreis-Martineau theorem for analytic functionals with unbounded carriers is by no means straightforward: the proof that different analytic functionals with unbounded carriers yield different Fourier transforms is not trivial. For this purpose the author needs a generalization of the socalled Ehrenpreis' fundamental principle to spaces of non entire functions. This principle, first proved in 1961, extends a function, holomorphic on a lower dimensional subset W of \mathbb{C}_{n} to an entire function, defined on the whole of \mathbb{C}_{n} and satisfying certain bounds at infinity. Before dealing with his generalization to non entire functions the author gives first an illuminating description of Ehrenpreis' theory.

The first chapter of this book is an intriguing essay on causality and localizability of particles in quantum field theory. Recent developments have shown the need for real carried analytic functionals which are the Fourier transforms of distributions or socalled ultradistributions.

Properties of analytic functionals with real unbounded carriers have been investigated in the second chapter where in particular the PaleyWiener theorem and the Edge of the Wedge theorem are generalized for ultradistributions.

Chapter III is devoted to the analytic functionals with unbounded
carriers in \mathbf{C}_{n} and chapter IV to the Fundamental Principle of Ehrenpreis.
An interesting feature of this book is that the author deals also with
rather concrete applications of the theory. Fourier transformation is a
widely used tool for solving differential equations with constant coefficients. The generalization to systems of partial differential equations with constant coefficients is not easy as it involves the solution of a matrix equation in a ring. It is with the aid of the generalization of Ehrenpreis' principle that the author derives in chapter V a Fourier representation of all weak solutions of the system in certain spaces which are the duals of spaces whose Fourier transforms consist of non entire functions.

The Newton interpolation series has been established for entire functions of exponential type by Kioustelides. Using the generalization of the Martineau-Ehrenpreis. theorem the author has succeeded in deriving this series also for non entire functions of exponential type of several variables.

It is an advantage for readers with different interests that the chapters I, II, III and IV may be read independently from each other.

The book gives an advanced contribution to the literature on functional analysis, Fourier transformation and functions of several complex variables and the results are also of importance for applications in field theory and the theory of differential equations.

It is therefore that I recommend this book with great pleasure to all mathematicians and physicists working and harvesting in these fields.

INTRODUCTION

In distribution theory the Paley－Wiener－Schwartz theorem is well known． It describes the Fourier transforms of distributions g with compact support as a certain class of entire functions f．Here，distributions with compact support in \mathbb{R}^{n} are continuous，linear functionals on the space E of $C-$ test－ functions in \mathbb{R}^{n} ．Distributions with unbounded support can be defined if the testfunctions are submitted to growth conditions at infinity．For exam－ ple，tempered distributions are obtainedin this way as weak derivatives of continuous functions of polynomial growth．The Paley－Wiener－Schwartz theorem can easily be generalized for tempered distributions g with unbounded sup－ port．Then the function f is holomorphic only in a subdomain of \mathbb{C}^{n} determined by the directions in which the support of g is unbounded．Similar to E＇ analytic functionals with compact carriers in \mathbb{C}^{n} are defined as continuous， linear functionals on the space of entire functions in \mathbb{C}^{n} ．The Ehrenpreis－ Martineau theorem describes the Fourier transforms F_{μ} of analytic function－ als μ with compact carriers as the class of entire functions of exponential type．Martineau has dealt with analytic functionals with bounded carriers in［48］，but analytic functionals with unbounded carriers have never been studied extensively．It is our aim to fill up this gap in the theory and to extend the Ehrenpreis－Martineau theorem to analytic functionals with un－ bounded carriers．

The extension of the Paley－Wiener－Schwartz theorem to distributions with unbounded support does not give rise to any new problems，cf．［68， § 26．2，th．2］．In the proof the possibility of having testfunctions with compact support is used．Since there are no such analytic testfunctions the proof of the Ehrenpreis－Martineau theorem cannot proceed along the same lines．For carriers which are polydiscs the proof is not very hard，cf．［65， th． $2.22 \& 2.23]$ or $[73, \S 26]$ ，but it is the precise correspondence between an arbitrary，convex，compact carrier of an analytic functional μ and the exponential type of $F \mu$ which complicates the proof．Polya has shown the theorem for $n=1$ ，cf．［3，ch．5］or $[30$, th．4．5．3］；using quite different methods Ehrenpreis and Martineau proved it for the higher dimensional cases， cf．［15］，［16，th．5．21］and［48］．Later Hörmander applied his existence theorems for the Cauchy－Riemann operator to give another proof，cf．［30，th． 4．5．3］．

The generalization of the Ehrenpreis-Martineau theorem is not straightforward and causes new difficulties: the proof that different analytic functionals with unbounded carriers yield different Fourier transforms is not trivial. One has to derive Ehrenpreis' fundamental principle for spaces of non-entire functions. This principle, first announced in [15], extends a given function f on a lower dimensional subset W of \mathbb{C}^{n} to an entire function F satisfying certain bounds at infinity and also it describes the entire functions vanishing on W. The principle is only valid if the bounds satisfy certain conditions. In order to derive it in [16] Ehrenpreis first extended f to a collection of holomorphic functions in neighborhoods of all the points of \mathbb{C}^{n} and then he showed that these functions could be changed without changing the values on W so that they can be glued together to one global function F.

For our purpose we will use Ehrenpreis' local theory, but for the piecing together process we will use another method based on the L^{2}-estimates for the Cauchy-Riemann operator given by Hörmander in [30]. Furthermore, we will extend f to a function F holomorphic only in a subdomain Ω of \mathbb{C}^{n} and satisfying bounds also at the boundary of Ω. In our case the conditions on the bounds are rather weak, but this is paid by the fact that a single f on W will be extended to different global functions each satisfying one bound, whereas in [16] f has been extended to one function F satisfying all the bounds simultaneously. In [56] Palamodov has derived a fundamental principle in the same weak form as our version. It is valid for functions holomorphic in convex tube domains Ω, but Palamodov's method does not yield estimates near the boundary of Ω. Therefore, although his work contains a generalization of the Ehrenpreis-Martineau theorem $\left[56, V I, \S 4.4^{0}\right.$, cor. 3], we cannot use it for our purposes.

The Paley-Wiener-Schwartz theorem for distributions with unbounded support is very useful in quantum field theory, where physicists are concerned with distributions g in p-space with support contained in a convex cone (the dual of the light cone). They search for properties of the fourier transforms f in $x-s p a c e$. In particular they are interested in the holomorphic function f itself and not so much in its boundary value f^{*} on \mathbb{R}^{n} or in the spaces of testfunctions on which f^{*} is a continuous, linear functional. The distribution f^{*} is tempered if g is. However, in [33] Jaffe remarks that it would be desirable to have distributions g which are weak derivatives of continuous functions G growing faster than polynomials. Then it
turns out that f^{*} is a continuous, linear functional on a space of ultradifferentiable testfunctions; f^{*} is called an ultradistribution. Ultradifferentiable functions form a transition between ordinary $C=$ functions and analytic functions. If G grows too fast there are no longer testfunctions in x-space with a compact support. A field, defined on testfunctions in x space which may have a compact support, is called strictly localizable. This is a desirable property in quantum field theory that, however, restricts the growth at infinity of the functions G in p-space. Similarly, a faster growth at infinity of the distributions in x-space would make the testfunctions in p-space ultradifferentiable or even analytic. So one might need a Paley-Wiener theorem for continuous, linear functionals with unbounded carriers defined on analytic testfunction spaces.

For example, it looks reasonable to consider distributions defined on Gauss-functions. Since these distributions and their Fourier transforms are in fact functionals on a space of entire functions, their carriers can be any subset of \mathbb{C}^{n}. But then another difficulty arises. Unlike supports of distributions analytic functionals do not have uniquely defined carriers and, worse, the intersection of carriers need not be a carrier. Hence it seems hopeless to try to generalize the notion of strictly localizable field for this case. To overcome this difficulty the best one can do is to content oneself with distributions in x-space and p-space which are weak derivatives of continuous functions growing slower than any exponential. For in that case their Fourier transforms have real, unbounded, carriers and a real-carried analytic functional μ does have an uniquely defined, smallest carrier, which therefore is called the support of μ. Fields of this type are called localizable, cf. [69].

Properties of real-carried analytic functionals have been studied by Martineau in [47] for bounded carriers and by Kawai in [38] for Fourier hyperfunctions. These are real-carried analytic functionals on the space of exponentially decreasing analytic testfunctions. We will derive the same properties for analytic functionals with unbounded, real carrier on spaces of slower decreasing analytic testfunctions. We will treat all cases between tempered distributions and Fourier hyperfunctions, i.e., all distributions and ultradistributions whose Fourier transforms are real-carried analytic functionals.

In chapter I the Paley-Wiener theorem will be applied in quantum field theory. We shall not choose a particular testfunction space using only the

CHAPTER I

CONNECTIONS WITH THEORETICAL PHYSICS

Abstract

It is well known (cf. [37]) that the assumption of free particles being localized in a certain volume leads to inconsistencies in the mathematical description of this phenomenon. For a bounded volume this is clearly and shortly illustrated in [28]. We will show that under the same general conditions as in [28] even the assumption that a particle is absent in a bounded volume yields difficulties. For that purpose it is useful to consider functions or tempered distributions and their Fourier transforms as boundary values of analytic functions. This technique (see [49]) is essentially the basis for the more general theory of hyperfunctions (see [31] or [43]). In recent years this theory has been used in theoretical physics at several places, cf. [31], [32] and [52].

For simplicity, we will first show that no positive energy solutions in the space S^{\prime} of tempered distributions of the Klein-Gordon and Dirac equations exist which vanish in a bounded space volume at some time t. Then the same technique reveals that any measurement of a positive observable cannot be zero in one space-time region while, if translated to another, it is positive. We will formulate this result in the theory of quantized fields (see [36] or [64]) and under a reasonable condition we will even obtain that the measurement of any observable yields a real analytic function of these translations. Finally, we will briefly discuss the localization problem of tachyons.

Fields satisfying the Gårding-Wightman axioms [71] are defined on a certain space of testfunctions, which themselves have no physical meaning. Therefore, the choice of the testfunction space is not forced by nature. The simplest choice is the space S of rapidly decreasing $C^{\infty}-f u n c t i o n s, ~ b u t ~ s m a l-~$ ler spaces of testfunctions with a larger class of distributions are also possible. Then one may ask for which testfunction spaces our reasoning yielding the above mentioned results remains valid. Very naturally, this leads to problems of purely mathematical nature concerning Fourier transforms of

distributions, ultradistributions and analytic functionals. The remaining of this thesis deals with these problems put in a more general form than the special cases to which a physical sense might be ascribed. On the other hand, recent developments show that the mathematical generalizations may be applied to physics again; see [33] and [11] for ultradifferentiable testfunction spaces and [10], [63] and [52] for spaces of analytic testfunctions. Not only the above discussed impossibility of localization, but many more physical properties such as local commutativity of microscopic causality (see $[68,29.6]$) and the analytic continuation of the Wightman-functions (see [36] or [64]) depend on the way the occurring distributions are written as hyperfunctions. In fact, it seems that all physically interesting cases may fit in the frame of Fourier hyperfunctions [38]. A survey of the various cases is given in [69] and although not mentioned Fourier hyperfunctions actually enter at several places. Later, this has been made explicite and a Fourier hyperfunction quantum field theory has been formulated in [52].

Maybe the results of this chapter are not new to all physicists. For, the techniques we use are so closely related to those of quantum field theory, for example exposed in [72] and [4], that it is hard to believe that the conclusions have not been drawn. However, as in [28] we apply these techniques to relativistic quantum mechanics and we do not use the cyclic vacuum state which plays such a central role in quantum field theories.

I.1. CAUSALITY

The formulation and measurement of causality is closely related to the possibility of localization of a particle. Causality expresses the physical law of special relativity that no particle or signal can travel faster than light.

Let V be a space volume (an open set in \mathbb{R}^{3}), then for $t>0$ we denote by $V+c t$ the larger volume

$$
V+c t \stackrel{d e f}{\Longrightarrow}\{\vec{y} \mid\|\vec{y}-\vec{x}\| \leq c t \text { for some } \vec{x} \in V\}
$$

Causality implies that a particle being in V at time 0 must be in $V+$ ct at time $t>0$ (cf. the definition of causality in [28]). For this characterization of causality the possibility of localization is necessary. However, if the volume V is bounded and if the above given formulation of causality is valid, a particle can never be localized, cf. [28]. Hence this formulation
of causality is senseless.
The next step is to assume that it might be possible that a particle is absent in a bounded volume V. For $t>0$ we denote by $V-c t$ the largest volume V ' such that

$$
V^{\prime}+c t \subset V
$$

Causality implies that a particle being absent in V at time 0 must be absent in V-ct at time $t>0$. However, we will show that, if this formulation of causality is valid, a particle can never be absent in any space volume. Hence, in order to give a meaningful formulation of causality, the above given characterizations need to be generalized.

In fact, what is needed is a flow of an observable quantity S and by causality this flow cannot go faster than light. To measure this it would be desirable if no part of S is destroyed or created during the observation time. Therefore, we assume that the density j^{0} of s is the zero'th component of a Lorentz-four-vector j^{μ} which satisfies the continuity equation

$$
\begin{equation*}
\partial_{\mu} j^{\mu}=0 \tag{1.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left(\partial_{0}, \partial_{1}, \partial_{2}, \partial_{3}\right) \stackrel{\text { def }}{=}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right) \\
& \left(\partial^{0}, \partial^{1}, \partial^{2}, \partial^{3}\right) \stackrel{\text { def }}{=}\left(\frac{\partial}{\partial t}, \frac{-\partial}{\partial x_{1}}, \frac{-\partial}{\partial x_{2}}, \frac{-\partial}{\partial x_{3}}\right)
\end{aligned}
$$

and where ${ }_{\mu}{ }^{\mu}{ }^{\mu}$ means the summation over $\mu=0,1,2,3$. Formula (1.1) expresses the property that during any time interval the change of the density j^{0} in a certain volume is due to what flows in and out of that volume. Furthermore, if S, in principle, can attain every real value, it is impossible to say whether an increase of S in a volume V is due to a flow of a positive part of S into V or to a flow of a negative part of S out of V. Therefore, we assume that S attains only nonnegative values, i.e., for any space-time point $x=(t, \vec{x})$

$$
\begin{equation*}
j^{0}(x) \geq 0 \tag{1.2}
\end{equation*}
$$

We now define causality by the (equivalent) requirements (see [24]):
for any space volume V, any time t and any amount of time τ

$$
\begin{align*}
& \int_{V-c \tau} j^{0}(t+\tau, \vec{x}) d \vec{x} \leq \int_{V} j^{0}(t, \vec{x}) d \vec{x} \tag{1.3}\\
& \int_{V} j^{0}(t, \vec{x}) d \vec{x} \leq \int_{V+c \tau} j^{0}(t+\tau, \vec{x}) d \vec{x}
\end{align*}
$$

It is clear that (1.3) expresses causality only if j^{0} is nonnegative, for the part of S that is in V at time t has to be in $V+c \tau$ at time $t \pm \tau$, but perhaps due to a flow into $V+c \tau$ from the outside during the time between t and $t+\tau$ there is more in $V+c \tau$ at time $t+\tau$ only if $j^{0} \geq 0$, or if a surplus in $V+c \tau$ flows to the outside during the time between $t-\tau$ and t there was more in $V+c \tau$ at time $t-\tau$ only if the surplus was positive. Hence for a non-definite density causality cannot be defined in this way. Thus it is meaningless to say that such a density (for example the charge density) propagates acausally and it is not true that causality implies the nonnegativity of the density as is pretended in [24].

In [24] it is shown that a density satisfying (1.1) and (1.2) necessarily satisfies (1.3). For example, any probability density which is the zero'th component of a current density satisfying (1.1) is causal. If it were possible to localize a particle in a bounded volume or the complement of a bounded volume, the earlier given characterizations of causality follow from (1.3) by taking for $j^{0}(x)$ the probability of finding the particle at x and by taking \checkmark bounded:

$$
1=\int_{V} j^{0}(t, \vec{x}) d \vec{x} \leq \int_{V+c \tau} j^{0}(t+\tau, \vec{x}) d \vec{x}
$$

and

$$
\begin{equation*}
\int_{V-c \tau} j^{0}(t+\tau, \vec{x}) d \vec{x} \leq \int_{V} j^{0}(t, \vec{x}) d \vec{x}=0 \tag{1.4}
\end{equation*}
$$

respectively. It follows that the right hand side of the first formula equals 1 and that the left hand side of (1.4) equals 0.

We remark that the assumption of a probability density which satisfies (1.1) does not lead to acausal situations as in [28]. Another observable S suitable for describing causality is the energy because it is always non-
negative. In general the energy does not satisfy (1.1), but in [25] and [26] this condition has been weakened so that also energy propagates causally.

I.2. LOCALIZATION OF WAVE FUNCTIONS

We will consider free particles whose properties are determined by solutions of the Klein-Gordon or the Dirac equation. We only consider the positive frequency parts of these solutions (i.e., the energy remains positive) and we first investigate the localization of such solutions.

Let Ψ be a complex function (or more general a tempered distribution) of the real parameters $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=(t, \vec{x}) \in \mathbb{R}^{4}$ indicating the time and space variables and let $\bar{\Psi}$ be its complex conjugate. Furthermore, let Ψ be a solution of the Klein-Gordon equation

$$
\begin{equation*}
\left(\partial_{\mu} \partial^{\mu}+\mathrm{m}^{2}\right) \Psi=0 \tag{1.5}
\end{equation*}
$$

For each $t \Psi$ is a tempered distribution in \mathbb{R}^{3} and Ψ defines a continuous map from \mathbb{R} into $S^{\prime}\left(\mathbb{R}^{3}\right)$, (this can be seen by inspection of the PauliJordan propagator Δ, see $[34$, formula (5.10)]). Ψ determines uniquely two tempered distributions ψ_{1} and ψ_{2} in \mathbb{R}^{3}. such that symbolically
(1.6) $\left\{\begin{array}{l}\Psi(0, \vec{x})=\psi_{1}(\vec{x}) \\ \frac{\partial \Psi}{\partial t}(0, \vec{x})=\psi_{2}(\vec{x})\end{array}\right.$
and conversely, since Δ belongs to $S^{\prime}\left(\mathbb{R}^{4}\right)$ each ψ_{1} and ψ_{2} determines a solution which is a tempered distribution in \mathbb{R}^{4}.

From (1.5) a first order equation, the Dirac equation, can be derived:

$$
\begin{equation*}
\left(\gamma_{i}^{\mu} \partial_{\mu}-m I\right) \Psi=0 \tag{1.7}
\end{equation*}
$$

Here the coefficients γ^{μ} and I are elements of a non-commutative group with unit I satisfying

$$
\begin{equation*}
\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} I \tag{1.8}
\end{equation*}
$$

where

$$
\left(g^{\mu \nu}\right) \xlongequal{\text { def }}\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Now Ψ is no longer a single distribution, but it belongs to a certain linear space in which the $\gamma^{\prime} s$ act as linear transformations. For example, if the coefficients γ^{μ} are represented as certain $k \times k$-matrices, Ψ consists of k components $\Psi=\left(\Psi_{1}, \ldots, \Psi_{k}\right)$, where each Ψ_{j} is a tempered distribution satisfying the Klein-Gordon equation. For, in any representation of the γ 's we have

$$
\left(-\gamma_{i \partial_{\nu}}-m I\right)\left(\gamma_{i \partial_{\mu}}^{\mu_{i}}-m I\right) \Psi=0
$$

and hence by (1.8)

$$
\left(\gamma^{\nu} \gamma^{\mu} \partial_{\nu} \partial_{\mu}+m^{2} I\right) \Psi=\left(\partial_{\mu} \partial^{\mu}+m^{2}\right) \Psi=0
$$

We can write (1.7) as

$$
\begin{equation*}
\frac{\partial \Psi}{\partial t}=-i m \gamma^{0} \Psi-\sum_{k=1}^{3} \gamma^{0} \gamma^{k} \frac{\partial \Psi}{\partial x_{k}} \tag{1.9}
\end{equation*}
$$

Hence if $\Psi(0, \vec{x})$ is given, $\frac{\partial \Psi}{\partial t}(0, \vec{x})$ is uniquely determined and the solution of the Dirac equation equals the solution of the Klein-Gordon ecuation with these initial values. Therefore, we only have to consider the initial value problem (1.5) and (1.6) and in particular we will consider only those solutions belonging to positive energy.

The energy p_{0} and impulse \vec{p} are real parameters arising as the variables in the dual \mathbb{R}_{4} of the (t, \vec{x})-space \mathbb{R}^{4}. Hence Fourier transformation of a tempered distribution in x-space yields a tempered distribution in p-space. Thus the fact that we consider solutions Ψ in S^{\prime} agrees with the fact that x and p must be real.

The Fourier transform $\Phi \in S^{\prime}\left(\mathbb{R}_{4}\right)$ of a solution $\Psi \in S^{\prime}\left(\mathbb{R}^{4}\right)$ of (1.1) satisfies

$$
\begin{equation*}
\left(p_{0}^{2}-\vec{p}^{2}-m^{2}\right) \Phi(p)=0 \tag{1.10}
\end{equation*}
$$

The general solution in $S^{\prime}\left(\mathbb{R}_{4}\right)$ of this equation determines two distributions ϕ_{1} and ϕ_{2} in $S^{\prime}\left(\mathbb{R}_{3}\right)$, one corresponding to $\mathrm{p}_{0}>0$ and one to $\mathrm{p}_{0}<0$, and
conversely, any two ϕ_{1} and ϕ_{2} in $S^{\prime}\left(\mathbb{R}_{3}\right)$ determine a solution Ψ of (1.5) in the following symbolical way

$$
\begin{equation*}
\Psi(t, \vec{x})=F^{-1}\left[\frac{e^{-i \sqrt{p_{p}^{2}+m^{2}} t_{\phi}(\vec{p})}}{\sqrt{\vec{p}^{2}+m^{2}}}\right](\vec{x})+F^{-1}\left[\frac{e^{i \sqrt{p^{2}+m^{2}} t_{\phi_{2}}(\vec{p})}}{\sqrt{p^{2}+m^{2}}}\right](\vec{x}) \tag{1.11}
\end{equation*}
$$

where F^{-1} denotes the inverse Fourier transformation. The initial functions (or distributions) satisfy symbolically

$$
\Psi(0, \vec{x})=F^{-1}\left[\frac{\phi_{1}(\vec{p})+\phi_{2}(\vec{p})}{\sqrt{\vec{p}^{2}+m^{2}}}\right](\vec{x})
$$

and

$$
\frac{\partial \Psi}{\partial t}(0, \vec{x})=F^{-1}\left[-i \phi_{1}(\vec{p})+i \phi_{2}(\vec{p})\right](\vec{x})
$$

For a positive energy solution Ψ of (1.5) we require that $\phi_{2}=0$. Instead of (1.6) the initial values now have to satisfy symbolically
where only $\Psi(0, \vec{x})$ can be chosen arbitrarily in $S^{\prime}\left(\mathbb{R}^{3}\right)$. Now Ψ is the inverse Fourier transform of a distribution in $S^{\prime}\left(\mathbb{R}_{4}\right)$ with support in the cone $\overrightarrow{\Gamma *}=\left\{\left(p_{0}, \vec{p}\right) \mid p_{0} \geq\|\vec{p}\|\right\} \subset \mathbb{R}_{4}$. Then Ψ can be written as a boundary value in $S^{\prime}\left(\mathbb{R}^{4}\right)$ of a function f holomorphic in $\mathbb{R}^{4}+i \Gamma$, where Γ is the interior of the lightcone in \mathbb{R}^{4}, i.e., for every $\phi \in S\left(\mathbb{R}^{4}\right)$

$$
\langle\Psi, \phi\rangle=\lim _{\substack{y \rightarrow 0 \\ y \in C^{\prime} \subset \subset \Gamma}} \int f(x+i y) \phi(x) d x .
$$

Here Γ^{*} is the dual cone of the open cone $\Gamma \subset \mathbb{R}^{4}$:

$$
\Gamma^{*}=\{p \mid\langle p, x\rangle>0, x \in \Gamma\} \subset \mathbb{R}_{4}
$$

Roughly, this can be seen as follows: let g be a distribution in $S^{\prime}\left(\mathbb{R}_{n}\right)$ which can be written as a certain derivative of a measure μ with support in a closed cone $\overline{C^{\star}} \subset \mathbb{R}_{\mathrm{n}}$ satisfying

$$
\int_{\frac{c^{*}}{}} \frac{d|\mu(\xi)|}{\left(1+\|\xi\|^{2}\right)^{k}}<\infty
$$

for some $k>0$. Then for some multiindex α

$$
f(z) \stackrel{\text { def }}{=} F\left[e^{-\langle\xi, y\rangle} g(\xi)\right](x)=\int_{C^{*}}(i z)^{\alpha} e^{i\langle\xi, x\rangle-\left\langle\xi, y^{\rangle}\right.} d \mu(\xi)
$$

exists if $-\langle\xi, y\rangle \leq-\delta_{y}\|\xi\|$ for some $\delta_{y}>0$ depending on y, thus for $y \in C$ if C^{*} is the dual of the open cone $C \subset \mathbb{R}^{n}$. Then

$$
F[g](x)=\lim _{\substack{y \rightarrow 0 \\ y \in C^{\prime} \subset \subset C}} f(x+i y)=f(x+i 0)
$$

in $S^{\prime}\left(\mathbb{R}^{n}\right)$, see [12] or [68].
Now let f^{+}be holomorphic in $\mathbb{R}^{n}+i C$ and f^{-}in $\mathbb{R}^{n}-i C$ for C an open cone in \mathbb{R}^{n}, such that $f^{+}(x+i 0)$ and $f^{-}(x-i 0)$ exist in $S^{\prime}\left(\mathbb{R}^{n}\right)$. Furthermore, let the distributions $f^{+}(x+i 0)$ and $f^{-}(x-i 0)$, considered as distributions in $D^{\prime}(U)$ for some open set $U \subset \mathbb{R}^{n}$, be equal. Then f^{+}is the analytic continuation of f^{-}. This theorem is the celebrated "Edge of the Wedge" theorem, see [64], [68] or for a simple proof Ch.II §3.i of this thesis. In particular it follows by choosing $\mathrm{f}^{-} \equiv 0$ that, if $\mathrm{f}^{+}(\mathrm{x}+\mathrm{i} 0) \equiv 0$ in U , then $\mathrm{f}^{+} \equiv 0$.

Thus every positive energy solution Ψ of the Klein-Gordon equation cannot vanish identically in any open space-time region without vanishing everywhere. In particular, the initial values ψ_{1} and ψ_{2} cannot vanish identically in the same open set in \mathbb{R}^{3}. For, if they do it follows from the fact that Ψ satisfies the hyperbolic differential equation (1.5), that then Ψ would vanish identically in some open set in \mathbb{R}^{4}. Similarly, the initial values of the Dirac equation cannot vanish identically in an open set in \mathbb{R}^{3}. For (1.9) implies that $\frac{\partial \Psi}{\partial t}(0, x)$ would vanish together with $\Psi(0, x)$ in the same open set in \mathbb{R}^{3}.

In the above we have shown some mathematical properties of solutions of certain differential equations. Only a few of the used mathematical concepts have also relation to physical phenomena. These phenomena cannot
be seen directly, but only by means of measurements of observable concepts which are supposed to be influenced by them. Therefore, it may be disputable to conclude that free particles cannot be absent in any space volume at any time. However, the argument is quite fundamental as it applies under very general assumptions as in. [28]. The same reasoning even implies that a measurement of a nonnegative observable cannot yield zero in one space-time region while, if translated to another, it is positive. In the next sections we will prove this for observable concepts described by densities which are bilinear forms on the space of wave functions Ψ.

I. 3 LOCALIZATION OF PARTICLES

In the last section we have shown some mathematical properties of the solutions of the Klein-Gordon or the Dirac equation. Let us now show how these properties react in quantities which may have a physical interpretation.

In section $I .1$ we have seen how causality is related to a current density j^{μ} of a nonnegative observable S. In order to define the current density we assume that the space of solutions of the Klein-Gordon or the Dirac equation can be transformed into a Hilbert space, cf.[35] for other, more fundamental reasons why a Hilbert space is chosen. Let q^{μ} be a bilinear form defined on a dense subspace D of H and let for $\Psi \in H \Psi_{x}$ be defined by

$$
\Psi_{x}(y) \stackrel{\text { def }}{=} \Psi(y-x)
$$

D must be such that $\Psi \in D$ implies $\Psi_{x} \in D$ for each $x \in \mathbb{R}^{4}$. For $\Psi \in D$ with $\|\Psi\|=1$ a current density j^{μ} can be defined by

$$
\begin{equation*}
j^{\mu}(x)=q^{\mu}\left(\Psi_{x}, \Psi_{x}\right) \tag{1.12}
\end{equation*}
$$

provided that q^{μ} is such that j^{μ} transforms as a Lorentz-four-vector.
If S is a bounded observable (for example if j^{0} is a probability den-
sity), for each t and some constant $k>0$ we have

$$
\left|\int_{\mathbb{R}^{3}} j^{0}(t, \vec{x}) d \vec{x}\right| \leq K
$$

Hence for each volume V in \mathbb{R}^{3}

$$
s_{V}(t) \stackrel{\text { def }}{=} \int_{V} j^{0}(t, \vec{x}) d \vec{x}
$$

is a bounded bilinear form defined everywhere on H. If S is not bounded, we moreover assume that for each volume $V \subset \mathbb{R}^{3}$ and for each $t S_{V}(t)$ is a closed bilinear form on $D \subset H$. This means that, if $S_{V}(t)$ is defined on $\left\{\phi_{m}\right\}_{m=1}^{\infty}$, if $\phi_{n} \rightarrow \phi$ in H and if $S_{V}(t)\left(\phi_{k}-\phi_{m}, \phi_{k}-\phi_{m}\right) \rightarrow 0$ as $k, m \rightarrow \infty$, then $S_{V}(t)$ is also defined on ϕ and $S_{V}(t)\left(\phi_{m}-\phi_{m} \phi_{m}-\phi\right) \rightarrow 0$.

Before continuing with the general situation we will show by an explicit example that such current densities j^{μ} exist. We first consider the Dirac equation. Let for each $x \in \mathbb{R}^{4} \Psi(x)$ (or actually, for each $\phi \in S\left(\mathbb{R}^{4}\right)<\Psi, \phi>$) belong to a certain Hilbert space on which the γ 's act as a linear transformation. Usually the anti-linear functional associated to $\Psi(x)$ is denoted by $\Psi^{\dagger}(x)$ and the inner product of $\Psi(x)$ by itself is then written as $\Psi^{\dagger}(x) \Psi(x)$. Let moreover for each $t \Psi^{\dagger}(t, \vec{x}) \Psi(t, \vec{x})$ be a L^{1}-function of $\vec{x} \in \mathbb{R}^{3}$, then the inner product in H is defined by

$$
(\Phi, \Psi) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{3}} \Phi^{\dagger}(t, \vec{x}) \Psi(t, \vec{x}) d \vec{x}
$$

That this is independent of t follows, from (1.7) and (1.8). In a k-dimensional representation $\Psi(x)$ belongs to the Hilbert space \mathbb{C}^{k} and for every t each Ψ_{j} is a L^{2}-function on $\mathbb{R}^{3}, j=1, \ldots, k$. A bounded current density satisfying (1.1) (in distributional sense) can be defined by

$$
\begin{equation*}
j^{\mu} \stackrel{\text { def }}{=} \Psi^{\dagger} \gamma^{0} \gamma^{\mu^{\prime}} \tag{1.13}
\end{equation*}
$$

and clearly (1.2) is satisfied, too.
Thus the density (1.13) with $\mu=0$ is always causal, i.e., it satisfies (1.3). j^{0} equals $\Psi^{\dagger} \Psi$ and in the last section it has been shown that this density can never vanish in an open set V of \mathbb{R}^{3} at any time t if Ψ is a positive energy solution of (1.7). j^{0} can be interpreted as the probability density of some (bounded) observable S. Then at any time there is always a positive chance of finding S in any space volume.

Let us now turn to the Klein-Gordon equation. The Hilbert space is defined by the inner product

$$
(\Phi, \Psi) \stackrel{\text { def }}{=} \frac{i}{2} \int_{\mathbb{R}}\left\{\bar{\Phi}(t, \vec{x}) \frac{\partial \Psi}{\partial t}(t, \vec{x})-\frac{\overline{\partial \Phi}}{\partial t}(t, \vec{x}) \Psi(t, \vec{x})\right\} d \vec{x}
$$

which is independent of t, provided that the solutions Φ and Ψ of (1.5) are functions for which the above written integral exists. It should be remarked that this is an innerproduct only in the space of positive energy solutions, in which case $(\psi, \psi) \geq 0$. Indeed

$$
(\Psi, \Psi)=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}_{3}} \frac{|\phi(\vec{p})|^{2}}{{\sqrt{\vec{p}}+m^{2}}_{2}^{d p} \geq 0, ~}
$$

where ϕ is an L^{2}-function on \mathbb{R}_{3} with respect to the measure $\left(\vec{p}^{2}+m^{2}\right)^{-\frac{1}{2}} d \vec{p}$ so that by (1.11)

$$
\begin{equation*}
\Psi(t, \vec{x})=F^{-1}\left[\frac{e^{-i \sqrt{p^{2}+m^{2}} t_{\phi(\vec{p}}}}{\sqrt{\vec{p}^{2}+m^{2}}}\right](\vec{x}) \tag{1.14}
\end{equation*}
$$

Thus the condition on the solution of (1.5) is that in (1.6) $\Psi(0, \vec{x})$ must belong to the Sobolev space $H^{\frac{1}{2}}\left(\mathbb{R}^{3}\right)$ and $\frac{\partial \Psi}{\partial t}(0, \vec{x})$ to $H^{-\frac{1}{2}}\left(\mathbb{R}^{3}\right)$. A current density satisfying (1.1) can be defined by

$$
j^{\mu} \stackrel{\text { def }}{=} \frac{i}{2}\left\{\bar{\Psi} \partial^{\mu_{\Psi-}}\left(\partial^{\mu} \bar{\Psi}\right) \Psi\right\}
$$

It is well known that for general solutions Ψ of (1.5) j^{0} does not satisfy (1.2) and it is less known that the same is true for positive frequency solutions Ψ, see [22]. However, in [23] current densities are constructed which do satisfy (1.1) and (1.2), where in (1.2) even the $>$ sign holds. We will show that, in the general case for any current density, not identically zero, arising from a bilinear form on the Hilbert space of positive frequency solutions of the Klein-Gordon or the Dirac equations satisfying (1.1) and (1.2), (1.2) cannot hold with the $=$ sign for \vec{x} in any space volume V and for any t. This follows from the causality of the current density and from the fact that $S_{V}(t)$ cannot be zero for all t with $0<t<\tau$ for any $\tau>0$ and any V. This fact will be proved in the next section. For that purpose we have to rewrite the setting of this section so that the formalism of the next section can be applied to it.

1) Here there is a little ambiguity in the Fourier transformation F. In (1.11) F transforms tempered distributions in the \vec{x}-space \mathbb{R}^{3} into tempered distributions in the \vec{p}-space \mathbb{R}_{3}, which is defined by Parsevals relation if F is a map from $S\left(\mathbb{R}_{3}\right)$ onto $S\left(\mathbb{R}^{3}\right)$. However, in (1.14) F should be understood in L^{2}-sense, which can be defined by completion if F is a map from $S\left(\mathbb{R}^{3}\right)$ onto $S\left(\mathbb{R}_{3}\right)$, cf.II §2.i.

We have considered nonnegative densities of the form $j^{0}(x)=q\left(\Psi_{x}, \Psi_{x}\right)$ such that $\int_{j} j^{0}(t, \vec{x}) d \vec{x}$ is a closed bilinear form. For the moment we do not bother whether this is the zero's component of a four-vector or not. Let V_{0} be a fixed space volume and let

$$
s_{0}(x) \stackrel{\text { def }}{=} s_{V_{0}+\vec{x}^{(t)}}
$$

where $V_{0}+\vec{x}$ is the over \vec{x} translated volume V_{0}. According to [58,th.VIII. 15] $S_{0}(x)$ can be written as

$$
S_{0}(x)=\left(\Psi_{x}, T \Psi_{x}\right)
$$

for some selfadjoint positive operator T. We define

$$
T_{x} \stackrel{\text { def }}{=} U^{-1}(x) T U(x)
$$

where $U(x)$ is the unitary operator with

$$
\mathrm{U}(\mathrm{x}) \Psi=\Psi_{\mathrm{x}}
$$

Since

$$
U(t, \vec{x}) \Psi(y)=\int e^{i \sqrt{\vec{p}^{2}+m^{2}}\left(t-y_{0}\right)+i<\vec{p}, \vec{x}-\vec{y}>} \phi(\vec{p}) \frac{\overrightarrow{d p}}{\sqrt{\vec{p}^{2}+m^{2}}}
$$

where ϕ is determined by Ψ according to (1.14), $U(x)$ has a spectral measure contained in $\left\{p \mid p_{0}=\sqrt{\overrightarrow{\mathrm{p}}^{2}+m^{2}}\right\}$.

If in theorem 1.2 of the next section we replace $T(f)$ by T (in fact, here the testfunction f is the characteristic function of V_{0}), this theorem shows that $S_{0}(x)=\left(\Psi, T{ }_{x} \Psi\right)$ cannot vanish for $\|x\|<\varepsilon$ for every $\varepsilon>0$. Actually the theorem gives more precise information where $S_{0}(x)$ can vanish. If now $S_{V}(t)=0$ for $0<t<\tau$, we choose $V_{0} \subset \subset V$ and theorem 1.2 shows that $S_{V}(t)=0$ for all t and all V, hence that $j^{0} \equiv 0$. We summarize the foregoing in the following theorem.

THEOREM 1.1. Let H be the Hilbert space of positive frequency solutions Ψ of the Klein-Gordon equation or the Dirac equation. Let $q(\Psi, \Psi)$ be a nonvanishing bilinear form on a dense subspace D of H such that for all $x \in \mathbb{R}^{4}$

$$
j(x) \stackrel{\text { def }}{=} q\left(\Psi_{x}, \Psi_{x}\right) \geq 0
$$

and such that for all t and space volumes $V \int j(t, \vec{x}) d \vec{x}$ is a closed bilinear form on D. Let V_{0} be an arbitrary space volume and let

$$
s_{0}(t, \vec{x}) \stackrel{\text { def }}{=} \int_{V_{0}+\vec{x}} j(t, \vec{y}) d \vec{y} .
$$

Then for any $\varepsilon>0 S_{0}(x)$ cannot vanish identically for $\|x\|<\varepsilon$.

In theorem 1.1 we do not assume that the nonnegative density is causal, but if it is, it follows that for each $t S_{0}(t, \vec{x})$ cannot vanish identically even for $\|\vec{x}\|<\varepsilon$. So also formula (1.4) cannot be used for defining causality. For if it holds, it can never occur. Nonnegative causal densities arise, for example, from a current density satisfying (1.1). In [25] and [26] nonnegative densities corresponding to the energy are discussed which do not satisfy (1.1) but still are causal. In [13] Dirac proposed a new wave equation yielding only positive energy solutions which satisfy the Klein-Gordon equation, too. Moreover, he has defined a current density as in (1.12) satisfying (1.1) and (1.2). Hence the zero's component of this density can never be localized, contrarily to what Dirac said in [14]. Perhaps, it is also possible to define noncausal nonnegative densities which then cannot satisfy (1.1), cf. [28].

The solutions of the Klein-Gordon or the Dirac equation are particular cases of quantized fields. Therefore, in the next section we will pass to the (mathematical) problem of localization of fields, although we do not use all the axioms defining these fields. We will select only those axioms which imply the result that $S_{0}(x)$ cannot vanish identically for $\|x\|<\varepsilon$.

I.4. ANALYTIC PROPERTIES OF EXPECTATION VALUES

In the theory of quantized fields satisfying the Garding-Wightman axioms [71] we shall use the same principle as before in order to show that not both, the testfunctions and the field operators, are localizable (cf. [72] for a stronger result saying that the field operators are nowhere ordinary functions, which follows from more conditions than we assume here). We remark that from now on all concepts will have only a mathematical meaning and the physical interpretation, if there is any, will not be discussed.

We shall not give all axioms defining a quantized field but only those which are needed in this section. For example, we do not need the vacuum
state which cannot be missed in defining the general theory and properties of quantized fields. Although we introduce them no proper use will be made of the testfunctions and therefore, our conditions are as general as in [28] and they apply to relativistic quantum mechanics as well. For simplicity we shall discuss the case of an observable scalar field; the case of vector and tensor fields is similar, see [71].

Let F be a nuclear, locally convex, topological vector space of $C \stackrel{\infty}{-}$ testfunctions defined in x-space or in a complexification of the x-space. We shall not specify F in this section; in [36] F equals the space $S\left(\mathbb{R}^{4}\right)$ and in [71] Fequals $\mathcal{D}\left(\mathbb{R}^{4}\right)$ (cf. also $[68,29.6]$); ultradifferentiable testfunctions are discussed in [33] and in [11], whereas in [10], [63] and [52] spaces F of analytic functions are considered. If there are testfunctions in F with compact support the field is called strictly localizable, see [33]. Furthermore, there is a complex Hilbert space H of states with inner product < , >. In order not to confuse this notation with the action $\left\langle p, x>\right.$ of $p \in \mathbb{R}_{4}$ to $\mathbf{x} \in \mathbb{R}^{4}$, we shall here denote this action by $\mathrm{x} \cdot \mathrm{p}$.
Axiom I. The field T is a linear map from F into linear operators in H . For all $f \in F$ the operators $T(f)$ and $T(f)$ * possess a common dense domain D on which they are defined, such that for all $\Phi, \Psi \in \mathrm{D}\langle\Phi, T(\cdot) \Psi\rangle$ belongs to F^{\prime}. Moreover, for all $f \in F T(f) D \subset D$.

Axiom II. The translations over the four-vector x induce a continuous map \{x\} from F into F by

$$
\{x\} f(y) \stackrel{\text { def }}{=} f(y-x), f \in F
$$

An unitary, continuous representation U of the group of translations exists, such that for all f $\in F$

$$
U(x)^{-1} T(f) U(x)=T_{x}(f)
$$

where

$$
T_{x}(f) \stackrel{\text { def }}{=} T(\{x\} f)
$$

Furthermore, $U(x) D \subset D$ for all $x \in \mathbb{R}^{4}$.
Axiom III. $\mathrm{U}(\mathrm{x})$ has a spectral decomposition

$$
U(x)=\int e^{i x \cdot p} d E(p)
$$

where the support of E is contained in the cone

$$
\overline{\Gamma^{*}}=\left\{p_{0}^{2} \geq \| \vec{p}^{2}, p_{0} \geq 0\right\}
$$

We show that a strictly localizable field satisfying only the above mentioned axioms, as an operator valued distribution, cannot have a support which is not \mathbb{R}^{4}. First, let us assume that the field is positive ${ }^{1)}$, which means that for all $\Phi \in \mathrm{D}\langle\Phi, T(\cdot) \Phi\rangle$ is a positive distribution in F^{\prime}. Thus for every real and nonnegative testfunction f the operator $T(f)$ is positive, i.e., for all $\Phi \in D$ and for such an f

$$
\langle\Phi, T(f) \Phi\rangle \geq 0 .
$$

Let us call such a field a positive field. Furthermore, let us call $x(s)=$ $=(t(s), \vec{x}(s))$ a time-like curve if t and \vec{x} are continuously differentiable functions of the real variable s with

$$
\left(t^{\prime}(s), \vec{x}^{\prime}(s)\right) \in \Gamma
$$

where Γ is the open light cone. If moreover for each $\lambda=0,1,2,3, x_{\lambda}$ is a real analytic function of s, we call the curve an analytic time-like curve.

THEOREM 1.2. Let T be a positive field as defined by axioms I, II and III, let f be a real nonnegative testfunction in F and let $\mathrm{x}(\mathrm{s})$ be an analytic time-like curve for $s \in \mathbb{R}$. If for some $\Phi \in \mathrm{D}$ and $\varepsilon>0$
(1.15) $\left\langle\Phi_{X(S)}(f) \Phi>=0\right.$
for all $0<s<\varepsilon$, then (1.15) vanishes for all $s \in \mathbb{R}$.

In particular, if $x(s)=(\tau s, s \vec{a})$ where \vec{a} varies in the unit ball in \mathbb{R}^{3} and τ in $(1, \infty)$, it follows that $S_{0}(x)$, defined in theorem 1.1 , cannot vanish identically in an open set in \mathbb{R}^{4}.

[^0]PROOF. By Friedrichs extension theorem [58, th. X.23] the positive operator $T(f)$, defined on D, has a positive selfadjoint extension $\tilde{T}(f)$. By the spectral theorem there exists a positive selfadjoint operator $A(f)$ such that $A(f)^{2}=\tilde{T}(f)$, which certainly holds on D. Since every translated f is real and nonnegative if f is, (1.15) implies

$$
\langle\Phi, A(\{x(s)\} f) A(\{x(s)\} f) \Phi\rangle=\langle A(\{x(s)\} f) \Phi, A(\{x(s)\} f) \Phi\rangle=0
$$

for $0<s<\varepsilon$. Hence $A(\{x(s)\} f) \Phi=0$ and so

$$
\begin{equation*}
U(x(s)) T_{x(s)}(f) \Phi=0, \quad 0<s<\varepsilon . \tag{1.16}
\end{equation*}
$$

Therefore, for any $\tau \in \mathbb{R}$ we have $I(\tau, s)=0$ for $0<s<\varepsilon$ where

$$
\left.I(\tau, s) \stackrel{\text { def }}{=}<U(x(\tau)) \Phi, U(x(s)) T_{x(s)}(f) \Phi\right\rangle
$$

According to axiom II $I(\tau, s)$ can be written as

$$
\begin{aligned}
I(\tau, s) & =\left\langle U(x(\tau)) \Phi, U(x(s)) T_{x(s)}(f) U(x(s))^{-1} U(x(s)) \Phi\right\rangle= \\
& =\langle U(x(\tau)) \Phi, T(f) U(x(s)) \Phi\rangle
\end{aligned}
$$

and by axiom III

$$
I(\tau, s)=\int e^{i x(s) \cdot p_{d<T}(f) U(x(\tau)) \Phi, E(p) \Phi>}
$$

Since E has its support in the cone $\overline{\Gamma^{\star}}$ this integral, as a distribution of the variable $x=x(s) \in \mathbb{R}^{4}$, is the boundary value of a function G holomorphic in $\mathbb{R}^{4}+i \Gamma$.

Let s be the real part of the complex variable $s+i \mu$ and let $u(s, \mu) \in \mathbb{R}^{4}$ and $v(s, \mu) \in \mathbb{R}^{4}$ be the real and imaginary parts of the analytic continuation of the function $x(s)$, thus $u(s, 0)=x(s)$ and $v(s, 0)=0$. Then by the Cauchy-Riemann equations

$$
\left(\frac{\partial v_{0}}{\partial \mu}(s, 0), \ldots, \frac{\partial v_{3}}{\partial \mu}(s, 0)\right)=x^{\prime}(s) \in \Gamma
$$

hence for each $s \in \mathbb{R} v(s, \mu) \in \Gamma$ for some $\Gamma ' c c \Gamma$ and for all $\mu>0$ with
$|\mu|$ sufficiently small depending on s. Thus

$$
I(\tau, s+i \mu)=G(u(s, \mu)+i v(s, \mu))
$$

exists and is an analytic function of $s+i \mu$ for $\mu>0$ and $|\mu|$ sufficiently small depending on $s .{ }^{1)}$ Since $\lim I(\tau, s+i \mu)=0$ as $\mu \downarrow 0$ for $0<s<\varepsilon$, it follows that $I(\tau, s) \equiv 0$, in particular $I(\tau, \tau)=0$. This yields

$$
\left\langle U(x(\tau)) \Phi, U(x(\tau)) T_{x(\tau)}(f) \Phi\right\rangle=\left\langle\Phi, T_{x(\tau)}(f) \Phi\right\rangle=0
$$

COROLLARY 1.3. A nonvanishing, strictly localizable field T satisfying only the axioms I, II and III has support \mathbb{R}^{4}.

For otherwise there is a testfunction f and $\varepsilon>0$ such that for all $\Phi \in D T_{x}(f) \Phi=0$ for all $x \in \mathbb{R}^{4}$ with $\|x\|<\varepsilon$, so that (1.16) would hold.

We can drop the assumption of positivity of the field, if we impose a condition on the state Φ and then we get the stronger result that the expectation values are analytic functions of the translations in space and time. The condition implies that the high-energy contributions to the state may not be too strong. More precisely, let $U(x)=e^{i x \cdot P}$ and let P_{0} be the zero'th component of the operator P. Then P_{0} is a positive selfadjoint unbounded operator and we assume that the state Φ belongs to the domain of definition of the operator $e^{\delta P_{0}}$ for some $\delta>0$. This property is equivalent to the following definition

DEFINITION: A state $\Phi \in H$ is called analytic for the energy if Φ belongs to the domain of definition of any $\mathrm{P}_{0}^{\mathrm{m}}$ and if

$$
\sum_{m=0}^{\infty} \frac{\left\|p_{0}^{m}{ }^{m}\right\|}{m!} \delta^{m}<\infty
$$

for some $\delta>0$.
Nelson's analytic vector theorem tells us that there are many of such vectors (namely a dense subset of H) [58, IIth. X. 39].

[^1]THEOREM 1.4. Let T be a field defined by axioms I, II and III and let $\Phi \in \mathrm{D}$ be an analytic vector for the energy. Then for any $f \in F$ the function

$$
\left\langle\Phi, T_{X}(f) \Phi\right\rangle
$$

is analytic in $x \in \mathbb{R}^{4}$.
PROOF. Define the function G of $(x, \xi) \in \mathbb{R}^{4} \times \mathbb{R}^{4}$ by

$$
G(x, \xi)=\left\langle\Phi, U(x)^{-1} T(f) U(\xi) \Phi\right\rangle .
$$

Since for all $f \in F$ we have $T(f) D \subset D$ the expression

$$
\left\langle\Phi, T(\cdot)^{*} T(\cdot) \Phi\right\rangle
$$

determines a separately continuous bilinear map on $F \times F$. By Schwartz' kernel theorem this map is continuous on $F \times F$. Hence for each $f \in F$

$$
\left\|T_{\xi}(f) \Phi\right\|=\|T(f) U(\xi) \Phi\|=\left[\left\langle\Phi, T\left(\{\xi\}_{f}\right)^{*} T(\{\xi\} f) \Phi\right\rangle\right]^{\frac{3}{2}}
$$

is a continuous function of $\xi \in \mathbb{R}^{4}$. Also for $x, \xi \in \mathbb{R}^{4} U(\xi)^{-1} U(x) \Phi$ varies continuously in H. Therefore G is a continuous function:

$$
\begin{aligned}
& \left|<U(\xi)^{-1} U(x) \Phi, T_{\xi}(f) \Phi>-<U(\eta)^{-1} U(y) \Phi, T_{\eta}(f) \Phi>\right| \leq \\
& \leq\left|<U(\xi)^{-1} U(x) \Phi, T(\{\xi\} f-\{\eta\} f) \Phi\right\rangle \mid+\left\|\left\{U(\xi)^{-1} U(x)-U(\eta)^{-1} U(y)\right\} \Phi\right\| \cdot \\
& \cdot\left\|T_{\eta}(f) \Phi\right\| .
\end{aligned}
$$

In particular G is measurable.
For fixed $\xi \in \mathbb{R}^{4} G$ can be extended as a holomorphic function of z in the tubular domain with base $(\delta, 0,0,0)-\Gamma$ by

$$
G(z, \xi)=\int e^{-i z \cdot p-\delta p_{0}} d<E(p) e^{\delta P_{0}} \Phi, T(f) U(\xi) \Phi>
$$

satisfying there

$$
|G(z, \xi)| \leq \| e^{\delta P_{0_{\Phi}\|\cdot\|} T(f) U(\xi) \Phi \|} .
$$

Since $\|T(f) U(\xi) \Phi\|$ is continuous the right hand side is bounded if ξ varies in a bounded set in \mathbb{R}^{4}. On the other hand, for fixed $x \in \mathbb{R}^{4} G$ can be extended as a holomorphic function of ζ in the tubular domain with base $-(\delta, 0,0,0)+\Gamma^{-}$by

$$
G(x, \zeta)=\int e^{i \zeta \cdot p-\delta p_{0}} d<T(f)^{*} U(x) \Phi, E(p) e^{\delta P_{0_{\Phi}}}
$$

satisfying there

$$
|G(x, \zeta)| \leq\left\|T(f){ }^{*} U(x) \Phi\right\| \cdot\left\|e^{\delta P_{0}}{ }_{\Phi}\right\|
$$

Similarly to above, it follows that the right hand side is bounded if x varies in a bounded set in \mathbb{R}^{4}. Then it follows from Hartogs theorem for real-analytic functions (see [7], cf. also chapter II, §3.i of this thesis) that G is an analytic function of $(x, \xi) \in \mathbb{R}^{4} \times \mathbb{R}^{4}$. In particular $G(x, x)$ is an analytic function of $x \in \mathbb{R}^{4}$.

Finally, we make some remarks concerning local commutativity, which expresses the fact that two space-like separated events cannot influence each other (sometimes also called microscopic causality). For strictly localizable fields the axiom of local commutativity is formulated as follows: Axiom IV. Let f and g in F have their supports such that any two points x in the support of f and y in the support of g are space-like separated, i.e., $\left|x_{0}-y_{0}\right|<\|\vec{x}-\vec{y}\|$, then

$$
T(f) T(g)=T(g) T(f)
$$

For the description of non-normalized interactions it is convenient to work with distributions growing faster than polynomials in p-space. Hence the functions in the Fourier transform of F must decrease more rapidly than functions in S. If they decrease too fast at infinity, the space F consists of non-localizable functions or even analytic functions. In the last case the expectation values are analytic functions anyhow (by axiom II). Theorem 1.4 reveals that this is not a rare phenomenon. Thus there would be no objection against analytic testfunctions. However, in that case the above given definition of local commutativity is impossible.

In [63] the space F is taken to be Z, the Fourier transform of D, consisting of certain entire functions, and local commutativity is not reauired,
but another way of defining microscopic causality is given. In [10] a condition for causality is given on non-localizable functions in F, namely that the distributions in p-space have a growth at infinity of order one and type zero, i.e., they are O (exp $\varepsilon\|\mathrm{l}\|$) for any $\varepsilon>0$. In [69] such a field is called localizable. In chapter II we shall see that then the Fourier transforms in x-space are functionals on a space of real-analytic testfunctions. In spite of this such analytic functionals have a uniquely defined support (see chapter II, def. 2.6). As in [47] we will show (chapter II, th. 2.7) that an analytic functional T can be written as $\sum_{k=1}^{N} T_{k}$, where the analytic functionals T_{N} have their supports in a priori given closed sets U_{k} such that ${\underset{k}{*}=1}_{N}^{U_{k}}=\mathbb{R}^{4}$. In a localizable, but non-strictly-localizable field T the space F consists of real-analytic testfunctions. Then local commutativity might be defined as follows:
For all $\mathrm{f}, \mathrm{g} \in \mathrm{F}$ and all decompositions $\mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}$ where T_{1} and T_{2} have space-like separated supports, $T_{1}(f)$ and $T_{2}(g)$ commute.

I. 5. LOCALIZATION OF TACHYONS

In the description of tachyons (particles travelling faster than light) another application of the theory of functions of several complex variables can be made. As physics intend to study phenomena which take place outsjde the human mind, this section is perhaps more of mathematical interest than that it pretends to describe something of physical reality. Therefore, we shall not make the assumptions as general as possible, but we shall just study the solutions of the tachyonic Klein-Gordon equation. This enables us to explain a seeming contradiction between [66] and [50] concerning the existence of acausal solutions of certain wave equations corresponding to high-spin-particles. As to tachyons themselves there exists an extensive literature, see for example [51].

Let a superluminal state be described by a wave function Ψ satisfying the tachyonic Klein-Gordon equation
(1.17) $\quad\left(\partial_{\mu} \partial^{\mu}-m^{2}\right) \Psi=0$.

Since here positive and negative energy solutions can be transformed into each other, we allow states which are a mixture of positive and negative energy.

Let us investigate to which situation a solution leads,
which is localized in a bounded volume V during some time interval $|t|<\tau$. Then also $\frac{\partial \Psi}{\partial t}(0, \vec{x})=0$ for $\vec{x} \notin V$. Hence, since Ψ satisfies a hyperbolic differential equation, for any $t \Psi(t, \vec{x})$ as a function or distribution in \vec{x} space has a bounded support: the support grows to the future and to the past with velocity 1 , which is the velocity of light, here. If we assume that Ψ belongs to $S^{\prime}\left(\mathbb{R}^{4}\right)$, it follows that the Fourier transform Φ can be written as

$$
\Phi(p)=F^{+}(p+i 0)-F^{-}(p-i 0),
$$

where $F^{ \pm}(p \pm i 0)$ are the boundary values in $S^{\prime}\left(\mathbb{R}_{4}\right)$ of holomorphic functions in $\mathbb{R}_{4} \pm i C^{*}$ with $C^{*}=\left\{\left(q_{0}, \vec{q}\right) \mid q_{0}>\|\vec{q}\|\right\}$, see [68]. Since ψ satisfies (1.17) $\Phi(\mathrm{p})$ vanishes for $\|\overrightarrow{\mathrm{p}}\|<m$ (in fact, similarly to (1.10) Φ is concentrated on the hyperboloide $p_{0}^{2}=\vec{p}^{2}-m^{2}$). The "Edge of the Wedge" theorem implies that F^{+}and F^{-}are analytic continuations of each other.

Furthermore, it can be shown (see [68]) that any function F, which is holomorphic in $\left\{\mathbb{R}^{n}+i C\right\} \cup\left\{\mathbb{R}^{n}-i C\right\} \cup U \subset \mathbb{C}^{n}$, where $C=\left\{\left(y_{0}, \vec{Y}\right) \mid y_{0}>\alpha\|\vec{y}\|\right.$, $\left.\overrightarrow{\mathrm{y}} \in \mathbb{R}^{\mathrm{n}-1}\right\}$ for some $\alpha>0$ and where U is an open neighborhood in \mathbb{C}^{n} of $\left\{\left(x_{0}, \vec{x}\right) \mid\|\vec{x}\|<a\right\}$ for some $a>0$, is an entire function. Hence in the above $\mathrm{F}^{+}(\mathrm{p}+\mathrm{i} 0)-\mathrm{F}^{-}(\mathrm{p}-\mathrm{i} 0)$ vanishes everywhere. Therefore Φ, and thus Ψ, is identically zero. The conclusion is that except zero no solution Ψ of (1.17) with a bounded support during some time interval belongs to $S^{\prime}\left(\mathbb{R}^{4}\right)$. In particular, the fundamental solution belongs to $D^{\prime}\left(\mathbb{R}^{4}\right)$ and not to $S^{\prime}\left(\mathbb{R}^{4}\right)$ and it does not correspond to real energy p_{0} and impulse \vec{p}, cf. [19]. Therefore, not every pair of initial values ψ_{0} and ψ_{1} in $S^{\prime}\left(\mathbb{R}^{3}\right)$ yields a solution corresponding to real p. Only those ψ_{0} and ψ_{1} in $S^{\prime}\left(\mathbb{R}^{3}\right)$ whose Fourier transforms vanish for $\|\vec{p}\|<m$ yield a solution in $S^{\prime}\left(\mathbb{R}^{4}\right)$, see formula (1.11) with m^{2} replaced by $-m^{2}$. Hence, for any wave function Ψ describing a superluminal state, $\Psi(t, \vec{x})$ or $\frac{\partial \Psi}{\partial t}(t, \vec{x})$ cannot vanish identically for \vec{x} outside a bounded volume at any time t.

Although equation (1.17) is supposed to describe a superluminal state, the characteristics show that any solution localized in a bounded spacevolume cannot grow faster than with the speed of light, cf. the conclusion in [66]. However, this phenomenon can never be "observed", since localized solutions do not correspond to real values of energy and impulse, cf. the conclusion in [50] that an equation like (1.17) may describe superluminal procession.

Unlike subluminal free particles, it can happen that a solution Ψ of
(1.17) as well as its time derivative $\frac{\partial \Psi}{\partial t}$ vanishes in a bounded volume at some time t. Then such a "hole" would be filled with the speed of light. For, if $\Psi \in S^{\prime}\left(\mathbb{R}^{4}\right)$ is written as $\Psi=\Psi^{+}+\Psi^{-}$where Ψ^{+}corresponds to $p_{Q} \geq 0$ and Ψ^{-}to $p_{0}<0$, and if we require that for any $t \Psi^{ \pm}(t, \vec{x})$ and $\frac{\partial \Psi^{\ddagger}}{\partial t}(t, \vec{x})$ are L^{2}-function of $\vec{x} \in \mathbb{R}^{3}$, then the question whether $\Psi(t, \vec{x})$ and $\frac{\partial \Psi}{\partial t}(t, \vec{x})$ can vanish in the same space-volume at the same time is equivalent to the following question:
Does there exist a function f in the Sobolev space $H^{1}\left(\mathbb{R}^{3}\right)$ such that both the function itself and its Fourier transform vanish identically in some open set in \mathbb{R}^{3} and in \mathbb{R}_{3}, respectively?
It is very easy to see that the answer is affirmative if f is a tempered distribution, for example we can choose the fundamental solution g of the wave equation. Now let ϕ and ψ be $C^{\infty}-f_{\text {functions }}$ with small supports around the origin in \mathbb{R}_{3} and \mathbb{R}^{3}, respectively. Then $\phi * F g$ is a C^{∞} function of polynomial growth and

$$
\hat{f}(\xi) \stackrel{\text { def }}{=} F \psi(\xi) \cdot(\phi * F g)(\xi)
$$

is a function in $S\left(\mathbb{R}_{3}\right)$, which vanishes identically in some open set in \mathbb{R}_{3} because Fg does. Also

$$
f \text { def } F^{-1} \hat{f}=\frac{1}{(2 \pi)^{n}}\left(g \cdot F^{-1} \phi\right) * \psi
$$

vanishes identically in some open set in \mathbb{R}^{3} because g does. Finally, f belongs to $H^{1}\left(\mathbb{R}^{3}\right)$ because it even belongs to $S\left(\mathbb{R}^{3}\right)$.

CHAPTER II

REAL-CARRIED ANALYTIC FUNCTIONALS AND BOUNDARY VALUES OF ANALYTIC FUNCTIONS

Abstract

In [48] Martineau has discussed properties of analytic functionals with bounded carrier and their Fourier transforms. Here, we shall treat analytic functionals with unbounded carrier defined on spaces of analytic functions satisfying certain growth conditions at infinity. Unlike in the case of bounded carriers, these growth conditions are involved in the definition of unbounded carriers, and moreover, a class of neighborhoods has to be specified.

In section 1 properties of real-carried:analytic functionals will be derived. We shall consider two types of analytic functionals, of which one belongs to a Frechet space. The properties are similar to those given in [47] for analytic functionals with bounded, real carriers. The proofs given here rely on [47] as long as we deal with Frechet spaces, while in the other case the proofs are suitably adapted.

Section 2 is concerned with Fourier transforms of real-carried analytic functionals defined on spaces Z_{M} which are subsets of Z, the space of Fourier transforms of D. The spaces Z_{M} are determined by growth conditions in the real directions. As a limit case the space of exponentially decreasing real analytic functions arises and the dual of this space is just the set of Fourier hyperfunctions [38]. Since the space of Fourier transforms of elements in Z_{M} is a subset of D, its dual contains more general objects (namely, ultra-distributions) than distributions in D'. As has been done in [60] for distributions, here we shall represent such ultradistributions as boundary values of analytic functions. So they arise very naturally between distributions and hyperfunctions on the one hand. Being boundary values of analytic functions, too, their Fourier transforms form the transition from real-carried analytic functionals in Z^{\prime} to Fourier hyperfunctions on the other hand. Since Fourier transformation is an isomorphism it is possible to define ultradistributions completely by studying their Fourier transforms which

are the analytic functionals we are concerned with. However, for clarity we shall discuss ultradistributions and some properties directly, where for the proofs we refer to [42].

Finally, the "Edge of the Wedge" theorem for distributions and for ultradistributions as well will be the subject of section 3. We will give a simple proof by means fo Fourier transformation, which is based on techniques used in [4].

II. 1 REAL-CARRIED ANALYTIC FUNCTIONALS

II.1.i THE SPACE Z'

We consider a familiar example of a space of analytic functionals. The Fourier transform of the space D of C^{∞} testfunctions with compact support is the space Z of entire functions decreasing in the real directions faster than each negative power of $\|z\|$ and increasing exponentially in the imaginary directions. The dual space Z^{\prime} is a space of analytic functionals and its Fourier transform is the space D^{\prime} of distributions. Tempered distributions in $S^{\prime}\left(\mathbb{R}^{n}\right)$ or distributions with compact support K in $\mathbb{R}^{2 n} \cong \mathbb{C}^{n}$ are examples of elements of Z^{\prime}. For an entire function f and for a multiindex α we have

$$
\sup _{z \in K}\left|D^{\alpha} f(z)\right| \leq \frac{\alpha!\sqrt{n}^{|\alpha|}}{\bar{\varepsilon}^{\alpha}} \sup _{z \in K(\varepsilon)}|f(z)|
$$

for every $\varepsilon>0$, where $K(\varepsilon)$ denotes the ε-neighborhood of K in \mathbb{C}^{n} and $\bar{\varepsilon}$ the vector in \mathbb{R}^{n} with components ε. Hence, for all $f \in Z$ and every $\varepsilon>0$, a distribution T with support K satisfies

$$
\begin{equation*}
|\langle T, f\rangle| \leq M_{\varepsilon} \sup _{z \in K(\varepsilon)}|f(z)| \tag{2.1}
\end{equation*}
$$

for some constants M_{ε} depending on ε and T. We may consider K as the support of the analytic functional T, but in general such a notion has properties different from supports of distributions. In $[30, p .105]$ an example has been given of an analytic functional μ which satisfies (2.1) for all sets K in \mathbb{C}^{2} of the form $\mathrm{K}_{\alpha}=\left\{\left(\mathrm{z}_{1}, z_{2}\right)| | z_{1}\left|\leq \alpha,\left|z_{2}\right| \leq \frac{1}{\alpha}\right\}\right.$, but which does not satisfy (2.1) for $K=\bigcap_{\alpha>0} K_{\alpha}$ (μ is the Fourier transform of the distribution in \mathbb{R}^{2} defined by the function $\cosh 2 \sqrt{\xi_{1} \xi_{2}}$). Therefore a compact set $K \subset \mathbb{C}^{n}$
satisfying (2.1) for every $\varepsilon>0$ is called the carrier of the analytic functional T. In Z^{\prime} unbounded carriers can be defined, too. For that purpose we first analyze the topology of the space z.

Let $Z(a)$ be the Frechet space $\operatorname{proj}_{m} \lim _{\infty} Z(a)_{m}$, where $Z(a)_{m}$ is the space of entire functions endowed with the norm

$$
\begin{equation*}
\|f\|_{m} \stackrel{\text { def }}{=} \sup _{z \in \mathbb{C}^{n}}\left(1+\left\|_{z}\right\|\right)^{m} e^{-a \|} y\| \| f(z) \mid \tag{2.2}
\end{equation*}
$$

Then $Z=i_{a} \lim _{\infty} \lim _{\infty} Z(a)$. Elements $\mu \in Z^{\prime}(a)$ can be written as $\langle\mu, f\rangle=$ $\mathcal{f} h(x) f(x) d x$ for some entire function $h[21$, III §2.3]. Hence μ is a functional on the space of restrictions to \mathbb{R}^{n} of functions in $Z(a)$. In general, this is no longer true for $\mu \in Z^{\prime}$. For example the Fourier transform of the infinite order distribution $\sum_{m} \delta^{(m)}(\xi-m)$ is defined by $\sum_{m} \int(i x) e^{i m x} f(x) d x$ for $f \in Z$.

DEFINITION. An analytic functional $\mu \in Z^{\prime}$ is carried by the closed set $\Omega \subset \mathbb{C}^{n}$ with respect to the decreasing sequence $\left\{\Omega_{k}\right\}_{k=1}^{\infty}$ of neighborhoods of Ω, if for every $\mathrm{k} \mu$ is already a functional on the space $\left.\mathrm{Z}\right|_{\Omega_{\mathrm{k}}}$ of restrictions to Ω_{k} of functions in Z , where $\left.\mathrm{Z}\right|_{\Omega_{\mathrm{k}}}$ carries the topology induced by Z , i.e., in (2.2) the supremum should be taken over all $z \in \Omega_{k}$.

If the neighborhoods Ω_{k} are the set of $1 / k$-neighborhoods

$$
\Omega(1 / k) \stackrel{\text { def }}{=}\left\{z \mid\left\|_{z-z^{\prime}}\right\| \leq 1 / k, z^{\prime} \in \Omega\right\}
$$

we will just say that μ is carried by Ω.
According to [16, th.5.13*] a fundamental system of neighborhoods of zero in Z is given by

$$
V(K, \alpha) \xlongequal{\text { def }}\{f \in Z||f(z)| \leq \alpha K(z)\},
$$

where $\alpha>0$ and where K is a positive, continuous function of the following form: let $\left\{a_{j}\right\}$ be a strictly increasing sequence of integers with $a_{0}=a_{1}=$ $=a_{2}=0, a^{j+2}>2 a$, and let ℓ be a positive integer; set $K(z)=(1+\|x\|)^{-\ell^{1}} x$ $x(1+\|y\|) \quad-\ell^{j+2}((j-2)\|y\|)$ for $a_{j}(1+\log (1+\|x\|)) \leq\|y\| \leq \frac{1}{2} a_{j+1}(1+\log (1+\|x\|))$; the definition of K is completed by requiring that K is a function of $\|x\|$, $\|y\|$ which is continuous and such that, for fixed $\|x\|, \log k(\|x\|, \| y)+$ $+\ell[\log (1+\|x\|)+\log (1+\|y\|)]$ is linear in $\|y\|$ in the regions in which it is
not already defined above. Then a fundamental system of neighborhoods of zero in $\left.Z\right|_{\Omega_{k}}$ is obtained by $\left\{\left.f \in Z\right|_{\Omega_{k}}| | f(z) \mid \leq \alpha K(z), z \in \Omega_{k}\right\}$. Now the Hahn-Banach theorem and Reisz' representation theorem imply that for every k an analytic functional μ carried by Ω with respect to $\left\{\Omega_{k}\right\}$ can be represented as a measure μ_{k} on Ω_{k} satisfying

$$
\int_{\Omega_{k}} K_{k}(z)\left|d \mu_{k}(z)\right| \leq M_{k^{\prime}}
$$

where K_{k} is a function as described above depending on k.
In chapter III we shall investigate the Fourier transforms of analytic functionals carried by convex sets $\Omega \subset \mathbb{a}^{n}$. In this chapter we restrict ourselves to the case where Ω is contained in $\mathbb{R}^{n}=\left\{z \mid z=x+i y, y=0, x \in \mathbb{R}^{n}\right\}$. In this case the spaces

$$
\mathrm{Z}_{\mathrm{F}} \stackrel{\text { def }}{\mathrm{proj}} \underset{\mathrm{~m} \rightarrow \infty}{\lim } \underset{\mathrm{a} \rightarrow \infty}{\text { ind }} \lim _{\mathrm{m}} \mathrm{a}(\mathrm{a})_{\mathrm{m}}
$$

and

$$
\mathrm{z} \xlongequal[\mathrm{a} \rightarrow \infty]{\text { def }} \underset{\mathrm{m} \rightarrow \infty}{ } \lim _{\mathrm{m}}^{\text {proj }} \lim _{\mathrm{m}} \mathrm{Z}(\mathrm{a})_{\mathrm{m}}
$$

induce the same topology on $\left.Z\right|_{\Omega_{(\varepsilon)}}$. Indeed, according to $[76$, th.5.10] a fundamental system of neighborhoods of zero in Z_{F} is given by $V\left(K^{\prime}, \alpha\right)$, where now $K^{\prime}(z)=\left(1+\left\|_{z}\right\|\right)^{-m} K_{1}^{\prime}(y)$ with $m \geq 0$ and with K_{1}^{\prime} a positive, continuous function dominating every exp allyll, a $\quad 0 . Z_{F}$ is the Fourier transform of $D_{F^{\prime}}$ the test space for the finite-order-distributions. Hence the (inverse) Fourier transforms of all elements μ in Z ' carried by the real set Ω are finite-order-distributions and, moreover, for every $\varepsilon>0$ these μ satisfy

$$
|\langle\mu, £\rangle| \leq M_{\varepsilon} \sup _{z \in \AA(\varepsilon)}\left[(1+\|x\|)^{m(\varepsilon)}|f(z)|\right], \quad f \in Z,
$$

with M_{ε} and $m(\varepsilon)$ depending on ε and μ. The above given representation yields that for every $\varepsilon>0 \mu$ can be represented as a measure μ_{ε} on $\Omega(\varepsilon)$ satisfying

$$
\int_{\Omega(\varepsilon)} \frac{\left|d \mu_{\varepsilon}(z)\right|}{(1+\|x\|)^{m(\varepsilon)}} \leq M_{\varepsilon}
$$

II.1.ii. GENERAL SPACES OF REAL-CARRIED ANALYTIC FUNCTIONALS

We introduce real-carried analytic functionals in spaces defined in a more general way of which the real-carried elements of Z^{\prime} are only an example. Real-carried analytic functionals, originally defined on some space H of entire functions f, can be extended to the space A of restrictions of f to ε-neighboorhoods of \mathbb{R}^{n} by the Hahn-Banach theorem, where A carries the topology induced by H. This extension is unique if H is dense in A. We shall not treat this question, but we shall merely start with spaces A consisting of all funcitons analytic in ε-neighborhoods of \mathbb{R}^{n}, which satisfy certain growth conditions at infinity. We shall consider two types of such spaces A.

Let $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ be an increasing or a decreasing sequence of continuous functions defined on \mathbb{R}^{n}, and let Ω_{j} be the open $1 / j$-neighborhood in \mathbb{C}^{n} of the closed set Ω in \mathbb{R}^{n}. Let $A_{m}\left(\Omega_{k}\right)$ be the Banach space of analytic functions f in Ω_{k} with

$$
\begin{equation*}
\|f\|_{m, k} \stackrel{\text { def }}{=} \sup _{z \in \Omega_{k}}\left|f(z) \exp -\phi_{m}(x)\right|<\infty . \tag{2.3}
\end{equation*}
$$

If $\left\{\phi_{j}\right\}$ is an increasing sequence, define $A(\Omega)$ by (2.4) $A(\Omega) \xlongequal{\text { def }} \underset{k \rightarrow \infty}{ } \lim _{k}\left(\Omega_{k}\right)$
and if $\left\{\phi_{j}\right\}$ is decreasing by

$$
\begin{equation*}
A(\Omega) \stackrel{\text { def }}{\text { ind }} \lim _{k \rightarrow \infty} \underset{m \rightarrow \infty}{\operatorname{proj}} \lim _{m}\left(\Omega_{k}\right) \tag{2.5}
\end{equation*}
$$

where all needed injections are defined by restriction. If $\Omega=\mathbb{R}^{n}$ we shall just write A.

Real-carried analytic functionals in Z^{\prime} are defined on a space $Z\left(\mathbb{R}^{n}\right)$ of the second type with $\phi_{m}(x)=-m \log (1+\|x\|)$. In section II. 2 the functions ϕ_{j} will be negative with order of growth between $-j \log (1+\|x\|)$ and $-1 / j\|x\|$. The limits of the spaces they define are on the one side $Z\left(\mathbb{R}^{n}\right)$ and on the other side the space of the first type (2.4) defined by $\phi_{k}(x)=-1 / k\|x\|$. The duals of these limit spaces consist of Fourier transforms of certain distributions and, by definition [38], of Fourier hyperfunctions, respectively. The cases in between correspond to Fourier transforms of certain ultra-
distributions of Roumieu type or of Beurling type, depending on the respective cases (2.4) and (2.5) (cf. section II.2.iii).

A $\mu \in A^{\prime}$ carried by Ω can be extended to an element of $A(\Omega)$ ' with the same carrier. This extension is unique if A is dense in $A(\Omega)$ and then every $\mu \in A(\Omega)$ ' is uniquely determined by its action on functions of A. Again, as we are here interested in elements of A^{\prime} only, we do not bother about the question whether A is dense in $A(\Omega)$. 1)

II.1.iii. PROPERTIES OF REAL-CARRIED ANALYTIC FUNCTIONALS

First we shall show that every analytic functional in A^{\prime} has a, uniquely defined, smallest carrier which joins some properties of supports of distributions. In order to do so we have to make some assumptions implying the triviality of a cohomology group which will be shown in chapter VI for spaces A of type (2.4) and in chapter VII (cor.7.5) for spaces A of type (2.5). The result is that for each $f \in A\left(\Omega_{1} \cap \Omega_{2}\right)$ there are $f_{j} \in A\left(\Omega_{j}\right)$, $j=1,2$, such that
(2.6) $\quad f=f_{2}-f_{1}$

The proof uses the possibility of rewriting the spaces A in a different form. Essentially, it is based on the following property of closed sets Ω in \mathbb{R}^{n}.

LEMMA 2.1. (see chapter V, lemma 5.1). For any $1 / k$-neighborhood $\Omega(1 / k)$ of Ω there is an open pseudoconvex neighborhood Ω_{k} with $\Omega(1 / 2 k) \subset \Omega_{k} \subset \Omega(1 / k)$.

Hence formula's (2.4) and (2.5) with pseudoconvex sets Ω_{k} define the 1) This happens certainly if Ω is compact, because each compact set in \mathbb{R}^{n} is polynomially convex (cf. chapter V, lemma 5.1), hence for $f \in A(\Omega)$ the function $f(z) \exp z^{2}$ can be approximated in every Ω_{k} by polynomials P_{k} and then f is approximated by $P_{k}(z) \exp -z^{2} \in A$. It follows from results obtained in the following chapters (th. 4.6 and cor.7.4, cf. also cor.3.4) that A is dense in $A(\Omega)$ if Ω is convex and if $\left\{\phi_{j}\right\}$ satisfies the conditions of theorem 2.4 below. In [38, th.2.2.1] it is shown that A is dense in every $A(\Omega)$, if $A(\Omega)$ is a space of type (2.4) with $\phi_{k}(x)=-1 / k\|x\|$ and with certain neighborhoods Ω_{k}, larger than ε-neighborhoods.
spaces A just as well. Furthermore, the spaces A should not change if the weight functions ϕ_{j} of x are changed into plurisubharmonic functions ψ_{j} of z and if moreover the differences of the functions ϕ_{j} are not too small. More precisely, the following condition must be satisfied: there is an α-neighborhood $\mathbb{R}^{n}(\alpha)$ in \mathbb{C}^{n} of \mathbb{R}^{n} and, if $\left\{\phi_{j}\right\}$ is increasing, for every j there exist a plurisubharmonic function $\psi=\psi_{j}$ on $\mathbb{R}^{n}(\alpha)$ and, for every $N \geq 0$, moreover an $m=m(j, N) \geq j$ and $C=C(j, N) \geq 0$, or if $\left\{\phi_{j}\right\}$ is decreasing, for every m there exist a plurisubharmonic function $\psi=\psi_{m}$ on $\mathbb{R}^{n}(\alpha)$ and, for every $N \geq 0$, moreover $a j=j(m, N) \geq m$ and $C=C(m, N) \geq 0$, such that

$$
\begin{equation*}
\phi_{j}(x) \leq \psi(z)+N \log \left(1+\|z\|^{2}\right) \leq \phi_{m}(x)+C, \quad\|Y\|<\alpha \tag{2.7}
\end{equation*}
$$

In lemma 5.2 it will be shown that the spaces of the next section satisfy this condition.

According to [73, cond. HS_{1} and $\mathrm{HS}_{2}, \mathrm{p} .15$] it follows from condition (2.7) that A can be written with the L^{2}-norms

$$
\begin{equation*}
\left\{\int_{\Omega_{k}}|f(z)|^{2} \exp -2 \psi_{m}(z) d \lambda(z)\right\}^{\frac{3}{2}} \tag{2.8}
\end{equation*}
$$

where $\lambda(z)$ denotes the Lebesgue measure in \mathbb{C}^{n}, instead of the sup-norms (2.3). We denote by $H\left(\Omega_{k} ; \psi_{m}\right)$ the Hilbert space of holomorphic functions in Ω_{k} with inner product induced by the norm (2.8).

Furthermore, let $\Omega_{k}(1 / m)$ be the open $\left(\varepsilon_{k} / m\right)$-shrinking of Ω_{k}, where $\varepsilon_{k}>0$ is such that the ε_{k}-shrinking of Ω_{k} contains Ω_{k-1}. This is possible because we deal with ε-neighborhoods of closed sets in \mathbb{R}^{n}. Moreover, it is clear that (2.5) does not change if the functions in $A_{m}\left(\Omega_{k}\right)$ have only finite norms on $\Omega_{k}(1 / m)$. Finally, since in (2.4) and (2.5) only restrictions of functions in Ω_{k} to Ω_{k-1} or to $\Omega_{k}^{(1 / m)}$, respectively, are important, we may change the functions ψ_{j} of condition (2.7) near the boundary of Ω_{k}. So we have obtained the following lemma.

LEMMA 2.2. Let condition (2.7) be satisfied. Then the space $A(\Omega)$ given by (2.4) can also be written as

$$
\begin{aligned}
A(\Omega)=\operatorname{ind}_{\mathrm{k} \rightarrow \infty} \lim _{\mathrm{H}}\left(\Omega_{\mathrm{k}} ; \psi_{\mathrm{k}}\right) & =\underset{\mathrm{k} \rightarrow \infty}{\operatorname{ind} \lim _{\mathrm{H}}\left(\Omega_{\mathrm{k}} ; \psi_{\mathrm{k}}(z)+\log \left(1+\|\mathrm{z}\|^{2}\right)+\right.} \\
& \left.+\log \left(1+d\left(z, \Omega_{k}^{c}\right)^{-1}\right)\right)
\end{aligned}
$$

and the space $\mathrm{A}(\Omega)$ given by (2.5) as $\mathrm{A}(\Omega)=\underset{\mathrm{k} \rightarrow \infty}{\operatorname{ind}} \lim _{\mathrm{B}}\left(\Omega_{\mathrm{k}}\right)$ with

$$
\begin{align*}
& \left.+\log \left(1+\|z\|^{2}\right)+\log \left(1+d\left(z, \Omega_{k}^{c}\right)^{-1}\right)\right) \text {, } \tag{2.9}
\end{align*}
$$

where the sets $\left\{\Omega_{k}\right\}$ are pseudoconvex and where $d\left(z, \Omega_{k}^{C}\right)$ denotes the distance from z to the boundary of Ω_{k}.

Now bearing in mind that intersections of pseudoconvex sets are again pseudoconvex and using lemma 2.1, we can choose in lemma 2.2 pseudoconvex neighborhoods $\left\{\left(\Omega_{1} \cup \Omega_{2}\right)_{k}\right\},\left\{\left(\Omega_{1}\right)_{k}\right\}$ and $\left\{\left(\Omega_{2}\right)_{k}\right\}$ of $\Omega_{1} \cup \Omega_{2}, \Omega_{1}$ or Ω_{2}, respectively, which satisfy

$$
\begin{equation*}
\left(\Omega_{1} \cup \Omega_{2}\right)_{k}=\left(\Omega_{1}\right)_{k} \cup\left(\Omega_{2}\right)_{k} \tag{2.10}
\end{equation*}
$$

For the spaces of type (2.4) formula (2.6) now follows from lemma 2.2 (cf. cor. 7.5 with $\Omega^{k}=\Omega^{k+1}$ and $\phi^{k}=\phi^{k+1}, k=1,2, \ldots$).

LEMMA 2.3.i. Let Ω_{1} and Ω_{2} be closed sets in \mathbb{R}^{n} with non-empty intersection and let condition (2.7) be satisfied. Furthermore, let $A\left(\Omega_{1}\right), A\left(\Omega_{2}\right)$ and $\mathrm{A}\left(\Omega_{1} \cap \Omega_{2}\right)$ be given by (2.4), then for any $f \in A\left(\Omega_{1} \cap \Omega_{2}\right)$ there are $f_{j} \in A\left(\Omega_{j}\right), j=1,2$, such that (2.6) holds.

For spaces of type (2.5) this result is more difficult to prove and a further condition (cf. cond. (7.3)) is needed, which implies that the differences of the functions ψ_{m} may not be too large: for every p and m with $p \geq m$ there exists a holomorphic function $g_{p, m}$ in an α-neighborhood of \mathbb{R}^{n} in \mathbb{C}^{n} and, for every k, moreover a constant $K=K(p, m, k)$ such that

$$
\begin{equation*}
0<\left|g_{p, m}(z)\right| \leq K \exp -k\left\{\psi_{m}(z)-\psi_{p}(z)\right\},\|y\|<\alpha, k=1,2, \ldots \tag{2.11}
\end{equation*}
$$

For the spaces of the next section it suffices to take $g_{p, m}(z)=\exp -z^{2}$, but if, for example, $\phi_{m}(x)=\exp \left(1 / m \exp x^{2}\right)$ condition (2.11) cannot be satisfied. Now corollary 7.5 yields (2.6) for the spaces $B\left(\Omega_{k}\right)$ given by (2.9), because for the function σ in condition (4.22) of the corollary we can take $\sigma(z)=-\log d\left(z, \Omega_{k}^{c}\right)$ which is plurisubharmonic [30, th. 2.6.7].

LEMMA 2.3.ii. Let Ω_{1} and Ω_{2} be as in lemma 2.3.i and let conditions (2.7) and (2.11) be satisfied. Let the pseudoconvex neighborhoods $\left\{\left(\Omega_{1}\right)_{k}\right\}$ and $\left\{\left(\Omega_{2}\right)_{k}\right\}$ of Ω_{1} and Ω_{2} be such that also the neighborhoods $\left\{\left(\Omega_{1}\right)_{k} \cup\left(\Omega_{2}\right)_{k}\right\}$ of $\Omega_{1} \cup \Omega_{2}$ are pseudoconvex. Then for $k=1,2, \ldots$ and for any $f \in B\left(\left(\Omega_{1}\right)_{k} n\right.$ $\left.n\left(\Omega_{2}\right)_{k}\right)$ there are $f_{j} \in B\left(\left(\Omega_{j}\right)_{k}\right), j=1,2$, such that (2.6) holds in $\left(\Omega_{1}\right)_{k} \cap\left(\Omega_{2}\right)_{k}$.

THEOREM 2.4. (cf. [47, prop 1]). Let A be given by (2.4) or (2.5) and let condition (2.7) be satisfied. If A is of type (2.5), let moreover condition (2.11) be satisfied. If $\mu \in A^{\prime}$ is carried by the closed sets Ω_{1} and Ω_{2} in \mathbb{R}^{n} with $\Omega_{1} \cap \Omega_{2} \neq \varnothing$, then μ is already carried by $\Omega_{1} \cap \Omega_{2}$.

PROOF. Since by lemma $2.1 \Omega_{1} \cup \Omega_{2}, \Omega_{1}$ and Ω_{2} have pseudoconvex neighborhood bases which moreover satisfy (2.10), lemma 2.3.i and ii shows that any function $f \in A\left(\Omega_{1} \cap \Omega_{2}\right)$ can be written as (2.6) with $f_{j} \in A\left(\Omega_{j}\right), j=1,2$. Hence, the following continuous map I is surjective
(2.12) I: $A\left(\Omega_{1}\right) \times A\left(\Omega_{2}\right) \rightarrow A\left(\Omega_{1} \cap \Omega_{2}\right)$
with $I\left(f_{1}, f_{2}\right)=f_{2}-f_{1}$. The kernel of I is just $\left\{(f, f) \mid f \in A\left(\Omega_{1} \cup \Omega_{2}\right)\right\}$.
Furthermore, we assert that I is an open map. Let us first show this for spaces $A(\Omega)$ of type (2.4). It follows from lemma (2.2) that such spaces are inductive limits of Hilbert spaces, hence DFS*-spaces [40] and thus duals of reflexive Frechet spaces. Since such spaces are Ptak spaces [61, IV. § 8 ex .2 , p.162] the open mapping theorem [61, IV. § 8.3, cor 1] implies that I is an open map. If the spaces $A(\Omega)$ are of type (2.5), we have the more precise result (lemma 2.3.ii) that even for every k the map I_{k}, defined similarly to I, is a surjective map between the Frechet spaces

$$
I_{k}: B\left(\left(\Omega_{1}\right)_{k}\right) \times B\left(\left(\Omega_{2}\right)_{k}\right) \rightarrow B\left(\left(\Omega_{1}\right)_{k} \cap\left(\Omega_{2}\right)_{k}\right)
$$

where $\mathrm{B}(\Omega)$ is given by (2.9). Hence the ordinary open mapping theorem implies that I_{k} is open. The maps $\left\{I_{k}\right\}$ commute with the restriction maps, and so lemma 2.2 and the definition of open sets in an inductive limit (cf. the characterization of a 0 -neighborhood base in $[20,523,3.14]$) imply that I is open.

Now we first extend μ to an element of $A\left(\Omega_{1} \cup \Omega_{2}\right)$ ' and then to elements
$\mu_{1} \in A\left(\Omega_{1}\right)$ ' and $\mu_{2} \in A\left(\Omega_{2}\right)^{\prime}$. Define $\tilde{\mu} \in A\left(\Omega_{1} \cap \Omega_{2}\right)^{\prime}$ by

$$
\langle\tilde{\mu}, f\rangle \xlongequal{\text { def }}\left\langle\mu_{2}, f_{2}\right\rangle-\left\langle\mu_{1}, f_{1}\right\rangle
$$

for some $\left(f_{1}, f_{2}\right) \in I^{-1}(f)$. Since μ_{1} equals μ_{2} on $A\left(\Omega_{1} \cup \Omega_{2}\right) \tilde{\mu}$ is independent of the representant in I^{-1} (f). Furthermore, since μ_{1} and μ_{2} are continuous, they are bounded on some neighborhood of zero in $A\left(\Omega_{1}\right)$ and $A\left(\Omega_{2}\right)$, respectively. The fact that I is an open map implies that $\tilde{\mu}$ is bounded on some neighborhood of zero in $A\left(\Omega_{1} \cap \Omega_{2}\right)$, hence that it is continuous. Finally, for any $f \in A$ we have

$$
\langle\tilde{u}, f\rangle=\left\langle\mu_{2}, f f_{2}+h\right\rangle-\left\langle\mu_{1}, h\right\rangle=\left\langle\mu_{2}, f\right\rangle=\langle\mu, f\rangle
$$

for some $h \in A\left(\Omega_{1} \cup \Omega_{2}\right)$.
COROLLARY 2.5. Let the conditions of theorem 2.4 be satisfied. If μ is carried by two disjunct closed sets in \mathbb{R}^{n} then $\mu=0$.

PROOF. By enlarging the carriers of μ suitably theorem 2.4 yields that there is a ball S in \mathbb{R}^{n} such that μ is carried by any closed set in S. We may assume that $S=\{x \mid\|x\| \leq 1\}$. For any multiindex α we have

$$
\left\langle\mu, z^{\alpha}\right\rangle=D^{\alpha} f(0)
$$

where

$$
f(\zeta) \stackrel{\text { def }}{=}\left\langle\mu_{z}, e^{z \cdot \zeta}\right\rangle
$$

f is an entire function and since μ is carried by any closed subset of the unitsphere, there are $\mathrm{K}>0$ and $\varepsilon>0$ with

$$
|f(\zeta)| \leq K \exp \left\{-\frac{1}{2}\|\xi\|+\varepsilon\|\eta\|\right\} .
$$

Hence the Fourier transform of f is, on the one hand, real-analytic and, on the other hand, by the Paley-Wiener theorem a $\mathrm{C} \stackrel{\infty}{ }$ function with compact support, thus $\mathrm{f} \equiv 0$. Hence $\left\langle\mu, \mathrm{z}^{\alpha}\right\rangle=0$ for all α. Since the polynomials are dense in the functions holomorphic in the origin and since μ is also carried by the origin, it follows that $\mu=0$.

Now we are able to define the support ${ }^{1)}$ of $\mu \in A^{\prime}$.

DEFINITION 2.6. Let the conditions of theorem 2.4 be satisfied. Then the intersection of all the carriers of an analytic functional $\mu \in A^{\prime}$ is called the support of μ.

REMARK. In the example of [30] given earlier the set

$$
\left\{\left(z_{1}, z_{2}\right)\left|\left|z_{1}\right| \leq 2,\left|z_{2}\right| \leq \frac{1}{2} \quad \text { or } \quad\right| z_{1}\left|\leq \frac{1}{2},\left|z_{2}\right| \leq 2\right\} \subset \mathbb{C}^{2}\right.
$$

is not pseudoconvex. For its holomorphically convex hull equals its logarithmic convex hull $\left\{\left(z_{1}, z_{2}\right)\left|\left|z_{1}\right| \leq 2,\left|z_{2}\right| \leq 2,\left|z_{1}\right|\right| z_{2} \mid \leq 1\right\}$, see [68]. The intersection of carriers is no carrier and hence the support cannot be defined.

Next we shall prove that (real) carriers can be localized, a property which is easy to show for supports of distributions (the property that for any finite collection of closed sets $\left\{U_{k}\right\}_{k=1}^{N}$ covering \mathbb{R}^{n} every distribution g can be written as $g=\sum_{k=1}^{N} g_{k}$ where g_{k} has its support in U_{k}).

THEOREM 2.7. (cf. [47, prop 2] and [60, proof of th. 4.2]). For any finite collection of closed sets $\left\{U_{k}^{\prime}\right\}_{k=1}^{N}$ in \mathbb{R}^{n} with union \mathbb{R}^{n}, each $\mu \in A^{\prime}$ can be written as $\mu=\sum_{k=1}^{N} \mu_{k}$ where $\mu_{k} \in A\left(U_{k}\right)$ '.

PROOF. Define the continuous map

$$
I: A \rightarrow \prod_{k=1}^{N} A\left(U_{k}\right)
$$

by restriction. Its transposed I^{t} between the duals

$$
I^{t}: \prod_{k=1}^{N} A\left(U_{k}\right)^{\prime} \rightarrow A^{\prime}
$$

1) The support of a (ultra) distribution g, defined on a space \mathbb{W} of $\mathrm{C} \simeq$ testfunctions, is defined as the smallest closed set U in \mathbb{R}^{n} such that any $x_{0} \notin U$ has an open neighborhood V_{0} with $\langle g, \phi\rangle=0$ for every $\phi \in \mathbb{W}$ with $\phi(x)=0$ if $x \notin V_{0}$. Since there are no analytic functions $\phi \not \equiv 0$ satisfying this, this definition of support is impossible for an analytic functional. The reason for calling the smallest carrier the support of the analytic functional is that this concept has similar properties to the support of a distribution, unlike the carrier of an analytic functional (cf. the earlier mentioned example of [30]).
is given by $I^{t}\left(\mu_{1}, \ldots, \mu_{N}\right)={ }_{k}^{N} \sum_{1}^{N} \mu_{k}$, for

$$
\left\langle I^{t}\left(\mu_{1}, \ldots, \mu_{N}\right), f\right\rangle=\sum_{k=1}^{N}\left\langle\mu_{k},(I f)_{k}\right\rangle=\sum_{k=1}^{N}\left\langle\mu_{k}, f\right\rangle=\left\langle\sum_{k=1}^{N} \mu_{k}, f\right\rangle .
$$

Clearly, I is an injective and open map from A into Im I, when Im I carries the topology induced by $\Pi A\left(U_{k}\right)$ (this can be seen by inspection of the open sets in the spaces A). Then according to [65, prop. 35.4 and lemma 37.7] I^{t} is surjective (if the duals of the spaces A are reflexive Frechet spaces, this can be seen also by [65, th. 37.2] since clearly I has closed image, cf. [47]).

In general, a distribution in $D^{\prime}(U)$ where U is an open set in \mathbb{R}^{n} cannot be extended to a distribution in $D^{\prime}\left(\mathbb{R}^{n}\right)$. We shall now show that this property does hold for real carried analytic functionals. 1) Before formulating this we introduce the concept of local equality of real-carried analytic functionals, see [47].

If $\mu \in A^{\prime}$ with A satisfying the conditions of theorem 2.4, according to theorem 2.7, can be written as $\mu=\sum_{k=1}^{N} \mu_{k}$ and as $\mu=\sum_{j=1}^{M} \tilde{\mu}_{j}$, we have

$$
\sum_{k=1}^{N} \mu_{k}-\sum_{j=1}^{M} \tilde{\mu}_{j}=0
$$

Hence for any $x \in \mathbb{R}^{n}$

$$
\begin{aligned}
& \sum_{\left\{k \mid x \in \underset{\substack{\text { carrier } \\
\left.\text { of } \mu_{k}\right\}}}{ } \mu_{k}-\sum_{\left\{j \mid x \in \underset{\text { carrier }}{\text { of } \left.\widetilde{\mu}_{j}\right\}}\right.} \tilde{\mu}_{j}=-\sum_{\{\text {remaining } k\}} \mu_{k}+\right.} \\
&+\sum_{\{\text {remaining } j\}} \sum_{j} \widetilde{\mu}_{j}
\end{aligned}
$$

By theorem 2.4 the left hand side and the right hand side have their support contained in the intersection of their carriers, so that x does not belong to the support of the left hand side. We now consider, more generally, infinite sums of analytic functionals with bounded carriers U_{k}. Therefore, no weightfunctions ϕ_{j} occur in the definition of $A\left(U_{k}\right)$ and theorem

1) This may be expressed by saying that the sheaf of real-carried analytic functionals, and by consequence [47] the sheaf of hyperfunctions, is flabby.
2.4 is valid without its conditions on the weight functions, cf. [47, prop 1]. Let $\left\{U_{k}\right\}$ and $\left\{\tilde{U}_{k}\right\}$ be locally finite coverings, consisting of compact sets, of the open set U in \mathbb{R}^{n} and let $\left\{\mu_{k}\right\}$ and $\left\{\tilde{\mu}_{k}\right\}$ be analytic functionals carried by U_{k} or \tilde{U}_{k}, respectively. Then we define $\mu=\sum_{k} \mu_{k}$ and $\tilde{\mu}=\sum_{k} \tilde{\mu}_{k}$ to be locally equal if each $x \in U$ does not belong to the support of the analytic functional

$$
\sum_{\left\{k \mid x \in U_{k}\right\}} \mu_{k}-\sum_{\left\{k \mid x \in \tilde{U}_{k}\right\}} \tilde{\mu}_{k}
$$

In general, $\mu=\sum_{k} \mu_{k}$ is not an element of A^{\prime}. However, we shall show that there exists an element $\nu \in A^{\prime}$ which is locally equal to μ.

THEOREM 2.8. (cf. [47, prop. 3]). Let $\left\{\mathrm{U}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ be a locally finite covering of the open set $U \subset \mathbb{R}^{n}$ consisting of compact sets and let $\mu=\sum_{k=1}^{\infty} \mu_{k}$, where μ_{k} is an analytic functional carried by $U_{k}, k=1,2, \ldots$. Furthermore, let A be given by (2.4) or (2.5) where condition (2.7) is satisfied. Then there exists a $\nu \in A^{\prime}$ carried by \bar{U} which is locally equal to μ in U.

PROOF. It is convenient to have Frechet spaces of analytic functionals. If $A(\Omega)$ is given by (2.4), as in the proof of theorem 2.4, lemma 2.2 implies that $A(\Omega)$ is a DFS ${ }^{*}$ space [40] so that the strong dual $A(\Omega)$ ' is a Frechet space. If $A(\Omega)$ is given by (2.5), for any fixed m we will find a $v \in A(\Omega){ }_{m}^{\prime}$ with the required properties, where

$$
A(\Omega)_{\mathrm{m}} \stackrel{\text { def }}{=} \underset{\mathrm{k} \rightarrow \infty}{\text { ind }} \lim \mathrm{H}\left(\Omega_{\mathrm{k}} ; \psi_{\mathrm{m}}\right)
$$

Here $H\left(\Omega_{k} ; \psi_{m}\right)$ is the space whose definition preceeds lemma 2.2. Since for every $k=2,3, \ldots$ and any $\mathrm{m}\left(\Omega_{k}\right)$ defined by (2.9) is mapped by restriction into $H\left(\Omega_{k-1} ; \psi_{m}\right)$, by lemma $2.2 \nu \in A(\Omega)_{m}^{\prime}$ certainly belongs to $A(\Omega)$ '. But now, as before $A(\Omega)^{\prime} \mathbf{m}^{\prime}$ as the strong dual of an inductive limit of Hilbert spaces, is a Frechet space.

In order to contain both cases, we denote by $A(\Omega)(m)$ the space $A(\Omega)$ if $A(\Omega)$ is of type (2.4) and the space $A(\Omega)_{m}$ if A is of type (2.5). Thus now $A(\Omega)^{\prime}(\mathrm{m})$ is a Frechet space and it suffices to find $\nu \in A(\bar{U})^{\prime}(\mathrm{m})$ which is locally equal to μ in U.

In virtue of theorem 2.7μ is locally equal to a sum $\sum_{k=1}^{\infty} \tilde{\mu}_{k}$ where $\tilde{\mu}_{k}$ is carried by $\overline{V_{k} \backslash V_{k-1}}$ and where $\left\{v_{k}\right\}_{k=0}^{\infty}$ are compact sets such that
$\mathrm{V}_{\mathrm{O}}=\varnothing, \mathrm{V}_{\mathrm{k}} \subset$ int $\mathrm{V}_{\mathrm{k}+1}, \bigcup_{\mathrm{k}} \mathrm{V}_{\mathrm{k}}=\mathrm{U}$ and $\overline{\mathrm{U} \backslash \mathrm{V}_{\mathrm{k}}}$ only contains unbounded components or components intersecting ∂U. Since $A\left(\overline{U \backslash V_{k}}\right)$ (m) is mapped injectively by restriction into $A(\partial U)_{(m)}$ (here we define the class of neighborhoods of ∂U as the ε-neighborhoods in \mathbb{C}^{n} of the complements in \bar{U} of compact sets in U), $A(\partial U)^{\prime}(\mathrm{m})$ is dense in $A\left(\overline{\mathrm{U} \backslash V_{k}}\right)^{\prime}{ }_{(\mathrm{m})}$. Now $A\left(\overline{\mathrm{U} \backslash \mathrm{V}_{\mathrm{k}}}\right)^{\prime}{ }_{(\mathrm{m})}$ is a Frechet space, thus there is a distance d_{k} to the origin defining its topology. Furthermore, $A\left(\overline{U \backslash V_{k}}\right)^{\prime}(m)$ can be continuously mapped into $A\left(\overline{U \backslash V_{j}}\right)^{\prime}(m)$ for $k \geq j$ and therefore, for each k there exists an element $v_{k} \in A(\partial U)_{(m)}^{\prime}$ with

$$
d_{j}\left(\tilde{\mu}_{k}-v_{k}\right) \leq 2^{-k}, \quad 0 \leq j \leq k-1
$$

Then

$$
v \xlongequal{\text { def }} \sum_{k=1}^{\infty}\left(\tilde{\mu}_{k}-v_{k}\right)
$$

is an element of $A(\bar{U})^{\prime}(m)$, because its distance $d_{0}(\nu)$ to the origin is finite. Moreover, for every j we have

$$
v=\sum_{k=1}^{j} \tilde{\mu}_{k}-\sum_{k=1}^{j} v_{k}+\sum_{k=j+1}^{\infty}\left(\tilde{\mu}_{k}-v_{k}\right),
$$

where the last term converges in $A\left(\overline{U \backslash V_{j}}\right)^{\prime}(\mathrm{m})$ and where the second term is carried by the complement of V_{j} in U. Hence V is locally equal to μ in the interior of each V_{j}, thus in U.

As an example we consider distributions in $D^{\prime}\left(\mathbb{R}^{n}\right)$. First, let T be a distribution with compact support $K \subset \mathbb{R}^{n}$ (hence T can be defined on $C \stackrel{\infty}{-}$ functions). By restriction to analytic functions T can be considered as an element of $A(K)$ ' and the support of T as analytic functional is the same as the support K of T as distribution, see [42, lemma 7.4]. Any $g \in D^{\prime}\left(\mathbb{R}^{n}\right)$ is a locally finite sum of distributions with compact support. Hence, for any $g \in D^{\prime}$ there is a real-carried analytic functional in Z^{\prime} which is locally equal to g, but it is difficult to write down an explicite, non-trivial, example.
II.2. FOURIER TRANSFORMS OF REAL-CARRIED ANALYTIC FUNCTIONALS.
II.2.i. FOURIER TRANSFORMATION AND BOUNDARY VALUES OF ANALYTIC FUNCTIONS.

We shall define the Fourier transformation of analytic functionals defined on a subset Z_{M} of Z. For a $C \cong$ function ϕ with compact support in \mathbb{R}_{n}, the dual of \mathbb{R}^{n}, the Fourier transform F_{ϕ} is defined by

$$
\begin{equation*}
F \phi(x) \stackrel{\text { def }}{=} \int_{\mathbb{R}_{n}} \phi(\xi) \exp i\langle\xi, x\rangle d \xi \tag{2.13}
\end{equation*}
$$

Then F_{ϕ} is a function on \mathbb{R}^{n} which can be extended to an entire function belonging to $\mathrm{Z}\left(\mathbb{C}^{\mathrm{n}}\right)$. If ϕ belongs to a certain, locally convex, topological vector space D_{M} of $C \stackrel{\infty}{-}$ functions with compact support, the image Z_{M} of F in Z is given the topology such that F becomes a topological isomorphism from $D_{M}\left(\mathbb{R}_{n}\right)$ onto $Z_{M}\left(\mathbb{C}^{n}\right)$. The transposed map F^{t} of F defines an isomorphism from $Z_{M}\left(\mathbb{C}^{n}\right)^{n}$, onto $D_{M}\left(\mathbb{R}_{n}\right)$ '. We may restrict F^{t} to $Z_{M}\left(\mathbb{C}^{n}\right)$ or to $D_{M}\left(\mathbb{R}^{n}\right)$ and we may identify a $\xi \in \mathbb{R}_{n}$ with an n-dimensional vector $\left(\xi_{1}, \ldots, \xi_{n}\right)$ in \mathbb{R}^{n} so that < ξ,x> becomes

$$
\langle\xi, x\rangle=x \cdot \xi \xlongequal{\text { def }} x_{1} \xi_{1}+\ldots+x_{n} \xi_{n} .
$$

Then the maps

$$
\left.F^{t}\right|_{Z_{M}}: Z_{M}\left(\mathbb{C}^{n}\right) \rightarrow D_{M}\left(\mathbb{R}_{n}\right)
$$

and

$$
\left.F^{t}\right|_{D_{M}}: D_{M}\left(\mathbb{R}^{n}\right) \rightarrow Z_{M}\left(\mathbb{C}_{n}\right)
$$

are also given by (2.13) due to Parseval's relation

$$
\begin{aligned}
\left\langle\psi, F_{\phi\rangle}\right. & =\int \psi(x)\left\{\int e^{i x \cdot \xi} \phi(\xi) d \xi\right\} d x=\int \phi(\xi)\left\{\int e^{i \xi \cdot} x^{\prime} \psi(x) d x\right\} d \xi= \\
& =\left\langle F^{t} \psi, \phi\right\rangle
\end{aligned}
$$

Hence we shall call also F^{t} Fourier transformation and denote it by
(2.14) $\quad F: Z_{M}\left(\mathbb{C}^{n}\right)^{\prime} \rightarrow D_{M}\left(\mathbb{R}_{n}\right)^{\prime}$.

The transposed of the maps $\left.F^{t}\right|_{Z_{M}}$ and $\left.F^{t}\right|_{D_{M}}$ are isomorphisms

$$
\begin{aligned}
& \left(\left.F^{t}\right|_{Z_{M}}\right)^{t}: D_{M}\left(\mathbb{R}_{n}\right)^{\prime} \rightarrow Z_{M}\left(\mathbb{C}^{n}\right)^{\prime} \\
& \left(\left.F^{t}\right|_{D_{M}}\right)^{t}: Z_{M}\left(\mathbb{C}_{n}\right)^{\prime} \rightarrow D_{M}\left(\mathbb{R}^{n}\right)^{\prime}
\end{aligned}
$$

and again, restricted to L^{1}-functions ϕ, these maps are given by (2.13). Finally, the transposed of the restriction to $Z_{M}\left(\mathbb{C}_{n}\right)$ of one of these maps yields the isomorphism

$$
\left(\left.\left(\left.\mathcal{F}^{\mathrm{t}}\right|_{\mathrm{Z}_{\mathrm{M}}}\right)^{\mathrm{t}}\right|_{\mathrm{Z}_{\mathrm{M}}}\right)^{\mathrm{t}}: \mathcal{D}_{\mathrm{M}}\left(\mathbb{R}^{\mathrm{n}}\right)^{\prime} \rightarrow \mathrm{Z}_{\mathrm{M}}\left(\mathbb{C}_{\mathrm{n}}\right)^{\prime},
$$

which for an L^{1}-function ϕ is also given by (2.13). Hence from (2.13) several maps arise which we will call Fourier transformation and denote by F. Thus, although we intended to deal with the Fourier transformation (2.14) only, this map cannot be defined in this way without introducing naturally the other maps
(2.15) $\quad F: Z_{M}\left(\mathbb{C}_{n}\right)^{\prime} \rightarrow D_{M}\left(\mathbb{R}^{n}\right)^{\prime}$
$F: D_{M}\left(\mathbb{R}^{n}\right)^{\prime} \rightarrow Z_{M}\left(\mathbb{C}_{n}\right)^{\prime}$
$F: D_{M}\left(\mathbb{R}_{n}\right)^{\prime} \rightarrow Z_{M}\left(\mathbb{C}^{n}\right)^{\prime}$.

As we will see, these definitions have the advantage that, as soon as $\mu \in Z_{M}\left(\mathbb{C}_{n}\right)^{\prime}$ also belongs to the dual of a space of analytic functions of ζ of which exp $i\langle\zeta, z\rangle$ is one for z in a certain open set in \mathbb{C}^{n}, F given by (2.15) can be written as the boundary value in some sense of the function

$$
\hat{\mu}(z) \stackrel{\text { def }}{=}\left\langle\mu_{\zeta}, e^{i\langle\zeta, z\rangle}\right\rangle,
$$

cf. lemma 2.26. We shall call the function $\hat{\mu}$ the Fourier transform ${ }^{1)}$ of μ and $\hat{\mu}(z)$ will be denoted as $F \mu(z)$.

With the aid of Fourier transformation it will be shown that realcarried analytic functionals in Z_{M}^{\prime} can be written as sum of boundary values

1) Sometimes F is called Fourier-Laplace transformation [68], Fourier-Borel transformation [48] or even Fourier-Laplace-Carleman-Sato transformation [43], but we shall call F merely Fourier transformation.
of functions holomorphic in tubular radial domains, i.e., in domains of the form $T^{C} \xlongequal{\text { def }} \mathbb{R}^{n}+i C$ where C is an open convex cone in \mathbb{R}^{n}. The boundary value is defined as follows: let f be a holomorphic function in T_{r}^{C} def $T^{C} \cap\{z \mid\|y\|<r\}$ such that, for all $y \in C$ with $\left\|_{y}\right\|<r, \int f(x+i y) \psi(x) d x$ exists for every $\psi \in Z_{M}$; the boundary value $f *$ of f in Z_{M}^{\prime} is defined by

$$
\begin{equation*}
\left\langle f^{*}, \psi\right\rangle \stackrel{\text { def }}{=} \lim _{\substack{y \rightarrow 0 \\ y \in C}} \int_{\mathbb{R}^{n}} f(x+i y) \psi(x) d x \tag{2.16}
\end{equation*}
$$

for $\psi \in Z_{M}$. This limit exists, since the integral is independent of $\operatorname{Im} x$, so that for each $Y_{0} \in C$ with $\left\|y_{0}\right\|<r$

$$
\begin{align*}
\left\langle f^{*}, \psi\right\rangle & =\lim _{\substack{y \rightarrow 0 \\
y \in C}} f\left(x+i y_{0}+i y\right) \psi\left(x+i y_{0}\right) d x= \tag{2.17}\\
& =\int_{\mathbb{R}^{n}} f\left(x+i y_{0}\right) \psi\left(x+i y_{0}\right) d x, \quad \psi \in Z_{M} .
\end{align*}
$$

Since the testfunction space

$$
H\left(\mathbb{R}^{n}\right) \stackrel{\text { def }}{=} \underset{\varepsilon \rightarrow 0}{\operatorname{ind}} \lim \mathrm{H}\left(\mathbb{R}^{n}(\varepsilon) ;-\varepsilon\|x\|\right)
$$

for Fourier hyperfunctions is contained in all the spaces consisting of restrictions to ε-neighborhoods $\mathbb{R}^{n}(\varepsilon)$ in \mathbb{C}^{n} of \mathbb{R}^{n} of functions in Z_{M}, all real-carried analytic functionals μ in Z^{\prime} or Z_{M}^{\prime} can be considered as Fourier hyperfunctions in $H\left(\mathbb{R}^{n}\right)$ '. As the Fourier transform of $H\left(\mathbb{R}_{n}\right)$ is just $H\left(\mathbb{R}^{n}\right)$, the Fourier transforms F_{μ} of real-carried analytic functionals in Z^{\prime} or $Z_{M}^{\prime}{ }^{\prime}$ which are certain distributions or ultradistributions, are examples of Fourier hyperfunctions in $H\left(\mathbb{R}_{\mathrm{n}}\right)$ '. Thus the spaces of Fourier hyperfunctions form the limit case in which all the real-carried analytic functionals in Z^{\prime} or Z_{M}^{\prime} and their Fourier transforms as well are contained. The other limit case is the space of tempered distributions which is contained in all spaces of real-carried analytic functionals and their Fourier transforms.

Now a Fourier hyperfunction can be represented as sum of boundary values $f^{*}(2.16)$ of analytic functions f in T_{r}^{C} satisfying for all C ce C and all $\varepsilon>0$

$$
\begin{equation*}
|f(z)| \leq K\left(C^{\prime}, \varepsilon\right) e^{\varepsilon\|x\|}, \quad y \in C^{\prime}, \varepsilon<\|y\|<x-\varepsilon \tag{2.18}
\end{equation*}
$$

where $K\left(C^{\prime}, \varepsilon\right)$ depends on C^{\prime} and ε, see $[38]$. A tempered distribution g can be written as sum of boundary values of analytic functions f satisfying for all $C^{\prime} \subset \subset C$

$$
\begin{equation*}
|f(z)| \leq K\left(C^{\prime}\right)(1+\|x\|)^{N_{\|}}\left\|^{-N}, \quad y \in C^{\prime},\right\| y \|<r^{\prime} \tag{2.19}
\end{equation*}
$$

with $0<r^{\prime}<r$ and with N depending on g, see [49]. In the following sections we shall give analytic representations of real-carried analytic functionals μ in Z^{\prime} or Z_{M}^{\prime} and of $F \mu$ as boundary values of analytic functions f or h, respectively. So these functions certainly satisfy (2.18), whereas functions satisfying (2.19) are examples of such functions f and h.
II.2.ii. CHARACTERIZATION OF DISTRIBUTIONS WITH REAL-CARRIED FOURIER TRANSFORMS.

Let us consider the example of real-carried analytic functionals μ in the space Z^{\prime}. Then μ is an element in the space A^{\prime} where A is given by (2.5) with $\phi_{m}(x)=-m \log (1+\|x\|)$ and $F \mu$ is a distribution in $\mathcal{D}\left(\mathbb{R}_{n}\right)^{\prime}$. Now μ is the sum of boundary values of analytic functions and actually the following theorem 2.9 holds [60]. Before formulating this theorem we introduce the dual 1) C^{*} of an open convex cone C in \mathbb{R}^{n} as the open convex cone

$$
C^{*} \xlongequal{\operatorname{def}} \operatorname{int}\{\xi \mid<\xi, y \gg 0, y \in C\}=\operatorname{int}\{\xi \mid<\xi, y>\geq 0, y \in \bar{C}\}
$$

in \mathbb{R}_{n}. We identify the dual of \mathbb{R}_{n} with \mathbb{R}^{n} and then, if $C^{*} \neq \emptyset$, the dual of C^{*} equals C

$$
\left(C^{*}\right)^{*}=C=\left\{x \mid<\eta, x \gg 0, \eta \in C^{*}\right\}
$$

because C is open and convex.

THEOREM 2.9. FOr $\mu \in Z^{\prime}$ the following four statements are equivalent:
(1) μ is carried by \mathbb{R}^{n}
(2) For any $\varepsilon>0, F \mu \in D^{\prime}$ can be represented as $F_{\mu}=\sum_{\sum_{i}} D^{\alpha} G_{\alpha, \varepsilon^{\prime}}$, where $G_{\alpha, \varepsilon}$ are continuous functions on \mathbb{R}_{n} satisfying $\mid \leq m(\varepsilon)$

1) In [68] c^{*} stands for $\left\{\xi \mid \xi_{1} Y_{1}+\ldots+\xi_{n} Y_{n} \geq 0, y \in C\right\}$ and then (C^{*})* is the closed convex hull of C .

$$
\left|G_{\alpha, \varepsilon}(\xi)\right| \leq K_{\alpha}(\varepsilon) \exp \varepsilon\|\xi\|
$$

(3) μ is the sum of boundary values in Z^{\prime} of functions f_{j} holomorphic in $\mathbb{R}^{n}+i C_{j}$ satisfying for any $C_{j}^{\prime} \subset \subset C_{j}$ and any $\varepsilon>0$

$$
\left|f_{j}(z)\right| \leq K\left(C_{j}^{\prime}, \varepsilon\right)(1+\|z\|)^{N\left(C_{j}^{\prime}, \varepsilon\right)}, \quad y \in C_{j}^{\prime},\|y\|>\varepsilon
$$

for $j=1, \ldots, k$, where $\left\{C_{j}\right\}^{k}{ }_{j=1}$ are open convex cones in \mathbb{R}^{n} such that the closure of their duals cover \mathbb{R}_{n}.
(4) $F \mu \in D^{\prime}$ is the sum of boundary values in D^{\prime} of functions h_{j} holomorphic in $\mathbb{R}_{n}+i C_{j}^{*}$ satisfying for any $C_{j}^{*} \subset \subset C_{j}^{*}$ and any $\varepsilon>0$

$$
\left|h_{j}(\zeta)\right| \leq K\left(C_{j}^{*},, \varepsilon\right)\left(1+\|\eta\|^{-m(\varepsilon)}\right) e^{\varepsilon\|\xi\|}, \quad n \in C_{j}^{*}
$$

for $j=1, \ldots, p$, where $\left\{C_{j}^{*}\right\}_{j=1}^{p}$ are open convex cones in \mathbb{R}_{n} such that the closure of their duals cover \mathbb{R}^{n}.

This theorem deals with boundary values in Z ' in several dimensions and in this way it generalizes the one dimensional case discussed in [46].

II.2.iii. ULTRADISTRIBUTIONS

In the following section we will pay attention to spaces A defined by weight functions ϕ_{j} with an order of growth between $-j \log \left(1+\left\|_{x}\right\|\right)$ and $-1 / j\|x\|$. Then the Fourier transforms of elements in A^{\prime} are certain ultradistributions of Roumieu type if A is of type (2.4) and of Beurling type if A is of type (2.5). In section $2 . i v$ we will give characterizations of these ultradistributions similar to (2), (3) and (4) of theorem 2.9. Ultradistributions are continuous, linear functionals on spaces of ultradifferentiable testfunctions. It follows the lines of this chapter if ultradifferentiable functions ϕ are defined by growth conditions on their Fourier transforms. No direct information about ϕ is obtained in this way, and therefore in this section we will also give a direct definition. Furthermore, some properties of ultradistributions will be mentioned whose proofs can be found in [42].

Throughout this and the following chapter M will stand for a continuous increasing piecevise differentiable function on $[0, \infty)$ with $M(0)=0, M(\infty)=\infty$, such that M^{\prime} is strictly decreasing and $\rho M^{\prime}(\rho)$ is increasing to ∞ and such that

$$
\begin{equation*}
\int_{1}^{\infty} \frac{M(\rho)}{\rho^{2}} d \rho<\infty \tag{2.20}
\end{equation*}
$$

and for some constants $\tau>1$ and $K>0$
(2.21) $\quad 2 M(\rho) \leq M(\tau \rho)+K$.

DEFINITION 2.10.i. Let f be an entire function such that for every positive m there is a $\mathrm{K}>0$ (there are positive constants m and K) with
(2.22) $\quad|f(z)| \leq K \exp \{-M(m\|z\|)+a\|y\|\}$
for some $\mathrm{a}>0$. Then the inverse Fourier transform ϕ of f is an ultradifferentiable function with support in the ball with radius a of class m of Beurling type (of Roumieu type), or shortly of class (M) (of class \{M\}).

Let $\left\{M_{p}\right\}_{p=0}^{\infty}$ be an increasing sequence of positive numbers satisfying the following properties (called M.1, M. 2 and M. 3 in [42]) : for some positive K and h

$$
\begin{aligned}
& M_{p}^{2} \leq M_{p-1} M_{p+1}, \quad p=1,2, \ldots \\
& M_{p} \leq K h^{p} \min _{0 \leq q \leq p} M_{q} M_{p-q^{\prime}} \quad p=0,1, \ldots \\
& \sum_{q=p+1}^{\infty} M_{q-1}^{M} M_{q} \leq K p M_{p / M_{p+1}}, \quad p=1,2, \ldots
\end{aligned}
$$

An equivalent, direct definition is obtained as follows:
DEFINITION 2.10.ii. Let the sequence $\left\{M_{p}\right\}_{p=0}^{\infty}$ satisfy the above given properties. Then a $\mathrm{C}-$ function ϕ with compact support S is called ultradifferentiable of class M_{p} of Beurling type fof Roumieu type), if its derivatives can be estimated as follows:for every $\varepsilon>0$ there is a $\mathrm{K}>0$ (there are positive ε and K) with

$$
\begin{equation*}
\left|D^{\alpha} \phi(\xi)\right| \leq K \varepsilon^{p} M_{p}, \xi \in S,|\alpha|=p, p=0,1, \ldots . \tag{2.23}
\end{equation*}
$$

In [42] ϕ is called an ultradifferentiable function of class (M_{p}) (of class $\left.\left\{M_{p}\right\}\right)^{\circ}$. The sequence $\left\{M_{p}\right\}_{p=0}^{\infty}$ and the function M determine each other according to

$$
\left\{\begin{array}{l}
M(\rho)=\sup _{p} \log \frac{\rho^{p_{M_{0}}}}{M_{p}} \tag{2.24}\\
M_{p}=M_{0} \sup _{\rho} \frac{\rho^{p}}{\exp M(\rho)}
\end{array}\right.
$$

and this implies the equivalence of definition 2.10 i and ii [42, th. 9.1]. The properties of the sequence $\left\{M_{p}\right\}_{p=0}^{\infty}$ are equivalent to those of the function M.

As in the case of the space D of all C^{\propto} functions with compact support, the spaces D_{M} of ultradifferentiable functions of class M_{p} with compact support in \mathbb{R}_{n} can be given locally convex topologies such that their Fourier transforms $Z_{M}=F D_{M}$ have the following topologies: in case of Beurling type ultradifferentiable testfunctions Z_{M} is defined by

$$
Z_{(M)} \stackrel{\text { def }}{=} \underset{a \rightarrow \infty}{ } \underset{m \rightarrow \infty}{\operatorname{proj}} \lim _{\mathrm{m}} \mathrm{Him}_{\infty}\left(\mathbb{C}^{\mathrm{n}} ;-\mathrm{M}(\mathrm{~m}\|\mathrm{z}\|)+\mathrm{all} \mathrm{y}^{\|}\right)
$$

and in case of Roumieu type ultradifferentiable testfunctions Z_{M} is defined by

$$
Z_{\{M\}} \xlongequal{\text { def }} \text { ind } \lim _{a \rightarrow \infty} \operatorname{lnd}_{k \rightarrow \infty} \lim _{\infty}\left(\mathbb{C}^{n} ;-M\left(\left\|_{z}\right\| / k\right)+a\|y\|\right),
$$

where $H_{\infty}(\Omega ; \phi(z))$ denotes the Banach space of holomorphic function f in Ω with the finite norm

$$
\sup _{z \in \Omega}|f(z)| \exp -\phi(z) .
$$

DEFINITION 2.11.i. An ultradistribution of class (M) (of class \{M\}) is the Fourier transform of an analytic functional in $Z_{(M)}{ }^{\prime}\left(i n Z_{\{M\}}{ }^{\prime}\right.$).

DEFINITION 2.11.ii. An ultradistribution of class (M) (of class $\{\mathrm{M}\}$) is an element in the dual of $D_{(M)}$ (of $D_{\{M\}}$).

Just as a distribution can be locally written as a finite sum of derivatives of a continuous function, an ultradistribution is locally an infinite sum of derivatives of a continuous function. To explain this we introduce differential operators of infinite order:

DEFINITION 2.12. An operator of the form

$$
P(D) \xlongequal{\text { def }} \sum_{|\alpha|=0}^{\infty} a_{\alpha} D^{\alpha}
$$

is called an ultradifferentiable operator of class (M) (of class \{M\}) if there are constants L and K (for every L there is a K) with

$$
\begin{equation*}
|P(z)|=\left|\sum_{|\alpha|} a_{\alpha} z^{\alpha}\right| \leq K \exp M(L\|z\|), \quad z \in \mathbb{C}^{n} . \tag{2.25}
\end{equation*}
$$

LEMMA 2.13. [42, th. 2.12]. An ultradifferentiable operator P of class M maps D_{M} continuously into itself.

LEMMA 2.14. [42, th. 10.3]. Every ultradistribution of class M can locally be written as $\mathrm{P}(\mathrm{D}) \mathrm{G}$ for some continuous function G and for some ultradifferentiable operator $P(D)$ of the same class.

Ultradifferentiable operators satisfying an additional property exist. Before formulating this we define the following concept which plays a role in the Roumieu type case.

DEFINITION 2.15. A positive, increasing function η on $[0, \infty)$, with $\eta(0)=0$ and with $\eta(\rho) / \rho \rightarrow 0$ as $\rho \rightarrow \infty$, is called a subordinate function.

LEMMA 2.16. For every m > 0 there exists an ultradifferentiable operator P_{m} (D) of class (M) with

$$
\begin{equation*}
\left|P_{m}(i z)\right| \geq \exp M(m\|z\|),\|y\|<1 . \tag{2.26.i}
\end{equation*}
$$

and for every subordinate function η there exists an ultradifferentiable operator $P_{n}(D)$ of class $\{M\}$ with
(2.26.ii) $\left|P_{\eta}(i z)\right| \geq \exp M\left(\eta\left\|_{z}\right\|\right),\|y\|<1$.

PROOF. The existence of the operators $P_{m}(D)$ and $P_{n}(D)$ follows from [42, proof of th. 10.1] where it is shown that the entire functions h_{m} and h_{η} in \mathbb{C}, whose Hadamard factorizations are,

$$
h_{m}(w) \xlongequal[p=1]{\infty}\left(1+\frac{\ell_{\mathrm{w}}}{m_{p}}\right)
$$

for some $\ell>0$ depending on m and

$$
h_{n}(w) \xlongequal{\text { def }}{ }_{p=1}^{\infty}\left(1+\frac{l_{p} w}{m_{p}}\right)
$$

for some sequence $\left\{\ell_{p}\right\}_{p=1}^{\infty}$ of positive numbers depending on η with $\ell_{p} \rightarrow 0$, where m_{p} def $M_{p} / M_{p-1} p$ for M_{p} given by (2.24), satisfy
(2.27.i)

$$
\left|\prod_{j=1}^{n} h_{m}\left(z_{j}\right)\right| \geq \exp M(m\|z\|), \quad \operatorname{Re} z_{j} \geq 0
$$

and
(2.27.ii) $\quad\left|\prod_{j=1}^{n} h_{\eta}\left(z_{j}\right)\right| \geq \exp M(\eta(\|z\|)), \quad \operatorname{Re} z_{j} \geq 0$.

In [42, prop. $4.5 \& 4.6$, cf. remark on $p .60$] it is shown that $h_{m}(D)$ and $h_{\eta}(D)$ are ultradifferentiable operators of class (M) and $\{M\}$, respectively. ㅁ.

Distributions can be written as sums of boundary values of analytic functions of algebraic growth in $1 /\|\operatorname{Im} \zeta\|$ for $\|\operatorname{Im} \zeta\|$ small. Ultradistributions can be represented in a similar way. For that purpose we introduce a function M^{*} associated to M : it follows from (2:20) that for each $\sigma>0$
(2.28) $\quad M^{*}(\sigma) \xlongequal{\text { def }} \max _{\rho>0}\{M(\rho)-\sigma \rho\}$
exists. M^{*} is a convex function on $(0, \infty)$ with $M^{*}(0)=\infty$ and $M^{*}(\infty)=0$. If M^{*} is a function with this properties, a function M can be associated to M^{*}, which equals M in (2.28) if this formula defines M^{*}, by

$$
\begin{equation*}
M(\rho)=\min _{\sigma>0}\left\{M^{*}(\sigma)+\rho \sigma\right\} \tag{2.29}
\end{equation*}
$$

Indeed, for almost every $\rho>0$ and all $\sigma>0$

$$
M(\rho) \leq \max _{\tau>0}\{M(\tau)-\sigma(\tau-\rho)\}=M^{*}(\sigma)+\rho \sigma
$$

and hence

$$
M(\rho) \leq \min _{\sigma>0}\left\{M^{*}(\sigma)+\rho \sigma\right\} \leq \max _{\tau>0}\left\{M(\tau)-M^{\prime}(\rho)(\tau-\rho)\right\},
$$

where in the right hand side we have taken $\sigma=M^{\prime}(\rho)$. There the maximum is attained for τ satisfying $M^{\prime}(\tau)=M^{\prime}(\rho)$, thus since M^{\prime} is monotonous, for $\tau=\rho$. Then the right hand side equals $M(\rho)$ and by continuity (2.29) holds everywhere.

LEMMA 2.17. [42, th. 11.5]. Let f be a function holomorphic in $\mathbb{R}_{n}+i C^{*}$ for some open convex cone C^{*} in \mathbb{R}_{n} such that for every compact set S in \mathbb{R}_{n} and for every $C^{\prime} \subset C^{*}$ there are positive constants $t=t\left(S, C^{\prime}\right)$ and $K=K\left(S, C^{\prime}\right)$ (for every $t>0$ there is a $K=K\left(S, C^{\prime}, t\right)>0$) with

$$
\begin{equation*}
\sup _{\xi \in S}|f(\xi+i \eta)| \leq K \exp M^{*}(t\|\eta\|), \quad \eta \in C^{\prime},\|\eta\|<\delta \tag{2.30}
\end{equation*}
$$

where $\delta>0$ may depend on S and C '. Then there is an ultradistribution f^{*} of class (M): (of class \{M\}) which is the boundary value of f as $\eta \rightarrow 0$, $\eta \in C^{\prime} \subset \subset C^{*}$, where M is given by (2.29), i.e., for each $\phi \in D_{M}$

$$
\left\langle f^{*}, \phi\right\rangle=\lim _{\eta \rightarrow 0} \int_{\eta \in C^{\prime}} f(\xi+i \eta) \phi(\xi) d \xi
$$

REMARK. It is already sufficient for (2.30) to hold if it holds for n only on a ray in C^{*} [42, prop. 11.6].
The converse of lemma 2.17 is
LEMMA 2.18. [42, th. 11.7]. Let f^{*} be an ultradistribution of class M and let $\left\{C_{j}^{*}\right\}_{j=1}^{k}$ be open, convex cones in \mathbb{R}_{n} such that the closure of their d duals cover \mathbb{R}^{n}. Then for each bounded open set S in \mathbb{R}_{n} there is a function f holomorphic in ${ }_{j} \bigcup_{1}^{U}\left\{S+i C_{j}^{*}\right\}$ which satisfies (2.30) where $C^{\prime}=\bigcup_{j=1}^{U_{1}} C_{j}^{\prime}$ with $C_{j}^{\prime} \subset \subset C_{j}^{*}$, such that in S

$$
f^{*}=\sum_{j=1}^{k} \lim _{\substack{\eta \rightarrow 0 \\ \eta \in C_{j}^{\prime}}} f(\xi+i \eta)
$$

(In [42] M^{\star} is defined in a different way and it corresponds to our function M^{*} if in the right hand side of (2.28) σ is replaced by $1 / \sigma$).

Similarly to finite-order-distributions, ultradistributions of "finite order" can be defined by global versions of lemma 2.14 or lemma 2.18.

DEFINITION 2.19.i. An ultradistribution is called of "finite order" if lemma 2.14 holds globally, i.e., if it can be written as P(D)G globally.

DEFINITION 2.19.ii. An ultradistribution is called of "finite order" if it can be represented globally as in lemma 2.18, where, in the Beurling type case, (2.30) holds for t independent of S and where, in the Roumieu type case, (2.30) holds with $\mathrm{K}(\mathrm{S}, \mathrm{C}, \mathrm{t})$ replaced by a constant of the form $K_{1}(S) K_{2}\left(C^{\prime}, t\right)$ for $K_{1}(S)>0$ depending on S and for $K_{2}\left(C^{\prime}, t\right)>0$ depending on C^{\prime} and t .

The equivalence of these definitions follows from the proofs in $[42, \S 10$ and § 11].

We remark that due to the fact that $\rho M^{\prime}(\rho)$ is increasing and to (2.21) the functions M and M^{*} satisfy:
for each $m>0$ and each $t>0$ there is $a t^{\prime}=t^{\prime}(m, t) \geq t$ and a constant $K=K(m, t)>0$, and for each $m>0$ and each $t^{\prime}>0$ there is a positive $t=t\left(m, t^{\prime}\right) \leq t^{\prime}$ and a constant $K=K\left(m, t^{\prime}\right)>0$, such that for $\rho \geq 1$ and for $0<\sigma \leq 1$

$$
\left\{\begin{array}{l}
M\left(\rho / t^{\prime}\right)+m \log \rho \leq M(\rho / t)+K \tag{2.31}\\
M^{*}\left(t^{\prime} \sigma\right)+m \log 1 / \sigma \leq M(t \sigma)+K
\end{array}\right.
$$

Hence M does not increase too slowly, while by (2.20) it does not increase too rapidly.

Condition (2.20) assures that there are ultradifferentiable functions with compact support (Denjoy-Carlman-Mandelbrojt, cf. [42, th. 4.2]). For example, if (2.22) is satisfied only for $\|y\|<1$ with $M(\rho)=\rho$, then (2.20) is not satisfied and ϕ is analytic in the tube $\{\zeta \mid\|\eta\|<m\}$ or, correspondingly if in (2.23) we set $M_{p}=p$! then ϕ is analytic in the ε-neighborhood of \mathbb{R}_{n}.

Furthermore, it is necessary that for each $\varepsilon>0$ there is a $K(\varepsilon)>0$ such that for $\rho \geq 0$

$$
\begin{equation*}
M(\rho) \leq \varepsilon \rho+K(\varepsilon), \tag{2.32}
\end{equation*}
$$

but this is not sufficient for (2.20) to hold. Finally, condition (2.21) will be used in lemma 5.2 to allow the replacement of $M(\|x\|)$ by $M\left(\left|x_{1}\right|\right)+\ldots$ $+M\left(\left|x_{n}\right|\right)$ in the definition of the spaces A by (2.4) or (2.5).

II.2.iv. CHARACTERIZATION OF ULTRADISTRIBUTIONS WITH REAL-CARRIED

 FOURIER TRANSFORMS.The Fourier transform of an ultradistribution of class M is an analytic functional on the space Z_{M} and conversely, the Fourier transforms of such analytic functionals are ultradistributions. Now, similarly to theorem 2.9, we shall characterize those ultradistributions g which are the Fourier transforms of real-carried analytic functionals μ and then, both g and μ, can be written as sum of boundary values of analytic functions. As in the case of distributions, such ultradistributions g are of "finite order", cf. definition 2.19 i and ii.

Let here $A_{t}(k)$ be the Banach space of functions ψ, holomorphic in the open $1 / k$-neighbourhood of \mathbb{R}^{n} in \mathbb{C}^{n} and continuous on the closure, such that $|\psi(z)| \exp M(\|x\| / t) \rightarrow 0$ as $z \rightarrow \infty$ while $\left\|_{y}\right\| \leq 1 / k$, with the norm $\|\psi\|$ def $=\sup |\psi(z)| \exp M(\|x\| / t)$. Then real-carried analytic functionals in $Z^{\prime}(M)$

$$
\begin{align*}
& A \xlongequal{\text { def }} \operatorname{ind} \lim _{k \rightarrow \infty} \operatorname{proj}_{t} \lim A_{t}(k) \\
& \left(A \xlongequal{\text { def }} \text { ind } \lim _{k \rightarrow \infty} A_{k}(k)\right) \tag{2.33}
\end{align*}
$$

THEOREM 2.20. The following four statements are equivalent:
(1) $\mu \in A^{\prime}$, where A is given by (2.33), and $g=F \mu, i . e .$, the ultradistribution g of class M is the Fourier transform of a real-carried analytic functional μ in Z_{M}^{\prime}.
(2) g is an ultradistribution of class (M) (of class $\{M\}$), which for every $\varepsilon>0$ can be represented as $g=P_{\varepsilon}(D) G_{\varepsilon}$, where $P_{\varepsilon}(D)$ is an ultradifferential operator of class (M) (of class \{M\}) and where the continuous function G_{ε} on \mathbb{R}_{n} satisfies

$$
\left|G_{\varepsilon}(\xi)\right| \leq K(\varepsilon) e^{\varepsilon\|\xi\|}
$$

(3) μ is the sum of boundary values in A' of functions f_{j} holomorphic in $\mathbb{R}^{n}+i C_{j}$, such that for every $C^{\prime} \subset \subset C_{j}$ and every $\varepsilon>0$ there are $K=K\left(C_{j}^{\prime}, \varepsilon\right)>0$ and $t=t\left(C_{j}^{1}, \varepsilon\right)>0$ (for every $t>0$ there is a $\left.K=K\left(C_{j}^{\prime}, \varepsilon, t\right)>0\right)$ with

$$
\left|f_{j}(z)\right| \leq K \exp m\left(t \|_{z \|}\right), \quad y \in C_{j}^{\prime},\|y\|>\varepsilon
$$

for $j=1, \ldots, k$, where $\left\{c_{j}\right\}_{j=1}^{k}$ are open, convex cones in \mathbb{R}^{n} such that the closure of their duals cover \mathbb{R}_{n}.
(4) g is the sum of boundary values of functions h_{j} holomorphic in $\mathbb{R}_{n}+i C_{j}^{*}$, such that for every C_{j}^{*} ' $\subset C_{j}^{*}$ and every $\varepsilon>0$ there are positive numbers $t=t\left(C_{j}^{*}, \varepsilon\right)$ and $K=K\left(C_{j}^{*}, \varepsilon\right)$ (for every $t>0$ there is a $\left.K=K\left(C_{j}^{*}, \varepsilon, t\right)>0\right)$ with
(2.34) $\quad\left|h_{j}(\zeta)\right| \leq K \exp \left\{M^{*}(t\|\eta\|)+\varepsilon\|\xi\|\right\}, \quad \eta \in C_{j}^{*}{ }^{\prime}$, for $j=1, \ldots, p$, where the open, convex cones C_{k}^{*} in \mathbb{R}_{n} are such that the closure of the duals cover \mathbb{R}^{n} and where M^{\star} is determined by M according to (2.28).

PROOF. (1) \Rightarrow (2). On any ε-neighborhood $\Omega(\varepsilon)$ of \mathbb{R}^{n} in \mathbb{C}^{n} there exists a measure μ_{ε} which represents μ on $\underset{t}{\operatorname{proj}} \lim _{0} A_{t}(1 / \varepsilon)$ and which satisfies
(2.35.i). $\int_{\Omega(\varepsilon)} \exp -M(m(\varepsilon)\|x\|)\left|d \mu_{\varepsilon}(z)\right| \leq K(\varepsilon)$
for some positive numbers $K(\varepsilon)$ and $m(\varepsilon)$ depending on ε.
(Let μ satisfy for all $\varepsilon>0$ and $t=1,2, \ldots$

$$
|\langle\mu, \psi\rangle| \leq K_{\varepsilon}(t) \sup _{\|y\|_{x} \leq \varepsilon}|\psi(z)| \exp M(\|x\| / t), \psi \in \underset{t \rightarrow \infty}{\operatorname{ind} \lim _{t} A_{t}(1 / \varepsilon)}
$$

for some $K_{\varepsilon}(t)>0$ depending on ε and t with $K_{\varepsilon}(t+1)>K_{\varepsilon}(t)$ for every $\varepsilon>0$ and $t=1,2, \ldots$. For each $\varepsilon>0$ we define a subordinate function η_{ε} (cf. definition 2.15) by

$$
M\left(\eta_{\varepsilon}(\rho)\right) \stackrel{\text { def }}{=} \inf _{t}\left\{M(\rho / t)+\log \left(K_{\varepsilon}(t) / K_{\varepsilon}(1)\right)\right\}
$$

that $\eta_{\varepsilon}(\rho) / \rho \rightarrow 0$ as $\rho \rightarrow \infty$ follows as in [42, after lemma 9.5]. Then for each $\varepsilon>0 \mu$ satisfies

$$
\left|<\mu, \psi>\left|\leq K_{\varepsilon}(1) \sup _{\|y\| \leq \varepsilon}\right| \psi(z)\right| \exp M\left(\eta_{\varepsilon}\left(\left\|_{x}\right\|\right)\right), \psi \in \underset{t \rightarrow \infty}{\operatorname{ind} \lim _{t} A_{t}(1 / \varepsilon) .}
$$

Hence for every $\varepsilon>0 \mu$ can be expressed as a measure μ_{ε} on $\Omega(\varepsilon)$ which satisfies
(2.35.ii)

$$
\int_{\Omega(\varepsilon)} \exp -M\left(\eta_{\varepsilon}(\|x\|)\right)\left|d \mu_{\varepsilon}(z)\right| \leq K(\varepsilon)
$$

for some $K(\varepsilon)>0$ depending on ε.)
Now for any $\varepsilon>0$, let $P_{\varepsilon}=P_{m(\varepsilon)}$, where $m(\varepsilon)$ is determined by (2.35.i) and $P_{m(\varepsilon)}$ by lemma 2.16 (let $P_{\varepsilon}=P_{\eta_{\varepsilon}}$, where η_{ε} is determined by (2.35.ii) and $P_{n_{\varepsilon}}$ by lemma 2.16). Then $P_{\varepsilon}(D)$ is an ultradifferentiable operator of class (M) (of class \{M\}). For every $\phi \in D_{M}$ and for every $\varepsilon>0$, we get with $\hat{\phi}=F \phi$

$$
\begin{aligned}
\langle\mu, \bar{\phi}\rangle & =\left\langle\mu, \int e^{i\langle\xi, z\rangle} \phi(\xi) d \xi\right\rangle= \\
& =\int_{\Omega(\varepsilon)}\left\{\int_{\varepsilon} \phi(\xi) P_{\varepsilon}\left(D_{\xi}\right) e^{i<\xi, z\rangle} d \xi\right\} \frac{d \mu}{P_{\varepsilon}(z)} \\
& =\int_{\varepsilon}\left\{P_{\varepsilon}(-D) \phi(\xi)\right\} \int_{\Omega(\varepsilon)} \frac{e^{i\langle\xi, z\rangle}}{P_{\varepsilon}(i z)} d \mu_{\varepsilon}(z) d \xi .
\end{aligned}
$$

Hence for every $\varepsilon>0 \mathrm{~g}=\mathrm{F}_{\mu}=\mathrm{P}_{\varepsilon}$ (D) G_{ε}, where

$$
G_{\varepsilon} \xlongequal{\text { def }} \int_{\Omega(\varepsilon)} \frac{e^{i\langle\xi, z\rangle}}{P_{\varepsilon}(i z)} d \mu_{\varepsilon}(z)
$$

is a continuous function on \mathbb{R}_{n} which according to (2.26.i) and (2.26.ii) satisfies

$$
\left|G_{\varepsilon}(\xi)\right| \leq K(\varepsilon) e^{\varepsilon\|\xi\|} .
$$

(2) \Rightarrow (3). Let U be the closure of an open set in \mathbb{R}_{n} and let $\varepsilon>0$. If $\phi \in D_{(M)}\left(\phi \in D_{\{M\}}\right)$, for every t (for some t) the following norm is finite (2.36) $\quad\|\phi\|_{U, \varepsilon, t} \xlongequal{\text { deff }} \sup _{\varepsilon \in U} e^{\varepsilon\|\xi\|} \frac{\left|D^{\alpha} \phi(\xi)\right|}{t^{|\alpha|_{M}}|\alpha|}$,
where the supremum is taken over all nonnegative n-dimensional multiindices α and where ${ }^{M}|\alpha|$ is determined by the function M according to (2.24). Let $E_{\varepsilon, t}(\mathrm{U})$ denote the completion in this norm of the set of such functions ϕ and let

$$
E(U) \xlongequal{\underline{\text { def }}} \operatorname{ind} \lim \operatorname{proj} \lim E_{\varepsilon, t}(U)
$$

The restriction map from $E\left(\mathbb{R}_{n}\right)$ into $\prod_{j=1}^{k} E\left(U_{j}\right)$ is injective and open, when $\mathrm{U}_{\mathrm{H}=1}^{\mathrm{k}} \mathrm{U}_{j}=\mathbb{R}_{\mathrm{n}}$. So, as in the proof of theorem 2.7 its transposed is surjective.

If g satisfies condition (2) of the theorem it belongs to $E\left(\mathbb{R}_{n}\right)$ '. Indeed, for every $\varepsilon>0$ there are $t=t(\varepsilon)>0$ and $K=K(\varepsilon)>0$ (for each t there is a $K=K(\varepsilon, t)>0)$ with

$$
(1+\|x\|)^{n+1}\left|P_{1 / 3 \varepsilon}(i z)\right| \leq K \exp M(\|z\| / \sqrt{n t}) .
$$

Hence for $\phi \in D_{M}$, using (2.24) and the fact that for each $z \in \mathbb{C}^{n}$ and multiindex α there is another multiindex β with $|\beta|=|\alpha|$ and $(\|z\| / \sqrt{n})|\alpha| \leq\left|z^{\beta}\right|$, we get

$$
\begin{aligned}
& |\langle g, \phi\rangle| \leq K^{\prime} \sup _{\xi} e^{2 / 3 \varepsilon\|\xi\|}\left|P_{1 / 3 \varepsilon}(-D) \phi(\xi)\right| \leq \\
& \leq K^{\prime} \sup _{\xi} e^{2 / 3 \varepsilon\|\xi\|}\left\{\inf _{\|y\| \leq 2 / 3 \varepsilon} \frac{1}{(2 \pi)^{n}} \int\left|P_{1 / 3 \varepsilon}(i z) e^{-i\langle\xi, z\rangle} \tilde{\phi}(z)\right| d x\right\} \leq \\
& \leq K \prime \sup _{\xi}\left\{\inf _{\| \| \leq 2 / 3 \varepsilon} \exp \left[\frac{2}{3} \varepsilon\|\xi\|+\langle\xi, y\rangle+M(\|z\| / \sqrt{n} t)\right]|\bar{\phi}(z)|\right\} \leq \\
& \leq M_{0} K^{\prime \prime} \sup _{\| Y_{\|} \leq 2 / 3 \varepsilon} \frac{\left\|_{z}\right\||\alpha|}{(\sqrt{n} t)^{|\alpha|_{M}}|\alpha|}|\hat{\phi}(z)| \leq M_{0} K^{\prime \prime} \sup _{\| Y^{\|} \leq 2 / 3 \varepsilon} \frac{\left|z^{\alpha}\right|}{t^{|\alpha|_{M}}{ }^{\alpha}|\alpha|}|\hat{\phi}(z)| \leq \\
& \leq M_{0} K^{\prime \prime} \sup _{\| Y^{\|} \leq 2 / 3 \varepsilon} \frac{1}{t^{|\alpha|_{M}}|\alpha|}\left|\int e^{i\langle\xi, z\rangle}{ }_{D}^{\alpha} \phi(\xi) d \xi\right| \leq \\
& \leq M_{0} K^{\prime \prime} \sup _{\substack{\alpha \\
\xi \in \mathbb{R}_{n}}} e^{\varepsilon\|\xi\|} \frac{\left|D^{\alpha} \phi(\xi)\right|}{t^{|\alpha|_{M}}|\alpha|} \int \exp -\frac{1}{3} \varepsilon\left\|\xi^{\prime}\right\| d \xi^{\prime} \leq K^{\prime \prime \prime}\|\phi\|_{\mathbb{R}_{n}, \varepsilon, t} .
\end{aligned}
$$

Conversely, the restriction to $E\left(\mathbb{R}_{n}\right)$ of an element $g \in E(U)$ ' satisfies condition (2) of the theorem. For F^{-1} maps A continuously into $E\left(\mathbb{R}_{n}\right)$, because for $\psi \in A$, by (2.24), we have

$$
\begin{aligned}
&\left\|F^{-1} \psi\right\|_{\mathbb{R}_{n}, \varepsilon, t^{\prime}} \leq \sup _{\xi, \alpha}\left\{\frac{1}{(2 \pi)^{n}} e^{\varepsilon\|\xi\|} \frac{1}{t^{\prime}|\alpha|_{M}|\alpha|}\left\|_{Y}\right\| \leq \varepsilon\right. \\
& \inf \\
& \int \|_{z \|}|\alpha| \\
&\left.e^{-i\langle\xi, z>} \psi(z) \mid d x\right\} \leq
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{(2 \pi)^{n_{M}}} \sup _{\xi} \inf _{\|y\| \leq \varepsilon} e^{\varepsilon\|\xi\|+\langle\xi, y>} \sup _{\|y\| \leq \varepsilon} \int|\psi(z)| \exp M(\|z\| / t,) d x \leq \\
& \leq K \int(1+\|x\|)^{-(n+1)} d x \sup _{\substack{\|y\| \leq \varepsilon \\
x \in \mathbb{R}^{n}}}|\psi(z)| \exp M(\|x\| / t),
\end{aligned}
$$

where, according to (2.31) with $m=n+1$, t^{\prime} determines $t\left(t\right.$ determines t^{\prime}). Hence $F^{-1} \mathrm{~g}$ belongs to A^{\prime} and in the proof of (1) $\Rightarrow(2)$ it has been shown already that then g satisfies (2).

Now choose open, convex cones $c_{j} \subset \mathbb{R}^{n}, j=1, \ldots, k$ such that ${ }_{j=1}^{k} \bar{C}_{j}^{*}=\mathbb{R}_{n}$ and let $g={ }_{j} \sum_{1} g_{j}$ with $g_{j} \in E\left(-\overline{C_{j}^{*}}\right) \cdot$. In lemma 2.23 it will be shown that for ${ }^{\mathrm{n}}$ $\psi \in A$ and $y \in C_{j}$

$$
\left\langle F^{-1} g_{j}, \psi\right\rangle=\frac{1}{(2 \pi)^{n}}\left\langle F\left(g_{j}\right)-\xi^{\prime} \psi\right\rangle=\int f_{j}(z) \psi(z) d x,
$$

where f_{j} is the function

$$
f_{j}(z) \stackrel{\text { def }}{=} \frac{1}{(2 \pi)^{n}}\left\langle\left(g_{j}\right)-\xi^{\prime} e^{i\langle\xi, z\rangle}\right\rangle \xlongequal{\text { def }}\left\langle\left(g_{j}\right)_{\xi^{\prime}} \frac{e^{-i\langle\xi, z\rangle}}{(2 \pi)^{n}}\right\rangle
$$

which is holomorphic in $\mathbb{R}^{n}+i C_{j}$. For each $\varepsilon>0$ and $C_{j}^{\prime} c c c_{j}$ there is a $\delta=\delta\left(\varepsilon, C_{j}^{\prime}\right)>0$ such that $\langle\xi, y\rangle \leq-\delta\|\xi\|$ if $\xi \in-C_{j}^{*}$ and $y \in C_{j}^{\prime}$ with $\|y\| \geq \varepsilon$. Then for every $\varepsilon>0$ and for every C_{j}^{\prime} there are $K=K\left(\varepsilon, C_{j}^{\prime}\right)>0$ and $t=t\left(\varepsilon, C_{j}^{\prime}\right)>0$ (for every $t>0$ there is $a k=K\left(\varepsilon, C_{j}^{\prime}, t\right)>0$) such that for $y \in C_{j}^{\prime}$ with $\|y\|>\varepsilon$

$$
\begin{aligned}
\left|f_{j}(z)\right| & \leq K\left\|e^{i\langle\xi, z\rangle}\right\| \frac{C_{j}^{*}, \delta, 1 / t}{} \leq K \sup _{\xi \epsilon \bar{C}_{j}^{\star}} e^{\delta\|\xi\|+\langle\xi, y\rangle} \frac{\left(t\left\|_{z}\right\|\right)|\alpha|}{M|\alpha|} \leq \\
& \leq K / M_{0} \exp M\left(t \|_{z \|}\right)
\end{aligned}
$$

according to (2.24). Thus g satisfies condition (3) of the theorem. (3) \Rightarrow (1). It is obvious that a sum of boundary values as in (3) determines an analytic functional in A^{\prime} : for $\psi \in A^{\prime}$

$$
\begin{aligned}
& \left|\sum_{j=1}^{k} \int_{\mathbb{R}^{n}} f_{j}\left(x+i y^{j}\right) \psi\left(x+i y^{j}\right) d x\right| \leq \\
& \leq K^{\prime} \sum_{j=1}^{k} \int_{\mathbb{R}^{n}} \frac{\exp \left\{M\left(t \cdot\left\|_{z}^{j}\right\|\right)+(n+1) \log (1+\|x\|)\right\}}{(1+\|x\|)^{n+1}}\left|\psi\left(z^{j}\right)\right| d x \leq
\end{aligned}
$$

$$
\leq K \sup _{\substack{\mathbf{x} \in \mathbb{R}_{\mathrm{n}} \\\|\mathrm{y}\| \leq \varepsilon}}|\psi(z)| \exp M\left(t\left\|_{\mathrm{x}}\right\|\right),
$$

which holds for each $\varepsilon>0$ by choosing $y^{j} \in C_{j}^{\prime}$ with $\|_{y^{j}}{ }^{j}=\varepsilon$ and for t^{\prime}, hence t by (2.31), and K depending on ε (for each $t>0$, by choosing t^{\prime} according to (2.31) and for K depending on ε and t).
(1) \Rightarrow (4). According to theorem $2.7 \mu \in A^{\prime}$ can be written as $\mu=\sum_{j}^{p}{ }_{1} \mu_{j}$ with $\mu_{j} \in A\left(\bar{C}_{j}\right)$ ', where the closures of the open, convex cones $C{ }_{j} \subset \mathbb{R}^{n}$ cover \mathbb{R}^{n}. The same proof of theorem 2.7 applies if we had taken the closed neighborhoods $\Omega_{j}(\varepsilon) \stackrel{\text { def }}{=}\left\{z \mid x \in \bar{C}_{j},\|y\| \leq \varepsilon\right\}$ instead of the open ε-neighborhoods of \bar{C}_{j} in \mathbb{C}^{n}. (Then a space of analytic functions in $\bar{\Omega}$ is defined by functions holomorphic in the interior and continuous on the closure of Ω.) Thus assume that μ_{j} is an analytic functional with respect to these neighborhoods. In lemma 2.26 (which actually deals with the map (2.15) instead of the map (2.14) we have here) it will be shown that the Fourier transform of such an analytic functional is the boundary value of the function

$$
h_{j}(\zeta) \stackrel{\text { def }}{=}\left\langle\left(\mu_{j}\right)_{z}, e^{i\langle\zeta, z\rangle}\right\rangle
$$

which is holomorphic in $\mathbb{R}_{n}+i C_{j}^{*}$. For every $\varepsilon>0$ there is a $K=K(\varepsilon)>0$ and for every $C_{j}^{*} \subset \subset C_{j}^{*}$ there is moreover a positive $t=t\left(\varepsilon, C_{j}^{*}\right.$) (for every $t>0$ there is a $K=K\left(\varepsilon, C_{j}{ }^{\prime}, t\right)>0$) with

$$
\begin{equation*}
\left|h_{j}(\zeta)\right| \leq K \sup _{\substack{x \in \bar{C}_{j} \\\|y\| \leq \varepsilon}} \exp \left\{-\left\langle\xi, y>-\left\langle\eta, x>+M\left(t^{\prime}\|x\|\right)\right\} \leq\right.\right. \tag{2.37}
\end{equation*}
$$

$$
\leq K \exp \left\{\varepsilon\|\xi\|+\sup _{\rho \geq 0}\left[M\left(t^{\prime} \rho\right)-\delta \rho\|\eta\|\right]\right\} \leq K \exp \left\{M^{*}(t\|\eta\|)+\varepsilon\|\xi\|\right\}, \eta \in C_{j}^{*},
$$

for t^{\prime} depending on ε (for every t^{\prime}), δ depending on C_{j}^{*} and with $t=\delta / t^{\prime}$, where for the last inequality (2.28) has been used.
(4) \Rightarrow (1). This in fact will be shown in chapters III and VI. There the function h, holomorphic in $\mathbb{R}_{n}+i C^{*}$, satisfies

$$
|h(\zeta)| \leq K \exp \left(M^{*}(t\|\eta\|)+\varepsilon\|\zeta\|\right), \quad \eta \in C^{*},
$$

which is more general than (2.34) and its boundary value is the Fourier transform of an analytic functional μ carried by \bar{C} with respect to neighborhoods larger than ε-neighborhoods, namely with respect to the neighborhoods

$$
\Omega\left(\varepsilon, C^{*} \cdot\right) \stackrel{\text { def }}{=}\left\{z \mid-\left\langle\xi, y>-\langle n, x\rangle\left\langle\varepsilon\|\zeta\|, n \in C^{*},, \xi \in \mathbb{R}_{n}\right\} .\right.\right.
$$

Such an analytic functional μ certainly belongs to A'.

Note that in condition (4) of theorem $2.9 \mathrm{~m}(\varepsilon)$ depends on ε only, whereas in (2.34) in the Beurling type case t depends on both C_{j}^{*} and ε. This is due to the different behaviour of the function M in case of distributions, where $M(t \rho)$ has to be replaced by $t \log (1+\rho)$ and where for $M^{*}(\sigma)$ the function log $\sigma^{-1}, \sigma \leq 1$, can be choosen. Then M^{*} satisfies $M^{*}(\delta \sigma) \leq M^{*}(\sigma)+K$ where K depends on δ (cf. the use of M^{*} in (2.37)).

REMARK. In [60] in the proof of theorem 2.9 the implication (4) \Rightarrow (2) instead of (4) $\Rightarrow(1)$ is shown, which is performed by integration of the functions h. Then we get no information about the carrier of $F^{-1} h$ and in the above theorem no such information is needed. A direct proof of the implication (4) \Rightarrow (2) in theorem 2.20, is quite complicated and might be performed along the lines of [42, proof of th. 11.5].

II.2.v. PALEY-WIENER THEOREMS FOR ULTRADISTRIBUTIONS.

In the proof of theorem 2.20 a certain correspondence turned up between the boundary value of an analytic function of exponential type and the support or carrier of its Fourier transform. We shall make this correspondence more explicit. Let C be an open, convex cone in \mathbb{R}^{n} and let a be a convex function on C, homogeneous of degree one. The pair (a, C) determines uniquely a closed convex set $U(a, C)$, not containing a straight line, in \mathbb{R}_{n} by

$$
\begin{equation*}
U(a, C) \xlongequal{\text { def }}\{\xi \mid-\langle\xi, y\rangle \leq a(y), y \in C\} \tag{2.38}
\end{equation*}
$$

Conversely, each closed, convex set U in \mathbb{R}_{n}, which does not contain a straight line, determines uniquely an open, convex cone C in \mathbb{R}^{n} and a homogeneous, convex function a on C such that $U=U(a, C)$ according to (2.38), see [60].

The following theorems (th. 2.21 and th. 2.24) give the above mentioned correspondence explicitly. They are more general than the corresponding theorems for tempered distributions in [68, th. 26.2], but as soon as the occurring concepts are introduced, the proofs are very similar. They may be considered as a version of the real Paley-Wiener theorem for ultradis-
tributions, whereas in chapter III complex Paley-Wiener theorems will be discussed which, actually, may be considered as versions of the EhrenpreisMartineau theorem.

First we state the theorem for distributions in D^{\prime}, whose proof can be found in $[60$, th. 4.1$]$, and then we prove the theorem for ultradistributions.

THEOREM 2.21.i. Let C be an open, convex cone in \mathbb{R}^{n}, let a be a convex function on C, homogeneous of degree one, let $\mathrm{U}(\mathrm{a}, \mathrm{C})$ be the convex set in \mathbb{R}_{n} given by (2.38) and let moreover f be a holomorphic function in $\mathbb{R}^{n}+i C$ which satisfies: for every $\varepsilon>0$ and $C^{\prime} \subset \subset C$ there is a $m=m\left(\varepsilon, C^{\prime}\right)>0$ and for every $\varepsilon>0$ there is moreover a positive number $K=K\left(\varepsilon, C^{\prime}, \sigma\right)$ such that

$$
|f(z)| \leq K(1+\|z\|)^{m} \exp \left\{a(y)+\sigma\left\|_{y}\right\|\right\}, \quad y \in C^{\prime}, \quad\|y\| \geq \varepsilon
$$

Then $f(z)=F\left[e^{-\left\langle\xi, y^{>}\right.} g_{\xi}\right](x)$ for some distribution $g \in D^{\prime}$ with support in $\mathrm{U}(\mathrm{a}, \mathrm{C})$ satisfying condition (2) of theorem 2.9 and the boundary value of f in Z^{\prime} equals Fg .

THEOREM 2.21.ii. Let $C, a, U(a, C)$ and f be as in theorem 2.21.i, but let f now satisfy: for every $\varepsilon>0$ and $C^{\prime} \subset \subset C$ there is $a t=t\left(\varepsilon, C^{\prime}\right)>0$ and for every $\sigma>0$ there is moreover a positive number $K=K\left(\varepsilon, C^{\prime}, \sigma\right.$) (for every $\varepsilon>0, \sigma>0, C^{\prime} \subset \subset C$ and $t>0$ there is a $\left.K=K\left(\varepsilon, \sigma, C^{\prime} t\right)>0\right)$ such that

$$
\begin{equation*}
|f(z)| \leq K \exp \left\{M\left(t\left\|_{z}\right\|\right)+a(y)+\sigma\left\|_{y}\right\|\right\}, \quad y \in C^{\prime},\|y\| \geq \varepsilon \tag{2.39}
\end{equation*}
$$

Then $f(z)=F\left[e^{-\left\langle\xi, Y^{\rangle}\right.} g_{\xi}\right](x)$ for some ultradistribution g of class (M) (of class $\{M\}$) with support in $U(a, C)$ satisfying condition (2) of theorem 2.20 and the boundary value of f equals Fg .

PROOF. In the proof of (3) $\Rightarrow(1)$ of theorem 2.20 the behaviour of f only for $\|y\|$ small has been used. Hence it follows from this and from (1) \Rightarrow (2) that the inverse Fourier transform g of the boundary value of f satisfies condition (2) of theorem 2.20. For $\phi \in D_{M} g$ is defined by $\left\langle g, \phi>=\int f(z) \psi(z) d x\right.$ where $\psi=F^{-1} \phi$, and the integral is independent of $y \in C$. The function $\xi \rightarrow \exp -<\xi, y>$ is analytic and therefore a multiplier in any space of ultradistributions. So, for $y \in C$ we get

$$
\left\langle g e^{-\left\langle\xi, y^{\rangle}\right.}, \phi\right\rangle=\left\langle g, e^{-\left\langle\xi, y^{\rangle}\right.} \phi\right\rangle=\int f(z) \psi(x) d x
$$

hence $f(z)=F\left[e^{-\langle\xi, y\rangle} g_{\xi}\right](x)$ and it remains to prove the support property of g.

Let ξ_{0} be a point in $\mathbb{R}_{\mathrm{n}} \backslash \mathrm{U}(\mathrm{a}, \mathrm{C})$, hence there is an $\mathrm{y}_{0} \in \mathrm{C}$ with $\left\|\mathrm{y}_{0}\right\|=1$ and with $-\left\langle\xi_{0}, y_{0}\right\rangle>a\left(y_{0}\right)$. Furthermore, let $\eta>0$ be so small that

$$
-\left\langle\xi_{0}, y_{0}>\geq a\left(y_{0}\right)+2 n\right.
$$

and let $\phi_{0} \in D_{M}$ has its support in $\left\{\xi \mid\left\|\xi-\xi_{0}\right\| \leq n\right\}$. Then ϕ_{0} has its support in $\mathbb{R}_{n} \backslash U(a, c)$, because for ξ in the support of ϕ_{0} we have

$$
\begin{equation*}
\left\langle\xi, y_{0}\right\rangle=\left\langle\xi_{0}, y_{0}>+\left\langle\xi-\xi_{0}, y_{0}>\leq-a\left(y_{0}\right)-2 \eta+\eta=-a\left(y_{0}\right)-\eta<-a\left(y_{0}\right)\right.\right. \tag{2.40}
\end{equation*}
$$

Let C^{\prime} cc C be such that $y_{0} \in C^{\prime}$ and let $\sigma=\frac{1}{4} \eta$. Then according to lemma 2.16 there is an ultradifferentiable operator P (D) of class (M) (of class $\{\mathrm{M}\}$, where the construction is performed after the definition of a suitable subordinate function as in the proof of (1) $\Rightarrow(2)$ of theorem 2.20 using the constants $K\left(\varepsilon, \sigma, C^{\prime}, t\right)$ in (2.39) for $\varepsilon=1, \sigma=\frac{1}{4} \eta$ and C^{\prime} fixed), such that
(2.41) $\quad \int\left|\frac{f(x+i y)}{P(i x)}\right| d x \leq K \exp \{M(t\|y\|)+a(y)+\sigma\|y\|\}$
for some K and t and for all $y \in C$ with $\|y\| \geq 1$. Then we have

$$
\begin{equation*}
\left\langle g, \phi_{0}>=\int_{\mathbb{R}^{n}} \frac{f(x+i y)}{P(i x)}\left\{\int_{\mathbb{R}_{n}} e^{-i\langle\xi, x\rangle} P(D)\left[e^{\langle\xi, y\rangle} \phi_{0}(\xi)\right] \frac{d \xi}{(2 \pi)^{n}}\right\} d x\right. \tag{2.42}
\end{equation*}
$$

Furthermore there are t^{\prime} and K^{\prime} depending on P (depending on ϕ_{0}) with

$$
\begin{aligned}
& \left|P(D) e^{\left\langle\xi, y^{\rangle}\right.} \phi_{0}(\xi)\right| \leq\left|\frac{P(D)}{(2 \pi)^{n}} \int e^{-i\langle\xi, z\rangle} \hat{\phi}_{0}(x) d x\right| \leq \\
& \leq e^{\langle\xi, y\rangle} \int\left|\frac{P(-i z)}{(2 \pi)^{n}} \hat{\phi}_{0}(x)\right| d x \leq e^{\left\langle\xi, y^{\prime}\right\rangle} K^{\prime} \int\left|\hat{\phi}_{0}(x)\right| \exp M(t \cdot\|z\|) d x \leq \\
& \leq e^{\left\langle\xi, y^{\prime}\right.} K_{K^{\prime}} e^{M(t \cdot\|y\|)} \int_{\mathbb{R}^{n}}\left|\hat{\phi}_{0}(x)\right| e^{M\left(t^{\prime}\|x\|\right)} d x .
\end{aligned}
$$

Now we take $y=\lambda y_{0}, \lambda>1$ in (2.42) and taking into account (2.40) and (2.41) we find

$$
\left|<g, \phi_{0}>\right| \leq K\left(\phi_{0}\right) \exp \left\{M(t \lambda)+a(y)+\frac{1}{4} n \lambda+m\left(t^{\prime} \lambda\right)-a(y)-n \lambda\right\} .
$$

Using (2.32) two times with $\varepsilon=\frac{1}{4} \eta / t$ and $\varepsilon=\frac{1}{4} \eta / t^{\prime}$, successively, and taking the limit for $\lambda \rightarrow \infty$ we finally get $\left\langle\mathrm{g}, \phi_{0}\right\rangle=0$.

In [60] and [68] it is shown that a distribution g (occurring in [68, th. 26.2] and [60, th. 4.1]) with convex (or more general, regular) support is a sum of derivatives of measures on its support. This is proved with the aid of Whitney's extension theorem, which says that the restriction map from $C^{\infty}(L)$ into $C^{\infty}(K)$ is surjective if K is closed, convex (or regular) and contained in the interior of L. For ultradifferentiable function spaces there is no such theorem, except in the one-dimensional case, see [9], but "it is quite plausible that this result can be extended to the higher dimensional case", see [42] (indeed, cf. foot note ${ }^{2)}$). Then we would be able to prove a sharper theorem than just the converse to theorem 2.21, so that the estimate (2.39) would be improved, see corollary 2.25 (cf. [60] for distributions in $\left.D{ }^{\prime}\right)$.

The above mentioned results on distributions with bounded regular support have already been mentioned in [62] and for tempered distributions with unbounded regular support in [67]. However, at some places, mostly oriented to physics (see for example [12] and [58]) a particular ${ }^{1)}$ case of this result is used which has been proved later [5]. It is called the lemma of Bros-Epstein-Glaser and it says that tempered distributions with support in a convex cone can be written as a higher order derivative of a continuous function with support in the cone. Fortunately, it is this result that can be generalized here, so that we are able to derive a converse to theorem 2.21 which is similar to the one for distributions, cf. [60]. Therefore, we state the following lemma, which is a generalization of the Bros-Epstein Glaser lemma. ${ }^{2)}$

[^2]LEMMA 2.22. Let U be the closure of an open set in \mathbb{R}_{n} such that there is a fixed, convex, open cone C^{*} with the property that for each $\xi \notin U$ the set $\left\{\xi-C^{*}\right\} \cap \mathrm{U}$ is empty and let g be an ultradistribution of class (M) (of class \{M\}) which satisfies condition (2) of theorem 2.20 and which has its support in U. Then condition (2) of theorem 2.20 is satisfied for continuous functions G_{ε} which have their supports in U .

PROOF. Let C be the dual cone of C^{*}, then it is possible to choose a base $\left\{e_{1}, \ldots, e_{n}^{n}\right\}$ in \mathbb{R}^{n} such that $\bar{C} \subset \Gamma$, where Γ is the open, convex cone $\left\{y \mid y={ }_{j}^{\sum_{n}^{n}} y_{j} e_{j}, y_{j}>0\right\}$. Then we have $\Gamma_{n}^{*} \subset C^{*}$. Every $z \in \mathbb{C}^{n}$ can be written uniquely as $z=x+i y=\sum_{j=1}^{n} x_{j} e_{j}+i \sum_{j=1}^{n} y_{j} e_{j}$ and we use these $\left(x_{1}, \ldots, x_{n}\right)$ as coordinates for \mathbb{R}^{n} and $\left\{z_{j}=x_{j}+i y_{j}\right\}_{i=1}^{n}$ as coordinates for \mathbb{C}^{n}.

According to theorem 2.20 g is the Fourier transform of a real-carried analytic functional μ. As in the proof of $(1) \Rightarrow(2)$ of theorem 2.20 , let μ be represented by measures μ_{ε} satisfying (2.35.i) for some $m(\varepsilon)>0$ depending on ε and μ ((2.35.ii) for some subordinate function η_{ε} depending on ε and μ). Let

$$
P_{\varepsilon}(z) \stackrel{\text { def }}{=} \prod_{j=1}^{n}\left(z_{j}+1\right)^{2} h_{\varepsilon}\left(2 z_{j}+2\right):
$$

where $h_{\varepsilon} \stackrel{\text { def }}{=} h_{m(\varepsilon)} \quad\left(h_{\varepsilon} \xlongequal{\text { def }} h_{\eta_{\varepsilon}}\right.$) is determined in the proof of lemma 2.16. Then $P_{\varepsilon}(D)$ is an ultradifferentiable operator of class (M) (of class $\{M\}$), $\exp M(m(\varepsilon)\|x\|) / P_{\varepsilon}(-i x)\left(\exp M\left(\eta_{\varepsilon}(\|x\|)\right) / P_{\varepsilon}(-i x)\right)$ is an L^{1}-function and $1 / P_{\varepsilon}(-i z)$ is holomorphic in any α-neighborhood of \mathbb{R}^{n} in \mathbb{C}^{n} with $\alpha<1$ and in $\mathbb{R}^{n}+i \Gamma$, where by (2.27.i) (by (2.27.ii)) it satisfies an even stronger estimate than (2.39) with $\mathrm{a}=0$. According to $[42$, lemma 3.3] the function

$$
\lambda_{\varepsilon}(\xi) \stackrel{\text { def }}{=} F^{-1}\left[\frac{1}{P_{\varepsilon}(-i x)}\right](\xi)
$$

is ultradifferentiable on \mathbb{R}_{n} and according to theorem $2.21 \lambda_{\varepsilon}$ has its support in $\bar{\Gamma}^{*}$. We will see that λ_{ε} is "sufficiently ultradifferentiable" such that g can be applied to it. Another property of λ_{ε} is that $P_{\varepsilon}(D) \lambda_{\varepsilon}=\delta$, where δ is the Dirac- δ-function.

Now let

$$
G_{\varepsilon}(\xi) \stackrel{\text { def }}{=} g * \lambda_{\varepsilon}(\xi) \stackrel{\text { def }}{=}\left\langle g_{\eta}, \lambda_{\varepsilon}(\xi-\eta)\right\rangle
$$

which exists because $1 / \mathrm{P}_{\varepsilon}(\mathrm{iz})$ is holomorphic in $\Omega(\varepsilon)$ so that we have

$$
\begin{aligned}
& \left|G_{\varepsilon}(\xi)\right|=\left|<\mu_{z}, \frac{e^{i\langle\xi, z\rangle}}{P_{\varepsilon}(i z)}>\left|=1 \int_{\Omega(\varepsilon)} \frac{e^{i\langle\xi, z\rangle}}{P_{\varepsilon}(i z)} d \mu_{\varepsilon}(z)\right| \leq\right. \\
& \leq\left\{\begin{array}{l}
K e^{\varepsilon\|\xi\|} \int e^{-M(m(\varepsilon)\|x\|)}\left|d \mu_{\varepsilon}(z)\right| \leq K(\varepsilon) e^{\varepsilon\|\xi\|} \\
\left(K e^{\varepsilon\|\xi\|} \int e^{-M\left(\eta_{\varepsilon}(\|x\|)\right)}\left|d \mu_{\varepsilon}(z)\right| \leq K(\varepsilon) e^{\varepsilon\|\xi\|}\right)
\end{array}\right.
\end{aligned}
$$

by (2.35.i) (by (2.35.ii)). Furthermore G_{ε}, as the Fourier transform of a bounded measure, is a continuous function on \mathbb{R}_{n} which has its support in U, because if $\xi \notin U$ the set $\left\{\xi-\overline{\Gamma^{\star}}\right\} \cap U$ is empty since $\overline{\Gamma^{*}} \subset C^{*}$. Finally we have

$$
P_{\varepsilon}(D) G_{\varepsilon}=g * P_{\varepsilon}(D) \lambda_{\varepsilon}=g * \delta=g
$$

The condition on the set U is satisfied by the set $U(a, C)$ given by (2.38) if C is an open, convex cone not containing a straight line, or equivalently, if $C^{*} \neq \varnothing$. In case we have a cone \widetilde{C} with $\widetilde{C}^{*}=\varnothing$, for example if $\tilde{C}=\mathbb{R}^{n}$, and hence $U(a, \tilde{C})$ is a bounded, convex set, we must think of $U(a, \tilde{C})$ to be contained in a larger set $U(a, C)$, where C is an open, convex subcone of \tilde{C} containing no straight lines.

Let g be an ultradistribution of class M with support in the set $U(a, C)$, which satisfies condition (2) of theorem 2.20. It is shown in the proof of $(2) \Rightarrow(3)$ of that theorem that g belongs to $E\left(\mathbb{R}_{n}\right)^{\prime}$ and the last lemma shows that g can be considered as an element of $E(U(a, C))^{\prime}$. Furthermore the function $\xi \rightarrow \mathrm{e}^{\mathrm{i}\langle\xi, z\rangle}$ belongs to $E(U(\mathrm{a}, \mathrm{C}))$ if $y \in C$. Keeping these remarks in mind we can interprete the following lemma which characterizes the Fourier transform of g.

LEMMA 2.23. Let C , a and $\mathrm{U}(\mathrm{a}, \mathrm{C})$ be as in theorem 2.21 and let g be as in lemma 2.22 with $\mathrm{U}=\mathrm{U}(\mathrm{a}, \mathrm{C})$. Then

$$
F\left[e^{-\left\langle\xi, y^{\rangle}\right.} g_{\xi}\right](x)=\left\langle g, e^{i\langle\xi, z\rangle}\right\rangle
$$

and this is a function holomorphic in $\mathbb{R}^{n}+i C$ whose boundary value equals $F g$.

PROOF. Let $\psi \in Z_{M^{\prime}} Y \in C$ and if $C^{*}=\varnothing$ instead of C we take a subcone, also denoted by C, containing y and no straight lines. Then using lemma 2.22 we have

$$
\begin{aligned}
& \left\langle F e^{-\langle\xi, y\rangle} g, \psi\right\rangle=\left\langle g, \int_{\mathbb{R}^{n}} e^{i\langle\xi, z\rangle} \psi(x) d x\right\rangle= \\
& =\int_{U(a, C)} G_{\varepsilon}(\xi) P_{\varepsilon}\left(-D_{\xi}\right) \int_{\mathbb{R}^{n}} e^{i\langle\xi, z\rangle} \psi(x) d x d \xi= \\
& =\int_{\mathbb{R}^{n}} \int_{U(a, C)} G_{\varepsilon}(\xi) P_{\varepsilon}\left(-D_{\xi}\right) e^{i\langle\xi, z\rangle} d \xi \psi(x) d x= \\
& =\int_{\mathbb{R}^{n}}\left\langle g, e^{i\langle\xi, z\rangle}\right\rangle \psi(x) d x
\end{aligned}
$$

where $\varepsilon>0$ is chosen depending on y such that the integrals exist. It is clear that

$$
f(z) \stackrel{\text { def }}{=}\left\langle g, e^{i\langle\xi, z\rangle}\right\rangle
$$

is holomorphic in $\mathbb{R}^{n}+i C$ and furthermore, a similar procedure to above, shows that for $y \in C$

$$
\langle F g, \psi\rangle=\left\langle g, \int_{\mathbb{R}^{n}} e^{i\langle\xi, z\rangle} \psi(z) d x\right\rangle=\int_{\mathbb{R}^{n}} f(z) \psi(z) d x
$$

Hence $F g$ is the boundary value of f in Z_{M}^{\prime}.
Now we are able to prove a stronger theorem than just the converse to theorem 2.21.ii. Again, first we mention the theorem for distributions in D^{\prime} given in [60, th. 4.2] and then we prove the theorem for ultradistributions.

THEOREM 2.24.i. Let C, a and $\mathrm{U}(\mathrm{a}, \mathrm{C})$ be as in theorem 2.21 and let g be a distribution in D^{\prime} with support in $U(a, C)$ satisfying condition (2) of theorem 2.9. Then the function $f(z) \stackrel{\text { def }}{=} F\left[e^{-\left\langle\xi, y^{\rangle}\right.} g_{\xi}\right](x)$, whose boundary value equals Fg, satisfies: for every $\varepsilon>0$ and $C^{\prime} \subset \subset C$ there are $N=N\left(\varepsilon, C^{\prime}\right)>0$ and $K=K\left(\varepsilon, C^{\prime}\right)>0$ such that

$$
|f(z)| \leq K(1+\|z\|)^{N_{N}} e^{a(y)}, \quad y \in C^{\prime},\|y\| \geq \varepsilon .
$$

THEOREM 2.24.ii. Let C , a and g be as in lemma 2.23. Then the function $f(z) \stackrel{\text { def }}{=} F\left[e^{-\left\langle\xi, y^{\rangle}\right.} g_{\xi}\right](x)$, whose boundary value equals Fg, satisfies: for every $\varepsilon>0$ and $C^{\prime} \subset \subset C$ there are $t=t\left(\varepsilon, C^{\prime}\right)>0$ and $K=K\left(\varepsilon, C^{\prime}\right)>0$ (for every $\varepsilon>0, C^{\prime}$ cc C and $t>0$ there is $\left.K=K\left(\varepsilon, C^{\prime}, t\right)>0\right)$ such that

$$
\begin{equation*}
|f(z)| \leq K \exp \{M(t\|z\|)+a(y)\}, \quad y \in C^{\prime},\|y\| \geq \varepsilon \tag{2.43}
\end{equation*}
$$

PROOF. According to lemma 2.23 we have to estimate the $\|\cdot\|_{U(a, c), \varepsilon, t}$ norms of the function $e^{i\langle\cdot, z\rangle}$, defined in (2.36). For $t>0$ we get

$$
\begin{aligned}
& \left|D^{\alpha} e^{i\langle\xi, z\rangle}\right| \leq\left|z^{\alpha}\right| e^{-\langle\xi, y\rangle} \leq \frac{1}{M_{0}} \frac{{ }^{M}|\alpha|}{t^{|\alpha|}} e^{-\langle\xi, y\rangle} \sup _{p=0,1, \ldots} \frac{(t\|z\|)^{p_{M_{0}}}}{M_{p}} \leq \\
& \leq \frac{1}{M_{0}} \frac{M_{1}}{t^{|\alpha|}} \exp \{M(t\|z\|)-\langle\xi, y>\} .
\end{aligned}
$$

Let C^{\prime} cc C and in case C^{*} is empty let $C_{j}, j=1, \ldots, \ell$ be subcones of C with $C_{j}{ }^{*} \neq \varnothing$ covering C and such that there are $C_{j}{ }^{\prime} \subset \subset C_{j}$ which cover C^{\prime}, and let $C_{j}^{\prime} \subset \subset C_{j} " \subset \subset C_{j}$. Then there is a $\delta=\delta\left(C_{j}^{\prime \prime}\right)>0$ with $-<\xi, y>\leq$ $-\delta\|y\|\|\xi\|$ if $y \in C_{j}^{\prime}$ and $\xi \in C_{j} "^{*}$. For each $\eta>0$ there are $t^{\prime}=t^{\prime}(\eta)$ and $K^{\prime}=K^{\prime}(\eta)$ (for every $t^{\prime}>0$ there is a $K^{\prime}=K^{\prime}\left(\eta, t^{\prime}\right)$) with for $\phi \in D_{M}$

$$
|\langle g, \phi\rangle| \leq K \cdot\|\phi\|_{U\left(a, c_{j}\right), n, t '}, \quad j=1, \ldots, \ell .
$$

It is possible that $a(y)<0$ for some y, so in the following α def $=\min \left\{a(y) \mid y \in C^{\prime},\|y\|=1\right\}$ might be negative. Now in the above we choose $\eta=\frac{1}{2} \delta \varepsilon$ and $t^{\prime}=\frac{1}{t}$. If ξ ranges in $C_{j}{ }^{\prime *}$ while $\|\xi\| \geq-2 \frac{\alpha}{\delta}$ we estimate for $y \in C_{j}^{\prime}$ with $\|y\| \geq \varepsilon$

$$
\eta\|\xi\|-\left\langle\xi, y>\leq \frac{1}{2} \delta \varepsilon\|\xi\|-\frac{1}{2} \delta \varepsilon\|\xi\|-\frac{1}{2} \delta\|\xi\|\|y\| \leq \alpha\|y\| \leq a(y)\right.
$$

The remaining of $U\left(a, C_{j}\right)$ is compact and there by (2.38) we have

$$
\exp \{\eta\|\xi\|-<\xi, y>\} \leq K^{\prime \prime} \exp a(y)
$$

where $K^{\prime \prime} \geq 1$. Hence, for $Y \in C^{\prime}$ with $\|Y\| \geq \varepsilon$

$$
\left\lvert\,\left\langle g, e^{i\langle\xi, z\rangle}>\right| \leq \frac{K^{\prime} K^{\prime \prime}}{M_{0}} \exp \left\{M\left(t \|_{z \|}\right)+a(y)\right\}\right.
$$

COROLLARY 2.25. A holomorphic function f, which satisfies (2.39), satisfies already (2.43), i.e., in (2.39) K is independent of σ and we may take $\sigma=0$.

Whether the ultradistributions g of theorem 2.24 are defined on certain ultradifferentiable testfunctions in \mathbb{R}_{n} or in real ε-neighborhoods of $U=$ $U(a, C)$ makes no difference due to the existence of ultradifferentiable functions λ which are identically one on U and zero outside an ε-neighborhood of U. So we can say that the Fourier transform F is a bijective map from the dual of a certain space, say $S(U)$, of ultradifferentiable functions defined on real ε-neighborhoods of the convex, real set $U(a, C)$ onto a certain space H of functions holomorphic in $\mathbb{R}^{n}+i C$ and of exponential type a in Im. Thus shortly

$$
F S(U)^{\prime} \cong \mathrm{H} .
$$

In the next section we will discuss the case where U is replaced by a complex, convex set Ω in \mathbb{C}_{n} and then g becomes an analytic functional μ defined on a space of functions holomorphic in complex neighborhoods of Ω.

II.2.vi. THE CASE OF COMPLEX DOMAINS

We consider the following question. Let Γ be an open, convex cone in \mathbb{C}^{n} and let a be a convex function on Γ, homogeneous of degree one, let $\Omega=\Omega(\mathrm{a}, \Gamma)$ be the closed, convex set in \mathbb{C}_{n} given by

$$
\begin{equation*}
\Omega(a, \Gamma)=\{\zeta \mid-\operatorname{Im}\langle\zeta, z\rangle \leq a(z), z \in \Gamma\} \tag{2.44}
\end{equation*}
$$

and finally, let $A(\Omega)$ be a space of analytic functions defined on certain neighborhoods of Ω in \mathbb{C}_{n} whose growth at infinity is determined by the weightfunctions $\exp M(t\|\zeta\|)$, and let $H(\Gamma)$ be a space of analytic functions in Γ of exponential type a for $\|z\|$ large whose behaviour at the vertex of Γ (i.e., for $\left\|_{z}\right\|$ small) is determined by the function M. Then one may ask whether it is possible to find such cond三tions that the Fourier transformation F is a bijective map from $A(\Omega)$ ' onto $H(\Gamma)$, or shortly, whether

$$
F_{A}(\Omega)^{\prime} \cong H(\Gamma)
$$

In chapters III and IV this question is solved affirmative. In case
there exist testfunctions with compact support the injectivity and the surjectivity of F present no problems (cf. the proof of theorem 2.21). In $A(\Omega)$, however, no such testfunctions exist and the proofs are very complicated. Actually, using a generalization of Ehrenpreis' fundamental priciple (see chapter IV) we will return to a situation where we do have $C=$ functions on real domains. For that purpose we have to identify \mathbb{C}^{n} with $\mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}$ $z=x+i y \Leftrightarrow(x, y)$ and \mathbb{C}_{n} with $\mathbb{R}_{n} \times \mathbb{R}_{n}=\mathbb{R}_{2 n}$ by $\zeta=\xi+i \eta \Leftrightarrow(\eta, \xi)$. Then we will deal with distributions defined on a $C \underline{\infty}$ testfunction space in a neighborhood of the, now real, domain $\Omega \subset \mathbb{R}_{2 n}$ and with functions holomorphic in $\mathbb{R}^{2 n}+i \Gamma \subset \mathbb{C}^{2 n}$. In the following section we will give a lemma concerning this situation, similarly to theorems 2.21 and 2.24.

Of particular interest is the case where Γ is a tubular radial domain, i.e., a domain of the form $T^{C}=\mathbb{R}^{n}+i C$ with C an open convex cone in \mathbb{R}^{n}, and where $f \in H(\Gamma)$ has ultradistributional boundary values on \mathbb{R}^{n}. Then, if we interchange the variables z and ζ in theorem 2.20 (1) and (4) the surjectivity of F yields the proof of $(4) \Rightarrow(1)$ of that theorem. If a, defined on T^{C}, can be continued to a continuous function on $\mathbb{R}^{n}+i C^{\prime}$, with $C^{\prime} c \subset C$, i.e., if $\lim a(x, y)=a(x, 0)$ exists as $y \rightarrow 0$ while $y \in C^{\prime}$, then

$$
\Omega\left(a, T^{C}\right)=\left\{\zeta \mid-\langle\eta, x\rangle-\left\langle\xi, y^{\rangle} \leq a(x, y), x \in \mathbb{R}^{n}, y \in C\right\}\right.
$$

given by (2.44), is bounded in the imaginary directions, namely

$$
\Omega\left(a, T^{c}\right) \subset\left\{\zeta \mid\|n\| \leq \max _{\|x\|=1} a(x, 0)\right\}
$$

Also, it may happen that Ω is not bounded in the imaginary directions and then we give $A(\Omega)$ the topology induced by Z_{M}, so that the functions $\psi \in A(\Omega)$ have to satisfy
(2.45) $\quad|\psi(\zeta)| \leq K \exp \{-M(t\|\xi\|)+\ell\|\eta\|\}$
on a neighborhood of Ω, for some $\ell>0$ depending on ψ. Since $e^{i<\zeta, z>}$ satisfies this condition for each $z \in T^{C}$, we can characterize the Fourier transform of an element $\mu \in A(\Omega)$ ', considered as an analytic functional in Z_{M}^{\prime} carried by Ω, as in lemma 2.23.

LEMMA 2.26. Let $\mathrm{C}, \mathrm{a}, \Omega=\Omega(\mathrm{a}, \mathrm{T} \mathrm{C})$ and $\mathrm{A}(\Omega)$ be as above and let $\mu \in \mathrm{A}(\Omega)$ '. Then the Fourier transform of μ is the boundary value in D_{M}^{\prime} as $y \rightarrow 0$, while
$y \in C^{\prime} \subset C$, of the function

$$
\begin{equation*}
f(z) \stackrel{\text { def }}{=}\left\langle\mu_{\zeta^{\prime}} e^{i\langle\zeta, z\rangle}\right\rangle, \tag{2.46}
\end{equation*}
$$

which is holomorphic in $\mathbb{R}^{n}+i C$.

PROOF. For $\phi \in D_{M}$ and $y \in C$ let

$$
\psi_{y}(\zeta) \stackrel{\text { def }}{=} \int e^{i\langle\zeta, z\rangle} \phi(x) d x .
$$

The limit of Riemann sums converges in the topology of the space $A(\Omega)$ and furthermore $\psi_{\mathrm{n}} \rightarrow \psi_{0}$ in $A(\Omega)$ as $\mathrm{y} \rightarrow 0$ while $\mathrm{y} \in \mathrm{C}^{\prime} \subset \subset C$, because $-\langle\xi, \mathrm{Y}\rangle \leq$ sa($0, y$) for all $\zeta \in \Omega$. Therefore, we may write

$$
\begin{aligned}
& \langle F \mu, \phi\rangle=\left\langle\mu, \int e^{i\langle\zeta, x\rangle} \phi(x) d x\right\rangle= \\
& =\lim _{\substack{y \rightarrow 0 \\
y \in C^{\prime}}}\left\langle\mu, \int e^{i\langle\zeta, z\rangle} \phi(x) d x\right\rangle=\lim _{\substack{y \rightarrow 0 \\
y \in C^{\prime}}} \int\left\langle\mu_{\zeta^{\prime}} e^{i\langle\zeta, z\rangle}\right\rangle \phi(x) d x .
\end{aligned}
$$

In view of this lemma in chapter III we will define the Fourier transform of μ by formula (2.46) also in the general case where Γ is not a tubular radial domain. There we will treat F as a topological isomorphism and therefore, it is more convenient to consider L^{2}-norms instead of sup-norms, because the strong dual of a projective (inductive) limit of Hilbert spaces can be written as the inductive (projective) limit of the duals, see [40]. Using Sobolev embedding theorems, see [73], one can pass from the one norm to the other.

II.2.vii. A PALEY-WIENER TYPE THEOREM.

In chapter III we will need the lemma given in this section. It is a Paley-Wiener type theorem treating various, rather technical, cases which will become clear in chapter III. We will prove only the case exposing the most typical features. This section has little connection with the other sections of this chapter and we place it here because the proof of the lemma proceeds along the lines of theorem 2.21 and 2.24.

First we introduce some notations and definitions whose meaning will be made clear in chapter III. If a is a convex function on the convex, open
cone Γ in \mathbb{C}^{n} which is homogeneous of degree one, we mean by $a+\varepsilon$ the function on Γ given by

$$
(a+\varepsilon)(z) \stackrel{\text { def }}{=} a(z)+\varepsilon\left\|_{z}\right\|
$$

$\left\{\Gamma_{k}\right\}_{k=1}^{\infty}$ denotes a sequence of open, relatively compact subcones of Γ such that $\Gamma_{k} \subset \subset \Gamma_{k+1} \subset \subset \Gamma$ and $\bigcup_{k=1}^{\infty} \Gamma_{k}=\Gamma$, and
(2.47) $\Gamma(k) \stackrel{\text { def }}{=}\left\{z \mid z \in \Gamma_{k},\|z\|>\frac{1}{k}\right\}$.

Then the neighborhoods (cf. formula (2.44))
(2.48.i)

$$
\Omega_{\varepsilon}^{k} \stackrel{\text { def }}{=} \Omega\left(a+\frac{1}{k}, \Gamma\right)
$$

are the $\frac{1}{k}$-neighborhoods in \mathbb{C}_{n} of $\Omega=\Omega(a, \Gamma), k=1,2, \ldots$, whereas the neighborhoods
(2.48.ii) $\quad \Omega_{c}^{k} \xlongequal{\text { def }} \Omega\left(a+\frac{1}{k}, r_{k}\right)$
are larger neighborhoods. The subscript ε expresses that we deal with $\varepsilon-$ neighborhoods and the subscript c denotes the case of conic neighborhoods. If not a particular case is meant we will denote these two cases by a subscript α. For the case $\alpha=\varepsilon$ we will need the following set
(2.49)

$$
\frac{1}{k} z_{0}+\Gamma \xlongequal{\text { def }}\left\{z \left\lvert\, z=\frac{1}{k} z_{0}+z^{\prime}\right., z^{\prime} \in \Gamma\right\}
$$

where $z_{0} \in \operatorname{pr} \Gamma_{1}$ is fixed.
In particular we can choose $\Gamma=T^{C}$ where C is an open, convex cone in \mathbb{R}^{n}. This is of interest because then one might consider holomorphic functions in T^{C} having boundary values on \mathbb{R}^{n} in some sense. We will now introduce the above given concepts for this case. For Γ_{k} we will choose

$$
\begin{equation*}
\left(T^{C}\right)_{k} \stackrel{\text { def }}{=}\left\{\left.z\right|_{Y} \in C_{k},\|x\|<k\left\|_{Y}\right\|\right\} \tag{2.50}
\end{equation*}
$$

where $\left\{C_{k}\right\}_{k=1}^{\infty}$ is a sequence exhausting C, and

$$
\begin{equation*}
\left(T^{C}\right)(k) \stackrel{\text { def }}{=}\left\{z \mid z \in\left(T^{C}\right)_{k},\|y\| \frac{1}{k}\right\} \tag{2.51}
\end{equation*}
$$

Furthermore, let $y_{0} \in \mathrm{pr} \mathrm{C}_{1}$ be fixed and then let
(2.52.i) $\quad\left(T^{C}\right){ }_{\varepsilon}^{k} \xlongequal{\text { def }} T^{1 / k} Y_{0}+C \quad u\left\{z \mid\|x\|<k, Y \in C_{k}\right\}$
and

$$
\begin{equation*}
\left(T^{C}\right)_{C}^{k} \xlongequal{\text { def }} \operatorname{ch}\left[\left(T^{C}\right)_{k} \cup\left\{z \mid\|x\|<k, y \in C_{k}\right\}\right] \tag{2.52.ii}
\end{equation*}
$$

where ch means the convex hull. For a domain $B \subset \mathbb{C}^{n}$ we define the tube domain $T(B) \subset \mathbb{C}^{n} \times \mathbb{C}^{n} \cong \mathbb{C}^{2 n}$ by

$$
\begin{equation*}
T(B) \stackrel{\text { def }}{=}\left\{\left(\theta^{1}, \theta^{2}\right) \mid \operatorname{Im} \theta^{1}+i \operatorname{Im} \theta^{2} \in B\right\} \tag{2.53}
\end{equation*}
$$

Moreover, if a is a homogeneous, convex function on T^{C} such that $a(x, 0)$ becomes unbounded, we change the function a into functions \tilde{a}_{k} on $T{ }^{C}$ such that for each $k \widetilde{a}_{k}$ is a convex function satisfying

$$
\tilde{a}_{k}(x, y) \stackrel{\text { def }}{=} \tilde{a}_{k}(z)=a(z), \quad z \in T^{C},\|y\| \geq 1 / 2 k
$$

and for $k=1,2, \ldots$

$$
\tilde{a}_{k}(z) \leq K_{k}, \quad y \in C_{k},\left\|_{y}\right\| \leq 1 / k,\|x\| \leq k
$$

where K_{k} is a positive constant depending on k and a. For then the growth of a function f satisfying $|f(z)| \leq K_{k} \exp \left\{M^{*}(t\|y\|)+\tilde{a}_{k}^{(z)} \underset{*}{*}\right.$ for $\|y\|$ small and $\|x\| \leq k$ is determined completely by the factor $\exp M^{*}\left(t\left\|_{y}\right\|\right)$, while we need the growth $\exp a(z)$ of f only on rays $\{\lambda z \mid \lambda>0\}$ for λ large and $z \in \operatorname{pr} T^{C}$. If $\lim a(x, y)$ exists as $y \rightarrow 0, t \in C_{k}$ then a will not be changed and, for convenience, in that case we denote

$$
\tilde{a}_{k} \stackrel{\text { def }}{=} a, \quad k=1,2, \ldots
$$

We now define the functions

$$
\begin{equation*}
a_{\varepsilon}^{k}(z) \stackrel{\text { def }}{=} a\left(x, y-\frac{1}{2 k} y_{0}\right), \quad y \in \frac{1}{k} y_{0}+C \tag{2.54.i}
\end{equation*}
$$

where a_{ε}^{k} should be continued as a convex function on $\bar{T}{ }^{C}$, just as \tilde{a}_{k} on $\bar{T} \bar{C}_{k}$, and
(2.54.ii) $\quad a_{c}^{k}(z) \xlongequal{\text { def }} \tilde{a}_{k}(z), \quad z \in\left(T^{C}\right){ }_{c}^{k}$.

Finally, if Ω is the closure of a domain in \mathbb{R}^{n} and M a continuous function on Ω, let $W_{2}^{m}(\Omega ; M(u))$ denote the space of measurable functions f in Ω for which the weak derivatives $D^{\alpha}{ }_{f}$ exist for $|\alpha| \leq m$ as measurable functions such that the norm

$$
\left[\sum_{|\alpha| \leq m} \int_{\Omega}\left\{\left|D^{\alpha} f(u)\right| \exp M(u)\right\}^{2} d u\right]^{\frac{1}{2}}
$$

is finite. If Ω is a domain in \mathbb{C}^{n} and M a continuous function on Ω, let $H_{\infty}(\Omega ; M(z))$ denote the space of holomorphic functions f in Ω such that the norm
(2.55)

```
\mp@subsup{\operatorname{sup}}{z\in\Omega}{}|f(z)| \operatorname{exp}-m(z)
```

is finite.
Besides the cases $\alpha=\varepsilon$ and $\alpha=c$, in chapter III we will consider four other cases, namely ultradistributional boundary values of class (M) and \{M\}, distributional boundary values and boundary values in the sense of Fourier hyperfunctions. Depending on these various cases we introduce the following spaces: If $\Gamma=T^{C}$ in the definition (2.47) and (2.48) of Ω_{α}^{k}, let

$$
\left\{\begin{align*}
& S_{\alpha}(m, k, t) \stackrel{\text { def }}{=} W_{2}^{m}\left(\Omega_{\alpha}^{k} ;-M(\|\xi\| / t)+k\|n\|-m \log (1+\|\zeta\|)\right) \tag{2.56}\\
& H_{\alpha}(m, k, t) \stackrel{\text { def }}{=} H_{\infty}\left(T\left(\left(T^{C}\right)_{\alpha}^{k}\right) ; M^{*}\left(t\left\|\operatorname{Im} \theta^{2}\right\|\right)\right.+a_{\alpha}^{k}(\operatorname{Im} \theta)+\frac{1}{k}\|\operatorname{Im} \theta\|+ \\
&+m \log (1+\|\theta\|))
\end{align*}\right.
$$

and let

$$
\left\{\begin{aligned}
& S_{\alpha}(k, m) \stackrel{\text { def }}{=} W_{2}^{m}\left(\Omega_{\alpha}^{k} ;-m \log (1+\|\zeta\|)+k\|\eta\|\right) \\
& H_{\alpha}(k, m) \stackrel{\text { def }}{=} H_{\infty}\left(T\left(\left(T^{C}\right)_{\alpha}^{k}\right) ; \log \left(1+\left\|\operatorname{Im} \theta^{2}\right\|-m\right)\right.+a_{\alpha}^{k}(\operatorname{Im} \theta)+\frac{1}{k}\|\operatorname{Im} \theta\|+ \\
&+m \log (1+\|\theta\|))
\end{aligned}\right.
$$

for $\alpha \in\{\varepsilon, c\}$. If Γ is an open, convex cone in \mathbb{C}^{n}, let

$$
\left\{\begin{align*}
& \mathrm{S}_{\alpha}(\mathrm{m}, \mathrm{k}) \stackrel{\text { def }}{=} \mathrm{W}_{2}^{m}\left(\Omega_{\alpha}^{k} ;-\frac{1}{k}\|\zeta\|-m \log (1+\|\zeta\|)\right) \tag{2.57}\\
& \mathrm{H}_{\varepsilon}(\mathrm{m}, \mathrm{k}) \stackrel{\text { def }}{=} \mathrm{H}_{\infty}\left(\mathrm{T}\left(\frac{1}{k} z_{0}+\Gamma\right) ;\right. ;\left(\operatorname{Im} \theta^{1}-\frac{1}{2 k} x_{0}, \operatorname{Im} \theta^{2}-\frac{1}{2 k} y_{0}\right)+ \\
&\left.\quad+\frac{1}{k}\|\operatorname{Im} \theta\|+m \log (1+\|\theta\|)\right) \\
& H_{C}(m, k) \stackrel{\text { def }}{=} H_{\infty}\left(T(\Gamma(k)) ; a(\operatorname{Im} \theta)+\frac{1}{k}\|\operatorname{Im} \theta\|+m \log (1+\|\theta\|)\right)
\end{align*}\right.
$$

In the above defined S-spaces the set Ω_{α}^{k} has to be considered as a closed set in $\mathbb{R}_{2 n}$.

If we take the projective limit of the S-spaces for $m \rightarrow \infty$, we get FS* spaces (cf. [40], weakly compact, projective sequences) which have nice properties, for example they are reflexive. If we would have S-spaces defined with sup-norms instead of L^{2}-norms, due to the fact that Ω_{α}^{k} is convex these projective limits would even be FS-spaces (compact, projective sequences) which, of course, have nicer properties. But the properties of FS*-spaces are all we need and so we don't have to show that in the sup-norm case we get FS-spaces. As a matter of fact it doesn't change much whatever norm we have, L^{2}-norm or sup-norm. This follows from certain Sobolev embedding theorems: let $W_{\infty, 0}^{m}(\Omega ; M(u))$ denote the space of C^{m}-functions f on the closed set Ω (in the sense of Whitney) with the finite sup-norm

$$
\sup _{\substack{u \in \Omega \\|\alpha| \leq m}}\left|D^{\alpha} f(u)\right| \exp -M(u)
$$

such that moreover $\left|D^{\alpha} f(u)\right| \exp -M(u) \rightarrow 0$ as $u \rightarrow \infty$ in Ω for $|\alpha| \leq m$; (by Riesz' theorem the dual of such a space consists of weak derivatives of measures on Ω) ; let Ω^{\prime} be a closed convex set such that an ε-neighborhood of Ω^{\prime} is contained in Ω, then according to [73, p. 11 condition HS 1_{1} and p. 14 condition $\left.\mathrm{HS}_{2}\right]$ the embedding maps

$$
\begin{aligned}
& W^{m+n+1}(\Omega ; M(u)-(m+n+1) \log (1+\|u\|)) \rightarrow W_{2}^{m}(\Omega ; M(u)-m \log (1+\|u\|)) \\
& W_{2}^{m+n+1}(\Omega ; M(u)-(m+n+1) \log (1+\|u\|)) \rightarrow W_{\infty, 0}^{m}\left(\Omega^{\prime} ; M(u)-m \log (1+\|u\|)\right)
\end{aligned}
$$

are continuous.
Now similarly to theorems 2.21 and 2.24 we will obtain the following Paley-Wiener type theorem.

LEMMA 2.27. Let the functions M and M^{*} satisfy (2.31), where M and M^{*} are related to each other by (2.28) and (2.29). For every m and k, and for each t there is a $t^{\prime}=t^{\prime}(m, k, t) \geq t$ and for each t^{\prime} there is a positive $t=t\left(m, k, t^{\prime}\right) \leq t^{\prime}$, such that F and F^{-1} are continuous maps

$$
\begin{aligned}
& F: S_{\alpha}\left(m, k+1, t^{\prime}\right)^{\prime} \rightarrow H_{\alpha}(m+n+1, k, t) \\
& F^{-1}: H_{\alpha}\left(m, k+1, t^{\prime}\right) \rightarrow S_{\alpha}\left(m+2 n+2, k, t^{\prime}\right)^{\prime}
\end{aligned}
$$

Moreover, the maps

$$
\begin{aligned}
& F: S_{\alpha}(k+1, m)^{\prime} \rightarrow H_{\alpha}(k, m+n+1) \\
& F^{-1}: H_{\alpha}(k+1, m) \rightarrow S_{\alpha}(k, m+2 n+2)^{\prime}
\end{aligned}
$$

are continuous and for each k there is a $p>k$ such that

$$
\begin{aligned}
& F: S_{\alpha}(m, p)^{\prime} \rightarrow H_{\alpha}(m+n+1, k) \\
& F^{-1}: H_{\alpha}(m, k+1) \rightarrow S_{\alpha}(m+2 n+2, k)^{\prime}
\end{aligned}
$$

are continuous maps for $\alpha \in\{\varepsilon, c\}$. In all these cases F can be represented as in lemma 2.23.

PROOF. We only prove the first pair, the other cases are similar. We embed the space $S_{\alpha}\left(m, k+1, t^{\prime}\right)^{\prime}$ into the dual of the space $W_{\infty, 0}^{m+n+1}\left(\Omega_{\alpha}^{k+1} ;-M\left(\|\xi\| / t^{\prime}\right)+\right.$ $+(k+1)\|\eta\|-(m+n+1) \log (1+\|\zeta\|))$. Then as in the proof of theorem 2.24 we have to estimate

$$
\begin{equation*}
\sup _{\zeta \in \Omega_{\alpha}^{k+1}}-\left\langle\eta, x>-\left\langle\xi, y>+M\left(\|\xi\| / t^{\prime}\right)-(k+1)\|\eta\|+(m+n+1) \log (1+\|\zeta\|)\right.\right. \tag{2.58}
\end{equation*}
$$

for $z \in\left(T^{C}\right)_{\alpha}^{k}$, where $z=(x, y)$ has to be considered as the imaginary part of θ. Let $t^{\prime \prime}$ < t^{\prime} be such that according to (2.31)

$$
M\left(\rho / t^{\prime}\right)+(m+n+1) \log (1+\rho) \leq M\left(\rho / t^{\prime \prime}\right)+K^{\prime}\left(m, t^{\prime}\right)
$$

and let C_{k}^{\prime} be such that $C_{k} \subset \subset C_{k}^{\prime} \subset \subset C_{k+1}$. Then there is a $\delta_{k}>0$ such that for $y \in C_{k}$ and $\xi \in C_{k}^{\prime *}$

$$
-\left\langle\xi, \mathrm{y}>\leq-\delta_{k}\|\mathrm{y}\|\|\xi\|\right.
$$

We first estimate (2.58) if $y \in C_{k},\|y\| \leq 1$ and $\|x\| \leq k$. If ξ varies only in $\mathrm{C}_{\mathrm{k}}^{\prime *}$ we estimate (2.58) by

$$
\begin{aligned}
& -\left\langle\xi, y>+M(\|\xi\| / t \|)-\langle n, x\rangle-k\|n\|-\|n\|+(m+n+1) \log (1+\|n\|)+K^{\prime} \leq\right. \\
& \leq \sup _{\rho>0}\left\{-\delta_{k} t\|y\| \rho+M(\rho)\right\}+K \leq m^{*}(t\|y\|)+K\left(m, t \cdot{ }^{\prime}\right)
\end{aligned}
$$

where $t=\delta_{k} t$ ". If ζ varies in the remaining part of Ω_{α}^{k+1} then $\|\xi\|$ is bounded by a constant d_{k} depending on k and also $\|n\|$ is bounded, namely

$$
\|n\| \leq \sup _{\|x\|=1} a\left(x, y_{0}\right)+\frac{\sqrt{2}}{k+1}+d_{k} .
$$

Hence then (2.58) can be estimated by a constant depending on $m, t^{\prime}\left(\begin{array}{c}\text { (}\end{array} \mathrm{t}^{\prime \prime}\right.$) according to (2.31) and on k, while t depends on k and on $t "$ and $t "$ on m and on t^{\prime} (or t^{\prime} depends on m and on $t "$ and $t "$ on k and t).

Now let z be a point in the remaining of ($\left.T^{C}\right)_{\alpha}^{k}$; hence for $\alpha=\varepsilon$ $z \in T^{1 / k} y_{0}+C$ and for $\alpha=c$ there is a $p>k$ depending on k with $y \in C_{k}$, $\|y\| \geq 1$ and $\|x\| \leq p\|y\|$. Then in both cases for sufficiently small ε_{1} and $0<\varepsilon_{2} \leq \varepsilon_{1}$

$$
\left(x, y-\varepsilon_{2} y_{0}\right) \in U_{\alpha}^{k}
$$

where

$$
\begin{aligned}
& U_{\alpha}^{k} \stackrel{\text { def }}{=} T^{1 / 2 k \quad Y_{0}+C} \\
& U_{C}^{k} \xlongequal{\mathrm{def}}\left(T^{C}\right)_{{ }_{p+1}} .
\end{aligned}
$$

In the $\alpha=\varepsilon$ case we take $\varepsilon_{2}=1 / 2 \mathrm{k}$ and for $\mathrm{z} \in \mathrm{T}^{1 / \mathrm{k}} \mathrm{Y}_{0}+\mathrm{C}$ we estimate (2.58) by

$$
\begin{align*}
& -<n, x>-<\xi, y-\varepsilon_{2} y_{0}>-\varepsilon_{2}<\xi_{,} y_{0}>+M\left(\|\xi\| / t^{\prime \prime}\right)+K^{\prime \prime}\left(m, t^{\prime}, k\right) \leq \\
& \leq a\left(x, y-\varepsilon_{2} y_{0}\right)+\|z\| / k+1-\varepsilon_{2} \delta_{k}\|\xi\|+M\left(\|\xi\| / t^{\prime \prime}\right)+K^{\prime \prime} \leq \tag{2.5.5i}\\
& \leq a\left(x, y-1 / 2 k y_{0}\right)+\|z\| / k+M^{*}\left(1 / 2 k \delta_{k} t^{\prime \prime}\right)+K^{\prime} \leq \\
& \leq a\left(x, y-1 / 2 k y_{0}\right)+\|z\| / k+K,
\end{align*}
$$

where k depends on t ', t " (or only t '), m and k.
If $\alpha=c$ we proceed as follows: since a is uniformly continuous on
$U_{c}^{k} \cap\{z \mid\|z\|=1\}$, for each $\delta>0$ there is an ε_{2} with $0<\varepsilon_{2} \leq \varepsilon_{1}$, depending on δ and on k, such that

$$
a\left(x, y-\varepsilon_{2} y_{0}\right) \leq a(\tilde{z})+\delta
$$

where \tilde{z} denotes $z /\left\|_{z}\right\|$. Hence for all $z \in\left(T^{C}\right)_{p} \cap\{z \mid\|y\| \geq 1\}$

$$
\begin{align*}
& a\left(x, y-\varepsilon_{2} y_{0}\right) \leq a(\tilde{z})\left\|\left(x, y-\varepsilon_{2} y_{0}\right)\right\|+\delta\left\|\left(x, y-\varepsilon_{2} y_{0}\right)\right\| \leq \\
& \leq a(z)+\delta\|z\|+\varepsilon_{2} \delta+\varepsilon_{2} \max _{z \in\left(T^{C}\right)}^{p}|a(\tilde{z})| \leq a(z)+\delta\|z\|+K^{\prime \prime}(k) . \tag{2.60}
\end{align*}
$$

Let $\delta=1 / k-1 / k+1$ then we estimate (2.58) by

$$
\begin{align*}
& a\left(x, y-\varepsilon_{2} y_{0}\right)+\|z\| / k+1-\varepsilon_{2} \delta_{k}\|\xi\|+M\left(\|\xi\| / t^{\prime \prime}\right)+K^{\prime} \leq \tag{2.59.ii}\\
& \leq a(z)+\delta\|z\|+K^{\prime \prime}+\|z\| / k+1+M^{*}\left(\varepsilon_{2} \delta_{k} t^{\prime \prime}\right)+K^{\prime} \leq a(z)+\|z\| / k+K
\end{align*}
$$

where again K depends on $t^{\prime}, t^{\prime \prime}$ (or only $t^{\prime \prime}$), m and k.
For the proof of the continuity of F^{-1} we proceed as in the proof of theorem 2.21. Each $f \in H_{q}(m, k+1, t \cdot)$ is a tempered distribution in the variable Re θ for every $\operatorname{Im} \theta \in\left(T^{C}\right)_{\alpha}^{k+1}$; denoting the inverse Fourier transform of this tempered distribution by $F_{S}^{-1}[f(\operatorname{Re} \theta+i \operatorname{Im} \theta)]_{\eta, \xi}$ we get

$$
\left(F^{-1} f\right)_{\eta, \xi}=\exp \{<(\eta, \xi), \operatorname{Im} \theta>\} F_{S}^{-1}[f(\operatorname{Re} \theta+i \operatorname{Im} \theta)]_{\eta, \xi}
$$

and this is a distribution in $D_{\eta, \xi}$. For a C^{∞} function ϕ with compact support in $\mathbb{R}_{n} \times \mathbb{R}_{n}$ and for $\alpha=\varepsilon$ we have
(2.61.i)

$$
\begin{aligned}
& \left\langle F^{-1} f, \phi\right\rangle=\frac{1}{(2 \pi)^{2 n}} \int_{\mathbb{R}^{2 n}} f\left(\theta^{1}, \theta^{2}+\frac{i Y_{0}}{2 k+2}\right)\left\{\int_{\mathbb{R}_{n}} \int_{\mathbb{R}_{n}} \phi(\eta, \xi)\right. \\
& \left.\exp \left[-i\langle(\eta, \xi), \operatorname{Re} \theta\rangle+\left\langle\eta, \operatorname{Im} \theta^{1}\right\rangle+\left\langle\xi, \operatorname{Im} \theta^{2}+\frac{Y_{0}}{2 k+2}\right\rangle\right] d n d \xi\right\} d \operatorname{Re} \theta
\end{aligned}
$$

whereas for $\alpha=c$ we have
(2.61.ii) $\left\langle F^{-1} f, \phi\right\rangle=\frac{1}{(2 \pi)^{2 n}} \int_{\mathbb{R}^{2 n}} f(\theta)\left\{\int_{\mathbb{R}_{n}} \int_{\mathbb{R}_{n}} \phi(\eta, \xi) \exp [-i<(n, \xi), \operatorname{Re} \theta>+\right.$ $+<(n, \xi), \operatorname{Im} \theta>\operatorname{dnd} \xi\} d \operatorname{Re} \theta$.

The integrals exist and are independent of $\operatorname{Im} \theta \in\left(T^{C}\right)_{\alpha}^{k+1}$ because $F^{-1}[\phi](\theta)$ is an entire function which is rapidly decreasing in $\operatorname{Re} \theta$ for each $\operatorname{Im} \theta$ in a compact set in $\mathbb{R}^{2 n}$. As in the proof of theorem 2.21 we use the growth of $|f(\theta)|$, either for $\|\operatorname{Im} \theta\|$ large in the $\operatorname{set}\left\{(x, y) \mid y-y_{0} / k+1 \in C, x \in \mathbb{R}^{n}\right\}$ if $\alpha=\varepsilon$ in which case $\left|f\left(\theta^{1}, \theta^{2}+i y_{0} / 2 k+2\right)\right|$ is $O(\exp a(\operatorname{Im} \theta))$ for $\operatorname{Im} \theta \rightarrow \infty$ on any ray in T^{C}, or for $\|\operatorname{Im} \theta\|$ large in the set $\left\{(x, y) \mid y \in C_{k+1},\|y\| \geq 1 / 2 k+2\right.$, $\|x\| \leq(k+1)\|y\|\}$ if $\alpha=c$, to show that $F^{-1} f$ has its support in Ω_{α}^{k+1}.

In order to find the growth at infinity of the $C \stackrel{\infty}{-}$ functions ϕ on which $F^{-1} f$ can be defined, we write (2.61) in a different way. Let $\gamma=\gamma(k)$ be so large that

$$
\left|\gamma+\sum_{j=1}^{2 n} \theta_{j}^{2}\right| \geq 1+\|\operatorname{Re} \theta\|^{2}
$$

for

$$
\operatorname{Im} \theta \in B_{k} \stackrel{\text { def }}{=}\left\{(x, y) \mid y \in C_{k+1},\|y\| \leq 1,\|x\| \leq k+1\right\}
$$

Then for such $\operatorname{Im} \theta$ we can write (2.61) as

$$
\begin{aligned}
& \left\langle F^{-1} f, \phi\right\rangle=\frac{1}{(2 \pi)^{2 n}} \int_{\mathbb{R}_{n}} \int_{\mathbb{R}_{n}}\left\{\int_{\mathbb{R}^{2 n}} \frac{f(\theta) \exp -i\langle(n, \xi), \theta\rangle}{\left(\gamma+\sum \theta_{j}^{2}\right) \ell} d \operatorname{Re} \theta\right\} \\
& \left(\gamma-\Delta_{n, \xi}\right)^{\ell} \ell_{\phi(n, \xi) \text { dnd } \xi,}
\end{aligned}
$$

where we have set $\ell=[(m+n) / 2]+1$. The third integral is independent of $\operatorname{Im} \theta \in B_{k}$. Hence $F^{-1} f$, which is itself independent of k, is a sum (depending on k) of derivatives up to order 2ℓ of a continuous function G (depending on k) which for each $(x, y) \in B_{k}$ satisfies

$$
\begin{aligned}
|G(\eta, \xi)| & \leq K(f) K \exp \left\{M^{*}(t \cdot\|y\|)+\langle\eta, x\rangle+\langle\xi, y>\} \leq\right. \\
& \leq K(f) K \exp \left\{M^{*}(t \cdot\|y\|)+\|y\|\|\xi\|+\langle\eta, x>\}\right.
\end{aligned}
$$

where $K(f)$ denotes

$$
K(f) \stackrel{\text { def }}{=} \sup _{\operatorname{Im} \theta \in B_{k}}|f(\theta)| \exp \left\{-m \log (1+\|\theta\|)-M^{*}\left(t^{\prime}\left\|\operatorname{Im} \theta^{2}\right\|\right)\right\} .
$$

By (2.29) we can choose $(x, y) \in B_{k}$ suitably with $x=-(k+1) \tilde{n}$, so that for
$\|\xi\|$ sufficiently large

$$
|G(\eta, \xi)| \leq K(f) K \exp \left\{M\left(\|\xi\| / t^{\prime}\right)-(k+1)\|n\|\right\} .
$$

Thus if we consider the space of all ϕ with ϕ defined in the ε-neighborhood of $\Omega_{\alpha}^{\mathrm{k}+1}$ where $\varepsilon=1 / \mathrm{k}-1 / \mathrm{k}+1$ and with

$$
\left|D^{\alpha} \phi(\zeta)\right| \leq K \exp \left\{-M\left(\|\xi\| / t^{\prime}\right)+(k+1)\|n\|-(n+1) \log (1+\|\zeta\|)\right\},|\alpha| \leq 2 \ell
$$

for some $K \geq 0$, then $F^{-1} f$ is defined and continuous on this space. Embedding into this space the space $W_{2}^{m+2 n+2}\left(\Omega_{\alpha}^{k} ;-M\left(\|\xi\| / t^{\prime}\right)+k\|\eta\|-(m+2 n+2) \log (1+\|\zeta\|)\right)$ we find that F^{-1} is continuous from $H_{\alpha}\left(m, k+1, t^{\prime}\right)$ into $S_{\alpha}\left(m+2 n+2, k, t^{\prime}\right)$ ' for $\alpha \in\{\varepsilon, c\}$.
II.3. THE EDGE OF THE WEDGE THEOREM

In this section we shall give a short proof of the edge of the wedge theorem for distributions and we shall extend it so that it applies to ultradistributions, too. We will be concerned with the general situation, cf, [17], where the two cones need not be opposite each other. Our proof also applies to the case of the Malgrange-Zerner theorem, cf. [49], where the functions are holomorphic only in lower dimensional regions. Usually, the known proofs of the edge of the wedge theorem are more complicated and use some functional analysis (Schwartz' kernel theorem), see for example [64] or [8], whereas our proof is based on Fourier transformation.
II.3.i. THE EDGE OF THE WEDGE THEOREM FOR DISTRIBUTIONS.

We shall derive the local version from a global one by a transformation as performed by Borchers in the proof of [4, lemma 8]. In fact, [4, lemma 8] contains already the edge of the wedge theorem for functions with continuous boundary values, cf. for example [64, th. 2.14], which is usually needed in the proof of the general case, cf. [64, th. 2.16]. Moreover, [4, lemma 8] is of the type of the Malgrange-Zerner theorem, cf. [44, th. 3] or [49, p. 286-287], i.e., it gives the analytic continuation of a separately holomorphic function defined, if $n=2$, on

$$
\begin{aligned}
&\left\{\left(z_{1}, z_{2}\right)\left|\left|z_{1}\right|<1, y_{1}>0,\left|x_{2}\right|<1, y_{2}=0\right\} \cup\right. \\
& \cup\left\{\left(z_{1}, z_{2}\right)\left|\left|x_{1}\right|<1, y_{1}=0,\left|z_{2}\right|<1, y_{2}>0\right\},\right.
\end{aligned}
$$

where this function has equal continuous boundary values for $y_{1} \downarrow 0$ and for $y_{2} \downarrow 0$. We shall extend the method of [4] so that we get the result for distributional boundary values and even for ultradistributional boundary values.

It should be remarked that [4, lemma 8], as a particular case, yields the Cameron-Storvick theorem, cf. [44, th. 4], i.e., the analytic continuation into the domain

$$
\left\{\left(z_{1}, z_{2}\right)\left|\left|z_{1}\right|<\kappa,\left|z_{2}\right|<k\right\}\right.
$$

of a function which is separately holomorphic, if $n=2$, in

$$
\left\{(z _ { 1 } , z _ { 2 }) \left|| z _ { 1 } \uparrow < 1 , | x _ { 2 } | < 1 , y _ { 2 } = 0 \} \cup \left\{\left(z_{1}, z_{2}\right)\left|\left|x_{1}\right|<1, y_{1}=0,\left|z_{2}\right|<1\right\}\right.\right.\right.
$$

where $k=\sqrt{2}-1$. This is a better constant than $k=1-1 / \sqrt{2}$ of [44, th. 4] which on its turn is better than the original $k=2 /(5+2 \sqrt{2})$ of CameronStorvick, cf. [44].

For our proof of the edge of the wedge theorem we need lemma's usually preceding it, cf. [64]. In particular, we mention the following lemma's whose proofs can be obtained from those in [64], cf. also the next section.

LEMMA 2.28. ([64, th. 2.6 \& 2.10]). Let C be a convex cone in \mathbb{R}^{n} (not necessarily open) and let $C_{r} \xlongequal{\text { def }}\{y \mid y \in C,\|y\|<r\}$. Let f be a holomorphic function in an open neighborhood in \mathbb{C}^{n} of $\mathbb{R}^{\mathrm{n}}+\mathrm{i} \mathrm{C}_{r}$ satisfying

$$
\begin{equation*}
|f(z)| \leq M\left(r^{\prime}\right)(1+\|x\|)^{m_{\|} \|^{-m}}, \quad y \in C_{r^{\prime}}, \tag{2.62}
\end{equation*}
$$

where $M\left(x^{\prime}\right)$ may depend on r^{\prime} for $0<r^{\prime}<r$, and let f^{*} be the boundary value in S^{\prime} of f as $y \rightarrow 0, y \in C$. Then $f^{*} \in S^{\prime}$ is such that for each $y \in C_{r} \cup\{0\}$

$$
\begin{equation*}
\mathrm{e}^{-\langle\xi, y\rangle} F^{-1}\left[f^{*}\right]_{\xi} \in S_{\xi}^{\prime} . \tag{2.63}
\end{equation*}
$$

LEMMA 2.29. ([64, th. 2.6 \& 2.10]). Let $f^{*} \in S^{\prime}$ be a tempered distribution satisfying (2.63) for $y \in(\overline{\mathrm{C}})_{r}$ where C is an open convex cone. Then $F\left[e^{-\left\langle\xi, Y^{\rangle}\right.} F^{-1}\left[f^{*}\right]_{\xi}\right](x)$ is a holomorphic function of $z=x+i y$ in $\mathbb{R}^{n}+i C_{r}$, which tends to $F\left[e^{-\left\langle\xi, Y^{>}\right.} F^{-1}\left[f^{*}\right]_{\xi}\right]_{x}$ in S_{x}^{\prime} on $(\partial C)_{r}$ and to f^{*} in S^{\prime} as $y \rightarrow 0$, $y \in C$.

LEMMA 2.30. ([64, th. 2.5]). Let $f_{\xi} \in D_{\xi}^{\prime}$ be a distribution such that $\mathrm{e}^{-\left\langle\xi, Y^{\rangle}\right.} f_{\xi} \in S_{\xi}^{\prime}$ for $\mathrm{y} \in \mathrm{B}$, where B is some set in \mathbb{R}^{n}. Then also $\mathrm{e}^{-\left\langle\xi, Y^{\rangle}\right.} f_{\xi} \in \mathrm{S}_{\xi}^{\prime}$ for each Y in the convex hull ch B of B .

THEOREM 2.31. (Edge of the wedge theorem for distributions). Let U be a domain in \mathbb{R}^{n}, let C^{1} and C^{2} be two open, connected cones in \mathbb{R}^{n} and let $r_{1}>0$ and $r_{2}>0$. If two functions f_{1} and f_{2}, holomorphic in $U+i C_{r_{1 *}}^{1}$ and $U+i C_{r_{2}}^{2}$, respectively, have the same distributional boundary value ${ }_{f}^{1}{ }^{*}$ in $D(U)$ ', then f^{*} is the boundary value in $D(U)$ ' of a function holomorphic in $\Omega \cap \mathbb{R}^{n}+$ $+i \operatorname{ch}\left(C^{1} \cup C^{2}\right)$, which coincides with f_{1} and f_{2} on their common domains of definition, where Ω is a certain open neighborhood of U in \mathbb{C}^{n} not depending on f_{1} and f_{2}.
$\frac{\text { PROOF. Let } y_{0}}{1} \in \operatorname{ch}\left(C^{1} \cup c^{2}\right)$ and first assume that $y_{0} \neq 0$. Let $y_{1}, \ldots, y_{n} \epsilon$ $\epsilon C^{1} \cup C^{2}$ be linear independent vectors such that $y_{0} \in \operatorname{ch}\left\{y_{1}, \ldots, y_{n}\right\}$. Since analytic continuation is unique, it is sufficient to show that f_{1} and f_{2} can be continued analytically into $\Omega \cap \mathbb{R}^{n}+i\left[i n t \operatorname{ch}\left\{0, y_{1}, \ldots, y_{n}\right\}\right]$. We choose Y_{1}, \ldots, Y_{n} as the new coordinate directions of \mathbb{R}^{n}, so that by a change of coordinates (cf. [64, th. 2.15]) we may assume that

$$
f_{x}^{*}=\lim _{y_{j} \ngtr 0} f^{j}\left(x_{1}, \ldots, x_{j}+i y_{j}, \ldots, x_{n}\right)
$$

in distributional sense in $\left\{x\left|\left|x_{1}\right|<1, \ldots,\left|x_{n}\right|<1\right\}\right.$, where the n functions f^{j} are holomorphic in a neighborhood in \mathbb{C}^{n} of

$$
\begin{equation*}
\left\{z\left|\left|x_{1}\right|<1, y_{1}=0, \ldots,\left|z_{j}\right|<1, y_{j}>0, \ldots,\left|x_{n}\right|<1, y_{n}=0\right\}\right. \tag{2.64}
\end{equation*}
$$

and that for some $M>0$ and $m>0$ there

$$
\left|f^{j}\left(x_{1}, \ldots, x_{j}+i y_{j}, \ldots, x_{n}\right)\right| \leq m\left|y_{j}\right|^{-m}
$$

for $j=1, \ldots, n$, cf. [49]. Let

$$
\underset{f}{\sim}{ }_{j}^{j}\left(u_{1}, \ldots, w_{j}, \ldots, u_{n}\right) \xlongequal{\text { def }} f^{j}\left(\frac{e^{u_{1}}-1}{e^{u_{1}}+1}, \ldots, \frac{e^{w_{j}}-1}{e^{w_{j}}}, \ldots, \frac{e^{u_{n}}-1}{e^{u_{n}}}\right) .
$$

Then $\tilde{\mathfrak{f}}^{\mathbf{j}}$ is holomorphic in a neighborhood in \mathbb{C}^{n} of

$$
\left\{w \mid w=u+i v, u \in \mathbb{R}^{n}, \quad v_{1}=0, \ldots, 0<v_{j}<\pi / 2, \ldots, v_{n}=0\right\}
$$

and it satisfies there for some $\mathrm{K}>0$ and $\mathrm{k}>0$

$$
\left|\tilde{f}^{j}\left(u_{1}, \ldots, w_{j}, \ldots, u_{n}\right)\right| \leq k \frac{e^{k\|u\|}}{\left|v_{j}\right|^{k}} .
$$

Every \tilde{f}^{j} has the same boundary value in $\mathcal{D}_{\mathrm{u}}^{\prime}$ and the functions

$$
h^{j}(w) \stackrel{\text { def }}{=} e^{-w^{2} \tilde{f}^{j}(w)}
$$

satisfy (2.62). Hence they have the same boundary value h^{*} in S_{u}^{\prime}, cf. (2.19). By lemma 2.28

$$
e^{-\left\langle\xi_{j}, v_{j}>\right.} F^{-1}\left[h^{*}\right]_{\xi} \in S_{\xi}^{\prime}, \quad 0<v_{j}<\pi / 2, \quad j=1, \ldots, n
$$

and by lemma 2.30

$$
\begin{aligned}
& e^{-\langle\xi, v\rangle} F^{-1}\left[h^{*}\right]_{\xi} \in S_{\xi}^{\prime}, \quad v \in B \stackrel{\text { def }}{=}\left\{v \mid v_{j} \geq 0, j=1, \ldots, n,\right. \\
&\left.v_{1}+\ldots+v_{n}<\pi / 2\right\} .
\end{aligned}
$$

According to lemma $2.29 \mathrm{~h}^{*}$ is the boundary value of a holomorphic function in $\mathbb{R}^{n}+i$ int B which coincides with the functions h^{j} on the parts of the boundary of $\mathbb{R}^{n}+i B$ where these are defined, because $h^{j}\left(u_{1}, \ldots, w_{j}, \ldots, u_{n}\right)=$ $F\left[e^{-\left\langle\xi_{j}, v_{j}>\right.} F^{-1}\left[h^{*}\right]_{\xi}\right](u)$. Since $\tilde{f}^{j}(w)=e^{w^{2}}{ }_{h}^{j}(w)$ and since $e^{w^{2}}$ is entire, it follows that the functions ${\underset{\mathbf{f}}{ }}_{\mathbf{j}}^{j}$ can be continued analytically to the same holomorphic function in $\mathbb{R}^{n}+i$ int B. By transforming back, we find that f^{*} is the boundary value of a holomorphic function in $\Omega \cap \mathbb{R}^{n}+i\left\{y \mid y_{j}>0, j=1, \ldots, n\right\}$ coinciding with f^{j} on the boundary, where Ω is determined by the transformation of the domain $\mathbb{R}^{n}+i$ int B.

Finally, if $y_{0}=0$, we choose n vectors $y_{1}, \ldots, y_{n} \in \operatorname{ch~}^{1}$ such that $-y_{1}, \ldots,-y_{n} \in \operatorname{ch}^{2}$ and we perform the same steps as above such that now B becomes $\left\{v\left|\left|v_{1}\right|+\ldots+\left|v_{n}\right|<\pi / 2\right\}\right.$. Then f_{1} and f_{2} can be continued analytically
into a neighborhood of U in \mathbb{C}^{n} and f^{*} is a holomorphic function there.

REMARK. It follows from the proof that the domain into which a function, which is separately holomorphic in the regions (2.64) for $j=1, \ldots, n$ and which has the same boundary value for every $y_{j} \downarrow 0$, can be continued contains (cf. [4])

$$
\underset{\substack{\lambda_{j}>0}}{\lambda_{1}+\ldots+\lambda_{n}}=1
$$

where $C_{j}^{+}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is the intersection of the upper half-plane with the open circle with center $-i \rho$ and with radius $\sqrt{1+\rho^{2}}$ where $\rho \stackrel{\text { def }}{=}\left(\operatorname{tg} 1 / 2 \lambda_{j} \pi\right)^{-1}$. This yields the constant $k=\sqrt{2}-1$ in the Cameron-Storvick theorem, cf. [44, th.4].

II.3.ii. THE EDGE OF THE WEDGE THEOREM FOR ULTRADISTRIBUTIONS.

The proof of th. 2.31 relies on the fact that we can suppress the growth at infinity of the functions ${\underset{\mathrm{f}}{ }}_{\mathbf{j}}$ by a function holomorphic in a tube, namely by $e^{-w^{2}}$. Now, if f^{*} is an ultradistribution in $D_{M}(U)^{\prime}$, the functions \tilde{f}^{j} have boundary values in $D_{M^{\prime}}^{\prime}$, because the growth of f_{1} and f_{2} for $\|y\|$ small is the same as the growth of $\underset{f}{f}$ for v_{j} small, but ${\underset{f}{f}}^{j}\left(u_{1}, \ldots, u_{j}+i v_{j}, \ldots, u_{n}\right)$ grows faster than exponentially for $\|u\| \rightarrow \infty$. Then we do not have a function like $e^{-w^{2}}$, holomorphic in a tube, which suppresses this growth. Therefore, we have to generalize the lemma's $2.28,2.29$ and 2.30 such that they hold for ultradistributions f^{*} in D_{M}^{\prime} and analytic functionals $F^{-1}\left[f^{*}\right]$ in Z_{M}^{\prime}. The proof of the generalization, lemma 2.32 , of lemma 2.28 requires some invention, while the proofs of lemma's 2.33 and 2.34 are similar to those of lemma's 2.29 and 2.30.

If $\mu \in Z_{M}^{\prime}$ we mean by $e^{-\left\langle\zeta, Y_{0}\right\rangle} \mu_{\zeta} \in Z_{M}^{\prime}$ that μ_{ζ} can be applied to entire functions of the form $e^{-\left\langle\zeta, Y_{0}\right\rangle} \psi(\zeta)$ with $\psi \in Z_{M}$ and that $\left|<\mu_{\zeta^{\prime}} e^{-\left\langle\zeta, y_{0}\right\rangle} \psi(\zeta)\right\rangle \mid \leq$ $s K\|\psi\|_{\alpha}$ for some $K>0$ where $\|\cdot\|_{\alpha}$ is one of the half norms defining the topology of Z_{M}.

LEMMA 2.32. Let C and C_{r} be as in lemma 2.28. Let f be a holomorphic function in an open neighborhood in \mathbb{C}^{n} of $\mathbb{R}^{n}+i C_{r}$ with a boundary value f^{*} in D_{M}^{\prime} as $\mathrm{y} \rightarrow 0, \mathrm{y} \in \mathrm{C}$. Then $\mu \stackrel{\text { def }}{=} \mathrm{F}^{-1}\left[\mathrm{f}^{*}\right] \in \mathrm{Z}_{\mathrm{M}}^{\prime}$ is such that

$$
\mathrm{e}^{-\left\langle\zeta, \mathrm{y}^{\prime}\right.} \mu_{\zeta} \in \mathrm{Z}_{\mathrm{M}}^{\prime}
$$

for every $y \in C_{r} \cup\{0\}$.
PROOF. Let $\left\{K_{k}\right\}_{k=1}^{\infty}$ be an increasing sequence of convex, compact sets with union $\mathbb{R}^{n}+i C_{r}$. Let H_{k} be the space of analytic functionals carried by K_{k} provided with the FS-space topology defined by duals of sup-norms and finally, let $H \xlongequal{\text { def }} \operatorname{ind}_{k \rightarrow \infty} \lim _{k}$, where the injection maps are obtained as transposed of restriction maps. Then f is an element of the dual H ' of H . Now the Ehrenpreis-Martineau theorem, [16, th. 5.21] or [30, th. 4.5.3], describes the space A of Fourier transforms of elements of H very well: A consists of entire functions h with the order of growth at infinity

$$
\exp \left(\varepsilon\|\xi\|+k\|\eta\|+\sup _{y \in S_{k}}-\langle\xi, y>)\right.
$$

for all $\varepsilon>0$ and for some k depending on h, where $\left\{S_{k}\right\}_{k=1}^{\infty}$ is an increasing sequence of compact subsets of C_{r} with union C_{r}. We give A the topology which turns the Fourier transformation into a topological isomorphism. Then there is an element μ in the dual A^{\prime} of A with

$$
\left\langle\mu_{\zeta}, e^{i\langle\zeta, z\rangle}\right\rangle=f(z), \quad z \in \mathbb{R}^{n}+i C_{r} .
$$

If $y_{0} \in C_{r}$ and $\psi \in Z_{M}$ the function $\zeta \rightarrow e^{-\left\langle\zeta, y_{0}\right\rangle} \psi(\zeta)$ belongs to A and, in fact, it is the Fourier transform of the analytic functional defined by $\hat{\psi}_{x} \delta\left(y_{0}\right){ }_{y}$ where $\hat{\psi} \in D_{M}$ is the inverse Fourier transform of ψ and where $\delta\left(y_{0}\right)$ is the Dirac-delta function concentrated in the point y_{0}. Hence

$$
\left\langle\mu_{\zeta^{\prime}} e^{-\left\langle\zeta, y_{0}>\right.} \psi(\zeta)>=\int f\left(x+i y_{0}\right) \hat{\psi}(x) d x\right.
$$

Furthermore, μ is also a continuous linear functional on Z_{M} by means of the following definition

$$
\langle\mu, \psi\rangle \stackrel{\text { def }}{=\lim _{\substack{y \rightarrow 0 \\ y \in C}}\left\langle\mu_{\zeta^{\prime}} e^{-\langle\zeta, y>} \psi(\zeta)\right\rangle=\lim _{\substack{y \rightarrow 0}}^{y \in C} \mid} \int f(x+i y) \hat{\psi}(x) d x, \quad \psi \in z_{M}
$$

That the limit exists and indeed defines an element in Z_{M}^{\prime} follows from the last equality and the data of the lemma. Thus we have $\mu=F^{-1}\left[f^{*}\right]$ and since for $y_{0} \in C_{r}$ the space $e^{-\left\langle\zeta, y_{0}\right\rangle^{\prime}} Z_{M}$ (i.e., the space of all entire functions $\phi(\zeta)=e^{-\left\langle\frac{r}{\zeta}, Y_{0}>\right.} \psi(\zeta)$ with $\psi \in Z_{M}$ provided with the half norms $\|\phi\| \frac{\text { def }}{\underline{M}}$

be continuously embedded into A, it follows that $e^{-\left\langle\zeta, Y^{\rangle}\right.} \mu_{\zeta} \in Z_{M}^{\prime}$ for $y \in C_{r}$. \square
LEMMA 2.33. Let $\mu \in Z_{M}^{\prime}$ be such that $e^{-\left\langle\zeta, Y^{\rangle}\right.} \mu_{\zeta} \in Z_{M_{M}}^{\prime}$ for each y in the closure of an open, convex cone C with $\|y\|<r$. Then $\left.{ }^{\zeta} F\left[e^{-\langle\zeta} \zeta, y\right\rangle \mu_{\zeta}\right](x)$ is a holomorphic function of z in $\mathbb{R}^{n}+i C_{r}$, which tends to $F\left[e^{-\left\langle\zeta, Y^{\rangle}\right.} \mu_{\zeta}\right]$ in D_{M}^{\prime} on the boundary of C and to $F[\mu]$ in D_{M}^{\prime} as $y \rightarrow 0, Y \in C$.

PROOF. The space Z_{M} is defined as the space of all entire functions with certain finite, weighted, sup-norms. Let $C\left(Z_{M}\right)$ be the space of all continuous functions with the same finite, weighted, sup-norms. Let $\tilde{\mu}$ be an extension of μ to $C\left(Z_{M}\right)^{\prime}$. Then by Riesz' theorem for each testfunction $\tilde{\mu}$ can be represented as a measure $\tilde{\mu}(\zeta)$ on \mathbb{C}_{n}. Furthermore, let $y_{0} \in C_{r}$. Then as in [64, proof of th. 2.6, formula 2.70] it is shown that there is an $\varepsilon>0$ such that

$$
e^{\varepsilon \sqrt{1+\|\xi\|^{2}}} e^{-\langle\zeta, y>} \tilde{\mu}_{\zeta}=\sum_{j=1}^{k} \tilde{\mu}_{\zeta}^{j}
$$

for Y in a neighborhood $U\left(Y_{0}\right)$ of Y_{0} contained in C_{r} and for some elements $\tilde{\mu}^{j} \in C\left(Z_{M}\right)$ ' depending on y. Then for $y \in U\left(y_{0}\right)$

$$
f(z) \stackrel{\text { def }}{=} \int e^{i\langle\zeta, z\rangle} d \tilde{\mu}(\zeta)=\sum_{j=1}^{k} \int_{\mathbb{C}_{n}} \exp \left(i\langle\zeta, x\rangle-\varepsilon \sqrt{1+\|\xi\|^{2}}\right) d \tilde{\mu}^{j}(\zeta)
$$

exists and is holomorphic in $\mathbb{R}^{n}+i U\left(y_{0}\right)$. By analytic continuation we get a function f which is holomorphic in $\mathbb{R}^{n}+i C_{r}$. Now Fubini's theorem shows that $F\left[e^{-\left\langle\zeta, y^{\rangle}\right.} \mu_{\zeta}\right](x)=f(z)$. Furthermore, let $y_{1} \in(\partial C) r_{r}$, let $y_{0}=0$ and let $y_{2}, \ldots, y_{n} \in C_{r}$ such that the convex hull B of $\left\{y_{0}, \ldots, y_{n}\right\}$ has a nonempty interior. Then as in [64, proof of th. 2.6 , formula 2.68] we can write

$$
e^{-\left\langle\zeta, y^{>}\right.} \tilde{\mu}_{\zeta}=\sum_{j=0}^{n} a(y, \xi) e^{-\left\langle\xi, y_{j}>\right.} \tilde{\mu}_{\zeta} e^{-i<\eta, y>}
$$

for $y \in B$, where $a(y, \xi)$ is a continuous function, bounded uniformly for all $\xi \in \mathbb{R}_{n}$ and $y \in B$, cf. the proof of the next lemma. Therefore, $e^{-\left\langle\zeta, y^{>}\right.} \tilde{\mu}_{\zeta}$ tends to $e^{-\left\langle\zeta, y_{1}\right\rangle} \tilde{\mu}_{\zeta}$ in $C\left(Z_{M}\right)^{\prime}$ as $y \rightarrow y_{1}, y \in B$ or to $\tilde{\mu}_{\zeta}$ in $C\left(Z_{M}\right)^{\prime}$ as $y \rightarrow 0$, $y \in B$. Hence the statements of the lemma follow.

LEMMA 2.34. Let $\mu \in Z_{M}^{\prime}$ be such that $e^{-\left\langle\zeta, y^{\prime}\right.} \mu_{\zeta} \in Z_{M}^{\prime}$ for y in some set B in $\mathbb{I R}^{\mathrm{n}}$. Then also $\mathrm{e}^{-\left\langle\zeta, \mathrm{Y}^{M}\right.} \mu_{\zeta} \in \mathrm{Z}_{\mathrm{M}}^{\prime}$ for all $\mathrm{y} \in \operatorname{ch}^{\mathrm{C}}$.

PROOF. It is sufficient to show that for $y_{1}, y_{2} \in B$ and $y=t y_{1}+(1-t) y_{2}$, $0 \leq t \leq 1, e^{-\left\langle\xi, y^{\rangle}\right.} \mu_{\zeta} \in Z_{M}^{\prime}$. Let $\tilde{\mu} \in C\left(Z_{M}\right)$ ' be an extension of μ, then also $e^{-<\xi, y_{1}>} \tilde{\mu}_{\zeta}$ and $e^{-\left\langle\xi \zeta y_{2}>\right.} \tilde{\mu}_{\zeta}$ belong to $C\left(Z_{M}\right)^{\prime}$. The continuous function $\xi \rightarrow$

$$
a(y, \xi) \stackrel{\text { def }}{=} \frac{e^{-\langle\xi, y>}}{e^{-\left\langle\xi, y_{1}\right\rangle}+e^{\left\langle\xi, y_{2}\right\rangle}}
$$

is bounded in \mathbb{R}_{n} (see [64, proof of th. 2.5]). Accordingly

$$
e^{-\langle\xi, y\rangle_{\zeta}} \tilde{\mu}_{\zeta}=a(y, \xi) e^{-\left\langle\xi, y_{1}\right\rangle_{\zeta}} \tilde{\mu}_{\zeta}+a\left(y, \xi ; e^{-\left\langle\xi, y_{2}\right\rangle_{\zeta}} \tilde{\mu}_{\zeta} \in C\left(Z_{M}\right)^{\prime}\right.
$$

so that also $e^{-\left\langle\zeta, y^{>}\right.} \tilde{\mu}_{\zeta} \in C\left(Z_{M}\right)^{\prime}$. Therefore, its restriction to Z_{M}, which equals $e^{-\langle\zeta, y\rangle_{\zeta}}{ }_{\mu^{\prime}}$ belongs to Z_{M}^{\prime}.

Now the proof of the edge of the wedge theorem for ultradistributions is obtained similarly to that of theorem 2.31 using the above given lemma's instead of the lemma!s of the last section. So we have got the following theorem.

THEOREM 2.35. (Edge of the wedge theorem for ultradistributions). Let C_{1}, C_{2}, f_{1} and f_{2}, U, r_{1} and r_{2} be as in theorem 2.31, where now f_{1} and f_{2} have the same ultradistributional boundary value f^{*} in $D_{M}(U)$ '. Then the conclusion of theorem 2.31 holds in $D_{M}(U)$ ' instead of $D(U)$ '.

REMARK. More general edge of the wedge theorems exist, where f^{*} is a sum of boundary values of more than two functions, see for example [31] and [43, p. 40-81]. If distributional boundary values are concerned, this theorem has been shown by Martineau in [49] and an easy proof by induction has been given by Bros \& Iagolnitzer in [6, section 7], where first the notion of essential support is introduced by means of a generalized Fourier transformation. This method might be extendable to ultradistributions, but a forthcoming paper on this subject, announced in [6] and in [31], has not yet appeared.

CHAPTER III

FOURIER TRANSFORMS OF ANALYTIC FUNCTIONALS WITH COMPLEX, UNBOUNDED, CONVEX CARRIERS

The theorems of this chapter describe the Fourier transformation F as a topological isomorphism between spaces of analytic functionals μ carried by closed, convex sets $\Omega \subset \mathbb{C}_{n}$ and spaces of holomorphic functions f of exponential type in open, convex cones $\Gamma \subset \mathbb{C}^{n}$. The functionals μ are carried with respect to some class of open neighborhoods of Ω and to some class of weight functions on these neighborhoods. This determines the behaviour of f near the vertex of Γ and conversely. The convex set Ω itself determines the cone Γ and the type $a(z)$ of f, and conversely. These theorems generalize the Ehrenpreis-Martineau theorem, [16, th. 5.21] or [30, th. 4.5.3], where Ω is bounded and $\Gamma=\mathbb{C}^{n}$, and the one dimensional version due to Polya, [3, ch. 5].

In $[65$, th. $2.22 \& 2.23]$ the Ehrenpreis-Martineau theorem is given for polydiscs Ω and in [73] F is treated as a topological isomorphism for this case. Then the proof can be given directly, but for general, bounded, convex sets Ω the proof is more complicated. The proof given by Ehrenpreis in [16] is based on the case of polydiscs, which by the Oka embedding can be extended to convex polyhedrons, using the fact that a bounded, convex set can be approximated arbitrarily close from the inside by convex polyhedrons. This is no longer true for general, unbounded, convex sets. Hörmander's method which uses an existence theorem for the $\bar{\partial}$-operator, see [30, ch. 4], applies directly to general, unbounded, convex sets Ω. Therefore, in case Ω is unbounded we will follow the method of $[30, c h .4]$ for proving our theorems, but since we deal with non-entire functions f we have to pay attention to the growth of f near the boundary of Γ.

Unlike in the case where Ω is bounded the proof of the injectivity of F is not trivial if Ω is unbounded. In this chapter we shall reduce the proof of the bijectivity of F to two problems, which will be solved in chapter VI by a generalization of Hörmander's method of [30, ch. 7]. On the
other hand, this is, in fact, just a version of Ehrenpreis' fundamental principle with non-entire functions and looking at it in this way, our proof follows Ehrenpreis' method. The generalization of Ehrenpreis fundamental principle to non-entire functions will be treated in chapter IV, where also the two problems of this chapter will be reformulated in a more general form. In particular, it is interesting if Γ is the open cone $T C$ def $\mathbb{R}^{n}+i C$ where C is an open, convex cone in \mathbb{R}^{n}. Then functions f, holomorphic in T^{C}, may have ultradistributional boundary values on \mathbb{R}^{n} (or in the limiting cases, on the one side distributional boundary values and on the other side boundary values in the sense of Fourier hyperfunctions). They are the Fourier transforms of analytic functionals in Z_{M}^{\prime} carried by certain, convex sets Ω which may be unbounded in the imaginary directions. Then a more complicated aspect of the topology of Z_{M} arises and the testfunctions ψ on which the analytic functionals act satisfy (2.45) on a neighborhood of Ω. This actually expresses the fact that we deal with ultradistributions defined on ultradifferentiable testfunctions with compact support, which is so if M satisfies (2.20). However, in this chapter we shall not need this property and our theorems remain valid for ultradistributions defined on quasi-analytic testfunctions. Then, if Ω is unbounded in the imaginary directions, there is perhaps no other reason for requiring the analytic testfunctions to satisfy (2.45) on neighborhoods of Ω than that the theorems are true as they are stated here. Anyhow, we shall not deal with the ultradistributions as boundary values themselves, but we shall define the Fourier transformation F merely by formula (2.46), which in case M satisfies (2.20) is justified by lemma 2.26.

III. 1. ANALYTIC FUNCTIONALS ON EXPONENTIALLY DECREASING TESTFUNCTIONS; FOURIER TRANSFORMATION AS A SURJECTION.

c^{n}, of exponential typ conditions near the ve forms of analytic func shall discuss two case tic functionals with respect to the neighbo denoted by the index c hoods of $\Omega(a, \Gamma)$ of the							

of conic neighborhoods is perhaps more suitable for describing quantum field theory, cf. [53].

Let $\Gamma \subset \mathbb{C}^{n}$ be an open, convex cone, a a convex function on Γ which is homogeneous of degree one, $\left\{\Gamma_{k}\right\}_{k=1}^{\infty}$ an increasing sequence of open, convex cones exhausting Γ and let $z_{0} \in \Gamma_{1}$ be fixed with $\left\|_{z_{0}}\right\|=1$. Then the collection $\left\{1 / \mathrm{k} \mathrm{z}_{0}+\Gamma\right\}_{\mathrm{k}=1}^{\infty}$ given by (2.49) exhausts Γ. In the case denoted by ε, let the convex function a_{k}^{ε} on $1 / k z_{0}+\Gamma$ be defined by

$$
\text { (3.1.i) } a_{k}^{\varepsilon}(z) \stackrel{\text { def }}{=} \max _{\|w\| \leq \delta_{k}^{\varepsilon}} a(z+w)
$$

where $\delta_{k}^{\varepsilon}>0$ is so small that $z+w \in 1 /{ }_{k+1} z_{0}+\Gamma$ for $z \in 1 / k_{k} z_{0}+\Gamma$ and $\left\|_{w}\right\| \leq \delta_{k}^{\varepsilon}$. Then after a detailed inspection one can see that for each k there are $q \geq p \geq k$ and a constant $k_{k}>0$ such that for $z \in 1 / k z_{0}+\Gamma$

$$
a\left(z-1 / 2 q z_{0}\right) \leq a_{p}^{\varepsilon}(z) \leq a\left(z-1 / 2 k z_{0}\right)+(1 / k-1 / p)\|z\|+K_{k} .
$$

Hence we have the following equality of spaces

where the space $H_{\infty}(\Omega ; M(z))$ has been defined in section II.2.vii by means of the norm (2.55). According to [73, cond. HS_{1} and $\left.\mathrm{HS}_{2}\right] \mathrm{Exp}_{\varepsilon}$ is a nuclear FSspace (it can also be written as projective limit of Hilbert spaces). If a is a bounded function on $\mathrm{pr} \Gamma$, the space $\operatorname{Exp}_{\varepsilon}$ may also be written as

$$
\begin{equation*}
\operatorname{Exp}_{\varepsilon}=\underset{k \rightarrow \infty}{\operatorname{proj} \lim _{\infty} H_{\infty}\left(1 / k z_{0}+\Gamma ; a(z)+1 / k\|z\|\right), ~} \tag{3.3}
\end{equation*}
$$

cf. (2.60).
In the case denoted by c we exhaust Γ by the sequence $\{\Gamma(k)\}_{k=1}^{\infty}$ given by (2.47). For each k let $\delta_{k}^{\odot}>0$ be so small that for $z \in \Gamma(k)$ and for $\|w\| \leq \delta_{k}^{C}$ we have $z+w \in \Gamma(k+1)$ and $a(z+w) \leq a(z)+\left(1 / k_{k}-1 / k_{k+1}\right) \|_{z \|}+K_{k}$ for some $K_{k}>0$, cf. (2.60). Then we define for $z \in \Gamma(k)$
(3.1,ii) $\quad a_{k}^{c}(z) \xlongequal{\text { def }} \max _{\|w\|_{j}^{c}} a(z+w)$
and we have the following equality of spaces
(3.2.ii)

$$
\begin{aligned}
\operatorname{Exp}_{C} & \stackrel{\text { def }}{\underline{\operatorname{proj}} \lim _{k \rightarrow \infty}(\Gamma(k) ; a(z)+1 / k\|z\|)=} \\
& =\underset{k \rightarrow \infty}{\operatorname{proj}} \lim _{k} H_{\infty}\left(\Gamma(k) ; a_{k}^{c}(z)+1 / k\|z\|\right) .
\end{aligned}
$$

Furthermore, let for $\alpha=\varepsilon$ or c

$$
\begin{equation*}
A_{\alpha}^{k} \stackrel{\text { def }}{=} H_{\infty}\left(\Omega_{\alpha}^{k} ;-1 / k\|\zeta\|\right) \tag{3.4}
\end{equation*}
$$

where Ω_{α}^{k} is given by (2.48) and let

$$
\begin{equation*}
A_{\alpha} \stackrel{\text { def }}{=} \underset{k \rightarrow \infty}{ } \lim _{\alpha} A^{k} \tag{3.5}
\end{equation*}
$$

According to $\left[73\right.$, cond. $\left.\mathrm{HS}_{1} \& \mathrm{HS}_{2}\right] \mathrm{A}_{\alpha}$ is a nuclear DFS-space (it can also be written as inductive limit of Hilbert spaces), hence the strong dual A_{α}^{\prime} is a nuclear FS-space. In particular A_{α}^{\prime} is bornologic.

For both $\alpha=\varepsilon$ and $\alpha=c$ the set

$$
L \stackrel{\text { def }}{=}\left\{e^{i<\zeta, z>} \mid z \in \Gamma\right\}
$$

is a subset of A_{α} and it follows from an easy estimate (as in the proof of lemma 2.27, formula (2.59)) that the map
(3.6) $\quad F: A_{\alpha}^{\prime} \rightarrow \operatorname{Exp}_{\alpha}$
is bounded, hence continuous, where F is defined by
(3.7) $\quad F(\mu)(z) \stackrel{\text { def }}{=}\left\langle\mu_{\zeta}, e^{i\langle\zeta, z\rangle}\right\rangle, \mu \in A^{\prime}$.
F is sometimes called the Fourier-Laplace or Fourier-Borel transform if the factor i is-omitted, but we merely call F Fourier transform and we shall see later that there is an analogue with the Paley-Wiener theorem if we maintain the factor i in (3.7) as we do here. In the next section we shall pay attention to the injectivity of F and here we shall show that F is surjective. Then it follows from the open mapping theorem that the inverse F^{-1} of F is continuous.

If for each $p=1,2, \ldots \delta_{p}>0$ is such that for $z \in \Gamma_{p}$ and $\zeta \in \Gamma_{p+1}^{*}$ $\operatorname{Im}\langle\zeta, z\rangle \geq \delta_{p}\|\zeta\|\|z\|$, then for $k \geq \max \left(p+2, p / \delta_{p}\right)$ we have
(3.8.i) $\quad e^{i\langle\zeta, z\rangle} \in A_{c}^{k}, \quad z \in \Gamma(p)$.

Similarly, for each p there is a $k>p$ such that
(3.8.ii) $e^{i\langle\zeta, z\rangle} \in A_{\varepsilon^{\prime}}^{k} \quad z \in 1 / p z_{0}+\Gamma$.

Denote

$$
\Gamma_{\varepsilon}^{k} \xlongequal{\text { def }} 1 / k z_{o}+\Gamma, \Gamma_{c}^{k} \xlongequal{\text { def }} \Gamma(k)
$$

Now in view of (3.8) for every $f \in \operatorname{Exp}_{\alpha}$ we have to find for each k a continuous linear functional μ_{α}^{k} on A_{α}^{k} with

$$
\begin{equation*}
f(z)=\left\langle\left(\mu_{\alpha}^{k}\right)_{\zeta}^{\prime} e^{i\langle\zeta, z\rangle}\right\rangle, \quad z \in \Gamma_{\alpha}^{p} \tag{3.9}
\end{equation*}
$$

Indeed, let $\widetilde{A}_{\alpha}^{\sim}$ be the closed subspace of A_{α}^{k} defined by completion of the set $\left\{\left.e^{i\langle\zeta, z\rangle}\right|_{z \in \Gamma_{\alpha}^{\alpha}} ^{p}\right\}$ in A_{α}^{k}, where p is determined by k according to (3.8), then the closed subspace \tilde{A}_{α} of A_{α}, defined by completion of the set L in A_{α}, can be written as

$$
\tilde{\mathrm{A}}_{\alpha}=\operatorname{ind}_{\mathrm{k} \rightarrow \infty} \lim _{\alpha} \tilde{\mathrm{A}}_{\alpha}^{\mathrm{k}}
$$

cf. $[20, \S 25.13]$ or [40, th. 7']. By (3.9) we have

$$
\left.\mu_{\alpha}^{\mathrm{k}+1}\right|_{\tilde{A}_{\alpha}^{\mathrm{k}}}=\left.\mu_{\alpha}^{\mathrm{k}}\right|_{\tilde{\mathrm{A}}_{\alpha}^{\mathrm{k}}}
$$

so that $\left\{\mu_{\alpha}^{k}\right\}_{k=1}^{\infty}$ determines an element $\tilde{\mu} \in \tilde{A}_{\alpha}^{\prime}$ with $F(\tilde{\mu})=f$. Finally, according to the Hahn-Banach theorem and to definition (3.7) there is a $\mu \in A_{\alpha}^{\prime}$ with $F(\mu)=f$.

As in the proof of the theorem with entire functions in [30] we try to extend f as a holomorphic function F in $2 n$ complex variables θ satisfying a certain growth condition and we apply the Paley-Wiener theorem of lemma 2.27. If we identify \mathbb{C}^{n} with $\mathbb{R}^{2 n}$, we will write Γ for both, cones in \mathbb{C}^{n} or in $\mathbb{R}^{2 n}$. Now assume that for each k we have found a function F_{α}^{k} of the complex
variables $\theta=\left(\theta^{1}, \theta^{2}\right) \in \mathbb{C}^{\mathrm{n}} \times \mathbb{C}^{\mathrm{n}}=\mathbb{C}^{2 \mathrm{n}}$ holomorphic in $\mathbb{R}^{2 \mathrm{n}}+\mathrm{i} \Gamma_{\alpha}^{\mathrm{k}+2}$, which satisfies for some $M_{k}>0$ and $m_{k}>0$

$$
\begin{gather*}
\left|F_{\alpha}^{k}\left(\theta^{1}, \theta^{2}\right)\right| \leq M_{k}(1+\|\theta\|)^{m_{k}}{\exp \left\{a_{(k+2)}^{\alpha}(\operatorname{Im} \theta)+1 /{ }_{k+2}\|\operatorname{Im} \theta\|\right\}}^{\operatorname{Im} \theta \in \Gamma_{\alpha}^{k+2} \subset \mathbb{R}^{2 n}} \tag{3.10}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathrm{F}_{\alpha}^{\mathrm{k}}(i z, z)=\mathrm{f}(z), z \in \Gamma_{\alpha}^{\mathrm{p}} \subset \mathbb{c}^{\mathrm{n}} \tag{3.11}
\end{equation*}
$$

where we take ${ }^{\alpha}{ }_{(k+2)}^{\alpha}$ different from a only if $\alpha=\varepsilon$ and a is not bounded on $\mathrm{pr} \Gamma$, in which case $a_{(k+2)}^{\varepsilon}(z) \stackrel{\text { def }}{=} a\left(z-1 /{ }_{k+2} z_{0}\right)$, cf. (3.2.i), (3.3) and (3.2.ii). Then F_{α}^{k} belongs to the space $H_{\alpha}(m, k+2)$ defined by (2.57). From lemma 2.27 it follows that F_{α}^{k} can be written as

$$
\begin{equation*}
F_{\alpha}^{k}(\theta)=\left\langle\left(\mu_{\alpha}^{k}\right){ }_{\eta, \xi^{\prime}} e^{i\left\langle\eta, \theta^{1}\right\rangle+i\left\langle\xi, \theta^{2}\right\rangle}\right\rangle, \quad \operatorname{Im} \theta \in \Gamma_{\alpha}^{p} \tag{3.12}
\end{equation*}
$$

for some $\mu_{\alpha}^{k} \in S_{\alpha}(m+2 n+2, k+1) '$, cf. (2.57). From (3.11) formula (3.9) follows and using [73, cond. HS ${ }_{1}$] for $\phi \in A_{\alpha}^{k}$ we get

$$
\begin{aligned}
& \begin{array}{l}
\left|<\mu_{\alpha}^{k}, \phi>\left|\leq K_{k}^{\prime \prime}\right| \ell\right| \leq m_{k}+2 n+2 \\
\end{array} \int_{\Omega_{\alpha}}\left|D^{\ell} \phi(\zeta)\right|^{2}\left\{\exp \frac{2}{k+1}\|\zeta\|\right\} \\
& \left.\quad(1+\|\zeta\|)^{2 m_{k}+4 n+4} d n d \xi\right]^{\frac{1}{2}} \leq \\
& \leq K_{k}^{\prime}|\ell| \leq m_{k}+2 n+2 \sup _{\zeta \in \Omega_{\alpha}^{k+1}}\left|D^{\ell} \phi(\zeta)\right| \exp 1 / k\|\zeta\| \leq \\
& \leq K_{k} \sup _{\zeta \in \Omega_{\alpha}}|\phi(\zeta)| \exp 1 / k\|\zeta\|
\end{aligned}
$$

because an ε-neighborhood of Ω_{α}^{k+1} is contained in Ω_{α}^{k} and for any m

$$
\begin{equation*}
A_{\alpha}^{k} \subset S_{\alpha}(m, k+1) \tag{3.13}
\end{equation*}
$$

Hence μ_{α}^{k} determines a continuous linear functional in $\left(A_{\alpha}^{k}\right)$ ' and (3.9) is valid, whenever we can find functions F_{α}^{k} satisfying (3.10) and (3.11) for $f \in \operatorname{Exp}_{\alpha}$. Then the map (3.6) would be surjective.

Since $\operatorname{Exp}_{\alpha}$ can also be written as projective limit of Hilbert spaces and since the function $a_{(k)}^{\alpha}$ may be changed into a_{k}^{α} given by (3.1.i) and (3.1.ii), cf. (3.2.i) and (3.2.ii), it is sufficient if (3.10) is satisfied with an L^{2}-norm instead of a sup-norm and with weight functions exp $-a_{k}^{\varepsilon}(z)$ instead of $\exp -a^{\varepsilon}{ }_{(k)}(z)$. Precisely, this means that (3.10) may be replaced by

$$
\mathbb{R}^{2 n} \int_{+i \operatorname{ch} r_{\alpha}^{k}} \frac{\left|F_{\alpha}^{k}\left(\theta^{1}, \theta^{2}\right)\right|^{2} \exp -2\left\{a_{k}^{\alpha}(\operatorname{Im} \theta)+1 / k\|\operatorname{Im} \theta\|\right\}}{(1+\|\theta\|)^{m_{k}}} d \lambda(\theta) \leq M_{k}
$$

for some (other) positive numbers M_{k} and m_{k} depending on k, where $\lambda(\theta)$ denotes the Lebesgue measure in $\mathbb{C}^{2 n^{k}}$. Then the extensions F_{α}^{k} of follow exactly from the following theorem, if we choose there $\Omega=\mathbb{R}^{2 n}+i \Gamma \subset \mathbb{C}^{2 n}$, $\Omega_{1}=\mathbb{R}^{2 n}+i \operatorname{ch} \Gamma_{\alpha}^{k}, \Omega_{2}=\mathbb{R}^{2 n}+i \operatorname{ch} \Gamma_{\alpha}^{k+1}, s_{1}=i \theta_{n+1}, \ldots, s_{n}=i \theta_{2 n}$ and $\phi(\theta)=$ $2 a(\operatorname{Im} \theta)+2 / k\|\operatorname{Im} \theta\|$ or in the $\alpha=\varepsilon$ case where moreover a is not bounded on $\operatorname{pr} \Gamma, \phi(\theta)=2 a\left(\operatorname{Im} \theta^{1}-\eta x_{0}, \operatorname{Im} \theta^{2}-\eta y_{0}\right)+2 / k\|\operatorname{Im} \theta\|$ with $\eta<\delta_{k}^{\varepsilon}, c f$. (3.1.i), so that these functions ϕ are convex, hence certainly plurisubharmonic.

THEOREM 3.1. Let a $\mathrm{n}-\mathrm{k}$ dimensional hyperplane in \mathbb{C}^{n} be given by the linear functions

$$
\begin{aligned}
\theta_{1} & =s_{1}\left(\theta_{k+1}, \ldots, \theta_{n}\right) \\
& \vdots \\
\theta_{k} & =s_{k}\left(\theta_{k+1}, \ldots, \theta_{n}\right)
\end{aligned}
$$

or shortly $\mathrm{w}=\mathrm{s}(\mathrm{z})$ with $\mathrm{w} \in \mathbb{C}^{\mathrm{k}}, \mathrm{z} \in \mathbb{C}^{\mathrm{n}-\mathrm{k}}$. Let $\Omega_{1} \subset \Omega_{2} \subset \Omega$ be pseudoconvex domains in \mathbb{C}^{n} such that an ε-neighborhood of Ω_{1}, with respect to closed polydiscs in the first k coordinates, is contained in Ω_{2}, i.e.,

$$
\begin{align*}
\left\{\theta \left|\left|\theta_{j}-\theta_{j}^{0}\right| \leq \varepsilon \text { for } j\right.\right. & =1, \ldots, k ; \theta_{j}=\theta_{j}^{0} \tag{3.14}\\
& \text { for } \left.j=k+1, \ldots, n ; \theta^{0} \in \Omega_{1}\right\} \subset \Omega_{2}
\end{align*}
$$

Furthermore, let ϕ be a plurisubharmonic function on Ω and for $\theta \in \Omega_{1}$ let

$$
\phi_{\varepsilon}(\theta) \stackrel{\text { def }}{=} \max \left\{\phi\left(\theta_{1}+w_{1}, \ldots, \theta_{k}+w_{k}, \theta_{k+1}, \ldots, \theta_{n}\right)| | w_{j} \mid \leq \varepsilon\right.
$$

Finally let $\Omega^{\prime} \xlongequal{\text { def }}\{\mathrm{z} \mid(\mathrm{s}(\mathrm{z}), \mathrm{z}) \in \Omega\} \subset \mathbb{C}^{\mathrm{n}-\mathrm{k}}$ and $\Omega_{\mathrm{j}}^{\prime} \xlongequal{\text { def }}\left\{\mathrm{z} \mid(\mathrm{s}(\mathrm{z}), \mathrm{z}) \in \Omega_{\mathrm{j}}\right\}$, $j=1,2$, and let ϕ^{\prime} be the function in Ω^{\prime} given $b y \phi^{\prime}(z) \xlongequal{\text { def }} \phi(s(z), z)$. Then for a given function f, holomorphic in Ω ', there exists a function F, holomorphic in Ω_{1}, which satisfies

$$
\begin{equation*}
F(s(z), z)=f(z), \quad z \in \Omega_{1}^{\prime} \tag{3.15}
\end{equation*}
$$

and for'some $\mathrm{K}>0$, depending only on k and $\mathrm{s}_{\mathrm{j}}, \mathrm{j}=1, \ldots, \mathrm{k}$,

$$
\begin{equation*}
\int_{\Omega_{1}} \frac{|F(\theta)|^{2} \exp -\phi_{\varepsilon}(\theta)}{\left(1+\|\theta\|^{2}\right)^{3 k}} d \lambda(\theta) \leq K \varepsilon^{-2 k} \int_{\Omega_{2}^{\prime}}|f(z)|^{2} \exp -\phi^{\prime}(z) d \lambda(z) \tag{3.16}
\end{equation*}
$$

(where $\lambda(\theta)$ and $\lambda(z)$ denote the Lebesgue measures in \mathbb{C}^{n} or $\mathbb{C}^{\mathrm{n}-\mathrm{k}}$ respectively), if f is such that the right hand side is finite. F depends besides on f also on Ω_{1}, ε and ϕ.

PROOF. Let ψ be a C^{2}-function in \mathbb{C} with values between 0 and 1 , which is equal to 1 in the disc with radius $1 / 2 \varepsilon$, which vanishes outside the disc with radius ε and which satisfies

$$
\left|\frac{\partial \psi}{\partial \overline{\bar{p}}}(p)\right| \leq \frac{K}{\varepsilon}, \quad p \in \mathbb{C}
$$

for some $K>0$. Define the $(0,1)-$ form $\psi^{\prime}(p) \xlongequal{\text { def }} \partial \psi / \partial \bar{p}(p) d \bar{p}$ and let for $j=1, \ldots, k$

$$
p_{j}=p_{j}\left(\theta_{j} ; z\right) \stackrel{\text { def }}{=} \theta_{j}-s_{j}(z), \quad z \in \mathbb{C}^{n-k}
$$

then $d \bar{p}_{j}=d \bar{\theta}_{j}-{ }_{\ell=\sum_{k}^{n}+1}^{n} \partial \bar{s}_{j} / \partial \bar{z}_{\ell} \quad d \bar{z}_{\ell}$. We define the function F as follows

$$
\begin{aligned}
& F(\theta) \stackrel{\text { def }}{=} \prod_{j=1}^{k} \psi\left(p_{j}\left(\theta_{j} ; \theta_{k+1}, \ldots, \theta_{n}\right)\right) f\left(\theta_{k+1}, \ldots, \theta_{n}\right)-\sum_{j=1}^{k} \sum_{m=j+1}^{k} \\
& \left.\quad \psi\left(p_{m}\left(\theta_{m} ; \theta_{k+1}, \ldots, \theta_{n}\right)\right)\right\} p_{j}\left(\theta_{j} ; \theta_{k+1}, \ldots, \theta_{n}\right) U_{j}\left(\theta_{1}, \ldots, \theta_{j} ; \theta_{k+1}, \ldots, \theta_{n}\right)
\end{aligned}
$$

for certain functions U_{j} of $n-k+j$ complex variables, where an empty product is defined as 1. For $\theta \in \Omega_{1} F(\theta)$ is defined, because then ${ }_{j=1}^{k} \psi\left(p_{j}\left(\theta_{j} ; z\right)\right)=0$ for $z \notin\left\{z\left|\exists w \in \mathbb{C}^{k},\left|w_{j}-s_{j}(z)\right|<\varepsilon\right.\right.$ for $j=1, \ldots, k$,
$\left.(w, z) \in \Omega_{1}\right\} \subset \Omega_{2}^{\prime}$. If $\theta_{j}=s_{j}\left(\theta_{k+1}, \ldots, \theta_{n}\right)$, i.e., if $p_{j}=0$, for $j=1, \ldots, k$, we get (3.15).

Now we will choose the functions U_{j} with a suitable bound such that F is holomorphic in Ω_{1}, that is such that $\bar{\partial} F=0$ there. First we write F in a different form, namely denote

$$
\theta[j] \stackrel{\text { def }}{=}\left(\theta_{1}, \ldots, \theta_{j} ; z\right) \in \mathbb{C}^{j+n-k}
$$

for $z \in \mathbb{C}^{\mathrm{n}-\mathrm{k}}$, let

$$
G_{0}(\theta[0])=G_{0}(z) \stackrel{\text { def }}{=} f(z)
$$

and let

$$
G_{j}(\theta[j]) \stackrel{\text { def }}{=} \psi\left(p_{j}\left(\theta_{j} ; z\right)\right) G_{j-1}(\theta[j-1])-p_{j}\left(\theta_{j} ; z\right) U_{j}(\theta[j])
$$

for $j=1, \ldots, k$ successively, then

$$
G_{k}=F
$$

G_{j} is defined in

$$
\begin{aligned}
& \Omega[j] \stackrel{\text { def }}{=}\left\{\theta [j] \left|\exists w \in \mathbb{C}^{k-j},\left|w_{m}-s_{m}(z)\right|<\varepsilon \text { for } m=j+1, \ldots, k\right.\right. \\
& \left.\quad \text { and }\left(\theta_{1}, \ldots, \theta_{j}, w_{j+1}, \ldots, w_{k} ; z\right) \in \Omega_{1}\right\} \subset \mathbb{C}^{j+n-k}
\end{aligned}
$$

if G_{j-1} is defined in $\Omega[j-1]$.
The sets $\Omega[j]$ are in general not pseudoconvex, so we will define pseudoconvex, open sets $\tilde{\Omega}[j]$ containing $\Omega[j]$, such that G_{j} is defined in $\tilde{\Omega}[j]$ if G_{j-1} is defined in $\tilde{\Omega}[j-1]$. For that purpose we first note that

$$
\Omega[j]=\left\{\theta[j] \mid\left(\theta_{1}, \ldots, \theta_{j}, s_{j+1}(z), \ldots, s_{k}(z) ; z\right) \in \Omega_{1}^{(j+1, \ldots, k)}\right\}
$$

where $\Omega_{1}^{(j+1, \ldots, k)}$ denotes the ε-neighborhood of Ω_{1} with respect to open polydiscs in the $\left(\theta_{j+1}, \ldots, \theta_{k}\right)$-space, i.e.,

$$
\begin{aligned}
\Omega_{1}^{(j+1, \ldots, k)} & \xlongequal{\text { def }}\left\{\left.\theta\right|_{m}=\theta_{m}^{0} \text { for } m=1, \ldots, j, k+1, \ldots, n\right. \text { and } \\
& \left.\left|\theta_{m}-\theta_{m}^{0}\right|<\varepsilon \text { for } m=j+1, \ldots, k \text { with } \theta^{0} \in \Omega_{1}\right\} .
\end{aligned}
$$

In general $\Omega_{1}^{(j+1, \ldots, k)}$ is not pseudoconvex and we denote by $H\left(\Omega^{(j+1, \ldots, k)}\right.$), the smallest, open, pseudoconvex set containing it. Then we define

$$
\tilde{\Omega}[j] \stackrel{\text { def }}{=}\left\{\theta[j] \mid\left(\theta_{1}, \ldots, \theta_{j}, s_{j+1}(z), \ldots, s_{k}(z) ; z\right) \in H\left(\Omega_{1}^{(j+1, \ldots, k)}\right)\right\}
$$

which according to [30, th. 2.5.14] is pseudoconvex. If we show that under the projection $\pi_{j}: \theta[j] \rightarrow \theta[j-1]$
(3.17) $\quad \pi_{j}\left(\tilde{\Omega}[j] \cap\left\{\theta[j]| | \theta_{j}-s_{j}(z) \mid<\varepsilon\right\}\right) \subset \tilde{\Omega}[j-1]$
the stated conjecture follows.
Now

$$
\begin{aligned}
& \pi_{j}\left(\tilde{\Omega}[j] \cap\left\{\theta[j]| | \theta_{j}-s_{j}(z) \mid<\varepsilon\right\}\right)=\left\{\theta[j-1] \mid\left(\theta_{1}, \ldots, \theta_{j-1},\right.\right. \\
&\left.s_{j}(z), \ldots, s_{k}(z) ; z\right) \in\left(H\left(\Omega_{1}^{(j+1, \ldots, k)}\right)\right)^{(j)}
\end{aligned}
$$

where $\Omega^{(j)}$ denotes the open ε-neighborhood of a domain Ω with respect to discs in the θ_{j}-plane. Let $\Omega_{(j)}$ denote the open ε-shrinking of Ω with respect to discs in the θ_{j}-plane, i.e.,

$$
\Omega_{(j)} \xlongequal{\text { def }}\left\{z \in \Omega \mid\left(z_{1}, \ldots, z_{j}+w_{j}, \ldots, z_{n}\right) \in \Omega \text { if }\left|w_{j}\right| \leq \varepsilon\right\}
$$

If Ω is pseudoconvex $\Omega^{(j)}$, in general, is not, but $\Omega_{(j)}$ is pseudoconvex (a similar proof to that of $\left[57\right.$, p.97, Satz 7] shows that $\Omega_{(j)}$ is pseudoconvex in every direction and according to [57, p.111-112 Korollar 14.1] $\Omega_{(j)}$ is pseudoconvex). Thus $\left.\left(H\left(\Omega_{1}^{(j}, \ldots, k\right)\right)\right)_{(j)}$ is pseudoconvex and clearly $\Omega_{1}^{(j+1, \ldots, k)} \subset\left(\Omega_{1}^{(j, \ldots, k)}\right)(j) \subset\left(H\left(\Omega_{1}^{(j, \ldots, k)}\right)\right)(j)$. Accordingly $H\left(\Omega_{1}^{(j+1, \ldots, k)}\right) \subset\left(H\left(\Omega_{1}^{(j, \ldots, k)}\right)\right)(j)$ and hence
(3.18) $\left.\left(H\left(\Omega_{1}^{(j+1, \ldots, k)}\right)\right)^{(j)} \subset\left(\left(H_{1}^{(j, \ldots, k)}\right)\right)(j)^{(j)} \subset \mathcal{H}_{1}^{(j, \ldots, k)}\right)$, which implies (3.17). Therefore, G_{j} is defined in $\tilde{\Omega}[j]$ if G_{j-1} is defined in $\tilde{\Omega}[j-1]$.

By (3.14) we have $\Omega[0] \subset \Omega_{2}^{\prime}$ and since Ω_{2}^{\prime} is pseudoconvex, we get $\tilde{\Omega}[0] \subset \Omega_{2}^{\prime}$. Therefore, G_{0} is holomorphic in $\tilde{\Omega}[0]$. Thus G_{j} is holomorphic in $\tilde{\Omega}[j]$ if G_{j-1} is holomorphic in $\tilde{\Omega}[j-1]$ and if U_{j} satisfies

$$
\begin{equation*}
\bar{\partial}_{j}(\theta[j])=g_{j}(\theta[j]) \stackrel{\text { def }}{=} G_{j-1}(\theta[j-1]) \psi^{\prime}\left(p_{j}\left(\theta_{j} ; z\right)\right) / p_{j}\left(\theta_{j} ; z\right) \tag{3.19}
\end{equation*}
$$

in $\tilde{\Omega}[j]$. Then F is holomorphic in $\tilde{\Omega}[k]=\Omega[k]=\Omega_{1}$. Since by assumption G_{j-1} is holomorphic in $\tilde{\Omega}[j-1], 1 / p$ is holomorphic cutside any neighborhood of zero, $\psi^{\prime}(p)=0$ in a neighborhood of zero and since $\bar{\partial} \psi^{\prime}\left(p_{j}\left(\theta_{j} ; z\right)\right)=\bar{\partial} \bar{\partial} \psi\left(p_{j}\left(\theta_{j} ; z\right)\right)=0$ (because ψ is a c^{2}-function), we get $\bar{\partial}_{j}=0$ in $\tilde{\Omega}[j]$. Furthermore, let u_{j} be the analytic map of \mathbb{C}^{j+n-k} into \mathbb{C}^{n} given by

$$
u_{j}(\theta[j]) \stackrel{\text { def }}{=}\left(\theta_{1}+w_{1}, \ldots, \theta_{j}+w_{j}, s_{j+1}(z), \ldots, s_{k}(z) ; z\right)
$$

for some $w \in \mathbb{C}^{j}$ with $\left|w_{m}\right| \leq \varepsilon, m=1, \ldots, j$. Then by (3.18) $u_{j}(\tilde{\Omega}[j]) c$ $c H\left(\Omega{ }_{1}^{(1, \ldots, k)}\right) \subset \Omega_{2}$ and therefore a function ϕ_{j} can be defined on $\tilde{\Omega}[j]$ by

$$
\phi_{j}(\theta[j]) \stackrel{\text { def }}{=} \max \left\{\phi\left(u_{j}(\theta[j])\right)| | w_{m} \mid \leq \varepsilon, m=1, \ldots, j\right\}
$$

For each $w \in \mathbb{C}^{j}$ with $\left|w_{m}\right| \leq \varepsilon$ for $m=1, \ldots, j$ the function $\phi\left(u_{j}(\theta[j])\right.$) is plurisubharmonic in $\tilde{\Omega}[j]$, cf. [30, th. 2.6 .4$]$ and if we show that ϕ_{j} is upper semicontinuous, it follows from [30, th. 1.6.2] that ϕ_{j} is plurisubharmonic in $\tilde{\Omega}[j]$. Assuming this for the moment we continue the proof of theorem 3.1.

All the conditions of $[30$, th. 4.4.2] are satisfied now and this theorem gives a solution U_{j} of (3.19) in $\tilde{\Omega}[j]$ with

$$
\begin{aligned}
& \int_{\tilde{\Omega}[j]}\left|U_{j}(\theta[j])\right|^{2} \frac{\exp -\phi_{j}(\theta[j])}{\left(1+\|\theta[j]\|^{2}\right)^{3 j-1}} d \lambda(\theta[j]) \leq \\
& \leq \int_{\tilde{\Omega}[j]}\left|g_{j}(\theta[j])\right|^{2} \frac{\exp -\phi_{j}(\theta[j])}{\left(1+\|\theta[j]\|^{2}\right)^{3(j-1)}} d \lambda(\theta[j]) .
\end{aligned}
$$

Next we estimate G_{j} in terms of G_{j-1}, using $(a+b)^{2} \leq 2 a^{2}+2 b^{2},\left|p_{j}\left(\theta_{j} ; z\right)\right|^{2} /$ $/\left(1+\|\theta[j]\|^{2}\right) \leq M$ depending on s_{j} and $\phi_{j}(\theta[j]) \geq \phi_{j-1}(\theta[j-1])$ for every θ_{j} with $\left|\theta_{j}-s_{j}(z)\right|<\varepsilon$:

$$
\int_{\tilde{\Omega}[j]}\left|G_{j}(\theta[j])\right|^{2} \frac{\exp -\phi_{j}(\theta[j])}{\left(1+\|\theta[j]\|^{2}\right)^{3 j}} d \lambda(\theta[j]) \leq
$$

$$
\begin{aligned}
& \leq 2 \pi \varepsilon^{2} \int_{\tilde{\Omega}[j-1]}\left|G_{j-1}(\theta[j-1])\right|^{2} \frac{\exp -\phi_{j-1}(\theta[j-1])}{\left(1+\|\theta[j-1]\|^{2}\right)^{3(j-1)}} \mathrm{d} \lambda(\theta[j-1])+ \\
& +2 M \int_{\tilde{\Omega}[j]}\left|g_{j}(\theta[j])\right|^{2} \frac{\exp -\phi_{j}(\theta[j])}{\left(1+\|\theta[j]\|^{2}\right)^{3(j-1)}} \mathrm{d} \lambda(\theta[j]) \leq \\
& \leq \frac{8 M \pi K^{2}+2 \pi \varepsilon^{4}}{\varepsilon^{2}} \int_{\widetilde{\Omega}[j-1]}\left|G_{j-1}(\theta[j-1])\right|^{2} \frac{\exp -\phi_{j-1}(\theta[j-1])}{\left(1+\|\theta[j-1]\|^{2}\right)^{3(j-1)}} d \lambda(\theta[j-1]) .
\end{aligned}
$$

Since $G_{k}=F, \tilde{\Omega}[k]=\Omega[k]=\Omega_{1}, G_{0}=f$ and $\tilde{\Omega}[0] \subset \Omega_{2}^{\prime}$, (3.16) follows.
We still have to show the following lemma.
LEMMA 3.2. Let ϕ be an upper semicontinuous function in a domain $\Omega \subset \mathbb{R}^{n}$. Let S be a compact neighborhood of the origin in \mathbb{R}^{n} and let $\Omega_{1} \subset \Omega$ be a domain such that $\left\{x \mid x=x_{1}+w, x_{1} \in \Omega_{1}, w \in S\right\} \subset \Omega$. Then the function ϕ_{1} on Ω_{1} given by

$$
\begin{equation*}
\phi_{1}(x) \stackrel{\text { def }}{=} \max _{w \in S} \phi(x+w) \tag{3.20}
\end{equation*}
$$

is upper semicontinuous.

PROOF. First we show that an upper semicontinuous function f in a domain U attains a maximum on a compact set $K \subset U$. Let $M \xlongequal{\text { def }} \sup _{x \in \mathbb{K}^{\prime}} f(x)$ and let $\left\{M_{k}\right\}_{k=1}^{\infty}$ be an increasing sequence with $M_{k} \uparrow M$. The sets $U_{k} \quad \begin{aligned} & K_{\text {def }} \\ & \left.x \in U \mid f(x)<M_{k}\right\}\end{aligned}$ are open and if there is no $x_{0} \in K$ with $f\left(x_{0}\right)=M$ we have $K \subset \bigcup_{k=1}^{\infty} U_{k}$. Since
 for $x \in K$, contrarily to the definition of M. Thus there is $x_{0} \in K$ with $f\left(x_{0}\right)=$ M. Hence definition (3.20) (and also the definiiton of ϕ_{ε} in theorem 3.1) is a good definition.

Now let $x_{0} \in\left\{x \mid \phi_{1}(x)<c\right\} \cap \Omega_{1}$, then $\phi\left(x_{0}+x\right)<c$ for $x \in$ S. Since ϕ is upper semicontinuous, there is an open neighborhood U of S with $\phi\left(x_{0}+x\right)<c$ for $x \in U$. In particular, since S is compact, there is $\varepsilon>0$ such that $\phi\left(x_{0}+x+w\right)<c$ for $w \in S$ and $\|x\|<\varepsilon$. Since an upper semicontinuous function attains a maximum on a compact set, it follows from (3.20) that the set $\left\{x \in \Omega_{1} \mid \phi_{1}(x)<c\right\}$ is open and thus ϕ_{1} is upper semicontinuous in Ω_{1}.

Applying theorem 3.1 for obtaining (3.10) and (3.11) we get the following result.

THEOREM 3.3. Let for $\alpha=\varepsilon$ and $\alpha=c$ the space A_{α} of holomorphic functions in the unbounded convex neighborhoods Ω_{α}^{k} of $\Omega(a, \Gamma)$ be defined by (3.5) and let $\operatorname{Exp}_{\alpha}$ be defined by (3.2.i) and (3.2.ii). Then the map (3.6) $F: A_{\alpha}^{\prime} \rightarrow \operatorname{Exp}_{\alpha}$, given by (3.7), is surjective for $\alpha \in\{\varepsilon, c\}$.
III.2. ANALYTIC FUNCTIONALS ON EXPONENTIALLY DECREASING TESTFUNCTIONS; FOURIER TRANSFORMATION AS AN INJECTION.

In this section we state the problem whose solution implies the injectivity of the map (3.6). In formula (3.13) we have embedded A_{α}^{k} into the space
(3.21) $S_{\alpha}^{k+1} \xlongequal[m]{\operatorname{proj} \lim _{m} S_{\alpha}(m, k+1)}$
cf. (2.57), which is a weakly compact projective sequence. Another possibility is to take instead of A_{α}^{k}, defined by (3.4), the subspace \hat{A}_{α}^{k} of S_{α}^{k} consisting of those elements $\phi \in S_{\alpha}^{k}$ with $\bar{\partial} \phi=0$, where $\bar{\partial}$ is the Cauchy-Riemann operator. Then any element $\mu^{k} \in\left(S_{\alpha}^{k}\right)$ ' that satisfies $\mu^{k}=\partial^{\mathrm{t}} \stackrel{\sigma}{\sigma}^{\mathrm{k}}$ for some $\vec{\sigma}^{\mathrm{k}} \in\left(\left(\mathrm{S}_{\alpha}^{\mathrm{k}}\right)^{\prime}\right)^{\mathrm{n}}$ vanishes on $\hat{\mathrm{A}}_{\alpha}^{\mathrm{k}}$. Therefore we define equivalent classes of sequences $\left\{\mu^{k}\right\}$ with $\mu^{k} \in\left(S_{\alpha}^{k}\right)^{\prime}$ where two sequences $\left\{\mu_{1}^{k}\right\}$ and $\left\{\mu_{2}^{k}\right\}$ are equivalent if for every k there is $\vec{\sigma}^{k} \in\left(\left(S_{\alpha}^{k}\right)^{\prime}\right)^{n}$ with $\mu_{1}^{k}-\mu_{2}^{k}=\bar{\partial}^{t} \vec{\sigma}^{\mathrm{k}}$. Since also

$$
\begin{equation*}
A_{\alpha}=\operatorname{ind}_{k \rightarrow \infty} \lim _{\alpha} A_{\alpha}^{\mathrm{k}} \tag{3.22}
\end{equation*}
$$

where A_{α} is defined by (3.5), the elements of A_{α}^{\prime} can be identified with the equivalent classes of such sequences $\left\{\mu^{k}\right\}$ that for any k and p there is $a \vec{\sigma}^{\vec{k}, p} \in\left(\left(S_{\alpha}^{m}\right)^{\prime}\right)^{n}$ with $\mu^{k}-\mu^{p}=\bar{\partial}^{t} \vec{\sigma}^{k}, p$ in $\left(S_{\alpha}^{m}\right)^{\prime}$ where $m=\min (k, p)$.

The space (3.22) is defined by a weakly compact, injective sequence because an open set in $\hat{A}_{\alpha}^{\hat{k}}$ is bounded in \hat{A}_{α}^{k+1} and hence relatively weakly compact, for the space (3.21) is reflexive, cf. [65, th. 36.3]. Therefore, cf. [40, th. 12] the strong dual of (3.22) equals

$$
\begin{equation*}
A_{\alpha}^{\prime}=\underset{k \rightarrow \infty}{\operatorname{proj}} \lim _{\alpha}\left(\hat{A}_{\alpha}^{\mathrm{k}}\right)^{\prime} . \tag{3.23}
\end{equation*}
$$

By [40, th. 13] we have

$$
\left(\hat{\mathrm{A}}_{\alpha}^{\mathrm{k}}\right)^{\prime}=\left(\mathrm{S}_{\alpha}^{\mathrm{k}}\right)^{\prime} /\left(\hat{\mathrm{A}}_{\alpha}^{\mathrm{k}}\right)^{0}
$$

where $\left(\hat{\mathrm{A}}_{\alpha}^{\mathrm{k}}\right)$) denotes the annihilator of $\hat{\mathrm{A}}_{\underline{\alpha}}^{\mathrm{k}}$. Furthermore, $\hat{\mathrm{A}}_{\alpha}^{\mathrm{k}}$ is the kernel of the continuous map $\bar{\partial}_{k} \stackrel{\text { def }}{=}\left(\partial / \partial \bar{\zeta}_{1}, \ldots, \partial / \partial \bar{\zeta}_{n}\right)$

$$
\bar{\partial}_{k}: s_{\alpha}^{k} \rightarrow\left(s_{\alpha}^{k}\right)^{n}
$$

so that according to [65, prop. 35.4] $\left(\hat{A}_{\alpha}^{k}\right)^{0}$ is the weak ${ }^{*}$ closure (cf. footnote on page 185) in ($\mathrm{s}_{\alpha}^{\mathrm{k}}$) ' of the range of the transposed map $\bar{\partial}_{k}^{t}$ of $\bar{\partial}_{k}$. Since S_{α}^{k} is reflexive the weak* closure of this range equals the closure in the strong topology, cf. [65, prop. 35.2]. We denote the closure in $\left(\mathrm{s}_{\alpha}^{\mathrm{k}}\right)$ ' of the range of the map

$$
T_{k} \xlongequal{\text { def }} \partial_{k}^{t}:\left(\left(S_{\alpha}^{k}\right)\right)^{n} \rightarrow\left(S_{\alpha}^{k}\right),
$$

by $\overline{R\left(T_{k}\right)}$. Hence we have

$$
\text { (3.24) } \quad\left(\hat{A}_{\alpha}^{\mathrm{k}}\right)^{\prime}=\left(\mathrm{S}_{\alpha}^{\mathrm{k}}\right)^{\prime} / \overline{\mathrm{R}\left(\mathrm{~T}_{\mathrm{k}}\right)} \text {. }
$$

According to lemma 2.27 for every k there is $a p>k$ such that the following maps are continuous
(3.25) $\left\{\begin{array}{l}F:\left(S_{\alpha}^{\mathrm{p}}\right)^{\prime} \rightarrow \mathrm{H}_{\alpha}^{\mathrm{k}} \\ F^{-1}: \mathrm{H}_{\alpha}^{\mathrm{k}+1} \rightarrow\left(\mathrm{~S}_{\alpha}^{\mathrm{k}}\right)^{\prime},\end{array}\right.$
where

$$
H_{\alpha}^{k} \xlongequal{\text { def }} \underset{m \rightarrow \infty}{\operatorname{ind} \lim _{\alpha}}(m, k)
$$

with $H_{\alpha}(m, k)$ defined by (2.57), and where F is defined by a formula like (3.12). Let $P \xlongequal{\text { def }}\left(\theta_{1}-i \theta_{n+1}, \ldots, \theta_{n}-i \theta_{2 n}\right)$ and let $P \cdot \vec{H}_{\alpha}^{k}$ be the subspace of H_{α}^{k} consisting of functions F which can be written as

$$
F(\theta)=\sum_{j=1}^{n}\left(\theta_{j}-i \theta_{n+j}\right) G_{j}(\theta)
$$

with $G_{j} \in H_{\alpha}^{k}, j=1, \ldots, n$. Then
(3.26)

$$
F: \overline{R\left(T_{p}\right)} \rightarrow \overline{P \cdot \vec{H}_{\alpha}^{k}}, \quad F^{-1}: \overline{P \cdot \vec{H}_{\alpha}^{k+1}} \rightarrow \overline{R\left(T_{k}\right)} .
$$

Now by (3.23), (3.24), (3.25) and (3.26) the maps (3.25) induce an isomorphism F between

$$
\begin{equation*}
F: A_{\alpha}^{\prime} \rightarrow \underset{k \rightarrow \infty}{\operatorname{proj} \lim _{k}\left(\mathrm{H}_{\alpha}^{\mathrm{k}} / \overline{\mathrm{P} \cdot \overrightarrow{\mathrm{H}}_{\alpha}^{\mathrm{k}}}\right)} \tag{3.27}
\end{equation*}
$$

Furthermore, for each k there is $a p>k$ such that

$$
\overline{\mathrm{P} \cdot \overrightarrow{\mathrm{H}}_{\alpha}^{\mathrm{p}}} \subset \mathrm{P} \cdot \overrightarrow{\mathrm{H}}_{\alpha}^{\mathrm{k}}
$$

is a continuous injection, for let $F_{\beta} \in P \cdot{ }_{\mathrm{H}}^{\alpha} \mathrm{p}$ be a Cauchy net converging to $F \in H_{\alpha}^{p}$. Then $F_{\beta}=P \cdot \vec{G}_{\beta}$ with $\vec{G}_{\beta} \in\left(H_{\alpha}^{p}\right)^{\beta}$, so that F_{β}, and hence F, vanishes on the set

$$
U_{\alpha}^{p} \xlongequal{\text { def }}\left\{\mathbb{R}^{2 n}+i \Gamma_{\alpha}^{p}\right\} n\left\{\theta \mid \theta_{j}-i \theta_{n+j}=0, j=1, \ldots, n\right\}
$$

The inclusion follows if we have solved the following problem.
PROBLEM 3.1. For each k there is $a p>k$ such that a function $F \in H_{\alpha}^{p}$ vanishing on V_{α}^{p} can be written as

$$
F(\theta)=P \cdot \vec{G}(\theta), \quad \theta \in \mathbb{R}^{2 n}+i \Gamma_{\alpha}^{k}
$$

with $\vec{G} \in\left(H_{\alpha}^{k}\right)^{n}$.
Assuming that this problem has been solved we have the following commutative diagram of continuous maps

;
here the upper spaces are Hausdorff spaces, but in the lower space we do not have to bother about the closure. Anyhow, this implies that

$$
\begin{equation*}
\mathrm{H}_{\alpha} \xlongequal{\text { def }} \underset{\mathrm{k} \rightarrow \infty}{\operatorname{proj}} \lim \left(\mathrm{H}_{\alpha}^{\mathrm{k}} / \overline{\mathrm{P} \cdot \overrightarrow{\mathrm{H}}_{\alpha}^{\mathrm{k}}}\right)=\underset{\mathrm{k} \rightarrow \infty}{\operatorname{proj}} \lim \left(\mathrm{H}_{\alpha}^{\mathrm{k}} / \mathrm{P} \cdot \overrightarrow{\mathrm{H}}_{\alpha}^{\mathrm{k}}\right) \tag{3.28}
\end{equation*}
$$

and this is always a Hausdorff space. Its elements can be described as follows, cf. [20, §6.2]: define equivalence classes of sequences $\left\{\mathrm{F}^{\mathrm{k}}\right.$ \} with $\mathrm{F}^{\mathrm{k}} \in \mathrm{H}_{\alpha}{ }^{\mathrm{k}}$, where $\left\{F^{k}\right\} \sim\left\{H^{k}\right\}$ if $F^{k}(\theta)-H^{k}(\theta)=P(\theta) \cdot \vec{G}^{k}(\theta)$ for $\theta \in \mathbb{R}^{2 n}+i \Gamma_{\alpha}^{k}$ and for $\vec{G}^{k} \epsilon \vec{H}_{\alpha} \mathrm{k}$; then the elements of H_{α} are the equivalence classes of such sequences $\left\{F^{k}\right\}$ that for every k and p there is $a \vec{G}^{k}, p \in \vec{H}_{\alpha}^{m}$ with
(3.29) $\quad F^{k}(\theta)-F^{p}(\theta)=P(\theta) \cdot G^{k}, P(\theta), \quad \theta \in \mathbb{R}^{2 n}+i \Gamma_{\alpha^{\prime}}^{m} \quad m=\min (k, p)$.

We have to solve problem 3.1 anyway, so we don't pay attention to the closure of $\mathrm{P} \cdot \overrightarrow{\mathrm{H}}_{\alpha}^{\mathrm{k}}$ in $\mathrm{H}_{\alpha}^{\mathrm{k}}$ and (3.28) is valid. Since $\mathrm{P} \cdot \overrightarrow{\mathrm{H}}_{\alpha}^{\mathrm{k}}$ vanishes on V_{α}^{k} we can define continuous restriction maps I^{k}

$$
I^{\mathrm{k}}: \mathrm{H}_{\alpha}^{\mathrm{k}} / \mathrm{P} \cdot \overrightarrow{\mathrm{H}}_{\alpha}^{\mathrm{k}} \rightarrow \mathrm{H}_{\alpha}^{\mathrm{k}} \mid V_{\alpha}^{\mathrm{k}}
$$

Here $H_{\alpha}^{k} \mid V_{\alpha}^{k}$ is the space of restrictions of functions in H_{α}^{k} to V_{α}^{k} with the topology induced by H_{α}^{k}. Then I^{k} is surjective. Furthermore, there is a natural continuous injection J^{k}

$$
J^{k}: H_{\alpha}^{k} \mid V_{\alpha}^{k} \rightarrow H_{\infty}\left(\Gamma_{\alpha}^{k} ; a_{(k)}^{\alpha}(z)+1 /{ }_{k-1}^{\|z\|)}\right.
$$

defined by $\left(J^{k} F\right)(z) \stackrel{\text { def }}{=} F(i z, z)$. Hence we can complete (3.27) as

$$
\begin{equation*}
A_{\alpha}^{\prime} \xrightarrow{F} H_{\alpha} \xrightarrow{I} \underset{k \rightarrow \infty}{\operatorname{proj}} \lim _{\alpha}\left(H_{\alpha}^{k} \mid V_{\alpha}^{k}\right) \xrightarrow{J} \operatorname{Exp}_{\alpha^{\prime}} \tag{3.30}
\end{equation*}
$$

so that JoI \circ F is the map F defined by (3.7). Indeed, by (3.29) if $\left\{F^{k}\right\} \in H_{\alpha}$ then for $p \geq k$ and for $\theta \in V_{\alpha}^{k}$ we have $F^{p}(\theta)=F^{k}(\theta)$. Hence the elements of $\underset{k}{\operatorname{proj}_{\rightarrow} \lim _{\infty}\left(H_{\alpha}^{k} \mid V_{\alpha}^{k}\right) \text { are just those functions } f \text { on }, ~}$

$$
V \stackrel{\text { def }}{=} U_{k}^{k} V_{\alpha}^{k}=\left\{\mathbb{R}^{2 n}+i \Gamma\right\} \cap\left\{\theta \mid \theta_{j}-i \theta_{n+j}=0, j=1, \ldots, n\right\}
$$

such that for any k there is a $F^{k} \in H_{\alpha}^{k}$ with
(3.31) $\quad F^{k}\left(\theta^{1}, \theta^{2}\right)=f\left(\theta^{2}\right), \quad\left(\theta^{1}, \theta^{2}\right) \in V_{\alpha}^{k}$.

Thus J is defined similarly to J^{k} and J is injective.

Theorem 3.1 shows that the map J is surjective. However, the by $\left\{I^{k}\right\}$ induced map I is a priori not surjective, although each I^{k} is surjective. We have the following commutative diagram

where $\alpha_{p, k}$ and $\beta_{p, k}$ denote the restriction maps. Hence the range of I in $\underset{k \rightarrow \infty}{\operatorname{proj}} \lim _{\substack{p}}\left(H_{\alpha}^{k} \mid V_{\alpha}^{k}\right)$ consists of those f on V which, besides (3.31) for $F^{k} \in H_{\alpha}^{k}$, moreover satisfy (3.29). The solution of problem 3.1 implies that I is injective and surjective (actually it says that $\left.\operatorname{Ker} I^{p} \subset \operatorname{Ker} \alpha_{p, k}\right)^{1)}$.
V is defined as the simultaneous zero-set of the polynomials $p_{j} \stackrel{\text { def }}{=} \theta_{j}-i \theta_{n+j}, j=1, \ldots, n$. These polynomials generate a prime ideal in any point of a pseudoconvex, open set $\Omega \subset \mathbb{C}^{2 n}$. Therefore, according to Hilbert's Nullstellensatz, see [27, ch.III. A], every holomorphic function f in Ω vanishing on V can locally, that is in a neighborhood ω of any point in Ω, be written as

$$
\begin{equation*}
f=p \cdot \vec{g}_{\omega^{\prime}} \quad \vec{g}_{\omega} \in A(\omega)^{n} \tag{3.32}
\end{equation*}
$$

where $A(\omega)$ is the set of holomorphic functions in ω. With the aid of Cartan's theorem B it can be shown, see for example [27] or [30, th. 7.2.9 \& th. 7.4.3],

[^3]that $f \in A(\Omega)$ satisfying (3.32) can be written globally as
$$
f=P \cdot \vec{g}, \quad \vec{g} \in A(\Omega)^{n}
$$

Problem 3.1 asks for a function \vec{G} which satisfies almost the same growth conditions as F, so it is the analogue with estimates of the above mentioned problem. If $\Omega=\mathbb{C}^{n}$ this problem is solved in [30, th. 7.6.11] and in chapter VI we will perform the same method of proof, but there we have to take care of the estimates near the boundary of Ω. For the general case, as in theorem 3.1, all conditions, besides the one that ϕ is plurisubharmonic in the density $\exp -\phi$, will be discussed precisely in the next chapter.

Since problem 3.1 implies the injectivitv of F, its definition (3.7) implies the following corollary.

COROLLARY 3.4. The set $\left\{e^{i\langle\zeta, z\rangle} \mid z \in \Gamma\right\}$ is dense in the spaces A_{α} given by (3.5) for $\alpha=\varepsilon$ or $\alpha=c$.

REMARK. Since F is surjective, $F^{t}: \operatorname{Exp}_{\alpha}^{\prime} \rightarrow A_{\alpha}$ is injective, where F^{t} is given by

$$
\left(F^{t} \sigma\right)(\zeta)=\left\langle\sigma_{z}, \mathrm{e}^{i\langle\zeta, z\rangle}\right\rangle, \quad \sigma \in \operatorname{Exp}_{\alpha}^{\prime},
$$

because for $\mu \in A_{\alpha}^{\prime}$

$$
\left\langle\mu, F_{\sigma\rangle}^{t}=\langle\sigma, F \mu\rangle=\left\langle\sigma_{z},\left\langle\mu_{\zeta^{\prime}} e^{i\langle\zeta, z\rangle}\right\rangle\right\rangle=\left\langle\mu_{\zeta^{\prime}}\left\langle\sigma_{z}, e^{i\langle\zeta, z\rangle}\right\rangle\right\rangle\right.
$$

by Fubini's theorem. Hence also the set $\left\{\mathrm{e}^{\mathrm{i}\langle\zeta, z\rangle} \mid \zeta \in \Omega(a, \Gamma)\right\}$ is dense in $\operatorname{Exp}_{\alpha}$ for both $\alpha=\varepsilon$ and $\alpha=c$.

So finally, we have obtained the following theorem.

THEOREM 3.5. The map F of theorem 3.3 is also injective.

REMARK. Theorems 3.3 and 3.5 state that the map (3.6) is bijective. This fact can be considered as a generalization of the Ehrenpreis-Martineau theorem, which gives the isomorphism (3.6) for $\alpha=\varepsilon$ if Ω is compact and $\Gamma=\mathbb{C}^{\mathrm{n}}$, just as the Paley-Wiener theorems of chapter II, cf. also $[68, \S 26.4$, th. 2], can be considered as a generalization of the original Paley-WienerSchwartz theorem for distributions with compact support.
III.3. PALEY-WIENER THEOREMS FOR FOURIER HYPERFUNCTIONS.

In this section we treat the particular case of theorems 3.3 and 3.5 where $\Gamma=T^{C}$ with C an open, convex cone in \mathbb{R}^{n}. Again as a particular case of this situation we may consider functions $a(z)$ which are only functions of $y=\operatorname{Im} z$. Then $\Omega\left(a, T^{C}\right)$ is a subset of \mathbb{R}_{n} and a function in Exp determines a Fourier hyperfunction.

Let $\left(T^{C}\right)_{k}$ and $\left(T^{C}\right)(k)$ be given by (2.50) and (2.51), respectively. If in (3.2.i), (3.2.ii) and (3.5) $\Gamma=T^{C}$, we get the spaces

$$
\left\{\begin{array}{l}
\operatorname{Exp}_{\varepsilon}\left[a(z), T^{C}\right] \xlongequal{\text { def }} \underset{k \rightarrow \infty}{\operatorname{proj}} \lim _{\infty}\left(T^{1 / k y_{0}+C} ; a\left(x, Y-1 /{ }_{2 k} Y_{0}\right)+1 / k\|z\|\right) \tag{3.33}\\
A_{\varepsilon}\left(a, T^{C}\right) \stackrel{\text { def }}{=} \underset{k \rightarrow \infty}{i n d} \lim _{\infty}\left(\Omega\left(a+1 / k, T^{C}\right) ;-1 / k\|\zeta\|\right)
\end{array}\right.
$$

where $y_{0} \in \operatorname{prC} C_{1}$ is fixed, and

$$
\left\{\begin{array}{l}
\operatorname{Exp}_{C}\left[a(z), T^{C}\right] \xlongequal{\text { def }} \underset{k \rightarrow \infty}{\operatorname{proj} \lim _{\infty}\left(\left(T^{C}\right)(k) ; a(z)+1 / k\|z\|\right)} \tag{3.34}\\
A_{C}\left(a, T^{C}\right) \xlongequal{\text { def }} \underset{k \rightarrow \infty}{\operatorname{ind} \lim _{\infty}\left(\Omega\left(a+1 / k,\left(T^{C}\right)_{k}\right) ;-1 / k\|\zeta\|\right) .}
\end{array}\right.
$$

By theorems 3.3 and 3.5 , in both pairs of spaces Fourier transformation is an isomorphism from the strong dual of the second space onto the first space. Similarly, the same statement can be derived for the following pair of spaces, where we have a mixture of the two foregoing cases, namely analytic functionals carried by $\Omega\left(a, T^{C}\right)$ with respect to ε-neighborhoods in the imaginary directions and to conic neighborhoods in the real directions:

Thus we obtain the following theorem.

THEOREM 3.6. In the pairs of spaces (3.33), (3.34) and (3.35) the strong dual of the second space is topologically isomorphic to the first space by means of the map F defined by (3.7).

The pair (3.33) will be used in chapter v to derive the Newton interpolation series for functions in $\operatorname{Exp}_{\varepsilon}\left[a(z), T^{C}\right]$, if $\lim a(x, y)$ as $y \rightarrow 0, y \in C_{k}$
exists for:every k, i.e., if $\Omega\left(a, T^{C}\right)$ is bounded in the imaginary directions. If the convex, homogeneous function a is only a function of $y \in C, i . e .$, if $a(z)=a(y)$ then

$$
\Omega\left(a, T^{C}\right) \subset\{\zeta \mid \zeta=\xi+i n, \eta=0\}
$$

In that case for each k every function f in $\operatorname{Exp}_{\varepsilon}\left[a(y), T^{C}\right]$ or in $\operatorname{Exp} \varepsilon, c\left[a(y), T^{C}\right]$ satisfies

$$
|f(z)| \leq K_{k} \exp 1 / k\left\|_{x}\right\|, \quad y \in C_{k}, \quad 1 / k \leq\|Y\| \leq k
$$

for some positive constants K_{k} depending on k and f. Hence it determines a Fourier hyperfunction, see [38]. Then theorem 3.6 is the Paley-Wiener theorem for Fourier hyperfunctions:
i. The elements of $\operatorname{Exp}_{\varepsilon, c}\left[a(y), T^{C}\right]$ are just the Fourier hyperfunctions which are the Fourier transforms of the Fourier hyperfunctions with support in $\Omega\left(a, T^{C}\right)$, where the support is defined as the smallest carrier with respect to conic neighborhoods $\Omega\left(a+1 / k, T C_{k}\right)$ in the real directions, which is done in [38].
ii. The elements of $\operatorname{Exp}\left[a(y), T^{C}\right]$ may be considered as the Fourier transforms of the Fourier hyperfunctions with support in $\Omega\left(a, T{ }^{C}\right)$, where this kind of support with respect to ε-neighborhoods is defined by means of definition 2.6.
iii. In [53] analytic functionals carried by real sets with respect to conic neighborhoods in \mathbb{C}^{n} are mentioned. They are called Fourier hyperfunctions of the second kind and they seem to be more useful for describing quantum field theory. In this view the elements of $\operatorname{Exp}_{C}\left[a(y), T{ }^{C}\right]$ are the Fourier hyperfunctions of the second kind which are the Fourier transforms of the Fourier hyperfunctions of the second kind with support. in the set $\Omega\left(a, T^{C}\right)$, where this kind of support is defined with the aid of conic neighborhoods.
III.4. ANALYTIC FUNCTIONALS IN $Z_{\{M\} ;}$ FOURIER TRANSFORMATION AS A BIJECTION; PALEY-WIENER THEOREMS FOR ULTRADISTRIBUTIONS OF ROUMIEU TYPE.

In this section we shall mention the problems which have to be solved in order that the Ehrenpreis-Martineau theorem can be extended to analytic functionals in $Z_{\{M\}}^{\prime}$ carried by unbounded, convex sets with respect to various
classes of neighborhoods. Now we no longer exhaust an open, pseudoconvex set Γ by sets $\left\{\Gamma_{\alpha}^{k}\right\}_{k=1}^{\infty}$ such that an ε-neighborhood of Γ_{α}^{k} is contained in Γ_{α}^{k+1} as in problem 3.1. In this section we shall get problems similar to theorem 3.1 and problem 3.1, but with estimates extending to the boundary of the domain. As in section II.2.iii we require that M is a coñtinuous, increasing, piecewise differentiable function on $[0, \infty)$ with $M(0)=0, M(\infty)=\infty$, such that M^{\prime} is strictly decreasing. Furthermore, in this and the following section we only require that (2.31) is valid. Then M^{*}, defined by (2.28), is a convex function on $(0, \infty)$ with $M^{*}(0)=\infty$ and $M^{*}(\infty)=0$, satisfying (2.29) and (2.31). Briefly, the following formula's hold:

$$
\begin{align*}
& M^{*}(\sigma)=\max _{\rho>0}\{M(\rho)-\alpha \rho\} \tag{3.36}\\
& M(\rho)=\min _{\sigma>0}\left\{M^{*}(\sigma)+\rho \sigma\right\} ; \tag{3.37}\\
& \dot{\forall t>0, \forall m>0, \exists t^{\prime} \geq t, \exists K>0 \text { and } \forall t^{\prime}>0, \forall m>0, \exists t \text { with }} \begin{array}{l}
0<t \leq t^{\prime}, \exists K>0
\end{array}
\end{align*}
$$

such that for $\rho \geq 1$ and $0<\sigma \leq 1$

$$
\left\{\begin{array}{l}
M\left(\rho / t^{\prime}\right)+m \log \rho \leq M(\rho / t)+K \tag{3.38}\\
M^{*}(i: \prime \sigma)+m \log 1 / \sigma \leq M^{*}(t \sigma)+K
\end{array}\right.
$$

We shall fi:st describe the analogue of sections III. 1 and III.2, but now with $\Gamma=T^{C}$.'.his will yield the most general setting of the problems to be solved. Next we shall state the Paley-Wiener type theorems and, for arbitrary cones Γ, the Ehrenpreis-Martineau theorem. Let C be an open, convex cone in \mathbb{R}^{n}, let for $\alpha=\varepsilon$ and $\alpha=c\left(T^{C}\right)_{\alpha}^{k}$ be given by (2.52.i) and (2.52.ii), Ω_{α}^{k} by (2.48.i) with Γ replaced by T^{C} and by (2.48.ii) with Γ_{k} replaced by $\left(T^{C}\right)_{k}$, defined in (2.50), and let a_{α}^{k} be given by (2.54.i) and (2.54.ii), respectively. Then we define the following pair of spaces

$$
\left\{\begin{array}{l}
\left.\operatorname{Exp}_{\alpha}\left[a, T^{C} ; M^{*}\right] \xlongequal{\text { def }} \underset{k \rightarrow \infty}{\operatorname{proj}} \lim _{k \infty} H_{\infty}\left(T^{C}\right)_{\alpha}^{k} ; a_{\alpha}^{k}(z)+1 / k\|z\|+M^{*}(k\|Y\|)\right) \tag{3.39}\\
A_{\alpha}\left(a, T^{C} ; M\right) \xlongequal[=]{\text { def }} \underset{k \rightarrow \infty}{\text { ind } \lim _{k}\left(\Omega_{\alpha}^{k} ;-M(\|\xi\| / k)+k\|\eta\|\right) .}
\end{array}\right.
$$

By lemma 2.17 each $f \in \operatorname{Exp}_{\alpha}\left[a, T^{C} ; M^{*}\right]$ determines an ultradistribution of Roumieu type.

As in section III. 2 formula (3.21), here too we introduce an S-space of $C^{\infty}-$ functions. In this section for $\alpha \epsilon\{\varepsilon, c\}$ we denote by S_{α}^{k} the space

$$
\mathrm{S}_{\alpha}^{\mathrm{k}} \stackrel{\text { def }}{=} \underset{\mathrm{m} \rightarrow \infty}{ } \operatorname{proj}_{\alpha} \lim _{\alpha}(\mathrm{m}, \mathrm{k}, \mathrm{k})
$$

where $S_{\alpha}(m, k, k)$ is defined by (2.56) and again we write the strong dual of $A_{\alpha}\left(a, T^{C} ; M\right)$ as

$$
A_{\alpha}\left(a, T^{C} ; M\right)^{\prime}=\underset{k \rightarrow \infty}{\operatorname{proj}} \lim _{k}\left(S_{\alpha}^{k}\right)^{\prime} / \overline{R\left(T_{k}\right)}
$$

where T_{k} is the transposed of the Cauchy-Riemann operator. Let us now denote by H_{α} the space

$$
\mathrm{H}_{\alpha} \stackrel{\text { def }}{=} \underset{k \rightarrow \infty}{ } \operatorname{proj}_{\mathrm{k}} \lim _{\alpha}\left(\mathrm{H}_{\alpha}^{\mathrm{k}} \overline{\mathrm{P} \cdot \mathrm{H}_{\alpha}^{\mathrm{k}}}\right)
$$

where $H_{\alpha}^{k} \xlongequal{\text { def }} i_{m} \lim _{\infty} \lim _{\alpha}(m, k, k)$, cf. (2.56). Then by lemma 2.27 the Fourier transformation F is an isomorphism

$$
F: A_{\alpha}\left(a, T^{C} ; M\right)^{\prime} \rightarrow H_{\alpha}
$$

As before, the maps I and J are introduced

$$
\mathrm{H}_{\alpha} \xrightarrow{\mathrm{I}} \operatorname{proj}_{\mathrm{k}} \lim _{\rightarrow \infty}\left(\mathrm{H}_{\alpha}^{\mathrm{k}} \mid V_{\alpha}^{k}\right) \xrightarrow{\mathrm{J}} \operatorname{Exp}_{\alpha}\left[a, T^{C} ; M^{*}\right]
$$

We shall investigate which problems have to be solved in order that I is bijective and J surjective.

The bijectivity of I will follow from a problem similar to problem 3.1. It asks for a function $\vec{g} \in A(\Omega)^{n}$ with $p \cdot \vec{g}=f$ if (3.32) is satisfied, where now \vec{g} is holomorphic in the same pseudoconvex domain Ω as f and satisfies some estimates. This is only possible if some conditions are imposed on the densities in the estimates. Therefore, we have to introduce the following concepts. Let Ω be a pseudoconvex domain and let ϕ be a function in Ω such that for each N there exists a plurisubharmonic function $\tilde{\phi}_{N}$ in Ω which satisfies

$$
\begin{align*}
& K+\tilde{\phi}_{N}(z) \geq \phi_{N}(z) \stackrel{\text { def }}{=} \max \left\{\phi\left(z^{\prime}\right)+N \log \left(1+\left\|z^{\prime}\right\|^{2}\right)+\log \left(1+d\left(z^{\prime}, \Omega^{c}\right)-N\right) \mid\right. \tag{3.40}\\
&\left.\mid\left\|z-z^{\prime}\right\| \leq \min \left[N,\left(e^{N}-1\right) d\left(z, \Omega^{c}\right),\left(e^{N}-1\right) d\left(z^{\prime}, \Omega^{c}\right)\right]\right\}
\end{align*}
$$

for some $K>0$ depending on ϕ and N, where $d\left(z, \Omega^{C}\right)$ denotes the distance from z to the complement of Ω. Furthermore, we define the plurisubharmonic function $\hat{\phi}$ by
(3.41) $\hat{\phi}(z) \stackrel{\text { def }}{=} \tilde{\phi}_{N}(z)+N \log \left(1+\|z\|^{2}\right)+\log \left(1+d\left(z, \Omega^{c}\right)^{-N}\right)$.

Then $\hat{\phi}$ satisfies the following inequalities

$$
\phi \leq \phi_{N} \leq \tilde{\phi}_{N}+K \leq \tilde{\phi}+K
$$

Let

$$
\psi^{k, m}(\theta) \stackrel{\text { def }}{=}{ }^{*}\left(k\left\|\operatorname{Im} \theta^{2}\right\|\right)+a_{\alpha}^{k}(\operatorname{Im} \theta)+1 / k\|\operatorname{Im} \theta\|+m \log \left(1+\|\theta\|^{2}\right)
$$

if $\alpha=c$ for $\theta \in T\left(\left(T^{C}\right) \frac{k}{c}\right.$) or if $\alpha=\varepsilon$ for $\theta \in T\left(\left(T_{C}^{C}\right)_{\varepsilon}^{k}\right)$, in which case we complete $\psi^{k, m}$ arbitrarily to the remaining of $T\left(T^{C}\right), c f$. (2.53) for the definition of $T(B)$. Then in virtue of (3.38) for each q and N there are $p>q$ and $K_{q}>0$ such that for $\alpha=\varepsilon$ or $\alpha=c$

$$
\left(\psi^{\mathrm{p}, \mathrm{~m}}\right)_{N}(\theta) \leq \psi^{\mathrm{q}, \mathrm{~m}+\mathrm{N}}+\mathrm{K}_{\mathrm{q}^{\prime}} \quad \theta \in \mathrm{T}\left(\left(\mathrm{~T}^{\mathrm{C}}\right)_{\alpha}^{\mathrm{q}}\right)
$$

For a fixed $\xi_{0} \in \operatorname{prc}{ }^{*}$ there is $\delta>0$ such that $\delta\|y\| \leq\left\langle\xi_{0}, y>\leq\|y\|\right.$ for $y \in C$ and therefore, for each k there is a $q>k$ with

$$
M^{*}\left(q<\xi_{0}, y>\right) \leq M^{*}(k\|y\|), \quad y \in C
$$

But now $M^{*}\left(q<\xi_{0}, \operatorname{Im} \theta^{2}>\right)$ is convex, hence plurisubharmonic, in $T\left(T^{C}\right)$. Hence for each k there is a $p>k$ such that by a suitable choice of $\left(\psi^{p, I n}\right)_{N}$ we get

$$
\begin{equation*}
\psi^{p, m} \leq \psi^{k, m+2 N} \tag{3.42}
\end{equation*}
$$

in $T\left(\left(T^{C}\right)_{\alpha}^{k}\right)$.
In the $\alpha=\varepsilon$ case an extra complication arises by the fact that the domain $T\left(\left(T^{C}\right)_{\varepsilon}^{k}\right)$ is not pseudoconvex, because by Bochners theorem its pseudoconvex hull $H\left(T\left(\left(T^{C}\right){ }_{\varepsilon}^{k}\right)\right.$) equals $T\left(T^{C}\right)$. Hence every $F \in H_{\varepsilon}^{k}$ is holomorphic in $T\left(T^{C}\right)$ and if F vanishes on V_{ε}^{k}, it vanishes on V. Each $F \in H_{\varepsilon}^{p}$ satisfies for some m and K

$$
\begin{array}{ll}
|F(\theta)| \leq K \exp \psi^{p, m}(\theta), & \theta \in T\left(\left(T^{C}\right)_{\varepsilon}^{p}\right) \\
|F(\theta)| \leq \exp (\log |F(\theta)|), & \theta \in T\left(T^{C}\right) .
\end{array}
$$

Then with $\psi(\theta) \xlongequal{\text { def }} \max \left\{\log |F(\theta)|, \psi^{p, m}(\theta)\right\}$ for $\theta \in T\left(T^{C}\right) F$ satisfies
(3.43) $\quad|F(\theta)| \leq K \exp \psi(\theta)$.

Furthermore, we make the restriction that $\psi^{p, m}$ on $\left.T\left(T^{C}\right)_{\varepsilon}^{p}\right)$ has been extended to $T\left(T^{C}\right)$ in such a way that (3.40) can be satisfied for the function ψ of formula (3.43). If $\alpha=c$ and $F \in H_{c}^{p}$, we set $\psi=\psi^{p, m}$ for some m depending on F and (3.43) is satisfied for $\theta \in T\left(\left(T^{C}\right)_{C}^{p}\right)$, which is a pseudoconvex domain.

Now assume that for $\alpha=\varepsilon$ and $\alpha=c$ every $F \in H_{\alpha}^{p}$ vanishing on V if $\alpha=\varepsilon$ or on V_{C}^{p} if $\alpha=c$ and satisfying (3.43) can be written as $F=P \cdot \vec{G}$ for holomorphic functions G_{j} in $T\left(T^{C}\right)$ if $\alpha=\varepsilon$ or in $\left.T\left(T^{C}\right)_{C}{ }_{C}\right)$ if $\alpha=c$ which satisfy there $G_{j}(\theta) \leq K \exp \hat{\psi}(\theta), j=1, \ldots, n$, where $\hat{\psi}$ is obtained from ψ as in (3.41) for some N. Then if p is sufficiently large there is a k such that in view of (3.42) G_{j} would belong to H_{α}^{k}. If this can be done for every k , the bijectivity of the map I would be implied. Taking into account (3.32) and the embedding maps between spaces with L^{2}-norms and sup-norms (cf. [73]), we really get the foregoing if the following problem is solved.

PROBLEM 3.2. Let Ω be a pseudoconvex domain, let ϕ be a function in Ω such that (3.40) can be satisfied for every N and let P be a vector of polynomials. If a holomorphic function f in Ω can locally, i.e., in a neighborhood ω of each point in Ω, be written as $f=p \cdot \vec{g}_{\omega}$ with $\vec{g}_{\omega} \in \vec{A}(\omega)$, then

$$
f(z)=P(z) \cdot \vec{g}(z), \quad z \in \Omega
$$

for some $\vec{g} \in \vec{A}(\Omega)$ satisfying for some K independent of f

$$
\int_{\Omega}\|\vec{g}(z)\|^{2} \exp -\hat{\phi}(z) d \lambda(z) \leq K \int_{\Omega}|f(z)|^{2} \exp -\phi(z) d \lambda(z)
$$

where $\|\vec{g}(z)\|^{2}=\Sigma\left|g_{j}(z)\right|^{2}$ and where $\hat{\phi}$ is given by (3.41) for some N independent of f, provided that f is such that the right hand side is finite.

Since in problem 3.1 an ε-neighborhood of $T\left(\Gamma_{\alpha}^{\mathrm{k}}\right)$ is contained in $T\left(\Gamma_{\alpha}^{\mathrm{p}}\right)$ and since the equalities (3.2.i) and (3.2.ii) hold, problem 3.1 follows from
problem 3.2. Furthermore, problem 3.2 implies that (cf. (3.28) where the spaces H_{α}^{k} are different from the H_{α}^{k} of this section)

$$
H_{\alpha} \stackrel{\text { def }}{\underline{p r o j}} \underset{k \rightarrow \infty}{\lim }\left(\mathrm{H}_{\alpha}^{\mathrm{k}} \overline{\left.\mathrm{P} \cdot \overrightarrow{\mathrm{H}_{\alpha}}\right)}=\underset{\mathrm{k}}{\operatorname{proj}} \lim _{\rightarrow \infty}\left(\mathrm{H}_{\alpha}^{\mathrm{k}} / \mathrm{P} \cdot \overrightarrow{\mathrm{H}}_{\alpha}^{\mathrm{k}}\right),\right.
$$

hence we don't need to pay attention to the closure of $\mathrm{P} \cdot \overrightarrow{\mathrm{H}}_{\alpha}^{\mathrm{k}}$ in $\mathrm{H}_{\alpha}^{\mathrm{k}}$.
We will now state the problem whose solution implies the surjectivity of the map J. Theorem 3.1 yields local extensions $\left\{F_{\omega} \mid \omega \subset \subset \Omega\right\}$ of f with $F_{\omega}(i z, z)=f(z)$ and problem 3.3 will state that the functions F_{ω} can be changed and glued together to one global function F in Ω with $F(i z, z)=f(z)$ and with good bounds. The conditions on the bounds will be the same as those of problem 3.2.

Let ω be a pseudoconvex open set with $\omega \subset \subset T\left(\left(T^{C}\right){ }_{C}^{p}\right)$ if $\alpha=c$ or $\omega \subset T\left(T^{C}\right)$ if $\alpha=\varepsilon$ and let

$$
\omega^{\prime} \stackrel{\text { def }}{=}\left\{\theta \left\lvert\,\left\|\theta-\theta^{\prime}\right\| \leq \min \left[1, \frac{1}{2} d^{\prime}\left(\theta^{\prime}, \Omega^{C}\right)\right]\right., \Omega=T\left(T^{C}\right), \theta^{\prime} \in \omega\right\} .
$$

Then for some $q>p$ and for $\omega \subset T\left(\left(T^{C}\right) \frac{p}{\alpha}\right)$

$$
\omega^{\prime} \subset T\left(\left(T^{C}\right) \frac{q}{\alpha}\right)
$$

Let $f \in \operatorname{Exp}_{\alpha}\left[a, T^{C} ; M^{*}\right]$ and let the convex function ϕ_{q} be defined by

$$
\phi_{q}(z) \stackrel{\text { def }}{=} M^{*}\left(q<\xi_{0}, y>\right)+a_{\alpha}^{q}(z)+1 / q\|z\|, \quad z \in\left(T^{C}\right)_{\alpha}^{q}
$$

where in case $\alpha=\varepsilon \phi_{q}$ is extended to a convex function on T^{C} such that for some $\mathrm{K}>0$

$$
|f(z)| \leq K \exp \phi_{q}(z)
$$

for $z \in T^{C}$. If $\alpha=c$ this formula holds for $z \in\left(T^{C}\right)_{C}^{q}$. Let $H\left(T\left(\left(T^{C}\right){ }_{\varepsilon}^{q}\right)\right)=$ $=T\left(T^{C}\right)$ and $H\left(T\left(\left(T^{C}\right)_{C}^{q}\right)\right)=T\left(\left(T^{C}\right)_{C}^{q}\right)$, which in both cases is a pseudoconvex domain in $\mathbb{C}^{2 n}$. The function $\theta \rightarrow \phi_{q}(\operatorname{Im} \theta)$ is a convex, hence plurisubharmonic, function on $H\left(T\left(\left(T^{C}\right)_{\alpha}^{q}\right)\right.$). Hence we can apply theorem 3.1 and for each ω we obtain a holomorphic function F_{ω} in ω with $F_{\omega}(i z, z)=f(z)$ for $z \in\{z \mid(i z, z) \in \omega\}$ which, in view of (3.40) and (3.42), for some m and K satisfies

$$
\begin{gathered}
\int_{\omega}\left|F_{\omega}(\theta)\right|^{2} \exp -2 \psi^{p, m}(\theta) d \lambda(\theta) \leq K \int|f(z)|^{2} \frac{\exp -2 \phi_{q}(z)}{\left(1+\|z\|^{2}\right)^{l}} \mathrm{~d} \lambda(z) \\
\left\{z \mid(i z, z) \in \omega^{\prime}\right\}
\end{gathered}
$$

where $\ell=[n / 2]+1$ and where the extension of $\psi^{p, m}$ on $T\left(\left(T^{C}\right) \frac{p}{\varepsilon}\right)$ to $T\left(T^{C}\right)$ is determined by ϕ_{q}. We select a collection U of sets ω with the property that each point in $H\left(T\left(\left(T^{C}\right){ }_{\alpha}^{p}\right)\right)$ is contained in at least one set $\omega \in U$ and each point in $H\left(T\left(\left(T^{C}\right){ }_{\alpha}^{q}\right)\right.$) in not more than L sets ω^{\prime} for a fixed L. In section VI. 1 it will be shown that such a covering exists. Then with $\psi \xlongequal{\text { def }} 2 \psi^{\mathrm{p}, \mathrm{m}}$ we get

$$
\begin{aligned}
&\left\|\left\{F_{\omega}\right\}\right\| \stackrel{\text { def }}{=} \sum_{\omega \in U} \int_{\omega}\left|F_{\omega}(\theta)\right|^{2} \exp -\psi(\theta) d \lambda(\theta) \leq K L \int_{H\left(T\left(\left(T^{C}\right) \underset{\alpha}{\alpha}\right)\right)}|f(z)|^{2} \\
& \frac{\exp -2 \phi_{q}(z)}{\left(1+\|z\|^{2}\right)^{l}} \mathrm{~d} \lambda(z)<\infty .
\end{aligned}
$$

It is sufficient if we can find a holomorphic function F in $H\left(T\left(\left(T^{C}\right)_{\alpha}^{p}\right)\right)$ with $\mathrm{F}-\mathrm{F}_{\omega}=0$ on $\omega \cap V$ and with

$$
\int_{\left.H\left(T\left(T^{C}\right) \underset{\alpha}{p}\right)\right)}|F(\theta)|^{2} \exp -\dot{\psi}(\theta) d \lambda(\theta) \leq K\left\|\left\{F_{\omega}\right\}\right\|
$$

for some K, where $\hat{\psi}$ is obtained from ψ according to (3.41) for some N. For by (3.42) if p is sufficiently large we would have $F \in H_{\alpha}^{k}$.

For two sets ω_{1} and ω_{2} in $U \mathrm{~F}_{1 \rightarrow}-\mathrm{F}_{\omega_{2}}$ vanishes on $V \cap \omega_{1} \cap \omega_{2}$, hence $F_{\omega_{1}}-F_{\omega_{2}}=P \cdot \vec{G}_{12}$ in $\omega_{1} \cap \omega_{2}$ for some \vec{G}_{12} holomorphic in $\omega_{1} \cap \omega_{2}$. Now if the following problem is solved, we can find a function F as above and the map J would be surjective.

PROBLEM 3.3. Let Ω, P, ϕ and $\hat{\phi}$ be as in problem 3.2 and let U be the covering of Ω specified in section VI.1. Furthermore, let $\left\{f_{j} \mid \omega_{j} \in U\right\}$ be a collection of holomorphic functions f_{j} in ω_{j} such that for each ω_{j} and ω_{k} in $U f_{j}-f_{k}=$ $P \cdot \vec{g}_{j, k}$ for some $\vec{g}_{j, k}$ holomorphic in $\omega_{j} \cap \omega_{k}$. Then there is a holomorphic function f in Ω with for each $\omega_{j} \in U{ }_{f}-f_{j}=P \cdot \vec{g}_{j}$ for some \vec{g}_{j} holomorphic in ω_{j} such that

$$
\int_{\Omega}|f(z)|^{2} \exp -\hat{\phi}(z) d \lambda(z) \leq K \sum_{\omega_{j} \in U} \int_{\omega_{j}}\left|f_{j}(z)\right|^{2} \exp -\phi(z) d \lambda(z)
$$

for some K and N independent of $\left\{f_{j} \mid \omega_{j} \in U\right\}$, provided that the collection $\left\{f_{j}\right\}$ is such that the right hand side is finite.

REMARK. If $\alpha=\varepsilon, T\left(T^{C}\right)=\underset{p=1}{\infty}=T\left(\left(T^{C}\right)_{\varepsilon}^{p}\right)$ and the densities on $\left.T\left(T^{C}\right)_{\varepsilon}^{p}\right)$ had first to be extended to all of $T\left(T^{C}\right)$ before applying problems 3.2 and 3.3. These extensions depended on the particular holomorphic function F or f one was dealing with. Therefore in the $\alpha=\varepsilon$ case we may get estimates with K depending on F or f, although in problems 3.2 and 3.3 K is independent of f or $\left\{f_{j}\right\}$, respectively. However, the open mapping theorem helps us to overcome the difficulty of not getting uniform bounds. In the next chapter we will treat the case of holomorphic functions f in $\Omega={ }_{\mathrm{k}}^{\mathrm{U}} \mathrm{V}_{1} \Omega_{\mathrm{k}}$ which are bounded with respect to some density on each Ω_{k}, uniformly in f. But the condition, cf. (4.22), which must be satisfied then, is not valid for $\Omega=T\left(T^{C}\right)=$ $\left.={ }_{k} \stackrel{\infty}{U}_{1} T\left(T^{C}\right)_{\varepsilon}^{k}\right)$ of this chapter.

In chapter IV problems 3.2 and 3.3 will be reformulated and in chapter VI they will be solved. Therefore, the Fourier transformation F is a topological isomorphism from $A_{\alpha}\left(a, T^{C} ; M\right)$ ' onto $\operatorname{Exp}_{\alpha}\left[a, T^{C} ; M^{*}\right]$ for $\alpha=\varepsilon$ or $\alpha=c$, where these spaces are determined by (3.39). Similarly, the same can be derived for the following pair of spaces, which is a mixture of ε - and conic neighborhoods,

$$
\begin{align*}
& \left\{\quad k \rightarrow \infty \quad a_{\varepsilon}^{k}(z)+1 / k\|z\|+M^{*}(k\|y\|)\right) \tag{3.44}\\
& A_{\varepsilon, C}\left(a, T^{C} ; M\right) \xlongequal{\text { def }} \underset{k \rightarrow \infty}{\operatorname{ind} \lim _{\infty}} H_{\infty}\left(\Omega\left(a+1 / k, T^{C}{ }_{k}\right) ;-M(\|\xi\| / k)+k\|\eta\|\right)
\end{align*}
$$

and if $\alpha=\varepsilon$ or $\alpha=c$ for the pair

$$
\left\{\begin{array}{l}
\operatorname{Exp}_{\alpha}\left[a, \Gamma ; M^{*}\right] \stackrel{\text { def }}{\operatorname{proj} \lim _{k \rightarrow \infty} H_{\infty}\left(\Gamma_{\alpha}^{k} ; a_{\alpha}^{k}(z)+1 / k\|z\|+M^{*}(k\|z\|)\right)} \tag{3.45}\\
A_{\alpha}(a, \Gamma ; M) \xlongequal{\text { def }} \underset{k \rightarrow \infty}{\operatorname{ind} \lim _{\infty}\left(\Omega_{\alpha}^{k} ;-M(\|\zeta\| / k)\right),}
\end{array}\right.
$$

where Γ is an open, convex cone in \mathbb{C}^{n} with $\Gamma_{\varepsilon}^{-k} \xlongequal{\text { def }} \Gamma_{k} \cup\left\{1 / k z_{0}+\Gamma\right\}$ and Γ_{c}^{k} def Γ_{k}, where $a_{\varepsilon}^{k}(z) \stackrel{\text { def }}{=} a\left(z-1 / 2 k z_{0}\right)$ for $z \in 1 / k z_{0}+\Gamma$ and a_{k}^{k} must be continued as a convex function on $\bar{\Gamma}$, where $a_{c}^{k} \xlongequal{\text { def }} a$ and where $\Omega_{\alpha}^{k}{ }^{\varepsilon}$ is given by (2.48.i) and (2.48.ii). The last pair yields the Ehrenpreis-Martineau theorem for analytic functionals carried by arbitrary unbounded, convex sets in \mathbb{C}^{n} with respect to ε - or conic neighborhoods and to the class of
weightfunctions $\{\exp M(\|\zeta\| / k)\}_{k=1}^{\infty}$.
Summarizing we get the following theorem.
THEOREM 3.7. If (3.38) is satisfied, in the pairs (3.39), (3.44) and (3.45) the strong dual of the second space is topologically isomorphic to the first space by means of the map F defined by (3.7).

If $\lim a(x, y)$ exists as $y \rightarrow 0, y \in C_{k}$ the set $\Omega\left(a, T^{C}\right)$ is bounded in the imaginary directions in \mathbb{C}_{n}. Then in (3.39) for $\alpha=\varepsilon$ and in (3.44) the restriction $\|x\|<k$ in the definition of the first space and the term $k\|n\|$ in the definition of the second space can be omitted. In both cases functions in $\operatorname{Exp}_{\varepsilon}\left[a, T^{C} ; M^{*}\right]$ and in $\operatorname{Exp}_{\varepsilon, c}\left[a, T^{C} ; M^{*}\right]$ determine ultradistributions of Roumeiu type of "finite order", cf. definition 2.19.ii. Hence we obtain

COROLLARY 3.8. Fourier transforms of "infinite order" ultradistributions of Roumieu type can never have a carrier with respect to neighborhoods which are bounded in the imaginary directions.

$$
\begin{aligned}
& \text { If } a(x, 0) \text { exists, as in (3.3) } \operatorname{Exp}_{\varepsilon, c} \text { becomes } \\
& \qquad \operatorname{Exp}_{\varepsilon, C}\left[a, T^{C} ; M^{*}\right]=\underset{k \rightarrow \infty}{\operatorname{proj}} \lim _{k} H_{\infty}\left(T^{C} C_{k} ; a(z)+1 / k\|z\|+M^{*}(k\|y\|)\right)
\end{aligned}
$$

and if $a(z)=0$ for all z we get the particular case which yields the proof of (4) $\Rightarrow(1)$ of theorem 2.20.
III.5. PALEY-WIENER THEOREMS FOR ULTRADISTRIBUTIONS OF BEURLING TYPE.

Abstract

As in section III. 4 it can be derived that the Fourier transformation F is an isomorphism between a space of analytic functionals with a fixed carrier onto a space of functions, holomorphic in a certain tubular cone and of certain exponential type, which have ultradistributional boundary values of Beurling type. However, the topologies of the occurring spaces become more complex, especially we don't get a space of analytic functionals which has the topology of the strong dual of a certain space of analytic functions. Therefore, we only state the Fourier transformation F as a bijection. Spaces of a more simple topological structure arise if we consider Fourier transforms of analytic functionals such that sufficiently small conic neighborhoods of their carriers are contained in a given, open, convex set. In this form we shall give extensions of the Ehrenpreis-Martineau theo-

rem and of the Paley-Wiener theorem for ultradistributions of Beurling type. Let now $\alpha=1,2,3$ denote the cases of analytic functionals carried with respect to ε-neighborhoods, conic neighborhoods or a mixture of these neighborhoods, respectively. So here we denote

$$
\begin{aligned}
& \left(T^{C}\right)_{1}^{k} \xlongequal{\text { def }} T^{1 / k} Y_{0}+C \\
& \left(T^{C}\right)_{2}^{k} \xlongequal{\text { def }}\left(T^{C}\right)_{k} \\
& \left(T^{C}\right)_{3}^{k} \xlongequal{\text { def }} T^{1 / k} Y_{0}+C_{k}
\end{aligned}
$$

and furthermore, cf. (2.54) $a_{2}^{k}(z) \stackrel{\text { def }}{\tilde{a}_{k}}(z)$ and $a_{1}^{k}(z) \stackrel{\text { def }}{=} a_{3}^{k}(z) \xlongequal{\text { def }} a\left(z-1 / 2 k y_{0}\right)$ in $\left(T^{C}\right)_{1}^{k}$ or $\left(T^{C}\right)_{3}^{k}$, respectively and these functions must be continued as convex functions on \bar{T}. Let f be a holomorphic function in T, which for every k and for some positive K_{k} and m_{k} depending on k satisfies

$$
\begin{gather*}
|f(z)| \leq K_{k} \exp \left\{M^{*}\left(\|y\| / m_{k}\right)+a_{\alpha}^{k}(z)+1 / k\|z\|,\right. \tag{3.46}\\
z \in\left\{z \mid\|x\| \leq k, y \in C_{k}\right\} \cup\left(T^{C}\right)_{\alpha}^{k}
\end{gather*}
$$

for $\alpha=1,2$, or 3 . According to lemma 2.17 f uniquely determines an ultradistribution of Beurling type. Now we begin with a formula like (3.23) and we don't have to show that it is the dual of some space of holomorphic functions as the space (3.23) is of the space (3.22). Then by the same procedure as before lemma 2.27, problem 3.2 and 3.3 show that f can be written as
(3.47) $\quad f(z)=\left\langle\mu_{\zeta^{\prime}} e^{i\langle\zeta, z\rangle\rangle}\right.$
where μ is an anlytic functional in $Z^{\prime}(M)$ uniquely determined by f which is carried by $\Omega\left(a, T^{C}\right)$ with respect to neighborhoods of the form

$$
\left\{\begin{array}{l}
\Omega_{1}^{k} \text { def } \Omega\left(a+1 / k, T^{C}\right), \tag{3.48}\\
\Omega_{2}^{k} \xlongequal{\text { def }} \Omega\left(a+1 / k,\left(T^{C}\right)_{k}\right) \\
\Omega_{3}^{k} \text { def } \Omega\left(a+1 / k, T^{C} k\right)
\end{array}\right.
$$

for $\alpha=1,2$ or 3, respectively. Thus μ can be uniquely extended such that it acts on functions ϕ which are holomorphic in these neighborhoods and satisfy there

$$
|\phi(\zeta)| \leq K_{m} \exp \{-M(m\|\xi\|)+k\|\eta\|\}
$$

for some k depending on ϕ, for every $m>0$ and for $K_{m}>0$ depending on m. So (3.47) is defined. Furthermore, there are positive K_{k} and m_{k} depending on k and μ such that for such $\phi \mu$ satisfies

$$
\begin{equation*}
|\langle\mu, \phi\rangle| \leq \mathrm{K}_{\mathrm{k}} \sup _{\zeta \in \Omega_{\alpha}^{k}}|\phi(\zeta)| \exp \left\{\mathrm{M}\left(\mathrm{~m}_{\mathrm{k}}\|\xi\|\right)-\mathrm{k}\|\eta\|\right\} \tag{3.49}
\end{equation*}
$$

for $\alpha=1,2$ or 3, respectively. Thus the following Paley-Wiener theorem for ultradistributions of Beurling type holds.

THEOREM 3.9. If M satisfies (3.8) and f (3.46), then (3.47) holds for a unique analytic functional $\mu \in Z_{(M)}^{\prime}$ which satisfies (3.49).

If $a(x, 0)$ exists, $\Omega(a, T)$ is bounded in the imaginary directions and for $\alpha=1$ and 3 the condition $\|x\| \leq k$ in (3.46) and the term $-k\|\eta\|$ in (3.49) can be omitted. Then f determines an ultradistribution of Beurling type of "finite order", cf. definition 2.19.ii.

COROLLARY 3.10. Fourier transforms of "infinite order" ultradistributions of Beurling type can never have a carrier with respect to neighborhoods which are bounded in the imaginary directions.

If $\alpha=3$ and $a(z)=0$ for all z, we get the particular case which yields the proof of (4) $\Rightarrow(1)$ of theorem 2.20 for ultradistributions of Beurling type.

We will now define topological spaces of holomorphic functions and we will treat F as a topological isomorphism from the strong dual of an Aspace onto an Exp-space. Let $\left\{\Gamma^{m}\right\}_{m=1}^{\infty}$ and $\left\{C^{m}\right\}_{m=1}^{\infty}$ be a decreasing sequence of convex cones in \mathbb{C}^{n} or \mathbb{R}^{n} with intersection Γ or C, respectively, and with $\Gamma \subset \subset \Gamma^{m}, c \subset \subset c^{m}$ and let $\left\{a_{m}\right\}_{m=1}^{\infty}$ be an increasing sequence of convex functions, homogeneous of degree one, each a_{m} defined on Γ^{m} or $T^{C^{m}}$ with $a_{m}(z)+\varepsilon_{m} \leq a_{m+1}(z), z \in \operatorname{pr} \Gamma^{m+1}$ or $p r T C^{m+1}$ for some $\varepsilon_{m}>0$, converging in any point of Γ or T^{C} to the convex, homogeneous function a. Define

$$
\left\{\begin{array}{l}
\operatorname{Exp}_{C}\left(a, \Gamma ; M^{*}\right) \stackrel{\text { def }}{\underline{\text { ind }}} \underset{m \rightarrow \infty}{ } \lim H_{\infty}\left(\Gamma^{m} ; M^{*}(\|z\| / m)+a_{m}(z)\right) \tag{3.50}\\
A_{C}[a, \Gamma ; M] \xlongequal{\text { def }} \underset{m \rightarrow \infty}{\operatorname{proj} \lim _{\infty}\left(\Omega\left(a_{m}, \Gamma^{m}\right) ;-M(m\|\zeta\|)\right) .} .
\end{array}\right.
$$

In virtue of (3.38) and [73, conditions HS_{1} and HS_{2}] the first space is a nuclear DFS-space and the second a nuclear FS-space. The generalization of the Ehrepreis-Martineau theorem states in this case that the dual of the second space is topologically isomorphic to the first space by means of Fourier transformation. We shall also give a Paley-Wiener version for ultradistributions of Beurling type. For simplicity we assume that for each m $a_{m}(x, 0)$ exists, so that each $\Omega\left(a_{m}, T^{C^{m}}\right)$ is bounded in the imaginary directions. Define

$$
\left\{\begin{array}{l}
\operatorname{Exp}_{C}\left(a, T^{C} ; M^{*}\right) \underline{\text { def }} \underset{m \rightarrow \infty}{\text { ind }} \lim _{m}\left(T^{C^{m}} ; M^{*}(\|y\| / m)+a_{m}(z)\right) \tag{3.51}\\
A_{C}\left[a, T^{C} ; M\right] \xlongequal{\operatorname{proj} \lim _{m} H_{\infty}\left(\Omega\left(a_{m}, T^{C}\right) ;-M(m\|\xi\|)\right)} .
\end{array}\right.
$$

Again $\operatorname{Exp}_{C}\left(a, T^{C} ; M^{*}\right)$ is a nuclear DFS-space and $A_{C}\left[a, T^{C} ; M\right]$ a nuclear FS-space. It follows from an estimate as we have already met several times that for
 ζ is a subset of $H_{\infty}\left(\Omega\left(a_{m}, r^{m}\right) ;-M(m\| \|)\right)$ or $H_{\infty}\left(\Omega\left(a_{m}, T^{C m}\right) ;-M(m\| \|)\right)$, respectively. Therefore, the Fourier transformation can be defined by (3.7) and it follows from the injectivity of F that these subsets are dense. Hence the projective limits in (3.50) and (3.51) are strict, cf. [20, § 26.1$]$ so that there strong duals can be represented as inductive limits of strong dual spaces. In the same way as the other theorems of this chapter are derived and by the fact that the open mapping theorem also holds for duals of reflexive Frechet spaces, cf. [61, IV, §8.3, cor. 1 and ex. 2, p. 162], the following theorem is derived

THEOREM 3.11. If M satisfies (3.38), in the pairs (3.50) and (3.51) the strong dual of the second space is topologically isomorphic to the first space by means of the map F defined by (3.7).

Note that the strong dual of $A_{C}\left[a, T^{C} ; M\right]$, and hence $\operatorname{Exp}_{C}\left(a, T^{C} ; M^{*}\right)$, carries a finer topology than the one induced by $Z_{(M)}^{\prime}$ or $D_{(M)}^{\prime}$, respectively.
III.6. PALEY-WIENER THEOREMS FOR DISTRIBUTIONS IN D^{\prime}.

The same ramarks made for ultradistributions of Beurling type can be made for distributions in D^{\prime}. Instead of (3.36) and (3.37) here we have

$$
M^{*}(\sigma) \stackrel{\text { def }}{=} \log \left(1+\sigma^{-1}\right), \quad M(\rho) \stackrel{\text { def }}{=} \log (1+\rho)
$$

Let f be a holomorphic function in T^{C} which for every k satisfies

$$
\begin{align*}
|f(z)| \leq & K_{k}\left(1+\|y\|^{-m_{k}}\right) \exp \left\{a_{\alpha}^{k}(z)+1 / k\left\|_{z}\right\|\right\}, \tag{3.52}\\
& z \in\left\{z \mid\|x\| \leq k, y \in C_{k}\right\} \cup\left(T^{C}\right)_{\alpha}^{k}
\end{align*}
$$

where $\left(T^{C}\right)_{\alpha}^{k}$ and a_{α}^{k} for $\alpha=1,2$ or 3 are as in section III.5. Then f determines uniquely a distribution in D^{\prime}. Lemma 2.27 and problems 3.2 and 3.3 show that f can be written as (3.47) for some unique, analytic functional $\mu \in Z^{\prime}$ carried by $\Omega\left(a, T^{C}\right)$ with respect to the neighborhoods Ω_{α}^{k} defined by (3.48). Thus μ can be uniquiely extended to an analytic functional acting on functions ϕ which are holomorphic in these neighborhoods and which satisfy there

$$
|\phi(\zeta)| \leq K_{\mathrm{m}} \frac{\exp k\|\eta\|}{(1+\|\xi\|)^{m}}
$$

for some k depending on ϕ and for every positive m and some positive K_{m} depending on m and ϕ. Furthermore, for such a $\phi \mu$ satisfies

$$
\begin{equation*}
\left|<\mu, \phi>\left|\leq K_{k} \sup _{\zeta \in \Omega_{\alpha}^{k}}\right| \phi(\zeta)\right|(1+\|\xi\|)^{m_{k}} e^{-\mathrm{k}\| \| \|} \tag{3.53}
\end{equation*}
$$

for $\alpha=1,2$ or 3 , where the positive numbers K_{k} and m_{k} depend on k and μ. Now the following Paley-Wiener theorem for distributions in D^{\prime} is valid.

THEOREM 3.12. Let f satisfy (3.52), then f is the Fourier transform of a

If $\Omega\left(a, T^{C}\right)$ is bounded in the imaginary directions, the condition $\|x\| \leq k$ in (3.52) and the factor $\exp -k\|\eta\|$ in (3.53) can be omitted if $\alpha=1$ or 3. Then f determines a distribution of finite order.

COROLLARY 3.13. The Fourier transform of a distribution of infinite order can never have a carrier with respect to neighborhoods which are bounded in the imaginary directions.

REMARK. The Fourier transform of any distribution can always be represented as a sum of analytic functionals which are carried by the 3^{n} sets of the form

$$
\begin{equation*}
\left\{\zeta \mid \xi_{j}=0 \text { or } \zeta_{j} \in \Omega\left(a, \mathbb{C}^{ \pm}\right), j=1, \ldots, n\right\} \tag{3.54}
\end{equation*}
$$

where $\mathbb{C}^{ \pm}$are the upper and lower halfplane and where a is a convex, homogeneous function on \mathbb{C}^{+}which is unbounded on $\mathrm{pr} \mathbb{C}^{+}$, or the convex, homogeneous function on \mathbb{C}^{-}given by $a(z)=a(\bar{z})$, so that $\Omega\left(a, \mathbb{C}^{ \pm}\right) \subset \mathbb{C}_{1}$ is not bounded in the imaginary direction. The analytic functionals are carried with respect to any class of neighborhoods and, a fortiori, they can be represented as measures on the sets (3.54), see $[16$, th. 5.24 , where these sets are shown to be sufficient for $\left.D^{\prime}\right]$.

A theorem similar to theorem 3.12 can be derived for functions f which are holomorphic in a cone $\Gamma \subset \mathbb{C}^{n}$, but we merely state the theorem with analytic functionals such that sufficiently small, conic neighborhoods of their carriers are contained in a fixed, open, convex set. Let the notations be as in (3.50) and (3.51) and let

$$
\left\{\begin{array}{l}
\operatorname{Exp}_{c}(a, \Gamma) \text { def } \tag{3.55}\\
\underset{m \rightarrow \infty}{\text { ind } \lim _{\infty}\left(\Gamma^{m} ; \log \left(1+\|z\|^{-m}\right)+a_{m}(z)\right)} \\
A_{c}[a, \Gamma] \xlongequal{\text { def }} \underset{m \rightarrow \infty}{\operatorname{proj} \lim _{\infty}\left(\Omega\left(a_{m}, r^{m}\right) ;-m \log (1+\|\zeta\|)\right),}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\operatorname{Exp}_{C}\left(a, T^{C}\right) \text { def } \tag{3.56}\\
\left.\underset{m \rightarrow \infty}{\text { ind } \lim _{\infty}\left(T^{C}\right.} ; \log \left(1+\|y\|^{-m}\right)+a_{m}(z)\right) \\
A_{C}\left[a, T^{C}\right] \text { def } \underset{m \rightarrow \infty}{\operatorname{proj} \lim _{\infty}\left(\Omega\left(a_{m}, T^{C}\right) ;-m \log (1+\|\xi\|)\right)} .
\end{array}\right.
$$

The first space in each pair is a nuclear DFS-space and the second a nuclear, strict FS-space. For these pairs the Ehrenpreis-Martineau theorem can be generalized, where in the second pair it might be considered as an extension of the Paley-Wiener theorem:

THEOREM 3.14. In the pairs (3.55) and (3.56) the strong dual of the second space is topologically isomorphic to the first space by means of the Fourier transformation F given by (3.7).

We conclude this chapter with the remark that in (3.56) the isomorphism F acts between spaces with a finer topology than the ones induced by Z^{\prime} and D'.

CHAPTER IV

THE FUNDAMENTAL PRINCIPLE

Abstract

In [16] Ehrenpreis and in [56] Palamodov proved, independently, a fundamental principle in the theory of systems of linear partial differential equations with constant coefficients. This principle completes the theory of those systems in a very natural way, but the proof is very hard. Let W^{\prime} be a locally convex topological vector space such that the space H of fourier transforms of elements of W^{\prime} consists of entire functions whose growth conditions at infinity satisfy certain properties, and let W be the dual of W'. Briefly, the fundamental principle says that all weak solutions in W of the homogeneous system can be represented as Fourier transforms of finite sums of weak derivatives of measures concentrated in the zero set of the Eourier transform of the transposed differential operator. If there is only one ordinary linear differential equation with constant coefficients this is just the usual representation of Euler. In [16] a space W for which the fundamental principle is valid is called localizable. In the last chapter we have studied spaces W (namely the Exp- and A-spaces) with $H=F_{W}$ ', or equivalently $W=F_{H}{ }^{\prime}{ }^{1)}$ such that the elements of H are non-entire functions. In this chapter the fundamental principle will be generalized so that it applies to spaces W which are the Fourier transforms of the duals of spaces

1) As in the foregoing sections the following definition is used: when F is a topological isomorphism between the spaces B and $F B=A$, then the Fourier transform of an element f in the dual A^{\prime} of A is the element F_{f} of B^{\prime} defined by

$$
\left\langle F_{f, \psi\rangle_{B}}=\left\langle f, F_{\psi}\right\rangle_{A^{\prime}} \quad \psi \in B\right.
$$

By use of this definition the ambiguity mentioned in [16, p.140] is avoided. Of course, as in [16], this definition corresponds to the following action of a function f, regarded as a distribution in D ', to testfunctions $\phi \in D$

$$
\langle f, \phi\rangle=\int f(x) \phi(x) d x
$$

H consisting of functions holomorphic in pseudoconvex domains Ω, not necessarily \mathbb{C}^{n}.

For a vector P of complex polynomials, in [16] Ehrenpreis has defined a multiplicity variety W in the set where all the components of P vanish. Let $H(W)$ be the space of restrictions to W of all entire functions satisfying on W the same growth conditions as the entire functions of H. Then for deriving the fundamental principle Ehrenpreis showed that H modulo $P \cdot \vec{H}$ is isomorphic to $H(W)$. In order to prove this isomorphism he first constructed a local and a semilocal (i.e., in an a priori given covering of \mathbb{C}^{n} consisting of bounded sets) theory and then he extended the semilocal results to global results. The same can be done if Pis a matrix of polynomials and if $\overrightarrow{d i}$ is an associated vector multiplicity variety. For our purpose the local and semilocal theory remains unchanged (except for the a priori given covering of Ω), but we will use a different method for getting global results. If then in particular $\Omega=\mathbb{C}^{n}$ we will obtain a weaker form of the isomorphism than in [16]. The difference is that in [16] one globally defined function, whose restriction to W has been given, is obtained that satisfies all the bounds required in H, while in this chapter for every bound a different global function will be constructed. As to this the fundamental principle obtained by Palamodov in [56] is similar. On the other hand, here often less restrictive conditions on the bounds are required then in [16], so that for example the space of $C \mathscr{\infty}$ functions in an open, convex set is localizable here as well as in [56], where in [16] it is in general not.

Compared with [56] our conditions are simpler, although if $\Omega=\mathbb{C}^{n}$ the method of Hörmander in [30] we will use cannot be applied to the space Z because the function $\log \left(1+\|z\|^{2}\right)^{-1}$ is not plurisubharmonic in \mathbb{C}^{n}, while z satisfies the conditions of both [16] and [56]. If Ω is a convex tube domain $\left(\neq \mathbb{C}^{n}\right.$) this objection is disposed of (cf. lemma 5.2) and our treatment of this case is much more general than in [56]. Moreover, we will derive the isomorphism $H \bmod P \cdot \vec{H} \Leftrightarrow H(W \cap \Omega)$ for general pseudoconvex domains Ω, where in [56] it is essential that Ω is a convex tube domain.

Sections 1 and 2 of this chapter will give an introduction along the lines of [16] to the problems without growth conditions. In section 3 Ehrenpreis' and Palamodov's formulations of the fundamental principle will be discussed. The remaining part of this chapter will be devoted to derive the weak form of the above mentioned isomorphism for spaces of non-entire functions. In chapter V we will show that this implies the representation of solutions of homogeneous systems of partial differential equations with
constant coefficients and in chapter VII we will make some remarks concerning the strong form of the isomorphism for certain spaces of non-entire functions.
IV.1. LOCAL THEORY

In this section we will discuss Ehrenpreis' generalization of Hilbert's Nullstellensatz.

Let $z \in \mathbb{C}^{n}$ and let A_{z} be the ring of germs at z of holomorphic functions in a neighborhood of z. Consider an ideal J_{z} in A_{z} generated by the germs $\left(h_{1}\right)_{z}, \ldots,\left(h_{q}\right)_{z}$ at z of functions h_{1}, \ldots, h_{q} in a neighborhood ω of z. We define the analytic variety

$$
\begin{equation*}
V \stackrel{\text { def }}{\left\{w \mid h_{1}(w)=0, \ldots, h_{q}(w)=0, w \in \omega\right\}, w, ~} \tag{4.1}
\end{equation*}
$$

and let V_{z} be the equivalent class of V under the equivalence relation $V \sim W$ if there is a neighborhood of z in which they are equal. V_{z} is called the germ at z of V. It is clear that the ideal J_{z} is not trivial only if $h_{1}(z)=\ldots=h_{q}(z)=0$. When $f_{z} \in A_{z}$ we will denote by f a holomorphic function in a neighborhood of z such that f_{z} is the germ of f at z. Then for any $f_{z} \in J_{z}, z \in V$, there is a neighborhood ω of z with

$$
\begin{equation*}
f(w)=0, \quad w \in V \cap \omega . \tag{4.2}
\end{equation*}
$$

Conversily, consider the ideal I_{z} in A_{z} of all the germs at z of holomorphic functions vanishing on V_{z}, i.e.,

$$
\begin{equation*}
I_{z} \xrightarrow{\text { def }}\left\{f_{z} \mid \text { there is a neighborhood } \omega \text { of } z \text { such that }\left.f\right|_{V \cap \omega}=0\right\} \tag{4.3}
\end{equation*}
$$

It is clear that I_{z} is an ideal and by (4.2) $J_{z} \subset I_{z}$.
Hilbert's Nullstellensatz says that for $f_{z} \in I_{z}$ there is a positive integer m with $\left(f_{z}\right)^{m} \in J_{z}$, or

$$
I_{z}=\operatorname{rad} J_{z} \stackrel{\text { def }}{ }\left\{f_{z} \mid\left(f_{z}\right)^{m} \in J_{z} \text { for some } m \text { depending on } f_{z}\right\},
$$

see [27, II.E. th. 20]. Obviously, when J_{z} is a prime ideal this yields [27, III.A. 7]

$$
\begin{equation*}
J_{z}=I_{z} \tag{4.4}
\end{equation*}
$$

i.e., any f_{z} can be written as, cf. (3.32),

$$
f(w)=\sum_{k=1}^{q} g_{k}(w) h_{k}(w)
$$

for w in a neighborhood ω of z and for some $g_{k} \in A(\omega), k=1, \ldots, q$.
Ehrenpreis generalized this result in such a way that (4.4) always holds if in (4.3) V_{z} is replaced by the germ W_{z} of a certain local multiplicity variety W depending on the functions h_{1}, \ldots, h_{q} and z. In general a local analytic multiplicity variety W in a point $z \epsilon \mathbb{C}^{n}$ is defined as a finite collection $W=\left\{V_{1}, \partial_{1} ; \ldots ; V_{r}, \partial_{r}\right\}$ of pairs $\left(V_{j}, \partial_{j}\right)$, where the V's are analytic varieties in a neighborhood of z (i.e., V_{j} is defined by (4.1) in a neighborhood ω of z for certain holomorphic functions h_{k}^{j} in ω depending on z and j for $k=1, \ldots, q^{j}$, where the number q^{j} of functions also may depend on j and z) and where ∂_{j} is a differential operator with coefficients holomorphic in a neighborhood of z for $j=1, \ldots, r$. If for each $z \in \mathbb{C}^{n}$ all the defining functions $h_{k}^{j}, k=1, \ldots, q^{j}, j=1, \ldots, r$ are the same polynomials for every z and if the coefficients of the differential operators ∂_{j} are the same polynomials, W is called a polynomial multiplicity variety in \mathbb{C}^{n}. In this case for $\omega \subset \mathbb{C}^{n}, W \cap \omega$ is the restriction of W to the points of ω. Let f_{z} be the germ of a holomorphic function at z, then $f_{z} \mid W_{z}$, the restriction of f_{z} to W_{z}, is defined as the collection of functions $\left\{f_{j}\right\}_{j=1}^{r}$, where each f_{j} is defined on V_{j} in a neighborhood ω of z, by

$$
\begin{equation*}
\left.f_{j} \stackrel{\text { def }}{=} \partial_{j} f\right|_{j} n \omega \tag{4.5}
\end{equation*}
$$

Conversely, a collection of functions $\left\{f_{j}\right\}_{j=1}^{r}$ with f_{j} defined on V_{j} in a neighborhood of z is called a holomorphic function on W_{z} if there exists a holomorphic function f in a neighborhood ω of z with $\left.f\right|_{W_{n \omega}} ^{z}=\left\{f_{j}\right\}_{j=1}^{r}$.
LEMMA 4.1 [16, th. II.2.4]. Let $\left\{h_{k}\right\}_{k=1}^{q}$ be a q-tuple of holomorphic functions in ω. Then it is possible for each $z \in \omega$ to define the germ W_{z} at z of a local analytic multiplicity variety, such that for each $z \in \omega$ the germ at z of every function f , holomorphic in a neighborhood of z in ω, vanishes on w_{z} if and only if it-can be written as

$$
f(w)=\sum_{k=1}^{q} h_{k}(w) g_{k}(w)
$$

for w in a neighborhood of z in ω and for functions g_{k} holomorphic there, $\mathrm{k}=1, \ldots, \mathrm{q}$.

Thus for any vector $\vec{h}_{z} \in A_{z}^{q}$ there exists the germ W_{z} of a multiplicity variety such that the subset I_{z} of A_{z} of germs of functions vanishing on W_{z} is always an ideal which satisfies (4.4). It should be remarked that W is not uniquely determined by the functions h_{1}, \ldots, h_{q}. Instead of proving lemma 4.1 we shall give some examples of polynomial multiplicity varieties.
(i) For $n=2, q=1$ and $h(z)=z_{1}^{m}\left(z_{1}-z_{2}\right)^{\ell}$ both the multiplicity varieties $W \cdot \xlongequal{\text { def }} \underset{\quad \partial^{\ell-1} / \partial z_{1}^{\ell}=0, \text { identity } ; \ldots ; z_{1}=0, \partial^{m-1} / \partial z_{1}^{m-1} ; z_{1}=z_{2}, i d ; \ldots ; z_{1}=z_{2} \text {, }}{ }$ and
$\begin{aligned} \omega \text { def } & \\ \left\{z_{1}\right. & =z_{2}=0, i d ; \ldots ; z_{1}=z_{2}=0, \partial^{m+\ell-1} / \partial z_{1}^{m+\ell-1} ; z_{1}=0, i d ; \ldots ; \\ z_{1} & \left.=0, \partial^{m-1} / \partial z_{1}^{m-1} ; z_{1}=z_{2}, i d ; \ldots ; z_{1}=z_{2}, \partial^{\ell-1} / \partial z_{1}^{\ell-1}\right\}\end{aligned}$
are such that, if they replace V in (4.3), then (4.4) is satisfied for each $z \in \mathbb{C}^{\mathrm{n}}$, cf. [16, ch II, § 2, ex. 3].
(ii) Let $n=2, q=2, h_{1}(z)=z_{2}^{2}-z_{1}$ and $h_{2}(z)=z_{1}^{2}$. Then we may take cf. [16, ch. II, §2, ex. 4]
ω def $\left\{z_{1}=z_{2}=0, i d . ; z_{1}=z_{2}=0, \quad \partial / \partial z_{2} ; z_{1}=z_{2}=0, \quad \partial / \partial z_{1}+\frac{1}{2} \partial^{2} / \partial z_{2}^{2} ;\right.$

$$
\left.z_{1}=z_{2}=0, \partial^{2} / \partial z_{1} \partial z_{2}+\frac{1}{6} \partial^{3} / \partial z_{2}^{3}\right\},
$$

because obviously for every $z \in \mathbb{C}^{n}$ and $\left.f_{z} \in A_{z} \quad h_{1} f\right|_{\omega_{n} \omega}=0$ and $\left.h_{2} f\right|_{W_{n} \omega}=0$ for some neighborhood ω of z, and if $\left.f\right|_{\omega_{n} \omega}=0$, we first expand f in a power series

$$
f\left(z_{1}, z_{2}\right)=\sum f_{i j} z_{1}^{i} z_{2}^{j} .
$$

Since $f(0,0)=0$ we have $f_{00}=0$, since $\partial f / \partial z_{2}(0,0)=0$ we have $f_{01}=0$, since $\partial f / \partial z_{1}(0,0)+\frac{1}{2} \partial^{2} f / \partial z_{1}^{2}(0,0)=0$ we have $f_{10}+f_{02}=0$ and finally since $\partial^{2} f / \partial z_{1} \partial z_{2}(0,0)+\frac{1}{6} \partial^{3} f / \partial z_{2}^{3}(0,0)$ we have $f_{11}+f_{03}=0$. Next writing

$$
f\left(z_{1}, z_{2}\right)=z_{1}^{2} \sum_{\substack{i \geq 2 \\ j \geq 0}} f_{i j} z_{1}^{i-2} z_{2}^{j}+z_{1} \sum_{j \geq 0} f_{1 j} z_{2}^{j}+\sum_{j \geq 0} f_{0 j} z_{2}^{j}
$$

and using

$$
\begin{aligned}
z_{1} z_{2}^{2} & =z_{1}\left(z_{2}^{2}-z_{1}\right)+z_{1}^{2} \in \vec{h} \cdot \vec{A}_{z} \\
z_{2}^{2} & =\left(z_{2}^{2}-z_{1}\right)+z_{1} \equiv z_{1} \bmod \vec{h} \cdot \vec{A}_{z}
\end{aligned}
$$

$$
\begin{aligned}
& z_{2}^{3}=z_{2}\left(z_{2}^{2}-z_{1}\right)+z_{1} z_{2} \equiv z_{1} z_{2} \bmod \vec{h} \cdot \vec{A}_{z} \\
& z_{2}^{4}=\left(z_{2}^{2}+z_{1}^{2}\right)\left(z_{2}^{2}-z_{1}^{2}\right)+z_{1}^{4} \in \overrightarrow{\mathrm{~h}} \cdot \vec{A}_{z}
\end{aligned}
$$

$$
\begin{aligned}
& \text { by the above we get } \\
& \begin{aligned}
f\left(z_{1}, z_{2}\right) & =f_{10} z_{1}+f_{1} z_{1} z_{2}+f_{00}+f_{01} z_{2}+f_{02} z_{1}+f_{03} z_{1} z_{2} \bmod \vec{h} \cdot \vec{A}_{z} \equiv \\
& \equiv 0 \bmod \vec{h} \cdot \vec{A}_{z} .
\end{aligned}
\end{aligned}
$$

(iii) Finally we give an example which shows that the differential operators do not necessarily have constant coefficients. Let $n=3, h_{1}(z)=$ $=z_{2}-z_{1} z_{3}$ and $h_{2}(z)=z_{2}^{2}$, cf. [16, II exercise 2.2]. Then as in example (ii) one can check that the polynomial multiplicity variety
w def $\left\{z_{2}=z_{3}=0, i d ; z_{2}=z_{3}=0, z_{1} \partial / \partial z_{2}+\partial / \partial z_{3} ; z_{1}=z_{2}=0\right.$,id. ;

$$
\left.z_{1}=z_{2}=0, \partial / \partial z_{1}+z_{3} \partial / \partial z_{2}\right\}
$$

satisfies the required properties. To see how the multiplicity variety W could be abtained one first determines a multiplicity variety W_{1} belonging to the polynomial $z_{2}-z_{1} z_{3}$. For that purpose, we introduce the change of variables $u=z_{1}+z_{3}, v=z_{2}$ and $w=z_{1}-z_{3}$ so that any holomorphic function $f\left(z_{1}, z_{2}, z_{3}\right)$ can be written as

$$
\tilde{f}(u, v, w)=f\left(\frac{u+w}{2}, v, \frac{u-w}{2}\right)
$$

and so that the polynomial $z_{2}-z_{1} z_{3}$ multiplied by 4 becomes

$$
w^{2}-u^{2}+4 v
$$

which now is a distinguished polynomial in w. A multiplicity variety belonging to it is
$\tilde{w}_{1} \stackrel{\text { def }}{=}\left\{w^{2}-u^{2}+4 v=0, i d . ; w=u^{2}-4 v=0, \partial / \partial w\right\}$,
which in the original coordinates is
ω_{1} def $\left\{z_{2}-z_{1} z_{3}=0\right.$,id. $\left.; z_{1}-z_{3}=z_{2}-z_{1}^{2}=0, \partial / \partial z_{1}-\partial / \partial z_{3}\right\}$.
Now we write an analytic function $\tilde{f}(u, v, w)$ as
$\tilde{f}(u, v, w) \equiv K_{0}(u, v)+w K_{1}(u, v) \bmod \left(w^{2}-u^{2}+4 v\right)$,
where $K_{0}(u, v)$ and $K_{1}(u, v)$ are computed by the values of \tilde{f} on the variety $w^{2}-u^{2}+4 v=0$ above the point (u, v), if $u^{2}-4 v \neq 0$. Precisely, since $\tilde{f}(u, v, w)=K_{0}(u, v)+w K_{1}(u, v)$ for $w= \pm \sqrt{u^{2}-4 v}$ we get two equations with two unknowns yielding the solution

$$
\begin{aligned}
& K_{0}(u, v)=\frac{\tilde{f}\left(u, v, \sqrt{u^{2}-4 v}\right)+\tilde{f}\left(u, v,-\sqrt{u^{2}-4 v}\right)}{2} \\
& K_{1}(u, v)=\frac{\tilde{f}\left(u, v, \sqrt{u^{2}-4 v}\right)-\tilde{f}\left(u, v-\sqrt{u^{2}-4 v}\right)}{2 \sqrt{u^{2}-4 v}}
\end{aligned}
$$

if $u^{2}-4 v \neq 0$, while for $u^{2}=4 v$ we have the equations
$\tilde{f}(u, v, 0)=K_{0}(u, v) \& \partial \tilde{f} / \partial w(u, v, 0)=K_{1}(u, v), \quad u^{2}=4 v$.
Hence the functions K_{0} and K_{1} can be continued analytically over
the variety $u^{2}-4 v=0$. Furthermore, the multiplicity variety belonging to the polynomial v^{2} is
$\tilde{w}_{2} \xrightarrow{\text { def }}\{v=0, i d . ; v=0, \partial / \partial v\}$.
So we write K_{0} and K_{1} as

$$
\begin{aligned}
& K_{0}(u, v) \equiv K_{00}(u)+v K_{01}(u) \bmod v^{2} \\
& K_{1}(u, v) \equiv K_{10}(u)+v K_{11}(u) \bmod v^{2}
\end{aligned}
$$

and compute $K_{i j}(u)$ by the values of K_{0} and K_{1} on the variety $v=0$, which yields

$$
\begin{aligned}
& K_{00}(u)=K_{0}(u, 0) \\
& K_{10}(u)=K_{1}(u, 0) \\
& K_{01}(u)=\partial K_{0} / \partial v(u, 0) \\
& K_{11}(u)=\partial K_{1} / \partial v(u, 0)
\end{aligned}
$$

Using the expressions for K_{0} and K_{1} we find

$$
\begin{aligned}
& K_{00}(u)=\frac{\tilde{f}(u, 0, u)+\tilde{f}(u, 0,-u)}{2}=\frac{f(u, 0,0)+f(0,0, u)}{2} \\
& K_{10}(u)=\frac{f(u, 0, u)-f(u, 0,-u)}{2 u}=\frac{f(u, 0,0)-f(0,0, u)}{2 u}
\end{aligned}
$$

Defining
W^{\prime} def $\left\{z_{2}=z_{3}=0, i d . ; z_{1}=z_{2}=0\right.$, id. $\}$
by a power series expansion of f we see that K_{00} and K_{10} can be expressed in terms of the restriction of f to W '. The expressions for K_{01} and K_{11} become

$$
\begin{aligned}
K_{01}(u) & =\frac{1}{2} \frac{\partial \tilde{f}}{\partial v}(u, 0, u)-\frac{1}{u} \frac{\partial \tilde{f}}{\partial w}(u, 0, u)+\frac{1}{2} \frac{\partial \tilde{f}}{\partial v}(u, 0,-u)+ \\
& +\frac{1}{u} \frac{\partial \tilde{f}}{\partial w}(u, 0,-u)=\frac{1}{2} \frac{\partial f}{\partial z_{2}}(u, 0,0)-\frac{1}{2 u} \frac{\partial f}{\partial z_{1}}(u, 0,0)+ \\
& +\frac{1}{2 u} \frac{\partial f}{\partial z_{3}}(u, 0,0)+\frac{1}{2} \frac{\partial f}{\partial z_{2}}(0,0, u)+\frac{1}{2 u} \frac{\partial f}{\partial z_{1}}(0,0, u)- \\
& -\frac{1}{2 u} \frac{\partial f}{\partial z_{3}}(0,0, u)
\end{aligned}
$$

and

$$
\begin{aligned}
K_{11}(u) & =\frac{1}{u}\left\{\frac{1}{2} \frac{\partial \tilde{f}}{\partial v}(u, 0, u)-\frac{1}{u} \frac{\partial \tilde{f}}{\partial w}(u, 0, u)-\frac{1}{2} \frac{\partial \tilde{f}}{\partial v}(u, 0,-u)-\right. \\
& \left.-\frac{1}{u} \frac{\partial \tilde{f}}{\partial w}(u, 0,-u)\right\}+\frac{1}{3}\{\tilde{f}(u, 0, u)-\tilde{f}(u, 0,-u)\}= \\
& =\frac{1}{u}\left\{\frac{1}{2} \frac{\partial f}{\partial z_{2}}(u, 0,0)-\frac{1}{2 u} \frac{\partial f}{\partial z_{1}}(u, 0,0)+\frac{1}{2 u} \frac{\partial f}{\partial z_{3}}(u, 0,0)-\right. \\
& \left.-\frac{1}{2} \frac{\partial f}{\partial z_{2}}(0,0, u)-\frac{1}{2 u} \frac{\partial f}{\partial z_{1}}(0,0, u)+\frac{1}{2 u} \frac{\partial f}{\partial z_{3}}(0,0, u)\right\}+ \\
& +\frac{1}{u}\{f(u, 0,0)-f(0,0, u)\} .
\end{aligned}
$$

Finally, expressing $u K_{01}(u) \pm u^{2} K_{11}(u)$ in terms of f and bearing in mind that K_{01} and K_{11} are analytic, we see that K_{01} and K_{11} can be expressed in terms of $\left.f\right|_{W}$, and the restriction of f to the multiplicity variety
$W^{\prime \prime}$ def $\left\{z_{2}=z_{3}=0, z_{1} \partial / \partial z_{2}+\partial / \partial z_{3} ; z_{1 \rightarrow}=z_{2}=0, z_{3} \partial / \partial z_{2}+\partial / \partial z_{1}\right\}$. Thus any f_{z} can be expressed modulo $\vec{h} \cdot A_{z}$ in terms of the restriction of f to $W^{\text {def }} W^{\prime}, W^{\prime \prime}$ and clearly $\vec{h} \cdot \vec{A}_{z}$ vanishes on W for each z.

Furthermore, [16, th. 2.5] determines a procedure (called parametrization) which extends the restriction to the germ of a local multiplicity variety W of the germ of an analytic function f to the germ of an unique analytic function $\hat{f}_{;}$if f_{z} vanishes on W_{z} then always $\hat{f}_{z} \equiv 0$. Moreover, this procedure is linear in the following sense: for $a, b \in \mathbb{C}$ we have $(a f+b g)_{z}=a \hat{f}_{z}+b \hat{g}_{z}$. In example (iii) the extension of $f \mid W$ is $K_{00}\left(z_{1}+z_{3}\right)+z_{2} K_{01}\left(z_{1}+z_{3}\right)+\left(z_{1}-z_{3}\right) K_{10}\left(z_{1}+z_{3}\right)+\left(z_{1}-z_{3}\right) z_{2} K_{11}\left(z_{1}+z_{3}\right)$.

The case of modules in A_{z}^{p} generated by a $p \times q$-matrix $H=\left(h_{j k}\right)$ of holomorphic functions is more delicate. The difficulty is that we want to
solve a matrix equation $\mathrm{H} \cdot \overrightarrow{\mathrm{g}}=\overrightarrow{\mathrm{f}}$ in a ring. In this and the next section lemma's 4.2 and 4.3 will express the following facts:
(1) Any submodule M of A_{z}^{p} is \mathbb{C}-linearly isomorphic to a direct sum of p ideals $I_{z}^{1}, \ldots, I_{z}^{p}$ in the ring A_{z} and moreover, there exists a \mathbb{C}-linear bijective $\operatorname{map} \sigma: A_{z}^{p} \rightarrow A_{z}^{p}$ such that M is mapped onto ${ }_{j=1}^{p} I_{z}^{j}$. That such a map exists can be seen by induction. For $p=1$ it is trivial. Let the $A_{z}-$ module homomorphism $\phi: A_{z}^{p} \rightarrow A_{z}$ be defined by $\phi\left(f_{1}, \ldots, f_{p}\right)$ def f_{1}. Then A_{z}^{p-1} can be identified with $\operatorname{Ker} \phi=\left(0, A_{z}^{p-1}\right)$. Furthermore, let M_{0} be the module $M \cap \operatorname{Ker} \phi$ and let the ideal $I_{z}^{1} \subset A_{z}^{2}$ be the image of M under ϕ. If A and $A \cup B$ are Hamel bases of M_{0} and M, respectively, this determines a linear direct decomposition $M=M_{1} \oplus M_{0}$, where M_{1} is a linear space which is mapped by ϕ linearly and bijectively onto I_{z}^{1}. Moreover, by using completions of A to a Hamel basis $A \cup C$ of $\left(0, A_{z}^{p-1}\right)$ and of $A \cup B U C$ to a Hamel basis of A_{z}^{p} we find that M_{1} is a linear subspace of a linear space $N_{1}=$ $=\left(A_{z}, \tilde{N}\right)$ with $\tilde{N} \subset A_{z}^{p-1}$, such that A_{z}^{p} is linearly decomposed as $A_{z}^{p}=N_{1} \oplus$ $\Theta\left(0, A_{z}^{p-1}\right)$, where M_{0} can be considered as a submodule of A_{z-1}^{p-1}. By the inductive hypothesis there exists a linear bijection $\sigma_{0}: A_{z}^{p^{p-1}} \rightarrow A_{z}^{p-1}$ which maps M_{0} onto a direct sum of ideals. Let P_{1} be the projection of A_{z}^{p} onto N_{1}, then we define $\sigma \stackrel{\text { def }}{=} \sigma_{0} \circ\left(1-P_{1}\right)+\phi \circ P_{1}$.
(2) If M is generated by the vectors $\left\{\overrightarrow{\mathrm{h}}{ }^{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\mathrm{q}}$ of germs at z of holomorphic vector functions, the ideals I_{z}^{ℓ} can depend on these vectors by
$I_{z}^{\ell}=\left\{\left.\sum_{k=1}^{q} g_{k} h_{\ell}^{k}\right|_{g} ^{\vec{g}} \in A_{z}^{q}\right.$, with $\sum_{k=1}^{q} g_{k} h_{j}^{k}=0$ for $j=1, \ldots, \ell-1$ if $\left.\ell>1\right\}$. This follows from (1) where $I_{z}^{1}=\left\{\Sigma g_{k} h_{1}^{k} \mid \vec{g} \in A_{z}^{q}\right\}$ and $M_{0}=\left\{\Sigma g_{k} \vec{h} \vec{h}^{k} \mid \vec{g} \in A_{z}^{q}\right.$ with $\left.\Sigma g_{k} h_{1}^{k}=0\right\}$. Note that any module in A_{z}^{p} is finitely generated because the ring A_{z} is Noetherian [30, lemma 6.3.2 \& th. 6.3.3].
(3) According to lemma 4.1 to the vector $\vec{I}_{z}=\left(I_{z}^{1}, \ldots, I_{z}^{p}\right)$ of ideals there is accociated the germ $\vec{W}_{z}=\left(W_{z}^{1}, \ldots, W_{z}^{p}\right)$ at z of a vector of local multi$\underset{\rightarrow}{\text { plicity varieties, such that }} \underset{z}{z} \vec{I}_{z}^{z}$ consists of the vector functions vanishing on \vec{W}_{z}.

The need of Hamel bases in (1) makes it impossible to obtain ideals of functions satisfying growth conditions. Therefore, with the aid of parametrization (see p.122) in the proof of lemma 4.2 we will perform the steps of (1) in a more constructive way. However, in order to get bounds later, we will keep some freedom in the definition of the map there. The result will be a
$\operatorname{map}^{\rho} \rho_{z}: A_{z}^{P} \rightarrow A_{z}^{P}$ which depends on z and is only \mathbb{C}-linear from A_{z}^{P} onto $A_{z}^{P} /$ ${ }_{j}^{\mathrm{P}}=1 \mathrm{I} \mathrm{j}_{\mathrm{j}}$. As (1) also holds for sections over a domain, in lemma 4.3 it will be shown that the freedom in the definition of ρ_{z} will not prevent us from obtaining sections on the multiplicity varieties W^{j}.

For a $p^{\times q}$-matrix H of holomorphic functions we will denote the module in A_{z}^{p} of germs at z of functions $\vec{f}=H \cdot{ }^{\circ} \vec{g}$ with $\vec{g} \in A_{z}^{q}$ by \vec{J}_{z}.

LEMMA 4.2. For each p×q-matrix $H=\left(h_{j k}\right)$ of holomorphic functions $h_{j k} \in A(\omega)$ and for each $z \in \omega$, there exist a local vector multiplicity variety $\vec{d} \rightarrow z$ and a linear, surjective map ρ_{z} from A_{z}^{p} onto $A_{z}^{p} \not \vec{I}_{z}$ whose kernel is just \vec{J}_{z}^{z}, where \vec{I}_{z} is the module associated to \vec{W}_{z}.

PROOF. For each $z \in \omega$ define W_{z}^{1} as the analytic multiplicity variety belonging to the functions $h_{11}, \ldots, h_{1 k}, \ldots, h_{1 q}$ by lemma 4.1 . Let M_{z}^{ℓ} be the sheaf of relations at z of the first l rows of H, i.e., $\vec{g}_{z} \in M_{z}^{\ell}$ if and only if

$$
\begin{equation*}
\sum_{k=1}^{q}\left(h_{j k}\right)_{z}\left(g_{k}\right)_{z}=0, \quad j=1, \ldots, \ell \tag{4.6}
\end{equation*}
$$

Now by Oka's theorem [30, th. 7.1.5] M_{z}^{ℓ} is locally finitely generated, hence the functions $\sum_{k} h_{\ell+1} k g_{k}$ with \vec{g} satisfying (4.6) determine the germ $w_{z}^{\ell+1}$ at z of an analytic multiplicity variety according to lemma 4.1. Thus $f \in A_{z}$ vanishes on $W_{z}^{\ell+1}$ (i.e., $f \in I_{z}^{\ell+1}$) if and only if

$$
\begin{equation*}
\left.f_{z}=\sum_{k=1}^{q}\left(h_{\ell+1 k_{z}}\right)_{k}\right)_{z} \text { for a } \vec{g} \text { satisfying (4.6). } \tag{4.7}
\end{equation*}
$$

Now we will define the $\operatorname{map} \rho_{z}$ for $\vec{f}_{z} \in A_{z}^{p}:\left(\rho_{z} \vec{f}_{z}\right)_{1}$ is given by

$$
\left(\rho_{z} \vec{f}_{z}\right)_{1} \stackrel{\text { def }}{=}\left(f_{1}\right)_{z}
$$

Let $\left(\hat{f}_{1}\right)_{z}$ be the extension of $f_{1} \mid W^{1}$ at z and let \vec{g}_{z}^{1} be such that
(4.8) $\quad \sum_{k=1}^{q} h_{1 k} g_{k}^{1}=f_{1}-\hat{f}_{1}$.

According to lemma 4.1 it is always possible to find such ${\underset{g}{g}}_{z}^{1}$. Then we define

$$
\begin{equation*}
\left(\rho_{z} \vec{f}_{z}\right)_{2} \stackrel{\text { def }}{=}\left(f_{2}\right)_{z}-\sum_{k=1}^{q}\left(h_{2 k} g_{k}^{1}\right)_{z} \tag{4.9}
\end{equation*}
$$

Successively for $\ell=2, \ldots, p-1$ let $\hat{\mathrm{f}}_{\ell}$ be the extension of the restriction
at z to W^{ℓ} of $f_{\ell}-{ }_{j-\bar{E}_{1}^{1}}^{k}{ }_{k=1}^{q} h_{\ell k} g_{k}^{j}$, let $\vec{g}_{z}^{\ell} \in M_{z}^{\ell-1}$ be such that

$$
\begin{equation*}
\sum_{k=1}^{q} h_{\ell k} g_{k}^{\ell}=f_{\ell}-\sum_{j=1}^{\ell-1} \sum_{k=1}^{q} h_{\ell k} g_{k}^{j}-\hat{f}_{\ell} \tag{4.10}
\end{equation*}
$$

and define

$$
\begin{equation*}
\left(\rho_{z} \vec{f}_{z}\right)_{\ell+1} \stackrel{\text { def }}{=}\left(f_{\ell+1}\right)_{z}-\sum_{j=1}^{\ell} \sum_{k=1}^{q}\left(h_{\ell+1 k} g_{k}^{j}\right)_{z} \tag{4.11}
\end{equation*}
$$

The functions \vec{g}_{z}^{ℓ} are not uniquely determined, since an arbitrary element of M_{z}^{ℓ} can be added to \vec{g}_{z}^{ℓ}. This changes $\left(\rho_{z} \vec{f}_{z}\right){ }_{\ell+1}$, although $\left(\rho_{z} \vec{f}_{z}\right) \ell+1$ $\left.\right|_{W} \ell+1$ and $\left(\rho_{z} \vec{f}_{z} \ell_{+j}, j \geq 2\right.$, are not altered (see next section proof of lemma $4_{z}{ }^{1}$). So ρ_{z} is determined by the choices of $\vec{g}_{z} \ell$ and we may choose suitable \vec{g}_{z} depending on $z \in \omega$ to be determined later. Therefore, we get a map ρ_{z} from A_{z}^{P} into A_{z}^{P} which can depend on z. It is clear that ρ_{z} is surjective from A_{z}^{P} onto A_{z}^{D}. Furthermore, it follows from the linearity of the map $f_{z} \mid W_{z} \rightarrow \hat{f}_{z}$ and from the fact that a different choice of \vec{g}_{z}^{ℓ} for $\ell=1, \ldots, p-1$ has the effect of addition of an element of \vec{I}_{z} to $\rho_{z} \vec{f}_{z}$, that the map ρ_{z} is linear from A_{2}^{p} into $A_{z}^{\mathrm{p}} \vec{I}_{z}$.

Let $\vec{f}_{z} \in \vec{J}_{z}$, thus ${\underset{f}{f}}_{j}=\sum_{k} h_{j k} g_{k}^{\prime}$ for some $\vec{g}^{\prime} \in A_{z}^{q}$. Then $\left(\rho_{z} \vec{f}_{z}\right)_{1}$ vanishes on W_{z}^{1}, hence $\hat{f}_{1} \equiv 0$ and $\vec{g}_{z}^{1}=\vec{g}_{z}^{\prime}-\vec{m}_{z}^{1}$ for some $\vec{m}_{z}^{1} \in M_{z}^{1}$ depending on the choice of \vec{g}_{z}^{1}. This implies that $\left(\rho_{z} \vec{f}_{z}\right)_{2}=\sum_{k} h_{2 k} m_{k}^{1}$ which vanishes on W^{2} in a neighborhood of z. Successively for $\ell=2, \ldots, p-1$ we find that $\hat{\mathrm{f}}_{\ell} \equiv 0$, that $\vec{g}_{z}^{\ell}=\vec{m}_{z}^{\ell-1}$ -$-\vec{m}_{z}^{\ell}$ for some $\vec{m}_{z}^{\ell} \in M_{z}^{\ell}$ and that $\left(\rho_{z} \vec{f}_{z}\right) \ell+1=\sum_{k} h_{\ell+1} k^{m}{ }_{k}^{\ell}$ which vanishes on $W^{\ell}+1$ in a neighborhood of z by (4.7). Thus $\rho_{z} \vec{f}_{z} \in \vec{I}_{z}$.

Conversely, if $\rho_{z} \vec{f}_{z} \in \vec{I}_{z}$, thus if $\rho_{z} \vec{f}_{z}$ vanishes on \vec{U}_{z}, then $f_{1}=$ $=\sum_{k} h_{1 k} g_{k}^{1}$ for some $\vec{g}_{z}^{1} \in A_{z}^{q}$ by lemma 4.1. Since $\hat{f}_{j} \equiv 0$ for $j=1, \ldots, p-1$, by (4.10) we get for $\ell=1, \ldots, p-1$

1) At this point [16] is a little puzzling. On page 49 it is remarked that $\left(\rho_{z} \vec{f}_{z}\right) \ell+2 \mid W^{\ell+2}$ does change by a different choice of \vec{g}_{z}. On the other hand this should not be true if one wants to obtain global sections on \vec{W} (see next section), which is really the case in [16, p.100-105, especially p.104, proof of b, shows that one is concerned with global sections]. The key lies perhaps in the fact that systematically the wrong formula has been used in [16], where in the formula's (2.19), (2.20); (2.58), (2.59) and (3.44) $\mathrm{F}_{\mathrm{i}+1, \mathrm{j}}$ should be replaced by $F_{t+1, j}, F_{t+1, j}, F_{k+1, j}, F_{k, j}$ or $F_{k, j}$, respectively.

$$
f_{\ell}-\sum_{j=1}^{\ell-1} \sum_{k=1}^{q} h_{\ell k} g_{k}^{j}=\sum_{k=1}^{q} h_{\ell k} g_{k}^{\ell}
$$

with $\vec{g}_{z}^{\ell} \in M_{z}^{\ell-1}$ and this holds also for $\ell=p$ for some $\vec{g}_{z}^{p} \in M_{z}^{p-1}$, because (4.11) vanishes on ω_{z}^{p} if $\ell=p^{-1}$ there. Thus since $\sum_{k} h_{\ell k} \vec{g}_{k}^{j}=0$ for $j>l$, f can be written as

$$
{ }^{f} \ell=\sum_{k=1}^{q} h_{\ell k}\left(g_{k}^{1}+\ldots+g_{k}^{p}\right),
$$

i.e., $f_{z} \in \vec{I}_{z}$.

REMARK. If the map $f_{z} \mid \omega_{z} \rightarrow \hat{f}_{z}$ would be multiplicative, ρ_{z} would be multiplicative. It is possible, cf. [16, th. $2.5 \&$ lemm 2.14] to give a rule of multiplication by an element of A_{z} in A_{z}^{p} / \vec{I}_{z} such that ρ_{z} becomes a homomorphism of A_{z}-modules.

IV.2. GLOBAL THEORY.

We will study the global analog of the foregoing with sections over a pseudoconvex domain Ω instead of germs at a point z.

Let J be a sheaf of ideals generated in each point of Ω by holomorphic functions $\vec{h}=\left(h_{1}, \ldots, h_{q}\right)$ in Ω. Their simultaneous zero set defines a global analytic variety $V=\underset{z \in \Omega}{\mathcal{U}} V_{z}$ in Ω (at points z where some $h_{k}(z) \neq 0 \quad V_{z}$ is empty). We will define the sheaf of analytic functions on V. Let I be the sheaf on Ω

$$
I \xlongequal{\text { def }} \underset{z \in_{\Omega}}{U_{z}} I_{z}
$$

where I_{z} is defined by (4.3); let $I_{z} \stackrel{\text { def }}{ } A_{z}$ when $z \in \Omega \backslash V$. We define a sheaf F on Ω by

$$
\begin{equation*}
F_{z} \xlongequal{\text { def }} A_{z} / I_{z}, \quad z \in \Omega \tag{4.12}
\end{equation*}
$$

so that the following sequence is exact

$$
0 \rightarrow I \rightarrow A \rightarrow F \rightarrow 0 .
$$

For $z \in \Omega \backslash V I_{z}=A_{z}$, thus $F_{z}=0$. Hence F is only non-trivial in points of V, thus we may just as well consider the restriction F^{\prime} of F to V

$$
F \cdot \xlongequal{\text { def }} \bigcup_{z \in U} F_{z}
$$

which is a sheaf on V. By definition a section f in $\Gamma\left(V, F^{\prime}\right)$ is a holomorphic function in V; considered as a section f_{1} in $\Gamma(\Omega, F)$ we would have $f_{1}(z)=$ $=f(z)$ for $z \in V$ and $f_{1}(z)=0$ for $z \in \Omega \backslash V$. So, it makes no essential difference if we regard the sections in $\Gamma(\Omega, F)$ as the holomorphic functions on V. Finally, let R be the sheaf of relations of \vec{h}, so that we have the exact sequence

$$
0 \rightarrow R \rightarrow A^{q} \xrightarrow{h} J \rightarrow 0
$$

By [27, IV. D.2] the sheaf I is coherent and by Oka's thoerem [30, th. 7.1.5] or [27, IV. B. 8 and IV. C.1] also R is coherent. Hence we can apply Cartan's theorem B [27, VIII. A.14] or [30, th. 7.4.3], which says that the first cohomology groups $H^{1}(\Omega, I)$ and $H^{1}(\Omega, R)$ vanish. This means that the following sequences of sections over Ω are exact

$$
\begin{align*}
0 \rightarrow \Gamma(\Omega, I) \rightarrow & \Gamma(\Omega, A) \rightarrow \Gamma(\Omega, F) \rightarrow H^{1}(\Omega, I)=0 \tag{4.13}\\
& \Gamma\left(\Omega, A^{q}\right) \xrightarrow{\vec{h}} \Gamma(\Omega, J) \rightarrow H^{1}(\Omega, R)=0 .
\end{align*}
$$

(4.13) means that the restriction map from $\Gamma(\Omega, A)=A(\Omega)$ to V is a surjection and if (4.4) holds for all $z \in \Omega$, for example if J_{z} is a prime ideal for each $z \in \Omega$ (cf. chapter III), by (4.14) we find that in

$$
\Gamma(\Omega, A)_{\vec{h} \cdot \Gamma(\Omega, A) q} \rightarrow \Gamma(\Omega, A) \Gamma_{(\Omega, I)} \rightarrow \Gamma\left(\Omega, F{ }^{\prime}\right)
$$

both maps are isomorphisms. Thus any holomorphic function on V is the restriction of a holomorphic function in Ω and any function f in $A(\Omega)$ vanishing on V can be written as

$$
f(z)=\sum_{k=1}^{q} h_{k}(z) g_{k}(z), \quad z \in \Omega
$$

for some $g_{k} \in A(\Omega), k=1, \ldots, q$.

Now we will study the sheaf of modules \vec{J} in A^{p} generated by a matrix H of holomorphic functions $h_{j k}$ in Ω. The difference with the above is that for $p>1 \vec{J}$ is not equal to the sheaf \vec{I} of vector functions vanishing on an associated vector multiplicity variety $\overrightarrow{\dot{\omega}}, \underset{\rightarrow}{\vec{j}}$ but the maps ρ_{z} of lemma 4.2 determine a bijection between A^{p} / \vec{J} and A^{p} / \vec{I}. The multiplicity varieties W_{z}^{ℓ}, $\ell=1, \ldots, p$ were defined locally according to lemma 4.1. In the overlap of two neighborhoods ω_{1} of z_{1} and ω_{2} of $z_{2} \underset{\rightarrow}{\text { in } \Omega}$ where $\omega_{z_{1}}^{\ell}$ and $\omega_{z_{2}}^{\ell}$ are defined they can be choosen to coincide, so that $\vec{W}=\bigcup_{z \in \Omega} \vec{W}_{z}$ is a global, analytic vector multiplicity variety in Ω. Moreover, in lemma 4.3 we will show that $\rho_{z} \vec{f}_{z}$ is the germ of a section in $\Gamma(\omega, A P / \bar{I})$ if \vec{f}_{z} is a germ of a section $f \in \Gamma\left(\omega, A^{p}\right)=A(\omega)^{p}$. This means that ρ_{z} determines a sheaf homomorphism between sheafs of linear spaces, so that the following sequence is exact

$$
0 \rightarrow \vec{J} \rightarrow A^{\mathrm{p}} \xrightarrow{\rho} F \rightarrow 0 .
$$

where, as before, we may consider

$$
F \stackrel{\text { def }}{=} \bigcup_{z \in \Omega} A_{z}^{p} / \vec{I}_{z}
$$

as the sheaf of holomorphic functions on \vec{W}. As in (4.14), it follows that the map $H: \Gamma\left(\Omega, A^{q}\right) \rightarrow \Gamma(\Omega, J)$ is surjective. So finally, since $H^{1}(\Omega, J)=0$, we obtain an isomorphism ρ^{L} between linear spaces, defined by the map ρ followed by restriction to \vec{W}

$$
\begin{equation*}
\rho^{L}: \Gamma\left(\Omega, A^{\mathrm{p}}\right) /_{\mathrm{H} \cdot \Gamma\left(\Omega, A^{q}\right)} \rightarrow \Gamma(\Omega, A(\vec{W})) \tag{4.15}
\end{equation*}
$$

where $A(\vec{W})$ is the sheaf of holomorphic functions on \vec{W}.

LEMMA 4.3. [16, th. 2.6]. For any matrix H of holomorphic functions in Ω, there exist an analytic vector multiplicity variety W and a local restriction map $\rho^{\text {L }}$ such that (4.15) is an isomorphism between linear spaces.

PROOF. We will show that $\rho_{z} \vec{f}{ }_{z}$ is the germ of a section over ω in $A^{p} \vec{I}$ if $\vec{f} \in A(\omega)^{\text {P }}$. We may assume that ω is pseudoconvex. That $\left(\rho_{z} \vec{f}_{z}\right)_{1}$ is the germ of a section in $A(\omega)$ follows immediately from the definition. Since $\left(\hat{f}_{1}\right)_{z}$ is uniquely determined by $f_{1} \mid \omega^{1}$ it follows from (4.14) that

$$
f_{1}(z)-\hat{f}_{1}(z)=\sum_{k=1}^{q} h_{1 k}(z) \tilde{g}_{k}(z)
$$

for a section $\stackrel{\vec{g}}{\tilde{g}} \in A(\omega)^{q}$. Thus in (4.8) $\vec{g}_{z}^{1}=\stackrel{\vec{\sim}}{g}(z)-\vec{m}_{z}^{1}$ for some $\vec{m}_{z}^{1} \in M_{z}^{1}$ and (4.9) becomes

$$
\left(\rho_{z z^{\prime}}^{\vec{f}_{2}}\right)_{2}=f_{2}(z)-\sum_{k=1}^{q} h_{2 k}(z) \tilde{g}_{k}(z)+\sum_{k=1}^{q} h_{2 k}(z)\left(m_{k}^{1}\right)_{z^{\prime}}^{\prime}
$$

which is a section in $\Gamma\left(\Omega, A / I^{2}\right)$, because the last term belongs to I_{z}^{2}. Let M be a locally finitely generated subsheaf of \vec{A} over ω, let \vec{h} be a vector of holomrphic functions in ω and let F be the sheaf $\vec{h} \cdot M$, i.e., the sequence

$$
0 \rightarrow R \rightarrow M \xrightarrow{\vec{h}} F \rightarrow 0
$$

is exact for some coherent analytic sheaf R, cf. [30, th. 7.1.5] \& [30, th. 7.1.7] or [27, IV. B.13]. Hence as in (4.14) the map $\vec{h}: \Gamma(\omega, M) \rightarrow \Gamma(\omega, F)$ is surjective. For a function $k \in A(\omega) k \mid \omega^{\ell}$ determines uniquely a function $\hat{k}^{\ell} \in A(\omega)$, hence $k-\hat{k}^{\ell}$ is a section in $\Gamma(\omega, F)$ where F is determined as above with $M=M^{\ell-1} \underset{\rightarrow \ell-1}{\text { and }} \vec{h}=\left(h_{\ell_{1}}, \ldots, h_{\ell_{q}}\right)$. Therefore, $k-\hat{k}^{\ell}=\sum_{k} h_{\ell_{k}}{\underset{k}{l}}_{\sim}^{\ell-1}$ for some vector function $\stackrel{\vec{m}}{\underset{m}{\ell}} \ell-1 \in A(\omega)^{q}$ satisfying (4.6) (with $g_{k} \underset{\text { replaced by }}{{\underset{m}{k}}^{\sim}-1}$). Thus for $\ell=2, \ldots, p-1$, súccessively, we find that there is some global function $\stackrel{\overrightarrow{\mathrm{m}}}{ }{ }^{\ell-1} \in \mathrm{~A}(\omega)^{\mathrm{q}}$ with

$$
\begin{aligned}
& f_{\ell}(z)-\sum_{j=1}^{\ell-1} \sum_{k=1}^{q} h_{\ell k}(z)\left(g_{k}^{j}\right)_{z}-\hat{f}_{\ell}(z)= \\
& =\sum_{k=1}^{q} h_{\ell k}(z)\left\{\tilde{m}_{k}^{\ell-1}(z)+\left(m_{k}^{\ell-1}\right)_{z}\right\}
\end{aligned}
$$

hence by (4.10) that $\vec{g}_{z}^{\ell}=\stackrel{\vec{\sim}}{\sim} \ell-1(z)+\vec{m}_{z}^{\ell-1}-\vec{m}_{z}^{\ell}$ for some $\vec{m}_{z} \in M_{z}^{\ell}$, and by (4.11) that

$$
\begin{aligned}
\left(\rho_{z} \vec{f}_{z}\right)_{\ell+1} & =f_{\ell+1}(z)-\sum_{j=2}^{\ell} \sum_{k=1}^{q} h_{\ell+1 k}(z)\left\{\tilde{m}_{k}^{j-1}(z)+\left(m_{k}^{j-1}\right)_{z}-\left(m_{k}^{j}\right)_{z}\right\}- \\
& -\sum_{k=1}^{q} h_{\ell+1 k}(z)\left\{\tilde{g}_{k}(z)-\left(m_{k}^{1}\right)_{z}\right\}= \\
& =f_{\ell+1}(z)-\sum_{j=1}^{\ell-1} \sum_{k=1}^{q} h_{\ell+1 k}(z) \tilde{m}_{k}^{j}(z)- \\
& -\sum_{k=1}^{q} h_{\ell+1 k}(z){\underset{g}{k}}^{h^{j}(z)+\sum_{k=1}^{q} h_{\ell+1 k}(z)\left(m_{k}^{\ell}\right)_{z}}
\end{aligned}
$$

determines a section in $A / I^{\ell+1}$, because the last term vanishes on $w^{\ell+1}$.

From the last formula is can also be seen that a change of \vec{g}^{ℓ} does not alter $\left(\rho_{z} \vec{f}_{z}\right)_{\ell+j}$ for $j \geq 2$, because the choice of \vec{m}_{z} determines the germ \vec{g}_{z}.

Thus any holomorphic function in $\Gamma(\Omega, A(\vec{W}))$ is the image under ρ^{L} of a holomorphic vector function in Ω and any holomorphic vector function $\vec{f} \in A(\Omega)^{p}$ vanishing under ρ^{L} on \vec{W} can be written as $\vec{f}=H \cdot \vec{g}$ for some $\vec{g} \in A(\Omega)^{q}$.

REMARK. It follows that the holomorphic functions f on a vector multiplicity variety \vec{W} are defined as restrictions of a collection $\left\{f^{\omega} \mid \omega \subset \subset \Omega\right.$ of locally defined holomorphic functions, i.e., by (4.5) for all $\omega \subset \subset \Omega$ we have, if $\mathrm{f}=\left\{\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{r}}\right\}$,

$$
f_{j}(z)=\partial_{j} f^{\omega}(z), \quad z \in V_{j} \cap \omega .
$$

Only if $p=1$, a holomorphic function on W is also the restriction of an entire function, where restriction is defined in (4.5) which in this case defines the map ρ^{L}, too.

IV.3. EHRENPREIS' AND PALAMODOV'S FUNDAMENTAL PRINCIPLE.

In this section we will mention the fundamental principle with spaces of entire functions satisfying certain growth conditions, formulated by Ehrenpreis in [16] and by Palamodov in [56]. We shall not discuss all these conditions in full detail, but in the next section we shall give alternative conditions, which enables us to generalize the principle. The only purpose of this section is to relate our work to that of Ehrenpreis and Palamodov.

If $\Omega=\mathbb{C}^{n}$, H is a matrix of polynomials and if all the functions in (4.15) are bounded with respect to certain weighted sup-norms, then the fact that ρ^{L} is a topological isomorphism is sometimes also called the fundamental principle. This is formulated by Ehrenpreis in [16, th. 4.2] and by Palamodov in $[56$, IV, §5. th. 2] and the difference between these two are the conditions on the bounds. The need for bounds makes it necessary to consider matrices P of polynomials with associated polynomial vector multiplicity varieties \vec{W}, instead of matrices H of arbitrary entire functions. Our discussion will mainly follow the lines of [16], but at the end of this section we will make some remarks on Palamodov's formulation, which holds in convex
tube domains Ω, too.
Firstly, we remark that the sheaf of relations between a finite number of polynomials is globally finitely generated by polynomials [30, lemma 7.6.3]. Hence the vector multiplicity variety \dot{W} of lemma 4.3 will be a polynomial vector multiplicity variety. Furthermore, there are only finitely many possible polynomial vector multiplicity varieties to choose \vec{W} from. Unfortunately, for obtaining bounds one cannot use the same multiplicity variety at each place. This difficulty can be overcome by taking for \vec{W} the union of all the possibilities, so that at every place the bounds hold for at least one multiplicity variety. That this yields no more complications, has been shown in [16, proof of (4.9), p. 102-105]. Moreover, the choice of the functions \vec{g} at every place in the definition of the map ρ (cf. (4.11)) can be done in such a way that we obtain good bounds. Due to this the functions \vec{g}_{z} depend on the place z (actually, $\vec{g}^{\prime}=\left\{\vec{g}_{\omega}\right\}$ depends on a priori given bounded sets ω of a covering of \mathbb{C}^{n}), but in the proof of lemma 4.3 we have seen that this produces no problems for obtaining sections on \vec{W}. We only remark that the map ρ^{L} has been defined by restricting the entire functions to any set ω of the covering, next by applying the map ρ_{z} with the $\vec{g}_{\omega}^{\prime}$ s belonging to that ω and finally by restriction to \vec{W}. This yields a section on \vec{W} which is defined by a collection of semi-local functions.

In order to discuss the conditions on the bounds, we describe the general structure of the allowed spaces H of entire functions. An analytical uniform structure K on H is a collection of continuous positive functions k on \mathbb{C}^{n}, such that for each $F \in H$ and each $k \in K$

$$
F(z) /_{k(z)} \rightarrow 0 \quad \text { as }\|z\| \rightarrow \infty
$$

and such that the sets

$$
\left\{F \in H \mid F(z) \leq k(z), z \in \mathbb{C}^{n}\right\}
$$

form a fundamental system of neighborhoods of zero in H. Then the space $W=$ FH', the Fourier transform of the dual H^{\prime} of H, is called an analytically uniform space, $A U-$ space, $\operatorname{cf}[16, p .9,(a),(b) \&(c)]$ or $[2, p .7$ (1) (iii)].

The set K is not uniquely determined by H. We require that [16, p. 96 (a) \& (b)] or $[2$, p. 8 (iv)]
(i) any entire function which is $O(k(z)$) for all $k \in K$ is in H
(ii) for any $N>0$, if we replace the analytically uniform structure $K=\{k\}$ by $K_{N}=\left\{k_{N}\right\}$ where

$$
\begin{equation*}
k_{N}(z) \stackrel{\text { def }}{=} \max _{\|_{z-z^{\prime} \| \leq N}} k\left(z^{\prime}\right)\left(1+\left\|z^{\prime}\right\|\right)^{N} \tag{4.16}
\end{equation*}
$$

then K_{N} is again an analytically uniform structure for W.
The AU-structure K provides the space $H(W)$ of restrictions to W satisfying the bounds induced by K with a topology in a very natural way: from (4.16) it follows that together with F also all its derivatives belong to H; let $W=\left\{V_{1}, \partial_{1} ; \ldots ; V_{r}, \partial_{r}\right\}$ and let $g=\left(g_{1}, \ldots, g_{r}\right)$ be a section on W, i.e., in the bounded sets ω in \mathbb{C}^{n} with $\omega \cap V_{j} \neq \varnothing$ for some $j \in\{1, \ldots, r\}$ there is a holomorphic function h^{ω} with $\partial_{j} h^{\omega} \mid V_{j}=g_{j}, j=1, \ldots, r, c f$. (4.5); then the space $H(W)$ is defined as the set of all sections g on W satisfying for every $\mathrm{k} \in \mathrm{K}$

$$
\begin{equation*}
\left|g_{j}(z)\right| / k(z) \leq c, \quad z \in V_{j}, \quad j=1, \ldots, r \tag{4.17}
\end{equation*}
$$

for some $C \geq 0$ depending on k; with $C>0$ and $k \in K$ fixed condition (4.17) determines an open set of a 0-neighborhood base of the topology of $H(W)$.

LEMMA 4.4. (Ehrenpreis' fundamental principle) Let H be a space of entire functions with an AU-structure satisfying certain conditions discussed below. Then to any matrix P of polynomials there is associated a polynomial vector multiplicity variety \vec{W}, such that the map ρ^{L}, determined by lemma's 4.2 and 4.3 , is a topological isomorphism from $\vec{H} / P \cdot \vec{H}$ onto $H(\vec{W})$.

An example shows that indeed further conditions are required.
EXAMPLE. Let H be the space of entire functions F in \mathbb{C}^{2} satisfying for every $\varepsilon>0$

$$
|F(\theta)| \leq M_{\varepsilon}(1+\|\theta\|)^{m} \exp \varepsilon\|\operatorname{Im} \theta\|,
$$

where m depends on F. Let $W \xlongequal{\underline{\text { def }}}\left(\left\{\left(\theta_{1}, \theta_{2}\right) \mid \theta_{2}-i \theta_{1}=0\right\}\right.$,id.), then the growth conditions of H yield the space $H(W)$ of entire functions f in \mathbb{C} satisfying for every $\varepsilon>0$

$$
|f(z)| \leq M_{\varepsilon} \exp \varepsilon|z| .
$$

However, it is not true that any function in $H(W)$ can be extended to a function in H. For example, the function

$$
f(z) \stackrel{\text { def }}{=\exp (i z \zeta+1 / \zeta) d \zeta \in H(W), ~(W)}
$$

cannot be written as $f(z)=F(z, i z)$ with $F \in H$, since all functions in H are polynomials, see $[68,29.1]$, while f is not.
An AU-space W is called localizable, LAU-space, if H satisfies such conditions that lemma 4.4 holds. In order to let W be localizable in [16, p. $96(\mathrm{c})]$ or $[2$, p. $8(\mathrm{v})]$ the following condition has been imposed: there is a family M (BAU-structure) of continuous positive functions m on \mathbb{C}^{n} with for every $m \in M$ and $k \in K \quad m(z)=O(k(z))$ such that the bounded sets

$$
\left\{F \in H\left||F(z)| \leq \alpha m(z), z \in \mathbb{C}^{n}\right\}, \quad \alpha>0, m \in M\right.
$$

define a fundamental system of bounded sets in H; moreover, the functions $k \in K$ and $m \in M$ can be written as a product of functions k_{i} and m_{i}, respectively, of the variable $z_{i}, i=1, \ldots, n$ and these functions must satisfy certain conditions $[16,(4.3) \&(4.4)]$ or $[2$, p. 21 (vii) \& (viii)], among others [2, (viii)]: for every $\varepsilon>0$ and for every $m=m_{1} \ldots m_{n} \in M$ there is $m^{*}=m_{1}^{*} \ldots m_{n}^{*} \in M$ such that for every $j=1, \ldots, n$ and any $z_{0}=x_{0}+i y_{0} \in \mathbb{C}^{1}$ there exists an entire function ϕ in \mathbb{C}^{1} for which
(4.18)

$$
m_{j}\left(z_{0}\right)|\phi(z)| / \min _{\mid \zeta-z_{0}} \left\lvert\, \begin{gathered}
\phi(\zeta) \mid \leq \varepsilon \\
\leq m_{j}^{*}(z), \quad z \in \mathbb{C}^{1} . \\
\leq
\end{gathered}\right.
$$

If these conditions are satisfied the space W is called product localizable, PLAU-space, cf. [16].

In the example we have defined the space H by the PLAU- structure

$$
\begin{aligned}
& \mathrm{K}=\left\{\mathrm{k} \mid \mathrm{k}(\theta)=\mathrm{k}_{1}\left(\operatorname{Re} \theta_{1}\right) \mathrm{k}_{2}\left(\operatorname{Im} \theta_{1}\right) \mathrm{k}_{1}\left(\operatorname{Re} \theta_{2}\right) \mathrm{k}_{2}\left(\operatorname{Im} \theta_{2}\right), \mathrm{k}_{1}\right. \text { is a } \\
& \text { continuous function dominating all polynomials and } \mathrm{k}_{2}(y)= \\
& =\exp \varepsilon|y|, \varepsilon>0\}
\end{aligned}
$$

Another possible PLAU-structure would be

$$
K^{\prime}=\left\{k \mid k(\theta)=k_{1}\left(\left|\theta_{2}\right|\right) k_{1}\left(\left|\theta_{2}\right|\right), k_{1}\right. \text { is a continuous function }
$$

$$
\text { dominating all polynomials\}. }
$$

A BAU-structure M belonging to K is

$$
\begin{aligned}
M & =\left\{m \mid m(\theta)=m_{1}\left(\operatorname{Re} \theta_{1}\right) m_{2}\left(\operatorname{Im} \theta_{1}\right) m_{1}\left(\operatorname{Re} \theta_{2}\right) m_{2}\left(\operatorname{Im} \theta_{2}\right), m_{1}(x)=\right. \\
& =\alpha(1+|x|)^{\ell}, \alpha>0, \ell>0 \text { and } m_{2}(y) \text { is a continuous, positive }
\end{aligned}
$$

function which is dominated by every function $\exp \varepsilon|y|, \varepsilon>0\}$
and a BAU-structure M' belonging to both K and K^{\prime} is

$$
M^{\prime}=\left\{m \mid m(\theta)=m_{1}\left(\left|\theta_{1}\right|\right) m_{1}\left(\left|\theta_{2}\right|\right), m_{1}(x)=\alpha(1+|x|)^{\ell}, \alpha>0, \ell>0\right\}
$$

M^{\prime} satisfies condition (4.18), but M does not satisfy it, because m_{2} is allowed to be a function that itself dominates all polynomials. In the example K defined the PLAU-structure and the growth conditions of $H(W)$. Hence the BAU-structure, which completes the conditions for product localizablity, must be M^{\prime}. However, M^{\prime} does not induce a BAU-structure on $H(W)$. A BAU-structure on $H(W)$ would be the one induced by M.

Besides condition (4.18), the condition that M induces a BAU-structure on $H(W)$ is used to extend a collection of semilocally defined functions satisfying the bounds on W to a globally defined function in \mathbb{C}^{n} satisfying the right bounds. Thus in the example this condition is not satisfied.

Now there are two ways to get rid of the problems exposed by the example. Either, if one wants to define $H(W)$ by one of the AU-structures K on H, cf. [2], one moreover has to require that the BAU-structure M on H, belonging to K and satisfying the conditions for PLAU-structure (among others condition (4.18)), induces also a BAU-structure on $H(W)$. This assumption has been omitted in [2]. Or, the space $H(W)$ should be defined as the one induced by all the possible AU-structures on H, cf. [16]. The special condition is satisfied then, but one has to know all the possible AU-structures on H.

REMARK. In the following sections we will present the fundamental principle in a different way using the L^{2}-estimates for the Cauchy-Riemann operator given by Hörmander in [30]. Then the above mentioned problems are avoided and less involved conditions will be required on the growth conditions for the functions in H. These conditions and those of [16] are not always comparable. For example, the space D^{\prime} of distributions is LAU in the sense of [16], but our method does not work for the space $H=Z$. On the other hand, the approach followed here enables us to derive the principle for the space
$E(U)$ of $C \stackrel{@}{\text { f }}^{\text {functions }}$ in a convex set $U \subset \mathbb{R}^{n}$, while the methods of [16] only yields that $E(U)$ is PLAU when U is a cube or that $E(U)$ is LAU when U is a convex polyhedron, cf. [16, remark 4.5]. As far as the Ehrenpreis-Martineau theorem [16, th. 5.21] is concerned the fact that U must be a polyhedron is not serious, because between any two ε-neighborhoods of a bounded, convex set in \mathbb{R}^{n} there lies a convex polyhedron P and the theorem follows by application of the fundamental principle to the space $E(P)$. However, in chapter III we discussed a similar theorem for analytic functionals carried by unbounded convex sets with respect to ε-neighborhoods and in general no polyhedra lie between two such neighborhoods. The Fourier transforms of these analytic functionals are no longer entire functions and we need the fundamental principle for spaces H consisting of functions holomorphic in some pseudoconvex domain and satisfying certain growth conditions there.

For some parts of our needs the fundamental principle of Palamodov in [56] suffices. For, he does not necessarily deal with entire functions, as the theorems of [56] are valid for functions holomorphic in convex tube domains. More, precisely he considered an increasing sequence of majorants M_{α} of the form

$$
M_{\alpha}(z)=R_{\alpha}(z) \exp I_{\alpha}(y)
$$

[56, III. § $\left.1.1^{0} \& 4^{0}\right]$. Here R_{α} is an everywhere finite and positive function in \mathbb{C}^{n} and I_{α} is a convex function which need only to be defined in a convex set U_{α} in \mathbb{R}^{n} with the property that an ε_{α}-neighborhood of $U_{\alpha+1}$ is contained in U_{α}. Furthermore, the functions $\left\{R_{\alpha}\right\}_{\alpha=1}^{\infty}$ and $\left\{I_{\alpha}\right\}_{\alpha=1}^{\infty}$ have to satisfy a condition similar to (4.16), namely for $y \in U_{\alpha+1}$

$$
\begin{aligned}
& (1+\|z\|) R_{\alpha}(z) \leq K_{\alpha} R_{\alpha+1}(z),(1+\|y\|) \exp I_{\alpha}(y) \leq K_{\alpha} \exp I_{\alpha+1}(y) \\
& \sup _{z-z} \| \leq \varepsilon_{\alpha} R_{\alpha}\left(z^{\prime}\right) \leq K_{\alpha} R_{\alpha+1}(z), \sup _{\left\|y-y^{\prime}\right\| \leq \varepsilon_{\alpha}} \exp I_{\alpha}\left(y^{\prime}\right) \leq \\
& \leq K_{\alpha} \exp I_{\alpha+1}(y)
\end{aligned}
$$

and a condition somewhat similar to (4.18) but less involved. The fundamental theorem in [56, IV. §5, th. 2], the isomorphism (4.15), has a weaker form with respect to the bounds than in [16].

LEMMA 4.5. (Palamodov's fundamental principle). For any matrix P of polynomials there is associated a polynomial vector multiplicity variety W, such that any holomorphic function in $\vec{W} \cap\left(\mathbb{R}^{n}+i U_{\alpha}\right)$, which is bounded in absolute value by M_{α} on \vec{W}, can be extended under $\left(\rho^{L}\right)^{-1}$ to a function holomorphic in $\mathbb{R}^{n}+i U_{\alpha+m}$ and bounded there in absolute value by $\mathrm{KM}_{\alpha+\mathrm{m}^{\prime}}$ for some $\mathrm{K}>0$ and positive integer m. Moreover, any holomorphic function $\underset{\mathrm{f}}{\vec{f}}$ in $\left.\underset{\rightarrow}{\rightarrow} \mathbb{R}^{\mathrm{n}}+i \mathrm{U} \mathrm{U}_{\alpha}\right)$, bounded in absolute value by M_{α} there and vanishing under ρ^{L} on $\vec{W} \cap\left(\mathbb{R}^{n}+i U_{\alpha}\right)$, can be written as

$$
\begin{equation*}
\vec{f}=p \cdot \vec{g} \tag{4.19}
\end{equation*}
$$

for some \vec{g} holomorphic in $\left(\mathbb{R}^{n}+i U_{\alpha+m}\right)^{q}$ and bounded there in absolute value by $\mathrm{KM}_{\alpha+\mathrm{m}}$.

If $\Omega=\mathbb{C}^{n}$ we have $U_{\alpha}=\mathbb{R}^{n}$ for every α. Then the difference with [16] is that in [16] a holomorphic function in $H(\vec{\omega})$ has been extended under $\left(\rho^{L}\right)^{-1}$ to one function satisfying all the bounds and if \vec{f} vanishes on \vec{W} it can be written as (4.19) where \vec{g} also satisfies all the bounds.

Now problem 3.1 of the last chapter can be solved by lemma 4.5 and indeed it is contained in $\left[56\right.$, III, §5, theorem and $\left.9^{0}\right]$, but problems 3.2 and 3.3 cannot be solved in this way. Palamodov applied the fundamental principle to the Cauchy-Riemann equations in [56, VI, §4, 4 , cor. 3] which contains the Ehrenpreis-Martineau theorem. From this corollary the theorems of chapter III. 3 can be derived ${ }^{1)}$, but we can not apply it to obtain the remaining theorems of chapter III. The reason is that we are concerned with holomorphic functions in the tube domains $\left\{\mathbb{R}^{n}+i \Gamma^{k}\right\}_{k=1}^{\infty}$, where the convex sets $\Gamma^{k} \subset \Gamma^{k+1} \subset \Gamma$ do not have the property that an ε_{k}-neighborhood of Γ^{k} is contained in $\Gamma^{\mathrm{k}+1}$.

In the next section we will discuss different conditions on the bounds and the fundamental principle (in a similar weak form as in [56]) for functions holomorphic in tube domains $\Omega \neq \mathbb{C}^{n}$ will be considerably more general than in [56]. For $\Omega=\mathbb{C}^{n}$ one has in fact three fundamental principles, which supplement each other.

1) Actually, due to condition $[56$, (5.3) p. 240] one has to assume that $\Omega(a, \Gamma)$ contains a neighborhood of the origin, i.e., a is a positive function on Γ.
IV.4. THE FUNDAMENTAL PRINCIPLE FOR SPACES OF NON-ENTIRE FUNCTIONS.

In this section we will formulate the fundamental principle for spaces H of non-entire functions. As in [16] we will express the topology of H by projective limits, i.e., H will have an $A U-s t r u c t u r e . ~ A s ~ f a r ~ a s ~ t h e ~ f u n d a-~$ mental principle (the isomorphism ρ^{L}) is concerned this will not be necessary, as the principle essentially follows from the semilocal theory of [16, ch. III] and from theorems 4.11 and 4.12 of section 6 of this chapter, but in chapter V it will be convenient to have spaces H whose topology is defined by a projective limit, although an extra condition is needed then.

We will assume that the growth conditions on the functions of H can be expressed by L^{p}-norms with respect to weight functions of the form $\exp -\phi$ for $\alpha \in A$, where A is a directed set and where $\left\{\phi^{\alpha}\right\}_{\alpha \in A}$ is a decreasing net of plurisubharmonic functions in a pseudoconvex domain $\Omega \subset \mathbb{C}^{n}$. Furthermore, let $\left\{\Omega_{k}\right\}_{k=1}^{\infty}$ be an increasing sequence of relatively closed subsets of Ω with union Ω. Denote for $p=1,2, \ldots$ and for a function f

$$
\begin{equation*}
\|f\|_{\alpha, k}^{(p)} \stackrel{\text { def }}{=}\left\{\int_{\Omega_{k}}|f(z)|^{p} \exp -p \phi^{\alpha}(z) d \lambda(z)\right\}^{1 / p} \tag{4.20}
\end{equation*}
$$

where $\lambda(z)$ is de Lebesgue measure in \mathbb{C}^{n}, and for $p=\infty$

$$
\|f\|_{\alpha, k}^{(\infty)} \xlongequal{\text { def }} \sup _{z \in \Omega_{k}}|f(z)| \exp -\phi^{\alpha}(z) ;
$$

when $p=2$ we will write $\|\cdot\|_{\alpha, k}$ instead of $\|\cdot\|{ }_{\alpha, k}^{(2)}$. If f is bounded with respect to the norm

$$
\|f\|_{\alpha}^{(p)} \stackrel{\text { def }}{=}\left\{\int_{\Omega}|f(z)|^{p} \exp -p \phi^{\alpha}(z) d \lambda(z)\right\}^{1 / p}
$$

for $p=1,2, \ldots$ or

$$
\|f\|_{\alpha}^{(\infty)} \xlongequal{\text { def }} \sup _{z \in \Omega}|f(z)| \exp -\phi^{\alpha}(z)
$$

for $p=\infty$, we will sometimes express this by saying that the sequence $\left\{\|f\|{ }_{\alpha, k}^{(p)}\right\}_{k=1}^{\infty}$ is bounded. For $p=1,2, \ldots, \infty$ let

$$
H_{p}\left(\Omega_{k} ; \phi^{\alpha}\right)
$$

be the Banach space of functions holomorphic in int Ω_{k}, and in case $p=\infty$ also continuous on Ω_{k}, such that the norm (4.20) is finite, and let

$$
\mathrm{H}_{\mathrm{p}}\left[\Omega ; \phi^{\alpha}\right] \stackrel{\text { def }}{=} \underset{\mathrm{k} \rightarrow \infty}{ } \lim _{\mathrm{p}} \mathrm{H}_{\mathrm{k}}\left(\Omega_{\mathrm{k}} ; \phi^{\alpha}\right)
$$

where in the projective limit the restriction maps from Ω_{k+1} to Ω_{k} are intended. When $p=2$ we will just write $H\left[\Omega ; \phi^{\alpha}\right]$.

If all the sets Ω_{k} are different, the following conditions are imposed:
(4.21) $\quad \forall k, \exists \ell>k: \forall z \in \Omega_{k^{\prime}}, \forall z^{\prime} \in B(z ; 1 / 2,1) \Rightarrow z^{\prime} \in \Omega_{\ell^{\prime}}$
where for $0 \leq \delta<1$ and $K \geq 0$

$$
B(z ; \delta, K) \stackrel{\text { def }}{=}\left\{z^{\prime} \mid \|_{z^{\prime}-z \|} \leq \min \left[K, \delta d\left(z, \Omega^{C}\right)\right]\right\} ;
$$

here $d\left(z, \Omega^{c}\right)$ denotes the distance from z to the complement of Ω, i.e.,

$$
d\left(z, \Omega^{c}\right) \stackrel{\text { def }}{=} \inf _{z^{\prime} \in \Omega^{c}} \|_{z-z^{\prime} \|}
$$

There must exist a plurisubharmonic function σ in Ω with

$$
\begin{equation*}
\Omega_{\mathrm{k}}=\{z \mid z \in \Omega, \sigma(z) \leq \mathrm{k}\} \tag{4.22}
\end{equation*}
$$

For compact sets Ω_{k} (4.22) is not a special condition on Ω, cf. [30, th. 2.6.7.ii], but we have in mind unbounded sets Ω_{k}.

Finally, we have to make an assumption on the net $\left\{\phi^{\alpha}\right\}$. Although it is not necessary, the proof of theorem 6.4 will be simpler if we would have neighborhoods $B(z ; \delta, K)$ of z with the property that the neighborhood

$$
U\left\{B\left(z^{\prime} ; \varepsilon, L\right) \mid z^{\prime} \in B(z ; \delta, K)\right\}
$$

of z itself is contained in a neighborhood $B(z ; \eta, M)$ of z for some η and M.
Since this is not true for the neighborhoods B we will define quite similar neighborhoods S which do have this property. Let for $\varepsilon \geq 0$ and $K \geq 0$

$$
D(z ; \varepsilon, K) \stackrel{\text { def }}{=}\left\{z^{\prime} \mid z^{\prime} \in \Omega, \|_{z^{\prime}-z \|} \leq \min \left[\varepsilon d\left(z, \Omega^{c}\right), \varepsilon d\left(z^{\prime}, \Omega^{c}\right), K\right]\right\}
$$

Then
(4.23) $\quad B(z ; \delta, K) \subset D(z ; \delta /(1-\delta), K)$
and

$$
U\left\{D\left(z^{\prime} ; \varepsilon, L\right) \mid z^{\prime} \in D(z ; \delta, K)\right\} \subset D(z ; \varepsilon+\varepsilon \delta+\delta, K+L) .
$$

So if for positive K we define the neighborhood of z
(4.24) $S(z ; K) \xlongequal{\text { def }} D\left(z ; e^{K}-1, K\right)$,
then
(4.25)

$$
U\left\{S\left(z^{\prime} ; K\right) \mid z^{\prime} \in S(z ; L)\right\} \subset S(z ; K+L)
$$

For a function ϕ in Ω and for $N, M, K \geq 0$ define, cf. (3.40),

$$
\begin{align*}
\phi_{N, M, K}(z) \stackrel{\text { def }}{=} & \max \left\{\phi\left(z^{\prime}\right)+N \log \left(1+\left\|z^{\prime}\right\|^{2}\right)+\log \left(1+\alpha\left(z^{\prime}, \Omega^{C}\right)^{-M}\right) \mid\right. \tag{4.26}\\
& \left.\mid z^{\prime} \in S(z ; K)\right\} .
\end{align*}
$$

If $N=M=K$ we will just write ϕ_{N} and if for $p=2$ in the norm (4.20) ϕ^{α} is replaced by $\phi_{N, M, K}^{\alpha}$ or ϕ_{N}^{α} we will denote that norm by $\|\cdot\|^{N, M, K}$ or $\|\cdot\|_{\alpha, k}^{N}$, respectively. The functions $\log \left(1+\|z\|^{2}\right)$ and $\log \left(1+d\left(z, \Omega^{C}\right)^{-M}\right)$ are plurisubharmonic in $\Omega,[30,(4.4 .6)$ and th. 2.6.2] and $[30$, th. 2.6 .7 (i) and cor. 1.6.8]. For $\Omega=\mathbb{C}^{n}$ we have $S(z ; K)=\left\{z^{\prime} \mid \|_{z-z ' \|} \leq K\right\}$ and then, as in the proof of theorem 3.1, [30, th. 1.6.2] and lemma 3.2 imply that $\phi_{N, M, K}$ (which in this case does not depend on M) is plurisubharmonic if ϕ is. Due to property (4.25) for $N_{1}, N_{2} \geq 0$ and for a function ϕ in Ω we have

$$
\begin{equation*}
\left(\phi_{\mathrm{N}_{1}}\right)_{\mathrm{N}_{2}} \leq \phi_{\mathrm{N}_{1}+\mathrm{N}_{2}} \tag{4.27}
\end{equation*}
$$

Our final requirement is that for every $N \geq 0$ and $\alpha \in A$ there is a $\alpha^{\prime} \geq \alpha$ and a positive constant $C_{\alpha, N}$ with

$$
\begin{equation*}
\phi_{N}^{\alpha^{\prime}} \leq \phi^{\alpha}+\mathrm{C}_{\alpha, \mathrm{N}} . \tag{4.28}
\end{equation*}
$$

We now define the space H. Condition (4.28) implies that for every $\mathrm{N} \geq 0$

$$
\begin{equation*}
\mathrm{H} \underset{\alpha \in A}{\operatorname{def}} \underset{\mathrm{proj}}{\lim } \mathrm{H}_{\mathrm{p}}\left[\Omega ; \phi^{\alpha}\right]=\underset{\alpha \in A}{\operatorname{proj}} \lim H_{\mathrm{p}}\left[\Omega ; \phi_{N}^{\alpha}\right], \tag{4.29}
\end{equation*}
$$

where the identity maps from $H_{p}\left[\Omega ; \phi^{\alpha^{\prime}}\right]$ into $H_{p}\left[\Omega ; \phi^{\alpha}\right], \alpha^{\prime} \geq \alpha$, determine the projective limit. Conditions (4.21) and (4.28) imply that H is independent of $p \in\{1,2, \ldots, \infty\}$, cf. $\left[73\right.$, cond. $\left.\mathrm{HS}_{1} \& \mathrm{HS}_{2}, \mathrm{p} .15\right]$, and that moreover for $f \in H, \alpha \in A$ and every k

$$
\begin{equation*}
|f(z)| \exp -\phi^{\alpha}(z) \rightarrow 0 \quad \text { as } \quad z \rightarrow \partial \Omega \quad \text { or }\|z\| \rightarrow \infty \quad \text { in } \Omega_{k} \tag{4.30}
\end{equation*}
$$

If $\Omega=\mathbb{C}^{n}$ and $k=\exp \phi$, then (4.26) yields that $k_{N}=\exp \phi_{N}$, where k_{N} is given by (4.16) and the condition on the AU-structure of H given there is just our condition (4.29).

Let P be a pxq-matrix of polynomials and let \vec{W} be an associated polynomial vector multiplicity variety. We define the Frechet space $H_{\infty}[\vec{W} \cap \Omega$; $\log \mathrm{k}]$ as the space of sections \vec{g} on $\vec{W} \cap \Omega$ such that for each component $g=\left\{g_{1}, \ldots, g_{r}\right\}$ of \vec{g} (4.17) holds only for $z \in \Omega_{\ell} \cap \vec{W}$ and for c depending on ℓ, provided with the semi-norms obtained by taking from all the components g of \vec{g} the largest supremum of the left hand side of (4.17) over $z \epsilon$ ${ }^{\varepsilon} \Omega_{\ell} \cap V_{j}, j=1, \ldots, r$. Again if $\Omega_{\ell}=\Omega$ for all ℓ we will write $H_{\infty}(\vec{W} \cap \Omega ; \log k)$ instead of $H_{\infty}[W \cap \Omega ; \log k]$ and then this is a Banach space.

The fundamental principle proved in this chapter (the completions of the proofs will be given in chapter VI) says that the map ρ^{L}
is a toplogical isomorphism between linear spaces. Here ρ^{L} is defined by restriction if $p=1$ and (only semilocally) by lemma's 4.2 and 4.3 if $p>1$. In section 6, formula (4.44) we will show that the space on the left hand side remains the same if we replace $\mathrm{H}\left[\Omega ; \phi^{\alpha}\right]^{\mathrm{p}} \cap \mathrm{P} \cdot \mathrm{H}\left[\Omega ; \phi^{\alpha}\right]^{q}$ in the denominator by its closure in $H\left[\Omega ; \phi^{\alpha}\right]^{p}$. Hence the left hand side of (4.3) is a Hausdorff space; its elements can be described as follows: for $\left.\vec{f}^{\alpha} \in H_{[\Omega ;}^{\alpha}\right]^{p}$ let $\left[\vec{f}{ }^{\alpha}\right]$
denote the equivalence class of $\overrightarrow{\mathrm{f}}^{\alpha}$, where $\overrightarrow{\mathrm{f}}^{\alpha} \sim \overrightarrow{\mathrm{h}}^{\alpha}$ if $\overrightarrow{\mathrm{f}}^{\alpha}-\overrightarrow{\mathrm{h}}^{\alpha}=\mathrm{p} \cdot \vec{g}^{\alpha}$ for some ${ }_{\mathrm{g}}{ }^{\alpha} \epsilon \mathrm{H}\left[\Omega ; \phi^{\alpha}\right]^{q}$; then the elements of the space on the left hand side of (4.31) can be identified with such nets $\left\{\left[\vec{f}^{\alpha}\right]\right\}_{\alpha \in A}$ of equivalence classes, where $\vec{f}^{+\alpha} \in H\left[\Omega ; \phi^{\alpha}\right]^{p}$ for every $\alpha \in A$, that for every α and β in A with $\beta \geq \alpha$ there is a $\vec{g}^{\alpha, \beta} \in \mathrm{H}\left[\Omega ; \phi^{\alpha}\right]^{q}$ with

$$
\overrightarrow{\mathrm{f}}^{\alpha}-\overrightarrow{\mathrm{f}}^{\beta}=\mathrm{p} \cdot \vec{g}^{\alpha, \beta} \text {. }
$$

If $\Omega_{k}=\Omega$ for every k, we define a space H with the only requirement that for every $N \geq 0$ H can be written as

Finally, if $\left\{\Omega_{\ell}\right\}_{\ell=1}^{\infty}$ is a decreasing sequence of pseudoconvex domains and if $\left\{\phi^{\alpha}\right\}$ is a decreasing net of plurisubharmonic functions in Ω_{1}, it is possible to consider the following space H, which for every $N \geq 0$ by assumption can be written as
where ϕ_{N}^{α} is defined by (4.26) with Ω replaced by Ω_{1}. Also here the spaces (4.32) and (4.33) are independent of $p \in\{1,2, \ldots, \infty\}$, provided that in the last case

$$
\begin{equation*}
\forall \ell, \exists k>\ell, \exists \delta>0: \forall z \in \Omega_{k} \&\left\|_{z-z}\right\|^{\prime} \leq \min \left\{1, \delta d\left(z, \Omega_{1}^{c}\right)\right\} \Rightarrow z^{\prime} \in \Omega_{\ell} \tag{4.34}
\end{equation*}
$$

For the spaces H given by (4.32) or (4.33) the fundamental principle yields the isomorphisms ρ^{L}
(4.35)
and

$$
\xrightarrow{\rho^{L}} \text { ind } \lim _{\ell \rightarrow \infty} \underset{\alpha \in A}{ } \lim _{\infty}\left(\vec{W} \cap \Omega ; \phi^{\alpha}\right),
$$

respectively.

THEOREM 4.6 (fundamental principle). Let Ω be a pseudoconvex domain and let $\left\{\phi^{\alpha}\right\}$ be a decreasing net of plurisubharmonic functions in Ω. To any $p \times q-$ matrix P of polynomials there are associated a polynomial vector multiplicity variety \vec{W} and a restriction map ρ^{L}, such that (4.35) is a topological isomorphism between linear spaces, provided that condition (4.32) is satisfied. If moreover, $\Omega=\bigcup_{k}^{\infty} \bigcup_{1} \Omega_{k}$ satisfies (4.21) and (4.22), the map ρ^{L} in (4.31) is a topological isomorphism provided that (4.29) holds. Finally, if $\left\{\Omega_{\ell}\right\}_{\ell=1}^{\infty}$ is a decreasing sequence of pseudoconvex domains satisfying (4.34) and if $\left\{\phi^{\alpha}\right\}$ is a decreasing net of plurisubharmonic functions in Ω_{1}, the map $\rho^{\text {L }}$ in (4.36) is a toplogical isomorphism, provided that (4.33) is valid.

In chapter VII, cor. 7.4 , we will supplement this theorem.

PROOF. That ρ^{L} in (4.36) is an isomorphism follows from (4.33), (4.34) and the fact that ρ^{L} in (4.35) is an isomorphism. The remaining two sections of this chapter, as well as chapter VI, will be devoted to the proof of the assertion that the maps (4.31) and (4.35) are topological isomorphisms.

REMARK. Let W^{\prime} be a locally convex space whose Fourier transform is topologically isomorphic to one of the spaces H given by (4.29), (4.32) or (4.33) and let W be the dual of W^{\prime}. Then, as in $[16]$, in view of theorem 4.6 we might call W localizable. In most examples it is obvious how the Fourier transformation F is defined. In general, since the δ-functions in the points $z_{0} \in \Omega$ belong to H^{\prime}, their Fourier transforms $e^{i<\cdot}, z_{0}^{>}$belong to W. Then we can define the Fourier transform $f \in H$ of $\phi \in W^{\prime}$ by

$$
f(z)=(F \phi)(z) \stackrel{\text { def }}{=}\left\langle e^{i\langle\zeta, z\rangle}, \phi_{\zeta}\right\rangle
$$

cf. (2.46). Here ζ varies in a certain set Ω^{*} in \mathbb{C}_{n} and W consists of objects (such as functions or distributions) in Ω^{*}. From the requirement that F is a topological isomorphism from W^{\prime} onto H it follows that the set $\left\{e^{\left.i<\zeta, z_{0}\right\rangle} \mid z_{0} \in \Omega\right\}$ of functions of ζ must at least be weakly ${ }^{*}$ dense in W. Furthermore, if besides this set W contains all other holomorphic functions
of $\zeta \in \Omega^{*}$ which are bounded in absolute value by $\left|\exp i<\zeta, z_{0}>\right|$ with $z_{0} \in \Omega$, it follows from the fact, that the geometric mean is smaller than the arithmetic mean, that for $z_{1}, z_{2} \in \Omega$ and $0 \leq t \leq 1$ also

$$
\exp i<\zeta, t z_{1}+(1-t) z_{2}>\in W
$$

Hence then the set Ω would be convex. On the other hand, it may happen that the set $\left\{\left.e^{i\left\langle\zeta_{0}, z>\right.}\right|_{0} \in \Omega^{*}\right\}$ of functions of z is contained in H, ff. the $A-$ and Exp-spaces of chapter III. Then Ω^{*} is convex, too and the set $\left\{e^{i<\zeta_{0}, z>} \mid\right.$ $\left.\mid \zeta_{0} \in \Omega^{*}\right\}$ is dense in H. However, all these properties will not be used to derive the fundamental principle of theorem 4.6 , as they are only needed when Fourier transformation comes in.
IV.5. SEMILOCAL THEORY.

In this section we shall mention the semilocal theory of $[16]$ and we shall indicate the differences with the theory we need.

Let $U=\left\{U_{i}\right\}_{i=1}^{\infty}$ be a certain open covering of Ω with U_{i} cc Ω and let $u^{(1)}$ p. 104] shows that any $f \in \underset{\alpha}{\operatorname{proj}} \lim _{A} H_{\infty}\left[\vec{w} \cap \Omega ; \phi^{\alpha}\right]$ can be extended to a collection of functions c_{i} holomorphic in U_{i} and satisfying good bounds. In fact, a method similar to theorem 3.1 can be applied, see [2]. Only now one has to take into account coinciding roots of a polynomial. The procedure followed in [16], [56] or [2] uses the Weierstraß division theorem and the Lagrange interpolation formula, $C f$. [2, IV lemma's 1-4].

Define $C^{p}\left[U, F, \phi^{\alpha}\right]$ as the Hilbert space of all alternating p-cochains c on the covering U with values in the analytic sheaf F that satisfy for every k

$$
\begin{equation*}
\left\|_{c}\right\|_{\alpha, k} \stackrel{\text { def }}{=}\left\{\sum_{|s|=p+1} \int_{U_{S} \Omega_{k}}\left\|_{c_{s}}(z)\right\|^{2} \exp -2 \phi^{\alpha}(z) d \lambda(z)\right\}^{\frac{1}{2}}<\infty, \tag{4.37}
\end{equation*}
$$

where $\left\|_{f(z)}\right\|^{2} \xlongequal{\text { def }}\left|f_{1}(z)\right|^{2}+\ldots+\left|f_{q}(z)\right|^{2}$ if $f=\left(f_{1}, \ldots, f_{q}\right)$ is a vectorfunction. The coverings U and $U^{(1)}$ have to satisfy certain properties listed in chapter VI, section 1, in order that the estimates can be carried over to globally defined functions and conversely.

Let A be the sheaf in Ω of germs of holomorphic functions and let F
be the image under P of the sheaf A^{q}, thus $F=P \cdot A^{q} \subset A^{p}$. Finally, let $C^{t}\left[U, A^{p}, \phi ; P\right]$ be the set of t-cochains $c \in C^{t}\left[U, A^{p}, \phi\right]$ with

$$
\delta c \in C^{t+1}(U, F)
$$

where δ is the coboundary operator.
LEMMA 4.7. For any p $\times q$-matrix P of polynomials and associated polynomial vector multiplicity variety W the map

given by lemma 4.3 is a topological isomorphism.

PROOF. We shall not give all the details, because these can be found in [16]. There a function $f \in \operatorname{proj} \lim _{\alpha} H_{\infty}\left[\vec{W} \cap \Omega ; \phi^{\alpha}\right]$ has been extended to a collection of functions $\left\{c_{s}\right\}_{S=1}^{\infty}$ with c_{S} holomorphic in U_{S}. Firstly, in [16, proof of c, p. 104] for each s if extended to a finite collection of functions holomorphic in finitely many very small sets covering U_{S}, whose differences in the overlaps are sections in F. Then one has to apply a piecing together process of this collection of functions to one function c_{s} in U_{S}. As is remarked in [16] this process follows the same lines as the proof of the similar statements for the map λ we will define in the next section and even it is simpler, because U_{S} is a bounded set so that no convergence factors such as ϕ arising in condition (4.18) are needed. We have not assumed this condition, so that the proof of [16] is valid here, too. Of course, one can also follow the piecing together process we will perform in chapter VI.

Let us briefly mention the differences with [16] arising from the sizes of the sets of the covering of Ω we have here. In [16] all the sets of the covering of \mathbb{C}^{n} have the same size. There each set U_{S} is covered in such a way that the bounds for c_{s} depend on the bounds for f on $V_{s} \cap \mathcal{W}$, where V_{S} is the enlargement by a factor 2 of U_{S} the center z_{S} kept fixed.

Furthermore, the minimal size of the sets that cover U_{S} is proportional to a power of $\left(1+\left\|_{z_{S}}\right\|\right)^{-1}$ and to a power of the size β_{S} of U_{S}. Also, the maximal number of sets covering U_{S} is proportional to a power of $1+\left\|_{z_{S}}\right\|$ and to β_{S}^{-1}. However, these powers do not depend on s, see [16, ch. III]. It follows from the piecing together process of chapter VI or of [16] that c_{s} satisfies for some N and K independent of s
where $\|f(z)\|$ here denotes the maximum of $f_{j}^{\ell}(z)$ for $\ell=1, \ldots, p, j=1, \ldots, r_{\ell}$ if $f^{\ell}=\left(f_{1}^{\ell}, \ldots, f_{r \ell}^{\ell}\right)$ is the section on W^{ℓ} determined by f. Actually, in [16] ce is bounded in sup-norm, but [73, cond. HS ${ }_{1}$, p. 15] shows that this implies the estimate we have here, because the sizes of the sets U_{S} will be bounded.

The sets U_{S} will be such that they have a fixed size if they are far enough from $\partial \Omega$ or that the size is proportional to d_{s}, where d_{s} is the distance from U_{S} to $\partial \Omega$. Therefore, since by (4.24) for sufficiently large N we have $z_{S} \in S(z ; N)$ if $z \in U_{S}$ and $V_{S} C S\left(z_{S} ; N\right)$, for every $\alpha \in N$ we get

$$
\left\{\int_{U_{S}}\left\|c_{S}(z)\right\|^{2} \exp -2 \phi_{N}^{\alpha}(z) d \lambda(z)\right\}^{\frac{3}{2}} \leq K \sup _{z \in V_{S} n W}\|f(z)\| \exp -\phi^{\alpha^{\prime}}(z)
$$

where α^{\prime} is determined by (4.28). Since the sets U_{S} will be chosen such that every $z \in \Omega$ is contained is not more than L different sets V_{s} and since V_{s} will be contained in Ω_{ℓ} if $U_{S} \cap \Omega_{k} \neq \emptyset$ for some $l>k$, in virtue of (4.29) for every k and $\alpha \in A$ we get

$$
\begin{equation*}
\|c\|_{\alpha, k} \leq L K \sup _{z \in \Omega_{\ell} \cap \vec{W}}\|f(z)\| \exp -\phi^{\alpha '}(z) . \tag{4.38}
\end{equation*}
$$

A similar procedure, now with respect to the covering $U^{(1)}$, shows that the map of the lemma is injective. Finally, (4.38) implies that its inverse is continuous.

If we want to derive the strong version of the fundamental principle (i.e., all the bounds are satisfied simultaneously) as in chapter VII, we should apply this lemma together with the strong versions of theorems 4.11 and 4.12 below, cf. corollary 7.4. But for the weak form treated in this
chapter it is convenient to have the following isomorphism.

LEMMA 4.8. Let E denote the space on the left hand side of the isomorphism of lemma 4.7 and let

$$
F^{\alpha} \stackrel{\text { def }}{=} C^{0}\left[U^{(1)}, A^{p}, \phi^{\alpha} ; P\right]
$$

and

$$
M^{\alpha} \stackrel{\text { def }}{=} F^{\alpha} \cap P \cdot C^{0}\left(U^{(1)}, A^{q}\right)
$$

Then there is a topological isomorphism between

$$
E \rightarrow \operatorname{proj}_{\alpha \in A} \lim _{A}\left(F^{\alpha} / M^{\alpha}\right)
$$

PROOF. We define the map by restriction. That it is injective can be seen as follows: any $c \in \underset{\alpha}{\operatorname{proj}} \epsilon^{\operatorname{limm}} C^{0}\left[U, A^{p}, \phi^{\alpha} ; P\right]$ that can be written as $c=p \cdot g$ with $g \in C^{0}\left(U^{(1)}, A^{q}\right)$ vanishes on $\Omega \cap \vec{W}$, because also $U^{(1)}$ is a covering of Ω, so that by lemma 4.7 c can be written as $\mathrm{c}=\mathrm{P} \cdot \mathrm{g}$ with $\mathrm{g} \epsilon \operatorname{proj}_{\alpha} \lim _{\mathrm{A}}$ $C^{0}\left[U^{(1)}, A^{q}, \phi^{\alpha}\right]$. Similarly, it follows that M^{α} is a closed subspace of F^{α}. Hence the space F^{α} / M^{α} is a Frechet space, thus bornologic. In order to conclude the continuity of the inverse of the map we need to know that the bounded sets in F^{α} / M^{α} arise from bounded sets in F^{α}. Let us assume this for the moment. Then the method (as in the proof of lemma 4.7) of proving that the map of the lemma is surjective shows that its inverse is continuous (here each set $U_{S} \in U$ is covered by finitely many sets from $U^{(1)}$, the number and size depending only on the size of U_{S}).

It remains to prove the following lemma.
LEMMA 4.9. Let F^{α} and M^{α} be as in lemma 4.8. Then the bounded sets in $\mathrm{F}^{\alpha} / \mathrm{M}^{\alpha}$ arise from bounded sets in F^{α}.

PROOF. Let a bounded set B in F^{α} / M^{α} be determined by cochains $f \in F^{\alpha}$ which for all k satisfy

$$
\inf _{p \cdot g \in M^{\alpha}}\|f+P \cdot g\|_{\alpha, k} \leq K_{k}
$$

This means that for arbitrary k_{1} there are functions $g_{s}^{1} \in A\left(U_{S}\right)^{q}$ for every $U_{s} \in U^{(1)}$ with $U_{s} \cap \Omega_{k_{1}} \neq \varnothing$ such that

$$
\left\|f+p \cdot g^{1}\right\|_{\alpha, k_{1}} \leq k_{k_{1}}+1
$$

Let k_{1} be so large that each set $U_{S} \in U^{(1)}$ with $U_{S_{1}} \cap \Omega_{1} \neq \emptyset$ is contained in $\Omega_{k_{1}}$, define $g_{s}^{0} \in A\left(U_{S}\right)^{q}$ if $U_{s} \cap \Omega_{1} \neq \emptyset$ by $g_{s}^{0} \xlongequal{\mathbf{d e f}} \mathrm{~g}_{\mathrm{s}}^{1}$ and set $\mathrm{k}_{-1}=\mathrm{k}_{0}=1$. Assume that a cochain g^{m} has been defined on the union of all sets $\mathrm{U}_{\mathrm{s}} \in U^{(1)}$ with $\mathrm{U}_{\mathrm{S}} \cap \Omega_{\mathrm{k}_{\mathrm{m}}} \neq \emptyset$ satisfying

$$
\| f+p \cdot g^{m_{\|}}{ }_{\alpha, k_{m}} \leq c_{m}
$$

for some positive C_{m} and that $g_{s}^{m}=g_{s}^{m-1}$ if $U_{s} \cap \Omega_{k_{m-2}} \neq \emptyset$. Let $k_{m+1}>k_{m}$ be so large that each set $U_{s} \in U^{(1)}$ with $U_{s} \cap \Omega_{\mathrm{k}_{\mathrm{p}}} \neq \emptyset$ is contained in $\Omega_{\mathrm{k}_{\mathrm{m}+1}}$,
 satisfy

$$
\left\|f+p \cdot \tilde{g}^{m+1}\right\|_{\alpha, k}{ }_{m+1} \leq K_{k_{m+1}}+1
$$

Now we define g_{s}^{m+1} def g_{s}^{m} if $U_{s} \subset \Omega_{k_{m}}$ and $g_{s}^{m+1} \xlongequal{\text { def }} \sim_{s}^{m+1}$ for the remaining s. Then g^{m+1} is defined on the union of all sets $U_{s} \in U^{(1)}$ with $\mathrm{U}_{\mathrm{s}} \cap \Omega_{\mathrm{k}_{\mathrm{m}+1}} \neq \varnothing, \mathrm{g}_{\mathrm{s}}^{\mathrm{m}+1}=\mathrm{g}_{\mathrm{s}}^{\mathrm{m}}$ if $\mathrm{U}_{\mathrm{s}} \cap \Omega_{\mathrm{k}_{\mathrm{m}-1}} \neq \varnothing$, and

$$
\left\|f+p \cdot g^{m+1}\right\|_{\alpha, k_{m+1}} \leq c_{m}+K_{k_{m+1}}+1
$$

So we obtain a cochain $g \in C^{0}\left(U^{(1)}, A^{q}\right)$ with for all $m=0,1,2, \ldots$

$$
\|f+p \cdot g\|_{\alpha, k_{m}} \leq \sum_{j=1}^{m+2} K_{k_{j}}+m+2
$$

This determines a bounded set in F^{α} whose image in F^{α} / M^{α} contains B. $\quad \square$
In case $\Omega_{k}=\Omega$ for every k, as in lemma's 4.7 and 4.8 there is a topological isomorphism between

$$
\begin{align*}
& \underset{\alpha \in A}{\operatorname{proj} \lim \left\{C^{0}\left(U^{(1)}, A^{p}, \phi^{\alpha} ; P\right)\right.} \tag{4.39}\\
& \left.\xrightarrow\left[C^{0}\left(U^{(1)}, A^{p}, \phi^{\alpha} ; P\right) \cap P \cdot C^{0}\left(U^{(1)}, A^{q}\right)\right\} \longrightarrow\right]{\longrightarrow} \underset{\alpha \in A}{\operatorname{proj} \lim _{\infty}\left(\vec{W} \cap \Omega ; \phi^{\alpha}\right),}
\end{align*}
$$

where $C^{0}\left(U^{(1)}, A^{P}, \phi^{\alpha} ; P\right)$ denotes the space of those $c \in F^{\alpha}$ with the norms (4.37) bounded by a constant independent of k, i.e., instead of (4.37) we have

$$
\begin{equation*}
\|c\| \alpha \stackrel{\text { def }}{=}\left\{\sum_{S} \int_{U_{S}}\left\|c_{S}(z)\right\|^{2} \exp -2 \phi^{\alpha}(z) d \lambda(z)\right\}^{\frac{1}{2}}<\infty . \tag{4.40}
\end{equation*}
$$

IV.6. TRANSITION FROM SEMILOCAL TO GLOBAL RESULTS.

In this section we will formulate the two theorems which together with lemma's 4.7 and 4.8 and formula (4.39) imply theorem 4.6. Besides, these theorems, especially the second whose formulation is not concerned with cochains, may be of interest by themselves, cf. chapter V.4. The main problem is to extend the semilocally defined functions to a globally defined function.

LEMMA 4.10. Let the conditions of theorem 4.6 be satisfied and let F^{α} and M^{α} be as in lemma 4.8. Then there is a topological isomorphism λ :

A similar isomorphism exists if $\Omega_{\mathrm{k}}=\Omega$ for every k .

Let us decompose the map λ into a collection of continuous restriction maps λ_{α}. Then denoting

$$
\mathrm{H}^{\alpha} \xlongequal{\text { def }} \mathrm{H}\left[\Omega ; \phi^{\alpha}\right]^{\mathrm{p}}
$$

and

$$
T^{\alpha} \xlongequal{\text { def }} H^{\alpha} \cap P \cdot H\left[\Omega ; \phi^{\alpha}\right]^{q}
$$

we have to show for each β there is an $\alpha \geq \beta$ and a continuous map $\mu_{\alpha, \beta}$ such that the following diagram is commutative:

where the maps $I_{\alpha, \beta}$ and $I_{\alpha, \beta}^{\prime}$ are determined by the identity maps. We will define the maps $\mu_{\alpha, \beta}$ by means of the following theorems.

For a positive number N and a function ϕ^{α} in Ω let $\tilde{\phi}_{N}^{\alpha}$ be a plurisubharmonic function in Ω such that for some positive C_{N}

$$
\begin{equation*}
\phi_{N}^{\alpha} \leq \tilde{\phi}_{N}^{\alpha}+C_{N} \tag{4.42}
\end{equation*}
$$

where $\phi_{N}=\phi_{N, N, N}$ is defined by (4.26), cf. (3.40). This might not be possible for an arbitrary function ϕ^{α}, but if we refer to (4.22) we will always mean that ϕ^{α} is such that there exists a plurisubharmonic function $\tilde{\phi}_{N}^{\alpha}$ satisfying (4.42) (for example, by (4.28) this is true if ϕ^{α} belongs to the net $\left\{\phi^{\alpha}\right\}_{\alpha \in A}$ in the conditions of theorem 4.6).

THEOREM 4.11. Let $\Omega={ }_{k} \bigcup_{1}^{\infty} \Omega_{k}$ be a pseudoconvex domain satisfying (4.21) and (4.22), let the covering $U(1)$ of Ω be given as in section VI.1 and let ϕ^{α} be a function on Ω such that (4.42) can be satisfied for every N. Then for any $\mathrm{p} \times \mathrm{q}$-matrix P of polynomials there is a positive number N and moreover for each sequence $\left\{\mathrm{K}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ of positive numbers there is another sequence $\left\{M_{k}\right\}_{k=1}^{\infty}$ of positive numbers, such that for every $h \in C^{0}\left[U^{(1)}, A^{p}, \phi^{\alpha} ; P\right]$ with $\|h\|_{\alpha, k} \leq K_{k}, k=1,2, \ldots$, there is a function $v \in A(\Omega)^{p}$ and $a g \in C^{0}\left(U^{(1)}, A^{q}\right)$ with

$$
\begin{equation*}
\left.v\right|_{U_{S}}-h_{S}=p \cdot g_{S}, \quad U_{S} \in U^{(1)} \tag{4.43}
\end{equation*}
$$

and with

$$
\left\{\int_{\Omega_{k}}\|v(z)\|^{2} \exp -2 \phi^{\beta}(z) d \lambda(z)\right\}^{\frac{1}{2}} \leq M_{k}, \quad k=1,2, \ldots,
$$

where the plurisubharmonic function ϕ^{β} is given by

$$
\phi^{\beta} \stackrel{\operatorname{def}}{=} \tilde{\phi}_{N}^{\alpha}+N \log \left(1+\|z\|^{2}\right)+\log \left(1+\alpha\left(z, \Omega^{c}\right)^{-N}\right)
$$

for $\tilde{\phi}_{N}^{\alpha}$ determined by (4.42); thus $v \in H\left[\Omega ; \phi^{\beta}\right]^{p}$. If $h \in C^{0}\left(U^{(1)}, A^{p}, \phi^{\alpha} ; P\right)$, i.e., if $\left\{\mathrm{K}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ is bounded, (4.21) and (4.22) need not be satisfied and $\left\{M_{k}\right\}_{k=1}^{\infty}$ is bounded, too, i.e., $v \in H\left(\Omega ; \phi^{\beta}\right)^{p}$.

THEOREM 4.12. Let Ω and ϕ^{α} be as in theorem 4.11. Then for any $p \times q-m a t r i x ~ p$ of polynomials there is a positive number N and moreover for each sequence $\left\{\mathrm{K}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ of positive numbers there is another sequence $\left\{\mathrm{M}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ of positive numbers, such that every $f \in H\left[\Omega ; \phi^{\alpha}\right]^{p}$ with $\left\|_{f}\right\|_{\alpha, k} \leq K_{k}, k=1,2, \ldots$, which can locally be written as $f=P \cdot g^{\omega}, g^{\omega} \in A(\omega)^{q}, \omega \subset \subset \Omega, U \omega=\Omega$, can be written globally as $\mathrm{f}=\mathrm{p} \cdot$ for some $\mathrm{v} \in \mathrm{H}\left[\Omega ; \phi^{\beta}\right]^{q}$ with $\left\|_{\mathrm{v}}\right\|_{\beta, k} \leq \mathrm{M}_{\mathrm{k}}, \mathrm{k}=1,2, \ldots$, where ϕ^{β} is determined by ϕ^{α} and N as in theorem 4.11. Moreover, if $\mathrm{h} \epsilon$ $\mathrm{H}\left(\Omega ; \phi^{\alpha}\right)^{\mathrm{p}}$ i.e., if $\left\{\mathrm{K}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ is bounded, then (4.21) and (4.22) need not be satisfied and $\left\{M_{k}\right\}_{k=1}^{\infty}$ is bounded, i.e., $v \in H\left(\Omega ; \phi^{\beta}\right)^{q}$.

In chapter VI we will give the covering $U^{(1)}$ and we will prove these theorems (if $\Omega=\mathbb{C}^{n}$, theorem 4.12 follows from [30, th. 7.6.11]). It is clear from (3.40) and (3.41) that problem 3.2 follows from theorem 4.12 and problem 3.3 from theorem 4.11. The map $\mu_{\alpha, \beta}$ can now be defined by means of theorems 4.11 and 4.12.

PROOF OF LEMMA 4.10. According to (4.28) for each $\beta \in A$ and $N \geq 0$ there is a $\alpha \in A$ with $\alpha \geq \beta$ such that in (4.42) we can choose $\tilde{\phi}_{N}^{\alpha}=\phi^{\beta}$; hence for each $\beta \in A$ there is a $\alpha \in A, \alpha \geq \beta$, such that theorems 4.11 and 4.12 hold with the functions ϕ^{α} and ϕ^{β} belonging to the net $\left\{\phi^{\alpha}\right\}_{\alpha \in A}$. Now for each $\beta \in A$ let $\gamma \in A, \gamma \geq \beta$, be such that theorem 4.12 holds if ϕ^{α} is replaced by ϕ^{γ} there, and let $\alpha \in A, \alpha \geq \gamma$, be such that theorem 4.11 holds if ϕ^{D} is replaced by ϕ^{γ} there. Then for $h \in F^{\alpha}$ we define

$$
\mu_{\alpha, \beta}(h)=I_{\gamma, \beta} v
$$

where $v \in H^{\gamma}$ is determined by h according to theorem 4.11. If $h \in M^{\alpha}$ then by (4.43) $\left.v\right|_{U_{S}}=P \cdot g_{S}$ for some $g_{S} \in A\left(U_{S}\right)^{q}, U_{S} \in U^{(1)}$, hence according to theorem 4.12 v is mapped by $I_{\gamma, \beta}$ into T^{β}. Thus $\mu_{\alpha, \beta}$ is well defined.

Moreover, it follows from lemma 4.9 and from theorem 4.11 that $\mu_{\alpha, \beta}$
is a bounded, hence continuous, map. Furthermore, that $I_{\alpha, \beta}=\mu_{\alpha, \beta}{ }^{\circ} \lambda_{\alpha}$ follows from (4.43) and theorem 4.12, whereas (4.43) alone implies that $I_{\alpha, \beta}^{\prime}=$ $=\lambda_{\beta}{ }^{\circ} \mu_{\alpha, \beta}$. Hence the diagram is commutative, so that the maps $\left\{\lambda_{\alpha}\right\}_{\alpha \in A}$ determine the map λ and the maps $\mu_{\alpha, \beta}$ its inverse.

Finally, we show that the space on the left hand side of (4.41) is well behaved. Let $\left\{f_{m}\right\}_{m=1}^{\infty} \subset T^{\alpha}$ be a Cauchy sequence which converges in H^{α} to a function f. Then f vanishes on $W \cap \Omega$, hence satisfies the conditions of theorem 4.12. Therefore f can be written as $f=P \cdot g$ with $g \in H^{\beta}$. Thus for each $\beta \in A$ there is $\alpha \in A$ with $\alpha \geq \beta$ such that the following diagram is commutative:

Therefore, the space on the left hand side of (4.41), or (4.31), is a Hausdorff space and equals (cf. (3.28))

$$
\begin{equation*}
\underset{\alpha \in A}{\operatorname{proj} \lim H^{\alpha} / T^{\alpha}=\underset{\alpha \in A}{\operatorname{proj} \lim H^{\alpha} / \overline{T^{\alpha}}} ~} \tag{4.44}
\end{equation*}
$$

REMARK. In our notation Ehrenpreis formulation of the fundamental principle has the form

Thus a function on \vec{W} satisfying the bounds is extended to one global function satisfying all the bounds simultaneously. In this chapter there is no problem in the semilocal extension, but the transition from semilocal results to global results yields different global functions for the different bounds. Ehrenpreis requires more conditions and, in fact, his result is too strong, as the weaker fundamental principle, formulated here and in [56],

Abstract

satisfies quite as well, i.e., it implies the Fourier representation of all solutions of homogeneous systems of differential equations, see chapter V.3. For example, in our formulation and in that of Palamodov the example given in section IV. 3 presents no problems, since the weightfunctions are of the required type. Also, this example exposes the impossibility of getting global extensions satisfying all the bounds simultaneously without further conditions. ${ }^{1)}$ In chapter VII, corollary 7.4, we will give such conditions for spaces of non-entire functions. There we will improve theorems 4.11 and 4.12 so that they hold for functions v satisfying all the bounds. Then it follows from lemma 4.7 that we would get a strong fundamental principle like (4.45). However, in that case we will not get uniform bounds as in theorems 4.11 and 4.12. Therefore, we will have to use the open mapping theorem for the conclusion that the inverse of the map (4.41) is continuous.

[^4]
CHAPTER V

EXAMPLES AND APPLICATIONS

Abstract

In chapter III we have introduced certain spaces of analytic functions in pseudoconvex domains. In this chapter we will show that these spaces W are localizable. This means that they are duals of spaces W^{\prime} whose Fourier transforms H satisfy theorem 4.6. Here the Fourier transformation F has been given in chapter III as a generalization of the Ehrenpreis-Martineau theorem. In the proof we have used theorem 4.6. So the fundamental principle helps us to find new examples of localizable spaces W such that $H=F W '$ consists of non-entire functions. We will show that in such spaces the fourier representation of all weak solutions of a homogeneous system of partial differential equations, mentioned in the last chapter, is valid. This representation is sometimes called the fundamental principle, too. For applications of this principle we refer the reader to [16]. Furthermore, we will give the Fredholm alternative for non-homogeneous systems in localizable spaces. In particular these theorems are valid in spaces of (ultra) distributions which are the boundary values of functions of exponential type, holomorphic in tubular cones. Finally, we will indicate how the theorems of chapter III can be used to derive the Newton interpolation series for nonentire functions of several complex variables.

V.1. TWO LEMMA'S ON PSEUDOCONVEX DOMAINS AND PLURISUBHARMONIC FUNCTIONS.

In chapter II we have considered spaces of holomorphic functions in ε-neighborhoods in \mathbb{C}^{n} of closed sets S in \mathbb{R}^{n}. In lemma 5.1 we will show that such sets have a neighborhood base of pseudoconvex sets equivalent to the neighborhood base of ε-neighborhoods, a result which we have used in lemma 2.1. In chapter II and III we had weight functions of the form $\exp M(t\|x\|)$, which are not plurisubharmonic. In lemma 5.2 it will be shown that these weight functions can be changed into plurisubharmonic functions
without damaging the spaces they define. This is needed in order to satisfy the conditions of theorem 4.6.

Two systems $\left\{\Omega_{k}\right\}$ and $\left\{\Omega_{k}^{\prime}\right\}$ of neighborhoods are said to be equivalent if for each k there is an l such that $\Omega_{k} \subset \Omega_{l}^{\prime}$ and $\Omega_{k}^{\prime} \subset \Omega_{\ell}$. Then both systems determine the same spaces $A(2.4)$ or (2.5) and the same space H (4.29).

LEMMA 5.1. Let S be a closed set in \mathbb{R}^{n} and let Ω_{1} be an ε-neighborhood of S in \mathbb{C}^{n}. Then there is an open pseudoconvex set Ω with $\Omega_{2} \subset \Omega \subset \Omega_{1}$, where Ω_{2} is the $\frac{1}{2} \varepsilon$-neighborhood of S in \mathbb{C}^{n}.

PROOF. Define Ω as the holomorphic envelope of

$$
\Omega_{2}^{\prime} \stackrel{\text { def }}{=} U_{x \in S}\left\{z \mid\left\|_{x}-x^{0}\right\|+\left\|_{Y}\right\|<\varepsilon / \sqrt{2}\right\}
$$

It is clear that $\Omega_{2} \subset \Omega$. If we show that

$$
\Omega \subset \bigcup_{x^{0} \in S}\left\{z \mid\left\|x-x^{0}\right\|<\varepsilon / \sqrt{2},\left\|_{\mathrm{Y}}\right\|<\varepsilon / \sqrt{2}\right\}
$$

it follows that $\Omega \subset \Omega_{1}$.
Ω is contained in the $\varepsilon / \sqrt{2}$-neighborhood in \mathbb{C}^{n} of \mathbb{R}^{n} because this is pseudoconvex. Furthermore, let $\tilde{z}=\tilde{x}+i \tilde{y}$ with $\tilde{x} \notin \Omega_{2}^{\prime} \cap \mathbb{R}^{n}$. Then the function

$$
F(z) \stackrel{\text { def }}{=} \exp -(z-\tilde{x}) \cdot(z-\tilde{x})
$$

is holomorphic in Ω_{2} and satisfies $|F(\tilde{z})| \geq 1$ and $|F(z)|<1$ for $z \in \Omega_{2}^{\prime}$. Hence $\tilde{z} \notin \Omega$, because every holomorphic function in Ω_{2}^{\prime} attains the same values in its holomorphic envelope Ω, see $[68, \$ 20.3]$.

In order to show that the spaces of chapters II and III do not alter by a change of the weight functions into a sequence of plurisubharmonic functions we define the equivalence of two sequences of weight functions, cf. (2.7). Two increasing or decreasing sequences $\left\{\phi_{j}\right\}$ and $\left\{\psi_{j}\right\}$ of weight functions on the set Ω are equivalent if for each j there is an m, or for each m an index j, depending on whether the sequences are increasing or decreasing, respectively, and a positive number C such that

$$
\phi_{j}(z) \leq \psi_{m}(z)+C \quad \text { and } \quad \psi_{j}(z) \leq \phi_{m}(z)+C, \quad z \in \Omega .
$$

It is clear that the spaces (2.4) and (2.5) are the same if they are defined by $\left\{\phi_{j}\right\}$ or by $\left\{\psi_{j}\right\}$.

LEMMA 5.2. The sequences $\{-j \log (1+\|x\|)\},\{-1 / j\|x\|\},\{-M(1 / j\|x\|)\}$ and $\{-M(j\|x\|)\}$ in an ε-neighborhood Ω of \mathbb{R}^{n} in \mathbb{C}^{n} are equivalent to sequences of plurisubharmonic functions, where M is a function as in section II.2.iii.

PROOF. It is clear that the sequence $\{-j \log (1+\|x\|)\}_{j=1}^{\infty}$ in Ω is equivalent to $\left\{\log \left|\alpha^{2}+z \cdot z\right|^{-j}\right\}_{j=1}^{\infty}$ if $\alpha>\varepsilon$, and the sequence $\{-1 / j\|x\|\}_{j=1}^{\infty}$ to $\{\log$ $\left.\left|\exp -1 / j \sqrt{\alpha^{2}+z \cdot z}\right|\right\}_{j=1}^{\infty}$. These sequences consist of plurisubharmonic functions, because $\log |f|$ is plurisubharmonic if f is holomorphic, see [30, cor. 1.6.6].

In case we deal with $\{-M(1 / j\|x\|)\}_{j=1}^{\infty}$ or $\{-M(j\|x\|)\}_{j=1}^{\infty}$ we replace $-M(t\|x\|)$ by the function

$$
g_{t}(z) \stackrel{\text { def }}{=} \sum_{k=1}^{n} h_{t}\left(z_{k}\right)
$$

where

$$
h_{t}(w) \stackrel{\text { def }}{=} \max \left\{\log \left|\exp -\sqrt{\alpha^{2}+w^{2}}\right|+C,-M(t|u|)\right\}
$$

for $\alpha>\varepsilon$ and for c so large that $\log \left|\exp -\sqrt{\alpha^{2}+w^{2}}\right|+C>-M(t|u|)$ in an open neighborhood in \mathbb{C}^{1} of $\{w|w=u+i v, u=0,|v|<\alpha\}$. Since $-M(t|u|)$ is a convex function in the sets $\left\{w||v|<\varepsilon, \pm u>0\}\right.$, the function h_{t} is plurisubharmonic in the $\operatorname{strip}\left\{w||v|<\varepsilon\}\right.$. Hence the function g_{t} is plurisubharmonic in Ω.

Furthermore, the properties of M imply that

$$
M(\|x\|) \leq M\left(\left|x_{1}\right|+\ldots+\left|x_{n}\right|\right) \leq M\left(\left|x_{1}\right|\right)+\ldots+M\left(\left|x_{n}\right|\right) \leq n M(\|x\|) .
$$

An n times repeated application of property (2:21) yields that the last inequality can be further estimated by

$$
2^{n} M(\|x\|) \leq M\left(\tau^{n}\|x\|\right)+\left(2^{n}-1\right) K
$$

Finally, this together with the fact, that $-M(t p)$ dominates $-\rho$ by (2.32), yields that the sequences $\left\{g_{1 / j}(z)\right\}_{j=1}^{\infty}$ and $\left\{g_{j}(z)\right\}_{j=1}^{\infty}$ are equivalent to $\{-M(1 / j\|x\|)\}_{j=1}^{\infty}$ and to $\{-M(j\|x\|)\}_{j=1}^{\infty}$ in Ω, respectively.

For spaces H of holomorphic functions defined in tubular cones T^{C} and bounded with respect to sup-norms with densities exp-M* $\left(t\left\|_{y}\right\|\right), t>0$, cf. chapter III, we can harmless change these densities into $\exp -\mathrm{M}^{*}\left(\mathrm{t}\left\langle\xi_{0}, \mathrm{y}\right\rangle\right)$ for some fixed $\xi_{0} \in C^{*}$ with $\left\|\xi_{0}\right\|=1$, because there is a $\delta>0$ such that

$$
\delta\|y\| \leq\left\langle\xi_{0}, y>\leq\|y\| .\right.
$$

Now the functions $M^{*}\left(t<\xi_{0}, Y>\right)$ are convex in T^{C}, hence plurisubharmonic. In case the topology of H is given by an inductive limit, $\mathrm{H}=\underset{\mathrm{m}}{\mathrm{ind}} \lim _{\infty} \mathrm{H}_{\infty}\left[\Omega ; \phi_{\mathrm{m}}\right]$, as in [16] this can be changed into a projective limit, $\mathrm{H}=\mathrm{proj}_{\alpha}$ lim $H_{\infty}\left[\Omega ; \phi^{\alpha}\right]$, where $\left\{\phi^{\alpha}\right\}$ is the collection of convex functions dominating every $\phi_{m}, m=1,2, \ldots$.

Finally, let us make some remarks concerning condition (4.22) in the space H given by (4.29). In particular this condition implies that each set int Ω_{k} is pseudoconvex, see $[68,12.9]$. So not all the Exp-spaces
 given by (3.39) does not satisfy it. In the other cases it is not difficult to see that a plurisubharmonic, even convex function σ exists such that the sets $\left\{\Omega_{k}\right\}$ determined by condition (4.22) are equivalent to the sets in the definition of the Exp- and A-spaces of chapter III.

V.2. EXAMPLES OF LOCALIZABLE SPACES.

We say that a space W is localizable if it is the dual of a space W^{\prime} whose Fourier transform H can be written as (4.29), (4.32) or (4.33), where the conditions of theorem 4.6 are satisfied and where moreover H is dense in each $H\left[\Omega ; \phi^{\alpha}\right]$ or in $H\left(\Omega ; \phi^{\alpha}\right)$, or $\underset{\alpha}{\operatorname{proj}} \underset{A}{\lim } H\left(\Omega_{\ell} ; \phi^{\alpha}\right)$ in each $H\left(\Omega_{\ell} ; \phi^{\alpha}\right)$, respectively. Some spaces W such that $H=\stackrel{\alpha}{F_{W}} \underset{ }{\prime} \underset{\sim}{A}$ consists of entire functions are localizable here, but not in the sense of [16], cf. example 4, while others, such as \mathcal{D}^{\prime}, are localizable in [16] but not here. That D^{\prime} is not localizable here is due to the fact that $-\log \left(1+\|\zeta\|^{2}\right)$ is not plurisubharmonic in \mathbb{C}_{n}. Below we will see that there are subsets of D^{\prime} (with a finer topology than the one induced by D^{\prime}) which are localizable in our sense. These are the spaces of distributions in D^{\prime} whose inverse Fourier transforms have , their carrier contained in some unbounded, convex, open set.

EXAMPLE 1. Spaces of Fourier hyperfunctions, ultradistributions of Roumieu type and of Beurling type, and distributions, which are the boundary values of functions of exponential type, holomorphic in tubular radial domains T^{C}.

These are precisely the Exp-spaces of chapter III defined in (3.33), (3.34), (3.35), (3.39), (3.44), (3.51) and (3.56). The spaces H are given by the corresponding A-spaces. Also the Exp-spaces (3.2.i \& ii), (3.45), (3.50) and (3.55) are examples of localizable spaces.

EXAMPLE 2. Spaces of analytic functions in convex sets decreasing at infinity. These are exactly the A-spaces of chapter III defined in (3.5), (3.33), (3.34), (3.35), (3.39) for $\alpha=c$, (3.45) for $\alpha=c$, (3.50), (3.51), (3.55) and (3.56). The spaces H are given by the corresponding Exp-spaces.

EXAMPLE 3. Spaces of $C \stackrel{\infty}{-}$ functions in convex sets decreasing at infinity. These are essentially the s-spaces of lemma 2.27. Precisely, they are the spaces of $C \stackrel{\infty}{ }$ functions which are the duals of the spaces of distributions $\underset{k}{\operatorname{proj}} \lim _{\infty} \underset{m \rightarrow \infty}{\operatorname{ind}} \lim _{\mathrm{m}} \mathrm{S}_{\mathrm{C}}(\mathrm{m}, \mathrm{k}, \mathrm{k})^{\prime}, \mathrm{S}_{\mathrm{C}}(\mathrm{k}, \mathrm{m})^{\prime}$ and $\mathrm{S}_{\alpha}(\mathrm{m}, \mathrm{k})^{\prime}$. The spaces H are determined by lemma 2.27. Also spaces of $C \underline{(}$ functions in a fixed, open, convex set decreasing at infinity can be localizable. For example, the spaces $\operatorname{proj}_{m} \lim _{\infty} W_{2}^{m}\left(\Omega\left(a_{m}, r^{m}\right) ;-M(m\|\zeta\|)\right)$ and $\operatorname{proj}_{m} \lim _{\infty} W_{2}^{m}\left(\Omega\left(a_{m}, r^{m}\right) ;-m \log (1+\|\zeta\|)\right)$, cf. (3.50) and (3.55) are localizable. The spaces H are determined as in lemma 2.27.

EXAMPLE 4. The spaces of $C \cong$ functions in an open, convex set U. The space H is given by $H=\underset{k \rightarrow \infty}{i n d} \lim _{\infty} H_{\infty}\left(\mathbb{C}^{n} ; k \log \left(1+\|z\|^{2}\right)+\sup \left\{-\langle\xi, y\rangle \mid \xi \in U_{k}\right\}\right)$, where $\left\{U_{k}\right\}$ is an increasing sequence of compact, convex subsets of U exhausting U. If W is the space of $C=$ functions in the compact set \bar{U}, in the above we set $U_{k}=\bar{U}$ for every k. Cf. the remark in the next section.
V.3. REPRESENTATIONS OF SOLUTIONS OF HOMOGENEOUS SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS.

In this section we will show that the exponential representation of [16, th. 7.1], [56, VI §4] or [2, (9), p. 93] of all solutions of a homogeneous system of partial differantial equations with constant coefficients remains valid in localizable spaces W as defined in the last section. This representation follows immediately from theorem 4.6 and therefore it is also called the fundamental principle.

THEOREM 5.3. Let $T \in W$ be a weak solution of the system
(5.1)

$$
\vec{P}(\mathrm{D}) \mathrm{T}=\overrightarrow{0}
$$

in the localizable space W , where $\overrightarrow{\mathrm{P}}=\left(\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{q}}\right)$ is a vector of complex polynomials and

$$
\mathrm{D}=\left(-i \frac{\partial}{\partial \xi_{1}}, \ldots,-i \frac{\partial}{\partial \xi_{\mathrm{n}}}\right) .
$$

Let $W=\left(V_{1}, \partial_{1} ;, \ldots ; V_{r}, \partial_{r}\right)$ be a polynomial multiplicity variety associated to the vector of polynomials $\overrightarrow{\mathrm{P}}(\mathrm{z})$ according to lemma 4.1 and let W be the dual of ${ }^{\prime}$ ' whose Fourier transform H is given by (4.29). Then there are an index k, an index $\alpha_{0} \in A$ and bounded measures μ_{j} on $V_{j} \cap \Omega_{k}, j=1, \ldots, r$, such that symbolically

$$
\begin{equation*}
T(\xi)=\sum_{j=1}^{r} \int_{V_{j} n \Omega_{k}}\left\{\partial_{j} \exp i<\xi, z>\right\} \exp -\phi^{\alpha} 0^{(z) d \mu_{j}(z),} \tag{5.2}
\end{equation*}
$$

i.e., for $\psi \in W^{\prime}$

$$
\begin{equation*}
\langle T, \psi\rangle=\sum_{j=1}^{r} \int_{V_{j} \cap \Omega_{k}} e^{-\phi{ }^{\alpha} 0(z)}\left(\partial_{j} F \psi\right)(z) d \mu_{j}(z) . \tag{5.3}
\end{equation*}
$$

Conversely, if $\mathrm{T} \in \mathrm{W}$ is determined by (5.3) then it satisfies (5.1). If H is given by (4.32) we just set $\Omega_{k}=\Omega$ in (5.2) and (5.3), and if H is given by (4.33), for every $\ell=1,2, \ldots$ there are an index $\alpha, \ell \in A$ and bounded measures $\left(\mu^{\ell}\right)_{j}$ on $V_{j} n \cdot \Omega_{\ell^{\prime}} j=1, \ldots, r$, such that any weak solution of (5.1) in W can be represented symbolically as

$$
T(\xi)=\sum_{j=1}^{r} \int_{V_{j}{ }^{n} \Omega_{\ell}}\left\{\partial_{j} \exp i<\xi, z>\right\} \exp -\phi^{\alpha} \ell(z) d\left(\mu^{\ell}\right)_{j}(z)
$$

for every $\ell=1,2, \ldots$, and conversely as above.
PROOF. As in section IV. 6 we denote

$$
H^{\alpha} \xlongequal{\text { def }} H\left[\Omega ; \phi^{\alpha}\right]
$$

and

$$
T^{\alpha} \xlongequal{\text { def }} H^{\alpha} \cap \overrightarrow{\mathrm{P}} \cdot \overrightarrow{\mathrm{H}}^{\alpha}
$$

If H is given by (4.29) each $T \in W$ can be written as $T=F \mu$ for some $\mu \in\left(H^{\beta}\right)$ ' for a certain $\beta \in A$. That T satisfies (5.1) means that for all $\vec{\phi} \in\left(W^{\prime}\right)^{q}$

$$
\begin{equation*}
\langle T, \vec{P}(-D) \cdot \vec{\phi}\rangle=0, \tag{5.4}
\end{equation*}
$$

and moreover this holds for all $\vec{\phi}$ such that $\vec{\phi} \vec{\phi} \in \vec{H}^{\alpha} 0$, because H is dense in $H^{\alpha} 0$ and $\vec{P}: \vec{H}^{\alpha} 0 \rightarrow H^{\beta}$ is continuous for some $\alpha_{0} \geq \beta$.

Let $f^{\alpha_{0}} \in H^{\alpha_{0}}$ be such that $f^{\alpha} 0(z)=\vec{P}(z) \cdot{ }_{g}^{\alpha} \alpha^{\alpha}(z)$ for some $\vec{g}^{\alpha_{0}} \in \vec{H}^{\alpha} 0$. Then

$$
\begin{aligned}
\langle\mu, f & { }^{\alpha} O_{>}
\end{aligned}=\left\langle\mu, \vec{P}(z) \cdot \vec{g}^{\alpha} 0(z)\right\rangle=\left\langle T, \vec{P}(-D) \cdot F^{-1 \vec{g}^{\alpha} 0}\right\rangle=, ~=\left\langle\vec{P}(D) T, F^{-1 \vec{g}^{\alpha} 0}\right\rangle=0 . ~ l
$$

Hence in fact

$$
\begin{equation*}
\mu \in\left\{\mathrm{H}^{\alpha_{0}}, \overline{T T}, \bar{\alpha}^{\alpha_{0}}\right. \tag{5.5}
\end{equation*}
$$

Conversely, if (5.5) holds, then

$$
\left\langle\overrightarrow{\mathrm{P}}(\mathrm{D}) \mathrm{T}, \mathrm{~F}^{-1{\underset{g}{g}}^{\alpha} 0^{\prime}}=\left\langle\mu, \mathrm{f}^{\alpha} 0_{>}=0\right.\right.
$$

for all $\vec{g}^{\alpha} 0 \in \vec{H}^{\alpha} 0$ with $f^{\alpha} 0$ def $\vec{p}_{\mathrm{p}}^{\mathrm{g}} \vec{g}^{\alpha} 0 \in \overrightarrow{\mathrm{H}}^{\alpha} 0$, so certainly for all $\vec{g} \in \overrightarrow{\mathrm{H}}$. Hence (5.4) holds.

Now the representation (5.3) follows from (4.44), the isomorphism (4.31) and the Riesz representation theorem, where property (4.30) and the fact that Ω_{k} is relatively closed in Ω are used.

The case where H is given by (4.32) is similar and if H is given by (4.33) for $T \in W$ we have $T=F \mu$ with $\mu \in H\left(\Omega_{\ell} ; \phi^{\alpha} \ell\right.$)' for every $\ell=1,2, \ldots$ and a certain sequence $\left\{\alpha_{\ell}\right\}_{\ell=1}^{\infty} \subset A$. Then similarly to above we find that for every ℓ

and the theorem follows from the isomorphism (4.36).

For a system of differential equations we use the local restriction map ρ^{I} determined by lemma's 4.2 and 4.3 and similarly to above we get the following theorem, cf. [16, th. 7.3].

THEOREM 5.4. For a q×p-matrix P of polynomials let $\vec{T} \in W^{p}$ be a weak solution of

$$
P(D) \cdot \vec{T}=\overrightarrow{0}
$$

in the localizable space W. Let \vec{W} be a vector of polynomial multiplicity varieties $w^{m}=\left(V_{1}^{m}, \partial_{1}^{m} ; \ldots ; V_{r_{m}}^{m}, \partial_{r_{m}}^{m}\right), m=1, \ldots, p$, with the local restriction $\operatorname{map} \rho^{L}$ associated to the $p \times q-m a t r i x ~ t^{\mathrm{L}}(\mathrm{z})$ of polynomials according to lemma's 4.2 and 4.3, and let H be given by (4.29). Then there are an index k , an index $\alpha_{0} \in A$ and bounded measures μ_{j}^{m} on $V_{j}^{m} \cap \Omega_{k}, m=1, \ldots, p, j=1, \ldots$, r_{m}, such that for $\vec{\psi} \in\left(W^{\prime}\right)^{p}$

$$
\begin{equation*}
\langle\vec{T}, \vec{\psi}\rangle=\sum_{m=1}^{p} \sum_{j=1}^{r_{m}} \int_{V_{j}^{m} \cap \Omega_{k}} \exp -\phi^{\alpha_{0}}(z) \partial_{j}^{m}\left(\rho_{z} F \vec{\psi}_{m}(z) d \mu_{j}^{m}(z)\right. \tag{5.6}
\end{equation*}
$$

Conversely, if \vec{T} is determined by (5.6), it satisfies $\vec{P}(D) \cdot \vec{T}=\overrightarrow{0}$. If H is given by (4.32) we just set $\Omega_{k}=\Omega$ in (5.6), and if H is given by (4.33), for every ℓ there are an index $\alpha_{\ell} \in A$ and bounded measures $\left(\mu^{\ell}\right)_{j}^{m}$ on $V_{j}^{m} \cap \Omega_{\ell}$ such that (5.6) becomes

$$
\langle\vec{T}, \vec{\psi}\rangle=\sum_{m=1}^{p} \sum_{j=1}^{r_{m}} \int_{V_{j}^{m}{ }_{n \Omega \ell}} \exp -\phi^{\alpha} \ell(z) \partial_{j}^{m}\left(\rho_{z} \vec{F}\right)_{m}(z) d\left(\mu^{\ell}\right)_{j}^{m}(z)
$$

for every $\ell=1,2, \ldots$, and conversely as above.

Note that, by construction of the map ρ_{z}, there is no $1-1$ correspondence between $T^{m} \in W$ and the measure μ^{m} on W^{m}, but T^{m} is determined by all the measures μ^{k} on W^{k} for $k=m, m+1, \ldots, p$.

REMARK. In [16] W is provided with the strong dual topology and there it is shown that the integrals in (5.3) and (5.6) converge in this topology. Here we have considered W with its weak* topology. Moreover, our condition that H is dense in each H^{α} is not required in [16]. This condition restricts the possible AU-structures. For example, the $A U$-structure K of the example in section IV. 3 does not satisfy it. It should be remarked that this condition is only required if the topology of H is written as a projective limit. In some of the examples of the last section H has been given as an inductive limit. It is true that in these cases H can be written as a projective limit such that H is dense in each H^{α}. For instance, in example 4 this follows roughly from the fact that the intersection of all classes of ultradistributions with compact support is the set of distributions with compact support (because any $C \propto \subseteq$ function is ultradifferentiable of some type in a compact set) and from the fact that the space of distributions with compact support is dense in any space of ultradistributions with compact support (which on its turn follows from the injectivity of the embedding of the space of ultradifferentiable functions into the space of C^{∞} functions). However, in these cases theorems 5.3 and 5.4 can be proved for spaces H which are inductive limits directly along the same lines as the proof of theorem $5.3, \mathrm{cf} .[56$, VI. §4]. So it was right to give H as an inductive limit in example 4. The only reason for writing H as a projective limit is to give a uniform treatment of all the examples of section 2 .

V.4. INHOMOGENEOUS SYSTEMS.

In the last section we have studied the kernel of the map

$$
W^{p} \xrightarrow{P(D)} W^{q} .
$$

here we will discuss its image. We will show that for certain spaces W the obviously necessary - so called compatibility - conditions are also sufficient. For LAU-spaces W this result has been shown by Ehrenpreis in [16, th. 6.1]; similar results have been obtained by Malgrange, Hörmander in [30, th. 7.6.13] and Komatsu in [41], cf. also [1, ch. 3]. Our spaces W are duals of spaces the Fourier transforms of which consist of non-entire functions, such as the examples of section 2. In particular, we get the result for spaces of analytic functions in convex sets satisfying certain growth conditions, whereas in [41, th. 2] it has been shown without growth conditions.

The following theorem is valid for all the examples of section 2. It can be seen as the Fredholm alternative for systems P of partial differential equations with constant coefficients: $P \cdot \vec{u}=\vec{v}$ has a solution \vec{u} if and only if v is "orthogonal" to the null space of the adjoint of P.

THEOREM 5.5. Let W be a localizable space, let P be a $q \times p$-matrix of polynomials and let $\mathrm{D}=-\mathrm{i} \partial / \partial \xi$. Then for $\overrightarrow{\mathrm{v}} \in \mathbb{W}^{\mathrm{q}}$ the equation

$$
P(D) \cdot \vec{u}=\vec{v}
$$

has a weak solution $\vec{u} \in W^{p}$ if and only if \vec{v} satisfies

$$
\vec{Q}(D) \cdot \vec{v}=0
$$

weakly for all polynomials q-vectors \vec{Q} with

$$
t_{P(z)} \cdot \vec{Q}(z)=\overrightarrow{0}
$$

$\xrightarrow[\text { PROOF. }]{\vec{v}}$. It is clear that the condition $\vec{Q}(D) \cdot \vec{v}=0$ is necessary. Now let $\overrightarrow{\mathrm{v}} \in \mathrm{W}^{\mathrm{q}}$ satisfy this condition. We want to solve $P(D) \cdot \vec{u}=\vec{v}$ weakly, i.e., for all $\vec{\psi} \in\left(W^{\prime}\right)^{q}$

$$
\left\langle\vec{u}, t_{P(-D)} \vec{\psi}\right\rangle=\langle\vec{v}, \vec{\psi}\rangle
$$

Let $\vec{u}=\vec{F}$ and $\vec{v}=\vec{F}$ for some $\vec{\mu} \in\left(H^{\prime}\right)^{p}$ and $\vec{\sigma} \epsilon\left(H^{\prime}\right)^{q}$ with $\vec{Q}(z) \cdot \vec{\sigma}_{z}=0$ weakly. Let H be given by (4.29). Since H is dense in H^{γ}, we may assume that $\vec{\sigma} \in\left(\vec{H}^{\gamma}\right)$ ' for some $\gamma \in A$ and, as in the proof of theorem 5.3, that $\vec{\sigma}$ vanishes on $\vec{H}^{\gamma} \cap \overrightarrow{Q H}^{\gamma}$. We want to find an index $\alpha \geq \gamma$ and $\vec{\mu} \in\left(\vec{H}^{\alpha}\right)$ ' such that for all $\vec{g} \in \vec{H}$

$$
\begin{equation*}
\left\langle\vec{\mu}_{z}, t_{P}(z) \cdot \vec{g}_{g}(z)\right\rangle=\left\langle\vec{\sigma}_{z}, \vec{g}(z)\right\rangle \tag{5.8}
\end{equation*}
$$

Thus $\vec{\mu}$ is already defined on the subspace M of $\vec{H} \alpha$ consisting of all \vec{f} for which there is $a \vec{g} \in \vec{H}^{\beta}$ with $t_{P(z)} \cdot \vec{g}(z)=\vec{f}(z)$, where $\alpha \geq \beta \geq \gamma$ are sufficiently large. If we show that $\vec{\mu}$ is continuous on M, then by the HahnBanach theorem we can extend $\vec{\mu}$ to all of \vec{H} and $\vec{u}=\vec{F} \vec{\mu}$ is the required solution.

It is clear that an arbitrary element of the kernel of t_{P} may be added to \vec{g} without changing \vec{f}. By $[30$, lemma 7.6 .3$]$ this kernel is generated by finitely many (say r) polynomial q-vectors. So there is a r×q-matrix Q of polynomials such that in the following sequences, where the matrices t_{P} and ${ }^{t} Q$ determine densely defined closed operators,

$$
\begin{aligned}
& \left(\vec{H}^{\alpha}\right), \xrightarrow{P(z)}\left(\vec{H}^{\beta}\right), \xrightarrow{Q(z)}\left(\vec{H}^{\gamma}\right)^{\prime} \\
& \left(H^{\alpha}\right) P_{i}^{+} \stackrel{t_{P(z)}^{\longleftrightarrow}}{\longleftrightarrow}\left(H^{\beta}\right)^{q} \stackrel{{ }^{t} Q(z)}{\longleftrightarrow}\left(H^{\gamma}\right)^{r}
\end{aligned}
$$

the image of one map is contained in the kernel of the other. Here the first sequence is dual to the second and we have to show that it is exact. Theorem 4.12 implies that $\operatorname{Ker}{ }^{t_{P}}=R\left({ }^{t} Q\right)$ if $\beta \geq \gamma$ is sufficiently large, i.e., the second sequence is exact. Denoting the range $R\left({ }^{t} P\right)$ of t_{P} by M we get the following inverse map

$$
\begin{equation*}
M \xrightarrow{\left(t_{P}\right)^{-1}}\left(H^{B}\right)^{q} / R\left({ }^{t}{ }_{Q}\right) . \tag{5.9}
\end{equation*}
$$

We have to show that the map (5.9) is continuous and because M, as a subspace of a Frechet space, is bornologic, it is sufficient to show that $\left({ }^{t_{P}}\right)^{-1}$ is a bounded map. So let $\vec{f} \in \vec{H}^{\alpha}$ with $\vec{f}=t_{P} \cdot \vec{g}$ for some $\vec{g} \in \vec{H}^{\beta}$ satisfy $\|\vec{f}\| \|_{\alpha, k} \leq K_{k}$, where this norm is defined in (4.20). According to theorem 4.12 there is $a \vec{g}^{\prime} \in \vec{H}^{\beta}$ with $t_{P} \cdot \vec{g}^{\prime}=\vec{f}$ and with $\left\|_{\vec{g}}^{\prime}\right\|_{\beta, k} \leq M_{k}, k=1,2, \ldots$, where $\left\{M_{k}\right\}$ depends on $\left\{K_{k}\right\}$ but not on \vec{f}, if $\alpha \geq \beta$ is sufficiently large. Hence the map (5.9) is continuous.

Finally, since $\vec{\sigma}$ vanishes on $\vec{H}^{\gamma} \cap{ }^{t}{ }_{Q} \cdot \vec{H}^{\gamma}$, it certainly vanishes on $R\left({ }^{t} Q\right) \subset \vec{H}^{\beta}$. Therefore, we may consider $\vec{\sigma}^{\text {as }}$ an element of $\left\{\left(H^{\beta}\right)^{q} / R\left({ }^{t} Q\right)\right\}^{\prime}$. Thus the functional $\vec{\mu}$ on M satisfying (5.8) is given by

$$
\langle\vec{\mu}, \vec{f}\rangle=\left\langle\vec{\sigma},\left({ }^{t} P\right)^{-1} \cdot \vec{f}\right\rangle, \quad \vec{f} \in M
$$

and this determines a continuous linear functional on M. Therefore, $\vec{\mu}$ can be extended to an element of ($\overrightarrow{\mathrm{H}}^{\alpha}$)'.

If H is given by (4.32) or (4.33) the proof is similar. In the last case M is also bornologic, because an inspection of a 0 -neighborhood base (cf. $[20, \S 23.3 .14])$ shows that $\underset{\ell \rightarrow \infty}{\operatorname{ind}} \lim _{\infty} H\left(\Omega_{\ell} ; \phi^{\alpha} \ell\right)$ induces on its subspace M an inductive limit topology.

It follows from the proof that there are only finitely many conditions on \vec{v}.

REMARK. The condition that H is dense in H^{α} is not required for a strong fundamental principle as (4.45) of [16]. In chapter VII a similar strong isomorphism will be derived. Therefore theorems 5.3, 5.4 and 5.5 are also valid in spaces W such that H satisfies the conditions of corollary 7.4.
V.5. THE NEWTON INTERPOLATION SERIES.

In [39] Kioustelidis has derived the Newton interpolation series for entire functions of exponential type in \mathbb{C}^{n}. This generalizes the one dimentional case only partially, because in one dimension the Newton series also holds for functions holomorphic in a half-plane, see [55]. Kioustelidis used the Ehrenpreis-Martineau theorem for entire functions. As we have generalized this theorem in chapter III, we are able to derive the Newton series in several variables also for non-entire functions of exponential type. In this section we will mention the results, where for the details we refer to [59].

Let f be an entire function. For $h \in \mathbb{C}^{n}$ define the operator

$$
\Delta_{i h} f(z) \stackrel{\text { def }}{=} f(z+i h)-f(z),
$$

so that

$$
\Delta_{i h}^{k} f(z)=\sum_{m=0}^{k}\left(\begin{array}{l}
k \\
m
\end{array}(-1)^{k-m_{f}(z+i m h)}\right.
$$

The Newton series expresses the value of f in an arbitrary point in terms of the values of f at equidistant points. Precisely, for $s \in \mathbb{C}$

$$
\begin{equation*}
f(z+i s h)=\sum_{k=0}^{\infty}\binom{s}{k} \Delta_{i h}^{k} f(z) \tag{5.10}
\end{equation*}
$$

The polynomials $\binom{s}{k}=s(s-1) \ldots(s-k+1) / k$! are the Newton polynomials $p_{k}(s)$. Usually, the factor i is omitted, but here it will appear to be convenient to use formula (5.10) for the Newton interpolation series.

Inverse Fourier transformation of (5.10) yields formally

$$
\begin{equation*}
\mathrm{e}^{-s\langle\zeta, h\rangle} \hat{\mathrm{f}}_{\zeta}=\hat{\mathrm{f}}_{\zeta} \sum_{\mathrm{k}=0}^{\infty}\binom{\mathrm{s}}{\mathrm{k}}\left(\mathrm{e}^{-\langle\zeta, \mathrm{h}\rangle}-1\right)^{\mathrm{k}} \tag{5.11}
\end{equation*}
$$

It is clear that (5.11) can only hold if $\hat{\mathbf{f}}$ is concentrated in the set where the series converges. Denoting $-\langle\zeta, h\rangle=u+i v \in \mathbb{C}$ for this set we find the condition (cf. [39] or [59, section 9])

$$
u<\log (2 \cos v)
$$

The component of this set containing the origin is a unbounded, convex set in \mathbb{C} which is bounded in the imaginary directions. Hence the domain of convergence of (5.11) is an unbounded, convex set Ω in \mathbb{C}_{n} depending on the region in which h may vary. In chapter III we have seen that functions f, which are the Fourier transforms of analytic functionals carried by unbounded subsets of Ω, are functions of exponential type holomorphic in cones in $\mathbb{C}^{\mathbf{n}}$. In [39] only those f have been considered which are the Fourier transforms of analytic functionals with bounded carrier in Ω. So in [39] the functions f for which the series (5.10) is valid are entire, while here we get the result for non-entire functions.

In [59, section 9] it has been shown that (5.10) can be generalized to non-entire functions only if h varies in a subset of \mathbb{C}^{n} of real dimension n. So we may take h real and in particular we will require that

$$
h \in \bar{C}_{b}=\{h \mid h \in \bar{C},\|h\| \leq b\}
$$

where $b>0$ and C is an open, convex cone in \mathbb{R}^{n}. Let Ω be the component containing the origin of the set

$$
\left\{\zeta\left|\left|e^{-\langle\zeta, h\rangle}-1\right|<1, h \in \overline{\mathrm{C}}_{\mathrm{b}}\right\} \subset \mathbb{C}_{\mathrm{n}} .\right.
$$

The other components will not give a series (5.10) for non-entire functions, cf. [59]. Since Ω is a convex set in \mathbb{C}_{n} which is bounded in the imaginary directions, a function $a-\eta$ on T^{C} can be defined by

$$
\begin{equation*}
\therefore(a-n)(z) \stackrel{\text { def }}{=} \sup _{\zeta \in \Omega}\{-\operatorname{Im}\langle\zeta, z>\}-n\|z\| \tag{5.12}
\end{equation*}
$$

where $\eta>0$ is small. The Newton series will be valid for functions f of exponential type $a-\eta$ and holomorphic in T. Moreover in [59, section 9] it has been shown that if Res $>\mathrm{p} \geq 0$ the series (5.10) does not depend on the values of f at the points $z+i m h$, where $m=0,1, \ldots$, . Hence the series will be valid also for certain points z not in T^{C}.

According to [59, lemma 9.1 and p. 78], for $h \in \bar{C}_{b}$ and for $s \in \mathbb{C}$ and - $z \in \mathbb{C}^{n}$ such that $z+i s h \in T^{C}$, the series

$$
e^{i\langle\zeta, z\rangle} \sum_{k=0}^{N} *\binom{s}{k}\left(e^{-\langle\zeta, h\rangle}-1\right)^{k} \rightarrow e^{i\langle\zeta, z+i s h\rangle}
$$

converges for $N \rightarrow \infty$ in the space $A_{\varepsilon}\left(a-\eta, T T^{C}\right)$ given by (3.33), where $\eta>0$ is so small that this space is defined and where Σ^{*} means that the terms with $e^{-m<\zeta, h\rangle}$ for $m=0,1, \ldots, p$ should be taken zero if Re $s>p \geq 0$. Hence the following theorem can be derived, see [59, th. 9.1 \& 9.1*].

THEOREM 5.6. Let C be an open, convex cone in \mathbb{R}^{n}, let $\mathrm{b}>0$ and let $\mathrm{a}-\mathrm{n}$ be given by (5.12) for $\eta>0$ so small that the spaces $\operatorname{Exp}_{\varepsilon}\left[a-\eta, T{ }^{C}\right]$ and $A\left(a-n, T^{C}\right)$ can be defined by (3.33). Then for any $h \in \bar{C}_{b}, s \in \mathbb{C}$ and $z \in \mathbb{C}^{n}$ such that $z+i s h \in T^{C}$ the series (5.10) is valid for functions $f \in \operatorname{Exp} \in[a-\eta$, T^{C}], where-if Res $>\mathrm{p} \geq 0$-in the points $\{\mathrm{z}+\mathrm{imh} \mid \mathrm{m}=0,1, \ldots, \mathrm{p}\}$, at which f is singular or undefined, we take zero instead of $\mathrm{f}(\mathrm{z}+\mathrm{imh})$.

The series (5.10) converges uniformly for z in a compact set $K \subset \mathbb{c}^{n}$ such that $K+i s h \subset T^{C}$, and even in [59] a more precise result on the convergence has been given. The series remains valid for functions in the other Exp-spaces of chapter III, but since this would mainly change the rate of convergence, we will not state the precise results here.

In [55, p. 237, first example 123] the Newton series (without the factor i) in one variable has been given for the function $f(z)=1 / z$ and for $h=1$. It has been shown there that (in our notation) (5.10) converges if $z+$ is $\epsilon \mathbb{C}^{+}$, where \mathbb{C}^{+}is the open upper half-plane. So obviously theorem 5.6 is the generalization to several dimensions of this one dimensional case.

The above formalism has the disadvantage that one cannot see directly what the type of f should be in order that the series (5.10) is valid if h varies in a given domain (for a detailed study of the correspondence between h and the type in case of entire functions f and complex h, see [39]).

Another approach would be to start with an $f \in \operatorname{Exp}\left[a, T^{C}\right]$ for a given type a and to find out what the domain of h is such that (5.10) is valid. Then it turns out that the bounds for $\|h\|$ will not be the same in every direction in \bar{C}. For a precise result, which is however not as best as possible, see
 for a positive number $a>0$. Then (5.10) holds for $f \in \operatorname{Exp}_{\varepsilon}\left[a-n, T^{C}\right]$ if $z+i s h \in T^{C}$ and if

$$
h \in \bar{C},\|h\| \leq \frac{\log 2}{a}
$$

For $n=1$ this condition for $\|h\|$ is exactly the one given in [55, p. 237].

CHAPTER VI

PROOFS OF THEOREMS 4.11 AND 4.12

In this chapter we shall prove theorems 4.11 and 4.12. Since problems 3.2 and 3.3 follow immediately from these theorems, in this chapter the proofs of theorem 2.20 and of the theorems in chapter III are completed. Our method uses the L^{2}-estimates for the Cauchy-Riemann operator given by Hörmander in [30]. In [30, ch. 7.6] cohomology with bounds in \mathbb{C}^{n} has been derived. Along the same lines we shall derive cohomology with bounds in an arbitrary, open, pseudoconvex set Ω. It relies on appropriate coverings of Ω which will be constructed in section 1. In [54] cohomology with bounds in a bounded, pseudoconvex set Ω has been treated also based on the method of [30]. There the same growth conditions at the boundary of Ω appear as we will get here.

VI.1. COVERINGS

We construct open coverings $U^{(\lambda)}=\left\{U_{i}^{(\lambda)}\right\}_{i \in I_{\lambda}}, \lambda=0,1,2, \ldots$ of the pseudoconvex open set Ω that satisfy the following properties:
(6.1) (i) every $U_{i}^{(\lambda)}$ is pseudoconvex and $U_{i}^{(\lambda)} \subset \subset \Omega$;
(ii) there is a positive integer L such that more than L distinct sets in $U^{(\lambda)}$ have empty intersection;
(iii) the size of $U_{i}^{(\lambda)}$ satisfies

$$
\operatorname{diam} U_{i}^{(\lambda)} \leq \min \left[b 4^{-\lambda} d_{i}, B 4^{-\lambda}\right]
$$

where d_{i} is the distance from $U_{i}^{(\lambda)}$ to $\partial \Omega$, and $U_{i}^{(\lambda)}$ contains a cube whose side for any $\left.z \in U_{i}^{(}{ }^{(}\right)$satisfies

$$
\text { side } \geq \min \left[a 4^{-\lambda} d\left(z, \Omega^{c}\right), A 4^{-\lambda}\right],
$$

for some constants $\mathrm{a}<\mathrm{b}$ and $\mathrm{A}<\mathrm{B}$;
(iv) for each $\mu U^{(\mu+1)}$ is a refinement of $U^{(\mu)}$ and, moreover, each
$U_{i}^{(\mu)} \in U^{(\mu)}$ enlarged $2^{\mu-\lambda}$ times with respect to some center in
$U_{i}^{(\mu)}$ is contained in some $U_{j_{i}}^{(\lambda)} \in U^{(\lambda)}$ for every $\lambda=0,1, \ldots, \mu-1$; denote the map ρ between I_{μ} and I_{λ} with $\rho(i)=j_{i}$ by $\rho_{\lambda, \mu}$;
(v) there are positive integers $L_{\lambda, \mu}$ depending on λ and $\mu(\mu>\lambda)$ such that for each $j \in I_{\lambda}$ there are at most $L_{\lambda, \mu}$ indices $i_{k} \in I_{\mu}$ with $\rho_{\lambda, \mu}\left(i_{k}\right)=j, k=1,2, \ldots, L_{\lambda, \mu}$.
When $\Omega={ }_{k=1}{ }_{\mathrm{O}}^{1} \Omega_{k}$ satisfies (4.21) it follows from property (iii) that
(vi) every set in $U^{(\lambda)}$ that intersects Ω_{k} is contained in some $\Omega_{\ell^{\prime}}$ where $\ell=\ell(k)>k$ depends on k.

The essential idea for the construction of $U^{(0)}$ has already been used in [70], and it can be found in [29] too.

Divide \mathbb{C}^{n} into a collection of closed cubes with side 1 (such that the vertices form a retangular lattice), select those cubes in Ω whose distances to Ω^{C} are larger than the length $\sqrt{2 n}$ of their diagonal and call this collection U_{0}. Divide the remaining cubes into a collection of cubes of side $\frac{1}{2}$, select those cubes in Ω whose distances to Ω^{C} are larger than $\frac{1}{2} \sqrt{2 n}$ and call this collection U_{1}. Generally, when the collections $U_{0}, U_{1}, \ldots, U_{k-1}$ have been defined let U_{k} consist of those closed cubes with side $\frac{j}{2}^{k}$ that are not contained in the union of the cubes of ${ }_{\ell=0}^{k}{ }_{0}^{1} U_{\ell}$, but that are contained in Ω and whose distances to Ω^{c} are larger than $\sqrt{2 n} / 2^{k}$. Then $U_{0}^{\prime} \xlongequal{\text { def }}{ }_{k}{ }_{0}^{\infty} U_{k}$ covers Ω and a cube in U_{k} can intersect cubes of U_{ℓ} only if $\ell=k-1, k$ or $k+1$. Hence U_{0} satisfies property (ii) (with $L=2{ }^{2 n}$) and property (iii) (with $\lambda=0, \mathrm{~A}=1$, $B=\sqrt{2 n}, a=1 /(4 \sqrt{2 n})$ and $b=1)$.

Define a map α on U_{0}^{\prime} by mapping $U_{i}^{\prime} \in U_{0}^{\prime}$ to the enlargement of the interior of U_{i}^{\prime} with a factor $3 / 2$, the center kept fixed. Finally, define

$$
u^{(0)} \stackrel{\text { def }}{=}\left\{U_{i}^{(0)} \mid U_{i}^{(0)}=\alpha U_{i}^{\prime}, U_{i}^{\prime} \in U_{0}^{\prime}\right\}
$$

It is still true that $U_{i}^{(0)} \cap U_{j}^{(0)} \neq \varnothing$ if and only if $\alpha^{-1} U_{i}^{(0)} \cap \alpha^{-1} U_{j}^{(0)} \neq \varnothing$. Hence, the open covering $u^{(0)}$ of Ω satisfies properties (i), (ii) (with $\mathrm{L}=2^{2 \mathrm{n}}$) and (iii) (with $\mathrm{A}=3 / 2, \mathrm{~B}=\sqrt{2 \mathrm{n}} 3 / 2, \mathrm{a}=1 /(3 \sqrt{2 \mathrm{n}}$) and $\mathrm{b}=2$) for $\lambda=0$.

Now let $u^{(0)}, \ldots, u^{(\lambda-1)}$ be defined with the properties (i), (ii), (iii), (iv) and (v) satisfied and let each $U^{(\mu)}$ consist of open cubes $U_{i}^{(\mu)}$, such that the collection U_{μ}^{\prime} of the closed cubes $\alpha^{-1} U_{i}^{(\mu)}$ covers $\Omega, \mu={ }^{1} 0,1, \ldots, \lambda-1$.

Define U_{λ}^{\prime} as the collection of all closed cubes obtained by dividing each cube in $U_{\lambda-1}$ into $4^{2 n}$ closed cubes. Then define

$$
u^{(\lambda)} \underset{=}{\operatorname{def}}\left\{U_{i}^{(\lambda)} \mid U_{i}^{(\lambda)}=\alpha U_{i}^{\prime}, U_{i}^{\prime} \in U_{\lambda}^{\prime}\right\}
$$

It is clear that $U^{(\lambda)}$ satisfies properties (i), (ii) and (iii) and it satisfies (iv), since 2 times a cube $U_{i}^{(\lambda)} \epsilon U^{(\lambda)}$ is contained in the cube $U_{j}^{(\lambda-1)} \epsilon$ $u^{(\lambda-1)}$, when $\alpha^{-1} U_{i}^{(\lambda)}$ is one of the $4^{2 n}$ cubes $\alpha^{-1} U_{j}^{(\lambda-1)}$ had been divided in. Hence (v) is satisfied with $L_{\lambda, \lambda-1}=4^{2 n}$, so that $L_{\lambda_{h^{\mu}}}=\left(4^{2 n}\right)^{\mu-\lambda}$.

If $\Omega=\mathbb{C}^{n}$ we just get the usual coverings of $\mathbb{C}^{h^{\mu}}$ given in $[30$, p. 188].
VI.2. COHOMOLOGY WITH BOUNDS IN AN OPEN, PSEUDOCONVEX SET.

In this section we will prove a theorem B with bounds in an open, pseudoconvex set Ω, just as [30, th. 7.6.10] for $\Omega=\mathbb{C}^{n}$. The following lemma is an extension of [30, th. 4.4.2].

LEMMA 6.1. Let Ω be an open pseudoconvex set, let $\left\{\Omega_{k}\right\}_{k=1}^{\infty}$ be an increasing sequence of subsets of Ω satisfying (4.22) and let ϕ be a plurisubharmonic function on Ω. For any sequence $\left\{\mathrm{K}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ there is a sequence $\left\{\mathrm{M}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ such that for every $(0, q+1)$-form g with locally square integrable coefficients and with $\bar{\partial} g=0$ there is a $(0, q)$-form u in Ω with locally square integrable coefficients, so that $\bar{\partial} u=g$ and for every $k=1,2, \ldots$

$$
\int_{\Omega_{k}}\|u(z)\|^{2} \frac{\exp -2 \phi(z)}{\left(1+\|z\|^{2}\right)^{2}} d \lambda(z) \leq M_{k}^{2}
$$

provided that for each k

$$
\int_{\Omega_{k}}\|g(z)\|^{2} \exp -2 \phi(z) \quad d \lambda(z) \leq \mathrm{K}_{\mathrm{k}}^{2} .
$$

Here $\bar{\partial}$ acts in distributional sense. We remark that u will depend on the sequence $\left\{K_{k}\right\}_{k=1}^{\infty}$, too. In the above formulation [30, th. 4.4.2] says that $\left\{M_{k}\right\}_{k=1}^{\infty}$ is bounded when $\left\{K_{k}\right\}_{k=1}^{\infty}$ is bounded, while (4.22) need not be satisfied (in fact, if $K_{k}=K$, then $M_{k}=K$ for $k=1,2, \ldots$).

PROOF. Let χ be a convex majorant of the nonnegative function \tilde{x}

$$
\tilde{x}(t) \stackrel{\text { def }}{=} \begin{cases}0 & \text { for } t<1 \\ \max \left[0, \log \left(2^{k+1} K_{k+1}^{2}\right)\right] & \text { for } k \leq t<k+1, k=1,2, \ldots\end{cases}
$$

Then $\psi(z) \stackrel{\text { def }}{=} \chi(\sigma(z)) \geq 0$ is plurisubharmonic in Ω, so that we may apply [30, th. 4.4.2] in the domain Ω with the plurisubharmonic function $2 \phi+\psi$. This yields a $(0, q)$-form u in Ω with $\bar{\partial} u=g$ and with for each k

$$
\begin{aligned}
& \int_{\Omega_{k}}\|u(z)\|^{2} \frac{\exp -2 \phi(z)}{\left(1+\|z\|^{2}\right)^{2}} d \lambda(z) \leq \\
& \leq e^{\chi(k)} \int_{\Omega_{k}}\|u(z)\|^{2} \frac{\exp \{-2 \phi(z)-\psi(z)\}}{\left(1+\left\|_{z}\right\|^{2}\right)^{2}} d \lambda(z) \leq \\
& \leq e^{x(k)} \int_{\Omega}\|u(z)\|^{2} \frac{\exp \{-2 \phi(z)-\psi(z)\}}{\left(1+\left\|_{z}\right\|^{2}\right)^{2}} d \lambda(z) \leq \\
& \leq e^{x(k)} \int_{\Omega}\|g(z)\|^{2} \exp \{-2 \phi(z)-\psi(z)\} d \lambda(z) \leq \\
& \leq e^{x(k)}\left\{\int_{\Omega_{m}}+\sum_{l=m}^{\infty} \int_{\ell+1} \sum_{\ell}\right\}\|g(z)\|^{2} \exp \{-2 \phi(z)-\psi(z)\} d \lambda(z) \leq \\
& \leq e^{x(k)}\left\{K_{m}^{2}+\sum_{\ell=m}^{\infty} 1 / 2^{\ell+1}\right\}=e^{\chi(k)}\left\{K_{m}^{2}+1 / 2^{m}\right\}
\end{aligned}
$$

for arbitrary $m \in\{1,2, \ldots\}$. So we may take $M_{k}=\left[e^{X(k)}\left(K_{1}^{2}+1 / 2\right)\right]^{\frac{1}{2}}$.
It also follows that, if $\left\{g_{n}\right\}_{n=1}^{\infty}$ is a sequence converging in every norm $\|\cdot\|_{k}$ to zero, $\left\{u_{n}\right\}_{n=1}^{\infty}$ converges in every norm to zero. This follows from the continuity of a bounded map from a bornological space (here a Fréchet space) into another locally convex space, too.

REMARK. If g is such that every L^{2}-norm on Ω_{k} with respect to a different density exp $-2 \phi^{k}$ is finite and if the u of lemma 6.1 would have the same property (cf. chapter VII), then the following lemma's and theorems could be changed in such a way that theorems 4.11 and 4.12 would hold with one
global function v satisfying all these bounds.

The following lemma is an extension of [30, prop. 7.6.1]. The proof follows the same lines, only here one has to look more carefully to the estimates near the boundary of Ω.

LEMMA 6.2. For every λ and for each sequence $\left\{K_{k}\right\}_{k=1}^{\infty}$ there is a sequence $\left\{M_{k}\right\}_{k=1}^{\infty}$ such that every cocykel $c \in C^{p}\left[U^{(\lambda)}, A, \phi^{\alpha}\right], p \geq 1$, with $\|c\| \|_{\alpha, k} \leq K_{k}$ can be written as $c=\delta c^{\prime}$ for some $c^{\prime} \in C^{p-1}\left[U^{(\lambda)}, A, \phi_{N, M, 0}\right]$ with $\left\|C^{\prime}\right\|_{\alpha, k}^{N, M} \leq M_{k}$ for every k, when $\|\cdot\|^{N}, \mathrm{M}, \mathrm{O}$ denotes the L^{2}-norm with respect to the density $\exp -2 \phi_{N, M, 0}^{\alpha}$ with

$$
\phi_{N, M, 0}^{\alpha}(z) \stackrel{\text { def. }}{=} \phi^{\alpha}(z)+N \log \left(1+\|z\|^{2}\right)+\log \left(1+\alpha\left(z, \Omega^{C}\right)^{-M}\right)
$$

where $\mathrm{N}=\mathrm{M}=\min [\mathrm{p}, \mathrm{n}]$, when the pseudoconvex open set $\Omega=\bigcup_{\mathrm{k}}^{\mathrm{U}}{ }_{1}^{\infty} \Omega_{\mathrm{k}}$ satisfies (4.21) and (4.22) and when the function ϕ^{α} is plurisubharmonic in Ω, Moreover, when $\left\{\mathrm{K}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ is bounded, (4.21) and (4.22) need not be satisfied and $\left\{\mathrm{M}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ is bounded.

PROOF. Let L_{q} be the sheaf of germs of $(0, q)$-forms with locally square integrable coefficients and let Z_{q} be the subsheaf of $\bar{\partial}$-closed forms of type ($0, q$). Here $\bar{\partial}$ acts in distributional sense. By [30, th. 4.2.5] and the Sobolev embedding theorem $\bar{\partial} c=0$, weakly, for an $L_{l o c}^{2}$-function c implies that c is a c^{1}-function, hence a holomorphic function. Thus a section $c \in \Gamma\left(\Omega, Z_{0}\right)$ is a holomorphic function $c \in A(\Omega)$. For $c \in C^{p^{2}}\left[U^{(\lambda)}, Z_{q}, \phi^{\alpha}\right]$ with $\delta c=0$ and $\|c\|_{\alpha, k} \leq$ $\leq K_{k}$ we want to find a $c^{\prime} \in C^{p-1}\left[U^{(\lambda)}, Z_{q}, \phi_{N, M, O}^{\alpha}\right]$ such that $\delta c^{\prime}=c$ and $\left\|_{C}^{\prime}\right\|_{\alpha, k}^{N, M, O} \leq M_{k}$, when $q=0$. Assume that this has already been proved for smaller values of p and all q, when $p>1, N=M=p$ and when $\left\{M_{k}\right\}_{k=1}^{\infty}$ depends moreover on p .

We construct a partition $\left\{\phi_{i}\right\}_{i \in I_{\lambda}}$ of unity subordinate to the covering $u^{(\lambda)}$ of Ω satisfying for some constant C_{λ}

$$
\begin{equation*}
\left\|\bar{\partial} \sqrt{\phi_{i}(z)}\right\|^{2} \leq \frac{c_{\lambda}^{2}}{\min \left[1, d\left(z, \Omega^{c}\right)^{2}\right]} \tag{6.2}
\end{equation*}
$$

where

$$
\|\bar{\partial} \phi(z)\|^{2} \stackrel{\text { def }}{=} \sum_{j=1}^{n}\left|\partial / \partial \bar{z}_{j} \phi(z)\right|^{2}
$$

For example, let χ be a nonnegative C^{∞} function on $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}$ equal to 1 in the closed cube with center 0 and sides 1 and with its support contained in the open concentric cube with sides $3 / 2$. Let the length of the side of $U_{i}^{(\lambda)} \epsilon U^{(\lambda)}$ be $3 / 2 \beta_{i}$ and let the center of $U_{i}^{(\lambda)}$ be z_{i}, then define

$$
x_{i}(z) \stackrel{\text { def }}{=} x\left(\frac{z-z_{i}}{\beta_{i}}\right)
$$

and let

$$
\phi_{i}(z) \stackrel{\text { def }}{=} \frac{x_{i}(z)^{2}}{\sum_{j \in I_{\lambda}} x_{j}(z)^{2}}
$$

By property (6.1) (ii) for each z not more than L terms in the denominator differ from zero and since U_{λ}^{\prime} covers Ω at least one term equals 1 . Hence, (6.2) follows from this and from property (6.1) (iii). Furthermore, ϕ_{i} has its support contained in $U_{i}^{(\lambda)}$.

$$
\begin{aligned}
& \text { For } s \in I_{\lambda}^{p} \text { we set } \\
& g_{s} \stackrel{\text { def }}{=} \sum_{i \in I_{\lambda}} \phi_{i} c_{i s}
\end{aligned}
$$

when $c \in C^{p}\left[u^{(\lambda)}, z_{q}, \phi^{\alpha}\right]$. Using $\Sigma_{i} \phi_{i}=1$, by computing we find $\delta g=c$, if $\delta c=0$. Furthermore, writing $\phi_{i}=\sqrt{\phi_{i}} \sqrt{\phi_{i}}$ and using Cauchy-Schwartz and $\operatorname{again} \Sigma_{i} \phi_{i}=1$, for any function ψ we find

$$
\begin{aligned}
& \left(\left\|g_{S}\right\| \psi_{, k}\right)^{2} \xlongequal{\text { def }} \int_{U_{S}}(\lambda) \int_{\cap \Omega_{k}}\left\|g_{S}(z)\right\|^{2} \exp -2 \psi(z) d \lambda(z) \leq \\
& \leq \sum_{i \in I_{\lambda} U_{S}}(\lambda) \int_{\cap \Omega_{k}} \phi_{i}(z)\left\|c_{i s}(z)\right\|^{2} \exp -2 \psi(z) d \lambda(z) \leq \\
& \leq \sum_{i \in I_{\lambda}}\left\|c_{i s}\right\|_{\psi, k}^{2} .
\end{aligned}
$$

By summing up for each k we get
(6.3) $\quad\|g\|_{\psi, k} \leq\|c\|_{\psi, k}$
for ψ such that the right hand side is finite, hence $g \in C^{p-1}\left[U^{(\lambda)}, L_{q}, \psi\right]$. Let $\bar{\partial} g=f$ be defined by

$$
f_{s} \stackrel{\text { def }}{\bar{\partial}} g_{s}=\sum_{i \in I_{\lambda}}{\bar{\partial} \phi_{i}} c_{i s}=2 \sum_{i \in I_{\lambda}} \sqrt{\phi_{i}}\left(\bar{\partial} \sqrt{\phi_{i}} \wedge c_{i s}\right), \quad s \in I_{\lambda}^{p} .
$$

This yields

$$
\left\|f_{s}\right\|_{\alpha, k}^{0,1,0} \leq 2\left\{\sum_{i \in I_{\lambda}}\left(\left\|\bar{\partial} \sqrt{\phi_{i}} \wedge c_{i s}\right\|_{\alpha, k}^{0,1,0}\right)^{2}\right\}^{\frac{1}{2}}
$$

and by summing up, in virtue of (6.2) for every k we find

$$
\|f\|_{\alpha, k}^{0,1,0} \leq 2 C_{\lambda} \|_{c \|}^{\alpha, k} \mid
$$

so that $f \in C^{p-1}\left[U^{(\lambda)}, Z_{q+1}, \phi_{0,1,0}^{\alpha}\right]$.
Now $\delta f=\bar{\partial} \delta g=\bar{\partial}_{c}=0$. If $p>1$, by the inductive hypothesis (note, that $\phi_{N, M, O}^{\alpha}$ is plurisubharmonic because Ω is pseudoconvex) there is a cochain $f^{\prime} \in C^{p^{-2}}\left[U^{(\lambda)}, Z_{q+1}, \phi_{p-1, p, 0}^{\alpha}\right]$ with $\delta f '=f$ and with for every k

$$
\left\|_{f}\right\|_{\alpha, k}^{p-1, p, 0} \leq M_{k}^{\prime}
$$

where the sequence $\left\{M_{k}^{\prime}\right\}_{k=1}^{\infty}$ depends on $\left\{2 C_{\lambda} K_{k}\right\}_{k=1}^{\infty}$, hence on $\left\{K_{k}\right\}_{k=1}^{\infty}$. By lemma 6.1 second part (actually [30, th. 4.4.2]) and by property (6.1) (i) for every

$$
\begin{equation*}
\left\|\left(g^{\prime}\right)_{s}\right\|_{\alpha}^{p, p, 0} \leq \|\left(f^{\prime}\right){ }_{s}^{\|} \alpha_{\alpha}^{p-1, p, 0} \tag{6.4}
\end{equation*}
$$

By summing up by property (6.1) (vi) we get

$$
\left\|_{g}\right\|_{\alpha, k}^{p, p, 0} \leq\|f \cdot\| \frac{p-1, p, 0}{\alpha, \ell(k)} \leq M_{\ell(k)^{\prime}}^{\prime}
$$

so that $g^{\prime} \in C^{p-2}\left[U^{(\lambda)}, z_{q}, \phi_{p, p, 0}^{\alpha}\right]$.
Finally, set $c^{\prime} \xlongequal{\text { def }} g-\delta g^{\prime}$, then for every $k=1,2, \ldots$ (6.3), property (6.1) (ii) and the above estimate yield

$$
\begin{aligned}
& \|c \cdot\|_{\alpha, k}^{p, p, 0} \leq\|c\|\left\|_{\alpha, k}^{p, p, 0}+p \sqrt{L-p+1}\right\| g^{\prime} \|_{\alpha, k}^{p, p, 0} \leq \\
& \leq M_{k} \frac{\text { def }}{=} k_{k}+p \sqrt{L-p+1} M^{\prime} \dot{l}_{(k)} .
\end{aligned}
$$

Furthermore, $\delta c^{\prime}=\delta g=c$ and $\bar{\partial} c^{\prime}=f-\delta \bar{\partial} g^{\prime}=f-\delta f f^{\prime}=f-f=0$, hence $c^{\prime} \in c^{p-1}\left[u^{(\lambda)}, z_{q}, \phi_{p, p, 0}^{\alpha}\right]$.

It remains to consider the case $p=1$. The fact that $\delta f=0$ then means that f defines uniquely a $(0, q+1)$-form f in Ω with $\bar{\partial}_{f}=0$. By lemma 6.1 there is a $\tilde{g} \in \Gamma\left(\Omega, L_{q}\right)$ with $\bar{\partial} \tilde{g}=f$ and a sequence $\left\{M_{k}^{1}\right\}_{k=1}^{\infty}$ depending on $\{2 \mathrm{C} \mathrm{K}\}_{k=1}^{\infty}$ with

$$
\int_{\Omega_{k}}\|\tilde{g}(z)\|^{2} \frac{\exp -2 \phi(z)}{\left(1+\|z\|^{2}\right)^{2}\left(1+d\left(z, \Omega^{c}\right)^{-2}\right)} d \lambda(z) \leq m_{k}^{2}, \quad k=1,2, \ldots .
$$

Setting $\left(c^{\prime}\right){ }_{i} \xlongequal{\text { def }} g_{i}-\left.\tilde{g}\right|_{U_{i}}(\lambda)$ we obtain a cochain with the required properties (using property (6.1) (ii) in the estimate for the cochain $\left\{\left.\tilde{g}\right|_{U_{i}} ^{(\lambda)}{ }_{i \in I_{\lambda}}\right.$).

In fact, there are not more than n induction steps, because all $(0, n)$-forms g satisfy $\bar{\partial} g=0$. Therefore, the estimates hold already when p is replaced by $\min [p, n]$ and the sequence $\left\{M_{k}\right\}_{k=1}^{\infty}$ may be taken independent of p.

The second part follows from the second part of lemma 6.1 in case $\mathrm{p}=1 . \quad \square$

The following lemma is a rewriting of [30, prop. 7.6.5] with L^{2}-norms instead of sup-norms

LEMMA 6.3. Let P be a matrix of polynomials, ϕ a weight function, for some λ let $V_{i} \in U^{(\lambda)}$ and let $u \in A\left(\mathrm{~V}_{\mathrm{i}}\right)^{q}$. Then there are $\mu>\lambda$ and positive numbers N and $C(\lambda)$ such that for $U_{j} \in U^{(\mu)}$ with $\rho_{\lambda, \mu}(j)=i$ there is a $v \in A\left(U_{j}\right)^{q}$ with

$$
P(w) v(w)=P(w) u(w), \quad w \in U_{j}
$$

and with

$$
\int_{U_{j}}\|v(w)\|^{2} \exp -2 \phi_{N}(w) d \lambda(w) \leq c(\lambda) \int_{v_{i}}\|P(w) u(w)\|^{2} \exp -2 \phi(w) d \lambda(w),
$$

where ϕ_{N} is determined by ϕ according to (4.26).
PROOF. In [30, prop. 7.6.5] (or [16, th. III. 3.4. (3) when $p=q=1$, cf. also th. 1.4, and the general case is contained in th. III. 3.6]) it is shown that for each pxq-matrix P with polynomial entries there are a number $0<\delta<1$ and constants C, \tilde{N} and N^{\prime} such that, when S denotes the unit cube (actually in [30] the unit ball is used, but this only changes the constants), for every $0<\varepsilon \leq 3 / 2$ and for every $u \in A(S+z / \varepsilon)^{q}$ there is a $v \in A(\delta S+z / \varepsilon)^{q}$ with

$$
P(\varepsilon w) v(w)=P(\varepsilon w) u(w), \quad w \in \delta S+z / \varepsilon,
$$

and with

$$
\sup _{w \in \delta S+z / \varepsilon}\|v(w)\| \leq C \varepsilon^{-N^{\prime}}\left(1+\left\|_{z / \varepsilon \|)^{2}}^{\tilde{N}} \sup _{w \in S+z / \varepsilon}\right\| P(\varepsilon w) u(w) \|\right.
$$

In fact this is [30, formula (7.6.5)] and it follows from the proof given in [30], that the constants δ, C, N^{\prime} and \tilde{N} can be taken independent of ε, if we write $C \varepsilon^{-N}$ in the above estimate. Therefore, by shrinking the variable w with a factor ε, we find again constants $C, t>1, \tilde{M}$ and \tilde{N} such that for $0<\eta<3 / 2 t^{-1}$ and for every $u \in A(t \eta S+z)^{q}$ there is a $v \in A(\eta S+z)^{q}$ with

$$
P(w) v(w)=P(w) u(w), \quad w \in \eta S+z
$$

and with

$$
\sup _{w \in \eta S+z}\|v(w)\| \leq c \eta^{-\tilde{M}}(1+\|z\|)^{\tilde{N}} \sup _{w \in \operatorname{tn} S+z}\|P(w) u(w)\|
$$

Now we change this estimate into one with L^{2}-norms. Let $v_{i} \in U^{(\lambda)}$, choose $\mu>\lambda$ so that $2^{\mu-\lambda} \geq t+1$ and let $U_{j} \in U^{(\mu)}$ be such that $\rho_{\lambda, \mu}(j)=i$. We write U_{j} with center z_{j} and sides η_{j} as $U_{j}=\eta_{j} S+z_{j}$. Since by the construction of $U^{(\mu)} \alpha^{-1} U_{j} \subset \alpha^{-1} V_{i}$ we have $t U_{j}=t \eta_{j} S+z_{j} \subset\left\{z \mid\left\|z-z^{\prime}\right\| \leq\right.$ $\left.\leq \frac{1}{4} d i a m \alpha^{-1} V_{i}+d i a m U_{j}\right\}$ for any $z^{\prime} \in U_{j}$ and by property (6.1) (iii) $t U_{j} c$ $\left.c\left\{z \left\lvert\,\left\|_{z-z}\right\|_{i \leq\left(\frac{1}{4}\right.}{ }^{\lambda+1}+\frac{1}{4} \mu\right.\right) \min \left[b a\left(z^{\prime}, \Omega^{c}\right), B\right]\right\}$. Therefore, in view of $(4.23), b=2$, $B=\sqrt{2 n} 3 / 2, \lambda \geq 0$ and $\mu \geq 2$ we take $\tilde{K} \xlongequal{\operatorname{def}} \max [\log 8 / 3,15 / 32 \sqrt{2 n}]$ obtaining

$$
t U_{j} \subset\left\{z \mid z \in S\left(z^{\prime} ; \tilde{K}\right)\right\}, \quad z^{\prime} \in U_{j}
$$

where $S(z ; K)$ is given by (4.24). Also, for $z \epsilon(t+1) U_{j}$ there is a $z^{\prime} \epsilon U_{j}$ with $\left\|_{z-z}\right\| \leq \operatorname{diam} U_{j}$, hence similarly to above

$$
(t+1) U_{j} \subset \underbrace{U}_{z^{\prime} \in t U_{j}} S\left(z^{\prime}, \bar{K}\right)
$$

with $\bar{K}=\max [\log 8 / 7,3 / 32 \sqrt{2 n}]$. Now for a weight function ϕ and for $N \underline{\underline{d e f}}$ $\Rightarrow \max \{\tilde{N} / 2+(n+1) / 4, \tilde{M}+n, \tilde{K}+\bar{K}\}$ define the plurisubharmonic function ϕ_{N} by (4.26). In virtue of [73, conditions HS_{1} and HS_{2}, p. 15] property (6.1) (iii) and (4.27) we get

$$
\begin{aligned}
& {\left[\int_{U_{j}}\|v(w)\|^{2} \exp -2 \phi_{N}(w) d \lambda(w)\right]^{\frac{1}{2}} \leq} \\
& \leq C_{1}\left(\frac{4^{\mu^{\eta_{j}}}}{a}\right) \sup _{w \in U_{j}}\|v(w)\| \exp -\phi_{N}^{\sim} / 2,0, \tilde{K}+\bar{K}(w) \leq \\
& \leq c_{2}(\lambda) \eta_{j}^{n} \sup _{w \in \eta_{j} S+z_{j}}\left(\frac{1+\left\|z_{j}\right\|}{1+\|w\|}\right)^{\tilde{N}} \sup _{w \in t \eta_{j} S+z_{j}}\|P(w) u(w)\| \exp -\phi_{0,0, \bar{K}}(w) \leq \\
& \leq C(\lambda)\left[\int_{V_{i}}\|P(w) u(w)\|^{2} \exp -2 \phi(w) d \lambda(w)\right]^{\frac{1 / 2}{2}},
\end{aligned}
$$

where in [73, cond. HS_{2}, p. 15] the radius d_{z} of the polydisc $D\left(z, d_{z}\right)$ is taken $d_{z}=\eta_{j}$ for every $z \in t \eta_{j} S+z_{j}$, so that the constant there depends on η_{j}^{-n} and where

$$
\left\{w \mid w \in D\left(z, \eta_{j}\right), z \in t \eta_{j} S+z_{j}\right\} \subset(t+1) \eta_{j} S+z_{j} \subset v_{i}
$$

The next theorem is Cartan's theorem B with bounds in an open, pseudoconvex set Ω. It is an extension of [30, th. 7.6.10]. Let F be either the sheaf of relations of P on Ω, thus $F=R_{P}$ or the image under P of the sheaf A^{q}, thus $F=P A^{q}$.

THEOREM 6.4. For all polynomial matrices P there is a positive N, for all nonnegative integers λ there is $a \mu>\lambda$ (depending moreover on P) and for
each sequence $\left\{K_{k}\right\}_{k=1}^{\infty}$ a sequence $\left\{M_{k}\right\}_{k=1}^{\infty}$ (depending moreover on λ and P), such that every cocykel $f \in C^{p}\left[U^{(\lambda)}, F, \phi^{\alpha}\right], p \geq 1$, with $\|f\|_{\alpha, k} \leq K_{k}$ can be written as $\delta f^{\prime}=\rho_{\lambda, \mu}^{*} f_{(\mu)}$ (i.e., $\left(\delta f^{\prime}\right)_{s}=f_{s}$, with $s^{\prime}=\rho_{\lambda, \mu}(\mathrm{s})$ for $\mathrm{s} \in \mathrm{I}_{\mu}^{\mathrm{p}+1}$) for some $f^{\prime} \in C^{p-1}\left[U^{(\mu)}, F, \phi^{\beta}\right]$ with $\left\|_{f}\right\|^{s} \|_{\beta, k} \leq M_{k}$, when the pseudoconvex open set $\Omega={ }_{k} \stackrel{\infty}{0}_{1} \Omega_{k}$ satisfies (4.21) and (4.22) and when ϕ^{β} if the plurisubharmonic function determined by ϕ^{α} and N as in theorem 4.11. Moreover, when $\left\{\mathrm{K}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ is bounded, (4.21) and (4.22) need not be satisfied and $\left\{\mathrm{M}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ is bounded.

PROOF. Conversely to lemma 6.2 this theorem is proved by induction for decreasing p, since the theorem is true for $p \geq L$ (see property (6.1) (ii)), because there are no non-zero cochains $f \in C^{L}\left[U^{(\lambda)}, F, \phi^{\alpha}\right]$. Thus assume that the theorem has been proved for all matrices P, when p is replaced by $p+1$ and when the constants N, μ and $\left\{M_{k}\right\}_{k=1}^{\infty}$ depend moreover on p.

In case $F=R_{P}$ there is a polynomial matrix Q, such that $F=Q A^{r}$ in virtue of [30, lemma 7.6.3] and we can write $f \in C^{p}\left[U^{(\lambda)}, F, \phi^{\alpha}\right]$ as $f_{s}=Q g_{s}$ where $g \in C^{p}\left(U^{(\lambda)}, A^{r}\right)$, cf. [30, lemma 7.6.4] or (4.14) where the fact, that every $U_{i}^{(\lambda)} \in U^{(\lambda)}$ is pseudoconvex, has been used. In case $F=P A^{q}$ we write $Q=P$ and $r=q$, then also $f=Q g$ with $g \in C^{p}\left(U^{(\lambda)}, A^{r}\right)$, cf. [30, th. 7.2.9] or again (4.14). According to lemma 6.3 there are $\nu>\lambda, N_{1}>0$ and a cochain $\tilde{g} \in C^{p}\left[u^{(\nu)}, A^{r}, \phi_{N_{1}}^{\alpha}\right]$ with $Q \tilde{g}_{s}=Q g_{s^{\prime}}=f_{s^{\prime}}$, where $s^{\prime}=\rho_{\lambda, \nu}(s)$, hence $\rho_{\lambda, \nu}^{*} f^{f}=$ $=Q \tilde{g}$ and with

$$
\left\|\tilde{g}_{s}\right\|_{\beta}^{N_{1}} \leq C(\lambda)\left\|f_{s},\right\|_{\alpha} .
$$

Since (4.21) holds property (6.1) (vi) is satisfied and it follows from this property and from property (6.1) (v) that for every k there is an $\ell(k)>k$ with

$$
\|\widetilde{g}\|_{\alpha, k}^{N_{1}} \leq K_{k}, \stackrel{\text { def }}{=}\left(L_{\lambda, \nu}\right)^{p+1} C(\lambda)\left\|_{f_{s}},\right\|_{\alpha, \ell(k)} .
$$

When $\delta f=0, \delta Q \tilde{g}=Q \delta \tilde{g}=0$, whence $\delta \tilde{g}=c$ is a cocykel in $c^{p+1}\left[u^{(\nu)}, R_{Q}, \phi_{N_{1}}^{\alpha}\right]$. In view of (4.27) for $N^{\prime} \geq 0$ we have $\left(\phi_{N_{1}}^{\alpha}\right)_{N^{\prime}} \leq \phi_{N_{1}+N^{\prime}}^{\alpha}$.

By the inductive hypothesis we can find $\mu>\nu$, a positive N^{\prime}, a sequence $\left\{M_{k}^{\prime}\right\}_{k=1}^{\infty}$ (belonging to $\left\{(p+2) \sqrt{L-p-1} K_{k}^{\prime}\right\}_{k=1}^{\infty}$) and a cochain $c^{\prime} \in C^{p}\left[U^{(\mu)}, R_{Q}\right.$, $\left.\phi_{N}^{\alpha}, N, 0\right]$ with $\delta c^{\prime}=\rho_{V, \mu^{C}}$ and $\left\|C^{\prime}\right\|_{\beta}^{\prime}{ }^{\prime}, N_{k}^{\prime}, 0 \leq M_{k}^{\prime}$, where the plurisubharmonic function ϕ^{β} is determined by (4.42): $\phi^{\beta} \xlongequal{\text { def }} \tilde{\phi}_{N_{1}+N}^{\alpha}$.

We set $g_{0} \xlongequal{\text { def }} \rho_{\nu, \mu}^{*} \tilde{g}-c^{\prime} \in C^{p}\left[U^{(\mu)}, A^{r}, \phi_{N^{\prime}, N^{\prime}, 0^{\prime}}^{\beta}\right]$ so that $\delta g_{0}=$
$=\rho_{\nu, \mu^{c-}}^{*} \rho_{\nu, \mu^{c}}^{*}=0$. According to lemma 6.2 there is a sequence $\left\{M_{k}^{\prime \prime}\right\}_{k=1}^{\infty}$ belonging to $\left\{\left(L_{\nu, \mu}\right) p+1 K_{k}^{\prime}+M_{k}^{\prime}\right\}_{k=1}^{\infty}$ and a cochain $g^{\prime} \in C^{p-1}\left[U^{(\mu)}, A^{r}, \phi_{N_{2}, N_{2}, 0}^{\beta}\right]$ with

Finally define f def $Q g^{\prime} \in C^{p-1}\left[U^{(\mu)}, F, \phi_{N_{2}}^{\beta}+N_{3}, N_{2}, 0\right]$, where N_{3} depends
on Q. Then $\delta f^{\prime}=Q \delta g^{\prime}=Q g_{0}=\rho_{\nu, \mu}^{*} \mathcal{Q}^{\tilde{g}}=\rho_{\nu, \mu}^{*} \rho_{\lambda, \mu^{*}}^{f}=\rho{ }_{\lambda}^{\star}, \mu^{f}$. Furthermore, let N denote $N_{2}+N_{3}$, then for every k and some $C '$ depending on Q we get

$$
\|f \cdot\|_{\beta, k}^{N, N, 0} \leq C^{\prime}\left\|_{g} \cdot\right\|_{\beta, k}^{N_{2}, N_{2}, 0} \leq M_{k} \stackrel{\text { def }}{=} C^{\prime} M_{k}^{\prime \prime}
$$

Here $\left\{M_{k}\right\}_{k=1}^{\infty}$ depends on Q, λ, ν, μ, p and $\left\{K_{k}\right\}_{k=1}^{\infty}$, but ν depends on λ and P (since t in the proof of lemma 6.3 depends on P) and μ on $\nu ; N_{3}$ depends on $2 ; N_{2}$ depends on p by the inductive hypothesis and on P, since the constants \tilde{N} and \tilde{M} in the proof of lemma 6.3 depend on $P ; Q$ depends on $P ; C^{\prime}$ depends on Q; and finally $\left\{K_{k}^{\prime}\right\}_{k=1}^{\infty}$ depends on P and on $\left\{\left\|_{f}\right\|_{\alpha, \ell(k)}\right\}_{k=1}^{\infty}$. However, there are only finitely many induction steps, so that we can take the largest of all the constants. Therefore, the theorem is true for all p with constants $\left\{M_{k}\right\}_{k=1}^{\infty}$ depending on P, λ and $\left\{K_{k}\right\}_{k=1}^{\infty} ; N$ depending on $P ; \mu$ depending on λ and P.

Moreover, when $\left\{\mathrm{K}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ is bounded, so that in the above proof we do not use (4.21) and $\left\{\mathrm{K}_{\mathrm{k}}^{\prime}\right\}_{\mathrm{k}=1}^{\infty}$ is bounded, it follows that $\left\{\mathrm{M}_{\mathrm{k}}^{\prime}\right\}_{\mathrm{k}=1}^{\infty}$ is bounded and by lemma 6.2 (4.21) and (4.22) need not be satisfied and $\left\{M_{k}^{\prime \prime}\right\}_{k=1}^{\infty}$ is bounded. Hence (4.21) and (4.22) need not be satisfied and $\left\{M_{k}\right\}_{k=1}^{\infty}$ is bounded. \square
VI.3. PROOF OF THEOREM 4.11.

Let F be the sheaf $P A^{q}$. We can estimate the cocykel $f=\delta h$ in terms of h, then $\|f\|_{\alpha, k} \leq \sqrt{L-1} K_{\ell(k)}$ and $f \in C^{1}\left[U(1), F, \phi^{\alpha}\right]$. According to theorem 6.4 there is a cochain $f^{\prime} \in C^{0}\left[U(\mu), F, \phi^{\beta}\right]$ with $\delta f^{\prime}=\rho_{1, \mu^{*}}^{f}$ and a sequence $\left\{M_{k}\right\}_{k=1}^{\infty}$ with $\|f\|_{\beta, k} \leq M_{k}^{\prime}$ for some μ and for some plurisubharmonic function ϕ^{β} determined by ϕ^{α} and by a positive integer N as in theorem 4.11.

$$
\text { For every } i \in I_{\mu} \text { and } z \in U_{i}^{(\mu)} \text { let }
$$

$$
v_{i}(z) \stackrel{\text { def }}{=}_{h_{j}}(z)-f_{i}^{\prime}(z)
$$

 determines a function $v \in A(\Omega) P$. Furthermore, using property (6.1) (v) for
every k we obtain

$$
\begin{aligned}
& {\left[\int_{\Omega_{k}}\|v(z)\|^{2} \exp -2 \phi^{\beta}(z) d \lambda(z)\right]^{\frac{1}{2}} \leq} \\
& \leq\left\|_{v}\right\|_{\beta, k} \leq L_{1, \mu}\|h\|_{\beta, k}+M_{k}^{\prime} \leq M_{k} \xlongequal{\text { def }} L_{1, \mu} K_{k}+M_{k}^{\prime}
\end{aligned}
$$

Moreover, if $\left\{\mathrm{K}_{\mathrm{k}}\right\}_{\mathrm{k}=1}^{\infty}$ is bounded, (4.21) and (4.22) need not be satisfied and $\left\{M_{k}^{\prime}\right\}_{k=1}^{\infty}$ is bounded, so that $\left\{M_{k}\right\}_{k=1}^{\infty}$ is bounded, too.

For $s \in I_{1}$, let $I^{\prime}(s) \in I_{\mu}$ be the set of those $i \in I_{\mu}$ with $V_{i} \xlongequal{\text { def }} U_{i}^{(\mu)} \cap$ $\cap U_{S}^{(1)} \neq \emptyset$. For each $i \in I^{\prime}(s)$ and $z \in V_{i}$ we have

$$
v(z)-h_{s}(z)=h_{j}(z)-f_{i}^{\prime}(z)-h_{s}(z), \quad j=\rho_{1, \mu}(i)
$$

This is a holomorphic function in $U_{S}^{(1)}$ and since $h_{j}-h_{S} \in \Gamma\left(U_{j}^{(1)} \cap U_{S}^{(1)}, F\right)$ and also $f_{i}^{\prime} \in \Gamma\left(U_{i}^{(\mu)}, F\right)$, we obtain

$$
\left.v\right|_{U}(1)-h_{s} \in \Gamma\left(U_{S}^{(1)}, F\right)
$$

Since the sets V_{i} and $U_{S}^{(1)}$ are pseudoconvex (property (6.1) (i)), Cartan's theorem B yi.elds, cf. (4.14),

$$
\left.v\right|_{U_{S}}(1)^{-h_{S} \in P \cdot \Gamma\left(U_{S}^{(1)}, A^{q}\right), ~}
$$

that is $\left.v\right|_{U_{S}}(1)-h_{S}=p \cdot g_{S}$ for some $g \in c^{0}\left(U^{(1)}, A^{q}\right)$.
VI.4. PROOF OF THEOREM 4.12.

From Cartan's theorem, namely from (4.14), it follows that for every $i \in I_{0} f=P_{i}$ in $U_{i}^{(0)} \in U^{(0)}$ with $g \in C^{0}\left(U^{(0)}, A^{q}\right)$. According to lemma 6.3 there are positive integers ν and N_{1} and a cochain $\tilde{g} \in C^{0}\left[U^{(\nu)}, A^{q}, \phi_{N_{1}}^{\alpha}\right]$ with $P \tilde{g}_{j}=f$ in $U_{j}^{(V)}$ for each $j \in I_{\nu}$ and with

$$
\left\|\tilde{g}_{j}\right\|_{\alpha}^{N_{1}} \leq c(0)\left\|_{\rho_{0, v}}(j)\right\|_{\alpha^{\prime}}
$$

where f is regarded as a cocykel in $C^{0}\left[U^{(0)}, A^{p}, \phi^{\alpha}\right]$. Summing over j and using properties (6.1) (ii) and (vi) for each k we get an $\ell(k)>k$ with

Consider the differences c of the functions \tilde{g}_{j} in the overlaps of the sets $U_{j}^{(\nu)}$ for $j \in I_{\nu}$ i.e., $c=\delta \tilde{g}$. Then

$$
\|c\|_{\alpha, k}^{N_{1}} \leq 2 \sqrt{L-1} K_{k}^{\prime}
$$

and $P c=P \delta \tilde{g}=\delta f=0$ and also $\delta c=0$, hence c is a cocykel in
$C^{1}\left[U^{(\nu)}, R_{P}, \phi_{N_{1}}^{\alpha}\right]$.
According to theorem 6.4 and (4.27) there are $\mu>\nu$, a sequence $\left\{M_{k}^{\prime}\right\}_{k=1}^{\infty}$ (depending on $\left\{2 \sqrt{L-1} K_{k}^{\prime}\right\}_{k=1}^{\infty}$), a plurisubharmonic function ϕ^{β}, which satisfies the condition of theorem 4.11 for some $N>N_{1}$, and a cochain $c^{\prime} \in c^{0}\left[U^{(\mu)}\right.$, $\left.R_{P^{\prime}} \phi^{\beta}\right]$ with $\delta c^{\prime}=\rho_{\nu, \mu} c$ and with

$$
\left\|c^{\prime}\right\|_{\beta, k} \leq M_{k}^{\prime} .
$$

Finally, for every $s \in I_{\mu}$ we set $v_{S}(z) \xlongequal{\text { def }} \tilde{g}_{S},(z)-c_{S}^{\prime}(z)$ for $z \in U_{S}^{(\mu)}$, where $s^{\prime}=\rho_{\nu, \mu}(s)$, which defines a function $v \in A(\Omega)^{q}$, because $\delta v=\rho_{\nu, \mu}^{*} \delta \tilde{g}-\rho_{\nu, \mu}^{*} c=0$, that satisfies for every k

$$
\begin{aligned}
& {\left[\int_{\Omega_{k}}\|v(z)\|^{2} \exp -2 \phi^{\beta}(z) d \lambda(z)\right]^{\frac{1}{2}} \leq\|v\|_{\beta, k} \leq L_{v, \mu} \| \tilde{g}_{\beta, k}+M_{k}^{\prime} \leq} \\
& \leq M_{k} \stackrel{\text { def }}{=} L_{v, \mu} K_{k}^{\prime}+M_{k}^{\prime} .
\end{aligned}
$$

If $\left\{K_{k}\right\}_{k=1}^{\infty}$ is bounded, (4.21) need not be satisfied and $\left\{K_{k}^{\prime}\right\}_{k=1}^{\infty}$ is bounded, hence also (4.22) need not be satisfied and $\left\{M_{k}^{\prime}\right\}_{k=1}^{\infty}$ is bounded, so that $\left\{M_{k}\right\}_{k=1}^{\infty}$ is bounded.

Furthermore, for every $s \in I_{\mu}$ in $U_{S}^{(\mu)}$ we have

$$
P v=P v_{S}=P \tilde{g}_{S^{\prime}}-P C_{S}^{\prime}=f .
$$

CHAPTER VII

A COHOMOLOGY VANISHING THEOREM

In chapter II we had assumed that the map (2.12) was surjective. In fact, this expresses the triviality of the first Cech-cohomology group of a covering consisting of two open, pseudoconvex sets with values in the sheaf of germs of holomorphic functions satisfying countably many bounds. Explicitely, let $\Omega=\Omega^{1}$ u Ω^{2}, where Ω, Ω^{1} and Ω^{2} are open, pseudoconvex sets in \mathbb{C}^{n}, let a set of countably many growth conditions in Ω be given and let f be a holomorphic function in $\Omega^{1} \cap \Omega^{2}$ satisfying these growth conditions there. Then the question is whether there exist holomorphic functions f_{1} and f_{2} in Ω^{1} and Ω^{2} satisfying the growth conditions in Ω^{1} and Ω^{2}, respectively, such that $f=f_{2}-f_{1}$ in $\Omega^{1} \cap \Omega^{2}$. We will solve this problem with functions bounded with respect to countably many, weighted L^{2}-norms instead of sup-norms. However, the conditions imposed in chapter II are such that this makes no essential difference. In chapter II the above mentioned result was also needed for functions satisfying only one growth condition and, actually, this is lemma 6.2. As is noticed in the remark after lemma 6.1 , lemma 6.2 holds with functions satisfying countably many bounds if lemma 6.1 does. Then a theorem B with functions satisfying countably many bounds can be derived and the stronger version of the fundamental principle can be given. In this chapter we will improve lemma 6.1 by functional analytic methods

Let $\Omega={ }_{k} \bigcup_{1}^{\infty} \Omega_{k}$ be an open, pseudoconvex domain in \mathbb{C}^{n} with $\Omega_{k} \subset \Omega_{k+1} \subset \Omega$. Furthermore, let for some integer q with $0 \leq q \leq n-1$ and for $j=1,2 H_{j}^{k}\left(\Omega_{m}\right)$ be the Hilbert space of ($0, q+j-1$)-forms in Ω_{m} with square integrable coefficients with respect to the density

$$
\begin{equation*}
\exp -2\left\{\phi^{k}(z)+(2-j) \log \left(1+\|z\|^{2}\right)\right\}, \tag{7.1}
\end{equation*}
$$

where $\left\{\phi^{k}\right\}_{k=1}^{\infty}$ is a decreasing sequence of plurisubharmonic functions with ϕ^{k} defined on Ω. Then the restriction map $\pi_{k+1, k}^{j}$ from $H_{j}^{k+1}\left(\Omega_{k+1}\right)$ into $H_{j}^{k}\left(\Omega_{k}\right)$ is continuous, so that the projective limits can be defined
(7.2) $\quad H_{j} \stackrel{\text { def }}{=} \underset{k \rightarrow \infty}{\operatorname{proj}} \lim _{j}^{k}\left(\Omega_{k}\right), \quad j=1,2, \ldots$

Often we shall write H_{j}^{k} instead of $H_{j}^{k}\left(\Omega_{k}\right)$.
Let $f \in H_{1}^{k}$ be such that $\bar{\partial}_{f} \in H_{2}^{k}$, where $\bar{\partial}$ is defined in distributional sense. We denote the operator which assigns to such f the ($0, q+1$)-form $\bar{\partial} f$ by T_{k}. Then T_{k} is a closed, densely defined operator

$$
T_{k}: H_{1}^{k} \rightarrow H_{2}^{k}, \quad k=1,2, \ldots
$$

That T_{k} is closed follows from the continuity of $\bar{\partial}$ in distribution theory. This also implies that the sets

$$
\begin{aligned}
& F \xlongequal{\text { def }}\left\{g \in H_{2} \mid \bar{\partial} g=0 \text { in distributional sense }\right\} \\
& F_{k} \xlongequal{\text { def }}\left\{g \in H_{2}^{k} \mid \bar{\partial} g=0 \text { in distributional sense }\right\}
\end{aligned}
$$

are closed subspaces of H_{2} and H_{2}^{k}, respectively. For $p>k$ we have

$$
\pi_{p, k}^{2} T_{p}=T_{k} \pi_{p, k}^{1}
$$

so that $\left\{T_{k}\right\}$ determines a closed, densely defined operator T from H_{1} into H_{2}. That T is densely defined follows from the fact that the space of ($0, q$) -forms with $C \stackrel{\infty}{-}$ coefficients with compact support in Ω lies in D_{T} and is dense in H_{1} by Lebesgue's theorem. The following diagram is commutative

Since also

$$
F=\left\{g \in H_{2} \mid \pi_{k}^{2} g \in F_{k}, k=1,2, \ldots\right\}
$$

we have $R(T) \subset F$. We want that $R(T)=F$, but by [30, th. 4.4.2] (lemma 6.1) we only know that $R\left(T_{k}\right)=F_{k}$ for every k. In particular, $R\left(T_{k}\right)$ is closed in $\mathrm{H}_{2}^{\mathrm{k}}$.

We will use that the range $R(T)$ of a closed, densely defined operator $T: E \rightarrow F$ is closed if and only if $R\left(T^{*}\right)$ is weakly* closed ${ }^{1)}$ in E provided that E and F are Frechet spaces. This follows from [61, IV 7.3], cf, also [65, lemma 37.4], [61, IV 7.4] or [65, lemma 37.6] and the open mapping theorem for closed operators [61, IV 8.4], see also [40, th. 19(i)]. If moreover E is reflexive the weak *topology on E' equals the weak topology and accordingly [65, prop. 35.2] in that case $R\left(T^{*}\right)$ is closed in the strong topology of E ', because $R\left(T^{*}\right)$ is convex.

LEMMA 7.1. Let $\mathrm{T}: \mathrm{E} \rightarrow \mathrm{F}$ be a closed, densely defined operator from the reflexive Frechet space E into the Frechet space F, then the following three statements are equivalent:
(1) $R(T)$ is closed in F
(2) $R\left(T^{*}\right)$ is weakly* closed in E^{\prime}
(3) $R\left(T^{*}\right)$ is strongly closed in E^{\prime}.

For the improvement of lemma 6.1 we will apply a similar trick as Kawai has done in [38, lemma 2.1.2]. Besides condition (4.22) on the domains $\left\{\Omega_{k}\right\}$ we impose the following condition on the weight functions $\left\{\phi^{k}\right\}$ in Ω : for every k and every $\mathrm{p}>\mathrm{k}$ there exists a holomorphic function $\psi^{\mathrm{k}, \mathrm{p}}$ in Ω and moreover for every $m=1,2, \ldots$ a positive number $k(k, p, m)$ such that

$$
\begin{equation*}
0<\left|\psi^{k, p}(z)\right| \leq K(k, p, m) \exp -m\left\{\phi^{k}(z)-\phi^{p}(z)\right\}, \quad z \in \Omega, m=1,2, \ldots \tag{7.3}
\end{equation*}
$$

and such that $\log \psi^{k, p}$ is holomorphic in Ω. Since $\phi^{k} \geq \phi^{p}$ for $p \geq k$ it follows that this condition cannot be satisfied if $\Omega=\mathbb{C}^{n}$, unless all the functions $\left\{\phi^{k}\right\}$ are equal. Hence (7.3) is a condition on the domain Ω, too.

Our stronger version of lemma 6.1 is based on the following lemma, cf. [38, lemma 2.1.2].

1) The weak *topology on the dual H^{\prime} of a locally convex space H, sometimes denoted by the $\sigma\left(H^{\prime}, H\right)$-topology, is the one induced by the polars of finite subsets of H. The weak topology on H^{\prime}, sometimes denoted by $\sigma\left(\mathrm{H}^{\prime}, \mathrm{H}^{\prime \prime}\right)$, is induced by the sets in H^{\prime} on which a finite number of strongly continuous functionals are bounded. If H is reflexive the weak * and weak toplogies on H' coincide.

LEMMA 7.2. Let Ω be a pseudoconvex domain and $\left\{\phi^{k}\right\}$ be a decreasing sequence of plurisubharmonic functions in Ω satisfying condition (7.3). Furthermore, let H_{j} be given by (7.2) with $\Omega_{k}=\Omega$ for $j=1$, 2 . If for $f \in D_{T^{*}} \subset H_{2}^{\prime}$ we have $\mathrm{T}^{*} \mathrm{f} \in \pi_{k}^{1 *}\left(\mathrm{H}_{1}^{\mathrm{k}}\right)^{\prime}$, then there is an $\mathrm{f}_{\mathrm{k}} \in \mathrm{D}_{\mathrm{T}_{\mathrm{k}}}^{*} \mathrm{C}\left(\mathrm{H}_{2}{ }^{\mathrm{k}}\right)^{\prime}$ with

$$
\pi_{k}^{1 *} T_{k}^{*} f_{k}=T^{*} f
$$

PROOF. Let $H_{j}^{k}=H_{j}^{k}(\Omega)$. If $p>k$, let $\psi_{m}(z) \stackrel{\text { def }}{=}\left(\psi^{k, p}(z)\right)^{1 / m}$; by (7.3) these functions satisfy

$$
\left|\psi_{m}(z)\right| \leq K(k, p, m)^{1 / m} \exp -\left\{\phi^{k}(z)-\phi^{p}(z)\right\}, \quad z \in \Omega, m=1,2, \ldots .
$$

Hence multiplication of each coefficient of a ($0, q+j-1$)-form in Ω by ψ_{m} defines a continuous map from H_{j}^{k} into H_{j}^{p}; we denote these map by ψ_{m}^{j}. Its adjoint (multiplication by $\bar{\psi}_{m}$) is a continuous map from ($\mathrm{H}_{j}^{\mathrm{P}}$)' into ($\mathrm{H}_{j}^{\mathrm{k}}$)' which we denote by $\bar{\psi}_{\mathrm{m}}^{j}$. We have the following diagram

Here all maps π and π^{*} are identity maps, because $\Omega_{k}=\Omega$ for every k. Since ψ_{m} is holomorphic in Ω, for all $u \in D_{T_{k}}$ we have in distributional sense

$$
\bar{\partial} \psi_{\mathrm{m}} u=\psi_{\mathrm{m}} \bar{\partial}^{u}=\psi_{\mathrm{m}}^{2} T_{k} u \in H_{2}^{p} .
$$

Thus $\psi_{m}^{1} u \in D_{T_{p}}$ and $\psi_{m}^{2} T_{k} u=T_{p} \psi_{m}^{1} u$. Therefore, if $g \in D_{T_{p}}^{*}$ we get

$$
\left\langle\bar{\psi}_{\mathrm{m}}^{2} \mathrm{~g}, \mathrm{~T}_{\mathrm{k}} \mathrm{u}\right\rangle=\left\langle\mathrm{g}, \psi_{\mathrm{m}}^{2} \mathrm{~T}_{\mathrm{k}} \mathrm{u}\right\rangle=\left\langle\mathrm{g}, \mathrm{~T}_{\mathrm{p}} \psi_{\mathrm{m}}^{1} \mathrm{u}\right\rangle=\left\langle\mathrm{T}_{\mathrm{p}}^{*}{\mathrm{~g}, \psi_{\mathrm{m}}}_{1}^{\mathrm{u}}{ }^{\prime}=\left\langle\bar{\psi}_{\mathrm{m}}^{1} \mathrm{~T}_{\mathrm{p}}^{\star} \mathrm{g}, \mathrm{u}\right\rangle .\right.
$$

This means that $\bar{\psi}_{m}^{2} g \in D_{T_{k}^{*}}^{*}$ and that

$$
\mathrm{T}_{\mathrm{k}}^{*} \bar{\psi}_{\mathrm{m}}^{2}=\bar{\psi}_{\mathrm{m}}^{1} \mathrm{~T}_{\mathrm{p}}^{*} \quad \text { on } \mathrm{D}_{\mathrm{T}}^{*}
$$

Now let $p>k$ and $f_{p} \in D_{T_{p}} *$ be such that $f=\pi_{p}^{2}{ }^{*} f_{p}$, and let $T_{p}{ }^{*} f_{p}=\pi_{p, k}^{1}{ }^{*} h$ for some $h \in\left(H_{1}^{k}\right)$ '. Then in the above we take this p and we find

$$
\mathrm{T}_{\mathrm{k}}^{*} \bar{\psi}_{\mathrm{m}}^{2} \mathrm{f}_{\mathrm{p}}=\bar{\psi}_{\mathrm{m}}^{1} \mathrm{~T}_{\mathrm{p}}^{*} \mathrm{f}_{\mathrm{p}}=\bar{\psi}_{\mathrm{m}}^{1} \pi_{\mathrm{p}, \mathrm{k}}^{1}{ }^{*} \mathrm{~h}
$$

Furthermore, by Lebesgue's theorem $\bar{\psi}_{m}^{1} \pi^{1}{ }^{1}{ }^{*} h \rightarrow h$ as $m \rightarrow \infty$ in $\left(H_{1}^{k}\right)$ '. Since by lemma $7.1 T_{k}^{*}$ has closed range in $\left(H_{1}^{k}\right)_{1}^{p}$, , it follows that there exists an $f_{k} \in D_{T_{k}}^{*}$ with $T_{k}^{*} f_{k}=h$. Hence

$$
\pi_{k}^{1 *} T_{k}^{*} f_{k}=\pi_{k}^{1 *} h=\pi_{p}^{1 *} \pi_{p, k}^{*} h=\pi_{p}^{1 *} T_{p}^{*} f_{p}=T^{*} \pi_{p}^{2} f_{p}=T^{*} f
$$

Now using lemma 6.1 we can easily prove its following extension, cf. [38, lemma 2.1.1].

THEOREM 7.3. Let $\Omega=\bigcup_{k} \bigcup_{1}^{\infty} \Omega_{k}$ satisfy (4.22) for a plurisubharmonic function σ in the pseudoconvex domain Ω, let $\left\{\phi^{k}\right\}$ be a decreasing sequence of plurisubharmonic functions in Ω satisfying condition (7.3) and let H_{j} be given by (7.2) for $j=1,2$. Then for each $g \in H_{2}$ with $\bar{\partial} g=0$ there is an $u \in H_{1}$ with $\bar{\partial} \mathrm{u}=\mathrm{g}$ in distributional sense.

PROOF. Let $g \in F$ be fixed. Then there are positive numbers K_{k} with

$$
\int_{\Omega_{k}}\|g(z)\|^{2} \exp -2 \phi^{k}(z) d \lambda(z) \leq K_{k^{\prime}}, \quad k=1,2, \ldots
$$

As in the proof of lemma 6.1 the function σ and the numbers $\left\{\mathrm{K}_{\mathrm{k}}\right\}$ determine a plurisubharmonic function ψ. For g we get the estimates

$$
\begin{aligned}
& \int_{\Omega}\|g(z)\|^{2} \exp \left\{-2 \phi^{\mathrm{k}}(z)-\psi(z)\right\} d \lambda(z) \leq \\
& \leq\left\{\int_{\Omega_{k}}+\sum_{\ell=\mathrm{k}}^{\infty} \int_{\Omega_{\ell+1} \backslash \Omega_{\ell}}\right\}_{\|g(z)\|^{2} \exp \left\{-2 \phi^{\mathrm{k}}(z)-\psi(z)\right\} d \lambda(z) \leq}
\end{aligned}
$$

$$
\leq \mathrm{K}_{\mathrm{k}}^{2}+\sum_{\ell=\mathrm{k}}^{\infty}\left(2^{\ell+1} \mathrm{~K}_{\ell+1}^{2}\right)^{-1} \int_{\Omega_{\ell+1}}\|g(z)\|^{2} \exp -2 \phi^{\mathrm{k}}(z) \mathrm{d} \lambda(z) \leq \mathrm{K}_{\mathrm{k}}^{2}+2^{-\mathrm{k}}<\infty,
$$

because $\left\{\phi^{\mathrm{k}}\right\}$ is decreasing so that

$$
\int_{\Omega_{\ell+1}}\|g(z)\|^{2} \exp -2 \phi^{k}(z) \mathrm{d} \lambda(z) \leq \int_{\Omega_{\ell+1}}\|g(z)\|^{2} \exp -2 \phi^{\ell+1}(z) \mathrm{d} \lambda(z) .
$$

For $j=1,2$, let now H_{j} be the space (7.2) with $\Omega_{k}=\Omega$ and with in (7.1) ϕ^{k} replaced by $\phi^{k}+1 / 2 \psi, k=1,2, \ldots$. The above estimates show that g belongs to this space H_{2}. Assume that the theorem has been proved for spaces (7.2) with $\Omega_{k}=\Omega$ for every k. This would yield an u in the above given H_{1} with $\bar{\partial} u=g$ and so (cf. the proof of lemma 6.1)

$$
\begin{aligned}
& \int_{\Omega_{k}}\|u(z)\|^{2} \frac{\exp -2 \phi^{k}(z)}{\left(1+\|z\|^{2}\right)^{2}} d \lambda(z) \leq e^{\chi(k)} \int_{\Omega}\|u(z)\|^{2} \\
& \frac{\exp \left\{-2 \phi^{k}(z)-\psi(z)\right\}}{\left(1+\|z\|^{2}\right)^{2}} d \lambda(z)<\infty
\end{aligned}
$$

for every k. Thus u would satisfy the conclusion of the theorem. It remains to prove the theorem for spaces H_{j} with $\Omega_{k_{k}}=\Omega$ for every k.

So in the remaining we assume that $\mathrm{H}_{\mathrm{j}}=\mathrm{H}_{\mathrm{j}}^{\mathrm{k}}(\Omega)$.
(i) $R(T)$ is dense in F.

Let $f \in H_{2}^{\prime}$ with $\langle f, T u\rangle=0$ for all $u \in D_{T} \subset H_{1}$, hence $f \in D_{T^{*}}$ and $\left\langle T^{*} f, u\right\rangle=0$. Since D_{T} is dense in H_{1}, we get $T^{*} f=0$. There are k and $f_{k} \in D_{T_{k}}^{*}$ with $f=\pi_{k}^{2 *} f_{k}^{T}$ and $T_{k}^{*} f_{k}=0$. Now let $g \in F$, then $\pi_{k}^{2} g \in F_{k}$. According to [30, th. 4.4.2] (lemma 6.1) $\pi_{k}^{2} g=T_{k} u_{k}$ for some $u_{k} \in D_{T_{k}}$. So we have

$$
\langle f, g\rangle=\left\langle\pi_{k}^{2 *_{f_{k}}}, g\right\rangle=\left\langle f_{k}, \pi_{k}^{2} g\right\rangle=\left\langle f_{k}, T_{k} u_{k}\right\rangle=\left\langle T_{k}^{*} f_{k}, u_{k}\right\rangle=0 .
$$

This implies that $R(T)$ is dense in F.
(ii) $R(T)$ is closed in H_{2}.

The spaces H_{1} and H_{2} are reflexive Frechet spaces, namely they are FS*spaces see [40]. Therefore, by lemma 7.1 it is sufficient to show that $R\left(T^{*}\right)$ is weakly ${ }^{*}$ closed in H_{1}^{\prime}. According to the theorem of Banach-Dieudonné [65, th. 37.1$],[45, \S 21,10(5)]$ or $[61$, IV. 6.4 , where it is called the Krein-Šmulian theorem] it suffices to prove that $R\left(T^{*}\right) \cap B$ is weakly
closed in H_{1}^{\prime} for every bounded, convex, weakly* closed subset B of H_{1}^{\prime}. Bearing in mind that H_{1}^{\prime} is a DFS*-space, hence reflexive so that the weak* and weak topologies on H_{1}^{\prime} coincide, by $[40$, th. 6] there is a k such that B is weakly homeomorphic with a bounded, convex, weakly closed set in ($\mathrm{H}_{1}^{\mathrm{k}}$)'. Thus there is a bounded set $B_{k} \subset\left(H_{1}^{k}\right)$ ' with $\pi_{k}^{1 *} B_{k}=R\left(T^{*}\right) \cap B$, where $\pi_{k}^{1 *}$ is a weak homeomorphism. Since B_{k} is convex its weak closure equals its strong closure in $\left(H_{1}^{k}\right)$ '. Thus we have to show that B_{k} is closed in $\left(H_{1}^{k}\right)$ '.

Let $h^{m} \rightarrow h$ as $m \rightarrow \infty$ in $\left(H_{1}^{k}\right)$, with $h^{m} \in B_{k}$. Thus for each m there is an $f^{m} \in D_{T} * \subset H_{2}^{\prime}$ with $\pi_{k}^{1 *} h^{m}=T^{*} f^{m}$. According to lemma 7.2 for each m there is a $f_{k}^{m} \in D_{T_{k}}^{*} \quad c\left(H_{2}^{k}\right)^{\prime}$ with $T_{k}^{*} f_{k}^{m}=h^{m}$. Since by lemma $7.1 R\left(T_{k}^{*}\right)$ is closed in $\left(H_{1}^{k}\right)$ ', there is an $f_{k} \in D_{T}^{*}{ }_{k}^{*}$ with $T_{k}^{*} f_{k}=h$. Hence $\pi_{k}^{1 *} h \in R\left(T^{*}\right)$ and thus B_{k} is closed in $\left(H_{1}{ }^{k}\right)$ '. This implies that $R\left(T^{*}\right) \cap B$ is weakly ${ }^{*}$ closed in H_{1}^{\prime} for every bounded, convex, weakly* closed subset B of H_{1}^{\prime}. Therefore $R(T)$ is closed in H_{2}.

REMARK. Unlike lemma 6.1 theorem 7.3 does not give uniform bounds. The only thing which can be said is that, in virtue of the open mapping theorem, T is an open map, i.e.,

$$
T^{-1}: F \rightarrow H_{1} / \operatorname{Ker} T \quad \text { is continuous. }
$$

As is remarked after lemma 6.1 using theorem 7.3 instead of leamm 6.1 one could obtain a theorem B with countably many bounds. However, there remains one difficulty. Since theorem 7.3 does not give uniform bounds, in the proof of lemma 6.2 formula (6.4) becomes

$$
\left\|\left(g^{\prime}\right)\right\|_{\mathrm{s}}^{\mathrm{p}, \mathrm{p}, 0}<\infty, \quad \mathrm{k}=1,2, \ldots
$$

only, and we cannot sum over s for getting $\|g\|_{k, k}^{p, p, 0}<\infty, k=1,2, \ldots$. We solve this problem by a direct proof of the existence of $u \in \underset{k}{p r o j} \lim _{\infty}$ $C^{p}\left[U^{(\lambda)}, L_{q}, \phi_{1,0,0}^{k}\right]$ with $\bar{\partial} u=g$ for a given $\left.g \in \underset{k \rightarrow \infty}{\operatorname{proj}} \lim _{C} p^{[} U^{(\lambda)^{k}}, Z_{q+1}, \phi^{k}\right]$. The proof is exactly that of theorem 7.3; we only have to take for H_{2}^{k} the Hilbert space of cochains c with norm $\left\|_{c}\right\|_{k, k}$ given by (4.37). In lemma 7.2, which is needed in this proof, H_{2}^{k} should be the Hilbert space of cochains c with norm $\|c\|_{k}$ given by (4.40). In both cases, the replacement of ϕ^{k} by $\phi_{1,0,0}^{k}$ yields the space H_{1}^{k}.

Thus if condition (7.3) holds, theorems 3.1, 4.11 and 4.12 could be derived for functions satisfying countably many bounds and we get the
strong version of the fundamental principle. The continuity of ($\left.\rho^{L}\right)^{-1}$ in this case follows from the open mapping theorem, because we deal with Frechet spaces.

COROLLARY 7.4. Let $\Omega=\bigcup_{\mathrm{k}=1}^{\infty} \Omega_{\mathrm{k}}$ be a pseudoconvex domain satisfying (4.21) and (4.22) and let $\left\{\phi^{k}\right\}_{k=1}^{\infty}$ be a decreasing sequence of plurisubharmonic functions in Ω satisfying condition (7.3). Furthermore, for every k and $\mathrm{N} \geq 0$ let there be a $\mathrm{p} \geq \mathrm{k}$ and a $\mathrm{C}_{\mathrm{k}, \mathrm{N}} \geq 0$ with

$$
\phi_{N}^{p}(z) \leq \phi^{k}(z)+C_{k, N^{\prime}} \quad z \in \Omega_{k}
$$

Then for each $p \times q$-matrix P with polynomial entries and associated vector multiplicity variety \vec{d} the map ρ^{L}, defined by lemma 4.3,

is a topological isomorphism between linear spaces.

For the spaces in chapter II and III in condition (7.3) we may choose

$$
\psi^{k, p}(z)=\exp -z^{2}
$$

because Ω is bounded in the imaginary directions or Ω is a conic neighborhood in \mathbb{C}^{n} of a real domain, and $\phi^{k}=-M(k\|x\|)$. Here M satisfies (2.32) so that for some $K \geq 0$ and $\varepsilon>0$ we have

$$
-\varepsilon\|x\| \leq-\left\{\phi^{k}(z)-\phi^{p}(z)\right\}+K .
$$

Moreover, lemma 5.2 shows how the difficulty that $-M(\|x\|)$ is not plurisubharmonic can be overcome. For example, the A-apaces in (3.51) or (3.56) satisfy the conditions of corollary 7.4, because for σ we can even find a convex function.

In chapter II the domains $\dot{\Omega}$ were bounded in the imaginary directions, so that any holomorphic function $g_{p, m}$ satisfying (2.11) is such that $\log g_{p, m}$ is holomorphic in Ω. In lemma's 2.3.i and 2.3.ii we have used the following
corollary, which solves the problem discussed at the beginning of this chapter.

COROLLARY 7.5. Let $\Omega=\bigcup_{k} \bigcup_{1}^{\infty} \Omega_{k}$ be a pseudoconvex domain satisfying (4.22) and let $\left\{\phi^{k}\right\}_{k=1}^{\infty}$ be a decreasing sequence of plurisubharmonic functions in Ω satisfying condition (7.3). Let moreover Ω^{1} and Ω^{2} be pseudoconvex open sets with $\Omega=\Omega^{1} \cup \Omega^{2}$ such that for some positive ε with $\varepsilon<1$ and for each $z \in \Omega^{1} \cap \Omega^{2}$ there is a $z^{\prime} \in \Omega^{1} \cap \Omega^{2}$ with $\left\|_{z-z}\right\|^{\prime}<\varepsilon\left(z^{\prime}\right) \xlongequal{\text { def }} \varepsilon \min \left\{1, d\left(z^{\prime}, \Omega^{c}\right)\right\}$ and with

$$
\begin{equation*}
\left\|z^{\prime}-w\right\|<\varepsilon\left(z^{\prime}\right) \Rightarrow w \in \Omega^{1} \cap \Omega^{2} . \tag{7.4}
\end{equation*}
$$

Then for every holomorphic function $f \in \underset{k}{\operatorname{proj}} \lim _{\mathrm{k}} \mathrm{H}\left(\Omega^{1} \cap \Omega^{2} \cap \Omega_{\mathrm{k}} ; \phi^{\mathrm{k}}\right.$) there are holomorphic functions $f_{j} \in \underset{k}{\operatorname{proj}} \lim _{\mathrm{k}} \mathrm{H}\left(\Omega_{\mathrm{j}} \mathrm{n}_{\Omega_{k}} ; \phi_{1,1,0}^{\mathrm{k}}\right)$ for $\mathrm{j}=1,2$ with $f(z)=f_{2}(z)-f_{1}(z)$ for $z \in \Omega^{1} \rightarrow \Omega^{2}$, where

$$
\phi_{1,1,0}^{k}(z) \stackrel{\text { def }}{=} \phi^{k}(z)+\log \left(1+\|z\|^{2}\right)+\log \left(1+d\left(z_{1} \Omega^{c}\right)^{-1}\right)
$$

PROOF. The proof will be that of lemma 6.2. Let for $j=1,2$

$$
u_{j} \stackrel{\text { def }}{ }\left\{U_{S}^{j} \mid U_{S}^{j} \stackrel{\text { def }}{=} U_{S} \cap \Omega^{j}, U_{S} \in U^{(\lambda)}\right\}
$$

for some λ and let $U \stackrel{\text { def }}{=} U_{1} \cup U_{2}$ be a covering of Ω, where $U^{(\lambda)}$ is the covering constructed in section VI.1. Due to (7.4) for λ sufficiently large there is an embedding τ of $U^{(\lambda)}$ into U given by $\tau U_{S}=U_{S}^{1}$ if $U_{S} \subset \Omega^{1}$ and $\tau U_{S}=U_{S}^{2}$ for the remaining $U_{S} \in U^{(\lambda)}$. Hence the partition of unity subordinate to the covering $U^{(\lambda)}$, constructed in the proof of lemma 6.2 , induces a partition of unity subordinate to the covering U of Ω. We let c be the 1 cocykel defined by $c=0$ on every set $U_{S}^{j} \cap U_{t}^{j}$ for $j=1,2$ and $c=f$ on every set $U_{s}^{1} \cap U_{t}^{2}$ for all $s, t \in I_{\lambda}$. In the proof of lemma 6.2 with $p=1$ and with U as the covering of Ω, we take the above given partition of unity and we apply theorem 7.3 instead of lemma 6.1. So we find a 0 -cochain c^{\prime} satisfying good bounds (note that for $p=1$ property (4.21) is not necessary) with $\delta c^{\prime}=c . T h i s$ means that on $U_{s}^{j} \cap U_{t}^{j}$ we have $c^{\prime}\left(U_{s}^{j}\right)=c^{\prime}\left(U_{t}^{j}\right)$ for $j=1,2$ so that c^{\prime} determines two holomorphic functions f_{j} in $\Omega_{j}, j=1,2$, with $f_{2}-f_{1}=$ $=c^{\prime}\left(U_{t}^{2}\right)-c^{\prime}\left(U_{s}^{1}\right)=f$ on $U_{s}^{1} \cap U_{t}^{2}$ for all $s, t \in I_{\lambda}$. Hence $f_{2}-f_{1}=f$ in $\Omega^{1} \cap \Omega^{\frac{1}{2}}$
and the bounds of c^{\prime} imply that $f\left(\underset{j}{\operatorname{proj}} \lim _{\mathrm{j}} \mathrm{H}\left(\Omega^{j} \cap \Omega_{k} ; \phi^{k}\right)\right.$ for $j=1,2$. \square
This corollary concludes all the promised proofs of the assertions in chapter II.

REFERENCES

[1] ANDREOTTI, A., Complexes of partial differential operators, Yale Math. Mon. 6, Yale Un. Press, N. Haven, London, 1975.
[2] BERENSTEIN, A.C. \& M.A. DOSTAL, Analytic uniform spaces and their applications to convolution equations, Lecture notes in Math., no. 256, Springer-Verlag Berlin, 1972.
[3] BOAS, R.P., Entire functions, Ac. Press, New York, 1954.
[4] BORCHERS, H.J., Field operators as $C \cong$ functions in space like directions, Nuovo Cimento, 33 (1964), p. 1600-1613.
[5] BROS, J., H. EPSTEIN \& V. GLASER, On the connection between analyticity and Lorentz covariance of Wightman functions, Comm. Math. Phys., 6 (1967), p. 77-100.
[6] BROS, J. \& D. IAGOLNITZER, Causality and local analyticity: mathematical study, Ann. Inst. Henri Poincaré, XVIII (1973), section A, p. 147-184.
[7] BROWDER, F., Real analytic functions on product spaces and separate analyticity, Canad. J. Math., 13 (1961), p. 650-656.
[8] BROWDER, F., On the Edge of the Wedge Theorem, Canad. J. Math., 15 (1963), p. 125-131.
[9] CARLESON, L., On universal moment problems, Math. Scand., 9 (1961), p. 197-206.
[10] CONSTANTINESCU, F., Analytic properties of nonstrictly localizable fields, J. Math. Phys., 12 (1971), p. 293-298.
[11] CONSTANTINESCU, F. \& W. THALHEIMER, Euclidean Green's functions for Jaffe fields, Comm. Math. Phys., 38 (1974), p. 299-316.
[12] CONSTANTINESCU, F., Distributionen und ihre Anwendung in der Physik, Teubner Studienbücher, Math., Teubner, Stuttgart, 1974.
[13] DIRAC, P.A.M., A positive-energy relativistic wave equation, $I \& I I$, Proc. Roy. Soc. A (G.B.), 322 (1971), p. 435-445 \& 328 (1972), p. 1-7.
[14] DIRAC, P.A.M., Zitterbewegung of the new positive-energy particle, in Fundamental interactions in physics and astrophysics, lectures from the 1972 Coral Gables Conference on Fundamental Interactions at high Energy, Plenum Press, New York, 1973.
[15] EHRENPREIS, L., The fundamental priciple for linear constant coeffi-cient partial differential equations, Proc. Inter. Symp. Lin. Spaces, Jerusalem, 1961, p. 161-174.
[16] EHRENPREIS, L., Fourier analysis in several complex variables, Wiley, New York, 1970.
[17] EPSTEIN, H., Generalization of the Edge of the Wedge Theorem, J. Math. Phys., 1 (1960), p. 524-531.
[18] EPSTEIN, H., V. GLASER \& A. JAFFE, Nonpositivity of the energy density in quantized field theories, Nuovo Cimento, 36 (1965), p. 10161022.
[19] FEINBERG, G., Possibility of faster-than-light-particles, Phys. Rev., 159 (1967), p. 1089-1105.
[20] FLORET, K. \& J. WLOKA, Einführung in die Theorie der lokalkonvexen Räume, Lecture notes in Math., no. 56, Springer-Verlag, Berlin, 1968.
[21] GEL'FAND, I.M. \& G.E. SHILOV, Generalized functions, Vol. 2, Academic Press, New York, 1968.
[22] GERLACH, B., D. GROMES \& J. PETZOLD, Eine kritische Analyse der Ladungsdichte des Klein-Gordon-Felds, Z.f. Phys., 202 (1967), p. 401411.
[23] GERLACH, B., D. GROMES \& J. PETZOLD, Konstruktion definiter Ausdrücke für die Teilchendichte des Klein-Gordon-Felds, Z.f. Phys., $\underline{204}$ (1967), p. 1-11.
[24] GERLACH, B., D. GROMES, J. PETZOLD \& P. ROSENTHAL, Über kausales Verhalten nichtlokaler Grössen und Teilchenstruktur in der Feldtheorie, Z.f. Phys., 208 (1968), p. 381-389.
[25] GERLACH, B., D. GROMES \& J. PETZOLD, Energie und Kausalität, Z.f. Phys., 221 (1969), p. 141-157.
[26] GROMES, D., On the problem of macrocausality in field theory, Z.f. Phys., 236 (1970), p. 276-287.
[27] GUNNING, R.C. \& H. ROSSI, Analytic functions of several complex variables, sec. ed., Prentice-Hall, Englewood Cliffs, 1965.
[28] HEGERFELDT, G.C., Remark on causality and particle localization, Phys. Rev. D, 10 (1974), p. 3320-3321.
[29] HÖRMANDER, L., On the division of distributions by polynomials, Ark. Mat. 3 (1958), p. 555-568.
[30] HÖRMANDER, L., An introduction to complex analysis in several variables, sec. ed., North-Holland, Amsterdam, 1973.
[31] Hyperfunctions and theoretical physics, Proceedings 1973, Lecture notes in Math., no. 449, Springer-Verlag, Berlin, 1975.
[32] International symposium on mathematical problems in theoretical physics, Lecture notes in Phys., no. 39, Springer-Verlag, Berlin, 1975.
[33] JAFFE, A.M., Hihg-energy behaviour in quantum field theory, I, Strictly localizable fields, Phys. Rev., 158 (1967), p. 1454-1461.
[34] JAGER, E.M. de, Applications of distributions in mathematical physics, Math. Centre Tracts 10, Math. Centrum, Amsterdam, 1969.
[35] JAUCH, J.M., Foundations of quantum mechanics, Addison-Wesley, Reading, Menlo Park, London, Don Mills, 1968.
[36] JOST, R., General theory of quantized fields, Amer. Math. Soc., Providence Rhode Island, 1965.
[37] KÁLNAY, A.J., The localization problem, in Studies in the Foundations, Methodology and Phylosophy of Science, Problems in the Foundations of Physics, vol. 4, Springer, New York, 1971.
[38] KAWAI, T., On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients, J. Fac. Sci. Univ. Tokyo, Sect. IA, 17 (1970), p. 467-517.
[39] KIOUSTELIDIS, J., Eine einheitliche Methode zur Herleitung von Reihenentwicklungen für ganze Funktionen vom Exponentialtyp, Compositio Math., 26 (1973), p. 201-232.
[40] KOMATSU, H., Projective and inductive limits of weakly compact sequences of locally convex spaces, J. Math. Soc. Japan, 19 (1967), p. 366-383.
[41] KOMATSU, H., Resolution by hyperfunctions of sheaves of solutions of differential equations with constant coefficients, Math. Ann., 176 (1968), p. 77-86.
[42] KOMATSU, H., Ultradistributions, I, Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo, Sec. IA, 20 (1973), p. 25-105.
[43] KOMATSU, H., (ed), Hyperfunctions and pseudo-differential equations, Proceedings 1971, Lecture notes in Math., no. 287, SpringerVerlag, Berlin, 1973.
[44] KOMATSU, H., A local version of Bochner's tube theorem, J. Fac. Sci. Univ. Tokyo, Sec. IA, 19 (1972), p. 201-214.
[45] кӧтнE, G., Topologische lineare Räume, Springer-Verlag, Berlin, 1960.
[46] LAUWERIER, H.A., The Hilbert problem for generalized functions, Arch. Rat. Mech. and An., 13 (1963), p. 157-166.
[47] MARTINEAU, A., Les hyperfunctions de M. Sato, Séminaire Bourbaki, 13 (1960-61), no. 214.
[48] MARTINEAU, A., Sur les fonctionelles analytiques et la transformation de Fourier-Borel, J. Analyse Math., 9 (1963), p. 1-64.
[49] MARTINEAU, A., Distributions et valeurs au bord des fonctions holomorphes, in Theory of distributions, Proc. Intern. Summer Inst. Lisbon, 1964, Inst. Gulbenkian Ciência, Lisboa, 1964, p. 193326.
[50] MATHEWS, P.M. \& M. SEETHARAMAN, Method of characteristics and causality of field propagation, Phys. Rev. D., 8 (1973), p. 18151816.
[51] MIGNANI, R. \& E. RECAMI, Classical theory of tachyons, Riv. Nuovo Cimento, $\underline{4}$ (1974), p. 209-290.
[52] NAGAMACHI, S. \& N. MUGIBAYASHI, Hyperfunction quantum field theory, Comm. Math. Phys., 46 (1976), p. 119-134.
[53] NAGAMACHI, S. \& N. MUGIBAYASHI, Theory of Fourier hyperfunctions and its application to quantum field theory, Lett. in Math. Phys., 1 (1976), p. 259-264.
[54] NARASIMHAN, R., Cohomology with bounds in complex spaces, in Several complex variables I, Maryland 1970, Lecture notes in Math. no.

155, Springer-Verlag, Berlin, 1970, p. 141-150.
[55] NÖRLUND, N.E., Vorlesungen über Differenzenrechnung, Chelsea Publ. Co., New York, 1954.
[56] PALAMODOV, V.P., Linear differential operators with constant coefficients, Springer-Verlag, Berlin, 1970.
[57] PFLUG, R.P., Holomorphiegebiete, pseudokonvexe Gebiete und das LeviProblem, Lecture notes in Math., no. 432, Springer-Verlag, Berlin, 1975.
[58] REED, M. \& B. SIMON, Methods of modern mathematical physics, 2, Fourier analysis and self-adjointness, Ac. Press, New York, 1975.
[59] ROEVER, J.W. de, Fourier transforms of holomorphic functions and application to Newton interpolation series, II, TW 148, Math, Centrum, Amsterdam, 1975.
[60] ROEVER, J.W. de, Analytic representations and Fourier transforms of analytic functionals in Z ' carried by the real space, to appear in SIAM Journ. Math. An.
[61] SCHAEFER, H.H., Topological vector spaces, Macmillan, New York \& London, 1966.
[62] SCHWARTZ, L., Théorie des distributions, ed. corr. et augm., Hermann \& Cie, Paris, 1966.
[63] STEINMANN, O., Scattering formalism for non-localizable fields, Comm. Math. Phys., 18 (1970), p. 179-194.
[64] STREATER, R.F. \& A.S. WIGHTMAN, PCT, spin and statistics, and all that, Benjamin, New York \& Amsterdam, 1964.
[65] TREVES, F., Topological vector spaces, distributions and kernels, Pure and applied Math., ser. no. 25, Ac. Press, New York, 1967.
[66] VELO, G. \& D. ZWANZIGER, Propagation and quantization of Rarita- Schwinger waves in an external electromagnetic potential, Phys. Rev., 186 (1969), p. 1337-1341.
[67] VLADIMIROV, V.S., Functions which are holomorphic in tubular cones (Russian), Izv. Akad. Nauk. SSSR, Ser. Mat., $\underline{27}$ (1963), p. 75100.
[68] VLADIMIROV, V.S., Methods of the theory of functions of many complex variables, MIT Press, Cambridge, Mass., 1966.
[69] VORONOV, B.L., Localizable and nonlocalizable theories, in Acta Universitas Wratislaviensis, no. ll3, winter school in theoretical physics in Karpacz, 1968, vol. II, p. 268-291.
[70] WHITNEY, H., Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), p. 63-89.
[71] WIGHTMAN, A.S. \& L. GÅRDING, Fields as operator-valued distributions in relativistic quantum theory, Ark. für Fysik, 28 (1964), p. 129-184.
[72] WIGHTMAN, A.S., La théorie quantique locale et la théorie quantique des champs, Ann. Inst. Henri Poincaré, I (1964), p. 403-420.
[73] WLOKA, J., Grundraüme und verallgemeinerte Funktionen, Lecture notes in Math., no. 82, Springer-Varlag, Berlin, 1969.

SUBJECT INDEX

Analytical uniform structure 131
analytic curve 15
analytic for the energy 17
analytic variety 117
AU-space 131
BAU-structure 133
boundary value of holomorphic
function 39
Bros-Epstein-Glaser lemma 57
Cameron-Storvick theorem 74
carrier 25
Cartan's theorem B 127
with bounds 178,189
causality 4
compatibility conditions 161
conic neighborhood 65,82
current density 9
Dirac equation 5
dual cone 40
Edge of the Wedge theorem 8
for distributions 75
for ultradistributions 80
Ehrenpreis-Martineau theorem 80 energy 6
existence theorem for $\bar{\partial} 171,187$
Field 14
localizable 20
positive 15
strictly localizable 14
flabby sheaf 34
Fourier-Borel transformation 38,84
Fourier hyperfunction 38,84
of the first kind 100
of the second kind 100

Fourier-Laplace transformation 38,84
Fourier-Laplace-Carleman-Sato transformation 38
Fourier transformation $37,84,115$
Fredholm alternative for partial
differential equations 162
FS-space 68
FS ${ }^{*}$-space 68
fundamental principle
Ehrenpreis' 132
for non-entire functions 142,190
Fourier representation 158,160
Palamodov's 136
Gårding-Wightman axioms 14
Hilbert's Nullstellensatz 117
Impuls 6
Klein-Gordon equation 5 tachyonic 20

LAU-space 133
lightcone 7
local commutativity 19
local equality of analytic functionals 35
localizable space 156
Malgrange-Zerner theorem 73
microscopic causality 19
multiplicity variety 128 holomorphic function on 118

local analytic 118 polynomial 118 restriction of function to 118 Newton interpolation series 164	Tachyon 20 time-like curve 15 tube domain 66 tubular radial domain 39
Parametrization 122	Ultradifferentiable function 42
PLAU-structure 133	ultradifferentiable operator 44
positive frequency solution 5	ultradistribution
Ptak space 31	of Beurling type 43
	of Roumieu type 43
Quasi-analytic function 82	of finite order 46,47
Regular support 57	upper semicontinuous 92
Space-like separated 19	Weak topology 185
subordinate function 44	weak* topology 185
support	
of analytic functionals 33	
of distributions 33	

OTHER TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

A leaflet containing an order-form and abstracts of all publications mentioned below is available at the Mathematisch Centrum, Tweede Boerhaavestraat 49, Amsterdam-1005, The Netherlands. Orders should be sent to the same address.

MCT 1 T. VAN DER WALT, Fixed and almost fixed points, 1963. ISBN 906196 0029.

MCT 2 A.R. BLOEMENA, Sampling from a graph, 1964. ISBN 9061960037.
MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model and method, 1964. ISBN 9061960045.

MCT 4 G. DE LEVE, Generalized Markovian decision processes, part II: Probabilistic background, 1964. ISBN 9061960053.
MCT 5 G. DE LEVE, H.C. TIJMS \& P.J. WEEDA, Generalized Markovian decision processes, Applications, 1970. ISBN 9061960517.

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 9061960061.
MCT 7 W.R. VAN ZWET, Convex transformations of random variables, 1964. ISBN 906196007 x.
MCT 8 J.A. ZONNEVELD, Automatic numerical integration, 1964. ISBN 906196 0088.

MCT 9 P.C. BAAYEN, Universal morphisms, 1964. ISBN 9061960096.
MCT 10 E.M. DE JAGER, Applications of distributions in mathematical physics, 1964. ISBN 906196010 X .

MCT 11 A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964. ISBN 906196 0118.

MCT 12 J.A.Th.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MOKKEN \& A. VAN WIJNGAARDEN, Formal properties of newspaper Dutch, 1965. ISBN 9061960134.

MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of print; replaced by MCT 54 and 67.
MCT 14 H.A. LAUWERIER, Calculus of variations in mathematical physics, 1966. ISBN 9061960207.
MCT 15 R. DOORNBOS, Slippage tests, 1966. ISBN 9061960215.
MCT 16 J.W. DE BAKKER, FOrmal definition of programming languages with an application to the definition of ALGOL 60, 1967. ISBN 906196 0223.

MCT 17 R.P. VAN DE RIET, Formula manipulation in ALGOL 60, part 1, 1968. ISBN 9061960258.

MCT 18 R.P. VAN DE RIET, Formula manipulation in ALGOL 60, part 2, 1968. ISBN 906196038 x.

MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968. ISBN 9061960266.
MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial differential equations, 1968. ISBN 9061960274.

MCT 21 E. WATTEL, The compactness operator in set theory and topology, 1968. ISBN 9061960282.

MCT 22 T.J. DEKKER, ALGOL 60 procedures in numerical algebra, part 1, 1968. ISBN 9061960290.

MCT 23 T.J. DEKKER \& W. HOFFMANN, ALGOL 60 procedures in numerical algebra, part 2, 1968. ISBN 9061960304.
MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 9061960606.
MCT 25 E.R. PAERL, Representations of the Lorentz group and projective geometry, 1969. ISBN 9061960398.

MCT 26 EUROPEAN MEETING 1968, Selected statistical papers, part I, 1968. ISBN 9061960312.
MCT 27 EUROPEAN MEETING 1968, Selected statistical papers, part II, 1969. ISBN 9061960401.
MCT 28 J. OOSTERHOFF, Combination of one-sided statistical tests, 1969. ISBN 906196041 x.

MCT 29 J. VERHOEFF, Error detecting decimal codes, 1969. ISBN 9061960428.
MCT 30 H. BRANDT CORSTIUS, Excercises in computational Zinguistics, 1970. ISBN 9061960525.
MCT 31 W. MOLENAAR, Approximations to the Poisson, binomial and hypergeometric distribution functions, 1970. ISBN 9061960533.
MCT 32 L. DE HAAN, On regular variation and its application to the weak convergence of sample extremes, 1970. ISBN 9061960541.
MCT 33 F.W. Steutel, Preservation of infinite divisibility under mixing and related topics, 1970. ISBN 9061960614.
MCT 34 I. JUHÁSZ, A. VERBEEK \& N.S. KROONENBERG, Cardinal functions in topology, 1971. ISBN 9061960622.
MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 9061960630.
MCT 36 J. GRASMAN, On the birth of boundary Zayers, 1971. ISBN 9061960649.
Mu:T 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DUIJVESTIJN, E.W. DIJKSTRA, P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN Aretz, W.L. van der poel, J.P. Schabp-Kruseman, M.V. Wilkes \&. G. ZOUTENDIJK, MC-25 Informatica Symposium, 1971. ISBN 9061960657.
MCT 38 W.A. VERLOREN VAN THEMAAT, Automatic analysis of Dutch compound words, 1971. ISBN 9061960738.

MCT 39 H. BAVINCK, Jacobi series and approximation, 1972. ISBN 9061960746.
MCT 40 H.C. TIJMS, Analysis of (s, S) inventory models, 1972. ISBN 9061960754.
MCT 41 A. VERBEEK, Superextensions of topological spaces, 1972. ISBN 90 61960762.

MCT 42 W. VERVAAT, Success epochs in Bemoulli trials (with applications in number theory), 1972. ISBN 9061960770.
MCT 43 F.H. RUYMGAART, Asymptotic theory of rank tests for independence, 1973. ISBN 9061960819.

MCT 44 H. BART, Meromorphic operator valued functions, 1973. ISBN 9061960827.

MCT 45 A.A. BALKEMA, Monotone transformations and limit laws, 1973. ISBN 9061960835.
MCT 46 R.P. VAN DE RIET, ABC ALGOL, A portable language for formula manipulation systems, part 1: The language, 1973. ISBN 9061960843.
MCT 47 R.P. VAN DE RIET, ABC ALGOL, A portable language for formula manipulation systems, part 2: The compiler, 1973. ISBN 9061960851.
mCT 48 F.E.J. Kruseman Aretz, p.J.W. ten hagen \& h.L. Oudshoorn, an algol 60 compiler in ALGOL 60, Text of the MC-compiler for the EL-X8, 1973. ISBN 906196086 x.
MCT 49 H. Kок, Connected orderable spaces, 1974. ISBN 9061960886.
mCt 50 A. van Wijngarden, B.J. Mailloux, J.E.L. Peck, C.h.A. Koster, M. Sintzoff, C.h. LindSey, L.G.L.T. Meertens \& R.G. Fisker (Eds), Revised report on the algorithmic language ALGOL 68, 1976. ISBN 9061960894.

MCT 51 A. HORDIJK, Dynamic programming and Markov potential theory, 1974. ISBN 9061960959.

MCT 52 P.C. BAAYEN (ed.), Topological stmuctures, 1974. ISBN 9061960967.
MCT 53 M.J. FABER, Metrizability in yeneralized ordered spaces, 1974. ISBN 9061960975.

MCT 54 H.A. LAUWERIER, Asymptotic analysis, part 1, 1974. ISBN 9061960983.
MCT 55 M. HALL JR. \& J.H. VAN LINT (Eds), Combinatorics, part 1: Theory of designs, finite geometry and coding theory, 1974. ISBN 9061960991.

MCT 56 M. HALL JR. \& J.H. VAN LINT (Eds), Combinatorics, part 2: graph theory, foundations, partitions and combinatorial geometry, 1974. ISBN 9061961009.

MCT 57 M. HALL JR. \& J.H. VAN LINT (Eds), Combinatorics, part 3: Combinatorial group theory, 1974. ISBN 9061961017.

MCT 58 W. Albers, Asymptotic expansions and the deficiency concept in statistics, 1975. ISBN 9061961025.
MCT 59 J.L. MIJNHEER, Sample path properties of stabie processes, 1975. ISBN 9061961076.
мСт 60 F. GÖBEL, Queueing models involving buffers, 1975. ISBN 9061961084.

* MCT 61 P. VAN EmDE BOAS, Abstract resource-bound classes, part 1. ISBN 9061961092.
* MCT 62 P. VAN EMDE BOAS, Abstract resource-bound classes, part 2. ISBN 9061961106.
MCT 63 J.W. DE BAKKER (ed.), Foundations of computer science, 1975. ISBN 9061961114.
MCT 64 W.J. DE SCHIPPER, Symmetric closed categories, 1975. ISBN 906196 1122.

MCT 65 J. DE VRIES, Topological transformation groups 1 A categorical approach, 1975. ISBN 9061961130.
MCT 66 H.G.J. PIJLS, Locally convex algebras in spectral theory and eigenfunction expansions, 1976. ISBN 9061961149.

* MCT 67 H.A. LAUWERIER, Asymptotic analysis, part 2. ISBN 906196119 x.
MCT 68 P.P.N. DE GROEN, Singularly perturbed differential operators of second order, 1976. ISBN 9061961203.
MCT 69 J.K. LENSTRA, Sequencing by enumerative methods, 1977. ISBN 9061961254.
MCT 70 W.P. DE ROEVER JR., Recursive program schemes: semantics and proof theory, 1976. ISBN 9061961270.
MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision processes, 1976. ISBN 9061961297.
МСТ 72 J.K.M. JANSEN, Simple periodic and nonperiodic Lomé functions and their applications in the theory of conical waveguides,1977. ISBN 9061961300.
* MCT 73 D.M.R. LeIVANT, Absoluteness of intuitionistic logic. ISBN 906196122 x.
MCT 74 H.J.J. TE RIELE, A theoretical and computational study of generalized aliquot sequences, 1976. ISBN 9061961319.
MCT 75 A.E. BROUWER, Treelike spaces, and related connected topological spaces, 1977. ISBN 9061961327.
MCT 76 M. REM, Associons and the closure statement, 1976. ISBN 9061961351.
* MCT 77 W.C.M. KALLENBERG, Asymptotic optimality of likelihood ratio tests in exponential families, ISBN 9061961343.
MCT 78 E. DE JONGE, A.C.M. VAN ROOIJ, Introduction to Riesz spaces, 1977. ISBN 9061961335.
MCT 79 M.C.A. VAN ZUIJLEN, Empirical distributions and rankstatistics, 1977. ISBN 9061961459.
MCT 80 P.W. HEMKER, A numerical study of stiff two-point boundary problems, 1977. ISBN 9061961467.

MCT 81 K.R. APT \& J.W. DE BAKKER (eds), Foundations of computer science II, part I, 1976. ISBN 9061961408.
MCT 82 K.R. APT \& J.W. DE BAKKER (eds), Foundations of computer science II, part II, 1976. ISBN 9061961416.

* MCT 83 L.S. vAN BENTEM JUTTING, Checking Landau's "Grundlagen" in the automath system, ISBN 9061961475.
MCT 84 H.L.L. BUSARD, The translation of the elements of Euclid from the Arabic into Latin by Hermann of Carinthia (?) books vii-xii, 1977. ISBN 9061961483.

MCT 85 J. VAN MILL, Supercompactness and Wallman spaces, 1977. ISBN 9061961513.

* MCT 86 S.G. van der meulen \& M. Veldhorst, Tormix I, ISBN 9061961521.
* MCT 87 S.g. VAN der Meulen \& M. Veldhorst, Torrix II, ISBN 906196153 x.
* MCT 88 A. SChRIJVER, Matroids and linking systems, ISBN 9061961548.

An asterisk before the number means "to appear".

MCT 89 J.W. DE ROEVER, Complex Fourier transformation and analytic functionals with unbounded carriers, 1978. ISBN 9061961556.

[^0]: 1) For some fields this would be desirable, but unfortunately a strictly localizable field (as defined by more axioms than the above) is, in general, not positive, see [18].
[^1]: 1) Actually, here we have the restriction of a distribution (hyperfunction) to an analytic curve defined by the restriction of its defining function, here G, see $[31$, lemina 2.1 p. 50].
[^2]: 1) Indeed, if the support is a convex cone it is easy to see that the fact, that a distribution is the sum of derivatives of measures on the cone, implies that it is also the derivative of a continuous function with support in the cone. The particularity lies in the fact that it only applies to some particular, unbounded sets and not to general, regular sets.
 2)

 On the other hand, with the aid of this lemma it can be shown that indeed the restriction map from $C_{M}^{\infty}(L)$ into $C_{M}^{\infty}(K)$ is surjective in both cases (M) and \{M\}, if $K c i n t ~ L i s ~ c l o s e d ~ a n d ~ s a t i s f i e s ~ s o m e ~ c o n d i t i o n s, ~ n o t ~ a s ~ g e n e r a l ~$ as regular, but more general than convex.

[^3]: 1) If we do not assume that problem 3.1 has been solved, it still might happen that I is surjective without its injectivity being established and this is actually the case here. Indeed, in section III. 1 we have shown that for any $f \in \underset{k}{\operatorname{proj}} \lim _{\alpha}\left(H_{\alpha}^{k} \mid V_{\alpha}^{k}\right)$ there is a $\mu \in A_{\alpha}^{\prime}$ with $F(\mu)=J f$, where F is given by (3.7). But if we apply the maps F and I in (3.30) successively, we get $f=I \bullet F \mu \in R(I)$. Hence I is surjective. This means that for any sequence $\left\{\tilde{F}^{k}\right\}$ with $\tilde{F}^{k} \in H_{\alpha}^{k}$ and $\tilde{F}^{p}-\tilde{F}^{k}=0$ on V_{α}^{k} for all k and $p \geq k$, there exists another sequence $\left\{\mathrm{F}^{\mathrm{k}}\right\}$ with $\mathrm{F}^{\mathrm{k}} \in \mathrm{H}_{\alpha}^{\mathrm{k}}$ satisfying (3.29) and with $\mathrm{F}^{\mathrm{k}}-\widetilde{\mathrm{F}}^{\mathrm{k}}=0$ on V_{α}^{k}. However, here we are not interested in the surjectivity of $I, i . e .$, in the above solved statement, but in the injectivity of I, i.e., in problem 3.1.
[^4]: 1) This example leads to a family of majorants with non-trivial cohomology which seems to fit a similar condition to that discussed in [56, p. 121] for the case where the bounds must be satisfied only separately.
