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PREFACE 

by 

N.G. de Bruijn 

The Automath project was conceived early 1967 in Eindhoven, the Nether­

lands. se•emingly, the project was quite mG>dest in its claims, since it in­

tended to achieve a thing that many people thought to present no essential 

difficulties: presenting mathematics in such a precise formalized fashion 

that, the principles of the language being given, even a machine could es­

tablish correctness. The style in which this should be done was clear from 

the start: it should follow ordinary mathematical reasoning, both in words 

and in formulas, line by line, without changing the roles which arguments, 

definitions, abbreviations, theorems, lemmas play in the original text, and 

without replacing the usual human verification by an essentially different 

process. 

On the other hand the project was quite pretentious, claiming that is 

could practice what it preached. It claimed that formalization and verifica­

tion could really be carried out for substantial portions of mathematics, 

with a language more closely resembling intuitive mathematics then other pres­

ent day formalizations, and fit for describing a large variety of concepts 

and situations. 

In order to substantiate this claim, and to acquire experience, it was 

decided in 1968 to undertake the translation of a complete book, for which 

Landau's "Grundlagen der Analysis" were chosen. L.S. Jutting, the first col­

laborator on the project, would be the one to carry out this task. 

The work, including machine verification, was finished in September 

1975. The complete text is presented in a 500 page report (L.S. Jutting, A 

translation of Landau's "Grundlagen" in AUTOMATH). Some fragments are repro­

duced here (appendices 3, 4 and 7). 

The present book intends to render an account of the translation. It 

reports on the difficulties that were encounteredandthewaytheseweretaken 

care of. It also describes the nature of AUTOMATH and its usage. Moreover, 

by permission of D.T. van Daalen, his paper on the formal definition of the 

language is reprinted here (appendix 1). What this book does not show much 

of is Mr. Juttings persistence in carrying this job to its end. Whether this 

work is important or interesting arematters of opinion and taste, but it is 

hard to deny that it has a certain historic value: never before has a sub­

stantial piece of mathematics been presented on a comparable level of com­

pleteness and precision. 





0. INTRODUCTION 

In this chapter a brief description of the AUTOMATH project is given, 

and the place of the present work within this project is indicated. 

0.0. The AUTOMATH languages 

The languages of the AUTOMATH family are formal languages, in which 

large parts of mathematics can be efficiently formalized. Texts in these 

languages can be checked mechanically (i.e. by a computer). A text is veri­

fied line by line, and the checking does not only cover syntactical correct­

ness of the expressions occurring in a line, but also its mathematical valid­

ity, which includes the correctness of references to previous lines. Correct 

AUTOMATH texts may thereforebeinterpreted*) to represent correct mathematics. 

The structure of these languages, based on natural deduction, is close­

ly related to the structure of common intuitive reasoning. Hence mathemati­

cal discourses in an informal language can be translated into an AUTOMATH 

language without too much trouble. 

At the moment a number of mutually related languages exist satisfying 

the above specifications. For several of these languages, verifying computer 

programs are currently operational; for others, such programs are still in 

an experimental stage. 

0.1. The AUTOMATH project and its motivation 

The object of the AUTOMATH project has been to develop languages as 

described above, and to make verifying computer programs for these languages. 

It was initiated some ten years ago by N.G. de Bruijn, who also conceived 

the fundamentals of the AUTOMATH languages. Since then a number of mathema­

ticians have been working on the project, providing AUTOMATH with a language 

theory, writing verifying programs for AUTOMATH languages, producing texts 

in these languages, and applying the verifying programs to these texts. 

There were several reasons for initiating such a project, of which we 

mention the following: 

*) In discussing an AUTOMATH text I will call the intended meaning (in for­

mal or informal mathematics) of this text its interpretation, and I will say 

that this meaning is represented in the AUTOMATH text. 
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i) Mechanical verification will increase the reliability of certain kinds 

of proofs. A need for this may be felt where a proof is extremely long, 

complicated and tedious, and where it is difficult to break it down in­

to intuitively plausible partial results, or where in proofs results of 

others are used, so that misinterpretations become possible. 

ii) Mechanically verifiable languages set a standard by which informal lan­

guag.e may be measured, and may thereby have an influence on the use of 

language in mathematics generally. 

iii) The use of such languages gives an insight into the structure of mathe­

matical texts, and makes it possible to compare the complexity, in se­

veral respects, of mathematical concepts and proofs, As a consequence 

projects of this kind may have in the long run a favourable influence 

on the teaching of mathematics. 

A further motive, for the author, was that the work involved in the 

project appealed to him. 

More information on the AUTOMATH project, its objectives, motivation 

and history can be found in [dB]. 

0.2. The book translated 

At an early stage of the AUTOMATH project the need was felt to trans­

late an existing mathematical text into an AUTOMATH language, first, in or­

der to acquire experience in the use of such a language, and secondly, to 

investigate to what extent mathematics could be represented in AUTOMATH in 

a natural way, 

As a text to be translated, the book "Grundlagen der Analysis" by 

E. Landau [L] was chosen. This book seemed a good choice for a number of 

reasons: it does not presuppose any mathematical theory, and it is written 

clearly, with much detail and with a rather constant degree of precision. 

For a short description of the contents of Landau's book see 2.0. 

0.3. The language of the translation 

The language into which Landau's book has been translated is AUT-QE. 

A detailed description and a formal definition of this language is given in 

[vD]. As this paper is fundamental to the following monograph and not easi­

ly obtainable, it has been added as appendix .1. I will use the notations 

introduced there whenever necessary. Where in the following text a concept 



introduced in [vD] is used for the first time, it will be displayed in 

italics, with a reference to the section in [vD] where it occurs. 
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The language of the translation differs from the definition in [vD] in 

one respect, viz. the division of the text into paragraphs [vD, 2.16], By 

this device the strict rule that all aonstants [vD, 2.6, 5.4.1] in an AUT-QE 

book [vD, 2.13.1, 5.4.4] should be different is weakened to the more liberal 

rule that all constants in one paragraph have to differ. Now, in a line [vD, 

2.13, 5.4.4], reference to constants defined in the paragraph containing 

that line is as usual, while reference to constants defined in other para­

graphs is possible by a suitable reference system. For a more detailed de­

scription of the system of paragraphing, see appendix 2. 

In contravention of the rules for the shape and use of names in AUT-QE, 

we will in examples in the following text not restrict ourselves to alpha­

numeric symbols, and occasionally we·use infix symbols. (Of course, in the 

actual translation of Landau's book, these deviations from proper AUT-QE do 

not occur.) 
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1. PREPARATION 

In this chapter the logic which Landau presupposes is analysed and its 

representation in AUT-QE is described. 

1.0. The presupposed logic 

In his "Vorwort fur den Lernenden" Landau states: "Ich setze logisches 

Denken und die deutsche Sprache als bekannt voraus". Clearly, in the trans­

lation AUT-QE should be substituted for "die deutsche Sprache". The proper 

interpretation of "logisches denken" must be inferred from Landau's use of 

logic in his text. 

This appears to be a kind of informal second (or higher) order predi­

cate logic with equality. In the following some characteristics of Landau's 

logic will be discussed, and illustrated by quotations from his text. 

i) Variables have well defined ranges which are not too different from 

types [vD, 2.2] in AUT-QE. Cf.: 

- On the first page of "Kapitel 1": "Kleine lateinische Buchstaben be­

deuten in diesem Buch, wenn nichts anderes gesagt wird, durchweg na­

turliche Zahlen". 

- In "Kapitel 2, § 5": Grosze lateinische Buchstaben bedeuten durchweg, 

wenn nichts anderes gesagt wird, rationale Zahlen". 

ii) Predicates have restricted domains, which again can be interpreted as 

types in AUT-QE. Cf.: 

"Satz 9: Sind x und y gegeben, so liegt genau eine der Falle vor: 

1) X = Y• 

2) Esgibteinumitx=y+u ... " etc. 

It is clear that u (being a lower case letter) is a natural number, 

or u E nat. 
- "Definition 28: Eine Menge von rationalen Zahlen heiszt ein Schnitt, 

wenn .. . ". 

Here it is apparent that being a "Schnitt" is a predicate on the type 

of sets of rational numbers. 

iii) When, for a predicate P, it has been shown that a unique x exists for 

which P holds, then "the x such that P" is an object. Cf,: 

- "Satz 4, zugleich Definition 1: Auf genau eine Art laszt sich jedem 

Zahlenpaar x,y eine naturliche Zahl, x +y genannt, so zuordnen. 

dasz. • • • x + y heiszt die Summe von x und y". 



"Satz 101: Ist X > Y so hat Y + U = X genau eine L6sung U. 

Definition 23: Dies U heiszt X -Y". 
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iv) The theory of equivalence classes modulo a given equivalence relation, 

whereby such classes are considered as new objects, is presupposed by 

Landau. Cf. : 

- The text preceding "Satz 40": "Auf Grund der Satze 37 bis 39 zerfal-

len alle Bruche in Klassen, so 

x1 Y1 

x1 Y1 
dasz - ~ - dann und nur dann, wenn 

x2 Y2 
- und - derselben Klasse angeh6ren" • 
x2 Y2 

- "Definition 16: Unter eine rationale Zahl versteht mann die Menge 

aller einem festen Bruch aquivalenten Bruche (also eine Klasse im 

Sinne des § 1) ". 

v) The concepts "function" and "bijective function" are vaguely described, 

Cf,: 

- "Satz 4" (see iii) above) . 

"Satz 274: Ist x < y so k6nnen diem s x nicht auf die n Sy einein­

deutig bezogen werden". 

"Satz 275: Es sei x fest, f(n) furn s x definiert. Dann gibt es ge­

nau ein furn S x definiertes gx(n) mit folgenden Eigenschaften ••• " 

followed by the "explanation": "Unter definiert verstehe ich: als 

komplexe Zahl definiert". This explanation might be interpreted to 

indicate the typing of the functions f and g. 

vi) Landau defines and uses partial functions. Cf,: 

- "Definition 14: Das beim Beweise des Satzes 67 konstruierte spezielle 

u1 x1 Y1 11 

- heiszt - •.•• Here 
u2 x2 Y2 x1 
finition, only applies if 

the construction, and therefore the de­

Y1 
>-. 

x2 Y2 
- "Definition 56: Das Y des Satzes 204 heiszt; This definition de-

pends upon the assumption H # 0. 

- "Definition 71", where Landau states explicitly: "Nicht definiert 

ist xn also lediglich fur x = O, n s O". 

- "Satz 155: Beweis: II) Aus X > Y folgt X 

- "Satz 240: Ist y # 0 so 

"Satz 291: Es sei n > 0 
n n 

= x1 .x2 

ist ~. y = x". 
y 

oder x 1 # O, x 2 

(X -Y) + Y". 
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In these last three examples we see "generalized impliaations": the 

terms occurring in the consequent are meaningful only if the antece­

dent is taken to be true. A similar situation will be encountered in 

vii). 

vii) Definitions by cases, sometimes of a complicated nature, are used. 

Cf.: 

- "Definition 52: 

-(IE I + IHI) wenn - < o, H < 0, 

IE I -
Jal 1 t > IHI. 

0 wenn - > o, H < o, IE I IHI. 

- + H -(IHI IE I) IE I < IHI. 

H + E wenn - < o, H > 0. 

H wenn - o. 
- wenn H O". 

- "Definition 71: 

n 
JI X wenn n > O. 

k=l 
n 

1 'F o, o. X wenn X n 

1 
'F o, o. N wenn x n < 

X 

Notice that in these two definitions, in some of the cases the defin­

iens is not defined when the corresponding condition does not hold, 

("generalized definition by aases"), and also that, in some cases, 

there is in the definiens a reference to the definiendum. 

viii) In his text Landau only occasionally mentions predicates and relations; 

usually he refers to sets. Cf.: 

- "Axiom 5: Es sei M eine Menge naturlicher Zahlen mit den Eigenschaf­

ten: 

I) 1 gehort zu M. 

II) Wenn x zu M gehort, so gehort x' zu M. 

Dann umfaszt Malle naturlichen Zahlen". 

- "Satz 2: x' ,- x. Beweis: M sei die Menge der x, fur die dies gilt,.". 

However, in the text preceding "Definition 26": 

- "Da =, >, <, Summe und Produkt den alten Begriffen entsprechen ... ". 
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ix) Landau considers (ordered) pairs of objects. In chapter 2 the compo­

nents of such pairs remain clearly visible in their names: he does not 

refer to "the pair x with components x1 and x/', but only to "the pair 

x 1 ,x2". Nevertheless it is clear from his words that he considers such 

a pair as one object. Cf,: 
xl 

- "Definition 7: Unter einem Bruch - versteht man das Paar der natur­
x2 

lichen Zahlen x 1 ,x2 (in dieser Reihenfolge)". 

xl Y1 
- "Definition 8: - ~ - wenn x y = y x " x2 y2 1 2 1 2 

In chapter 5 however, variables for pairs are used. Cf.: 

- "Definition 57: Eine komplexe Zahl ist ein Paar reeller Zahlen :: 1 ,:: 2 
(in bestimmter Reihenfolge). Wir bezeichnen die komplexe Zahl mit 

[=1 • =2]". 

This definition is immediately followed by 

- "Kleine deutsche Buchstaben bedeuten durchweg komplexe Zahlen". 

The two notations are linked in the following way: 

- "Definition 60: Ist x = [E1 ,E 2], y = [H1,e2J, so ist 

X + y = [::1 + ::2,Hl + H2]". 

x) Finally it should be pointed out that some of Landau's proofs and re­

marks tend to a kind of intuitive reasoning which is not easily represent­

ed in a formal system. 

A first example of this is the treatment of equality in "Kapitel 1, 

§ 1". 

- "Ist x gegeben und y gegeben, so sind entweder x und y dieselbe Zahl; 

das kann man auch x = y schreiben; oder x und y nicht dieselbe Zahl; 

das kann men auch x f y schreiben, 

Hiernach gilt aus rein logischen Grunden: 

1) x = x fur jedes x. 

2) Aus x y folgt y = x. 

3) Aus x y, y = z folgt x = z". 

Here it seems that Landau derives the properties of equality from re­

flection on the properties of a mathematical structure. They are not 

theorems or axioms but intuitively true statements, Substitutivity of 

equal objects, though used frequently in the proofs of subsequent theo­

rems, is never mentioned. 

Other examples of proofs with intuitive components may be found where 

Landa~, in a glance, takes in a complex logical situation, Cf.: 



8 

- "Satz 16: Aus x ~ y, y < z oder x < y, y ~ z folgt x'< z. Beweis: 

Mit dem Gleichheitszeichen in der Voraussetzung klar; sonst durch 

Satz 15 erledigt". 

- "Satz 20: Aus x + z > y + z bzw. x + z 

folgt x > y bzw. x = y bzw. x < y. 

y + z bzw. x + z < y + z 

Beweis: Folgt aus Satz 19 da die drei Falle beide Male sich aus-

schlieszen und alle M6glichkeiten erschopfen". 

A somewhat different example, which involves what might be called 

"metalogic", is the text preceding "Definition 26", where it is indi­

cated how a number of theorems might be proved, without actually prov­

ing them. I will return to this in 2.1 viii), 

1.1. The representation of logic in AUT-QE 

The logic considered by Landau to be "logisches Denken", as described 

in the previous section, has been formalized in the first part of the 

AUT-QE book, called "preliminaries", which, unlike the other parts, does 

not correspond to an actual chapter of Landau's book. 

A possible way of coding logic in AUT-QE has been described in [vn, 

3,4]. In addition to this description we stress a few points on the inter­

pretation of AUT-QE lines [vn, 2.13, 5.4.4]. Adopting the terminology intro­

duced in [Z] we shall call expressions of the form [x1 ,a1J •.. [xk,ak] ~ 

(with k ~ 0) (i.e. t-expressions of degree 1) it-expressions and ex­

pressions of the form [x1 ,a1] ••• [xk,ak] ~ (again with k ~ 0) 1p-expres­

sions. Expressions having lt- and lp-expressions as their types, will be 

called 2t-expressions and 2p-expressions, respectively. Finally, 3t- and 

3p-expressions have 2t- and 2p-expressions as their types. 

Now a 2t-expression will be used to denote a type (or "class"). If 

its type is an abstraation expression [vn, 2.8, 5,4.2] then it denotes a 

type of functions. A 2p-expression denotes a proposition or a predicate, A 

3t-expression denotes an object (of a certain type) and a 3p-expression a 

proof (of a certain proposition). 

The interpretation of an AUT-QE line having a certain shape (EB-line, 

PN-Zine or abbreviation Zine [vn, 2.13, 5.4.4]) will depend on its aatego­

ry part [vn, 2.13.1] being alt-, lp-, 2t- or 2p-expression. So we arrive 

at the following refinement of the scheme in [vD, 4.5]. 
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Shape of the line: Category-part 

it-expression 1p-expression 2t-expression 2p-expression 

EB-line 

PN-line 

Abbreviation 

line 

introduces 

a type 

variable 

introduces 

a primitive 

type con­

stant 

defines a 

type in 

terms of 

known con­

cepts 

introduces a 

proposition 

or predicate 

variable 

introduces a 

primitive 

proposition 

or predicate 

constant 

defines a 

proposition 

or predicate 

in terms of 

known con­

cepts 

introduces an 

object varia­

ble (of the 

stated type) 

introduces a 

introduces 

the stated 

proposition 

as an assump­

tion 

introduces 

primitive ob- the stated 

ject (of the proposition 

stated type) as an axiom 

defines an 

object (of 

the stated 

type) in 

terms of 

known con­

cepts 

proves the 

stated pro­

position as 

a theorem 

In the above scheme it is apparent that, if the category part of a line is 

a 2p-expression, then the interpretation of that line is an assertion, But 

also if the category part is a 2t-expression a the interpretation has an 

assertional aspecti the line does not only introduce a new name for an ob­

ject (as a variable, or a primitive or defined constant) but also asserts 

that this object has the type a. 

1.2. Account of the PN-lines 

Here I will give a survey of the primitive concepts and axioms (PN­

lines) occurring in the preliminary AUT-QE text. A mechanically produced 

list of these axioms appears as appendix J. In this list the PN-lines appear 

numbered. References in parentheses below will refer to these numbers. 

i) Axioms for contradiction. 

Contradiction is postulated as a primitive proposition (1), the double 

negation law as an axiom (2). 
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ii) Axioms for equality. 

Given a type S, equality is introduced as a primitive relation on S 
(3), with axioms for reflexivity (4) and for substitutivity (5) (i.e. 

if X=y, and if P is a predicate on S which holds at X, then P 
holds at Y ). Moreover there is an axiom stating extensionality for 

functions (8). 

The notion of equality so introduced is called book-equality (cf. [vD, 

3.6]) in contrast to definitional equality of expressions ([vD, 2.12, 

5,5,6]). 

iii) Axioms for individuals. 

Given a type S, a predicate P on S, and a proof that P holds 

at a unique X f S, the object ind (for individual) is a primitive 

object (6), to be interpreted as "the X for which P holds". An 

axiom states that ind satisfies P (7). 

iv) Axioms for subtypes, 

Given a type S and a predicate P on S, the type OT (for own­

type, i.e. the subtype of S associated with P) is a primitive type 

(9), For U E OT we have a primitive object in(u) f S (10), and an 

axiom stating that the function [u,OT]in(u) is injective (12). More­

over there are axioms to the effect that the images under this func­

tion are just those XE S for which P holds ((11) and (12)). 

v) Axioms for products (of types). 

Given types S and T the type pairtype (the type of pairs (X,y) 
with XE S and y f T) is introduced as a primitive type (14). For 

p I pairtype we have the projections first(p) IS and second(p) IT 
as primitive objects ((16) and (17)), and conversely, for XE S and 

y IT we have patr(x,y) as a primitive object in pairtype (15). 

Next there are three axioms stating that pair(first(p),second(p))=p, 
first(pair(x,y))=x and second(pair(x,y))=y (where= refers to book­

equality as introduced in ii)) ( (19), (20) and (21)). 

(Notei If a type U containing just two objects is available, and if 

S is a type, the type of pairs '(X,y) with XE S and Y f S may 

be defined alternatively as the function type [x,UJS. In the trans­

lation this was done at the end of chapter 1, where we took for U 

the subtype of the naturals~ 2. Therefore the pairing axioms as de­

scr;U;led above 'Were not used in the actual translation.) 



11 

vi) Axioms for sets. 

Given a type S, the type set (the type of sets of objects in S) 
is introduced as a primtive type (21), and the element relation as a 

primitive relation (22). Given a predicate P on S, there is a prim­

itive object setof(P) f set (denoting the set of XE S satisfying 

P) (23), and there are two axioms to the effect that P holds at X 

iff X is an element of setof(P) ( (24) and (25)). 

These can be viewed as comprehension axioms for S. (As sets contain 

only objects of one type, such axioms will not give rise to Russell­

type paradoxes.) 

Finally extensionality for sets is stated as an axiom (26). 

The axioms for sets permit "higher-order" reasoning in AUT-QE, since 

quantification over the type set is possible. 

1.3. Development of concepts and theorems in Landau's logic 

Here we give a sketch of the development of the logic in [L] from the 

a~:ioms described in the previous section. 

Starting from the axioms for contradiction, the development of classi­

cal first order predicate calculus is straightforward. In this development 

more then usual attention has been paid to mutual exclusion: 7(A AB), and 

trichotomy: (AV B V C) A (7(A AB) A 7(B AC) A 7(C A A)), because these 

concepts are used frequently by Landau in discussing linear order. 

The properties of equality, e.g. symmetry, transitivity, and substitu­

tivity for functions (i.e. if x=y and f if a function on S then 

f(x)=f(y) ), follow from the axioms for equality. 

The development of the theory of equivalence classes (cf. 1.0 iv)) re­

quires the axioms for subtypes and for sets. It turns out here, when trans­

lating mathematics in AUT-QE, that Landau goes quite far in considering con­

cepts and statements about those concepts to belong to "logisches Denken". 

We had to choose how to describe partial functionsinAUT-QE. As an 

example let us consider the function f on the type rl of the reals, de-

fined for all XE rl for which Xf0 and mapping X to 1/x. There are 

(at least) four reasonable ways to represent f 

i) The range of f may be taken to be rl*, the "extended type" of reals, 

containing, apart from the reals, an object und representing "unde­

fined". In this case <O>f will be (book-equal to) und, and rl 
may be defined as OT(rl*,cx,rl*](XfUnd)). 
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ii) An arbitrary fixed object in rl 
<O>f will be taken to be 0 

0 say, may replace und. Then 

iii) f may be considered as a function on OT(rl,[x,rl]x!O) , the subtype 

of the nonzero reals. 

iv) f may be represented as a function of two variables: an object XE rl 
and a proof pf XFO. So 

f I [x,rlJ[p,x!OJrl 

(Then, given an X such that Xf0, i.e. given an X and a proof p 
that Xf0, we can use <p><X>f to represent 1/x .) 

It is clear that the representations i) and ii) have much in common. 

The representations iii) and iv) are also related: in fact, we may construct, 

by the axioms for subtypes, for given· XE rl and pf x!O an object 

out(x,p) f OT(rl,[x,rlJx!O) . Then, if 

f1 f [x,OT(rl ,[x,rlJx!O)Jrl , 
then 

[x,rlJ[p,x!OJ<out(x,p)>f1 I [x,rlJ[p,x!OJrl 

On the other hand, if 

then 

[x,OT(rl,[x,r1Jx!O)J<OTAx(x)><in(x)>f2 f [x,OT(rl ,[x,rlJx!O)Jrl 

(for brevity some obvious subexpressions in theformulas above have been 

omitted). 

After a careful examination of Landau's language, I have decided that 

the fourth representation is closest to his intention, and have therefore 

adopted it. However this leads to the following difficulty: 

Let, in our example, XE rl and y f rl be given, such that x=y, 
and suppose we have proofs pf (x!O) and q I (y.10) . Now it is not a pri­

ori clear in AUT-QE (though it is clear to Landau), that the corresponding 

values <p><x>f and <q><y>f will be equal. That is: it is not guaranteed 

in the language that the function values for equal arguments will be inde­

pendent of the proofs p and q. 
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This property of partial functions, which is called irrelevance of 

proofs, can be proved for all functions which Landau introduces, When dis­

cussing arbitrary partial functions however, irrelevance of proofs had to 

be assumed in some places (cf. gite below). For a further discussion we re­

fer to 4.0.1. 

As a consequence of the chosen representation of partial functions, 

terms may depend on proofs, and therefore certain propositions are meaning­

ful only if others are true, This gives rise to generalized implications 

(cf. 1.0 vi)) and generalized conjunctions, such as: 

and 
"x > 0 • 1/x > 0" 

11 X > 0 A /x 'f' 2" , 

Logical connectives of this kind have been formalized in the paragraph "r" 

in the preliminary AUT-QE text. 

The definition-by-cases operator ite (short for "if-then-else", cf. 1.0 

vii))) can be defined on the basis of the axioms for individuals. As we 

have seen (1.0 vii)), Landau admits partial functions in such definitions. 

For these cases a "generalized" version of the definition-by-cases operator 

gite (for "generalized if-then-else") is required, which has been defined on­

ly for partial functions satisfying the irrelevance of proofs condition. 

All set theoretical concepts used by Landau (cf, 1,0 viii)) may be de­

fined starting from our axioms for sets. 

The passages in Landau's text which use more or less intuitive reason­

ing (cf. 1.0 x)) could not very well be translated, In the relevant places 

straightforward logical proofs were given, which follow Landau's line of 

thought as closely as possible. 
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2. TRANSLATION 

In this chapter, we discuss the actual translation of Landau's book, 

the difficulties encountered and the way they were overcome (or evaded). 

First, in section 2.0, we give an abstract of Landau's book; then, in sec­

tion 2 .1, a general survey .is give,1 of the various reasons to deviate occa­

sionally from Landau's text. In the following sections we describe the trans­

lation of the chapters 1 to 5 of Landau's book. 

2.0. An abstract of Landau's book 

i) "Kapi tel 1. Naturliche Zahlen". 

Peano's axioms for the natural numbers 1,2,3, .•• are stated. 

"+" is defined as the unique operation satisfying x + 1 = x' and 

x +y' = (x +y) '. Properties of + .(associativity, commutativity) are 

derived. 

Order is defined by x > y := 3u [x = y + u]. It is proved to be a lin­

ear order relation and its connections with+ are derived. "Satz 27" 

states that it is .a well-ordering. 

(multiplication) is defined as the unique operation satisfying 

x.1 = x and x.y' = x.y + x. Properties of"." (commutativity, associa­

tivity) are derived, and also its connections with+ (distributivity) 

and with order. 

ii) "Kapitel 2. Bruche". 

Fractions (i.e. positive fractions) are defined as pairs of natural 

numbers. Equivalence of fractions is defined, and proved to be an equi­

valence relation. 

Order is defined, it is shown to be preserved by equivalence, and to be 

an order relation. Properties are derived (e.g. it is shown that nei­

ther maximal nor minimal fractions exist, and that the set of fractions 

is dense in itself). 

Addition and multiplication are defined, and proved to be consistent 

with equivalence. Their basic properties and interconnections are de­

rived, and their connections with order are shown. Also subtraction and 

division are defined. 

Rationals (i.e. positive rational numbers) are defined as equivalence 

classes of fractions. Order, addition and multiplication are carried 

over to the rationals, and their various properties are proved. Final­

ly the natural numbers are embedded, and the order in the rationals is 

shown to be archimedean. 
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iii) "Kapi tel 3. Schni tte". 

Cuts in the positive rationals are defined. 

For these cuts, order, addition (with subtraction), and multiplication 

(with division), are defined, and again the various properties and in­

terconnections of these concepts are proved, 

The rationals are embedded, and the set of rationals is proved to be 

dense in the set of cuts. Finally the existence of irrational numbers 

is proved, by introducing fi as an example. 

iv) "Kapitel 4. Reelle Zahlen". 

The cuts are now identified with the positive real numbers, and to 

these the real number 0 and the negative reals are adjoined, in such a 

way that to every positive real there corresponds a unique negative 

real. 

The absolute value of a real number is defined. Order is defined, its 

properties are derived, and the predicates "rational" and "integral" 

("ganz") are defined on the reals. 

Now addition and multiplication are defined, and their properties and their 

connections with each other, with absolute value and with order are de­

rived. In particular the minus operator (associating to each real its 

additive inverse) is discussed, as well as subtraction and division. 

Finally, in the "Dedekindsche Hauptsatz", Dedekind-completeness of the 

order in the reals is proved. 

v) "Kapi tel 5. Komplexe Zahlen". 

Complex numbers are defined as pairs of reals. 

Addition, multiplication, subtraction and division, their properties 

and interconnections are discussed. 

To each complex number is associated its conjugate, and also (follow­

ing the definition of the square root of a nonnegative real) its modu­

lus (as a real number). The connections of these two concepts with each 

other and with the previously introduced operations are derived. 

For an associative and commutative operator* (which may be interpreted 

as either+ or.), and for an n-tuple of complex numbers f(l), •• ,f(n), 

Landau denotes 

n 
f(l) * f(2) * ••. * f(n) by :r f(i) • 

i=l 

This concept is defined as the value at n of the unique function g 

(with domain {1,2, ••• ,n}) for which g(l) = f(l) and g(i') =g(i) *f(i') 
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for i < n. The properties of 1 are proved in particular, for any per­

mutationsof{l,2, .... n} it is proved that 

n 
1 f (i) 

i=l 

n 
1 f(s(i)) • 

i=l 

The definition of 1 is extended to n-tuples f (y) , f (y + 1) , •• , f (y + n - 1) 

(where y is an integer), and its properties are carried over to this 

situation.Eis defined as the specialization of 1 to the operation+, 

and TI as its specialization 

E and TI are proved. 

(multiplication). Some properties of 

For a complex number x and an integer n, with x f O or n > O, xn is de-

fined, and its properties and connections with previously defined con­

cepts are discussed. 

Finally the reals are embedded in the set of complex numbers, the num­

ber i is defined, it is proved that i 2 = -1, and that each complex num­

ber may be uniquely represented as a +bi with a,b real. 

2.1. Deviations from Landau's text 

In our translation, deviations from Landau's text appear occasionally. 

They may be classified as follows: 

i) In some cases a direct translation of Landau's proofs seems a bit too 

complicated. we list three reasons for this. 

a) Sometimes it is due to the structure of AUT-QE which does not quite 

agree with the proof Landau gives. E.g. in the proof of "Satz 6" 

Landau applies, for fixed y, induction with respect to x. As 

X f. nat, y f. nat is a common context in the translation, it is 

easier there to apply, for fixed X, induction with respect toy 

b) Sometimes the reason is that Landau uses a unifying argument. E.g. 

in the proof of the "Dedekindsche Hauptsatz" there are, at a certain 

stage, two real numbers 3 and H, such that 3 > 0 and 3 > H. Here 

Landau needs a rational number Z, such that 3 > Z > H, Now it has 

been proved in "Satz 159" that between any two positive reals there 

is a rational. If H > O this may be applied immediately. If H $ 0 

Landau defines B1 1 ~ 1 and again applies "Satz 159", this time 

with H1 • 

This argument howe,10:c is complicated, because, to apply "Satz 159", 

first O < B1 < 5 ha.s to be proved (which Landau fails to do) . And it 
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is superfluous because every Zin the cut_ will meet the conditions 

in this case. 

c) In one instance (the proof of "Satz 27"), Landau has given a com-

plex proof, which may be simplified. 

In all these cases I have, in the translation, given a proof which fol­

lows Landau's line of reasoning. However, in some cases, I have also 

given shorter alternative proofs. This means that the deviations are 

optional in these cases. 

ii) Some of Landau's "Satze" really consist of two or three theorems. 

E.g. "Satz 16: Aus x Sy, y < z oder x < y, y s z folgt x < z". In such 

cases the theorem has been split up: "Satz 16a: Aus x Sy, y < z folgt 

x < z", "Satz 16b: Aus x < y, y S z folgt x < z". 

iii) Very frequently Landau uses without notice a number of more or less 

trivial corollaries of a theorem he has proved. E.g. besides "Satz 93: 

(X + Y) + Z = X + (Y + Z)" he uses "X + (Y + Z) = (X + Y) + Z" without 

quoting "Satz 79". Sometimes such a practice is explicitly announced, 

e.g. in the "Vorbemerkung" to "Satz 15", where it is stated that, with 

any property derived for<, the corresponding property for> shall be 

used. In all such cases the corollaries have been formulated and proved 

after the theorems. 

iv) Following the translation of the definition of a concept, we oftenadd­

ed the specialization to this concept of certain general properties. 

E.g. after the introduction of+, substitutivity of equality 

was applied: "If X y then X + z y + z and z + X z + y. If X = y 

and z = u then x + z = y + u". This was done in order to make later ap­

plications easier. 

v) In a few proofs of the last three chapters minor changes were made. 

E.g. in the proof of "Satz 145", where Landau states: "Aus I; > 17 folgt 

nach Satz 140 bei passendem u , 17 + u" but where, by "Definition 

35" u can be defined explicitly by 0 := I; - 17. This has been done in 

the translation, thus avoiding the superfluous existence elimination. 

Another deviation occurs in the proof of "Satz 284". Here Landau writes 

the following chain of equalities: 

( (u + 1) -y) + (x - u) (x+(-u)) + ((u+l) + (-y)) = 

(x+ ((-u) + (u+l))) + (-y) = (x+l) -y 

As in the proof the equality 

((u+l) -y) + ((x+l) - (u+l)) (x+l) - y 
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was needed, the following chain of equations was preferred in the 

translation: 

((u+l) -y) + ((x+l) - (u+l)) = ((x+l) - (u+l)) + ((u+l) -y) 

= (((x+l) - (u+l)) + (u+l)) -y = (x+l) -y 

vi) As we have seen in 1.0 vii) Landau formulates Peano's fifth axiom in 

terms of sets, and, when applying it, always represents a predicate as 

a set. In the translation this extra step has been avoided. The induc­

tion axiom is indeed introduced for sets, but then immediately a lemma, 

called induction, which applies to predicates is proved. This lemma 

has been used systematically in all proofs by induction. 

Also "Satz 27: In jeder nicht leeren Menge naturlicher Zahlen gibt es 

eine kleinste" has been reworded and proved in terms of predicates and 

not of "Mengen". 

vii) "Intuitive arguments" of Landau were translated in various ways. E.g. 

"Satz 20: Aus x + z > y + z bzw. x + z = y + z bzw. x + z < y + z 

folgt X > y bzw. x y bzw. x < y. 

Beweis: Folgt aus Satz 19 da die drie Falle beide Male sich ausschlies­

zen und alle Moglichkeiten erschopfen" (where "Satz 19" asserts the 

inverse implications). 

Considering the fact that Landau regards this proof as belonging to 

"logisches Denken", I have proved in the preliminaries three "logical" 

theorems to the effect that: 

If AV B V c, 7(D A E), 7(E AF), 7(F AD) and A~ D, B ~ E, C ~ F, 

then D ~ A, E ~Band F ~ C. 

These theorems were used in the translation. 

A second example: "Satz 17: Aus x $ y, y $ z folgt x $ z. 

Beweis: Mit zwei Gleichheitszeichen in der Voraussetzung klar; sonst 

durch Satz 16 erledigt" ("Satz 16" is quoted above under ii)). Here the 

AUT-QE text, when translated back into German, might read: 

"Beweis: Es sei x = y. Dann ist, wenn y = z, auch x = z also x $ z. 

Wenn aber y < z so ist x < z nach Satz 16a, also ebenfalls x $ z. 

Nehme jetzt an x < y. Dann folgt aus Satz 16b x < z, also auch in die­

sem Fall x $ z. Deshalb ist jedenfalls x $ z". 

Another argument which is difficult to translate faithfully occurs in 

"Kapitel 5, § 8" where sums and products are introduced. Landau uses 

here a symbol which he intends to represent either"+" or".", and in 

this way defines"):" and "II" simultaneously. In our translation we de-
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fined iteration for arbitrary commutative and associative operators, 

and consequently our concept and the relevant theorems are essential­

ly stronger than Landau's. This generality is much easier to describe 

in AUT-QE then a theory which applies only to"+" and".". 

viii) Landau uses metatheorems whenever he embeds one structure into anoth­

er, to show that the properties proved for the old structure "carry 

over" to the new. As an example I cite his treatment in chapter 2 of 

the embedding of the natural numbers into the (positive) rationals. 

"Satz 111: Aus ~> f bzw. ~~ f bzw. ~< 1. 
1 1 1 1 

folgt X > y bzw. X = y bzw. X < y". 

"Definition 25: Eine rationale Zahl heiszt ganz, wenn unter den Bru-
x 

chen, deren Gesamtheit sie ±st, ein Bruch 1 vorkommt". 

"Dies x ist nach Satz 111 eindeutig bestimmt, und umgekehrt entspricht 

jedem x genau eine ganze Zahl".· 

"Satz 112: x + 1. ~ ~ ~ 1. ~ :!.:.1- 11 I 1 1 '1·1 1 
"Satz 113: Die ganzen Zahlen genugen den funf Axiomen der natii.rlichen 

Zahlen, wenn die Klasse von Tan Stelle von 1 genommen wird, und als 
X X 1 

Nachfolger der Klasse von 1 die Klasse von T angesehen wird". 

Landau adds the following comment: 

"Da =, >, <, Summe und Produkt (nach Satz 111 und 112) den alten Be­

griffen entsprechen, haben die ganzen Zahlen alle Eigenschaften die 

wir in Kapitel 1 fur die nati.irlichen Zahlen bewiesen haben". 

It was difficult to translate this text. The translation requires 

first a careful analysis of the interpretation of Peano's axioms in 

chapter 1. There are two possibilities: 

In the first interpretation, the axioms describe fundamental proper­

ties of the given system of naturals (nat, 1, sue), which cannot be 

proved from more primitive properties, and from which all other prop­

erties of the system can be derived. In this conception there is an 

intention to characterize the structure by the axioms. 

In the second interpretation, the axioms are simply assumptions under­

lying a certain theory. The theorems of the theory are valid in any 

structure in which these assumptions hold. In this view, no claim is 

made that the axioms characterize the system. 

The difference between these two conceptions can be illustrated by 

comparing the role of the axioms in Euclid's geometry to the role of 

the axioms for groups in group theory. 
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The interpretation of "Satz 113" and Landau's comment varies according 

to the interpretation of the Peano axioms. In the first interpretation 

the "ganzen rationalen Zahlen" form a structure (nat*, 1*, sue*) which 

"happens to" have the same fundamental properties as the original struc­

ture (nat, 1, sue). Hence, by a suitable metatheorem, we see that the 

reasoning of chapter 1 may be repeated for this new structure, extend-
* * * * * * ing it to (nat, 1 , sue,+, • , <) and proving the various proper-

ties of this extended system. 

In the second interpretation "Satz 113" just proves that the structure 
* * * (nat, 1 , sue) satisfies the assumptions. After this the theory of 

chapter 1 can be applied immediately. 

However there is a further problem (under either interpretation): ad­

* dition on nat defined according to the method of chapter 1 is not (de-

* finitionally) the same thing as the restriction (to nat) of the addi-

tion on the rationals and these two functions must still be proved to 

be (extensionally) equal. Similar remarks can be made about multipli­

cation and order. 

It follows that the relevant text cannot be rendered directly in AUT-QE 

under either interpretation of Peano's axioms. There is, therefore, no 

technical reason to prefer one of these interpretations to the other. 

Landau's ideas on the role of the axioms are not quite clear from his 

text. We cite some of his statements: 

- In his "Vorwort fur den Kenner" he mentions certain laws on the reals 

which can be "als Axiome postuliert". 

- He thinks it right, that the student should learn "auf welchen als 

Axiomen angenommenen Grundtatsachen sich luckenlos die Analysis auf­

baut". 

- Moreover: "In dieser (Vorlesung) gelange ich, von den Peanoschen 

Axiomen der naturlichen Zahlen ausgehend, bis zur Theorie der reel­

len Zahlen". 

- In chapter 1: "Wir nehmen als gegeben an: 

Eine Menge, d.h. Gesamtheit, von Dingen, naturliche Zahlen genannt, 

mit den nachher aufzuzahlenden Eigenschaften, Axiome genannt". 

- "Von der Menge der naturlichen Zahlen nehmen wir nun an, dasz sie 

die Eigenschaften hat ••• ". 

- A relevant passage is also "Satz 113" quoted above. 

- Landau never mentions "a system of naturals", like in group theory 

one would discuss "a group", but always "die naturlichen Zahlen". 
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Most of the sentences quoted above point to the second interpretation, 

some of them however could be interpreted better or equally well in 

the first way. 

Now, as neither technical reasons nor Landau's text indicated definite­

ly how Peano's axioms should be interpreted, I decided to interpret 

them as postulates (PN-lines) rather then assumptions (EB-lines) be­

cause it suited my own conception of the naturals. Moreover this inter­

pretation reduces the context and thereby simplifies verification, 

The meta-reasoning sketched above has been treated as follows. After 

the proof of "Satz 113" the proofs of "Satz 1" and "Satz 4" (where ad­

dition is introduced) were copied for the "ganzen Zahlen". However ad­

dition on the "ganzen Zahlen" has been defined as the restriction of 

addition on the rationals. Then a number of theorems from "Kapitel 1" 

where proved using "Satz 112". Order and multiplication were treated 

in a similar way. These texts have been inserted as a matter of 

prestige because we claimed that we were able to say everything Landau 

says. The insertions were never used however (cf. ix) below). 

In "Kapitel 3, § 5" and "Kapitel 5, § 10" similar arguments occur, 

when the rationals are embedded in the reals, and the reals in the 

complex numbers. These arguments were "translated" just by construct­

ing the relevant isomorphisms. This suffices for all applications. 

ix) A consequence of the difficulties described in viii) is a divergence 

between the translation and Landau's book with respect to the use of 

natural numbers in the chapters 3, 4 and 5. After his comment (follow­

ing "Satz 113") that the "ganze Zahlen" have the same properties as 

the "natiirliche Zahlen" Landau continues: 

"Daher werfen wir die natiirlichen Zahlen weg, ersetzen sie durch die 

entsprechenden ganzen Zahlen, und haben fortan (da auch die Briiche 

iiberfliissig werden) in bezug auf das Bisherige nur von rationalen Zah­

len zu reden". 

In the translation I have not followed this course, because, as pointed 

out, it would have been a cumbersome task to prove the properties of 

the "natiirliche Zahlen" for the "ganze Zahlen", and also because it 

would have been inevitable to repeat this procedure with every further 

extension of the number system. Therefore I_have stuck to the "natur­

liche Zahlen" throughout the translation, 
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x) Another important deviation of Landau's text was caused by 

"Definition 43: Wir erschaffen eine neue, von den positiven Zahlen ver­

schiedene Zahl 0. Wir erschaffen ferner Zahlen die von den positiven 

und O verschieden sind, negative genannt, derart, dasz wir jedem s 
(d.h. jeder positiven Zahl) eine negative Zahl zuordnen, die wir -s 
nennen". 

I doubt wether this creative act may be called a "definition". Landau 

considers it a part of "logisches Denken" to form, given sets (or types) 

a and S, the cartesian product ax S, as is clear from chapter 2, It 

might be also considered "logical" to form the disjoint union a E& S. But 

Landau does not mention this, he just "creates" 0 and the negative 

numbers from nothing. 

Moreover I do not see a formal difference between the assertion "1 ist 

eine naturliche Zahl" (which Landau calls an axiom) and the assertion 

"O ist eine reelle Zahl" (which he calls a definition). Neither do I 

see a formal difference between "x' t- 1" and "-st- O". In my opinion 

the limits of "logisches Denken" are exceeded here. 

In agreement with this criticism I have translated this "definition" 

by introducing a number of primitive concepts and axioms (PN-lines). 

The type of real numbers rl is a primitive type. To any cut s real 

numbers p(s) and n(s) are associated, 0 is a primitive real num­

ber,. Next there are axioms to the effect that the functions 

[x,cut]p(x) and [x,cut]n(x) are injective. Now x Erl has the 

property pas (or neg ) if it is in the range of the first (.or the 

second) of these functions. Then there are axioms stating that, for 

x f rl , pos(x), neg(x) and X=O are mutually exclusive, and that 

each XE rl has one of these properties. (In fact Landau does not 

state the latter axiom explicitly.) Starting from these axioms "Kapi­

tel 4" was translated. 

However, as I thought it unsatisfactory to develop the theory of real 

and complex numbers using more than Peano's axioms alone, I have added 

an alternative AUT-QE version of chapter 4, called chapter 4a, where 

the real numbers are defined as equivalence classes of pairs of cuts, 

and where all theorems of Landau's "Kapitel 4" are proved for these al­

ternative reals. The AUT-QE translation of chapter 5 has been checked 

relative to the AUT-QE book consisting of the chapters 1, 2, 3 and 4a. 
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2.2. The translation of "Kapitel 1" 

§ 1. Equality was introduced in the preliminaries (cf. 1.2 ii) and 

1.3). nat is introduced as a primitive type, the Peano axioms as PN-lines 

(cf. 2.1 viii)). Induction is formulated in terms of sets, but immediately 

a lemma on induction, which applies to predicates is proved. This lemma is 

used in the sequel (cf. 2.1 vi)). 

§ 2. -"Satz 4: Auf genau eine Art laszt sich jedem Zahlenpaar x,y eine 

naturliche Zahl, x +y genannt, so zuordnen, dasz ••• " has been translated 

the way it is proved by Landau, viz. "for each XE nat there exists a uni­

que function ff [t,nat]nat such that ••• ". (In fact this theorem might 

have been proved without using extensional equality of functions.) 

After the proof of "Satz 4" we have in the translation 11 corollaries 

and lemma's (cf. 2.1 iii) and 2.1 iv)). To some of these Landau refers ex­

plicitly (in the proof of "Satz 6": "nach dem Konstruktion beim Beweise des 

Satzes 4") but more often they are used implicitly (e.g. in the proofs of 

"Satz 9" and "Satz 24"). 

§ 3. Landau's "Definition 2: Ist x = y + u so ist x > y" is a bit loose 

and requires of course a better formalization. His proof of "Satz 27" is not 

very well organized, and uses indirect reasoning twice. After the transla­

tion of this proof in AUT-QE (36 lines, 458 identifier occurrences) a more 

straightforward proof was given (reducing the length to 23 lines, 264 iden­

tifier occurrences). This alternative proof, translated back into German 

(with "Mengen" instead of predicates, cf. 2.1 vi)), might read as follows: 

"Satz 27: In jeder nicht leeren Menge naturlicher Zahlen gibt es eine klein­

ste•~. 

Beweis: N sei die gegebene Menge, M die Menge der x dies jeder Zahl aus N 

sind. Nehme an es gibt in N keine kleinste. 

1 gehort zu M nach Satz 24. 

Ist x zu M gehorig so ist x s jeder Zahl aus N. x gehort nicht zu N, 

den sonnst ware x kleinste Zahl aus N. Nach Satz 25 ist also jeder ZahlausN 

<? x + 1 , und daher gehort x + 1 zu M. 

M enthalt somit jede nat1lrliche Zahl. 

Wenn aber y zu N gehort, so gehort, wegen y + 1 > y, y+1 nicht zu M, 

gegen das Obige. 

N enthalt also eine kleinste Zahl". 

(The German proofs do not differ too much in length: they contain 139 resp. 

116 words.) 
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.§ 4. The theorems on multiplication and their proofs are very similar 

to those on addition. The remarks made above concerning the translation of 

§ 2 apply here too. 

After the translation of "Kapitel 1", in our AUT-QE text, for each 

x E nat, the type lto(x) of the natural numbers$ Xis defined. Then, 

for an arbitrary type S, the type pairltype(S) is defined to be 

[t,lto (2)JS . It represents the type of pairs (a,b) with a E S 
Its various properties are then derived (cf. 1.2 v)). 

2.3. The translation of "Kapitel 2" 

b E S 

§ 1. Landau defines fractions as ordered pairs. However he does not 

use variables for pairs, but indicates them by their components: 

Y1 
"etc. In the translation X is a variable for fractions, with 

numerator num(x) and denominator den(x) . And to xl E nat, x2 E nat 
is associated the fraction fr(xl,x2) . 

§ 5. The rationals are defined as equivalence classes of fractions. 

The subsequent proofs have all the same structure: in the equivalence clas­

ses representatives are chosen, and the theorems proved for these represen­

tatives are carried over to their classes. (Landau's description of this 

course of reasoning is rather sketchy, e.g.: "Satz 81: .... Beweis: Satz41".) 

In order to translate this practice, four lemmas were proved, cover­

ing the cases where 1, 2, 3 or 4 rationals are involved, and which are used 

throughout the translation of§ 5. 

After the proof of "Satz 112" it is proved (as an extra theorem) that 

for two "ganzen Zahlen" x and y, such that x > y, the difference x - y is 

also "ganz". Landau uses this (without proof) in his proofs of "Satz 162" 

and "Satz 285". 

The translation of "Satz 111", "Definition 25", "Satz 112" and "Satz 

113", with the ensuing text on "throwing away" the naturals, has been exten­

sively discussed already in 2.1 viii). 

2.4. The translation of "Kapitel 3" 

§ 1. The definition of the concept "Schnitt" did not give rise to dif­

ficulties. The type cut is defined as the type of those sets of rationals 

which are cuts. Now, in this definition, there are three properties of cuts 

I; which involve existential quantification: 
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i) I; is not empty: 3x [x EI;]. 

ii) the complement of I; is not empty: 3x [x ¢ /;]. 

iii) I; contains no maximal element: if x EI; then 3y [y EI; A y > x]. 

Therefore, if I; is a cut, then there are three ways to apply existence elim­

ination. Three lemmas to that effect (which Landau uses without notice) 

are stated and proved in the AUT-QE text immediately after the introduction 

of the concept cut. 

Also in other paragraphs in this chapter, when existential quantifica­

tion was used in defining relations (>in§ 2) or objects (I;+ n in§ 3, 

l;.n in 4), a corresponding existence elimination rule was stated and 

proved as a lemma immediately afterwards. 

3. "Satz 132. Bei jedem Schnitt gibt es, wenn A gegeben ist, eine 

Unterzahl X und eine Oberzahl U mit U - X = A" is an example of the use of 

"generalized" logic as described in 1.3. In fact, as U and X are positive 

rationals, the term U - Xis only defined if U > X. That this is the case 

is a consequence of the assumption that U and X are "Oberzahl" resp. "Unter­

zahl" of the same cut E; (i.e. U ¢ I; and X E I;). 

In the proof of "Satz 140" there is a reference to the "Anfang des Be­

weises des Satzes 134". In Landau's Satz-Beweis style this is slightly un­

orthodox. In AUT-QE there is no such objection. The translation of this re­

ference is given in a single AUT-QE line referring to a line in the proof 

of "Satz 140". 

§ 4. Preceding the proof of "Satz 141" there is in the AUT-QE transla-
1 Z 

tion a lemma stating that for rationals X and Z we have X . Z = X . This is 

used without proof by Landau in the proofs of "Satz 141" and "Satz 145". 

5. Embedding the (positive) rationals in the (positive) reals, (i.e. 

in the type cut), gives rise to difficulties as described in 2.1 viii). 

Finally, itisprovedinthe translation (asacorollaryof "Satz 112") 

that, for cuts I; and n which are (embedded) naturals, I;+ n, x.n and (if 

I;> n) I; - n are (embedded) naturals too. These results are used in "Kapi­

tel 5, § 8". 

2.5. The translation of "Kapitel 4" 

§ 1. The first definition of this chapter and its translation have 

been discussed in 2.1 x): Contrary to Landau's intentions, in the transla­

tion the cuts from chapter 3 are not identified with positive reals. This 

is because we want to collect the reals in a single type rl , and because 
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types in AUT-QE are unique. (Accordingly there are in AUT-QE no facilities 

for extending types; we always have to use embeddings instead.) Some proofs 

in this chapter are complicated by this distinction between cuts and posi­

tive reals. 

§ 2. The very complicated definitions by cases in this chapter were 

occasionally slightly modified. E.g.: 

"Definition 44: 

was translated as 

wenn _ 

wenn -

wenn _ 

s 
0 

if = = n(s) 

otherwise 

(here p(sl and n(s) denote the positive and negative reals associated with 

the cut sl. 

§ 3. The translation of "Definition 52" (quoted in 1.0 vii)) was tire­

some (ittook about 180 AUT-QE lines). Equally tedious to translate were the 

proofs of the theorems following this definition ("Satz 175", "Satz 180". 

"Satz 185"). In the proof of "Satz 182" it is left to the reader to check 

the theorem in a number of cases. This task could not be left to a non-hu­

man reader without further instructions. 

In the proof of "Satz 185" the order in which the 11 different cases 

are treated has been altered in the translation. The essence of the proof 

has not been changed, however. 

§ 4. The definition of multiplication, where 6 cases are discerned, 

gave rise to similar difficulties as the definition of addition (it took 

about 110 AUT-QE lines). 

I had some doubts how to interpret 

"Satz 196: Ist 3 # 0, H # 0, so ist 

je nachdem keine oder zwei, bzw. genau eine der Zahlen 3,H negativ sind". 

At first sight this seems to mean: 

a) If - and H are not negative then 3.H = l=I. IHI. 

b) If - and H are negative then 3.H l=I. IHI. 

c) If - not negative, H negative then 3.H -(I= I - IHI). 

d) If - negative, Hnot-negative then 3.H -(I= I - IHI). 
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However, if this meaning is intended the condition = # O, H # O is super­

fluous. Therefore, possibly, the statement is meant to include also 

e) If 3.H l=I .IHI then neither or both of= and Hare negative. 

f) If 3,H -(1=1 .IHI) then= is negative and His not, or His negative 

and = is not. 

Landau's proof ("Beweis: Definition 55") does not give a clue, and in later 

references to the theorem he only uses a), b), c) or d). Nevertheless I have 

formalized proofs of e) and f) in the translation, 

"Satz 194" and "Satz 199" have complicated proofs by cases, which were 

not easy to formalize. 

§ 5, The "Vorbemerkung" to "Satz 205" requires two proofs. Some lemmas 

are needed for the proof of the "Hauptsatz" itself, e.g. it is used that 
1 H 
_. H = 2 (cf. 2,4). No special difficulties arose in proving this important 

theorem. 

2.6. The alternative version of chapter 4 

Our motivation to write another version of chapter 4, called chapter 4a, 

was discussed in 2.1 x). In this chapter the theorems of chapter 4 are 

proved for reals which are defined in a way different from Landau's. Also 

the order in which these theorems appear differs from Landau's order. 

At the end of this chapter the square root of a nonnegative real is 

defined using "Satz 161", and its properties are derived. (This has been 

done by Landau in "Kapi tel 5, § 7") • 

The lengths of the AUT-QE texts of chapter 4 and chapter 4a are about 

equal. 

2.7. The translation of "Kapitel 5" 

The actual translation of this chapter is preceded by a number of lem­

mas. Some of these give properties of division on the reals, implicitly 

used by Landau in the sequel. Further there are lemmas describing the shift 

of a segment of integers y,y+l,y+2, ••• ,x to an initial segment of the natu­

rals 1,2, ••• , (x+l) -y, which serve the translation of § 8. 

The translation of the first seven paragraphs of this chapter was 

straightforward. Preceding the proof of "Satz 221" some lemmas .appear, de­

scribing, fora complex number x, the properties of Re(x) 2 + Im(x) 2 • These 

properties are used by Landau without notice in the proofs of "Satz 221" 
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and "Satz 229" and in the definition of lxl ("Definition 66"). (In my opin­

ion, at least a remark should have been made in this definition, to the ef­

fect that Re(x) 2 + Im(x) 2 ~ 0 for complex x). 

§ 8. The translation of this paragraph was difficult. Landau discusses 

x-tuples of complex numbers in order to define their sums and products. He 

introduces the concept of an x-tuple as follows: "Es sei f(n) fiir n s x de-

finiert", and explains this later on: "Unter "definiert" verstehe ich "als 

komplexe Zahl definiert". After proving some theorems he extends the concept 

to x-tuples indexed by segments of (possibly negative) integers: "In Defini-

tion 70 und Satz 284 bis Satz 286 bezeichnen ausnahmsweise lateinische Buch­

stabenganze (nicht notwendig positive) Zahlen. 

Es sei y S x, f(n) fiir y Sn s x definiert. ••• ". 

There are (at least) three natural ways to represent in AUT-QE the con­

cept of x-tuple indexed by an initial ·segment of the naturals: 

i) f might be considered as a function from the type nat to the type 

CX of complex numbers, of which only the first x values are taken in­

to account. If we take this attitude it should be proved that if f and 

g coincide for n S x then their sums (and products) up to x are equal. 

ii) f might be represented as a function of type [t,nat][u,tsx]cx, i.e. 

as a partial function like those discussed in 1.3. 

iii) f might be considered as a function having as its domain the type 

lto(x) , the subtype of those naturals which ares x. 

All these possibilities have certain advantages. The first one is prob­

ably the easiest one, the second is in better harmony with the rest of our 

AUT-QE translation, the third maybe corresponds better with Landau's inten­

tions. 

The third formalization was finally chosen, but caused quite some trou­

ble because (on account of the unicity of types) numbers of type lto(x) do 

not have also type lto(x+l) 

As to the formalization of x-tuples indexed by segments of the inte­

gers, there was the extra difficulty that the predicate "ganze Zahl" on the 

reals is not thoroughly discussed by Landau. E.g. he does not prove that 

the integers are closed under addition and subtraction, though he uses this 

in the text. 

For this reason it seemed inappropriate to define the type of inte­

gers as a subtype of the reals, and to define fas a (partial) function on 

this type in one of the ways discussed above. 



Therefore we defined f, for fixed integers x and y, as a function of 

type [t,realJ[u,int(t)J[u,y~tsX]CX, i.e. as a partial function on the 

reals (rather like [t,nat][u,tsx]cx, see ii) above). 
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With this formalization of x-tuples (resp. ((x+l)-y)-tuples) the trans­

lation of§ 8 turned out to be laborious. Many rather meaningless embedding 

and lifting functions appear in the proofs. In particular the proof of 

"Satz 283" where it is shown that sums (products) are invariant under per­

mutations of their terms (factors) turned out to be long and tedious. (It 

should be remarked that Landau's proof is long too: 4 pages, 87 lines of 

German text, while the translation needs 365.lines of AUT-QE text.) 

The last two paragraphs did not present difficulties in translating. 
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3. VERIFICATION 

In this chapter the verification of the AUT-QE text is described. Some 

features of the program and the possibility of excerpting are discussed. 

3.0, Verification of the text 

The verification of the AUT-QE translation of Landau's book was execut­

ed on the Burroughs B6700 computer at the Technological University of Eind­

hoven. The last page of the book was checked in September 1975. The whole 

book was checked in a final run on October 18, 1975, The verifying program 

was conceived by N.G. de Bruijn and implemented by I. Zandleven. For a de­

scription of this program we refer to [Zl]. Zandleven also provided the pro­

gram with input and output facilities, and extended it with a conversation­

al mode for on-line checking and correcting of texts. 

The verification took place in three stages: 

i) First the AUT-QE text was fed into the system on a teleprinter, At 

this stage the main syntactical structure of the text was analyzed, It 

was checked, for example, that the format of the lines was as it should 

be, that the bracketing of the expressions was correct, and that noun­

known identifiers occurred. 

ii) Secondly the AUT~QE text was coded, At this stage the correct use of 

the context structure, the validity of variables, the correct use of 

the shorthand facility [vD, 2.15] and of the paragraph reference sys­

tem (cf. appendix 2), were checked. 

iii) Finally the text was checked with respect to all clauses of the langua­

ge definition, At this stage the degrees [vD, 2.3] and types of expres­

sions were calculated, and the correctness of application expressions 

and constant expressions was checked. Vital for this is the verifica­

tion of the definitional equality of certain types (cf, [vD, 2.10], 

[Zl]). 

Runs of the stages ii) and iii) generally claimed much of the comput­

ers (virtual) memory capacity (over6000Kbytes was needed for the program 

together with the coded text). In order to avoid congestion in the multi­

programming system it was therefore necessary to have the program executed 

at night (and off-line). As AUTOMATH texts are checked relative to correct books, 

a mechanical provisional debugging device for off-line checking was implement­

ed, by which lines which were found incorrect could be tentatively repaired. 
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E.g. , when the rrridd7,e paPt [ vD, 2. 13. 1] of a line was found incorrect, the 

debugging device changed it temporarily into PN, thus turning an abbrevia­

tion line into a PN-line. The line so "corrected" was then again checked, 

and, if it was found correct, the lines following could then be checked relative to 

the "corrected" book. By this device it was not necessary to stop the check­

ing immediately after the first error had been found. 

Another feature of the verifying program was added because of the fact 

that proving expressions to be incorrect (especially proving expressions to 

be not definitionally equal) is often more difficult and more time-consum­

ing then proving correctness. Therefore during off-line runs a parameter in 

the program (viz. the number of deaision points, to be explained in 3.1) has 

been limited, and lines were considered provisionally incorrect when this 

limit was exceeded. 

When the later chapters were checked, we reduced the demands on the 

computers memory capacity by abridging the book relative to which the text 

was checked, in the following way: in the chapters which had already been 

found correct, the proofs of theorems and lemmas were omitted, andthefinal 

lines of these proofs (where the theorems and lemmas are asserted) were 

changed into PN-lines. Each time a chapter was completely checked (relative 

to the book so abridged) it was abridged in its turn. 

Texts which are correct relative to the abridged book will be correct 

with respect to the unabridged book too. On the other hand, as in classical 

mathematics there is no reference to proofs but only to assertions, it is 

unlikely thattextswhich are correct relative to the unabridged book will 

be rejected relative to the abridged book. In actual fact this did not 

occur. 

When a chapter, after several off-line runs of the program,wasfound 

to be "nearly correct", the final verification of that chapter took place 

on-line. In such anon-line run the remaining errors could be immediately 

corrected. Moreover correct lines could be verified, which had been provi­

sionally rejected because the number of decision points during verification 

in off-line runs had exceeded the chosen limit. The verification of such 

complicated lines could be shortened by directing (in conversational mode) 

the strategy for establishing definitional equality. 

After all chapters were verified in this way, the integral AUT-QE 

text (complete and unabridged) was checked during a final on-line run, 

which took 2 hours (real time), Of this time 42 min was spent on verifica­

tion (not including the time needed for coding). 
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In a table we list some data on this final run, concerning verification 

time, number of performed reductions and memory occupied 

preliminary chapter chapter chapter chapter chapter chapter complete 

text 1 2 3 4a 5 4 text 

verification time 107 .3 143.1 301.2 342 .4 405. 7 813.1 406.9 2519. 7 

in seconds 

a-reductions 631 752 1077 1455 1644 3393 1533 10485 

S-reductlons 564 832 460 466 414 2749 529 6014 

&-reductions 596 1111 1318 1873 2724 9290 3151 20063 

n-reductions 2 - - - - - - 2 

nr. of lines 1068 886 1603 2181 2779 2690 2226 13433 

nr. of expressions 9388 12155 25792 30327 42067 60450 34959 215138 

Since one coded expression occupies about 30 bytes (mainly used for refer~ 

ences to subexpressions), the total memory required for the coded book is 

about 6500_ K bytes (= 52000 K bits). 

3.1. Controlling the strategy of the program 

In order to establish definitional equality of two expressions, the 

verification system tries to find another expression to which both reduce. 

The choice of efficient reduction steps for this purpose is a matter of 

strategy ([vD, 6.4.1]). The programmed strategy is described in [Zl]. 

Under this strategy it is possible that intermediate results are ob­

tained which strongly suggest a negative answer to the question of defini­

tional equality, without definitely settling it. Suppose, for example, that 

a(p)=a(q) has to be established. The programs strategy is to ascertain 

that the constants a and a are identical and to verify whether p=q 
If this is not the case, there is a strong suggestion that a(p) and a(q) 
are not definitionally equal either, but this is yet uncertain. For example, 

they are definitionally equal relative to the book 

* n .- PN I type 

* p .- PN E n 

* q .- PN E n 

* X .- E n 
X * a .- p E n 

It is a matter of strategy how to proceed in such cases. We may either 

apply a-reduction (in which case the issue will be eventually settled) or 

we may try to continue the verification process without using a(p)=a(q) . 
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Such a situation is called a decision point. In on-line runs the veri­

fication may be controlled here by the human operator. (Actually, in the 

situation sketched above, information will be supplied, and the question 

will appear whether 6-reduction should be tried.) In off-line runs 6-reduc­

tion will be applied in order to get a definite answer to the question, and 

it will be checked that the total number of decision points passed during 

the checking of a line does not exceed the chosen limit (cf. 3.0). 

3.2. A new verifying program 

In appendix 5 two shortcomings of the original verifying program are 

indicated. Due to these shortcomings there was in 1975 no complete (mecha­

nically sustained) certainty that the AUT-QE text was correct. 

Meanwhile on entirely new program has been implemented by I. Zandleven 

and A. Kornaat. In this program clash of variables is impossible because 

the coding system uses a nameless representation of variables (cf. [dB2]). 

Moreover the program is constructed in such a way that its claims on the com­

puter's memory capacity can be kept at an acceptable level, thus avoiding the 

difficulties with on-line runs described in 3.0. 

In April 1977 the whole Landau book was checked by this program, and 

thus the correctness of the AUT-QE text is now mechanically established. We 

present some data on this run: 

preliminary chapter chapter chapter chapter chapter chapter complete 

text 4a text 

verification time 107 ,3 143, 1 301 ,2 342.4 405, 7 813.1 406,9 2519. 7 

in seconds 

a-reductions 631 752 1077 1455 1644 3393 1533 10485 

a-reductions 564 B32 460 466 414 2749 529 6014 

6-reductions 596 1111 1318 1873 2724 9290 3151 20063 

n--:eductions 

no. of lines 1068 886 1603 2181 2779 2690 2226 13433 

no. of expressions 9388 12155 25792 30327 42067 60450 34959 215138 

preliminary chapter chapter chapter chapter chapter chapter complete 

text 4a text 

verification time 196.4 237 .s 538.0 619.9 892.7 1631.6 761.0 4877 .1 

in seconds 

a-reductions 522 728 466 548 462 3636 560 6924 

6-reductions 619 1114 1321 1873 2793 11219 3211 22142 

n-reductions 



34 

The differences in verification time are probably due to the extra effort 

which is put into the organisation of the memory. There are no a-reductions 

since variables are nameless in the coding system of this program. The 

slight differences in the numbers of S- and a-reductions are caused by dif­

ferences in the verification strategies of the two programs. 

3.3. Excerpting 

Let B be an AUT-QE book, i ._e. a finite sequence of lines. A subbook of 

Bis a subsequence of this sequence. A program, called excerpt, is avail­

able which, given a correct book Band a line t of B, produces the minimal 

correct subbook of B containing t. (It is possible to have the line provi­

sionally changed into a PN-line before the subbook is produced.) 

This program will display all co~cepts relevant to the definition of a 

given concept, and all theorems (with their proofs) us.ea (explicitly or im­

plicitly) in the proof of a given theorem. (If the line is first changed in­

to a PN-line, the program will just give the assumptions under which the 

theorem holds, and the concepts necessary to understand its contents.) 

As an example, we give in appendix 4 an excerpted text for "Satz 27". 
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4. CONCLUSIONS 

In this chapter we discuss some possibilities to represent logic in 

AUTOMATE. We indicate some desirable extensions of AUT-68 and AUT-QE, and 

we discuss some aspects (positive as well as negative) of our translation. 

4.0. Formalization of logic in AUTOMATE 

In this section we shall describe various possibilities to represent 

systems of natural deduction in AUT-68 ([vD, 2]), in AUT-QE and in some 

closely related languages. First we discuss two main decisions which have 

to be made when choosing between these possibilities. Then we indicate ex­

plicitly two possibilities to represent logic. 

4.0.0. First order v. higher order 

In most AUTOMATE languages there are certain restrictions on abstrac­

tion. E.g. in AUT-68 as well as in AUT-QE correct abstraction expressions 

have the form [x,a]A where a is a 2-expression (and hence x, having type a, 

is a 3-variable, i.e. a variable which is a 3-expression). 

Such restrictions allow a faithful representation of first order logic 

(in the sense of excluding higher order formulas and inferences). In AUT-68 

as well as in AUT-QE this can be done by representing propositions and pre­

dicates as 2-expressions (as described in [vD, 3]). Then proposition vari­

ables and (in AUT-QE) predicate variables will be 2-variables and abstrac­

tion (or quantification) with respect to such variables is impossible in 

the language. If, in such a setting, we want to discern between proposition 

variables and predicate variables then it is necessary to have abstraction 

expressions of degree 1 in the language, i.e. to use AUT-QE (and not 

AUT-68). 

In order to represent higher order logic we should require the possi­

bility of abstraction with respect to proposition and predicate variables. 

Therefore, if we stick to the abstraction restrictions of AUT-68 or AUT-QE, 

we should represent propositions and predicates by 3-expressions. We may 

proceed in two ways: 

i) we can associate to each proposition a (primitive) type (which we will 

call the assertion type of the proposition). Objects of this type will 

be considered as proofs of the proposition. In other words: we consider 

the proposition as asserted iff its assertion type contains some object. 

This possibility will be elaborated in 4.0.2. 
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ii) we can extend the language to a new language, called AUT-4, by admitting 

4-expressions (having 3-expressions as their types (cf, [vD, 2.3]). Then 

a proposition (represented by a 3-expression) might be considered as as­

serted if it contains something (some 4-expression). Thus propositions 

act as their own assertion types, and the representation of logic is 

just as described in [vD, 3.2], but for a shift with respect to degrees. 

4.0.1. Relevance of proofs v. irrelevance of proofs 

In all representations of logic in AUTOMATH languages which have been 

developed so far, proofs (i.e. names of proofs) appear in the language 

([vD, 3], [dB], [dV]). In this respect these representations reflect a con­

structive conception of logic, in which proofs and objects are treated simi­

larly. 

In a classical conception of logic, proofs are discussed in the meta­

language only. As a consequence it is impossible in such a conception to 

discern (in the language) between different proofs of one proposition. This 

point of view can be roughly represented in AUTOMATH by proclaiming, for any given 

proposition a , aJ.l proofs of a to be equal. This deprives these proofs 

of their identity, their names should be considered only as references to 

the place in the book where the proposition is asserted, This possibility 

has been first suggested by de Bruijn. 

If, in a representation of logic in AUTOMATH, such an attitude is adopt­

ed, we shall say that this representation satisfies irrelevance of proofs. 

(Cf. [Z], and also 1.3). How this irrelevance of proofs is implemented 

(i.e. in which sense proofs are considered "equal") will depend both on the 

language and on the way logic is represented in it (cf. 4.0.3 i) and ii)}. 

4.0.2. A representation of logic in AUT-68 

A higher order system of natural deduction can be formalized in AUT-68 

as follows. 

A type of propositions is introduced as a primitive type: 

* PROP : = PN I ~ 
and to each proposition A its assertion type r(A) is associated: 

*A.-
A*} .- PN 

E PROP 

I~ 
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(In eariier publications on AUT-68, bool and TRUE were used instead of 

PROP and r ). If S is a type, an object Pf [x,SJPROP has to be inter­

preted as a predicate. Objects of type [x,SJr(<x>P) must then be inter­

preted as proving that P holds for every X f S. So we want to introduce 

the proposition V(S,P) which has the property that its assertion type con­

tains elements iff the type [x,SJr(<X>P) contains elements. This is ex-

pressed in the following 

* s .-
s * p .-
p * V .-
p * a .-
a * u .-
u *Ve .-
p * u .-
u * Vi .-

lines: 

PN 

PN 

PN 

f .!le! 
f [x,SJPROP 

E PROP 

E S 

f Hv(S,P)) 

f H <a>P) 

f [x,SJH<x>P) 

f Hv( S,P)) 

Starting from these primitive concepts and axioms, higher order logic can 

be developed. An indication of how this can be done is given in appendix 6, 

where the first three theorems from Landau's book are derived on the basis 

of the logic so developed. 

This logic represents a constructive system of natural deduction. 

Axioms could be added for extensional equality of functions and extensional 

equality of propositions {i.e. if a++ b then a= b). 

Classical logic could be represented this way by adding axioms for ir­

relevance of proofs: 

* A .- E PROP 

A * u .- f 1-(A) 

u * V .- f HA) 
V * irr.pr. .- PN f IS(HA) ,u ,v) 

and for the double negation law: 

A * u .- f H7(7(A))) 

u * d.n. l. .- PN f HA) 
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4.0.3. A representation of logic in AUT-QE 

How logic can be represented in AUT-QE is described in [vD, 3]. This 

system, a first order system of natural deduction, has been used in our 

translation. An indication of the development of logic in it can be found 

in the excerpted text in appendix 7, which covers the proofs of the first 

three theorems of Landau's book and the logic used in these proofs. 

The system is a bit ambivalent, because it is classical (containing the 

double negation law as an axiom) but does not satisfy irrelevance of proofs. 

There are two obvious ways to implement irrelevance of proofs: 

i) by adding an axiom: 

* A .- I .Er.£e. 
A * s .- I~ 
s * t .- E [x,AJS 
t * u .- E A 
u * V .- E A 
V * irr.pr. .- PN f IS(S,<u>t,<v>t) 

That is: if to every proof of A an object of type S is associated, 

then this object is independent of the nature of the proof. It has been 

indicated by J. Zucker that this axiom implies irrelevance of proofs in 

partial functions as mentioned in 1.3: 

* s 
s * T 
T * p 

p * f 
f * a 
a * b 
b * u 
u * V 
V * w 
w * Q 

w * .Q,l 
w * .Q,2 
w * R-3 

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

I~ 
I~ 
I [X 'S].E.!:£E_ 

I [x,SJ[y,<x>PJT 
E S 

E S 

I IS(S,a,b) 
E <a>P 
E <b>P 

[x,SJ[y,<x>PJIS(T,<V><a>f,<y><x>f) f [x,SJ.Er.£e. 
[y,<a>PJirr.pr.(<a>P,T,<a>f,v,y) 
ISP(S,Q,a,b,u,R-1) 

<w>R-2 

I <a>Q 
I <b>Q 
E IS(T,<V><a>f,<w><b>f) 
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ii) by extending, in the language, the relation of definitional equality, 

in such a way that two 3p-expressions (cf. 1.1) are definitionally equal 

iff their types are definitionally equal. This has been done in the lan­

guage AUT-IT (cf. [Z]), but could be done in a variant of AUT-QE as well. 

If we want to formalize intuitionistic logic in AUT-QE we should have 

the absurdity rule (i.e. contradiction implies any proposition) instead of 

the double negation law. The logical connectives (apart from implication) 

and the existential quantifier could be added as primitive constants, and 

their elimination- and introduction rules as axioms. 

4.1. The language 

In this section we discuss some features of AUTOMATH languages, and 

the value of these features for the formalization of mathematics. 

4.1.0. AUT-SYNT 

Consider the following AUT-QE text, representing the introduction rule 

for conjunction: 

* a .- I.l?.!:£E. 
a * b .- I .l?.!:£E. 
b * u .- E a 
u * V .- E b 
V * andi .- f and(a,b) 

.(where the dots indicate some proof which is irrelevant for the present dis-

cussion). we will call the variables a,b,u,v the parameters of andi If we 

want to apply this rule for propositions A and B, we need two proofs p and q 

of the propositions, thus getting the proof andi(A,B,p,q) ~ and(A,B). 

Suppose we are given the proof p, then we can compute mechanically its 

type (Cf., [vD, 6.4.2.3]) which is (definitionally equal to) the proposition 

A it proves. A similar observation holds for q and B. Hence we could say 

that the expression andi(A,B,p,q) contains redundant information. If the 

"mecha:nicaZ type" function CAT ([vD, 6.4.2.3]) were incorporated in the lan­

guage, we could write, instead of the expression above, andi(CAT(p),CAT(q), 

p,q), which only contains p and q. We will call the parameters U and V 

(for which p and q are substituted) the essential, parameters of andi , 
while a and b (for which the redundant expressions A and Bare substituted) 
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are called redundant parameters. There are many other examples of expres­

sions with redundant parameters. 

It is worth while to extend the language in such a way that redundant 

parameters can be avoided, because the expressions which have to be substi­

tuted for them might be long. A system of extensions of this kind has been 

proposed by I. Zandleven. It is called AUT-SYNT since it admits syntaatia 

variables -for expressions. Thus we have the languages AUT-68-SYNT, AUT-QE­

SYNT etc. 

For a description of AUT-SYNT we refer to appendix 9, a text in AUT-

68-SYNT may be found in appendix 8, 

Our experiences with translating Landau's book have been a stimulus 

for developing AUT-SYNT, and have indicated the way this could be done, As 

no verifying program for SYNT languages was available until after the trans­

lation was finished, the SYNT-facility could not be used in the translation. 

This may be considered unfortunate, because the presence of this facility 

would have simplified both the writing and the reading of our text. 

4.1.1. n-reduction in AUTOMATH 

In AUT-68 and AUT-QE one of the possible ways to establish definitional 

equality is by n-reduation ([vD, 6.2.2]): If xis not free in A then 

[x,a]<x>A >n A. As cart be seen in the list in 3, n reduction was applied 

only twice during the verification of our translation, We give the lines 

which required these n-reductions, together with their relevant contexts. 

The following lines from the text on propositional logic are presup­

posed: 

* con .- PN I .e.rE.e. 
* a .- I .e.rE.e. 

a * not .- [x,aJcon I .e.rE.e. 
a * u .- I not(not(a)) 
u * et .- PN E a 
a * u .- E con 
u *cone.- et(a,[x,not(a)Ju) I a 

The first line where n-reduction is required occurs in the text on pre­

dicate logic. In this text the following lines appear: 
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* s .- I!X.I?! 
s * p .- f [x,SJ~ 
p * all .- p I~ 
p * non .- [x,SJnot(<x>P) f [x,SJ~ 
p * u .- f not(all (S,P)) 
U * V .- I non(non(P)) 
V * S .- E S 
s * t1 .- et(<s>P,<s>v) E <S>P 
V * t2 .- <[x,SJtl(x)>u · Econ 

In order to verify that the middle part of this last line is a correct ex­

pression, it should be established that 

We have 

CAT{[x,SJtl{x)) R DOM{u) (Cf. [vD, 6,2.4.6]) , 

CAT{[x,SJtl(x)) = [x,SJCAT(tl(x)) = [x,SJ[s/x]<s>P = [x,SJ<x>P , 

DOM(u) = DOM(not(all (S,P))) = DOM{[x,all (S,P)Jcon) = all (S,P) = P 

The question is to establish 

[x,SJ<x>P RP 
This obviously requires n-reduction. 

The second case in which n-reduction is used occurs in the text on gen­

eralized implication: 

* a .- I~ 
a * b .- f [x,aJ~ 
b * imp .- b I~ 
b * u .- f not(a) 
u * th2 := [x,aJcone(<x>b,<x>u) f imp(a,b) 

Here, in order to verify the last line, it is asked whether the category of 

the middle part definitionally equals the category part, i.e. whether 

Now 

CAT{[x,aJcone(<x>b,<x>y) R imp(a,b) . 

CAT{[x,aJcone(<x>b,<x>u)) = [x,aJCAT(cone(<x>b,<x>u)) =[x,aJ<x>b , 

imp(a,b) = b 

and therefore n-reduction must be used for establishing 
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[x,aJ<x>b g b . 

It has been observed by v. Daalen that n-reduction might have been 

avoided in both cases by a slight modification of the definitions: for all 

(in the first case) and for imp (in the second case). In fact all might 

have been defined by 

p * all .- [x,S]<X>P E .e.!:£E. 

and imp by 

b * imp .- [x,s]<X>b E .e.!:£E. 

This would have made no difference to the rest of the book, apart from the 

fact that in some places an extra $-reduction would have been necessary. In 

fact, if a predicate Pis defined explicitly (as opposed to being a predi­

cate variable or a primitive predicate constant) then P = [y, S]m(y) , say, 

and we have, without n-reduction 

[x,SJ<x>P = [x,SJ<x>[y,SJm(y) = [x,SJ[y/x]m(y) = [x,SJm(x) = P . 

We conclude therefore that n-reduction does not add considerably to 

the expressive power of AUTOMATE. 

4.1.2 • .e.!:£E. v. ~ 

In the stage of exploration of the possibilities to represent logic in 

AUT-QE, initially a variant of this language was used which did not contain 

the 1-expression .E.!::.9.E.. It was therefore impossible to prescribe whether 

types had to be interpreted as assertion types (containing proofs) or "or­

dinary" types (containing "ordinary" objects). 

Contradiction was represented as a primitive type, negation and the dou-­

ble negation law were formalized in terms of this type as follows: 

* con .- PN I !l.E! 
* a .- I~ 

a * not .- [x,aJcon I~ 
a * u .- I not(not(a)) 

u *d.n.l. .- PN E a 

If in this text a is interpreted as an "ordinary" type, nat say, then 

expressions of type not(a) (or [x,a]con) could be interpreted as proofs that 

a is empty (in fact, if we have p I not(a) , then for an object X E a we 

have <X>p to prove contradiction). Hence expressions of type not(not(a)) 
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have to be interpreted as proofs that a is (in a weak sense) nonempty. 

Given such a proof q we have an object d.n.l(a,q) fa . Or, in other 

words: d.n.l acts as a Hilbert operator, selecting an object from any non­

empty type. In particular this induces a form of the axiom of choice. 

As we did not want the double negation law to have such far-reaching 

consequences, we extended the language by admitting prop as a basic 1-

expression_. Thus we obtained the language AUT-QE (as defined in [vD, 5]), 

in which it is possible to distinguish between assertion types and ordinary 

types. 

The distinction of ~ and ~ not only unlinked the double negation 

law from the axiom of choice, but also made it possible to implement irrele­

vance of proofs (cf. 4. 0 .1, 1. 3) . This opportunity was not seized in the log­

ic underlying our translation (though this would have been natural). For 

an explanation we refer to 4.2.0. 

We may conclude that the distinction between proofs and "ordinary" ob­

jects is an essential feature when representing classical logic in AUTOMATE. 

For representing constructive logic the version with only ~ keeps its 

value. 

4.1.3. Strings and telescopes 

In chapter 2 of his book Landau uses pairs (x 1 ,x2 ) .of natural numbers. 

He considers such a pair as a single object and yet he describes it by two 

variables, A faithful translation of this practice could have been given if 

the concept of a string of expressions would have been present in our lan­

guage. 

Another use strings of expressions might have is as arguments of par­

tial functions (as described in 1.3). In fact such functions are applied to 

pairs (a,p) where a is an object of a certain type S, and p a proof 

that a satisfies some predicate P on S (which describes the range of 

the function). 

As a further example we consider the concept of a group, which might 

be considered as a string (S,op,iv,e,p) where Sf~• op f [X,S][y,SJS, 
iv I [x,SJS, e IS and p I groupaxioms(S,op,iv,e) . 

We usually want the types of the expressions of such a string to satis­

fy certain conditions. In the case of the argument (a,p) of partial func­

tion we want a f S, p E <a>P. In other words we want the argument (a,p) 
to be consistent with the "abstractor part" of the function: XE S 
y I <X>P. In the case of the group we want a group (S,op,iv,e,p) to be 
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consistent with 

x I~; y I [s,xJ[t,x]x; z I [s,x]x; u Ix; 

v I groupaxioms(x,y,z,u) 

There is a strong analogy with the case where expressions A1 , ••• ,An are re­

quired to be suitable candidates for substitution for the variables x1 , •• ,xn 

of a certain context x1 _! a 1 ,x2 _! a 2 , ••• ,xn E an (Cf. [vD, 2.5]). 

To describe such conditions on strings we introduce the following ter­

minology. A finite sequence of_! formulas x 1 _! a 1 , ••• ,xn E an is called a 

telescope, The string of expressions (a1 , ••. ,an) is said to fit into the 

telescope x1 _! a 1 , ••• ,xn _! an if a 1 _! a 1 ,a2 ,! [x1/a1]a2 , ••• , 

a E [x1 , ..• ,x 1;a1 , ••• ,a 1]a • 
n - n- n- n 

Extension of the language with constants and variables for strings 

and defined constants for telescopeshasbeen proposed by de Bruijn. This is 

especially helpful when formalizing abstract structures such as groups, 

vector spaces or categories, and has been applied on a large scale by 

J. Zucker (Cf, [z]). 

4.2. Comments on the translation 

In this section we first give a chronological survey of the different 

representations of logic which have been tried, and we state the motives 

for finally choosing AUT-QE as a language for our translation. Furthermore 

we mention some aspects which are (in our opinion) shortcomings of the 

translation and we add some positive conclusions which can be drawn from our 

work. 

4.2.0. Choice of the language 

In our first attempts to translate Landau's "Grundlagen" in AUTOMATE, 

we used the language AUT-68. The representation of logic was similar to the 

one described in 4.0.2 and presented in appendix 6. Elimination and intro­

duction of V were effected by the axioms Ve (with parameters Sf~• 
p I [x,SJPROP, a IS, u f r{V(S,P))) and Vi (with parameters SI~, 
Pf [X,S]PROP, U f [X,S]r{<X>P)), These axioms were used frequently in de­

veloping logic, because the logical connectives and the existential quanti­

fier were defined in terms of V. On the basis of this logic chapter 1 of 

Landau's book was translated in AUT-68. 
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At that stage of our work we started trying to represent logic in 

AUT-QE, initially using a variant of that language which did not contain 

~- In AUT-QE the axioms Vi and Ve were superfluous: if PI [x,SJ~ 

(i.e. P represents a predicate on S) then objects of type P can be 

interpreted as proofs of V(S,P) . Conversely, given such an object U E P 
and an object a ES we have <a>u E <a>P (i.e. <a>u proves that P 
holds at a). As a consequence the text on logic in AUT-QE was considera­

bly shorter then the earlier text in AUT-68. (It was not observed at that 

time, that this was caused essentially by the redundant parameters S and 

P of both constants Ve and Vi .) So AUT-QE seemed to be a much better 

language, and therefore a fresh start was made with the translation of 

Landau's book into that language. In 4.1.2 we have reported that in this 

system (AUT-QE without~) the double negation law induces a Hilbert ope­

rator. This led us to add~ as a basic 1-expression to our language, thus 

extending it to proper AUT-QE. 

At the time we finally fixed the language we did not appreciate the 

fundamental importance of incorporating a form of irrelevance of proofs. 

This was due mainly to two reasons: 

i) Partial functions are not frequently used in the first three chapters 

of Landau's book, and for those partial functions which are defined 

there, irrelevance of proofs could be derived. Therefore no need was 

felt for an axiom. 

ii) As Landau, being a classical mathematician, does not discuss proofs at 

all, we thought we should try to follow this practice. Consequently we 

did not want to have an axiom declaring proofs equal. 

4.2.1. Shortcomings of the translation 

Here I list those features of the translation which I would change if 

I were to redo the work. 

i) In my opinion the SYNT-facility should be present in any AUTOMATH lan­

guage. It will bring texts in AUTOMATH closer to mathematical practice. 

The middle parts of many lines in the present Landau translation are 

unnecessarily complex and tedious (both to the reader and to the writ­

er). because this facility is absent in the language I used. 

ii) I regret that I have not implemented irrelevance of proofs as an axiom. 

As I see it now, for representing classical reasoning a language should 

be chosen which even contains irrelevance of proofs by definitional 
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equality (Cf. 4.0.2). 

iii) Some of the names I have used lack expressive power. This is partly 

due to the fact that AUT-QE admits only alphanumeric identifiers, but 

mainly to my excessive preference for short names. 

iv) I am not content with the translation of chapter 5, § 8. This text is 

overloaded with irrelevant embedding and lifting functions which ham­

per a clear understanding of the argument. I think it is better to de-
n n 

fine I f (i) and JI f(i) for functions f defined for all natural num-
i=l i=l 

bers (and not just on an initial part of the naturals), although this 

procedure deviates slightly from Landau's intentions. 

4.2.2. Final remarks 

The main positive comment we can.make on the translation is that it 

has been succesfully finished (in spite of some inconveniences in the lan­

guage). 

An aspect which has not been mentioned so far is the ratio between the 

length of pieces of AUT-QE text and the length of the corresponding German 

texts, Our claim at the outset was that this ratio can be kept constant. We 

give a few data. As pieces of text we have chosen the chapters of Landau's 

book, and as a measure of the lengths the number of stored AUT-QE expres­

sions (storing expressions requires storing all subexpressions too) and 

(rough estimates of) the number of German words (where "x" and"+" were 

counted as words). We give the following list: 

no. of expressions 

no. of words 

no. of ex,12ressions 
no. of words 

chapter 1 chapter 2 chapter 3 chapter 4 chapter 5 

12200 

3200 

3,8 

25800 

4900 

5,3 

30300 

5300 

5,7 

35000 

5500 

6,4 

60500 

11000 

5,5 

The high ratio in chapter 4 might be attributed to the complicated defini­

tions by cases in this chapter, while the low ratio in chapter 1 is possi­

bly caused by the absence of calculations. 

Another notable aspect of the work is the comparatively small place 

taken by the preliminaries. It appears that a formal treatment of the logic 

underlying mathematics (if we disregard metalogic) is much easier than a 

formal treatment of mathematics itself. 
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It has not been the purpose of this enterprise to construct a formal 

system which suits my own fancy and to develop in this system the theory of 

naturals, reals and complex numbers. I have rather tried to represent in a 

language which was essentially given beforehand, a wide variety of concepts 

and ideas as expressed in a book like Landau's. The success of this under­

taking is due to the flexibility of AUTOMATH languages, and to the close 

connection which can be made between these languages and intuitive human 

reasoning. 
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Appendix 1. REPRINT. Published in the 

Proceedings of the Symposium 

on APL (Paris, December 1973), 

ed. P. Braffort. 

A description of AUTOMATH and some aspects of 

its language theory 

by 

D.T. van Daalen *) 

0. Summary 

This note presents a self-contained introduction into AUTOMATH, a formal 

definition and an overview of the language theory. Thus it can serve as an 

introduction to the papers of L.S. Jutting [7] and I. Zandleven [11] in this 
**) volume . Among the various AUTOMATH languages this paper concentrates on the 

original version AUT-68 (because of its relative simplicity) and one exten­

sion AUT-QE (in which most texts have been written thus far) . 

The contents are: 

1. Introductory remarks. 

2. Informal description of AUT-68. 

3. Mathematics in AUTOMATH: propositions and types. 

4. Extension of AUT-68 to AUT-QE. 

5. A formal definition of AUT-QE. 

6. Some remarks on language theory. 

For a description of the AUTOMATH project and for its motivation we refer 

to Prof. De Bruijn's paper also in this volume [4]. 

*) Th th . 1 . th . d . d b th e au or is emp oyed in e AUTOMATH proJect an is supporte y e 

Netherlands Organization for the Advancement of Pure Science (Z.W.O.). 

**) In the present appendix "this volume" refers to: Proceedings of the Sym­

posium on APL (Paris, December 1973) ed. P. Braffort. 
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1. Introductory remarks 

1.1. According to the claims for the formal system AUTOMATH one should be 

able to formalize many mathematical fields in it in such a precise and com­

plete fashion that machine verification becomes possible. The flexibility 

required to meet the indicated universality is provided by having a rather 

meagre basic system. The AUTOMATH user himself has to add appropriate primi­

tive notions to the basic system in order to introduce the concepts and 

axioms specific to the part of mathematics he likes to consider. In this 

respect, the basic system may be compared with some usual system of logic 

(e.g. first order predicate calculus) to which one adds mathematical axioms 

in order to form mathematical theories. 

1.2. In spite of this analogy however.the basic system itself does not con­

tain any logic in the usual sense. Basic for the system are the concept of 

type and function (instead of, e.g., the concept of set or of natural num­

ber), which are formalized by a certain typed A-calculus. 

When representing mathematics in AU'rOMATH one has to deal with the 

question of coding: How to formalize general mathematical concepts in the 

form of types and functions (see section 2.2). Clearly an appropriate 

formalization will incorporate as much as possible of the basic type-and­

function framework. Section 3 discusses this coding problem and in particu­

lar proposes a suitable way of representing propositions, predicates and 

proofs (a functional interpretation of logic). 

1.3. In order to satisfy the claim of automatic verification of correctness 

the system certainly has to be decidable (and even feasibly decidable on now­

existing computing machines). Since many common mathematical theories pro­

duce undecidable sets of theorems we must conclude that we cannot expect 

the computer to do all our work. Indeed theorems have to be given together 

with their proofs in order to allow verification. 

Thus the correctness produced by the machine verification covers the 

arguments leading from axioms to conclusions only. The AUTOMATH user him­

self is responsible for his choice of primitive notions and all the coding 

(and decoding) involved. 
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2. Informal description of AUTOMATH 

2.1. Introduction 

Here we treat the original version of AUTOMATH, now named AUT-68. We 

chose this system as an example because of its relative simplicity. The 

discussion will be informal and intuitive and in fact restricted to the 

object-and-type fragment of the language (thus leaving the proof-and-pro­

position fragment to section 3). 

2.2. Intuitive framework 

(This section may be skipped by formalists). 

The mathematical entities discussed in the language fall into two sorts: 

objects and types. The types may be considered as classes or sets of acer­

tain kind, which may have objects as their elements. All types are supposed 

to be disjoint, for each object belongs to just one type. This uniqueness 

of types permits one to speak about the type of an object. 

The typestructure is built up by starting from ground types and forming 

function types from these. Each mathematician may choose the ground types 

himself (as primitive notions), e.g. the type of natural numbers. 

An example of a function type is the type a+ S (where a and Sare 

types) of the functions from a to S. More generally, the function types are 

formed by taking products, as follows: The language allows one to express 

dependence of types on objects (of some given type). That is, one can de­

scribecertainfamilies of types Sx indexed by the objects x of a given type 

a. Now every function type is formed as the generalized Cartesian product 

of such Sx, usually denoted TT .s, and containing as objects just these 
XEa X 

functions that associate to any object x of type a an object of type Sx· The 

type a+ Sis the special case where all Sx are a fixed type S. 

2.3. Expressions, degrees and formulas; correctness 

The language as such only expresses the constructions of types and ob­

jects and the typing relations between objects and types. 

The expressions of the language have degree 1, 2 or 3. Types and objects 

are denoted by expressions of degree 2 and 3 respectively (for short 2-expres­

sions, 3-expressions). For convenience we introduce the 1-expressions ~ 

to provide a type for the types. Further 1-expressions will be introduced 

in sections 3 and 4. 
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The symbol! expresses the typing relation: ••• has type •••• So if A 

denotes an object then we have the E-forrrrulas A! a and a!~· The 2-ex­

pressions and 3-expressions are built up from va.riabtes and aonsta:nt-e:r:­

pressions by means of: 

i) the substitution mechanism (section 2.5) 

ii) functional abstraction and application (sections 2.8 and 2.10). 

The constant-expressions have the form c(x1,••·,xk) where x1 , ••• ,¾ are 

variables and c is either a primitive constant introduced as a primitive 

notion (section 2.6) or a defined constant (section 2.7). 

Expressions and formulas are aorreat if they are constructed according 

to the rules of the language, which are informally discussed in the sequel. 

2.4. Variables and contexts 

A mathematical statement generally presupposes certain assumptions on 

the variables used. For example: "let x be a natural and y a real number". 

In AUTOMATH, in accordance whis this usag.e, each variable of degree 3 ( objeat­

va.riabte) ranges over a certain type, called the type of the variable. The 

2-variables (type-va.riabtes) are supposed to range through the types and 

have ~ as their type. 

Expressions and formulas containing free object- or type-variables, say 

x 1, ••. ,xk, can only be aorreat relative to a certain aontext: I.e. a finite 

sequence of !-formulas x1 ! a 1 , ••• ,¾ ! ak, called assumptions, in which the 

free variables have to be explicitly introduced with their types. 

Some of the types ai may depend on the variables given earlier in the 

sequence. For instance, a 3 may contain both x1 and x2 as free variables. It 

is understood that all ai are correct expressions themselves: a 1 relative 

to the empty context, a 2 relative to x 1 !a1 , etc. 

2.5. Substitution mechanism 

Let us, in informal discussion, exhibit the possible dependence of an 

expression ton variables x1 , ••• ,xk by writing t[x1, ••• ,¾J for E. Then we 

write t(A1, ••• ,Ak] for the result of simuita:neousty substituting Ai for xi 

(for i = 1, ••• ,k) int. 

Suppose that under assumptions x1 ! a1 , ••• ,¾ ! ak we have a correct 

!-formula A[x1 , ••• ,¾] ! a[x1 , ••• ,xk]. Then the substitution meahanism 

yields the substitution insta:nae A[A1, ••• ,Ak] ! a[A1 , ••• ,~] for any sequence 
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A1, •• ,,J\ of suitable candidates for x1, ..• ,xk. I.e. these A1 , ••• ,J\: have 

to be of the appropriate types where, however, in view of the possible de­

pendence of types on variables, the substitution has to take place in the 

types too. So we require 

2.6. Primitive notions 

As mentioned before, one has to add primitive notions to the basic system 

in order to introduce the specific concepts of the piece of mathematics one 

wants to study. 

For example, in order to write about the natural numbers, one might 

introduce the primitive type-consta:nt nat and the object-consta:nt 1 by axiom­

atically stating: 

nat!~ 

1 E nat. 

In general, primitive notions are introduced by stating an axiomatic E-for­

mula p(x1, .•• ,xk) ! a[x 1, ... ,~] under certain assumptions x 1 ! a 1, .•• xk ! ak. 

Here either a is~ (and pis a type-constant) or in the current context 

we have a!~ already (p being an object-constant). 

All correct substitution instances p(A1, ..• ,J\:) of such a constant-ex­

pression p(x1 , •.• ,xk) can be produced by the substitution mechanism, de­

scribed above. 

For example, the concept of successor in the natural number system can 

be introduced under the assumption x ! nat by stating: successor(x) ! nat. 

Using the substitution mechanism we get 

successor(l) E nat 

successor(successor(l)) ! nat, etc. 

Notice that primitive constant-expressions may not only contain object­

variables (like the x in successor(x))but also type-variables. 

2.7. Abbreviations 

In mathematics one often introduces abbreviations, i.e. new names for 

possibly long and complicated expressions. In AUTOMATH this abbreviation 

facility is also present; indeed, it will appear that by the particular 

format of the language every derived statement gives rise to the introduction 
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of a new defined constant. Although this kind of explicit definition is of­

ten considered theoretically uninteresting, we feel that it is essential in 

practice for the actual formalization and verification of complicated theories. 

Just like primitive notions, abbreviations are introduced under certain 

assumptions and so may contain free variables in general. Thus new constant­

expressions d(x1 , ... ,xk) are introduced, abbreviating expressions D which 

are correct in the current context. Clearly the type of d(x 1 , .•• ,xk) must be 

the same as that of D. 

Example: 2,3, .•• can be introduced by 

2 := successor(l) 

3 := successor(2), etc. 

Further, the notion of "successor of successor" might be abbreviated by 

stating (under assumption x !'!. natl that 

plustwo(x) := successor(successor(x)) 

Again, all correct substitution instances with their types can be produced 

by the substitution mechanism. 

2.8. Functional abstraction: A-calculus 

We have mentioned functional abstraction and application as further tools 

for constructing expressions. By these devices a form of typed A-calculus 

is incorporated into the basic system. In A-calculus, intuitively speaking, 

AX.B denotes the function which to any object x associates the object B. 

Or (exhibiting the dependence on x) AX.B[x] is the map which, with any A, 

associates B[A]. 

In AUTOMATE (where all functions have a domain) such explicitly given 

functions are denoted by abstraction expressions [x,a]B, where B may contain 

x as a free variable; a is the type of x and the domain of the function. In 

case Bis a 3-expression, [x,a]B attaches objects to the objects of type a 

and is called an object-valued function. If Bis a 2-expression, [x,a]B 

attaches types to the objects of type a and is called a type-valued function. 

In AUT-68 no abstraction expressions of degree 1 are formed (in contrast 

with AUT-QE). 

Notice that possible free occwences of x in B are bound by the abstractor 

[x,a] and are not free in [x,a]B any more. An important restriction on ab­

stracting is that such a bound variable must be a 3-variable. Thus we only 

quantify (cf. section 3.4) over (the objects of) a given type and quantifica-
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tion over~ is not possible. 

2.9. Type of abstraction expressions 

Suppose that under the assumption x ~ ct we have B ~ S. If S is not a 

1-expression then we may form both the abstraction expressions [x,ct]B and 

[x,ct]S. According to section 2.8 [x,ct]Bdenotes an object-valued function 

and [x,ct]S denotes a type-valued function. 

The latter abstraction expression [x,ct]S[x] however is also used with 

a different meaning in AUTOMATH, that is, to denote the corresponding function 

type TT •S[x] (which is the type of [x,ct]B[x] by section 2.2). 
xEct 
s-;; we obtain [x,ct]B ~ [x,ct]S and [x,ct]S ~~-

Example: the successor function can be introduced (in the empty context) by 

succfun := [x,nat]successor(x) ~ [x,nat]nat 

The double use of 2-expressions mentioned above does not cause ambiguity, 

because it is always clear whether an expression acts as a function or as a 

type in a formula. In fact in AUT-68 abstraction expressions of degree 2 are 

exclusively used with the second meaning, i.e. as function types. 

2.10. Functional application 

In full (i.e. type-free) A-calculus a.,y expression - as a function 

may be applied to any expression - even itself - as an argument. 

In AUTOMATH, as a typed A-calculus, all functions have domains and any 

form of self-application is ruled out by the application restrictions: The 

application expression <A>B (denoting the result of applying Bas a function 

to A as an argument) is correct only if: 

i) Bis a function arid so has a domain, say ct. 

ii) A is an object of type ct. 

The notation <A>B, with the argument in front, is somewhat unusual; it is 

convenient however since abstractions are written in front too. 

2.11. Type of application expressions 

Assume that B ~ [x,ct]S. Here [x,ct]S[x] is a 2-expression acting as a type 

and so denotes TT .S[x]. Hence B must be considered as a function with domain ct. 

XEct 
Now if A E ct we are allowed to form the application expression <A>B having 

S[A] as its type. 
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Note that B need not be of the form [x,a]C itself. It may, e.g., be a 

single object variable or object constant with type [x,a]S. 

Example: As an alternative expression for the number 3 we might introduce 

3alt := <2>succfun E nat 

2 • 12 • Equality 

We will define a relation of definitional equality among the correct 

expressions, appropriate to the interpretation of expressions suggested 

above. The relation is denoted ••• = ••• and generated by: 

i) 

ii) 

ahbreviational or a-equality,= 
0 

>.-equality. 

The latter is generated in turn by B-equality, =0 , and n-equality =. 
. µ n 

Usually in >.-calculus the >.-equality also explicitly embodies a-equality 

(renaming of bound variables). In this note however we take the point of 

view of simply ignoring the names of the bound variables. So a-equal ex­

pressions are identified and are a fortiori definitionally equal by the re­

flexivity of the= -relation (cf. also section 5.3.2). 

2.12.1. a-equality 

Assume the defined constant d has been introduced in suitable context 

by 

Then d(x 1 , ... ,xk) abbreviates D and we write d(x1 , ... ,xk) - 0 D. And further 

for the substitution instances: 

2.12.2. S-equality 

Assume <A>[x,a]B[x] is a correct expression (so A~ a). Now 6-equality 

exploits the interpretation of [x,a]B as a function with domain a and simply 

amounts to evaluating the result of the application: 

<A>[x,a]B =s B[A] . 

2 .12. 3. n-equality 

In mathematics one usually considers functions as extensional objects, 
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in the sense that functions with the same domain and which are pointwise 

equal are identified. In AUTOMATH this extensional equality is pa:r'tly covered 

by then-equality: If x does not occur free in B then [x,a]<x>B = B (for 
n 

correct expressions only). This is intuitively sound only if domain B = a, 

which indeed is the case by the correctness of [x,a]<x>B. 

2.12.4. Definitional equality 

Now definitional equality is defined to be the equivalence relation 

on the correct expressions, generated by =0 , =s, n and by monotonicity: 

If A A' and B' is produced from B by replacing one specificoccurrence of 

A in B by ( an occurrence of) A' then B = B' • 

Or, using suggestive dots for the unchanged part of the expression B: If 

A = A' then •.. A. • • = ••• A' • • • • 

Example of the monotonicity rule: If A 

expressions are correct). 

2.13. The format: books and lines 

A' then <C><A>D = <C><A'>D (if both 

2.13.1. Actual AUTOMATH texts are written in the form of books. A book con­

sists of a finite sequence of lines. Each line must be placed in a certain 

context (the context of the line) and introduces a new identifier of acer­

tain type. All lines consist of four consecutive parts, separated by suitable 

marks or spaces: 

i) context pa:r't, indicating the context of the line. In general the con­

text part consists of the context indicator, i.e. the last variable of 

the current context. From this the complete context can easily be re­

covered. If the context of the line is x1 ! a 1 , •.• ,xk ! ak, the sequence 

of variables x 1 , ... ,xk is called the indicator string of the line. The 

empty context can be indicated by an empty context part. 

ii) identifier part, consisting of the new identifier. 

iii) middle part, containing the symbol EB (cf.2.13.2), the symbol PN 

(cf. 2.13.3) or the definition of the new identifier (cf. 2.13.4). 

iv) category pa:r't, containing the type of the new identifier. 

Assume an AUTOMATH book is given, in which the variable xk has been intro­

duced with type a.k in the context x 1 ! a 1 , •.. ,xk-l ! ak-l. Then we may add lines 

with context indicator xk, so having x 1 ! a 1, •.. ,xk ! ak as their context. 

Below we discuss the three different kinds of lines. 
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2.13.2. The bZock opening Zines have middle part EB (for empty block opener) 

or, in alternative notation, a bar -- . An EB-line introduces a new variable 

and thus allows extension of the current context by one assumption. 

Example: xk * y :=EBE a. ("let y be of type a.") introduces a new variable 

y of type a.. Lines having y as their context part - which may appear later 

in the book - then have x1 ~ a. 1 , ... ,xk ~ a.k, y Ea. as their context. 

2 .13. 3. The primitive notion Zines have middle part PN and introduce the 

primitive notions. For example: 

introduces the primitive constant expression p(x 1 , ... ,xk) and contains the 

a.xiomatic ~-statement p(x 1 , ... ,xk) ~ a.. 

2.13.4. The abbreviation lines look like: 

where the middle part Dis the definition of d, i.e. the expression to be 

abbreviated. This line contains, relative to the preceding book and the cur­

rent context, both the derived E-statement DE a. and the defining axiom for 

the new defined constant d: 

2.14. Correctness of lines; validity 

A line is correct if both the middle part (if not EB or PN) and the 

category part are correct expressions with respect to the preceding book 

and the current context, and the category part is the type of the middle 

part (if not EB or PN). For the correctness of the expressions, all identi­

fiers used have to be valid. Constants are valid in a book from the line on 

in which they are introduced. Free variables are valid in a line if they 

occur in its context. We speak about the block of lines in which a free 

variable is valid (whence block opener). 

2.15. Shorthand facility 

Assume that a primitive or defined constant c was introduced in acer­

tain context x1 ~ a.1 , .•• ,¾ ~ a.k. Then if later in the book c occurs with 

fewer thank arguments, the argument list is completed by adding a suitable 
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initial segment of the original indicator string (cf. 2.13.lii)) x1 , ••• ,xk. 

In other words the expression c(Ai+l'"""''lc) is shorthand for 

c(x1, ••. ,xi,Ai+l'"""'Ak) and the single constant c is shorthand for 

c(x1 , ... ,~). Clearly the completing variables have to be valid, that is, 

the initial segments of the original and the current context have to coin­

cide. The shorthand facility accords with usual mathematical practice where 

free variables are often considered as fixed throughout an argument and are 

not mentioned explicitly. 

2.16. Paragraph system 

For each variable and constant it must be possible to retrace from which 

line it originates. This condition is clearly satisfied when all names are 

unique. A more liberal method of naming however is allowed by the socalled 

paragraph system, for a description of which we refer to Zandleven [11, 

section 11]. Both shorthand facility and paragraph system do not really 

concern the language definition but are present for convenience only. 

2. 1 7. Example 

In the following AUT-68 booklet the examples of the preceding sections 

are now written in the proper format. 

* nat := PN ~ 

* 1 := PN nat 

* X := nat 

X * successor := PN nat 

* 2 := successor ( 1) nat 

* 3 := successor (2) nat 

X * plustwo := successor(successor) nat 

* succfun := [x,nat]successor(x} [x,nat]nat 

* 3alt := <2>succfun nat 

Here the middle part of plustwo uses the shorthand facility. It is left to 

the reader to establish 3 = 3alt. 
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3. Mathematics in AUTOMATH: Propositions as types 

3.1. Functional interpretation of logic 

Up till now we have described AUTOMATH as a calculus of objects and 

their types only. A major part of mathematics however consists of making state­

ments and reasoning with them, i.e. deals with logic. 

Now there are different ways of coding some logic into the objects-and­

types framework. Here we only mention a socalled funational interpretation 

of logic, which gives rise to thepropositions-as-types notion. This idea of 

interpreting logic was developed independently by de Bruijn and certain 

others, of whom we mention Howard [6], Prawitz [10], Girard [5] and Martin­

Lof [8]. 

3.2. Propositions as types 

So far we have introduced~ as the only 1-expression. We had Z !~ 

and r E Z for the types Zand the objects r of type Z respectively. Now we 

introduce another !-expression, the basic symbol~- Originally in AUT-68 

no distinction was made between~ and~- The latter 1-expression acts 

just like~ and was introduced later to allow difference of treatment be­

tween types which are to be considered as propositions and types which are 

just types of objects. 

If Z !~ we consider Z as a proposition. If further r ! Z, we con­

sider r as some construction establishing the truth of Z (a "proof" of Z). 

Thus the formula r ! Z is conceived as asserting the proposition Z. 

3.3. Interpreting implication 

Let a ! ~ and S ! ~- Now we may say we have a "proof" of the im-­

plication a ➔ S if from an assumption of the truth of a we can argue and 

conclude the truth of S, That is, if for any construction establishing the 

truth of a we can produce a construction for the truth of S or, equivalently, 

if we have a map from "proofs" of a to "proofs" of S. 

Now in AUTOMATH terminology: we say we "prove" a ➔ S if for any x Ea 

we can produce some B ! S. I.e. if we have some Zin the function type 

[x,a]S. So we let [x,a]S denote the implication a+ Sand have [x,a]S !prop. 

'.L'his corresponds to the second interpretation of abstraction expressions in 

section 2.9. 
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Now by this interpretation we obtain the modus ponens (from a and a+ S 

infer Sl by simple functional o:pplication. For let A! a and E ![x,a]S 

(A and E thus being "proofs" of a and a+ S respectively). Then by the appli­

cation rule we construct <A>E establishing the truth of S. 

3.4. Universal quantification; negation 

In exactly the same manner a function interpretation of universal state­

ments can be given. Namely if a_!~ and for x Ea we have S !~ then 

we identify the function type [x,a]S with the universal statement YxEaS· 

Here functional application corresponds to the "instantiation" rule in logic. 

Thus by this interpretation of logic in AUTOMATH one gets the (V,+)­

fragment of first order predicate logic for free. However in AUTOMATH only 

positive statements are made and statements like: "Eis not of type I'" cannot 

be expressed. In order to interpret negation we introduce as a primitive no­

tion the proposition con (for "contradiction") together with some suitable 

axiom (primitive notion). Here are different possibilities, e.g. the intu­

it.ionistic absurdity rule (for any proposition a, from con infer a) or the 

classical double negation Zea,;. Then an AUTOMATH theory (i.e. book) is con­

sistent if, in the empty context, it does not produce some EE con. 

For a!~ we define non(a) as a+ con or, in AUTOMATH notation, 

[x,a]con. Now the double negation la~ can be stated by introducing the prim­

itive notion dnl as follows: If a!~, x !non(non(a)) then dnZ(a,x) ! a. 

By also choosing suitable definitions for the other connectives (A,v) 

and the existential quantifier we can smoothly obtain full classical first 

order predicate calculus. 

3.5. Assumptions, axioms, theorems 

In AUTOMATH-books the E-formula r E E for a proposition E can occur in 

the usual three kinds of lines again: 

i) EB-lines: a* X :=EBE E. 

These must be interpreted as assumptions: "let E hold" or "let x be a 

proof of E". Now in a line where xis valid we may refer to x whenever 

we want to use the assumed truth of E. 

ii) PN-lines: a* p := PN EE. 

These serve as axioms, or rather as axiom schemes (by the dependence 

on the variables contained in the context a). 

iii) abbreviation lines: a* d := r EE must be considered as derived state-
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ments, 'i.e. theorems, lemmas etc. Here the middle part r "proves" the pro­

position E from the assumptions in the context a. 

3.6. Book-equality 

The definitional equality (cf. section 2.12) of AUTOMATH only covers 

a small part of the usual mathematical equality. Further a statement of 

definitional equality cannot be handled as an actual proposition; e.g. it 

cannot be negated or even assumed (as in: let A= B). As the AUTOMATH-counter-

part of the usual mathematical .•• equals .•. the book-equality IS(a,A,B) 

- where A and Bare objects of type a - can be introduced by suitable prim­

itive notions, some of which are shown in the example below. 

* a 

a * X 

X * y 

y * IS 

X * REFL 

y * i 

i * SYM 

and also: 

a * s 
s * f 

f * X 

X * y 

y * i 

i * ISAX1 

:= 

:= 

:= 

:= PN 

:= PN 

:= 

:= PN 

etc. 

:= 

:= 

:= 

:= 

:= 

:= PN 

a 

a 

~ 

IS(x,x) 

IS (x,y) 

IS(y,x) 

~ 
[x,a]S 

a 

a 

IS(x,y) 

IS(/3,<x>f,<y>f) 

By the axiom of reflexivity (REFL) above, definitional equality implies book­

equality: if A~ a, B ~ a, A= B then REFL(a,A) ~ IS(a,A,B). 
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4. Extension of AUT-68 to AUT-QE 

4.1. Function-like expressions 

Expressions E such that E ! [x,a]S or E = [x,a]S are called function-like 

expressions. Whereas in AUT-68 function-like 3-expressions may have any form, 

e.g. they can be variables or primitive constant expressions, the only func­

tion-like 2-expressions are (possibly abbreviated) abstraction expressions. 

This is because function-like 1-expressions are absent in AUT-68. 

Thus we can discuss explicitly constructed families of types Sx where x 

ranges over some type a (namely by forming the abstraction expression 

[x,a]S[xD) but we cannot discuss a:l'bitrary families of types indexed by 

x ! a. Indeed, we cannot introduce a family of types as a primitive notion 

or as a variable. 

4.2. Supertypes or quasi-expressions 

In AUT-QE such arbitrary type-valued functions are admitted however, by 

extending the class of 1-expressions. The new 1-expressions, quasi-expressions 

(whence AUT-QE) or supe.rtypes, have the form [x1 ,a1 J •.. [xk,ak] !XE:_ or 

[x1,a1] ••• [xk,ak] prop, where a 1 , ... ,ak are 2-expressions, i.e. propositions 

or types. 

For example, an arbitrary type-valued function on a can be introduced by 

an EB-line: 

0 * f := [x,a]~. 

If for a we take the type of natural numbers, then f is an arbitrary sequence 

of types. 

4.3. The use of AUT-QE 

Similarly we have arbitrary prop-valued functions in AUT-QE. These are 

especially useful in our interpretation of logic, for a prop-valued function 

with domain a is nothing but a predicate over a. For example, by an EB-line 

o * R [x,nat][y,nat]:e:.£12. 

an arbitrary binary predicate (rather: relation) on the natural numbers is 

introduced. The presence of predicate and relation variables in AUT-QE al­

lows us to write =iom schemes with such variables, e.g. to introduce a fur­

ther equality axiom (cf. section 3.6) we can write: 
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a * p := [x,a]~ 

p * X := a 

X * y := a 

y * i := IS(x,y) 

i * j := <x>P 

j * ISAX2 := PN <y>P 

We emphasize however that abstraction over such 2-variables (e.g. type­

variables, prop-variables, predicate-variables) in AUT-QE is still forbidden, 

so both AUT-68 and AUT-QE may still be called first-order systems. 

4.4. Type-inclusion and prop-inclusion 

Just as in AUT-68 the function-like 2-expression f (cf. section 4.2) 

also codes its corresponding function space, i.e. the type of those g with 

domain a such that for A Ea we have <A>g ! <A>f. As~ behaves just like 

~• the predicate P (cf. section 4.3) also denotes the proposition V .P(x). 
xEa 

As a consequence, we allow the transition from EE [x,a]~ to E ! type. 

This transition or, in general, from 

to 

is called type-incZusion. The similar transition with~ instead of~ 

is called prop-incZusion. By this type-incZusion and prop-incZusion AUT-QE 

contains AUT-68 as a proper subsystem. Notice that for 2-expressions uni­

queness of types - if A! a, AES then a= S - is lost. 

4.5. Let us finish with a table in which some AUTOMATH notions are listed 

with their possible meanings in the propositions-as-types interpretation. 
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AUTOMATH-notions 

2-expressions 

3-expressions 

••• E ••• 

function-like 

2-expressions 

EB-lines 

PN-lines 

abbreviation lines 

object-and-type 

interpretation 

types 

objects 

••• has type ••• 

{

type-valued functions 

function types 

variable introductions 

primitive object 

introductions 

definitions or 

abbreviations 

proof-and- proposi­

tion interpretation 

propositions 

proofs 

• •• proves 

predicates 

{
implications 

universal statements 

assumptions 

axioms 

theorems 



5. A formal definition of AUT-QE 

5.1. The language, to be defined formally now, is the one accepted by the 

current checker (cf. [11]) except for two points: 

1) Paragraph facilities are not present here so all constant names have 

to be distinct (cf. section 2.16). 

ii) There is no shorthand facility (i.e. all expressions are written out 

in full (cf. section 2.15). 
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The actual formalism has been chosen in this way in order to keep as close 

as possible to the preceding informal book-and-line description. A defini­

tion along more usual naturat dedu.ction lines may possibly be more elegant. 

For technical reasons we preferred to avoid redundancy almost completely 

in our definition. As a consequence of this, some useful extra rules follow 

as derived rutes in the section on language theory. 

5.2. Our aim is to define formally what correct AUT-QE books are. 

The description consists of: 

i) Preliminaries, mainly devoted to the context free part of the language 

(section 5.4). 

ii) Simuttaneous definition of correctness of books, contexts, lines, ex­

pressions, !_-formulas and =-formulas (section 5 .5). 

The =-formulas only serve as a help in our definition; they do not appear 

in the book. The kernel of ii) is the definition of correctness of expres­

sions and formulas relative to a certain book and context. Here the book 

serves to determine the set of primitive notions and abbreviations, and the 

context serves to determine the set of valid free variables. 

Most concepts are introduced by OI'dina:l'y inductive definitions. These con­

sist of a finite set of rules of the form: "if ••• then ••• ". Here only such 

conclusions may be drawn which follow from a finite number of applications 

of the rules. 

5,3. Notational conventions 

5.3.1. An extensive use is made of syntactic Va:l'iabtes throughout the definition. 

Often certain assumptions on these variables are implicit by their specific 

choice, e.g. cr and, always run over contexts, Syntactic variables may al-

ways be indexed or primed. 
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5.3.2. As for substitution and a-conversion (renamint of bound variables) 

we adopt the following point of view: expressions with bound variables are 

considered as named versions - named to facilitate reading - of some actually 

namefree skeleton (cf. [3]). Thus we identify a-equal expressions and assume 

that a-conversion is applied whenever necessary to avoid clash of variables. 

We use .•. = ... to denote syntactic identity (s2-mbol-for-symbol equality) 

modulo a-equality. E.g. [x, L] •• • x .. . x ... ::[y, I:] •.• y •.. y .... 

5.3.3. Correctness of expressions A and formulas~ relative to a book Band 

a context a are abbreviated by B; a~ A and B; a I- ~respectively.Sometimes 

we write ~ A or a ~ A for B; a~ A and ~~or a~~ for B; a~~ when there 

is no particular need to emphasize the current book or context. The notations 

~(i)A and ~(i)A ~Bare used to express that A is an i-expression and ~ A 

(respectively ~ A EB). 

5.4. Preliminaries 

5 .4 .1. Alphabet 

1) As variables and constants we allow any alphanumeric string. Such a string 

is considered atomic and is thus counted as one single symbol. Syntactic 

variables for variables are x,y,z, ... . Among the constants (syntactic va­

riable c) we distinguish primitive (syntactic variables p,q) and defined 

or abbreviational constants (syntactic variable d). 

2) Improper symbols 

i) Some bl0 ackets and braces: [ , J, ( , ) , < , >. 

ii) Some separation marks: I *, ~. ~, :=, semicolon and comma. ., 
iii) Some reserved symbols: EB, PN. 

5.4.2. Expressions (syntactic variables A,B,C,D, ... ,r,ti,r, ••• ) 

i) Variables: x 

ii) Abstraction expressions, [x,r]ti 

iii) Application expressions, <r>ti 

iv) Constant-expression instances: c(r1 , ... ,rk) 

v) Basic constants,~, prop. 

As special syntactic variables for 2-expressions we take a,s, .... 



5.4.3. Formulas (syntactic variable~) 

i) "!:_-formulas: LE 6 

ii) =-formulas: L = 6. 

5.4.4. Additional concepts 
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1) Contexts (syntactic variables o,~): Any finite (possibly empty) sequence 

of E-formulas x. EL., sepa:t>ated by commas, where all x. ape different. 
- l. - l. l. 

2) Lines (syntactic variable A) 

i) EB-lines 

ii) PN-Zines 

o * x :=EBEL 

o * p := PN EL 

iii) Abbreviation lines: o * d := 6 EL 

3) Books (syntactic variable B): Any finite (possibly empty) sequence of 

lines, sepa,pated from one another by exclamation signs (!). 

5.4.5. Free variables 

We define the free Va:t>iable set FV(Z) of expressions L by induction on 

the structure of L (cf. section 5.4.2): 

i) FV(x) = {x} 

ii) FV([x,rJ6) FV(f) u (FV(6) \{x}) 

iii) FV(<f>6) = FV(f) U FV(6) 

iv) 

v) 

FV(c(L 1 , ..• ,Lk)) u._1 kFV(L.) 
J..- , ••• , l. 

FV(~) = FV(~) = ~-

5.4.6. Substitution 

1) The result of simultaneous substitution of A1 , ••. ,Ak for the free varia­

ables x 1 , ••• ,xk in an expression L is denoted by [x1 , •••• ,xk/A1 , ... ,¾]L 

* and locally abbreviated by L : 

i) 

ii) 

iii) 

iv) 

v) 

vi) 

* xi - Ai 
* . f y - y i y not among x 1 , ... ,xk 

* * * ([y,L 1]L 2) = [y,L 1]L 2 if y not among x 1 , ... ,~ and 

xi E FV(L 2) =>yr/ FV(Ai)) for i = 1, ... ,k (otherwise rename yin 

[y,L1]L2). 

* * * (<L1>L2) = <Ll>L2 

* * * (c(I: 1 , ... ,in)) = c(L 1 , ••• ,Lm) 
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2) Substitution of A for xis denoted by [x/A] and amounts to the case k 1 

above. 

S.S. Correctness 

5.5.1. Correct books 

i) the empty book is correct 

ii) if Bis correct a:nd A is correct with respect to B then B!A correct. 

5.5.2. Correct context with respect to B: 

i) the empty context is correct 

ii) if O*X :=EBE I::. is a line in the book B then a, x En is a correct 

context with respect to B. 

5.5.3. Correct lines with respect to B: 

1) EB-lines: If B; a I- (1) I::. or B; a I- (2) n, a = x 1 ! i:: 1 , ••• ,xk ! l::k, a:nd Y 

notamongx1 ,. •• ,xk then a* y := EBEl::.isa correct linewithrespecttoB, 

2) PN-lines: If B; a 1- (l) n or B; crj-( 2) n a:nd p does not occza, in B then 

a* p := !:!!! n is a correct line with respect to B. 

3) Abbreviation lines.: If B;a I- l:: ! I::. and d does not occur in B then 

a* d := l:: En is a correct line with respect to B. 

5.5.4. Correct §-formulas relative to a correct book Band a context a which 

is correct w.r.t, B 

1) Repetition rule: If a - xl ! l::1' ... ,xk ! l::k and l::. is a:n i-express-ion 
r (i+l) E l:: 

J 
then B; cr xj _ j (for j 1, ... ,k). 

2) Abstraction rule: If B* - B!cr * X :=EBE a and B* is correct and 
B*; cr,x ! a I- (i) 

l:: E I::. then B; 1- TiiGc,aJi:: E [x,aH a 

3) Application rules: 

i) If I- A ! a and I- (i) B ! [x,a]c then I- (i) <A>B ! [x/A]C. 

ii) If I- A! a, ~(i)B ! c a:nd 1-c E [x,a]D then I- (i)<A>B ! <A>C 

(clearly i will be 3 here). 

4) Substitution rule: If i:: is a:n i-expression and either 

xl ! i::1,·••1Xk ! l::k * C := PN ! l:: or xl ! i::1,·••1Xk ! l::k * C := n El:: 

is a line in the book B a:nd B; a~ A.! [x1, ... ,xk/A1 , •.. ,Ak]l::. for 
. (i+l) J J 
J = 1, .•. ,k then B; a~ c(A1, ... ,Ak) ! [x1 , ... ,xk/A1 , ... ,Ak]l::, 



5) Rule of type-conversion: If I- fl ! E and I- E = r then I- fl ! r. 
6) Rules of type- and prop-inclusion: 

i) If 1-E ! [x1 ,C1.1 ] .•• [xk,Cl.k][y,S] ~ (possibly k = 0) then 

1-E![xl,Cl.1] ••. [xk,Cl.k]~. 

ii) If I- E ! [x1 ,C/. 1 J ••• [xk,C1.k][y,S]I:E_<?,£ (possibly k = 0) then 

r E ! [xl ,Cl.1 J .•. [xk,Cl.k]~. 

5.5.5. Correct expressions with respect to 8 and a 

1) Correct 1-expressions: 
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i) If 8 is aorreat and a is aorreat with respect to 8 then 8; a I- (l) ~ 
and 8 ; a I- (1 ) I:E_<?,£. 

* * 10) 1(1) ii) If B = 8!a * x :=EB! Cl. a:nd 8; a,x ! Cl. r fl then 8;a r [x,C1.]fl. 

2) Correct 2- and 3-expressions: If I- (i) E ! fl then I- (i) E . 

Remark: It is intended that 8; a~ A or 8; a~~ only if 8 is correct and a 

is correct with respect to 8. This condition is explicitly imposed in 5.5.4 

and 5.5.5.li) and propagated all through the definition. 

5.5.6. Correct =-formulas with respect to 8 and a 

1) S-equality: If I- <A>[x,C1.]B a:nd ~[x/A]B then ~<A>[x,Cl.]B = [x/A]B. 

2) n-equality: If l{x,B]<x>C, and xi FV(C) and ~c then r[x,B]<x>C = C. 

3) a-equality: If x 1 ! E1 , •.. ,xk ! Ek* d :=fl! Eis a line in 8, and 

8; a I- Aj ! [x1 , ... ,xk/A1 , ... ,Ak]Ej for j = 1, ... ,k, and 

8; a l-[x 1 , ... ,xk/A1 , ... ,Ak]fl then 8; a l-d(A1 , .•• ,~) = [x1 , ... ,xk/A1 , ... ,Ak]fl 

4) Monotonicity rules: 

i) If 8* = 8:a * x := EB! Cl. and 8*; a,x ! Cl. I- Bl = B2 then 

8; a I- [x,C1.]B1 = [x,C1.]B2 • 

ii) If ~ C/.l = C/. 2 , ~[x,Cl. 1 ]B, and I- [x,C1. 2 ]B then I- [x,C/. 1 ]B = [x,C1. 2 ]B. 

iii) If ~ A1 B1 , ~ A2 = B2 , I- <A1>A2 , and ~ -c:B1 >B2 then I- <A 1>A2 = <B 1 >B2 . 

iv) If ~Aj Bj (forj=1, ... ,k),and!-c(A1 , ... ,Ak),and 

l-c(B1 , •.. ,Bk) then l-c(A1 , ••• ,¾) = c(B1 , ••. ,Bk). 

5) Reflexivity, symmetry and transitivity rules 

i) If I- A, ~ B a:nd A = B then I- A = B 

ii) If I- A = B then ~ B = A 

iii) If I-A= B, and ~ B = c then I-A c. 
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Remark: It is intended that 8; a~ A= B only if both 8; a~ A and 8; a~ B. 

In most cases above, though sometimes unnecessary, such conditions have been 

explicitly stated. Where they have been omitted it will be immediate that 

they hold by some other conditions. 
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6. Some remarks on language theory 

6.1. Decidability 

The language theory is mainly concerned with the. investigation of the 

basic system. A major aim is to prove the decidability of the AUTOMATH 

languages. That is, to prove the existence of an effective procedure which 

for any given text in a finite amount of time decides whether it is correct 

or not (in AUT-QE, say). The kernel.of such a checker deals with the veri­

fication of correctness of expressions and formulas {both!- and =-formulas), 

relative to a given book and context {which are assumed to be correct al­

ready). 

In this section we shall sketch a certain checking procedure, closely 

related to the actually running verifying program of Zandleven {cf. [11]). 

We shall also roughly indicate the proof of correspondence between the pro­

posed checking procedure and the language definition of the preceding section. 

6. 2. Reduction 

6.2.1. In order to study the =-relation in more detail we introduce the re­

duction relation~, a partial order among the expressions. For an explanation 

of the suggestive dots in our definition we refer to section 2.12.4. 

6.2.2. Definition: 

1) One-step reduction {with respect to a book B) 

i) one-step 13-reduction: ••• <A>[x,a.Jc ••• >s . .. [x/A]C ... 

ii) one-step n-reduction: If x i FV(C) then ... [x,a.]<x>C ... > ... c,.. 

iii) one-step o-reduction: If d was introduced by an abbreviation line 

x1 .! a. 1 , •.. ,xk ! a.k * d :=DEL in B then 

... d{L 1 , •.. ,Lk) ... >0 ... [x1 , ... ,xk/L1 , ... ,Lk]D •.. 

iv) also> is allowed with any combination of the indices such as: If 

A >QB or A> B then A> B 
"' n Sn 

v) one-step reduction in general: If A> B then A> B. Sno 
2) Many-step reduction {with respect to B) 

i) If A - B then A ~ B 

If A~ Band B > c (with respect to BJ then A~ c. 
So~ is the reflexive and transitive closure of>. Likewise> denotes 

-13◊ 

the reflexive and transitive closure of >130 etc. For A~ B we also write 

B s; A. 
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3) i) Reduction sequence: A sequence L1 ,L2 , •.• of expressions is called a 

reduction sequence of Ll if for all i we have Li= Li+l or Li> Li+l. 

ii) Proper reduction sequence: A reduction sequence L1 ,L2 , ••• is called 

proper if for all i we have Li> Li+l" 

6.2.3. Clearly the=- relation is the equivalence relation generated by the 

restriction of> to correct expressions. So we can conclude: ~A= B iff 

A= c 1 ~ D1 $ c 2 ~ D2 $ •.• ~ Dk~l $ck= B (possibly k = 1), where all ex­

pressions in the respective reduction sequences are correct. 

6.2.4. As an example of a reduction sequence consider: 

3alt >0 <2>succfun >0 <2>[x,nat]successor(x) >8 successor(2) >0 
successor(successor(l)) (see section 2.16). So each reduction step seems to 

bring us closer to some possible "outcome". Here 8- and o-reduction amount 

to evaluation and n-reduction to a certain simplification of expressions. 

6.3. The three problems: normalization, Church-Rosser and closure 

6.3.1. It will appear that the decision procedure for equations (=-formulas) 

plays a central role in the checker. At first we state - in terms of the re­

mark in section 6.2.4 - two iniportant questions around reduction and defini­

tional equality: 

i) (Normalization) Do correct expressions always have a final outcome, 

i.e. do they always reduce to an expression which does not reduce further? 

ii) (Church-Rosser property) Do definitionally equal expressions have a 

common outcome, i.e. an expression to which they both reduce? 

A third central question concerns the so-called closure property (this term 

was introduced by R.P. Nederpelt in the introduction to [9]): 

iii) Is the system closed under reductions, i.e. do correct expressions re­

main correct under reduction? 

6.3.2. Normalization and strong normalization 

Let us define 

1) A is normal if no one-step reduction A.> B can be applied. 

2) A is said to normalize if A reduces to some normal B (which is then call­

ed a normal form of A) • 

3) A is said to strongly normalize if all proper reduction sequences of A 

terminate. 
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we say that normalization (resp. strong normalization) holds if all 

correct expressions normalize (resp. strongly normalize). Normalization (and 

a fortiori strong normalization) does not hold in the full A-calculus (take 

as a counter-example the expression <Ax.<x>x>Ax.<x>x). In typed systems such 

as AUTOMATH however, strong normalization (and hence normalization) does hold. 

Much work concerning (strong) normalization has been done by logicians study­

ing systems of natUl'al deduction and functional interpretations (cf. for 

instance [SJ, [SJ, [l0J). Their methods often apply to AUTOMATH also. Some 

new proofs of normalization have been given by members of the AUTOMATH-project 

(cf. [9J). 

6.3.3. Church-Rosser theorem; uniqueness of normal forms 

Question 6.3.lii) above amounts to the ChU!'ch-Rosser theorem: If A= B then 

A~ c ~ B for some c. An alternative formulation of this is the Diamond 

property for~= If A~ Band A~ c then B ~ D ~ C for some D (cf. figure). 

Diamond property 

As a corollary of the Church-Rosser theorem we mention the uniqueness 

of normal forms: If B and c are normal forms of A then B = c. This property 

together with the normalization theorem allows us to speak of the normal 

form NF (A)_ - computable by an effective procedure NF - of correct expressions 

A. The Church-Rosser theorem holds in the full A-calculus as well as in typed 

systems. In AUTOMATH languages without n-reduction the standard A-calculus 

proofs simply carry over (cf. [9]). In fact, in view of strong normalization, 

a slightly easier proof can be given here. For, e.g., AUT-QE, where we have 

n-reduction the proof is somewhat more complicated and depends heavily on the 

closure theorem. The author intends to publish this proof and the other proofs 

omitted in this section in his doctoral dissertation. 

6.3.4. Closure property 

Let us first formulate the cZosUl'e theorem: If B; a /-A (respectively 

B; a /- A ,! Bl and A ~ c (with respect to BJ then B; a /- c (respectively 

B; a f- C ,! B). In connection with the closure theorem, which holds for 

AUT-QE, we have two important derived rules: 
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1) General suhstit;ution principle 

x 1 ! r1 , ••• ,~ ! Ek ~B (resp. 

I * I * * then cr - B (resp. r B ! c ) , 

(as mentioned in 2.5): If 

~BE C) and r; I-A.EE~ (for i =1, •.. ,k) 
- l. - l. 

* where E stands for [x1 , ... ,xk/A1 , ••. ,Ak]E. 

2) The "left-hand equality rule" (compare with the rule of type-conversion, 

which is the "right-hand equality rule"): 

If I- ( 3 ) A ! B and I- A = C then I- c ! B. 

For 2-expression A we only have a weaker version in view of type-inclu­

sion: If I- (2)A ! Band I-A= c and I- <2>c ! D then 1-c ! B or I-A! D. 

6.4. A decision procedure 

6.4.1. Deciding =-formulas 

Suppose A and Bare correct expressions. The normal form procedure NF 

(section 6.3.2) easily yields a decision method for the equation A= B, 

namely A= B iff NF(A) = NF(B). Often, however, it is not necessary to com­

pute normal forms for deciding A= B. For example, when A and B have different 

degrees one can easily draw a negative conclusion. Or more important,itgen­

erally happens that a few well-chosen reduction steps in A or B will result 

in a non-normal common reduct. The choice of efficient reduction steps here 

is a matter of strategy; the termination of a procedure which successively 

applies reduction rules to A or Bis anyhow guaranteed by the strong normal­

izationproperty, no matter in what order the reduction steps are applied. 

In order to prove the correspondence between decision procedure and 

language definition we must know that all the expressions in the reduction 

sequences from A and B to some common reduct are correct again. This is 

indeed the case by the closure theorem. 

6.4.2. Deciding E-formulas and expressions 

6.4.2.1. Assume Bis a correct book and r; a correct context; we must define 

a decision procedure for the correctness of .!P_-formulas and expressions. It 

will appear that this problem can be reduced to the decision problem for 

=-formulas (but for the straightforward task of checking the validity of 

the identifiers used). 

6.4.2.2. Uniqueness of types 

We know (by the rule of type conversion) that for all B' with ~ B B' 



we have ~ A ! B ~ ~ A ! B' • 

For 3-expressions A the converse (wiiqueness of types*) holds too: 

~ A! B a:nd ~ A! B' ~ ~ B = B'. 

For 2-expressions A we must be somewhat more precise in view of type-in­

clusion. We define among the correct expressions the relation .5:. by: 

i) [x1 ,ci1J. .. [xk,cik][y,S]~ c [x1 ,ci1 J 

ii) [x1 ,ci1J . • . [~ ,cik ][y, SJ~ c [x1 , ci1 ] 

iii) -=. is the transitive closure of= and c. 

[~,cik]~ 

[xk,cik]~ 

Then instead of (*) for 2-expressions A we can prove 

~ ( 2) A ! B a:nd I- ( 2 ) A ! B' ~ I- B c B ' or I- B' c B. 
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6.4.2.3. Now assume that A is correct. Then we can define a "mechanical type 11 

fwiction CAT, such that: 

i) I- (3) A E B~ I- (3) A, j-B and I- CAT(A) B 

ii) I- (2)A EB# I- (2) A, 1-B and I- CAT(A) ~ B. 

So CAT computes some canonical representative of the class of B' with 

I- A ! B' ; furthermore, this B' is minimal with respect to £.. For the actual 

definition of CAT we refer to [11, section 7]. Since the decision procedure 

~ for equations in the current checker also contains the possibility of 

type-inclusion - i.e. A~ B iff A-=. B - the type function CAT reduces 

the verification of E-formulas to the verification of equations. 

6.4.2.4. Finally we point out a decision procedure for correctness of ex­

pressions. Here we proceed by induction on the length of expressions. As an 

example we treat the case of application expressions <A>B where A and Bare 

already supposed to be correct. 

6.4.2.5. Uniqueness of domains 

For function-like expressions A we define Cl to be the domain of A if 

*) Here we mean uniqueness with respect to definitional equality(=), in con­

trast with section 6.3.3, where we mean uniqueness with respect to syntac­

tic equality(=). 
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01' I- (l)A = [x,a]E . 

For domains we have wiiqueness also (by the closure theorem and the 

Church-Rosser theorem): If a and Sare domains of A then a= s. This fact 

allows us to speak about the domain of function-like expressions. Now we 

are able to define a ''meahaniaal domain" funation DOM (for which we refer 

to [11, section 7]), which for function-like A picks out a canonical repre­

sentative of the domain of A. The termination of DOM(A) follows by induction 

on the degree of A, using strong normalization. 

6.4.2.6. By CAT and DOM the verification of correctness of <A>B reduces to 

the verification of some suitable equation: ~<A>B ~ ~ A and ~Band 
~ A !E._ DOM(B) or, equivalently, by 6.4.2.3i), 

~<A>B ~ ~ A and ~ B and j- CAT (A) DOM(B) • 

6.4.2.7. For the other cases of correctness of expressions we refer to Zand­

l~ven again. The correspondence of the current verifier with the actual 

language definition is either immediate or follows from the above facts 

about CAT and DOM. 
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Appendix 2, The paragraph system 

In the definition of AUT-QE ([vD, 5]) it is required that constants 

which are identifier parts of different lines are different. In this appen­

dix we describe a variant of AUTOMATH languages in which this rule is weak­

ened. The AUT-QE version of this variant has actually been used for trans­

lating Landau's book. It is irrelevant for the following discussion, which 

particular AUTOMATH language is considered. We shall therefore presuppose an 

unspecified language AUT, and we shall call its paragraphed variant AUT-PAR. 

1. Paragraph lines 

A book in AUT-PAR can be split up into paragraphs, In the language 

we have three special symbols+, - and-, and a countable set of para­

graph identifiers (which we shall denote here by syntactic variables 

s,s1,s2, ••• ,t,t1,t2, ••. ). There is a basic paragraph identifier cover 
This will play the role of the empty environment; the word "cover" is meant 

to suggest "bookjacket". Besides ordinary AUT0MATH lines (which we will call 

here proper lines), we have a special sort of lines (called paragraph lines), 

which are used to indicate the paragraphs. There are two kinds of paragraph 

lines: opening lines which have the form +s, and alosing lines which consist 

of the single symbol 

2. The first rule for paragraph lines 

For this description we shall number the lines of our book (proper 

lines as well as paragraph lines) in their proper order, and we will indi­

cate lines by their numbers. For each linen we define o(n) (c(n) respec­

tively) to be the number of opening lines (closing lines respectively) prece­

ding it. 

The first rule for paragraph lines is: 

o(n) ~ c(n) for all n. 

It follows that the paragraph lines provide the book with a kind of nested 

structure, 

The paragraph level of a linen is defined by pl(n) = o(n) - c(n). For 

a linen with pl(n) > 0 we define its paragraph opening by 

po(n) = max{m m < n and pl(m) < pl(n)}. It is easy to see that pl(l) = O, 

that for each n with pl(n) > 0 the line po(n) is an opening line, and that 

pl(po(n)) = pl(n) - 1. 
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3. An example 

As an example we represent schematically a book with paragraphs. The 

numbering of the lines in the book appears to the left. It only serves our 

(metalingual) di~cussion, and does not belong to the schematically indicat­

ed AUTOMATH text. The proper lines are indicated by their identifiers (con­

stants or variables) and their contexts. The dots indicate middle parts and 

category parts. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

+s 

+t 

+t 

+s 
+t 

* 
* 

* 
X * 

* 

X * 
* 

* 

* 

* 
X * 

a .-
b .-

X .- E 

a .-
X .- E 

C .-
a .-

C .-

C .-

X .- E 

d != 

In this example we have indeed o(n) ~ c(n) for·a,Ll n, and e.g. 

o(4) = 1, c(4) = 0 hence pl(4) = 1 

o (16) = 3, c(16) = 3 hence pl(16) = 0 

po(4) = 3 

po (15) = 13 

po(20) = 17 
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4. Indices and paragraphs 

For references to paragraphs we use indices. An index has the form 

s 1 - s2 - ••• - su (with u ~ 1). The sign - is used as a separator, and has 

nothing to do with the of closing lines. As a syntactic variable for in-

dices we use s. If s = s 1 - s2 - ••• - su then s - s denotes s 1 - s 2 - ••• - su - s. 

For each linen we define an index ind(n) as follows: 

if pl (n) 0 then ind(n) = cover. 

if pl(n) > 0 and po(n) = +s then ind(n) ind(po(n)) - s. 

Note that, by this definition, for each n the first paragraph identifier in 

ind(n) is cover Indices of the form cover-s2 - •.• - su are called complete 

indices, So, for all n, ind(n) is complete. 

In the example we have: 

ind(3) 

ind(4) 

ind(9) 

cover 
cover - s 
cover - s - t 

ind(15) = cover - t 

Given a book Band an index s, the subsequence of B consisting of those 

lines n for which ind(n) =sis called the paragraph of s. Note that para­

graphs are mutually disjoint. 

In our example the paragraphs are: 

for s -

for s -
for s -

for s -

cover 
cover 
cover 
cover 

s 

s - t 
t 

1,2,3,12,13,16 

4,5,6,7,11,17 

8,9,10,18,19,20 

14,15. 

If n is a line in a paragraph, and pl(n) > 0 then the line po(n) is 

called an opener.of the paragraph. Note that the openers of a paragraph are 

not lines of that paragraph. The first opener of a paragraph is called the 

paragraph opener of that paragraph, the other openers are called reopeners. 

The closing lines in a paragraph are called the closers of that paragraph. 

In our example we see: 

for s = cover - s the paragraph opener is 3, a reopener is 16 and a clos-

er is 11. 

for s = cover - s - t the paragraph opener is 7, a reopener is 17 and 

closers are 10 and 20. 

for s = cover - t the paragraph opener is 13 and a closer is 15. 
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5. The rule for constants 

The rule in AUTOMATH languages requiring that constants introduced in 

different lines are different, is weakened in the present language as fol­

lows: 

Constants introduced in different proper lines in the same paragraph 

must be different. 

Note that in our example this rule is observed. 

For reference to a constant c introduced in the linen we use the con­

stant indexed, i.e. we write c 11 s" where s = ind(n). Note that for an index­

ed constant c 11 s11 the index sis always complete. In our example the con­

stants a introduced in the lines 1, 5 and 9 appear indexed as a"cover" , 
a"cover - s" and a"cover - s - t" respectively. 

By the rule for constants the indexed forms of constants introduced in 

different lines are different. So if we would replace each constant by its 

indexed form we would get a book where the strict rule for constants is ob­

served. 

6. The second rule for paragraph lines 

It is an essential feature of our language that indices in indexed con­

stants can be abbreviated, even (in some cases) to the point of omitting 

them entirely. For this purpose there is a second rule for paragraph lines: 

If +sis a line with number n, thens may not occur in ind(n). 

It follows that the paragraph identifiersofind(n) are mutually different. 

We shall now describe the interpretation of a constant c with abbre­

viated (or without) index. we assume that such a constant occurs in the mid­

dle part or category part of a proper linen with ind(n) =s=s1 -s2 - ••• -sk. 

We distinguish three cases for the form of the abbreviated index. 

i) c"t1 - t 2 - ••• - tR. 11 where t 1 % cover. In this case t 1 must be one (and 

therefore, by the second rule, exactly one) of s 1 ,s2 , ... ,sk. Suppose 

t 1 = si then c"t1 - t 2 - ••• - tR." should be interpreted as 

c"s 1 - s 2 - ••• - si - t 2 - ••• -tR.". In our example, if a"s" occurs in the 

dots of line 19, it should be interpreted as a"cover - s". 
ii) c 11 - t 1 - t 2 - ••• - tR. 11 should be interpreted as 

II t t t II c sl - s2 -. • .- sk - 1 - 2 -. • .- R. • 

In our example, in the dots of line 12 a" - s" should be interpreted 

as a"cover - s" and a" - s - t" as a"cover - s - t". 
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iii) ·c appears without index. Then c should be interpreted as c"t" where t 

is the "longest possible initial part of s". I.e.: If c is identifier 

of a line preceding n in the paragraph of s then c should be interpret­

ed as c"s", else if c is identifier of a line preceding n in the para­

graph of s 1 - s 2 - ••• - sk-l then c should be interpreted as 

c"s 1 - s 2 - .•• - sk-l" etc. 

In our example, in the dots of line 4, a should be interpreted as 

a"cover" , while in line 6 a should be interpreted as a"cover - s" 

Note that in the middle part or category part of line 9 a should 

again be interpreted as a"cover - s" (i.e. the identifier introduced 

in line 5). 

We see that the interpretation of a constant with abbreviated index 

depends on the place in the book where it occurs. 

7. Reference to variables 

According to the definition of AUT-QE, variables x 1 , ... ,xk of a context 

x 1 ~ a 1, ••• ,~ ~ ctk r,mst be mutually different identifiers. We maintain this 

rule in AUT-PAR. Thus free variables occurring in the middle part or catego­

ry part of a line always refer to a (unique) variable of the context (Cf. 

[vD, 2.4, 2.13.2, 5.5.2, 5.5.3]). Therefore such variables are never indexed. 

For variables there are in AUTOMATH no restrictions to their use as 

identifier parts of different lines. If a variable x appears as a context 

indicator ([vD, 2.13.1 i)]) of a linen it always refers to the latest EB­

line introducing x which precedes n. In AUT-PAR a context indicator must be 

indexed and for the indexed variables we allow the same abbreviation rules 

as in section 6. Hence the context indicator X in line 5 of our example 

should be interpreted (according to 6 iii) above) as x"cover s" i.e. 

the variable introduced in line 5. The context indicator X in line 8 should 

also be interpreted as x"cover - s" , but it refers to the variable intro­

duced in line 6. In fact in lines n with n > 6 there is no possibility to 

use the variable X introduced in line 4 as a context indicator. The con­

text indicator X in line 19 should be interpreted as x"cover - s - t" , 

thus referring to the variable introduced in line 18. 

If we want to write line 19 on the context introduced in line 6 we 

should write: 

19 x"s" * d := .•... 

or, with a complete index: 



19 x"cover - s" * d := 

It is allowed to introduce a new variable in line 19 by 

x"s" * y .- --E 

However 

x"s" * x := --E .... 
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would not be allowed, because this would give two variables X in one con­

text. 

8. Remarks on notation 

Deviating from the notations for paragraph lines described above, we 

denote reopeners of a paragraph not by +s but by +*s, and closers of the 

paragraph of s 1 - s 2 - ••• - sk by -sk. Thus the lines 16 and 17 in our example 

should be written ttS and +*t, and the lines 11 and 15 as -s and -t 
respectively. This redundant notation is preferred for the sake of readabil­

ity. 
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Appendix 3. The PN-lines from the preliminaries 

LAYOUT FROM FILE : EXCERPTOUTPUT/PREPNS JANUARY 25, 1977 10:40:41 

+L 

* A I= PROP 
A * B I= PROP 
B * IMP := CX,AJB PROP 

* CON := PN PROP 
A * NOT := IMP(CON) PROP 
A * WEL := NOT(NOTCA)) PROP 
A * w := WEL<A> 

2 w * ET := PN A 
B * EC := IMP(A ,NOT< B» PROP 
B * AND := NOT(EC<A,B» PROP 

* SIGMA I= TYPE 
SIGMA * p I= CX,SIGMAJPROP 

p * ALL := p PROP 
p * NON := CX,SIGMAJNOT<<X>P> C X, SIGMA J PROP 
p * SOME := NOT(NON<P>) PROP 

+E 

SIGMA* S l= SIGMA 
s * T != SIGMA 

3 T * IS I= PN PROP 
4 s * REFIS I• PN IS<S,S) 

p * s := SIGMA 
s * T I= SIGMA 
T * SP I= <S>P 

SP* I :• IS(S,T> 
5 I* ISP I= PN <T>P 

P * AMONE := CX,SIGMAJCY,SIGMAJCU,<X>PJCV, 
<Y>PJIS<X,Y> PROP 

p * ONE I= AND<AMONE(SIGMA,P>, 
SOME<SIGMA,P» PROP 

p * 01 I= ONE(SIGHA,P) 
6 01 * IND ·I= PN SIGMA 
7 01 * ONEAX I= PN <IND>P 

SIGMA * TAU I= TYPE 
TAU * F I= CX,SIGMAJTAU 

F * INJECTIVE := ALL<CX,SIGMAJALL(CY,SIGMAJ 
IMP(IS(TAU,<X>F,<Y>F>,IS<X,Y)) 
)) PROP 

F * TO I= TAU, 
TO* IMAGE := SOME<CX,SIGMAJIS(TAU,TO,<X>F)) PROP 

TAU* F I= CX,SIGMAJTAU 
F * G I= ex, SIGMAJTAU 
G * I I• CX,SIGMAJIS(TAU,<X>F,<X>G> 

8 I* FISl := PN IS<CX,SIGMAJTAU,F,G) 
9 P * OT I= PN TYPE 

P * 01 := OT 
10 01 * IN I= PN SIGMA 
11 01 * INP : " PN <IN>P 
12 P * OTAXl I= PN INJECTIVE<OT,SIGMA,CX,OTJ 

IN<X» 
p * s I= SIGMA 
s * SP I= <S>P 

13 SP * OTAX2 I= PN IMAGE(OT,SIGMA,CX,OTJIN(X),S) 
14 TAU * PAIRTYPE != PN TYPE 

TAU* s I• SIGMA 
s * T I• TAU 

15 T * PAIR I= PN PAIRTYPE 
TAU* Pl I,. PAIRTYPE 

16 Pl* FIRST I= PN SIGMA 
17 Pl ll< SECOND I= PN TAU 
18 Pl ll< PAIRISl I= PN IS<PAIRTYPE,PAIR<FIRST, 

SECOND>,P1> 
19 T * FIRSTIS1 I= PN IS<SIGMA,FIRST(PAIR),S) 
21) T * SECONDISl I= PN IS(TAU,SECOND<PAIR),T) 

-E 



+ST 

21 SIGMA * SET 
SIGMA* S 

s * so 
22 SO* ESTI 
23 P * SETOF 

p * s 
S * SP 

24 SP* ESTII 
S * E 

25 E * ESTIE 
SIGMA* SO 

SO* TO 
TO* INCL 

TO* I 
I * J 

26 J * ISSETI 

-ST 

-E 

-L 

I= PN 
I= 
I= 
I= PN 
I= PN 
: .. 
I= 
I= PN 
: "' 
I= PN 
la 
I= 
:= ALL(CX,SIGMAJIMP(ESTI<X,SO), 

ESTI(X,TO))) 
I= 
la 
I= PN 

TYPE 
SIGMA 
SET 
PROP 
SET 
SIGMA 
<S>P 
ESTI(S,SETOF<P>> 
ESTI<S,SETOF<P>> 
<S>P 
SET 
SET 

PROP 
INCL<SO,TO> 
INCL<TO,SO) 
IS(SET,SO,TO) 
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Appendix 4. Excerpt for "Satz 27" 

LAYOUT FROM FILE EXCERPTOUTPUT/SATZ27 JANUARY 25, 1977 10:50:22 

+L 

* A := PROP 
A * B := PROP 
B * IMP := CX,AJB PROP 
B * Al := A 

Al * I I= IMP<A,B> 
I * MP I= <Al>I B 
B * C I= PROP 
C * I := IMP<A,B> 
I * J I= IMP<B,C) 
J * TRIMP := CX,AJ«X>I>J IMP<A,C> 

* CON := PN PROP 
A * NOT ,- IMP<CON> PROP 
A * WEL := NOTCNOTCA» PROP 
A * Al := A 

Al * WELI := CX,NOTCA) J<Al>X WEL<A> 
A * w I= WELCA> 
w * ET := PN A 
A * Cl := CON 

Cl * CONE := ETCCX,NOTCA)JCl) A 

+IMP 

B * I I• IMP<A,B) 
I * J I., IMP<NOT<A> ,B> 
J * TH1 := ETCB,CX,NOT<B>J<<TRIMPCCON,I, 

X»J>X> B 
B * N := NOTCA) 
N * TH2 := TRIHP<CON,B,N,CX,CONJCONECB,X) 

) IHP<A,B) 
B * N ; .. NOT<B> 
N * I I= IHP<A,B) 
I* TH3 ·- TRIMP(CON,I,N) NOT<A> ,-
B * Al I= A 

Al* N I• NOT<B> 
N * TH4 := CX,IMP(A,B>J<Al>TH3CN,X) NOTCIHP(A,B)) 
B * N := NOTCIMPCA,B» 
N * TH5 := ET<CX,NOT(A>J<TH2(X)>N> A 
N * TH6 I= CX,BJ<CY,AJX>N NOT<B> 

-IMP 

B * EC l= IHP<A,NOT(B)) f PROP 

+EC 

B * I I= IMP<A,NOT(B)) 
I* THl I• I EC<A,B> 
B * I I" IMP<B,NOT(A)) 
I* TH2 I= CX,AJCY,BJ<X><Y>I EC(A,B) 

-EC 

B * E I• EC<A,B> 
E * Al I• A 

Al* ECEl I= <A1>E NOT<B> 
E * B1 , .. B 

Bl* ECE2 := TH3'-IMP'(NOT(B>,WELI<B,B1>,E> NOT<A> 
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B * AND l= NOT<EC<A,B>l PROP 
B * Al f= A 

Al * Bl := B 
Bl * ANDI := TH4"-IMP'CNOTCB),A1,WELICB,B1) 

) ANDCA,B> 
B * Al I= ANDCA,B) 

Al * ANDEl := TH5'-IMP'<NOTCB),A1) A 
Al * ANDE2 := ETCB,TH6'-IMP'CNOTCB),A1)) B 

+AND 

B * N I= NOT<AND) 
N * Al l• A 

Al* TH3 l= ECEl<ETCEC,Nl,Al) NOTCB> 

-AND 

B * OR := IMPCNOTCA>,B> PROP 
B * Al I= A 

Al* ORI1 := TH2'-IMP'CNOT(A),B,WELICA1)) ORCA,B> 
B * Bl := B 

Bl* ORI2 := CX,NOT<A>JB1 ORCA,B) 

+OR 

B * I l= IMPCNOT<B) ,Al 
I * TH2 I= CX,NOTJETCB,TH3'L-IMP'CNOTCB), 

A,X,I>l ORCA,B) 

-OR 

B * 0 l= ORCA,B> 
0 * N Im NOTCA> 
N * ORE2 l= <N>O B 
0 llC N Im NOT<Bl 
N * OREl I= ETCTH3"-IMP'CNOTCA>,B,N,Ol) A 

+*OR 

B * N I• NOT<A> 
N llC H I= NOTCB> 
M llC TH3 := TH4'L-IHP'(NOT<A>,B,N,H> NOT(ORCA,B)) 

-OR 

C * 0 I• ORCA,'ll) 
0 * I I"' IHP<A,C) 
I * J I,. IHPCB,C> 
J * ORAPP l= TH1'-IHP'CC,I,TRIMP<NOT,B,C,O, 

J)) C 

+*OR 

0 * I I• IHPCA,Cl 
I * TH7 I= TRIHP<NOTCC>,NOT,B,CX,NOT<C>J 

TH3'L-IMP'CA,C,X,I>,O> ORCC,B) 
0 * I I= IHPCB,C> 
I * THB I= TRIHPCNOT<A>,B,C,O,I) ORCA,C) 
C * D I= PROP 
D * 0 i• OR(A,B> 
0 * I I• IliP<A,C> 
I * J I= IHP<B,D> 
J * TH9 I= TH7CA,D,C,THB<A,B,D,O,J>,I> ORCC,D> 

-OR 
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* SIGMA l= TYPE 
SIGMA * p I= ex, SIGMAJPROP 

p * ALL I= p PROP 

+ALL 

p * s I• SIGMA 
S * N ja NOT«S>P> 
N * THl := CX,ALL(SIGMA,P)J<<S>X>N NOT(ALL(SIGMA,P)) 

-ALL 

p * NON := CX,SIGMAJNOT<<X>P> CX,SIGMAJPROP 
p * SOME := NOT< NON ( P)) PROP 
p * s := SIGMA 
s * SP I= <S>P 

SP * SOMEI := TH1"-ALL'(NON<P>,S,WELI<<S>P, 
SP)) SOME<SIGMA,P> 

+SOME 

p * N := ;_NON(P> 
N * TH5 := WELI<NON(P) ,N> ; NOT(SOME(SIGMA,P)) 

-SOME 

p * s != SOME<SIGMA,P> 
s * X != PROP 
X * I I,. CY,SIGMAJIMP<<Y>P,X) 

+*SOME 

I * N I= NOT<X> 
N * T : .. SIGMA 
T * T5 I= TH3'L-IMP"(<T>P,X,N,<T>I> NOT«T>Pl 
N * T6 := MP(SOME<SIGMA,P>,CON,S, 

TH5CCY,SIGMAJT5(Y))) CON 

-SOME 

I lk SOMEAPP I= ETCX,CY,NOTCX>JT6'-SOME"(Yl) f X 

+*SOME 

p * Q : .. CX,SIGMAJPROP 
Q * s I" SOME<SIGHA,P) 
s * I I= CX,SIGHAJIHP<<X>P,<X>G> 
I * TH6 := SOMEAPP<S,SOHE<G>,CX,SIGHAJCY, 

<X>PJSOHEI<G,X,HPC<X>P,<X>G,Y, 
<X>I))) J SOHE<Gl 

-SOME 

C * AND3 := AND<A,AND<B,C)) PROP 
C * A1 I= AND3CA,B,C> 

A1 * AND3El I= ANDE1CANDCB,Cl,A1) A 
Al * AND3E2 := ANDE1CB,C,ANDE2CAND(B,Cl,Al)) B 
Al * AND3E3 := ANDE2<B,C,ANDE2(AND<B,Cl,A1)) C 
C * Al I= A 

Al * Bl I= B 
Bl * Cl I= C 
C1 * AND3I := ANDICA,AND<B,C>,Al, 

ANDI<B,C,B1,C1)) AND3CA,B,C> 

tAND3 

C * Al I= AND3CA,B,C> 
Al * THl := AND3I(B,C,A,AND3E2(A1>, 

AND3E3(Al>,AND3E1(A1)) AND3<B,C,A> 

-AND3 
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C lit EC3 := AND3(EC,EC<B,C),EC<C,Al) PROP 
C * E I= EC3(A,B,C> 

+EC3 

E * THl ·- AND3El(EC,EC<B,C>,EC<C,A),E) EC<A,B> ,-
E * TH3 := AND3E3(EC,EC<B,Cl,EC<C,Al,E) EC(C,A> 
E * TH4 := TH1'L-AND3"(EC,EC(B,C>,EC(C,Al 

,E> EC3<B,C,A> 

-EC3 

E * Al I= A 
Al * EC3E12 == ECE1<TH1'-EC3',A1> NOT<B> 
Al * EC3E13 := ECE2<C,A,TH3'-EC3',Al> NOT<C) 

E * Bl := B 
Bl * EC3E23 := EC3E12(B,C,A,TH4'-EC3',Bl) NOT<C> 
Bl * EC3E21 := EC3E13<B,C,A,TH4'-EC3',B1> NOT<A) 

+*EC3 

C * E I" EC<A,B) 
E * F , .. EC(B,C) 
F * G I= EC<C,A) 
G lit TH6 := AND3I<EC,EC(B,C>,EC<C,Al,E,F, 

G) EC3<A,B,C) 

-EC3 

+E 

SIGMA lit S I,. SIGMA 
S * T I" SIGMA 
T lit IS la PN PROP 
S lit REFIS I., PN IS<S,Sl 
p * s I= SIGMA 
S lit T la SIGMA 
T lit SP 1- <S>P 

SP lit I I= IS(S,T> 
I lit ISP : "' PN <T>P 

SIGMA lit S : .. SIGMA 
S lit T I= SIGMA 
T lit I I= IS<S,T> 
I lit SYMIS := ISP(CX,SIGMAJIS<X,S),S,T, 

REFIS(S>, I) IS<T,S> 
T * u I= SIGMA 
u * l : .. IS<S,T> 
I * J I= IS<T,U> 
J * TRIS l= ISP<CX,SIGMAJIS(X,U>,T,S,J, 

SYMIS<I)) IS<S,U) 
u * I I= JS<S,U) 
I lit J I= IS<T,U) 
J * TRIS2 := TRIS(S,U,T,I,SYMIS<T,U,J)) IS<S,T> 
T * N l= NOT<IS(S,T)) 
N * SYMNOTIS I= TH3'L-IMP"(IS(T,S>,IS<S,T),N, 

CX,IS(T,S)JSYMIS(T,S,X)) NOT< ISCT,S)) 

+NOTIS 

u lit N ; .. NOT<IS(S,T>) 
N :II l Jo;, IStT,U> 
I lit TH3 := ISP(CX,SIGMAJNOT(ISCS,X>>,T,U, 

N,I> NOT(IS(S,U)) 
N lit I := IS<U,T> 
I :II TH4 := TH3(SYMIS<U,T,I>> NOT<IS<S,U)) 

-NOTIS 
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u * V := SIGMA 
V * I I= IS<S,T> 
I * J I= IS<T,U) 
J * K != IS<U,V) 
K * TR3IS := TRIS(S,U,V,TRIS(I,J>,K> IS(S,V> 
V * w := SIGMA 
w * I I= IS(S,T> 
I * J I= IS<T,U> 
J * K I= IS<U,V> 
K * L != IS(V,W> 
L * TR4IS := TRIS<S,V,W,TR3IS<I,J,K),L) IS<S,W> 
p * AMONE := ex,SIGMAJeY,SIGMAJeU,<X>PJeV, 

<Y>PJIS(X,Y> PROP 
p * ONE := AND(AMONE(SIGMA,P>, 

SOME<SIGMA,P>) PROP 
p * Al := AMONE(SIGMA,P) 

Al * s := SOME<SIGMA,P> 
s * ONEI I= ANDI<AMONE(SIGMA,P>, 

SOME(SIGMA,P),A1,S) ONE(SIGMA,P> 
p * 01 := ONE(SIGMA,P> 

01 * IND := PN SIGMA 
01 * ONEAX I= PN <IND>P 

SIGMA * TAU := TYPE 
TAU * F := eX,SIGMAlTAU 

F * s I= SIGMA 
s * T !• SIGMA 
T * I I= IS(S,T> 
I * ISF := ISP(SIGMA,CX,SIGMAJIS<TAU,<S> 

F,<X>F>,S,T,REFIS(TAU,<S>F>,I> IS<TAU,<S>F,<T>F> 
TAU * F I= ex, SIGMAlTAU 

F * G I= ex ,SIGMAJTAU 
G * I I= IS<eX,SIGMAJTAU,F,G) 
I * s := SIGMA 
s * FISE := ISP<eX,SIGMAJTAU,eY,eX,SIGMAJ 

TAUJIS<TAU,<S>F,<S>Y>,F,G, 
REFIS(TAU,<S>F>,I> IS<TAU,<S>F,<S>G) 

G * I := eX,SIGMAJIS(TAU,<X>F,<X>G> 
I * FISI I= PN IS<eX,SIGMAJTAU,F,G) 

-E 

flltE 

+ST 

SIGMA * SET , .. PN TYPE 
SIGMA * s I• SIGMA 

s * so , .. SET 
so* EST! I= PN PROP 

p * SETOF , .. PN SET 
p * s I• SIGMA 
s * SP I• <S>P 

SP* ESTU I• PN ESTI<S,SETOF(P)l 
s * E , .. ESTI (S,SETOF(P)) 
E * ESTIE I• PN <S>P 

+EQ 
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+LANDAU 

+N 

$ NAT I= PN TYPE 
* X :- NAT 

X * y I• NAT 
Y * IS := IS'E"<NAT,X,Y> PROP 
Y * NIS I= NOT< IS<X,Y> > PROP 
X $ S I= SET(NAT> 
S * IN := ESTI <NAT,X,S> PROP 

* p I= CX,NATJPROP 
p * SOME := SOME'L"(NAT,P> PROP 
p $ ALL I= ALL'L'(NAT,P) PROP 

* 1 !• PN NAT 
* sue I= PN CX,NATJNAT 
* X !• NAT 

X * y I• NAT 
y * I I• IS<X,Y> 
I* AX2 : .. ISF<NAT,NAT,SUC,X,Y,I> IS<<X>SUC,<Y>SUC) 

* AXJ I= PN CX,NATJNISC<X>SUC,1) 
* AX4 I• PN CX,NATJCY,NATJCU,IS<<X>suc, 

<Y>SUC)JIS<X,Y> 
* s , .. SET<NAT> 

S * COND1 := IN(l,S) PROP 
S * COND2 I= ALL(CX,NATJIHP<IN<X,S>,IN<<X> 

SUC,S))) PROP 
* AX5 , .. PN CS,SET<NAT)JCU,CONDl(S)l 

CV,COND2(S)JCX,NATJIN<X,S) 
* p , .. CX,NATJPROP 

P * 1P I• <l>P 
1P * XSP !• CX,NATJCY,<X>PJ<<X>SUC>P 

XSP $ X l• NAT 

+u 

X * S I= SETOF<NAT,P> SET<NAT> 
X * T1 I= ESTII<NAT,P,1,1P) CONDl<S) 
X * y I• NAT 
Y * YES S• IN<Y,S) 

YES* T2 := ESTIE<NAT,P,Y,YES> <Y>P 
YES* TJ I= ESTII<NAT,P,<Y>SUC,<T2><Y>XSP) IN«Y>SUC,S> 

X * T4 != <X><CY,NATJCU,IN<Y,S>JTJ<Y,U>> 
<T1><S>AX5 IN<X,S> 

-u 

X * INDUCTION I• ESTIECNAT,P,X,T4"-I1") <X>P 
* X I• NAT 

X * y I• NAT 
y * N I• NIS<X,Y> 

+21 

N * I I• IS<<X>SUC,<Y>SUC) 
I * T1 I• <I><Y><X>AX4 IS<X,Y> 

-21 

N $ SATZl I• THJ"L-IMP"<IS<<X>SUC,<Y>SUC>, 
IS<X,Y),N,CU,IS(<X>SUC,<Y>SUC) 
JT1 "-21" (U)) I NIS<<X>SUC,<Y>SUC) 



92 

+23 

X * PROP1 := ORCISCX,1>,SOMECCU,NATJIS(X, 
<U>SUC))l PROP 

* T1 := ORilCIS(l,l>,SOMECCU,NATJISCl, 
<U>SUCl),REFISCNAT,l)) PROP1<1) 

X * T2 := SOMEICNAT,CU,NATJISC<X>SUC,<U> 
SUC),X,REFISCNAT,<X>SUC)) SOMECCU,NATJISC<X>SUC,<U>SUC) 

) 

X * T3 := ORI2(IS<<X>SUC,1>,SOME<CU,NATJ 
ISC<X>SUC,<U>SUC>>,T2l PROP1 C<X>SUC) 

X * T4 := INDUCTIONCCY,NATJPROP1(Yl,T1, 
CY,NATJCU,PROPl(Y)JT3(Yl,X> PROP1(Xl 

-23 

X * N := NISCX,1> 
N * SATZ3 := ORE2CIS<X,1),SOMECCU,NATJIS(X, 

<U>SUC)>,T4'-23',N) SOMECCU,NATlIS<X,<U>SUC)) 
y * z := NAT 

+24 

X * F I= CY,NATJNAT 
F * PROP1 := ALL<CY,NATJISC<<Y>SUC>F,<<Y>F> 

sue» PROP 
F * PROP2 := ANDCISC<1>F,<X>SUC>,PROP1> PROP 
X * A I= CY,NATJNAT 
A * B :- CY,NATJNAT 
B * PA :a PROP2<A> 

PA * PB I= PROP2(B) 
PB * y l= NAT 

y :II PROP3 := ISC<Y>A,<Y>B> PROP 
PB * T1 := ANDE1(IS<<1>A,<X>SUC),PROP1(A) 

,PA> IS«l>A,<X>SUC) 
PB * T2 := ANDE1CIS<<1>B,<X>SUC),PROP1<B> 

,PB> ISC<l>B,<X>SUC) 
PB * T3 I= TRIS2<NAT,<1>A,<l>B,<X>SUC,T1, 

T2) PROP3(1) 
y * p I= PROP3(Y) 
p * T4 I= AX2<<Y>A,<Y>B,P> IS<<<Y>A>SUC,<<Y>B>SUC) 
p * T5 := ANDE2CISC<l>A,<X>SUC),PROP1(A) 

,PA> PROP1(A) 
p * T6 I= ANDE2(IS<<1>B,<X>SUC>,PROP1(Bl 

,PB) PROP1<B> 
p * T7 := <Y>T5 IS<<<Y>SUC>A,<<Y>A>SUC) 
p * TS I= <Y>T6 IS<<<Y>SUC>B,<<Y>B>SUC) 
p * T9 != TR3IS(NAT,<<Y>SUC>A,<<Y>A>SUC, 

<<Y>B>SUC,<<Y>SUC>B,T7,T4, 
SYMIS'E"<NAT,<<Y>SUC>B,<<Y>B> 
SUC,TS)) PROP3 C<Y>SUC) 

y * TlO := INDUCTION(CZ,NATlPROP3CZ>,T3, 
CZ,NATJCU,PROP3CZ)lT9<Z,U),Y) PROP3<Y> 

PB * TU I= FISI<NAT,NAT,A,B,CY,NATlT1O(Y) 
) IS'E'(CY,NATJNAT,A,B) 

X * AA I= CZ,CY,NATJNATlCU,CY,NATlNATJ 
CV,PROP2(Z)JCW,PROP2(U)JT11(Z, 
U,V,W> AMONE<CY,NATJNAT,CZ,CY,NATJ 

NATJPROP2<Z>) 
X * PROP4 != SOME'L'<CY,NATJNAT,CZ,CY,NATJ 

NATJPROP2<Z» PROP 

* T12 I= CX,NATJREFISCNAT,<<X>SUC>SUC) PROP1 ( 1,SUC) 

* T13 I= ANDI<IS(<1>SUC,<1>SUCl, 
PROP1<1,SUC>,REFISCNAT,<1>SUC) 
,T12) PROP2(1,SUC) 

* T14 := SOMEICCY,NATJNAT,CZ,CY,NATJ 
NATJPROP2C1,Z),SUC,T13l PROP4(1) 
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X * p : " PROP4(X) 
p * F l= CY,NATJNAT 
F * PF I= PROP2(F) 

PF * G := CY,NATJ<<Y>F>SUC CY,NATJNAT 
PF * y := NAT 

y * T15 := REFIS<NAT,<Y>G> IS<<Y>G,<<Y>F>SUC) 
PF * T16 := ANDE1(IS<<1>F,<X>SUC),PROP1(F) 

,PF> IS(<l>F,<X>SUC) 
PF * T17 := TRIS<NAT,<1>G,<<1>F>SUC,<<X> 

SUC>SUC,T15(1>,AX2(<1>F,<X> 
SUC,T16)) IS<<l>G,<<X>SUC>SUC) 

y * T18 := ANDE2(IS(<1>F,<X>SUC),PROP1(F) 
,PF) PROP1(F) 

y * T19 l= <Y>T18 IS<<<Y>SUC>F,<<Y>F>SUC> 
y * T20 := TRIS2(NAT,<<Y>SUC>F,<Y>G,<<Y> 

F>SUC,T19,T15) IS<<<Y>SUC>F,<Y>G> 
y * T21 := TRIS<NAT,<<Y>SUC>G,<<<Y>SUC>F> 

SUC,<<Y>G>SUC,T15<<Y>SUC), 
AX2C<<Y>SUC>F,<Y>G,T20)) IS<<<Y>SUC>G,<<Y>G>SUC) 

PF * T22 := CY,NATJT21(Y) PROPl«X>SUC,G) 
PF * T23 := ANDI(IS<<1>G,<<X>SUC>SUC), 

PROP1<<X>SUC,Gl,T17,T221 PROP2«X>SUC,GI 
PF * T24 := SOMEICCY,NATJNAT,CZ,CY,NATJ 

NATJPROP2<<X>SUC,Zl,G,T231 PROP4 «X>SUC > 
p * T25 := SOMEAPP(CY,NATJNAT,CZ,CY,NATl 

NATJPROP2(Zl,P,PROP4<<X>SUC>, 
CZ,CY,NATlNATJCU,PROP2(Zll 
T24<Z,UII PROP4 «X>SUC > 

X * BB := INDUCTION(CY,NATlPROP4CY),T14, 
CY,NATJ[U,PROP4(YIJT25(Y,Ul,XI PROP4(XI 

-24 

X * SATZ4 I= ONEI<CY,NATlNAT,CZ,CY,NATlNATJ 
PROP2"-24'CZ>,AA"-24",BB"-24') ONE'E'(CY,NATJNAT,CZ,CY,NATJ 

NATJANDCIS<<1>Z,<X>SUCI, 
ALL<CY,NATlIS<<<Y>SUC>Z,<<Y> 
Z>SUCIII) 

X * PLUS := IND<CY,NATJNAT,CZ,CY,NATJNATl 
PROP2"-24'(Zl,SATZ4> CY,NATJNAT 

y * PL I= <Y>PLUS NAT 

+il<24 

X llC T26 I= ONEAX(CY,NATJNAT,CZ,CY,NATJ 
NATlPROP2(Zl,SATZ4) PROP2<PLUS) 

-24 

X llC SATZ4A := ANDEl(IS(<l>PLUS,<X>SUC>, 
PROP1'-24'(PLUS>,T26"-24') IS(PL<X,1>,<X>SUC> 

-l-llC24 

X llC T27 := ANDE2(IS(<l>PLUS,<X>SUC), 
PROP1(PLUS),T26) I PROPl<PLUS) 

-24 

Y * SATZ4B I• <Y>T27'-24' !S(PL<X,<Y>SUC>,<PL(X,Y>>SUC) 

+llC24 

ll< T28 I• T11<1,PLUS(1),SUC,T26(1),T131 ; IS'E"(CY,NATJNAT,PLUS(l),SUC) 

-24 

X ll< SATZ4C I= FISE(NAT,NAT,PLUS<ll,SUC, 
T28"-24' ,10 ; IS<PL<1,X>,<X>SUC> 
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+*24 

X * T29 := Tll<<X>SUC,PLUS<<X>SUC>, 
CY,NATJ<<Y>PLUS>SUC,T26(<X> 
SUCl,T23<BB,PLUS,T26)) IS'E'(CY,NATJNAT,PLUS(<X>SUC> 

,CY,NATJ<<Y>PLUS>SUC) 

-24 

y * SATZ4D := FISE<NAT,NAT,PLUS(<X>SUC>, 
CZ,NATJ<<Z>PLUS>SUC,T29'-24', 
Y> IS(PL(<X>SUC,Y>,<PL<X,Yl>SUC) 

X * SATZ4E := SYMIS<NAT,PL(X,ll,<X>SUC, 
SATZ4Al IS<<X>SUC,PL<X,1)) 

y * SATZ4F := SYMIS<NAT,PL(X,<Y>SUC>,<PL 
(X,Y>>SUC,SATZ4B) IS(<PL(X,Yl>SUC,PL(X,<Y>SUC)) 

X * SATZ4G := SYMIS(NAT,PL(l,Xl,<X>SUC, 
SATZ4Cl IS<<X>SUC,PL<l,X)l 

z * I I= IS<X,Y> 
I * ISPLl := ISF<NAT,NAT,CU,NATJPL<U,Z>,X, 

Y,I> IS(PL(X,Z),PL(Y,Z)) 
I * ISPL2 ·- ISF(NAT,NAT,CU,NATJPL<Z,Ul,X, ,-

Y,I> IS<PL<Z,X>,PL<Z,Y>> 

t25 

z * PROP1 := IS<PL<PL<X,Yl,Zl,PL<X,PL<Y,Z)) 
) J PROP 

y * T1 I= TR3IS(NAT,PL(PL(X,Yl,1l,<PL 
<X,Y>>SUC,PL(X,<Y>SUCl, 
PL(X,PL<Y,l)l,SATZ4A(PL<X,Y)), 
SATZ4F,ISPL2(<Y>SUC,PL<Y,1>,X, 
SATZ4E<Y))) PROP!< 1 > 

z * p := PROPl<Z> 
p * T2 := AX2(PL(PL(X,Yl,Zl,PL<X,PL<Y,Zl 

l,P> IS<<PL<PL<X,Y>,Zl>SUC,<PL 
(X,PL<Y,Z>>>SUC) 

P * T3 := TR4IS(NAT,PL(PL<X,Yl,<Z>SUCl, 
<PL(PL(X,Yl,Zl>SUC,<PL<X,PL 
<Y,Z>>>SUC,PL<X,<PL<Y,Zl)SUC>, 
PL(X,PL<Y,<Z>SUCll, 
SATZ4B(PL(X,Yl,Z),T2, 
SATZ4F<X,PL(Y,Zll, 
ISPL2<<PL<Y,Z>>SUC,PL<Y,<Z> 
SUCl,X,SATZ4F<Y,Zlll PROPl «Z>SUC) 

-25 

Z % SATZS := INDUCTION<CU,NATJPROP1"-25"<U> 
,Tl"-25',CU,NATJCV,PROPl"-25" 
<U>JT3'-25'(U,V>,Z> IS(PL(PL<X,Yl,Zl,PL<X,PL<Y,Zl 

)) 

Z % ASSPLl := SATZS IS<PL(PL(X,Yl,Zl,PL<X,PL(Y,Z) 
)) 

+26 

y * PROP! := IS(PL<X,Y>,PL<Y,X>> PROP 
y * T1 I= SATZ4A(Y> IS(PL<Y,ll,<Y>SUC) 
y * T2 := SATZ4C(Y> IS<PL<l,Y>,<Y>SUC) 
y * T3 := TRIS2(NAT,PL(1,Yl,PL<Y,1>,<Y> 

SUC,T2,Tll PROP1<1,Y) 
y * p := PROP1<X,Y> 
p * T4 I= TRIS(NAT,<PL<X,Y>>SUC,<PL(Y,X) 

>SUC,PL<Y,<X>SUC>,AX2(PL<X,Y>, 
PL<Y,Xl,Pl,SATZ4F<Y,X>> IS<<PL<X,Y>>SUC,PL(Y,<X>SUC)) 

p * TS := SATZ4D IS(PL<<X>SUC,Yl,<PL<X,Y>>SUC) 
p * T6 := TRIS<NAT,PL<<X>SUC,Y>,<PL<X,Y> 

>SUC,PL<Y,<X>SUCl,TS,T4) PROP 1 «X>SUC, Y> 

-26 

Y * SATZ6 ·- INDUCTION(CZ,NATJPROP1'-26'<Z, ,-
Y>,T3'-26',CZ,NATJ 
CU,PROP1'-26'<Z,Y)JT6"-26'(Z, 
Y,Ul ,X> IS(PL(X,Y>,PL<Y,X)) 

Y * COMPL := SATZ6 IS<PL(X,Yl,PL<Y,X)) 
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+27 

y * PROP1 NIS(Y,PL<X,Y> > PROP 
X * T1 SYMNOTIS<NAT,<X>SUC,1,<X>AX3) NIS<l,<X>SUC) 
X * T2 TH4"E-NOTIS'(NAT,1,<X>SUC, 

PL<X,ll,Tl,SATZ4A) PROPl( 1) 

y * p I= PROPl(Y) 
P * T3 := SATZl(Y,PL(X,Yl,P) NIS(<Y>SUC,<PL(X,Y>>SUC) 
p * T4 := TH4'E-NOTIS'<NAT,<Y>SUC,<PL 

<X,Y>>SUC,PL(X,<Y>SUC),T3, 
SATZ48) PROP 1 «Y>SUC > 

-27 

y * SATZ7 l= INDUCTION<CZ,NATJPROP1'-27'(Z) 
,T2"-27",CZ,NATJCU,PROP1'-27' 
<Z>JT4"-27'(Z,U>,Y> NIS<Y,PL<X,Y» 

Z llC DIFFPROP := IS(X,PL<Y,Z)) PROP 

+29 

y * I := IS(X,Y> PROP 
y * II := SOME<CU,NATJDIFFPROP<X,Y,Ul) PROP 
Y * III := SOME<CV,NATJDIFFPROP(Y,X,V)) PROP 
Y * ONE1 != I 

ONEl ll< U I= NAT 

u * T1 I= TRIS<NAT,PL(U,X>,PL<X,U>, 
PL<Y,Ul,COMPL(U,X>, 
ISPLl <U,ONEl)) IS(PL<U,Xl,PL<Y,U>> 

u * T2 := TH3'E-NOTIS"(NAT,X,PL<U,X>, 
PL<Y,U),SATZ7<U,X>,T1) NIS<X,PL<Y,U» 

ONE1 * T3 := TH5'L-SOME"(NAT,CU,NAT] 
DIFFPROP<U>,CU,NATJT2<U)) NOT<II> 

y * T4 := TH1'L-EC'<I,II,CZ,IJT3<Z>> EC<I,II> 
ONEl * TS := T3(Y,X,SYMIS<NAT,X,Y,ONE1l) NOT<III> 

y * T6 l= TH2'L-EC'(III,I,CZ,IlT5(Z)) EC< III, I> 
y * TWO1 := II 

TWO1 * THREE1 I• III 
THREEi * u I• NAT 

u * DU I• DIFFPROP<X,Y,U> 
DU * V , .. NAT 

V * DV :- DIFFPROP(Y,X,V> 
DV * T6A := TR4IS(NAT,X,PL<Y,Ul,PL(PL<X,V> 

,U>,PL(X,PL<V,Ull,PL(PL<V,U), 
X>,DU,ISPLl<Y,PL<X,Vl,U,DV>, 
ASSPLl<X,V,U),COMPL(X,PL(V,U)) 
) IS<X,PL<PLCV,U>,X>> 

DV * T7 := MP<IS<X,PL(PL(V,Ul,X>l,CON, 
T6A,SATZ7<PL<V,Ul,Xl) CON 

DU * TS := SOMEAPP<NAT,CV,NATJDIFFPROPCY, 
X,V>,THREEl,CON,CV,NATJ 
CDV,DIFFPROP<Y,X,V)JT7(V,DV>> CON 

T.HREE1 * T9 1~ SOMEAPPCNAT,CU,NATJDIFFPROP(U) 
,TWOl,CON,CU,NATJCDU,DIFFPROP 
(U)JTB<U,DU)) CON 

TWOl * T1O := CZ,IIIJT9<Zl NOT<III> 
y * TU I= TH1'L-EC'(II,III,CZ,IIJT1O<Z>l EC<II,IU> 
y * A I= TH6'L-EC3'(I,II,III,T4,T11,T6) EC3(I,U,UI> 

-29 

Y * SATZ9B I= A"-29' EC3<IS<X,Y>,SOME<CU,NATJ 
DIFFPROP<X,Y,Ul),SOME(CV,NATJ 
DIFFPROP<Y,X,Vlll 

y lit MORE I= SOME<CU,NATJDIFFPROP<X,Y,U)) PROP 
y * LESS := SOME<CV,NATJDIFFPROP<Y,X,V>l PROP 
y * SATZlOB l= SATZ98 EC3<IS(X,Y),MORE(X,Yl, 

LESS(X,Yl> 
y * H I= MORE<X,Y> 
H * SATZU l= H LESS(Y,Xl 
y * HOREIS := OR<MORE,IS<X,Y)> PROP 
y * LESSIS := OR(LESS,IS<X,Y)) PROP 
y * H := HOREIS(X,Y) 
M * SATZ13 I= TH9'L-OR'(MORE,IS(X,Yl, 

LESS(Y,Xl,IS<Y,X>,M,CZ,MOREJ 
SATZll(Zl,CZ,IS(X,Yll 
SYMIS(NAT,X,Y,Zll LESSIS(Y,X> 
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z * I := IS<X,Y> 
I * H I= HORECX,Z) 
H * ISHORE1 := ISPCNAT,CU,NATJHORE<U,Z>,X,Y, 

H,I> HORE(Y,Z) 
I * H := HOREIS<X,Z> 
H * ISHOREIS1 := ISP<NAT,CU,NATJHOREIS<U,Z>,X, 

Y,H,I> HOREISCY,Z) 
I * H I= HOREIS<Z,X> 
H * ISHOREIS2 := ISP<NAT,CU,NATJHOREIS<Z,U),X, 

Y,H,I) HOREIS<Z,Y) 
y * I I= IS<X,Y) 
I * HOREISI2 I= ORI2<HORE<X,Y>, lSCX,Y>, I) ; HOREIS<X,Y> 
y * H := I HORE<X,Y> 
H * HOREISI1 I= ORil(HORE<X,Y>,IS<X,Y>,H> ; HOREIS<X,Y) 
z * u I= I NAT 
U * I I• ; IS(X,Y> 
I * J , .. f IS<Z,U) 
J * H I= HOREIS(X,Z) 
H * ISHOREIS12 I= ISHOREIS2<Z,U,Y,J, 

ISHOREISl(X,Y,Z,I,H>> HOREIS<Y,U) 
y * H I= HORE(X,Y) 
H * SATZ10G := TH3'L-OR'<LESS(X,Y>,IS<X,Y>, 

EC3E23<ISCX,Y>,HORE(X,Y>, 
LESS(X,Yl,SATZlOB,H), 
EC3E21CIS<X,Y>,HORE<X,Y), 
LESSCX,Y) ,SATZ10B,.H>) NOT<LESSIS<X,Y)> 

Y * SATZ18 := SOHEICNAT,CU,NATJ 
DIFFPROP<PL<X,Yl,X,U),Y, 
REFIS(NAT,PL<X,Y>>> HORE<PL(X,Y>,X> 

Z * H I• HORE<X,Y) 

+319 

H * u I= NAT 
u * DU I• DIFFPROP<U) 

DU * Tl I= TRIS<NAT,X,PL<Y,U),PL<U,Y>,DU, 
COHPL<Y,U> > IS<X,PL<U,Y> > 

DU* T2 := TR3IS(NAT,PL<X,Z>,PL<PL<U,Y), 
Z>,PL<U,PL<Y,Z>>,PL<PL<Y,Z>,U) 
,ISPL1<X,PL<U,Y>,Z,T1), 
ASSPLl<U,Y,Z>,COHPL(U,PL<Y,Z>> 
) IS<PL<X,Z>,PL<PL<Y,Z>,U>) 

DU* T3 I= SOHEI<NAT,CV,NATJ 
DIFFPROP<PL<X,Z>,PLCY,Z>,V>,U, 
T2> HORE<PL<X,Z>,PL(Y,Z)) 

-319 

H * SATZ19A I= SOHEAPP<NAT,CU,NATJDIFFPROP(U) 
,H,HORE<PL<X,Z),PL(Y,Z)), 
CU,NATJCV,DIFFPROP(U)J 
T3"-319" <U,V> > HORE<PL<X,Z>,PL<Y,Z)) 

Z * H I= HOREISCX,Y> 

+*319 

M * N I• HORECX,Y) 
N * T4 := HOREISil(PL<X,Z>,PL<Y,Z), 

SATZ19A(N)> HOREIS<PL<X,Z>,PL(Y,Z)) 
M * I I= IS(X,Y) 
I * T5 I= HOREISI2(PL(X,Z>,PL<Y,Z>, 

ISPLl<X,Y,Z,I» HOREIS(PL<X,Z),PL<Y,Z)) 

-319 

H * SATZ19L I= ORAPP<HORE<X,Y>,IS(X,Y>, 
HOREIS<PL<X,Z>,PL<Y,Z>>,H, 
CU,HORE<X,Y)JT4'-319'(U),CU,IS 
<X,Y)JT5'-319'<U>> HOREIS<PL<X,Z>,PL(Y,Z)) 

H * SATZ19H I= ISHOREIS12<PL<X,Z>,PL<Z,X>, 
PL<Y,Zl,PL<Z,Y>,COHPL<X,Z), 
COHPL(Y,Z),SATZ19L) HOREIS<PL<Z,X>,PL<Z,Y>> 
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+324 

X * N := NIS<X,1) 
N * U I= NAT 
U * I := IS<X,<U>SUC) 
I * Tl := TRIS<NAT,X,<U>SUC,PL<l,U),I, 

SATZ4G<U) > IS<X,PL<l,U)) 
I * T2 := ISMOREl(PL<l,U>,X,1, 

SYMIS(NAT,X,PLC1,U),T1>, 
SATZ18<1,U» MORECX,l) 

N * T3 I= SOMEAPPCNAT,CU,NATJIS<X,<U> 
SUC>,SATZ3<X,N>,MORECX,1), 
CU,NATJCV,ISCX,<U>SUC)JT2(U,V) 
) MORE<X, 1> 

-324 

X * SATZ24 := TH2'L-OR'(MORE(X,1),ISCX,1), 
CU,NIS<X,l)JT3'-324'(U)) MOREIS<X,1) 

X * SATZ24A := SATZ13<X,1,SATZ24) LESSIS(1,X) 
y * M I= MORE<Y,X> 

+325 

M * U I= NAT 
U * DU I= DIFFPROPCY,X,U) 

DU * Tl := SATZ19M<U,1,X,SATZ24(U)) MOREIS<PL(X,U>,PL<X,1)) 
DU* T2 := ISMOREISl(PL(X,U>,Y,PL<X,1), 

SYMIS(NAT,Y,PL<X,U),DU),Tl) MOREIS<Y,PL(X,1)) 

-325 

M * SATZ25 := SOMEAPP<NAT,CU,NATJDIFFPROP<Y, 
X,U>,M,MOREISCY,PL<X,1)), 
CU,NATJCV,DlFFPROF(Y,X,U)l 
T2"-325'CU,V>> MOREIS(Y,PL<X,1)) 

y * L I= LESSCY,X) 
L * SATZ25B := SATZ13CX,PL<Y,1),SATZ25<Y,X,L) 

) LESSIS(PL<Y,1),X) 

* p I• CX,NATJPROP 
p * N I= NAT 

+327 

N * M I= NAT 
M * LBPROP := IMP<<M>P,LESSIS<N,M>> PROP 

-327 

N * LB I= ALL<CX,NATJLBPROP"-327'(X>> PROP 
N * MIN := AND<LB,<N>P> PROP 
p * 5 := SOME<P> 

+*327 

s * N I= NAT 
N * Tl != CX,<N>PJSATZ24A(N> LBPROP(1,N) 
S * T2 := CX,NATJTl (X) LB(l> 
S * L I= CX,NATJLB<X> 
L * y I= NAT 
y * yp I= <Y>P 

YP * T3 I= SATZ1B<Y,1) MORE<PL(Y, 1> ,Y> 
YP * T4 I= SATZ1OG(PL(Y,1>,Y,T3) NOT(LESSIS(PL<Y,1>,Y>> 
YP * TS t= TH4'L-IMP'(<Y>P,LESSIS<PLCY,1) 

,Y> ,YP,T4) NOTCLBPROP(PL<Y,1>,Y>> 
yp * T6 := THl'L-ALL"(NAT,CX,NATJ 

LBPROP(PL<Y,1),X>,Y,TS) NOT(LB<PL(Y,1>>> 
yp * T7 := MP<LB<PL<Y,1>>,CON,<PL<Y,1)>L, 

T6> CON 
L * TB != SOMEAPP<NAT,P,S,CON,CX,NATJCY, 

<X>PJT7CX,Y)) CON 
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s * N l= NON<NAT,CX,NATJAND<LB<X>, 
NOT(LB(PL(X,1))))) 

N * H := NAT 
H * L I= LB<H> 
L * T9 := <H>N NOT(AND(LB(H>,NOT<LB<PL(H,1)) 

)) ) 

L * T10 := ET<LB<PL<H, 1)), 
TH3'L-AND'(LB(H), 
NOT<LB(PL(H,llll,T9,L)) LB<PL<H,1» 

L * TU ·- ISP(NAT,CX,NATJLB(X),PL<H,1), 
<H>SUC,T10,SATZ4A(t1)) LB«H>SUC) 

N * T12 := CX,NATJINDUCTION<CY,NATJLB(Y), 
T2,CY,NATJCZ,LB(Y)JT11<Y,Zl,Xl CX,NATJLB(Xl 

s * T13 I= CX,NON(NAT,CX,NATJAND<LB<X>, 
NOT(LB(PL<X,l)))))JT8(T12(X)l SOHE<CX,NATJAND(LB(X), 

NOT<LB<PL(X,llll)l 
s * H I= NAT 
H * A := AND<LB(H>,NOT(LB(PL<H,1)))) 
A * T14 ·- ANDEl<LB(H),NOT(LB(PL(H,l)ll, ,-

Al LBUll 
A * T15 := ANDE2<LB(Hl,NOT<LB<PL<H,1))), 

A> NOT<LB<PL(H,ll)l 
A * NHP := NOT«H>P> 

NHP * N I= NAT 
N * NP := <N>P 

NP * T16 := HP<<N>P,LESSIS<H,N>,NP,<N>T14> LESSIS(H,Nl 
NP * T17 := TH3'L-IHP'(IS<H,N>,<H>P,NHP, 

CX,IS<H,N)JISP(NAT,P,N,H,NP, 
SYHIS<NAT,H,N,Xl)l NOT<IS<H,Nll 

NP * T18 := ORE1(LESSCH,Nl,ISCH,Nl,T16, 
T17) LESSCH,Nl 

NP * T19 ·- SATZ25B<N,H,T18) LESSIS(PL<H,1),Nl 
NHP * T20 := CX,NATJCY,<X>PlT19<X,Y> LBCPL(H, 1)) 
NHP * T21 := HP<LB(PL<M,1>>,CON,T20,T15) CON 

A * T22 := ET<<M>P,CX,NOT<<M>P)lT21(Xll <H>P 
A * T23 := ANDI<LB<Hl,<H>P,T14,T22) HIN(Hl 

-327 

S * SATZ27 := TH6'L-SOME'CNAT,CX,NATl 
AND(LB<Xl,NOT<LB<PLCX,ll)ll, 
CX,NATJHINCX),TlJ'-327", 
CX,NATJCY,AND<LB(Xl, 
NOT<LB<PL(X,l>llllT23'-327'<X, 
Y)) SOHE<CX,NATlHINCP,X)) 

-N 

-LANDAU 

-EQ 

-ST 

-E 

-L 
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Appendix 5. Two shortcomings of the first verifying program 

The verifying program which first checked our AUT-QE text was conceived 

at the time when the language theory of AUTOMATH was still in its infancy. 

Actually the first satisfactory definition of AUT-QE only appeared afterwards. 

The program can therefore be seen as a formalization of an informal concept 

of the language in the programmer's mind. This concept, though informal, was 

quite clear; in fact it was proved afterwards that the main procedure is ade­

quate and terminates ([vD], [vD2]). 

Besides being correct, the program had to be efficient: verifying a 

text should be actually feasible (and not only theoretically possible), This 

requirement led the programmer to economize on substitution, as by substitu­

tion expressions tend to become longer, and also because in substitution an 

expression has to be scanned and completely rebuilt. Even after the program 

had been operational for a year, simplifications by avoiding substitution 

shortened the process time considerably. 

However, in two places economy went a bit too far. It is well known 

that a-reduction, i.e. renaming of bound variables (which is a special case 

of substitution) is sometimes necessary in order to avoid clash of variables. 

It has been assumed by the programmer that a-reduction is superfluous if all 

binding variables of input expressions get different codes (see [Zl]). 

Unfortunately, as has been shown by v. Daalen, this is not the case. 

Clash of variables may still occur in the following two ways: 

i) When it is tried to establish [x,A]B ~ [y,C]D this is done by A~ c and 

B ~ [y/x]D (see [Zl], 8.4.1). This gives wrong results when xis 

free in D. It would be correct to try A~ C and [x/z]B ~ [y/z]D, where 

z is a fresh variable. 

The fact that clash of variables may actually occur in this way is shown 

by the following example. we consider the (correct) book: 

* n 

* X 

X * y 

y * a 

* b 

.-

.-

.-

.-

.-

PN 

PN 

PN 

I~ 
E n 

I [t,nJn 
E n 

I [t,nJn 

Suppose it has to be established, relative to this book, whether 

<[y,[p,nJnJ[x,nJa(x,y)>[u,[q,[r,nJnJ[s,nJnJ<<b>u>u 
D 
= [z,nJa(z,[v,nJa(z,b)) . 
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It is easily seen that both expressions are correct, and that the first 

expression reduces by $-reductions to 

[x,nJa(x,[x,nJa(x,b)) 

where, as it should be, in the subexpression [x,n]a(x,b) the second x 

is bound. Hence the expressions are not definitionally equal. The pro­

gram will not discover this, because it will proceed to check 

D [x,nJa(x,[x,nJa(x,b)) = [x,nJa(x,[v,nJa(x,b)) 

and then a = a X Q X and D [x,nJa(x,b) = [x,nJa(x,b). 
ii) The claim (in [zl], 5.1) that by $-reductions on expressions with dis­

tinct binding variables eventually no clash of variables can arise is 

not justified, as we show by another example: Consider the following 

(correct) book: 

Now 

* 
* 

X * 
y * 

* 

n 

X 

y 

a 

b 

.-

.-

.-

.-

.-

PN 

PN 

PN 

<[Z,[i,nJ[j,nJnJ[y,nJ[x,nJa(<x>z,y)> 
[ u ,[ k ,[ l ,nJ [m, nJnJ[p ,nJ[q ,nJnJ«b>u>u 

reduces by $-reductions to 

[y,nJ[x,nJa(<x>[y,nJ[x,nJa(<x>b,y),y) 
(1) (2) (3) 

I~ 
I [t,nJn 
E n 

E n 

I [t,nJ[u,nJn 

If we reduce this further, the x indicated by (2), which is bound by 

the abstraction indicated by (1), will be bound by the abstraction in­

dicated by (3), since the expression reduces (in the verifying program) 

to 

[y,nJ[x,nJa([x,nJa(<x>b,x),y) 
(1) (3) (2) 

while it should reduce to 

[y,nJ[x,nJa([v,nJa(<v>b,x),y) 
(1) (3) (2) 

(where vis a new variable). 
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Appendix 6. Example of a text in AUT-68 

*PROP:= PN I~ 
* A .- E PROP 

A * I- .- PN I~ 

* s .- I type 
s * p .- I [x,S]PROP 
P * ALL .- PN E PROP 
p * V .- ALL E PROP 
P * a .- E S 
a * u .- I 1-(V{P)) 
u * ALLe .- PN I 1-( <a>P) 
u * Ve .- ALLe I 1-( <a>P} 
p * u .- I [x,SJl-(<x>P) 
u * Alli .- PN I 1-(V{P)) 
u * Vi .- Alli I 1-(V{P)) 

p * B .- E PROP 
B * A-+B .- ALL{l-(A),[x,1-(A)JB) E PROP 
B * u .- I 1-(A-+B) 
U * V .- I 1-(A) 
u * -+e .- ALLe(l-(A),[x,l-(A)JB,v,u) I f-(B) 
B * u .- I [X ,1-(A) Jl-(B) 
u * -+i .- ALLi(l-(A),[x,l-(A)JB,u) I 1-(A-+B) 

* l. .- ALL{PROP,[x,PROP]x) E PROP 
A * u .- I 1-(1.) 
u * 1.e .- ALLe(PROP,[x,PROPJx,A,u) I 1-(A) 

A* 7 .- A-+1. E PROP 
B * AvB := ALL{PROP,[x,PROPJ((A+x)-+((B+x)+x))) E PROP 
B * X .- E PROP 
X * u .- I 1-(AvB) 
U * V .- I [X ,1-(A) JI-( X) 
V * W .- I [x,1-(B)Jl-(X) 
w * ve := -+e(B+X,X,-+e(A+X,(B-+X)+X, 

ALLe(PROP,[x,PROPJ((A+x)+((B+x)+x)), 
X,u),+i(A,X,v)),-+i(B,X,w)) I 1-(X) 
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B * u 
u * vil := ALLi(PROP,[x,PROPJ((A+x)+((B+x)+x)), 

[x,PROPJ+i(A+x,(B+x)+x, 
[y,r(A+x)J+i(B+x,x, 
[z,r(B+x)J+e(A,x,y,u)))) 

6 * u 

u * vi2 := ALLi(PROP,[x,PROPJ((A+x)+((B+x)+x)), 
[x,PROPJ+i(A+x,(B+x)+x, 
[y ,H A+x) J+i ( B+x, x, 
[z,r(B+x)J+e(B,x,z,u)))) 

i. HA) 

i_ 1-(AvB) 
i_HB) 

i_ r(AvB) 

P * SOME := ALL(PROP,[x,PROPJ(V([y,SJ(<y>P+x))+x)) E PROP 
p * 3 

p * X 

X * u 

U * V 

SOME 

v * SOMEe := +e(V([y,SJ(<y>P+X)),X, 

V * 3e 

AL Le( PROP, [x ,PROP] (V( [y ,SJ ( <y>P+x)) 
+x),X,u),Vi([y,SJ(<y>P+X), 
[y,SJ+i(<y>P,X,<y>v))) 

SOMEe 

E PROP 
E PROP 
i_ r(3(P)) 
i_ [x,SJ[y,r(<x>P)Jr(X) 

i_HX) 

i. HX) 
a* u .- i_ r(<a>P) 
u * SOMEi := ALLi(PROP,[x,PROPJ(V([y,SJ(<y>P+x))+x), 

[x,PROPJ+i(V([y,SJ(<y>P+x)),x, 
[z,r(V([y,SJ(<y>P+x)))J+e(<a>P,x, 

u * 3i 

S * a 

a * b 

Ve([y,SJ(<y>P+x),a,z),u))) 
SOMEi 

i. r(3(P)) 

i_ r(3(P)) 

E S 

E S 

b * IS := ALL([x,SJPROP,[p,[x,SJPROPJ(<a>p+<L>p)) i_ PROP 
b * a=b .- IS E PROP 
a * ISi := ALLi([x,SJPROP,[p,[x,SJPROPJ(<a>p+<a>p), 

[ p, [x, S ]PROP J+i ( <a>p, <a>p, [y ,H <a>p) Jy)) i_ H a=a) 
a * REFIS .- ISi i_ r(a=a) 
a * =i ISi i_ r(a=a) 
a * ref= .- ISi i_ r(a=a) 
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P * a .- E S 
a * b .- E S 
b * u .- I 1-(a=b) 
U * V .- I 1-(<a>P) 
V * !Se := +e(<a>P,<b>P,ALLe([x,SJPROP, 

[p,[x,SJPROPJ(<a>p+<b>p),P,u),v) fl-{<b>P) 
V * SUBST.PRED .- !Se I 1-{<b>P) 
V * =e .- ISe fl-{<b>P) 

S * a .- E S 
a * b .- E S 
b * u .- I 1-(a=b) 
u * SYM. IS .- =e([x,SJ(x=a),a,b,u,=i{a)) I 1-{b=a) 
u * sym= .- SYM,IS I 1-(b=a) 
b * C .- E S 
e * u .- I 1-(a=b) 
U * V .- I 1-(b=c) 
v * TR. IS .- =e{[x,SJ(a=x),b,c,v,u) I 1-(a=c) 
V * tr= .- TR. IS I 1-(a=c) 

b * a#b .- 7{a=b) E PROP 

S * T .- I~ 
T * f .- I [x,SJT 
f * a .- E S 
a * b .- E S 
b * u .- ff-{a=b) 
u * SUBST.FN .- =e([x,SJIS(T,<a>f,<x>f), 

a,b,u,ISi(T,<a>f)) I ~(IS(T,<a>f,<b>f)) 

+N 
* nat .- PN I type 
* p .- I [x,natJPROP 

p * V .- ALL(nat,P) E PROP 
P * n .- E nat 
n * u .- I r{V{P)) 
u * ve .- ALLe(nat,P,n,u) I H <n>P) 
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p * ·U .- f [x,natJr(<X>P) 
u * Vi .- ALLi(nat,P,u) f 1-(V(P)) 

p * 3 .- SOME(nat,P) E PROP 
p * X .- E PROP 
X * u .- f l-(3(P)) 
U * V .- I [x,nat][Y,r(<x>P)Jr(X) 
V * 3e .- SOMEe(nat,P,X,u,v) f 1-(X) 
n * u .- f 1-(<n>P) 
u * 3i .- SOMEi(nat,P,n,u) f l-(3(P)) 

* n .- E nat 
n * m .- E nat 
m * n=m .- IS(nat,n,m) E PROP 
m * n;!m .- 7 ( n=m) E PROP 

n * ref= .- REF . IS ( na t , n ) f 1-(n=n) 
m * u .- f 1-( n=m) 
u * sym= .- SYM.IS(nat,n,m,u) f 1-(m=n) 
m * l .- E nat 
l * u .- f 1-(n=m) 
U * V .- f 1-(m= l ) 
V * tr= .- TR.IS(nat,n,m,l ,u,v) f 1-(n=l) 

P * n .- E nat 
n * m .- E nat 
m * u .- f 1-(n=m) 
U * V .- f 1-( <n>P) 
V* subst.pred := SUBST.PRED(nat,P,n,m,u,v) f 1-( <m>P) 

s * f .- f [x,nat]S 
f * n .- E nat 
n * m .- E nat 
m * u .- f 1-(n=m) 
u * subst.fn .- SUBST.FN(nat,S,f,n,m,u) I ~(IS(S,<n>f,<m>f)) 



* 1 

* n 
n * n' 

* suc.fn 

n * Axiom3 
n * m 
m * u 
u * Axiom4 

p * u 
u * V 

V * Axiom5 

P * n 

n * u 

U * V 

.- PN 

.-

.- PN 

.- [x,natJx' 

.- PN 

.-

.-

.- PN 

.-

.-

.- PN 

E nat 
E nat 
E nat 

I [x,natJnat 

I 1-(n'/:l) 
E nat 
I 1-(n'=m') 
I 1-(n=m) 

f 1-(<l>P) 
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I [x,nat][y,r(<x>P)Jr(<x'>P) 
I 1-(V(P)) 

E nat 
fl-(<l>P) 

v * induction := Ve(P,n,Axiom5(P,u,v)) 
I [x,nat][y,r(<x>P)Jr(<x'>P) 
fl-(<n>P) 

* n 

n * m 
m * u 
u * Satzl 

* P2 
n * Satz2 

* P3 

* 11 

n * 12 
n * 13 

:= +i (n'=m' ,.1.,[x,1-(n'=m' )] 
+e(n=m,.1.,u,Axiom4(n,m,x)) 

.- [x,nat](x'FX) 

.- induction(P2,n,Axiom3(1), 
[x,natJ[y,r(<x>P2)J 
Satz 1 ( x ' , x ,y) ) 

.- [x,natJ((x=l)v3([y,natJ 
(x=y' ))) 

:= vil(l=l,3([y,natJ(l=y')), 

E nat 
E nat 
I 1-(nFm) 

I 1-(n'Fm') 

I [x,natJPROP 

I 1-(n'Fn) 

I [x,natJPROP 

ref=(l)) f r(<l>P3) 
:= 3i([y,natJ(n'=y'),n,ref=(n'))fl-(3([y,natJ(n'=y')) 
:= vi2(r.'=l,3([y,natJ(n'=y')), 

12) f r(<n'>P3) 
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n * 14 

n * u 

:= induction(P3,n,11,[x,natJ 
[y,r(<X>P3]13(x)) 

.-
u * Satz3 := ve(n=l,3([y,natJ(n=y')), 

3{[y,natJ(n=y')),14,[x,r(n=l)J~e 
(3([y,natJ(n=y')),+e(n=l,~,u,x)), 
[x,r(3([y,nat](n=y')))Jx) 

I H<n>P3) 
I H n,11) 

I r(3([y,natJ(n=y'))l 
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Appendix 7. Excerpt for "Satz 1", "Satz 2" and "Satz 3". 

LAYOUT FROH FILE EXCERPTOUTPUT/SATZ1EN2EN3 JANUARY 25, 1977 10152135 

+L 

* A I• PROP 
A * Ii la PROP 
B * IHP := CX,AlB PROP 
B * C I• PROP 
C * I I• IHP<A,B> 
I * J , .. IHP(B,C) 
J * TRIHP I= CX,Al«X>I>J IHP(A,C) 

* CON , .. PN PROP 
A* NOT I= IHP(CON) PROP 
A* WEL I= NOT<NOT<A» PROP 
A* Al I= A 

Al * WELI I= CX,NOT<A>l<Al>X WEL<A> 
A * W I= WEL<A> 
W * ET I= PN A 
A* Cl I• CON 

Cl* CONE I• ET<CX,NOT(A)lCl) A 

+IHP 

B * N I= NOT(A> 
N * TH2 I= TRIHP<CON,B,N,CX,CONJCONE(B,X) 

) IHP<A,B) 
B * N I• NOT<B> 
N * I I• IHP<A,B> 
I* TH3 I= TRIHP(CON,I,N) NOT<A) 

-IHP 

B * OR := IHP(NOT<A>,B> PROP 
B * Al I= ; A 

Al * DRU I= TH2'-IHP"(NOT(A>,B,WELI(Al>> ' OR<A,B> 
B * Bl I• ' B 

B1 * ORI2 I= CX,NOT<A)lBl ' OR<A,B> 
B * 0 :- ' OR<A,B) 
0 * N I• ' NOT<A> 
N * ORE2 I• <N>O f B 

* SIGHA I• ' TYPE 
SIGHA * P I• CX,SIGHAJPROP 

P * ALL I• p PROP 

+ALL 

p * s I• SIGHA 
S * N I• NOT«S>P> 
N * THl I= CX,ALL(SIGHA,P)l<<S>X>N NOT<ALL<SIGHA,P)) 

-ALL 

P * NON I= CX,SIGHAJNOT<<X>P> CX,SIGHAJPROP 
P * SOHE I= NOT< NON< P)) PROP 
p * s I• SIGHA 
S * SP I• <S>P 

SP* SOHEI I• THl'-ALL"<NON<P>,S,WELI<<S>P, 
SP» SOHE(SIGHA,P) 

+E 

SIGHA * S I• SIGMA 
S * T I• SIGNA 
T * IS I• PN PROP 
S * REFIS I• PN IS<S,S> 

-E 
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+*E 

+ST 

SIGMA * SET I= PN TYPE 
SIGMA * s I= SIGMA 

s * so I• SET 
so * ESTI I= PN PROP 

p * SETOF I= PN SET 
p * s I= SIGMA 
s * SP := <S>P 

SP * ESTII := PN ESTI<S,SETOF(P)) 
s * E := ESTI(S,SETOF(P)) 
E * ESTIE I= PN <S>P 

+EG 

+LANDAU 

+N 

* NAT I= PN TYPE 

* X I= NAT 
X * y := NAT 
y * IS :== IS'E'(NAT,X,Y> PROP 
y * NIS := NOT<IS<X,Y)) PROP 
X * s := SET<NAT> 
s * IN := ESTI(NAT,X,8) PROP 

* p := CX,NATJPROP 
p * SOME := SOME'L'<NAT,P> PROP 
p * ALL := ALL'L'(NAT,P) PROP 

* 1 := PN NAT 

* sue := PN CX,NATJNAT 

* AX3 I= PN CX,NATJNIS<<X>SUC,1) 

* AX4 := PN CX,NATJCY,NATJCU,IS<<X>SUC, 
<Y>SUC>JIS(X,Y) 

* s I= SET<NAT> 
s * COND1 I= IN<l,S> PROP 
s * COND2 := ALL<CX,NATJIMP(IN<X,S>,INC<X> 

suc,s» > PROP 

* AX5 I= PN CS,SET<NAT)JCU,CONDl(S)J 
CV,COND2<S>JCX,NATJIN<X,S) 

* p I= CX,NATJPROP 
p * 1P I= <l>P 

1P * XSP I= CX,NATJCY,<X>PJ<<X>SUC>P 
XSP * X I= NAT 

+u 

X * s l= SETOF<NAT,P> SET(NAT> 
X * Tl := ESTIICNAT,P,1,lP> COND1(8) 
X * y := NAT 
y * YES := IN<Y,S> 

YES* T2 := ESTIE(NAT,P,Y,YES) <Y>P 
YES* T3 l= ESTII(NAT,P,<Y>SUC,<T2><Y>XSP) IN«Y>SUC,S> 

X * T4 := <X><CY,NATJCU,IN<Y,S>JTJ(Y,U>> 
<Tl><S>AX5 IN<X,S> 

-11 

X * INDUCTION := ESTIECNAT,P,X,T4'-I1") <X>P 
* X I= NAT 

X * y := NAT 
y * N :• NIS(X,Y> 

+21 

N * I I• IS<<X>SUC,<Y>SUC) 
I * Tl := <I><Y><X>AX4 ISCX,Y> 

-21 

N * SATZ1 := THJ'L-'IMP' < IS«X>SUC,<Y>SUC), 
ISCX,Y),N,CU,IS<<X>SUC,<Y>SUC) 
JT1 '-21' <U> > NISC<X>SUC,<Y>SUC) 



+22 

X * PROPl 

* Tl 

X * p 

p * T2 

-22 

X * SATZ2 

+23 

X * PROPl 

* Tl 

X * T2 

X * T3 

X * T4 

-23 

X * N 
N * SATZ3 

-N 

-LANDAU 

-EQ 

-ST 

-E 

-L 

NIS<<X>SUC,X) 
= <l>AX3 

SATZl(<X>SUC,X,Pl 

:= INDUCTION(CY,NATJPROP1'-22'(Y) 
,Tl'-22',CY,NATJCU,PROPl'-22" 
<Y>JT2"-22'(Y,Ul,X) 

:= OR(IS<X,1>,SOHE(CU,NATJIS<X, 
<U>SUC))) 

:= ORil(IS<l,1),SOHE<CU,NATJIS(l, 
<U>SUC)),REFIS<NAT,l)l 

,- SOHEI<NAT,CU,NATJIS<<X>SUC,<U> 
SUC>,X,REFIS(NAT,<X>SUC)) 

:= ORI2(IS<<X>SUC,1>,SOHE(CU,NATJ 
IS(<X>SUC,<U>SUC>>,T2> 

:= INDUCTION<CY,NATJPROP1(Yl,T1, 
CY,NATJCU,PROP1(Y)JT3(Yl,X) 

:= 
:= ORE2(IS<X,1>,SOHE<CU,NATJIS(X, 

<U>SUC)),T4'-23",N) 

PROP 
PROPl(ll 
PROPl(X) 
PROP1 «X>SUC > 

NISC<X>SUC,Xl 

PROP 

PROP1<1) 
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SOHE(CU,NATJIS(<X>SUC,<U>SUC> 
) 

PROP 1 «X>SUC > 

PROP1(X) 

NIS<X,1> 

SOHE(CU,NATJIS(X,<U>SUC)) 
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Appendix 8. Example of a text in AUT-68-SYNT 

* PROP .- PN 

* A .-
A * f- .- PN 

* zl .-
zl *ass.prop .- lastelt{tail(f-,cat{zl))) 

So: if u I f-(A) then ass.prop(u) QA E PROP 

* s 
s * p 

P * ALL 

zl * V 

So: if 

p * a 

a * u 

u * Alle 

p E 

.-

.-

.- PN 

.- ALL(dom(zl),zl) 

[x,SJPROP then V(P) Q ALL(S,P) f PROP 

PN 

I .!le! 
E PROP 

I type 

I synt 

I .!le! 
I [x,SJPROP 

E PROP 

E S 
I f-(V(P)) 

E f-(<a>P) 

zl * z2 

z2 * ve 
.- I synt 

:= ALLe(cat(zl),lastelt(tail(V,ass.prop(z2))), 

zl,z2) 

so: if a IS, u f f-(V(P)) then Ve(a,u) I f-(<a>P) 

p * u 

u * Alli PN 

zl * Vi := ALL i (dorn(zl) ,[x,dom(zl)Jass .prop(<x>zl) ,zl) 

So: if u f [x,S]f-(<x>P) then Vi(u) f f-{V(P)) 

zl *V2 := V{[x,dom(zl)JV(<x>zl)) 

I [x,SJf-( <X>P) 

I f-(V(P)) 

so: if P2 f [x,SJ[y,T(x)JPROP then V2(P2) QV{[x,SJV([y,T(x)J 

<y><X>P2)) f PROP 



z2 * z3 
z3 * 'v'2e := 'v'e(z2,'v'e(zl,z3)) 
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So: if a f S, bf T(a) , u f ~('v'2(P2)) then 'v'2e(a,b,u) f l-(<b><a>P2) 

zl * 'v'2i := 'v'i([x,dom(zl)J'v'i(<x>zl)) 

So: if u f [x,SJ[y,T(x)J~(<y><x>P2) then 'v'2i(u) f ~('v'2(P2)) 

zl * 'v'3 := 'v'([x,dom(zl)J'v'2(<x>zl)) 

so: if P3 f [x,SJ[y,T(x)J[z,U(x,y)JPROP then 'v'3(P3) Q 'v'([x,SJ'v'([y,T(x)J 
'v'([z,U(x,y)]<Z><y><X>P3))) f PROP 

z3 * z4 
z4 * 'v'3e := 'v'2e(z2,z3,'v'e(zl,z4)) 

So: if a f S , bf T(a) , cf U(a,b) , u f ~('v'3(P3)) then 

'v'3e(a,b,c,u) f ~(<c><b><a>P3) 

zl * 'v'3i := 'v'i([x,dom(zl)J'v'2i(<x>zl)) 

so: if u f [x,SJ[y,T(x)J[z,U(x,y)J~ (<z><y><x>P3) then 'v'3i(u) f ~('v'3(P3)) 

A * B 
B * A->-B := 'v'([x,HA)JB) 

z2 * ➔e := 'v'e(z2,zl) 
z2 * mod.pan := ➔e 

E PROP 
E PROP 

So: if u f ~(A->-B), v f ~(A) then ➔e(u,v) f ~(B), mod.pon(u,v) I ~(B). 

* .L := 'v'([x,PROPJx) E PROP 

A * 7 : = A->-.1 E PROP 

B * AvB := 'v'([x,PROPJ((A->-x)->-((B->-x)->-x))) E PROP 
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B * X 

X * u 

U * V 

V * W 

w * ORe 
z3 

:= V3e(X,Yi(v),Vi(w),u) 

E PROP 
f f-(AvB) 
f [x,f-(A)Jl-(X) 
f [x,f-(B)Jl-(X) 
I 1-(X) 

z3 * ve := ORe(LFE(v,ass.prop(zl)),RFE(v,ass.prop(zl)), 
lastelt(tail(~,val(cat(z2)))),zl,z2,z3) 

So: if u f 1-{AvB), v f [x,1-(A)Jl-(X), w f [x,1-(B)Jl-(X) then ve(u,v,w)fl-{X) 

B * u f f-(A) 
u * ORil := V3i([x,PROPJ[y,l-(A+x)J[z,l-(B+x)J+e(y,L,))f 1-(AvB) 
B*u .- fl-{B) 
u * ORi2 := V3i([x,PROPJ[y,l-(A+x)J[z,l-(B+x)J+e(z,u)) fl-(AvB) 

z~ * vil := ORil(ass.prop(z2),zl,z2) 
z2 * vi2 := ORi2(zl,ass,prop(z2),z2) 

So: if BE PROP , u f ~(A) then vil(B,u) f ~(AvB) 
if A E PROP, u f ~(B) then vi2(A,u) f ~(AvB) 

P * SOME := V([x,PROPJ(V([y,SJ(<y>P+x))+x)) 

zl* 3 := SOME(dom(zl),zl) 

so: if Pf [x,SJPROP then 3(P) Q SOME(S,P) _§_ PROP 

p * X .-
X * u .-
U * V .-
v * SOMEe := V2e(X,V2i(v),u) 

E PROP 

E PROP 
f f-(3(P)) 
f [x,SJ[y,~(<x>P)J~(X) 
I 1-(X) 

z2 * 3e := SOMEe(dom(z2),lastelt(tail(3,ass.prop(z ))), 
lastelt(tail(~,val([x,dom(z2)Jval(<X>cat(z2))))),zl,z2) 

So: if u f (3(P)), v f [x,SJ[y,1-(<x>P)Jl-(X) then 3e(u,v) f 1-(X) 



a * u 
u * SOMEi 

23 * 3i 

:= V2i([x,PROPJ[z,r(V([y,SJ(<y>P+x)))J 
V2e(a,u,z)) 

:= SOMEi(dom(zl),zl,z2,z3) 
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fl-{<a>P) 

f l-(3(P)) 

So: if PE [x,SJPROP, a f S, u f 1-(<a>P) then 3i(P,a,u) f l-(3(P)) 

S * a 

a * b 

b * IS 

z2 * zl=z2 

:= V([p,[x,SJPROPJ(<a>p+<b>p)) 

:= IS(cat(zl),zl,z2) 

So: if a ES, bf S then a=b Q IS(S,a,b) f PROP 

zl * left= 
zl * right= 

.- LFE(=,ass.prop(zl)) 

.- RFE(=,ass.prop(zl)) 

So: if u I r(a=b) then left=(u) Q a, right=(u) Q b 

a* ISi 

zl * .. ; 
zl * ref= 

:= V2i([p,[x,SJPROPJ[y,r(<a>p)Jy) 

:= ISi(cat(zl),zl) 
:= =i 

So: if a Es then =i(a) I r(a=a), ref=(a) I r(a=a) 

P * a 
a * b 

b * u 

U * V 

v * !Se 

z3 * =e 

:= V2e(P,v,u) 

:= ISe(dom(zl),zl,left=(z2), right=(z2),z2,z3) 
z3 * subst.pred := =e 

E S 

E S 

E PROP 

E S 

E S 

f 1-(a=b) 
f 1-(<a>P) 
I H <b>P) 
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So: if PI [x,SJPROP, u I 1-(a=b), v f 1-(<a>P) then =e(P,u,v) f 1-(<b>P), 
subst.pred(P,u,v) f r{<b>P) 

S * a .- E S 
a * b .- E S 
b * u .- f 1-(a=b) 
u * SYM. IS .- =e([x,SJ{x=a),u,=i{a)) f 1-(b=a) 

zl * sym= := SYM.IS(cat(left=(zl)),left=(zl),right=(zl),zl) 

So: if u I r(a=b) then sym=(u) I r{b=a) 

. b * C 

C * U 

U * V 

v * TR.IS .- =e([x,SJ{a=x),v,u) 

E S 

f 1-(a=b) 
f 1-(b=c) 
I 1-(a=c) 

zl * tr= := TR.IS(cat(left=(zl)),left=(zl),right={zl),right={z2),zl,z2) 

So: if u I r(a=b), VI r{b=c) then tr=(u,v) I r(a=c) 

z2 * zlfz2 := 7(zl=z2) 

So: if ~ES, b IS then afb ~ 7(a=b) f PROP 

s * T .-
T * f .-
f * a .-
a * b .-
b * u .-
u * SUBST.FN .- =e{[x,SJ(<a>f = <x>f),u,=i(<a>f)) 

I type 
f [x,SJT 
E S 

E S 

f 1-(a=b) 
f 1-(<a>f=<b>f) 

z2 * subst.fn := SUBST.FN(dom(zl),val(cat(zl)),zl,left=(z2),right=(z2),z2) 

So: if f I [x,S]T, u I r(a=b) then subst.fn(f,u) I r(<a>f = <b>f) 



* nat 

* 1 

* n 

n * n' 

* suc.fn 

n * AXIOM3 
n * m 
m * u 
u * AXIOM4 

* p 

p * u 
u * V 

V * AXIOMS 
n * Axiom3 

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

PN 
PN 

PN 

[x,natJx' 

PN 

Pl\ 

PN 
AXIOM3 

I~ 
E nat 
E nat 
E nat 

I [x,natJnat 

fl-{n'fl) 
E nat 
I 1-(n' =m') 
I 1-(n=m) 

I [x,natJPROP 
fl-(<l>P) 
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I [x,nat][y,r(<x>P)Jr(<x'>P) 
f 1-(V(P)) 
I 1-(n' fl) 

zl *Axiom4 := AXIOM4(FE(' ,right=(zl)),FE(' ,left=(zl)),zl) 

So: if u f r(n'=m') then axiom4(u) f r(n=m) 

v * Axioms 

p * n 

n * u 

U * V 

AXIOMS 

v *induction:= ve(n,AxiomS(P,u,v)) 

* n 

n * m 
m * u 
u * SATZl := Vi([x,r(n'=m')J 

-->-e ( u ,Ax i om4 ( x ) ) ) 

I 1-(V(P)) 

E nat 
fl-(<l>P) 
I [x,nat][y,r(<x>P)Jr(<x·>P) 
fl-(<n>P) 

E nat 
E nat 

I 1-(nfm) 

zl * Satzl := SATZl(LFE(f,ass.prop(zl)),RFE(f,ass.prop(zl)),zl) 

So: if u I r(nfm) then Satzl(u) I r(n'fm') 
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* P2 
n * Satz2 

* P3 
* 11 

n * 12 
n * 13 
n * 14 

n * u 

u * SATZ3 

:= [x,natJ(x'!x) 
.- induction(P2,n,Axiom3(1),[x,natJ 

[y,r(<x>P2)JSatzl(y)) 

:= [x,natJ((x=l)v3([y,natJ(x=y'))) 
: = v i1 ( 3 ( [y, na tJ ( l=y' ) ) , ref= ( 1)) 
:= 3i([y,natJ(n'=y'),n,ref=(n')) 
:= vi2(n'=l,l2) 
:= induction(P3,n,13,[x,natJ 

[y,r(<x>P3)Jl3(x)) 

:= ve(l4,[x,r(n=l)JV2e(x,3([y,natJ 
(n=y')),u),[x,r(3([y,natJ(n=y')))Jx) 

zl * Satz3 := SATZ3(LFE(!,ass.prop(zl)),zl) 

I [x,nat]PROP 

I Hn 'In) 

I [x,natJPROP 
f H<l>P3) 
I l-(3([y,natJ(n'=y'))) 
I l-(<n'>P3) 

I H <n>P3) 
I Hnti) 

I r(3(Cy,natJ(n=y' ))) 

S0: if u I r(n!l) then Satz3(u) I r(3([y,nat](n=y'))) 
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Appendix 9. AUT-SYNT 

In 4.1.0 we have indicated that for andi the parameters U and V 

are essential, while a and b are redundant parameters. If A, B, p and q 

can be correctly substituted for a, b, U and V, then A and B can be cal­

culated (up to definitional equality) from p and q, because A is definition­

ally equal to CAT(p) and B to CAT(q). 

Here we introduce an extension of AUTOMATH languages, called AUT-SYNT, 

in which it is possible to suppress .redundant parameters. In this language, 

CAT is incorporated as a predefined function. For any 2- or 3-expression E, 

CAT(E) is the mechanically calculated type of E. It follows that 

andi(CAT(p) ,CAT(q) ,p,q) equals andi(A,B,p,q). The extended language moreover 

contains variables for expressions. A basic symbol synt (which has no de­

gree) is added to the language. Variables of type synt (or synt variables) 

are to be interpreted as syntactic variables for expressions. There are 

no typing restrictions on substitution for such a variable. 

Following the AUT-QE text in 4.1.1 we can write in AUT-SYNT: 

* zl 
zl * z2 
z2 * ANDI .- andi{CAT(zl),CAT(z2),zl,z2) 

Now, if A !l2E.£12., B !.I2E.£12., p !A, q EB then ANDI(p,q) 

CAT(q),p,q) = andi(A,B,p,q) ! and(a,b). 

andi (CAT (p) , 

Besides CAT we have other predefined functions in AUT-SYNT. They are 

defined for certain classes of expressions (just as CAT is defined for 2-

expressions and 3-expressions). We list these functions here with their 

semantics. In the description of the semantics we will frequently use the 

clause: "if E reduces to ••. ". We will say e.g. "if E reduces to [x,A]B ••. ". 

This is intended to mean: "if [x,A]B is the first abstraction expression in 

the reduction sequence, obtained by reducing E according to the strategy of 

the verifying program". Similar meanings are intended in other cases. Every­

where in the description E and E1 ,E2 , ••• ,En will denote correct AUT-expres­

sions. 

predefined function 

CAT 

DOM 

semantics 

CAT(E) is the "mechanical type" of the 2- or 3-ex­

pression E 

If E reduces to [x,A]B or CAT(E) reduces to [x,A]B 

or CAT(CAT(E)) = [x,A]B then DOM(E) = A. 
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VAL 

ARG 

FUN 

TAIL 

LASTELT 

PREPART 

Remarks: 

If E reduces to [x,A]B and B does not contain x then 

VAL{E) = B. 

If E reduces to <A>B then ARG(E) 

If E reduces to <A>B then FUN{E) 

A. 

B. 

If E reduces to c(A1 , ••• ,An) then TAIL(c,E) is the 

string of expressions A1 , .•• ,An. 

If E1 , ••• ,En is a nonempty string of expressions then 

LASTELT{E1 , ••• ,En) = En. 

If E1 , ••• ;En is a nonempty string of expressions then 

PREPART{E1 , .•• ,En) is the string of expressions 

El, ••. ,En-1" 

1) Expressions containing synt variables do not have a type. Lines having 

such an expression as their middle part do not have a category part. 

2) EB-lines which have synt variables in their context can only have synt 

as their category part. In other words: on a synt context only synt va­

riables may be introduced. 

3) The identifiers CAT, DOM, VAL, ARG, FUN, TAIL, PREPART and LASTELT, and 

the identifiers defined in terms of these should not be treated as ordi­

nary identifiers. In particular the monotonicity of definitional equali­

ty (in this case: if A= B then c(A) = c(B) where c is one of these spe­

cial identifiers) does not generally apply here. E.g. if f = [x,nat]l 

then <l>f ~ <<l>suc>f, while ARG{<l>f) = 1 ~ <l>suc 

Similar examples can be found for FUN and TAIL. 

ARG{<<l>suc>f). 

4) For languages admitting infix expressions there are functions LFE (for 

left fixed expression) and RFE (for right fixed expression) with seman­

tics: 

If E reduces to Ac B then LFE(c,E) A and RFE{c,E) B. 

Examples: 

1) The first elimination rule for conjunction can be represented in AUT-QE 

by adding, on the context a f ErE..e_ ; b f ErE..e_ 

b * u 

u * andel .-

introduced in 4.1.0: 

I and(a,b) 
E a 



119 

Then a and b are redundant parameters, for andel and U is an es­

sential parameter. In fact, if pis a substitution instance for U , then the 

type of p can be expected to reduce to and (A,B) for some A and B, and these 

A and B should the be substituted for a and b 

Therefore, keeping the context zl f synt introduced above, we can add 

the AUT-SYNT line 

zl * ANDEl .- andel(LASTELT(PREPART(TAIL(and,CAT(zl)))), 
LASTELT(TAIL(and(CAT(zl))),zl) 

Then p _! and(A,B) implies ANDEl(p) _!A. 

We can now indicate a complication which must be kept in mind when using 

AUT-SYNT, and which is connected with remark 3 above. Suppose and has 

been defined by and:= not(imp(a,not(b))) We may have p, A and B such 

that CAT(p) = not(imp(A,not(B))), and then we have andel(A,B,p) _! A, but 

ANDEl(p) will be incorrect, since CAT(p) does not reduce to and(A,B). 

Even worse complications may occur when using ARG and FUN. 

2) In [vD, 3.6] book-equality is introduced. In AUT-SYNT we could add to 

this text, on the context zl I synt; z2 I synt; 

z2 * is .- IS(CAT(zl),zl,z2) 
zl * refis .- REFIS(CAT(zl),zl) 
zl symis .- SYMIS(CAT(LASTELT(TAIL(is,zl))), 

LASTELT(PREPART(TAIL(is,zl))), 
LASTELT(TAIL(is,zl)),zl) 

Then for any type S, if XE S and y f S, equality of X and y could 

be expressed by is(x,y) instead of IS(S,x,y) . Moreover, if XE S 
we have refis(x) I is(x,x) and if p I is(x,y) we have 

symis(p) I is(y,x). 
3) A text in AUT-68-SYNT, in which the first three theorems of Landau's 

book are proved, appears in appendix 8. 
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