
MATHEMATICAL CENTRE TRACTS 83

CHECKING
LANDAU'S .. GRUNDLAGEN"
IN THE AUTOMATH SYSTEM

LS. VAN BENTHEM JUTTING

MATHEMATISCH CENTRUM AMSTER DAM 1979

MS Classification (1980): 03-04,03B30,03B40,68-04,69F05,68F30

ISBN 90 6196 147 5

Contents

PREFACE by N.G. de Bruijn.

0 . INTRODUCTION

0.0.The AUTOMATH languages

0.1. The AUTOMATH project and its motivation

0.2. The book translated

0.3. The language of the translation

1. PREPARATION

2.

1,0. The presupposed logic

1.1. The representation of logic in AUT-QE

1.2. Account of the PN-lines

1.3. Development of concepts and theorems in Landau's logic

TRANSLATION

2.0. An abstract of Landau's book

2.1. Deviations from Landau's text

2.2. The translation of "Kapitel 1"

2.3. The translation of "Kapitel 2"

2.4. The translation of "Kapitel 3"

2.5. The translation of "Kapitel 4"

2.6. The alternative version of chapter 4

2.7. The translation of "Kapitel 5"

3. VERIFICATION

3.0. Verification of the text

3,1. Controlling the strategy of the program

3.2. A new verifying program

3,3. Excerpting

4. CONCLUSIONS

4,0. Formalization of logic in AUTOMATH

4.1. The language

4.2. Comments on the translation

page

0

1

1

2

2

4

8

9

11

14

16

23

24

24

25

27

27

30

32

33

33

35

39

44

Appendix 1. A description of AUTOMATE and some aspects of its

language theory by D.T. van Daalen

1. Introductory remarks

~. Informal description of AUTOMATE

3. Mathematics in AUTOMATE: Propositions as types

4. Extension of AUT-68 to AUT-QE

5. A formal definition of AUT-QE

6. Some remarks on language theory

Appendix 2. The paragraph system

Appendix 3. PN-lines from the preliminaries

Appendix 4. Excerpt for "Satz 27"

Appendix 5. Two shortcomings of the first verifying program

Appendix 6. Example of a text in AUT-68

Appendix 7. Excerpt for "Satz 1", "Satz 2" and "Satz 3"

Appendix 8. Example of a text in AUT-68-SYNT

Appendix 9. AUT-SYNT

References

48

49

50

59

62

65

71

78

84

86

99

101

107

110

117

120

PREFACE

by

N.G. de Bruijn

The Automath project was conceived early 1967 in Eindhoven, the Nether­

lands. se•emingly, the project was quite mG>dest in its claims, since it in­

tended to achieve a thing that many people thought to present no essential

difficulties: presenting mathematics in such a precise formalized fashion

that, the principles of the language being given, even a machine could es­

tablish correctness. The style in which this should be done was clear from

the start: it should follow ordinary mathematical reasoning, both in words

and in formulas, line by line, without changing the roles which arguments,

definitions, abbreviations, theorems, lemmas play in the original text, and

without replacing the usual human verification by an essentially different

process.

On the other hand the project was quite pretentious, claiming that is

could practice what it preached. It claimed that formalization and verifica­

tion could really be carried out for substantial portions of mathematics,

with a language more closely resembling intuitive mathematics then other pres­

ent day formalizations, and fit for describing a large variety of concepts

and situations.

In order to substantiate this claim, and to acquire experience, it was

decided in 1968 to undertake the translation of a complete book, for which

Landau's "Grundlagen der Analysis" were chosen. L.S. Jutting, the first col­

laborator on the project, would be the one to carry out this task.

The work, including machine verification, was finished in September

1975. The complete text is presented in a 500 page report (L.S. Jutting, A

translation of Landau's "Grundlagen" in AUTOMATH). Some fragments are repro­

duced here (appendices 3, 4 and 7).

The present book intends to render an account of the translation. It

reports on the difficulties that were encounteredandthewaytheseweretaken

care of. It also describes the nature of AUTOMATH and its usage. Moreover,

by permission of D.T. van Daalen, his paper on the formal definition of the

language is reprinted here (appendix 1). What this book does not show much

of is Mr. Juttings persistence in carrying this job to its end. Whether this

work is important or interesting arematters of opinion and taste, but it is

hard to deny that it has a certain historic value: never before has a sub­

stantial piece of mathematics been presented on a comparable level of com­

pleteness and precision.

0. INTRODUCTION

In this chapter a brief description of the AUTOMATH project is given,

and the place of the present work within this project is indicated.

0.0. The AUTOMATH languages

The languages of the AUTOMATH family are formal languages, in which

large parts of mathematics can be efficiently formalized. Texts in these

languages can be checked mechanically (i.e. by a computer). A text is veri­

fied line by line, and the checking does not only cover syntactical correct­

ness of the expressions occurring in a line, but also its mathematical valid­

ity, which includes the correctness of references to previous lines. Correct

AUTOMATH texts may thereforebeinterpreted*) to represent correct mathematics.

The structure of these languages, based on natural deduction, is close­

ly related to the structure of common intuitive reasoning. Hence mathemati­

cal discourses in an informal language can be translated into an AUTOMATH

language without too much trouble.

At the moment a number of mutually related languages exist satisfying

the above specifications. For several of these languages, verifying computer

programs are currently operational; for others, such programs are still in

an experimental stage.

0.1. The AUTOMATH project and its motivation

The object of the AUTOMATH project has been to develop languages as

described above, and to make verifying computer programs for these languages.

It was initiated some ten years ago by N.G. de Bruijn, who also conceived

the fundamentals of the AUTOMATH languages. Since then a number of mathema­

ticians have been working on the project, providing AUTOMATH with a language

theory, writing verifying programs for AUTOMATH languages, producing texts

in these languages, and applying the verifying programs to these texts.

There were several reasons for initiating such a project, of which we

mention the following:

*) In discussing an AUTOMATH text I will call the intended meaning (in for­

mal or informal mathematics) of this text its interpretation, and I will say

that this meaning is represented in the AUTOMATH text.

2

i) Mechanical verification will increase the reliability of certain kinds

of proofs. A need for this may be felt where a proof is extremely long,

complicated and tedious, and where it is difficult to break it down in­

to intuitively plausible partial results, or where in proofs results of

others are used, so that misinterpretations become possible.

ii) Mechanically verifiable languages set a standard by which informal lan­

guag.e may be measured, and may thereby have an influence on the use of

language in mathematics generally.

iii) The use of such languages gives an insight into the structure of mathe­

matical texts, and makes it possible to compare the complexity, in se­

veral respects, of mathematical concepts and proofs, As a consequence

projects of this kind may have in the long run a favourable influence

on the teaching of mathematics.

A further motive, for the author, was that the work involved in the

project appealed to him.

More information on the AUTOMATH project, its objectives, motivation

and history can be found in [dB].

0.2. The book translated

At an early stage of the AUTOMATH project the need was felt to trans­

late an existing mathematical text into an AUTOMATH language, first, in or­

der to acquire experience in the use of such a language, and secondly, to

investigate to what extent mathematics could be represented in AUTOMATH in

a natural way,

As a text to be translated, the book "Grundlagen der Analysis" by

E. Landau [L] was chosen. This book seemed a good choice for a number of

reasons: it does not presuppose any mathematical theory, and it is written

clearly, with much detail and with a rather constant degree of precision.

For a short description of the contents of Landau's book see 2.0.

0.3. The language of the translation

The language into which Landau's book has been translated is AUT-QE.

A detailed description and a formal definition of this language is given in

[vD]. As this paper is fundamental to the following monograph and not easi­

ly obtainable, it has been added as appendix .1. I will use the notations

introduced there whenever necessary. Where in the following text a concept

introduced in [vD] is used for the first time, it will be displayed in

italics, with a reference to the section in [vD] where it occurs.

3

The language of the translation differs from the definition in [vD] in

one respect, viz. the division of the text into paragraphs [vD, 2.16], By

this device the strict rule that all aonstants [vD, 2.6, 5.4.1] in an AUT-QE

book [vD, 2.13.1, 5.4.4] should be different is weakened to the more liberal

rule that all constants in one paragraph have to differ. Now, in a line [vD,

2.13, 5.4.4], reference to constants defined in the paragraph containing

that line is as usual, while reference to constants defined in other para­

graphs is possible by a suitable reference system. For a more detailed de­

scription of the system of paragraphing, see appendix 2.

In contravention of the rules for the shape and use of names in AUT-QE,

we will in examples in the following text not restrict ourselves to alpha­

numeric symbols, and occasionally we·use infix symbols. (Of course, in the

actual translation of Landau's book, these deviations from proper AUT-QE do

not occur.)

4

1. PREPARATION

In this chapter the logic which Landau presupposes is analysed and its

representation in AUT-QE is described.

1.0. The presupposed logic

In his "Vorwort fur den Lernenden" Landau states: "Ich setze logisches

Denken und die deutsche Sprache als bekannt voraus". Clearly, in the trans­

lation AUT-QE should be substituted for "die deutsche Sprache". The proper

interpretation of "logisches denken" must be inferred from Landau's use of

logic in his text.

This appears to be a kind of informal second (or higher) order predi­

cate logic with equality. In the following some characteristics of Landau's

logic will be discussed, and illustrated by quotations from his text.

i) Variables have well defined ranges which are not too different from

types [vD, 2.2] in AUT-QE. Cf.:

- On the first page of "Kapitel 1": "Kleine lateinische Buchstaben be­

deuten in diesem Buch, wenn nichts anderes gesagt wird, durchweg na­

turliche Zahlen".

- In "Kapitel 2, § 5": Grosze lateinische Buchstaben bedeuten durchweg,

wenn nichts anderes gesagt wird, rationale Zahlen".

ii) Predicates have restricted domains, which again can be interpreted as

types in AUT-QE. Cf.:

"Satz 9: Sind x und y gegeben, so liegt genau eine der Falle vor:

1) X = Y•

2) Esgibteinumitx=y+u ... " etc.

It is clear that u (being a lower case letter) is a natural number,

or u E nat.
- "Definition 28: Eine Menge von rationalen Zahlen heiszt ein Schnitt,

wenn .. . ".

Here it is apparent that being a "Schnitt" is a predicate on the type

of sets of rational numbers.

iii) When, for a predicate P, it has been shown that a unique x exists for

which P holds, then "the x such that P" is an object. Cf,:

- "Satz 4, zugleich Definition 1: Auf genau eine Art laszt sich jedem

Zahlenpaar x,y eine naturliche Zahl, x +y genannt, so zuordnen.

dasz. • • • x + y heiszt die Summe von x und y".

"Satz 101: Ist X > Y so hat Y + U = X genau eine L6sung U.

Definition 23: Dies U heiszt X -Y".

5

iv) The theory of equivalence classes modulo a given equivalence relation,

whereby such classes are considered as new objects, is presupposed by

Landau. Cf. :

- The text preceding "Satz 40": "Auf Grund der Satze 37 bis 39 zerfal-

len alle Bruche in Klassen, so

x1 Y1

x1 Y1
dasz - ~ - dann und nur dann, wenn

x2 Y2
- und - derselben Klasse angeh6ren" •
x2 Y2

- "Definition 16: Unter eine rationale Zahl versteht mann die Menge

aller einem festen Bruch aquivalenten Bruche (also eine Klasse im

Sinne des § 1) ".

v) The concepts "function" and "bijective function" are vaguely described,

Cf,:

- "Satz 4" (see iii) above) .

"Satz 274: Ist x < y so k6nnen diem s x nicht auf die n Sy einein­

deutig bezogen werden".

"Satz 275: Es sei x fest, f(n) furn s x definiert. Dann gibt es ge­

nau ein furn S x definiertes gx(n) mit folgenden Eigenschaften ••• "

followed by the "explanation": "Unter definiert verstehe ich: als

komplexe Zahl definiert". This explanation might be interpreted to

indicate the typing of the functions f and g.

vi) Landau defines and uses partial functions. Cf,:

- "Definition 14: Das beim Beweise des Satzes 67 konstruierte spezielle

u1 x1 Y1 11

- heiszt - •.•• Here
u2 x2 Y2 x1
finition, only applies if

the construction, and therefore the de­

Y1
>-.

x2 Y2
- "Definition 56: Das Y des Satzes 204 heiszt; This definition de-

pends upon the assumption H # 0.

- "Definition 71", where Landau states explicitly: "Nicht definiert

ist xn also lediglich fur x = O, n s O".

- "Satz 155: Beweis: II) Aus X > Y folgt X

- "Satz 240: Ist y # 0 so

"Satz 291: Es sei n > 0
n n

= x1 .x2

ist ~. y = x".
y

oder x 1 # O, x 2

(X -Y) + Y".

6

In these last three examples we see "generalized impliaations": the

terms occurring in the consequent are meaningful only if the antece­

dent is taken to be true. A similar situation will be encountered in

vii).

vii) Definitions by cases, sometimes of a complicated nature, are used.

Cf.:

- "Definition 52:

-(IE I + IHI) wenn - < o, H < 0,

IE I -
Jal 1 t > IHI.

0 wenn - > o, H < o, IE I IHI.

- + H -(IHI IE I) IE I < IHI.

H + E wenn - < o, H > 0.

H wenn - o.
- wenn H O".

- "Definition 71:

n
JI X wenn n > O.

k=l
n

1 'F o, o. X wenn X n

1
'F o, o. N wenn x n <

X

Notice that in these two definitions, in some of the cases the defin­

iens is not defined when the corresponding condition does not hold,

("generalized definition by aases"), and also that, in some cases,

there is in the definiens a reference to the definiendum.

viii) In his text Landau only occasionally mentions predicates and relations;

usually he refers to sets. Cf.:

- "Axiom 5: Es sei M eine Menge naturlicher Zahlen mit den Eigenschaf­

ten:

I) 1 gehort zu M.

II) Wenn x zu M gehort, so gehort x' zu M.

Dann umfaszt Malle naturlichen Zahlen".

- "Satz 2: x' ,- x. Beweis: M sei die Menge der x, fur die dies gilt,.".

However, in the text preceding "Definition 26":

- "Da =, >, <, Summe und Produkt den alten Begriffen entsprechen ... ".

7

ix) Landau considers (ordered) pairs of objects. In chapter 2 the compo­

nents of such pairs remain clearly visible in their names: he does not

refer to "the pair x with components x1 and x/', but only to "the pair

x 1 ,x2". Nevertheless it is clear from his words that he considers such

a pair as one object. Cf,:
xl

- "Definition 7: Unter einem Bruch - versteht man das Paar der natur­
x2

lichen Zahlen x 1 ,x2 (in dieser Reihenfolge)".

xl Y1
- "Definition 8: - ~ - wenn x y = y x " x2 y2 1 2 1 2

In chapter 5 however, variables for pairs are used. Cf.:

- "Definition 57: Eine komplexe Zahl ist ein Paar reeller Zahlen :: 1 ,:: 2
(in bestimmter Reihenfolge). Wir bezeichnen die komplexe Zahl mit

[=1 • =2]".

This definition is immediately followed by

- "Kleine deutsche Buchstaben bedeuten durchweg komplexe Zahlen".

The two notations are linked in the following way:

- "Definition 60: Ist x = [E1 ,E 2], y = [H1,e2J, so ist

X + y = [::1 + ::2,Hl + H2]".

x) Finally it should be pointed out that some of Landau's proofs and re­

marks tend to a kind of intuitive reasoning which is not easily represent­

ed in a formal system.

A first example of this is the treatment of equality in "Kapitel 1,

§ 1".

- "Ist x gegeben und y gegeben, so sind entweder x und y dieselbe Zahl;

das kann man auch x = y schreiben; oder x und y nicht dieselbe Zahl;

das kann men auch x f y schreiben,

Hiernach gilt aus rein logischen Grunden:

1) x = x fur jedes x.

2) Aus x y folgt y = x.

3) Aus x y, y = z folgt x = z".

Here it seems that Landau derives the properties of equality from re­

flection on the properties of a mathematical structure. They are not

theorems or axioms but intuitively true statements, Substitutivity of

equal objects, though used frequently in the proofs of subsequent theo­

rems, is never mentioned.

Other examples of proofs with intuitive components may be found where

Landa~, in a glance, takes in a complex logical situation, Cf.:

8

- "Satz 16: Aus x ~ y, y < z oder x < y, y ~ z folgt x'< z. Beweis:

Mit dem Gleichheitszeichen in der Voraussetzung klar; sonst durch

Satz 15 erledigt".

- "Satz 20: Aus x + z > y + z bzw. x + z

folgt x > y bzw. x = y bzw. x < y.

y + z bzw. x + z < y + z

Beweis: Folgt aus Satz 19 da die drei Falle beide Male sich aus-

schlieszen und alle M6glichkeiten erschopfen".

A somewhat different example, which involves what might be called

"metalogic", is the text preceding "Definition 26", where it is indi­

cated how a number of theorems might be proved, without actually prov­

ing them. I will return to this in 2.1 viii),

1.1. The representation of logic in AUT-QE

The logic considered by Landau to be "logisches Denken", as described

in the previous section, has been formalized in the first part of the

AUT-QE book, called "preliminaries", which, unlike the other parts, does

not correspond to an actual chapter of Landau's book.

A possible way of coding logic in AUT-QE has been described in [vn,

3,4]. In addition to this description we stress a few points on the inter­

pretation of AUT-QE lines [vn, 2.13, 5.4.4]. Adopting the terminology intro­

duced in [Z] we shall call expressions of the form [x1 ,a1J •.. [xk,ak] ~

(with k ~ 0) (i.e. t-expressions of degree 1) it-expressions and ex­

pressions of the form [x1 ,a1] ••• [xk,ak] ~ (again with k ~ 0) 1p-expres­

sions. Expressions having lt- and lp-expressions as their types, will be

called 2t-expressions and 2p-expressions, respectively. Finally, 3t- and

3p-expressions have 2t- and 2p-expressions as their types.

Now a 2t-expression will be used to denote a type (or "class"). If

its type is an abstraation expression [vn, 2.8, 5,4.2] then it denotes a

type of functions. A 2p-expression denotes a proposition or a predicate, A

3t-expression denotes an object (of a certain type) and a 3p-expression a

proof (of a certain proposition).

The interpretation of an AUT-QE line having a certain shape (EB-line,

PN-Zine or abbreviation Zine [vn, 2.13, 5.4.4]) will depend on its aatego­

ry part [vn, 2.13.1] being alt-, lp-, 2t- or 2p-expression. So we arrive

at the following refinement of the scheme in [vD, 4.5].

9

Shape of the line: Category-part

it-expression 1p-expression 2t-expression 2p-expression

EB-line

PN-line

Abbreviation

line

introduces

a type

variable

introduces

a primitive

type con­

stant

defines a

type in

terms of

known con­

cepts

introduces a

proposition

or predicate

variable

introduces a

primitive

proposition

or predicate

constant

defines a

proposition

or predicate

in terms of

known con­

cepts

introduces an

object varia­

ble (of the

stated type)

introduces a

introduces

the stated

proposition

as an assump­

tion

introduces

primitive ob- the stated

ject (of the proposition

stated type) as an axiom

defines an

object (of

the stated

type) in

terms of

known con­

cepts

proves the

stated pro­

position as

a theorem

In the above scheme it is apparent that, if the category part of a line is

a 2p-expression, then the interpretation of that line is an assertion, But

also if the category part is a 2t-expression a the interpretation has an

assertional aspecti the line does not only introduce a new name for an ob­

ject (as a variable, or a primitive or defined constant) but also asserts

that this object has the type a.

1.2. Account of the PN-lines

Here I will give a survey of the primitive concepts and axioms (PN­

lines) occurring in the preliminary AUT-QE text. A mechanically produced

list of these axioms appears as appendix J. In this list the PN-lines appear

numbered. References in parentheses below will refer to these numbers.

i) Axioms for contradiction.

Contradiction is postulated as a primitive proposition (1), the double

negation law as an axiom (2).

10

ii) Axioms for equality.

Given a type S, equality is introduced as a primitive relation on S
(3), with axioms for reflexivity (4) and for substitutivity (5) (i.e.

if X=y, and if P is a predicate on S which holds at X, then P
holds at Y). Moreover there is an axiom stating extensionality for

functions (8).

The notion of equality so introduced is called book-equality (cf. [vD,

3.6]) in contrast to definitional equality of expressions ([vD, 2.12,

5,5,6]).

iii) Axioms for individuals.

Given a type S, a predicate P on S, and a proof that P holds

at a unique X f S, the object ind (for individual) is a primitive

object (6), to be interpreted as "the X for which P holds". An

axiom states that ind satisfies P (7).

iv) Axioms for subtypes,

Given a type S and a predicate P on S, the type OT (for own­

type, i.e. the subtype of S associated with P) is a primitive type

(9), For U E OT we have a primitive object in(u) f S (10), and an

axiom stating that the function [u,OT]in(u) is injective (12). More­

over there are axioms to the effect that the images under this func­

tion are just those XE S for which P holds ((11) and (12)).

v) Axioms for products (of types).

Given types S and T the type pairtype (the type of pairs (X,y)
with XE S and y f T) is introduced as a primitive type (14). For

p I pairtype we have the projections first(p) IS and second(p) IT
as primitive objects ((16) and (17)), and conversely, for XE S and

y IT we have patr(x,y) as a primitive object in pairtype (15).

Next there are three axioms stating that pair(first(p),second(p))=p,
first(pair(x,y))=x and second(pair(x,y))=y (where= refers to book­

equality as introduced in ii)) ((19), (20) and (21)).

(Notei If a type U containing just two objects is available, and if

S is a type, the type of pairs '(X,y) with XE S and Y f S may

be defined alternatively as the function type [x,UJS. In the trans­

lation this was done at the end of chapter 1, where we took for U

the subtype of the naturals~ 2. Therefore the pairing axioms as de­

scr;U;led above 'Were not used in the actual translation.)

11

vi) Axioms for sets.

Given a type S, the type set (the type of sets of objects in S)
is introduced as a primtive type (21), and the element relation as a

primitive relation (22). Given a predicate P on S, there is a prim­

itive object setof(P) f set (denoting the set of XE S satisfying

P) (23), and there are two axioms to the effect that P holds at X

iff X is an element of setof(P) ((24) and (25)).

These can be viewed as comprehension axioms for S. (As sets contain

only objects of one type, such axioms will not give rise to Russell­

type paradoxes.)

Finally extensionality for sets is stated as an axiom (26).

The axioms for sets permit "higher-order" reasoning in AUT-QE, since

quantification over the type set is possible.

1.3. Development of concepts and theorems in Landau's logic

Here we give a sketch of the development of the logic in [L] from the

a~:ioms described in the previous section.

Starting from the axioms for contradiction, the development of classi­

cal first order predicate calculus is straightforward. In this development

more then usual attention has been paid to mutual exclusion: 7(A AB), and

trichotomy: (AV B V C) A (7(A AB) A 7(B AC) A 7(C A A)), because these

concepts are used frequently by Landau in discussing linear order.

The properties of equality, e.g. symmetry, transitivity, and substitu­

tivity for functions (i.e. if x=y and f if a function on S then

f(x)=f(y)), follow from the axioms for equality.

The development of the theory of equivalence classes (cf. 1.0 iv)) re­

quires the axioms for subtypes and for sets. It turns out here, when trans­

lating mathematics in AUT-QE, that Landau goes quite far in considering con­

cepts and statements about those concepts to belong to "logisches Denken".

We had to choose how to describe partial functionsinAUT-QE. As an

example let us consider the function f on the type rl of the reals, de-

fined for all XE rl for which Xf0 and mapping X to 1/x. There are

(at least) four reasonable ways to represent f

i) The range of f may be taken to be rl*, the "extended type" of reals,

containing, apart from the reals, an object und representing "unde­

fined". In this case <O>f will be (book-equal to) und, and rl
may be defined as OT(rl*,cx,rl*](XfUnd)).

12

ii) An arbitrary fixed object in rl
<O>f will be taken to be 0

0 say, may replace und. Then

iii) f may be considered as a function on OT(rl,[x,rl]x!O) , the subtype

of the nonzero reals.

iv) f may be represented as a function of two variables: an object XE rl
and a proof pf XFO. So

f I [x,rlJ[p,x!OJrl

(Then, given an X such that Xf0, i.e. given an X and a proof p
that Xf0, we can use <p><X>f to represent 1/x .)

It is clear that the representations i) and ii) have much in common.

The representations iii) and iv) are also related: in fact, we may construct,

by the axioms for subtypes, for given· XE rl and pf x!O an object

out(x,p) f OT(rl,[x,rlJx!O) . Then, if

f1 f [x,OT(rl ,[x,rlJx!O)Jrl ,
then

[x,rlJ[p,x!OJ<out(x,p)>f1 I [x,rlJ[p,x!OJrl

On the other hand, if

then

[x,OT(rl,[x,r1Jx!O)J<OTAx(x)><in(x)>f2 f [x,OT(rl ,[x,rlJx!O)Jrl

(for brevity some obvious subexpressions in theformulas above have been

omitted).

After a careful examination of Landau's language, I have decided that

the fourth representation is closest to his intention, and have therefore

adopted it. However this leads to the following difficulty:

Let, in our example, XE rl and y f rl be given, such that x=y,
and suppose we have proofs pf (x!O) and q I (y.10) . Now it is not a pri­

ori clear in AUT-QE (though it is clear to Landau), that the corresponding

values <p><x>f and <q><y>f will be equal. That is: it is not guaranteed

in the language that the function values for equal arguments will be inde­

pendent of the proofs p and q.

13

This property of partial functions, which is called irrelevance of

proofs, can be proved for all functions which Landau introduces, When dis­

cussing arbitrary partial functions however, irrelevance of proofs had to

be assumed in some places (cf. gite below). For a further discussion we re­

fer to 4.0.1.

As a consequence of the chosen representation of partial functions,

terms may depend on proofs, and therefore certain propositions are meaning­

ful only if others are true, This gives rise to generalized implications

(cf. 1.0 vi)) and generalized conjunctions, such as:

and
"x > 0 • 1/x > 0"

11 X > 0 A /x 'f' 2" ,

Logical connectives of this kind have been formalized in the paragraph "r"

in the preliminary AUT-QE text.

The definition-by-cases operator ite (short for "if-then-else", cf. 1.0

vii))) can be defined on the basis of the axioms for individuals. As we

have seen (1.0 vii)), Landau admits partial functions in such definitions.

For these cases a "generalized" version of the definition-by-cases operator

gite (for "generalized if-then-else") is required, which has been defined on­

ly for partial functions satisfying the irrelevance of proofs condition.

All set theoretical concepts used by Landau (cf, 1,0 viii)) may be de­

fined starting from our axioms for sets.

The passages in Landau's text which use more or less intuitive reason­

ing (cf. 1.0 x)) could not very well be translated, In the relevant places

straightforward logical proofs were given, which follow Landau's line of

thought as closely as possible.

14

2. TRANSLATION

In this chapter, we discuss the actual translation of Landau's book,

the difficulties encountered and the way they were overcome (or evaded).

First, in section 2.0, we give an abstract of Landau's book; then, in sec­

tion 2 .1, a general survey .is give,1 of the various reasons to deviate occa­

sionally from Landau's text. In the following sections we describe the trans­

lation of the chapters 1 to 5 of Landau's book.

2.0. An abstract of Landau's book

i) "Kapi tel 1. Naturliche Zahlen".

Peano's axioms for the natural numbers 1,2,3, .•• are stated.

"+" is defined as the unique operation satisfying x + 1 = x' and

x +y' = (x +y) '. Properties of + .(associativity, commutativity) are

derived.

Order is defined by x > y := 3u [x = y + u]. It is proved to be a lin­

ear order relation and its connections with+ are derived. "Satz 27"

states that it is .a well-ordering.

(multiplication) is defined as the unique operation satisfying

x.1 = x and x.y' = x.y + x. Properties of"." (commutativity, associa­

tivity) are derived, and also its connections with+ (distributivity)

and with order.

ii) "Kapitel 2. Bruche".

Fractions (i.e. positive fractions) are defined as pairs of natural

numbers. Equivalence of fractions is defined, and proved to be an equi­

valence relation.

Order is defined, it is shown to be preserved by equivalence, and to be

an order relation. Properties are derived (e.g. it is shown that nei­

ther maximal nor minimal fractions exist, and that the set of fractions

is dense in itself).

Addition and multiplication are defined, and proved to be consistent

with equivalence. Their basic properties and interconnections are de­

rived, and their connections with order are shown. Also subtraction and

division are defined.

Rationals (i.e. positive rational numbers) are defined as equivalence

classes of fractions. Order, addition and multiplication are carried

over to the rationals, and their various properties are proved. Final­

ly the natural numbers are embedded, and the order in the rationals is

shown to be archimedean.

15

iii) "Kapi tel 3. Schni tte".

Cuts in the positive rationals are defined.

For these cuts, order, addition (with subtraction), and multiplication

(with division), are defined, and again the various properties and in­

terconnections of these concepts are proved,

The rationals are embedded, and the set of rationals is proved to be

dense in the set of cuts. Finally the existence of irrational numbers

is proved, by introducing fi as an example.

iv) "Kapitel 4. Reelle Zahlen".

The cuts are now identified with the positive real numbers, and to

these the real number 0 and the negative reals are adjoined, in such a

way that to every positive real there corresponds a unique negative

real.

The absolute value of a real number is defined. Order is defined, its

properties are derived, and the predicates "rational" and "integral"

("ganz") are defined on the reals.

Now addition and multiplication are defined, and their properties and their

connections with each other, with absolute value and with order are de­

rived. In particular the minus operator (associating to each real its

additive inverse) is discussed, as well as subtraction and division.

Finally, in the "Dedekindsche Hauptsatz", Dedekind-completeness of the

order in the reals is proved.

v) "Kapi tel 5. Komplexe Zahlen".

Complex numbers are defined as pairs of reals.

Addition, multiplication, subtraction and division, their properties

and interconnections are discussed.

To each complex number is associated its conjugate, and also (follow­

ing the definition of the square root of a nonnegative real) its modu­

lus (as a real number). The connections of these two concepts with each

other and with the previously introduced operations are derived.

For an associative and commutative operator* (which may be interpreted

as either+ or.), and for an n-tuple of complex numbers f(l), •• ,f(n),

Landau denotes

n
f(l) * f(2) * ••. * f(n) by :r f(i) •

i=l

This concept is defined as the value at n of the unique function g

(with domain {1,2, ••• ,n}) for which g(l) = f(l) and g(i') =g(i) *f(i')

16

for i < n. The properties of 1 are proved in particular, for any per­

mutationsof{l,2, n} it is proved that

n
1 f (i)

i=l

n
1 f(s(i)) •

i=l

The definition of 1 is extended to n-tuples f (y) , f (y + 1) , •• , f (y + n - 1)

(where y is an integer), and its properties are carried over to this

situation.Eis defined as the specialization of 1 to the operation+,

and TI as its specialization

E and TI are proved.

(multiplication). Some properties of

For a complex number x and an integer n, with x f O or n > O, xn is de-

fined, and its properties and connections with previously defined con­

cepts are discussed.

Finally the reals are embedded in the set of complex numbers, the num­

ber i is defined, it is proved that i 2 = -1, and that each complex num­

ber may be uniquely represented as a +bi with a,b real.

2.1. Deviations from Landau's text

In our translation, deviations from Landau's text appear occasionally.

They may be classified as follows:

i) In some cases a direct translation of Landau's proofs seems a bit too

complicated. we list three reasons for this.

a) Sometimes it is due to the structure of AUT-QE which does not quite

agree with the proof Landau gives. E.g. in the proof of "Satz 6"

Landau applies, for fixed y, induction with respect to x. As

X f. nat, y f. nat is a common context in the translation, it is

easier there to apply, for fixed X, induction with respect toy

b) Sometimes the reason is that Landau uses a unifying argument. E.g.

in the proof of the "Dedekindsche Hauptsatz" there are, at a certain

stage, two real numbers 3 and H, such that 3 > 0 and 3 > H. Here

Landau needs a rational number Z, such that 3 > Z > H, Now it has

been proved in "Satz 159" that between any two positive reals there

is a rational. If H > O this may be applied immediately. If H $ 0

Landau defines B1 1 ~ 1 and again applies "Satz 159", this time

with H1 •

This argument howe,10:c is complicated, because, to apply "Satz 159",

first O < B1 < 5 ha.s to be proved (which Landau fails to do) . And it

17

is superfluous because every Zin the cut_ will meet the conditions

in this case.

c) In one instance (the proof of "Satz 27"), Landau has given a com-

plex proof, which may be simplified.

In all these cases I have, in the translation, given a proof which fol­

lows Landau's line of reasoning. However, in some cases, I have also

given shorter alternative proofs. This means that the deviations are

optional in these cases.

ii) Some of Landau's "Satze" really consist of two or three theorems.

E.g. "Satz 16: Aus x Sy, y < z oder x < y, y s z folgt x < z". In such

cases the theorem has been split up: "Satz 16a: Aus x Sy, y < z folgt

x < z", "Satz 16b: Aus x < y, y S z folgt x < z".

iii) Very frequently Landau uses without notice a number of more or less

trivial corollaries of a theorem he has proved. E.g. besides "Satz 93:

(X + Y) + Z = X + (Y + Z)" he uses "X + (Y + Z) = (X + Y) + Z" without

quoting "Satz 79". Sometimes such a practice is explicitly announced,

e.g. in the "Vorbemerkung" to "Satz 15", where it is stated that, with

any property derived for<, the corresponding property for> shall be

used. In all such cases the corollaries have been formulated and proved

after the theorems.

iv) Following the translation of the definition of a concept, we oftenadd­

ed the specialization to this concept of certain general properties.

E.g. after the introduction of+, substitutivity of equality

was applied: "If X y then X + z y + z and z + X z + y. If X = y

and z = u then x + z = y + u". This was done in order to make later ap­

plications easier.

v) In a few proofs of the last three chapters minor changes were made.

E.g. in the proof of "Satz 145", where Landau states: "Aus I; > 17 folgt

nach Satz 140 bei passendem u , 17 + u" but where, by "Definition

35" u can be defined explicitly by 0 := I; - 17. This has been done in

the translation, thus avoiding the superfluous existence elimination.

Another deviation occurs in the proof of "Satz 284". Here Landau writes

the following chain of equalities:

((u + 1) -y) + (x - u) (x+(-u)) + ((u+l) + (-y)) =

(x+ ((-u) + (u+l))) + (-y) = (x+l) -y

As in the proof the equality

((u+l) -y) + ((x+l) - (u+l)) (x+l) - y

18

was needed, the following chain of equations was preferred in the

translation:

((u+l) -y) + ((x+l) - (u+l)) = ((x+l) - (u+l)) + ((u+l) -y)

= (((x+l) - (u+l)) + (u+l)) -y = (x+l) -y

vi) As we have seen in 1.0 vii) Landau formulates Peano's fifth axiom in

terms of sets, and, when applying it, always represents a predicate as

a set. In the translation this extra step has been avoided. The induc­

tion axiom is indeed introduced for sets, but then immediately a lemma,

called induction, which applies to predicates is proved. This lemma

has been used systematically in all proofs by induction.

Also "Satz 27: In jeder nicht leeren Menge naturlicher Zahlen gibt es

eine kleinste" has been reworded and proved in terms of predicates and

not of "Mengen".

vii) "Intuitive arguments" of Landau were translated in various ways. E.g.

"Satz 20: Aus x + z > y + z bzw. x + z = y + z bzw. x + z < y + z

folgt X > y bzw. x y bzw. x < y.

Beweis: Folgt aus Satz 19 da die drie Falle beide Male sich ausschlies­

zen und alle Moglichkeiten erschopfen" (where "Satz 19" asserts the

inverse implications).

Considering the fact that Landau regards this proof as belonging to

"logisches Denken", I have proved in the preliminaries three "logical"

theorems to the effect that:

If AV B V c, 7(D A E), 7(E AF), 7(F AD) and A~ D, B ~ E, C ~ F,

then D ~ A, E ~Band F ~ C.

These theorems were used in the translation.

A second example: "Satz 17: Aus x $ y, y $ z folgt x $ z.

Beweis: Mit zwei Gleichheitszeichen in der Voraussetzung klar; sonst

durch Satz 16 erledigt" ("Satz 16" is quoted above under ii)). Here the

AUT-QE text, when translated back into German, might read:

"Beweis: Es sei x = y. Dann ist, wenn y = z, auch x = z also x $ z.

Wenn aber y < z so ist x < z nach Satz 16a, also ebenfalls x $ z.

Nehme jetzt an x < y. Dann folgt aus Satz 16b x < z, also auch in die­

sem Fall x $ z. Deshalb ist jedenfalls x $ z".

Another argument which is difficult to translate faithfully occurs in

"Kapitel 5, § 8" where sums and products are introduced. Landau uses

here a symbol which he intends to represent either"+" or".", and in

this way defines"):" and "II" simultaneously. In our translation we de-

19

fined iteration for arbitrary commutative and associative operators,

and consequently our concept and the relevant theorems are essential­

ly stronger than Landau's. This generality is much easier to describe

in AUT-QE then a theory which applies only to"+" and".".

viii) Landau uses metatheorems whenever he embeds one structure into anoth­

er, to show that the properties proved for the old structure "carry

over" to the new. As an example I cite his treatment in chapter 2 of

the embedding of the natural numbers into the (positive) rationals.

"Satz 111: Aus ~> f bzw. ~~ f bzw. ~< 1.
1 1 1 1

folgt X > y bzw. X = y bzw. X < y".

"Definition 25: Eine rationale Zahl heiszt ganz, wenn unter den Bru-
x

chen, deren Gesamtheit sie ±st, ein Bruch 1 vorkommt".

"Dies x ist nach Satz 111 eindeutig bestimmt, und umgekehrt entspricht

jedem x genau eine ganze Zahl".·

"Satz 112: x + 1. ~ ~ ~ 1. ~ :!.:.1- 11 I 1 1 '1·1 1
"Satz 113: Die ganzen Zahlen genugen den funf Axiomen der natii.rlichen

Zahlen, wenn die Klasse von Tan Stelle von 1 genommen wird, und als
X X 1

Nachfolger der Klasse von 1 die Klasse von T angesehen wird".

Landau adds the following comment:

"Da =, >, <, Summe und Produkt (nach Satz 111 und 112) den alten Be­

griffen entsprechen, haben die ganzen Zahlen alle Eigenschaften die

wir in Kapitel 1 fur die nati.irlichen Zahlen bewiesen haben".

It was difficult to translate this text. The translation requires

first a careful analysis of the interpretation of Peano's axioms in

chapter 1. There are two possibilities:

In the first interpretation, the axioms describe fundamental proper­

ties of the given system of naturals (nat, 1, sue), which cannot be

proved from more primitive properties, and from which all other prop­

erties of the system can be derived. In this conception there is an

intention to characterize the structure by the axioms.

In the second interpretation, the axioms are simply assumptions under­

lying a certain theory. The theorems of the theory are valid in any

structure in which these assumptions hold. In this view, no claim is

made that the axioms characterize the system.

The difference between these two conceptions can be illustrated by

comparing the role of the axioms in Euclid's geometry to the role of

the axioms for groups in group theory.

20

The interpretation of "Satz 113" and Landau's comment varies according

to the interpretation of the Peano axioms. In the first interpretation

the "ganzen rationalen Zahlen" form a structure (nat*, 1*, sue*) which

"happens to" have the same fundamental properties as the original struc­

ture (nat, 1, sue). Hence, by a suitable metatheorem, we see that the

reasoning of chapter 1 may be repeated for this new structure, extend-
* * * * * * ing it to (nat, 1 , sue,+, • , <) and proving the various proper-

ties of this extended system.

In the second interpretation "Satz 113" just proves that the structure
* * * (nat, 1 , sue) satisfies the assumptions. After this the theory of

chapter 1 can be applied immediately.

However there is a further problem (under either interpretation): ad­

* dition on nat defined according to the method of chapter 1 is not (de-

* finitionally) the same thing as the restriction (to nat) of the addi-

tion on the rationals and these two functions must still be proved to

be (extensionally) equal. Similar remarks can be made about multipli­

cation and order.

It follows that the relevant text cannot be rendered directly in AUT-QE

under either interpretation of Peano's axioms. There is, therefore, no

technical reason to prefer one of these interpretations to the other.

Landau's ideas on the role of the axioms are not quite clear from his

text. We cite some of his statements:

- In his "Vorwort fur den Kenner" he mentions certain laws on the reals

which can be "als Axiome postuliert".

- He thinks it right, that the student should learn "auf welchen als

Axiomen angenommenen Grundtatsachen sich luckenlos die Analysis auf­

baut".

- Moreover: "In dieser (Vorlesung) gelange ich, von den Peanoschen

Axiomen der naturlichen Zahlen ausgehend, bis zur Theorie der reel­

len Zahlen".

- In chapter 1: "Wir nehmen als gegeben an:

Eine Menge, d.h. Gesamtheit, von Dingen, naturliche Zahlen genannt,

mit den nachher aufzuzahlenden Eigenschaften, Axiome genannt".

- "Von der Menge der naturlichen Zahlen nehmen wir nun an, dasz sie

die Eigenschaften hat ••• ".

- A relevant passage is also "Satz 113" quoted above.

- Landau never mentions "a system of naturals", like in group theory

one would discuss "a group", but always "die naturlichen Zahlen".

21

Most of the sentences quoted above point to the second interpretation,

some of them however could be interpreted better or equally well in

the first way.

Now, as neither technical reasons nor Landau's text indicated definite­

ly how Peano's axioms should be interpreted, I decided to interpret

them as postulates (PN-lines) rather then assumptions (EB-lines) be­

cause it suited my own conception of the naturals. Moreover this inter­

pretation reduces the context and thereby simplifies verification,

The meta-reasoning sketched above has been treated as follows. After

the proof of "Satz 113" the proofs of "Satz 1" and "Satz 4" (where ad­

dition is introduced) were copied for the "ganzen Zahlen". However ad­

dition on the "ganzen Zahlen" has been defined as the restriction of

addition on the rationals. Then a number of theorems from "Kapitel 1"

where proved using "Satz 112". Order and multiplication were treated

in a similar way. These texts have been inserted as a matter of

prestige because we claimed that we were able to say everything Landau

says. The insertions were never used however (cf. ix) below).

In "Kapitel 3, § 5" and "Kapitel 5, § 10" similar arguments occur,

when the rationals are embedded in the reals, and the reals in the

complex numbers. These arguments were "translated" just by construct­

ing the relevant isomorphisms. This suffices for all applications.

ix) A consequence of the difficulties described in viii) is a divergence

between the translation and Landau's book with respect to the use of

natural numbers in the chapters 3, 4 and 5. After his comment (follow­

ing "Satz 113") that the "ganze Zahlen" have the same properties as

the "natiirliche Zahlen" Landau continues:

"Daher werfen wir die natiirlichen Zahlen weg, ersetzen sie durch die

entsprechenden ganzen Zahlen, und haben fortan (da auch die Briiche

iiberfliissig werden) in bezug auf das Bisherige nur von rationalen Zah­

len zu reden".

In the translation I have not followed this course, because, as pointed

out, it would have been a cumbersome task to prove the properties of

the "natiirliche Zahlen" for the "ganze Zahlen", and also because it

would have been inevitable to repeat this procedure with every further

extension of the number system. Therefore I_have stuck to the "natur­

liche Zahlen" throughout the translation,

22

x) Another important deviation of Landau's text was caused by

"Definition 43: Wir erschaffen eine neue, von den positiven Zahlen ver­

schiedene Zahl 0. Wir erschaffen ferner Zahlen die von den positiven

und O verschieden sind, negative genannt, derart, dasz wir jedem s
(d.h. jeder positiven Zahl) eine negative Zahl zuordnen, die wir -s
nennen".

I doubt wether this creative act may be called a "definition". Landau

considers it a part of "logisches Denken" to form, given sets (or types)

a and S, the cartesian product ax S, as is clear from chapter 2, It

might be also considered "logical" to form the disjoint union a E& S. But

Landau does not mention this, he just "creates" 0 and the negative

numbers from nothing.

Moreover I do not see a formal difference between the assertion "1 ist

eine naturliche Zahl" (which Landau calls an axiom) and the assertion

"O ist eine reelle Zahl" (which he calls a definition). Neither do I

see a formal difference between "x' t- 1" and "-st- O". In my opinion

the limits of "logisches Denken" are exceeded here.

In agreement with this criticism I have translated this "definition"

by introducing a number of primitive concepts and axioms (PN-lines).

The type of real numbers rl is a primitive type. To any cut s real

numbers p(s) and n(s) are associated, 0 is a primitive real num­

ber,. Next there are axioms to the effect that the functions

[x,cut]p(x) and [x,cut]n(x) are injective. Now x Erl has the

property pas (or neg) if it is in the range of the first (.or the

second) of these functions. Then there are axioms stating that, for

x f rl , pos(x), neg(x) and X=O are mutually exclusive, and that

each XE rl has one of these properties. (In fact Landau does not

state the latter axiom explicitly.) Starting from these axioms "Kapi­

tel 4" was translated.

However, as I thought it unsatisfactory to develop the theory of real

and complex numbers using more than Peano's axioms alone, I have added

an alternative AUT-QE version of chapter 4, called chapter 4a, where

the real numbers are defined as equivalence classes of pairs of cuts,

and where all theorems of Landau's "Kapitel 4" are proved for these al­

ternative reals. The AUT-QE translation of chapter 5 has been checked

relative to the AUT-QE book consisting of the chapters 1, 2, 3 and 4a.

23

2.2. The translation of "Kapitel 1"

§ 1. Equality was introduced in the preliminaries (cf. 1.2 ii) and

1.3). nat is introduced as a primitive type, the Peano axioms as PN-lines

(cf. 2.1 viii)). Induction is formulated in terms of sets, but immediately

a lemma on induction, which applies to predicates is proved. This lemma is

used in the sequel (cf. 2.1 vi)).

§ 2. -"Satz 4: Auf genau eine Art laszt sich jedem Zahlenpaar x,y eine

naturliche Zahl, x +y genannt, so zuordnen, dasz ••• " has been translated

the way it is proved by Landau, viz. "for each XE nat there exists a uni­

que function ff [t,nat]nat such that ••• ". (In fact this theorem might

have been proved without using extensional equality of functions.)

After the proof of "Satz 4" we have in the translation 11 corollaries

and lemma's (cf. 2.1 iii) and 2.1 iv)). To some of these Landau refers ex­

plicitly (in the proof of "Satz 6": "nach dem Konstruktion beim Beweise des

Satzes 4") but more often they are used implicitly (e.g. in the proofs of

"Satz 9" and "Satz 24").

§ 3. Landau's "Definition 2: Ist x = y + u so ist x > y" is a bit loose

and requires of course a better formalization. His proof of "Satz 27" is not

very well organized, and uses indirect reasoning twice. After the transla­

tion of this proof in AUT-QE (36 lines, 458 identifier occurrences) a more

straightforward proof was given (reducing the length to 23 lines, 264 iden­

tifier occurrences). This alternative proof, translated back into German

(with "Mengen" instead of predicates, cf. 2.1 vi)), might read as follows:

"Satz 27: In jeder nicht leeren Menge naturlicher Zahlen gibt es eine klein­

ste•~.

Beweis: N sei die gegebene Menge, M die Menge der x dies jeder Zahl aus N

sind. Nehme an es gibt in N keine kleinste.

1 gehort zu M nach Satz 24.

Ist x zu M gehorig so ist x s jeder Zahl aus N. x gehort nicht zu N,

den sonnst ware x kleinste Zahl aus N. Nach Satz 25 ist also jeder ZahlausN

<? x + 1 , und daher gehort x + 1 zu M.

M enthalt somit jede nat1lrliche Zahl.

Wenn aber y zu N gehort, so gehort, wegen y + 1 > y, y+1 nicht zu M,

gegen das Obige.

N enthalt also eine kleinste Zahl".

(The German proofs do not differ too much in length: they contain 139 resp.

116 words.)

24

.§ 4. The theorems on multiplication and their proofs are very similar

to those on addition. The remarks made above concerning the translation of

§ 2 apply here too.

After the translation of "Kapitel 1", in our AUT-QE text, for each

x E nat, the type lto(x) of the natural numbers$ Xis defined. Then,

for an arbitrary type S, the type pairltype(S) is defined to be

[t,lto (2)JS . It represents the type of pairs (a,b) with a E S
Its various properties are then derived (cf. 1.2 v)).

2.3. The translation of "Kapitel 2"

b E S

§ 1. Landau defines fractions as ordered pairs. However he does not

use variables for pairs, but indicates them by their components:

Y1
"etc. In the translation X is a variable for fractions, with

numerator num(x) and denominator den(x) . And to xl E nat, x2 E nat
is associated the fraction fr(xl,x2) .

§ 5. The rationals are defined as equivalence classes of fractions.

The subsequent proofs have all the same structure: in the equivalence clas­

ses representatives are chosen, and the theorems proved for these represen­

tatives are carried over to their classes. (Landau's description of this

course of reasoning is rather sketchy, e.g.: "Satz 81: Beweis: Satz41".)

In order to translate this practice, four lemmas were proved, cover­

ing the cases where 1, 2, 3 or 4 rationals are involved, and which are used

throughout the translation of§ 5.

After the proof of "Satz 112" it is proved (as an extra theorem) that

for two "ganzen Zahlen" x and y, such that x > y, the difference x - y is

also "ganz". Landau uses this (without proof) in his proofs of "Satz 162"

and "Satz 285".

The translation of "Satz 111", "Definition 25", "Satz 112" and "Satz

113", with the ensuing text on "throwing away" the naturals, has been exten­

sively discussed already in 2.1 viii).

2.4. The translation of "Kapitel 3"

§ 1. The definition of the concept "Schnitt" did not give rise to dif­

ficulties. The type cut is defined as the type of those sets of rationals

which are cuts. Now, in this definition, there are three properties of cuts

I; which involve existential quantification:

25

i) I; is not empty: 3x [x EI;].

ii) the complement of I; is not empty: 3x [x ¢ /;].

iii) I; contains no maximal element: if x EI; then 3y [y EI; A y > x].

Therefore, if I; is a cut, then there are three ways to apply existence elim­

ination. Three lemmas to that effect (which Landau uses without notice)

are stated and proved in the AUT-QE text immediately after the introduction

of the concept cut.

Also in other paragraphs in this chapter, when existential quantifica­

tion was used in defining relations (>in§ 2) or objects (I;+ n in§ 3,

l;.n in 4), a corresponding existence elimination rule was stated and

proved as a lemma immediately afterwards.

3. "Satz 132. Bei jedem Schnitt gibt es, wenn A gegeben ist, eine

Unterzahl X und eine Oberzahl U mit U - X = A" is an example of the use of

"generalized" logic as described in 1.3. In fact, as U and X are positive

rationals, the term U - Xis only defined if U > X. That this is the case

is a consequence of the assumption that U and X are "Oberzahl" resp. "Unter­

zahl" of the same cut E; (i.e. U ¢ I; and X E I;).

In the proof of "Satz 140" there is a reference to the "Anfang des Be­

weises des Satzes 134". In Landau's Satz-Beweis style this is slightly un­

orthodox. In AUT-QE there is no such objection. The translation of this re­

ference is given in a single AUT-QE line referring to a line in the proof

of "Satz 140".

§ 4. Preceding the proof of "Satz 141" there is in the AUT-QE transla-
1 Z

tion a lemma stating that for rationals X and Z we have X . Z = X . This is

used without proof by Landau in the proofs of "Satz 141" and "Satz 145".

5. Embedding the (positive) rationals in the (positive) reals, (i.e.

in the type cut), gives rise to difficulties as described in 2.1 viii).

Finally, itisprovedinthe translation (asacorollaryof "Satz 112")

that, for cuts I; and n which are (embedded) naturals, I;+ n, x.n and (if

I;> n) I; - n are (embedded) naturals too. These results are used in "Kapi­

tel 5, § 8".

2.5. The translation of "Kapitel 4"

§ 1. The first definition of this chapter and its translation have

been discussed in 2.1 x): Contrary to Landau's intentions, in the transla­

tion the cuts from chapter 3 are not identified with positive reals. This

is because we want to collect the reals in a single type rl , and because

26

types in AUT-QE are unique. (Accordingly there are in AUT-QE no facilities

for extending types; we always have to use embeddings instead.) Some proofs

in this chapter are complicated by this distinction between cuts and posi­

tive reals.

§ 2. The very complicated definitions by cases in this chapter were

occasionally slightly modified. E.g.:

"Definition 44:

was translated as

wenn _

wenn -

wenn _

s
0

if = = n(s)

otherwise

(here p(sl and n(s) denote the positive and negative reals associated with

the cut sl.

§ 3. The translation of "Definition 52" (quoted in 1.0 vii)) was tire­

some (ittook about 180 AUT-QE lines). Equally tedious to translate were the

proofs of the theorems following this definition ("Satz 175", "Satz 180".

"Satz 185"). In the proof of "Satz 182" it is left to the reader to check

the theorem in a number of cases. This task could not be left to a non-hu­

man reader without further instructions.

In the proof of "Satz 185" the order in which the 11 different cases

are treated has been altered in the translation. The essence of the proof

has not been changed, however.

§ 4. The definition of multiplication, where 6 cases are discerned,

gave rise to similar difficulties as the definition of addition (it took

about 110 AUT-QE lines).

I had some doubts how to interpret

"Satz 196: Ist 3 # 0, H # 0, so ist

je nachdem keine oder zwei, bzw. genau eine der Zahlen 3,H negativ sind".

At first sight this seems to mean:

a) If - and H are not negative then 3.H = l=I. IHI.

b) If - and H are negative then 3.H l=I. IHI.

c) If - not negative, H negative then 3.H -(I= I - IHI).

d) If - negative, Hnot-negative then 3.H -(I= I - IHI).

27

However, if this meaning is intended the condition = # O, H # O is super­

fluous. Therefore, possibly, the statement is meant to include also

e) If 3.H l=I .IHI then neither or both of= and Hare negative.

f) If 3,H -(1=1 .IHI) then= is negative and His not, or His negative

and = is not.

Landau's proof ("Beweis: Definition 55") does not give a clue, and in later

references to the theorem he only uses a), b), c) or d). Nevertheless I have

formalized proofs of e) and f) in the translation,

"Satz 194" and "Satz 199" have complicated proofs by cases, which were

not easy to formalize.

§ 5, The "Vorbemerkung" to "Satz 205" requires two proofs. Some lemmas

are needed for the proof of the "Hauptsatz" itself, e.g. it is used that
1 H
_. H = 2 (cf. 2,4). No special difficulties arose in proving this important

theorem.

2.6. The alternative version of chapter 4

Our motivation to write another version of chapter 4, called chapter 4a,

was discussed in 2.1 x). In this chapter the theorems of chapter 4 are

proved for reals which are defined in a way different from Landau's. Also

the order in which these theorems appear differs from Landau's order.

At the end of this chapter the square root of a nonnegative real is

defined using "Satz 161", and its properties are derived. (This has been

done by Landau in "Kapi tel 5, § 7") •

The lengths of the AUT-QE texts of chapter 4 and chapter 4a are about

equal.

2.7. The translation of "Kapitel 5"

The actual translation of this chapter is preceded by a number of lem­

mas. Some of these give properties of division on the reals, implicitly

used by Landau in the sequel. Further there are lemmas describing the shift

of a segment of integers y,y+l,y+2, ••• ,x to an initial segment of the natu­

rals 1,2, ••• , (x+l) -y, which serve the translation of § 8.

The translation of the first seven paragraphs of this chapter was

straightforward. Preceding the proof of "Satz 221" some lemmas .appear, de­

scribing, fora complex number x, the properties of Re(x) 2 + Im(x) 2 • These

properties are used by Landau without notice in the proofs of "Satz 221"

28

and "Satz 229" and in the definition of lxl ("Definition 66"). (In my opin­

ion, at least a remark should have been made in this definition, to the ef­

fect that Re(x) 2 + Im(x) 2 ~ 0 for complex x).

§ 8. The translation of this paragraph was difficult. Landau discusses

x-tuples of complex numbers in order to define their sums and products. He

introduces the concept of an x-tuple as follows: "Es sei f(n) fiir n s x de-

finiert", and explains this later on: "Unter "definiert" verstehe ich "als

komplexe Zahl definiert". After proving some theorems he extends the concept

to x-tuples indexed by segments of (possibly negative) integers: "In Defini-

tion 70 und Satz 284 bis Satz 286 bezeichnen ausnahmsweise lateinische Buch­

stabenganze (nicht notwendig positive) Zahlen.

Es sei y S x, f(n) fiir y Sn s x definiert. ••• ".

There are (at least) three natural ways to represent in AUT-QE the con­

cept of x-tuple indexed by an initial ·segment of the naturals:

i) f might be considered as a function from the type nat to the type

CX of complex numbers, of which only the first x values are taken in­

to account. If we take this attitude it should be proved that if f and

g coincide for n S x then their sums (and products) up to x are equal.

ii) f might be represented as a function of type [t,nat][u,tsx]cx, i.e.

as a partial function like those discussed in 1.3.

iii) f might be considered as a function having as its domain the type

lto(x) , the subtype of those naturals which ares x.

All these possibilities have certain advantages. The first one is prob­

ably the easiest one, the second is in better harmony with the rest of our

AUT-QE translation, the third maybe corresponds better with Landau's inten­

tions.

The third formalization was finally chosen, but caused quite some trou­

ble because (on account of the unicity of types) numbers of type lto(x) do

not have also type lto(x+l)

As to the formalization of x-tuples indexed by segments of the inte­

gers, there was the extra difficulty that the predicate "ganze Zahl" on the

reals is not thoroughly discussed by Landau. E.g. he does not prove that

the integers are closed under addition and subtraction, though he uses this

in the text.

For this reason it seemed inappropriate to define the type of inte­

gers as a subtype of the reals, and to define fas a (partial) function on

this type in one of the ways discussed above.

Therefore we defined f, for fixed integers x and y, as a function of

type [t,realJ[u,int(t)J[u,y~tsX]CX, i.e. as a partial function on the

reals (rather like [t,nat][u,tsx]cx, see ii) above).

29

With this formalization of x-tuples (resp. ((x+l)-y)-tuples) the trans­

lation of§ 8 turned out to be laborious. Many rather meaningless embedding

and lifting functions appear in the proofs. In particular the proof of

"Satz 283" where it is shown that sums (products) are invariant under per­

mutations of their terms (factors) turned out to be long and tedious. (It

should be remarked that Landau's proof is long too: 4 pages, 87 lines of

German text, while the translation needs 365.lines of AUT-QE text.)

The last two paragraphs did not present difficulties in translating.

30

3. VERIFICATION

In this chapter the verification of the AUT-QE text is described. Some

features of the program and the possibility of excerpting are discussed.

3.0, Verification of the text

The verification of the AUT-QE translation of Landau's book was execut­

ed on the Burroughs B6700 computer at the Technological University of Eind­

hoven. The last page of the book was checked in September 1975. The whole

book was checked in a final run on October 18, 1975, The verifying program

was conceived by N.G. de Bruijn and implemented by I. Zandleven. For a de­

scription of this program we refer to [Zl]. Zandleven also provided the pro­

gram with input and output facilities, and extended it with a conversation­

al mode for on-line checking and correcting of texts.

The verification took place in three stages:

i) First the AUT-QE text was fed into the system on a teleprinter, At

this stage the main syntactical structure of the text was analyzed, It

was checked, for example, that the format of the lines was as it should

be, that the bracketing of the expressions was correct, and that noun­

known identifiers occurred.

ii) Secondly the AUT~QE text was coded, At this stage the correct use of

the context structure, the validity of variables, the correct use of

the shorthand facility [vD, 2.15] and of the paragraph reference sys­

tem (cf. appendix 2), were checked.

iii) Finally the text was checked with respect to all clauses of the langua­

ge definition, At this stage the degrees [vD, 2.3] and types of expres­

sions were calculated, and the correctness of application expressions

and constant expressions was checked. Vital for this is the verifica­

tion of the definitional equality of certain types (cf, [vD, 2.10],

[Zl]).

Runs of the stages ii) and iii) generally claimed much of the comput­

ers (virtual) memory capacity (over6000Kbytes was needed for the program

together with the coded text). In order to avoid congestion in the multi­

programming system it was therefore necessary to have the program executed

at night (and off-line). As AUTOMATH texts are checked relative to correct books,

a mechanical provisional debugging device for off-line checking was implement­

ed, by which lines which were found incorrect could be tentatively repaired.

31

E.g. , when the rrridd7,e paPt [vD, 2. 13. 1] of a line was found incorrect, the

debugging device changed it temporarily into PN, thus turning an abbrevia­

tion line into a PN-line. The line so "corrected" was then again checked,

and, if it was found correct, the lines following could then be checked relative to

the "corrected" book. By this device it was not necessary to stop the check­

ing immediately after the first error had been found.

Another feature of the verifying program was added because of the fact

that proving expressions to be incorrect (especially proving expressions to

be not definitionally equal) is often more difficult and more time-consum­

ing then proving correctness. Therefore during off-line runs a parameter in

the program (viz. the number of deaision points, to be explained in 3.1) has

been limited, and lines were considered provisionally incorrect when this

limit was exceeded.

When the later chapters were checked, we reduced the demands on the

computers memory capacity by abridging the book relative to which the text

was checked, in the following way: in the chapters which had already been

found correct, the proofs of theorems and lemmas were omitted, andthefinal

lines of these proofs (where the theorems and lemmas are asserted) were

changed into PN-lines. Each time a chapter was completely checked (relative

to the book so abridged) it was abridged in its turn.

Texts which are correct relative to the abridged book will be correct

with respect to the unabridged book too. On the other hand, as in classical

mathematics there is no reference to proofs but only to assertions, it is

unlikely thattextswhich are correct relative to the unabridged book will

be rejected relative to the abridged book. In actual fact this did not

occur.

When a chapter, after several off-line runs of the program,wasfound

to be "nearly correct", the final verification of that chapter took place

on-line. In such anon-line run the remaining errors could be immediately

corrected. Moreover correct lines could be verified, which had been provi­

sionally rejected because the number of decision points during verification

in off-line runs had exceeded the chosen limit. The verification of such

complicated lines could be shortened by directing (in conversational mode)

the strategy for establishing definitional equality.

After all chapters were verified in this way, the integral AUT-QE

text (complete and unabridged) was checked during a final on-line run,

which took 2 hours (real time), Of this time 42 min was spent on verifica­

tion (not including the time needed for coding).

32

In a table we list some data on this final run, concerning verification

time, number of performed reductions and memory occupied

preliminary chapter chapter chapter chapter chapter chapter complete

text 1 2 3 4a 5 4 text

verification time 107 .3 143.1 301.2 342 .4 405. 7 813.1 406.9 2519. 7

in seconds

a-reductions 631 752 1077 1455 1644 3393 1533 10485

S-reductlons 564 832 460 466 414 2749 529 6014

&-reductions 596 1111 1318 1873 2724 9290 3151 20063

n-reductions 2 - - - - - - 2

nr. of lines 1068 886 1603 2181 2779 2690 2226 13433

nr. of expressions 9388 12155 25792 30327 42067 60450 34959 215138

Since one coded expression occupies about 30 bytes (mainly used for refer~

ences to subexpressions), the total memory required for the coded book is

about 6500_ K bytes (= 52000 K bits).

3.1. Controlling the strategy of the program

In order to establish definitional equality of two expressions, the

verification system tries to find another expression to which both reduce.

The choice of efficient reduction steps for this purpose is a matter of

strategy ([vD, 6.4.1]). The programmed strategy is described in [Zl].

Under this strategy it is possible that intermediate results are ob­

tained which strongly suggest a negative answer to the question of defini­

tional equality, without definitely settling it. Suppose, for example, that

a(p)=a(q) has to be established. The programs strategy is to ascertain

that the constants a and a are identical and to verify whether p=q
If this is not the case, there is a strong suggestion that a(p) and a(q)
are not definitionally equal either, but this is yet uncertain. For example,

they are definitionally equal relative to the book

* n .- PN I type

* p .- PN E n

* q .- PN E n

* X .- E n
X * a .- p E n

It is a matter of strategy how to proceed in such cases. We may either

apply a-reduction (in which case the issue will be eventually settled) or

we may try to continue the verification process without using a(p)=a(q) .

33

Such a situation is called a decision point. In on-line runs the veri­

fication may be controlled here by the human operator. (Actually, in the

situation sketched above, information will be supplied, and the question

will appear whether 6-reduction should be tried.) In off-line runs 6-reduc­

tion will be applied in order to get a definite answer to the question, and

it will be checked that the total number of decision points passed during

the checking of a line does not exceed the chosen limit (cf. 3.0).

3.2. A new verifying program

In appendix 5 two shortcomings of the original verifying program are

indicated. Due to these shortcomings there was in 1975 no complete (mecha­

nically sustained) certainty that the AUT-QE text was correct.

Meanwhile on entirely new program has been implemented by I. Zandleven

and A. Kornaat. In this program clash of variables is impossible because

the coding system uses a nameless representation of variables (cf. [dB2]).

Moreover the program is constructed in such a way that its claims on the com­

puter's memory capacity can be kept at an acceptable level, thus avoiding the

difficulties with on-line runs described in 3.0.

In April 1977 the whole Landau book was checked by this program, and

thus the correctness of the AUT-QE text is now mechanically established. We

present some data on this run:

preliminary chapter chapter chapter chapter chapter chapter complete

text 4a text

verification time 107 ,3 143, 1 301 ,2 342.4 405, 7 813.1 406,9 2519. 7

in seconds

a-reductions 631 752 1077 1455 1644 3393 1533 10485

a-reductions 564 B32 460 466 414 2749 529 6014

6-reductions 596 1111 1318 1873 2724 9290 3151 20063

n--:eductions

no. of lines 1068 886 1603 2181 2779 2690 2226 13433

no. of expressions 9388 12155 25792 30327 42067 60450 34959 215138

preliminary chapter chapter chapter chapter chapter chapter complete

text 4a text

verification time 196.4 237 .s 538.0 619.9 892.7 1631.6 761.0 4877 .1

in seconds

a-reductions 522 728 466 548 462 3636 560 6924

6-reductions 619 1114 1321 1873 2793 11219 3211 22142

n-reductions

34

The differences in verification time are probably due to the extra effort

which is put into the organisation of the memory. There are no a-reductions

since variables are nameless in the coding system of this program. The

slight differences in the numbers of S- and a-reductions are caused by dif­

ferences in the verification strategies of the two programs.

3.3. Excerpting

Let B be an AUT-QE book, i ._e. a finite sequence of lines. A subbook of

Bis a subsequence of this sequence. A program, called excerpt, is avail­

able which, given a correct book Band a line t of B, produces the minimal

correct subbook of B containing t. (It is possible to have the line provi­

sionally changed into a PN-line before the subbook is produced.)

This program will display all co~cepts relevant to the definition of a

given concept, and all theorems (with their proofs) us.ea (explicitly or im­

plicitly) in the proof of a given theorem. (If the line is first changed in­

to a PN-line, the program will just give the assumptions under which the

theorem holds, and the concepts necessary to understand its contents.)

As an example, we give in appendix 4 an excerpted text for "Satz 27".

35

4. CONCLUSIONS

In this chapter we discuss some possibilities to represent logic in

AUTOMATE. We indicate some desirable extensions of AUT-68 and AUT-QE, and

we discuss some aspects (positive as well as negative) of our translation.

4.0. Formalization of logic in AUTOMATE

In this section we shall describe various possibilities to represent

systems of natural deduction in AUT-68 ([vD, 2]), in AUT-QE and in some

closely related languages. First we discuss two main decisions which have

to be made when choosing between these possibilities. Then we indicate ex­

plicitly two possibilities to represent logic.

4.0.0. First order v. higher order

In most AUTOMATE languages there are certain restrictions on abstrac­

tion. E.g. in AUT-68 as well as in AUT-QE correct abstraction expressions

have the form [x,a]A where a is a 2-expression (and hence x, having type a,

is a 3-variable, i.e. a variable which is a 3-expression).

Such restrictions allow a faithful representation of first order logic

(in the sense of excluding higher order formulas and inferences). In AUT-68

as well as in AUT-QE this can be done by representing propositions and pre­

dicates as 2-expressions (as described in [vD, 3]). Then proposition vari­

ables and (in AUT-QE) predicate variables will be 2-variables and abstrac­

tion (or quantification) with respect to such variables is impossible in

the language. If, in such a setting, we want to discern between proposition

variables and predicate variables then it is necessary to have abstraction

expressions of degree 1 in the language, i.e. to use AUT-QE (and not

AUT-68).

In order to represent higher order logic we should require the possi­

bility of abstraction with respect to proposition and predicate variables.

Therefore, if we stick to the abstraction restrictions of AUT-68 or AUT-QE,

we should represent propositions and predicates by 3-expressions. We may

proceed in two ways:

i) we can associate to each proposition a (primitive) type (which we will

call the assertion type of the proposition). Objects of this type will

be considered as proofs of the proposition. In other words: we consider

the proposition as asserted iff its assertion type contains some object.

This possibility will be elaborated in 4.0.2.

36

ii) we can extend the language to a new language, called AUT-4, by admitting

4-expressions (having 3-expressions as their types (cf, [vD, 2.3]). Then

a proposition (represented by a 3-expression) might be considered as as­

serted if it contains something (some 4-expression). Thus propositions

act as their own assertion types, and the representation of logic is

just as described in [vD, 3.2], but for a shift with respect to degrees.

4.0.1. Relevance of proofs v. irrelevance of proofs

In all representations of logic in AUTOMATH languages which have been

developed so far, proofs (i.e. names of proofs) appear in the language

([vD, 3], [dB], [dV]). In this respect these representations reflect a con­

structive conception of logic, in which proofs and objects are treated simi­

larly.

In a classical conception of logic, proofs are discussed in the meta­

language only. As a consequence it is impossible in such a conception to

discern (in the language) between different proofs of one proposition. This

point of view can be roughly represented in AUTOMATH by proclaiming, for any given

proposition a , aJ.l proofs of a to be equal. This deprives these proofs

of their identity, their names should be considered only as references to

the place in the book where the proposition is asserted, This possibility

has been first suggested by de Bruijn.

If, in a representation of logic in AUTOMATH, such an attitude is adopt­

ed, we shall say that this representation satisfies irrelevance of proofs.

(Cf. [Z], and also 1.3). How this irrelevance of proofs is implemented

(i.e. in which sense proofs are considered "equal") will depend both on the

language and on the way logic is represented in it (cf. 4.0.3 i) and ii)}.

4.0.2. A representation of logic in AUT-68

A higher order system of natural deduction can be formalized in AUT-68

as follows.

A type of propositions is introduced as a primitive type:

* PROP : = PN I ~
and to each proposition A its assertion type r(A) is associated:

*A.-
A*} .- PN

E PROP

I~

37

(In eariier publications on AUT-68, bool and TRUE were used instead of

PROP and r). If S is a type, an object Pf [x,SJPROP has to be inter­

preted as a predicate. Objects of type [x,SJr(<x>P) must then be inter­

preted as proving that P holds for every X f S. So we want to introduce

the proposition V(S,P) which has the property that its assertion type con­

tains elements iff the type [x,SJr(<X>P) contains elements. This is ex-

pressed in the following

* s .-
s * p .-
p * V .-
p * a .-
a * u .-
u *Ve .-
p * u .-
u * Vi .-

lines:

PN

PN

PN

f .!le!
f [x,SJPROP

E PROP

E S

f Hv(S,P))

f H <a>P)

f [x,SJH<x>P)

f Hv(S,P))

Starting from these primitive concepts and axioms, higher order logic can

be developed. An indication of how this can be done is given in appendix 6,

where the first three theorems from Landau's book are derived on the basis

of the logic so developed.

This logic represents a constructive system of natural deduction.

Axioms could be added for extensional equality of functions and extensional

equality of propositions {i.e. if a++ b then a= b).

Classical logic could be represented this way by adding axioms for ir­

relevance of proofs:

* A .- E PROP

A * u .- f 1-(A)

u * V .- f HA)
V * irr.pr. .- PN f IS(HA) ,u ,v)

and for the double negation law:

A * u .- f H7(7(A)))

u * d.n. l. .- PN f HA)

38

4.0.3. A representation of logic in AUT-QE

How logic can be represented in AUT-QE is described in [vD, 3]. This

system, a first order system of natural deduction, has been used in our

translation. An indication of the development of logic in it can be found

in the excerpted text in appendix 7, which covers the proofs of the first

three theorems of Landau's book and the logic used in these proofs.

The system is a bit ambivalent, because it is classical (containing the

double negation law as an axiom) but does not satisfy irrelevance of proofs.

There are two obvious ways to implement irrelevance of proofs:

i) by adding an axiom:

* A .- I .Er.£e.
A * s .- I~
s * t .- E [x,AJS
t * u .- E A
u * V .- E A
V * irr.pr. .- PN f IS(S,<u>t,<v>t)

That is: if to every proof of A an object of type S is associated,

then this object is independent of the nature of the proof. It has been

indicated by J. Zucker that this axiom implies irrelevance of proofs in

partial functions as mentioned in 1.3:

* s
s * T
T * p

p * f
f * a
a * b
b * u
u * V
V * w
w * Q

w * .Q,l
w * .Q,2
w * R-3

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

I~
I~
I [X 'S].E.!:£E_

I [x,SJ[y,<x>PJT
E S

E S

I IS(S,a,b)
E <a>P
E P

[x,SJ[y,<x>PJIS(T,<V><a>f,<y><x>f) f [x,SJ.Er.£e.
[y,<a>PJirr.pr.(<a>P,T,<a>f,v,y)
ISP(S,Q,a,b,u,R-1)

<w>R-2

I <a>Q
I Q
E IS(T,<V><a>f,<w>f)

39

ii) by extending, in the language, the relation of definitional equality,

in such a way that two 3p-expressions (cf. 1.1) are definitionally equal

iff their types are definitionally equal. This has been done in the lan­

guage AUT-IT (cf. [Z]), but could be done in a variant of AUT-QE as well.

If we want to formalize intuitionistic logic in AUT-QE we should have

the absurdity rule (i.e. contradiction implies any proposition) instead of

the double negation law. The logical connectives (apart from implication)

and the existential quantifier could be added as primitive constants, and

their elimination- and introduction rules as axioms.

4.1. The language

In this section we discuss some features of AUTOMATH languages, and

the value of these features for the formalization of mathematics.

4.1.0. AUT-SYNT

Consider the following AUT-QE text, representing the introduction rule

for conjunction:

* a .- I.l?.!:£E.
a * b .- I .l?.!:£E.
b * u .- E a
u * V .- E b
V * andi .- f and(a,b)

.(where the dots indicate some proof which is irrelevant for the present dis-

cussion). we will call the variables a,b,u,v the parameters of andi If we

want to apply this rule for propositions A and B, we need two proofs p and q

of the propositions, thus getting the proof andi(A,B,p,q) ~ and(A,B).

Suppose we are given the proof p, then we can compute mechanically its

type (Cf., [vD, 6.4.2.3]) which is (definitionally equal to) the proposition

A it proves. A similar observation holds for q and B. Hence we could say

that the expression andi(A,B,p,q) contains redundant information. If the

"mecha:nicaZ type" function CAT ([vD, 6.4.2.3]) were incorporated in the lan­

guage, we could write, instead of the expression above, andi(CAT(p),CAT(q),

p,q), which only contains p and q. We will call the parameters U and V

(for which p and q are substituted) the essential, parameters of andi ,
while a and b (for which the redundant expressions A and Bare substituted)

40

are called redundant parameters. There are many other examples of expres­

sions with redundant parameters.

It is worth while to extend the language in such a way that redundant

parameters can be avoided, because the expressions which have to be substi­

tuted for them might be long. A system of extensions of this kind has been

proposed by I. Zandleven. It is called AUT-SYNT since it admits syntaatia

variables -for expressions. Thus we have the languages AUT-68-SYNT, AUT-QE­

SYNT etc.

For a description of AUT-SYNT we refer to appendix 9, a text in AUT-

68-SYNT may be found in appendix 8,

Our experiences with translating Landau's book have been a stimulus

for developing AUT-SYNT, and have indicated the way this could be done, As

no verifying program for SYNT languages was available until after the trans­

lation was finished, the SYNT-facility could not be used in the translation.

This may be considered unfortunate, because the presence of this facility

would have simplified both the writing and the reading of our text.

4.1.1. n-reduction in AUTOMATH

In AUT-68 and AUT-QE one of the possible ways to establish definitional

equality is by n-reduation ([vD, 6.2.2]): If xis not free in A then

[x,a]<x>A >n A. As cart be seen in the list in 3, n reduction was applied

only twice during the verification of our translation, We give the lines

which required these n-reductions, together with their relevant contexts.

The following lines from the text on propositional logic are presup­

posed:

* con .- PN I .e.rE.e.
* a .- I .e.rE.e.

a * not .- [x,aJcon I .e.rE.e.
a * u .- I not(not(a))
u * et .- PN E a
a * u .- E con
u *cone.- et(a,[x,not(a)Ju) I a

The first line where n-reduction is required occurs in the text on pre­

dicate logic. In this text the following lines appear:

41

* s .- I!X.I?!
s * p .- f [x,SJ~
p * all .- p I~
p * non .- [x,SJnot(<x>P) f [x,SJ~
p * u .- f not(all (S,P))
U * V .- I non(non(P))
V * S .- E S
s * t1 .- et(<s>P,<s>v) E <S>P
V * t2 .- <[x,SJtl(x)>u · Econ

In order to verify that the middle part of this last line is a correct ex­

pression, it should be established that

We have

CAT{[x,SJtl{x)) R DOM{u) (Cf. [vD, 6,2.4.6]) ,

CAT{[x,SJtl(x)) = [x,SJCAT(tl(x)) = [x,SJ[s/x]<s>P = [x,SJ<x>P ,

DOM(u) = DOM(not(all (S,P))) = DOM{[x,all (S,P)Jcon) = all (S,P) = P

The question is to establish

[x,SJ<x>P RP
This obviously requires n-reduction.

The second case in which n-reduction is used occurs in the text on gen­

eralized implication:

* a .- I~
a * b .- f [x,aJ~
b * imp .- b I~
b * u .- f not(a)
u * th2 := [x,aJcone(<x>b,<x>u) f imp(a,b)

Here, in order to verify the last line, it is asked whether the category of

the middle part definitionally equals the category part, i.e. whether

Now

CAT{[x,aJcone(<x>b,<x>y) R imp(a,b) .

CAT{[x,aJcone(<x>b,<x>u)) = [x,aJCAT(cone(<x>b,<x>u)) =[x,aJ<x>b ,

imp(a,b) = b

and therefore n-reduction must be used for establishing

42

[x,aJ<x>b g b .

It has been observed by v. Daalen that n-reduction might have been

avoided in both cases by a slight modification of the definitions: for all

(in the first case) and for imp (in the second case). In fact all might

have been defined by

p * all .- [x,S]<X>P E .e.!:£E.

and imp by

b * imp .- [x,s]<X>b E .e.!:£E.

This would have made no difference to the rest of the book, apart from the

fact that in some places an extra $-reduction would have been necessary. In

fact, if a predicate Pis defined explicitly (as opposed to being a predi­

cate variable or a primitive predicate constant) then P = [y, S]m(y) , say,

and we have, without n-reduction

[x,SJ<x>P = [x,SJ<x>[y,SJm(y) = [x,SJ[y/x]m(y) = [x,SJm(x) = P .

We conclude therefore that n-reduction does not add considerably to

the expressive power of AUTOMATE.

4.1.2 • .e.!:£E. v. ~

In the stage of exploration of the possibilities to represent logic in

AUT-QE, initially a variant of this language was used which did not contain

the 1-expression .E.!::.9.E.. It was therefore impossible to prescribe whether

types had to be interpreted as assertion types (containing proofs) or "or­

dinary" types (containing "ordinary" objects).

Contradiction was represented as a primitive type, negation and the dou-­

ble negation law were formalized in terms of this type as follows:

* con .- PN I !l.E!
* a .- I~

a * not .- [x,aJcon I~
a * u .- I not(not(a))

u *d.n.l. .- PN E a

If in this text a is interpreted as an "ordinary" type, nat say, then

expressions of type not(a) (or [x,a]con) could be interpreted as proofs that

a is empty (in fact, if we have p I not(a) , then for an object X E a we

have <X>p to prove contradiction). Hence expressions of type not(not(a))

43

have to be interpreted as proofs that a is (in a weak sense) nonempty.

Given such a proof q we have an object d.n.l(a,q) fa . Or, in other

words: d.n.l acts as a Hilbert operator, selecting an object from any non­

empty type. In particular this induces a form of the axiom of choice.

As we did not want the double negation law to have such far-reaching

consequences, we extended the language by admitting prop as a basic 1-

expression_. Thus we obtained the language AUT-QE (as defined in [vD, 5]),

in which it is possible to distinguish between assertion types and ordinary

types.

The distinction of ~ and ~ not only unlinked the double negation

law from the axiom of choice, but also made it possible to implement irrele­

vance of proofs (cf. 4. 0 .1, 1. 3) . This opportunity was not seized in the log­

ic underlying our translation (though this would have been natural). For

an explanation we refer to 4.2.0.

We may conclude that the distinction between proofs and "ordinary" ob­

jects is an essential feature when representing classical logic in AUTOMATE.

For representing constructive logic the version with only ~ keeps its

value.

4.1.3. Strings and telescopes

In chapter 2 of his book Landau uses pairs (x 1 ,x2) .of natural numbers.

He considers such a pair as a single object and yet he describes it by two

variables, A faithful translation of this practice could have been given if

the concept of a string of expressions would have been present in our lan­

guage.

Another use strings of expressions might have is as arguments of par­

tial functions (as described in 1.3). In fact such functions are applied to

pairs (a,p) where a is an object of a certain type S, and p a proof

that a satisfies some predicate P on S (which describes the range of

the function).

As a further example we consider the concept of a group, which might

be considered as a string (S,op,iv,e,p) where Sf~• op f [X,S][y,SJS,
iv I [x,SJS, e IS and p I groupaxioms(S,op,iv,e) .

We usually want the types of the expressions of such a string to satis­

fy certain conditions. In the case of the argument (a,p) of partial func­

tion we want a f S, p E <a>P. In other words we want the argument (a,p)
to be consistent with the "abstractor part" of the function: XE S
y I <X>P. In the case of the group we want a group (S,op,iv,e,p) to be

44

consistent with

x I~; y I [s,xJ[t,x]x; z I [s,x]x; u Ix;

v I groupaxioms(x,y,z,u)

There is a strong analogy with the case where expressions A1 , ••• ,An are re­

quired to be suitable candidates for substitution for the variables x1 , •• ,xn

of a certain context x1 _! a 1 ,x2 _! a 2 , ••• ,xn E an (Cf. [vD, 2.5]).

To describe such conditions on strings we introduce the following ter­

minology. A finite sequence of_! formulas x 1 _! a 1 , ••• ,xn E an is called a

telescope, The string of expressions (a1 , ••. ,an) is said to fit into the

telescope x1 _! a 1 , ••• ,xn _! an if a 1 _! a 1 ,a2 ,! [x1/a1]a2 , ••• ,

a E [x1 , ..• ,x 1;a1 , ••• ,a 1]a •
n - n- n- n

Extension of the language with constants and variables for strings

and defined constants for telescopeshasbeen proposed by de Bruijn. This is

especially helpful when formalizing abstract structures such as groups,

vector spaces or categories, and has been applied on a large scale by

J. Zucker (Cf, [z]).

4.2. Comments on the translation

In this section we first give a chronological survey of the different

representations of logic which have been tried, and we state the motives

for finally choosing AUT-QE as a language for our translation. Furthermore

we mention some aspects which are (in our opinion) shortcomings of the

translation and we add some positive conclusions which can be drawn from our

work.

4.2.0. Choice of the language

In our first attempts to translate Landau's "Grundlagen" in AUTOMATE,

we used the language AUT-68. The representation of logic was similar to the

one described in 4.0.2 and presented in appendix 6. Elimination and intro­

duction of V were effected by the axioms Ve (with parameters Sf~•
p I [x,SJPROP, a IS, u f r{V(S,P))) and Vi (with parameters SI~,
Pf [X,S]PROP, U f [X,S]r{<X>P)), These axioms were used frequently in de­

veloping logic, because the logical connectives and the existential quanti­

fier were defined in terms of V. On the basis of this logic chapter 1 of

Landau's book was translated in AUT-68.

45

At that stage of our work we started trying to represent logic in

AUT-QE, initially using a variant of that language which did not contain

~- In AUT-QE the axioms Vi and Ve were superfluous: if PI [x,SJ~

(i.e. P represents a predicate on S) then objects of type P can be

interpreted as proofs of V(S,P) . Conversely, given such an object U E P
and an object a ES we have <a>u E <a>P (i.e. <a>u proves that P
holds at a). As a consequence the text on logic in AUT-QE was considera­

bly shorter then the earlier text in AUT-68. (It was not observed at that

time, that this was caused essentially by the redundant parameters S and

P of both constants Ve and Vi .) So AUT-QE seemed to be a much better

language, and therefore a fresh start was made with the translation of

Landau's book into that language. In 4.1.2 we have reported that in this

system (AUT-QE without~) the double negation law induces a Hilbert ope­

rator. This led us to add~ as a basic 1-expression to our language, thus

extending it to proper AUT-QE.

At the time we finally fixed the language we did not appreciate the

fundamental importance of incorporating a form of irrelevance of proofs.

This was due mainly to two reasons:

i) Partial functions are not frequently used in the first three chapters

of Landau's book, and for those partial functions which are defined

there, irrelevance of proofs could be derived. Therefore no need was

felt for an axiom.

ii) As Landau, being a classical mathematician, does not discuss proofs at

all, we thought we should try to follow this practice. Consequently we

did not want to have an axiom declaring proofs equal.

4.2.1. Shortcomings of the translation

Here I list those features of the translation which I would change if

I were to redo the work.

i) In my opinion the SYNT-facility should be present in any AUTOMATH lan­

guage. It will bring texts in AUTOMATH closer to mathematical practice.

The middle parts of many lines in the present Landau translation are

unnecessarily complex and tedious (both to the reader and to the writ­

er). because this facility is absent in the language I used.

ii) I regret that I have not implemented irrelevance of proofs as an axiom.

As I see it now, for representing classical reasoning a language should

be chosen which even contains irrelevance of proofs by definitional

46

equality (Cf. 4.0.2).

iii) Some of the names I have used lack expressive power. This is partly

due to the fact that AUT-QE admits only alphanumeric identifiers, but

mainly to my excessive preference for short names.

iv) I am not content with the translation of chapter 5, § 8. This text is

overloaded with irrelevant embedding and lifting functions which ham­

per a clear understanding of the argument. I think it is better to de-
n n

fine I f (i) and JI f(i) for functions f defined for all natural num-
i=l i=l

bers (and not just on an initial part of the naturals), although this

procedure deviates slightly from Landau's intentions.

4.2.2. Final remarks

The main positive comment we can.make on the translation is that it

has been succesfully finished (in spite of some inconveniences in the lan­

guage).

An aspect which has not been mentioned so far is the ratio between the

length of pieces of AUT-QE text and the length of the corresponding German

texts, Our claim at the outset was that this ratio can be kept constant. We

give a few data. As pieces of text we have chosen the chapters of Landau's

book, and as a measure of the lengths the number of stored AUT-QE expres­

sions (storing expressions requires storing all subexpressions too) and

(rough estimates of) the number of German words (where "x" and"+" were

counted as words). We give the following list:

no. of expressions

no. of words

no. of ex,12ressions
no. of words

chapter 1 chapter 2 chapter 3 chapter 4 chapter 5

12200

3200

3,8

25800

4900

5,3

30300

5300

5,7

35000

5500

6,4

60500

11000

5,5

The high ratio in chapter 4 might be attributed to the complicated defini­

tions by cases in this chapter, while the low ratio in chapter 1 is possi­

bly caused by the absence of calculations.

Another notable aspect of the work is the comparatively small place

taken by the preliminaries. It appears that a formal treatment of the logic

underlying mathematics (if we disregard metalogic) is much easier than a

formal treatment of mathematics itself.

47

It has not been the purpose of this enterprise to construct a formal

system which suits my own fancy and to develop in this system the theory of

naturals, reals and complex numbers. I have rather tried to represent in a

language which was essentially given beforehand, a wide variety of concepts

and ideas as expressed in a book like Landau's. The success of this under­

taking is due to the flexibility of AUTOMATH languages, and to the close

connection which can be made between these languages and intuitive human

reasoning.

48

Appendix 1. REPRINT. Published in the

Proceedings of the Symposium

on APL (Paris, December 1973),

ed. P. Braffort.

A description of AUTOMATH and some aspects of

its language theory

by

D.T. van Daalen *)

0. Summary

This note presents a self-contained introduction into AUTOMATH, a formal

definition and an overview of the language theory. Thus it can serve as an

introduction to the papers of L.S. Jutting [7] and I. Zandleven [11] in this
**) volume . Among the various AUTOMATH languages this paper concentrates on the

original version AUT-68 (because of its relative simplicity) and one exten­

sion AUT-QE (in which most texts have been written thus far) .

The contents are:

1. Introductory remarks.

2. Informal description of AUT-68.

3. Mathematics in AUTOMATH: propositions and types.

4. Extension of AUT-68 to AUT-QE.

5. A formal definition of AUT-QE.

6. Some remarks on language theory.

For a description of the AUTOMATH project and for its motivation we refer

to Prof. De Bruijn's paper also in this volume [4].

*) Th th . 1 . th . d . d b th e au or is emp oyed in e AUTOMATH proJect an is supporte y e

Netherlands Organization for the Advancement of Pure Science (Z.W.O.).

**) In the present appendix "this volume" refers to: Proceedings of the Sym­

posium on APL (Paris, December 1973) ed. P. Braffort.

49

1. Introductory remarks

1.1. According to the claims for the formal system AUTOMATH one should be

able to formalize many mathematical fields in it in such a precise and com­

plete fashion that machine verification becomes possible. The flexibility

required to meet the indicated universality is provided by having a rather

meagre basic system. The AUTOMATH user himself has to add appropriate primi­

tive notions to the basic system in order to introduce the concepts and

axioms specific to the part of mathematics he likes to consider. In this

respect, the basic system may be compared with some usual system of logic

(e.g. first order predicate calculus) to which one adds mathematical axioms

in order to form mathematical theories.

1.2. In spite of this analogy however.the basic system itself does not con­

tain any logic in the usual sense. Basic for the system are the concept of

type and function (instead of, e.g., the concept of set or of natural num­

ber), which are formalized by a certain typed A-calculus.

When representing mathematics in AU'rOMATH one has to deal with the

question of coding: How to formalize general mathematical concepts in the

form of types and functions (see section 2.2). Clearly an appropriate

formalization will incorporate as much as possible of the basic type-and­

function framework. Section 3 discusses this coding problem and in particu­

lar proposes a suitable way of representing propositions, predicates and

proofs (a functional interpretation of logic).

1.3. In order to satisfy the claim of automatic verification of correctness

the system certainly has to be decidable (and even feasibly decidable on now­

existing computing machines). Since many common mathematical theories pro­

duce undecidable sets of theorems we must conclude that we cannot expect

the computer to do all our work. Indeed theorems have to be given together

with their proofs in order to allow verification.

Thus the correctness produced by the machine verification covers the

arguments leading from axioms to conclusions only. The AUTOMATH user him­

self is responsible for his choice of primitive notions and all the coding

(and decoding) involved.

50

2. Informal description of AUTOMATH

2.1. Introduction

Here we treat the original version of AUTOMATH, now named AUT-68. We

chose this system as an example because of its relative simplicity. The

discussion will be informal and intuitive and in fact restricted to the

object-and-type fragment of the language (thus leaving the proof-and-pro­

position fragment to section 3).

2.2. Intuitive framework

(This section may be skipped by formalists).

The mathematical entities discussed in the language fall into two sorts:

objects and types. The types may be considered as classes or sets of acer­

tain kind, which may have objects as their elements. All types are supposed

to be disjoint, for each object belongs to just one type. This uniqueness

of types permits one to speak about the type of an object.

The typestructure is built up by starting from ground types and forming

function types from these. Each mathematician may choose the ground types

himself (as primitive notions), e.g. the type of natural numbers.

An example of a function type is the type a+ S (where a and Sare

types) of the functions from a to S. More generally, the function types are

formed by taking products, as follows: The language allows one to express

dependence of types on objects (of some given type). That is, one can de­

scribecertainfamilies of types Sx indexed by the objects x of a given type

a. Now every function type is formed as the generalized Cartesian product

of such Sx, usually denoted TT .s, and containing as objects just these
XEa X

functions that associate to any object x of type a an object of type Sx· The

type a+ Sis the special case where all Sx are a fixed type S.

2.3. Expressions, degrees and formulas; correctness

The language as such only expresses the constructions of types and ob­

jects and the typing relations between objects and types.

The expressions of the language have degree 1, 2 or 3. Types and objects

are denoted by expressions of degree 2 and 3 respectively (for short 2-expres­

sions, 3-expressions). For convenience we introduce the 1-expressions ~

to provide a type for the types. Further 1-expressions will be introduced

in sections 3 and 4.

51

The symbol! expresses the typing relation: ••• has type •••• So if A

denotes an object then we have the E-forrrrulas A! a and a!~· The 2-ex­

pressions and 3-expressions are built up from va.riabtes and aonsta:nt-e:r:­

pressions by means of:

i) the substitution mechanism (section 2.5)

ii) functional abstraction and application (sections 2.8 and 2.10).

The constant-expressions have the form c(x1,••·,xk) where x1 , ••• ,¾ are

variables and c is either a primitive constant introduced as a primitive

notion (section 2.6) or a defined constant (section 2.7).

Expressions and formulas are aorreat if they are constructed according

to the rules of the language, which are informally discussed in the sequel.

2.4. Variables and contexts

A mathematical statement generally presupposes certain assumptions on

the variables used. For example: "let x be a natural and y a real number".

In AUTOMATH, in accordance whis this usag.e, each variable of degree 3 (objeat­

va.riabte) ranges over a certain type, called the type of the variable. The

2-variables (type-va.riabtes) are supposed to range through the types and

have ~ as their type.

Expressions and formulas containing free object- or type-variables, say

x 1, ••. ,xk, can only be aorreat relative to a certain aontext: I.e. a finite

sequence of !-formulas x1 ! a 1 , ••• ,¾ ! ak, called assumptions, in which the

free variables have to be explicitly introduced with their types.

Some of the types ai may depend on the variables given earlier in the

sequence. For instance, a 3 may contain both x1 and x2 as free variables. It

is understood that all ai are correct expressions themselves: a 1 relative

to the empty context, a 2 relative to x 1 !a1 , etc.

2.5. Substitution mechanism

Let us, in informal discussion, exhibit the possible dependence of an

expression ton variables x1 , ••• ,xk by writing t[x1, ••• ,¾J for E. Then we

write t(A1, ••• ,Ak] for the result of simuita:neousty substituting Ai for xi

(for i = 1, ••• ,k) int.

Suppose that under assumptions x1 ! a1 , ••• ,¾ ! ak we have a correct

!-formula A[x1 , ••• ,¾] ! a[x1 , ••• ,xk]. Then the substitution meahanism

yields the substitution insta:nae A[A1, ••• ,Ak] ! a[A1 , ••• ,~] for any sequence

52

A1, •• ,,J\ of suitable candidates for x1, ..• ,xk. I.e. these A1 , ••• ,J\: have

to be of the appropriate types where, however, in view of the possible de­

pendence of types on variables, the substitution has to take place in the

types too. So we require

2.6. Primitive notions

As mentioned before, one has to add primitive notions to the basic system

in order to introduce the specific concepts of the piece of mathematics one

wants to study.

For example, in order to write about the natural numbers, one might

introduce the primitive type-consta:nt nat and the object-consta:nt 1 by axiom­

atically stating:

nat!~

1 E nat.

In general, primitive notions are introduced by stating an axiomatic E-for­

mula p(x1, .•• ,xk) ! a[x 1, ... ,~] under certain assumptions x 1 ! a 1, .•• xk ! ak.

Here either a is~ (and pis a type-constant) or in the current context

we have a!~ already (p being an object-constant).

All correct substitution instances p(A1, ..• ,J\:) of such a constant-ex­

pression p(x1 , •.• ,xk) can be produced by the substitution mechanism, de­

scribed above.

For example, the concept of successor in the natural number system can

be introduced under the assumption x ! nat by stating: successor(x) ! nat.

Using the substitution mechanism we get

successor(l) E nat

successor(successor(l)) ! nat, etc.

Notice that primitive constant-expressions may not only contain object­

variables (like the x in successor(x))but also type-variables.

2.7. Abbreviations

In mathematics one often introduces abbreviations, i.e. new names for

possibly long and complicated expressions. In AUTOMATH this abbreviation

facility is also present; indeed, it will appear that by the particular

format of the language every derived statement gives rise to the introduction

53

of a new defined constant. Although this kind of explicit definition is of­

ten considered theoretically uninteresting, we feel that it is essential in

practice for the actual formalization and verification of complicated theories.

Just like primitive notions, abbreviations are introduced under certain

assumptions and so may contain free variables in general. Thus new constant­

expressions d(x1 , ... ,xk) are introduced, abbreviating expressions D which

are correct in the current context. Clearly the type of d(x 1 , .•• ,xk) must be

the same as that of D.

Example: 2,3, .•• can be introduced by

2 := successor(l)

3 := successor(2), etc.

Further, the notion of "successor of successor" might be abbreviated by

stating (under assumption x !'!. natl that

plustwo(x) := successor(successor(x))

Again, all correct substitution instances with their types can be produced

by the substitution mechanism.

2.8. Functional abstraction: A-calculus

We have mentioned functional abstraction and application as further tools

for constructing expressions. By these devices a form of typed A-calculus

is incorporated into the basic system. In A-calculus, intuitively speaking,

AX.B denotes the function which to any object x associates the object B.

Or (exhibiting the dependence on x) AX.B[x] is the map which, with any A,

associates B[A].

In AUTOMATE (where all functions have a domain) such explicitly given

functions are denoted by abstraction expressions [x,a]B, where B may contain

x as a free variable; a is the type of x and the domain of the function. In

case Bis a 3-expression, [x,a]B attaches objects to the objects of type a

and is called an object-valued function. If Bis a 2-expression, [x,a]B

attaches types to the objects of type a and is called a type-valued function.

In AUT-68 no abstraction expressions of degree 1 are formed (in contrast

with AUT-QE).

Notice that possible free occwences of x in B are bound by the abstractor

[x,a] and are not free in [x,a]B any more. An important restriction on ab­

stracting is that such a bound variable must be a 3-variable. Thus we only

quantify (cf. section 3.4) over (the objects of) a given type and quantifica-

54

tion over~ is not possible.

2.9. Type of abstraction expressions

Suppose that under the assumption x ~ ct we have B ~ S. If S is not a

1-expression then we may form both the abstraction expressions [x,ct]B and

[x,ct]S. According to section 2.8 [x,ct]Bdenotes an object-valued function

and [x,ct]S denotes a type-valued function.

The latter abstraction expression [x,ct]S[x] however is also used with

a different meaning in AUTOMATH, that is, to denote the corresponding function

type TT •S[x] (which is the type of [x,ct]B[x] by section 2.2).
xEct
s-;; we obtain [x,ct]B ~ [x,ct]S and [x,ct]S ~~-

Example: the successor function can be introduced (in the empty context) by

succfun := [x,nat]successor(x) ~ [x,nat]nat

The double use of 2-expressions mentioned above does not cause ambiguity,

because it is always clear whether an expression acts as a function or as a

type in a formula. In fact in AUT-68 abstraction expressions of degree 2 are

exclusively used with the second meaning, i.e. as function types.

2.10. Functional application

In full (i.e. type-free) A-calculus a.,y expression - as a function

may be applied to any expression - even itself - as an argument.

In AUTOMATH, as a typed A-calculus, all functions have domains and any

form of self-application is ruled out by the application restrictions: The

application expression <A>B (denoting the result of applying Bas a function

to A as an argument) is correct only if:

i) Bis a function arid so has a domain, say ct.

ii) A is an object of type ct.

The notation <A>B, with the argument in front, is somewhat unusual; it is

convenient however since abstractions are written in front too.

2.11. Type of application expressions

Assume that B ~ [x,ct]S. Here [x,ct]S[x] is a 2-expression acting as a type

and so denotes TT .S[x]. Hence B must be considered as a function with domain ct.

XEct
Now if A E ct we are allowed to form the application expression <A>B having

S[A] as its type.

55

Note that B need not be of the form [x,a]C itself. It may, e.g., be a

single object variable or object constant with type [x,a]S.

Example: As an alternative expression for the number 3 we might introduce

3alt := <2>succfun E nat

2 • 12 • Equality

We will define a relation of definitional equality among the correct

expressions, appropriate to the interpretation of expressions suggested

above. The relation is denoted ••• = ••• and generated by:

i)

ii)

ahbreviational or a-equality,=
0

>.-equality.

The latter is generated in turn by B-equality, =0 , and n-equality =.
. µ n

Usually in >.-calculus the >.-equality also explicitly embodies a-equality

(renaming of bound variables). In this note however we take the point of

view of simply ignoring the names of the bound variables. So a-equal ex­

pressions are identified and are a fortiori definitionally equal by the re­

flexivity of the= -relation (cf. also section 5.3.2).

2.12.1. a-equality

Assume the defined constant d has been introduced in suitable context

by

Then d(x 1 , ... ,xk) abbreviates D and we write d(x1 , ... ,xk) - 0 D. And further

for the substitution instances:

2.12.2. S-equality

Assume <A>[x,a]B[x] is a correct expression (so A~ a). Now 6-equality

exploits the interpretation of [x,a]B as a function with domain a and simply

amounts to evaluating the result of the application:

<A>[x,a]B =s B[A] .

2 .12. 3. n-equality

In mathematics one usually considers functions as extensional objects,

56

in the sense that functions with the same domain and which are pointwise

equal are identified. In AUTOMATH this extensional equality is pa:r'tly covered

by then-equality: If x does not occur free in B then [x,a]<x>B = B (for
n

correct expressions only). This is intuitively sound only if domain B = a,

which indeed is the case by the correctness of [x,a]<x>B.

2.12.4. Definitional equality

Now definitional equality is defined to be the equivalence relation

on the correct expressions, generated by =0 , =s, n and by monotonicity:

If A A' and B' is produced from B by replacing one specificoccurrence of

A in B by (an occurrence of) A' then B = B' •

Or, using suggestive dots for the unchanged part of the expression B: If

A = A' then •.. A. • • = ••• A' • • • •

Example of the monotonicity rule: If A

expressions are correct).

2.13. The format: books and lines

A' then <C><A>D = <C><A'>D (if both

2.13.1. Actual AUTOMATH texts are written in the form of books. A book con­

sists of a finite sequence of lines. Each line must be placed in a certain

context (the context of the line) and introduces a new identifier of acer­

tain type. All lines consist of four consecutive parts, separated by suitable

marks or spaces:

i) context pa:r't, indicating the context of the line. In general the con­

text part consists of the context indicator, i.e. the last variable of

the current context. From this the complete context can easily be re­

covered. If the context of the line is x1 ! a 1 , •.• ,xk ! ak, the sequence

of variables x 1 , ... ,xk is called the indicator string of the line. The

empty context can be indicated by an empty context part.

ii) identifier part, consisting of the new identifier.

iii) middle part, containing the symbol EB (cf.2.13.2), the symbol PN

(cf. 2.13.3) or the definition of the new identifier (cf. 2.13.4).

iv) category pa:r't, containing the type of the new identifier.

Assume an AUTOMATH book is given, in which the variable xk has been intro­

duced with type a.k in the context x 1 ! a 1 , •.. ,xk-l ! ak-l. Then we may add lines

with context indicator xk, so having x 1 ! a 1, •.. ,xk ! ak as their context.

Below we discuss the three different kinds of lines.

57

2.13.2. The bZock opening Zines have middle part EB (for empty block opener)

or, in alternative notation, a bar -- . An EB-line introduces a new variable

and thus allows extension of the current context by one assumption.

Example: xk * y :=EBE a. ("let y be of type a.") introduces a new variable

y of type a.. Lines having y as their context part - which may appear later

in the book - then have x1 ~ a. 1 , ... ,xk ~ a.k, y Ea. as their context.

2 .13. 3. The primitive notion Zines have middle part PN and introduce the

primitive notions. For example:

introduces the primitive constant expression p(x 1 , ... ,xk) and contains the

a.xiomatic ~-statement p(x 1 , ... ,xk) ~ a..

2.13.4. The abbreviation lines look like:

where the middle part Dis the definition of d, i.e. the expression to be

abbreviated. This line contains, relative to the preceding book and the cur­

rent context, both the derived E-statement DE a. and the defining axiom for

the new defined constant d:

2.14. Correctness of lines; validity

A line is correct if both the middle part (if not EB or PN) and the

category part are correct expressions with respect to the preceding book

and the current context, and the category part is the type of the middle

part (if not EB or PN). For the correctness of the expressions, all identi­

fiers used have to be valid. Constants are valid in a book from the line on

in which they are introduced. Free variables are valid in a line if they

occur in its context. We speak about the block of lines in which a free

variable is valid (whence block opener).

2.15. Shorthand facility

Assume that a primitive or defined constant c was introduced in acer­

tain context x1 ~ a.1 , .•• ,¾ ~ a.k. Then if later in the book c occurs with

fewer thank arguments, the argument list is completed by adding a suitable

58

initial segment of the original indicator string (cf. 2.13.lii)) x1 , ••• ,xk.

In other words the expression c(Ai+l'"""''lc) is shorthand for

c(x1, ••. ,xi,Ai+l'"""'Ak) and the single constant c is shorthand for

c(x1 , ... ,~). Clearly the completing variables have to be valid, that is,

the initial segments of the original and the current context have to coin­

cide. The shorthand facility accords with usual mathematical practice where

free variables are often considered as fixed throughout an argument and are

not mentioned explicitly.

2.16. Paragraph system

For each variable and constant it must be possible to retrace from which

line it originates. This condition is clearly satisfied when all names are

unique. A more liberal method of naming however is allowed by the socalled

paragraph system, for a description of which we refer to Zandleven [11,

section 11]. Both shorthand facility and paragraph system do not really

concern the language definition but are present for convenience only.

2. 1 7. Example

In the following AUT-68 booklet the examples of the preceding sections

are now written in the proper format.

* nat := PN ~

* 1 := PN nat

* X := nat

X * successor := PN nat

* 2 := successor (1) nat

* 3 := successor (2) nat

X * plustwo := successor(successor) nat

* succfun := [x,nat]successor(x} [x,nat]nat

* 3alt := <2>succfun nat

Here the middle part of plustwo uses the shorthand facility. It is left to

the reader to establish 3 = 3alt.

59

3. Mathematics in AUTOMATH: Propositions as types

3.1. Functional interpretation of logic

Up till now we have described AUTOMATH as a calculus of objects and

their types only. A major part of mathematics however consists of making state­

ments and reasoning with them, i.e. deals with logic.

Now there are different ways of coding some logic into the objects-and­

types framework. Here we only mention a socalled funational interpretation

of logic, which gives rise to thepropositions-as-types notion. This idea of

interpreting logic was developed independently by de Bruijn and certain

others, of whom we mention Howard [6], Prawitz [10], Girard [5] and Martin­

Lof [8].

3.2. Propositions as types

So far we have introduced~ as the only 1-expression. We had Z !~

and r E Z for the types Zand the objects r of type Z respectively. Now we

introduce another !-expression, the basic symbol~- Originally in AUT-68

no distinction was made between~ and~- The latter 1-expression acts

just like~ and was introduced later to allow difference of treatment be­

tween types which are to be considered as propositions and types which are

just types of objects.

If Z !~ we consider Z as a proposition. If further r ! Z, we con­

sider r as some construction establishing the truth of Z (a "proof" of Z).

Thus the formula r ! Z is conceived as asserting the proposition Z.

3.3. Interpreting implication

Let a ! ~ and S ! ~- Now we may say we have a "proof" of the im-­

plication a ➔ S if from an assumption of the truth of a we can argue and

conclude the truth of S, That is, if for any construction establishing the

truth of a we can produce a construction for the truth of S or, equivalently,

if we have a map from "proofs" of a to "proofs" of S.

Now in AUTOMATH terminology: we say we "prove" a ➔ S if for any x Ea

we can produce some B ! S. I.e. if we have some Zin the function type

[x,a]S. So we let [x,a]S denote the implication a+ Sand have [x,a]S !prop.

'.L'his corresponds to the second interpretation of abstraction expressions in

section 2.9.

60

Now by this interpretation we obtain the modus ponens (from a and a+ S

infer Sl by simple functional o:pplication. For let A! a and E ![x,a]S

(A and E thus being "proofs" of a and a+ S respectively). Then by the appli­

cation rule we construct <A>E establishing the truth of S.

3.4. Universal quantification; negation

In exactly the same manner a function interpretation of universal state­

ments can be given. Namely if a_!~ and for x Ea we have S !~ then

we identify the function type [x,a]S with the universal statement YxEaS·

Here functional application corresponds to the "instantiation" rule in logic.

Thus by this interpretation of logic in AUTOMATH one gets the (V,+)­

fragment of first order predicate logic for free. However in AUTOMATH only

positive statements are made and statements like: "Eis not of type I'" cannot

be expressed. In order to interpret negation we introduce as a primitive no­

tion the proposition con (for "contradiction") together with some suitable

axiom (primitive notion). Here are different possibilities, e.g. the intu­

it.ionistic absurdity rule (for any proposition a, from con infer a) or the

classical double negation Zea,;. Then an AUTOMATH theory (i.e. book) is con­

sistent if, in the empty context, it does not produce some EE con.

For a!~ we define non(a) as a+ con or, in AUTOMATH notation,

[x,a]con. Now the double negation la~ can be stated by introducing the prim­

itive notion dnl as follows: If a!~, x !non(non(a)) then dnZ(a,x) ! a.

By also choosing suitable definitions for the other connectives (A,v)

and the existential quantifier we can smoothly obtain full classical first

order predicate calculus.

3.5. Assumptions, axioms, theorems

In AUTOMATH-books the E-formula r E E for a proposition E can occur in

the usual three kinds of lines again:

i) EB-lines: a* X :=EBE E.

These must be interpreted as assumptions: "let E hold" or "let x be a

proof of E". Now in a line where xis valid we may refer to x whenever

we want to use the assumed truth of E.

ii) PN-lines: a* p := PN EE.

These serve as axioms, or rather as axiom schemes (by the dependence

on the variables contained in the context a).

iii) abbreviation lines: a* d := r EE must be considered as derived state-

61

ments, 'i.e. theorems, lemmas etc. Here the middle part r "proves" the pro­

position E from the assumptions in the context a.

3.6. Book-equality

The definitional equality (cf. section 2.12) of AUTOMATH only covers

a small part of the usual mathematical equality. Further a statement of

definitional equality cannot be handled as an actual proposition; e.g. it

cannot be negated or even assumed (as in: let A= B). As the AUTOMATH-counter-

part of the usual mathematical .•• equals .•. the book-equality IS(a,A,B)

- where A and Bare objects of type a - can be introduced by suitable prim­

itive notions, some of which are shown in the example below.

* a

a * X

X * y

y * IS

X * REFL

y * i

i * SYM

and also:

a * s
s * f

f * X

X * y

y * i

i * ISAX1

:=

:=

:=

:= PN

:= PN

:=

:= PN

etc.

:=

:=

:=

:=

:=

:= PN

a

a

~

IS(x,x)

IS (x,y)

IS(y,x)

~
[x,a]S

a

a

IS(x,y)

IS(/3,<x>f,<y>f)

By the axiom of reflexivity (REFL) above, definitional equality implies book­

equality: if A~ a, B ~ a, A= B then REFL(a,A) ~ IS(a,A,B).

62

4. Extension of AUT-68 to AUT-QE

4.1. Function-like expressions

Expressions E such that E ! [x,a]S or E = [x,a]S are called function-like

expressions. Whereas in AUT-68 function-like 3-expressions may have any form,

e.g. they can be variables or primitive constant expressions, the only func­

tion-like 2-expressions are (possibly abbreviated) abstraction expressions.

This is because function-like 1-expressions are absent in AUT-68.

Thus we can discuss explicitly constructed families of types Sx where x

ranges over some type a (namely by forming the abstraction expression

[x,a]S[xD) but we cannot discuss a:l'bitrary families of types indexed by

x ! a. Indeed, we cannot introduce a family of types as a primitive notion

or as a variable.

4.2. Supertypes or quasi-expressions

In AUT-QE such arbitrary type-valued functions are admitted however, by

extending the class of 1-expressions. The new 1-expressions, quasi-expressions

(whence AUT-QE) or supe.rtypes, have the form [x1 ,a1 J •.. [xk,ak] !XE:_ or

[x1,a1] ••• [xk,ak] prop, where a 1 , ... ,ak are 2-expressions, i.e. propositions

or types.

For example, an arbitrary type-valued function on a can be introduced by

an EB-line:

0 * f := [x,a]~.

If for a we take the type of natural numbers, then f is an arbitrary sequence

of types.

4.3. The use of AUT-QE

Similarly we have arbitrary prop-valued functions in AUT-QE. These are

especially useful in our interpretation of logic, for a prop-valued function

with domain a is nothing but a predicate over a. For example, by an EB-line

o * R [x,nat][y,nat]:e:.£12.

an arbitrary binary predicate (rather: relation) on the natural numbers is

introduced. The presence of predicate and relation variables in AUT-QE al­

lows us to write =iom schemes with such variables, e.g. to introduce a fur­

ther equality axiom (cf. section 3.6) we can write:

63

a * p := [x,a]~

p * X := a

X * y := a

y * i := IS(x,y)

i * j := <x>P

j * ISAX2 := PN <y>P

We emphasize however that abstraction over such 2-variables (e.g. type­

variables, prop-variables, predicate-variables) in AUT-QE is still forbidden,

so both AUT-68 and AUT-QE may still be called first-order systems.

4.4. Type-inclusion and prop-inclusion

Just as in AUT-68 the function-like 2-expression f (cf. section 4.2)

also codes its corresponding function space, i.e. the type of those g with

domain a such that for A Ea we have <A>g ! <A>f. As~ behaves just like

~• the predicate P (cf. section 4.3) also denotes the proposition V .P(x).
xEa

As a consequence, we allow the transition from EE [x,a]~ to E ! type.

This transition or, in general, from

to

is called type-incZusion. The similar transition with~ instead of~

is called prop-incZusion. By this type-incZusion and prop-incZusion AUT-QE

contains AUT-68 as a proper subsystem. Notice that for 2-expressions uni­

queness of types - if A! a, AES then a= S - is lost.

4.5. Let us finish with a table in which some AUTOMATH notions are listed

with their possible meanings in the propositions-as-types interpretation.

64

AUTOMATH-notions

2-expressions

3-expressions

••• E •••

function-like

2-expressions

EB-lines

PN-lines

abbreviation lines

object-and-type

interpretation

types

objects

••• has type •••

{

type-valued functions

function types

variable introductions

primitive object

introductions

definitions or

abbreviations

proof-and- proposi­

tion interpretation

propositions

proofs

• •• proves

predicates

{
implications

universal statements

assumptions

axioms

theorems

5. A formal definition of AUT-QE

5.1. The language, to be defined formally now, is the one accepted by the

current checker (cf. [11]) except for two points:

1) Paragraph facilities are not present here so all constant names have

to be distinct (cf. section 2.16).

ii) There is no shorthand facility (i.e. all expressions are written out

in full (cf. section 2.15).

65

The actual formalism has been chosen in this way in order to keep as close

as possible to the preceding informal book-and-line description. A defini­

tion along more usual naturat dedu.ction lines may possibly be more elegant.

For technical reasons we preferred to avoid redundancy almost completely

in our definition. As a consequence of this, some useful extra rules follow

as derived rutes in the section on language theory.

5.2. Our aim is to define formally what correct AUT-QE books are.

The description consists of:

i) Preliminaries, mainly devoted to the context free part of the language

(section 5.4).

ii) Simuttaneous definition of correctness of books, contexts, lines, ex­

pressions, !_-formulas and =-formulas (section 5 .5).

The =-formulas only serve as a help in our definition; they do not appear

in the book. The kernel of ii) is the definition of correctness of expres­

sions and formulas relative to a certain book and context. Here the book

serves to determine the set of primitive notions and abbreviations, and the

context serves to determine the set of valid free variables.

Most concepts are introduced by OI'dina:l'y inductive definitions. These con­

sist of a finite set of rules of the form: "if ••• then ••• ". Here only such

conclusions may be drawn which follow from a finite number of applications

of the rules.

5,3. Notational conventions

5.3.1. An extensive use is made of syntactic Va:l'iabtes throughout the definition.

Often certain assumptions on these variables are implicit by their specific

choice, e.g. cr and, always run over contexts, Syntactic variables may al-

ways be indexed or primed.

66

5.3.2. As for substitution and a-conversion (renamint of bound variables)

we adopt the following point of view: expressions with bound variables are

considered as named versions - named to facilitate reading - of some actually

namefree skeleton (cf. [3]). Thus we identify a-equal expressions and assume

that a-conversion is applied whenever necessary to avoid clash of variables.

We use .•. = ... to denote syntactic identity (s2-mbol-for-symbol equality)

modulo a-equality. E.g. [x, L] •• • x .. . x ... ::[y, I:] •.• y •.. y

5.3.3. Correctness of expressions A and formulas~ relative to a book Band

a context a are abbreviated by B; a~ A and B; a I- ~respectively.Sometimes

we write ~ A or a ~ A for B; a~ A and ~~or a~~ for B; a~~ when there

is no particular need to emphasize the current book or context. The notations

~(i)A and ~(i)A ~Bare used to express that A is an i-expression and ~ A

(respectively ~ A EB).

5.4. Preliminaries

5 .4 .1. Alphabet

1) As variables and constants we allow any alphanumeric string. Such a string

is considered atomic and is thus counted as one single symbol. Syntactic

variables for variables are x,y,z, Among the constants (syntactic va­

riable c) we distinguish primitive (syntactic variables p,q) and defined

or abbreviational constants (syntactic variable d).

2) Improper symbols

i) Some bl0 ackets and braces: [, J, (,) , < , >.

ii) Some separation marks: I *, ~. ~, :=, semicolon and comma. .,
iii) Some reserved symbols: EB, PN.

5.4.2. Expressions (syntactic variables A,B,C,D, ... ,r,ti,r, •••)

i) Variables: x

ii) Abstraction expressions, [x,r]ti

iii) Application expressions, <r>ti

iv) Constant-expression instances: c(r1 , ... ,rk)

v) Basic constants,~, prop.

As special syntactic variables for 2-expressions we take a,s,

5.4.3. Formulas (syntactic variable~)

i) "!:_-formulas: LE 6

ii) =-formulas: L = 6.

5.4.4. Additional concepts

67

1) Contexts (syntactic variables o,~): Any finite (possibly empty) sequence

of E-formulas x. EL., sepa:t>ated by commas, where all x. ape different.
- l. - l. l.

2) Lines (syntactic variable A)

i) EB-lines

ii) PN-Zines

o * x :=EBEL

o * p := PN EL

iii) Abbreviation lines: o * d := 6 EL

3) Books (syntactic variable B): Any finite (possibly empty) sequence of

lines, sepa,pated from one another by exclamation signs (!).

5.4.5. Free variables

We define the free Va:t>iable set FV(Z) of expressions L by induction on

the structure of L (cf. section 5.4.2):

i) FV(x) = {x}

ii) FV([x,rJ6) FV(f) u (FV(6) \{x})

iii) FV(<f>6) = FV(f) U FV(6)

iv)

v)

FV(c(L 1 , ..• ,Lk)) u._1 kFV(L.)
J..- , ••• , l.

FV(~) = FV(~) = ~-

5.4.6. Substitution

1) The result of simultaneous substitution of A1 , ••. ,Ak for the free varia­

ables x 1 , ••• ,xk in an expression L is denoted by [x1 , •••• ,xk/A1 , ... ,¾]L

* and locally abbreviated by L :

i)

ii)

iii)

iv)

v)

vi)

* xi - Ai
* . f y - y i y not among x 1 , ... ,xk

* * * ([y,L 1]L 2) = [y,L 1]L 2 if y not among x 1 , ... ,~ and

xi E FV(L 2) =>yr/ FV(Ai)) for i = 1, ... ,k (otherwise rename yin

[y,L1]L2).

* * * (<L1>L2) = <Ll>L2

* * * (c(I: 1 , ... ,in)) = c(L 1 , ••• ,Lm)

68

2) Substitution of A for xis denoted by [x/A] and amounts to the case k 1

above.

S.S. Correctness

5.5.1. Correct books

i) the empty book is correct

ii) if Bis correct a:nd A is correct with respect to B then B!A correct.

5.5.2. Correct context with respect to B:

i) the empty context is correct

ii) if O*X :=EBE I::. is a line in the book B then a, x En is a correct

context with respect to B.

5.5.3. Correct lines with respect to B:

1) EB-lines: If B; a I- (1) I::. or B; a I- (2) n, a = x 1 ! i:: 1 , ••• ,xk ! l::k, a:nd Y

notamongx1 ,. •• ,xk then a* y := EBEl::.isa correct linewithrespecttoB,

2) PN-lines: If B; a 1- (l) n or B; crj-(2) n a:nd p does not occza, in B then

a* p := !:!!! n is a correct line with respect to B.

3) Abbreviation lines.: If B;a I- l:: ! I::. and d does not occur in B then

a* d := l:: En is a correct line with respect to B.

5.5.4. Correct §-formulas relative to a correct book Band a context a which

is correct w.r.t, B

1) Repetition rule: If a - xl ! l::1' ... ,xk ! l::k and l::. is a:n i-express-ion
r (i+l) E l::

J
then B; cr xj _ j (for j 1, ... ,k).

2) Abstraction rule: If B* - B!cr * X :=EBE a and B* is correct and
B*; cr,x ! a I- (i)

l:: E I::. then B; 1- TiiGc,aJi:: E [x,aH a

3) Application rules:

i) If I- A ! a and I- (i) B ! [x,a]c then I- (i) <A>B ! [x/A]C.

ii) If I- A! a, ~(i)B ! c a:nd 1-c E [x,a]D then I- (i)<A>B ! <A>C

(clearly i will be 3 here).

4) Substitution rule: If i:: is a:n i-expression and either

xl ! i::1,·••1Xk ! l::k * C := PN ! l:: or xl ! i::1,·••1Xk ! l::k * C := n El::

is a line in the book B a:nd B; a~ A.! [x1, ... ,xk/A1 , •.. ,Ak]l::. for
. (i+l) J J
J = 1, .•. ,k then B; a~ c(A1, ... ,Ak) ! [x1 , ... ,xk/A1 , ... ,Ak]l::,

5) Rule of type-conversion: If I- fl ! E and I- E = r then I- fl ! r.
6) Rules of type- and prop-inclusion:

i) If 1-E ! [x1 ,C1.1] .•• [xk,Cl.k][y,S] ~ (possibly k = 0) then

1-E![xl,Cl.1] ••. [xk,Cl.k]~.

ii) If I- E ! [x1 ,C/. 1 J ••• [xk,C1.k][y,S]I:E_<?,£ (possibly k = 0) then

r E ! [xl ,Cl.1 J .•. [xk,Cl.k]~.

5.5.5. Correct expressions with respect to 8 and a

1) Correct 1-expressions:

69

i) If 8 is aorreat and a is aorreat with respect to 8 then 8; a I- (l) ~
and 8 ; a I- (1) I:E_<?,£.

* * 10) 1(1) ii) If B = 8!a * x :=EB! Cl. a:nd 8; a,x ! Cl. r fl then 8;a r [x,C1.]fl.

2) Correct 2- and 3-expressions: If I- (i) E ! fl then I- (i) E .

Remark: It is intended that 8; a~ A or 8; a~~ only if 8 is correct and a

is correct with respect to 8. This condition is explicitly imposed in 5.5.4

and 5.5.5.li) and propagated all through the definition.

5.5.6. Correct =-formulas with respect to 8 and a

1) S-equality: If I- <A>[x,C1.]B a:nd ~[x/A]B then ~<A>[x,Cl.]B = [x/A]B.

2) n-equality: If l{x,B]<x>C, and xi FV(C) and ~c then r[x,B]<x>C = C.

3) a-equality: If x 1 ! E1 , •.. ,xk ! Ek* d :=fl! Eis a line in 8, and

8; a I- Aj ! [x1 , ... ,xk/A1 , ... ,Ak]Ej for j = 1, ... ,k, and

8; a l-[x 1 , ... ,xk/A1 , ... ,Ak]fl then 8; a l-d(A1 , .•• ,~) = [x1 , ... ,xk/A1 , ... ,Ak]fl

4) Monotonicity rules:

i) If 8* = 8:a * x := EB! Cl. and 8*; a,x ! Cl. I- Bl = B2 then

8; a I- [x,C1.]B1 = [x,C1.]B2 •

ii) If ~ C/.l = C/. 2 , ~[x,Cl. 1]B, and I- [x,C1. 2]B then I- [x,C/. 1]B = [x,C1. 2]B.

iii) If ~ A1 B1 , ~ A2 = B2 , I- <A1>A2 , and ~ -c:B1 >B2 then I- <A 1>A2 = <B 1 >B2 .

iv) If ~Aj Bj (forj=1, ... ,k),and!-c(A1 , ... ,Ak),and

l-c(B1 , •.. ,Bk) then l-c(A1 , ••• ,¾) = c(B1 , ••. ,Bk).

5) Reflexivity, symmetry and transitivity rules

i) If I- A, ~ B a:nd A = B then I- A = B

ii) If I- A = B then ~ B = A

iii) If I-A= B, and ~ B = c then I-A c.

70

Remark: It is intended that 8; a~ A= B only if both 8; a~ A and 8; a~ B.

In most cases above, though sometimes unnecessary, such conditions have been

explicitly stated. Where they have been omitted it will be immediate that

they hold by some other conditions.

71

6. Some remarks on language theory

6.1. Decidability

The language theory is mainly concerned with the. investigation of the

basic system. A major aim is to prove the decidability of the AUTOMATH

languages. That is, to prove the existence of an effective procedure which

for any given text in a finite amount of time decides whether it is correct

or not (in AUT-QE, say). The kernel.of such a checker deals with the veri­

fication of correctness of expressions and formulas {both!- and =-formulas),

relative to a given book and context {which are assumed to be correct al­

ready).

In this section we shall sketch a certain checking procedure, closely

related to the actually running verifying program of Zandleven {cf. [11]).

We shall also roughly indicate the proof of correspondence between the pro­

posed checking procedure and the language definition of the preceding section.

6. 2. Reduction

6.2.1. In order to study the =-relation in more detail we introduce the re­

duction relation~, a partial order among the expressions. For an explanation

of the suggestive dots in our definition we refer to section 2.12.4.

6.2.2. Definition:

1) One-step reduction {with respect to a book B)

i) one-step 13-reduction: ••• <A>[x,a.Jc ••• >s . .. [x/A]C ...

ii) one-step n-reduction: If x i FV(C) then ... [x,a.]<x>C ... > ... c,..

iii) one-step o-reduction: If d was introduced by an abbreviation line

x1 .! a. 1 , •.. ,xk ! a.k * d :=DEL in B then

... d{L 1 , •.. ,Lk) ... >0 ... [x1 , ... ,xk/L1 , ... ,Lk]D •..

iv) also> is allowed with any combination of the indices such as: If

A >QB or A> B then A> B
"' n Sn

v) one-step reduction in general: If A> B then A> B. Sno
2) Many-step reduction {with respect to B)

i) If A - B then A ~ B

If A~ Band B > c (with respect to BJ then A~ c.
So~ is the reflexive and transitive closure of>. Likewise> denotes

-13◊

the reflexive and transitive closure of >130 etc. For A~ B we also write

B s; A.

72

3) i) Reduction sequence: A sequence L1 ,L2 , •.• of expressions is called a

reduction sequence of Ll if for all i we have Li= Li+l or Li> Li+l.

ii) Proper reduction sequence: A reduction sequence L1 ,L2 , ••• is called

proper if for all i we have Li> Li+l"

6.2.3. Clearly the=- relation is the equivalence relation generated by the

restriction of> to correct expressions. So we can conclude: ~A= B iff

A= c 1 ~ D1 $ c 2 ~ D2 $ •.• ~ Dk~l $ck= B (possibly k = 1), where all ex­

pressions in the respective reduction sequences are correct.

6.2.4. As an example of a reduction sequence consider:

3alt >0 <2>succfun >0 <2>[x,nat]successor(x) >8 successor(2) >0
successor(successor(l)) (see section 2.16). So each reduction step seems to

bring us closer to some possible "outcome". Here 8- and o-reduction amount

to evaluation and n-reduction to a certain simplification of expressions.

6.3. The three problems: normalization, Church-Rosser and closure

6.3.1. It will appear that the decision procedure for equations (=-formulas)

plays a central role in the checker. At first we state - in terms of the re­

mark in section 6.2.4 - two iniportant questions around reduction and defini­

tional equality:

i) (Normalization) Do correct expressions always have a final outcome,

i.e. do they always reduce to an expression which does not reduce further?

ii) (Church-Rosser property) Do definitionally equal expressions have a

common outcome, i.e. an expression to which they both reduce?

A third central question concerns the so-called closure property (this term

was introduced by R.P. Nederpelt in the introduction to [9]):

iii) Is the system closed under reductions, i.e. do correct expressions re­

main correct under reduction?

6.3.2. Normalization and strong normalization

Let us define

1) A is normal if no one-step reduction A.> B can be applied.

2) A is said to normalize if A reduces to some normal B (which is then call­

ed a normal form of A) •

3) A is said to strongly normalize if all proper reduction sequences of A

terminate.

73

we say that normalization (resp. strong normalization) holds if all

correct expressions normalize (resp. strongly normalize). Normalization (and

a fortiori strong normalization) does not hold in the full A-calculus (take

as a counter-example the expression <Ax.<x>x>Ax.<x>x). In typed systems such

as AUTOMATH however, strong normalization (and hence normalization) does hold.

Much work concerning (strong) normalization has been done by logicians study­

ing systems of natUl'al deduction and functional interpretations (cf. for

instance [SJ, [SJ, [l0J). Their methods often apply to AUTOMATH also. Some

new proofs of normalization have been given by members of the AUTOMATH-project

(cf. [9J).

6.3.3. Church-Rosser theorem; uniqueness of normal forms

Question 6.3.lii) above amounts to the ChU!'ch-Rosser theorem: If A= B then

A~ c ~ B for some c. An alternative formulation of this is the Diamond

property for~= If A~ Band A~ c then B ~ D ~ C for some D (cf. figure).

Diamond property

As a corollary of the Church-Rosser theorem we mention the uniqueness

of normal forms: If B and c are normal forms of A then B = c. This property

together with the normalization theorem allows us to speak of the normal

form NF (A)_ - computable by an effective procedure NF - of correct expressions

A. The Church-Rosser theorem holds in the full A-calculus as well as in typed

systems. In AUTOMATH languages without n-reduction the standard A-calculus

proofs simply carry over (cf. [9]). In fact, in view of strong normalization,

a slightly easier proof can be given here. For, e.g., AUT-QE, where we have

n-reduction the proof is somewhat more complicated and depends heavily on the

closure theorem. The author intends to publish this proof and the other proofs

omitted in this section in his doctoral dissertation.

6.3.4. Closure property

Let us first formulate the cZosUl'e theorem: If B; a /-A (respectively

B; a /- A ,! Bl and A ~ c (with respect to BJ then B; a /- c (respectively

B; a f- C ,! B). In connection with the closure theorem, which holds for

AUT-QE, we have two important derived rules:

74

1) General suhstit;ution principle

x 1 ! r1 , ••• ,~ ! Ek ~B (resp.

I * I * * then cr - B (resp. r B ! c) ,

(as mentioned in 2.5): If

~BE C) and r; I-A.EE~ (for i =1, •.. ,k)
- l. - l.

* where E stands for [x1 , ... ,xk/A1 , ••. ,Ak]E.

2) The "left-hand equality rule" (compare with the rule of type-conversion,

which is the "right-hand equality rule"):

If I- (3) A ! B and I- A = C then I- c ! B.

For 2-expression A we only have a weaker version in view of type-inclu­

sion: If I- (2)A ! Band I-A= c and I- <2>c ! D then 1-c ! B or I-A! D.

6.4. A decision procedure

6.4.1. Deciding =-formulas

Suppose A and Bare correct expressions. The normal form procedure NF

(section 6.3.2) easily yields a decision method for the equation A= B,

namely A= B iff NF(A) = NF(B). Often, however, it is not necessary to com­

pute normal forms for deciding A= B. For example, when A and B have different

degrees one can easily draw a negative conclusion. Or more important,itgen­

erally happens that a few well-chosen reduction steps in A or B will result

in a non-normal common reduct. The choice of efficient reduction steps here

is a matter of strategy; the termination of a procedure which successively

applies reduction rules to A or Bis anyhow guaranteed by the strong normal­

izationproperty, no matter in what order the reduction steps are applied.

In order to prove the correspondence between decision procedure and

language definition we must know that all the expressions in the reduction

sequences from A and B to some common reduct are correct again. This is

indeed the case by the closure theorem.

6.4.2. Deciding E-formulas and expressions

6.4.2.1. Assume Bis a correct book and r; a correct context; we must define

a decision procedure for the correctness of .!P_-formulas and expressions. It

will appear that this problem can be reduced to the decision problem for

=-formulas (but for the straightforward task of checking the validity of

the identifiers used).

6.4.2.2. Uniqueness of types

We know (by the rule of type conversion) that for all B' with ~ B B'

we have ~ A ! B ~ ~ A ! B' •

For 3-expressions A the converse (wiiqueness of types*) holds too:

~ A! B a:nd ~ A! B' ~ ~ B = B'.

For 2-expressions A we must be somewhat more precise in view of type-in­

clusion. We define among the correct expressions the relation .5:. by:

i) [x1 ,ci1J. .. [xk,cik][y,S]~ c [x1 ,ci1 J

ii) [x1 ,ci1J . • . [~ ,cik][y, SJ~ c [x1 , ci1]

iii) -=. is the transitive closure of= and c.

[~,cik]~

[xk,cik]~

Then instead of (*) for 2-expressions A we can prove

~ (2) A ! B a:nd I- (2) A ! B' ~ I- B c B ' or I- B' c B.

75

6.4.2.3. Now assume that A is correct. Then we can define a "mechanical type 11

fwiction CAT, such that:

i) I- (3) A E B~ I- (3) A, j-B and I- CAT(A) B

ii) I- (2)A EB# I- (2) A, 1-B and I- CAT(A) ~ B.

So CAT computes some canonical representative of the class of B' with

I- A ! B' ; furthermore, this B' is minimal with respect to £.. For the actual

definition of CAT we refer to [11, section 7]. Since the decision procedure

~ for equations in the current checker also contains the possibility of

type-inclusion - i.e. A~ B iff A-=. B - the type function CAT reduces

the verification of E-formulas to the verification of equations.

6.4.2.4. Finally we point out a decision procedure for correctness of ex­

pressions. Here we proceed by induction on the length of expressions. As an

example we treat the case of application expressions <A>B where A and Bare

already supposed to be correct.

6.4.2.5. Uniqueness of domains

For function-like expressions A we define Cl to be the domain of A if

*) Here we mean uniqueness with respect to definitional equality(=), in con­

trast with section 6.3.3, where we mean uniqueness with respect to syntac­

tic equality(=).

76

01' I- (l)A = [x,a]E .

For domains we have wiiqueness also (by the closure theorem and the

Church-Rosser theorem): If a and Sare domains of A then a= s. This fact

allows us to speak about the domain of function-like expressions. Now we

are able to define a ''meahaniaal domain" funation DOM (for which we refer

to [11, section 7]), which for function-like A picks out a canonical repre­

sentative of the domain of A. The termination of DOM(A) follows by induction

on the degree of A, using strong normalization.

6.4.2.6. By CAT and DOM the verification of correctness of <A>B reduces to

the verification of some suitable equation: ~<A>B ~ ~ A and ~Band
~ A !E._ DOM(B) or, equivalently, by 6.4.2.3i),

~<A>B ~ ~ A and ~ B and j- CAT (A) DOM(B) •

6.4.2.7. For the other cases of correctness of expressions we refer to Zand­

l~ven again. The correspondence of the current verifier with the actual

language definition is either immediate or follows from the above facts

about CAT and DOM.

77

7. References

[1] De Bruijn, N.G.; The mathematical language AUTOMATH, its usage and

some of its extensions. Symposium on Automatic Demonstration

(Versailles, December 1968), Lecture Notes in Mathematics, Vol. 125,

pp. 29-61, Springer-Verlag, Berlin, 1970.

[2] De Bruijn, N.G; Automath, a language for mathematics. Notes (prepared

by B. Fawcett) of a series of lectures in the Seminaire de Mathe­

matiques Superieures, Universite de Montreal, 1971.

[3] De Bruijn, N.G.; Lambda calculus notation with nameless dummies, a

tool for automatic formula manipulation, with application to the

Church-Rosser theorem. Indag. Math., 34, no. 5. 1972.

[4] De Bruijn, N .G.; The AUTOMATH Mathematics Checking Project. This volume*).

[SJ Girard, J.Y.; Interpretation fonctionelle et elimination des coupures

de l'arithmetique d'ordre superieur. Doctoral dissertation, Uni­

versite Paris VII, 1972.

[6] Howard, W.A.; The formulae-as-types notion of construction. Unpublish-

ed 1969.

[7] Jutting, L.S. van Benthem; The development of a text in AUT-QE. This

volume*).

[8] Martin-Lof, P.; An intuionistic theory of types. Unpublished 1972.

[9] Nederpelt, R.P.; Strong normalization in a typed lambda-calculus with

lambda-structured types. Doctoral dissertation, Technological

University, Eindhoven, 1972.

[10] Prawitz, D.; Ideas and results in proof theory. In: Proc. 2nd. Scan-

dinavian Logic Symp. North-Holland Publ. Comp., Amsterdam, 1971.

[11] Zandleven, I.; Verifying program for AUTOMATH. This volume*).

*) "Th' 1 " f . (is vo ume re ers to: Proceedings of the Symposium on APL Paris, De-

cember 1973), ed. P. Braffort.

78

Appendix 2, The paragraph system

In the definition of AUT-QE ([vD, 5]) it is required that constants

which are identifier parts of different lines are different. In this appen­

dix we describe a variant of AUTOMATH languages in which this rule is weak­

ened. The AUT-QE version of this variant has actually been used for trans­

lating Landau's book. It is irrelevant for the following discussion, which

particular AUTOMATH language is considered. We shall therefore presuppose an

unspecified language AUT, and we shall call its paragraphed variant AUT-PAR.

1. Paragraph lines

A book in AUT-PAR can be split up into paragraphs, In the language

we have three special symbols+, - and-, and a countable set of para­

graph identifiers (which we shall denote here by syntactic variables

s,s1,s2, ••• ,t,t1,t2, ••.). There is a basic paragraph identifier cover
This will play the role of the empty environment; the word "cover" is meant

to suggest "bookjacket". Besides ordinary AUT0MATH lines (which we will call

here proper lines), we have a special sort of lines (called paragraph lines),

which are used to indicate the paragraphs. There are two kinds of paragraph

lines: opening lines which have the form +s, and alosing lines which consist

of the single symbol

2. The first rule for paragraph lines

For this description we shall number the lines of our book (proper

lines as well as paragraph lines) in their proper order, and we will indi­

cate lines by their numbers. For each linen we define o(n) (c(n) respec­

tively) to be the number of opening lines (closing lines respectively) prece­

ding it.

The first rule for paragraph lines is:

o(n) ~ c(n) for all n.

It follows that the paragraph lines provide the book with a kind of nested

structure,

The paragraph level of a linen is defined by pl(n) = o(n) - c(n). For

a linen with pl(n) > 0 we define its paragraph opening by

po(n) = max{m m < n and pl(m) < pl(n)}. It is easy to see that pl(l) = O,

that for each n with pl(n) > 0 the line po(n) is an opening line, and that

pl(po(n)) = pl(n) - 1.

79

3. An example

As an example we represent schematically a book with paragraphs. The

numbering of the lines in the book appears to the left. It only serves our

(metalingual) di~cussion, and does not belong to the schematically indicat­

ed AUTOMATH text. The proper lines are indicated by their identifiers (con­

stants or variables) and their contexts. The dots indicate middle parts and

category parts.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

+s

+t

+t

+s
+t

*
*

*
X *

*

X *
*

*

*

*
X *

a .-
b .-

X .- E

a .-
X .- E

C .-
a .-

C .-

C .-

X .- E

d !=

In this example we have indeed o(n) ~ c(n) for·a,Ll n, and e.g.

o(4) = 1, c(4) = 0 hence pl(4) = 1

o (16) = 3, c(16) = 3 hence pl(16) = 0

po(4) = 3

po (15) = 13

po(20) = 17

80

4. Indices and paragraphs

For references to paragraphs we use indices. An index has the form

s 1 - s2 - ••• - su (with u ~ 1). The sign - is used as a separator, and has

nothing to do with the of closing lines. As a syntactic variable for in-

dices we use s. If s = s 1 - s2 - ••• - su then s - s denotes s 1 - s 2 - ••• - su - s.

For each linen we define an index ind(n) as follows:

if pl (n) 0 then ind(n) = cover.

if pl(n) > 0 and po(n) = +s then ind(n) ind(po(n)) - s.

Note that, by this definition, for each n the first paragraph identifier in

ind(n) is cover Indices of the form cover-s2 - •.• - su are called complete

indices, So, for all n, ind(n) is complete.

In the example we have:

ind(3)

ind(4)

ind(9)

cover
cover - s
cover - s - t

ind(15) = cover - t

Given a book Band an index s, the subsequence of B consisting of those

lines n for which ind(n) =sis called the paragraph of s. Note that para­

graphs are mutually disjoint.

In our example the paragraphs are:

for s -

for s -
for s -

for s -

cover
cover
cover
cover

s

s - t
t

1,2,3,12,13,16

4,5,6,7,11,17

8,9,10,18,19,20

14,15.

If n is a line in a paragraph, and pl(n) > 0 then the line po(n) is

called an opener.of the paragraph. Note that the openers of a paragraph are

not lines of that paragraph. The first opener of a paragraph is called the

paragraph opener of that paragraph, the other openers are called reopeners.

The closing lines in a paragraph are called the closers of that paragraph.

In our example we see:

for s = cover - s the paragraph opener is 3, a reopener is 16 and a clos-

er is 11.

for s = cover - s - t the paragraph opener is 7, a reopener is 17 and

closers are 10 and 20.

for s = cover - t the paragraph opener is 13 and a closer is 15.

81

5. The rule for constants

The rule in AUTOMATH languages requiring that constants introduced in

different lines are different, is weakened in the present language as fol­

lows:

Constants introduced in different proper lines in the same paragraph

must be different.

Note that in our example this rule is observed.

For reference to a constant c introduced in the linen we use the con­

stant indexed, i.e. we write c 11 s" where s = ind(n). Note that for an index­

ed constant c 11 s11 the index sis always complete. In our example the con­

stants a introduced in the lines 1, 5 and 9 appear indexed as a"cover" ,
a"cover - s" and a"cover - s - t" respectively.

By the rule for constants the indexed forms of constants introduced in

different lines are different. So if we would replace each constant by its

indexed form we would get a book where the strict rule for constants is ob­

served.

6. The second rule for paragraph lines

It is an essential feature of our language that indices in indexed con­

stants can be abbreviated, even (in some cases) to the point of omitting

them entirely. For this purpose there is a second rule for paragraph lines:

If +sis a line with number n, thens may not occur in ind(n).

It follows that the paragraph identifiersofind(n) are mutually different.

We shall now describe the interpretation of a constant c with abbre­

viated (or without) index. we assume that such a constant occurs in the mid­

dle part or category part of a proper linen with ind(n) =s=s1 -s2 - ••• -sk.

We distinguish three cases for the form of the abbreviated index.

i) c"t1 - t 2 - ••• - tR. 11 where t 1 % cover. In this case t 1 must be one (and

therefore, by the second rule, exactly one) of s 1 ,s2 , ... ,sk. Suppose

t 1 = si then c"t1 - t 2 - ••• - tR." should be interpreted as

c"s 1 - s 2 - ••• - si - t 2 - ••• -tR.". In our example, if a"s" occurs in the

dots of line 19, it should be interpreted as a"cover - s".
ii) c 11 - t 1 - t 2 - ••• - tR. 11 should be interpreted as

II t t t II c sl - s2 -. • .- sk - 1 - 2 -. • .- R. •

In our example, in the dots of line 12 a" - s" should be interpreted

as a"cover - s" and a" - s - t" as a"cover - s - t".

82

iii) ·c appears without index. Then c should be interpreted as c"t" where t

is the "longest possible initial part of s". I.e.: If c is identifier

of a line preceding n in the paragraph of s then c should be interpret­

ed as c"s", else if c is identifier of a line preceding n in the para­

graph of s 1 - s 2 - ••• - sk-l then c should be interpreted as

c"s 1 - s 2 - .•• - sk-l" etc.

In our example, in the dots of line 4, a should be interpreted as

a"cover" , while in line 6 a should be interpreted as a"cover - s"

Note that in the middle part or category part of line 9 a should

again be interpreted as a"cover - s" (i.e. the identifier introduced

in line 5).

We see that the interpretation of a constant with abbreviated index

depends on the place in the book where it occurs.

7. Reference to variables

According to the definition of AUT-QE, variables x 1 , ... ,xk of a context

x 1 ~ a 1, ••• ,~ ~ ctk r,mst be mutually different identifiers. We maintain this

rule in AUT-PAR. Thus free variables occurring in the middle part or catego­

ry part of a line always refer to a (unique) variable of the context (Cf.

[vD, 2.4, 2.13.2, 5.5.2, 5.5.3]). Therefore such variables are never indexed.

For variables there are in AUTOMATH no restrictions to their use as

identifier parts of different lines. If a variable x appears as a context

indicator ([vD, 2.13.1 i)]) of a linen it always refers to the latest EB­

line introducing x which precedes n. In AUT-PAR a context indicator must be

indexed and for the indexed variables we allow the same abbreviation rules

as in section 6. Hence the context indicator X in line 5 of our example

should be interpreted (according to 6 iii) above) as x"cover s" i.e.

the variable introduced in line 5. The context indicator X in line 8 should

also be interpreted as x"cover - s" , but it refers to the variable intro­

duced in line 6. In fact in lines n with n > 6 there is no possibility to

use the variable X introduced in line 4 as a context indicator. The con­

text indicator X in line 19 should be interpreted as x"cover - s - t" ,

thus referring to the variable introduced in line 18.

If we want to write line 19 on the context introduced in line 6 we

should write:

19 x"s" * d := .•...

or, with a complete index:

19 x"cover - s" * d :=

It is allowed to introduce a new variable in line 19 by

x"s" * y .- --E

However

x"s" * x := --E

83

would not be allowed, because this would give two variables X in one con­

text.

8. Remarks on notation

Deviating from the notations for paragraph lines described above, we

denote reopeners of a paragraph not by +s but by +*s, and closers of the

paragraph of s 1 - s 2 - ••• - sk by -sk. Thus the lines 16 and 17 in our example

should be written ttS and +*t, and the lines 11 and 15 as -s and -t
respectively. This redundant notation is preferred for the sake of readabil­

ity.

84

Appendix 3. The PN-lines from the preliminaries

LAYOUT FROM FILE : EXCERPTOUTPUT/PREPNS JANUARY 25, 1977 10:40:41

+L

* A I= PROP
A * B I= PROP
B * IMP := CX,AJB PROP

* CON := PN PROP
A * NOT := IMP(CON) PROP
A * WEL := NOT(NOTCA)) PROP
A * w := WEL<A>

2 w * ET := PN A
B * EC := IMP(A ,NOT< B» PROP
B * AND := NOT(EC<A,B» PROP

* SIGMA I= TYPE
SIGMA * p I= CX,SIGMAJPROP

p * ALL := p PROP
p * NON := CX,SIGMAJNOT<<X>P> C X, SIGMA J PROP
p * SOME := NOT(NON<P>) PROP

+E

SIGMA* S l= SIGMA
s * T != SIGMA

3 T * IS I= PN PROP
4 s * REFIS I• PN IS<S,S)

p * s := SIGMA
s * T I= SIGMA
T * SP I= <S>P

SP* I :• IS(S,T>
5 I* ISP I= PN <T>P

P * AMONE := CX,SIGMAJCY,SIGMAJCU,<X>PJCV,
<Y>PJIS<X,Y> PROP

p * ONE I= AND<AMONE(SIGMA,P>,
SOME<SIGMA,P» PROP

p * 01 I= ONE(SIGHA,P)
6 01 * IND ·I= PN SIGMA
7 01 * ONEAX I= PN <IND>P

SIGMA * TAU I= TYPE
TAU * F I= CX,SIGMAJTAU

F * INJECTIVE := ALL<CX,SIGMAJALL(CY,SIGMAJ
IMP(IS(TAU,<X>F,<Y>F>,IS<X,Y))
)) PROP

F * TO I= TAU,
TO* IMAGE := SOME<CX,SIGMAJIS(TAU,TO,<X>F)) PROP

TAU* F I= CX,SIGMAJTAU
F * G I= ex, SIGMAJTAU
G * I I• CX,SIGMAJIS(TAU,<X>F,<X>G>

8 I* FISl := PN IS<CX,SIGMAJTAU,F,G)
9 P * OT I= PN TYPE

P * 01 := OT
10 01 * IN I= PN SIGMA
11 01 * INP : " PN <IN>P
12 P * OTAXl I= PN INJECTIVE<OT,SIGMA,CX,OTJ

IN<X»
p * s I= SIGMA
s * SP I= <S>P

13 SP * OTAX2 I= PN IMAGE(OT,SIGMA,CX,OTJIN(X),S)
14 TAU * PAIRTYPE != PN TYPE

TAU* s I• SIGMA
s * T I• TAU

15 T * PAIR I= PN PAIRTYPE
TAU* Pl I,. PAIRTYPE

16 Pl* FIRST I= PN SIGMA
17 Pl ll< SECOND I= PN TAU
18 Pl ll< PAIRISl I= PN IS<PAIRTYPE,PAIR<FIRST,

SECOND>,P1>
19 T * FIRSTIS1 I= PN IS<SIGMA,FIRST(PAIR),S)
21) T * SECONDISl I= PN IS(TAU,SECOND<PAIR),T)

-E

+ST

21 SIGMA * SET
SIGMA* S

s * so
22 SO* ESTI
23 P * SETOF

p * s
S * SP

24 SP* ESTII
S * E

25 E * ESTIE
SIGMA* SO

SO* TO
TO* INCL

TO* I
I * J

26 J * ISSETI

-ST

-E

-L

I= PN
I=
I=
I= PN
I= PN
: ..
I=
I= PN
: "'
I= PN
la
I=
:= ALL(CX,SIGMAJIMP(ESTI<X,SO),

ESTI(X,TO)))
I=
la
I= PN

TYPE
SIGMA
SET
PROP
SET
SIGMA
<S>P
ESTI(S,SETOF<P>>
ESTI<S,SETOF<P>>
<S>P
SET
SET

PROP
INCL<SO,TO>
INCL<TO,SO)
IS(SET,SO,TO)

85

86

Appendix 4. Excerpt for "Satz 27"

LAYOUT FROM FILE EXCERPTOUTPUT/SATZ27 JANUARY 25, 1977 10:50:22

+L

* A := PROP
A * B := PROP
B * IMP := CX,AJB PROP
B * Al := A

Al * I I= IMP<A,B>
I * MP I= <Al>I B
B * C I= PROP
C * I := IMP<A,B>
I * J I= IMP<B,C)
J * TRIMP := CX,AJ«X>I>J IMP<A,C>

* CON := PN PROP
A * NOT ,- IMP<CON> PROP
A * WEL := NOTCNOTCA» PROP
A * Al := A

Al * WELI := CX,NOTCA) J<Al>X WEL<A>
A * w I= WELCA>
w * ET := PN A
A * Cl := CON

Cl * CONE := ETCCX,NOTCA)JCl) A

+IMP

B * I I• IMP<A,B)
I * J I., IMP<NOT<A> ,B>
J * TH1 := ETCB,CX,NOTJ<<TRIMPCCON,I,

X»J>X> B
B * N := NOTCA)
N * TH2 := TRIHP<CON,B,N,CX,CONJCONECB,X)

) IHP<A,B)
B * N ; .. NOT
N * I I= IHP<A,B)
I* TH3 ·- TRIMP(CON,I,N) NOT<A> ,-
B * Al I= A

Al* N I• NOT
N * TH4 := CX,IMP(A,B>J<Al>TH3CN,X) NOTCIHP(A,B))
B * N := NOTCIMPCA,B»
N * TH5 := ET<CX,NOT(A>J<TH2(X)>N> A
N * TH6 I= CX,BJ<CY,AJX>N NOT

-IMP

B * EC l= IHP<A,NOT(B)) f PROP

+EC

B * I I= IMP<A,NOT(B))
I* THl I• I EC<A,B>
B * I I" IMP<B,NOT(A))
I* TH2 I= CX,AJCY,BJ<X><Y>I EC(A,B)

-EC

B * E I• EC<A,B>
E * Al I• A

Al* ECEl I= <A1>E NOT
E * B1 , .. B

Bl* ECE2 := TH3'-IMP'(NOT(B>,WELI<B,B1>,E> NOT<A>

87

B * AND l= NOT<EC<A,B>l PROP
B * Al f= A

Al * Bl := B
Bl * ANDI := TH4"-IMP'CNOTCB),A1,WELICB,B1)

) ANDCA,B>
B * Al I= ANDCA,B)

Al * ANDEl := TH5'-IMP'<NOTCB),A1) A
Al * ANDE2 := ETCB,TH6'-IMP'CNOTCB),A1)) B

+AND

B * N I= NOT<AND)
N * Al l• A

Al* TH3 l= ECEl<ETCEC,Nl,Al) NOTCB>

-AND

B * OR := IMPCNOTCA>,B> PROP
B * Al I= A

Al* ORI1 := TH2'-IMP'CNOT(A),B,WELICA1)) ORCA,B>
B * Bl := B

Bl* ORI2 := CX,NOT<A>JB1 ORCA,B)

+OR

B * I l= IMPCNOT<B) ,Al
I * TH2 I= CX,NOTJETCB,TH3'L-IMP'CNOTCB),

A,X,I>l ORCA,B)

-OR

B * 0 l= ORCA,B>
0 * N Im NOTCA>
N * ORE2 l= <N>O B
0 llC N Im NOT<Bl
N * OREl I= ETCTH3"-IMP'CNOTCA>,B,N,Ol) A

+*OR

B * N I• NOT<A>
N llC H I= NOTCB>
M llC TH3 := TH4'L-IHP'(NOT<A>,B,N,H> NOT(ORCA,B))

-OR

C * 0 I• ORCA,'ll)
0 * I I"' IHP<A,C)
I * J I,. IHPCB,C>
J * ORAPP l= TH1'-IHP'CC,I,TRIMP<NOT,B,C,O,

J)) C

+*OR

0 * I I• IHPCA,Cl
I * TH7 I= TRIHP<NOTCC>,NOT,B,CX,NOT<C>J

TH3'L-IMP'CA,C,X,I>,O> ORCC,B)
0 * I I= IHPCB,C>
I * THB I= TRIHPCNOT<A>,B,C,O,I) ORCA,C)
C * D I= PROP
D * 0 i• OR(A,B>
0 * I I• IliP<A,C>
I * J I= IHP<B,D>
J * TH9 I= TH7CA,D,C,THB<A,B,D,O,J>,I> ORCC,D>

-OR

88

* SIGMA l= TYPE
SIGMA * p I= ex, SIGMAJPROP

p * ALL I= p PROP

+ALL

p * s I• SIGMA
S * N ja NOT«S>P>
N * THl := CX,ALL(SIGMA,P)J<<S>X>N NOT(ALL(SIGMA,P))

-ALL

p * NON := CX,SIGMAJNOT<<X>P> CX,SIGMAJPROP
p * SOME := NOT< NON (P)) PROP
p * s := SIGMA
s * SP I= <S>P

SP * SOMEI := TH1"-ALL'(NON<P>,S,WELI<<S>P,
SP)) SOME<SIGMA,P>

+SOME

p * N := ;_NON(P>
N * TH5 := WELI<NON(P) ,N> ; NOT(SOME(SIGMA,P))

-SOME

p * s != SOME<SIGMA,P>
s * X != PROP
X * I I,. CY,SIGMAJIMP<<Y>P,X)

+*SOME

I * N I= NOT<X>
N * T : .. SIGMA
T * T5 I= TH3'L-IMP"(<T>P,X,N,<T>I> NOT«T>Pl
N * T6 := MP(SOME<SIGMA,P>,CON,S,

TH5CCY,SIGMAJT5(Y))) CON

-SOME

I lk SOMEAPP I= ETCX,CY,NOTCX>JT6'-SOME"(Yl) f X

+*SOME

p * Q : .. CX,SIGMAJPROP
Q * s I" SOME<SIGHA,P)
s * I I= CX,SIGHAJIHP<<X>P,<X>G>
I * TH6 := SOMEAPP<S,SOHE<G>,CX,SIGHAJCY,

<X>PJSOHEI<G,X,HPC<X>P,<X>G,Y,
<X>I))) J SOHE<Gl

-SOME

C * AND3 := AND<A,AND<B,C)) PROP
C * A1 I= AND3CA,B,C>

A1 * AND3El I= ANDE1CANDCB,Cl,A1) A
Al * AND3E2 := ANDE1CB,C,ANDE2CAND(B,Cl,Al)) B
Al * AND3E3 := ANDE2<B,C,ANDE2(AND<B,Cl,A1)) C
C * Al I= A

Al * Bl I= B
Bl * Cl I= C
C1 * AND3I := ANDICA,AND<B,C>,Al,

ANDI<B,C,B1,C1)) AND3CA,B,C>

tAND3

C * Al I= AND3CA,B,C>
Al * THl := AND3I(B,C,A,AND3E2(A1>,

AND3E3(Al>,AND3E1(A1)) AND3<B,C,A>

-AND3

89

C lit EC3 := AND3(EC,EC<B,C),EC<C,Al) PROP
C * E I= EC3(A,B,C>

+EC3

E * THl ·- AND3El(EC,EC<B,C>,EC<C,A),E) EC<A,B> ,-
E * TH3 := AND3E3(EC,EC<B,Cl,EC<C,Al,E) EC(C,A>
E * TH4 := TH1'L-AND3"(EC,EC(B,C>,EC(C,Al

,E> EC3<B,C,A>

-EC3

E * Al I= A
Al * EC3E12 == ECE1<TH1'-EC3',A1> NOT
Al * EC3E13 := ECE2<C,A,TH3'-EC3',Al> NOT<C)

E * Bl := B
Bl * EC3E23 := EC3E12(B,C,A,TH4'-EC3',Bl) NOT<C>
Bl * EC3E21 := EC3E13<B,C,A,TH4'-EC3',B1> NOT<A)

+*EC3

C * E I" EC<A,B)
E * F , .. EC(B,C)
F * G I= EC<C,A)
G lit TH6 := AND3I<EC,EC(B,C>,EC<C,Al,E,F,

G) EC3<A,B,C)

-EC3

+E

SIGMA lit S I,. SIGMA
S * T I" SIGMA
T lit IS la PN PROP
S lit REFIS I., PN IS<S,Sl
p * s I= SIGMA
S lit T la SIGMA
T lit SP 1- <S>P

SP lit I I= IS(S,T>
I lit ISP : "' PN <T>P

SIGMA lit S : .. SIGMA
S lit T I= SIGMA
T lit I I= IS<S,T>
I lit SYMIS := ISP(CX,SIGMAJIS<X,S),S,T,

REFIS(S>, I) IS<T,S>
T * u I= SIGMA
u * l : .. IS<S,T>
I * J I= IS<T,U>
J * TRIS l= ISP<CX,SIGMAJIS(X,U>,T,S,J,

SYMIS<I)) IS<S,U)
u * I I= JS<S,U)
I lit J I= IS<T,U)
J * TRIS2 := TRIS(S,U,T,I,SYMIS<T,U,J)) IS<S,T>
T * N l= NOT<IS(S,T))
N * SYMNOTIS I= TH3'L-IMP"(IS(T,S>,IS<S,T),N,

CX,IS(T,S)JSYMIS(T,S,X)) NOT< ISCT,S))

+NOTIS

u lit N ; .. NOT<IS(S,T>)
N :II l Jo;, IStT,U>
I lit TH3 := ISP(CX,SIGMAJNOT(ISCS,X>>,T,U,

N,I> NOT(IS(S,U))
N lit I := IS<U,T>
I :II TH4 := TH3(SYMIS<U,T,I>> NOT<IS<S,U))

-NOTIS

90

u * V := SIGMA
V * I I= IS<S,T>
I * J I= IS<T,U)
J * K != IS<U,V)
K * TR3IS := TRIS(S,U,V,TRIS(I,J>,K> IS(S,V>
V * w := SIGMA
w * I I= IS(S,T>
I * J I= IS<T,U>
J * K I= IS<U,V>
K * L != IS(V,W>
L * TR4IS := TRIS<S,V,W,TR3IS<I,J,K),L) IS<S,W>
p * AMONE := ex,SIGMAJeY,SIGMAJeU,<X>PJeV,

<Y>PJIS(X,Y> PROP
p * ONE := AND(AMONE(SIGMA,P>,

SOME<SIGMA,P>) PROP
p * Al := AMONE(SIGMA,P)

Al * s := SOME<SIGMA,P>
s * ONEI I= ANDI<AMONE(SIGMA,P>,

SOME(SIGMA,P),A1,S) ONE(SIGMA,P>
p * 01 := ONE(SIGMA,P>

01 * IND := PN SIGMA
01 * ONEAX I= PN <IND>P

SIGMA * TAU := TYPE
TAU * F := eX,SIGMAlTAU

F * s I= SIGMA
s * T !• SIGMA
T * I I= IS(S,T>
I * ISF := ISP(SIGMA,CX,SIGMAJIS<TAU,<S>

F,<X>F>,S,T,REFIS(TAU,<S>F>,I> IS<TAU,<S>F,<T>F>
TAU * F I= ex, SIGMAlTAU

F * G I= ex ,SIGMAJTAU
G * I I= IS<eX,SIGMAJTAU,F,G)
I * s := SIGMA
s * FISE := ISP<eX,SIGMAJTAU,eY,eX,SIGMAJ

TAUJIS<TAU,<S>F,<S>Y>,F,G,
REFIS(TAU,<S>F>,I> IS<TAU,<S>F,<S>G)

G * I := eX,SIGMAJIS(TAU,<X>F,<X>G>
I * FISI I= PN IS<eX,SIGMAJTAU,F,G)

-E

flltE

+ST

SIGMA * SET , .. PN TYPE
SIGMA * s I• SIGMA

s * so , .. SET
so* EST! I= PN PROP

p * SETOF , .. PN SET
p * s I• SIGMA
s * SP I• <S>P

SP* ESTU I• PN ESTI<S,SETOF(P)l
s * E , .. ESTI (S,SETOF(P))
E * ESTIE I• PN <S>P

+EQ

91

+LANDAU

+N

$ NAT I= PN TYPE
* X :- NAT

X * y I• NAT
Y * IS := IS'E"<NAT,X,Y> PROP
Y * NIS I= NOT< IS<X,Y> > PROP
X $ S I= SET(NAT>
S * IN := ESTI <NAT,X,S> PROP

* p I= CX,NATJPROP
p * SOME := SOME'L"(NAT,P> PROP
p $ ALL I= ALL'L'(NAT,P) PROP

* 1 !• PN NAT
* sue I= PN CX,NATJNAT
* X !• NAT

X * y I• NAT
y * I I• IS<X,Y>
I* AX2 : .. ISF<NAT,NAT,SUC,X,Y,I> IS<<X>SUC,<Y>SUC)

* AXJ I= PN CX,NATJNISC<X>SUC,1)
* AX4 I• PN CX,NATJCY,NATJCU,IS<<X>suc,

<Y>SUC)JIS<X,Y>
* s , .. SET<NAT>

S * COND1 := IN(l,S) PROP
S * COND2 I= ALL(CX,NATJIHP<IN<X,S>,IN<<X>

SUC,S))) PROP
* AX5 , .. PN CS,SET<NAT)JCU,CONDl(S)l

CV,COND2(S)JCX,NATJIN<X,S)
* p , .. CX,NATJPROP

P * 1P I• <l>P
1P * XSP !• CX,NATJCY,<X>PJ<<X>SUC>P

XSP $ X l• NAT

+u

X * S I= SETOF<NAT,P> SET<NAT>
X * T1 I= ESTII<NAT,P,1,1P) CONDl<S)
X * y I• NAT
Y * YES S• IN<Y,S)

YES* T2 := ESTIE<NAT,P,Y,YES> <Y>P
YES* TJ I= ESTII<NAT,P,<Y>SUC,<T2><Y>XSP) IN«Y>SUC,S>

X * T4 != <X><CY,NATJCU,IN<Y,S>JTJ<Y,U>>
<T1><S>AX5 IN<X,S>

-u

X * INDUCTION I• ESTIECNAT,P,X,T4"-I1") <X>P
* X I• NAT

X * y I• NAT
y * N I• NIS<X,Y>

+21

N * I I• IS<<X>SUC,<Y>SUC)
I * T1 I• <I><Y><X>AX4 IS<X,Y>

-21

N $ SATZl I• THJ"L-IMP"<IS<<X>SUC,<Y>SUC>,
IS<X,Y),N,CU,IS(<X>SUC,<Y>SUC)
JT1 "-21" (U)) I NIS<<X>SUC,<Y>SUC)

92

+23

X * PROP1 := ORCISCX,1>,SOMECCU,NATJIS(X,
<U>SUC))l PROP

* T1 := ORilCIS(l,l>,SOMECCU,NATJISCl,
<U>SUCl),REFISCNAT,l)) PROP1<1)

X * T2 := SOMEICNAT,CU,NATJISC<X>SUC,<U>
SUC),X,REFISCNAT,<X>SUC)) SOMECCU,NATJISC<X>SUC,<U>SUC)

)

X * T3 := ORI2(IS<<X>SUC,1>,SOME<CU,NATJ
ISC<X>SUC,<U>SUC>>,T2l PROP1 C<X>SUC)

X * T4 := INDUCTIONCCY,NATJPROP1(Yl,T1,
CY,NATJCU,PROPl(Y)JT3(Yl,X> PROP1(Xl

-23

X * N := NISCX,1>
N * SATZ3 := ORE2CIS<X,1),SOMECCU,NATJIS(X,

<U>SUC)>,T4'-23',N) SOMECCU,NATlIS<X,<U>SUC))
y * z := NAT

+24

X * F I= CY,NATJNAT
F * PROP1 := ALL<CY,NATJISC<<Y>SUC>F,<<Y>F>

sue» PROP
F * PROP2 := ANDCISC<1>F,<X>SUC>,PROP1> PROP
X * A I= CY,NATJNAT
A * B :- CY,NATJNAT
B * PA :a PROP2<A>

PA * PB I= PROP2(B)
PB * y l= NAT

y :II PROP3 := ISC<Y>A,<Y>B> PROP
PB * T1 := ANDE1(IS<<1>A,<X>SUC),PROP1(A)

,PA> IS«l>A,<X>SUC)
PB * T2 := ANDE1CIS<<1>B,<X>SUC),PROP1

,PB> ISC<l>B,<X>SUC)
PB * T3 I= TRIS2<NAT,<1>A,<l>B,<X>SUC,T1,

T2) PROP3(1)
y * p I= PROP3(Y)
p * T4 I= AX2<<Y>A,<Y>B,P> IS<<<Y>A>SUC,<<Y>B>SUC)
p * T5 := ANDE2CISC<l>A,<X>SUC),PROP1(A)

,PA> PROP1(A)
p * T6 I= ANDE2(IS<<1>B,<X>SUC>,PROP1(Bl

,PB) PROP1
p * T7 := <Y>T5 IS<<<Y>SUC>A,<<Y>A>SUC)
p * TS I= <Y>T6 IS<<<Y>SUC>B,<<Y>B>SUC)
p * T9 != TR3IS(NAT,<<Y>SUC>A,<<Y>A>SUC,

<<Y>B>SUC,<<Y>SUC>B,T7,T4,
SYMIS'E"<NAT,<<Y>SUC>B,<<Y>B>
SUC,TS)) PROP3 C<Y>SUC)

y * TlO := INDUCTION(CZ,NATlPROP3CZ>,T3,
CZ,NATJCU,PROP3CZ)lT9<Z,U),Y) PROP3<Y>

PB * TU I= FISI<NAT,NAT,A,B,CY,NATlT1O(Y)
) IS'E'(CY,NATJNAT,A,B)

X * AA I= CZ,CY,NATJNATlCU,CY,NATlNATJ
CV,PROP2(Z)JCW,PROP2(U)JT11(Z,
U,V,W> AMONE<CY,NATJNAT,CZ,CY,NATJ

NATJPROP2<Z>)
X * PROP4 != SOME'L'<CY,NATJNAT,CZ,CY,NATJ

NATJPROP2<Z» PROP

* T12 I= CX,NATJREFISCNAT,<<X>SUC>SUC) PROP1 (1,SUC)

* T13 I= ANDI<IS(<1>SUC,<1>SUCl,
PROP1<1,SUC>,REFISCNAT,<1>SUC)
,T12) PROP2(1,SUC)

* T14 := SOMEICCY,NATJNAT,CZ,CY,NATJ
NATJPROP2C1,Z),SUC,T13l PROP4(1)

93

X * p : " PROP4(X)
p * F l= CY,NATJNAT
F * PF I= PROP2(F)

PF * G := CY,NATJ<<Y>F>SUC CY,NATJNAT
PF * y := NAT

y * T15 := REFIS<NAT,<Y>G> IS<<Y>G,<<Y>F>SUC)
PF * T16 := ANDE1(IS<<1>F,<X>SUC),PROP1(F)

,PF> IS(<l>F,<X>SUC)
PF * T17 := TRIS<NAT,<1>G,<<1>F>SUC,<<X>

SUC>SUC,T15(1>,AX2(<1>F,<X>
SUC,T16)) IS<<l>G,<<X>SUC>SUC)

y * T18 := ANDE2(IS(<1>F,<X>SUC),PROP1(F)
,PF) PROP1(F)

y * T19 l= <Y>T18 IS<<<Y>SUC>F,<<Y>F>SUC>
y * T20 := TRIS2(NAT,<<Y>SUC>F,<Y>G,<<Y>

F>SUC,T19,T15) IS<<<Y>SUC>F,<Y>G>
y * T21 := TRIS<NAT,<<Y>SUC>G,<<<Y>SUC>F>

SUC,<<Y>G>SUC,T15<<Y>SUC),
AX2C<<Y>SUC>F,<Y>G,T20)) IS<<<Y>SUC>G,<<Y>G>SUC)

PF * T22 := CY,NATJT21(Y) PROPl«X>SUC,G)
PF * T23 := ANDI(IS<<1>G,<<X>SUC>SUC),

PROP1<<X>SUC,Gl,T17,T221 PROP2«X>SUC,GI
PF * T24 := SOMEICCY,NATJNAT,CZ,CY,NATJ

NATJPROP2<<X>SUC,Zl,G,T231 PROP4 «X>SUC >
p * T25 := SOMEAPP(CY,NATJNAT,CZ,CY,NATl

NATJPROP2(Zl,P,PROP4<<X>SUC>,
CZ,CY,NATlNATJCU,PROP2(Zll
T24<Z,UII PROP4 «X>SUC >

X * BB := INDUCTION(CY,NATlPROP4CY),T14,
CY,NATJ[U,PROP4(YIJT25(Y,Ul,XI PROP4(XI

-24

X * SATZ4 I= ONEI<CY,NATlNAT,CZ,CY,NATlNATJ
PROP2"-24'CZ>,AA"-24",BB"-24') ONE'E'(CY,NATJNAT,CZ,CY,NATJ

NATJANDCIS<<1>Z,<X>SUCI,
ALL<CY,NATlIS<<<Y>SUC>Z,<<Y>
Z>SUCIII)

X * PLUS := IND<CY,NATJNAT,CZ,CY,NATJNATl
PROP2"-24'(Zl,SATZ4> CY,NATJNAT

y * PL I= <Y>PLUS NAT

+il<24

X llC T26 I= ONEAX(CY,NATJNAT,CZ,CY,NATJ
NATlPROP2(Zl,SATZ4) PROP2<PLUS)

-24

X llC SATZ4A := ANDEl(IS(<l>PLUS,<X>SUC>,
PROP1'-24'(PLUS>,T26"-24') IS(PL<X,1>,<X>SUC>

-l-llC24

X llC T27 := ANDE2(IS(<l>PLUS,<X>SUC),
PROP1(PLUS),T26) I PROPl<PLUS)

-24

Y * SATZ4B I• <Y>T27'-24' !S(PL<X,<Y>SUC>,<PL(X,Y>>SUC)

+llC24

ll< T28 I• T11<1,PLUS(1),SUC,T26(1),T131 ; IS'E"(CY,NATJNAT,PLUS(l),SUC)

-24

X ll< SATZ4C I= FISE(NAT,NAT,PLUS<ll,SUC,
T28"-24' ,10 ; IS<PL<1,X>,<X>SUC>

94

+*24

X * T29 := Tll<<X>SUC,PLUS<<X>SUC>,
CY,NATJ<<Y>PLUS>SUC,T26(<X>
SUCl,T23<BB,PLUS,T26)) IS'E'(CY,NATJNAT,PLUS(<X>SUC>

,CY,NATJ<<Y>PLUS>SUC)

-24

y * SATZ4D := FISE<NAT,NAT,PLUS(<X>SUC>,
CZ,NATJ<<Z>PLUS>SUC,T29'-24',
Y> IS(PL(<X>SUC,Y>,<PL<X,Yl>SUC)

X * SATZ4E := SYMIS<NAT,PL(X,ll,<X>SUC,
SATZ4Al IS<<X>SUC,PL<X,1))

y * SATZ4F := SYMIS<NAT,PL(X,<Y>SUC>,<PL
(X,Y>>SUC,SATZ4B) IS(<PL(X,Yl>SUC,PL(X,<Y>SUC))

X * SATZ4G := SYMIS(NAT,PL(l,Xl,<X>SUC,
SATZ4Cl IS<<X>SUC,PL<l,X)l

z * I I= IS<X,Y>
I * ISPLl := ISF<NAT,NAT,CU,NATJPL<U,Z>,X,

Y,I> IS(PL(X,Z),PL(Y,Z))
I * ISPL2 ·- ISF(NAT,NAT,CU,NATJPL<Z,Ul,X, ,-

Y,I> IS<PL<Z,X>,PL<Z,Y>>

t25

z * PROP1 := IS<PL<PL<X,Yl,Zl,PL<X,PL<Y,Z))
) J PROP

y * T1 I= TR3IS(NAT,PL(PL(X,Yl,1l,<PL
<X,Y>>SUC,PL(X,<Y>SUCl,
PL(X,PL<Y,l)l,SATZ4A(PL<X,Y)),
SATZ4F,ISPL2(<Y>SUC,PL<Y,1>,X,
SATZ4E<Y))) PROP!< 1 >

z * p := PROPl<Z>
p * T2 := AX2(PL(PL(X,Yl,Zl,PL<X,PL<Y,Zl

l,P> IS<<PL<PL<X,Y>,Zl>SUC,<PL
(X,PL<Y,Z>>>SUC)

P * T3 := TR4IS(NAT,PL(PL<X,Yl,<Z>SUCl,
<PL(PL(X,Yl,Zl>SUC,<PL<X,PL
<Y,Z>>>SUC,PL<X,<PL<Y,Zl)SUC>,
PL(X,PL<Y,<Z>SUCll,
SATZ4B(PL(X,Yl,Z),T2,
SATZ4F<X,PL(Y,Zll,
ISPL2<<PL<Y,Z>>SUC,PL<Y,<Z>
SUCl,X,SATZ4F<Y,Zlll PROPl «Z>SUC)

-25

Z % SATZS := INDUCTION<CU,NATJPROP1"-25"<U>
,Tl"-25',CU,NATJCV,PROPl"-25"
<U>JT3'-25'(U,V>,Z> IS(PL(PL<X,Yl,Zl,PL<X,PL<Y,Zl

))

Z % ASSPLl := SATZS IS<PL(PL(X,Yl,Zl,PL<X,PL(Y,Z)
))

+26

y * PROP! := IS(PL<X,Y>,PL<Y,X>> PROP
y * T1 I= SATZ4A(Y> IS(PL<Y,ll,<Y>SUC)
y * T2 := SATZ4C(Y> IS<PL<l,Y>,<Y>SUC)
y * T3 := TRIS2(NAT,PL(1,Yl,PL<Y,1>,<Y>

SUC,T2,Tll PROP1<1,Y)
y * p := PROP1<X,Y>
p * T4 I= TRIS(NAT,<PL<X,Y>>SUC,<PL(Y,X)

>SUC,PL<Y,<X>SUC>,AX2(PL<X,Y>,
PL<Y,Xl,Pl,SATZ4F<Y,X>> IS<<PL<X,Y>>SUC,PL(Y,<X>SUC))

p * TS := SATZ4D IS(PL<<X>SUC,Yl,<PL<X,Y>>SUC)
p * T6 := TRIS<NAT,PL<<X>SUC,Y>,<PL<X,Y>

>SUC,PL<Y,<X>SUCl,TS,T4) PROP 1 «X>SUC, Y>

-26

Y * SATZ6 ·- INDUCTION(CZ,NATJPROP1'-26'<Z, ,-
Y>,T3'-26',CZ,NATJ
CU,PROP1'-26'<Z,Y)JT6"-26'(Z,
Y,Ul ,X> IS(PL(X,Y>,PL<Y,X))

Y * COMPL := SATZ6 IS<PL(X,Yl,PL<Y,X))

95

+27

y * PROP1 NIS(Y,PL<X,Y> > PROP
X * T1 SYMNOTIS<NAT,<X>SUC,1,<X>AX3) NIS<l,<X>SUC)
X * T2 TH4"E-NOTIS'(NAT,1,<X>SUC,

PL<X,ll,Tl,SATZ4A) PROPl(1)

y * p I= PROPl(Y)
P * T3 := SATZl(Y,PL(X,Yl,P) NIS(<Y>SUC,<PL(X,Y>>SUC)
p * T4 := TH4'E-NOTIS'<NAT,<Y>SUC,<PL

<X,Y>>SUC,PL(X,<Y>SUC),T3,
SATZ48) PROP 1 «Y>SUC >

-27

y * SATZ7 l= INDUCTION<CZ,NATJPROP1'-27'(Z)
,T2"-27",CZ,NATJCU,PROP1'-27'
<Z>JT4"-27'(Z,U>,Y> NIS<Y,PL<X,Y»

Z llC DIFFPROP := IS(X,PL<Y,Z)) PROP

+29

y * I := IS(X,Y> PROP
y * II := SOME<CU,NATJDIFFPROP<X,Y,Ul) PROP
Y * III := SOME<CV,NATJDIFFPROP(Y,X,V)) PROP
Y * ONE1 != I

ONEl ll< U I= NAT

u * T1 I= TRIS<NAT,PL(U,X>,PL<X,U>,
PL<Y,Ul,COMPL(U,X>,
ISPLl <U,ONEl)) IS(PL<U,Xl,PL<Y,U>>

u * T2 := TH3'E-NOTIS"(NAT,X,PL<U,X>,
PL<Y,U),SATZ7<U,X>,T1) NIS<X,PL<Y,U»

ONE1 * T3 := TH5'L-SOME"(NAT,CU,NAT]
DIFFPROP<U>,CU,NATJT2<U)) NOT<II>

y * T4 := TH1'L-EC'<I,II,CZ,IJT3<Z>> EC<I,II>
ONEl * TS := T3(Y,X,SYMIS<NAT,X,Y,ONE1l) NOT<III>

y * T6 l= TH2'L-EC'(III,I,CZ,IlT5(Z)) EC< III, I>
y * TWO1 := II

TWO1 * THREE1 I• III
THREEi * u I• NAT

u * DU I• DIFFPROP<X,Y,U>
DU * V , .. NAT

V * DV :- DIFFPROP(Y,X,V>
DV * T6A := TR4IS(NAT,X,PL<Y,Ul,PL(PL<X,V>

,U>,PL(X,PL<V,Ull,PL(PL<V,U),
X>,DU,ISPLl<Y,PL<X,Vl,U,DV>,
ASSPLl<X,V,U),COMPL(X,PL(V,U))
) IS<X,PL<PLCV,U>,X>>

DV * T7 := MP<IS<X,PL(PL(V,Ul,X>l,CON,
T6A,SATZ7<PL<V,Ul,Xl) CON

DU * TS := SOMEAPP<NAT,CV,NATJDIFFPROPCY,
X,V>,THREEl,CON,CV,NATJ
CDV,DIFFPROP<Y,X,V)JT7(V,DV>> CON

T.HREE1 * T9 1~ SOMEAPPCNAT,CU,NATJDIFFPROP(U)
,TWOl,CON,CU,NATJCDU,DIFFPROP
(U)JTB<U,DU)) CON

TWOl * T1O := CZ,IIIJT9<Zl NOT<III>
y * TU I= TH1'L-EC'(II,III,CZ,IIJT1O<Z>l EC<II,IU>
y * A I= TH6'L-EC3'(I,II,III,T4,T11,T6) EC3(I,U,UI>

-29

Y * SATZ9B I= A"-29' EC3<IS<X,Y>,SOME<CU,NATJ
DIFFPROP<X,Y,Ul),SOME(CV,NATJ
DIFFPROP<Y,X,Vlll

y lit MORE I= SOME<CU,NATJDIFFPROP<X,Y,U)) PROP
y * LESS := SOME<CV,NATJDIFFPROP<Y,X,V>l PROP
y * SATZlOB l= SATZ98 EC3<IS(X,Y),MORE(X,Yl,

LESS(X,Yl>
y * H I= MORE<X,Y>
H * SATZU l= H LESS(Y,Xl
y * HOREIS := OR<MORE,IS<X,Y)> PROP
y * LESSIS := OR(LESS,IS<X,Y)) PROP
y * H := HOREIS(X,Y)
M * SATZ13 I= TH9'L-OR'(MORE,IS(X,Yl,

LESS(Y,Xl,IS<Y,X>,M,CZ,MOREJ
SATZll(Zl,CZ,IS(X,Yll
SYMIS(NAT,X,Y,Zll LESSIS(Y,X>

96

z * I := IS<X,Y>
I * H I= HORECX,Z)
H * ISHORE1 := ISPCNAT,CU,NATJHORE<U,Z>,X,Y,

H,I> HORE(Y,Z)
I * H := HOREIS<X,Z>
H * ISHOREIS1 := ISP<NAT,CU,NATJHOREIS<U,Z>,X,

Y,H,I> HOREISCY,Z)
I * H I= HOREIS<Z,X>
H * ISHOREIS2 := ISP<NAT,CU,NATJHOREIS<Z,U),X,

Y,H,I) HOREIS<Z,Y)
y * I I= IS<X,Y)
I * HOREISI2 I= ORI2<HORE<X,Y>, lSCX,Y>, I) ; HOREIS<X,Y>
y * H := I HORE<X,Y>
H * HOREISI1 I= ORil(HORE<X,Y>,IS<X,Y>,H> ; HOREIS<X,Y)
z * u I= I NAT
U * I I• ; IS(X,Y>
I * J , .. f IS<Z,U)
J * H I= HOREIS(X,Z)
H * ISHOREIS12 I= ISHOREIS2<Z,U,Y,J,

ISHOREISl(X,Y,Z,I,H>> HOREIS<Y,U)
y * H I= HORE(X,Y)
H * SATZ10G := TH3'L-OR'<LESS(X,Y>,IS<X,Y>,

EC3E23<ISCX,Y>,HORE(X,Y>,
LESS(X,Yl,SATZlOB,H),
EC3E21CIS<X,Y>,HORE<X,Y),
LESSCX,Y) ,SATZ10B,.H>) NOT<LESSIS<X,Y)>

Y * SATZ18 := SOHEICNAT,CU,NATJ
DIFFPROP<PL<X,Yl,X,U),Y,
REFIS(NAT,PL<X,Y>>> HORE<PL(X,Y>,X>

Z * H I• HORE<X,Y)

+319

H * u I= NAT
u * DU I• DIFFPROP<U)

DU * Tl I= TRIS<NAT,X,PL<Y,U),PL<U,Y>,DU,
COHPL<Y,U> > IS<X,PL<U,Y> >

DU* T2 := TR3IS(NAT,PL<X,Z>,PL<PL<U,Y),
Z>,PL<U,PL<Y,Z>>,PL<PL<Y,Z>,U)
,ISPL1<X,PL<U,Y>,Z,T1),
ASSPLl<U,Y,Z>,COHPL(U,PL<Y,Z>>
) IS<PL<X,Z>,PL<PL<Y,Z>,U>)

DU* T3 I= SOHEI<NAT,CV,NATJ
DIFFPROP<PL<X,Z>,PLCY,Z>,V>,U,
T2> HORE<PL<X,Z>,PL(Y,Z))

-319

H * SATZ19A I= SOHEAPP<NAT,CU,NATJDIFFPROP(U)
,H,HORE<PL<X,Z),PL(Y,Z)),
CU,NATJCV,DIFFPROP(U)J
T3"-319" <U,V> > HORE<PL<X,Z>,PL<Y,Z))

Z * H I= HOREISCX,Y>

+*319

M * N I• HORECX,Y)
N * T4 := HOREISil(PL<X,Z>,PL<Y,Z),

SATZ19A(N)> HOREIS<PL<X,Z>,PL(Y,Z))
M * I I= IS(X,Y)
I * T5 I= HOREISI2(PL(X,Z>,PL<Y,Z>,

ISPLl<X,Y,Z,I» HOREIS(PL<X,Z),PL<Y,Z))

-319

H * SATZ19L I= ORAPP<HORE<X,Y>,IS(X,Y>,
HOREIS<PL<X,Z>,PL<Y,Z>>,H,
CU,HORE<X,Y)JT4'-319'(U),CU,IS
<X,Y)JT5'-319'<U>> HOREIS<PL<X,Z>,PL(Y,Z))

H * SATZ19H I= ISHOREIS12<PL<X,Z>,PL<Z,X>,
PL<Y,Zl,PL<Z,Y>,COHPL<X,Z),
COHPL(Y,Z),SATZ19L) HOREIS<PL<Z,X>,PL<Z,Y>>

97

+324

X * N := NIS<X,1)
N * U I= NAT
U * I := IS<X,<U>SUC)
I * Tl := TRIS<NAT,X,<U>SUC,PL<l,U),I,

SATZ4G<U) > IS<X,PL<l,U))
I * T2 := ISMOREl(PL<l,U>,X,1,

SYMIS(NAT,X,PLC1,U),T1>,
SATZ18<1,U» MORECX,l)

N * T3 I= SOMEAPPCNAT,CU,NATJIS<X,<U>
SUC>,SATZ3<X,N>,MORECX,1),
CU,NATJCV,ISCX,<U>SUC)JT2(U,V)
) MORE<X, 1>

-324

X * SATZ24 := TH2'L-OR'(MORE(X,1),ISCX,1),
CU,NIS<X,l)JT3'-324'(U)) MOREIS<X,1)

X * SATZ24A := SATZ13<X,1,SATZ24) LESSIS(1,X)
y * M I= MORE<Y,X>

+325

M * U I= NAT
U * DU I= DIFFPROPCY,X,U)

DU * Tl := SATZ19M<U,1,X,SATZ24(U)) MOREIS<PL(X,U>,PL<X,1))
DU* T2 := ISMOREISl(PL(X,U>,Y,PL<X,1),

SYMIS(NAT,Y,PL<X,U),DU),Tl) MOREIS<Y,PL(X,1))

-325

M * SATZ25 := SOMEAPP<NAT,CU,NATJDIFFPROP<Y,
X,U>,M,MOREISCY,PL<X,1)),
CU,NATJCV,DlFFPROF(Y,X,U)l
T2"-325'CU,V>> MOREIS(Y,PL<X,1))

y * L I= LESSCY,X)
L * SATZ25B := SATZ13CX,PL<Y,1),SATZ25<Y,X,L)

) LESSIS(PL<Y,1),X)

* p I• CX,NATJPROP
p * N I= NAT

+327

N * M I= NAT
M * LBPROP := IMP<<M>P,LESSIS<N,M>> PROP

-327

N * LB I= ALL<CX,NATJLBPROP"-327'(X>> PROP
N * MIN := AND<LB,<N>P> PROP
p * 5 := SOME<P>

+*327

s * N I= NAT
N * Tl != CX,<N>PJSATZ24A(N> LBPROP(1,N)
S * T2 := CX,NATJTl (X) LB(l>
S * L I= CX,NATJLB<X>
L * y I= NAT
y * yp I= <Y>P

YP * T3 I= SATZ1B<Y,1) MORE<PL(Y, 1> ,Y>
YP * T4 I= SATZ1OG(PL(Y,1>,Y,T3) NOT(LESSIS(PL<Y,1>,Y>>
YP * TS t= TH4'L-IMP'(<Y>P,LESSIS<PLCY,1)

,Y> ,YP,T4) NOTCLBPROP(PL<Y,1>,Y>>
yp * T6 := THl'L-ALL"(NAT,CX,NATJ

LBPROP(PL<Y,1),X>,Y,TS) NOT(LB<PL(Y,1>>>
yp * T7 := MP<LB<PL<Y,1>>,CON,<PL<Y,1)>L,

T6> CON
L * TB != SOMEAPP<NAT,P,S,CON,CX,NATJCY,

<X>PJT7CX,Y)) CON

98

s * N l= NON<NAT,CX,NATJAND<LB<X>,
NOT(LB(PL(X,1)))))

N * H := NAT
H * L I= LB<H>
L * T9 := <H>N NOT(AND(LB(H>,NOT<LB<PL(H,1))

)))

L * T10 := ET<LB<PL<H, 1)),
TH3'L-AND'(LB(H),
NOT<LB(PL(H,llll,T9,L)) LB<PL<H,1»

L * TU ·- ISP(NAT,CX,NATJLB(X),PL<H,1),
<H>SUC,T10,SATZ4A(t1)) LB«H>SUC)

N * T12 := CX,NATJINDUCTION<CY,NATJLB(Y),
T2,CY,NATJCZ,LB(Y)JT11<Y,Zl,Xl CX,NATJLB(Xl

s * T13 I= CX,NON(NAT,CX,NATJAND<LB<X>,
NOT(LB(PL<X,l)))))JT8(T12(X)l SOHE<CX,NATJAND(LB(X),

NOT<LB<PL(X,llll)l
s * H I= NAT
H * A := AND<LB(H>,NOT(LB(PL<H,1))))
A * T14 ·- ANDEl<LB(H),NOT(LB(PL(H,l)ll, ,-

Al LBUll
A * T15 := ANDE2<LB(Hl,NOT<LB<PL<H,1))),

A> NOT<LB<PL(H,ll)l
A * NHP := NOT«H>P>

NHP * N I= NAT
N * NP := <N>P

NP * T16 := HP<<N>P,LESSIS<H,N>,NP,<N>T14> LESSIS(H,Nl
NP * T17 := TH3'L-IHP'(IS<H,N>,<H>P,NHP,

CX,IS<H,N)JISP(NAT,P,N,H,NP,
SYHIS<NAT,H,N,Xl)l NOT<IS<H,Nll

NP * T18 := ORE1(LESSCH,Nl,ISCH,Nl,T16,
T17) LESSCH,Nl

NP * T19 ·- SATZ25B<N,H,T18) LESSIS(PL<H,1),Nl
NHP * T20 := CX,NATJCY,<X>PlT19<X,Y> LBCPL(H, 1))
NHP * T21 := HP<LB(PL<M,1>>,CON,T20,T15) CON

A * T22 := ET<<M>P,CX,NOT<<M>P)lT21(Xll <H>P
A * T23 := ANDI<LB<Hl,<H>P,T14,T22) HIN(Hl

-327

S * SATZ27 := TH6'L-SOME'CNAT,CX,NATl
AND(LB<Xl,NOT<LB<PLCX,ll)ll,
CX,NATJHINCX),TlJ'-327",
CX,NATJCY,AND<LB(Xl,
NOT<LB<PL(X,l>llllT23'-327'<X,
Y)) SOHE<CX,NATlHINCP,X))

-N

-LANDAU

-EQ

-ST

-E

-L

99

Appendix 5. Two shortcomings of the first verifying program

The verifying program which first checked our AUT-QE text was conceived

at the time when the language theory of AUTOMATH was still in its infancy.

Actually the first satisfactory definition of AUT-QE only appeared afterwards.

The program can therefore be seen as a formalization of an informal concept

of the language in the programmer's mind. This concept, though informal, was

quite clear; in fact it was proved afterwards that the main procedure is ade­

quate and terminates ([vD], [vD2]).

Besides being correct, the program had to be efficient: verifying a

text should be actually feasible (and not only theoretically possible), This

requirement led the programmer to economize on substitution, as by substitu­

tion expressions tend to become longer, and also because in substitution an

expression has to be scanned and completely rebuilt. Even after the program

had been operational for a year, simplifications by avoiding substitution

shortened the process time considerably.

However, in two places economy went a bit too far. It is well known

that a-reduction, i.e. renaming of bound variables (which is a special case

of substitution) is sometimes necessary in order to avoid clash of variables.

It has been assumed by the programmer that a-reduction is superfluous if all

binding variables of input expressions get different codes (see [Zl]).

Unfortunately, as has been shown by v. Daalen, this is not the case.

Clash of variables may still occur in the following two ways:

i) When it is tried to establish [x,A]B ~ [y,C]D this is done by A~ c and

B ~ [y/x]D (see [Zl], 8.4.1). This gives wrong results when xis

free in D. It would be correct to try A~ C and [x/z]B ~ [y/z]D, where

z is a fresh variable.

The fact that clash of variables may actually occur in this way is shown

by the following example. we consider the (correct) book:

* n

* X

X * y

y * a

* b

.-

.-

.-

.-

.-

PN

PN

PN

I~
E n

I [t,nJn
E n

I [t,nJn

Suppose it has to be established, relative to this book, whether

<[y,[p,nJnJ[x,nJa(x,y)>[u,[q,[r,nJnJ[s,nJnJ<u>u
D
= [z,nJa(z,[v,nJa(z,b)) .

100

It is easily seen that both expressions are correct, and that the first

expression reduces by $-reductions to

[x,nJa(x,[x,nJa(x,b))

where, as it should be, in the subexpression [x,n]a(x,b) the second x

is bound. Hence the expressions are not definitionally equal. The pro­

gram will not discover this, because it will proceed to check

D [x,nJa(x,[x,nJa(x,b)) = [x,nJa(x,[v,nJa(x,b))

and then a = a X Q X and D [x,nJa(x,b) = [x,nJa(x,b).
ii) The claim (in [zl], 5.1) that by $-reductions on expressions with dis­

tinct binding variables eventually no clash of variables can arise is

not justified, as we show by another example: Consider the following

(correct) book:

Now

*
*

X *
y *

*

n

X

y

a

b

.-

.-

.-

.-

.-

PN

PN

PN

<[Z,[i,nJ[j,nJnJ[y,nJ[x,nJa(<x>z,y)>
[u ,[k ,[l ,nJ [m, nJnJ[p ,nJ[q ,nJnJ«b>u>u

reduces by $-reductions to

[y,nJ[x,nJa(<x>[y,nJ[x,nJa(<x>b,y),y)
(1) (2) (3)

I~
I [t,nJn
E n

E n

I [t,nJ[u,nJn

If we reduce this further, the x indicated by (2), which is bound by

the abstraction indicated by (1), will be bound by the abstraction in­

dicated by (3), since the expression reduces (in the verifying program)

to

[y,nJ[x,nJa([x,nJa(<x>b,x),y)
(1) (3) (2)

while it should reduce to

[y,nJ[x,nJa([v,nJa(<v>b,x),y)
(1) (3) (2)

(where vis a new variable).

101

Appendix 6. Example of a text in AUT-68

*PROP:= PN I~
* A .- E PROP

A * I- .- PN I~

* s .- I type
s * p .- I [x,S]PROP
P * ALL .- PN E PROP
p * V .- ALL E PROP
P * a .- E S
a * u .- I 1-(V{P))
u * ALLe .- PN I 1-(<a>P)
u * Ve .- ALLe I 1-(<a>P}
p * u .- I [x,SJl-(<x>P)
u * Alli .- PN I 1-(V{P))
u * Vi .- Alli I 1-(V{P))

p * B .- E PROP
B * A-+B .- ALL{l-(A),[x,1-(A)JB) E PROP
B * u .- I 1-(A-+B)
U * V .- I 1-(A)
u * -+e .- ALLe(l-(A),[x,l-(A)JB,v,u) I f-(B)
B * u .- I [X ,1-(A) Jl-(B)
u * -+i .- ALLi(l-(A),[x,l-(A)JB,u) I 1-(A-+B)

* l. .- ALL{PROP,[x,PROP]x) E PROP
A * u .- I 1-(1.)
u * 1.e .- ALLe(PROP,[x,PROPJx,A,u) I 1-(A)

A* 7 .- A-+1. E PROP
B * AvB := ALL{PROP,[x,PROPJ((A+x)-+((B+x)+x))) E PROP
B * X .- E PROP
X * u .- I 1-(AvB)
U * V .- I [X ,1-(A) JI-(X)
V * W .- I [x,1-(B)Jl-(X)
w * ve := -+e(B+X,X,-+e(A+X,(B-+X)+X,

ALLe(PROP,[x,PROPJ((A+x)+((B+x)+x)),
X,u),+i(A,X,v)),-+i(B,X,w)) I 1-(X)

102

B * u
u * vil := ALLi(PROP,[x,PROPJ((A+x)+((B+x)+x)),

[x,PROPJ+i(A+x,(B+x)+x,
[y,r(A+x)J+i(B+x,x,
[z,r(B+x)J+e(A,x,y,u))))

6 * u

u * vi2 := ALLi(PROP,[x,PROPJ((A+x)+((B+x)+x)),
[x,PROPJ+i(A+x,(B+x)+x,
[y ,H A+x) J+i (B+x, x,
[z,r(B+x)J+e(B,x,z,u))))

i. HA)

i_ 1-(AvB)
i_HB)

i_ r(AvB)

P * SOME := ALL(PROP,[x,PROPJ(V([y,SJ(<y>P+x))+x)) E PROP
p * 3

p * X

X * u

U * V

SOME

v * SOMEe := +e(V([y,SJ(<y>P+X)),X,

V * 3e

AL Le(PROP, [x ,PROP] (V([y ,SJ (<y>P+x))
+x),X,u),Vi([y,SJ(<y>P+X),
[y,SJ+i(<y>P,X,<y>v)))

SOMEe

E PROP
E PROP
i_ r(3(P))
i_ [x,SJ[y,r(<x>P)Jr(X)

i_HX)

i. HX)
a* u .- i_ r(<a>P)
u * SOMEi := ALLi(PROP,[x,PROPJ(V([y,SJ(<y>P+x))+x),

[x,PROPJ+i(V([y,SJ(<y>P+x)),x,
[z,r(V([y,SJ(<y>P+x)))J+e(<a>P,x,

u * 3i

S * a

a * b

Ve([y,SJ(<y>P+x),a,z),u)))
SOMEi

i. r(3(P))

i_ r(3(P))

E S

E S

b * IS := ALL([x,SJPROP,[p,[x,SJPROPJ(<a>p+<L>p)) i_ PROP
b * a=b .- IS E PROP
a * ISi := ALLi([x,SJPROP,[p,[x,SJPROPJ(<a>p+<a>p),

[p, [x, S]PROP J+i (<a>p, <a>p, [y ,H <a>p) Jy)) i_ H a=a)
a * REFIS .- ISi i_ r(a=a)
a * =i ISi i_ r(a=a)
a * ref= .- ISi i_ r(a=a)

103

P * a .- E S
a * b .- E S
b * u .- I 1-(a=b)
U * V .- I 1-(<a>P)
V * !Se := +e(<a>P,P,ALLe([x,SJPROP,

[p,[x,SJPROPJ(<a>p+p),P,u),v) fl-{P)
V * SUBST.PRED .- !Se I 1-{P)
V * =e .- ISe fl-{P)

S * a .- E S
a * b .- E S
b * u .- I 1-(a=b)
u * SYM. IS .- =e([x,SJ(x=a),a,b,u,=i{a)) I 1-{b=a)
u * sym= .- SYM,IS I 1-(b=a)
b * C .- E S
e * u .- I 1-(a=b)
U * V .- I 1-(b=c)
v * TR. IS .- =e{[x,SJ(a=x),b,c,v,u) I 1-(a=c)
V * tr= .- TR. IS I 1-(a=c)

b * a#b .- 7{a=b) E PROP

S * T .- I~
T * f .- I [x,SJT
f * a .- E S
a * b .- E S
b * u .- ff-{a=b)
u * SUBST.FN .- =e([x,SJIS(T,<a>f,<x>f),

a,b,u,ISi(T,<a>f)) I ~(IS(T,<a>f,f))

+N
* nat .- PN I type
* p .- I [x,natJPROP

p * V .- ALL(nat,P) E PROP
P * n .- E nat
n * u .- I r{V{P))
u * ve .- ALLe(nat,P,n,u) I H <n>P)

104

p * ·U .- f [x,natJr(<X>P)
u * Vi .- ALLi(nat,P,u) f 1-(V(P))

p * 3 .- SOME(nat,P) E PROP
p * X .- E PROP
X * u .- f l-(3(P))
U * V .- I [x,nat][Y,r(<x>P)Jr(X)
V * 3e .- SOMEe(nat,P,X,u,v) f 1-(X)
n * u .- f 1-(<n>P)
u * 3i .- SOMEi(nat,P,n,u) f l-(3(P))

* n .- E nat
n * m .- E nat
m * n=m .- IS(nat,n,m) E PROP
m * n;!m .- 7 (n=m) E PROP

n * ref= .- REF . IS (na t , n) f 1-(n=n)
m * u .- f 1-(n=m)
u * sym= .- SYM.IS(nat,n,m,u) f 1-(m=n)
m * l .- E nat
l * u .- f 1-(n=m)
U * V .- f 1-(m= l)
V * tr= .- TR.IS(nat,n,m,l ,u,v) f 1-(n=l)

P * n .- E nat
n * m .- E nat
m * u .- f 1-(n=m)
U * V .- f 1-(<n>P)
V* subst.pred := SUBST.PRED(nat,P,n,m,u,v) f 1-(<m>P)

s * f .- f [x,nat]S
f * n .- E nat
n * m .- E nat
m * u .- f 1-(n=m)
u * subst.fn .- SUBST.FN(nat,S,f,n,m,u) I ~(IS(S,<n>f,<m>f))

* 1

* n
n * n'

* suc.fn

n * Axiom3
n * m
m * u
u * Axiom4

p * u
u * V

V * Axiom5

P * n

n * u

U * V

.- PN

.-

.- PN

.- [x,natJx'

.- PN

.-

.-

.- PN

.-

.-

.- PN

E nat
E nat
E nat

I [x,natJnat

I 1-(n'/:l)
E nat
I 1-(n'=m')
I 1-(n=m)

f 1-(<l>P)

105

I [x,nat][y,r(<x>P)Jr(<x'>P)
I 1-(V(P))

E nat
fl-(<l>P)

v * induction := Ve(P,n,Axiom5(P,u,v))
I [x,nat][y,r(<x>P)Jr(<x'>P)
fl-(<n>P)

* n

n * m
m * u
u * Satzl

* P2
n * Satz2

* P3

* 11

n * 12
n * 13

:= +i (n'=m' ,.1.,[x,1-(n'=m')]
+e(n=m,.1.,u,Axiom4(n,m,x))

.- [x,nat](x'FX)

.- induction(P2,n,Axiom3(1),
[x,natJ[y,r(<x>P2)J
Satz 1 (x ' , x ,y))

.- [x,natJ((x=l)v3([y,natJ
(x=y')))

:= vil(l=l,3([y,natJ(l=y')),

E nat
E nat
I 1-(nFm)

I 1-(n'Fm')

I [x,natJPROP

I 1-(n'Fn)

I [x,natJPROP

ref=(l)) f r(<l>P3)
:= 3i([y,natJ(n'=y'),n,ref=(n'))fl-(3([y,natJ(n'=y'))
:= vi2(r.'=l,3([y,natJ(n'=y')),

12) f r(<n'>P3)

106

n * 14

n * u

:= induction(P3,n,11,[x,natJ
[y,r(<X>P3]13(x))

.-
u * Satz3 := ve(n=l,3([y,natJ(n=y')),

3{[y,natJ(n=y')),14,[x,r(n=l)J~e
(3([y,natJ(n=y')),+e(n=l,~,u,x)),
[x,r(3([y,nat](n=y')))Jx)

I H<n>P3)
I H n,11)

I r(3([y,natJ(n=y'))l

107

Appendix 7. Excerpt for "Satz 1", "Satz 2" and "Satz 3".

LAYOUT FROH FILE EXCERPTOUTPUT/SATZ1EN2EN3 JANUARY 25, 1977 10152135

+L

* A I• PROP
A * Ii la PROP
B * IHP := CX,AlB PROP
B * C I• PROP
C * I I• IHP<A,B>
I * J , .. IHP(B,C)
J * TRIHP I= CX,Al«X>I>J IHP(A,C)

* CON , .. PN PROP
A* NOT I= IHP(CON) PROP
A* WEL I= NOT<NOT<A» PROP
A* Al I= A

Al * WELI I= CX,NOT<A>l<Al>X WEL<A>
A * W I= WEL<A>
W * ET I= PN A
A* Cl I• CON

Cl* CONE I• ET<CX,NOT(A)lCl) A

+IHP

B * N I= NOT(A>
N * TH2 I= TRIHP<CON,B,N,CX,CONJCONE(B,X)

) IHP<A,B)
B * N I• NOT
N * I I• IHP<A,B>
I* TH3 I= TRIHP(CON,I,N) NOT<A)

-IHP

B * OR := IHP(NOT<A>,B> PROP
B * Al I= ; A

Al * DRU I= TH2'-IHP"(NOT(A>,B,WELI(Al>> ' OR<A,B>
B * Bl I• ' B

B1 * ORI2 I= CX,NOT<A)lBl ' OR<A,B>
B * 0 :- ' OR<A,B)
0 * N I• ' NOT<A>
N * ORE2 I• <N>O f B

* SIGHA I• ' TYPE
SIGHA * P I• CX,SIGHAJPROP

P * ALL I• p PROP

+ALL

p * s I• SIGHA
S * N I• NOT«S>P>
N * THl I= CX,ALL(SIGHA,P)l<<S>X>N NOT<ALL<SIGHA,P))

-ALL

P * NON I= CX,SIGHAJNOT<<X>P> CX,SIGHAJPROP
P * SOHE I= NOT< NON< P)) PROP
p * s I• SIGHA
S * SP I• <S>P

SP* SOHEI I• THl'-ALL"<NON<P>,S,WELI<<S>P,
SP» SOHE(SIGHA,P)

+E

SIGHA * S I• SIGMA
S * T I• SIGNA
T * IS I• PN PROP
S * REFIS I• PN IS<S,S>

-E

108

+*E

+ST

SIGMA * SET I= PN TYPE
SIGMA * s I= SIGMA

s * so I• SET
so * ESTI I= PN PROP

p * SETOF I= PN SET
p * s I= SIGMA
s * SP := <S>P

SP * ESTII := PN ESTI<S,SETOF(P))
s * E := ESTI(S,SETOF(P))
E * ESTIE I= PN <S>P

+EG

+LANDAU

+N

* NAT I= PN TYPE

* X I= NAT
X * y := NAT
y * IS :== IS'E'(NAT,X,Y> PROP
y * NIS := NOT<IS<X,Y)) PROP
X * s := SET<NAT>
s * IN := ESTI(NAT,X,8) PROP

* p := CX,NATJPROP
p * SOME := SOME'L'<NAT,P> PROP
p * ALL := ALL'L'(NAT,P) PROP

* 1 := PN NAT

* sue := PN CX,NATJNAT

* AX3 I= PN CX,NATJNIS<<X>SUC,1)

* AX4 := PN CX,NATJCY,NATJCU,IS<<X>SUC,
<Y>SUC>JIS(X,Y)

* s I= SET<NAT>
s * COND1 I= IN<l,S> PROP
s * COND2 := ALL<CX,NATJIMP(IN<X,S>,INC<X>

suc,s» > PROP

* AX5 I= PN CS,SET<NAT)JCU,CONDl(S)J
CV,COND2<S>JCX,NATJIN<X,S)

* p I= CX,NATJPROP
p * 1P I= <l>P

1P * XSP I= CX,NATJCY,<X>PJ<<X>SUC>P
XSP * X I= NAT

+u

X * s l= SETOF<NAT,P> SET(NAT>
X * Tl := ESTIICNAT,P,1,lP> COND1(8)
X * y := NAT
y * YES := IN<Y,S>

YES* T2 := ESTIE(NAT,P,Y,YES) <Y>P
YES* T3 l= ESTII(NAT,P,<Y>SUC,<T2><Y>XSP) IN«Y>SUC,S>

X * T4 := <X><CY,NATJCU,IN<Y,S>JTJ(Y,U>>
<Tl><S>AX5 IN<X,S>

-11

X * INDUCTION := ESTIECNAT,P,X,T4'-I1") <X>P
* X I= NAT

X * y := NAT
y * N :• NIS(X,Y>

+21

N * I I• IS<<X>SUC,<Y>SUC)
I * Tl := <I><Y><X>AX4 ISCX,Y>

-21

N * SATZ1 := THJ'L-'IMP' < IS«X>SUC,<Y>SUC),
ISCX,Y),N,CU,IS<<X>SUC,<Y>SUC)
JT1 '-21' <U> > NISC<X>SUC,<Y>SUC)

+22

X * PROPl

* Tl

X * p

p * T2

-22

X * SATZ2

+23

X * PROPl

* Tl

X * T2

X * T3

X * T4

-23

X * N
N * SATZ3

-N

-LANDAU

-EQ

-ST

-E

-L

NIS<<X>SUC,X)
= <l>AX3

SATZl(<X>SUC,X,Pl

:= INDUCTION(CY,NATJPROP1'-22'(Y)
,Tl'-22',CY,NATJCU,PROPl'-22"
<Y>JT2"-22'(Y,Ul,X)

:= OR(IS<X,1>,SOHE(CU,NATJIS<X,
<U>SUC)))

:= ORil(IS<l,1),SOHE<CU,NATJIS(l,
<U>SUC)),REFIS<NAT,l)l

,- SOHEI<NAT,CU,NATJIS<<X>SUC,<U>
SUC>,X,REFIS(NAT,<X>SUC))

:= ORI2(IS<<X>SUC,1>,SOHE(CU,NATJ
IS(<X>SUC,<U>SUC>>,T2>

:= INDUCTION<CY,NATJPROP1(Yl,T1,
CY,NATJCU,PROP1(Y)JT3(Yl,X)

:=
:= ORE2(IS<X,1>,SOHE<CU,NATJIS(X,

<U>SUC)),T4'-23",N)

PROP
PROPl(ll
PROPl(X)
PROP1 «X>SUC >

NISC<X>SUC,Xl

PROP

PROP1<1)

109

SOHE(CU,NATJIS(<X>SUC,<U>SUC>
)

PROP 1 «X>SUC >

PROP1(X)

NIS<X,1>

SOHE(CU,NATJIS(X,<U>SUC))

110

Appendix 8. Example of a text in AUT-68-SYNT

* PROP .- PN

* A .-
A * f- .- PN

* zl .-
zl *ass.prop .- lastelt{tail(f-,cat{zl)))

So: if u I f-(A) then ass.prop(u) QA E PROP

* s
s * p

P * ALL

zl * V

So: if

p * a

a * u

u * Alle

p E

.-

.-

.- PN

.- ALL(dom(zl),zl)

[x,SJPROP then V(P) Q ALL(S,P) f PROP

PN

I .!le!
E PROP

I type

I synt

I .!le!
I [x,SJPROP

E PROP

E S
I f-(V(P))

E f-(<a>P)

zl * z2

z2 * ve
.- I synt

:= ALLe(cat(zl),lastelt(tail(V,ass.prop(z2))),

zl,z2)

so: if a IS, u f f-(V(P)) then Ve(a,u) I f-(<a>P)

p * u

u * Alli PN

zl * Vi := ALL i (dorn(zl) ,[x,dom(zl)Jass .prop(<x>zl) ,zl)

So: if u f [x,S]f-(<x>P) then Vi(u) f f-{V(P))

zl *V2 := V{[x,dom(zl)JV(<x>zl))

I [x,SJf-(<X>P)

I f-(V(P))

so: if P2 f [x,SJ[y,T(x)JPROP then V2(P2) QV{[x,SJV([y,T(x)J

<y><X>P2)) f PROP

z2 * z3
z3 * 'v'2e := 'v'e(z2,'v'e(zl,z3))

111

So: if a f S, bf T(a) , u f ~('v'2(P2)) then 'v'2e(a,b,u) f l-(<a>P2)

zl * 'v'2i := 'v'i([x,dom(zl)J'v'i(<x>zl))

So: if u f [x,SJ[y,T(x)J~(<y><x>P2) then 'v'2i(u) f ~('v'2(P2))

zl * 'v'3 := 'v'([x,dom(zl)J'v'2(<x>zl))

so: if P3 f [x,SJ[y,T(x)J[z,U(x,y)JPROP then 'v'3(P3) Q 'v'([x,SJ'v'([y,T(x)J
'v'([z,U(x,y)]<Z><y><X>P3))) f PROP

z3 * z4
z4 * 'v'3e := 'v'2e(z2,z3,'v'e(zl,z4))

So: if a f S , bf T(a) , cf U(a,b) , u f ~('v'3(P3)) then

'v'3e(a,b,c,u) f ~(<c><a>P3)

zl * 'v'3i := 'v'i([x,dom(zl)J'v'2i(<x>zl))

so: if u f [x,SJ[y,T(x)J[z,U(x,y)J~ (<z><y><x>P3) then 'v'3i(u) f ~('v'3(P3))

A * B
B * A->-B := 'v'([x,HA)JB)

z2 * ➔e := 'v'e(z2,zl)
z2 * mod.pan := ➔e

E PROP
E PROP

So: if u f ~(A->-B), v f ~(A) then ➔e(u,v) f ~(B), mod.pon(u,v) I ~(B).

* .L := 'v'([x,PROPJx) E PROP

A * 7 : = A->-.1 E PROP

B * AvB := 'v'([x,PROPJ((A->-x)->-((B->-x)->-x))) E PROP

112

B * X

X * u

U * V

V * W

w * ORe
z3

:= V3e(X,Yi(v),Vi(w),u)

E PROP
f f-(AvB)
f [x,f-(A)Jl-(X)
f [x,f-(B)Jl-(X)
I 1-(X)

z3 * ve := ORe(LFE(v,ass.prop(zl)),RFE(v,ass.prop(zl)),
lastelt(tail(~,val(cat(z2)))),zl,z2,z3)

So: if u f 1-{AvB), v f [x,1-(A)Jl-(X), w f [x,1-(B)Jl-(X) then ve(u,v,w)fl-{X)

B * u f f-(A)
u * ORil := V3i([x,PROPJ[y,l-(A+x)J[z,l-(B+x)J+e(y,L,))f 1-(AvB)
B*u .- fl-{B)
u * ORi2 := V3i([x,PROPJ[y,l-(A+x)J[z,l-(B+x)J+e(z,u)) fl-(AvB)

z~ * vil := ORil(ass.prop(z2),zl,z2)
z2 * vi2 := ORi2(zl,ass,prop(z2),z2)

So: if BE PROP , u f ~(A) then vil(B,u) f ~(AvB)
if A E PROP, u f ~(B) then vi2(A,u) f ~(AvB)

P * SOME := V([x,PROPJ(V([y,SJ(<y>P+x))+x))

zl* 3 := SOME(dom(zl),zl)

so: if Pf [x,SJPROP then 3(P) Q SOME(S,P) _§_ PROP

p * X .-
X * u .-
U * V .-
v * SOMEe := V2e(X,V2i(v),u)

E PROP

E PROP
f f-(3(P))
f [x,SJ[y,~(<x>P)J~(X)
I 1-(X)

z2 * 3e := SOMEe(dom(z2),lastelt(tail(3,ass.prop(z))),
lastelt(tail(~,val([x,dom(z2)Jval(<X>cat(z2))))),zl,z2)

So: if u f (3(P)), v f [x,SJ[y,1-(<x>P)Jl-(X) then 3e(u,v) f 1-(X)

a * u
u * SOMEi

23 * 3i

:= V2i([x,PROPJ[z,r(V([y,SJ(<y>P+x)))J
V2e(a,u,z))

:= SOMEi(dom(zl),zl,z2,z3)

113

fl-{<a>P)

f l-(3(P))

So: if PE [x,SJPROP, a f S, u f 1-(<a>P) then 3i(P,a,u) f l-(3(P))

S * a

a * b

b * IS

z2 * zl=z2

:= V([p,[x,SJPROPJ(<a>p+p))

:= IS(cat(zl),zl,z2)

So: if a ES, bf S then a=b Q IS(S,a,b) f PROP

zl * left=
zl * right=

.- LFE(=,ass.prop(zl))

.- RFE(=,ass.prop(zl))

So: if u I r(a=b) then left=(u) Q a, right=(u) Q b

a* ISi

zl * .. ;
zl * ref=

:= V2i([p,[x,SJPROPJ[y,r(<a>p)Jy)

:= ISi(cat(zl),zl)
:= =i

So: if a Es then =i(a) I r(a=a), ref=(a) I r(a=a)

P * a
a * b

b * u

U * V

v * !Se

z3 * =e

:= V2e(P,v,u)

:= ISe(dom(zl),zl,left=(z2), right=(z2),z2,z3)
z3 * subst.pred := =e

E S

E S

E PROP

E S

E S

f 1-(a=b)
f 1-(<a>P)
I H P)

114

So: if PI [x,SJPROP, u I 1-(a=b), v f 1-(<a>P) then =e(P,u,v) f 1-(P),
subst.pred(P,u,v) f r{P)

S * a .- E S
a * b .- E S
b * u .- f 1-(a=b)
u * SYM. IS .- =e([x,SJ{x=a),u,=i{a)) f 1-(b=a)

zl * sym= := SYM.IS(cat(left=(zl)),left=(zl),right=(zl),zl)

So: if u I r(a=b) then sym=(u) I r{b=a)

. b * C

C * U

U * V

v * TR.IS .- =e([x,SJ{a=x),v,u)

E S

f 1-(a=b)
f 1-(b=c)
I 1-(a=c)

zl * tr= := TR.IS(cat(left=(zl)),left=(zl),right={zl),right={z2),zl,z2)

So: if u I r(a=b), VI r{b=c) then tr=(u,v) I r(a=c)

z2 * zlfz2 := 7(zl=z2)

So: if ~ES, b IS then afb ~ 7(a=b) f PROP

s * T .-
T * f .-
f * a .-
a * b .-
b * u .-
u * SUBST.FN .- =e{[x,SJ(<a>f = <x>f),u,=i(<a>f))

I type
f [x,SJT
E S

E S

f 1-(a=b)
f 1-(<a>f=f)

z2 * subst.fn := SUBST.FN(dom(zl),val(cat(zl)),zl,left=(z2),right=(z2),z2)

So: if f I [x,S]T, u I r(a=b) then subst.fn(f,u) I r(<a>f = f)

* nat

* 1

* n

n * n'

* suc.fn

n * AXIOM3
n * m
m * u
u * AXIOM4

* p

p * u
u * V

V * AXIOMS
n * Axiom3

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

.-

PN
PN

PN

[x,natJx'

PN

Pl\

PN
AXIOM3

I~
E nat
E nat
E nat

I [x,natJnat

fl-{n'fl)
E nat
I 1-(n' =m')
I 1-(n=m)

I [x,natJPROP
fl-(<l>P)

115

I [x,nat][y,r(<x>P)Jr(<x'>P)
f 1-(V(P))
I 1-(n' fl)

zl *Axiom4 := AXIOM4(FE(' ,right=(zl)),FE(' ,left=(zl)),zl)

So: if u f r(n'=m') then axiom4(u) f r(n=m)

v * Axioms

p * n

n * u

U * V

AXIOMS

v *induction:= ve(n,AxiomS(P,u,v))

* n

n * m
m * u
u * SATZl := Vi([x,r(n'=m')J

-->-e (u ,Ax i om4 (x)))

I 1-(V(P))

E nat
fl-(<l>P)
I [x,nat][y,r(<x>P)Jr(<x·>P)
fl-(<n>P)

E nat
E nat

I 1-(nfm)

zl * Satzl := SATZl(LFE(f,ass.prop(zl)),RFE(f,ass.prop(zl)),zl)

So: if u I r(nfm) then Satzl(u) I r(n'fm')

116

* P2
n * Satz2

* P3
* 11

n * 12
n * 13
n * 14

n * u

u * SATZ3

:= [x,natJ(x'!x)
.- induction(P2,n,Axiom3(1),[x,natJ

[y,r(<x>P2)JSatzl(y))

:= [x,natJ((x=l)v3([y,natJ(x=y')))
: = v i1 (3 ([y, na tJ (l=y')) , ref= (1))
:= 3i([y,natJ(n'=y'),n,ref=(n'))
:= vi2(n'=l,l2)
:= induction(P3,n,13,[x,natJ

[y,r(<x>P3)Jl3(x))

:= ve(l4,[x,r(n=l)JV2e(x,3([y,natJ
(n=y')),u),[x,r(3([y,natJ(n=y')))Jx)

zl * Satz3 := SATZ3(LFE(!,ass.prop(zl)),zl)

I [x,nat]PROP

I Hn 'In)

I [x,natJPROP
f H<l>P3)
I l-(3([y,natJ(n'=y')))
I l-(<n'>P3)

I H <n>P3)
I Hnti)

I r(3(Cy,natJ(n=y')))

S0: if u I r(n!l) then Satz3(u) I r(3([y,nat](n=y')))

117

Appendix 9. AUT-SYNT

In 4.1.0 we have indicated that for andi the parameters U and V

are essential, while a and b are redundant parameters. If A, B, p and q

can be correctly substituted for a, b, U and V, then A and B can be cal­

culated (up to definitional equality) from p and q, because A is definition­

ally equal to CAT(p) and B to CAT(q).

Here we introduce an extension of AUTOMATH languages, called AUT-SYNT,

in which it is possible to suppress .redundant parameters. In this language,

CAT is incorporated as a predefined function. For any 2- or 3-expression E,

CAT(E) is the mechanically calculated type of E. It follows that

andi(CAT(p) ,CAT(q) ,p,q) equals andi(A,B,p,q). The extended language moreover

contains variables for expressions. A basic symbol synt (which has no de­

gree) is added to the language. Variables of type synt (or synt variables)

are to be interpreted as syntactic variables for expressions. There are

no typing restrictions on substitution for such a variable.

Following the AUT-QE text in 4.1.1 we can write in AUT-SYNT:

* zl
zl * z2
z2 * ANDI .- andi{CAT(zl),CAT(z2),zl,z2)

Now, if A !l2E.£12., B !.I2E.£12., p !A, q EB then ANDI(p,q)

CAT(q),p,q) = andi(A,B,p,q) ! and(a,b).

andi (CAT (p) ,

Besides CAT we have other predefined functions in AUT-SYNT. They are

defined for certain classes of expressions (just as CAT is defined for 2-

expressions and 3-expressions). We list these functions here with their

semantics. In the description of the semantics we will frequently use the

clause: "if E reduces to ••. ". We will say e.g. "if E reduces to [x,A]B ••. ".

This is intended to mean: "if [x,A]B is the first abstraction expression in

the reduction sequence, obtained by reducing E according to the strategy of

the verifying program". Similar meanings are intended in other cases. Every­

where in the description E and E1 ,E2 , ••• ,En will denote correct AUT-expres­

sions.

predefined function

CAT

DOM

semantics

CAT(E) is the "mechanical type" of the 2- or 3-ex­

pression E

If E reduces to [x,A]B or CAT(E) reduces to [x,A]B

or CAT(CAT(E)) = [x,A]B then DOM(E) = A.

118

VAL

ARG

FUN

TAIL

LASTELT

PREPART

Remarks:

If E reduces to [x,A]B and B does not contain x then

VAL{E) = B.

If E reduces to <A>B then ARG(E)

If E reduces to <A>B then FUN{E)

A.

B.

If E reduces to c(A1 , ••• ,An) then TAIL(c,E) is the

string of expressions A1 , .•• ,An.

If E1 , ••• ,En is a nonempty string of expressions then

LASTELT{E1 , ••• ,En) = En.

If E1 , ••• ;En is a nonempty string of expressions then

PREPART{E1 , .•• ,En) is the string of expressions

El, ••. ,En-1"

1) Expressions containing synt variables do not have a type. Lines having

such an expression as their middle part do not have a category part.

2) EB-lines which have synt variables in their context can only have synt

as their category part. In other words: on a synt context only synt va­

riables may be introduced.

3) The identifiers CAT, DOM, VAL, ARG, FUN, TAIL, PREPART and LASTELT, and

the identifiers defined in terms of these should not be treated as ordi­

nary identifiers. In particular the monotonicity of definitional equali­

ty (in this case: if A= B then c(A) = c(B) where c is one of these spe­

cial identifiers) does not generally apply here. E.g. if f = [x,nat]l

then <l>f ~ <<l>suc>f, while ARG{<l>f) = 1 ~ <l>suc

Similar examples can be found for FUN and TAIL.

ARG{<<l>suc>f).

4) For languages admitting infix expressions there are functions LFE (for

left fixed expression) and RFE (for right fixed expression) with seman­

tics:

If E reduces to Ac B then LFE(c,E) A and RFE{c,E) B.

Examples:

1) The first elimination rule for conjunction can be represented in AUT-QE

by adding, on the context a f ErE..e_ ; b f ErE..e_

b * u

u * andel .-

introduced in 4.1.0:

I and(a,b)
E a

119

Then a and b are redundant parameters, for andel and U is an es­

sential parameter. In fact, if pis a substitution instance for U , then the

type of p can be expected to reduce to and (A,B) for some A and B, and these

A and B should the be substituted for a and b

Therefore, keeping the context zl f synt introduced above, we can add

the AUT-SYNT line

zl * ANDEl .- andel(LASTELT(PREPART(TAIL(and,CAT(zl)))),
LASTELT(TAIL(and(CAT(zl))),zl)

Then p _! and(A,B) implies ANDEl(p) _!A.

We can now indicate a complication which must be kept in mind when using

AUT-SYNT, and which is connected with remark 3 above. Suppose and has

been defined by and:= not(imp(a,not(b))) We may have p, A and B such

that CAT(p) = not(imp(A,not(B))), and then we have andel(A,B,p) _! A, but

ANDEl(p) will be incorrect, since CAT(p) does not reduce to and(A,B).

Even worse complications may occur when using ARG and FUN.

2) In [vD, 3.6] book-equality is introduced. In AUT-SYNT we could add to

this text, on the context zl I synt; z2 I synt;

z2 * is .- IS(CAT(zl),zl,z2)
zl * refis .- REFIS(CAT(zl),zl)
zl symis .- SYMIS(CAT(LASTELT(TAIL(is,zl))),

LASTELT(PREPART(TAIL(is,zl))),
LASTELT(TAIL(is,zl)),zl)

Then for any type S, if XE S and y f S, equality of X and y could

be expressed by is(x,y) instead of IS(S,x,y) . Moreover, if XE S
we have refis(x) I is(x,x) and if p I is(x,y) we have

symis(p) I is(y,x).
3) A text in AUT-68-SYNT, in which the first three theorems of Landau's

book are proved, appears in appendix 8.

120

References

[dB] N.G. de Bruijn, AUTOMATH, a language for mathematics. Notes (pre-

[dB2]

pared by B. Fawcett) of a series of lectures in the Seminaire

de Mathematiques Superieures.

Universite de Montreal, 1971.

N.G. de Bruijn, Lambda calculus notation with nameless dummies,

a tool for automatic formula manipulation, with application

to the Church-Rosser theorem.

Indag. Math., 34, 2__, 1972.

[vD] D.T. van Daalen, A description of AUTOMATH and some aspects of

[vD2]

its language theory.

Proceedings of the Symposium on APL. ed. P. Braffort. Paris,

1974.

Appendix 1 in this thesis.

D.T. van Daalen, The language theory of AUT0MATH.

Thesis, Eindhoven University of Technology, to appear 1979.

[J] L.S. Jutting, A translation of Landau's "Grundlagen" in AUT0MATH.

Eindhoven University of Technology, Dept. of Math., 1976.

[L] E. Landau, Grundlagen der Analysis.
rd

3 ed., Chelsea Publ. Comp., New York, 1960.

[dV] R. de Vrijer, Big Trees in a \-calculus with \-expressions as

types.

\-calculus and Computer Science, ed. c. Bohm.
Springer, Berlin-Heidelberg - New York, 1975.

[Zl] I. Zandleven, A verifying program for AUTOMATH.

Proceedings of the Symposium on APL. ed. P. Braffort. Paris

1974.

[Z] J. Zucker, Formalization of classical mathematics in AUTOMATH.

To appear in: Actes du colloque international de logique,

Clermont-Ferrand, July 1975, ed. M. Guillaume.

Preprint: Eindhoven University of Technology, Dept. of Math.

OTHER TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

A leaflet containing an order-form and abstracts of all publications men­
tioned below is available at the Mathematisch Centrurn, Tweede Boerhaave­
straat 49, Amsterdam-1005, The Netherlands. Orders should be sent to the
same address.

MCT 1 T. VAN DER WALT, Fixed and almost fixed points, 1963. ISBN 90 6196
002 9.

MCT 2 A.R. BLOEMENA, Sampling from a graph, 1964. ISBN 90 6196 003 7.

MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model
and method, 1964. ISBN 90 6196 004 5.

MCT 4 G. DE LEVE, Generalized Markovian decision processes, part II: Pro-
babilistic background, 1964. ISBN 90 6196 005 3. ·

MCT 5 G. DE LEVE, H.C. TIJMS & P.J. \'1EEDA, Generalized Markovian decision
processes, Applications, 1970. ISBN 90 6196 051 7.

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 1.

MCT 7 W.R. VAN ZWET, Convex transformations of random variables, 1964.
ISBN 90 6196 007 X.

MCT 8 J.A. ZONNEVELD, Automatic numerical integration, 1964. ISBN 90 6196
008 8.

MCT 9 P.C. BAAYEN, Universal morphisms, 1964. ISBN 90 6196 009 6.

MCT 10 E.M. DE JAGER, Applications of distributions in mathematical physics,
1964. ISBN 90 6196 010 X.

MCT 11 A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964. ISBN 90 6196
011 8.

MCT 12 J.A.TH.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MOKKEN & A. VAN
WIJNGAARDEN, Formal properties of newspaper Dutch, 1965.
ISBN 90 6196 013 4.

MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of print; replacJd
by MCT 54 and 67.

MCT 14 H.A. LAUWERIER, Calculus of variations in mathematical physics, 1966.
ISBN 90 6196 020 7.

MCT 15 n. DoORNBOS, Slippage tests, 1966. ISBN 90 6196 021 5.

MCT 16 J.W. DE BAKKER, Formal definition of programming languages with an
application to the definition of ALGOL 60, 1967. ISBN 90 6196
022 3.

MCT 17 R.P. VANDERIET, Formula manipulation in ALGOL 60, part 1, 1968.
ISBN 90 6196 025 8.

MCT 18 R.P. VANDERIET, Formula manipulation in ALGOL 60, part 2, 1968.
ISBN 90 6196 038 X.

MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968.
ISBN 90 6196 026 6.

MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial
differential equations, 1968. ISBN 90 6196 027 4.

MCT 21 E. WATTEL, The compactness operator in set theory and topology,
1968. ISBN 90 6196 028 2.

MCT 22 T.J. DEKKER, ALGOL 60 procedures in nwnerical algebra, part 1, 1968.
ISBN 90 6196 029 0.

MCT 23 T.J. DEKKER & W. HOFFMANN, ALGOL 60 procedures in nwnerical algebra,
part 2, 1968. ISBN 90 6196 030 4.

MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 90 6196 060 6.

MCT 25 E.R. PAERL, Representations of the Lorentz group and projective
geometry, 1969. ISBN 90 6196 039 8.

MCT 26 EUROPEAN MEETING 1968, Seiected statistical papers, part I, 1968.
ISBN 90 6196 031 2.

MCT 27 EUROPEAN MEETING 1968, Selected statistical papers, part II, 1969.
ISBN 90 6196 040 1.

MCT 28 J. OOSTERHOFF, Combination of one-sided statistical tests, 1969.
ISBN 90 6196 041 X.

MCT 29 J. VERHOEFF, Error detecting decimal codes, 1969. ISBN 90 6196 042 8.

MCT 30 H. BRANDT CORSTIUS, Excercises in computational linguistics, 1970.
ISBN 90 6196 052 5.

MCT 31 W. M:>LENAAR, Approximations to the Poisson, binomial and hypergeo­
metric distribution functions, 1970. ISBN 90 6196 053 3.

MCT 32 L. DE HAAN, On regular variation and its application to the weak
convergence of sample extremes, 1970. ISBN 90 6196 054 1.

MCT 33 F.W. STEUTEL, Preservation of infinite divisibility under mixing
and related topics, 1970. ISBN 90 6196 061 4.

MCT 34 I. JUHASZ, A. VERBEEK & N.S. KROONENBERG, Cardinal functions in
topology, 1971. ISBN 90 6196 062 2.

MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 90 6196 063 o.
MCT 36 J. GRASMAN, On the birth of bounda.ry layers, 1971. ISBN 90 6196064 9.

MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DuIJVESTIJN, E.W. DIJKSTRA,
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN
ARETZ, W.L. VAN DER PoEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES &

G. ZOUTENDIJK, MC-25 Informatica Symposiwn, 1971.
ISBN 90 6196 065 7.

MCT 38 W.A. V'ERLOREN VAN THEMAAT, Automatic analysis of Dutch compound words,
1971. ISBN 90 6196 073 8.

MCT 39 H. BAVINCK, Jacobi series and approximation, 1972. ISBN 90 6196 074 6.

MCT 40 H.C. TIJMS, Analysis of (s,S) inventory models, 1972. ISBN 90 6196 075 4.

MCT 41 A. VERBEEK, Superextensions of topological spaces, 1972. ISBN 90
6196 076 2.

MCT 42 W. VERVAAT, Success epochs in Bernoulli trials (with applications in
nurriber theory), 1972. ISBN 90 6196 077 o.

MCT 43 F.H. RUYMGAART, Asymptotic theory of rank tests for independence,
1973. ISBN 90 6196 081 9.

MCT 44 H. BART, Meromorphic operator valued functions, 1973. ,ISBN 90 6196 082 7.

MCT 45 A.A. BALKEMA, Monotone transformations and Zimit laws, 1973.
ISBN 90 6196 083 5.

MCT 46 R.P. VAN DE RIET, ABC ALGOI,, A portable language for formula manipu-
Zation systems, part 1: The language, 1973. ISBN 90 6196 084 3.

MCT 47 R.P. VAN DE RIET, ABC ALGOL I A portable language for formula manipu-
Zation systems, part 2: The corrrpiZer, 1973. ISBN 90 6196 085 1.

MCT 48 F.E.J. KRUSEMAN ARETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, An ALGOL
60 corrrpiler in ALGOL 60, Text of the MC-corrrpiler for the
EL-XB, 1973. ISBN 90 6196 086 X.

MCT 49 H. KOK, Connected orderable spaces, 1974. ISBN 90 6196 088 6.

MCT 50 A. VAN WIJNGAARDEN, B.J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER,
M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER
(Eds) , Revised report on the a lgo1°Uhmic language ALGOL 6 8,
.1976. ISBN 90 6196. 089 4.

MCT 51 A. HORDIJK, Dynamic programming and Markov potential theory, 1974.
ISBN 90 6196 095 9.

MCT 52 P.C. BAAYEN (ed.), Topological structures, 1974. ISBN 90 6196096 7.

MCT 53 M.J. FABER, Metrizability in generalized ordered spaces, 1974.
ISBN 90 6196 097 5.

MCT 54 H.A. LAUWERIER, Asyrrrptotic analysis, part 1, 1974. ISBN90 6196098 3.

MCT 55 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 1: Theory
of designs, finite geometry and coding theory, 1974.
ISBN 90 6196 099 1.

MCT 56 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 2: graph
theory, foundations, partitions and combinatorial geometry,
1974. ISBN 90 6196 100 9.

MCT 57 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 3: Combina­
torial group theory, 1974. ISBN 90 6196 101 7.

MCT 58 W. ALBERS, Asymptotic expansions and the deficiency concept in sta­
tistics, 1975. ISBN 90 6196 102 5.

MCT 59 J.L. MIJNHEER, Sample path properties of stable processes, 1975.
ISBN 90 6196 107 6.

MCT 60 F. GoBEL, Queueing models involving buffers, 1975. ISBN 90 6196 108

* MCT 61 P. VAN EMDE BoAS, Abstract resource-bound classes, part 1.
ISBN 90 6196 109 2.

* MCT 62 P. VAN EMDE BoAS, Abstract resource-bound classes, part 2.
ISBN 90 6196 110 6.

MCT 63 J.W. DE BAKKER (ed.), Foundations of corrrputer science, 1975.
ISBN 90 6196 111 4.

MCT 64 W.J. DE SCHIPPER, Symmetric closed categories, 1975. ISBN90 6196
112 2.

MCT 65 J. DE VRIES, Topological transformation groups 1 A categorical ap­
proach, 1975. ISBN 90 6196 113 0.

MCT 66 H.G.J. PIJLS, Locally convex algebras in spectral theory and eigen­
function expansions, 1976. ISBN 90 6196 114 9.

4.

* MCT 67 H.A. LAUWERIER, Asymptotic analysis, part 2.
ISBN 90 6196 119 X.

MCT 68 P.P.N. DE GROEN, Singularly perturbed differential operators of
second order, 1976. ISBN 90 6196 120 3.

MCT 69 J.K. LENSTRA, Sequencing by enwnerative methods, 1977.
ISBN 90 6196 125 4.

MCT 70 W.P. DE RoEVER JR., Recursive program schemes: semantics and proof
theory, 1976. ISBN 90 6196 127 o.

MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision processes, 1976.
ISBN 90 6196 129 7 ..

MCT 72 J.K.M. JANSEN, Sirrrple periodic and nonperiodic Lame functions and
their applications in the theory of conical waveguides,1977.
ISBN 90 6196 130 0.

MCT 73 D.M.R. LEIVANT, Absoluteness of intuitionistic logic, 1979.
ISBN 90 6196 122 x.

MCT 74 H.J.J. TE RIELE, A theoretical and corrrputational study of general­
ized aliquot sequences, 1976. ISBN 90 6196 131 9.

MCT 75 A.E. BROUWER, Treelike spaces and related connected topological
spaces, 1977. ISBN 90 6196 132 7.

MCT 76 M. REM, Associons and the closure statement, 1976. ISBN 90 6196 135 1.

MCT 77 W.C.M. KALLENBERG, Asyrrrptotic optimality of likelihood ratio tests in
exponential families, 1977 ISBN 90 6196 134 3.

MCT 78 E. DEJONGE, A.C.M. VAN RoOIJ, Introduction to Riesz spaces, 1977.
ISBN 90 6196 133 5.

MCT 79 M.C.A. VAN ZUIJLEN, Empirical distributions and rankstatistics, 1977.
ISBN 90 6196 145 9.

MCT 80 P.W. HEMKER, A nwnerical study of stiff two-point boundary problems,
1977. ISBN 90 6196 146 7.

MCT 81 K.R. APT & J.W. DE BAKKER (eds), Foundations of corrrputer science II,
part I, 1976. ISBN 90 6196 140 8.

MCT 82 K.R. APT & J.W. DE BAKKER (eds), Foundations of corrrputer science II,
part II, 1976. ISBN 90 6196 141 6.

MCT 83 L.S. VAN BENTEM JUTTING, Checking Landau's "Grundlagen II in the
Al/TOMATH system, ISBN 90 6196 147 5.

MCT 84 H.L.L. BUSARD, The translation of the elements of Euclid from the
Arabic into Latin by Hermann ofCarinthia (?)books vii-xii, 1977.
ISBN 90 6196 148 3.

MCT 85 J. VAN MILL, Supercorrrpactness and Wallman spaces, 1977.
ISBN 90 6196 151 3.

MCT 86 S.G. VAN DER MEULEN & M. VELDHORST, Torrix I, 1978.
ISBN 90 6196 152 1.

* MCT 87 S.G. VANDERMEULEN & M. VELDHORST, Torrix II,
ISBN 90 6196 153 x.

MCT 88 A. SCHRIJVER, Matroids and linking systems, 1977.
ISBN 90 6196 154 8.

MCT 89 J.W. DE ROEVER, Complex Fourier transformation and analytic
functionals with unbounded carriers, 1978.
ISBN 90 6196 155 6.

* MCT 90 L.P.J. GROENEWEGEN, Characterization of optimal strategies in dy-
namic games, . ISBN 90 6196 156 4.

* MCT 91 J.M. GEYSEL, Transcendence in fields of positive characteristic,
. ISBN 90 6196 157 2.

* MCT 92 P.J. WEEDA, Finite generalized Markov programming,
ISBN 90 6196 158 0.

MCT 93 H.C. TIJMS (ed.) & J. WESSELS (ed.), Markm 1 decision theory, 1977.
ISBN 90 6196 160 2.

MCT 94 A. BIJLSMA, Simultaneous approximations in transcendental number
theory, 1978. ISBN 90 6196 162 9.

MCT 95 K.M. VAN HEE, Bayesian control of Markov chains, 1978.
ISBN 90 6196 163 7.

* MCT 96 P.M.B. VITANYI, Lindenmayer systems: structure, languages, and
growth functions, . ISBN 90 6196 164 5.

* MCT 97 A. FEDERGRUEN, Markovian control problems; functional equations
and algorithms, . ISBN 90 6196 165 3.

MCT 98 R. GEEL, Singular perturbations of hyperbolic type, 1978.
ISBN 90 6196 166 1

MCT 99 J.K. LENSTRA, A.H.G. RINNOOY KAN & P. VAN EMDE BOAS, Interfaces
between computer science and operations research, 1978.
ISBN 90 6196 170 X.

MCT 100 P.C. BAAYEN, D. VAN DULST & J. OOSTERHOFF (Eds), Proceedings bicenten­
nial congress of the Wiskundig Genootschap, part 1,1979.
ISBN 90 6196 168 8.

MCT 101 P.C. BAAYEN, D. VAN DuLST & J. OOSTERHOFF (Eds), Proceedings bicenten­
nial congress of the Wiskundig Genootschap, part 2,1979.
ISBN 90 9196 169 6.

MCT 102 D. VAN DULST, Reflexive and superreflexive Banach spaces, 1978.
ISBN 90 6196 171 8.

MCT 103 K. VAN HARN, Classifying infinitely divisible distributions by
functional equations,1978. ISBN 90 6196 172 6.

MCT 104 J.M. VAN WOUWE, Go-spaces and generalizations of metrizability ,1979.
ISBN 90 6196 173 4.

* MCT 105 R. HELMERS, Edgeworth expansions for linear combinations of order
statistics, . ISBN 90 6196 174 2.

MCT 106 A. SCHRIJVER (Ed.), Packing and covering in combinatories, 1979.
ISBN 90 6196 180 7.

MCT 107 C. DEN HEIJER, The numerical solution of nonlinear operator
equations by imbedding methods, 1979. ISBN 90 6196 175 o.

* MCT 108 J.W. DE BAKKER & J. VAN LEEUWEN (Eds), Foundations of computer
science III, part I, . ISBN 90 6196 176 9.

* MCT 109 J.W. DE BAKKER & J. VAN LEEUWEN (Eds), Foundations of computer
science III, part II • ISBN 90 6196 177 7.

MCT 110 J.C. VAN VLIET, ALGDL 68 transput, part I, 1979 . ISBN 90 6196 178 5.

MCT 111 J.C. VAN VLIET, ALGOL 68 transput, part II: An implementation model,
1979. ISBN 90 6196 179 3.

AN ASTERISK BEFDRE THE NUMBER MEANS '"ID APPEAR"

