

PJu..n.ted a.t .the Ma.thema.:U..c.a.e. Centlc.e, 49, 2 e BoeJr.haave-ti:tJr.a.a;t, Am6.tell.dam.

The Ma.-thema.:U..c.M Centlc.e, 6ou.nded .the 11-.th 06 Feb~ua.Jr:.y 1946, .-i..-6 a non
pno6U in-ti.:ti..:tu.:tfon a,i_m,i_ng at .the pnomotion 06 puJte ma.thema.:U..c.-6 and w
appUc.a.:U..on-ti. It .-i..-6 -tipon-tiMed by .the Ne.thvr.1.a.n.d-6 GoveJr.nmen.t .t.Mough .the
Ne.thvr.1.a.n.d-6 0)[.ganiza.:U..on 6M .the Advanc.emen.t 06 PUite RueMc.h (Z.W.0).

MATHEMATICAL CENTRE TRACTS 81

FOUNDATIONS OF
COMPUTER SCIENCE II

K.R. APT (ed.)

J.W. DE BAKKER (ed.)

PART 1

MATHEMATISCH CENTRUM AMSTERDAM 1979

AMS(MOS) subject classification scheme (1970): 68A10

ACM - Computing Reviews - categories: 5.25, 5.32

ISBN 90 6196 140 8

First printing 1976
Second printing 1979

Preface

E. L. LAWLER:

J. VAN LEEUWEN:

Graphical algorithms and their

complexity

The complexity of data organization

i

3

37

i

PREFACE

The Second Advanced Course on the Foundations of Computer Science was

organized by the Mathematical Centre as part of an international cooperation

under the auspices of the European Communities, and took place at the

University of Amsterdam, May 31 - June 11, 1976. The Course consisted of six

series of lectures, and the notes of five of these have been collected in

the present Tracts, jointly edited by K.R. Apt and the undersigned.

I am very grateful to the Netherlands Organization for the Advancement

of Pure Research (Z.W.O.) and to the European Communities for generously

supplying the money to organize the Course, to the lecturers for their

excellent contributions, to Mrs. S.J. Kuipers-Hoekstra for her invaluable

help with the organization, and to the staff of the publication services

of the Mathematical Centre for their undaunted efforts in the typing and

printing of these books.

J.W. de Bakker

Director of the Course

GRAPHICAL ALGORITHMS AND THEIR COMPLEXITY by

1 • Introduction • • • .

2. Topological ordering

3. Recognition of series parallel digraphs.

4. Isomorphism of transitive series parallel digraphs

5. Subgraph isomorphsm •.•

6. Finding minimum spanning trees

7. Generating all maximal independent sets.

8. Finding a maximum independent set.

9. Computing the chromatic number of a graph.

References. . . • •

E.L. LAWLER

3

4

5

16

19

20

25

28

29

31

MATHEMATICAL CENTRE TRACTS 81, 1976, 3-32

GRAPHICAL ALGORITHMS AND THEIR COMPLEXITY

E.L. LAWLER

University of California, Berkeley, USA

1. INTRODUCTION

Graphs have important applications in all branches of science and techno

logy. It follows that algorithms which solve problems on graphs are im

portant for the problems they solve. But there are additional reasons why

graphs and graphical algorithms have particular fascination for computer

scientists. Graphical algorithms pose a challenging array of problems in

data structures, algorithmic analysis, and complexity theory.

There is now a great wealth of literature on the subject of graphical

algorithms. The present notes are not intended as a survey. The author has

made a rather arbitrary and personal selection of problems to discuss, with

the expectation that these problems may serve as an introduction to the

methodology of the subject area.

As a first, very simple, problem, we find a "topological ordering"

of the nodes of an acyclic digraph. This can be done in O(n+m) time, pro

vided the digraph is specified by an "arc-list" data structure. (Hereafter,

we consistently let n denote the number of nodes and m the number of arcs.)

We then consider a "recognition" problem; determining if an acyclic

digraph is "series parallel". By careful tailoring of the algorithm, we

are able to obtain a bound of O(n2) on the running time - a second example

of an algorithm with polynomial-bounded running time.

We then take a brief excursion into the problem of graphic isomorphism.

There is no known polynomial-bounded algorithm for determining whether or

not two graphs are isomorphic, nor is there convincing evidence that such

an algorithm does not exist. Yet we can show that for the special case of

transitive series parallel digraphs there is such an algorithm.

4

A very basic and important problem is that of finding a minimum cost

spanning tree in an undirected graph. Various algorithms have been proposed

to solve this problem in O(n2) or O(m log n) time.

Recently, several algorithms have been proposed which have O(m log log n)

running time. We give a brief description of the simplest of these new al

gorithms. The reduced running time is obtained through the clever use of

data structures for the implementation of priority queues.

Given a graph, one sometimes wants to generate all subgraphs of a

particular type, e.g. trees, cycles. As typical of a problem of this type,

we consider the generation of all maximal independent sets. A newly devel

oped algorithm is described, and shown to have running time which is linear

in the number of maximal independent sets.

The problem of finding a maximum (cardinality) independent set is

"NP-complete", and hence it is extremely unlikely that a polynomial-bounded

algorithm exists. One obvious way to solve the problem is to generate all

maximal independent sets and to pick out one with a maximum number of ele

ments. However, it is possible to do significantly better than this, and

we indicate techniques one can apply to reduce the exponential running

time of the search procedure.

Finally, we consider another very difficult NP-complete problem; com

puting the chromatic number of a graph. We describe the application of

dynamic programming to this problem, and make use of the previous results

on generating maximal independent sets, to obtain an algorithm whose run

ning time is bounded by a relatively low order exponential function.

2. TOPOLOGICAL ORDERING

It is a well known result that a digraph G = (N,A) is acyclic (contains

no directed cycles) if and only if it is possible to "topologically" num

ber its nodes, so that (i,j) E A only if i < j. (That is, all arcs are

directed from a lower-numbered node to a higher-numbered node.) How ef

ficiently can we test an arbitrary digraph G to determine if it is acyclic,

and if it is acyclic, to determine a topological numbering of its nodes?

The "classical" procedure for solving this problem is as follows.

Find a node with in-degree zero, give that node the number 1, and delete

it from G. Then find another node with in-degree zero, give it number 2

and delete it. Continue in this way until either all nodes have been num-

bered or until there is no node with in-degree zero in the remaining sub

graph (in which case G is not acyclic).

The efficiency with which this procedure can be implemented depends

critically on the way in which the digraph is specified to the computer.

If G is represented by an adjacency matrix, there is no way to implement

the procedure in less than O(n2) time. In fact, it is has been proved that

no algorithm can solve this problem (or any problem in a much wider class)

without "looking at" at least O(n2) entries in the adjacency matrix [12].

We can, however, do much better if G is specified by means of "arc

lists". That is, for each node x, there is a simple linear list of all the

nodes to which there are arcs directed from x. Then we can proceed as fol

lows: First compute the in-degree of each node. This is done quite easily

in O(n+m) time by simply scanning the arc lists. (When y is found in the

list for x, the in-degree of y is incremented by one.) Then scan through

the array of in-degrees, picking out those nodes which have in-degree zero,

and make a list of these nodes. This requires O(n) time. Then choose a

node with in-degree zero and give it the number 1. The arc list for this

node is used to decrement the in-degrees of the nodes to which it has arcs.

If any of these in-degrees are reduced to zero, the node in question is

placed on the list of nodes with in-degree zero. Then choose another node

with in-degree zero and repeat. It is apparent that the decrementation

operations require only O(m) time overall, because there are exactly men

tries in the arc lists. Hence the algorithm is seen to require O(n+m) time

overall.

This very simple example serves to illustrate the importance of the

data structure which is used to specify a graph or digraph.

3. RECOGNITION OF SERIES PARALLEL DIGRAPHS

"Series parallel" digraphs have a number of very useful properties. In par

ticular, a number of combinatorial problems which are NP-complete for

general digraphs are computationally tractible for the special case of

series parallel digraphs [SJ. In the present section, we shall concern

ourselves with the problem of recognizing series parallel digraphs, i.e.

testing an arbitrary digraph to determine if it is series parallel. In

later sections, we shall discuss some interesting properties of these

digraphs.

First let us give a recursive definition of this class of digraphs.

5

6

A digraph on a single node is transitive series parallel. If G1 = (N1 ,A1)

and G2 = (N2 ,A2), N1 n N2 =¢,are transitive series parallel digraphs,

then G1 U G2 = (N1uN2 ,A1uA2), the parallel composition of G1, G2 , is

transitive series parallel. Also, G1 ➔ G2 = (N1uN2 ,A1uA2u(N1xN2)), the

series composition of G1 , G2 , is transitive series parallel. Only those

digraphs which can be obtained by a finite number of series and parallel

compositions of single-node digraphs are transitive series parallel. Any

digraph whose transitive closure is transitive series parallel is series

parallel.

Some examples of series parallel digraphs are given in Figure 1.

Examples of Series Parallel Digraphs

Figure 1

Clearly every series parallel digraph is acyclic. Every acyclic digraph

with three nodes or less is series parallel. The only 4-node acyclic digraph

that is not acyclic is the one shown in Figure 2. It is not hard to show

that if a digraph contains this 4-node digraph as an induced subgraph, then

the digraph is not series parallel. The recognition procedure will provide

a proof of the converse for transitive digraphs. Thus, a digraph is series

parallel if and only if its transitive closure does not contain the digraph

of Figure 2 as a "forbidden subgraph".

Forbidden Subgraph

Figure 2.

The structure of a series parallel digraph is represented by a "decompo

sition tree". Decomposition trees for the digraphs in Figure 1 are shown

in Figure 3. Each leaf of the decomposition tree of G is identified with

7

a node of G. Each internal node is designated "S" or "P", indicating serial

and parallel composition of the subgraphs identified with its sons. The

ordering of the sons of a P-node is unimportant, whereas the ordering of

the sons of S-node is significant, indicating the order of series composi

tion.

Let us adopt the convention that no son of an S-node is an S-node and

no son of a P-node is a P-node. We assert that, subject to this assumption,

the decomposition tree of a series parallel digraph is uniquely determined,

up to a permutation of the sons of P-nodes.

8

Decomposition Trees for Digraphs in Figure 1

Figure 3

Our recognition procedure attempts to construct the decomposition tree for

a given digraph G. If, at any step, it is not possible to carry the con

struction further, then we shall be able to exhibit the forbidden subgraph

as an induced subgraph of the transitive closure of G, proving that G is

not series parallel.

Let us suppose that the nodes of the given digraph G = (N,A) are

topologically ordered. As we have seen, such a numbering can be obtained

for an acyclic digraph in O(n+m) time.

our strategy will be to obtain the decomposition tree Tj+l for the

subgraph induced on nodes 1,2, ••• ,j+l from the tree T. obtained for nodes
J

1,2, ••• ,j. It is, of course, a simple matter to obtain T2 , to start the

procedure.

To facilitate our task, we shall compute the values of two Boolean

variables, SER and PAR, for each node of T,. At each leaf node i,
J

SER(i)

if (i,j+l) € A

PAR(i)

and

SER(i)

if (i,j+l) i. A

PAR(i)

For each internal node x of Tj, PAR(x) = 1 if and only if PAR(y) = 1 for

each son y of x. For each internal P-node x, SER(x) = 1 if and only if

SER(y) 1 for each son y of x. For each internals-node x, SER(x) = 1

if and only if SER(y) = 1 for the rightmost son y of x.

9

It should be clear that the values of SER and PAR can be computed for

all nodes 9f Tj in O(n) time, proceeding from the leaf nodes toward the

root node.

In words, PAR(x) = 1, if and only if node j+l is "in parallel" with

the subgraphs induced by the nodes which are descendents of x in T .• (Note
J

that this property depends upon topological ordering.) Node j+l is "in

series" with the subgraph induced by node x of T. if and only if either
J

SER(x) = 1 or else xis a P-node and PAR(x') = 0, where x' is a brother to

the right of x. Clearly, it is not possible for both SER(x) = 1 and

PAR(x) = 1.

Now let us try to insert node j+l into Tj' to obtain the tree Tj+l

If either SER(r) = 1 or PAR(r) = 1 at the root node r, then j+l is in

series or in parallel, respectively, with the subgraph induced on nodes

1,2, •.• ,j. In particular, if r is a P-node and SER(r) = 1 or if r is an

S-node and PAR(r) = 1, we must create a new root node, as indicated

10

Creation of New Root Node

Figure 4

in Figure 4. These are special cases. Otherwise, follow the procedure for

S-nodes or P-nodes, as appropriate, outlined below.

S-Node Procedure

It is assumed that PAR(r) O for the S-node r.

Case 1. If SER(r) 1, then insert j+l into Tj as the new rightmost son of

11

r. This completes the construction of Tj+l

Case 2. Suppose Case 1 does not apply. Let the sons of r, indexed from

right to left, be s 1 ,s 2 , ••• ,sp; p ~ 2. If·PAR(s1) = 0 or if SER(s2) = 1,

then node j+l is in series with the subgraph induced on the descendents of

s 2 ,s3 , ••. ,sp. Consequently, if j+l is to be inserted anywhere into Tj,

j+l must be inserted somewhere into the subtree rooted at s 1 . If s 1 is it

self a leaf node (in which case PAR(s1) = 1), replace s 1 by a new P-node

with s 1 and j+l as sons, thereby completing the construction of Tj+l· If

s 1 is a P-node, then apply the P-node procedure with r set to s 1 • (Note

that in this case SER(s1) = 0.)

Case 3. Suppose Cases 1 and 2 do not apply. (In this case, PAR(s1) = 1 and

SER(s2) 0.) If PAR(s1) = PAR(s2) = PAR(sk) = 1, fork~ 2, and SER(sk+l)

= 1, then node j+l is in parallel with the subgraph induced on the descen

dents of s 1,s2 , ••• ,sk and in series with the subgraph induced on the de

scendents of sk+l'sk+2 , •.• ,sp. Consequently, j+l can be inserted into Tj

by creating a new S-node and P-node, as shown in Figure 5. This completes

the construction of T, 1 J+

t

SER=l

Insertion of Node j+l in Case 3 of S-node Procedure

Figure 5

12

Case 4. Suppose Cases 1, 2, and 3 do not apply. That is, PAR(s1) =

= PAR(s2) = ••. = PAR(sk) = 1, k ~ 1, and PAR(sk+l) = o, SER(sk+l) = 0.

In this case it is possible to identify the forbidden subgraph in the

transitive closure of the subgraph induced on nodes 1,2, .•• ,j+l, as shown

in Fig. 6.

SER(sk+l)

PAR(sk+l)

0

0

Forbidden Subgraph

Identified in Case 4 of S-Node Procedure

Figure 6.

P-Node Procedure

It is assumed that SER(r) 0 for the P-node r.

Case 1. If PAR(r) = 1, then insert j+l into T. as a new son of r. This
J

completes the construction of Tj+l

Case 2. Suppose Case 1 does not apply. Let the sons of r, indexed arbitra

rily, be s 1 ,s2 , ••. ,sp; p ~ 2. If PAR(si) = 1 for all if k, and PAR(sk) = 0,

then node j+l is in parallel with the subgraph induced on the descendents

of si, if k. Consequently, if j+l is to be inserted anywhere into Tj, j+l

must be inserted somewhere into the subtree rooted to sk. If skis itself

a leaf node (in which case SER(sk) = 1), replace sk by a new S-node with

sk and j+l as sons, thereby completing the construction of Tj+l" If skis

an S-node, then apply the S-node procedure with r set to 5k_· (Note that

in this case PAR(sk) = 0.)

13

Case 3. Suppose Cases 1 and 2 do not apply. (In this case, there are at

least two sons s.
1.

such that PAR(s.)
1.

such that PAR(si) = 0.) If SER(si) = 1 for each son si

= 0, then node j+1 is in parallel with the subgraph in-

duced on the descendents of all sons si for which PAR(si) = 1 and in series

with the subgraph induced on the descendents of all sons si for which

PAR(si) = 0. Consequently, j+l can be inserted into Tj by creating a new

S-node and P-node, as shown in Figure 7. This completes the construction

of T. 1 .
J+

Case 4. Suppose Cases 1, 2 and 3 do not apply. That is, there are sons,

say s 1, s 2 , such that PAR(s1) = PAR(s2) = 0, and SER(s2) = 0. In this case

it is possible to identity the forbidden subgraph in the transitive closure

of the subgraph induced on nodes 1,2, .•• ,j+l, as shown in Figure 8.

PAR:I PAR:O
SER=l

Insertion of node j+l in Case 3

of P-node Procedure.

SER(s2l=O
PAR(s2l=O

Figure 7.

Forbidden Subgraph Identified in Case 4 of P-node Procedure

Figure 8.

14

It should be apparent that by starting at the root node and proceeding to

ward the leaves, one either obtains T. 1 from T. in O(n) running time, or
J+ J

shows that the digraph G is nonseries parallel. Thus, the overall running

time required for recognition of series p·arallel digraphs is O(n2).

"Two Dimensionality" of Transitive Series Parallel Digraphs

Every partial order on n elements can be represented as the intersection

of total orders. The minimum number of total orders which are necessary

to so represent a partial order is called its "dimension".

Every transitive series parallel digraph represents a partial order

of dimension 2, but not conversely. To capture the notion of two-dimension

ality geometrically, imagine that then elements of the partial order

"s "are identified with points in the plane. Let element i have coordi

nates (xi,yi) and element j have coordinates (xj,yj). Then i S j, if and

only if x1.. s x. and y. s y .• (Note that antisymmetry requires that either
J 1. J

xi I yi or xj I yj.)

Thus an element is" s" a second element if and only if it is located

below and to the left of the second element. Note that parallel composition

can be effected by locating G1 , G2 as shown in Figure 9 and series compo

sition as shown in Figure 10.

y

Parallel Composition

Figure 9

X

y

Series Composition

Figure 10

15

One can obtain two total orders whose intersection represents the transi

tive closure of a given series parallel digraph by simple operations per

formed on the decomposition tree. For each leaf node j, the two total or

ders are simply a= S = (j). For an S-node whose sons are s 1,s2 , ••. ,sk,

from right to left, with total orders a 1 ,S 1;a2 ,S2 ;,,;;ak,Sk, the total or

ders are a= akak_ 1 ••• a 1, S SkSk_1 ••• s1 • For a P-node, the total orders

are a= akak_ 1 , ..• ,a1 and S s1s2 ••• sk.

It should be evident that these total orders can be computed in O(n)

time, given the decomposition tree of the series parallel digraph.

Note that not every two-dimensional partial order is transitive series

parallel. This can be confirmed from the fact that the forbidden subgraph

can be so represented, as shown in Figure 11. Please note that one repre

sentation of the forbidden subgraph is a= (1,2,3,4), S = (2,4,1,3). One

can always renumber the nodes so that one of the partial orders is

a= (1,2, ..• ,n). Then all information about the partial order can be ob

tained from S. In particular, one can read off the complete adjacency

matrix in O(n2) time.

The preceding observations show that one can compute the transitive

closure of a series

16

y

Forbidden Subgraph is Two-Dimensional

Figure 11

parallel digraph in time O(n2). This contrasts with a time of O(n2 •81) for

the best available transitive closure algorithm for general digraphs.

4. ISOMORPHISM OF TRANSITIVE SERIES PARALLEL DIGRAPHS

The status of the graphic isomorphism problem is unclear. Specifically,

we know that the problem is in NP, but we do not know if it is either poly

nomial-bounded or NP-complete. We do know that a number of problems are

polynomial equivalent to the graphic isomorphism problem: isomorphism of

semigroups, digraphs, bipartite graphs, chordal graphs, and series parallel

digraphs.

We present a simple reduction of the (undirected) graph isomorphism

problem to the problem of isomorphism for series parallel digraphs.

For a given graph G (N,A), construct a digraph G' = (N',A') with

m+n+l nodes, as follows. N' = N u A U {*}, where " * " is a special node.

There is an arc ((i,j),*) EA' from each "arc" node of G' to*, and an arc

(*,j) from* to each "node" node of G'. There are also arcs((i,j) ,i),

((i,j) ,j) from each "arc" node (i,j) to the "node" nodes i and j. The resulting

17

digraph G', indicated schematically in Figure 12, is clearly series paral

lel.

We also assert, without formal proof, that two graphs G1 ,G2 are iso

morphic if and only if Gi,G2, constructed· as above, are isomorphic. It

therefore follows

"arc" n9de1;1 "node" nodes

Series Parallel Digraph in Isomorphism Reduction

Figure 12

that we cannot expect to solve the isomorphism problem for series parallel

digraphs without solving the general graphic isomorphism problem as well.

What we shall do is to solve the isomorphism problem for transitive

series parallel digraphs. Or to put it another way, we shall be able to

test two series parallel digraphs G1,G2 , for isomorphism of their transi

tive closures.

It is apparent that the decomposition tree for a series parallel

digraph is also a decomposition tree for its transitive closure. We also

noted, but shall not provide a formal proof, that the decomposition tree

of a transitive series parallel digraph is uniquely determined, up to a

reordering of the sons of the P-nodes. It follows that the isomorphism

problem for transitive series parallel digraphs reduces to an isomorphism

problem for decomposition trees.

Suppose T1 and T2 are the decomposition trees for the transitive series

parallel digraphs G1 ,G2 . These graphs can be isomorphic only if both T1 ,T2

have an S-node or a P-node as roots. It follows that at each level, T1 ,T2 each

18

contain only S-nodes and leaves or only P-nodes and leaves.

We shall test for isomorphism of T1 ,T2 by working from level to level,

from the leaves toward the roots. We shall speak of a node of T1 as being

"isomorphic" to a node of T2 if the subgraphs induced on their descendents

are isomorphic. Clearly each leaf of T1 is isomorphic to each leaf of T2 ,

since all single-node digraphs are isomorphic.

Now suppose we have determined isomorphism of all pairs of nodes at

a P-level and we wish to determine isomorphism for nodes at the S-level

immediately above. Suppose node s 1 of T1 has sons p 1 ,p2 , ••. ,pk, from right
2

to left and node s 2 of T has sons Pi,p2, ... ,pk,. Clearly s 1 can be iso-

morphic to s 2 only if k = k'.Assumming this is the case, s1 is isomorphic

to s 2 if and only if p 1,p1; p 2 ,p2; ... ;pk,pk are pairwise isomorphic. It

follows that it is easy to determine isomorphism of S-nodes from isomorphism

of their sons.

Now suppose we have determined isomorphism of all pairs of nodes at

an S-level and we wish to determine isomorphism for nodes at the P-level
1

immediately above. Let node p 1 of T have sons s 1,s2 , ••• ,sk and node p2 of

T2 have sons s1,s2, ... ,sk,. Again, clearly p 1 can be isomorphic to p2 only

if k = k'. Assuming this is true, p 1 is isomorphic to p2 if and only if it

is possible to establish a one-to-one correspondence (a complete matching)

between isomorphic sons of p 1 and p2 . Note that isomorphism is an equiva -

lence rela.tion. Hence if s 1 = si and si = s 2 then s 1 = s 2 • A necessary and

sufficient condition for a complete matching to exist is that for each si,

si is isomorphic to q sons sj, q ~ 1 and that each of these sons be iso

morphic to exactly q sons si. It follows that if a complete matching exists,

it can be found by a simple algorithm, as follows:

Step 0

Step 1

Step 2

Seti= 0. No nodes are matched.

If i = k, then p 1 and p2 are isomorphic. Otherwise, set

i = i+l.

Try to find an unmatched node sj, isomorphic to si. If no

such node exists, stop; p 1 and p 2 are not isow.orphic. If

such a node s' can be found, match s . with s' and return to
j i j'

step 1.

The two transitive series parallel digraphs are isomorphic if and only if

their root nodes are isomorphic. It is evident that this can be determined

19

5. SUBGRAPH ISOMORPHISM

The subgraph isomorphism problem is to determine if a given graph G1 is

isomorphic to a subgraph of a second graph G2 • It is well-known that the

subgraph isomorphism problem is NP-complete. This result follows illlDle

diately from the fact that the maximum independent set problem is NP-com

plete, since this problem is equivalent to determining if a given complete

graph is isomorphic to a subgraph of a second graph.

The subgraph isomorphism problem can, however, be solved efficiently

for transitive series parallel digraphs.

For simplicity, let us suppose that the decomposition trees for G1 , G2

have the same type of root node (Sor P). If this is not the case, then the

problem becomes that of determining if the root for G1 is isomorphic to a

son of the root node for G2 • (Note that we shall continue speaking of

"isomorphism" of nodes, when what we mean is "isomorphism of the subgraph

induced by the descendents of the node in T1 to a subgraph of the subgraph

induced by the desc,endents of the node in T/.l

We must now make some modifications of the rules stated in the pre

vious section.

As before, suppose we have determined isomorphism for all pairs of

nodes at a P-level and we wish to determine isomorphism for nodes at the

S-level illlDlediately above. Suppose node s 1 of T1 has sons p 1,p2 , ••• ,pk,

from right to left, and node s 2 of T2 has sons Pi,p2, ... ,pk' where k' ~ k.

We find the rightmost son, pj(l) to which p 1 is isomorphic, then the right

most son, pj(2) to the left of pj(l) to which p 2 is isomorphic. The nodes

s 1 , s 2 are isomorphic if and only if all the nodes p 1 ,p2 , ... ,pk can be

matched up in this way.

Now suppose we have determined isomorphism of all pairs of nodes at

an S-level and we wish to determine isomorphism for nodes at the P-level

illlDlediately above.

Suppose node p 1 of T1 has sons s 1 ,s2 , ••. ,sk and node p2 of T2 has

sons si,s2 , ..• ,sk'' where k' ~ k. Node s 1 is isomorphic to s 2 if and only

if the nodes s 1,s2 , ••• ,sk can be matched to distinct nodes from among

si,s2•···•sk,.

20

This is a bipartite matching problem which can be solved in O(k 1) 512)

time [2]. Let k. denote the number of sons of the jth P-node at level i of
J

the T2 . Then

where ni+l is the number of nodes at level i+l. But

I n. < 2n,
i

l.

I 5/2 :,; (i \5/2 < (2n)5/2. n. ni}
i

l.
l.

It follows that the overall running time required for solving all matching

problems is O(n512). All other operations are dominated by matching, hence

subgraph isomorphism can be tested in O(n512) time.

Essentially the same approach was used by Edmonds and by Matula [8]

for the problem of determining whether one tree is isomorphic to a subtree

of another. The present procedure can be viewed as an extension of their

techniques to a broader class of isomorphism problems.

6. FINDING MINIMUM SPANNING TREES

Let G = (N,A) be a connected undirected graph, with a value c(v,w) specified

for each arc (v,w) EA. We wish to find a spanning tree T = (N,A'), such

that

l c(v,w).
(v,w)EA'

This problem has been solved in time O(n2) or O(m log n). Recently, a

variety of algorithms have been suggested, all with O(m log log n) running

time [2,14]. In the present section we describe what appears to be the

simplest of all known algorithms with O(m log log n) running time. The

presentation is adapted from Cheriton and Tarjan [2].

LEMMA 1. Let X ~ N. Let (v,w) EA be such that v EX, w EN - X, and

c(v,w) = min{c(x,y) (x,y) EA, x EX, y EN - X}. Then some minimum

spanning tree contains (v,w).

This lemma justifies the following very general procedure:

First step: Pick some node. Choose the smallest arc incident to the node.

This is the first arc of the spanning tree.

21

General step: The arcs so far selected define a forest (a graph consisting

of a set of trees) which is a subgraph of G. (Isolated nodes, not incident

to any arcs selected so far, are regarded as trees with one node.) Pick a

tree in the forest. Select the smallest unselected arc (v,w) incident to a

node in T and to a node in a different tree T'. Delete all arcs smaller

than (v,w) which are incident to T (these arcs form cycles in T). Add (v,w)

to the minimum spanning tree (updating the forest by combining T and T').

Repeat the general step until all nodes are connected.

This general method requires a mechanism for keeping track of the

subtrees in the forest. To keep track of the nodes in each tree of the

forest, we propose to use the well-known "disjoint set union" algorithm

[13]. Given a collection of disjoint sets (in this case sets of the nodes

in each tree) the set union algorithm implements three operations:

FIND (X) returns the name of the set containing node x.

UNION (i,j): combines sets i and j, naming the new set i.

INIT (i,L) initializes set i to contain all nodes in list L.

The worst-case time required for O(m) FINDs and O(n) UNIONS is O(ma (m,n)),

where xis a functional inverse of Ackermann's function [13]. Initializa

tion requires O(n) time for n trees, each consisting of a single node.

To keep track of the arcs incident to each tree of the forest, we use

mechanisms of priority queues. We maintain queues of all arcs incident to

each tree of the forest (except, of course, those arcs which have been

deleted). We need three operations on these queues:

QUNION (i,j):

MIN (i)

QINIT (i,L)

combines queues i and j, naming the new queue i.

returns the smallest arc in queue i which has an

endpoint outside tree i. MIN (i) also deletes this

arc and all smaller arcs from queue i. (Note: MIN (i)

must use the FIND operation to test whether a given

arc has an endpoint outside tree i.)

initializes queue i to contain all arcs in list L.

An implementation of the general algorithm using these operations as primi

tives appears below. We assume the graph has node set N = {1,2, ... ,n} and

22

that for each node v, I(v) = {(v,w) I (v,w) EA} is a list of the arcs

incident to V. (Note that (v,w) is considered an ordered pair (v,w) E I(v),

(w,v) E I(w).) Each tree i of the forest is represented by a set i of its

nodes and by a queue i of its incident arcs. Initially each node vis

represented by the set {v} and by a queue consisting of the arcs in I(v).

At all times during execution of the algorithm, every arc (v,w) in queue k

satisfies FIND(v) = k.

General Algorithm

For i = 1 until n do

begin

INIT (i , { i}) ;

QINIT (i, I (i));

end

While more than one tree do

begin

pick some tree K;

(i , j) + MIN (K) ;

add arc (i,j) to spanning tree;

X + FIND(j);

UNION(x,k);

QUNION(x,k)

We shall consider two methods for implementing priority queues:

(a) unordered lists and (b) ordered lists of size k.

(a) Unordered Lists

QINIT (i,L) requires O(m(i)) time where m(i) is the size of queue i

(and of L).

MIN (i,L) requires O(m(i)) time plus time for m(i) FINDs.

QUNION (i,j) requires 0(1) time.

(b) Ordered Lists of Size k

Another possiblity is to represent a queue as a list of sets, each set

initially of size k, plus possibly one set of size less thank. Each set is

in sorted order, but there is no ordering relationship among the sets. We

23

carry out QINIT (i,L) by dividing L into L ILl/kJ sets of size k plus at most

one set of size less thank. We then sort these sets. This process requires

O(ILI log k) time. MIN (i) is carried out by inspecting the arcs in each set

of queue i in order, discarding those that don't connect two different trees.

We then compare the smallest arc from each set and select the overall minimum

arc. MIN (i) requires O(s(i) + d(i)) time, plus time for s(i) + d(i) - 1 FINDs,

where s(i) is the number of sorted sets in queue i and d(i) is the number of

arcs deleted from queue i by MIN (i).

(Note: d(i) ~ 1, always, because the arc returned by MIN (i) is deleted.)

QUNION (i,j) is accomplished by simply merging the list of sets in queue i

and the list of sets in queue j. This requires 0(1) time.

We shall use the "uniform" selection rule to determine the order in which

trees are processed. This works as follows. Initially all of then trees

(each a single node) arc placed on a queue. At the general step, the first

tree Tat the front of the queue is examined. When this tree Tis connected

to another tree T', both T and T' are deleted from the queue and the new

combined tree is placed at the rear of the queue. It is easy to implement

this selection rule so that the total overhead for selection is O(n).

Without loss of generality, assume that the nodes of the graph are

numbered, so that the i th execution of MIN is MIN (i). Let m(i) be the num

ber arcs in queue i then MIN (i) is executed. For each i, 1 $ i $ n-1,

let Ti be the tree in F containing node i when MIN (i) is executed. Tn is

the minimum spanning tree constructed.

We define a stage number, st(T) for T, by st(T) = 0, if T contains

a single node, and st(T) = min{st(T'),st(T")} + 1, if Tis formed by con

necting trees T' and T" by an arc. It is easy to prove by induction that

if st (T) = j, then T · has at least 2j vertices, so there are at most l 1og nJ

stages at which trees are connected.

LEMMA 2. Two different trees T. and T. with the same stage number are node
1 J

disjoint.

Proof. Suppose T. and T. share a node. Then
1 J

Without loss of generality, assume T. c T ..
1 - J

queue have nondecreasing stage numbers (all

either T. c T. or T. c T ..
1-J J-1

The trees initially on the

zero), and the property is

preserved as the algorithm proceeds. Just before MIN (i) is executed, Ti

has a stage number as small as any tree on the queue. Thus, if Ti f. T j, all

24

trees Ton the queue which are subtrees of T. have st(T) 2 st(T.), which
J l

means st(T.) 2 st(T.) + 1. D
J l

COROLLARY 3. For any stages, 0 S s < log n,

Moreover,

l m(i) s 2m.
st(T.)=s

l

n-1
l m(i) s 2m log n.

i=l

Proof. Each arc is represented at most twice in the queues, and

0 s st(Ti) slog n-1, if 1 s is n-1, by the proof of Lemma 2 and the
st(Ti)

fact that ITil 2 2 • D

We now propose to implement the algorithm as follows:

Phase 1: Initialize all queues as unordered lists, and execute the algorithm

until stage log log n.

Phase 2: Re-initialize all queues as ordered lists of size k

execute the algorithm until completion.

log n, and

The time required for the operations QINIT and MIN in the table below.

Note that the total number is QUNIONs performed is exactly n - 1, with

0(1) time for each QUNION. The time required for FINDs and UNION is domin

ated by O(m log log n), which is seen to be the running time for the over

all algorithm.

QINIT MIN

Phase 1 O(m) O(m log log n)

Phase 2 O(m log log n) O(m)

Note that if unordered listswereused for the entire computation, the time

for MIN would be O(m log n). If ordered lists of size log n were used for

the entire computation something like -1 m + n sets could be created at
og n

initialization, and the time for MIN would then contain a term of the form

n log n. Thus two phases are necessary to attain the desired running time of

O(m log log n).

25

7. GENERATING ALL MAXIMAL INDEPENDENT SETS

An independent set of nodes of a graph G = (N,A) is a subset I~ N such

that no two nodes in I are adjacent. There are situations, e.g. in graph

coloring, in which one may want to generate all the maximal independent

sets of a given graph. This can be accomplished very efficiently by an al

gorithm due to Tsukiyama, et al [16].

Note that an independent set in G can be identified with a complete

subgraph in the complement of G. Also, the complement of an independent

set is a covering of arcs by nodes. Thus any algorithm for generating maxi

mal independent sets can be used to generate maximal cliques or minimal

covers as well.

Before describing the algorithm of the four Japanese, let us review

an older algorithm due to Paull and Unger [1~.

Let 1. denote the family of all independent sets which are maximal in
J

the subgraph induced on nodes 1,2, .•. ,j. Clearly 11 = {{1}}. We then pro-

pose to find I. 1 from I., finally obtaining I, the family of maximal
J+ J n

independent sets of G itself.

Let IE 1., and let A(j+l) denote the set of nodes adjacent to node j+l. If
J

In A(j+1) =$,it is clear that I U {j+1} E 1j+l" And if In A(j+1) f $,

then IE 1. 1• We thus deduce that
J+

I 11 I s .•• s I 1. I s I I. 1 I s ... s 11 I = K.
J J+ n

NowconsideratypicalsetI' EI. 1 If j+l i. I', then I' E 1 .. If
J+ J

j+1 EI', then I' - {j+l} ~ I, for some IE 1j and I'= (I-A(j+l)) u {j+l}.

It thus follows that if we form the multiset

then

{I I I I I (I-A(j+l)) U {j+1}, IE 1 ,},
J

It is very important to note that we refer to 1 '. 1 as a multi set. That
J+

is, 1'. 1 may contain duplicate entries. A given set I' E 1 1 may result
J+ j+l

from two distinct sets r 1 , r 2 E 1j. That is,

(6.1) I' - {j+l} r 1 - A(j+l) r2 - A(j+l),

26

even though 1 1 f 12 •

In order to obtain I. 1 from I. u I'. 1, it is necessary to purge from
J+ J J+

Ij u Ij+l those sets which are either nonmaximal or duplicates of other

entries. Since II.I= II'. 1 1 $ k, this can be done with at most O(K2)
J J+

pairwise comparisons of sets.

Now suppose A(j+l) is given by a list and each IE I. is specified by
J

an n-vector. Then o(iA(j+l) IK) time suffices to form the multiset 1'. 1 •
J+

Each set comparison requires O(n) time, so purging I. u I'. 1 of nonmaximal
2 J J+

and duplicate entries can be done in O(nK) time. It is clear that the
2 2

overall running time of the procedure is bounded by O(n Kl and storage

O(m+nK).

What the four Japanese have done is to reduce the running time to

O(mnK) and space requirements to O(m+n). Their key contribution is to show

how to form 1'. 1 without introducing either nonmaximal or duplicate sets.
J+

The avoidance of nonmaximal sets is very simple. Let IE I .. Then
J

I' = (I-A(j+l)) u {j+l}

is a maximal independent set on the subgraph induced on 1,2, •.• ,j+l, if

and only if, for all k < j+l, k ¢ I,

(6. 2) A(k) n I' f cj,.

This test can be performed for all I' E 1. 1 in O((n+m)K) time.
J+

Now let us consider the matter of duplication. Suppose a situation

were to exist, as in (6.1). The rule we shall use is the following. For

a given set I E 1., we shall introduce I' = (I-A(j+l)) u {j+l} into I"
J . j+l

only if In A(j+l) is lexicographically smallest, with respect to all sets

IE I. for which I - A(j+l) is the same.
J
Recall that lexicography induces a total order. Let 1 1 f 1 2 , where

j(l) < j(2) < ... < j(2) < < j (p); j • (1) < j' (2) < ••• < j' (q), and

p $ q. Suppose there is an ks p, such that j(i) = j' (i), for

i 1,2, ••• ,k-1, and j' (k) < j(k). Then we say that 12 is lexicographical

ly smaller than 1 1; otherwise 1 2 is lexicographically larger.

27

In words, a set I € I. satisfies the lexicography condition if and
J

only if there does not exist a node k < j+1, k i I which is nonadjacent to

both I - A(j+l) and to all lower-numbered nodes in I n A(j+1). In other

words, if and only if, for all k < j+1, k i I,

A(k) n (I-(A(j+1) n {k+1,k+2, ••• ,j})) ,f cp.

This test can also be performed for all IE I. in O((n+m)K) time.
J

It is now apparent that I. 1 can be formed from I. in O((n+m)K) run-
J+ J

ning time. Hence I can be obtained in O(n(n+m)K) time overall. Assume
n

m ~ n, and let us call this time O(mnK). (If m < n-1, then there is at

least one node with degree zero, and any such node is contained in every

maximal independent set.)

Let us now see how storage requirements can be reduced. The process

of generating the maximal independent sets can be visualized by means of

a tree, as shown in Figure 14, for the graph in Figure 13.

Graph for Example

Figure 13

{1}

/~
{1} {2}

I I
{1,3} {2}

/~ I
{1,3} {1,4} {2}

/~II
{1,3} {1,5}{1,4} {2,5}

Generation of Maximal Independent Sets
for Example

Figure 14

28

The nodes at level j of the tree are identified with sets in I., with the
J

tree rooted to {1}, the unique set in I 1• Each node has at least one son.

{Recall that for each I€ I, either I or I u {j+l is in Ij+l}. The left

son, if it exists, is identified with {I-A{j+l)) u {j+l}. This son is

provided only if the maximality and lexicography conditions are satisfied.

The right son, if it exists, is identified with I, but this son exists

only if In A{j+l) ~ ~- {otherwise I is not maximal in Ij+l' being a sub

set of I u {j+l} € Ij+l.)

we now carry out our computation in the form of a depth-first search

of thetree, always traveling downward to the left-most son of a node that

we have not yet visited. When we reach a node in I, we simply output the
n

maximal set in question {rather than maintaining it in storage). We then

backtrack. The backtracking procedure is facilitaled by maintaining a

stack. We leave it as an exercise for the reader to show that the stack

can be implemented in O{n) space.

8. FINDING A MAXIMUM INDEPENDENT SET

Let us now consider the problem of finding a maximum {i.e. maximum cardi

nality) independent set in a graph. AB we know, this is an NP-complete

problem, so we can hardly hope to find such a set in running time which is

polynomial in m and n.

It is a well-known result that tr.ere are at most 3n/3 maximal inde

pendent sets in a graph[l0]. It thus follows that the algorithm of the

previous section can be applied to solve the problem in O{mn{3l/3)n) time.

Note: 3113 f'::I 1.445.

Tarjan and Trojanowski :14] have shown that the problem can be solved

in 0{2n/3) time. We shall not go into the complete elaboration of their

procedure, but only indicate the central idea behind their procedure.

First note that the problem is trivial if the maximum degree of any

node in G does not exceed 2. In this case, each component consists of a

chain or a cycle, and it is easy to pick out a maximum number of nodes

from each component to be part of an independent set.

Hence let us assume that there is at least one node j of degree three

or more. Obviously a maximum independent set either {a) contains j or (b)

it does not. If we make the former assumption, then none of the nodes in

A{j) can be contained in the solution. It then suffices to find an inde-

29

pendent set in the graph from which j and the nodes in A(j) are deleted.

In the latter case, we are left with the problem of finding the best solu

tion we can in the subgraph obtained by deleting node j only. The first

subgraph has at most n-4 nodes, and the latter n-1.

Let c(n) the running time required to solve the problem for an

n-node graph, by our procedure. Then we have

c(n) S c(n-1) + c(n-4) + p(n),

where p(n) is a polynomial function required for housekeeping, comparing

solutions for the two subproblems, etc.

Assuming c(n) = an, for some base n, an upper bound on the order of

c(n) is given by solving for a such that

n n-1 n-4
a a + a

or

4 3 + 1. a a

This indicates a~ 1.38, which, of course, is better than 3113 ~ 1.445.

Tarjan and Trojanowski succeeded in reducing the base a to less than

2113 by a much more involved case analysis.

9. COMPUTING THE CHROMATIC NUMBER OF A GRAPH

A k-coloring of a graph G = (N,A) is a partition of the node set N into

k independent sets. If there exists such a partition, G is said to be

k-colorable. The chromatic number of G is the least value of k such that

G is k-colorable.

It is well known that the chromatic number problem is NP-complete. In

fact, even the problem of determining the chromatic number of a graph to

within a given factor r < 2 has been shown to be NP-complete [3].

A number of algorithms for this problem have been proposed [9],

yet there appears to have been very little discussion in the literature

concerning nontrivial upper bounds on the complexity of the problem. We

propose to make use of the results obtained above concerning maximal in-

30

dependent sets to obtain an algorithm with worst case running time of

O(mn(1+3/3)n). Note: 1 + 3/3 F:I 2.445.

It is easy to see that if a graph is k-colorable, at least one of the

k colors may be assumed to be a maximal independent set. For a given graph

G = (N, A) , let K (N') denote the chromatic number of the subgraph induced on

N's N. It follows that if N' is nonempty there exists a maximal indepen

dent set I of the subgraph induced on N', such that

K(N') 1 + K(N'-I).

There are a finite number of maximal independent sets I of the induced

subgraph. By minimizing over them we obtain the "dynamic programming"

equations

K(N') 1 + min {K(N'-I)}, N' ~ ~
I,SN'

K(~) 0.

We now estimate the running time required to solve these equations for all

N's N, in the worst case.

Suppose, for fixed N', we have already found K(N"), for all proper

subsets N" c N'.The time required to compute K(N') is then proportional

to the number of maximal independent sets of the subgraph induced on N',

plus the time required to generate them. But, as we have seen, this time

is no worse that O(mr3r/3), where IN'i = r. SUDDlling over all possible

N'S N, and invoking the binomial theorem, we obtain

n n
l l

r=O r=O

This yields the desired result.

31

REFERENCES

[1] A. AHO, J.E. HOPCROFT & J. ULLMAN, The design and analysis of computer

algorithms, Addison-Wesley, Reading, Mass., 1974.

[2] D. CHERITON & R.E. TARJAN, Finding minimum spanning trees, to appear

in Siam J. Comput.

[3] M.R. GAREY & D.S. JOHNSON, The complexity of near-optimal graph

coloring, Journal ACM 23 (1976) 43-49.

[4] 512 . hm f, . th' . J.E. HOPCROFT & R.M. KARP,An algorit or maximum mac ings in

bipartite graphs, SIAM J. Comput. 2 (1973) 225-231.

[5] E.L. LAWLER, Sequencing jobs to minimize total weighted completion

time subject to precedence constraints, to appear.

[6] E.L. LAWLER, A note on the complexity of the chromatic number problem,

Information Processing Letters, 5 (1976) 66-67.

[7] E.L. LAWLER, R.E. TARJAN & J. VALDEZ, Analysis and isomorphism of

series parallel digraphs, to appear.

[8] D.W. MATULA, Subtree isomorphism in O(n512), to appear.

[9] D.W. MATULA, G; MARBLE & J.D. ISAACSON, Graph coloring algorithms,

Graph Theory and Computing, R.C. Read, ed., Academic Press,

New York, 1972, 109-122.

[10] J.W. MOON & L. MOSER, On cliques in graphs, Israel J. Math. (1965)

23-28.

[11] M.C. PAUL & S.H. UNGER, Minimizing the number of states in incomplete

ly specified sequential functions, IRE Trans. Electr. Computers

EC-8 (1959) 356-357.

[12] R.L. RIVEST & J. VUILLEMIN, A generalization and proof of the Aanderaa

Rosenberg conjecture, Proc. Seventh Annual ACM Symposium on

Theory of Computing, May 1975.

[13] R.E. TARJAN, Efficiency of a good but not linear set union algorithm,

J. ACM 22 (1975) 215-225.

[14] R.E. TARJAN & R. TROJANOWSKI, Finding a maximum independent set,

Technical Report CS-76-550, Computer Science Dept.,

Stanford University.

32

[15] A.C. YAO, An O(IEI log log IVI) algorithm for finding minimum spanning

trees, Information Processing Letters, 4 (1975) 21-23.

[16] S. TSUKIYAMA, M. IDE, H. ARUJOSHI & H. OZAKI, A new algorithm for

generating all the maximal independent sets, to appear.

Note added in proof.

It appears that it is possible to recognize series parallel digraphs in

O(m) time. This newer procedure will be communicated in [7].

THE COMPLEXITY OF DATA ORGANIZATION

0. Introduction •.••••.•••.••

1. Efficiency versus data-representation.

2. File-merging ••••.•.

3. Tables and balanced trees.

4. Path compression.

5. Associative search structures.

6. Pattern matching

References ••.•.

by J. VAN LEEUWEN

37

39

51

67

84

102

126

142

MATHEMATICAL CENTRE TRACTS 81, 1976, 37-147

THE COMPLEXITY OF DATA ORGANIZATION

J. VAN LEEUWEN *

State University of New York, Buffalo, USA

0. INTRODUCTION

0.1. The way data is presented to the computer and represented in the

system can be a dominating factor in the performance of the computer as

a data-processing tool.

By its very nature the area of data-organisation extends from the

study of combinatorial algorithms to the design of information management

systems, and it is too broad to be conveyed in a series of six lectures

only.

We decided to emphasize a few topics in concrete complexity theory

which have recently received much attention and which have lead to a number

of fundamental techniques and new results which may be applicable to many

problems which computer-programmers encounter.

0.2. The present lectures neither emphasize (say) a specific domain in

computational complexity nor give you the design-philosophy of relational

database, but instead we will concentrate on useful techniques (tricks?)

in data-organisation which can bring improvements in many computer-programs

performing data-manipulations of some sort.

We have specifically avoided to present results which are already

adequately treated in such excellent texts as Knuth [43],[44] or Aho,

Hopcroft, and Ullman [3].

The reader is assumed to have some familiarity with computer-programm

ing and the fundamental information-structures as discussed in Knuth [43]

or Wirth [66]. Roberts [54] gives a useful survey of the basic file-organi

sation techniques.

*) Present address: Dept. of Computer Science, Whitmore Laboratory,
the Pennsylvania State University, University Park, Pennsylvania 16802.

38

*

DATA

I data-organisation *

DATA-STRUCTURES

I storage-organisation *

DATA-STORAGE

fig.1. Some terminology

Sometimes called "file-organisation" and "data-organisation"

respectively.

1. EFFICIENCY VERSUS DATA-REPRESENTATION

1.1. Let us start from an intuitive concept of data. The user is largely

responsible for data-collection, and must make sure that he gathers the

information needed for a successful data-processing system.

39

1.2. To facilitate retrieval and efficient manipulation information should

not be stored randomly, but is preferably organised in structures which

allow for easy acess and (say) deletion and addition of data at all times.

1.3. Computer storage is divided into directly addressable core-storage

("main memory") and "supplementary" or secondary storage ("auxiliary

memory"). Data is usually stored in auxiliary memory on mass-storage

devices like magnetic tapes, magnetic drums, (magnetic) cards, data-cells,

or disc-packs, and only small parts will be held for processing in main

memory at a time. In time-shared systems the data will necessarily be

segmented, with due restrictions on size per segment.

1.4. The user is not likely to be concerned with the "hardware" of a data

management system, but is using an intermediate language instead. This can

be a "host"-language (i.e. some general purpose programming language)

providing helpful primitive data-structures and a flexible mode-definition

mechanism for creating more complex structures, or a special data-language.

Data-structures are merely the model of data-storage as observed by

the user. The "system" presumably interpretes his model in "real" storage.

1.5. Information is usually provided in small packages of logically con

nected data called records. The fields of a record must be specified, and

may consist of other records. The information in a record can be accessed

by using the field names as selectors.

1.6. Some fields may be used (or added) for uniquely identifying a record.

The contents of such fields together form the primary key of a record.

Later we shall simply identify a record and its primary key (as it

is the only part our algorithms will be using), and define it to be an

ordered k-tuple (b1,b2 , ... ,bk) of values taken from some ordered set R.

40

1.7. Consider an arbitrary, unstructured collection of (perhaps) randomly

stored records

Numerous address-calculation schemes exist for "finding" a record when its

primary key is presented (Knuth [44]).

1.8. The simplest method would be to interprete keys as indices, and to

store the addresses in a table (fig. 2). Sequential search is easy to

program, but will require an average of N/2 probes. If keys were sorted

in lexicographic order, then presumably some kind of binary search over

"outgoing" edges for each successive component of the key would reduce

the search-time to~ log N (at worst) per component. Fredman [31] indicated

how an information-theoretic argument. can help to improve it further.

(The proof we develop here seems new.)

1.9. Consider an arbitrary node reached in progressing down the tree

)

+-- search for b

son
· a M

~ 11

41

2 1

2 2

4 1

4 2

6 1

6 2

6 3

6 4

6 5

6 6

6 7

fig.2. A table and a (lexicographic) tree

1

0 0 0 0 0

42

Suppose "son/ has pi descendant leaves, pi E N. In searching for an i

such that ai = b (sending us off to soni), it is useful in probing to empha

size more frequently occurring a's.

The proper formulation makes use of ·a binary search-tree: each node

in such a tree carries a query

~ Y else Z

t t t

some a-value

: ...•.• go left,

go right, or

"is son. It

1.

LEMMA. There exists a search-tree for finding bin

where i is such that b a ..
1.

(found it !)

Proof. Make p. copies of a. (for each j
J J

1, .•. ,M), and build a binary

tree of minimum path-length

'---v---'

p. copies
J

Call a node j-critical if and only if all its descendant leaves carry a.
J

and there is no node less deep in the tree with that property. For each

j these are one or two j-critical nodes.

Make it a search-tree by assigning appropriate queries topdown such

that the search for some b (presumably= ail is always directed to an

43

i-critical node. All nodes that are irrelevant now (thus, not on a search

path to some critical node) may be purged, after which the tree may have

to be condensed back to binary form (thus reducing the search-length of

some paths even further).

The identity of bis uncovered at the father of a critical node (and

it obviously is the fastest way of identifying it).

The height of the "father" is bounded by the smallest t such that

dt 0 in the following recurrence

do pi

d
s

d -1
c--4--J, for s = 1, 2, .•.

which is t = [log(pi+l)]. Thus a decision is found after 1log(p1+ ... +pM)7-

- [log(pi+l)] + 1 steps. D

1.10. The resulting search-tree (after all unnecessary information has

been purged) takes only little more space than was needed at the node of

1.9 anyway, and should be substituted. The original lexicographic tree

becomes a cascade of local search-trees, and it enables one to find the

address of a record (b 1,b2 , ... ,bk) quickly.

THEOREM. A record can be identified within~ log N + 2k queries.

Proof. Follow the trail of identifying (b 1 , ... ,bk) (fig. 3).

By lemma 1.9 the total number of queries needed is bounded by

k-1
}:
0

k-1
}: (["'log N.7 - [log(N.+1)]) - l+k
1 1 1

';;; log N + 2k. □

Recall that the original, unbalanced search-strategy did cost us about

~ log N queries per component.

1.11. Large collections of logically related records are hardly ever stored

44

-<--# descendants N0 N

-<--# descendants N1

-<--# descendants N2

fig.3. Cascade

randomly, and are normally arranged in one or more perhaps specifically

structured units called files. The reason for file-design (or file

organisation) is to store data appropriately on available storage-media

to allow for efficient handling of the operations which the user requests.

1.12. In modern terminology a collection of stored operational files used

by the application systems of some particular enterprise is called a

database (Engles [25]).

1.13. Files can be distinguished by the supporting retrieval mechanism.

The basic types are

(i) sequential files

- A record can be accessed only by scanning the entire file for the

point where it is stored. It is common to batch successive record-

requests, and to avoid the need for rewinding the file for each

individual request.

(ii) random access files

The address of a record is determined from its primary key with

45

a simple (perhaps tabulated) function, and access to its location

follows (almost) immediately.

(iii) indexed (sequential) files

A derived key is used as index in a directory structure to yield

the bucket where a record must be, and ordinary retrieval from

the bucket follows.

1.14. An important task in programming consists of finding the best data

organisation for an application in order that the data can be processed

most efficiently.

However, the data may not be available in most desirable form or may

be of much larger volume than can fit in core, and it can be equally impor

tant to modify algorithms for an application to work better and better

under given constraints on the data-organisation.

These two directions of research together form the domain of the

complexity-theory of data organisation.

1.15. An interesting example to show how a given data organisation can

affect the choice of an algorithm is Warren's transitive closure algorithm

for O - 1 matrices (Warren [63]).

We shall first consider the more traditional algorithm of Warshall

(Warshall [64]) for this task.

1.16. An n x n O - 1 matrix M = (m ..) can always be interpreted as the
1.J

adjacency-matrix of a directed graph GM on {1, ... ,n} where

m ..
l.J

1 <1---1> ____-->' 0 j

i 0

* * The O - 1 matrix M (mij) is called the transitive closure of M if and

only if its coefficients satisfy

* m ..
1.J

1- there is a path i ➔ ••• ➔ j (of length ~ 0) in GM.

46

1.17. Most transitive closure algorithms can be distinguished by the

stepwise manner in which all paths i + ••• + j are built up. One only needs

to consider paths free of repeating nodes.

* * 1.18. In Warshall's algorithm one builds M in stages M (s) where

1 - there is a path

i + + j

E {1,." .. ,s}

(of length~ 0) in GM.

* 1.19. Obviously M (0) * M and M (n) * M •

* 1.20. Fors= 1, •.. ,n one can construct M (s) from the previous stage by

observing that

m1~J.(s-1) v m~ (s-l)•m* .(s-1)
J.S SJ

l:,.

' fixed factor for row i

* * Denoting the i-th row of M (s) by Mi(s) we obtain the rule

* M. (s) :=
J.

if m~ (s-1) then !1~(s-1) v M*(s-1) else M~(s-1).
J.S J. S -- J.

The algorithm can now be formulated as

* "let M be M";

for s := 1 to n do

for i := 1 to n do
* * * * M. := if m. then M. V M
J. J.S -- J. s

od

od;

1.21. Warshall's algorithm works very well if each row of the matrix can

47

be packed in a single word and words can be "or" - ed directly.

As a contrast it is of interest to evaluate the algorithm for (very)

large matrices which are stored externally in a sequential file. (It also

serves as an adequate model for a paging ·environment).

Let consecutive records correspond to consecutive rows of the matrix,

and assume that one can store~ 2 records (at least) in memory at a time.

We shall use the number of records "paged in" by the algorithm as a

measure for its complexity.

1.22. The algorithm must now be formulated as

rewind;

for s := 1 ton do

scan for records;

* Ms:= get record;

rewind;

for i

* M •=
i . *

:= 1 ton do

get record

if m.
- J.S

then reset record;

fi

~;

rewind

* * Mi:= Mi V Ms;

* put Mi

2 and it follows that ~ n + n records must be read into memory.

1.23. With the given (sequential) organisation of the data Warshall's

algorithm immediately becomes less attractive because the need for the

* coefficient mis forces one to read in every record even if there is no

subsequent action on the record.

In an algorithm recently proposed by Warren ([63]) this has been

eliminated, and records are paged in only when necessary. (Our proof

seems to be new.)

* 1.24. In Warren's algorithm M is built up in two passes.

Pass I yields an intermediate matrix M& in stages M&(s) where

48

1 <l----1> there is a path

i + + j

E {l, .• .',i-1}

for all i $ s

* * and pass II subsequently yields M in stages M (s) where

1 - there i.s a path
®

i +
®
+ j

E {i+l,.' .• ,n}

for all i $ s.

* M •

Fors= 2, .•. ,n one can construct M®(s) from the previous stage by

* updating rows. One can similarly construct M (s) from the previous stage

for s = 1, ••. ,n-1.

1.26. To compute m®. (s) it is helpful to conceive of intermediate coeffi-
® SJ

cients m .(i,s) where
SJ

(0 $ i <

m®. (i,s)
SJ

s).

1 ~- there is a path

s + + j

E {1,." .. ,i}

Obviously m®. (0,s) = m®.(s-1), and the values of m®. (i,s)
SJ SJ

i 1, .•. ,s-1 can be

m®. (i, s)
SJ

SJ

computed using the rule

m®.(i-1,s) v m®. (i-1,s)•m~.(s-1)
SJ SJ. A l.J

fixed factor for the row.

Denoting the s-th row of M®(s) by M®(s) we obtain the iteration
s

for

for i := 1 to s-1 do -- - -
if m®. (s) then M®(s) :=
- Sl -- S

fi

od

(where M~(s-1)
l

*

49

1.27. To compute m .(s) it is similarly helpful to conceive of intermediate
* SJ

coefficients m .(i,s), where
SJ

* m .(i,s) = 1 <!-----1> there is a path
SJ

E { S+ :I., ; •• , i}

(s :;; i :;; n).

Obviously m*.(s,s) = m~.(n), and the values of m*.(i,s) for i s+l,
SJ SJ SJ

••. ,n can be computed using the rule

* * m . (i, s) -
SJ

m*.(i-1,s) v m*.(i-1,s)
SJ Sl

mij (s-1)

fixed fc1ctor for the row.

* We can therefore obtain m .(s) from the iteration
SJ

for i := s+l ton do - -
* * if msi (s) = 1 then Ms(s) * * := M (s) v M. (s-1)

S l

fi ,.
od (where M. (s-1)

:L

1.28. The entire algorithm can now be formulated as

rewind;

scan for record 2;

for s := 2 to n do
* M := get record;
s

rewind;

for i := 1 to s - 1 do

* M.(0)).
l

50

* * if msi then Mi:= get record;

fi

* put Ms

od;

rewind;

M* := M* V M~
s s J.

else scan for next record

for s : = 1 to n - 1 do

* Ms := get record

for i : = s + 1 to n do

* if m.
- SJ.

fi

od;

rewind;

* then Mi := get record;

M* := M* V M*
s s i

else scan for next record

scan for records;

* put Ms

od;

1.29. The number of records "paged in" by Warren's algorithm is bounded by

2(n-1) + #off-diagonal ones in M*

2
n + n #zero's in M*

* which shows that it behaves better than Warshall's the more sparse M is.

1.30. It follows that the design of good algorithms which use a pre

determined data-organisation can lead to non-trivial questions which the

theory must consider just as well, and in the complexity-theory of data

organisation one has to pay attention to the trade-offs between new data

structures and new algorithms.

51

2. FILE-MERGING

2.1. Sequential files are tape-like.

We shall assume that all records have equal size and that records are

stored with small, detectable intermissions

r--7r--7

1
inter record gap

2.2. There is a file-pointer, normally positioned at the beginning of a

record

2.3. We shall later consider essentially random access files which allow

an arbitrary (but per application bounded) number of pointers.

2.4. Any general purpose programming language provides some or all of the

following operations on a sequential file:

rewind

position the file-pointer back to the

beginning of the tape

+
r--7 r--7

x := get record

the contents of the r,3cord currently pointed at is read

into record-variable x and the pointer is advanced to

the beginning of the next record

➔

&

X - A

52

put X

the contents of record-variable xis stored into the

current record-position on the tape. The operation is

usually allowed only if·the pointer is located at the

end of the file, otherwise we assume it simply overwrites

the previous record contents

+ ~~ & X - C

reset record

positions the pointer at the beginning of the immediately

preceeding record (and void at the beginning of the tape)

+
l".i'\"7~

-I> +
..... l".i'\"7~

and occasionally one may want to use derived operations like

scan for b

repeat

x := get record

until eof v x.key = b;

(or an equivalent interpretation of it).

2.5. On files with more than one pointer we shall in fact allow primitive

operations such as

swap (p 1 ,p2)

P1
+

... IA7

-I>

and perhaps a boolean-valued instruction

ordered {p1 ,p2)

yielding true iff p 1 is before p2 and p 1.key ~ p2.key.

EXAMPLE. A random access file

with n records can be inverted in linear time by

while p2 > p 1 do swap {p1 ,p2);

P1 := pl + s;

P2 := P2 - s

{wheres is the record size).

2.6. A {sequential) file is said to be ordered if and only if the keys of

consecutive records form a nondecreasing chain.

53

2.7. The process of combining two ordered {sequential) files into a single

ordered {sequential) ·file is called merging.

A merging procedure is said to be stable if and only if it leaves the

relative order of records with the same key in the original files unchanged.

{See Knuth [44].)

2.8. It is now reasonably well-understood how to merge two files in case

some auxiliary tapes are available {Wirth [66]). It is less obvious how to

proceed with minimal storage-requirements, and in particular how to do a

linear time merge without the use of an unbounded number of {perhaps

hidden) pointers or links.

This problem was first cited in Knuth {[44], p.388) and solved in

1974 by Horvath [40] and by Luis Trabb Pardo [58].

To acquire a better appreciation for the specific constraints of the

problem we shall first consider a linear time two tape merge-procedure of

Floyd & Smith [28].

2.9. Suppose we are given two ordered sequential files of records of a -

certain sizes

54

+
A· 1nnn

N records, but perhaps

only n $ N with a distinct key.

+
B: 1nn n 1

M records, but perhaps

only m $ M with a distinct key.

We shall assume very little abouts, but only require that it provides

enough bits for the distinct keys:

s 2: log (n + m) .

2.10. The idea is to copy file A (at the end of B) and file B (at the end

of A) and insert the proper sequence numbers in intermediate records first,

showing in what order the file-members must be assembled.

An immediate problem shows up if we want to perform this in linear

time: the sequence-numbers for file A (and similarly for file B) will

occupy

N• log (N + M) in tape-length

and this may not at all be bounded in terms of the original file-length

~ N•s

which could be as little as N•log(n + m).

2.11. Instead of complete sequence-numbers we shall therefore insert

intermediate records once for each distinct key only (a common trick in

data-reduction), but augment the information per record to

i
key I f

log (N + M) bi ts for a position-number

log (N + M) bi ts counting how many records with the
present key occur

This will require an extra space of only

n (s+2 log(N+M))

:-:; N•s + 2n log(N +M)

:-:; N• s + y' • (N + M) log n

:-:; y• (Ns +Ms)

for tape A (and similarly for tape B), which is now bounded by a constant

factor in the length of the original files.

2.12. The first step of the algorithm will copy A and insert occurrence

numbers for all distinct keys.

55

After a similar procedure is applied to copy tape B into B' at the end

of tape A we have

+
A, I n n n , I n n ,

A B'

containing

+
B: ,n n 11 nn

B

containing

and the time required so far is

Ns + Ms +

rewind

Ms

scan B

+ 3Ns

scan+ copy

A

M + m records.

........ n,

A'

N+n records

+ Ns + y (Ns + Ms) + Ns +

copy onto A'

+ y (Ns + Ms) + Ms +

rewind over

3Ms

scan+ copy

B

+ Ms + y (Ns + Ms)

copy onto B'

A' and B

(6+3y) Ns + (7+3y)Ms.

56

2.13. Rewind over B'

+
A, In n I In n I

+
B, ,n n 1 , _n _____ n~1

and perform a "dummy" merge of A and B by looking at the intermediate,

accounting records only and inserting the appropriate position-number for

the first record of each distinct key in the proper field.

A, In n I ~I _n __ ._·_·_·_·_·_·_·_n~+I

B, In n I~' _n _____ n~-1-1

Rewind over A'

,n n 11 n n+
A: I

+
B: ,n n 11 n n,

and copy the records of A (taken from A') at the end of tape A in the

proper relative final position (which we can determine from the information

in the accounting records which should not be copied over)

+
A: 1 n n 11 n n 1 ~_n __ n __ n __ n ___ n~

B: In

Rewind tape A to the beginning of B'

B: 1 n

and copy all of B' onto tape B:

57

A: In n 1 ~in __ ._._._._._._._. _n~, ,_"'_n ___ n __ n ___ n ____ n _ _,
B'

B: 1 n n 1 ... 1 _n _____ n___,1 1 n n\

B" = B'

Finally, rewind over B11 and copy the records of B (taken from B") into

their final positions on tape A (again using the information from the

accounting records)

A: 1 n n 11 n n 11 n n n n n n n

B: In

The merged version of the original files appears as the last block on

tape A.

2.14. We have now obtained the essential result of Floyd & Smith.

THEOREM. The two-tape merge-procedure is stable and requires time linear

in the length of the merged files.

Proof. Stability follows from the construction. The time required for all

successive stages adds up to

~ (lB + ~3y) (Ns +Ms). □

2.15. Note that the algorithm requires no third tape, and we could have

,j.

used the given space even more economically had we overwritten parts which

were at some stage in the algorithm not needed anymore. We seem to be close

to an answer of Knuth's problem, but there is apparently no way to eliminate

the need for all accounting records without thereby causing a non-linear

increase of time.

It doesn't seem to be easier for random access files either, and

therefore the following result of Luis Trabb Pardo [58] is of interest.

THEOREM. There is an algorithm to merge two "rigid" random access files

in a stable way in linear time and no auxiliary storage using only a

bounded number of pointers.

58

2.16. Trabb Pardo's algorithm contains a number of interesting contribu

tions which we shall present in a simplified form to better demonstrate the

ideas.

Assume that the files are stored as one chunk

EXAMPLE.

+
nn

file A

N records

+ +

n
+
n

file B

M records

n

nnnnnnnnnnnnnnn
la lb 2c 2d 2e 1A 2B 2C 3E 3F 3G 4H 4I SJ SK

2.17. A block of consecutive records is called an internal buffer if and

only if it is fully ordered and contains only records with a distinct key.

EXAMPLE.

nnnn
1A 2C 3G 4I

2.18. The first phase consists of extracting an internal buffer of size

~ IN+M from the given files (which we always can if there are enough

distinct keys).

The buffer-elements can be collected by scanning the files from left

to right, picking a new larger record only if it is the last sample with

the current key in the row (to ensure stability later).

EXAMPLE

+ + + +
nnnnnnnnnnnr1nnn
la lb 2c 2d 2e 2B 3E 3F 4H SJ SK lA 2C 3G 4I

The buffer-elements are kept together in a "growing" block B sliding

steadily to the right, while a pointer advances to search for a next can

didate

Then:

reverse X

X i
suppose this record must be
assembled next.

o __ yr:113 nn
- _____ a Y

and reverse the marked parts

••••• Y __ or;i fe19 -----new B

and we can proceed W1til Bis full size.Bis then exchanged in the same

way to the end of the file.

The time required for this phase is bounded by

~N+M

I
+ (~/

each stretch of elements but the elements of the buffer

59

can be involved in rever
sion once

are involved in it perhaps as many
times as its number of elements.

2.19. It could very well happen that file A is "small" with respect to

s = iN+M.

EXAMPLE.

+ + +
~~~~~~g~~~~Q ---- -Ss s 

( If it is so for B we do the next procedure "backwards" • ) 



60 

Exchange A with the first part of the buffer (in linear time using 

the reversion-trick): 

EXAMPLE. 
1 2 3 

+ + + 
gg~ggggggQ~Q 

-------------- -----B A 

and merge Band A into place in a stable manner by moving pointers 2 and 3 

steadily rightwards, each time exchanging the smallest with the (buffer-) 

record under 1 • 

EXAMPLE. 

1 2 3 
+ + + 

fj]Q'i]Q g g gg ~ Q ~Q 

1 2 3 
+ + + 

fj]Q'i]Qgggg~g~Q 

1 2 3 
+ + + 

gggQgggg~s1~Q 

nnnnnnnnnnnn 
1A lB la lb 2C 2c 3D 3E 3y la 2$ 4o 

The buffer-records act as "dummies" which keep making place for records 

merged into position, and in the end they recollect in the buffer-zone. 

Sort the buffer back into order, and complete the procedure (in 

linear time) by merging the buffer back into the file (how to do it will 



61 

follow later). 

It is now clear why an internal buffer is essential: it is a group of 

records which we can move around to provide a space where needed and which 

we can bring back into stable order by just sorting! 

(Another application of the buffer will follow next.) 

2.20. Let us now assume that both A and Bare "long". Think of A and Bas 

divided into blocks of sizes. 

EXAMPLE. 

L::....J L::....J L ------A B Buffer 

It is convenient to have a notation for the first and last key of a block 

of known size: 

+ 
I r£"i(i7 . . . . . . . . f""t2F1 I 

~ 
X first (X) 

last(X) t 2 

The values can be picked up using only two probes into the block. 

2.21. If the size of A is no integer multiple of s 

EXAMPLE. 
~ A" 

~ 
A 

then get rid off the left-over part A" by merge-exchanging it (as a block) 

into Bas far right as possible, i.e., after the last block X in B for which 

last(X) < first(A"). 



62 

EXAMPLE. 

L__J L__J L__J ~ ~ L:..__J L_ L__J 

~ ---------- ----- .___,, 
A' B' B" Buffer 

last(X) < first(A") 

first(A") :5 last(Y). 

X can be found by a simple scan, and using the reversion-trick the exchange 

follows in linear time. 

The task is now reduced to 

- merge A' and B' 

- merge A" and B" 

(where the last part follows as in 2.19). Note that the records will appear 

in final position if we do the merge in place. 

2.22. Without loss of generality we can therefore assume that A has a 

neat block-arrangement. 

EXAMPLE. 

L__J L__J L__J L__J L__J L__J L__ L__J -------- -----A B Buffer 

Let the blocks of A and B be A1, .•• ,~~ and B1, .•• ,Bl. Since s ~ /N+M, 

k+l :5 s. 

2.23. The idea is to first "merge" the A-blocks (as a block) in between the 

B-blocks as far to the right as possible while preserving stable order. 



EXAMPLE. 

last (B. 1) • 
J+ 

63 

In order to find the proper order of all blocks we shall first do a 

"dummy" pass and "assign position-numbers" (as in the Floyd & Smith algo

rithm). 

The trick that makes it work in no extra space is to use the 

increasingly ordered buffer-records as "position-numbers" which we simply 

exchange into the first position of a block while temporarily storing the 

original first record of the block into the buffer-position corresponding 

to its position in the final order. 

2.24. In this way we reduced "merging" blocks to a sort on the first 

element of each block. Use a simple straight insertion method. 

Swapping each next "minimal" block into place (by a record-wise ex

change) takes s steps, and searching for the next, i-th minimal block may 

take up to k + l - i probes. The total time is bounded by 

k+l 
~ (k + l) s + I (k + l - i) ~ s2 ~ N + M 

1 

and is therefore linear. 

Finally, in a left-to-right scan we exchange the original first 

records back into the blocks while the buffer is automatically restored 

at the same time. 

2.25. It seems that we only need to re-hash neighbouring blocks somewhat 

to get records in the proper place (finally). We shall do so from right-to

left. 

We didn't "mark" what the A- and B-blocks were (it doesn't matter as 

long as we merge correctly), but one can recover the partition by inspect

ing the order-relation between the first and last record of blocks while 

scanning to the left. 



64 

EXAMPLE. 

~ ~ ..... L_J L 

last(Z) < first(Y) first(W) ~ last(X) 

last(W) > first(X) 

"A-blocks" "B-blocks" 

L_J .___, 

buffer 

The situation can be recovered in time linear in the length of the stretch 

of elements involved. Note the L-block that may drag along. A graph helps 

to show the precise order-relation b,~tween the parts. 

EXAMPLE. 

2.26. Consider XW 

EXAMPLE. 

0 : 
I I I 

I I .Jill 
I ,, 

I --------V'-- : 
o I ' 

I I I 

I ' 

X 

and use the reversion-trick to exchange X (as a block) as far to the right 

into Was possible. 



65 

EXAMPLE. 

X 

yielding 

EXAMPLE. 

:----------1 

I 

z 

2.27. Now merge X into w2v• in a stable manner using the buffer-trick from 

2.19 (which we can because Xis justs records long). 

EXAMPLE. 

z 

I 

I 
I I __ j 

~ 
I 

Y' 

and we finished off "half" of the zone in time just linear in the number 

of elements involved. 

Don't resort the buffer again each time we do such a phase. 

With the same technique one can merge Y' and w1 in a stable manner 

and "finish" the entire zone. 



66 

EXAMPLE. 

z 

Proceed left and locate the next zone, thus continuing and completing the 

merge in linear time and a bounded number of pointers. 

2.28. In the last phase of the algorithm one should resort the buffer (in 

time ~ s 2). 

EXAMPLE. 

merged file buffer 

and insert the buffer back into the file again, leaving each buffer-record 

at the far right of the stretch of file-records with the same key to ensure 

final stability. 

With the reversion-trick one can steadily slide the buffer to the left 

and absorp it in linear time and no extra space. 

EXAMPLE. 

merged file 

2.29. This completes the essential part of Trabb Pardo's minimal requirement 

stable merge procedure. (What should happen if no full size buffer can be 

extracted is left to the reader, but all necessary techniques to use have 

been presented.) Several steps were due to Kronrod and to Horvath. 

2.30. Note that an "in-place" linear time merge procedure immediately yields 



67 

an "in-place" and minimal requirement o (n log n) sorting method by merging 

the data into adjacent blocks of a size which is an increasing power of 

two. 

3. TABLES AND BALANCED TREES 

3.1. The choice of a proper data-organisation for a task depends on how 

the user wants to operate on the data. 

In the design-philosophy of programming languages there is a tendency 

to make data-structuring more and more automatic. Ultimately the user 

should be able to specify the axioms and rules for the operations on the 

data in some formal language, and the system should determine a consistent 

(and preferably efficient) internal representation. This has been studied 

theoretically (see Spitzen & Wegbreit [55]), and it is anticipated for 

PASCAL in terms of graph-specification primitives (Gehani [33]). 

3.2. Perhaps the simplest requirement on a (random access) file or table 

is that one can perform 

find (kl 

locate the record with key k 

insert (kl 

- put the record with key k into the table 

for all keys quickly. 

Since the universe of key-values may be much larger than the set of 

keys actually occurring in an application, an efficient and easy computable 

key-to-address transformation should presumably "chop down" a key into an 

index in a small hash-table where the record-address is (or will be! 

listed. 

Such hash-functions h(k) are almost by definition many-to-one, and it 

may happen that different keys are mapped onto the same hash-address. 

The anomaly in insertion occurring when a hash-address is already 

occupied is called collision. 

3.3. Collisions can be resolved by entering records in an appropriate 

overflow-area. 



68 

Another method (called open addressing) is to search the table for an 

opening "nearby" by systematically probing locations at a distance of 

incr(k) 

further and further down the table. The hash-increment function is assumed 

to be positive, and is presumably choosen to lead to an opening fast. 

The case when 

incr(k) F(h(k)) 

for all keys and some easy function Fis sometimes called double-hashing. 

3.4. Suppose we maintain a table 

item[0: M-1] 

in this manner, where item[i] contains a key k such that h(k) = i if such 

a key was ever added and probably 0 otherwise. (It is strictly true only 

until collisions have occurred.) 

One can search fork with 

L: 

visits := 0; 

probe:= h(k); 

while visits< M do 

x := item (probe); 

if X 0 then not found & exit for L fi; 

if x k then found & exit for L fi; 

probe:= probe - incr(k) (mod M); 

visits := visits+ 1 

od; 

table full; 

and insert k with essentially the same routine after replacing "not found" 

by 

item (probe) := k. 

In order that all locations of the table be probed in searching we demand 



that incr(k) is relatively prime to M. 

3.5. A hashing-method should avoid clustering of records (eliminating 

collisions from occurring too often), and is therefore usually dependent 

on an estimated probability distribution of the keys. 

3.6. Amble & Knuth [5] proposed in 1973 to maintain ordered hash-tables. 

69 

It does not mean that the table itself is entirely ordered, but that 

large parts of the chains are. 

One can search fork with 

L: 

visits:= O; 

probe:= h(k); 

step:= incr(k); 

while visits< M do 

x := item (probe); 

if x < k then not found & exit for L fi; 

if X k then found & exit for L fi; 

probe:= probe - step (mod M); 

visits:= visits+ 1 

od; 

table full; 

The kind of arrangement does not specifically make successful searches 

faster, but it tends to detect unsuccessful searches much earlier. 

3.7. If a set of keys were inserted in an empty table from largest to 

smallest (in that order) with the algorithm of 3.4, then an ordered hash

table results. 

The insertion of randomly presented keys into an ordered hash-table 

is somewhat trickier. 

EXAMPLE. Suppose we want to move 15 into position i now occupied by 10. 
15 

1of ...... ~ -
i 



70 

Then we simply remove 10 and replace it by 15. 

..... :S) 
i 

and try to re-insert 10. (Note that the replacement of an item by a larger 

item leaves all existing chains through that location consistent.) 

Re-inserting 10 by back-chaining from h(l0) on will bring us back 

to i again, so we better start the re-insertion procedure from position i 

on right-away. Note that for consistency the stepsize must become incr(l0) 

now. 

One can insert k in an ordered hash··table with 

L: 

visits:= 0; 

probe:= h(k); 

step : = incr (k) ; 

key := k; 

while visits< M do 

x := item (probe); 

if X 0 then item (probe) := key & exit for L fi; 

if x < key then item (probe) := key; 

step:= incr(x) 

fi; 

if x = key then found & exit for L fi; 

key:= x; 

probe:= probe - step (mod M); 

visits:= visits+ 1 

od; 

overflow; 

Since the x-value keeps descending Mis still a valid bound on the search

length. 

Verify that insertion in an ordered hash-table indeed leaves another 

ordered hash-table! 

3.7. The arrangement of N keys (N < M) in an ordered hash-table is unique. 



71 

3.8. Entirely different requirements of a data-organisation occur in ordered 

files or in structuring the directory of indexed files where one would 

like to perform operations 

but also 

and perhaps 

find (k) 

insert (k) 

delete (k) 

remove the item with key k 

split file at k 

separate the file in a part with items< k 

and a part with items~ k 

as efficiently as possible. 

3.9. Deleting elements in a hash-table could break up existing chains and 

make items further down the chain inaccessible unless a cumbersome reor

ganisation procedure is applied. Most implementations therefore avoid direct 

addressing schemes and use binary trees instead. 

3.10. An interesting intermediate file-organisation suggested by Coffman 

& Eve [19] results if we choose a hash-function which maps keys onto bit

strings. 

One can interprete bitstrings as coding paths down a tree and main

tain the table as a hash-tree. To insert k we follow h(k) bit-after-bit 

and enter it into the first open node encountered, unless the key was found 

on the way. 

EXAMPLE. 

Note the part of the hash-code used to enter k 1, k2 and k 3 • (0 _ "left", 

1 = "right"). 



72 

Collisions are automatically avoided except when h(k) is "too short" to 

reach a distinguishing position (in which case an overflow-area must be 

entered). 

3.11. Deleting k from its position pin the tree is easy when it is a 

leaf, but otherwise 

h(k') 

one can delete an arbitrary leaf k' from its subtree and move it up into p 

to keep the hash-tree consistent, which is very easy also (provided k' is 

not too far away). 

3.12. The average search-time in a hash-tree with N items will be~ log N 

or less (assuming'a uniform distribution), but series of inserts and 

deletes can seriously impair it and cause long and inefficient paths in 

the tree. -

3.13. Various kinds of binary search tree organisations have been proposed 

which remain balanced throughout. 

In such trees the file-elements are normally arranged in left-to-right 

order at the leaves, and the internal nodes contain appropriate queries 

if key< k then left else right 

which enable one to retrieve stored items in a top-down search (see also 

1.9). To maintain a balance in a tree with N items one must design insert

and delete-procedures which keep the worst case distance from the root to 

any leaf~ log N. 

Known balanced tree-models include AVL-trees (Adelson-Velskii & 

Landis [1]), various kinds of B-trees (Bayer [8]), 2-3 trees (Hopcroft, 

see [3]), and 1-2 trees (Maurer & Wood [45]). 



73 

We shall consider a simplified kind of 1-2 tree recently proposed by 

Ottmann & Six [49]. 

3.14. A binary (search) tree is called an HB-tree if and only if 

(i) all leaves have equal depth, 

(ii) each node with only one son has a brother with two sons. 

EXAMPLE. 

The root of an BB-tree must have two sons (unless it is a leaf). If a 

node has only one son, say p, then p must have two sons or else be a leaf. 

It follows that there can be 

no - chains 

and BB-trees must always be quite "dense". 

THEOREM. The depth d of any HB-tree with N leaves satisfies 

r1og N7 ~ d < 1.44 ••• log(N+ 1) - 0.32 ••• 



74 

Proof. (Our argument differs from Ottman & Six [49] 

of depth d we always have N s 2d -> d ~ r1og N7. 

) • In a binary tree 

Let Te (e ~ 0) be an HB-tree of depth e with the smallest possible 

number of leaves. It follows that (up to ·symmetry) Te must be of the form 

e 

fore~ 2, and Te must have Fe+2 leaves by induction (where Fi denotes the 

i-th Fibonacci-number). The depth d of a tree with N leaves satisfies 

therefore 

l+2 - 1 < F 

-/s d+2 
$ N. □ 

3.15. Observe that HE-trees axe AVL-trees in which all paths from the root 

down the tree are made equally long by inserting extra nodes of degree one 

at the appropriate places. The effect, however, is that the operations 

for inserting or deleting items are much easier to explain. 

3.16. One can insert kin the following manner. 

Find the position in the tree whe:ce k must be inserted among the 

leaves. 

k 

If p had only one son then it now has two and the structure remains an 

HB-tree. If p had two sons already then it now has three, and we must 



75 

enact a procedure split p. 

It is now advantageous to pretend that all leaves have two sons (for 

reasons of consistency only). 

The invariant maintained throughout the algorithm is that 

EXAMPLE. 

split pis called if and only if p has three sons at 

least two of which have degree 2. 

\ 
\ 

\ 

It\ 
I\ I\ I 

2 2 1 

Thus at least one of the outermost sons of p must have degree 2 and we 

shall designate one as the active son (on the active side of p). 

3.17. If pis the only son of q (say) 

EXAMPLE 
\ 

' ' 

then create a new brother p' on the active side of p, connect the active 

son of p top' and finish. 

' EXAMPLE. 
\ 

\ 



76 

If p has a brother q and father r 

EXAMPLE 

q 

A 

then make the son of p on the q-side a son of q if q has degree one (which 

makes an HB-tree even if A had degree one) and finish 

EXAMPLE 

D 

q 

,. , ' 
2 

p 

' 1 2 2 

(as originally only son 
of q D must have degree 2, 
see 3.14) 

and otherwise (when q has degree 2) create a new brother p' directly on 

the active side of. p, make the active son of p the son of p', and continue 

with split r (observing that the invariant is preserved!). 

EXAMPLE 

/ 
q P. p' 

'2' 

A 

" , ' 
2 

r 

.!\, 
0 0 
" ' ,, ' 
2 1 

If p has no father we must have reached the root of the tree and must 

create a new root one level higher. 



77 

3.18. One can delete kin the following manner. 

Find the position among the leaves where k is located. 

If pis the only son of q 

EXAMPLE 

then delete p 

EXAMPLE 

(note that q must have a 
brother of degree 2) 

and continue to delete q. 

After this initial phase the invariant maintained by the algorithm 

is that 

delete pis called if and only if p must be 

deleted and it has a brother of degree 2. 

3.19. (Our deletion-procedure differs slightly from Ottman & Six.) 

In a delete p the order between p and his brother is irrelevant, so 

we shall always assume the brother to be on the "convenient" side. 



78 

If the father of pis the only son of q 

EXAMPLE 

(this is the implied 
global structure) 

then make p' a son of r in case r has degree one, omit p and p", and con

tinue with delete q (observing that the invariant is preserved). 

EXAMPLE. 

and otherwise (when r has degree 2) we make p' a son of r also while 

dropping p and p" but observe that now the invariant is satisfied for 

split r. 



EXAMPLE 

the original sons 
of r cannot both 
have degree one. 

79 

If split r (etcetera) runs out before q' is reached we continue with 

delete q (observing that the invariant will hold), otherwise we omit q 

and finish. 

If the father of p has a brother 

EXAMPLE 

~ 

/'\ 
r r /0\ 

p' .~ @ p 

2 

then make p' a son of r, omit p, and continue with delete q in case r had 

degree one, and otherwise (when r has degree 2) construct a new brother 

r' between rand q, make p' the son of r' and omit p and q, and finish. 

EXAMPLE. 



80 

If the father of pis no son of any node we must have reached the top 

of the tree, and we can simply omit p and make his brother the new root. 

3.20. The procedures show 

THEOREM. One can execute find, insert, and delete-instructions on an ar

bitrary HB-tree with N leaves in~ log N steps per instruction. 

3.21. Given two HB-trees T1 and T2 (in that order) one can merge the cor

responding sets in the following manner. 

Assume that T1 is smaller than T2 (and modify the algorithm accordingly 

otherwise). Find the element on the left-side of T2 equally high as root(T1 ). 

EXAMPLE 

' I 

0 

Maker a son of p. If p had one son before it now has two and we can 

finish, otherwise the invariant for split pis enacted and an HB-tree 

results only after some additional moves. 

Merging two trees is thus also bounded by~ log N (or, more precisely, 

by depth(T2) - depth(T1)). 

HB-trees can now also support instructions 

split at k 

in~ log N steps as follows. Cut the tree along the path down to kin two 

parts, each part consisting of correctly ordered but loose hanging HB

trees. Merge the smaller trees into the larger continuously. 

3.21. The idea of HB-trees can be generalised following similar steps to 

k-ary search trees (Maurer, Ottmann & Six [46]). 

3.22. All previous tree-structures could be used also for implementing 



81 

disjoint unordered files or sets. 

The simplest operations data-structures for sets should support effi

ciently include 

union (A,B,C) 

- merge the (disjoint) sets named 

A and B into a new set named C -

find (k) 

- determine the name of the set to 

which k currently belongs -

A variety of new, helpful programming techniques for set-manipulation 

programs developed during and after a systematic study of Aho, Hopcroft, 

and Ullman [3] (chapter 4, see also Knuth [44]). 

Since we shall hardly ever need a search-facility in such applications 

we shall abandon the strict binary trees in favor of more general and 

perhaps more compact trees in which for each node only a father-link (if 

any) is listed. 

EXAMPLE. 

3.23. One can search the root of such a tree from any interior node on 

using 

visitednode := startnode; 

while (p := visitednode.father; p # nil) do 

visitednode := p 

od; 

root:= visitednode; 

but it is impossible to start at the root and search the tree in opposite 

direction. 

It is therefore convenient to keep a fixed directory where set

elements are and store the set-name at the root of the tree (which also 

makes updating set-names easy). 

We shall maintain a directory which yields for any set-name the 



82 

address of the corresponding root. 

3.24. Union-find programs obviously benefit from balancing the trees. 

Let the weight of a node be equal to the number of leaves in its 

subtree. 

Build the trees from items of 

~node record 

name: a character-string; 

weight: an integer; 

father: t node; 

The idea of balancing in performing a "union" is to never merge a tree of 

larger weight into a tree of smaller weight. 

EXAMPLE. Note the difference in merging. 

A 2 I - I 

[\ and 

into 

le I 6 I- I C 6 I - I 

I i ~ / l \ 0 0 I B I 4 I 1171 or I A 2 117 

I \ ! \ !\ !\ 
/\ I\ 

(Note also that in merging some of the original set-names are automatical

ly "lost"). 



83 

The objective of this rule is to keep the path-length in the merged trees 

down, thus permitting efficient find's at any moment. 

3.25. A union (A,B,C) instruction can be ·executed by 

set a:=+ root A; 

set b :=+root B; 

if set a. weight> set b. weight then p : = set a;· 

set a:= set b; 

set b := p 

fi; 

set b.name := C; 

set b•weight := set b•weight + set a•weight; 

set a.father:= set b; 

followed by an update of the set-name directory. 

3.26. Given none-element sets initially, it follows that 

THEOREM. The given organisation can support m (less than n) union-find 

instructions in~ log m steps per instruction. 

Proof. Unions take~ constant time. The time required by find's is bounded 

by~ the maximal path-length in any tree built during the algorithm. 

We observe that any tree of depth d in the forest under· construction 

must have weight~ 2d. This is true initially (ford= 0), and whenever 

two trees are merged into a tree of depth d later 

d 

either T2 already had depth d and weight~ 2d by induction or T1 has depth 

d- 1 and 

because of balancing 

by induction 



84 

which means that the resulting tree has 

also. 

The maximal path-length d therefore satisfies 2d ~ m -> d ~ log m. O 

3.27. In merging, one set will always loose its original name (see 3.24) 

and because the result of balancing is rather unpredictable we may not 

know in advance which one. Note also that under circumstances the same root 

may be renamed more than once. 

It is therefore impossible in the given implementation to perform 

on-line. 

lca(k1 ,k2 ) 

- find the node (or name) of the least recent 

("smallest") set to which k1 and k2 were made 

to belong together, and undefined if no such 

set exists -

Aho, Hopcroft, and Ullman [4] proved that one may execute~ m union

find-lca instructions online in an average of~ log m steps per instruction. 

Using a different data-structure for forests we have been able to 

reduce this to a less than logarithmic bound (Van Leeuwen [60]). 

THEOREM. One may execute~ m union-find-lea instructions in~ loglog m 

steps per instruction on the average. 

(We note that Aho, Hopcroft, and Ullman [4] considered a slightly more 

general type of merge-instruction to occur in conjunction with lea's than 

we permitted here.) 

4. PATH COMPRESSION 

4.1. The logical development of set-manipulation programs often benefits 

from representing sets as trees, even though an actual implementation may 



use different structures like arrays. It relates to a similar aspect of 

information management systems where the data-model of the user may be 

very different from the organisation of the physical database. 

85 

Trees were already used as data-structures in the early fifties when 

"sorting and searching" emerged as an area of intensive study. 

In 1964 the idea was used by Galler & Fischer [32] in improving earlier 

work on Arden, Galler, and Graham [6] on MAD and aspects of FORTRAN

implementation. They considered how one can efficiently assign addresses 

to EQUIVALENCEd variables in FORTRAN-programs at compile-time, and used 

trees which actually carried names of variables in all nodes (including 

array-identifiers). 

EXAMPLE. EQUIVALENCE (U[3],M[10],N) is represented, for example, among 

V M N 

J K 

4.2. Trees have been successfully applied in programs for manipulating 

disjoint sets, which occur for instance when one is building classes of an 

equivalence-relation or in a variety of graph-algorithms. 

4.3. There are only a few programmingtricks for making ordinary set-manipu

lation programs more efficient, but some of these techniques are very 

powerful and fundamental. 

Following an approach of Aho, Hopcroft, and Ullman [3] we shall study 

union-find programs for more abstractly presenting an analysis of balancing 

and path-compression. 

4.4. A collection of disjoint trees (representing disjoint sets) is 

called a forest. We shall assume that set-elements are attached to leaves 

only. 



86 

EXAMPLE. 

o, 

/ l '-,'-
o 1 □ 
I 
I 
I 

I 

□ □ 

□ 

INAMEI @:I 

a!\--□ 
I I 
I I 
I I 

□ □ □ □ 

The weight gives the number of set-elements stored in a tree. Directories 

tell where elements are stored, and where for each set-name the correspond

ing root is, but to execute a "find" one must explicitly follow father

links as in 3.23. 

4.5. Assume (for simplicity) that we start with n singleton sets 

? 
I 
I 

[I 

9 
I 
: 
6 

Q 9 
I 

['.] 

and execute m finds and (at most) n - 1 unions. 

Unions take constant time each, but the cost for finds is to be the 

number of edges traversed in each find··path. 

Let F be the set of edges which will ever appear in the finds. (Note 

that these edges may not all be present in the current forest at some moment.) 

4.6. A direct implementation could cost time~ mn in worst case. 

Balancing helps, and a rule as in 3.24 (the weighted union rule) for 

resolving unions reduces execution-time to~ m log n in worst case. 

Tritter (according to Knuth [43]) and also Mcilroy & Morris (accord

ing to Hopcroft) apparently first reali::ed how one can reduce the cost 

of (future) finds. In executing a find(k) one should save all nodes encoun

tered on the find-path in a stack and attach all directly to the root 

once it is located (see fig.7). It is sometimes called the collapsing rule, 

but nowadays better known as path-compression. 

4.7. It is clear that balancing and path-compression (or even path-compres

sion alone) should eventually lead to very low trees and thus reduce the 



7 7 

.k 
k 

fig.7. The effect of path-compression in find(k) 

cost for later finds substantially, but the precise analysis requires a 

new and important accounting-technique. 

87 

Paterson proved in 1972 that when only path-compression (and no balanc

ing) is used and m ~ n, the execution-time is still bounded by ~ n log n. 

Hopcroft & Ullman [39] found an elegant level-crossing argument soon after 

and proved that balancing and path-compression together reduce the execu

tion-time to ~ m log* n, which is almost linear. The ideas were carefully 

analysed further by Tarjan [56] who finally succeeded showing that 

The cost for m finds (m ;:: n) and n - 1 unions with balancing 

and path-compression is practically linear in m. 



88 

Our presentation of the key-ideas in the analysis will differ somewhat 

from Tarjan's. 

4.8. Consider arbitrary programs of m firtds and n- 1 unions which use some 

strategy for each instruction first. 

Nodes can gradually climb to higher and higher levels. 

A "find" (even when path-compression is used) does not change the 

current location of a root, but it can make that some interior nodes are 

pulled up to a shorter distance of the root. 

It is therefore important to know where the roots will be during the 

algorithm, which is entirely determined by the unions! 

4.9. Pretend that we do all unions first (obeying whatever strategy there 

was), and see where all nodes will eventually finish. 

Leave all nodes where they are (hanging up in the air at their respect

ive levels), but remove all connecting edges and start the program again. 

Unions are now easy (just insert the connecting edge again), and we 

can concentrate entirely on what finds do in the model. 

4.10. The level-number of a node vis called its rank r(v). 

Let the maximum rank be M. 

EXAMPLE. 

I 
- - - - - 0 - - - - - - - - - -

0 0 

0 0 

0 0 

- - - - - 0 - 0 - - - - - - - -

4.11. In a find with path-compression interior nodes get connected to 

nodes higher up, and their (new) father always remains of higher rank. 

It means that at any moment the ranks along an upward path must form 

an increasing sequence. 

4.12. We can estimate #F by counting how many times each node v ever 

occurring on a find-path can stretch its father-link to a higher node. 



EXAMPLE. 

M 

0 

0 

) 

J 
) 

89 

We shall do so by counting how many times eventually occurring edges 

\ V 

can cross distinguished levels of a grid. 

4.13. The crucial step in Tarjan's analysis is to work with not just one 

grid, but to consider k + 1 grids 

A(i,*) (0 s i s k) 

instead, where A(i-1,*) is a refinement of A(i,*). Thus we require the 

existence of a monotone function B(*,*) such that 

A(i,j) = A(i-1,B(i,j-1)) (i ~ 1), 

where we define B(i,-1) = 0 for consistency. 

Let a8 (i,x) = min{j I A(i,j) > x}. Thus a8 (i,M) gives how many levels 

in each grid there are. 



90 

EXAMPLE. 

A(i-1,B(i,j)) - - - - -

A(i-1,B(i,j-1)+3) - - - - -

A(i-1,B(i,j-1)+2) 

A(i-1,B(i,j-1 )+1) - - - - -

A(i-1,B(i,j-1)) - - - - -

i 

' ' ' L 

A(i,j+1) 

A(i,j) 

4.14. The finest grid is A(O,*) defined by 

A(O,x) = ex (c .:: 2). 

Note that any point ever occurring on a find-path must cross this grid 

after being pulled up c - 1 times. 

The next grids all begin with 

A(i,O) 0. 

Let the number of.nodes v with A(i,j) s r(v) < A(i,j+1) be s(i,j), and 

assume that 

( . . ) s _!J_&__ 
s l.,J g(i,j) (i :2: 1). 

4.15. For each node v we should estjmate how many edges 

there can be on later find-paths. 

EXAMPLE. 
M 

0 



91 

Follow v as it "bumps" into lower grids while rising first until it crosses 

a next grid A(i-1,*) for the first time. 

EXAMPLE. 

A(i,j+1) 

-\- -
V 

A(i-1,k) 

A(i,j) 

Watch v to see when it gets attached to a node across the next level of 

A(i,*), in the meantime "charging the i-th grid" one edge whenever v gets 

attached to a node across yet another level of A(i-1,*) 

- thus the i-th grid can get charged at most 

B(i,j) - B(i,j-1) times -

and "charging the find" whenever vis in between but on its way 

EXAMPLE 

A(i,j+1) 

V 

A(i,j) 

It means that we partition Finto sets 

FO {(v,w)EF 3j A(O,j) s r(v) < r(w) < A(O,j+1)} 

Fi {(v,w) € F I 3j A(i,j) s r(v) < r(w) < A(i,j+1) 

and 3l r(v) < A(i-1,l) s r(w)} 

(for 1 s i s k) 



92 

Fk+l = {(v,w) E FI 3l r(v) < A(k,l) $ r(w)} 

and divide the charges (i.e. the edge-count) between 

where 

(0 $ i $ k+1), 

Li {(v,w) E Fi I on its find-path (v,w) is the 

last edge in Fi} 

(thus all edges in Fi - Li are not last and must contribute a new crossing 

across the level crossed by the last). 

4.16. Clearly #Li$ m, because each find can get charged at most one last 

edge. 

4.17. An edge' v can occur in F0 - L0 at most c- 1 times, because after 

that many times v must be attached to a node across the first level of 

A(O,*) (and the edges are charged to E'1 or F2 etc.). Thus 

4.18. The points v on edges ~v with A(i,j) $ r(v) < r(w) < A(i,j+1) in 

Fi - Li (see 4.15) can contribute at most B(i,j) - B(i,j-1) each, and thus 

for each 1 $ i $ k 

#(F -L ) $ 
i i 

for some function h. 

* I 
j=O 

* I 
j=O 

(B(i,j) -B(i,.j-1))s(i,j) $ 

B(i,j) - B(i,j-l) f(n) $ h(i) •f(n) 
g(i,j) 

4.19. For each nodevtherecanbeatmostasmanyedges \v in Fk+l -Lk+l 

as there are lines to cross in the k-th grid. Thus 

4.20. Adding up all estimates the total charge form finds and n- 1 unions 



is bounded by 

k 
(k+2)m +en+ l h(i)•f(n) + ~(k,M)•n 

1 . 

and all we have to do is choose the grids such that the expression is as 

small as possible. 

4.21. It is important to note that the bound was derived independent of 

the strategy for unions. We can immediately obtain Paterson's result as 

follows. 

93 

THEOREM. The cost for n finds and n - 1 unions using only path-compression 

(and no balancing) is ~ n log n. 

Proof. Let B(i,j) = c•(j+l) such that by induction we have A(i,j) = ci•j. 

Since no balancing is used, the "best" estimate for s(i,j) is just 
f(n) ,* 1 

some g(i,j) with f(n) = n and lj=O g(i,j) ~ 1. k 
It follows that h(i) = c for 1 sis k, and also ~(k,M) ~ M/c. 

By 4. 20 the total cost for n finds and n - 1 unions is bounded by 
k ckn + Mn/c. Let c = 2 and choose k ~ log M. It follows that the cost 

is bounded by ~ n log M, which could be as worse as ~ n log n for an un

balanced tree. D 

Fischer [27] proved in fact that n log n is tight to within a constant 

factor. 

4.22. When a proper form of balancing is used we get M ~ logn, and it 

immediately follows from 4.21 that the cost for n finds and n-1 unions 

is at least reduced to ~ n loglog n. 

Tarjan showed that one can get much better bounds from 4.20 in this 

case. 

Remember from 3.26 that when the weighted union rule is used (or 

indeed any other rule for proper balancing) a node of rank r must lead a 

tree with at least 2r leaves. The number of rank r nodes is therefore 

bounded by n/2r, and it follows that 

S 
A(i,:L+l)-1 _n < 2n 

sCi,j> 2. 
r=A(i,j) 2r - 2A(i,j) 

f(n) 
(= -(-.-.-)}. 

g l., J 



94 

Thus we must choose B such that we can somehow reasonably bound 

l B(i,j) - B(i,j-1) 
j 2A(i,j) 

4.23. Big trick: one can choose B(i,j) = A(i,j) for j ~ 1 and B(i,0) = 1. 

(We could have choosen even larger B's but this will do to get extremely 

sharp results already). 

4.24. The grids we now have are defined by 

A(0,x) ex 

A(i,0) 0 

A(i,1) = c 

A(i,j+l) A(i-1,A(i,j)) (i,j ~ 1) 

which yields an analog of Ackerma.n's .function with an equally super-fast, 

not primitive recursively bounded growth-behaviour. 

Observe that 

A(l,x) 
X 

C 

.c ] C 
lxl 

A(2,x) = C , etc. 

4.25. Since we can now choose h(i) 

n - 1 unions is bounded by 

2 the total cost form finds and 

~ k(m+n) + en+ aA (k,logn)n 

where one should notice that a_lready fork= 2 the function aA (k,logn) 

is very slowly growing. 

Fork= 2 and c = 2 we get Hopcroft & Ullman's result that m finds 

and n - 1 unions take at most time ~ m + n log* n. 

Define a "functional inverse" a.(m,n) of the A-function in 4.24 by 

a (m,n) :nin{j I A(j,~j) > logn}. 



We obtain a form of Tarjan's result 

THEOREM. The cost for m finds and n - 1 unions using balancing and path

compression is bounded by (m+ n)a(m,n). · 

m 
Proof. Choose k ~ a (m,n) , and observe that aA (k, log n) s ii a (m,n) • 

--i> bound ~ (m+ n)a(m,n). D 

Assuming that in practical situations usually m ~nit follows that the 

time-bound is 

~ m a(m,n) 

and that is practically linear. Tarjan [56] proved that the algorithm 

is not completely linear. 

95 

4.26. There are numerous applications of Tarjan's theorem in data-organi

sation, showing that all kinds of algorithms can be made practically linear 

with balancing and path-compression. 

Hopcroft & Karp [38] proved in 1971 that the equivalence of two 

finite automata with at most n states can be determined in ~ n log n steps, 

but one may now show 

THEOREM. The equivalence of n-state finite automata can be determined in 

~ n a(n,n) steps. 

Proof. Let M1 Gl M2 = <S1Gls2 ,I:,o,{s1,s2},F> and consider. the equivalence

relation E determined by 

M1 _and M2 are equivalent if and only if s 1 E s 2 • It means that the smal

lest relation R satisfying 

(i) s 1 R s 2 

(ii) p R q --i> V0 €:E o(p,cr)Ro(q,cr) 

must be contained in E. 

Thus M1 and M2 are equivalent if and only if we can build R-classes 

as if it were equivalence-classes without ever getting a final and a non

final state together in the same class. 



96 

Prepare classes with names E {1, •.• ,2n} and attributes E {FINAL, 

NON-FINAL} with the following algorithm 

classes q-- a family of 2n disjoint sets of one 

element each: 

set. 

l~ 

I state i J attr. I 
queue q-- (s1 ,s2); 

while queue ,f </J do 

detach (p,q) from queue; 

name 1 := find(p); 

name 2 := find(q); 

if name1 ,f name2 then 

fi 

if name 1•attrib ,f name2•attrib then 

M1 and M2 are not equivalent & signal fi 

else union(name 1 ,name2 ,name1); 

attach (o(p,cr),o(q,cr)) to queue 

for each cr EE 

When M1 and M2 are equivalent the algorithm will produce exactly all 

equivalence-classes of admissible states, but if they aren't it will find 

the clash. 

'1'here can be at most ~ n unions, and thus at most ~ n • # E pairs of 

states will ever get onto the queue. We need to execute at most n unions 

and O(n) finds, assuming that #Eis fixed. D 

4.27. An interesting and instructive application of path-compression was 

found by Aho, Hopcroft, and Ullman [4] in studying programs which maintain 

a forest with the following instructions 

merge(u,v) 

- to be executed only if u is a root and vis not in 

the tree with root u. The instruction makes u a son 

Of V -



depth(v} 

- determine the distance of v to the root of the 

tree to which it currently belongs -

EXAMPLE. A merge(u,v) applied to 

will yield 

where as a result depth(u) := depth(v} + 1. 

97 

Even balancing may not seem straightforward here as it might destroy 

the ability to determine depth correctly if it was applied directly to the 

real forest. 

In addition to the real forst we shall therefore maintain an auxili

ary shadow forest which does support depth-instructions quickly, and we 

shall give a proof of 

THEOREM. One can execute n - 1 merge- and m depth-instructions (m .!: n) in 

~ m a(m,n) steps. 

4.28. A depth-instruction looks like a find, but if you want to move an 

internal node v 

EXAMPLE 

I -- -
depth(v}: 

I 

and make it a direct son of the root (as we would in path-compression), 

then one must attach a relative displacement ("disp") to it which gets 

added to the depth-count when we pass v from x on our (shortened) way 

up to the root. 



98 

EXAMPLE. 

I 

,, 
, \ 

, \ 
I 

V 

disp(v) depth(v) - 1 

4.29. Suppose we start with a forest of n singletons, and maintain the 

structure with nodes of type 

~node= record 

w: 

disp: 

father: 

number of descendant leaves; 

cur:,ent displacement; 

t node; 

In executing a "depth (v)" we can do F·ath-compression as in a find, provided 

we adjust the displacement of all nodes pulled up to the root appropriately. 

EXAMPLE. A depth(v3) 

should result in 



The following iterative algorithm will work 

~s <-~; 

p := tv; 

if p = root then depth:= p.disp & HALT fi; 

while pt, root do 

push p; 

p := p.father 

od; 

root:= p; 

p := pop S; 

while stack t, ~ do 

q := pop S; 

q.father := root; 

q.disp := q.disp + p 0 disp+l; 

p := q 

od; 

depth := p-disp+ 1 + root.disp 

(Note that thew.field of internal nodes is not up-dated and becomes 

unreliable, but fortunately we only need its integrity for the root.) 

4.30. To execute a merge(u,v) we first check in the shadow forest that 

the instruction is permissible by executing 

depth(u) 

depth(v) 

(with path-compression). 

We should find that depth(u) = 0, and also get as a side-result the 

roots x and y of the trees where u and v currently belong. Check x t, y. 

EXAMPLE. 

y 

Lli 

99 



100 

{Note that the roots in the shadow-forest could differ from the roots in 

the real forest.) 

With some care the weighted union rule can be applied to the merge as 

reflected in the shadow forest. 

EXAMPLE. The merge{u,v) should come up with a correctly displaced structure 

equivalent to 

X 

Li--~ 
1 

note that u is 
the real root 
of this tree. 

4.31. If y.weight ~ x.weight then we may just as well make ya direct son 

of x, provided we adjust the displacement of y to correct for all nodes in 

that tree. 

EXAMPLE. 
X 

where disp' (y) = disp{y) + 1 + disp{v). 

Note for instance that 

depth{u) := disp{u) + 1 + disp' (y) + 1 + disp(x) = 

disp{u) + 1 + disp(y) + 1 + disp(v) + 1 + disp(x) 

1 + disp(v) + 1 + disp{x) 

which is what is should be. 



One can implement this case simply with 

x.w := x.w + y.w; 

y.disp := y.disp + 1 + v.disp; 

4.32. If y.weight > x.weight then "balancing" requires that we attach x 

toy instead! Adjusting the displacements is slightly trickier now. 

EXAMPLE. 

X 

where now disp' (y) = disp(y) + 1 + di.sp(v) + 1 + disp(x) and for proper 

correction disp' (x) = disp(x) - disp' (y) - 1. 

We should execute 

y.w := y.w + x.w; 

y.disp := y~disp + 1 + v.disp + 1 + x.disp; 

x.disp := x.disp - y.disp - 1; 

(and the order of the instructions is important!). 

101 

4.33. The given implementation of m depths and n- 1 merges actually 

requires ~ 2n extra auxiliary depth-imitructions, but since m ;::;c n the time 

needed is the same as for the underlying finds and unions on the shadow

forest. Apply Tarjan's theorem. 

4.34. A generalisation of the techniques for merge-depth programs for 

other functions over trees was formulated recently by Tarjan [57]. He showed 

for instance that one can verify a minimal spanning tree on an n-node graph 

with m edges in time~ m a(m,n). 



102 

5. ASSOCIATIVE SEARCH STRUCTURES 

5.1. The known techniques for data-structuring can usually be combined 

somehow by a creative programmer into an acceptable organisation for effi

ciently handling records on an identifying primary key, but additional, non

trivial considerations may be needed to work it out for accessing records 

on secondary keys. 

In such applications a user can issue data-requests (or queries) 

asking the system to produce all data-items from a file or data-base which 

possess a desired combination of attributes. 

Queries are typically of the form 

- list all records with property Pin workspace W -

where P may be specified by some formula in relational algebra or, say, 

as a predicate in a calculus-based language like Codd's data-sublanguage 

ALPHA [ 18]. 

The process of answering data-requests is called data-retrieval. (One 

may speak of re-three-val after probing the data-base twice.) 

5.2. An important task in data-base management consists of organising in

formation such that all queries in a known language-system can be handled 

quickly. One may also require that in realistic applications this property 

must be maintained under a choice of admissible operations on the data-set. 

The task usually reduces to 

- resolving the nearly always present time/ 

storage trade-offs favourc,bly -

and in close connection to it 

- finding the optimal degree of redundancy 

needed in the data-base -

5.3. There may be an advantage in keeping lists with instant answers to 

basic queries, and it is conceivable that in such situations one record 

has to occur on many lists. 

Note that redundancies in the data-model can possibly be avoided in 

the physical data-base. 



5.4. A common principle learns not to store a data-item where it is not 

needed, and not to duplicate a data-item when you can avoid it. 

103 

The use of pointers tends to be successful exactly for this reason, 

but one should not forget that storing many pointers may require much 

space also. 

5.5. One may wish to avoid storing explicit pointers and try to "hack" a 

pointer (as a record key) in little pieces which one can search in a "small" 

auxiliary table first. 

If at least one piece is not found then there is no point in searching 

the original, much larger file. 

5.6. A technique of Bloom [10] suggests to maintain a long bit-string 

(some M) 

and to use hashing functions h 1, .••• ., ,hs as follows. Mark that record k is 

stored by setting bits ahi(k)'·····,ahs(k) to 1, as if it were unique 

coordinates fork. 

(M+l) Provided 
s 

> n, there are good chances that this method can dis-

tinguish many records. 

5.7. In cases where pointers are used to link elements together in a 

(linear) list, the need for extra space seems unavoidable. 

EXAMPLE. Doubly linked linear lists a.re usually built from elements of 

~block record 

!link 

info 

rlink 

+block; 

tblock; 

-- --~ ~-- - ---. ~ ~ - - - -

Nevertheless (depending on the application) it may take little effort 

occasionally to eliminate much of the pointers even here. 



104 

EXAMPLE. Suppose a doubly linked list was choosen in order to traverse a 

file from left-to-right and back. Then one can save 50% in pointer-space 

by using a linked structure 

current position 
~ 

One can move one block to the right with 

if (next:= pos-link; next 

pos-link := prevlink; 

prevlink := pos; 

pos := next; 

nil) then exit fi; 

and one can move one block back (to the left) with 

if (next:= prevlink; next 

prevlink := next.link; 

next. link : = pos; 

pos := next; 

nil) then exit fi; 

5.8. It is common programming practice also sometimes to add a pointer 

into records as a means of referring to a part in memory where auxiliary 

information relevant to each individual record is stored. 

It is probably much better to do so than to list the auxiliary infor

mation explicitly in each record in detail, especially in cases where 

many records share the same data. 

Thus pointers are used here to eliminate redundancy, and we pay only 

one additional field per record (instead of many). 

There are many variants o.f this idea; one may want to eliminate the 

pointers altogether and use a table at a "known" location instead in 

which is listed where the auxiliary data for each record can be found 

(but then again, at the cost of a table-search). 

5.9. In an interesting paper Bobrow [11] pointed out very recently that 

the problem of locating "associated information" may be attacked by making 

better use of the one and only attribute of a record that comes for free: 

its address! 



105 

It is there anyway, and it occupies no space within the record. 

The idea is that one can simply hash the address of a record (serving 

as its primary key) into a unique position of a table, and immediately find 

what we need. 

The technique of hash-linking can be applied in various forms. 

EXAMPLE. A company may keep records 

STATUS ACCOUNTNO 

i i 
-------- ---20 bits 20 bits 

AMOUNT 

t ----20 bits 

for its customers which exactly fit in one word for amounts not exceeding 

20 bits of storage. 

The range of AMOUNT is conceivably larger, and in programming there 

is always the tendency to allocate enough space to handle "the worst case". 

Assuming that amounts usually fit in 20 bits one should not allocate more 

words for each record, but instead hash-link a cell to a separate, much 

smaller table with "special purpose" records 

ACCOUNTNO 

l -20 bits 

AMOUNT 

l 
40 bits 

whenever its amount overflows (which presumably doesn't happen very often). 

An "all ones"-field in the original r,ecord can signal that it is hash

linked. 

As long as there are no collisions one may compress the hash-table 

even further because it isn't necessary to keep keys in the table (a hash

link will immediately lead to the right spot). Otherwise one might mark 

a record to indicate that it collided, and that one must follow a hash

link into an overflow-area where this time identifying keys are available. 

5.10. The methods for locating "secondary information" in a data-file get 

more involved when we consider querying a data-base. 

one might distinguish the following types of queries (following 

Rivest [53]) 



106 

exact match queries 

locate the record with key k 

component match queries 

locate all records in which the i-th 

attribute of the key is j 

partial match queries 

locate all records for which s specified 

attributes match given data (and the 

remaining attributes can be arbitrary) 

range match queries 

locate all records for which specified 

attributes are within a given range 

- good match queries 

locate all records which have a key 

differing from k by at most a given tolerance 

- best match queries 

locate all records which have a key with 

least distance to k 

In more general, boolean queries one can specify records by means of an 

arbitrary propositional formula over the attributes. 

5.11. Most queries seem to force a search through the entire data-base, 

and there is great need for a specific data-organisation (perhaps one for 

each single type of queries) to support faster retrieval. It is the object 

of current research in software and in hardware systems to implement associa

tive search in a best possible way. 

There are probably natural limits to how efficient data-retrieval can 

be. If one specifies more and more conditions on the attributes, then the 

amount of work to test each record increases while the actual number of 

records satisfying the query probably decreases. 

5.12. Consider the following, typical library search problem. 

Suppose records are classified on k out of many possible keywords, 



107 

and suppose we want to store records in such a way that we can later find 

all records withs ($ k) attributed keywords quickly without having to 

inspect each element of the data-base individually. 

How can such a goal be achieved? 

Common solutions are based on an appropriate partitioning of the 

data-base in various buckets. 

5.13. Apparently Gustafson [35] systematically investigated such problems 

first, and in 1969 he suggested the following variant of hashing for ob

taining an acceptable solution. 

Choose an "ordinary" hash-function 

h: {keywords} - {O, .•.•• ,b-1} 

for some b > k, and build a "super" hash-function 

H: unordered k-tuples -- b-bit numbers 

classifying each record with attribute-set {S1 , ••.•• ,Sk} in the bucket with 

address a 0 •.••. ab-l where 

We thus hash each key into a bit-position, and sometimes speak of hash

coding. Assuming a more or less uniform distribution, buckets will have 

~ N/(~} elements each. 

5.14. To search for all records which contain keywords y 1, •••.. ,ys (some 

s $ kl one should first determine the partial address a 0 ••• ab-l with 

= i 

otherwise 

and then fill in the * 's with k - s ones and b - k zeros in all possible 

ways to obtain the names of all buckets which one would have to inspect 

only. 

On the average one would have to scan through no more than 

(b-s) N 
~ k-s • (~) = 

• N 



108 

(k-s+l) 
k' 

(b-s) b! N elements, 

which indeed tends to be a very small fraction of the entire data-base 

for s ~ o (k). 

The method is promising for small k. 

5.15. We note in passing that methods for partial match retrieval based 

on intersecting inverted lists will not be discussed here (see Engles [25] 

or Roberts [54]). 

5.16. In 1971 Rivest (see Knuth [44], Rivest [52]) suggested another, 

simple hash-coding algorithm for partial match retrieval in a data-base. 

Suppose now that keys are ordered k-tuples, and assume it simply are 

length k strings over some alphabet L with #L = cr. 

Determine an "ordinary" hash-function 

h: L -- b-bit codes 

b (where perhaps 2 < cr), and build a super hash-code 

H: Lk -- c-bit numbers 

with c kb by defining 

There will be~ N/2c elements per bucket on the average. 

5.17. Let a partial match query be re2resented as a length k string 

where for each i 

yi E L ("specified") or yi * ("unspecified"), 

and suppose there ares stars. 

As in Gustafson's method, again, we only have to search in the (2b)s 

buckets with a name matching yin the specified positions. 

It means that on the average we must inspect 



elements, which is 

k for b ~ log a and a full data-base with N ~ a • 

109 

5.18. Provided enough extra storage is available there is a simple variant 

of Rivest's algorithm from which one may expect an even better behaviour. 

Partition each length k key in m fields of base-a numbers of k 
m 

digits 

and store each record with such a key in bucket Aj of the j-th data-base 

for each 1 s j s m. 

We thus list each record many times in our data-model, but it will 

appear that the redundancy will pay off in greater retrieval-efficiency. 

5.19. In a partial match query with a total of s stars there must be at 

least one field withs s/m stars. Among these choose the field with the 

fewest number of stars (say field j). 

One may expect that the j-th data-base will have the elements we 

search for concentrated in the smallest number of buckets. 
k/m Roughly, there are~ N/cr elements per bucket and we have to scan 

through 

0 s-k/m. N 

elements. This compares favourably with the bound~ crs-k.N in 5.17 

(although a more precise analysis would be needed to support the apparent 

conclusion). 

5.20. One may similarly develop other methods, and it becomes of interest 

to study how the various hash-coding algorithms for partial-match retrieval 

compare in efficiency. 

Rivest [52] (also [53]) answered this question for a specific class 

of hashing algorithms, and we shall give a simplified approach to make his 

result understandable. 



110 

5.21. Each hash-code storage schema consists of a super hash-function 

H: Ek-+ a finite set of buckets 

(the algorithm of 5.18 is not in this category). 

The relation "having the same H-value" gives a partitioning of Ek, 

and the various equivalence-classes may be called H-blocks. 

Now consider how we answer partial-match queries y withs stars. The 

algorithm must return the names of all H-blocks which contain at least 

one record matching yin the specified positions. 

Rivest suggested to "measure" H by the average number of H-blocks 

needed to answers-star queries. 

5.22. Suppose there are Q s-star queries. 

On the average we need to inspect a number of blocks equal to 

1 \ # Q L ( H-blocks with a y-match) 
y 

1 \ # L ( s-star y's touching B), 
QB 

where B ranges over all H-blocks. 

Each.s-star query occurs at least once in this summation, and it is 

counted more than once if and only if it hits more than one block. 

It is conceivable (and Rivest proved it for "balanced" hash-coding 

algorithms) that the average behaviour will come out best once the "answer" 

to as many partial-match queries as is practical is contained in one block. 

It means that preferably H-blocks must allow a decomposition into 

where for each i : E • = E or #E . = 1 • 
l. l. 

It holds for the algorithms of Gustafson and Rivest, and will hold 

for later algorithms also. 

5.23. Based on these heuristics it seems promising to consider a general 

type of (hash-coded) partial-match file design which consists of a table 

linking independent key-patterns and bucket-addresses 



111 

PATTERN BUCKET 

where 

(1) each row contains s stars and k-s symbols from E; 

(ii) any two key-patterns (rows) differ in at least one specified position 

(which means that buckets will be disjoint). 

Technically each entry in the table is ans-star partial-match query, 

but obviously other queries can be answered from it also. If no entry 

matches a record-query then no records of that type are in the data-base. 

The way stars are distributed in the key-patterns can strongly in

fluence the average performance of the file-design. Rivest [53] and later 

Burkhard [ 14] ( see also Bentley & Bu.r:khard [ 9]) studied several special 

designs with an alleged approximately optimal behaviour. 

5.24. One may assume that entries in the table (as strings over Eu{*}) 

are listed in radix-sorted order (a 9eneral storage method suggested by 

Hildebrand & Isbitz [36] as early as 1959). It is likely that the best 

results will be implied when the entire data-base is stored in a compatable 

manner. 

The idea is that in such a scheme it becomes unnecessary to store the 

table separately, and its structure (or rather, the structure of its buckets) 

is implied by a straightforward digit-wise search where each"*" is inter

preted as a "branch in both directions"-instruction. 

5.25. Assume that E = {0,1} (for simplicity). 

When length-k strings of O's and l's are entered into a tree where 

at each node "0" is interpreted as "left" and "1" as "right", each 

record-key becomes a code for the path to a unique leaf where the corres

ponding record-address can be stored. 

The idea is independently due to de la Briandais [23] and Fredkin 

[30], and the resulting storage structure is known as "trie memory" 

(pronounced usually as "try-memory", although the editor of the section 

"Techniques" in the 1960-issue of the Communications pointed out in a 

footnote to Fredkin's paper that "trie" apparently was derived from the 

word re-TRIE-val). 



112 

EXAMPLE. The trie corresponding to {001000,001011,101000,101001,111011} is 

0 

0 0 1 

1 1 1 

0 0 0 

0 1 0 1 

0 1 0 1 1 

rl r2 r3 r4 rs 

Tries are often used when there are records with variable-length keys also. 

5. 26. Despite the clarity of the file·-structure, many programmers observed 

that tries can be somewhat inefficient in their use of storage. 

One reason is that in entering keys we may not have made sufficient 

use of the observation that some strings could have had identical segments 

of bits which we should have followed first. 

DEFINITION. A TI-trie (where TI~ Sk) is the storage-structure resulting 

after entering keys y with bits ordered as Y TI (1) Y TI ( 2) ....• Y TI (k) • 

EXAMPLE. The 341256-trie for {001000,001011,101000,101001,111011} (see 

5.25) is 

0 

0 

0 

It has only 12 internal nodes, as compared to the 123456-trie in 5.25 which 



113 

has 16. 

It is unlikely that there will be a polynomial-time bounded algorithm 

to find an optimal u-trie for a file, since Comer & Sethi [20] recently 

proved the following interesting result 

THEOREM. The problem to determine a u-trie with the smallest number of 

internal nodes for a file is NP-complete. 

5.27. Given tries (or u-tries) can be optimized in various, simple ways. 

Observe, for instance, that one could eliminate chains of the form 

(which Comer & Sethi call leaf-chains), and prune the tree in A at the 

earliest moment that rj is uniquely identified. 

The idea is that the remaining bits of the key need not take up trie

storage and can be checked elsewhere. 

EXAMPLE. The pruned 341256-trie for {001000,001011,101000,101001,111011} 

is 

1 

0 

0 

1 

1 



114 

It seems to require an entirely different strategy to determine the best 

possible pruned n-trie for a file. 

EXAMPLE. The 651234-trie for {001000,001011,101000,101001,111011} is 

0 

1 

0 

0 

0 

1 

0 

0 0 

1 1 

0 0 

1 

1 

0 

It has as many as 21 internal nodes, but the pruned version has only 5. 

Comer & Sethi [20] proved also 

THEOREM. The problem to determine a pruned n-trie with the smallest number 

of internal nodes for a file is NP-complete. 

5.28. A next step would to collapse long chains 

' ' ' 

•••••• level i 

•••••• level j 

in the interior of the trie also, by adding an instruction at node A to 

skip over bits yn(i+l)'·····•Yn(j) and to continue immediately with bit 

yn(j+l)" 
The idea was apparently first proposed by Morrison [48"] in 1968, and 



115 

implemented in his system PATRICIA. Testing the skipped bits of the key 

afterwards avoids the need for ineffective trie-storage, and the technique 

leads to the most compact ~-trie. 

The problem to determine an "optimal" compacted ~-trie is meaningless 

if the number of internal nodes is the only measure, and one should now 

also take the degree of balancing into account. 

5.29. In a ~-trie we could have inscribed the tested bit-positions in the 

corresponding nodes. 

EXAMPLE. 

3 

Clearly in partial-match retrieval some bits in the input will be un

specified, and when a* is found one must descend down two branches (if 

there are two) simultaneously (and so on .. ), thus implicitly defining 

what bucket is searched. 

5.30. Carrying this idea one step further, Burkhard [15] recently formul

ated a type of generalised trie which seems an appropriate structure for 

partial-match retrieval from large indexed files. 

A (k,s) PM-trie isacomplete binary tree with 2k-s leaves in which 

(i) each leaf corresponds to a bucket; 

(ii) each internal node is labeled by one out of k possible bit-positions; 

(iii) on no path from the root to a leaf there is a bit-position which is 

tested more than once. 

(Thus each such path is like ans-star query.) 

Technically each (k,s) PM-trie directly implies a (k,s) partial-match 

file-design in the sense of 5.23, but not conversely. 



116 

EXAMPLE. 

X X 

is a (6,3) PM-trie. 

To test how good a PM-trie is we shall measure how many buckets must 

be searched in worst case to answer at-star query (t $ k). 

The result is likely to depend on the way tests are distributed over 

the tree, and the task is to find "gc,od" (k,s) PM -tries for use on files 

with k-bit entries. 

EXAMPLE; The query ***010 in the given (6,3)-trie leads into 5 buckets. 

The query *1**** leads into 5 buckets also, despite the fact that it 

is "almost unspecified". 

5.31. In early 1975 Burkhard [14] first formulated and analysed a type of 

"good" (2n+1,n) PM-tries. We shall prE?sent a modified version which was 

shortly later suggested by Dubost & Trousse [24]. 

DEFINITION. A (2n+1,n) PM-trie is called a BDT-trie of order n if and 

only if 

(i) the root (at level 1) has label 1; 

(ii) for each node in level i ( 1 $ i $ n) the left-son is labeled i + 1 

and the right-son is labeled 2n + 2 - i. 

Observe that the tested bit-positions at the nodes may be computed 

while descending down the tree very easily. 



EXAMPLE. The BDT-trie of order 3 is 

D 
X X X X X X X X X 

Observe that in a BDT-trie of order n all paths have length n+1, and 

there is an obvious regularity in the assignment of tests. 

The labels of two brothers always add to 2n + 3. 

Let T denote the BDT-trie of order n. 
n 

LEMMA. For all n ~ 1 

T 
n 

where each marked sub-tree is Tn-l with 1 added to all labels (and 2n 

to the root of the right copy). 

5.32. Formulas for the worst case performance of BDT-tries were first 

given by Burkhard [14]. We shall outline an interesting proof-technique 

due to Dubost and Trousse. 

117 

The problem is how to visualize what buckets can be entered in at-star 

query. 

Suppose we first follow the trie-path until we hit the first bit-test 

which probes a star. 



118 

It means we narrowed the search for buckets to a small sub-trie. 

However, each sub-trie (essentially) is a BDT-trie for sub-keys of 

the original file. 

Thus we reduced the task to finding the maximal number of buckets 

reached in at-star query with a* in position 1 (it will turn out to be 

an increasing function inn). 

5.33. A consistent assignment with t stars in a BDT-trie is a complete 

marking of all (internal) nodes with "stars" and "dots" such that 

(i) the root is marked with*. 

(ii) If a left-son in level i is marked with a*, then so are all left

sons in level i (which is reasonable since they probe the same bit

position). 

If it happens, then the left-sons in level i are said to contribute 

one star. 

(iii) If a right-son in level i is marked with a* then all are, and 

the right-sons are said to contribute one star also. 

(iv) The number of contributed stars cLdds up tot. 

EXAMPLE. 
one star 

one star 

two stars 

one star 

The search-structure in a BDT-trie of order 3 for a query***"***• (where 



dots mean defined bits). No matter what, 9 buckets will be visited on 

any 5-star query of this pattern. 

The reason for introducing this concept is that each t-star query 

implies a consistent assignment with t stars and conversely. 

119 

5.34. For symmetry-reasons we may assume that if a level i > 1 contributes 

one star then it is contributed by the left-sons in that level. 

Observe further that if two brothers are identically marked 

or 

then the entire, corresponding sub-trees are identical in marking (i.e., 

s1 = s2 and s3 = s4 respectively). 

5.35. Given a consistent assignment one can easily determine the largest 

possible number of buckets generated by a corresponding query. 

Collapse and prune the tree according to the following rules. 

- for each dotted node with not identically marked sons, 

purge. the sub-tree of the dotted son 

Because the bit at A is specified we would enter either 

s1 or s2 • The sub-trees are identically marked except 

at their root, so entering s1 will definitely lead into a 

larger number of buckets. 



120 

- for each dotted node with two identically marked sons, 

purge one of its subtrees also. 

The left- and right-subtrees are identical, and 

since we enter only one on the specified bit we 

need only count buckets in one sub-tree. 

One could go one step further and collapse all chains of dotted nodes left. 

The number of leaves in the resulting tree is exactly the number of 

buckets to be visited. 

5.36. It follows that the number of buckets visited by t-star queries of 

the same *-pattern is the same. 

5.37. Consider first how many buckets result when in the original, consist

ent assignment each level contributes one star. 

LEMMA. For BDT-tries of order n this number is Fn+)" 

Proof. By induction. 

For n 0 we have 

and for n 1 we have (remember: only one star per level) 

For n + 1 the marked trie-structure Sn+l of this form decomposes as 



121 

and the number of buckets adds up to Fn+3 + Fn+2 

5.38. Next we consider consistent assignments in which each level con

tributes at least one star, and the number of levels indeed contributing 

two stars is assumed "fixed". 

Examine the "lowest" layer of two-star levels in such an assignment 

* \ 

******** I' ,, 
I, 

.. i \· .... ] 
I \ 

*****~******** ] 
*·*·*·*·*·*·*·*·*·*:*·*·*·*·*·*·*·*·* 

The number of buckets visited is 

s• 2b • F • F 
a+3 c+3 

/I 
I I 

I 
I 
I 
I 

I 

I 
I 

assume thats stars are 
accessed (a fixed number!) 

"next higher" all-star level 

a one-star levels 

b two-star levels 

c one-star levels 

(using the previous lemma). Assuming b fixed, and observing that 

s•2b • F • F ~ s•2b • F • F 
a+3 c+3 3 a+c+3 

it follows that the number of bucketS' is maximal if a 

obtain 

0. we immediately 

LEMMA. In a consistent assignment with one- and two-star levels the number 

of buckets is largest if all two-star levels occur together and precede 

all one-star levels. 

5.39. In a general consistent assignment there can be dotted levels also, 

and we shall now analyse where they have to occur for obtaining the largest 

number of buckets. 

Our argument here differs from the proof of Dubost and Trousse who 



122 

tried.to "collapse" non-contributing levels in the "worst possible" way. 

Let 

the maximum number of buckets visited with a 

t-star query on a BDT-trie of order n. 

5.40. Observe first that the number of buckets for an assignment does not 

change if we add non-contributing levels at the bottom of the trie. 

The idea is to make a given assignment "worse" by an exchange opera

tion on the levels without changing the order of the trie and without 

changing how many contributed stars there are. (Thus the assignment 

remains at-star query). 

Do the following reductions whenever levels of the indicated form 

occur. 

(i) 

one-star and 

two-star levels 

two-star levels 

one-star levels 

This is the simple transformation we proved in 5.38. It can be applied 

to subtrees also, provided the same transformation brings profit in all 

subtrees at this level (viz. when it is a two-star level). 

(ii) 

one-star and 

two star levels 

... /\ /\ /\"" 
[ .......................................... . 

It is easy to see that the worst case occurs if from the dotted level we 



123 

always proceed to the starred son. Thus we can apply (i) in the subtrees 

and should have all two-star levels immediately follow the initial one-star 

level 

two-star levels 

one-star levels 

(iii) 

[ 
[ 

V V 

/\ /\ . 
I\/\/\/\/\ 
V V V V 

From each node in the dotted level we reach two stars two levels lower. 

Now borrow a star from the two-star level and make the dotted level into a 

one-star level: 

/\ . 
!\ I\ 
* • * •. 
V V V 

V 

. A 
I\ I\ 
* • * • 
V V 

* 

* • 

Considering how one can enter the formerly dotted level to get a worst 

case now, it follows that at least as many buckets are entered now as we 

entered before. 



124 

(iv) 

V V 

V V 

A two-star level and a dotted level can always be interchanged. (With the 

previous transformations it now follows that for the worst case to occur 

all two-star levels must occur at thE~ top of the tree). 

(v) Anywhere in the tree the number of consecutive dotted levels can be 

reduced to 1, provided we add the deleted levels at the bottom (to preserve 

the order of the tree) 

(vi) 

V V 

It is always "better" to have the dotted level occur in between the two 

one-star levels. 

V V V 



125 

Note that this transformation together with the other tries to sift the 

dotted levels down and use them to separate as many one-star levels as it 

can. 

5.14. If we perform these operations then we reduce a given assignment to 

a kind of normal form for the worst case: 

x two-star levels 

y one-star levels 

one-star levels separated by 
dotted levels 

' I \ i ______________________ ~ dotted levels 

where 

and 

1 + x + y + 2z s n + 1 (the number of levels) 

1+2x+y+z t (the number of stars). 

5.42. We can now combine all information and prove Burkhard's theorem 

THEOREM. Fort-star queries on a BDT-trie of order n 

2t for 0 s ts n+1 - r!! 
2 

7 

wn(t) = for n+1 - r !! 7 s t s n+1 
2 

{ ,n+H F 
t-n-l 2t-n+1 

2 F2n+4-t for n+1 s t s 2n+1. 

Proof. For the worst case stars must be distributed as in the tree of 

5.41. We reach 2x nodes in the last all-star level (which could be the 

root if x = 0), F 1 stars and'F dots from each of these in the last y+ y 
of the consecutive one-star levels, and in the last part of the tree we 

get into 2z+l buckets from a star and 2z buckets from a dot. 

It follows that we must maximize the total of 

2x+z ( 2F 1 + F ) 
y+ y 

under the condition that 



126 

x + y + 2z s n 

2x + y + z t- 1. □ 

5.43. In a subsequent generalization Burkhard [14] formulated another, more 

flexible type of PM-trie in which he abstracts the essential features that 

make BDT-tries work. 

DEFINITION. A (2n+1,n) PM-trie is called a G-trie of order n if and only if 

(i) any label j (1 s j s 2n+1) occurs in a unique level; 

(ii) brothers carry different labels. 

Burkhard proves that the expressions of 5.42 are upperbounds for 

order n G-tries in general. 

Burkhard [16] also develops similar kinds of tries for files where 

keys are over an arbitrary alphabet I:. 

6. PATTERN-MATCHING 

6.1. One may describe pattern-matching as the task of finding one or more 

sub-structures which meet a certain specification in given larger struc

tures of some kind (usually in on-line manner). 

Pattern-matching operations occur in lexical analysis, in searching 

library-files, in text-editing and in symbol-manipulation, and although it 

may seem easy we often need non-trivial data-organisations to perform the 

operations quickly without undesirable overhead. 

6.2. Pattern-matching is undoubtedly the most powerful feature of the 

SNOBOL 4 programming language, and it often occurs in conjunction with 

replacement (see Griswold [34]). 

Although we shall restrict the algorithms to strings and one-dimension

al patterns, one could also consider pattern-matching problems for arrays 

and trees (see Karp, Miller, and Rosenberg [41]). 

6.3. Let all strings considered be over the alphabet I: with #I: a. 

The simplest algorithm to find all length d substrings of 

(n ~ d) 



127 

makes use of a shift-register containing 

<l---i> 

T 
current position of scanner 

Suppose that ad buckets Bad-l , ••••. ,B ad_ 1 are allocated, one for each 

a-1 a• a-1 

possible string of length d. Then one can collect all information from x 

in one scan as follows 

d-1 d-2 
state:= lx1 1a +lx2 ia + .•• +lxdl; 

enter 1 in Bstatei 

position:= d; 

while position< n do 

position:= position+ 1; 

state:= state•a + lxpositionl (mod ad); 

enter position - d+l in Bs-cate 

od; 

In the end B d 1 will contain all positions i + 1 such that 
IY1 1a - + ..• +lydl 

The algorithm essentially traverses a finite state automaton with a very 

special transition-structure (known as a de Bruijn graph in combinatorics) 

which could have been computed and stored in advance. The approach is of 

reasonable complexity only if arithmetic modulo ad can be performed quickly. 

6.4. More common pattern-matching algorithms of low complexity develop 

and use positional information of non-numeric nature. 

A typical procedure for classifying and locating all length d sub

strings of x makes use of the following equivalence-relation 



128 

positions i and j of x ares-equivalent if 

and only if 

Our representation of equivalence-classes will differ from Karp, Miller, 

and Rosenberg [41], and simplify the final algorithm somewhat. 

6.5. Let the name of an equivalence-class be the smallest element it con

tains. CLASS[i] j means that position i belongs to the s-equivalence 

class named j. 

The elements of an equivalence-class will be linked together in 

ascending order using NEXT. The end of a NEXT-chain will be marked by a 

negative integer which yields the beginning address of another class

chain, and O if all classes have been linked together. 

One could enumerate all positions in equivalence classes with 

position := 1; 

repeat 

alpha:= CLASS[position]; 

print position; 

while NEXT[position] > 0 do 

position:= NEXT[position]; 

print position 

od; 

end of class alpha; 

position := - NEXT[positicml 

until position= 0; 

6.6. The problem is how one can construct the s - equivalence classes in 

this representation quickly. The idea is an inductive approach based on 

the following result. 

LEMMA. For all r !> s and i and j, i ~r+s j <--> i ~s j & i + r s j + r. 

Proof. By overlap. D 



129 

We can now show 

THEOREM. Given the representation of s-equivalence classes one can construct 

the r + s-equivalence classes for any r :S s in linear time. 

Proof. Assume that we haven queues Q1, ••• ,Qn available (one for each 

equivalence class). 

Read out alls-equivalence classes (which yields the elements per 

class in ascending order) and attach each position i so encountered at 

the rear of Qj, where j CLASS[ i +r] (provided i + r + s - 1 :S n) • 

In the end each Qj is either empty or made up of blocks 

i T 
front rear 

where each block simply consists of the items attached to Q. while reading 
J 

out an entires-class. Note that each block can be identified because it 

is the longest stretch of elements with the same particular CLASS-value. 

Observe now that i and j are in the same block if and only if 

i s j and CLASS[i+r] CLASS[j+r], thus by the lemma if and only if 

i r+s j • Thus the blocks exactly are the r + s-equi valence classes. 

One can now obtain the representation of r + s-classes by reading out 

the queues block after block. The first element of a block by definition 

is its name (since it is smallest), and it can be retained and put into 

CLASS while passing through the block. The classes can be linked in the 

order in which the queues are emptied. (Start with the block containing 1, 

which must occur up-front somewhere.) D 

6.7. It follows that 

THEOREM. One can construct the representation of s-equivalence classes 

for •,1( in ~ cr•n + n logs steps. 

Proof • . The 1-equivalence classes follow by a simple scan of x in~ cr•n 

steps. (There is one chain for each distinct symbol of x.) If the represen

tation of the r-equivalence classes is known, then we can construct the 

2r-equivalence classes in linear time. Thus the following algorithm will do 



130 

r : = 1; 

record the r-classes; 

while 2r < s do 

r := 2r; 

record the r-equivalence classes 

od; 

record the (s-r)+r-classes from the r-classes; 

□ 

6.8. To find all substrings of length din x with the given algorithm 

works pleasantly in ~ n log d steps (assuming a fixed alphabet) . A direct 

search for the classes with more than one element gives all repeated 

patterns of length din about the same number of steps. 

The same principle as in 6.7 can be used to show 

THEOREM. One can find all longest repeated substrings of x in 

~ a•n + n log n steps. 

Proof. Karp, Miller, and Rosenberg [41] observed that the problem is equiv

alent to finding the largest r such that there is at least oner-class 

with more than one element. 

Determine the 1-classes first in~ cr•n steps, and then find r with 

binary search after a usual "doubling" procedure has located a lower bound 

d and upper bound 2d for it. D 

One can develop similar algorithms based on s-equivalence to determine 

for instance whether xis of the form yk for some k ~ 2 and Y. 

6.9. The idea of positional equivalences is clearly of great help in 

solving pattern-matching problems, but it seems to be efficient only when 

we search all patterns of some kind. Note that the algorithm in 6.8 does 

not simplify (for instance to complexity~ an) in case we just want any 

longest repeated substring. 

Another draw-back is that the algorithms become more inefficient (in 

storage and search-time) in case we must consider and "remember" several 

s-equivalences at the same time. 



131 

6.10. Weiner [65] proposed a very interesting idea for extracting exactly 

all the information you need to know from the various s-equivalences. 

Let us assume that x always has a fixed marker at the end which is not 

occurring elsewhere 

DEFINITION. y is called the substring-identifier for position i if and 

only if it is the smallest u with the property that u occurs nowhere else 

in x except at position i. 

EXAMPLE. The substring-identifiers for the various positions in 

bbababba$ 

are 

1 bbab 

2 baba 

3 aba 

4 babb 

5 abb 

6 bba$ 

7 ba$ 

8 a$ 

9 $ 

The trickof adding$ at the end of x guarantees that each position has a 

substring-identifier, and one can observe that for each i the substring

identifier is precisely equal to the length-r substring at i for the smal

lest r such that there are no other positions in the r-equivalence class 

containing i. 

6.11. Clearly no substring-identifier can be a proper prefix of another, 

and one can enter all substring-identifiers consistently in a o+l-ary 

position-tree. 



132 

EXAMPLE. The position-tree for bbababba$ (the previous example) is 

$ 

The path with y ends at the leaf with label i if and only if y is the 

substring-identifier of position i. 

6.12. With the algorithm of Karp, Miller, and Rosenberg it follows that 

THEOREM. The position-tree for x can be constructed in~ cr•n•L steps, where 

Lis the length of the longest substring identifier. 

Proof. Construct the s-equivalence classes for s = 1,2, ••• ,L. Each time a 

new relation is constructed, record the currents-value for all positions 

which now form a singleton equivalence class. Use the table afterwards to 

enter the corresponding substring identifiers in the tree in~ crL steps 

per entry. D 

The theorem is not the best possible result though. A position-tree with 
2 

many internal nodes (as many as~ n are possible even though it can only 

haven leaves) must contain long straight chains 



which one can compress, resulting in a compacted position-tree of only 

O(n) nodes. 

133 

Weiner [65] proved that one may construct the compacted tree directly 

in only linear time. At the SWAT-meeting in Iowa City it was promptly 

called "the algorithm of 73", because it took that many pages to explain. 

(Easier descriptions are now available, see Aho, Hopcroft, and Ullman 

[ 3].) 

6.13. Once the position-tree is known all kind of pattern-matching questions 

can be answered quickly. 

Consider the problem of determining a longest repeated substring y of 

x. Any such y must be the proper prefix of some substring-identifier. 

Thus one must choose a y which leads to a lowest interior node in the 

position-tree (and any such y qualifies). 

EXAMPLE. A longest repeated substring of bbababba$ (see 6.11) is bab. 

To find a longest common (contiguous) substring of x and y one can 

construct the position-tree for 

X ¢ y $ 

and solve the task by searching for a lowest interior node with at least 

one son representing a position in x and one son representing a position 

in y. 

6.14. The position-tree can be used also to solve the authentic pattern

matching problem to determine whether given stringy is a substring of x. 

Let 

y y[l]y[2] •.•• y[m] 

x = x[l]x[2] .••••.•.•.• x[n] 

with m:;; n. 

Before we see a direct algorithm for this problem it is of interest 

to look at the method SNOBOL 4 uses 

position:= O; 

check := 1; 

while position < n - m + 1 do 



134 

while x[position+check] 

check : = check + 1 

until check> m; 

y[check] do 

if check> m then match found·& exit fi; 

position := position+ 1; 

check:= 1 

The method may require in worst case~ n•m steps. Morris & Pratt [47] 

apparently first realized that these is a linear time pattern-matching 

algorithm. At the same time~ 1970 the result followed from a general, 

linear time algorithm for simulating arbitrary 2-way deterministic pushdown

automata found by Cook [21], which prompted Knuth & Pratt to write a report 

entitled "automata-them:y can be useful" [42]. 

6.15. Consider how one might improve the previous algorithm. 

Suppose the algorithm has been in action for a while 

(match) 

and now finds that xk+l r Yj+l 

l 
••....•• · •••••••••••• xk xk+l 

Instead of trying again from the very beginning one should continue at 

the largest i such that 

.•••.•••.••••••••••. xk 

which is exactly the largest i such that 



135 

Candidate i's can therefore be determined based solely on y. 

6.16. The following concept now appears relevant. 

DEFINITION. The overlap-identifier h(j) of position j in y is the largest 

i < j such that 

• • • • • • • • • • • • • • • • • • y j 

Observe that always h(l) 0. Let h(0) 0 for consistency. 

EXAMPLE. The overlap-identifiers of babaaba are 

b a b 

0 0 1 

a a b a 

2 0 1 2 

LEMMA. The overlap-identifiers can be determined in~ m steps. 

Proof. Suppose h(l), ••. ,h(j) have been determined and we want h(j+l) next. 

We know 

and can put h(j+l) 

back up further 

h(j)+l in case y. 1 ]+ 

.•.•••••..•.....•••. yj Yj+l 

.•.••••••.•••. yh(j) 

•.••••••• yh (h (j) ) 

Yh(j)+l' but otherwise we must 

and further until such a match is found. The algorithm can be formulated 

as 

h(l) := O; 

j := 1; 

y,-hile j < m do 



136 

i := h(j); 

while y[j+1] f y[i+1] & i >Odo 

i := h(i) 

od; 

h(j+1) := if y[j+1] f y[i+1] then 0 else i+1; 

j := j + 1 

Consider the total cost of this algorithm as we keep sliding a copy of y 

across along y itself. As long as y[j+1] and y[i+1] do not match we can 

charge the cost for a step to position y[j-i+1] (and note here that i 

steadily decreases). If there is a match we charge the cost to y[j+1] and 

continue with an increased value of j. No position can get charged more 

than twice. Thus the algorithm takes only a linear number of steps. D 

6.17. Once the overlap-identifiers are determined we can enact the 

on-line pattern-match across x. The algorithm (see 6.15) becomes 

match:= 0; 

scan:= 1; 

while scans n do 

if x[scan] y[match+1] then goto L fi; 

while x[scan] f y[match+1] do 

match:~ h(match) 

until match= 0; 

L: match := if x[scan] = y[match+1] then match+ 1 fi; 

if match= m then pattern found & exit fi 

scan := scan+ 1 

By changing the "exit" into 

record the match at scan; 

match := h(match); 

one can use the algorithm to locate all (possibly overlapping) occurrences 

of y. Observe that each time around the loop we either match a next posi-



137 

tion of x or move the beginning of yup, thus "pointing" at a position of 

x for the second time (but we will never point at it later after we passed 

it). Thus the algorithm requires time bounded by~ 2n. 

Adding the work we obtain 

THEOREM. One can determine whether y is a substring of x in ~ n + m steps. 

6.18. Hirschberg [37] considered an interesting variant of the longest 

common substring problem, now known as the maximal common subsequence 

problem. 

DEFINITION. z is a maximal common subsequence of x and y if and only if 

(i) Z ~ X & Z ~ y; 

(ii) there is now with lwl > lzl such that w ~ x & w ~ y. 

The problem typically occurs when a maximal correspondence between two 

data-arrays must be found, and is encountered in comparing molecular 

structures and for instance in problem-solving. Learning systems classify 

problems by a series of features in order of decreasing importance, and 

to find out to what extent two problems are similar (or "analogical") 

one tries to establish the best possible sequence of common features 

EXAMPLE. A longest common subsequence of babaaba and bbababba is bbaaba 

The problem poses some interesting questions of time- and storage

utilization (the "simplicity" of the task is again deceptive). We shall 

prove Hirschberg's result (in a somewhat different presentation) that 

there is a data-organisation such that 

THEOREM. The maximal common subsequence of x and y can be found in ~ nm 

steps and ~ n + m space. 



138 

6 .19. If z is to be a longest common sequence then for each position i in x 

there must be a corresponding "split"-position j in y 

l 
yj Yj+l 

such that there is no position kin y for which the maximal common sub

sequence of 

x[l] x[i] and y[ 1] •.••• y[k] 

concatenated with the maximal common subsequence of 

x[i+l] ••••. x[n] and y[k+l] ..••• y[m] 

is longer than z. 

This criterion immediately suggests an algorithm to find z. Split x 

in two parts 

x[ 1 ] •••.• x[[; ~ JJ and 

and find a position j such that the longest common subsequences of 

x[l] ••..• x[ L~JJ and y[ 1 J ••••• y[ j J 

and 

x[l~J+l] ••..• x[n] and y[j+l] .••.. y[m] 

determined by a recursive application of the algorithm concatenate to a 
longest possible string. 

6.20. The common trick in dynamic programming learns to compute the value 

of j quickly first (without actually computing what the common subsequences 



139 

are), and then do a specific recursive call to do the hard work of finding 

the subsequences. 

The following concept is now needed. 

DEFINITION. For i ~ j and k ~ f let Mik[j,£] be the length of the maximal 

common subsequence of 

x[i] ••••• x[j] and y[k] ••... y[l] • 

LEMMA. One can compute Mik[j,l] in~ (j-i) (l-k) time and only~ (l-k) 

space. 

Proof. One can determine Mik[i,k],Mik[i,k+l], .•.•• ,Mik[i,l] by comparing 

symbol after symbol with x[ i] in ~ l - k steps. 

Assuming that Mik[s-1,k],Mik[s-1,k+l], .•••• ,Mik[s-1,l] have been 

determined, one can compute a next row with 

Mik[s,k] := if y[k] occurs in x[i] ... x[s] then 1 else 0; 

for t : = k + 1 to l do 

Mik[s,t] := if x[s] = y[t] then Mik[s-1,t-1]+1 

else MAX(Mik[s-1,t],Mik[s,t-1]); 

One must compute j - i + 1 rows. D 

6.21. By building Mik[j,l] from "right-to-left" one can similarly compute 

rows 

in the same time and space bounds. 

6.22. We can now develop the recursive procedure (due to Hirschberg) 

FIND[i,j,k,l,a] determining a as a longest common subsequence of 

x[i] .•••• x[j] and y[k] •.... y[l] 



140 

procedure FIND[i,j,k,l,a] 

begin 

if i j or k = l then determine a directly fi; 

half:= i + (j-i)/2; 

compute row Mik[half,k],Mik[half,k+l], •..•• ,Mik[half,l]; 

compute row ~alf+l k [ j ,l] '~alf+l k+l [ j ,l], ..... '~alf+l l [ j ,l]; 

split:= an index k ~ t ~ l such that 

Mik[half,t] + ~alf+l t+l[j,l] 

is maximal (over all choices oft); 

FIND[i,half,k,split,a1]; 

FIND[half+l,j,split+l,l,a2]; 

return a:= a 1a 2 
end; 

It is easy to make the procedure iterative and to see that only linear 

space is needed. 

In the time-analysis we shall use that for integers x,y ~ 1 and 

A ~ 2B + C (A,B, and C positive) 

A xy ~ B(x+y) +c. 

Assume as an induction-hypothesis that FIND[i,j,k,l,a] requires only 

time. 

Choosing a 2 > 1 and a 3 ~ 1 appropriately it holds when i 

k l. 

j and/or 

For the induction-step we shall assume (by 6.20 and 6.21) that the 

computation of a row M,k[j,*] or M. [j,l] takes 
i i* 

time. 

Then the time for FIND[i,j,k,l,a] is bounded by 

const1 + 2b1 (j-i) (l-kJ + 2b2[(j-i)+(l-k)] + 2b3 + 

+ const2 (l-k) + a 1 j;i(l-k) + a 2[(j-i)+(l-k)] + a 3 + 

+ const3 = 



141 

If we choose a 1 such that 

(which we can) then the assumption is consistent. D 

6.23. one may now ask if there is perhaps a faster than quadratic algorithm 

to find maximal common subsequences. Aho, Hirschberg, and Ullman [2] 

proved under weak assumptions that in general there isn't. 

Questions of optimality require that we somehow delimit the class of 

algorithms under consideration. 

Consider straight-line programs which extract information from the 

input only by cross-comparisons and count how many queries 

"is x[p]. = y[q]" 

are needed in worst case to find a longest common subsequence. 
· (1) (1) (2) (2) 

Note that if x and y and x and y yield the same answer 

query after query such algorithms generate the same computation in both 

instances and loca·te the longest common subsequence in identical manner. 

We shall exploit this fact to prove that if such algorithms query the input 

only a "few" times they cannot distinguish different inputs correctly. 

6.24. We can immediately show 

LEMMA. Any algorithm for solving the longest common subsequence problem 

needs~ n + m - 1 queries in worst case. 

Proof. Consider the sequence of queries (all yielding no) generated on 

X = 0 0 ••••• 0 and y 11 • • • • • 1 ..______., ..______, 
n m 

which have an "empty" solution. 



142 

Construct a bipartite graph G connecting the positions queried in 

each step. 

If G has at least two connected components, then change the symbols 

of the positions of x and yin one component to 1 and O (respectively). 

The queries don't change and the algorithm still yields "empty" despite 

that there now is a non-trivial common subsequence. 

It follows that G must be a connected graph with n + m vertices. D 

6.25. For cr = 2 (say alphabet E = {O,l}) the given bound cannot be improved. 

The positions of x and y can be identified in only n + m - 1 comparisons 

as follows. 

Think of x[l] as" 0" and ask "is x[l] = y[l]" to determine if we 

can think of y[l] as" 0" also or should consider it as" 1 ". Identify 

x[2] ••••. x[n] by asking "is x[*] = y[l]", and y[2] •.•.. y[m] by asking 

"is x[l] y[*]". 

For cr > 2 it doesn't work, and we can indeed improve the lemma to a 

quadratic bound. 

THEOREM. For a> 2 any algorithm for solving the longest common subsequence 

problem requires ~ nm queries in worst case. 

Proof. Construct the same graph Gas in 6.24, and suppose it has< nm 

lines. Then there must be a pair p,q not connected and thus not queried 

in the algorithm. 

Change x[p] and y[q] into" 2" (which we can because a third symbol 

is available). It does not affect the answer of any query asked and the 

algorithm still comes up with "empty" despite that the correct result must 

be a non-trivial string. D 

REFERENCES (some references are not explicitly cited in the text). 

[1] ADEL'SON-VEL'SKII, G.M., and Y.M. LANDIS, An algorithm for the organi

sation of information, Soviet Math. Dokl. 3 (1962) 1259-1262. 

[2] AHO, A.V., D.S. HIRSCHBERG, and J.D. ULLMAN, Bounds on the complexity 

of the longest common subsequence problem, Conf. Record 1sth 

Annual IEEE Symp. Swi~ching and Automata Theory, New Orleans 

(1974) 104-109, also: JACM 23 (1976) 1-12. 



143 

[ 3] AHO, A.V., J.E. HOPCROFT, and J.D. ULLMAN, The design and analysis of 

computer algorithms, Addison-Wesley, Reading, Mass. (1974). 

[ 4] AHO, A.V., J.E. HOPCROFT, and J.D. ULLMAN, On finding lowest common 

ancestors in trees, Proc. sth ·Annual ACM symp. Theory of 

Computing, Austin (1973) 253-265, also: SIAM J. Computing 5 (1976) 

115-132. 

[ 5] AMBLE, O., and D.E. KNUTH, Ordered hash-tables, Stanford University, 

Stanford (1973) STAN-CS-73-367, also: Computer J. 17 (1974) 135-

142. 

[ 6] ARDEN, B.w., B.A. GALLER, and R.M. GRAHAM, An algorithm for equivalence 

declarations, CACM 4 (1961) 310-314. 

[ 7] BAYER, R., Binary B-trees for virtual memory, Proc. ACM SIGFIDET Work

shop, San Diego (1971) 219-235. 

[ 8] BAYER, R., Symmetric binary B-trees: data-structures and maintenance 

algorithms, Acta Inf. 1 (1972) 290-306. 

[ 9] BENTLEY, J.L. and W.A. BURKHARD, Heuristics for partial-match retrieval 

data-base design, Inf.Pree. Letters 4 (1976) 132-135. 

[10] BLOOM, B.H., Space/time trade-offs in hash-coding with allowable errors, 

CACM 13 (1970) 422-426. 

[11] BOBROW, D.G., A note on hash-linking, CACM 18 (1975) 413-415. 

[12] BOOTH, K.S., and G.S. LUEKER, Linear algorithms to recognize interval

graphs and test for the consecutive ones property, Proc. 7th Annual 

ACM Symp. Theory of Computing, Albuquerque (1975) 255-265. 

[13] BOOTH, K.S., and G.S. LUEKER, PQ-tree algorithms, Dept. of Electr. 

Engineering and Computer Sc., Univ. of California, Berkeley 

(1975) (preprint). 

[ 14] BURKHARD, W.A., Hashing and trie-algorithms for partial match retrieval, 

Dept. of Applied Physics and Information Sc., Unif. of California/ 

San Diego, La Jolla (1975) TR-2. 

[15] BURKHARD, W.~., Partial-match queries and file-design, Proc. ACM Conf. 

on Very Large Data-bases (1975) 523-525. 

[16] BURKHARD, W.A., Associative retrieval trie hash-coding, Dept. of 

Applied Physics and Information Sc., Univ. of California/ 



144 

th San Diego, La Jolla (1975) TR-6, also: Proc. 8 Annual ACM 

Symp. Theory of Computing, Hershey (1976) {to appear). 

[17] CODD, E.F., A Relational model of data for large shared data banks, 

CACM 13 (1970) 377-387. 

[18] CODD, E.F., A data-base sublanguage founded on the relational cal

culus, Proc. ACM SIGFIDET Workshop on data-description, access, 

and control (1971). 

[19] COFFMAN, E.G., and J. EVE, File-structures using hashing functions, 

CACM 7 (1970) 427-432,436. 

[20] COMER, D., and R. SETHI, NP-completeness of tree-structured index 

minimization, Dept. of Computer Sc., Pennsylvania State Univ., 

College Park (1975) (preprint). 

[21] COOK, S.A., Linear time simulation of deterministic two-way pushdown 

automata, Proc. IFIP Congress 71, TA-2, North-Holland Publ. 

Comp., Amsterdam (1971) 172-179. 

[ 22] DATE, C. J. , An introduction to d,-..ta-base systems, the Systems Progr. 

Series, Addison-Wesley, Reading, Mass. (1975). 

[23] DE LA BRIANDAIS, R., File search:~ng using variable length keys, 

Proc. Western Joint Computer Conf. (1959) 295-298. 

[24] DUBOST, P., and J-M. TROUSSE, Software implementation of a new method 

of combinatorialhashing, Stanford University, Stanford (1975) 

STAN-cs:..75-511. 

[25] ENGLES, R.W., A tutorial on data-base organisation, Annual Review 

in Automatic Progr. 7 (1972) 1-64. 

[26] EVE, J., On computing the transitive closure of a relation, Stanford 

University, Stanford (1975) STAN-CS-75-508. 

[27] FISCHER, M.J., Efficiency of equivalence algorithms, in: R.E. MILLER, 

and J.W. THATCHER (ed.), Complexity of Computer Computations, 

Plenum Press, New York (1972) 153-168. 

[28] FLOYD, R.W., and A.J. SMITH, A linear time two-tape merge, Stanford 

University, Stanford (1972) STAN-CS-72-285, also: Inform. Proc. 

Letters 2 (1974) 123-125. 



145 

[29] FOSTER, D.V., Elementary file organisations: a survey, Duke Univer

sity, Durham (1975) CS-1975-6. 

[30] FREDKIN, E., Trie memory, CACM 3 (1960) 490-499. 

[31] FREDMAN, M.L., Two applications of a probabilistic search technique: 

sorting X + Y and building balanced search trees, Proc. 7th 

Annual ACM Symp. Theory of Computing, Albuquerque (1975) 240-244. 

[32] GALLER, B.A., and M.J. FISCHER, An improved equivalence algorithm, 

CACM 7 (1964) 301-303, 506. 

[33] GEHANI, N., private communication, SUNY/Buffalo, Amherst (1976). 

[34] GRISWOLD, R., String and list processing in SNOBOL 4: techniques and 

applications, PH Series in Automatic Computation, Prentice-Hall, 

Englewood Cliffs, N.J. (1974). 

[35] GUSTAFSON, R.A., A randomized combinatorial file-structure for storage 

and retrieval systems, Ph.D. thesis, Univ. of South Carolina 

(1969). 

[36] HILDEBRAND, P., and H. ISBITZ, Ra.dix-exchange: an internal sorting 

method for digital computers, JACM 6 (1959) 156-163. 

[37] HIRSCHBERG, D.S., A linear space algorithm for computing maximal 

common subsequences, CACM 18 (1975) 341-343. 

[38] HOPCROFT, J.E., and R.M. KARP, An algorithm for testing the equiva

lence of finite automata, Cornell University, Ithaca (1971) 

TR-71-114. 

[39] HOPCROFT, J.E., and J.D. ULLMAN, Set merging algorithms, SIAM J. 

Computing 2 (1973) 294-303. 

[40] HORVATH, E.C., Efficient stable sorting with minimal extra space, 

Proc. 6th Annual ACM Symp. l'heory of Computing, Seattle (1974) 

194-215. 

[41] KARP, R.M., R.E. MILLER, and A.L. ROSENBERG, Rapid identification of 
th repeated patterns in strings, trees, and arrays, Proc. 4 

Annual ACM Symp. Theory of Computing, Denver (1972) 125-136. 

[42] KNUTH, D.E., and V.R. PRATT, Automata theory can be useful, Stanford 

University, Stanford (1971) STAN-CS-71-



146 

[43] KNUTH, D.E., The art of computer programming I: Fundamental algorithms, 

Addison-Wesley, Reading, Mass. (1969). 

[44] KNUTH, D.E., The art of computer programming III: Sorting and search

ing, Addison-Wesley, Reading, Mass. (1973). 

[45] MAURER, H.A., and D. WOOD, Zur Manipulation van Zahlenmengen, Inst. 

f. Angew. Informatik u. formale Beschreibungsverfahren, Univ. 

Karlsruhe (1975) Bericht 34. 

[46] MAURER, H.A., TH. OTTMAN, and H.W. SIX, Implementing dictionaries 

using binary trees of very small height, Inst. f. Angew. Infor

matik u. formale Beschre.Lbungsverfahren, Univ. Karlsruhe (1975) 

Bericht 37. 

[47] MORRIS, J.H., and V.R. PRATT, 11 linear time pattern-matching algorithm, 

Computing Centre, Univ. of California, Berkeley (1970) TR-40. 

[48] MORRISON, D.R., PATRICIA-practical algorithm to retrieve information 

coded in alphanumeric, JACM 15 (1968) 514-534. 

[49] OTTMAN, TH., and H.W. SIX, Eine neue Klasse von Ausgeglichenen 

Binarbaumen, Inst. f. Angew. Informatik u. formale Beschreibungs

verfahren, Univ. Karlsruhe (1975) Bericht 35. 

[50] PORTER, T., and I. SIMON, Random insertion into a priority queue 

structure, Stanford University, Stanford (1974) STAN-CS-74-460. 

[51] RIVEST, R.L., On self-organisin9 sequential search heuristics, Conf. 

Record 15th Annual IEEE Symp. Switching and Automata Theory, 

New Orleans (1974) 122-126, also: CACM 19 (1976) 63-67. 

[52] RIVEST, R.L., On hash-coding algorithms for partial - match retrieval, 
th 

Conf. Record 15 Annual IEEE Syrop. Switching and Automata 

Theory, New Orleans (1974) 95-103. 

[53] RIVEST, R.L., Partial-match retrieval algorithms, SIAM J. Computing 

5 (1976) 19-50. 

[54] ROBERTS, D.C., File organisation techniques, in: Adv. in Computers 

12 (1972) 115-174. 

[55] SPITZEN, J., and B. WEGBREIT, The verification and synthesis of data

structures, Acta Inf. 4 (1975) 127-144. 



147 

[56] TARJAN, R.E., Efficiency of a good but not linear set union algorithm, 

JACM 22 (1975) 215-225. 

[57] TARJAN, R.E., Applications of path-compression on balanced trees, 

Stanford University, Stanford (1975) STAN-CS-75-512. 

[58] TRABB PARDO, L., Stable sorting and merging with optimal space and 

time bounds, Stanford University, Stanford (1974) STAN-CS-

74-470. 

[59] VAN EMDE BOAS, P., Preserving order in a forest in less than loga

rithmic time, Proc. 16th Annual IEEE Symp. Foundations of 

Computer Sc., Berkeley (1975) 75-84. 

[60] VAN LEEUWEN, J., On finding lowest common ancestors in less than 

logarithmic average time, Symp. New Directions and Recent 

Results in Algorithms and Complexity, Carnegie-Mellon Univ., 

Pittsburgh (1976) 107. 

[61] VAN LEEUWEN, J., The complexity of data-organisation, 

2nd Adv. Course on Foundations of Computer Science, Amsterdam 

(1976). 

[62] VAN LEEUWEN, J., on the construction of Huffman-trees, in: s. MICHAEL

SON & R. MILNER (ed), Jrd Int. Colloq. on Automata/languages/ 

Programming, Edinburgh (1976), 382-410. 

[63] WARREN, H.S., A modification of Warshall's algorithm for the transi

tive closure of binary relations, CACM 18 (1975) 218-220. 

[64] WARSHALL, s., A theorem on Boolean matrices, JACM 9 (1962) 11-12. 

[65] WEINER, P., Linear pattern-matching algorithms, Con£. Record 14th 

Annual IEEE Symp. Switching and Automata Theory, Iowa City 

(1973) 1-11. 

[66] WIRTH, N., Algorithms+ data-structures= programs, PH Series in 

Automatic Progr., Prentice-Hall, Englewood Cliffs, N.J. (1976). 





OTHER TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS 

A leaflet containing an order-form and abstracts of all publications men
tioned below is available at the Mathematisch Centrum, Tweede Boerhaave~ 
straat 49, Amsterdam-1005, The Netherlands. Orders should be sent to the 
same address. 

MCT 1 T. VAN DER WALT, Fixed and aZmost fixed points, 1963. ISBN 90 6196 
002 9. 

MCT 2 A.R. BLOEMENA, SampZing from a graph, 1964. ISBN 90 6196 003 7. 

MCT 3 G. DE LEVE, GeneraZized Markovian decision processes, part I: ModeZ 
and method, 1964. ISBN 90 6196 004 5. 

MCT 4 G. DE LEVE, GeneraZized Markovian decision processes, part II: Pro
bahiZistic background, 1964. ISBN 90 6196 005 3. 

MCT 5 G. DE LEVE, H.C. TIJMS & P.J. WEEDA, GeneraZized Markovian decision 
processes, AppZications, 1970. ISBN 90 6196 051 7. 

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 1. 

MCT 7 W.R. VAN ZWET, Convex transformations of random variabZes, 1964. 
ISBN 90 6196 007 X. 

MCT 8 J.A. ZONNEVELD, Automatic numericaZ integration, 1964. ISBN 90 6196 
008 8. 

MCT 9 P.C. BAAYEN, UniversaZ morphisms, 1964. ISBN 90 6196 009 6. 

MCT 10 E.M. DE JAGER, AppZications of distributions in mathematicaZ physics, 
1964. ISBN 90 6196 010 X. 

MCT 11 A.B. PAALMAN-DE .MIRANDA, TopoZogicaZ semigroups, 1964. ISBN 90 6196 
011 8. 

MCT 12 J.A.TH.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MoKKEN & A. VAN 
WIJNGAARDEN, FormaZ properties of newspaper Dutch, 1965. 
ISBN 90 6196 013 4. 

MCT 13 H.A. LAUWERIER, Asymptotic e: .. :pansions, 1966, out of print; replaced 
by MCT 54 and 67. 

MCT 14 H.A. LAUWERIER, CaZcuZus of viriations in mathematicaZ physics, 1966. 
ISBN 90 6196 020 7. 

MCT 15 TI. DoORNBOS, SZippage tests, 1966. ISBN 90 6196 021 5. 

MCT 16 J.W. DE BAKKER, FormaZ definit~on of programming Zanguages with an 
appZication to the definition of ALGOL 60, 1967. ISBN 90 6196 
022 3. 

MCT 17 R.P. VANDERIET, FormuZa manipuZation in ALGOL 60, part 1, 1968. 
ISBN 90 6196 025 8. 

MCT 18 R.P. VAN DE RIET, FormuZa manipuZation in ALGOL 60, part 2, 1968. 
ISBN 90 6196 038 X. 

MCT 19 J. VAN DER SLOT, Some properties reZated to compactness, 1968. 
ISBN 90 6196 026 6. 

MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for soZving partiaZ 
differentiaZ equations, 1968. ISBN 90 6196 027 4. 



MCT 21 E. WATTEL, The compactness operator in set theory and topology, 
1968. ISBN 90 6196 028 2. 

MCT 22 T.J. DEKKER, ALGOL 60 procedures in numerical algebra, part 1, 1968. 
ISBN 90 6196 029 0. 

MCT 23 T.J. DEKKER & W. HOFFMANN, ALGOL 60 procedures in numerical algebra, 
part 2, 1968. ISBN 90 6196 030 4. 

MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 90 6196 060 6. 

MCT 25 E.R. PAERL, Representations of the Lorentz group and projective 
geometry, 1969. ISBN 90 6196 039 8. 

MCT 26 EUROPEAN MEETING 1968, Selected statistical papers, part I, 1968. 
ISBN 90 6196 031 2. 

MCT 27 EUROPEAN MEETING 1968, S87ected statistical papers, part II, 1969. 
ISBN 90 6196 040 1. 

MCT 28 J. OOSTERHOFF, Combination of one-sided statistical tests, 1969. 
ISBN 90 6196 041 X. 

MCT 29 J. VERHOEFF, Error detecting decimal codes, 1969. ISBN 90 6196 042 8. 

MCT 30 H. BRANDT CORSTIUS, Excercises in computational linguistics, 1970. 
ISBN 90 6196 052 5. 

MCT 31 W. M::>LENAAR, Approximations to the Poisson, binomial and hypergeo
metric distribution functions, 1970. ISBN 90 6196 053 3. 

MCT 32 L. DE HAAN, On regular variation and its application to the weak 
convergence of sample extremes, 1970. ISBN 90 6196 054 1. 

MCT 33 F.W. STEUTEL, Preservation of infinite divisibility under mixing 
and related topics, 1970. ISBN 90 6196 061 4. 

MCT 34 I. JUHASZ, A. VERBEEK & N.S. KROONENBERG, Cardinal functions in 
topology, 1971. ISBN 90 6196 062 2. 

MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 90 6196 063 0. 

MCT 36 J. GRASMAN, On the birth of boundary layers, 1971. ISBN 90 6196064 9. 

MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J .W. DUIJVESTIJN, E.W. DIJKSTRA, 
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN 
ARETZ, W.L. VANDERPOEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES & 

G. ZOUTENDIJK, MC-25 Informatica Symposium, 1971. 
ISBN 90 6196 065 7. 

MCT 38 W.A. VERLOREN VAN THEMAAT, Automatic analysis of Dutch compound words, 
1971. ISBN 90 6196 073 8. 

MCT 39 H. BAVINCK, Jacobi series and approximation, 1972. ISBN 90 6196 074 6. 

MCT 40 H.C. TIJMS, Analysis of (s,S) inventory models, 1972. ISBN 90 6196 075 4. 

MCT 41 A. VERBEEK, Superextensions of topological spaces, 1972. ISBN 90 
6196 076 2. 

MCT 42 W. VERVAAT, Success epochs in Bernoulli trials (with applications in 
number theory), 1972. ISBN 90 6196 077 O. 

MCT 43 F.H. RUYMGAART, Asymptotic theory of rank tests for independence, 
1973. ISBN 90 6196 081 9. 

MCT 44 H. BART, Meromorphic operator valued functions, 1973. ,ISBN 906196 082 7. 



MCT 45 A.A. BALKEMA, Monotone tl'ansformations and Zimit "laws, 1973. 
ISBN 90 6196 083 5. 

MCT 46 R.P. VANDERIET, ABC ALGOL, A.poPtabZe "language fol'fOl'TTTUZa manipu
lation systems, pal't 1: The "language, 1973. ISBN 90 6196 084 3. 

MCT 47 R.P. VAN DE RIET, ABC ALGOL, A pol'tabZe "language fol' fol'TTTUZa manipu
lation systems, paPt 2: The corrrpiZel', 1973. ISBN 90 6196 085 1. 

MCT 48 F.E.J. KRUSEMAN ARETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, An ALGOL 
60 corrrpi"lel' in ALGOL 60, Text of the MC-corrrpi"lel' fol' the 
EL-XB, 1973. ISBN 90 6196 086 X. 

MCT 49 H. KOK, Connected Ol'del'ab"le spaces, 1974. ISBN 90 6196 088 6. 

MCT 50 A. VAN WIJNGAARDEN, B.J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER, 
M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERI'ENS & R.G. FISKER 
(Eds),. RevisedPeport on the algorithmic "language ALGOL 68, 
.1976. ISBN 90 6196. 089 4. 

MCT 51 A. HORDIJK, Dynamic pPogpamming and MaPkov potential theol'y, 1974. 
ISBN 90 6196 095 9. 

MCT 52 P.C. BAAYEN (ed.), Topological stl'Uctul'es, 1974. ISBN 90 6196096 7. 

MCT 53. M.J. FABER, Metl'izabiZity in genePaZized Ol'del'ed spaces, 1974. 
ISBN 90 6196 097 5. 

MCT 54 H.A. LAUWERIER, Asymptotic analysis, pal't 1, 1974. ISBN90 6196 098 3. 

MCT 55 M. HALL JR. .& J .H. VAN LINT ( Eds) , Combinatorics, pal't 1: TheoPy 
of designs, finite geome-.';py and coding theoPy, 1974. 
ISBN 90 6196 099 1. 

MCT 56 M. HALL JR. & J.H. VAN LINT (Eds), Combinatol'ics, paPt 2: gPaph 
theoPy, foundations, pal'titions and combinatoPiaZ geometl'y, 
1974. ISBN 90 6196 100 9. 

MCT 57 M. HALL JR. & J.H. VAN LINT (Ed~, Combinatorics, part 3: Combina
torial gpoup theol'y, 1974. ISBN 90 6196 101 7. 

MCT 58 W. ALBERS, Asymptotic expansions and the deficiency concept in sta
tistics, 1975. ISBN 90 6196 102 5. 

MCT 59 J.L. MIJNHEER, Sample path pPoperties of stable pPoce~ses, 1975. 
ISBN 90 6196 107 6. 

MCT 60 F. GoBEL, Queueing models invoZv·ing buffel's, 1975. ISBN 90 6196 108 

* MCT 61 P. VAN EMDE BoAS, Abstract resource-bound classes, part 1. 
ISBN 90 6196 109 2. 

* MCT 62 P. VAN EMDE BoAS, Abstract PesoUPce-bound classes, part 2. 
ISBN 90 6196 110.6. 

MCT 63 J.W. DE BAKKER (ed.), Foundations of computer science, 1975. 
ISBN 90 6196 111 4. 

MCT 64 W.J. DE SCHIPPER, Symmetric closed categol'ies, 1975. ISBN90 6196 
112 2. 

MCT 65 J. DE VRIES, Topological transformation groups 1 A categorical ap
pPoach, 1975. ISBN 90 6196 113 o. 

MCT 66 H.G.J. PIJLS, Locally convex aZgebl'as in spectral theoPy and eigen
function expansions, 1976. ISBN 90 6196 114 9. 

4. 



* MCT 67 H.A. LAUWERIER, Asymptotic analysis, part 2. 
ISBN 90 6196 119 X. 

MCT 68 P.P.N. DE GROEN, Singularly perturbed differential operators of 
second order, 1976. ISBN 90 6196 120 3. 

MCT 69 J.K. LENSTRA, Sequenci'Yl{J by enumerative methods, 1977-
ISBN 90 6196 125 4. 

MCT 70 W.P. DE RDEVER JR., Recursive program schemes: semantics and proof 
theory, 1976. ISBN 90 6196 127 0. 

MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision processes, 1976. 
ISBN 90 6196 129 7. 

MCT 72 J.K.M. JANSEN, Simple periodic and nonperiodic Lame functions and 
their applications in the theory of conical waveguides,1977. 
ISBN 90 6196 130 0. 

MCT 73 D.M.R. LEIVANT, Absoluteness of intuitionistic logic, 1979. 
ISBN 90 6196 122 x. 

MCT 74 H.J.J. TE RIELE, A theoretical and computational study of general
ized aliquot sequences, 1976. ISBN 90 6196 131 9. 

MCT 75 A.E. BROUWER, Treelike spaces and related connected topological 
spaces, 1977. ISBN 90 6196 132 7. 

MCT 76 M. REM, Associons and the closure statement, 1976. ISBN 90 6196 135 1. 

MCT 77 W.C.M. KALLENBERG, Asymptotic optimality of likelihood ratio tests in 
exponential families, 1977 ISBN 90 6196 134 3. 

MCT 78 E. DEJONGE, A.C.M. VAN RooIJ, Introduction to Riesz spaces, 1977. 
ISBN 90 6196 133 5. 

MCT 79 M.C.A. VAN ZUIJLEN, Empirical distributions and rankstatistics, 1977. 
ISBN 90 6196 145 9. 

MCT 80 P.W. HEMKER, A numerical study of stiff two-point boundary problems, 
1977. ISBN 90 6196 146 7. 

MCT 81 K.R. APT & J .W. DE BAKKER (eds), Foundations of computer science II, 
part I, 1976. ISBN 90 6196 140 8. 

MCT 82 K.R. APT & J.W. DE BAKKER (eds), Foundations of computer science II, 
part II, 1976. ISBN 90 6196 141 6. 

* MCT 83 L.S. VAN BENTEM JUTTING, Checking Landau's "Grundlagen" in the 
AUTO!M.TH system, ISBN 90 6196 147 5. 

MCT 84 H.L.L. BUSARD, The translation of the elements of Euclid from the 
Arabic into Latin by Hermann ofCarinthia (?)books vii-xii, 1977. 
ISBN 90 6196 148 3. 

MCT 85 J. VAN MILL, Supercompactness and Wallman spaces, 1977. 
ISBN 90 6196 151 3. 

MCT 86 S.G. VAN DER MEULEN & M. VELDHORST, Torrix I, 1978. 
ISBN 90 6196 152 1. 

* MCT 87 S.G. VANDERMEULEN & M. VELDHORST, Torrix II, 
ISBN 90 6196 153 x. 

MCT 88 A. SCHRIJVER, Matroids and linking systems, 1977. 
ISBN 90 6196 154 8. 



MCT 89 J.W. DE RoEVER, Complex Fourier transformation and analytic 
functionals with unbounded carriers, 1978. 
ISBN 90 6196 155 6. 

* MCT 90 L.P.J. GROENEWEGEN, Characterization of optimal strategies in dy-
namic games, . ISBN 90 6196 156 4. 

* MCT 91 J.M. GEYSEL, Transcendence in fields of positive characteristic, 
• ISBN 90 6196 157 2. 

* MCT 92 P.J. ~'JEEDA, Finite generalized Markov programming, 
ISBN 90 6196 158 0. 

MCT 93 H.C. TIJMS (ed.) & J. WESSELS (ed.), Hark011 decision theory, 1977. 
ISBN 90 6196 160 2. 

MCT 94 A. BIJLSMA, Simultaneous approximations in transcendental number 
theory, 1978. ISBN 90 6196 162 9. 

MCT 95 K.M. VAN HEE, Bayesian control of Markov chains, 1978. 
ISBN 90 6196 163 7. 

* MCT 96 P.M.B. VITANYI, Lindenmayer systems: structure, languages, and 
growth functions, . ISBN 90 6196 164 5. 

* MCT 97 A. FEDERGRUEN, Markovian control problems; functional equations 
and algorithms, . ISBN 90 6196 165 3. 

MCT 98 R. GEEL, Singular perturbations of hyperbolic type, 1978. 
ISBN 90 6196 166 l 

MCT 99 J.K. LENSTRA, A.H.G. RINNOOY KAN & P. VAN EMDE BOAS, Interfaces 
between computer science and operations research, 1978. 
ISBN 90 6196 170 X. 

MCT 100 P.C. BAAYEN, D. VAN DULST & J. OoSTERHOFF (Eds), Proceedings bicenten
nial congress of the Wiskundig Genootschap, part 1, 1979. 
ISBN 90 6196 168 8. 

MCT 101 P.C. BAAYEN, D. VAN DuLST & J. OoSTERHOFF (Eds), Proceedings bicenten
nial congress of the Wiskundig Genootschap, part 2,1979. 
ISBN 90 9196 169 6. 

MCT 102 D. VAN DULST, Reflexive and superreflexive Banach spaces, 1978. 
ISBN 90 6196 171 8. 

MCT 103 K. VAN HARN, Classifying infinitely divisible distributions by 
functional equations,1978. ISBN 90 6196 172 6. 

* MCT 104 J.M. VAN WOUWE, Uo-spaces ana gener•alizations of metrizability, 
• ISBN 90 6196 173 4. 

* MCT 105 R. HELMERS, Edgeworth expansions for linear combinations of order 
statistics, . ISBN 90 6196 174 2. 

AN ASTERISK BEFORE THE NUMBER MEANS '"IO APPEAR" 




