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NOTATIONS
R denotes the field of real numbers.
I = (a,b), a,be R, a < b.
n = {xi | a= Xy <K < ... < xo = bl}.
Ig = XyqeXgdi by =X -x e

LP(I), p = 1,2,», the Banach space of Lebesgue p-integrable functions on I;
s Dol s Nell = Dol ; Dol = Nel .
oo To,p" o 0,22 e 0,
¢ (1), x =0,1,2,...,», the set of real-valued, k times continuously dif-
ferentiable funtions on I.

C:(I), the set of Cw(I) functions with compact support in I.
¢ = .

¢l = {u | 30 u € CO(Ii), i=1,2,...,N},

restr.I,
i
the set of piecewise continuous functions.

ﬂ-ﬂ" o’ p = 1,2,%, pointwise norms (see section 2.2).
’

Hk(I), HE(I), k=0,1,2,..., Sobolev spaces;

norm: “."k (see section 3.1).
Hk'ﬂ[a,b], k=0,1,2,..., piecewise Sobolev spaces;

: Bel i .2);

norm X, (see section 3.2);

. N
innerproduct: (.'.)O,ﬂ = E (*,°) 2 .
i=1 L7(z,)
m,k m, k *
M, MO' am, k=0,1,2,..., m=-1,0,1,2,...,

piecewise polynomial spaces (see section 3.1).

m,k k
N (Ma), NpUULO), ko= 0,1,2,..0m = 0,1,2,.. .,
exponentially fitted spaces (see section 3.4).
1 if i =3
, Kronecker's delta.

oo ifi#j

%i denotes differentiation with respect to x.

C and Kl' K

D -

grece denote generic constants; that means that they are con-

stants of which the value may be different on each appearance.






CHAPTER I

ANALYTIC PROPERTIES OF LINEAR, SINGULARLY
PERTURBED TWO-POINT BOUNDARY-VALUE PROBLEMS

This chapter gives an exposition of some essential results in the
theory of singularly perturbed two-point boundary-value problems. In view
of the many investigations that have been carried out in this field, it
is not a survey of the literature on the subject. The main aim of this
chapter is to show the fundamental results in the singular perturbation

theory that underlie our numerical investigations in the next chapters.
1.1. INTRODUCTION

In the first three chapters of this monograph we consider a second
order, linear, singularly perturbed two-point boundary-value porblem.

One standard form of such a problem is

ey"(x) + £(x)y'(x) + g(x)y(x) = s(x),
(1.1.1a) f

x € (a,b), € >0,
(1.1.1b) y(a) = a, y(b) = B.

We assume f£,g and s to be sufficiently smooth functions on [a,b]. In parti-
cular we are interested in the solution of these problems for small values
of €. The most striking feature of the differential equation is that its
order is lower for € = 0 than for € # 0. For this lower order equation one
of the two boundary conditions is superfluous. Indeed, for small values of
€, it turns out that small regions arise in [a,b], in which the connection
with the boundary conditions is made. This causes the solution to have a
multiscale character, i.e. the solution is described by slowly and rapidly
varying parts. This multiscale character is a characteristic feature of the
functions that describe the solutions of singular perturbation problems. It
also means that attempts to seek a solution in the form of an ascending
series in powers of € will fail, unlike the case of regular perturbation
problems.

The multiscale character, where one scale prevails over the other in



each region, should be distinguished carefully from the "muitiple time~-scale"
as used in the two-variable expansion method, where a solution may depend
both on a slow and a fast independent variable in the same region, e.g.

y(t) = t sin(t/e); cf. COLE [1968].

As we want'to solve problems of the type (1.1.1) for small values of
€, we are interested in the asymptotic behaviour for € = 0. In a number of
cases, a treatment of this behaviour can be given by the theory of matched
asymptotié expansions (cf. e.g. ECKHAUS [1973], COLE [1968]). In other
cases, however, the Wentzel-Kramer-Brillouin- (WKB-) method seems to be a
more expedient tool (cf. e.g. SIROVICH [1971], wasow [1965]).

If the coefficient g is negative, the maximum principle can be used
in order to derive a number of extremely useful a priori bounds. This prin-
ciple can also be applied in nonlinear problems (cf. DORR, PARTER & SHAMPINE
[1973]).

In section 1.2 we will give a summary of results obﬁained in the in-
vestigations of the asymptotic behaviour of (1.1.1) by e.g. PEARSON [1968a],
ACKERBERG & O'MALLEY [1970], KREISS & PARTER [1974] and ABRAHAMSSON [1975].
In section 1.3 some examples are given in which the most striking features
of singualrly perturbed two-point boundary value problems are demonstrated.

Although we are able to analyse the behaviour for a certain number of
special cases, it is rather difficult to compute the solution for more gen-
eral functions f,g, and s. For this reason algorithms for its numerical
approximation are developed in chapters 2 and 3. In chapter 4 these algor-
ithms are applied to nonlinear problems.

In the remaining part of this section we collect some preliminary re-

sults.

An integrating factor

In many cases it is convenient to write equation (1.1.1.a) in a
slightly different form; it is obtained by multiplying the equation by an

integrating factor p(x):

(1.1.2) e(py')' +pgy=ps,

where

X

(1.1.3) p(x) = exp{ J E%;zdt}.



The solution as a stationary point of a quadratic functional

Let ¢ be a function in Cl[a,b] with fixed endpoints ¢(a) = q,
¢(b) = B, and consider the functional
b
(1.1.4)  E[¢] = J p e )2 - gox? + 25(x) ¢ (x) bax.
a
By the classical Euler-Lagrange theory, it can be shown that the solution
of problem (1.1.1) is a stationary point for E[¢]. If g(x) < 0, E[¢] is a
convex functional which assumes its minimum for ¢ = y, the solution of

(1.1.1). In particular, the functional in this case is a starting point for

theoretical considerations; e.g. it can be used to justify the Ritz-

Galerkin-method for obtaining approximations to y(x).

The energy norm

It is well known that, for g < 0, an "energy"-norm can be defined on
c'ra,b] by
b
2 , 2 2
(1.1.7) !I¢IIE = | px){e(d (x))° - g(x)d(x)“}ax.
‘ a
Here the special role of the integrating factor p is clearly demonstrated:

it can be considered as a weighting-function.

Transition points

By application of the LZouville transformation to the dependent vari-
able y:
x
(1.1.8) z(x) = y(x) exp J Eégldt,
a

the differential equation (1.1.1.a) can be cast into the form
(1.1.9) 2e z" +qz=r,

where

(1.1.10) g(x) = 2g(x) - £'(x) - f2(x)'
€
X
(1.1.11) r(x) = 2s(x) exp I fé;) at.

a



One observes that y is an oscillating function when 2g - f' > f2/2€ over a
large enough interval. Asymptotic solutions to equation (1.1.9) for small
values of € are only valid within a certain sector of the complex plane.
They are not valid for small values of g(x). In particular they are not
valid if the solution is changed from a periodic into an exponential func-
tion, i.e. in passing through a zero of q. Such a point, where the charac-
ter of the solution changes, is called a transition point or '"classical

turning point'.

Turning points

Zeroes of the function f in equation (l1.1.1.a) are also called turning
points. These turning points do not entirely coincide with "classical turn-
ing points". The relation will be made clear with the aid of the following
three examples.

The example of a single (or first order) classical turning point is
given by the equation

"

ey - xy = 0.

1/3

The transition point is x = 0. By the local coordinate & = xe this

equation is converted into Airy's equation

The solution, Airy's function Ai(&) or Bi(&), is oscillating for & < 0 and
non-oscillating for & > 0.
An example of a double (or second order) transition point is given by

the eguation
ezy“ + (l—xz)y =0

at x = +1.,

By the change of independent variable § = xv/2/e it becomes

ay _ (1;’2 _1_) _
| - y = 0.
at 4 2¢

The solutions of this equation are the Weber - or parabolic cylinder



Sfunetions

D, 1 (&) and D, 1 -8y

2e 2 2e 2

which do not oscillate for |x| > 1.

Another example of a double transition point is given by the equation
(1.1.12) ey" + xy' + cy = 0.

Applying the Liouville transformation we get

wo_ [ X,2 1-2¢
z {(28) + (=) }z

2¢ = 0.

If ¢ > %, this equation has two turning points in the classical sense, viz.
for x = %2 EJQ:g, which both approach x = 0 for € + 0. In the other sense
it has one turning point for x = 0 since the coefficient of y' in (1.1.12)
has one zero.

We will use the word turning point (without further indication) only

for a zero of the coefficient of y'.

The non-homogeneous equation

If we investigate the asymptotic behaviour of the problem (1.1.1) for
€ > 0, the right-hand-side term s(x) frequently is unimportant in the sense
that the equation is easily reduced to its homogeneous form. If there ex-

ists a solution v, € Cz[a,b] of the reduced equation
(1.1.13) fvi +gv = s,
then wy =y-v satisfies
Eux + fui +gu = —EVI.
The process can be iterated and the influence of s on the solution y of
(1.1.1) can be expressed in a power series in €. Truncating the process at

the n-th stage, the non-homogeneous term is 0(e™) which can usually be dis-

carded, leaving the homogeneous equation



eu" + fu' + gu_ = 0.
n n n

On subintervals {c,d) < [a,b] which do not contain zeroes of £,
b'4

(1.1.14)  y,(x) =¢C exp{- J g(t)/£(t)at}

is the general solution of equation (1.1.13) with s = 0, and

X

(1.1.15) vl(x) = yl (x) * [ J s(t) .'

ACHT R

is the solution of the full equation (1.1.13).
1.2. EXPOSITION OF ASYMPTOTIC PROPERTIES

To obtain an insight into the asymptotic properties of the solution of

equation (1.1.1.a) for € - 0 we first study the homogeneous equation
(1.2.1) ey" + fy' + gy = 0.

We are especially interested in the question under what conditions a
solution of the problem (1.2.1)-(1.1.1.b) satisfies approximately the

reduced equation
(1.2.2) fy' + gy = 0.

This certainly will be the case in those parts of [a,b] where y"(x;€) is
uniformly bounded in € and hence it is important to know where these parts
are (if they exist).

We do not intend to study the problem in all generality but we shall
consider a number of characteristic cases. Since f(x) is the coefficient
in the leading term of the reduced equation, it is natural to consider the

following three cases:

A. f is positive (or negative) definite on the whole interval [a,b] ,

i.e. there are no. turning points;
B. f has a simple zero in (a,b), i.e. there is one turning point;

Cc. £ is identical to zero on [a,b].



A. No turning points

First we focus on the case where f is positive or negative definite on
[a,b]. According to the WKB-technique we formally solve equation (1.2.1) by
writing

be

exp{% J B(t)at},

y(x)
(1.2.3)

n

B(t) = ) p_(t)e" .

n
. n=0

This leads - to first order - to two approximate solutions

X

_ wrnf_ | g(t)
(1.2.4) v, = c expl J £(0) at},
a X X
_ -1 _1 g(t)
(1.2.5) ¥, = C £(x) exp{ . J £(t)dt + J f(t)}dt .
a a

The solution of eq. (1.2.1) which satisfies the boundary condition (1.1.1.Db)

can be written
(1.2.6) y(x) = Clyl(x) + c2y2(x) + 0(e).

For £ > 0, C is exponentially small outside a small region of 0(g)

Yy
272
near x = a. (The region where C2y2 is not exponentially small is called a
boundary layer.) The coefficient C, is determined by C,y, (b) = B and c, by
C2y2(a) =a - Clyl(a).

For £ < O, czy2 is exponentially small outside a boundary layer near
the other end x = b. We see that, away from the boundary layer, the solu-

tion is approximately described by C Y- This function satisfies the re-

1
duced equation (1.2.2) and the boundary condition at the non-boundary-layer

end.

B. One turning point

For a single zero of £, we can take a < 0 < b and £(0) = 0 without loss

of generality. The WKB-analysis shows that

x
(1.2.7) v, = < exp{- J (%%%% + %ﬂdt}
0

X

X
i £ . 2
(1.2.8)  y, =x L 1{f(xx)}exp{- éj £(t)dt + J (—3—(&—; + E)dt}
0 0




where

(1.2.9) L = -g(0)/£' (0).

Since the singularity in the integrand is subtracted, the integrals do ex-
ist.

For arbitrary values of CL and CR' CLy1
neous reduced equation (1.2.2) on [a,0) and (0,b] respectively . For £ < O,

and CRy1 satisfy the homoge-

the form (1.2.7) shows that there are no smooth solutions of (1.2.2) on

[a,b] except y = 0. If £ 2 0, for any solution v, € Ck[a,b], k > %, it is
seen that CL = CR by the smoothness condition. Moreover, if £ # 0,1,2,...
then CL = CR = 0, i.e. the homogeneous equation only admits the trivial
equation.

These facts establish the uniqueness of a solution y € Ck[a,b]; k> %,
of the inhomogeneous reduced equation (1.1.13), if & # 0,1,2,... . This

solution exists and can be written in the form

n_ (n)
- _px) ) XY (x) XY (x) }
y 4""){ v trEen Yo Y TeeD . Gem
2 X
X" (x) n-%, (n+1)
(1.2.10) *IED... ) | B ¥ (B
° n>% -1,
n=-1,
where
X
= | gtvy &
P (x) eXP{ J O dt},
0
__s()t
Ve = T Eo
(cf. ABRAHAMSSON [1975], lemma 3.2).
If £ = 0,1,2,... nontrivial solutions ¥y of the homogeneous equation

(1.2.2) on [a,b] are possible; e.qg. ¥, = Cx is a solution of xy' -y = 0.
on [a,-8] and [§,b], § > 0, the WKB-solution of the homogeneous equa-

tion can be written as

(1.2.11) ~ C + C .
y(x) 1yl(x) 2yz(x)



Near the turning point both solutions, y1 and y2 are not in general valid.

Hence it is expected that the coefficients 01 and C, differ on either side

2
of the turning point.

For the description of the gqualitative behaviour of the solution of

equation (1.2.1) we have to distinguish between £'(0) > 0 and £'(0) < O.

Case I: £'(0) > O

Similar to the above remarks about Yi ¥, € Ck[a,b], k >
plies either ¥, = Oor £ =-1,-2,-3,... .
If § = -1,-2,-3,... the solutions of (1.2.1) may explode

over the whole interval [a,bl; e.g.

vy=y,= eXP((l—xz)/Ze)

is a solution for the problem

ey" + xy' +y =0,
y(-1) = y(1) = 1.

-2-1, im-

exponentially

For & # -1,-2,..., any nontrivial Yy is not a smooth solution on [a,b]

and we consider the WKB-approximation on the intervals [a,-§] and [§,b],

1 (x
§ >0, separately. Since - E- o £(t)dt < 0 on [a,b], the influence of y2

is exponentially small outside a region near x = O.

By analogy to the results obtained without a turning point we see that the

approximate solution of (1.2.1)-(1.1.1.b) is described by
(x) ~ —2— v (x) on [a,-§]
¥ Y1 (a) y]. 4

and by

y(x) ~ (x) on [§,b]

_B
v, (D) ¥y

for some § > O.

In this case there is a boundary layer neither at x = a nor at x = b. This

is rigorously stated in the following

'THEOREM 1.2.1. (cf. ABRAHAMSSON [1975]) Let there be one turning point at
x =0, let £'(0) > 0 and & = -g(0) /£' (0) # -1,-2,... and let v be the
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solution on [a,0) U (0,b] of the reduced equation (1.1.13) with the bound-

ary conditions
v(a) = o and v(b) =B,

then there are constants §,K and € independent of €, such that the solu-

tion of problem (1.1.1) satisfies

(1.2.12) max ly(x;e) - v(x)| < Ke
0<8<]x|<1

for all 0 < ¢ < €y

The behaviour in the turning point region strongly depends on the sign
of 2. If £ > 0, y(0) converges to zero. If £ < O both limits y(+0) and
y(~0) are unbounded and a complicated behaviour may be expected in the

turning point region. If £ = 0 a shock layer is expected (cf. fig. 1.3.3).

Case II: £'(0) < O

X
1
In this case - e f(t)dt 2 0 and therefore the influence of y2 grows

exponentially for increasing values of |[x|. Thus ¥, can serve as a bound-
ary layer function both near x = a and x = b. Outside these possible bound-
ary layers, ¥y is exponentially small.

In order to investigate the contribution from ¥y to the solution of
(1.2.1)-(1.1.1.b), a link has to be made between the WKB-approximations for
X < 0 and x > 0. To this end equation (1.2.1) is approximated in the neigh-

bourhood of x = 0 by
(1.2.13) ey" + £'(0) x y' + g(0)y = 0.
The solution in the turning point region can now be expressed in terms of
parabolic cylinder functions Dx(z). Introducing the local coordinate
£ = x/-f'(0) /e, we approximate the solution of eq. (1.2.1) near x = 0 by
2
(1.2.14) yy(x) = A3 /41 Dy () + B Dy (-E) 1.
DQ(E) and DR(—E) yield two independent solutions when % # 0,1,2,..., other-

wise an independent solution is given by D_R_l(ig). For 2 = 0,1,2,..., we

have



(1.2.15) D (Z) = e / He (Z)
2 21 !

where Hel is the Hermite polynomial of degree % (cf. ABRAMOWITZ & STEGUN

[1965]).
The asymptotic behaviour for |z| = © of the function DZ(Z) is given by

52
z</4 zl

(1.2.16) Dz(z) ~ e , if Jarg(z)]| < Zﬂ,

and

2 .2
(1.2.17)  Dy(z) ~ &2 /4 p _ am ami 2%/4 41

if é

(WHITTAKER & WATSON [1946], p.348.)

T < arg(z) < gﬂ.

Since all exponentially large terms in Y3 must be absent for § = o,
when matching the local solution (1.2.14) with C,yy * Cyy,, we have to
choose A = B = 0, unless £ = 0,1,2,... . So we have y(x) ~ 0 in the turn-
ing-point region if % # 0,1,2,... . This is rigorously stated in the fol-
lowing
THEOREM 1.2.2. If £'(0) <0, & # 0,1,2,... then there exists an € > 0 such
that for all 0 < € < € there ig a unique solution y(x;€) of (1.2.1)-
(1.1.1.b), which is uniformly bounded on [a,b].

Moreover, for any fixed § > O,

(1.2.18) lim max ly(x;e)| = 0.
e*0 a+8<x<b-§

PROOF. See KREISS & PARTER [1974].

In the cases when & = -g(0)/f' (0) = 0,1,2,..., a non-trivial turning

point solution is possible:
(1.2.19)  y; (x) = exp(E74) Dy (E) = He, (x/=E7 (01/E) .

The appearance of non-zero limit-solutions for € = 0, which can occur for
discrete values of &, is called the resonance phenomenon. The condition
L =0,1,2,... is necessary for resonance, however, it is not a sufficient

condition. The class of functions f and g for which there are non-zero
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interior limit-solutions appears to be rather small (cf. KREISS & PARTER
[1974]).

In the case of a turning point with f£'(0) < 0 the effect of the right-
hand side s(x) in eq. (1.1.1) is not immediately clear. ABRAHAMSSON [1975]
shows that the smoothness of s(x) is a prerequisite for the solution y(x;€)
to be uniformly bounded in €. Compiling some of his results we state the

following

THEOREM 1.2.3. Let y be the soZutioﬁ of (1.1.1), let there be one turning
point at x = 0 with £'(0) < 0 and let & = -g(0)/f' (0) then there exist
K,$§ and €, > 0, <ndependent of €, such that

if L < 0 then

max |y(x;e)| < K max(|al,|B], max |s(x)]),
asx<b as<x<b

if 2 >0, L #0,1,2,... , then

max ly(e)| < K max(lal, 18], max s, max 1s™ ),

asx<b a<x<b |x|<6
where k is the nonnegative integer such that % < k < L+1.

If s is not smooth enough, then y is possibly not bounded for € = 0.

E.g. if y is the solution of

0-
OI

d=0,1,2,... ; £>0, 2#0,1,2,... ,

a
n X X
ey" - xy' + &y = {0 .

NIV

y(@a =a, yb) = B,

then
a-2
max |y(x;e)| = O(e 2y 4 0(1).
as<x<b
If £ =0,1,2,... the solution may grow exponentially even for smooth
functions s. E.g. let y be the solution of
" 2’
ey" - xy' + Ly = x, 2 =0,1,2,...,
Y(-l) = y(l) =0,
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then
y(x) = 0(e1/€) for x € (a,b).

REMARK. When some numerical method for the problem (1.1.1) is used which
approximates the right-hand side s by a function ; that is not smooth
then we may not expect the corresponding approximation of y to be uni-

formly bounded for € + 0. E.g. if equation
ey" - xy' + y = s

is solved numerically by a method which approximates the data s by s, such
that ; has a discontinuous derivative at x = 0, then - if no further ap-

proximations are made - the approximate solution y satisfies

and we may have ; =0( " ).
Hence we can guarantee that y(x;€) is uniformly bounded only if & < 1.

Similarly, if S is discontinuous at x = 0 (e.g. if s is approximated by a
step-function), then y = 0(!—:2/2

2 < 0.

) and ; will be uniformly bounded only for

REMARK. For both £'(0) > 0 and £' (0) < 0 we notice that, by introducing
the local coordinate & = x//E in the turning point region, we can remove
the singular perturbation character of equation (1.2.1). It is then con-.

verted into

2
(1.2.20) -d—-zY- + £ 28y oy = 0.
aE x ag

For numerical purposes this implies that in a turning-point region of
0(/5) no special methods for the problem are needed, provided that the mesh

is sufficiently refined.

This approach may solve the problem for linear equations when an appropri-
ate mesh can be generated after an a priori analysis, which locates the
turning points and boundary layers. However, in general this will be a

laborious process, especially when nonlinear equations are considered.
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C. f identical to zero

In the case f = 0, standard WKB-analysis of eq. (1.2.1) yields the
approximation (cf. e.g. SIROVICH [1971])
1 X

(1.2.21) y(x) ~ g(x)4 exp (* J Y-g(t) /e dat).

The character of the solution depends on the sign of g. If g < 0 the solu-
tion is exponential. There are boundary layers at either end of the inter-
val [a,b]. Outside both boundary layers, which extend over a region 0(VE),
the solution is exponentially small.

If g > 0 the solution is oscillating with a period 2“/575. For the latter

case it is evident that numerical approximation by means of piecewise ap-

proximation of the solution is not feasible for small values of €.

1.3. EXAMPLES

In this section we collect a number of special cases of problem
(1.1.1). They illustrate the exposition given in section 1.2. A number of
these examples allow an explicit solution and, hence, are appropriate for
use as model problems for numerical methods.

Equations without a turning point.

(1.3.1) ey" - y'
(1.3.2) ey" +y' =0;

0; y = A + B exp(+x/c).

A + B exp(-x/€).

Equations with one turning point, £'(0) > O.

(1.3.3) ey" + xy' =0; 4= 0; y=A+Berf(x//2€).

(1.3.4) ey"+xy'+%y=0;£= —%,

(1.3.5) ey"+xy'+y =0; L= —1;y=exp(—x2/2€) I:I-\+BJx exp(t2/2€)dt].

(1.3.6) Ey"+xy'—%y=0; &= % °

(1.3.7) ey"+xy'-y =0; 2= 1; Y=M+B[exp(—x2/28)'+§[x exp(—tz/Ze)dt].
0

(1.3.8) ey" +xy' -2y= 0; L= 2; y=A[xe exp(—x2/2€) +
X
+ (x2+E) (B+I exp(—t2/2€)dt].

0
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Equations with one turning point, £'(0) < O.

X
(1.3.9) ey" - xy' =0; 2=0; y=A + B J exp(tz/ze)‘dt.

0

2 x (¥ 2
(1.3.10) ey" - xy' + y=0; 2=1; y=Ax + Blexp(x"/2¢) -z exp(t”/2e)at].
2 x ° 2
(1.3.11) ey" - xy' - y=0; %=-1; y=exp(x /2e)[A + BJ exp (-t~ /2e)dt].
0

Equations with £ = 0.
(1.3.12) ey" -y=20 ; y=A exp(—x//E) + B exp(x//g).
(1.3.13) ey" +y =0 ; v = A sin( x//?-:-) + B cos (x/VE).

Equation with a classical turning point.

(1.3.14) ey" - xy =0 ;i y=A Ai(xe_1/3) + B Bi(xs_l/B).
0(g)
—
_ 0(g) —
Fig. 1.3.1 ey"-y'=0 Fig. 1.3.2 ey"+y'=0
{ 0(ve) )
— W— 0(e*)
Fig. 1.3.3 ey"+xy'=0 Fig. 1.3.4 ey"+xy'+0.5y=0
Shock layer
1
0 (exp (5g)
'
Fig. 1.3.5 ey"+xy'+y =0 Fig. 1.3.6 ey"+xy'-0.5y=0

Cusp layer
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0(/e)
—

—»i

Fig., 1.3.7 ey"+xy'-y=0 Fig. 1.3.8 ey"+xy'-2y=0
Corner layer

0(e)
- Jle—
ﬂﬂ—o(fﬁ)
Fig. 1.3.9a Fig. 1.3.9
ey"-xy' =0, |al=|b| ey"-xy' =0, lal < |b|
l —u fl+—0(e)
Fig. 1.3.9c Fig. 1.3.10 ey"-xy'+y=0
ey"-xy'=0, lal > |bl Resonance
€ VE
— 0(e) il 0(/e)
Fig. 1.3.11 ey"-xy'-y=0 Fig. 1.3.12 ey"-y=0

}\ /’* ,\[\ ‘;\ [I‘—O(/E) r\_.. ,,_:fl/3) . 0(e1/3)
l\/ U\ Ul [\,\Unuv Jlk

Fig. 1.3.13 ey"+y=0 Fig. 1.3.14 ey"-xy=0
y(1)
y(-1)
T 1 t t
-2 -1 0 1

Fig. 1.3.15
ey"-x(2+x)y'+xy = 0
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The general solution of the differential equation
(1.3.15) ey" - cxy' + cy =0

with constant coefficients £ and ¢ (c=+1 or c=-1) is described by the par-
abolic cylinder function Dz(z);
if £ #0,1,2,...

cx2/4€[
(1.3.16)  y(x) = e LA Dz(x/c/s) + B D (-x c/e]
if 2 =0,1,2,... Dz(XVc/e) and Dz(—ch/E) are linearly dependent and an
independent solution is given by D_z_l(xV~c/€). In this case we can also

write
(1.3.17) y(x) = A th(xv—c/e)+ B th(—xV—c/E R

where th is the "probability" function (ABRAMOWITZ & STEGUN [1965])
(o]

2
Hh (z) = -%J (t-2) %™ /24t
n n.

z
When y is subjected to the boundary conditions y(-1) = o, y(1) = B,

with the aid of the asymptotic expressions (1.2.16) and (1.2.17), the fol-

lowing asymptotic approximations to y are obtained (O'MALLEY [1970]).

If c <0, 8 #-1,-2,...,

(1.3.18)  y(x;€) ~ y(sign(X))IX|£,
y(0;€) = 0(82/2).

Ifc<0, & =-1,-2,...,

(1.3.19) y(x;€) ~

2 2 2
B+(;) o xz + B—(;) o x-z—l e-c(l-x )/25’

yv(0;e) = O(exp(-c/2€)).

If c>0, & #0,1,2,...,

2
(1.3.20) yi(x;e) ~ y(sign(x))le_Jz'_le_c(l_X )/28,

y(0;e) is exponentially small.
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If ¢ >0, £ =0,1,2,..., the asymptotic behaviour is alsc given by
2 -
eq. (1.3.19) and y(0;¢) = O(EK/ ), unless o = (—1)1 18 or £ =1,3,5,... .
The class of equations for which the resonance phenomemon can cccur is
very small. However, the condition that the equation can be reduced to

ey" - xy' + ny =0

is overly restrictive. This is demonstrated by the following two examples.

EXAMPLE. The equation (cf. DORR [1970b])
(1.3.21) ey" - xc(x)y' = 0, c(x) > 0 on [a,b],

is easily integrated to obtain

X t
y(x) =A +B J exp J §Eé§l_ déat.
0 0

Thus, there exists a constant C such that
lim max ly(x;e)-cl| = 0, § > 0.
€0 a+8<x<b-8
EXAMPLE. The equation
(1.3.22) ey" - x(2+x)y' + xy =0 on [-1,1]
has a solution (fig. 3.1.15)

y(x;€) = 0(2+x),

which is also a solution of the reduced problem. In this case the following

statement holds
3 0 1lim max |y(x;€) =0(2+x)| = 0.
€0 -1+6<x<1-§

According to KREISS & PARTER [1974, thm.2.2] there may exist a boundary

layer at the righthand end and 0 is determined by 0 = y(-1).



CHAPTER II
DIFFERENCE METHODS

In this second chapter we treat topics that are basic for the study of
the numerical solution of singular perturbation problems. In section 1 we
discuss the effect of some analytical transformations and the trouble when
standard type discretizations are used. We also briefly consider the appli-
cation of shooting. In section 2 we discuss methods for representing the
numerical approximation of the solution of problem (1.1.1) and we formulate
a number of properties that are desirable for methods for solving such prob-
lems. In section 3 we give a concise review of the numerical methods that
have been used already to solve singular perturbation problems. In section
4 we concentrate on finite difference methods that use exponential fitting
and we discuss the features that make these methods interesting for the

solution of stiff boundary-value problems.

2.1. INITIAL CONSIDERATIONS

Before we treat new finite difference methods that are specially de-
signed for solving singular perturbation problems, we will show how a num-
ber of commonly used discretization methods (forward, backward and central
differences) behave when applied with a uniform mesh. This will demonstrate
what the problems are and what we should strive for. We also explain why
analytical transformations (the integrating factor and the Liouville
transformations) are of little use. Finally we show the defects of the

shooting technique when applied to problem (1.1.1).

Simple finite difference methods

With the help of a classical example we demonstrate what difficulties
may arise when singular perturbation problems are solved by methods that
are commonly used. Let us consider the boundary-value problem

ey" + y' =0
(2.1.1)
y(0) =0, y(1) =1,
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In order to compare the solution of this boundary-value problem with the
treatment given below we cast it into the form
x/h
1-v
(2.1.2) y(x) = i/m’
1-v
where h > 0 and v = exp(-h/€). This solution has a boundary layer of thick-

ness 0(€) near x = 0 and the limit-solution for € + 0 is

(2.1.3) lim y(x;e) =1 on [§,1],
e>0
for § > 0.
We compute the numerical approximation on a set of equally spaced

mesh-points {xi} defined by

i=0,...,N'

X, = ih = i/N, i=20,1,...,N.
On this mesh we seek an approximation vy to y(xi) by three distinct differ-
ence methods. Successively we use the i) central difference, ii) backward
difference and iii) forward difference approximation for representing the
first derivative. In particular, we are interested in the approximate sol-

utions for small values of €, i.e. € << h.

1. Central differences

Here we replace the differential equation (2.1.1) by the difference

equation

(2.1.4) € (v, -2y, ty, )/h° 4 (v v, )/(2R) =0, i=1,2,...81.

With the additional conditions

(2.1.5) Yg = 0, y,. =1,

the solution reads
o

(2.1.6) Yy =1—__N
Ho

_ 2e-h
+ Mo = 2ewm -
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We notice that this solution has the same form as (2.1.2), where Vv has been
replaced by M, Because Iuo—vl = 0((%)3) for E » 0, it is clear that

(2.1.6) is a reasonably close approximation to (2.1.2) if h << g£. However,
the approximation fails completely for € < h. In particular, for h fixed

and € + 0 there is no resemblance at all between y(xi) and Yir since

]
o

if i even, Nodd; i =1,...,N~1;

=1 if i odd, N odd;

lim y,
er0

(2.1.7) = i/N if i even, N even;

= ® if i odd, N even.

2. Backward differences

Now we replace (2.1.1) by the difference equation
2 3 -—
(2.1.8) € (yi+1—2yi+yi_1)/h + (yi-yi_l)/h =0, i=1,2,...,N-1.

The solution of the equations (2.1.8) and (2.1.5) is

i
1-u
(2.1.9) y, = —=, W, = §€—h

For small values of this approximation is less accurate than (2.1.6)

: 0 h h
since lul—vl = ((Eﬂ ) for ¢ * 0. Here again, the approximation complete-

ly breaks down for € < h. For a fixed h > 0,

(2.1.10) limy, =0 for i =1,2,...,N-1.
e

This is not at all an approximation to the limit-solution of the original

equation.

3. Forward differences

If the equation (2.1.1) is replaced by
2 .
(2.1.11) €(yi+1—2yi+yi_1)/h + (yi+1—yi)/h =0, i=1,2,...,N-1,

the solution of the difference equation is



i
-, €
(2.1.12) yi = . N’ U2 = E_'*'E'
Yy

h, 2
Again, for small values of gy Y approximates y(i/N) and |u2—v| = 0((E0 )
for g + 0. However, in this case, for € = 0 the asymptotic behaviour of

(2.1.2) is reflected in the approximation, since for fixed h

(2.1.13) lim y; = 1 for i = 1,2,...,N-1.
e*0

We conclude that for h << € central differences are the most accurate,
but forward differences have the property that for € =+ 0 the discrete lim-
it-solution approximates the exact limit-solution. Clearly, this is
an important feature if we want to solve the equations with € << h. Never-

_theless, we note that the rate of decay in the boundarv-layer is not very

well represented since exp(-h/g) << E%K if € << h.

Another equation

Let us consider the boundary-value problem

]
o
~

ey" -y
y(0) =y(1) = 1.

What happens to this differential equation, in which no first derivative is
present, when it is discretized by the common 3-point difference formula?
For any h > 0, the analytical solution of the boundary-value problem can be
written
(-2x+1)/2h . v(2x—1)/2h

v1/2h N v;1/2h

(2.1.14) y(x)
where

v = exp(h/VE).
The limit solution for € + 0 is

lim y(x;€) =0 on [§,1-6]

>0

for § > 0.



If we replace the differential equation by the difference equation
€ (v, 4=2y.*y )/m? - y, =0 i=1,2,...,N-1
i+1 i ti-1 i v 149 v '

with the additional conditions

the solution reads

-i+N/2 + i-N/2

u u
(2.1.15) Y., = '
N/2 -N/2
1 ]J/+1.l/

2 / 2 2
h h
],1—(1+-ZE)+ (1+E) - 1.

Again we see that both solutions (2.1.14) and (2.1.15) are of the same

where

form. If h << V¢ a good approximation is o%;ained:

[u-v| = 0((h//E)3) for B .
/e
h2 €
If h is fixed and € - 0 then u = r + 2 - -3 + ... and
h

limy, =0, i=1,2,...,81.
€0

In other words, for € »+ 0, the limit-solution of the discrete problem is
similar to that of the continuous problem; but, again, the rate of decay

in the boundary-layers is not accurately represented.

The use of analytic transformations

In the preceding examples we started with the differential equation
in its canonical form (1.1.1). But also, if we use other forms such as
(1.1.2) or (1.1.9), it turns out that these cannot be of great help in
removing the problems related to the smallness of €. For instance, if we

apply the Zntegrating factor (1.1.3), equation (2.1.1) is transformed into
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(2.1.16) ( exp(x/e)y")' = 0.

Replacing u' by the central difference (u, )/h, we obtain the

i+1/2 %i-1/2
discrete form of (2.1.16)

(2.1.17) exp(xi__l/z/t-:)yi__1 - (exp(xi_l/z/e) + exp(xi+1/2/€)) v, +

+ exp(xi+1/2/€)yi+1 =0, i=1,2,...,N-1.

With the boundary conditions (2.1.5), this yields exactly the analytic

solution at the mesh-points, i.e.

1~
(2.1.18)  y, = ”N, U = exp(~h/e)
1-u

This seems an excellent discretization method; however (2.1.17) cannot be

used in practice since the value exp(xi /€) will cause overflow, even

+1/2
for values of € that are not extremely small. Moreover, for equations

(1.1.2) with g # 0 or s # 0 the discrete equations are

e —hfi —hfi hfi hfi
—1 - e B =
(2.1.19) 1’lzLexp( 7 )yi_1 (exp( 7 ) +exp ( % ))yi+exp( e )yi+1] + 9.y, = s;,

wh:re fi = f(xi), 9; = g(xi) and s; = s(xi). This shows that, for smg%i
[BEZJ, the terms 9,v; and s, are cancelled by the large term € exp(I?ETI).
Also the Liouwville transformation (eq. (1.1.8)) is not very useful

for computational purposes. The boundary conditions for z and y are related

by
b
z(b) _ y() £(t)
(2.1.20) z(a) yl(a) P J 2¢e ae.
a

This means that the boundary conditions (and equally the right hand side of
the equation) are exponentially enlarged by the transformation and hence
overflow problems arise. More generally, we can say that by the transform-
ation of the original problem, the (assumed) smooth coefficients f,g and

s are replaced by rapidly varying coefficients. This is frequently a dis-

advantage for numerical purposes.

The shooting method

For the shooting method, a boundary-value problem is rewritten as an



25

initial-value problem (i.v.p.). For the most elementary form of shooting,

the homogeneous problem (1.2.1)-(1.1.1.b) is written

v, y(a) o,

(2.1.21)

[}
™

>

i

|

£
= Vs v(a) = p,

where the initial value p v(a) is an unknown parameter. This parameter
has to be determined such that the solution (y,v) satisfies the boundary
condition at the other end x = b. Variants of the shooting method are pos-
sible, such as
- starting with the boundary condition at x =b and solving the initial-
value problem from b to aj;
- starting from both ends and matching the solution at an intermediate
point in (a,b); N
- introducing a partition igl[xi_l,xi] of [a,b], solving the i.v.p. on each
subinterval and matching the continuity conditions at each point xi
(multiple shooting) .
Thus, the method essentially consists of two parts: A. the solution of the
initial value problem(s); B. the determination of the unknown parameter(s).
(See also K.G. GUDERLEY [1975].)
Both parts introduce numerical trouble when the problem (1.1.1) is

solved for small €.

A.VThé solution of the initial value probiéﬁ.

Let us consider problems of type (1.2.1), with g < 0. These problems are
called stable, because the solution is bounded by the data. For these prob-
lems the Jacobian matrix of the i.v.p. (2.1.21) has two eigenvalues, which
- are approximately -f/€ and -g/f. By switching the direction of the i.v.p.
both eigenvalues change sign. In both cases we have to solve an i.v.p. with
a positive and a negative eigenvalue. The stable boundary-value problem has
been converted into an unstable i.v.p.. Moreover, if the i.v.p. is solved
in the direction in which the reduced problem has to be solved, the eigen-
value with larger absolute value is positive, i.e. an exponentially large

erroneous component is introduced in (y,v).

B. The determination of the parameters.
The erroneous component of the system makes the equations that have to be

solved for the determination of the parameters, very ill-conditioned. We
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show this by means of example (1.3.3) on the interval [-1,+1].
We apply shooting, starting from -1 and +1 and matching at x = 0. The

initial conditions are

B,
Py-

y(-1)
v(-1)

o, y(+1)

Pll v(+1)

We assume that the integration method yields an exact solution (1.3.3) to

the i.v.p.'s both from -1 to -0 and from +1 to +0.

Then
1. 1 2
v (-0) 1 exp(i—{ J exp(-t~/2e)dt a
= € 0
v(-0) 0 exp (—21;) P,
and
1. [? 2
y (+0) 1 —exp(E—d J exp (-t~ /2€)dt B
- e Jo \
v (+0) 0 exp(é%ﬂ P,

For small values of g,

1
1 2
1 << exp(EEO J exp(-t~/2€g)dt .
0

Therefore, since we require,

y(-0) = y(+0), v(=0) = v(+0),
the numerical solution of Py and P, yields
p, = 0.0 = P,

and the shooting process does not converge.
The same problems arise when symmetric problems (i.e. with £=0) are
solved. E.g, consider example (1.3.12) on [a,bl. When shooting from a to b

1/2

is applied, because of the large eigenvalue € , a negligible alteration



6 of y'(a) will cause the exponentially large deviation 8V€ sinh((b-a)/Ve)
in the computed value of y(b). Multiple shooting over a partition suffers
from the same defect: each deviation § in the guess of y'(xi) causes a dif-

ferenceGVE‘sinh((xi+1—xi)//E3 in the computed value y(x ). Even this dif-

i+l

ference will be unmanageably large if € << (xi+ —xi) . Since the problem is

1
symmetric, reverse shooting does not help. This is the reason why we con-
clude that (multiple) shooting is an inadequate technique for solving sing-

ular perturbation problems of the form (1.1.1).
2.2. REPRESENTATION OF A SOLUTION AND ERROR NORMS FOR AN APPROXIMATION

In this section we discuss what criteria can be applied in order to

judge the qualities of a numerical solution of

(2.2.1) Ly = ey" + fy' + gy = s,
y(a) = a, y(b) = B,

and we formulate requirements that can be imposed on methods suitable for
singular perturbation problems. The choice of criteria for an approximation
is a general question which, in fact, forms part of the proper statement of
most numerical problems. However, when singular perturbation problems are
solved, this deserves our special attention because of their multiscale

character.

Representation of a solution

Since the solution of the two-point boundary-value problem (2.2.1) is
a function of a real variable, its numerical approximation is given by only
a finite number of real numbers. So we are faced with the problem of how we
should represent the numerical solution. Generally, this is done in one of

the following ways:

. . N
1. Given a finite set of knots (or gridpoints) {xi}i_o, a < x, S b, the val-
ue of the solution at each of these points is approximated (pointwise
approximation) . If an approximation is required at other points, it can
be obtained by interpolation.
. . N .
2. Given a set of functions {¢i}i—1' defined on [a,bl], the solution is ap-

proximated by a linear combination of functions ¢i (global approximation).
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In both cases we have to define a suitable measure to quantify the
error between the true solution and its numerical approximation.

The norm in which the error is measured may differ from case to case
and it should be chosen in accordance with the particular requirements im-
posed on the approximation. These requirements form part of the proper de-
finition of a numerical problem. For some applications it will be neces-
sary to obtain a solution that is accurate at a number of points specified
in advance, for other applications one has to obtain a solution whose
error is bounded by a small amount over the whole interval. Also other cri-
teria for a good approximation are possible. All these different criteria
lead to the introduction of different ncrms in which the error between the

solution and the approximation can be expressed quantitatively.

Norms for the approximation

We introduce norms both for pointwise and global approximations. Let

II= {a=xo<x1

for the pointwise error on Il are directly related to vector norms.

<...<xN=b} be a given partition of the interval [a,b]. Norms

We define
(2.2.2) ly -y I = ) ly, -yx)l,
app T,1 x eIl i i
i
2(1/2
(2.2.3) ly -y__1 =<4 ) (v, -yx)) } '
app T,2 x. €Il i i
i
(2.2.4) Iy - I = max - yi(x) .
Y < Yol e e ly, - y(x) 1

Here y is the exact solution and yi denotes the value of the pointwise ap-
proximation yapp to the value y(xi). The pointwise error norms depend
crucially on the choice of the knots in I[. This set is not necessarily the
set of all points for which an approximate value is available after the

computational process; it may be only a subset.

DEFINITION

A numerical approximation  J is called pointwise exact on a grid II,
if ly - I = 0.
=Y yapp m,1 0

Norms for the. global error are related to the norms in the function

spaces L2(a,b) and Lm(a,b).
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b

(2.2.5) Iy = v, 0o 5 - {J (y(z)-yapp(z))zdz}l/z,
a

(2.2.6) ly - yapp“o,m = a:i:b ly(x) - yaPP(X)l-

Using global approximation, it is also possible to measure the norm of the

residual

1
(2.2.7) ||Lyapp - 5“0'2 = { J (Lyapp—s)zdx} /2.
a

If L is a positive definite, self-adjoint operator, then the energy-norm

can also be used

_ _ _ 1/2
(2.2.8) ly - yapp"E = { J (yapp y)L(yapp y)dx} .
a

In particular, in the case of a singular perturbation problem, where
the solution is a smooth function which locally may change rapidly, the
choice of an appropriate error-norm demands care. Here we meet the question
whether or not a solution should be accurately represented in all regions.
The global norm ".“O,m is appropriate if a good representation of the rap-

idly varying part is required, and the norm "'"0 if the rapidly varying

part of the solution may be roughly represented ;2 long as this does not
affect the global behaviour. Nevertheless, to appioximate an almost discon-
tinuous solution by a smooth approximation, all global norms require a fine
mesh in the neighbourhood of the discontinuity.

For our purposes, here and in the following chapters, we will mainly

concentrate on the pointwise error-norm ly - y for some arbitrary,

u ’
app m,®
but a priori specified, finite set of knots Il. Here we emphasize again
that the choice of Il forms part of the proper definition of the numerical
problem. By the choice of II, we decide whether or not we are interested in
accurate approximation in particular parts of (a,bl. This corresponds to
the fact that a large number of gridpoints is required if an accurate ap-

proximation in the non-smooth part of the solution is required.

In accordance with this choice of error-norm we represent the computed
solution by a sequence of discrete function-values {yi}, corresponding to a
given sequence of grid-points .



Desirable features in methods for solving singular perturbation problems

At this point we have to discuss what the desirable features are for
a method that is used for singular perturbation problems. In the first
place we require that the approximation is - to a certain extent - accurate
for an arbitrary choice of II, provided that the global character of the
solution can be represented by some interpolation between the ¢ridpoints.
In particular we want to obtain a reasonable accuracy with any equidistant
mesh which is fine enough to represent the slowly varying parts of the sol-
ution. Apart from this, Il may be chosen in such a way that there are parts

1/2

of the mesh where x, - x NME, X, - X (S

17 *1-1 17 %11 i 7 *i-1

xi - xi 1 >> g etc.. However, if some local, rapidly varying behaviour

<< g, X '
(say, between two neighbouring points of II) is completely missed by the
numerical representation on II, the global numerical solution should be dis-
turbed as little as possible to obtain a small error ly - yapp“n,w' In gen-
eral, interpolation fails in the rapidly varying parts. If an accurate re-
presentation is wanted in these parts, the set of gridpoints Il should be
chosen appropriately.

In order to discuss methods for singular perturbations more rigorous-
ly, we formulate some useful properties in the following definitions. We
consider the two-point boundary-value problem (2.2.1). We assume that a
unique solution Ye exists for all €, 0 < € < eo, and also a solution Yo of
the reduced problem on [c,d] < [a,b] such that

lim y_(x) = y_(x)
0 © °

uniformly on [c,d].

For each € we consider a family of discrete solutions {yﬂ r} for dif-
'€

ferent partitions II = {a=x_<x, <x <...<xN=b} of the interval [a,b]. To each

0172

I we associate a meshwidth h = max (x,-x ). Less accurately we some-
i=1,...,N i 7i-1

ti it i tead .
imes write yh,E instead of yﬂ,e
DEFINITION

A family of discrete functions {uh} has a limit—function for h - 0,
U(x), defined on an interval [c,d] « [a,b] and denoted by

U= 1lim u ,
h+>0 h
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if there exists a continuous function U(x) on [c,d] that satisfies

lim up (x) = U(x)

iso i
uniformly for all x ¢ [c,d] N i] I, i for any sequence {H } of parti-
tions of [a,b] with the propertlés ii: hl Oand i > j = Hi o> Hj.

We assume that, for a particular problem and a particular method, a
discrete solution yh’€ exists for all h arid €, 0 < h < hO' 0 <eg< 80. We
want to show, that for particular methods, the asymptotic behaviour of the
finite difference solution for small € closely approximates that of the
continuous solution even without h = 0. To this end we introduce the fol-

lowing definitions.

DEFINITION
A method is uniformly e-convergent of order p (for some class of prob-

lems) if there exist constants €. and K, independent of €, such that

0

P
sup ly. -y 0 < Kh
O<g<e h,e € mM,®
0
DEFINITION
A method is uniformly e-stable (for some class of operators L) if

there exists a constant K, independent of €, s, o and B, such that

Iy, 0. < Xmax(lol|,IB], max (Is(x)]))
hoe e asxsb

for all 0 < € < ¢ 0O<h<h

o’ 0°
DEFINITION
For some class of numerical problems, a method has a discrete limit

solution Yy o if there exists a discrete function Y o such that
r r

lim = .
0 Yh,e = ¥n,0
‘DEFINITION
For some class of problems a method is called consistent with the re-

duced problem on an interval [c,d] < [a,b] if
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lim y on [c,d],

om0 Yo
where Yy denotes the solution of the reduced problem on [c,d].

As we saw in the examples of section 2.1, it is very useful to be able
to fix Il and let € + 0 and then to have some assurance that the asymptotic
behaviour of the continuous solution is reflected in the discrete solution.
If a method is consistent with the solution of the reduced problem, this
implies that even in the case where rapidly varying solutions cannot be
represented at all on I, the solution can be accurate in the norm
ly -y 1 asymptotically for € - 0. This includes the possibility of

app m,*®
solutions that improve rather than degrade when € -+ O.

2.3. EXISTING ALGORITHMS FOR THE SOLUTION OF SINGULAR PERTURBATION PROBLEMS

Only a few papers are concerned with the numerical solution of singu-
lar perturbation problems, although it seems to be a field of increasing
interest. PEARSON [1968a] uses central differences on a non-uniform mesh.
He gives the numerical solution of a great variety of singular perturbation
problems of the type (1.1.1). IL'IN [1969] introduces the idea of widening
the boundary-layer. He uses an equidistant mesh and attains €-uniform con-
vergence and stability for a limited class of problems. DORR [1970a] uses
directional one-sided differences for a particular system of two nonlinear
equations and he also gives an extensive discussion for some turning point
problems. KREISS [1973,1974] and ABRAHAMSSON et al. [1974] discuss a system
of linear equations, without turning points. They use directional one-sided
differences or widen the boundary layer. They also prove €-uniform stability
on a uniform net. In this section we treat the essential facts from the

above-mentioned papers.

Pearson's algorithm

PEARSON [1968a] gives the first description of a method for the numer-
ical solution of the two-point boundary-value problem (1.1.1). His method
is based on the classical 3-point finite difference formula for a non-uni-
form mesh. Given a partition of the interval [a,b], a=x%x. <X, <...<X_=b,

0 "1 N
this leads to the difference equations
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2 2
- 4 -
), f(xj) q; (yj+1 yj) pj(yj Yj-1)

Y. .-V -pL(Y.-Y.
T +q. 9. (p.+q,
quj(pj qJ) P43 P57y
+ g(xj)yj = s(xj), j=1,...,N-1,
where p,

= X, - X, q. =X, =X, ,.
3 i+l " 3 j-1

In order that the solution of the difference equation approximates the
solution of the differential equation, the mesh should be properly chosen.
To this end the mesh spacing is iteratively adjusted such that there is a
high density of meshpoints in the regions where y(x) is changing rapidly.
Several thousands of meshpoints are used and some simple criterion is

chosen for the distribution of the meshpoints, e.g.

Nygpq - vsl s 107> max ly, = vpl-
k,1
Occasionally, meshpoints had to be added according to a criterion involv-
ing steepness in y' rather than steepness in y to obtain accurate solutions.
In addition, a mesh smoothing was necessary to ensure that there was no
abrupt change in mesh interval size.

Since we saw in section 2.1 that the 3-point scheme may fail complete-
ly on a uniform mesh if € << h, it is quite clear that the adjustment of
the mesh, to take into account the effects of small €, is essential when
using this scheme. In order to ensure that the meshpoint set is dense in
the right places, the whole process is executed in €-steps. The process is
started with a uniform mesh and with a modest value of €. The meshpoint set
used at the completion of the preceding €-step forms the initial set for the

new step with a smaller €.

REMARK. This strategy is an application of the Davidenko-principle: for
modest values of €, the problem is readily solved. Using the information
about this solution, the problem is solved for other values of €, for which

the problem could not be solved before.

Pearson reports that a large number of problems have been solved by
his method on a CDC 6600 computer and problems with values of € as small
as 10“10 could be solved using single precision arithmetic. The results
were found to be accurate to 3 or 4 significant digits. However, the use

of the Davidenko principle, together with the iterative adjustment of the
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mesh in each €-step, makes the method quite laborious, even for linear prob-
lems. Moreover, the large number of meshpoints and the relatively low accu-
racy gives rise to the question of whether it is possible to make use of the
known analytical properties of singular perturbation problems, in order to
design an algorithm which is more accurate and less sensitive to the dis-

tribution of the meshpoints.

The method of directional differences

DORR [1970al] gives an extensive discussion of the method of upstream
one-sided (or directional) differences on a uniform mesh. In fact, he ap-

plies this method to special cases of the nonlinear system

u"(x) = £(x,u,v), u(0) = u(1) =0,
(2.3.2) ev" (x) + g(x,u,u")v' - c(x,u,u')v = 0,
c(x,u,u') 2 0, v(0) = vo, v(l) = vy
Here we shall confine ourselves to the treatment of the two-point
boundary-value problem (2.2.1) with g(x) < 0. The upstream one-sided dif-
ference approximates the first order term of eqg. (2.2.1) by

A def

(2.3.3.a) [fyi] {f(xi)(yi+1-yi)/h if f(xi) 20,

f(xi)(yi—yi_l)/h if f(xi) <0,

Hence, the difference equation used reads

-A _
7+ g(xi)yi = S(Xi)-

(2.3.3.b) L (y,) = E(yi+1—2yi+yi_1)/h?-+[fyi

The primary reason for using these one-sided differences is to ensure
that the equations are of positive type and, hence, that there is a unique
solution for each set of data and for each € > 0, h > 0. Moreover, for the
discrete equation a discrete analogue of the maximum principle (cf. PROTTER
& WEINBERGER [1967]) holds. Before we state this in lemma 2.3.1, we first
need the following

DEFINITION
A difference operator Lh of the form
(2.3.4) L (y.) =a.y. , + b.y. + c.y.
hYy 3¥5-1 7 P55 T S5¥54
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is of positive type if

a,+b, +c, £0,

J J J
(2.3.5) a.>0,c.>0 .
J J

Writing down the difference equations corresponding to equation
(2.2.1), using the directional difference (2.3.3), it is immediately seen
that it yields a difference operator of positive type, whenever g < 0. The

following lemma shows that a discrete maximum principle holds for a differ-

ence operator of positive type.

LEMMA 2.3.1. (The discrete maximum principle) Let L. be a difference oper-
ator of positive type and let Lh(yj) 20 for j =1,2,...,N-1; let further
Yo = % ¥y = B. If yj assumes a nonnegative maximum value M for some j,

0 < j <N then yj =M for all j, j = 0,1,...,N.

REMARK. This lemma is easily verified by a straightforward calculation, and
analogously it can be proved that Yy cannot take a non-positive minimum val-

ue if L < 0.

Y
h™h
The following theorem states that meaningful approximations to asymp-
totic solutions for € + 0 of the continuous problem can be obtained, by
letting first € = 0 and then h -+ 0 in the discrete problem, if the method

of directional differences is used.

THEOREM 2.3.1. Given a uniform partition of [a,bl and a two-point boundary-
value problem (1.1.1) with g < 0, then the method of dirvectional differ—
ences has a discrete limit-solution for € - 0. Moreover, the method is con-
sistent with the reduced problem on each closed interval which excludes a

turning point.

REMARK. The theorem still holds if g < 0, provided that g < 0 in each turn-

ing point region [x* - h, x* + h] where f(x*) =0, f'(x*) < 0.

PROOF. Let the mesh-function ¥y be determined by
’

0
{f(xi) (Vi 7vg) /B + glx)) = stx)  EF £0xp) 20
12.3.6) f(xi)(yi—yi_l)/h + g(xi) = S(xi) if f(xi) <

C¥p = vy =B
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then Yh o is the (unique) solution of the matrix problem
4
BY¥y,07 ¢

-1
where IB "l < ®» (Gershgorin).
(Here I+l denotes the matrix-norm associated with ﬂ'"ﬂ 2°)
I
The finite difference solutions, Yhoe are determined by a matrix prob-
’

lem

A+B =
(e )yhl€ c,

where lal < o, If € is chosen such that 0 < eoﬂA“ﬂB-lﬂ < 1, then (€A+B)_1

exists for all 0 < € < €0 and

1y . s~
< Telalle-tt-

I (ea+B)

Hence Yhe = (€A+B)_1c exists for all 0 < € < €y and
’
elalis™?iel .

.2

-1
I < elalliz "l | ]
=1

ly, -y < A
he R0 2 Ty epanis™h RO

<
m,2 1-¢lalls

Th £ 11 x, I i : = .
us, for a ;€ ,uéig yh,e(xi) yh,O(xi)
On each closed interval which excludes a turning point, the system

(2.3.6) integrates the reduced equation
fy' + gy = s

in the down-stream direction, by the backward Euler method for initial val-
ue problems. Hence (cf. HENRICI [1962]), the method is consistent with the

reduced problem. O

Il'in's method
Although theorem 2.3.1 reveals the advantages of the directional dif-

ference (2.3.3) there are disadvantages too:

i) by the one-sided difference only approximation to first order is at-

tained;

ii) the method is not uniformly e-convergent on [a,b], even for the sim-
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plest case: constant coefficients and g = 0.

The latter can be seen by comparing eqgs. (2.1.2) and (2.1.12). The differ-
ence between the approximation and the exact solution,'ye, is
i s
%"uz 1-vt
= max | X" &
i 1—u2 1-v

I -yl
Yh,e ~ Ye

As uniform e-convergence is investigated we can take h = £, which yields

1-27% 1—e—i

lim sup Hyh e ye“ﬁ o > lim max | e
’ ’

b0 O<e<ey Mmoo i 12V 1.
= max Ie_l - 2_ll >
i

1_1
2 e

This proves the absence of uniform g-convergence. Clearly this is caused by
the defective representation of the rate of decay from the boundary-layer
into the interior. Further, eqgs. (2.1.2) and (2.1.12) show that equation

(2.1.11) is an approximation to the differential equation

_h/e  lu, o=
(2.3.7) e[ log(1+h/€)]y +y' =0

rather than to the original equation (2.1.1). For values h of the same or-

der of magnitude as € this is approximately

h " Al
(2.3.8) (e + an +y' =0.
Equally, if the directional difference method is applied to the equation
(2.3.9) ey" + fy' = 0,
the solution of the discrete problem will correspond rather to the equation
(2.3.10) e(1+ I%l)y“ + fy' = 0.
We see that the boundary layer shows up as "diffused". In order to over-
come this effect, which disturbs the representation in the boundary layer,
IL'IN [1969] constructs a difference scheme which represents the rate of

decay in the boundary layer correctly for the homogeneous case with g = 0

and constant coefficients.
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He applies this scheme more generally, to the differential equation
(2.3.11) ey"(x) + £(x)y'(x) = s(x)

and for a uniform net he proposes the following difference scheme
(2.3.12) Yi(yi+1—2yi+yi_1)/h2 + f(xi)(yi+1"yi_1)/(2h) = s(xi)

where Yi is selected in accordance with the requirement indicated above.

Hence he puts

£(x,)h £(x,)h
(2.3.13) v, = — coth( 2; )

(Note: x coth x is a nice computable function.)

Therefore, the difference operator becomes

fir fih ] fi fih
(2.3.14) Lh(yi) = Eglcoth(7z;0+ljyi+1 -5 c°th(7Z;°yi +
fi fih
+ Ei{coth(7igﬂ—1]yi_1 =s,-

This difference operator is of positive type. Il'in proves the following

errorbound for this operator when applied to (2.3.11).

LEMMA 2.3.2. The errorbound for the difference method (2.3.12)-(2.3.13)
when applied to a differential equation (2.3.11) with € > 0, f « “Cz[a,b],
s € Cz[a,b], £(x) # 0 on [a,bl, s given by

(2.3.15) < K(e)hz.

I - I
Yhe " Ye'm,

Moreover, for this class of equations the method is uniformly e-comvergent
of order 1.

PROOF. see IL'IN [1969].

Some aspects of the work of Abrahamsson, Keller and Kreiss

KREISS [1973] and ABRAHAMSSON et. al. [1974] consider the system of

differential equations
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ey" + Ay' + By = s,

(2.3.16) () = a, y®) =B,

where y and s are smooth nth order vector-functions and A and B are smooth
n X n matrix functions. The matrix A is symmetrical and block-diagonal,
consisting of two blocks, one with all eigenvalues greater than n > 0, the
other with all eigenvalues smaller than -n. Under these circumstances no
problems arise with turning points; the reduced problem is defined by equa-
tion (2.3.16) with € = 0 and the boundary conditions at x = b (resp. x = a)
for the functions of y that correspond to the positive (resp. negative)
definite part of A.

We will confine ourselves to the treatment of the scalar equation
(2.2.1) only. For the discretization, a uniform mesh is used and a finite

difference scheme is proposed of the form

2
(€+h0,) (y, =2y, +y; ) /07 + 2y (v, 47y )/ (20) + Dy 3¥sy *
(2.3.17)
+ = + .
by ¥ TRy Y51 T %85 0.0 T %S Y CL1Si1y
Here Oi is a positive scalar. The coefficients ai,bj i and c, are chosen
’

to give an accurate approximation for the reduced problem. To determine the
coefficients we have to distinguish between £ > 0 and £ < O.

If £ < 0, then

1
Oy =g 10y g p)lvay = £y o)
1 1

(2.3.18a) by ; =0, by, =390, 4 ,0)0 Dy ;=590 4,50

c1 =0, c0 = 0 ’ c_1 = 1.
If £ > 0, then

o = l-lf(x )], a, = f(x )

i 2 i+1/2° " T4 i+1/2°"
1 1

2.3.18 2 =1 -
( D) bl, 2g(xi+1/2) ’ bO,i 2g(xi+1/2), b—l,i o,

¢y =1 ’ cO =0 ; c_1 = 0.

This difference equation can also be written in the form
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2 = =4 ~
(2.3.19) Ly(yy) = ely, =2y, +y, )/h" + [£y' T +lgy] = [s1,

where

f(xi+1/2)(yi+1—yi)/h if f(xi) >0,

[£7,] = <

f(xi_l/z)(yi"yi_l)/h if £(x) 0O,

[gy.T° = (X g ,9) Wi,y *Y;) /2 EE £(x) > 0,
i ’ .

g(xi_l/z)(yi+yi_1)/2 if f(xi) <0,

[s, 1 = VY if £(x) > 0,
i .

S(xi—l/z) if £(x,) < 0.

We see that this difference approximation can be considered as a refinement
of the method of directional differences. Both methods agree as far as the
discretization of the 2nd order term is concerned. For the discretization
of the terms with y', y and the right-hand side of the equation, midpoint
approximations are used.

Provided that the homogeneous reduced problem enly has the trivial
solution, ABRAHAMSSON et al. [1974] show that the method (2.3.17)-(2.3.18)
is uniformly e-stable. Analogous to the asymptotic expansions as € * 0 for
the continuous problem, asymptotic expansions in powers of €, h and €/h
can be given for the discrete problem.

For the reduced problem, the scheme (2.3.17)-(2.3.18) corresponds to
the well-known midpoint-rule (cf. KELLER [1974]) and, hence, it gives an
approximation which is accurate to second order. However, the refinement
also causes the discrete operator to be no longer of positive type for all
g < 0.

If the matrix A in equation (2.3.16) is not block-diagonal with defi-
nite blocks or if the problem is nonlinear, another scheme of type (2.3.17)
is proposed, namely

(e40h) (v, =2y +y, _,)/h° + £(x)) (¥ )/ (2m)

i1
(2.3.20)
+ g(xi)yi = S(Xi)’

where o > %—If!.
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We see that the boundary layer is artificially widened to ((h). The resem-
blance between equations (2.3.10) and (2.3.20) is clear. Let us consider
this in more detail. By equation (2.1.12) we see that the rate of decay in
the boundary layer is not correctly represented if the directional differ-
ence approximation (2.3.3) is used. The boundary layer shows up as diffused
but oscillations in the numerical solution are suppressed. Consider the

scheme (2.3.20) applied to the example
(2.3.21) ey" + fy' =0, y(0) =0, y(1) =1,

with constant coefficient f.
The difference equations are

(2.3.22) (e+oh)(yi+1—2yi+yi_1)/h2 + oy YE/(2h) =0

+17¥i1
YO =0, ¥y = 1.

The solution reads

» 1__ui g+oh - %?
(2.3.23) v, = 5+ where p = —Fn°
1-u e+ch + =

If 0 = 0 this is equivalent to central differences; if 0 = £/2 to forward
differences and if 0 = |f/2| to directional differences. Oscillations will
be absent if 0 2 I§1 - Eu To avoid all erroneous oscillatory behaviour, ir-
respective of the smallness of €, 0 should be chosen such that 0 2 Igl.
This is the motivation for scheme (2.3.20). As the correct rate of decay
is given by U = exp(-fh/€), we see that it is badly represented by (2.3.20),
but the numerical boundary-layer is essentially confined to one mesh-width.
In contrast with the scheme (2.3.17)-(2.3.18), the accuracy of scheme
(2.3.20) is only O(h).

In order to clarify its relationship with the difference approxima-

tions mentioned earlier, scheme (2.3.20) also can be regarded as approxi-

mating the first order term fy' of the differential equation (2.2.1) by

(2.3.24) [(f(xi?+20)yi+1 - 4oy, + (-£(x;)+20)y; ,1/(2h).
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2.4. EXPONENTIALLY FITTED METHODS

In this section we consider the problem (1.1.1) again and we show that
a unifying approach is possible for the methods for the discretization of
fy'. Moreover, this new approach enables us to construct a simple method
that inherits most of the benefits of the other ones. Refinements, which
include the discretization of gy, are also studied. For simplicity, we re-
strict our investigations to difference schemes on a uniform grid. Exten-
sions and adaptions to non-uniform .partitions of [a,b] appear in a natural
way when the difference schemes are generated in a more systematic way in

chapter 3.

The method of weighted differences

We introduce a new difference approximation to the first order deriva-

tive y' in equation (1.1.1)

(2.4.1) Yo = ((1+ui)(yi+1—yi) + (1—31)(yi-yi_1))/(2h),

where ai is a free parameter, Iui[ < 1. This approximation is a weighted
combination of the forward- and@ backward- difference approximation. Hence,
forward, backward and central differences arise as special cases with ai
fixed, and equal to +1, -1 and O respectively. For our purposes we take ai
depending on €,h and f(xi). Referring to eq. (2.3.14) we see that Il'in's

method is a special case. Also Kreiss' method, eq. (2.3.20), can be cast

into the new form by taking ai = . We note that ABRAHAMSSON et al.

a
f(xi)
[1974] also permit Iail > 1. An adyantage of our approach, in particular
for Il'in's and Kreiss' method is, that it is clearly seen how the methods
behave for € = 0.

Having introduced ai as a free parameter, we can choose it in such a
way that a number of requirements are fulfilled. In order to study the prop-
erties of the difference quotient (2.4.1), we construct a difference oper-
ator Lh’ corresponding to the operator L in eq. (2.2.1). We use the diff-
erence (2.4.1) and the common 2nd order difference quotient for approximat-

ing the 2nd derivative. Thus, we obtain

B / B (1+ai)f(xi) \ _2 Zaif(xi) \
Lylyy) = 2 + 2h JRETE w2 o *olx) )y, +
(2.4.2) : (1-0.,) £ (x.)
e R A
T 2h ] Yi-1°
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The following lemma is immediate.

LEMMA 2.4.1. Sufficient and necessary conditions for the difference oper-
ator (2.4.2) to be of positive type, are

(2.4.3) g(xi) <0,
and
) f(x, )h
-1 i 1
(2.4.4) TS TS Ta
1 1

for i =1,2,...,N-1.

COROLLARY. For an operator L of positive type, the values of Gi must be

h
restricted to a subdomain of [-1,+1]. This domain depends on the value of
£f(x,)h
-
2e
should satisfy

. In order to yield an operator of positive type, the parameter ai

2¢
(2.4.52) o, e [-1,- 1+ If_(;i—)—ﬂlj if £(x,) < -€/h
(2.4.50) a, e [1 - [—25_|, +.11  if £(x.) > €/h

M i £(x;)h ro i :

The domain of permitted values ai is indicated in Fig. 2.3.1.

1
1-0, ‘ f(xl)h
+ 2¢

= S

-1 0 +1
a5
1+0

Fig. 2.4.1

The domain of ai for which Lh' defined by equation (2.4.2) is of positive
type.
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COROLLARY. It is possible to find continuous functions m: R + [-1,+1] such
that the operator Lh (eq. (2.4.2)) , with

f(x,)h
(2.4.6) o, = m(—=—),

i 2e

is of positive type, for all €,h > 0 and all f and g with g(x) < 0.

Exponential fitting of the difference operator (2.4.2)

First we restrict ourselves to the differential equation
(2.4.7) ey" + fy' =0,

with a constant coefficient £ # O.
For this equation we can construct the parameter ai in such a way that the

rate of decay in the boundary layer is correctly represented.

LEMMA 2.4.2. With

2

f(xi)h f(x,)h
[RE.... S, ) - ,
2¢ f(xi)h

e ) = coth(

(2.4.8) o, = m(

the difference operator L, (eq. (2.4.2)) yields a pointwise exact solution
to the two-point boundary-value problem (2.4.7)-(1.1.1.b).

PROOF. Without loss of generality we restrict ourselves to the boundary
conditions (2.1.1). The solution of the difference equation (2.4.2) with

these boundary conditions is

l—ﬁi 2€+aifh-fh
Yy = W Where M = oo fheem
1-u i

The solution of the differential equation is given by eq. (2.1.2) with
V = exp(-fh/€). Setting U equal to V yields (2.4.8). [

+1
m(g)
0
0
-1
— L

Fig. 2.4.2.

The function m(Z) defined by eq. (2.4.8).
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REMARK. The m(Z), defined by equation (2.4.8), is a smooth function IR

[-1,+1], see fig. 2.4.2. With this m(Z) the difference operator Lh (2.4.2)

defines a smooth transition from forward to backward differences. For ex-
£(x,)h

treme values ——Eé—— , backward and forward differences are used, just as was

the case in the method of directional differences, where the change-over is

discontinuous.

THEOREM 2.4.1. If £ Zs positive or negative definite and if oy is defined

by (2.4.8), then the operator L._ in eq. (2.4.2) has the following proper-—

h
ties:

Z) L, is of positive type if g(x) < O.

17) For small € (Z.e. |eg| < If|2), the solution of Lh(yi) = s(xi) repre-
sents the rate of change in the boundary layer with a relative accuracy
€g , gh gh, 2 gh.
of‘0(f2 f)+0((f))f'01r=(f)-*0.
222) If g < 0, the difference method described by L (yy) = sx)) 18 conver-

gent of order 2 and it ie uniformly e-convergent of order 1.

PROOF.

i) A straightforward calculation yields

I S S
1 + m(g) 1 - m(g)”

Now lemma 2.4.1 asserts part i) of the present lemma.

ii) In the boundary layer we approximate the homogeneous differential
equation (1.2.1) by the differential equation with constant coeffi-
cients

ey" + fy' + gy = 0.
The solution is
y(xi) =C,e + C.e

where AI’AZ are the roots of

'€>\2+f)\+g=0.
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The solution of the difference equation Lh(yi) =0 is

i i
¥; = DyHy + DM,

where ul,uz are the roots of

€

of, £ af £
(2.4.9) ((hz + E’*’z‘ﬁ)“ [2(—+ —) -glu + ((;—+ =)

' Towm - O
For a correct representation in the boundary layer , ul should corres-
pond to exp(hki) and u, to exp(hkz). A simple calculation shows that,

with our particular choice of o, the relation
(2.4.10) Bl = exp(hAl) exp(hkz)

holds exactly for all values of €, h, £ and g. We seek an asymptotic
expression for “1 for small values of |%?l. For convenience, we set

€ of
§ = n + 7{7 then we can write eq. (2.4.9), simplifying our notation,

(26+8) 1% - (48-2gh)u + (26-£) = 0.

One root is given by

_ /46 gh, . gh,2
28-gh+£v1- (f)+(f)

W= 26+f

=1 -9 gh, 2
1 f+0((f))

1]

expr )01 + 0 &L 4 0@ 27,
1 £ f2 f

Therefore, for small € such that |eg| < f2 and for I I -+ 0, the slow-
ly varying component, exp(hl ) is represented by ul w1th a relative
error of order O(Q— ._eg) + 0((gh)2) uniformly for all small €. It
follows from (2.4. 10) Ehat the rapldly varying component, exp(hl ),
is also accurately approximated by u2, with the same relative accuracy

and uniformly in €.

iii) Substituting a Taylor series expansion of y(xi+1), y(xi) and y(xi_l)

for Yip1r yi'resp. Y in eq. (2.4.2), we obtain
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Y" (xi) 2 ym(xi)

3
Lh(yi) = Ly(x,) + otihf(xi)—T— + hUE(x ) —p—+ 0(n).

Hence,
Lh(yi) - Lh(y(xi)) = 0(h)

uniformly for 0 < € < € Since |f(x)| > O the same technique as was

0° -1
used in theorem 2.3.1 can be used to show that "Lh I is bounded, uni-

formly in €; hence we see also that

Hyi - y(xi)" =0m),

f(x,)h
uniformly for 0 < € < eo. Moreover, for I——jg——4 -+ 0, we have
£(x.)h f(x,)h
- i i h .2
o = m—3e) 6e ' OCIEI™.
This yields

h2f(x_) r
L

— l " 1] 3
Lh(yi) = Ly(xi) * e 2ey (xi) + f(xi)y (xi)] + 0(7)

or
2, .
L lyy) = L (y(x)) = 0(h“) if |fh| << €.

Hence the method is convergent of order 2, if |fh| << e. [

Asymptotic behaviour for € *+ 0 of the exponentially fitted operator Lh
For £ # 0 and small values of l%%l, we have
(2.4.11) coth(%%) = sign(f) + O(exp(—lé?l).

If we neglect the exponentially small term, we get
1 . 1
m(z) = coth(z) - ;-N sign(z) - E—for |z] = . Thus, the difference operator

(2.4.2) becomes

£, -f,
i : i ..
Lh(yi) ) 2h(1+31gn(fi))yi+1+(——ﬁ—‘51gn(fi)+gi)yi +
(2.4.12) . £i (£
33(51gn i)—1)yi_1.
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We note that the discrete equivalent of the 2nd order term of the differen-
tial equation, €y", is completely annihilated by the second term of m(Z).
Hence, if exp(—l%?l) << 1, our method solves the reduced equation as an in-
itial value problem, from the right to the left if f > 0 and from the left
to the right if £ < 0. This is exactly the way the analytical solution be-
haves for small €. We note that degeneration to the solution of an initial
value problem also happens with the method of directional differences. In
that case; the condition reads If%l << 1 instead of exp(—l%?l) << 1. As

is easily seen from lemma 2.4.2, the latter condition is the more real-

istic one.

REMARK, In this chapter, the discussion of the exponentially fitted finite
difference method (2.4.8) -is restricted to uniform partitions of [a,b] on-
ly. In chapter 3 it will be generalized to non-uniform partitions (eq.
(3.5.12)) and in chapter 4 some numerical results are given. More numerical

results, for linear problems, can be found in HEMKER [1974].

A new discretization for g(x)y(x)

Since favourable results have been obtained by introducing a parameter
ui in the difference y§ (HEMKER, [1974]), we are in a position to ask the
question if it is expedient to introduce parameters in the discretization
of the term g(x)y(x) in equation (1.1.1). In the case of constant coef-
ficients, it certainly should be possible to find a discretization of

g(x)y(x) which yields a pointwise exact solution for the homogeneous equa-

tion. To find this, we consider the discretization

(2.4.13) yn==(Bi+'yi)yi+1 + (1—28i)yi + (Bi—-'yi)yi_1

and we introduce the discrete operator

2
.4.1 = -
(2.4.14) L (v,) ely; 41 2yi+yi_1)/h + fy; + gy,-

For this operator L_ we have to determine the parameters di, Bi and Yi. The

h
results are given in the following lemma. Since we have restricted our-

. . . 2
selves to non-oscillating solutions, we assume f - 4eg > 0.
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LEMMA 2.4.3. Suppose we are given the differential equation
(2.4.15) ey" + £fy' + gy = 0,

with constant coefficients such that 4eg < f2.
Let L, vg and y_ be defined by (2.4.14), (2.4.1) and (2.4.13) respectively,
and let

2e
fh '

]

fh
(2.4.16a) o, c°th(2e) -

fh
(2.4.16b) Bi Y coth(2€).

hA hA
—1|2f 1 2
7 [_—gh + coth(———2 )+ coth(——-2 )

]
(2.4.16c) Yi J.
where Al’)‘z are the roots of e)\z + £A + g = O.
Then the solution {Yi} of the difference equation L (y;) =0 yields a point-

wise exact solution to eq. (2.4.15).

REMARK. The lemma holds for any set of boundary conditions (1.1.1.b). Hence
it follows that, if Y, = y(xi) holds for two distinct points X it holds

for all points.

PROOF. In order to deal with the case g = 0 correctly, ai should be as de-
fined in (2.4.16a); see lemma 2.4.2.
The solution of (2.4.15) reads

y(xj) =C exp(jhAl) +C, exp(jhkz).

1

The solution of the difference equation Lh(yi) =0 is

= 3 3
yj_D1u1+D2u2’

where u1 and u2 are the roots of

€ £ 2, [-2¢ af
[—5 * Y + (B+Y)g]p =3 - o + (1—28)9]11 +
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By setting u1 = exp(hkl) and u2 = exp(h)\z) we obtain the expressions
(2.4.16b) and (2.4.16c) for B and Y. 0

The parameters Bi and Yi are not well suited for implementation in a
realistic algorithm. Nevertheless it is interesting to see how the para-
meters B and Y behave for small values of €. Since Y can be expressed as a
function of B in a straightforward way we concentrate on B.

We first consider |eg|<< f2; then

Al = -f/e - Az
=_ g €9 €g,2
Ay =- gl + 2+0((2) N 1.
£
Hence
fh
coth (7=)
2¢ fh gh _2f
(2.4.17) B~ 7 [COth(ZS) + coth(zf) gh]'

If, in addition, exp(—l%l)« 1, then

1 . h 2f
(2.4.18) B NZ-[I + sign(f) {coth(g?) - g—h}]_

Note: we already met the function coth(z) —'2—1 in equation. (2.4.8).
If we consider l—g?l << 1, then

-fh

cosh (——)

1| 2 -fh 2€

.4. = -_ — ~N
(2.4.19) B Z{gh coth ( 2€) + vy Yy
sinh (—2—) sinh (-2—)

-€ 1
(2.4.20) & ghz X Y\

. 1 .
4 sinh ( 5 ) s:.nh(—z—)

In particular, if £ = 0 then Y = 0 and

-€ 1 2
(2.4.21) B =— -[——————-} .
gh® '2 sinh/gn2
-4¢

We note that here (as with equation (2.4.12)) the first term in B
exactly annihilates the discrete equivalent of the term ey". Thus, the dif-

ference equation corresponding to ey" + gy = 0 reads
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2
= - 2./9b
(2.4.22) wyi+1 - (4+2w)yi + wyi_1 = 0, where w = csch™ ( —48)'
Summarizing, we find for small €:
2
oy £ fh
i) if £ # 0, exP('I'eEI) << 1 and exp(-I5-]) << 1,
(2.4.23) B(1+tanh( ))y i1 T (1- 28)y + B(l—tanh(—))y g
(2.4.24) ~l14z) (1 + sgB)y, . + 2(1 - z sgf)
-5 2 SIHY 1 T 2 gHYs
1
+z(1-2) (1 - sgf)y, , .
gh, 2f .
where z = coth( ) - ag-and sgf = 51gn(f).

ii) if £ = 0, g # 0 and exp(- V ) << 1,

Yo = BYyyq 12280y, + By,
where
€ 1 h2
(2.4.25) Bm—5 - ; exp(- @,
gn? 4 -€

If we combine the results obtained in (2.4.12) and (2.4.24), we find
the asymptotic behaviour for € + 0 of the exponentially fitted operator,
that discretizes the differential equgtion (2.4.15).

fh £
If £ #0, exp(—]EEJ) << 1 and exP(_IEEI) << 1, then

sgf+1 g(z+1), g _ £f,92
(2.4.26) L (y)) ~ ( 7 Y4 Y2 T SEEG Ry
sgf -1 g(z—1)
+( I( 2 )yi—l.

Here we see, again, that the problem is solved from the left to the right
if £ < 0 and from the right to the left if f > 0. Thus, the operator can
be regarded as the one-step operator

- £+ g5

S —gh.
(2.4.27) vy = Trz, Yy = SRCEIY,
(— +g =)

for i o,t,...,N~1 if £ < 0, or

for i =1,2,...,N if £ > 0.



CHAPTER III
GLOBAL METHODS

In contrast to the difference methods treated in chapter 2, global
methods yield approximate solutions yh(x) that are not grid-functions, but
functions defined over the whole interval [a,b]. Such an approximate solu-
tion is selected from a given finite-dimensional subspace of the linear
space of all admissible functions. By the proper choice of a basis in this
subspace, the global methods can be made to deliver immediately a sequence
of discrete function values {yh(xi)}, corresponding to a particular grid II.
Therefore, we can still say that difference schemes are generated by these
global methods.

In the first section we describe the general principles of weighted
residual methods and we treat the construction of discrete operators. In
particular a new, efficient implementation of the Galerkin method is given.
In the second section we derive error estimates for weighted residual meth-
ods. To this end we introduce the function space Hk’“[a,b] and we discuss
the discrete Green's function. In section 3, we show why standard weighted
residual methods fail, when they are applied to singular perturbation prob-
lems. We treat: Galerkin's method, Ritz-Galerkin, collocation, least squares
and reduction to a system of first order equations. In section 4 we introd-
uce exponentially fitted spaces and we show how they can be used for the
construction of weighted residual methods. In section 5 we construct dis-
crete operators by means of exponentially fitted spaces and we also point
out the relation to the finite difference methods treated in chapter 2. In
the 6th section we describe how exponentially fitted weighted residual meth-
ods behave when € » 0 and in section 7 we give some numerical results ob-

tained by the new methods.

3.1. INTRODUCTION TO WEIGHTED RESIDUAL METHODS AND THE CONSTRUCTION OF
DISCRETE OPERATORS

In this section we discuss global methods of generating difference
schemes in a systematic way. A special advantage of global methods is that
for non-uniform meshes also the construction of difference schemes follows

in a natural way and that the treatment is not essentially more complicated
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than for uniform meshes.
All methods studied in this chapter provide a way of finding a numerical

solution of the form
(2.1.1) 7, (x) = a.p.(x);
Yh g ]¢J

where {¢ﬂ} is a set of piecewise polynomials.

An éxtensive literature exists on various methods of this kind. We
give an outline of some parts of the theory here, in order to provide the
notation and a conceptual framework that will be expanded in the following
sections, when exponentially fitted methods are treated. In this section we

shall also describe a new, efficient implementation of Galerkin's method.

Generalized solutions

In order to introduce the notation we describe briefly Sobolev spaces
and generalized solutions to differential equations. For a comprehensive
treatment the reader is referred to YOSIDA [1965].

For any integer k 2 0 we denote by Hk(a,b) the Sobolev space of
(classes of) real-valued functions which, together with their destribution-
al derivatives of order <k, belong to Lz(a,b). These spaces are Hilbert
spaces when provided with the innerproduct

k
(aw), = QZO o*u, %) ,
b
(u,v) = (u,v)O = I u(x)v(x)dx
a

and norm

IIuIIk = /(u,u)k;
D denotes the differential operator.
The closure of the set of C:(a,b)—functions with respect to the norm H-Hk
is denoted by Hg(a,b).
Consider the equation

(3.1.2) Ly = ?D(coDy) +¢Dy +cy=s,

1
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1 0 0
where ¢ € C'[a,b], ciiC, € C"'[a,b], cgZE>0,s¢ H (a,b).
In the classical sense a solution to equation (3.1.2) is a function y,

y € Cz[a,b], such that
Ly(x) = s(x) for all x € [a,b].

However, it is often convenient to choose y from a larger space S of admis-
sible functions and to define a solution to (3.1.2) as that function y € S
which satisfies the variational equation

b
(3.1.3) J {Ly(x) - s(x)} v(x) d&x =0 for all v € V.

a
The trial space S, and the test space V have to be chosen such that for all

u e S, v eV the integrals
b b
J Lu(x) v(x) d4x and J s(x) v(x) dx
a a

exist.

The sense in which a solution is obtained is characterized by S and V. E.g.
the equation is said to hold in the strong sense if V = Ho(a,b) and in the
weak sense if S =V = Hl(a,b); i.e. after integration by parts.

DEFINITION
1 1
The continuous bilinear functional B: H (a,b) x H (a,b) + R, defined

by
(3.1.4) B(u,v) = (cODu,Dv) + (chu,v) + (C2U:V),
is called the bilirear form assoctated with L.

DEFINITION
-1 2
By C "[a,b] we denote the subset of functions in L (a,b) that are de-
fined and continuous on [a,b], except for a finite number of discontinui-

ties in (a,b).

DEFINITION

Let f(x) be a continuous function on (x0-6,x0) and on (xo,x0+6) for
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some § > 0, then jmp f(xo) is defined by

jmp f(xo) = lim f(x+z) - f(x-z).
z+0

The following lemma follows immediately by means of integration by parts.

LEMMA 3.1.1. Let u,v € Hl(a,b), and let Du € C—lfa,b] be continuous except at
< b}; seta=x0and

< ... <X
n

the set of points Il = {xi | a < X, <x "

b =x, then
n

2

(3.1.5) B(u,v) = (Lu,v) + [covDu]n,

o,m

where (+,°) T and ['IITr are defined by

0,
n
(u’V)O,ﬂ = 121 (u'V)Lz(xi—l'xi) and
(3.1.6) -
I:w],’T = w(b) -~ i§1 jmp w(xi) - w(a).

COROLLARY. Immediate consequences are
- H2 1
(3.1.7) B(u,v) = (LU,V)O - for all u € (a,b), Vv € Ho(a,b),
7

and each function that satisfies (3.1.2) also satisfies

(3.1.8) B(y,0) = (s,0) for all ¢ € Hé(a,b).

REMARK. Since there is no 2nd derivative in equation (3.1.8), this equation
can be defined under less restrictive conditions with respect to the func-

tion y than equation (3.1.2).

DEFINITION
The formal adjoint of the operator L is defined by

(3.1.9) 1Yy = -D(c Dy) - Dlc,y) + c.y.
0 1 2
By integration by parts, one easily obtains Green's formula

T
(3.1.10) (Lu'v)O,n - (u,L v)0 n = [co(uDv-vDu) + cluv]1T

7

an¢ in particular, using Sobolev's lemma, the equality
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(3.1.11) (L6, 9 = (6, L7Y)  for all ¢,¥ « Hg(a,b).

DEFINITION
The bilinear operator B: Hé(a,b) x Hé(a,b) + R is called setrictly

coercive if
1 2
Jo0 >0 W e Ho(a,b) 0"vﬂ1 < |B(v,v)]|.

DEFINITION
Let S and V be two Hilbert-spaces. A bilinear operator B: S x V = R

is called strictly coercive with respect to S and V, if

Ip(s,v) >0 Vses 3Ivev Db(sVisl Ivl < [B(s,v)l.
v#0 s v

DEFINITION
Let S and V be two Hilbert-spaces. A bilinear operator B: S x V -+ R
is called bounded if

IC e R Vs e S, veV [B(s,v)]| < C"sﬂsﬂvﬂv.

Weighted residual methods

The discretization of the differential equation by a weighted residual
method is done by starting from the variational equation (3.1.3) and by

computing yh € S, , such that

h

(Lyh,vh) = (s,vh) for all Vh €V

(discretization of the strong form), or

B(yhlvh) = (s,vh) for all vy €V,
(discretization of the weak form).

Here Sh and Vh are finite dimensional subspaces of S and V respectively.
Thus, corresponding to the different kinds of generalized solutions, we
can distinguish between different types of discretization. We will show
that discretization of the strong form leads to the collocation method and

the weak form to Galerkin-type methods.
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In sections 3.4 to 3.6 we shall treat new methods of Galerkin type.

For the problem
Ly = s on [a,b], y(a) = a, y(b) = B,

the classical Galerkin method is obtained by choosing a basis {¢i}?=o in

M-1
the space S, c Hl(a,b), such that {¢i}i=1 is a basis in V. = S, n Hé(a,b).

h h
of the form (3.1.1) and the

h

This leads to an approximate solution yh € Sh

vector of coefficients (aj) is determined by the linear system

M
jzo aj B(¢jl¢i) = (s,¢i), i= 1121---,M'—1’
(3.1.12) g ay ¢ = a,
. (b = g.
§ a ¢J( ) B

In general, full polynomial bases {¢j} on [a,b] lead to dense and ill-
conditioned matrices B(¢j,¢i) and so they are of little use for large M.
The practical use of weighted residual methods hinges on the ease with
which systems such as (3.1.12) are generated and solved. The revival of
global methods is due to the fact that the resulting linear systems are
sparse and that the entries are easily calculated. To this end the func-
tions {¢i} have to be chosen such that they vanish on [a,b], except for a

small subinterval. Here piecewise polynomials turn out to be useful tools.

Definition of piecewise polynomial spaces

In order to characterize piecewise polynomial spaces Sh we introduce

the following notation. Let I = {a = X < x, < t.. < Xy = b} be a partition

of [a,b] and set I, = (x. ,,x.) and h, = x,-x, ,. Let P (E) denote the
i i-1"74 i i i~ k

1
class of all polynomials of degree less than k+l1, defined on the set E.

DEFINITION
m . . .
For m < k the space of { -piecewise polynomials of degree <k is de-
fined by

(3.1.13)  M*m = {v e fa,b] | v €P (1) i=1,2,...,N}.

restr I,
i

Similarly,
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.19 M = v e MEI) | vi@) = v = 0

denotes the subspace of Mm'k(H) of all functions that satisfy homogeneous

boundary conditions.

REMARK. By this definition, the space of discontinuous piecewise polynomials

of degree k on Il is denoted by M_l’k(H).

Important sub-families of piecewise polynomials are

0,k
i) the Lagrange spaces: M (I);

ii) the Hermite spaces : Mm’2m+1(H);

m,m+1

iii) the space of spline functions: M (I .

1
The space of piecewise linear functions, MO' (Il), belongs to all three sub-
families.

+
™y m > 0, both

In contrast to the spaces of spline functions M
Lagrange and Hermite spaces have bases {d)j} such that the support of each
¢j contains at most two neighbouring intervals Ii' This is an expedient
feature for computational purposes, since it leads to discrete operators
that have a narrow band-matrix structure. To use this property we introd-
uce natural bases.

m, 2m+1

Natural bases for Mo'k(H) and M (II)

In Lagrange and Hermite spaces we introduce natural bases; these bases

consist of functions that have minimal support on [a,b].
i) The natural basis for a Lagrange space.

. * * *
Let there be given a set {0 = EO< El< .. < Ek = 1}. As a natural basis

fo,) in mOr

§=0,1,...,Nk (II) the Nk+1 functions ¢j are chosen, such that

X WXy |
(3.1.15) * B
Oyl Bphyg) = 8y o ki

for all (i,%), i =0,1,...,N-1 and & = 0,1,...,k.

ii) The natural basis for a Hermite space.

,2m+1 I . .
in M° (II) the (N+1) (m+1) natural basis-functions {¢j}j=0,1,...,m+N(m+1)

are chosen such that
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+
c Mm,2m 1

(3.1.16) 3
2%, (x.) = &
34

(I
3, 8+1 (m+1)

for all (i,%), i =0,1,2,...,Nand £ =0,1,...,m.
An additional advantage of the choices (3.1.15) and (3.1.16) is, that
a proper selection of the coefficients (aj) in expression (3.1.1) yields

directly the pointwise approximation to y on the grid II.

Discretization of the differential equation

h and {¢i} in Vh' we can write

the discrete equivalents to the weak and the strong form of the equations

Having at our disposal bases {¢j} in S

respectively as

M
1
(3.1.17) -Zo 3 B(¢j,\bi) = (s,¥) W, eV, V < Hl(a,b),
J i=1,2,...,8-1, s, < H (a,b),
and
v 0
(3.1.18) -Zo ay @hy¥) = (5,9 Wb eV, V< Hz(a,b),
i=1,2,...,M-1, sh c H"(a,b) .

In addition to either set of equations, the boundary conditions are given by

M
jzo aj ¢j(a) -

(3.1.19) M
.(b) = B.
jzo a; ¢,(0) = 8

THE DISCRETIZATION OF THE WEAK FORM

In this subsection we show how the system (3.1.17) can be described
explicitly by means of the discrete equations over a single interval only.

For brevity, we introduce the notation

bij(X) = CO(X)¢5(X)wi(X) + Cl(X)¢3(X)wi(X) + cz(x)¢j(x)wi(x).

The (i,j)-th entry of the discrete operator is
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X
b N [}
B(¢j,wi) = J bij(x) dx = 221 f bij(x) dx
a xQ—l

(3.1.20)

il
I o~ 2

1 N
J by j(xg_y*hyE) d(Eh)) = ) By (95090,
2=1 2=1
0 ;
where B£(¢"wi) denotes the contribution to B(¢j,wi) from the interval IK'
J
By their definition, all the natural basis functions, ¢j and wi, can

easily be put into the form

|
o
(s
-~
vy
p

O a-1)z+5 Fportyl) =
(x£"1+h££) = wi(g) 0<sgE<1
1

(3.1.21)
w(2—1)2+i

+1 .
(Where z = k for the Lagrange, and z = EE—-for the Hermite spaces.)
To rescale all functions to local coordinates on IZ' we introduce a local

notation for the coefficients ci(x) on IQ:

Co,g(B) = cqlxy y+Eng)/h),

C, (&) =c (x, +En)
5.1.22) 1,2 1 (%g g *ERy
Cy,0(8) = cylxy 1 +Ehg) by,

c3,l(g) =8 (x2—1+€hl) hQ'

If no confusion is possible we shall omit the index %.
By (3.1.22) a single term B2(¢j'wi) from equation (3.1.20) is brought into
the form

1

B0y V(1) et T I Co, 5 15 (RI¥(E) +
0

(3.1.23) e
def

N ' U + =

Cy,g(BI0S(EIY (B) + C, ((EIO D)V, (B) aE " B(a,¥).

Thus, the discrete operator is composed of the N square matrices of order

k+1, one for each interval Il’ £ =1,2,...,N,

(3.1.24) (8, (6 ), i,9 =0,1,...,k.

(R—l)z+j'w(2—1)z+i
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Analogously, the discretization of the right-hand side of the equation is

characterized by a (k+1)-vector

1
_ def
(3.1.25) (S'w(z—l)z+1)L2(I )" J Cy (BIY, (B)ak 7S S(¥)),
20 i=0,1,...,k.

Evaluation of the entries of the discrete operator

The entries of the discrete operator and right-hand side are all in-
tegrals and so their evaluation forms an essential part of the method. The
evaluation should be efficient, but also accurate enough to guarantee that
the order of accuracy, that can be obtained by the discretization, is

indeed achieved. We treat two methods:

(1) evaluation by a quadrature rule, and

(2) evaluation by an interpolation rule.

Although the first method is the more efficient when it is properly applied,

we shall treat both methods because we need a combination of both when ex-

ponentially fitted methods are considered.

1. Evaluation by a quadrature rule.
Let a t-th degree quadrature rule be characterized by a set of

nodal points 0 < EO < El < ... < EL < 1 and a set of positive weights

{wi}i =0,....L such that
1 L
(3.1.26) J pixddx = ) p(E)w,
: i=0

for all polynomials p(x) of degree <t.

The entries B(Qj,Wi) and S(Wi) of the discrete equation are approximated

by
. L
B (¢j,Wi) = kzo {co(ék) (wk¢5W£)(£k) + ¢y (§) (wkéswi)(ik) +
(3.1.27)
+ Cy(E)) (wkéjwi)(sk)},
* L
(3.1.28) STy = kzo C(E) (W ¥ (E).

2. Evaluation by an interpolation rule.

Let a set of L+1 Lagrange interpolation polynomials {Xk} =01 L
Uy lye ey
< 1. The

k
of degree L be based on the nodal points 0 < EO < El < L .. < EL
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coefficient functions Ci(E), i=0,1,2,3, are replaced by their Lagrange
interpolants and the resulting integrands in (3.1.17) are integrated ex-
actly. Thus, the entries B(®j,Wi) and S(Wi) of the discrete equation are

approximated by

1
L
*
B (éj,wi) =k£0 Co (&) J kujWidE +C () J xk¢jwiag +
(3.1.29) 01 0
+ Cz(Ek) j xk¢jWid£},
0
* L 1
(3.1.30)  $7(¥;) =) Co(E) Jxk‘i'ida.
k=0 0

REMARK. For each particular method, (wk¢5Wi)(Ek) etc. in (3.1.27-28) or

rat
jO Xk®3W£d€ etc. in (3.1.29-30) are simple real coefficients that can be

computed beforehand.

An efficient implementation of Galerkin's method

We can use the freedom in the choice of a set of base-points {Ef}k=o,
(see eq. (3.1.15)) to minimize the amount of computational work. To ihis
end we chose {E:} in agreement with the quadrature rule (3.1.26). Such an
(L+1)-point quadrature rule is characterized by a set of nodal points

0 < EO < El < L..< EL < 1, whereas the set {E;} contains k+1 distinct val-

* * * . ces * *
ues EO < El < .. < Ek with the additional property EO =0, Ek = 1. The

corresponding quadrature rule with L = k, §_ = 0, Ek = 1 and optimal accu-

0
racy is the Lobatto k+l-point rule, which is accurate of degree t = 2k - 1
(cf. DAVIS & RABINOWITZ [1967]). If we set E; = gi, 0 £i <k, an effi-

cient evaluation of (3.1.27) and (3.1.28) is possible, viz.

k
* : ' v T
B'(9,,0,) = pzo{co(£p> (w :00) (E)}+Cy(E)) wOl(E,) +

+ C2(El) w1613 ’

(3.1.31)

*
(3.1.32) S (<I>i) = c3(Ei) LA

Since wo =W, each i-th row can be divided by L Thus, the amount of com-

putational work is reduced considerably. This is even more true if CO(E) is

a constant function.
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An operations count for the equation

1] + 1 + =
Y ¢y C¥ = 3
shows that the construction of the discrete system using a (k+1)-point

Lobatto method needs

k evaluations of cl,c2 and c3
2(k+1)2 + k + 1 multiplications

(k+1)2 + 2 additions

for each interval [xl—l’xkj'
These numbers can be compared with those given in RUSSELL [1975] for finite
differences and collocation methods.

In the following section we shall show that (k+1)-point Lobatto quad-
rature is sufficiently accurate to guarantee the optimal error bounds for
the discretization with piecewise k-th degree polynomials; that is, the

k+1) and the pointwise error on Il is 0(h2k).

global error is O(h
The advantage of the Galerkin method over the collocation method is
that for the Galerkin method the continuity conditions for yh(x) are less
severe and that a symmetric operator L leads to a symmetric discrete opera-
tor. An additional advantage of the efficient implementation (3.1.31-32) is
that the term c2(x)y in the continuous operator L contributes to the en-
tries of the discrete operator on the main diagonal only. In particular,
this property is useful when problems with non-linear terms in y are con-

sidered.

EXAMPLE. To illustrate the Lobatto quadrature method, we give the contrib-
ution to the discrete equation from a single interval 12 of length h, for
k = 2 and for the equation

“y" + fy' gy =s

with constant coefficients:

14 -16 2 -3 4 -1 1 0 0

(B¥(3,,06.0) = L6 32 -16) +E(ca 0 4|l +2(0 4 o
j**i’"  eh 6 6

2 -16 14 1 -4 0 0 1
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1
*py o sh
S(<I)i)—6 4 | .
1

The structure of the weak discrete operator

The use of natural basis functions in Mo'k(n): k=1,2,..., or
M(k—l)/z'k(ﬂ), k =1,3,5,..., yields square matrices of order k+1 for the
disecretization of the operator B on each interval 12 of the partition II.
The operator over the whole interval [a,b] is composed of N of these ma-
trices (3.1.24).

In the case of Mo'k(H), we have z = k and the discrete operator con-
sists of N elementary matrices with one entry overlap on the main diagonal

for each pair of neighboring intervals. The overlap element B<¢lz'w2z) is

the sum of two overlapping elements:

(3.1.33) N

B9V, = B g 1)V a-1)z4x) * Brat Pazror¥azro’

Fig. 3.1.1
The structure of a discrete operator

for Galerkin's method with S. = Mo'k(H).

h
The particular structure of this discrete operator can be used to re-
duce the matrix to tridiagonal form during its construction. In this pro-
cess, called static condensation, the intermediate unknown variables are
eliminated and only the variables corresponding to y(xi), xi € II, are com-
puted by solving the resulting tridiagonal system.

+
In the case of Mm,2m !

(), m = 0,1,..., we have z = (k+1)/2 = m+1 and
the discrete operator consists of N square (k+1)-th order matrices with an

overlap of a square (m+l)-th order matrix for each two neighbouring inter-
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vals. The overlap elements B(¢2z+j'wlz+i)' i,j, =0,1,...,m, are the sum

of the entries of two overlapping matrices

(3.1.34) B(q)‘(Lza-j’w.Q,z+i)= Bz(¢zz+j'wzz+i) * B2+1(¢lz+j'w22+i)'

i,j=0,1,...,m.

N L m=1
e e e . . N =3
Fig. 3.1.2
The structure of a discrete operator
: 2m+1
for Galerkin's method with Sh =M™ () .

THE DISCRETIZATION OF THE STRONG FORM

As we did for the weak form of the differential equation, we now go
through the same process of constructing discrete operators for the strong
form (3.1.18). Here, it turns out that a proper choice of the quadrature
rule leads to collocation methods; i.e. we obtain methods that satisfy the
original differential equation exactly at a number of specified points.

Let us consider egs. (3.1.18)-(3.1.19). By application of a quadrature
rule

(er¥,) ~]§ we RED Y (E)
such that the matrix (wkwi(gk)) is square and nonsingular, equation (3.1.18)

is equivalent to

M-1
(3.1.35) -21 a ,L¢j(gk) =s(E) g, e [a,p],

i=1,2,...,M-1 R ¢j € Cl[a,b].
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Here, L¢j(€ ) should exist and hence necessary conditions with respect to

continuity zf Mm'k(H) arem > 1 and k 2 2. The order of accuracy of these
collacation methods is determined by the choice of Mm'k(H) and by the de-
gree of accuracy of the quadrature rule. (see: RUSSELL & SHAMPINE [1972],
DE BOOR & SCHWARTZ [1973]). We see that in discretizations of the strong
form no evaluation of integrals is required, but the continuity conditions

on the numerical solution yh(x) are stronger.

The structure of the strong discrete operator

Collocation by means of functions from Mm'k(H) yields k-m degrees of
freedom on each subinterval of II. Since, on each subinterval, an element of
Mm'k(ﬂ) is determined by k+1 coefficients, the elementary matrix for each
interval is of order k+1, but it has only k-m nonzero rows. The overlap be-
tween two matrices on the main diagonal of the discrete operator is (1l+m)/2
entries. Thus, the matrix L¢j(€i) is a combination of disjoint rectangular

submatrices.

% Y ! k=3

s.c. L o
|

|

i Ik—m k+1

! .

[ [

N K1 > B.C. (boundary condition)
Fig. 3.1.3

The structure of a discrete operator

for a collocation method.

Hence, in the case of collocation over the space Mm'k(H), the discrete
operator is composed of N characteristic (k-m)*(k+1) matrices that are the
same for each interval, except for the values of the coefficients CO,...,C3.

Examples of discretization

As an illustration we give four simple difference schemes for equation
(1.1.1). The schemes all use S, = Mo'l(H), v, = Mg'1(H), i.e. Galerkin's

method with piecewise linear functions. Only the way in which the integrals

(3.1.23) and (3.1.25) are approximated is different. We apply successively
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the midpoint and trapezoidal rule for quadrature (3.1.27-28) and piece-
wise constant and piecewise linear functions for interpolation (3.1.29-30).
*
The schemes are described by their summand matrix B (Qj,éi) and vec-

*
tor S (@i). We consider a characteristic interval [xz,x2+1] and we set

h X g = (x—xk)/h, Xm =Xy + h/2;

s (xp) '

= Xpe1”

£ =£f(x),
p b

(3.1.36) &

= X ), s = %,m,%+1.
9% gl p) p '

The matrix B*(Qj,Qi) and the vector S*(éi) are respectively

i) by the midpoint quadrature rule:

€ 1 h e 1 h h
"R T2 2% Rt 2%n Yo% 25n
(3.-1.37) e_1, ,h_ e, 1. ,h_ || n_ [
hn 2m " 2% "hT 2% T 4% 2 °n
ii) by piecewise constant interpolation:
€ 1 h € 1 h h
—h_2fm+§gm h+_2-fm+ggm 2 °m
(3.1.38) .1, .n el .n and n_ ;
h 2m 6% n 2 " 3% 2 °m
iii) by the trapezoidal quadrature rule:
€ 1 h € 1 h
-=-=f, +7g, —+=f 5S
2
(3.1.39) h 278 272 h 278+ and L ;
[ 1 € 1 h ] h
) B2t 2% 25041
iv) by piecewise linear interpolation:
g _1 b g,1 " h
n T e Eta) T 12039 ) n Y et S Hplagtay )
€ 1 h € 1 h
+ = - —=(f +2f + =+ = —_
n T ety glagtap,) ot 2y, Ty (9pt3ay )
(3.1.40) and
h
6(252+s£+1)
5(5g+2804y)
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We note that (3.1.39) is similar to, but not identical with, the
common 3-point discretization for non-equidistant grids, as used e.g. by

Pearson (cf. eq. (2.3.1)). For, multiplied by 2 and written in the usual

h+k
notation, (3.1.39) reads
k(y,,.=¥,)-h(y,~y, ) Yo, 1~Y
241 “ R 2 f2-1 241 ‘-1 _
(3.1.41) 2¢ Tk (h+ k) 4—f(x£) B + g(xl) = s(xz)

where

3.2. ERROR ESTIMATES

In this section we give lemmas for approximation by piecewise poly-
nomials and treat the error of a weighted residual solution. Some of the
results can be carried over to the strong form of the differential equation,
but here we confine ourselves to the discretization of the weak form. Thus,
we compare the functions y, ¥y, and y; that satisfy the boundary conditions

(1.1.1.b) and one of the variational equations

1
(3.2.1) y € S = H (a,b), Bly,v) = (s,v) VveVvs= Hé(a,b);
3.2.2 = .
(3.2.2) ¥y € Sy <5, By, rvy) (s,vp) Vv ev cv;
or
* * * *
(3.2.3) ¥y € Sh cs, B (yh,vh) = (s,vh) v Vh € Vh.

* *
Here B (°,°) and (°,°) denote approximations to B(°,°*) and (°,°) obtained

by quadrature as described in the preceding section.

Approximation in Hk'ﬂ[a,b]

First we introduce the linear space of functions that, together with
their derivatives up to order k, are Lebesgue integrable over all subinter-
vals of a partition of [a,b]. Thereafter we give lemmas with respect to

approximation in these spaces.



69

DEFINITION
Let I = {a = Xy <Xy <. < xg= b} be a partition of [a,b], then we
introduce the norm "‘“k g defined by
’

2

? 2
(3.2.4) vl = IvlVx
kem ooy G ey

for all functions that have finite norms Il <l .
° ~ mnt Gy yox)s 1= 1,200,

It is easily verified that "‘"k “_is indeed a norm.

1’

DEFINITION
By Hk'“[a,b] we denote the linear space of functions, y, that have a

ini Iyl .
finite norm ly o X, K, T K,

I
If H1 c H2 then H 1[a,b] cH 2[a,b] and if v € H 1[a,b] then

I+ = lvl .
Iv X vl

'1T1 ,'"2

Since Hk(a,b) (= Hk'ﬂ[a,b] for all II, we have

(3.2.5) Iy =lvly, 3=0,1,...k forallve H(a,b) .
[

In the following lemmas we consider only quasi-uniform partitions of

[a,b] with a meshwidth h; i.e. we consider partitions Il for which there is
a A > 0 such that

Ah < x . -x, <h Vx, ell, j>o.
3 73—t 3 r

Often, we use sequences of quasi-uniform partitions {Hi}:;o such that

I, 1 2 II, and h, < h,. For a sequence of partitions such that II oI if
i i+ i m n

i+ 1
m > n and lim h, = 0, we sometimes use the notation
v *
Llim N ell
m
no K

instead of

lim [l .
-0 k'ﬂi

LEMMA 3.2.1. Let £ =0 or £ = 1 and let u ¢ B ""0[a,b] n B (a,b), k 2 £,

then for all I > I, there exists a w « Mz_l’k(ﬂ) such that

h



70

k+1 k+1-m
.2. Ta—w, Il < xl I
(3.2.6) u wh n, KID u 0,m

where K 1s a constant independent of u and h.

PROOF .

i) 2 = 0. Restricted to a subinterval Ii = [xi_l,xi], xi ell, i >0, we
+

know that u ¢ Hk 1(x

,xi) and, therefore, by Sobolev's lemma,
u e Ck[x_
i

_1,xi]. We taie a k-th degree piecewise polynomial
wh € M—l'k(H), interpolating u-at k+1 points in each subinterval Ii.
Now a standard error estimate fo6¥ the interpolants (cf. e.g. DAVIS
[1963] Chapter 3 or CIARLET & RAVIART [1972] p.196 thm. 5) immediatély
yields (3.2.6). l

ii) & = 1. The same arguments hold for & = 1, except that wh € Mo'k(H)
should interpolate u at the gridpoints xi e II and at k-1 gridpoints in-

side each interval 1. 0

The following lemma is also frequently used in the computation of

error estimates.

LEMMA 3.2.2. Let £ =0 or &
that for all v e Ml_l'k(ﬂ), k22,

]
-
~
[
<+
=2

0> 0, then there exists a K such

k=4,
.2, I
(3.2.7) v"k,n h < K “VHQ,
provided that h < h

h.

oi K depends on k, % and h, but is independent of v or

PROOF.

i) 2 = 0. We first prove that

+1 2 +1
J {(é%)lw] ag < c J w2 ag, 0<3j<k,
-1 -1

for all polynomials w of degree <k.

/ 2i+1
Let pi(x) = 2 Pi(x), Pi(x) the Legendre polynomial of degree i,
then
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+1
k k
2 2
w(g) = } a;p,(8); J wo df = Zai;
i=0 4 i=0
+1 5 +1
4,3 = 4.3 2
J [(dg) w] a = J (L a; (g p)" &
-1 gt
+1 .
i-] 2
= J (§ a, L cjqp Py AL
-1
+1
k m=j
2 2
s | lay I (Lec ,p(EN°aE
-J1 i ‘meo geo mIE
+1
k m—j
< max |,' ci‘z} J w2 ag.
3=0,1, ...,k tm=0 g=0 ™% 1

-1,k
Therefore, there exists a K > 0, independent of hand we M ' (),

such that

fori=1,2,...,Nand j =0,1,...,k.

Summation over j = 0,1,...,kand i = 1,2,...,N yields

2 2k 2
I < I wll
w"k,'rr h (k+1)K lw 0’

which proves the lemma for % = O.

ii) & = 1. Following the same lines as in the proof for & = 0, but substit-

uting w = Dv, we obtain

ko
} oIpdvi?  n2%D <y g oipul?,
j=1 o, 0

Also

ﬂvﬂ2 h2(k-—1)

2
0, <k K ||v||0,

if h is small enough, and hence
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2 2(k-1) 2
vl < vl
v K, h k K v 17
which proves the lemma for & = 1. [J

Global error estimates for weighted residual methods

A comprehensive literature exists on error estimates for Ritz-Galerkin
methods. An extension to more general weighted residual methods based on
eqg. (3.1.17) is found in BABUEKA & AZIZ [1972]. We quote two essential the-
rems, the proofs of which can be found in the paper mentioned. The proofs
are recommended for reading because of their charming simplicity.

The first theorem is a generalization of the well-known Lax-Milgram

theoremn.

THEOREM 3.2.1. Let S and V be two real Hilbert spaces with scalar product
(*r*)g and (*1*), respectively. Let B(u,v) be a bilinear form S x V -+ R
such that

(3.2.8) 3 C,>0 VYues, veV |B(u,v)| < ¢, "u"s “v"v,

(3.2.9) 3 c2 >0 VYuesS IveV |Buv)| 2 c2 Huﬂs nvnv,
v#0

(3.2.10) Vvev,v#0 3Jues |B(u,v)| > 0,

then

VEeV 3’ u. e s Vvev, B(uc,v) = f(v),

0
where V' denotes the linear space of bounded linear functionals on V.

( 3! denotes: there exists a unique...)
v
PROOF. See BABUSKA & AZIZ [1972] pp.113-115.

The second theorem states that under certain conditions the weighted
residual solution to a problem, found in a finite dimensional trial space,
is essentially as good as the best possible approximation in that space,
except for a certain factor that depends on the norm of the bilinear form

B and on D(Sh,vh), the coercivity of B(e°,*) with respect to Sy and N (see
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page 56).

THEOREM 3.2.2. Let the hypotheses of theorem 3.2.1 hold and let Sy and vy
be linear subspaces of S and V respectively, such that

I I
(3.2.11) 3D(s,,v,) >0 Vues, 3 vviovh‘ |B(u,v)| = D(S, ,V,) Iyl 's""'v

(3.2.12) Vve Vov#0 Jues [Buw|>o.
Let, for a given f ¢ V', u, € S denote the unique element such that
B(uo,v) = f(v), Vv eV; aid let

§ = inf llu —wlls.
weSh
Let Go e s, denote the unique element such that B(So,v) =f(v) YveVv,

h
then

(3.2.13) lu-d 1 < 1+—-——C1—-6
.- Y ™'s = (s, v I°

v
PROOF. See BABUSKA & AZIZ [1972] p.187-188.
EXAMPLE 3.2.1. Let us consider the Galerkin method applied to equation

(3.1.2) with homogeneous boundary conditions, then B: Hé(a,b) X Hé(a,b) > R
is given by (3.1.4) and S, = V.. Therefore,

h h
D(s,_ V.) = inf sup |B (u,v) | > inf BBl g,
h, h u v 2
uesy, vevyp 1771 uesy Hqu

u*0 v+0

where 0 is the coercivity constant of B(e¢,°), see page 56, and thus

C
A 1
- < — 1 -
(3.2.14) Huo uO"l_ [1 + 5 ] inf ﬂuo sﬂl.
seS,

We derive the following lemma 3.2.4 in order to show how the asymmetry
of B, caused by ¢, (X}, gives rise to the requirement of a fine enough mesh

in the Galerkin method. First we need a definition and a lemma to deter-

mine the relation between "y—yh"0 and “Y‘Yhnl-
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DEFINITION
Let B be a bilinear form H x H - R, then the symmetric part of B is
defined by

1 1
Bsym(u,v) = =B(u,v) + 2B(v,u).

[\S]

LEMMA 3.2.3. Let B be the bilinear form (3.1.4), let y be the solution of
(3.2.1) and y, the solution of (3.2.2). Furthermore, let vy be such that
for any ¢ € H2(a,b) N Hé(a,b)

(3.2.15) inf I¢-vl | + elg'-v'l | < m(h) nLT¢u0,
veV.
h
where

lim M(h) = O,
h»0

then

c
I "olle
€

3.2.16 - < - .
( ) % yhllo < ly yhlI1 M(h) max( , l|c1||°°+llc2|lw)

PROOF. Set [ =y - Yy and let ¢ denote the solution of

LTd) = CI

then ¢ satisfies
1
B(v,¢) = (v,T) for all v € Ho(a,b).
For all vh €V B(C,vh) = 0 and, hence,

h

2
by = B(z,¢) = B(Z,¢-v))

IA

I(COCI’¢'—Vﬂ)l + I(CIC',¢-Vh)! + '(°2C(¢'Vh)'

IN

Poglodztlghor-vrl o+ e b heel hg-v I+ el Ieh 1g-v, |

HCOHoo
< Izl Ipr—vrll -
o { ~c $rovily + eyl el ) 1g=v 1}
(o}
0 [e+]
< “(:"1 max ( = ,|!c1"°°+||c2||°°)' {eu¢'—vlf1||o+"¢—vh"o}

0
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for all vy € Vh'

Hence,

< +
C = max( ’ Cl Cz )M( ) C ol

which proves the lemma. 0

COROLLARY. It is known by the regularity of the solution that there is a
constant K, depending on L, such that H¢H2 < K"LT¢"O; now, by lemma 3.2.1

it is clear that, if v, 2 Mo'l(n),

inf l¢-vl =+ el¢p'=v'l < (14e) inf U¢-vl, < x h Igl, <
0 0 1 1 2
vth VEVh

< k,h IuTpl.
2
So we obtain, by lemma 3.2.3,
ly-y I = < Il y—
y-yply < ch ly-y b,
where C depends on the operator L, but is independent of y and h.

LEMMA 3.2.4. Let the conditions of lemma 3.2.3 be satisfied and let s, and
vy be finite dimensional subspaces of H(l)(a,b) such that
(3.2.17) inf, sup, lBS (8,v) | def D*(sh,vh) >0
seH (a,b),s#0 vel_(a,b),v#0 ym
0 0 s )

B(s,w)=0 Vwevh B(v,u)=0 VueS

Vi

h

then, if h is small enough,

K inf ly-sl
(3.2.18)  My-y I, < __ sk, L,
D (Sh,Vh) —C4C5M(h)

where
10l
C4 = @ax(——zr—yﬂclﬂxjﬂczﬂw),
- 1 1
c = lIc1II°° + Eﬂclﬂm.
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PROOF. Set T = Y=Yy, then there exists a Y ¢ V such that § # 0, B(w,sh) =0

for all sh € Sh’ and

*
D (s, ,v,) Izh tyl, < IBoym G | <
< 3BEW - BW,OI| + 1BW,D |
<cg “C"o "¢"1 + IB(w,c—sh)l
s cg ol Iyl + [B(Y,y-s ) |
< CC M(h) llz;ll1 llq;ll1 +C, Ilq)!l1 |Iy—shll1

* .
D (S, ,V,) H;ul < C,CcM(h) u;nl +c, inf ly Sh"l .

sheSh

1

Thus, if C,CoM(h) < D*(sh,vh), we have

4
C inf -S
1 seS u ¥ " 1

lzll, < = . O
1 D (Sh,Vh)-C4C5M(h)

REMARK. We see that, for a symmetric problem (i.e. cl(x) = 0), we have

C5 = 0 and the requirement C CSM(h) < D*(Sh,Vh) is automatically satisfied.

4

EXAMPLE 3.2.2. Let us again consider the Galerkin method applied to equa-

tion (3.1.2) with homogeneous boundary conditions, then S =V = Hé(a,b) and

Sh = Vh.
Therefore,
D" (s, ,V,) = inf (B (s,v)]
, = in sup ,
h''h seHl(a,b),s*O veHl(a,b),v*O —]E%ELW—W~—
0 0 s 1 v 1
B(s,w)=0 VweSh B(v,u)=0 VueSh
> inf lBs (s,s) |
(3.2.19) SeHo(a,b),s¢0 5
Isl
B(s,v)=0 Vves, ST
|B (s,s) |
> inf __§XE_§_._. =g
s*0 "s"l

*
0 1is the coercivity constant of the symmetric part of the operator B and,
hence, is independent of c, (x). Large values of lcl(x)l are represented in
C4r s
values of h.

and M(h) and, in applying the estimate, must be compensated by small
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Green's function and the discrete Green's function

Green's function G(x,£) with respect to operator L (eq. (3.1.2)) and
homogeneous boundary conditions on the interval [a,b], is the function de-

fined on the closed square a < x,§ < b by

1. G(x,°) € Hé(a,b) n Cz((a,x) U (x,b)),

(3.2.20) 2. LYG(x,*) =0 on (a,x) U (x,b),

1

.3 B
3. Jjmp =% G(x,&) = + EET;T

g=x %

The following two properties of Green's function are classical (cf.
e.g. Yosipa [1960]).

i) The solution of the two-point boundary-value problem
2
(3.2.21) Ly = s on [a,bl, s € L“(a,b),

with homogeneous boundary conditions is given by
b
(3.2.22) yx) = - J G(x,E) s(&) d&.
a
ii) Green's function can be constructed from two fixed solutions ¢1 and ¢2

of LT¢ = 0. Let ¢1, ¢2 be defined on [a,b] by

1%, =0, ¢, =0, 91(a) = 1,

T L]
L ¢2 =0, ¢,(b) =0, ¢;(b) =1,

then

if g<x then ¢, (E)¢,(x) else ¢1(x)¢2(E)
S (x) (9, (x) o) (x) = ¢ (x) ¢, (x))

(3.2.23) G(x,8) =

Note that the denominator z(x) = co(x) (¢1(x)¢é(x) - ¢i(x)¢2(x)) sat-

isfies the differential equation

1] -—
coz + ¢,z = 0.

Therefore, either z = 0 or lz| > 0 on [a,bl. If z

0 then ¢1 and ¢2 are
linearly dependent, the homogeneous problem LT¢ =0,.¢(a) = ¢(b) = 0, has
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a nontrivial solution and Green's function is not defined. Otherwise L¢ = s

has a unique solution given by
o(x) = -(G(x,°),s).

LEMMA 3.2.5. Let there exist a unique solution y, to the problem (3.2.2),
then there exists a discrete Green's function G, (x,E) relative to the oper—
ator B and to the spaces s, and Vy such that Yy 18 given by

b .
(3.2.24) v, (%) = - J G, (x,€) s(&) at.

a

and V. respectively, then

PROOF. Let {¢j} and {wi} be bases in Sh h

¥y = g aj¢j is determined by

Laj Blo,b) = (s,¥)).
J
Since the matrix B(¢j,wi) is non-singular, it has a unique inverse, the en-

-1
tries of which are denoted by Bi 3 It follows that

4

L[}
p —0 w1

yh(X) (S.wi)

-1
s(t) iZj ¢ (x) B) | ¥, (6) dt.

Thus, we obtain the form (3.2.24), with

-1
G (x,8) = - iZj 6By S ¥ (). O

Pointwise error estimates

In theorem 3.2.2 it was shown that interpolating properties of the
space Sh carry over to the global error of a weighted residual approxima-
tion; in this subsection we show that properties of Vh can produce addi-
tional pointwise accuracy. This phenomenon, called superconvergence, has

been studied by DOUGLAS & DUPONT [1974] for Galerkin methods.

THEOREM 3.2.3. Let B(*,*) be the bilinear form associated with L
(eq. (3.1.2)) and let y € S = Hl(a,b) be the unique solution to the varia-
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tional problem (3.2.1). Let v, €V = Hé (a,b) be such that the conditions of
L © 8 be the solution of the
corresponding discrete variational problem (3.2.2), then a pointwise error-—

theorem 3.2.2 ave satisfied and let Y, €8
bound is given by

(3.2.25) l(y-yh)(x)l < K"y—yhﬂl inf "G(x,°)-v“1,
VEVh

where G(x,E) is Green's function.

PROOF. Set [ =y - Yy Now C € Hé(a,b) and by Sobolev's lemma, T € Co[a,b].

Moreover,

B(Z,v) =0 for all v € Vh'
We know that Gg(x,') has a discontinuity at & = x; therefore, by (3.1.5)
and (3.1.10)

C(x) = -ECOCGE(X'.) + ClgG(x'.)]ﬂ
= -B(L,G(x,*))+(C,L G)o,n
= 'B(CIG(XI.)) = -B(C,G(X,')—V)

for all v € Vh'

Therefore,
Iz | = IB@,6x,9)-v 1 < x Izl lex,+) - vl
for all v € Vh. 0

COROLLARY. Applying lemma 3.2.1 and the estimate (3.2.25) we obtain, if

k+1,m -
y € H ""[a,b], the pointwise error estimate

k+p, for h + 0

3.2.2 ly - I =
( 6) Y-yl O(h
: 0,k 0
if Sh > M ', Vh > M ’p(H) and G(xi,') € HP+1'ﬂ[a,b] for all x; € II.
Application of the corollary of lemma 3.2.3 yields the global estimate in
the L2-norm
k+1

).

(3.2.27) ly -y, 1, = 0tn
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THEOREM 3.2.4. Let B(°,°) be the bilinear form associated with L

(eq. (3.1.2)) and let y € S = Hl(a,b) be the unique solution to the varia-
tional problem (3.2.1), where V = Hé(a,b). Let the conditions of theorem
3.2.2 be satisfied and let Y, € Sy
discrete variational problem (3.2.2).
Let wi € vy be such that

c S be the solution of the corresponding

1 1
wi € Ho(a,b) nc ((a,xi) U (xi,b))
Jmp q)i (xi) #0,
then

T
e YR
ey (x,) Jmp ¥ (x,)

(Y‘YQ(Xi)

PROOF. Set [ =y - Yy then ¢ € Hé(a,b) and B(g,v) = 0 for all v ¢ Vh.
Hence, ¢ € CO[a,b] and by (3.1.5) and (3.1.10)

0 = B(L,Y,) = (C'LTwi)O,ﬂ + Leptys + cpgp, 1 ,
(L) o o= S lx) Tlx) Jmp Yl (x,).

Consequently,

@t o
co(xi) jmp Wi(xi)

tix,) = . O
COROLLARY. The above expression for y(xi) - yh(xi) leads immediately to the

following pointwise error bound for the discretization (3.2.2),

(I 1Ly
h O io,m

(3.2.28) )= . S inf —————— .
ly(xl) yh(xl)l lco(xi)l hﬁ_ | jmp wi(xi)l

REMARK. The estimate (3.2.28) can also be derived for the solution obtained

by discretization of the strong form.

REMARK. If there exists a non-trivial wi € Vh that satisfies LTwi =0 on
(a,xi) u (xi,b) then y(xi) = yh(xi). Since each wi that satisfies this con-
dition is a scalar multiple of G(xi,-), this conclusion could also be de-

rived from theorem 3.2.3.
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Quadrature and error estimates

In the following theorem we prove that, when k-th degree piecewise
polynomials are used for Sh and Vh' a (2k)-th order quadrature rzle is suf-
ficiently accurate to guarantee the same order of accuracy for y, as for
Yy Thus the theorem gives a justification for the use of (k+1)-point

Lobatto quadrature as described in (3.1.31)-(3.1.32).

THEOREM 3.2.5. Let Il be a quasiuniform partition. Let y € S = Hl(a,b), the
solution of equation (3.2.1) with s e sz'ﬂ[a,b], be approximated by

y; € Sh = Mo'k(H), which is determined by (3.2.3) where Vh = Mg’k(ﬂ) and
let the operator B be such that the hypotheses of theorem 3.2.2 hold. Let
B*(+,*) and (+,") " be computed by a (2k)-th order quadrature rule, then

the error estimates

(3.2.29) ly - y;ll1 = 0"
and
(3.2.30)  ly -yl = 0

hold if h is sufficiently small.

PROOF. For all v e Vh

IB(yh—y;,V)l < IB(yh,v} - B*(y;,V)l + |B(y;.v) - Bf(y;,v)l

(3.2.31)

IN

(s, ) = (s, 7] + IB(y;,V) + B*(y;,V)l

2k * 2k
Isl Il . + (R Il .
¢ ishok,m Vi, B C Myl Vi, n B

IA

B is such that there exist a D(Sh,Vh) >0 and a.v € Vh such that

Iy - v*1, lvl -y ]
D(sy vy by =y by vl < By vy 0

Hence, by lemma 3.2.2, if h is small enough,
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*
I

I vl < |Bly. -y ,v) ] <
D(s V) My, = wply IVl < IBly v 0 1 =

k+1 * k+1
I Iyl Ivl, n° °;
<C ﬂsuzk'“ v 1 b +cly by vl
* k+1 * k+1
- Iyl h
D(Sh,Vh) Hyh yhu1 <cC HsHZk’n h +cly, K,
k+1 k+1 * k+1
r ly-y 1 + cly, -y, |l h
(3.2.32) < C'“s“2k,ﬂ+“y“k,ﬂ]h + Cly Yply o h cly, -vy X,
k+1 k+2 * 2
I e+ cly, -y I, n".
< C["s“2k,n+“y“k,ﬂ1h + cly kb1, Yhve'y
So, if h is small enough,
+
clish, 4yl Il0mF?)
(3 2 33) II _ *Il < 2k,Tr k,Tr
e Yh "Y1 ® - 2 .

D(Sh,Vh)—Ch

Combination of this inequality with the results of lemma 3.2.1 and theorem
3.2.2 yields the estimate (3.2.29).

i
Now let G(x,£) be Green's function corresponding to L; let G~ denote

G(xi,°), then for all v € Mg'k(ﬂ)
ly, (x) -y (x)] < IBly, - v5,61 <
Yy %) =y X0 b= B0y T Yy =

(3.2.34) < IBly, vy , 60 | + [Bly, -y,

2k

* i *
_ vl sl Iyl (R
< K||yh yh||1||G v|1+ clsh,, h+cC Yn'k,m 'k

Il
, T k,m 2T

If h is small enough, v can be selected such that

k+1

It - vl <clp k

i i
I Il < 2 el
G h and v - G k*

4
These inequalities, together with (3.2.34), (3.2.29) and the application

of lemma 3.2.2 yield (3.2.30). 0O

3.3. STANDARD GLOBAL METHODS APPLIED TO SINGULAR PERTURBATION PROBLEMS

At first sight, it might be expected that none of the global methods
mentioned this far, will be able to handle singular perturbation problems

properly. Indeed, in all discrete operators, the contribution due to the

h

2k
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second derivative is insignificant as compared with contributions from the
other terms of the differential operator. Still both boundary conditions
are imposed with the same strength. Thus, in the actual discrete operator
no information remains to determine which boundary condition has to be
respected. Nevertheless, it is meaningful to study to what extent the var-
ious methods may succeed. To this end we investigate their behaviour for

the model problem

(3.3.1) ey" +y' =0,
y(0) =0, y(1) =1,

on a uniform mesh.
We consider respectively Galerkin's method, collocation, reduction to a

system of first order equations, least squares and the Ritz-Galerkin method.

Galerkin's method

First we consider Galerkin methods. If we take Sh = Mo’l(H),
Vh = Mg’l(H), it follows from (3.1.38) that the discrete operator coincides
with the one obtained with central differences. This operator was studied
thoroughly in section 2.1. Discrete operators obtained by means of higher
order Lagrange spaces Mo'k(H) will give better error bounds. This is a con-

sequence of (3.2.14) and of the relation

Mo’k(II) =) MO’Q(H) if k 2 g,
whence
inf ly - vl < inf ly - vi.
veMo'k(H) veMo'l(H)

Nevertheless, small values of € still yield bad estimates since, in equa-
tion (3.2.14), o = 0(g).

Whereas a Galerkin method improves when Lagrange spaces of higher
order are used, it may degrade with the use of the higher order Hermite
spaces Hm'2m+1(ﬂ). For the latter type, lower order spaces are not sub-
spaces of the higher order ones. Thus the approximation in the higher

order spaces may be worse. In particular this will be the case if an approx-
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imand is not sufficiently smooth. As was shown in chapter 1,y(x) is not in
general smooth for small €. Hence the factor ly - yh||1 in the error bounds
(3.2.14) and (3.2.25) can be larger for larger m. This is even more likely
to occur for the factor ﬂG(xi,') - vhﬂ in (3.2.25), since G(xi,') has a
discontinuous derivative at x = xi. Of course, a larger error bound does
not imply that the error will in fact be larger. However, an actual com-

2
putation for the problem (3.3.1) shows that for M 'S(H) the error is
1
larger than for M '3(H), if €/h is small. This is illustrated in the tables

3.3.1 and 3.3.2.

N=1/n 4 8 16 32 64
s, e
ol | 1.0 6.2( -4) | 1.6( -4) | 3.9( -5) | 9.8( -6) | 2.5( -6)
1.0-2) | 2.9 | 8.7(-1) | 5.2(-1) | 2.6(-1) | 8.7( -2)
1.0(-4) | 3.1(+2) | 7.8( +1) | 1.9( +1) | 4.9 1.5
1.00-6) | 3.1( +4) | 7.8( +3) | 2.0(+3) | 4.9(+2) | 1.2( +2)
1,3
v'3m | 1.0 5.3( -6) | 4.0( -7) | 2.9( -8 | 1.9(-9) | 1.2(-10)
1.0(-2) | 2.3( -1) | 7.9( -2) | 3.9( -2) | 1.1( -2) | 1.7( -3)
1.0(-4) | 5.2( =1) | 5.1( -1) | 4a.8( -1) | 3.7( -1) | 1.2( -1)
1.0(-6) | 5.2( -1) | 5.2( -1) | s.2( -1) | 5.2( -1) | 5.2( -1)
25 | 1.0 4.5(-10) | 7.9(-12) | 8.5(-14) | 6.4(-14) | 4.8(-13)
1.0(-2) | 1.5( -1) | 3.5( -2) | 3.8( -3) | 1.8( -4) | 6.1( -6)
1.0(-4) | 4.6( +1) | 1.6( +1) | 4.8 1.3 4.2( -1)
1.0(-6) | 4.7( +3) | 1.7( +3) | 5.2¢ +2) | 1.5( +2) | 4.0( +1)
0,3
v 3m | 1.0 2.9(-10) | 3.8(-12) | 1.1(-12) | 3.8(-12) | 1.6(~11)
1.0(-2) | 4.1( -1) | 1.5( -1) | 2.7( -2) | 1.8( -3) | 5.2( -5)
1.0(-4) | 5.2( +1) | 1.3(+1) | 3.3 1.1 8.6( -1)
1.0(-6) | 5.2( +3) | 1.3( +3) | 3.3(+2) | 8.1( +1) | 2.0( +1)
0,5
M| 1.0 4.2(-10) | 2.5( ~9) | 1.7( -8) | 8.3( -8) | 3.6( -7)
1.0(-2) | 9.4( -2) | 1.0( -2) | 2.6( -4) | 1.5( -6) | 1.6( -9)
1.0(-4) | 2.1( +1) | 5.1 1.4 8.3( -1) | 6.8( -1)
1.0(-6) | 2.1( +3) | 5.2( +2) | 1.3(+2) | 3.3( +1) | 8.2

Table 3.3.1. Pointwise errors ly - yh"ﬂ o fOr problem (3.3.1). The Galerkin
’

method (3.1.12) has been used for various spaces Mmhk(ﬂ) on a uniform mesh II.



85

N = 1/h 3 7 15 31 63
Sh €
0,1
M (| 1.0 1.1( =3) 2.1( -4) 4.5( -5) 1.0( -5) 2.5( -6)
1.0(-2) 8.7( -1) 6.2( -1) 5.4( -1) 2.7(-1) 8.9( -2)
1.0(-4) 1.0 1.0 9.9( -1) 9.9( -1) 9.6( -1)
1.0(-6) 1.0 1.0 1.0 1.0 1.0
M1’3(H) 1.0 1.5( =5) 6.7( =7) 3.8( -8) 2.2( -9) 1.3(-10)
1.0(-2) 3.2( -1) 9.3( -2) 4.3( -2) 1.1( =2) 1.7( =3)
1.0(-4) 5.2( -1) 5.1( -1) 4.9( -1) 3.8( =1) 1.3( -1)
1.0(-6) 5.2( -1) 5.2( -1) 5.2( -1) 5.2( -1) 5.2( -1)
2,5
M (I 1.0 2.4( -9) 1.7(-11) 1.2(-13) 1.2(-13) 5.6(-13)
1.0(-2) 2.7( -1) 5.0( -2) 4.9( -3) 2.1( -4) 6.6( -6)
1.0(-4) 7.4( -1) 7.3( -1) 7.0( -1) 6.0( -1) 4.2( -1)
1.0(-6) 7.5( -1) 7.5( -1) 7.5( -1) 7.5( -1) 7.5( -1)
0,3
M (I | 1.0 1.6( -9) 9.6(-12) 1.3(-12) 9.9(-13) 4.2(-11)
1.0(-2) 3.3( -1) 1.9( -1) 3.3( -2) 2.1( -3) 5.7( -5)
1.0(-4) 9.9( -1) 9.8( -1) 9.6( -1) 8.7( -1) 8.6( -1)
1.0(-6) 1.0 1.0 1.0 1.0 1.0
0,5
M (I 1.0 5.9(-10) 1.6( -9) 1.5( -8) 7.7( -8) 3.5( =7)
1.0(-2) 1.6( ~1) 1.8( -2) 3.9( -4) 2.0( -6) 2.1( -9)
1.0(-4) 9.8( -1) 9.5( -1) 8.7( -1) 8.2( -1) 6.9( -1)
1.0(-6) 1.0 1.0 1.0 1.0 1.0

Table 3.3.2 Numerical results as in Table 3.3.1. However, for this table

an odd number of subintervals has been used.

Collocation
The same model problem (3.3.1) is used to show how collocation fails
for €/h + 0. We consider the simplest function space that can be used for

1
collocation: Sh = M '3(H). On each interval Ii' we take the two collocation

. o o201 .
points at x = x, + ch, and at X = x, - ch,, 0 £ ¢ < =. Then the charac-
i-1 i i i 2

teristic rectangular submatrix for the discretization of Ly = ey" + y' is
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6c(l-c) + -(1-¢) (1-3c)h+ -6¢(l-c) - c(2-3c)h+
. +6 (%) (1-2¢)  +2 (i—) (2-3c)h -6 (%) (1-2¢)  +2 (-f;) (1-3¢)h
(3.3.2) =
6c(l-c) - c(2-3¢)h- -6c(1-c) + -(1-¢) (1-3¢)h~
£ [ §_ _ _ _E_ _ \
-6 (1-20) 2D (1-30)h  +6(D) (1-20) 265 (2-30)h

With the boundary conditions(3.3.1) the discrete problem, for €/h - 0, re-

duces to
1 0 0 yo 0
- 1
1 Ah, 1 Bh, ol 0
H Bh, -1 Ah <::> ¥, 0
\\\ ¥ .
(3.3.3) ~ . vl ol
~ = . ’

(::) 1 AhN -1 Bh : 0
1 BhN -1 AhN Yy 0
\0 0 1 0 v 1

where A = 3c-1 - 3C2_

6c ' T (D -
The solution of this linear system is

Thus, {yi} yields a pointwise (but not a global) approximation to a straight
line, irrespective of the choice of the mesh II. Sad to say, Y(xi) =x; is
not at all an approximation to a solution of our boundary-value problem. We
may conclude that, in general, the result obtained by collocation - for any
grid Il with € << min (hi) - is not a good approximation to y(x).

i=1,...,,N

Reduction to a system of two first order equations

The second order equation (1.1.1.a) can also be reduced to a system of

two first order equations. Then the problem (1.1.1) is written as

(3.3.4) (; (1)) Yo+ (g ;cl)) Y = (g>'

vla) = o, yb) =8,
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where Y is the vector Y = (y,v)T = (y,ey')T.

In general, global methods are well suited for the solution of two-point
boundary-value problems written in this form and it is known (cf. WEISS
[1974]) that collocation schemes for systems of first order equations,
based on piecewise polynomials Mo'k(H), are equivalent to implicit Runge-
Kutta methods based on interpolatory quadrature formulas. Since integration
by parts is out of the question for first order systems, collocation is also
equivalent to a Galerkin.method, for which the quadrature is effected by
means of a k-point quadrature rule. As was shown by WEISS [1974] and HULME
[1972 a,b], the pointwise error for these methods is 0(ht+1), where t de-
notes the degree of precision of the related quadrature rule. Thus the
pointwise error is 0(h2k) if k Gaussian base~-points are used for colloca-

tion (cf. DE BOOR & SCHWARTZ [1974]). The pointwise error is 0(h2k_1) if

Radau and 0(h2k-2) if Lobatto points are chosen as collocation points on
each subinterval of the mesh. This theory holds when € is kept fixed and
h » 0; however, if € << h we may not expect the approximation to be accu-
rate. This is shown by the following argument.

Let us consider the analogue of equation (3.1.18) for the system

(3.3.4) of first order equations. We write

¥ = L 259,

(3.3.5) '
b.¢.
h Z J¢J

v
where {¢j} is a basis in Mo'k(H). The Galerkin equations now read

L. = i =

J (Eyh Vh)¢idx 0 i 0,...,N,
(3.3.6)
J (fyﬁ+v£+gyh)¢idx = Js¢idx, i=1,...,N-1,

with the boundary conditions
yy(@) =@, y, (b) = B.

Here the coefficients {aj} and {bj} are to be determined.

The discrete system of equations is

(3.3.7) ) aj[%J ¢3¢idx] -1 b, [ J ¢j¢id(§)] =0, i=0,...,N;
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(3.3.8) ) aj[ J £93¢;ax + h J g¢j¢id(%)] +) bj[ j ¢:'i¢idx] =h J s¢id(—§-).

i=1,...,N-1.

1f {¢j} are such that

0, i=1,...,N;
0,

¢0(a)
¢N(b)

1, ¢i(a)'
¢, (b)

[
-
~

0,...,N-1;

-
]

then ay =0, ag = B.
Now keep h fixed and let € * 0. Since the matrix J ¢j¢idx is nonsingular
the system (3.3.7)-(3.3.8) becomes

(3.3.9) ) aj{ J f¢3¢idx +h J g¢j¢id(§)] =h J s¢id(§),

i=1,...,N-1,

This linear system is exactly the same as the one obtained if the Galerkin
discretization is directly applied to the second order differential equa-
tion and we let € - 0. Therefore, for singular perturbation problems,

there is no advantage in setting up the larger system (3.3.7)-(3.3.8).

Least squares

We will briefly show that again no success can be expected if we try
to find a numerical solution to our problem by the least squares method,

i.e. when we seek a function vy of the form (3.1.1.) that minimizes the

functional
b

(3.3.10) olyl = J [e y"(x) + £(x)y"(x) + g(x)y(x) - S(X)]2 dx
a

and satisfies the boundary conditions.

Minimization of (3.3.10) yields the linear system Zj Aij aj = si' where
b
3.3.11 = if G+ ny 'y
( ) Aij J (e ¢j ¢j g¢j) (€ ¢i+f ¢ +g ¢,)ax
a

and
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b
(3.3.12) s, = J s(e ¢i+£¢/+g¢, ) ax.
: fh gh2 . soa .
For large values of |1;' or I—Er4 we approximately minimize
) b
(3.3.13) J (f(x)y'(x)+g(x)y(x)--s(x))2 ax,
a
where y is subjected to both boundary conditions. The functional (3.3.13)
corresponds to the residual of the_reduced equation, but as the sign of
£/€ plays no role in (3.3.13), essential information is lost. Thus the min-
imization of (3.3.10) scarcely has any relationship to the original problem.

This is illustrated by the problem

(3.3.14) ey"(x) + £(x)y'(x) =0,
y(a) = o, y(b) = B.

For large |fh/€l|, the function that minimizes Q[y] approximately minimizes

the functional
2 2
J £7(x) (y'(x))" ax.
Hence, y is an approximation to the solution of the boundary-value problem

(3.3.15) £fy" + 2f'y' = 0,
y(a) = a, y(b) = B,

rather than to the original problem (3.3.14).

The Ritz-Galerkin method

In the positive definite case (i.e. if g £ 0), it makes sense to
search for a global approximation (3.1.1) which is optimal in the energy
norm ﬂ'"E, see eq. (1.1.7). Such an approximation is obtained by solving

the linear system

%
A,.a, =b,, i=1,...,M1,
=0 i3 3 i

where
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€

b X
(3.3.16) A, = J (-c0103+90,0,) exp( J f(et) at) ax
a N a
and
b X
(3.3.17) b, = J s(x)9, (x) expl J £8) 4ty ax.
a a

In contrast to the previous methods, in the present method f/€ plays a very
importan£ role for small values of €. In fact, the factor

p(x) = exp( Eé?L dt ) lays a heavier weight on the side of the more re-
levant bounda?y condition. In the limit, for €/(fh) - 0, the boundary con-
dition at the end where the boundary layer occurs, is completely neglected.
This directional dependence is a great advantage but, because of the expon-
ential magnitude of p(x), practical problems arise in setting up the linear
system. If the entries of the symmetric matrix A are calculated in a
straightforward manner, overflow problems arise in the computation of p(x).
Even if this is circumvented by introducing row-scaling (which disturbs the
symmetry), p(x) remains an unmanageable, rapidly varying function. Indeed,
for extreme values of hf/e, asymptotic expressions can be developed for Aij
and bi, but the approach using the integrating factor p(x) remains cumber-
some. Another approach, which shares the benefit of directional preference
and which overcomes to a certain extent the inconveniences induced by the
exponential function p(x), is the exponentially fitted weighted residual

method that will be treated in the following sections.
3.4. EXPONENTIALLY FITTED SPACES AND THEIR USE

In section 3.2 we saw that the pointwise error bound on a mesh Il is re-

lated to the capacity of the space V., to represent solutions of the adjoint

h
equation. In this section we investigate how this knowledge and the freedom

in the choice of a space V., can be exploited to obtain better methods for

the solution of singular erturbation problems. First, we have to study the
properties of the solutions of the adjoint equation, especially the form of
Green's function for this kind of problem. Then we construct a space Vh in
which these functions are well approximated. This Vh is used to construct
methods in which the requirement of a small enough h/e ratio is relaxed

and in which a certain given order of accuracy is attained.

It will become apparent that piecewise exponentials have to be included
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in vh and as a result a sense of directional preference, which is also pre-
sent in the differential operator, is carried over to the corresponding

discrete operator. In the extreme case when € << fh, our particular choice
of V. will mean that essentially an initial value problem is solved, using

h
the correct boundary condition.

Green's function for a singular perturbation problem

In theorem 3.2.3 it was shown that Green's function plays an important
role in the determination of pointwise error bounds. Therefore, in studying

the numerical solution of the equation
(3.4.1) Ly =ey" + fy' + gy = s, 0 <g<<1,

we require information concerning the properties of its Green's function for
€ + 0. To this end we first consider the case [f| 2 £, > 0. The asymptotic
behaviour of Green's function for € + 0 is formulated in the following

lemma and its corollaries.

LEMMA 3.4.1. Let L be the differential operator defined on the interval
[a,b] by (3.4.1), where £ ¢ C'[a,b], g e COla,b] and |£()| 2 £, > 0. Let
the function Y e Hé(a,b) n C%(a,x) U (x,b)) be the solution of LTw =0 on
(a,x) and on (x,b) and let jmp(YP'(x)) = -1. Then, the asymptotic approxima-
tion of Y for € + 0 18 given by

VE) =k Y (B) + Ky Y () for € < [a,x],

3.4.2
(342 @) =k yo(®) + K, Uy (B for £ e [x,b],
where
Ve (8) = exp | (g-£')/f dt,
(3.4.3) 2 &
wBL(E) = exp[E-J fat - | g/f atl.
a a

The congtants kis koo kys k, are determined by

4

(3.4.4) Y(a) = y(o) =0, and
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-€ (E(a)-E(x)) (E(x)-E(b))

(3.4.5) V) = 55 T E® (E(a)-E(D)) ’
where
_ £'(x) _ g(x)
(3.4.6) F(x) = £(x) + € (%) 2e fx)’
X
(3.4.7) E(x) = exp[é-[ F(x)dt].
a

PROOF. Application of the WKB—techhique to the differential equation
ey" - (fy)' + gy =0

yields, to first order in €, the two approximate general solutions wR and
wBL' Hence, the solution Y(&) is given by (3.4.2) and LI Y LY k, are
determined by the boundary conditions at £ = a, £ = b and £ = x. From

these conditions Y(x) is determined

Yl = kP () + kU (%) =

[hg (@) ¥y (1) =Yy ()Y (x) LY, () Uy () =Y ()Y (x) ]
U @0 (6) Y ()P (b) .

—ef

(f2+€f' -2€q)

Introducing F by eq. (3.4.6) and E by E(§) = wBL(E)/wR(E), a simple com-
putation yields’ (3.4.5) and (3.4.7). O

COROLLARY. The function P(§) has two boundary layers:
if £ < 0 then at £ = a and at £ = x + 0, or,

if £ > 0 then at £ = b and at £ = x - 0.

]

This boundary layer behaviour is described by wBL(E). Outside the boundary
layer regions, we obtain the limit-behaviour of (&) for € -+ 0 by neglect-

ing the exponentially small terms:

(3.4.8.a) Yg) ~ 0 (E<x)

£
~ V(x) exp J g_?f—' dt  (g2x) if £ > 0,
X
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oxr
(3.4.8.b)  Y(E) ™ Y(x) exp T 9"—ff—dt (E<x)
X
~ 0 (&>x) if £ < 0.

COROLLARY. An asymptotic approximation for € »+ 0, of the Green's function

corresponding to the operator L, eg. (3.4.1), is given by
(3.4.9) G(x,8) = —1—¢(E)

oG ’ = e -
EXAMPLE 3.4.1. Green's function corresponding to equation
(1.3.1) Ly=¢cy"-y'=0 on [0,1]

reads

if E<x then (1-e o/€) (1-e 1™¥)/€) (1ce (1-7¥/€) (1= (178) /¢

(3.4.10) G(x,§) =— —
—e x/e(e+1/e_1)

Fig. 3.4.1

Green's function for equation (1.3.1) on [0,1].

Exponentially fitted spaces

In view of the error bound given in theorem 3.2.3 it is expedient to
have at one's disposal a space of test functions Vh, in which the func-
tions G(xi,'), i=1,2,...,N, can be closely approximated. From
lemma 3.4.1 and its corollaries we know that, for large values of f£/g, ex-
ponential boundary layers appear in G(xi,') at § = xi. The exponentials
cannot be closely approximated in a piecewise polynomial space Vh if fh/e
is large. Hence we introduce function spaces that not only contain piece-

wise polynomials, but also piecewise exponentials.
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DEFINITION
For each subinterval Ii < [a,b], let ai e R and let K(Ii,ai) denote
the (one-dimensional) linear space of scalar multiﬁles of the function

exp (xai), restricted to Ii. Furthermore, let for k = 1,2,...,

(3.4.11) %((Ii’ai) = span (Pk“l(Ii)’ K(Iiru«i))l

m,k .
(3.4.12)  NVF (Lo ={ve C"la,b] | v e R (I.,0,), i=1,2,...,N},

restr.I,
i

(3.4.13 N Moe) = v e ¥ FMLa) | via) = v = o).
In egs. (3.4.12) and (3.4.13), u denotes a mapping which gives an a € R
for each interval I of the partltlon II. The spaces Nm (H,aﬂ) and

(H o) are called exponentially fitted spaces.

Since a proper test space should be able to represent the discontin-'
uity in the derivative of G(xi,~) all interesting exponentially fitted

spaces have m = 0. As we did for the Lagrange spaces Mo’k

(Il), we select
basis functions {w } in N (H o ) such that the support of each w is con-

tained in at most two nelghbourlng intervals I1

The most obvious way to construct such a set of basis functions in

o -
(H Q ), k>1, is to take a set of natural basis functions in MO ik 1(T[),
based on a set {0 = g E . < Ek | = 1}, (cf. eq. (3.1.15)), and to

*
add for each I, a functlon wﬁF € H (a,b) such that

wl (X) =0 X é Iil
(3.4.14)

¢?F*(x) = exp((x-x,_,)0,) - ¢ (x), x € I,
where ¢: € Mo'k_l(H) is such that

EF*

(x,_,*Egh.) = 0, £ =0,1,... k1.

For k = 2,3,4 these functions wﬁF* are illustrated in figure 3.4.2.
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EFx EF% EF
- g WV
.

Fig. 3.4.2
: ; : : EF* 0,k
Exponentially fitted basis functions wi in N (H,aﬂ); k > 1.

This wﬁF* is a possible exponential basis function in No’k(H,uﬂ) for
aihi # 0; however, it vanishes on Ii for aihi -+ 0. Therefore, it should be
normalized e.g. by division by nggibj IwiF*(x)I. When we consider the nor-
malized function as depending on the parameter ui, it is easy to see that,
for continuity reasons, only a unique choice can be made for ai =0, viz.
the k-th degree polynomial which vanishes for x = X 1 + E; it
2 =0,1,...,k-1. For k > 1, this suggests the construction of another, more
practical, set of basis functions that will be considered in the next subsec-
tion. First we consider the case k = 1.

If k = 1, a function w?F* cannot be found, but a basis in NO'I(H,aﬂ)
is readily constructed by a linear combination of a piecewise constant and
a piecewise exponential function, see fig. 3.4.3. Thus, for k = 1, a single
exponential basis function extends over two intervals and so it has to be

described by two exponential coefficients: ai and ai . Introducing the

+1
function

—a&_e—a

(3.4.15)  Y(E,-a) = 9——:3— ,
l-e

we describe the basis functions in NO’I(H,aﬂ) by

Y (=) /0y g a¥0 4By

1—‘1’((x—xi_1)/hi,+otihi ) if x € Ii'

) if xe I, .,
(3.4.16) Y7 (x) = { i+t

i=1,2,...,N-1.
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Xi+1

Fig. 3.4.3

Exponentially fitted basis functions in N (H a ).
. 0,1 .
This basis {w } in N (I, un) can be used for computational pur-
poses and it is eaSily seen that w reduces to the piecewise linear basis
function in M (H), if both a h and 0O vanish. Hence, No'l(H,aﬂ)

0, i+l 1+1
reduces to M (H) if a h -+ 0 for all i. We denote this by

(3.4.17) lim No'l(H,aﬂ) =% tm,
Ian|+0
where
(3.4.18) Iuﬂl = max (!uihil).
i=1,...,N

Analogously, because the exponential basis functions in N (H Q ) degen-
erate to k-th degree piecewise polynomials if Iuwl -+ 0, we have, also for
k>1,

(3.4.19) 1im N0, q ») MOk

IunI*O

(.
We shall not give a more formal description of this property, which can be
given by means of the concept of "the aperture of subspaces of a Hilbert-

space" as introduced by KRASNOSEL'SKII et. al.[1972], Chap. 4, section 13.5.

Natural bases in N (H,aﬂ)

The exponential basis function ng* (egq. (3.4.14)) is not convenient
for computational purposes, since, for large values of —a h it is equal
to —¢ in the interior of Ii' except for an exponentially small term, and
therefore, it leads to an extremely ill—conditioned basis (cf. VARAH [1974]).
For this reason we use a more practical basis in N (H o, ), which will be

called the natural basis. This basis, related to the natural basis of
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0,k-
ik 1(1'[), is formed in the following way.

0,k

Mo'k(H) rather than to that of M
Let the natural basis functions of M (II) be constructed by means of

* * *
fo=g) <& <...<g=1}, (cf. eq. (3.1.15)). On each interval I, where
aihi = 0, we use the basis functions of Mo'k(H) also for No'k(H,aﬂ); if

aihi < 0, the basis functions are defined on Ii by
EF
v,y ¥ and
* * EF s -
03500 = dygxg PV (x5 ) 3= L2k,

—1'k_1(H) is such that

*
where ¢,, e M
1j

* * .
¢ij(xi_1+££hi) = Gjm' j=1,2,...,k.

If uihi > 0, then the basis functions on Ii are

¥ (30 and
i
* * EF . B
¢ij(X) - ¢i](xl)wl (x)l J = Olll"'lk 1:
where ¢;j € M_l'k_l(ﬂ) is such that

* * . _
¢ij(xi_1+€khi) = ajz, j =0,1,...,k-1.
Thus, given a set of nodal points {0 < E; < EI < ... < g; < 1}, the char-
acteristic set of natural basis functions {Wj} on an interval of length h
is described as follows:

if o < 0, then

¥y (€) = ¥(&,omn),

(3.4.20.a) . *
Wj(E) Qj(E) - Qj(O)W(E,ah), j=1,2,...,k,

where the (k-1)-th degree polynomial @; is defined by
* *
¢j(€m) = ajm jom=1,2,...,k;

if a > 0, then
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Y. (&)

@2(&) - @3(1)W(1—s,—uh), j=0,1,...,k-1,
J
¥ (©)

(3.4.20.Db) \y(l_g’_ah) =1 - ¥Y(g,ah),

*
where the (k-1)-th degree polynomial Qj is defined by
* %
= j =01 Py k-l-
¢j(£m) Gjm j,m ilieeey
EXAMPLE 3.4.2. We consider the restrictionAto Ii = [xi_l,xi] of the basis
ek
functions in NO’Z(H,aﬂ), see fig. 3.4.4. As the set of nodal points {Em} we
use {0,571}.

First we assume ai < 0. The characteristic basis functions for Mnl'l(H) are

@I(g) = <2 + 2,

*
QZﬂE) = 25 - 1..

N0,2

The basis functions in (H,aw)on Ii+1 become

]

b, (%)

i W(E,aihi),

)

*
Uy ) = 0(E) - 2 ¥(E,ah),

*
Yy ) = 85 + ¥(E,ah),

where .£ = (x—xi_l)/h-

-1,1
If ai > 0, then the characteristic basis functions for M ~ ' (II) are

*
8, (8) =28 + 1,

2€

*
QI(E)
. . . 0,2
The basis functions in N (H,uﬂ) on I_+1 become
i

(x)

*
Upy 8,(8) +  ¥(1-E,-a.h),

*
¢2i+1(x) = ¢1(E) -2 W(l—E,—aihi),

Upi42 () = ¥(1-E,-0;h,).
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Fig. 3.4.4

2
Natural basis functions in NO’ (H,aﬂL

The use of expenentially fitted spaces

Exponentially fitted spaces have been designed to approximate func-
tions that exhibit an exponential behaviour with a large exponential fac-
tor (exponential rate) that must be known in advance. Since the exponen-
tial rate of the exponential boundary layers that appear in singular per-
turbation problems can be determined, we can seek a numerical solution Yy

in an exponentially fitted trial space S, and / or we can use an exponen-

h
tially fitted test space V, , in which case we fit Green's function.

Exponential fitting of S, can be applied in two ways:

h
1. it can be used throughout the whole interval [a,b] (complete fitting).

or

2. it can be applied only in a region where a boundary layer is expected,

(partial fitting).

In the first case, the disadvantage is that the exponentials can introduce
spurious internal boundary layers in the numerical approximation; either
the contribution of the exponentially fitted component is negligible or
the numerical approximation behaves almost discontinuously, even where

the analytical solution behaves smoothly.
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Fig. 3.4.5

A numerical approximation in an exponentially fitted space Sh.
On the other hand, when exponential fitting is applied only in the boundary
layers, a priori knowledge about the solution is assumed. This information
may be easily available for homogeneous linear problems, but one will meet
serious difficulties in non-linear problems. Moreover, even when the dif-
ferential operator is discretized with the help of a priori knowledge about
the solution of the homogeneous equation, the inhomogeneous problem will
not fully share in the profit of exponential fitting. This is illustrated
by the following argument.

Let the operator L, eq. (3.1.2), be given and let s ¢ L2(a,b). Con-
sider the following problem: find an approximation to y € Hé(a,b), the sol-

ution of
Ly = s on [a,bl.

1
Given a particular choice of a trial space S, < Ho(a,b) and test space

h
1
v, < Ho(a,b), the approximation v, is given by
b
yh == J Gh(xlg)S(g) dgl
a

while the solution y is given by

b
y(x) = - J G(x,8)s(8) ag.
a
So we obtain
b
(3.4.21) y=y) () = | J {c(x,t) - _Zj ¢j(x)B;j b, (6} s(e) atl
1
a

IA

) - -1 Ry
le(x, ) izj ¢y B Y, ( i bsl.
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To minimize the error independently of s we have to seek Sh and Vh such

that the first norm is minimal. It is seen that exponential fitting of the

functions ¢j € S, cannot be of help except for particular choices of s,

h
whereas fitting of the {wi} in such a way that G(x,¢) is closely approxi-

mated in Vh' always will result in a small pointwise error at x.

Thus we have obtained an argument in favor of the exponential fitting
of Vh instead of the exponential fitting of Sh. In Vh exponential functions
can be included that fit the boundary layers of G(xi,'). As a result small
pointwise errors are obtained at the nodal points X - Therefore, we shall
consider only exponential fitting of Vh' except in the following examples,
where exponential fitting of Vh and Sh are compared for two simple prob-

lems. The examples show that exponential fitting of Vh is indeed better

than exponential fitting of Sh.

EXAMPLE 3.4.3. In this example we show with an inhomogeneous equation that

exponential fitting has different effects when it is applied to Sh and to

Vh. We consider the problem

(3.4.22) ey" +y' =-1  on [0,2],

with homogeneous boundary conditions. The solution is

(3.4.23)  y(x) = 2 Lzexp(=x/E) _

l-exp(-2/€) :
The discretization is executed on the mesh II = {0,1,2}; thus, Sh is spanned
by a single function ¢ and Vh by a single function Y. The discrete opera-
tor and right hand side are

2
(3.4.24) B(‘br‘p) =J (-€¢'1!)'+¢"P)dt.
and 0
. 2
(3.4.25) (s,9) = J (-y)at,

0

and the approximate solution at x = .1 is given by

(3.4.26) yh(l)v= ®(1) (s,9)/B(d,Y) .
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Now we consider complete and partial exponential fitting, both for S. and

h
for Vh.
A. Complete exponential fitting of Sh'

Here we use Sh = No'l(H,un), Vh = Mo’l(ﬂ). The exponential rate of the
boundary layer can directly be derived from the equation (cf. section 1.2),
so we take o, =0, = -1/e. Hence ¢ and Y are given by

.Eﬁ%%f%é%}jg—% if x € [0,1],
{3.4.27) d(x) =

exp(-x/€) - exp(-2/€)
exp(-1/€) - exp(-2/g)

if x e [1,2],

and

(3.4.28) P (x)

X if x e [0,1],
-x if x e [1,2],

Fig. 3.4.6
* The functions ¢ and { when complete exponential

fitting of S, is applied.

h
Evaluation of (3.4.24) and (3.4.25) yields

-1/e /€

(3.4.29) B(¢,¥) = -(l+e )/ (1-e M/

and
(3.4.30) (s,¥) = ~1.

Hence, the approximate solution at the point x = 1 is

_ (sA) - 1 - exp(-1/€)
B(6,¥) 1 + exp(-1/¢)’

(3.4.31) yh(l)

which is the exact solution.

In example 3.4.4 we will show that this result is due to the particular
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choice of the right hand side which is a constant. The global approximation

to the solution is

_1- exp(-1/¢€)
yh(x) 1 + exp(-1/¢g) ¢(x).

Fig. 3.4.7

The solution y of eq. (3.4.22) and the approximation

Y, with complete exponential fitting of S_.
h h

B. Partial exponential fitting of Sh‘
N0,1

We use again Sh = (H,a") and Vh = Mo'l(ﬂ), but we apply exponential

fitting in the boundary-layer region only, i.e. on [0,1]. So, we take

1
Oy = = gr Oy = 0;

Y is still given by (3.4.28), but now ¢ is given by

exp(-x/e) - 1 L £
G.4.32) b =4 SRCIE -1 THEE rortds
2 - x if x e [1,2].

Fig. 3.4.8
The trial function ¢, when partial exponential fitting

is applied to Sh.

Evaluation of yh(l) now yields



104

1

1 exp(-1/€) .
2 te 1 - exp(-1/¢)

yh(l) =

1f e_l/e << 1, then yh(l) N-TE%E and the global approximation is given by
(x) ™ —=— ¢ (x)
¥ 1r2e * ¥
~
(x)
yh
y(x)
0 1 2
Fig. 3.4.9

The solution y of eq. (3.4.22) and the approximation Yy
with partial exponential fitting of Sh.

C. Complete exponential fitting of Vi
Now we use S, = Mo’l(ﬂ), Vh = No’l(H,an). The exponential rate o

h
corresponds to the exponential rate of G(xi,'); hence 0, =0, = 1/e.
Now ¢ and | are
x if x € [0,1],
(3.4.33) o) = 2 - x if x e [1,2],
exp(x/€) -1 .
oxp(176) = 1 if x € [0,1],
3.4.34 (x) =
( ) v exp(x/€) - exp(2/¢€) if x e [1:2]
exp(1/€) - exp(2/¢€) ree
¢ v
0 1 2 0 1 2
Fig. 3.4.10

The functions ¢ and Y when complete exponential fitting

of Vh is applied.
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In this case evaluation of (3.4.26) again yields the pointwise exact solu-

tion at x = 1 and the global solution is

o hx) _ 1 - exp (-1/€)
&) = 56,0 - 1+ exp(-i7e) O

D. Partial exponential fitting of Vh.

To complete our exposition we find the approximate solution when V. is

h
partially exponentially fitted. Using S, = Mo'l(H), vy = No'l(H,aﬂ),
al = 1/¢g, a2 = 0, we obtain
1
g (1) = s _exp(t/e) - 1" 2 €
h B(,¥) -1 _1 e.
exp(l/e) -1 2

For small values of g, yh(l) ~ 1 and the global solution is yh(x) 8 d(x);

see figure 3.4.11.

y(x)
S~
yh(x)
0 1 2
Fig. 3.4.11

The solution y of eg. (3.4.22) and the approximation Yy

with complete or partial exponential fitting of vh.

This example demonstrates that fitting of Sh is inferior to fitting of Vh

in the following sense. When S, is fitted to the behaviour of the solution

¥, the error caused by the bouﬁdary layers also effects the smooth part of
the solution, whereas the error due to the boundary layer is restricted to
the boundary layer region when Vh is fitted.

EXAMPLE 3.4.4. In this example we show how exponential fitting of Sh has a
different effect when we take another right hand side s in the equation of
example 3.4.3. We consider the problem

(3.4.35) ey" +y' =1 -¢ - x on [0,21],
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with homogeneous boundary conditions.

The solution is
1
y(x) = 7 x(2-x) .

A. Complete exponential fitting of Sh'

The discretization is executed as in example 3.4.3.A, i.e.

_ §Or1 _ _ _ 0l .
Sh =N (H,an), o =0, = 1/e, Vh M (II) ; the functions ¢ and Y are
given by (3.4.27) and (3.4.28). Now
2
(s,¥) =J (1-e-x)Y(x) = -€
0
and so
(1) = (s,9) _ .1 - exp(-1/€)
Yh B(¢,¥) 1 + exp(-1/€)"

Thus, for small values of €, yh(l) is a poor approximation to y(1) and so

is the global approximation.

yh(xm (x)
v

0 1 2

‘Fig. 3.4.12
The solution of eq. (3.4.35) and the approximation Yy

with exponential fitting of Sh.

B. Complete exponential fitting of Vh.

The discretization is done as in example 3.4.3.C, ¢ and Y are given
by (3.4.33) and (3.4.34). Now
2

J (1-e-x)Y(x)dx = - %L-_exmg

(s,¥) 1 + exp(-1/€)

and

1 _
¥y, (1) BOY) 2" y(1).
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0 1 2

Fig. 3.4.13
The solution of eq. (3.4.35) and the approximation with
exponential fitting of Vh.
In view of equation (3.4.21), it is clear that by complete exponential fit-

ting of V.

h Yh(l) = y(1) for any function s since

V() =-B(¢,PIG(1,)/d(1).
3.5. EXPONENTIALLY FITTED DISCRETE OPERATORS

In this section we discretize the weak form of the differential equa-
tion (1.1.1), using piecewise polynomial trial spaces and exponentially
fitted test spaces. Thus we construct difference schemes that are espec-
ially designed to solve the singular perturbation problem (1.1.1) in the
case of a large |hf/e| ratio. The schemes aim at a pointwise accurate ap-
proximation on a given mesh Il and good interpolatory properties in the

smooth part of the solution.

The choice of Sh and Vh

The following lemma gives an indication of what kind of functions of
a limited support should be included in a trial space Vh in order to ob-
tain pointwise accurate approximations on a given mesh II.

LEMMA 3.5.1. Let there exist a unique solution to equation (3.2.1), let Il
be a partition of [a,b] and let G, (*s*) denote Green's functzon wzth res—
pect to the 1nterval [x 1%y, ] Let the functions {G (x ,')} 1 form a
subset of Vh c H (a,b) and Zet there exist a unique soZutton

v, €85 < H (a, b) of the equation

B(yh:Vh) = (s,vh) for all vy € Vi
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then Yy 18 a pointwise exact solution on I
PROCF. By theorem 3.2.3

~ < kly - I, inf |l o)y = vl , .
| (y Yh)(xi)i Kly - y, I, in G(xi, ) - vl
vevV
h
Since B(¢j,wi) is nonsingular, yh is bounded for all i = 0,1,...,N and so

is ly —‘yhﬂl. Let the function u be defined by

N-1 G(x,,x,)

then u ¢ Vh'

On each interval [xm—l’xm]’ G(xi,°) - u satisfies the equation

Ye(x,, - = 176(x,,) - LTu = 0
1 1

and the boundary conditions
G(Xi’xj) = u(xj), j = m-1,m.

Thus we have u = G(xi,‘) on each interval [xm_l,xm].
Hence inf “G(xi,') -vl, =0 and

1
vth

I ty-v,) =)l =0,
which proves the lemma. []

In contrast to the functions G(xi,'), the functions Gi(xi,°) have a
support of only two intervals. This property makes the latter appropriate
as basis functions in Vh when discrete operators are constructed. Of course,
accurate computation of each Gi(xi,') would require the same effort as the
solution of the original boundary-value problem, but a space in which they
are sufficiently approximated is readily found in most cases. For smooth
problems the space Mo'k(H) suffices. For singular perturbation problems of
the form (1.1.1) with a large ratio |f/e| we found in lemma 3.4.1 that a
boundary layer appears with a known exponential rate and so No’k(H,uﬂ) can

be used.

As far as the pointwise accuracy of the approximation is concerned,
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the choice of a trial space S_ should be such that ly - yh"1 can take small

h
values. Further, S, should be selected with a view to computational con-

venience and good ?nterpolatory properties (global accuracy). Since the sol-
ution of a singular perturbation problem may behave almost discontinuously
in some parts of the interval [a,b], we use a space Mm’k(H) with the low-
est possible number of continuity constraints: m = 0; the degree k of the

piecewise polynomials depends on the accuracy required.

The choice of the parameters 0j

The parameters ai represent the exponential rate of the local Green's
functions Gj(xj,E) on the interval Ii = (xi—l’xi)' The WKB approximation of

the fast component of the adjoint equation
ey" - (fy)' + gy =0

is
X

£(t) g(t)
exp J {—7;— Ty + 0(e) }at.

Thus, the exponential rate, which depends on x, is given by
f(x)/e - g(x)/£(x) + O(g). The local Green's functions Gj(xj,E), j =1i-1,i ,

have boundary layers at X, _ if £/€ < 0 or at X if £/e > 0. The fast com-

1
ponent dominates in the boundary layer and so we take

£(x,) g(xj)
(3.5.1) ai= € - f(xj) ’

5 ___{i—i if f£/e <0,
i if £/e > 0.
I1f £ is not a constant function, then the effective difference Ao, between
ai and the exponential rate in the boundary layer will be of order
f'(xj)A/e + 0(g), here A is the length of the region where the fast com-
ponent is significant. This boundary layer extends over an interval of
0(e), and so Ao is of order O(f'(xi)) + 0(g).
The WKB method yields an approximation that is asymptotically correct
for €/f > 0. On the other hand, for small va;ues of f/€, the first order
term fy' does not play the dominant role which is characteristic of non-

symmetric singular perturbation problems. Small values of h correspond
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to small values of Iaﬁl, and as we saw in section 3.4
N e ) > u ¥ @M as la | > o

This means that, with this choice of aw, exponentially fitted operators re-
duce to ordinary Galerkin operators for small values of aihi. Let h be the
meshwidth of the (quasi uniform) grid II, then laﬂ[ + 0 as h + 0 and the

following consequence is immediate:

For a fixed € > 0 and h + 0, all convergence results for the classical

Galerkin method (3.1.12) carry over to our exponentially fitted methods.

The evaluation of the entries of the discrete equation

An important problem that arises is the efficient evaluation of the
integrals B(¢j,wi) and (s,wi). Because of the possibly, rapidly varying

components in Y, € V., a simple adrature rule cannot be used. We may pro-
i ple qu

h
ceed in two ways. We may use either
(1) an Znterpolation rule.

The coefficients of the differential equation are approximated by
Lagrangian approximation, whereupon the quadrature is executed exactly

(analog of the interpolation rule in section 3.1); or

(2) a combination of an interpolation and a quadrature rule.

The part due to the polynomial components in No’k(H,aw) is computed by
a quadrature rule and only the part involving the exponential component is
computed by an interpolation rule.

We illustrate both approaches by showing the discretization of the
term c,¥ in the differential equation (3.1.2). We use the natural basis
(3.4.20) in the space No'k(H,an). Without loss of generality we assume

0 < 0. The contribution from c,y to B(éj,wi) is
*
(3.5.2) J’ czéj‘lfida = I c2<1>j(d>i->\i‘l’('.z))dt§

where z = ho.and Ai = @:(0).
Let the Lagrangian interpolation be based on the nodes {nm}x=1 and
let the corresponding polynomials be {X}:=1, then the integral is approxi-

mated by
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1

M

*

(3.5.3) J C2@j‘{’idg ~ m£1 c, (ny) { J xmcbj(bidg - Ai J xmcbj\l'(-,zma}.
0

Here Jé Xm¢j®;d£ are real constants independent of z and

J mejW(',z)dE
0
depend on z,.
Using a quadrature rule for the polynomial parts we approximate the
integral by v
1 M .
(3.5.4) J C2<I>j‘l’idE ) c,(n ) {wm<1>j (e () - A J xmfbj‘l’(',Z)dE}.
0 m=1
In (3.5.4) the coefficients depending on z are the same as in (3.5.3) and,
in general, the amount of computational work is the same in both cases.
However, if {nm} and {Qj} are properly selected, (3.5.4) can be computed
more efficiently.

In both cases we need to evaluate integrals of the form

1
J P(x)¥(x,z)dx
0
where P(x) is a polynomial. Introducing the notation
1
(3.5.5) w (z) = J XY (x,-z)dx
0
and
(3.5.6) T(2) = —e ~ = %(1—coth(z/2)),
1-e

we can calculate the integral ﬁn(z), z # 0, by recursion from

(3.5.7) w_(z) = T(z) + 1 ,
0 4
- _ T(z) n =
wn(z) =a t z wn—l(z)'

Moreover, we have the relations

1
(3.5.8) J = é% Y(x,-z) ax = —n&n_l(z)
0
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and
1

(3.5.9) J P (x) i V(x,-2z) dx = -z J P (x) ¥ (x,-2) dx
0 . +z T(z) P(x)dx.

We notice also the relation between Go(z) and the function m as defined by

(2.4.8) , namely

- - 1 2
(3.5.10) wo(z) =3 -3 m(2).

N =

The use of an interpolation rule

We illustrate discretization with exponential fitting by generating
two finite difference schemes which yield piecewise linear approximations
to the solution of (1.1.1). In both examples we use the natural basis in

Mo'l(ﬂ) and in No'l(ﬂ) and we compute the integrals using formula (3.5.3).

EXAMPLE 3.5.1. We take M = 1 and X1 = 1. The coefficients of the differ-
ential equation are thus approximated by piecewise constants on the grid

II. The evaluation of the matrix

By (b0 = JI {-eb0; + €630, + gb.¥, } ax
L

and the vector

Jlg swidx

yield respectively

€ €
h wof + (wo—wl)gh n + wof + wlgh

3.5.11

( ) € wf+ G -wiw)gh -4 (1-w)f+ (- w)gh
h 0 2 o™ h 0 2 - "'9

and wysh )
(1—w0)sh

where h = xl - xl—l; wi = wi(-hal), i=o0,1.
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EXAMPLE 3.5.2. Now we use (3.5.3) and take M = 2, XI(E) =1 -, XZ(E) =&;

thus, approximating £, g and s by piecewise linear functions, we obtain

b b db
_(Poo ®o1 _
B,Q,((bjlwl) = b b >I (Srwi) _(d ) 2

10 711 1
where
-€
b00 =3 + (-w0+w1)f0 + (—wl)f1+g0h(wo—2w1+w2) + glh(w1 w2),
= £ - _
b01 =3 + (w0 wl)f0 + wlf1 + gOh(w1 w2) + glhw2,
1 1 1 1
Pio=" 2% "2 E *398 G 9B By
b, =+4f +2¢ +ign+ign-o
11 -T2 T2 TE% T3 9 o1’
do = (wo~w1)soh-Fw151h,
1 1
dl = E-soh + E-slh - do.

Here, the subscripts 0 and 1 in fO' fl’ go, gl, SO’ 51 denote function val-
ues of £, g and s at x = xl_1 and x = xz respectively; h = x) - X9 4 and

wj = wj(—haz), j =0,1,2.

Relationship to other difference methods

In example 3.5.1 the discretizations of the terms ey" and fy' are
identical with those obtained by the method of exponentially fitted differ-
ences (2.4.2)-(2.4.8). This follows directly from (3.5.10). Moreover, scheme
(3.5.11) suggests the adaptation of the exponentially fitted finite differ-

ence scheme for a non-uniform mesh, which can be written as

:%E - £(14+w) + gh(l+w) %? + f£(l+w) sh (1+w)
(3.5.12)
—2};3- - f(l-w) % + £(1-w) + gh(l-w)/ \sh(1-w)

fh
where w = m(EE), m is defined by (2.4.8). This scheme has been implemented

in ALGOL 68. The program and some of its results are listed in chapter 4.
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For Otzh2 -+ 0, the method (3.5.11) reduces to the one described by

(3.1.38). In the limit for ulhl > © (aRhQ + -®), y' is discretized by back-
ward (forward) differences and y by the trapezoidal rule on the backward
(forward) interval. If the interpolants of £ and g on IQ are taken equal to
the midpoint values in this subinterval, then, in the limit for lalhll -+ o,
the discretization of fy' + gy is the same as given by eq. (2.3.19). Thus,
for |fh/e| =+ ©, eq. (3.5.11) yields exactly the scheme as proposed by

ABRAHAMSSON et al. [1974] for linear problems without a turning point.

The use of a quadrature rule

In this subsection we describe the discretization of the differential

equation
(3.5.13) (E(x)y"(x))' + £(x)y'(x) + g(x)y(x) = s(x),

where we allow €(xX) to be a slowly varying positive definite function of x.
We use a quadrature rule and we select this quadrature rule and the func-

tions {Qj] and {Wi} so as to minimize the amount of computational work.

The description is given for a characteristic interval Il with ul < 0.

On this interval we introduce

E(E) = €(x)/h,

(3.5.14) F(g) = £(x) ’ h = (xz_xg_l) '
G(E) =gh , &= (xx, )/h,
K(E) = s(x)h , z = -ha, .

We select a (k+1)-point symmetrical quadrature rule, characterized by its
nodes 0 = EO < 51 < ee. < gk =1, gi + gk_i = 1. The natural basis func-

. ko, 0,k k. 0,k
tions {¢j}i=0 ins =M (I). and {wi}i=0 inv, =N

agreement with the nodes of this rule, i.e. the set {Ei} used in the con-

(H,aﬂ) are chosen in

*
struction of both éj and Wi is taken to be the same as the set {Ei} of no-

dal points, The entries of the discrete operator, for az < 0, are

B(2,,¥,)
J

0

*

*
) & P =
B(Qj,éi) i(O)B(.j,‘i’o), i 1,2,...,k,

(3.5.15) B(¢,,Y,) =
J 1
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where

(3.5.16) B(Qj,wo) B(Qj,W(-,alh)) = B(¢j,W(',—z)) =

1 1
= - zT(z) J E@%dg + J (zE+F)¢5W(‘,-Z)d€
0

1
+ l G<I>j‘i’(-,—z)d£

k
N - z T(z) mZO{E(Em) [wm®5(5m)]}
Xk 1

+ X {(zE+F)(€m) J @mQEW(',—z)dE}
m=0 0 J

k g
+ L {eg) J 0 & ¥(,-z)at}
m=0 0 J
£ B (0, ¥(+,-2)).
1
* ' *' ' * *
(3.5.17) B(Qj,Qi) = J{}E®j¢i + F¢j¢i + G@jQi}dE
k 0
*
~ ] {-EE) [w, @3 (€ ) @)t (£ ) 1}

m=0

de

* 1
+mm[%%mWJm]+mi)wfﬂgH
*
+ G(0) [w050j¢i(0) 1+ G(Ei) [wiGij ]
d%f

* *
B (Qj,Qi).

The right hand side of the equation is

Sy
(3.5.18)  S(¥,) =
. S - o¥ Sy, i
i i 0

) ’ i=0,

o

1,2,...,k,



(3.5.19) S(WO) = | K¥(°,-2)dg

1
*
ey [ oye ma’s sTue, .
0

1
(3.5.20)  S(&7) = J KO dE
. 1 1
0
~ K

* def
(0) [wOQi(O)] + K(Ei)[wi] g

REMARK. The coefficients between square brackets all denote real constants

depending only on the choice of the set {ii}.

If € is independent of x, then summation over E(Em) can be avoided in
(3.5.17) and in (3.5.16) where

k -e/h if j o,
(3.5.21) mzo E(E) [w ()] =10 if 5 =1,2,...,k-1,

B e/h if j = k.

An algorithm based on formulas (3.5.15)-(3.5.20) has been written in ALGOL
60 and, in order to demonstrate the effect of exponential fitting, numeri-

cal results are given in section 3.7.

Further approximation of the ai—dependent entries

Since di is determined in (3.5.1) with a relative accuracy of only

-2
o(ai ),we can approximate (3.5.16) and (3.5.19) further to

B*(®j,W(-,—z))

k
3 ]
{-z'T(z) § {E(gm)[wméj(im)]}
m=0
(3.5.22) + E (2B4F) (£ )q o

+ (if j=0 then zG(EO)+ Z G(Ejm)pm1 else O)}/z2
m

+ 0(2-3) + 0(e” %),



k
* 2
S (+,-2)) = {zK(E)) + mZO k(g e ,1/2

(3.5.23) 3 _
+0(z0) + 0™,

where p. $!(0),
Pj1 3

. %" (0),
Pj2 :1()

Iy = PpiPyp * SpoPyoc

The algorithm obtained from (3.5.22)-(3.5.23) by truncation of the expon-
entially small and 0(zf3) terms is more efficient than the one given by
(3.5.15)-(3.5.20), but it is less accurate for small values of Iukhll' An
algorithm that uses a classical Galerkin method for small values of Ithll
and the formulas (3.5.22)-(3.5.23) for larger values of [a£h£|’ combines
the advantages of both. A program that uses such a combination of both
methods has been written in ALGOL 68. It is listed in chapter 4, where

some of its results are also reported.

EXAMPLE 3.5.3. If we use a quadrature rule for k = 1, we obtain the expon-

entially fitted difference scheme

. Poo Po1
B (q)l‘y-) = ’
37 b* p*
10 P11
a
sy = |9,
t a
1
where
* 1 1
Pio= -2 % "2 f1 + 3 95" = Py
* 1 1 1
by =2f 3% +39h Dby,

and where bOO' b01, do, dl' fo, fl' 9gr 9y are defined as in example 3.5.2.
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3.6. THE ASYMPTOTIC BEHAVIOUR OF EXPONENTIALLY FITTED METHODS

In this section we study the behaviour of the exponentially fitted
weighted residual (EFWR) method (3.5.15)-(3.5.20) as € > 0. In the preced-
ing section we saw that exponentially fitted global methods lead to linear
systems of type (3.1.17), where the operator B(¢j,wi) as well as the right

hand side (s,wi) can be split into a polynomial and an exponential part:

* ) *
(3.6-1) B(¢j,wi) = B(¢jl¢i) + B(¢jrwi)l

(Slwi) = (sr¢:) + (slwz)'

For the EFWR method this splitting was explicitly given for each interval
IZ by egs. (3.5.15) and (3.5.18). By letting z = © in the exponential parts
(3.5.16) and (3.5.19), we see that these parts vanish as quhzl -+ © and,
therefore, a one-sided coupling remains in B(¢j,¢:). We now derive a suf-
ficient condition on € to allow us to neglect the down-stream influence.

We then study how exponentially fitted methods degenerate to one-step

methods for initial-value problems.

Asymptotic behaviour for small values of €

We assume that € is independent of x, f < Py < 0 and |g| < M. On an
interval IQ we consider the exponential part of the discrete operator,
B(@i,WO), and of the right-hand side, S(Wo). Using equations (3.5.16) 'and

(3.5.19) we obtain asymptotic expressions for € = 0, namely

(3.6.2) B(®.,¥)) = G(O)<I>,(O)—1- +[F'(0)®'(0) + G'(O)@,(O)]'l-f +
i"o iz 3 37,2

+ 0(2—3) + O(e-z),
1 1 -3 -z
(3.6.3) SWy) = KO+ K'(0)>2+ 0z ) +0(e ™),

where z = -F(0)h/€ + G(0)F(0).

Similar expressions are obtained for B* and S* if F'(0) is replaced by

Z F(Em)Qé(O) and if analogous :substitutions are made for G'(0) and K'(0).

m Since ®.(0) = & ., the elementary parts, B(®.,¥.) and S(V¥.), of the
j - 0,3 3774 i

discrete equation have the structure
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_—
0e) TN ™ o0eed o

\\\ and A~ 0ty
01~ .

This means that only a one-way coupling remains in the system if the entries
of order 0(82) can be neglected. In that case the method degenerates to a
one-step method, which integrates the differential equation from one end to
the other, starting with the relevant boundary condition. Under these cir-
cumstances we distinguish between two possibilities: whether or not the

terms 0(€) can be neglected.

EXAMPLE 3.6.1. The EFWR scheme given in example 3.5.3 reads, for £ < 0 and
€ »> 0, written as a power series in 2-1 (except for exponentially small
terms and 0(83) terms)
" 0 0 0
(B (@i,\l/j))m 11 (f0+f1)+ 1 1 +
2 %2 2%" 29"

1 0\ ggh [ /-1 1 10 !
+ — 4+ (fl—f0)+ (9,79, =
-1 o/ % 1 -1 -1 0 z

(S*(\yj»m 0 . 1 EQ,L <1> (s;-sg)h
%(s0+s1)h -1 2 -1 22

foh goh
where z = - —E—-+ T fo, fl' go, 9y SO and s1 denote the function values

of £, gand s at x = x and x = xg respectively.

-1
EXAMPLE 3.6.2. Another scheme, which is not of the form (3.5.22)-(3.5.23),
is given in example 3.5.1. Because the splitting (3.6.1) is still valid, we
can give an asymptotic expression similar to (3.6.2) and (3.6.3). When

f < 0, we take the piecewise constant approximations to £, g and s equal to
fO : f(xi—l)' 9y = g(xz_l) and ;0 = s(xl_l). We thus obtain, neglecting
0(e”) and O(exp(-1/€)) terms,
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0 0 0 0 /1 0 g.h
(B(Qj,wi» IS £+ goh | + ( 0

1o-1) % L1 -1 0o/ Tz’
2 2
0 1
(S(¥.)) ~ soh + Soht
. 1 = z '
£h gh
where z = - —51— + —£L=
€ £,

EXAMPLE 3.6.3. If, in example 3.6.2, we take for the exponential rate the

cruder approximation z = -foh/e, then we obtain
0o o 0 O 1 0 goh
(B(2,,¥.)) ~ £+ g.h|+ +
J 1 1 -1 0 101 0 1 0 z
2 2

1 -1
+ 9ot .
-1 1) 2
z

0(62) terms are neglected, ((g) terms are not

In each step of the integration process, the initial value yh(xl—l) is

given and the value yh(xl) is computed from

39 = Yo(xgy) o

k
(3.6.4) )) BE(Qj,Wi)aj

Se(Wi) , i=1,2,...,k,
j=0

Yh(xz) a -
Here, B_(®.,¥.) and S_(¥.) are equal to B(®,,¥.) and S(¥,), except that the
SR R § €1 371 i
contributions of 0(€) that originate from the interval I£+1 have been added.
In order to study the influence of this contribution, we consider the

problem

.Eyll + fyl + gy = s on IQ/I
Y(XSL-1) = aol
—€y'(x2) + Y g(xz)y(xz) = Ys(x ).

The weak form of this problem reads:

find y € Hl(xl_l,xz) such that y(xz_l) =a, and
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]
o

B(y,P) + (ygyy) (xl) - (Slw) - (ysy) (xz)

for all Y ¢ {¢ | ¢ « H (xg_10%g)s ¢ (xy) o}.

]

The discretization of this problem is given by
3y = ¥(xg y)

Zo [B(@ RRIERTICN )cs N ]a = S(¥)) + Ys(xp)8, .
: i= 1 12,...,k,

This system is identical with (3.6.4) when Yy = —s/(f(xl)h). It follows that
the EFWR method computes y(xl) step by step, for £ = 1,2,...,N-1, by dis-

cretization of the weak form of the boundary problem
(3.6.5.a) ey" + fy' + gy = s on [xz_l,xl],

1 =
(3.6.5.b) f(xz)y (xz) + g(xz)y(xz) s(xx),
using the starting condition y(xo) = 0.

Thus, we have formulated the influence due to the interval I£+1, in

terms of the mixed boundary condition (3.6.5.b) at xz.

Terms of order 0(g) are neglected

If all terms of 0O(g) are neglected in (3.6.4), the exponential part
of . the discrete operator is neglected completely. In each step of the in-

tegration process the initial value y, (x ) is given and y, (x,) is com-
h " 2-1 h'"%

puted by
20 yh(xz 1)
(3.6.6) Z a, B(<1> <I> ) = S(@7) , i=1,...,k,
—0 J 1 .
vy (xg) = ay .

Also the terms of 0(€) in B(@ Q ) vanish and the reduced equatlon (1.1.13)

is solved on each Ig by a welghted residual method with S
-1,k-1

vh =M .

h = (H) and

When the quadrature described by egs. (3.5.17) and (3.5.20) is ap-

plied, the discrete equations satisfied by the solution in Il are
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a, =y (x, .)
(3.6.7) 0 ThiA

k k k
* *
o o! G 8, } = 2, .
jZO a pZo w @ () {FIENOIE ) + G(E S, ] pzo w8 (EIK(E)

Thus, the value y, (x,) = a, is determined by y, (x Y, F(§&), G(§ ) and
h' "% h "2-1 P P

K(EP). This one-step methog (3.6.7), to which the exponentially fitted
global method (3.5.15)-(3.5.20) reduces for f% + 0, will be called the
reduced EFWR method.

The following is an immediaté conclusion:
In the limit for é% ~+ 0, the exponentially fitted global method (3.5.15)-

(3.5.20) solves the reduced problem by the reduced EFWR method.

The accuracy of the reduced EFWR method

Since the matrix (wp@I(EP)) is not square, the one-step method (3.6.7)
is Mot equivalent to the collocation method for the reduced equation based

on the nodes {Ei}:_ . However, using the following lemma, we show

=1,...,k
that it collocates at k points that are not known in advance.

LEMMA 3.6.1. Let be given a set {x0 S x, < ... < xk} and a set

1
{w_ | wp >0, p=0,1,...,k}. Let £ be a continuous function on
-

on,xk] such that

k

] w 0(x)f(x) =0

p=0 P PP

for any polynomial ®(x) of degree <k, then £ has at least k distinct zeros
on [xo,xk].

PROOF. This lemma is easily verified by a standard technique; see e.g.
DAVIS [1963], thms. 10.1.3 and 10.1.4. [

COROLLARY. Let the solution obtained with the reduced EFWR method be de-
*
noted by Yy then y: is determined on each interval IQ by

k
* * * -
e, hy, ' - -
PZO w2 () (F(EJhy, '(C ) + GEE )y () - K(E)} =0,

- h=hy, Z =%, +he ,

for all o} ¢ X1y,
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Applying the lemma, we conclude that
£y (%) + gy, (x) - s(x)
Yh g Yh

*
has at least k distinct zeros on each [xm_l,le; i.e. yh(x) collocates the

reduced equation at k (unknown) points in each closed interval IZ'

The relation between implicit Runge-Kutta and collocation methods was
established by HULME [1972a, 1972b] and WEISS [1974]. Direct application of
theorems 2.2. and 5.1 of WEISS [1974] yields the following result.

If £,9 € Ck+1[a,b], |£] = P, > 0, lgl < M then the reduced EFWR method
yields a unique solution if the partition is sufficiently refined and the
truncation error of this one-step method is at least of order w5 s
result also holds for quasilinear problems, provided that g/f is Lipschitz—
continuous with respect to y.

Better error estimates are derived in the following two theorems.
These theorems show that, using EFWR methods, we can obtain accurate approx-
imations to asymptotic solutions for € > 0 of the continuous problem, by
letting first € - 0 and then h » 0. In theorem 3.6.1 we give error bounds
for the reduced exponentially fitted method, assuming exact evaluation of
the integrals involved. In theorem 3.6.2 we show that a quadrature rule of

order 2 2k is required to realize the bounds given in theorem 3.6.1.

THEOREM 3.6.1. Let Y, be the solution of problem (1.1.1) with £,q,s € Ck[a,kﬂ,
|£] > 0. Let Y e be the approximation to Yo obtained by the weighted re-
stidual method (3.1.17), that <s characterized by S, = Mo'k(H),

v, = No'k(H,a"), o being determined by eq. (3.5.1). Let R denote a subin—
terval of [a,bl, containing at least the mesh-interval at the boundary-

layer end of [a,bl, then the method is consistent with the reduced problem

on [a,b]\R. Moreover, we can find constants C and ho such that for all

h < h0

o8 Mo =vnolo RS w ol et e
(3.6.9) Iy, - yh'OHHl . < cn" ||Y0"Hk+1(a’b) \R
(3.6.10)  |(ygmy, ) (x| <cn¥ "yoqu+1(a,b) =
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; 3 = 13 = 1i .
where Y and Y, 0 e defined on [a,b]\R by Yy éig Yo and ¥,0 eig Yy, e

PROOF. Without loss of generality we give the proof for £ < 0; then Yy is

the solution of the reduced problem

= ' =
Loyo = fy0 + 9¥y = s on [a,b]\R
yo(a) = 0.

In view of eq. (3.5.1) and the definition of No'k(H,aﬂ), the discrete limit
solution Yy 0 € Mo'k(H) is determined by
r
-1

= (s,v) VW eV =M 'k_l(H),

&, n= Mo

Oyh,O'V)

yh,O(a) = Q.

In the remaining part of this proof we shall consider only the interval
[a,b]\R and for convenience we denote Lyr ¥y and Yy o by L, y and ¥, - De-
’

fining e, = yh—y, we have eh(a) = 0 and

h

(Leh.v) =0 W e Vh.
Since
e 1? = | (Le. ,Le.—v) | < ILe I _ lLe vl
h O h'"h h 0 h O

for all v ¢ Vh' we have by lemma 3.2.1

k k
I I < i I -vl_ < 1 I
Leh 0 izs I..eh v 0 Ch D Leh 0,1

A

K 1p¥sl  + ¢ nX 10X (g2 I
Ch D's 0 Ch D (fyh+gyh) o,m’

k
I ' ) =
D (fyh+gyh)"0'ﬂ < Klﬁyh"k+1,ﬂ Klﬂyh"k,ﬂ

< Il + le I .
Ky Wh,m PR g, m

By lemma 3.2.1 there also exists a z, e Mo'k(H) such that

h

my, k+l , k+t
h le, -2z <
e " % Ch Ip™ "e |

k+1 k+1
I I
m,T h O,m h D

=C

Ol

0 <m < k+1.



Hence, using lemma 3.2.2, we obtain

k. k
Iz 1l + I -
oz b p vty —zly o

IA

k
le I
L

(3.6.11)

A

k+1 , _k+1
Iz 1 + I I
Ch Zy 1,7 Ch D vl

IA

k+1 , k+1
+ I .
Ch “eh“1,n Ch Dyl

Since f < £, < 0, the inverse operator L—l: Ho(a,b)\R > Hl(a,b)\R is

0
bounded and

k .k k
<
o Ilehll1 < IlLehIIO <ch Ip sﬂo +Ch Hyﬂk

k+1 , k+1
+Ch Ilehll1 +Ch Ip yno

Hence, if h < ho = o/c,
k
I
c iyl

<
(3.6.12)  le I, s ———=

which proves (3.6.9). Notice that h0 = 0/C depends on f and g, but i

dependent of €.

1
Let xp € I, Xp # a, Xp #b and let ¢ € C [a,x‘e] be defined by

LT¢ = -(f¢)' + gp = eh

¢(x2) =0

then LT: Hl(a,xg) > Ho(a,xz) has a bounded inverse,

"ehﬂg = (LT¢,eh) = (¢,Leh) = inf (¢—V,Leh)

Vth

and

i Il p=vll I < <
inf l¢-v 0S€ h D¢H0 <Ch H¢H1 <Ch ﬂehll0

vevV.
“n

Hence

c v¥ gl
0-hC

le Il = < < | < ktl
el Ch "Lehﬂo Ch lehll1

’
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which proves (3.6.8).

Green's function with respect to the operator L on [a,xl] is

3
-1 g(t) .
-£(8) = exp J T ot if £ < x,
(3.6.13) G(x,E) = X
0 if £ > x.
1
For u € H (a,x,)
2
u(x) = -(G(x,°) ,Lu) R X € [a,xl].
Hence
Ieh(xi)l = I(Leh,G(xi,'))I = inf I(Leh,G(xi,')-V)l
vev.

h

< i I o) - vl ..
HLehﬂo inf G(xi, ) vl

vth

For all %, € I the functions v € V, = M-l’k-l(ﬂ) can represent the discon-

h
tinuity of G(xi,E) at £ = X, Therefore,

IA

k k
Ky—yh)(xiﬂ HLehHO ch lIp G(xi, )"Ho(a'xi)

2k k
(3.6.14) Ch nyuk+1|m Gx, )"Ho(a,xi)
I

IN

O-hC

which proves (3.6.10). 0O

In order to study the influence of quadrature on the accuracy of the
reduced EFWR method and in order to determine its stability, we need the

following two lemmas.

LEMMA 3.6.2. Let the hypotheges of theorem 3.6.1 hold and let e =Y, - Yy
then, if h is small enough,

le I <c lyl

1
Hk'“(a,b)\R k+
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and

k
I < (5%
Ip"Le o.m Cc ly

H ' (a,b)\R ket

PROOF. Following the same lines as used for the proof of (3.6.12), we see

that

k k, k+1
I < I I + e |
h ehuk,ﬂ chilp 7y 0,m Ch el
k+1
Ch I y"
k p k+1 , - k+1
< I I, +
¢h 1D vl o-hC
Hence
k k
< Iyl
h uehﬂk'“ ch lyl,
and

k k
< +cly 1
Ip Leh“O ID™sll C Yy

aul k+1,m

IA

k
Ip”sl + c Hyﬂk +C llehllk -

’

IA

ciyl, . O

LEMMA 3.6.3. The truncation error of the one-step Galerkin method (3.6.6),

-1,k- 2k+1

where 5. = w0 () and v, =M Y, 28 0 %Y.

h
PROOF. To determine the truncation error, we consider the error in a single
step in the solution of an initial-value problem, assuming correct initial
values. Without loss of generality we can consider the first step of the

integration process over [a,b]. The same arguments as were used in the proof

of theorem 3.6.1 yield, for h small enough,

I (yy-y) (x) | = inf | (Le ,G(x ,*)-v)| <
vev.
° ) —V“ ;
L (xo,xl)

< inf lre -vl inf le(x

vev, L (xgr%)) VeV,

1'
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inf "G(xl,')—v"2 < inf ||G(x1,°)—v||2Oo (xl—xo) <
vth L (xo,xl) vevh L (xo,xl)
k 2 2k+1
<c lp G(xl' )"O,W h ;
inf HLeh—v"2 <cC HDkLe 12 h2k <c “DkLeh"g 7rh2k+1
r
vevh L (XO'xl) L (XO'xl)

By lemma 3.6.2 we know that “DkLeh"o q is bounded, independently of h, so

7

that

h2k+1

1

|(yh*y)(x1)| <c

which was to be proved. g

THEOREM 3.6.2. Let the conditions of theorem 3.6.1 be satisfied and let
£,9,s € Ht+1'“[a,b] with t 2 k. If a t-th degree quadrature rule is used
for the evaluation of the integrals B*(Qj,éz) and S*(Q:), then the pointwise
g of the reduced EFWR method, characterized by Sh==M0'k(H)

emmr"yo—n%g
“t(l), s of order p; p = min (2k,t+1).

_ =1,k
and v, =M

PROOF. We use the same notation as in the proof of theorem 3.6.1, i.e. we
consider the reduced operator L (Ly = fy'+gy) on [a,b]\R, where R denotes
the meshinterval containing the boundary layer. Furthermore, (v,w)* denotes
the approximation to (v,w) computed by application of the quadrature rule on

*
each interval IZ and Y, € S, denotes the solution of

h

* % *
(Lyh,V) = (s,v) for all v € vy

* *
Set eh = yh + yh, then, for all v € Vh'

* * *
I(Leh,v)l < I(Lyh,v) - @y 1< 1(sv) = (s,v) | +
(3.6.15)
* * * * t+1
- < Isl |
+ I(Lyh,v) (Lyh,v)l (K1 s t+1,ﬂ+K2“yh"k,ﬂ)lV"k—l,ﬂh .

By egs. (3.6.11) and (3.6.12) it follows that, if h is small enough,
I <
'eh"k,ﬂ Chllyllk+1 and, therefore,

IA

Ky % K, * Ky k
Iyl el le i (B%
Wyl g s ilegly oo+ niledy oo nlyl,

(3.6.16)

A

k
< chlle’l Iyl .
Chleh 1t ch Iy 1
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By the corollary to lemma 3.6.1, Ly; - s has at least k distinct zeros on
each Iz, so that

k. % k
I -
clp (Ly, S)"o,n h

A

"Ly; - sl

k k * k
clp s"o,n h™ + C“Yh"k,n h

IA

IA

k *
cllyllk+1 h™ + cllehll1 h.

By theorem 3.6.1, if h is small enough,

* * *
= - < _— 1 I
I Lehﬂo ||Lyh Lyhllo < llLyh sl + Leh 0
< clefl, n+clyl,,, n*
C * k
< p ﬂLehﬂo h + cllyllk+1 h;
k
oclyl, , h
* * k+1 k
<KL )
(3.6.17) cllehll1 < "Leh"o < =e c y"k+1h

Let G(°,*) be defined by (3.6.13), then by lemma 3.2.1 we can select a

v € Vh such that

k k
0) — < o)l vl < cC.
||G(xi, ) - vl < clp Glx,;,") o',”h ’ vl ,n c

Therefore, by repeated use of (3.6.15)-(3.6.17), we obtain

*
[ yymyy) (%) I(G(xi.'),Le;)l < I(G(xi,‘)-'V'Le;)|*'I(Le;,V)l

t+1

IA

I I ILeXl ksl s Iy )y n
Glxy, o) =vlllleylo+ (K Isho g, nt KMy y o

2k t+1
Ch Hyﬂk+1 + (cllsllt+1 + cHka+1) h .

A

Combination of this result with inequality (3.6.10) proves the theorem. []

COROLLARY. If a (k+1)-point Lobatto rule is used for the evaluation of
B*(Qj,wi) and S*(Wi), then the order of the resulting reduced EFWR method
28 2k. If a (k+l1)-point Newton—Cotes rule is used, the order equals k+ 1
Zf k 28 odd and k+ 2 if k is even.
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Stability of the reduced EFWR method as an initial-value problem method

As a consequence of the maximum principle, the boundary-value problem
(1.1.1) with s = 0 is stable with respect to the boundary conditions if
g £ 0; i.e. for two solutions ¥q1¥q of equation (1.1.1)

ly, 0 - v, < |y, @ - y,@] + |y, ) - v,®]

for all x € [a,b].

We will show that this property is preserved at meshpoints by the EFWR meth-
od in the limit for €/f - 0. Since the EFWR method reduces to a one-step
method in the down-stream direction, we have to show that the reduced EFWR

method is a stable method for the solution of the reduced problem.

DEFINITION

A method for the solution of an initial value problem is called A-
stable in the sense of Dahlquist, if lyi+1| < Iyi] when the method is ap-
plied with a positive step-length h to any differential equation of the

form y' = Ay, where A is a complex constant with negative real part.
THEOREM 3.6.3. If a (2k-1)-th degree quadrature rule is applied for the
evaluation of B" (@ W ) and S* (W ), then the reduced EFWR method, char-

acterized by s, = (I and Vi ~1ik- 1(II), s A-stable.

PROOF. We apply the method to the equation y' = Ay and we consider a single

step in the integration process. We set z = A(xi+1—xi) and yi = ao =1;
then y, 1 T is determined by
k
) a; [ 2 wp@l(g ) {@ () + 28, }3 = 2 W ¢ (€) {o} (€) + 28, }.
j=1 p=0 p=0 P

Writing down the stability function,

a.

k
F(z) ="a'."'" '

0

by means of Cramer's rule, we observe that F(z) has the form
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Ql(z)

F(z) = 5;7;7

’
where Q1 and Q2 are polynomials of degree k. Since we know that the trunca-
tion error of the one-step method is of order 2k+1,

F(z) = exp(z) + 0(22k+1) for z + 0.

This relation determines 91 and 92 completely:

F(z) = Pk k(z), the Padé approximant to exp(z) with in fact the denominator
’

and the numerator both of degree k. A-stability follows from the fact that

lpkk(z)l < 1 for Re(z) < 0; cf. EHLE [1968] and AXELSSON [1969]. [

REMARK. By direct computation of F(z) for all real z < 0, it is also readily
verified that the reduced EFWR-method is stable if a (k+1)-point Newton-
Cotes quadrature rule is used for the evaluation of B*(Qj,wi) and S*(Ti),
k=1,2,...,6.

REMARK. For each quadrature rule having the properties EO = 0 and

gi + gk_i =1,1i=0,1,...,k,

Y.
lim | i+l

Zz+- i

*
| = 1o | = 1.

This means that the reduced EFWR method is weakly stable :as |gh/f| +%, How-
ever, the reduced EFWR method is only applied if le/(fh) | » 0. This means

that the condition to suffer from the weak stability is

€
(3.6.18) Py << |f] << -gh.
REMARK. We can also construct methods that are consistent with the reduced
equation and strongly A-stable as € > 0. To this end we use spaces Vh with
‘incomplete sets of polynomials. These spaces contain, for each subinterval
IZ’ an exponential basis function and k k-th degree polynomials. However,
these methods show no superconvergence of the pointwise error. Such a method

for k = 1 is shown in the following example.

EXAMPLE 3.6.4. Let a basis in Vh be defined by (cf. equation (3.4.20))
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1 - & if o= O,
1 - ¥(&,ah) if a > O;

WO(E) = ¥(g,oh) and wl(g)
¥ () =& and ¥, (§)

then the discrete equation is described by

b b d

* 00 01 * [0

B (<I>j,‘i’i) = SRR R S (‘l’i) —< **) ’
10 11 1

where

*k

- e_1
bio=n "2 %1 " Poor
*% € 1 1
= e — +—— —-—
by nt2 T3 9h Py
* o lsn-a
1 T 2% o’

fl’ gl, Sl' bOO' b01, dO being defined as in example 3.5.2.
As € > 0, this method reduces to the backward Euler method. This is
in contrast to the method in example 3.5.2, which reduces to the trape-

zoidal rule.
3.7. NUMERICAL RESULTS

In this section we show the effect of exponential fitting of Galerkin-
type methods. Some results obtained with exponentially fitted weighted-re-
sidual (EFWR) methods are compared with those obtained with the correspond-
ing classical Galerkin (GAL) methods. In this section, linear problems of
the form (1.1.1) are solved. In chapter 4, nonlinear problems are treated
and results are given which were obtained with the exponentially fitted
finite-difference method (3.5.12).

The GAL methods used in this section all have Sp= Mo'k(H). The EFWR
methods are of type (3.5.15)-(3.5.20), without further approximation of
the exponential terms. The methods are somewhat less efficient than those
based on (3.5.22)-(3,5.23), but they show more clearly the effect of ex-
ponential fitting. Compared to the more efficient ones, the methods used
show essentially the same behaviour; they are only slightly more accurate

for intermediate values of €.

The various EFWR and GAL methods used in this section differ only in
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the number and the choice of the nodal points {0 = EO < El < ... < Ek = 1}.
These points are chosen in agreement with the (k+1)-point Lobatto or
Newton-Cotes quadrature rules. We identify these methods as LOBk and NCk
methods respectively. We notice that the LOB1 and NCl1 methods are identi-

cal, since both are characterized by Eo =0, £ =1 (trapezoidal rule).

Also the LOB2 and NC2 methods are identical (Simpson‘s rule). For k > 2 the
LOBk and NCk methods are different.

Five problems have been selected. For each problem and for various
values of € and h, we give the error of approximation and the computed
order of convergence. The programs were written in ALGOL 60 and were run
on a CDC CYBER 73/28 computer. The machine precision is about 14 decimal
digits.

The error of approximation is given by e = ly - yhi"“o'w' where HO is
a fixed, equidistant grid. The computation of the approximate solution Yh.
is made on equidistant grids II, > IIO. The order of convergence r is com- .
puted as

log(ly-y, | /y-y I )
hi 'ﬂ'o,m hi+1 Tro,°°

log( by /o hiy )

(3.7.1) r

where hj denotes the meshwidth of the grid Hj.

EXAMPLE 3.7.1.

Problem:

ey" + (2+cos(mx))y' -y = —(1+en2)cos(ﬁx) - (2+cos(Tx)) sin (T'x)

(3.7.2) on [-1,+1],
y(-1) = y(1) = -1.

Solution: y(x) = cos(mx).

Characteristics: the problem has neither turning points nor boundary layers.

Using five different quadrature rules, the corresponding EFWR and GAL
methods were applied to this problem. The results are shown in tables 3.7.1
and 3.7.2. In this case, where the solution is smooth over the whole interval,
both methods yield acceptable approximations, the EFWR methods being more

accurate.
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METHOD € h=1/4 h=1/8 h = 1/16
e X e X e
LOB1 107t 7.47(-2) 1.6 2.41( -2) 1.2 1.04( -2)
EFWR 1073 7.15(-2) 2.0 1.74( -2) 2.0 4.33( -3)
107° 7.15(-2) 2.0 1.74( -2) 2.0 4.33( -3)
10710 | 7.15¢-2) 2.0 1.74( -2) 2.0 4.33( -3)
LOB2 107! 1.02(-3) 2.5 1.82( -4) 2.5 3.25( -5)
EFWR 1073 8.72(-4) 4.0 5.30( -5) 4.0 3.28( -6)
107> 8.75(-4) 4.0 5.32( -5) 4.0 3.31( -6)
10710 8.75(-4) 4.0 5.32( -5) 4.0 3.31( -6)
LOB3 107! 5.07(-5) 5.5 1.16( -6) 3.3 1.21( =7)
EFWR 1073 4.83(-6) 6.0 7.55( -8) 5.5 1.72( -9)
107 4.70(~6) 6.2 6.56( -8) 6.0 1.01( -9)
10710 | 4.70(-6) 6.2 6.56( -8) 6.0 1.01( -9)
LOB4 107t 1.20(-6) 7.2 8.09( -9) 6.4 9.44(-11)
EFWR 1673 3.92(-8) 4.7 1.56( -9) 4.3 7.78(~11)
1073 1.32(-8) 7.7 6.16(-11) 5.3 1.55(-12)
10"10 1.32(-8) 7.7 6.16(-11) 5.3 1.54(-12)
NC4 1071 5.96 (~6) 3.1 6.82( -7) 2.9 9.43( -8)
EFWR 1073 4.48(-7) 5.9 7.45( -9) 5.5 1.68(-10)
107 4.49(-7) 6.0 6.95( -9) 6.0 1.09(-10)
10710 | 4.49(-7) 6.0 6.95( -9) 6.0 1.10(-10)
Table 3.7.1

The error and order of convergence when problem (3.7.2) is solved by EFWR
methods. The error e = ly - yh"“ - Was measured on the equidistant
’

grid HO ={-1 = Xy < Xy < ... < Xg = +1}.
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METHOD € h=1/4 h=1/8 h = 1/16
e X e r e
LOB1 107! 1.76(-1) 2.1 4.20(-2) 2.0 1.04( -2)
GAL 1073 2.02(-1) 2.1 4.74(-2) 2.1 1.13( -2)
107> 2.03(-1) 2.1 4.80(-2) 2.0 1.18( -2)
10710 | 2.03(-1) 2.1 4.80(-2) 2.0 1.18( -2)
LOB2 107! 8.98(-3) 4.0 | 5.44(-4) 4.1 3.25( -5)
GAL 1073 4.95(-2) 2.1 1.15(-2) 2.5 2.05( -3)
107> 5.04(-2) 2.0 1.24(-2) 2.0 3.09( -3)
10719 | s.04(-2) 2.0 1.24(-2) 2.0 3.10( -3)
LOB3 -7t 2.70(-4) 5.3 6.65(-6) 5.8 1.21( =7)
GAL 1073 1.07(-3) 4.1 5.88(=5) 4.2 3.24( -6)
107> 1.10(-3) 4.1 6.53(-5) 4.0 4.02( -6)
10710 | 1.10(-3) 4.1 6.54(-5) 4.0 4.04( -6)
LOB4 107t 3.45(-6) 7.4 2.11(-8) 7.8 9.44(-11)
GAL 1073 1.07(-4) 4.4 5.09(-6) 5.2 1.36( -7)
107> 1.13(-4) 4.0 6.98(-6) 4.0 4.32( -7)
10710 | 1.13(-a) 4.0 6.99 (-6) 4.0 4.36( -7)
NC4 107t 2.02(-4) 5.3 5.12(-6) 5.8 9.43( -8)
GAL 1073 2.57(-4) 3.1 2.94(-5) 3.7 2.21( -6)
107° 2.31(-4) 4.0 1.41(-5) 4.0 8.61( -7)
10710 | 2.32(-4) 4.0 1.43(-5) 4.0 8.89( -7)
Table 3.7.2

The error and order of convergence when problem (3.7.2) is solved by GAL
methods. The error lly - yhllTT « Was measured on the equidistant grid
’

HO = {-1 = Xy <Xy < ... < xg = +1}.
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The results in table 3.7.1 show that the orders of convergence determined
in theorems 3.2.5 and 3.6.2 are strictly attained. This means that they

cannot be improved.

EXAMPLE 3.7.2.

Problem:
ey" +y' - (14e)y = 0 on [-1,+1],
(3.7.3) y(-1) =1 + exp(-2) ’ ’
y(+1) =1 + exp(-2(1+€) /) .
Solution:
(3.7.4) y(x) = X714 o HE) (4x) /e

Characteristics: the equation has no turning points; the solution has a
boundary layer near x = -1.

The results are shown in table 3.7.3. In this case, where a boundary
layer is present, the GAL methods fail, whereas the EFWR methods are able
to represent the smooth part of the solution with a certain order of accu-

racy.

-1 +1
Fig. 3.7.1
The solution of problem (3.7.3).
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METHOD € h=1/4 h=1/8 h = 1/16
e r e r e

sl | 1071 1.94( -3) -3.5 | 2.18( -2) 2.1 | 5.13( =3)
EFWR 1073 1.93( -3) 2.0 4.80( -4) 2.0 1.20( -4)
1073 1.93( -3) 2.0 | 4.80( -4) 2.0 | 1.20( -4)

10710 | 1.93( -3) 2.0 | 4.80( -4) | 2.0 | 1.20( -4)

ros2 | 107} 1.41( -4) | -2.4 | 7.65( -4) | 4.1 | 4.43( -5)
- EFWR 1073 2.00( -6) 4.0 1.25( =7) 4.0 7.80( -9)
107> 2.00( -6) 4.0 1.25( =-7) 4.0 7.80( -9)

10710 2.00( -6) 4.0 1.25( =7) 4.0 7.80( -9)

LOB3 107! 7.47( -6) | -0.4 | 1.02( -5) | 6.1 | 1.51( -7)
EFWR 1073 1.00( -8) 9.5 1.37(-11) | 10.1 1.24(-14)
107> 8.93(-10) 6.0 1.39(-11) 7.9 5.86 (-14)

’ 10719 | 8.93(-10) 6.0 | 1.39(-11) | 11.3 | 5.33(-15)
LOB1 107! 1.48( -1) 2.8 2.18( -2) 2.1 5.13( -3)
GAL 1073 7.98( -1) 0.1 7.25( -1) 0.3 6.01( -1)
107> 8.15( -1) 0.0 7.70( -1) 0.0 7.67( -1)

10710 | a.15( -1 0.0 | 7.70( -1) | 0.0 | 7.70( -1)

LOB2 107t 1.61( =2) 4.4 7.65( -4) 4.1 4.43( -5)
GAL 1073 8.26( -1) 0.2 7.22( -1) 0.8 4.09( -1)
107 8.61( -1) 0.0 8.60( -1) 0.0 8.55( -1)

1010 8.62( -1) 0.0 8.61( -1) 0.0 8.61( -1)

LOB3 107t 7.94( -4) 6.3 1.02( -5) 6.1 1.51( =7)
_GAL 1073 9.07( -1) 0.5 | 6.25( -1) | 1.7 | 1.98( -1)
107° 1.08( +0) 0.3 | 8.90( -1) | 0.0 | 8.81( -1)

10710 1.08( +0) 0.3 8.93( -1) 0.0 8.93( -1)

Table 3.7.3

The error and order of convergence for problem (3.7.3). The error
e=ly - yh"ﬂ « Was measured on the equidistant mesh
r

HO={-1=xo<x1<...<x8=+1}.
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EXAMPLE 3.7.3.
Problem (cf. eq. (1.3.11)):

—(1+ew2) cos(mx) + TX sin(mx) on [-1,+1],
-1.

(3.7.5) ey" - xy' -y
y(=1) = y(+1)

]

Solution: y(x) = cos(mx).

Characteristics: the equation has a turning point at x = 0; the solution
has no rapidly varying behaviour.
The results are shown in table 3.7.4. The GAL methods are able to
yield a meaningful approximation, however, the EFWR methods are more accurate.
Analogously to example 3.7.1, we see that, as € * 0, the order of convergence

of the GAL methods reduces to G(hk) for kX even and 0(hk+1) for k odd.

EXAMPLE 3.7.4.
Problem (cf. equation (1.3.3)):

(3.7.6) ey" + xy' = -ewz cos(mx) - (mx) sin(mx) on [-1,+1],
y(-1) = -2, y(+1) = 0.

Solution:
(3.7.7) y(x) = cos(mx) + erf(x/v2e)/erf(1/v2€)
Characteristics: the solution has a shock layer in the turning-point re-

gion near x = 0.

+2

Fig. 3.7.2
The solution of problem (3.7.6).
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METHOD h=1/4 = 1/8 1/16
e r e r e
LOB1 9.81(-2) -1 2.23(-2) 5.45( -3)
EFWR 1.30(-1) 3.20(-2) . 7.98( -3)
1.31(-1) 3.24(-2) . 8.06( -3)
1.31(-1) . 3.24(-2) . 8.06( -3)
LOB2 1.85(-3) 3.9 1.20(-4) 4.0 7.54( -6)
EFWR 1.06(-3) 2.8 1.53(-4) 3.8 1.07( -5)
5.84(-4) 4.0 3.58(-5) 4.0 2.23( -6)
5.84(-4) 4.0 3.58(-5) 4.0 2.23( -6)
LOB3 1.06(-5) 6.1 1.57(-7) 6.0 2.43( -9)
2.45(-4) 3.7 1.94(-5) 5.4 4.58( -7)
EFWR
4.54(-6) 1.9 1.20(-6) 2.1 2.81( -7)
9.74(-7) 6.0 1.49(-8) 6.0 2.32(-10)
LOB1 9.81(-2) 2.1 2.23(-2) 2. 5.45( -3)
GAL 1.87(-1) 4.5 8.12(-3) 1. 2.90( -3)
1.89(~-1) 4.8 6.74(-3) . 1.67( -3)
1.89(-1) 4.8 6.72(~3) 1.66( -3)
LOB2 1.85(-3) 1.20(-4) 4.0 7.54( -6)
GAL 2.69(-2) . 4.65(-3) 2.8 6.70( -4)
3.08(-2) . 7.63(-3) 2.0 1.88( -3)
3.08(-2) . 7.67(-3) 2.0 1.92( -3)
LOB3 1.06(-5) .1 1.57(=7) 6.0 2.43( -9)
GAL 8.63(-4) 2.21(-5) 4.3 1.13( -6)
9.16(-4) 4.37(-5) 4.0 2.65( -6)
9.17(-4) 4.4 4.42(-5) 4.0 2.76( -6)
Table 3.7.4

The error and order of convergence for problem (3.7.5). The error
e=ly - yh"ﬂ - Was measured on the equidistant grid

. ’ .
n, = {-1

<

eee < X

+1}.




140

METHOD € h = 1/7 h = 1/14 h = 1/28
e r e r e
LOB1 107! 6.32(-2) 2.0 1.57(-2) 2.0 3.91( -3)
EFWR 1073 7.80(-2) 1.6 2.62(-2) -2.1 1.12( -1)
107> 7.90(-2) 1.5 2.87(-2) 1.6 9.37( -3)
10710 7.90(-2) 1.5 2.87(-2) 1.6 9.37( -3)
LOB2 107} 2.64(-4) . 3.9 1.80(-5) 4.0 1.14( -6)
EFWR 1073 1.18(-3) 3.7 8.93(-5) -1.7 2.98( -4)
107° 1.23(-3) 3.8 8.88(-5) 0.7 5.35( -5)
10710 1.23(-3) 3.8 8.95(-5) 3.8 6.36( -6)
LOB3 107! 2.89(-6) 6.0 4.65(-8) 6.0 7.31(-10)
EFWR 1073 4.46(-5) -2.6 2.68(-4) 1.6 8.53( -5)
107> 1.09(-4) 4.0 6.74(-6) -2.6 4.20( -5)
10710 1.11(-4) 4.0 7.13(-6) 4.0 4.49( -7)
LOB1 107! 6.32(-2) 2.0 1.57(-2) 2.0 3.91( -3)
GAL 1073 8.49(-1) 0.8 4.82(-1) 2.3 9.60( -2)
107> 1.05 -5.9 6.50(+1) 2.3 1.36( +1)
10710 1.05 -22.6 6.52 (+6) 2.2 1.39( +6)
LOB2 107! 2.64(-4) 3.9 1.80(-5) 4.0 1.14( -6)
GAL 1073 2.77(-1) 2.9 3.85(-2) 3.6 3.25( -3)
107> 5.02(-1) -0.2 5.58(-1) -0.0 5.70( -1)
10710 5.05(-1) -0.2 5.70(-1) -0.1 6.23( -1)
LOB3 107! 2.89(-6) 6.0 4.65(-8) 6.0 7.31(~10)
GAL 1073 5.83(-2) 4.4 2.77(-3) 5.0 8.95( -5)
107> 9.80(-1) -2.9 7.45 2.4 1.39
10710 1.00 -19.6 7.90 (+5) 2.2 1.75( +5)
Table 3.7.5

Problem (3.7.6). The error in the shock-layer region, e = ly - yh"

T,

was measured over the whole equidistant grid of respectively
14,28 and 56 subintervals.
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METHOD € h=1/7 h = 1/14 h = 1/28
e r e r e
LoBl | 107! 6.32(-2) 2.0 1.56(-2) 2.0 3.88( -3)
EFWR 1073 4.00(-2) 2.0 9.93(-3) 2.0 2.48( -3)
107> 4.00(-2) 2.0 9.94(-3) 2.0 2.48( -3)
10710 4.00(-2) 2.0 9.94(-3) 2.0 2.48( -3)
LOB2 107t 2.64(-4) 3.9 1.74(-5) 4.0 1.10( -6)
EFWR 1073 1.18(-3) 4.7 4.43(-5) 4.7 1.68( -6)
107> 3.94(-4) 4.0 2.48(-5) 4.0 1.55( -6)
10710 3.94(-4) 4.0 2.48(-5) 4.0 1.55( -6)
LOB3 107! 2.76(-6) 6.0 4.40(-8) 6.0 6.92(-10)
EFWR 1073 4.30(-5) 3.1 4.89(-6) 4.4 2.28( -7)
107> 1.72(-6) 6.0 2.73(-8) 5.9 4.51(-10)
10710 1.50(-6) 5.8 2.73(-8) 5.9 4.47(-10)
LOB1 107! 6.32(-2) 2.0 1.56(-2) 2.0 3.88( -3)
GAL 1073 2.16(-1) 0.0 2.04(-1) 5.1 6.03( -3)
107> 6.71(=2) -2.9 5.01(-1) 0.3 4.08( -1)
10710 6.53(-2) -2.9 5.05(-1) 0.2 4.25( -1)
LOB2 107t 2.64(-4) 3.9 1.74(-5) 4.0 1.10( -6)
GAL 1073 2.77(-1) 4.2 1.52(-2) 6.2 2.10( -4)
107° 5.02(-1) 0.3 4.13(-1) 0.4 3.15( -1)
10710 5.05(-1) 0.2 4.25(-1) 0.2 3.68( -1)
o3 | 107! 2.76(-6) 6.0 4.40(-8) 6.0 6.92(~10)
GAL 1073 5.83(-2) 5.4 1.42(-3) 7.7 7.04( -6)
107> 1.14(-2) -4.9 3.35(-1) 0.6 2.15( -1)
10710 1.10(-4) |-11.7 3.61(-1) 0.2 3.20( -1)
Table 3.7.6

Problem (3.7.6). The error, outside the shock-layer region, e = ly - yh"ﬂ o’

OI

was measured on the equidistant grid HO ={-1=x_<x, < <

o 1< e = 1}.

%7
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Because of the almost discontinuous character of the solution in the
turning point region, the solution is badly approximated by any global
approximation on a coarse mesh. Also the pointwise approximation at the
gridpoints near the turning point is not very accurate when the EFWR meth-
ods are used for this problem, but the EFWR methods are not sensitive to
these errors in the down-stream direction.

If we measure the error over all points of the grid Hi (i.e. the same
grid as was used for the construction of the difference scheme) , then the
error ly- yhi“ Ty ,® shows the pointwise behaviour of the approximate solution in
the shock-layer region (table 3.7.5). If we take HO ={i/7 [ i==7,-5,...,+7}
then the grid points in the shock layer are not included when the error

Iy - yh"“o:” is measured (table 3.7.6).

EXAMPLE 3.7.5.
Problem (cf. equation (1.3.7)):

(3.7.8) Ey" + xy' -~y = —(1+€ﬂ2) cos(Tx) - (nx) sin (Tx) on [-1,+1],
y(-1) = -1, y(+1) = +1.

Solution:

——— 2
(3.7.9) y(x) = cos(mx) + x + X erf(x//ig) + V2e/m exp(-x /2€) .

erf (1/V2¢) + vV2e/m exp(-1/2€)

Characteristics: the equation has a turning point at x = 0; the solution
has a corner layer in the turning-point region.
For this problem, the results obtained outside the turning point re-

gion are shown in table 3.7.7.

+1

-1

-1 0 +1

Fig. 3.7.3
The solution of problem (3.7.8).
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METHOD € h=1/7 h = 1/14 h = 1/28
e X e r e
LOB1 107! 1.88(-2) . 4.63(-3) . 1.15( =3)
EFWR 1072 2.50(-2) . 6.15(-3) 1.53( -3)
107> 2.51(-2) . 6.17(-3) 1.53( -3)
10710 | 2.s1(-2) 6.17(-3) 1.54( -3)
LOB2 107! 1.90(-4) 3.9 1.26(-5) 4.0 7.95( -7)
EFWR 1073 3.59(-4) 4.0 2.25(-5) 4.2 1.23( -6)
107> 4.19(-4) 4.0 2.65(-5) 4.0 1.66( -6)
10710 4.20(-4) 4.0 2.65(-5) 4.0 1.66( -6)
LOB3 107! 1.13(-6) . 1.83(-8) 6.0 2.89(-10)
EFWR 1073 5.44(-6) 1.85(=7) 4.5 7.96( -9)
107> 3.01(-6) 5.90(-8) 5.9 9.92(-10)
10710 3.01(-6) . 5.91(-8) 5.9 9.92(-10)
LOB1 107! 1.88(-2) 2.0 4.63(-3) . 1.15( -3)
GAL 1073 2.73(-2) 1.8 8.10(-3) 1.96( -3)
107° 2.98(-2) 2.0 7.28(-3) 1.83( -3)
10710 2.99(-2) 2.0 7.24(-3) . 1.80( -3)
LOB2 1071 1.90(-4) 3.9 1.26(-5) 4.0 7.95( =7)
GAL 1073 1.12(-2) 4.2 6.04(-4) 3.2 6.70( -5)
107> 1.97(-3) 1.4 7.47(-4) 0.3 5.95( -4)
10710 2.04(-3) 2.0 5.10(-4) 2.0 1.28( -4)
LOB3 T 1.13(-6) 5.9 1.83(-8) 6.0 2.89(~10)
GAL 1073 4.31(-3) 7.6 2.29(-5) 6.8 2.02( =7)
107> 8.17(-4) -0.2 9.71(-4) 0.4 7.52( -4)
10710 8.65(-5) 5.1 2.47(-6) 4.0 1.50( -7)
Table 3.7.7

Problem (3.7.8). The error outside the turning-point region,

e=1ly - yh"ﬂ oo was measured on the equidistant grid

H0={—1=x0<

X, < ... <X

1

, =1k
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CONCLUSIONS

Examining the numerical results given in this section we arrive at the
following observations:
1. In almost all cases EFWR methods yield more accurate results than GAL
methods. This is also the case when the solutions are smooth over the

whole interval (examples 3.7.1 and 3.7.3).

2, For large €/h ratios (say €/h > f), EFWR methods yield about the same
results as GAL methods.

3. The order of convergence for EFWR methods, as determined in section 3.1
and 3.6, is strictly attained; this means that no better estimates can
be found.

4, For problems with a turning point no uniform €-convergence is obtained by
EFWR methods.

5. For problems with smooth solutions, the order of convergence of the

GAL methods decreases for small values of €. The pointwise error then

appears to be O(hk) for even k and 0(h**!) for odd k.



CHAPTER IV
NONLINEAR PROBLEMS

In this chapter the methods developed in the previous chapters are
applied to nonlinear problems. These problems are of interest since they
cover more practical situations. They also give us the opportunity to show
the advantages of exponentially fitted methods, because (in contrast to
linear problems) the region where fhe solution may vary rapidly, not only
depends on the equation but also on the boundary conditions. This means
that, if a classical numerical method is to be used, a careful analysis is
required for each particular problem, in order to determine where the mesh
should be refined.

In section 1 some basic facts and definitions are given. In section 2
a convergence theorem is derived and the techniques used to solve the non-
linear problems are explained. In the third section some numerical experi-
ments are treated and in section 4 we give an ALGOL 68 prelude which con-
tains routines for the solution of singularly perturbed two-point boundary-

value problems.
4.1. INTRODUCTION
We consider the nonlinear problem

(4.1.1.a) Ny = -gy" - F(x,y,¥y') =0on I = [a,b],

(4.1.1.b) y(a) = o, y(b) =8, 0 < g < eo.
For this type of problem a rich variety of phenomena is possible in the
limit as € + 0. This is illustrated in WASOW [1970] who pointed out the
"capriciousness" of these problems.

In general the existence of a solution of (4.1.1) cannot be guaran-

teed. It is well known, for example, that the problem

ey" + y' + (y|)3 =0
(4.1.2)
Y(O) = 0, Y(l) = Br a 7‘ Br
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has no solution for € sufficiently small, even though the solution exists
for large € (O'MALLEY [1974], p.116). This shows that asymptotic solutions
for € + 0 are available only for restricted classes of problems (4.1.1) and
that possibilities for obtaining numerical approximations to solutions of
problems like (4.1.1) are also limited.
Thus we can consider only a restricted subclass of problems (4.1.1).
In particular, for the problems that we solve numerically, we make the fol-
lowing assumptions:
Al. F(x,y,y') is such that there exists an isolated solution Y of
F(x,y,y') = 0.
A2. There exists an €, > 0 and a family of isolated solutions {y(x;e)}

0

0<e£eo
to the problem (4.1.1).

A3. The functions yo(x) and y(x;€) are such that
lim max |y(x;€)—y0(x)| =0
€*0 xeI\R
lim max ly'(x;e)-yé(le= 0
€0 xeI\R
uniformly in €,
where R is a closed subinterval of I, independent of €.
This subinterval R will contain the boundary-layer or turning-point regions.
For € < h we strive for an accurate approximation to y(x;€) on I\R only.
CODDINGTON & LEVINSON [1952] proved that the assumptions A2-A3 hold if
the following conditions are'satisfied:

Bl. Equation (4.1.1) is quasilinear; i.e. it can bewritten in the form
ey" + Fl(x,y)y' + F2(x,y) = 0.

1
B2. Fy (°,y), F, (°,y) € C'[a,b] for y in a neighbourhood of Y, which includes

the points (a,0) and (b,B).
B3. |F1(x,y)| 2K >0,

B4. Assumption Al holds with

yo(a)
yo(b)

o if Fl(x,y) < 0, or,
B if F (x,y) > 0.

]

since 1952, progress had been made by many people (see HOWES [1976] and
references therein) in refining the conditions for problem (4.1.1) to satisfy

the assumptions Al-A3. However, we shall mention only a result by DORR,
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PARTER & SHAMPINE [1973] which complements that of CODDINGTON & LEVINSON
[1952]. This result is:

If the following conditions are satisfied: B1, |F2(x,y)| < M, B3 c¢nd A2,
then the assumptions A and A, hold; moreover, Yy 18 such that B4 also holds.

We note that under condition B3, the region R is restricted to a single

boundary layer.
In order to apply the exponentially fitted methods that were discussed

in chapter 3, to the nonlinear problem, we consider (4.1.1) in its varia-
tional form. A function y € Hi(a,b) is called a solution of (4.1.1) in the
weak sense, if it satisfies the variational equation
1
{;NY,V) = g(y',v') - (F(e,y,y'),v) =0 Y € Ho(a,b)
4.1.3
(4.1.9) (@) = a, y(®) = 8.

Denoting the dual space of Hé(a,b) by H_l(a,b), we assume that F is such
that F(°,y,y") € H_l(a,b) for y € Hl(a,b). Now, by eq. (4.1.3), we may
extend the meaning of N, considering N as an operator N:Hl(a,b)->H-1(a,b).
Thus we write (Ny,v) for the nonlinear analogue of B(y,v) in eq. (3.1.4).
We introduce the following property of N (cf. CIARLET et al, [1969]):

DEFINITION
The operator N: Hl(a,b) > H—l(a,b), defined by (4.1.3) is called
strictly monotone if there is a C > 0 such that
C"y—z"f < (Ny-Nz,y-z) Vy,z € Hé(a,b).
It is obvious that, if a solution of the variational equation (4.1.3)

exists, then it is unique if N is strictly monotone.
LEMMA 4.1.1. The operator N: Hl(a,b)»-H—l(a,b) associated with (4.1.1) <s
strictly monotone if

d 9 T2
a;'s;T F 2y >-g( ) .

N

)
(4.1.4) - g_yF + b-a

PROOF. See BAKKER [1976], p.22.

EXAMPLE 4.1.1. Applying the preceding lemma to the linear operator defined

in (1.1.1), we see that this operator is strictly monotone, independently

of the value of €, if
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(4.1.5) —g(x) + %f'(x) > 0.

Substituting, for example, the coefficients of equation (1.1.12) into this

inequality, we obtain

NcyE ey" + xy' + cy = 0.

We see that Nc is strictly monotone if c < %. Comparing this with the result
from section 1.1, we see that, for equation (1.1.12), condition (4.1.5) is
equivalent to the absence of classical turning points.

Strict monotonicity can be used to establish convergence for classical
Galerkin methods. However, for weighted residual methods, where not Vh < Sh’
we have to introduce the more general concept of strict coercivity with

respect to the two subspaces.

DEFINITION

Let S and V be two Banach spaces with norms "-“sand -l and let V' denote

v
the dual space of V. The (nonlinear) operator N: S = V' is strictly coercive

with respect to S and V if there is a C > 0, such that
Vy,ze S IveV v#0 clly-zllsllvllV < (Ny-Nz,v).

It is obvious that any solution y € S (if it exists) of the variational

problem
(Ny,v) = (£,v) Vv e V
is unique if N is strictly coercive with respect to S and V.

REMARK. If S =V = ﬂ;(a,b), then strict monotonicity implies strict coer-

civity with respect to S and V.
4.2. APPROXIMATION OF NONLINEAR PROBLEMS
We solve the nonlinear equation (4.1.1) by a variant of the Newton-

Kantorovich method. Referring to RALL [1969] or KRASNOSEL'SKII et al.

[1972] for details about this method, we construct a sequence {ym} of ap-
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proximate solutions. to (4.1.1) as follows. It is assumed that F(x,y,y") is
continuous in %X, a < x < b, and twice continuously differentiable with
respect to y and y', so that N is a twice continuously differentiable oper-

ator from C2 [a,b] into Cl[a,b]. The first two Fré&chet derivatives of N at Ym are

1] . ._d—.2 ' - 1] i
(4.2.1) N (Ym) = - €(dx) - Fy(X,Ym:Ym)I Fy.(Xer,Ym)(dx)
and
(4.2.2) N"(y ) = ( ')II -2 F (x ')(‘Q-)I-
e Yo' T 7 fyy ¥r¥p' ¥y yy' X ¥m ¥’ Yax

NSy &
- Fy'y,(X, m,ym)(dx)(dx),

where I is the identity operator. Setting

(4.2.3) um(x) = ym+1(x) - ym(x),

where Yo and ym+ satisfy the boundary conditions of (4.1.1.b), we arrive

1
at the linear boundary value problem for Newton-Kantorovich iteration

N'(y Ju = =Ny,
(4.2.4) mom m

u (a) = u (b) =0.
m m

For the generation of the Newton sequence {ym(x)}, we add N'(ym)ym to both

sides of the equation and we solve the sequence of linear problems

(4.2.5) N'(ym)y

def
mtl F(x,ym,yl;]) - Fy(x,y AR D A Fy.(x,y ¥y = Ry ),

m"m "m m™"m " "m m

Ypq (@) = 0y Yoeg ®) = B.

+1
Each problem is exactly of the type treated in chapters 2 and 3. Generally,
the exact solution of these equations is impossible and we must resort to

the approximate solution. In effect, therefore, the successive approximations
actually employed are not those of the Newton-Kantorovich method. The oﬁly
thing we can do is to derive a "better" approximation §m+1 from an approxi-
mation Yo via the discretization of N'(ym). Applying any of the methods
developed in the previous chapters to equation (4.2.5), we get the iterative

process
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(4.2.6) Nn'](ym)y

m+l R(ym)'

®
where {NA} is a sequence of discrete operators approximating N' and §;+1

is the solution of the discretized problem.

Let ym+1 be the exact solution of
' ~ - ~
(4.2.7) N (ym)ym+1 R(ym),

then we shall first assume that

~

(4.2.8) Ilym+1 - Ym+1"1 < q“ym - ym+1“1

where 0 < §q < 1.
It is clear from the previous chapters that {NA} can be constructed in such
a way that g is arbitrarily small. Such a sequence, for which the discrete
operators {Né} should be of increasing accuracy, is obtained by refining
the partition Il during the iteration process or by taking higher order
methods.

Practical rules for the convergence of the Newton sequence {;;} to
the solution of problem (4.1.1) are hard to give. In fact, it depends on
the problem as well as on the choice of the initial estimate §b(x). How-
ever, in certain cases the following modified Kantorovich theorem can be

applied to obtain a convergence criterion.
THEOREM 4.2.1. Let B(q) be the smaller root of the quadratic equation
2
2(1-B)" = (1+q)B + 2q.

Starting from Y it is assumed that [N'(3,) 17! ewists and constants B and
H can be caleculated such that

1N @) ™ <8,

I [N'Gzo) 77! N§Oll < H.

If IN"(y)l < K Zn some closed ball S(?O,R) around '370 with radius R, and if
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B(a)
1+q

BKH =<

+gq
B(aq) H =R,

then the successive approximations {y_ } defined by (4.2.6) converge

mm=0,1,...
to a solution y of (4.1.1) which exists in S(yO,R).

PROOF. See KRASNOSEL'SKII et al. [1972] pp.157-160.

N =

REMARK. Since 0 £ g < 1 we see that z 2 B > 0. In particular, for g = 0

1
(B=§) this theorem is identical with the Kantorovich theorem.

If we keep the discretization method and the partition fixed, then Né
is independent of m, which we denote by Nﬁ(') = N&(') form = 0,1,... .

Thus - -
N};(Ym) = Nl;](ym), m=0,1,2,...,

depends only on ;m' We have then to solve the sequence of linear problems
R S
(4.2.9) Nl.‘(ym)ym_k1 R(yp)

rather than (4.2.6). In this case (4.2.8) is not true and we obtain a Newton-
~ - fe s . .
sequence {ym} such that %&& Yo = Ypr where ¥, € Sh, if it exists, is the

solution of the nonlinear problem
= 1 - =
(4.2.10) Nhyh Nh(yh)yh R(yh) 0.

THEOREM 4.2.2. Let the error estimates of a weighted residual method
(3.2.2), for any linear problem of the form (3.2.1), be

(4.2.11) ly-y l, =05, I vyl = 0 (m¥*t!

2k
) and "y—yh“ﬂ'm—-O(h ).
Let N be strictly coercive with respect to 5, and Vi and let N satisfy the
conditions of theorvem 4.2.1, then the iterative process (4.2.9) converges to
a solution Yy and the error estimates (4.2.11) also hold for the nonlinear
problem (4.1.3).

PROOF. By the weighted residual method and the Newton-Kantorovich iteration,

Yy € Sh c Hl(a,b) is determined such that



152

(N"(y )y, ,v) = (R(y,),v) W eV
The solution y of (4.1.3) satisfies
(N'(Y)y,v) = (R(y),V) Vv e V.
We introduce uh € Sh' an auxiliary approximate solution, that satisfies
(N'(y)uh,v) = (R(y),V) W e v,
This uh is the approximate solution of a linear problem, so that
k
ly = uw l, =
y -ul, =0m.

By the strict coercivity of N with respect of Sh and Vh' there exist a

v € Vh cV and a 0 > 0, such that

I - [ < -
olu, -y, 1lvﬂv < |(Nuh Nyh,v)l

I(Nuh-Nyh,V)l l(Nuh,v)l = I(N'(uh)uh-R(uh),v)l

|([N'(uh)—N'(y)]uh - [R(uh) - R(y) 1,w) |

l(N'(y)y—N'(y)uh—Ny+Nuh,V)l

]

I(N'(y)eh—N'(y+Geh)eh,v)I

|([N'(y)—N'(y+9eh)]eh,v)|

n * 2
| (N" (y+6 eh)eeheh,v)l < KHehHIHvHV,

where 0 < 8(x), 6 (x) < 1ande =y -u.

Hence

la, -y I 1 < _ 2
olw -y, 1, vﬂv < I(Nuh Nyh,v)l < K"ehulﬂv"v'

Therefore
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K 2 2
[ - < =le ] =
(4.2.12) |uh yhll1 <5 le g O(n k)

and
ly -y 0. <y —ul, + lu -yl <0@m
hil~™ h1 h hil

P 2
By Poincaré's inequality it follows that "uh - yhﬂo w<Ch k, and so we
I’

also obtain

ly - ylg = 0@ ana by - g1 =0, O

Replacing N by Nh' we can apply theorem 4.2.1 to the process (4.2.9).
Now g = 0 and equation (4.2.9) describes a genuine Newton-Kantorovich process.
Hence convergence is quadratic (see e.g. KRASNOSEL'SKII [1972] p.144). The
quadratic convergence suggests a strategy for choosing the order of a
method during the integration process. We first iterate by a first order
method until convergence is obtained; then ly - yh"w,w = 0(h). Assuming
that ly - yh"1 is small enough, we need only a single iteration step by a
second order method to obtain lly - yh"ﬂ,m = 0(h2) and one iteration step
more by a fourth order method to obtain ly - yh"n,w = 0(h4).

To start the Newton-Kantorovich series of approximations, it is im-
portant to have available a sufficiently accurate initial approximation.
However, in particular for small values of €, it may be difficult to

determine the global character of a solution beforehand. A convenient
way to solve this problem is by the Davidenko principle. We assume that
there exists an €, for which the problem (4.1.1) has a smooth solution.

0

For this (rather large) € an initial guess at the solution is made and

the problem is solved appgoximately. The approximation thus obtained can
be used as an initial guess for the solution with a smaller value of e.
If this process is executed with successively smaller values of € we call
it a Newton—Kantorovich-Davidenko process.

In general, for a fixed partition II, this process still does not
guarantee convergence to a solution of (4.2.10) as € > 0. The possible
lack of a good representation in a turning-point region can mean that
no function in S, can be found, which is close enough to the solution y to

h
be a feasible initial estimate for the Newton-Kantorovich process. In this
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case, inevitably, a proper mesh-refinement is required. However, exponen-
tially fitted weighted residual methods are not sensitive to errors in the
down-stream direction. This means that often convergence outside the turning-
point region can still be achieved, even without an accurate representation

in the turning-point region.
4.3. NUMERICAL RESULTS.

In this section we show four ekamples of nonlinear problems of type
(4.1.1) and we comment on their numerical solution. We use three different
methods of discretization: the exponentially fitted finite difference meth-
od (3.5.12), method "A", and the exponentially fitted weighted residual
methods (3.5.15)-(3.5.23) with k = 1 (method "B") and k = 2 (method "C").
Asymptotically for € =+ 0, the pointwise convergence rates of these methods
are 1,2 and 4 respectively. The approximate solutions are compared with either
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