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In 1982 Dolev, et al. [10] presented an O(nlogn) unidirectional distributed algorithm for the 
circular extrema-finding (or leader-election) problem. At the same time Peterson came up with a 
nearly identical solution. In this paper, we bring the correctness of this algorithm to a completely 
formal level. This relatively small protocol, which can be described on half a page, requires a 
rather involved proof for guaranteeing that it behaves well in all possible circumstances. To our 
knowledge, this is one of the more advanced case-studies in formal verification based on process 
algebra. 

1. Introduction 

Experience teaches that distributed protocols are hard to define correctly. This is not 
only due to the inherent complexity of distributed systems, but it is also caused by 
the lack of adequate techniques to prove the correctness of such protocols. This means 
that there are no good ways of validating designs for distributed systems. The current 
approach to proving correctness of distributed systems generally uses stylished fonns 
of hand waving that does not always avoid the intricacies and pitfalls that often appear 
in distributed systems. We are convinced that more precise proof techniques need to be 
used, which should allow for computer based proof checking. Concretely this means 
that a logic based approach should be taken. 

The language µCRL (micro Common Representation Language) [12] has been de­
fined as a combination of process algebra and ( equational) data types to describe 
and verify distributed systems. In accordance with the philosophy outlined in the first 
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paragraph this is a very precisely defined language provided with a logical proof system 
[13]. It is primarily intended to verify statements of the form 

Condition -+ Specification = Implementation. 

This system has been applied to verify a number of data transfer and distributed 
scheduling protocols of considerable complexity [3, 11, 15, 16]. It incorporates several 
old and new techniques [4, 3]. Due to the logical nature of the proof system proofs 
can be verified by computer. Some sizable examples of proofs verified using the proof 
checker Coq [9] are reported in [13, 17]. 

If one develops a new technique then it is important that it is validated that the 
technique meets its purpose. For µCRL this means that it is applied to a wide range 
of distributed systems. In this paper we show its applicability on Dolev et al. 's leader 

election or extrema finding protocol [10] that has been designed for a network with 
a unidirectional ring topology. At the same time, Peterson published a nearly identical 
version of this protocol, see [20]. This protocol is efficient, O(n log n ), and highly 
parallel. As far as we know this is the first leader election protocol verified in a process 
algebraic style. In [6, 7] a number of leader election protocols for carrier sense networks 
have been specified and some (informal) proof sketches are given in modal logic. 

In Section 2 we specify Dolev et al.'s leader election protocol formally in µCRL. 

The protocol is proved correct in Section 3 using a detailed argument. Appendix A 
summarises the proof theory for µCRL, and Appendix B defines the data types used 
in the specification and proof of the protocol. 

2. Specification and correctness of the protocol 

We assume n processes in a ring topology, connected by unbounded queues. A 
process can only send messages in a clockwise manner. Initially, each process has a 
unique identifier ident (in the following assumed to be a natural number). The task 
of an algorithm for solving the leader election problem is then to make sure that 
eventually exactly one process will become the leader. 

In Dolev et al.'s algorithm [10] each process in the ring carries out the following 
task: 

Active: 

d:= ident 
do forever 

end 

send(d) 
receive(e) 
if d=e then stop /* Process is the leader */ 
send(e) 
receive({) 
if e > max(d,f) then d:=e else goto Relay 
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Relay: 
do forever 

receive(d) 
send(d) 

end 
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The intuition behind the protocol is as follows. In each round the number of electable 
processes decreases, if there are more than two active processes around. During each 
round every active process, i.e., a process in state Active, receives two different values. 
If the first value is larger than the second value and its own value, then it stays active. 
In this case its anti-clockwise neighbour will become a relay process. So, from every 
set of active neighbours, one will die in every round. Furthermore, the maximal value 
among the identifiers will never be lost in the ring network, it will traverse the ring in 
messages, or be stored in a variable in a process, until only one active process remains. 
If only one active process is left, i.e., not in state Relay, then the leader-in-spe sends 
its own value of d to itself, and then halts. 

As the attentive reader may have noticed, there is a simpler way to elect a leader. 
For example, it would be sufficient for a process to receive just one value, i.e., the 
value ( e) of its direct neighbour. In this case, only two values instead of three values 
have to be compared (e > d instead ofe > max(d,f)). However, this approach is not 
so efficient as one may need 2n2 + 2n actions before a leader is selected. The protocol 
described earlier is faster. It is bounded by 2n log n + 2n actions because in every round 
at least one process becomes inactive. 3 For an explanation of these complexity bounds 

one is referred to [10]. 
Below we formalise the processes and their configuration in the ring as described 

above in µCRL. 

act leader 
r,s: Nat x Nat 

proc Active(i:Nat,d:Nat,n:Nat) = 
s(i, d) '2:.e:Nat r(i - n l, e) (leader D <J eq( d, e) T> s(i, e) 

'2:.f:Nak(i -n 1,f) Active(i, e, n) <J e > max(d,f) T> Relay(i, n))) 

Relay(i:Nat, n:Nat) = "£.d:Nat r(i -n I, d)s(i,d) Relay(i, n) 

Here a process in the imperative description with value ident for d corresponds to 
Active(i, ident, n ). Intuitively the µCRL process first sends the value of the variable d 
to the next process in the ring (s(i,d)) via a queue, which is described below. Then 
it reads a new value e from the queue connected to the preceding process in the ring 
by an action r(i -n 1,e). The notation -n stands for subtraction modulo n, which is 
defined in Appendix B. Consequently, it executes a then-if-else test denoted by _<l_f>_. 

If the variables d and e are equal, expressed by eq( d, e ), then the process declares itself 
leader by executing the action leader. Otherwise the value of e is sent (s(i, e)) and a 

3 By log n, we mean log2 n. 
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value f is read (r(i-n l,f)). Now, if e is larger than both d and J the process repeats 

itself with e replacing d. Otherwise, the process becomes a relay process (denoted by 

Re!ayU, n) ). The leader action has been introduced in the µCRL specification of the 

protocol for verification purposes; it makes visible the fact that exactly one leader is 

elected. 
The <) process after the leader action in the Active process is not essential. We have 

inserted it for technical reasons and more details on this issue are given at the end of 

this section. 
In order to prove the correctness of the protocol we must be precise about the 

behaviour of the queues that connect the processes. We assume that the queues have 

infinite size and deliver data in a strict first in first out fashion without duplication 

or loss. In the queue process data is stored in a data queue q which is specified in 

Appendix B. Note that the behaviour of the queue process is straightforward; it reads 

data via r(i, d) at process i and delivers it via s(i +n 1) at process i +,, 1 ( +n is addition 

modulo n). Below, toe(q) denotes the first element that was inserted in data queue q. 

proc Q(i:Nat,n:Nat,q:Queue) = L,d:Nat r(i,d) Q(i, n, in(d, q)) 

+s(i +,, 1, toe(q )) Q(i, n, untoe(q)) 

<1 not empty( q) r> b 

It remains to connect all processes together. First we state that send actions s com­

municate with receive actions r. Then, using the processes Spee' and Spee we com­

bine the processes with the queues, and assign a unique number to them. The process 

Spec(n) represents a ring network of n processes interconnected by queues. The in­

jective function id : Nat --> Nat maps natural numbers to process identifiers, for 

convenience also represented as natural numbers. The process identifiers are related 

by the total ordering ~ . The abbreviation max will be used to denote the maximal 

identifier, with respect to the ordering ~ and the number of processes n, of the set 
{id(x): 0 ~ x ~ n - l}. 

func id : Nat --> Nat 
act c: Nat x Nat 

comm rls = c 
proc Spec'(m:Nat,n:Nat) = 

(Active(m - l,id(m - l),n) II Q(m - l,n,q0) II Spec'(m -1,n)) 
<lm>Or>o 

Spec(n:Nat) = '{c}a{r,s}(Spee'(n,n)) 

. Since the protocol is supposed to select exactly one leader after some internal negoti­

at10n we formulate correctness by the following formula, where '=' is to be interpreted 
as 'behaves the same': 

Theorem 2.1. For all n: Nat 

n > 0---> Spee(n) = r leader() 
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The theorem says that in a ring with at least one process exactly one leader will be 

elected after some internal activity. 

In the specification of the Active process given above, we have inserted a 6 process 

after the leader action. We introduced this fJ for technical convenience in our verifica­

tion. However, omitting fJ does not effect the behaviour of the leader protocol, Spee, 

as a whole. In fact, if we leave out this c5 the whole system Spee still deadlocks after 

perfonning a leader action as stated in Theorem 2.1. The reason for this is that Spee 

can only tenninate if all processes in the system tenninate. In particular, the Relay pro­

cesses cannot terminate and evolve in a deadlock situation when a leader is selected. 

So, even if the process that performs the leader action tenninates successfully (which 

is not the case here), the full system will still end up in a deadlock. 

As experience shows the correctness reasoning above is too imprecise to serve as a 

proof of correctness of the protocol. Many, often rather detailed arguments, arc omitted. 

Actually, the protocol does not have to adhere to the rather synchronous execution 

suggested by the word 'rounds', but is highly parallel. One can even argue that given 

the large number of rather 'wild' executions of the protocol, the above description 

makes little sense. Therefore, we provide in the next sections a completely fonnalised 

proot: where we are only interested in establishing correctness of the protocol and not 

in proving its efficiency. 

3. A proof of the protocol 

The proof strategy for proving the correctness theorem consists of a number of 

distinct steps. First in Section 3.1 we define a linear representation of the specification 

in which the usage of the parallel composition operator in the original specification is 

replaced by a tabular data structure encoding the states of processes in the network, 

and actions with guards that check the contents of the data structure. The linearised 

specification is proven equivalent to the original specification in Lemma 3.3. Then, in 

Section 3.3, we define a (focus) condition on the tabular data structure such that if the 

condition holds then no internal computation is any longer possible in the protocol, i.e., 

no r-steps can be made [3]. The focus condition is used in Lemma 3. l 0, in Section 3 .6, 

to separate the proof that the linear specification can be proven equivalent to a simple 

process into two parts. Lemma 3.10 together with Lemma 3.3 then immediately proves 

the correctness theorem of the protocol, i.e., Theorem 2.1. The proof of Lemma 3.10 

makes use of the Concrete Invariant Corollary (see Appendix A and [4]), i.e., a number 

of invariance properties are defined (in Section 3.4) on the tabular data structure such 

that regardless which execution step the linear specification perfonns, the properties 

remain true after the step if they were true before the execution of the step. These 

invariants are used to prove the equality between the linear specification and the simple 

process in Lemma 3.10. In order to make use of the Concrete Invariant Corollary we 

have to show that the linear specification can only perform finitely many consecutive 

r-steps. This is proven in Section 3.5. 
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3. I. Linearisatiun 

As a first step the leader election protocol is described as a µCRL process in a 
state based style, as this is far more convenient for proving purposes. The state based 
style very much resembles the Unity format [5, 8] or the I/O automata format [5]. 
Following [5] we call this format the Unity format or a process specification in Unity 
style. Inspection of the processes Active and Relay indicates that there are 7 different 
major states between the actions. The states in Active are numbered 0, 1,2,3,6 and those 
in Relay get numbers 4 and 5. The processes Active and Relay can then be restated 
as follows: 

proc Act(i:Nat,d:Nat, e:Nat, n:Nat, s:Nat) 
=s ( i, d) Act( i, d, e, n, 1) <J eq(s, 0) t> o 

+ Le:Nar r(i -,, 1, e) Act(i, d, e, n, 2) <J eq(s, 1) t> c5 
+leader Act(i,d,e,n,6) <Jeq(d,e) and eq(s,2) t> o 
+s(i,e) Act(i,d,e,n,3) <J not eq(d,e) and eq(s,2) t> b 
+ LJ:Nutr(i-,, l,f)Act(i,e,e,n,O)<Je > max(d,f) and eq(s,3)t> c5 
+ Lt:Natr(i-,, l,f)Act(i,d,e,n,4) <J e < max(d,f) and eq(s,3)1> b 
+ Ld:Nui r(i -,, l,d)Act(i,d,e,n,5) <l eq(s,4) t> o 
+s(i, d) Act( i, d, e, n, 4) <J eq( s, 5) t> c5 

Lemma 3.1. For all i,d,e,n, we have: 

Active(i,d,n) = Act(i,d,e,n,O), 

Relay(i,n) = Act(i,d,e,n,4). 

Proof. The proof of this lemma is straightforward, using the Recursive Specification 
Principle (RSP), but note that it uses a (p <Jct> q) = a p <Jct> a q as well as the 
distributivity of r over +. 0 

We now put the processes and queues in parallel. As we work towards the Unity 
style, we must encode the states of the individual processes in a data structure. For 
this we take a table (or indexed queue) with an entry for each process i. This entry 
contains values for the variables d, e, s and the contents of the queue in which process 
i is putting its data. Furthermore, it contains a variable of type Bool, which plays a 
role in the proof. The data structure has the name Table and is defined in Appendix B. 

We put the processes and queues together in three stages. First we put all processes 
together, using II Act and XAct below. Then we put all queues together, via II Q and XQ. 
Finally, we combine XAct and XQ obtaining the process X which is a description in 
Unity style of the leader election protocol. 

proc Spec(B:Table,n:Nat) = '{c}O{r.s}CIIAct(B,n) II IIQ(B,n)) 
IIAciB: Table, n:Nat) = (5 <J empty(B) t> 

(Act(hd;(B ), getd(hd;(B), B), gete(hd;(B), B), n, gets(hd;(B), B)) II 
ll4,1(tl(B), n)) 
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n Q(B: Table, n:Nat) = 6 <1 empty(B) [> (Q(hd;(B), n, getq(hd,(B), B)) II 
llQ(tl(B),n)) 

XAe1(B: Table, n:Nat) 

= LJ:Nat s(j, getd(j, B) )X4c1(upds( I,), B ), n) <1 eq(gets(J, B), 0) and 
test(}, B) r> 6 

+ LjNat Le:Nat r(j-n l,e)X,4c1(upde(e,j,upds(2,j,B)),n) 

<1eq(gets(J,B),I) and test(),B)r>b 

+ LJNat leader XAci(upds( 6,), B), n) 
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<1 eq(getd(), B ), gete(J, B)) and eq(gets(), B), 2) and test(), B) r> c) 

+Lt Nat s( ), gete(), B)) X.4u(upds(3,j, 8), n) 

<1 not eq(getd(J, B ), get,.(), B)) and eq(gets(), B ), 2) and 
test(), B) r> l) 

+ LfNat LrNat r(j -n l,f)X1n(updi1(geteCJ, B),j, upd,(0,j, B) ), n) 

<1 gete(), B) > max(getd(), B), f) and eq(yets(), B), 3) and 

test(), B) r> 6 

+ Lf:Nat Lj:Na1rU-n l,f)X,4Cl(upds(4,j,B),n) 

<19et,,(), B) ::::; max(qetd(), B),f) and eq(qe(,(j, B), 3) and 

test(j,B) r> 6 

+ Ld Nat LJNat r(j -n l, d)XAc1(updc1(d,j, upds(S,j, B)), 11) 

<1 eq(get,(), B ), 4) and test(), B) r> 6 

+ LfNm s(), getc1(J, B))XAc1(upd,.( 4,j,B ), n) <1 eq(yets( j, B), 5) 

and test(), B) r> () 

XQ(B: Table, n:Nat) 

= Ld:Nat LJNat r(),d)XQ(inq(d,j,B),n) <1 test(j,B) r> 6 

+ Lj:Nat s(j +n 1, toe(),B))XQ(untoe(j, B), n) <1 not empty(), B) 

and test( j, B) r> 6 

The leader election protocol in Unity form is given below and will be the core 

process of the proof. Note that in many cases verification of a protocol only starts 

after the process below has been written down. In the description of X most details 

of the description are directly reflected in corresponding behaviour of the constituents 

XA, 1 and XQ. However, there is one difference. It appears that in the protocol two 

kinds of messages travel around, active and passive ones. The active messages contain 

numbers that may replace the current value of the d-variable of its receiver. The 

passive messa.ges are not essential for the correctness of the protocol, but only used to 

improve its speed. For the correctness of the protocol it is important to know that the 

maximum identifier is always somewhere in an active position and that no identifier 

occurs in more than one active position. In order to distinguish active from passive 

messages, we have added a boolean b to each message in the queues, where if b = t 

the message is active, and if b = f the message is passive. When processes become 

Relays then they also act as a queue. Therefore, we have also added a boolean b 
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to the process parameters, to indicate the status of the message that a process in 
state 5 is holding. The equation below is referred to by (I) in the remainder of the 
proof. 

proc X(B:Table,n:Nat) 
= L;:Nar r X(upds(l,j, inq(getd(J,B), t,j,B)), n) <1 eq(gets(j,B), 0) and 

J<nt>J 
+ L;:Nat rX(untoe(J-n l,upde(toe(J-n 1,B),j,upd.1(2,j,B))),n) 

<J eq(gef,(j, B ), I) and not empty(} - n 1, B) and j < n C> J 
+ Lrva1 leader X(upds(6,j,B), n) 

<Jeq(gets(J,B),2) and eq(getd(j,B),geteCJ,B)) and j < n t> 6 
+ L;:Nat T X(upds(3,j, inq(gete(J, B), f,j, B)), n) 

<1 eq(getsCJ, B), 2) and not eq(getd(j, B), geteCJ, B)) and 
j<nt>!J 

+ L;:Nat T X(untoe(j -n 1, updd(gete(J, B),j, upd.,(O,j, B)) ), n) 
<Jgete(J,B) > max(getd(J,B),toe(j -n l,B)) and 
eq(gets(J,B),3) and not emptyU-n 1,B)j < n C> 6 

+ L;.Nat rX(untoeU-n l,upds(4,j,updb(toeb(J- 11 l,B),j,B))),n) 
<Jget,.(j,B) ~ max(gett1CJ,B),toe(J-n l,B)) and 

eq(get,(j,B),3) and not empty(}-,, l,B)j < n e> 6 
+ LjNar rX(untoe(j -n l,updt1(toe(j -n 1,B),j, 

upd_,.(5,j,updb(toeb(j -,, l,B),j,B)))),11) 
<1 eq(gets(J, B), 4) and not empty(} - 11 1, B) and j < n t> 6 

+ L;:Nat rX(inq(getd(j,B), getb(J,B),j, upds(4,j,B) ), n) 
<1 eq(gets(J, B), 5) and j < n t> 6 

Definition 3.2. The function init: Nat -+ Table, which is used for denoting the initial 
state of the protocol, is defined as follows: 

init(n) = ~((eq(n, 0), t0, in(n - 1, id(n - 1),0, 0, f, q0 ,init(n - I))). 

See also Section 8.5. 

Lemma 3.3. For all B: Table and m,n: Nat 
I. Uniquelndex(B)-+ IIAci(B,n) = XAci(B,n), 
2. Uniquelndex(B)-+ IIQ(B,n) = XQ(B,n), 
3. Uniquelndex(B) /\ test(j,B) = j < n -+ S pec(B, n) = X(B, n ), 
4. Spee' (m, n) = IIActUnit(m ), n) II II Q(init(m ), n ), 
5. Spec(n) = Spec(init(n ), n ), 
6. Spec(n) = X(init(n),n). 
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Proof. 
1. A standard expansion using induction on B ( cf [ 17] ). 

2. Again a straightforward expansion. 

3. Spec(B,n) = T{c}O{r,s}(IIAct(B,n) II IIQ(B,n)) = r{c}C{r,s}(·X:fr1(B,11) I\ XQ(B,n)). 

Now expand XAc1(B, n) II XQ(B, n) and apply hiding. The equations obtained in 

this way match those of X(B,n), except that 'j < n' is replaced by 'test(j,B)' 

or 'test(j,B) and test(} -n l,B)'. As X is convergent (proven in Lemma 3.7) it 

follows with the Concrete Invariant Corollary [4] that Spec(B,n) and X(B,n) are 

equal. The invariant 'test(), B) = j < n' is used and easy to show true. 

4. By induction on m, using associativity and commutativity of the merge. 

5. Directly from the previous case, i.e. Lemma 3.3.4. 

6. Directly using cases 3 and 5. D 

3.2. Notation 

In the sequel we will for certain property formulas </J(j) write 

\:/j<n<f>U) for </>'(O,n) and \:/i<j<ncfJ(j) for c/J'(i + l,n) 

and 

:JJ<n<f>CJ) for </>"(O,n) and :Ji<J<nc/J(j) for </J"(i + l,n) 

where c// (j, n) and <f/' (j, n) are defined by: 

cp'(j,n) = if(j ~ n,t,cp(j) and cp'(j + l,n)), 

c/J"(j,n) =if(}~ n,f,c/J(j) or</!"()+ l,n)). 

Summation over an arithmetic expression }'(}) can be written 

'£j<ny(j) for y'(O,n) 

where 

y'(j,n) = ~l(J ~ n,0,y(j) + }i(J + l,n)). 

Note that if we can prove that 

(j < n and </J(j)) -> lf;(j), 

then we can also show that 

\:/j<nc/J(j)-> 'lf,;<nl/J(j) and 

:l;<n<fi(j) -> :l;<nl/J(j). 

Also note that 

not (\:/;<n<f>U)) = :l;<n not cp(j) and 

not (:l;<n<f>CJ)) = '7;<n not </J(j) 
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3.3. Focus condition 

The focus condition FC: Table x Nat --> Bool indicates at which points the leader 
election protocol cannot do r-steps. This means it can either do nothing, or do a leader 

action. The focus condition is constructed in a straightforward fashion by collecting 

the conditions for the r-steps in process X. 

FC(B,n) = 
Vj<n not eq(gets(j,B),0) and 

(not eq(gets(j,B),l) or emptyU-n I,B)) and 
(not eq(gets(j,B),2) or eq(getd(j,B),gete(j,B))) and 
(not eq(gets(j,B),3) or emptyU-n I,B)) and 
(not eq(get . .(j,B),4) or emptyU-n l,B)) and 
not eq(gets(j,B),5) 

3.4. Some invariants of X 

In this section we state four invariants (Jnv1,. • .,Inv4) of the process X(B,n) that 
are used in Section 3.6 to prove the correctness of the protocol. We prove that the 
predicates below are indeed invariance properties in a traditional manner. First we 
show that they hold in the initial state of the protocol, i.e., for invariant Inv; we show 
lnt';(init(n),n). Then for each protocol step (there are eight such steps in the linearised 
process X) we show that if both the precondition of the step holds and the predicate 
holds in the state before the protocol step, then the predicate holds also in the state that 
is the result of performing the step. For example, to prove that Inv2 is an invariance 
property we need to establish that the first step in X preserves the property, i.e., that 

eq(ge(,(j, B), 0) and j < n and lnv2(B, n) --> Inv2(upds(l,j, inq(getd(j,B), t,j, B) ), n) 

where B is a tabular data structure. This entails proving a large number of rather trivial 
lemmas, such as: 

qsizes(upds( l,j, B), n) = qsizes(B, n) 

We omit here the rather long and tedious details of these proofs. In order to establish 
that Inv3 and Inv4 are indeed invariants we first have to prove additional statements on 
the behaviour of the protocol, i.e., Inv5,[nv7,Inv6,Inv8 and Inv9 in Sections 3.4.5-3.4. 9, 
respectively. 

3.4.1. Acceptable states 

Each process is in one of the states 0, ... , 6: 
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3.4.2. Bound on the number of messages in queues 

Invariant Inv2 expresses the property that the number of processes in state 1 or 3 is 
equal to the number of processes in state 5 plus the number of messages in message 
channels. 

Inv2(B,n) = eq(nproc(B, l,n) + nproc(B,3,n),nproc(B,5,n) + qsizes(B,n)) 

where 

nproc(B,s,n) = l:j<n if(eq(gets(j,B),s), 1,0) 

qsizes(B,n) = l:j<nsize(getq(j,B)) 

3.4.3. Termination of one process implies termination of all processes 
Invariant Inv3 expresses that if a process is in state 6, then all processes are either 

in state 4 or state 6. It is provable using invariant Inv9 . 

lnv3(B,n) = (3j<neq(gets(j,B),6))--+ Vj<neq(gets(j,B),4) or eq(gets(j,B),6) 

3.4.4. Max is preserved 
In the initial state, init(n ), the maximal identifier in the ring is equal to max. 

Invariant Inv4 expresses that this value cannot be lost. The invariants Invs, Inv1, Inv6 

are needed to establish Inv4. 

Inv4(B,n) = 3j<nActiveNode(max,j,B) or ActiveChan(max,getq(J,B)) 

where 

ActiveNode(k,j,B) = 
(eq(gets(j,B), 0) and eq(getd(j,B),k)) or 
((eq(gets(j,B), 2) or eq(gets(j, B), 3) or eq(gets(j,B), 6)) and 
eq(gete( j, B), k)) or 
(eq(gets(J,B), 5) and getb(j,B) andeq(getd(j,B),k)) 

ActiveChan(k, q) = 
if(empty(q),f,(hdb(q) and eq(k,hd(q))) or ActiveChan(k,tl(q))). 

An identifier has not been lost if it can in the future be received by another process 
and replace the value of the d variable of that process. Identifiers can be stored either 

in a variable (ActiveNode) or in a channel (ActiveChan). 

3.4.5. Trivial facts 
Inv5 formulates two trivial protocol properties, that all identifiers are less than n 

(less than or equal to the maximal identifier max), and that the values of variables d 

and e differ when a process is in state 3. 

Invs(B,n) = 
Vj<nBoundedq(getq(j,B),n) and 
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getd(j, B) < n and gete(J, B) < n and 
if ( eq(gets( j, B), 3 ), not eq(getd( j, B ), gete( j, B) ), t) 

where 

Boundedq(q,n) = if(empty(q),t,hd(q) < n and Boundedq(tl(q),n)). 

3.4.6. Active and passive messages 
The invariant Inv6 characterises the relation between neighbour processes and channel 

contents. 

Inv6(B,n) = \fj<nAlt(j,B,n) 

where 

Alt(j,B,n) = 
if ( eq(gets( j, B), 0) or 

eq(gets(j, B), 3) or 
(eq(ge(,(j,B),4) and not getb(j,B)) or 
(eq(get,(j, B), 5) and getb(j, B) ), 
secondary(getq( j, B),j, B, n ), 
primary(get4(j, B),j, B, n)) 

primary(q,j,B,n) = 

if(empty(q), 
eq(getsU +n I ,B), 2) or eq(getsU +n 1, B), 3) or eq(getsU +n I, B), 6) or 
((eq(get,U+n l,B),4) or eq(getsU+n l,B),5)) and getbU+n l,B)), 
hdb(q) and secondary(tl(q),j,B,n)) 

secondary(q,j,B,n) = 
if(empty(q), 

eq(getsU +n 1, B), 0) or eq(getsU +n 1, B ), 1) or 
((eq(getsU +n l,B),4) or eq(getsU +n l,B), 5)) and not getbU +n l,B)), 
not hdb(q) and primary(tl(q),j,B,n)). 

This rather complex looking invariant captures the protocol property that there are two 
kinds of messages sent: active messages which are received by the following process 
as values on the e variable and which can subsequently replace the d value of the 
process. The passive messages are received as values on the f variables (state 3) and 
will not replace the original d value of the process. 

The Alt property guarantees that an active message can never be received as a 
passive message (or vice versa), i.e., neighbour processes and channels are always 
kept synchronised by the protocol. Inv6 is needed to establish the invariants Inv 8 and 
Inv4 , to guarantee that identifiers are neither duplicated nor lost. 

In order to prove lnv6 in particular the following two lemmas are useful. Lemma61 al­
lows to conveniently prove that secondary(getq(j, B),j, B) implies secondary(getq(J, B' ), 
j, B ), assuming that the channels getq(J, B) and getq(J, B') are identical. 
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lemma61 (B,B',n) = 

VJ<neq(getq(J,B),getq(J,B'))-+ 

(secondary(getq(), B),j, B, n) -+ secondary(getq(), B' ),j, B', n)) ....-. 

(even(size(getq(J,B)))-+ (secondary(q0 ,j,B,n)-+ secondary(q0 ,j,B',n))) and 

(not( even(size(getq( j, B))))) -+ (primary( qo,j, B, n) -+primary( q0 ,j, B', n))) ). 

Similarly, Lemma62 is convenient for proving that the transition from state 3 to state 

4 preserves the invariant: 

lemma62(B, n) = 

'\/J<n(Alt(j,B,n) and not empty(j,B) and secondary(getq(j,B),j,B,n) and 

eq(getsU +n l,B),3)-+ not toeb(j,B)). 

3.4. 7. Consecutive identifiers are distinct 

Jnv7 guarantees that when an identifier in an active position follows an identifier in 

a passive position, the identifiers are distinct. This invariant depends on lni:5 and lnv6. 

Inv1(B,n) = '\/J<nCons(j,B,n) 

where 

Cons(j, B, n) = 
Consq(getq(),B),j, B, n) and 

if ( eq(gets(j, B ), 5) and not getb(j, B), 

Neq q(getd( j, B ), getq(J,B),j, B, n ), 
if( eq(gets(j, B), 1) or eq(get,(j, B), 2 ), Eq,/yetd(j, B ), getq(j, B),j, B, n ), t)) 

Cons,/q,j, B, n) = 
if'(empty(q), t, Consq(tl(q),j,B,n) and {f'(hch(q), t,Neq4(hd(q), tl(q),j,B,n))) 

Neq(k,j,B,n) = 
( (eq(get,(j, B), 2) or eq(gets(j, B), 3)) and not eq(gete(j, B), k)) or 

(eq(gets(j,B),4) and NeqqCk,getq(j,B,n),j,B,n)) or 

(eq(gets(j,B),5) and getb(j,B) and not eq(getJ(j,B),k)) 

Neqq(k,q,j,B,n) = (f'(empty(q),Neq(k,j +n l,B,n),hdb(q) and not eq(hd(q),k)) 

Eq(k,j,B,n) = 
( ( eq(get,(j, B), 2) or eq(get,(j, B), 3)) and eq(gete(j, B), k)) or 

( eq(gets(j, B ), 4) and Eq4 (k, getq(J, B, n ),j, B, n)) or 

( eq(gets(j, B), 5) and geth(j, B) and eq(getd(j, B), k)) 

Eq/k,q,j,B,n) = if(empty(q),Eq(k,j +n l,B,n),hdb(q) and eq(hd(q),k)) 

3.4.8. Uniqueness of identifiers 
fnv 8 expresses the fact that identifiers can occur in at most one active position in 

the ring of processes. lt is provable with the help of lnv6. 

lnv8(B, n) = Vk<nCount(B,k,n) ~ 1 
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where 

Count(B,k,n) = Lj<nif(ActiveNode(k,j,B), 1,0) 

+ Lj<n ActiveChanOcc(k,getq(J,B)) 

ActiveChanOcc(k,q) = 
if(empty(q),O,if(hdb(q) and eq(k,hd(q)), 1,0) + ActiveChanOcc(k,tl(q))) 

Intuitively, the definition of Count counts the number of times an identifier occurs in 
an active position, i.e., in a position such that the identifier can be transmitted and 
received by another process and later replace the d value of that process. An identifier 
in an active position can either occur in a variable (ActiveNode) or in a channel 
( ActiveChanOcc ). 

3.4. 9. Identifier travel creates relay processes 
Inv9 points out that if two processes contain the same identifier (k) then the processes 

in between are guaranteed to be in state 4 and the connecting channels all empty. It 
is provable using Invs. 

lnv9(B,n) = 
Vk<nVi<n(eq(gets(i,B), l) or eq(ge(,(i,B),2)) and eq(getd(i,B),k)-+ 

(Vj<neq(gets(j,B),O)-+ not eq(getd(J,B),k)) and 
(Vj<nActiveNode(k,j,B) -+ empty(i, B) and EmptyNodes(i,j, n, B)) and 
(Vj<nActiveChan(k,getq(J,B))-+ 

eq(hd(J,B),k) and hdb(J,B) and 
if(eq(i,j),t,eq(gets(J,B),4) and empty(i,B) and EmptyNodes(i,j,n,B))) 

where 

EmptyNode(j,B) = eq(gets(J,B),4) and empty(J,B) 
EmptyNodes(i,j,n,B) = 

if(i < j,V;<1<jEmptyNode(l,B),(V1<jEmptyNode(l,B)) and 
(V;<1 <nEmptyNode(l,B))) 

3.5. Convergence of the protocol 

In this section we prove that the linear process X is convergent, i.e., that we can find 
a decreasing measure on the data parameter over the r-steps in the X process operator. 
This result implies that all sequences of r-steps are finite, which is a necessary condition 
for applying the Concrete Invariant Corollary. We prove that the function Meas defined 
below is a decreasing measure, and thus proving convergence. 

Meas(B,n) 

= Lj<n[if(eq(gets(J,B), 0), (n - getd(J,B) + 2) 6 n3, 

if(eq(get,,(j,B), 1 or eq(gets(J, B), 2), (1 + n - getd(J, B)) 6 n3 + 3 113, 
if(eq(gets(j,B),3),(I +n - getd(J,B))6n3,0))))] 
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+ Lj<n Lk<Size(yetq(i,B)) Terrn(j,B,k) 

+ Li<n if(eq(gets(j,B), 5), 1 + TerrnU +n 1, B, size(getq(J, B) )), 0). 

Term(j,B,st) 

+if([eq(st, 1) and (eq(get8 (},B), 0) or 

eq(get,,.(j,B), 1))) or [eq(st,O) and ge[,.(j,B) "( 3], 1, 

2 + TermU +n 1,8,size(getq(J,B)) + st 

+if ( eq(gets(j,B), 5 ), I, 0) - if(eq(get8 (j, B), 1, 3 ), 1, 0) ). 

473 

We have a sequence of theorems that are useful to show that Meus(B,n) shows that 

all r-sequences in X are finite. 

Lemma 3.4. {/' n > 0, 0 ~ j,k < n and 

k 

st < 'l:,U/'( eq(gets(i, B), 1) or eq(gets(i, B), 3 ), 1, O )-if( eq(get,,.(i, B), 5 ), 1, O) 
i=j 

-si::e(getq(i-,, l,B))] +size(getqU-n l,B)). 

then 

1. Term(j,B,st) ~ 2(k-,,j) + 1. 

2. If gets(J,B) = 5 and B' = inq(d,b,j, upds(4,j,B)) 

then Term(i,B',st) = Term(i,B,st). 

3. If get_,.(j,B) = 4, B' = untoeU -,, I, upds(S,j,B)) 

then Term(i,B',st) ~ Term(i,B,st + if(eq(i,j), 1,0)). 

Proof. All statements are proven by induction on (k -,, j). D 

Corollary 3.5. 
1. For n > 0 and 0 ~ k < n we find Term(k,B,st) < 2n provided st < 

size(getq(k, B) ). 
2. If get8 (j,8) = 5, B' = inq(d,b,j,upds(4,j,B)) and st < size(getq(i,B)) then 

Term(i,B',st) ~ Term(i,B,st). 

3. Ifge(,(j,B) = 4, st < size(getq(i,B)), i -f:-j, B' = untoeU-,, l,upds(S,j,B)) then 

Term(i,B',st) ~ Term(i,B,st). 

Proof. Respectively, instantiate case l of Lemma 3.4 with j = k +,, I; case l with 

k = l -,, 1 and j = l +,, 1; case 2 with j = k +n l and at last case 3 with j = k +n 1. D 

Lemma 3.6. 

gets(j,B) = 0-> Meas(upds(l,j,B),n) + 3n3 ~ Meas(B,n), 

get8 (j,B) = 1 _, Meas(upd5 (2,j,B),n) = Meas(B,n), 

get,,(j,B) = 2 _, Meas(upds(3,j,B),n) + 3n3 ~ Meas(B,n), 

get5 (j,B) = 3-> Meas(upd8 (0,j,B),n) "( Meas(B,n), 
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oet,(j,B) = 3 __, Meas(upds(4,j,B),n) < Meas(B,n), 

11ets(j,B) = 0-> Meas(inq(getJ(J,B),b,j,B),n) < Meas(T,n) + 3n3 , 

yet,(j,B) = 2 _, Meas(inq(gete(j,B),b,j,B),n) < Meas(B,n) + 3n3, 

qet,(j, T) = I __, Meas(untoeU- 11 1,B),n) < Meas(B,n), 

gets(j,B) = 3 _, Meas(untoeU- 11 1,B),n) < Meas(B,n), 

gets(j,B) = 4 _, Meas(upds(S,j,B),n) < Meas(B,n), 

fjet,(j,B) = 5 __, Meas(upds(4,j,B),n) < Meas(B,n), 

yet,(j,B) = 4 _, i\:feas(in,1(f;etJ(J,B),b,j,B),n) < Meas(B,n), 

gets(j,B) = 5 _, Meas(untoeU-- 11 l,B),n) < Meas(B,n). 

Theorem 3.7. X is converyent. 

Proof. This follows as with the help of Lemma 3.6 it is straightforward to see that 
:Hms(B,n) is a decreasing measure. D 

Remark 3.8. The measure Meas is certainly not optimal. It suggest that the algorithm 
requires about 6114(11+2) actions to select a leader. This is a very rough measure; look­
ing at the far sharper bound in [ l OJ suggests that the bound can actually be improved 
to 4n log2 n + 2n actions. However, we did not try this yet. 

3.6. Final calculations 

We now prove the following crucial lemma that links the leader action to X. 
But first we provide an auxiliary function that expresses that no process j < n is in 
state 6. 

Definition 3.9. 

nonsix(B, 11) = VJ<nnot eq(get,(J. B), 6 ). 

Lemma 3.10. The invariants Inv 1(B,11 ),. . ., Inv4(B, 11) imply: 

X ( B, n) =(leader i5 <J nonsix(B, n) r> i5) <J FC(B, n) r> '(leader i5 <J nonsix( B, n) r> (5 ). 

Proof. We show assuming the invariants Inv 1 (B, n ), ... ,Inv4(B, n) that 

)"B: Tahle, n :Nat.(leader b <J nonsix(B, n) r> 6) <J FC(B, n) 

r:>r (leader 6 <J nonsix(B, n) r> 6) 
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is a solution for X in (I). As (I) is convergent, the lemma follows from the Concrete 

Invariant Corollary (see [4]). First suppose FC(B,n) holds. This means that we must 

show that 

leader b <1nonsix(B,n)1> () 

= L leader (leader b <J nonsix(upd,( 6,j, B)) 1> b) 
j:Nat 

<I eq(gets( j, B), 2) and eq(getd(j, B), gete(.i, B)) and j < n I> cl. 

(1) 

Note that it follows from FC(B,n) that the other summands of (I) may be omitted. 

As nonsix(mathitupds(6,j,B)) = f, Eq. (1) reduces to: 

leader b <J nonsix(B, n) 1> b 
= L leader b <I eq(gets(.i, B), 2) and eq(getd(.i, B ), get,,(}, B)) and j < n r> t). 

j:Nat 

Now assume nonsix(B,n). From FC(B,n) and Inv 1(B,n) is follows that 

'v';<nl ~ gets(j,B) ::$; 4. 

(2) 

(3) 

First we show that 3; <neq(gets(.i,B), 2) and eq(getd(.i, B), get,,(j, B)). Now suppose 

3j<neq(gets(j, B), l) or eq(gets(.i, B), 3 ). 

Hence, using Jnv2(B,n) and nproc(B, !,n)+nproc(B,3,n) > 0 and (3), it follows that 

qsizes(B,n) > 0. Hence, 3;<1l'~izeU -n l,B) > 0. Hence, using the focus condition 

and Inu 1 (B, n ): 

3; <neq(gets(.i, B), 2) and eq(getd(j, B), gete(.i, B) ). 

Now suppose 

not 3j <neq(gets(j, B), 1) or eq(gets(.i, B), 3 ). 

Hence, using (3) it follows that 

'lf;<neq(gets(.i,B),2) or eq(gets(j,B),4). (4) 

Now assume 

'If; <neq(gets( j, B), 4 ). 

But this contradicts Jnv4(B, n) in conjunction with Inv2(B, n ). Hence, using ( 4) it 

follows that 

3 J <neq(yets( j, B ), 2 ). 

From this and FC(B, n) it follows that 

3 J <neq(gets(.i, B), 2) and eq(yetd(j, B), get,,(j, B)). 
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Hence, using SUM3 (see appendix) the right-hand side of (2) has a summand 

leaderc5. (5) 

But using some straightforward calculations (5) has the right-hand side of (2) as a 

summand. Hence, if nonsix(B, n) then (2) is equivalent to 

leader c5 = leader c5 

which is clearly a tautology. Now assume not nonsix(B, n ). Hence, 31 ~neq(gets(j, B), 6 ). 

Using /m13 ( B, n) it follows that 

VJ <neq(gets(j, B), 4) or eq(gets(J,B), 6). 

Hence (2) reduces to 

which is clearly true. Now suppose the focus condition does not hold, i.e., not FC(B, n ). 
We find (where we use that n > 0 and Milner's second r-law (T2)): 

r (leader c5 <J nonsix(B, n) 1> c5) = 
L r (leader c5 <J nonsix(B, n) r:> c5 )<l j < n r:> o+ 

}:Nat 
I: leadero 

}:Nat 
<inonsix(B,n) and eq(gets(J,B),2) and eq(getd(J,B),gete(J,B)) and j < n C> c5 

(6) 

Now note that it follows from lnv3(B, n) that if 3J<neq(gets(j, B), 2 ), then nonsix(B, n ). 
So, ( 6) reduces to: 

LJ:Nar r(leader c5 <J nonsix(B, n) and j < n C> c5)+ 
LJ:Natleaderc5<ieq(gets(J,B),2) and eq(getd(J,B),gete(J,B)) and j < nr:>c5 = 
(LJ:Nat r (leader c5 <J nonsix(B,n) and j < n C> c5) <J not FC(B, n) C> b)+ 

LJ:Nat leader c5 <J eq(gets(J, B), 2) and eq(getd(j, B), gete(J, B)) and j < n C> c5 = 
LJ:Nat r (leader fJ 

<J nonsix(u pds( l,j, inq(getd(j, B),j,B) ), n) C> b) <J eq(gets(},B), 0) and 
j < n I> c5+ 

LJ:Nat r (leader fJ <J nonsix(untoe(j -n 1, u pde(toe(j -n l ,B),j, upds(2,j,B)) ), n) C> c5) 
<J eq(gets(J, B), I) and not empty(} -n 1, B) and j < n 1> c5+ 

LJ:Nat leader (leader fJ <J nonsix(u pds(6,j, B), n) 1> c5) 

<J eq(gets(j, B), 2) and eq(getd(j, B), gete(J, B)) and j < n C> c5+ 
LJ:Nat r (leader b <J nonsix(u pds(3,j, in(gete(J, B),j, B)), n) C> c5) 

<Jeq(gets(J,B),2) and not eq(getd(J,B),gete(J,B)) and j < n 'i> <>+ 
LJ:Nut( r (leadero <J nonsix(untoe(j -n 1, u pdd(gete(J,B),j, upds(O,j,B)) ), n) r:> c5) 

<Jgete(J,B) > max(getd(J,B),toe(j -n l,B))r:> 
r(leaderb <J nonsix(untoe(j -n I, upds(4,j,B)),n) C> c5)) 
<ieq(gets(J,B),3) and not empty(} -n l,B) and j < n C> c5+ 



L. Fredlund et al. I Theoretical Computer Science 177 ( 1997) 459-486 

L;Nai r (leader() <1 nunsix(untoeU -n I, mathitu pdJ(toeU -" I ,B),j, 

upd8(5,j,B))),n) L> 6) 

<Jeq(yets(J,B),4) and not emptyU -n l,B) and j < n L> c5+ 
L;:Nat r (leader c5 <1 nonsix(inq(getJ(J, B),j, upds( 4,j, B) ), n) L> c5) 

<Jeq(gets(J,B), 5) and j < n t> o 
Because FC(B, n) = f, nearly all the summands given above are equal to !5. D 

3. 6. 1. Proving Theorem 2.1 

Finally we are ready to prove that the main theorem of the paper holds, 1.e., 

n > 0 --+ Spee( n) = deader o 

Proof. Using Lemma 3.3 we know 

Spec(n) = X(init(n),n). 

From Lemma 3.10 it then follows that 

Spec(n) = 
(leader 6 <1 nonsix(init(n ), n) t> !5) <1 FC(init(n ), n) 

M (leader 6 <1 nonsix(init(n ), n) t> c5 ). 

477 

However, FC( init(n ), n) is not true if n > 0 while nonsi:x(init(n ), n) is true. Therefore 

n > 0--+ Spec(n) = rleader6 

is true. D 

4. Conclusion 

We have outlined a formal proof of the correctness of the leader election or extrema 

finding protocol of Dolev et al. in 11CRL. The proof is now ready to be proof checked 

conform [2, 15, 17, 21]. 

It is shown that process algebra, in particular pCRL, is suited to prove correctness of 

non-trivial protocols. A drawback of the current verification is that it is rather complex 

and lengthy. A possible lead towards improvement is given by Frits Vaandrager in [22], 

where by using the notion of confluency (see e.g. [19]) one only needs to consider 

one trace to establish correctness. Currently we are formalising this notion in [14]. We 

expect that using this idea our proof can be simplified significantly. 

Appendix A. An overview of the proof theory for µCRL 

We provide here a very short account of the axioms that have been used. We also 

give the Concrete Invariant Corollary for referencing purposes. 
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Table I 
The axioms of ACP in 11CRL 

Al 
A2 
A3 
A4 
AS 
A6 
A7 

CM! 
CM2 

CM3 
CM4 
CMS 
CM6 
CM7 
CM8 
CM9 

x+y=y+x 
A2x + (y + z) = (x + y) + z 
x+x=x 
(x + y) · z = x · z + y · z 
(x · y) · z = x · (y · z) 

x+i5=x 
,\. x = i5 

x II y = x lly + y llx + x\ y 
a llx =a· x 

a · x ll_y =a· (x II Y) 
(x + y) ll:: == x llz + y ll.: 
a·xlhc=(alh)·X 
alh·x=(alb)·x 
a·xlb· y = (alb)· (x II y) 
(x + y)lz =xlz + ylz 
x I (y + z l = x I y + x I z 

Table 2 

CF 

COJ 
C02 
CTJ 

CT2 

DO 
OT 
Dl 
02 
03 
04 

Axioms of standard concurrency (SC) 

(x ll_y) llz =x ll(y II z) (xly)lz =xl(ylz) 

n(i) I m(t) 

= { y(n, m )(t) 
i5 

151x = i5 
xiii= i5 
rlx = 6 
xlr = 6 

CH(<))= i5 
DH(r) = r 

if y(n,m) l 
otherwise 

CH(n(i)) = n(I) if n $. H 
2H(n(/)) = i5 if n EH 
ih1(x + y) = cH(x) + CH(Y) 
Of!(X. y) = Cf!(X). OH(Y) 

x 11 i5 = xo x I (a y llz) = (x I a y) llz 
xly=ylx xl(ylz)=i5 Handshaking 

All the process algebra axioms used to prove the leader election protocol can be 
found in Tables 1-6. We do not explain the axioms (see [1, 4, 13]) but only in­
clude them to give an exact and complete overview of the axioms that we used. 
Actually, the renaming axioms are superfluous, but have been included for complete­
ness. 

Besides the axioms we have used the Concrete Invariant Corollary [ 4] that says 
that if two processes p and q can be shown a solution of a well founded recursive 
specification using an invariant, then p and q are equal, for all starting states where 
the invariant holds. It is convenient to use linear process operators, which are functions 
that transform a parameterised process into another parameterised process. If such an 
operator is well founded, it has a unique solution, and henceforth defines a process. 
Note that if a linear process operator is applied to a process name, it becomes a process 
in Unity fomrnt. 

Definition A.l. A linear process operator P is an expression of the form 

).p :D-+'f!l).d:D.'[", '[", c;(f;(d, e;)}p(g;(d, e; )) <1 b;(d,e;) C> b+ 
iE!e,:D, 

'[", 'f",c;u;cd,e,))<1b;(d,e;)e>6 
iEI' ei :D~ 
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Table 4 

Table 3 

Axioms for abstraction 

TIO r1(6) = 6 
TIT r1(r)=r 
Tll r1(n(/)) = n(i) 

TI2 r1(n(i)) = r 
Tl3 r1(x + y) = r1(x) + r1(y) 

TI4 r1(x · y) = r1(x) · r1(y) 

Axioms for summation. 

SUMI 

SUM2 

SUM4 

SUMS 

SUM6 

SUM7 

LdD(p) = p 

Ldo<P) = Le:D(p[e/d]) 

Ld:D(p1 + P2) = Ld:D(P1) + Ldo(P2 l 

LJ0 (P1 · P2) = Ld0 (pi) · P2 

LJ:0(P1 llP2) = Ld:D(p1 JllP2 

Ld1/P1 lp2) = 2:d:D(p1)lp2 

SUMS 2°:d 0 (1\1(p)) = c7H(Ld:D(p)) 

SUM9 "£d 0(r1(p)) = r1(Ldo(P)) 

SUM! 1 

Q 
PI= P2 

Table 5 

if n If: I 
if n EI 

Axioms for the conditional construct and 

Boo I 

CONDI 
COND2 

BOOLJ 
BOOL2 

x<1t1>y = x 
x<1f1>y=y 

-,(t = f) 
-,(/J = t) ~ h = f 

if d not free in p 

if e not free in p 

if d not free in P2 

if d not free in p2 

if d not free in p2 

provided d not free in 
the assumptions of g 

for some finite index sets I,J', actions c;,c;, data types D;,D[,Dc, and De;, functions f;: 
D--+D;-+Dc,, g;: D--+D;--+D, b;: D-+D[-+Bool, f!: D-+D[-+Dc;, b;: D-+D;-+Bool. 

Definition A.2. A linear process operator (LPO) If' written in the form above is called 

convergent iff there is a well-founded ordering < on D such that g;(d,e;) < d for all 

d E D, i EI and e; E D; with c; = r and b;(d, e; ). 
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Table 6 
Somer-laws 

BI 
B2 

xr = x 
rx = rx+x 

Corollary A.3 (Concrete invariant corollary). Assume 

</> = ).p :D-+'P.Ad:D.L, L, c1(/;(d, e1 )) · p(g1(d, ei )) <J b1(d, e1) t> <5+ 
}EJ e/D1 

L, L,cj(fj(d,e1 ))<Jb'/d,e1 )t><5 
}EJ' e;:D; 

is a LPO. If for some predicate I : D-+Bool 

).pd.</> pd <J l(d) t> fJ is convergent, and 

l(d) I\ b1(d,e1)-+ l(g1(d,e;)) for all j E J, d ED and e1 E D1, 

i.e. I is an invariant of</>, and for some q : D-+'P, q' : D-+'P we have 

then 

l(d)-+ q(d) == <Pqd, 

l(d)-+ q'(d) == <Pq'd, 

l(d) -+ q(d) == q'(d). 

Appendix B. Data types 

B.!. Booleans 

sort Bool 
cons t, f : _, Bool 
func not : Bool -.. Bool 

and , or , eq : Bool x Bool -+ Bool 
if : Bool x Boo! x Bool -+ Boo! 

var b, b' : Bool 
rew not t == f 

not f == t 

t and b == b 
f and b = f 
t or b == t 

f or b == b 
eq(t, t) == t 
eq(f, f) == t 

eq(t, f) == f 
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eq(f, t) = f 
if(t,b,b') = b 
if(f,b,b') = b' 

B.2. Natural numbers 

sort Nat 

cons 0 :--+Nat 

S: Nat--+ Nat 

func 1,2,3,4,5,6 :--+Nat 
P: Nat--+ Nat 

even : Nat --+ Bool 
+, -, *• max : Nat x Nat --+ Nat 
eq, ~ , :::;;; , < , > : Nat x Nat --+ Bool 
if : Bool x Nat x Nat --+ Nat 

var n,m: Nat 

rew I = S(O) 
2 = S(l) 
3 = S(2) 
4 =S(3) 
5 =S(4) 
6=S(5) 
P(O) = 0 
P(S(n)) = n 
even(O) = t 
even(S(O)) = f 
even(S(S(n))) = even(n) 

n+O=n 
n + S(m) = S(n + m) 

n-O=n 
n-S(m)=P(n-m) 

n * 0 = 0 
n * S(m) = n + n * m 
max(n,m) = if(n?: m,n,rn) 

eq(O, 0) = t 
eq(O,S(n)) = f 
eq(S(n),O) = f 
eq(S(n),S(m)) = eq(n,m) 

n~O=t 

O~S(n)=f 
n ~ S(m) = n?: m 

n:::;;m=m~n 

n>m=n~S(m) 
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n<m=S(n)~m 

(t(tn,m) = n 
(((f,11,m) = m 

B.3. lvfodulo arithmetic 

func mod : Nat x Nat --7 Nat 
+,-:Nat x Nat x Nat-+ Nat 

var k,m.n:Nat 
rew mmodO = m 

mmod S(n) = (((m ~ S(n),m - S(n)mod S(n),m) 
k +,, m = k + m mod n 
k - ,, m = ij(k mod n ~ m mod n, k mod n - m mod n, n - m mod n - k mod n) 

B.4. Queues 

We use two kind of queues which are subtlely different. The first is of sort Queue 
with the usual operations. The second is of sort Queueb which is similar to Queue 
except that a boolean is added for technical purposes. The specification of Queueb is 
given below. We do not present the data type Queue here because it can be considered 
as a simple instance of Queueh as follows: omit the functions hdh, toeb and remove 
all boolean arguments. For example, in : Nat x Boo] x Queueh -+ Queueh corresponds 
with in : Nat x Queue-+ Queue. 

sort Queueh 
cons q0 ;--7 Queueb 

in: Nat x Boo! x Queueb -+ Queueb 
func rem : Nat x Queueh --7 Queueb 

tl, untoe : Queueh --> Queueh 
con: Queue6 x Queueh --> Queueb 
hd, toe : Queueb --> Nat 
hdb : Queueh --> Boo! 
toeb : Queueb -+Boo! 
eq: Queueb x Queueh -+ Bool 
empty: Queueb--> Boo) 
test : Nat x Queue6 --> Bool 
si::e: Queueb -->Nat 
if : Boo! x Queue6 x Queue6 -+ Queue6 

var d,e:Nat 
b,c: Boot 
q, r: Queue6 

rew rem(d,qo)=qo 

rem(d,in(e,b,q)) = if(eq(d,e),q,in(e,b,rem(d,q))) 
tl(qo) = qo 
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tl(in(d,b,q)) = q 

untoe( qo) = q0 

untoe(in( d, b, qo)) = qo 

untoe(in(d, b, in(e, c, q))) = in(d, b, untoe(in(e, c,q))) 

con(qo,q) = q 

con(in(d,b,q),r) = in(d,b,con(q,r)) 

hd(q0 ) = 0 

hd(in(d,b,q)) = d 

hdb(qo) = f 
hdh(in(d,b,q)) = b 

toe(qo) = 0 

toe(in( d, b, qo)) = d 

toe(in(d, b, in(e, c, q))) = toe(in(e, c, q)) 

toeb(qo) = f 
toeb(in(d,b,qo)) = b 

toeb(in(d,b, in(e,c,q))) = toeb(in(e,c,q)) 

eq(qo, qo) = t 

eq(qo,in(d,b,q)) = f 

eq(in(d,b,q),qo) = f 

eq(in(d,b,q),in(e,c,r)) = eq(d,e) and eq(b,c) and eq(q,r) 

empty(q) = eq(size(q),O) 

test(d, qo) = f 

test(d, in(e, b, q)) = eq(d, e) or test(d, q) 

size(qo) = 0 

size(in(d, b, q)) = S(size(q)) 

if(t,q,r) = q 

if(f,q,r) = r 

B.5. Protocol states 

sort Table 

cons to :-> Table 

in: Nat x Nat x Nat x Nat x Boot x Queueb x Table---> Table 

func init : Nat ---> Table 

geld, gete, gets : Nat x Table ---> Nat 

geth : Nat x Table---> Bool 

getq : Nat x Table ---> Queueb 

updd, upde,upds: Nat x Nat x Table---> Table 

updh: Boot x Nat x Table---> Table 

u pdq : Queueb x Nat x Table ---> Table 

test : Nat x Table ---> Bool 

inq : Nat x Boo) x Nat x Table ---> Table 

hd : Nat x Table ---> Nat 
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lui;, : Nat x Table ___, Bool 
hd; : Table ---> Nat 
toe : Nat x Table __,Nat 
toeh : Nat x Table -+ Boo! 
untoe : Nat x Table __, Table 
empty : Nat x Table -+ Bool 
tl : Table ___, Table 
rem : Nat x Tahle _, Table 
Uniquelndex : Table___, Bool 
empty : Table _, Bool 
if : Bool x Table x Table --> Table 

var d,e,s.rJ),n: Nat 
B,B': Table 
b,b': Bool 
q, q' : Queueh 

rew init(n) = i{(eq(n,0),t0 ,in(n - l,id(n - l),O,O,f,q0,init(n - 1))) 
yetd(i, to)= 0 
yetd(i, in(), d, e, s, b, q, B)) = if( eq(i,j ), d, getd(i, B)) 
uete(i, lo) = 0 
yete( i, in(), d, e, s, b, q, B)) = (/(eq(i,j), e, 1;ete(i, B)) 
yet,(i, to) = 0 
yetJi, in(j, d, e, s, b, q, B)) = if( eq(i,j),s, get,(i, B)) 
yetn(i, lo) = f 
yeth(i, in(), d, e, s, b, q, B)) = if'( eq(i,j), b, geth(i, B)) 
11et,1(Uo) = qo 
getq(i, in(), d, e, s, b, q,B)) = if( eq(i,j), q, getq(i, B)) 
updd( r, i, to) = in(i, v, 0, 0, f, lfo, to) 
updd(l',i,in(j,d,e,s,b,q,B)) = if(eq(i,j), 

in(), v, e,s, b, q, 8), in(), d, e,s, b, q, u pdd( v, i, B))) 
upde(v,i,lo) = in(i,O,v,O,f,qo,to) 
upd e(t', i, in(), d, e, s, b, q, 8)) = if ( eq(i,j ), 

in(), d, v, s, b, q, B), in(), d, e, s, b, q, u pde(v, i, B))) 
upds(s, i, to) = in( i, 0, 0, s, f, q0 , to) 
upd,(v,i, in(j,d,e,s,b,q,B)) = if(eq(i,j), 

in(j,d, e, v, b, q,B), in(), d, e, s, b, q, u pd,J v, i, B))) 
upch<b',i,to) = in(i,0,0,0,b',qo,to) 
upch(b',i,in(j,d,e,s,b,q,B)) = if(eq(i,j), 

in(j,d, e, s, b', q, B), in(), d, e, s, b, q, u pdb(b', i, B))) 
updq(q',i,to) = in(i,0,0,0,f,q',to) 
updq(q',i,in(j,d,e,s,b,q,8)) = if(eq(i,j), 

in(), d, e, s, b, q', B), in(), d, e, s, b, q, u pdq(q', i, B))) 
test(i, lo) = f 
test(i,in(j,d,e,s,b,q,B)) = eq(i,j) or test(i,B) 
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untoe(i, B) = u pdq(untoe(getq(i, B) ), i, B) 

hd(i,B) = hd(getq(i,B)) 

hdb(i,B) = hdb(?Jetq(i,B)) 
hd;(t0 ) = 0 

hdi(in(j,d,e,s,b,q,B)) =j 

toe(i, B) = toe(getq(i, B)) 

toeb(i,B) = toeb(getq(i,B)) 

untoe(i,B) = updq(untoe(getq(i,B)),i,B) 

empty(i,B) = empty(getq(i,B)) 

tl(t0 ) =to 

tl(in(j,d,e,s,b,q,B)) = B 

rem(i, t0 ) = to 

rem(i, in(j,d, e,s, b, q, B)) = if(eq(i,J), B, in(j, d, e,s, b, q, rem(i, B) )) 

Uniquelndex(t0 ) = t 
Uniquelndex(in(j,d,e,s,b,q,B)) =not test(j,B) and Unil1uelnde:r(B) 

empty(to) = t 
empty(in(j,d,e,s,b,q,B)) = f 
(f(t,B,B') = B 
if(f,B,B') = B' 
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