
ELSEVIER Theoretical Computer Science 177 (1997) 459-486

Theoretical
Computer Science

Formal verification of a leader election protocol
in process algebra

Abstract

Lars-ake Fredlund a,i, Jan Friso Groote b, Henri Korver b,*,2

a SlCS, Box 1263, S-164 28 Kista, Sweden
b CWJ, Kruislaan 413, 1098 SJ Amsterdam, Netherlands

In 1982 Dolev, et al. [10] presented an O(nlogn) unidirectional distributed algorithm for the
circular extrema-finding (or leader-election) problem. At the same time Peterson came up with a
nearly identical solution. In this paper, we bring the correctness of this algorithm to a completely
formal level. This relatively small protocol, which can be described on half a page, requires a
rather involved proof for guaranteeing that it behaves well in all possible circumstances. To our
knowledge, this is one of the more advanced case-studies in formal verification based on process
algebra.

1. Introduction

Experience teaches that distributed protocols are hard to define correctly. This is not
only due to the inherent complexity of distributed systems, but it is also caused by
the lack of adequate techniques to prove the correctness of such protocols. This means
that there are no good ways of validating designs for distributed systems. The current
approach to proving correctness of distributed systems generally uses stylished fonns
of hand waving that does not always avoid the intricacies and pitfalls that often appear
in distributed systems. We are convinced that more precise proof techniques need to be
used, which should allow for computer based proof checking. Concretely this means
that a logic based approach should be taken.

The language µCRL (micro Common Representation Language) [12] has been de­
fined as a combination of process algebra and (equational) data types to describe
and verify distributed systems. In accordance with the philosophy outlined in the first

•Corresponding author. E-mail: {jfg,henri}@cwi.nl.
1 Research supported in part by the Swedish Research Council for Engineering Sciences (TFR) (project no.
221-92-722) and the HCM project EXPRESS.
2 The investigations were (partly) supported by the Foundation for Computer Science in the Netherlands
(SION) with financial support from the Netherlands Organization for Scientific Research (NWO).

0304-3975/97/$17.00 © 1997-Elsevier Science 8.V. All rights reserved
PI! S0304-3975(96)00256-3

460 L. Fredlund et al. I Theoretical Computer Science 177 (1997) 459-486

paragraph this is a very precisely defined language provided with a logical proof system
[13]. It is primarily intended to verify statements of the form

Condition -+ Specification = Implementation.

This system has been applied to verify a number of data transfer and distributed
scheduling protocols of considerable complexity [3, 11, 15, 16]. It incorporates several
old and new techniques [4, 3]. Due to the logical nature of the proof system proofs
can be verified by computer. Some sizable examples of proofs verified using the proof
checker Coq [9] are reported in [13, 17].

If one develops a new technique then it is important that it is validated that the
technique meets its purpose. For µCRL this means that it is applied to a wide range
of distributed systems. In this paper we show its applicability on Dolev et al. 's leader

election or extrema finding protocol [10] that has been designed for a network with
a unidirectional ring topology. At the same time, Peterson published a nearly identical
version of this protocol, see [20]. This protocol is efficient, O(n log n), and highly
parallel. As far as we know this is the first leader election protocol verified in a process
algebraic style. In [6, 7] a number of leader election protocols for carrier sense networks
have been specified and some (informal) proof sketches are given in modal logic.

In Section 2 we specify Dolev et al.'s leader election protocol formally in µCRL.

The protocol is proved correct in Section 3 using a detailed argument. Appendix A
summarises the proof theory for µCRL, and Appendix B defines the data types used
in the specification and proof of the protocol.

2. Specification and correctness of the protocol

We assume n processes in a ring topology, connected by unbounded queues. A
process can only send messages in a clockwise manner. Initially, each process has a
unique identifier ident (in the following assumed to be a natural number). The task
of an algorithm for solving the leader election problem is then to make sure that
eventually exactly one process will become the leader.

In Dolev et al.'s algorithm [10] each process in the ring carries out the following
task:

Active:

d:= ident
do forever

end

send(d)
receive(e)
if d=e then stop /* Process is the leader */
send(e)
receive({)
if e > max(d,f) then d:=e else goto Relay

L. Fredlund et al. I Theoretical Computer Science 177 (1997) 459-486

Relay:
do forever

receive(d)
send(d)

end

461

The intuition behind the protocol is as follows. In each round the number of electable
processes decreases, if there are more than two active processes around. During each
round every active process, i.e., a process in state Active, receives two different values.
If the first value is larger than the second value and its own value, then it stays active.
In this case its anti-clockwise neighbour will become a relay process. So, from every
set of active neighbours, one will die in every round. Furthermore, the maximal value
among the identifiers will never be lost in the ring network, it will traverse the ring in
messages, or be stored in a variable in a process, until only one active process remains.
If only one active process is left, i.e., not in state Relay, then the leader-in-spe sends
its own value of d to itself, and then halts.

As the attentive reader may have noticed, there is a simpler way to elect a leader.
For example, it would be sufficient for a process to receive just one value, i.e., the
value (e) of its direct neighbour. In this case, only two values instead of three values
have to be compared (e > d instead ofe > max(d,f)). However, this approach is not
so efficient as one may need 2n2 + 2n actions before a leader is selected. The protocol
described earlier is faster. It is bounded by 2n log n + 2n actions because in every round
at least one process becomes inactive. 3 For an explanation of these complexity bounds

one is referred to [10].
Below we formalise the processes and their configuration in the ring as described

above in µCRL.

act leader
r,s: Nat x Nat

proc Active(i:Nat,d:Nat,n:Nat) =
s(i, d) '2:.e:Nat r(i - n l, e) (leader D <J eq(d, e) T> s(i, e)

'2:.f:Nak(i -n 1,f) Active(i, e, n) <J e > max(d,f) T> Relay(i, n)))

Relay(i:Nat, n:Nat) = "£.d:Nat r(i -n I, d)s(i,d) Relay(i, n)

Here a process in the imperative description with value ident for d corresponds to
Active(i, ident, n). Intuitively the µCRL process first sends the value of the variable d
to the next process in the ring (s(i,d)) via a queue, which is described below. Then
it reads a new value e from the queue connected to the preceding process in the ring
by an action r(i -n 1,e). The notation -n stands for subtraction modulo n, which is
defined in Appendix B. Consequently, it executes a then-if-else test denoted by _<l_f>_.

If the variables d and e are equal, expressed by eq(d, e), then the process declares itself
leader by executing the action leader. Otherwise the value of e is sent (s(i, e)) and a

3 By log n, we mean log2 n.

462 L. Fredlund et al. I Theoretical Computer Science 177 (1997) 459-486

value f is read (r(i-n l,f)). Now, if e is larger than both d and J the process repeats

itself with e replacing d. Otherwise, the process becomes a relay process (denoted by

Re!ayU, n)). The leader action has been introduced in the µCRL specification of the

protocol for verification purposes; it makes visible the fact that exactly one leader is

elected.
The <) process after the leader action in the Active process is not essential. We have

inserted it for technical reasons and more details on this issue are given at the end of

this section.
In order to prove the correctness of the protocol we must be precise about the

behaviour of the queues that connect the processes. We assume that the queues have

infinite size and deliver data in a strict first in first out fashion without duplication

or loss. In the queue process data is stored in a data queue q which is specified in

Appendix B. Note that the behaviour of the queue process is straightforward; it reads

data via r(i, d) at process i and delivers it via s(i +n 1) at process i +,, 1 (+n is addition

modulo n). Below, toe(q) denotes the first element that was inserted in data queue q.

proc Q(i:Nat,n:Nat,q:Queue) = L,d:Nat r(i,d) Q(i, n, in(d, q))

+s(i +,, 1, toe(q)) Q(i, n, untoe(q))

<1 not empty(q) r> b

It remains to connect all processes together. First we state that send actions s com­

municate with receive actions r. Then, using the processes Spee' and Spee we com­

bine the processes with the queues, and assign a unique number to them. The process

Spec(n) represents a ring network of n processes interconnected by queues. The in­

jective function id : Nat --> Nat maps natural numbers to process identifiers, for

convenience also represented as natural numbers. The process identifiers are related

by the total ordering ~ . The abbreviation max will be used to denote the maximal

identifier, with respect to the ordering ~ and the number of processes n, of the set
{id(x): 0 ~ x ~ n - l}.

func id : Nat --> Nat
act c: Nat x Nat

comm rls = c
proc Spec'(m:Nat,n:Nat) =

(Active(m - l,id(m - l),n) II Q(m - l,n,q0) II Spec'(m -1,n))
<lm>Or>o

Spec(n:Nat) = '{c}a{r,s}(Spee'(n,n))

. Since the protocol is supposed to select exactly one leader after some internal negoti­

at10n we formulate correctness by the following formula, where '=' is to be interpreted
as 'behaves the same':

Theorem 2.1. For all n: Nat

n > 0---> Spee(n) = r leader()

L. Fredlund et al. I Theoretical Computer Science 177 I N97 J 459-486 463

The theorem says that in a ring with at least one process exactly one leader will be

elected after some internal activity.

In the specification of the Active process given above, we have inserted a 6 process

after the leader action. We introduced this fJ for technical convenience in our verifica­

tion. However, omitting fJ does not effect the behaviour of the leader protocol, Spee,

as a whole. In fact, if we leave out this c5 the whole system Spee still deadlocks after

perfonning a leader action as stated in Theorem 2.1. The reason for this is that Spee

can only tenninate if all processes in the system tenninate. In particular, the Relay pro­

cesses cannot terminate and evolve in a deadlock situation when a leader is selected.

So, even if the process that performs the leader action tenninates successfully (which

is not the case here), the full system will still end up in a deadlock.

As experience shows the correctness reasoning above is too imprecise to serve as a

proof of correctness of the protocol. Many, often rather detailed arguments, arc omitted.

Actually, the protocol does not have to adhere to the rather synchronous execution

suggested by the word 'rounds', but is highly parallel. One can even argue that given

the large number of rather 'wild' executions of the protocol, the above description

makes little sense. Therefore, we provide in the next sections a completely fonnalised

proot: where we are only interested in establishing correctness of the protocol and not

in proving its efficiency.

3. A proof of the protocol

The proof strategy for proving the correctness theorem consists of a number of

distinct steps. First in Section 3.1 we define a linear representation of the specification

in which the usage of the parallel composition operator in the original specification is

replaced by a tabular data structure encoding the states of processes in the network,

and actions with guards that check the contents of the data structure. The linearised

specification is proven equivalent to the original specification in Lemma 3.3. Then, in

Section 3.3, we define a (focus) condition on the tabular data structure such that if the

condition holds then no internal computation is any longer possible in the protocol, i.e.,

no r-steps can be made [3]. The focus condition is used in Lemma 3. l 0, in Section 3 .6,

to separate the proof that the linear specification can be proven equivalent to a simple

process into two parts. Lemma 3.10 together with Lemma 3.3 then immediately proves

the correctness theorem of the protocol, i.e., Theorem 2.1. The proof of Lemma 3.10

makes use of the Concrete Invariant Corollary (see Appendix A and [4]), i.e., a number

of invariance properties are defined (in Section 3.4) on the tabular data structure such

that regardless which execution step the linear specification perfonns, the properties

remain true after the step if they were true before the execution of the step. These

invariants are used to prove the equality between the linear specification and the simple

process in Lemma 3.10. In order to make use of the Concrete Invariant Corollary we

have to show that the linear specification can only perform finitely many consecutive

r-steps. This is proven in Section 3.5.

464 L. Fredlund et al. I Theoretical Computer Science 177 (1997) 459-486

3. I. Linearisatiun

As a first step the leader election protocol is described as a µCRL process in a
state based style, as this is far more convenient for proving purposes. The state based
style very much resembles the Unity format [5, 8] or the I/O automata format [5].
Following [5] we call this format the Unity format or a process specification in Unity
style. Inspection of the processes Active and Relay indicates that there are 7 different
major states between the actions. The states in Active are numbered 0, 1,2,3,6 and those
in Relay get numbers 4 and 5. The processes Active and Relay can then be restated
as follows:

proc Act(i:Nat,d:Nat, e:Nat, n:Nat, s:Nat)
=s (i, d) Act(i, d, e, n, 1) <J eq(s, 0) t> o

+ Le:Nar r(i -,, 1, e) Act(i, d, e, n, 2) <J eq(s, 1) t> c5
+leader Act(i,d,e,n,6) <Jeq(d,e) and eq(s,2) t> o
+s(i,e) Act(i,d,e,n,3) <J not eq(d,e) and eq(s,2) t> b
+ LJ:Nutr(i-,, l,f)Act(i,e,e,n,O)<Je > max(d,f) and eq(s,3)t> c5
+ Lt:Natr(i-,, l,f)Act(i,d,e,n,4) <J e < max(d,f) and eq(s,3)1> b
+ Ld:Nui r(i -,, l,d)Act(i,d,e,n,5) <l eq(s,4) t> o
+s(i, d) Act(i, d, e, n, 4) <J eq(s, 5) t> c5

Lemma 3.1. For all i,d,e,n, we have:

Active(i,d,n) = Act(i,d,e,n,O),

Relay(i,n) = Act(i,d,e,n,4).

Proof. The proof of this lemma is straightforward, using the Recursive Specification
Principle (RSP), but note that it uses a (p <Jct> q) = a p <Jct> a q as well as the
distributivity of r over +. 0

We now put the processes and queues in parallel. As we work towards the Unity
style, we must encode the states of the individual processes in a data structure. For
this we take a table (or indexed queue) with an entry for each process i. This entry
contains values for the variables d, e, s and the contents of the queue in which process
i is putting its data. Furthermore, it contains a variable of type Bool, which plays a
role in the proof. The data structure has the name Table and is defined in Appendix B.

We put the processes and queues together in three stages. First we put all processes
together, using II Act and XAct below. Then we put all queues together, via II Q and XQ.
Finally, we combine XAct and XQ obtaining the process X which is a description in
Unity style of the leader election protocol.

proc Spec(B:Table,n:Nat) = '{c}O{r.s}CIIAct(B,n) II IIQ(B,n))
IIAciB: Table, n:Nat) = (5 <J empty(B) t>

(Act(hd;(B), getd(hd;(B), B), gete(hd;(B), B), n, gets(hd;(B), B)) II
ll4,1(tl(B), n))

L. Fredlund et al. I Theoretical Computer Science 177 (1997) 459-486

n Q(B: Table, n:Nat) = 6 <1 empty(B) [> (Q(hd;(B), n, getq(hd,(B), B)) II
llQ(tl(B),n))

XAe1(B: Table, n:Nat)

= LJ:Nat s(j, getd(j, B))X4c1(upds(I,), B), n) <1 eq(gets(J, B), 0) and
test(}, B) r> 6

+ LjNat Le:Nat r(j-n l,e)X,4c1(upde(e,j,upds(2,j,B)),n)

<1eq(gets(J,B),I) and test(),B)r>b

+ LJNat leader XAci(upds(6,), B), n)

465

<1 eq(getd(), B), gete(J, B)) and eq(gets(), B), 2) and test(), B) r> c)

+Lt Nat s(), gete(), B)) X.4u(upds(3,j, 8), n)

<1 not eq(getd(J, B), get,.(), B)) and eq(gets(), B), 2) and
test(), B) r> l)

+ LfNat LrNat r(j -n l,f)X1n(updi1(geteCJ, B),j, upd,(0,j, B)), n)

<1 gete(), B) > max(getd(), B), f) and eq(yets(), B), 3) and

test(), B) r> 6

+ Lf:Nat Lj:Na1rU-n l,f)X,4Cl(upds(4,j,B),n)

<19et,,(), B) ::::; max(qetd(), B),f) and eq(qe(,(j, B), 3) and

test(j,B) r> 6

+ Ld Nat LJNat r(j -n l, d)XAc1(updc1(d,j, upds(S,j, B)), 11)

<1 eq(get,(), B), 4) and test(), B) r> 6

+ LfNm s(), getc1(J, B))XAc1(upd,.(4,j,B), n) <1 eq(yets(j, B), 5)

and test(), B) r> ()

XQ(B: Table, n:Nat)

= Ld:Nat LJNat r(),d)XQ(inq(d,j,B),n) <1 test(j,B) r> 6

+ Lj:Nat s(j +n 1, toe(),B))XQ(untoe(j, B), n) <1 not empty(), B)

and test(j, B) r> 6

The leader election protocol in Unity form is given below and will be the core

process of the proof. Note that in many cases verification of a protocol only starts

after the process below has been written down. In the description of X most details

of the description are directly reflected in corresponding behaviour of the constituents

XA, 1 and XQ. However, there is one difference. It appears that in the protocol two

kinds of messages travel around, active and passive ones. The active messages contain

numbers that may replace the current value of the d-variable of its receiver. The

passive messa.ges are not essential for the correctness of the protocol, but only used to

improve its speed. For the correctness of the protocol it is important to know that the

maximum identifier is always somewhere in an active position and that no identifier

occurs in more than one active position. In order to distinguish active from passive

messages, we have added a boolean b to each message in the queues, where if b = t

the message is active, and if b = f the message is passive. When processes become

Relays then they also act as a queue. Therefore, we have also added a boolean b

466 L. Fredlund et al. I Theoretical Computer Science I 77 (1997) 459-486

to the process parameters, to indicate the status of the message that a process in
state 5 is holding. The equation below is referred to by (I) in the remainder of the
proof.

proc X(B:Table,n:Nat)
= L;:Nar r X(upds(l,j, inq(getd(J,B), t,j,B)), n) <1 eq(gets(j,B), 0) and

J<nt>J
+ L;:Nat rX(untoe(J-n l,upde(toe(J-n 1,B),j,upd.1(2,j,B))),n)

<J eq(gef,(j, B), I) and not empty(} - n 1, B) and j < n C> J
+ Lrva1 leader X(upds(6,j,B), n)

<Jeq(gets(J,B),2) and eq(getd(j,B),geteCJ,B)) and j < n t> 6
+ L;:Nat T X(upds(3,j, inq(gete(J, B), f,j, B)), n)

<1 eq(getsCJ, B), 2) and not eq(getd(j, B), geteCJ, B)) and
j<nt>!J

+ L;:Nat T X(untoe(j -n 1, updd(gete(J, B),j, upd.,(O,j, B))), n)
<Jgete(J,B) > max(getd(J,B),toe(j -n l,B)) and
eq(gets(J,B),3) and not emptyU-n 1,B)j < n C> 6

+ L;.Nat rX(untoeU-n l,upds(4,j,updb(toeb(J- 11 l,B),j,B))),n)
<Jget,.(j,B) ~ max(gett1CJ,B),toe(J-n l,B)) and

eq(get,(j,B),3) and not empty(}-,, l,B)j < n e> 6
+ LjNar rX(untoe(j -n l,updt1(toe(j -n 1,B),j,

upd_,.(5,j,updb(toeb(j -,, l,B),j,B)))),11)
<1 eq(gets(J, B), 4) and not empty(} - 11 1, B) and j < n t> 6

+ L;:Nat rX(inq(getd(j,B), getb(J,B),j, upds(4,j,B)), n)
<1 eq(gets(J, B), 5) and j < n t> 6

Definition 3.2. The function init: Nat -+ Table, which is used for denoting the initial
state of the protocol, is defined as follows:

init(n) = ~((eq(n, 0), t0, in(n - 1, id(n - 1),0, 0, f, q0 ,init(n - I))).

See also Section 8.5.

Lemma 3.3. For all B: Table and m,n: Nat
I. Uniquelndex(B)-+ IIAci(B,n) = XAci(B,n),
2. Uniquelndex(B)-+ IIQ(B,n) = XQ(B,n),
3. Uniquelndex(B) /\ test(j,B) = j < n -+ S pec(B, n) = X(B, n),
4. Spee' (m, n) = IIActUnit(m), n) II II Q(init(m), n),
5. Spec(n) = Spec(init(n), n),
6. Spec(n) = X(init(n),n).

L. Fredlund et al. I Theoretical Computer Science 177 (/997 J 459 486 467

Proof.
1. A standard expansion using induction on B (cf [17]).

2. Again a straightforward expansion.

3. Spec(B,n) = T{c}O{r,s}(IIAct(B,n) II IIQ(B,n)) = r{c}C{r,s}(·X:fr1(B,11) I\ XQ(B,n)).

Now expand XAc1(B, n) II XQ(B, n) and apply hiding. The equations obtained in

this way match those of X(B,n), except that 'j < n' is replaced by 'test(j,B)'

or 'test(j,B) and test(} -n l,B)'. As X is convergent (proven in Lemma 3.7) it

follows with the Concrete Invariant Corollary [4] that Spec(B,n) and X(B,n) are

equal. The invariant 'test(), B) = j < n' is used and easy to show true.

4. By induction on m, using associativity and commutativity of the merge.

5. Directly from the previous case, i.e. Lemma 3.3.4.

6. Directly using cases 3 and 5. D

3.2. Notation

In the sequel we will for certain property formulas </J(j) write

\:/j<n<f>U) for </>'(O,n) and \:/i<j<ncfJ(j) for c/J'(i + l,n)

and

:JJ<n<f>CJ) for </>"(O,n) and :Ji<J<nc/J(j) for </J"(i + l,n)

where c// (j, n) and <f/' (j, n) are defined by:

cp'(j,n) = if(j ~ n,t,cp(j) and cp'(j + l,n)),

c/J"(j,n) =if(}~ n,f,c/J(j) or</!"()+ l,n)).

Summation over an arithmetic expression }'(}) can be written

'£j<ny(j) for y'(O,n)

where

y'(j,n) = ~l(J ~ n,0,y(j) + }i(J + l,n)).

Note that if we can prove that

(j < n and </J(j)) -> lf;(j),

then we can also show that

\:/j<nc/J(j)-> 'lf,;<nl/J(j) and

:l;<n<fi(j) -> :l;<nl/J(j).

Also note that

not (\:/;<n<f>U)) = :l;<n not cp(j) and

not (:l;<n<f>CJ)) = '7;<n not </J(j)

468 L. Fredlund et al. I Theoretical Computer Science 177 (1997) 459-4/:16

3.3. Focus condition

The focus condition FC: Table x Nat --> Bool indicates at which points the leader
election protocol cannot do r-steps. This means it can either do nothing, or do a leader

action. The focus condition is constructed in a straightforward fashion by collecting

the conditions for the r-steps in process X.

FC(B,n) =
Vj<n not eq(gets(j,B),0) and

(not eq(gets(j,B),l) or emptyU-n I,B)) and
(not eq(gets(j,B),2) or eq(getd(j,B),gete(j,B))) and
(not eq(gets(j,B),3) or emptyU-n I,B)) and
(not eq(get . .(j,B),4) or emptyU-n l,B)) and
not eq(gets(j,B),5)

3.4. Some invariants of X

In this section we state four invariants (Jnv1,. • .,Inv4) of the process X(B,n) that
are used in Section 3.6 to prove the correctness of the protocol. We prove that the
predicates below are indeed invariance properties in a traditional manner. First we
show that they hold in the initial state of the protocol, i.e., for invariant Inv; we show
lnt';(init(n),n). Then for each protocol step (there are eight such steps in the linearised
process X) we show that if both the precondition of the step holds and the predicate
holds in the state before the protocol step, then the predicate holds also in the state that
is the result of performing the step. For example, to prove that Inv2 is an invariance
property we need to establish that the first step in X preserves the property, i.e., that

eq(ge(,(j, B), 0) and j < n and lnv2(B, n) --> Inv2(upds(l,j, inq(getd(j,B), t,j, B)), n)

where B is a tabular data structure. This entails proving a large number of rather trivial
lemmas, such as:

qsizes(upds(l,j, B), n) = qsizes(B, n)

We omit here the rather long and tedious details of these proofs. In order to establish
that Inv3 and Inv4 are indeed invariants we first have to prove additional statements on
the behaviour of the protocol, i.e., Inv5,[nv7,Inv6,Inv8 and Inv9 in Sections 3.4.5-3.4. 9,
respectively.

3.4.1. Acceptable states

Each process is in one of the states 0, ... , 6:

L. Fredlund et al. I Theoretical Computer Science 177 (1997) 459-486 469

3.4.2. Bound on the number of messages in queues

Invariant Inv2 expresses the property that the number of processes in state 1 or 3 is
equal to the number of processes in state 5 plus the number of messages in message
channels.

Inv2(B,n) = eq(nproc(B, l,n) + nproc(B,3,n),nproc(B,5,n) + qsizes(B,n))

where

nproc(B,s,n) = l:j<n if(eq(gets(j,B),s), 1,0)

qsizes(B,n) = l:j<nsize(getq(j,B))

3.4.3. Termination of one process implies termination of all processes
Invariant Inv3 expresses that if a process is in state 6, then all processes are either

in state 4 or state 6. It is provable using invariant Inv9 .

lnv3(B,n) = (3j<neq(gets(j,B),6))--+ Vj<neq(gets(j,B),4) or eq(gets(j,B),6)

3.4.4. Max is preserved
In the initial state, init(n), the maximal identifier in the ring is equal to max.

Invariant Inv4 expresses that this value cannot be lost. The invariants Invs, Inv1, Inv6

are needed to establish Inv4.

Inv4(B,n) = 3j<nActiveNode(max,j,B) or ActiveChan(max,getq(J,B))

where

ActiveNode(k,j,B) =
(eq(gets(j,B), 0) and eq(getd(j,B),k)) or
((eq(gets(j,B), 2) or eq(gets(j, B), 3) or eq(gets(j,B), 6)) and
eq(gete(j, B), k)) or
(eq(gets(J,B), 5) and getb(j,B) andeq(getd(j,B),k))

ActiveChan(k, q) =
if(empty(q),f,(hdb(q) and eq(k,hd(q))) or ActiveChan(k,tl(q))).

An identifier has not been lost if it can in the future be received by another process
and replace the value of the d variable of that process. Identifiers can be stored either

in a variable (ActiveNode) or in a channel (ActiveChan).

3.4.5. Trivial facts
Inv5 formulates two trivial protocol properties, that all identifiers are less than n

(less than or equal to the maximal identifier max), and that the values of variables d

and e differ when a process is in state 3.

Invs(B,n) =
Vj<nBoundedq(getq(j,B),n) and

470 L. Fredlund et al. I Theoretical Computer Science 177 (1997) 459-486

getd(j, B) < n and gete(J, B) < n and
if (eq(gets(j, B), 3), not eq(getd(j, B), gete(j, B)), t)

where

Boundedq(q,n) = if(empty(q),t,hd(q) < n and Boundedq(tl(q),n)).

3.4.6. Active and passive messages
The invariant Inv6 characterises the relation between neighbour processes and channel

contents.

Inv6(B,n) = \fj<nAlt(j,B,n)

where

Alt(j,B,n) =
if (eq(gets(j, B), 0) or

eq(gets(j, B), 3) or
(eq(ge(,(j,B),4) and not getb(j,B)) or
(eq(get,(j, B), 5) and getb(j, B)),
secondary(getq(j, B),j, B, n),
primary(get4(j, B),j, B, n))

primary(q,j,B,n) =

if(empty(q),
eq(getsU +n I ,B), 2) or eq(getsU +n 1, B), 3) or eq(getsU +n I, B), 6) or
((eq(get,U+n l,B),4) or eq(getsU+n l,B),5)) and getbU+n l,B)),
hdb(q) and secondary(tl(q),j,B,n))

secondary(q,j,B,n) =
if(empty(q),

eq(getsU +n 1, B), 0) or eq(getsU +n 1, B), 1) or
((eq(getsU +n l,B),4) or eq(getsU +n l,B), 5)) and not getbU +n l,B)),
not hdb(q) and primary(tl(q),j,B,n)).

This rather complex looking invariant captures the protocol property that there are two
kinds of messages sent: active messages which are received by the following process
as values on the e variable and which can subsequently replace the d value of the
process. The passive messages are received as values on the f variables (state 3) and
will not replace the original d value of the process.

The Alt property guarantees that an active message can never be received as a
passive message (or vice versa), i.e., neighbour processes and channels are always
kept synchronised by the protocol. Inv6 is needed to establish the invariants Inv 8 and
Inv4 , to guarantee that identifiers are neither duplicated nor lost.

In order to prove lnv6 in particular the following two lemmas are useful. Lemma61 al­
lows to conveniently prove that secondary(getq(j, B),j, B) implies secondary(getq(J, B'),
j, B), assuming that the channels getq(J, B) and getq(J, B') are identical.

L. Fredlund et al. I Theoretical Computer Science 177 (1997 ! 459-486 471

lemma61 (B,B',n) =

VJ<neq(getq(J,B),getq(J,B'))-+

(secondary(getq(), B),j, B, n) -+ secondary(getq(), B'),j, B', n))-.

(even(size(getq(J,B)))-+ (secondary(q0 ,j,B,n)-+ secondary(q0 ,j,B',n))) and

(not(even(size(getq(j, B))))) -+ (primary(qo,j, B, n) -+primary(q0 ,j, B', n)))).

Similarly, Lemma62 is convenient for proving that the transition from state 3 to state

4 preserves the invariant:

lemma62(B, n) =

'\/J<n(Alt(j,B,n) and not empty(j,B) and secondary(getq(j,B),j,B,n) and

eq(getsU +n l,B),3)-+ not toeb(j,B)).

3.4. 7. Consecutive identifiers are distinct

Jnv7 guarantees that when an identifier in an active position follows an identifier in

a passive position, the identifiers are distinct. This invariant depends on lni:5 and lnv6.

Inv1(B,n) = '\/J<nCons(j,B,n)

where

Cons(j, B, n) =
Consq(getq(),B),j, B, n) and

if (eq(gets(j, B), 5) and not getb(j, B),

Neq q(getd(j, B), getq(J,B),j, B, n),
if(eq(gets(j, B), 1) or eq(get,(j, B), 2), Eq,/yetd(j, B), getq(j, B),j, B, n), t))

Cons,/q,j, B, n) =
if'(empty(q), t, Consq(tl(q),j,B,n) and {f'(hch(q), t,Neq4(hd(q), tl(q),j,B,n)))

Neq(k,j,B,n) =
((eq(get,(j, B), 2) or eq(gets(j, B), 3)) and not eq(gete(j, B), k)) or

(eq(gets(j,B),4) and NeqqCk,getq(j,B,n),j,B,n)) or

(eq(gets(j,B),5) and getb(j,B) and not eq(getJ(j,B),k))

Neqq(k,q,j,B,n) = (f'(empty(q),Neq(k,j +n l,B,n),hdb(q) and not eq(hd(q),k))

Eq(k,j,B,n) =
((eq(get,(j, B), 2) or eq(get,(j, B), 3)) and eq(gete(j, B), k)) or

(eq(gets(j, B), 4) and Eq4 (k, getq(J, B, n),j, B, n)) or

(eq(gets(j, B), 5) and geth(j, B) and eq(getd(j, B), k))

Eq/k,q,j,B,n) = if(empty(q),Eq(k,j +n l,B,n),hdb(q) and eq(hd(q),k))

3.4.8. Uniqueness of identifiers
fnv 8 expresses the fact that identifiers can occur in at most one active position in

the ring of processes. lt is provable with the help of lnv6.

lnv8(B, n) = Vk<nCount(B,k,n) ~ 1

472 L. Fredlund et a/. /Theoretical Computer Science 177 (1997) 459-486

where

Count(B,k,n) = Lj<nif(ActiveNode(k,j,B), 1,0)

+ Lj<n ActiveChanOcc(k,getq(J,B))

ActiveChanOcc(k,q) =
if(empty(q),O,if(hdb(q) and eq(k,hd(q)), 1,0) + ActiveChanOcc(k,tl(q)))

Intuitively, the definition of Count counts the number of times an identifier occurs in
an active position, i.e., in a position such that the identifier can be transmitted and
received by another process and later replace the d value of that process. An identifier
in an active position can either occur in a variable (ActiveNode) or in a channel
(ActiveChanOcc).

3.4. 9. Identifier travel creates relay processes
Inv9 points out that if two processes contain the same identifier (k) then the processes

in between are guaranteed to be in state 4 and the connecting channels all empty. It
is provable using Invs.

lnv9(B,n) =
Vk<nVi<n(eq(gets(i,B), l) or eq(ge(,(i,B),2)) and eq(getd(i,B),k)-+

(Vj<neq(gets(j,B),O)-+ not eq(getd(J,B),k)) and
(Vj<nActiveNode(k,j,B) -+ empty(i, B) and EmptyNodes(i,j, n, B)) and
(Vj<nActiveChan(k,getq(J,B))-+

eq(hd(J,B),k) and hdb(J,B) and
if(eq(i,j),t,eq(gets(J,B),4) and empty(i,B) and EmptyNodes(i,j,n,B)))

where

EmptyNode(j,B) = eq(gets(J,B),4) and empty(J,B)
EmptyNodes(i,j,n,B) =

if(i < j,V;<1<jEmptyNode(l,B),(V1<jEmptyNode(l,B)) and
(V;<1 <nEmptyNode(l,B)))

3.5. Convergence of the protocol

In this section we prove that the linear process X is convergent, i.e., that we can find
a decreasing measure on the data parameter over the r-steps in the X process operator.
This result implies that all sequences of r-steps are finite, which is a necessary condition
for applying the Concrete Invariant Corollary. We prove that the function Meas defined
below is a decreasing measure, and thus proving convergence.

Meas(B,n)

= Lj<n[if(eq(gets(J,B), 0), (n - getd(J,B) + 2) 6 n3,

if(eq(get,,(j,B), 1 or eq(gets(J, B), 2), (1 + n - getd(J, B)) 6 n3 + 3 113,
if(eq(gets(j,B),3),(I +n - getd(J,B))6n3,0))))]

L. Fredlund et al. I Theoretical CompUler Science 177 (1997) 459-486

+ Lj<n Lk<Size(yetq(i,B)) Terrn(j,B,k)

+ Li<n if(eq(gets(j,B), 5), 1 + TerrnU +n 1, B, size(getq(J, B))), 0).

Term(j,B,st)

+if([eq(st, 1) and (eq(get8 (},B), 0) or

eq(get,,.(j,B), 1))) or [eq(st,O) and ge[,.(j,B) "(3], 1,

2 + TermU +n 1,8,size(getq(J,B)) + st

+if (eq(gets(j,B), 5), I, 0) - if(eq(get8 (j, B), 1, 3), 1, 0)).

473

We have a sequence of theorems that are useful to show that Meus(B,n) shows that

all r-sequences in X are finite.

Lemma 3.4. {/' n > 0, 0 ~ j,k < n and

k

st < 'l:,U/'(eq(gets(i, B), 1) or eq(gets(i, B), 3), 1, O)-if(eq(get,,.(i, B), 5), 1, O)
i=j

-si::e(getq(i-,, l,B))] +size(getqU-n l,B)).

then

1. Term(j,B,st) ~ 2(k-,,j) + 1.

2. If gets(J,B) = 5 and B' = inq(d,b,j, upds(4,j,B))

then Term(i,B',st) = Term(i,B,st).

3. If get_,.(j,B) = 4, B' = untoeU -,, I, upds(S,j,B))

then Term(i,B',st) ~ Term(i,B,st + if(eq(i,j), 1,0)).

Proof. All statements are proven by induction on (k -,, j). D

Corollary 3.5.
1. For n > 0 and 0 ~ k < n we find Term(k,B,st) < 2n provided st <

size(getq(k, B)).
2. If get8 (j,8) = 5, B' = inq(d,b,j,upds(4,j,B)) and st < size(getq(i,B)) then

Term(i,B',st) ~ Term(i,B,st).

3. Ifge(,(j,B) = 4, st < size(getq(i,B)), i -f:-j, B' = untoeU-,, l,upds(S,j,B)) then

Term(i,B',st) ~ Term(i,B,st).

Proof. Respectively, instantiate case l of Lemma 3.4 with j = k +,, I; case l with

k = l -,, 1 and j = l +,, 1; case 2 with j = k +n l and at last case 3 with j = k +n 1. D

Lemma 3.6.

gets(j,B) = 0-> Meas(upds(l,j,B),n) + 3n3 ~ Meas(B,n),

get8 (j,B) = 1 _, Meas(upd5 (2,j,B),n) = Meas(B,n),

get,,(j,B) = 2 _, Meas(upds(3,j,B),n) + 3n3 ~ Meas(B,n),

get5 (j,B) = 3-> Meas(upd8 (0,j,B),n) "(Meas(B,n),

474 L. Fredlund et al. I Theoretical Computer Science 177 (1997) 459-486

oet,(j,B) = 3 __, Meas(upds(4,j,B),n) < Meas(B,n),

11ets(j,B) = 0-> Meas(inq(getJ(J,B),b,j,B),n) < Meas(T,n) + 3n3 ,

yet,(j,B) = 2 _, Meas(inq(gete(j,B),b,j,B),n) < Meas(B,n) + 3n3,

qet,(j, T) = I __, Meas(untoeU- 11 1,B),n) < Meas(B,n),

gets(j,B) = 3 _, Meas(untoeU- 11 1,B),n) < Meas(B,n),

gets(j,B) = 4 _, Meas(upds(S,j,B),n) < Meas(B,n),

fjet,(j,B) = 5 __, Meas(upds(4,j,B),n) < Meas(B,n),

yet,(j,B) = 4 _, i\:feas(in,1(f;etJ(J,B),b,j,B),n) < Meas(B,n),

gets(j,B) = 5 _, Meas(untoeU-- 11 l,B),n) < Meas(B,n).

Theorem 3.7. X is converyent.

Proof. This follows as with the help of Lemma 3.6 it is straightforward to see that
:Hms(B,n) is a decreasing measure. D

Remark 3.8. The measure Meas is certainly not optimal. It suggest that the algorithm
requires about 6114(11+2) actions to select a leader. This is a very rough measure; look­
ing at the far sharper bound in [l OJ suggests that the bound can actually be improved
to 4n log2 n + 2n actions. However, we did not try this yet.

3.6. Final calculations

We now prove the following crucial lemma that links the leader action to X.
But first we provide an auxiliary function that expresses that no process j < n is in
state 6.

Definition 3.9.

nonsix(B, 11) = VJ<nnot eq(get,(J. B), 6).

Lemma 3.10. The invariants Inv 1(B,11),. . ., Inv4(B, 11) imply:

X (B, n) =(leader i5 <J nonsix(B, n) r> i5) <J FC(B, n) r> '(leader i5 <J nonsix(B, n) r> (5).

Proof. We show assuming the invariants Inv 1 (B, n), ... ,Inv4(B, n) that

)"B: Tahle, n :Nat.(leader b <J nonsix(B, n) r> 6) <J FC(B, n)

r:>r (leader 6 <J nonsix(B, n) r> 6)

L. Fredlund et al. I Theoretical Computer Science 177 (1997) 459-486 475

is a solution for X in (I). As (I) is convergent, the lemma follows from the Concrete

Invariant Corollary (see [4]). First suppose FC(B,n) holds. This means that we must

show that

leader b <1nonsix(B,n)1> ()

= L leader (leader b <J nonsix(upd,(6,j, B)) 1> b)
j:Nat

<I eq(gets(j, B), 2) and eq(getd(j, B), gete(.i, B)) and j < n I> cl.

(1)

Note that it follows from FC(B,n) that the other summands of (I) may be omitted.

As nonsix(mathitupds(6,j,B)) = f, Eq. (1) reduces to:

leader b <J nonsix(B, n) 1> b
= L leader b <I eq(gets(.i, B), 2) and eq(getd(.i, B), get,,(}, B)) and j < n r> t).

j:Nat

Now assume nonsix(B,n). From FC(B,n) and Inv 1(B,n) is follows that

'v';<nl ~ gets(j,B) ::$; 4.

(2)

(3)

First we show that 3; <neq(gets(.i,B), 2) and eq(getd(.i, B), get,,(j, B)). Now suppose

3j<neq(gets(j, B), l) or eq(gets(.i, B), 3).

Hence, using Jnv2(B,n) and nproc(B, !,n)+nproc(B,3,n) > 0 and (3), it follows that

qsizes(B,n) > 0. Hence, 3;<1l'~izeU -n l,B) > 0. Hence, using the focus condition

and Inu 1 (B, n):

3; <neq(gets(.i, B), 2) and eq(getd(j, B), gete(.i, B)).

Now suppose

not 3j <neq(gets(j, B), 1) or eq(gets(.i, B), 3).

Hence, using (3) it follows that

'lf;<neq(gets(.i,B),2) or eq(gets(j,B),4). (4)

Now assume

'If; <neq(gets(j, B), 4).

But this contradicts Jnv4(B, n) in conjunction with Inv2(B, n). Hence, using (4) it

follows that

3 J <neq(yets(j, B), 2).

From this and FC(B, n) it follows that

3 J <neq(gets(.i, B), 2) and eq(yetd(j, B), get,,(j, B)).

476 L. Fredlund et al. I Theoretical Computer Science 177 (1997) 459-486

Hence, using SUM3 (see appendix) the right-hand side of (2) has a summand

leaderc5. (5)

But using some straightforward calculations (5) has the right-hand side of (2) as a

summand. Hence, if nonsix(B, n) then (2) is equivalent to

leader c5 = leader c5

which is clearly a tautology. Now assume not nonsix(B, n). Hence, 31 ~neq(gets(j, B), 6).

Using /m13 (B, n) it follows that

VJ <neq(gets(j, B), 4) or eq(gets(J,B), 6).

Hence (2) reduces to

which is clearly true. Now suppose the focus condition does not hold, i.e., not FC(B, n).
We find (where we use that n > 0 and Milner's second r-law (T2)):

r (leader c5 <J nonsix(B, n) 1> c5) =
L r (leader c5 <J nonsix(B, n) r:> c5)<l j < n r:> o+

}:Nat
I: leadero

}:Nat
<inonsix(B,n) and eq(gets(J,B),2) and eq(getd(J,B),gete(J,B)) and j < n C> c5

(6)

Now note that it follows from lnv3(B, n) that if 3J<neq(gets(j, B), 2), then nonsix(B, n).
So, (6) reduces to:

LJ:Nar r(leader c5 <J nonsix(B, n) and j < n C> c5)+
LJ:Natleaderc5<ieq(gets(J,B),2) and eq(getd(J,B),gete(J,B)) and j < nr:>c5 =
(LJ:Nat r (leader c5 <J nonsix(B,n) and j < n C> c5) <J not FC(B, n) C> b)+

LJ:Nat leader c5 <J eq(gets(J, B), 2) and eq(getd(j, B), gete(J, B)) and j < n C> c5 =
LJ:Nat r (leader fJ

<J nonsix(u pds(l,j, inq(getd(j, B),j,B)), n) C> b) <J eq(gets(},B), 0) and
j < n I> c5+

LJ:Nat r (leader fJ <J nonsix(untoe(j -n 1, u pde(toe(j -n l ,B),j, upds(2,j,B))), n) C> c5)
<J eq(gets(J, B), I) and not empty(} -n 1, B) and j < n 1> c5+

LJ:Nat leader (leader fJ <J nonsix(u pds(6,j, B), n) 1> c5)

<J eq(gets(j, B), 2) and eq(getd(j, B), gete(J, B)) and j < n C> c5+
LJ:Nat r (leader b <J nonsix(u pds(3,j, in(gete(J, B),j, B)), n) C> c5)

<Jeq(gets(J,B),2) and not eq(getd(J,B),gete(J,B)) and j < n 'i> <>+
LJ:Nut(r (leadero <J nonsix(untoe(j -n 1, u pdd(gete(J,B),j, upds(O,j,B))), n) r:> c5)

<Jgete(J,B) > max(getd(J,B),toe(j -n l,B))r:>
r(leaderb <J nonsix(untoe(j -n I, upds(4,j,B)),n) C> c5))
<ieq(gets(J,B),3) and not empty(} -n l,B) and j < n C> c5+

L. Fredlund et al. I Theoretical Computer Science 177 (1997) 459-486

L;Nai r (leader() <1 nunsix(untoeU -n I, mathitu pdJ(toeU -" I ,B),j,

upd8(5,j,B))),n) L> 6)

<Jeq(yets(J,B),4) and not emptyU -n l,B) and j < n L> c5+
L;:Nat r (leader c5 <1 nonsix(inq(getJ(J, B),j, upds(4,j, B)), n) L> c5)

<Jeq(gets(J,B), 5) and j < n t> o
Because FC(B, n) = f, nearly all the summands given above are equal to !5. D

3. 6. 1. Proving Theorem 2.1

Finally we are ready to prove that the main theorem of the paper holds, 1.e.,

n > 0 --+ Spee(n) = deader o

Proof. Using Lemma 3.3 we know

Spec(n) = X(init(n),n).

From Lemma 3.10 it then follows that

Spec(n) =
(leader 6 <1 nonsix(init(n), n) t> !5) <1 FC(init(n), n)

M (leader 6 <1 nonsix(init(n), n) t> c5).

477

However, FC(init(n), n) is not true if n > 0 while nonsi:x(init(n), n) is true. Therefore

n > 0--+ Spec(n) = rleader6

is true. D

4. Conclusion

We have outlined a formal proof of the correctness of the leader election or extrema

finding protocol of Dolev et al. in 11CRL. The proof is now ready to be proof checked

conform [2, 15, 17, 21].

It is shown that process algebra, in particular pCRL, is suited to prove correctness of

non-trivial protocols. A drawback of the current verification is that it is rather complex

and lengthy. A possible lead towards improvement is given by Frits Vaandrager in [22],

where by using the notion of confluency (see e.g. [19]) one only needs to consider

one trace to establish correctness. Currently we are formalising this notion in [14]. We

expect that using this idea our proof can be simplified significantly.

Appendix A. An overview of the proof theory for µCRL

We provide here a very short account of the axioms that have been used. We also

give the Concrete Invariant Corollary for referencing purposes.

478 L. Fredlund et al. I Theoretical Computer Science 177 (1997) 459--486

Table I
The axioms of ACP in 11CRL

Al
A2
A3
A4
AS
A6
A7

CM!
CM2

CM3
CM4
CMS
CM6
CM7
CM8
CM9

x+y=y+x
A2x + (y + z) = (x + y) + z
x+x=x
(x + y) · z = x · z + y · z
(x · y) · z = x · (y · z)

x+i5=x
,\. x = i5

x II y = x lly + y llx + x\ y
a llx =a· x

a · x ll_y =a· (x II Y)
(x + y) ll:: == x llz + y ll.:
a·xlhc=(alh)·X
alh·x=(alb)·x
a·xlb· y = (alb)· (x II y)
(x + y)lz =xlz + ylz
x I (y + z l = x I y + x I z

Table 2

CF

COJ
C02
CTJ

CT2

DO
OT
Dl
02
03
04

Axioms of standard concurrency (SC)

(x ll_y) llz =x ll(y II z) (xly)lz =xl(ylz)

n(i) I m(t)

= { y(n, m)(t)
i5

151x = i5
xiii= i5
rlx = 6
xlr = 6

CH(<))= i5
DH(r) = r

if y(n,m) l
otherwise

CH(n(i)) = n(I) if n $. H
2H(n(/)) = i5 if n EH
ih1(x + y) = cH(x) + CH(Y)
Of!(X. y) = Cf!(X). OH(Y)

x 11 i5 = xo x I (a y llz) = (x I a y) llz
xly=ylx xl(ylz)=i5 Handshaking

All the process algebra axioms used to prove the leader election protocol can be
found in Tables 1-6. We do not explain the axioms (see [1, 4, 13]) but only in­
clude them to give an exact and complete overview of the axioms that we used.
Actually, the renaming axioms are superfluous, but have been included for complete­
ness.

Besides the axioms we have used the Concrete Invariant Corollary [4] that says
that if two processes p and q can be shown a solution of a well founded recursive
specification using an invariant, then p and q are equal, for all starting states where
the invariant holds. It is convenient to use linear process operators, which are functions
that transform a parameterised process into another parameterised process. If such an
operator is well founded, it has a unique solution, and henceforth defines a process.
Note that if a linear process operator is applied to a process name, it becomes a process
in Unity fomrnt.

Definition A.l. A linear process operator P is an expression of the form

).p :D-+'f!l).d:D.'[", '[", c;(f;(d, e;)}p(g;(d, e;)) <1 b;(d,e;) C> b+
iE!e,:D,

'[", 'f",c;u;cd,e,))<1b;(d,e;)e>6
iEI' ei :D~

L. Fredlund et al. I Theoretical Computer Science 177 (1997) 459-4136 479

Table 4

Table 3

Axioms for abstraction

TIO r1(6) = 6
TIT r1(r)=r
Tll r1(n(/)) = n(i)

TI2 r1(n(i)) = r
Tl3 r1(x + y) = r1(x) + r1(y)

TI4 r1(x · y) = r1(x) · r1(y)

Axioms for summation.

SUMI

SUM2

SUM4

SUMS

SUM6

SUM7

LdD(p) = p

Ldo<P) = Le:D(p[e/d])

Ld:D(p1 + P2) = Ld:D(P1) + Ldo(P2 l

LJ0 (P1 · P2) = Ld0 (pi) · P2

LJ:0(P1 llP2) = Ld:D(p1 JllP2

Ld1/P1 lp2) = 2:d:D(p1)lp2

SUMS 2°:d 0 (1\1(p)) = c7H(Ld:D(p))

SUM9 "£d 0(r1(p)) = r1(Ldo(P))

SUM! 1

Q
PI= P2

Table 5

if n If: I
if n EI

Axioms for the conditional construct and

Boo I

CONDI
COND2

BOOLJ
BOOL2

x<1t1>y = x
x<1f1>y=y

-,(t = f)
-,(/J = t) ~ h = f

if d not free in p

if e not free in p

if d not free in P2

if d not free in p2

if d not free in p2

provided d not free in
the assumptions of g

for some finite index sets I,J', actions c;,c;, data types D;,D[,Dc, and De;, functions f;:
D--+D;-+Dc,, g;: D--+D;--+D, b;: D-+D[-+Bool, f!: D-+D[-+Dc;, b;: D-+D;-+Bool.

Definition A.2. A linear process operator (LPO) If' written in the form above is called

convergent iff there is a well-founded ordering < on D such that g;(d,e;) < d for all

d E D, i EI and e; E D; with c; = r and b;(d, e;).

480 L. Fredlund et a/./ Theoretical Computer Science 177 (1997) 459-486

Table 6
Somer-laws

BI
B2

xr = x
rx = rx+x

Corollary A.3 (Concrete invariant corollary). Assume

</> =).p :D-+'P.Ad:D.L, L, c1(/;(d, e1)) · p(g1(d, ei)) <J b1(d, e1) t> <5+
}EJ e/D1

L, L,cj(fj(d,e1))<Jb'/d,e1)t><5
}EJ' e;:D;

is a LPO. If for some predicate I : D-+Bool

).pd.</> pd <J l(d) t> fJ is convergent, and

l(d) I\ b1(d,e1)-+ l(g1(d,e;)) for all j E J, d ED and e1 E D1,

i.e. I is an invariant of</>, and for some q : D-+'P, q' : D-+'P we have

then

l(d)-+ q(d) == <Pqd,

l(d)-+ q'(d) == <Pq'd,

l(d) -+ q(d) == q'(d).

Appendix B. Data types

B.!. Booleans

sort Bool
cons t, f : _, Bool
func not : Bool -.. Bool

and , or , eq : Bool x Bool -+ Bool
if : Bool x Boo! x Bool -+ Boo!

var b, b' : Bool
rew not t == f

not f == t

t and b == b
f and b = f
t or b == t

f or b == b
eq(t, t) == t
eq(f, f) == t

eq(t, f) == f

L. Fredlund et al. I Theoretical Computer Science 177 (1997) 459-486 481

eq(f, t) = f
if(t,b,b') = b
if(f,b,b') = b'

B.2. Natural numbers

sort Nat

cons 0 :--+Nat

S: Nat--+ Nat

func 1,2,3,4,5,6 :--+Nat
P: Nat--+ Nat

even : Nat --+ Bool
+, -, *• max : Nat x Nat --+ Nat
eq, ~ , :::;;; , < , > : Nat x Nat --+ Bool
if : Bool x Nat x Nat --+ Nat

var n,m: Nat

rew I = S(O)
2 = S(l)
3 = S(2)
4 =S(3)
5 =S(4)
6=S(5)
P(O) = 0
P(S(n)) = n
even(O) = t
even(S(O)) = f
even(S(S(n))) = even(n)

n+O=n
n + S(m) = S(n + m)

n-O=n
n-S(m)=P(n-m)

n * 0 = 0
n * S(m) = n + n * m
max(n,m) = if(n?: m,n,rn)

eq(O, 0) = t
eq(O,S(n)) = f
eq(S(n),O) = f
eq(S(n),S(m)) = eq(n,m)

n~O=t

O~S(n)=f
n ~ S(m) = n?: m

n:::;;m=m~n

n>m=n~S(m)

482 L. Fredlund et al. I Theoretical Computer Science 177 (1997) 459-486

n<m=S(n)~m

(t(tn,m) = n
(((f,11,m) = m

B.3. lvfodulo arithmetic

func mod : Nat x Nat --7 Nat
+,-:Nat x Nat x Nat-+ Nat

var k,m.n:Nat
rew mmodO = m

mmod S(n) = (((m ~ S(n),m - S(n)mod S(n),m)
k +,, m = k + m mod n
k - ,, m = ij(k mod n ~ m mod n, k mod n - m mod n, n - m mod n - k mod n)

B.4. Queues

We use two kind of queues which are subtlely different. The first is of sort Queue
with the usual operations. The second is of sort Queueb which is similar to Queue
except that a boolean is added for technical purposes. The specification of Queueb is
given below. We do not present the data type Queue here because it can be considered
as a simple instance of Queueh as follows: omit the functions hdh, toeb and remove
all boolean arguments. For example, in : Nat x Boo] x Queueh -+ Queueh corresponds
with in : Nat x Queue-+ Queue.

sort Queueh
cons q0 ;--7 Queueb

in: Nat x Boo! x Queueb -+ Queueb
func rem : Nat x Queueh --7 Queueb

tl, untoe : Queueh --> Queueh
con: Queue6 x Queueh --> Queueb
hd, toe : Queueb --> Nat
hdb : Queueh --> Boo!
toeb : Queueb -+Boo!
eq: Queueb x Queueh -+ Bool
empty: Queueb--> Boo)
test : Nat x Queue6 --> Bool
si::e: Queueb -->Nat
if : Boo! x Queue6 x Queue6 -+ Queue6

var d,e:Nat
b,c: Boot
q, r: Queue6

rew rem(d,qo)=qo

rem(d,in(e,b,q)) = if(eq(d,e),q,in(e,b,rem(d,q)))
tl(qo) = qo

L. Fredlund et al. I Theoretical Computer Science J 77 (1997) 459-486 483

tl(in(d,b,q)) = q

untoe(qo) = q0

untoe(in(d, b, qo)) = qo

untoe(in(d, b, in(e, c, q))) = in(d, b, untoe(in(e, c,q)))

con(qo,q) = q

con(in(d,b,q),r) = in(d,b,con(q,r))

hd(q0) = 0

hd(in(d,b,q)) = d

hdb(qo) = f
hdh(in(d,b,q)) = b

toe(qo) = 0

toe(in(d, b, qo)) = d

toe(in(d, b, in(e, c, q))) = toe(in(e, c, q))

toeb(qo) = f
toeb(in(d,b,qo)) = b

toeb(in(d,b, in(e,c,q))) = toeb(in(e,c,q))

eq(qo, qo) = t

eq(qo,in(d,b,q)) = f

eq(in(d,b,q),qo) = f

eq(in(d,b,q),in(e,c,r)) = eq(d,e) and eq(b,c) and eq(q,r)

empty(q) = eq(size(q),O)

test(d, qo) = f

test(d, in(e, b, q)) = eq(d, e) or test(d, q)

size(qo) = 0

size(in(d, b, q)) = S(size(q))

if(t,q,r) = q

if(f,q,r) = r

B.5. Protocol states

sort Table

cons to :-> Table

in: Nat x Nat x Nat x Nat x Boot x Queueb x Table---> Table

func init : Nat ---> Table

geld, gete, gets : Nat x Table ---> Nat

geth : Nat x Table---> Bool

getq : Nat x Table ---> Queueb

updd, upde,upds: Nat x Nat x Table---> Table

updh: Boot x Nat x Table---> Table

u pdq : Queueb x Nat x Table ---> Table

test : Nat x Table ---> Bool

inq : Nat x Boo) x Nat x Table ---> Table

hd : Nat x Table ---> Nat

484 L. Fredlund et al. I Theoretical Computer Science 177 (1997) 459-486

lui;, : Nat x Table ___, Bool
hd; : Table ---> Nat
toe : Nat x Table __,Nat
toeh : Nat x Table -+ Boo!
untoe : Nat x Table __, Table
empty : Nat x Table -+ Bool
tl : Table ___, Table
rem : Nat x Tahle _, Table
Uniquelndex : Table___, Bool
empty : Table _, Bool
if : Bool x Table x Table --> Table

var d,e,s.rJ),n: Nat
B,B': Table
b,b': Bool
q, q' : Queueh

rew init(n) = i{(eq(n,0),t0 ,in(n - l,id(n - l),O,O,f,q0,init(n - 1)))
yetd(i, to)= 0
yetd(i, in(), d, e, s, b, q, B)) = if(eq(i,j), d, getd(i, B))
uete(i, lo) = 0
yete(i, in(), d, e, s, b, q, B)) = (/(eq(i,j), e, 1;ete(i, B))
yet,(i, to) = 0
yetJi, in(j, d, e, s, b, q, B)) = if(eq(i,j),s, get,(i, B))
yetn(i, lo) = f
yeth(i, in(), d, e, s, b, q, B)) = if'(eq(i,j), b, geth(i, B))
11et,1(Uo) = qo
getq(i, in(), d, e, s, b, q,B)) = if(eq(i,j), q, getq(i, B))
updd(r, i, to) = in(i, v, 0, 0, f, lfo, to)
updd(l',i,in(j,d,e,s,b,q,B)) = if(eq(i,j),

in(), v, e,s, b, q, 8), in(), d, e,s, b, q, u pdd(v, i, B)))
upde(v,i,lo) = in(i,O,v,O,f,qo,to)
upd e(t', i, in(), d, e, s, b, q, 8)) = if (eq(i,j),

in(), d, v, s, b, q, B), in(), d, e, s, b, q, u pde(v, i, B)))
upds(s, i, to) = in(i, 0, 0, s, f, q0 , to)
upd,(v,i, in(j,d,e,s,b,q,B)) = if(eq(i,j),

in(j,d, e, v, b, q,B), in(), d, e, s, b, q, u pd,J v, i, B)))
upch<b',i,to) = in(i,0,0,0,b',qo,to)
upch(b',i,in(j,d,e,s,b,q,B)) = if(eq(i,j),

in(j,d, e, s, b', q, B), in(), d, e, s, b, q, u pdb(b', i, B)))
updq(q',i,to) = in(i,0,0,0,f,q',to)
updq(q',i,in(j,d,e,s,b,q,8)) = if(eq(i,j),

in(), d, e, s, b, q', B), in(), d, e, s, b, q, u pdq(q', i, B)))
test(i, lo) = f
test(i,in(j,d,e,s,b,q,B)) = eq(i,j) or test(i,B)

L. Fredlund et al. I Tlieoreriml Computer Science 177 (1997) 459-486

untoe(i, B) = u pdq(untoe(getq(i, B)), i, B)

hd(i,B) = hd(getq(i,B))

hdb(i,B) = hdb(?Jetq(i,B))
hd;(t0) = 0

hdi(in(j,d,e,s,b,q,B)) =j

toe(i, B) = toe(getq(i, B))

toeb(i,B) = toeb(getq(i,B))

untoe(i,B) = updq(untoe(getq(i,B)),i,B)

empty(i,B) = empty(getq(i,B))

tl(t0) =to

tl(in(j,d,e,s,b,q,B)) = B

rem(i, t0) = to

rem(i, in(j,d, e,s, b, q, B)) = if(eq(i,J), B, in(j, d, e,s, b, q, rem(i, B)))

Uniquelndex(t0) = t
Uniquelndex(in(j,d,e,s,b,q,B)) =not test(j,B) and Unil1uelnde:r(B)

empty(to) = t
empty(in(j,d,e,s,b,q,B)) = f
(f(t,B,B') = B
if(f,B,B') = B'

Acknowledgements

485

We thank Frits Vaandrager for pointing out this protocol to us. Also Marco Pouw

is thanked for his suggestions for improvement.

References

[l) J.C.M. Baetcn and W.P. Weijland, Process Algebra. Cambridge Tracts in Theoretical Computer Science,

Vol. l 8 (Cambridge Univ. Press, Cambridge, l 990).

[2) M.A. Bezem, R. Bo! and J.F. Groote, A formal verification of the alternating bit protocol in the calculus

of constructions (revised version). Original version appeared as M.A. Bezem and J .F. Groote, A fonnal

verification of the alternating bit protocol in the calculus of constructions. Tech. Report 88, Logic Group

Preprint Series, Utrecht University, March 1993.

[3] M.A. Bezem and J.F. Groote, A correctness proof of a one bit sliding window protocol in 11CRL.

Computer J. 37 (4) (1994) 289-307.

[4] M.A. Bezem and J.F. Groote, Invariants in process algebra with data, in: Proc. CONCUR '94 Conf on

Concurrency Theory, Lecture Notes in Computer Science, Vol. 836 (Springer. Berlin, 1994) 401-416.

[5) J.J. Brunekreef, Process specification in a UNITY format, in: A. Ponse, C. Verhoef and S.F.M. van

VIijmen, eds., Proc. Workshop on Algebra of" Communicatiny Processes ACP94. Workshops in

Computing (Springer, Berlin, 1995) 319-33 7.

[6] J.J. Brunekreet: J.-P. Katoen, R.L.C. Koymans and S. Mauw. Algebraic specification of dynamic leader

election protocols in broadcast networks, in: A. Ponse. C. Verhoef and S.F.M. van Vlijmen. eds., Proc.

Workshop on Algebra of Comrmmicatiny Processes ACP''J4, Workshops in Computing (Springer.

Berlin, 1995) 338-358.
[7] J.J. Brunekreef. J.-P. Katoen, R.L.C. Koymans and S. Mauw, Design and analysis of dynamic leader

election protocols in broadcast networks, Disrribured Comput. 9 (4) (1996) 157-171.

486 L. Fredlund et al. I Theoretical Computer Science 177 (i997) 459-486

(8] K.M. Chandy and J. Misra, Parallel Program Design. A Foundation (Addison-Wesley, Reading, MA,
1988).

[9] T. Coquand and G. Huet, The calculus of constructions, inform. and Control (76) (1988).
[10] D. Dolev, M. Klawe and M. Rodeh, An O(n log n) unidirectional distributed algorithm for extrema

finding in a circle, J. Algorithms (3): (1982) 245-260.
[I I] J.F. Groote and H. Korver, A correctness proof of the bakery protocol in µCRL, in: A. Ponse, C. Verhoef

and S.F.M. van Vlijmen, eds., Proc. workshop on Algebra of Communicating Processes ACP94,
Workshops in Computing (Springer, Berlin, 1995) 63-105.

[12] J.F. Groote and A. Ponse, The syntax and semantics of µCRL, in: A. Ponse, C. Verhoef and S.F.M. van
Vlijmen, eds., Proc. workshop on Algebra of Communicating Processes ACP94, Workshops in
Computing (Springer, Berlin, 1995) 26-62. Tech. Report CS-R9076, CW!, Amsterdam, 1990.

[13] J.F. Groote and A. Ponse, Proof theory for µCRL: a language for processes with data, in: D.J. Andrews,
J.F. Groote and C.A. Middelburg, eds., Proc. Internal. Workshop on Semantics of Specification
Languages, Workshops in Computing (Springer, Berlin, 1994) 231-250.

(14] J.F. Groote and M.P.A. Sellink, Confluency for process verification, in: Proc. CONCUR '95 Conf on
Concurrency Theory, Lecture Notes in Computer Science, Vol. 962 (Springer, Berlin, I 995) 204--218.

[15] J.F. Groote and J. van de Pol, A bounded retransmission protocol for large data packets. A case
study in computer checked algebraic verification, Tech. Report 100, Department of Philosophy, Utrecht
University, 1993.

[16] H. Korver, Protocol Verification in µCRL, Ph.D. Thesis, University of Amsterdam, 1994.
(17] H. Korver and J. Springintveld, A computer-checked verification of Milner's scheduler, in: Proc. 2nd

lnternat. Symp. on Theoretical Aspects of Computer Software, Sendai, Japan, Lecture Notes in
Computer Science, Vol. 769 (Springer, Berlin, 1994) 161-178.

[18] N.A. Lynch and M.R. Tuttle, An introduction to input/output automata, CW/ Quart., 2(3) (1989)
219-246.

(19] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science, Vol. 92
(Springer, Berlin, 1980).

[20] G.L. Peterson, An O(nlogn) unidirectional algorithm for the circular extrema problem, ACM Trans.
Programming Languages Systems 4 (4): (October 1982) 758-762.

[21] M.P.A. Sellink, Verifying process algebra proofs in type theory, in: D.J. Andrews, J.F. Groote, and
C.A. Middelburg, eds. Proc. internal. Workshop on Semantics of Specification Languages, Workshops
in Computing (Springer, Berlin, 1994) 314--338.

[22] F.W. Vaandrager, Uitwerking take-home tentamen protocolverificatie, Unpublished manuscript, in Dutch,
1993.

