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PREFACE

There exist four standard text-books on Riesz spaces, viz., the books
written by Fremlin, Luxemburg-Zaanen, Schaefer and Vulikh. (They are the
items [6]1,[10]1,[12] and [15] in our bibliography). In each one of them,
several aspects of the theory are chosen and treated in considerable detail,
the results being somewhat discouraging to the beginner. Fremlin and
Schaefer deal mainly with specialised subjects (topological Riesz spaces
and operator theory, respectively), while the other two books are encyclo-
pedic in character, containing details and generalisations that are of in-
terest to the expert but not to the amateur.

In the present work, which reflects a course given in 1975 at the
Catholic University at Nijmegen, we address ourselves to the beginners. We
want to give them an idea of what Riesz spaces are and how they occur "in
nature". )

Trying to steer a course between the Scylla of specialisation and the
Charybdis of generality we have come to a compromise that seems to be very
reasonable. The book consists of three parts. The first (Chapters I, II
and III) is an introduction to the basic concepts of Riesz spaces, ideals,
bands and conjugate spaces. Secondly, Chapter IV contains various repre-
sentation theorems, entailing digressions on Riesz spaces of continuous
functions. There are also some applications to Riesz spaces and to other
fields of Functional Analysis. (The feed-back to Riesz space theory is
sadly missing in [10] and [15]). In the third part (Chapter V) we consider
normed Riesz spaces consisting of functions on a measure space, such as
Orlicz spaces. (For other topological Riesz spaces, see [6],[15]).

In accordance with our intention of not writing an encyclopedia but
only preparing the reader for further study we have kept our bibliography
as short as possible. Our book essentially does not contain new results:
practically everything in it can be found in one of the four books we have
mentioned. There seemed to be no point in giving all the references. The
interested reader will find everything he wants in the extensive biblio-
graphies of [10] and [12].






INTRODUCTION

The reader is assumed to be familiar with the notions of a partially
ordered set and a lattice. (We view lattices as special cases of ordered
sets). Furthermore, we presuppose some knowledge of topology and functional
analysis. To give an idea of the extent of this knowledge we present a short
list of terms and theorems which we shall use without definition or proof.

From topology : Hausdorff space, compactness, the Urysohn Lemma.

From Banach space theory : the Hahn-Banach Theorem, Alaoglu's Theorem,

inner product space, Schwarz' Inequality.

From integration theory : o-finite measure, L_-gpace (at least for

p=1,2,»), HOlder's inequality. p
We assume the Axiom of Choice.

Among the theorems we prove with the aid of Riesz space theory are the
Riesz Representation Theorem, The Spectral Theorem for Hermitian operators
in a real Hilbert space, the reflexivity of Lp—spaces (1<p<oo) .

In several sections blanket assumptions are made, such as "X is a
compact Hausdorff space" or " (X,I',u) is a o-finite measure space". We have
tried to indicate these assumptions very distinctly. With two exceptions
(pages 7 and 89) each assumption is dropped at the end of the section in
which it is made.

Within each section the definitions, theorems and corollaries are num-
bered consecutively. There are also a considerable number of examples and
exercises (called A,B,C,...). Some of these are meant to illustrate the
preceding theory, others are essential parts of the theory itself and will
be referred to in the sequel.

A few standard notations : if A and B are subsets of a set X, we

put

A% = {xex : x¢a},

a\B = anB°,

AAB = (A\B)U(B\A),

XA is the characteristic function of A.
Instead of (which is the constant function on X whose value is 1)
we often write 1.






CHAPTER 1. RIESZ SPACES






In this chapter we present a survey of several definitions. Further-

more, a variety of elementary properties of Riesz spaces will be derived.
1. PRELIMINARIES

Partial orderings will always be denoted as < (). Furthermore, x<y
will mean x<y and x2y (> is defined similarly). If X is a lattice
with respect to <, then the greatest lower bound (infimum) of the subset

{x,,x,} of X will be denoted by inf(x,,x.) or by x,6Ax,, and the least
1772 1772 2

1
upper bound of the subset {xl,xz} of X by sup(xl,xz) or by x,Vx,.
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1.1. DEFINITION. A lattice X is said to be a Boolean algebra if
(i) X 1is a distributive lattice, i.e.; xA(y1Vy2)=(xAy1)V(xAy2) for
all x,yl,yzex,
(ii) X has a infimum O and a supremum 1,
(iii) any xeX has a complement x' in X , i.e., for any xeX there

exists an element x'eX such that xAx'=0 , xvx'=l.

1,A. Exercise. (i) Show that in a lattice X we have distributivity if and
i V(y, Ay, )=(xV
only if x (y1 y2) (x yl)A(xVyz) for all x,yl,yzex.
(ii) Show that in a Boolean algebra X every xeX has a unique comple-
ment x'.
(iii) Show that in a Boolean algebra X we have (xAy)'=x'Vy' for all

X,yeX.

1.B. Example. Let S be a point set and let X be a nonempty collection
of subsets of S such that A,BeX implies AUB, AnB, a%x. If X is part-

ially ordered by inclusion, then X is a Boolean algebra. (Thus P(S) , the



collection of all subsets of S, is a Boolean algebra).
Remark. It can be shown that any Boolean algebra can be represented in the

above manner.

1.2. DEFINITION. (i) A real linear space L is called an ordered vector
space, if L is partially ordered in such a manner that the partial order-
ing is compatible with the algebraic structure, i.e., if £,geL, then £f<g
implies f+h<g+h for all heL, and £f20 implies af20 for all aeR, a20.
(ii) A real linear space L is called a Riesz space 1if L is partially
ordered in such a manner that
(a) L is a lattice,

(b) L is an ordered vector space.

We present several examples of Riesz spaces. It is left to the reader to
prove that all presented examples are indeed Riesz spaces. Also, some ter-

minology and some notations will be standarised.

1.C. The Cartesian space Rn, the partial ordering being coordinatewise, is
a Riesz space.

1.D. The Cartesian space Rz, partially ordered by (xl'XZ)S(yl'y2) if
x1<y1 or if X, =Y, and x2Sy2 is a Riesz space. This space is called the
lexicographically ordered plane.

1.E. Let (X,T) be a measurable space, i.e., let X be a point set and T
a o-algebra of subsets of X. Define M to be the collection of all real-
valued F;measurable functions on X and define f<g for £,geM if
f(x)Sgkx) for all xeX. Then M is a Riesz space.

1.F. Let (X,T,u) be a measure space and let M be as above. The functions

f,geM are said to be equivalent (f~g) whenever f=g u-almost everywhere on



X. Next, let M be the real linear space consisting of all equivalence
classes of functions in M (with respect to ~). Elements in M will be de-
noted by ‘[f], [gl,... . Define [fl]<[g] whenever f<g u-almost every-
where on X. Then M is a Riesz space.

1.G. Lét (X,T) be a topological space and let C(X) be the collection of
all continuous real-valued functions on X. Define £<g (in C(X) ) when-
ever f(x)<g(x) for every =xeX. Then C(X) is a Riesz space.

1.H. Let (X,TI') be a measurable space and let B be the collection of all
finitely additive bounded measures on I, i.e., the collection of all real-
valued functions u on I such that

(i) u(A1UA2)=u(A1)+u(A2) if AlnA2=¢,

(ii) there exists a constant K such that |p(A)]<K for all AeT.
Define u15u2 (in B) whenever ul(A)Suz(A) for all Ael'. Then B is a
Riesz space. (Hint: to show that B is a lattice prove that

(“1V“2) (A)=sup {ul(B)+u2(A\B): BcA, Bel}

for all Ael).
Remark. We note that in examples 1.E, 1.F and 1.G the formula £>0 means
£20 for all =xeX and f£=#0. However, there may exist many points xeX such

that £(x)=0. Thus £ does not have to be strictly positive.

The reader will now be convinced that Riesz spaces occur in a natural way

in many places in analysis.
FROM NOW ON L WILL ALWAYS DENOTE A RIESZ SPACE.

When studying Riesz spaces, it will turn out that most of the important

results can be presented in terms of elements greater than 0. Therefore, we



introduce

1.3.DEFINITION. The collection of all ueL satisfying u20 1is called the
positive cone of L. Elements in the positive cone are called positive e-

lements. Notation

Furthermore, for arbitrary £feL, we define

£f=fv0 , £ =(-£)V0 , |E]=(-£)VE .

In the sequel we shall often use without reference one of the follewing

rules.

1.4. THEOREM. Let f,g,helL and u,v,weﬁ+.

(i) £=0 if and only if f,—feL+.

(ii) (£+h)V(g+h)=(£vg)+h ; (£+h)A(g+h)=(£Ag)+h.

(iii) (af)v(ag)=a(fvg) for all a«zR+. Similar rules hold for the in-
fimum of £ and g and for negative real a.

(iv) ((fvg)Vh)=(£V(gVh)). (Consequently, any finite subset of L has
a supremum, and similarly also an infimum).

w £, fagT=0 5 Iglets £TveT= gL

(vi) -£ <f<f£’ ; [£]=0 if and only if £=0.

(vii) £vg+fag=f+g ; £vg-fag=|f-gl.

(viii) 2(l£lvigl)=|g+gl+|e-g}; 2(I£]Algl)=||£+g]-|£-g||. (Therefore,
|£]Algl=0 if and only if |f+gl=|f-gl).

(ix) |1£1-gl1<|Ergl<]£]+]g].

(x)  (£+q)TseTegT ; (Frg) T<E +g .

(xi) (uAW) +(VAW)-w < (u+¥)Aw < (UAW)+(VAW) < (uAv)+w;

uvy < (uvw)+(vVa)-w £ (utv)Vw < (uvw)+ (vvw) ,



if vAw=0, then (ut+v)Aw

uAw,

‘If uAv=0, then (u+v)Aw = (uAw)+(VAw).

We give some of the proofs, leaving the rest as exercise to the reader.
(ii) Note that f+h<fvg+h and that g+h<fvg+h , so
(£+h) V (g+h)<fVg+h.
To obtain the converse inequality, let keL be such that £f+h<k and
g+h<k. Then f<k-h and g<k-h, so £fvg<k-h or k2fvg+h which is the de-
sired result.
(vii) Since ng=(f—g)V0+g=(f—g)++g and since
EAG=E+0A (g-£) =£~ (£-g) '=- (£-g) “+g,
~ we have fvg+fAag=f+g and fvg-fAag=|£f-g].
(viii) By (vii) we have 2(£vg)=f+g+|f-g| , so
2(1£lvlg)=2(£V(-£) VgV (-g))=(2(£V(~-g)))V(2(gV(-£)))=
(E-g+|£+g|) V(g-£+|f+g|)=(£-g) V(g-£) +| f+g|=|£-g|+| £+g] .
Next, write p=%(f+g) and qg=%(f-g) , so f=p+tq and g=p-q . Using (vii)
and the above formula we obtain
2(1£lalgh=2|£l+2]gl-2(I£|vIgl)=2]|£|+2]|g|-|f+g|-|£f-g|=
2|p+ql+2|p-q|-2Ip|-2lql=4(lplVi]ql}F2|pl-2]lql=
2(lpl+lal+llpl-lalD=-2lpl-2|qi=2Ip|-lql =

[12pl-12q| |=| | £+g|-|£-g]].

1.5. THEOREM. Let D be a nonempty subset of‘ L and assume that f0=sup D
exists. If geL, then foAg=sup {fAg: feD}. Similarly, if f1=inf D exists,
then flvgéinf {£vg: £eD} for all geL.

Proof. Note that £.2f for all feD, so £f.Ag2fAg for all f£feD. Hence,

0 0

fOAg is an upper bound of {fAg: feD}. Next, let meL be any upper bound
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of {fAg: feD}. Then m 2 fAg = f+g-(fvg) 2 f+g—(f0Vg) for all £eD, so
m—g+(f0Vg) > f
for all £feD, whence

m—g+(f0Vg) 2 fO.

Equivalently, m 2 £ +g—(fOVg) = £

0 Ag. Thus fOAg is the least upper bound

0
of {fAg: feD}.

The second statement is proved similarly.
The following statement is now an immediate consequence.
1.6. COROLLARY. Any Riesz space is a distributive lattice.

+
12,.€L  be such that

1.7. THEOREM. (Riesz decomposition property). Let Uz, 2z,

+ .
u < z1+zz. Then there exist ul,uzeL satisfying u = u

and O < u2 < 22'

+u 0 £u, £z
2 ’

1 1 1

Proof. Define u1 = u/\z1 and u, = u-u,. Obviously we have 0 < u1 < 21

+
and u = u1+u2 . Also, since u1 S u it is clear that u2€L . Finally,

= u=u' = u-(uA = (u- \ vO = .

u2 u u1 u-(u zl) (u zl) 0 < z2 0 22
It will turn out that the preceding theorem plays an important role in the
investigation of the order dual of a Riesz space . (chapter 2). To show that
not only Riesz spaces have the Riesz decomposition property we present the

following exercise.

1.I. Exercise. Let Cl([O,l]) denote the real vector space consisting of
the real-valued continuously differentiable functions on the closed inter-

val [0,1]. set £ <g for f,gecl([O,ll) if f£(x) < g(x) for all x.
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(i) Show that Cl([O,l]) is an ordered vector space but not a Riesz
space .

(ii) Show that Cl([0,1]) has the Riesz decomposition property. Hint:
if f,gl,gzecl([o,lj) are such that g,:9, 2 0 and 0 < f < 9,%9, then
show that the functions fi (i=1,2) defined by

gi(x)f(x)
£, (x) = ——————— if g, (x)+g,(x) #20; £f,(x) = 0 otherwise
i 1 2 i

g, (x)+g, (x)

satisfy the stated conditions.

2. RIESZ SUBSPACES AND RIESZ HOMOMORPHISMS

In linear analysis an important role is played by linear subspaces of
a linear space. It will be clear that in our investigations those linear
subspaces of L are important which are Riesz spaces in their own right.

The following definition distinguishes between three types of such subspaces.

2.1. DEFINITION. (i) A linear subspace V of L is called a Riesz sub-
space if f£,gev implies £fVgeV (and hence also fAgeV by 1.4(vii)).

(ii) A linear subspace A of L is called an order ideal (or ideal) if
feA, geL and |g| < |£| implies geA.

(iii) An ideal B of L 1is called a band if it follows from DcB, D=@
and fo = sup D existing in L that foeB.
It is obvious that a band is an ideal and that an ideal is a Riesz subspace.
However the converses of these statements do not hold as we shall see in
example 2.B. First we observe that Riesz subspaces (and hence also ideals
and bands) are Riesz spaces in their own right, so that it makes sense to

talk about the positive cone of a Riesz subspace (ideal, band).
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2.A. Exercise. (i) Let A be a Riesz subspace of L. Show that A 1is an
ideal if and only if it follows from feA+, geL+ and g < £ that geA+.
(ii) Let B be an ideal of L. Show that B is a band if and only if
it follows from DCB+, D#2@ and fo = sup D existing in L+ that fOeB+.
2.B. Examples. Let L be the Riesz space C([0,1]) (see 1.G).
(i) Let V Dbe the linear subspace of L consisting of all constant
functions on [0,1]. Then V is a Riesz subspace but not an ideal of L.
(ii) Let A be the linear subspace of L consisting of all functions
f satisfying f£(%) = 0. Then A is an ideal but not a band of L. To show

that A is not a band observe that the functions fn, defined by

- 1_13,i,.1 44,
fn(x) =1 for x€[0,2 n]U[2 + = 1715
1 1 1
fn(x) = -nx+%n for xe[i-- o Eﬂ'
£ (x) = nx-%n for xe[l- l~+ lﬂ (n+2,3 )
o Syt 13700

are all members of A. Furthermore, if fo(x) =1 for all x, then
£, = sup {fn: n=2,3,....}
in the partial ordering of L and foéA. Thus A is not a band.

(iii) Let B be the linear subspace of L cénsisting of all £ satis-
fying £ =0 on [0,%]. Then B is a band in L.

(iv) Let V Dbe the linear subspace of L consisting of all polynomials
on [0,1]. Then V 1is not even a Riesz subspace of L. However, V is an
ordered linear space and V has the Riesz decomposition property (see 1.7).

(v) Let V be the linear subspace of L consisting of all polynomials
on [0,1]1 of degree less or equal than one. Then V 1is not a Riesz sub-
space of L. However, V considered in its own right is an ordered vector

space, and, with this partial ordering V is even a Riesz space.

We leave the simple verifications of the above statements to the reader.
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2.2. THEOREM. (i) {0} and .L are bands in L.

(ii) Intersections of Riesz subspaces (ideals, bands) are Riesz subspaces
(ideals, bands) in L. (Thus, it makes sense to talk about the Riesz sub-
space (ideal, band) generated by a subset of L).

(iii) Let A1 and A2 be ideals in L. Then the algebraic sum A1+A2

+ +
is an ideal in L. Moreover, if fe(A1+A2) , then there exist fleA1 and

+ ,
fzeA2 such that £ = £, +f,. In particular, if A

1ty na, = {0} and if

1

L}
Hh
+
Hh
~

+ + +
fe(A1+A2) , then £ fleAl' fzeAz.

Proof. (i) and (ii) are obvious.

(iii) Note that A1+A2 is a linear subspace of L. Next, let feA1+A2,

gel. be such that |g| < |f|. Then £ = f1+f2, f1eA1, fzeAz. Hence, since

+
< <
g < lgl < lgl < Ig, I+,

it follows from theorem 1.7 that there exist g', g" in L such that

+
g =g'+g", 0 =sg'-< |f111 0<sg"< |f2|.Now, as A1 and A2 are ideals

it follows that g'eA g"eAz, so g+eA +A_. Similarly it follows that

1’ 172

- . + . s .
g eA1+A2 Thus A1 A2 is an ideal
+ .
Finally, let fe(A1+A2) be given. Take g = £ in the above proof
and it follows that £ = f1+f2, fleA:, fzeA;. The rest of the theorem is

now obvious.

In the preceding theorem the reader will miss the statements that the al-
gebraic sum of two Riesz subspAces is a Riesz subspace, and that the alge-
braic sum of two bands is a band. However, this is not an omission since

these statements are false in general. It is left to the reader to find a
counterexample for the first statement, and we present a counterexample for
the second one. Consider C([0,1]) as in example 2.B. Define the bands B

1

and B, in c¢([0,1] by
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B = {fec(f0,1]): £ =0 on [0,%]1}
B, = {fec([0,1): £ =0 on [4 11}
Then
B,+B, = {fec([0,1]): £(%) = 0},

which is not a band (although it is an ideal) according to 2.B (ii).

In theorem 2.2 (ii) it was observed that it makes sense to talk about
ideals and bands spanned by a subset of L. In the following exercises we

give characterizations for two cases.

+
2.C. Exercise. Let ueL . The smallest ideal in L containing u is de-
noted by (u) and is called the principal ideal spanned by u. Show that

(u) = {feL: |f] € nu for some neN}.

2.D. Exercise. Let A be an ideal of L and denote by [A] the smallest
band in L containing A. Show that

(a1*= {gert: £

sup D for some DcA} =

{ger™: £ sup {g: geA+, g < £}}.

In the remaining part of this section we shall study linear maps from
a Riesz space L into a Riesz space M, and in connection with this,
quotients of a Riesz space L relative to an ideal A.
THEREFORE, LET FOR THE REST OF THIS SECTION M BE A RIESZ SPACE.
It will be clear that only those linear maps from L into M are interest-
ing whiéﬁ preserve not only the addition and the scalar multiplication but

also the order structure of L. To this end, we define the following

2.3. DEFINITION. (i) A linear map ¢:L - M is called positive (notation
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+ +
¢ 20), if ¢(L) c M.
+
(ii) A linear map ¢: L - M is called a Riesz homomorphism if f£,geL

and fAg = 0 implies ¢(£)Ad(g) = O.

2.4, THEOREM. Let ¢: L - M be a linear map. Then the following statements

are equivalent.

(a) ¢ 1is a Riesz homomorphism.

(b) ¢(fvg) ¢ (£)Vd(g) for all f£,geL.

(c) $(£Ag) = ¢(£)Ad(g) for all f£,geL.

Proof. It is clear that (c) implies (a) and that (b) and (c) are equivalent
(since f+g = fvg + fAg). To show that (a) implies (c), let ¢ be a Riesz
homomorphism and let £,gel. be given. Setting h = fAg we have

(£-h) A(g-h)

0,

so  (¢(£)-¢(h))A($(g)=¢(h))

0. Equivalently, ¢(£)Ad(g) = ¢(h) = ¢(£Ag).

2.5. THEOREM. Let ¢: L » M be a Riesz homomorphism and let £,geL be
given.

(i) £ 2 g implies ¢(f) = ¢(g), so ¢ = O.

i) $(£1) = ENT $(E) = N sUED = 1$(D)].

(iii) If A¢ = {feL: ¢(f) = 0}, then A¢ is an ideal in L.
Proof. (i) Assume that £ > g. Then f = fvg, so ¢(£f) = ¢(£)Ve(g) = ¢(g).

(11) $(£7) = $(Ev0) = ¢ (E)vé(0) = #(£)V0 = (¢(£))". The rest follows
similarly.

(iii) It is clear that A¢ is a linear subspace of L. Furthermore,
¢(IE]) = |¢(£)|] for all £eL, so feA, if and only if |f|eA,. Hence,

¢ ¢

if feA¢, geL. and if |gl| < |£]l, then 0 < ¢(lgl) < ¢(I£]) = 0, so IgleA¢-
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Thus geA¢ so A¢ is an ideal.

From the preceding theorems we infer that Riesz homomorphisms preserve all
relevant structuresof L. Also, Riesz homomorphisms turn out to be positive.
The reader will not find it hard to prove that a positive linear map from

L into M is not necessarily a Riesz homomorphism (see also 2.E).

2.6. DEFINITION. (i) A bijective Riesz homomorphism is called a Riesz iso-
morphism.

(ii) The Riesz spaces L and M are called Riesz isomorphic (notation

e

L = M) if there exists a Riesz isomorphism ¢: L -+ M.
It is obvious that if ¢: L + M is a Riesz isomorphism, then ¢_1: M-~>L

is a Riesz isomorphism as well.

2.7. THEOREM. Let ¢: L >+ M be a positive linear bijective map. Then ¢

is a Riesz isomorphism if and only if ¢_1 is positive.

Proof. (i) If ¢ 4is a Riesz isomorphism then ¢_1 is a Riesz isomorphism,
so ¢ 20.
(ii) Assume that ¢_1 > 0. Let f,gel. be given. Since £vg > f and
fvg 2 g it follows that ¢(fvg) = ¢(f) and ¢(fvg) > ¢(g). Hence
¢ (£vg) = ¢ (£)Vve(g).
Using ¢_1 2 0 and using ¢(£)Ve(g) = ¢(£), ¢(£)Vvd(g) = ¢(g), we obtain
s e veig)) > fvg,
so ¢(£)Vvé(g) = ¢(fvg) which shows that ¢ is a Riesz homomorphism and

hence a Riesz isomorphism.
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2.E. Exercise. Let L be the coordinatewise ordered plane and let M be
the lexicographically ordered plane (1.C and 1.D). Show that there exists
a positive bijective linear map from L onto M but that L and M are

not Riesz isomorphic.

Next, we consider factor_spaces. To this end,
FOR THE REMAINING PART OF THIS SECTION LET A BE AN IDEAL OF L.
Consider the factor space L/A. As usual elements of L/A will be denoted
by [£f], where £feL. Also, we shall frequently use the notation gel[f] mean-
ing geL and [g] = [£f] in L/A. We now give L/A the structure of a Riesz

space.

2.8. DEFINITION. Let [£],[gleL/A. Then we write [£] < [g] whenever there
exist elements fle[f] and gle[g] such that £, < 9,
2.F. Exercise. Show that for [f],[gJeL/A the following statements are
equivalent.

(a) [£] < [g].

(b) For all fle[f] there exists a gle[g] satisfying fl.s 9,

(c) For all fle[f] and for all gle[g] there exists a qeA satisfy-

ing gl—f1 2 d.

We shall show now that < is a partial ordering on L/A. It is clear that
[£] < [£f] for all [fleL/A. To derive transitivity, let [£],[g],[hJeL/A
be such that [£f] < [g] and [g] < [h]. By 2.F there exist ql,qzaA such
that g-f > a - h-g = q,- Hence h-£f > q1+q2, so [f] £ [h]. Finally, let
[£],[gleL/A be such that [£f] < [g] and [g] < [£f]. Again by 2.F

g-f 2 qQ f-g > q,



18

for certain ql,qzeA. This is equivalent to £f-g < —ql, g-f < -q2. Letting
q= (-ql)V(-qz) , we have qeA and |f-g| < q, so £-geA. Thus [£f] = [g].
Thus < is symmetric on L/A and therefore L/A is partially ordered by

<.

2.9. THEOREM. L/A endowed with the partial ordering < 1is a Riesz space.
In particular,
[£1vlg] = [fvg]l and L[£]algl = [£Ag]

for all f£,geL.

Proof. It is easy to show that L/A 1is an ordered vector space with respect
to <, so that part of the proof is left to the reader. It remains to show
‘that L/A is a lattice. To this end, let [£f],[gleL/A be given. Then ob-
viously

[£vgl 2 [£] and [£vgl 2 [g]
so [fvgl is an upper bound of {[£f],[gl}. Let [hleL/A be any upper bound

of {[£],[gl}. Then there exist ql,qzeA such that h-f 2 q, and h-g 2

1
a,- Setting g = qlqu it follows that geA and that

h-f 2 q, h-g 2 q.
Hence h 2= (f+q)V(g+q) = (fVg)+q. Equivalently h-(fVg) 2= . Hence, by 2.F,
[h] = [£vg]l which implies [fvg]l = [£]v[lg].

Using now f+g = (fVg)+(fAg) it is clear that [£fAg] = [£]JAlg] holds for

all f£,gelL, which completes the proof.

From the previous results it is now clear that the operator ¢: L - L/A
defined by ¢(f) = [£] for all felL is a Riesz homomorphism with kernel
A. Thus analogously to the theory of rings, we have shown that any ideal of

L is the kernel of a Riesz homomorphism on L, and conversely (theorem 2.5
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(iii)). It is clear as well, that if ¢: L - M is a Riesz homomorphism
N
with kernel A¢CL, then L/A¢ = ¢(L) (note that ¢(L) is a Riesz subspace

of M).

2.G. Example. Let (X,T',u) be a measure space. Consider the Riesz space M
defined in example 1.E. Next, define

N = {feM: £=0 up-almost everywhere on X}.
It is clear that N is an ideal in M. Thus M/N is a Riesz space in view
of theorem 2.9. If M is the Riesz space defined in example 1.F, it is easy

N
to see that M = M/N.
Finally we present a useful extension lemma for linear operators.

o+
2.10. LEMMA. Let ¢: L - M be such that ¢(u+v) = ¢(u)+¢(v) for all u,ve
+ +
L and ¢(au) = a$(u) for all ae " and a1l uel . Then ¢ has a unique

linear extension & to the whole of L. Moreover, if ¢(u) =2 0 for all

+
ueL , then ¢ 2 O.

Proof. For any feL, define &(f) = ¢(f+)—¢(f_). Then ¢ = ¢ on L+ and
¢ is linear. It remains to show that ¢ 1is unique. To this end, assume
that ¢1: L - M is a linear operator such that ®1 =¢ on L+, and let
feL. be given. Then

o(5) = ¢(£)-9(£7) = o (£)-0 (£7) = o (£7-£7) = 0 (D).

Thus ¢ is unique. The rest is obvious.
3. DISJOINTNESS

Beside the concept of taking suprema and infima in L, there is an-
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other important concept. In fact,

3.1. DEFINITION. Let f,gel. be given. Then f£ and g are said to be dis-
joint (notation £lg) whenever |£|A|lg| = 0. Furthermore, if D is any sub-
set of L, then the disjoint complement Dd of D is defined by

p% = {feL: f1d for all dep}.
Two subsets D and D of L are said to be disjoint (DILDZ) whenever

1 2
d,1d for all d,eD and for all d,eD,.

1772 1771 2772
3.2. LEMMA. (i) If £lg and |h| < |£|, then hig.
(ii) fl1g, aeR implies aflg.
; 7 + .
(iid) fllg, f21g implies (f1 fz)Lg
+ o -
(iv) fl1g if and only if £ 1g and £ lg.
+ -
(v) £ 1f .

(vi) If DI'D cL satisfy D

2 LDZ, then D

nD2C{0}. In particular fLf

1 1

implies £ = 0.
(vii) Let D be a subset of L such that fO = sup D exists in L.
Then £fl1g for all feD implies fOLg.

Proof. (i) 0 < |n|Algl| < |£]lAlg| = 0.
(ii) Let u,veL+ and b >0 in R be given. Assume that ulv. Then
bulbv. Furthermore, note that fig if and only if |£f|L|g|. Hence
(lal+) [£lL(lal+1) Ig].
From |af| = |a||f]| < (]a]+1)|£f] it follows that afi(|a|+1)]|g|, and from
lgl < (lal+1)|g| it follows now that afig.
(iii) 0 < [£+£ |algl < (I£ [+[£,)Algl < I, |Algl+]£,lAlg] = O.

+ +
€]

. - - +
(iv) = £ < |f|] and |f | = £ < |f|l, so flg implies £ lg and

- . + - + -
f Lg. Conversely, if £ 1g and f Llg, then (f +f )lg, so |f|ig, or fig.



(v) Obvious.

2z @.
1nD2 #. Let

lal = lalalal = o.

(vi) Assume that D

deD1 5

nD,. Then

did, so

(vii) We have f+Lg and f_Lg for all feD. By theorem 1.5

+ + - .
fO = sup {f : £eD}; fO = in
+
£f A =
so foAlgl
feD. Thus fglg and fglg and hence

3.3. THEOREM. Let D be a subset of
, d |
(i) D is a band,

(i1) pep®@ (=0H %y,

(ii1) o = p?%,

(iv) 0% = {o}.

Proof. (i) Immediate from lemma 3.2.
(ii) Obvious.

(iii) From (ii) it follows that D

2

d
then DIDDd. Hence, again by (ii), we have D oD

d _dd

(iv) It is clear that D 1D and that OeanD

p?pdd = {0}

by lemma 3.2 (vi).

£{f : feD},
f 1g.

0

L. Then

d__ddd

<D . Furthermore, if D,cD

d__ddd
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dd (by (i)). Thus
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sup {£'Algl: £eD} = 0 and O < £algl < £algl = 0 for all

(in L)

3.4. LEMMA. Let A and B be ideals in L. Then AI1B if and only if

anB = {0}.

Proof. (i) If AlB, then AanB = {0}
OeAnB.

(ii) Assume that AnB = {0}. Let

by lemma 3.2 (vi) and the fact that

fleA and £

2

eB be given. Then
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IfllAIle e AnB = {0}.

Hence fllfz, so AlB.

We note that if A and B are Riesz subspaces of L such that AnB = {0},
then we do not necessarily have AlB. The reader will not find it hard to

give counterexamples.

3.A. Example. Let (X,T,u) be a measure space and let M be the Riesz
space defined in example 1.F, with elements [£f],[g],...., where £,g,...
are elements of M (see 1.E and 2.G). Let f,geM be such that [£fJ]il[g] in
M. Then

CIglalgl] = |L£11AlLg]] = O,
so |£|lalgleN (see 2.G). This shows that £(x) = 0 for p-almost every x
in X for which g(x) # 0 and conversely. Thus, if Ael is any measurab-
le set and if we define
B, = {[£leM: £ = 0 u-almost everywhere on A"},

then BZ is a band in M and moreover,

Bi = {[£]leM: £ = 0 pu-almost everywhere on A} = B o
A

d . T

Hence, since BA =B c it follows that BA is also a band in M. In sec-
A

tion 4 we shall see that, for o-finite measure 1y, we can obtain every band

in M in the above described way (example 4.I).
4. ARCHIMEDEAN AND DEDEKIND COMPLETE RIESZ SPACES
Although it follows from the previous sections that a Riesz space L

has an extremely rich structure, far more can be proved if we require more

about the partial ordering in L. Therefore, we introduce
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+
4.1. DEFINITION. A Riesz space L is called Archimedean if for all uel

inf (n 'u: n=1,2,...} = O.

4.2. DEFINITION. A Riesz space L 1is called Dedekind complete if every non-

empty subset of L that is bounded from above has a supremum.

Before presenting examples, we derive some properties of Archimedean Riesz

spaces and of Dedekind complete Riesz spaces.

4.A. Exercise. Show that the following statements are equivalent.

(a) L 1is Dedekind complete.

(b) Every nonempty subset of L that is bounded from below has an in-
fimum.

+

(c) Every nonempty subset of L that is bounded from above has a supremum.

(d) Every nonempty subset D of L+ that is bounded from above and
for which fl,fzeD implies flvfzeD, has a supremum.

Next, as before, let L be a Riesz space. Let A be an ideal in L.
dda . . dda s
Then A is a band in L and obviously AcA™ . Thus it is clear that
dad X . da
A" = {0} if and only if A = {0}.Now, assume that A # {0}, so A ~ # {0}
and let ueAdd be given such that u > 0. Then there exists an element Vv
in A such that 0 <v<u(so 0<v<u and v # 0, v # u). Indeed,
d

note that ugA~, so there exists an element weA such that uAlw| > 0.
Take v = %(uAlw|). Then veA since A is an ideal and 0 < v = %(ualw]) <

%u < u. We are now ready to prove the following important theorem.

4.3. THEOREM. The following statements are equivalent.

(a) L is Archimedean.
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(b) u,ng+ and 0<nv<u for n=1,2,... Implies v = 0.
(c) If veL+, vz 0, then {nv: n=1,2,...} is not bounded from above.

(d) A = Add for every band A in L.

Proof. (i) It is routine to show that (a), (b) and (c) are equivalent.

(ii) To derive (b) = (d), assume that L is Archimedean and let A be
a band in L. We argue by contradiction, so assume that AigAdd. Let uﬁAdd
be such that u > 0 and ufA, and consider the set Mu, defined by

Moo= {ven: 0 < v < u}.
As shown above, Mu is not empty. Moreover, Mu is bounded from above by u.
Now note that u cannot be the supremum of Mu since MuCA and since A
is a band (since ufA). Hence, there exists a w'€L such that w' is an
upper bound of Mu and such that u < w' does not hold. Letting w = uAw'
it follows that w 1is an upper bound of Mu and that 0 < w < u. So weAdd
and u-w > 0. By the same argument as before, there exists a 2z€A such that
0 <z < u-w. Next, for all veMu we have (z+v) €A and
0 < z+v < z+w < u,

so (z+v)eMu. In particular, since zaMu it follows that 0 < nz <u holds

for n=1,2,.... . This contradicts (b), so A = Add.

(iii) To show that (d) implies (a), assume that A = Add for every band
A in L and suppose that L is not A?chimedean. Then there exist u,veL+
such that v20, 0<nvgu for n=1,2,... . Let (v) be the principal
ideal generated by Vv (see 2.C) and consider the ideal A of L defined by

a= wm+@

(A is an ideal according to 2.2(iii) and 3.3(i)). Then
a a.d a
22 = (m+@H% ¢ »h® = (0},
a . aa
so A = {0} and equivalently A = L. Next, let [A] be the smallest

band of L containing A (see 2.D). Then also [A]dd =L, so [A]l=1L by
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assumption. Once more, define

Moo= {weA: 0 < w < ul.

ol

If weMu, then w = w1+w2, wle(v), w2e(v) and O < w1 <w, 0 < v, <w
(theorem 2.2(iii)). Since (v) consists of all feL satisfying |£f] € nv
for some neN (2.C), we have w1 < nv for some integer n. Hence

w1+v < (n+1)v £ u and (w1+v)e(v).
Also, we have w1 <w <u and w21(w1+v), wze(v)d. Therefore

+v) + = \% <

(w1 V) W, (w1+v) w, < u,

soO w = w1+w2 < u-v < u. This shows that w < u-v for all weMu. It follows

that u-v is an upperbound of M - Recalling that ue[Al= L, we have
u = sup M

in view of 2.D, so u < u-v. This contradicts v > 0, so L is Archimedean.

4.4. THEOREM. Any Dedekind complete Riesz space is Archimedean.

+
Proof. Let L be a Dedekind complete Riesz space, and let u,vel. be such

that 0 < nu v for n=1,2,.... . Then uo = sup {nu: n=1,2,...} exists

in L+. Now note that

2u. = sup {2nu: n=1,2,...} =u

0 o’

so uo = 0 and hence u = 0.

The following exercise shows that Dedekind completeness and the Archimedean

property are inherited by suitable subspaces. -

4.B. Exercise. (i) Let L be Archimedean. Then any Riesz subspace of L
is Archimedean.
(ii) Let L be Dedekind complete. Then any ideal of L is Dedekind

complete.
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In section 1 we have presented several important Riesz spaces. We
shall show now which of these examples are Archimedean and which are even

Dedekind complete (the examples carry the same letter as in section 1).

Examples.
4.C. The Cartesian space R® ordered coordinatewise is clearly Dedekind

complete (since R is Dedekind complete) and hence also Archimedean.

2
4.D. The lexicographically ordered plane R is not Archimedean and there-
fore not Dedekind complete. Indeed, if u = (1,0) and v = (0,1), then

0 <nv £u for all n.

4.E. Let (X,T) be a measurable space and consider the Riesz space M of
example 1.E. It is clear that M is Archimedean. However, in general M
is not Dedekind complete. Indeed, if there exists a subset AcX such that
A¢fT, and if T contains all single points of X, then M is not Dedekind
complete because the set D of M defined by

D= {X{x}: xeAl}
is bounded from above in M by XX' but D does not have a supremum in

M. (xB denotes the characteristic function of the subset B of X).
4.F. Let (X,T,u) be a measure space, and consider the Riesz space M=M/N
(see 1.F and 2.G). Again it is clear that M is Archimedean, but in the

present case we can prove more.

4.F.1. THEOREM. If u is o-finite, then M is Dedekind complete.

Proof. We divide the proof into three steps. N
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(a) Assume that u(X) < e. Let DCM+ be a nonempty subset such that D
is bounded from above by VEM+ and assume that v is bounded (i.e., if we
choose a function £ in the class of ‘v, then £ is always essentially
bounded and this means that

inf {aerR’: u{xex: |£(x)| > a} =0} < o).
To show that sup D exists in M+, we may assume that D is closed under
taking suprema of finite subsets (see 4.A). Now note that

0<fudu £ /fvdu<oe
holds for all ueD (integration of an equivalence class means integration
of one of its members). Letting

P = sup {fu du: ueD}

it follows that P < o, Furthermore, there exists a sequence ul,uz,....

in D such that u1 < u2 < .... and fuﬁ du 4+ P. Next, pick a function fn

in each class un and define
fo(x) = sup {fn(x): n=1,2,....}

for all xeX. After that, define u0 to be the member of M generated by

foeM. (note that u does not depend on the special choice of the functions

0
fn). It is clear that

fuo du =P and u < u, for all ueD.

Finally, it is routine to show that u, = sup D.

(b) Assume that p(X) < e. Let DeM” be a nonempty subset such that D
+
is bounded from above by veM . Define for all ueD and for all neN
= A . = .
u =u [nxX], Dn {un ueD}
where [nxx] is the class of nxx. From (a) it follows that each Dn has

a supremum vn (n=1,2,...). Letting uo = sup {vn: n=1,2,...} it is clear

that uy = sup D (using the fact that vn < v for all n).

+
(c) The general case. Let again DcM be a nonempty subset that is bound-

+
ed from above by veM . Let X =n§ X u(xn) < o for all n, and define

1"n
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Dn = {uxxn: ueD}.

+
Then u = sup Dn exists in M for all n by (b). Letting u, = sup {un:
n=1,2,...} it is clear that u0 = sup D which proves that M 1is Dedekind

complete.

Remark. Note that we have proved something more than the Dedekind complete-
' +

ness of M. Indeed, we have shown that if DcM is a nonempty subset that

is bounded from above, then D contains a countable subset D1 such that

+
sup D1 = sup D exists in M . Riesz spaces having the property stated above

are sometimes called super-Dedekind complete Riesz spaces.

4.G. Let (X,T) be a topological space and consider the Riesz space C(X).
It is clear that C(X) is Archimedean. However C(X) 1is not necessarily

Dedekind complete. For instance the Riesz space C([0,1]) is not Dedekind

complete. Indeed, for n=2,3,...., define fneC([O,ll) by
fn(x) =0 if 0 < x < %; fn(x) =nx-%n if % < x < %+n_1;
£ =1 if wml<x s

Then DcC([0,1]) defined by D = {fn: n=2,3,...} is bounded from above
but D does not have a supremum in cC([0,1]).
In section 12 we shall return to the question for which topological

spaces (X,T) the space C(X) is Dedekind complete.

4.H. Let (X,I') be a measurable space and let B the Riesz space consist-
ing of all finitely additive bounded measures on TI'. Then B is Dedekind
complete. Since the proof of this statement is similar to the proof of

theorem 5.6, we shall omit the proof here.

As noted in section 2 after theorem 2.2 the algebraic sum of two dis-
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joint bands of L is not necessarily a band. This situation improves if we
assume L to be Dedekind complete. In fact, it follows from the next theo-
rem that in a Dedekind complete Riesz space any band is a so-called projec-
tion band, i.e., if B 1is a band in a Dedekind complete Riesz space L,

d . .
then L = B+B , so there exists a positive projection P: L - B.

4.5. THEOREM. Let L be Dedekind complete.

(i) If A1,A2 are bands in L such that AILAZ, then A1+A2 is a band.

(ii) L = B+Bd for any band B in L.

Proof. (i) According to theorem 2.2 (iii) A1+A2 is an ideal. Now, let D

+
be a nonempty subset of (A1+A2)+ such that f0 = sup D exists in L .

For all feD we have f = f1+f2 for certain uniquely determined £ eAl,

+
f2€A2‘ Furthermore, 0 < fi < f < fo (i=1,2) for all feD, so
£' = sup {fl: feD} and f£" = sup {fz: feD}

: : + . . . :
exist in L since L is Dedekind complete. Since A1 and A2 are bands,

we have f' EAI and f"eA2 Now note that

0 < fO = sup {f +f2. feD} £ sup {f feD}+sup {f : feD} =

£r4+£"
d f'+f"e(A,+A i + i i . i
an el 1 2), so foe(A1+A2) since Al A2 is an ideal. This shows

that A1+A2 is a band.

(ii) Let BcL be a band. Then by the above B+Bd is a band. Since

34849 ¢ %% = (0}

it follows that (B+Bd)d = {0}. Hence by the theorems 4.3 and 4.4,

d d,dd

B+B = (B+B) {o}d =

As an application of the preceding theorem we shall compute all bands in the

Riesz space M, defined in example 1.F.
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4.I. Example. Let (X,T,u) be a o-finite measure space and let M be the
Riesz space defined in 1.F (see also 2.G, 3.A and 4.F). In 3.A we have
shown that if Ael', then BA' defined by

B, = {[£leM: feM, £=0 n-almost everywhere on a%}
is a'band in M. We shall show now that each band in M can be obtained
in this way. To this end, let B be a band in M. Since M is Dedekind
complete (4.F.1) we have M = B+Bd (theorem 4.5(ii)). In particular, if

+
e = [xx]eM , then e has a unique decomposition e = e1+e2, where eleB,
d

ezeB ( and ellez). Hence, XX has a decomposition xX = f1+f2 for cer-

+
tain £ fzeM satisfying [f1] =e [f2] = e, . Since e, le, -it follows

1’ 1’ 2 172

that
u{xex: min (fl(x),fz(x)) z 0} =0,

so there exists a set Ae¢l' such that £, = X

1 p-almost every-

ar £ = Xpe

where on X, so

e = [XA]' e, = [XAC]

+
for this set A. We shall show now that B = BA' First, let £feB be given.
+ d
Since f/\e2 = 0 it follows that feBA, so BCBA. Similarly, if feB , then
feB so BdCB This implies that B = de > Bd =B so B =B
ac’ AC” © AC A’ A’
Finally we ohserve that if Al,Azer, then

BA1 = BA2 if and only if u(AlAAz) = 0.

Thus we have a one-one correspondence between the collection B of all
bands in M and the collection [I'] consisting of all equivalence classes
of sets Ael' where Al ~ A2 if and only if u(AlAAz) = 0.

By th. 4.5 any Dedekind complete Riesz space has the projection
property. Also, it can be shown that any Riesz space that has the projection
property is Archimedean. The converses of this two statements are false in

general. To this end, we present the following exercise.
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4.J. Exercise. (i) Show that any Riesz space that has the projection proper-
ty is Archimedean.
(ii) Consider the Riesz space C([0,1]) (see 1.G and 4.G). Show that
c([0,1]) is Archimedean but that it does not have the projection property.
(iii) Let L be the space consisting of all sequences (Xl'x2""')
(xieR) such that for any sequence (xl,xz,....) in L there exists a num-
ber N0 such that xn = xn+1 for all n 2 NO (N0 depends on the choice
of the sequence). The space L is ordered coordinatewise. Show that L is
a Riesz space that has the projection property, but that L is not Dedekind

complete.

Next, by way of an exercise, we show that if L is Archimedean and if
A is an ideal in L, then L/A is not necessarily Archimedean. However,

if A 1is not only an ideal, but even a band, this situation improves.

4.K. Exercise. (i) Let L be the Riesz space C([0,1]) (see 1.G, 4.G and
4.3(ii)). Let A be the subset of L consisting of all fec([0,1]) for
which there exists an €. > 0 (in R) such that £ =0 on [O,ef]. Show
that A is an ideal in L and that L/A is not Archimedean.

(ii) Let L be an Archimedean Riesz space and let B be a band in L.
Show that L/B is Archimedean.
Hint: Let ¢ be the canonical Riesz homomorphism from L into L/B and
let. u,veL+ be such that n¢(v) < ¢(u) for n=1,2,... . Then

0= (-6 = ¢ ((av-w™)

+
for all n, so (nv-u) eB for all n. Observe that

0 < V-(V—n_lu)+ = ]v+—(v-n_1u)+[ <
lv-(v-n"u)| = n"ly
For all n. Letting wn = (v—n_iu)+ show that 0 < w1 < w2 <¢e..£ VvV and
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that sup {wn: n=1,2,....} =V. Also show that wneB for all n. Conclude

that wveB and that L/B is Archimedean.

Finally, we construct a Boolean algebra B wusing an Archimedean Riesz
space L. First, let L be any Riesz space and define
BlL] = {BcL: B is a bandl} (=B)
Then B is partially ordered by inclusion, i.e., B, < B_ whenever B

1 2 1

is contained in B_. Moreover B has an infimum (viz. {0}) and a supremum

2
(viz. L). Also, for any pair B1’B2€B the infimum B, AB, exists in B,
since BlnB2 = BlABZ is a band in L.

4.6. THEOREM. If L 1is Archimedean, then B is a Boolean algebra.

Proof. (a) First we show that B is a lattice. As noted above, BlAB2

exists in B for any pair B ,BzeB. Defining for B

1 ,BzeB

1

31VB2 = [BI+B2]

(see 2.D) it is immediate that B1VB2 is the supremum of B1 and B2

with respect to the partial ordering in B. We note that (A+B)d = Adan

for A,BeB and therefore

_ ad _ dd _ , da _d4d
131VB2 = [B1+Bz] = [B1+B2] = (Bl+32) = (BlnBz)

for Bl,BzeB since L is Archimedean.

(b) Next we show that B is distributive. To this end, let A,B ,BZEB

1

be given. Since B is a lattice it is clear that
AB, ) V(AA < \% .
(AAB )V (A B,) < AA(B,VB,)
) +
For the converse direction, let fe(An(B1+B2)) be given. Then

+ + +
2€Byr fleA ’ fzeA .

Hence f1eAnB1 and f2eAnB2, so fe(AnB1 + AnBz). This implies that

AA(B1VB2) = An[B1+B2] = [An(B1+B2)] c [(AnBl)+(AnBZ)] =

+
f = f1+f2, fieB , f£.eB
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AB, ) V(AA .
(a B,) (a B2)
This shows that B is distributive.
(c) Finally, we show that each element of B has a complement. Let
BeB be given. We assert that Bd is a complement of B. Indeed,

d

BAB Ban = {0}

BVBd = (Bdnadd)d = {0}d = L.

Remark. Note that the only place where we actually need that L 1is Archi-

medean is in part (c) of the proof.

4.7. DEFINITION. A Boolean algebra X is called Dedekind complete if every

nonempty subset has a supremum.

4.L. Exercise. Show that a Boolean algebra X is Dedekind complete if and

only if every nonempty subset of X has an infimum.

4.M. Exercise. Show that the Boolean Algebra B of theorem 4.6 is Dedekind
complete.

Hint: Use theorem 2.2 (ii).
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As before, let L be any Riesz space. By a linear functional on L
we shall always mean a linear map from L into R. Also, a linear function-
al ¢ on L is said to be positive (¢ 2 0) if ¢(L+) c R+ (compare def-
inition 2.3(i)). The collection of all linear functionals on L is called
the algebraic dual of L and is denoted by L#. We note that L# contains
at least one positive linear functional (viz. the null functional). In this
chapter we shall study the linear subspace L~ of L# spanned by the pos-

itive linear functionals. It will turn out that L is in a natural way an

(even Dedekind complete) Riesz space.
5. ORDER BOUNDED LINEAR FUNCTIONALS

We begin with a definition.
5.1. DEFINITION. An element ¢eL# is called order bounded if for all ueL+
sup {|$(£)|: feL, |£f| < u}
is finite. The collection of all order bounded linear functionals on L

will be denoted by L .

It is clear that for a ¢5L# we have ¢ 2 0 if and only if £ < g in L
implies ¢(£) < ¢(g) in R. Moreover, if ¢ = 0, then ¢eL  since for
+ —-—
uel. and for any feL satisfying |f| < u, we have £ <u anda £ < u,
so
+ - + -
o) | = 19(E£)=¢(£ )| S $(£)+¢(£) < 2¢(u).

This implies that positive linear functionals on L are order bounded.

Finally, it is clear that L is a linear subspace of L#.

5.2. DEFINITION. The space L is called the order dual of L.
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In the remaining part of this section we shall show that L” is a Dedekind
complete Riesz space. It will turn out that the positive cone of LT is
precisely the collection of all positive linear functionals on L. A first
step in this direction is the following theorem, which for obvious reasons

is called the Jordan decomposition theorem.

5.3. THEOREM. Let ¢5L# be given. Then ¢eL~ if and only if ¢ = ¢+-¢_r

4,20, 6_=20, ¢ el

Proof. (i) If ¢ = ¢+—¢_ where both ¢+ and ¢_ are positive, then ¢+
and ¢_ are in LN, so ¢eL~.
(ii) For the converse direction, assume that ¢eL~. Define

¢;(u) =sup {¢(v): O <v < u}
for all ueL+. Clearly ¢L(u) > 0 for all ueL+. It is also clear that
¢;(au) = a¢;(u) for all ueL+ and for all aeRf. Next we show that ¢; is
additive on L+. To this end, let u,u'eL+ be given. Then

¢;(u+u') =sup {¢(w): O <w<utu'} =

sup {¢{v)+¢(v'): O < v+v' < utu',

w=v+v', 0<v<su O0=v 2u'}c<
sup {¢(v)+¢(v'): 0 <vsu, O0<Lv' <u'ls=
¢ + 62 (u")
by theorem 1.7. Conversely, we have
¢;(u) + ¢;(u') =
sup {¢(v): 0 < v <ulsup {¢(v'): 0 <v' su'} =

sup {¢p(v+v'): O <v<u, O

A

vl <u'} <
sup {¢(w): O <w<utu'} = ¢l(u+u'),
so ¢;(u+u') = ¢;(u)+¢;(u') for all u,u'eL+. Thus, by lemma 2.10, ¢; has

a unique extension ¢+ to the whole of L. It is obvious that ¢+ > 0. More-
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over, ¢+(u) = ¢;(u) 2 ¢(u) for all uEL+ and hence, defining ¢_ = ¢+—¢,

it follows that ¢_5L#, ¢_ > 0, which is the desired result

The positive linear functionals ¢+ and ¢_, occuring in the preceding
proof are called the positive variation and the negative variation of ¢
respectively. Moreover, ¢++¢_‘ is called the total variation of ¢. It is
clear that for any ¢eL~, we have ¢+,¢_ > 0, so ¢+,¢_eL~. Also, if ¢ 2 O,
then ¢+ = ¢ and ¢_ = 0. Finally, we note for use in the sequel, that if
¢,¢'6L~ are such that ¢-¢' = 0, then ¢+—¢; > 0.

Next, we define a partial ordering on L by setting ¢1 < ¢2 when-
ever ¢2—¢1 2 0. It is routine to show that L~ thus becomes a partially
ordered linear space. Moreover, in the next theorem, we prove that L~ is
even a Riesz space and that ¢+ and ¢_ -coincide with the positive and the

negative part of ¢ respecticely.

5.4. THEOREM. (i) L~ is a Riesz space with respect to <.
~ + -
(i1) ¢+ = ¢v0, ¢_ = (-$)V0 for all ¢eL . (So ¢+ = ¢ and ¢_=4¢

in the Riesz space structure of L ).

Proof. (i) We have to show that any pair ¢,¢'eL~ has a supremum in L.
To this end, let ¢,¢'5L~ and define

P'(u) = sup {¢(£)+¢'(u-£): 0 < £ < u}
for all ueL+. Then clearly ¢(u) < ¢'(u) and ¢'(u) < ¢¥'(u) for all ueL+
(take £ =u and £ = 0 respectively). Furthermore, we have ' (au)=ay' (u)
for all ueL+ and for all aeR+. Now note that

V') = sup {¢p(£)+¢'(u-£): 0 < £ < u} =

sup { (¢-¢")(£): O < £ <u}l + ¢'(u) =

(¢=¢") () + ¢"(w),



40

+
so VY' is additive on L . Again by lemma 2.10 it follows that ¢' has a
unique extension weL#. It is easy to see that VPeL and that ¢ < ¢ and

~ +
¢' < ¢Y. Finally, let wleL be such that ¢ < ¢ ' < wl. If u,fel are

1I
such that 0 < £ < u, then
d(£)+¢' (u-£f) < ¢1(f)+¢1(u-f) = w1<u).

Hence Y (u) < wl(u) for all. u€L+, so ¥ =Y in LN. This shows that ¢

1
is the supremum of ¢ and ¢'. The existence of the infimum of ¢ and ¢'
in LN is shown similarly.
(ii) Using part (i), we obtain
(6V0) (u) = sup {¢p(v): 0 < v <u} = ¢+(u)’

+ +
for all wueL , so ¢+= ¢$v0 = ¢ . It is clear now that

b_=06,-0=¢ -¢ =¢ = (-¢)VvO.

From now on, the positive and the negative variation of an element ¢€L~
+ - ~

will be denoted by ¢ and ¢ respectively. Since L is a Riesz space,

it follows that for any ¢eL the absolute value |¢| = ¢V(-¢) exists in

L . Moreover, from the preceding results, we find that |¢]| is exactly the

total variation ¢++¢_ of ¢.

5.5. LEMMA. Let ¢eL~ be given. Then
(1) ¢+(u) = sup {¢(v): 0 < v <u} for all ueL+.
(ii) |¢l(u) = sup {$(£): |£] <u} = sup {|¢6(£)|: |£] < u} for all
+

uel .

(iii) 1e(£)| < |¢|(I£]) for all £feL.

Proof. (i) Has already been proved.
- + .
(ii) Let wuelL be given. Then

b (u) = ¢+(u)—¢(u) =sup {¢(v-u): 0 <v <ul}l =



41

IA
b
IA
o
-
.

sup {¢(w): -u

Hence,

[] () = ¢ (W+$ (w)

sup {¢(v1+v2): 0<v, <u, -uc<v, < 0}.
Now, let £ = v1+v2 where 0 < v1 <u, =-u =< v2 < 0. Then f < v1 < u and

-f = vy, < -v, < u, so |f] £ u. Thus we obtain

[¢](u) < sup {p(£): - |£] < u}.
On the other hand, if feL is such that |£f] < u, then f = £t-f" such
that 0 < f+ Su, =-u=s -f < 0. Hence

sup {¢(£): |£f] < u} <

sup {¢(v1+v2): 0<v, <u, -ucs v, < 0} = l¢l(u).

The rest of the proof is now easy and left to the reader.

(iii) Obvious from part (ii).
5.6. THEOREM. LN is Dedekind complete.

~+
Proof. Let ¢ be a nonempty subset of L such that ¢1,¢26@ implies

¢1V¢26® and such that there exists a ¢0£L~+ with ¢ < ¢ for all ¢ed.

0
By 4.A it suffices to show that sup ¢ exists in L~+. To this end, define
for all ueL+

Y(u) = sup {¢(u): ¢edl.
Then O < Y(u) < ¢o(u) < o for all ueL+ and it is obvious that y(au) =
ay(u) for all ueL+ and for all aeR+. Also,

Y(utv) = sup {p(utv): ¢ped} < Y(u)+yY(v)
for all u,veL+. On the other hand, if u,veL+ and € > 0 (in R) are given,
then theré exist ¢1,¢2e¢ such that

¢1(u) < YP(u) < ¢1(u)+%e; ¢2(v) < P(v) = wz(v)+%e.

Hence, defining ¢ee¢ by ¢€ = ¢1V¢2. then

¢1(u) < ¢€(u) < YP(u) < wl(u)+%s < ¢€(u)+%e,
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¢2(v) S ¢€(V) S P(v) < ¢, (v)+he < ¢€(v)+%e.
Hence

P(u)+P(v) < ¢€(u)+¢€(v)+€ = ¢€(u+v)+e < Y (utv)+e.
This holds for all € > 0, so Y(ut+v) = Pp(u)+P(v) for all u,veL+. Extend-
ing, as before by lemma 2.10, ¢ to the whole of L, it is clear that

0=y < ¢0, so ¢6L~. Finally, it is obvious that ¢ = sup ¢ holds, so L

is Dedekind complete.

Finally, by way of an example, we show that even if L is Dedekind
complete it can happen that L~ = {0} (so the only positive linear function-

al on L is the null functional).

5.A. Example and exercise. (i) Consider the Riesz space M (defined in 1.F)
consisting of the equivalence classes of measurable real-valued functions,
defined on the measure space [0,1] (provided with Lebesgue measure). As
shown in 4.F.1, M is a Dedekind complete Riesz space. In this case we have
M = {0}. We shall not give a detailed proof of this statement, but we do
give some hints.

Argue by contradiction, so suppose that M~ contains a non-trivial
element. In view of theorem 5.3 there exist ¢€M~, ¢ 2 0 and feM+ such
that ¢(£f) > 0. Show that there exist measurable sets A, > A o..... such

1 2

that for every n u(An) < 2—n, ¢(fx, ) > 0. For neN let aneR+ be such

An

1. Now Zanfo converges almost everywhere, so there
n

that an¢(fon)
exists a geM, g = Zanfo almost everywhere. For every N we have
n
g 2néNaanA !
n
so
> =
$(g)2 néNan¢(fon) N.

This is the desired contradiction.
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(ii) The situation changes if we consider the Riesz space C([0,1]) (see
1.E). Indeed, let ael[0,1] and define
¢a(f) = f(a)
for all fec([0,1]). Then ¢ae(C([0,1]))~ and ¢_20, ¢_ # 0. Thus, for
this Riesz space (which is not Dedekind complete), there exist many non-

trivial order bounded linear functionals.
6. EXTENSION THEOREMS

In this section we show that under some additional conditions order
bounded linear functionals that are defined on a Riesz subspace of L can
be extended to the whole of L. First, we state without proof the classical

Hahn-Banach theorems. For a proof we refer the reader to 2 , 5, 14 or 16.

6.1. THEOREM. (Hahn-Banach). Let V be any linear space and let V1 be a

linear subspace of V. Furthermore, let p be a sub-linear functional on

V (i.e., p(v)eR for all vevV, p(v1+v2) < p(v1)+p(v2) for all vl,vzeV and
plav) = ap(v) for all veV and for all aeR+). If ¢ is a linear function-
al on V1 such that ¢(v) < p(v) for all veVl, then there exists a linear
functional ® on V such that &(v) = ¢(v) for all veV1 and such that
®(v) < p(v) for all veV.

6.2. THEOREM. Let V be any normed linear space and let V1 be a linear
subspace of V. By V* we denote the conjugate space (norm dual, Banach

dual) of V. If ¢evt, then there exists a ¢eV* such that &(v) = ¢(v)

for all veV1 and such that ||¢]| = [l¢]l

Especially the second Hahn-Banach theorem has important consequences
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in functional analysis. For instance, if V 1is a normed linear space, it
%
follows that V contains many non-trivial elements. In fact, the elements
*

of V separate the elements of V. Another important consequence is stated

in the next corollary. For a proof we refer the reader to 16.

ok
6.3. COROLLARY. Let V be a normed linear space and let V be its bidual
%
( the conjugate space of V ). Then V can be imbedded iscmetrically in

%ok *k
V , i.e., there exists a linear norm preserving map J from V into V .

*kk
For use in the sequel, we present the map J: V -V . To this end, let veV

*
be given and define for all ¢eV

vig) = ¢(v).
~ k% . ~
It turns out that veV and that J is defined by J(v) = v for all veV.
*k
The map J is called the canonical map from V into V . We note that
*ok

normed linear spaces V for which J(V) =V (so J 1is surjective) are
called reflexive. Since the norm dual of a linear space is always a Banach

space, it follows that reflexive spaces are Banach spaces. The converse does

not hold.

We return to the Riesz space theory. As before, let L be a Riesz

space and let L be its order dual.

6.4. DEFINITION. Let p be a function from L into R+ satisfying

(a) p(0) = 0, p(f+g) < p(£)+p(g), p(af) = |a|p(f) for all f£f,gel and
for all acR.

(b) £,9eL. and |f]| < |g| implies p(£f) < p(g).

Then p is called a Riesz semi-norm on L.
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Now, assume that p is a function from L+ into R+ satisfying p(0) = O,
p(au) = ap(u) for all acR' and for all ueL', p(utv) < p(u)+p(v) for all
u,veLt, and p(u) <p(v) if 0<u<v in L'. If we define p(£) = p(l£])
for all feL it is clear that p 1is a Riesz semi-norm on L. Hence, since
any Riesz semi-norm o on L satisfies p(f) = p(|£|) for all £feL, it
follows that Riesz semi-norms on L are completely determined by their va-
lues on the positive cone L+ of L.

First we show that the existence of a Riesz semi-norm on L is equi-

valent to the existence of a non-trivial positive linear functional on L.

6.5. THEOREM. The following statements are equivalent.

(a) L = {0}.

(b) The;e exists a non-trivial positive linear functional on L.

(c) There exists a non-trivial Riesz semi-norm p on L (i.e., there
exists an quL+ such that 0 < p(uo) < ™),
Proof. (i) (a) @ (b) is obvious from theorem 5.3.

(ii) (b) = (c). Let ¢ Dbe a non-trivial positive linear functional on
L. Hence, there exists an .uoeL+ such that ¢(u0) > 0. Setting

p(£) = ¢(I£])

for all feL, it is clear that p is a non-trivial Riesz semi-norm on L.

(iii) (c) = (a). Let p be a non-trivial Riesz semi-norm on L and let
quL+ be such that p(uo) > 0. Let [uo] be the linear subspace of L

spanned by u_. and define ¢ on [uOJ by

0
blauy) = ap(u,)
for all aeR. It is clear that ¢ 4is linear on [uo] and that Y (u) < p(u)

for all ue[uOJ. Since a semi-norm is a sub-linear functional it follows by

theorem 6.1 that there exists a linear functional ¢ on L such that
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¢ =y on {uo] and such that |¢(f)| < p(f) for all feL. Note that ¢
is non-trivial since ¢(u0) = w(uo) = p(uo) > 0. Also ¢eL~ since
sup {l¢(£)]: |£] < u} < sup {p(£f): |£f] <u} =p(u) <

+
for all wuelL .
Next, we present the announced extension theorems.

6.6. THEOREM. Let p be a Riesz semi-norm on L and let K be a Riesz
subspace of L (so K 1is a Riesz space in its own right). Furthermore, let
¢eK~, ¢ 2 0 such that |¢(£)| < p(f) for all feK. Then there exists a
wsLN, Y >0 such that Y = ¢ on K and such that |Y(f)| < p(£f) for all

fel.

Proof. By theorem 6.1 it is clear that ¢ can be extended to the whole of
L. However, the positivity of this extension is not assured in that case.
Therefore, we introduce the sub-linear functional p on L as follows. For
all feL, define p(f) = p(f+). Then obviously p is sub-linear. Further-
more,

$(£) < ¢(£) < p(£)) = p(D)
holds for all feK since ¢ = 0. Using theorem 6.1 it follows that there
exists a linear functional Y on L such that ¢ = ¢ on K and such that °

+
P(f) < p(f) for all feL. Let uelL be given. Then

+
Y(-u) < p(-u) p((-u) ) =p(0) =0,
so Y(u) 2 0, hence Y 2 0. Using lemma 5.5 and the positivity of V¢, we
obtain

W | < 1wl gD = v <pEh) = £l = p(IED) = p(£)

for all feL, which completes the proof.
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We note that in view of theorem 6.5, it is natural to require the existence

of a Riesz semi-norm on L in theorem 6.6.

6.7. COROLLARY. Let K be a Riesz subspace of L. Furthermore, let (K)
denote the smallest ideal in L containing K. If ¢ is a positive linear
functional on X, then there exists a positive linear functional y on (K)

such that ¢ = ¢ on K.

Proof. It is easy to see that for all fe(K)+ there exists an f'eK+ such
that £ < f' (see also 2.C). Thus we are allowed to-define

p(f) = inf {$(£'): f'ek, £' = f}
for all fs(K)+. Defining p(f) = p(if|) for arbitrary fe(K) it is im-
mediate that p is a Riesz semi-norm on (K) and that |¢(£)]| < p(f) for

all feK. Hence, the existence of ¢ follows from theorem 6.6.

Finally, we consider normed Riesz spaces. To this end, we restrict our-

selves to appropriate norms.

6.8. DEFINITION. A norm p on L is called a Riesz norm if p 1is a norm
as well as a Riesz semi-norm. A normed Riesz space is always a Riesz space

provided with a Riesz norm.

If L is a normed Riesz space with Riesz norm p, then L* will denote

its conjugate space. The norm in L* will be denoted by p*. Although it

is not clear on this moment that there exist non-trivial positive normbound-
ed linear functionals on a normed Riesz space, we do state and prove the
following theorem. In chapter 3 we shall show that there are indeed many

non- trivial positive normbounded linear functionals on any normed Riesz
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space.

6.9. THEOREM. Let L be a normed Riesz space with Riesz norm p and let
K be a Riesz subspace of L. Let ¢ be a positive normbounded linear

%
functional on K. Then there exists a YeL such that Yy = ¢ on K,

* *
Y20 and p (Y) =p ().

Proof. Define p1(f) = p*(¢)p(f) for all feL. Then p1 is a Riesz semi-
norm on L and for all feK we have ¢(f) < [¢(f)] < pl(f). According to
theorem 6.6, there exists a xpeL~ such that ¢ = ¢ on K and such that

Y =2 0. Moreover [W(£) | < pi(f) holds for all £feL. Hence p*(w) < p*(¢),

* *
and therefore p (Y) = p (¢) since Yy extends ¢.

6.A. Example. Let L be the Riesz space M of example 1.F, where the meas-
ure space is taken the interval [0,1] with Lebesgue measure. In 5.A we
have shown that there do not exist non-trivial positive linear functionals
on L, i.e., Lt~ = {o0}. Next, let K be the Riesz space C([0,1]). After
obvious identifications we can think of K as a Riesz subspace of L. Also
in 5.A we showed that K # {0}. Thus, if ¢6K~+, ¢ # 0, it is impossible

to extend ¢ to the whole of L.
Next, we study some important subspaces of LN.

7. INTEGRALS AND SINGULAR FUNCTIONALS

As before, L will be an arbitrary Riesz space and L will be its
order dual. Before we continue with the investigation of L~ we introduce

a notation. Let fl'fZ""' be a sequence in L and let feL. If we have



49

£ <f, S.....sf and £ = sup {fn: n=1,2,...} we shall write from now
on fn 4 f£. Similarly we define fn v £.

In general there is a large class of functionals in L that satisfy

a useful continuity property. In this connection, we define

7.1. DEFINITION. A functional ¢eL~ is called an integral if un ¥ 0 im-
plies 1lim ¢(u ) = 0 (as n -+ ), The collection of all integrals on L
n

will be denoted by L:.

7.A. Example. Let (X,T,Uu) be a measure space and let Ll(u) denote the
collection of all real-valued u-integrable functions on X. It is clear
that Ll(u) is an ideal of the Riesz space M defined in 1.E. Next, for
all feLl(u) define
$(£) = [ au.
X

~t
Obviously ¢ is a positive linear functional on Ll(u), so ¢e(L1(u)) .
Also, by Lebesgue's theorem on dominated convergence of integrals it follows

that ¢ is an integral on Ll(u)o

We shall show that L: is a band in L~ but first we present an auxiliary

result.

7.2. LEMMA. Let ¢eL be given. Then the following statements are equi-
valent.
(a) ¢eLc.
+ o -~
(b) ¢ '¢ ELC-

(c) l¢|eLc.

, +
Proof. (i) (a) = (b). Let u + 0 (in L ) and choose veL such that
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0 sv < u1. Then

- = - VA < vA - < -u .
v (vAun) v/\u1 v un v (u1 un) u1 un
Since ¢+ 2 ¢ we obtain
(vAu)) < ¢F (v=(vAu )) < ¢ (u,-u )
o (v- (v u < v=(vAu u-u ),
so
0< ¢ () < ¢ (u )+ (vAu ) -4 (v).
n 1 n
Since u ¥ 0, also vAun + 0. Hence, ¢eL: implies
05 lim ¢ (u) < 67 (w)-¢(v)
< limé (u) < u, .
This holds for all veL+ such that v < u1, so
0< 1lim ¢ (u) < ¢T(u)-sup {¢(v): 0 <v<ul=
n-> n 1 1
+ +
¢ (u)-¢ (ul) = 0.
Therefore ¢+eL:. Since L: is obviously a linear subspace of L~ we also
have
- + ~
¢ =4¢ -9 €L -
(ii) (b) = (a) and (b) = (c) are obvious.
(iii) (c) = (b). Let Vel be such that 0 £ ¥ < |¢|. Then |¢|€Lc
implies weL: by definition, so L: is an ideal in LN. Observing that

- ~ + - ~
0<¢ <14l ana 0 =¢” < 4] it is clear that ller, implies ¢ ,¢ cL .

We have already observed that L: is an ideal in L (part (iii) of the pre-

preceding proof), but we can prove more.
7.3. THEOREM. L: is a band in L .

~t

Proof. It suffices to show that any nonempty subset of LC that has a
X ~ . . ~ ~4

supremum in L assumes this supremum in Lc' Therefore, let <I>CLc be

such that ¢0 = sup ¢ exists in LN. As before (theorem 5.6) we may assume

that ¢ is closed under the operation of taking suprema of finite sets, i.e.
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we may assume that ¢1,¢25® implies ¢1V¢2e®. As shown in the proof of 5.6
¢0 satisfies

¢0(u) = sup {$(u): ¢ed}
for all ueL+. Now, let € > 0 (in R) be given and let un ¥ 0 (in L+).
Then there exists a ¢€® such that

0 < (¢O-¢)(u1) < E.

and hence 0 < (¢O—¢)(un) < ¢ for all n, since ¢, = ¢ and since un <

0
u,. Since $ed < L:+ it follows that lim ¢(u ) = 0. Thus
< 1i < e.
0 < lﬁ§m¢0(un) €

+
This holds for all ¢ > 0 and for all sequences un + 0 in L . Hence

~ LT i 4.
¢OeLc, so c is a ban
Next, we define another type of linear functionals on L.

~ . ~ d
7.4. DEFINITION. A functional ¢eL is called singular if ¢e(Lc) (so
lo|Aalp] = 0 for all weL:). The collection of all singular functionals on

L will be denoted by L;.

Combining the results of 3.3(i), 4.5(ii), 5.6 and 2.2(iii), we obtain im-

mediately the following results.

7.5. THEOREM. (i) L; is a band in L .
(ii) L = LC+LS, i.e., if ¢eL , then there exists a unique decomposition

= + ~ ~. 1 = .
¢ ¢c ¢s' ¢c€Lc, ¢SeLs Moreover, if ¢ > 0, then ¢c.> 0 and ¢s >0

The functionals ¢c and ¢s occuring in the preceding theorem are called
the integral part and the singular part of ¢. Our next step will be to

compute the integral part of a given element ¢€L~. Before doing so, we
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first observe that integrals are not only additive but even o-additive. To

this end we introduce the following notation. Let ul,uz,.... be a sequence

+ +
in L and let wueL . If we have
k
I,u 4+ u (as k»> ),
n=1 n

then we shall write u = % un (= 3 un).

~+ ~
7.6. LEMMA. Let ¢eL . Then ¢€Lc if and only if ¢ (I un) = I ¢(un) for

. + . , . +
any sequence u1,u2,.... in L for which I un exists in L .

~ +
Proof. (i) Assume that ¢€LC, and let ul,u “in L be such that

gree.
u=1=I u exists in L+. Defining
k
Sk =nélun

it follows that s, 4+ u, so u-s

. ¥ 0. Hence ¢(u-s,) ¥ O (in R") and

k
therefore
) ) k
¢(u) = lim ¢(sk) = lim ngl (un) =3 ¢(un) (k = ®),
which shows that ¢ is o-additive on L+.
(ii) Assume that ¢ 1is o-additive on L+. In order to show that ¢ is
an integral, let fl'fz""' in L+ be such that fn ¥ 0. Defining
for n=1,2,...., we have uneL+ for all n. Moreover, if we set
k
Sk Tnf1% = 7%
for k=1,2,...., it follows that sk 4 fl' so I un = f1. Hence,
_ _ qa ksl _ V13
¢(f1) = ¢ (I un) = lim n§1¢(un) = ¢(f1) lim ¢(fk),

so lim ¢(fk) = 0. Thus ¢eLc.

To compute the integral part ¢c of ¢eL~ we introduce a functional
~4 . . +
¢L as follows. Let ¢elL be given and define for all wueL

¢L(u) = inf {lim ¢(un): 0 < w 4+ ul.
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By the proof of lemma 7.6 (part (ii)) we have
s + _
¢, (w) = inf { (v ): v el’, I v =u }
for all ueL+. Next, we extend ¢L to the whole of L by setting
6. (£) = ¢ (£)=¢_(£)
L T L L

for all feL.

~t ~t
7.7. LEMMA. Let ¢eL . Then ¢L6L and O < ¢L < 4.
+
Proof. It suffices to prove that ¢L(u+v) = ¢L(u)+¢L(V) for all u,velL . To
this end, let u,v&L+ be given. Now, let € > O be given (in R) and let
+
u,,4.,ee0... and VvV, ,V_,..... Dbe sequences in L satisfying u 4 u,
1772 1772 n
v+ v and
n
. L. s 14 L.

¢L(u) > l;m ¢(un) Le; ¢L(V) lim ¢(vn) Le

Obviously we have 0 < (un+vn) 4+ (u+v), so since
i < +

lim ¢(un+vn) ¢L(u)+¢L(v) €

we have ¢L(u+v) < ¢L(u)+¢L(v). Conversely, since
+ = i i H <
¢L(u v) = inf {lim ow): 0 <w 4 u+v}
+

there exists a sequence wl,wz,.... in L such that 0 < wn 4 utv and

lim ¢(wn) < ¢L(u+v)+e.

Defining u =wAu and v_=w-u, we have 0 <u 4+ u and 0 <v +v
n n n n n n n
i - = Au - Au £ - A - >
(since un+1 un wn+1 u wn u (wn+1 wn) u < wn+1 wn, [-e) vn+1 vn for
all n). Hence
+ < 1i i =-1i < .
¢L(u) ¢L(v) lim ¢(un)+llm ¢(vn) lim ¢(wn) ¢L(u+v)+e
This holds for all ¢ > 0, so we obtain ¢L(u+v) = ¢L(u)+¢L(v) which is

the desired result.

We are now ready to prove the main result of this section.
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~+
7.8. THEOREM. Let ¢eL . Then ¢c = ¢L.

+ +
Proof. Let u€L and € > 0 (in R) be given. Furthermore, let vnsL (n=

1,2,....) be such that u =12 vn. For any natural number n there exists a

. +
sequence vnl,vnz,.... in L such that i vnk = vn and such that
-n
< +g2 T,
ﬁ ¢(Vnk) ¢L(vn) €
n n
Defining w =X L.V, for n=1,2,...., it follows that 0 <w 4 u and
n j=1 k=1 jk n

that
n n
=,z < I +€.
$vg) =5Ey gLy ey b (vy)re
This holds for all n, so ¢L(u) <z ¢L(vj)+e, and since this holds for all
€ > 0, we obtain ¢L(u) < I ¢L(vj). On the other hand, from the positivity
fe s S . _ s
of ¢L it is clear that ¢L(u) > I ¢L(vj). Thus ¢L is o-additive, so ¢L
is an integral.
~+
. s < . <
Next, since ¢LeLc and since ¢L < ¢, it follows that ¢L < ¢c. Now

+
observe that any weLc satisfies wL = Y. Using this fact and using ¢C <

¢, we obtain

As an immediate consequence we obtain the following characterization of sin-

gular functionals.

’\k*- ~
7.8. COROLLARY. Let ¢eL be given. Then ¢eLs if and only if there exists
+ +
for all € > 0 (in R) and for all uel a sequence ul,uz,.... in L

satisfying un 4u and O < ¢(un) < e for all n.

Proof. This is an immediate consequence of

¢c(u) = inf {lim ¢(un): 0 < u + u}
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+ ~t
for all wuelL and for all ¢eL and the fact that ¢c = 0 for any ¢5Ls.

we leave the straightforward proof to the reader.

7.B. Example. Consider the Riesz space C([0,1]) (1.G). Define the positive
linear functional ¢ on C([0,1]) by setting

¢ (£) = £(0)
for all fec([0,1]) (see 5.A(ii)). Then ¢ is singular on C([0,1]). Indeed
if uec([O,l])+ is given, define for n=1,2,....

un(x) = min (nx, u(x))
for all xe[0,1]. Then clearly u 4 u and ¢(un) =0 for all n. Hence
¢ is singular.

We note that it can be proved that any order bounded linear functional

on c([0,1]) is singular. However, we omit the rather technical proof. In
particular it follows that the Riemann integral (or the Lebesgue integral)

on ¢([0,1]) is singular.
8. ANNIHILATORS AND ABSOLUTELY CONTINUOUS ELEMENTS
Let L and L~ be as before.

o
8.1. DEFINITION. Let A be a subset of L. The annihilator A of A is

the subset of L defined by

]

A° = {¢el : ¢(£) = 0 for all feA}.
Conversely, if B is a subset of L , then the inverse annihilator B of
B is the subset of L defined by

o

B = {feL: ¢(f) = 0 for all ¢eB}.

o o ~
The sets A and B are linear subspaces of L and L respectively.
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The proofs of these facts are so simple that they can be left confidently

to the reader.

o ~
8.2. THEOREM. (i) If A is an ideal in L, then A is a band in L .

~ o
(ii) If B is an ideal in L , then B is an ideal in L.

Proof. (i) Let ¢€A° and ueA+ be given. If felL is such that |[£f] < u,
then feA so ¢(f) = 0. Hence

[¢](u) = sup {l¢(£)]: [|£] <ul =0
by lemma 5.5(ii), so |¢IEA°. Next, let ¢6L~, ¢eA° be such that |y]| <
|¢|. Since |¢>leA° it is clear that IwIer. Therefore,

0< [yl < [yl =0
holds for all ueA+, so ¢eA°. This shows that Ao is an ideal in L~. The
proof that A° is even a band is similar to the proof of theorem 7.3 and °
therefore it is left to the reader.

(ii) Let feoB and ¢eB+ be given. If weL~ is such that |y]| < |¢é],
then YeB, so YP(f) = 0. Now observe that analogously to lemma 5.5(ii), we
have

$CIED) = sup {IW(E)[: [yl < ¢,
so fe' B implies lfleoB. Finally, if geL, £¢°B  are such that lgl < |£],
then IfleoB, so clearly igleoB. Since |¢(g)| < ¢(lgl) holds for all ¢
°

~
in L7, it follows that ¢(g) = O for all ¢eB', so ge B. Thus B is

an ideal.

We note that although the annihilator of an ideal in L is always a band

~
.

in L it is not true in general that the inverse annihilator of an ideal

~

in L is a band in L. Even the inverse annihilator of a band in LN

(which is an ideal in L by 8.2(ii)) is not necessarily a band in L. This
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will become clear from the remaining part of this section.

~

In the preceding section we have introduced the bands L: and Ls of
LN. It would be interesting to know what the inverse annihilators of L:
and L; look like in L. It turns out that not much can be said about

°(L:). However °(LS) can be nicely represented in L. To this end, we de-

fine the following.

8.3. DEFINITION. An element feL is called absolutely continuous if for any

+
sequence u,,U.,..... in L satisfying |[£]| 2 u - for all n and un¢0

172
(from now on denoted by |£f| 2 u ¥ 0) we have 1lim ¢(un) =0 for all ¢

in L . The collection of all absolutely continuocus elements in L is de-

noted by La.

To give the reader an idea what La looks like, we present the following

exercise.

8.A. Exercise. (i) Let L = c([0,1]1). Show that L% = {0}.

(ii) Let L be &” (the collection of all sequences (xl,xz,.....),
xneR for all n, such that sup |xn| < o, the partial ordering being coor-
dinatewise). Show that La = c_. (the set of all null-sequences).

0

(iii) Let L be zl (the collection of all sequences (xl,xz,.....),

xneR for all n, such that Zlenl < o, the partial ordering being coor-

dinate wise). Show that La = L.
o o~
8.4. THEOREM. L = (LS).

. ~4
Proof. First, let fer.* and ¢eL be given. If 0 < w + |£] in L+,
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then |f|-un ¢ 0. Hence ¢(un) + ¢(|£]) since feL®. In view of theorem 7.8
we have
¢c(|f]) = inf {lim ¢(u): 0 <u + [£1} = ¢ (I£]),

so ¢s(lf|) = 0. This holds for all feLa and for all ¢5LN+. Especially,
if ¢eL:+ we have ¢ = ¢s, so ¢(|l£]) = 0 for all feL”. This shows. that
lf|e°(L;) and therefore fe (L)) since °(L) is an ideal. Thus ¥ s
a subset of °(L;).

Conversely, let feo(L;) be given. Then If'eo(L;), so ¢(|f]) =0

~ ~t
for all ¢eLs. In particular ¢ (|£]) = 0 for all ¢€Ls . Let now u,,u

LY
+ -
be a sequence in I  such that |£]| 2 u ¢ 0. Then ¢(un) =0 for all n
~+ . ~+ .
and for all ¢6Ls . Thus, if ¢eL , ¢ = ¢C+¢S, we obtain

lim ¢(un) = lim ¢s(un)+lim ¢c(un) = 0+1lim ¢C(un) = 0.

o o _~ o
It follows that feL , so (Ls) c L . This completes the proof.
The following corollaries are now obvious.
8.5. COROLLARY. L® is an ideal in L.

8.6. COROLLARY. The following assertions are egquivalent.

(a) ¥ = L.

(» L =1L,
(o]

(c) L, = {0}.

Finally we note that it is now clear that the inverse annihilator of a band

~

in L is not necessarily a band in L. Indeed, let L be &w (see 8.A7).

Then Ls is a band in LN, but O(L;) = La = co. It is clear that cO is

an ideal in £ , but ¢ is not a band in £ .
-2 0 )



CHAPTER T11. NORMED RIESZ SPACES
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In section 6 we have already presented a theorem in which a normed
Riesz space played a role. In this chapter we shall study normed Riesz
spaces and their duals. We recall that a norm p on L is called a Riesz
norm whenever |f| < |g| in L implies that p(f) < p(g), and that a norm-
ed Riesz space is always a Riesz space provided with a Riesz norm (see def-
inition 6.8). If a normed Riesz space is normcomplete we shall call it a

Banach lattice.
9. NORMED RIESZ SPACES
First we present some examples of normed Riesz spaces.

Examples.
9.A. Let 1 £ p < o, By 2p we denote the collection of all sequences (xl,

x2,....) with xneR for all n and such that

" (x1 1x2

The partial ordering on RP is defined coordinatewise. Then lp is a Ba-

vl = @ 1% 1BP < o,
P n
nach lattice.

9.B. Consider &w (see 8.A(ii)). For all (xi,x ,....)e&m we define

2

||(x1,x2,...-.)llw = sup = 1.

Then &m is a Banach lattice. It is easy to see that ¢ is a normcomplete’

0

ideal of £ , so c, is a Banach lattice in its own right.

0

9.C. Denote by c00 the collection of all sequences (xl,xz,....), xneR

for all n, such that for each sequence (xi,xz,....) of c00 there exists

a natural number N such that xn =0 for all n = N. If c00 is ordered

coordinatewise it becomes a Riesz space. Next, define
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"(xl,x ,.....)"o° = max{lxi]: i=1,2,....}.

2

Then ".“co is a Riesz norm on ¢ so ¢ is a normed Riesz space. It

00’ 00

is obvious that ¢ is a normed ideal of ¢ (and of & ) and that c¢
00 0 oo 00

is not a Banach lattice.

9.D. Let (X,T) be a topological Hausdorff space. Denote by BC(X) the
collection of all bounded continuous real-valued functions on X. If the
elements of BC(X) are partially ordered by setting f < g if £(x) < g(x)
for all xeX, then BC(X) becomes a Riesz space. Moreover, if for all
feBC(X), we define
p(f) = sup {|£(x)|: xex},

then BC(X) 1is a Banach lattice.

We note that if X is compact, thén BC(X) = C(X), so C(X) provided

with the above sup-norm is a Banach lattice whenever X is compact.

THROUGHOUT THIS CHAPTER L WILL BE A NORMED RIESZ SPACE. THE NORM ON L

WILL BE DENOTED BY op.
We collect some simple properties of Riesz norms in an exercise.

9.E. Exercise. (i) Any normed Riesz space is Archimedean.
(ii) fi1g in L implies p(f+g) = p(f-g) (hint: use 1.4(viii)).
(iii) For all £,g9,f',g'€L we have
p(fvg - £'vg') < p(f-£')+p(g-g').
(iv) V and A are continuous maps from LXL into L. The maps
£m Y Em £ £ |f
are continuous from L into L+.

(v) Each band in L is closed. In particular, if DcL then Dd is
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closed. (Note that ideals are not necessarily closed. For instance, cOO is

an ideal in &m which is not closed).

Finally, we observe that we have to distinguish between "normcompleteness"

and "Dedekind completeness". Indeed,

9.F. Example. (i) The Riesz space C([0,1]) provided with the sup-norm is
a Banach lattice but it is not Dedekind complete.

(ii) The normed Riesz space c of 9.C is Dedekind complete but not

00
normcomplete.

We leave the straightforward verifications to the reader.
10. DUAL SPACES

First we observe that L now has two dual spaces, viz. L~, its order
* * *
dual and L , its norm dual. The norm in L will be denoted by p . It
~ *
follows from the next theorem that L and L are closely related.
* ~
10.1. THEOREM. (i) L is an ideal of L . (In particular, it follows that
~+ .
L separates the points of L).
*
(ii) L is a Dedekind complete Banach lattice.

~

*
(iii) If L is a Banach lattice, then L =1L .

*
Proof. (i) Let ¢eL be given. For all ueL+ we have
* *
sup {|¢(£)]: [|£] < u} <sup {p (p)p(£): |£] su}l =p (¢)p(u),
* ~
so ¢ is order bounded. Hence L is a linear subspace of L . Furthermore

* ~
if ¢eL , YeL are such that |y| < |¢|, then for all £feL we have

[WE L < [l (€l < 1ol (1£]) = sup {l¢(g)|: Igl < |£]} <
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]

% *
sup {p (d)p(g): Igl < I£1} =p (§)p(£),

* *
p (¢), so p is a Riesz norm on

IA

* *
so VYeL . It also follows that p (V)

* * ~
L and L is an ideal of L .

(ii) By theorem 5.6 LN is Dedekind complete, so by 4.B(ii) any ideal

. *
of L is Dedekind complete. In particular this implies that L is Dede-

~

kind complete (by part (i)). The rest is obvious.

sk
(iii) Assume that L is a Banach lattice. To show that L = we

L
. ~+
argue by contradiction. Therefore assume that there exists a ¢eL such
*
that ¢#L . Then there exists a sequence fl'f2""' in L such that
p(fn) <1, but
n
>
loeg )1 = 4
for all n. Since
-n
Lo 7lf ) <,
-n
I

and since L is normcomplete, it follows that £ = I2 fnl exists in L.

For all n we now have £ 2 2~n|fnl, so
-n -n n
$(£) 22 p(IE 1) 22 T |¢(£)] 227,
n n
which is the desired contradiction.
* *k
We have shown that L is a Banach lattice. Hence, the norm bidual L
of L 1is a Banach lattice as well. From corollary 6.3 it follows that L
*k
can be considered as a linear subspace of L (and hence also as a linear

*. ok k%
subspace of L = L ) under the canonical map J: L -+ L . The following

theorem gives more information.

10.2. THEOREM. The map J 1is an isometrical Riesz isomorphism from L onto

%k
a Riesz subspace of L . (Thus any normed Riesz space can be considered as

a Riesz subspace of a Dedekind complete Banach lattice).
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Proof. It is clear that J is injective. Hence, it suffices to show that
J(fvg) = (J£)V(Jg)
*%
holds for all £,gel (since in that case J(L) is a Riesz subspace of L
and J becomes a Riesz isomorphism from L onto J(L)). Since
fvg = f+(g—f)+
for all f,geL it is already sufficient to show that J(f+) = (Jf)+ holds
for all feL. Therefore, let £feL be given. For all ¢EL*+ we have
@E ) = ¢(£ 2 0,
so J(f+) 2 0. Also, for all ¢€L*+ we have
(@(E-5)) () = $(£)-4(£) 2 0,
so J(f+)-J(f) 2 0. This shows that
a(£%) = @evo = @n”.
For the converse inequality, let feL ' and weL*+ be given. Define
K = {af +bf : a,ber}.
Then K is a Riesz subspace of L. Furthermore, set
o(g) = w(lgl)
for all geL. Then 0 is a Riesz semi-norm on L. Applying theorem 6.6 it
follows that there exists a weL~+ such that
Y(af +bE) = w(af)
for all a,beR and such that |V¥(g)| < o(g) = w(lg]) for all geL. Hence
@ED) W) = w(E) = wE-£) = YE) = @O W) <
e W < wHtw.

; *+ + +
This holds for all weL , so J(f ) £ (Jf) . Thus the proof is complete.

The following exercise shows that L is in general not a "very nice" Riesz

*k
subspace of L .

10.A. Exercise. Let L be C([0,1]) provided with the sup-norm. Show that
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L has a subset {fn: n=1,2,....} such that £ = sup {fn: n=1,2,.....}
Kk
exists in L and such that 6 = sup {an: n=1,2,....} exists in L
but Jf # 8 (in fact Jf > 6).
. 1/n _
Hint: Let f (x) = x for all xe[0,1] (n=1,2,....). Then £ = ¥ .
n [0,1]
*
Next, define for all ¢eL
6(¢) = lim ¢(fn)J
*ok *k
Show that 6e¢L , that 6 = sup {an: n=1,2,....} (in L ) and that 6 <
Jf.

Remark. In particular it follows that a Banach lattice L 1is in general

*k
not an ideal in L (after identification).

Next we state in an exercise an important property for the norm of a

positive bounded linear functional on L.

*+
10.B. Exercise. Let ¢eL be given. Show that
* +
p (¢) = sup {¢p(f): feL , p(£f) < 1}.
(Hence, the norm of ¢ is completely determined by the behavior of ¢ on

+
the positive cone L ).

Finally we consider the case that a Banach lattice carries several

Riesz norms.

10.3. THEOREM. (i) Let X be a subset of L+; Then X 1is normbounded if
and only if every element of L* is bounded on X (i.e., for every ¢eL*
there exists a number M such that |¢(f)|< M for all f£feX).

(ii) Let Py and Py be Riesz norms on L and assume that L is CP
complete. Then there exists a number C such that pl(f) < sz(f) for all

feL. If L 1is both pi—complete and pz-complete, then 01 and p2 are
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equivalent norms.

Proof. (i) If X 1is normbounded there exists a number K such that p(f) <

* *
K for all feX. For every ¢eL we have |¢(£)] < p ($)K (feX). Thus every

* .
element of L is bounded on X.

*
Conversely, suppose X is not normbounded: We construct a ¢eL that

is unbounded on X. There exist fl,fz,...ex for which p(fn) > 4n (n=1,2,

*
e...). By theorem 6.9, for each n there exists a ¢neL such that
* -1 -n
£ =1 ; = f < .
¢n( n) p (¢n) (p( n)) 4
*

Then the series I 2n|¢n| is normconvergent in L . Let ¢ be its sum. For
each neN,

n n _ .n
$(£) 22706 I(£) 2279 (£) = 2.
Thus ¢ is not bounded on X.

(ii) For i = 1,2 we denote by Li the Riesz space L under the norm

* * ~
pi. Both dual spaces L1 and L2 are subsets of L (theorem 10.1(ii)),
* o~ * *
and even L2 = L (theorem 10.1(iii)). Thus L1 c L2. By part (i) it follows
that the p2—bounded set {feL+: p2(f) <1} is pl—bounded. This means

+
that there exists a number C such that pl(f) < C for every feL for
which p2(f) < 1. As pi(|g|) = pi(g) (geL, i=1,2) it follows easily that
pl(f) < sz(f) for all feL.

The second part of (ii) is a consequence of the first part.
11. BOUNDED INTEGRALS AND BOUNDED SINGULAR FUNCTIONALS
As shown in section 7, the order dual L~ of L can be decomposed in-

to the band of integrals L: and the band of singular functionals L;. Set-

ting
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* ~ * *
it follows from the fact that L is an ideal of L that Ls and Lc
~ *
are now ideals in L and bands in L . Furthermore, it is trivial to see,
* *
but important to observe that Lc and Ls are Dedekind complete Banach

* * %
lattices in their own right and that L = LC+LS.

We recall that L% is the ideal of L consisting of all absolutely
continuous elements and that % = o(L;) (theorem 8.4). We shall compute

*

o ¥ * -~
now the inverse annihilator (Ls) of Ls. Note already that since Ls c Ls

. o ¥ o ~ o
it follows that (LS) > (Ls) =L .

11.1. DEFINITION. An element feL is said to have an absolutely continuous
norm if |f| 2 u ¢ 0 implies lim p(un) = 0. The collection of all elements
of L having an absolutely continuous norm is denoted by La. If La =L,

then p is said to be an absolutely continuous norm.

The following theorem shows that there exists a characterization of elements

a
in L similar to the definition of elements in La.

11.2. THEOREM. Let feL be given. Then fer? if and only if |f]l > u_ + O

*
implies lim ¢(un) = 0 for all ¢eL .

*

Proof. (a) Assume that feL®. Let |[£] > u ¥+ 0 and let ¢eL be given.
Then

low )l <p"

¢un _p(¢)p(un),
so 1lim ¢(u_ ) = 0.

n

(b) Consider the Banach lattice &» (provided with the sup-norm "."m).

Let c¢ be the Riesz subspace of &m consisting of all convergent sequences.

Next, define
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' = 14
w {(xl,xz,.....)} lim x

for all (xl,xz,.....)ec. It is clear that w'ec*+ and that "m'" =1. It
follows now by theorem 6.9 that there exists an element we&:T such that
lul = 1 and such that ® = w' on c.

Next, let feL be such that |£] = un ¥ 0 implies ¢(un) +> 0 for
all ¢eL*. Suppose that fiLé. Then there exists a sequence ul,uz,......
in L+ such that

l[£] = u YO0 plu)=s>0 (n=1,2,....).

*+ *

Now, there exist ¢neL such that p (¢n) = 1 and such that ¢n(un) =
p(u ) for all n. Note that if geL, then I¢n(g)L < p(g) for all n,
hence, we are allowed to define

0(g) = w(d (9)rd,(g)/seen.r)
for all geL, since (¢1(g),¢2(g),.....)e&w. It is clear that ¢€L~+. More-
over,

ld(g) | = |m(¢1(g):¢2(g),.....)| <

W, (D 1o, (@ [reenin) S w(P(P,P(F) seenns) = p(9)s

*+ *

so ¢eL and p (¢) £ 1. Next, fix keN. If n = k, then

¢n(uk) 2 ¢n(un)
since u ¥ 0 and since ¢n 2 0. Thus we obtain

¢(uk) = w(¢1(uk),¢2(uk),.....) >

w(¢1(uk),....,¢k(uk),¢k+1(uk+1),.....) =

Wl () reeeerp()ipluy 4)ree..s) 2

w(¢1(uk),....,s,s,.....) = s.

Hence lim ¢(uk) 2 s > 0, which is a contradiction. Hence feLa.

Remark. Using a well-known theorem of S. Mazur it is possible to give a
shorter proof of the preceding theorem. However, it seems better to us to

present a proof based on the Riesz space theory we have already developed.
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As an immediate corollary of the preceding theorem we obtain

11.3. COROLLARY. (i) La c La.

, . o
(ii) If L 1is a Banach lattice, then L2 = L.

Next, we state a theorem that is the norm analogon of theorem 8.4. Us-
ing theorem 11.2 the proof of this theorem is similar to the proof of theo-
rem 8.4 as well, so the proof is omitted.

a o, *
11.4. THEOREM. L = (Ls).

* * * ~
Observing that Ls is a band in L and that L is an ideal in L it
E3 ~ . o
follows that LS is an ideal in L . Also, since obviously A is a norm
%k
closed linear subspace of L for every subset A of L , we obtain immed-

iately
11.5. COROLLARY. La is a norm closed ideal of L.

11.6. COROLLARY. The following assertions are equivalent.

(a) 12

= L.
* *
(b) L = Lc.
3
(c) L, = {0}.

Proof. Obvious.

We note that there exist normed Riesz spaces L for which Lu # La
o, a . .
(so L is a proper subset of L ). An example will be presented in chapter

5 (example 25.F). However, although L is a Banach lattice implies La=La,
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a . :
it is not true that L® =L implies that L is a Banach lattice. Indeed,

11.A. Example. Consider the normed Riesz space c00 as defined in example
. . a _ a .
9.C. Theg c00 is not a Banach lattice but we have c00 = COO' This can be
L o _ ‘s o
seen as follows. Since ¢y = (see 8.A(ii)) we also have 40 50" Thus
ca < ca implies ca = ca = c
o0 S0 ™ 00 =~ oo = 00"

*k ke
Next, we consider again the embedding of L wunder J into L (=L ).

%k
As shown in theorem 10.2 L can be considered as a Riesz subspace of L .

There can be proved more.

* %
11.7. LEMMA. J(L) < (L )c (so L can be considered as a Riesz subspace of

* %
L))

+ *% *ok
Proof. Let ueL be given and define u = J(u)el . Furthermore, let ¢1,
* *k
¢2,.... in L  be such that ¢n ¥+ 0. We have to show that lim u (¢n) =0,
or equivalently, by the definition of J, that 1lim ¢n(u) = 0. This is how-

ever clear from the fact that ¢n ¥+ 0.

In exercise 10.A we have already observed that suprema (or infima) of count-
able subsets of L are not necessarily preserved under the embedding J.

We present a result dealing with this problem.

11.8. THEOREM. The following assertions are equivalent.
(a) Suprema and infima of countable systems in L are preserved under J.
a
(b) L =1L .
*
c

E 3
() L =1L
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Proof. (i) (b) @ (c) is shown in corollary 11.6.
* %
(ii) (a) = (c). Let un ¥ 0 in L. Then J(un) ¥y 0 in (L )c' so
lim ¢(u ) = 0
n
* * * * *
for all ¢eL . This shows that L ¢ Lc’ so L = Lc.
(iii) (¢) = (b). Let first un 4 u in L. Then J(ul) < J(uz) <.0.0.5 J(u)
*k %k
in L , so J(un) 4+ u" for some u"eL by the Dedekind completeness of
%k *+
L . It follows that ¢(un) 4 u"(¢) for all ¢eL . On the other hand, by
*+
assumption, we have ¢(un) 4 ¢(u) for all ¢eL , so u"(¢) = ¢(u) for all
* *k
¢eL . This shows that u" = J(u), i.e. J(un) 4 J(u) in L . The same holds
for decreasing sequences. Now, if ul,u2,.... is 'a not necessarily monotone
sequence in L with u = sup u in L and if we set v, = sup {ul,...,un}

then vn 4 u, so J(vn) 4 J(u). Hence

J(u) = sgp J(vn) = s:p {J(ul)V....vJ(un)} = sgp J(un).
Finally we derive some properties of reflexive Riesz spaces.

*k
11.9. LEMMA. Assume that L is reflexive, i.e., J(L) = L . Then

* *
(1) P=1 (equivalently Lc =L),

B * 4 * * % *k *k * %
(ii) (L) =1L (equivalently (L )c =L and even L = (LC)c by

(i)},

P . + . .
(iii) if D 4is a non-empty subset of L such that u,,u.,eD implies

1772

u1Vu2€D and such that sup {p(u): ueD} < o, then sup D exists in L+.

(In particular, if 0 < u1 < ué
+

+ for s .
then un u0 or some uoeL )

. +.
Seeese din L is such that sup p(un) < oo,

LT
Proof. (i) Since J(L) =L J preserves suprema and infima of arbitrary

subsets of L, so La = L by theorem 11.8.

*
(ii) This follows from (i) since L is reflexive as well.
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(iii) set D" = {J(u): wueD}. Then u;,ugeD" implies uIVu;eD" and

*k
sup {p (u"): u"edD"} < . For brevity, define

sup {p(u): wueD}

a = sup {p(u): ueD}.

* *+

Clearly we have sup {¢(u): ueD}< ap (¢) for all ¢eL , thus, defining

u5(¢) = sup {¢(u): wueD}

*+ + _ *
for all ¢eL and u5(¢) = u8(¢ )—u5(¢ ) for arbitrary ¢eL , it follows
*ok+

by similar methods to that used in the proof of theorem 5.6 that uSeL
and that us = sup D". Hence, if quL+ is such that us = J(uo), then

u, = sup D.
It can be shown that the conditions (i), (ii) and (iii) of lemma 11.9 are
not only necessary but also sufficient for L to be reflexive. However,

the rather involved proof of this theorem is far beyond the scope of this

book.
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In the theory of Riesz spaces there are several theorems stating that
Riesz spaces or Banach lattices of certain types are isomorphic to spaces
of functions.. A fundamental result in this direction is Yosida's Represen-
tation Theorem 13.11. We shall prove some of these theorems and give a few
applications, both to the general Riesz space theory and, in Section 17,

to the theory of Hermitian operators in a Hilbert space.
12, THE RIESZ SPACE C(X)

THROUGHOUT THIS SECTION, X IS A COMPACT HAUSDORFF SPACE.

C(X) denotes the vector space of all continuous real-valued
functions on X. Under pointwise ordering,
f <g if f£(x) < g(x) for all xeX,

C(X) 1is an Archimedean Riesz space. (See Ex.1.G). We have

(£vg) (x) £(x)vg(x)

(£Ag) (x) = £(x)Ag(x) (£,9eC(X), xeX)
£l (x) = [£(x)]
C(X) also carries a natural norm, the supremum-norm IIJIw, defined by

el = sup 1£(x) | (£eC(X))
xeX

Under this norm, C(X) is a Banach lattice. (See 9.D).

We shall frequently use the following topological theorem.
12.1. URYSOHN'S LEMMA. If A and B are closed disjoint subsets of X,
then there exists a continuous £:X - [0,1] such that £zO on A while
£f21 on B.

For a proof we refer the reader to [9].
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12.2. THEOREM. For every aeX define ¢a:C(x) - R by

¢, (f) = f(a) (feC (X))
Then ¢a is a Riesz homomorphism and ¢a(l)=1. Conversely, for every Riesz
homomorphism ¢:C(X) > R with ¢(1)=1 there exists a unique a€X such

that ¢=¢a.

Proof. The first part of the theorem is obvious. Now let ¢ be a Riesz
homomorphism C(X) *R and ¢(1)=1. Suppose that for every aeX there
exists an faec(x) for which ¢(fa)#¢a(fa): we derive a contradiction.

For each a, set 9, = Ifa—¢(fa)1]. Then ga(a) ;’I¢a(fa)-¢(fa)| > 0 while
¢(ga) = |¢(fa)-¢(fa)¢(l)| = 0. Because X is compact and each 9, is con-
tinuous, there exist al,...,amex such'that

X =\.) {xeX : ga.(x) > 0}.
i i

Now let g = 9, V...Vga . Then g(x)>0 for all =xeX. As g 1is continuous
m

and X 1is compact, there must exist a &>0 such that g(x)2§ £for all
xeX. Then ¢(g) = ¢(61) = 6§ > 0. On the other hand,

$(9) = ¢(g, )Vé(g, IV...Ve(g, ) =0
1 2 m

and we have a contradiction.
Thus, there must indeed exist an aeX such that ¢=¢a. The unique-
ness of a follows from Uryschn's Lemma: if x,yeX and x#y, then there

exists an feC(X) such that £(x)=0 and f£f(y)=1, i.e. ¢x(f)=0, ¢y(f)=1.

If ¢ is a continuous map of a compact Hausdorff space Y into a
compact Hausdorff space X, then &:f w» fod is a Riesz homomorphism of

C(X) into C(Y) with &(1)=1. Conversely, we have the following.
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12.3. COROLLARY. Let X and Y be compact Hausdorff spaces and ¢ a
Riesz homomorphism of C(X) into C(Y) such that ©&(1)=1. Then there
exists a unique continuous map ¢:Y - X such that

Of = £o¢  (£eC(X)).

Proof. For every yeY, by aéplying the preceding theorem to the map
£ (0f) (y) (feC(X)) we see that there exists a unique element ¢(y)
of X such that (®f)(y) = £(¢(y)) for every £feC(X). Thus we obtain a
$:Y¥ > X with the property
®f = fo¢ (feC (X))
It remains to prove that ¢ is continuous. Let U < X be open and let
b e ¢-1(U) ¢ Y. By Urysohn's Lemma (12.1) there exists an £feC(X) such that
f(¢(b))=1 while £ vanishes on X\U. Setting g=¢f we have geC(Y),
g(b)=£f(¢(b))=1 and g vanishes on Y\¢_1(U). Now {yeY : g(y)>0} is
open in Y and b e {yeY : g(y)>0} ¢ ¢_1(U). Hence, ¢_1(U) is open in X

and therefore ¢ is continuous.

12.4. COROLLARY. (Banach-Stone). Let X and Y be compact Hausdorff
spaces. If C(X) and C(Y) are Riesz isomorphic, then X and Y are

homeomorphic.

Proof. Let & be a Riesz isomorphism of C(X) onto C(Y), let u = o1
and take veC(X) such that ¢v = 1. There exists a positive number c¢ for
which v < cl. Then 1 = ¢v < ¢®1 = cu, so u(y)>0 for every yeY. The

formula

(YE) (y) = “I’ﬁ’(;)’ (£eC(X), ye¥)

can be used to define a Riesz isomorphism V¥ of C(X) onto C(Y) such

that ¥1 = 1. By the above corollary there exist continuous ¢1:Y > X and
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¢2:X + Y with the properties

¥E = fop, (£eC(X))
and
W_lg = g°¢2 (geC(¥).
If xeX, then for every £eC(X), £(x) = (¥ '¥E) (x) = (£2(4,°6,)) (x), so

(by Urysohn's Lemma) X = (¢1°¢2)(x). Similarly, y = (¢2°¢1)(y) for each
yeY. Thus, ¢1 and ¢2 are each other's inverses. Then X and Y are

homeomorphic.

This corollary is the key to several other theorems stating that two
compact Hausdorff spaces X and Y are homeomorphic as soon as C(X) and

C(Y) are in some sense isomorphic.

12.5. DEFINITION. An algebra (over R) is a vector space V provided with
a multiplication VXV =+ V (which we denote by juxtaposition) such that
for every £feV the maps g+ fg and g+ gf are linear.

For every topological space Z, C(Z) is an algebra under pointwise
operations.

Two algebras, V and W, are said to be isomorphic if there exists a

linear bijection ¢¢:V - W such that ©&(£fg)=(%f)(dg) for all £,geV.

12.6. COROLLARY. Let X and Y be compact Hausdorff spaces.

(1) If C(X) and C(Y) are isomorphic algebras, then X and Y are
homeomorphic.

(ii) If C(X) and C(Y) are isomorphic as Banach spaces, then X and Y

are homeomorphic.
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Proof. (i) Let & be a linear bijection C(X) - C(Y) that preserves the
multiplication. An element of C(X) or of C(Y) is 20 if and only if it
is a square. Hence, for feC(X) we have £20 if and only if @£20. Now
apply Cor.12.4.

(ii) Let & be a linear bijection C(X) - C(Y) that preserves the norm.
We first make a linear isometry VY of ‘C(X) onto C(Y) for which V¥i=1.
Let u = 01. Then [lufl =1, so -1susi. set h = %(uz—i). Then we have

uth = %(u+1)2—ij whence "u+h"“,sl and "ljé-lhuw = "<I>-1(u+h)"°° < 1.
Similarly, .u-h = 17%(u—1)2, "u-h"°° <1 and "lﬁQ—lh"m < 1. However, if
"l+<I>_1h||w <1 and lll—é_lh"m < 1, then & ‘'h=0, so h=0, u2=_1_ and the
only values taken by u are 1 and -1. Then we can define a linear iso-

metry ¥ of C(X) onto C(Y) by

_ (e) (y)
(¥Y£) (y) a () (feC(X), yeY)
and we obtain V¥1 = 1.

For feC(X) or feC(Y) one has £f20 if and only if
e - el t I < Nel
Hence, for £feC(X) one has £f20 if and only if VY¥£f>0. Apparently, ¥ is

a Riesz isomorphism and again we can apply 12.4.

12.7. Take £,geC(X). We have f£flg if and only if for every =xeX either
£(x)=0 or g(x)=0, i.e. if and only if g=0 on {xeX : £(x)=0}.

Let D c C(X) and set U = {xeX : there is an feD with £(x)=0}.
Then clearly Dd = {geC(X) : g=0 on U}. Since C(X) is Archimedean,
every band of C(X) is of the form Dd (Th.4.3). Thus, for every band A
of C(X) there exists an open UcX with A = {geC(X) : g=0 on U}.

Conversely, every open subset of X determines a band:
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12.A. Exercise. For every open subset U of X, {geC(X) : g=0 on U} is

a band in C(X).

However, in general the above does not give us a one-to-one corres-
pondence between the open subsets of X and the bands of C(X). In fact,
it is clear that any two opeﬁ subsets of X that have the same closure
determine the same band. (E.g., the open subsets [0,%)u(%,1] and [0,1]
of [0,11).

In the following exercise we shall see that for every open U c¢ X

there exists a largest open subset of X that has the same closure as U.

12.B. Exercise. For every open subset U .of X let UE| denote the inter-
ior of U. For every open U < X the following is true.

(i) Un is an open set whose closure is u.

(ii) Un contains every open subset of X that is contained in u.

(iii) o™ = "

12.8. DEFINITION. An open subset U of X is called regular if Uu = U.
By Ex.12.B(iii), for every open U c X the open set UU is regular.
In fact, Un is the smallest regular open set containing U. (If W is a
regular open set and if W > U, then W = W s Uu).
An example of a non-regular open subset of [0,1] is [0,%) u(%,1].

Since [0,%) and (%,1] are regular, we see that a union of two regular

open sets may fail to be regular.
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12.C. Exercise. The regular open subsets of X, ordered by inclusion, form
a complete Boolean algebra A. For Ul,UzeA we have
] o}

=U

o
A = \ =
U, AU u,nu,, U,VU (U1UU2) ’ Ul 1

172 172 172

It can now be proved that the formula U+ {geC(X) : g=0 on U}
yields a one-to-one correspondence between the regular open sets in X and
the bands of C(X). Now both the regular open sets and the bands form
Boolean algebras (12.C and 4.6). Unfortunately, the correspondence we have
just mentioned reverses the ordering: large opeh sets will yield small
bands. In order to obtain an isomorphism of Boolean algebras we introduce

a complementation in the following way.

12.9. THEOREM. Let X be a compact Hausdorff space. Let A be the Boolean
algebra of all regular open subsets of X and let BI[C(X)] be the Boolean
algebra of all bands of C(X). (See Th.4.6). The formula

U {geC(X) : g=0 on X\U}

defines a bijection A - BL[C(X)] which is a lattice isomorphism.

Proof. For UeA let ¢(U) = {geC(X) : g=0 on X\U}: then ¢ (U) e Blc(x)].
(See Ex.12.A). For every A ¢ B[C(X)], as we already know, there exists
a regular open W c X such that A = {geC(X): g=0 on W} = ¢(Wc). Thus,

¢ is surjective A > B[c(x)].

Trivially, if U1,U25A and U, c U,, then ¢(U1) c ¢(Uz). On the

1
other hand, if U ,UjeA and U ¢ U,, then U ¢ U, (12.B(ii)), so
X\E; ¢ x\Ul' By Urysohn's Lemma there exists an feC(X) that vanishes on

X\U, but not on x\EZ‘. Then fe¢(U,), ££4(U,), so ¢(U)) # ¢(U)).
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Thus, for U1’U2€A we have U, < U2 if and only if ¢(Ul) c ¢(Uz).

Consequently, ¢ 1is injective and a lattice isomorphism.

Now assume that C(X) is Dedekind complete.

Let U be a regular open subset of X and let A be the correspon-
ding band of C(X), i.e. A ; {geC(X) : g=0 on Uc}. By the above theorem,
2% = {gec(x) : 920 on U} = {geC(X) : g=0 on U}. The Dedekind com-
pleteness of C(X) implies (Th.4.5(ii)) that 1 € A+Ad. It follows that

x = v = (x\U)uU. But then U=U, so U is not only open but also closed.

12.10. DEFINITION. A subset of X is said to be clopen if it is both open
and closed.

Clearly every clopen set is a regular open set.

12.11. DEFINITION. X is called extremally disconnected if every regular

open subset of X 1is clopen.

We have just proved that if C(X) is Dedekind complete, then X is
extremally disconnected. In Theorem 12.16 we shall see that the converse is
also true. For that we need more knowledge about extremally disconnected
spaces.

Let X be extremally disconnected. If a,b are points of X and
azb, there exist open sets U,V ¢ X such that aeU, beV and UnV =.¢.
Setting W = UI:l (see 12.B) we see: if X is extremally disconnected, then
for any two distinct points, a and b, of X there exists a clopen set
W c X such that aeW, bg¢w.

In particular, X does not contain any connected subset that consists

of more than one element. This observation may serve as a partial explana-
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tion of the term "extremally disconnected".

We can, in fact, prove more. Let X be any compact Hausdorff space.
Let a€eX and let S be a neighbourhood of a. There exists an open set U
such that a € U c U c S. Consequently, a € Un c S. Thus, the regular open
sets form a base for the topology of X. In the terminology of 12.12, if X

is extremally disconnected, then it is zerodimensional.

12.12. DEFINITION. X is called zerodimensional if the clopen subsets of

X form a base for the topology of X.

12.D. Exercise. Let X be the subset {O}U{n_1 : neN} of R. Under the

usual topology, X is zerodimensional but not extremally disconnected.

12.E. Exercise. (Unpleasant behaviour of extremally disconnected spaces).
If X 1is extremally disconnected and metrizable, then X 1is a finite set.
(Hint. Take aeX: it suffices to prove that {a} is open. If {a} is not
open, there exist clopen sets W1 = w2 > ... whose intersection is {a}

while w, # W, # ... Let U= U{Wn :n is even}. Then U = Uu{a}. Derive

a contradiction).

12.F. Exercise. The following conditions are equivalent.

(a) X 1is extremally disconnected.

(b) If U,V are mutually disjoint open subsets of X, then unv = P.
(c) Every open subset of X has clopen closure. (In the literature this

property is usually chosen to define extremal disconnectedness).
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12.13. DEFINITION. A real-valued function f on X is said to be lower
semicontinuous if for every seR the set {xeX : f(x)>s} is open: f is
called upper semicontinuous if for every s the set {xeX : f(x)<s}l is
open. Instead of "semicontinuous" we often use the abbreviation "s.c.".
Clearly, a function is continuous if and only if it is both lower and

upper semicontinuous.

12.G. Exercise. (i) The characteristic function of a subset V of X is
lower s.c. if and only if V is open.

(ii) The sum of two lower s.c. functions is lower s.c.

(iii) Every lower s.c. function on X is bounded from below.

(iv) Let F be a set of lower s.c. functions on X such that for every
xeX, sup{f(x) : feF} is finite. Then the function x+ sup{f(x) : feF} is
lower s.c.

(v) Every lower s.c. function £ on X 1is pointwise supremum of a set F

0

of continuous functions. (For F one may take {feC(X) : f < fo}l

12.14. DEFINITION. For any function f:X - R that is bounded from below

and for any aeX we define

f+(a) = sup { inf f£(x) : U is a neighbourhood of a}
XeU

Note that (inf £) < f¢(a) < f£(a), so that f+(a)eR. Thus, we have made a

function f+:X -+ R. Similarly, we define f+ if £ 1is bounded from above.

12.H. Exercise. Let f and g be functions X - R that are bounded from

below. Then

(1) £V s s

(ii) f+ is bounded from below; if fact, inf f+(x) = inf f(x).
xeX xeX
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(iii) if £ < g, then £ <g'.

(iv) f+ is lower s.c. It is the largest lower s.c. function that is < f.

(v) £ is lower s.c. if and only if f+ = £f.

(vi) f++ = f+.

12.15. LEMMA. Let X be extremally disconnected and let £:X - R be boun-

ded and lower s.c. Then f+ is continuous.

Proof. By Ex.12.H(iv), f+ is upper s.c. In order to prove that it is also
lower s.c., take seR and W = {x : f+(x)>s} : we show W to be open.
For every €>0 let VE be the set {x : £(x) > s+e}. This \A is open:
then so is V: ,since X 1is extremally disconnected. (See Ex.12.F). We

prove that W = U-\: : then W must be open.
>0

If aeW, there is an €>0 for which f¢(a) > s+e. By the definition
of f+(a), every neighborhood of a contains a point x with £(x) > s+g,

i.e. aeV_. Thus, Wc UV _.
€
>0

Conversely, let €>0, aeGEZ Then, by the definition of f+(a) we have

f+(a) > s+e and acW. Hence, \JV_ c W.
e>0

Now we can prove a result announced above.
12.16. THEOREM. (H.Nakano). C(X) is Dedekind complete if and only if X

is extremally disconnected.

Proof. We already have the "only if": see the lines following Def.12.11.
Now assume that X is extremally disconnected. Let F be a non-empty sub-
set of C(x)+ having an upper bound in C(X). Then we can define a bounded

lower s.c. function fo on X by setting fo(x) = sup{f(x) : feF}. (See
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Ex.12.G(iv)). Then fo+ec(x), according to Lemma 12.15. It is now easy to

see that, in the sense of the Riesz space C(X), fo+ = sup F. By Ex.4.A(c),

C(X) is Dedekind complete.

12.I. Exercise. (An infinite extremally disconnected space). We make a com-
pact Hausdorff space X such that C(X) 1is Riesz isomorphic to L Then
by Nakano's Theorem 12.16, X is extremally disconnected.
Let A = [O,l]N, B = [O,l]A. Under the product topology, B is a com-
pact Hausdorff space. Define b:N - B by
b(n) (a) = a(n) (a€A; neN)
The closure of Db(N) is a compact Hausdorff space X.
Every feC(X) determines an element of of Rm by
¢f = fob.
In this way one obtains a Riesz isomorphism ¢ of C(X) onto £ . (To
prove surjectivity, take a€A and define feC(X) by £f(x)=x(a) (xeX) :
then ¢f=a. Thus, the range space of ¢ contains A).
(For a more direct proof of the extremal disconnectedness of X, take
a regular open subset U of X. Let u be the characteristic function
of {neN : b(n)eU}. Then ueA. Put Y = {xeX : u(x)=1}. As
b(N) c {xeB : x(u)=1 or x(u)=0},
it follows that for every xeX we either have x(u)=1 or x(u)=0, so that
Y is clopen in X. Now both Y and U are regular open subsets of X,

b(N) is dense in X and Ynb(N) = Unb(N). Consequently, U =Y ).
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13. THE YOSIDA REPRESENTATION THEOREM

IN THE REST OF THIS BOOK L IS AN ARCHIMEDEAN RIESZ SPACE.

13.1. LEMMA. If L#{0} while {0} and L are the only ideals of L, then

L is Riesz isomorphic to R.

Proof. All we really have to prove is that L 1is one-dimensional. We are

done if for any f1’f2€L+ we can show £ and £,Vf to be linearly

1 172

dependent.

Let f,g€L+, 0<f<g: it suffices to prove that f=ag for some «acR.
Let A = {AeR : Ag<f}. Observe that Ocd and that Ael as soon as A<A!
for some A'el. As L is Archimedean there is a AeR such that . A£A.
Then A c (-,)). Now we can define a€R+ by o = sup A. For every meN,
a-—% € A, so that oag - £ < ég : hence, oag-f < 0 and f-og € L+. The
principal ideal generated by f-og is either {0} or L. In the first
case, f-og = 0, i.e. f = ag. In the second case, by 2.C there must exist
an neN such that g < n(f-ag), whence a+% € A which contradicts the

definition of A. Therefore, f=og.

13.2. DEFINITION. An ideal I in L is said to be proper if I=zL.

A maximal ideal is a proper ideal that is maximal among the proper ideals.

If M is a maximal ideal in L, then L/M is a Riesz space LO. Let

® denote the natural surjection L - L_. For any ideal I of LO, @-1(1)

0
is an ideal in L that contains M. Then ¢—1(I) is either M or L;

so that I is either {0} or LO.
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Before we can apply the above lemma to L0 we have to show that L0

+
is Archimedean. This is not hard to do. Let f,geL0 be such that mf < g
for all meN. Set J = {heLO : |mh|] < g for all meN}. Then J is an
ideal in LO, so either J={0} or J=L0. In the first case, trivially

£f=0; in the second case geJ, hence, g=0 and £=0.

We have proved:

13.3. LEMMA. If M is a maximal ideal in L, then L/M is Riesz isomor-

phic to R.

13.A. Exercise. (i) The kernel of any non-zero Riesz homomorphism L =+ R
is a maximal ideal.

(ii) Every maximal ideal of L is the kernel of a non-zero Riesz homomor-
phism L - R.

(iii) If ¢ and Y are non-zero Riesz homomorphisms L > R with the

same kernel, then they are scalar multiples of each other.

13.B. Example. Let X be a compact Hausdorff space. For aeX define
Ma = {fec(X) : £(a)=0}. Every Ma is a maximal ideal in C(X). By the

above and by Th.12.2, every maximal ideal is an Ma.

13.4. Let M denote the set of all maximal ideals of L. For any subset
A of L+ put
al = (MM : A c M)
Then
1) g =@hd, M=gt

(i) If (a) is any family of subsets of L', then 0N AGA = (U AG)A,

o'oel g€l oel
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(iii) If A and B are subsets of L+ and if C = {fAg : feA, geB},
then AAUBA = CA. In fact, the inclusion AAUBA c CA is perfectly clear.
Now take an MeM such that MéAA and MéBA: we prove that M¢CA. There
must exist feA and geB with £¢£M, géM. By 13.A, M is the kernel of
a Riesz homomorphism ¢:L = R. Then ¢(£f)20 and ¢(g)#0, and therefore

d(EAg) = ¢(£)Ad(g) # 0 and £fAg ¢ M. But £fAg € C. Consequently, C £ M,

i.e. M[CA.

By (i), (ii) and (iii) there exists a topology on M such that the

sets AA (A c L+) are just the closed subsets of M.

13.5. DEFINITION. This topology is known as the hull-kernel topology. The
topological space we have just made is called the maximal ideal space

of L. We denote it by M(L) or by M.

13.6. LEMMA. M(L) is a Hausdorff space.

Proof. Let M,NeM, M#N. There exist f ¢ M+\N and g € N+\M. Put
f' = £ - fAg, g' = g - fAqg.
As fAg € MnN, we have f' ¢ M+\N and g' € N+\M. In particular we obtain
N £ {f'}A and M ¢ {g'}A. Furthermore, (see (iii), above).
(£ 000e " = (229"} = (0}t =
Thus, M\{f'}A and M\{g'}A are disjoint open sets containing N and M,

respectively.

13.C. Exercise.Let X be a compact Hausdorff space. For aeX, define

Ma = {feC(X) : £(a)=0}. Then aw Ma is a homeomorphism X -+ M(C(X)).
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13.D. Example. In Ex. 5.A(i) we have found a non-trivial Archimedean Riesz
space M for which MN = {0}. It is clear that the maximal ideal space of

such an M is empty.

13.E Example. ( M(L) is not always locally compact).

The theory of maximal ideals in Riesz spaces closely resembles the one
of maximal ideals in commutative Banach algebras over €. There too one has
the connection between maximal ideals and scalar-valued homomorphisms, and
there exists a topologized maximal ideal space. For Banach algebras these
maximal ideal spaces are always locally compact. This example is intended
to show that in this respect our theory is different.

Let X be any subset of R and let C(X) be the Riesz space of all
continuous functions. X + R. We show M(é(x)) to be homeomorphic to X
itself. Every element a of X determines an MaeM(C(X)) by

Ma = {feC(X) : f(a)=0}.
Then a+ Ma is an injective map X‘+ M(c(x)) which is easily seen to be
a homeomorphism if only it is surjective. Therefore, take an MeM(C(X)) :
we shall find an a € X for which M = Ma.

M is the kernel of a Riesz homomorphism ¢:C(X) - R. There exists an

+
h e C(X) with ¢(h) > 0. For all xeX, set

* _ h(x)+1
h (x) = $Tﬁziy
Then h*ec(x), ¢(h*) =1 and h*(x)>0 for all xeX. Define P:C(X) = R

by P(f) = ¢(fh*) (£feC(X)). Then ¢ is a Riesz homomorphism, its kernel
is M, and (1) = 1. The identity map X +-'R is an element j of C(X).
Let a = ¢(j). We prove that aeX and that y(f)=£f(a) for all £feC(X) :
then the kernel of ¢ will be Ma' i.e. M= Ma'

+
If geC(X) and g(x)>0 for all xeX, then é-e C(X). For all neW

we have
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1= 9 s ¥ng v =y v g
so P(g)>0. In other words, if geC(x)+ and Y(g)=0, then g must take
the value 0 somewhere.
Now let feC(X). Set g = |j-all|Vv|f-y(£)1]|. Then geC(X)+ and
V(@) = @) -ap(D) IvivE) -p(H)pw)y | = 0,
so, by the above, there must éxist an xeX with g(x)=0. For this x we

have j(x)=a and f£(x)=¢(f), so aeX and f£f(a)=yY(£f).

As in the case of the Banach algebras, we need a unit to guarantee the

existence of sufficiently many maximal ideals.

+
13.7. DEFINITION. A (strong) unit in L is an element e of L with the
property that the principal ideal generated by e is L itself. This is
. +
the case if and only if for every feL there exists an neN with f£<ne.

L is said to be unitary if it has a unit.

13.F. Examples. Under coordinatewise ordering, RF (neN) is unitary. For a
compact Hausdorff space X, C(X) is unitary. For a non-compact space X,
in general C(X) will not be unitary. (If e is a unit in C(X), then
eZSne for some nelN, so that e is bounded. Then every element of the
principal ideal generated by e is bounded).

+
21 is not unitary. (Take any eell . There exist positive integers

- +
n1<n2<... such that e < 4 k for each  ke. There exists an aeﬂ.1 “such

that an‘= 2_k for each k. Then there is no neN with a < ne ).
k

13.8. THEOREM. Let L be unitary.

(i) An ideal I of L is proper if and only if it contains no unit of L.
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(ii) Every proper ideal of L 1is contained in a maximal ideal. Hence, if
L#{0}, then there exist maximal ideals.

(iii) If fen, £>0, then there exists a Riesz homomorphism ¢:L + R such
that ¢(£)>0.

(iv) If g,helL and g#h, there is a Riesz homomorphism ¢:L + R for which
¢(g) = ¢(h).

(v) M) is compact.

Proof. (i) If I 1is an ideal containing a unit e, then L = (e) € I, so a
proper ideal cannot contain units. Conversely,an ideal that contains no unit
trivially differs from L.
(ii) Let E Dbe the set of all units of L. If I is a proper ideal of L,
then I c L\E. By Zorn's Lemma, among thé ideals of L that contain I
and are subsets of L\E there is a maximal one, M, say. Then I ¢ M ¢ M(L).
(iii) Let feL, £>0. Let e be a unit of L. As L is Archimedean, there
exists a positive number s such that fgse, i.e. (f—se)+ # 0. If I is
the principal ideal generated by (f-se) , then (f-se)+ 1 I, so I is
proper. By (ii), I is contained in a maximal ideal M, which is the kernel
of a Riesz homomorphism ¢:L > R. Now (f-se) € I c M, so that

0= ¢((£-se)) = ($(£)-s¢(e)) ,
whence ¢(f) = s¢(e). But by part (i), efM, so ¢(e)>0. It follows that
¢ (£)>0.
(iv) Set £ = |g-h| and apply (iii).
(v) Let (Ac)oez be a family of subsets of L+ such that (in the termino-
logy of 13.4) the collection {AoA : gel} of closed subsets of M(L) has
the finite intersection property: we prove that its intersection is not
empty. To do this we have to make an MeM(L) such that A0 c M for every

o€, i.e. we have to prove that the union of all the sets A0 is contained
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in a maximal ideal M of L. Let A be the union of the sets Ao' Without
restriction we suppose that, tfeA for all feA and teR+. Let I be the

set of all elements f of L for which there exist neN and fl,...,fneA
such that |f] < £,V...VE . Then I is an ideal and A < I: by (i) and

(ii) we are done if I contains no units of L. Suppose L has a unit e

with eeA. Then e < £, V...Vf for certain f ,...,fneA. For each i there

1 n 1
. A
is a 0(i) € Z such that fier(i) Now Ao(l) n nAo(n) is not empty,
so L has a maximal ideal N for which N o A U...UA . But then
(1) o(n)

fieN for each i, so that eeN. By (i) this is impossible.

13.9. Part (iv) of the above theorem yields a simple technique (due to
A.I.Yudin) to prove elementary identities in Archimedean Riesz spaces. As
an example we show that for all f£,g,heL,
(%) (£Ag)V(gAh) vV (hAE) = (£vg)A(gVh)A(hVE)
Let f,g,h¢L. First, we assume that L is unitary. By (iv) it suffices to
prove that every Riesz homomorphism L -+ R assigns the same value to both
sides of (*). Let ¢:L > R be Riesz homomorphism and let oa=¢(£f), B=¢(g),
y=¢(h). We are done if
(*%) (aAB) V(BAY)V(YAa) = (aVB)A(BVY)A(yVa)
But the truth of (**) (for arbitrary a,B8,y € R) is easily seen.

In case L is not unitary, in the above one replaces L by the prin-
cipal ideal L0 generated by |f|+|g|+|h|. This L_ is unitary, since

0

|£l+|gl+|n| is a unit in Lo.

13.10. Let e be a unit in L. For every maximal ideal M of L, by 13.A
and 13.8(i), M is the kernel of a unique Riesz homomorphism ¢M:L > R
that maps e onto 1. For every feL, M > ¢M(f) is a function f on M) .

We have
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£() = ¢, (£) (feL, MeM)
Then ¢, (f - fme) = oy (E) = f(M)¢M(e) =0, so £ - £(M)e € M. Conversely,
if seR and f-se € M, then 0 = ¢, (f-se) = ¢, (£)-sp,(e) = £(M)-s. Thus,
f(M) is the (only) real number s for which f-se € M.

~

The functions £ are continuous. In fact, for feL. and seR we have

1]

(MeM : £(M) 2 s} = {M : $,(£-se) = 0} =

M : ¢, ((£-se)) = 0} = {(£-se) }"
(We use A as in 10.4). Thus, {M : f(M) > s} is closed in M. so is, of
course, {M : £(M) < s} (feL, seR).

Now £w ¥ is amap L » C(M). It is easily seen to be a Riesz homo-
morphism. The image of e is 1. If £f,gelL and £#g, then by Th.13.8(iv)
there is a (non-zero) Riesz homomorphism ¢:L -+ R with ¢(£)2¢(g). If M
is the kernel of ¢, then ¢M is a non;zero scalar multiple of ¢, so that
¢M(f)¢¢M(g). This means that f(M)#&(M) and therefore Ezé.

We have now proved the following.

13.11. REPRESENTATION THEOREM. (K.Yosida, S.Kakutani, M.and S.Krein,
H.Nakano). Let e be a unit in L. For all feL and MeM(L) there exists
a unique real number f(M) such that £ - f(M)e € M. For every feL, f is
a continuous function on the compact Hausdorff space M = M(L). The map
f + £ is a Riesz isomorphism of L onto a Riesz subspace L of c (M)
and & = 1.

This theorem is to be continued in 13.13, 13.17, 13.22, 13.23, 13.25,

13.28 and 13.32.

13.12, THEOREM. (Stone-Weierstrass). Let X be a compact Hausdorff space
containing at least two points. Let L be a Riesz subspace of C(X) such

that for any two points, x and y, of X there exists an felL for which
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f(x)=0, £(y)#0. Then L is a norm dense subset of C(X).

Proof. Let geC(X) and €>0: we constru;t an feL that satisfies the
inequality g-el < f < gtel.

Let aeX. From the given property of L it follows that for every
beX there is an fbeL sucﬁ that fb(a)=g(a), fb(b)=g(b). By the compact-

ness of X there exist bl,...,bnex for which

b

Xx=Uix: £ (x) - gx) < e}
i i

Set £7 = £ A...Af . Then £oeL, £ (a)=g(a), £2 < grel
1 n

For every aeX we can make such an £2. There exist al,...,amex

for which
a.
x=UUix:¢£ Tx) - glx) > -}
j
a a

Now set £ = f 1V...Vf ™. Then feL and g-el < £ < gtel.

In the following we let L be {% : feL} and we set M = M(L).
If M,NeM and M=N, then there exists an felL with £feM, f¢N. Then

%(M)=0, E(N)to. The Stone-Weierstrass Theorem now yields Cor.13.13.
13.13. COROLLARY. (Sequel to Th.13.11). L is norm-dense in C(M).

13.14. COROLLARY. (A.I.Yudin). Let neN and let L be n-dimensional as a
vector space over R. Then L is Riesz-isomorphic to Rp (where R is

ordered coordinatewise) .

Proof. Choose a base fl""'fn in L: set e = |f1]+...+|fn|. Then e is
i i . o . < . i iso-
a unit in L. (For all S, r+-sS €R, IZsifiI (Zisil)e ). Thus, L is iso

morphic to a norm dense subspace L of C(M). Every finite dimensional
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normed vector space being complete, & is closed in C(M) and L = c(M).
Then C(M) is n-dimensional, so that M contains exactly n elements.
It follows that C(M) is Riesz isémorphic to R.

(Remark. For n=1,2,3,4,5 the number of isomorphism classes of (not

necessarily Archimedean) n-dimensional Riesz spaces is 1,2,3,8,18, resp.)
There is another sense in which ﬁ is a dense subset of C(M):

13.15. DEFINITION. Let L1 be an Archimedean Riesz space, LO a Riesz sub-

space of Ll' We say that LO is order dense in L1 if for every feL

with £>0 there exists a geLO for which 0<g<f.

1

13.16. LEMMA. Let X be a compact Hausdorff space. Every norm dense Riesz

subspace of C(X) is order dense.

Proof. Let L0 be a norm dense Riesz subspace of C(X). Let £feC(X), £>0.

Take € = %ﬂf"w. There exists a geL. for which "(f—s_l_)—g”oo < g. Then

0
f-2el < g < £. Because 2¢ < "f"w, we have 0 < (f—2€l)+ < g+ < f. Now note
+
that g ELO.
(Observe that {fec([0,1]) : £(0)=0} -is an order dense Riesz subspace

of ¢([0,1]) that is not norm dense).
13.17. COROLLARY. (Sequel to 13.11). L is order dense in C(M).

Before we can go into the consequences of this corollary we have to

study order denseness.
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13.18. LEMMA. For an ideal LO of L the following conditions are
equivalent.

(a) LO is order dense in L.

+
(b) Every element of L  1is the supremum of a subset of Lo-

(c) The band of L, generated by LO, is L itself.

d
0

d

)+ = {0}, hence to L,

Proof. (a) is equivalent to (L = {0}, which, by
the implication (a) =(d) of Th.4.3, is equivalent to (c). Besides, it is
evident that (b) implies (a), while we know (Ex.2.D) that (b) is implied

by (c).

13.19. Let L be the Riesz space of all bounded functions on [0,1]. The
continuous functions on [0,1] form a Riesz subspace LO of L. Let F

be the subset of L0 .consisting of the functions x4+ 1lAnx (neN). In
the Riesz space L, this set F has a supremum, viz. the characteristic
function of (0,1]. In the smaller Riesz space LO, F also has a supremum,
but this is 1. We see that in this context the expression "sup F" is
ambiguous and may lead to confusion. Therefore we shall occasionally use
notations like "L-sup F" and "Lo-sup F". The meaning of such a notation
will always be clear.

For a Riesz subspace Lo of L and for any F c Lo the following

two facts are obvious.

(1) If L-sup F and L

o-sup F both exist, then L-sup F < Lo-sup F.

(ii) If L-sup F exists and belongs to LO’ then L-sup F = Lo—sup F.

13.20. DEFINITION. A Riesz subspace L0 of L is said to be normal in L

-sup F for every subset F of LO for which LO—sup F

exists. By (i) and (ii) above, every ideal of L is normal in L.

if L-sup F = Lo
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13.21. LEMMA. Let L0 be an order-dense Riesz subspace of L.

(i) L0 is normal in L.

(ii) If LO is a Dedekind complete Riesz space, then it is an ideal in L.

(1f L =c([0,1]) and if LO is the Riesz subspace of L consisting

of the constant functions, then L0 is normal but not order-dense in L:

furthermore, it is normal in L and Dedekind complete but it is not an

ideal in L).

Proof. (i) Let F be a non-empty subset of L0 and let f0 = Lo—sup F.

Of course fo is an upper bound of F in L. Let fleL be any upper

bound of F: we have to prove that flzfo. Suppose flﬁfo. Then we have

# A - A i
fO f1 fO’ so fO f1 fo > 0 and therg exists a gsLO such that

< _ P _ . .
0 <g=< fO (flAfO)' But then f0 g 2 flAfO' so f0 g (which is an element

of LO) is an upper bound of F. Then fo—g 2 L. -sup F = £, which is a

0 0

contradiction.

(ii) Let foeLO and let fleL be such that OSfISfO: it suffices to prove

that then necessarily fleLO. Let F = {feLO+ : fsfl}. This F is a non-

; having the upper bound £ in L,. By the Dedekind

empty subset of L 0 o

0

completeness of L_, L_ -sup F exists. But according to Lemma 13.18,

0" "0

f1 = L-sup F. Now LO is normal in L. Consequently, £, =

1 Lo-sup Fel

0
13.22. COROLLARY. (Sequel to 13.11). (i) L is normal in L.
(ii) If L 1is Dedekind complete, then L=Cc(M). In this case, the maximal

ideal space M of L is extremally disconnected. (See Th.12.16).

13.G. Exercise on normality.

(i) If L0 is a normal Riesz subspace of L and if L1 is a Riesz sub-
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space of L containing L hen Lo is normal in L,.

o’ 1

(ii) Every ideal in L is normal in L.

If A and B are disjoint closed subsets of M, then by Urysohn's
Lemma there exists a geC(M) such that g=-1 on A while g=2 on B.
As L is norm-dense in c(M) we have an hel. with "g—h"w < 1. Then
h<0 on A but h21 on B. Setting £ = 1Ah+ we have the first part of

the following lemma. The second part is an immediate consequence of it.

13.23. LEMMA. (Sequel to 13.11). (i) If A and ﬁ are disjoint closed
subsets of M, there exists an fei such that £=0 on A, £f21 on B.

(ii) L contains the characteristic functions of all clopen subsets of M.

13.24. DEFINITION. A function f on a topological space X is said to be
locally constant if every element of X has a neighbourhood on which £

is constant.

13.H. Exercise. Let X be a compact Hausdorff space.

(i) A function f:X » R is locally constant if and only if it is a linear
combination of characteristic functions of clopen sets.

(ii) The loca}ly constant functions on X form a Riesz subspace of C(X).

(iii) If X is zerodimensional, this subspace is order-dense in C(X).

13.25. FREUDENTHAL SPECTRAL THEOREM. (Sequel to 13.11). Suppose that

d ..
B+B = L for every principal band B of L. (See 13.I). Then M 1is zero-

dimensional and I contains all locally constant functions on M.
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Proof. Let aeM and let W be an open neighbourhood of a. We construct
a clopen set U such that a € U ¢ W : then X is zerodimensional and the
rest of the theorem follows from Ex.13.H(i) and Lemma 13.23(ii).

There is an open V ¢ M such that a € V ¢ V ¢ W. By Lemma 13.23(i)
there exist f,geL+ such that %(a)=1, £20 on M\v, 651 on M\W and
&EO on V. Let B be the principal band generated by £. As B+Bd =L
there exists a ueB with e-u € Bd. Now ul(e-u), so Gl(lfﬁ). It follows
that G is the characteristic function of a subset U of M. Since G is
continuous, U must be clopen.

We have (e-u)lf, so (l;G)LE. Furthermore, E(a)=1. Consequently,
(1;&)(a) = 0, which means that a(a)=1 and aeU. On the other hand, glf,
so glB, glu and glu. As §51 on M\W it follows that u=0 on M\W,
so U cW.

The condition " B+Bd = L for all principal bands B " is satisfied

if L is Dedekind complete. (Th.4.5(ii)). More generally:

13.I. Exercise. Assume that every countable non-empty bounded subset of L
has a supremum. (Such an L is called Dedekind o-complete). Then B+Bd =L

for every principal band B of L. (See also 13.M).

Our use of the term "Freudenthal Spectral Theorem" to denote Theorem
13.25 is poetic license. The "classical" formulation of the Freudenthal
Theorem involves abstract integration theory rather than topology and looks
quite different. The justification for our unorthodox approach is that our
version fits better into the given context and has the classical form as an
immediate corollary. In order to appease the Muse of History we now give

the better known formulation, leaving its proof to the reader,
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13.26. Let L be as in Th.13.25, let feL. For every seR let Bs be
the band generated by (se—f)+. For each s there is a unique useBs such

that e-us € Bsd.If s,teR and s<t, then ussut. Choose a,beR for which

ae < £ < (b-a)e for some 0a>0. Then us=0 if s<a while us=e for s2b.

Now
b

f = £ s dus

in the following sense.

(i) For every e>0 there exists a 6>0 with the following property. If

neN, a=s <t <s <t.<...<t <s =b and if s,-s, , < & for each i, then
0°t1%%1%% n>°n i7Si-1 7
lE-neG, cu )]s
i i i-1

(ii) For every ¢eL~ the function s - ¢(us) is of bounded variation and

b

$(£) = [ s dd(u))
a S

13.27. DEFINITION. If L is unitary, a unit u in L defines a function
9, from L into [0, by
0, (£) = inf{selO,) : |f]| < su} (feL)
It is easy to see that ou is a Riesz norm on L.
For every ¢€>0, |f] < (au(f)+e)u, i.e. lf]—ou(f)u < gu. From the fact
that L is Archimedean it follows that Ifl—cu(f)u < 0. Thus,
[£] < Uu(f)u (feL; u a unit in L)
If u and v are units of L, then from this formula we may infer
that ov(f) < cu(f)av(u) for all feL, i.e. av < ov(u)cu. Similarly,
%, < cu(v)ov. Apparently, the norms ou and o, are equivalent. We see
that all the norms ou (where u runs through the set of all units of L)

determine the same topology on L.

L is said to be uniformly complete if for some unit u every
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0 -Cauchy sequence is Gu—convergent. Then, of course, for every unit v
u

all ov—Cauchy sequences are Ov~convergent.

13.28. THEOREM. (Sequel to 13.11). For every feL,
o (£) = llell,

If L is uniformly complete, then L = C(M).

13.29. COROLLARY. The following two properties of L are equivalent
(a) There exists a compact Hausdorff space X such that L is Riesz iso-
morphic to C(X).

(b) L is unitary and uniformly complete.

From 13.22 and 13.29 we derive the'following result (which is not hard

to prove directly, either).

13.30. COROLLARY. Every unitary Dedekind complete Riesz space is uniformly

complete.

We have seen (Ex.4.H(i)) that quotients of Archimedean Riesz spaces
may fail to be Archimedean. The following exercise suggests that unitary

Riesz spaces all of whose quotients are Archimedean, are rare phenomena.

13.J. Exercise. Let L be unitary and assume‘that all quotient Riesz
spaces of L are Archimedean.

(i) (In the terminology of our representation theorem). M is zerodimensio-
nal and L is just the space of all locally constant functions on M.

(ii) If L 4is uniformly complete, then L is a finite dimensional vector

. . . . n
space, hence is Riesz isomorphic to R for some neN.
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(Hint for (i). By 13.H(i) and 13.23(ii), all locally constant functions
belong to L. For the converse, let feﬁ, aeM and f(a)=0. Consider now
the images of 1 and £ in the quotient L/J3 where J is the set of all

elements of L that vanish identically on some neighbourhood of a).

13.31. DEFINITION. A Riesz algebra is a Riesz space L0 which is also an

algebra (under the same vector space structure) such that
+
0°

is said to be unitary if it has a two-sided identity

+ +
if feLO and 'geLo , then fg e L

A Riesz algebra LO
element (relative to the multiplication) which is also a strong unit in the
Riesz space. The prime example is, of course, C(X) where X 1is a compact
space.

Two Riesz algebras, L and L2, are called isomorphic if there exists

1

a Riesz isomorphism of L1 onto L2 that is an algebra homomorphism.
13.K. Exercise. Let L be a Riesz algebra.

(i) I1f £, ,£f eL, £ <f

-+
< <
1'%, 155, and geL , then fig < f2g and gf, < gfz.

1
(ii) For all £,geL we have |£fg| < |£f|]lg].

13.32. THEOREM. (Sequel to 13.11). Let L be a unitary Riesz algebra whose
identity element is e. Then the multiplication of L is commutative. All
Riesz ideals in L are algebra ideals. The map £ v £ is an algebra homo-

morphism.

Proof. Let J be a Riesz ideal in L. Let feL, ged. There is an nelN for
which |£f| < ne. Then |fg| < |f||g| < nelg| = nlg|, so £g € J. Similarly,
gf € J. Thus, J is a two-sided ring ideal in L.

Let MeM , feL, geL. Then f-f(M)e € M. By the above,
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£g - EM)g = (£-EMe)g € M.
This means that

0= (£g - Emg) M) = fgm) - FMgm).
Appérently, f& = f@ for all £,geL. In other words, the map £ - f is an
algebra homomorphism. Then for all f and g we have f; = é%, so the

multiplication of L is commutative.

13.L. Example. Let &b be as in 8.A(ii) and 9.B. Under coordinatewise
operations &» is a Dedekind complete Riesz algebra. The constant sequence
(1,1,...), which we call 1, is the identity element for the multiplication
and also a strong unit in the sense of the Riesz theory. Thus, Qm is a
unitary Riesz algebra. The norm 01 induced by 1 is the sup-norm.

Taking e = 1. from the prece;;ng theory we obtain a compact Hausdorff
space M and an isometric multiplicative Riesz isomorphism of &w onto
C(M). According to Cor.12.3, M is homeomorphic to the space X of 12.I.

In the language of 13.33, M = nb.

13.M. Example. Let (X,I') be a measurable space. Under pointwise operations
the bounded I'-measurable functions on X form a unitary Riesz algebra that

we call Qm(X,F). Its identity element is 1. The norm o is the sup-norm.

1
A”(X,P) is uniformly complete. Every non-empty countable—Lounded subset of
Aw(x,P) has a supremum (see Ex.13.I), but in general L_(X,T) is not
Dedekind complete. (E.g., let X be R and let I be the Borel c-algebra).
Now let p be a measure on [I'. By identifying functions that are
p-a.e. equal, from Q”(X,F) we obtain the space L _(M). This L (M) in a

natural way becomes a (uniformly complete) unitary Riesz algebra. If H is

slightly decent (e.g., if W is o-finite), L_(u) is Dedekind complete.



107

13.N. Example. Let X be any topological space. The bounded continuous
functions on X form an Archimedean Riesz algebra BC(X). The constant
function 1 is the identity element of the algebra and a strong unit of

the Riesz space. O is the supremum-norm " “m:

1
"f"w = sup{ |f(x)| : xex} (£eBC (X))
BC(X) is a Banach space relative to this norm, so BC(X) is uniformly

complete. (Ex.13.L is the special case X=N).

This example deserves a little more attention:

13.33. DEFINITION. The maximal ideal space of BC(X) is called the Stone-
Cech compactification of X. We denote it by BX or XB.
In this context, for £feBC(X) the function £ on X? is indicated

by Bf or fB.

Every xeX determines a maximal ideal {feBC(X) : £(x)=0} in BC(X).
B

We denote this maximal ideal by B(x): thus we obtain a map B:X > X .

Using the notations of 13.4, for all subsets A of BC(X)+ we have
BHI(AA) = {xeX : £(x)=0 for every feAl}.

Therefore, B is continuous.

For £eBC(X) and xeX, by the definition of fB, the maximal ideal

B(x) of BC(X) contains £ - fB(B(x))1, i.e. £(x) - fB(B(x)) = 0. Thus,

fBOB = £ (feBC (X))

But now it is easy to prove that R(X) is a dense subset of XB. In fact,

if aexBP anda a ¢ B(X), there exists a geC(xB

B

) such that g(a)=1 while

g=0 oh B(X). This g is
B8

for some £feBC(X). But then £ = goB, so
f=0 although £ (a) = g(a) # 0: contradiction.

Summing up, we have the following theorem.
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13.34. THEOREM. Let X be a topological space, let XB be the maximal

ideal space of BC(X). For every xeX let B(x) be the maximal ideal

{f : £(x)=0} of BC(X). Then B 1is a continuous map of X onto a dense

subset of XB. For every feBC(X) there exists a unique fB € C(XB) with

X 8 xB
£

fB
R

f = fB°B. The correspondence £ - fB is an isometric and multiplicative

Riesz isomorphism of BC(X) onto C(XS

).

13.P. Exercise. Let X be a topological space.

(i) The following properties of X are equivalent.
(a) B is a homeomorphism of X onto B(X).

(b) X is homeomorphic to a subset of some compact Hausdorff

space.
(c) If A 1is a closed subset of X and if aeX, afA, then there
exists a continuous function £ on X for which f(a)=0 while
f=1 on A.

(For such an X one usually identifies X with B(X), viewing fB as an

extension of f£f).

(ii) X has the properties (a),(b),(c) if it is metrizable.

(iii) If X is discrete, then for every xeX the set {B(x)} is open

B

in X".
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13.Q. Exercise. Let O be the absolute value topology on [0,1].

T = {Ulu(Uan) : Ul,Uzec}.
Then T 1is a Hausdorff topology that is strictly stronger than o. The
topologies o and T give us two topological spaces with [0,1] as under-
lying point sets; we call them S and T, respectively. S is compact,
T is not.
(i) If £ is a T-continuous function on [0,1], then £ is o-continuous.
(Take ael0,1], €>0: we want to make a Weo with "aeW and |£(x)-f(a)]|< e
for all =xeW. We may assume ac@. There exists a Weo such that a e WnQ
and |f(x)-f(a)| < % for all x e Wn@. Now take # € W\@. There is a Veo
with xeV and with [£(y)-f(x)]| < % for all yee Vn@. Observe that there
exists a y € VNWn@. Then |[£f(x)-f(a)| < |[£(y)-£(x)|+|£(y)-f(a)| <€ ).
(ii) BC(T) = C(S).

B

(iii) The map RB:T -+ T is bijective but not a homeomorphism.

13.R. Exercise. (The Stone-Cech compactification of (0,1]).
Let X be the space (0,1] under the absolute value topology.

(i) B 1is a homeomorphism of X onto B(X).

B

(ii1) X is not metrizable. (Suppose XB is metrizable. By (i), there is

an anB, a¢B(X). There exist x,,x

1+« € X such that a = lim x and
1772 n

xnzxm as soon as n#m. There is a bounded continuous function £ on X

such that f(xn) = (-1)n for every n).
B

(iii) X° is not homeomorphic to [0,1].



14. THE RIESZ SPACE B(X)
IN THIS SECTION, X IS AGAIN A COMPACT HAUSDORFF SPACE.

14.1. DEFINITION. A subset A of X is said to be meagre if there exists

a (countable) sequence A ,Az,... of subsets of X such that

1
(1) a < Ua,
(ii) Every An is closed and has empty interior.

Every subset of a meagre set is meagre. A union of countably many meagre

sets is meagre.
on[0,1] is meagre as a subset of [0,1]. So is {0}, although of

course {0} is not meagre as a subset of {0}.

14.2. BAIRE'S CATEGORY THEOREM. Let X#@.
(i) Every meagre subset of X has empty interionr.
(ii) A closed subset of X 1is meagre if and only if its interior is empty.

(iii) X is not meagre.

Proof. (ii) and (iii) are immediate consequences of (i).

To prove (i), assume that X has a non-empty meagre open subset UO.

There exist closed subsets AI'A2'°" of X for which U0 c L)An while

each An has empty interior. In particular, Uo ¢ A so there exists an

1!
U . i U .
a € 0\A1 Then there is an open 01 c X such that a € U1 c U1 c UO\A1

Now U1 ¢ A2, so there exist an a_ ¢ UI\AZ and an open set U for which

2 2

a U, cU. cUN\A..
€Uy c U, cU\Ry

2 2 2
Proceeding in this fashion one obtains a sequence Ul'UZ"" of non-
empty open sets such that G;'C Un—l\An for every neN. Then 6; = E; DL

so, by the compactness of X, (\E;- contains an element a. Now, on the one



hand, a € EI.C U0 c LJAn, while on the other hand a € f\ﬁ;‘c X\\)An :

contradiction.

14.3. DEFINITION. If fgr every xeX there is given a proposition P(x),
we say that P(x) holds for almost every xeX (or " P holds almost every-
where", " P is true a.e.") in case the set {xeX : P(x) is false} is
meagre.

Thus, because ©n[0,1] is meagre in [0,1] we may say that "almost
every element of [0,1] is irrational".

This topological "almost everywhere" is very similar to the "almost
everywhere" used in Measure Theory, the meagre sets taking over the role of
the sets of measure O.

From 14.2(i) we deduce directly:
14.4. COROLLARY. If £,geC(X) and f=g a.e., then f£f=g.

For a while we have to return to the semicontinuous functions. (See

12.13-12.15).

14.5. LEMMA. If £:X -+ R is bounded and lower s.c., then f=f+ a.e.

Proof. {x : f(x)¢f+(x)} = {x : f(x)<f+(x)} = LJ{Sa : a,Be®, a<B} if we

B
R 4 .

define Sa g = {x : £(x)<a<B<f (x)} = {x : £(x)<aln{x : f+(x)28}. Every
4

Su 8 is closed. Hence, we are done if we prove that every Sa 8 has empty
7 r’

interior. Assume that a is an interior point of some Sa 8" Then Sa 8

’ ’

is a neighbouihood of a and f<o on Sa g By the definition of f¢(a)
1

. 4
it follows that £ (a)<a. But f+(a)28 because aeSa B: contradiction.
’
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14.6. THEOREM. For a bounded real function £ on X the following con-
ditions are equivalent.

(a) There exists a meagre set A c X such that the restriction of £ to
X\A is continuous.

(b) There exists an upper s.c. function g:X >R such that f=g a.e.

(¢c) There exists a lower s.c. function g:X -+ R such that =g a.e.

(d) There exists a Borel measurable g:X > R such that f=g a.e.

Proof. We prove the implications (b)=(c), (c)=(b), (b)A(c)=(a), (a)=(d)
and  (@)=(c). y

(b)=>(c). If g is upper s.c. and f=g a.e., then g+ is lower s.c. (see
12.H(iv)) and g¢=g=f a.e. (14.5).

(c)=>(b) is proved similarly.

(b)A(c)=(a). There exist meagre sets A and A2, an upper s.c. function

1
g1 and a lower s.c. function 9, such that ng1 off Al’ ng2 off A..

2
The restriction of £ to x\(A1UA2) is both upper and lower s.c., hence
is continuous.
(a)=(d). Let A be a meagre set for which the restriction of £ to X\A
is continuous. We may assume that A is a union of countably many closed
sets. Then fXx\A is Borel measurable and fXx\A =f a.e.
(d)=(c). Let T Dbe the collection of all subsets A of X for which
there exists an open set U c X with XA=XU a.e. If Al,Az,...e T', then
LJAn e T. If V is an open subset of X, then V\V is meagre, hence
XX\V = XX\V. a.e. and X\V ¢ I'. Therefore, if A ¢ I then X\A ¢ I'. Thus,
T' is a o-algebra that contains all open sets. But then it must contain
all Borel sets.

Now assume (d). Without restriction we can assume that O<f<l, O<gs<i.

For s ¢ 9n[0,1] 1let A = {x: g(x)>s}. By the above for each s there
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exists an open set US such that Xy = Xy 2a-e- Define h:X -+ [0,1] by

S

h(x) = sup {st (x) : s € on[0,1]} (xeX)
s

U
s

Then h is lower s.c. (12.G(iv)). For every xeX,

g(x) = sup {sxA (x) : s € enl0,11}
s

Hence, £ = g = h a.e. and f has property (c).

14.7. DEFINITION. The bounded Borel functions on X form, under pointwise
operations, an Archimedean Riesz algebra L. In this L, the functions that
vanish almost everywhere on X form a Riesz ideal "N.

By B(X) we denote the quotient Riesz space L/N. If f is an element
of L, we indicate by f the image of £ wunder the quotient map L - B(X).
Often we identify f with £.

The pointwise multiplication in L induces a multiplication in B(X).

In this way, B(X) becomes a unitary Riesz algebra.

The natural embedding C(X) - L yields an injective (Cor.14.4!) and
multiplicative Riesz homomorphism of C(X) into B(X). Identifying an ele-
ment £ of C(X) with the corresponding element £ of B(X), we shall
view C(X) as a subspace of B(X).

Now let X be extremally disconnected. Then this map C(X) - B(X) is
bijective. In fact, let £fe B(X) . By Th.14.6 there exists a lower s.c.
function g on X such that f=g a.e. According to Lemma 14.5, f=g)r a.e.

while g+ is continuous. (Lemma 12.15). We have proved the following.

14.8. THEOREM. If X is extremally disconnected, then for every bounded
Borel function f on X there is a continuous function £' on X such

that f=f' a.e. (Thus, the natural map C(X) - B(X) is bijective).



14.A. Exercise. X 1is extremally disconnected if and only if for every Borel
subset A of X there exists a clopen subset U of X such that A\U

and U\A are meagre.

If X is not extremally disconnected, then the natural map of C(X)
into B(X) is not surjective. Its range space is still order dense, though,

as we shall now prove.

14.9. THEOREM. B(X) is Archimedean. In fact, B(X) is a Dedekind complete

unitary Riesz algebra, containing C(X) as an order dense Riesz subspace.

Proof. For £f,gelL we have t < E. if and only if f£f<g a.e. It follows
easily that B(X) 1is Archimedean.It is practically obvious that B(X) is
a unitary Riesz algebra whose identity element is I.

Next, we prove C(X) to be order dense in B(X). Let feL, £F>0: we
construct an heC(X) such that 0 < h < f. By Th.14.6, we may assume that
f 1is lower s.c. Certainly there is an aeX with £f(a) > 0. Define

A= {x: £(x) < %f(a)l.
This set A is closed and does not contain a. By Urysohn's Lemma there is
an heC(X) for which 0 < h < %f(a)l, h(a) = ¥f(a) and h =0 on A.
Then 0 <h < f.

It remains to prove the Dedekind completeness. Let F be a non-empty
bounded subset of B(X)+. Without restriction we may assume that £ & i
for all feF. There exists a subset G of L such that F = {E‘: geG}
and we may assume all elements of G to be lower s.c. For every geG, gal
is lower s.c. and EXI = EXI = 5. Thus, we may assume g<l for all geG.
Then the formula go(x) = sup{g(x) : geG} : defines a bounded lower s.c.

function gy on X. Clearly, E; = sup F.
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It follows that C(X) is a normal subspace of B(X). In general, how-
ever, C(X) 4is not normal in the space of all bounded Borel functions on X.

(A counterexample is easily obtained from 13.19).

By combining 12.16, 13.22(ii), 14.8 and 14.9 we obtain

14.10. COROLLARY. The following conditions on L are equivalent.

(a) L is unitary and Dedekind complete.

(b) There exists a compact Hausdorff space Y such that L 1is Riesz iso-
morphic to B(Y).

(c) There exists an extremally disconnected compact Hausdorff space 72

such that L 1is Riesz isomorphic to C(Z).

14.11. DEFINITION. A Dedekind completion of an Archimedean Riesz space L
is a pair (M,?) consisting of a Riesz space M and a Riesz isomorphism
® of L onto a Riesz subspace of M, such that

(i) M is Dedekind complete,

(ii) (L) is a normal subspace of M,

(iii) M has no Dedekind complete proper Riesz subspace that

contains &¢(L).

(Later on (Cor.15.7, 15.13) we shall prove general existence and uniqueness

theorems) .

Often we identify an element of L with its image under ¢, viewing

L as a subspace of M. Then we call M itself a Dedekind completion of L.

14.12. THEOREM. B(X) is a Dedekind completion of C(X).

Proof. After Th.14.8, this is a direct consequence of Lemma 14.13,



116

14.13. LEMMA. Let M be a Dedekind complete Riesz space containing L as
an order dense Riesz subspace such that L is not contained in any proper

ideal of M. Then M 1is a Dedekind completion of L.

Proof. By Lemma 13.21(i), L is a normal subspace of M. Let M' be a Riesz
subspace of M that is Dedekind complete and contains L: we want to show
that M'=M. Now L is order dense in M. Then, a fortiori, M' is order
dense. According to 13.21(ii), M' is an ideal in M. But L is not con-

tained in any proper ideal, so M'=M.

It is easy to generalize Th.14.12 a little and prove that actually
B(X) is a Dedekind completion of any order dense Riesz subspace of C(X)

that contains 1. Then our representation theorem 13.11 yields 14.14.

14.14. THEOREM. If L is unitary, then B(M) is a Dedekind completion

of L (where M = M(L) ).
By applying Th.13.11, Cor.13.22(ii) and Th.13.32 to B(X) one finds:

14.15. THEOREM. Let Z be the maximal ideal space of B(X). Then Z 1is an
extremally disconnected compact Hausdorff space and B(X) 1is (as a Riesz
algebra) isomorphic to C(2Z). In particular, C(Z) is a Dedekind completion

of C(X). (See also Th.14.19).

In order to obtain another description of 2Z we digress for a moment
and consider the relation between the Boolean algebras and the zerodimensi-
onal compact Hausdorff spaces, expressed in the beautiful Stone Represen-

tation Theorem.



14.16. DEFINITION. If S is a zerodimensional compact Hausdorff space, the
clopen subsets of S, under inclusion, form a Boolean algebra: we denote
this Boolean algebra by b(S). For U,V € b(S) we have
uvv = Uuv, UAv = Unv, u' =U.
If A is a Boolean algebra we call S a Stone space of A if b(S)
and A are isomorphic lattices. As an example, from Th.12.9 and from the
definition of extremal disconnectedness, we see that, if X 1is extremally

disconnected, then X is a Stone space of B[C(X)].

14.B. Exercise. b(X) is complete (as a Boolean algebra) if and only if X

is extremally disconnected.

14.C. Exercise. Let S be a discrete topological space. Then the Stone-
Cech compactification of S is a Stone space of the Boolean algebra P(S)

that consists of all subsets of S.

14.17. STONE REPRESENTATION THEOREM. Let A be a Boolean algebra. Then A

has a Stone space. All Stone spaces of A are homeomorphic.

Proof. Put 0 = inf A, 1 = sup A. We assume O0#1. For xeA, by x' we de-
note the complement of x.
A subset J of A is called a filter if
(1) 1ledg,
(ii) O¢J,
(iii) for x,yeA we have xAy € J if and only if xeJ and yedJ.
Let S be the set of all maximal filters.
Take JeS, xeA, x¢J. Then {zeA : zvx' € J} has properties (i) and

(iii) of a filter, but it contains Ju{x}. By the maximality of J we must
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have 0 ¢ {zeA : zvx' ¢ J}, i.e. x'eJ. Thus,

(1) if JeS, xeA and x¢J, then x'eJ.
Conversely, for JeS and xeA we have xAx' = 0 ¢ J, so
(2) if JeS and xeJ, then Xx'¢J.

For all xeA let s, = {Jes : xeJ}. By (iii) we have

(3) SxAy = ansy C(x,y€eA)

From (1) and (2) we infer

o]
(4) (Sx) = S, (xeA)
so that
(5) sxvy = sxusy (x,yeA)
Obviously,
(6) Sy = 2, s, = s.

It follows from (3) and (6) that {Sx : xeA} is a base for a topology
on S. By (4) every SX is clopen and the topology is zerodimensional. If

1 2

S
Jle %’ J

J and J are distinct elements of S, there exists an x ¢ J1\J2 : then
2eSx, while ansx, = @. (See (2)). Hence, S 1is a Hausdorff space.
Next, we show S to be compact. It suffices to prove that every subset
A1 of A for which S = Lj{sx : xeAl} contains a finite set A2 such
that S = LJ{SX : xeAz}. Thus, let Al c A be such that S # \){Sx : xeAz}
for all finite subsets A2 of A1 : we prove S # lJ{Sx : xeAl}. Define
I = {2zeA : there exists a finite A2 c A1 for which 2z > (sup A2)'}. Then
this I has properties (i) and (iii) of a filter. Furthermore, for every
finite A2 c A1 by (5) we: have

s = L){sx : xeAz} E]

sup A2
so sup A2 # 1 and (sup A2)l # 0. Hence, I also has property (ii) of a

filter. By Zorn's Lemma, I is contained in a maximal filter J. Then JeS

and for every xeA1 we see that x' ¢ I c J, i.e. VJ{SX.
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We have now proved that S 1is a zerodimensional compact Hausdorff
space. By (3) and (5), x+ Sx is a lattice homomorphism A -+ b(S). To show
that S is a Stone space of A, we prove this homomorphism to be bijective.
First, let U € b(S). As U is open, there exists an A1 c A such that
U= LJ{SX : xeAl} : as U is compact, we may assume that A1 is finite:

but then U =S For the injectivity, let x,yeA, x#y. We may sup-

sup Al'
pose xZy. By Zorn's Lemma, the filter {zeA : zvy > x} is contained in a
maximal filter J. Then y'eJ and xeJ, so J € ansyI = Sx\Sy, whence
S #8S .
X b4

Thus, S is a Stone space of A.

Now let T be another Stone space of A. Let xw Tx be a lattice
isomorphism of A onto b(T). Then Sx*+ Tx is a lattice isomorphism of
b(S) onto b(T). It is now easy to see that there exists a map ¢:S > T
with the property that

¢(s)eTx if and only if seS, (ses; xeA)

and that this ¢ is actually a homeomorphism of S onto T.

Theorem 14.17 enables us to speak of "the" Stone space of a Boolean

algebra.

14.18. THEOREM. The space Z mentioned in Th.14.15 is the Stone space of

the Boolean algebra B[C(X)] (and also of BIB(X)] ).

Proof. By.Th.12.9 and the fact that 2Z is extremally disconnected, Z is
the Stone space of B[C(2)], i.e. of BI[B(X)]. The theorem follows from

Lemma 1419 and Th.14.15.
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14.19. LEMMA. Let LO be an order dense Riesz subspace of L.

(i) If B is a band in L, then BnL0 is a band in LO.
(ii) The map B > BnLO (B € B[L]) is a lattice isomorphism of B[L]

onto B[Lo].

Proof. (i) Let B be a band in L, let F be a non-empty subset of BnL0

and let f = L _-sup F. We have to prove that f € BnL_.,. Now trivially feL

0 0 0°
On the other hand, as LO is normal in L (13.21(i)), £ = L-sup F € B.
(ii) For B e B[L] let Q(B) = BnL.. Thus,  is a map of B[L] into

0

B[Lo]. We prove that § is bijective and an isomorphism of ordered sets.

Obviously, if B, < B, in B[L], then Q(Bl) < Q(Bz) in B[Lo].

Conversely, let Bl’BZ e B[L] and B, £ B2. As (in the language of Boolean
algebras) we always have

_ oo ' '
B, = B A(B,VB, ) (BlABz)V(BlABZ ) < B,V (B,AB, )
and Bz' = Bzd, it follows that BlnBZd z {0}. Now LO is order dense, so

its intersection with any non-zero band (or ideal) can never be {0}. Hence,

1

d . X
B,nB, nL_ # {0}. Then certainly BlnL0 ¢ B,NLy, i.e. Q(Bl) £ Q(Bz).

1772 0

We see that for B /B, € B[L] we have B, < B, if and only if

2 1 2

Q(Bl) < Q(Bz). Therefore, 2 is injective. We are done if it is surjective.
Let C ¢ B[Lo]. Let B be the band of L, generated by C. Of course,

+
BnLO 5 C. Conversely, take f£ € (BnLO) . Then by the definition of B (see

also Ex.2.D) £ = L—sup{gec+ : g<f}. But feL_ and, consequently, we also

0
+ +
have f = Lo—sup{gec : g<f}. We see that (BnLO) c C. Then BNL, < C,
and C = BnL_. = Q(B). Therefore,  1is surjective.

0
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15. THE RIESZ SPACE C (X)

IN THIS SECTION, X IS AN EXTREMALLY DISCONNECTED COMPACT HAUSDORFF SPACE.

In the above we have proved that every unitary Riesz space can be em-
bedded in a space of continuous functions on a compact Hausdorff space. We
are now going to prove a generalization of this result to arbitrary Riesz

spaces.

15.1. DEFINITION. We extend R to a set R by adjoining to it the symbols
© and -e. In R we introduce in the usual way an ordering and a topology.
The tangent function is an order isomorphism and also a homeomorphism of

[-%7,%1] onto R.

15.2. DEFINITION. By dw(x) we denote the set of all continuous functions
£:X > R that are a.e. finite, i.e. for which the closed sets f_l({w})

and f—l({dw}) have empty interior. (See Th.14.2(ii)).

15.3. LEMMA. Let A be a meagre closed subset of X and let f be a con-
tinuous function X\A -+ R. Then £ has exactly one extension X + R that

is an element of Cm(X).

Proof. Define g:X - R by
g(x) = arctg £(x) (x € X\A),
g(x) = =4m (x € A)
Then g is lower semicontinuous. By Lemma 12.15, g¢ is continuous, while

1\
g =g a.e. according to Lemma 14.5. Let f*(x) = tg g¢(x) (xeX) . Then £
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— * *
is continuous X > R and f=f a.e. In particular, f is a.e. finite,

* oo * . .
so f €C (X). The set {x ¢ X\A : £(x)#f (x)} is open in X\A, hence open

* *

in X. As f=f a.e., this set must be empty. Thus, £ is an extension
of f£f.

As X\A is a dense subset of X, £ has at most one continuous ex-

tension X > R.

15.4. Let f,gecw(x). The set A of all points of X where either f or
g takes an infinite value is closed and meagre: on its complement, the
function x + f(x)+g(x) is (well-defined and) continuous. Therefore, there
exists exactly one element f+g of Cw(x) such that

(£+g) (x) = £(x)+g(x)
for almost every xeX. Similarly, for éll f,gsd”(x) there is a unique
fg € C(X) for which

(fg9) (x) = £(x)g(x)

for almost every xeX.

15.A. Exercise.With these definitions and with the natural ordering and
(=]
scalar multiplication, C (X) is an Archimedean Riesz space and a commuta-

tive Riesz algebra. C(X) is an order dense Riesz subspace of Cw(x).

15.B. Exercise. Cm(x) is Dedekind complete.

(Hint. £ - arctg £ is an order-preserving injection d”(X) > C(X)).

. S . .
15.C. Exercise. Let S be any set, R the Riesz algebra of all functions
S > R. Then there exists an extremally discinnected compact Hausdorff space

S o . . . .
Y such that R and C (Y) are isomorphic Riesz algebras. (Hint. Give



123

S the discrete topology and let Y=SB. (See Th.13.34). By 13.P(iii), B(S)
B

is an open subset of S whose complement is meagre. The restriction topo-

logy on B(S) is discrete and B is a bijection S - B(S). Now apply 15.3).
Spaces of the type Cm(x) are of interest because of the following.

15.5. THEOREM. (Maeda-Ogasawara). Let X be the Stone space of BILI. Then

there exists a Riesz isomorphism ® of L onto an order dense Riesz sub-
0

space of C (X).

For the proof we need

15.6. LEMMA. Let L, be a Riesz subspace of L that is order dense in the

0

ideal (L.). (E.g.,LO is order dense in L or L. 1is an ideal of L).

0 0

Let © be a Riesz isomorphism of L onto an order dense Riesz subspace

0
=] Lod
of C (X).Then O can be extended to a Riesz homomorphism @:L - C (X)

whose kernel is (Lo)d.

Proof. Take f€L+. By Th.12.16 and its proof, the set
{arctg (ow) : weLo+, w<£f}

has a supremum g in C(X) and for almost every =xeX we have
g(x) = sup{arctg(ow) (x) : weLg, wsfl.

Therefore, there exists a co;tinuous Of:x + R such that
(0F) (x) = sup{(ow) (x) : wel,', w<f}

0

for almost every =xeX.

. + -
Now take uelL such that 0Ou < 0f: we prove u<f. Suppose uff. Then

0

u-(uaf) > 0 so that, by the given property of Lo , there exists a non-zero

u'el +
€

0 for which wu-(uaf) > u'. Now for almost every =xeX,
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(6u) (x)

Thus, ©u < O(u-u'), whence u =<
We can use this observation to prove that

pose that of £ Cw(X). Then the closed set {x : (6f)(x) =

non-empty clopen subset W- of
there exists a non-zero ueL
O(nu) =

have no(u) < nxw < of,

because L is Archimedean and

sup{ (6u) (x) A (6w) (x)

sup{ [0 (uaw) 1(x)

: wel +, wsf} =
: weLO+, wsf}l < [O(u-u') 1(x)

u-u'. But this is impossible since u'>0.

_ o

0f € C (X). In fact, sup-

=} contains a
o

X. As G(LO) is order dense in C (X),

. For all

for which ©6u < Xy

neN we now
hence, nu £ f. But this is contradictory

u>0.

+ — .
Thus, for every £fel. we obtain Of € C®(X).

Let £, ,f

+
1 ZEL . If wl,w

2

(Owi) + (sz) = 0(w1+w2) <

€L, +
0

and w

+w, <
1 W £

< <
_fl, w2_f2, then W, W, 1+f2

O(f1+f2)

Therefore, (6?1)+(6f2) < 6}f1+f2). To prove the converse inequality, take

+
weL., , w < £

0 1

+f2: it suffices to prove that Ow < (6f1)+(6f2). Set

w1 = wAfl, w2 = w—wi: then w1,w25L+, w = w1+w2, wlsfl, w2Sf2. By the
assumption on LO we have w, ={sup uieLO+ : uiSwi} (i=1,2) and therefore
w = sup{u1+u2 : ui,uzeLo+ P s, uzswz}
Consequently,
ow = supf{ Ou, +0u, : ul,u25L0+, u s, uzswz} <
< sup{Ou1 : uleLO+, ulsfl} + sup{eu2 : u25L0+, uzsfz} <
< Bf, + 5%2

We see that

O(AE) = AO(£)

O(f1+f2) = (0f1)+(9f2)

+ .
for all fl,fzsL0 . As, clearly,

+ =
for all A20 and feL , © can be extended to a linear map

®:L > C(X). It is easy to see that E(flAfZ) = (Bfl)A(Efz) for all

+
fl,fzeL . Therefore, ¢ is a Riesz homomorphism. Besides, the kernel of ¢

is L d {feL+ :

0

because

of = 0} = tnL

d
0 °
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Now we have enough machinery to prove Th.15.5.

Let E be a maximal subset of L\{0} whose elements are pairwise dis-
joint. Let LO be the smallest ideal of L that contains E. (LO is the
algebraic sum of the principal ideals (e) generated by the elements e
of E ). By the maximality of E we have LOd = {0}.

Under coordinatewise operations the Cartesian product I (e) is an
e€E

Archimedean Riesz space M. Let MO = {geM : ge¢0 for only finitely many
elements e of E}. The formula

Qf = I fe (feMo)
e€E

defines a Riesz isomorphism Q of MO onto LO.

Now M has a unit, viz. the element eM defined by

eM)e = e (e€E)

(
By Th.13.11 and Th.14.15 there exist an extremally disconnected compact
Hausdorff space Y and a Riesz isomorphism Y of M onto an order dense
Riesz subspace of C(Y) such that W(eM) = 1. Then Wﬂ—l is a Riesz iso-

morphism © of L into C(Y). Now M is order dense in M, ¥(M) is

0 0
order dense in C(Y) and C(Y) is order dense in Cm(Y): thus, (WQ_l)(LO)
is order dense in C (Y). By our lemma ( and by the equality LOd = {0})
there exists a Riesz isomorphism ¢ of L into Cm(Y) that is an exten-
sion of ¥o .

In particular, &(L) > (WQ_I)(LO), so ®(L) is order dense in dm(Y).
The Boolean algebras b(Y), B[c(¥)], B[c®(¥)]1, B[e(L)] and B[L] are

lattice isomorphic (Lemma 14.20), so that Y is a Stone space of B(L).

+
15.7. DEFINITION. An element u of L is called a weak unit or Freuden-
thal unit of L 1if the principal band generated by u is L itself. (CEf.

Def.13.7). Trivially, every strong unit is a weak unit.
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15.D. Exercise. For every ueL+ the following properties are equivalent.
(a) u is a weak unit of L.
(b) {u}d = {0}, i.e. for every non-zero veL+ we have uAv z 0.
(c) For every feL+, f = sup{fAnu : neN}.
15.E. Examples. In the Riesz space LI(R) the function x & e—IxI is a
weak unit. More generally, if (z,I',u) 1is a o-finite measure space, then
Ll(u) has a weak unit. (Take any element e € Ll(u) for which e(z) >0
for u-almost every zez). If (Z,T,u) is any measure space and if L is
the Riesz space of all I'-measurable functions modﬁlo pu-negligible sets
(Example 1.F), then 1 is a weak unit of L.

If S is any topological space, I is a weak unit in the Riesz space
C(S) of all continuous functions on S.'In dm(x), 1 1is a weak unit.
€00 has no weak unit.

For a Riesz space with a weak unit we can make our representation

theorem a little more precise:

15.8. COROLLARY. (Sequel to Th.15.5). If u is a weak unit of L, then

9 can be chosen such that ¢(u) = 1.
Proof. In the proof of Th.15.5, choose E = {u}.
15.9. THEOREM. Let L be a Riesz algebra with a weak unit u that is a

two-sided identity element for the multiplication. If X and & are as

in Th.15.5 and if @(u)=1 (see Cor.15.8), then & is multiplicative.
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Proof. Take weL, w2u.

By Ex.13.K, the principal ideal (u) generated by u is a unitary
Rieszbalgebra. Let £,f'e(u), fLf'. It follows from Th.13.32 that ££'=0.
Then by Ex.13.K(ii), ((wf)Af')2 < (wE)f' = w(ff') = 0, so that (apply 13.32
once more) wEAf' = 0 and wflf'. Thus, for any fe(u), wf is an element
of the band generated by £. From this it follows that, if £,f'e(u) and
f1f', then wf 1 wf'. In particular, for every f£fe(u) we have wET L wE .
As wf+ + wf = wf and wf+ =20, wE 2 0, we see that wf+ = (wf)+ and
wf = (wf) . Hence, the map f e~ wf is a Riesz homomorphism (u) = L.

For every fe(u) with £20 we have wf 2 uf = f, so that £~ wf really

]

is a Riesz isomorphism. Now &(w) 2= &(u) 1. Thus, we can define a Riesz

isomorphism V¥: (u) - P x) by

= SwE)
® (w)

Note that Y(u) = 1.

¥ (£) (fe(u))

We proceed to prove that @=¥ on (u). Assume ©&ZY. Then there exist

fe(u), xeX and seR such that (9f)(x) < s < (¥f) (x). We may assume s=0.
(Otherwise replace £ by £f-su). Let U be a clopen subset of X such
that ®f <0 on U, ¥ >0 on U, and set B = {geL : &g = 0 on U}.
Then B is a band in L and f+eB. As wf+ is an element of the band
generated by f+, we have wf+ € B, @(wf+) =0 on U and W(f+) Z0on U.
But we had chosen U such that Yf > 0 on U : contradiction.

Thus,

(*) O(£) = —F/—— (fe (u); wel, QZu)

Now take v,weL, v2u and w2u. As the image of (u) under ¢ is
order-dense in Cw(X) there exists a subset F of (u) such that
= sup 0(f)

feF
Then we obtain the following identities. (The second one is not trivial

1
O (w)

but it is easily established).
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1 = o(w)-sup ®(f) = sup @(w)®(f) = sup 2(wf)
feF feF feF

For every £eF we have &(wf) < 1, hence wf ¢ (u) and (according to (x))

®(vwf) = ®(v)d(wf). Therefore,

d(v) = &(v)-sup ®(wf) = sup &(v)d(wf) =
feF feF
1
= sup ®(vwf) = sup O (vw)d(f) = & (VW) e——
feF : feF 2w
and we obtain
O (v)d(w) = &(vw) (v,wel; v2u, w2u)

As every element of L is a difference of two elements that are 2u it

follows that ¢ is multiplicative.

15.10. COROLLARY. Let L and u be as above.
(i) The multiplication in L is commutative.
(ii) For f£f,gel one has flLg if and only if £g=0.
(iii) 1f £,g9e¢L, then |fg| = |£]]qg].
(iv) Let geL+. Then the map £+ gf is a Riesz homomorphism. Moreover, if
g is not a divisor of zero, then f v gf is a Riesz isomorphism of L
onto an order-dense Riesz subspace of L.
If, in addition, L is Dedekind complete, then
(v) Every element of L+ has a unique square root in L+.

. + .
(vi) If felL and f2u, then f has an inverse.

15.F. Exercise. (Characterization of Cw(X) among the Riesz algebras).
Let L,u be as in Th.15.9. The following conditions are equivalent.
(a) There exists an extremally disconnected compact Hausdorff space Y
such that L and Cw(Y) are isomorphic as Riesz algebras.

(b) L is Dedekind complete and every weak unit of L is invertible.
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15.G. Exercise. (Application of 15.F). In each of the following cases the
Riesz algebra L is isomorphic to Cm(Y) where Y 1is the (extremally
disconnected) Stone space of B[L].

(i) Let S be any set, L the Riesz algebra of all real-valued functions
on S. (See Ex.15.C).

(ii) Let (z,T,u) be a o-finite measure space, L the Riesz algebra of
all I'-measurable functions on Z modulo u-negligible sets. (Ex.l1.F).
(iii) Let Z be a compact Hausdorff space, let LO be the Riesz algebra
of all Borel measurable functions on Z and let L be the quotient space

LO/{feL : £20 a.e.}. (The relation between this L and B(2Z) is quite

0
similar to the one between d”(x) and C(X) (X extremally disconnected)

or between the L of 15.G(ii) and L_(w)).

Let X and ¢ be as in Th.15.5. Let M be the ideal of dm(X)
o0

generated by ¢(L). As C (X) is Dedekind complete, so is M. In view of

Lemma 14.13, M 1is a Dedekind completion of L. We have proved:
15.11. COROLLARY. L has a Dedekind completion.

Once we know that a Dedekind completion exists, it is not too hard to

prove its uniqueness. (Cor.15.17).

15.12. DEFINITION. A Dedekind cut of L is a pair (A:B) of non-empty
subsets A,B of L such that A = {feL : f is a lower bound of B} and
B = {geL : g is an upper bound of A}.

We denote by L~ the set of all Dedekind cuts of L. Every element

f of L determines a Dedekind cut f by £ = (f+L_:f+L+).
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15.13. We shall give L~ the structure of a Riesz space in such a way that
L” becomes a Dedekind completion of L. The basic idea is the following.
We take a Dedekind completion M of L and construct a natural bijection
L= — M. Then we use this bijection to lift the Riesz space operations from
M to L=, rendering L- a Dedekind completion of L. Next, we show that
these Riesz space operations on L~ can be formulated in terms of L
itself without mention of iM. The result will be not only that all Dedekind
completions of L are isomorphic but also an intrinsic description of the
Dedekind completion. (In [10] and [15] this description is used for the
existence proof).
First we have to introduce some terminology. For subsets A,Al,A2 of

L, for helL and for seR we define

-A = {-f : feA}

AHn, = {£,+F, ¢ £ien ), £,

h+A = {h+f : feal

EA2}

sA = {sf : feal
Now let M be any Dedekind complete Riesz space containing L as a
normal Riesz subspace. (M 1is not necessarily a Dedekind completion of L).
Let (A:B)eL=. A is a non-empty subset of M, having an upper bound,
so sup A exists in M. Similarly, inf B exists. Furthermore, it is clear
that sup A < inf B. We proceed to prove that actually sup A = inf B.
First, observe that inf B - sup A = inf B + inf(-A) = inf(B+(-A)). By the

normality of L we are done if O L—inf(B#(—A)). Now certainly 0 is a

lower bound for B+ (-A) in L. If h 1is any lower bound for B+(-A)

in L,bthen B-h consists of upper bounds of A, so B-h < B. But then
B-nh ¢ B for all neN. Taking feA and geB we have nh < g-f for all
neN, whence hs<0 because L is Archimedean. Thus, 0 is the greatest

lower bound of B+(-A)) in L, and inf B - sup A = 0.
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We can now define a map Q:L” » M by
(1) Q(A:B) = sup A = inf B ( (A:B)EL= )

Observe that
(2) Qf = £ (feL)

For (A:B)eL” and (A':B')elL” we have Q(A:B) < Q(A':B') if and
only if sup A < inf B', i.e. if and only if all elements of A are lower
bounds for B'. Thus,

(3) Q(A:B) < Q(A':B') if and only if A < A'.
In particular, if Q(A:B) = Q(A':B'), then A=A'. Therefore,
(4) Q is injective.
If (A:B)EL=, then (—B:-A)€L= and (sA:sB)eL= for all se(0,»).

It is easy to see that

Q(-B:-A) -Q(A:B) _
(5) ( (A:B)eL ; s>0)
Q(sA:sB) sQ (A:B)

Now let (A':B')eL= and (A":B")eL= : we construct an element (A:B)

of L whose image under Q is Q(A':B')+Q(A":B"). For A we take the
set of all elements of L that are lower bounds of B'+B": then A#p as
A > A'+A". Let B be the set of all uppe} bounds of A in L : then Bzg
as B > B'+B". By the latter relation we have A o {feL : £ is a lower
bound of B}. But the converse inclusion follows immediately from the defi-
nition of B. Hence, ' (A:B)el . The relations A'+A" ¢ A and B'+B" c B
now imply that Q(A':B')+Q(A":B") = sup A' + sup A" = sup(A'+A") < sup A =

= inf B < inf(B'+B") = inf B' + inf B" = Q(A':B')+Q(A":B"). Hence, we have

Q(A:B) Q(A':B")+Q(A":B"). (Moreover, we see that sup(A'+A") = sup A, so
{geL : g is an upper bound of A'+A"} = {geL : g 1is an upper bound
of A} =B).

It follows that the range space of Q 1is a linear subspace of M.
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15.14. If L is an order dense subspace of M, we can do better: in that
case, Q(L=) is just the ideal (L) of M generated by L. In fact, if
(A:B)€L=, we can choose f e AcL and g e€ B c L: then f < Q(A:B) £ g,
so Q(A:B) € (L). Conversely, if h e (L), choose A = {feL : f<h} and
B = {geL : g=h}. By the order-denseness of L, A and B are non-empty,

and sup A = h = inf B. It follows that (A:B)eL” and h = Q(A:B).

For a first application we only observe that there actually exists
a Dedekind complete Riesz space M containing (a subspace isomorphic to)
L as a normal Riesz subspace. Construct Q as above. Then  1is a bijec-
tion of I onto a Riesz subspace of M. The Riesz space operations on

Q(Lz) can be transplanted to I by way of Q. We obtain:

15.15. THEOREM. Introduce an addition, a scalar multiplication and a binary
relation < on L= by

(i) (A':B")+(A":B") = (A:B) where A = {feL : f is a lower bound

of B'+B"} and B = {geL : g is an upper bound of A'+A"}.

(ii) s(A:B) = (sA:sB) if s>0; s(A:B) = (sB:sA) if s<0; while

- + .
s(A:B) = (L :L ) 4if s=0.
(iii) (A':B') < (A":B") if A' c A".

Under these definitions, L. becomes a Riesz space. The map £ - £ is a

Riesz isomorphism of L into L.

From here on, by L we shall denote the Riesz space that is intro-
duced in 15.15.

Then for any M, the § constructed in 15.13 is a Riesz isomorphism.
By the lines leading up to Cor.15.11, L has a Dedekind completion M in

which L is an order dense ideal. But then Q(L=) is the ideal generated
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by L, i.e. Q(L ) = M. Thus:

15.16. COROLLARY. L~ is a Dedekind completion of L.

In particular, L~ is Dedekind complete. Returning to the above con-
struction (15.13) we let M be any Dedekind completion of L. Then we see
that L c Q(L=) c M, while Q(L=), being isomorphic to L=, is Dedekind
complete. By the definition of "Dedekind completion" (Def.14.11) it follows

that Q(L=) = M. We have now proved:

15.17. COROLLARY. Every Dedekind completion of L is isomorphic to L.
More precisely, if (M,®) is a Dedekind completion of L, there exists a
Riesz isomorphism Q of L= onto M such that Q(f=) = &(f) for every

feL. (The latter condition completely determines ).

Every Dedekind complete Riesz space containing L as a normal Riesz

subspace contains a Dedekind completion of L:

15.18. THEOREM. Let L be a normal Riesz subspace of a Dedekind complete

Riesz space M. There exists a unique Riesz homomorphism §Q of L into

M such that Q(f=) = f for all feL. This Q is given by the formula
Q(A:B) = sup A = inf B ( (A:B)el ).

Q 1is actually a Riesz isomorphism of L= oﬁto a normal Riesz subspace

Q(L=) of M. Q(L=) is a Dedekind completion of L and is the smallest

Dedekina complete Riesz subspace of M that contains L. We have

QL) = {M-sup F : F is a non-empty subset of L

(*) with an upper bound in L }.

If L 1is order dense in M, then Q(Lz) is the ideal generated by L.
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Proof. We already have an injective Riesz homomorphism Q:L° > M with

QE) = £ (feL)

Q(A:B) = sup A = sup B ((A:B)eL )
Let us first prove (*). Take a non-empty subset A' of L such that the
set B, consisting of all upper bounds of A' in L, is non-empty: then
A' has a supremum in M and it suffices to prove that M-sup A' ¢ Q(L=).
It follows from the last ten lines of page 130 that

M-sup A' = M-inf B.
If A is the set of all lower bounds of B in L, then A#® because
A D> A'. We then have (A:B)EL= and M-inf B = Q(A:B) € Q(L=). Therefore,
M-sup A' € Q(L=). This proves (*).

Next, we prove the normality of Q(L=) in M. To this end, take a

non-empty subset F of L~ that has an L=—supremum (AO:BO). We are done
if we can show that M-sup Q(F) € Q(L=). For feF define the subsets A

£

- . (- .
and B, of L by £ (Af.Bf). Let A U{Af : feF}. Then

M-sup Q(F) = M-sup (M~sup Af)= M-sup A’
feF

Now A' has upper bounds in L, since B0¢¢. By (*), M-sup Q(F) € Q(L=).
To prove the uniqueness of §, let Q' be any Riesz homomorphism of

L into M such that Q'(f) = £ for all feL. Take (A:B)eL . For all

feA we see that (A:B) = f , so Q'(A:B) 2 Q'(f ) = £. It follows that

Q'(A:B) =2 M-sup A = Q(A:B). But, similarly, Q'(A:B) < inf B = Q(A:B).

Thus,

Q.

If M' 1is any Dedekind complete Riesz subspace of M that contains
L, by 15.13 there exists a Riesz homomorphism Q':L” > M' ¢ M for which
Q‘(f=) = £ (feL). But, as we have just shown, such an ' must be the
same as . Hence, M' > Q'(L=) = Q(L=). Thus, Q(L=) is the smallest Dede-

kind complete Riesz subspace of M that contains L.
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It is known (see, e.g., [4]) that any partially ordered set S has a
"conditional completion" S=.)Here the elements of S ‘are "Dedekind cuts"
(A:B), defined in complete analogy to our Def.15.12 and they are ordered by

(A':B') < (A":B") if A' c A".
Thus, the construction we gave in 15.11 for a Riesz space L amounts to
introducing a Riesz space structure for the conditional completion of the
underlying ordered set L. The existence proofs for the Dedekind completion
of a Riesz space given in [10] and [15] start from the conditional comple-

tion of an ordered set.

We close this section by giving two characterizations of Riesz spaces

that are Riesz isomorphic to spaces of the type dw(x).

15.20. DEFINITION. L is said to be universally complete if every non-empty
+
subset of L that consists of pairwise disjoint elements has a supremum.

(An easy example is Rs for any set S).

15.21. DEFINITION. L is called inextensible if it has the following prop-

erty. If M is an ideal in a Riesz space M such that M is Riesz iso-

0 0

morphic to L, then M is a projection band in M.

0

15.22. THEOREM. The following conditions on L are equivalent.

(a) There exists an extremally disconnected compact Hausdorff space X
such that L 1is Riesz isomorphic to Cm(x).

(b) L is Dedekind complete and universally complete.

(c¢) L is Dedekind complete and inextensible.

Proof. (a)=(b). Let F be a non-empty collection of pairwise disjoint
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elements of Cw(x)+. For every £feF, set

W, = {xex : 0 < £(x) < e }.
On the clopen set X\W; we have f=0. Let W be the closure of the union
of all sets wf (feF) : then W is clopen. There exists a unique contin-
uous function g on the set (X\W)UU{Wf : feF} such that

g=0 on X\W,

for every feF, g=f on Wf,
By Lemma 15.3, g extends uniquely to an element 6- of Cm(x). For every
f we have £f<g a.e.. Thus, E' is an upper bound of F. It clearly is the
least upper bound of F.
(b)=(a). By the Maeda-Ogasawara Theorem we may assume that L is an order
dense Riesz subspace of Cm(x) for some extremally disconnected compact
Hausdorff space X. By Lemma 13.21(ii), L is an ideal in Cw(x). Take
gedm(x): we show that geL.

Let U be a collection of clopen subsets of X, maximal relative to

the following two properties (i) and (ii).

(i) unv = ¢ if U,v e U and U=V,

(ii) gy, € L for every uell.
Let W be the closure of UJ{U : Uel} : then W is clopen.

By the universal completeness, {gXU : Uel} has a supremum £ in L.

As L is order dense in Cm(x), £ = dw(x)—sup {gxU : Uel}, i.e. £ = Xy
We are done if we can prove that g = gxw, SO assume g # gxw. Again using
the order-denseness of L, we find a non-zero element h of L for which
h<g- gxw = gXX\W' As g<® a.e., it follows easily that there exist a
non-empty clopen set U and real numbers s and t such that

h2s>0 on U and g<t on U.
Now Iy < ts_lh. As hel. and L is an ideal in Cw(X), it follows that

9Xy € L. But U < X\W: we have a contradiction with the maximality of U.
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(a)=(c). Suppose we have an ideal Mo in a Riesz space M and a Riesz

isomorphism © of M onto dw(x). By Lemma 15.6, © extends to a Riesz

0
homomorphism ¢ of M onto dw(x) whose kernel is Mod. Now for every
-1 -1 el . -1
feM we have 0 "9of € MO and £ - 0 "of € MO (since £f = %0 "Of) :
hence, f e M_ + M d
’ 0 O .

(c)=(a). By the Maeda-Ogasawara Theorem 15.5 and by 13.21(ii), we may as-
sume that L is an order dense ideal in Cw(x) for some extremally dis-
connected compact Hausdorff space X. According to Lemma 13.18 the band
generated by L is dm(x). But Condition (c) certainly implies that L

is a band. Therefore, L = Cm(x).

15.H. Exercise. The conditions (a), (b),(c) are equivalent to the following
condition (4).
(a) 1If MO is an order dense Riesz subspace of a Riesz space M such that

M0 is Riesz isomorphic to L, then M0 = M.

15.I. Exercise. The locally constant functions on any infinite zerodimen-
sional compact Hausdorff space form a universally complete Riesz space that

is not Dedekind complete.
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16. L-SPACES AND M-SPACES

We are now going to consider Banach lattices. There are two simple
special cases, viz. C(X) (where X is a compact Hausdorff space) and
Ll(u) (where u is a measure). We shall obtain characterizations of these
spaces among the Banach laFtices and apply our knowledge to the theory of

measures on topological spaces.

UP TO PAGE 149,L IS A BANACH LATTICE WITH NORM op.

16.1. THEOREM. Let L have a strong unit e. Then the norm p is equiva-
lent to the norm Ge induced by e. (See Def.1327). In the terminology
of the Representation Theorem 13.11, ﬁ = C(M) and p is equivalent to

the norm £ - "%"w.

Proof. We only have to prove the equivalence of p and oe : the rest is a
direct consequence of Th.13.28. Now for every £feL we have |f]| < oe(f)e
(definition of ce(f)), so p(f) < ce(f)p(e). Thus, p < p(e)oe. On the other

hand, by Th.10.3(ii) there exists a number C such that oe < Cp.

By strengthening the conditions in Th.16.1 we can obtain equality of

p and oe:

+
16.2. THEOREM. Let the set {feL : p(f)<l} have a supremum e for which
p(e)£1.Then e 1is a strong unit, p(e)=1 .and p=0- In the language of
Th.13.11, the map £~ £ is an isometric Riesz isomorphism of L onto

c(M).
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+
Proof. Set W = {st+ : p(£)<1}. Of course, ecl.. and (if L#{0}) ez0. For
every f € L+\{0}, p(f)~1f € W, so p(f)_lf < e and f < p(f)e. It follows
that e 1is a strong unit and that oeSp. In particular, 1 = oe(e) < p(e),

+
so p(e)=1. But for every feL we have £ < oe(f)e, and therefore

p(f) < ce(f)p(e) = ce(f). Thus, peo . This essentially proves the theorem.

16.A. Examples are BC(X) ( X 1is a topological space); every norm-closed
Riesz subspace of such a BC(X); B(X) ( X is a compact Hausdorff space);

and g»(u) (where U is a measure).

For every topological space X we have
+
levall, = el vlisll,  (£.g € B0 ™)
For every measure space (X,T,u),
' +
levglly = el +lall, (£, € L))
where "-"1 denotes the natural norm on Ll(u).

These formulas lead us to a definition.

16.3. DEFINITION. L is said to be an (abstract) M-space if
p(£Vg) = p(£)Vp(q) (£,geL’)
L is called an (abstract) L-space if
p(£+g) = 0 (£)+p(q) (£,geL”)
(In either case one may replace the condition "f,geL+“ by "f,geL+ and

flg" without changing the concept of an M—space or an L-space, See [12]).

16.B. Exercise. Let (X,I') be a measurable space. The bounded additive
functions T + R form a Riesz space L. The definition
p(w) = |ulx (nel)

renders L an L-space. The oc-additive elements of L form a norm-closed
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band in L which is also an L-space.

*
16.4. THEOREM. (i) L is an M-space if and only if L is an L-space.

*
(ii) L is an L-space if and only if L is an M-space.

*
Proof. Part A. Let L be an M-space. Let ¢,JeL +. Of course we have
* * * * * *
p (¢+P) < p (¢)+p (Y). Let €>0. We prove that p (¢+P) 2 p ($)+p (Y)-2¢ :
it follows then that L is an L-space. There exist f,gelL. such that
* *
p(£)<1, [¢(E)] 2 p (¢)-€, p(g)=1, [¥(g)] 2 p (Y)-e. Let h = [£]V]g]. s
L is an M-space, p(h) < p(f)Vvp(g) < 1. Therefore,
*
p (¢+Y) 2 (¢+P) (h) = d(M)+P(h) 2 d(IED+P(Igl) 2

: * *

[6(E) [+1w(a) | 2 p (d)+p (P)=2e.

v

Part B. Let L be an L-space. There exists a unique linear function n
+ .
on L such that n(f) = p(f) for all f£feL . For every gelL we have
+ - + -
In(@) | < Intg)I+Intg )| = plg )+p(g ) =
+ -
=p(g +g ) = pllgl) = p(g).

* * *+ * +

Hence, neL and p (n)<1l. If ¢eL and p (¢)<1, then for all gelL we

%
obtain ¢(g) < p (¢)p(g) < p(g) = n(g), so ¢ < n. Apparently,

*+ *
n = sup {¢eL p (¢)=<1}.
Applying Th.16.2 we see that there exists a compact Hausdorff space M
* *
such that L is isometrically Riesz isomorphic to C(M). Thus, L is an
M-space.
* ) Kok
Part C. If L is an L-space, then by Part B of this proof, L is an
M-space. It follows from Th.10.2 that L is an M-space.
* sk
Part D. If L is an M-space, by part A, L is an L-space. Then so is L.

(Apply Th.10.2 again).
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16.5. COROLLARY. Let L be an L-space. There exists an extremally discon-
E 3
nected compact Hausdorff space X such that L is isometrically Riesz

isomorphic to C(X).
Proof. Combine Part B of the above proof with Th.10.1(ii) and Th.12.16.

A direct consequence of 16.5 is one of Kakutani's representation theo-

rems. (The other one is Th.16.8):

16.6. THEOREM. (S.Kakutani). For every M-space L there exists a compact
Hausdorff space X such that L 1is isometrically Riesz isomorphic to a
(norm closed) Riesz subspace of C(X). (Of course, every norm closed Riesz

subspace of a C(X) is an M-space).

*k
Proof. By 16.4(ii) and 16.5, L is isometrically Riesz isomorphic to

some C(X). Now apply Th.10.2.

16.7. Let L = {f € c([0,1]) : £(0) = 2£(1)}. This L is a uniformly com-
plete unitary Riesz space, hence (Th.13.28) Riesz isomorphic to C(X) for
some compact Hausdorff space X. Indeed, if T = {ze€ : |z| = 1}, then.
the formula
(0f) (e2™%) = (1+x)£(x) (feL; xe[0,1])

establishes a Riesz isomorphism of L onto C(T).

From this and from Kakutani's Theorem one might conjecture that L
is isoﬁetrically Riesz isomorphic to some C(X). However, this is false,
because the set {felL : "f"w < 1} has no supremum in L.

This example raises the question, how to describe all unitary M-spaces.

Every unitary M-space is a uniformly complete unitary Riesz space and is



142

therefore, by 13.28, Riesz isomorphic to some C(X). Thus, we can formulate
the question this way: given a compact Hausdorff space X, what norms on

C(X) turn C(X) into an M-space ? We answer this question in Ex.16.C.

16.C. Exercise. Let X be a compact Hausdorff space.
(i) Let s be a bounded function X - [0,®) such that {xeX : s(x)>0}
is dense in X. Then the formula

T (£) = sup |£(x)]|s(x) (feC (X))
s xeX

defines a Riesz norm Ts on C(X), rendering C(X) an M-space.

(ii) Conversely, let T be a Riesz norm on C(X) wunder which C(X) is
an M-space. By the Kakutani Theorem 16.6 there exist a compact Hausdorff
space Y and a Riesz isomorphism Q of C(X) onto C(Y) such that

t(£) = gl ) for all fec(x). Let h = Ql, Y, = {yeY : h(y)>0}. Then by

0

12.3 for every yeY there exists a unique w(y)eX for which

0
(Q£) (y) = h(y)f(w(y)) (feC(x))

Define s:X - [0,%) by

s(x) 0 if x ¢ w(YO)p

s(x) sup{h(y) : yey,, w(y)=x} if x € w(YO).
Then T = Ty where T is as in (i). The set {xeX : s(x)>0} is dense

in X. ( s is upper semicontinuous).

Now we turn to the L-spaces.

16.8. THEOREM. (S.Kakutani). Let L be an L-space. There exists a measure
space (X,I',u) such that there is an isometric Riesz isomorphism & of L
onto Ll(u).

(X,T,u) can be chosen such that X is an extremally disconnected
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compact Hausdorff space, I' is the Borel o-algebra of X, and W is a
topological measure in the sense of Def.16.9.
If L has a weak unit u , then, in addition to the above, for U

we can take a finite measure and ¢ can be chosen such that &u = 1.

16.9. DEFINITION. Let X be a compact Hausdorff space, I' the Borel
o-algebra of X, U a measure on I'. We say that u is topological if

a Borel set A is u-negligible if and only if it is meagre.

Proof of Th.16.8. We first prove L to be Dedekind complete. Let F be
+
a non-empty bounded subset of L such that £fVvg € F for all £f,geF.
(See Ex.4.A(d)). Let s = sup{p(f) : £eF} : then s is finite. There exist

h, ,h in F with 1lim p(h ) = s. Setting £ = h,Vh,V...Vh (neN)
1 n n 1 n

27" 2

we have fneF, flszS... and lim p(fn) = s. For m<n, by the L-space

- = - < s- .
property of L we see that p(fn fm) p(fn) p(fm) s p(fm) Therefore,

fl’f is a p-Cauchy sequence in L, converging to some element £

PYARE
of L. Then p(f) = lim p(fn) = g. If g is any element of F, then we

have fnvg € F and therefore p(ang) < s for each n. Thus,

- fAD) = 14 _ . _ _
plg - £Ag) = lim p(g = £ Ag) = lim p(f Vg - £ )

lim[p(fnvg) - p(fn)] <s-s=0,
so g = fAg £ f. Apparently, £ is an upper bound of F. On the other hand,
if h is any upper bound of F, then h-f = lim(h—fn) € L+ as h-fn >0
for every neN. Thus, £ = sup F.

Therefore, L is Dedekind complete. By the Maeda-Ogasawara Theorem
(15.5) and by Lemma 13.21(ii) there exist an extremally disconnected com-
pact Hausdorff space X and a Riesz isomorphism ¢ of L onto an order

O
dense Riesz ideal of C (X). If u 1is a weak unit in L, then we can

choose ¢ such that ¢u = 1. (See 15.8).



144

Let B be the set of all Borel measurable functions X » [0,%). It
follows from 14.8 that for every £eB there exists a unique f' € Cm(X)+
such that £ = f' a.e. Conversely, of course, for every £ € COO(X)+ there
is a geB such that f = g a.e.

Define J:B = [0,°] by

J(f) = p(g) if geL and ¢ = f a.e.,
J(f) = if thére is no g € ®(L) with g = f a.e.
Clearly,
(1) J(fl) < J(fz) if f1 < f2 a.e. (fl,f2 € B)
(ii) J(f) = 0 if and only if f = 0 a.e. (feB)
(iii) J(sf) = sJ(£) (feB; se (0,%))

From the facts that L' is an L-space and that ©¢(L) is an ideal in Cw(x)

it follows easily that

(iv) J(f1+f2) = J(f1)+J(f2) (£,/£, € B)

Harder to prove is

(v) if h,f,,£.,...eB and h = ILf a.e., then J(h) = L J{£ ).
172 n n n

n

To show the validity of (v), let h,f ,f2,...eB and h = an a.e. For all

1
NeN, J(h) = J(f1+...+fN) = J(f1)+...+J(fN). Thus, J(h) 2 L J(fn). For the
converse inequality we may assume that ZJ(fn) is finite. Then for each n
+ . i
we have a gneL with @gn = fn a.e. As p(gn) = J(fn) and L is norm
complete, the series Zgn is norm convergent in L : let g be its sum.
Then g = g*»l-r»...+gN for every .NeN, whence h<¢ ¢ a.e.. Therefore,
J(h) < p(g) < sup plg +...4g) = L plg) = T J(£)
NelN neN nen

which proves (v).

For a Borel set A c X, define u(A) = J(XA). By (ii) and (v), u is
a topological o-additive measure on the Borel o-algebra of X. From (iii),

(iv), (v) it is easy to prove that J(f) = S £du for every £feB. It follows

that a Borel function f on X is u-integrable if and only if there is
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a geL with f = &g a.e., and for such £ and g we have [|f|ld = p(g).
Besides, a Borel measurable function is W-negligible if and only if it
vanishes almost everywhere.

Thus, ® induces an isometric Riesz isomorphism of L onto Ll(u).

If uel 1is a weak unit and ©®u = 1, then of course u is finite.

The theorems 16.10 and 16.13 and Ex.16.E are applications of Th.16.8.

16.10. RIESZ REPRESENTATION THEOREM. (See also Th.16.13). Let Z be a
compact Hausdorff space and let ¢ € C(Z)N, ¢ 2 0. Then there exists a
finite measure Vv on the Borel o-algebra of Z such that

¢(£) = Sfav (feC(2))
(Cbnversely, if v is a finite measure on the Borel sets of Z, then every

element of C(Z) is v-integrable and £ v f£fdv is an element of C(Z)N).

Proof. For all £eC(Z), put T(f) = ¢(|£]|). Thus we have defined a Riesz
semi-norm T. The elements £ of C(Z) for which 7T1(f)=0 form a Riesz
ideal N in C(Z). The quotient space C(Z)/N in a natural way (Th.2.9)

becomes a Riesz space, which we call L_. Let P be the quotient map of

0

C(z) onto LO. Define a Riesz norm po on L0 by

Py (PE)

T(£) (feC(2)).
+
If f,gEL0 , then from the linearity of P one obtains the identity
+ = .
PolE+g) = py(£)+0(9)
. **k .
into L . (Th.10,2). This J

0 0

is an isometric Riesz isomorphism. The closure L of J(LO) in L

Let J denote the natural map of L

*k
0

is a Banach lattive, which, by the above, is an L-space. The band generated

by J(LO) in LO** is norm closed, hence contains L. It follows that

if we set u = JPEJ then u is a weak unit in L.
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For the L-space L with the weak unit u, let X,TI',u,® be as in

Kakutani's theorem. (We want ®&u = 1). Then we have the following chain of

Riesz homomorphisms.

c(z) ——> c(I/N = 1, SR L c(x)

®JP is a Riesz homomorphism C(2) - Cw(X) mapping 1 into 1 : hence, it
maps C(2Z) into C(X). By Cor.12.3, there exists a continuous w:X > 2
such that (&JP) (f) = fow for all f£feC(Z). We can now define a measure v
on the Borel g-algebra of Z by the formula

v(a) = u tan

f(xA°w)du

+
For feC(2) we obtain

]
]
[

S £dv = [(fow)du = S (dIP) (£)du lI(@JP)(f)II1 =

1]
]

Po(PE) = T(f) = ¢(Ifl} o (£)

Therefore, S £dv = ¢(£f) for all feC(Z).

The measure Vv of the preceding theorem is, in general, not unique.
We can, however, artificially create uniqueness by restricting p to the

class of the so-called "regular" measures.

16.11. DEFINITION. Let I be the Borel og-algebra of a compact Hausdorff
space X. A measure u on [ is said to be regular if
(i) u is finite,
(ii) for every Borel set A and every >0 there exists an open subset U
of X with U > A and such that u(U) < u(ad)+e.

By complementation one sees that (for finite ) (ii) is equivalent to
(ii') for every Borel set A and every e>0 there exists a compact subset

C of X with CcA and uf(C) = p(a)-e.
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16.D. Exercise. Let X and I be as above.

(i) For every aeX the point measure ua:A -> xA(a) (AeT') 1is regular.
(ii) If u,v are measures on I, if vy and if u is regular, then so
is wv.
(iii) If u

1,u2,... are regular measures on [ and if Zun(X)Qw, then

Zun is regular.

16.12. LEMMA. Let I be the Borel o-algebra of an extremally disconnected
compact Hausdorff space X. Then every finite topological measure on T

is regular.

Proof. Let u be a finite topological measure on TI. Let Ael', €>0. We
make an open subset U of X such that. U > A, u(U) < u(A)+e. By Ex.14.A
(or Th.14.8) there exists a clopen set W c X such that W\A and AW
are meagre. In particular, A\W is contained in a union of countably many

closed meagre sets, A, /A_,..., say. Now u(A)=u(W) and A c WUA,LUA_U...

172 172

Thus, we are done if for each nelN we can find an open set Un containing
An and such that u(Un) < ez'“. Considering the fact that u(An)=0 for
every n this means that we may assume A to be closed and meagre.

For such an A, let t = inf{u(U) : U clopen, U > A}. There exists a
sequence Ula U2 >... of clopen sets such that for each n, Un > A and

1 . . s
u(Un) < t+; . If the closed set (\Un is not meagre, then it contains a

non-empty clopen set U'. There is an meN with u(U') < % . But then we

have u(Um\U') < t, in contradiction to the definition of t. Therefore,
(\Un must be meagre, so 0 = u(f\Un) = lim u(Un) and u(Un) < e for

some m.
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16.13. THEOREM. Let Z and ¢ be as in Th.16.10. There exists exactly one
regular measure Vv on the Borel o-algebra of 27 such that ¢(f) = [ £dv

for every f e C(2Z).

Proof. We use the terminology of the proof of Th.16.10.

Let A be a Borel set of Z, let €>0 : we make a compact set C c A
for which v(C) 2 v(A)-e. As u is regular (Lemma 16.12), there is a com-
pact C0 c w_l(A) such that u(Co) > u(w-l(A))—e. Set C = w(Co). Then
C is compact, C ¢ A and v(C) 2 u(co) > v(A)-€.

To prove the uniqueness, let T be a regulgr measure on the Borel
o-algebra of Z such that ¢(f) = J £dn (feC(Z)) : we show that Vv = m.
Let U be an open subset of Z and €>0. There exist a compact set C c U
with 7(C) 2 w(U)-e and an feC(Z) with XC < f < XU' (Urysohn Lemma) .

Then V(U) 2 J £dv = ¢(f) = J £dr 2 w(C) = w(U)-e. Thus, v(U) 2 m(U) for

every open set U. By the regularity of v, for every Borel set A we have

v (A) inf {v(U) : Uopen, UD>A } 2

v

inf {m(U) : U open, U > A } 2 m(Aa).
Similarly, v(X\A) = w(X\A). However,
V(A)+V(X\A) = V(X) = ¢(1) = m(X) = w(A)+m(X\A).

Therefore, v(A) = w(A) for every Borel set A.

16.E. Exercise. Let T be a finite measure on the Borel c-algebra of a
compact Hausdorff space 2.

(i) If for every open U < Z and every €>0 there exists a compact set
C c U such that w(C) = m(U)-e, then ™ is regular. (Hint. Re-read the
above proof).

(ii) If 2z 1is metrizable, then T is regular. (Every open subset of Z

is a union of countably many compact sets).
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Finally we show that the norm dual of a normed Riesz space often con-
tains a large L-space. For this purpose we drop part of the assumption on
L we made at the beginning of this section : ON THE REMAINING PAGES OF
THIS SECTION, L IS A RIESZ SPACE WITH A RIESZ NORM p. Thus, we no longer

require L to be norm complete.

16.14. DEFINITION. The space L is said to be a semi-M-space if it has the

following property. If u,,u eL+, if p(u1)=p(u2)=1 and if v1,v is

1772 27"

a sequence in L+ satisfying
u1Vu2 > vn v 0,
then lim p(vn) < 1.
It is clear that every M-space is a semi-M-space. Also, if L has
absolutely continuous norm (see Def.11.1);, then L is a semi-M-space.
However, there are less obvious examples of semi-M-spaces. Some of these

will be presented in the next chapter. (See 24.1). The following theorem

shows the importance of semi-M-spaces.
. . *
16.15. THEOREM. L is a semi-M-space if and only if Ls is an L-space.

*
Proof. (i) Assume that L is a semi-M-space. To show that Ls is an

%
L-space, let ¢1,¢2 € Ls be given such that ¢1,¢2 > 0. Furthermore, let

€ be a positive real number. Then there exist elements ul,u2 of L+
such that p(u1)=p(u2)=1 and
( * ! '
> —— =
¢ () > p (¢) - 5 (i=1,2)
* o+

Setting u = u, vu, and ¢ = ¢1+¢2 it is clear that ¢ € (L) and ueL+.

+

Hence, by Cor.7.9, there exists a sequence w,,w in L such that

ACTARE

wn+u and ¢(wn)<e for all n. Defining vn = u-w, for all n, the se-

quence V1,v2,... satisfies u 2 vn + 0. Hence, lim p(vn) <1 as n - o,
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Thus there exists a number n0 such that p(vn) < 1+e for all nZnO. For

these n,

* -1
p (¢) = ¢((1+e)

p*(¢1+¢2) v) = ¢((1+8)_1(u—wn)) >

v

¢((1+e)_1u) - (1+e) e > (1+e)'1{¢1(u1)+¢2(u2)-e} >

[\

-1, ¥ *
(1+e) “{p (¢,)+p (¢2)~2e}

* -1 * *
The resulting inequality p (¢1+¢2) > (1+e) {p (¢1)+p (¢2)—2€} holds for
all €>0, so
* * *
= .
p(9,%d,) 20 (&) (9,)
* * *
The inverse inequality is obvious, so p (¢1+¢2) =p (¢1)+p (¢2) holds
* * *
for all ¢ .4, « (LS)+. since L_ is norm complete (it is a band in L),
*
it follows that Ls is an L-space.

(ii) For the converse direction, assume that L is not a semi-M-space.

Then there exist u,,u

1 € L+, p(u1)=p(u2)=1 and there exists a sequence

2

+
i > i = > 0.
v1,v2,... in L such that ulvu2 vn +y 0 and 1lim p(vn) [\

*
Now, for all nelN there exists a ¢neL satisfying

*
o} (¢n) =1, ¢n 20, ¢n(Vn) = O(Vn)

by one of the Hahn-Banach Theorems (Th.6.9). Since the unit ball of .L*

is weak* compact, the sequence ¢1,¢2,... has a weak* cluster point ¢0.
It is clear that ¢0 > 0 and that p*(¢0) < 1. Furthermore, it is obvious
that

0 £ lim ¢0(Vn) < lim p(vn) =0 as n-oo,
£
Next, fix n and let >0 be given, Considering the weak open neighbour-

hood
U= {¢ : |¢(Vn)-¢0(vn)| < e}

we see that ¢meU for infinitely many values of m. Since m>n implies
o (v) 2¢ (v ) = p(vm) 2 a,

it follows that p(vm) ¢O(vn)+e for those m2>n for which ¢meU. Thus,
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lim O(vn) < lim ¢O(vn) + € (n) .

Therefore, lim ¢O(vn) = o. Now observe that ¢0 has a decomposition

*
= < < .
¢o ¢C + ¢S ’ 0 ¢C € LC ' 0 ¢S € LS

Moreover, lim ¢c(vn) = 0, so lim ¢s(vn) = o > 1. Especially it follows

that ¢s(u1Vu2) 20 > 1. Let now ¢1 be defined by

' +
¢1(u) sup {¢s(uAn(u1-u2) ) : neN}
- *
for all ueL+, and ¢1(f) = ¢1(f+)-¢1(f ) for arbitrary feL. Then ¢1eL ,
*
0<¢ <o, s0 ¢ L .Moreover, ¢, ((u-u)") = ¢_((u-u)") and

¢1((u1-u2)“) = 0. Set ¢, = ¢_-¢,. Then

* *
P (6040 (6,) = &, (w)+b,(u)) = ¢, (u)+d,(uy) ¢, (u,) =

¢S(u2) + ¢1(u1fu2) =

+
¢S(u2) + ¢((u1—u2) ) =

]

* *
o (uvay) 20 > 1 20 () =p (¢,+9,).

*
Thus, in this case L is not an L-space.
s
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17. HERMITIAN OPERATORS

Our purpose in this section is, to use the theory we have developed and
prove a form of the Spectral Theorem for Hermitian operators in a Hilbert
space over R.

We assume that the reader is familiar with real inner products, real
Hilbert spaces, Schwarz' ihequality, orthogonality, orthogonal complements
of closed linear subspaces of a Hilbert space, projections, orthogonal bases
in finite dimensional Hilbert spaces, and with the fact that Lz(u) is a

Hilbert space for every measure yu.

THROUGHOUT THIS SECTION, H IS A REAL HILBERT SPACE WITH AN INNER PRODUCT
(,) awp anor |l l. BY L(H) WE DENOTE THE BANACH SPACE OF ALL CON-

TINUOUS LINEAR MAPS H - H.

17.1. DEFINITION. An element T of L(H) for which
(Tx,y) = (x,Ty) (x,yeH)
is said to be Hermitian. The Hermitian elements of L(H) form a vector

space H that is a closed subspace of L(H). Thus, H is a Banach space.

17.A. Exercise. (i) An element T of L(Rn) (neN) is Hermitian if and
only if its matrix relative to the standard base of R is symmetric.

(ii) If (X,T,u) is a measure space, then every element h of ym(u) in-
duces a Hermitian element T, of L(Lz(u)) by

h
(Thf)(x) = h(x)£(x) (x€X; feL, (n))

17.B. Exercise. An element P of L(H) is a projection if and only if

PeH and P = P2.
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17.C. Exercise.(The Hellinger-Toeplitz Theorem). If T is a linear map

H > H such that (Tx,y) = (x,Ty) for all x,yeH, then T is continuous
and, consequently, Hermitian.

(Hint. Assume that T is not continuous. For every finite dimensional
linear subspace A of H and every seR there exists an xeH for which

xlA and "Tx"Z s"x". Therefore, there exist el,e ;... in H such that,

2
for every neN, "en" <1, "Tén" = Zn and (if n=22) en is perpendicular to
the linear hull of Tzel,...,Tzen_1 . Then Ten 1 Tem for n#m. The sum
- 4. n
3 nTen converges to some aeH. For every n, (Ta,en) = (a,Ten) = (50 ’

but (Tase ) < [Tall ).

17.2. DEFINITION. For S,T €L(H) we write S[r if ST = TS.
Of course, if SOr, then TS. If S[]T1 and SDT2, then SEEiTZ.

17.D. Exercise. Let S,TeH. Then ST is and only if STeH.

17.3. DEFINITION. For S,TeH we define S < T if

(Sx,x) < (Tx,x) (xeH)
17.4. THEOREM. < 1is an ordering, rendering H an ordered vector space.

Proof. The only thing that is not perfectly obvious is the fact that the
inequality S < T < S implies S =T. In otﬁer words, all we have to prove
is that, if WeH and if (Wx,x)=0 for all =xeH, then W=0. Now for such
a W ahd for all x,yeH we have

2 (Wx,y) = (W(x+y) ,x+y) - (Wx,x) - (Wy,y) =0
so that (Wx,y)=0 for all x and y. Taking y=Wx we obtain (for every

xeH) "Wx"2 = (Wx,Wx) = 0, so Wx=0. Then W=0.
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17.5. DEFINITION. Set H' = {TeH : T = 0}.

+ +
If S,TeH+, then S+T ¢ H'. If SeH  and c>0, then cSef .

17.6. LEMMA. (i) If TeH, then T2€H+.
+
(ii) If seHt  and TeH, then TST ¢ H .

+ +
(iii) If seH', then S"eH™ for every neN.

2
Proof. (i) For all xeH we have (T x,x) = (Tx,Tx) 2 O.
(ii) If xeH, then (TSTx,x) = (STx,Tx) 2 0.

(iii) follows from (i) and (ii).

+
17.7. LEMMA. If TeH , then

lexl|? < Nl (rx, %) (x€H)

Proof. The formula
(x,y)T = (Tx,y) (x,yeH)
defines a positive, symmetric bilinear form ( , )T on H. By Schwarz'

inequality, for all xeH one has

(x,Tx)T2 < (x,x)T(Tx,Tx)T

lex)® < (rx,%) (2%, %) < (Tx, %) T2l lTxlls (Tx,%) o]l )

The lemma follows.

17.8. COROLLARY. (i) If TeH+, then

Izl = sup (Tx,x)
llxll<1

+
(ii) For TeH we have T < sI if and only if |7l < s.
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Proof. (i) Put B = {xeH : |xll<1}. Let TeH'. For xeB we have
2
(tx,x) < llexllllxl < Jzlll=l* < {=l.

Hence, sup (Tx,x) < fle]l. Conversely, by 17.7,
xeB

“T“2 = sup "TX"2 < Al sup (TX,X)
XeB XeB

and therefore “T“ < sup (Tx,x).
xeB ’

(ii) follows.
17.9. COROLLARY. If S,T ¢ H' and S <T, then |Is|l < |7l
17.10. COROLLARY. For every TeH we have "T2" = “T"Z.

: +
Proof. Again, put B = {xeH : [lxll<1}. Let TeH. As we know, et (17.6(4)).

Hence,

"T2" = sup (T2x,x) = sup (Tx,Tx) = (sup "Tx")2 = “T"2
XeB xeB xeB

+ +
17.11. THEOREM. Every TeH  has exactly one square root in H .

Proof. If p 1is any real polynomial o .+a X+...+u.nxn and if SeH, then by

071

p(S) we denote the element aOI+a1S+...+ansn of H. Further, for such a-

polynomial p we set p>>0 if uk>0 for every k.

If p>>0 and sel™, then p(S) € Ht. (17.6(iii)). Moreover, if p>>0
and Sefl, then [p(s)|| < p(Jlsl). In particular, if p>>0, and SeH, |s|<t,
then ﬂp(S)“ < p(l).

If p,q are polynomials and if (p-q)>>0, then we also write p>>q

or q<<p. In that case, p(S) 2 q(S) for every SeH+.

Now consider the sequence of polynomials PO'Pl'pZ""' defined by



156

P0=Ol
2 (X) =X + (x)2 (n=0,1,2 )
Ph+1 - Py rRrerees
Observe that pn>>0 for every n. Furthermore,
2(p,4q7P,) = (7P _y) (P tP, ) (neN)
Consequently, pn+1-pn >> 0 for every n, i.e.
O<<p1<<p2<<...
+
In particular, 0 < pl(x) < pz(x) <... for every xeR . Inductively one
sees that pn(x) <1 for every x e [0,1]. Thus, for every x ¢ [0,1],
lim pn(x) exists. We denote this limit by g(x). From (*) we infer that
2g(x) = x + g(x)2 for each x € [0,1], whence
1-g(x) = V1-x (0<x<1)
Now we return to the T of Th.17.11. Without restriction we assume
that |[|Tll<1. Put s = I-T. As 0 < T < I, it follows that 0 < S < I, so
that SeH+ and "S"Sl. (Cor.17.8(ii)). As pn>>0, for every neN we have

+
pn(s) € H' . Moreover, for m>n we know that p. P, >> 0 and therefore

e, )=, )N = lp e ) ()1 < (v -p_) (lIsl) <
< (pmp ) (1) =p (D)-p (1).
Now 1lim pn(l) exists. Hence, Pl(s)'p2(s)'°" is a Cauchy sequence in H+.
Let W=1I- limp (s).
It follows from (*x) that 2pn+1(s) =S + pn(s)2 for each n. Thus, -

2(1-w) = (I-T) + (1-w)2, i.e.

W =T
For every neN we have pn(S) € H+, so I-We H'. Furthermore,

lz-wl] = 1im llp )Nl < 1im p_(1) = g(1) = 1.
By Cor.17.8(ii), I-W < I and

+
Wet

This completes the existence proof. For the moment we put off the proof of
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the uniqueness. Meanwhile it will be useful to give a meaning to the symbol

+
/T for TeH :

17.12. DEFINITION. Let pO'Pl"" be as above. Let TeH+. We define
/T =1 - lim p (I-T) if Irll=1,
ool i 10 ana e=lizll,
YT = 0 if T=0

+
In any case, VTefl' and VT2 = 7.

17.13. COROLLARY. Let TeH'.

(i) There exists a sequence qo,ql,... of real polynomials without constant
terms and such that VT = lim qn(T).

(ii) If SeH and SOT, then SOVT.

(iii) If VeH, VI and V2$T, then V</T.

Before proving this corollary we mention:
+
17.14. COROLLARY. (i) If S,T ¢ H' and sOr, then ST ¢ H'.
L. + 2 2
(ii) If S,T € H , ST and sOr, then S“<T and "Sx"s"Tx" for all xeH.
s +
(iii) If S,T ¢ H , S<T and sOr, then VS < VT.

. +
(iv) If s,T e H, Vel , vIs, VO and S<T, then VS <eVT.

Now we prove Cor.17.13 and Cor.17.14 simultaneously.
17.13(i). 1f ll7ll=1, take q (%) = pn(l)—pn(1¥x). More generally, if T#0
- - .. _ 1
and t=ll7l, take q (x) = t-[p (1)-p (1-t %) 1.
17.13(ii) follows directly from 17.13(i).
17.14(1) . ST = SVIVT = /TSYT (by 17.13(ii)). Now apply 17.6(ii).
2 2

17.14(ii). By 17.14(1i), T2—S = (T-S) (T+S) € H+, so S STZ. For every xeH

we see that "Sx"2 = (Szx,x) < (T2x,x) = HTx"z.
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17.13(iii) . We may assume HT"=1. Inductively one proves that pn(I—T) < I-V
2 2

for every neN. (Indeed, if pn(I—T) < I-V, then pn(I—T) < (I-V) by

17.14(ii), so

2p (I-T) = I-T+p (I—T)2 < I—V2+(I—V)2 = 2(I-V)
n+l n
whence pn+1(I—T) < I-V ). It follows that I-JF < I-v, i.e. V</T.
17.14(iii). Apply 17.13(iii) to v=V/s.

+
17.14(iv). By 17.14(i), VI - VS = V(T-S) ¢ H .

The commutativity conditions mentioned in Cor.17.13 and Cor.17.14 are

not redundant. To see this, compare 17.14(ii) to the following.

17.E. Exercise. Let H=R , S =

but not SZSTz.

T = (f i). Then S,T € H* and S<T,

+ +
Now we can prove the uniqueness part of Th.17.11. Let TeH , VeH and
2
V°=T : we prove that V=/T. By 17.13(ii), V{/T. Hence, VT-V = 0, so that
(by 17.14(iv))

0 < (YT-V) (VT-V) < (VT-V) (VT+V)

= P-UYTHY-v2 = T-v? = 0

Then for every xeH, ]IMF—V)xIl2 = ((/E;V)zx,x) = 0, so Vr=v.

17.15. LEMMA. Let TeH.
(1) /7257 ana /7% > -t

(ii) If SeH, sOr, S>T and S2=-T, then S = ¥ Tz.

Proof. (i) follows from Cor.17.13(iii).

(ii) 28 = T+(-T), so seHt ana s =V S2. As SOr, by 17.14(i) we have

2 2
s°-1% = (S-T)(S+T) 2 0, so S°>T° and s =/s> >/ 1% = 7. (17.14(iii)).
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17.16. DEFINITION. A subalgebra of H is a linear subspace A of H such
that ST €¢ A for all S,T € A. (The terminology is not very good, as H
itself is not an algebra. However, every subalgebra of H is an algebra,

and is even commutative (17.D) ).
17.F. Exercise. The closure of a subalgebra of H is a subalgebra of H.

17.G. Exercise. Let TeH. Let A be the closure of {p(T) : p is a real

polynomial}. Then A is a subalgebra of H that contains I.

17.H. Exercise. Let X c H be such that SOr for all S,T ¢ X. Define
XD = {seH : s0r for all S,T € X} and %jj = {TeH : sOr for all SeXD}.

Then XD[| is a closed subalgebra of H, I ¢ %D] and X c ﬂjj.

17.17. THEOREM. Let A be a closed subalgebra of . Then A is a Banach

lattice. For all TeA we have |T| = V T .

Proof. Let SeA. Then p(S)eA for every polynomial p without constant
term. Hence, (see 17.13(i)) if S € AnH+, then VS € A. In particular,

VY T° € A for every TeA. From Lemma 17.15 and from the commutativity of

R . / 2 .
the ring A it follows that T° = TV(-T) in the ordered vector space A.
For arbitrary V,W e A set S = %(V+W), T = %(V-W). Then (in A) we have
2
V1% + 8 = [TV(-T)]+S = (T+S)V(-T+S) = VVW. Thus, A is a Riesz space.

By Cor.17.9 and Cor.17.10, the norm of A is a Riesz norm.

Now let A be a closed subalgebra of H such that IeA. By 17.8(ii).
I is a strong unit in A and I = sup{TeH : |tll<1}. An application of

Th.16.2 and of Th.13.32 proves the following.
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17.18. SPECTRAL THEOREM. Let A be a closed subalgebra of H with TIeA.
Then there exist a compact Hausdorff space X and a linear bijection
T+ T of A onto C(X) such that for all SeA,

(i) SST. if and only if S<T.

(ii) $T = ST, I = 1.

(iii) lIsll = I8l.

17.19. COROLLARY. If H is finite dimensional and if TeH, then H has a

base consisting of pairwise orthogonal eigenvectors of T.

Proof. Let A = {p(T) : p is a polynomial}. Then A is a finite dimen-
sional (hence closed) subalgebra of H and IeA. Let X be as in Th.17.18.
Then dim C(X) = dim A < © so that X consists of finitely many points
al,...,an (aixaj if i#j). Let ai=§(ai). For every ie{1,...,n} there
exists a PieA for which ﬁi is the characteristic function of {ai}. As
ﬁi = (f’i)2 we have Pi = Piz, so P, is the projection of H onto some
linear subspace Hi of H. (Ex.17.B). As Pin = ﬁiﬁj = o0 if i#j we see
that the spaces Hl""'Hn are pairwise orthogonal: furthermore, I Hi = H
because (ZPi)A = lei =1= I. For every i we obtain

(TPi)A = Aﬁi = aiﬁi = (aiPi)A

so Tx = o, x for all eri. It is now easy to prove the corollary by

choosing an orthogonal base in each Hi'

For infinite dimensional H we can generalize the above. The follow-

in exercise shows that we shall have to be cautious.

17.1. Exercise. Let | denote the Lebesgue measure on [0,1], let H=L2(u).

The formula
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(TE) (x) = x£f(x) (£ H; 0<x<1)

defines a TeH that has no eigenvectors at all.

17.20. THEOREM. Let X be a subset of H such that SOT for all S,TeX.

set A =X .(See Ex.17.H). Then, as a Riesz space, A is Dedekind complete.

Proof. Let X and ~ be as in the Spectral Theorem 17.18. We prove X to
be extremally disconnected. (See 12.16). To this end, take an open subset
U of X: we show that its closure is open. (Ex.12.F).

Set U= {TeA® : stU}, let D be the closed linear hull of the set

{T(H) : TeU} and let P be the projection of H onto D.

Take SeX . For all Tel we have S(T(H)) = T(S(H)) < T(H) < D. It
follows that S(D) c D. But then SP = PSP ¢ H, so SP  (17.D). We see
that PeA. Now P2=P, so P is the characteristic function of some subset
V of X, which, by the continuity of P, must be clopen.

For every element a of U there is a Tel with @(a)=1. Then we
have T(H) ¢ D = P(H), PT=T, PT=T, P(a)=1 and aeV. Thus, U ¢ V and there-
fore G.C V. On the other hand, for every element b of Gc there exists
an ReA with R(b)=1 and R=0 on U. Then for all Tell we see that
RT=0, RT=0 and T(H) is contained in the kernel of R. It follows that D
is contained in the kernel of R, so RP=0, §§=0, R=0 on V, and b§¢v.

Hence, U=V and U has clopen closure.

As an application, we prove the following extension of 17.19, which

does not seem to have anything to do with Riesz spaces.

17.21. THEOREM. Let TeH, €>0. There exist a positive integer n, closed

linear subspaces Hl""'Hn of H and real numbers 51""’sn such that
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(1) Hl""’Hn are pairwise orthogonal and H1+...+Hn = H,
(ii) T(H,) < H, (i=1,...,n),

i i
(iii) if ie{1,...,n}, then "Tx—six" < e for all eri,

(iv) if for each 1i, Pi is the projection onto Hi’ then "T - ZsiPi" < e.

Proof. Set A = {T}[D: then TeA. Let X be as in the Spectral Theorem.

By the above we know that X 1is extremally disconnected: then it is zero-
dimensional. There exist pairwise disjoint clopen subsets X1""'Xn of X
whose union is X and such that ]f(x)—f(y)[ < € as soon as x and y
lie in the same Xi. Choose Syre--sS €R such tﬁat If(x)—sil < ¢ for all
xeX, (i=1,...,n): then "@ - XsixXi"‘,° < €. There exist Pl,...,PneA with
P =

i~ *x,
1

one shows Pi to be the projection on some closed linear subspace Hi of

for each i: then "T - ZsiPi" < g¢. Just as in the proof of 17.19
H. It is easy to finish the proof of the theorem.

In this proof we have not fully exploited the extremal disconnectedness
of X: it would have been enough to know that X is zerodimensional and
that the characteristic functions of the clopen subsets of X all lie in
{§ : SeA}. With the aid of Freudenthal's Spectral Theorem 13.25 and Ex.13.I
one can give a somewhat simpler proof of 17.21 by using the following exer-

cise. (This proof requires less knowledge about Hilbert spaces).

17.J3. Exercise. Let A be a closed subalgebra of H. Suppose that A has
the following property.

If AeH, Al,Az,...eA and if Ax = lim Anx for all xeH,then AcA.
Then every countable bounded subset of A has a supremum in A.

Hint. Let B,Al,Az,...eA; let OSAISAzs... and AnSB for all n. Define
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s(x) = sup (A x,X) (xeH)
neN

Use Lemma 17.7 to prove that
2
la x-a x" < ”B"[s(x)—(A X,%x)] (xeH; n,meN; n>m)
n m m

Show that 1lim Anx exists for every xeH.

17.K. Exercise. The spectrumvof an element T of L(H) is defined to be
the set 0(T) = {s€R : T-sI has no inverse in the ring L(H) }.
Let TeH. Let A be as in Ex.17.G, X as in 17.18.

(i) If H is finite dimensional, o(T) is just the set of all eigenvalues
of T.
(ii) For seR the following conditions are equivalent.

(a) s € o(T).

(b) T-sI has no inverse in A,

(c) There is an xeX for which s=f(x).
Hint for the implication (c)=(a). Suppose s € T(X) while T-sI has an
inverse S in L(H). Let 0<s<"S"—1. There exists a geC(X) such that
"g"w =1, H('f‘—s)g"°° < ¢. There exists a VeA such that V = g.
(iii) The map

x T (x) (x€X)

is a homeomorphism of X onto o(T). Hence, 0(T) is compact and non-empty.

17.L. Exercise. Let exp denote the exponential function R =+ R.

(i) For every TeH we can define exp T ¢ H by

exp T = I+ fTT + §7T2 + §¢T3 e

(ii) Let A and X be as in the Spectral Theorem. If TeA, then exp T

is an element of A and (exp T)A = exp ©° T .






CHAPTER V. NORMED KOTHE SPACES






167

In this chapter we shall investigate an important class of normed Riesz
spaces.More precisely, we study spaces consisting of (equivalence classes)
of measurable functions on a measure space. Well-known members of this class
turn out to be the Lp-spaces (1 <p £,

First we fix some terminology. From now on (X,I',u) will be a fixed
o-finite measure space. We shall assume that the Carathéodory extension
procedure has already been applied to u (so in particular it follows that
all u-null sets are in T). By M we denote the collection of all U-measur-
able functions on ‘X which take their values in the set of extended real
numbers R (=RU(®)U(-)), and by M we denote as before (1.E) the collect-
ion of all real-valued u-measurable functions on X. In the sequel members
of M which are finite p—almost everywhere on X will also be regarded as
members of M. Furthermore, N will denote the collection of all p-null
functions on X. If M 1is partially ordered by setting f < g whenever
£(x) < g(x) for all xeX, then M is a Riesz space and it is clear that
N is an ideal of M. Moreover, setting M = M/N it follows that M is a
(super) Dedekind complete Riesz space (see 4.F). The Riesz spaces considered
in this chapter will all be order ideals of the above defined Riesz space

M.

18. FUNCTION SEMI-NORMS AND KOTHE SPACES

Let M be as above. If K is any subset of M, then K will denote

the collection of all functions in K assuming only non-negative values.

- —b
18.1. DEFINITION. A function p: M >+ R is called a function semi-norm on
M oie

(1) p(£) = 0 for all feN',



168

(ii) p(af) = ap(f) for all a€R+ and for all f£eMt (0.@ = .0 = 0),

(iii) p(f+g) < p(£f)+p(g) for all f,geﬂ*,

(iv) f,geﬂ+ and f < g u-almost everywhere on X implies p(£f) < p(g).
If, in addition, we have

(i)' p(£f) = 0 if and only if £eN',

then p is called a function norm on .

——}.
It is clear that the collection of all function semi-norms on M can be

partially ordered. Indeed, if p and p2 are function semi-norms, set

1

e
p, <p whenever pl(f) < pz(f) for all feM . With respect to this part-

1 2

ial ordering there exists a smallest function semi-norm (viz. p(f) = 0 for

all feﬂ*) on M as well as a largest function semi-norm (viz. p(f) = 0 if
+ YR -

fFeN', p(f) = if £eM\N') on M. The following exercise shows that each

collection of function semi-norms on M’ has a supremum.

18.A. Exercise. Let {pT: 1eT} be a collection of function semi-norms on
M*. set

p(f) = sup {pT(f): TeT}
for all f£eM™. Show that p 1is a function semi-norm on M. Also, show that
if at least one pTo (TOeT) is a function norm, then p is a function norm.
Finally show by a counterexample that the converse of the preceding state-

ment does not have to hold.
The following result plays a key role in our investigations.

18.2. THEOREM. Let p be a function norm on ﬂ+ and let fel\—rf+ be such

+
that p(f)< o, Then £feM .
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Proof. Let E = {xeX: £(x)= «}. We have to show that u(E) = 0. To this
end, observe that XE < n_lf on X for n=1,2,...., so
-1
<
pPlxg) sn p(f)
for all n. Since p(f) < o, this shows that p(xE) = 0. Hence, since p

is a function norm it follows that erN, so u(E) = 0.

In the sequel our main interest lies in those functions feMt for which
p(f) < o for some given function norm p. The preceding theorem shows that,
in that case, the domain of p may be restricted to M+. Indeed, if neces-
sary, we can always define p(f) = o for all feﬂ+\M+, thus having extend-
ed p wuniquely to the whole of M*.

Now, let p be a function norm on M+. It is easy to see that p can
be extended to the whole of M. Indeed, define p(£f) = p(|£]) for all feM.
From now on, function norms will always be assumed to be extended to M in
the abowe manner. Next, consider

Lp = {feM: p(£) < }.
It is clear that Lp is an ideal of M and that N c Lp. Also, it will be
clear that p 1is a Riesz semi-norm on Lp and that the null-space of p
is precisely the ideal N of Lp (since p 1is a function norm). Hence,
setting

Lp = Lp/N
it follows that Lp is a Riesz space and that E defined by

P(LED) = p(£)
for all [f]eLp ([£] is the equivalence class containing the element feLp)
is a Riesz norm on Lp. Furthermore, Lp is an (order) ideal of M, so it
follows that Lp is a Dedekind complete normed Riesz space. In the sequel
Lp will be called a (normed) Kothe space (generated by p). As usual, we

shall from now on identify an feLp with its equivalence class [f]eLp
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and conversely. Also we shall drop the class notation for elements of M.
Finally, the Riesz norm Z on Lp will from now on be denoted by p again.
Thus, from now on function norms will be thought of as defined on M, unless

stated otherwise.
19. BANACH FUNCTION SPACES

Let, in this section, p be a fixed function norm and let Lp be the
Kothe space generated by p. If Lp is a Banach space with respect to the
norm p, then Lp is called a Banach funtion space. In this section we
shall investigate under which additional conditions on p Lp is a Banach
function space. First observe the following. If ul,uz,.... is a sequence
. + ' , + k
in Lp (and hence in M ), then u = Z‘un means nzlun 4 u (k > ), where

+ +
ueM (or ueLp) (see section 7 after theorem 7.5). In our new situation we
can give another interpretation of I un. Indeed, if we think of un as a
+ — —
member of Lp (and hence of M+) z un becomes a member of M+ as well. In
+

the case that I un e M we can again think of I un as a member of M.
Now observe that this construction does not depend on the choice of the re-
presentants and that both readings of I u, coincide (provided I u e M).
In the sequel we shall use both readings. Finally, by the second reading,

: ) . . + . .
if UysUyr....  is a sequence in Lp and if we think of I u asa member
of ﬂ*, then p(Z un) is unambigiously determined. Having this in mind we

introduce thé following.

19.1. DEFINITION. The function norm p is said to have the Riesz-Fischer
+
property (R-F property), if for any sequence Uyrlyreees in Lp satisfying

L p(u ) <o, we have that p(Z u ) <o (i.e., Z u ¢ L+).
n n n p
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19.2. THEOREM. The following assertions are equivalent.
(a) p has the R-F property.

+
(b) For any sequence u, su in Lp we have p (X un) < I p(un).

preee-

Proof. (i) (b) = (a). Obvious.
(ii) (a) = (b). Assume that p has the R-F property. We argue by contra-

. +
diction, so suppose that there exists a sequence u,,u_,.... in Lp such

1772
that I p(un) < o and such that p(Z un) > I p(un). Then there exists a real

number € > 0 such that
> e+l .
p(Z un) € p(un)

Multiplication by ke:—1 (k=1,2,...) furnishes us sequences sees. in

Y1k Yok
+
Lp such that

p(Zuy) >k+kplu )5 Zoela,) <o

On the other hand, for all r we have p(nZ

<
<runk) - ngrp(unk)' so

p(nérunk) i k+n§rp(unk)

for r=1,2,.... and k=1,2,... . For all k there exists an rk such that
-2
ngr p(unk) <k .
k
Thus, dropping a finite number of elements of each sequence ulk’qu"""

+
we obtain sequences in Lp such that

Vlk'VZk' cese

-2
. >
P <k e 2 kepelvy) 2k

for k=1,2,.... . Next, reindex the double sequence ( ) to obtain

vnk nelN ; KetN
+
the sequence wl,wz,.... in Lp. Note that
-2
< <
E p(wk) E k o,

+
so I wk € Lp since p has the R-F property. However,

p(Z wn) 2 p(% v ) 2k

k
holds for all k, which implies p(Z wn) = oo, This is the desired contra-

diction.
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Next, we state and prove the main theorem of this section.

19.3. THEOREM. Lp is a Banach function space if and only if p has the

R-F property.

Proof. (i) Assume that p has the R-F property. Let £ ,f_,.... be a

1772
Cauchy sequence in Lp. Then there exists a subsequence gl,g2,.... of
f2,.... such that
- < .

g p(gn+1 gn) <

Hence
- = - <
Zellg 49 D) =Zelg 4-9) <

Since p has the R-F property it follows that p(g lg

ey |) < and

hence, thinking for a moment of 9, (n=1;2,....) as being an element of
it follows that

Ilg ,®-g x)] <e
for u-almost. every xeX. Thus, setting

f(x) = gl(x)+r21(gn+1 (X)-gn(x))
for all =xeX, it follows that feM. Next, consider £ as an element of
Then feLp in view of

= + - < - <

p(£) = pllg +2(g =g ) 1) < ollg D+o(Z g -9 D

p(g1)+2 p(gn+1-gn) < o
(since p has the R-F property). Since

f_gp = ngp(gn+1_gn)
for p=1,2,...., it follows that

p(f-gp) < ngpp(gm_l—gn) +0 as p > o,
so

- < - -
P(E-£ ) < p(f gp)+p(gp £) >0 as n >

Thus Lp is a Banach space.
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(ii) Conversely, assume that Lp is a Banach function space. Let the
+ .
sequence ul,uz,.... in Lp be given such that I p(un) < o, Setting sn=

u1+....+un for all neN, it follows that

p(sm—sn) < m?_lp(uk) +0 (m,n > ),
so sl,sz,.... is a Cauchy sequence in L:. Since Lp is a Banach space
and since L: is closed (9.E(v)) it follows that there exists an st:
such that

p(f—sk) >0 (k> o).

If n =2 k, then

0 <s - fAs, = s As, — fAs, £ (s -f)As
n n

< -
k x k k = Is £l

k
so p(sk—(fAsk)) = 0 for all k. This implies £ 2> sk for all k, so
£f 2 X u . Thus

n

p(Z un) < p(f) < oo

so p has the R-F property.

Next, we introduce properties that function semi-norms can have and
which are in general easier to check than the R-F property. Before doing so

we first introduce a type of convergence in . Let Uyrlyreee. be a se-

2
. vl T . .
quence in M and let uzM+. We shall write un 4 u if un(x) + u(x) for
+ —
p-almost every xeX. Observe that if ueM and if u 4 u in M+, then
+
uneM for all n. Moreover, considering un (n=1,2,....) and u as elements

of M the meaning of u 4+ u coincides with the definition presented in

section 7.

19.4. DEFINITION. Let p be a function semi-norm on M*.
(i) p 1is called a Fatou semi-norm if © .5 un 4 u (in M+) implies
plu) +p(u) (in rY).

(ii) p is called a weak Fatou semi-norm if 0O < u +u (in W) and



lim p(un) < o implies p(u) < oo,
19.5. THEOREM. (i) If p is a Fatou semi-norm, then p 1is a weak Fatou
semi-norm.

(ii) If p is a weak Fatou norm, then p has the R-F property.

Proof. (i) Obvious.

+ .
(ii) Let Uy rlyyenee in Lp be such that I p(un) < o, Letting sn =
u1+....un for all n, it is clear that
<
0 sn 4 E uk,
and

n
p(sn) < { p(uk) < E p(uk) < o,

Hence lim p(sn) <o, so p(I uk) < o, Thus p has the R-F property.
The following is now obvious.

19.6. COROLLARY. If p is a function norm which is either a Fatou norm or

a weak Fatou norm, then Lp 1is a Banach function space.

By means of exercises we now show that the converses of theorem 19.5 do not

hold.

19.A. Exercise. Let X be the set of natural numbers and let the measure
U be such that u(S) equals the number of elements of S for any subset
S of X. Any ueM is now of the form u = (ul,uz,.....) where uieE for
all i.

(i) Set p(u) = sup {un: n=1,2,...}+1lim sup {un: n=1,2,....} for all

ueﬂ+. Show that p is a function norm such that p is weak Fatou but not
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Fatou.
(ii) set p(u) = sup {un: n=1,2,...} if u >0 (n=>e and plu) =
otherwise, for all ueM'. show that p 1is a function norm, that L = c

0
(see 8.A(ii), 9.B), that p has the R-F property, but that p is not a

weak Fatou norm.
Finally, for use in the sequel, we state and prove the following.

19.7. LEMMA. Let {pT: T€ET} be a collection of Fatou semi-norms on M.

If p = sup {pT: 1€T}, then p is a Fatou semi-norm on M'.

Proof. In view of 18.A p is a function semi-norm. Next, let O < un +u
in M and set o = lim p(un). Since o £'p(u) 1is obvious we have to show
that p(u) £ o holds. Hence, we may assume that o < o, Next, if a = 0,
then obviously p(u) = 0, so we have done. Therefore, assume that 0 < o <
©, Now, let B€R+ be such that B < p(u). Then there exists a TOET such
that pTo(u) > B, so pTo(un) > B if n is large enough because pTO is

a Fatou semi-norm. Then also p(un) > B8 if n is large enough. This shows

that o > B and thus p(u) = o.
20. ORLICZ SPACES

In this section we present an important class of Banach function spaces

the so-called Orlicz spaces.

20.1. DEFINITION. A function ¢: R+ + R is called an Orlicz function if
(i) ¢(0) = 0, &(x) 20 if x = O,

(ii) ¢ is convex (i.e., 0 < x <y and 0 < )X <1 implies
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®(Ax+(1-0)y) < Ae(x)+(1-N)d(y),
(iii) & is continuous from the left for all x > O,

(iv) there exist xl,xq > 0 such that @(xl) < oo and ¢(x2) > 0.

"
o

We make some remarks. First note that by condition (iv) the cases ¢ =
on [0,) and @(0) =0, ® = on (0,2 are excluded. Next, note that
by condition (ii) an Orlicz function & can have at most one point X of

discontinuity and that if ¢ is discontinuous at XO' then x0 > 0. Also,

and &(x) =« if x > x_.

in this case, we have &(x) <o if 0 < x < x 0

0

By condition (iii), we have @(xo) = lim ®(x). Finally, we observe that any
X4XQ
Orlicz function ¢ is non-decreasing on [0,®) and that 1lim ¢(x) = o as

X > oo,

Next, by means of an Orlicz function we define a function norm.

20.2. DEFINITION. Let ¢ be an Orlicz function.
(i) For all fen, define
MQ(f) =L o(|£(x)]) du(x).
X
(ii) For all ueMt, define
pQ(u) = inf {k > O: M¢(k"1u) <1},
where it is to be understood that inf @ = +w. Then p¢ is called an Orlicz

norm on M' (this terminology will be justified by theorem 20.3).

_1 —
Observe that MQ(k u) is a non-increasing function in k for all ueM*.

Hence, it follows that for ueM® we have M¢(k_1u) <1 for all k > pé(u).

20.A. Exercise. Let & be an Orlicz function and let ueﬁ* be such that

0 < p¢(u) < oo, Show that M®(u/p¢(u)) < 1.
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20.3. THEOREM. Let ® be an Orlicz function. Then p(I> is a Fatou norm.
Proof. We divide the proof into five parts.
(a) Let u,veh_rf+ be such that u < v p-almost everywhere on X. If k >
0 is given, then O < MQ(k_iu) < M¢(k_1v), so pé(u) < p¢(v).
+ - + -
(b) Let ueN be given and let k > 0. Then k 1ueN ; So MQ(k 1u) = 0.
Thus p¢(u) = 0.
Conversely, let Ael' be such that u(A) > 0 and let k > 0 be given. Then
M ) = ek hua)
e X Xa L
If k ¥+ 0, then Q(k_l)u(A) > o, so there exists a ko > 0 such that
-1
M > 1.
¢(k0 XA)

Thus p¢(xA) > k_ > 0. Using part (a) this shows that p@(u) = 0 implies

0

+
11€N .

(c) It is clear that pQ(au) = apQ(u) for all aeR+ and for all ueM'.

(@) Let u,vel* be given. We have to show that p¢(u+v) < DQ(U)+D¢(V)
holds. If either p¢(u) = o Or p¢(v) = o, this is obvious. Next, if p¢(u)
= 0, then ut+v = v yp-almost everywhere by part (b), so there is nothing to
prove. Hence, we may assume that 0 < pQ(u) < oo and that O < p¢(v) < oo,
Next, let o = pQ(u)+p®(v) for brevity and let € > 0 (in R) be given. Then

MQ((u+v)/(a+e)) <

p. (u)+ke u P, (v)+ke v
2 M ( ) 4 2 M_( )
o+e ® p¢(u)+%e ote ] pé(v)+%e’
p@(u)+%e+p¢(v)+lzg .
a + €

so p®(u+v) < at+e = p¢(u)+p®(v)+e. This holds for all ¢ > 0, so we have
done.

(e) Finally, we have to show that p¢ is Fatou. To this end, let un 4+ u
in M¥. It is clear that Llim pé(un) < pé(u). Now, set o = lim p®(un). If

o = © we have pé(u) = o so we are ready. Assume that o < o and let
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€ > 0 be given. Then pQ(un) < a+e for all n. Moreover, we have
¢(un/(a+e)) + @ (u/ (a+e))
u-almost everywhere on X. Hence
= 1i < 1.
Mé(u/(a+s)) lim M@(un/(a+e)) <1
This shows that p@fu) < a+e. This holds for all € > 0, so

Pp(w) = lim p (u ).

The normed Kéthe space generated by the Fatou norm p¢ (which, in its turn,
is generated by an Orlicz function ¢) will be denoted by LQ and will be
called an Orlicz space. By the previous results, any Orlicz space is a Ba-
nach function space.

Next, we present some explicit examples of Orlicz spaces.

20.B. Example. Let 1 < p < ® be given and define @&(x) = x* for all
X 2 0. It is obvious that ¢ is a continuous Orlicz function. Now, let
uel* be given. Then
. -1 . p

pé(u) = inf {k > 0: JS(k "u)"du < 1} =

inf {k > 0: SfuP au < k%) = (/uP a'/®P.
Setting, for all £eM

1
el = 1€1® aw'/?,
p

it follows that p®(f) = "f"p for all feM. Hence, the Orlicz norm p<I>
equals in this case the well-known Lp—norm "."P and thus the Orlicz
space L¢ equals the well-known space Lp. Thus we have proved that Lp

provided with the norm "'“p is an Orlicz space. In particular it follows

that Lp is a Dedekind complete Banach lattice.

20.C. Define ¢(x) =0 for 0 <x <1, &(x) = for x > 1. Again it is

obvious that ¢ 4is an Orlicz function. Let ueM' be given. We recall that
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]|u||°° = ess sup {u(x): xex} =

inf {0 > 0: u < a up-almost everywhere on X}.
Observe that if 0 < "uu°° < o, then u/ﬂu“w < 1 u-almost everywhere on X,
and if k < "u"w, then there exists a set Ael' satisfying u(dA) > 0 and

u/k > Xy It follows that if ueﬁ_A+ is given, then pé(u) = 0 if and only

if "u“m = 0, and pQ(u) = if and only if "u“°° = o, Also, the above ob-
servations imply that pé(u) = ||u||°° for all ueﬂ*, 0 < "u"a,< %, Thus
p®(u) = ||u"°° holds for all ueﬂ*. Therefore, L¢ equals the well-known
space L_ and p¢(f) = "f"m for all feM. Hence, L, is a Dedekind com-

plete Banach lattice.

Remark. The reader who is not familiar with the theory of Lp—spaces (1 <p

< ) can take the examples 20.B and 20.C as a definition for these spaces.
We collect the preceding results in a theorem.

20.4. Let 1 < p £ o, Then Lp is a Dedekind complete Banach lattice under
the Lp-norm "."P. Moreover, LP is an Orlicz space and hence a Banach

function space.
21. USELESS SETS AND SATURATED FUNCTION SEMI-NORMS

In the sequel a function semi-norm p is called trivial if either
p(u) = 0 or p(u) = o« for all ueM*. A trivial function norm p is, there-
fore, a function norm p such that p(u) = 0 if and only if ueN+ and
p(u) = o elsewhere on M. 1 p is a trivial function norm, then Lp =
{0}, so, when studying Lp, the measure space (X,I',u) is in fact not in-

+
volved. Also, if p is non-trivial (so 0 < p(u) < o for some wM ), it



180

can happen that the measure space (X,I',u) is not "optimally used". We il-
lustrate this by an example. Let (X,I',u) be the interval [0,2] provided
with Lebesgue measure and set
et = gy g glly el ol

for all ueﬂ*. It is easily verified that p is a Fatou function norm. How-
ever, if feLp, so p(f) < o, then fx(1,2] = 0 p-almost everywhere. Hence,
considering the smaller measure space [0,1] provided with Lebesgue measure
and considering the function norm pl, defined by

p () = ||u||1

e

for all measurable u on [0,1] it follows that L (=L1). Roughly

L
1
spoken, the interval (1,2] does not have any influence on the space Lp,

so (1,2] is a "useless" set when studying Lp. In this section we shall

prove that such useless sets can be removed.

21.1. DEFINITION. Let p be a function semi-norm. A set Eel' is called
useless (with respect to p) if
(1) u(E) >0,

(ii) p(xF) = oo for all F < E, u(F) > 0.

21.2. LEMMA. Let p be a function semi-norm and let EeI' be such that
H(E) > 0. Then E is useless if and only if for all ueMt  such that p (u)

+
< o we have u = 0 uy-almost everywhere on E (i.e., uXEeN ).

Proof. (i) Assume that E is useless and let ueMt be such that p(u) < oo,
Supposing that uxEéN+ it follows that there exist an € > 0 and a set
F ¢ E satisfying u(F) > 0 such that u 2 Xpe Hence

@ = p(exy) <p(u) <o

which is a contradiction.
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+ T :

(ii) Assume that uerN for all ueMt with p(u) < . Supposing that
E is not useless, the existence of a set F c E with u(F) > 0 and p(xF)
< o follows. Letting uy = X e have uoxEéN and p(uo) < co. Contradict-

ion.

The following theorem states, up to a u-null set, that there exists a

maximal useless set.

21.3. THEOREM. Let p be a function semi-norm. Then there exists a set >
in T such that X\X°° does not contain any useless sets and such that ei-
ther X, = 3 or X, is a useless set. The set X_ is u-uniquely deter-

mined. Moreover, if p is non-trivial, then u(X\Xa) > 0.

Proof. First assume that p(X) < e and set

a = sup {u(E): E is useless},
where it is to be understood that sup @ = 0 in this case. If o = 0 there
is nothing to prove, so assume that o > 0. Then there exists a sequence of
sets El’Ez""' in T such that u(En) 4 o and such that En is useless
for all n. Letting

E =UE,
it is clear that E°° is useless and that u(Eq) = o. Hence X\EQ° cannot
contain a useless set. Finally, it is also clear that E_ is py-uniquely
determined.

Next, assume that Y(X) = o, Then X = U Xn with u(xn) < o (n=1,2,..

..) and Xnnxm =@ if m # n (since pu is o-finite). If X contains a

k

useless set, then Xk contains a maximal useless set Ek by what was prov-

ed above. If Xk does not contain a useless set, define E, = f. Setting

k

&w = U Ek
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it follows that X, is a useless set or that X, = g. If F c X\)gm is a
useless set, then u(F) > 0 has to hold. Hence u(FnXk) > 0 for some k.

It follows that FnX  is useless and that (FnXk)nE = @. This is impos-

k k

sible, so X, is a maximal useless set. It is clear again that &” is
p=uniquely determined.

Finally, assume that P is non-trivial. Then there exists an element
ueM¥  such that 0 < p(u) < . Letting E = {xeX: u(x) > 0} it follows
from p(u) > 0 that u(E) > 0. Furthermore, lemma 21.2 implies that E
cannot contain a useless set, so E C X\&w. This shows that

u(x\xm) > u(E) > 0.

Now, let p be a function norm. Lemma 21.2 shows that if E 1is a
useless set and if feLp (so p(f) < ™), - then ferN. Furthermore, theorem
21.3 shows that there exists a maximal useless set Xw, so for any feLp
we have foeN. Considering the restricted measure space (X\X ,T_,u )

0
where
r_= {an(x\x_): B&el},
and H”(A) = u(a) for all Aeq”, it follows that the spaces Lp(x) and
Lp(X\%n) can be identified, so also Lp(x) X Lp(x\%w). Furthermore, the

measure space (X\Xw,Pw,u“) is now "optimally used" when studying Lp.

Therefore, we define

21.4. DEFINITION. A function semi-norm is called saturated if there are no

useless sets (i.e., X = 2) .
21.5. LEMMA. Let & be an Orlicz function. Then Ps is saturated.

Proof. We have to show that there do not exist useless sets. Let Ael' be



183

such that 0 < u(A) <o, Then 0 < DQ(XA) < o, Indeed, if k > 0 is given,
then
Mo ) = e Hua)
[} Xa H :
Since @(k_l) >0 as k »> o it follows that @(k—l)u(A) <1 for k large
enough, so DQ(XA) < o, It is obvious that pQ(xA) > 0. Thus, since measurab-

le subsets of X contain a set of finite measure it follows that p® is

saturated.

We make a final remark. Given the non-trivial function norm p it fol-
lows by the observations made above that if we "restrict" p to the space
(X\Xw,ﬂm,uq), then p becomes a saturated function norm and the structure

of Lp has not been changed.
22, ASSOCIATE FUNCTION SEMI-NORMS

In the study of the dual space of a K&the space Lp it turns out that

the so-called associate norms are important. Let p be a function semi-norm
(0)

and define p = p and

p(n)(u) = sup {fuv du: p(n_l)(v) <1, velt}
for n=1,2,...., and for all ueﬂ*. In stead of p(l), p(z) and p(3) we
shall also write p', p" and p"' respectively. The function p(n) will

th . s
be called the n associate semi-norm of p. This terminology is justified

by the following theorem.

. . X n . R
22.1. THEOREM. If p is a semi-norm on Wﬁ, then p( ) is a Fatou semi-

norm on M* (n=1,2,....).

Proof. It is sufficient to show that p' is a Fatou semi-norm since the
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rest is then obvious by induction. Now, let veM* be such that p(v) < 1
and set

p (u) = Suv du

v
for all usﬂ*. It is clear that pv is a Fatou semi-norm, so in view of
lemma 19.7 it follows that

p' = sup {pv: veM*, p(v) < 1}

is a Fatou semi-norm.

Next, we show that there is a close relation between the associate

semi-norms that can be derived from a given function semi-norm.

22.2. THEOREM. (i) (Hdlder's inequality). If u,veﬂ* are such that p(u)
and p'(v) are finite, then

Suv du < p(u)p' (V).

o (@*2) _ [ (n)

(ii) p" £ p and o for all n = 1.

Proof. (i) If 0 < p(u) < o, then the stated inequality is clear from the
definition of p'(v). Hence assume that p(u) = 0. If ueN+, then also uve
N+, so Juv du = 0 and we are done. Therefore, assume that the set EeT
defined by E = {xeX: u(x) > 0} is such that p(E) > 0. Define

E = {xex: u(x) 2 '}

for n=1,2,.... . Then En 4 E so there exists an n such that u(En) >0

0

for all n 2 no. We shall show that En is a useless set with respect to

p' for all n =2n To this end, let n =2 n and let F c En with u(F)>

0° 0
0 be given. Since u 2 n_1 on F it follows that Xp < nu, so p(XF) = 0.
Hence, p(kxF) =0 for k=1,2,...., so

p'(Xp) = sup {fwa du: weMt, p(w) < 1}2

sup {kfo dy: k=1,2,....} = oo,
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This implies that En is useless with respect to p' for all n 2 no.
Hence E is useless with respect to p' in view of E = U En. Since p'(v)
is finite it follows that vXEeN, so uveN. Hence JSfuv du = 0, so the inegqu-
ality is clear.

(ii) First we show that p" < p. Therefore, let uel*  be given. If p(u)

= oo we have p"(u) £ p(u), so assume that p(u) < e, Then

p"(u) = sup {Juv du: veMt, p'(v) < 1} <

sup {p(wp'(v): vel*, p'(v) <1} = p(u)
by part (i). Thus p" < p.

Applying this inequality on p', we obtain (p')" = p"' < p'. On the

other hand, if pl, 92 are function semi-norms on M* satisfying p1 < p2

then clearly pi 2 pé, so p" £ p implies p"' 2 p'. Thus p"' = p'. By in-
+

duction it is now clear that p(n 2) = p(n) for all n 2 1.

The preceding theorem shows that a given function semi-norm p has at most

three different associate norms, viz. p', p"

and p itself.

Next we study the behaviour of useless sets. Let Eel' be given and
assume that E 1is useless with respect to p" (so in particular Wu(E) > 0).
Since p" < p it follows that E is also useless with respect to p. Con-
versely, assume that E is useless with respect to p (again Wu(E) > 0 is
a consequence). Then uxEsN+ for all ueM+ satisfying p(u) < «. Hence

p'(“uE) = sup {f“uxE au: ueMt, p(u) <1} = o.
Letting F ¢ E be such that p(F) > 0 it follows that
P (Xp) 2 JoxL X, du =
so E 1is useless with respect to p". Thus we have proved the following

lemma.

22.3. LEMMA. Let EeT, u(E) > 0 be given. Then E is useless with respect
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to p if and only if E is useless with respect to p".

The following theorem gives sufficient and necessary conditions so that

' is not only a function semi-norm but even a function norm.

P
22.4. THEOREM. The following statements are equivalent.
(a) p is a saturated function semi-norm.
(b) p' 1is a function norm (not necessarily saturated).

(c) p" 1is a saturated function semi-norm.

Proof. (i) (a) & (c) is immediate from lemma 22.3.

(ii) (a) = (b). Assume that p is saturated but that p' is not a func-
tion norm. Then there exists a set EelI', W(E) > 0 such that p'(xE) = 0.
Since p' is a Fatou semi-norm it follows that p' (e XE) = 0. Now, similar-
ly as in the proof of lemma 22.3 it follows that E is useless with res-
pect to p" and hence with respect to p. This contradicts the assumption
that p is saturated, so p' is a function norm.

(iii) (b) = (a). Assume that p' is a function norm but that p is not
saturated. Then there exists a useless set E (with respect to p). Similar-
ly as above we obtain p'(xE) = 0 and this contradicts u(E) > 0 since p'

is a function norm. Thus p is saturated.

We note that if p is a function norm (not riecessarily saturated), then,
by similar arguments as above, it follows that p' is a saturated semi-norm.

Thus, it follows that if p is a saturated function norm, then p' as well

as p are saturated function norms with the Fatou property. The fdllowing

theorem is now obvious.
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22.5. THEOREM. (Hdlder's inequality). Let p be a saturated function norm.
(i) fuv du < p"(wp'(v) € p()p'(v) for all u,veMt.

(ii) Slfg| au < p"(£)p'(g) < p(£)p'(g) for all £,geM.

In the remaining part of this section we show the importance of the
first associate norm, when studying the norm dual space of a K&the space.
To this end,

Let, for the rest of this chapter, p be a fixed saturated function norm.
As shown in section 21 the requirement that p be saturated is no restric-
tion at all. It follows that p' is now a Fatou norm on M (saturated). The
normed KSthe space (even Banach function space) generated by p' will be
denoted by L;. This space is called the first associate space of Lp. It
is clear that

p'(g) = sup {[Ifgl du: op(f) < 1}
holds for all geM (or all geM after identifications). First we derive a
slightly different formula for elements in L;. Let geL; be given. Let
feLp be such that p(f) < 1. Then

J1£g| dau < p(£)p'(g) < o

by theorem 22.5. Hence fgeL, (see 20.B and theorem 20.4), so Jfg du

1
exists. Next, note that

sup {|/£fg dul: p(£f) <1} < sup {SIfg| du: p(f) <1} = p'(qg).
Now, let € > 0 be given and let fleLp be such that p(fl) <1,

flflgl du > p'(g)-€.
Defining:f=|f1|.sgn g (where sgn g(x) =1 if g(x) 2 0, sgn g(x) = -1
if g(x) < 0 after we have chosen a representant of g in M), it follows
that |[f]| = I£,1, so p(f) = p(£) <1 and

0 < ffg du = flf1g| du.

This shows that
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|f£g dul > p'(g)-€,
SO
p'(g) < sup {|/fg dul: po(f) < 1l+e.

Since this holds for all ¢ > 0 we have proved the following lemma.

22.6. LEMMA. For all geLs, we have

p'(g) = sup {|/fg du|: £eM, p(f) < 1}.

As observed above, for any feLp and for any geLS Jfg du  exists
as a finite number (fgeLl). Hence, fixing geL; -and setting
¢ _(£) = [fg du
g
for all feLp, it is clear that ¢g is linear on Lp. However, more can be
* *
said. Let Lp denote the Banach dual of Lp and let p be the norm in
*

L .
p

* *
22.7. THEOREM. Let geLé be given. Then ¢geLp and p (¢g) =p'(g).

Proof. Using lemma 22.6, we obtain
*
P (6) = sup {l¢ (D)]: p(£f) <1} = sup {I/Eg Qul: p(f) <1} =

p'(g).

Next, defining the operator 1I: L; > L: by I(g) = ¢g for all geLé it
is clear that I 1is a positive linear norm preserving operator from L'
into L:. Hence, we can think of L; as a linear subspace of L*. More-
over, since p' is a Fatou norm (which implies that L; is a Banach lat-
tice), it follows that Lé is even a norm closed linear subspace of L:
(after applying I). We shall show now that the image of" L; under I is

*
precisely Lp <’ the set of integrals on Lp (definition 7.1). Thus I
’



189

%k

turns out to be a norm preserving Riesz isomorphism from Lé onto Lp e
1’

First observe the following.

22.8. LEMMA. Let JeM be given. Then the following assertions are equivalent
a eL’'.
()gp

(b) fgeL

*
for all feL. and ¢ €L .
1 o g r

Proof. (i) (a) = (b). Has already been shown.
(ii) (b) = (a). Let feLp be given and set f1 = f.sgn g. Then £ €L
since lfll = |£], so
Ilggl * *
= = < = .
fgl| au ffig du ¢g(f1) P (¢g)p(f1) P (¢g)o(f)
This shows that
*
p'(g) <p (¢g) < o,

%
so geLé (and hence we also obtain p'(g) = p (¢g));
Next we state and prove the main theorem of this section.

22.9. THEOREM. The operator' I is a norm preserving Riesz isomorphism from
* *

N
L' onto L , l.e. L' =1L .
P p.C p p.,C

*

Proof. (i) Let geLé be given and let ¢g = I(g) as before. Then ¢geLp

*
and p (¢g) = p'(g) by theorem 22.7. Now, let fn + 0 in L;. Then |f1g|

eL1 and

>
te,9l 2 1£ gl + 0,
so by the theorem on dominated convergence of integrals we obtain
lim ¢g(fn) = lim ffng du =0 (n >,
*
This shows that t]:geL‘5 o' S° I is a positive linear norm preserving map
’

*
from L' into L .
P p.C
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*
(ii) Conversely, let ¢eLp c be given. First assume that ¢ = 0. We have
’

+
to find a ge(Lé) for which ¢g = ¢. To this end, define
= {Ael: L .
Ty {ReT Xp€ p}

Then T contains many non-trivial elements since p is saturated. Moreover

0
+
FO is a semi-ring of subsets of X. Next, define the function v¢: FO + R
by
v¢(A) = ¢(XA)
for all AeFO. Then v¢(¢) = 0 and if Al'AZ""' is a sequence in FO

such that A NA =@ (m#n) and UA € T_, then
n m n 0
v¢(U An) = ¢(qu ) = ¢(Z Xp ) = E¢>(xA )-=1 v¢(An)
n n n
by lemma 7.6. Hence Vv is a pre-measure on T

¢ 0

algebra of subsets of X consisting of the v, -measurable sets. Then T c T

. Next, let Pl be the o-

1

and BCnA e ' , so

Indeed, if BeTl, AePO then BNA ¢ Fo 0

v¢(A) = v¢(BnA)+y¢(Ban).

This shows that BeFl, so T c Fl' Hence, applying the Carathéodory exten-

sion procedure on v¢, we can consider v¢ as a measure on TI. It is clear

that v¢ is absolutely continuous with respect to u (v, << u). Hence, (by

¢
the Radon-Nikodym theorem), there exists a u-uniquely dtermined p-measurable
positive function g such that

Ve (R) = Jgx, du
for all Ael'. In particular it follows that

v¢(xA) = fng du
: +

for all Aero. Hence, if t is any step function in Lp then

$(t) = fgt du.

+
Next, if feLp is given, there exists a sequence of stepfunctions t, ,t

11ty
+
in Lp such that 0 < tn 4+ f. Using again the fact that ¢ 1is an integral,

we obtain

$(£) = lim ¢(tn) = lim J'gtn dp = [fg du,
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since gtn 4+ gf. It is now obvious that ¢(£) = ffg du holds for all feLp
+
(see also lemma 2.10). Using lemma 22.8 it follows that ge(Ls) and that

I(g) = og = 0-
Finally, if ¢eL:’c is not necessarily positive, set ¢ = ¢+~¢_. Then
there exists unique gl,gze(L;))+ such that
$7(6) = f£g, qu and ¢ (£) = Sfg, du
holds for all feLp. Hence, setting g = 9,79, we have I(g) = ¢. Thus we
have shown that I maps Lg onto L:,c and that I_1 is a positive map

*

from Lp c into Ls, so the theorem is proved (see theorem 2.7).
’

In the next section we shall compute the first associate space of an

Orlicz space.
23. THE FIRST ASSOCIATE SPACE OF AN ORLICZ SPACE

Let, in this section, & be a fixed Orlicz function. Furthermore, let
p<I> and LQ be as defined in section 20. Since pQ is a saturated Fatou
norm it follows that pé is a saturated Fatou norm as well (theorem 22.4).
In this section we shall show that pé is equivalent to an Orlicz norm
Pyr where VY is an Orlicz function called the complementary Orlicz function
of ¢. To this end, define

Y(x) = sup { xy-®(y): y = 0}
for all x = 0. Observe that
¥(0) = sup {-0(y): y = 0} = ¢(0) = O,
and
¥(x) = {x.0-9(0)} = 0.
Setting, for y 2 0 fixed, fy(x) = xy-®(y) for all x 2 0, we see that

¥(x) = sup {fy(x): y = 0}
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for all x 2 0 and that fy is convex. Hence, ¥ is a convex function on

[0,%). More can be proved.
23.1. THEOREM. ¥ is an Orlicz function on [0,).

Proof. We have to verify the conditions (iii) and (iv) of definition 20.1.

Let x1 5> 0 be such that @(xl) < o, Then there exists an neN such

that @(xl) < nx, . Thus

Y(n) 2 nx1—¢(x1) > 0.
This shows the existence of a number Yy > 0 for-which W(yl) > 0. Next,
observe that there exist real numbers a,b such that a > 0, b £ 0 and
®(y) = ay+b
for all y 2 0 (since & is non-decreasing and convex). Hence, if 0 < x <
a, then
Y(x) = sup {(xy-0(y): y 2 0} <
sup {(xy-ay-b): y 2 0} = -b < eo.
This shows that there exists a number X, > 0 such that W(xz) < o, Thus
condition (iv) of definition 20.1 is verified.

To verify condition (iii), let x_ > 0 be given. First assume that

0

W(xo) < o, Then {fy: y 2 0} is a collection of continuous functions on
[O,xo] which are bounded from above by W(xo). Hence, by 12.H(iv) ¥ is a
lower semi-continuous function on [0,x0]. Since Y is non-decreasing on

[O,XO] it follows that ¥ is continuous from the left at xo. Next, assume

that W(xo) = o, If Y¥(x) = © for some x < x0 there is nothing to prove,

so assume in addition that Y¥(x) < o for all x < x.. Let x, ,x be a

0 177270

sequence in (0,x0) such that X 4 Xg. Since

¥(x ) = sup {fy(xn): y = 0}

and since
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o= Y¥(x ) = sup {f (x): 2 0}
(x,) p{y(o) ¥
and since all fy (y 2 0) are continuous it is clear that ?(xn) 4 o as
n =+ o, Thus the theorem is proved.

The Orlicz space L, (with norm pw) is called the complementary space

¥
of L_.

o
23.A. Exercise. Show that the complementary Orlicz function of V¥ is ]

again (thus the complementary space of LW is LQ).
The preceding exercise allows us to talk about the pair of complementary

Orlicz functions & and Y without mentioning whether VY is derived from

$ or conversely.

LET, FOR THE REMAINING PART OF THIS SECTION ¢ AND Y BE A PAIR OF COMPLE-

MENTARY ORLICZ FUNCTIONS.

Let o and p be the Orlicz function norms derived from ¢ and V¥

] Y

respectively. Furthermore, let pé be the first associate norm of p¢. We
shall show now that p$ and pw are equivalent norms on LW' which implies
that the first associate space Lé of LQ is Riesz isomorphic (in. fact e-

qual) to L, (but not necessarily isometric). First note that for any fcL

¥ ]

we have
p@(f) < 1 4if and only if MQ(f) < 1.

Next, it fbllows from the construction of Y that for all x,y 2 0 we have
Xy < d(y)+¥(x).

Thus, if £feM, then

py(£) = sup {/1£g] du: Ppla) < 1} = sup {/|£g]| au: M (9) <1} <
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sup {M¢(9)+Mw(f)= MQ(g) <1} <

14M, (£) = 1+/Y(IE]) ap.
Hence, if feLw, pw(f) > 0, then

p&(f)/ow(f) < 1+Mw(f)/pw(f)

IA

2,
so pé(f) < ZQw(f). It is clear that this inequality also holds for those
feM for which pw(f) =0 or pw(f) = o, Let us collect the results so far

obtained in a lemma.

23.2. LEMMA. (i) (Young's inequality). For all x,y 2 0 we have
xy < O(x)+Y¥(y).
(ii) (Amemiya's inequality). For all £feM we have
pé(f) < 1+SY(1£]) dAu = 1+Mw(f).
(iii) For all feM we have
Dé(f) < 2pw(f)-

(The lemma also holds with & and Y interchanged).

Next, we shall show that pw(f) < pé(f) for all f£eM. Before doing so
we have to make some observations.

Since ¢ is convex, it follows that the left derivative ¢' of ¢
exists for all points x > 0 for which &(x+e) < © for some € > 0. There-

fore, let the function ¢: [0,2) = [0,°] be defined by

¢(0) = 0,
d(x) = &' (x) for all x > 0, d(x+e) < o for some ¢ > O,
¢(x0) = lim ®'(x) if X, is such that ©&(x) <o for all x < Xqr
x+x0
¢(x) = o for all x > xo,

$(x) = o for all x > 0 where &(x) = oo,
We leave it to the reader to show that ¢ is a non-decreasing left continu-

ous function on (0,o). The function ¢ related to ¥ is now defined sim-
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ilarly.

23.B. Exercise. Let X, 1%, 2 0 be given such that X, < x2 and such that
@(xz) < o, Show that
< - - < .
$(x)) = (2(x,) <I>(x1))/(x2 %) S 0(x,)

A similar result holds for Y and V.

23.3. LEMMA. For all x 2 0 we have x¢(x) = ®(x)+¥(¢(x)) and similarly

with ® and Y interchanged.

Proof. It is clear that 0¢(0) = 3(0)+¥(¢$(0)), so to prove the equality, let

Xx > 0 be given. If x is such that &(x) = o, then also ¢(x) ®© SO we
are done. Next, assume that x is such that ©®&(x)<® but ¢(x) = . Again
the equality is_clear since VY(®) = o, Thus we can assume that both &(x)
and ¢(x) are finite. By lemma 23.2(i) it is clear that
xp(x) = 2(x)+¥(d(x)).
To prove equality, let y 2 0, y # x Dbe given. If &(y) = %, then
yo(x)-0(y) = - < x¢(x)-0(x).
Furthermore, if &(y) < «, then exercise 23.B shows that
yo(x)-2(y) < x¢(x)-9(x)
(consider the cases y < x and y > x). Hence, by the definition of VY,
¥Y(d(x)) = sup {(y¢p(x)-2(y)): y 2 0} £ =x¢(x)-0(x),
so
xp(x) 2 S(x)+¥(d(x)),

which proves the lemma.

Before proving our main theorem we derive some auxiliary results.
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23.4. LEMMA. (i) If ¢ is discontinuous at x0 > 0, then Y(x) < x0 for all
x 2 0. The same holds for Y and ¢.
(ii) If Y 4is discontinuous at xo >0, and if fegw, then

'
lell, < xgos (£).

Proof. (i) By the definition of ¥ it follows that ¥(x) < X % for all
x = 0. Hence, since VY is convex, we obtain Y(x) < xO for all x = 0.
(ii) Let fELIm be given. If "f"w = 0 the statement is clear, so assume
that 0 < €]l < =. Now, let € be such that 0 < ¢ < [l£]  and define
A= {xex: |[f(x)]| > "f":re}.

Then u(A) > 0. Setting fe = fyx and using part (i), we obtain

A
pg(£) 2 p;p(fe) = sup {flfegl du: pg(g) < 1} 2

sup {flfegl dp: xoflgl au < 1} 2

sup {(lell ~e)rlgl au: x /lgl an < 1} = x5 el -e).

This holds for all ¢, 0 < e < [I£ll, so Xy () 2 el .

23.5. THEOREM. We have pw(f) < pé(f) for all £feM. The same holds if &

and Y are interchanged.

Proof. Let feM be given. If pé(f) =0 or if pé(f) = o there is nothing
to prove, so assume that 0 < pé(f) < o, We divide the proof into two parts.
(a) Assume that |[£f| is bounded (i.e., ||f||_°° < ) and that £ = 0 out-

side a set Ael', u(A) < o, Moreover, let e > 0 be given. Next, introduce
fO by setting

fO(X) = w(|f(x)l/(pé(f)+a)).
It follows from lemma 23.4 that "fo"w < o (oconsider the cases Y continu-
ous and Y discontinuous). Also, since f0 = 0 outside A, it follows that

MQ(EO) < oo (if & is continuous this is clear, if & is discontinuous the
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statement follows from lemma 23.4). Next, let geM be such that M¢(g) < oo,
If Mé(g) < 1, then p¢(g) < 1, so by H6lder's inequality,
<p! < p! .
Il£gl au < P (£)py(g) < py(f)
If 1 < MQ(g) < o, then
< =
Mé(g/MQ(g)) < Mg (9)/My(g) =1
by the convexity of ¢ and the fact that ©&(0) = 0. Hence
< '
Slfgl ap < Py (E)M(9)
in this case. Setting Mé(g) = max {MQ(g), 1} it follows that
< v '
Jlfgl au < pp(£)M(g) .
This inequality holds for all geM satisfying MQ(Q) < o, Taking g = fO,
and using lemma 23.3, we obtain
1 - ' <
Mw(f/(DQ(f)+€))+M®(f0) f[ffo|/(0¢(f)+8) du <
) ) L} < 1 f .
oé(f)MQ(fo)/(DQ(f)+e) M ( O)
Thus
' + < M! - < 1.
Mw(f/(pé(f) €)) MQ(fO) MQ(fO) 1
Hence pw(f) < pé(f)+e. This holds for all ¢ > 0, so pw(f) < pé(f).

(b) Let feL!

® be arbitrary. Now, since u is o-finite, there exists a

sequence Xl,X

all n. Defining

AREED in T such that Xn 4+ X and such that u(Xn)<oo for

£ = sup {nxx , |f|xX }
n n
for all n it follows that O < fn + £ as n >, so, since pé and p
are Fatou norms, we obtain
= i < i ! = M
pw(f) lim pW(fn) < 1lim p@(fn) p¢(f)

(by part (a)). Thus the proof is complete.

The following corollary is now immediate.
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23.6. COROLLARY. Let feM be given.

(1) pw(f) < pé(f) < Z.DW(f)' Thus, the norms pé and p are equi-

¥

valent and Lé = LW when regarded as point sets.

(ii) If 0 < p&)(f) < e, then M(p(f/D;p(f)) < 1.

The same holds with & and Y interchanged.

We have shown that the first associate space of L, (with norm p¢) is its

o

complementary space L  (with norm p! equivalent to pw). As customary,

Y ®
from now on we denote the Fatou norm p$ by "'"W (and p& by "."Q). It

is also clear that the first associate space of “LW (with norm pw) is now

its complementary space L, (with norm "."¢).

o

Once more consider the Orlicz space L® but now endowed with the norm
"'"@' It is natural to ask what the first associate norm "-"é of “'“®
looks like. Note that since "'"¢ is equivalent to Py it follows that

"."é is equivalent to pé = “'"W and hence also to p Moreover, since

y*
"'"@ = p& it follows that "."é = p;, so by theorem 22.2(ii) it follows

IA

that ".“é . However, it can be shown that "."é equals pw (and hence

Py

also "."& ). This will be done in section 26.

Pe
24. THE DUAL OF AN ORLICZ SPACE

*
of a given Orlicz space L.

In this section we study the dual L¢ ®

Furthermore, applications for Lp—épaces will be presented.

Throughout this section ¢ will be a fixed Orlicz function, p¢ and

*
L¢ will be as before. Moreover, L@ will denote the dual space of L® and

*
the norm in Lq> will be denoted by p¢. As observed in section 11 we have
L* L* L*
= + .
[} ¢,c 9,s
n

*
Moreover, by theorem 22.9 we have L¢ c = L&, so if ¥ is the complementary
’
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e

|-

*
function of ¢, we obtain L L where the norm in LW is now ". y

o,c b4

*
Thus we have completely characterized the integral part of LQ. It is not

* *
so easy to characterize the singular part L¢ s of L¢. However, there is
7

something we can say.

%
24.1. THEOREM. L@ is a semi-M-space (so, by theorem 16.15, L@ s is an ab-
- ’

stract L-space).

+ . _ _
Proof. Let fl,f2€L¢ be given such that pé(fi) = pQ(f2) 1. Furthermore,
+
- i > .
set g f1Vf2' and let 9yr9yre--e in L@ be such that g 9, v+ 0. We

have to show that 1lim pé(gn) < 1. To this end, note that M¢(f1) <1 and
<
M¢(f2) < 1. Next, let
= s > .
A = {xeX: fl(X) > fz(x)}
Then
= + <
Mé(g) f¢(f1xA) du f@(fzxAc) du
<
M¢(f1) + MQ(fz) < 2.
Therefore, by Lebesgue's theorem on dominated convergence, we have
lim Mé(gn) = 0.
Hence, combining lemma 23.2(ii) and theorem 23.5 with this result, we obtain
i < i =
lim pé(gn) < 1+lim Mé(gn) 1,

which is the desired result.

Remark. If L<I> is endowed with the norm "‘”@' then it follows similarly

as above that L® is a semi-M-space as well. The easy verifications are

left to the reader.

* n, *
=L (L¢ pro-

Next, we shall study under what conditions we have L@ v

*
vided with the norm p(I> and Ly provided with the norm "'"W)' By corol-
lary 11.6 we have L. 1, (XL ) if and only if L% =1 . Th h
y . e e o= Ly Gy o if and only i s = Lpe us we have
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to find conditions so that LZ = L.. Before solving this problem, we first

[}

note the following.

24.2. LEMMA. Assume that & is continuous. If Ael is such that u(a) < oo,

then erLz.

Proof. Let Ael' be given such that u(A) < o. In the proof of lemma 21.5

+
we have shown that erLQ. To show that erLg, let € > 0 be given and let
+
cee. i >f ¥+ 0. L i
fl'fz' in L¢ be such that xA n 0 etting
A = {xeA: £ (x) > e}
n n
it is clear that
£ =X, *eX, ¢
n An An
for all n. Hence
<
oq,(fn) < p¢(xAn)+ep¢(xAc).
n
Now note that lim u(An) = 0 since u(A) < @ and since fn + 0. Hence,
lim 94,()(A ) =0
n

(using the formula for OQ(XA ), derived in lemma 21.5). Here we use the
continuity of ¢, which implies that ¢-1(x) + ® ag x = %, Thus
i < =
lim p¢(fn) < glim p¢(xAg) epQ(xA).

This holds for all ¢ > 0, so lim p@(fn) = 0. Hence erLa.

Since LZ is an order ideal of L@ it follows that if £feM is a

bounded function satisfying u{xeX: £(x) # 0} < o, then feLg provided

that ¢ is continuous.

24.3. DEFINITION. Let Xy 2 0. The Orlicz function ¢ is said to satisfy

the Az(xo)—condition, whenever there exists a constant M > 0 such that

®(2x) < Mé(x) for all x > xo.
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We note that if & satisfies the Az(xo)—condition for some x. 2 0, then

0

® has to be continuous. Also, since ¢(0) = 0, ® is convex and increasing,
the constant M occuring in the definition satisfies M 2 2. Let us present

an example.

24.A. Example. Let 1 < p <o and set &(x) = x* for all x 2 0. Then ¢
is an Orlicz function (see 20.B). Also ¢ satisfies the A2(O)—condition.
Indeed,

o(2x) = 2P%° < Mo(x)

for all x =0 if M = 2P41,

Next, we show the usefulness of the Az(xo)—condition.

24.4. THEOREM. (i) If ¢ satisfies the A,(0)-condition, then LZ = L.

(ii) If u(X) <o and if & satisfies the A2(xo)—condition for some

a
= L_.

x. 2 0, then L<I> ®

0

+
Proof. (i) Let feL<I> and € > 0 be given. We shall prove the existence of

a

a function £ €L
e ¢

such that pQ(f—fE) < €. Since this can be done for all

a
=L

e > 0 and since La is norm closed it follows then that feLg, so L<I> ®°

(]

a
To construct fEeL¢, let X,,X,,.... be a sequence in I such that

1772
Xn 4 X and such that u(Xn) < o for all n, and define
£ = (fx, )A(nx, )
n Xn xn
for all n. Since & satisfies the A2(O)—condition it follows that ¢ is

continuous, so by lemma 24.2 we have fneL: for all n. Furthermore, it is

clear that fn 4+ f. Now we may assume that pQ(f) > 0, otherwise feLZ so

we have done. Note that f—fn ¥+ 0 and that

0 < (f—fn)/p¢(f) < f/p¢(f)
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for all n. This implies that
- ->

M¢((f fn)/OQ(f)) 0 as n > o
since MQ(E/pQ(f)) < 1 < . Next, choose a positive integer k such that

p¢(f)2_k <.
Since ¢ satisfies the A2(0)—condition there exists a constant M > 0
such that ©(2x) < M®(x) for all x = 0. Hence

k k
< 1li — < i - £)) =

0 < lim M/ (27 (£ fn)/pQ(f)) Mlim Mg ((£ fn)/p¢( )) = 0,

so there exists an n_ such that M®(2k(f*fn)/p¢(f)) <1 for all n 2n .

0 0
Taking £ = f , we obtain
€ n,
-k
- <
Py (E fe) <2 pQ(f) < €,

which is the desired result.

(ii) Let feL+ and € > 0 be given. As in the preceding part we shall

(]
prove the existence of a function feeLg such that p®(f—f€) < g. To this
end, note that there exist constants x0 20 and M > 0 such that &(2x)

< MO(x) for all x 2 xo. Furthermore, it is obvious that if we set

fn(x) = £(x) if f£(x) < n ; fn(x) =0 4if f£(x) >n

for n=1,2,...., then anLZ since U(X) <« and since ¢ is continuous
(lemma 24.2). Next, choose an integer k 2 0 such that

-k
2 7p,(5) <&y

and let n0 be an integer such that n0 > x0p¢(f). Finally, note that if

n = n0 and if x is a point at which £ = fn' then

- >

(£ fn)(x)/DQ(f) z Xy
Now, as in part (i) of this theorem, we have

lim MQ((f—fn)/pQ(f)) = 0.
Hence

0 < lim M (2k(f-f Vo, (£)) < M lin M ((£-£ )/p,(£)) = 0O

[ n ] ] n ] !

since (f(x)—fn(x))/pm(f) > x0 if £ # fn and n 2 no. Thus, similarly as
in part (i) it follows that p¢(f-fn) < e if n is large enough.
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The following corollary is now immediate from the preceding results.

e

*
24.5. COROLLARY. (i) If ¢ satisfies the A2(O)—condition, then LQ

(the norm in L being ”'"W)'

¥

(ii) If u(X) <o and if & satisfies the Az(xo)—condition for some

*
> L 1 L 1 1 . .
X, 0, then s = Ly (the norm in L, again being I “W)

In the following exercise we state that the Az(xo)-condition is not
only sufficient but for many measure spaces also a necessary condition for

a
L¢ = L® to hold.

24.B. Exercise. Let (X,I',u) be an atomless measure space (i.e., for any
Ael', u(A) > 0 there exists a set Bel', B<c A, 0 < pu(B) < u(a)). Assume
that ¢ is such that L; = L@' Show the following

(1) if uY(X) <, then ¢ satisfies the Az(xo)—condition for some
(ii) if wu(X) = o, then ¢ satisfies the A2(O)—condition.

Next, we consider the Lp—spaces. To this end let 1 < p < o be given.
Then Lp is generated by the function norm "'"p' defined by
lell = {r1€1® auit/®
b
for all f£feM. As shown in example 20.B we have "'"p = p(I> if we define
d(x) = ¥ for all x 2 0. In view of example 24.A and corollary 24.5 we
*
now have Lp = LW' where Y is the complementary function of ¢ and LW

is endowed with the norm "'"W' Let, from now on in this section ©&(x) = xp

for all x 2 0. We shall compute the complementary function .

24.6. LEMMA. (i) If p=1, then Y¥(x) =0 if 0 <x <1, ¥(x) = o if
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x > 1.
L. l-qg -1 q
(ii) If 1 < p <, then ¥(x) =p “q 'x for all x 2 0, where q

-1 -1
satisfies p +q = 1.

A

Proof.(i) We have &(x) = x for all x 2= 0. Hence, if O x <1, then

¥(x) = sup {(xy-y): y20}=0

and if x > 1, then
¥(x) = sup {(xy-y): y 2 0} = e,
(ii) Let 1 < p < e. Then ¢(y) = pyp—l for all y 2 0. Let x 20 be
given, and .set
y = G/p /Y

Then ¢(y) = x, so, by lemma 23.3,

/(-1 )p/(p-l) -

¥(x) = ¥Y(¢(y)) = yo(y)-o(y) = (x/p) - (x/p
(/) (x/p) %,

where q = p/(p-1).

It follows that for 1 < p <o Y¥(x) = ox (where c¢ > 0 is some con-

¥

since "." and "." are both Riesz norms on L
¥ q

stant). Hence, as point sets, the spaces L and Lq are equal. Moreover,

(or L ) under which L
¥ q ¥
is a Banach space it follows that "'"W and ﬂ."q are equivalent norms

(theorem 10.3(ii)). We shall show now that these norms are even equal. First

we state the classical HOlder inequality.

24.7. THEOREM. (Holder's inequality). Let 1 < p < e be given and let q
be defined by p_1+q_1 =1 (g@q=wif p=1,q=1 if p = o). Then for all
f,9eM we have

Sl£g] au < ll£] .
gl au < |l |p "g"q
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For a proof we refer the reader to 14.
24.8. THEOREM. (i) If 1 <p < ® and if ®(x) = x* for all x 2 0, then
llel = gl for ai1 fem.
¥ q
(ii) If &(x) = x for all x 2 0, then "f“w = ”f"w for all feM.
(iii) If ®(x) = 0 for 0 <x <1, &(x) =« for x > 1, then ¥(x) = x

for all x 2 0 and "f"W = "f"1 for all feM.

Proof. Let 1 < p <® and let g be as in theorem 24.7. In view of the
examples 20.B and 20.C we now have
= . < <
"f"W sup {[|£g]| du: "g"p <1} < "f"qr
where @(x) = x* for 1 <p<o and ®(x) =0 0<x<1, ¢(x) = x > 1
if p = o, Now we shall prove the separate parts.
(i) Let £feM be such that 0 < Ilfllq <0, and set
g-1 g-1
= f .
g9, = (I£1% "sgn f)/"fllq

Then

I®
P
so "goup = 1. Hence

g ll- = flgolP aw = (f1£1? du)/"fﬂg =1,

el > riggyl aw = (1£1% an/Nel3 < bl
Thus IIf"w = IIf"q for all feM satisfying 0 < "fllq < . Since "‘"w and
”'"q are equivalent it is clear that this equality holds for all f£feM.

(ii) By lemma 24.6(i) we have

¥Y(x) =0 if 0 <x<1; V¥(x) = if x > 1.
Thus, by example 20.C, pw is now equal to "."w. Hence "'"W and "."m
are equivalent Fatou norms. Moreover, by what was shown above we have "f"W
< ||f||m for all £feM. To prove the converse inequality, let £feM be given
such that 0 < "f"a)< o, Furthermore, let e€eR be such that 0 < ¢ < "f"w.

Next, let Ael' be defined by
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A= {xex: [|£(x)]| > "f"“;e}.
Then uW(A) > 0, so A contains a subset Bel' satisfying 0 < u(B) < oo,
Next, set 95 = (u(B))_le. Then obviously p@(go) = "g0"1 =1, so

lely = sifg | au > wEn el ~eruem = el -e,
since |£] > "f"“;e on the whole of B. This holds for all €, 0 < g < “f"cc
so it follows that "f"oo = “f“W' if 0 < ||f||°° < ©, Again it is clear that
we now have "f"W = "f"m for all f£feM.

(iii) It is easily computed that V¥(x) = x for all x 2 0 in this case,
so that part of the proof is left to the reader. To show that "f"W = ||f||1
holds for all feM, note already that "f“W < ||f||1 by what was observed at
the beginning of this proof. Also it is clear that “'"W and “."1 are e-
quivalent norms. To show that we have equality, let f£feM be given. Note
that p¢(xx) = "xx"°° =1, so "f“? > flflxx dy = "f"l, which completes the

proof.
Combining all preceding results, we obtain

24.9. COROLLARY. Let 1 < p <o and let q be as before. Then
* N
1) L =L
(1) p,c qr
ii) If 1 < then L =1 21
i < < oo en = o= .
(i1 P 4 D p,C q
(the space Lp is provided with the "."p—norm and Lq with the ".“q—

norm) .

Thus, for 1 < p < © we have completely characterized the dual space LP

*
of Lp. In the next section we shall describe Lm.
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25. THE DUAL SPACE OF Qm

* * *

* N
We have already seen that L =L +L and that L = L,. In this
(-] ®,c ",g ©,c 1

*
section we shall present a characterization of the space L_ <" First we
r’

*
shall show that yw s generally contains non-trivial elements.
14

25.1. THEOREM. Assume that (X,T,u) is such that there exists a sequence

*
A /A ,.... in T such that A ¥+ @, u(A ) >0 for all n. Then L 2
1772 n n ®,s

{o}.

Proof. It suffices to show that Li # L. To this end, let Al'AZ""' in

I' be as described in the theorem. It is clear that xA €L, for all n.

Moreover, X 2 x

n + 0 as n > in Ls and "XA ||°°=1 for all n.

1 An

a
Thus Xp €LeoiXp th.
1 1
By means of an exercise we give necessary and sufficient conditions for
*
L = {0} to hold.
®,5
25.A. Exercise. We recall that a non-null set Ael' is called an atom if
B ¢ A, Bel' implies u(B) = 0 or u(B) = u(A). Show that the following
statements are equivalent.
!
(a) Lw,s = {0}.
a
(b) L, =L
(c) dim L < oo,
[=-]
(d) T consists of a finite number of atoms and possibly a p-null set.

(e) There does not exist a sequence Al'A in T such that

greens
An v 4, u(An) >0 for all n.
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FOR THE REMAINING PART OF THIS SECTION WE SHALL ASSUME THAT Li z Lm.
It follows that none of the statements (a), (b), (c), (d) or (e) of 25.A is
satisfied.
To compute L: we introduce the following. By B we shall denote the

collection of all real-valued set functions v on T satisfying

(i) V(A1UA2) = v(A1)+v(A2) if A, M, = a3, A1'A2€r (i.e., v is additive),

(ii) sup {|v(a)|: Ael'} < o (i.e., v is bounded),

(iii) p(A) = 0 implies Vv(A) = 0 (i.e., v << y).
It is easily shown that B, endowed with its obvious addition, scalar multi-
plication and partial ordering is a Riesz space (see also 1.H). Since VveB
implies |v|eB, so |v|(X) < o, we can define a norm on B by setting

pv) = |v](X)

for all wveB.

25.B. Exercise. Show that p is a Riesz norm on B and that B is an L-

space (in particular B is a Banach lattice).

Next, the subset CA(B) of B is defined by

CA(B) = {veB: v(UA ) =% v(A ) whenever A, ,,A ,.... is a
n n 1772

pairwise disjoint sequence in T},

so CA(B) consists of the o-additive elements of B. We leave to the reader

to show that CA(B) is a Riesz subspace of B. More can be said.

25.2. THEOREM. (Radon-Nikodym). L - CA(B) (as normed Riesz spaces).

1

Proof. Let feL1 and define

vf(A) = ffo du
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for all Ael. It is clear that vfeCA(B) and that p(vf) = Hf“l. Moreover,

+ +
if feL, then v_eB .
1 £
conversely, if veCA(B) 1is given, then v is actually a real measure
on T that is absolutely continuous with respect to u. By the theorem of
Radon-Nikodym there exists an f\’eL1 such that

v(a) = £ x, du

n
for all Ael'. This shows that L1 = CA(B) as normed Riesz spaces.

* *
Thus, a part of yw (viz. L, c) can be considered as a Riesz subspace of B.
’

*
It is our purpose to show that gm = B when considered as normed Riesz spa-
* +
ces. To this end, let ¢€(Ia) be given and set
v¢(A) = ¢ (xy)

+
for all Ael'. It is clear that v¢eB . Moreover,

25.C. Exercise. Show the following.

*
(i) If ¢e(Lw c)+' then v e(CA(B))+. Hint: use lemma 7.6.

¢
(ii) v = av for all aeR+ and for all ¢e(L*)+.
ad oo’
(158) vy = vbv, for all ¢ve (L:)+.
(iv) If 0 < ¢ < ¢ 1in Q:, then 0<v, <v_ in B'.
. .. ¢ Y
W) p(v,) = lloll, for all ge)”.

%k
It is immediate from this exercise that if we define the map I: yw + B by

I(¢) =wv v

ot T
* *
for all ¢€Lw, then I is a linear positive norm preserving map from Qw

*
into B such that I(L ) c ca(B).
©,C

* .
Next, we show that the image of L, under I is the whole of B. To

this end, let T be the collection of all step functions in M.
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25.D. Exercise. Show that T is an order dense Riesz subspace of L

n
Letting veB, teT, t = L 3, Xy v define
n ! i

=1z v(a,).
¢v(t) z a; ( i)

Then ¢v is a linear functional on T (it is easily seen that ¢v is in-

dependent of the choice of the representation of t). Moreover,

n n

n
o eyl = 13 av@dl <3 lalbvapl < lel § ivapl <

el vl = Hell_p vy,

In

* * +
so ¢veT and “¢vﬂm p(v). It is easily seen that if veB , then
*
!|¢vll°° =p(v),
*
since "¢v"w = ¢v(xx) = v(X) = p(v) in that case. In the following exercise

we present some additional properties of ¢v'

25.E. Exercise. Show that
+ * +
(i) veB implies ¢v€(T ) .

(ii) ¢_ = a¢ , ¢ = ¢ +¢ for all aeR and for all v,v,,v_eB.
av v v vy 1772

. vty 1
(iii) H¢va = p(v) for all veB.

*
Again let veB and consider ¢veT . Since T is norm dense in L
it follows that ¢v has a unique extension to the whole of L, Denoting
E %
thi tension again it follow L d =p(v).
is ex g by ¢v lows that ¢ve ., an "¢v“w p (V)
Since T is also a Riesz subspace of L, it follows that if ¢v > 0 holds
with respect to T, then ¢v becomes a positive linear functional on L
(after extension), since any positive linear functional has a positive ex-
%
tension (theorem 6.9). Next, define the map J: B -+ L by setting
J =
(v) ¢v

for all veB. From the above results it is clear that J is a positive

*
linear norm preserving map from B into Lw. It is now easy to prove the
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main result of this section.

*
25.3. THEOREM. L = B.

(=]

Proof. In view of theorem 2.7, it suffices to show that I and J are

*
each other§ inverses. To this end, let teT and ¢€Q” ~be given. Then

= = E =
{I(x ) }(x) ¢(\)¢)(t) : aiv¢(Ai)
g 2,90 ) = ¢ & 2y ) = (0
where t = b aixA . Thus J(I(¢)) and ¢ coincide on T and hence on L.
1 i

Since both I and J are norm preserving the statement is clear.

* * *
As observed before, we have L =L +L and also
(-] ©,c ©,s
* N n
Lw’c =L = CA(B).
* *
Thus, since L°° c is a band in Lm it follows that CA(B) is a band in
’

B. Moreover, after identifications, we have
* d d
Qw,s = (Ll) = (CA(B)) .
Elements \)e(CA(B))d are sometimes called purely finitely additive measures
and the set (CA(B))d (which is a band in B) is denoted by PFA(B). Collect-

ing the results, we have proved the following:

. * ’\I
(i) L = B.

e

(ii) L'i

win . 2 cadn? = rra).

*
L 2 ca(B).
©,c

(iv) B = cA(B)+PFA(B) (Yosida-Hewitt decomposifion of a finitely additive

measure into a o-additive and a purely finitely additive measure).

We make a final remark concerning these representations. Let p be a

*
saturated function norm. Then Lp e = Lg by theorem 22.9. Thus we have
’
*

characterized the integral part of Lp’ Similarly as above, it is in many
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%k
cases possible to represent Lp g as a band in PFA(B). In fact, the follow-
’

ing can be proved.

*
is isometric and Riesz isomorphic to a band in PFA(B)

L
p,s
if and only if Lp is a semi-M-space.

It is beyond the scope of this book to present the proof of this theorem.

a
Finally, we recall that if L is a normed Riesz space, then L de-
. o
notes the set of all elements having an absolutely continuous norm and L
denotes the set of all absolutely continuous elements (see sections 8 and
: o a o a
11). In section 11 we have shown that always L c.L and that L =L
whenever L 1is a Banach lattice (but La = La can also occur if L is
not a Banach lattice). We are now able to present an example of a normed
Riesz space for which La is a proper subset of La.

k
25.F. Example. Let (X,T,u) be a measure space such that L, s z {0} (for

’
instance, take X = [0,1] provided with Lebesgue measure). Next, define for
all feM

p(f) = llell, e NEll <o p(f) = if fgll_ = e
(Here it is also assumed that u(X) < ). It is clear that p is a function
norm on M and that Lp = L°° when considered as point sets. Now note that
Lp is norm and order dense in the Banach lattice L1. Hence

L =L, ,=1L.
Since LT = L1 it follows that LZ = Lp has to hold as well.

Next, consider Lp (the order dual of Lp). Since L, is a Banach lat-

* ~
tice it follows that L= Lw. Now, the norm on Lp does not influence the

order dual of Lp. Thus, since L = L°° as point sets (and hence also as
~ ~ *
Riesz spaces), we obtain Lp =L,= L, Therefore,
*
=1 =12=°@w )=z =1» =12



213
26. THE SECOND ASSOCIATE NORM

Throughout this section let p be a fixed saturated function norm on

M. Furthermore, let p' and p be its associate norms (see theorem 22.2

(ii)). As proved in theorem 22.2(ii) we always have p" < p. In this sect-
ion we shall show that if p .is a Fatou norm, then p = p". Since p" is
a Fatou norm it follows that the converse statement holds as well. A first

step is the following.

26.1. LEMMA. Assume that p is a Fatou norm and assume that p(u) = p" (u)

+
for all ueM satisfying "u"°° < o, u{xex: u(x) # 0} <. Then p = p

. +
Proof. It suffices to show that p(f) = p"(f) for all £feM . Therefore, let

+
feM be given. Now, let Xl,xz,.... be a sequence in I such that Xn + X

and such that u(xn) < o for all n. Defining
£ = (fxx )A(nxx )
n n
for all n it follows that 0 < fn 4+ £. By assumption we have p(fn) = p"(fn)
for all n. Hence, since both p and p" are Fatou norms,

p(f) = lim p(fn) = lim p"(fn) = p"(f).

In the following lemma L, will be as defined in example 20.B (p=2)

2

and the norm in L2 will be the "."z-norm.

26.2. LEMMA. If p 1is a Fatou norm, then U defined by

U= {feLz: p(f) < 1}

is a closed convex subset of L and if f£,gel

9 ; geu, 0 < |£] < |g|, then

2
feU.
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Proof. Since U is the intersection of L2 with the unit ball of Lp, U
is convex. To show that U is norm closed in L2 it suffices to show that
+ . + ;
if feL, and f,f,,.... in U are such that lim IIf—fnlI2 = 0, then
feU. Setting gn = f/\fn for all neN it follows that
< - = f-(£AEf < |£-£
0 | £ gnl ( n) | n'
for all n, so lim ||f—gn||2 = 0. Since 0<g <f forall n this implies
that £ = sup {gn: n=1,2,...}. Using the Dedekind completeness of L, it
follows that we can define hn = inf {gk: k 2 n} for all n and it fol-

+
lows that hn 4 £ in L2. Now note that

0<h <g =<f

+

for all n, so p(h ) <1 and h €L
n n 2

+
, SO hneU for all n. Moreover,
since p 1is a Fatou norm

p(f) = lim p(hn) <1,

+
so feU . The rest is now obvious.

Before proving our main result we note the following. Let U ¢ L2 be as in

+, fOKU. By the Hahn-Banach theorem there

the preceding lemma and let f0€L2

*
exists a functional ¢eL_. such that |¢(u)| < 1 for all ueU and ¢(f0)

2
%
> 1. Observing that L2 2 L2 (corollary 24.9(ii)), it follows that there
exists an heL, such that ¢(f) = /fh du for all feL,., so |Suh dul| <1

2 2

for all wueU and |ff0h du| > 1 for this function heL,. Setting v0=|h|

2
and observing that U has the property that ueU implies |ulsgn h € U,

we obtain already that J’Iulv0 dy £1 for all ueU and ffov duy > 1.

0
26.3. THEOREM. The following statements are equivalent.
(a) p is a Fatou norm.

(b) p = pn.
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Proof. (i) (b) = (a). Obvious.

(ii) (a) = (b). Let uoeM+ be given such that nuouw < © and such that

u{xex: uO(x) z 0} < oo If p(uo) <1 then clearly p"(uo) < 1. On the

other hand, if p(uo) > 1, let UcL_. be as above. Then uOZU. Now, let

2

voeL2 be such that flu]vo dy £ 1 for all wueU and fuovO du > 1. It

will be shown that flflvo du-£ 1 for all feLp, p(f) £ 1. To this end, let
f be such that p(f) <1, and let Xl,xz,.... be a sequence in T such
that Xn + X, u(Xn) < o for all n. Setting

£f = [£]A

n I ] nXX

n

for all n, it follows that fneU for all n and that fn 4+ |£]. Hence

SI£lv_du = lim /£ v du < 1.

0 n o

This implies that

1

0 < p'(vo) sup {f|f|vO du: h(f) <1} < 1.
Now, by theorem 22.5,
< ] S S n L}
0<p (vo) 1< fuovo du < p (uo)p (vo),
so p“(uo) > 1. Thus we have shown that p"(uo) <1 if and only if p(uo)
< 1. It follows that p"(u) = p(u) for all ueM such that llull_ <,

u{xex: wu(x) # 0} < o, Hence p" = p by lemma 26.1.

As an application we present the following theorem.

n % *
26.4. THEOREM. Let p be a saturated Fatou norm. Then Lp = (Lp et
’

*
Proof. We have L = L'. Hence
pP,C P
* * n, * n,
(L ) = (L') = (L") =1L"=1L.
p.,c c pc o] [ P

Theorem 26.3 has also applications in the theory of Orlicz spaces.
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26.5. THEOREM. Let ® and Y be a pair of complementary Orlicz functions.

. (- > -
@ Il = o7 L0y = o,

(ii) If L@ is provided with the norm "’"@ and LW with the norm
* N
=L .

DW, then L@,c y

Proof. It suffices to show that ".Hé = pw. We know already that p@ = ".“¢.
is Fatou,

—_— " - |
Dw = Py J."

Hence, since pw
P

5
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