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PREFACE

In this treatise optimality of Likelihood Ratio (LR) tests in exponen-
tial families is investigated with respect to two criterions. The first
criterion concerns the shortcoming of a test. For simple null hypotheses
OOSTERHOFF and VAN ZWET (1970) have studied the shortcoming of the LR test
in the multinomial case. Their results can be extended both to composite
null hypotheses and to much more general classes of distributions: exponen-
tial families. In' this study testing problems are considered where the level
of significance tends to zero as the sample size, n, tends to infinity.

It turns out that under some conditions the LR test is a good test in the
sense that its shortcoming tends to zero uniformly over parts of the param-
eter space.

For the second criterion the concept of Bahadur deficiency is intro-
duced. Roughly speaking a sequence of tests is deficient in the sense of
Bahadur of order O(hn) - or o(hn) - at some parameter point 6 if the addi-
tional number of observations necessary to obtain the same power at 6 as
the optimal test is of order O(hn) - or o(hn) -; here hn is a positive
function on N. In BAHADUR (1971) it is shown that under rather strong
conditions the LR test is efficient in the sense of Bahadur, which corre-
sponds to Bahadur deficiency of order 0(n) as n + «, This result may be
regarded as a "first order" result. A deeper analysis yields that in typi-
cal cases the Bahadur deficiency is in fact of order 0(log n). The intro-
duction of Bahadur deficiency in cases of optimal Bahadur efficiency runs
parallel to the consideration of Pitman deficiency introduced by Hodges
and Lehmann.

A basic tool in both approaches to optimality are theorems on proba-
bilities of large deviations. An important part of this study is devoted to
the derivation of such results.

It is a pleasure for me to thank prof.dr. J. Oosterhoff for his stimu-
lating advice and his continuous interest in this work.

I thank the Mathematical Centre for the opportunity to publish this
monograph in their series Mathematical Centre Tracts and all those at the

Mathematical Centre who have contributed to its technical realization.
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CHAPTER I

INTRODUCTION

1.1. CLASSICAL RESULTS ABOUT THE LIKELIHOOD RATIO TEST

In this section we present a brief survey of classical results about
likelihood ratio (LR) tests in general testing problems. We begin by intro-
ducing some notation that will be used throughout this study.

Let X be a set of points x and B a o-field of subsetsof X. 0 is an index

set of points 6 and, for each 6 in 0, P, is a probability measure on B. The

6
pair (X,B) is to be thought of as the range space of an observation X whose

distribution is determined by the unknown parameter 6. Let S = X1 x X2 X ...
= {(x ,x ,...)i %, € Xi' i=1,2,...} be the infinite product space of a

1 2 1
sequence of replicates Xi of X with product o-field 4. On (5,4) P6 will

denote the product measure. Define S(s) =s amﬂxn(s) =xn fors = (xl,xz,...) €S
(n=1,2,...). Then xl’x2"" are independent identically distributed (i.i.d.)
random variables with distribution Pe. The family of distributions {Pe;eee}
of x1 is assumed to be a dominated parametric family with densities

{pe(x);ee@} with respect to a o-finite measure p.

For the testing problem of a simple hypothesis 6 = 60 against a simple
alternative 6 = 61 with available observations Xl""'xn NEYMAN and PEARSON
(1928,1933) have determined a most powerful (MP) test by using a test
statistic based on the ratio of the densities of Xl,...,Xn under 60 and 61.
They also presented in [16] a natural extension of this test to composite
hypotheses: the LR test. First let us describe this LR procedure.

LetC%)be an arbitrary subset of O. The size-o LR test of the null
hypothesis 0
defined by

o against 91 =0 - OO, based on n observations Xl""'xn’ is

+ 11

1 >
(1.1.1) ¢iR(s) = qe_ if TrI;R(s) =4,
0 <



where
LR LR

(1.1.2) Tn (s) = Tn ((xl,xz,...)) =

supg .o Moy Pgg (x5)

-1 f 0°°0
= -n logl nn

SUPgc Mi=1 Py (*;)

with the convention TiR(s) = 0 if the numerator and denominator in (1.1.2)

are both 0 or ». The constants dn and Gn appearing in (1.1.1) are deter-

mined by

supe 0 Ee ¢2R(S) = a, 0O<aoa<1l1l, n=1,2,... .
00 0
It will be assumed that the densities pgy are so smooth that ¢§R is a meas-
urable function on (S,4). Conditions to ensure this property are given by
WITTING and NOLLE (1970) p.93. Note that the test statistic TER is related
to the maximum likelihood estimators of 6 over the spaces 0 and 00. Hence
one would expect the properties of the test statistic to be intimately tied
up with properties of maximum likelihood estimators.

Intuitively ¢§Ris a good test. For, if we are comparing the "plausibil-
ity" of one value of 8 to another, given the sample (Xl""'xn)' we would be
inclined to choose that value of 6 for which the density has the larger
value. Thus, if we can obtain an appreciably larger‘value of the density if
6 runs through the entire parameter spacé © than we get by varying 6 over
the set OO, our intuition will assess the evidence as strongly in favour of
the alternative hypothesis.‘However, there are examples where ¢ﬁR is less
powerful than the trivial test ¢ = o (cf. WITTING and NOLLE (1970) p.93).

Now suppose O c ngg. If @0 is a single point or a h-dimensional linear
subspace of O (h <k) WILKS (1938) has derived under fairly general condi-
tions that for each 60 € GO the asymptotic distribution of 2nTiR is a chi-
square distribution with k or k-h degrees of freedom, respectively. Slightly
more general results have been derived by WALD (1943) and can also be found
in WITTING and NOLLE (1970) , pp.94-96. (Note that Witting and N&lle incor-

rectly suggest that under their conditions also supeoseo PeO(ZnTi )

R

>
) “X k-h;1-a
> o as n »> @, where Xk—h-l—a is the upper a-quantile of a chi-square dis-

. . . ' . LR ,
tribution with k-h degrees of freedom.) Moreover, Wilks proved that ¢n is
a consistent test if the null hypothesis is a lineay subspace of 0.

For simple hypotheses 0_ = {eo} WALD (1943) proves the following

0



optimality properties of LR tests. Let

A

. —-— ' - = =
n {6; (6 60) J(e 8, an}, n=1,2,...,

where %3& nan =a, 0 < a< =, and J is the Fisher information matrix at 90.
Then the LR test has asymptotic best average power (with respect to an
appropriate weight function) over the surfaces An of contiguous alternatives.
Moreover, the LR test is asymptotically most stringent for any sequence {An}.
The previous optimality properties hold true for testing problems with
fixed level of significance a. During the last 15 years LR tests have been
studied in the context of testing problems with vanishing level of signifi-
cance a_  as n > «. In BAHADUR (1965) it is shown that "the LR statistic is
an optimal sequence in terms of exact stochastic comparison". This stochastic
comparison introduced in BAHADUR (1960) leads to an optimality criterion,
now called Bahadur efficiency. We describe this concept in some detail.
Let {¢l;ye?}, n=1,2,..., be a family of (randomized) tests based on
Xl""’xn' where I' is an index set with the following property: for each a,

0 < o <1, there exists one and only one y € I', denoted by yn(a), such that

Yn(a)

sup E, ¢ (X,7.--4X ) = a.

60500 60 n 1 n

Shortfor{¢Iiyer}weoftenwrite{¢n}. For 0<B<1 and 6 € 01 define
Yy (@)

N¢(a,B,e) = min{n;Ee¢m (Xl""’xm) > B, m = n}.

Iif {%l;yef} is another family of tests the Bahadur efficiency of {¢n} with
respect to {$n} is defined by

N"'(alsle)

. = lim 2
KR A NI

provided the limit exists. If e¢,$(8,9)2 1 for all families {$n} and all B,
the family {¢n} may be called efficient in the sense of Bahadur at 6. In
such cases the introduction of Bahadur deficiency provides further infor-
mation about the performance of {¢n}. Let N+(a,8,6) = inf N$(a,6,6), where

the infimum is taken over all families {$n}' If for all 0 < B < 1

(1.1.3) lim {N, (a,B,0) - N+(u,8,9)}{N+(G,B,e)}_% =0
a>0 ¢

we shall say that {¢I;YEF} is deficient in the sense of Bahadur at 6 of



k]

order 0(N+(a,8,6) ) as a > 0. Similarly, if for all 0 < B < 1

N, (@,8,0) - Nt (a,8,0)
(1.1.4) lim sup " < 2(8,0)
a0 log N (o,B,0)

we shall say that {¢I;YEF} is deficient in the sense of Bahadur at 6 of
order 0(log N+(a,B,6)) as o > 0.

This way of introducing Bahadur efficiency differs from the original
definition in BAHADUR (1960) . He introduced the concept of the slope of a
sequence of tests: For each n = 1,2,... let Tn(s) be an extended real-valued
function such that Tn is A-measurable and depends on s only through
(xl,...,xn); Tn is to be thought of as a test statistic, large values of
'1'n being significant. Let ln(t) = sup{Pe (Tnzt);eeeo} denote the tail prob-
ability (level attainedat Tn = t). The sequence {Tn} has exact slope c(6) when 6

obtains if -n_1 logln(Tn) + %c(0) in P_-probability. If the sequence {T:}

0
has exact slope ¢ (8), the Bahadur efficiency of {Tn} with respect to {T:}
equals c(8)/c”(8) (cf. BAHADUR (1960)). -

In [19] RAGHAVACHARI proves that for each 6 € © - 9

(1.1.5) lim sup --n—1 logl (T ) < I(6,0,)
n n 0
n->o

with probability one when 6 obtains, where

(1.1.6) I(e,eo)
and

(1.1.7) I(9,90)

inf{I(e,eo);eoeGO}

[ 1ogl£(x:8)/£(x:60) }ap, ().

Thus the maximal slope of a family of tests is 21(6,00). The number 1(9,60)
is called the Kullback-Leibler information number.
In this framework the following theorem of Bahadur is of particular

interest.

THEOREM 1.1.1 (BAHADUR (1965)). Let ln(TiR) denote the tail probability of
the LR test. Under the (rather strong) assumptions 1,...,6 in [2] it holds

that for each 6 €0 - @O

(1.1.8)  1im -n !log1 (T™®) = 1(6,0.)
n' n 0
n->o

" with probability one when 0 obtains.

In BAHADUR and RAGHAVACHARI (1970) this result is extended to more



general cases; they state two conditions under which tests are asymptotical-
ly optimal in the sense of exact slopes.

In this "non-local" or "fixed alternative" method of comparison of
tests one considers in fact the rate of exponential convergence of the size
of a test to zero. This concept is also the subject of a paper of BROWN
(1971) . He extends the parameter space to obtain a good structure by adding

densities of the form

. 1-
©(8:05:0) (B () E{pel(x) 15, 6,c0, 6,€0,, 0<E<1,

where ¢ is a normalizing constant. Let A; be the LR statistic for the

"larger" problem of testing @; against O;, where 00 c G; and 91 c O:.

*
Usually 0. = @3, often however @1 # 01 so that An is essentially different

0
*
from the LR statistic for the original problem. Then he showed that An is
asymptotically optimal in the following sense. Let ag and Bi(e) be the
significance level and power (in 6) of a sequence of tests {Tn} of 00

against 0O let a: and B:(e) be the significance level and power (in 6) of

17
*
the test which rejectsif An > c,- Then under appropriate regularity con-

ditions the following result is valid.

THEOREM 1.1.2 (BROWN). If 1im*§up ai < 1, then the constants cn can be
sooRe Sl o

chosen so that

and for all 0 € 01

lim inf {n "t log(l- BL(8)) - NG log(l- B (8))} = 0.
o n n

A quite different optimality property has been obtained by BOROVKOV
(1975) , who showed that for a broad class of testing problems Bayes tests
with respect to smooth a priori distributions are asymptotic equivalent to

the LR test.

1.2. LR TESTS IN EXPONENTIAL FAMILIES

In section 1.1 properties of LR tests have been described for fairly
general families of distributions. In the remainder of this study we
restrict attention to families of distributions with a special structure:

exponential families.



A k-dimensional random variable X is distributed according to a
k-parameter exponential family if the density of X with respect to a

o-finite non-degenerate measure u is of the form

(1.2.1) dPe(x) = exp{6'x-(6) }Au(x), 6 e 0c HQ{, X € Eﬁl

where k € NN,

(1.2.2) 0 = {8; [ exp{6'x}au(x) < =}
and

(1.2.3) ¥(8) = log [ exp{6'x}du(x), 9 e 0.

Here 0'x denotes the inner product of 6 and x. The space © is called the
natural parameter space. It is well known that © is a convex set in ngc
and we will assume that it contains an open set in that space. (Otherwise
it is always possible to reparameterize to a lower dimensional exponential

family where the conditicn does hold.) Moreover, we may write

ap, (x) = expl(6-6) 'x - V(o) + v(8,) }apeo(x).

Letting =6 - 0, we see that we can take our special point eo to be the

0
origin without loss of generality, in which case PeO plays the role of the

measure u. Hence assume
(1.2.4) int O #¢@ and 0 € int 0.

Thus p is a non-degenerate probability measure and § is the log moment
generating function of u.

In many books exponential families are defined by densities of the

form
X k
Py (x) = c(0) exp{ | Q(8) T, (x) Fh(x)av (x) .
. j=1
Since the distribution Pg of the sufficient vector
(1.2.5) T = (Tl(x)""’Tk(X))

is of the form

k
apf(t) = c(6) expl ) 0.(6) t lau(t)
5L 3 i



and we only consider procedures based on the sufficient statistic, it is
justified to describe exponential families by (1.2.1), where a more natural
parameterization is employed.

Let 0F = {eee;Ee“X"< ©}, where Il sl denotes the Euclidean norm. For
6 e G* we define

(1.2.6) A(0) = Eex.

The mapping A is 1 -1 on 0" (cf. lemma 2.2 in [5]). Defining
A= A(@") = {A(8);6€0"}

the inverse mapping, denoted by A-l, is defined on A. For 6 € int O the
vector of expectations and the covariance matrix of P
A(0) = grad Y(6) and Ze,

respectively. Note that § is a convex function on 0. In the one-parameter

9 are given by

the matrix of second order partial derivatives,

case the variance is denoted by 02(6). It turns out that the Kullback-

Leibler information number is given by
(1.2.7) I(e,eo) = wxeo) - P(0) + (9-60)'A(9)

(cf. (1.1.7)) for 6, € O, 6 € O*. The function I can be related to the

0
(Euclidean) distance between 6 and eo (cf. lemma 2.2.2, lemma 3.2.2 and
lemma 4.1.2); therefore we sometimes refer to I(e,eo) as "the Kullback-

Leibler distance" from Pg to Py .
0

EXAMPLE 1.2.1. Let u be the probability measure corresponding to the

standard normal distribution, then P, corresponds to the normal N(6,1)

0
distribution, Y(8) = %ez and I(G,eo) = %(6—60)2.

EXAMPLE 1.2.2. Let X be normally N(E,cz) distributed, then (X,Xz) is the

(sufficient) statistic T appearing in (1.2.5). Let p correspond to the dis-
tribution of (X,Xz) under £ = 0 and 02 =1 then 6 = (6(1),6(2)) =
(2)

(5672, 5-50"2) ana v(8) = %6 1)2-0®)7! _ n10g(1-20%)y.

Since I(e,eo) 2 0 and thus 6'A(6) - ¥(6) 2 66)(6) - ¢(60) for all

60 € 0, B ¢ G*, it follows that

(1.2.8) A_l(x)'x - w(Anl(x)) = sup{0'x-y(6)}
6eO

for all x € A.



Let xl,xz,...,xn be i.i.d. random variables with distribution Pe given
by (1.2.1) and let
- -1 B
(1.2.9) X =n " ) %, n=1,2,....
n jop 1

o if 6 = 0 we often write ﬁn.
0 denotes the distribution of n {x -1 (8) }a(8) 1.

Note that A~ (X ) is the maximum likelihood estimator of 6 if X € A.

The distribution of X will be denoted by P

In the one—parameter case P.

In the sequel we consider the following testing problem:

HO: 6 € 90

is tested against

at level an, where 00 is a subset of © and (excéept for section 3.8)

91 =0 - @0. Note that the level of significance is not fixed but depends,

in general, on the number of observations.
-1 tn
Let s = (xl,xz,...), ?eflne xn =.n Zi=1_xi' n = 1,2,..;{ Ehen
(s) = A (x ) x - P(r (xn)) - supeoeeo{eoxn—¢(eo)} = I(A (xn),OO)

for all xn € A. Hence, if En € A,

1 >

LR . -1 - _

¢n (s) = Gn if I(A (xn),Oo) = dn'
0 <

Since ¢ is a functlon of xn only we often write ¢ (in) in lieu of
LR k

¢n (S). In this notation the mapping ¢ R - [0,1] is defined by
1 >
LR . _
(1.2.10) ¢n (x) = Gn if L(x) = dn'
0 <

where L(x) = supeee{e'x—W(e)} - supeoeeo{eéx—w(eo)}- We shall use this
definition in the sequel.

For one particular exponential family, the multinomial distribution,
optimality of the LR test has been studied by HOEFFDING (1965a). In this
paper the following proposition is made precise. "If a given test of size
an is 'sufficiently different' from a LR test, then there is a LR test of

size < o which is considerably more powerful than the given test at 'most'



parameter points in the set of alternatives when n is large enough, provided
that a > 0 at a suitable rate". Here "considerably more powerful” is to be
interpreted in the sense that the ratio of the error probabilities of the
second kind of the two tests tends to zero more rapidly than any power of n.
HERR (1967) (partially) extends Hoeffding's result to non-singular multi-
variate normal distributions.

If the LR test is much better than a given test for most alternatives,
it is natural to ask how much worse it can be for the remaining alternatives
or sequences of alternatives. To measure this it is useful to consider the
shortcoming of the LR test. Let ¢n(an) be the class of all level--an tests
¢ of H

against H, and let 62(6) be the power of a particular test ¢ at 6

0 1
all based on n observations, then the envelope power function is defined by

B () = SWPheo (o) MOP
n n

Denoting the power of the LR test at 6 by BiR(e), the shortcoming of the
size—otn LR test for a given n is defined by

R (8) = B7(0) - BLN(O), 6O
OOSTERHOFF and VAN ZWET (1970) investigated the behaviour of Rn in the
multinomial case mainly for testing problems of a simple hypothesis against
a composite alternative. They proved that under a condition on the exponen-=
tial rate of convergence to zero of o aé n > », Rn converges uniformly to
zero. Hence the LR test is an asymptotically optimal test in the sense of
shortcoming. _

This criterion of optimality seems to be stronger than Wald's asymp-
totic most stringency. However, since Wald considers testing problems with
a =a is fixed, direct comparison is impossible. Since as a rule the LR
test does not have vanishing shortcoming for fixed o the optimality of the
LR test seems to be stronger for testing problems where o > 0 as n + =,

On the other hand the concept of (uniformly) vanishing shortcoming supple-
ments Bahadur's and Brown's approach. The approach of Bahadur is rather un-
balanced since probabilities of errors of the second kind are kept fixed
and only the probability of an error of the first kind is sent to zero.
Moreover, in typical cases two sequences of size—(xn tests with fixed powers

BO and B1 at 6 (0<60#61<1), respectively, have the same exact slope and

1
hence the Bahadur efficiency concept does not discriminate between these

two sequences of tests. The same lack of sensitivity with respect to fixed
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power differences is a weak feature of Brown's criterion too. In a way uni-
formly vanishing shortcoming can be regarded as an intermediate between op-
timality in the sense of a "fixed alternative" and a "contiguous alterna-
tive" approach.

The optimality of LR tests in the sense of shortcoming is related to
testing problems with levels of significance an tending to zero as the fol-

lowing example shows.

EXAMPLE 1.2.3.'Let XI’XZ"" be i.i.d. random variables with a normal

N(8,1) distribution. The hypothesis H 6 =0 is tested against Hl: 6#0

%
9,95
is defined by

0:
with level of significance a = 0,05. Then B:(n—

) = P _;2()—( n;’ >
LR, -% n n
0,26 and Bn (n

t
PO(X1 < ut) =t (0<t<1). Hence supeeoan(e) > 0,09 for all n, implying

- z .k _
) = Pn_;:(|Xn n‘l 2 u0’975) = 0,17 where u

that supeEO Rn(e) does not converge to zero.
1

In chapter II and III the results of Oosterhoff and Van Zwet will be
extended to more general cases. In chapter II the one-parameter exponential
families are treated. It turns out that the shortcoming of the LR test
tends to zero both pointwise and uniférmly on the intersection of 01 with
a compact subset of int O. Under some condition on the LR test uniformly
vanishing shortcoming over 91 is established. As a consequence it can be proved

that l.unn_)oo supeeean(e) = 0 if O, is contained in a compact subset of

int © and a condition is imposed gn the rate of convergence of o, - The
results for one-parameter exponential families are more explicit and
slightly stronger than for k-parameter exponential families (k 2= 2) as is
shown by the examples in section 3.1. This explains the separate treatment
of the one-parameter case; The third chapter is devoted to generalizations
of the shortcoming results obtained in chapter II to k-parameter exponen-—
tial families. Large deviation theory plays an important role in this
chapter. A result of HOEFFDING (1965b) for the multinomial distribution,
partially generalized by EfRON and TRUAX (1968), is extended to k-param-
eter exponential families.

Chapter IV is devoted to the relation between vanishing shortcoming
and Bahadur deficiency (cf. section 1.1). It turns out that vanishing
shortcoming is equivalent to Bahadur deficiency of order 0(N+(a,6,9)%) as
o > 0.

In chapter V the Bahadur deficiency of the LR test is investigated.

In typical cases the Bahadur deficiency of the LR test is of order
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+
O(log N (a,B,8)) as a > 0. As far as we know this is the first investigation

of Bahadur deficiency of families of tests.






CHAPTER II

THE ONE-PARAMETER CASE

2.1. INTRODUCTION

Let xl,xz,...,xn be i.i.d. real valued random variables (n = 1,2,...),
distributed according to a one-parameter exponential family: {Pe;eee}. Such

a family will be represented in its standard form by
“(2.1.1) dPe(x) = exp{6x-¢(0) }au(x), for all x € IR.

Here u is a non-degenerate probability measure and §(6) is the log moment
generating function of u. We assume that int © # @ and 0 € int 0 (cf. (1.2.4)).
The natural parameter space © is a (possible infinite) interval.
We consider the following testing problem. For each n € IN the hypothesis
HO: 0 e Oo

is tested against

Hl: 0 € 91 =0 - @O,
at level a_ with the available observations X,,...,X , where lim o =0.
n 1 wn 1 n n>e n
Let ¢ﬁR(n zi—l xi) denote the critical function of the size-—an LR
test of H  against H

0 1
We investigate the behaviour of Rn(e) as n > ©, where Rn denotes the short-

based on xl,...,xn and let SiR be its power function.

coming of the size~an LR test.

In fact we shall prove that limn%m Rn(e) 0 uniformly on 01 in three

different cases:

A. 00 is contained in a compact subset of int © and a condition is imposed
on the rate of convergence of o -

B. 01 is contained in a compact subset of int 0.

C. Some conditions are imposed on the second and third central moment of X.

These results are corollaries of theorem 2.5.1.
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Moreover we shall prove that limn_)m Rn(e)= Ouniformly onK A QO for each
compact subset K of int © (theorem 2.7.1). Note that case B is a particular
case of theorem 2.7.1.

Obviously theorem 2.7.1 implies the weaker result limn+w Rn(e) =0
pointwise for each 6 ¢ int O. It can also be shown that limn+w Rn(e) =0

for boundary points of © in 01.

2.2. PRELIMINARIES

Before proving the results mentioned above we derive some properties
of the functions A(6) and Y (6), the Kullback-Leibler information I(n,0) and
the LR test.

The following notation will be used throughout this chapter:
8 = sup © and 8 = inf O,

where & = » if 0 is not bounded above, and § = -» if O is not bounded below.

Note that 6 < 0 < 0. Similarly we define
Gi = sup Oi and 91 = inf Oi (i =0,1).

Furthermore A(6) = E X = f x exp{0x-y(6) }du(x) is defined for all 6 ¢ O,

6
since for 6 > 0 |x exp(6x)]| < |x| on (-»,0], for 8 < 0 [x exp(6x) |

I

Ix|
on [0,») and f |xldu(x) < » (if 6 € © we may have A(8) = « and if 6 €0
we may have A(6) = -«).
Again writing
0" = {8 € 0;|A(8)| <} and A = A(07),
let

A=sup A and A = inf A.
Some properties of the functions ¢ and A are stated in the following

LEMMA 2.2.1. The functions ¢ and A are continuous on int 0. Moreover, if
8 ¢ 0 then limg,= ¥(8) = ¥(8) and limg, = A(6) = A(B); if 8 € O then

lime*9 w(e) = P(6) and 1ime+9 A(6) = A(8).

PROOF. For the first statement see LEHMANN (1959) sectioﬁ 2.7. Suppose

0 e 0. Let 6 4 6; since 6 > 0 we may assume 6 > 0. Consider the inequality

(2.2.1) exp(6x) <1 +exp(§x) for all x € IR.
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The function on the right of (2.2.1) is integrable, and hence by the domin-

ated convergence theorem lim exp (6x)du(x) = f lim9 = exp(6x)du(x) =

046 I - 46
g4g V(O = v(®).

For the function A we have A(8)

f exp(ax)du(x), implying lim

exp (-9 (8)) f x exp(6x)du(x). Splitting
the region of integration IR into (-»,0] and (0,»), and applying the dominated
convergence theorem and the monotone convergence theorem one obtains

lim

f x exp(6x)du(x) = f X exp(ax)du(x). In combination with 1im6+5

5 A(8) = A(9).

648
exp(-y(6)) = exp(—¢(§)) this completes the proof of 1ime+
The proof of the statemerits about 6 is similar. 0

As a corollary we have that A is an interval of the real line.
In chapter I we have already introduced the Kullback-Leibler informa-
tion number (cf. (1.1.7) and (1.2.7))

(2.2.2) I(n,8) = E_log dP /dPy(X) = ¥(8) -¥(n) + (n-8)A(n).
In the next lemma some further properties of I(n,6) are listed.

LEMMA 2.2.2.

(i) I(n,0) is a strictly convex function of 6 on © for any n € e*.

(ii) I(n,B) is a strictly decreasing-increasing continuous function of
n on O* with minimum O in n=6and 1im I(n,0) = 0 for all 6 € O.

s . n>6
(iii) For any n,6 € int ©

(2.2.3) I(n,8) = %(n-0)20° (&)

with & between n and 0.
(iv) For any n,0,E € O with finite A(n) and A(§)

(2.2.4) I(n,6) - I(E,0) = (£-6)(A(n)-A(E)) + I(n,E).

PROOF. Assertions (i) and (ii) follow by differentiation of (2.2.2) on into,
application of lemma 2.2.1 and limn»e A(n) (n-6) = 0 by dominated convergence

for boundary points 6. Assertion (iii) is an application of the mean value

theorem, and (iv) is obtained by substitution of (2.2.2):

~IM,B) - I(E,8) = ¥(B) —P(n) + (n-6)A(n) —y(B) +Y(&) - (E-0) A (&)

(E-8) (A()-A(&)) +Y (&) =Y (n) + (n-E)A(n)

(8-8) (A(n)=XA(&)) +I(n,&). O
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EXAMPLE 2.2.1. Let
e
V(6) = %67, A(8)

EXAMPLE 2.2.2. Let
measure on IR with

A(0) = (1-8)"! ana

EXAMPLE 2.2.3. Let
measure on IR with
{IT x 2 exp(-x)ax}”
I(1,8) o for all

u be the standard normal distribution. Then we have
2
6 and I(n,6) = %(n-6)".

U be absolutely continuous with respect to Lebesgue
- log (1-6),

1

density exp(-x), 0 < x < », We have ¥ (6)
I(n,8) = log{(1-n) (1-6) "} + (n-8) (1-n)~

u be absolutely continuous with respect to Lebesgue

density cx_2 exp(-x), 1 < x < », where c =

1. Then'we have © = (-»,1] and since A (1)

6 < 1.

© obviously

Now consider the LR test a little more closely. The critical function

of the size-an LR t

(2.2.5)

4R (x)

where

est of H

o against H

1 is defined by

1
Gn if Ln(x) exp(—ndn),
0

supeoeeo exp{neox—nw(eo)}

L (%)

and where 0 < 6n

SUPg <o

00

In the particularlc

(2.2.6)

¢ﬁR(x)

(n=1,2,...) (cf.

2.3. RELATION BETWE
In this sectio

LEMMA 2.3.1. Let X1

tial family (n=1,2

H 6601=O-®O

1¢

4

sup, o exp{ndx-ny(6) }
1 and dn > 0 are determined by

LR,=
Eeo ¢n (Xn) = a (n 1,2,...).

ase that x ¢ A (2.2.5) reduces to

1
. -1
Gn if I(X (x)leo)
0
(1.2.9) and (1.2.7)).

EN o AND 4 .
n n

n we state and prove an inequality between an and dn'

poee ,Xn be a random sample from a one-parameter exponen-

s...). Consider the testing problem HO: 6 € 00 against

at level an with the available observations X ,...,xn.

1
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Let ¢iR be the critical function of the size-an LR test as defined in

(2.2.5). Then the following inequality holds:

(2.3.1) a <5 exp(-nd ).

REMARK. There is no restriction on HO, H1 or an in the lemma. Under some

conditions on HO' H, or oy (for example if ©. is a compact subset of int 0)

1 0
one can prove that a, = 0(1) exp(—ndn) as n + ». In section 2.6 such results

will be derived. The constant 5 in this inequality can be improved to 2, which

is the sharpenest constant as the following example shows.

EXAMPLE 2.3.1. Let Xl,...,Xn be n independent Bernoulli random variables.

In terms of exponential families: the underlying distribution u is given
by u(0) = u(1) = %.

Take H: 8 = 0 (corresponding to probability of success %) and
0

H,: 6 # 0. We have I(0,0) = - 1og(1+ee) +log 2 +(1+ee)_16e and it is easy

1
n .
to see that 0 < I(8,0) < log 2. Choosing a = 2(%)" the LR test is non-

randomized and dn = log 2; so we have o = 2 exp(—ndn).

PROOF OF LEMMA 2.3.1. Let n be fixed. Assume dn > 0 (otherwise the lemma
is trivial). We consider two cases a) and b).

a) There exists Gon € 0, such that

0

Peon(¢ﬁR(§n) >0, X €M) 2.
It follows from (2.2.6) that in this case
POOH(I(A'l(RH),OO) >a, X €M >k,
and hence a fortiori

-1 - -
>
(2.3.2) Peo (I(X (X ),Go )24 , X €l 2% .

N . ' 1] s it 1 =
Define points eOn and 00n in © by the conditiens I(eon,eon) =
I(e" ,6 ) =d and 8' < 6 < §" . From (2.3.2) and the continuity of
On’ On n On On On
I(+,6 ) it is seen that at least one of the points 8' and 6" exists.
On On - On
Suppose both points exist. Then (2.3.2) implies

(2.3.3) Peon(xn < X(eén)) + Peon(xn > A(Gsn)) = %an.
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Since

] - ' -n
(_w'“e('m)] exp{n(eon—eOn)x nw(e()n)mw(eOn) }ap,, (x)
On

1 vy ' 5n
< f(—w.x(eén)] exp{n (6,60, 2 (00, “¢‘90n’+nw‘90n)}dpeén(X)

exp{-nI(6y .6, ) }Pe(,)n (X < A65))

IA

exp(-nd ),

and similarly

Peon(in 2 A(6f )) < exp{—nI(@Sn,eon)} = exp(-nd ),

it follows by substituting in (2.3.3) that %an <2 exp(—ndn). If only one
of the points 6' and esn exists, the same argument yields that %an <

On
exp(~ndn). This completes the proof of case a).

LR = - LR —
< i >
b) Let Peo(¢n (xn) > 0, Xn e h) %an for all 60 € 00. Since EeOn ¢n (Xn) 2
9an/10 for some eOn € 00 it follows that in this case
2a
LR = = n
Py (¢n (Xn) >0, X €N = <
On =
and hence
max{Pe (Ln(Xn) < exp(—ndn), X < N,
On
Pe (Ln(xn) < exp(—ndn), xn > A} 2 < -
On
Suppbse X < » and
- > D -
(2.3.4) Pe (Ln(xn) < exp( ndn), xn > A) 2 3
On
(in the other case the proof is quite similar).
For x > A the function 6x -y (0) is increasing in 6 (take 91 < 62, then
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61x-¢(61) —ezx-rw(ez) < (?l-ez)x(ez) —w(el) +w(62) = —1(62,91) < 0).
This implies that for x 2 A

supy exp{nbx-ny () } = lim exp{nOx-ny(0)}.
<® 018

Thus by (2.3.4)

(2.3.5) a /5 < Peon(Ln(in) < exp(-nd ), in 2 X)

A

_ sup exp{n6_x-ny (@ ) }au® (x)
{xZA,Ln(x)Sexp(—ndn)} e0690 0 0

IA

exp(—ndn)

B supy o exp{nex—nW(e)}dﬁn(x)
{sz,Ln(x)Sexp(—ndn)}

IA

exp(-nd ) [ _ lim exp{nox-ny(6)l}au" (x)
[X,=) 648 -

exp(-nd ) lim [ _ exp{nBx-ny (8) }an" (x)
046 [X,=)

IA

exp ("ndn) 12

where we have applied the monotone convergence theorem.

This completes the proof of the lemma. [J
The result of part a) of the proof can be written as

- -1 -
Pe (Xn e A, I(X (xn),eo) > dn) <5 exp(—ndn).

sup
o 0

0%

This result is_related to theorem 6 in EFRON and TRUAX (1968). However,
where Efron and Truax have a simple hypothesis (called 61 in [8]) we have

an arbitrary set ©_.. The price we have to pay for this, is the constant

5 where Efron and gruax have a factor n_!2 (see also example 2.3.1).
Moreover, we allowed dn to go to zero, which is excluded in [8].

In chapter III another form of the inequality (2.3.1) will be derived
in the k-dimensional case. There we discuss the relationship with the result

of Efron and Truax in more detail.
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2.4. THE MP TEST OF Ho AGAINST A SIMPLE ALTERNATIVE

Let {en} be a sequence in @1 A {cl @o}c. If {06;0€0 ,6<6n} is non-

0
empty, define

0 = .
gn = sup{e,ee®0,6<6n}.

Similarly, if {0;0e€0 e>en} is non-empty, define

OI

50 = inf{0;0€0 ,650_}.
n 0 n

Now we describe for several cases the form of the MP test of H A against

0
the simple alternative 0_.

n
+
If {6;6600,6>9n} = @, the critical function ¢n of the size—an MP test
of HO: 0 € 90 against 6 = en has the form (cf. LEHMANN (1959), section 3.3)
1 >
+ . _
¢n(x) = Yn if x = cn,
0 <

+_
where Y, and c, are determined by Eeo ¢n(Xn) =a .

Zn
If on the other hand {6;6560,9<6n} = @ the MP test is of the form

1 <

+ . _

¢, (x) = Y, if x =c.,
0 >

. . + -
where Yn and cn are determined by Egg ¢n(Xn) = an.

Finally, if both {6;9590,8<9n} and {6;6690,6>6n} are non-empty the
MP test is of the form (cf. LEHMANN (1959), section 3.7)

1 c!' <x<c"
n n
1] — L
¢;(x) =9 Ynif X =c ,
" - "
Yn X cn
0

x ¢ [cg.c;]

where Yé' Y; and c; < c; are determined by

+ = + =
Eeo ¢n(Xn) = E§O ¢n(Xn) =0 .
-n n

+
In the sequel ¢n will always denote the critical function of the
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size-a_ MP test of HO: 0 e 90 against the simple alternative 0 = en.
n

2.5. THE MAIN THEOREM

We start with an example showing that

(2.5.1) lim R _(6) =0 uniformly on 01,
e O

is not necessarily true.

EXAMPLE 2.5.1. Let Xl,x ,... be independent Bernoulli random variables

2

and let H.: 6 = 0, H 0 # 0 and a = 2™, The LR test has the following

0 1d
form:

i =1 =
LR [ P if x or x=0
¢n (x) = 1 .
0 otherwise
Choose a sequence en = log(nz—l), corresponding to probability of

success 1-n_2. Then the size—an MP test of Ho against 6 = en is given by

+ I 1 ifx =1
¢n(x) = 1 .
0 otherwise
+ LR -2, n -2, n -2, n
Thus Rn(en) = Bn(en) —Bn (en) = (1-n 7)) =%(1-n ") -%(n "), and
llmnaw Rn(en) =%, -

Using the degeneration of xn for this sequence of alternatives we
obtain in this example a not uniformly vanishing shortcoming. Consequent-
ly, the level of significance an has to be chosen extremely small. In [18]
OOSTERHOFF and VAN ZWET have constructed another example to show that
(2.5.1) is not necessarily true. Considering a very complicated hypothesis

they avoid an extremely small O

In view of the preceding example conditions have to be introduced to
ensure the validity of (2.5.1). The fact that the shortcoming is the dif-
ference of the power function of the MP test and the LR test, suggests to
choose conditions in terms of either the MP test or the LR test. It turns
out that sufficient conditions in terms of the MP test are very complicated
and hard to verify, because they depend on the particular sequence of al-

ternatives considered. We therefore abandoned this approach.
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A convenient condition in terms of the LR test is
(2.5.2) an = 0(1) exp(—ndn) as n > o,

In theorem 2.5.1 will be shown that (2.5.2) implies (2.5.1).

Comparing (2.5.2) with lemma 2.3.1 it is seen that the constant 5
appearing in (2.3.1) is replaced by a factor 0(1) in (2.5.2). The examples
2.3.1 and 2.5.1 show that the inequality o <5 exp(—ndn) is not strong
enough a condition.

Although (2.5.2) is ﬁot easily verified in particular cases, some
corollaries will be presented in section 2.6, covering the cases A, B and

C mentioned in section 2.1.

THEOREM 2.5.1. If the critical value dn of the LR test satisfies (2.5.2),

then the shortcoming of the LR test tends to zero uniformly on 01'

PROOF. To prove (2.5.1) we suppose to the contrary that lim sup ., Rn(en) >0
for some sequence {en}ijel. Without loss of generality we assume that
6 €0, A{clo }c and R (6 ) 2 € for all n and some € > 0 (R_(6) < a_ for
n 1 0 n' n n n
all 6 € ¢1 O, and 1lim
0 N>
Using the notation of section 2.4 we distinguish the following three

a = 0). Let {em} be a subsequence of {en}.

cases:

a. {6;6600,6<6m} # @ and {6;6500,6>6m} # ¢ for all m with subcases
. 0 =0 0 =0
al. mln{I(e,gg),I(e,?g)} > dm for some 8 € (Qméeeg and all m,
a2. mln{I(e,Qm),I(e,em)} < dm for every 6 € (gm,em) and all m.
b. {6;0€06 6<6m} = ¢ for all m.
c. {6;0€0 6>6m} = ¢ for all m.

0'
0’
In all these cases we shall obtain a contradiction. As we can pick at

least one subsequence {em} of {en} satisfying the assumptions of one of

these cases, this proves the theorem.

CASE al. In this case the LR test has part of its critical region in the
. 0 =0 . ' "

interval (A(Qm),l(em)). Define dm and dm by

1

_1 1 o - - " _0 -
I ") ,8 ) = I(x "(d),6 ) =d

A(eo) <d <a <A@ for all m.
-m m m m

+,= LR -
- > i
From Rm(em) Eem{¢m(xm) ¢m (Xm)} 2 ¢ for all m we derive that
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+— -
max{Ee ¢m(xm)1[c',d'](xm)'
m m m

+_. -
Eg ¢m(xm)1[d",c"](xm)} > L for all m.
m m’ m

Assume without essential loss of generality

+_ -
Eg {¢m(xm)1[c',d‘](xm)} > ke for all m.
m m' m

Then we have, for all m,

+ -
%m = Eeo ¢m(xm)

-=m

[ 67 () expin( 9,?,—9,,,) x-my (92) +mp (6 ) }aﬁg‘m (x)

v

+ 0 0 —m
f[c' d’]¢m(x)exp{m(gm—em)x—mw(gm)+mW(9m)}dPem(X)
m’' m

v

+ 0 . . 0 o
f[c' d':|<15m(x)exp{m(Qm-em)dm mw(gm)+mw(em)}dpem(x)
m’' m

-1 N 0 -1 ]
exp{-mI (A (dm),gm)+mI(X (dm)'em)} X

X

+_ —
Eg ¢m(xm)1[c',d'](xm)
m m’ m
> -
> ;/2 exp ( mdm)
a contradiction to (2.5.2).

CASE a2. Now the intersection of the interval (A(gg),k(ég)) and the critic-

0 =0
),A(8 ) by

al region of the LR test is empty. Define xz in (A(gm

1071 9),0% = 1071 ,89).
mo 1,0 00 _ 0 +
Since I(A (xm) .gm) < dm, and Bm(em) > Rm(em) > g,

0 (Xm),

+ -
max{Ee ¢m(xm)1
m [e',x ]
m’ m

+ - -—
Eg ¢m(xm)1 o, (X )} 2 %¢ for all m.
m xml Cm]

Assume without loss of generality
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X) >
0 (Xm) 2 ke for all m.

+ -
Eg ¢m(xm)1
m [c!',x_ ]
m’“m

Note that in this case cé < xg. Then we have, for all m,

Q
]

+ -
Eeo ¢m(xm)
-m

+ 0 0, =m
0. by (¥ explm(0 =6 )x-mp (6 )+mp(6 )}dPy (x)

[c',x 1" m
m’ m

v

v

-1,.0 .0 -1,0
exp{-mI (A (%) /8 )+mI (A (xm),em)}x

+ = -
0 (pm(xm)1 (Xm)
m

X

E
[c',xoj
m’“m

\"

e/2 exp(—mdm),

in contradiction to (2.5.2).
CASE b. Note that in this case 53 coincides with 8 . Define

0

-1
(2.5.3) £ = {¥(8,)-v(6 )-d }(8,-0 ) -

Then the following implication holds

(2.5.4) x < fm = Lm(x) < exp(—mdm).

To prove this, first note that fm < X(go), since fm—x(go) =

-1 _ -1, B
{¥(8)-¥(8 )-d - (8,-0)A(8) } (8,8 )" = (8,-6,)  {-I(8,,0,)-d } < 0.

Hence
supeoeeo exP{meox—mw(eo)} =exp{m§0x—m¢(go)} for x < £ .
This implies, for every x < £

supeoeOO exp{meox~mw(90)}

Lm(x) supy o exp{m@x-my () }

IA

exp{mgox—mw(go)—memx+mw(em)} <
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< exp{m(go—em)fm—mw(go)+mw(9m)}
= exp(-md ),

. LR
establishing (2.5.3). In other words: for every x < fm is ¢m (x) = 1. But

since Rm(em) 2 g, it follows that

+ = -
(2.5.5) Ee ¢'m(xm)1[f ,oo) (xm) > e.
m m )
Hence
+ -
O = E90¢m(xm)
2 tpoexp(n(8y-0,)x-mp(8) +mp(8,) JaBy (o)
[£ ,») n
m
2 [ dpeoexplm(9y-0,)x-mp(8y) +mi (0,) JaFg ()
[f ,) n
m

+_ -
exp(—mdm)Eem ¢m(xm)1[fm'w)(xm)2 € exp(—mdm),

again in contradiction to (2.5.2).

CASE c. The same line of argument that we used in case b again yields a

contradiction.

This completés the proof of the theorem. [

Inspection of the proof of theorem 2.5.1 shows that we have in fact

proved
ndn
R (6) < 2a_ e
n n

for all n and all 6 € 01. Hence Rn(e) -+ 0 if either (2.5.2) holds true or
nd
if Rn(e) = o(an e 1) as n » =, The following example shows that the latter

possibility may indeed occur.

EXAMPLE 2.5.2. Let Xl,Xz,... be independent Bernoulli random variables and
let Hy: 6 <0, H: 6>0anda = 27", Both the LR test and the MP test

of HO against 6 = en > 0 has the following form: reject HO iff in = 1.

Hence llmn+m Rn(e) =0 unlformlyone1 and yet an = exp(—ndn).
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2.6. SOME PARTICULAR CASES

With the help of theorem 2.5.1 we investigate the cases A, B and C

mentioned in section 2.1.

COROLLARY 2.6.1. If O < K, where K is a compact subset of int 0, and if

0
I< I0 exists such that
(2.6.1) oy 2> exp (=-nI) for all sufficiently large n,
where
(2.6.2) I, = min{lim I1(6,0,), lim I(6,6)},

040 SEYY

then limnﬁm Rn(e) = 0 uniformly on 01-

(Note that I, is well defined.)

0

PROOF. We verify condition (2.5.2). To this end we inspect the proof of
lemma 2.3.1 a little more carefully.

Consider case a) of the proof. There it is shown that

P (xn < A(e('m)) + P

9 (Xn 2 A(ean)) 4 %an (n=1,2,...)

On eOn

(2.3.3), where 6 € O, satisfies

On 0

0 n

P on(¢2R(in) >0, X €N > Lo,

1 = " = [ "
and I(SOn'eOn) I(eOn'eOn) dn (eOn < eOn < eOn :

Assuming without loss of generality

- , _
(2.6.3) Peon(xn < A(eon)) = %an for n 1,2,...,

one finds

(2.§.4) % < P (§n < A8 )) < exp{-nI(eén,e )},

6

On On

Suppose  the sequence {an} satisfies the condition of the corollary and
eon € K for all n. If {eén} has a subsequence, which tends to the boundary
of © for n »+ », i.e. lim infn_)m eén = 0, then lim sup_ .. I(ebn,eon) 2
i >
11m6+9 I(G,OO) > IO' and hence
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' > I+
1O, Bon ) > T¥E
i i
for some subsequence {ni} and some € > 0.

This implies, in view of (2.6.4),

%an. < exp{-ni(I+s)} (i=1,2,...),
i
and the rate of convergence of {uni} to zero is faster than prescribed in
(2.6.1).
Hence assume that {ebn} is bounded away from the boundary of ©. Con-
sequently o(ebn) and the central third moments (under eén) are bounded
away from zero and infinity and Liapunov's version of the central limit

theorem ensures that n*{ﬁn-x(eén)}o(eén)'1 B N(0,1) for n + .
If (6, -6} )nl2 is bounded, nI(6. ,6. ) = nd is also bounded (see
On On n’ On n

lemma 2.2.2) and (2.5.2) is trivial.

Assume therefore that

(2.6.5) (90n'°6n)“% > @  for n > =,
By (2.6.3)
%an < Pe (Xn < A(eén))
On
< exp{-n1<ebn,eOn)+n(eOn-eén)(x—x(eén))}din, (x)
("°°,>\(9' )] On
On
] . . ~n
< exp(-nd ) f(_m'o]exp{n (8,=80,)0 (85 Vy}dBy, (v) .

On

Hence for each n > 0

IA

L’ v ] o
@ exp(nd ) < 4 f(_m'_n]exp{n (600059 (00, ) ¥}aPg, (¥) +

On

5 . , ~n
+ 4 f(_n'ojexp{n (eon—eon)o(eon)y}dPeén(y)

IA

5 . , ~n B
4 exp{-n (eon-eon)c(eon)n} + 4P 6n{( n,01}.

5 : . . .
By (2.6.5) n (eon—eén)o(eén) > © as n > ©; now the last inequality implies

lim sup a_ exp(nd_ ) < 0 + 2n,
oo n n
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and thus llmn»m an exp(ndn) =0 or an = 0(1) exp(-ndn) as n > o,

Now consider part b) of the proof of lemma 2.3.1; again assume that

PeOn(Ln(Xn)Sexp(—ndn) ’ Xn > A) 2 an/5 (2.3.4). By (2.3.5)
an/S < f ) SuPSOEOO exp{neox-nw(eo)}dﬁn(x)
{xzk,Ln(x)Sexp(-ndn)}
< exp(—ndn).

Condition (2.6.1) yields

lim sup 4 < I < Ij < lim 1(6,6.).

0 S

n->e 646 0

Choose € > 0 such that I+e < Io; then we have, for n sufficiently large

and x 2 A,

d < lim 1(6,8,) - ¢
848

= Lim {y(8)-w(0)+(6-B)A(0)} - €
046

I

Lim{y (8,) - () +(6-8)x} - ¢,
048

and hence, for x 2 A,

supeoeeo {eox—w(eo)} = B,x-¥(8,)

< lim {6x-9(0)} - a - e.
046
Then we have
an/S < f ) supeoeOo exp{neox—nw(eo)}dﬁn(x)
{xZA,Ln(x)Sexp(—ndn)}
< [ exp(-nd_-ne) lim exp{néx-ny(6)}au" (x) <

{sz,Ln(x)sexp(—ndn)} o6
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IA

exp(—ndn-ne) lim f exp{nex—nw(e)}dﬁn(x)
640 {sz,Ln(x)Sexp(—ndn)}

IA

exp(—ndn—ns).

So we have once more o, = 0(1) exp(—ndn). Application of theorem 2.5.1
completes the proof. [

COROLLARY 2.6.2. If 61 c K, where K is a compact subset of int 0O,

limn+¢ Rn(e) = 0 uniformly on ©

1

Replacing O, by cl OO A K and using the proof of corollary 2.6.1,

0
again one can derive a = o(1) exp(—ndn). Application of theorem 2.5.1
then completes the proof. We omit the details, since the result can also

be obtained as an immediate consequence of theorem 2.7.1.

In the preceding corollaries we have put some rather strong condi-

tions on OO or O,. These conditions ensured, that the critical region of

the LR test is béunded away from the boundary of A, implying that the
distribution of the standardized sample mean tends to a (standard) normal
distribution for suitable translated parameter values. By putting strong
conditions on the moments of Xi, we obtain the same result as the following

corollary shows.

COROLLARY 2.6.3. Let, for © € int ©, the variance 02(6) of Xi be bounded
away from zero and the absolute third central moment of xi be bounded

above. Then lim R (0) = 0 uniformly on O, .
n>o© n 1

PROOF. The boundedness of the absolute third central moment of Xi implies
that 02(6) is also bounded above on int ©. Moreover, if 6 € © is a boundary
point of © and.A(6) is finite, then the variance and the third central
moment at 6 are also finite, and the variance is bounded away from zero
(the proof is similar to the proof of lemma 2.2.1).

We inspect the proof of lemma 2.3.1. By Liapunov's theorem
n%{in-k(eéh)}o(eén)_l is asymptotic standard normal for each sequence
foy } in 0"

Consider case a) of the proof of lemma 2.3.1. By the same line of

argument, used in the first part of the proof of corollary 2.6.1, (but
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immediately invoking the before mentioned asymptotic normality) yields
a = o(1) exp(—ndn). )
Now consider case b). Assume A < « and
X ) < - X =21 =
P (Ln(xn) < exp( ndn), Xn > A) 2 an/S

eOn

(the other case is quite similar). Since dn > 0, we have 50 < 8. Let

0 < t< 6—50. For every x 2 A and each e, > 0 one has

supéoeeo exp{neo(x+en)—n¢(eo)}
supy o exp{ne(x+en)-nw(e)}

+
Ln(x en)

exp{neo(x+en)-nw(60)}

lim exp{ne(x+sn)-n¢(6)}
046

exp{néo(x+en)—nw(§0)}

= lim exp{nGx#n(é +t)e_-nyY(0) }
848 0

exp(—nten)Ln(x).

Define xg = inf{x;xZX,Ln(x) < exp(—ndn)} and choose an arbitrary

€ > 0. Since x 2 xg + en—% implies Ln(x) < exp(—nt%en_%)Ln(xg+%en_%) <
exp(—%ten%—ndn), it follows that
= 0 -%
un/S < Pe (xn > xn+en )
On
+ [ exp{n6.. x-ny(6. ) }an"(x)
L] On On

0 0 -
{anxsxn+en ,Ln(x)Sexp(—ndn)}

IA

exp{—%tenﬁ—ndn}lig exp{nex—nW(e)}dﬁn(x) +

) 648

{x2x0+en
n
+ [ exp(-nd ) lim exp{n6x-ny (6) }an™ (x)
{x25x5x:+en_%,Ln(x)Sexp(-ndn)P

%

exp(—%ten%—nd ) + exp(-nd_) lim P (xosi Sxo+sn_ ).
n n’ %5 0 "n""n " 'n

IA
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Therefore

lim sup an exp(ndn) <
n->o

%

IA

lim sup lim P (xg

n->o 046

- 0 -
< < x +
0 Xn x +en )

< lim sup lim P

n- < n- < n
‘o 948 6(8)

0 = 0
[xn—A(e) y xn—x(e)_ L xn-A(e) y , € ]
] g (8) - o(8) a(6)

<— €
~ inf{o(6);0e0} °

Since € was arbitrary chosen and inf{c(6);6€0} > 0, we have

1imn+m o exp(ndn) = 0. Application of theorem 2.5.1 completes the proof. [J
EXAMPLE 2.6.1. The family of normal distributions with expectation 6 € IR
and unit variance satisfies the conditions of corollary 2.6.3, and hence
Rh(e) - 0 uniformly on Ol, irrespective of the hypothesis O, and the rate

0
of convergence of {an}.

2.7. UNIFORM CONVERGENCE ON COMPACT SUBSETS OF INT 0O

In this section we show that, without any restrictions on the sets
00 and Ol, the sequence {an} and the moments of Xi, Rn(e) >0asn >

uniformly on the intersection of ©, with a compact subset of int 0. This

1
result is an extension of corollary 2.6.2.

THEOREM 2.7.1. Let K be an arbitrary compact subset of int O. Then

i = i A
llmn+m Rn(e) 0 uniformly on K 61.

PROOF. It is sufficient to show that limn+w Rn(en) = 0 for any sequence
{en} inkKA 91. Let {en} be such a sequence. Then © (en) is bounded away from
zero and infinity, and ﬁgn —w N(0,1) by Liapunov's central limit theorem.
Suppose to the contrary that lim supn+w Rn(en) > 0. Without loss of
generality assume that Rn(en) > ¢ for alln=1,2,... and some € > 0.
To obtain a contradiction, we modify the proof of theorem 2.5.1.
The order relation o = 0(1) exp(-ndn) as n -+ « in that proof is now

replaced by

an <5 exp(-ndn) n=1,2,...,
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cf. lemma 2.3.1.
First consider case al in the proof of theorem 2.5.1. With the same

definitions of d; and d; assume

Eq {¢;(in)1 (in)} > ke for all n,
n [e',da']
n n
or
N ~+ ~Nn
(2.7.1) [ _ _ $_(x) dP, (x) = %e,
[{c’-A(6_No(6,) "'n*, {a’-A(6_)}o(o ) 'n*] " %
L n

where 5;(x) = ¢:(A(en)-+n_ o(en)x). Noting that P —, N(0,1), it follows

6

n ~

that for all sufficiently large n the distribution function of Pg does
n

not have jumps larger than €/10. In combination with (2.7.1) this yields

the existence of bn > 0 such that for all sufficiently large n

~4 ~n €
(2.7.2) ¢_(x) dP (x) > g,
. -1 5% e -1 % 'n ]
[{cn A(en)}o(en) n ,{dn b A(en)}o(en) n) n
and
~+ ~n €
¢ (x) AP, (x) >— .
e -1% ., -1 %_'n 0 10
[{dn b -A(6)) }o(en) n ,{dn-k(en) }c(en) n°] n

From the second inequality and the fact that o(en) is bounded away from

zero, we derive that

(2.7.3) lim inf bn n% > 0.

n->

For an we then have the following inequality

. Y
(2.7.4) o= Eeo 67 (X )
-n
= [ exp{n(8°-6 ) (x-1(6.)) - n1(8_,8°)} ¢} (x) aB® (x)
-n n n n'-n n en
> exp{—nI(en,gg)} i exp{n%(92—9n)0(9n)x}$;(x) aph (x).
n

. -1% ., -1 %
[{cn x(en)}c(en) n ,{dn-bn—x(en)}o(en) n?)
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Suppose limiaw n?(en_— 0 ) < o for some subsequence {n }; then
i
limi+m n?(e —60 )6(9 ) < o, and hence by (2.7.2) and Pe —y N(0,1) the

integral in (2 7 4) is bounded away from zero for the subsequence {n 1.
Now consider exp{-n, 1(6n , )} Since 6 e K (i=1,2,...) and

lim, (6p.— 60 ) =0, there is a compact subset K' c int © such that

o i i -ny v 0

8, € K' for sufficiently large i. But then is {niI(en',gn_)} also bound-
: i

ed above and (2.7.4) implies that {a. } is bounded away from zero, in
ni X >4

contradiction to o + 0. It follows that

R N R
(2.7.5)  limn’(8_-8) = .

n-+o
Hence from (2.7.4):

(2.7.6) o, 2 Ia-exp{—nI(G 6 )—n(9 -0 )(d' A(e ))+n(6 —e )b }

v

exp{-n1(A" @), 00410} (@!) 10 )4n(8_-6)b }

10 n

0
exp{-nd +n(6n—6n

v

10 )b }.
Combining (2.7.3), (2.7.5) and (2.7.6) a contradiction is obtained to
o <5 exp(—ndn). This completes the proof of case al.
Case a2 of the proof of theorem 2.5.1 can be treated similarly.
Next we consider case b. In the course of the proof of theorem
2.5.1 it was shown, cf. (2.5.3) and (2.5.5), that

e ¢ (x )1 (in) > e,

L,/

or

-+ ~n
_ ¢ _(x) dap
[{fn-l(en)}o(en) 1n%,”) " en

(x) =2 ¢,

- =%
where again ¢;(x) = ¢;(A(en)+n c(en)x). As in case al there exist numbers

bn > 0 such that for sufficiently large n

(x) >

o+ ~n
-1y bp(x) ap 10’

-1 % ]
n

[{fn-K(en)}c(e ) ,{f “A(8 ) +b }0(6 )

and
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T @Bt (%) >
[{£ -A(6.)+b }o(8 ) tn%,m) B %
n n’ "n n '

£
10
From the first inequality we derive

(2.7.7) lim inf n% b > 0.
n-o n

Repeating the argument of case al we can conclude .that

(2.7.8) lim n%

(Bo-en) ==,
n->eo
and hence
+ -
(2.7.9) o =E ¢ (X))
n = n ' n
eO

= + = =n
= exp{-nI1(6 _,8,)} f ¢, (x)exp{-n (6 -6) (x-1(8 ))} Py (x)

n
> exp{—nx(en,éo)} f 5;(x) exp{—n5(9n—§o)d(6n)x} dﬁg (x)
- -1y n
[{fn—x(en)+bn}o(en) n”,)
. _ _ -
P IB—exp{—nI(Bn,60)+n(90—Bn)(fn—A(en))+n(60—6n)bn}
s €

Ta-exp{-ndn+n(60—6n)bn}.

Combination of (2.7.7), (2.7.8) and (2.7.9) a contradiction is obtained to
o <5 exp(—ndn).‘

The same method of case b also leads to a contradiction in case c.

This completes the proof of the theorem. [J

2.8. POINTWISE CONVERGENCE

Theorem 2.7.1 obviously implies the much weaker result limn_)co Rn(e) =0,
pointwise for each 6 € 91A int 0. It remains to consider the boundary points

of 0. We first present a useful lemma of independent interest.

LEMMA 2.8.1. Let Xl'XZ"" be i.i.d. non-degenerate random variables, and
b

n , ,
s, = Zi=1 X, (n=1,2,...). Let {nn} be some sequence, satisfying nn-—o(n

)

as n > ., Denote by Jn the set of intervals of length nn. Then
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(2.8.1) lim sup Pr(S € I ) = 0.
n n
n--w IneJ

PROOF. The result of the lemma can be obtained by application of an inequal-

ity of KOLMOGOROV, stated in [12] and proved in [13]. [
THEOREM 2.8.2. For all 6e ©, it holds that lim R_(8) = 0.
—_— 1 n>© n

PROOF. We only have to consider boundary points of O. Let 6 € © (the case

8 € 0 can be treated similarly). If 8. = 8, continuity of the power function

0
+
. . < . -
of the MP test implies Bn(g) <o > 0 as n + ©, and hence lJ.mn Rn(g) 0.

Assume therefore 6 < QO' Suppose lim sup_ ., Rn(g) > 0. Without loss of

generality assume Rn(g) 2 ¢ > 0 for all n. Defining
-1
fn = {w(go)—w(g)—dn}{go—g}

we have the implication: x < fn = ¢ER(x) = 1 (for a proof see (2.5.4) et sq.)

+.— -
and hence EQ ¢n(xn)1 m)(xn) > ¢ for all n. By lemma 2.8.1

[£n,
i X _;4' =
llmnam Fé(xn € [fn,fn+n )) 0, and therefore

3 (in) > g/2

+ -
Eg ¢ (X)1 _
- [fn+n lm)

for all sufficiently large n.

But this implies, for large n,

Q
1]

+ -
Zg,tn En)

v

+ -n
/ ¢, (x) exp{n(go—g)x—nw(§0)+nw(§)} dPg (x)

[fn+n—%,w) -

v

he exp{n(8,-8) (£_+n" ) -ny (8,) +ny (8) }

v

‘%e exp(—ndn) exp{n%(go—g)}.

Since on the other hand, by lemma 2.3.1, o <5 exp(—ndn), we have obtained

a contradiction and therefore lim R (6) =0. 0O
n->c n -






CHAPTER III

THE k-PARAMETER CASE

3.1. INTRODUCTION

In chapter II we have described in detail the behaviour of the short-
coming in the one-parameter exponential family model. In this chapter we
present some generalizations of these results to the k-parameter case.

We represent a k-parameter exponential family by

(3.1.1) dPe(x) = exp{08'x-y(0)} du(x), X € E&)

where |1 is a non-degenerate probability measure and O ¢ int ©. For each

n € IN consider the testing problem H_: 6 € 00 against H,: 0 € 01 at level

0 1
o_ with the available observations X,,...,X , where lim o_ = 0. Except
n 1 n n>® n
for section 3.8 O, = ©0-0.. We investigate the behaviour of the shortcoming

1 0
Rn(e) of the size—an LR test as n - .

The basic results of chapter II are lemma 2.3.1 and theorem 2.5.1. By
lemma 2.3.1 o <5 exp(—ndn), where dn is the critical value of the LR test,
in the one-parameter case. In the k-parameter model such a nice inequality

is not generally true as the following example shows:

EXAMPLE 3.1.1. Let YI’YZ"" be i.i.d. random variables with a normal

N(g,o0 ) distribution. The famlly of dlstrlbutlons constitutes a two—parameter

exponential family with 6 = (Eo ,%(1 o ) and X, = (X$1),X(2) = (Y.,Y.).
We con51der the testing problem H : £ =0, 02 = 1 against H : g # 0

or 0 # 1. The LR test of this problem has the following form: re]ect H

0
. -1 vn 2 -1 ¢n . .
if n i=1 Y5~ log n Zi=1 (Yi—Yn) > 1+2dn (in the notation of (1.2.10)).
Hence, if Yi is normal N(0,1) distributed,
-1 ¢ = 2
> - - -
@ 2 Pr(n 121 (¥,-¥ )% < exp(-2d -1))

n-1

-1
n exp(-2d_-1) g B _ -1
= T exp(-hy) y 2 [2 2 r(-“—i)] dy.
0
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Let dn + o so fast that n exp(—2dn-1) + 0. Then, for sufficiently large n,

n-1

-1
n exp(-2d -1) 21 2= (o1
(3.1.2) o 2% n Ty 2 [2 2 r(ﬁii)] dy
0

v

3

\'2

1/3 n exp(—ndn+dn),

by an application of Stirling's formula.
Choosing for example dn 2 n (3.1.2) contradicts the statement
an < (ndn)p exp(—ndn) for every fixed p. So even in the case of a simple

hypothesis an inequality like o <5 exp(—ndn) does not hold.

Moreover, the condition an = 0(1) exp(—ndn), as n + o, appearing in
theorem 2.5.1 is not satisfied in either "regular" k-dimensional cases. This

is demonstrated by the next example.

EXAMPLE 3.1.2.Let(Xl,Yl),(X2,Y2),... be i.i.d. random variables with a

2
normalN(E,]é) distribution, where £ ¢ R and I_is the 2x2 identity matrix.

2
Consider the testing problem HO: £ = 0 against H1: £ # 0. It is easy to
see that the LR test rejects HO if ii +'§i > Zdn. Hence, under HO,
=2 =2
= > = -
an Pr(xn+Yn 2dn) exp ( ndn).
A natural generalization of a_ = 0(1) exp(-ndn) to the k-dimensional

case is a = 0(1) (nd )“"1)/2

_ (x-1)/3
o, = 0(1)(nd )

exp(—ndn). However, the implication

exp(~ndn) = llmn

oo Rn(e) = 0 uniformly in 6 is not

necessarily true. To show this we present the following example.

EXAMPLE 3.1.3. The measure | is defined as u(il,...,ik) = 2_k for all
(il""'ik) with ij =0or 1l (j=1,...,k). Xl,X2,... are i.i.d. random
vectors with distribution given by (3.1.1) with u defined as above.

6 # (0,...,0)

The hypothesis H 6 = (0,...,0) is tested against H

N 1
at level a = 2—nk. It is easy to verify that the LR test has the following
form:
- 1 k .
2 k if (x( ),...,x( ))= (il""’lk)'
¢ﬁR(x(1),...,x(k)) = where i, = 0or 1 (3 = 1,...,k)

0 otherwise

and dn =k log 2 (cf. (1.2.10)).
Consider a particular sequence {en} in 0 defined by

6 = (2logn,...,2 logn). The MP test of H

n against the simple alternative

0
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6 = en of size o, = 2 nk is given by

1oie <Lk - 1L
¢:(x(1),...,x(k)) = .
0 otherwise
Since Pen((ﬁél),,..,g(k) = (iqr--erip)) >0 fOr (ip,..0,8) # (1,...,1),

we have R (8 ) = (1-27")Pg ((iﬁl),...,igk))

z(k)y _
“.”xn )— (1,...,1))

(1,...,1))+0(1) as n > o,

Now limn Pen((Xn 1 and thus lim Rn(en) =

k—)oﬂ n->o
1-2"".
Combining e = 2—nk and dn = k log2 it follows that o = exp(—ndn) =
(k-1)/2 i R _ . _5k
0(1)(ndn) exp(—ndn) for k 2 2; however, llmn+m Rn(en) =1-2 > 0.

Although the preceding examples show that general results as theorem
2.5.1 do not hold in the k-dimensional case, some of the specific results

of chapter II hold true in the k-dimensional case.

3.2. A GENERALIZATION OF A THEOREM OF EFRON AND TRUAX

In this section we determine a relation between an and dn. To this
end we generalize theorem 6 of EFRON and TRUAX (1968).

We first define a number I(K) for a subset K of int © as a sort of
"Kullback-Leibler information distance" of K to the boundary of ©. More

precisely: let K < int ©, then
(3.2.1) I(K) = sup{A;{06;I(0,K)<Aa} CKACint 0, where KAis compact}.
We now have the following

THEOREM 3.2.1. Let Xl,X be i.i.d. random vectors, distributed

grene
-1

as in (3.1.1), Let K be a subset of int 0. If en < dn <

min{I(K)—e,e_l} for some € > 0 and all sufficiently large n, then

k-2

- 2
(3.2.2) Peo(xn ¢ A{e;I(e,eO) < dn}) = (nd) exp(—ndn+0(1))

as n > », uniformly for 60 € K.

Comparing this result with theorem 6 of Efron and Truax we allow
dn + 0 as n > « where Efron and Truax require dn 2 g > 0. (Incidently the

upper bound for dn in [8] is incorrect.) Thus we also obtain a relation
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between o and dn for subexponential rates of convergence of o to zero.
Note that theorem 3.2.1 generalizes theorem 3 of HOEFFDING (1965b) dealing
with the multinomial distribution. In [8] only a sketch of proof is
presented. Apart of some technical differences the most important difference
between our proof and that in [8] is the application of the (multidimen-
sional) Berry-Esseen theorem in stead of the Rvaéeva—stone theorem.

Before proving theorem 3.2.1 we present a lemma, which enables us to
go from fO-space .to A-space and vice versa, and to translate "Kullback-

Leibler information distance" into Euclidean distance and vice versa.

LEMMA 3.2.2. Consider an exponential family (3.1.1) and some compact subset
K of int O. Then there exist positive constants CpreveiCqys depending only

on the exponential family and K such that for every 0, € K (6 #&)

(i) c, < —“——“——“(92:2(5)" <c, '

. I(6,8)

(ii) c, £ —= <c ,
3 ho-a1? 4

(iii) c I(6,8)

< <c. .
57 (8-8)'(X(B)-A(E)) 6

PROOF. We prove I(6,§) = c3“9-£"2. The other statements can be proved in
the same way. By Taylor expansion Y(£) = ¢ (0)+(£-6)'A(6) + %(E-e)'zn(g-e)

*
for some n between £ and 6.Let K be the convex hull of K. Then

I(0,E) = %(E-0)'% (£-8) = lp-gl% % inf u'T u =
‘ n lal=1 %
*
CekK
- c3ue-gu2. | o

-1
PROOF OF THEOREM 3.2.1.Let Goe K.ByTaylorexpansionaboutA(eo) I(A (x),60)=
-1 2 -1 =
— ' — —
% (x=A(00)) "Zg (x-A(8()) + 0(lx-2(8)1%) as x > A(8,). Hence 2nI(XA " (X ),8)
has a chi-square limit distribution, and thus the theorem holds if

lim nd <o and nd 2 ¢ > O.
n+® - n n

Therefore assume that limnam ndn = «, Denote by ¢ ---C positive constants

27
not depending on n.
As the first step in our proof we introduce a "lattice" {en i} on
’

the surface {6;1(6,60) = dn} with distance between two neighbouring points

of order n_%. The set {9;1(0,60) = dn} is contained in
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= {8;I(8,K) < min{I(K)-e,e_i}}, a compact set in int O; hence by lemma

Xo
3.2.2
(3.2.3)  lp-8 1% > ¢, a
0 1 "n
for every 6 satlsfylng I(6,6 ) = d . Choose points 6 1,...,9 p_ on
’ I
B — def {0;lo- 9 12 = c1d } such that for all 0 ¢ B there exists a
6 . with lle- 6 N <n %, and for all i # j le ;—9 M >n %, where
n,1 n,1 n,1 n,j

i,j = 1,...,pn; It is not difficult to see that such points indeed may be

determined.
We estimate the number of points P, For i = 1,...,p let S ni s
I
{BeB ;le- 9 N < %n %} then S . AS . = @ (i #3j) and hence
n,i n,1 v] —(k-1)/2
z n area of Sp,i S area of B - Slnce area of Sn { Z S0 and area

of B =c d(k'l)/2 it follows that P < Cy (nd )(k /2, Considering

T {eeB ;le-6 I < &}, i=1,...,p,., and using the inclusion
nrl (k-1)/2
c UPn . we find p_ > c_(nd ) . Hence
n,1 n 5 n
k-1 k-1
2 2

(3.2.4) c5(ndn) Spn < c4(ndn) .

We define en i by en’i = 60 + yn’i(en’i—eo) and I(en,i,eo) = dn (i =1,...,pn).

’
. . x x e TP
By (3.2.3) Y, j 2 ! implying that e n,i en,j" > "en i en,j" > n~ s 1#3,
i,3 —1,...,p - We also need an upper bound for inf, , p I6-8 i"’ where
re++1Pn n,
I(e,e ) = d . Let 8 e {e,I(e,eo) a }, then 6 = 90~+Y(e -8,.), where 0 ¢ B .

Then there isa®_ , (1<i<p)) such that le-o_ I < n_l’. By lemma 3.2.2
n,i n n,i

"6 7% " d  and hence y , < c,. Take a sphere with radius c n™* and
’

n,i ‘6 7 7
centre en it Then the line through 60 and 6 intersects this sphere at a
, .
point
(3.2.5) 0% =6_+y*(6-0,) a 1o*-5_ I =cn®
e = %Y o/ an n,i - ™ -
* ~ * o~ -1 =55
T = - - > - .
hen I(6 ,90) . I(en,i'eo) + (6 9 ) Ze (9 n,i 60) +0(n ") dn cgh dn

Consider the function £(h) = I(6 +h(e -0 ) 9 )for h 2 0. Its derivative
f(h) = h(6-6 ) Ze o*+h (6- 9 )(6 e ). For any h > % such that I(90+h(e~60),60)
< mln{I(K)~e € 1} is é%-f(h) S d . Since y 2 % for n sufficiently large

(in view of (3.2. 3) et seq, (3.2. S) and nd_ > «) the mean value theorem

n
lmplles I(e +c8c n %(e 0 ) ] ) = f(Y +c,c 1_% % > I(S*,e ) +

oy 09 g hom .
c8c9 d c9dn > d , and hence Yy <y + CgCq M dn . In the same way we
find that Y2 y* - cyon e %, and thus I6-6*l = |Y_Y*|He—eou < clln_g'
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-k
120 -

cee on the sur-
n,l’ ’ ’pn}

face {e;x(e,eo) = dn} with the following two properties: for all § with

x o~
Combining this with I8 -6 iﬂ =c c

7
’
Thus we have obtained a sort of lattice {8

n—5 we have 18-8 I <
n,i
n

1(8,6.) = d_ there exists a & . with I8 -8l < ¢ n-ﬁ, and 18 -8 _I >
- 0 n n,i n,i 12 n,i n,j
n ° for all i # j.
It will now be shown that
k-2
= 2
(3.2.6) Peo(xn ¢ A{G,I(a,eo) < dn}) 3 c13(ndn) exp(-ndn).

Therefore we carry the "lattice" over to A-space and consider the points

§ e (B . 2.2 IA@_ )-A(8_ )l = i

A(enll), ,X(en'pn) By leTma 3.2.2 A(en'i) )\(6n j) > cy 40 Consider

spheres Un,i with centre A(Gn’i) and radius %c14n ,i=1,...,py, then

u ;A Un i =@, i# 3, and Un i € A(0) for n sufficiently large. Hence
’

n,1 '

(3.2.7) Peo(x ¢ A{e;I(e,eo) < dn}) 2

P .
- -1 -
(Xn € Un,i' I(A (xn),eo) > dn).

n
n
P
i=1 %
i 8 - Ty 9 - (8 3 -
Since (en'i B) 'x 2 (g i 6o A(Bn’i) implies that supeee{W(BO) P(8) +
- 1]
(0 GO) x} = dn or I(A (x),eo) P dn'

-1 = _
(3.2.8) Py (X € Un’i,I(X (xn),eo) zd) =

8
= - S Pt _ 5n
=f[ 3 exp{ n(en'i 8,) x+n¢(6n'i) nw(eo)} dpen i(x)
{Un,i,I(X (X),eo) 2 dn}
2 exp(-nd ) [ ) exp{—n(énli—eo)'(x—kfén'i))} dﬁgn i(x).
(0, 50(8, =80 "x 2 (8 ,=8)"A(8 )}

By the k-dimensional Berry-Esseen inequality there exists a constant

c15_> 0 such that for any 6 >0
= P = b
-0 V' (X -
_ o (0,1 78 " (X,mA(6, ;)i
Px <Xeu.'n<~ = L, =
. -0 Y'Yy~ -
n,i {(en,i 8, '3 .(en’i eo)}
n,1
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> pr(lizl < Ciqr 2y € (jc16n—%,(j+1)c16n_%]) - c15n—%,

where the k-vector Z has a normal N(O;Ik)distribution, and j = 0,1,...,[n%] =

entier(n%). Note that we can take c independent of én i since the third

15 '
order moments are bounded. Taking the constant 6 large enough we find
x z b 5
_ (6 .-0)'(X -A(6_ .))n _
Px X eU_ .,je,n % . n,d 0 n LTE < (j+l)ec, .n 5
en i n n,i 16 {(é —6.) 15~ (5 -8 )}% 16
' n,i 0" “8_ ., n,i O
n,i
> e, .n for j = 0,1 [n%]
= 18 J rlygeee .
It follows that (cf. (3.2.8))
x = -n
" - Vox— n
(3.2.9) f ) ) expf{ n(eg,i 8,) '(x A(en'i))} dPen i(x)
- ' - v ’
(0,57 (8,,378) "% > (8 ;-80)"AO )}
[n?] i ) .
- - Vg - 0
> .Z / exp{-n(6_ ,-60)'(x-A(8 .1} dP5 (%)
j=0 : n,i

L
T € (jc16n_%,(j+1)c16n_%]}

{U (en,i—eo)'(x-X(Qn'i))n
n,i ~ — ~ _
{(en’i—eo) Ze ((‘)n'i eoﬂ

n,i

(071 _ i .
> -(3 { - Ty -
> Z cgn - expl (3+1)c16{(en,i 8p)'Z5 (8 ; 8,17}

j=0 n,i

[n?] o L
P4 z cg" exp{—(j+1)019dn}

.20

1 -exp(-c,.a’n*D
S -3 19°n
> c,.n exp(-c,,d°)
18 19™n 1 - exp(~ d%)
P1"C19%
-k
> c20(ndn) ,
where the third inequality follows by
I 15 8 - §  _p 12 -2 2
(en’i—eo) Ze ,(en,i 60) < Hen’i 60" sup u'ZCu PN
n,i lall =1
CEKO

Combining (3.2.8) and (3.2.9) we find (cf. (3.2.7) and (3.2.4))
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pn
Peo(xn“{e’“e'eo) <a b = 121 cyond) & exp(-nd )

s B

-2

Nl

v

c5c20(ndn) exp(-ndn).

So we have established (3.2.6) with Cy3 = c5c20.

It remains to prove that

k-2

(3.2.10) Peo(xnng{e;l(e,eo) <dn}) < c21(ndn) exp(—ndn).
To this end we first prove the following statement:
if x ¢ A{S;I(e,eo) <dn} then there is a en'i (1<i Spn) such that

(3.2.11) (8, ,=60)'x=¥(8_ )+¥(8) 2 d -cpn .

22
Geometrically: we cover the region outside {A(e);l(e,eo) Sdn} by (suitable

chosen) halfspaces.

To show this we distinguish two cases.

(1) x = A(8) for some 6 satisfying I(e,eo) = dn. Then there is a én i
’
(1<i<p ) such that Ile—én i|I < c12n—5, and thus (by lemma 3.2.2(ii))

r

(en,i_eO)lx_w(en,i)+w(60)

(9n'i—90) 'X(e)—w(en'inJ(@o) =

-1

I(e,eo) —I(B,en ) 2d -c,,n

1 n 22

Hence (3.2.11) is satisfied.

(ii) x = A(O)-+Y{A(e)—k(90)} with 1(6,90) = dn and v > 0.

Again there exists a 6, (1<i<p ) such that I8 -6l < ¢ n_%, which
. n,i Y n n,i 12

implies IA(6_ .)-A(6)l < c..n °. Since in this case
n,i 23

(On'i-eo)'x-—¢(6n’i) +w(eo) =

= (en,i_eo) 'A(0) —w(en,i) +lb(90) +Y(9n'i-9o)'U(e)—)\(eo)},
and (5n,i—60)'A(6) -w(én,i) +w(60) > dn —czzn_1 by (i), it is sufficient

to prove that (én i-eo)'{x(e) —A(eo)} > 0. Now by an application of lemma
3.2.2
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(en'i-eo)'{x(e)-x(eo)} =

(enli—eo)'{A(en'i)-x(eo)} + (en’i—eo)'{x(e)—x(enli)}

PR =%
249, ~ %dpCy3® " 2 0

[\

(o]

for sufficiently large n, since ndn -+ ®. This completes the proof of (3.2.11).

It follows that

(3.2.12) Peoogl¢x{e;1(e,eo) <ah s
pn
= 121 Peo((en,i'eo)'Xn"W(en,i)+w(eo) 24, -¢y,

n_l).

Again we consider one term of this sum:

~ '_ ~ _1 _
(3.2.13) Peo((en'i-eo) Xn—¢(6n’i)+w(60) 2 dn - Cy,n ) =
- - - -1
= Peo((en,i_eo) (xn-x(en,i)) 2 ~Cpo" )
< jZO f exp{n(eo—én,i)'x—nw(eo)+n¢(§n'i)} dﬁg (x)

4 n,i

~ -~ !.2 —
(6 .-8.)'(x-A(6_ .))n"+c,.n
{jn—5 < _n,i 0 n,i 22 < (j+1)n-a}

- \ 5
{(en,i_e ) Zé .(én’i-eo)}
n,i
< exp(-nd ) ) exp{c22—jﬁan 1790 ' 25 (én i—eo)}5} x
j=0 ! n,i !
x s 5 -k -5
(8_ .-8,) " (X -A(B_ .))n+c ,n _ _
" Pé [ n,i 0 n n'f 22lz ¢ [3n %,(j+1)n 5]]
ned {(en,i_eo) zén i(en,i_eo)}
< exp(—ndn) Z czsn_% exp(c22—j c26d:)

j=0

-5
< c27(ndn) exp(—ndn),

where the third inequality is a consequence of the one-dimensional Berry-

Esseen theorem. Hence
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P (Xn¢>\{e;I(9;90) < dn}) <

e0
Py
-5

< z c27(ndn) exp(—ndn)

(=1

k-2

< ¢,c,,(nd ) 2 exp(-nd_)
T T4727 n n'’

proving (3.2.10).

The constdnts cl,..,,c27 appearing in the proof can be chosen indepen-
dent of 60; for instance c, = inf{ﬂe—gﬂzfl(e,i)}_1;9,£eK0}. Hence (3.2.2)
holds uniformly for 60 e K.

This completes the proof of the theorem. [

3.3. THE NULL HYPOTHESIS CONTAINED IN A COMPACT SUBSET OF INT O
We start with a useful lemma.

LEMMA 3.3.1. If OO and 91 are such that int 61 # @ and cl Oo A int O # @,

then lJ_mn_)°° o = 0 implies llmn+m ndn = o,

PROOF. Suppose lim infn*m ndn < o, Assume without loss of generality that

ndn < C for all n (C > 0). Let 60 e cl 60 A int © and Be be an open sphere

with radius € > 0 such that B_ < int Ol and eo is a boundary point of Be'
L

R, = -1 = -1
>
I n (Xn) 2 PeO(I(X (Xn),eo) >Cn ~ A
x € A(Be)) 2 § > 0 for sufficiently large n, in contradiction to

lim a =0. 0O
n

n->o

Then it can be shown that o 2 Eg, [0

We consider a null hypothesis 00 contained in a compact set K ¢ int 0
(the easiest situation, that of a simple null hypothesis, is a special
case) .

In chapter II we encountered such a null hypothesis in corollary 2.6.1
to theorem 2.5.1. Although we have no generalization of theorem 2.5.1 (see

section 3.1), the statement of corollary 2.6.1 remains true:

THEOREM 3.3.2. If Oo c K, where K is a compact subset of int 0, and if
I< I(OO) (cf. (3.2.1)) exists such that

(3.3.1) an > exp(-nI) for all sufficiently large n,

then lim R (B) = 0 uniformly on O, .
n>o© n 1
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As ever our first step is to connect o and dn. With the help of

theorem 3.2.1 we derive an upper bound for o in terms of dn:

LEMMA 3.3.3. If (3.3.1) is satisfied, then there exists a positive constant

C such that
k-2

2
(3.3.2) an < C(ndn) exp(—ndn).

PROOF. Since

o < sup P sup {(9'X -p@®)} - 9'X -Y(6)} < -4)
n® eg eo(0€g> a1 )} Zzg{ n v )} n
00 0
< sup Pe (66 Xn—¢(90) - sup{6’' xn—w(e)} s-dn)
0.€0 0 0e0
00
< sup Pe (Xn ¢A{9;I(9,90) < dn}),
90690 0

we are almost in the situation where theorem 3.2.1 can be applied. Let

0<§ < I(eo)-I then by theorem 3.2.1 thereexists c6 > 0 such that

sup Py (inn{e;x(e,eo) < I+%68})

90690 0

k-2

< ca[n(I+E6)] exp{-n(I+%8)}.

Now suppose that lim supn_>m dn > I, then there is a subsequence
i i > < < -I. -
{dni} with lim, _ dn; 2 I+§, for some 0 < ) < I(O,) -I. Then for suf

ficiently large i is

a < sup Pe (Xn,¢ A{e;x(e,eo) < dn.})

i ,60600 0 i i

< sup P, (in ¢ M0;1(0,6,) < I+4%51

80660 0 i

k-2

< s [ni(1+560)] 2 exp{—ni(1+560)},

0

in contradicti .3.1). i < I.
ion to (3.3.1). Hence lim supn+w dn I
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On the other hand lemma 3.3.1 implies that ndn -+ » and thus

dn > en—l for sufficiently large n.

Application of theorem 3.2.1 yields

<
o < sup Pe

90690 0

(x ¢ 1{9;1(9,90) < dn})

k-2

‘CGO(ndn) exp(—ndn)

A

as was to be proved. [J

PROOF OF THEOREM 3.3.2. Let CyrewesC be appropriate positive constants.

12
We shall prove that for every sequence {en} satisfying I(en,Go) S I+6

(0 <6 < I(0))-I) and R (8 ) 2 € > 0 it holds that a_ 2 c ;’}.
n n n

1 exp{—ndn+c2(ndn)
Since by lemma 3.3.1 ndn -+ ©, a contradiction to lemma 3.3.3 is obtained

. LR = . _
for these sequences {en}. We shall also show that lim Eg, ¢n (Xn) =1
for every sequence {en} satisfying I(Gn,Oo) > I +8. Together these two

results yield the theorem.

Part a.

Consider a sequence {en} in 0 such that x(en,eo) < I+6 and
Rh(en) 2 € > 0. Assume without loss of generality en ¢ cl @o. For suf-
ficiently large n there exists a sphere Bn c A(int ©) with centre A(en)

and radius c n_!i such that Py (X_eB_ ) 2 1-%¢, for
3 n n n

V-
(3.3.3) Zen (Xn-k(ﬂn))ﬁ

5 — N(0;L ) under en

since en lies in a compact subset of int ©. From Rn(en) 2 g it follows
that

[y Gonta) - 62R00 ) aB) (o) 2 ke
n n
and hence
(3.3.4 [ 1 br0x) @By () > he.
: B_AI(\ (x),0,) <d n
n 0 n

+
Note that ¢n satisfies



49

o (x) = 1f [ expln(8,-6 ) 'x-ny(8,)+ny (6 )}dt (8) t,
0 cl@0

where the distribution T (concentrated on cl 60) is least favorable (see

[15] section 3.8). Define

t (85,%) = exp{n(eo—en) 'x—nw(eo)+n¢(en_)},

Ul,n = {x;xeBn,fcl 00 tn(eo,x)dtn(eo) < tn}
and

Uy o = {xixeB_, [, % t (8,x)dt (8) < t }.

+
Then Ul,n c {x,xeBn,¢n(x)—1} c U2,n

Suppose to the contrary that int(U2 n—U1 n) # @. Then there exist,
’ ’

. We first prove that 1nt(U2'n—Ul’n)==¢.

for any fixed n, x,yl,...,yk in U2,n-U1,n with the property that

X=Y r.--rX7y, are linear independent and %x+%yi €U Uy (i=1,...,k).

2,n‘ 3t
= . - ' = - '
Denote by Tyi {60 ecl eo,(eo 6.)"x (eo en) yi}. Then
0=/ {5t (8,,x)+ht (8.,y,) -t (6, lax+hy,) bt (8)

cl 00

fTC {4t (8,%)+at (8,y,)-t (8, mxtly;) }aT_(8)).

¥y
The last equality is a consequence of the fact that the integrand is
non-negative due to the convexity of tn(eo,-). Since the integrand is
positive on T§i, it follows that rn(Tf,i) =0 (i=1,...,k), and hence

T (Uk T ) = 0. The linear independence of x-y,,...,x-y, implies that
n' i=1 "Yj 1 k

k C = =

Ui=1 TyiA cl OO = cl 00\9n cl Oo, because Gn ¢ cl OO, and thus

Tn(cl OO) = 0, in contradiction to the definition of Tn, which proves that
lnt(UZ,n_Ul 'n) = @.

Since the Lebesgue measure of U is zero for all n and (3.3.3)

2,n_U1,n
holds the probability of randomization of the MP test vanishes under en as

n > «, Together with (3.3.4) it follows that

- -1 -
(3.3.5) Pe (Xn €U n,I(A (xn),eo) < dn) > e/4

n L

for sufficiently large n. We further note that U is a convex set.

1,n
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We now claim that for n 2 ng there exists a point ;n € O with the

following properties:
Mz) e B A {x:¢7 (x) = 1}
L) € n x,¢n x) = '
I(;n,eo) < dn' and

% -
there exists a sphere Bn with centre A(;n) and radius ¢ ,n

4
contained in B_ A {x-¢+(x) = 1}.
-
For: (3.3.3), (3.3.5) and the inequality II %x-ze%yﬂ < coyn for all
-3 5n

X,y satisfying lx-yl < c,n © imply that such p01nts (2 exist, provided c,

is sufficiently small.

. , . . <
Since 1(;n,eo) < dn there exists a point &n € 90 with I(cn,En) <

dn + n_l. Let n, € © satisfy (for some positive constants <y and cz)
(1) A(nn) € Bn' .

(ii) I(nniin) s*dn - c,n _dn, and

R _ . _ , S . )
(iii) Pﬂn(xn € Bn'(gn n) x> (g n) A(nn)) 2 ¢, for all é 2 n,

The existence of such points n, (and c, and c2) may be argued as follows:

5 -4

Suppose thatvI(c ,E ) < d - d n °; taking nn = Cn all the required

propertles of n, are satlsfled.

L -k

If I(Ln,gn) > d —d n the proof is more difficult. Choose n on the line

through ¢ and £ : n = g +y (§ -g)) (0 <y < 1) such that ﬂx(nn)-x(cn)“=
%c4n-5. Thls is p0551ble if "A(c )-A(E > %c,n %, but by lemma%3.2.2
Hk(cn)-l(gn)ﬂ > c [I(C ,E ):|!2 2 ¢ (d d% % % (%d );2 > %c4n- since

nd_ -+ «, Thus n, is well defined and obv1ously satlsfles (i) and (iii). It
n

remains to prove ‘(ii).
. . - : _ _ f _

Since I(n_,€) = I(z ,E) + I(n ,g) = (§ -T)'(A(n )-A(z )), and by

lemma 3.2.2

(E,=L) (AN )=z ) (n =C.)" (A(n)-A (5 )

= 2 C,y
ﬂgn—;nﬂ Hnn—gnﬂ ""n"Cn“2 7
%
ﬂgn-;nﬂ 2 cgd”
and
-3 :
Hnn Cn“ 2 cgn Y,

it follows that
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-1 -1 %% 5%
I(nn,gn) < dn-+n -+c10n »-c7c809n dn < dn-czn dn,

because ndn + o, Hence points n, satisfying (i), (ii) and (iii) do indeed

exist. Consequently

oy 2 Py (R e {x:67 (x)=1})

v
9
X
m
w

v
—

exp{n (£ -n ) "x-np (€ )+nb(n )} aB) (x)
* ' ] n
B A (€ -n)'x > (E -n )"A(n)

v

¢y exp{n(En-nn)'A(nn)-nw(in)+nw(nn)}

v

e, exp{—nI(nn,En)}

%,

v

c exp{—ndn-fcz(ndn)

1

which completes the proof of part a.

Part b.

Now consider a sequence {en} satisfying I(Bn,OO) > I+§. First note
that x ¢ A implies ¢§R(x) = 1 for sufficiently large n. To prove this
pioperty*let x ¢ A._There exists a 9; € cl_@O such that supgoeeo{eéx—w(eo)}=
eo'x—¢(eo). Choose 6 € O such that both I(e,OO) > dn and A(6) lies on the
line segment joining x and A(eg): x = A(0) —cll{A(SS)—A(§)} (this is pos-
sible for sufficiently large n since lim sup_ ., dn < I by lemma 3.3.3).
Thus

sup {66x—¢(60)} - sup{@'x-y(0)} <

90690 0e®

< GS'x - w(ez) - 8'x + P(B)

= (8-60) " (A(B)-x) - 1(8,6)

= ¢y, (5-6) "{A(8)-A(B)} - 1(,0p)
<

- % -
—1(9,60) < —I(G:Oo) < —dn
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and hence ¢§R(x) = 1. It follows that for sufficiently large n

= LR
(3.3.6) Pen(xn € {x;¢n (x)<1}h) =

- LR -
Pen(Xn € {x;¢n (x)<1} A X el

IA

-1 -
Pen(I(k (x),04)

IA

dn)

. L
Pen(I(A (xn),eo) < I+k8).

IA

Since L def cl{e;I(e,Go) < I1+%6}, a compact subset of int 0, and

I(en,eo) > I+8 by assumption, inf[{I(Gn,L);nelJ},%%ﬂ = ¢,, > 0. Because

12
ereL{e;I(e,eo) <%c12} is an open cover of L and L is compact, there

: t .
exist 601,...,0 € L such that L < Ui=1{0;I(e,90i) <%c12}. Hence

ot

)

(3.3.7) P (I(A'l(in),eo) < I+46) <
n .

N :
-1 -
< L Py (TR )6, < Hey,).
i=1 'n

Consider one term of this sum: Pen(I(A-l(in),GOi) < %c . Since

)
12
I(en,eOi) = Cypr We can choose e: € int © on the line segment joining

* * *
eOi and en such that I(en,SOi) = 3c12/4.s I. Then (en-en) = rn(en—e

X o r . . . Vo -
with 1lim 1nfn+w n > 0. In combination with supeee{e x~-P(6)}

A-l(x)'x-w(k—l(x)) for x € A this implies that

0i’

-1 -
(3.3.8) Pen(I(A (Xn),GOi) < 5c12) <

IA

v 3 *’—_ * * _
Pen(w(eOi)_GOixn+en X V(8 < T(6,64;)-%c,,)

Pen((en 901)'(Xn A(On)) < %c12)
- _*l_ * sn
= f exp{n(en en) X nw(en)+nw(en)} dr_ (x)

* ' _ * _ 3]
{rn(en-GOi) (x=X(8)) < %clzrn} n

IA

*
exp{~%c12rnn —nI(en,Gn)} + 0,

because 1lim infnéw rn > 0. Hence in view of (3.3.6), (3.3.7) and (3.3.8)
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= LR
Py (X € {xi¢ "~ (x) <1i}) » 0
n
and therefore

LR,=
Een ¢ (X)) > 1.

This completes the proof of the theorem. []

3.4. THE ALTERNATIVE HYPOTHESIS CONTAINED IN A COMPACT SUBSET OF INT 0

In section 3.3 we have dealt with a null hypothesis OO contained in a
compact subset of int ©. Conversely it will be assumed in this section that
the alternative hypothesis satisfies such a condition. Then we have the fol-
lowing generalization of the one-dimensional result (cf. corollary 2.6.2):

THEOREM 3.4.1. If @1 c K, a compact subset of int O, then limn+m Rn(e) =0

uniformly on 91.

The proof is based on the fact that only that part of 00 is of inter-
est which is near 61 and hence all relevant arguments are concerned with a
compact subset of int ©. We first prove two lemmas.

LEMMA 3.4.2. If M is a compact subset of int © and ndn > ¢ > 0 for all n,
then

- -1 =
(3.4.1) P (Xn eA(M), I(X (Xn),eo) 2 dn) <

%

k-2

2 ‘
<
< c(nd)) exp(-nd_ ),

where 0 < ¢ < » is a constant independent of n and 60.

PROOF. Since int © is convex, M may also be assumed to be convex. For any
n > 0 let M(n) = {B;inf{ﬂe—eoﬂ,eOeM} < n}. To show that the constant c can
be chosen independent of 60 we shall consider a sequence {eOH} in stead of
60. In the sequel the constants cl,...,c16
constants. Choose c, so small that M(cl) c int O. We consider two cases
a) and b):

a) 6

will be appropriate positive

on € M(Cl) for all n,

b) eOn ¢ M(cl) for all n.
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In both cases we shall prove (3.4.1). Since we can pick subsequences
{eOm} of {GOn} satisfying the assumptions of one of these cases, this proves
the theorem.

First assume that limn_)oo dn = 0. In case a) an application of theorem

3.2.1 then yields the result. In case b) limn+m dn = 0 implies that

I(A~1(x),60n) > dn for all x € A(M) and sufficiently large n, and thus

- -1 - .
PopyFn € MM TOTR 10002 ay) =

- -1 -
=P (Xn € A(M), I(A (Xn)re

A On) > inf I(6,6

On 0eM

On))'

Since the right-hand side of (3.4.1) is much smaller if we replace dn==0(1)

by inf I(e,eOn), it suffices to prove (3.4.1) for sequences {dn} satis-

6eM
fying lim inf d > 0. We therefore assume lim.inf d > 0.
n>e n n>® n
Our next aim is to prove for all n 2 n, the following property (A):

There exist points én 1,...,5 € M(cl) such that for any 6 € M satisfying
’

’ -~
I(S,GOn) 2 dn there exists a point 6 ¢ M(Cl) on the line segment joining

i < T(6 = 1(8
6 and eOn with the property that dn < I(en’i,eOn) I(e,eon) and

16-6  .I < c.n”? for some i € {1,...,p_}, where p_ is bounded above by
n,i n n
c,(nd )(k-l);2
3 n -
Case a.
-2
2. < Ile- <
By lemma 3 222 cél< I(G,eOn)le eOn" cg for all 6 # 60n € M(cl)
and hence 16-6_ 1 > c_."d_ for all 6. e M(c,) and all 6 € M satisfying
On 5 "n On 1 def 5 1
> i 2el rg.lo- =
I(6,90n) 2 d . Choose points en,l""'en,pnon B {e;lle eOn" cg dn}

such that for all 6 e B there exists a en i with "6—9n i" < n ° and for

’ ’

. . “ - —;i . s = .. s
all i # 3 en,i en';" >n °, where i,j 1,. /P - Then p, is bounded
above by c3(ndn)(k' )/2. If

(3.4.2) sup{I(B,eon); o = en'i-+y(en’i—90n); Yy=20,0c¢€ M(cl)} 24,
define 6_ , = + - i 6 =
eflﬁe en'i en'i Yn,i(en,i~60n) with Yn,i such that I(en,i’SOn) dn.
If (3.4.2) does not hold, let 6 ., =6_ .
n,i On

Consider 6 € M satisfying I(8,0, ) = d_. Define 8" by

8" = 0. + vy (6-6_), Y 20, and l6*-0 1
=95, Yn on’’ Yn > 0, an - dn (note that

12 = o
% < On = "5 .
I(? ,eOn) < dn) and define 6 by 6 = eOn + yn<e —eOn), Yn > 1, and

I(6,6, ) = d . Since ﬂé—eOnﬂz < c_ldn it follows that y < c,. Let

On 4 - 6

Sn(é,c6n- ) be the sphere with centre 8 and radius c6n- . There exists
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a® ., (1 <i<p) such that l6 -0"1 < n_%. The line through 6. and
n,i n’ - n,i _ ~ On
en'i 1ntersectf Sn(e,csn )1at a point en ié Then I(en’i,eOn) =I(e,90n) +
—8) 'Y~ (06— > - - i i
+ (en,i ) ze(e eOn) +0(n 7)) = dn c.n dn' Consider the function
f(h) = 1(90n-+h(en,i—90n),90n).
> “ - :
For any h 2 % such that eOn‘+h(en,i eOn) € M(cl) }t holds that
d .
Eﬁ'f(h) > csdn.
Hence the mean value theoiem implies
= -1 =k -k = _
IO, s¥eg Sqm "4 (0 =00n) 100,) =
_ -1 =% -k
= f(1+c8 c7n dn )
-1 =k -k
> f(1)+c8 c,n dn c8dn
aE -5 %
= I(en'i,eOn) + c7n dn
>2d for alln 2 n,.
n 1
Thus (3.4.2) holds for all n 2 n, . Similarly it follows that
I8 .-con a3 .-6.),0.) <d for all n 2 n..
n,i' 9 n ‘'n,i On’’"On’ 7 "n 2
Therefore for all n > max(nl,nz) I(en’i,eOH) =_:n implies Gn'% = )
6 . +n (6 .-, ), where n_ is of order {(nd_) °, and hence l6_ -8 I <
n,i n g,ﬁ_ On ' n_12 n 15 - n, n,i
< - L . . . Al = i
‘~CIO(?dn) ?i'l 80n 5c11n . In combinationwith en,i cgn we have
Hen i—e" S c,n * and the proof of property () for all n2 max(n,n,) is
’
complete.
Case b.

Let L be a convex polytope such that M c L c M(%cl). Choose on the

.0 such that for all 6 € SL there
, frPn ,

n,l"'

exists a 6_ . with He-en iH <n °, and for all i # j Hen -6 I >n”

where

that

[I=]

'l v 1 M,7]
i,J 1,...,pn. Then P, is bounded above by c3(ndn)(k'1)/2 (note

lim inf a >0).
n+e n
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If

(3.4.3) I(B ,9 ) <d

On n
and

sup{I(e,GOn); 6 = en'i + y(en’i—eOn), Yy=>20, 0c¢ M(cl)} 2

then define en,i = en’i + yn’i(en'i—eOH) w1t? Yn,i such that 1(e ,eOn) =

=4d_ . If (3.4.3) does not hold, then define 6 ., =6 .. Since 6 éM(c )
n n,i - 'n,i On 1

it follows that Yo i < g for some P > 1.
4

Consider 8 ¢ M satisfying (6,6, ) 2 d . Define 6* by 6* =

On

=0 +y*(ee ),o<y <1, and 6* e SL. Thereex1stsa9 . (1<i<p)
On n n,i

such that "6 l—e *l < n“li Let S (0 i 12n )be the sphere with centre
'

and radius c¢,,n °. The line through 6 and e intersects Sn(en i,012n ) at
’

Q
0

12 On
i 9 ) = ) ) -8 ' 3 -
a point en,i' Thfn I(en'iieOH) I(en'i,eOn) +«(en,i en,i) Zan( n 60n), where
¥ lies between 8, and 6_ .. Consider the function
n n,i n,i

£(h) = 1(90n+h(6n’i—6 ).6, ).

On On
For any h such that 6 ~+h(§ -0 ) € int O its derivative satisfies
On n,i On
4 em) = h(e )'E (8 .-6_)
dh ,1 On eOn+h(en, - On) n,i On

The mean value theorem implies

= b= -1,= _
I(en,i"'can "en,i_eOn“ (en i_GOn)’GOn) -
e fdte oG -1
= f(1-+cl3n Hen'i eOn" )
= 8 6 ' -
I(en, ) + (en i n 1) Zﬂn(an eOn) +
+ c13n—!5||§ .—eOnII‘1(1+s V(8 ;=80T (en i 80n)
n,i n’ ‘“n,i On 0+ (146, )(6 ;
On
2 I(en'iISOn) for all n 2 ng,
: -5 = -1 . . . . .
where 0 < 6n < cygn nen’i-eOnH and the inequality is obtained by taking

€3 large enough.

n,i
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By the same line of argument

- i V. e <
I(Sn'i—c14n llen,i eOn[I (en,i eOn)’GOn) -
< I(en,i'GOn) for all n 2 n4.
N?w_deflne 8 by 6 = en’i_+ Yn(en’i—eon)wa?d I(S,OOn) j I(Gn,iISOn), then
He—en’iﬂ < max(cy3,¢;,)n °, and hence ne—en'iﬂ < cjgn . Let nj =
= max(nl,nz,n3,n4), then the proof of property (A) for all n 2 ng is

complete both in case a and in case b.

Since it suffices to prove (3.4.1) for all n 2> no, assume that
n no. Let x € A(M) satisfy I(A_l(x),SOH) > dn. In view of property (A)
with A-l(x) playing the role of 6 we can write x = x(6-+y(5—90n)), where
. . — n - 1 ~ ~_
Y 2 0. Confldernthe function g(h) = (en,i eOn) A(B+h(06 90n)), where h 20
such that e-+h(6—90n) € M(ci). Since its derivative is equal to
é%—g(h) = (6 -8, 0'L. . - (B-8,) =
e 8+n(8-0, )

B, 378 Tancg-o )0 %) =950 "Lgin (-0 ) ®~O0n)
On On

2 On
= lg-0_ I { + }
On ~ n2 x 2 !
- e - I
K] 90n" ] eOn

where the first term between the braces tends to zero as n » = and the second

term is at least equal to inf{u'I u;lull=1,0 ¢ M(cl)} > 0, g(h) is an increas-

)
ing function for h 2 0 such that 9-+h(§-60n) € M(cl) and all sufficiently
large n. Hence

(en,i_eOn)'x - w(en,i) * ¢(60n) =

2 (Qn'i—OOn)'A(e) - w(en'i) + ¢(90n)

-— a - 8 a 3 - —1
= :(e,eOn) I(e,en'i) ZI(Gn'i,eon) c16n

. -1

> dn - c16n .

This implies that for all sufficiently large n
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- -1 -
Peon(xn € A(M), I(X (Xn),SOn) 2d) <

pn
: . ~ -
: iZ1 Po, L n,17%n) Ha ¥ (O )40 O0y) = IO, 50005) eygn 1

From here on the last part (starting with (3.2.13)) of the proof of theorem
3.2.1 can be copied and the result is established. [ '

LEMMA 3.4.3. Let T be a closed convex set in int A. Let 6 ¢ Anl(T); define
§erxtm) by 18,00 = 1(A1(T),0), then

(3.4.4) (6-8) " (x-A(8)) 2 0 for all x € T.

PROOF. The set S = {x;sup‘yee{d)(e)-q;(o)+(19—6) 'x} < 1(8,6)} is a convex set,
and so is T. Since SAT # @ (A(6) ¢ SAT), SAint T = @ and
V(0) - p(B) + (8-8)'x < I(§,0) for all x ¢ S with equality for x = A(8), the
hyperplane H = {x;¢(6)-¢(§)+(5—6)'x = I(8,6)} is a support hyperplane of S.
Let H*=={x;a'(x—k(§))= 0} be another support hyperplane of S through
A(8). Without loss of generality assume that a'(A(8)-A(8)) > 0 (note that the
case a'(A(e)—A(é)) = 0 cannot occur since A(6) € int S, because sup'sEo
{(9-8) 'x-¥ ()} is a convex and hence continuous function of x). For z € A

Taylor expansion about ] yields:
-1 -1 x. N x
(A "(z)-8)'z=y (A "(2)) = (6-6)"'A(B) —y(B) +

+ (A‘lgz)-é)'zé(é-e) + 07 (z)-81%)
and

z =20 (z2)) = AB) + 2.0 (2)-8) + 0(IA" (z)-B1%).
6
Since H # H there exists a vector t with
t'Zé(é—e) <0 and t'zéa > 0.

Put z = A(6+6t) where 8 is a positive number. If § is small enough, then
z e A, P(6) -¢(X_1(z)) +(A—1(z)-9)'z < 1(6,6) (hence z € S) and
a'(z—A(é)) > 0. Thus we have found points of S, A(6) and‘z, in each of
the two open half-spaces into which H* separates n¥‘: H* is not a support

hyperplane of S. Hence H separates S and T, implying (3.4.4). [
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PROOF OF THEOREM 3.4.1. As before we establish a relation between o and

dn. If the conditions of lemma 3.3.1 are not satisfied, the theorem is
trivial. We therefore assume that ndn -+ o, In that case
k-2
2
(3.4.5) oy < cl(ndn) exp(—ndn).

(Denote by ci (i=1,...,6) constants with 0 < Ci'< ©,) To prove (3.4.5)

we first show that x ¢ A implies ¢2R(x) = 0. Since‘dn > 0 this property

is obvious if supeee{e'x—w(e)} - supeoeeo{eéx-w(eo)} for x ¢ A. Now suppose

to the contrary~that x ¢ A and~supe€O£9'x-¢(6)} > sup6060 {Béx—?(eo)}, then

there exists a 6 € cl 01 with 8'x ~¢(8) = supeee{e'x—¢(e) and 6 € int O.

Consider the function 8'x -y (6) in a neighbourhood of 6: 6'x -y (6) =

8'x - () + (8-8)"'(x-A(0)) - 2:(e)-e*s)'zg(e—é), where £ lies between 6 and 8.

By taking 6 -6 = §(x~-A(0)) with § > O sufficiently small it is easily

seen that 6'x -y(6) > é'x-w(é) and we have obtained a contradiction. Thus

¢ﬁR(x) = 0 for x ¢ A and we can restrict our attention to points x € A.
Since K c int © is compact -

- -1 =
PeO(Xn € AK), I(A (xn),eo) > dn) < cz(ndn) exp(-ndn)

by lemma 3.4.2. With this inequality (3.4.5) is trivial.

Now consider the MP test for this situation. Define K(e) by
K(e) = {0;inf{l6-6"1;6% ek} < €}, where € > 0 so small that K(e) < int O.
Denote by $Z(x) the critical function of the level-—an MP test of ﬁo:
0 € GO A K(g) against 6 = en € 01, then

+ 1 <
¢n(x) = { if tn(x) tn'
0 >

where

t (x) = [ exp{n(8,-6 )'x -ny(6,) +ny(6 )} dr_(6,)

cl GOAK(e)

and the distribution Tn is least favorable. It has already be shown in the
course of the proof of theorem 3.3.2 that {x;tn(x) =tn} has an empty

. . “+

interior. We shall prove that ¢n is also the MP test of the larger null

hypothesis O  against 6 = en.

0
3+ (% +.3 .
If Een¢n(Xn) -+ 0 then Een¢n(xn) + 0 and the shortcoming also tends
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to zero. Therefore assume that Eg &:(in) 2 § > 0. We now show that
n
{x;tn(x) < tn} c A(K(e)) for sufficiently large n. For suppose that there
exists a point X ¢ A(K(e)) satisfying tn(xn) < tn' The asymptotic normal-
ity of {)-(n—)\(en)}n12 implies that for n sufficiently large
X X >
P (tn(xn) <t, xn € B ) 2 %6,

0 n n
n

where Bn is a sphere with centre A(en) and radius ¢ n_%. Convexity of the

set {x;tn(x) < tn} and xn'e {x;tn(x) < :n}’ X ¢ A(i(e))_imply that there
exists a eOn € @o A K(e) and a sphere Bn with radius c,n and centre
A(eon) confiined in {x;tn(x)*s tn}. Since {x;tn(xi+=_tn} has an empty
interior, ¢n(x) =1 on int Bn implying that Eeo“ ¢n(xn) does not tend to
zero, incontradiction toa, +0. Hence T = cl{x;$;(X)> 0} c A(K(e)) for all
sufficiently large n.

Let 6 ¢ K(e), then by lemma 3.4.3 there exists a point én € A_l(Tn)
such that (én—e)'(x—l(én)) 2 0 for all x € Tn' Let 6: be the intersection
of the line through 6_and 6 with K(e): e: =0 +yn(6n-e) with 0 <y < 1.
Then (67-8) ' (x-A(87)) = (87-8) ' (x-A(8_)) + (8°-8)"(A(§_)-2(8")) = 0 since
(e*-e;'?x-;(; ))(=ni)(5 fe?'(i—;(é ;)n;id (;*?G)i(;(é ?ik(;*?i)=

n 1. M n_'n . n n n’ ntt
Yn(l—yn) (en—en)'(x(en)—x(en)) > 0. Therefore Y (6) —w(en) +(9n—e)'x >

1(9;,6) > 0, and hence
B'x - P(B) < 0 'x - P(8’) for all x € T_.
n n n
It follows that

Eg $:(>'<n) = [ $;(x) exp{n(e-O:)'x-mp(e) +n¢(e;)} dﬁ’e‘*(x)
n

IA

~t -
<
Ee* ¢n(xn) - 0tn
n
‘ ~+
for all n 2 n0 where n, does not depend on 6. This implies that ¢n is also

the critical function of the MP size-an test of HO: 0 e OO against

6 = en € 61. So we have essentially reduced the MP test of HO: 0 € OO to

a MP test of a null hypothesis contained in a compact subset of int 0.

Following the same line of argument we used in part a of the proof of

theorem 3.3.2 the assumption Rn(en) > n > 0 again leads to the inequality
> -

un 2 cS exp ( ndn + c6

the theorem is complete. [

n%d:), in contradiction to (3.4.5) and the proof of
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3.5. UNIFORM CONVERGENCE ON COMPACT SUBSETS OF INT 0O

In the one-dimensional case of chapter II we showed that Rn(e) tends
to zero uniformly on the intersection of @1 with a compact subset of int 0O
without any condition at all. Unfortunately we do not know whether this
result holds in the k-dimensional case and we therefore prove a generaliza-
tion of theorem 2.7.1 under some assumptions. It turns out that in some
(classical) testing problems this theorem can be égplied. In this section
:86@0

we assume that ©_is a Borel set. Consider the testing problem H

0 0

against H,: 0 ¢ GO.

ASSUMPTION Al. For all n the LR test satisfies

LR, =

sup E. ¢ (X
SOEOOAK eo n

= - 1

LR
%Poeo, Egdp (X,)

n)

\
™

n

for some compact subset K of int O and some € > 0.

ASSUMPTION A2.

> ]
an 2 exp(-nI)

for all sufficiently large n and some Ic< I(@OAK) (cf. (3.2.1)).

Assumption Al states that the size o (or a fixed part of it) is
reached at parameter points bounded away from the boundary of the param-
eter space. »

It is clear (cf. lemma 3.3.3) that when these two assumptions are

fulfilled
(3.5.1) o < c(nd )£ exp(-nd )
n . n n’’

where £ = (k-2)/2 and c some positive constant.

We now prove the main theorem of this section.

THEOREM 3.5.1. Let L be an arbitrary compact subset of int ©. If (3.5.1)

holds for some fixed % then llmnew Rn(e) = 0 uniformly on L A 91.

PROOF. We may assume that A(0) = 0 and thus ¥(6) = 0 for all 6 € O0. Let Lbe
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a compact subset of int 0. Let {en} be a sequence of pointsinL, 6 ¢cl 9y

and Rn(en) > 32 > 0. For sufficiently large n there exists a sphere Bn

with centre A(en) and radius c n_!2 such that Pen(in € Bn) > 1 —%82 and

1
hence

+ =n
¢n(x)dPe

-1 (x) = ke
BnAI(A (x),oo)sdn n

9°

Here again denote by c; (i=1,...,5) constants with 0 < c; < o, The
critical function of the MP test is of the form
. 1 11?+;nf f tn(eo,x)dki,n(eo) <
(3.5.2) ¢n(x) = if 1,
0 lim sup / £, (8g2)AN, (8)) >
i )
- - v . . .
where tn(BO,x) = exp{n(e0 Bn) X+ nY (en) } and >‘i,n is ameasure satisfying

)\i,n(mk) = )\i'n(eo) and fexp{nw(eo) }d)\i,n(eo) < a;ll (ie N) (see [14]). Let

o) 2 1},

=
]

{xeB ; lim inf f £, (Bgrx)AA; (8
1->00

F = {xeB; 11?+zup f £ (0gx)dA; (8)) < 1}.

These sets have the following properties:

(i) Fn is a convex set,

(ii) lim Pen(in € E AF) =0.

This second property means that the set on which randomization is possible
tends to zero in Pen~probability. The first property is an immediate con-
sequence of the convexity of the integrand.

The proof of (ii) is similar to that part of the proof of theorem

3.3.2, where it is shown that int(U2 n—Ul'n) = @. But here the situation
’ ’

is more complicated since we have to deal with a sequence of measures

0y ot

A i =
If x ¢ E_ A F_ we have lim [ £,(8g/X)d); (8)) = 1 and hence by

Fatou's lemma and Fubini's theorem

n

. 0

n E AF_ i»o 0 n
n n 0

(3.5.3) Py (X eE AF ) = [ lim [t (8,%)d\; (8,)dBp (x) <

6



63

A

lim inf [ [t (8,.x)ar, _(6)aPh (x)
{00 EnAFn 90 n 0 i,n"0 Gn

n
6
n

lim inf [ f t (6,,x)aP )

i ©. E_AF
0 n ' n

(x)d)\i’n(eo

lim inf | Py (X eE_AF )explny(6)) Yar; L (6g)-
i GO 0

The sequence { )‘i ;7 1 e N} is a sequence of uniformly bounded
’
measures: A, (IR') < o_~. Hence there exists a subsequence {}‘i- nt
i,n n j’

and a measure vn such that >‘i‘ d \)n vaguely. Assume that the Lebesgue

,n
=n
A . . . . A -

measure of En Fn is positive (otherwise llmn_m Pen(En Fn) 0 by
asymptotic normality). Then there exist, for any fixed n, points
x,yl, . ..,yk in En A Fn with the following two properties:
x—yl,...,x-yk are linear independent and there are al,...,ak # 0 or 1 with
asx+ (l—as)ys € En AFn (s=1,...,k).

= . - ' = - ] = S a4
Let T {60, (60 en) x (60 en) ys} (s =1,...,k). By definition of E AF
and convexity of tn(eo,') it follows that-

0 = lim [ag £ (8,3) + (1-a )t (8),y ) -
J-)co
—tn(eo,asx+(1—as)ys)d)\ij,n(eo)

= §i2 f Ias tn(eo,x)+(1—as)tn(60,ys)—tn(eo,asx+(1—as)ys)l

d}\ij'n(eo)

> f Ias tn(eo,x)+(1-as)tn(eo,ys)—tn(eo,asx+(1—as)ys)]dvn(eo),

and therefore

/ clas tn(eo,x)+(1—as)tn(60,ys)—tn(eo,asx+(1—as)ys)|dvn(60) = 0.
T
S

On T: the integrand is positive (ozs # 0 or 1), hence vn(T:) =0 (s=1,...,k)

k
and thusv_(U__ Tc) = 0. Since x-y,,...,X-y, are linear independent,
K . B ks—l s 1 k

Us=1 Ts = R - {en}, Note that en ¢ cl OO and hence for each compact setG

(3.5.4) ]'.im )\i',n(G A cl OO) = \)n(G A cl Oo) =0.
oo
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-1
For all n 2 n lim.»m w(ﬂj) = o jmplies limjém I(A (Bn),ﬂj) = o (cf. lemma

0 j
4.1.2). From now on let n 2 ng. By lemma 3.4.2 for all A > 0 it holds that
- - k-2)/2
P, (X e E AF) <P, (X eB)Sc(nA)( )/2 exp(-nn)
90 n n n 90 n n 2
for all 60 satisfying I(A_I(Bn),eo) > A. In combination with (3.5.3) and

(3.5.4) we therefore obtain Pen(in €E A Fn) = 0 if the Lebesgue measure

of En A Fn is positive. This completes the proof of (ii).

As in the proof of theorem 3.3.2 we select a point ;n such that
(@) Mz) € B,
<
(b) I(Cn.GO) < dn' . 4
(c) there exists a sphere Bn with centre A(;n) and radius cyn contained
in F_ A B_.
n n
Following the same line of proof as in theorem 3.3.2 we find once
more o > c exp{—ndn-+c5(ndn)%}, in contradiction to (3.5.1), which

4
completes the proof of the theorem. [J

As an immediate consequence we have

THEOREM 3.5.2. Let L be an arbitrary compact subset of int ©. If the assump-
tions Al and A2 are fulfilled, then the shortcoming of the LR test tends to

zero uniformly on L A 01.

As applications of theorem 3.5.2 we consider two (classical) testing
problems concerning the normal distribution. Let {Xn} be a sequence of
2
normally distributed random variables with mean u and variance o . We

first consider the testing problem HO: U= uo against H,: u # uo, where

uo is some constant (-« < uo < @) and 0 is unspecified% The LR test

(i.e. the two-sided t-test) is similar; hence assumption Al is fulfilled

for every compact K, furthermore I(OOAK) = o, Therefore if —n_1 1ogun is
bounded above, the shortcoming of the LR test tends to zero uniformly on the inter-

sectionof 01 with a compact subset of (int) © (0 corresponds to-e <y <®, 0< 02 <),

REMARK 3.5.1. If --n_1 logan is unbounded, the envelope power function

tends to zero uniformly on every compact subset of O. More general: if
supeeLbl(e,OO) < I(OOAK) for all compact subsets L < int ©, then assump-

tion A2 is redundant in theorem 3.5.2.

Hence we obtain
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COROLLARY 3.5.3. Let L be an arbitrary compact subset of 0. The shortcoming

of the t-test tends to zero uniformly on L A 01.

2 2 2
The second testing problem concerns the variance o , HO: g = 00

2
against Hl: 02 # cg, where 02 is some constant (0 < co < o). The LR test

0
rejects H0 if

-2 2 -2 2
oo Sn - log(o0 Sn) > 2dn-+1,

2=1 (Xi —in)z. Again the LR test is similar and assumption

Al is fulfilled for every compact K,moreover I(@OAK) = o, Remark 3.5.1 also

where Si =n! Y

applies in this case. Hence

COROLLARY 3.5.4. Let L be an arbitrary compact subset of 0. The shortcoming

2 2
o # %

2 2 .
of the LR test for the testing problem HO: 0~ = 0. against H

0 1°

tends to zero uniformly on L A 01.

3.6. THE k-DIMENSIONAL NORMAL DISTRIBUTION WITH KNOWN COVARIANCE MATRIX

For multivariate normal distributions with known covariance matrix we

have the following strong result:

THEOREM 3.6.1. Let X1'X2"" be i.i.d. random k~dimensional vectors normally
distributed with known covariance matrix. Consider the testing problem
Ho: H € M0 against Hl: u ¢ MO where y = EX1 and M0 is an arbitrary sub;et
of IR'. Then the shortcoming of the LR test tends to zero uniformly onIR - MO.
PROOF. Since we investigate an arbitrary null hypothesis, we assume without
loss of generality that the covariance matrix is the identity: Ik'
Then the dominating measure appearing in the definition of exponential
families corresponds to the multivariate normal N(O,Ik) distribution and ©

corresponds toAu. The functions y,A and I are given by
2 x ~ 2
v(e) =4lel®, A(6) =8 and 1(6,8) = Hlo-ol”.

Hence the LR test has the following form:

[ >

LR i 2

¢n (x) = if 1nf6 0 Hx-eoﬂ 2dn.
0 0o <
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If the conditions of lemma 3.3.1 are not fulfilled the theorem is trivial;

so assume that ndn > «, We investigate the relation between an and dn'

(3.6.1) a_=sup . Py (infy o IX_ BETERS 24 )

n 0% 8 %
< supy o P, (Il)'cn-eoll2 2 24 )
0“0 Yo
k-2
o e—%x 'X 2
e
2nd_ T (%K) 2
k=2

IA

2
ci(ndn) exp(-ndn).

Denote by cl,c2 and cq positive constants. For thé remainder of the proof
we follow the same line of argument as in theorem 3.3.2: again there exists
a least favorable distribution (see LEHMANN (1959) section 3.8), and using
the concrete form of 1(9,6) the existence of the points Cn’ En and n, is
guaranteed even if ﬂenﬂ + o, Hence if Rn(en) > ¢ for some sequence {en} we
find

o 2c exp{-ndn + c

b
n 2 n dn}

3

in contradiction to (3.6.1), which completes the proof. 0

3.7. THE MULTINOMIAL DISTRIBUTION

At the beginning of the work on large deviations and shortcomings of
LR tests were the papers of HOEFFDING (1965a) and OOSTERHOFF and VAN ZWET
(1970) devoted to the multinomial distribution. In this section we extend
the results of the latter paper to quite general null hypotheses.

We start with some notations. The random k-dimensional vector Yn is

said to have a k-dimensional multinomial distribution with parameters n and
(1) p(k)

p = (p P ) if
(3)
' k LY
) = — B (3)
(3.7.1) P (Y =y) = 1. p '
1 k =1
p n y( )!...y( )! J
(1) (k)

where y = (y reeery ) has non-negative integer components with
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sum n and p is any point in the simplex

k. .
(P, 2% Y 23 oy, 23 50 for 5 = 1, k)

j=1

I =

As we have already seen in example 2.5.1 the shortcoming of the LR test does
not necessarily tend to zero uniformly over the whole set of alternatives.

However, we can prove the following result:

THEOREM 3.7.1. Let Yn be a random vector having a k-dimensional multi-

nomial distribution with parameters n and p = (p(l),...,p(k)), n=1,2,... .

Consider the testing problem HO: p € I against H,: p e I

=1 - 1., where
. 0
(3)

0

Ho is a subset of Il with the property p € {p € Hi; P

implying p € cl(int Hi), i =0,1. Let L be an arbitrary compact subset of

1
= 0 for some j}

int II. Then the shortcoming of the LR test tends to zero uniformly onI‘Aﬂl.
(Note that the condition on HO implies that no boundary point of I is

an isolated point of either I, or Hl.)

0

PROOF. In view of the property of HO the LR test statistic does not change
if the parameter space Il is restricted to int II. Moreover since PP(Yn €A)
is a continuous function of p for every region A and all n € IN the LR test
of

H': pe I'! ==T1_ A int I

against

B:pel] L gnem -1

+h

0

is fully equivalent to the LR test of the original problem. Furthermore the
envelope power functions of both testing problems are identical because a

MP test of H6 against a simple alternative is also a MP test of H, against

0
this alternative. In the sequel we therefore consider the problem of testing
Hé against Hi.

In this situation the multinomial distribution can be brought in the

form of a (k-1)-parameter exponential family by the introduction of new

parameters

e(j) = log(p(j)/p(k)) jo=1,...,k=-1.

The LR test of Hé against Hi is of the following form:
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1 >
LR s .
¢n (y) = if 1nfp€H6 Ik(y,p) dn ,
0 <
where Ik(y,p) = Z?—l §(l)log(§(l)/p(l)) with the convention that
r log(x/s) = 0 if r = 0 and where §(l) is defined by §(l) = n-ly(l).

If the conditions of lemma 3.3.1 are not satisfied, the theorem is

trivial. We therefore assume that nd_ - .
We shall prbve that sup E ¢LR(Y ) £ c(nd )(k—2)/2 exp(-nd ).
pelly "p 'n "'n n n
For this purpose it is sufficient to show that if ndn 2e >0

k-2

2
(3.7.2) ?p(Ik(Yn,p) Zdn) < ck(ndn) exp(—ndn)

for p € int II where ¢, is a positive constant independent of p and n. The

k
proof is by induction on k.
For k = 2 the multinomial distribution reduces to a binomial distribu-

tion and lemma 2.3.1 yields

Pp(I2(Yn'P) 2dn) <5 exp(—ndn).

Suppose that (3.7.2) is true for k and let Yn = (Yél),...,Y;k+1)) have
a (k+1)-dimensional multinomial distribution. Then
k+1 .
S(i) S(i), (1) _
(3.7.3) Pp(i£1 ¥ log(¥ Y /p) zan>_
n-1
_ (v_ (1) (1) _ .
= pp(szn =n, - log p z2d) + jEO PP(Yn =5) x
k+1
_n_ =(i) _n_ =(i) ~(1) n _*, -1, (1) _
where §r(11) = n'l_yxgi) (i=1,...k+1), I'(r,8) = r log(x/s) +
+ (1-)log{(1-r)/ (1-8) } =1 ((nr,n-nr) , (s,1-s)) and g - @,

(i =2,...,k+1). The first term in the sum in (3.7.3) is bounded above by
exp(—ndn) and we therefore restrict our attention to the second term. We
split this sum in two parts by the introduction of the following sets of
indices: ‘

. -1, -1
Jl,n = {0 £ j < n-1; I*(n 1J,p(1)) < dn4-%n (k—l)log(ndn)}

and

hl
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(1)

J = {0 < j <€ n-1; I*(n_lj,p ) > dn —5n—1(k—1)log(ndn)}.

2,n
By lemma 2.3.1 we have the following inequality

(1)

Y P =19 s
. P n
]€J2,n
=(1 1 -1
< PP[I*(YQ ),p( )) > dn -%n (k—l)log(ndh)]
k-1

IA

2
5(ndn) exp(—ndn).

Let ¢, = minfet £ (/2 0 ot < <€}, then obviously (3.7.2)
2e

holds if ndn € [e,eze]. We therefore assume that ndn > e . This implies that

()

(3.7.4) (n-3) ——-—{d 1" (n” )} 2 %(k-1)1log nd >

2 L(k-1)2e 2 ¢

for jed . Now the induction hypothesis can be applied for j € J '
ten (1) (2) (1) Lo
because conditional on Yn = j the vector (Y yesesY ) has a k-dimen-
sional multinomial distribution with parameters n-j and p = (5(2),...,§(k+1))
and (3.7.4) holds. Hence
k+1
( Z Y log(Y(l)/p(l) > dn) <
k-1
2 .
< -
< {1 +5(nd ) } exp( nd ) +
k-2
+ f P (Y( j)ck(ndn) 2 exp{-nd +n1” (n j.p (1))}.
j€J1 n

So we proceed to analyse this last sum. Since P (Y(l)

-1

=3j) = Pr(Xjn=j) X
exp{—nI (n j,p( ))}, where Xj has a binomial dlstrlbution with parameters

-1,
n and n "j, it remains to prove that

(3.7.5) }  Pr(x, =j) < c(nd );2
. jn n
J€J1 n

for some positive constant c. For reason of symmetry it is no restriction to
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assume that p(l) < %. The inequality

(2“)5nn+%e—n < n! < (2ﬂ)%nn+%e_n(1+(4n)_1)

yields the upper bound

b
. n .
Pr(Xjn-—]) < {j(n—j)} (1 £ 3 <n-1).

Since

n-1 k] | s
sl o, 4, bl
j=1 (=3 1< I3 1<j<hn

kn
< 23/2 f z~%dz = 4n%,
0
it follows that
n-1
Y oPr(x, =3j) < an?+1 < 5n’.

j=0 "

Hence (3.7.5) holds with ¢ = 500 if dn 2 10_4. Assume therefore that dn <10_4.

We distinguish two cases.

1

-1
i (1) .
(1) dnp < 144°

We now have

(1)

e® 43 e,

) =

-y
= o +30ap") M0g(1 #3071 )

+11-pM -3 ") 0901 - 3010 ) T p 1))

-3 -1
% (1) 9 (1)
}{3dnp -5 4P 1+

{p(1) +3(dnp(1))%

v

+ 110 3@ ™) -3 e p M) - 6a p ) 10 )
-k
9 27 .3/2 (1) (1) (1),-1_ (1),3/2,,_(1),-2
= Edn— Tdn P + 3dnp (1-p ) 18(dnp ) (1-p°)

9 27 1
L A 5 >
= (2 2 lz)dn 234, >dy,

where the first inequality is established by the following consideration:



-1 L -1
dnp(l) < —1-‘11—4 implies 3(dnp(1)) (l—p(l)) < 111 and log(1l-x) > -x —§x2
0 <x < i Similarly

* (1) (1).% (1)
I (p -3(dnp )p ) > dn‘
Thus again using symmetry

' ) Pr(xg =3) <
JeJl,n
<1+ Pr(x. =3j)

n[p(l)-3(dnp(1))%]+1Sj5n[p(1)+3(dnp(1))%] jn

(1) (1) %
nlp' " +3(@p "1 _

<1422 n 2%z < 1 + 622”2 (na )”

nlp-3(a p) ™

and hence (3.7.5) holds.

-1
- (1) 1
(ii) dnp > 142

(1)),

. . J 1
In this case, since 500(3n <35 < L(1-p

(1) (1)

™ (p +500a_,p' ') =

-1
(p(l)+500dn)log(1+500dnp(1)‘

(1)

-1
+ (1-p —500dn)log{1—500dn(1—p(1) }

)

-1

(1) ),

p(1)+500dn)log'4+~(1—p

v

( —500dn){—500dn(1—p

-2
s00%a> (1-p)) )

v

SOOdn(log 4-1) > d .

This implies that

) X Pr(Xjn=j) < . Z Pr(xjn=3)
jed 0<j<644nd
1,n n
644nd
<1427 [ Pplapog +(2%640) % (na )

0

71

for
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and therefore also in this case (3.7.5) holds.
This completes the proof of (3.7.2). Application of theorem 3.5.1
yields the theorem. [J

3.8. THE ALTERNATIVE HYPOTHESIS A PROPER SUBSET OF THE COMPLEMENT OF
THE NULL HYPOTHESIS

In contrast with the remainder of this study in this section the test-

ing problem

(%) H.: 0 € 00 against Hl: 0 € 61

with level of significance an is considered, where 91 is a proper subset of

9-—00. The LR test of this testing problem is given by

’

-
=B
El
J
I
(=]
[ N
rh
e
L
1]
Q

where

L(x) = supeeolueo{e'x—w(e)} - supeoeeo{eéx—w(eo)}

and dn and 6n are determined by
LR =
sup E,. ¢ (X)=o0a.
90600 90 n n n
In this section the LR test of the testing problem

*
: 0e®-0

(*x) H.: 06 €0 against H,: 0

0 0

with level of significance an is denoted by

if 1 (x)

[}
o

05 R ) =

(=<}
O 5% ¥

where
¥ (x) = sup, o {8'x-¥(8)} - supy . {02x-y(6,)}
0<%

* *
and dn and dn are determined by

*LR =
sup E, ¢ (X ) =0a_.
90600 90 n n n
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In the previous sections several results were obtained concerning the
shortcoming of the LR test of the testing problem (**). In many cases these
results can be used to derive similarly properties of the LR test of the
testing problem (*). The (proof of the) following theorem gives'an impres-
sion of this method.

THEOREM 3.8.1. Let 00 cKc int ©, where K is a compact set, and let 01 be
an arbitrary subset of 0 - OO o° 6 e OO

against H1: 6 e @1 with level of significance o . Sﬁppose o 2 exp(-nI) for

. Consider the testing problem H

some 0 < I < I(OO), cf. (3.2.1). Let M be an arbitrary compact subset of
int ©., Then lim R (0) =0 uniformly on M A O_.
n>o n 1

=00
exists a positive € and a sequence {en} in 0, satisfying R (6 ) > € and

PROOF. By lemma 3.3.1 it holds that limn nd: = o, Suppose that there

limn»m en = 9* € int ©. It will be shown that this leads to a contradiction

and thus the result of the theorem is established.

Let B = {x;"x—A(en)“ < cln—%} where the positive constant ¢, is so

large that an(i eBn) 21 - ¢/4. From now on let n 2 n1, where n1 e N is

so large that A (Bn) cint © for all n2n,. Hence for all xeBn it holds that

1
(3.8.1) LY (x)-L(x) < A'l(x)-x—q;(x'l (%)) =6'x+y(6 )

-1
n

I(A‘l(x),en) <c,

for some positive constant cy-
*%
Define the sequence of tests {¢n } by
1 >
*% . * * -1
¢n (x) = if L (x) dn + c,n .

2
0 <

Let {0n} be some sequence satisfying I(ﬂn,eo) < I+68, where § is a positive
constant such that I+6 < I(Oo). In part (a) of the proof of theorem 3.3.2

it has been shown that

JOg ) - R0 168y 0 >
n
implies
7

> exp{-nd’ +c,(nd"
o, = expi-nd c3(n n)
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+ .
for some positive constant c3, where X is the size—an MP test of HO against

0 =9 _. Hence
n

[ O -6 lasy (o 2 e
n
implies

(3.8.2) o2 exp{—nd:+c4(nd:;);2}

for some positive constant c,. By lemma 3.3.3 it holds that

4

an < cs(nd;:)(k—z)/2 exp(—nd:)

in contradiction to (3.8.2) for sufficiently large n, and thus the short-
coming of ¢z* tends to zero for such sequences {0n}. Let {Bn} be some
sequence satisfying I(ﬁn,eo) > I+68. It is easily seen that in this case
the power of ¢:* tends to 1 (cf. part (b) of the proof of theorem 3.3.2).
This implies that the shortcoming of ¢:* tends to zero uniformly over the

whole set of alternatives.

Since
[ L6760 - 4260 108G () =
n
= | [¢:(x) -¢:1*(x)]df’xeln(x) + [ [¢:*(X) _¢§R(x) 3d53n<x>
<t o o ]dﬁrelnm * Pen(¢f,R(>_<n) <1, ¢ ) >0

and

[ ol —¢;*(x)']d§gn(x) < e/2

for all n 2> Ny, it follows that
LR ,= *k -
Pen(q)n (Xn) <1, ¢n (Xn) >0) 2 g/2

for all n 2 n,-. From now on let n 2 n,. Using the definition of Bn we obtain

2

- - * = * -1
Pen(XneBn, L(Xn) Sdn, L (Xn) >dn+c n ) = e/4.

2

-1 X
2n } is

*
However, (3.8.1) implies that the set {x eBn;iL(x) Sdn, L (x)> d:-+c
empty and thus a contradiction is obtained. This completes the proof of the

theorem. []
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In BROWN (1971) it is suggested (heuristic principle 1) to forget
"extra" information about the alternative hypothesis, implying the use of
the LR test for a "larger" problem, obtained by imbedding @O u 91 in a larger
parameter space, in lieu of ¢iR. The reason for it is that extra information
about the alternative can never increase the rate of exponential convergence
to zero of the error probability of the second kind. However, forgetting
this extra information can result in a decrease of power at other points

of 01 of subexponential and thus much larger order. This will be illustrated

by the following'example.

EXAMPLE 3.8.1. Let X1’X2"" be i.i.d. random variables with a normal N(6,1)

distribution. Consider the testing problem HO: 1t 0¢(-1,2) at
level of significance an = ¢(-n%) + &(- %n%). The LR test of HO
rejects H, if X < -1or in > %, and thus its power at 6 = -1 equals

0
%),

5
L+ o(- En
Brown's "larger" problem in this case is the testing problem H
*
against Hy: #0. The LR test of H, against H:

6 =0 against H

against H1

o° 6=0

rejects HO if
=%

>
]X!_n u1!
n

where u, is defined by Q(ut) =t, 0 <t < 1. By easy calculations it is
found that its power at 6 = -1 equals % - (2wn)-% log 2 + a(n-%) as n > o,
Although this test has a faster rate of exponential convergence of the error
probability of the second kind to zero at 6 = 2 than the restricted LR test,
this advantage is to be paid for by a decrease in power of order n—!'2 at

6 = -1.






CHAPTER IV

RELATIONS BETWEEN SHORTCOMING
AND
BAHADUR DEFICIENCY

4.1. A FUNDAMENTAL THEOREM

Shortcoming and Bahadur deficiency are tools to measure the performance
of tests. Let {Tn} be some sequence of tests; this sequence may be called
optimal 'if the shortcoming of Tn tends to zero for vanishing an, the level of
significance. The convergence can be pointwise or (stronger) uniform over
(parts of) the parameter space. We have used this concept (in the uniform
sense) in earlier chapters.

One can also call this sequence of tests optimal if the Bahadur deficien-
cy of Tn is small.

This chapter will be devoted to the relationship between these points of

view.

Let Xl'XZ"" be i.i.d. random k~-dimensional vectors with a distribution

from an exponential family, i.e. x1 has distribution Pe satisfying

dPe(x) =4exp{e'x-w(e)}du(x).

Consider a family of tests {¢Z;yer}, n=1,2,... . Here T is an index

set with the following interpretation: Let O, be some subset of © (the null

0
hypothesis) and let 0 < a < 1 (the level of significance); then there exists

one and only one Yy € I', denoted by Yn(u), such that

Y, (o)

n
sup E ¢ (X,,-..,X ) = a.
90690 90 n 1 n

As in section 3.5 assume that 90 is a Borel set. For the testing prob-

lem HO: 0e 00 against Hl: 0e 91 =0- OO we have the following fundamental theorem:

THEOREM 4.1.1. Let 01 € int 61. The family of tests {¢z;yer} isdeficient in

+ ,
the sense of Bahadur at 61 of order 0(N (a.B.el)%) as o > 0 iff the short-
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Y _(a )

coming of {¢nn } at 6,tends to zero as n » « for each sequence {an}

satisfying lim a = 0.
ying oo n

REMARK 4.1.1. Roughly spoken the result of the theorem (and its proof) is
essentially based on the fact that the asymptotical power B (0 < B < 1) at

an alternative 61 of the MP test against 61 increases iff the number of
observations n is raised by at least 6nJE (6 > 0).

Before proving theorem 4.1.1 we present a useful lemma about Euclidean

distance and "Kullback-Leibler distance".

LEMMA 4.1.2. Let {8 } and {6 _} be sequences in O. If lim ¥ =19 ¢ int ©
_—— o n n nse n

and 11mn+wﬂﬂn—enﬂ = ® then lim 1(0n,en) = o,

PROOF. By assumption 0 ¢ int © implying {6;lel < cl} c int O for some

positive constant c,. Hence for each subsequence there is a further sub-

1
sequence, say {ni}, such that

c e -0 H"l(e ¥ ) — 0" ¢ int o.
1" "'n, n, n, n,
i i i i
It suffices to prove 1imi I(ﬂni’en.

) = ». Since Ege*'(xl-x(a)) = 0 and
1
Pb(e*'(xl—x(ﬂ)) =0) <1 it follows that

P (e*-(xl—x(ﬂ)) 2 e, dx a0l < ¢y 26

S 2)

for some positive constants e, § and c2, and thus for all i = 11

) = %6.

P@n.(e*'(xi—k(ﬁ)) > edx,-A@)1 < o,

1

Moreover, for all i 2= i2,

{x;e*'(x—k(ﬂ)) > g, lx-A I < c,}

-1
c {x;clﬂen'-an.ﬂ (en'-dn.)'(x-x(an')) > e, Ix-2 )l < c2}
1 1 1 1 1
and thus, for all i 2= max(il,iz),
19,8, ) = log[[ exp{(6, -9 )'(x-A(® )} dpy (x)]
1 1 1 1 1 n

i
> loglké explie CIl“en 5133,
i i
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which implies

lim I($_ ,06 ) = =,
. n,' 'n,
i i i

This completes the proof of the lemma. [

PROOF OF THEOREM 4.1.1. First assume that the family of tests {¢1;YEF} is

+
deficient in the sense of Bahadur at 8, of order ¢(N (u,B,Gl)%) as

1
o > 0.

Suppose there exists a sequence {an}, a > 0, such that

Yn(an) +,0

E61 ¢ (XseeerX)) - By b

x )

n

+,0 o )
does not tend to zero. (Here ¢n" denotes the size-o MP test of HO: eo € Oo against

*
Hl: 6= 91.) Then there exists a positive number € and a subsequence {ni} such that

+l°‘n_ - Yni(ani)
i - > (i =
Ee ¢n. (Xn.) Ee n. (Xl""'xn.) 2 e (i 1,2,...).
1 i i 1 i . i
+,0,,

. : : i3z =
Without loss of generality assume that 1.1.mi_>°° E91 ¢ni (Xni) = BO > g.
Let

Ym(a)
N(qISlel) = inf{niEel¢m (Xl,--.,Xm) 2B, m2 n},
and
+ . + :
N (a,B,el) = lnf{n;E61¢m'a(X1,...,Xm) > 8, m 2 n},
then
. .
N (an.’BO_E/4'el) <n; < N(a ,By-3e/4,0,)
i i
for i > io. From now on let i 2 io.
Let Ni = N+(an ,60—35/4,91) - 1. There exists a sequence {6i} satis-
) . _ i
fying 11mi+m Gi._ 0 and
(4.1,1) N(o_ ,B.-3¢/4,06,) < N, +1+8, (N +1);2
' ni' 0 (S RO i -

Hence we obtain

+ %
(4.1.2) N (an ,60—2/4,61) < Ni +1 +6i(Ni+1)

i

and we therefore restrict our attention to MP tests. Let
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N =N, 4146, (N 412
1 1 1 1

The test

n, *
¢ . ) =9 if Ny .
N
i 0 x ¢ F
*
N
1
where
E = {x;lim inf [ exp{N' (8.6 ) 'x-N y(6 )N (6, )} axr, .(6.) <1}
* i itvo 1 ittt it j, i o
N, bl 0
i 0
and
F = {x;lim sup | exp{N (6 -0, ) 'x-N y(6 )+N p(6.)} dr, . (6 ) <1}
* plim 1% ™% 1V (9N, v {9y j,i%’ =
Ny e 9

(cf. (3.5.2)).

Let B(z,c) = {y;ly-zl < ¢} for all z € BQ{ and ¢ > 0 and BN* =
B(A(el),cl(NI)%), where ¢y is so large that .

(4.1.3) Pe (X * ¢ B *) < g/10.
1 N, N,
i i

Since F , is a convex set we can choose c, > 0 so small that

i
o = {y:B(y,c N—%) cF AB }
N. YI YI 2 i * *
i N, N,
i i
satisfieé
= c
(4.1.4) Pe (xN' eF _AB _A QN.) < g/10.
1 i Ni Ni i

Define the test ¢N by
i
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We shall prove that

(4.1.5) ‘Ee ¢N.(XN.) > BO - 3e/4,
1 i i
and

(4.1.6) sup, . E ¢ (X ) £ a
9900 B9 Ny N i
for i sufficiently large.
1
If A is some set in IRk, b e :IRk and t # 0 e R , denote by
(A-b)t = {x € ng{;t_lx + beA}l. Let U be multivariate normally N(0;Ig ) dis-
tributed, then the following (in)equalities hold for‘i sufficiently large:

- < A
Bo e/4 Pe (X ,eF , AB )+ e/10
1 N, N, N,
1 1 1
*\ 3
SPr(Ue {F _AB - X(6,)}(N,)?) + 2¢/10
* * 1 i
N, N,
1 1
< Pr(U ¢ {F « NB - MO )}N%) + 3e/10
* 1 i
N, N,
1 1
< A
Pe (XN_€ F B *) + 4¢/10
1 i N, N

i i

IA

Py (iN_ € Q) + 5e/10
1 i i

= Eg by (X )+ e/2,
1 ‘i i
which completes the proof of (4.1.5).
Let 6, € O, and i so large that Q c A,
0 0 Ni 1
Since Qy is a closed set, there exists # ¢ A "(Qy ) satisfying I(ﬁ,eo) =
i

- i
I(A l(QN )'90)"BY lemma 3.4.3 the convexity of Qy implies
i i
(0—60)'x-¢(0) +¢(60) 2 I(ﬁ,eo)

for all x e‘QN . Hence
i

(4.1.7) PGO(XN,G QN,) < Pe ((0_60)'(XN._A(0)) 2 0) <
i i 0 i
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IA

/ exp{-N; (9-6/) "x-N, ¥ (6)+N, ¥ ()} ap )
(0—90)'(x—k(0))20

A

exp{—NiI(ﬁ,GO)}

exp{-N,T(X" (g 1.8}
i

for all eo € 00.>Let eONi € OO be such that

(4.1.8) I( (Q ON ) £ I(A (Q ) 0 ) + N, 1

Then it follows that

= -1

< -

(4.1.9) supy o Eg ¢N.(XN.) < exp{ NiI(A (QNK)'eON.) +1}.
00 0 i i i i

Let 9y N, € . (QN ) satisfy I(z?Nl,eoN ) = I(A (QN ) /80y, ) - By definition of

QN there ex1sts a sphere with centre 0N and radlus 03Nl contained

in"A” (FN N*) Defining nNi by ny; 3 ﬂN + hc N, %HOON -Ony [ (SON —BN )

there exlst posltlve constants c4 and c5 such that B(A(nN ),c (N ) ) c

* ANB

F A an
wg " By 29

(4.1.10) 1I(n 'eON.) = I(¢ 6 N ) + I(nN ,ﬂN ) +(19N —GON.)'{A(nN)—X(ﬂN )}

N, : . : . : . .
i i i i i i i i i i

IA

I(19N 0

* -
_ ) - cs(Ni)
1

ON,
i
for i sufficiently large.
Since

(o]
P, (X 5 € F « ME * A B *) — 0

1 N, N, N, N,
i i i i

as i > » (cf. the proof of theorem 3.5.1) and "nN -elﬂ < c6(N;)_% for some
i

positive constant c6, it is easily seen that also

lim Pn (X f €F MNE_AB *) = 0.

i N, N, N, N, N,
i i i i i

Hence for i sufficiently large



*

+,0. . * % _Ni
) XN ¥ (0, )+Niw(nN_)}dPn (x)

n, *
i -
(4.1.11) a2 | ¢, (X)exP{Ni(BON, Ny

i Ni i i i i Ni
* b —
{x € B(M“N,)’c4(Ni) )’(QON.'T’N.) (x A(nN.)) 2 0}
1 1 1 1

> {-N" 6.}
2 c, exp{-N;T(ng , on.’

1 1
>

* * 3
c, exp{—NiI(ﬂNi.GONi) + cg(Ny) }

v

exp{—NiI(aN_,eON_) +1}
1 1

_ _ -1
= exp{ NiI(A (QNi).GONi) +1},

where cy is a positive constant. Combining (4.1.9) and (4.1.11) we obtain

(4.1.6). By (4.1.5) and (4.1.6) it follows that

+
- <
Ni(ani,Bo 35/4,91) s N,

in contradiction to the definition of Ni. This completes the first part of
the proof.

Now assume that the shortcoming of {¢:;Yef} at 61 tends to zero as

> i i i = .

n » for each sequence {an} satisfying llmn+m ol 0

Suppose there exist a positive number €yr @ number 81 e (0,1) and a

sequence {ai} tending to zero satisfying

+, + e
(4.1.12) N(a;,B,,6,) > N (a,,B,,8,) + eo{N ‘“1'31'91)} .

+ * . L .
Let M, =N (ai,Bl,Ol) and M, = entler{Mi+soMi}. The size ay MP test of

i
HO: 6 e OO against le 6 = 61 has the following form:
+'“i 1 X € EMi
¢Mi (x) = if ’
. 0 x ¢ FS
i

. = [o] .
where FM_ is a convex set and Pel(xMi € EMi A FM_) > 0 as Mi > o,
1 there exists a positive constant Cg such that

B(el'CB) c int 01. Fix a point 50 e int OO. Then by lemma 4.1.2

. l s
Since 61 € int ©
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(4.1.13) ¢y = sup{ﬂé-eoﬂ; 053(91,c8), eoseo, 1(0,90)5 I(el,ao) +1}
is a finite number. Since 1(5,90) - I(ﬂ,@o) =1(§,9) + (9—60)'{X(5)—l(9)}
it follows by (4.1.13) that

Ix(@,eo)-x(d,e )

0

;ﬂ,ﬂeB(el,cs), 9#9, eoee

o’ 1(0,60)31(61,90)+1}

c, . =sup -
10 U iad)y-aol

is also a finite number. Let T be defined by
-1 .
(4.1.14) 1 = clo(eO/S)lnf{I(@,eO), ¥ € B(el,ce)}.

Consider the sphere B(A(el),cllME%), where c11 is so large that
F; A B(A(el)'c1fM:)_5) contains a sphere with radius T(M:)_%. Denoting by
i
U a k-variate normally N(O;Ee ) distributed random vector we define T* by
1

* ~ ~ ~
T = inf{Pr(UeB); B asphere withradius t,BcB(0,c,,)}.

11

- _.12 *
Let ¢,, > ¢, be so large that Pel(XMi ¢ B()\(Sl),clei )) £ 1t /6, and let

5

6, Ly BuTM ™ € my A BOG) 51,

12"
where ; is so small that

P, (X € FM. A B()\(el),cmMi
1 i i

% A6 ) < V.
*
1

By definition of ¢ there exists a point A(Ei) satisfying int B(A(Ei),

11
NG c * =1 ko=l
T(Mi) < Gyux A B(A(el),cll(Mi) ), and B(K(Ei),T(Mi) ) A GM; # .
Define the test ¢M* by
1
Jl €
§ 0 =1 ifx H,=6.vBOE),TmH Y.
M M, M, 1 1
i 0 g 1 1
We shall prove that
~ - *
(4.1.15) E6 ¢ (x )2 61 + 1 /6,

and

(4.1.16) sup E ¢ (X ) < o,
%% % MZ M:



for i sufficiently large.

The following (in)equalities hold for i sufficiently large:

5

v

. *
Pr(Ue {H - A(el)}(Mi)

i

= Pr(U e {B(A(gi),r(mz)‘li

Pr(u e {c -A(e)}MD™ - /6

M,
i

Pr(U ¢ {G *—A(el)}M?) + 41" /6
M

v

i

eG ) +31U/6

v
9
X

i

v
L
%
m

e}

1 i i

%
b
*

e F ) + T*/6
. M,
1 i i

1\

*
81 + 1 /6,

establishing (4.1.15).
Let CO(HM*) be the convex hull of H 4
i i
(cf. (4.1.7)) It follows that

eO M, M,
i i
*

for all 60 € OO. Let 901 € OO be such that

-1 *
(4.1.17) I(X "(co(H *)),GOi

*

Oi)

. . )
and let 9% ¢ A" (co(n ,)) satisey 18,0

1 M, 1
Then it follows that *

*

(4.1.18) sup E, ¢ (X
GOEOO 60 *

i i

-1 * -
) £ I(A (co(H *)),OO) + (Mi) ’
Mi M,

1

) - /6

5

*
) = A(el)}(Mi) ) +

-3 *, .
A B(A(B,),cy oM, 7)) + 21 /6

. By convexity arguments

P, (X , € CO(H *)) < exp{—M:I(X—l(co(H *)),60)}

M,
1

1

=t 0
= 1O (co (B 0y,

* %
) < exp{—MiI(ﬂi,GOi) +1}.

By definition of H " there exists a point A(Si) e G * satisfying

M,
i

M.
1

85
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@ )-A@5)I < 2T(Mf)'%.
1 1 1
Hence
+,ai x * - _Mi
a; = f . by, () exp{M, (6,.-5,) x-Miw(eOi)+Miw<0i)}dpgi(x)
(eOi—Si)'(x—x(0i>)zo
> { 3 e* } x
> exp —MiI( i’ Oi)
: . +ay M
X f ¢M (x)dP5 (x).
s ~ ok =k * Vel (8 i i
B(A(ﬂi),T(Mi) )A(eOi-Si) (x A(&i))zo
- 5 %
Since Py (X,, ¢ F,y, AEC ) ~ 0 as i + o and IA(8,)-2(6,) < ¢, .M, it fol-
91 gi Mo My c * ! 3 ~12*l-%)c
lows that llmiam Pgi(xMi € FMi A EMi) = 0. Moreover B(A( i),T(Mi) FMi and

hence there exists a positive constant 3 such that

*
(4.1.19) a; 2 ¢4 exp{—MiI(si,GOi)}.

on the other hand for i sufficiently large

* *
exp{—MiI(ﬂi,BOi) +1} <

* ~ * *..!2
< exp{—Mi[I(ai,eOi) - 2c (M) J+1}
~ % L o~ % 5
< exp{-MiI(éi,eOi) - %eomil(ﬁi,GOi) + 3clorMi}
R S e’ e
< exp{ MiI(ﬁi,GOi) - 4010TMi + 3010TMi}
< {(-M.1(5,,6%)}
< ¢4 expl-M; ( 179041

and hence, in combination with (4.1.18) and (4.1.19)

sup E $ (X ) < a,
0% % ‘M o *
i i
for i sufficiently large, which completes the proof of (4.1.16).
~ -~ * s s
Let Mi—-N(ai,Bl,el) - 1, then by (4.1.12) Mi > Mi and hence in view
of (4.1.15) and (4.1.16) it follows that

oy *
Eg 0y (Xy) 2B +T/6.
1 i i
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Since the shortcoming of {¢Z;Y€r} at 6, tends to zero this implies

de.(ai)
Lt Ly 2B, 4+ T )7
By, ¢ f, (XyreeorXy ) 2 By
1 i i

for i sufficiently large, in contradiction to the definition of N(ai,Bl,el),

which completes the proof of the theorem. []

The question arises whether we can apply theorem 4.1.1 to the LR test,
for which we have proved several results on its shortcoming. However, in
theorem 4.1.1 it is assumed that the shortcoming of the sequence of tests
tends to zero for each sequence {an} with limn+w o = 0. In chapter II and
IITI most of the theorems are valid only if o does not decrease too fast.
Nevertheless theorem 4.1.1. can oftenbe applied since this condition essen-
tially serves toensure uniform convergence to zero of the shortcoming. Since
in chapter V stronger results about the Bahadur deficiency of the LR test
will be proved, we do not mention here explicitely such corollaries to

theorem 4.1.1 and the theorems of chapter II and III.

4.2. EXAMPLES

The first example shows that even for a sequence of tests {¢n}, which
is deficient in the sense of Bahadur of order 0(1) uniformly in 6 as o » 0
(the definition of this concept is similar to (1.1.4)) the shortcoming will
not necessarily tend to zero uniformly on 01 for all vanishing sequences {an}.
In the second example it will be shown that uniform convergence of
the shortcoming to zero is unable to strenghten the statements about Bahadur

deficiency.

EXAMPLE 4.2.1. Letxi,xz, ... bea sequenceof i.i.d. normal N(6,1) random variables.
Consider the testing problem HO: 6 < 0 against H1: 6 > 0. The sequence
of tests {¢I} has the following form:

1

v

¥ n-1
¢n(x1,...,xn) = if .z X Y n

0 i=1 <

1]

2,3,... .

The sequence of tests {¢l} is obviously deficient in the sense of
Bahadur of order 0(1) uniformly in 6.
We investigate the shortcoming of this test in Sn = n;i for levels of

significance o, = ®(-n), n = 2,3,..., where &(x) = PO(Xlgx).
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The envelope power function in en equals k.

. -1
We determine Yn(an). P0(22=1 xi > yn(an)) = ®(-n), hence Yn(an) =

n(n-1)%. This implies

Y_(a )
limE, ¢ * ©
6 "n

n->eo n

(X1""’Xn) = d(-%),

and thus the shortcoming does not tend uniformly to zero.

The second example concerns the following: let‘{nn} be a sequence of
positive numbers with limn_)°° n, o= 0; then there exists a testing problem
and a sequence of tests {¢X} such that
(i) the shortcoming of {¢1} tends to zero uniformly over the whole set

of alternatives for each sequence of levels {an} tending to zero,

(ii) for some B € (0,1) and 6 € int 01 it holds that N, (a,B8,8) - N2 nNN%,

N ¢
where N =N (o,B8,0), and

(iii) although {¢Y} is deficient in the sense of Bahadur at 6 of order
0(N+(a,8,6) ) as a > 0, the convergence is not uniform in 6.

Hence the O(N“h(Ot,B,B);2

) termin theorem 4.1.1 can not be improved upon and
uniformly vanishing shortcoming does not imply uniform convergence for the

Bahadur deficiency.

EXAMPLE 4.2.2. Let X1'X2"" be i.i.d. normal N(6,1) random variables. We

consider the testing problem HO: 6 < 0 against H1: 6 > 0.
5 2 4. Denote by [a] the

Without loss of generality assume that nnn
smallest integer 2 a, i.e. [a] = - entier(-a).

The sequence of tests {¢1} has the following form:

v

1
v, (o) J n
n . -5
¢ (Xpseeesx ) = o 1-a if n 21Xi<u“+n[2'
o _+n ) = Uy

[u2]
a

where u, is defined by @(ua) =1-a.

Let {an} be some sequence tending to zero; then n[ 9 ] +0asn >
u
and hence n

% 5 o _
) - Pe (n Xn > uu )} =0

lim{P (n
]
n ] n n

X 2u +n
n->o n o u2

n [
n
for each sequence {en}, implying that the shortcoming tends to zero uniformly



over the whole set of alternatives.

It is easy to verify that

N (a,%,0) = [uie'zj.

2%

Let m = entier([uze_ ] 1

+ %0 q 2 )2. Since
[ua]

298 [ui]"!5 >0 for all 6 <1

u —G[uze_
a o

and, by assumption,

4 > [uz]_;2
[u2] o
o
it follows that
el
ua - 6m° + n 2 > 4n 2 (6 <1).
[u”] [u™]
a o
On the other hand
ne 2q¢(u )
1-0 S 1-a > 1 - [ua] o
@(ua+n 5 ) 1-a+n 2 ¢(ua) - 1-a 4
[ua] [y, ]

where ¢ denotes the derivative of ¢. Therefore

Ym(a)
Eq b (XyreeesX ) <
s 5 L] ] 1-a
< Pe(Xm m°-6m° > u, - 6m -+n[u2]) +1 -57;*;;——;—7
o o [ua]
oy y n[u§]¢(ua)
SPe(Xmm -fm lem2)+._—1____0‘___<1.z
[Ua]

for a sufficiently small and 6 < 1. Hence

N, (0,%,0) > [uﬁ 0727 + o071y . [u2e7%1"

¢ [u2] @
o

’



90
implying

+ + - -
N (a,%,0) - N (5,0 8 (04,0} 2 070
¢ [u’]
a
for all 6 < 1 and o sufficiently small.

Choosing 6 = 1 and 6 = n respectively the properties (ii) and (iii)

[u2]
are established. a



CHAPTER V

BAHADUR DEFICIENCY OF THE

LIKELIHOOD RATIO TEST

5.1. INTRODUCTION

In chapter II and III we have chosen as a measure of optimality the
maximum shortcoming of a test. In this chapter we shall consider Bahadur
deficiency as a yardstick to measure the performance of LR tests.

As we have already mentioned in chapter I the LR test is, under some
conditions, efficient in the Bahadur sense. However, Bahadur efficiency is
not a very sharp instrument for studying optimality of tests; a more inform-
ant measure is provided by the concept of Bahadur deficiency.

We first introduce some notation. Let {¢I;Y5F} be a family of tests,
where T' is an index set with the following interpretation: let eo be some
subset of © (the null hypothesis) and let 0 < o < 1 (the level of signific-
ance); then there exists one and only one y ¢ I', denoted by yn(a), such
that supeoeeo Eeo ¢ln(a)
ed in this chapter it holds that

(Xl""’xn) = a.vFor the families of tests consider-

Yn(ot) Yn(u')
Vs .
(5.1.1) o > o implies ,E9¢n (xl""’xn) 2 Ee¢n (Xl""’xn)
for all 6 € @—@0.
Define for 0 < B < 1 and 8 ¢ 9-—00
Yn(a)
(5.1.2) an(B,O) = min{a;Ee¢n (xl""’xn) > B}, n=1,2,... .

Hence for all 0 <o <1, 0 < B < 1and 6 € O—GO

(5.1.3) (B,8) < a < (B,0),

*N(a,B,0) *N(a,B,8)-1

where N(o,B,6) is defined by
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Ym(a)
N(a,B,0) = min{n;Ee¢m (xl,...,xm) > B8, m=2n},

for 0 < B <1 and 6 ¢ 0-—00.

Let us now consider some examples.

EXAMPLE 5.1.1. Consider a sequence of i.i.d. random variables with a normal
2 1: 0 #0.
0 against Hl: f=0% is
one-sided. It turns out that in this case the LR test is deficient in the

sense of Bahadur at 6 of order 0(1) as a » O for all 6 # 0. The definition

N(6,1) distribution and suppose H .: 6 =0 is to be tested against H

0
The LR test is two-sided, the MP test for H

of this concept is similar to (1.1.4). Let 0% > 0 be fixed; simple calcula-

tions lead to

272 4 1,

R *
NR(a,8,0%) < (uy -ug

where uy is defined by

P (X sua) = @(ua) =1-0 (0 <a<1),

and

2, *x =2
)

N (a,8,6") 2 (u -u) )72

B

2

2 12(6%)7%}=2(6%")"%10g 2+ 1, the LR

. . 2 0%\ - -
Since 11ma+0{(u%a—u6) (67) “+1 (ua ug

*
test is deficient in the sense of Bahadur at 6 of order 0(1) as o -+ O.

EXAMPLE 5.1.2. In this example we consider the simplest non-trivial case of
a discrete distribution: Xl'x2"" are independent Bernoulli random variables
with Pr(X,;=1) = pe (0,1). Putting u(0) = u(1) = % and 6 = 1og(T§Ep we obtain
an exponential family model.

We test the null hypothesis

Hj: 1c>g(2.3';2 -1) £ 6 < -log3.

. ]
Note that llmeé_ml(e,log(Z.B

6 =0 the critical region of the LR test has to be of the form )_(n > % with

-1)) = 1(0,-1log3). To obtain a power % at

randomization in in = 0 and in =%, if n is even. Hence the LR test has the

folloﬁing form

1 >

LR . Yo - Voo = -

o (x) = § if supeoeeo{eox w(eo)} sm%ee{e x-9(8)} = 1(0, -1log3) ,
0 <

with
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0 n odd
[ n .
n 5 (%n)
- n even
(!m)+1

Since by formula (12) in HOEFFDING (1965b)

P_ 10g3(xn 2 %) = exp{-nI(0, -log3) -%logn+ 0(1)}
and
P - (in==o) = exP{‘nI(O,-log3)},
log(2.3 “-1)
% exp{-nI(0,- log3) +0(1)} n even

(5.1.4)  o%%,0) ={
exp{-nI(0,- log3) -% logn + 0(1)} n odd

(cf. (5.1.2)). It follows that

- log a

LR =
(5.1.5) N (a,%,0) = I(0,-log 3)

+ 0(1)

(cf. (5.1.3)).

On the other hand the MP test of HO against H

*

1 6 =0 with power % at

6 =0 is given by

1 >
9T(x) = i5 if x =%
0 <

+
and thus an(%,O) "exp{-nI(0,- log3) - %logn + 0(1)}. Hence

(5.1.6) N'(a,4,0) =

-loga _ 5 - loga
I(0,-1log3) _ I(0,-1og3) l°g<1(o,—1og3)> + 0.

In combination with (5.1.5) it follows that

LR +
1lim N (al%lo) - N (al%lo) = % .

a0 logN+(a,1§,O) 1(0,-1og3)

Thus the LR test is not deficient in the sense of Bahadur at 0 of order 0(1),

+
but it can be shown that its deficiency is of order 0(log N (o,B,0)).

In the first example the LR test is deficient in the sense of Bahadur

of order 0(1) and in the second exemple its deficiency at 6 = 0 is of order
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+
0(log N (a,B,0)). The difference is explained by the fact that in the second
example the critical region of the LR test has points in common with the

boundary of the sample space. It turns out that these examples are represen-
tative for testing problems in one-dimensional exponential families. The
theory will be developed in section 2.

In the k-dimensional case the situation is more complicated. Here
usually the LR test is deficient in the sense of Bahadur at 6 of order

0(log N+(a,8,6)) as o > 0. This will be proved in section 3.

5.2. THE ONE-DIMENSIONAL CASE

In this section it will be assumed that the random variables are dis-
tributed according to a one-parameter exponential family. We consider the

o 0 e 60 against le 0 e 01 =0 - 00.

The first theorem concerns the case that GO is contained in a compact

testing problem H

subset of int O.

THEOREM 5.2.1. Let 90 c K c int O, where K is a compact set. Let I(@O) be

defined as in (3.2.1). If 6 € int O, satisfies 1(9,00) < I(GO) then the

1
LR test is deficient in the sense of Bahadur at 01 of order 0(1) as

a + 0.

PROOF. The proof is based on an expansion of log a;(B,e) and a similar one

of log aﬁR(B,S). Combination of these expansions easily yields the theorem.

Let 61 € int 01. Then we shall prove that for all 0 < B <1, as n + o,

+ o i
(5.2.1) log “n‘6'°1) = -nI(el,eo) +n B(B,el) -%logn + 0(1),
where

* -1
(5.2.2) B(B,06,) = [6,-6,]0(8,)¢ " (B)
. * s . : * -
if 60 € cl 00 is uniquely defined by I(el,eo) = 1(61,00), and

(5.2.3) . B(B,el) = (60-91)0(91)Y

if there are two points 8%, 8 e cl 0, such that oy < 6, < §, and I(el,e;) =

0 0
~ ~ k-
1(8,,8,) = 1(8,,0,). Here y > 0 is defined by &(y) - 8((8,-8,) (8,-6) vy = 8.

We distinghuish several cases.



95

*

(a) Assume that inf O < 61 < sup GO. Let 6. = sup{6 €0 ;6 .<6,} and f_ =

0 0 0, 0’01 0
inf{eos®0;90>61}. The MP size-o test for HO against H1: 6 = 61 has the
following form

. 1 € (cn,c:)*
¢n(x) =317 if x = c, or*cn

0 ¢ (cn'cn)

*
with y_, ¢ and c_ such that
n’ "n n

+ = + =
Ee*¢n(xn) = Eé ¢n(Xn) =0
0 0

(cf. LEHMANN (1959) section 3.7). For a = a;(s,el) the constants Yn' cn and
* + =
cn are such that E91¢n(xn) = B.

We have two subcases

. * ~

(1) 1(61,99) # 1(31'90)
(ii) I(61,60) = I(el,eo).

We first consider (i) and assume that 1(61,63) < I(el,éo) (the reverse
inequality can be treated similarly); then I(el,OO) = I(ei,eS).

Since 6, lies closer to 6* than to 8 , in I' distance, it will turn out

1 0 0
* +
that c, does not play an important part in the determination of an(B,el).

* ~
Define 6 as a sort of centre of the interval (90,90) measured in I'distance:

I(ére;) = 1(5,50). We now have

(5.2.4) lim inf c' > A(8).
n->o n

* -
For, suppose lim inf c < A(6), then there exists a subsequence {ni} with

c:_ < A(8); hence
i

(5.2.5)  of (B,6,) SP. (X <c’) <
n, 1 8 n, n,
i o i i
<SP, (X < A(8))
b0 M3
= f exp{n, (8 -8)x -n,¥(8.) +n_w(6)}d§n(x)
xsk(§) i'0 i 0 i 5

IA

exp{-ni I(O,BO)}.

On the other hand for sufficiently large a € R
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- -4
Py, (2 M(0,) +an™) <k,

and hence

+(x)dl-?'n

- ¢y el(x) 2 8.

x<A(0)+an

This implies that

v

(5.2.6) a:(Blel) f ¢;(3) exp{n(es—el)x-nw(egj:+n¢(91)}d§g (x)

1
xsx(el)+an'!’

* L %
5B exp{—nI(el,eo) +n (eo—el)a}.

v

In combination with (5.2.5) and 1(91,93) < 1(5,6;1 we obtain a contradiction
for large n, completing the proof of (5.2.4).
Consequently
- * -1, %
(5.2.7) Py (X 2c) < exp{—nI(el,A (en))} <

61 n

A

exp{-}nI(6,,8)}

*
for large n. The points c, and c, have to satisfy

Py (X e (c ,c0)) <8P, (X elc,cil.

8 ®
Furthermore (5.2.7) and the Berry-Esseen theorem imply that PB (X e(cn,cn))
as well as Pe (X s[c N ]) are equal to 1 -Q({c -A(e )}o(e ) -1 %)1-0(n ' .
Hence @({c —A(G ﬂo(e ) 1 % =1-8+0(n" ), and therefore

(5.2.8) c_ = X(6,) - o(6 )@_l(B)n—% + 0(n_1)-
n 1 1
Next we express a;(B,el) in terms of cn:

+ - *
an(B,Bl) > P *(Xn € (cn,cn)) 2

%

> expl-nT (A" (c),80)} [ exp(n® (052 e o eyt (),
0,{c*-c Yo\ e 1) " ta% n
n n n

where 52 denotes the distribution of {in—l(e)}o(e)_ln% under 6. Using the
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Berry-Esseen theorem we see that

%

P (0,80 %) > en

A (cn)
for sufficiently large A and some € > O provided n is so large that c, is

. . * -1 -1%
close to A(el). Since furthermore llmn+m (cn—cn)o(A (cn)) n® = by (5.2.4)

and (5.2.8) there exists a constant § > 0 such that
+ ’ -3 . -1 *
(5.2.9) o (B,6,) = 6n ° exp{-nI(A "(c ),0,)}.

On the other hand

+ -
a (B,0,) <P (X e [c,) =
0
0
= exp{-nxu'l(cn),e;)} ¥ fexp{n;i(eg—k_l(cn))c(k_i(cn))y}dlsn_l (¥) -
370 507", (341007 ey

*
The Berry-Esseen theorem implies the existence of a constant c¢ such that

: ﬁn_l ([jn_%,(j+1)n-5)) < c*n_% for all j, and hence for large n
A " (cp)
(5.2.10) -
ol (8,6, < c*n7 exp{-nt (A" (e ) ,6) ) jZO exp{(es—)\_l(cn))c(?\-l(cn))j}

&2 exp{-nT (A" (c_),67)}

I

for some constant 0 < & < o,

Combining (5.2.9) and (5.2.10) we find
+ -1 *
log a_(B,6,) = -nI(A (cn),eo) - %logn + 0(1).
It remains to expand I(Aul(cn),eg) in powers of n. Since
* * * 2 2
(5.2.11) I(0,90) = I(el,eo) +(0—61)(61-60)0 (91) + 0((&—91) )

for ¢ > 61, and

5.2.12) 2t = a7y + eep o 20Ty +00x- D)

for x > y, and thus
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(5.2.13) 107 0,05 = 107 ),80) + (k) (8,-60) + 0((x-1) )
for x +~y, (5.2.8) implies
-1 * ko -1 P -1
I(A (cn),eo) = 1(61,90) 0(6,)0 "~ (B) (8, bpin © + O(n ")

as n > o, Therefore

5

-1 .
log a;(s,el) = v-nx(el,e;) +n%0(0,)0 (s)(el—eg) -%logn+0(1).

So in subcase (i) we have proved (5.2.1).

In subcase (ii) we consider a point 61 in the middle of the interval

* =~ . . * ~ . *
(90,60) in the following sense: I(el,eo) = 1(91,90). Both points c, and cn
now play a role and we first prove that they both are near A(el). Suppose
lim lnfném cn < A(el); then there exists a sequence {ni} with 1J.mi_)m cni <

. L * . L - *
A(61). Since lim lnfiéw Cny < x(el) wguld imply lim 1nfi+w Pel(xnie[cni,cni])
= 0, in contradiction to Pe1(xn€[cn’cn]) > B > 0 for all n, we obtain

. . * : . * .
lim 1nfi+w cni > A(?l). On t&e other hand lim supi*w Cny > A(el) would*lm_
ply lim supi_)m Pel(xne(cni,cni)) = 1, in contradiction to Pel(xne(cn,cn))

< B <1 for all n, we obtain lim supiaw C;i < A(el), and hence

Y * . . * s .
llmiﬁm Cn; = 1(01). Therefore there exists a point £ € (60,91) satisfying

n

c, < ME) < A(E)4n, < c)
i ny

for all i and some n1 > 0. It follows that

+ -
o (B0 2P (X e (A(E),A(E)+n))) 2

1 0 1

n,
> exp{-n,T(£,00)} [ expln, (80-E) (x-A(£))}aB, ()
(A(E) A (E)4+n,)

2 n, exp{-n,I(£,80) - n;n(E-67)}

for some n, >0 and all 0 < n < n,. Conversely

1

n

+ = * -1, % ~
an.(S,el) < P6 (X .s cn‘) < exp{-niI(A (cn.),eo)}.
i 0 i i i

Since I(g,e;) < I(A—l(c; ),60) - n3 for some n, > 0 and all i, we obtain

3
i
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a contradiction by choosing n sufficiently small. Thus lim infn <, > A(el).
*
Similarly it can be shown that lim sup_ <, < A(el). However, we also

*
need some information about the rate of convergence of cn and c_ to A(el).

*
We therefore express a:(B,el) in terms of cn and cn:

ot (8,6,) = expl-nI(\ ™ (c ) ,80)}

-~ — _1 ~
BN expln”(05-2"" (c )0 (2 (cn))y}ap‘;_1 (¥)

8 (c )
[o,(c:-cn)o(x'l(cn)) 1% n

and

0t (8,6,) = expl-nT (A7 (c}),B)} x

x [ 5:(y) exP{nE(éo‘A_l(C;))G(A_l(c;))y}dﬁn'l x (0

A T (c))
[te-eo™ () 'n% 0] n

where $+(y) . ¢;(y0(k-%cn))n_%4-cn) in the.first integral and @;(y) =
t1>;:(yor(k"1(c::))n';2

*
+cn) in the second integral. Similar to the proof in case
(i) it can be shown that both integrals are of the form n_% eo(l) as n > o,

This implies that

-1 * -1, x. =~ -1
I(A (cn)’eO) = I(X (cn),eo) +0(n ).
Expanding both I(-,ez) and I(-,éo) we obtain
e )-8, 8,-8%10%(8)) + 08,2 (e NP =
_ -1, % < 2 -1, * 2 -1
= (A "(c)-0,)(0,-6,)07(0,) + 0((el—x (e N + O(n ™).
Using (5.2.12) we can write it also as follows
(5.2.14) (c_-X(6,)) (6 -9*) + 0((c_-A(6 ))2) =
e n 1 170 n 1
*_x(8,)) (0,- 028, )% + 0t
(Cn- ( 1))( 1” O) + ((cn— ( 1)) ) +0(n 7).
Suppose limiém (c;i—k(el))o(el)n? = o for some subsequence {ni} then by

(5.2.14) limi+m (cn'-)\(el))c(el)ni = -, which contradicts B < 1. Moreover

. * = - : . . .
lz.mi_m(cni A(el))o(el)ni = -» also leads immediately to a contradiction,
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hence both (c:-k(el))c(el)n& = 0(1) and (cl_l—)\((il))ct(el)nl2 = (0(1) as n > =,
Now we can rewrite (5.2.14) as follows

*

-1, * -1
o (e =r(8,)) + Ot 7).

(5.2.15) cn-A(el) = (61-60)(61—6

- * - *
. < =
Since Pel(xne(cn,cn)) < B < Pel(an[cn'cn])' the Berry-Esseen theorem

implies

1%

1% - B -
n®) - ¢({c ~A(8)}0(8) "n%) = B+ 0™ ).

* . e
Q({Cn-k(el)}c(el)
Substituting (5.2.15) we obtain

* -1 3% = * -1, * -
(5.2.16) @({cn—k(el)}o(el) n°) - @((el—eo)(el—eo) {cn—k(el)}c(el) n°)

=B+ 0@Y.
Define En by

{c:-x(el)}c(el)'lrfi = y+e_,

where y > 0 is implicitely defined by
o(y) - 8((0,-6)(8.-65)"Ly) = 8
(v (8,-80) (8,-60)"y) = B.
(The function h(t) = @(t)-—@((91—60)(91—03)-1t) is continuous and strictly

increasing on (0,») with lim

: 40 h(t) = 0 and 1imt+m h(t) = 1; hence y is
well defined.)

It is easily seen that limn+& En = 0. Moreover,

~ * _1
@(Y“‘En) —@((61-60) (61—90) (’Y+€n)) =

B(y) - 2((0,-8) (8,-60)""y) + € o(y) -

= (0,-80) (0,-0%) e 0((8,-8,) (6,-6%) "1y) + 0(c2)

*

= * =1 ~ -1 2
B+ {¢(Y)-(91—90)(61-90) ¢((91—90)(91-90) Y)}en + O(En).

In combination with (5.2.16) we obtain en = O(n_%) and thus
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1%

* - &
(c -2 (8,))0(6;) 'n )

=y + 0(n

Let us now return to a;(B,el):
+ -1, * =«
log a_(B,0,) = -nI(A "(c ),6,) - % logn + 0(1) =

- 5 + ot 5
= -nI(6,,0,) + n°0(6,)v(8,-6,) - % logn + 0wy,

*

0 replaced by 8

where we have used (5.2.13) with 6 . This completes the

0
proof of (5.2.1) in this case.

*
(b) Assume that sup 00 < 61 and define 9; by 6; = sup OO. Replacing e, by «

in the proof of case a(i) formula (5.2.1) easily follows.

(c) In a similar way one can deal with the case inf 0 0

0~ “1°
So far we only assumed that 61 € int 01; now also assume that
1(61,00) < I(Oo). We wish to derive the same expansion for the LR test as

for the MP test:
(5.2.17)  log o“R(8,6,) = -nI(0,,0.) +n’B(B,0,) - % logn + 0(1)
e g o, B 1’0 9 9 '

where B(B,el) is defined in (5.2.2) and (5.2.3). We again distinguish the

same cases as in the first part of the proof. Since proofs of the other
*
* .0
and I(el,eo) < 1(61,90).

cases are similar, we only prove case a(i): 6

in£{6,€0,,0,>6,} = &,

The LR test with power B at 6

= sup{60500;90<91} < 61 <

rejects H, if L(in) > dn and accepts

1 0
Hy if L(Xn) < d , where L(x) = supeee{ex—w(e)} - supeoeeo{eox—w(eo)}. Note

that if x € A, L(x) > dn is equivalent to (A (x),@o) > dn' Define

I
[o])

[ * -1 ' *o_
(5.2.18) a > A(eo) by I(X (dn).eo)

and

" 8 -1 " )
dn < A(eo) by I(A (dn),eo)

|
0

Since E91¢§R(§n) 2Band 0 < B <1, dé and d; exist for sufficiently large
n. Again we define § by 1(5,63) = 1(5,60). Since @' > A(8), this point plays
no role (cf. c: in case a(i) for the MP test). Adapting the arguments lead-

ing to formula (5.2.8) to the present situation we find
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(5.2.19) @' = A(8)) - o687 (Bn 7" + 0.

(Note that the critical region of the LR test outside the interval
(A(e;),k(éo)) plays no role.)

€ O_. such that
n 0

Now consider aiR(B,el). There exists a point 60

= LR
E (X)) 2 %a "(B,0,).

LR
¢
eOn n

: ] "o [ = n
We define 90n < eOn < 60n by I(eOn,eOn) I(Gon,eon

3 1] n 3
(5.2.18), (5.2.19) and I(el,oo) < I(@O) the points eOn and eOn exist and

lie in a compact subset of int © for sufficiently large n. Obviously

) = dn. Because of

- , - " LR
Pe (xn < A(aOn)) + Pe (xn > A(BOn)) > %an (3,91).
On On -
Assume
et 1 LR -
Pe x, < A(GOn)) 2 %an (6,91),
On
the case
= " LR
Peon(xn > A(GOH)) 2 %an (8,6,)

may be treated similarly. Then

al%(8,0,) < 4 exp{-nI (0} .8, )}

On

x | exp{ (8, -0) )0 (64 In’ylaPy, (v)
(-»,0] On

<4 exp{-nI(A'1<d;),e;)} x

x [ exp{ (6, -6' )o (6! )n;’y}dﬁn (y) -
On "On On !
(—m,O] On
Since by the condition I(el,eo) < I(Oo) eén remains in a compact subset of
int O, the integral can be bounded by cln— for some positive constant ¢y in

view of the Berry-Esseen theorem. Hence, using (5.2.19),

aﬁR(e,el) <4 .:1n";2 exp{—nI(A_l(dg),e;)}
< exp{-nI(6,,07) + n(8,-05)0(8,)0" (8) - % logn + c,)
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for some positive constant Cye
The reverse inequality is easy since aER(B,el) 2 a:(B,Sl). Thus we
have proved formula (5.2.17) for the case a(i).
Finally we translate our results concerning a:(B,el) and aiR(B,el) in

statements concerning N+(a,B,01) and NLR(a,B,Gl). Since by (5.1.3)

o (B,0,) <o <a (B,9,)
N (e,80) N (a,B8,0)-1

easy calculations yield that for o -+ 0

—loga . 281 1094 }5

+
N («,B,6,) =
1 I(8,,6,) I(el,eo)lx(el,eo)

% g{—ma} :
- lo + 0(1)
I(68,,04) 1(6,,6,)

and the same expansion holds for NLR(a,B,el).

Hence the LR test is deficient in the sense of Bahadur at 61 of order
0(1) asa > 0. 0O

In the proof of formula (5.2.1) we only have used that 6, € int 61 and

1

did not need the condition I(el,eo) < I(OO) or the fact that OO lies in a

compact subset of int ©. Hence we also proved

LEMMA 5.2.2. Let OO be an arbitrary subset of © and let 91 = G~OO. If
6 € int 01

log a:(s,e) = -n1(6,0,) +n?B(8,0) -% logn + 0(1),

where B(B,0) is defined as in (5.2.2) and (5.2.3).

We now consider a second situation where the boundary of the critical

region of the LR test stays away from the boundary of the parameter space.

THEOREM 5.2.3. If 91 is contained in a compact subset of int O, then for
each 6 € int 01 the LR test is deficient in the sense of Bahadur at 6 of

order 0(1) as a ~ 0.

PROOF. Let 91 € int 01 and choose B € (0,1). Let ¢ER denote the LR test with
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power B at 61. Then there exists a point eon e cl OO A [6',0"] such that

6

LR, =
E {¢n x) 1
On

s LR
[acen) acem 1%} 2 oy (BaBp) s

" = 3 " o_ i ] n ' =
where 0 inf 61 and 6 sup 91. Define 60n < eOn < 60n by I(SOn'eOn)

I(6 ,6. ) = d ; at least one of the points 6' and 8" exists and lies in
n’ On n On On

[6',6"], hence in a compact subset of int ©. By the same line of arguments

that we used in the proof of theorem 5.2.1 followihg (5.2.19) it can be

shown that

logaiR(B,el) = -n1(8,,0,) +n”B(s,el) -4 logn + 0(1).

Together with lemma 5.2.2 this again implies that the LR test is deficient

in the sense of Bahadur at 61 of order 0(1) as o > 0. 0O

For an arbitrary null hypothesis we introduce the following assumptions

(cf. section 3.5).
ASSUMPTION Al. The LR test satisfies:

LR, =
suPSOEOOAK E90¢n (Xn)

LR ,=
S“Peeeo E0¢n x

n)
for all n, some compact subset K of int O and some positive €.
ASSUMPTION A2. 6 satisfies 0 < I(G,@O) < I(OOAK).

THEOREM 5.,2.4. Under the assumptions Al and A2 the LR test is deficient in

the sense of Bahadur at 6 of order O(1) as a -~ 0 for all 6 e int 01.

PROOF. A slight modification of the proof of theorem 5.2.1 yields the
result. [0

‘As in chapter II we can also introduce moment conditions on the proba-

bility distribution of the random variables.

THEOREM 5.2.5. Let the variance 02(9) of X be bounded away from zero and let
the absolute third central moment of X be bounded above for all 6 e int O,
then for each 6 € int Ol the LR test is deficient in the sense of Bahadur

at 6 of order 0(1) as a - 0.
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PROOF. Let 6, € int 01 and let ¢§R be the LR test with power B at 6,. In

1 1

view of lemma 5.2.2 we only have to prove that
LR %
oy (B’el) < exp{—nI(elreo) +n B(B,91) -% logn +c}

for some positive constant c, where B(B,el) is defined in (5.2.2) and
(5.2.3) . The boundedness of the absolute third central moment of X implies
that 02(6) is also bounded above on int ©. Moreover, if 6 € @ is a boundary
point of © and A(8) is finite, then the variance and the third central moment
at 6 are also finite. Note that there exist constants ¢y and cy such that
for all 6, € © with 6 # £ and A(0) finite we have
0 < ¢y < I(e,E)(G-E)_z < c, <@

(for 6, € int O use lemma 2.2.2 (iii) and the boundedness of 02(0); for
possible boundary points use the continuity of the functions y and A).

There exists a point eOn € O_ such that

0

LR, = LR
Ee ¢n (Xn) 2 %an (8,61)-
On

g ] n ' = " = .
We define eon < eOn < eon by I(eOn'GOn) I(SOn,GOn) dn, at least one of

the points eén and esn exists. We can estimate for instance

Pe (Xn < A(eén))
On

as follows:

Peon(xn < A(eOD)) = exp{-nI(eén,eon)} X

f exp{n%(e

- _ 8! )o(8) )y}aPy, (y)
0 (-(3-1)n"%,-3n" %] On “On""""0n

On

X
Il o~ 8

j

' : 7 e 1415 %k
< exp{-nI(eon,eon)}jzoexp{—(eon—OOn)c(eon)j}Pgén((-(j—l)n ,=jn *1).

Since the third absolute central moment is bounded above we can apply Berry-
Esseen's theorem to ensure that
~n

BY, ((-(G-D%-3n"%)) < cpn™
On

for some positive constant c.. Hence

3
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- exp{-nI(Sén,GOH)}

P, (X < A(8!)) < c.n 5 ; .
Oon M On 3 1 - exp{-(eon eon)O(GOn)}

2
[] PR -] >
Since I(Bon,eon) 2 %1(91,60) for sufficiently large n, (BOn eOH) 2

~l1(e: ') is it holds that
c, I(GOn,eon) and c(eon) is bounded away from zero, it holds tha
s s -y v
lim J.nfn (GOn eOn)o(eOn) > 0 and hence

P9 (an A(0
On

)) € ¢ n exp{—nI(Gén,e )}

, .
On”: 4 On

for some positive constant Cy-
The remaining part of the proof is similar to that of theorem 5.2.1. [J
In all previous theorems in this section assumptions were introduced

to guarantee that the LR test is deficient in the sense of Bahadur of

order 0(1). In the general case we have the following theorem (cf. example

5.1.2):

THEOREM 5.2.6. Let GO be an arbitrary subset of O and 01 = O;-GO. For every

6 € int 01 the LR test is deficient in the sense of Bahadur at 6 of order

0(1log N*(a,8,0)) as a » O.

PROOF. Let 61 € int 01 and 0 < B < 1. Since in lemma 5.2.2 an expansion for
u;(B,el) is given, we only have to consider the LR test with power B at 61.
We use the general result of lemma 2.3.1:

aﬁR(B,e1) <5 exp(-ndn).
It is easily verified (cf. (5.2.18) and (5.2.19)) that
4 =1(6,,0.) +n 'B(B,0,) + 0}y,
n 1’70 1
where B(B,el) is defined in (5.2.2) and (5.2.3). Hence
of®(8,8,) < 5 exp{-nI(8,,6,) + n’B(8,0,) + c,}

for some positive constant c,. Together with lemma 5.2.2 this implies

1

N%(a,8,0,) - N'(0,8,8)) < c, logh'(a,8,0,)

€2
]

for some positive constant cy-
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5.3. THE k-DIMENSIONAL CASE

In many testing problems for one-parameter exponential families the
LR test is deficient in the sense of Bahadur of order ((1). However, in
testing problems for k-parameter exponential families with k 2 2 this is

quite exceptional.

EXAMPLE 5.3.1, Let Xl’x2"" be i.i.d. random two-dimensional vectors with
anormalN((ul,uz);Iz) distribution. Consider the testing problem
Hy: (My,u,) = (0,0) against Hy: (uy,u,) # (0,0).

We investigate the Bahadur deficiency of the LR test at (0,1) with
*: (4, ,4,) = (0,1). The MP test has
R g & R P
the following form: reject H, if X > cp where X, =n zi=1 Xi

° To(1).2 0 =(2).2
j =1,2. The LR test rejects H A if (xn )T+ (Xn )T > dn' We choose c, and

respect to the MP test for H, against H

14

0
dn such that the power of both tests at (0,1) equals B, 0 < B < 1. This

implies that c, = 1-@_1(B)n_%. Consequently
=(2)

+
o (B,(0,1)) = P(O,O)(Xn

%

> 1—¢_¥(B)n~ )

B_pm10))2
_explh®e BN} Loy,

(21r)12{n;2 - @‘1(8)}

and hence

log of (B,(0,1)) = -kn+8 " (B)n” - % logn + 0(1)

as n - «, Since

=(1),2  =(2),2 -1 -%,2
Po,qy (B 7+ & 7% > (1-07 (0™ >

(2(2) %

-1 -
>Po,n¥, > 1-2 (B

) = 8,

it follows that dn > {1 —@‘1(B)n—l§}2 and hence

LR z(1),2  =(2) 2 -1 3,2
a (B,(0,1)) < P(O,O)((Xn ) )T > {1-¢ “(B)n °}")

5

< exp{-tn +8~ 1 (g)n" - % (71 (g)) 2.
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On the other hand it is easily verified that there exists a positive constant

A such that d_ <1 —2¢_1(B)n‘54+An-1. Therefore
LR =(1),.2 =(2),2 -1 =% -1
o (B,(0,1)) 2 P(O,O)((xn )+ (Xn )" >1-2%6 "(B)n “+aAn ")

K

= exp{-kn + "1 (B)n” - 4a}

and hence

log o-¥(8,(0,1)) = -hn +6™1(B)n" + 0(1)
as n »+ o, It follows that

N+(a,B,(0,1)) = -2 loga + 2¢_1(B){-2 loga}& - log(-2 loga) + 0(1)
and

N®(a,8,(0,1)) = -2 loga +20~ 1 (8){-2 loga}? + 0(1)

for o + 0. Thus

¥R (a,8,(0,1)) = N*(a,8,(0,1)) + log N'(a,8,(0,1)) + O(1)

[

for a +~ 0. So, even for a very smooth testing problem we obtain that the

LR -test is not deficient in the sense of Bahadur of order 0(1).

Although there are examples of testing problems for k-parameter expo-
nential families, where the LR test is deficient in the sense of Bahadur of
order 0(1) (e.g. tésting HO; 02 < cg against H1: 02 > og in normal N(u,oz)
families), it turns out that under rather general conditions its deficiency
is of order ((log N+(a,B,6)). Our -first theorem deals with the easiest case:

a simple hypothesis.

THEOREM 5.3.1. Let xl,xz,... be i.i.d. irandom k-vectors from an exponential
family. Consider the testing problem Ho: 0 = 90 against H1: 8 # 60 where
60 € int O. Then for every 6 € {6;1(9,60)<I(90)} the LR test is deficient

in the sense of Bahadur at 6 of order 0(log N+(a,6,9)) as o -+ 0.

. PROOF. Let 61 € {e;I(e,eO) <I(eo)}. In fact we will prove that there exists
a constant C = C(B,Gl) such that

N%(a,8,0,) - N'(a,B,0,) < 5 (k-1){1(0,,8)} " log N (a,8,0,) + c.
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As usual we compare the LR test with the MP test for the testing prob-

*: 6 = 0,. The latter test has the following form:

lem H : 6 = 6_ against Hy 1

0 0
1 >
bt (x) = { if (0,-8)'x ¢ ,
0 < B

+ + =
where c, is such that E91¢n(xn) =B (0<B<1). It is easy to see that

+ .o
h satisfies

+ _ - . .
c, = (8,-84)'A(8,) = {(o

n 6,)'2

L -1 - -1
1 % 61(61-60)} & (B)n * + O0(n 7).

. _ ' _ . . . .
Since 1(91,90) < I(eo) and (61 eo) }\(eo+y(91 60)) is a strictly increasing
function of y, there exists for sufficiently large n a unique Yo > 0 such

+ = - (] - = -
that c, = (e1 90) )\(eo+yn(61 90)). Let gn = 90 + yn(e1 eo).
The LR test for our testing problem has the following form:

1 >

if ggg{e'x—w(e)} - {96X-¢(90)} . a

LR, . _
b (x) = {O

where dn is such that E91¢2R(§n) = fB. By considering the test $n defined by

. 1 >
¢, (x) = {0 if SES{G'X-W(O)} - {eéx—W(eo)} ) I(E ,85),

: [ Ty
we conclude that dn 2 I(En,eo), SLTCG supeee{e x-P(0)} = Enx ¢(£n) and+
therefore the critical region of ¢n contains the critical region of ¢n.

Hence we obtain for aﬁR(B,el) the following inequalities:

LR ‘ \z \s
o (Br8;) S By (supg (0K b(0)} = (85K, ¥(80)] 2 1(£,00))

< cln(k—Z)/Z exp{—nI(En,eo)}

for some constant Cyr where the last inequality is an application of theorem

i - ] - +_. — ' — - Al - 12 _1 —!2
3.2.1. since (8, 8y x(en)-cn-(91 64) A(Bl) {(91 60) 291(61 90)} ¢ "(B)n "+

-1 ' =
O(H_g)' IE .65 = I(8,,00) + I(§ ,0,) + (8,-6,) {x(€)-2(8,)} and g -6, =
O(n ), it holds that

) - {(8,-6.)'z

(5.3.1) I(Enleo) = I(elle 1 0

(61—60)}5®_1(B)n-5 +0m .

0 01

This implies that
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(k=-2)/2
of

LR
oy (6,61) < c exp{—nI(el,eo) +

] . L -1
+n {(61'90) zel(el-eo)} o (B}

for some constant cye

On the other hand

0

at(g,0,) 2P
n _ 1 0

(.(61—60)'Xn > (61—60)'X(En))

> [ exP{n(eo-En)'(x—k(En))—nI(En,eo)}dEE (x) .

(En-eo)'(x-X(En))>0
Substituting

= -0)" - Hr g ) (5 %
y = {(& -8 zgn(sn )} “(E -8,) ' (x=A(E ))n

we obtain

) 2 [ exp{—nI(en,eo)—nl‘{(gn~eo) 'y

+
¢} (Ble
n (0,)

1 €

where

—'n '
PE (B) = Pgn({(En—eo) z

- s 5
o n(En-eo)} (En—eo) (Xn X(En))n €

g

n

3 ~n
n(En-eo)} y}dPE

B)

n

for all Borel sets B. The Berry-Esseen theorem ensures the existence of a

constant c, > 0 such that the last integral is at least equal to ¢ n

3
exp{—nI(En,eo)}. Hence application of (5.3.1) yields

3

a:(s,el) > c4n—12 exp{—nI(el,eo) + nl"'{(el-eo)'z91

It follows that

LR
I(8,,00)N " (a,B,0,) <

%
_ , _ L -1 -loga
< -loga + {(e1 60) 261(91 90)},¢ (8){I(91,90)}

k-2 -loga
e 1°g{1(el,eo)} *Cg

and

(y) ,

L -1
(91—90)} e "®)}.
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+
I(elreo)N (alslel) 2

L
> - log o + {(8,-6,)"'% (91_90)}ﬁg-l(s){};LEEEJL_} -

91 I(Ol,eo)

_ -loga
5 log{I(elleo)} + cg

for some constants c5 and c6 and therefore

R + -1
NR(a,8,0,) - N'(0,8,0,) < (k-1){1(8,,06,)} " log N'(a,8,6,) + c,

for some constant cqe O

As our next step we consider a null hypothesis contained in a compact

subset of int 0.

THEOREM 5.3.2. Let 00 be a subset of a compact subset of int O and let

01 =0 - 90 1 with I(G,OO) < I(OO) the LR test

: +
is deficient in the sense of Bahadur at 6 of order 0(log N (o,B,0)) as

. Then for every 6 € int ©

a > 0.

PROOF. Let 6, € int 01 with I(el,eo) < I(OO) and let c; (i =1,...29)

1
denote constants with 0 < c; <o (i=1,...29).
The proof is given in several steps:

A. We show that

(5.3.2)  o2R(g,0) s c n(#_z)/z exp(-nd_)
and
(5.3.3) a;(Blel) P4 Czn_k/2 exp{—ndn—c3(log n)%},

where dn is the critical value of the LR test with power B at 91 (0<B<1).
(5.3.2) is by now a familiar statement, but (5.3.3) is a new inequality. So
far we only obtained a lower bound for a; under the assumption that the
shortcoming of the LR test is bounded away from zero.

B. We derive an expansion for dn. This expansion is used to translate (5.3.2)
and (5.3.3) in terms of N+(a,8,61) and NLR(a,B,el)-

C. With the aid of A and B the theorem is proved.
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A. To prove (5.3.2) we only have to show that aiR(B,el) > exp(-nI) for some

0<IcK< I(OO) and sufficiently large n. Application of lemma 3.3.3 then

immediately yields (5.3.2). Let 60 € ©, be such that 1(01,60) < I(Oo).

0
* - . . -

° o 6 60 against Hi' 6 91. Let*
an(B) be the smallest size such that the power of the MP test of HO

* PR : -1 * = -
H1 at 61 equals B. Then by Stein's lemma llmnam n log an(B) = 1(61,60)

(cf. lemma 6.1 in [4]). Since aﬁR(s,el) > o¥(B) it is plain that there

exists a number I satisfying 0 < I < I(@O) such that ai

Consider the problem of testing H

against

R(s,el) 2> exp(-nI)
for sufficiently large n.

To prove the required inequality for the MP test is more difficult. We
try to find a point S, in A(el) such that s, has a sufficiently large
neighbourhood contained in the critical region of the MP test and such that

A-l(sn) is not too far from O.. We consider the MP test a little more

0
closely. The critical function of the MP test satisfies
1 <
+
= - Ve
¢, (x) if [ % exp{n(6,-0,) "x-np (6 ) +nY(6,) }dt (8,) £,
0 : >

where the distribution T is least favorable. Denote by
= —-— ' —
£(84,x) exp{n(eO 6,)'x nw(eo)+nw(61)},

u_ = {x;f

n t(eo,x)drn(eo) <tn} and

cl @O

v, = {xif 6 £(8,,x)dT (80) <t }.
In the course of the proof of theorem 3.3.2 we have shown that both Un and

Vn are convex sets and that int(Vn—Un) = @. Let

Hn = {ern; there exists a sphere with radius

c4n_ containing x completely contained in Un}'

Here the constant Cy has to be so large that for any sphere ﬁn with centre 0

and radius c4n—1 there exists a constant c5 such that

- ~ ~ -k/2
(5.3.4) Pé(xn - A(08) € Bn) 2 cgn .

for all 6 in some (fixed) neighbourhood of §,. This can be derived from the
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special Berry-Esseen theorem (15.57), with s = 2, on page 153 inBhattacharya
and Rao's book Normal Approximation and Asymptotic Expansions (1976).
Let dn be the critical value of the LR test with power B at 61. Further-

more let
-1
G, = {xeh;I (A (x),@o) > dn}

and denote the complement of Gn by Gﬁ; finally if Fn is any set and £t > O
define F (t) = {x;inf{"x—y“;yan} < t}. Next we show that there exists a

constant‘c6 such that

(5.3.5) 6 (cn '{log n}) A H, # 9.

To prove this we first restrict the whole A-space to points near A(el). Let

Q, = {x;ﬂ:é* (x-A(8 )l < 2n'5(1og n) ¥},

1

Because both the MP test and the LR test have power B at 61 it holds that

b b ~
Pe (Xne Gn) - Pe (Xne UnA Qn) < c7n .

1 1

Since 0 < B < 1 we can take c, so large that

8

) > c n_%.

1
) 7

Pel(xné UAQ . Xe {UnA Qn}(cen

R . = -1 =
This implies that Peléxne{UnAQn}(csn_l)) > Pei(xne G) and hence there

. . : A A  si _
exists a point y ‘e G_ {Un Qn}(f n ). Since B > 0 the set U A Q con
tains a sphere Rn with radius c.n and centre r,- Take z € Un A Qn such

9
that "yn—zn“ < c8n_1 and define

~ -1 -k
sn = zn+c4c9 n (rn—zn).

Note that the sphere Sn with centre S, and radius c4n“1 is contained in the

cone- determined by Rn and z -
It is easily seen that s, € Hn for sufficiently large n, since Sn in

c
U A . More
n Qn reover ¥, € Gn and

1n_l(log n)5 + c n_1

Ils =y I <lls ~z_ Il - -
Sn¥n Sn"%n * IIZn Yn" <2y €4¢ 8

9

< n_l(log n)a,

_06
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where y is the largest eigenvalue of 231 and (5.3.5) is proved.

We still have to show that A_l(sn)'is not "too far" from O_.. It is easy to

0
see that ¥, € A for sufficiently large n; hence Y, € Gg A A and thus
I(A—l(yn),eo) < d_. So there exists a point eon € cl 00 such that

n
I(K_l(yn),SOH)S d . Consequently
1 sy, ) =10 w0 ) 1 s ) ATy ) +
n’ ' 0On ¥n!%0n n'’ Y,

+ 0y -8 )" (s my,)

%

-1
< dn + c o" (log n) °.

1

In view of (5.3.4) we obtain the desired lower bound for a:(B,el):

+ -
dn(8191) 2 Pe (Xn € Sn)

On

-1 - -
[ expin(e, 2" (s ) 'x-np(8 ) +np(r 1(sn))}ap2_1(s 0
n

exP{—nI(A_l(sn),GOn)}

v

Q
-
-

=]

n_k/2 exp{—ndn—clo(log n)%}:

[\
Q

11
which completes the proof of part A.

B. The proof precedes in several steps. We use the following property of dn:

- -1 =
(5.3.6) P (XneA,I(l (xn),eo) Zdn) + P

9 (xnéA) >8>

1 e1

> P (ineA,I(A'l(in),eo) >d).
1

For x € A and 60 € 00

' -1 _ . -1
(5:3.7) TOT(x),00) = T(8;,80) + (0;-00) " (x-A(8,)) + T\ (x),0,)

implying

v

. -1
(61—60) (X-A(el)) + I(A (x),el)

I(el,Oo) + inf o

0 €0
(A 1(x),00) 0

A

T(0309) + supy g (9-0g) " (xA(Op) + 107 e ,0,)).
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Let Bn(c) be the sphere with centre A(el) and radius cn_ﬁ. Choose ¢y, SO
large that

Pel(xné B (cy,)) = min (%B8,%(1-8)) .

If xeB (c,_) A A then
n 12

=%
» > 1(01,00) - c13n
I(A KX),OO) .
' -5
< I(el,eo) + Cy 40
Define hn by
(5.3.8) 4 =1(0,,0,) +hn?
T n 1’70 n :
The preceeding inequalities imply
(5.3.9) - < lim inf hn < 1lim sup hn < o,

n->eo n->wo

Next we consider two non-decreasing sequences {nj} and {mj} of positive
integers tending to infinity, which will later correspond to N+(a,6,61) and
NLR(a,B,GI), respectively. Let {6.} be a sequence of positive real numbers
such that mTk(log mj);2 < 6j < 1. %e will prove that if Gj is "too large"

J
then

- -1 -
(5.3.10) P (xm.gA,{I(A (xm ).0

X
A 0) - 1(91,00)}mj > hn.+ Gj) +

1 j h| J

Py (Xm.é p) < B

1 73
and

(5.3.11) Pe (gm

-1 %
. .EA,{I(X (Xm_),Oo) - I(Slyed}mj >h - Gj) > B

J J 3
for ;ufficiently large j. In the sequel the meaning of Gj "too large" will
be explained. Since (5.3.10) and (5.3.11) require a similar approach we
only consider (5.3.10).

Without loss of generality assume that the radius c12m;% of ij(c12) is
so large that for all j

. -1 3 .
(5.3.12) inf[{I (A (x),eo) - I(el.Oo)}mj; xeij(%clz)] < inf h
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(cf. (5.3.9)). Since for all x in a sufficiently small neighbourhood of A(el)

(5.3.13) I(A_I(x),eo) = inf{I(el,eo) + (el-eo)'(x-x(el))} + I(A_l(x),el)
0,.€0
00

and therefore

. > infeoeeo{l(el,eo)+(el—eo)'(x-A(el))}
I(A (x),Oo)

; ’ -1
Svlnfe 0 {I(ei,eo)+(el-eo)'(x—x(el))} + clsmj ,

00
it follows that

0

= -1 = %
(5.3.14) Pel(xmje ij(clz),{x(x (xmj),o ) - 1‘91'90)}mj e[hn5+56j,hn;6j))

> P (im‘e Bm (c12),[inf

6. €6 {I(el,eo)+<el-eo)'(xm —x(el)} -

1 | 3 070 3
I(8,,0 )]m% e [h. +%6.,h  +6.-c m_ﬁ))
17703 n, ~j'"n, 3 1573
J J
> pr(lyll<c [inf {1(8 9 )+(6,-6 )'Ym_&} - I(6,,0 )]m%
- 12 90600 1’70 170 3j 1’70 3j

-5 -
€ [hn.+&6j,hnj+5j—c15mj )) - Crgmy

J

where Y is a normally N(O,Zel) distributed random k-vector and where in the

last inequality the convexity of the sets

. b
- - ' - -
{x,[lnfeoeeo{l(el,eo)+(61 B " (x-2(8,))} I(SI,GO)ij >
2 hn.+5j_"}
J
(n =0 or clSmS&) is used (cf. SAZONOV (1968)).
For all j 2 j, it holds that for every t satisfying el < %012 and

. PR T B
[lnfeoeeo{1(61'60)+(el 8) 'tm; "} - 1(8,00) In] = hnj + a8y,

there exists a positive constant c such that the sphere

17

5.}

.3. sly-tl <
(5.3.15)  {y;ly-th < ©14%5

is contained in the set
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. ) Vo =k %
(5.3.16) {y;:lyl < °12'[lnfeoeeo{l(91'eo)+(e1'eo) ymg } - 1(91,00)]mj

]
€ [hn.+%6j'hn,+6j—c15mj )}

J J

From now on let j 2 jo. Without loss of generality we may assume that

. -1 5
Py (R el T (X ),00) - I(8,,00)Im) > h +6,) > 48

U 3 : 3

since otherwise (5.3.10) is trivially satisfied for large j. Hence

Pe (Xm.eBm‘(‘zclz),[infe €0 {1(91,00)+(01-00)'(Xm.—l(el))} =
1 j J 00 J
% ]
I(Bl,Oo)]mj > hn.+6j_015mj ) = 4B.

P
18mj in ij(%céz)
such that the function [1nf90€@ {I(61,90)+(61—60)'(x—k(el))} - I(el,OO)ij

In view of this inequality there is a sphere with radius c

is larger than hnj + 6j - clsmg on that sphere and by (5.3.12) there is a
point in ij(kclz) such that the same function is smaller than hn . It fol-
lows that there exists a point tj on the surface J
A, = {t;[inf, _ {I(6,,8.)+(6, 0 ) tm.?} - 1(6,,0)Im’
3 90690 1’70 170 3 1’70 3
=h + %Gj}
J
. s < = 3
satisfying "tj“ _.5c12. Let c g mln(cle,%clz). Then the sphere
2% = (yily-t.l < c, .}
3 - WIYTET SS9

is contained in
{y;"y" < %Clz}.

*
The set Aj is not contained in Aj for all j 2 jl’ since S0 < c18 and, for

all éufficiently large j; the set

Fa _ . P 3
{Y,[lnfeoeeo{1(61,60)+(61 0y ym, } I(el,eo)]mj > hnj+ %Gj}

contains the set

. rs P N i
{y;lyl < l,clz,[mfeoieo{x(el,eon(e1 8, ymg } I(Gl,eo)]mj >
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-
2h + 6j ©15%5 }.

J

From now on let j 2 jl' It follows that the area of

. " 5
{t; 0l s%clz,tlnfeoee {1(91'90)+(61’eo) tmj } - I(el,Oo)]mj =

0

h_ + %6.}
nj J

is at least equél to some positive constant 50" Therefore

- -1 3
(5.3.17) P (Xm.e Bm_(C12);{I(A (xm?,eo) - I(el,OO)}mj €

8
1 73 b 3
[h +%.,n +6,)) 2c, 8, —c,m?,
n, i""n, 3 2173 16 3
3 3
cf. (5.3.14), (5.3.15) and (5.3.16).
Let
(5.3.18) o = {x;lx-A(6)l < t.m 7}
3. Qj = {x;lx=A( 1 < ijj

where the sequence {Tj} will be specified later. Now the following inequality

holds for sufficiently large j

: . -1z e
(5.3.19) Py (X € A{TOT (X, ),080) - 1(8,,00)Im; = b + &)

1 73 j J

+ Py (X €0
173

- * -1 - b
< Py (xm.e Qj,{I(A X )16g) - I(el,eo)}mj 2h + %Gj)

1 73 j 3

- *
- c226j + Pe (Xm.é Qj).

1 73

In view of (5.3.13) the first term in the righthand member of (5.3.19) is at

most equal to

- *
(5.3.20) Pe (Xm'e Qj:lnf

o {1(61,60) - I(el,eo) +
1 3j 0

605

1. -c T%mfk)
J ]

_ = LI T _ _ ks
(8, 60)'(ij-k(61))mjnj hanhnf%Gj cy5lt montTy-cy,
3

6

<P, (1X_-A(8 )l < 7.0 %, inf
1 nj 1 i3

{x(6,,06,)-1(6,,0.) +
60600 1’70 170
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(8,-8,) ‘an'“el))}“‘j > hnj+ sscsj 23|1 myng l'rj C4 T3y )

b,k

+n.

3 ),

. -
€35 (B

where we applied the multivariate "Berry-Esseen" theorem for convex sets

twice (cf. SAZONOV (1968)). In view of (5.3.13) the last probability is at

most equal to

= -k -1,z L
(5.3.21) Pel(anj-k(el)“ < Tjnj AT (an)yeo) - 1(61'00)}nj >
y =k 2 =k % -k
{hn.+56j-c23|1—mjnj [Tj—c24rjmj }njmj ).

J

We consider two cases:

(i) mglnj -+ 1; choose Gj = 1n, where n is an arbitrary number in (0,1) and

choose"tj = Cog s where Cr6 is so large that

- *
P (xm.é Qj) < ;202271:

91 3
(ii) (m.—n.)m_.!2 -+ 0; choose T, = ¢ (log m.);2 where c is so large that
J 33 j 27 3 27
- * -1
Pel(xmjt Qj) < By

_ 2, -k
and choose 6j = (2+2c24c27)mj log mj.

Now in both cases

b =% 2 k. % -k
{hn'+%6j c23ll"?jnj lrj—c24rjmj }njmj > hnj
for sufficiently large j and hence the probability (5.3.21) is at most
equal to B (cf. (5.3.6) and (5.3.8)). In combination with (5.3.19) and

(5.3.20) this implies that

'_ - .
(5.3.22) Pel(ijsA,{I(A (ij),eo) - 1(91'00)}mj 2 hnj+ Gj)

- e V¥ - *
+ P, (X €M) <B+ - .
o, ¢N SB ey my™nyT) —oy 8y + Py Xy £ 09

3 1 73
In both cases the righthand member of (5.3.22) is less than B for sufficient-

ly large j. This completes the proof of (5.3.10).

Therefore, if mglnj + 1 it follows that hm <hn + n for sufficiently
i 3
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large j, where n is an arbitrary number in (0,1). Moreover, if

-5 2, % . o
(mj nj)mj -+ 0, then hm.< hn_ + (2+2c24c27)mj log mj. Reverse inequalities

of the type hm > hn - .?. foilow similarly from (5.3.11).

Summariziag thg results of part B we have found thus far

%

(5.3.23) 1) dn = I(el,Oo) + hnn with -« < lim inf hnS limsup h <«

n->o n-oo

%

(5.3.24) 2) if mlh, 1 then 4 -4 = om.?) as jo>w
3 3 _ m. n, 3 )
B |
. -% -1 .
(5.3.25) 3) if (m.,-n.,)m, > 0 then d -d_ = 0O(m. logm,) as j = o.
J 1 3] m., n, J j
i 3
. o + LR .
C. We write M and N in lieu of N (a.B,ei) and N (a,B,91)~1, respectively.
By (5.3.2), (5.3.3) and (5.1.3)
(k-2)/2

exp{—MdM—c3(log M)%} < oN exp (-Nd)

(5.3.26) e K/?

or (cf. (5.3.23))

c M—k/2

L 5
9 exp{—MI(Ol,OO)-hMM -c3(log M) °} <

< clN(k_Z)/2 exp{—NI(el,Oo)—hNNa}

which implies that MN_1 -+ 1. Hence by (5.3.24) dN—dM = O(N‘%). Let fN =
(N-M)N ?and d, = dN+sNN_% with e > 0. In view of (5.3.26) we obtain
5 ] L k-1
- - N .
exp{fNN dN e +fNeN c3(log N) °} < Cog

A . ’ -1
This implies that fN -+ 0 and therefore by (5.3.25) dN—dM = 0(N logN) .
Hence there exists a constant c such that dM < dN+c N logN. Let

) 29 29
= (N-M) (log N) ~; then

IN
exp{—02

log N + gNleog N + c ‘1(log N)2 - c3(log N)%} <

9 299"

< Nk—l
< cyg

and hence
-1
gy < {1(91,90)} {029+k—14~e}

for sufficiently large N, where € is an arbitrary positive number.
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This completes the proof. [

REMARK 5.3.1. One can also prove that if(mj—nj)m;lz -+ 0 then dm —dn =

o(m;1 log mjL cf. (5.3.25). This implies that the constant czgjis fedundant
in the upper bound for I+ For technical reasons we omit the proof of this

refinement.

As in chapter III we can also consider the case of an alternative

hypothesis set contained in a compact subset of int 0.

THEOREM 5.3.3. Let 91 be a subset of a compact subset of int © and let
OO =0 - 01. Then for every 0 € 91 with I(e,00)> O the LR test is deficient

in the sense of Bahadur at 6 of order 0(log N+(a,6,6)) as a > 0.

The proof is based on the fact that only that part of GO plays a part
which is near 01 and hence all relevant arguments are concerned with a
compact subset of int ©. Since we have shown this in detail in section 3.4,

we here omit the proof.

Let @0 be a Borel set in ]Q{. Consider the testing problem HO: 0 e OO
against le 8 ¢ OO. We make some assumptions similar to those mentioned in

section 3.5.

ASSUMPTION Al. For all n the LR test satisfies

LR,z
sup E, ¢ (X
GOEGOAK 90 n

LR,z
S%Pgeo o%n *n)

o)

n
for some compact subset K of int © and some € > O,
ASSUMPTION A2. 0 < I(el,eo) < I(OOAK), where K is defined in assumption Al.

THEOREM 5.3.4. Let assumption Al be fulfilled. The LR test of H
A 1: 0 ¢ OO
O(log N (a,B,Gl)) as a > 0 for those points 61 € int Ol for which assumption

of 0 € UO
against H is deficient in the sense of Bahadur at 61 of order

A2 is satisfied.

PROOF. Assumption A2 implies that aiR(B,el) > exp(-nI) for some 0 < I <
I(OOAK). Arguments are similar to those in the first paragraph of part A of

the proof of theorem 5.3.2. By assumption Al and lemma 3.3.3 it then fol-
lows that
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n(k-2)/2

LR
oy (8.91) < ¢y

exp(—ndn)
for some positive constant 4.

The remainder of the proof follows the lines of the proof of theorem
5.3.2. Since by lemma 4.1.2 there exists a positive constant c, such that

I(x'l(x),eo) -  inf I(A_l(x),eo)
HeO—GIHSC

veOEGO
for all x in a (sufficiently small) neighbourhood of 1(91), the compactness

of OO is not really needed in the remainder of the proof. [J

As an application of this theorem we consider the t-test. Let {Xn} be
a sequence of i.i.d. random variables with a normal N(u,cz) distribution.

Consider the testing problem H H = uo against H1: u# uo, where uo is a

O:
given constant (-« < uo < ©), The LR test (i.e. the two-sided t-test) is
similar; hence assumption Al is fulfilled for every compact set K. Moreover,
assumption A2 is also satisfied for all points (u,cz) with p # u. (cf.

0
section 3.5). As a consequence of theorem 5.3.4 we therefore obtain

COROLLARY 5.3.5. The t-test is deficient in the sense of Bahadur at

. 2 ,
(u,oz) of order 0(log N+(a,B,(u,02») as a > 0 for all points (u,0”) with
u# ug.

As two further examples we consider the multivariate normal distribu-
tion with known covariance matrix and the multinomial distribution (cf.

section 3.6 and 3.7).

COROLLARY 5.3.6. Let XI’XZ"" be i.i.d. random k-dimensional vectors

normally distributed with unknown expectation u and known covariance matrix.

Consider the testing problem H_.: u € M. against H ué Mo, where M, is an

0 0 1’ 0
arbitra:y subset of Bgc. Then the LR test is deficient in the sense of

Bahadur at ul of order 0(log N+(a,s,u1)) as o »~ 0 for all points pl €
int (‘1Rk - MO) .

PROOF. Let u1 € int(ngq— M.) . Although assumption Al is not necessarily

0
satisfied, the inequality

aiR(B,ul) <c n(k_z)/2 exp(-nd )



123

for some positive constant c follows from (3.6.1). Since this is the only
k
part of the proof requiring the assumptions Al and A2 (once u1 e int(IR —Mo)

is assumed) in theorem 5.3.4, this theorem yields the desired result. [J

COROLLARY 5.3.7. Let Yn be a random vector having a k-dimensional multi-
p(1) (k))
’

nomial distribution with parameters n and p = ( PR o) n=1,2,... .

Consider the testing problem HO: p € I against Hl: p € H1 =1 -1 where

OI
(3)

= 0 for some j}

0

HO is a subset of Il with the property p € {p eﬂi; P
implying p € cl(int Hi), i = 0,1. Then the LR test is deficient in the sense

+
of Bahadur at p of order ((log N (a,B;p)) as o -~ O for all points pe int Hl'

PROOF. The proof is similar to that of the previous corollary; if p € int H1
and the condition on Ho is fulfilled the inequality

(k-2)/2

LR
an (B/,p) <cn exp(—ndn)

for some positive constant ¢ follows from (3.7.2). [J
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