

PJU.nted a..t .the Ma..thema.:ti..c.a.l Cen:ttte, 49, 2e BoeJLhaa.vu.:tJr.a.a;t, Amti.teJLdam.

The Ma..thema.:ti..c.a.l Cen:ttte, 6ounded .the 11-.th 06 Febnua.Jty 1946, Ma non
pno6U ..i..nt..tUut,i,.on £U.m.i.ng a..t .the pltomo:ti.on 06 pUll.e ma..thema.:ti..CJ.i and Lt..6
app.Uc.a:ti.ont.. I.t M .tipont.oned by .the Ne.theltla.nd.6 GoveJLnment .thnough .the
Ne.theltla.nd.6 Onganiza.:ti..on 6M .the Adva.nc.ement 06 PUll.e RueMc.h (Z.W.O).

MATHEMATICAL CENTRE TRACTS 76

M. REM

ASSOCIONS AND THE
CLOSURE STATEMENT

MATHEMATISCH CENTRUM AMSTERDAM 1976

AMS(MOS) subject classification scheme (1970): 68A30, 68A05

ACM-Computing Reviews-categories 4.22, 5.24

ISBN 90 6196 135 1

V

CONTENTS

ACKNOWLEDGEMENTS vii

CHAPTER 1. Prologue 1

2. Associons 5

3. Characterization of states 7

4. An appreciation of the closure statement 15

5. Closure of a set of associons 23

6. Formal def:i.nition of the closure statement 35

7. Some small examples 43

8. An appreciation of the repetitive construct 55

9. Formal definition of the repetitive construct 67

10. Some examples 77

11. Dynamically created names 86

12. Recording the cliques of an undirected graph 94

13. On what we have rejected 100

14. Epilogue 107

BIBLIOGRAPHY 110

INDEX 112

vii

ACKNOWLEDGEMENTS

The author is very much indebted to Prof.dr. E.W. Dijkstra for bringing

the subject of this monograph to his attention and for his many helpful

suggestions.

I am also indebted to Prof.dr. F.E.J. Kruseman Aretz, who very accu

rately read the manuscript, and whose suggestions improved the presentation

to a large extent.

I would like to thank the participants of the "tuesday sessions" at

Eindhoven University of Technology, drs. R.W. Bulterman, ir. W.H.J. Feijen,

ir. A.J. Martin and drs. E;F.M. Steffens, for their contributions in dis

cussions on earlier drafts of the manuscript.

I owe thanks to Prof.dr. S.T.M. Ackermans, drs. H.J.M. Goeman, and

drs. C.S. Scholten, who have corrected a number of errors and obscurities

in the text.

I thank the Mathematical Centre for the opportunity to publish this

monograph in their series Mathematical Centre Tracts and all those at the

Mathematical Centre who have contributed to its technical realization.

CHAPTER 1

PROLOGUE

Programming languages enable us to abstract from the machines we are

using. It is the purpose of the implementation to map the programming lan

guage constructs on the machine instructions. This implementation should be

a truthful one, i.e. it should not hide properties, the knowledge of which

is indispensable for the construction of correct and efficient programs. A

programming language should be such that it allows for a truthful implemen

tation.

Present-day programming languages reflect present-day machine technolo

gy. New techniques --associative addressing, large scale integration (LSI)-

are being developed. These new techniques may very well allow for a truthful

implementation of radically different programming lan'guages.

In stores that are realized with LSI-techniques the information is

(usually) kept in essentially active components. Such a store virtually con

sists of a large number of little machines, that do nothing else but remem

bering some value and on command reproducing it or replacing it by some

other value. It may ·well be that someday these little machines will be able

to do "more intelligent" work than the mere simulation of a core store. It

may well be that the major part of the logical manipulations will take place

distributed all through the "store", thus realizing a very high degree of

concurrency.

Questions that then arise are: "How can we, when it is desired to pro

gram for such a machine, exploit this potential ultraconcurrency?", "Can we

think of useful language constructs whose execution may involve such a dis

tributed activity?" and "Can we do this in such a way that the implied pro

gramming task remains intellectually manageable?". It is to such questions

that this monograph is addressed.

We would like to stress that it is not our intention to design a ma

chine. Our primary concern is the manageability from the programmer's point

of view. If so desired, one can, of course, interpret the semantics of our

programming language as the functional specifications of such a machine.

2

we shall write down programs under control of which a highly concurrent

activity is possible, but not obligatory. We shall, furthermore, arrange our

programs in such a fashion that, in spite of the high potential concurrency,

most of the thus far developed techniques for the programming of sequential

processes remain applicable. (We maintain the semicolons, but allow more

powerful statements in between.)

The basic idea of the research (essentially: the massaging of a set of

n-tuples) is due to E.W. Dijkstra. A preliminary design, in the realization

of which W.H.J. Feijen and the author pa\ticipated as well, has been report

ed in [7] and [8].

* *
*

Most of the syntax of our programming language will be given in BNP

[13]. We have extended BNF with the convention that the braces "{ ... }"

should be read as "zero or more instances of the enclosed". E.g., the pro

duction rule

<statement list> ::= <statement> {;<statement>}

defines <statement list> to denote a sequence of one or more instances of

<statement>, separated by semicolons.

There is little sense in introducing a programming language, if its se

mantics cannot be formalized. There are several reasons for this. A formal

definition of the semantics is indispensable if one wants to prove the cor

rectness of a program. But even if one does not intend to prove the correct

ness of one's programs explicitly, formally defined semantics make it possi

ble to understand and appreciate programs without being forced to think in

terms of specific implementations. We, furthermore, wish to design our pro

grams in such a fashion that they are a priori known to meet the require

ments of their correctness proofs. By doing so correctness concerns can, by

their guiding role in program design, contribute to the alleviation of the

programming task.

For the definition of the semantics of our programming language we

shall use the concept of the weakest pre-condition [6]:

If S denotes a mechanism (statement list), and R some condition

on the state of the system, then "wp(S,R)" denotes the weakest pre

condition for the initial state of the system, such that activation

of S is guaranteed to lead to a properly terminating activity,

leaving the system in a final state satisfying the post-condition R.

(A condition on the state --or simply: a condition-- is a boolean function

defined on all states.) As in [6], we shall restrict ourselves to "wp's"

that satisfy the following three properties for any statement list S and

for all states.

PROPERTY 1.1. wp(S,false) = false,

PROPERTY 1.2. For any two conditions P and Q

(wp(S,P) II wp(S,Q)) - wp(S,P II Q)

PROPERTY 1.3. For any infinite sequence of conditions B0 ,B 1 ,B2 , ... , such

that Bi =0> Bi+l (i ~ 0),

From the above we can derive the following two properties. For any two con

ditions P and Q:

PROPERTY 1.4. P =0> Q implies wp(S,P) =0> wp(S,Q) ,

PROPERTY 1.5. (wp(S,P) V wp(S,Q)) =0> wp(S,P V Q) .

Property 1.4 is proved with Property 1.2. Suppose P =0- Q. Then

P = (PA Q) , and consequently

wp(S,P) = wp(S,P II Q)

According to Property 1.2

wp(S,P) = (wp(S,P) II wp(S,Q)) ,

from which wp(S,P) =0-wp(S,Q) follows.

Property 1.5 is proved using Property 1.4:

3

P =0> (P V Q) implies wp(S,P) =0> wp(S,P V Q)

Q =0> (P V Q) implies wp(S,Q) =0> wp(S,P V Q)

(1)

(2)

4

From (1) and (2) it follows that (wp(S,P) V wp(S,Q)) • wp(S,P V Q)

A mechanism S is said to be detel'l11inistic if and only if for any two

conditions P and Q and for all states

wp(S,P V Q) • (wp(S,P) V wp(S,Q))

we take the position that we know the semantics of a mechanism S suf

ficiently well if we know its predicate transformer, i.e. if we know how to

derive wp(S,R) for any post-condition R.

EXAMPLE 1.1. The assignment statement is the basic statement of most program

ming languages. Its semantics are given by

wp("x:= E",R) = ~ ,

in which ~ denotes a copy of the predicate defining the post-condition R

in which each occurence of the variable "x" is replaced by the expression

"(El". This definition is known as the Axiom of Assignment.

(End of example.)

EXAMPLE 1.2. With "skip" denoting the empty statement, and with "abort" de

noting the statement that cannot terminate properly, we have, for all condi

tions P,

wp("skip",P) = P ,

wp ("abort" ,P) = false

(End of example.)

In accordance with our earlier remark that we maintain the semicolons

in our programming language, we define the semantics on the semicolon as in

[6]:

If S1 and S2 denote arbitrary statement lists, and R some

post-condition, then

wp("Sl;S2" ,R) - wp(S1,wp(S2,R)) .

5

CHAPTER 2

ASSOCIONS

This chapter is devoted to the recording of states of computations in

our "active" store. It is our intention to realize this recording in such a

way that at each moment all of the storage contents (so to speak) are in

volved in the computational process.

To achieve this high degree of concurrency by asking the programmer to

synchronize explicitly the co-operation between a huge number of possibly

all different concurrent sequential processes, seems a blind alley in the

sense that the implied programming task will quickly exceed our abilities.

It seems more attractive to look for a simple and systematic instruction re

pertoire, such that each instruction can interfere in a homogeneous fashion

with the total contents of the store.

In conventional stores the components record values of variables. The

represented state is changed by altering the value recorded in one --explic

itly addressed-- component. In our active store we shall not address the

components to be activated in the execution of a state change explicitly. We

wish to achieve the above stated homogeneous interference by broadcasting

commands through the store, telling that all components of which the con

tents satisfy a certain condition, should do something. The storage cells

are anonymous, they are characterized by their contents only, i.e. we are

assuming an associative store.

Having abolished addresses, we have to introduce names. The storage

cells record retations between these names. We assume the machine to be able

to test the equality of two names. If all entities to be referred to are

identified by mutually distinct names, then any relation between some of

these entities can be represented by a relation between their names. If,

e.g., x and y stand for names of persons, we could have relations like

fatherof(x,y) meaning" x is the father of y ", and

olderthan(x,y) meaning" x is older than y

We then know, for instance, that

fatherof(x,y),. olderthan(x,y)

6

Instead of representing all sorts of relations --such as "fatherof" or

"olderthan"-- we choose the more general technique of considering different

relations as named entities as well --e.g. named by "fatherof" and

"olderthan", respectively--, leaving us with a single universal, relation

--which, therefore, can remain anonymous-- and represent

(fatherof,x,y) and

(olderthan,x,y)

The knowledge that

(fatherof ,x,y) ,. · (olderthan,x,y)

could be represented by

(implies, fatherof, olderthan)

Note that what from one point of view was regarded as "the name of a

relation", from another point of view can be regarded as "an argument".

Such an ordered n-tuple of names is called an associon. We consider the

contents of the store to be an unordered set of (different) associons. The

presence of an associon in store will be interpreted as the truth of the

universal relation applied to the entities denoted by the members of then

tuple.

7

CHAPTER 3

CHARACTERIZATION OF STATES

In Chapter 1 we have, said that a condition P is a boolean function

of the state. If P is applied to the state X --notation "PIX"--, it

yields either the value true or the value false . When no confusion seems

possible, we may forget to mention the state and write "P" instead of "PIX".

This was, as a matter of fact, done in Chapter 1. We shall be explicit in

cases where precision is nece_ssary.

When programming for conventional machines, the state of a computation

is uniquely defined by a state veator, the components of which comprise the

values of the individual program variables. The connection between condi

tions on the state and these state vectors is that names of variables (iden

tifying components of the state vector) may occur in a condition on the

state. The predicate Pix is then satisfied if and only if the condition

P yields the value true if in P all names of variables are replaced by

their value in the state vector (representing the state) X

When programming for associons, the connection between states and con

ditions on the state is slightly different. The associons that are present

in the store represent (instances of) relations between names. The evalua

tion of a computation is viewed as the creation of new associons, recording

relations that are implied by already existing relations. One relation is

fairly universal, it is the truth of "true", this will be recorded by the

irrevocable presence in store of the empty assoaion "()". The state of a

computation is then uniquely defined by an unordered set of associons, viz.

the set of all present associons. If (a0 , •.. ,ai_ 1) --i ~ 0-- is an asso

cion, then [a0 , ••• ,ai_ 1J is its corresponding presenae aondition. Pres

ence conditions may (and usually will) occur in conditions on the state. If

U denotes a set of associons (e.g. the state of a computation), then the

predicate Plu is satisfied if and only if the condition P yields the

value true if in P all presence conditions "[a0 , ... , ai-l]" are replaced

by "(a0 , ••• ,ai_1) Eu".

REMARK 3.1. From the way in which the predicate Plu is defined, it follows

that

8

1) truelu = true ,

2) falselu = false ,

3) (P A Ql lu - (PjU A QIU)

4) (P v Ql lu - <Plu v QIU)

5) (7P) lu = 7(Plul .

(End of remark.)

Not every name in a presence condition has to be specified. Those names

that we do not wish to specify should be replaced by a question-mark"?":

If L denotes zero or more names, each followed by a comma, and if M

denotes zero or more names and question-marks, each preceded by a

comma, then

[L? M] denotes (3a: [La M]) .

NOTE. Above and in the sequel all quantified variables of which the range

is not specified, are assumed to be quantified over the (in principle infi

nite) set of names. (In some formulae --where no confusion seems possible-

over a Cartesian product of the set of names.)

(End of note.)

EXAMPLE 3.1. Let U denote the state {(),(a,b,c),(a,b,d),(a,c,c)} . Then

the following propositions are satisfied.

c JI u ,

[?,b,c]ju,

(Vx: [a,c,x].,. [a,b,x]) lu.

(End of example.)

EXAMPLE 3.2. For any state

[]=true,

7[] = false

(End of example.)

The state of a computation is (represented by) an unordered set of asso

cions, containing the empty associon. The most basic functions on unordered

sets seem to be the membership test and the cardinality. Above the member-

ship test has been exploited as a "building block" for conditions on the

state. To characterize states by the number of associons present, on the

other hand, seems a characterization that bears little fruits, as it tells

us nothing about which associons are present. More is to be expected from

the number of associons present of a certain type. We shall use equations

to characterize types of associons. An equation is a kind of condition on

the state that may contain unknowns. As equations will play a role in the

"closure statement" --to be introduced later--, we give the definition of

their syntax in BNF.

<equation>::= <unknowns> <term>{V<term>}

<unknowns> ::= <unknown>{,<unknown>}: I <empty>

<term>::= <factor>{A<factor>}

<factor> ::= <primary> I 7<primary>

<primary> ::= <presence condition> I <nu>= <nu>

<nu>~ <nu> I (<term>{V<term>})

<presence condition>::=[] I [<nuq>{,<nuq>}]

<nu> ::= <name> I <unknown>

<nuq> ::= <nu> I ?

<name> ::= <identifier>

<unknown> ::= <identifier>

9

The logical operators "A","V", and "7" have their usual meaning. We can

rewrite an equation into a disjunction of terms in which no parentheses"("

,and ")" occur anymore. An occurrence of a presence condition in an equation

is called negative if, after such a rewrite, it is preceded by ''7", and it

is called positive otherwise.

An equation E will in general contain unknowns. By substituting names

for these unknowns, we obtain a condition on the state, that, for any given

state, will either be satisfied or not. The set of all substitution in

stances for which the resulting condition is satisfied by U, is called the

solution set of E in u, notation "Z(E,U)":

If E denotes the equation

uo,•••,ui-1: D(uO, ••• ,ui-1)

(i ~ 0), and u some set of associons, then "Z(E,U)" denotes the set

of all i-tuples of names a0 , •.• ,ai-l , such that D(a0 , ••• ,ai_1)1U.

10

In order to guarantee that for finite sets U, the set Z(E,U) will

be finite as well --to be proven in Theorem 3.1.--, we have to be restric

tive as to the way in which unknowns may occur in an equation:

After the elimination of parentheses, we may only have terms in

which for each unknown of the equation there exists at least one

positive presence condition in which the unknown occurs.

(We, for instance, do not allow the equation x: [a,x] v 7[b,x] .)

EXAMPLE 3.3. Let u denote the set {(),(r,a,b),(r,b,a) ,(s,a)} , V the

set {(),(r,a,b),(r,b,a),(s,b)} , and let E denote the equa~ion

Then

x,y: [r,x,y] A 7[s,x]

Z(E,U)

Z(E,V)

{ (b,a)}

{ (a,b)}

Z(E,U n V)

Z (E,U U V)

{ (a,b), (b,a)}

f3 •

(End of example.)

EXAMPLE 3.4, Let U denote the set {(), (a,b,c)} , v the set

{(),(a,c,c)}, and let E denote the equation

Then

x: [a,? ,x]

Z(E,U) {(c)}

Z(E,V) {(c)}

Z(E,U n V) (3

Z(E,U UV)

(End of example.)

{ (c)}

Note that a decrease of the number of associons (by taking the inter

section) effects an increase of the number of solutions in Example 3.3, and

a decrease of the number of solutions in Example 3.4.

THEOREM 3.1. For any equation E, and for any finite set of associons U,

Z(E,U) is finite.

11

PROOF. As a consequence of the above restriction on occurrences of unknowns

in equations, only names that are members of associons in U can occur in

solutions of equations. As U is finite, the number of names in associons

in U is finite as well, say k. If E has i unknowns, then the cardi

nality of Z(E,U) does not exceed ki

(End of proof.)

The solution set Z(E,U) tells us something about the set (the state)

U. In particular the cardinality of the solution set is a concept that will

be used for characterizing states. We introduce a special notation for it:

If U denotes the state of a computation, and E some equation,

then "(NE) lu" denotes the cardinality of Z(E,U)

EXAMPLE 3.5. Let U denote the state {(),(r,a,b),(r,b,c),(r,c,d)} . Then

(Nx,y: [r,x,y] A [r,y,?]) lu = 2 ,

(N [r,a,b]) lu 1

(N [r,b,a]) lu 0

(N [r,?,?]) lu 1

(/fa,y: [r,x,y]) lu 3 .

(End of exampie.)

(Usually we shall not mention the state explicitly, and write "(NE)" in

stead of "(NE) lu".)

REMARK 3.2. (NE) is a nonnegative function of the state. As such it will

often be used as the variant function in termination proofs.

(End of remark.)

The test whether the solution set Z(E,U) is empty or not --i.e.

whether (NE) = 0 -- can yield the value true or the value false , de-

pending on the state u In the future we shall use this test like the

"boolean expression" in classical programming.

* *
*

12

In the sequel we shall use the terms set difference and symmetric set

difference. If u and V denote sets, then the set difference of U and

V , notation "U \ V", is the set {x: x E U /\ x i V} . (With "{x: P(x} }" we

denote the set of all x such that P(x) .) The symmetric set difference of

U and V, notation "U f V", is the set (U \ V) u (V \ U) .

Another concept that will be used is the match of an associon and an

equation. A presence condition in an equation may contain unknowns. Let a

presence condition C contain the unknowns uo,·••1Ui-l (i :e: 0). An associon

A fits the presence condition C if and only if

An associon matches an equation if and only if it fits at least one pres

ence condition in the equation. The match is called negative if the asso

cion fits a negative presence condition, and positive otherwise. (This is an

asymmetric definition. Negative presence conditions can be viewed as "pro

hibitive regulations" on the presence of certain associons. We wish to char

acterize those associons that can --for a given equation-- possibly violate

such a "prohibitive regulation".)

EXAMPLE 3.6. Let E denote the equation

x,y: [a,x,y] /\ [b,x,y] /\ 7[b,y,?]

The associon (a,b,c) matches E positively. The associon (b,a,c)

matches E negatively.

(End of exampie.)

From Example 3.3 (p. 10) we know that Z(E,U) is not monotonic in U,

i.e. it is in general not true that

u CV implies Z(E,U) C Z(E,V)

The following property, however, does hold.

PROPERTY 3.1. If E denotes an arbitrary equation, and U and V denote

sets of associons, such that V \ U does not contain associons that neg

atively match E, then

u CV implies Z(E,U) C Z(E,V)

PROOF. If Z(E,U) is empty, then the assertion of the theorem is trivially

satisfied. Otherwise, let a be an arbitrary element of Z(E,U) .

13

Writing E without parentheses"(" and")", it must contain a term T

such that a E Z(T,U) . We prove a E Z(T,V) , and hence, a E Z(E,V)

Let v denote the list of unknowns of E, and let T contain i

(i ~ 0) question-marks:

Let

know that such an i-tuple b 0 , .•. ,bi-l must exist.)

For any positive presence condition

Cp(v,?,?, ... ,?)
~

i

in T, we know from Cp(a,b0 , ..• ,bi_ 1) lu and u c V that

a E Z(T,U) we

(1)

For any negative presence condition Cn(v,?,?, .•• ,?) in T, we know, as it

is not fitted by associons in V \ U

(2)

We furthermore know

(3)

and from (2) and (3)

(4)

From (1) and (4) we conclude T(a,b0 , ••• ,bi_ 1) IV. Hence T(a,?,?, .•. ,?)lv,

or a E Z(T,V) .

(End of proof. J

We can now prove the following theorem, that will be used in Chapter 5.

THEOREM 3.2. If E denotes an arbitrary equation, and U and V denote

sets of associons, such that U + V does not contain associons that neg

atively match E, then

Z(E,U n V) C (Z(E,U) n Z(E,V)) •

14

PROOF. Applying Property 3.1 (p. 12), we get

Z(E,U n V) C Z(E,U) , and

Z(E,U n V) c Z(E,V)

The combination of these two yields the desired result.

(End of proof.)

REMARK 3.3. From Example 3.4 (p. 10) we know that the above theorem with

the "inclusion" replaced by an "erruality" does not hold. (This is a conse

quence of the occurrence of the question-mark in the equation.)

(End of remark.)

15

CHAPTER 4

AN APPRECIATION OF THE CLOSURE STATEMENT

We can distinguish two ways of appreciating programs. One way is by re

garding a program as "executable code", i.e. as instructions that control

the way in which, upon execution of the program, the computation proceeds

through its states. The other appreciation is that a program can be viewed

as a "predicate transformer", or to be more precise: as the one argument of

the function "wp" that, with _a predicate on the state as the other argument,

yields as its value another predicate on the state. The link between these

two conceptions is that the execution of a program S is guaranteed to

terminate in a state satisfying the predicate P if and only if it is ini

tiated in a state satisfying the predicate wp(S,P) • In the first

--"mechanistic" or "operational"-- interpretation we can talk about imple

mentations of programming languages, and about the efficiency of a program

for a given implementation. In the second --"formal"-- interpretation time

considerations, and hence efficiency considerations, do not enter the pic

ture.

In this chapter we shall appeal to a mechanistic appreciation of the

closure statement. In the two subsequent chapters we shall introduce the

closure statement formally. Some of the assertions that are made plausible

in this chapter, will be proved there.

In traditional programming the state of a computation is identified by

a point in the state space --the earlier mentioned "state vector"--, the

state space being the Cartesian product of the value sets of all variables.

The basic statement is the assignment statement. It moves the point identi

fying the current state, parallel to one of the axes of the state space.

When programming with associons the state of a computation is identi

fied by the set of associons present. These associons represent instances

of relations between names. We shall introduce one basic statement that can

change the set of associons present, viz. the alosure statement.

From the relations between names that are represented by the associons

present we can conclude new relations between these names. We can, for in

stance, from the knowledge that x is the name of an integer, and that x

16

is not the name of an even integer, conclude that x is the name of an odd

integer.

Suppose that the above knowledge is represented in associons of the

formats tint,?) and (even,?) , i.e. suppose that for all x

[int,x] =" x is the name of an integer", and

[even,x] =" x is the name of an even integer" ,

and suppose that we l'i'ish to represent the conclusion in associons (odd,?)

--the target associons of the computation--, such that for all x

[odd,x] = "x is the name of an odd integer" .

Then, in order to establish the truth of (1), which is equivalent to

[odd,x] = ([int,x] A 7[even,x]) ,

we would like to create for all solutions x of the equation

x: [int,x] A 7[even,x]

(1)

(2)

the associons (odd,x) The closure statement that accomplishes this ere-

ation will be denoted by

x: [int,x] A 7[even,x] :=1> (odd,x) •

(The dotted arrow ":=1>" is pronounced as "creates".) This statement estab

lishes the truth of the implication

(Vx: ([int,x] A 7[even,x]) =1> [odd,x]) .

(This is not really an implication, but rather a conjunction of implications.

We shall apply this abuse of language more often.)

If initially the inverse implication, i.e.

(Vx: [odd,x]..., ([int,x] A 7[even,x])) , (3)

was satisfied, e.g. because 7[odd,?] , then (3) should still hold, and we

have --by enlarging the set of associons present with target associons of

the format (odd,?) -- established a state satisfying (2).

We propose the following syntax for the closure statement.

<closure statement> ::= <left-hand side> ,,.

<target associon format set>

<left-hand side> ::= <equation>

<target associon format set> ::= <target associon format>

{,<target associon format>}

<target associo~ format>::= (<nu>{,<nu>})

17

We shall apply the notational convention that, if A denotes an asso-

cion, then A denotes the corresponding presence condition. (The tilde 11...,u

replaces the parentheses by brackets: e.g. if A denotes the associon

"(a,b)", then A denotes the condition "[a,b]".) By substituting names for

the unknowns in the target associon format set T(x) of a closure statement

x: E(x) ,,. T(x)

we obtain a set of associons, say T(a) . We shall also use the tilde on

such sets of associons. T(a) is a condition; for any set U of associons

the predicate T(a) lu is satisfied if and only if T(a) c U (For instance,

if T denotes the set { (a,b), (c,d),(e,f)}, then T denotes the condition

[a,b] A [c,d] A [e,f] .)

We then immediately have the following property.

PROPERTY 4.1. For all sets U and V of associons

((Tj U) A (TIV)) - Tj (U n V)

Target assoaions of a closure statement are associons that can be ob

tained by substituting names for the unknowns in a target associon format.

The intended effect of the execution of the closure statement

x: E{x) ,,. T(x) will be that as few target associons as possible are cre

ated, in order to establish the truth of the implication

(Yx: E(x),. T(x)) (4)

EXAMPLE 4.1. The execution of the closure statement

s x: [v,x] ,,. (w,x)

can cause target associons of the format (w,?) to be created. Which asso

cions (w,?) are created depends on the solution set of the equation

x: [v,x] in the state in which S is executed.

18

Let that state be {(),(v,a),(v,b),(v,c),(w,a)}. Then

(Vx: [w,x] => [v,x])

holds. The effect of the execution of S will then be that the associons

(w,b) and (w,c) are created, causing

(Vx: [v,x] => [w,x]) ,

and consequently

(Vx: [v,x] - [w,x])

to hold.

(End of example.)

From the knowledge that x is greater than y, and that y is great

er than z, we may (if "greater than" is transitive) conclude that x is

greater than z . The closure statement

S x,y,z: [greater,x,y] A [greater,y,z] :=> (greater,x,z)

would record such a conclusion. It establishes the truth of the implication

(Vx,y,z: ([greater,x,y] A [greater,y,z]) => [greater,x,z]) ,

which is equivalent to

(Vx,z: (3y: [greater,x,y] A [greater,y,z]) => [greater,x,z]) .(5)

Due to the positive match of the target associons (greater,?,?) and the

equation of S , (5) will (in general) not be established by creating for

all initial solutions (x,y,z) of the left-hand side of S the absent as

socions (greater,x,z) For these creations can enlarge the solution set of

the left-hand side of S again, causing that new target associons have to

be created, etc. We call such a closure statement cascading. Or, denoting

by a "constant" a "member that is not an unknown or a question-mark",

a closure statement is said to be cascading if and only if it

contains a positive presence condition and a·target associon format

of the same length, and these do not have different constants at

corresponding positions.

(Whether a closure statement is a cascading closure statement can hence be

established statically.)

19

EXAMPLE 4.2. Transitive closure. Given a finite set w on which a binary

relation s is defined, then the transitive c'losure of s, notation"~",

is defined by

1) (Vx,y: x,y E W: S (x,y) .o ~ (x,y)) ,

2) (Vx,z: x,z E W: (3y: y E W: ~(x,y) A ~(y,z)) • ~(x,z)) ,

3) ~ is only true for those arguments for which it is true

on account of 1) and 2) •

Let a finite set W and a binary relation s on W be given by

(Vx: [w,x] = 11 x is the name of an element of W ") A

(Vx,y: [s,x,y] _ ([w,x] A [w,y] A S(x,y))) .

REMARK 4. 1. The expression "S (x, y) " in the above formula should be read as

11 S applied to the arguments of which the names are x and y

apply this abuse of language more often.

(End of remark.)

We shall

Let, furthermore, be given that 7[t,?,?] holds, and let it be requested to

write a program that establishe.s the truth of the relation

R (Vx,y: [t,x,y] = ([w,x] A [w,y] A ~(x,y))) .

The definition of the transitive closure suggests the program

x,y: [s,x,y] :• (t,x,y) ;

x,y,z: [t,x,y] A [t,y,z] :• (t,x,z)

It establishes the implication of the left-hand side of R by the right

hand side of R, under invariance of the initially holding implication in

the other direction.

(End of example.)

As it is now, the execution of a closure statement cannot only enlarge

the solution set of its left-hand side, but the creation of target associons

could also reduce it. This is a very unattractive situation.

Let e.g. the state be {(), (r,a,b),(r,b,a)} , and let it be requested

to establish the truth of

(Vy: (3x: [r,x,y] A 7[s,x]) • [s,y]) , (6)

which is equivalent to

20

('v'x,y: ([r,x,y] A 7[s,x]) => [s,y])

Suppose we would allow the following statement to establish this implication.

x,y: [r,x,y] A 7[s,x] :=> (s,y)

The equation in the left-hand side has two solutions: "x = a, y = b" and

"x = b, y = a". For both solutions the corresponding target associons

(s,y) are absent. This does not necessarily imply that both (s,a) and

(s,b) should be created, as (6) should be established by creating as few

associons (s,?) as possible. As the creation of one of them already estab

lishes (6), either (s,a) or (s,b) should be created, but not both. This

phenomenon would severely complicate the concurrent creation of target as

socions, and would as such unsettle our whole design.

We, therefore, wish to avoid that the creation of target associons can

reduce the solution set of the left-hand side. From Property 3.1 (p. 12) we

know that, if the created target associons do not match the equation in the

left-hand side negatively, then its solution set can never shrink.

Hence we forbid this negative match:

If a closure statement contains a presence condition and a target

associon format of the same length, and these do not have differ

ent constants at corresponding positions, then the presence condi

tion must be a positive one.

(Whether a closure statement obeys this rule can be established statically.)

By prohibiting this negative match the closure statement becomes a de

terministic construct. As a consequence its effect cannot depend on the

_amount of concurrency in the implementation of its activity. In order to es

tablish the truth of (4) the implementation could, as long as

(3x: (3A: A € T(x): E(x) A 7A(x))) ,

create such an associon A. How much of this is done concurrently, is up to

the impleme~tation.

We know that information destruction is essential for all nontrivial

computing, as a computation would otherwise merely be a reversible transfor

mation of the initial state. How is information destroyed if the closure

statement is our only basic statement? It may sound contradictory --to the

novice at least--, but the execution of a closure statement will in general

21

indeed cause information to be destroyed. The reason for this is that the

mapping from initial state to final state is in general not one-to-one. If

the execution of a closure statement S in state UO transforms the state

into Ul , then the execution of S in state Ul would also lead to the

final state Ul

Still, one might wish --in order to attach transient meanings to asso

cions-- to destroy associons. We accomplish this by allowing as a statement

a bl,ock, which is a statement list surrounded by the delimiters "loc" and

"col". This statement list is the scope of all associons of the formats

listed after the delimiter "loc":

<block>::= loc <associon format> {,<associon format>}:

<statement list> col

<associon format> ::= ({<nq>,} <name> {,<nq>})

<nq> ::= <name> I ?

Upon "block entry" we have for all associons A of the specified for

mat 7A. Upon "block exit" all local associons (all associons of the speci

fied format that have been created during the execution of the statement

list) are destroyed. The logical need of local associons will not arise un

til the introduction of the repetitive construct.

REMARK 4.2. The closure statement can easily be generalized into a concur

rent closure statement. Such a concurrent closure statement is a set of clo

sure statements in which no target associon can negatively match any of the

equations. The concurrent closure statement

establishes --by creating target associons of T0 , •.. ,Tn_1-- the truth of

In order to achieve this, the different members of the concurrent closure

statement,may be executed in any order --even concurrently-- and should be

executed until all of them have finished, i.e. until for all i (0 $ i < n)

holds.

22

Any closure statement can be implemented by a concurrent closure state

ment of which all members have a conjunction of two factors --not containing

any parentheses"(" and")"-- as a left-hand side. We shall illustrate this

with an example.

An out-tree is a directed rooted tree, directed in such a way that each

vertex is reachable from the root. (When dealing with graphs we mainly em

ploy the terminology as defined in [9].) If an out-tree T is given by

(Vx: [v,x] = " x is the name of a vertex of T ") A

(Vx,y: [s,x,y] - ([v,x] A [v,y] A " T has an arc from x

to y ")) ,

then the closure statement

x,y,z: [s,x,y] A [s,y,z] A (7[s,?,x] v [ev,x]) ,,. (ev,z)

would record all "even" vertices of T , i.e. all vertices for which the

path from the root comprises an even number (zero excluded) of arcs. This

statement could be implemented by the following concurrent closure state

ment, that we have written as a block.·

loc (h,?, ?) :

col

{x,y,z: [s,x,y] A [s,y,z] ,,. (h,x,z),

x,z: [h,x,z] A 7[s,? ,x] ,,. (ev,z),

x,z: [h,x,z] A [ev,x] ,,. (ev,z)}

(7)

(We could have coded statement (7) more elegantly in two or three state

ments. We have not done so, because we wished to illustrate the systematic

translation.)

The fact that any closure statement can be written as a set of "simple"

closure statements, should give us confidence in the implementability of

arbitrarily complex closure statements. (It is the analogue of the phenome

non that any arithmetic expression can be written as a succession of binary

operations.)

(End of rema.rk.)

23

CHAPTER 5

CLOSURE OF A SET OF ASSOCIONS

In Chapter 4 we have described the closure statement in a mechanistic

fashion. In Chapter 6 we shall give the formal definition of the effect of

the execution of a closure statement. In this chapter we lay the foundation

for the formal definition by studying sets of associons and their relations.

In particular shall we study the concept of a closure of a set of associons

with respect to a closure statement. This treatment will not depend on the

mechanistic appreciation of the closure statement we acquired in Chapter 4.

From Chapter 4 we shall only use the knowledge which texts constitute legit

imate closure statements.

We apply the notational convention that, if S denotes the closure

statement

x: E (x) :• T (x) ,

then § denotes the condition

(Vx: E(x) • T(x)) •

(If, for instance, S denotes the statement x: [v,x] :• (w,x) , then S

denotes the condition (Vx: [v,x] • [w,x]) .)

PROPERTY 5.1. If S denotes the closure statement x: E(x) :=> T(x) , and

U some set of associons, then

slu = (Vx: X E z (E,U): T(x) C U) •

PROOF. By definition,

slu = (Vx: E(x) .. T(x)) lu .
As in Remark 3.1 (p. 7), we distribute the U, yielding

slu = (Vx: (E(x) iu) .. (T(x) iu)) .
According to the definition of the solution set

E(x) lu = x e: Z(E,U) ,

which, together with

T(x) lu = (T (x) c U)

(cf. p. 17), proves the property to hold.

(End of proof.)

24

THEOREM 5.1. If S denotes an arbitrary closure statement, and U and V

denote sets of associons, such that U V does not contain associons that

negatively match the left-hand side of S , then

PROOF. Let S denote the closure statement x: E(x) ,,. T(x) . We assume

(SIU) A (SJV) ,

and we derive sl (Un V) • From (1) and Property 5.1 (p. 23) we conclude

(Vx: XE Z(E,U): T(x) CU) A (Vx: XE Z(E,V): T(x) CV)

which implies

(Vx: X E (Z(E,U) n Z(E,V)): (T(x) C U) A (T(x) CV))

or

(Vx: XE (Z(E,U) nZ(E,V)): T(x) C (unV)).

As u f V does not contain associons that negatively match E, we may

apply Theorem 3.2 (p. 13), yielding

Z(E,U n V) C (Z(E,U) n Z(E,V))

From (2) and (3) we conclude

(Vx: XE Z(E,U n V): T(x) C (Un V)) ,

or (apply Property 5.1 (p. 23))

SJ (U n V) •

(End of proof.)

The following lemma is a consequence of the above theorem.

(1)

(2)

(3)

LEMMA 5.1. If U denotes some finite set of associons, and S an arbitrary

closure statement, and if Wl and W2 are sets W of associons satisfying

1) UC W,

2) W \ U does not contain associons that negatively match the

left-hand side of S,

3) slw,

then Wl n W2 is also a set W of associons satisfying these properties.

PROOF.

1) (U c Wl) A (U c W2) implies u c (Wl n W2) •

2) (Wl n W2) \ U (Wl \ U) n (W2 \ U) •

3) As

Wl f W2 c (Wl \ U) U (W2 \ U) ,

the set Wl f W2 does not contain associons that negatively match the

left-hand side of S. This allows us to apply Theorem 5.1 (p. 24),

yielding

(sjwl A SjW2) ,. SI (Wl n W2) •

(End of proof.)

25

LEMMA 5.2. If U denotes some finite set of associons, and S an arbitrary

closure statement, then there exists a finite set WO, satisfying proper

ties 1), 2), and 3) of Lemma 5.1 (p. 24).

PROOF. Let V denote the set of all names occurring in associons of U or

occurring (as constants) in the target associon formats of S. As U is

finite, V will be finite as well.

WO is defined as the union of U and the set of all target associons

of S that can be obtained by substituting names of V for the unknowns in

the target associon formats. Then WO is finite and it satisfies property

1). As target associons do not negatively match the left-hand side, WO

also satisfies property 2).

We still have to prove slwo , or, with s denoting the closure state

ment x: E(x) :,. T(x) , (apply Property 5.1 (p. 23))

(Vx: x E Z(E,WO): T(x) c WO) •

If x E Z(E,WO) , then --cf. the proof of Theorem 3.1 (p. 10)-- x contains

only names occurring in associons of WO , i.e. names of V. But then

T(x) c WO.

(End of proof.)

A consequence of the above two lemmata is that for any closure state

ment S there exists, for any finite set of associons U, a unique

smallest set W of associons satisfying properties 1), 2), and 3) of Lemma

5.1, viz. their intersection. This unique smallest set is called the

26

cZ.osure of u with respect to s, notation "C(S,U)". We immediately have

THEOREM 5.2. If. U denotes some finite set of associons, and S an arbi

trary closure statement, then C(S,U) is finite.

PROPERTY 5.2. If u denotes some finite set of associons, S an arbitrary

closure statement, and p some presence condition, then

plu • plccs,u) •

PROOF. Uc C(S,U) •

(End of proof.)

PROPERTY 5.3. If U denotes some finite set of associons, and s the clo

sure statement x: E(x) :• T(x) , then for all x

E(x) lu • E(x)IC(S,U) •

PROOF. O c C(S,U) • As C(S,U) \ u does not contain associons that nega

tively match E, we may apply Property 3.1 (p. 12), yielding

Z(E,U) c Z(E,C(S,U)) •

According to the definition of the solution set, this is equivalent to the

property to be proved.

(End of proof.)

PROPERTY 5.4. If U denotes some finite set of associons, and s an arbi

trary closure statement, then

slc(S,U) •

PROOF. Consequence of the definition of C(S,U) •

(End of proof.)

PROPERTY 5.5. If S denotes some closure statement, and U and V denote

sets of associons, such that u c V and V \ u does not contain associons

that negatively match the left-hand side of s, then

C(S,U) c C(S,V) •

PROOF. We prove that C(S,V) satisfies properties 1), 2), and 3) of Lemma

5.1.(p. 24). This lemma then learns us that the set C(S,U) n C(S,V) sat

isfies them too. With C(S,U) being the smallest such set, we then have

27

C(S,U) c C(S,V) •

1) (U c V) A (V c C(S,V)) implies U c C(S,V) •

2) C(S,V) \ U = (C(S,V) \ V) U (V \ U) •

By definition,• C(S,V) \ V does not contain associons that negatively

match the left-hand side of s. It is given that V \ U does not con

tain them either. Therefore, C(S,V) \ U does not contain associons that

negatively match the left-hand side of S

3) According to Property 5.4 (p. 26), S!C(S,V) •

(End of proof. J

PROPERTY 5.6. If U denotes some finite set of associons, and S some clo

sure statement, then

slu_ .. C(S,U) u

PROOF. By definition, u C C(S,U) • slu implies that u satisfies prop

erties 1), 2), and 3) of Lemma 5.1 (p. 24). As C(S,U) is the smallest such

set, we have u = C(S,U) •

(End of proof. J

PROPERTY 5.7. If u denotes some finite set of associons, and S an arbi

trary closure statement, then

C(S~C(S,U)) = C(S,U)

PROOF. Consequence of Properties 5.4 (p. 26) and 5.6.

(End of proof. J

PROPERTY 5.8. If U denotes some finite set of associons, and S the clo

sure statement x: E(x) :,. T(x) , then

C(s;u) = U U {A: (3x: x € Z(E,C(S,U)): A€ T(x))} •

PROOF. Let V denote the set

{A: (3x: x € Z(E,C(S,U)): A€ T(x))} •

We first prove C(S,U) c (U u V) by a reductio ad absurdum. Suppose

there exists an associon A, such that A€ C(S,U) A Aiu A Ai V.

Let w denote the set C(S,U) \ {A} • If we can show that w satisfies

properties 1), 2), and 3) of Lemma 5.1 (p. 24), then we have found a smaller

set than C(S,U) satisfying these properties, and we have derived a contra-

28

diction.

1) From Uc C(S,U) follows u \ {A} c C(S,U) \ {A} , or Uc W .

2) As C(S,U) \ U does not contain associons that negatively match E, and

(W \ U) c (C(S,U) \ U) , the set W \ U does not contain them either.

3) From Ai V and the definition of V we conclude

(Vx: x E Z(E,C(S,U)): Ai T(x)) . (4)

From SIC(S,U) we may, according to Property 5.1 (p. 23), conclude

(Vx: X E Z(E,C(S,U)): T(x) C C(S,U)) (5)

From (4) 1 (5), and the definition of W we conclude

(Vx: XE Z(E,C(S,U)): T(x) CW) (6)

The set C(S,U) \ W contains the associon A only. As A E C(S,U) \ U,

A does not negatively match E. This allows us to apply Property 3.1

(p. 12) on W and C(S,U) , yielding

Z(E,W) c Z(E,C(S,U)) (7)

From (6) and (7) we conclude

(Vx: XE Z(E,W): T(x) CW) ,

-
or (apply Property 5.1 (p. 23)) SIW.

Next we prove

(U U V) c C (S, U) •

As Uc C(S,U) , we only have to prove

V c C(S,U) •

If V is empty, this is trivially satisfied. Otherwise, let A be an

arbitrary element of V. We prove A E C(S,U) • From the definition of V

we conclude the existence of an x E Z(E,C(S,U)) , such that

A E: T (x) • (8)

From sic(S,U) and x E Z(E,C(S,U)) we deduct, by applying Property 5.1

(p. 23),

T(x) c C(S,U) •

From (8) and (9) follows

(9)

A E C(S,U) •

(End of proof.)

The above property shows that C(S,U) \ U contains target associons

only. The following property is a direct consequence.

29

PROPERTY 5.9. If U denotes some finite set of associons, p some presence

condition, and S a closure statement of which no target associon fits p,

then

plc(s,u) = plu.

PROPERTY 5.10. If U denotes some finite set of associons, and S the non

cascading closure statement x: E(x) :,. T(x) , then

C(S,U) = u u {A: (3x: x E Z(E,U): A E T(x))}

PROOF. In a noncascading closure statement target associons do not match

E. Hence, we have

Z(E,U) = Z(E,C(S,U)) •

The result now follows directly from Property 5.8 (p. 27).

(End of proof.)

The following property will turn out to be important in Chapter 6. It

will then give rise to the invariance theorem for closure statements.

PROPERTY 5.11. Let S denote the closure statement x: E(x) :,. T(x) , A

an associon, and U some finite set of associons. If

A Eu,. (3x: x E Z(E,U): A E T(x))

then

A E C(S,U),. (3x: x E Z(E,C(S,U)): A E T(x)) .

PROOF. We assume (10) and derive (11). According to Property 5.3 (p. 26)

Z(E,U) c Z(E,C(S,U))

From (10) and (12) we conclude

A Eu,. (3x: x E Z(E,C(S,U)): A E T(x)) •

According to Property 5.8 (p. 27)

(10)

(11)

(12)

(13)

30

A E C(S,U) => ((A EU) v (3x: x E Z(E,C(S,U)): A E T(x))). (14)

From (13) and (14) follows (11).

(End of proof.)

REMARK 5.1. For noncascading closure statements we have Z(E,U) = Z(E,C(S,U)).

As Uc C(S,U), we may then conclude that (11) implies (10). For noncascading

closure statements Property 5.11 (p. 29) can, consequently, be strengthened

into: (10) if and only if (11).

(End of remark.)

Property 5.10 (p. 29) gives a constructive characterization of C(S,U)

for noncascading closure statements. We shall generalize this into a con

structive characterization of C(S,U) for arbitrary closure statements.

The equivalence of this characterization and our earlier definition will be

proved in Theorem 5.3 (p. 31).

We first define, for a finite set U of associons, and for an arbi

trary closure statement x: E(x) :=> T(x) , sets Fi of associons (i ~ 0) as

follows.

FO = U ,

Fi+1 Fi u {A: (3x: x E Z(E,Fi): A E T(x))}.

LEMMA 5.3. If U denotes some finite set of associons, and S the closure

statement x: E(x) :=> T(x) , then for all i (i ~ 0)

Fi c: C(S,U) .

PROOF. We prove Fi c C(S,U) by mathematical induction. Obviously,

Fo c C(S,U) . Suppose Fk c C(S,U) (k ~ 0). We prove Fk+l c C(S,U)

By definition,

From Property 5.3 (p. 26) we know

From (15) and (16) we conclude

Fk+l c (Fk u {A: (3x: x E Z(E,C(S,Fk)): A E T(x)) }) ,

(15)

(16)

31

or (apply Property 5.8 (p. 27))

(17)

As Uc Fk, we have

(C(S,U) \ Fk) c (C(S,U) \ U) •

C(S,U) \ Fk, consequently, does not contain associons that negatively match

E. This allows us to apply Property 5.5 (p. 26), yielding

C(S,Fk) c C(S,C(S,U)) ,

or (apply Property 5.7 (p. 27))

From (17) and (18) we conclude

Fk+l c C(S,U) •

(End of proof.)

(18)

From F. c Fi+1 and Fi c C(S,U)
l.

we conclude, as C(S,U) is finite,

that lim F. exists and is finite. The-following theorem expresses that
l. i-+<»

this limit is exactly C(S,U) .
THEOREM 5.3. If U denotes some finite set of associons, and S an arbi

trary closure statement, then

C(S,U) = lim Fi
i-+<»

PROOF. Let S denote the closure statement x: E(x) ,,.. T(x) , and let j

be such that lim F. = F .. Then
i-+<» l. J

Fj = Fj+l • We prove that

properties 1), 2), and 3) of Lemma 5.1 (p. 24). Obviously,

properties 1) and 2). From Fj = Fj+l and the definition of

we conclude

{A: (3x: x E Z(E,Fj): A E T(x))} c Fj

or

F. satisfies
J

F. satisfies
J
Fj+l , i.e.

32

or (apply Property 5.1 (p. 23)) S!Fj • Hence, Fj satisfies property 3) as

well. From Lemma 5.3 (p. 30) we know F. c C(S,U) . As C(S,U) is the
J

smallest set satisfying properties 1), 2), and 3), we have C(S,U) F.
J

(End of proof.)

PROPERTY 5.12. If u denotes some finite set of associons, and Sl and S2

denote arbitrary closure statements, then

C(S2,C(Sl,U)) = C(S2,U) (19)

if and only if

C(Sl,U) c C(S2,U) • (20)

PROOF. The fact that (19) implies (20) is an immediate consequence of the

definition of C(S,U) • Next we assume (20) and derive (19). As

(C(S2,U) \ C(S1,U)) c (C(S2,U) \ U) ,

C(S2,U) \ C(S1,U) does not contain associons that negatively match the

left-hand side of S2 This allows us to apply Property 5.5 (p. 26) on

C(Sl,U) and C(S2,U) , yielding

C(S2,C(S1,U)) c C(S2,C(S2,U)) ,

or (apply Property 5.7 (p. 27))

C(S2,C(S1,U)) c C(S2,U)

As

(C(S1,U) \ U) c (C(S2,U) \ U) ,

we may apply Property 5.5 (p. 26) on U and C(S1,U) as well, yielding

C(S2,U) c C(S2,C(S1,U))

From (21) and (22) follows (19).

(End of proof.)

(21)

(22)

One might wonder whether the mapping U ➔ C(S,U) is a closure operator

as defined in [12], This is not the case. It does not satisfy the fourth

Kuratowski closure axiom, requiring that the closure of the union of two

sets equals the union of their closures. (Take, e.g., U = {(u)} ,

V = { (v)} , and S: [u] A [v] :• (w) • Then C(S,U) u C(S,V) ;t C(S,U U V) .)

It is more "powerful" than the closure of a finite set under a binary rela

tion --for definition see below--, which does satisfy the Kuratowski clo-

33

sure axioms. The closure of a set under a binary relation can be expressed

in terms of C(S,U) --see the following example--, the converse is not true.

EXAMPLE 5.1. Let V denote a fini.te set on which a binary relation R is

defined, and let D denote some subset of V. Let, furthermore, sets Gi

(i ~ 0) be given by the recurrence relation

GO= D,

Gi+l Gi u {x: x e V: (3y: ye Gi: R(y,x))} •

Then the a"losure of D under R, notation "DR", is defined by

(The above limit exists as for all i (i ~ 0) Gi c Gi+l c V .)

Let V, D, and R be given. Let the state U satisfy

(Vx: [v,x]lu - x e V) A

(Vx: [d,x]IU - x e D) A

(Vx,y: [r,x,y]lu - R(x,y))

Let, furthermore, S denote the closure statement

x,y: [d,y] A [r,y,x] :,. (d,x) •

we shall prove

(Vx: [d,x]IC(S,U) = x e DR) •

We prove, by mathematical induction, that for

([d,x]IFi = X € Gi) A ([r,y,x]IFi

Then, lim Fi= C(S,U) and lim G.
R

as = D ,
i-- i--

].

all X and

- R(y,x)) .

(23) follows

y

immediately.

Relation (24) is satisfied for i = 0 • Suppose, for all x and y

(k ~ 0) . We derive

By definition,

(23)

(24)

(25)

(26)

34

x E Gk+1 = (x E <\ v (3y: y E <\' R(y,x))) .

By applying the definition of Fi we obtain

[d,x]IFk+l = ([d,x]IFk v (3y: [d,y] A [r,y,x]) IFk) A

[r,y,x]IFk+l = [r,y,x]IFk.

From (25), (27), and (28) follows (26).

(End of example.)

(27)

(28)

REMARK 5.2. The transitive closure, as defined in Example 4.2 (p. 19), can

be expressed as a closure of a set under a binary relation: Let S be a

binary relation on a finite set W. Define a binary relation R on wxw
as

and define the set D to be {(x,y): x,y E W: S(x,y)} • D is then a sub

set of wxw, and we state without proof

~(x,y) - (x,y) E DR.

(End of remark.)

35

CHAPTER 6

FORMAL DEFINITION OF THE CLOSURE STATEMENT

In the preceding chapter we have laid the foundation for the formal

definition of the semantics of the closure statement. It is our intention to

have the closure statement S transform the state U into the state

C (S, U) · . What in effect should happen is the assignment "U: = C (S, U) ". We,

therefore, define, in analogy to the Axiom of Assignment (vide Example 1.1

(p. 4)), the weakest pre-condition of the closure statement as follows.

If S denotes an arbitrary closure statement, and P some condition

on the state, then for all states U

wp(S,PJlu = Plc(s,uJ •

(Like the assignment statement, it satisfies Properties 1.1, 1.2, and 1.3

(p. 3) for predicate transformers.)

PROPERTY 6.1. If S denotes an arbitrary closure statement, and P some

condition on the state, then

7wp(S,P) = wp(S,7P)

PROOF. We use Remark 3.1 (p. 7). For any state U

(7wp(S,Pll lu - 7(wp(S,P) IU)

- 7(PIC(S,U))

- (7P) IC(S,U)

- wp(S,7PJ lu .

(End of proof.)

By substituting "false" --or "true"-- for "P" in the above property, we

obtain

wp(S,true) =true,

which is interpreted as the guaranteed termination of closure statements.

THEOREM 6.1. The finiteness of the set of associons that characterizes the

state, is an invariant of closure statements.

PROOF. Consequence of Theorem 5.2 (p. 26).

(End of proof.)

36

THEOREM 6.2. The closure statement is a deterministic statement.

PROOF. According to the definition in Chapter 1, a statement s is deter

ministic if and only if for any two conditions P and Q, and for all

states U

wp(s,P v Q) lu • (wp(S,P) v wp(S,Qll lu

Let S denote an arbitrary closure statement. We use Remark 3.1 (p. 7) and

the definition of the closure statement to obtain

wp(S,P v Ql ju _ (P v Ql lc(s,u)

- (PjC(S,U) V Q!C(S,U))

- (wp(S,Pl lu v wp(S,Q) lu)

_ (wp(S,P) v wp(S,Qll lu .

(End of proof.)

From the properties of closures, as proved in Chapter 5, we can derive

equivalent properties of closure statements.

PROPERTY 6.2. If S denotes an. arbitrary closure statement, and p some

presence condition, then

p • wp(S,p) •

PROOF. Consequence of Property 5.2 (p. 26).

(End of proof.)

PROPERTY 6.3. If S denotes an arbitrary closure statement, and p a pres

ence condition, such that no target associon of s fits p, then

p = wp(S,p) •

PROOF. Consequence of Property 5.9 (p. 29).

(End of proof.)

Property 6.2 expresses that the execution of a closure statement does

not destroy associons, Property 6.3 expresses that only target associons are

created.

PROPERTY 6.4. If S denotes the closure statement x: E(x) :• T(x) , then

for all x

E(x) • wp(S,E(x)) .

PROOF. Consequence of Property 5.3 (p. 26).

(End of proof.)

PROPERTY 6.5. If S denotes an arbitrary closure statement, then

wp(S,S) = true

PROOF. Consequence of Property 5.4 (p. 26).

(End of proof.)

PROPERTY 6.6. If S denotes an arbitrary closure statement and P some

condition on the state, then

S implies wp(S,P) = P •

37

PROOF. Let U denote an arbitrary state. We assume sju. Then, according

to Property 5.6 (p. 27),

C(S,U) = U.

By definition,

wp(S,P) ju= Plc(s,u)

From (1) and (2) we conclude

wp(S,P) ju= Pju.

(End of proof.)

Property 6.5 expresses that a closure statement s establishes the

truth of S Property 6.6 expresses that, if S was true to start with,

then S is equivalent to the statement "skip".

PROPERTY 6.7. If S denotes an arbitrary closure statement, and P some

condition on the state, then

wp("S;S" ,P) = wp(S,P)

PROOF. By definition,

wp("S;S" ,P) - wp(S,wp(S,P))

Therefore, for any state U,

wp("S;S" ,P) ju - wp(S,wp(S,P)) ju

_ wp(S,P) jc(S,U)

_ PjC(S,C(S,U)) •

(1)

(2)

38

According to Property 5.7 (p. 27) C(S,C(S,U))

wp("S;S",Pl ju - Pjccs,u)

- wp(S,P) ju

(End of proof.)

C(S,U) , consequently

PROPERTY 6.8. If A denotes an arbitrary associon, and S the noncascading

closure statement x: E(x) :=-> T(x) , then

~ ~ wp(S,A) = (AV (3x: E(x): AET(x)))

PROOF. Consequence of Property 5.10 (p. 29).

(End of proof.)

EXAMPLE 6.1. If S denotes the closure statement

x: [v,x] :• (w,x) .

then, for any name u,

wp(S,[v,u]) - [v,u] , (Apply Property 6.3 {p. 36),)

and

wp(S,[w,u]) = ([w,u] v [v,u]) •

(According to Property 6.8.

wp(S,[w,u]) _ ([w,u] v (3x: [v,x]: (w,u) E {(w,x)}))

_ ([w,u] v [v,u]) •)

(End of example.)

PROPERTY 6.9. If Sl and S2 denote arbitrary closure statements, and P

denotes some condition on the state, then

wp(Sl,wp(S2,R)) = wp(S2,R)

if and only if for all associons A

wp(Sl,A) • wp(S2,A) •

PROOF. Consequence of Property 5.12 (p. 32).

(End of proof.)

From Property 6.3 (p. 36) and Property 6.5 (p. 37) we know that the

execution of a closure statement s establishes the truth of S by creat

ing target associons of S. The following theorem expresses that not too

39

many associons are created. More precisely: if we call a target associon A

of the statement x: E(x) ,,. T(x) "wrong" in state U when

7(3x: x E Z(E,U): A E T(x)) , then the theorem expresses --besides the fact

that only target associons are created-- that if prior to the execution of

S there is no wrong target associon present, then after the execution of S

there will be no wrong target associon present either.

THEOREM 6.3. Inva.ria.nce theorem for closure statements.

Let S denote the closure statement x: E(x) ,,. T(x), A an arbitrary as

socion, and P the implication

A,. (3x: E(x): A E T(x)) ,

then

P,. wp(S,P) .

PROOF. Consequence of Property 5.11 (p. 29).

(End of proof. J

EXAMPLE 6.2. We choose for S the closure statement

x: [v,xl ,,. (w,x)

As a first application of the invariance theorem we choose for A an asso

cion that is not a target associon of S Let u denote an arbitrary name.

We choose for A the associon (v,u) . As for all names x only the asso

cion (w,x) is contained in T(x) , there exists no x such that

A E T(x) • P, consequently, is equivalent to 7[v,u] • The invariance

theorem then expresses

7[v,u],. wp(S,7[v,u]) ,

i.e. 7[v,u] is an invariant of S

We could also have chosen for A an arbitrary target associon (w,u) •

Then there is indeed a value of x such that A E T(x) , viz. the value u.

P then becomes

[w,u] ,. E(u) ,

or

[w,u],. [v,u] •

As u denotes an arbitrary name, we have derived the invariance of the im-

40

plication

(Vx: [w,x] • [v,x]) .

According to Property 6.5 (p. 37), the execution of S establishes the

truth of the implication

(Vx: [v,x] • [w,x]) .

(3)

If (3) is satisfied to start with, it will remain satisfied, and the execu

tion of s establishes the truth of the equivalence

(Vx: [w,x] = [v,x]) •

(End of examp_l,e.)

Suppose we have to write a program that establishes the truth of a re

lation R. We then have to find an implication S and a relation P, such

that initially P holds, P • wp(S,P) , and (PAS)• R. Often one can

write R as an equivalence, that initially holds in one direction. We then

try to establish, under invariance of that initially satisfied implication,

the implication in the other direction as well. An instance of this we en

countered in the second part of the above example.

The invariance theorem has been formulated in such a fashion that it

may provide a practicable tool for proving the invariance of implications.

We shall demonstrate this application of the invariance theorem in two more

examples. In the above example we obtained the invariant "inverse" implica

tion by simply reversing the implication sign in S. We have chosen the

following two examples to demonstrate two cases in which more care is re

quired.

EXAMPLE 6.3. This is an example in which not all of the unknowns occur in

each target associon format. The closure statement

s x,y: [d,y] A [r,y,x] :• (d,x)

establishes the truth of the implication

s (Vx,y: ([d,y] A [r,y,x]) • [d,x])

If we reverse the implication sign in S , we obtain a relation that is

never satisfied. Although it is an invariant of S, it is of little use.

We can write S as

(Vx: (3y: [d,y] A [r,y,x]) • [d,x]) • (4)

41

we shall prove that the "inverse" of (4), i.e.

(Vx: [d,x] • (3y: [d,y] /\ [r,y,x])) , (5)

is kept invariant by S.

We choose for A the associon {d,u) , in which u denotes an arbi

trary name. The invariance theorem then expresses the invariance of

[d,u] • (3x,y: [d,y] /\ [r,y,x]: (d,u) E { (d,x) }) ,

or

[d,u] • (3y: [d,y] /\ [r,y,u])

As u denotes an arbitrary name, this is exactly {5). If initially (5) is

satisfied, then S establishes the truth of the equivalence

(Vx: [d,x] = (3y: [d,y] /\ [r,y,x])) .·

(End of example.)

EXAMPLE 6.4. This is an example in which for some target associon A there

exists more than one x such that A~ T(x) • Let a set V of integers,

and the greater-than relation">" on these integers, be given by

(Vx: [v,x] =" x is the name of an element of V ") /\

(Vx,y: [gr,x,y] = ([v,x] /\ [v,y] /\ x > y)) .

Suppose, furthermore, that we wish to record in associons (d,?,?) the

names of mutually distinct integers in V, i.e. we wish to establish the

truth of

(Vx,y: [d,x,y] _ ([gr,x,y] v [gr,y,x])) •

The closure statement

s x,y: [gr,x,y] :• (d,x,y),(d,y,x)

establishes the truth of the implication

s (Vx,y: [gr,x,y] • ([d,x,y] /\ [d,y,x])) .

(6)

If we simply reverse the implication sign in S , we obtain a relation that

is surely not an invariant of S. The relation S is equivalent to

(Vx,y: ([gr,x,y] v [gr,y,x]) • [d,x,y]) (7)

We shall prove that the "inverse" of (7), i.e.

(Vx,y: [d,x,y] • ([gr,x,y] v [gr,y,x])) , (8)

42

is kept invariant by S. If {8) is satisfied to start with --e.g. because

7[d,?,?] --, then S establishes the truth of {6).

We choose for A the associon (d,u,v) , in which u and v denote

arbitrary names. The invariance theorem then expresses the invariance of

[d,u,v] • (3x,y: [gr,x,y]: (d,u,v) E {(d,x,y),(d,y,x)}) .

The condition (d,u,v) E {(d,x,y),(d,y,x)} has two solutions for (x,y) ,

viz. (u,v) and (v,u) • We thus obtain

[d,u,v] • ([gr,u;v] v [gr,v,u]) ,

which is exactly (8).

(End of example.)

CHAPTER 7

SOME SMALL EXAMPLES

EXAMPLE 7.1. Conve~ huZZ.

A finite collection of (at least three) points in the plane, with no

three points on the same line, is given by

(Vx: [p,x] =" x is the name of a point") A

(Vx,y,z: [t,x,y,z] = ([p,x] A [p,y] A [p,z] A "triangle xyz

is a clockwise triangle")) •

It is, furthermore, given that 7[h,?,?] holds, and it is requested to

write a program that establishes the truth of the relation

R (Vx,y: [h,x,y] = "edge xy is an edge of the clockwise

convex hull")

43

The condition "edge xy is an edge of the clockwise convex hull" is

equivalent to "there exists a point v s1,1ch that triangle xyv is a clock

wise triangle, and there does not exist a point w such that triangle yxw

is a clockwise triangle". Bence, we can write R as

we prove

s

(Vx,y: [h,x,y] = ([t,x,y,?] A 7[t,y,x,?]))

[h,?,?] •wp(S,R) for the program

x,y: [t,x,y,?] A 7[t,y,x,?] :• (h,x,y)

We split R into two conditions:

p

s

Then

(Vx,y: [h,x,y] • ([t,x,y,?] A 7[t,y,x,?])) ,

(Vx,y: ([t,x,y,?] A 7[t,y,x,?]) • [h,x,y])

R :: (P A S)

From Property 6.5 (p. 37) we know

wp(S,S) •

From 7[h,?,?] we conclude P. From the invariance theorem (p. 39) we

conclude

P • wp(S,P) •

(11

(2)

(3)

44

From P and (3) we conclude

wp(S,P) (4)

From (2), (4), and Property 1.2 (p. 3) we conclude wp(S,S A Pl , or --with

(1)-- wp(S,R)

EXAMPLE 7.2. Libra:ry administration.

A library is a collection of books. Each book has an author, and each

author has at least one book in the library. Books are either on loan or in

stock. Each book on loan has a borrower. The library is given by

(Vx,y: [b,x,y] = "x is the name of a book and y is the name

of the author of that book") A

(Vx,y: [l,x,y] - "x is the name of a book that is on loan and

y is the name of the borrower of that book") .

It is, furthermore, given that 7[r,?] A 7[s,?] holds, and it is requested

to write two programs. One program should record in associons (r,?) the

names of authors of whom there is a book on loan to another author. The

other program should record in associons (s,?) the names of authors of

whom all books are on loan. To be more precise: the one program should es

tablish the truth of the relation

Rl (Vx: [r,x] = (3y,z: [b,y,x] A [l,y,z] A [b,?,z] Ax~ z)) ,

and the other program should establish the truth of

R2 (Vx: [s,x] = ([b,?,x] A (Vy: [b,y,x] <+ [l,y,?])))

Initially the left-hand side of Rl implies the right-hand side. The

program

x,y,z: [b,y,x] A [l,y,z] A [b,?,z] Ax~ z :<+ (r,x)

establishes also the implication in the other direction, and hence Rl •

The relation R2 can be written as

(Vx: [s,x] = ([b,?,x] A 7(3y: [b,y,x] A 7[1,y,?]))l

We introduce associons (h,?) , in which we record the solution set of the

existentially quantified condition, i.e. we establish the truth of the rela

tion

(Vx: [h,x] - (3y: [b,y,x] A 7[1,y,?])) • (5)

This can be accomplished by the closure statement

x,y: [b,y,x] A 7[1,y,?J :• (h,x) •

45

(In associons (h., ?) we then have recorded the names of the authors of whom

there is a book in stock.) If (5) holds, the relation R2 is equivalent to

(Vx: [s,x] = ([b,? ,x] A 7[h,x])) ,

the truth of which can be established by the closure statement

x: [b,? ,x] A 7[h,x] :• (s,x)

As the execution of this statement does not violate the truth of (5) --apply

Property 6.3 (p. 36)-- we have also established the truth of R2

Program:

loc (h,?):

col

x,y: [b,y,x] A 7[1,y,?] =• (h,x);

x: [b,?,x] A 7[h,x] :• (s,x)

The occurrence of the universal quantifier in the right-hand side of

R2 necessitated the introduction of the associons (h,?) • We shall encoun

ter this theme more often.·

EXAMPLE 7.3. Missionaries and aannibaZs.

Three missionaries and three cannibals wish to cross a river from the

left bank to the right bank. For this purpose a boat is situated at the left

banlc. The boat can sail from one bank to another with either one or two pas

sengers. On either bank the missionaries will be eaten by the cannibals if

there are more cannibals than missionaries. We are requested to write a pro

gram that creates the (initially absent) associon (yes) if and only if the

crossing is possible.

We only consider the moments at which the boat is at either bank. If at

those moments the situation is legitimate (in the sense that no missionary

will be eaten), then the situation during the intermediate time intervals

will be legitimate as well. We represent each situation by a pair of quater

nary digits (x,y) , with x and y being respectively the number of mis

sionaries on the right bank and the number of cannibals on the right bank.

46

(For the time being we do not represent the position of the boat.) The ini

tial situation is then (zero,zero) , and the desired final situation is

(three,three) • The quaternary digits and their successor relation can be

recorded by the closure statement

[] :• (q,zero),(q,one),(q,two),(q,three),

(suc,zero,one),(suc,one,two),(suc,two,three)

We wish to record in associons (r,?,?,?,?) the possible transforma

tions (between legitimate situations) that a crossing of the boat can effect,

i.e. we wish to establish the truth of the relation

(Vxl ,yl, x2 ,y2: [r ,xl ,yl ,x2 ,y2] = "situation (xl ,yl)

can by a crossing from left to right be transformed

into (x2 ,y2) ") •

(6)

We then also have characterized the crossings from_right to left, as (6) im

plies

(Vx1,y1,x2,y2: [r,x1,y1,x2,y2] = "situation (x2,y2)

can by a crossing from right to left be transformed

into (xl,yl) ") •

And hence we have

(Vx1,y1,x3,y3: (3x2,y2: [r,x1,y1,x2,y2] A [r,x3,y3,x2,y2]) =
"situation (xl,yl) with the boat at the left can be trans-

formed into (x3,y3) with the boat again at the left") •

Recording the reachable situations in associons (d,?,?) --cf. Example 5.1

(p. 33)-- the program will get the following structure.

loc (q,?), (sue,?,?), (d,?,?), (r,?,?,?,?):

col

[] ,,. (q,zero),(q,one),(q,two),(q,three),

(suc,zero,one),(suc,one,two),(suc,two,three);

"establish (6)";

[] :• (d,zero,zero);

x1,y1,x2,y2,x3,y3: [d,xl,yl] A [r,x1,y1,x2,y2]

A [r,x3,y3,x2,y2] :• (d,x3,y3);

x,y: [d,x,y] A [r,x,y,three,three] :• (yes)

In the refinement of "establish (6)" we first (temporarily) forget the

fact that some pairs of quaternary digits represent illegitimate situations,

47

i.e. we first establish the truth of

(Vx1,y1,x2,y2: [hh,x1,y1,x2,y2] _ "the (possibly illegit

imate) situation (xl,yl) can by a crossing from left to

right be transformed into the (possibly illegitimate) sit

uation (x2,y2) ") •

(7)

This can be accomplished by

x1,x2,y: [suc,x1,x2] A [q,y] :• (h,x1,y,x2,y),(h,y,xl,y,x2),

(hh,xl,y,x2,y),(hh,y,xl,y,x2);

x1,y1,x2,y2,x3,y3: [h,xl,yl,x2,y2] A [h,x2,y2,x3,y3]

:• (hh,xl,yl,x3,y3)

(The associons (h,?,?,?,?) record the transformations under a one-man

crossing.)

Next we want to restrict (7) to legitimate situations only. Legitimate

situations are those in which (on either bank) the number of missionaries

equals the number of cannibals, and those in which all missionaries are on

one bank. We record the legitimate situations in associons (l,?,?)

"establish (6)":

loc (h,?,?,?,?), (hh,?,?,?,?), (1,?,?):

xl,x2,y: [suc,xl,x2] A [q,y] :• (h,x1,y,x2,y),(h,y,xl,y,x2),

(hh,xl,y,x2,y),(hh,y,xl,y,x2);

xl,yt,x2,y2,x3,y3: [h,x1,yl,x2,y2] A [h,x2,y2,x3,y3]

:• (hh,xl,yl,x3,y3);

x: [q,x] :• (1,x,x),(1,three,x),(1,zero,x);

x1,yl,x2,y2: [hh,xl,yl,x2,y2] A [l,xl,yl] A [l,x2,y2] :• (r,xl,yl,x2,y2)

col

Instead of applying fancy search techniques, we have programmed a tree

search by (concurrently?) generating the whole tree.

EXAMPLE 7.4. Trap of a direated graph.

We first give some nomenclature on directed graphs. A walk (from v0

to vn) in a directed graph is an alternating sequence of vertices and

arcs v0 ,a1,v1, ••• ,an,vn (n ~ 0) in which each arc ai is vi-lvi

(1 sis n). The length of such a walk is n. A nontrivial walk is a walk

that contains at least one arc. A path is a walk in which all vertices are

48

distinct. A cycle is a nontrivial walk in which all vertices except the last

are mutually distinct, and in which the last vertex equals the first. An

acyclic graph is a graph that does not contain a cycle. A vertex v is

reachable from a vertex u if and only if there exists a path from u to

v. A terminal vertex is a vertex that does not have an outgoing arc.

It is requested to write a program that determines the trap of a given

finite directed graph G. A vertex belongs to the trap if and only if there

does not exist a walk from that vertex to a vertex in a cycle. (The trap of

an acyclic graph, consequently, equals the set of all vertices.)

Of the graph G is given

(Vx: [v,x] = " x is the name of a vertex of G ") A

(Vx,y: [s,x,y] _ " G has an arc from vertex x to vertex y ").

Let, furthermore, be given that 7[t,?] holds, and let it be requested to

establish the truth of the relation

R (Vx: [t,x] = "vertex x in the trap of G ") •

We first establish the truth of

(Vx,y: [w,x,y] = "there exists a nontrivial walk

from vertex x to vertex y ")

(Which is nothing else than the generation of the transitive closure of the

relation "connected by an arc", vide Example 4.2 (p. 19).) As we then also

have

(Vx: [w,x,x] = "vertex x in a cycle") ,

the relation R can be written as

(Vx: [t,x] = ([v,x] A 7(3y: [w,x,y] A [w,y,y]))) .

We introduce associons (h,?) in which we record the solution set of the

existentially quantified condition, i.e. we establish the truth of the rela

tion

(Vx: [h,x] = (3y: [w,x,y] A [w,y,y])) •

(The associons (h,?) record the names of the vertices for which there

exists a walk to a vertex in a cycle.) The relation R is then equivalent

to

(Vx: [t,x] _ ([v,x] A 7[h,x])) .

Program:

loc (w,?,?),(h,?):

col

x,y: [s,x,y] :• (w,x,y);

x,y,z: [w,x,y] A [w,y,z] : .. (w,x,z);

x,y: [w,x,y] A [w,y,y] : .. (h,x);

x: [v,x] A 7[h,x] :• (t,x)

EXAMPLE 7.5. Kernel, of a directed graph.

49

The kernel, of a directed graph is defined as the set of all vertices

from which no terminal vertex can be reached. (The kernel and the trap are,

consequently, disjoint.)

It is requested to write a program that determines the kernel of a fi

nite directed graph G, given as in Example 7.4 (p: 47), while initially

7[k,?] holds. The program should do so by establishing the truth of the re

lation

R (Vx: [k,x] - "vertex x in the kernel of G ") ,

which is equivalent to

(Vx: [k,x] - ([v,x] A 7"from vertex x a terminal vertex can

be reached")) •

If the truth of

(Vx: [h,x] = "from vertex x a terminal vertex can be reached")

has been established, then R can be written as

Program:

(Vx: [k,x] = ([v,x] A 7[h,x])) •

loc (h,?):

col

x: [v,x] A 7[s,x,?] : .. (h,x);

x,y: [s,x,y] A [h,y] : .. (h,x);

x: [v,x] A 7[h,x] : .. (k,x)

50

EXAMPLE 7.6. Determining whether a directed graph is acyclic.

Let a finite directed graph G be given as in Example 7.4 (p. 47).

Let, furthermore, be given that 7[c] holds, and let it be requested to

write a program that establishes the truth of the relation

R [c] = ·,, G contains a cycle" •

After establishin1 the truth of

('v'x,y, [w,x,y] = "there exists a nontrivial walk

from vertex x to vertex y ") ,

(cf. Example 7.4 (p. 47)) the relation R is equivalent to

[c] = (3x: [w,x,x]) .

Program:

loc (w,?,?):

col

x,y: [s,x,y] :=> (w,x,y);

x,y,z: [w,x,y] A [w,y,z] :=> (w,x,z);

x: [w,x,x] :=> (c)

EXAMPLE 7.7. Deterrrrining whether an undirected graph is acyclic.

We first give some nomenclature on undirected graphs. Adjacent vertices

are vertices that are joined by an edge. A loop is an edge joining a vertex

to itself. If two vertices are joined by more than one edge, then these

edges are called multiple edges. A walk and a path are defined as for di

rected graphs. An undirected graph is connected if and only if every two

vertices are joined by a path. A cycle in an undirected graph without loops

or multiple edges is a walk of at least three edges in which all vertices

except the last are mutually distinct, and in which the last vertex equals

the first.

A finite undirected graph G, without loops or multiple edges, is

given by

('Ix: [v,x] = " x is the name of a vertex of G ") A

('v'x,y: [a,x,y] - "vertices x and y are adjacent")

(Every edge gives rise to the presence of two associons (a,?,?) .) Let,

furthermore, be given that 7[c] holds, and let it be requested to write

51

a program that establishes the truth of the relation

R [c] =" G contains a cycle"

In o;rder to find a cycle in G, we look for a "proper triangle of ver

tices", i.e. three mutually distinct vertices x, y, and z , such that

there exists a walk between x and y (not through z), a walk between

y and z (not through x), and a walk between z and x (not through

y). We, therefore, establish the truth of

(Vx,y,z: [w,x,y,z.] = "there exists a walk between vertex y

and vertex z (y ;t z) that does not contain vertex x ")

The relation R is then equivalent to

Program:

[c] = (3x,y,z: [w,z,x,y] A [w,x,y,z] A [w,y,z,x]) .

loc (w,?,?,?):

col

x,y,z: [a,x,y] A [v,z] Ax ;t z A y ;t z ,_. (w,z,x,y);

x,y,z,u: [w,u,x,y] A [w(u,y,z] Ax ;t z :• (w,u,x,z);

x,y,z: [w,z,x,y] A [w,x,y,z] A [w,y,z,xJ :• (c)

EXAMPLE 7.8. SafeZy oonneoted vertices.

Let G be a finite undirected graph, possibly containing loops and

multiple edges. Two paths in G that have no edge in common are called

edge-disjoint. Two vertices are safeZy oonneoted if and only if they are

connected by (at least) two edge-disjoint paths.

The graph G is given by

(Vx: [v,x] =" x is the name of a vertex of G ") A

(Vx: [e,x] - x is the name of an edge of G ") A

(Vx,y,z: [j,x,y,z] = "edge x joins vertices y and z ") .

Let, furthermore, be given that 7[c,?,?] holds, and let it be requested

to write a program that establishes the truth of the relation

R (Vx,y: [c,x,y] = "vertices x and y are safely connected") .

One property of safely connected vertices is that if vertices u and

v are safely connected, then any two vertices on the edge-disjoint paths

52

between u and v are safely connected as well.

Another property is that safe connectedness is an equivalence relation.

It is easy to see that the relation is symmetric and reflexive (for reflex

ivity: choose twice the path consisting of the vertex only). The transitiv

ity requires an additional exploration:

Safely connected vertices are those vertices that can not be separated

by the removal of one edge from the graph. (It is obvious that two safely

connected vertices cannot be separated by the removal of one edge; the in

verse assertion, i.e. that two vertices that cannot be separated by the re

moval of one edge are safely connected, can be proved by induction on the

length of their shortest connecting path.) Suppose now that the vertices

x and y are safely connected, and that the vertices y and z are safe

ly connected. If we remove one edge from the graph, then x and y remain

connected, and y and z remain connected, and, therefore, x and z re

main connected too. We conclude that x and z are also safely connected.

From the above two properties we conclude that we can find all safely

connected vertices by first looking for adjacent vertices that are safely

connected, and then generating the transitive (and reflexive) closure of

that relation.

We first establish the truth of

(Vx,y,z: [w,x,y,z] = "there exists a nontrivial walk between

vertex y and vertex z that does not contain edge x ") .

Next we establish the truth of

(Vx,y: [c,x,y] = "the adjacent vertices x and y are

safely connected") ,
(8)

after which the truth of R is established by extending the relation of (8)

to its transitive and reflexive closure.

Program:

loc (w,?,?,?):

col

x,y,z,u: [j,x,y,z] A [e,u] Ax~ u ,,. (w,u,y,z);

x,y,z,u: [w,x,y,z] A [w,x,z,u] :=> (w,x,y,u);

x,y,z: [j,x,y,z] A [w,x,y,z] ,,. (c,y,z);

x,y,z: [c,x,y] A [c,y,z] ,,. (c,x,z);

x: [v,x] :=> (c,x,x)

EXAMPLE 7.9. Minimai transition pair.

If a directed graph has an arc from vertex u to vertex v, then u

is called a predecessor of v, and v is called a successor of u. Let

53

K be some vertex of a directed graph G. The minimaZ transition pair with

K as initiaZ vertex, notation "_(M(K) ,N (K)) ", is the unique smallest pair

--i.e. the pair for which the sum of the cardinalities of the components is

minimal-- (M,N) such that

1) M and N are sets of vertices of G I

2) K E M I

3) all successors of vertices in M are in N I

4) all predecessors of vertices in N are in M

Such a unique smallest pair exists, because --if V denotes the set of

vertices of G -- (V,V) satisfies the properties 1), 2), 3), and 4), and

if the pairs (MO,NO) and (Ml,Nl) satisfy them, then the pair

(MO n M1,NO n Nl) satisfies them too.

Let a finite directed graph G be given as in Example 7.4 (p. 47) and

let k be the name of the initial vertex K. Let, furthermore, be given

that 7[m,?] A 7[n,?] holds, and let it be requested to write a program

that establishes the truth of the relation

R

Rl

R2

R3

R4

We can write the properties 1), 2), 3), and 4) as follows.

('v'x: ([m,x] v [n,x]) ,. [v,x]) ,

[m,k] ,

('v'x,y: ([s,x,y] A [m,x]) ,. [n,y]) ,

('v'x,y: ([s,x,y] A [n,y]) ,. [m,x])

54

we are requested to write a program that establishes Rl A R2 A R3 A R4 by

creating as few associons (m,?) and (n,?) as possible. R3 A R4 is

equivalent to

(Vx,y: ([s,x,y] A ([m,x] v [n,y])),. ([m,x] A [n,y])) •

Program:

[] :• (m,k);

x,y: [s,x,y] A ([m,x] v [n,y]) :• (m,x) ,(n,y)

Upon termination Rl (still) holds. R2 is established by the first state

ment. The second statement establishes R3 A R4. From the definition of

C(S,U) we conclude that the minimal pair is generated.

55

CHAPTER 8

AN APPRECIATION OF THE REPETITIVE CONSTRUCT

In Chapter 4 we stated that it is the purpose of a computation to make

equivalences true. We were, for instance, requested to establish the truth

of the equivalence

(Vx: [odd,x] = ([int,x] A 7[even,x])) , (1)

by creating associons (odd,?) , while initially the implication

(Vx: [odd,x] => ([int,x] A 7[even,x])) (2)

was satisfied. The closure statement

x: [int,x] A 7[even,x] :=> (odd,x)

establishes the implication

(Vx: ([int,x] A 7[even,x]) => [odd,x]) ,

under invariance of its "inverse" implication (2), thus establishing the

truth of the equivalence (1). This is the general pattern of associon compu

tations: the equivalence to be established holds initially in one direction;

under invariance of that implication the computation establishes the impli

cation in the other direction as well, thus ensuring the desired equivalence

to hold. Theorem 6.3 (p. 39) implies that the closure statement does indeed

establish implications under invariance of their inverse implications.

And as such we have used the closure statement in our examples to achieve

the desired equivalences. A problem arises, however, as soon as the anteced

ent of the implication to be established is more complicated than we can ex

press in the left-hand side of a closure statement. In particular may we ex

pect problems in the case that the antecedent contains a universal (or a ne

gated existential) quantifier.

As an example we shall focus our attention on the generation of an ar

bitrary clique of an undirected graph.

We first give some more nomenclature on undirected graphs. A subgraph

of a graph G is a graph having all its vertices and edges in G G is .a

supergraph of G' if and only if G' is a subgraph of G A spanning sub-
graph of G is a subgraph containing all the vertices of G A complete

graph is a graph (without loops or multiple edges) in which all vertices are

56

adjacent. A clique of a graph is a complete subgraph that is not a proper

subgraph of a complete subgraph.

Let an undirected graph G (possibly containing loops) be given as in

Example 7.7 (p. 50). Let, furthermore, be given that 7[c,?] holds, and let

it be requested to write a program that establishes --by creating associons

(c,?) the truth of the relation

R (Vx: [c,x] = ([v,x] A (Vy: y ~ x: [c,y] => [a,x,y]))) .

(We generate an arbitrary clique, recording the vertices of the clique in

associons (c,?) . As a clique is a complete graph, it can be characterized

by its vertex set.)

REMARK 8.1. The generation of an arbitrary clique is a nondeterministic af

fair. If we want our program to be such that it may establish any of the

permissible final states --which seems a laudable goal--, then it should not

surprise us that we shall need other constructs besides the (deterministic)

closure statement.

(End of remark.)

The implication in the one direction

Pl (Vx: [c,x] => ([v,x] A (Vy: y ~ x: [c,y] => [a,x,y])))

holds initially. Pl expresses that no "wrong" associons are present. Pro

nouncing "[c,x]" as "x in the clique", it expresses that fo:i: all x in the

clique, x is the name of a vertex that is adjacent to all other vertices

in the clique. Under invariance of Pl the truth of the implication in the

other direction, i.e.

(Vx: ([v,x] A (Vy: y ~ x: [c,y] => [a,x,y])) => [c,x]) , (3)

has to be established. Relation (3) expresses that "sufficiently many" asso

cions have been created. It expresses that all vertices x that are adja

cent to all other vertices in the clique, are in the clique as well. Rela

tion (3) is equivalent to

(Vx: ([v,x] A 7 (3y: y ~ x: [c,y] A 7[a,x,y])) => [c,x]) . (4)

We are faced with the situation that we have to establish the truth of an

implication in which the antecedent contains a negated existential quanti

fier.

If all quantified variables of the negated existential quantifier --in

(4) the "y" only-- had occurred only once in the quantified condition, then

the question mark"?" would have provided a simple solution. We have met

this case in Example 7.1 (Convex Hull (p. 43)), in which the implication was

(Vx,y: ((3z: [t,x,y,z]) A 7(3w: [t,y,x,w])) • [h,x,y]) ,

the truth of which could be established by the program

x,y,z: [t,x,y,z] A 7[t,y,x,?] :• (h,x,y)

(The "z" may be replaced by a question-mark as well, but that transformation

is less essential.)

If some quantified variable of the negated existential quantifier oc

curs more than once in the quantified condition --as the "y" in (4)--, then

we introduce new associons in which we record the solution set of the exis

tentially quantified condition.

We have done so, for instance, in Example 7.2 (Library Administration

(p. 44)), in which the (second) implication to be established was

(Vx: ([b,?,x] A 7(3y: [b,y,xJ. A 7[1,y,?])) • [s,x]) •

We introduced new associons (h,?) and established the truth of

(Vx: [h,x] = (3y: [b,y,x] A 7[1,y,?])) •

(5)

(6)

As (6) is not matched by the target associons (s,?) , it is an invariant of

the closure statement

x: [b,?,x] A 7[h,x] :• (s,x) •

The execution of this statement, consequently, establishes the truth of (5).

We call this technique "recording the quantified condition". In the

case of the arbitrary clique, this technique gives rise to the introduction

of the extra invariant

P2 (Vx: [h,x] = ([v,x] A (3y: y ~ x: [c,y] A 7[a,x,y]))) •

If P2 is satisfied, Pl can be written as

Pl' (Vx: [c,x] • ([v,x] A 7[h,x])) ,

and (4) can be written as

(Vx: ([v,x] A 7[h,x]) • [c,x]) • (7)

58

We are requested to establish the truth of (7) under invariance of

Pl' A P2 •

So far we have followed the same pattern as in the example of the Li

brary Administration. There is, however, one important difference: on ac

count of the match of the target associons (c,?) and P2 the creation of

target associons can violate the truth of P2 • As this match is a positive

one, the creation of associons {c,?) will in general require new associons

(h,?) to be created. According to Pl' the presence of an associon (h,x)

prohibits the associon (c,·x) to be created. We, therefore, have to rees

tablish P2 --i.e. create the missing associons (h,?) -- after every

single creation of a target associon (c,?) • Consequently, the program

should (besides the initialization) be a repetition of

"create for one arbitrary solution of

x: [v,x] A 7[h,x] A 7[c,x] the associon (c,x) "

"establish P2"

(8)

As 7[c,?] A 7[h,?] holds initially, the invariant Pl' A P2 is sat

isfied to start with, and the initialization of the repetition is empty.

Program (8) should be repeated until the solution set of the equation

x: [v,x] A 7[h,x] A 7[c,x]

is empty, thus ensuring (7), the implication that should be established, to

hold.

The nonemptiness of some solution set is the criterion we introduce as

"guarding boolean expression" of the repetitive construct. The way in which

guarded commands constitute a repetitive construct is the same as in [6]:

<repetitive construct>::= do <guarded command>

{□ <guarded command>} od

<guarded command> ::=<guard>+ <guarded list>

<guard>::= <equation>

<guarded list> ::= <statement list>

The repetitive construct terminates in a state in which the solution

sets of all guards are empty. When initially, or upon the completed execu

tion of a selected guarded list, the solution sets of one or more guards are

nonempty, one of these guards is selected, and its guarded list is executed.

59

In program (8) we wish to create for one (arbitrary) solution "x" of

the (nonempty) guarding equation the associon (c,x) • In order to be able

to achieve this, we postulate --in analogy to [11]-- that the selection of a

guarded list for execution, has as a side effect that an arbitrary element

of the --then nonempty-- solution set of the guarding equation is assigned

to its unknowns. These unknowns --that do now possess values-- can be used

as "initialized constants" in the guarded list.

REMARK 8.2. In the indented paragraphs on pages 18 and 20 the word "constant"

should be read as "constant that is not an initialized constant". According

to the indented paragraph on page 20 the following program is not allowed.

do z1,z2: [eq,z1,z2] A ~[s,?] +

x,y: [r,x,y] A 7[z1,x] ,,. (z2,y)

od

Allowing it would bring the very problems of Chapter 4 back. (Take, e.g.,

{(),(r,a,b),(r,b,a),(eq,s,s)} as an initial state.)

(End of :rerrta!'k,)

(8))

The program that records an arbitrary clique now becomes (cf. program

loc (h,?):

doz: [v,z] A 7[h,z] A 7[c,z] +

[] ;,. (c,z);

x,y: [v,x] A y ~ x A [c,y] A 7[a,x,y] :,. (h,x)

od

col.

Only permissible final states are possible, and each permissible final state

is possible. As per execution of the guarded list only one associon (c,?) ,

viz. (c,z) , is created, we can simplify its second statement --"establish

P2" -- into

x: [v,x] A z ~ x A 7[a,x,z] :,. (h,x)

The program terminates, as per execution of the guarded list the inte

ger expression

(Nx: [v,x] A 7[c,x])

decreases. The fact that this expression is nonnegative and finite, guaran-

60

tees termination in a finite number of steps. We call the expression

(Nx: [v,x] A 7[c,x]) a variant function of the repetitive construct.

According to the invariant P2 the associons (h,?) record those

vertices in the complement of the clique, for which there is a vertex in

the clique to which they are not adjacent. We can simplify the program by

recording in the associons (h,?) the vertices that are not candidates for

admittance to the clique, either because they are already recorded to be in

the clique, or because there is a nonadjacent vertex in the clique, in for

mula:

P2' (Vx: [h,x] _ ([c,x] v ([v,x] A (3y: y ~ x: [c,y] A 7[a,x,y])))) •

As for all x

([v,x] A [c,x] A 7[a,x,x]) • [c,x] ,

P2' is equivalent to

(Vx: [h,x]; ([c,x] v ([v,x] A (3y: [c,y] A 7[a,x,y])))) •

Thus we obtain the program

loc (h, ?) :

doz: Ev,z] A 7[h,z] +

[] :• (c,z), (h,z);

od

col.

x: [v,x] A 7[a,x,z] :• (h,x)

(The correctness of this program is formally proved in Example 9.1 (p. 73).)

REMARK 8.3. If it is given that the graph G does not contain loops, then

--as [v,z] implies 7[a,z,z] -- the program may be changed into

loc (h,?):

doz: [v,z] A 7[h,z] +

[] :• (c,z);

od

col.

(End of remark.)

x: [v,x] A 7[a,x,z] :• (h,x)

61

We shall now treat two examples that can be expressed as the generation

of an arbitrary clique. They, consequently, result in analogous programs.

EXAMPLE 8.1. Recording of an arbitrary unilateral component of a directed

graph. We first give some more nomenclature on directed graphs. A directed

graph is strongly connected, or strong, if and only if every two vertices

are mutually reachable. A directed graph is unilaterally connected, or uni

lateral, if and only if for any two vertices at least one is reachable from

the other. A strong component of a directed graph is a strong subgraph that

is not a proper subgraph of a strong subgraph. A unilateral component is a

unilateral subgraph that is not a proper subgraph of a unilateral subgraph.

Each vertex is in exactly one strong component and in at least one unilater

al component.

Let a finite directed graph G be given as in Example 7.4 (p. 47). Let,

furthermore, be given that 7[u,?] holds, and let it be requested to record

--in associons (u,?) -- the vertices of an arbitrary unilateral component

of G .

We define a new graph G' with the same vertex set as G. The graph

G' is undirected. Two vertices u and v are adjacent in G' if and only

if there exists in G a nontrivial walk from u to v or vice versa. (The

graph G' may, consequently, contain loops.) The cliques of G' are then

precisely the unilateral components of G.

We generate the edges of G' by first establishing the truth of

(Vx,y: [w,x,y] - "there exists a nontrivial walk from

vertex X to vertex y in G ") I

as we have done in Example 7.4 (p. 47). We then establish the truth of

(Vx,y: [a,x,y] - "vertices X and y are adjacent in G' ") I

which is equivalent to

(Vx,y: [a,x,y] = ([w,x,y] v [w,y,x])) •

The recording of an arbitrary unilateral component of G is now the same as

the recording of an arbitrary clique of G' •

62

Program:

loc (w, ? , ?) , (a, ? , ?) :

col

x,y: [s,x,y] , .. (w,x,y);

x,y,z: [w,x,y] A [w,y,z] , .. (w,x,z);

x,y: [w,x,y] :~ (a,x,y),(a,y,x);

loc (h,?):

col

doz: [v,z] A 7[h,z] +

[] , .. (u,z), (h,z);

x: [v;x] A 7[a,x,z] , .. (h,x)

od

(End of exampie.)

EXAMPLE 8.2. One characteristic eiement per equivaience ciass. Let a finite

set V and an equivalence relation E on the elements of V be given by

(Vx: [v,x] = " x is the name of an element of V ") A

(Vx,y: [e,x,y] _ ([v,x] A [v,y] A E(x,y))) •

We are requested to write a program that selects exactly one element out of

every equivalence class of E, i.e. we are requested to establish (if ini

tially 7[c,?] holds) the truth of

(Vx: [c,x] = ([v,x] A (Vy: y ~ x: [c,y] .. 7[e,x,y]))) .

We can associate with V and E an undirected graph G. Each element

of V corresponds (in a one-to-one fashion) to a vertex of G. Two verti

ces of G are adjacent if and only if their corresponding elements in V

do not satisfy the relation E. (The graph G, consequently, does not con

tain loops.) The recording of one characteristic element per equivalence

class of E is now the same as the recording of an arbitrary clique of G.

Program:

loc (h,?):

col

doz: [v,z] A 7[h,z] +

[] :• (c,z);

x: [e,x,z] :• (h,x)

od

63

(End of example.)

* *
*

In the example of the arbitrary clique we have demonstrated the need of

repetition. We shall now treat an example in which the choice of the invari

ant forces us to introduce associons that are local to the guarded list. We

shall design a program for the recording of balanced vertices in an acyclic

directed graph.

For each vertex v of an acyclic directed graph there exists a (not

necessarily unique) longest walk starting in v. We shall write L(v) for

the length of such a walk. Two vertices u and v with L(u) = L(v) are

called bal,anaed.

Let a finite acyclic directed graph G be given as in Example 7.4

(p. 47). Let, furthermore, be given that 7[b,?,?] holds, and let it be re

quested to write a program that establishes the truth of

R (Vx,y: [b,x,y] = "vertices x and y are balanced")

If a finite (nonempty) directed graph D is acyclic, then it contains

at least one terminal vertex. (For assume that all vertices of D have at

least one successor. Then we can make an arbitrary long walk in D As the

number of vertices in D is finite, a long enough walk must contain some

vertex more than once. But then D contains a cycle.) Obviously, all termi

nal ~ertices are mutually balanced, and no terminal vertex is balanced with

a nonterminal one. We can, consequently, record the balanced vertices of our

graph G by first recording all terminal vertices to be mutually balanced,

and then recording the balanced vertices in the remainder of G, which is

a smaller acyclic directed graph. (A maximal path in the remainder always

leads to a vertex with a terminal successor. The balanced vertices in the

remainder are, consequently, exactly the nonterminal balanced vertices of

G •)

We thus have :the following invariant (writing V(D) for the vertex set

of a graph D) .

P B c V(G) /I

"all balanced vertices in B have been recorded" 11

(Vu, v: u, v E V (G): (u E B II v I. Bl =1> " u and v not balanced")

64

The choice of P leads to a program of the following structure.

B:= 0;
do B ~ V(G) + "record all terminal vertices in G \ B to be

mutually balanced, and extend B with these

vertices"

od

As the graph G \ B is acyclic, it must contain a terminal vertex. Hence

the cardinality of V(G) \ B decreases per execution of the guarded list.

As the balanced vertices are recorded in associons (b,?,?) , and each

vertex is at least balanced with itself, we have

('v'x: [b,x,x] = "vertex x in B ") and

('v'x: ([v,x] A 7[b,x,x]) _ "vertex x in V(G) \ B ") .

Our program will thus have the following structure.-

doz: [v,z] A 7[b,z,z]-+ "create (b,x,y) for all terminal

vertices x and y in the graph

G \ B II

od

The terminal vertices in the graph G \ B constitute a subset of

V(G) \ B, viz. those vertices for which all successors in G are in B.

We record these vertices in associons (c,?) , i.e. we establish the truth

of

('v'x: [c,x] = ([v,x] A 7[b,x,x1 A ('v'y: [s,x,y] * [b,y,y]))) . (9)

This equivalence can also be written as

('v'x: [c,x] = ([v,x] A 7[b,x,x] A 7(3y: [s,x,y] A 7[b,y,y]))) .

We record the quantified condition in associons (h,?) , i.e. we establish

the truth of

('v'x: [h,x] = (3y: [s,x,y] A 7[b,y,y])) • (10)

Assuming 7[h,?] to hold initially, the truth of (10) can be establish

ed by the closure statement

x,y: [s,x,y] A 7[b,y,y] :=> (h,x) ,

after which (9) can be made true by the closure statement (assuming 7[c,?]

to hold initially)

Program:

x: [v,x] A 7[b,x,x1 A 7[h,x] :=> (c,x) •

do z: [v,z] A 7[b,z,z] +

loc (h,?),(c,?):

col

od

x,y: [s,x,y] A 7[b,y,y] :=> (h,x);

x: [v,x] A 7[b,x,x] A 7[h,x] :=> (c,x);

x,y: [c,x] A [c,y] :=> (b,x,y)

65

The integer expression (Nz: [v,z] A 7[b,z,z]) is a variant function of the

repetition.

As the repetitive construct contains only one guard, and as its ini

tialized constant z does not occur in the guarded list, the above program

is deterministic. In Chapter 11 we shall show that it is also possible to

write a nonrepetitive version.

In (9) and (10) the target associons (b,?,?) negatively match the

right-hand side. Given this choice of (9) and (10), we had to declare the

associons (c,?) and (h,?) local to the guarded list. Logically, the in

troduction of local associons is not necessary. The associons (c,?) were

introduced to avoid "negative matching" in the statement catering for the

creation of the associons (b,?,?) Maintaining as an invariant

(Vx: [bb,x] = [b,x,x]) ,

their introduction can be avoided.

The relation "balanced" is an equivalence relation. Per execution of

the guarded list one equivalence class is recorded. If we extend the asso

cions (h,?) with an extra member, representing a characteristic element of

the "current" equivalence class, then the (resulting) associons (h,?,?)

can be declared global to the repetitive construct. In order to be able to

determine this characteristic element, we maintain as an invariant

(Vx: [bt,x] = ([bb,x] v ([v,x] A (Vy: [s,x,y] => [bb,y]))))

(In words: [bt,x] holds if and only if vertex x is in B or vertex x

is a terminal vertex of G \ B .)

66

loc (bb, ?) , (bt, ?) , (h,?, ?) :

x: [v,x] A 7[s,x,?] :• (bt,x);

doz: [bt,z] A 7[bb,z] +

od

col

x,y: [bt,x] A 7[bb,x] A [bt,y] A 7[bb,y] :• (b,x,y);

x: [bt,x] :• (bb,x);

x,y: [s,x,y] A 7[bb,y] :• (h,x,z);

x: [v,x] A 7[h,x,z] :• (bt,x)

For strategical reasons this second program is inferior to the first.

The extra information that is kept ··-the (h,x,y) with y E B -- is left

unused.

67

CHAPTER 9

FORMAL DEFINITION OF THE REPETITIVE CONSTRUCT

The syntax of the repetitive construct has been defined in the preced

ing chapter. Its semantics are defined as follows.

Let S denote the repetitive construct

do EO + s0 0 ... 0 E l + S l od - n- n-

Let BB denote the predicate (3i: 0 s i < n: (N Ei) > 0) , and let

Bi denote the equation Ei, of which the list of unknowns has been

dropped. (Bi expresses the relation which the initialized constants

satisfy.)

Then, for any predicate R, by definition

wp{S,R) : 0(3k: k ~ 0: f\ (R)) ,

in which the predicates f\CR) are defined by

H0 (.R) - R A 7BB

¾+1(R) = Ho(R) v (BB" (Vi: 0 s i < n: Bi• wp(Si,f\(R)))) •

Tlie predicate f\(R) expresses the condition that the construct termi

nates after at most k executions of a guarded list, in a state satisfying

R. The definition of wp(S,R) .expresses that there must exist a nonnega

tive·-- integer k , such that the construct terminates after at most k exe

cutions of a guarded list, in a state satisfying R.

The following theorem expresses that any closure statement can be writ

ten as a repetitive construct, in which each guarded list consist of one

closure statement with [] as its left-hand side and one target associon

(format) as its right-hand side. It shows that an implementation of the clo

sure statement may create the missing associons of the closure one by one,

looking (in an arbitrary order) for solutions of the left-hand side for

which a target associon is absent.

THEOREM 9.1. Let s denote the closure statement

68

Let Si (0 $ i < 2) denote the closure statement

and let S' denote the repetitive construct

do x: E(x) A 7A0 (x) + s 0

□
□ x: E(x) A 7A2-l (x) + s2-l

od

'Then, for all R wp(S,R) "' wp(S' ,R) .

PROOF. Let NC denote

(NA: wp(S,A) A 7A) ,

i.e. the number of associons A satisfying wp(S,A) A 7A. According to

Theorem 6.1 (p. 35) NC is finite for all states. Obviously, we also have

NC 2: 0

we first prove the following properties.

1) NC= 0 if and only if 7BB,

2) E (x) implies for all R

wp (Si ,wp (S ,R)) = wp (S ,R) ,

3) E(x) A 7Ai(x) implies for all k (k 2: 0)

wp(Si 1 NC =_k) = (NC= k+l) .

Property 2) expresses that the (permitted) execution of the statement Si

leaves the condition wp(S,R) invariant. Property 3) expresses that the

(permitted) execution of Si decreases the function NC by one.

Proof of 1):

7BB - 7(3i: 0 $ i < 2: (Nx: E(x) A 7A, (x)) > 0)
l.

- (Vi: 0 $ i < 2: <Nx: E(x) A 7A. (x))
~ l.

0)

- (Vi: 0 $ i < 2: (Vx: E(x) ~ Ai (x))) - s .

We prove NC= 0 if and only if s

We first assume NC= 0 and derive S. Let i be such that

0 $ i < 2, and let x be suqh that E(x) is satisfied. We prove Ai(x)

From E(x) we conclude, by applying Property 6.4 (p. 36),

wp(S,E(x)) .

From wp(S,S) --Property 6.5 (p. 37)-- and the definition of § we con

clude

From (1) and (2) follows (apply Property 1.2 (p. 3))

wp(S,Ai (x))

As NC 0 we have for all associons A

wp(S,A) =C> A

In particular do we have

wp(S,A. (x)) ,. A. (x)
l. l.

From (3) and (4) we conclude Ai(x)

69

(1)

(2)

(3)

(4)

The fact that S implies NC= 0 is a direct consequence of Property

6.6 (p. 37).

Proof of 2):

We assume E(x) • Then (3) holds. Let A denote an arbitrary associon. As

Si is a noncascading closure statement, we may apply Property 6.8 (p. 38),

yielding

From Property 6.2 (p. 36) we know

A .. wp(S,A) ~

From (3) and (6) we conclude

(AVA= Ai(x)) =C> wp(S,A)

From (5) and (7) follows

~ ~ wp(Si 1A),. wp(S,A)

From Property 6.9 (p. 38) we then know

wp(Si,wp(S,R)) = wp(S,R) .

(5)

(6)

(7)

70

Pi'oof of 3):

We assume E(x) A 7Ai (x) A k ~ 0. Then, on account of E(x) , (3) holds. By

definition,

wp(S. ,NC = k) = wp(S., (NA: wp(S,A) A 7A) = k) ,
l. . . l.

or

or (apply Properties 1.2 (p. 3) and 6.1 (p. 35))

wp(Si,NC = k) :: ((NA: wp(Si,wp(S,A)) A 7wp(Si,A)) = k) .

As E(x) holds, we may apply Property 2) yielding

(8)

From (5) and (8) we conclude

or

wp(Si,NC = k) - ((NA: wp(S,A) A 7A)

- (NA: wp(S,A) A 7A A A= A. (x)) = k) . (9)
l.

From (3) and 7A. (x) follows
l.

(NA: wp(S,A) A 7A A A= Ai(x)) = 1 .

From (9), (10), and the definition of NC we conclude

wp(Si 1 NC = k) = (NC= k + 1) .

(End of proof of Properties 1), 2), and 3).)

Next we shall prove for arbitrary R and k (k ~ 0)

4) Hk(R) = (wp(S,R) A NC S k) •

We then have

and

(10)

(11)

(12)

The combination of (11) and (12) allows us to conclude

Proof of 4):

wp(S,R) - (3k: k ~ 0: l\(R))

- wp(S' ,R)

We prove 4) by mathematical induction. By definition,

H0 (R) = (RA 7BB) •

71

S and 7BB are equivalent. According to Property 6.6 (p. 37) s implies

wp(S,R) = R. From Property 1) and NC~ 0 we conclude 7BB = (NC s 0) •

We, consequently, have

H0 (R) = (wp(S,R) A NC S 0) • (13)

We assume as induction hypothesis

l\(R) = (wp(S,R) A NC S k) (14)

and derive

l\+l(R) - (wp(S,R) A NC S k + 1) .

By definition,

By substituing (14) in the universally quantified term, this term becomes

(Vi: 0 Si< t: Bi .. wp(Si,wp(S,R) A NC S k)) ,

or (apply Property 1.2 (p. 3) and the definition of Bi)

By applying Properties 2) and 3) this becomes

(Vi: 0 Si< t: Bi .. (wp(S,R) A NC S k + 1)) ,

or

BB .. (wp(S,R) A NC S k + 1)

Resubstituting (16) in (15) we obtain

l\+l (R) = (H0 (R) V (BB A wp(S,R) A NC S k + 1)) ,

or (use (13))

(16)

72

f\+1 (R) - ((wp(S,R) A NC Q) V (BB A wp(S,R) A NC ~ k + 1))

- ((wp(S,R) A NC ~ k + 1) " (BB V NC = 0))

or (use Property 1))

f\+1 (R) - ((wp(S,R) A NC ~ k + 1) " (BB V 7BB))

- ((wp(S,R) A NC ~ k + 1)

(End of proof.)

In the proof of the above theorem we have shown that the execution of a

'guarded list Si decreases the nonnegative integer function NC under in-

variance of wp(S,R) . The final state satisfies 7BB, or S If the ini-

tial state satisfies wp(S,R) , then the final state satisfies wp(S,R) AS,

and hence (Property 6.6 (p. 37)) R. This is the general pattern for the

construction of repetitive programs: we look for both an invariant relation

P, such that PA 7BB implies the relation to be established, and a (non

negative) integer variant function t of the state, whose value decreases

per execution of a guarded list.

In order to characterize all initial states such that a mechanism will

decrease the variant function, we employ the notion wdec, which is defined

as follows. (Although this definition differs from the one given in [6], it

defines the same concept.)

Let S denote some mechanism, and t an integer function of

the state, then by definition

(For notation P;, see Example 1.1 (p. 4).) The wdec(S,t) characterizes

those states for which the execution of S establishes t < t 0 , with t 0
being the initial value of t

The following theorem is due to Hoare [10], who called it the "Rule of

Iteration".

THEOREM 9.2. Invariance theorem for repetitive constructs.

With S Bi, and BB as defined in the beginning of this chapter, there

holds that, if for all i (0 ~ i < n)

73

then

P • wp(S,P A 7BB) .

The above formulation has been taken from [6], which also contains a

proof of the theorem. The theorem expresses that if the (permitted) execu

tion of any guarded list leaves the truth of P invariant and decreases the

nonnegative integer function t, then the execution of the repetitive con

struct, in a state satisfying P, will lead to termination in a state

satisfying PA 7BB.

EXAMPLE 9.1. In this example we give a formal proof of the correctness of

the program, presented in Chapter 8, for the recording of an arbitrary

clique:

loc (h, ?) :

col

do z: [v,z] A 7[h,z] ➔

[] :• (c,z),(h,z);

x: [v,x] A 7[a,x,z] :• (h,x)

od

Let A(u,w) denote

(Vy: y ~ u: [c,y] • [a,w,y])

Then R, Pl , and P2 can be written as follows. (Compare R, Pl and

P2' on pages 56 and 60.)

R (Vx: [c,x] - ([v,x] A A(x,x)))

Pl (Vx: [c,x] • ([v,x] A A(x,x)))

P2 (Vx: [h,x] - ([c,x] v ([v,x] A 7A(x,x))))

Let S denote the repetitive construct of the program. we prove

(7[c,?] A 7[h,?]) • wp(S,R) . With the following notational conventions

S1

S2

B

Pi

[] :• (c,z), (h,z) ,

x: [v,x] A 7[a,x,z] =* (h,x) ,

[v,z] A 7[h,z] ,

(Vx: [h,x] = ([c,x] v ([v,x] A 7A(z,x)))) ,

we first prove

74

(Pl A P2 A B) • wp(S1 ,Pl A Pi A [c,z]) ,

and

(Pl A Pi A [c,z]) • wp(S2,Pl A P2) •

Then (apply Property 1.4 (p. 3) and the definition of the semicolon)

(Pl A P2 A B) • wp("Sl;S2" ,Pl A P2) •

(17)

(18)

(Pi is used to characterize the state at the semicolon.) We first formulate

some relations between A(z,x) and A(x,x) • For all x

(7A(z,x) A 7[c,x]) •7A(x,x) ,

(7A(x,x) A 7[c,z]) • 7A(z,x) ,

(A(z,x) A [c,z] A [a,x,z]) • A(x,x)

For all x (x ~ z)

([c,z] A 7[a,x,z]) • 7A(x,x) •

Proof of (17):

By applying Property 6.8 (p. 38) we obtain for all x

wp(S1,A(z,x)) = A(z,x) ,

and for all x (x ~ z)

(19)

(20)

(21)

(22)

(23)

wp(S1,A(x,x)) _ A(x,x) A [a,x,z] • (24)

We assume Pl A P2 AB and derive wp(S1,Pl) , wp(S1,Pi) , and

wp(S1,[c,z]) • From P2 AB we conclude

[v,z] A 7[c,z] A A(z,z) • (25)

We write Pl as follows.

(Vx: x ~ z: [c,x] • ([v,x] A A(x,x)))

A [c,z] • ([v,z] A A(z,z))

By applying Property 6.8 (p. 38), (23), and (24) we obtain

wp(S1,Pl) = (Vx: x ~ z: [c,x] • ([v,x] A A(x,x) A [a,x,z]))

A [v,z] A A(z,z) ,

which, on account of (25), is implied by Pl • We write Pi as follows.

(Vx: x ~ z: [h,x] _ ([c,x] v ([v,x] A 7A(z,x))))

A [h,z] _ ([c,z] v ([v,z] A 7A(z,z)))

75

By applying Property 6.8 (p. 38) and (23) we obtain

wp(S1,Pi) = (Vx: x ;t z: [h,x] = ([c,xJ v ([v,xJ A 7A(z,x)))) ,

which, on account of (19) and (20), is implied by P2 A 7[c,z] • We, fur

thermore, obtain wp(S1,[c,z]) = []

Proof of (18) :

We assume Pl A Pi A [c,z] and derive wp(S2,Pi) and wp(S2,P2) . From

Pi A [c,z] we conclude [h,z] . From Property 6.3 (p. 36) we know

wp(S2,Pl) = Pl , which leaves only wp(S2,P2) to be proved.

By applying Property 6.8 (p. 38) we obtain for wp(S2,P2)

(Vx: ([h,x] v ([v,x] A 7[a,x,z])) = ([c,x] v ([v,x] A 7A(x,x)))) (26)

For x = z (26) is implied by [h,z] A [c,z] • Suppose x ;t z • From (19)

and Pi we then conclude

[h,x],. ([c,x] v ([v,x] A 7A(x,x)))

From (22) and [c,z] we conclude

([v,x] A 7[a,x,z]) ,. ([v,x] A 7A(x,x)) •

From Pi we conclude

[c,x],. [h,x]

From (21) and [c,z] we conclude

([v,x] A 7A(x,x)) ,. ([v,x] A (7A(z,x) v 7[a,x,z])) ,

and, hence, (use Pi)

([v,x] A 7A(x,x)) ,. ([h,x] v ([v,x] A 7[a,x,z])) •

From (27), (28), (29), and (30) follows (26).

As the variant function t we choose (Nx: [v,x] A 7[c,x]) . Then,

obviously, t ~ 0. Using

t (Nx: x ;t z: [v,x] A 7[c,x]) + (N [v,z] A 7[c,z]) ,

we derive

t
wdec("Sl;S2",t) - wp("Sl;S2",t < t 0)tO

- (Nx: x ;t z: [v,x] A 7[c,x]) < t

(27)

(28)

(29)

(30)

76

- [v,z] A 7[c,z] ,

which is implied by (25).

We conclude that Pl A :P2 AB implies

wp("Sl;S2" ,Pl A P2) A wdec("Sl;S2" ,t) A t .: 0 .

From Theorem 9.2 (p. 72) we then know

7BB

(Pl A P2),. wp(S,Pl A P2 A 7BB)

(Vx: [v,x] ,. [h,x])

(31)

'We assume 7[c,?] A 7[h,?] and derive wp(S,R) • From 7[c,?] A 7[h,?] we

conclude Pl A P2 , and, on account of (31), wp(S,Pl A P2 A 7BB) • As

(P2 A 7BB),. (Vx: ([v,x] A A(x,x)),. [c,x]) ,

we then have (use Pl and R

(End of example.)

wp(S,R) •

77

CHAPTER 10

SOME EXAMPLES

EXAMPLE 10.1. Seleation of distinat subsets.

A finite set V and a finite "family" W of (not necessarily mutu

ally distinct) subsets of V are given (Distinctly named subsets of V may

be otherwise equal.). We are requested to write a program that makes a selec

tion out of the subsets in W, such that for each subset S in W there

is exactly one selected subset that contains the same elements as S. The

initial state satisfies

(Vx: [v,x] - x is the name of an element of V ") A

(Vx: [w,x] - x is the name of an element of W ") A

(Vx,y: [m,x,y] - ([w,x] A [v,y] A "element y in subset x ")) •

Let, furthermore, be given that 7[c,?] holds. We are requested to write a

program that establishes the truth of

R (Vx: [c,x] = ([w,x] A (Vy: y >' x: [c,y] =1> "subsets x and

y differ"))) •

We record in associons (d,?,?) names of mutually distinct subsets in

W, or --to be more precise-- we establish the truth of

(Vx,y: [d,x,y] = ((3z: [m,x,z] A [w,y] A 7[m,y,z]) V

(3z: [m,y,z] A [w,x] A 7[m,x,z])))

The relation R can then be written as

(Vx: [c,x] = ([w,x] A (Vy: y >' x: [c,y] • [d,x,y]))) •

(1)

But that is exactly the relation that was to be established in the example

of the arbitrary clique (Chapter 8). As we also have for all x 7[d,x,x] ,

we can employ the program of Remark 8.3 (p. 60):

loc (h,?),(d,?,?):

"establish (1)";

col

doz: [w,z] A 7[h,z] +

[] :• (c,z);

x: [w,x] A 7[d,x,z] :• (h,x)

od

78

s

We still have to implement "establish (1) ". The closure statement

x,y,z: [m,x,z] A [w,y] A 7[m,y,z] :.., (d,x,y),(d,y,x)

establishes the truth of

s (Vx,y,z: ([m,x,z] A [w,y] A 7[m,y,z]) .., ([d,x,y] A [d,y,x])) •

Scan be written as

(Vx,y: (3z: [m,x,z] A [w,y] A 7[m,y,z]) .., ([d,x,y] A [d,y,x])) ,

which is equivalent to

(Vx,y: ((3z: [m,x,z] A [w,y] A 7[m,y,z]) v

(3z: [m,y,z] A [w,x] A 7[m,x,z])).., [d,x,y]) (2)

By applying Theorem 6.3 (p. 39) we obtain that S maintains the invariance

of

(Vx,y: [d,x,y].., ((3z: [m,x,z] A [w,y] A 7[m,y,z]) v

(3z: [m,y,z] A [w,x] A 7[m,x,z]))) (3)

On account of 7[d,?,?] (3) is satisfied to start with. S , therefore, es

tablishes a state satisfying (2) and (3), and thus (1).

EXAMPLE 10.2. Reaording equivalenae alasses.

Let a finite set V and an equivalence relation E on the elements of

V be given as in Example 8.2 (p. 62). Let, furthermore, be given that

7[c,?] A 7[m,?,?] holds. We are requested to write a program that records

the equivalence classes of E. It should do so by selecting one character

istic element per equivalence class (as in Example 8.2 (p. 62)), and record

ing for each element of V the characteristic element of its equivalence

class. More precisely: it should, by creating associons (c,?) and

(m,?,?) , establish the truth of Rl A R2:

Rl

R2

(Vx: [c,x] = ([v,x] A (Vy: y ~ x: [c,y] ..,.7[e,x,y]))) ,

(Vx,y: [m,x,y] = ([c,x] A [e,x,y])) •

Program (cf. Example 8.2 (p. 62)):

doz: [v,z] A 7[m,?,z] +

[] :.., (c,z);

x: [e,x,z] :.., (m,z,x)

od

79

REMARK 10.1. If we take for V the set of vertices of a finite directed

graph, and for E the equivalence relation "mutually reachable", then we

obtain a program for the recording of the strong components of a directed

graph. For a finite directed graph that is given as in Example 7.4 (p. 47),

we then obtain the following program.

loc (e,?,?):

col

loc (w,?,?):

col;

x,y: [s,x,y] ,.,. (w,x,y);

x,y,z: [w,x,y] A [w,y,z] ,.,. (w,x,z);

x,y: [w,x,y] A [w,y,x] ,.,. (e,x,y);

x: [v,x] :.,. (e,x,x)

doz: [v,z] A 7[m,?,z] ➔

[] :.,. (c,z);

x: [e,x,z] :.,. (m,z,x)

od

(End of remark.)

EXAMPLE 10.3. Arbitrary spanning tree.

A finite (directed) graph without arcs is given by

(Vx: [v,x] = " x is the name of a vertex")

We are requested to write a program that generates arcs between the vertices,

such that the resulting directed graph constitutes a spanning out-tree. We

establish the truth of

(Vx,y: [q,x,y] _ "the out-tree has an arc from vertex x to

vertex y ") ,

while .initially 7[q,?,?] holds.

We first select an arbitrary vertex as root. Then we extend the out

tree until it spans the whole graph. In order to be able to characterize the

vertices in the tree, we maintain

(Vx: [h,x] = "vertex x in the tree") ,

or

(Vx: [h,x] _ (" x is the name of the root" v [q,?,x])) •

80

We accomplish the selection of the root by means of a repetitive con

struct, whose guarded list is executed as long as 7[h,?] holds, i.e. exact

ly once. As guard we choose

x: [v,x] A 7[h,?]

Upon termination we then know that

(Vx: [v,x] -. [h, ?]) ,

or

(3x: [v,x])-. [h,?] •

do x: [v,x] A 7[h, ?] + [] ,_. (h,x) od

REMARK 10.2. The above repetitive construct resembles the pseudo-repetition

that occurs in some programs in [6]. There the alternative construct

if B + S O 7B + skip fi

is in the case that B-. wp(S,7B) replaced by the pseudo-loop

do B +sod

(End of remark.)

An arc from vertex x to vertex y may be laid if x is in the tree, and

y is not.

Program:

loc (h,?):

do x: [v,x] A 7[h,?] + [] ,_. (h,x) od;

do x,y: [h,x] A [v,y] A 7[h,y] + [] ,_. (q,x,y), (h,y) od

col

The integer expression (Nx: [v,x] A 7[h,x]) is a variant function for the

second repetitive construct. Only permissible final states are possible,

and each permissible final state is possible.

REMARK 10.3. The generation of an arbitrary sequence, in which [q,x,y]

denotes y to be the successor of x in the sequence, is equivalent to the

generation of an arbitrary spanning tree in which each vertex has at most

one outgoing arc. This implies that by adding the factor "7[q,x,?]" to the

guard of the second repetitive construct, we obtain a program for the gener

ation of an arbitrary sequence.

(End of remark.)

81

EXAMPLE 10.4. Arbitrary order-preserving sequence.

The vertices of a finite acyclic directed graph can be ordered into a

sequence, in such a way that for any arc from a vertex u to a vertex v,

u has a smaller ordinal number in the sequence than v

A finite acyclic directed graph G is given as in Example 7.4 (p. 47).

Let, furthermore, be given that 7[q,?,?] holds. We are requested to write

a program that establishes the truth of

R (Vx,y: [q,x,y] _ "vertex y is the successor of vertex x

in the sequence")

We construct the sequence in the order of increasing ordinal number. A

vertex may be chosen as the next element of the sequence if (it is not al

ready in the sequence, and) all its predecessors (in G) are in these

quence. As in Example 10.3 (p. 79) we record the names of the vertices in

the sequence in associons (h,?) , i.e. we maintain the invariant

Pl (Vx: [h,x] = (" x is the name of the first element" v [q,?,x])).

We record in associons (c,?) the names of the vertices for which all pre

decessors are in the sequence, i.e. we also maintain the invariant

P2 (Vx: [c,x] = ([v,x] A (Vy: [s,y,x] ,. [h,y]))) •

The equivalence P2 can also be written as

(Vx: [c,x] = ([v,x] A 7(3y: [s,y,x] A 7[h,y])))

In order to be able to (re)establish the truth of P2 in the guarded

list, we record the quantified condition in associons (d,?) , i.e. we es

tablish the truth of

(Vx: [d,x] = (3y: [s,y,x] A 7[h,y])) • (4)

If (4) holds, P2 can be written as

(Vx: [c,x] = ([v,xJ A 7[d,x]))

As in (4) the presence condition of the global associons (h,?) is negated,

the associons (d,?) have to be declared local to the guarded list.

Program (comments between braces"{" and"}"):

82

loc (C,?) , (h,?) :

col

x: [v,x] A 7[s,?,x] :-. (c,x) {P2};

do x: [c,x] A 7[h,?] + [] :-. (h,x) od {Pl};

do z1,z2: [h,zl] A 7[q,z1,?] A [c,z2] A 7[h,z2] +

od

loc (d,?):

col

[] :-. (q,z1,z2),(h,z2) {Pl};

x,y: [s,y,x] A 7[h,y] :-. (d,x) {(4)};

x: [v,x] A 7[d,x] :-. (c,x) {P2}

The expression (Nx: [v,x] A 7[h,x]) is a variant function for the second

repetitive construct. Only permissible final states are possible, and each

permissible final state is possible.

REMARK 10.4. For a graph G that does not have any arcs, we continually

have

7[d, ?] A (Vx: [c,x] = [v,x]) •

The above program then reduces to

loc (h, ?).:

col

do x: [v,x] A 7[h,?] + [] :-. (h,x) od;

do z1,z2: [h,zl] A 7[q,z1,?] A [v,z2] A 7[h,z2] +

[] :-. (q,z1,z2), (h,z2)

od

This is exactly the program of Remark 10.3 (p. 80) for the generation of an

arbitrary sequence.

(End of remark.)

EXAMPLE 10.5. Most distant leaves of an out-tree.

A finite out-tree T is given by

(Vx: [v,x] = " x is the name of a vertex of T ") A

(Vx,y: [s,x,y] - " T has an arc from vertex x to vertex y ").

We define an integer function P on the vertices of T, with P(x) being

the length of the path from the root to vertex x. In terms of the repre

sentation of T:

([v,x] A 7[s,?,x]) => P(x) 0,

[s,y,x] => P(x) = P(y) + 1

We have to design a program that records the vertices with maximal path

length from the root, i.e. a program that, if initially 7[d,?] holds,

establishes the truth of

R (Vx: [d,x] _ ([v,x] A (Vy: [v,y] => P(x) ~ P(y))))

We have to record all vertices x of T for which

(Vy: [v,y] => P(x) ~ P(y)) • We shall record these vertices for a subtree

U, and we shall extend U until it equals T. The vertices of U are

recorded in associons (u,?) . We maintain the invariance of

P1 (Vx: [u,x] => [v,x]) •

83

We have to characterize the most distant leaves of U. We do, however, not

record the most distant leaves themselves, but instead of that, we record

--in associons (i,?)-- those vertices of U that are not the most distant

ones, as this last property is a monotonic one during the growth of U,

i.e. we also maintain as an invariant

P2 (Vx: [i,x] = ([u,x] A (3y: [u,y] A P(x) < P(y)))) .

U initially contains the root only. We proceed to extend U until

(Vx: [v,x] => [u,x])

As a variant function we choose (Nx: [v,x] A 7[i,x]) •

Program:

loc (u, ?) , (i, ?) :

col

x: [v,x] A 7[s,?,x] :=> (u,x);

do z: [v,z] A 7[u,z] ➔ x: [u,x] :=> (i,x);

x,y: [i,x] A [s,x,y] :=> (u,y)

od;

x: [v,x] A 7[i,x] :=> (d,x)

Upon termination of the repetitive construct we know, from Pl A 7B,

that

(Vx: [u,x] = [v,x]) ,

which combined with P2, yields

84

(Vx: [i,x] = ([v,x] A (3y: [v,y] A P(x) < P(y)))) •

At the end of the program we then have for all x

[d,x] _ ([v,x] A 7[i,x])

_ ([v,x] A (7[v,x] v (Vy: [v,y] • P(x) ~ P(y))))

_ ([v,x] A (Vy: [v,y],. P(x) ~ P(y)))

which exhibits the truth of R to be established.

EXAMPLE 10.6. Equidistant loCJUs of two vertiaes in an undireated graph.

The equidistant 7,oaus of two vertices u and v in a finite connected

undirected graph is the set of all vertices for which the length of the

shortest path to u equals the length of the shortest path to v. Let m

and n be the names of the vertices M and N, respectively, of a finite

connected undirected graph G, which is given as in Example 7.7 (p. 50). We

are requested to design a program that records in associons (1,?) the

equidistant locus of M and N. For that reason we define two integer

functions PM and PN on the vertices of G, with PM(x) and PN(x) be

ing the length of the shortest path from, x to, respectively, M and N.

It is given that initially 7[1,?] holds. The program should establish the

truth of

R

We generate two sets of vertices, called UM and UN, around M and

N , respectively. Let maxp be a ghost variable wi.th initial value zero and

let its value be incremented by one per execution of the guarded list. Upon

every execution of the guarded list UM and UN are the sets of vertices

X with J?M(x) s maxp and PN(x) s maxp I respectively. The vertices X in

UM with PM(x) < maxp are recorded in the set IM• UN likewise contains

an "interior" IN. For any path length we can then distill those vertices

X for which PM(x) = PN(x) I as they are in UM n UN I but not in IM u IN.

We can extend UM and UN until all vertices of G are in UM n UN .

Recording the sets UM, UN, IM, and IN in associons (um,?)

(un,?) , (im,?) , and (in,?) , respectively, we maintain the following in

variants:

Pl (Vx: ([um,x] v [un,x]) ,. [v,x]) ,

P2 {Vx: [im,x] - {[um,x] A {3y: {[um,y] A PM{y) > PM{x))

V {[un,y] A PN{y) > PM{x))))) I

P3 (Vx: [in,x] - ([un,x] A (3y: ([un,y] A PN(y) > PN(x))

V ([um,y] A PM(y) > PN(x))))) I

From P2 and P3 we may conclude

(Vx: ([um,x] A 7[im,x] A [un,x] A 7[in,x]),. PM(x)

As for all x

({[um,x] A 7[un,x]) v ([un,x] A 7[um,x])),. PM(x) ~ PN(x) ,

we may write P4 as

P4'

As a variant function we choose (Nx: [v,x] A 7([im,x] v [in,x])) •

Program:

loc (um,?), (un, ?) , (im, ?) , (in,?):

col

[] :,. (um,m), (un,n); [un,m] :,. (1,m);

doz: [v,z] A 7([um,z] v [un,z]) +

od

x: [um,x] :,. (im,x); x: [un,x] :,. (in,x);

x,y: [im,x] A [a,x,y] :,. (um,y);

li:,y: [in,x] A [a,x,y] :,. (un,y);

x: [um,x] A 7[im,x] A [un,x] A 7[in,x] :,. (1,x)

Upon termination of the repetitive construct we know, from Pl A ~B,

(Vx: [v,x] = ([um,x] v [un,x])) ,

which, combined with P4' , exhibits R to hold.

85

86

CHAPTER 11

DYNAMICALLY CREATED NAMES

When programming for associons we establish new relations between

names, on account of already existing relations between these names. We may

be faced with the situation that the collection of names in the initially

existing relations --the names in the associons initially present-- is in

sufficient to represent the new relations. If the number of necessary new

names is statically known --i.e. is independent of the initial state--, then

they can be introduced as constants in the program text. If, however, this

number is not known until the execution of the program, then new names have

to be created dynamically. An instance of this we encounter in the following

problem.

Let V be a set of elements. We are requested to write a program that

generates all subsets of V. The set V is given by

(Vx: [v,x] = fl x is the name of an element of V fl) •

We know, furthermore, of the initial state that 7[s,?] A 7[m,?,?] holds.

For any set X, S(X) will denote the set of all subsets of X. We have

to establish the truth of

R (Vx: [s,x] = fl x is the name of an element of S(V) fl) A

(Vx,y: [m,x,y] - ([s,x] A [v,y] A "element y in subset x "))

We obtain the invariant relation by replacing in R the constant set

V by a variable set W, which is invariantly contained in V W is ini-

tialized empty -- S(W) then contains the empty set only-- and is extended

until it equals V. The relation

S(W U {u}) (S(W) u {x u {u}: XE S(W)})

suggests to extend W with one element of V \ W at a time. Recording the

names of the elements of W in associons (w,?) , the program will have the

following structure.

loc (w,?):

col

[] :=> (s,empty);

do u: [v,u] A 7[w,u] +

od

"for all x E S (W) generate the set x u { u} ";

[] :=> (w,u)

The refinement of the quoted statement requires the generation of as

many new names as the cardinality of S(W) • For any set in S(W) --whose

names are recorded in associons (s,?)-- a new set has to be generated. As

a consequence we need a new name for each solution of the equation

x: [s,x] • For this reason we introduce the possibility to create a new

name for each solution of an equation by changing the syntax of "target

associon format" as follows.

<target associon format>::= (<nue>{,<nue>})

<nue> ::= <name> I <unknown> I !

87

The execution of such a closure statement should effect a final state in

which a new name has been created for each solution of the left-hand side.

In order to guarantee that this is always possible, we pose the restriction

that no target associon format containing an exclamation point

the equation in the left-hand side.

II I II may match

The effect of the statement can best be described as if it were execut

ed in two steps. If all target associon formats contain an exclamation point,

then the first step is a "skip", otherwise it is the closure statement that

has the original equation as its left-hand side, and the target associon

formats that do not contain the exclamation point as its right-hand side.

In the second step the associons with the new names are created, possible

cascading being taken care of in the first step. Each element of the solu

tion set of the equation is extended with a unique new name --"new" meaning

"distinct from any name occurring in the present associons or as a constant

in the program text"--, and for these "extended solutions'' the corresponding

target associons (with each exclamation point replaced by the new name) are

created. If x: E(x) denotes the equation in the left-hand side, then the

number of created new names equals (Nx: E(x)) lu, in which U denotes the

state after the first step (or, thanks to the "nonmatching", after the

second step) .

88

EXAMPLE 11.1. The effect of the closure statement

x: [a,x] :=1> (b,!),(c,!,!)

is that (Nx: [a,x]) distinct new names are introduced. For each new name

n the associons (b,n) and (c,n,n) are created. The closure statement

x: [a,x] :• (a,x),(b,!),(c,!,!)

has the same effect.

(End of example.)

In the example of the subsets we want to create a new name for every

solution of the equation x: [s,x] . We, therefore, create a one-to-one

function between the solutions of x: [s,x] and the new names. This func

tion is temporarily recorded in associons (f,?,?) • The closure statement

x: [s,x] :=1> (f ,x, !)

establishes the truth of

Program:

(Vx,y: [f,x,y] - ([s,x] 11 '.' y is the new name corresponding to

X ") •

loc (w,?)_:

col

[] :• (s,empty);

do u: [v,u] /I 7[w,u] +

od

loc (f,?,?):

col;

x: [s,x] :* (f,x,!);

x,y,z: [f,x,y] 11 [m,x,z] :• (m,y,z);

y: [f,?,y] :=1> (m,y,u),(s,y)

[] :• (w,u)

Now that we can create new names, we could think about creating inte

gers. The following program should --according to Peano-- generate the nat

ural numbers.

[] :=1> (int,zero);

do x: [int,x] /I 7[suc,x,?] + [] ,,. (int,!),(suc,x,!) od

89

The above program, of course, does not terminate. But this is due to

the fact that the set of natural numbers is infinite. We can, however, in

stead of trying to generate all natural numbers, generate some suitable sub

set.

Suppose we want to solve Example 10.5 (Most distant leaves of an out

tree. (p. 82)) by computing for each vertex x the length P(x) of the

path from the root to x. The subset of the natural numbers ranging from

zero through (Nx: [v,x]) will then be sufficient to represent these func

tion values.

We record the fact that P(x) = y by creating the associon (p,x,y)

As the most distant leaves are vertices xO for which there exists no

vertex xl with P(xl) = P(xO) + 1 , the following program will do the job.

loc (int,?),(suc,?,?):

col

"create the hatural numbers from zero through (Nx: [v,x]) ";

loc (p,?,?) :.

col

x: [v,x] A 7[s,? ,x] :.• (p,x,zero);

xO,xl,yO,yl: [s,xO,xl] A [p,xO,yO] A [suc,yO,yl] :• (p,xl,yl);

xO,yO,yl: [p,xO,yO] A [suc,yO,yl] A 7[p,?,yl] :• (d,xO)

Th€! operation "create the natural numbers from zero through

(Nx: [v,x]) " can be refined into

loc (h,?):

col

[] :• (int, zero);

do x,y: [int,x] A 7[suc,x,?] A [v,y] A 7[h,y] +

[] :• (int,!), (suc,x, !) , (h,y)

od

REMARK 11.1. Apart from the generation of the natural numbers, the program

for the recording of the most distant leaves does not involve explicit repe

tition. Would our programs be executed in an environment in which a suffi

cient amount of integers were pre-created, we would be able to do away with

explicit repetition in many solutions. Nonrepetitive programs give the im

plementation a larger freedom to choose its own sequencing. In the above

90

program for the recording of the most distant leaves, e.g., it is only at

the two semicolons that the implementation has a "synchronization task",

whereas in the repetitive version (Example 10.5 (p. 82)) the implementation

is forced to break up the generation of the associons (i,?) and (u,?)

into a number of successive steps that is proportional to the depth of the

tree (which in our new version could be recognized as the "depth of cascad

ing").

{End of remark.)

We shall now solve in the above fashion two other problems that were

previously solved using repetition.

EXAMPLE 11.2. Balanced vertices. This problem was earlier solved in Chapter

8. We shall now record for any vertex x the --in Chapter 8 defined-- func

tion value L(x) , by establishing the truth of

(Vx,y: [1,x,y] • ([v,x] A [int,y] A L(x) ~ y)) A

(Vx,y: [nl,x,y] = ([1,x,y] A L(x) > y)) .

(In words: associons (1,?,?) record lower bounds for the function L,

associons (nl,?,?) characterize the recorded lower bounds that are not

attained.)

Then

(Vx,y: ([1,x,y] A 7[nl,x,y]) • L(x) y) •

In order to be able to generate the associons (nl,?,?) , we must first

create the relation "smaller than" on the set of introduced integers. We

shall for that reason establish the truth of

· (Vx,y: [sm,x,y] = ([int,x] A [int,y] A x < y)) ,

which can be accomplished by "create the smaller-than relation":

x,y: [suc,x,y] :• (sm,x,y);

x,y,z: [sm,x,y] A [sm,y,z] :• (sm,x,z)

Program:

lac (int,?),(suc,?,?),(sm,?,?):

col

"create the natural numbers from zero through (Nx: [v,x]) ";

"create the smaller-than relation";

lac (1,?,?) , (nl,?,?) :

x: [v,x] A 7[s,x,?] :• (1,x,zero);

x0,x1,y0,y1: [l,x0,y0] A [s,x1,x0] A [suc,y0,y1] :• (1,x1,y1);

x,y0,y1: [l,x,y0] A [l,x,y1] A [sm,y0,y1] :• (nl,x,y0);

x0,x1,y: [l,x0,y] A 7[nl,x0,y]

A [l,x1,y] A 7[nl,x1,y] :• (b,x0,x1)

col

91

REMARK 11.2. The three statements catering for the creation of the associons

(l,?,?) and (nl,?,?) can be combined into the following two.

x: [v,x] :• (l,x,zero);

x0,x1,y0,y1,y2: [l,x0,y0] A [s,x1,x0] A [l,x1,y1] A [suc,y0,y2]

A [sm,y1,y2] :• (1,x1,y2), (nl,x1,y1)

(End of remark.)

(End of ex(J)1[[)le.)

EXAMPLE 11.3. Equidistant locus of two vertices in an und1:rected graph.

This is the same problem as Example 10.6 (p. 84). We shall now record for

any vertex x the function values PM(x) and PN(x) , by establishing the

truth of (cf. Example 11.2 (p. 90))

Then

(Vx,y: [pm,x,y] -([v,x] A [int,y] A PM(x) $

(Vx,y: [pn,x,y] -([v,x] A [int,y] A PN(x) $

(Vx,y: [npm,x,y] - ([pm,x,y] A PM(x) < y)) A

(Vx,y: [npn,x,y] - ([pn,x,y] A PN(x) < y))

(Vx,y: ([pm,x,y] A 7[npm,x,y]) • PM(x)

(Vx,y: ([pn,x,y] A 7[npn,x,y]) • PN(x)

y) A

y)

y)) A

y)) A

In order to be able to perform a correct initialization, we must know

the maximum of the created natural numbers. We create max as the name of

the next natural number by means of the program

92

x: [int,x] A 7[sm,x,?] ,~ (suc,x,max);

x: [int,x] :~ (sm,x,max);

[] ,~ (int,max) .

Program:

lac (int,?), (suc,?,?),(sm,?,?):

col

"create the natural numbers from zero through (Nx: [v,x]) ";

"create the smaller-than relation";

"create max as the name of the next natural number";

lac (pm,?,?), (pn,?,?), (npm,?,?), (npn,?,?):

col

x: [v,x] :~ (pm,x,max), (pn,x,max);

[] ,~ (pm,m,zero),{pn,n,zero),(npm,m,max),(npn,n,max);

x0,xl,y0,yl,y2: [a,xO,xl] A [pm,xO,yO] A [pm,xl,yl]

A [suc,y0,y2] A [sm,y2,yl] ,~ (pm,xl,y2),(npm,xl,yl);

x0,xl,y0,yl,y2: [a,xO,xl] A [pn,xO,yO] A [pn,xl,yl]

A [suc,y0,y2] A [sm,y2,yl] :~ (pn,xl,y2) ,(npn,xl,yl);

x,y: [pm,x,y] A 7[npm,x,y] A [pn,x,y] A 7[npn,x,y] ,~ (1,x)

REMARK 11.3. Often one is not only interested in the length of a shortest

path, but also in the identity of a (the) shortest path(s). Suppose, e.g.,

that we want to record for each vertex x in the equidistant locus of M

and N all shortest paths from M to that vertex x. We wish to establish

the truth of

(Vx,y,z: [s,x,y,z] = ([1,x] A [a,y,z] A "there exists a

shortest path from M to x containing y ➔ z
(1)

II))

We know that each "target vertex" x in the equidistant locus is in

all shortest paths from M to that vertex x. If vertex xO is in a short

est path to x, and xO is adjacent to a vertex xl with

PM(xl) = PM(xO) - 1 , then xl is also in a shortest path to x, and

xl ➔ xO is part of a shortest path from M to x. We record the names of

the vertices in the shortest paths in associons (h,?,?) by establishing

the truth of

(Vx,y: [h,x,y] - ([l,x] A [v,y] A "vertex y in a shortest

path from M to x ")) •

93

The truth of (1) is established by inserting at the end of the program (be

fore the first "~ol") the following text.

loc (h,?,?):

x: [1,x] ,,. (h,x,x);

x,xO,x1,yO,y1: [h,x,xO] A [pm,xO,yO] A 7[npm,x0,y0]

A [suc,y1,y0] A [a,x0,x1] A [pm,x1,y1] :• (s,x,x1,x0),(h,x,x1)

col

(End of remark.)

(End of example.)

94

CHAPTER 12

RECORDING THE CLIQUES OF AN UNDIRECTED GRAPH

In Chapter 8 a program was designed that records an arbitrary clique of

an undirected graph. An undirected graph may contain many cliques. The re

cording of all of them is a more cumbersome affair (an NP-complete problem,

in the complexity jargon [1]). This is one reason why we have chosen this

problem. The other reason is that it is a problem that with traditional pro

gramming tools would probably be solved in a backtracking fashion (cf. [3]).

A finite undirected graph G (possibly containing loops) is given as

in Example 7.7 (p. 50). Let, furthermore, be given that 7[c,?] A 7[m,?,?]

holds, and let it be requested to write a program that establishes the truth

of

R (Vx: [c,x] = " x is the name of a clique") A

(Vx,y: [m,x,y] _ ([c,x] A [v,y] A " y in clique x ")) •

As a clique is a maximal complete subgraph, we decide to record all

complete subgraphs of G. Given the complete subgraphs, the cliques can

easily be determined.

Let V denote the set of vertices of G. For any subset X of V,

CS(X) will denote the set of all complete subgraphs of G with vertices

from X. We record the complete subgraphs of G by establishing the truth

of

Rl (Vx: [cs,x] = " x is the name of an element of CS(V) ") A

(Vx,y: [mc,x,y] - ([cs,x] A [v,y] A " y in x ")) •

This problem resembles the problem of the generation of all subsets,

for which we designed a program in Chapter 11. We shall try to derive an

analogous program for the generation of all complete subgraphs. As in the

preceding chapter, we obtain the invariant relation by replacing the con

stant set V by a variable set W:

Pl (Vx: [w,x] - " X is the name of an element of w ") A

(Vx: [w,x] ~ [v,x]) A

(Vx: [cs,x] - " X is the name of an element of CS(W) ") A

fvx,y: [mc,x,y] - ([cs,x] A [v,y] A " y in X "))

95

Likewise, the program will be of the same structure as the one on page

87. There is, of course, one difference: we do not record all subgraphs, but

only the complete ones. More precisely: per execution of the guarded list we

generate the extension with vertex u only for those x € CS(W) , that sat

isfy

('v'z: [mc,x,z] • [a,u,z]) .

This quantified condition can be written as

7(3z: [mc,x,z] A.7[a,u,z])

We record, as usual, the existentially quantified condition in associons

(h,?,?) , i.e. we maintain as an extra invariant

P2 ('v'x,u: [h,x,u] - ([v,u] A (3z: [mc,x,z] A 7[a,u,z])))

(In words: [h,x,u] holds if and only if the complete subgraph x contains

at least one vertex to which u is not adjacent.) Per execution of the

guarded list we shall generate the extension with vertex u for each

x € CS(W) satisfying 7[h,x,u]

After the recording of the complete subgraphs of G, we shall deter

mine which complete subgraphs are cliques. By having the scope of the asso

cions (h,?,?) range over the complete program, we can exploit the fact

that P2 holds after the generation of CS(V) . A complete subgraph x of

G is a clique of G if and only if for each vertex y in the complement

of x there exists at least one vertex in x to which y is not adjacent;

in formula:

('v'x: [c,x] _ ([cs,x] A ('v'y: ([v,y] A 7[mc,x,y]) • [h,x,y]))) ,

or

('v'x: [c,x] = ([cs,x] A 7(3y: [v,y] A 7[mc,x,y] A 7[h,x,y]))) . (1)

We determine the cliques of G by recording the quantified condition of (1)

in associons (nc,?) , i.e. we establish the truth of

('v'x: [nc,x] = ([cs,x] A (3y: [v,y] A 7[mc,x,y] A 7[h,x,y]))) •

Then (1) can be written as

('v'x: [c,x] = ([cs,x] A 7[nc,x])) .

The program will, consequently, have the following structure.

96

loc (cs,?), (me,?,?), (h,?,?):

loc (w, ?) :

col

col;

[] :• (cs,empty);

do u: [v,u] A 7[w,u] ➔

od

"for all x E CS(W) satisfying 7[h,x,u]

generate the extension of x with u,

reestablish P2 ";

[] :• (w,u)

loc (nc,?):

col;

x,y: [cs,x] A [v,y] A 7[mc,x,y] A 7[h,x,y] :• (nc,x);

x: [cs,x] A 7[nc,x] :• (c,x)

x,y: [c,x] A [mc,x,y] :• (m,x,y)

The refinement of the quoted statement is, except for the condition

"7[h,x,u]" and the reestablishing of P2 , the same as in Chapter 11 (cf.

p. 88):

"for all ••. ":

loc (f,?,?):

col

x: [cs,x] A 7[h,x,u] :• (f,x,!);

x,y,z: [f,x,y] A [mc,x,z] :• (mc,y,z);

y: [f,?,y] :• (mc,y,u),(cs,y);

x,y,z: [f,x,y] A [h,x,z] :• (h,y,z);

y,z: [f,?,y] A [v,z] A 7[a,z,u] :• (h,y,z)

(2)

The last two statements of the above block reestablish P2. A vertex z

has a disconnection with the new y if and only if either it has a discon

nection with the old x, or it is not adjacent to the added vertex u.

(Note that the second and the fourth statement are "pseudo-cascades", as in

the present associons (f,x,y) x and y are never equal to each other.)

As each vertex of W is in at least one complete subgraph of W, we

have for all x

[w,x] = [mc,?,x] •

We can, consequently, eliminate the associons (w,?) •

* *
*

97

We are interested in the recording of cliques. As each clique is a com

plete subgraph, we decided to record all complete subgraphs of G. The num

ber of complete subgraphs, however, can exceed the number of cliques by far.

The complete n-graph, for instance, has only one clique, but it has 2n

complete subgraphs. We shall now try to reduce the number of recorded com

plete subgraphs.

Statement (2) records the names of the new complete subgraphs. We shall

accomplish the reduction by changing statement (2) so as to have it create

fewer new names.

Per execution of the guarded list a new complete subgraph is generated

for each x € CS(W) that can be elttended with vertex u. The old x re

mains recorded as well. We investigate whether there are cases in which

there is no need to preserve the old complete subgraph. Of course, we can

never destroy the old complete subgraph. We can, however, transform it into

the new one by simply adding to it the vertex u

For each recorded complete subgraph x of w we call a vertex z a

candidate for x if and only if 7[w,z] A 7[h,x,z] When we generate an

extension of a recorded complete subgraph x of W, we do that because

ultimately we wish to find all cliques of G that are supergraphs of that

x and that contain, besides the vertices in x, only candidate vertices

for x. If vertex u is a candidate for x, and u is adjacent to all

other candidates for x, then any such clique will contain vertex u. In

that case there is no need to continue the recording of the old complete

subgraph x, as it does not (and will not) contain vertex u. Instead of

creating a new complete subgraph next to the old one, we shall, in such a

case, add vertex u to the old complete subgraph.

For any recorded complete subgraph x of W that has u as a candi

date vertex, we record the candidates in associons (e,x,?) , i.e. we estab

lish the truth of

98

(Vx,z: [e,x,z] _ ([cs,x] A 7[h,x,u] A

[v,z] A 7[w,z] A 7[h,x,z]))

The old x has to be kept --and a new name has to be created-- if and only

if

(3z: z ~ u: [e,x,z] A 7[a,z,u])

Otherwise, we record vertex u as a member of x; the reestablishment of

P2 (with respect to x) may in that case be omitted. We thus arrive at the

following text, which should replace statement (2).

loc (e, ?,?):

x,z: [cs,x] A 7[h,x,u]

A [v,z] A 7[w,z] A 7[h,x,z] :,.. (e,x,z);

x,z: [e,x,z] A 7[a,z,u] A Z ~ u :,.. (f,x,!);

x: [e,x,?] A 7[f,x,?] :,.. (mc,x,u)

col

As each vertex of W is in at least one clique of W, we can eliminate the

associons (w,?) in this version as well.

If G is the complete n-graph (because of its regularity always an

easy example for counting purposes), then we have [a,z,u] for any two ver

tices z and u (z -~ u). Then the above block never creates a new name,

and the program records only one complete subgraph.

REMARK 12.1. This is another example of a program that traditionally would

be solved by backtracking. As in Example 7.3 (Missionaries and Cannibals

(p. 45)), we first generate a large enough portion of the "search tree",

large enough to ensure that its complement does not contain any "interest

ing" elements, and then we trace which (or: whether any) interesting ele

ments have been generated. It seems that, when programming with associons,

backtracking is replaced by this "concurrent generation".

(End of remark.)

REMARK 12.2. We have solved an NP-complete problem with a program that con

tains only one repetitive construct. Its guarded list is executed exactly

(Nx: [v,x]) times. All closure statements in the program are either non

cascading or pseudo-cascading. If the complexity theory is also applicable

to associon programs, this seems to imply that the execution of a noncas

cading closure statement can be an NP-complete problem.

99

(End of remark.)

100

CHAPTER 13

ON WHAT WE HAVE REJECTED

In the preceding chapters we have presented the ultimate product of our

research. We have not tried to give a true design history. Most of the pro

posals that looked promising at first sight, but that had to be rejected at

a later stage, have not been treated. In this chapter we shall deal with

some of these proposals, and we shall indicate why we have decided to reject

them. We cannot "prove" why we could not accept these proposals. All we

shall do is try to communicate our motives for rejection.

It was E.W. D.ijkstra who first started to think about programming with

associons. His original ideas included, besides the creation of associons,

the explicit destruction of associons. The statement

x: [v,x] ::c, (w,x) ,

for instance, would, for any solution of the equation x: [v,x] A [w,x] ,

destroy the associon (w,x) . Its execution would establish the truth of the

implication

('v'x: [v,x] • 7[w,x])

The negative match of a target associon and the left-hand side was

originally also allowed. The statement

s x,y: [r,x,y] A 7[t,x] :• (t,y) ,

for instance, would establish the truth of the implication

(Vx,y: ([r,x,y] A 7[t,x]) • [t,y]) (1)

The semantics of our basic statement were described in an operational

fashion. We postulated that the effect of the execution of, for instance,

the above statement S is equivalent to the effect of a repetitive imple

mentation that, as long as the equation

x,y: [r,x,y] A 7[t,x] A 7[t,y]

has a nonempty solution set, selects an arbitrary nonempty subset of that

solution set, and that creates for all these selected solutions the asso

cions (t,y) • (Destruction was described analogously.)

101

If such a repetitive implementation would select subsets of size one

only, then we would have a sequential execution; by only requiring these

lected subsets to be nonempty, we leave it to the implementation to choose

the degree of concurrency. Note that such an implementation does not neces

sarily create the minimal number of target associons that is required to

establish (1). If S is, e.g., executed in the state

{(),(r,a,b),(r,b,a)},

then either (t,a) , or (t,b) , or both will be created. It is a nondeter

ministic construct.

We have tried to write a program for the selection of exactly one

(arbitrary) element of a nonempty set V. The names of the elements of V

are recorded in associons (v,?) , the name of the selected element should

be recorded in an associon (s,?) . We tried the statement

x: [v,x] :• (s,x) ,

but that selects the whole V We tried the statement

x: [v,x] 11 7[s,?] :• (s,x) ,

but that selects an arbitrary nonempty subset of V. We tried to select all

of them, followed by the destruction of all but one:

x: [v,x] :• (s,x);

x,y: [s,x] 11 [s,y] 11 x ~ y :• (s,y)

But then all of them could have been destroyed again.

As we wrote at that time: "a new tool seems indicated". We considered

the introduction of a special kind of unknowns --that we during this discus

sion will denote by adding an exclamation point--, to indicate that the

described repetitive implementation should select subsets of size one only,

and we arrived at the program

x' · [v,x] 11 7[s, ?] :• (s,x) .

(The program

x' · [v,x] :• (s,x)

would still copy the whole V, be it one at a time.)

For "ordinary" unknowns the implementation may select an arbitrary non

empty subset of the solution set, for unknowns "x!" it selects only one so-

102

lution at a time. What if we have both types in one statement? We declared

the order in which the unknowns are listed to be important, and we designed

a very complicated rule --too complicated to be repeated here-- for the per

mitted selections of solutions. Consider, e.g. the execution of the program

x,y!: [a,x,y] :• (b,x,y) (2)

in a state satisfying 7[b,?,?] . For each x such that [a,x,?] , it would

select one y satisfying [a,x,y] , and for these (x,y)-pairs, it would

create the associons (b,x,y) . The program

y! ,x: [a,x,y] :• (b,x,y), (3)

on the other hand, would (if [a,?,?]) select one y satisfying [a,?,y],

and (with that y) it would, for all x satisfying [a,x,y] , create the

associons (b,x,y) •

Even with such a scheme, repetition was still indispensable. We did,

for instance, not succeed in writing a nonrepetitive program for the selec

tion of one characteristic element per equivalence class. As it, furthermore,

turned out to be virtually impossible to.give a nonoperational description

of its semantics, we dropped this complicated scheme, and we decided to have

only one type of unknowns, indicating by":+" (instead of":=>") that the im

plementation should select one solution at a time. The statement (3) could

then be coded as

y: [a,? ,y] A 7[1, ?] :+ (l,y);

x,y: [a,x,y] A [l,y] :• (b,x,y) ,

whereas the equivalent of (2) would require repetition. (The single arrow

":+" was dropped again when we started to think about repetition.)

The definition of our statement should be such that it allows for the

derivation of practicable theorems that characterize all relevant aspects

of the semantics. When we tried to achieve this, we did not succeed for

statements with a negative match, neither did we succeed in a satisfactory

manner for statements with associon destruction. We shall elucidate this.

s

The property that the execution of the statement

x,y: [r,x,y] A 7[t,x] :=> (t,y)

establishes the truth of the implication

(Vx,y: ([r,x,y] A 7[t,x]) => [t,y]) (4)

103

does not exclude the possibility that too many associons (t,?} are created.

One could, for instance, in order to establish the truth of (4), create for

all "prevailing" names x the associons (t,x} (cf. the set V in the

proof of Lemma 5.2 ·(p. 25)}.

We wish to express that if prior to the execution of S no "wrong" as

socions (t,?}. --"wrong" in the sense that "their unknowns do not consti

tute a solution of the left-hand side"-- were present, then they will not be

present afterwards either; i.e. we wish to express the invariance of "no

wrong associons present". For the statement S this would be the invariance

of the implication

(Vy: [t,y] • (3x: [r,x,y] A 7[t,x]})

In the case of a negative match --as in S -- this invariance, however, is

in general not guaranteed, as the created target associons can cause the so

lution set of the left-hand side to shrink. We decided to disallow the neg

ative match of target associons and the left-hand side.

For a statement with associon destruction the prevention of shrinking

solution sets gives rise to the disallowance of target associons that fit

positive presence conditions of the left-hand side. With such a prohibition

we obtain the invaricµ1ce of "no wrong associons absent". The statement

x,y: [r,x,y] A 7[s,x] :• (s,y) ,

for instance, would establish the truth of the implication

(Vy: (3x: [r,x,y] A 7[s,x]) • 7[s,y])

under invariance of "no wrong associons absent":

(Vy: 7[s,y] • (3x: [r,x,y] A 7[s,x])}

(5)

(6)

This invariance, however, is of little use. As the set of names is un

limited, implication (6) will be false for any finite set of associons.

Having "automatic destruction" of local associons at block exit, there is

little sense in introducting explicit associon destruction as well. If one

wishes to record that certain associons are not "valid" anymore, one can·a1-

ways record this in additional associons, and write, instead of (5), e.g.,

x,y: [r,x,y] A ([invalid,x] v 7[s,x]} :• (invalid,y) •

We decided to reject explicit associon destruction.

104

At this stage we hoped to have simplified our basic statement --then

called "creation statement"-- enough, as to allow for a nonoperational de

finition of its semantics. This turned out to be rather difficult for cascad

ing creation statements. We did, however, not want to disallow cascade, as

we felt

x,y: [v,x] A [r,x,y] :• (v,y)

to be a statement too beautiful to be rejected. We decided to introduce the

mathematical concept "closure of a set of associons". We postulated that the

creation statement generates the closure, and we called it "closure state

ment" since.

* *
*

It was at this stage of the research that we again introduced some

ideas that we have not maintained.

we, for instance, wished to distinguish between unknowns that only oc

cur in the left-hand side and the other unknowns of a closure statement,

• calling them "existential" and "free" variables, respectively. This distinc

tion caused matters to become needlessly intricate, and after we realized

that

(Vx: P(x) • Q)

is equivalent to

(3x: P(x)) .. Q,

we dropped this distinction again.

We also have considered to have the closure statement abort if initial

ly there is a "wrong" associon present. The statement

x: [v,x] , .. (w,x) ,

for instance, should abort if initially

(3x: [w,x] A 7[v,x])

holds. Although it was felt encouraging to have a construct in the language

that could give rise to an abort, we did not pursue this idea. In order to

avoid abortion we had to introduce auxiliary associons to record intermedi

ate results. The presence conditions of these auxiliary associons lengthened

105

the equations of subsequent closure statements.

Another idea that has been abandoned was the treatment of the concur

rent closure statement as the basic statement. This complicated our presen

tation tremendously: we had subscripts --and sometimes even subsubscripts-

hanging around everywhere. Although the concurrent closure statement is more

powerful than the nonconcurrent one, we could only find far-fetched cases in

which the concurrent closure statement could not be written as a nonconcur

rent one.

* *
*

The execution of a statement, be it a block or a single closure state

ment, cannot effect the destruction of associons that are global to that

statement. The effect of a statement that does not create global associons,

is, consequently, equivalent to that of "skip". When we first embarked upon

the introduction of repetition, we observed that there is little sense in

continuing to execute a repetitive construct if an execution of the "repeat

able statement" has not created any global associons. We considered not to

introduce explicit guards in our repetitive construct, but to postulate that

the execution of a repetitive construct finishes as soon as a single execu~

tion of the repeatable statement has not created any associons global to it.

Every repetitive construct that does not involve dynamic generation of new

names, would then be a terminating construct.

For such a scheme the formulation of the invariance theorem turned out

to be rather difficult. For we had to characterize the states in which no

global associons are created.

Without the "single arrow" closure statement we were, furthermore, not

able to write a program for the selection of one characteristic element per

equivalence class. The single arrow closure statement had in the meantime

become suspect. For its effect could only be described nonoperationally by

means of the (N ...)-concept, and that concept usually does not provide a

simple interface.

We then decided to combine (from the single arrow closure statement)

the idea of selection of one solution at a time, and (from traditional pro

gramming) the idea of explicit guards. We introduced equations as guards. A

106

guarded list is only eligible for execution if its guarding equation has a

nonempty solution set. If a guarded list is chosen to be executed, then an

arbitrary solution of its guarding equation is selected and may be "used"

during the execution of the guarded list.

We decided to allow a set of guarded commands, although we never came

across a problem for which the program contained a repetitive construct with

more than one guard. It may be that repetitive constructs with only one

guard suffice, but we introduced the general guarded command set, because

without complicating matters it enabled us to formulate Theorem 9.1 (p. 67)

about the arbitrariness of the order in which an implementation of the clo

sure statement may trace (and create} the missing associons.

107

CHAPTER 14

EPILOGUE

We have proposed an instruction repertoire that should allow ultracon

current execution. New hardware techniques may make such implementations

feasible (cf. [14]). One could try to reach such a goal by the introduction

of large fancy data-types, upon which numerous powerful operations are de

fined. We have not done so. We have designed a limited and simple instruc

tion repertoire, consisting of mathematically well-manageable concepts. We

did not introduce any concept without discussing its desirability, nor did

we introduce any concept without simultaneously providing a discipline for

its use.

As a data structure we have chosen a set of relations. On this data

structure we have defined only one operation, the closure statement. It

creates, as a function of the existing relations, new relations. Its seman

tics are formally defined by means of its weakest pre-condition. Two se

quencing primitives have been introduced: concatenation --the semicolon-

and repetition. In order to be able to judge when --and how-- to employ re

petition, an appropriate design principle --the recording of the quantified

condition-- has been.formulated.

Designing a language for a nonexisting machine, we enjoyed the (lucky)

circumstance'.of being forced to obey Wirth's following demand (cited from

[15], underlining as in the original): "The first criterion that any future

programming language must satisfy{ •.• } is a complete definition without

reference to compiler or computer. Such a definition will inherently be of a

rather mathematical nature. To many hardcore programmers, this demand per

haps sounds academic and (nearly) impossible. I certainly have not claimed

that it is easy! I only claim that it is a necessary condition for genuine

progress."

We have fairly often encountered programs that could be used for many

(at first sight different) problems. This may perhaps confirm the idea that

there do not exist too many really different algorithms. It also seems to

indicate that, when programming for associons, we arrive at some sort of

"canonical" programs.

108

A need of recursion did not arise. We did introduce a "cascading ere-.

ation" which is nothing else than the creation of a (generalized) closure.

If U denotes the set of vertices of some out-tree, of which R represents

the predecessor-successor relation, then determining the closure under R

of the subset of U that contains only the root, is also known as "travers

ing a tree". Its classical solution is a recursive one. The recursive solu

tion for tree-traversal is often regarded to be the prototype application

for recursive subrou~ines. The generation of closures, however, is not re

stricted to trees, it may be applied in directed graphs in general. As such

cascade may be considered to be a logical generalization of recursion.

Recent publications (cf. [5]) seem to indicate that the generation of clo

sures in directed graphs is a frequently recurring theme.

There is another branch of computing science in which the data struc

ture consists of a set of relations, viz. that of "relational data bases"

[4], and one may wonder how different our approaches are.

In articles on (relational) data bases the data structure usually mo

dels named objects of the "real world". (Examples then deal with "suppliers

and parts", "employers and employees", etc.) As a consequence the name of

a relation --which is not considered to be the name of a "real" object-- is

treated differently from the arguments of a relation. Our associon

(largerthan,transitive) ,

representing that the larger-than relation is a transitive relation, would

then either have to be coded as

largerthan(transitive) ,

or as

transitive(largerthan) ,

meaning, respectively, "transitivity is one of the properties of the larger

than relation", and "larger-than is one of the transitive relations". This

choice is not an irrelevant one, as names of relations may usually not occur

as arguments in relations. The symmetry in the associon representation al

lows us to write both statements like

x: [x,transitive] A [x,reflexive] A [x,symmetric] :~ (x,equivalence) ,

and statements like

109

x: [largerthan,x] :-. (smallerthan,x)

A second major difference seems to be that in relational data bases on

ly some standard operations for the creation of relations are defined. These

operations may comprise (in the data base jargon) composition, (cyclic) join,

projection, restriction, tie, etc. All of these are special cases of the

closure statement. The resulting relation, however, is always a relation

with a different name. A cascading creation can, consequently, not be ex

pressed in such repertoires.

Another branch of computing science in which the need of operations on

relations --including that of the generation of the transitive closure-- has

been uttered, is the field of artificial intelligence. To quote a paper on

programming languages for artificial intelligence [2]: "In particular, { ..• }

one would like to be able to use content-retrievable ordered triples (or

n-tuples) { .•• } as basic data types." The languages Sail and Planner do have

these content-retrievable tuples. They are then called, respectively, asso

ciations and assertions. In neither of these languages, however, the cre

ation of closures has been recognized as a primitive operation.

The above observations give a strong indication that the creation of

closures is indeed a.fundamental concept. The preceding chapters have shown

that it is very well possible to construct a programming language around it.

110

BIBLIOGRAPHY

[1] Aho, A.V., Hopcroft, J.E. & Ullman, J.D., The Design and Analysis of

Computer Algorithms, Addison-Wesley, 1974.

[2] Bobrow, D.G. & Raphael, B., New Programming Languages for Artificial

Intelligence Research, Computing Surveys.§_, No. 3, September 1974,

pp. 153 - 174.

[JJ Bron, c. & Kerbosch, J.~ Finding All Cliques of an Undirected Grccph,

Communications of the ACM..!§_, No. 9, September 1973, pp. 575 - 577.

[4] Codd, E.F., A Relational Model of Data for Large Shared Data Banks,

Communications of the ACM _!l, No. 6, June 1970, pp. 377 - 387.

[5] Dijkstra, E.W., Determinacy and Recursion Versus Nondeterminacy and

the Transitive Closure, Report EWD 456, October 1974.

[6] Dijkstra, E.W., A Discipline of Programming, Prentice-Hall, 1976.

[7] Dijkstra, E.W., Feijen, W.H.J. & Rem, M., Associons: An Effort Towards

Accomodating Potentially ~ltra-high Concurrency, Report DFR O / EWD 435,

July 1974.

[8] Dijkstra, E.W., Feijen, w.H.J. & Rem, M., Associons Continued, Report

DFR 1 / EWD 439, August 1974.

[9] Harary, F., Grccph Theory, Addison-Wesley, 1969.

[10] Hoare, C.A.R., An Axiomatic Basis for Computer Programming,

Communications of the ACM g, No. 10, October 1969, pp. 576 - 580.

[11] Hoare, C.A.R., Recursive Data Structures, Report STAN-CS-73-400,

Stanford University, October 1973.

[12] Kelley, J.L., General Topology, Van Nostrand, 1955.

[13] Naur, P. (ed.), Report on the Algorithmic Language ALGOL 60,

Communications of the ACM _l, No. 5, May 1960, pp. 299 - 314.

[14] Ozkarahan, E.A., Schuster, S.A. & Smith, K.C., RAP: An Associative

Processor for Data Base Management, Proceedings AFIPS NCC 44, 1975,

111

pp. 379 - 387.

[15] Wirth, N., Programming Languages: Wha.t To Demand and How To Access

Them, Berichte des Instituts fur Informatik ..!2., ETH Zurich, March 1976.

112

A

abort

acyclic graph

adjacent vertices

assignment statement

associon

associon format

BB

Bi
balanced vertices

block

BNF

cascading closure statement

clique

closure statement

INDEX

closure with respect to a binary relation

closure with respect to a closure statement C(S,U)

complete graph

concurrent closure statement

condition (on the state)

connected

constant

cycle

deterministic construct

edge-disjoint paths

empty associon

equation

equidistant locus

exclamation point

17

4

48

50

4

6

16,21

67

67

63

21

2

18

56

15,17,20,35

33

25

55

21

3, 7

so
18,59

48,50

4

51

7

9, 10

84

87

Fi

factor

fit

guard

guarded command

guarded list

l_(R)

initialized constant

invariance theorem for closure statements

invariance theorem for repetitive constructs

kernel

left-hand side

length of a walk

local associons

loop

match

mechanism

minimal transition pair

multiple edges

(N ••• l

name

negative match

negative presence condition

nontrivial walk

out-tree

path

positive match

positive presence condition

predecessor

30

9

12

58

58

58

67

59

39

72

49

17

47

21

50

12

3

53

50

11

5, 9

12,20

9

47

22

47,50

12

9

53

113

114

predicate PIU 7

predicate transformer 4

presence condition 7, 9
i

primary 9

question-mark 8

reachable 48

repetitive construct 58,67

s 23

safely connected vertices 51

semicolon 4

set difference \ 12

skip 4

solution set Z(E,U) 9

spanning subgraph 55

state 7

statement list 2, 4

state vector 7

strong component 61

strongly connected 61

subgraph 55

successor 53

supergraph 55

symmetric set difference _,_ 12

T(x) ,T(x) 17

target associon 17

target associon format 17

target associon format set 17

term 9

terminal vertex 48

terminating construct 35

transitive closure 19

trap 48

unilateral component

unilaterally connected

universal relation

unknown

variant function

walk

wdec

weakest pre-condition wp(S,R)

Z(E,U)

61

61

6

9

60

47,50

72

2

9

115

OTHER TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

A leaflet containing an order-form and abstracts of all publications men~
tioned below is available at the Mathematisch Centrum, Tweede Boerhaave
straat 49, Amsterdam-1005, The Netherlands. Orders should be sent to the
same address.

MCT 1 T. VAN DER WALT, Fixed and almost fixed points, 1963. ISBN 90 6196
002 9.

MCT 2 A.R. BLOEMENA, Sa,mpling from a graph, 1964. ISBN 90 6196 003 7.

MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model
and method, 1964. ISBN 90 6196 004 5.

MCT 4 G. DE LEVE, Generalized Markovian decision processes, part II: Pro
babilistic background, 1964. ISBN 90 6196 006 1.

MCT 5 G. DE LEVE, H.C. TIJMS & P.J. WEEDA, Generalized Markovian decision
processes, Applications, 1970. ISBN 90 6196 051 7.

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 1.

MCT 7 W.R. VAN ZWET, Convex transfo=ations of random variables, 1964.
ISBN 90 6196 007 X.

MCT 8 J.A. ZONNEVELD, Automatic numerical integration, 1964. ISBN 90 6196
008 8.

MCT 9 P.C. BAAYEN, Universal morphisms, 1964. ISBN 90 6196 009 6.

MCT 10 E.M. DE JAGER, Applications of distributions in mathematical physics,
1964. ISBN 90 6196 010 X,

MCT 11 A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964. ISBN 90 6196
011 8.

MCT 12 J.A.TH.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MoKKEN & A. VAN
WIJNGAARDEN, Formal properties of newspaper Dutch, 1965.
ISBN 90 6196 013 4.

MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of.print; replaced
by MCT 54 and 67.

MCT 14 H.A. LAUWERIER, Calculus of variations in mathematical physics, 1966.
ISBN 90 6196 020 7.

MCT 15 R. DooRNBOS, Slippage tests, 1966. ISBN 90 6196 021 5.

MCT 16 J.W. DE BAKKER, Formal definition of programming languages with an
application to the definition of A.~GOL 60, 1967. ISBN 90 6196
022 3.

MCT 17 R.P. VANDERIET, Formula manipulation in ALGOL 60, part 1, 1968.
ISBN 90 6196 025 8.

MCT 18 R.P. VANDERIET, Formula manipulation in ALGOL 60, part 2, 1968.
ISBN 90 6196 038 X.

MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968.
ISBN 90 6196 026 6.

MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial
differential equations, 1968. ISBN 90 6196 027 4.

MCT 21 E. WATTEL, The aompaatness opel'ator, in set theor,y and topology,
1968. ISBN 90 6196 028 2.

MCT 22 T.J. DEKKER, ALGOL 60 pr,oaedu.'l'es in numer,iaa"l a"lgebr,a, pa-pt 1, 1968.
ISBN 90 6196 029 0.

MCT 23 T.J. ll!:KKER & w. HoFFMANN, ALGOL 60 pPoaedUPes in numer,iaai a"lgebr,a,
pa-Pt 2, 1968. ISBN 90 6196 030 4.

MCT 24 J.W. DE BAKKER, ReaUPsive pr,oaedu.'l'es, 1971. ISBN 90 6196 060 6.

MCT 25 E.R. PAERL, Repr,esentations of the Lor,entz g-poup and pr,ojeative
geometr,y, 1969. ISBN 90 6196 039 8.

MCT 26 EUROPEAN MEETING 1968, Se"leated statistiaai paper,s, par,t I, 1968.
ISBN 90 6196 031 2.

MCT 27 EUROPEAN MEETING 1968, Sel-eated statistiaai paper,s, par,t II, 1969.
ISBN 90 6196 040 1.

MCT 28 J. OoSTERHOFF, Combination of one-sided statistiaa"l tests, 1969.
ISBN 90 6196 041 X.

MCT 29 J. WRHOEFF, EPPOP deteating deaima"l aodes, 1969. ISBN 90 6196 042 8.

MCT 30 H. BRANDT CORSTIUS, Exaer,aises in aomputationa"l Zinguistias, 1970.
ISBN 90 6196 052 5.

MCT 31 W. M:>LENAAR, Appr,oximations to the Poisson, binomial, and hyper,geo
met-Pia distr,ibution funations, 1970. ISBN 90 6196 053 3.

MCT 32 L. DE HAAN, On r,egu"lar, va.r>iation and its app"liaation to the weak
aonver,genae of samp"le extr,emes, 1970. ISBN 90 6196 054 1.

MCT 33 F.W. STEUTEL, Pr>eser,vation of infinite divisibi"lity under, mixing
and r,e"lated topias, 1970. ISBN 90 6196 061 4.

MCT 34 I. JUHASZ, A. WRBEEK & N.S. KROONENBERG, Car,dina"l funations in
topo"logy, 1971. ISBN 90 6196 062 2.

MCT 35 M.H. VAN EMDEN, An ana"lysis of aomp"lexity, 1971. ISBN 90 6196 063 o.

MCT 36 J. GRAsMAN, On the bir,th of bounda:ry Zayer,s, 1971. ISBN 90 6196064 9.

MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DUIJVESTIJN, E.W. DIJKSTRA,
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN
ARETZ, W.L. VAN DER PoEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES&.
G, ZOUTENDIJK, MC-25 Infor,matiaa Symposium, 1971.
ISBN 90 6196 065 7,

MCT 38 W.A. WRLOREN VAN THEMAAT, Automatia ana"lysis of [)utah aompound wor,ds,
1911. ··:i;sBN 90 6196 073 8.

MCT 39 H. BAVINCK, Jaaobi ser,ies and appr,oximation, 1972. ISBN 90 6196 074 6.

MCT 40 H.C. TIJMS, Ana"lysis of (s,S} invento-py mode"ls, 1972. ISBN 90 6196 075 4.

MCT 41 A. WRBEEK, Super,extensions of topologiaa"l spaaes, 1972.· ISBN 90
6196 076 2.

MCT 42 W. WRVAAT, Suaaess epoahs in Ber,nou"l"li t'Pia"ls (with app"liaations in
number, theo-py), 1972. ISBN 90 6196 077 o.

MCT 43 F.H. RuYMGAART, Asymptotia theor,y of r,ank tests for,, independenae,
1973. ISBN 90 6196 081 9.

MCT 44 H. BART, Mer,omor,phia opeiaator va"lued funations, 1973.,ISBN 906196 082 7.

MCT 45 A.A. BALKEMA, Monotone trcmsfo:mzations and limit l(11J)s, 1973.
ISBN 90 6196 083 5.

MCT 46 R.P. VAN DE RIET, ABC ALGOL, A portable language for forrrrula manipu
lation systems, part 1: The language, 1973. ISBN 90 6196 084 3.

MCT 47 R.P. VAN DE RIET, ABC ALGOL, A portable language for formula manipu
lation systems, part 2: The compiler, 1973. ISBN 90 6196 085 1.

MCT 48 F.E.J. KRUSEMAN ARETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, An ALGOL
60 compiler in ALGOL 60, Text of the MC-corrrpiler for the
EL-XB, 1973. ISBN 90 6196 086 X.

MCT 49 H. KOK, Connected orderable spaces, 1974. ISBN 90 6196 088 6.

MCT 50 A. VAN WIJNGAARDEN, B.J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER,
M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER
(Eds) ,- Revised report on the algorithmic lcmguage ALGOL 68,
.1976. ISBN 90 6196. 089 4.

MCT 51 A. HORDIJK, Dynamic programming and Markov potential theOY'1J, 1974.
ISBN 90 6196 095 9.

MCT 52 P.C. BAAYEN (ed.), Topological structures, 1974. ISBN 90 6196 096 7.

MCT 53 M.J. FABER, Metrizability in generalized ordered spaces, 1974.
ISBN 90 6196 097 5.

MCT 54 H.A. LAUWERIER, Asyrrrptotic analysis, part 1, 1974. ISBN90 6196098 3.

OCT 55 M. HALL JR. & J. H. VAN LINT (Eds) , Combinatorics, part 1: Theory
of designs, finite geometry and coding theory, 1974.
ISBN 90 6196 099 1.

MCT 56 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 2: graph
theory, foundations, partitions cmd combinatorial geometry,
1974. ISBN 90 6196 100 9.

MCT 57 M. HALL JR. _& J.H. VAN LINT (Eds), Combinatorics, part 3: Combina
torial group theory, 1974. ISBN 90 6196 101 7.

MCT 58 W. ALBERS, Asymptotic expansions and the deficiency concept in sta
tistics, 1975. ISBN 90 6196 102 5.

MCT 59 J.L. MIJNHEER, Sample path properties of stable processes, 1975.
ISBN 90 6196 107 6.

MCT 60 F. GoBEL, Queueing models involving buffers, 1975. ISBN 90 6196 108

* MCT 61 P. VAN EMDE BoAS, Abstract resource-bound classes, part 1,.
r8BN ~O 6196 109 2.

* MCT 62 P. VAN EMDE BoAS, Abstract resource-bound classes, part 2.
ISBN 90 6196 110 6.

MCT 63 J.W. DE BAKKER (ed.), Foundations of corrrputer science, 1975.
ISBN 90 6196 111 4,

MCT 64 W.J. DE SCHIPPER, Symmetries closed categories, 1975. ISBN90 6196
112 2.

MCT 65 J. DE VRIES, Topological transfo:mzation groups 1 A categorical ap
proach, 1975. ISBN 90 6196 113 o.

MCT 66 H.G.J. PIJLS, Locally convex algebras in spectral theory and eigen
function expcmsions. ISBN 90 6196 114 9.

4.

* MCT 67 H.A. LAUWERIER, Asyrrrptotic analysis, part 2.
ISBN 90 6196 119 X.

* MCT 68 P.P.N. DE GROEN, Singularly perturbed differential operators of
second order. ISBN 90 6196 120 3.

* MCT 69 J.K. LENSTRA, Sequencing by enumerative methods.
ISBN 90 6196 125 4.

MCT 70 W.P. DE RJEVER JR., Recursive program schemes: semantics and proof
theory, 1976. ISBN 90 6196 127 0.

MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision processes, 1976.
ISBN 90 6196 129 7.

* MCT 72 J.K.M. JANSEN, Sirrrple periodic and nonperiodic Lame functions and
their applications in the theory of conical waveguides.
!SBN 90 6196 130 0.

* MCT 73 D.M.R. LEIVANT, Absoluteness of intuitionistic logic.
ISBN 90 6196 122 x.

·MCT 74 H.J.J. TE RIELE, A theoretical and corrrputational study of general
ized aliquot sequences. lSBN 90 6196 131 9.

* MCT 75 A.E. BROUWER, Treelike spaces and related· connected topological
spaces. ISBN 90 6196 132 7.

MCT 76 M. REM, Associons and the closure statement. ISBN 90 6196 135 1.

* MCT 77

·* MCT 78 E. de Jonge, A.C.M. van Rooij, Introduction to Riesz spaces, 1977.
ISBN 90 6196 133 5

* MCT 79 M.C.A. VAN ZUIJLEN, Empirical distributions and rankstatistics, 1977.

ISBN 90 61~6 145 9.

* MCT 80 P.W. HEMKER, A numerical study of stiff two-point boundary problems,

1977. ISBN 90 6196 146 7.

MCT 81 K.R. APT & J.W. DE BAKKER (eds), Foundations of corrrputer science II,

part I, 1976. ISBN 90 6196 140 8.

MCT 82 K.R. APT & J.W. DE BAKKER (eds), Foundations of corrrputer science II,

pa;t II, 1976. ISBN 90 6196 141 6.

* MCT 83 L.S. VAN BENT~M JUTTING, {)hecking Landau's "Grundlagen" in the

automath system, 1977. ISBN 90 6196 147 5.

MCT 84 H.L.L. Busard, The translation of the elements of Euclid from the
Arabic into Latin by Hermann of Carinthia books vii-xii, 1977.
ISBN 90 6196 148 3

An asterik before the number means "to appear".

