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PREFACE i 

This booklet describes the structure of various types of connected topolog

ical spaces. Our main interest is in spaces that are "thin" or "one-dimen

sional" or "bush-like" or "easily disconnected" in some intuitive sense. 

Although the spaces discussed here differ widely in appearance and proper

ties, the method to study them is always the same: look what happens when 

you remove one or more connected subsets. Our basic tools are lemmas 1- 4 

of chapter 0. 

In chapter I we analyse connected spaces in which each connected subset has 

at most one end point (i.e. non-cut point). Knowledge of the structure of 

such spaces is very useful if one wants to characterize a connected linear

ly orderable space as a space where each connected subset has at most two 

end points that satisfies some additional conditions. 

In chapter II we study a class of spaces introduced by WHYBURN containing 

the treelike spaces, biconnected spaces and spaces with connected inter

section property. The main point here is finding minimal conditions assur

ing that such spaces are treelike. 

In chapter III we give the basic theory of treelike spaces and prove the 

results on locally peripherally compact treelike spaces announced by GURIN. 

Chapter IV contains a complete structure analysis for connected spaces such 

that the complement of a connected subset has at most two components. 

This work and its companion volume (MC Tract 49: H.KOK, Connected orderable 

spaces, 1974) essentially represent the outcome of a collaboration with 

H. KOK in the years 1970/1971. 
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CHAPTER 0 

PRELIMINARIES 

Although this booklet is independent and self-contained, it is more or 

less a sequel to H. KOK's "Connected orderable spaces" [18]. We use the 

same notations and terminology, some of which we explain below: 

If the topological space Xis the topological sum of its subspaces 

A and B (that is, X Au Band An B =An B = 0) and p EA and q EB 

then we may write X A+ B. Besides point denotations also names of sets 
p q 

may occur written below a summand; of course this denotes set inclusion. 

Throughout the book X will denote the topological space under dis

cussion; most of the time it will be a connected T1-space with at least 

two points. 

If C is connected then a point p EC is called an end point, resp. 

a cut point if C\p is connected resp. is not connected. If C\p has exactly 

two components then pis called a strong cut point. If C\p has at least 

three components then pis called a ramification point of C. 

[In contexts like C\p we shall almost always omit the braces; sometimes 

we even write C\p,q instead of C\{p,q}.] 

A subset S of Xis called a segment (of p) if Sis a component of 

X\p for some point p EX. 

Two points p and q are called conjugated when there does not exist a 

point r EX such that r separates p and q (i.e., such that X\r =A+ B). 
p q 

We now list for some properties of a topological space X the abbreviations 

which are used in this book. 

(0) Xis (weakly) orderable. 

(HJ Every connected subset of X has at most two end points. 

(VJ Every connected subset of X has at most one ,::nd point. 

(INT) The intersection of an arbitrary collection of connected 
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(INTC) 

(INT2) 

(INTC2) 

(S) 

(W) 

subsets of Xis connected. 

The intersection of an arbitrary collection of closed connected 

subsets of Xis connected. 

The intersection of two connected sets is connected. 

The intersection of two closed connected sets is connected. 

Xis treelike, that is, no two points of X are conjugated. 

The boundary of any component of the complement of a connected 

subset of X contains at most one point. 

X does not contain three mutually disjoint segments. 

Each cut point is a strong cut point. 

Any two points of X can be separated by an open connected set. 

Among any three points of X exactly one separates the other two. 

Many other properties occur only locally; for (Vx) with XE {0,1,m,a} see 

page 11. 

Apart from these we have the usual notation for separation axioms (e.g., 

(T1)) and countability axioms (e.g., (CI)). 

Basic tools in what follows are the lemma's below; of course they are 

well-known, although it is difficult to find explicit statements of them 

in the literature. 

Let x be a connected topological space, and Ca connected subset 

of X. 

LEMMA 1. If A is clopen (= closed-and-open) in X\C then Au C is connected. 

PROOF. Let X\C =A+ Band suppose AU C 

X = (BUS)+ T, hence T = ~- 0 

s + T where Cc S. Then 

LEMMA 2. If Sis a component of X\C then X\S is connected. 

PROOF. Suppose X\S =A+ Band Cc A. Then Bu Sis connected and con

tained in X\C hence Bu S =Sand B = ~- 0 

LEMMA 3. If Q is a quasicomponent of X\C then X\Q is connected. 

PROOF. Q n{B i B is clopen in X\C and Q c B }, so 
a a a 

X\Q = U{X\B I B clopen in X\C and Q c B }. 
a a a 

Each X\B is connected and contains C, so X\Q is connected. 0 
a 



~ 4. Let X be a connected T 1-space, p e: x:, Let B be a subset of X\p 

such that Bis clopen in X\p or Bis a component in X\p or Bis a quasi

component in X\p. Then, if Y = X\B, the following holds: 

{i) Y is a connected T1-space. 

{ii) The components of Y\p are exactly the components of X\p contained 

in Y. 

{iii) If q e: Y\p then the components of Y\q are exactly the intersections 

of the components of X\q with Y. 

~- Straightforward. D 

The following lemma is of some use in the construction of counterexamples. 

LEMMA 5. Let {X,T) be a connected topological space and let D be a dense 

subset of X. Give X a new topology by making D open (i.e., take Tu {D} 
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as a subbase for a topology T• on X). Then with the new topology Xis still 

connected. 

PROOF. r• = {u u (VnD) I u,v € T}. Now if 

X = (Uo u (VonD)) u (Ul u (VlnD)) and 

(Uo u (VonD)) n (Ul u (VlnD)) =~then 

(u0uv0 ) n cu1uv1) n D =~,hence, since Dis dense, 

(UOUVO) n (U1UV1) =~-But this means that 

ui u vi ui u (VinD) (i = 0,1) and 

X = (U0uv0 ) + (u1uv1), a contradiction. 0 





CHAPTER I 

ON V-SPACES 

0. INTRODUCTION 

For connected T1-spaces we consider the following properties: 

(H) Every connected subset of the space has at most two end points. 

(V) Every connected subset of the space has at most one end point. 

(Vl): The space contains a point x0 (called the lowest point or the base 

point of the space) such that every connected set containing x0 is 

closed. 

[Note: a Vl-space cannot contain two base points, for if x0 and x 1 

are two different base points of a Vl-space X then the component 

S of X\{x0 } containing x1 is closed, but its complement X\S is 

connected and contains x0 hence is closed too, which contradicts the 

connectedness of X.] 

In [14] H. HERRLICH proved that a connected, locally connected H-space is 

strictly orderable, and in [18] it is shown that a connected T 1-space is 

orderable if it satisfies (H) and the condition that a segment is never 

closed (i.e., if C is a component of X\{p} then p EC). 

The question whether (H) alone implies the orderability was solved in 

the negative by J.L. HuRSCH and A. VERBEEK-KROONENBERG who gave an example 

of a countable connected Hausdorff Vl-space (which necessarily is non

orderable) in [15]. (Weshall see that (Vl) implies (V), while obviously (V) 

implies (H) • ) 

In this chapter we determine the structure of V-spaces, thus preparing 

the characteriza~ion of non-orderable H-spaces. 

REMARK. For reasons that will become clear later on we have interchanged 

the meaning of (V) and (Vl) compared to [6] and [19]. 
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Unless the contrary is stated explicitly X will designate a connected 

T1-space satisfying (V). 

1. ON (Vp) 

Let (Hp) be the property: "each connected proper subset of X has at most 

two end points". In [18] spaces not satisfying (H) but with property (Hp) 

are characterized as spaces which are cyclically orderable but not orderable. 

Analogously, we define (Vp) by: "each connected proper subset of X has at 

most one end point". In contrast to the result concerning (H) and (Hp) 

referred to we have: 

THEOREM 1. (V)-+-+ (Vp) (for connected T1-spaces). 

PROOF. Obviously (V)->- (Vp). Conversely, let X be a connected T 1-space 

satisfying (Vp) and suppose that x and y are two distinct end points of X. 

(i) If X\{x,y} =A+ B, A# 0 then both Au {x} and Au {y} are connected 

and hence Au {x,y} is connected and has two end points. This contra

dicts (Vp) unless Bis empty. It follows that X\{x,y} is connected. 

(ii) Choose z E X\{x,y}. If X\z is connected then by (i) X\{x,z} and 

X\{y,z} are connected and hence X\z has two end points, which contra

dicts (Vp). Hence x\z is not connected. 

If X\z can be separated with x and yon the same side of the separation 

then X\z A +Band A= AU {z} X\B is a connected subset of X 
x,y 

with the two end points x and y (see ch.0, lemma 4 (iii)). 

If X\z cannot be separated in such a way then the separation is clearly 

unique, that is, X\z has exactly two components: X\z =~+~-But now 

A= Au {z} has the two end points x and z. 

In all cases we arrive at a contradiction with (Vp). D 

2. THE RELATION BETWEEN (V) and (V1) 

PROPOSITION 1. Let X be a V-space and let Cc X be connected. Then either 

each component of X\C is open or all components but one are open; in the 

latter case if c1 is the one that is not open then c1\c~ is a singleton. 



PROOF. If c 1 and c 2 were two non-open components of X\C and x. E C.\C~ 
J. J. J. 

(i = 1,2) then the connected set X\(c 1uc2) would have the two end points 

x 1 and x2 (for: X\(c 1uc2 ) is connected), a contradiction of (V). 

If {x1 ,x2 } c c 1\c~ then x\c1 has two end points which again contradicts 

(V). □ 

THEOREM 2. Let x be a V-space containing an end point x0 . Then Xis a 

Vl-space with x0 as base point. 
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[Note: the base point of a Vi-space is not necessarily an end point. Theorem 

2 is a special case of the result to be proved in the next section (after 

the introduction of a partial order on V-spaces) that a V-space is a Vl

space with base point x0 if and only if it contains a smallest point x0 .J 

PROOF. (i) We first prove: 

If p F x0 and C is the component of X\p containing x0 then C is closed. 

For that purpose, suppose that C is not closed, that is, C =Cu {p}. 

x 0 cannot be an end point of C since in that case C would have the end points 

x0 and p. Hence x0 is cut point of C and c\x0 = t + B (B # 0). If C is open 

then Bis open too, and, since B clearly is also closed in X\x0 , we have 

X\x0 ((X\C) u A)+ B, which contradicts the assumption that xo is an end 

point of X. Therefore, C is not open and (by proposition 1) C\C0 = {x1 } for 

some point x 1 . 

First suppose xl F xo. If c\xo can be 

same side of the separation, i.e., if c\x0 

separated with p and x1 on the 

A + B (B # 0),then Bis open 
p,x1 

and it follows as above that x0 is a cut point of X. Hence, only one separa-

tion is possible: C\x0 =~+~where A and Bare connected. But now Au {x0 } 

is connected and has the two end points p and x0 (since C\x0 = (A\p) + B 

we have that (A\p) u {x0} = (Au {x0})\p is connected), a contradiction. 

Therefore, we must have x0 = x 1; but in this case Bis open and again 

it follows from X\x0 = ((X\C) u A)+ B that x 0 is a cut point, which is 

impossible. 

(ii) Now we can prove theorem 2: 

Let C be connected with x0 E c, and suppose that C is not closed. Then 

precisely one of the components of X\C is not open; let this one be c 1 and 

let {x1 } = c 1\c~. Notice that x1 I x0 . Let S be the component of X\x 1 con

taining x0 • x0 E x\c1 and X\c 1 is connected, so x\c 1 c S. But Sis closed 

according to (i) and x 1 E X\c1 c S = S gives a contradiction. 

Hence, C is closed. D 
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THEOREM 3. (Vl) -r (V). 

PROOF. Let X satisfy (Vl) with x 0 as base point. Suppose C is connected and 

has two distinct end points p and q. Then x 0 i C; for, if x 0 EC and, e.g., 

x 0 ~ p then C\p contains x 0 and is connected but not closed. The component 

of X\p containing x 0 is closed, and each other component of X\p is open 

(for if c1 is a segment of p and x 0 i c1 then x\c1 is connected, contains 

x 0 and hence is closed). In particular pis a cut point. The connected set 

C\p is contained in some component T of X\p. Since p E T\T, Tis not closed 

and, therefore, x 0 i T. Hence, Tis an open component of X\p and we may 

write X\p=A+T. But now Au {p} u (C\q) is connected, contains x0 but is 
x 0 C\p 

not closed, which is impossible. D 

COROLLARY. A Vi-space contains at most one end point (which then is the 

base point). 

3. THE PARTIAL ORDER OF V-SPACES 

In [15] a partial order for Vi-spaces with base point x0 is defined by 

for ally E X\x0 

iff x separates x0 and y. 

For V-spaces this can be generalized as follows: 

X < y iffy belongs to some open segment of x. 

THEOREM 4. < is a partial order. 

PROOF. (i) < is antisymmetric: 

Suppose that both x < y and y < x. Then X\x =A+ S and X\y = B + T 
y X 

where Sand Tare open and connected. Observe that Bu {y} is connected and 

contained in X\x so Bu {y} c Sand similarly Au {x} c T. Now S\y = 

= B + (SnT) and T\x A+ (SnT) and hence (SnT) u {x} and (SnT) u {y} are 

connected; since Sn T ~ 0 [otherwise we would have X = (Au {x}) +(Bu {y}) 

contrary to the connectivity of X] it follows that (SnT) u {x,y} is a 

connected set with two end points,which contradicts (V). 



(ii) < is transitive: 

Let x < y and y < z. Certainly x ~ z since< i~ antisymmetric. Now X\x 

=A+~ and X\y B + t, where Sand Tare open and connected. 
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If z e A then since Au {x} is connected in X\y we have Au {x} c T and, 

consequently, x e T. But this means y < x contradicting the antisymmetry of 

<. It follows that z e Sand hence x < z. D 

PROPOSITION 2. For each x e X the subset {y I y < x} of Xis linearly 

ordered. 

PROOF. Suppose u < x and v < x; we must prove that u and v are comparable. 

Suppose not, then X\u = t +~and X\v = H + i' where Sand Tare open and 

connected. But now Su {u} =Sis connected and contained in X\v which is 

impossible since it contains both u and x. D 

PROPOSITION 3. In Vi-spaces the partial order< coincides with the partial 

order <1 defined by(*). 

PROOF. Let x <yin a Vi-space X with base point XO. If x = XO then x <1 y 

by definition. So assume that x ~ x0 • Then X\x =A+~ where Sis open and 

connected. Since x0 does not belong to any proper open connected subset 

of X it follows that x0 e A and hence that x separates y from x0 . Conse

quently, x <1 y. 

Conversely: let x <1 y and x ~ x0 ; then x separates y from x0 . Now 

the segment S of x which contains x0 is closed and hence not open, and 

obviously y is. All other segments of x are open by proposition 1; ybelongs 

to such a segment, i.e., x < y. 

Finally x0 < y for each y ~ x0 because the complement of the segment 

of x0 containing y is connected and, therefore, closed. D 

REMARK. Since we did not use the fact that <1 is a partial order, 

proposition 3 (together with theorems 3 and 4) constitutes an independent 

proof hereof. 

and 

It is convenient to introduce the notations: 

p := {y IX s y} 
X 

Qx := {y Ix$ y} X\P. 
X 
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If the space has a smallest point x then Px = X and Qx = 0. Otherwise 

Px f X and Qx is the only component of X\x which is not open, Px is its 

complement and Px is not closed. Clearly in all cases both Px and Qx are 

connected. Observe that if Xis a Vl-space then Qx (is either empty or 

contains the base point and hence) is closed and consequently Px is open. 

PROPOSITION 4. 

(i) Let X be a V-space and let x EX. Then P is a Vi-space with base 
X 

point x. 

(ii) AV-space with a smallest point xis a V1-space with x as a base point. 

PROOF. Clearly property (V) is hereditary for connected subspaces. Also 

each component of Px\x is open (in X hence also in Px), i.e., xis the 

smallest point of Px (in its intrinsic order). Therefore, it suffices to 

prove (ii). 

Suppose c is a connected set such that x E c and q E c\c. Since x < q we 

have X\x =A+ S where Sis open and connected (and possibly A= 0). 
q 

Now C\x = (CnA) + (ens) and q t/. CnA hence q E ens. But by theorem 2 s u {x} 

is a Vi-space and (ens) u {x} is a connected subspace containing the base 

point hence is closed (in Su {x} = S, hence also in X). Contradiction. D 

COROLLARY. AV-space is a V1-space iff it has exactly one minimal point. 

PROOF. The 'if' part is given by (ii) of the above proposition. The 'only 

if' part follows from the definition of the partial order <1 on Vl-spaces 

and the fact that< and <1 coincide (proposition 3). D 

REMARK. Let X be a V-space and Ya connected subspace. Then we have two 

partial orderings defined on Y: first the intrinsic order <Yon Y-as-a-V

space, and second the restriction (<X) n (YXY) of the partial order on X 

to Y. Unfortunately, these two do not coincide in general. We shall see, 

however, that in the important special case that Xis a Vi-space < = ( < ) n (YxY) 
y X 

for each connected subspace Y of X (proposition 14). In the sequel we shall 

sometimes use the notation <X for the partial order in the V-space x. If 

confusion seems unlikely we shall stick to our custom to drop the index x. 

PROPOSITION 5. Let y be a non-minimal point ofx. Then P is open and Q is 
y y 

closed. Conversely, if P is open and 
y 

if U is an open connected subset of X 

point that is minimal in X. 

P ~ X then y is not minimal; indeed, 
y 

and U f X then U does not contain any 



PROOF. Let x < y. Let X\x =A+ S where Sis open and connected (and 
y 

possibly A .0). We then have 

(S u {x}) \y (P \y) u (Q n (Su{x})), 
y y 

since P c S (because P intersects Sand does not contain x). Note that 
y y 

Au {x} c Q. Furthermore, 
y 

Q \x = (Q nA) + (Q nS) 
y y y 

and consequently Q n (su{x}) = (Q ns) u {x} is connected. 
y y 

11 

By theorem 2 Su {x} is a Vi-space with base point x and so Q n (Su{x}) is 
y 

closed (in Su {x} = S hence also in X). It follows that Q = (Au{x}) u 
y 

(Q n (Su{x})) is closed and thus P is open. 
y y 

Conversely, if U is a proper open connected subset of X then U = U u {q} 

for some q and X\q = U + X\U, so for each u EU we have q < u. D 

PROPOSITION 6. Each nonempty subset Ac X which is directed downwards and 

which is bounded from below bas a (unique) infimum. 

PROOF. Suppose A does not have a minimum. Then for each a EA Pa is open. 

Let A* U P. A* is open and different from X since it does not contain 
aEA a 

a lower bound for A. Also it is connected because A is directed and each P 
a 

is connected. Therefore, its boundary is a singleton: aA* = {x}. We will 

show that X = inf A. 

(i) 

(ii) 

* * * If Px is open then it certainly intersects A. Choose a E Px n A and 

choose a EA such that a Sa*. If a 1 is an arbitrary point of A then 

choose a2 EA such that both a 2 S a 1 and a2 Sa. By proposition 2 

{z I z s a*} is linearly ordered; since this set contains both x and 

a2 it follows that either x < a 2 or a 2 s x. In the latter case, however, 

* we would have x E Pa2 c A , which is impossible. Therefore, x <a2 sa1 , 

i.e., xis a lower bound for A. 

If P is not open then (by proposition 5) xis a minimal element of X. 
X 

Now by assumption A has a lower bound y, that is, A c p and the 
* 

y 
connected set A is contained in precisely one (open) component s of 

X\y. Since x EA* c S =Su {y} it follows that x ~ y and hence x 

Thus in both cases xis a lower found for A. Now suppose y < a for each 

a EA. As under (ii) it is seen that x ~ y, i.e., x = inf A. D 

y. 
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PROPOSITION 7. If y is not a minimal point of X then y has an immediate 

predecessor y'; moreover, {y'} = P\P = oP. y y y 

PROOF. If y is not minimal then P is open 
y 

and connected and P f X, so 
y 

oP 
y 

is a singleton. Let oP = {y'}. Now if 
y 

z < y then y belongs to some 

open component S of X\z; it follow·s that P c S and hence y' E 
y 

=Su {z}, thus z ~ y'. Consequently, y' = max{z J z < y}. D 

p 
y 

C S = 

PROPOSITION 8. If x does not have a minimal point then Xis directed down-

wards. 

PROOF. Let A be a maximal linearly ordered subset of X and let P u p • 
aEA a 

Then Pis open because each Pa is open. 

Let z E P and choose y E Pz n P. Let a EA be such that a~ y. Since 

{x J x ~ y} is linearly ordered, a is comparable with z. Hence either 

z E p c P or z E {x I x < a} c Ac P by the maximality of A. Thus z E P, 
a 

i.e., Pis closed. 

Since Xis connected it follows that P = X. D 

PROPOSITION 9. Let X contain at least one minimal point. Then each nonempty 

subset Ac X which is directed downwards is bounded from below. In particular 

below each x EX there is a minimal point. 

PROOF. Without loss of generality we may assume that A has no minimal 

element. Let P = u p . 
aEA a 

p is open and connected and does not contain a 

minimal point ( such a point would also be a minimal element of A). Hence, 

in any case P t x. Let oP = {z} then P is an open component of X\z. Hence, 

Ac Pc Pz and consequently z is a lower bound of A. D 

We shall have to distinguish more than once between V-spaces with no, 

one or more than one minimal point. To this end we define: 

AV-space Xis said to satisfy 

lVO) iff it does not contain minimal points, 

( Vl) iff it contains exactly one minimal point, 

(Vm) iff it contains more than one minimal point, 

(Va) iff it contains at most one minimal point. 

[Note that because of the corollary to proposition 4 this definition of 

(Vl) coincides with that given earlier.] 

Hausdorff examples of each of these types do exist, and will be given in 

section 6 of this chapter. 
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PROPOSITION 10. Let A be a linearly ordered subset of X with order type a. 

* If A is bounded above then a= S for some ordinal S. If A is not bounded 

above in X then * a= ln<w Sn for some suitable countable set of ordinals 
0 

{Sn}n<w • 
(Here i~ Sis an ordered set of order type a then the order type of the 

inversely ordered set is denoted by a*.) 

PROOF. If A f ¢ is bounded above (by z, say) then A has a largest element, 

namely max A= inf{y J Va €A: a~ y ~ z}. 

(For: the infimum exists by proposition 6 (and proposition 2), and if it 

would not belong to A then its immediate predecessor - which exists by 

proposition 7 - would still be an upper bound for A.) 

Hence A is well ordered by>. If A is not bounded above then there exists 

an infinite strictly increasing sequence Bin A.Bis cofinal with A 

(otherwise B would be bounded and then would have a largest element, contra

dicting the fact that Bis strictly increasing). Thence it follows that 

a= l . s* for some suitable countable set of ordinals {Sn}. D 
n<wo n 

4. SUBSPACES 

In this section we investigate for connected subspaces Y of X the relation 

between <Y and <X restricted to Y. In all cases where< or min or max does 

not have an index, the index Xis meant. 

PROPOSITION 11. If Cc Xis connected and has an end point x then x 

or xis a minimal point of X (or both). 

min C 

PROOF. C\x is entirely contained in one component of X\x. Suppose x f min C. 

Then C\x c Qx• (Otherwise C\x c Px, but x = min Px.) Now if xis not minimal 

then Q is closed and C = (C\x) + {x} would be disconnected. D 
X 

REMARK. The second alternative may indeed occur: if Xis a (Vm)-space and 

z is a minimal point of X then Pz is not closed, i.e., Pz Pz u {x} for 

some x. Here xis not comparable with z and the proposition says that xis 

another minimal point of X. 

PRQPOSITION 12. Let X be a V-space and let Y be a connected subspace. Let 

x € X and let S be an open component of X\x. Then Y n Sis connected. Hence, 

also Y n P is connected. 
X 
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PROOF. We may suppose x E Y (otherwise Y n Sis empty or equals Y). 

X\x = S + (X\S) hence Y\x (YnS) + (Y\S) and thus (YnS) u {x} is connected. 

□ 
PROPOSITION 13. Let X be a V-space and let Y be a connected subspace. Then 

(<x) n (YXY) C <y. 

PROOF. Let y 1 ,y2 E Y, y 1 <X y2 . Let X\yl =;2 + A where Sis connected and 

open (and A may be empty). Y n (Su{y1}) is a connected subspace of the Vl

space Su {y1} containing its base point hence itself a Vl-space with base 

point y 1 • (From the original definition of (Vl) it is immediately seen that 

(Vl) is hereditary for connected subspaces containing the base point of the 

space.) Therefore, all components of Y n Sare open (in Y n Sand hence in 

Y). It follows that yl <y y2 . □ 

PROPOSITION 14. Let X be a Va-space and let Y be a connected subspace. Then 

(i) <X n (YxY) = <Y, that is, the partial order <Yon Y is the restriction 

of the partial order <X on X to Y. 

(ii) Y has at most one minimal point, i.e., (Va) is hereditary for connected 

subspaces. 

PROOF. (i) In view of proposition 13 it suffices to show <Y c <X n (YxY). 

For that purpose suppose y 1 <Y y2 , say Y\y1 = y~ + B, where Tis open and 

connected in Y (and B may be empty). Now all components of X\y1 are either 

open or closed. If y2 belongs to some open component of X\y1 then y 1 <X y2 • 

On the other hand if y2 E Qy then Tc Qy which is impossible since 

y 1 E T but y 1 i Q = o . 1 1 
Y1 --Y1 

(ii) If both y1 and y2 are minimal under <Y then P' = P n Y is a proper 
Y1 Y1 

clopen subset of Y: it is open in Y since PYl is open in X; it is closed in 

Y since a pointy E ay P' would be 
Y1 

strictly smaller than y 1 ; it is proper 

since it does not contain y2 . Contradiction. □ 

PROPOSITION 15. Let X be a V-space and x EX. Then <p <X n (pxxpx), that 

is, the intrinsic partial order on P is the restrict1on of the partial 
X 

order on X to P. 
X 

PROOF. By proposition 13 <px ::, < n (P xp ) . Conversely, suppose xl < 
PX x2. X X X 

Then Px\x1 = A + S where S is connected and open in Px and does not 
X X2 

contain x, hence is open in x. Therefore, X\x1 = (QXUA) + s , i.e., 

xl < X x2. □ 
X X2 
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PROPOSITION 16. Let x be a Vm-space. Let Y be the collection of the minimal 

points of x (so that JyJ ~ 2). Let y0 be some ppint in Y. By transfinite 

induction we define ya for a> 0 by: 

if U p is not closed. 
B<a YB 

Then: 

(1) Ya E Y and U P is connected. 
B<a YB 

(2) If a0 is the first ordinal such that U P is closed, then 
B<a0 YB 

X and Y 

(3) For each y < a 0 we have 

that is, Y is cyclically well ordered. 

PROOF. (1) (By transfinite induction): Let the assertion be proved for all 

a with 1 ~a< y, where y is some ordinal less than a 0 • If y is a limit 

number then certainly 

u p 
B<y YB 

is connected. If y 

u u p 
a<y B<a YB 

o + 1, then 

which is connected, since 

Next, 

u p 
B<y YB 

\ u p 

B<y Ys 

consists of precisely one point, yy say. Since certainly yy is not the mini-
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mum of B~y PYB (each y 8 is minimal!) it follows from proposition 11 that yy 

is a minimal point of X, i.e., y E Y. 
y 

(2) We now have to prove that if P = 0 U Py is closed then P = X. If 
.,<ao B 

X\P f J1l then by proposition 9 there is a minimal pointy of X with 

y E (X\P) n Y. By proposition 5 Q is not closed; hence Z := 
y 

Q = Q u {y} 
y y 

is a Vl-space with base pointy (by theorem 2). Of course P 
y 

is not closed 

since Q is not open by definition; sop p u {z} for some z E Z. 
y y y 

For u E z, let P~ and Q~ denote the sets {v E Z I V 2:2 u} and Z\P' 
u 

respectively. 

Claim (i) z is a minimal point in x. 
(ii) Let u E Z\y. If u <2 z and S~ is the component of Z\u containing 

z then P = P'\S'. If u f2 z then Pu P'. (In this case we 
u u u u 

write S' = ¢.) 
u 

(iii) z 2:2 y 0 (and, for that matter, z 2:2 ya (a< a 0 )). 

For: (i) If z were not minimal then by proposition 5 Pz would be open and 

intersect P in some point u. But then y and z are both in the linearly 
y 

ordered set {v Iv~ u} hence are comparable, and by the minimality of y: 

y ~ z, which is impossible since z i P by definition. 
y 

(ii) First of all, by proposition 13, we have Pun Z c P~-

and does not contain y so Puc Z, i.e., Puc P~. Z\{y,z} 

X, so each component of Z\u not containing z and open in Z 

P is connected 
u 

X\P is open in 
y 

(and hence not 

containing y) is open in X (and again a component of X\u). On the other 

hand, a component of Z\u containing z cannot be contained in an open com

ponent of X\u since z is minimal. Hence Pu union of open components of 

X\u = union of open components of Z\u not containing z = P'\S'. 
u u 

(iii) Py0 is not open in X but PYO is open in z so either Py0 f Py0 or 

z E PYO (since certainly y i PYO; remember that y is the base point of Z). 

But also in the former case we have z E P' (by (ii)); so in all cases 
Yo 

z ;;:z Yo· 
This proves the claim. 

Now if we put Q :=Pu S' then, since Pis closed, Q=P u{y} us' Q. 
~ 0 ~ 

But on the other hand Q must be open in Z: Define for y ~ a 0 

By 

Q := S' u 
y Yo 

u p 
B<y YB 

transfinite induction it is 

(iv) Qy is connected and 

(v) Qy S' . 
Yy 

seen that 

open in Z, and 
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For: If y O then Q = S' by definition, and this is an open connected 
y Yy 

subset of Z (and nonempty because of (iii)). If y is a successor ordinal 

then Q = Q 1 u P 
y y- Yy-1 

S' UP 
Yy-1 Yy-1 

P' by (ii), so Q is connected 
Yy-1 Y 

and open in z.' 

Qy = PYy-1 u {yy} u S' = 0 
Yy-1 ~y u {yy}, hence Q is the component of Z\y, 

y y 
containing z, i.e., Q = S' • If y is a limit ordinal then Q = U Qs is y Yy y S<y 
connected and open in z. Moreover, Q = y SYO u S~y PyS u {yy} Q u y {yy}, 

so again Qy = Syy· 

In particular Q = Qao is open in z. But since Z is connected we must have 

either Q = ¢ (which is impossible since y0 E Q) or Q 

sible since y E Z\Q). This contradiction proves that P 

y = {ys I S<ao}. 

z (which is impos-

X and hence 

(3) Finally, if Y = {yS I oss <a0 } then if we start with y instead of y 0 , 

we must find the same sequence of points and, finally, y0 Yao (because if 

y < o then 

i.e., each point is already determined by a co final set of its predecessors. D 

PROPOSITION 17. Let Y be a Vm-space and assume that Y is a subspace of a 

V-space X. Then 

(i) each minimal point of Y is minimal in X, 

(ii) each minimal point of Xis element of Y (and minimal in Y because 

of (iv)), 

(iii) Y is closed in X and all components of X\Y are open, 

(iv) <Y is the restriction of <X to Y, and the cyclic well orderings on 

the minimal points coincide. 

PROOF. (i) Suppose x < y, where y is minimal in Y. Then by proposition 13 

if x E Y then x <yY• But if xi Y then Y c Px contradicting proposition 14. 

(ii) Let x be a minimal point of X not in Y. Then Qx is not closed (by 

proposition 5; note that because of (i) Xis a Vm-space) hence Q u {x} is 
X 

a Vt-space containing Y contradicting proposition 14. [Note: at this point 

we do not know yet whether x must be a minimal point of Y.] 

(iii) If x E Y\Y then by (i) Y is not contained in an open component of X\x, 
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i.e., Y c Qx• But then Qx is not closed, i.e., xis a minimal point in x, 

and by (ii) x E Y. 

If C is a non-open component of X\Y then C\C 0 = {z} (by proposition 1). X\C 

is connected and X\C = X\C u {z}, so by proposition 11 either z = min X\C or 

z is a minimal point of X (or both). Butz i Y so by (ii) z is not minimal 

in X and, consequently, z = min X\C. However, Y c X\C implies that z is 

smaller than each point of Y, contradicting (i). 

(iv) Let {xy I y < a 0 } be a canonical well ordering of the set of minimal 

points of x. Suppose that for some a< a0 , Y n 

a suitable renumbering of the xa) we might as 

U Pxo is closed. Then (by 
S<a .., 

well suppose that Y n U P 
y:s:S<a0 xs 

is closed for some y > 0 (and hence for ally< a 0 ). [Note: the value of a 0 

might have been changed in the process of renumbering.] This means that all 

sets Y n o~y Px0 are open in Y. Also these sets are connected: by proposi

tion 12 each Y n Px0 is connected, and by (ii) it is nonempty. Now for 

0 < o < y, Y n U Pxo is not closed (since Y is connected), so for each 
S<o .., 

such o x, E Y n O Px and it follows that Y n U Px, is connected for 
u s<o s o<y u 

each y < a 0 • But an open connected set different from the entire space (in 

casu Y) does not contain a minimal point (proposition 5), i.e., x 0 is not 

minimal in Y for o < y < a 0 and this means that Y contains at most one 

minimal point. contradiction. Therefore, for no a< a 0 

closed, so x E Y n U Px which means that Qxy n Y = 
a S<a S 

Y n U Px 0 is 
S<a .., 

U Px n Y is con
Sh Y 

nected and not closed for each y < a 0 • This proves that if xis minimal in X 

then xis minimal in Y and x < y is equivalent to x <Y y for y E Y. If 

y 1 <Y y2 then y2 is element of an open component of Y\y 1, i.e., y2 E Py 1 n Y 

and y 1 < y2 • This (together with proposition 13) proves everything. D 

While Vm-spaces are maximal, VO-spaces can be extended with a lowest point: 

PROPOSITION 18. If Xis a VO-space then it can be made into a V1-space by 

adjoining a (closed) lowest point x0 with basic (open) neighbourhoods 

{x0 } u (x\iQ1Pxi) for n E JN and x1 , ••• ,xn EX. If X satisfies a Ti separa

tion axiom (i=l,2,2½,3) then Y =Xu {x0 } is Ti too. 

PROOF. Observe that we indeed defined a topology on Y and that Xis inbedded 

in Y as an open subset; in particular each open subset of Xis open in Y. 

Next, since X has no minimal points and since Pc P, for x Ex (see prop-
x X 

osition 7), it is immediately seen that Y =Xis connected and Ti (i=l,2,2½,3). 

[T2½: {x0 } u (X\Px,) and Px = Px u {x'} are closed disjoint nbds of x0 and x. 

T3 : Let F c Y be closed, and y i F. If y = x0 then y i F = F yields 
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n 
F n u PX, for certain points x. (1 ~ i ~ n) • Now 

i=l l. l. 

y E {xo} u (x\ LJ ~) C {xo} u (x\_n ~) C 

i=l xi i.=1 xi 

C {x} U (x\.n P ,) C Y\F. 
0 1.=l xi 

If y F x0 and U and V are disjoint open nbds of y and F n X in X then 

u n P and vu ({x0 } u X\P) are disjoint open nbds of y and Fin Y.] 
y y 

Furthermore, Y is a Vl-space: 

Suppose x 0 EC, C connected but not closed, say p E C\C. Then Pp (which is 

an open set in X and hence in Y) intersects C; let q E P n C. Let S be the 
p 

(open) component of X\p containing q, then SY= SX Su {p} and C 

+ (C\S), a contradiction. 
XO □ 

Note: we do not know whether there exists a V-space satisfying T2½. 

5. TOPOLOGICAL PROPERTIES OF V-SPACES 

THEOREM 5. AV-space containing more than one point cannot be: 

(a) countably compact, 

(b) locally countably compact, 

(c) locally peripherally compact and T2 • 

(ens)+ 
q 

PROOF. First observe that a V-space X containing more than one point does 

not contain maximal elements: if xis maximal and not minimal then P = {x} 
X 

is clopen which is impossible; therefore, a maximal element must be minimal 

too, and since Qx = X\x is open it follows from the definition of Qx that 

Qx = 0 and X {x}. 

(a) Let {u } be a strictly increasing sequence in x. For i E lN let 
n nElN 

U. := Pu,\Pu, 2 • Let Q = X\Pu • Then {Q} u {u. I i E :IN} is a countable open 
l. l. 1.+ 1 l. 

covering of X (for: {un}n is cofinal in X by proposition 10). ui i. Uj for 

j = i,i-1; hence this covering has no finite subcovering. Therefore, no sub

set of X containing a strictly increasing sequence is countably compact; in 

particular X itself is not countably compact. 

(b) When U is open in X and when U contains a maximal element x then as 

before either Px n U = {x} is clopen, which is impossible, or xis minimal 
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in X such that Q u {x} is a neighbourhood of x. But this means P = {x}, 
X X 

Q ¢, X = {x}. Therefore, no open subset of X contains a maximal element 
X 

and by (a) Xis not locally countably compact. 

(c) Let U and V be disjoint open sets such that x Eu, x' EV, Uc Px and 

au is compact (for some non-minimal point x EX). Px Px u {x'} and 

x',x I au; hence au c P \{x}. Let X\x = Q u Uc be the decomposition of 
x x a a 

X\x in components. Now {c} is an open covering of au consisting of disjoint 
a a 

sets. Let {Ca , ••• ,Ca} be a finite subcovering. Then CN n au=¢ for 
1 n ~ 

a F a 1, ••• ,an. Since x EU and Ca Ca u {x} is connected it follows that 

U Cc u. But x' E P = Uc hence each nbd of x' meets UC and 
aFa 1, ••• ,a~ a x a a a a 
- since {xj u Ca 1 u u Can is closed and does not contain x' - also 

U c. (In particular there exist indices a F a 1, ••• ,an.) 
aFa 1, ••• ,an a 

It follows that each nbd of x' meets u. Contradiction. D 

REMARK. In the next section examples of locally peripherally compact T1 

V-spaces will be given. 

THEOREM 6. Let X be a V-space. Let Y be a dense subset of X. Then 

IYI = lxl. 

PROOF. Let D be a maximal set of pairwise incomparable elements of X such 

that nod ED is minimal in x. Since all Pd (d ED) are disjoint it follows 

that IDI ~ JYJ. Let Ebe a chain in X and choose fore EE an open component 

of x\e disjoint from E. Since all these open sets are disjoint it follows 

that IEI ~ IYI. In particular, if B0 = {y EX I 3d ED: y ~ d} then 

IB0 1 ~ IYl 2 = IYI. Now define by induction sets Di with o0 = D and Di+l 

a maximal set of pairwise incomparable elements of x\ U B0 .• Then x = 
j~i J 

U B0 . since a strictly ascending sequence in X 
i=O i 

does not have an upper 

bound. Therefore, lxl ~ H0 • IYI = IYI. Since obviously IYI ~ lxl this proves 

IYI = lxl. □ 

REMARK. Note that in fact we proved lxl 

of x. 

c(X), the degree of cellularity 

DEFINITION. Let X be a V-space. The depth of Xis the supremum of all ordi

nals a such that X contains a strictly decreasing sequence {u} • Y y<a 

THEOREM 7. Let X be a V-space with depth w0 • Then each continuous f: X ➔ I 

is constant. 
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PROOF. If f is constant on each Px c X then it is easily seen that f is also 

constant on X. Therefore, we may assume that Xis a Vi-space with base point 

x0 • Since X has depth w0 we may write X = kQO Yk where 

Arguing by contradiction we assume that f is not constant. 

Without loss of generality we may assume that f (x0 ) = r < s = f (x1) for some 

x 1 E Y 1• We will exhibit a separation X = A + B by defining inductively sets 

Ak and Bk and functions ¢k,$k: X + I as follows: 

Set A0 = {x0} and B0 0. Choose t with r < t <sand set ¢0 (x) = t, 

t 0 (x) = 1 for each x Ex. Assume Ai, Bi' ¢i and ti defined for i <kin such 

a way that 

(a) Ai n Bi= 0 and Aiu Bi= Yi, 

(b) (if i > 0 then) Vx E X: ¢i-l (x) :S: ¢i (x) < Wi (x) :S: Wi-l (x), 

(c) ¢i and$. are constant on P for each y E Yi, 
-1 (d) Y. 

]. -1 y 
n Ux (P nf C[O,¢. (y)))l c A. and Y. n U yEX (P nf (($. (y),1])) CB,. 

]. YE Y l. ]. ]. y ]. ]. 

Set A = k {y € yk I f(y) :s: ¢k-1 (y)} and B = k {y € yk I f(y) > ¢k-1 (y)}. 

Define ¢k by: 

(i < k), 

and for z E Py with y E Yk: 

if f(y) F ¢k-1 (y), 

if f(y) 

and likewise $k: 

(i < k), 

and for z E Py with y E Yk: 

if f (y) :S: ¢k-l (y) or f (y) > Wk-l (y), 

Now clearly (a), (b) and (cl are satisfied for i = k. Also z ~ y, z E Yk, 

y E Yi (i :S: k) and f(z) < ¢k(y) imply z E Ak (observe that f(z) < ¢k(y) = 
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<1>1 (y) = <l>i (z) S <l>k-l (z} if i < k; and cj>k(y} 

Likewise, if f(z) > Wk(y) then f(z) > Wk(y) 

hence z E Bk. 

cj>k-l(y} or y E Ak if i = k). 

W·i (y) = Wi (z) > <l>k-1 (z), 

This proves (d} and therewith the induction hypothesis for the next step. 

Let A= iQO Ai and B = 120 Bi. 

Claim. X = A + B • 
--- xO xl 

For: by (*) and (a) it follows that X = AU B and An B ¢ • (b) and (d) 

together yield: for y EA,: y E (P nf- 1 ([0,cj>. (y)))) c A ]. y ]. 
[for: since y E Ai it follows that f(y) s <1>1_1 (y) s <1>1 (y) and equality 

cannot hold both times]. But this means that A is open. Likewise Bis open, 

for if y E Bl.. then y E (P nf-1(($. (y),1])) c B y ]. 
[for: since y E Bi it follows that f(y) > <1>1_1 (y) and hence f(y) > w1 Cy)]. 

Finally x0 EA and x1 EB by definition of A0 and <l>o• This proves the claim, 

and since Xis connected we have derived a contradiction. Therefore, f is 

constant. D 

6. CONSTRUCTION OF V-SPACES 

Up to this point the reader may have wondered whether there exist any 

V-spaces. The theorem below assures us of the existence of a V-space with 

prescribed partial ordering (provided this partial order is admissible in 

view of the structure theory developed in the preceding sections). 

THEOREM 8. Let a set X be partially ordered by a relation< such that 

(i) 

(ii) 

Vx EX the set {z 

Vx EX the set {z 

disjoint sets Ea (a 
X 

incomparable, while 

z s x} is well ordered by>. 

z > x} is the union of infinitely many mutually 

EA) such that points 
X a 

from Ea for different a are 
X 

each set E is directed downwards. 
X 

(iii) If ACX is closed both upwards and downwards (i.e., each elemant 

comparable to soma point in A belongs to A), and A~ X then A contains 

a minimal point of x. 

Let Y be the collection of minimal points in x (this may well be an ell!Pty 

set) and fix a well ordering of it: 



Let 

p 
X 

{z j z~x} and 

When we take the collection 

{P j x E X\Y} u {Oa j x Ex, a EA } u 
X X X 

u {X\( J< p u {yN}) 
Y->-> a Y S ~ 

23 

as a subbase for a topology on X, we get a T1- V-space the natural partial 

order of which coincides with<. Conversely each V-space has a partial 

order< satisfying conditions (i)-(iii), and the elements of the above col

lection are open, so the topology constructed here is in fact the minimal 

T1 V-topology with the given order<. 

PROOF. 1. Xis T1 since {x} = (X\o:1 ) n (x\o:2 ) is closed for a 1 f a 2 

in A. 
X 

2. Xis connected: Let x E X\Y and let x' denote the largest element of 

{z z < x}. (Such an element exists because of (i).) We first prove: 

2A. x and x' do not have disjoint neighbourhoods. For: Ea= U{P 
X y 

is open for each x Ex, a EA (note that y E Ea implies that y is not mini-
x n a· x 

mal in X). A basic nbd of xis Px n 1.'Ql Oxl.1.· with x. > x and a. E Ax. (For, 
l. l. i s 

VS EA: [either xi P or P c P J and if y l x [either xi O or 
y y X y y 

::, PX] and if XE X\ (~ PYo U {yy}) then PX c X\ (~ Py0 U {yy}) since X is 

not minimal. ) 
S- ai 

Now for each i (1 $i $n) there is a Si. E Ax with x. EE 1. so o ::, 
l. X Xi 

S· 
X\E 1. and 

X 

consequently the set Ea is contained in any given basic nbd of x for almost 
X !P y, 

every a EA. A basic nbd of x' is P, n .11 1 O2 J with z. > x' and y. E A2 
X X J= j J J j 

if x' is not minimal. P , contains all Ea, and O Yzj contains all Ea unless 
X X j X 

z. ~ x in which case it contains all Ea except one. Therefore, if x' is not 
J X 

minimal, the intersection of a neighbourhood of x and a neighbourhood of x' 

contains almost all Ea and in particular it is not empty. If x' is minimal, 
X 

say x' = ya, then a basic nbd of it is 

with S < a and z . > x' 
J 
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(provided a> O; if a= 0 then the second term in the intersection must be 

replaced by Py0u (y~S PYy\ {yS}), S>O if JyJ > 1, and must be deleted 

altogether if JyJ = 1). Again this nbd contains almost all Ea. This proves 
X 

that x and x' do not have disjoint neighbourhoods. 

Now, suppose Xis not connected. Then there exists a separation 

largest element X = A+ B with nonempty A and B. Let b E B and let a be the 

of An {z z Sb} if this last set is nonempty. Let a E P 
m a• 

an jol ox~ CA 

with x. > a and a. E Ax,• [This is a basic nbd of a if a 
J J J 

is not minimal, 

and c~~tained in a basic n~_in any case.] Then for some xj,aj we have 

bi Ox~• i.e., b E {x.} u Ex~; but then a< x. Sb and it follows that 
J J J J 

x. i A hence x. EB by definition of a. But then, by 2A, also x~ EB. Now 
J J a, J 

if x· is a minimal element of (the finite set) {x. I biOx~} then 
Jo m a J J m a• 

xjO E Pa n j!:)l Ox~; hence because of the previous argument, xjO E Pan jQl Ox~ n 

n B. Contradiction. Therefore, An {z j z Sb} is empty and it follows that 

both A and Bare closed downwards (and, therefore, also upwards). By require

ment (iii) A and B contain minimal points ya and yS, respectively. We may 

suppose that a < S and that S is the first element of {y > a I y EB}. Then 
y 

U{PYy I a Sy < S} c A, but each nbd of y S intersects this set, contradiction. 

Therefore, Xis connected. 

3. Let C be a connected subset of X which is not closed. Let X E C\C. Then 

x = min C or x E Y. For: Since Ea is open 
X 

and Ea u {x} 
X 

is closed (the 

former was noted in the first line of the proof of 2A, while the latter 

follows immediately from the definition of the topology) the set Ea is 
X 

clopen in X\x for each a E Ax. Therefore, if C intersects some E: then 

Cc Ea and x = min C. On the other hand if C n U Ea= C n P ¢ then 
X aEAx X X 

C n P = {x} and if xi Y it follows that {x} is clopen inc, which is im-
x 

possible. 

4. Xis a V-space. For: Suppose C is a connected subset of X with two end

points x 1 and x 2 • By 3. both x 1 and x 2 are minimal points of x, say x 1 =ya, 

x2 = YS with a< (3. Since 

X\ya (YJ Ey) u (X\P ) 

Ya 
ya ya 

where each Ey is clopen in X\ya 
Ya 

while yS E X\P y , it follows that 
a 

C n (Py \ {ya}) C n ( I Ey) ¢. 
a y Ya 

Likewise 
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Now U Py \{y} is open and U PYyu {y13 } is closed; hence asySf3 y a a+1Sy<f3 

c n (as~sf3 PY\ {ya})= c n (a+l~y<f3 PY u {ys}) 
y y 

is clopen in C and contains y 13 hence equals c. But this set does not contain 

ya, while C does. Contradiction. 

5. X has partial order<. For: by the same argument used to prove the con

nectedness of X it follows that each Ea (x EX, a EA ) is connected. There-
x X 

fore, by (ii) · the set {z I z > x} is a union of open components of X\x. And 

hence, it follows that the natural partial order contains<. 

Next, if xis not minimal, then< restricted to the set X\Px satisfies the 

conditions of the theorem and gives the subspace topology to X\Px. There

fore, X\Px is connected in this case (but not open since its complement is 

open). 

Also if xis minimal. then by definition of the neighbourhoods of minimal 

points it follows that X\P is connected (in fact it is a V-space with at 
X 

most one minimal point), while X\Px is not open. 

Therefore, y > x - y belongs to an open component of X\x, that is, > is the 

partial order of the V-space X. 

6. The converse part of the theorem readily follows from propositions 2, 10, 

1, 8, 9 and 16 and the definition of the partial order of a V-space. 0 

PROPOSITION 19. The space X defined in the previous theorem is locally 

peripherally compact. Its subset Y is compact. If Y is nonempty then Xis 

Lindelof. 

PROOF. (i) As was seen in the proof of the previous theorem, the sets 
n 

PX n iQl 
when x E 

sets 

a· 
Ox1 with x. > x, a. E Ax form a collection of basic nbds of x 
. i i i i 

X\Y, while if x E Y, say x = ya' such a collection is given by the 

with zj > x and yj E Azj and f3 < a, provided a> 0. 

(For a O in the second term of the intersection f3 s y s a must be replaced 

by a= 0 or f3 s y where this time f3 > a, unless Y = {y0} in which case the 
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second term in the intersection is to be deleted altogether.) Now local 

peripheral compactness follows immediately, since this basis shows that X 

is even locally peripherally finite: 

and 

(ii) In the relative topology Y is homeomorphic to the ordinal space 

{a I 1 ~a~ a 0} which is compact. 

(iii) From (ii) and the definition of the topology of X it follows that in 

order to prove that X is Lindelof it suffices to show that each P (y E Y) 
y 

is Lindelof. But by induction one easily constructs a countable subcover 

of a given cover of P: first take a set covering {y}. After some stage k 
y 

in the induction all of P is covered except for a finite union 
y 

Then in stage k+1 choose sets from the cover containing the points x. k 
1. I 

(i ~ nk) and add them to the subcover being constructed. Since a strictly 

increasing sequence in X cannot have an upper bound we indeed obtain a 

subcover in this way. D 

REMARK. In fact if Y =~then Xis Lindelof iff there is a countable 

sequence coinitial with X. 

PROOF. If {u. I i E JN} is coinitial in X then X = U Pu1, is Lindelof by 
--- 1. 

the previous proposition. Conversely, let X be Lindelof and let {ua I a< a 1} 

be a strictly decreasing sequence coinitial with x. Since {Pua I a < a1} is 

an open cover of X it has a countable subcover {PUa. I j E JN}. But this 
J 

means that {ua, I j E JN} is a countable sequence coinitial with X. D 
J 

PROPOSITION 20. If the set X in theorem 8 is order honx,geneous then X 

becomes a honx,geneous VO-space, that is, given two points x,y EX there 

exists a homeonx,rphism w of x onto itself with w(x) = y. D 

THEOREM 9. The topology defined in theorem 8 can be strengthened in such 
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a way that a Hausdorff V-space results. (That is, each partial order which 

is admissable for T1 V-spaces does occur also anong the T2 V-spaces.) 

PROOF. This proof is a generalisation of the construction of J.L. HURSCH 

and A. VERBEEK-KROONENBERG who were the first to give an example of a 

countable Hausdorff Vl-space [15]. The idea is the following: add for 

each x a new nbd U to the topology (in such a way that y EU ~ u c U ). 
X X Y X 

Two points of X do already have disjoint nbds unless one is the immediate 

predecessor of the other; therefore, if U n U = 0 the new topology will 
X X 1 

be Hausdorff. In order to get a V-space we have to ensure the connectedness 

of X in this new topology; to this end we construct the new topology in 

such a way that if Vx and Vx' are nbds of x and x' then Vx n Vx' f ¢. If, 

moreover, for each minimal y U u P = X, that is, X\P c U, and if also 
y y y y 

for each x,y if x < y and x has no immediate successor in { u I x s; us; y} 

then x E { u I x < u s; y}, then X is indeed connected. For, if X = A+ B and 

a E A, then it follows that {u I u < a} c A, that is, A and B are directed 

downwards and, therefore, also upwards. By condition (iii) of theorem 7 

A and B both contain points of Y. Since each nbd of a minimal point ya 

still intersects all PYs for y s; S < a (for some y < a) and each PYS is 

entirely contained in either A or Bit follows that all minimal points and 

then also all points of X are contained in say A. Hence Xis connected. 

So we have to find a collection of subsets U such that: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

X 

X E u 
X 

y E u - u C U 
X y X 

u n u x' 0 
X 

Un V- n P contains infinitely many pairwise incom. parable points, 
X X 1 X 

y minimal~ X\P c U , 
y y 

if x < y and if x has no immediate successor in { u I x s; u s; y} then 

U n{ulx<us;y}f0. 
X 

If we have found U n P then we let U = U n P if xis not minimal and 
X X X X X 

Ux = (X\Px) u (UxnPx) if xis minimal in order to satisfy (v). Therefore, 

we may forget about restriction (v) and assume that x has at most one 

minimal point. 

Restriction (iv) may be strengthened to 
- -- a (iv'): Ux n ux' intersects each Ex (a E Ax). 

Now let us introduce an equivalence relation on x namely the symmetric 

and transitive closure of x ~ x' (i.e., x ~ y iff 3k, 1 E JN: x (k) = y (l) 



28 

(k) 
where x denotes the k-th predecessor of x). 

Restriction (vi) is now satisfied if: 

(vi') Ux intersects each equivalence class lying entirely above x. 

If Eis an equivalence class, and e €Eis a fixed point in Ethen 

we can define a function $e: E + Z1. by $e(e) = 0 and Vx € E: $e(x') = 

= $e(x) - 1. By choosing a point from each equivalence class we get a func

tion$: X +~-Define f: X + {nElN I ne:2}= M by f(x) = 2 + l$(x)I, then 

(1) Vx € X lf(x)-f(x') I = 1, and 

(2) if Eis an equivalence class then f[E] = M, and 

(3) if x € X and n > f(x) then 3y € Px: n = f(y). 

Now let U = {u € P I plf(u) ~ plf(x) for each prime p}. (i), (ii) 
X X 

and (iii) are immediately verified, (vi') follows from property (2) off, 

and (iv') follows from property (3) off by taking n = m•f(x)•f(x'), for 

if y > x, f(y) =m•f (x) •f(x') then Uy intersects both ux and Ux'. 

This completes the (sketch of a) proof of theorem 9. D 

7. ON THE STRUCTURE OF H-SPACES 

The property (H) (a connected set has at most two end points) was intro

duced by HERRLICH [14] in order to characterize connected orderable spaces. 

Unfortunately, in the absence of local connectedness, it is not strong 

enough to imply (weak) orderability since for instance each V-space satis

fies (H). 

In general, an H-space looks as follows: it has a linearly ordered 

backbone (not necessarily connected) some points of which are the base 

point of an embedded V-space. 

V-spaces, which have an other position with respect to the backbone, 

can occur also; for instance filling up a gap or a jump of the backbone. 

There are several inequivalent ways to define this backbone, two of 

which will be examined in some more detail below. First a lemma showing 

why a non-orderable H-space is full of embedded V1-spaces: 

LEMMA. Let X be an H-space and let x EX. If X\x has more than two com

ponents: X\x =A+ B + C then at most two of A, B, C can contain a non

closed connected subset containing x. (So at least one of them is a V1-
space with base point x.) 



(Proof: if each of A, Band C would contain a nonclosed connected subset 

containing x then the union S of three such subsets would be a connected 

subset of X, such that ls\sl ~ 3, contradicting (H).) 

For a first approximation to a backbone we take the set of all points t 

such that each component of X\t is open: 

THEOREM 10. Let X be an H-space. Let 

T = {t I all components of X\t are open}. 
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Then Tis linearly ordered by an ordering which coincides with the separa

tion order (or, formally, its inverse) "between" each two points of T. 

PROOF. The only thing we have to show is that among each three points of T 

one of them separates the other two. Suppose the contrary, and let ti ET 

(i = 1,2,3) be the distinct points of T such that none of them separates 

the other two. Let Si be the (open) component of X\ti containing 

{t1 ,t2 ,t3}\{ti}. Then~ n s2 n s3 is connected and has three end points 

(by applying lemma 4, it first follows that~ n s2 is connected and then 

that s1 n s2 n s3 is connected; similarly after interchanging the indices), 

a contradiction. Therefore, the separation order is a linear order. D 

This theorem immediately implies the well-known (and also some new) order

ability results involving (H): 

COROLLARY. 

(i) Let X be an H-space such that either 

(ii) 

(a) each point of Xis a strong cut point, or 

(b) for each x EX all components of X\x are open, or 

(c) for each x EX no component of X\x is closed, or 

(d) Xis separable metric, or 

(e) Xis locally countably compact, 

then Xis (weakly) orderable. 

Let X be an H-space such that either 

(a) X is locally connected, or 

(b) X is locally compact, or 

(c) X is T2 and locally peripherally 

then Xis strongly orderable. 

compact, 
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PROOF. Each of the conditions mentioned prohibit embedded V1-spaces as 

found in the lemma. Therefore, each cut point of X is a strong cut point, i.e. , 

X = T and is orderable by the previous theorem. D 

A second way to define a backbone is given by 

THEOREM 11. 

T' := {t I 3s € X: s belongs to an open component of X\t 

and t belongs to an open component of X\s}. 

(i} T' is linearly ordered (by the separation order). 

(ii} Tc T' unless T = {t0} and T' =~for some t 0 € x. 
(iii} T does not contain gaps but may well contain jumps. 

PROOF. (i} Let ti€ T' (i = 1,2,3} and suppose that none of the ti 

separates the other two. Let si be a point associated with ti according 

to the definition of T': si belongs to an open component of X\ti and 

vice versa. A contradiction follows as in the proof of theorem 10 unless 

one of the points, say t 3 , does not belong to an open component of the 

complement of one of the other two points, say t 1 • Then 

where A is open and connected and t 2 € B since t 1 does not separate t 2 
and t 3 • But now s 1,t2 ,t3 are three points in T', none separating the other 

two (clearly s 1 does not separate t 2 and t 3 , since B =Bu {t1} is con

nected and contained in X\s1 ; next if 

then A= Au {t1} c E and t 2 would separate t 1 and t 3}, and t 2 and t 3 
belong to the same open component of X\s1 (namely that containing t 1). 

After repeating this argument at most three times, a contradiction follows. 

(ii) If !Tl~ 2 then obvious Tc T'. So suppose T = {t0}. If T' f ~ then 

T' contains two points t 1, t 2 where each belongs to an open segment of the 

other; but these open components cover X, hence t 0 belongs to an open 

component of X\t1 , say. By definition of Tit follows that t 1 belongs to 

an open component of X\t0 and, therefore, {t0 ,t1} c T'. Consequently, if 

T ¢ T' then T' = ~-
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(iii) Fix one of the two possible separation orders on T' and denote it 

by <. Suppose T' = Tl + T2 is a gap in T', i.e., tl < t 2 for each 

tl E Tl and t 2 E T2 , and T1 has no last element and T2 has no first element. 

Let for t ET' X\t = At + Bt where {s ET' I s < t} C At and 

{s ET' s > t} c Bt' and Bt is connected if possible. 

[Weshall see that in all relevant cases Bt can be taken connected.] 

Let A= U{At I t E T1} then since each At is open and each At is connected 

and contained in A, and T1 has no last element, it follows that A is open 

and connected. If aA contains two points and if t E T1 is such that Bt is 

open and connected, then An Bt is connected and a(AnBt) contains three 

points, a contradiction. 

But such at exists: let r E T1 ands be a point such that rands belong 

to open segments of each other. If r < s then Br is connected and we can 

let t = r; ifs< r thens E T1 and Bs is connected so that we may take 

t = s. Therefore, aA contains at most one point. If aA = {a} then again 

let t E T1 be a point such that Bt is connected. By definition of T' we 

have {a,t} c T'. But then a is the first element of T2 , impossible. 

Therefore, aA =~and since Xis connected it follows that A=~ and 

A third characteristic subset of the space is defined by 

T" := U{C\C I c c X connected, lc\cl = 2}. 

THEOREM 12 . T ' c T" . 

This theorem immediately follows from the following lemma: 

LEMMA. Let X be an H-space with end points sand t. Then for some connec

ted Cc X we have C\C = {s,t}. 

PROOF. Suppose not, and let X\{s,t} a~A Ca be the decomposition of 

X\{s,t} into components. First observe that if Y is an H-space and C is 

a connected subset of Y then Y\C has at most two non-open components. In 

particular if A0 = {a Ca not open} then !A0 ! ~ 2 and X' := 

an H-space satisfying all assumptions made on x. But now 

x• u{c I s E c} + u{c I t E c} 
a a a a 

yields a contradiction. D 

X\ U 
aEAo 

C 
a 

is 
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Unfortunately, T" is not weakly ordered (by the separation order) 

in general (see example 5 below). 

REMARKS. Below some counterexamples are given in the form of a picture 

of the space; I could have given a formal description of each space but 

all intuition is lost that way. The building blocks are as follows: 

Now some examples: 

1. 

2. 

3. 

X 

denotes a point. 

denotes a copy of the unit interval. 

denotes a Vl-space with base point v. 

denotes a Vl-space with end point x. 

a strong cut point need not belong to T' 

(here T = {x}, T' = ¢). 

(Here t 2 is a limit point of the components of X\t1): 

If t 1 and t 2 are points in T' then it is not necessarily 

true that there is a connected set with end points t 1 
and t 2 • 

A point separating two points of T' need not belong 

to T'. 

The last two examples also show that T' may have jumps. Likewise it is 

seen that T may have both gaps and jumps. 

4. 

- \ 

A Vl-space need not be canonically embedded (i.e., 

within a larger Vl-space or with base point in T'). 

In X\x there is a quasicomponent consisting of two 

components. 
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6. 
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X =Yu Z u {s,v}, where Y has base point u and Yu Z 

is a V-space with base point t = u', vis a limit point 

of the components of Z\t ands is a limit point both of 

the components of Y\u and of the components of Z\t. 

Here T = {s,v} = T', T" = {s,t,v}; Y\Y = {s,t} and 

YUZ\(YUZ) = {s,v} but for no connected C is C\C={t,v}. 

The topology can be defined in such a way that t does 

not separates and v so that T" is not ordered by the 

separation order. 

If T' = 0 then Xis not necessarily a V-space: attach 

a lowest point x 0 under a Vm-space (as follows: let 

p 0 be a minimal point of the Vm-space, and take the 

sets PP0\{finite set including p 0} u {x0 } as nbds for 

x 0 ). This gives an H-space with T' 0, T = {x0 }. 

In view of the above examples it is rather difficult to describe the 

structure of an H-space relative to its backbone. Trivially we have: 

X = T u { v EX I vis base point of a (non-degenerated) embedded Vl-space}, 

that is, X indeed consists of a backbone together with a lot of Vi-spaces, 

but nothing is said about the position of those Vi-spaces. 

One may define a partial order for H-spaces (coinciding with the 

previously defined one if X happens to be a V-space) as follows: 

x < y ~ y belongs to an open component S of X\x such that S n T' = 0. 

Then we have that if P := {z E X I z <". x} then IP\P I s 2 and if 
X X X 

Z = {z I IP\P I = 2} then Z is an antichain. "Above" this antichain X z z 
looks decent, but between the antichain and the backbone all kinds of com-

plications are possible, which we will not try to describe. 

For some further definitions and results on (H)-like properties 

I refer to KOK [18], chapter III. 
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8. MAPS BETWEEN V-SPACES 

LEMMA. Let X be a V-space, x,x1 ,x2 EX, x < x1 and x < x2 • Then x separates 

x1 and x2 iff both 

(i) x1 and x2 are not comparable, and 

(ii) x = max{y y <x1 and y <x2 }. 

PROOF. suppose x separates x 1 and x2 • Then (i) if x 1 < x2 then Px1 is a 

connected set containing x1 and x2 but not x, contradiction; and (ii) if 

x < y, y < x1 , y < x2 then Py is such a connected set which is again im

possible. 

Conversely, assume (i) and (ii). Now ul.. = U{P x<zsx.} (i = 1,2) are z l. 
disjoint clopen sets in X\x containing x 1 and x2 respectively. 

[For: if z > x then P is open, so Ui is open; also ti":'"\{x} is connected 
z l. 

hence contained in P \{x}. But then if u E au.\{x} it follows that P is 
X l. U 

open and disjoint from Ui, a contradiction.] D 

PROPOSITION 21. Let X,Y be two V-spaces and f: X +Ya continuous injection. 

Then 

(i) f- 1 : f[X] +Xis isotonic (order-preserving). 

(ii) If Y is a Vo- or Vl-space then f is isotonic, hence an order isomor

phism from X onto f[X] (which is again a VO- or Vl-space). 

PROOF. Since f[X] is connected it is again a V-space, and we may suppose 

Y = f[X]. 

-1 
(i) Let x € X, y E Y, y = f(x). We will show that f ~ = Qx. If u is 

clopen in Y\y then f- 1u is clopen in X\x. Therefore, if y0 €~then 

is a union 

of all but 

-1 -1 I f ~ = n{f U U clopen in Y\y, Yo€ U} 

of quasicomponents in X\x. But x i. f-1~ while x is in the closure 
-1 one of the components of X\x. Therefore, f Qy Qx' the only 

remaining component. 

(ii) Since f-l is isotonic we have to show that if y 1 and y 2 are not com-
-1 -1 

parable in Y then f y 1 and f y2 are not comparable in x. And indeed, by 

propositions 8 and 10 and the above lemma we can find a point y separating 
-1 y 1 and y2 such that y s y 1 and y s y 2 • It follows that f y separates 
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-1 -1 -1 -1 
f y 1 and f y2 and by the above lemma f y 1 and f y2 are not comparable. D 

REMARK. In general f need not be isotonic: 

' 
f 

a 

The image of a Vi-space may be a 

Vm-space; this example also shows 
-1 

that f need not preserve con-

nectedness. Even in Vl-spaces 
-1 

f need not preserve connectedness: if {ca}aEA is the collection of com-

ponents of X\x then for infinite B c A {x',x} u U C may or may not be 
ClEB Cl 

connected. Also if f is only supposed to be a surjection then neither it 

nor its inverse need preserve order. 





CHAPTER II 

ON W-SPACES 

0. INTRODUCTION 

For connected topological spaces we consider the following properties: 

(INT) : The intersection of an arbitrary collection of connected subsets 

is again connected. 

(INT2): The intersection of two connected sets is connected. 

(S) No two points are conjugated. 

(W) The boundary of each component of the complement of a nonempty 

connected proper subset of the space is a singleton. 

(W) is a rather weak property, inspired by the concept of A-set. [A closed 

set A in a connected T1 space Xis called an A-set provided that X\A is 

the union of a collection of open sets each bounded by a single point of A 

(WHYBURN [281) • ] When the space is T 2 and locally connected or locally com

pact however, (W) is sufficient to imply (S) and (INT). 

Since (W) is weaker than (S) and (INT) we study it first in order to apply 

the results in the next chapter, which will be devoted to (S) and (INT). 

1. DEFINITION AND SEPARATION PROPERTIES 

H. KOK [18] has given an equivalent definition: 

PROPOSITION 1. Xis a W-space iff for any two disjoint connected sets 

A,B c x we have IA n BI :s; 1. 

PROOF. Let X be a W-space and let {x,y} c AnB. If C is the component of 

X\A containing B then {x,y} c oC; hence x=y. Conversely, let S be a com-
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ponent of X\C, 0 f cf x, c connected. Since x\s is connected, the hypoth

esis implies Is n X\S I = I as I .,; 1. But if as = 0 then x would be discon

nected. D 

From this characterization one sees immediately that (W) is hereditary: 

PROPOSITION 2. A connected subspace of a W-space is a W-space. D 

Dropping for a moment the restriction that all spaces considered are (T1), 

we investigate the separation properties of a W-space. To this end recall 

the following definitions: 

A space Xis said to satisfy: 

(To) iff for all x,y E X: if {x,y} c {x}- n {y}- then 

(Tyl iff for all x,y E X: if X f- y then l{x}-n{y}-1 .,; 

(TD) iff for each X E X: {x} I {x}-\{x} is closed. 

(TF) iff given a point x EX and a finite subset F c X 

xi. F or F n {x} = ¢. 
(T1) iff for each x EX: {x}' = 0, i.e., {x} = {x}. 

One has the following implications: 

and 

X = y. 

1. 

with xi. F we have 

(TF) is equivalent to: each point in the derived set of another point is 

closed. 

(TD) is equivalent to: each point is the intersection of an open and a 

closed set. 

(For proofs and more properties like these between (T0 ) and (T1) see 

C.E. AULL & W.J. THRON [4].) 

It is easily seen that a W-space is T0 : 

THEOREM la. (W) ~ (To>. 

PROOF. Let p,q be distinct points of X and suppose q E {p}-. Let c be the 

component of X\q containing p. Then q E {p}- cc and qi. c, hence q E ac 

so {q} = ac. Since ac is closed, {q} is closed, and in particular pi. {q}-. 
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AW-space need not satisfy (T1): Let X = lN with topology O = {u I 
U = ¢ or 1 Eu}. Then X is a connected locally W-space satisfying (INT). 

Xis locally compact in the sense that X has a basis of compact open sets. 

But X does not satisfy (T1 ) since {1} is not closed. However, we do have: 

PROOF. We shall show that {x} is open in {x}- for each x EX. Since (W) 

is hereditary (see proposition 2), Y := {x} is also a W-space. Now each 

nonempty open subset of Y contains x and is connected. Let e be an arbi

trary component of Y\x. Then, by (W), aye {c} for some c. If for some 

such e c=x then Y = {x}- =aye= aye= {x} so that {x} is open in Y. 

If on the other hand c F x for all e then e\c = e\aye is open in Y and 

does not contain x; hence, for all e, e\c =¢;that is, Y\x is totally dis

connected. Therefore, if Y\x is also connected, it is a singleton {c}, 

and since {c} = ay{c} is closed it follows that {x} is open in Y. If Y\x 

is not connected let 

Y\x A+ B 
a b 

Then A u {x} is open in Y (for, if B is not closed in Y, then B = B u {x}, 

and hence A is open in Y; but this is impossible since xi A) and, likewise, 

B u {x} is open in Y so (Au{x}) n (Bu{x}) = {x} is open in Y. Hence for 

each x EX, {x} is open in {x}-, i.e., Xis a TD-space. D 

Finally, from proposition 1 we immediately get: 

THEOREM le. (W) ~ (Ty). □ 

2. RELATION WITH (INT2) AND (S) 

In this section we show that (INT2) and (S) imply (W). 

THEOREM 2. In connected T1-spaces (INT2) implies (W). 

PROOF. Let X be a T1-space and suppose p,q E aT where Tis a component of 

X\e, ea connected subset of X. Then Tu {p,q} and (X\T) u {p,q} are 

connected (since X\T is connected) and by (INT2) {p,q} is connected, and 

hence p = q. D 
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REMARK. In T -spaces (1NT2) implies that the boundary of a component of 
--- F ·. 
the complement of a connected subset of X consists of at most two points. 

PROOF. In the above proof we found that p,q ET - {p,q} connected. But if 

{p,q} is connected p E {q}- or q E {p}- and by (TF) p or q is closed (re

spectively). Now suppose oT contains three points p,q,~. Then {p,q}, 

{p,r} and {q,r} are connected and also at least two of the three points 

are closed; but this is a contradiction. D 

In T0- or TD-spaces (1NT2) need not imply (W) as is shown by the following 

example: 

Let x = {0,1,2} and O = {¢,{0},{0,1},x}, then X with topology O is a T -
D 

space satisfying (INT) (since all subsets are connected) but not (W) (for 

{1,2} is the component of X\{O}, but a{l,2} = {1,2} contains more than 

one point). 

Also, if X = [0,1] u {p} with Euclidean topology on I= [0,1] and basic 

nbds (1-E:, 1] u {p} for p (0 < E: :<o: 1), then each point in X is closed except 

1, and {1}- = {1,p}. Therefore, X satisfies (TD) and (TY) and (1NT2) but X 

does not satisfy (W). 

THEOREM 3. (S) ~ (T2) and (W). 

PROOF. For the (trivial) proof of (S) ~ (T2 ) we refer to chapter III, 

proposition 1. 

Suppose Cc Xis connected, Tis a component of X\C and {p,q} c aT. By (S) 

there is a point r separating p and q. Since Tu {p,q} is connected it 

follows that r ET. On the other hand (X\T) u {p,q} is connected and hence 

r i T. Contradiction. D 

3. SOME OTHER PROPERTIES OF W-SPACES 

PROPOSITION 3. If Xis a connected W-space and p 1, ••• ,pn are distinct 

end points of x, then X\{p 1, ••• ,pn} is connected. 

~- By proposition 2 it suffices to prove that p 2 , ••• ,pn are end points 

of X\p 1• Suppose that, to the contrary, for instance p2 is a cut point of 

X\p 1, i.e., X\{p1,p2} = A+B where both A and Bare nonempty. Then Au{p1} 

and Bu {p2} are connected, hence Bu {p2} is the (only) component of 



X\(Au{p 1}), and by (W) o(Bu{p2}) must be a singleton. But o(Bu{p2}) ~ 

~ {p 1,p2}. Contradiction. D 
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THEOREM 4. Let X be a connected W-space. Then among every three distinct 

points of X there is at least one which belongs to a connected set separat

ing the other two. 

~- Suppose none of the three distinct points p,q,r belongs to a 

connected set separating the other two. If q and r belong to different 

components c 1 and c 2 of X\p then X\(c 1uc2) is connected and separates q 

and r, contrary to the hypothesis; hence q and r belong to the same com-

ponent c of x\p. Let ac = {p1}. 
p p 

If p 1 = q then Cp\q is clopen in X\q and hence q separates p and r, which 

is contrary to the hypothesis. Therefore, p 1 F q and, likewise, p 1 Fr. 

Now let Cq be the component of p 1 and r in Cp\q. (Again p 1 and r belong 

to the same component of C\q since otherwise the - connected - complement 
p 

(in C) of the component K of r in C\q would separate p and r. In fact 
p - . p 

if p F pl then Cp = Cp and pl E Cp\K so that 

other hand if p = p 1 then K is the component 

connected and again it follows that X\(C \K) 
p 

of p and r by a connected set containing q.) 

X\ (C \K) = (X\C ) + K; on the 
P PP r 

of r in C \q so that C \K is 
p p 

= (X\~) + ~ is a separation 

If p F p 1 then X\C = (X\C) + (C \C) so that r belongs to a connected set 
q p p q 

(C) separating p and q. q 
Therefore, assume p 

set a ( (X\C ) UC ) 
p q 

p 1• Since (X\C) u C is a component of X\q we may 
P_ q 

{q1}, where q 1 E cq. 

If q 1 = p then p separates q and r: 

X\p (X\C) + (C\C ) + (C \p). 
p p q q 

q r 

r then r separates p and q: 

X\r ( (X\C) u (C \r)) + C\C • 
p q p q 

p q 

Hence we may suppose q 1 F p,r. 

If q 1 F q then q1 E cq and it follows that cq\p is connected (for other-

wise C \p E + F and F would be clopen in X\p which is impossible since 
q ql 11'.l 

Fis strictly contained in C ). But this means that C \pis a connected 
p q 

set containing rand separating p and q, contrary to the hypothesis. 
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Therefore, we have to assume that q 1 = q, that Cq\p is not connected and 

that q 1 = q belongs to the closure of each clopen subset of Cq\p. But this 

means that C\p = (C u {q}) \p is connected so that C = C u {q} is a 
q q q 

connected set with two end points p and q while C\{p,q} is disconnected. 

But this contradicts proposition 3 (since (W) is hereditary). D 

THEOREM 5. In connected T1-spaces (Va) implies (W). 

PROOF. Let C be a (nonempty) connected subset of a VO-space X. For x E X\C 

let ex be the component of X\C which contains x. 

(i) Let ex be a component of X\C containing a point x such that y < x for 

some y E e. Then Px = {z I z ;;,,x} c ex (for: Px is connected and Pxn C = 0 

since x separates each point of Px\x from the points below x). Next we 

show that C is open. Suppose, to the contrary, that z Ee \C 0
; then 

X X X 

(since P z is open) P z ¢ ex, hence P zn C -f 0 (since P z is connected and otherwise 

would be contained in C) . Let p E P z n C. Since C x is connected and y' < y < x and 

x E ex, y f. C it follows that y' f. e • But X\y' = P +X\P and e meets 
X X y y X 

Py hence ex c Py. (If X has a lowest point xO and y = xO then y' is not 

defined but obviously C c P = X holds also in this case.) Now p > z > y, 
X y 

p and yin C and z E ex c X\C, a contradiction. This proves that ex is 

open. Since each connected set in X has at most one end point it follows 

that C = C u {z} for some z EX (and then C is a - clopen - component 
X X X 

of x\z); hence ac = {z}, as was to be proved. 
X 

(ii) Now assume ex is a component of X\C such that for no point z E ex 

and y EC we have y < z. Let z be a boundary point of ex (such a point 

of course exists since Xis connected). Again Pz ¢ ex and hence Pzne I 0; 
also z f. C since, otherwise, z would be a point in C smaller than some 

point in ex. Therefore, Cc Pz. 

If y is another boundary point of C, then also Cc P and in particular 
X y 

Py n Pz # 0, so that y and z are comparable. Therefore, we may suppose 

y < z. 

Now Pz is a component of X\z' and hence X\Pz is connected. (If z = xO 
then z' is undefined but certainly X\Pz = 0 is connected.) Moreover, since 

Cc Pz\z it follows that Cc c* where c* is a component of x\z; also 

z E ex (since z f. C and z E Cx) so that x\c* is a connected set containing 

z and disjoint from C; hence x\c* cc. But 2" = e* u {z} hence 
--,;- o X 

y E X\C c (e) , a contradiction. Hence also in this case ac ={z}. D 
X X 



REMARK. It is easy to verify that no Vm-space satisfies (W), so (Va)~ (V) 

and (W). 
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From the foregoing one might have got the impression that (W) is an extreme

ly weak property. In conjunction with local connectedness, however, it 

implies (S) (in Hausdorff spaces): 

THEOREM 6. A locally connected Hausdorff space satisfying (W) is treelike 

(i.e., satisfies (S)). 

PROOF. Let p,q be two points of X and let U and V be disjoint connected 

neighbourhoods of p resp. q; let A be the component of q in X\U. Then A is 

open, hence qt aA. Therefore, if aA = {r} then r separates p and q. D 

Concerning the relation between (W), (S) and (INT): in the next chapter 

we will see (INT)~ (S), and we saw already that both (S) and (INT2) + (T1 ) 

imply (W). In [28] WHYBURN proves for connected and locally connected 

T1-spaces: (S) _. (T2 ) + (INT2) _.(INT). By theorem 6 it then follows that 

the conditions (W), (INT2), (S) and (INT) are all equivalent in connected 

locally connected Hausdorff spaces. In the next section we shall prove the 

equivalence of (W) and (INT2) in connected locally connected T1-spaces. 

WHYBURN gives examples to show that the local connectedness condition is 

essential, but gives no example of a connected and locally connected T1-

space satisfying (INT2) but not (S). Such spaces do, however, exist as 

will be shown by the next example. 

Let X be the set of natural numbers N with the following topology: 

if {Ba}aEA is a free ultrafilter on N we take for open sets the empty set 

and the elements Ba of the ultrafilter. Xis (T1), connected and locally 

connected and satisfies (W) and (INT2) but not (S). For each Ac X con

taining at least two points the following three conditions are equivalent: 

(i) 

(ii) X, 

(iii) A is connected. 

In particular each closed connected set is a singleton or coincides with X. 

[Note: this space satisfies the (H1) separation axiom between (T1) and 

(T2 ) as introduced and studied by WBYBURN [28].] 
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The above example shows the existence of a T 1-space without cut points satis

fying (W). Under assumption of the continuum hypothesis (CH) it is possible to 

show the existence of a nontrivial T2-space with this property, for we have: 

THEOREM 7. 

(i) Each biconnected set is a W-space. Conversely 

(ii) a W-space without cut points containing at least three points is a 

biconnected set without dispersion point. 

[REMARK. Assuming (CH) E.W. MILLER [23] proved the existence of a non

degenerated biconnected set without dispersion point in the plane.] 

PROOF. Remember that a biconnected set c is a connected set which is not 

the union of two nondegenerate proper connected subsets, while a dispersion 

point p of a set C is a. point such that C\p is totally disconnected. Each 

connected space with a dispersion point is biconnected but as noted above 

there exist biconnected sets without dispersion points. 

(i} Let Cc X be connected and let S be a component of x\c. Since X\S is 

connected it follows from X =Su (X\S) and the biconnectedness of X that 

either Isl= 1 or lx\sl 

in the second case I as I 

1. In the first case we have lasl = Isl= 1 while 

lcl = 1, hence X satisfies (W). 

(ii) Suppose X = c 1 u c 2 , c 1 n c 2 = 0, c 1 and c 2 connected. Then c 1 is the 

(only) component of X\C2 hence ac 1 = {p}. Since X has no cut points while 

X\p (c 1 \p) + (c2 \p) we have either c 1 = {p} or c 2 = {p}. Also, since 

lxl ~ 3 a dispersion point is a cut point, so X does not possess a disper

sion point. 0 

COROLLARY. Let X be connected and lxl ~ 3. Xis a W-space without cut points 

iff Xis a biconnected set without dispersion point. 

PROOF. It is easily seen that a cut point of a biconnected set must be a 

dispersion point. 0 

THEOREM 8. A locally compact, connected Hausdorff space X satisfying (W) 

is treelike. 

PROOF. Let p and q be two points of X. Then we have to find a point separat

ing p and q. Let V and W be two disjoint compact neighbourhoods of p and 

q, respectively. 

(il Suppose that the component P of v containing p does not meet av. Since 

pis the intersection of all clopen (in P) sets containing p, there is for 

each x f av a separation v =Ax+ Bx of V between p and x. av is compact 

X p 



and Ax is open in v hence finitely many Ax cover av. Let u be the inter

section of the corresponding Bx. Then U is clopen in V and does not meet 

av hence u is clopen in x. Contradiction. 
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In a similar way it is seen that the component Q of W containing q meets aw. 

(ii) We now can exhibit a point r separating p and q as follows: 

Let C be the component of X\Q containing p (clearly C ~ P). By (W) we have 

ac {r} and r separates p and q unless r = p or r = q. 

If r = p then (X\C) u {p} is a closed, connected and locally compact W
subspace of X, and in this subspace (V\C) u {p} = V\(C\{p}) is a compact 

neighbourhood of p. Moreover, the component containg p of this neighbour

hood is {p} and hence does not meet the boundary of (V\C) u {p} in 

(X\C) u {p}. But then - according to (i) - (X\C) u {p} cannot be connected. 

contradiction. 

If r = q then Cu {q} is a closed, connected and locally compact W-subspace 

of X, and in this subspace (WnC) u {q} is a compact nbd of q. Since the 

component of this nbd containing q is {q} we again arrive at a contradic

tion. D 

We have seen that both local connectivity and local compactness are suf

ficient to imply that a W-space is treelike. Rimcompactness, however, 

is not as is shown by the following example: 

Let 

X { (x,y) E 1i I (x = 0 and -1 <y < +1 and y E g)) 

or (x > 0 and y sin li} 
X 

with subspace topology of the plane.Xis (T5),(CII), (1NT2) and hence (W), 

locally peripherally compact but not locally compact or treelike. 

Also the condition (T2 ) is necessary in the previous theorem: 

Let 

X {(x,y) E n/1 (y=O and O<x$1) 

or (y = 1 and O $ x < 1) 

or (y = 2 and O < x < 1)} , 
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with basic neighbourhood system: 

{(a,O)} u [a-;, a) x{0,1} 
l. 

1 {(a,1)} u (a,a+ 1 ]x{0,1} 

(i E JN, sufficiently large so that ui (p) c X). 

These sets are Hausdorff and compact, that is, X satisfies the following 

version of locall compactness: X has a base of compact (T2 ) sets. [Of 

course the Ui(p) are not open.] 
-1 -1 } Xis connected and if Y = n2 [{0,1}] and Z = n2 [{2] then: Y is homeo-

morphic with the double-arrow space (cf. ALEXANDROFF [2]), and Z is 

closed and discrete. Y is the collection of all end points of x, and z 

is the collection of all cut points in x. X satisfies (W) and is locally 

orderable, locally (T2 ) and (T1). Xis not locally connected or locally 

peripherally compact and does not satisfy (INT2) or (S). 

A variant of this example showing that (T2 ) is essential also in 

theorem 6 is the follnwing: 

Let X be the same set as in the previous example but with basic neighbour

hood system: 

1 1 {(a-r,1),(a,O)} u (a-r,a> x {0,1,2} 

1 1 
{(a,1),(a+I, O)} u (a,a+r> x {0,1,2} 

{(a-;, 1),(a+;, O)} u 
l. l. 

u (a-f ,a+fl x {0,1,2}\{(a,O),(a,1)}. 

(The intelligent reader will have no difficulty in deciding in which 

cases the symbol (, ) denotes an ordered pair and when an open interval.) 

Xis compact and hence locally peripherally compact, connected, locally 

connected, (T1) and (CI) and satisfies (W) and (INT2), but is not treelike. 



4. THE LOCALLY CONNECTED NON-HAUSDORFF CASE 

In this section we answer a question of H. KOK by proving 

THEOREM 9. Let X be a connected, locally connected (T1) W-space. Then X 

satisfies (INT2). 

Before giving the proof we first present two typical examples. 

1. Let X = (Thi, U u {i1J}) where U is a free ultrafilter on lN. Then X is 

connected, locally connected and (T1) (for: each two non-empty open 

sets intersect and no point of Xis open). 

Cc Xis connected iff C X or lei= 1 (for: C =Xis equivalent 

with C = C0 # 0, while CI X implies that C is totally disconnected). 

It follows that X satisfies (W), (INT2) and,(INTC). 

Moreover, X has no cut points. 

2 2. Let X = {(x,y) E JR 
2 (x~0 & y =1) v (x>0 & y=0}, with Euclidean 

topology on these three rays and basic nbds in (0,±1): 

(for n E :N), and 

Un((0,-1)) likewise. 

Then X is connected, locally connected, (T1 ) and satisfies (W), (INT2) 

but not (INTC). 

Each point of Xis a strong cut point. 

47 

It will be seen that the overall structure of Xis something as a tree

like space, while the connected cyclic elements are ultrafilter based parts 

like in the first example, and the disconnected cyclic elements are the 

boundary of an open connected set with many cut points like in the second 

example. 

All this will be made precise in the course of the proof. 

PROPOSITION 4. Let X be a connected and locally connected (W)-space. 

Let C be a closed connected subset and let S be a connected subset of X. 

Then C n Sis connected. 

PROOF. Suppose C n s Al+ A2 , A1 and A2 nonempty. Let X\C l C, where 
Cl 
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each Ca is open and connected. We then show that 

If we have verified this equation then a contradiction is immediate since 

Sis connected. 

{i) Obviously S contains the right-hand side. 

{ii) Conversely ifs E S\C thens E Ca for some a. Now certainly the 

singleton 3Ca is contained in C. Also, since Sis connected and 

intersects both ca and X\Ca, it follows thats contains aca. 

Consequently, aca cs n c = A1 + A2 • It follows thats is an element 

of the right-hand side. Therefore, S equals the right-hand side. 

{iii) Obviously both summands of the right-hand side are disjoint and 

nonempty. 

{iv) Finally we have to justify the+. 

A1 and A2 are separated and so are the open sets U{ca I aca c A1} 

and U{ca I aca c A2 }. Suppose a2 E A2 n cl U{ca I aca c A1}. 

Let u be a connected nbd of a 2 disjoint with A1 • Now, for some Ca 

with aca c A1, U intersects Ca as well as its complement but not 

its boundary. Contradiction. 

By symmetry this means that the above equationisindeed a separation 

of S. D 

Note that this proposition is almost what we want; only the restriction that 

C must be closed has to be removed. Still in spaces like the first example 

this proposition is nearly vacuous: there the only closed connected sets 

are~, singletons and x. 

COROLLARY. Let X be a connected and locally connected (W)-space. Let Y 

be a closed connected subspace. Then Y is locally connected and (W). 

PR~F. If U is a basis of open connected sets for X then {u n YIU EU} 

is a basis of open connected sets for Y. Also Y satisfies (W) since {W) is 

hereditary for connected subspaces. D 

We now look at the situation of the first example: 

PROPOSITION s. Let X be a connected and locally connected (W)-space 

without cut points. Then the topology on X (minus the empty set) is an 

ultrafilterbase, and X satisfies {INT2). 
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PROOF. (i) If U and V are two disjoint nonempty open and connected subsets 

of X then by (W) the component S containing Vin X\U is bounded by a single

ton {p}. But then p separates U and V, i.e., pis a cut point. Therefore, 

Un V # 0 and it follows that the topology-minus-the-empty-set O is a filter

base. 

(ii) To show that O is an ultrafilterbase, suppose that Pis a set such that 

each nonempty open set intersects both P and X\P. This implies that both 

P and X\P are connected and dense (for if P = P1 + P2 then P1 = u 1 n P and 

P2 = u2 n P for some open sets u 1,u2 in X; but now (u 1nu2) n P = P1 n P2 = 0, 
a contradiction). But this contradicts (W): the boundary of the only com

ponent of X\P would be the whole of X instead of a singleton. Therefore, for 

each nonempty P either P or X\P is in the filter generated by 0. Thus O is 

an ultrafilterbase. Let Ube the ultrafilter generated by it. We can char

acterize the connected subsets of X as follows: 

C is connected iff CE U or lei~ 1. 

For: if CE U then C is connected by the same argument used above for P. 

Conversely, let C be connected and Ci U. There is some open connected 

set U disjoint with C. By (W) and the fact that there are no cut points 

it follows that the connected set C is totally disconnected, i.e., is a 

singleton or empty. 

From this characterization it is obvious that X satisfies (1NT2). 

Now the PROOF OF THE THEOREM: 

Let c1 and c2 be connected and suppose that there exists a separation 

A+ B 
a b 

(i) First we show that we may suppose a and b to be conjugate points of X. 

First observe, that E(a,b) c A +B. Now, if E(a,b) # 0, then let E = 
= E(a,b) n A and F = E(a,b) n B. For each u E E(a,b) we take a separation 

X\u = Au + Bu where Bu is connected (this is possible: X is (T1) and local-
a b 

ly connected). If E # 0 let U = u~E Au. U is open and connected and con-

tains a. If Sis the component of bin X\U then as= {s} by (W). s i U 

(since U is open) buts EU (since Xis locally connected and Sis maximal 

connected in X\U). Ifs EB then a connected nbd of s disjoint with A inter

sects Au and X\Au for some u EE without containing u. This is impossible, 

thus s EA, i.e., sis the last element (in the separation ordering) of 



50 

S(a,b) n A. On the other hand if E =~then a is the last element of 

S(a,b) n A. Therefore, in each case S(a,b) n A has a last element, and by 

symmetry S(a,b) n B has a first element; clearly these two points are con

jugate. (In fact we showed the following: if S(a,b) is not connected then 

it contains a jump.) 

(ii) Suppose now that a and bare conjugate. Let Y 

both a and b}. (Then {a,b} c Y.) For u EX let 

X\u ~ + Bu , 
a orb 

{y I y conjugate to 

where A is connected and contains a and b (unless u = a or u = b) , and 
u 

Bu is possibly empty. Then 

y ncx\B l 
u u 

n A 
u u 

is closed and contains a and b. 

A. Suppose Y is connected. 

In this case Y is a connected, locally connected W-space by the corollary 

above. Moreover, Y has no cut points: if y E Y then Y\y c A and Y\y = 
y 

= Y n Ay isconnectedbythefirstpropositionabove.Butthen (Ync 1) n (Ync2 ) = 

= (YnA) + (YnB) gives a contradiction since we already established (INT2) 
a b 

for the case where the space has no cut points. 

B. Y is not connected: Y = Y1 + Y2 . 

Let X\Y = L Ta be the decomposition of X\Y into open components. Since X 

is connected the statement 

must be false. The right-hand side is indeed a disconnected set, hence it 

is different from X; this means that there is a component T of X\Y such 

that oT intersects both Y1 and Y2 • 

Now consider two different (open) components T' and T" of X\Y. First of 

all from (W) it follows that T' and T" are separated by a point t: 

X\t =At+ Bt where for instance T' c Bt. We find 

X\t = At + Bt. 

Y\t T' 

Since~ f oT' c Y we conclude that oT' = {t}. 

This proves that of any two components Ta of X\y at most one has a boundary 
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that is not a singleton. Therefore, T must be the only component of X\Y 

such that laTI > 1. 

Now let Y0 be any component of Y. Then it follows from (W), that there is 

a point t separating T and Y0\t. But if X\t =At+ Bt then Y\t c At' hence 

- since aT n (Y\t) # ~ - Tc At' that is, T and Y0\t are contained in the 

same component of X\t which means that Y0\t = ~-

This proves that Y is totally disconnected. 
= Also y = aT (and so T =Tu Y). For certainly aT c Y. On the other hand, 

if y E Y\aT then y has an open connected nbd U disjoint from T; let u be 

a point separating U from T: X\u = E + F, Uc E, Tc F, then Y\u c E and 

aT c Y n F c { u} which contradicts the definition of T. 

Next if C is connected and C n T =~then C n Y is connected for otherwise 

would be a separation of C. 

Now look at the assumption c1 n c2 ! + g. Since c1 and c2 each intersect 

Yin at least two points and since Y is totally disconnected it follows from 

the previous observation that both c1 and c2 must intersect T; choose 

ti E Ci n T (i = 1,2). 

While c1 and c2 intersect T, c1 n c2 does not: 

CLAIM. (AUB) n T = ~. 

For suppose x0 E (AuB) n T = c1 n c2 n T. x0 is not conjugate to a and b 

so there is a point x 1 separating x 0 from a and b (observe that if x 1 
separates a and x0 then x 1 # b). Necessarily x 1 E c 1 n c 2 =Au B. Also 

x 1 ET since Tu {a,b} is connected and contains x0 , a and b. 

We continue by transfinite induction, so suppose that X has been 
Cl. 

defined for a < ao such that X separates x 13 Cl. 
from a and b for s < a, 

X E cl n c2 n T. If ao is a successor then as above we can take a point 
Cl. 

xa0 separating xa0_1 from a and b. If a 0 is a limit ordinal then consider 

B 
X 

Cl. 

=: E. 

Eis open and connected (since B). If a i aE then by (W) 
X 

Cl. 
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there is a point xa separating E from a and then also from b, i.e., 
0 

bi 3E. If a E 3E (and thus also b E 3E) then the construction is finished. 

We then continue as follows: let Ube an open connected nbd of a not inter

secting Band let V be an open connected nbd of b disjoint with A. Both U 

and V contain all points xa from some index onward. Since - by construction -

{xa}a c S(a,x0 ) n S(b,x0) c c1 n c2 , we have {xa I a<a0 } nun v c (AUB) n 

n Un V 0, a contradiction. 

This proves the claim. 

Now lets. := U{B I t. EB} (i = 1,2), then s 1 and s 2 are nonempty, 
i t i t 

open, connected and contained in T. (Nonempty since ti ET so ti i Y and 

ti E Si; connected since Si= U{Bt I ti E Bt}: for each t ET there is at' 

separating t from a and b, and Bt c Bt,; contained in T since it inter

sects T but not Y.) 

If s 1 n s2 = 0 then some points separates s 1 and s2 , hence either s 1 or 

s2 is contained in Bs. But from s2 c Bs it follows by definition of s 2 

that s2 = B c B, a contradiction. 
s ;< s 

Therefore s 1 n s 2 f 0 and we may chooses E s 1 n s 2 • Let si E Si such that 

s E Bsi and ti E Bsi (i = 1,2). Then si E Ci (i = 1,2) (since Ci is con

nected and contains a and ti, whereas it follows from a E Asi and ti E Bsi 

that si separates a and ti). 

Since S(a,s) is linearly ordered and contains s 1 and s 2 either s 1 $ s 2 

or s 1 < s 2 in this order, and we may suppose s 1 $ s 2 • But then, since c2 
is connected and {a,s2 } c c2 , we must have s 1 E c2 , i.e., s 1 E c1 n c2 n T= 

(AU B) n T = 0. 

This contradiction proves the theorem. D 

REMARK. Since generally in T1-spaces (INT2) + (W) (see theorem 2) the 

theorem can be expressed by saying that in connected locally connected 

T1-spaces the properties (W) and (INT2) are equivalent. 

In [18] p.69 KOK asks the following three questions: 

(i) Is it true that for connected, locally connected T1-spaces 

(W) implies (INT2)? 

(ii) Is is true that for connected, locally connected T1-spaces 

(W) and (INTC) together imply (INT2)? 

(iii) Is it false that for connected T1-spaces (W) and (INTC) together 

imply (INT2)? 
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Question (i) and, a fortiori, question (ii) are answered affirmatively 

by the above theorem; as KOK already suspected NILLER's widely connected 

biconnected subset of the plane [23] provides an affirmative answer to the 

third question. (Hence the four questionmarks in the table of [18] p.85 

should all be minus signs.) 

[Let us indicate briefly why Miller's example fails to satisfy (INT2): 

using his notations the space under discussion is M = ~ u U{M I µ < n} 
µ C. 

where nc. denotes the smallest ordinal with cardinality c.. Here~ is a 

countable set, and each Mµ is either empty or a singleton, where a single

ton is chosen (on a certain continuum B) if otherwise that continuum 
µ 

would separate M. Now it is possible to partition nc. into two disjoint sets 

of ordinals A1 and A2 in such a way that S. = ~ u U{M I µEA.} is con-
i µ i 

nected (i = 1,2). But s1 n s2 =~is totally disconnected. That suitable 

sets Ai can indeed be found follows by again using the continuum hypothesis: 

By transfinite induction assign Ma 

or a E A2) . Now if we choose to let a E A1 , 

choose some indexµ> a such that Mµ is 

to either s1 or s2 (i.e., put a E A1 

and Ba does not meet s2 yet, then 

still free and such that M c B 
µ a 

and putµ E A2 . By the continuum hypothesis, at each stage during the 

transfinite induction all sets M are free, except for at most countably 
µ 

many; on the other hand there are uncountably many indicesµ for which 

M c B since each continuum occurs essentially uncountably often in the 
µ a 

collection {Ba I a< nc.}.J 





CHAPTER III 

ON TREELIKE SPACES 

1. DEFINITIONS AND ELEMENTARY PROPERTIES 

We recall the following definitions: 

A connected topological space is said to be treelike or to satisfy (S) if 

no two of its points are conjugated, that is, if for any two distinct points 

in the space there is a third point which separates them. 

A connected topological space is said to have the intersection property or 

to satisfy (INT) if the intersection of any collection of connected sub

sets is again connected. 

Also we have the following notations: 

E(a,b) := {x EX I x separates a and b}, 

S(a,b) := {a} u E(a,b) u {b}, 

C(a,b) := n{T c x IT connected and {a,b} c T}. 

In an arbitrary connected topological space X E(a,b) and S(a,b) are 

linearly ordered in a natural way ("separation ordering"): 

For p E E(a,b) set a< p, p <band if q is another point in E(a,b) then 

p < q iff there is a separation of X\p with a and q on different sides 

(or, which amounts to the same, iff there is a separation of X\q with p 

and b on different sides). 

[Antisymmetry and transitivity are readily checked; see e.g. WHYBURN [29].J 

E(a,b) is nonempty if and only if a and bare not conjugated. 

S(a,b) c C(a,b) but C(a,b) may be strictly larger: 

a p q 

S(p,q) 

C(p,q) 

{p,q} 

{a,p,q}. 
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In fact we have: 

C(a,b) {x a and b belong to different components of X\x} u {a,b} 

S (a,b) {x I a and b belong to distinct quasicomponents of X\x} u {a,b}, 

hence 

C(a,b)\S(a,b) {x I in X\x a and b belong to different components 

but to the same quasicomponent}. 

For sake of completeness we now formulate and prove some properties of 

treelike spaces, of which in any case propositions 1 -4 are well-known. 

PROPOSITION 1. A treelike space is Hausdorff. 

PROOF. First of all Xis (T1) since two points cannot be separated if one 

is contained in the closure of the other. Next, if p and q are two points 

in X then they are separated by a third point r: X\r A+ B, and since 

{r} is closed, A and Bare disjoint open nbds of p and~- qD 

PROPOSITION 2. Each segment in a treelike space is open. 

PROOF. Let S be a component of X\r. If tis a non-interior point of S then 

let p separate rand t. {t} u (X\S) is connected and contains rand t, 

hence p E X\S. But now X\p t~S +~and Au {p} is a connected subset of 

X\r strictly containing the component S. Contradiction. D 

PROPOSITION 3. A treelike space satisfies (W). 

PROOF. See chapter II, theorem 3. D 

PROPOSITION 4. In a treelike space S(a,b) is continuously ordered, i.e., 

has no jumps and no gaps. 

PROOF. If asp< q s bin S(a,b) and if r is a point separating p and q 

then r separates a and band p < r < q, hence (p,q) is not a jump. 

If E(a,b) =Eu F, E an initial interval of E(a,b) without last element 

and Fa final interval of E(a,b) without first element, then this gap in 

S(a,b) induces a separation of X: if for each t E E(a,b) At resp. Bt is 

the component of X\t containing a resp. b, then it is checked easily that 

X = t~E At+ t~F Bt. Therefore, either E or Fis empty. D 
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COROLLARY. If a# b then IS(a,b) I 

THEOREM 1. Let X be treelike and p,q,r Ex. Then S(p,q) n S(p,r) n S(q,r) 

is a singleton. 

PROOF. (i) Suppose y and z are two distinct points in S(p,q) n S(p,r) n 

n S(q,r). If r E S(p,q) then S(p,q) = S(p,r) u S(r,q) and S(p,r) n S(r,q) 

{r} and hence S(p,q) n S(p,r) n S(q,r) = {r}. Therefore, we may suppose 

y i {p,q,r,z}. 

Now e.g. X\y = A + B + C, but then Bu {y} u C is connected in X\z so 
p,z q r 

that z does not separate q and r. 

(ii) Suppose S(p,q) n S(p,r) n S(q,r) =~-Now S(p,q) = ((S(p,q)nS(p,r)) u 

u (S(p,q)nS(r,q)), where both intersections are convex subsets of S(p,q). 

But S(p,q) is continuously ordered, hence this cut determines a point z, 

say the last element of S(p,q) n S(p,r). 

Likewise S(r,q) = (S(r,q)nS(r,p)) u (S(r,q)nS(p,q)) determines a pointy, 

say the first element of S(r,q) n S(p,q). 

p q 

Now let u be a point in X separating z and y. 

Then u E S(p,q) and z < u < y. Hence from the 

definition of z and y it follows that u i S(p,r) 

and u i S(r,q) which contradicts the fact that 

S(p,q) c S(p,r) u S(r,q) for all triples p,q,r EX. 0 

COROLLARY. [I~OK, 19]. A treelike space without ramification points is 

(weakly) orderable. 

PROOF. Let X be a treelike space without ramification points. Then among 

every three points p,q,r in X there is (at least) one which separates the 

other two: indeed, since S(p,q) n S(p,r) n S(q,r) is not a ramification 

point it is one of the sets {p}, {q} or {r}. But this property characterizes 

(weakly) orderable spaces (see for instance R. DUDA [11] who ascribes 

this remark to mrs. D. ZAREMBA-SZCZEPKOWICZ; for a detailed proof see 

H. KOK [18], theorem 3 p.16). 0 

Theorem 1 enables us to introduce the "projection onto an interval": 

let X be treelike, a,b EX, then we define the projection 
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by 

S(a,b) n S(a,x) n S(x,b). 

[Note: nab is not continuous in general, not even if S(a,b) is connected: 

a.~b 

A sufficient condition for the continuity is that S(a,b) is connected and 

locally connected (see proposition 8).]' 

PROPOSITION 5. Let X be treelike. Then S(a,b) is the intersection of all 

closed connected sets containing a and b. In particular: S(a,b) = C(a,b) 

and S(a,b) is closed. 

PROOF. Let K(a,b) = n{T c X T closed, connected, {a,b} c T}. Obviously 

S(a,b) c C(a,b) c K(a,b). On the other hand, let pr/. S(a,b). Let q=nab(p). 

If qr/. {a,b} then X\q =A+ B + C and Au {q} u Bis a closed connected 
a b p 

set containing a and b but not p. If q E {a,b} then we can write the same 

decomposition but with A= f1l or B = fll. Therefore, K(a,b) c S(a,b). D 

Defining (INTC) by the requirement that the intersection of an 

arbitrary collection of closed connected sets be connected we have: 

COROLLARY. [KOK, pp.61-64]. (S) + (INTC) =>(TNT). 

PROOF. (INTC) is equivalent with Va,b K(a,b) is connected. 

( INT) is equivalent with Va,b C(a,b) is connected. 

But by the previous proposition C(a,b) and K(a,b) are the same in spaces 

satisfying (SJ. D 

PROPOSITION 6. If Xis treelike and if Sand Care connected subsets of X 

and p ES c C while pis an end point of C then pis an end point of S. 

PROOF. Clearly treelikeness is heriditary for connected subsets, hence it 

is no restriction to assume C = X. 

Now the proposition is equivalent to: If Y is a connected subspace of a 

treelike space X then for each a,b E Y we have SY(a,b) = SX(a,b). Since 

any point separating a and bin X obviously must belong to Y we of course 

always have: Y c X => SY(a,b) ~ SX(a,b), and it is easily seen that the 
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orders in both sets are compatible. 

[It suffices to verify that for all u,v E SX(a,b) we have u <Xv => u <Yv, 

but this follows immediately from the definition of the separation order.] 

Now suppose p E SY(a,b)\SX(a,b) and define (in SY(a,b)): 

q lub Sx(a,b) n SY(a,p), 

r = glb Sx(a,b) n Sy(p,b). 

Since SX(a,b) is continuously ordered either q E SX(a,b) or r E SX(a,b) 

but not both. In particular q # r. But EX(q,r) 

conjugated in X. Contradiction. D 

0, hence q and rare 

REMARK. Trivially this proposition remains true if "treelike" is replaced 

by "(INT2)". 

THEOREM 2. In T1-spaces (INT) implies (S). 

PROOF. Let X satisfy (INT). 

(i) If p EX then in X\p components coincide with quasicomponents. For: let 

Q be a quasicomponent in X\p; then for some q E Q we have: 

Q = n{ca I ca clopen in X\p, q E ca}. 

By (INTC) 

Q u {p} = n{c u {p} I c clopen in X\p, q E c} a a a 

is connected. Also 

X\Q = U{X\C I C clopen in X\p, q EC} a a a 

is connected. If X\Q were not closed then 

((X\Q) U {t}) n (QU{p}) = {p,t} 

would contradict (INT2) for some t E X\Q n Q. Hence Q is open and, 

therefore, connected. 

(ii) Now if a,b EX then by (i) and the observation before proposition 1 

we have S(a,b) = C(a,b) is connected. Therefore, S(a,b) # {a,b}, i.e., 

Xis treelike. D 

REMARK. This theorem has also been proved by H. KOK [18] pp. 57-60, who 

even shows: 

If in a T1-space X the closure of the intersection of an arbitrary collec-
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* tion of connected subsets of Xis connected ((INT)), then Xis treelike. 

This follows by the same argument since under (i) we need only (INT2*) 

instead of (INT2) while under (ii) the knowledge S(a,b) = C(a,b) and 

C(a,b) is connected suffices to infer S(a,b) # {a,b}. Having proved this 

KoK proceeds to show (INT) - (INT*) (ibid. p.64) by the sequence of im

plications (INT)~ (INT*)~ (S) + (INTC) ~ (INT). 

REMARK. The converse of theorem 2 is not true, that is, in a treelike 

space it may happen that S(a,b) is disconnected: 

. 
a b 

DEFINITION. A connected topological space Xis called weakly treelike (WS) 

if Va,b EX: lc(a,b) I# 2, in other words, if for any two distinct points 

a and b there is a point p such that a and b belong to different components 

of X\p. 

[Note that trivially both (INT) and (S) imply (WS).J 

Although, in general, separation is a stronger concept than cutting, 

in this case they coincide: 

THEOREM 3. (S) - (WS). 

PROOF. It clearly suffices to prove that if X satisfies (WS) then X has 

open segments. But suppose p EX, Ca non-open component of X\p, say with 

q E C\C 0
• If X\p = Uca is the decomposition of X\p in components then for 

each index B 

is a connected set and 

ns8 = {p,q}, 

so C(p,q) = {p,q}, contrary to the hypothesis. D 

REMARK. Since trivially (INT)~ (WS) (and (INT*)~ (WS)) this provides a 

new proof of theorem 2. 



2. THE LOCALLY CONNECTED CASE 

THEOREM 4. Let X be locally connected. Equivalent are: 

(i) Xis treelike, 

(ii) X satisfies (T1) and (INT), 

(iii) X satisfies (T2 ) and (W), 

(iv) xis Hausdorff and such that if cc Xis connected and 

Eis a collection of end points of C then C\E is 

connected. 

PROOF. (i) - (ii) was proved by WHYBURN [28] p.387, theorem 9.3. 

(i) - (iii) has already been proved in chapter II (theorems 3 and 6). 

(ii)~ (iv): Since (ii)~ (i), Xis certainly Hausdorff; furthermore 

C\E = n (C\p) 
pEE 

is connected by (INT). 
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(iv)~ (i): Let p and q be two points of X and suppose p and q are not 

separated by a third point. Let U and V be disjoint open connected neigh

bourhoods of p and q respectively. For each r Eau let X\r =Ar+ Br where 

Ar is the (open) component of X\r containing U and V (and possibly Br= !ill. 

Define 

Y := X \ U 

rEaU 
B • 

r 

[Observe that U u V c Y.] Then: 

(1) Y is connected. 

For: Suppose Y =A+ B, where Uc A and Bis nonempty. Let P be a component 

of B (and hence of Y). Y is closed so Pis closed and, therefore, not open. 

Take z E P\P 0 and let W be an open and connected neighbourhood of z con-

tained in X\U. If W 

which is impossible 

intersects P so W c 

intersects B 
s 

since z i B. 
s 

P. But then z 

for some s, then W c Bs (since s i W) 

Therefore, W c Y. Wis connected and 

E W c P 0
, contradiction. 

(2) For each s Eau Y\s is connected. 

For: Suppose Y\s =A+ B where Uc A and B # l!l. Bis closed in Y\s, hence 

also in X\s and, therefore, B cannot be open in X (otherwise B would be 

open in X\s, hence clopen in X\s, and since B n Bs = lil it would follow 
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that B = A which is impossible). Take z E B\B 0 and let W be an open con
s 

nected neighbourhood of z disjoint with A= Au {s}. If W intersects B 
r 

for some r then W c Br which is impossible (as above). Therefore, W c Y. 

Wis connected, intersects Band does not contains; so W c B, hence 

z E W c B0
, a contradiction. 

At this moment we use the (second) condition in the hypothesis and conclude 

that Y\oU is connected. On the other hand, Y\ou 

tion. D 

U + Y\U, a contradic
p q 

COROLLARY. In a locally connected treelike space each set S(p,q) is con

nected. D 

REMARK. (1) Without local connectivity neither (i) => (iv) nor (iv)=> (i) 

holds: 

(A) Let X be the sine curve together with two limit points: 

(B) 

X { (x,y) E JR2 (x>0 & y=sin !) or 
X 

(x,y) = (0,-1) or 

(x,y) = (0,+1)}. 

Then X satisfies (iii) and (iv) but not (i) 

or (ii). 

Let C be the Cantor set and c0 the countable 

subset of C consisting of all the end points 

of the deleted intervals. 

Let X be the minimal compact subset of the plane containing the set 

{ (x,y) E JR2 I (x + y = 1 & 1 $ x $ 1) or (x -y = 0 & 0 $ x s 1)} 
and such that ¢ 1[x] c X and ¢2[x] c X where ¢ 1 and ¢2 are the mappings 

1 1 1 2 1 
(x,y) ,...... (3x, 3y) and (x,y) I-->- ( 3x + 3,3y), respectively. Note that C c X. 

[X looks like a binary tree over the Cantor set.] 
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Then Xis a compact locally connected treelike space. 

Now strengthen the topology on X somewhat by adding C\c0 to a subbase of X, 

and call the resulting space Y. Y is a treelike space in which the collec

tion of end points (i.e. C) has a nonempty interior (namely c\c0 ). This 

space satisfies (i) and (iii) but not (ii) or (iv). Note that this space 

is not locally peripherally compact. 

(2) In locally compact spaces (iv)~ (i) does not hold: 

Let X { (x,y) E I 2 (y = 0 or 

(3n E lN: x =ny) }, 

then Xis compact and satisfies (iv) but not 

(i), (ii) or (iii). 

The implication (iv)~ (i) does not even hold in locally compact spaces 

in which each point is a cut point: 

Let X 
2 

{ (x,y) E lR (0 Sx s 1 & 3n E JN: x =ny) or 

(!<x<l&ySO)}, 
2 

with the topology defined as follows: 

2 
X n { (x,y) E lR y 2: O} has Euclidean topology. 

2 
X n { (x,y) E lR y < O} is the topological sum 

df the lines {(a,y) E m.2 y '< O} with 1 <a< 1, where each line has 

Euclidean topology. 

Finally, a point (a,0) EX has basic neighbourhoods 

in 

{ (x,y) E X y SO and lx+y-a! < 1 and xi F} 

x n { (x,y) E JR2 I y s o}, 

where i E lN and Fis a finite set. This construction defines a connected 

locally compact topological space X in which each point is a cut point. 

X satisfies (iv) but is not treelike. 
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(3) Also the requirement that X be Hausdorff is indispensable as is easily 

seen by splitting an end point of the unit interval in~o two points. This 

gives a locally connected compact T -space which satisfies 

(iii) and (iv) but not (1) or (11). 

PROPOSITION 7. [WHYBURN]. Let X be a locally connected treelike space. 

Then for a,b € X S(a,b) is connected, locally connected and compact. 

PROOF. This is corollary 7.2 in ~1aYBURN [28]. □ 

As a partial converse we have: 

PROPOSITION 7a. Let X be treelike. If either 

(1) For all a,b € X S(a,b) is connected, or 

(ii) For all a,b € X S(a,b) is compact 

then X satisfies (INT). 

PROOF. (i)..,. (INT) is obvious. 

(ii)• (i): S(a,b) is a compact orderable space without jumps and hence 

is connected. D 

[Observe that from this proof it follows also, that if S (a,b) is compact, 

it is locally connected.] 

Local connectedness of S(a,b) for all a,b does not imply (INT) as is seen 

in the example given in the second remark after theorem 2: 

.11 I • 

Compactness of S(a,b) for all a,b does not imply local connectedness of 

a treelike space X: 

Let X be the space obtained by identifying the 

points (0,0) and (1,0) in 

{(x,y) € I 2 3n€lN:x=ny or (x,y) = (1,0)}. 

Then Xis treelike, and each set S(a,b) is homeomorphic to I (for a~ b) 

but Xis not locally compact or locally connected. 
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As we have seen already, the projection function TI is not continuous 

in general. We have, however: 

PROPOSITION 8. Let X be a treelike space and a,b EX. Let TI 

be the projection onto S(a,b). Then 

(i) TI o TI= ir (this justifies the name "projection"). 

(ii) If c E S(a,b) and X\c =A+ B + C where A and Bare connected (and 
a b -l 

empty when a= c resp. b = c), then ir (cl= Cu {c}. That is, 

ir-1 (c) is a closed connected set (called the stalk at c). 

(iii) If S(a,b) is connected and locally connected then TI is continuous. 

In particular this is the case when Xis locally connected or when 

S(a,b) is compact. 

PROOF. (i) follows from TI(X) = x if x· E S(a,b). 

(ii) If x EC then S(a,b) n S(a,x) n S(b,x) ~ {c} hence TI(x) = c. 

Conversely if x f, ir (x) = c then c separates x from a and b (unless c = a 

or c = b); hence x EC. 

(iii) Let Uc S(a,b) be open in S(a,b). Since S(a,b) is locally connected 

we may suppose U to be connected; then it is easily seen that U = E(p,q) 

for some p,q with a$ p < q $ b. 
-1 -1 

Now air u = {p,q} - for certainly air u c S(p,q) by (ii); but if u Eu 
then u i dTI-lU since there are points v,w in S(p,q) with p < v < u < w < q 

and then the component of X\v,w containing u is an open neighbourhood of u 
-1 -1 

contained in TI U - and, therefore, TI U is open. 

[Of course connectedness of S(a,b) is used to conclude that p,q i u.J D 

3. THE LOCALLY PERIPHERALLY COMPACT CASE 

PROPOSITION 9. Let X be a locally peripherally compact treelike space. 

Then for all a,b S(a,b) is compact. 

PROOF. Let an open cover U (in X) of S(a,b) be given and let 

x = sup{u I S(a,u) can be covered with finitelymany elements of U}. 

Suppose that S(a,x) cannot be covered with finitely many elements of U, 
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and let x Ev cu EU where Vis open and av is compact. If av covers an 

entire interval S(u,x)\{x} for some u E S(a,x)\{x} then S(u,x) is compact 

(since S(u,x) n av is closed in av) and hence S(a,x) = S(a,u) u S(u,x) has 

a finite cover with elements of U. Therefore, we can find an increasing 

sequence {u.}.< of points in S(a,x) such that 
l. J. WO 

and 

(1) Vi: ui ¢. av 

-1 (2) Vi: 11 (E(ui,ui+lll n av;¢ 

(where 11 = 11ab). 

[For: suppose by induction that the points u0 , ••• ,uk are found; if there 
-1 

is no choice for uk+l this means that 11 (E(uk,x)) n av=¢ and since 

it follows that 

but then U covers the entire interval E(uk,x) contrary to the hypothesis.] 

But now the sets 

-1 
11 ({a} u E(a,u0)), 

-1 
1T (u.)\{u,}, 

l. l. 

11-1 (x)\{x} 

and 

form an open cover of av with disjoint open sets and because of (2) there 

is no finite subcover. Contradiction. 

If x # b then in an entirely analogous way we see that there is a point 

v E S(x,b)\{x} such that S(a,v) has a finite subcover. Therefore, x = b 

and S(a,b) is compact. D 

Note: since by proposition 7a S(a,b) is connected and locally connected, 

this proposition may be formulated as follows: 

PROPOSITION 9a. A locally peripherally compact treelike space is continuum-



67 

wise connected. 

This is a result PROIZVOLOV ascribes to GuRIN [13], but in the paper 

cited GuRIN does not prove this statement. R. BENNETT [5] tried to fill 

this gap and gives an amazingly short proof of proposition 9a. Unfortunately 

however; he regards as self-evident the fact that X has an open basis con

sisting of connected sets with finite boundaries, and indeed, if that is 

true then Xis locally connected and according to WBYBURN [28] (see 

proposition 7) S(a,b) is compact and connected. But local connectedness 

of Xis more difficult to prove than continuumwise connectedness. This is 

the reason I give this (longer) proof. 

THEOREM 5. [GuRIN, PROIZVOLOV]. Let X be a locally peripherally compact 

treelike space. Then X satisfies (INT), is locally connected and has an 

open basis consisting of connected sets with finite boundaries.Xis (T3½) 

and has a unique treelike compactification. This compactification is of 

the same weight and has zero-dimensional remainder. 

Conversely, any treelike space which has a treelike compactification has 

an open basis consisting of connected sets with finite boundaries and, 

in particular, is locally peripherally compact. 

PROOF. (i) By propositions 9 and 7a X satisfies (INT). 

(ii) Let X\x = rca be the decomposition of X\x in open components; let V 

be an open nbd of x such that av is compact. av intersects only finitely 

many C a' hence V contains almost all C We may find an open nbd W of X 
a 

with C C V ,,,, C c Wand W c V and I awn c I $ \/a as follows: 
a a a 

Let C be one of the ca for which Ca¢ v, and choose a EC. S(a,x) is 

compact hence locally connected, so there is an u E E(a,x) with E(u,x)-cv. 

If TI= TI then consider TI-l(E(u,x)): since av is compact it can intersect 
ax _ 1 

only finitely many of the sets TI (v) for v E E(u,x) so we might as well 

suppose u chosen in such a way thats:= TI-l(E(u,x)) c v. Now acs = {u}, 

so if we take the finitely many sets S obtained in this way, together 

with {x} and all sets C contained in V then we get an open connected 
a 

set W contained in V and containing x such that aw is finite. 

(iii) Let X be the set of all maximal centered systems consisting of 

closed connected subsets of X, and let the collection of all A= (;;: E X I A E ;'.} 

be a subbase for the closed sets in X. Then it is not difficult to prove 

that Xis a treelike compactification of X. For the proof of this statement 
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and the remaining part of the theorem I refer to V.V. PROIZVOLOV [25]. D 
• 

REMARK. K.R. ALLEN [1] showed that this compactification is the Freudenthal 

compactification of X; he also shows that it is the GA compactification of 

x generated by all closed connected sets. 

B.J. PEARSON [24] shows that a treelike space has a treelike compac

tification iff it is continuumwise connected and semi-locally connected 

[i.e., has a base of open sets V such that X\V has only finitely many com

ponents]. 

This theorem has a surprising corollary: 

COROLLARY. Any treelike space is functionally Hausdorff. 

PROOF. Let X be a treelike space and x0 the same set, but with a weaker 

topology: an open subbase of x0 is given by· the components of X\p for p Ex. 
x0 is connected and treelike and has an open base consisting of sets with 

finite boundaries. By the previous theorem x0 has a Hausdorff compactifi

cation and hence is completely regular. A fortiori x0 is functionally 

Hausdorff; but this last property is preserved when the topology is 

strengthened, i.e., Xis functionally Hausdorff. D 

At the end of his paper [25] PROIZVOLOV asked whether each compact 

treelike space is the continuous image of an ordered continuum. This 

question was answered affirmatively and independently by J.L. CORNETTE [10] 

and the present author [7]; CORNETTE gave the following slightly stronger 

statement: 

THEOREM 6. [CORNETTE]. A continuum is the continuous image of an ordered 

continuum iff each of its cyclic elements is. □ 

4. THE LOCALLY COMPACT CASE 

In this section we study conditions under which a locally compact connec

ted Hausdorff space is treelike. 

THEOREM 7. A separable connected locally compact Hausdorff space in which 

each point is a cut point is treelike (and hence locally connected and 

separable metric). 



69 

A corollary of this theorem is: 

THEOREM 8. A separable connected locally compact Hausdorff space in which 

each point is a strong cut point is homeomorphic to the real line. 

This last result was stated by FRANKLIN & KRISHNARAO [12], but their proof 

is incorrect as it would also apply to prove the same statement with local

ly compact replaced by rimcompact. This is, however, false as is shown by 

the separable metric counterexample: 

X {(x,y) E lR2 I (x < 0 & y = sin !) 
X 

with subspace topology. 

or 

In fact they ascribe to KoK [19] the fancy-theorem: "In a connected 

Hausdorff space each point being a strong cut point is equivalent to 

(S'): given three distinct points, someone separates the other two", against 

which he in fact gives a counterexample. 

The separability is required in theorem 7, and also in theorem 8 the order

ability does not follow without separability. 

Example. 

Let X = { (x,y,z) E JR3 I z ~ O} with topology given by the local bases: 

ul.. (x,y,z) = {x} x {y} x (z - ! 
i' 

U. F(x,y,O) 
J., 

{ (u,v,w) E X 2 2 1 ((u+w-x) + (y-v) < 2 ) and 
i 

(if v=y & w=x-u then uiF\{x})}, 

where i E JN and F is a finite set. 

Then Xis a locally compact connected Hausdorff space in which each point 

is a strong cut point; but Xis not locally connected or treelike. 
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However, if not only the points but also the compact connected sets 

separate the space in exactly two pieces then the space is orderable: 

THEOREM 9. A connected locally compact Hausdorff space Xis orderable 

(without end points) if X\C consists of exactly two components for each 

compact connected subset C of X. 

In order to prove theorems 7 - 9 we first introduce the concept of a brush. 

Let X be a connected locally compact Hausdorff space. A compact connected 

nondegenerated subset C of Xis called a base of a brush if: 

If p EC then C\p is contained in one component B of X\p. 
p 

If C is the base of a brush, the set Y := UC (X\B ) is called the brush 
PE P 

determined by c. 

The usefulness of this concept stems from the following lemma: 

Lemma: 

Let X be a connected locally compact Hausdorff space. If Xis not treelike 

then there is a brush in X. 

Proof: 

Case A: There is a point p such that a component S of X\p is not open. 

In this case choose a point q ES n X\S.-X\S is a connected locally compact 

Hausdorff space, hence if Vis a compact neighbourhood of q in X\S not 

containing p, then the component C of q in V must reach av. (For: in a con

nected space the component of a point in a compact neighbourhood V of that 

point intersects the boundary av of V.) But this component lies entirely 

in Sand hence is the base for a brush. (If r EC then the. component of 

X\r containing p also contains X\S and, therefore (X\S) \ r and a fortiori 

C\r.) 

Case B: For each point p EX all components of X\p are open. Since Xis 

not treelike, it contains two points a and b which cannot be separated by 

a third point. Let for each point p EX B be the component of X\p con
p 

taining a orb. Let S = X\B, then S is closed and connected, and 
p p p 

S \(S ) 0 = {p}. 
p p 

Observe that if S 
q 

n s # 0 thens c 
p q 

S or S c S. (For: otherwise 

we would have B .¢ B and 
p q 

B ¢ B , i.e., 
q p 

s 
p 

c B. But then S 
q p n s = 0-l q 

p p q 
p E Bq and q E BP and hence 
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p 

:= U{s Ip Es}. If p Es then w 
q q q p 
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= W, hence if p E W then 
q q 

w = w and, therefore, if W n W f ¢ then W W. Moreover, each W is 
p q p q p q p 

connected (since the S are). 

(i) 

q 
For each set W there are two possibilities: 

p 

It is open; this is the case if for each r E W there is a 
p 

q fr such that r ES. 
q 

(ii) It contains exactly one non-interior point q; in this case W S 
p q 

and is, therefore, closed. 

B(i). Assume first that some W 
p 

is open, then a,b i W. (For: W S and 
p a a 

Wb = Sb.) Since Xis connected and WP f X WP cannot be closed. If w"\W p p 
= {q} then p ES, so q E W. Contradiction. 

q p 
Therefore, there are two distinct points q,r E W\W. Now W is a locally 

p p p 
compact connected subspace of X, so we can find two disjoint compact 

neighbourhoods V and V of q and r resp. in W. 
q r p 

The components C and C of q and r in V and V (resp.) cannot both meet 
q r q r 

WP, since if q 1 EC n W and r 1 EC n W then there is a points E W 
q P r P P 

such that {q1 ,r1} c Ss and, therefore, s separates (q1 and r 1) from 

(q and r). This, however, is impossible since s cannot lie both in C and 
q 

C • 
r 

Therefore, we may suppose C = C 
q 

argument already used in Case A 

c W\W. C is non-degenerated by the same 
p p 

and, therefore, is the base of a brush. 

(By the same argument: if t EC then the component of X\t containing p 

also contains W and hence W\t and a fortiori C\t.) 
p p 

B(ii). Now suppose that each W is 
p 

{q I W = S }. Z is closed Let Z 
q q 

closed, i.e., of the form S for some q. 
0 q 

since X\Z UZ S is open. Moreover, 
qE q 

{a,b} c Z. If Z were connected we could find a non-degenerate compact 

connected subset C of Zand take Y = U S to get our brush. 
qEC q 

(By the very definition of Z, Z\t is contained in one component of X\t, 

sc. the component containing a orb.) 

On the other hand, if z = z1 + z2 then, since Xis connected, either 

3z2 E Z2: z2 E U 
qEZl 

Suppose 

s 
q 

or 

s . 
q 

Let V be a compact neighbourhood of z 2 in the locally compact spaces, 
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where S = U S, such that V n z1 =¢.Since V cannot contain a clopen q,tz 1 q . 
neighbourhood of z2 (each Sq is connected) the component C ~f z 2 in V must 

reach av. But this component cannot intersects, hence Cc S\S c z2 , and 

again C is the base for the brush Y 

This proves the lemma. D 

u s • 
qe:C q 

PROOF OF THEOREMS 7 - 9. Let X be a connected locally compact Hausdorff 

space. Suppose there is a brush in X with base C. Let for each p e: C 

8 be the component of X\p containing C\p. Let S p p X\B. S is connected p p 
and contains p. 

Ifp,'q,p,qe:C then q e: C\p cB and pe:B, sos cs q' i.e., s n s = ¢. 
p q p p q 

["Hai.rs on the brush are disjoint".] Since X is regular, C contains at 

least 
~o 

points p and, therefore, X contains a collection of 
~o 

pair-2 2 
0 

wise disjoint open sets S, which are nonempty if each point pis a cut 
p 

point of x. This implies that X cannot be separable nor satisfy the count-

ahle chain condition, which proves theorem 7. 
~ 

Also X\C decomposes into at least 2 O components, so the hypothesis of 

theorem 9 implies that Xis treelike and, therefore, since in particular 

each point is a strong cut point, that Xis orderable (see the corollary 

to theorem 1). This proves theorem 9. 

In the same way it follows from the hypothesis of theorem 8 that Xis 

orderable and since it is separable homeomorphic to JR.This proves 

theorem 8. D 

It is not possible to strengthen theorem 9 to the statement: "A con

nected locally compact Hausdorff space is orderable iff for each compact 

connected subset C of X X\C consists of at most two components"·, for if 

Xis any separable metric indecomposable continuum and Ca subcontinuum, 

then either C = X or C is contained entirely within one composant of X 

and hence in both cases X\C is connected. 

Other counterexamples are the locally compact ones among all connected 

Hausdorff spaces for which the complement of any connected subset has at 

most two components. These spaces are characterized in the next chapter; 

we find the following ten types: 

lIPPBZOO-O 
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5. A CHARACTERIZATION OF CONNECTED (WEAKLY) ORDERABLE SPACES 

It is well-known and already mentioned before, that a connected topological 

space Xis (weakly) orderable iff among any three points of X there is 

exactly one which separates the other two. Since a point (singleton) is 

connected, this result immediately follows from the more general 

THEOREM 10. A connected T1-space is (weakly) orderable iff among any three 

points of X there is exactly one which lies in a connected set that sepa

rates the other two. 

A similar characterization is possible using regions instead of just con

nected sets: 

THEOREM 11. A connected T1-space Xis (weakly) orderable iff among any 

three points of X there is exactly one which has an open connected neigh

bourhood that separates the other two. 

These two theorems will follow from the next proposition: 

PROPOSITION 10. If the connected T1-space X satisfies the following three 

conditions: 

(i) among any three points of X there is at least one which lies in a 

connected set separating the other two; 

(ii) among any three points of X there is at most one which lies in an 

open connected set that separates the other two points; 

(iii) all segments in X are open, 

then Xis orderable (and, conversely, an orderable space certainly satis

fies (i) - (iii)). 

PROOF OF THE PROPOSITION 

1. X contains at least one cut point. 

For suppose no point of Xis a cut point. We consider two cases. 

lA. Suppose X\{p,q} is disconnected for all p,q EX. Now X\{p,q} A+ B 
r 

and B =Bu {p,q} is connected. Sor cannot lie in a connected set separat-

ing p and q. Since p, q and rare arbitrary we arrive at a contradiction 

with (i). 
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1B. Let X\{p,q} be connected for some fixed pair of distinct points p,q. 

Now X\{p,q} is an open connected neighbourhood of r separating p and q 

for each point r E _X\{p,q}. Therefore, by (ii), q cannot have an open con

nected neighbourhood separating p and some other point r. Hence X\{p,r} 

is not connected for r # q, i.e., X\p has exactly one end point. 

Choose r 1 ,r2 different from p,q. Let 

and 

X\{p,r 1} =Al+ A2 
#~ r2 

connected set separating r 1 and p respectively r 2 and p. Therefore, by (i), 

p belongs to a connected set that separates r 1 and r 2 so that X\{r 1 ,r2} is 

connected (,otherwisewewould have X\{r 1 ,r2} =A+ Band B =Bu {r 1,r2} 
p 

which gives a contradiction). 

This proves that in X\r1 all points, except possibly p and q, are end points; 

on the other hand, by the above argument X\r 1 has exactly one end point. 

Contradiction. 

2. X cannot contain exactly one cut point. 

For suppose pis the only cut point of X, and 

Then A\p1 and A\p2 and B\p3 are connected and, consequently, 

is an open connected neighbourhood of pj separating pi and p3 ({i,j} 

{1,2}). This contradicts (ii). 

3. For each p EX X\p has at most two components. 

For suppose 

X\p =A+ B + C; A\a 
a b c 

(where A2 , B2 , c2 may be empty). 
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Since the components of X\a are open (by (iii)), the components of A\a are 

open in A, so we may assume that A1 , B1 and c1 are connected. 

Now Au B1 u c1 is an open connected neighbourhood of a, separating b 

and c, and Bu A1 u c1 is an open connected neighbourhood of b, separating 

a and c, a contradiction. 

4. Xis orderable. 

Choose two cut points p,q EX, and let 

X\p A + B and X\q = A + B. 
p p q q 
a q p b 

Let Y = X\(A uB) A n B. (Then Y is connected.) 
p q q p 

If Y\r = A + B then X\r = (A UAUB) + B, so Band, therefore, A are 
p,q p q 

connected. 

Let 

A\a E + F 
p a a 

p 
and 

B\b Eb + Fb q 
p 

where Ea and Eb are connected and Fa and Fb may be empty. Then 

is open and connected, while 

But from this it easily follows that each of the points a, b, r has an 

open connected nbd separating the other two. Contradiction. 

Therefore, each point r E Y\{p,q} separates p and q, i.e., Y = S(p,q). 

By extending the order on Yin the obvious way to X we find that Xis 

partially ordered in such a way that its collection of cut points is 

connected and linearly ordered, and each end point is either maximal or 

minimal. But if AP contains two end points u 1 and u2 then (Aq\u 1) u Eb is 

an open connected nbd of uj, separating ui and b ({i,j} = {1,2}). This 

violates (ii). Therefore, A and B each contain at most one end point 
p q 

of X, and it follows that Xis linearly ordered. D 
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PROOF OF THE THEOREMS 

In both cases it suffices to prove that X satisfies (iii). 

Suppose X\p = ~ + f + g. Then A, Band Care connected sets, containing 

a resp. b resp. c, and separating band c resp. a and c resp. a and b, 

yielding a contradiction in the case of the first theorem. 

In the other case let Uab be an open connected neighbourhood of p which 

does not contain a and b (note that such a set exists since a connected 

nbd of a cannot separate p and b etc.). Now Cu Uab is an open connected 

neighbourhood of c, separating a and b. Likewise, a and b have open con

nected nbds, separating band c, resp. a and c. Contradiction. 

This proves that X\p has at most two components (and a fortiori that 

all components of X\p are open). D 

REMARK. The third condition in the proposition is needed to ensure the 

existence of sufficiently many open connected sets without which the second 

condition would be useless. 

For example a Vl-space satisfies (i) and 

(ii') : the complement of an open connected set is connected (so no open 

connected set separates any two points), and 

(iii'): for each p EX at most one segment of pis not open. 

6. ON (B) 

In this section we consider the following property of a connected topolog

ical space X: 

(B): X does not contain three mutually disjoint segments. 

[Remember that a segment in Xis a component of X\p for some p EX.] 

Clearly, a B-space need not be orderable (as is seen by considering 

an arbitrary connected space with more than one point but without cut 

points). We can, however, say something about X when E(X), the set of all 

end points of X, is not too large. First of all we have: 

THEOREM 12. [18] Let X be a B-space without end points. Then X satisfies 

(S 1 ) and hence Xis orderable iff Xis (T1). 

This follows from the more general 
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THEOREM 13. Let X be a B-space and let p,q,r be three cut points of X. 

Then one of them separates the other two. It follows that the separation 

order induces a linear order on X\E(X). [The latter space is not necessarily 

connected, however.] 

Conversely, if 

(i) each cut point is a strong cut point, and 

(ii) among any three cut points one separates the other two 

then X satisfies (B). 

PROOF. Immediate from the definitions. D 

From now on we shall assume that X satisfies (T1). 

To get some feeling for the situation we first give some examples. 

1. It is not true that if X satisfies (B) then X\E(X) is connected: 

2. In general, there is no connected orderable space Y such that 

X\E(X) c Y c X, not even when E(X) is totally disconnected: 

Take the biconnected set of KNASTER & 

KURATOWSKI [17], attach a line segment 

to its dispersion point and reflect the 

set thus obtained in the x-axis. 

3. It is possible that E(X) 0
-/ 0 while each set of conjugated end points 

is finite: Let 

X = ( :JR\\12 ) U 92 X { 0, 1} 

with topology defined by the neighbourhood bases: 

((q-c ,q+£) n \12) x {O, 1} \ { (q, 1-j)} 

U (r) 
£ 

= ((r-£,r+£) n ~) x {O,l} u (r-£,r+£) n (:JR\\12). 

Then E(X) = Ill x {0,1} is open and totally disconnected, while each set 

of conjugated points is a doubleton. 
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4. If p E E(X), then Y X\p does not necessarity satisfy (B): 

OJ or -0---
p p 

5. Let X = [-1,0) u Au Bu Cu (0,1], where A, Band Care three dense 

subsets of a copy I' of I such that Au Bu C is totally disconnected 

(in the Euclidean topology), with the following topology: 

(i) for each a E A [-1,0) u {a} is homeomorphic with I; 

(ii) for each c E C {c} u (0, 1] is homeomorphic with I; 

(iii) [-1,0), (0,1] and B are open in X; 

(iv) [-1,0) [-1,0) u A, 

(0, 1] (0, 1] u c, 

B A U B u C; 

(v) in A u B U C basic open sets are J n B, J n (AUB) and J n (BUC) 

if J is an open interval in I'. 

Then xis connected and satisfies (B); E(X) =Au Bu C = B so that 

E(X) is a regular closed set; also E(X) is totally disconnected. 

Yet there is no connected subspace Y of X with E\E(X) c Y c X such that 

Y is order able. 

-1 
! ! i 1-----+l 

A ~ C 

Note that this phenomenon cannot occur when E(X) is compact: 

if z is a totally disconnected compact space, and Ban open subset of 

z, then B contains clopen subsets of Z. 

Observing that we can change cut points into end points by doubling 

them this shows that 

Lemma: Let X be a B-space such that E(X) is compact and totally discon-
-- o 

nected. Then E(X) = 0-

THEOREM 14. Let Xsatisfy (B), and suppose that either E(X) is totally 

disconnected, or E(X) 0 = 0. 
Let p E E (X) . Then Y : = X\p satisfies (B) and E (Y) c E (X) . 

PROOF. (i) If q E E(Y) then X\{p,q} and, therefore, also X\q is connected, 
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i.e.,qEE(X). 

(ii) Each cut point of Y is a strong cut point: 

Let q f p, X\{p,q} = E + F + G, X\q = A + B where B may be empty (if 
- ~ q q 

q E E(X)). X\p is connected, so q EE n F n G and Eu {q}, Fu {q} and 

Gu {q} are connected. 

(iia) q i. E(X). 

Now we may suppose E =A, and then B =Fu {p} u G. It follows that 
q q 

Fu {p} and Gu {p} are connected. Choose 

f E F\E(X) (Fu{p})\E(X) and g E G\E(X). 

X\f Af + Bf and X\g A + B 
g g 

fflJ p ;fflJ p 

G (p E G) F 

q (q E G) q 

A (q EA) A 
q q q 
g (g E G) f 

A (f EB ) Af g g 

It is seen that Af, A and A are pairwise disjoint segments. Contradiction. 
g q 

(iib) q E E (X). 

Now E Eu {p,q}, Eu {p} and Eu {q} are connected and the same holds for 

F and G instead of E. If we choose 3 cut points of X: e EE, f E F and g E G 

then in the same way we find three pairwise disjoint segments Ae' Af and 

A, again a contradiction. 
g 

(iii) Y satisfies (B): 

Let 

({i,j ,k} {1,2,3}) 

and suppose that p E Bl u B2 u B3. Then if we choose a point a. E A.\E(X) 
l. l. 

(i = 1,2,3), and let 

X\ai E. + F. 
l. l. 

p fflJ 

it follows as above that the segments F 1 , F2 and F 3 are pairwise disjoint. 
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Hence, say, pi B3 . Since A1 u A2 c B3 it follows that 

and 

X satisfies (B) and, therefore, A3 cannot be a segment in X, i.e., p E A3 • 

But also A1 , A2 and A3 u {p} are pairwise disjoint, i.e., p E B3 and 

q 3 E E(X). It follows that A3 c E(X), contradiction. D 

COROLLARY. Let X satisfy (B) and suppose E(X) is finite. Then there is a 

subspace Y such that X\E(X) c Y c X which is orderable. 

PROOF. Repeatedly apply the theorem until E(Y) is empty. D 

THEOREM 15. Let X satisfy (B), and suppose that either E(X) is totally 
0 

disconnected, or E(X) 9). 

Let Y be a segment in X. Then Y satisfies (B) and E(Y) c E(X). 

PROOF. The proof is almost identical to that of the previous theorem. The 

only point where something has to be changed is in case (iia) where we 

used that F ¢ E(X). As is shown by the second example it is well possible 

that Y\q has many components, almost all of which are contained within 

E(X), while nevertheless E(X) is totally disconnected. But if F c E(X) 

then the nondegenerated connected set Fu {p} is contained in E(X), which 

contradicts our strengthened hypothesis. D 

THEOREM 16. Let X be a locally peripherally compact Hausdorff B-space 

such that E(X) if finite. Then Xis (strictly) orderable. 

PROOF. By the corollary to theorem 14 X contains a (weakly) orderable con

nected subspace Y containing all of its cut points. Suppose p and q are 

two conjugated points in X. Then p and q detercine a cut in Y: Y = Y1 u Y2 

where Y1 and Y2 are order-convex subsets of Y, and Y2 has no first element. 

We may assume that {p,q} c Y2 . Let U resp. V be disjoint open nbds of 

p resp. q with compact boundaries. Let {ya}a be a coinitial sequence in 

Y2 \E(X) andletfor eachaX\ya = Aa +Babe the (unique) separation. 
p,q 

If {Ba}a is a cover of au n Y2 then for some 

covers au n Y2 , so that u contains all points y E 

means that U contains q, a contradiction. 

a0 the set Ba already 
u 

Y2 with y < Yao· But this 

Therefore {B} does not cover au n Y2 , which means that au contains a a 
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a point q 1 conjugated top. Replacing V by V ~ v1 where v1 is a nbd of q 1 

with compact boundary and taking a smaller U we find by the same argument 

a point q2 different from q and q 1 and conjugated top. Continuing in this 

way we find countably many points qi, all conjugated top. But at most one 

of them can be in Y and hence X has infinitely many end points. D 

REMARK. If we let 

X = { (x, y) E :m2 I (x > 0 & y = sin ! ) v 
X 

(x=O & y E ~ n [-1,1])} 

then X (as subspace of the plane) is a locally peripherally compact Haus

dorff B-space such that E(X) is countable. 

THEOREM 17. Let X be a locally compact Hausdorff B-space such that E(X) 

is totally disconnected. Then Xis (strictly) orderable. 

PROOF. First observe that Y is dense in X: if r E E(X) and Wis a compact 

nbd of x then the component R of r in w intersects aw and hence is not 

reduced to a singleton. Hence R ¢ E(X) so that 

w n Y ~Rn Y # 0. 

Now we can mimick the proof of the previous theorem: 

Let Y X\E(X), and write for each y E Y: X\y = A + B such that 
y y 

{y' E y I y' < y} c A and {y' E y I y' > y} C B In order to prove the 
y y 

theorem it suffices to show that X is treelike. Suppose not and let p and 

q be two conjugate points in X. As in the previous proof p and q determine 

a cut in Y: Y = Y1 u Y2 where Y1 = {y I {p,q} n By# 0} and Y2 Y\Y1 . we 

may assume that {p,q} c aU{By I y E Y2}. Let U resp. V be disjoint compact 

nbds of p resp. q, and let P (resp. Q) be the component of p (resp. q) 

in U (resp. V). It is impossible that both P and Q intersect U{Bu 

for otherwise P n Q would contain points of Y2 . But if P does not inter

sect U{B I y E 
y Y2} then it contains a nondegenerated connected subset 

entirely contained within the boundary of this set. But this is impossible 

since E(X) is totally disconnected. D 
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7. WEAKER PROPERTIES 

7 .1. on (NS) 

DEFINITION. A connected topological space Xis said to satisfy (NS) each 

pair of its points can be separated by an open connected set. 

We shall see that in this definition the word "open" is superfluous. 

(Assuming this it is obvious that (NS) is indeed weaker than (S).) 

PROPOSITON 11. Let X be a connected topological space such that any two 

of its points can be separated by a connected set. Then all segments in 

X are open. 

PROOF. Suppose C is a component of X\p which is not open. Then there 

exists a point r EC such that r E X\C. Let Q be a connected set separating 

p and r. Then we have 

X\Q =A+ B. 
p r 

Bu Q is connected, intersects C and does not contain p, hence Bu Q c C 

and X\C c A. Now r E X\C c A, a contradiction. 0 

COROLLARY. Let X satisfy (NS). Then for any two points a,b EX we have 

C(a,b) = S(a,b). 

PROOF. Cf. the remark before proposition 1. D 

THEOREM 18. If in X any two points can be separated by a connected set, 

then any two points p,q can be separated by an open connected sets such 

that as= {p,q}. 

PROOF. Let X\p = O + R, where Q is connected. Let Q\q = UA C be the --- q a€ a 
decomposition of Q\q in components. Now let C be a connected set separating 

p and q. Then cc c0 for some a 0 E 
-- 0 -

sop t Q\C0 and hence p E C0 • C0 
0 o 0 

open; also Ru {p} is closed, so c0 
0 

we satisfy all requirements. 0 

COROLLARY. (S) .. (NS) • D 

A. Q\C0 is connected and contains·q, 
0 

u {p} u Risa segment of q and hence 

is open. Therefore, taking-S = c0 
0 
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THEOREM 19. Let X satisfy (NS). Then among any three distinct points in X 

there is at least one which lies in an open connected set that separates 

the other two. 

PROOF. Suppose not, and let the points p 1 ,p2 ,p3 in X provide a counter

example. Let Band C be open connected sets such that 

X\C Al + Bl and X\B = A2 + B2 

P1 P2•P3 P2 P3,P1 

If A2 u B u C is connected, it is an open connected set containing p2 that 

separates p 1 and p 3 , contrary to the assumption. But A2 u Bis connected, 

so C n (A2UB) =~and similarly B n (AlUC) =~-Also (BlnB2) u Bu C 

cannot be connected (observe that it is open), hence 

(B 1nB2) u B U C s + T . 
B 

If CC T then X (A2us) + (A1UT). 

If C C s then X (Al uA2us) + T. 

In both cases we have a contradiction. □ 

7. 2. ON ( 1NT2) AND SOME VARIANTS OF IT 

DEFINITION. A connected topological space Xis said to satisfy 

(1NT2) iff the intersection of any two connected subsets is again 

connected, 

(1/JT2*) iff the closure of the intersection of two connected sets 

is connected, 

(1NTC2) iff the intersection of two closed connected sets is again 

connected. 

Obviously (HJT2) ,. (1NT2*) ,. (1NTC2). 

Spaces satisfying (1NTC2) are sometimes called "hereditarily unicoherent" 

(but often this last phrase implies compactness or is used only for metric 

continua) • [A connected space X is called unicoherent if whenever X = A u B, 

where·A and Bare closed connected sets, An Bis connected. 

(Cf. KURATOWSKI [20]).] 

In chapter II, theorem 2 we observed (1NT2) ,. (W) and the argument 

used there also proves (1NT2*),. (W). It is not true that (1NTC2),. (W): 
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The cofinite topology on lN yields a space which satisfies (INTC) but not 

(W). Each point of the space is an end point. 

Concerning the properties of segments in X we have the following 

definitions: 

(8 1 0): all segments in X are open, 

(8 1 C): no segment in Xis closed, 

(8 1W): the boundary of each segment of Xis a singleton. 

obviously (INTC) => (8 1 C) and (INT2*) => (Wl => (8 1 W) and (8 1 0) - (8'C) 

and (8 1 W). 

Example 1 of Kok's thesis [19] satisfies (INTC) but not (8 1 W), 

Example 9 satisfies (INT2) but not (8 1 C), 

Example 15 satisfies (8 1 C) and (INT2) but not (INTC), 
Example 18 satisfies (W) and (8 1 C) but not (INTC2), 

Example 28 satisfies (8 1 W) and (INTC) but not (W), 

Example 30 satisfies (INT2) and (INTC) but not (INT), 

Example 31 (Miller's space) satisfies (W) and (INTC) but not (INT2*) 

and a variant of Miller's space provides an example satisfying (INTC) 

and (INT2*) but not (INT2). 

That is, the following diagram contains all valid inplications: 

/(INT) 

* ~ (INT l (INT2) 

/~/ 
(INTCJ (INT2 l 

/~ I~ 
(8 1 C) (INTC2) (W) 

l 
(8 1 Wl 

[Concerning the variant of Miller's example alluded to: in Miller's space 

X there is a square ABCD such that for any two connected subsets c1 and c2 

of X, c1 n c2 is dense in ABCD; by carrying out his construction.without 

fixing a square beforehand, we obtain a space with the stronger property 

that for any two connected subsets c1 and c2 of X, c1 n c2 is dense in X. 

In particular this space satisfies (INTC) and (INT2*). That x does not satis

fy (INT2) is seen as before (cf. page 51).] 
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Among treelike spaces (INTC) is equivalent to (INT) (by the corollary to 

proposition 5), and all treelike spaces satisfy (B 1 C) and (W), so that we 

get the smaller diagram 

(INT> => (INT2) => (INT2*) => (INTC2). 

Below we shall construct a treelike space satisfying (INT2) and the first 

axiom of countability, but not (INT). I do not know of any treelike space 

satisfying (INTC2) but not (INT2). 

Sometimes the only way to ensure (INT2) is by using some ultrafiler

based construction. In such cases (INT2) + (CI) is impossible. For example, 

a V-space can satisfy (INT2) or can be first countable but not both: 

PROPOSITION 12. AV-space cannot satisfy (INT2) + (CI). 

PROOF. Suppose Xis such a V-space, and let x be a non-minimal point of X. 

Let {u.}. be a countable local basis at x' such that for each i: 
l. l. 

ui+l c ui. 

Let Px\x =~Ca be the decomposition of Px\x into components. Since 

x' E P but for no a: x' E C = C u {x}, we 
x a a may choose integers ik and 

indices ak such that ui meets CN , but u. n .Uk CN. 
k ~k 1.k J< ~J 

0. Now if 

s1 {x,x'} u Uc 
i a2i 

and 

{x,x'} u UC 
i a2i+l 

then s1 and s2 are closed connected subsets of X with the disconnected 

intersection {x,x'}. D 

For a while I have thought that in the same way (S) + (INT2) + (CI) => (I/JT). 

This is not true, however. The rather involved counterexample I made was 

streamlined and simplified by A. SCHRIJVER; in the next subsection I present 

his version of this example. 

7.3. EXAMPLE OF A TREELIKE SPACE SATISFYING (INT2) AND THE FIRST AXIOM 

OF COUNTABILITY BUT WITHOUT THE INTERSECTION PROPERTY 

Let J := [0, 00 ). Our example X is the set (JRx{O}) u {g;JXJ) with the following 
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local basis: 

(i) If y ,f 0 then U. ((x,y)) = { (x,z) E X I ly-zl < ~}. 
l. l. 

(ii) In order to define neighbourhoods for points (x,0) we need some 

preparation. 

Considering IR.and~ as additive groups we may form the quotient 

1R/(f1. For x E IR we write [x] for the coset of~ containing x. Observe 

that I 1R/(f1 I = C.. 

Next let V = {D c Cf1 I D 

. lj,: V + IR/Cf!. 

IR}. Since IV I C. there exists a bijection 

Now we may define neighbourhoods of (x,0) as follows: let Dx 

and put 

{(u,v) e: XI 1 
(u=x) & v<-:-) or 

l. 

(0< lu-xl <.!. & ue:D & v>i)}. 
i X 

-1 
1j, ([x]), 

In this way we get a topological space X satisfying (CI) by definition. 

CLAIM. The connected subsets of X are the following: 

(i) the sets {x} x Kc X, Ka convex subset of J; 

(ii) the sets Cc X such that 

is a nondegenerated convex subset of IR, and for each x: 

is a convex set containing 0, and for each k: 

Ek := {x € L n Cf! (x,k) i. c} 

is nowhere dense in :R. 

In particular X itself is connected. 

PROOF. Clearly the connected sets C with ITI 1CI ~ 1 are exactly the sets 

mentioned under (i), since for each x the subspace {x} x J is homeomorphic 

to J. Now let ITI 1CI > 1. We first show that if C is connected it must satis

fy the conditions mentioned under (ii). Since 



X\(x,O) {(u,v)EX u < x} + {(u,v) EX I u > x} + 

+ {(x,v) EX Iv> O} 

and 

X\(x,y) {(x,v) EX Iv> y} + X\{(x,v) EX Iv~ y} 

we have the convexity of Land TT 2 (c n {x} x J). 

[Note that these separations prove that Xis treelike as soon as we know 

that Xis connected.] 

Next if U is an open interval in IR contained in the closure of Ek: 

Let D = Ek u (~\U), then Dis dense in IR. Choose x EU such that [x] = 

= w(D), and i such that (x-i,x+i) c U; now u1.. ((x,O)) n c contains only 
1. 1. 

points with first coordinate x, so C n {x} x J is clopen in C, a contra-

diction. 

Conversely, suppose C satisfies the conditions of (ii) but is, 

nevertheless, disconnected: C = A1 + A2 • If (x,y) E Ai then (x,O) E Ai 

(i = 1,2) since C n {x} x J is connected and contains (x,O). Hence we 
-1 

have L = Ll U L2 and Ai C n TTl (Li). 

Consider a point (x,O) E A1 and an open nbd Ui ((x,O)) n C contained 

in A1• Let (q,O) E Ui ((x,O)) n C such that [q] = w(~), then for all k 

that is, (q,O) E A1• But now if (r,O) E Ui ((x,O)) n C then each nbd of 

(r,O) inc contains points (q,O) with [q] = w(~) in its closure, i.e. 

(r,0) E A1 • 

This proves that L1 and L2 are open in IR, so that L 

is connected. Contradiction. 

This proves the claim. 
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In order to prove (INT2) we merely have to observe that the union of 

two nowhere dense sets is again nowhere dense, so that the intersection of 

two connected sets has one of the forms (i) or (ii). 

Finally X does not satisfy (INT) since S((a,O),(b,O)) 

is totally disconnected (closed and discrete). 

[a,b] x {O} 

Concerning the separation properties of X we may observe that Xis 

functionally Hausdorff but not regular. 
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8. SUPERCOMPAC'i'NESS OF COMPACT TREELIKE SPACES 

THEOREM 20. A compact treelike space is supercompact. 

[A space is called supercompact if it has an open subbase B such that each 

cover of the space with sets from B has a subcover consisting of (at most) 

two elements.] 

This theorem has been proved independently by J. VAN MILL [21] and 

A.E. BROUWER & A. SCHRIJVER [9]. Here we shall give a general result of 

which this is an immediate corollary. 

DEFINITION. Let X be a set, A a collection of subsets. 

A is called u-binary if each finite covering of X with elements from A 

has a subcovering of at most two elements. 
© 

A is called i-binary if A := {X\A I A EA} is u-binary, i.e. if each 

finite subset of A with empty intersection contains two disjoint elements 

(except for degeferate cases). 

A is called forestlike if A1,A2 EA=+ A1 n A2 

THEOREM 21. I.et C be a collection of connected subsets of a connected topolog

ical space x. Let S be a collection of components of complements of sets 

from C. Then 

(i) if C is forestlike then Sis forestlike; 

(ii) if C is i-binary then Sis u-binary. 

COROLLARY. If the open segments of X form an open subbase and Xis compact 

then Xis supercompact. In particular a compact treelike space is super

compact. 

PROOF of theorem 21. (i) Let Si be a component of X\Ci (i = 1,2). 

A. If c1 c c2 then either s1 n s2 =~or s1 ~ s2 and likewise if c2 c c1 • 

B. If c1 u c2 x then s1 n s2 = ~-

c. Let c1n c2 ~ and assume s1 n s2 # ~. s1 ¢ s2 , s2 ¢ s1 • Then s1 u s2 
is connected and strictly larger than s2 hence s 1 intersects c 2 • But 

then s1 u c2 is connected in x\c1 hence c2 c s1 • Now since x\s1 is 

connected in X\C2 it follows that x\s 1 c s2 and s 1 u s2 = X. 

k 
(ii) Let i~l Si= X be a minimal covering of X where k ~ 3. Let Si be a 
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component of X\Ci (1 ~ i ~ k). 

If c. n c. =~then also Si. n c. ~ since otherwise C. cs., X\S. is con-
i J J J l. l. 

nected in X\C. hence either X\S. c S. i.e. s. u SJ.= X, or (X\S.) n S. = ~, 
J l. J l. l. J 

i.e. S. CS., 
J l. 

but both cases are impossible since the cover was assumed to 

be minimal. 

Define a graph with vertex set V = {c. [ 1 ~ i ~ k} and edges 
l. 

C. n C. =~}.Let M be a maximal independent set of vertices. 
l. J 

n{c. 
l. 

hence (since C is i-binary) two elements of Mare disjoint, contradicting 

the definition of M. D 

PROOF of corollary: (i) C 

connected subsets of X. 

{{x} [ x EX} is an i-binary collection of 

(ii) If Xis treelike then all segments are open, and the segments separate 

points, i.e. generate a Hausdorff topology. If Xis moreover compact then 

the segments must form a subbase. D 

REMARK. J. VAN MILL & A. SCHRIJVER [22, thm. 4.3] prove the following 

(for T1-spaces X): 

Xis compact treelike iff X possesses an i-binary normal connected 

closed subbase which is forestlike. 

This combined with the above corollary yields the following result: 

COROLLARY. A connected Hausdorff space Xis locally peripherally compact 

treelike iff the open segments of X form an open subbase. D 

If Xis an infinite set with the cofinite topology then the open segments 

form an open subbase (hence Xis supercompact) but Xis not treelike. 

Therefore, the "Hausdorff" requirement is indispensable. 





CHAPTER IV 

CLASSIFICATION OF THE CONNECTED TOPOLOGICAL SPACES 

THAT CANNOT BE BROKEN UP INTO MORE THAN TWO COMPONENTS 

BY REMOVAL OF A CONNECTED SUBSET 

1. THEOREM 

Let X be a connected T1-space such that X\C decomposes into at most two 

components whenever C is a connected subset of X. Then Xis of one of the 

following types: 

{ 0. 
12. c~ 

1. 13.c~ 
2. 

3. 14. CJrJ,----0 
4. 1 s. Ct,--£) 
s.Q 16. C~:J 
6.o 

l 
17. [><] 

7. 0---0 
18. (34() s.o 
19. ~~ 

9. ~ 

10.0,---0 
20. 

0 
11. ~ v 21. ~ 

22. ~ 
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23. 

24. □~ 29. c;:!:) 
25. c!; 30. Q;J 
26. c9 31. Ci=) 
27. ~ 

~ 32. 

or, what is the same: 

These pictures are meant to suggest the connectivity structure of the 

space - rather than the topological structure; i.e., in each picture Xis 

a union of (weakly) orderable connected subsets, joined in the way shown. 

E.g., 

p ,... ___ ....,~· q 

r s 
can be read as: 

[p,q] and [r,s] are weakly orderable connected sets, 

[r,s] is closed, [p,q] is open and a[p,q] = {r}. 

An example of such a space is provided by the subset 

{ (x,y) E JR2 {(x,y) =(0,1)) V (y=-1 A 0,,;x,s;l) V 

(y = sin l A -1,,;x<0)} 
X 

of the plane, which explains the representation chosen. 



This theorem does not say anything about the topology of X but describes 

the collection of connected subsets of x. [For instance 

is an example of type 2, and 

is an example of type 20.] 

[Note that all concepts occurring in the statement of the theorem can be 

expressed in terms of connected sets only, without reference to the 

topology: 

Xis T1 means: for all x,y € X, if x ~ y then {x,y} is disconnected; 
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Cc Xis orderable and connected means: there is a total order on C such 

that the connected subsets of Care just the orderintervals; 

p € C for a connected set c means: Cu {p} is connected.] 

2. LEMMA 

Let X be a connected T1-space such that for each connected subset C of x, 
X\C has at I1Dst two components. Then for each n-tuple of connected subsets 

n 
Ci (1 s i s n) of X X\~1 Ci has at I1Dst n + 1 components. 

PROOF. By induction: the case n 0 is trivial and when n = 1 the conclu-

sion equals the hypothesis. Let n ~ 2 and let Ci be nonempty (1 sis n). 

We may assume Ci n Cj = ¢ (1 s i < j s n). Suppose 

where each Si is connected and en c s 1• Let s 1 \Cn = A1 + ••• +Am (where the 

A. are not necessarily connected since it is not known a priori whether 
J 

s1\cn has finitely many components or not). 

(i) If for some j s m and 1 < n C u A. u cl is connected, then n J 

Csi~n-1 
(CnUAjucl)) 

k 
X \ Ci u I s. + I Ai 

i=2 
]. 

1SiSm 
i~l Vj 
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and, therefore, by the induction hypothesis (k-1) + (m-1) $ n. In particular 

the number of components of s1\cn must be finite and henceforth we may 

assume that the Aj (j = 1, ••• ,m) are the components of s1\cn. Now 

n 
X \ U Ci 

i=1 

k m 
l Si + l A, 

i=2 i=1 1 

has (k-1) +m $ n + 1 components, as required. 

(ii) On the other hand, en u Aj is connected for 1 $ j $ m, so if no 

en u Aj u c 1 is connected this means that (CnuAj) n c 1 = (Cnu Aj) n c~ = t1 
for all 1 < n and j $ m. But in that case 

X\C =Al+ ••• + A + ( b s. u ~u1 ci) 
n m i=2 1 i=1 

and therefore, (since n ~ 2 and Ci F t1 the last term is nonempty) m $ 1. 

Again it follows that 

n 
X\ U Ci 

i=l 

has at most k < n + 1 components. D 

3. PROOF OF THE THEOREM 

Let us call a space x a C-space if it satisfies the hypothesis of the 

theorem. The idea of the proof is that x must be broken up into pieces 

that have a simple structure (orderable or cyclically orderable), and then 

the structure of Xis determined from the structure of these pieces and the 

way they are joined together. 

I. This process is easy when X has a cut point, and goes as follows: 

A. Let Z be the collection of cut points of x. Then z is a connected 

orderable subspace of X such that each open order-interval (z 1,z2) in z 

is open in X and each closed order-interval [z 1 ,z2J in z is close.d in x, 
and (z1 ,z2) = [z1 ,z2J if -z 1 F z 2 . 

(~: the statement.is trivial if z contains at most one point; if z 

contains two points p,q and X\p = A + B , X\q = A + B then Y = A n B is p p q q q p 
q p 



connected, and each point of Y\{p,q} separates p and q, for if not then 

either Y\z is connected and X\(Y\r) A + {r} + B or Y\r = E + iJ and 
p q p,q fb 

x\ (Eu{r}) = A 
p 

+ F + B . 
q' both times a contradiction. Therefore, Y is 

order able with end points p and q and y C z, etc.) 

B. Let p be a cut point of x, X\p = A +B (then A A u {p} is called 
p p p p 

the left half of X). Let Y = (X\Z) n A , 
p 

then since z is connected, 

connected. [For: z n A is connected and X\(ZnA) B + Y.] 
p p p 

a. If y is empty the left half of X has the type p 

S. If Y consists of a single point, the left half of X has 

the type -P• 

Y is 

Let Y contain at least two points. If Z has a smallest point b (possibly 

Z {b}) then Y is a C-space since if Y\C = Y1+Y2+Y3 then X\(Cu{b}) 

Y1+Y2+Y3+Bb (where X\b = Y+Bb) contradicting the lemma. 

y. Supposing that Z indeed has a smallest point b, we discern two cases, 

(y1) and (y2) depending on whether Y has a cut point or not. 
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yl. Suppose Y has no cut points. Let y 1 ,y2 E Y, then Y\{y 1 ,y2} is discon

nected [otherwise X\(Y\y1,y2 ) = {y1} + {y2 } + (X\Y)], hence Y is cyclical

ly orderable (see e.g. KoK [18] p.29). It remains to determine the way b 

is connected to Y (observe that b E Y). Let b' be the intersection of all 

closed "arcs" in Y which have bin their closure. [If the "arcs" J 1 and J 2 

have bin their closure, then also b E J 1 n J 2 , otherwise (J1\J2 ) u 

u (J2\J1 ) u {b} is connectedandX\((J1\J2 ) u (J2\J1 ) u {b}) = 

Y\(J 1uJ2 ) +(J1nJ2 l +Bb. Next, b~J J = {b'} since this intersection is 

nonempty (Y is compact in its cyclic order topology) and cannot contain 

more than one point.] If (a,b') and (b',c) are two disjoint "arcs" in Y, 

then either b E (a,b') orb E (b',c) but not both, since otherwise 

X\((a,b') u {b} u (b',c)) = {b'} + [c,a] + Bb. Therefore, the left half of 

X has the type 

cY 
p 

or 

y2. If Y has a cut point: Y\c = Y1 + Y2 then c is an end point in Y 
=Yu {b} [otherwise c E Z], hence Y1 u {b} and Y2 u {b} are connected. 

In this case each point of Y is a cut point of Y, for if Y\d is connected 

with d E Y, then Y1\d and hence also (Y 1\d) u {b,c} is connected and 
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X\((Y1\d) u {b,c}) = Y2 + {d} + Bb, a contradiction. Since Y was a C-space, 

y is orderable (by part A of this proof) and it is easily verified that 

Yu {b} is cyclically orderable. Therefore, the left half of X has the type 

or 0 b=p 

o. Next suppose that Z does not have a smallest point (and Z f ¢). 

(i) IYnZ I = 2. 

For: by (A) Zn A is open in A and Y is closed in X, hence Y n Z f ¢. 
p p 

If Y n Z = {b} then bis a cut point of X, which is impossible. Hence 

IYnZI ~ 2. But if {x,y,z} c Y n Z (x f y F z F x) and X\x,y =A+ B then 
Z,z 

X \ ({x,y} u (An Z)) 
p 

A+ B + B n Y\{x,y}, 
p z 

hence A=¢, i.e., X\{x,y} is connected. 

Consequently A\{x,y} is connected and X\ (A\{x,y}) = {x} + {y} + B , 
p p p 

a contradiction. Therefore, Y n Z = {x,y}, where x F y. 

(ii) Each point of Y\{x,y} separates x and yin Y. 

For suppose z E Y\{x,y}, z does not separate x and y, then Y\z is con

nected since otherwise z would be a cut point of X. Also Y\{x,y} is con

nected since otherwise (An Z) u {x,y} would separate X into at least 
p 

three components. 

If Y\{x,z} is connected then X\ ( (Y\{x,z}) u (An Z)) 
p 

a contradiction. 

B + {x} + {z}, 
p 

If Y\{x,z} = A +T then X\ (Tu {x,z}) = A+ (X\Y) hence A is connected and T 
y 

is connected; likewise Y\{y,z} = B+S where Band Sare connected and non
x 

empty. Now Y\{x,y,z} A +B + (SnT) where SnT F ¢ since otherwise Y\z = 

= (Au{x}) + (Bu{y}J. s A u{x} u (SnT) is connected, hence x E (SnT) 

and likewise y E (SnT)-, and since Y\{x,y} is connected z E (SnT)-. 

Therefore, (SnT) u {x,y,z} is connected and X\ ((SnT) u {x,y,z}) =X\Y +A+ B, 

contradiction. 

This proves assertion (ii) and, therefore, Y is orderable with end 

points x and y and the left half of X has the type 

c~----•p 
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C. When X has a cut point, both halves of X must have one of the types 

found above and, therefore, X has one of the types 2-19. When X contains 

at most one point it has type O or 1. 

II. Now let X contain at least two points, and let each point of X be an 

end point of X. 

D. If for some connected Cc X X\C is disconnected, then X\C has two 

components and each is orderable between each pair of its points. [The 

components need not be orderable themselves since they might be cyclically 

connected: 

PROOF. Let x\c = s + T. Observe that 

if p E T then C u T\p is connected 

. J 

(t), 

otherwise p would be a cut point of X. If for some q,r ET (CUT)\{q,r} 

is connected then X\((CuT)\{q,r}) ={q} +{r} + s. If (CUT)\{q,r} = 

=A+ B + D then X\{q,r} = (AUS)+ B + D hence by the lemma A, Band D 
C #J 

are connected; therefore, Au {q,r} is connected [for: T contains no cut 

points of C u T by (t) J, and since X\ (Au {q,r}) = B + D + S it follows 

that D =¢.So we have (CUT)\{q,r} =A+ B, where A and Bare connected, 
c F¢ 

for all pairs q,r (q Fr) in T, Define 

(q,r) := B and [q,r] := B B U {q,r}. 

Lets E (q,r), then [q,s] c [q,r] and [s,r] c [q,r]. By (C) [q,r]\s has 

at most two components. For, if [q,r]\s = E + F then (Au{q,r}) u (Eu{s}) 
q,r 

is connected and has in its complement (which is s + F) at most two com-

ponents, so Fis connected. But if [q,r]\s has a component not containing 

q or r thens is a cut point in X; therefore, F =¢and [q,r]\s has at 

most two components, 

Now these components have to be [q,s) and (s,r] (where obviously [a,b) 

means (a,b) u {a} and (a,b] means (a,b) u {b}). 

For: it suffices to show that 

(i) sis a cut point of [q,r], and 

(ii) [q,r]\s = [q,s) u (s,r]. 
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Ad (i): Suppose [q,r]\s is connected. By the lemma X\{q,r,s} has at most 

four components, hence we may write 

(CUT)\{q,r,s} 

where A, B1, B2 , B3 are connected (and some of the Bi possibly empty). 

Au {q} u B1 u B2 u B3 cannot be connected, since its complement is 

S + {r} + {s}. Therefore, there is some nonempty Bi such that qi Bi. 

Likewise for some j we haver i Bj. But if Bk n {q,r} =¢then Bk=¢ 

(otherwise s would be a cut point of Cu T, contrary to (t)), soi i j, 

say i = 1 and j = 2. Since [q,r]\s B1 u B2 u B3 u {q,r} is connected by 

assumption it follows that B3 = B3 u {q,r,s}. But then the connected set 

Au {q,r,s} u B3 has complement S + B1 + B2 , a contradiction. 

Ad (ii): Using the notations of "ad (i)" we find again~= B1 u {r,s} 

and B2 = B2 u {q,s}, i.e., B1 = (r,s) and B2 = (q,s). We have to prove 

B3 =¢.If not, then either B3 = B3 u {q,r,s} which leads to the same 

contradiction as found above or, say, B3 = B3 u {q,s} and B3 = B2 = (q,s), 

a contradiction again. 

This proves that [q,r]\s = [q,s) + (s,r], i.e., [q,r] is orderable with 

end points q and r, which justifies the notation. 

E. Let for some connected Cc X X\C =A+ B where A and Bare nonempty, 

and A contains at least two points. Then A is either orderable or cyclical

ly orderable (and not orderable). 

PROOF. Fixing the order of two points of A, the orders on all subintervals 

of A induce a total order on A in which all open intervals (a1,a2 ) are 

open and connected. A is orderable iff also the intervals (•,a) and (a,•) 

are open. But if A does not have a first element then (•,a) is a union of 

open sets and hence open. Therefore, assume A has a first element a 0 • 

1) If A also has a last element a 1 then A can have the following types: 

( 1) 

(2) 

(3) 



The second and third possibility can not occur, since if we choose 

a E A\{a0 ,a1} then A\{a,a 1} would be connected. Therefore, in this case 

A is orderable, and An C = {a0 ,a1}. 

2) On the other hand, if A does not have a last element a 1 then either 

a 0 i (a,·) and A is orderable or a 0 E (a,•) and A is cyclically order

able. D 

F. Suppose for some p,q EX X\p,q 

(i = 1,2,3). Then Xis of type 

dJ 
q 

(type 23). 
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~- X\(s1u{p,q}) = s 2 + s 3 hence s 2 and s 3 and likewise s 1 are order

able between each pair of their points. If {p} u s 1 u {q} were not order

able with end points p and q then it would contain a point r not separating 

p and q. But then X\((S 1\r) u {p,q}) = {r} + s 2 + s 3, a contradiction. 

Henceforth we shall assume that X\{p,q} has at most two components for each 

pair of points p,q. 

G. Suppose that for some connected subset C and point p of X X\C is con-

nected while X\(Cu{p}) = sl + s2 + s3 (Si ,J 0, i = 1,2,3). Then X has the 

type 

t1 :~ p ~ (type 24). 

PROOF. (i) By D [and X\(CUS,u{p}) = s. + sk if {i,j,k} = {1,2,3}] it fol-
--- i J 
lows that Si is orderable between each pair of its points and, therefore, 

like above (see F) that {p} u S. is orderable with first point p (i= 1,2,3). 
i 

(ii) We may assume that C is closed and C n Si= {ti} for some point ti 

(i = 1,2,3) for if this is not already the case, then choose ti E Si and 

redefine C and Si by 

(i = 1,2,3) 
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(iii) Lett E C\{T1,t2,t3}. If C\t is connect~d then we get a contradic

tion with the leDDDa: 

X\ ((C\ t) u {p}) 

If 

then t would be a cut point of X. If 

then 

C\t =Al+ A2 + A3 

tl t2 t3 

but this case has been excluded already (see F). Therefore, C\t has 

exactly two components, one containing two points ti' the other the third 

point. Let 

{tl..} u {t € C\{t1,t2,t3} I C\t = t At +p , 
j' k i 

C\t = tJ.~t_ + f 
-k i 

{i,j,k} 

9J (i" j). If 

{1,2,3}}. 

then {p} us. u Bu {t} is orderable with end points p and t; (because of 
l. 

(i) above, taking C' = X\(s1us2u~3u{p,t,ti}uB) instead of C); therefore, 

each of the Tl.. is connected and orderable, and each of the {p} us. u T. l. l. 
is connected and orderable. It remains to determine the way the Ti are 

joined together. 

,. 
I. If all Ti have a last element qi and q1 € T1\T2uT3 then (T1\q-1) u 

u T2 u T3 is connected [for: pis not a cut point hence T1 u T2 u T3 
is connected] and X\({p} u s1 u (T1\q1) u T2 u T3) = s 2 + s 3 + {q1}, 

a contradiction. If q2,q3 € 1I7 then again (T1\q1) u T2 u T3 is connec

ted. Therefore, we must have say q 1 E T2\T3 , q2 € T3\T1 , q3 E T1\T2 , 



but from this again follows that (T 1\q1 ) u T2 u T3 is connected. 

II. If none of the Ti has a last element then pis a cut point. 

III. If only one of the Ti, say T 1 has a last element q 1 then X\p,q1 

= (s 1uT1\q1 ) + (S2 uT2 ) + (s3 uT3 ) contrary to the hypothesis. 
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IV. So, e.g., T1 and T2 do have last elements q 1 and q 2 while T3 has no 

last element. If q 2 i T3 then X\p,ql = (S 3 uT3 ) + (S 1u(T 1\q1 ) U s2 U T2 ) 

and by definition of T3 q 1 E T3 • Therefore, {q1 ,q2 } cir;-. 

If q 1 E T2 then T 1 u (T2\q2 ) u T3 would be connected which is impos

sible as we saw above. So we have: 

and X has the announced type. 

H. Suppose that X\C =A+ B where both A and B contain at least two points. 

Again we may suppose A= (a 1 ,a2), B = (b 1 ,b2), l{a 1 ,a2 ,b1 ,b2 }1 = 4, C is 

closed, C n A= {a1 ,a2 }, C n B = {b1 ,b2 }. If t E C\{a1 ,a2 ,b1 ,b2 } then C\t 

cannot be connected [by (C)], each component of C\t must intersect 

{a1 ,a2 ,b1 ,b2 }, and at least one component of C\t must intersect both 

{a1 ,a2 } and {b1 ,b2 }. Hence C\t has at most three components. 

Then X has the type 

(type 26). 

PROOF. (i) Let S = c 1 U {t}, then X\S = (AuC2 ) + (Buc3 J hence [by EJ 

Au c 2 and Bu c 3 are either orderable or cyclically orderable, where the 

latter case occurs if and only if a 1 E c 2 (resp. b 1 E c 3 ). But a 1 E c 1 c 

c X\c 2 , hence both Au c 2 and Bu c 3 are orderable: Au c 2 = (a 1 ,t) and 

BuC3 =(b1 ,t). 



102 

(ii) If for some r 

then 

contrary to the hypothesis (see F). 

If for some r 

(c1 u{ t}) \r ell + c12 

al ,bl t 

then 

X\C 11 ,t = cc12 u{r}\t) + (AuC2 ) 

contrary to the hypothesis since X\Cll is 

Now let 

T {a1} u {r I (c1u{t})\r 
A 

and 

TB {b1} u {r I (c 1 u{ t}) \r 

then 

+ (BuC3 ) 

connected 

Ci+ c2} 

al bl ,t 

cl+ c2 }, 

bl a 1 ,t 

cl TA U TB u { t} and TA n TB 0. 

(see G). 

Again both Au TA and Bu TB are orderable between each pair of their 

points. Now it follows that, e.g., TA has a last points, and s,t E TB, 

ti TA (since s separates TA\s from t) and X has the announced type. D 

S. Suppose that for not C\t has 3 components, but 

C\t + 

for some t. Now X looks like 
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A B 

By investigating the behaviour of c1 when one of its points is deleted one 

finds that c 1 must have one of the types 

or or t 

t 

and it follows that X must have one of the types: 

DJ [(] 
type 27 type 30 type 29 

type 28. ( □ is type 27, 

cc and ~ m excluded already. ) 
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y. If for each t f a 1 ,a2 ,b1 ,b2 C\t has two components, one of which con

tains three of the points a 1,a2 ,b1 ,b2 while the other contains the fourth 

point, then like before C T1 u T2 u T3 u T4 , each Ti is orderable and 

T. n T. = 0. By considering all possible ways of joining the Tl.. one finds 
]. J 

the types: 

(i) two of the Ti have a last point. 

(type 32) (type 31) 

(ii) three of the Ti have a last point. 

(type 25) (type 29) 

(type 28). 

J. Finally, we have to consider the case that for all connected subsets C 

of X either X\C is connected or X\C =A+ {p}. If always X\C connected 

then Xis cyclically orderable: 

0 (type 20). 

If X\C =A+ {p} then consider the behaviour of C upon deletion of one 

point. One finds that X has one of the types 



(type 21) 

or 

(type 22). 

This completes the proof. D 

4. REMARKS 

In the presence of conditions like local connectedness and (T2) connec

tions like:,i,r,--: disappear and only the types 

l l 668ZBO 
remain. If Xis moreover separable then one has characterizations like: 

1. Xis homeomorphic with the circle iff for each connected subset C 

C\X is connected (see [ ]). 

2. Xis homeomorphic with the figure eight if it contains exactly one 

cut point. 
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3. Xis homemomorphic to the squarewithone diagonal if it has no cut points, 

and there are two points p,q EX such that X\p,q does not have exactly 

two components. 

Of course the only treelike examples of a space satisfying (C) are the 

orderable ones. More generally we have: 
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THEOREM. (W) + (C) => (0). 

PROOF. Let X satisfy (W) and (C) (in particular Xis (T1) and connected). 

In [18] it is proved that (H) + (B 1 ) + (0). Since clearly (C) => (B 1 ) it 

suffices to prove that (C) + (W) => (H). 

Suppose Sis a connected set with three distinct end points p, q and r. 

Then by propositions 2.2 and 2.3, S\{p,q,r} is connected. By (C) 

X\(S\{p,q,r}) has at most two components hence, e.g., p and q belong to 

the same component. But since {p,q} c S\{p,q,r} this contradicts (W). D 

Clearly for this analysis the assumption that X\C has at most two components 

was not very essential; more generally if it is given that for each connec

ted subset C of X X\C has at most n components then an analogous classifi

cation can be made (where of course the number of types increases sharply 

with n); in fact it seems quite possible to produce such a classification 

by computer. 
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