MATHEMATICAL CENTRE TRACTS 74

H.J.J. TE RIELE

A THEORETICAL AND COMPUTATIONAL STUDY OF GENERALIZED ALIQUOT SEQUENCES

MATHEMATISCH CENTRUM AMSTERDAM 1976

ISBN 90 6196 131 9

AMS(MOS) subject classification scheme (1970): 10A20, 10A40, 10A99

CONTENTS

PREFACE	(vii)
PRELIMINARIES AND NOTATION	(<i>ix</i>)
CHAPTER 1. GENERALIZED ALIQUOT SEQUENCES AND THE CLASSICAL CASE	1
CHAPTER 2. GENERAL PROPERTIES OF ALIQUOT f-SEQUENCES	4
CHAPTER 3. TEST-CASES FOR THE COMPUTATIONAL EXPERIMENTS	13
CHAPTER 4. THE DISTRIBUTION OF THE VALUES OF f	15
CHAPTER 5. THE MEAN VALUE OF $f(n)/n$	25
CHAPTER 6. COMPUTATIONAL RESULTS ON ALIQUOT f-SEQUENCES WITH LEADER $n \leq 1000$	31
CHAPTER 7. UNBOUNDED ALIQUOT Ψ_k -SEQUENCES	34
CHAPTER 8. ALIQUOT f-CYCLES 8.1 f-PERFECTS 8.2 f-AMICABLE PAIRS 8.3 f-CYCLES OF LENGTH ℓ > 2	49 49 54 60
CHAPTER 9. SOLVING THE EQUATION $f(x) - x = m$	61
REFERENCES	74

(v)

PREFACE

Aliquot sequences are defined according to the following rule: a leading term is given and every subsequent term is the sum of the "aliquot parts" of the preceding term. The aliquot parts of a number > 1 are all divisors (including 1) less than that number. When a term equals one of the preceding terms, we have a so called cycle. Examples of cycles are perfect numbers (cycle-length=1) and amicable number pairs (cycle-length=2). These sequences were studied already by the Pythagoreans and later on by Euler, Catalan, Dickson, and many others.

The advent of (high-speed) computers has stimulated the renewed interest in aliquot sequences, because the computers made possible the extended computation of "difficult" sequences (i.e. sequences the terms of which become too large for factorization by hand), especially in order to get more statistical information about the asymptotic behaviour of aliquot sequences. This information is interesting, in particular in view of the famous Catalan-Dickson conjecture which states that *all* aliquot sequences are bounded. In fact, very recently and on the basis of much statistical and heuristical material, R.K. Guy has put forward the conjecture that *almost all aliquot sequences with even leading term are unbounded*!

In this monograph a theoretical and computational study of *generalized* aliquot sequences is presented. Generalized aliquot sequences are sequences every term of which (except the leader) is the sum of *certain*, but *not necessarily all* aliquot parts of the preceding term.

In chapter 1 generalized aliquot sequences are defined by use of a set F of arithmetical functions f which determine the aliquot parts to be summed in the computation of a term from the preceding one. For this reason, generalized aliquot sequences will be denoted by f-sequences.

(vii)

(viii)

Chapters 2 to 5 mainly present theoretical results. In chapter 2, for any f ϵ F the existence of f-sequences with arbitrarily many monotonically increasing terms is proved. Moreover, the structure of cycles is investigated, and two construction methods for cycles are discussed. In chapter 3 five classes of functions f ϵ F are indicated, which in subsequent chapters serve as test-cases for the computational experiments. In chapter 4 the distribution of the values of the functions f ϵ F is investigated. Chapter 5 presents two methods for the computation of the mean value of the quotient of two subsequent terms of an f-sequence.

Chapters 6 to 9 mainly present computational results and analyses. In chapter 6 we present a selection of the results of systematic computations of f-sequences, for the testcases of chapter 3. The main subjects of chapter 7 are the proof of the existence of unbounded f-sequences, for certain $f \in F$, and the construction of such unbounded sequences. Chapter 8 deals with the computation of cycles for the test-cases of chapter 3. Finally, in chapter 9 we study untouchable numbers, i.e. numbers which can only be leaders of f-sequences.

The author's interest in aliquot sequences was awakened by Dr J.D. Alanen; he is very grateful to him for his interest and encouragement.

PRELIMINARIES AND NOTATION

As usual, N will denote the set of positive integers and N₀ the set of non-negative integers. Throughout, p will denote an arbitrary prime number, unless explicitly stated otherwise, and for any $r \in N$, p_r is the r-th prime $(p_1 = 2)$.

By (a_1, a_2, \ldots, a_n) $(n \ge 2)$ we mean the greatest common divisor of the positive integers a_1, a_2, \ldots, a_n . If $(a_1, a_2, \ldots, a_n) = 1$, we say that a_1, a_2, \ldots, a_n are relatively prime.

By $(a_1, a_2, \ldots, a_n)_k$ $(k \in \mathbb{N})$ we mean the greatest common k-th power divisor of a_1, a_2, \ldots, a_n . If $(a_1, a_2, \ldots, a_n)_k = 1$, we say that a_1, a_2, \ldots, a_n are relatively k-prime. For any k the integer 1 is considered to be a k-th power divisor of any positive integer.

A unitary divisor d of n is a divisor of n with (d,n/d) = 1, i.e., every prime p dividing d does not divide n/d. If d is a unitary divisor of n, we write d || n.

A k-ary divisor d of n (k $\in \mathbb{N}$) is a divisor of n with (d,n/d)_k = 1, i.e., every prime power p^k dividing d does not divide n/d.

A positive integer is k-free (k $\in \mathbb{N}$, k ≥ 2) if it is not divisible by the k-th power of any prime. A 2-free integer is also called squarefree.

A positive integer is k-full (k \in IN, k \geq 2) if any of its prime divisors has multiplicity \geq k.

If $f : \mathbb{N} \to \mathbb{N}$ is an arithmetical function, then $n \in \mathbb{N}$ is called f-*abundant*, whenever f(n) > 2n.

Let $S = \{n_1, n_2, ...\}$ be an infinite set of positive integers and let S(n) ($n \in \mathbb{N}$) be the number of elements of S not exceeding n. Then the lower (asymptotic) density and the upper (asymptotic) density of S are the values of

If the lower and upper density are equal, we say that the (asymptotic) density of S exists, with this common value.

Let f(x) and g(x) be two functions of the real variable x. Then by f ~ g (x \rightarrow $\infty)$ we mean that lim f/g = 1. $x^{\rightarrow\infty}$

By $f \approx g$ we mean that there are constants C_1 and C_2 such that $C_1g < f < C_2g$. The mean value $M{f}$ of an arithmetical function $f : \mathbb{N} \rightarrow \mathbb{N}$ is the value

of $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} f(n)$, provided that this limit exists.

In the tables factorized numbers will sometimes be given with exponents in parentheses; for example, 2(2)3.5.11(2) means $2^23.5.11^2$.

(x)

CHAPTER 1

GENERALIZED ALIQUOT SEQUENCES AND THE CLASSICAL CASE

{Tears of joy over man's tortuous journey to the beyond ... Elvin J. Lee}

1

Let f : $\mathbb{N} \to \mathbb{N}$ be an arithmetical function with the following two properties:

- P1. f is multiplicative, i.e., if (a,b) = 1, then f(ab) = f(a)f(b).
- P2. For any $e \in \mathbb{N}$ a polynomial $W_e^f(x)$ of degree e in x is given, such that for any prime p $f(p^e) := W_e^f(p)$. The coefficients of $W_e^f(x)$ are restricted to the values 0 or 1 and $W_e^f(1) \ge 2$.

The set of all functions f with properties <u>P1</u> and <u>P2</u> will be denoted by F. It follows that if f \in F, then

 $\begin{array}{l} f(1) = 1, \quad f(p) = p+1, \\ \text{either } f(p^2) = p^2+1, \; \text{or } f(p^2) = p^2+p, \; \text{or } f(p^2) = p^2+p+1, \\ \text{either } f(p^3) = p^3+1, \; \text{or } f(p^3) = p^3+p, \; \text{or } f(p^3) = p^3+p^2, \; \text{or } f(p^3) = p^3+p+1, \\ \text{or } f(p^3) = p^3+p^2+1, \; \text{or } f(p^3) = p^3+p^2+p, \; \text{or } f(p^3) = p^3+p^2+p+1, \\ \text{and so on.} \end{array}$

<u>EXAMPLE 1.1</u> If for any $e \in \mathbb{N}$, $W_e^f(x) := x^e + x^{e-1} + \ldots + x + 1$, i.e., all coefficients of $W_e^f(x)$ are equal to 1, then f is the sum of the divisors function. It will be denoted, as usual, by σ .

EXAMPLE 1.2 If for any $e \in \mathbb{N}$, $W_e^f(x) := x^e + 1$, then f is the sum of the *unitary* divisors function. It will be denoted, as usual, by σ^* .

It also follows from <u>P1</u> and <u>P2</u> that f(n) is the sum of n and *certain* other divisors of n; *which* other divisors depends on the choice of the polynomials $W_e^f(x)$. It is customary to call the divisors of n which are less than n the *aliquot* divisors of n.

<u>DEFINITION 1.1</u> An aliquot f-sequence with leader $n \in \mathbb{N}$ (briefly called an f-sequence on n, or n-sequence if this gives no confusion) is a sequence

 n_0, n_1, n_2, \ldots of positive integers, such that

(1.1)
$$\begin{cases} n_0 = n \text{ and} \\ n_{i+1} = f(n_i) - n_i \end{cases}$$
 (i=0,1,2,...).

Since $f(p^e) \ge p^e + 1$, we have f(n) - n > 0 for all $n \ge 2$, for any $f \in F$. The term n_i is sometimes denoted by n : i (for typographical convenience). An n-sequence is *terminating* if there exists a value of ℓ for which $n_{\ell} = 1$, and this ℓ is also denoted by $\ell_f = \ell_f(n)$. An n-sequence is *periodic* if there is an $\ell' > 0$ and a c > 0 such that $n : (\ell'+c) = n : \ell'$. The least ℓ' with this property is also denoted by $\ell_f' = \ell_f'(n)$ and the least positive c, corresponding to this ℓ' , is the *period* (or cycle length), and will be denoted by $c = c_f = c_f(n)$. The c different numbers $\{n : \ell', n : (\ell'+1), \ldots, n : (\ell'+c-1)\}$ are called an (f-)cycle of length c.

If n < m and the two f-sequences on n and m, respectively, have a term in common, which is larger than all previous terms in either sequence, then the f-sequence on m is said to be *tributary* to the f-sequence on n. A sequence which is not tributary to any other one is called a *main* sequence. Thus a bounded n-sequence is main if n is the least number which leads to its maximum. For the example $f = \sigma$, we have 318 : 4 = 498 : 3 = 798, and 318 is the least number leading to the maximum 722961 = 318 : 32, so the σ -sequence with leader 318 is main and the 498-sequence is tributary to it. Both sequences are terminating. The 562-sequence is characterized by the first four terms 562, 220, 284, 220; thus it is periodic, $\ell_{\sigma}^{i}(562) = 1$ and $c_{\sigma}(562) = 2$. For the 220-sequence we have $\ell_{\sigma}^{i}(220) = 0$ and $c_{\sigma}(220) = 2$.

The classical example of an f-sequence is the case in which f(n) is the sum of all divisors of n (f(n) = $\sigma(n)$), so that $f(n) - n = \sigma(n) - n$ is the sum of all aliquot divisors of n.

CATALAN [7] was probably the first one to study this case. He conjectured that every (aliquot) σ -sequence contains either unity or a perfect number. PERROTT [27] gave the counterexample 220, 284, 220,... and DICKSON [10] revised Catalan's conjecture to: Every (aliquot) σ -sequence contains either unity or a cycle (which can be a perfect number, or an amicable pair as in Perrott's counterexample, or a cycle of length greater than two). The verification of this conjecture is very cumbersome, in particular when the terms become large, because in order to compute a term n_{k+1} , the complete factorization of n_k is needed.

The σ -sequence with least starting value and *unknown* behaviour is currently the 276-sequence. D.H. LEHMER [18] has recently computed the 433-rd term of this sequence, which is a 36-digit number. At present, there are 98 sequences with leader less than 10⁴ whose behaviour is unknown. Most computational results on σ -sequences have been collected by GUY and SELFRIDGE in [18].

Nowadays, many researchers believe that the Catalan-Dickson conjecture is false. A partial result in this direction is LENSTRA's theorem (private communication dated April 10th, 1972): For any given t ϵ N, σ -sequences can be constructed with at least t monotonically increasing terms. TE RIELE [30] proved the same theorem, but *on the condition* that there are infinitely many even perfect numbers.

CHAPTER 2

GENERAL PROPERTIES OF ALIQUOT f-SEQUENCES

In this chapter some general properties of f-sequences and f-cycles are proved.

PROPOSITION 2.1 Let $f \in F$ and let

$$am_{i}, am_{i+1}, \dots, am_{i+k} \qquad (i \ge 0, k \ge 1)$$

be k+1 consecutive terms of an f-sequence with $(a,m_{i+j}) = 1$ for $j = 0,1,\ldots,k-1$. If $b \in \mathbb{N}$ is such that f(b)/b = f(a)/a, $b \neq a$, and $(b,m_{i+j}) = 1$ for $j = 0,1,\ldots,k-1$, then

 $bm_{i}, bm_{i+1}, \dots, bm_{i+k}$

are also k+1 consecutive terms of an f-sequence.

PROOF. Under the hypotheses, we have

$$f(bm_{i+j}) - bm_{i+j} = f(b)f(m_{i+j}) - bm_{i+j} =$$

$$= \frac{b}{a} [f(a)f(m_{i+j}) - am_{i+j}] =$$

$$= \frac{b}{a} [f(am_{i+j}) - am_{i+j}] =$$

$$= \frac{b}{a} \cdot am_{i+j+1} =$$

$$= bm_{i+j+1} \qquad (j=0,1,\ldots,k-1) \cdot \Box$$

<u>COROLLARY 2.1</u> If in proposition 2.1, $\{am_i, am_{i+1}, \dots, am_{i+k-1}\}\$ is an f-cycle of length k, then $\{bm_i, bm_{i+1}, \dots, bm_{i+k-1}\}\$ is also an f-cycle of the same length.

Given an f-cycle, one may try to apply this corollary by looking for numbers a and b, satisfying the conditions of proposition 2.1. Application of this corollary to σ^* -cycles (for the definition of σ^* , see example 1.2 in section 1) yielded several hundred new σ^* -cycles (see TE RIELE [32]).

PROPOSITION 2.2 Let $f, g \in F$, $f \neq g$, and let

$$am_{i'}am_{i+1'}am_{i+k}$$

be k+1 consecutive terms of an f-sequence with $(a,m_{i+j}) = 1$ for j = 0,1,...,k-1; let, moreover, m_{i+j} be squarefree for the same values of j. If $b \in \mathbb{N}$ is such that $(b,m_{i+j}) = 1$ for j = 0,1,...,k-1, $b \neq a$, and g(b)/b = f(a)/a, then

$$bm_{i}, bm_{i+1}, \dots, bm_{i+k}$$

are also k+1 consecutive terms of a g-sequence.

PROOF. Under the hypotheses, we have

$$g(bm_{i+j}) - bm_{i+j} = g(b)g(m_{i+j}) - bm_{i+j} =$$

$$= \frac{b}{a} [f(a)g(m_{i+j}) - am_{i+j}] =$$

$$= \frac{b}{a} [f(a)f(m_{i+j}) - am_{i+j}] =$$

$$= \frac{b}{a} [f(am_{i+j}) - am_{i+j}] =$$

$$= \frac{b}{a} \cdot am_{i+j+1} =$$

$$= bm_{i+j+1} \qquad (j=0,1,\ldots,k-1). \square$$

<u>COROLLARY 2.2</u> If in proposition 2.2, $\{am_i, am_{i+1}, \dots, am_{i+k-1}\}\$ is an f-cycle of length k, then $\{bm_i, bm_{i+1}, \dots, bm_{i+k-1}\}\$ is a g-cycle of the same length.

Application of this corollary to known σ -cycles of length 2 (LEE & MADACHY [26]) yielded several hundred new σ^* -cycles (see TE RIELE [32]).

<u>THEOREM 2.1</u> Let $N \in \mathbb{N}$ ($N \ge 3$) and $f \in F$ be given. Then there exist infinitely many f-sequences with at least N consecutive increasing terms. <u>PROOF.</u> Let q_1, q_2, \ldots, q_N be a sequence of N primes defined by

(2.1)
$$\begin{cases} q_1 = 2, q_2 = 3, \\ q_1^2 \mid q_{i+1} + 1 \end{cases}$$
 (i=2,3,...,N-1).

The existence of such a sequence follows from Dirichlet's theorem on the occurrence of an infinitude of primes (hence *certainly one*) in the arithmetic progression $tq_i^2 - 1$ (t=1,2,...). Now choose n_0 such that

$$(2.2) n_0 = m_0 q_1 q_2 \dots q_N$$

with $(q_i, m_0) = 1$ for i=1, 2, ..., N. Let $n_0, n_1, n_2, ...$ be the f-sequence with leader n_0 . Then

$$n_{1} = f(n_{0}) - n_{0} =$$

= f(m_{0})(q_{1}+1)(q_{2}+1)...(q_{N}+1) - m_{0}q_{1}q_{2}...q_{N},

which by (2.1) may be written in the form

$$n_1 = m_1 q_1 q_2 \cdots q_{N-1}$$

with $(q_1, m_1) = 1$ for i=1,2,...,N-1. Proceeding in the same way with n_1, n_2, \dots, n_{N-2} , we find that for k=1,2,...,N-1

$$n_k = m_k q_1 q_2 \dots q_{N-k}$$

with $(q_1, m_k) = (q_2, m_k) = \dots = (q_{N-k}, m_k) = 1$. Hence 6 || n_k (k=0,1,...,N-2) so that

$$n_{k+1} = f(n_k) - n_k =$$

$$= f(2)f(3)f(n_k/6) - n_k =$$

$$= 12f(n_k/6) - n_k$$

$$> 12n_k/6 - n_k = n_k.$$

Hence the N terms $n_0, n_1, \ldots, n_{N-1}$ of the f-sequence with leader n_0 are increasing. The existence of infinitely many such sequences follows from the existence of infinitely many numbers m_0 satisfying (2.2).

Theorem 2.1 was first proved, in this form, for $f = \sigma$ by LENSTRA (private communication dated April 10th, 1972) and for $f = \sigma^*$ by TE RIELE [33].

Very recently, for $f = \sigma$ some stronger results have been obtained by ERDÖS ^{*)} and GUY ^{**)}. Erdös proved that for *all* leaders $n \in \mathbb{N}$, except a sequence of density 0, and for every $t \in \mathbb{N}$ and $\delta > 0$,

$$(1-\delta) (n_1/n)^{i} < n_i/n < (1+\delta) (n_1/n)^{i}$$
,

for $1 \leq i \leq t$. Guy proved: given any prime p, any $t \in \mathbb{N}$, and any $\rho > 1$, there are aliquot sequences containing t consecutive terms, each greater than ρ times the previous one, but whose only prime divisors exceed p.

<u>THEOREM 2.2</u> Let $f \in F$ and let $\{n_1, n_2, \ldots, n_k\}$ be an f-cycle of length k $(k \ge 1)$, where k is odd. If the k numbers n_i (i=1,2,...,k) contain the prime 2 to the same power, then

$$(f(n_1), f(n_2), \dots, f(n_k)) = 2(n_1, n_2, \dots, n_k);$$

otherwise

$$(f(n_1), f(n_2), \dots, f(n_k)) = (n_1, n_2, \dots, n_k).$$

<u>PROOF.</u> Since $\{n_1, n_2, \dots, n_k\}$ is an f-cycle, we have

(2.3)
$$f(n_1) = n_1 + n_2, f(n_2) = n_2 + n_3, \dots, f(n_{k-1}) = n_{k-1} + n_k, f(n_k) = n_k + n_1.$$

Note that, for $i=1,2,\ldots,k$, we have $f(n_{i+k}) = f(n_i)$ and also

$$f(n_{i}) - f(n_{i+1}) + f(n_{i+2}) - \dots + (-1)^{k-1}f(n_{i+k-1}) =$$
$$= (n_{i}+n_{i+1}) - (n_{i+1}+n_{i+2}) + (n_{i+2}+n_{i+3}) - \dots + (-1)^{k-1}(n_{i+k-1}+n_{i+k}) =$$

*) P. ERDÖS, On asymptotic properties of aliquot sequences, Math. Comp., <u>30</u>(1976) 641-645.

**) R.K. GUY, Aliquot sequences, manuscript, 1976.

=
$$n_{i} + (-1)^{k-1} n_{i+k} = n_{i} (1 + (-1)^{k-1}),$$

so that

(2.4)
$$\sum_{j=i}^{i+k-1} (-1)^{j-i} f(n_j) = 2n_i,$$

since k is odd.

Let a = (n_1, n_2, \dots, n_k) and b = $(f(n_1), f(n_2), \dots, f(n_k))$. From (2.3) it follows that a $| f(n_i)$ (i=1,2,...,k), so that a | b. On the other hand, (2.4) implies that b $| 2n_i$ (i=1,2,...,k), so that

(2.5) either
$$b = a$$
 or $b = 2a$.

If every n_i contains 2 to the same power, then n_i/a is odd and $n_i/a + n_{i+1}/a = f(n_i)/a$ is *even*; thus in (2.5) we can only have b = 2a. If not every n_i contains 2 to the same power, then there is an index j such that n_j contains the least power of 2 and n_{j+1} contains a higher one. For that index j we have $n_j/a + n_{j+1}/a = f(n_j)/a$ is *odd*, so that in (2.5) we can only have b = a.

This theorem generalizes a theorem of BORHO [4].

<u>COROLLARY 2.3</u> Let $\{n_1, n_2, \ldots, n_k\}$ be an f-cycle of length k > 1 with k odd and let $(n_1, n_2, \ldots, n_k) = a > 1$. Then from theorem 2.2 it follows that

$$(a, n_i/a) = 1$$
 (i=1,2,...,k)

is impossible.

Suppose contrariwise that (a, n_i/a) = 1 for i=1,2,...,k. If a is odd and at least one of the n_i/a is even, then we have by theorem 2.2:

$$(f(n_1), \dots, f(n_k)) = (n_1, \dots, n_k),$$

so that

$$f(a)(f(n_1/a),...,f(n_p/a)) = a.$$

This is impossible, since f(a) > a.

If a is even, or if $n_{\underline{i}}$ is odd for all $\underline{i=1,2,\ldots,k},$ then we have by theorem 2.2:

$$(f(n_1), \dots, f(n_k)) = 2(n_1, \dots, n_k)$$
,

so that

$$f(a)(f(n_1/a),...,f(n_k/a)) = 2a.$$

Hence f(a) = 2a; this implies that $n_{i+1} \ge n_i$, for all i=1,2,...,k, so that k = 1, a contradiction.

REMARK 2.1 DICKSON [10] proved this corollary for $f = \sigma$.

<u>REMARK 2.2</u> In [24], LAL, TILLER & SUMMERS remark that (we quote) "for unitary sociable groups, it appears that no regular groups of order >2 exist". In our terminology: a regular unitary group of order k is a σ^{*} cycle $\{n_1, n_2, \ldots, n_k\}$, for which $(n_1, n_2, \ldots, n_k) = a > 1$ and $(a, n_i/a) = 1$ for i=1,2,...,k. Corollary 2.3 implies that no regular unitary sociable groups of odd order > 2 exist.

Next we prove a theorem about the finiteness of the number of f-cycles of certain form, but we first give two lemmas.

LEMMA 2.1 If $f \in F$, $a \in \mathbb{N}$, and p is a prime number, then there exist positive integers x_1, x_2, \ldots, x_n , such that

$$\frac{f(p^{a})}{p^{a}} = \left(1 + \frac{1}{x_{1}}\right)\left(1 + \frac{1}{x_{2}}\right) \dots \left(1 + \frac{1}{x_{g}}\right),$$

where g = g(a) is the number of coefficients equal to 1 in the polynomial $W_a^f(y) - y^a$, i.e., g = $W_a^f(1) - 1$. In particular, when

$$f(p^{a}) = p^{a} + \sum_{i=1}^{q} p^{a_{i}}$$

with $a > a_1 > a_2 > \ldots > a_{g-1} > a_g \ge 0$, we may take

(2.6)
$$x_{j} = \frac{p^{a} + \sum_{p=1}^{q-j} a_{i}}{\sum_{p=1}^{a} q_{-j+1}}$$
 for j=1,2,...,g.

Before proving this lemma we give an example.

If

10

$$f(p^5) = p^5 + p^3 + p^2 + 1,$$

then we have

$$\frac{f(p^5)}{p^5} = \frac{p^5 + p^3 + p^2 + 1}{p^5} = \frac{p^5 + p^3 + p^2 + 1}{p^5 + p^3 + p^2} \cdot \frac{p^5 + p^3 + p^2}{p^5} =$$
$$= \left(1 + \frac{1}{p^5 + p^3 + p^2}\right) \frac{p^3 + p + 1}{p^3 + p} \cdot \frac{p^3 + p}{p^3} =$$
$$= \left(1 + \frac{1}{p^5 + p^3 + p^2}\right) \left(1 + \frac{1}{p^3 + p}\right) \left(1 + \frac{1}{p^2}\right) ,$$

so that $x_1 = p^5 + p^3 + p^2$, $x_2 = p^3 + p$ and $x_3 = p^2$.

PROOF of lemma 2.1. By (2.6) we have

$$\begin{array}{l} \frac{g}{\Pi}\left(1+\frac{1}{x_{j}}\right) = \frac{x_{1}^{+1}}{x_{g}} \frac{g^{-1}}{j=1} \frac{x_{j+1}^{+1}}{x_{j}} = \\ = \frac{p^{a-a}g_{+p}a_{1}^{-a}g_{+\dots+p}^{-a}g_{-1}^{-a}g_{+1}}{p} \frac{g^{-1}a_{+1}}{p} \frac{g^{-1}}{p} \frac{p^{a-a}g^{-j}a_{1}^{+1}a_{1}^{-a}g^{-j}a_{1}^{+1}}{p} = \\ = \frac{f(p^{a})}{p^{a-a}a_{1}^{+a}g} \frac{g^{-1}}{j=1} \frac{p^{-a}g^{-j}}{p^{-a}g^{-j+1}} = \\ = \frac{f(p^{a})}{p^{a-a}a_{1}^{+a}g} p^{a}g^{-a}g^{-1}a_{-a}^{-a}g^{-2}+\dots+a_{2}^{-a}a_{1}^{-a} = \\ = \frac{f(p^{a})}{p^{a}} \cdot \end{array}$$

LEMMA 2.2 (BORHO [3]). The equation

$$\prod_{i=1}^{k} \left[\prod_{j=1}^{t_{i}} \left(1 + \frac{1}{x_{ij}} \right) - 1 \right] = 1,$$

where k, t_1, t_2, \ldots, t_k are given, has only finitely many solutions in positive integers $x_{11}, x_{12}, \ldots, x_{kt_k}$.

PROOF. See [3].

<u>THEOREM 2.3</u> Let $f \in F$ and let there be given positive integers $k, s_1, s_2, \ldots, s_k, e_{11}, e_{12}, \ldots, e_{1s_1}, e_{21}, e_{22}, \ldots, e_{2s_2}, \ldots, e_{k1}, e_{k2}, \ldots, e_{ks_k}$. Then there exists only a finite number of f-cycles $\{n_1, n_2, \ldots, n_k\}$ where n_i has the canonical factorization

$$n_{i} = p_{i1}^{e_{i1}} p_{i2}^{e_{i2}} \dots p_{is_{i}}^{e_{is_{i}}}$$
 (i=1,2,...,k)

 $\underline{\text{PROOF.}}$ The numbers n_1,n_2,\ldots,n_k form an f-cycle of length k. It follows that

$$1 = \frac{n_2}{n_1} \cdot \frac{n_3}{n_2} \cdot \dots \cdot \frac{n_k}{n_{k-1}} \cdot \frac{n_1}{n_k} = \\ = \left(\frac{f(n_1)}{n_1} - 1\right) \left(\frac{f(n_2)}{n_2} - 1\right) \dots \left(\frac{f(n_k)}{n_k} - 1\right) = \\ = \prod_{i=1}^k \left[\begin{pmatrix} s_i & \frac{f(p_{ij})}{n_i} \\ \prod & e_{ij} \end{pmatrix} - 1 \\ g_{ij} \end{pmatrix} - 1 \right] \cdot$$

By Lemma 2.1 $f\begin{pmatrix} e_{ij} \\ p_{ij} \end{pmatrix} / p_{ij}^{e_{ij}}$ may be written in the form $\begin{pmatrix} 1 + y_1^{-1} \end{pmatrix} \begin{pmatrix} 1 + y_2^{-1} \end{pmatrix} \dots \begin{pmatrix} 1 + y_g^{-1} \end{pmatrix}$,

for some positive integers y_1, \ldots, y_g , where $g = g(e_{ij})$. Hence, on the assumption that

with
$$t_{i} = \sum_{j=1}^{s_{i}} g(e_{ij})$$
, we have

$$1 = \prod_{i=1}^{k} \left[\left(1 + x_{i1}^{-1} \right) \left(1 + x_{i2}^{-1} \right) \dots \left(1 + x_{it_{i}}^{-1} \right) - 1 \right],$$

for some positive integers $x_{11}, x_{12}, \dots, x_{1t_1}, \dots, x_{k1}, \dots, x_{kt_k}$.

By lemma 2.2 this equation can have only finitely many solutions in positive integers.

<u>COROLLARY 2.4</u> By choosing $f = \sigma$ and $f = \sigma^*$, respectively, the following two theorems of BORHO [3] follow easily from theorem 2.3:

There are only finitely many aliquot σ -cycles of length k, with less than L (L $\in \mathbb{N}$) prime factors (in the product of the k terms of the cycle).

There are only finitely many aliquot σ^* -cycles of length k, with less than L (L $\in \mathbb{N}$) distinct prime factors (in the product of the k terms of the cycle).

CHAPTER 3

TEST-CASES FOR THE COMPUTATIONAL EXPERIMENTS

In chapter 1 we saw that for every $f \in F$, f(n) is the sum of *certain* divisors of n. Here we consider some particular f by specifying *which* divisors are to be summed. It is easily verified that these functions f have property <u>P1</u> (multiplicativity) and property <u>P2</u> (existence of the polynomials $W_e^f(x)$ for all $e \in \mathbb{N}$) so that $f \in F$. The proofs are omitted, but the polynomials W are included.

EXAMPLE 3.1 If $f = \sigma$ (the sum of $\alpha \mathcal{U} \mathcal{I}$ divisors of n), then

$$W_{e}^{\sigma}(x) = x^{e} + x^{e-1} + \dots + x + 1$$
 (e=1,2,...).

The number of divisors to be summed is $\prod_{p^e \mid j \mid n} (e+1)$.

EXAMPLE 3.2 For $k \in \mathbb{N}_0$ we define $\texttt{M}_k(n)$ as the sum of the (k+1)-ary divisors of n, so that

$$\mathbb{W}_{e}^{M_{k}}(x) = \begin{cases} x^{e} + x^{e-1} + \dots + x + 1 & (e \le 2k), \\ \\ x^{e} + \dots + x^{e-k} + x^{k} + \dots + x + 1 & (e > 2k). \end{cases}$$

In this case, the number of divisors to be summed is $\begin{array}{c} \Pi & \mbox{min(e+1,2k+2).} \\ & p^{e} \mid\mid n \end{array}$

EXAMPLE 3.3 For $k\in\mathbb{N}$ we define $\Psi_k(n)$ as the sum of those divisors d of n for which n/d is (k+1)-free, so that

$$\mathbb{W}_{e}^{\Psi}(\mathbf{x}) = \begin{cases} \mathbf{x}^{e} + \mathbf{x}^{e-1} + \dots + \mathbf{x} + 1 & (e \le k), \\ \\ \mathbf{x}^{e} + \mathbf{x}^{e-1} + \dots + \mathbf{x}^{e-k} & (e > k). \end{cases}$$

In this case, the number of divisors to be summed is $\begin{array}{c} \Pi \mbox{ min(e+1,k+1).} \\ p^{e}|| \ n \end{array}$

EXAMPLE 3.4 For $k \in \mathbb{N}_0$ we define $L_k(n)$ as the sum of those divisors d of n, such that any prime p which divides d has an exponent which is at most k less than that of p in n. For convenience, we define the integer 1 to be such a divisor of any $n \in \mathbb{N}$. It easily follows that

$$\mathbb{W}_{e}^{L_{k}}(x) = \begin{cases} x^{e} + x^{e-1} + \dots + x + 1 & (e \le k), \\ x^{e} + x^{e-1} + \dots + x^{e-k} + 1 & (e > k). \end{cases}$$

The number of divisors to be summed here is $\underset{p^{e}|| \ n}{\Pi} \ \min(e+1,k+2)$.

EXAMPLE 3.5 For $k \in \mathbb{N}_0$ we define $R_k(n)$ as the sum of those divisors d of n, such that any prime p which divides n/d has an exponent, which is at most k less than that of p in n. In this case we have

$$W_{e}^{R_{k}}(x) = \begin{cases} x^{e} + x^{e-1} + \dots + x + 1 & (e \le k), \\ \\ x^{e} + x^{k} + x^{k-1} + \dots + x + 1 & (e \ge k), \end{cases}$$

and the number of divisors to be summed here is the same as in example 3.4, f = L_{b^*} .

REMARK 3.1 We have

$$M_0 = L_0 = R_0 = \sigma^*$$

where σ^* denotes the usual "sum of the unitary divisors" function.

These five examples of (classes of) functions will serve as test-cases for our computational experiments. Some of them are well-known, like σ and σ^* . The function Ψ_1 (also known as the Dedekind function) plays an important role in WALL's study [41]. The other functions given here, have never been used, as far as we know, to generate aliquot sequences.

CHAPTER 4

THE DISTRIBUTION OF THE VALUES OF f

In this chapter we investigate the (natural) density of the values of the function f ϵ F, counting multiplicity.

Since $f(n) \ge n$, the number of all $n \in \mathbb{N}$ such that $f(n) \le N$ is *finite* for any $N \in \mathbb{N}$. The number of n satisfying $f(n) \le N$ is denoted by #(f,N).

$$\frac{\text{THEOREM 4.1}}{(4.1)} \quad If \ f \ \epsilon \ F, \ then \ \Delta f = \lim_{N \to \infty} \frac{\#(f, N)}{N} \text{ exists and}$$

$$(4.1) \qquad \Delta f = \prod_{p} \left\{ (1 - \frac{1}{p}) \sum_{e=0}^{\infty} \frac{1}{f(p^e)} \right\}.$$

<u>PROOF</u>. According to the definition of F, for any f ϵ F, e ϵ IN and prime p, f(p^e) can be written as

$$f(p^{e}) = \sum_{i=0}^{e} c_{e,i}p^{e-i},$$

where $c_{e,0} = 1$ and $c_{e,i} = 0$ or 1 (i=1,2,...,e). By the multiplicativity of f, we have for any $n \in \mathbb{N}$

$$f(n) = n \prod_{\substack{p^{e} \mid | n i = 0}}^{e} c_{e,i} p^{-i}.$$

Now for r,k \in ${\rm I\!N}$ we introduce the function f _r,k : ${\rm I\!N}$ \rightarrow ${\rm I\!N}$, defined by

$$f_{r,k}(n) = n \prod_{\substack{p \in P_r}}^{\min(e,k)} c_{e,i} p^{-i}.$$

We first give two lemmas.

LEMMA 4.1 For any r,k,N \in IN we have

(4.2)
$$\#(f_{r,k},N) \leq N \prod_{j=1}^{r} \left\{ (1-p_{j}^{-1}) \sum_{e=0}^{k} \frac{1}{f(p_{j}^{e})} + p_{j}^{-k-1} \right\} + (k+1)^{r} \prod_{j=1}^{r} p_{j},$$

$$\begin{array}{c} (4.3) \\ \#(f_{r,k},N) \geq N & \prod_{j=1}^{r} \left\{ (1-p_{j}^{-1}) \sum_{e=0}^{k} \frac{1}{f(p_{i}^{e})} + (p_{j}^{k+1}+p_{j}^{k}+\ldots+p_{j})^{-1} \right\} - (k+1)^{r} \prod_{j=1}^{r} p_{j}.$$

<u>PROOF</u> of lemma 4.1. For every r-tuple $(t_1, t_2, ..., t_r)$ with $0 \le t_j \le k+1$ (j=1,2,...,r), define $A(t_i, t_2, ..., t_r)$ to be the set of positive integers n with $p_j^t j \parallel n$ for $t_j \le k+1$ and $p_j^t j \mid n$ for $t_j = k+1$. For example, if r = 4 and k = 2, then A(1,0,3,2) is the set of all numbers $n \in \mathbb{N}$ of the form $n = 2.5^3 7^2 m$, where (2.3.7,m) = 1.

If $n \in A(t_1, t_2, \dots, t_r)$, then by the definition of $f_{r,k}$ we have

$$f_{r,k}(n) = n \prod_{\substack{t_j \le k}} f_{r,k}(p_j^{t_j})/p_j^{t_j} \prod_{\substack{t_j = k+1 \\ t_j = k+1}} f_{r,k}(p_j^{e(t_j)})/p_j^{e(t_j)},$$

where $e(t_j)$ is the exponent such that $p_j^{e(t_j)} || n$. Hence,

$$n \Pi_1 \leq f_{r,k}(n) \leq n \Pi_1 \Pi_2$$

where

$$\Pi_{1} = \prod_{t_{j} \leq k} f(p_{j}^{t}j)/p_{j}^{t}j,$$

and

$$\Pi_2 = \prod_{\substack{j=k+1 \ i=0}}^{k} p_j^{-i} (\geq 1).$$

It follows that for N $\epsilon\,$ IN we have

$$n \leq N \prod_{1}^{-1} \prod_{2}^{-1} \Rightarrow f_{r,k}(n) \leq N$$

and

$$n > N \prod_{1}^{-1} \Rightarrow f_{r,k}(n) > N.$$

From the definition of $A(t_1, t_2, \dots, t_r)$ it follows that among any $\prod_{j=1}^{r} p_j^{t_j} \prod_{j=k=1}^{r} p_j^{t_j}$ consecutive numbers, precisely $\prod_{j=1}^{r} (p_j^{-1})$ belong to $t_j \leq k$

16

and

 $A(t_1, t_2, \dots, t_r)$. Hence, the number of positive integers $n \in A(t_1, t_2, \dots, t_r)$ satisfying $f_{r,k}(n) \leq N$ is not less than

(4.4)
$$N \prod_{1}^{-1} \prod_{2}^{-1} \prod_{j=1}^{r} p_{j}^{-t} \prod_{\substack{j \leq k \\ j \leq k}} (1-p_{j}^{-1}) - \prod_{\substack{j \leq k \\ j \leq k}} (p_{j}^{-1}),$$

but not greater than

(4.5)
$$N \prod_{1}^{-1} \prod_{j=1}^{r} p_{j}^{-t} \prod_{j \le k} (1-p_{j}^{-1}) + \prod_{j \le k} (p_{j}^{-1}).$$

For different r-tuples (t_1, t_2, \dots, t_r) the sets $A(t_1, t_2, \dots, t_r)$ are disjoint and their union (over all t_j with $0 \le t_j \le k+1$, $j=1,2,\dots,r$) is \mathbb{N} . Hence, in order to find an upperbound and a lowerbound for the total number of $n \in \mathbb{N}$ satisfying $f_{r,k}(n) \le \mathbb{N}$ (i.e. $\#(f_{r,k},\mathbb{N})$), we must sum the upperbound (4.4) and the lowerbound (4.5) over all r-tuples (t_1, t_2, \dots, t_r) . The inequalities (4.2) and (4.3) then follow after some (simple) calculations.

<u>LEMMA 4.2</u> For any r,k,N \in IN satisfying k \leq r-1 and N < (k+2)^r $\prod_{j=1}^{r} p_j$, we j=1

$$(4.6) \qquad \#(f,N) \geq \#(f_{r-1,k},NS_{r-1,k}),$$

where

$$s_{r-1,k} = \prod_{j=1}^{r-1} \left(1 + \frac{1}{p_{j}^{k}(p_{j}-1)}\right)^{-1} \prod_{j=r}^{3r-1} (1 - p_{j}^{-1}).$$

<u>PROOF</u> of lemma 4.2. Let $T_{n,r,k}$: = $f_{r,k}(n)/f(n)$. If y is an arbitrary positive real number, then we clearly have

$$f_{r,k}(n) \le y \Rightarrow f(n) \le y/T_{n,r,k}$$

Replacing r by r-1 and y by $NT_{n,r-1,k}$, we get

$$f_{r-1,k}(n) \leq NT_{n,r-1,k} \Rightarrow f(n) \leq N,$$

so that

$$(4.7) \qquad \#(f,N) \geq \#(f_{r,k},NT_{n,r-1,k}).$$

If some $n \in \mathbb{N}$ satisfies $f_{r-1,k}(n) \leq NT_{n,r-1,k}$, it follows that

$$f(n) \le N < (k+2)^r \prod_{j=1}^r p_j < \prod_{j=1}^{2r} p_j,$$

since $k+2 \leq r+1.$ Hence the number of different prime factors of n is certainly less than 2r. Now we have for ${\rm T}_{n,r-1,k}$:

$$1 \ge T_{n,r-1,k} = \frac{f_{r-1,k}(n)}{f(n)} =$$

$$= \prod_{\substack{p \in || n \\ p \le p_{r-1} \\ e > k}} \left(\sum_{i=0}^{k} c_{e,i} p^{-i} \right) \left(\sum_{i=0}^{e} c_{e,i} p^{-i} \right)^{-1} \prod_{\substack{p \in || n \\ p \ge p_{r-1} \\ e > k}} \prod_{\substack{p \ge p_{r-1} \\ p \le p_{r-1} \\ e > k}} \prod_{\substack{p \le p_{r-1} \\ p \le p_{r-1} \\ e > k}} \prod_{\substack{p \le p_{r-1} \\ p \ge p_{r-1} \\ e > k}} \prod_{\substack{p \le p_{r-1} \\ p \ge p_{r-1} \\ e > k}} \prod_{\substack{p \le p_{r-1} \\ p \ge p_{r-1} \\ e > k}} \prod_{\substack{p \le p_{r-1} \\ p \ge p_{r-1} \\ e > k}} \prod_{\substack{p \le p_{r-1} \\ p \ge p_{r-1} \\ e > k}} \prod_{\substack{p \le p_{r-1} \\ p \ge p_{r-1} \\ e > k}} \prod_{\substack{p \le p_{r-1} \\ p \ge p_{r-1} \\ p \ge p_{r-1} \\ e > k}} \prod_{\substack{p \le p_{r-1} \\ p \ge p_{r-1} \\ p \ge p_{r-1} \\ e > k}} \prod_{\substack{p \le p_{r-1} \\ p \ge p_{r-1} \\$$

Since the number of different prime factors of n is less than 2r, the value of this last form is certainly greater than

$$\prod_{j=1}^{r-1} \left(1 + \frac{1}{p_{j}^{k}(p_{j}^{-1})}\right)^{-1} \prod_{j=r}^{3r-1} \left(1 - p_{j}^{-1}\right) = S_{r-1,k}.$$

So we have $1 \ge T_{n,r-1,k} > S_{r-1,k}$. Combining this with (4.7) yields (4.6). The proof of theorem 4.1 proceeds as follows. Clearly, for any $r,k,n \in \mathbb{N}$ we have $f(n) \ge f_{r,k}(n)$, so that for any $N \in \mathbb{N}$ #(f,n) \le #(f_{r,k},N). Hence,

$$\lim_{N\to\infty} \sup \#(f,N)/N \leq \lim_{N\to\infty} \sup \#(f_r,k',N)/N.$$

Since $(k+1)^r \prod_{j=1}^r p_j$ is bounded for fixed r and k, it follows from lemma 4.1, (4.2), that

$$\lim_{N \to \infty} \sup \#(f_{r,k},N)/N \leq \prod_{j=1}^{r} \left\{ (1-p_j^{-1}) \sum_{e=0}^{k} \frac{1}{f(p_j^{e})} + p_j^{-k-1} \right\},$$

for any fixed r,k \in ${\rm I\!N}$. From the inequalities p^{e} < f(p^{e}) < (p+1)^{e} it easily follows that

$$\lim_{r,k\to\infty} \prod_{j=1}^{r} \left\{ (1-p_{j}^{-1}) \sum_{e=0}^{k} \frac{1}{f(p_{j}^{e})} + p_{j}^{-k-1} \right\} = \prod_{p} \left\{ (1-p^{-1}) \sum_{e=0}^{\infty} \frac{1}{f(p^{e})} \right\} .$$

Hence,

(4.8)
$$\lim_{N \to \infty} \sup \#(f;N) / N \leq \prod_{p} \left\{ (1-p^{-1}) \sum_{e=0}^{\infty} \frac{1}{f(p^{e})} \right\} .$$

If we can prove, on the other hand, that

(4.9)
$$\lim_{N\to\infty} \inf \#(f,N)/N \ge \prod_{p} \left\{ (1-p^{-1}) \sum_{e=0}^{\infty} \frac{1}{f(p^{e})} \right\},$$

then theorem 4.1 clearly follows.

From now on, we assume that r,k,N \in IN are such that k \leq r-1, k large, and

(4.10)
$$(k+1)^{r} \prod_{j=1}^{r} p_{j} \leq N < (k+2)^{r} \prod_{j=1}^{r} p_{j}.$$

By lemma 4.2 we have

$$(4.11) \qquad \#(f,N) \geq \#(f_{r-1,k},NS_{r-1,k}),$$

where

$$s_{r-1,k} = \frac{r-1}{\prod_{j=1}^{r-1} \left(1 + \frac{1}{p_j^k(p_j^{-1})}\right)^{-1} \frac{3r-1}{\prod_{j=r}^{r-1} (1-p_j^{-1})}.$$

From the theorem of Mertens

$$\prod_{p \le x} (1 - p^{-1}) \sim \frac{e^{-\gamma}}{\log x}$$
 (x + \infty),

where $\boldsymbol{\gamma}$ is Euler's constant, and from the theorem of Tchebychef:

$$\pi(\mathbf{x}) \propto \mathbf{x}/\log \mathbf{x}$$

it follows that $\lim_{\substack{r\to\infty \ j=r}}^{3r-1}(1-p_j^{-1})=1.$

Furthermore, we have

$$1 > \prod_{j=1}^{r-1} \left(1 + \frac{1}{p_{j}^{k}(p_{j}^{-1})} \right)^{-1} > \prod_{j=1}^{r-1} \left(1 - p_{j}^{-k} \right) > \zeta^{-1}(k)$$
 (k>1),

which tends to 1 for $k \rightarrow \infty$. Hence, S r-1,k tends to 1 from below when k and r tend to infinity. Now by lemma 4.1, (4.3), with r replaced by r-1 and N by NS r-1,k we have

$$\#(f_{r-1,k}, NS_{r-1,k}) \ge NS_{r-1,k} \prod_{j=1}^{r-1} \left\{ (1-p_j^{-1}) \sum_{e=0}^{k} \frac{1}{f(p_j^e)} + \left(p_j^{k+1} + p_j^k + \ldots + p_j \right)^{-1} \right\} - (k+1)^{r-1} \prod_{j=1}^{r-1} p_j.$$

From (4.10) it follows that $(k+1)^{r-1} \prod_{j=1}^{r-1} j \leq \frac{N}{(k+1)p_r}$. Using this and (4.11) gives

$$#(f,N) \geq NS_{r-1,k} \prod_{j=1}^{r-1} \left\{ (1-p_j^{-1}) \sum_{e=0}^{k} \frac{1}{f(p_j^e)} + \left(p_j^{k+1} + p_j^{k} + \ldots + p_j \right)^{-1} \right\} - \frac{N}{(k+1)p_r}.$$

Dividing by N and letting N, k and r tend to infinity gives (4.9).

-

<u>REMARK 4.1</u> Three proofs of this theorem have been given for the special case $f = \sigma$. In the first one ERDÖS [13] used analytic results of SCHOENBERG, but did not give the value of $\Delta \sigma$. DRESSLER [11] was the second one to prove this theorem for $f = \sigma$. His elementary proof also gives the value of $\Delta \sigma$. Our proof of the more general theorem 4.1 is based on DRESSLER's method. BATEMAN [2] proved theorem 4.1 for $f = \sigma$ using the WIENER-IKEHARA theorem.

In table 4.1 we give the (approximate) value of Δf for some f ϵ F, where the absolute error in this value is always less than 2.10⁻⁵. The accuracy of this table is justified by theorem 4.2.

TABLE 4.1		
Some values of Δf		
f	Δf	
σ	.67274	
M ₀ (= σ [*])	.76872	
M ₁	.67887	
Ψ1	.70444	
Ψ2	.67848	
L ₁	.68618	
L ₂	.67541	
R ₁	.71070	
R ₂	.68950	

THEOREM 4.2 Let $\varepsilon > 0$ be a (small) number and let Q be a (large) prime. Let $(1 - \frac{1}{p}) \sum_{e=0}^{\infty} \frac{1}{f(p^e)} = : 1 - a_p$, $f \in F$. If the series

$$S = \sum_{p} \log(1 - a_{p})$$

is approximated by

$$\widetilde{S}_{Q} = \sum_{p \leq Q} \log(1 - \widetilde{a}_{p}),$$

where

$$(4.12) \qquad |a_p - \widetilde{a_p}| < \varepsilon$$

then

$$|s - \tilde{s}_{Q}| < \frac{4}{3Q} + 2\varepsilon\pi(Q)$$
,

where $\pi(Q)$ is the number of primes $\leq Q$.

PROOF We show that, if

$$S_{Q} = \sum_{p \leq Q} \log(1 - a_{p}) ,$$

then

(i)
$$|\mathbf{s} - \mathbf{s}_{Q}| < \frac{4}{3Q}$$
 and (ii) $|\mathbf{s}_{Q} - \widetilde{\mathbf{s}}_{Q}| < 2\varepsilon\pi(Q)$,

from which the theorem follows.

(i)
$$|S - S_Q| = |\sum_{p>Q} \log(1 - a_p)| < \sum_{p>Q} |\log(1 - a_p)|$$
.

From the definition of f it follows that

$$1 - a_{p} = \left(1 - \frac{1}{p}\right)\left(1 + \frac{1}{f(p)} + \frac{1}{f(p^{2})} + \dots\right)$$
$$< \left(1 - \frac{1}{p}\right)\left(1 + \frac{1}{p} + \frac{1}{p^{2}} + \dots\right) = 1.$$

for p=2,3,5,...,Q ,

On the other hand,

$$1 - a_{p} \ge \left(1 - \frac{1}{p}\right)\left(1 + \frac{1}{p+1} + \frac{1}{p^{2}+p+1} + \dots\right) =$$

$$= \left(1 - \frac{1}{p}\right)\left(1 + \frac{p-1}{p^{2}-1} + \frac{p-1}{p^{3}-1} + \dots\right)$$

$$> \left(1 - \frac{1}{p}\right)\left(1 + \frac{p-1}{p^{2}} + \frac{p-1}{p^{3}} + \dots\right), \text{ or}$$

$$(4.13) \qquad 1 - a_{p} \ge \left(1 - \frac{1}{p}\right)\left(1 + \frac{1}{p}\right) = 1 - \frac{1}{p^{2}},$$

so that

$$0 < \left| \log \left(1 - a_p \right) \right| < \left| \log \left(1 - \frac{1}{p^2} \right) \right| .$$

By using the inequality $\left|\log (1-x)\right| < \frac{x}{1-x}$, for 0 < x < 1, we get

$$0 < \left| \log(1 - a_p) \right| < \frac{1}{p^2 - 1} \le \frac{4}{3p^2}$$
.

Hence,

$$\begin{aligned} |s - s_{Q}| &< \sum_{p>Q} |\log(1-a_{p})| < \frac{4}{3} \sum_{p>Q} \frac{1}{p^{2}} < \frac{4}{3} \int_{Q+1}^{\infty} \frac{dx}{(x-1)^{2}} = \frac{4}{3Q} . \end{aligned}$$
(ii)
$$\begin{aligned} |s_{Q} - \widetilde{s}_{Q}| &= \left| \sum_{p\leq Q} \left\{ \log(1-\widetilde{a}_{p}) - \log(1-a_{p}) \right\} \right| \\ &\leq \sum_{p\leq Q} \left| \log \left(1 + \frac{a_{p} - \widetilde{a}_{p}}{1 - a_{p}} \right) \right| . \end{aligned}$$

By (4.12) and (4.13) we have

$$\left|\frac{a_{p}-a_{p}}{1-a_{p}}\right| < \frac{\varepsilon}{1-\frac{1}{p^{2}}} < \frac{4}{3}\varepsilon,$$

since $p \ge 2$. Hence

$$\left| \log \left(1 + \frac{a_p - a_p}{1 - a_p} \right) \right| < \frac{\frac{4}{3} \varepsilon}{1 - \frac{4}{3} \varepsilon} < 2\varepsilon ,$$

for $\varepsilon < \frac{1}{4}$. From this we deduce that

$$\left| \begin{array}{c} s_{Q} - \widetilde{s}_{Q} \right| \leq \sum_{p \leq Q} 2\varepsilon = 2\varepsilon \pi(Q) \,. \end{array} \right|$$

REMARK 4.2 It is easy to approximate

$$a_{p} = \left(\frac{1}{p} - \frac{1}{f(p)}\right) + \left(\frac{1}{pf(p)} - \frac{1}{f(p^{2})}\right) + \dots$$

by

$$\widetilde{a}_{p} = \left(\frac{1}{p} - \frac{1}{f(p)}\right) + \ldots + \left(\frac{1}{pf(p^{1-1})} - \frac{1}{f(p^{1})}\right)$$

with an accuracy prescribed by (4.12), by choosing i large enough. In fact, we have

$$\left|\frac{1}{pf(p^{j-1})} - \frac{1}{f(p^{j})}\right| = \left|\frac{f(p^{j}) - pf(p^{j-1})}{pf(p^{j-1})f(p^{j})}\right|$$
$$< \frac{p^{j} + p^{j-1} + \dots + p + 1 - p^{j}}{p \cdot p^{j-1} \cdot p^{j}} =$$
$$< \frac{1}{p^{j}(p-1)} \qquad \text{for } p^{j}$$

for
$$j=1,2,\ldots$$
,

so that

$$\begin{aligned} \left| a_{p} - \widetilde{a}_{p} \right| &< \left| \frac{1}{pf(p^{1})} - \frac{1}{f(p^{1+1})} \right| + \left| \frac{1}{pf(p^{1+1})} - \frac{1}{f(p^{1+2})} \right| + \dots \\ &\leq \frac{1}{p^{i+1}(p-1)} + \frac{1}{p^{i+2}(p-1)} + \dots = \frac{1}{p^{i}(p-1)^{2}}. \end{aligned}$$

In order to obtain the values of Δf given in table 4.1, we chose Q = 10⁵ and for every $p \le Q$ we determined i = i_p such that $\frac{1}{p^i(p-1)^2} \le \epsilon = 10^{-10}$.

\$

CHAPTER 5

THE MEAN VALUE OF f(n)/n

For any f \in F let

$$\overline{f}(n) := f(n) - n , \qquad (n \in \mathbb{N}),$$

so that

$$\frac{\bar{f}(n_{i})}{n_{i}} = \frac{f(n_{i}) - n_{i}}{n_{i}} = \frac{n_{i+1}}{n_{i}} ,$$

where $\mathbf{n}_{\underline{i}}$ and $\mathbf{n}_{\underline{i}+1}$ are two consecutive terms of an f-sequence.

The purpose of this section is to determine the mean value $M\left\{\frac{\overline{f}(n)}{n}\right\}$ of $\frac{\overline{f(n)}}{n}$. Note that

$$\mathbb{M}\left\{\frac{\overline{f}(n)}{n}\right\} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \frac{\overline{f}(n)}{n} =$$

$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \left(\frac{f(n)}{n} - 1\right) =$$

$$= \left(\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \frac{f(n)}{n}\right) - 1 = \mathbb{M}\left\{\frac{f(n)}{n}\right\} - 1 .$$

The mean value of an arithmetical function g may be determined by the following two theorems.

THEOREM 5.1 If g is an arithmetical function and $h = g * \mu$, i.e.,

$$(5.1) h(n) = \sum_{\substack{d \mid n}} g(d) \mu(\frac{n}{d}) (n \in \mathbb{N}),$$

where $\boldsymbol{\mu}$ denotes the Möbius function, then

(5.2)
$$M\{g\} = \sum_{n=1}^{\infty} \frac{h(n)}{n}$$

provided that this series is absolutely convergent.

PROOF By the Möbius inversion formula,

$$g(n) = \sum_{\substack{n \\ d \mid n}} h(d),$$

so that

$$\frac{1}{N}\sum_{n=1}^{N} g(n) = \frac{1}{N}\sum_{n=1}^{N}\sum_{d\mid n} h(d) = \frac{1}{N}\sum_{d=1}^{N}h(d)\left[\frac{N}{d}\right] =$$
$$= \sum_{d=1}^{\infty}\frac{h(d)}{d} - \sum_{d=N+1}^{\infty}\frac{h(d)}{d} - \frac{1}{N}\sum_{d=1}^{N}h(d)\left(\frac{N}{d} - \left[\frac{N}{d}\right]\right).$$

Clearly

$$\lim_{N\to\infty} \sum_{d=N+1}^{\infty} \frac{h(d)}{d} = 0.$$

Next observe that

$$\left|\frac{1}{N}\sum_{d=1}^{N} h(d)\left(\frac{N}{d} - \left[\frac{N}{d}\right]\right)\right| \leq \frac{1}{N}\sum_{d=1}^{N} |h(d)| = \frac{1}{N}\sum_{d=1}^{N} d\left|\frac{h(d)}{d}\right|.$$

From the absolute convergence of $\sum_{d=1}^{\infty} \frac{h(d)}{d}$, and a well-known theorem of Kronecker (see KNOPP [23], p.129), it follows that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{d=1}^{N} d \left| \frac{h(d)}{d} \right| = 0 .$$

We apply this theorem to the function $g\left(n\right)=\frac{M_{k}\left(n\right)}{n}$ $(k=0,1,2,\ldots),$ and we first show that

$$h(n) = \sum_{\substack{d \mid n}} \frac{M_k(d)}{d} \mu(\frac{n}{d}) = O(n^{-\frac{1}{2}}) \qquad (n \to \infty).$$

We have h(1) = 1 and for any prime p and $e \in \mathbb{N}$

$$h(p^{e}) = \frac{M_{k}(p^{e})}{p^{e}} - \frac{M_{k}(p^{e-1})}{p^{e-1}}.$$

By the definition of M_{k}

$$h(p^{e}) = \begin{cases} p^{-e}, & 1 \le e \le 2k+1, \\ p^{-e}(1-p^{k+1}), & e \ge 2k+1, \end{cases}$$

from which it is easily seen that

$$|h(p^e)| \leq p^{-e/2}$$
.

Because of the multiplicativity of h, it follows that

$$h(n) = O(n^{-1/2}) \qquad (n \neq \infty),$$

and from this it is clear that we may apply theorem 5.1. Because of the absolute convergence of $\sum_{n=1}^{\infty} \ \frac{h(n)}{n}$ and the multiplicat-ivity of h, theorem 286 of [22] gives

$$\sum_{n=1}^{\infty} \frac{h(n)}{n} = \prod_{p} \left\{ 1 + \frac{h(p)}{p} + \frac{h(p^2)}{p^2} + \ldots \right\} ,$$

so that

$$\begin{split} \mathbb{M}\left\{\frac{\mathbb{M}_{k}(n)}{n}\right\} &= \prod_{p} \left\{1 + \frac{1}{p}\left(\frac{\mathbb{M}_{k}(p)}{p} - 1\right) + \frac{1}{p^{2}}\left(\frac{\mathbb{M}_{k}(p^{2})}{p^{2}} - \frac{\mathbb{M}_{k}(p)}{p}\right) + \ldots\right\} = \\ &= \prod_{p} \left\{(1 - \frac{1}{p})\sum_{j=0}^{\infty} \frac{\mathbb{M}_{k}(p^{j})}{p^{2j}}\right\} = \\ &= \prod_{p} \left[(1 - \frac{1}{p})\left\{\sum_{j=0}^{2k} \frac{p^{j} + p^{j-1} + \ldots + p + 1}{p^{2j}} + \right. \\ &+ \sum_{j=2k+1}^{\infty} \frac{p^{j} + \ldots + p^{j-k} + p^{k} + \ldots + 1}{p^{2j}}\right\}\right] = \\ &= \prod_{p} \left\{(1 - \frac{1}{p})\left(\frac{p^{3} - p^{-3k}}{(p-1)^{2}(p+1)}\right)\right\} = \\ &= \prod_{p} \left\{(1 - p^{-2})^{-1}(1 - p^{-3k-3})\right\} = \\ &= \frac{\zeta(2)}{\zeta(3k+3)} \end{split}$$
 (k=0,1,2,\ldots)

yielding

$$M\left\{\frac{M_{k}(n)}{n}\right\} = \frac{\zeta(2)}{\zeta(3k+3)} \qquad (k=0,1,2,...) .$$

We may determine the mean value of the functions $\Psi_k(n)/n$, $L_k(n)/n$, and $R_k(n)/n$ in the same way as the mean value of $M_k(n)/n$ was determined. However, we shall perform this in another way, namely by combining the next theorem ([25]) with theorem 5.1.

THEOREM 5.2 If

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} g(n)$$

exists, then the generating Dirichlet series

$$G(s) = \sum_{n=1}^{\infty} \frac{g(n)}{n^{s}}$$

converges for s > 1, and moreover

(5.3)
$$\lim_{s \neq 1} (s-1)G(s) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} g(n) .$$

Under the hypothesis of theorem 5.1, $M\{g\}$ exists, so that theorem 5.2 applies. Therefore, we should like to know the generating Dirichlet series of g(n).

The functions g which we shall consider $(g(n) = \Psi_k(n)/n, L_k(n)/n, R_k(n)/n$ and for the sake of completeness $M_k(n)/n$, partly coincide with $\sigma(n)/n$. Hence, we first compute the multiplicative function $g_2(n)$, implicitly defined by the convolution product

(5.4)
$$g = g_1 * g_2$$
,

where $g_1(n)=\sigma(n)/n \quad (n \in \mathbb{N})\,.$ It is well-known that G(s) is then determined by

(5.5)
$$G(s) = G_1(s)G_2(s)$$
,

where $G_1(s)$ and $G_2(s)$ are the generating Dirichlet series of $g_1(n)$ and
$g_2(n)$, respectively. Now it is readily seen that

(5.6)
$$G_1(s) = \sum_{n=1}^{\infty} \frac{\sigma(n)}{n} \cdot n^{-s} = \zeta(s)\zeta(s+1)$$
 (s > 1).

From (5.5) and (5.6) we infer that

$$\begin{split} \lim_{s \to 1} (s-1)G(s) &= \lim_{s \to 1} (s-1)G_1(s)G_2(s) \\ &= s \downarrow 1 \\ &= \zeta(2) \lim_{s \downarrow 1} G_2(s) \\ &= s \downarrow 1 \end{split}$$

Hence, by theorem 5.2, we finally have

(5.7)
$$M\{g\} = \zeta(2) \lim_{s \neq 1} G_2(s)$$
.

For each of the considered functions g, table 5.1 presents the order of magnitude of h(n) (so that theorem 5.1 applies), the multiplicative function $g_2(n)$, its generating Dirichlet series $G_2(s)$, and, finally, the mean value $M\{g\}$ according to (5.7).

g(n)	h(n) $(n \rightarrow \infty)$	g ₂ (n) (g ₂ is multiplicative)	G ₂ (s) (s > 1)	$M{g}$ = lim G ₂ (s)ζ(2) s+1
M _k (n)/n (k=0,1,2,)	$O(n^{-1/2})$	$g_2(p^{2k+2}) = -p^{-(k+1)}$ $g_2(p^i) = 0, i \in \mathbb{N}, i \neq 2k+2$	<u>1</u> ζ((k+1)(2s+1))	$\frac{\zeta(2)}{\zeta(3(k+1))}$
Ψ _k (n)/n (k=1,2,)	0(n ⁻¹)	$g_2(p^{k+1}) = -p^{-(k+1)}$ $g_2(p^i) = 0, i \in \mathbb{N}, i \neq k+1$	<u>1</u> ζ((k+1)(s+1))	$\frac{\zeta(2)}{\zeta(2(k+1))}$
L _k (n)/n (k=0,1,2,)	$0(n^{-1/2})$	$g_2(p^{k+2}) = -p^{-(k+1)}$ $g_2(p^i) = 0, i \in \mathbb{N}, i \neq k+2$	$\frac{1}{\zeta((k+2)s+k+1)}$	<u>ζ(2)</u> ζ(2k+3)
R _k (n)/n (k=0,1,2,)	0(n ^{-1/(k+1)})	$g_2(p^{k+2}) = -p^{-1}$ $g_2(p^i) = 0, i \in \mathbb{N}, i \neq k+2$	$\frac{1}{\zeta((k+2)s+1)}$	$\frac{\zeta(2)}{\zeta(k+3)}$

TABLE 5.1 Mean value $M\{g\}$ and intermediate results for various g

CHAPTER 6

In order to get some insight into the behaviour of aliquot f-sequences, we have carried out some computer calculations on the functions f, described in chapter 3. From the definitions it is clear that, with increasing $\boldsymbol{k},$ the M_k-, Ψ_k -, L_k- and R_k-sequences coincide more and more with the σ -sequences. Therefore, we have computed these sequences only for some small values of k. For $f = M_k$ (k=1,2), $f = \Psi_k$ (k=1,2,3,4), $f = L_k$ (k=1,2,3,4) and $f = R_k$ (k=1,2,3,4) we have computed all n-sequences for $1 \le n \le 1000$, stopping after reaching a term greater than 10⁸. Table 6.1 gives frequency counts of the number of sequences *incomplete* at the bound 10⁸, and (in parentheses) the corresponding number of incomplete main sequences; next the number of periodic sequences and the number of terminating sequences. In chapter 7 some of the incomplete Ψ_1^- , Ψ_2^- and Ψ_3^- sequences will be proved to be unbounded. The last column of table 6.1 gives the number of these sequences with the corresponding number of (unbounded) main sequences (in parentheses). For purposes of comparison the corresponding results for f = σ and f = σ^{\star} are included in table 6.1.

Table 6.2 gives the first term greater than 10^8 in all incomplete main sequences with first term ≤ 1000 , of which the behaviour is unknown to us.

TABLE 6.1

Frequency counts of the (aliquot) f-sequences on $n \, \leq \, 1000 \, ,$ for various choices of f

f	number c	f (main)	number of	number of	number	of incomplete
	sequences,	incomplete	periodic	termin-	(mair	n) sequences
	at bou	nd 10 ⁸	sequences	ating	prove	ed to be un-
				sequences	bounded	(in chapter 7)
σ	30	(11)	22	948		
σ*	0		86	914		
^M 1	38	(9)	17	945		
^M 2	28	(11)	23	949		
Ψ1	15	(3)	151	834	15	(3)
Ψ ₂	8	(4)	457	535	7	(3)
Ψ ₃	94	(23)	143	763	45	(11)
Ψ_4	34	(11)	31	935		
L ₁	8	(3)	56	936		
^L 2	47	(12)	18	935		
^L 3	17	(7)	21	962		
L ₄	42	(8)	23	935		
R ₁	0		34	966		
R ₂	34	(5)	24	942		
R ₃	16	(4)	21	963		
R ₄	35	(9)	22	943		

TABLE 6.2 10^8 bounds of incomplete main sequences

$f = \sigma$	$f = \Psi_2$	$f = L_{2}$
	3	5
138 : 69 = 147793668	180 : 26 = 131598960	120 : 32 = 121129260
276 : 32 = 121129260	282:62 = 102277120	552 : 86 = 126294174
552 : 36 = 114895284	318 : 34 = 152730624	570 : 80 = 141073044
564 : 22 = 196505388	360:43=127848510	840 : 15 = 139098120
660:50=144750606	462:36=154178412	896 : 45 = 188579412
702 : 21 = 139130668	564 : 23 = 102691584	966 : 49 = 102182706
720 : 69 = 132775020	702 : 17 = 199796580	1000 : 50 = 134757462
840 : 15 = 139098120	714 : 36 = 181993620	
858 : 30 = 159862836	720:92=113704960	
936 : 26 = 111494688	840 : 15 = 139098120	$f = L_{s}$
966 : 35 = 181027656	852 : 42 = 100106240	4
	936: 36 = 105164730	138:21=139098120
		180:108 = 173393484
$f = M_{\star}$		276: 32 = 121129260
1	$f = \Psi_{A}$	448 : 37 = 114895284
120 : 30 = 100491408	4	564 : 24 = 125050980
216 : 43 = 155349264	120:23 = 124250364	858 : 33 = 133562928
402 : 32 = 124353480	276 : 32 = 121129260	864 : 30 = 104767338
462 : 45 = 161499768	564:62=124774110	966 : 34 = 102297492
570 : 43 = 108977466	570 : 56 = 143028208	
642 : 23 = 115388280	600 : 65 = 148695936	
660:23=103608720	642:41 = 107321286	$f = R_{2}$
840 : 15 = 139098120	702:29 = 116227422	2
966 : 43 = 121249806	840 : 15 = 139098120	282 : 53 = 136831950
	858 : 29 = 113150496	318 : 38 = 106216404
	936:21=130295840	504 : 18 = 139098120
$f = M_2$	966: 39 = 125235882	570 : 35 = 109215852
£0		720 : 19 = 119423880
180 : 30 = 121823520		
276 : 32 = 121129260	$f = L_1$	
552:36 = 114895284	-	$f = R_3$
564 : 84 = 166139664	282 : 94 = 108787260	-
570 : 107 = 109946862	750:51 = 124400724	138:46 = 121129260
600:73 = 123828888	858 : 77 = 215879274	600 : 67 = 116465076
720:48=137975796		720:46 = 144750606
840 : 15 = 139098120		840 : 15 = 139098120
864 : 28 = 197379960	$f = L_2$	
936:21 = 1025/9864		
966 : 35 = 119896080	180 : 71 = 160477212	$f = R_4$
	282 : 31 = 10/259180	1.20 00 1000 15750
C 111	360:42 = 11/609900	138:22 = 122945760
$r = \Psi_2$	4/4: 32 = 114583824	180 : 89 = 105128120
756 . 20 - 200420276	460 : $/1 = 2292261/2$	2/6: 32 = 121129260
756 : 20 = 208430376	700 : 84 = 120023082	480 : 30 = 135688812
	702 : 33 - 102230/96	552 : 50 = 114895284
	120 : 31 - 134032/36	370: 33 = 114809502
	$0.36 \cdot 33 - 1.32038120$	$864 \cdot 37 - 164600262$
	$960 \cdot 105 = 101002724$	0.04 : 57 - 104099202
	$966 \cdot 32 = 171/33220$	500 : 50 - 156510148
	JOG . JZ - 1/14JJJZU	

CHAPTER 7

UNBOUNDED ALIQUOT Ψ_k -SEQUENCES

In the preceding chapter we mentioned the discovery of unbounded fsequences. As table 6.1. shows, unbounded sequences were found only in the cases $f = \Psi_1$, $f = \Psi_2$ and $f = \Psi_3$. How these sequences were found may be best illustrated by the data given in table 7.1. Our attention was immediately attracted to the regular pattern in the prime factors of the terms from 318 : 12 onwards. More explicitly,

Therefore, the 67 terms in table 7.1, together with their prime factorizations, strongly suggest the unboundedness of the sequence. A precise proof follows easily from the following discussion.

Let n_0, n_1, \dots, n_l be l+1 (l > 0) consecutive terms of a Ψ_k -sequence, and suppose that for $i=0,1,\dots,l-1$ we have

(7.1)
$$n_i = q_1^{e_{i1}} \dots q_s^{e_{is}} m_i$$

where q_1, q_2, \ldots, q_s are s (> 0) different primes, $(q_1q_2 \ldots q_s, m_i) = 1$ and $e_{ij} \ge k$ for j=1,2,...,s. Let us write n_k as

(7.2) $n_{\ell} = q_1^{e_{\ell 1}} \dots q_s^{e_{\ell s}} m_{\ell}$,

TAB	LE 7.1				
The	aliquot	Ψ_1 -sequence	with	leader	318

rank	term	factorization	rank	term	factorization
0	318	2.3. 53	34	674406	2.3(4) 23.181
1	330	2.3. 5.11	35	740826	2.3(4) 17.269
2	534	2.3. 89	36	833814	2.3(4) 5147
3	546	2.3. 7.13	37	834138	2.3(4) 19.271
4	798	2.3. 7.19	38	928422	2.3(4) 11.521
5	1122	2.3. 11.17	39	1101114	2.3(4) 7.971
6	1470	2.3. 5. 7(2)	40	1418310	2.3(4) 5. 17.103
7	2562	2.3. 7.61	41	2220858	2.3(4)13709
8	3390	2.3. 5.113	42	2221182	2.3(4)13711
9	4818	2.3. 11.73	43	2221506	2.3(5) 7.653
10	5838	2.3. 7.139	44	2863998	2.3(5) 71.83
11	7602	2.3. 7.181	45	3014658	2.3(5) 6203
12	9870	2.3. 5. 7. 47	46	3015630	2.3(5) 5.17.73
13	17778	2.3. 2963	47	4752594	2.3(5) 7.11.127
14	17790	2.3. 5.593	48	7191342	2.3(5)14797
15	24978	2.3. 23.181	49	7192314	2.3(6) 4933
16	27438	2.3. 17.269	50	7195230	2.3(7) 5. 7.47
17	30882	2.3. 5147	51	12960162	2.3(7) 2963
18	30894	2.3. 19.271	52	12968910	2.3(7) 5.593
19	24386	2.3. 11.521	53	18208962	2.3(7) 23.181
20	40782	2.3. 7.971	54	20002302	2.3(7) 17.269
21	52530	2.3. 5. 17.103	55	22512978	2.3(7) 5147
22	82254	2.3. 13709	56	22521726	2.3(7) 19.271
23	82266	2.3. 13711	57	25067394	2.3(7) 11.521
24	82278	2.3(2) 7.653	58	29730078	2.3(7) 7.971
25	106074	2.3(2) 71.83	59	38294370	2.3(7) 5.17.103
26	111654	2.3(2) 6203	60	59963166	2.3(7)13709
27	111690	2.3(2) 5.17.73	61	59971914	2.3(7)13711
28	176022	2.3(2) 7. 11.127	62	59980662	2.3(8) 7.653
29	266346	2.3(2)14797	63	77327946	2.3(8) 71.83
30	266382	2.3(3) 4933	64	81395766	2.3(8) 6203
31	266490	2.3(4) 5. 7.47	65	81422010	2.3(8) 5.17.73
32	48 00 06	2.3(4) 2963	66	128320038	2.3(8) 7.11.127
33	480330	2.3(4) 5.593			
			1		

where $(q_1q_2...q_s,m_l) = 1$ and $e_{lj} \ge 0$ for j=1,2,...,s.

Moreover, suppose that

(7.3)
$$m_0 = m_{\ell}$$
, and, if $\ell > 1$, then $m_0 \neq m_j$, for $j=1,2,..., \ell-1$.

Now four possible cases may be distinguished.

Case 1. $e_{j} \ge e_{0j}$, for j=1,2,...,s, with strict inequality for at least one j. Then by (7.2), (7,3) and (7.1),

$$\begin{split} \mathbf{n}_{\ell} &= \begin{pmatrix} \mathbf{s} & \mathbf{e}_{\ell j} \\ \mathbf{j}=1 & \mathbf{q}_{j} \end{pmatrix} \mathbf{n}_{\ell} = \begin{pmatrix} \mathbf{s} & \mathbf{e}_{\ell j} \\ \mathbf{\pi} & \mathbf{q}_{j} \end{pmatrix} \mathbf{n}_{0} = \begin{pmatrix} \mathbf{s} & \mathbf{e}_{\ell j} - \mathbf{e}_{0 j} \\ \mathbf{\pi} & \mathbf{q}_{j} \end{pmatrix} \begin{pmatrix} \mathbf{s} & \mathbf{e}_{0 j} \\ \mathbf{\pi} & \mathbf{q}_{j} \end{pmatrix} \mathbf{n}_{0} = \\ &= \mathbf{an}_{0} , \end{split}$$

where $a = \prod_{j=1}^{s} q_{j}^{e_{lj}-e_{0j}}$. Now observe that

$$n_{\ell+1} = \Psi_{k}(n_{\ell}) - n_{\ell} = \Psi_{k}(an_{0}) - an_{0} =$$
$$= a\{\Psi_{k}(n_{0}) - n_{0}\} = an_{1},$$

so that $n_{\ell+1} = an_1$. Similarly,

$$\begin{array}{rcl} \mathbf{n}_{\ell+2} &=& \mathbf{an}_{2} \ , \\ && \vdots \\ && & \vdots \\ \mathbf{n}_{2\ell-1} &=& \mathbf{an}_{\ell-1} \ , \ \mathbf{and} \\ \mathbf{n}_{2\ell} &=& \mathbf{an}_{\ell} &=& \mathbf{a}^{2}\mathbf{n}_{0} \end{array} .$$

By induction, we infer that for $r=1, 2, \ldots$

$$n_{r\ell+j} = a^{r}n_{j}$$
, (j=0,1,...,\ell-1),

so that the $\frac{\Psi}{k}$ -sequence with leader n_0 is increasing (since a > 1), and hence unbounded. We propose to call a the *multiplier* of this unbounded

sequence. Furthermore, observe that it is periodic in the sense that for $r=1,2,\ldots$ we have

$$\begin{array}{c} \left(\mathbf{q}_{1}\ldots\mathbf{q}_{s}\right)^{k}\mathbf{m}_{0} \quad \text{divides } \mathbf{n}_{r\,\ell} \ , \\ \left(\mathbf{q}_{1}\ldots\mathbf{q}_{s}\right)^{k}\mathbf{m}_{1} \quad \text{divides } \mathbf{n}_{r\,\ell+1} \ , \\ & \vdots \\ \left(\mathbf{q}_{1}\ldots\mathbf{q}_{s}\right)^{k}\mathbf{m}_{\ell-1} \quad \text{divides } \mathbf{n}_{r\,\ell+\ell-1} \ . \end{array}$$

Therefore, we propose to call ℓ the *semi-period* of the unbounded sequence. The example in table 7.1 has $\ell = 19$ and a = 27.

In table 7.2 we have drawn the directed graphs of the unbounded fsequences mentioned in table 6.1, for $f = \Psi_1$, Ψ_2 and Ψ_3 . Every number ≤ 1000 for which the f-sequence is found to be unbounded appears in one of the digraphs. Every first term of the "semi-periodic" part of the sequence is marked with an asterisk. The semi-period ℓ and the multiplier a are given at the foot of the sequence. Details of the semi-periodic parts of the unbounded sequences can be found in table 7.3.

Case 2. $e_{j} \leq e_{j}$, for j=1,2,...,s, with strict inequality for at least one j. Then by (7.1), (7,3) and (7.2),

$$n_{0} = \begin{pmatrix} s & e_{0j} \\ \Pi & q_{j} \end{pmatrix} m_{0} = \begin{pmatrix} s & e_{0j} \\ \Pi & q_{j} \end{pmatrix} m_{\ell} = \prod_{j=1}^{s} \begin{pmatrix} e_{0j}^{-e_{\ell}j} \\ q_{j} \end{pmatrix} \begin{pmatrix} s & e_{\ell}j \\ \Pi & q_{j} \end{pmatrix} m_{\ell} =$$
$$= an_{\ell},$$

where $a = \prod_{j=1}^{s} q_{j}^{0j^{-e}lj}$. Now observe that

$$\Psi_{k}(an_{\ell-1}) - an_{\ell-1} = a\{\Psi_{k}(n_{\ell-1}) - n_{\ell-1}\} =$$

= $an_{\ell} = n_{0}$,

so that an_{l-1} is a predecessor of n_0 . Therefore we choose $n_{-1} = an_{l-1}$.

TABLE 7.2

Directed graphs of unbounded f-sequences

	$f = \Psi_1$		
318(2.3.53)			942(2.3.157)
↓ 330(2.3.5.11)	498(2.3.83)	978(2.3.163)	↓ 954(2.3(2)53)
↓ 534(2.3.89)	↓ 510(2.3.5.17)		>> ↓ 990(2.3(2)5.11)
↓ 546(2.3.7.13)	786 (2.3.131)		↓ 1602(2.3(2)89)
↓ . 798(2.3.7.19)			↓ 1638(2.3(2)7.13)
↓ 1122 (2.3.11.17)	636(2(2)3.53)		↓ 2394(2.3(2)7.19)
↓ 1470(2.3.5.7(2))	↓ 660(2(2)3.5.11)	996(2(2)3.83)	↓ 3366(2.3(2)11.17)
↓ 2562 (2.3.7.61)	↓ 1068(2(2)3.89)	↓ 1020(2(2)3.5.13)	↓ 4410(2.3(2)5.7(2))
↓ 3390 (2.3.5.113)	↓ 1092(2(2)3.7.13)	¥ 1572(2(2)3.131)	↓ 7686(2.3(2)7.61)
↓ 4818 (2.3.11.73)	↓		¥ 10170(2.3(2)5.113)
↓ 5838 (2.3.7.139)	↓ 2244 (2 (2) 3.11.17)		↓ 14454(2.3(2)11.73)
↓ 7602(2.3.7.181)	↓ 2940(2(2)3,5.7(2))	17514(2.3(2)7.139)
↓ * 9870 (2.3.5.7.47)	↓ 5124(2(2)3.7.61)		22806(2.3(2)7.181)
•	↓ 6780(2(2)3.5.113)	*	29610(2.3(2)5.7.47)
1=19,a=2/	↓ 9636(2(2)3.11.73)		
	11676 (2 (2) 3.7.139)		1-19,d-27
	↓ 15204(2(2)3.7.181)		
*	↓ 19740(2(2)3.5.7.47	7)	
	1=19,a=2/		
	$r = \Psi_2$		
* 252(2(2)3(2 ↓	2)7)	3(2)7) 852(2(↓	2) 3.71)
476(2(2)7.1 ↓	17) 952(2(3)5 ↓	7.17) 1164(2(+	2)3.97)
532(2(2)7.1 ↓	19) 1064(2(3)7 ↓	7.19) 1580(2(+	2)5.79)
588(2(2)3.7 ↓	7(2)) 1176(2(3)3 ↓	3.7(2)) *1780(2(2)5.89)
* 1008(2(4)3(2	2)7) * 2016 (2 (5) 3	3(2)7) . 1=6.a=	8
1=4,a=4	1=4,a=4		-

TABLE 7.2 (continued)

		$f = \Psi_3$		
* 120 (2(3) 3.5)	216(2(3)3(3))	252(2(2)3(2)7)	
↓ * 240 (2(4) 3.5)	↓ * 384(2(7)3)		↓ 476(2(2)7.17)	
↓ * 480 (2 (5) 3.5)	↓ 576(2(6)3(2)))	↓ 532(2(2)7.19)	408(2(3)3.17)
ł	¥		¥	ł
* 960 (2 (6) 3.5)	984(2(3)3.4	1) 864(2(5)3(3)) 588(2(2)3.7(2)	672(2(5)3.7) ↓
*1920(2(7)3.5)	* 1536 (2 (9) 3)		1008(2(4)3(2)7)	1248(2(5)3.13)
8	۰		* 2112(2(6) 3 11)	
l=1,a=2	1=3,a=4		° & 112 (2 (0) J. 11)	
			1=13,a=1024	
276 (2 (2) 3.23)	306(2.3(2)17)	* 552(2(3)3.23) 642(2.3.107)
↓ 396(2(2)3(2)1	1)	* 336(2(4)3.7	↓ 7) 888(2(3)3.37	↓ 654(2.3.109)
↓ *696(2(3)3.29)	504(2(3)3(2)	7) 624(2(4)3.1	↓ .3) 1392(2(4)3.29) 666(2.3(2)37)
↓ 1104(2(4)3.23)		→ ↓ 1056(2(5)3.1	.1)	¥ 816(2(4)3.17)
0		۵	1=3,a=4	+
1=3,a=4		1=13.a=1024		*1344(2(6)3./)
				1=13,a=1024
		996(2(2)3.83)	660(2(2)3.5.11) 828(2(2)3(2)23)
			1356(2(2)3.113)	
			ł	
	402(2.3.67)	762(2.3.127)	1836(2(2)3(3)17)
	414(2.3(2)23)	774(2.3(2)43)	3204(2(2)3(2)89)
432(2(4)3(3))	¥ 522(2.3(2)29)	* 942(2.3.157)	¥ 4986(2.3(2)277)	
↓ 76 <u>8(2(8)</u> 3)	↓ 648(2(3)3(4))	↓ 954(2.3(2)53)	↓ 5856(2(5)3.61)	
	> + <		¥	
*	1152(2(7)3(2))		9024(2(6)3.47)	
	*		14016(2(6)3.73)	
	1=3,a=4		¥	
		*	21504(2(10)3.7)	
			•	
			l=13,a=1024	

TABLE 7.2 (concluded)

	$f = \Psi_3$		
726(2.3.11(2))	570(2.3.5.19)	858(2.3.11.13)	
		+	
	870(2.3.5.29)	1158(2.3.193)	
	↓ 1000/0 0 E 40)	ψ	
	1290(2.3.5.43)	11/0(2.3(2)5.13)	
	\¥ 1070/3 313)	¥ 2106(2,2(4)12)	
	10/0(2.3.313)	2108(2.3(4)13)	
	¥ 1890(2-3(3)5-7)	* 2934(2-3(2)163)	
	1000(2,0(0)0,7)	2954(2.5(2)105)	
	3870 (2, 3 (2) 5, 43)	3462 (2 3 577)	
	J	1	
	6426(2,3(3)7,17)	3474(2,3(2)193)	
	+	¥	
	10854(2.3(4)67)	4092(2(2)3,11,31)	
	+	4	
	13626(2.3(2)757)	6660 (2 (2) 3 (2) 5 . 37)	
	ŧ	¥	
	15936(2(6)3.83)	14088(2(3)5,587)	
	ł	¥	
	24384(2(6)3.127)	21192(2(3)3.883)	
	¥	Ŷ	
	37056(2(6)3.193)	31848(2(3)3.1327)	
	ŧ	¥	
	56064(2(8)3.73)	47832(2(3)3.1993)	
	¥	+	
×	86016(2(12)3.7)	* 71808(2(7)3.11.17)	
	•	•	
	1=13,a=1024	1=13,a=1024	

Similarly,

$$\begin{array}{rcl} n_{-2} &=& an_{\ell-2} &, \\ &\vdots & & \\ &\vdots & & \\ n_{-\ell+1} &=& an_1 &, \text{ and} \\ n_{-\ell} &=& an_0 &=& a^2n_{\ell} &. \end{array}$$

By induction we infer that for r=1,2,...

$$n_{-r\ell+j} = a^{r}n_{j}$$
, (j=0,1,..., l-1),

so that we now have a decreasing (since a > 1) sequence of infinitely many predecessors of n_0^- . Again, we call l the semi-period and a the multiplier of this sequence.

Case 3. $e_{lj} = e_{0j}$ for j=1,2,...,s. In this case, obviously, $n_l = n_0$, so that the numbers n_0, n_1, \dots, n_{l-1} form a Ψ_k -cycle of length l.

Case 4. There are indices $j_1, j_2 \in \{1, 2, \dots, s\}$ so that $e_{\ell j_1} < e_{0 j_1}$ and $e_{\ell j_1} > e_{0 j_2}$. Now it is no longer possible to construct unbounded sequences of the kind described in cases 1 and 2, but yet it is still possible to construct arbitrarily long increasing or decreasing sequences, according as $n_{\ell}/n_0 > 1$ or $n_{\ell}/n_0 < 1$. Again, ℓ is called the semi-period of the sequence.

According to table 7.2, the Ψ_3 -sequence of 120 = 2^3 3.5 is unbounded with semi-period 1 and multiplier 2. Also, 120 is a multiply perfect number because $\sigma(120) = 3.120$. The following theorem gives a method to construct unbounded Ψ_k -sequences of semi-period 1 from multiply perfect numbers.

<u>THEOREM 7.1</u> If N is a multiply perfect number, i.e., $\sigma(N) = sN$ for some positive integer s > 2, if $s-1 = p^a$ for some prime p and some positive integer a, and if $N = p^k N_1$, where $(p, N_1) = 1$, N_1 is (k+1)-free and k is some positive integer > 1, then the aliquot Ψ_k -sequence with leader N is unbounded with semi-period 1 and multiplier p^a . <u>PROOF</u>. Since N = $p^{k}N_{1}$ is (k+1)-free, we have $\Psi_{k}(N) = \sigma(N)$, so that

$$\Psi_{k}(N) - N = \sigma(N) - N = sN - N = p^{a}N$$
.

Furthermore, from the definition of $\boldsymbol{\Psi}_{\mathbf{k}}$ (chapter 3) it follows that

$$\Psi_{k}(p^{a}N) - p^{a}N = \Psi_{k}(p^{a+k})\Psi_{k}(N_{1}) - p^{a}N =$$
$$= p^{a}\Psi_{k}(p^{k})\Psi_{k}(N_{1}) - p^{a}N =$$
$$= p^{a}[\sigma(N) - N] =$$
$$= Np^{2a}.$$

By induction we infer that

$$\Psi_{k}(p^{ja}N) - p^{ja}N = Np^{(j+1)a} \qquad (j=0,1,...).$$

In all, except two, of the multiply perfect numbers in the lists [5], [6], [16], [17] and [29], the highest exponent occurs as exponent of 2. Hence, for these numbers the condition $N = p^{k}N_{1}$, with $(p,N_{1}) = 1$ and N_{1} is (k+1)-free, can only be satisfied if we choose p = 2, but then s-1 must be a power of 2. Application of theorem 7.1 yields

COROLLARY 7.1 Every multiply perfect number N in the lists cited above, satisfying $\sigma(N) = 3N$, resp. $\sigma(N) = 5N$, is the starting value of an unbounded $\Psi_{k(N)}$ -sequence with period 1 and multiplier 2, resp. 4, where k(N) is the exponent of 2 in the canonical factorization of N. (There are 6 cases with $\sigma(N) = 3N$ and 66 cases with $\sigma(N) = 5N$.)

The two exceptional multiply perfect numbers mentioned above are

$$N = 2^{2}3^{2}5.7^{2}13.19$$
 and
 $N = 2^{7}3^{10}5.17.23.137.547.1093$.

Both satisfy $\sigma(N) = 4N$. Application of theorem 7.1 to these numbers yields

<u>COROLLARY 7.2</u> For all positive integers $m,n \ge 2$ the Ψ_2 -sequence with leader $2^m 3^2 5.7^n 13.19$ is unbounded with semi-period 1 and multiplier 3.

COROLLARY 7.3 The Ψ_{10} -sequence with leader $2^7 3^{10} 5.17.23.137.547.1093$ is unbounded with semi-period 1 and multiplier 3.

A computer search for Ψ_k -sequences, described in the cases 1 - 4 above, was undertaken. Let $Q = \{q_1, q_2, \dots, q_s\}$ (s > 0) be a set of different prime numbers, let $m_0 > 1$ be some integer such that $(m_0, q_1 \dots q_s) = 1$, and let $c = (q_1 \dots q_s)^k$. The sequence m_0, m_1, \dots is defined as follows:

$$\begin{array}{l} \underset{i=0,1,2,\ldots}{\overset{m_{i+1}}{}} \text{ is obtained from the number} \\ \Psi_{k}(cm_{i}) - cm_{i} = \Psi_{k}(c)\Psi_{k}(m_{i}) - cm_{i} \\ \text{by dropping all prime factors} \\ q_{1}, q_{2}, \ldots, q_{s} \text{ from it,} \\ \text{so that } (m_{i+1}, q_{1} \ldots q_{s}) = 1. \end{array}$$

If this sequence is periodic, i.e., if there are indices i_1,i_2 with 0 \leq i_1 \leq i_2 so that

$$m_{i_2} = m_{i_1}$$

then from the definition of $\boldsymbol{\Psi}_k$ it follows that the $\boldsymbol{\Psi}_k\text{-sequence}$ of

$$q_1^{e_1} q_2^{e_2} \cdots q_s^{e_s} m_{i_1} = n_0$$

contains a term

provided that the exponents ${\rm e}_1,\ldots,{\rm e}_{\rm S}$ are chosen sufficiently large. In this way, we arrive at precisely one of the four cases discussed above, according as

 $e_{j}^{i} \ge e_{j}$ for j=1,2,...,s with strict inequality for at least one j (case 1), $e_{j}^{i} \le e_{j}$ for j=1,2,...,s with strict inequality for at least one j (case 2), $e_{j}^{i} = e_{j}$ for j=1,2,...,s (case 3), or $\exists j_{1}, j_{2} \in \{1, 2, ..., s\}$ with $e_{j}^{i} \le e_{j}$ and $e_{j}^{i} \ge e_{j}$ (case 4).

For k=1,2,3 and for the sets Q = {2},{3},{5},{2,3},{2,5},{3,5} and {2,3,5} we have computed the sequences m_0, m_1, \dots for all $m_0 \le 1000$, until we found a term m_{i_0} with

(i) $m_{i_0} = m_j$ for some $j < i_0$, or (ii) $m_{i_0} = 1$, or (iii) m_{i_0} has a prime factor > 10⁸, or two prime factors > 10⁴.

After finding a periodic sequence, the corresponding Ψ_k -sequence was computed. In table 7.3 we have listed all special Ψ_k -sequences found in this way. The sequences belonging to case 3 (Ψ_k -cycles) are listed in chapter 8, table 8.3, where general f-cycles are treated.

EXAMPLE $k = 2, Q = \{2\},\$

The corresponding Ψ_2 -sequence with leader $2^{e_m}_0$ (e ≥ 2) is

 $\begin{array}{rcl} n_{0} &=& 2^{e_{3}2_{7}} &, \\ n_{1} &=& 2^{e_{7}}.17 &, \\ n_{2} &=& 2^{e_{7}}.19 &, \\ n_{3} &=& 2^{e_{3}}.7^{2} &, \\ n_{4} &=& 2^{e+2_{3}2_{7}} &=& 2^{2}n_{0} &. \end{array}$

It is clear that we can choose e = 2 and e = 3, so that we have found two unbounded Ψ_2 -sequences, both with semi-period ℓ = 4 and multiplier a = 4. The general terms are

$$n_{4j} = 2^{e+2j} 3^{27}$$

$$n_{4j+1} = 2^{e+2j} 7.17$$

$$n_{4j+2} = 2^{e+2j} 7.19$$

$$n_{4j+3} = 2^{e+2j} 3.7^{2}$$

(j=0,1,...; e=2 or e=3)

These sequences are listed in table 7.3 as follows:

terms	characteristics
$2^{m}3^{2}7$ $2^{m}7.17$	$m \ge 2$
2 ^m 7.19	case 1
2 ^m 3 • 7 ²	l = 4 $a = 4$
$2^{m+2}3^{2}7$	

In the first column, the terms of the periodic part are given, together with the first term of the next period, so that the behaviour of the sequence is completely determined.

Some characteristics of the sequence are given in the next column, namely

- the admitted values of the parameter(s),
- whether the sequence is (monotonically) increasing or decreasing,
- the case to which the sequence belongs,
- the semi-period L,
- the multiplier a.

TABLE 7,3

Special aliquot Ψ_k -sequences (k=1,2,3) belonging to the cases 1, 2 and 4

characteristics	terms	characteristics
$m \ge 8$ mon. decr. case 2 1 = 8 a = 5(6) m,n \ge 1, i \ge 3 mon. incr. case 1 1 = 8 a = 5(2)	3 (m) 5 (n) 7 $3 (m) 5 (n-1) 29$ $3 (m) 5 (n-1) 19$ $3 (m) 5 (n-1) 13$ $3 (m) 5 (n-2) 47$ $3 (m) 5 (n-3) 149$ $3 (m) 5 (n-3) 7.13$ $3 (m+2) 5 (n-4) 7 (2)$ $3 (m+2) 5 (n-5) 7.29$ $3 (m+2) 5 (n-6) 19.29$ $3 (m+2) 5 (n-6) 19.29$ $3 (m+2) 5 (n-6) 13.19$ $3 (m+2) 5 (n-6) 67$ $3 (m+3) 5 (n-6) 67$ $3 (m+3) 5 (n-5) 7$ $2 (m) 3 (n) 5.7.47$	<pre>m ≥ 1, n ≥ 8 mon. decr. case 4 l = 15 </pre>
<pre>m ≥ 9 mon. decr. case 2 l = 10 a = 5(8)</pre>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m,n = 1 mon. incr. case 1 l = 19 a = 3(3)
	characteristics $m \ge 8$ mon. decr. case 2 1 = 8 a = 5(6) m,n \ge 1, i \ge 3 mon. incr. case 1 1 = 8 a = 5(2) mon. decr. case 2 1 = 10 a = 5(8)	characteristicsterms $m \ge 8$ mon. decr. case 2 $3(m) 5(n) 7$ $3(m) 5(n-1) 29$ $3(m) 5(n-1) 19$ $1 = 8$ $a = 5(6)$ $3(m) 5(n-1) 19$ $3(m) 5(n-2) 47$ $3(m) 5(n-3) 149$ $3(m) 5(n-3) 7.13$ $3(m+2) 5(n-4) 7(2)$ $3(m+2) 5(n-5) 7.29$ $3(m+2) 5(n-5) 7.29$ $3(m+2) 5(n-6) 19.29$ $3(m+2) 5(n-6) 19.29$ $3(m+3) 5(n-7) 11.19$ $a = 5(2)$ $m \ge 9$ mon. decr. case 2 $2(m) 3(n) 5.7.47$ $2(m) 3(n) 17.269$ $2(m) 3(n) 17.269$ $2(m) 3(n) 19.271$ $1 = 10$ $a = 5(8)$ $m \ge 9$ mon. decr. case 2 $2(m) 3(n) 19.271$ $1 = 10$ $a = 5(8)$ $m \ge 9$ mon. 111 10 $2(m) 3(n) 11.5212(m) 3(n) 137092(m) 3(n) 137112(m) 3(n+1) 7.1032(m) 3(n+1) 7.1032(m) 3(n+1) 7.1032(m) 3(n+1) 7.11.1272(m) 3(n+1) 7.11.1272(m) 3(n+1) 7.11.1272(m) 3(n+1) 7.11.1272(m) 3(n+2) 4933======22(m) 3(n+3) 5.7.47$

TABLE 7.3 (continued)

k = 2

Table 1.1			
terms	characteristics	terms	characteristics
2(m)3(n)5.7(i)13.19	m,n,i ≥ 2 mon_incr	5(m)103 5(m-2)11 59	$m \ge 7$
2(m)3(n+1)5.7(i)13.19	mon. incr. case 1 l = 1 a = 3	5 (m-3) 23.53 5 (m-5) 89.109	case 2 1 = 4 a = 5(3)
2 (m) 3 (n) 11.13 2 (m) 3 (n-1) 5.13 (2)	$m \ge 2, n \ge 3$ mon. incr.	5 (m-3) 103 3 (m) 5.7 3 (m-1) 103	$m \ge 6$
2 (m-1) 3 (n+2) 11.13	1 = 2	3(m-3)5(2)17	case 2
2 (m) 3 (2) 7 2 (m) 7.17 2 (m) 7.19 2 (m) 3.7 (2)	$m \ge 2$ mon. incr. case 1 1 = 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 = 6 a = 3(3)
2(m+2)3(2)7	u 2(2)	2(m)5.89 2(m+2)5(3)	$m \ge 2$
2 (m) 3 (n) 7 (2) 43 2 (m+1) 3 (n-1) 7.907 2 (m+1) 3 (n-3) 5.7.3089 2 (m+1) 3 (n-1) 5.7 (2) 11 (2)	$m \ge 2, n \ge 5$ mon. incr. case 1 1 = 4	2 (m+2) 5 (3) 2 (m) 3 (2) 5 .13 2 (m+1) 3 .13 .17 2 (m+1) 3 .367 2 (m+1) 5 (2) 59	case 1 1 = 6 a = 2(3)
2(m)3(n+3)7(2)43	a = 3(3)	2(m+3)5.89	
3 (m) 13.743 3 (m-1) 11.13.113 3 (m) 5.13.59 3 (m) 5.13.53 3 (m) 13.239 3 (m-1) 13 (2) 31	$m \ge 3$ mon. decr. case 2 1 = 6 a = 3(2)	3 (m) 7.101 3 (m-1) 5.283 3 (m-2) 43.73 3 (m-4) 7.2011 3 (m-6) 5.11.19.79 3 (m-6) 5.41.409 3 (m-6) 5.11.29.41	$m \ge 10$ mon. decr. case 2 1 = 10 a = 3(3)
3(m-2)13.743		3(m-6)5.19.691 3(m-7)5311051	
3 (m) 13.2459 3 (m-1) 13.11.373 3 (m-2) 13.5.11.157 3 (m-2) 13 (2) 17.41 3 (m-2) 13.6311 3 (m-3) 13.17.619 3 (m-2) 13.43.53 3 (m-2) 13 (2) 109	<pre>m ≥ 5 mon. decr. case 2 l = 8 a = 3(3)</pre>	3(m-8) 386549 ====================================	
3(m-3)13.2459			

	TABLE	7.3	(concluded)
--	-------	-----	-------------

k == 7

characteristics	terms	characteristics
<pre>m ≥ 3 mon. incr. case 1 l = 1 a = 2</pre>	2 (m) 3.7 2 (m) 3.13 2 (m+1) 3.11 2 (m+1) 3.19 2 (m+1) 3.31	<pre>m ≥ 4 mon. incr. case 1 l = 13 a = 2(10)</pre>
<pre>m ≥ 7 mon. incr. case 1 1 = 3 a = 2(2) m ≥ 3 mon. incr. case 1 1 = 3 a = 2(2)</pre>	2 (m+1) 3.7(2) 2 (m) 3.11.17 2 (m) 3.353 2 (m+2) 3.7.19 2 (m+2) 3(2) 89 2 (m) 3(2) 619 2 (m-1) 3.6361 2 (m+2) 3.1193 ===================================	
charact.	terms	terms
<pre>m ≥ 22 decreasing (not monotonic.) case 2 l = 96 a = 2(8) 2.43 2.17 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.</pre>	$\begin{array}{c} 2 (m-19) 7 (2) 11.\\ 2 (m-19) 23.53.9\\ 2 (m-19) 13.281.\\ 2 (m-18) 13 (2) 29\\ 2 (m-11) 13.59.6\\ 2 (m-11) 548591\\ 2 (m-11) 548591\\ 2 (m-11) 480019\\ 2 (m-12) 11.7636\\ 2 (m-12) 79.1111\\ 2 (m-12) 379.208\\ 2 (m-12) 67.97.1\\ 2 (m-12) 654067\\ 2 (m-12) 654067\\ 2 (m-13) 1144621\\ 2 (m-15) 43.151.\\ 2 (m-15) 43.151.\\ 2 (m-16) 439.149\\ 2 (m-16) 439.149\\ 2 (m-16) 97.4952\\ 2 (m-16) 97.4952\\ 2 (m-17) 7.47(2)\\ 2 (m-17) 7.47(2)\\ 2 (m-17) 7.47(2)\\ 2 (m-17) 7.47(2)\\ 2 (m-14) 7.11259\\ 2 (m-14) 7.43237\\ 2 (m-14) 943303\\ 2 (m-10) 79.653\\ 2 (m-10) 193.241\\ 2 (m-11) 70.1051\\ \end{array}$	$\begin{array}{c} 159311 & 2 (m-12) & 79.1693 \\ 97169 & 2 (m-12) & 61.1973 \\ 32213 & 2 (m-13) & 218249 \\ 9.12323 & 2 (m-15) & 763879 \\ 577 & 2 (m-13) & 167099 \\ & 2 (m-14) & 292427 \\ & & 2 (m-15) & 17. & 30103 \\ 57 & 2 (m-15) & 7(2) & 41.251 \\ 7 & 2 (m-14) & 7(2) & 6397 \\ 33 & 2 (m-16) & 7.211619 \\ 0.7 & 2 (m-16) & 1692967 \\ & & 2 (m-14) & 11. & 35.993 \\ 617 & 2 (m-14) & 11. & 35.993 \\ 617 & 2 (m-13) & 139.1 & 489 \\ 9 & 2 (m-12) & 92077 \\ 923 & 2 (m-14) & 29.11113 \\ 53 & 2 (m-15) & 31. & 19541 \\ 303 & 2 (m-15) & 31. & 19541 \\ 303 & 2 (m-15) & 439.1 & 291 \\ 99 & 2 (m-15) & 439.1 & 291 \\ 99 & 2 (m-15) & 439.1 & 291 \\ 99 & 2 (m-15) & 424601 \\ 577 & 2 (m-17) & 11. & 135101 \\ 973 & 2 (m-15) & 11. & 35311 \\ 231 & 2 (m-15) & 73.5563 \\ 09 & 2 (m-16) & 17.61.701 \\ & 2 (m-15) & 37.(2) & 271 \\ & 2 (m-15) & 113. & 3067 \\ & (m-14) & 349.443 \\ \hline \end{array}$
	characteristics $m \ge 3$ mon. incr. case 1 l = 1 a = 2 $m \ge 7$ mon. incr. case 1 l = 3 a = 2(2) $m \ge 3$ mon. incr. case 1 l = 3 a = 2(2) charact. $m \ge 22$ decreasing (not monotonic.) case 2 l = 96 a = 2(8) 4.43 217 3.301 2277 3. 301 2277	characteristicsterms $m \ge 3$ mon. incr. $2 (m) 3.7$ $2 (m) 3.13$ $2 (m+1) 3.11$ $1 = 1$ $2 (m+1) 3.11$ $2 (m+1) 3.11$ $1 = 1$ $2 (m+1) 3.11$ $2 (m+1) 3.7(2)$ $m \ge 7$ $2 (m) 3.11.17$ mon. incr. $2 (m) 3.353$ $case 1$ $2 (m+2) 3.7.19$ $1 = 3$ $a = 2(2)$ $2 (m) 3(2) 619$ $2 (m-1) 3.6361$ $m \ge 3$ $mon. incr.case 12 (m+2) 3.1193mon. incr.case 12 (m+2) 3.1193mon. incr.case 12 (m+2) 3.1193mon. incr.case 12 (m+10) 3.71 = 3a = 2(2)charact.termsm \ge 22charact.2 (m-19) 7(2) 11decreasing 2 (m-19) 7(2) 11.decreasing 2 (m-19) 7(2) 11.decreasing 2 (m-19) 7(2) 11.decreasing 2 (m-19) 13.281.monotonic.)2 (m-11) 13.592.1 = 96a = 2(8)m \ge 22(m-12) 11.76362 (m-11) 48591a = 2(8)2 (m-12) 11.76362 (m-12) 79.11112 (m-12) 79.2082 (m-12) 65406771.432 (m-13) 1446212 (m-15) 37435322 (m-16) 439.1492 (m-16) 151.3812 (m-17) 2683.322 (m-17) 2683.322 (m-17) 2683.322 (m-17) 2683.322 (m-17) 2693.3133 (m-14) 7(3) 2523 (m-17) 7.47(2)2 (m-17) 7.47(2)2 (m-17) 7.4771$

CHAPTER 8

ALIQUOT f-CYCLES

The subject of this chapter is the study of (aliquot) f-cycles, for special choices of f. This chapter is divided into three sections: section 8.1 deals with f-cycles of length 1 (also called f-*perfects*), in section 8.2 we treat f-cycles of length 2 (also called f-*amicable pairs*) and in section 8.3 we study f-cycles of length $\ell > 2$. We notice that it follows from the definitions in chapter 3 that any (2k+2)-free σ -cycle is an M_k -cycle (k=0,1,2,...), that any (k+1)-free σ -cycle is an L_k -cycle (k=0,1,2,...) and that any (k+2)-free σ -cycle is an L_k -cycle (k=0,1,2,...)

8.1 f-PERFECTS

```
8.1.1 f = \sigma
```

24 even σ -perfects are known, the smallest being N = 6 and the largest being N = $2^{p-1}(2^p-1)$ with p = 19937 [38]. Whether there exists any odd perfect number is not known at present. If one exists, it must exceed 10^{50} [19] ^{*}) and contain at least eight different prime factors [20].

8.1.2 f = σ^*

5 even σ^* -perfects are known, the smallest being N = 6 and the largest being N = $2^{18}3.5^47.11.13.19.37.79.109.157.313$ [36], [39]. It is easy to prove that odd σ^* -perfects do no exist.

8.1.3 f = Ψ_1 There are infinitely many Ψ_1 -perfects, namely N = $2^m 3^n$ (m,n=1,2,...), and there are no other ones [41].

^{*)} Recently, this bound has been replaced by 10¹⁰⁰. See M. BUXTON & B. STUFFLEFIELD, On odd perfect numbers, Notices Amer.Math.Soc., 22 (1975) A-543.

8.1.4 f = Ψ_2

THEOREM 8.1 The only Ψ_2 -perfects are 6 and 2^m7 (m=2,3,...).

<u>**PROOF**</u>. From the definition of Ψ_2 it follows that

$$N = p_1 p_2 \dots p_r q_1^{\alpha_1} q_2^{\alpha_2} \dots q_s^{\alpha_s}$$

 $(p_1,\ldots,p_r,q_1,\ldots,q_s$ are different primes, all $\alpha_i\geq 2)$ is a Ψ_2 -perfect, if and only if

(8.1) $\overline{N} := p_1 p_2 \dots p_r q_1^2 q_2^2 \dots q_s^2$

is Ψ_2 -perfect. But \overline{N} is 3-free, so that $\Psi_2(\overline{N}) = \sigma(\overline{N})$. Therefore, we look for numbers \overline{N} of the form (8.1) which satisfy $\sigma(\overline{N}) = 2\overline{N}$. The only even numbers with this property are 6 and 28. If \overline{N} is odd, then it is well-known that r = 1 and $p_1 \equiv 1 \pmod{4}$. Since STEUERWALD [35] proved that these numbers $\overline{N} = p_1 q_1^2 \dots q_s^2$ cannot be σ -perfect, our proof is complete.

8.1.5 f = Ψ_3

THEOREM 8.2 The only Ψ_3 -perfects are 6 and 28.

<u>PROOF.</u> By the same argument as in the proof of theorem 8.1 we look for the 4-free σ -perfects. It is easy to see that there are only two numbers of this kind, namely 6 and 28.

8.1.6 f = Ψ_{k}

By the same argument as in the case f = Ψ_2 we can prove the general

THEOREM 8.3 The even Ψ_k -perfects (k \geq 1) are

- (i) the even (k+1)-free o-perfects, and
- (ii) the numbers $2^{k+i}(2^{k+1}-1)$, for i=1,2,..., provided that $2^k(2^{k+1}-1)$ is σ -perfect.

We cannot answer the question whether there exist any odd $\Psi_k^{}\text{-}\text{perfects}$ for $k\,\geq\,4_*$

 $8.1.7 f = M_{k}$

We present a general theorem about even M_k -perfects, but we first prove

LEMMA 8.1 If $m \mid n$ (1 < $m \leq n$), then

$$\frac{M_{k}(n)}{n} \ge 1 + \frac{1}{m}$$
 (k=1,2,...).

<u>PROOF</u>. Suppose the canonical prime factorization of n is given by $n = p_1^{e_1} \dots p_s^{e_s}$ (e_i > 0, i=1,2,...,s). Then the divisor m of n must be of the form m = $p_1^{\alpha_1} \dots p_s^{\alpha_s}$ (0 ≤ α_i ≤ e_i, i=1,2,...,s, where at least one α_i is positive). Hence

$$\frac{M_{k}(n)}{n} = \frac{M_{k}(p_{1}^{e_{1}})}{p_{1}} \cdots \frac{M_{k}(p^{e_{s}})}{p_{s}} =$$

$$\geq (1 + \frac{1}{p_{1}}) \cdots (1 + \frac{1}{p_{s}}) >$$

$$\geq 1 + \frac{1}{p_{1}^{\alpha_{1}\alpha_{2}} \cdots p_{s}^{\alpha_{s}}} = 1 + \frac{1}{m} .$$

<u>THEOREM 8.4</u> There are no even M_k -perfects N such that the exponent of 2 in the canonical factorization of N is $\ge 2k + 1$.

<u>PROOF</u>. Suppose contrariwise that N = $2^{a}N_{1}$ (N odd and a $\geq 2k+1$) is M_k-perfect. Then we have

$$(8.2a) \qquad (2^{k+1} - 1)(2^{a-k} + 1) M_k(N_1) = 2^{a+1} N_1 , \qquad \text{so that}$$
$$M_k(N_1) \qquad 2^{a+1}$$

(8.2b)
$$\frac{{}^{M_{k}(N_{1})}}{{}^{N_{1}}} = \frac{2^{a+1}}{(2^{k+1} - 1)(2^{a-k} + 1)}$$

From (8.2a) it follows that $2^{k+1}-1 \mid N_1$ and from lemma 8.1 we infer that

$$\frac{M_{k}(N_{1})}{N_{1}} \ge 1 + \frac{1}{2^{k+1} - 1} >$$

$$> \frac{2^{k+1}}{2^{k+1} - 1} \frac{2^{a-k}}{2^{a-k} + 1} = \frac{2^{a+1}}{(2^{k+1} - 1)(2^{a-k} + 1)}$$

which contradicts (8.2b).

THEOREM 8.5 There are no odd M1-perfects.

<u>PROOF.</u> Suppose $N = p_1^{e_1} \dots p_s^{e_s}$ is an odd M_1 -perfect, so that

(8.3)
$$M_1(p_1^{e_1}) \dots M_1(p_s^{e_s}) = 2p_1^{e_1} \dots p_s^{e_s}$$
.

None of the exponents e_i can be greater than 2 because, if so, then $M_1(p_i^{e_i}) = (p_i+1)(p_i^{e_i-1}+1)$ would have at least two prime factors 2, whereas the right hand side of (8.3) contains exactly one prime 2. Hence, N is 3free, which implies that $M_1(N) = \sigma(N)$. But in the proof of theorem 8.1 we showed that there are no 3-free odd σ -perfects.

We do not know whether there is an odd M_k -perfect for $k \ge 2$.

8.1.8
$$f = L_1$$
 and $f = R_1$

We have not found general theorems for $f = L_k$ and $f = R_k^*$) as we did for $f = \Psi_k$ and $f = M_k$. Table 8.1 gives a list of L_k -perfects for k=1,2,3,4 and table 8.2 gives a list of R_k -perfects for k=1,2,3,4. These perfects were computed by trial and error.

TABLE 8.1 Some $L_{i_{r}}$ -perfects for k=1,2,3,4, found by trial and error

 k	L _k -perfects
1	2.3, 2 ² 7, 2 ³ 7.13, 2 ⁴ 5 ² 31, 2 ⁴ 5 ³ 19.31.151
2	2.3, $2^{2}7$.
3	2.3, 2 ² 7, 2 ⁴ 31, 2 ⁵ 31.61
4	2.3, 2 ² 7, 2 ⁴ 31

^{*)} with the following exception: if $p = 3.2^{k+1}-1$ (keN₀) is a prime, then $2^{k+2}3.p$ is an R_k -perfect. A table of all k's ≤ 1000 for which p is prime may be found in [34].

k	R _k -perfects	k	R _k -perfects
1	2.3 $2^{2}7$ $2^{3}3.11$ $2^{4}3.5.19$ $2^{5}3.5.7$ $2^{6}3^{2}7.13.17.67$ $2^{7}3^{2}7.11.13.131$ $2^{8}3.5.7.19.37$ $2^{9}3.5.7.13.103$ $2^{10}3.5.7.13.79$ $2^{12}3.5^{2}7.31.41.4099$ $2^{13}3^{2}5^{4}7.11.13.79.149.631$ $2^{16}3^{2}5^{4}7.13.19.29.79.113.631.65539$	2	2.3 $2^{2}7$ $2^{4}3.23$ $2^{5}3.7.13$ $2^{6}3^{2}7.13.71$ $2^{7}3^{3}5^{2}31$ $2^{8}3^{2}7.11.13.263$ $2^{9}3^{3}5^{2}29.31.173$ $2^{10}3^{2}7.11.13.43.1031$ $2^{11}3^{3}5^{2}23.31.137$ $2^{12}3^{4}5.7.11^{2}17.19.47.373$ $2^{13}3^{3}5^{2}19.31.911$ $2^{15}3^{4}5^{3}7.13.19.23.47$ $2^{16}3^{3}5^{2}19.31.683.2731.65543$
3	2.3 $2^{2}7$ $2^{4}31$ $2^{5}3.47$ $2^{6}3.5.79$ $2^{7}3.7.11.13$ $2^{8}3^{2}7.13.17.271$ $2^{9}3^{2}7.11.13.527$ $2^{10}3.5.7.13.1039$ $2^{11}3^{2}7.11.13.43.2063$ $2^{12}3^{2}7.11.13.43.257.4111$ $2^{13}3^{3}5^{2}29.31.71.283$ $2^{14}3.5.7.23^{2}31.79$ $2^{15}3^{3}5^{2}19.31.683.32783$ $2^{16}3.5.7.11^{3}17^{2}79.241.307.65551$	4	2.3 2 ² 7 2 ⁴ 31 2 ⁶ 5 ² 19.31 2 ⁷ 3 ⁶ 5 ² 17.31.53 2 ¹⁰ 3 ³ 5 ² 31.53.211 2 ¹¹ 3 ⁶ 5 ⁷ 7.11.17.31 2 ¹² 3 ² 7.11.13.43.4127 2 ¹³ 3 ³ 5 ² 23.31.229.457.2741

TABLE 8.2 Some $\mathbf{R}_k\text{-perfects}$ for k=1,2,3,4, found by trial and error

8.2 f-AMICABLE PAIRS

8.2.1 f = σ .

More than 1100 σ -amicable pairs are known [26], the smallest pair being {220,284}. The four largest known pairs (with 32-, 40-, 81- and 152-digit numbers) were recently computed by TE RIELE [31]. In the lists of f-amicable pairs (for f $\neq \sigma$) given in the sequel, those f-amicable pairs, that are also σ -amicable pairs, are omitted.

8.2.2 f = σ^* (= M₀ = L₀ = R₀).

In 1970, WALL [41] found more than 600 σ^* -amicable pairs. HAGIS in 1971 and TE RIELE in 1973 also investigated σ^* -amicable pairs, both unaware of WALL's thesis. HAGIS [21] computed all σ^* -amicable pairs {m,n} with m < n and m $\leq 10^6$ [21]. TE RIELE [32] published a list of more than 1100 σ^* -amicable pairs, including nearly all those pairs published by Wall. For some other new σ^* -amicable pairs, see [24].

8.2.3 f = Ψ_k (k=1,2,...).

Many Ψ_k -amicable pairs may be constructed from the known σ -amicable pairs [26] as follows. Suppose the pair $\{m,n\}$ is σ -amicable and $m = p^k m_1$ and $n = p^k n_1$ where k > 0, $(p,m_1) = 1$, $(p,n_1) = 1$, and m_1 and n_1 are (k+1)-free. Then it follows from the definition of Ψ_k that the pairs $\{p^am, p^an\}$, $(a=0,1,2,\ldots)$ are Ψ_k -amicable. In our list of Ψ_k -amicable pairs (table 8.3, pp. 56-58) we have not included these pairs, in order to save space. The pairs given in table 8.3 were found partly by the method described in chapter 7, partly by a systematic computer search for all pairs, the smallest element of which does not exceed 10⁴, partly by use of one of the three following lemma's and partly by trial and error.

LEMMA 8.2 If the two positive integers $p = 2^{k+1}+2^k-1$ and $q = 2^{k-1}+2^k-1$ are primes, then the pairs

 $\{2^{a}p, 2^{a+i}q\}$ (a=k,k+1,...)

are Ψ_{k} -amicable (k=2,3,...; i=1,2,...,k-1).

LEMMA 8.3 Suppose

$$AB = 2^{k}(2^{k}-1) + 2^{k-1}$$
, $A \neq B$,

is a factorization of the positive integer $2^{k}(2^{k}-1)+2^{k-1}$. If the three positive integers $p = 2^{k}-1+A$, $q = 2^{k}-1+B$ and $r = 2^{i}(p+1)(q+1)-1$ are primes, then the pairs

$$\{2^{a+i}pq, 2^{a}r\}$$
 where $a=k, k+1, ..., k$

are Ψ_{k} -amicable (k=2,3,...; i=1,2,...,k-1).

LEMMA 8.4 Suppose

$$AB = 2^{k}(2^{k}-1) + 2^{k+1}, \qquad A \neq B,$$

is a factorization of the positive integer $2^{k}(2^{k}-1)+2^{k+1}$. If the three positive integers $p = 2^{k}-1+A$, $q = 2^{k}-1+B$ and $r = \frac{(p+1)(q+1)}{2^{i}} - 1$ are primes, then the pairs

$$\{2^{a}pq, 2^{a+i}r\}$$
 where $a=k, k+1, ..., k+1$

are Ψ_{k} -anicable (k=2,3,...; i=1,2,...,k-1).

The proof of these lemma's follows easily by solving the equations

$$\begin{cases} \Psi_{k}(m) = \Psi_{k}(n) \\ \Psi_{k}(m) = m + n \end{cases}$$

for the pairs $\{m,n\}$ given in the lemma's.

8.2.4 f = M_k , f = L_k and f = R_k . Table 8.4 gives M_k^- (k=1,2), L_k^- (k=1,2,3,4) and R_k^- (k=1,2,3,4) amicable pairs, which are not at the same time σ -amicable pairs. They were found partly by a computer search for all pairs {m,n} with m < n and m $\leq 10^4$, and partly by trial and error.

k	$\frac{\Psi}{k}$ -amicable pairs	
1	$\begin{cases} 2^{m} 5^{n} 7.19 = (2^{m-1} 5^{n-1}) 1330 \\ 2^{m} 5^{n+1} 31 = (2^{m-1} 5^{n-1}) 1550 \end{cases}$	(m,n≥1)
	$\begin{cases} 2^{m} 5^{n} 7.11 &= (2^{m-1} 5^{n-2}) 3850 \\ 2^{m} 5^{n-1} 479 &= (2^{m-1} 5^{n-2}) 4790 \end{cases}$	(m≥1, n≥2)
	$\begin{cases} 2^{m}7^{n}5.23 = (2^{m-1}7^{n-2})11270\\ 2^{m}7^{n-1}13.71 = (2^{m-1}7^{n-2})12922 \end{cases}$	(m≥1, n≥2)
	$ \begin{cases} 2^{m}5^{n}13.23 = (2^{m-1}5^{n-2})14950 \\ 2^{m}5^{n-1}11.139 = (2^{m-1}5^{n-2})15290 \end{cases} $	(m≥1, n≥2)
	$\begin{cases} 2^{m}5^{n}7.53 = (2^{m-1}5^{n-2})18550 \\ 2^{m}5^{n-1}19.107 = (2^{m-1}5^{n-2})20330 \end{cases}$	(m≥1, n≥2)
	$\begin{cases} 2^{m} 5^{n} 11.23.29 = (2^{m-1} 5^{n-1})73370 \\ 2^{m} 5^{n+1} 31.53 = (2^{m-1} 5^{n-1})82150 \end{cases}$	(m,n≥1)
	$\begin{cases} 3^{m}5^{n}7^{i}13.23 = (3^{m-1}5^{n-2}7^{i-1})156975 \\ 3^{m}5^{n-1}7^{i}19.83 = (3^{m-1}5^{n-2}7^{i-1})165585 \end{cases}$	(m,i≥1, n≥2)
	$\begin{cases} 2^{m}7^{n}11^{i}13.109 = (2^{m-1}7^{n-1}11^{i-1})218218\\ 2^{m}7^{n+1}11^{i+1}19 = (2^{m-1}7^{n-1}11^{i-1})225302 \end{cases}$	(m,n,i≥1)
	$\begin{cases} 2^{m} 5^{n} 19^{i} 11.113 = (2^{m-1} 5^{n-1} 19^{i-1}) 236170\\ 2^{m} 5^{n} 19^{i+1} 71 = (2^{m-1} 5^{n-1} 19^{i-1}) 256310 \end{cases}$	(m,n,i≥1)
	$\begin{cases} 2^{m}5^{n}11^{i}43.89 = (2^{m-1}5^{n-1}11^{i-1})420970\\ 2^{m}5^{n}11^{i+1}359 = (2^{m-1}5^{n-1}11^{i-1})434390 \end{cases}$	(m,n,i≥1)
	$\begin{cases} 3^{m}5^{n}7^{i}11.17 &= (3^{m-1}5^{n-2}7^{i-2})687225 \\ 3^{m}5^{n-1}7^{i-1}29.251 &= (3^{m-1}5^{n-2}7^{i-2})764295 \end{cases}$	(m≥1, n,i≥2)
	$\begin{cases} 2^{m}5^{n}31^{i}13.29 = (2^{m-1}5^{n-1}31^{i-2})3622970 \\ 2^{m}5^{n+1}31^{i-1}41.61 = (2^{m-1}5^{n-1}31^{i-2})3876550 \end{cases}$	(m,n≥1, i≥2)
	$\begin{cases} 2^{m}3 = (2^{m-2})12\\ 2^{m+2} = (2^{m-2})16 \end{cases}$	(m≥2)
	$\begin{cases} 2^{m}5 = (2^{m-3})40\\ 2^{m-1}11 = (2^{m-3})44 \end{cases}$	(m≥3)

TABLE 8.3 Some Ψ_k -amicables for k=1,2,3,4, found by various methods (see text)

k	$\frac{\Psi}{k}$ -amicable pairs	
2 (cont.)	$\begin{cases} 2^{m} 5 \cdot 13 = (2^{m-2}) 260 \\ 2^{m+1} 41 = (2^{m-2}) 328 \end{cases}$	(m≥2)
	$\begin{cases} 3^{m}5.7.13 = (3^{m-3})12285 \\ 3^{m-1}7.13.17 = (3^{m-3})13923 \end{cases}$	(m≥3)
	$\begin{cases} 3^{m} 5.7.13.23 = 3^{m-2} (94185) \\ 3^{m+1} 7.13.47 = 3^{m-2} (115479) \end{cases}$	(m≥2)
	$\begin{cases} 2.5^{m}7.59 = 5^{m-3} (103250) \\ 2.5^{m-1}2399 = 5^{m-3} (119950) \end{cases}$	(m≥3)
3	$\begin{cases} 2^{m}7 = (2^{m-3}) 56\\ 2^{m+3} = (2^{m-3}) 64 \end{cases}$	(m≥3)
	$\begin{cases} 2^{m}11 &= (2^{m-4})176\\ 2^{m-1}23 &= (2^{m-4})184 \end{cases}$	(m≥4)
	$\begin{cases} 2^{m}13.19 = (2^{m-3})1976\\ 2^{m+1}139 = (2^{m-3})2224 \end{cases}$	(m≥3)
	$\begin{cases} 2^{m}11.29 = (2^{m-3})2552\\ 2^{m+2}89 = (2^{m-3})2848 \end{cases}$	(m≥3)
	$\begin{cases} 2^{m}13.17 = (2^{m-4})3536\\ 2^{m-1}503 = (2^{m-4})4024 \end{cases}$	(m≥4)
	$\begin{cases} 3^{m} 5 \cdot 7 \cdot 19 &= (3^{m-5}) 161595 \\ 3^{m-2} 5 \cdot 29 \cdot 47 &= (3^{m-5}) 184005 \end{cases}$	(m≥5)
	$\begin{cases} 3^{m}5^{n}7.109 = (3^{m-5}5^{n-4})115880625 \\ 3^{m-2}5^{n-1}59.659 = (3^{m-5}5^{n-4})131223375 \end{cases}$	(m≥5, n≥4)
	$\begin{cases} 3^{m} 5^{n} 7.199.967 = (3^{m-5} 5^{n-3}) 40916066625 \\ 3^{m-2} 5^{n} 47.290399 = (3^{m-5} 5^{n-3}) 46064541375 \end{cases}$	(m≥5, n≥3)
4	$\begin{cases} 2^{m+1}23 = (2^{m-4})736\\ 2^{m}47 = (2^{m-4})752 \end{cases}$	(m≥4)
	$\begin{cases} 2^{m+2} 19 = (2^{m-4}) 1216\\ 2^{m} 79 = (2^{m-4}) 1264 \end{cases}$	(m≥4)

TABLE 8.3 (concluded)

k	Ψ_k -amicable pairs	
4 (cont.)	$\begin{cases} 2^{m}19.83 = (2^{m-4})25232\\ 2^{m+1}839 = (2^{m-4})26848 \end{cases}$	(m≥4)
	$\begin{cases} 2^{m}19.107 = (2^{m-4})32528\\ 2^{m+3}269 = (2^{m-4})34432 \end{cases}$	(m≥4)
	$\begin{cases} 2^{m}17.151 = (2^{m-4})41072\\ 2^{m+1}1367 = (2^{m-4})43744 \end{cases}$	(m≥4)
	$\begin{cases} 2^{m}17.199 = (2^{m-4})54128\\ 2^{m+3}449 = (2^{m-4})57472 \end{cases}$	(m≥4)
	$\begin{cases} 2^{m+1}17.139 = (2^{m-4})75616 \\ 2^{m}5039 = (2^{m-4})80624 \end{cases}$	(m≥4)

TABLE 8.4

The M_k^- , L_k^- and R_k^- amicable pairs $\{m,n\}$ such that m < n and $m \le 10^4$, and some pairs, found by trial and error

$f = M_k$		
k	f-amicable pairs	
1	$\begin{cases} 3608(2^{3}11.41) \\ 3952(2^{4}13.19) \end{cases}$	<pre>{ 9520(2⁴5.7.17) { 13808(2⁴863)</pre>
2	none with m \leq 10 ⁴	
$f = L_k$ k	f-amicable pairs	
1	$\begin{cases} 168 (2^{3}3.7) \\ 248 (2^{3}31) \\ 920 (2^{3}5.23) \\ 952 (2^{3}7.17) \end{cases}$	$\begin{cases} 1548(2^{2}3^{2}43) \\ 2456(2^{3}307) \\ \\ 5720(2^{3}5.11.13) \\ 7384(2^{3}13.71) \end{cases}$
	$\begin{cases} 1008 (2^4 3^2 7) \\ 1592 (2^3 199) \end{cases}$	$\begin{cases} 16268 (2^{2}7^{2}83) \\ 17248 (2^{5}7^{2}11) \end{cases}$
2	{8272(2 ⁴ 11.47) {8432(2 ⁴ 17.31)	
3, 4	none with m \leq 10 ⁴	
$f = R_k$ k	f-amicable pairs	
1	$\begin{cases} 366(2.3.61) \\ 378(2.3^{3}7) \\ \\ \end{cases} \\ \begin{cases} 3864(2^{3}3.7.23) \\ \\ 4584(2^{3}3.191) \end{cases}$	{16104(2 ³ 3.11.61) {16632(2 ³ 3 ³ 7.11)
2	{26448(2 ⁴ 3.19.29) {28752(2 ⁴ 3.599)	
3	none with m \leq 10 ⁴	
4	{10194(2.3.1699) {10206(2.3 ⁶ 7)	

8.3 f-cycles of length ℓ > 2

 $8.3.1 f = \sigma.$

Fourteen σ -cycles of length $\ell = 4$ and one each for $\ell = 5$ and $\ell = 28$ are known [18].

8.3.2 f = σ^* . One σ^* -cycle of length ℓ = 3, 8 for ℓ = 4, one each for ℓ = 25, ℓ = 39 and ℓ = 65 are known [24], [33].

8.3.3 f = Ψ_3 , f = L_3 , f = R_1 . Table 8.5 gives the only three f-cycles of length $\ell > 2$ (not at the same time being σ -cycles) which are known to us. They were found by trial and error.

TABLE 8.5

Three aliquot f-cycles of length ℓ > 2, that are not $\sigma\text{-cycles}$

f	l	aliquot f-cycle
Ψ3	4	$\begin{cases} 2^{m} 3917 \\ 2^{m-2} 11.29.43 \\ 2^{m-2} 11.1453 \\ 2^{m} 47.89 \end{cases} = 2^{m-5} \begin{cases} 125344 \\ 109736 \\ 127864 \\ 133856 \end{cases} $ (m ≥ 5)
L ₃	4	$ \begin{cases} 4040(2^{3}5.101) \\ 5140(2^{2}5.257) \\ 5696(2^{6}89) \\ 5194(2.7^{2}53) \end{cases} $
R ₁	3	$\begin{cases} 834 & (2.3.139) \\ 846 & (2.3^247) \\ 1026(2.3^319) \end{cases}$

CHAPTER 9

SOLVING THE EQUATION f(x)-x=m

In this chapter we investigate the equation

(9.1)
$$f(x) - x = m$$
,

for $f \in F$ and $m \in \mathbb{N}$. If (9.1) has no solution $x \in \mathbb{N}$ for some m, then m is called *f*-untouchable, otherwise, m is called *f*-touchable. In [14], ERDÖS proved that the lower density of the σ -untouchables is positive. ALANEN [1] found the 570 σ -untouchables \leq 5000.

THEOREM 9.1 Let $f \in F$. Suppose that f satisfies the additional condition

$$(9.2) \qquad \frac{f(d)}{d} \leq \frac{f(n)}{n},$$

for all divisors d of n. If M is even and f-abundant, and if M' is an even and f-abundant divisor of M, then the lower density of the f-untouchables m, satisfying $m \equiv M' \pmod{M}$, is $\geq \frac{1}{M}(1 - \frac{M'}{f(M') - M'}) > 0$.

Note that for M^{*} = M, this statement reduces to: if M is even and f-abundant, then the lower density of the f-untouchables m, satisfying m \equiv 0(mod M), is $\geq \frac{1}{M} - \frac{1}{f(M) - M}$.

Before proving this theorem, we give two lemma's.

LEMMA 9.1 The number of 2-full numbers $\leq x$ is $O(\sqrt{x})$, for $x \neq \infty$.

<u>PROOF.</u> Any 2-full number n can be uniquely represented in the form $n = a^2b^3$, where $a \in \mathbb{N}$ and b is squarefree. If T(x) is the number of 2-full numbers $\leq x$, then it follows that

61 .

$$T(x) \leq \sum_{\substack{b \\ b \leq x \\ b \text{ is squarefree}}} (x/b^3)^{1/2} < \sqrt{x} \sum_{\substack{b=1 \\ b=1}}^{\infty} \frac{1}{b^{3/2}} = \mathcal{O}(\sqrt{x}) , \quad \text{for } x \neq \infty. \square$$

The next lemma is a special case of a more general result of Scourfield $\overset{*}{})\,.$

LEMMA 9.2 If $f \in F$, then for any $d \in \mathbb{N}$ the number of positive integers $n \leq x$ such that $d \nmid f(n)$, is o(x) for $x \neq \infty$.

<u>PROOF OF THEOREM 9.1.</u> First notice that (9.2) implies that for any prime divisor p of n

(9.3) $f(n) - n \ge n/p$.

Let A(N) be the number of n $\in \mathbb{N}$ satisfying

(9.4) f(n) - n $\leq N$, and

 $(9.5) \qquad f(n) - n \equiv M^* \pmod{M} .$

This number is *finite* for any N \in N. Indeed, if n = p, then f(n)-n = 1 \neq M'(mod M). If n is not a prime, and if p₁ is the smallest prime divisor of n, then we have p₁ $\leq \sqrt{n}$, so that by (9.3) we have f(n)-n $\geq n/p_1 \geq \sqrt{n}$. From (9.4) it follows that n $\leq N^2$.

If $A_1(N)$ is the number of *odd* n, satisfying (9.4) and (9.5), if $A_2(N)$ is the number of *even* n, with $n \not\equiv -M' \pmod{M}$, satisfying (9.4) and (9.5) and if $A_3(N)$ is the number of *even* n, with $n \equiv M' \pmod{M}$, satisfying (9.4) and (9.5), then we obviously have

$$(9.6) A(N) = A_1(N) + A_2(N) + A_3(N) .$$

If n is *odd* then by (9.5), f(n) is also odd. Since, for odd p, f(p) = p+1 is even, n must be 2-full. Suppose $n = p^2$. Then by (9.3) $f(n) - n \ge p$, so that the

^{*)} E.J. SCOURFIELD, Non-divisibility of some multiplicative functions, Acta Arithmetica, 22(1973) 287-314.

number of odd n = p², satisfying (9.4) and (9.5), is $\leq \pi(N)$, which is o(N), for N $\rightarrow \infty$. If n \neq p², and if p₁ is the smallest prime divisor of n, then we have p₁ $\leq n^{1/3}$, so that, by (9.3), f(n)-n $\geq n/p_1 \geq n^{2/3}$. From (9.4) it follows that n $\leq N^{3/2}$, and by lemma 9.1, we conclude that the number of odd n $\neq p^2$, satisfying (9.4) and (9.5) is $O(N^{3/4})$, for N $\rightarrow \infty$. Hence

$$(9.7) \qquad A_1(N) = O(N) \qquad \qquad \text{for } N \to \infty.$$

If n is even, then (9.3) implies that f(n)-n \ge n/2, so that, by (9.4), n \le 2N.

If $n \not\equiv -M' \pmod{M}$, then by (9.5) we have $f(n) \not\equiv 0 \pmod{M}$. It follows from lemma 9.2 that the number of positive integers $n \leq 2N$ such that $f(n) \not\equiv 0 \pmod{M}$ is o(N), so that

$$(9.8) A2(N) = O(N) for N \to \infty.$$

If $n \equiv -M' \pmod{M}$, then, since $M' \mid M$, we have $M' \mid n$ and it follows from (9.2) that

$$\frac{f(M^*)}{M^*} \leq \frac{f(n)}{n} ,$$

so that

$$\frac{f(M^{\circ}) - M^{\circ}}{M^{\circ}} \leq \frac{f(n) - n}{n} \ .$$

By use of (9.4) we find that

$$n \leq N \ , \ \frac{M^{\, s}}{f\left(M^{\, s}\right) \, - \, M^{\, s}} \ . \label{eq:n_sigma_state}$$

Hence

$$\mathbb{A}_{3}(N) \leq \frac{N}{M} \cdot \frac{M^{*}}{f(M^{*}) - M^{*}} \cdot$$

Combining this with (9.8), (9.7) and (9.6), we conclude that the upper density of the numbers n satisfying (9.5) is at most M'/(M(f(M')-M')), so that the upper density of the f-touchables m, satisfying m \equiv M'(mod M), is also at most M'/(M(f(M')-M')). From this we finally conclude that the lower

density of the f-untouchables m, satisfying m \equiv M'(mod M), is at least $\frac{1}{M} = \frac{M'}{M(f(M')-M')} \; .$

Of the examples of f given in chapter 3, only the functions σ and Ψ_k (k=1,2,...) satisfy (9.2), so that theorem 9.1 applies to them.

Since M = 30 is squarefree, we have f(30) = 72 > 60, so that 30 is an f-abundant number for all f ϵ F. Therefore, we may apply theorem 9.1 with M = 30, and M' = M, yielding

COROLLARY 9.1 For all functions $f \in F$ which satisfy (9.2), the lower density of the f-untouchables m, which are $\equiv 0 \pmod{30}$, is $\geq \frac{1}{30}(1 - \frac{30}{42}) = \frac{1}{105}$.

It is not difficult to improve this lower bound when we consider special choices of f. As an example, we shall derive

COROLLARY 9.2 The lower density of the σ -untouchables is > .0324.

To prove this, we note that every even number belongs to *at most one* of the following congruence classes: $0 \pmod{24}$, $12 \pmod{24}$, $30 \pmod{60}$, $20 \pmod{60}$, $40 \pmod{120}$, $70 \pmod{420}$ and $350 \pmod{2100}$. Every class is of the form M'(mod M), where M'|M and both M' and M are even and σ -abundant. Hence theorem 9.1 applies to all these classes, so that the lower density of the even σ -untouchables is at least

$$\frac{1}{72} + \frac{1}{96} + \frac{1}{210} + \frac{1}{660} + \frac{1}{600} + \frac{1}{7770} + \frac{11}{206850} > .0324$$

Since for all f ϵ F we have

f(pq) - pq = p + q + 1,

for primes p and q (p \neq q), and since almost all even numbers can be written as the sum of two prime numbers (proved by VAN DER CORPUT [9], ESTERMANN [15] and TSCHUDAKOFF [37]), it follows that the density of the *odd* f-untouchables is zero, for all f \in F.

Corollary 9.1 implies that for all f ϵ F, satisfying (9.2), there are infinitely many f-untouchables. Although Ψ_1 belongs to this class
of functions, we shall prove now, in a more constructive way, that there are infinitely many Ψ_1 -untouchables. Unfortunately, this proof does not seem to be applicable to other functions $f \in F$.

<u>THEOREM 9.2</u> The numbers $2^n 3.R$ (n=1,2,...), where R is fixed and (6,R) = 1, are either all Ψ_1 -touchable or else are all Ψ_1 -untouchable.

Before proving this theorem, we derive

LEMMA 9.3 Any solution $x = x_0$ of the equation

(9.9)
$$\Psi_1(x) - x = 2^n 3.R$$
, $(n \in \mathbb{N} \text{ and } (6,R)=1)$

has the form $x_0 = 2^n 3.s$, where (6,s) = 1.

<u>PROOF.</u> Let x_0 be a solution of (9.9) with canonical factorization $x_0 = \prod_{i=1}^{S} p_i^{e_i}$. Then we have

$$\Psi_{1}(x_{0}) - x_{0} = \prod_{i=1}^{s} \begin{pmatrix} e_{i} & e_{i}^{-1} \\ p_{i} & p_{i}^{-1} \end{pmatrix} - \prod_{i=1}^{s} p_{i}^{-i} = 2^{n} 3_{*} R$$

Now x_0 must be even, since, if x_0 is odd, then $\Psi_1(x_0)-x_0$ is also odd. This gives, with $p_1 = 2$,

$$2^{e_1-1} 3 \prod_{i=2}^{s} {e_i + e_i^{-1} \choose p_i + p_i} - 2^{e_1} \prod_{i=2}^{s} {e_i \choose p_i} = 2^n 3.R.$$

Hence $p_2 = 3$ and $s \ge 2$, yielding

$$2^{e_{1}}3^{e_{2}}\left[2 \prod_{i=3}^{s} {e_{i} \choose p_{i}} + p_{i}^{e_{i}-1} - \prod_{i=3}^{s} e_{i} \\ + p_{i}^{e_{i}} - \prod_{i=3}^{s} p_{i}^{e_{i}} \right] = 2^{n_{3.R}},$$

so that $e_1 = n$ and $e_2 = 1$.

<u>PROOF OF THEOREM 9.2</u>. Let a $\in \mathbb{N}$ be fixed and let R $\in \mathbb{N}$ so that (R,6) = 1. Suppose 2^a3.R is Ψ_1 -touchable. According to lemma 9.3, any solution of the equation

$$\Psi_1(x) - x = 2^a 3.R$$

has the form $x_0 = 2^a 3.5$, for some S with (6,S) = 1. From the definition of Ψ_1 it follows that

$$\Psi_1(2^e x_0) - 2^e x_0 = 2^e \Psi_1(x_0) - 2^e x_0 = 2^{e+a} 3.R$$

for all integers e \geq -a+1. Hence all numbers $2^n 3.R$ (n=1,2,...) are Ψ_1^- touchable.

Now suppose $2^a 3.R$ is Ψ_1 -untouchable. Then all numbers $2^n 3.R$ (n=1,2,...) must be Ψ_1 -untouchable, since if any one of them is Ψ_1 -touchable, it follows from the first part of this proof that they are all Ψ_1 -touchable.

According to lemma 9.3, any solution $x = x_0$ of the equation $\Psi_1(x)-x = 6R$, (6,R) = 1, must have the form $x_0 = 6S$, (6,S) = 1. Now we have

$$\Psi_1(x_0) - x_0 = 12\Psi_1(S) - 6S = 6[2\Psi_1(S) - S] \ge 6S$$

with equality if and only if S = 1. Hence it follows immediately that 30 = 6.5 is Ψ_1 -untouchable, and that, since $42 = \Psi_1(30)-30$, the number 42 = 6.7 is Ψ_1 -touchable. Application of theorem 9.2 shows that the numbers $2^n 3.5$ (n=1,2,...) are all Ψ_1 -untouchable, whereas the numbers $2^n 3.7$ (n=1,2,...) are all Ψ_1 -touchable.

In [1] ALANEN has given an algorithm for the computation of every solution x of the equation

$$(9.10) \sigma(x) - x = n for all n \le N,$$

where N ϵ N is given (yielding all σ -untouchables \leq N). The largest value of N, to which ALANEN applied his algorithm is N = 5000. We have improved the algorithm, with respect to the required amount of memory, as follows. Let $\sigma(x)-x=:s(x)$. The situation occurs that the values of a, s(a), ap_i^e and $s(ap_i^e)$ are known (a, $e \in N$, p_i is the i-th prime and $(a, p_i) = 1$), whereas the value of $s(ap_i^{e+1})$ must be computed. In Alanen's procedure this is done by use of the relation

(9.11)
$$s(ap_i^{e+1}) = s(a)s(p_i^{e+2}) + as(p_i^{e+1})$$
.

The values of $s(p_i^{e+2})$ and $s(p_i^{e+1})$ are available in an array TABLE, where

TABLE[i,j] =
$$s(p_i^j) = p_i^{j-1} + p_i^{j-2} + \dots + p_i + 1$$
,

for i=1,2,..., $\pi(N)$ and j=2,3,..., $[\log_2 N]+1$. In our procedure, instead of (9.11), we use the relation

(9.12)
$$s(ap_{i}^{e+1}) = p_{i}s(ap_{i}^{e}) + s(a) + a$$
,

the validity of which may be easily verified. Now we only need to store the primes p_i , for i=1,2,..., $\pi(N)$, so that the required amount of memory for (9.12) is of the order of magnitude of $\pi(N)$, instead of $\pi(N) \log_2 N$ required for (9.11).

With this improvement, we have applied Alanen's algorithm (to $f = \sigma$) with N = 20000. With some appropriate modifications, the algorithm could also be adapted for the computation of all solutions of f(x)-x = n, for all $n \le N$, for *other* f ϵ F. In particular, we have applied the modified algorithm with N = 20000 to f = Ψ_1 , Ψ_2 , M_1 , L_1 and R_0 (= σ^*). Results of these computations are collected in tables 9.1, 9.2, 9.3 and 9.4.

Table 9.1 displays (for the functions f above) the number of even and the number of odd f-untouchables ≤ 20000 ; the number of n $\epsilon \mathbb{N}$ for which f(n)-n is *even* and f(n)-n ≤ 20000 (= $A_e = A_e(20000)$); the number of n $\epsilon \mathbb{N}$ for which f(n)-n is *odd* and 1 \leq f(n)-n ≤ 20000 (= $A_o = A_o(20000)$. Note that, for all f ϵ F, f(n)-n = 1, if n is a prime); and, finally, the value of the function

$$10000(1 - \frac{1}{10000})^{A}e$$

TABLE 9.1

f	number even	of f-untouchables ≤ 20000 odd	A e	Ao	$10000(1-\frac{1}{10000})^{A}e$
σ	2565	1(5) *)	13434	1454747	2610
Ψ1	2896	0	13854	1457942	2502
Ψ ² 2	2360	2(5,7)	13948	1454702	2479
^M 1	2485	1(5)	13891	1454829	2493
L ₁	2181	1(7)	14468	1454994	2353
RO	157	3(3,5,7)	47083	1544668	90
	1		3	1	

*) The *odd* f-untouchables are given in parentheses.

The last column of table 9.1 appears to be a reasonable approximation to the number of even f-untouchables. This may be explained heuristically as follows. When N_1 balls are randomly distributed among N_2 (initially void) boxes, it can be shown, that the *expected* number of void boxes is given by

$$N_2 (1 - \frac{1}{N_2})^{N_1}$$
.

Hence, on the assumption that the even values of $f(n)-n \le N$ are randomly distributed among the numbers 2,4,6,...,N (assume N is even), we may expect the function

(9.13)
$$\frac{N}{2}(1-\frac{2}{N})^{A}e^{(N)}$$
,

where $A_e(N)$ is the number of n for which f(n)-n is even and f(n)-n $\leq N$, to be a reasonable approximation to the number of even f-untouchables $\leq N$. Unfortunately, the value of $A_e(N)$ can not be given a priori (the value of $A_e(20000)$ in table 9.1 is a by-product of Alanen's modified algorithm).

However, we can give an *asymptotic upper bound* for $A_e(N)$, for any *given* $f \in F$. As an illustration, we will carry this out for $f = \sigma$. We recall that $A_e(N)$ is the number of $n \in \mathbb{N}$, for which $\sigma(n) - n$ is even and $\sigma(n) - n \leq N$. As in the proof of theorem 9.1, it is readily seen that the *even* numbers $n \in \mathbb{N}$, which contribute to $A_e(N)$, are $\leq 2N$, and that the number of *odd* numbers $n \in \mathbb{N}$ which contribute to $A_e(N)$ is $\sigma(N)$, for $N \to \infty$. Hence, we have

$$A_{\alpha}(N) \leq N + O(N)$$

Furthermore, it is known (see for instance [40], pp.197-8, exercise 49.7) that the density of the *even* σ -abundant numbers is greater than 0.229, so that asymptotically, for at least 0.229N + o(N) of the even numbers n between N and 2N, we have

$$\sigma(n) - n > n > N$$
.

Hence,

$$A_{e}(N) \le N - 0.229N + o(N) = 0.771N + o(N)$$

From (9.13) we conclude that (under the assumption of the random distribution of the even values of $\sigma(n)$ -n among the numbers 2,4,6,...,N) the number of even σ -untouchables $\leq N$ is, asymptotically, greater than

$$\frac{N}{2}(1 - \frac{2}{N})^{0.771N + o(N)} \approx 0.1069N(1 + o(1)) .$$

Let $d_f(n)$ be the number of solutions x of the equation f(x)-x = n. In table 9.2 we give the values of $n \le 20000$ for which d_f is maximal, and the corresponding maximum. We also list the least number k_0 for which there is no odd number $n \le 20000$, satisfying $d_f(n) = k_0$.

f	n (even)	d _f (n)	n (odd) d _f (n)		^k 0
σ	11194	10	18481	576	406
	17914	10			
Ψ ₁	16384	9	18481	573	393
*	17594	9			
	17914	9			
Ψ2	11194	9	18481	576	374
	17594	9			
	17914	9			
^M 1	11194	11	18481	576	387
	17914	11			
L ₁	11194	9	18481	576	374
-	17594	9			
	17914	9			
R ₀	14848	26	18481	588	412

TABLE 9.2

Table 9.3 presents the number of even $n \leq 20000, \; \text{for which } d_{\mbox{f}}(n) \; = \; k,$ for k=0,1,2,... .

lumber c	of even n s	≤ 20000, d	for which	$d_f(n) = 1$	k, k=0,1,∶	2,
k	$f = \sigma$	$f = \Psi_1$	$f = \Psi_2$	$f = M_1$	f = L ₁	f=R0=0*
0	2565	2896	2360	2485	2181	157
1	3655	3299	3662	3598	3627	703
2	2370	2053	2407	2400	2584	1342
3	924	1054	1085	971	1081	1621
4	308	405	329	327	333	1639
5	102	167	90	132	120	1379
6	33	71	35	38	40	1042
7	27	37	18	27	17	673
8	8	15	11	10	14	496
9	6	3	3	7	3	325
10	2			3		200
11				2		145
12						82
13						58
14						43
15						27
16						26
17						20
18						12
19						2
20						2
21						3
22						0
23						1
24						1
25						0
26						1

In table 9.4 all σ^* -untouchables \leq 20000 are given, including their canonical factorizations. These numbers are connected with a conjecture of DE POLIGNAC [28] which states that any odd number > 1 is of the form 2^k +p, where k $\in \mathbb{N}$, and p is either a prime or the number 1. Since, if p is odd, $\sigma^*(2^kp)-2^kp = (2^k+1)(p+1)-2^kp = 2^k+p+1$, the truth of this conjecture would imply that all even numbers > 2 are σ^* -touchable (except perhaps those even numbers which are of the form 2^k+2). However, ERDÕS [12] and VAN DER CORPUT [8] proved that the density of the odd numbers for which DE POLIGNAC's conjecture is false, is *positive*.

TABLE 9.4

The σ^* -untouchables ≤ 20000

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2(2)	6002(2.3001)	10254(2.3.1709)	15060(2(2)3,5,251)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	3(3)	6174(2.3(2)7(3))	10358(2.5179)	15162(2.3.7.19(2))
5(5) $6404(2(2)1601)$ $10754(2,19,283)$ $15350(2,5(2)307)$ $7(7)$ $6450(2,3,5(2)43)$ $10778(2,17,317)$ $15374(2,7687)$ $74(2,11,17)$ $6510(2,3,5,7,31)$ $10782(2,3(2)599)$ $15402(2,3,17,151)$ $702(2,3(3)13)$ $6758(2,31,109)$ $11082(2,3,1847)$ $15998(2,19,421)$ $998(2,499)$ $6820(2,3,2529)$ $11438(2,7,19,43)$ $16014(2,3,17,157)$ $1542(2,3,257)$ $6884(2(2)1721)$ $11542(2,29,199)$ $16118(2,8059)$ $1598(2,17,47)$ $7110(2,3(2)5,79)$ $11770(2,3(2)5,131)$ $16608(2(2)4127)$ $1778(2,7,127)$ $7178(2,37,97)$ $11790(2,3(2)5,131)$ $16674(2,8377)$ $1808(2(4)113)$ $7332(2(2)3,13,47)$ $11802(2,3,7,23)$ $16770(2,3,5,13,43)$ $1974(2,3,7,47)$ $7518(2,3,7,179)$ $12252(2(2)3,1031)$ $17040(2(4)3,5,71)$ $2378(2,29,41)$ $7842(2,3170)$ $122596(2(2)47,67)$ $17340(2(2)3,5,17(2))$ $2164(2(2)7,113)$ $8400(2(4)3,5(27))$ $1286(2,47,137)$ $1748(2,8719)$ $3182(2,37,43)$ $8622(2,3(2)479)$ $12878(2,47,137)$ $1748(2(2)111,397)$ $3188(2(2)797)$ $8670(2,3,5,273)$ $13298(2,41,109)$ $17580(2,3,5,293)$ $3506(2,1753)$ $862(2,3,7,211)$ $13410(2,3(2)5,149)$ $17652(2(2)3,1471)$ $3666(2,3,13,47)$ $916(2(2)3,5,29)$ $1352(2,3)(2)(1,47)$ $17862(2,3,14,73)$ $3666(2,3,13,47)$ $916(2(2)3,5,29)$ $1352(2(3)(1,109))$ $17580(2,3,13,229)$ $3666(2,3,641)$ $916(2(2)3,5,21)$ $1392(2(2,3,13,17))$ $1821(2,3,24,1,73)$ $3188(2,2)797$	4(2(2))	6270(2.3.5.11.19)	10620(2(2)3(2)5.59)	15300(2(2)3(2)5(2)17)
7(7) $6450(2,3,5(2)43)$ $10778(2,17,317)$ $15374(2,7687)$ $374(2,1117)$ $6510(2,3,5,7,31)$ $10782(2,3(2)599)$ $15402(2,3,17,151)$ $702(2,3(3)13)$ $6758(2,31,109)$ $11082(2,3,1847)$ $15958(2,79,101)$ $758(2,379)$ $6822(2,3(2)379)$ $11172(2(2)3,7(2)19)$ $15998(2,19,421)$ $998(2,499)$ $6870(2,3,5,229)$ $11438(2,7,19,43)$ $16014(2,3,17,157)$ $1542(2,3,257)$ $6884(2(2)1721)$ $11542(2,29,199)$ $16118(2,8059)$ $1598(2,17,47)$ $7110(2,3(2)5,79)$ $11772(2(2)3(3)109)$ $16508(2(2)4127)$ $1778(2,7,127)$ $7178(2,37,97)$ $11790(2,3(2)5,131)$ $16630(2,5,1663)$ $1808(2(4)113)$ $7332(2(2)3,13,47)$ $11802(2,3,230)$ $16774(2,3,5,13,43)$ $1974(2,3,7,47)$ $7518(2,3,7,179)$ $12234(2,3,2039)$ $16788(2(2)3,1399)$ $2378(2,29,41)$ $7842(2,3,1307)$ $12252(2(2)3,1021)$ $17040(2(4)3,5,71)$ $2430(2,3(5)5)$ $7902(2,3(2)439)$ $12372(2)3,1031)$ $1778(2,8539)$ $2910(2,3,5,97)$ $8258(2,4129)$ $12596(2,247,67)$ $17340(2(2)3,5,17(2))$ $3162(2,7,43)$ $8602(2,3,5,17(2))$ $13092(2,2),1091)$ $17490(2,3,5,11,53)$ $3162(2,17,53)$ $8622(2,3,7,211)$ $1300(2,3),5(2)3)$ $17682(2,3,13,29)$ $3564(2,2)3,5,59)$ $862(2,3,7,211)$ $1300(2,3),5(2)3)$ $17682(2,3,13,229)$ $396(2,193)$ $9516(2,3,743)$ $13800(2(3),5(2)23)$ $17682(2,3,13,229)$ $3966(2,1753)$ $862(2,3,743)$ $1300(2(3),5,5(2)3)$ $17682(2,3,13,229)$ $3968(2,199)$ <	5(5)	6404(2(2)1601)	10754(2,19,283)	15350(2.5(2)307)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	7(7)	6450(2,3.5(2)43)	10778(2.17.317)	15374(2.7687)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	374(2.11.17)	6510(2.3.5.7.31)	10782(2.3(2)599)	15402(2.3.17.151)
758(2,379) $6822(2,3(2)379)$ $11172(2(2)3,7(2)19)$ $15998(2,19,421)$ $998(2,499)$ $6870(2,3,5,229)$ $11438(2,7,19,43)$ $16014(2,3,17,157)$ $1542(2,3,257)$ $6884(2(2)1721)$ $11542(2,29,199)$ $16118(2,8059)$ $1598(2,17,47)$ $7110(2,3(2)5,79)$ $11772(2(2)3(3)109)$ $16508(2(2)4127)$ $1778(2,7,127)$ $7178(2,37,97)$ $11790(2,3(2)5,131)$ $16630(2,5,1663)$ $1808(2(4)113)$ $7332(2(2)3,13,47)$ $11802(2,3,7,281)$ $16770(2,3,5,13,43)$ $1974(2,3,7,47)$ $7518(2,3,7,179)$ $12234(2,3,2039)$ $16788(2(2)3,1399)$ $2378(2,29,41)$ $7842(2,3,1307)$ $12252(2(2)3,1021)$ $17040(2(4)3,5,71)$ $2430(2,3(5)5)$ $7902(2,3(2)439)$ $12372(2(2)3,1031)$ $17040(2(4)3,5,71)$ $2430(2,3,5,97)$ $8258(2,4129)$ $12596(2(2)47,67)$ $17340(2(2)3,5,17(2))$ $3164(2(2)7,113)$ $8400(2(4)3,5(2)7)$ $12806(2,19,337)$ $17438(2,8719)$ $3126(2,43,3,67)$ $8670(2,3,5,17(2))$ $13092(2(3,1091)$ $17490(2,3,5,11,53)$ $3216(2(4)3,67)$ $8670(2,3,5,17(2))$ $13092(2(3,1091)$ $17490(2,3,5,11,53)$ $3216(2(4)3,67)$ $862(2,3,7,211)$ $1340(2,3(5)5,19)$ $17580(2(2)3,5,293)$ $3540(2(2)3,5,59)$ $862(2,3,7,211)$ $13902(2,3,7,331)$ $17958(2,3,41,73)$ $3818(2,23,83)$ $8982(2,3(2)499)$ $13962(2,3,13,179)$ $18210(2,3,5,607)$ $3846(2,3,641)$ $9116(2(2)43,53)$ $14022(2,3(2)11,41)$ $1866(2,9283)$ $3986(2,193)$ $958(2,3,1697)$ $14048(2(5)439)$ $18686(2,343)$ <td>702(2.3(3)13)</td> <td>6758(2.31.109)</td> <td>11082(2.3.1847)</td> <td>15958(2.79.101)</td>	702(2.3(3)13)	6758(2.31.109)	11082(2.3.1847)	15958(2.79.101)
998(2.499)6870(2.3.5.229)11438(2.7.19.43)16014(2.3.17.157)1542(2.3.257)6884(2(2)1721)11542(2.29.199)16118(2.8059)1598(2.17.47)7110(2.3(2)5.79)11790(2.3(2)5.131)16630(2.5.1663)1808(2(4)113)7332(2(2)3.13.47)11802(2.3.7.281)16754(2.8377)1830(2.3.5.61)7406(2.7.23(2))11910(2.3.5.397)16770(2.3.5.13.43)1974(2.3.7.47)7518(2.3.7.179)12234(2.3.2039)16788(2(2)3.1339)2376(2.29.41)7842(2.3.1307)12252(2(2)3.1021)17040(2(4)3.5.71)2430(2.3(5)5)7902(2.3(2)439)12372(2(2)3.1031)17078(2.8539)2910(2.3.5.97)8258(2.4129)12596(2(2)47.67)17340(2(2)3.5.17(2))3164(2(2)7.113)8400(2(4)3.5(2)7)12806(2.19.337)17488(2.8719)3182(2.37.43)8622(2.3(2)479)12878(2.47137)17468(2(2)11.397)3188(2(2)797)8670(2.3.5.17(2))13092(2(2)3.1091)17490(2.3.5.11.53)3216(2(4)3.67)8790(2.3.5.293)13228(2.61.109)17558(2.8779)3506(2.1753)8850(2.3.7211)13410(2.3(2)5.149)17652(2(2)3.1471)3666(2.3.13.47)8916(2(2)3.743)13800(2(3)3.5(2)23)17862(2.3.13.229)3698(2.43(2))8930(2.5.19.47)13902(2.3.7.331)17958(2.3.41.73)3818(2.23.631)916(2(2)43.53)14022(2.3(2)19.41)1866(2.9283)3986(2.1993)9518(2.4759)14048(2(5)439)18608(2(4)1163)4196(2(2)1049)952(2.3.1607)14028(2.3577)18846(2.3(3)349)4718(2.7.337)958(2.3.1607)<	758(2.379)	6822(2.3(2)379)	11172(2(2)3.7(2)19)	15998(2.19.421)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	998(2.499)	6870(2.3.5.229)	11438(2.7.19.43)	16014(2.3.17.157)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1542(2.3.257)	6884(2(2)1721)	11542(2.29.199)	16118(2.8059)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1598(2.17.47)	7110(2.3(2)5.79)	11772(2(2)3(3)109)	16508(2(2)4127)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1778(2.7.127)	7178(2.37.97)	11790(2.3(2)5.131)	16630(2.5.1663)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1808(2(4)113)	7332(2(2)3,13,47)	11802(2.3.7.281)	16754(2.8377)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1830(2.3.5.61)	7406(2.7.23(2))	11910(2.3.5.397)	16770(2.3.5.13.43)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1974(2.3.7.47)	7518(2.3.7.179)	12234(2.3.2039)	16788(2(2)3.1399)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2378(2.29.41)	7842(2.3.1307)	12252(2(2)3,1021)	17040(2(4)3.5.71)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2430(2.3(5)5)	7902(2.3(2)439)	12372(2(2)3.1031)	17078(2.8539)
3164 (2 (2) 7.113)8400 (2 (4) 3.5 (2) 7)12806 (2.19.337)17438 (2.8719)3182 (2.37.43)8622 (2.3 (2) 479)12878 (2.47.137)17468 (2 (2) 11.397)3188 (2 (2) 797)8670 (2.3.5.17 (2))13092 (2 (2) 3.1091)17490 (2.3.5.11.53)3216 (2 (4) 3.67)8790 (2.3.5.293)13298 (2.61.109)17580 (2 (2) 3.5.293)3506 (2.1753)8850 (2.3.5 (2) 59)13352 (2 (3) 1669)17580 (2 (2) 3.5.293)3540 (2 (2) 3.5.59)8862 (2.3.7.211)13410 (2.3 (2) 5.149)17652 (2 (2) 3.1471)3666 (2.3.13.47)8916 (2 (2) 3.743)13800 (2 (3) 3.5 (2) 23)17862 (2.3.13.229)3698 (2.43 (2))8930 (2.5.19.47)13902 (2.3.7.331)17958 (2.3.41.73)3818 (2.23.83)8982 (2.3 (2) 499)13962 (2.3.13.179)18210 (2.3.5.607)3846 (2.3.641)9116 (2 (2) 43.53)14022 (2.3 (2) 19.41)18566 (2.9283)3986 (2.1993)9518 (2.4759)14048 (2 (5) 439)18608 (2 (4) 1163)4196 (2 (2) 1049)9522 (2.3 (2) 23 (2))14052 (2 (2) 3.1171)18612 (2 (2) 3 (2) 11.47)4230 (2.3 (2) 5.47)958 (2.3 (4) 59)14078 (2.7039)18686 (2.9343)4574 (2.2287)9570 (2.3.5.11.29)14108 (2 (2) 3527)18846 (2.3 (3) 349)4718 (2.7.337)9582 (2.3.1597)14142 (2.3.2357)18846 (2.3 (3) 349)4718 (2.7.337)9582 (2.3.1667)14532 (2 (2) 3.7.173)19358 (2.9679)5126 (2.11.233)9930 (2.3.5.331)14382 (2.3 (2) 17.47)19260 (2 (2) 3 (2) 5.107)5324 (2 (2) 11 (3))10002 (2.3.1667)14532 (2 (2) 3.7.173) <t< td=""><td>2910(2.3.5.97)</td><td>8258(2.4129)</td><td>12596(2(2)47.67)</td><td>17340(2(2)3.5.17(2))</td></t<>	2910(2.3.5.97)	8258(2.4129)	12596(2(2)47.67)	17340(2(2)3.5.17(2))
3182 (2.37.43)8622 (2.3 (2) 479)12878 (2.47.137)17468 (2 (2) 11.397)3188 (2 (2) 797)8670 (2.3.5.17 (2))13092 (2 (2) 3.1091)17490 (2.3.5.11.53)3216 (2 (4) 3.67)8790 (2.3.5.293)13298 (2.61.109)17580 (2 (2) 3.5.293)3506 (2.1753)8850 (2.3.5 (2) 59)13352 (2 (3) 1669)17580 (2 (2) 3.5.293)3540 (2 (2) 3.5.59)8862 (2.3.7.211)13410 (2.3 (2) 5.149)17652 (2 (2) 3.1471)3666 (2.3.13.47)8916 (2 (2) 3.743)13800 (2 (3) 3.5 (2) 23)17862 (2.3.13.229)3698 (2.43 (2))8930 (2.5.19.47)13902 (2.3.7.331)17958 (2.3.41.73)3818 (2.23.83)8982 (2.3 (2) 499)13962 (2.3.13.179)18210 (2.3.5.607)3846 (2.3.641)9116 (2 (2) 43.53)14022 (2 (3) (2) 19.41)18566 (2.9283)3986 (2.1993)9518 (2.4759)14048 (2 (5) 439)18608 (2 (4) 1163)4196 (2 (2) 1049)9522 (2.3 (2) 23 (2))14078 (2.7039)18686 (2.9343)4574 (2.2287)9570 (2.3.5.11.29)14108 (2 (2) 3527)18846 (2.3 (3) 349)4718 (2.7.337)958 (2.3.1607)14250 (2.3.5 (3) 19)19058 (2.13.733)5126 (2.11.23)9930 (2.3.5.331)14382 (2.3 (2) 17.47)19260 (2 (2) 3 (2) 5.107)5324 (2 (2) 11 (3))10002 (2.3.1667)14532 (2 (2) 3.7.173)19358 (2.9679)5610 (2.3.5.11.17)10022 (2.5011)14606 (2.67.109)19362 (2.3.7.461)5738 (2.19.515)10020 (2 (3) 3.5 (2) 17)14682 (2 (3.2447))19650 (2.3.5 (2) 131)5958 (2.61 3.1)10200 (2 (3) 3.5 (2) 17)14682 (2.3.2447) <td< td=""><td>3164(2(2)7.113)</td><td>8400(2(4)3.5(2)7)</td><td>12806(2.19.337)</td><td>17438(2.8719)</td></td<>	3164(2(2)7.113)	8400(2(4)3.5(2)7)	12806(2.19.337)	17438(2.8719)
3188(2(2) 797)8670(2.3.5.17(2))13092(2(2) 3.1091)17490(2.3.5.11.53)3216(2(4) 3.67)8790(2.3.5.293)13298(2.61.109)17558(2.8779)3506(2.1753)8850(2.3.5(2)59)13352(2(3)1669)17580(2(2) 3.5.293)3540(2(2) 3.5.59)8862(2.3.7.211)13410(2.3(2)5.149)17652(2(2) 3.1471)3666(2.3.13.47)8916(2(2) 3.743)13800(2(3) 3.5(2)23)17862(2.3.13.229)3698(2.43(2))8930(2.5.19.47)13902(2.3.7.331)17958(2.3.41.73)3818(2.23.83)8982(2.3(2) 499)13962(2.3.13.179)18210(2.3.5.607)3846(2.3.641)9116(2(2) 43.53)14022(2.3(2) 19.41)18566(2.9283)3986(2.1993)9518(2.4759)14048(2(5) 439)18608(2(4) 1163)4196(2(2) 1049)9522(2.3(2) 23(2))14052(2(2) 3.1171)18612(2(2) 3(2) 11.47)4230(2.3(2) 5.47)9558(2.3(4) 59)14078(2.7039)18686(2.9343)4574(2.2287)9570(2.3.5.11.29)14108(2(2) 3527)18846(2.3(3) 349)4718(2.7.377)9582(2.3.1597)14142(2.3.2357)18870(2.3.5.17.37)4782(2.3.797)9642(2.3.1607)14250(2.3.5(3)19)19058(2.13.733)5126(2.11.233)9930(2.3.5.331)14382(2.3(2) 17.47)19260(2(2) 3(2) 5.107)5324(2(2) 11(3))10002(2.3.1667)14532(2(2) 3.7.173)19358(2.9679)610(2.3.5.11.17)10022(2.5011)14606(2.67.109)19362(2.3.7.461)5738(2.19.151)10062(2.3(2) 13.43)14612(2(2) 13.281)19630(2(4) 3.409)5918(2.11.269)10200(2(3) 3.5(2) 17)14682(2.3.2447)19650(2.3	3182(2.37.43)	8622(2.3(2)479)	12878(2.47.137)	17468(2(2)11.397)
3216 (2 (4) 3.67)8790 (2.3.5.293)13298 (2.61.109)17558 (2.8779)3506 (2.1753)8850 (2.3.5 (2) 59)13352 (2 (3) 1669)17580 (2 (2) 3.5.293)3540 (2 (2) 3.5.59)8862 (2.3.7.211)13410 (2.3 (2) 5.149)17652 (2 (2) 3.1471)3666 (2.3.13.47)8916 (2 (2) 3.743)13800 (2 (3) 3.5 (2) 23)17862 (2.3.13.229)3698 (2.43 (2))8930 (2.5.19.47)13902 (2.3.7.331)17958 (2.3.41.73)3818 (2.23.83)8982 (2.3 (2) 499)13962 (2.3.13.179)18210 (2.3.5.607)3846 (2.3.641)9116 (2 (2) 43.53)14022 (2.3 (2) 19.41)18566 (2.9283)3986 (2.1993)9518 (2.4759)14048 (2 (5) 439)18608 (2 (4) 1163)4196 (2 (2) 1049)9522 (2.3 (2) 23 (2))14052 (2 (2) 3.1171)18612 (2 (2) 3 (2) 11.47)4230 (2.3 (2) 5.47)9558 (2.3 (4) 59)14078 (2.7039)18686 (2.9343)4574 (2.2287)9570 (2.3.5.11.29)14108 (2 (2) 3527)18846 (2.3 (3) 349)4718 (2.7.337)9582 (2.3.1607)14250 (2.3.5 (3) 19)19058 (2.13.733)5126 (2.11.233)9930 (2.3.5.331)14382 (2.3 (2) 17.47)19260 (2 (2) 3 (2) 5.107)5324 (2 (2) 11 (3))10002 (2.3.1667)14532 (2 (2) 3.7.173)19358 (2.9679)5610 (2.3.5.11.17)10022 (2.5011)14660 (2.67.109)19362 (2.3.7.461)5738 (2.19.151)10062 (2.3 (2) 13.43)14612 (2 (1) 3.281)19630 (2 (4) 3.409)5918 (2.11.269)10200 (2 (3) 3.5 (2) 17)14682 (2.3.2447)19650 (2.3.5 (2) 131)5952 (2 (6) 3.31)10238 (2 5119)15038 (2 73 103)197	3188(2(2)797)	8670(2.3.5.17(2))	13092(2(2)3.1091)	17490(2.3.5.11.53)
3506(2.1753)8850(2.3.5(2)59)13352(2(3)1669)17580(2(2)3.5.293)3540(2(2)3.5.59)8862(2.3.7.211)13410(2.3(2)5.149)17652(2(2)3.1471)3666(2.3.13.47)8916(2(2)3.743)13800(2(3)3.5(2)23)17862(2.3.13.229)3698(2.43(2))8930(2.5.19.47)13902(2.3.7.331)17958(2.3.41.73)3818(2.23.83)8982(2.3(2)499)13962(2.3.13.179)18210(2.3.5.607)3846(2.3.641)9116(2(2)43.53)14022(2.3(2)19.41)18566(2.9283)3986(2.1993)9518(2.4759)14048(2(5)439)18608(2(4)1163)4196(2(2)1049)9522(2.3(2)23(2))14052(2(2)3.1171)18612(2(2)3(2)11.47)4230(2.3(2)5.47)9558(2.3(4)59)14078(2.7039)18686(2.9343)4574(2.2287)9570(2.3.5.11.29)14108(2(2)3527)18846(2.3(3)349)4718(2.7.337)9582(2.3.1597)14142(2.3.2357)18870(2.3.5.17.37)4782(2.3.797)9642(2.3.1607)14250(2.3.5(3)19)19058(2.13.733)5126(2.11.233)9930(2.3.5.331)14382(2.3(2)17.47)19260(2(2)3(2)5.107)5324(2(2)11(3))10002(2.3.1667)14532(2(2)3.7.173)19358(2.9679)5610(2.3.5.11.17)1002(2.3.1667)14522(2(1)3.281)19632(2(4)3.409)5738(2.19.151)10062(2.3(2)13.43)14612(2(2)13.281)19632(2(4)3.409)5918(2.11.269)10200(2(3)3.5(2)17)14682(2.3.2447)19650(2.3.5(2)131)5952(2(6)3.3.1)10238(25119)1958(2.3.7.461)	3216(2(4)3.67)	8790(2.3.5.293)	13298(2.61.109)	17558(2.8779)
3540 (2 (2) 3.5.59)8862 (2.3.7.211)13410 (2.3 (2) 5.149)17652 (2 (2) 3.1471)3666 (2.3.13.47)8916 (2 (2) 3.743)13800 (2 (3) 3.5 (2) 23)17862 (2.3.13.229)3698 (2.43 (2))8930 (2.5.19.47)13902 (2.3.7.331)17958 (2.3.41.73)3818 (2.23.83)8982 (2.3 (2) 499)13962 (2.3.13.179)18210 (2.3.5.607)3846 (2.3.641)9116 (2 (2) 43.53)14022 (2.3 (2) 19.41)18566 (2.9283)3986 (2.1993)9518 (2.4759)14048 (2 (5) 439)18608 (2 (4) 1163)4196 (2 (2) 1049)9522 (2.3 (2) 23 (2))14052 (2 (2) 3.1171)18612 (2 (2) 3 (2) 11.47)4230 (2.3 (2) 5.47)9558 (2.3 (4) 59)14078 (2.7039)18686 (2.9343)4574 (2.2287)9570 (2.3.5.11.29)14108 (2 (2) 3527)18846 (2.3 (3) 349)4718 (2.7.337)9582 (2.3.1607)14250 (2.3.5 (3) 19)19058 (2.13.733)5126 (2.11.233)9930 (2.3.5.331)14382 (2.3 (2) 17.47)19260 (2 (2) 3 (2) 5.107)5324 (2 (2) 11 (3))10002 (2.3.1667)14532 (2 (2) 3.7.173)19358 (2.9679)5610 (2.3.5.11.17)1002 (2.5011)14660 (2.67.109)19362 (2.3.7.461)5738 (2.19.151)10062 (2.3 (2) 13.43)14612 (2 (2) 13.281)19630 (2 (4) 3.409)5918 (2.11.269)10200 (2 (3) 3.5 (2) 17)14682 (2.3.2447)19650 (2.3.5 (2) 131)5952 (2 (6) 3.31)10238 (2 519)15588 (2.7.473)19710 (2 3 (3) 5.73)	3506(2.1753)	8850(2.3.5(2)59)	13352(2(3)1669)	17580(2(2)3.5.293)
3666 (2.3.13.47)8916 (2 (2) 3.743)13800 (2 (3) 3.5 (2) 23)17862 (2.3.13.229)3698 (2.43 (2))8930 (2.5.19.47)13902 (2.3.7.331)17958 (2.3.41.73)3818 (2.23.83)8982 (2.3 (2) 499)13962 (2.3.13.179)18210 (2.3.5.607)3846 (2.3.641)9116 (2 (2) 43.53)14022 (2.3 (2) 19.41)18566 (2.9283)3986 (2.1993)9518 (2.4759)14048 (2 (5) 439)18608 (2 (4) 1163)4196 (2 (2) 1049)9522 (2.3 (2) 23 (2))14052 (2 (2) 3.1171)18612 (2 (2) 3 (2) 11.47)4230 (2.3 (2) 5.47)9558 (2.3 (4) 59)14078 (2.7039)18686 (2.9343)4574 (2.2287)9570 (2.3.5.11.29)14108 (2 (2) 3527)18846 (2.3 (3) 349)4718 (2.7,337)9582 (2.3.1597)14142 (2.3.2357)18870 (2.3.5.17.37)4782 (2.3.797)9642 (2.3.1607)14250 (2.3.5 (3) 19)19058 (2.13.733)5126 (2.11.233)9930 (2.3.5.331)14382 (2.3 (2) 17.47)19260 (2 (2) 3 (2) 5.107)5324 (2 (2) 11 (3))10002 (2.3.1667)14532 (2 (2) 3.7.173)19358 (2.9679)5610 (2.3.5.11.17)10022 (2.5011)14660 (2.67.109)19362 (2.3.7.461)5738 (2.19.151)10062 (2.3 (2) 13.43)14612 (2 (2) 13.281)19630 (2 (4) 3.409)5918 (2.11.269)10200 (2 (3) 3.5 (2) 17)14682 (2.3.2447)19650 (2.3.5 (2) 131)5952 (2 (6) 3.31)10238 (2 519)15038 (2 .7.3 103)19710 (2 .3 (3) 5.73)	3540(2(2)3.5.59)	8862(2.3.7.211)	13410(2.3(2)5.149)	17652(2(2)3.1471)
3698(2.43(2))8930(2.5.19.47)13902(2.3.7.331)17958(2.3.41.73)3818(2.23.83)8982(2.3(2)499)13962(2.3.13.179)18210(2.3.5.607)3846(2.3.641)9116(2(2)43.53)14022(2.3(2)19.41)18566(2.9283)3986(2.1993)9518(2.4759)14048(2(5)439)18608(2(4)1163)4196(2(2)1049)9522(2.3(2)23(2))14052(2(2)3.1171)18612(2(2)3(2)11.47)4230(2.3(2)5.47)9558(2.3(4)59)14078(2.7039)18686(2.9343)4574(2.2287)9570(2.3.5.11.29)14108(2(2)3527)18846(2.3(3)349)4718(2.7.337)9582(2.3.1597)14142(2.3.2357)18870(2.3.5.17.37)4782(2.3.797)9642(2.3.1607)14250(2.3.5(3)19)19058(2.13.733)5126(2.11.233)9930(2.3.5.331)14382(2.3(2)17.47)19260(2(2)3(2)5.107)5324(2(2)11(3))10002(2.3.1667)14532(2(2)3.7.173)19358(2.9679)5610(2.3.5.11.17)1002(2.3.011)14660(2.67.109)19362(2.3.7.461)5738(2.19.151)10062(2.3(2)13.43)14612(2(2)13.281)19630(2(4)3.409)5918(2.11.269)10200(2(3)3.5(2)17)14682(2.3.2447)19650(2.3.5(2)131)5952(2(6) 3.31)10238(25119)1958(2.7.3103)19710(2.3(3)5.7.3)	3666(2.3.13.47)	8916(2(2)3.743)	13800(2(3)3.5(2)23)	17862(2,3.13.229)
3818 (2.23.83)8982 (2.3 (2) 499)13962 (2.3.13.179)18210 (2.3.5.607)3846 (2.3.641)9116 (2 (2) 43.53)14022 (2.3 (2) 19.41)18566 (2.9283)3986 (2.1993)9518 (2.4759)14048 (2 (5) 439)18608 (2 (4) 1163)4196 (2 (2) 1049)9522 (2.3 (2) 23 (2))14052 (2 (2) 3.1171)18612 (2 (2) 3 (2) 11.47)4230 (2.3 (2) 5.47)9558 (2.3 (4) 59)14078 (2.7039)18686 (2.9343)4574 (2.2287)9570 (2.3.5.11.29)14108 (2 (2) 3527)18846 (2.3 (3) 349)4718 (2.7.337)9582 (2.3.1597)14142 (2.3.2357)18870 (2.3.5.17.37)4782 (2.3.797)9642 (2.3.1607)14250 (2.3.5 (3) 19)19058 (2.13.733)5126 (2.11.233)9930 (2.3.5.331)14382 (2.3 (2) 17.47)19260 (2 (2) 3 (2) 5.107)5324 (2 (2) 11 (3))10002 (2.3.1667)14532 (2 (2) 3.7.173)19358 (2.9679)5610 (2.3.5.11.17) 10022 (2.5011)14660 (2.67.109)19362 (2.3.7.461)5738 (2.19.151)10062 (2.3 (2) 13.43)14612 (2 (2) 13.281)19630 (2 (4) 3.409)5918 (2.11.269)10200 (2 (3) 3.5 (2) 17)14682 (2.3.2447)19650 (2.3.5 (2) 131)5952 (2 (6) 3.31)10238 (2 519)15038 (2.73 103)19710 (2 3 (3) 5.73)	3698(2.43(2))	8930(2.5,19.47)	13902(2.3.7.331)	17958(2.3.41.73)
3846(2.3.641)9116(2(2)43.53)14022(2.3(2)19.41)18566(2.9283)3986(2.1993)9518(2.4759)14048(2(5)439)18608(2(4)1163)4196(2(2)1049)9522(2.3(2)23(2))14052(2(2)3.1171)18612(2(2)3(2)11.47)4230(2.3(2)5.47)9558(2.3(4)59)14078(2.7039)18686(2.9343)4574(2.2287)9570(2.3.5.11.29)14108(2(2)3527)18846(2.3(3)349)4718(2.7.337)9582(2.3.1597)14142(2.3.2357)18870(2.3.5.17.37)4782(2.3.797)9642(2.3.1607)14250(2.3.5(3)19)19058(2.13.733)5126(2.11.233)9930(2.3.5.331)14382(2.3(2)17.47)19260(2(2)3(2)5.107)5324(2(2)11(3))10002(2.3.1667)14532(2(2)3.7.173)19358(2.9679)5610(2.3.5.11.17)1002(2.5011)1466(2.67.109)19362(2.3.7.461)5738(2.19.151)10062(2.3(2)13.43)14612(2(2)13.281)19632(2(4)3.409)5918(2.11.269)10200(2(3)3.5(2)17)14682(2.3.2447)19650(2.3.5(2)131)5952(2(6) 3.31)10238(2519)15038(2.73.103)19710(2.3(3)5.73)	3818(2.23.83)	8982(2.3(2)499)	13962(2.3.13.179)	18210(2.3.5.607)
3986 (2.1993)9518 (2.4759)14048 (2(5) 439)18608 (2(4) 1163)4196 (2(2) 1049)9522 (2.3 (2) 23 (2))14052 (2(2) 3.1171)18612 (2 (2) 3 (2) 11.47)4230 (2.3 (2) 5.47)9558 (2.3 (4) 59)14078 (2.7039)18686 (2.9343)4574 (2.2287)9570 (2.3.5.11.29)14108 (2 (2) 3527)18846 (2.3 (3) 349)4718 (2.7.337)9582 (2.3.1597)14142 (2.3.2357)18870 (2.3.5.17.37)4782 (2.3.797)9642 (2.3.1607)14250 (2.3.5 (3) 19)19058 (2.13.733)5126 (2.11.233)9930 (2.3.5.331)14382 (2.3 (2) 17.47)19260 (2 (2) 3 (2) 5.107)5324 (2 (2) 11 (3))10002 (2.3.1667)14532 (2 (2) 3.7.173)19358 (2.9679)5610 (2.3.5.11.17)10022 (2.5011)14660 (2.67.109)19362 (2.3.7.461)5738 (2.19.151)10062 (2.3 (2) 13.43)14612 (2 (2) 13.281)19632 (2 (4) 3.409)5918 (2.11.269)10200 (2 (3) 3.5 (2) 17)14682 (2.3.2447)19650 (2.3.5 (2) 131)5952 (2 (6) 3.31)10238 (2 5119)15038 (2 73 103)19710 (2 3 (3) 5.73)	3846(2.3.641)	9116(2(2)43.53)	14022(2.3(2)19.41)	18566(2.9283)
4196(2(2)1049)9522(2.3(2)23(2))14052(2(2)3.1171)18612(2(2)3(2)11.47)4230(2.3(2)5.47)9558(2.3(4)59)14078(2.7039)18686(2.9343)4574(2.2287)9570(2.3.5.11.29)14108(2(2)3527)18846(2.3(3)349)4718(2.7.337)9582(2.3.1597)14142(2.3.2357)18870(2.3.5.17.37)4782(2.3.797)9642(2.3.1607)14250(2.3.5(3)19)19058(2.13.733)5126(2.11.233)9930(2.3.5.331)14382(2.3(2)17.47)19260(2(2)3(2)5.107)5324(2(2)11(3))10002(2.3.1667)14532(2(2)3.7.173)19358(2.9679)5610(2.3.5.11.17)10022(2.5011)14662(2.67.109)19362(2.3.7.461)5738(2.19.151)10020(2(3)3.5(2)17)14682(2.3.2447)19650(2.3.5(2)131)5952(2(6) 3.31)10238(25119)15038(2.73.103)19710(2.3(3)5.73)	3986(2.1993)	9518(2.4759)	14048(2(5)439)	18608(2(4)1163)
4230(2.3(2)5.47)9558(2.3(4)59)14078(2.7039)18686(2.9343)4574(2.2287)9570(2.3.5.11.29)14108(2(2)3527)18846(2.3(3)349)4718(2.7.337)9582(2.3.1597)14142(2.3.2357)18870(2.3.5.17.37)4782(2.3.797)9642(2.3.1607)14250(2.3.5(3)19)19058(2.13.733)5126(2.11.233)9930(2.3.5.331)14382(2.3(2)17.47)19260(2(2)3(2)5.107)5324(2(2)11(3))10002(2.3.1667)14532(2(2)3.7.173)19358(2.9679)5610(2.3.5.11.17)1002(2.5011)14660(2.67.109)19362(2.3.7.461)5738(2.19.151)10062(2.3(2)13.43)14612(2(2)13.281)19632(2(4)3.409)5918(2.11.269)10200(2(3)3.5(2)17)14682(2.3.2447)19650(2.3.5(2)131)5952(2(6) 3.31)10238(25119)15038(2.73.103)19710(2.3(3)5.73)	4196(2(2)1049)	9522(2.3(2)23(2))	14052(2(2)3.1171)	18612(2(2)3(2)11.47)
4574(2.2287)9570(2.3.5.11.29)14108(2(2) 3527)18846(2.3(3) 349)4718(2.7.337)9582(2.3.1597)14142(2.3.2357)18870(2.3.5.17.37)4782(2.3.797)9642(2.3.1607)14250(2.3.5(3)19)19058(2.13.733)5126(2.11.233)9930(2.3.5.331)14382(2.3(2)17.47)19260(2(2) 3(2) 5.107)5324(2(2)11(3))10002(2.3.1667)14532(2(2) 3.7.173)19358(2.9679)5610(2.3.5.11.17)10022(2.5011)14606(2.67.109)19362(2.3.7.461)5738(2.19.151)10062(2.3(2)13.43)14612(2(2)13.281)19632(2(4) 3.409)5918(2.11.269)10200(2(3) 3.5(2)17)14682(2.3.2447)19650(2.3.5(2)131)5952(2(6) 3.31)10238(2.519)15038(2.73.103)19710(2.3(3) 5.73)	4230(2.3(2)5.47)	9558(2,3(4)59)	14078(2.7039)	18686(2.9343)
4718 (2.7.337)9582 (2.3.1597)14142 (2.3.2357)18870 (2.3.5.17.37)4782 (2.3.797)9642 (2.3.1607)14250 (2.3.5 (3) 19)19058 (2.13.733)5126 (2.11.233)9930 (2.3.5.331)14382 (2.3 (2) 17.47)19260 (2 (2) 3 (2) 5.107)5324 (2 (2) 11 (3))10002 (2.3.1667)14532 (2 (2) 3.7.173)19358 (2.9679)5610 (2.3.5.11.17) 10022 (2.5011)14606 (2.67.109)19362 (2.3.7.461)5738 (2.19.151)10062 (2.3 (2) 13.43)14612 (2 (2) 13.281)19632 (2 (4) 3.409)5918 (2.11.269)10200 (2 (3) 3.5 (2) 17)14682 (2.3.2447)19650 (2.3.5 (2) 131)5952 (2 (6) 3.31)10238 (2.5119)15038 (2.73.103)19710 (2.3 (3) 5.73)	4574(2.2287)	9570(2.3.5.11.29)	14108(2(2)3527)	18846(2.3(3)349)
4782 (2.3.797)9642 (2.3.1607)14250 (2.3.5 (3) 19)19058 (2.13.733)5126 (2.11.233)9930 (2.3.5.331)14382 (2.3 (2) 17.47)19260 (2 (2) 3 (2) 5.107)5324 (2 (2) 11 (3))10002 (2.3.1667)14532 (2 (2) 3.7.173)19358 (2.9679)5610 (2.3.5.11.17) 10022 (2.5011)14606 (2.67.109)19362 (2.3.7.461)5738 (2.19.151)10062 (2.3 (2) 13.43)14612 (2 (2) 13.281)19632 (2 (4) 3.409)5918 (2.11.269)10200 (2 (3) 3.5 (2) 17)14682 (2.3.2447)19650 (2.3.5 (2) 131)5952 (2 (6) 3.31)10238 (2.5119)15038 (2.73.103)19710 (2.3 (3) 5.73)	4718(2.7.337)	9582(2.3.1597)	14142(2.3.2357)	18870(2.3.5.17.37)
5126 (2.11.233)9930 (2.3.5.331)14382 (2.3 (2) 17.47)19260 (2 (2) 3 (2) 5.107)5324 (2 (2) 11 (3))10002 (2.3.1667)14532 (2 (2) 3.7.173)19358 (2.9679)5610 (2.3.5.11.17) 10022 (2.5011)14606 (2.67.109)19362 (2.3.7.461)5738 (2.19.151)10062 (2.3 (2) 13.43)14612 (2 (2) 13.281)19632 (2 (4) 3.409)5918 (2.11.269)10200 (2 (3) 3.5 (2) 17)14682 (2.3.2447)19650 (2.3.5 (2) 131)5952 (2 (6) 3.31)10238 (2.5119)15038 (2.73.103)19710 (2.3 (3) 5.73)	4782 (2.3.797)	9642(2.3.1607)	14250(2.3.5(3)19)	19058(2.13.733)
5324 (2(2) 11 (3)) 10002 (2.3.1667) 14532 (2 (2) 3.7.173) 19358 (2.9679) 5610 (2.3.5.11.17) 10022 (2.5011) 14606 (2.67.109) 19362 (2.3.7.461) 5738 (2.19.151) 10062 (2.3 (2) 13.43) 14612 (2 (2) 13.281) 19632 (2 (4) 3.409) 5918 (2.11.269) 10200 (2 (3) 3.5 (2) 17) 14682 (2.3.2447) 19650 (2.3.5 (2) 131) 5952 (2 (6) 3.31) 10238 (2.5119) 15038 (2.73.103) 19710 (2.3 (3) 5.73)	5126 (2.11.233)	9930(2.3.5.331)	14382(2.3(2)17.47)	19260(2(2)3(2)5.107)
5610 (2.3,5.11.17) 10022 (2.5011)14606 (2.67.109)19362 (2.3,7.461)5738 (2.19.151)10062 (2.3 (2) 13.43)14612 (2 (2) 13.281)19632 (2 (4) 3.409)5918 (2.11.269)10200 (2 (3) 3.5 (2) 17)14682 (2.3.2447)19650 (2.3.5 (2) 131)5952 (2 (6) 3.31)10238 (2.5119)15038 (2.73.103)19710 (2.3 (3) 5.73)	5324(2(2)11(3))	10002(2.3.1667)	14532(2(2)3.7.173)	19358(2.9679)
5738 (2.19.151) 10062 (2.3 (2) 13.43) 14612 (2 (2) 13.281) 19632 (2 (4) 3.409) 5918 (2.11.269) 10200 (2 (3) 3.5 (2) 17) 14682 (2.3.2447) 19650 (2.3.5 (2) 131) 5952 (2 (6) 3.31) 10238 (2.5119) 15038 (2.73.103) 19710 (2.3 (3) 5.73)	5610(2.3.5.11.17)	10022(2.5011)	14606(2.67.109)	19362(2.3.7.461)
5918 (2.11.269) 10200 (2 (3) 3.5 (2) 17) 14682 (2.3.2447) 19650 (2.3.5 (2) 131) 5952 (2 (6) 3 31) 10238 (2 5119) 15038 (2 73 103) 19710 (2 3 (3) 5.73)	5738(2.19.151)	10062(2.3(2)13.43)	14612(2(2)13.281)	19632(2(4)3.409)
5952 (2 (6) 3 31) 10238 (2 5119) 15038 (2 73 103) 19710 (2 3 (3) 5, 73)	5918(2.11.269)	10200(2(3)3.5(2)17)	14682(2.3.2447)	19650(2.3.5(2)131)
	5952(2(6)3.31)	10238(2.5119)	15038(2.73.103)	19710(2.3(3)5.73)

The even numbers > 2 in table 9.4 cannot be of the form $2^{k}+p+1$ (for some odd prime p and k $\in \mathbb{N}$), and, by inspection, we find that 4 is the only number in this table of the form $2^{k}+2$, so that, if we subtract 1 from all even numbers > 4 in this table, we have a set of numbers, for which DE POLIGNAC's conjecture is false. For the sake of completeness, we give in table 9.5 the remaining exceptions ≤ 20000 .

If B(N) is the number of pairs (k,p) for which $2^{k}+p \leq N$ (where $k \in \mathbb{N}$ and p is 1 or an odd prime), then we have

$$\begin{split} \mathtt{B}(\mathtt{N}) &= \sum_{k=1}^{\left\lceil \log_2 \mathtt{N} \right\rceil} \pi(\mathtt{N}-\mathtt{2}^k) \ . \end{split}$$

By the same argument used in estimating the number of even f-untouchables, we conclude, under the assumption of the random distribution of the numbers 2^{k} +p among the odd numbers, that the expected number of exceptions \leq N to the conjecture of DE POLIGNAC is

$$\frac{N}{2}(1 - \frac{2}{N})^{B(N)}$$

Since B(20000) = 28232, our approximation gives $10000(1 - \frac{1}{10000})^{28232} = 594.2$, whereas the actual number of exceptions ≤ 20000 is 590.

By using the estimate $B(N) < \pi(N) \log_2 N,$ we find for large N that the expected number of exceptions \leq N is

$$> \frac{N}{2}(1 - \frac{2}{N})^{\pi(N)\log_2 N} \approx .0279N(1 + o(1))$$
.

127	2579	4855	7379	9371	11285	13285	15071	16865	18637
149	2669	4889	7387	9391	11317	13393	15101	16867	18719
251	2683	5077	7389	9431	11335	13451	15113	16973	18787
331	2789	5099	7393	9457	11347	13469	15119	17021	18817
337	2843	5143	7417	9473	11411	13589	15121	17047	18881
509	2879	5303	7431	9613	11435	13603	15127	17083	18889
599	2983	5405	7535	9787	11533	13619	15149	17089	18895
809	2993	5467	7547	9809	11549	13679	15187	17113	18897
877	2999	5557	7583	9907	11579	13735	15217	17137	18899
905	3029	5617	7603	9941	11593	13841	15223	17147	18911
907	3119	5729	7747	9959	11627	13859	15247	17229	18959
959	3149	5731	7753	10007	11695	13897	15359	17257	18971
977	32 39	5755	7783	10027	11729	13973	15419	17269	19007
1019	3299	5761	7799	10079	11743	14009	15521	17305	19093
1087	3341	5771	7807	10121	11857	14023	15551	17327	19117
1199	3343	5923	7811	10235	11921	14039	15607	17369	19135
1207	3353	6021	7813	10327	11993	14081	15641	17371	19139
1211	3431	6065	7867	10379	12007	14101	15701	17411	19163
1243	3433	6073	7913	10391	12131	14143	15719	17429	19177
1259	3637	6119	7961	10409	12191	14227	15779	17519	19273
1271	3643	6161	8023	10447	12203	14231	15787	17593	19319
1477	3739	6193	8031	10451	12223	14279	15809	17669	19345
1529	3779	6247	8087	10483	12239	14303	15853	17735	19379
1549	3877	6283	8107	10511	12373	14347	15869	17759	19483
1589	3967	6433	8111	10513	12401	14375	15943	17767	19583
1619	4001	6463	8141	10553	12427	14383	16025	17773	19807
1649	4013	6521	8159	10607	12431	14407	16027	17827	19819
1657	4063	6535	8287	10697	12479	14437	16031	17849	19889
1719	4151	6539	8363	10873	12517	14459	16109	17887	19949
1759	4153	6547	8387	10949	12671	14467	16165	17909	19961
1783	4271	6637	8411	10963	12727	14473	16177	17921	20002
1859	4311	6659	8429	11015	12731	14489	16181	17977	
1867	4327	6673	8467	11023	12733	14533	16213	18033	
1927	4503	6731	8527	11039	12749	14585	16361	18089	
1969	4543	6791	8563	11069	12791	14639	16405	18103	
1985	4567	6853	8587	11083	12881	14765	16409	18155	
2171	4589	6941	8719	11105	12929	14809	16499	18209	
2203	4633	7151	8831	11137	12941	14005	16543	18307	
2213	46.49	7169	8873	111/1	13001	14017	16559	18359	
2231	4663	7199	8887	11207	13083	14921	16601	18391	
2263	4691	7267	8921	11210	1 3003	1/075	16645	18427	
2279	4811	7289	8023	11219	13099	149.91	16727	18487	
2293	4813	7297	9101	11231	13147	15013	16730	18517	
2465	4841	7210	0230	11230	13160	150/1	16783	19551	
2503	4843	7212	9207	11070	12017	15041	160/03	19612	
دەرى	~0~1	1242	9307	11219	* 7 ~ 1 /	10040	10049	10010	

The remaining exceptions \leq 20000 to the conjecture of DE POLIGNAC

TABLE 9.5

REFERENCES

- [1] J. ALANEN, Empirical study of aliquot series, MR 133/72, Mathematisch Centrum, Amsterdam, July 1972. {61,66} *)
- [2] P.T. BATEMAN, The distribution of values of the Euler function, Acta Arith., 21 (1972) 329-345. {20}
- [3] W. BORHO, Eine Schranke für befreundete Zahlen mit gegebener Teileranzahl, Math.Nachr., <u>63</u> (1974) 297-301. {10,11,12}
- [4] W. BORHO, Über die Fixpunkte der k-fach iterierten Teilersummenfunktion, Mitt.Math.Gesells. Hamburg, 9 (1969) 34-48. {8}
- [5] A.L. BROWN, Multiperfect numbers, Scripta Math., 20 (1954) 103-106. [42]
- [6] A.L. BROWN, Multiperfect numbers, Cousins of the perfect numbers -No. 1, Recr.Math.Mag., 14 (1964) 31-39. {42}
- [7] E. CATALAN, Propositions et questions diverses, Bull.Soc.Math.France, <u>16</u> (1887-8) 128-129. {2}
- [8] J.G. VAN DER CORPUT, On the conjecture of de Polignac, Simon Stevin, <u>27</u> (1950) 99-105 (Dutch). {71}
- [9] J.G. VAN DER CORPUT, Sur l'hypothèse de Goldbach pour presque tous les nombres pairs, Acta Arith., 2 (1937) 266-290. {64}
- [10] L.E. DICKSON, Theorems and tables on the sum of the divisors of a number, Quart.J.Math., 44 (1913) 264-296. {2}
- [11] R.E. DRESSLER, An elementary proof of a theorem of Erdös on the sum of divisors function, J.Number Theory, 4 (1972) 532-536. {20}
- [12] P. ERDÖS, On integers of the form 2^k+p and some related problems, Summa Brasiliensis Math., 2 (1950) 113-123. {71}
- [13] P. ERDÖS, Some remarks on Euler's φ function and some related problems, Bull.Amer.Math.Soc., 51 (1945) 540-544. {20}
- [14] P. ERDÖS, Über die Zahlen der Form $\sigma(n)-n$ und $n-\phi(n)$, Elem.der Math., 28 (1973) 83-86. {61,62}
- [15] TH. ESTERMANN, On Goldbach's problem: Proof that almost all even positive integers are sums of two primes, Proc.London Math.Soc., <u>44</u> (1938) 307-314. [64]

^{*)}Numbers in curly brackets refer to the page(s) in this thesis where the reference occurs.

- [16] B. FRANQUI, M. GARCIA, Some new multiply perfect numbers, Amer.Math. Monthly, 60 (1953) 459-462. {42}
- [17] B. FRANQUI, M. GARCÍA, 57 new multiply perfect numbers, Scripta Math., 20 (1954) 169-171. {42}
- [18] R.K. GUY, J.L. SELFRIDGE (editors), Combined report on aliquot sequences, Proc. 4th annual Manitoba Conf.Numer.Math., Winnipeg, 1974. {3,60}
- [19] P. HAGIS, JR., A lower bound for the set of odd perfect numbers, Math. Comp., <u>27</u> (1973) 951-953. {49}
- [20] P. HAGIS, JR., Every odd perfect number has at least eight prime factors, Notices Amer.Math.Soc., 22 (1975) A-60. {49}
- [21] P. HAGIS, JR., Unitary amicable numbers, Math.Comp., 25(1971)915-918. [54]
- [22] G.H. HARDY, E.M. WRIGHT, An introduction to the The Theory of Numbers, 4th ed., Oxford Univ.Press, New York, 1960. {27}
- [23] K. KNOPP, Theory and application of infinite series (transl. from the 2nd German ed. by R.C. Young), London, etc., Blackie, 1928. {26}
- [24] M. LAL, G. TILLER, T. SUMMERS, Unitary sociable numbers, Proc. 2nd annual Manitoba Conf.Numer.Math., Winnipeg, 1972, 211-216. {9,54,60}
- [25] E. LANDAU, Handbuch der Lehre von der Verteilung der Primzahlen, Reprinted by Chelsea, 1953. {28}
- [26] E.J. LEE, J.S. MADACHY, The history and discovery of amicable numbers, J.Recr.Math., <u>5</u> (1972), Part 1: 77-93, Part 2: 153-173, Part 3: 231-249. {5,54}
- [27] J. PERROTT, Sur une proposition empirique enoncée au Bulletin, Bull. Soc.Math.France, 17 (1888-9) 155-156. {2}
- [28] A. DE POLIGNAC, Six propositions arithmologiques déduites du crible d'Eratosthène, Nouv.Ann.Math., 8 (1849) 130-133. {71}
- [29] P. POULET, La chasse aux nombres, Fascicule I, Bruxelles, 1929. {42}
- [30] H.J.J. TE RIELE, A note on the Catalan-Dickson conjecture, Math.Comp., 27 (1973) 189-192. {3}
- [31] H.J.J. TE RIELE, Four large amicable pairs, Math.Comp., <u>28</u> (1974) 309-312. {54}

- [32] H.J.J. TE RIELE, Further results on unitary aliquot sequences, NW2/73, Mathematisch Centrum, Amsterdam, March 1973. {5,54}
- [33] H.J.J. TE RIELE, Unitary aliquot sequences, MR 139/72, Mathematisch Centrum, Amsterdam, September 1972. {7,60}
- [34] H. RIESEL, Lucasian criteria for the primality of $N = h \cdot 2^{n} 1$, Math. Comp., 23 (1969) 869-875. {52}
- [35] R. STEUERWALD, Verschärfung einen notwendigen Bedingung für die Existenz einen ungeraden vollkommenen Zahl, S.-B.Math.-Nat.Abt.Bayer. Akad.Wiss., (1937) 68-72. {50}
- [36] M.V. SUBBARAO, L.J. WARREN, Unitary perfect numbers, Canad.Math.Bull., 9 (1966) 147-153. {49}
- [37] N.G. TSCHUDAKOFF, Über die Dichte der Menge der geraden Zahlen, welche nicht als Summe zweier ungerader Primzahlen darstellbar sind, Izv. Akad.Nauk. SSSR, Ser.Mat., (1938) 25-40 (Russian). {64}
- [38] B. TUCKERMAN, The 24th Mersenne Prime, Proc.Nat.Acad.Sci. USA, <u>68</u> (1971) 2319-2320. [49]
- [39] C.R. WALL, A new unitary perfect number, Notices Amer.Math.Soc., <u>16</u> (1969) 825. {49}
- [40] C.R. WALL, Selected topics in elementary number theory, Univ.of South Carolina Press, Columbia, S.C., 1974. {68}
- [41] C.R. WALL, Topics related to the sum of unitary divisors of an integer, Ph.D.Thesis, Univ. of Tennessee, March 1970. {14,49,54}

OTHER TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

A leaflet containing an order-form and abstracts of all publications mentioned below is available at the Mathematisch Centrum, Tweede Boerhaavestraat 49, Amsterdam-1005, The Netherlands. Orders should be sent to the same address.

MCT	1	T. VAN DER WALT, Fixed and almost fixed points, 1963. ISBN 90 6196 002 9.
MCT	2	A.R. BLOEMENA, Sampling from a graph, 1964. ISBN 90 6196 003 7.
MCT	3	G. DE LEVE, Generalized Markovian decision processes, part I: Model and method, 1964. ISBN 90 6196 004 5.
MCT	4	G. DE LEVE, Generalized Markovian decision processes, part II: Pro- babilistic background, 1964. ISBN 90 6196 006 1.
MCT	5	G. DE LEVE, H.C. TIJMS & P.J. WEEDA, Generalized Markovian decision processes, Applications, 1970. ISBN 90 6196 051 7.
MCT	6	M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 1.
MCT	7	W.R. VAN ZWET, Convex transformations of random variables, 1964. ISBN 90 6196 007 X.
MCT	8	J.A. ZONNEVELD, Automatic numerical integration, 1964. ISBN 90 6196 008 8.
MCT	9	P.C. BAAYEN, Universal morphisms, 1964. ISBN 90 6196 009 6.
MCT	10	E.M. DE JAGER, Applications of distributions in mathematical physics, 1964. ISBN 90 6196 010 X.
MCT	11	A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964. ISBN 90 6196 011 8.
MCT	12	J.A.TH.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MOKKEN & A. VAN WIJNGAARDEN, Formal properties of newspaper Dutch, 1965. ISBN 90 6196 013 4.
MCT	13	H.A. LAUWERIER, <i>Asymptotic expansions</i> , 1966, out of print; replaced by MCT 54 and 67.
MCT	14	H.A. LAUWERIER, Calculus of variations in mathematical physics, 1966. ISBN 90 6196 020 7.
MCT	15	R. DOORNBOŠ, Slippage tests, 1966. ISBN 90 6196 021 5.
MCT	16	J.W. DE BAKKER, Formal definition of programming languages with an application to the definition of ALGOL 60, 1967. ISBN 90 6196 022 3.
MCT	17	R.P. VAN DE RIET, Formula manipulation in ALGOL 60, part 1, 1968. ISBN 90 6196 025 8.
MCT	18	R.P. VAN DE RIET, Formula manipulation in ALGOL 60, part 2, 1968. ISBN 90 6196 038 X.
MCT	19	J. VAN DER SLOT, Some properties related to compactness, 1968. ISBN 90 6196 026 6.
MCT	20	P.J. VAN DER HOUWEN, Finite difference methods for solving partial differential equations, 1968. ISBN 90 6196 027 4.

- MCT 21 E. WATTEL, The compactness operator in set theory and topology, 1968. ISBN 90 6196 028 2.
- MCT 22 T.J. DEKKER, ALGOL 60 procedures in numerical algebra, part 1, 1968. ISBN 90 6196 029 0.
- MCT 23 T.J. DEKKER & W. HOFFMANN, ALGOL 60 procedures in numerical algebra, part 2, 1968. ISBN 90 6196 030 4.
- MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 90 6196 060 6.
- MCT 25 E.R. PAERL, Representations of the Lorentz group and projective geometry, 1969. ISBN 90 6196 039 8.
- MCT 26 EUROPEAN MEETING 1968, Selected statistical papers, part I, 1968. ISBN 90 6196 031 2.
- MCT 27 EUROPEAN MEETING 1968, Selected statistical papers, part II, 1969. ISBN 90 6196 040 1.
- MCT 28 J. OOSTERHOFF, Combination of one-sided statistical tests, 1969. ISBN 90 6196 041 X.
- MCT 29 J. VERHOEFF, Error detecting decimal codes, 1969. ISBN 90 6196 042 8.
- MCT 30 H. BRANDT CORSTIUS, Excercises in computational linguistics, 1970. ISBN 90 6196 052 5.
- MCT 31 W. MOLENAAR, Approximations to the Poisson, binomial and hypergeometric distribution functions, 1970. ISBN 90 6196 053 3.
- MCT 32 L. DE HAAN, On regular variation and its application to the weak convergence of sample extremes, 1970. ISBN 90 6196 054 1.
- MCT 33 F.W. STEUTEL, Preservation of infinite divisibility under mixing and related topics, 1970. ISBN 90 6196 061 4.
- MCT 34 I. JUHASZ, A. VERBEEK & N.S. KROONENBERG, Cardinal functions in topology, 1971. ISBN 90 6196 062 2.
- MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 90 6196 063 0.
- MCT 36 J. GRASMAN, On the birth of boundary layers, 1971. ISBN 9061960649.
- MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DUIJVESTIJN, E.W. DIJKSTRA, P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN ARETZ, W.L. VAN DER POEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES & G. ZOUTENDIJK, MC-25 Informatica Symposium, 1971. ISBN 90 6196 065 7.
- MCT 38 W.A. VERLOREN VAN THEMAAT, Automatic analysis of Dutch compound words, 1971. ISBN 90 6196 073 8.
- MCT 39 H. BAVINCK, Jacobi series and approximation, 1972. ISBN 90 61960746.
- MCT 40 H.C. TIJMS, Analysis of (s,S) inventory models, 1972. ISBN 90 6196 075 4.
- MCT 41 A. VERBEEK, Superextensions of topological spaces, 1972. ISBN 90 6196 076 2.
- MCT 42 W. VERVAAT, Success epochs in Bernoulli trials (with applications in number theory), 1972. ISBN 90 6196 077 0.
- MCT 43 F.H. RUYMGAART, Asymptotic theory of rank tests for independence, 1973. ISBN 90 6196 081 9.
- MCT 44 H. BART, Meromorphic operator valued functions, 1973. ISBN 9061960827.

MCT 45	A.A.	BALKEMA,	Monotone	transformations	and	limit	laws,	1973.
		ISBN 9	0 6196 083	35.				

- MCT 46 R.P. VAN DE RIET, ABC ALGOL, A portable language for formula manipulation systems, part 1: The language, 1973. ISBN 9061960843.
- MCT 47 R.P. VAN DE RIET, ABC ALGOL, A portable language for formula manipulation systems, part 2: The compiler, 1973. ISBN 9061960851.

MCT 48 F.E.J. KRUSEMAN ARETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, An ALGOL 60 compiler in ALGOL 60, Text of the MC-compiler for the EL-X8, 1973. ISBN 90 6196 086 X.

- MCT 49 H. KOK, Connected orderable spaces, 1974. ISBN 90 6196 088 6.
- MCT 50 A. VAN WIJNGAARDEN, B.J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER, M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER (Eds), Revised report on the algorithmic language ALGOL 68, 1976. ISBN 90 6196 089 4.
- MCT 51 A. HORDIJK, Dynamic programming and Markov potential theory, 1974. ISBN 90 6196 095 9.
- MCT 52 P.C. BAAYEN (ed.), Topological structures, 1974. ISBN 90 6196 096 7.
- MCT 53 M.J. FABER, Metrizability in generalized ordered spaces, 1974. ISBN 90 6196 097 5.
- MCT 54 H.A. LAUWERIER, Asymptotic analysis, part 1, 1974. ISBN 90 6196 098 3.
- MCT 55 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 1: Theory of designs, finite geometry and coding theory, 1974. ISBN 90 6196 099 1.
- MCT 56 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 2: graph theory, foundations, partitions and combinatorial geometry, 1974. ISBN 90 6196 100 9.
- MCT 57 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 3: Combinatorial group theory, 1974. ISBN 90 6196 101 7.
- MCT 58 W. ALBERS, Asymptotic expansions and the deficiency concept in statistics, 1975. ISBN 90 6196 102 5.
- MCT 59 J.L. MIJNHEER, Sample path properties of stable processes, 1975. ISBN 90 6196 107 6.
- MCT 60 F. GÖBEL, Queueing models involving buffers, 1975. ISBN 90 6196 108 4.
- * MCT 61 P. VAN EMDE BOAS, Abstract resource-bound classes, part 1. ISBN 90 6196 109 2.
- * MCT 62 P. VAN EMDE BOAS, Abstract resource-bound classes, part 2. ISBN 90 6196 110 6.
 - MCT 63 J.W. DE BAKKER (ed.), Foundations of computer science, 1975. ISBN 90 6196 111 4.
 - MCT 64 W.J. DE SCHIPPER, Symmetrics closed categories, 1975. ISBN 90 6196 112 2.
 - MCT 65 J. DE VRIES, Topological transformation groups 1 A categorical approach, 1975. ISBN 90 6196 113 0.
 - MCT 66 H.G.J. PIJLS, Locally convex algebras in spectral theory and eigenfunction expansions. ISBN 90 6196 114 9.

* MCT 67 H.A. LAUWERIER, Asymptotic analysis, part 2. ISBN 90 6196 119 X. P.P.N. DE GROEN, Singularly perturbed differential operators of * MCT 68 second order. ISBN 90 6196 120 3. * MCT 69 J.K. LENSTRA, Sequencing by enumerative methods. ISBN 90 6196 125 4. MCT 70 W.P. DE ROEVER JR., Recursive program schemes: semantics and proof theory, 1976. ISBN 90 6196 127 0. MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision processes, 1976. ISBN 90 6196 129 7. * MCT 72 J.K.M. JANSEN, Simple periodic and nonperiodic Lamé functions and their applications in the theory of conical waveguides. ISBN 90 6196 130 0. * MCT 73 D.M.R. LEIVANT, Absoluteness of intuitionistic logic. ISBN 90 6196 122 x. MCT 74 H.J.J. TE RIELE, A theoretical and computational study of generalized aliquot sequences. ISBN 90 6196 131 9. * MCT 75 A.E. BROUWER, Treelike spaces and related connected topological spaces. ISBN 90 6196 132 7. * MCT 76 M. REM , Associons and the closure statement. ISBN 90 6196 135 1. * MCT 77 * MCT 78 E. de Jonge, A.C.M. van Rooij, Introduction to Riesz spaces, 1977. ISBN 90 6196 133 5 * MCT 79 M.C.A. VAN ZUIJLEN, Empirical distributions and rankstatistics, 1977. ISBN 90 6196 145 9. * MCT 80 P.W. HEMKER, A numerical study of stiff two-point boundary problems, 1977. ISBN 90 6196 146 7. MCT 81 K.R. APT & J.W. DE BAKKER (eds), Foundations of computer science II, part I, 1976. ISBN 90 6196 140 8. MCT 82 K.R. APT & J.W. DE BAKKER (eds), Foundations of computer science II, part II, 1976. ISBN 90 6196 141 6. * MCT 83 L.S. VAN BENTEM JUTTING, Checking Landau's "Grundlagen" in the automath system, 1977. ISBN 90 6196 147 5. MCT 84 H.L.L. Busard, The translation of the elements of Euclid from the Arabic into Latin by Hermann of Carinthia books vii-xii, 1977. ISBN 90 6196 148 3 An asterik before the number means "to appear".