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PREFACE 

Aliquot sequences are defined according to the following rule: a leading 

term is given and every subsequent term is the sum of the "aliquot parts" 

of the preceding term. The aliquot parts of a number> 1 are all divisors 

(including 1) less than that number. When a term equals one of the preceding 

terms, we have a so called cycle. Examples of cycles are perfect numbers 

(cycle-length=!) and amicable number pairs (cycle-·length=2). These sequences 

were studied already by the Pythagoreans and later on by Euler, Catalan, 

Dickson, and many others. 

The advent of (high-speed) computers has stimulated the renewed interest 

in aliquot sequences, because the computers made possible the extended 

computation of "difficult" sequences (i.e. sequences the terms of which be­

come too large for factorization by hand), especially in order to get more 

statistical information about the asymptotic behaviour of aliquot sequences. 

'l'his information is interesting, in particular in view of the famous 

Catalan-Dickson conjecture which states that all aliquot sequences are 

bounded. In fact, very recently and on the basis of much statistical and 

heuristical material, R.K. Guy has put forward the conjecture that almost 

all aliquot sequences with even lead.ing term a.re unbounded! 

In this monograph a theoretical and computational study of generalized 

aliquot sequences is presented. Generalized aliquot sequences are sequences 

every term of which (except the leader) is the sum of certain, but not neces­

sarily all aliquot parts of the preceding term. 

In chapter 1 generalized aliquot sequences are defined by use of a set 

F of arithmetical functions f which determine the aliquot parts to be summed 

in the computation of a term from the preceding one. For this reason, general­

ized aliquot sequences will be denoted by £-sequences. 
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Chapters 2 to 5 mainly present theoretical results. In chapter 2, for 

any f E F the existence off-sequences with arbitrarily many monotonically 

increasing terms is proved. Moreover, the structure of cycles is investigated, 

and two construction methods for cycles are discussed. In chapter 3 five 

classes of functions f E Fare indicated, which in subsequent chapters serve 

as test-cases for the computational experiments. In chapter 4 the distribu­

tion of the values of the functions f E Fis investigated. Chapter 5 presents 

two methods for the computation of the mean value of the quotient of two 

subsequent terms of an f-sequence. 

Chapters 6 to 9 mainly present computational results and analyses. 

In chapter 6 we present a selection of the results of systematic computations 

off-sequences, for the testcases of chapter 3. The main subjects of chapter 

7 are the proof of the existence of unbounded f-sequences, for certain f E F, 

and the construction of such unbounded sequences. Chapter 8 deals with the 

computation of cycles for the test-cases of chapter 3. Finally, in chapter 9 

we study untouchable numbers, i.e. numbers which can only be leaders of 

f-sequences. 

The author's interest in aliquot. sequences was awakened by 

Dr J.D. Alanen; he is very grateful to him for his interest and encourage­

ment. 
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PRELIMINARIES AND NOTATION 

As usual, :JS! will denote the set of positive integers and l\!0 the set of 

non-negative integers. Throughout, p will denote an arbitrary prime number, 

unless explicitly stated otherwise, and for any r E l\l, is the r-th prime 

(pl = 2). 

By (a1 ,a2 , ••• ,an) (n 2: 2) we mean the greatest common divisor of the 

positive integers a1 ,a2 ,. • .,an, If (a1 ,a2 , • .,,an) = 1, we say that 

,a2 , ••• ,an are relatively prime. 

By (a1 , , • , • , an) k (k E :N) we mean the greatest common k-th power 

divisor of a 1 ,a2 ,,.,,an. If (a1 ,a2 , . .,,an)k 1, we say that a 1 ,a2 , ... ,an 

are relatively k-prime. For any k the integer 1 is considered to beak-th 

power divisor of any positive integer. 

A unitary divisor d of n is a divisor of n with (d,n/d) = 1, i.e., 

every prime p dividing d does not divide n/d. If dis a unitary divisor of 

n, we write d II n. 

A k-ary divisor d of n (k EN) is a di.visor of n with (d,n/dlk 1, 

k Le., every prime power p dividing d does not divide n/d. 

A positive integer is k-fr>ee (k EN, k ::c 2) if it is not divisible by 

the k-th power of any prime. A 2-free integer is also called squarefree. 

A positive integer is k-full (k EN, k ::c 2) if any of its prime 

divisors has multiplicity 2 k. 

If f : N -+ lil is an arithmetical function, then n E N is called 

f-·abunda:nt, whenever f (n) > 2n. 

Let S =- {n1 ,n2 , ..• } be an infinite set of positive integers and let 

S (n) (n E :NJ be the number of elements of S not exceeding n. Then the lower 

(asymptotic) density and the upper (asymptotic) density of Sare the values 

of 

lim inf S (n) /n and 
n -+ oo 

lim sup S(n)/n, 
n ➔ GO 

respectively. 
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If the lower and upper density are equal, we say that the (asymptotic) 

density of Sexists, with this common value. 

Let f(x) and g(x) be two functions of the real variable x. Then by 

f - g (x ➔ 00 ) we mean that lim f/g = 1. 
x➔oo 

By f :=: g we mean that there are constants c1 and c2 such that c1 g < f < c2g. 

The mean value M{ f} of an arithmetical function f , N -, :N is the value 

of lim ½ 2:=l f(n), provided that this limit exists. 
N➔oo 

In the tables factorized numbers will sometimes be given with exponents 

in parentheses; for example, 2(2)3.5.1.1(2) means 223.5.11 2 • 



CHAPTER 1 

GENERALIZED ALIQUOT SEQUENCES AND THE CLASSICAL CASE 

{Tears of joy over man's 
tortuous journey to the beyond 

Elvin J. Lee} 

Let f : N -► N be an arithmetical function with the following two 

properties: 

PL f is multiplicative, i,,e,,, if (a,b) = 1' then f(ab) = f(a)f(b). 

P2. For any e EN a polynomial Wf(x) of degree e in x is given, such that 
e 

for any prime p f (pe) := wf (p). The coefficients of ~l <xl are . e 
f e 

restricted to the values 0 or 1 and We (1) 2 2. 

The set of all functions f with properties Pl and P2 will be denoted by F. 

It follows that if f E F, then 

f(1) = 1, f(pl = p+l, 

f(p2) 2 f(p2) 2 2 2 
either p +1, or p +p, or f (p ) = p +p+l , 

either 3 3 
f(i) 3 3 3 2 f(p3) =p3+p+l, f (p ) p +1, or p +p, or f (p ) = p +p , or 

3 3 2 3 3 2 3 
= p 3+i+p+1 or f (p ) p +p +1, or f (p ) = p +p +p, or f(p ) 

and so on. 

ExAMPLE Ll If for E :IN, Wf(x) e e-1 
1' i ~ e", all any e : = X + X + ... + X + 

Wf(xl 
e 

coefficients of are equal to 1, then f is the sum of the divisors e 
function. It will be denoted, as usual, by er. 

ExAMPLE 1 .2 
f e If for any e EN, We(x) : = x + 1, then f is the sum of the 

unitary divisors function,., It will be denoted, as usual, by a*,,, 

It also follows from £.L and P2 that f (n) is the sum of n and certain 0th.er 

divisors of n; which other divisors depends on the choice of the poly­

nomials Wf(x). It is customary to call the divisors of n which are less than 
e 

n the aliquot divisors of n. 

DEFINITION 1.1 An aliquot f-sequence with leader n EN (briefly called an 

£-sequence on n, or n-seq:uence if this gives no confusion) is a sequence 



2 

n0 ,n1, , .. , of positive integers, such that 

(Ll) 
and 

f(n.) 
l. 

- n. 
J. 

( i=O, 1, 2, ... ) • 

+ 1, we have f(n) - n > 0 for all n 2: 2, for any f E F. 

The term ni is sometimes denoted by n i (for typographical convenience). 

An n-sequence is te.minating if there exists a value of f for which = 1, 

and this f is also denoted by ff= ff(n), Ann-sequence is periodic if 

there is an l' > 0 and a c > 0 such that n (f'+c) = n: f'. The least f• 

with this property is also denoted by ff 
corresponding to this f', is the period 

ff (n) and the least positive c, 

(or cycle length), and will be 

denoted by c = cf (n). "rhe c different numbers {n : f', n : (f'+l), .. ,, 

n : (f'+c-1)} are called an (f-)cycZe of -Z.ength c. 

If n < m and the two f-sequences on n and m, respectively, have a term in 

common, which is larger than all previous terms in either sequence, then 

the £-sequence on mis said to be tributary to the £-sequence on n. 

A sequence which is not tributary to any other one is called a main sequence. 

Thus a bounded n-sequence is main if n is the least number which leads to 

its maximum. For the example f = 0, we have 318: 4 498 3 = 798, and 

318 is the least number leading to the maximum 722961 318 32, so the 

CJ-sequence with leader 318 is main and the 498-sequence is tributary to it. 

Both sequences are terminating. The 562-sequence is characterized by the 

first four terms 562, 220, 284, 220; thus it is periodic, (562) 1 and 

(562) = 2. For the 220-sequence we have f~(220) = 0 and c0 (220) 2. 

The classical example of an £-sequence is the case in which f(n) is 

the sum of aU divisors of n (f(n) = o(n)), so that f(n) - n = o(n) - n is 

the sum of all aliquot divisors of n. 

CATALAN [7] was probably the first one to study this case. He conject­

ured that every (aliquot) CJ-sequence contains either unity or a perfect 

number, PERR<YrT [ 27 J gave the counterexample 220, 284, 220, . , . and DICKSON 

[10] revised Catalan's conjecture to: Every ( aUquot) a-sequence contains 

elther unity or a cyc-Z.e (which can be a perfect number, or an amicable 

pair as in Perrott's counterexample, or a cycle of length greater than two). 

The verification of this conjecture is very cumbersome, in particular when 

the terms become large, because in order to compute a term nk+l' the 
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complete factorization of nk is needed. 

The a-sequence with least starting value and unknown behaviour is 

currently the 276-sequence. D.H. LEHMER [18] has recently computed the 

433-rd term of this sequence, which is a 36-digit number. At present, there 

are 98 sequences with leader less than 104 whose behaviour is unknown. Most 

computational results on a-sequences have been collected by GuY and 

SELFRIDGE in l18]. 

Nowadays, many resea.rchers believe that the Catalan-Dickson conjecture 

is false. A partial result in this direction is LENSTRA's theorem (private 

communication dated April 10th, 1972): For any given t E JN, a-sequences can 

be constructed with at least t monotonically increasing terms. 'l'E RIELE [30] 

proved the same theorem, but on the condition that there are infinitely many 

even perfect numbers. 
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CHAPTER 2 

GENERAL PROPERTIES OF ALIQUOT f-SEOUENCES 

In this chapter some general properties off-sequences and f-cycles 

are proved. 

PROPOSITION 2.1 Let f E F a:nd let 

(i? 0, k? 1) 

be k+l consecutive terms of an f-sequence with (a 1 for 

b E ::N is such that f(b)/b = f(a)/a, b ~ a, a:nd 

(b,m .. ) = 1 for j = O,lp,.,k-·1, then 
l+J 

are also k+1 consecutive terms of an £-sequence. 

PROOF. Under the hypotheses, we have 

f(brni+j) - bmi+j = f(b)f(mi+j) - bmi+j = 

b 
= a [f(a)f(mi+j) - ami+j] 

= £ [f(am .. ) - am1.+J.] 
a i+J 

b 
a · ami+j+l 

(j=0,1, ... ,k-1). □ 

COROLLARY 2.1 in proposition 2.1, (am1 ,ami+l' ... ,ami+k-l} is an f-cycle 

of length k, then {bm1 ,bmi+l'... } is also an f-eycle the same 

length. 



Given an f-cycle, one may try to apply this corollary by looking for 

numbers a and b, satisfying the conditions of proposition 2.1. Appli.cation 

* * of this corollary to a -cycles (for the definition of a, see example 1.2 

in section 1) yielded several hundred new cr*-cycles (see TE RTELE [32]). 

PROPOSITION 2.2 Let f,g E F, f"' g, and let 

be k+l consecu'tive terms of an f-sequence -with ) = 1 for 

j = 0,1, ... ,k-1; let, moreover, m .. be squarefree for the same values of 
l.+J 

j. If b EN is such that (b,m .. ) = 1 for j = 0,1, .• °'k-1, b"' a, and 
J.+J 

g(b)/b = f(a)/a, then 

a,y,e also k+l consecutive teprns of a g-sequenoe. 

PROOF. Under the hypotheses, we have 

g(b)g(m.+.) - bm.+. 
J. J .t. J 

b 
- [f(a)g(m.+.) -
a J. J 

? [f(a)f(mi+j) - ami+j] 

b a [f(ami+j) - ami+j] 

b 
a· ami+j+l 

(j=0,1, ... ,k-1). D 

COROLLARY 2.2 'in proposition 2.2, ,ami+l' .•• ,am:i.+k-l} is an f-eycle 

of length k, then {bm.,bm. 1 , ... ,bm. k 1} is a g-cycle of the same length. 
J. 1+ J.+ -

Application of this corollary to known o-cycles of length 2 (LEE & 

MADACHY [26]) yielded several hundred new o*-cycles (see TE RIELE [32]). 

~'HEOREM 2.1 Let NE N (N z 3) and f E F he given. Then there exist 

1:tely many f-sequences with at least N consecutive increasing terms. 

5 
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PROOF'. Let q1 , q 2 , ••• , qN be a sequence of N primes defined by 

{:; ~ 
2, q2 3' 

(2 .1) 

qi+1 + .1 (i=2,3, ... ,N-1). 

The existence of such a sequence follows from Dirichlet's theorem on the 

occurrence of an infinitude of primes (hence certainly one) in the arithm­

etic progression tqf - 1 (t=l,2, ... ). Now choose n0 such that 

(2. 2) 

with (qi,m0 ) = 1 for i=1,2, ... ,N. 

Let n0 ,n1 ,n2 , •• be the f-sequence with leader n0 • Then 

which by (2.1) ma.y be written in the form 

with (qi,m1) = 1 for i=l,2, ••• ,N-1. 

Proceeding i.n the same way with n1 ,n2 , ... ,¾_2, we find that for 

k=l,2, ••. ,N-1 

with L 

Hence 6 11 ~ (k=O, 1, •.• ,N-2) so that 

f(2)f(3)f 

> 12n /6 - n 
k k 
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Hence the N terms n0 ,n1 , ... ,~_1 of the f-sequence with leader n0 are 

increasing. The existence of infinitely many such sequences follows from 

the existence of infinitely many numbers m0 satisfying (2.2). □ 

Theorem 2.1 was first proved, in this form, for f = o by LENSTRA (pri-

vate communication dated April 10th, 1972) and for f * o by '.I'E RIELE [33]. 

Very recently, for f = o some stronger results have been obtained by 

ERDOS *) and GUY **). Erdos proved that for aJ.1 leaders n E JN, except a 

sequence of density O, and for every t E 1N and a > 0, 

for 1 ~ i ~ t. Guy proved: given any prime p, any t E JN, and any p > 1, 

there are aliquot sequences containing t consecutive terms, each greater 

than p times the previous one, but whose only prime divisors exceed p. 

THEOREM 2.2 Let f E F and Zet {n1 ,n2 , ... ,Y\:} be an f-cycZe of length k 

(k :c 1), where k is odd. If the k nwnbers ni (i=l,210 .. ,k) contain the 

prime 2 to the same power, then 

otherwise 

PROOF. Since {n1 ,n2 , ... ,nk} is an f-cycle, we have 

(2.3) f 

Note that, for i=l,2, .•. ,k, we have f 

f 

f(n.) and also 
l. 

P. On asymptotic properties of aliquot sequences, Math. Comp., 

30(1976) 641-645. 
;c,,) 

R.K. GUY, AJ.iquot sequences, manuscript, 1976. 
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so that 

(2.4) 
i+k-1 

I <-1i 
j=i 

since k is odd. 

k-1 n. (1+(-1) ) , 
]_ 

Let a (n1 ,n2 , ... ,nk) and b = (f(n1 ),f(n2), ... ,f(nk)). From (2.3) it 

follows that a J f(n.) (i=l,2,, . .,k), so that a I b. On the other hand, 
i 

(2.4) implies that b j 2ni (i=1,2, ... ,k), so that 

(2.5) either b = a or b = 2a. 

If every n1 contains 2 to the same power, then ni/a is odd and 

n1/a + ni+l/a = f(n1 )/a is even; thus in (2.5) we can only have b = 2a. 

If not every contains 2 to the same power, then there is an index j such 

that n. contains the least power of 2 and 
J 

contains a higher one. For 

that index j we have nj/a + nj+i/a 

can only have b = a. 

f(n.)/a is od.d, so that in (2.5) we 
J 

This theorem generalizes a theorem of BORHO [4]. 

□ 

COROLLARY 2 • 3 Let be an f-cycle of length k > with k odd 

and let (n1 ,n2 , ... ,~) =a> 1. 

Then from theorem 2.2 it follows that 

(a, 

is impossible. 

Suppose contrariwise that (a, ni/a) = 1 for i=l,2, ..• ,k. 

If a is odd and at least one of the n1/a is even, then we have by theorem 

2 .2: 

(f 

so that 

f (a) (f a. 

This is impossible, since f(a) > a. 



If a is even, or if ni is odd for all i=1,2, ..• ,k, then we have by theorem 

2.2: 

so that 

Hence f(a) = 2a; this implies that ni+l?. ni, for all i 04,2, ... ,k, so that 

k = 1, a contradiction. 

REMARK 2.1 DICKSON [10] proved this corollary for f = o. 

REMARK 2.2 In [24], LAL, TILLER & SUMMERS remark that (we quote) 

9 

"for unitary sociable groups, it appears that no regular groups of order >2 

* exist". In our terminology: a regular unitary group of order k is a a -

cycle {n1,n2,."",~}, for which (n1 ,n2 , ... ,1\:) =a> 1 and (a, ni/a) = 1 

for i=l, 2 p • 01 k. Coro Uary 2. 3 imp lies that no regu Zar unitary soeiab le 

groups of odd order> 2 exist. 

Next we prove a theorem about the finiteness of the number off-cycles 

of certain form, but we first give two lemmas. 

LEMMA 2. 1 If f E F', a E :r~, and p is a prime nwnber, then there exist 

positive integers x 1 ,x2 , ... ,xg, such that 

~ 
a 

p 

where g g(a) is the number of coefficients equal to 1 in the polynomial 
f a f w~ (y) - y , 1:. e., g = w~ (1) - L In partfoula:r_, when 

with a> a 1 > a 2 > ••• > ag-l > ag?. O, we may take 

a g-j a-
P + I p ]. 

i=1 
(2,6) X. 

J 

Before proving this lemma we give an example. 
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If 

5 5 3 2 
f(p l = p + p + p + 1, 

then we have 

5 5 3 2 5 3 2 !itl - p +p +p + 1 - p +p +p +1 
5 - 5 - 5 3 2 

p p p +p +p 

( 1 )~ l + 5 3 2 3 • 
p +p +p p +p 

5 3 2 3 2 
so that x 1 = p +p +p , x 2 = p +p and x 3 p . 

PROOF of lemma 2.1. By (2.6) we have 

LEMMA 2.2 (BORHO [3]). The equa-tion 

5 3 2 
p +p +p 

5 
p 

p a-ag-j/-f 1 p ai··ag-j+i 

i=l 
a-a g-j a -a 

g-j+l t i g-j+l 
p + l p 

i=1 

D 

where k,t1,t2 , ... ,~ are given, has only finitely many solutions in positive 

integers x 11 ,x 12 , .. ,,xkt. 
k 
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PROOF. See [3]. 

THEOREM 2. 3 Let f E l'' and Zet ther•e be given positive integers 

Then there exists onZy a finite number of £-cycles {n1 ,n2 , ... ,nk} where ni 

has the canom'.caZ factorization 

□ 

(i=1,2, ... ,k). 

PROOF. The 

that 

numbers 

1 
n2 

=-
nl 

k 
n 

i=l 

n1,n2,···,¾ form an f-cycle of length k. 

n3 ¾ n1 
-= 

n2 ¾-1 ¾ 

for some positive integers y 1 , •.. ,yg, where g g(e1 j). 

Hence, on the assumption that 

s. i~- t.. 
l. l. (1 1 ) n TT + -- ' j=l 

e .. 
j=l xij l.J 

pij 

It follows 
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By lemma 2.2 this equation can have only finitely many solutions in positive 

integers. 

* COROLLARY 2.4 By choosing f = cr and f = cr, respectively, the following 

two theorems of BORHO [3] follow easily from theorem 2.3: 

Ther•e are only finitely many aliquo-t a-cycles of length k~ wi-th less 

than L (L EN) prime factors (in the product of the k terms of the cycle). 

□ 

There are only finitely many aliquot cr*-cycles of length k, with less 

than L (L E N) distinct prime factors ( in the product of the k te1°ms of the 

eye le). 
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CHAPTER 3 

TEST-CASES FOR THE COMPUTATIONAL EXPERIMENTS 

In chapter 1 we saw that for every f E F, f(n) is the sum of aertain 

divisors of n. Here we consider some particular f by specifying whiah 

divisors are to be summed. It is easily verified that the.Se functions f 

have property P1 (multiplicativity) and property P2 (existence of the poly-
f - -

nomials We(x) for all e E l,J) so that f E F. The proofs are omitted, but the 

polynomials Ware included. 

ExAMPLE 3.1 If f cr (the sum of all divisors of n), then 

The number of divisors to be summed is TT (e+l). 
pell n 

(e=1,2, ••• ) • 

EXAMPLE 3. 2 For k E l,JO we define Mk (n) as the sum of the (k+l )-ary divis­

ors of n, so that 

{e$2k) , 

(e>2k). 

In this case, the number of divisors to be summed is TT min(e+l,2k+2). 
pell n 

ExAMPLE 3.3 Fork EN we define ~k(n) as the sum of those divisors d of n 

for which n/d is (k+1)-free, so that 

+ ••• + X + 1 

+ ••• + X 
e-k (e>k). 
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In this case, the number of divisors to be summed is TT min(e+l,k+l). 
Peli n 

ExAMPLE 3.4 Fork E :w0 we define (n) as the sum of those divisors d of n, 

such that any prime p which divides d has an exponent which is at most k 

less than that of pin n. For convenience, we define the integer 1 to be 

such a divisor of any n E :N. It easily follows that 

w 
e 

(x) 

The number of divisors to be summed here is TT min(e+1,k+2). 
pell n 

( e>k) . 

EXAMPLE 3. 5 For k E N 0 we define ¾ (n) as the sum of those divisors d of n, 

such that any prime p which divides n/d has an exponent, which is at most k 

less than that of pin n. In this case we have 

¾ W (x) 
e 

k 
X + 

(eSk), 

( e>k) , 

and the number of divisors to be summed here is the same as in example 

3.4, f = Lk. 

REMARK 3.1 We have 

* CJ 

where denotes the usual "sum of tJ1e unitary divisors" function. 

These five examples of (classes of) functions will serve as test-cases 

for our computational experiments. Some of them are well-known, like a and 

The function (also known as the Dedekind function) plays an import-

ant role i.n WALL's study [41]. The other functions given here, have never 

been used, as far as we know, to generate aliquot sequences. 
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CHAPTER 4 

THE OF VALUES f 

In this chapter we investigate the (natural) density of the values of 

the function f E F, counting mu l tip lici ty. 

Since f(n) 2' n, the number of all n E lN such that f(n) <; N is 

for any NE :JN. The number of n satisfying f(n) <; N is denoted by #(f,N). 

THEOREM 4.1 If f E F, i;hen M 

(4.1) 

According to the definition of F, for any f E F, e E JN and prime p, 

f(pe) can be written as 

where c O = 1 and c . 0 or 1 (i=l.,2, ..• ,e). By the multiplicativity of 
e, e,i 

f, we have for any n E lN 

f(n) 
e -i 

- n n l C ,p 
pe II n i=O e,i 

Now for r ,k E JN we introduce the function f 
r,k 

min(e,k) 
f .k (n) r, I 

i=O 

We first qive two lemmas. 

LEMMA 4.1 F'or any r,k,N E JN we have 

(4. 2) 

-i 
C ,p 
e,i 

1N ➔ JN , defined by 
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and 

(4. 3) 
r k r 

#(f k,N) TT { -1 I 1 k+l k -1} (k+l)r TT 2 N (1-pj ) ---+ (p. +p.+ ... +p.) -
r, 

j=1 e=O f(p~) J J J j=l 
J 

PROOF of lemma 4.1. For every r-tuple <\,t2 , ... ,tr) with Os tj s k+l 

(j=l,2, ... ,r), define A ,t2 , ... ,tr) to be the set of positive integers n 

with p~j!I n fort. < k+1 and p~jln fort.= k+1. For example, if r = 4 and 
J J J J 

k 2, then A(l,0,3,2) is the set of all numbers n E JN of the form 
3 2 

n = 2.5 7 m, where (2.3.7,m) = L 

If n E A(t1 , , ... ,tr)' then by the definition of fr,k we have 

f k(n) = n TT f k(p~j)/p~j TT 
r, tjsk r, J J tj=k+l 

where e(tj) is the exponent such that p;(tj) 11 n. 

n 

where 

and 

k -i 
TT l pj (21). 

t.=k+l i=O 
J 

It follows that for N E JN we have 

n s; 

and 

·· 1 ··1 N TT1 TT2 ~ f (n) s N 
r,k 

Hence, 

From the definition of A(t1 , ... ,tr) it follows that among any 
r 
rf t. TI · urnb . 1 TT ( 1) bl pJ.J pJ. consecutive n ers, precise .. y p.-. e .. ong to 

j+l t' sk t. sk . J 
'j J 
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A(t1 ,t2 , ... ,tr). Hence, the number of positive integers n E A(t 1 ,t2 ... ,tr) 

satisfying fr,k(n) $ N is not less than 

(4.4) 
r 

-t 
TT pj j TT 

j=l t $k 
j 

-1 
(1-p. ) -

J 

but not greater than 

(4. 5) 
r -t 
TT pJ. j 11 

j=l t.$k 
J 

-1 
(1-p. ) + 

J 
11 

t$k 
J 

n 
t $k 

j 

(p .-1)' 
J 

(p.-1). 
J 

For different r-tuples (t1 ,t2 , ... ,tr) the sets A(t1 ,t2 , ••. ,tr) are disjoint 

and their union (over all t. with Q$t.$k+1, j=l,2, .. .,r) is JN. Hence, in 
J J 

order to find an upperbound and a lowerbound for the total number of n E JN 

satisfying f k(n) $ N (i.e. #(f k,N)), we must sum the upperbound (4.4) 
r, r, 

and the lowerbound (4.5) over all r-tuples (t1 , .•. ,tr). The inequalities 

(4.2) and (4.3) then follow after some (simple) calculations. 

r 
LEMMA 4. 2 For any r,k,N E JN satisfy'ing k ,,; r-1 and N < (k+2)r TT we 

have 

(4 .6) 

where 

r-1 

8r-1,k = TT 
j=l 

j=1 

( 
)
-1 3r-1 

1 -1 
\ 1 + k . 11 ( 1-p j ) . 

p. (p. -1) J =r 
J J 

PROOF of lemma 4.2. Let k(n)/f(n). If y is an arbitrary positive 

' real number, then we clearly have 

f k(n) $ y"" f(n) $ y/T k" r, n,r, 

Replacing r by r-1 and y by NTn,r-l,k' we get 

,k (n) $ NTn,r··l ,k"" f (n) $ N, 

so that 

(4. 7) #(f,N) ;:;: #(:E k,NT 1 k). r 3 n,r-, 
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If some n E JN satisfies fr-l,k(n) s NTn,r-l,k' it follows that 

f(n) 
r 

s N < (k+2)r TT 
j=1 

p. < 
J 

2r 

TT PJ.' 
j=l 

since k+2 s r+l. Hence the number of different prime factors of n is 

certainly less than 2r. Now we have for 'l' 
n,r-1,k 

f(n) 

TT ( I C 
Pe II n i=O e, 

. )( e . )-1 -J_ l C -J_ 

i=O e, 

P"Pr-1 

e > k 

co · rl ( I p-i\-1 TT ( 1 + I p-i n 
pell n i=k+1 Pell n i=O ) 

P"Pr-1 p>pr-1 

e > k 

TT (1 + l(:-l)rl en (1 - P-1) 
Pe II n p II n 

p>pr-1 

e > k 

Since the number of different prime factors of n is less than 2r, the value 

of this last form is certainly greater than 

r-1 ( 1 )-1 
TT 1 + 

j=l pk(p.-1) 
J J 

3r-1( _ 1) 
n 1 - p. 

j=r ' J 

So we have 1 ::o: T > Sr-J. ,k· Combining this with (4.7) yields (4.6). D 
n,r-1,k 

The proof of theorem 4.1 proceeds as follows. Clearly, for any r,k,n E JN 

we have f(n) 2'. f k(n), so tha.t for any NE Th! #(f,n) s #(f k,N). Hence, 
r, r, 

lim sup #(f,N)/N s 
N-+oo 

r 

lim sup #(f k,N) /N .. 
r, 

N+" 

Since (k+l)r 

(4.2), that 

TT p. is bounded for fixed r and k, it follows from lemma 
j=l J 

lirn sup # 
N➔oo 

r { -1 k 1 n O-p . l l -- + 
j=l J e=O f(p~) 

J 

• 1 , 

for any fixed r,k E JN. From the inequalities pe < f(pe) < (p+l)e it easily 

follows that 



Hence, 

(4.8) 

lim 
r,k-+«> 

r { -1 k 1 n < 1-p. i I -- + 
j=1 J e=O f(p:) 

Hm sup #(f;N)/N 
N-+«> 

J 

If we can prove, on the other ha.nd, that 

(4.9) lim inf #(f,N)/N 
N->= 

then theorem 4.1 clearly follows. 

19 

From now on, we assume that r ,k,N E lN are such that k $ r-1, k large, and 

r 
(4.10) 

r 
(k+l)r TT p. $ 

j=l J 
N < (k+2)r TT p .. 

j=1 J 

By lemma 4.2 we have 

(4.11) 

where 

From the theorem of Mertens 

-1 
TT(1-p) 

psx 

-y 
~-e __ 

log X 

3r-1 
n < 

j=r 

-1 
) . 

where y is Euler's constant, and from the theorem of 'l'chebychef: 

TI (x) x x/log x, 

3r-1 _ 1 
it follows that lim n (1 - p. ) 

r->= j=r 

Furthermore, we have 

1 > r~1(1 + 
j=l 

J 
1. 

r-1( ) -·k -1 
> TT 1 - p. > s (k) 

j=1 J 

(x + oo) ' 

(k>1), 
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which tends to 1 fork-+«>. Hence, S tends to 1 from below when k and r 
r-1,k 

tend to infinity. Now by lemma 4.1, (4.3), with r replaced by r-1 and N by 

NSr-l,k we have 

r-1{ k -1 1 1 
TT ( 1-p . ) l ·-- + 

j=1 J e=O f(pe) 
J 

( 
k+l k ,-l} 

pj +pj+ ... +pj) -

r-1 
- (k+l)r-l TT p. 

j=l J 

r-1 
From (4.10) it follows that (k+l)r-l TT o. ~ 

j=l- J 
N . Using this and (4.11) 

(k+l)pr 
gives 

#(f,N) :C: NS 
r-1,k 

r-1{ k l 
TT ( 1-p ~ 1 ) l --- + 

j=l J e=O f(p~) 
J 

N ----
(k+l )pr 

Dividing by N and letting N, k and r tend to infinity gives (4.9). □ 

REMARK 4.1 Three proofs of this theorem have been given for the special 

case f = o. In the first one ERDOS [13] used analytic results of SCHOENBERG, 

but did not give the va~ue of 60. DRESSLER [11] was the second one to prove 

this theorem for f = o. His elementary proof also gives the value of 60. 

Our proof of the more general theorem 4.1 is based on DRESSLER's method. 

BA'I'EMAN [2] proved theorem 4.1 for f = a using the WIENER-IKEHARA theorem. 

In table 4.1 we give the (approximate) value of 6f for some f <' F, 

where the absolute error in this value is always less than 2.10-5 • The 

accuracy of this table is justified by theorem 4.2. 

TABLE 4.1 

Some values of 6f 

f M 

o .67274 

* (= o ) . 76872 

.67887 

'l'l .70444 

'l' 2 .67848 

Ll .68618 

.67541 

Rl .71070 

R 
2 

.68950 
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THEOREM 4.2 Let c > O be a (small) number and let Q be a (large) prime. 

Let ( 1 - .!., r _ - 1- = 1 - , f E F. If the series 
p e-0 f(pe) 

s l log(1 - a) 
p p 

is approximated by 

where 

(4.12) la - ;;;: I < c p p 
for p=2,3,5, .•• ,Q, 

where n(Q) is the number of primes s Q. 

PROOF We show that, if 

then 

(i) 

s = l log(1 - ap) , 
Q psQ 

4 Is - s I < -
Q 3Q 

and 

from which the theorem follows. 

(i) I S - S I = I L log ( 1 - a ) J < l J 1og ( 1 - a ) 
Q p>Q p p>Q p 

From the definition off it follows that 

1 - (1 - ¼)(1 + 
1 ... ) a +--·+ p 

f (p) f(iJ 

< (1 - ½)(1 1 1 
+ - + -+ 

p p2 
... ) = l 
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On the other hand, 

(4.13) 

so that 

1 - ap? (1 - })(1 

(1 -¼)(1 

> ( 1 - ½)( 1 

1 - ap > (1 - ½)(1 

1 1 ) +--+-2--+ ... 
p+i p +p+l 

~ p-1 ) + -2 + -3- + ... 
p -1 p -1 

22 22 + 2 + 3 + or 
p p 

By using the inequality I log (1-x) I < l~x' for O < x < 1, we get 

0 < I log ( 1 - a ) I < ····t··- cs: 4 
P p -1 3p2 

Hence, 

! S - S I < L I log ( 1-a ) I < I L ~ < f 
Q p>Q p p>Q p 

By (4.12) and (4.13) we have 

< 

since p? 2. Hence 

dx 
---2 ~ 
(x-1) 

Q+l 

4 
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1 
for E < 4. From this we deduce that 

□ 

REMARK 4.2 It is easy to approximate 

by 

with an accuracy prescribed by (4.12), by choosing i large ei;iough. In fact, 

we have 

so that 

la - ;; I < 
p p 

1 
< ----

pj (p-1) 

In order to obtain the values of 6f given in table 4.1, we chose Q = 105 

and for every p :5 Q we determined i such that i 1 
2 < s "' 10-lO. 

p (p-1) 





CHAPTER 5 

THE MEAN VALUE OF f(n)/n 

For any f E F let 

so that 

f(n) f (n) - n , 

f(ni) f(ni) - ni 
---=-----n. 

l. 

(n E N) , 

where ni and ni.+i are two consecutive terms of an f-sequence, 

The purpose of this section is to determine the mean value M{f~)} of 

f (n) Note that 
n 

25 

The mean value of an arithmetical function g may be determined by the 

following two theorems, 

THEOREM 5.1 If g is an a.rithmetioal function and h g * µ, i,e, 

(5,1) h(n) (n E ])!) , 

whereµ denotes the Mobius function, then 

M{g} ~ I 
n=l 

(5.2) 
n 

provided that this series is absolutely convergent, 
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PROOF By the Mobius inversion formula, 

so that 

Clearly 

g(n) = l h(d), 
din 

1 N 1 N 
N L g(n) = N l L h(d) 

n=1 n=l din 

00 

lim I h~d) = 0, 
N-+= d=N+1 

Next observe that 

1 00 h(d) 
F'rom the absolute convergence of la=i_d_ , and a well-known theorem of 

Kronecker (see KNOPP [23], p.129), it follows that 

lim l. I ajh(dl I = o 
N-><x> N d=1 d 

We apply this theorem to the function g(n) 

we first show that 

We have h(i) 1 and for any prime p and e EN 

h 

e e-1 
Mk(p) Mk(p ) 

=----e e-1 
p p 

By the definition of Mk 

=--· 
n 

□ 

(k=O, l , 2, ••. ) , and 

(n ➔ oo) • 
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"' e "' 2k+1, 

e > 2k+1, 

from which it is easily seen that 

Because of the multiplica.tivity of h, it follows that 

(n+co), 

and from this it is clear that we may apply theorem 5.1. 

Because of the absolute convergence of 1' 00 ~(n) and the multiplicat­
ln=l n 

ivity of h, theorem 286 of [22] gives 

so that 

yielding 

= TT { (1 
p 

=n{o-p 
p 

I; ( 2) 

i;(3k+3) 

-1 -3k-3 } (1 - p ) 
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COROLLARY 5 .1 

1'; (3)c+3 l 
(k=0,1,2, •.• ). 

We may determine the mean value of the functions ~k(n)/n, 1ic(n)/n, and 

I\;(n)/n in the same way as the mean value of Mk(n)/n was determined. How­

ever, we shall perform this in another way, namely by combining the next 

theorem ([25]) with theorem 5.1. 

THEOREM 5.2 If 

N 
lim !. l g(n) 
N-><>o N n=l 

exists, then the generating Diriahlet series 

"' 
G(s) l ~ 

n=l ns 

aonverges for s > 1, and moreover 

(5.3) lim (s-1)G(s) 
sH 

N 

lim ½ l g(n) • 
N-><>o n=1 

Under the hypothesis of theorem 5.1, M{g} exists, so that theorem 5.2 

applies" Therefore, we should like to know the generating Dirichlet series 

of g(n). 

The functions g which we shall consider (g(n) = ~k(n)/n, 1ic(n)/n, I\;(n)/n 

and for the sake of completeness Mk(n)/n), partly coincide with cr(n)/n. 

Hence, we first compute the multiplicative function g 2 (n), implicitly de­

fined by the convolution product 

(5.4) 

where g 1 (n) 

ined by 

(5.5) 

cr(n)/n (n € ]II). It is well-known that G(s) is then determ-

where G1 (s) and G2 (s) are the generating Dirichlet series of g 1 (n) and 
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g 2 (nl, respectively. Now it is readily seen that 

00 

(5.6) G1 (s) I a (n) -s 
i;; (s)I;; (s+l) = --.n (s > 1). 

n=l 
n 

From (5.5) and (5.6) we infer that 

lim(s-l)G(s) 
s+1 

lim(s-1)G1 (s) (s) 
s+1 

= 1;;(2) llm G2 (s) 

s+1 

Hence, by theorem 5.2, we finally have 

(5.7) M{g} = ;:;(2) U.m G2 (s) • 

s+l 

For each of the considered functions g, table 5 .1 presents the order of 

magnitude of h(n) (so that theorem 5.1 applies), the multiplicative 

function g 2 (nl, its generating Dirichlet series G2 (s), and, finally, the 

mean value M{g} according to (5.7). 



g(n) 

(n)/n 

(k=0,1, 2, ••• ) 

(n)/n 

(k=1,2,, H) 

(n)/n 

(k=0,1,2, •.• ) 

¾(n)/n 

(k=0,1 2,, •• ) 

TABLE 5.1 

Mean value M{g} and intermediate results for various g 

h(n) (n) G2 (s) 

(n ➔ oo) (g2 is multiplicative) (s > 1) 

O(n-1/2l 2k+2 -(k+1) 1 
g2 (p ) = - p z;((k+1) (2s+1)) 

g2 (pi) = 0, i EN, i >' 2k+2 

O(n-1) k+1 -(k+1) 1 
g2(p )=-p 1;((k+1) (s+l)) 

g2 (pi) = 0, i E ::w, i .t k+l 

O(n-1/2) ( k+2 1 -(k+l) 1 
g2 p = - p ?;:( (k+2)s+k+1) 

g 2 (pi) = 0, i E :N, i >' k+2 

O(n-1/(k+l)) k+2 -1 1 
g,,(p ) = - p 

i;; ( (k+2) s+l) 

g 2 (p1 ) = 0, i EN, i ;t k+2 

M{g} 

= lim G2 (s) i; ( 2) 
s-H 

1; ( 2) 
r;{3 (k+1)) 

1; ( 2) 
1;;(2(k+1)) 

1;; ( 2) 

t;(2k+3) 

?;: (2) 

?;: (k+3) 

w 
0 
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CHAPTER 6 

COMPUTATIONAL RESULTS 
ON ALIQUOT f-SEOUENCES WITH LEADER n ~ 1000 

In order to get some insight into the behaviour of aliquot f-sequences, 

we have carried out some computer calculations on the functions f, described 

in chapter 3. From the definitions it is clear that, with increasing k, the 

Mk-, 1k-, ½c- and I\_-sequences coincide more and more with the a-sequences. 

Therefore, we have computed these sequences only for some smaZZ values of k. 

For f = Mk (k=l,2), f = 1k (k=l,2,3,4), f = ½c (k=l,2,3,4) and f = I\_ 

(k=l,2,3,4) we have computed all n-sequences for 1 s n s 1000, stopping 

after reaching a term greater than 108 . Table 6.1 gives frequency counts of 

the number of sequences incomplete at the bound 108 , and (in parentheses) 

the corresponding number of incomplete main sequences; next the number of 

pePiodie sequences and the number of teminating sequences. In chapter 7 

some of the incomplete 11-, 1 2- and 13-sequences will be proved to be 

unbounded. The last column of table 6.1 gives the number of these sequences 

with the corresponding number of {unbounded) main sequences (in parentheses). 

* For purposes of comparison the corresponding results for f = a and f = a 

are included in table 6.1. 

Table 6.2 gives the first term greater than 108 in all incomplete main 

sequences with first term S 1000, of which the behaviour is unknown to us. 
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TABLE 6.1 

Frequency counts of the (aliquot) f-sequences on n S 1000, 

for various choices off 

f number of (main) number of number of number of incomplete 

sequences, incomplete periodic termin- (main) sequences 

at bound 108 sequences ating proved to be un-

sequences bounded (in chapter 7 

Cf 30 (11) 22 948 

0 86 914 

Ml. 38 ( 9) 17 945 

28 (11) 23 949 

15 ( 3) 151 834 15 ( 3) 

1¥2 8 ( 4) 457 535 7 ( 3) 

1¥ 3 94 (23) 143 763 45 (11) 

1¥ 4 34 (11) 31 935 

L 
1 

8 ( 3) 56 936 

47 (12) 18 935 

17 ( 7) 21 962 

L4 42 ( 8) 23 935 

R1 0 34 966 

34 ( 5) 24 942 

16 ( 4) 21 963 

R4 35 ( 9) 22 943 
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TABLE 6.2 

108 bounds of incomplete main sequences 

f = a f = '¥ 3 f = L 
3 

138 : 69 = 147793668 180 : 26 = 131598960 120 : 32 - 121129260 
276 : 32 = 121129260 282 : 62 = 102277120 552 : 86 = 126294174 
552 : 36 = 114895284 318 : 34 = 152730624 570 : 80 = 141073044 
564 : 22 = 196505388 360 : 43 = 127848510 840 : 15 = 139098120 
660 : 50 -- 144750606 462 : 36 = 154178412 896 : 45 = 188579412 
702 ; 21 = 139130668 564 : 23 = 102691584 966 : 49 = 102182706 
720 : 69 = 132775020 702 : 17 = 199796580 1000 : 50 = 134757462 
840 : 15 = 139098120 714 : 36 = 181993620 
858 : 30 = 159862836 720 : 92 = 113704960 
936 : 26 = 111494688 840 : 15 = 139098120 f = L4 
966 : 35 = 181027656 852 : 42 = 100106240 

936 : 36 = 105164730 138 : 21 - 139098120 
180 : 108 ·- 173393484 

f = Ml 276 : 32 - 121129260 
f = ljl 4 448 : 37 = 114895284 

120 : 30 = 100491408 564 : 24 = 125050980 
216 : 43 = 155349264 120 : 23 = 124250364 858 : 33 = 133562928 
402 : 32 = 124353480 276 : 32 = 121129260 864 : 30 = 104767338 
462 : 45 = 161499768 564 : 62 = 124774110 966 : 34 = 102297492 
570 : 43 = 108977466 570 : 56 = 143028208 
642 : 23 = 115388280 600 : 65 = 148695936 
660 : 23 = 103608720 642 : 41 = 107321286 f = R2 
840 : 15 = 139098120 702 : 29 = 116227422 
966 : 43 -- 121249806 840 : 15 = 13909 8120 282 : 53 -- 136831950 

858 : 29 = 113150496 318 : 38 = 106216404 
936 : 21 = 130295840 504 : 18 - 139098120 

f = M2 966 : 39 = 125235882 570 : 35 ... 109215852 
720 : 19 = 119423880 

180 : 30 = 121823520 
276 : 32 = 121129260 f = Ll 
552 : 36 = 114895284 f = R3 
564 : 84 = 166139664 282 : 94 = 108787260 
570 : 107 - 109946862 750 : 51 = 124400724 138 : 46 -· 121129260 
600 : 73 = 123828888 858 : 77 = 215879274 600 : 67 = 116465076 
720 : 48 = 137975796 720 : 46 -· 144750606 
840 : 15 = 139098120 840 : 15 = 139098120 
864 : 28 ---- 197379960 f = L2 
936 : 21 -·· 1025 79864 
966 : 35 = 119896080 180 : 71 = 160477212 f = R4 

282 : 31 = 107259180 
360 : 42 = 117609900 138 : 22 = 122945760 

f = 'I-' 2 474 : 32 = 114583824 180 : 89 = 105128120 
480 : 71 = 229226172 276 : 32 = 121129260 

756 : 20 = 208430376 660 : 84 = 120023082 480 : 30 = 135688812 
702 : 39 - 162230796 552 : 36 = 114895284 
720 : 31 = 154052736 570 : 53 = 114809502 
840 : 15 = 139098120 840 : 15 - 139098120 
936 : 33 = 126864192 864 : 37 = 164699262 
960 :105 = 101902724 966 : 38 = 158510148 
966 : 32 = 171433320 
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CHAPTER 7 

UNBOUNDED ALIQUOT I.JI k -SEQUENCES 

In the preceding chapter we mentioned the discovery of unbounded f­

sequences. As table 6.1. shows, unbounded sequences were found only in the 

cases f = 11 , f = o/ 2 and f = 13 • How these sequences were found may be best 

illustrated by the data given in table 7.1. Our attention was immediately 

attracted to the regular pattern in the prime factors of the terms from 

318: 12 onwards. More explicitly, 

318 

318 

318 

318 

318 

31 

32 

47 

48 

49 

(318 

(318 

(318 

(318 

(318 

12) 

13) 

28) 

29) 

30) 

318 

318 

318 

50 

51 

66 

(318 

(318 

31) 

32) 

47) 

Therefore, the 67 terms in table 7.1, together with their prime factoriz­

ations, strongly suggest the unboundedness of the sequence. A precise proof 

follows easily from the following discussion. 

Let n0 ,n1, •.• ,ni be £+1 (£ > 0) consecutive terms of a 1k-sequence, 

and suppose that for i.=0,1, ••• ,£-1 we have 

(7 .1) 

where q 1 ,q2 , ... ,q8 ares(> 0) different primes, (q1q2 oo.qs,mi) 

e .. ?: k for j=l,2, •.• ,s. Let us write nn as 
l.J ,_, 

(7 .2) 

land 
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TABLE 7.1 

The aliquot f 1-sequence with leader 318 

rank term factoriz,ation rank term factorization 

0 318 2. 3. 53 34 674406 2. 3 (4) 2 3 .181 
1 330 2.3. 5. 11 35 740826 2. 3 (4) 17.269 
2 534 2.3. 89 36 833814 2. 3 (4) 5147 
3 546 2. 3. 7. 13 37 834138 2. 3 (4) 19.271 
4 798 2.3. 7. 19 38 928422 2.3(4) 11.521 
5 1122 2. 3. 11. 17 39 1101114 2. 3 (4) 7.971 
6 1470 2. 3. 5. 7(2) 40 1418310 2. 3 (4) 5. 17.103 
7 2562 2.3. 7. 61 41 2220858 2.3(4)13709 
8 3390 2.3. 5.113 42 2221182 2.3(4)13711 
9 4818 2.3. 1L 73 43 2221506 2. 3 (5) 7 .653 

10 5838 2.3. 7. 139 44 2863998 2. 3 (5) 71. 83 
11 7602 2.3. 7 .181 45 3014658 2.3(5) 6203 
12 9870 2. 3. 5. 7. 47 46 3015630 2. 3 (5) 5. 17. 73 
13 17778 2.3. 2963 47 4752594 2. 3 (5) 7. 11. 127 
14 17790 2.3. 5.593 48 7191342 2. 3 ( 5) 14 79 7 
15 24978 2.3. 23.181 49 7192314 2. 3 (6) 4933 
16 27438 2.3. 17.269 50 7195230 2. 3 ( 7) 5. 7. 47 
17 30882 2.3. 5147 51 12960162 2. 3 (7) 2963 
18 30894 2. 3. 19.271 52 12968910 2. 3 ( 7) 5.593 
19 24386 2. 3. 11.. 521 53 18208962 2. 3 (7) 23.181 
20 40782 2.3. 7. 971 54 20002302 2. 3 ( 7) 17.269 
21 52530 2. 3. 5. 17.103 55 22512978 2 0 3 (7) 5147 
22 82254 2.3. 13709 56 22521726 2. 3 (7) 19.271 
23 82266 2. 3. 13711 57 25067394 2. 3 (7) 11.521 
24 82278 2.3(2) 7.653 58 29730078 2. 3 ( 7) 7.971 
25 106074 2.3(2) 71. 83 59 38294370 2 0 3 ( 7) 5. 170 103 
26 111654 2 0 3 (2) 6203 60 59963166 2.3(7) 13709 
27 111690 2. 3 (2) 5 0 1 7. 73 61 59971914 2.3(7)13711 
28 176022 2 0 3 (2) 7. 11. 127 62 59980662 2.3 (8) 7.653 
29 266346 2. 3 (2) 14797 63 77327946 2. 3(8) 71. 83 
30 266382 2 0 3 (3) 4933 64 81395766 2. 3 (8) 6203 
31 266490 2. 3 (4) 5. 7. 47 65 81422010 2. 3 (8) 5 0 17. 73 
32 480006 2. 3 (4) 2963 66 128320038 2. 3 (8) 7. 1 L 127 
33 480330 2.3 (4) 5.593 
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Moreover, suppose that 

(7. 3 l 

Now four possible cases may be distinguished. 

Case 1. e!lj ~ eOj' for j•l,2, ••• ,s, with strict inequality for at least 

one j . Then by ( 7 • 2 ) , ( 7 , 3 ) and ( 7 • 1 ) , 

( s ell.} 
TT q. J 0 

j=1 J 

s ellj-8 0j 
where a = nj•l 

Now observe that 

so that an1 • Similarly, 

By induction, we infer that for r=l,2, .•. 

(j•0,1, .•. ,ll-1), 

so that the 1¥k-sequence with leader n0 is .increasing (since a> 1), and 

hence unbounded. We propose to call a the multiplier of this unbounded 



sequence. Furthermore, observe that it is periodic in the sense that for 

r=1,2, ••• we have 

k 
(q1 ••• qs) mo 

k 
(ql • • .qs) m1 

divides nrJI,, 

divides nrJl,+l , 

37 

Therefore, we propose to call JI, the semi-period of the unbounded sequence. 

The example in table 7.1 has JI,= 19 and a= 27. 

In table 7.2 we have drawn the directed graphs of the unbounded f­

sequences mentioned in table 6.1, for f = ~1 , ~2 and ~3 • Every number 

~ 1000 for which the f-sequence is found to be unbounded appears in one of 

the digraphs. Every first term of the "semi-periodic" part of the sequence 

is marked with an asterisk. The semi-period JI, and the multiplier a are 

given at the foot of the sequence. Details of the semi-periodic parts of 

the unbounded sequences can be found in table 7.3. 

Case 2. eJl,j ~ eOj' for j=1,2, ••• ,s, with strict inequality for at least 

one j. Then by (7.1), (7,3) and (7.2), 

( 
s e0j} 
TT q. 0 

j=1 J 

s eo.-eJI,. 
where a= TTj=l qj J J 

Now observe that 

( 
s e0j} 
TT q. JI, 

j=1 J 

s ( e0 .-eJI,')( s eJI,.} TT q. J J TT q. J JI, 
j=1 J j=1 J 

so that anJl,-i is a predecessor of n0 • Therefore we choose n_1 
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TABLE 7 .2 

Directed graphs of unbounded f-sequences 

318(2. 3.53) 

+ 
330(2.3.5.11) 

+ 
534(2.3.89) 

498(2.3.83) 

+ 
510(2.3.5.17) 

+ + 
546(2.3.7.13) 786(2.3.131) +---79 8 ( 2 • 3. 7 • 19) 

+ 
1122(2.3.1L17) 636(2(2) 3.53) 

942(2.3.157) 

+ 
978(2.3.163) 954(2.3(2)53) 

~ + 
99 0 ( 2 • 3 ( 2) 5. 11) 

+ 
1602(2.3(2)89) 

+ 
16 38 ( 2 • 3 ( 2) 7. 13) 

+ 
2394(2.3(2)7.19) 

+ + + 
1470(2.3.5.7(2)) 660(2(2)3.5.11) 996(2(2)3.83) 3366(2.3(2)11.17) 

+ + + + 
2562(2.3.7.61) 1068(2(2)3.89) 1020(2(2)3.5.13) 4410(2.3(2)5.7(2)) 

+ + + + 
3390(2.3.5.113) 1092(2(2)3.7.13) 1572(2(2)3.131) 7686(2.3(2)7.61) 

+ ·~---- + 4818(2.3.11.73) 1596(2(2)3.7.19) 10170(2.3(2)5.113) 

+ + + 
5838(2.3. 7.139) 2244(2(2) 3.11.17) 14454(2.3(2) 11. 73) 

+ + + 
7602(2.3.7. 81) 2940(2(2)3.5.7(2)) 17514(2.3(2)7,139) 

+ ,j, + 
*9870(2.3.5.7.47) 5124(2(2)3.7.61) 22806(2.3(2)7.181) 

1=19,a=27 

,j, 

6780(2(2)3.5.113) 
,j, 

9636 (2 (2) 3.11. 73) 

t 
11676(2(2)3.7.139) 

+ 
15204(2 (2) 3. 7,181) 

+ 
* 19740(2(2)3,5.7.47) 

1=19 ,a=27 

+ 
* 29610(2.3(2)5.7,47) 

1=19 ,a=27 

* 252 (2 (2) 3(2) 7) * 504(2 (3) 3(2) 7) 852 (2 (2) 3. 71) 
+ + t 

476(2(2)7.17) 952(2(3)7.17) 1164(2(2)3.97) 
+ + + 

532(2(2)7.19) 1064(2(3)7.19) 1580(2(2)5,79) 
+ + + 

588(2(2)3.7(2)) 1176(2(3)3.7(2)) * 1780(2(2)5.89) 
+ + 

·k 1008 (2 ( 4) 3 (2) 7) * 2016 (2 (5) 3 (2) 7) 
1=6,a=8 



TABLE 7.2 (continued) 

*120(2(3)3.5) 216(2(3)3(3) 

+ + 
*240(2(4)3.5) *384(2(7)3) 

+ + 
* 480 (2 (5) 3. 5) 576 (2 (6) 3 (2)) 

+ + 
* 960 (2 (6) 3. 5) 984(2(3)3.41) 864(2(5)3(3)) 

252 (2 (2) 3 (2) 7) 

+ 
476(2(2)7.17) 

+ 
532 (2 (2) 7 .19) 

+ 
588(2(2)3.7(2) 

39 

408(2 (3) 3.17) 

+ 
672(2(5) 3. 7) 

+ 
*1920(2(7)3.5) +--­*1536(2(9)3) 

+ + 
1008(2 (4) 3(2) 7) 1248(2 (5) 3.13) 

+ ------
* 2112 ( 2 ( 6) 3. 11) 

1=1,a=2 1=3, a=4 

1=13,a=1024 

276(2(2)3.23) 306(2.3(2)17) *552(2(3)3.23) 642(2.3.107) 

+ .. -------- + + 
396(2(2)3(2)11) *336(2(4)3.7) 888(2(3)3.37) 654(2.3.109) 

+ + + + 
*696(2(3)3.29) 504(2(3)3(2)7) 624(2(4)3.13) 1392(2(4)3.29) 666(2.3(2)37) 

+ ---+ + 
1104(2(4)3.23) 1056(2(5)3.11) 816(2(4)3.17) 

1=3 ,a=4 
* 1344(2 (6) 3. 7) 

1=13,a=1024 

996(2(2)3.83) 660(2(2)3.5.11) 828(2(2)3(2)23) ----1----------1356(2(2) 3.113) 

+ 
40 2 ( 2. 3. 6 7) 762 (2. 3.127) 1836(2(2) 3(3) 17) 

+ + + 
414(2.3(2)23) 774(2.3(2)43) 3204(2(2)3(2)89) 

} + + 
432(2(4)3(3)) 522(2.3(2)29) 942(2.3.157) 4 9 86 ( 2 • 3 ( 2 l 2 77) 

+ + + + 
768(2(8)3) 648(2(3)3(4)) 954(2.3(2)53) 5856(2(5)3.61) 
-------------;. + ---- -j, 

*1152(2(7)3(2)) 9024(2(6)3.47) 

1=3,a=4 

,j, 

14016 (2 (6) 3. 73) 

+ 
*21504(2(10)3.7) 

1=13,a=1024 



40 

TABLE 7.2 (concluded) 

726(2.3.11(2)) 570(2.3.5.19) 858(2.3.11.13) 

---➔+ + 870(2.3.5.29) 1158(2.3.193) 
+ + 

1290(2.3.5.43) 1170(2.3(2)5.13) 
+ + 

1878\2. 3. 313) 2106(2 .3 (4) 13) 

+ + 
1890(2.3(3)5.7) 2934(2.3(2)163) 

+ + 
3870(2.3(2)5.43) 3462(2.3.577) 

+ + 
6426(2.3(3)7.17) 3474(2.3(2)193) 

+ + 
10854 (2. 3 (4) 67) 4092 (2 (2) 3.11. 31) 

+ + 
13626 (2. 3 (2) 757) 6660 (2 (2) 3 (2) 5. 37) 

+ + 
15936(2(6)3.83) 14088(2(3)5.587) 

+ + 
24384 (2 (6) 3.127) 21192 (2 (3) 3. 883) 

+ + 
37056(2 (6) 3.193) 31848(2 (3) 3, 1327) 

+ + 
56064(2(8) 3. 73) 47832(2 (3) 3.1993) 

+ + 
* 86016 (2 (12) 3. 7) * 71808(2 (7) 3.11.17) 

1=13,a=1024 1=13,a=1024 
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Similarly, 

By induction we infer that for r=l,2, ••• 

(j=0,1, ••• ,t-1), 

so that we now have a decreasing (since a> 1) sequence of infinitely many 

predecessors of n0 • Again, we call t the semi-period and a the multiplier 

of this sequence. 

Case 3. etj = e0 j for j=1,2, ••• ,s. In this case, obviously, nt 

that the numbers n0 ,n1 , ••• ,n1_1 form a o/k-cycle of length t. 

Case 4. There are indices j 1,j2 E {1,2, ••• ,s} so that e 1 . < e0 j and 
J1 1 

e1j > e0 .. Now it is no longer possible to construct unbounded sequences 
1 J2 

of the kind described in cases 1 and 2, but yet it is still possible to 

construct arbitrarily long increasing or decreasing sequences, according 

as n1/n0 > 1 or n1/n0 < 1. Again, tis called the semi-period of the 

sequence. 

According to table 7.2, the o/3-sequence of 120 = 233.5 is unbounded 

with semi-period 1 and multiplier 2. Also, 120 is a multiply perfect 

number because 0(120) = 3.120. The following theorem gives a method to con­

struct unbounded o/k-sequences of semi-period 1 from multiply perfect numbers. 

THEOREM 7.1 If N is a multiply perfect number, i.e., cr(N) = sN for some 

positive integers> 2, if s-1 = pa for some prime p and some positive 

integer a, and if N = p¾1, where (p,N1) = 1, N1 is (k+1)-free and k is some 

positive integer> 1, then the aliquot fk-sequenae with leader N is un­

bounded with semi-period 1 and multiplier pa. 
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PROOF. Since N = p\J1 is (k+l)-free, we have 'Jlk(N) o(N), so that 

o (N) - N sN - N 

l:'urthermore, from the definition of 'Jlk (chapter 3) it follows that 

By induction we infer that 

In all, except two, of the multiply perfect numbers in the lists [SJ, 

[ 6 J, [ 16], [17] and [ 29], the highest exponent occurs as exponent of 2. 

Hence, for these numbers the condition N = p\J1 , with (p,N1) = 1 and is 

(k+l)-free, can only be satisfied if we choose p = 2, but then s-1 must be 

a power of 2. Application of theorem 7 .1 yields 

COROLLARY 7 .1 Every m:uZtiply perfect nwnher N in the lists cited above, 

satisfying o(N) = 3N, resp. o(N) = SN, is the starting value of an unbounded 

'¥k(N)-sequence -wi-/:;h period 1 and multiplier 2, 1°esp. 4, -where k(N) is the 

exponent of 2 in the canonical factorization of N. (There are 6 cases 1uith 

o(N) = 3N and 66 cases -with o(Nl = SN.) 

'l'he two exceptional multiply perfect numbers mentioned above are 

N 

N 

22325.7 213.19 and 

273105.17.23.137.547.1093 

Both satisfy cr(N) 4N. Application of theorem 7. to these numbers yields 



COROLLARY 7.2 For all positive integers m,n ~ 2 the o/ 2-sequenee with 

leader 2m3 25.7n13.19 is unbounded with semi-period 1 a:nd multiplier 3. 

COROLLARY 7.3 The o/ 10-sequence with leader 273105.17.23.137.547.1093 is 

unbounded with semi-period 1 and multiplier 3. 
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A computer search for o/k-sequences, described in the cases 1 - 4 above, 

was undertaken. Let Q = {q1 ,q2 , ... ,qs} (s > 0) be a set of different pr.ime 

numbers, let m0 > 1 be some integer such that (m0 ,q1 •.• qs) = 1, and let 
k c = •.• q 8 ) • The sequence m0 ,m1 , .•• is defined as follows: 

is obtained from the number 

by dropping all prime factors 

q1,q2, ••• ,qs from it, 

so that (mi+l 

cm. 
1. 

If this sequence is periodic, Le., if there are indices i 1 ,i2 with 

0:,; < 1.2 so that 

then from the definition of o/k it follows that the o/k-sequence of 

contains a term 

•? O, j•l,2, •.• ,s), 

provided that the exponents , .•. ,es are chosen sufficiently large. In 

this way, we arrive at precisely one of the four cases discussed above, 

according as 
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•> erej for j=1,2, •. .,s with strict inequality for at least one j (case 1)' 

e~'.Se. for j=l, 2, .•• , s with strict inequality for at least one j (case 2)' 
J J 

e:=e. for j=1,2,. .. ,s (case 3)' or 
J J 

:3j1,j2 E {1,2,.,. ,s} with e'. <e. and e~ >e. (case 4). 
J1 J1 J2 J2 

For k=l,2,3 and for the sets Q = {2},{3},{5},{2,3},{2,5},{3,5} and {2,3,5} 

we have computed the sequences m0 ,m1 , .•• for all m0 oS 1000, until we found 

a term m. with 
io 

( j_) m. m. for some j < io ' or 
io J 

(ii) m. 
l.o 

1 ' or 

(iii) m. 
l.o 

has a prime factor > 108, or two prime factors > 1 

After finding a periodic sequence, the corresponding 'l'k-sequence was com­

puted. In table 7.3 we have listed all special 'l'k-sequences found in this 

way, The sequences belonging to case 3 ('l'k-cycles) are listed in chapter 8, 

table 8.3, where general f-cycles are treated. 

Ex.AMPLE k = 2, Q = {2}, 

mo 63 327 ' 
ml 119 7,17 

m2 133 7 .19 

m3 147 3.72 

lll4 63 mo. 

e The corresponding '1' 2-sequence with leader 2 m0 (e 2 2) is 

no 28 327 
' 

ni 2e7.17 

26 7 .19 

n3 26 3.7 2 

n4 
2e+2327 = 



It is clear that we can choose e = 2 and e = 3, so that we have found two 

unbounded r 2-sequences, both with semi-period 2 = 4 and multiplier a= 4. 

The general terms are 

n4j = 

n4j+1 

n4j+2 

n4j-~3 

2e+2j327 

2e+2j7.17 

2e+2j7.19 

2e+2j3.72 

These sequences are listed in table 7.3 as follows: 

terms characteristics 

m ~ 2 

monotonically increasing 

case .1 

£ 

a = 4 

In the first column, the terms of the periodic part are given, together 

with the first term of the next period, so that the behaviour of the 

sequence is completely determined. 

Some characteristics of the sequence are given in the next column, namely 

- the admitted values of the parameter(s), 

whether the sequence is (monotonically) increasing or decreasing, 

- the case to which the sequence belongs, 

- the semi-period 2, 

- the multiplier a. 

45 
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TABLE 7,3 

Special aliquot '!' k -sequences, (k=1, 2, 3) belonging to the cases 1, 2 and 4 

k 1 

tenns 

5 (m) 31 
5 (m-1) 37 
S(m-2)43 
S(m-3)7(2) 
S(m-4)7.13 
S(m-5)7.31 
S(m-6) 11.41 
S(m-7)769 

5 (rn-6) 31 

2 (rn) 3 (n) 5 (i) 281 
2(m)3(n)5(i-1)1979 
2(m)3(n)5(i-1)47.59 
2 (rn) 3 ( n) 5 ( i-1) 41 39 
2 (ml 3 (n) 5 (i-1) 11. 1 7. 31 
2(m)3(n)S(i-2)53959 
2 (m) 3 (n) 5 ( i-1) 29. 521 
2 (m) 3 (n) 5 (i+l) 29. 31 

2(m)3(n)5(i+2)281 

5(ml 11.13 
S(m-1)293 
5 (m-2) 13.23 
S(m-3)521 
S(m-4)17.31 
S(m-5)821 
S(m-6)827 
S(m-7)7(2)17 
S(m-8)7.269 
5 (m-8) 709 

S(m-8) 11.13 

characteristics 

m ? 8 
mon. deer. 
case 2 
1 = 8 
a= 5(6) 

m ,n ? 1, i ? 3 
mon. incr. 
case 1 
1 = 8 
a = 5 (2) 

m ? 9 
mon. deer. 
case 2 
1 = 10 
a = 5(8) 

tenns 

3 (m) 5 (n) 7 
3 {m) 5 (n-1) 29 
3(m)5(n-1)19 
3 {m) 5 (n-1) 13 
3 (ml 5 (n- 2) 4 7 
3 (ml 5 (n-3) 149 
3(m)5(n-3)7.13 
3(m+2)5(n-4)7(2) 
3(m+2)5(n-5)7.29 
3 (m+2) 5 (n-5) 181 
3(m+2)5(n-6)19.29 
3(m+2)5(n-6)409 
3(m+2)5(n-6)13.19 
3(m+3)5(n-6)67 
3(m+3)5(n-7) 11.19 

3(m+3)5(n-5)7 

2 (m) 3 ( n) 5 • 7. 4 7 
2(m)3(n)2963 
2(m)3(n)S.593 
2(m)3(n)23.181 
2 (m) 3 (n) 1 7. 269 
2(m)3(n)5147 
2(m)3(n)19.271 
2(m) 3(n) 11.521 
2(m)3(n)7.971 
2(m) 3(n)5.17.103 
2(m)3(n)13709 
2(m)3(n)13711 
2(m)3(n+1)7.653 
2(m)3(n+1)71.83 
2 (m) 3 (n+l) 6203 
2 (m) 3 (n+l) 5 .17. 73 
2 (m) 3 ( n + 1) 7 . 11 . 12 7 
2 (ml 3(n+1) 14797 
2(m)3(n+2)4933 

2 (m) 3 (n+3) 5. 7. 4 7 

characteristics 

m?1,n?8 
mon. deer. 
case 4 
1 = 5 

m,n ? 1 
mon. incr. 
case 1 
l 19 
a = 3 (3) 
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TABLE 7.3 (continued) 

k = 2 

terms characteristics terms char acte ri s ti cs 

2(m)3(n)5.7(i)13.19 m,n,i ::> 2 5(m)103 m ::> 7 
-======--·=========== mon. incr. 5 (m-2) 11. 59 mon. deer. 
2 (m) 3(n+1) 5. 7(i) 13.19 case 1 5(m-3)23.53 case 2 

1 = 1 5(m-5)89.109 1 = 4 
a = 3 ======::::;;;_:::;:;; ___ a = 5 ( 3) 

5(m-3) 103 
2 (m) 3 (n) 11 • 13 m ::> 2' n ::> 3 
2(m)3(n-1)5.13(2) mon. incr. 3(m)5.7 m ::> 6 
-================ case 4 3 (rn-1) 103 mon. deer. 
2 (m-1) 3 (n+2) 11. 13 1 = 2 3 (rn-3) 5 (2) 17 case 2 

3(m-2) 127 1 = 6 
2(m)3(2)7 m? 2 3 (rn-4) 521 a = 3 ( 3) 
2 (m) 7. 17 mon. incr. 3(m-4)233 
2 (m) 7 .19 case 1 ============ 
2(m)J.7(2) 1 = 4 3 (m-3) 5. 7 
-==::::::::::::::::::==== a = 2 (2) 
2(m+2)3(2)7 2(m)5.89 m ::> 2 

2 (m+2) 5 (3) mon. i.ncr. 
2 (m) 3 (n) 7 (2) 43 m ? 2 , n ::> 5 2(m)3(2)5.13 case 1 
2(m+1)3(n-1)7.907 mon. incr. 2(m+1) 3.13.17 1 = 6 
2 (m+ 1) 3 (n- 3) 5. 7. 30 89 case 1 2 (m+l) 3. 367 a = 2 ( 3) 
2 (m+ 1 ) 3 (n-1) 5. 7 ( 2) 11 ( 2) l = 4 2(rn+1)5(2)59 
-====================== a = 3 (3) =========----
2(m)3(n+3)7(2)43 2(m+3)5.89 

3(m)13.743 m? 3 3 (ml 7. 101 m 2 10 
3 (m-1 ) 11. 13. 113 mon. deer. J(m-1)5.283 mon. deer. 
3(m)5.l3.59 case 2 J(m-2)43.73 case 2 
3(m)5.13.53 1 = 6 J(m-4) 7.2011 l = 10 
3(m) 13.239 a = 3 (2) 3 (m-6) 5 .11. 19. 79 a - 3 (3) 
3 (m-1) 13 (2) 31 3(m-6)5.41.409 
-============== 3 (m-6) 5.11.29.41 
3(m-2)13.743 3(m-6)5.19.691 

3(m-7)5.3L1051 
3(m)13.2459 m? 5 3 (m-8) 386549 
3 (m-1) 13.11. 373 mon. deer. ==============~= 
3(m-2)13.5.11.157 case 2 3 (m-3) 7 .101 
3(m-2) 13 (2) 17.41 1 = 8 
3(m-2) 13.6311 a = 3 ( 3) 
J(m-3)13.17.619 
3(m-2)13.43.53 
3(m-2)13(2)109 

-----=-------==== 
J(rn-3) 13.2459 
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TABI~ 7.3 (concluded) 

k = 3 

terms 

2(m)3.5 

2(m+1)3.5 

character is ti cs 

m ?: 3 
mon. incr. 
case 1 
1 = 1 
a= 2 

terms 

2 (m) 3. 7 
2 (m) 3. 13 
2 (m+l) 3. 11 
2 (m+l) 3.19 
2(m+1)3.31 

characteristics 

m ?: 4 
mon. incr. 
case 1 
1 13 
a=2(10) 

------------------i 2 (m+1) 3. 7 (2) 
2(m)3 
2(m-1)3(2) 
2(m-4)3.41 

2(m+2)3 

m ?: 7 
mon. incr. 
case 1 
1 = 3 
a = 2 (2) 

2 (ml 3. 11 . 1 7 
2 (ml 3. 353 
2(m+2)3.7.19 
2(m+2)3(2)89 
2(m) 3(2)619 

---------------, 2(m-1)3.6361 
2(m)3.23 
2 (ml 3. 37 

m ?: 3 

2 (m+1) 3. 29 
mon. incr. 
case 1 
1 = 3 

2{m+2)3.23 a = 2 (2) 

tenns 

2(m)2137 
2(m-2)7487 
2(m-2)6553 
2(m-4)22943 
2 (m-4) 17. 11. 81 
2 (m-5) 39631 
2(m-5)34679 
2(m-4)15173 
2(m-6)53113 
2(m-8)185903 
2(m-8)47.3461 
2(m-8) 148913 
2(m-10l17.23.3L43 
2 (m-10) 619277 
2(m-12) l.3.137.1217 
2(m-9)280591 
2(m-9)245519 
2(m-9)214831 
2 (m-9) 11. 23. 743 
2 (m-9) 7l • 3011 
2(m-9)79.2441 
2 (m-9) 89 .1949 
2 (m-10) 311203 
2 (m-11) 13.41893 
2(m-12)43.25819 
2{m-12)59(2)293 
2 (m-14) 3728173 
2(m-16)23.31.18301 
2 (m-16) 13.67.15277 
2 (m-16) 13964963 
2 {m-1 7) 11. 2221699 
2 (rn-17) 25549561 
2(m-19)23.569.6833 

characL 

m ?: 22 
decreasing 
(not 
m~tonic) 
case 2 
1 = 96 
a = 2 (8) 

2(m+2)3.1193 

2(rn+l0)3.7 

terms 

2 (m-19) 7 (2) 11.159311 
2(m-19)23.53.97169 
2(m-19)13.281.32213 
2(m-18)13(2)29.12323 
2(m-l1) 13.59.677 
2(m-11)548591 
2 (m-11) 480019 
2(m-12)11.76367 
2 (m-12) 79. 1111 7 
2(m-12)379.2083 
2 (m-12) 6 7. 9 7. 10 7 
2(m-12)654067 
2(m-13)1144621 
2(m-15)43.151.617 
2 (rn-·15) 3743539 
2(m-16)439.14923 
2 (m-16) 151. 38153 
2(m-16)29.176303 
2(m-16)97.49529 
2 (m-17) 2683. 3203 
2(m~17)7.47(2)487 
2 (m-·17) 1367 .6577 
2 (m-1 7) 7 .1125973 
2(m-17)2129.4231 
2(m-17)2539.3109 
2(m-14)7(3)2521 
2(m-14)43.23879 
2 (m-·14) 943303 
2(m-10)79.653 
2(m-10)193.241 
2 (m-11) 79 .1051 
2 (m-11) 74771 
2 (m-12) 19. 71.97 

terms 

2(m-12)79.1693 
2 (m-12) 61. 1973 
2(m-13)218249 
2 (m-15) 763879 
2(m-13} 167099 
2(m-14)292427 
2(m-15)17.30103 
2(m-15)7(2)41.251 
2 (m-14) 7 (2) 6397 
2(m-16)7.211619 
2(m-16)1692967 
2 (m-14) 1 L 13L 257 
2(m-14)11.35993 
2(m-13) 139.1489 
2 (m-12) 92077 
2 (m-14) 29. 11113 
2(m-15)3l.19541 
2(m-15)439.1291 
2(m-15)499151 
2 (m-15) 31. 73.193 
2(m-15)424601 
2(m-17) 11.135101 
2(m-15) 11.35311 
2 (m-· 15) 73. 5563 
2(m- 4)182953 
2(m-16) 11.23.2531 
2(m-16)17.6L701 
2(m-15)37(2)271 
2 (m-15) 113. 3067 
2(m-14)349.443 

2 (m·-8) 2137 



CHAPTER 8 

ALIQUOT f-CYCLES 

The subject of this chapter is the study of (aliquot) f-cycles, for 

special choices off. This chapter is divided into three sections: 

section 8.1 deals with f-cycles of length 1 (also called f-perfeats), in 

section 8.2 we treat f-cycles of length 2 (also called £-amicable pairs) 

and in section 8.3 we study f-cycles of length l > 2. We notice that it 

follows from the definitions in chapter 3 that any (2k+2)-free u-cycle is 

an Mk-cycle (k=0,1,2, ••• ), that any (k+1)-free a-cycle is a Wk-cycle 

(k=l,2, ••• ), and that any (k+2)-free a-cycle is an ½c-cycle (k=0,1,2, ••. ) 

and also an ¾:-cycle (k=0,1,2, .•• ). 

8. 1 £-PERFECTS 

8.1.1 f == a 

49 

24 even a-perfects are known, the smallest being N = 6 and the largest being 

N = 2P-1 c2P-1) with p = 19937 [38]. Whether there exists any odd perfect 

number is not known at present. If one exists, it must exceed 1050 [19] *> 
and contain at least eight different prime factors [20]. 

8.1.2 f = a* 

* 5 even cr -perfects are known, the smallest being N = 6 and the largest 

being N = 2183.547.11.13.19.37.79.109.157.313 [36], [39]. It is easy to 

* prove that odd cr -perfects do no exist. 

8.1.3 f = w1 

There are infinitely many w1-perfects, namely N 

there are no other ones [41]. 

*> Recently, this bound has been replaced by 10100 See M. BUXTON & 

B. STUFFLEFIELD, On odd perfect numbers, Notices Amer.Math.Soc., 
22 (1975) A-543. 
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8.1.4 f = '1'2 

THEOREM 8.1 The only '1' 2-perfects are 6 and 2m7 (m=2,3, ••• ). 

PROOF. From the definition of '1' 2 it follows that 

N 

(p1, ••• ,pr' , .•• ,q8 are different primes, all ai ~ 2) is a '1' 2-perfect, if 

and only if 

(8 .1) N 

is '1' 2-perfect. But N is 3-free, so that 'l' 2 (N) o(N). 

'l'herefore, we look for numbers N of the form (8.1) which satisfy a(N) 2N. 
The only even numbers with this property are 6 and 28. If N is odd, then 

it is well-known that r = 1 and pl= 1 (mod 4). Since STEUERWALD [35] 

proved that these numbers N = p1qf ... q; cannot be a-perfect, our proof is 

complete. O 

THEOREM 8.2 The only '1' 3-perfects are 6 and 28. 

PROOF. By the same argument as in the proof of theorem 8.1 we look for the 

4-free a-perfects. It is easy to see that there are only two numbers of 

this kind, namely 6 and 28. 

8.L6f='l'k 

By the same argument as in the case f = '1' 2 we can prove the general 

'l'HEOREM 8.3 The even 'l'k-perfects (k ~ 1) are 

(i) the even (k+1)-free a-perfects, and 

(ii) the numbers 2k+i(2k+l_1), for i=l,2, ... , provided that 

a-perfect. 

□ 

-1 is 

We cannot answer the question whether there exist any odd 'l'k-perfects 

fork~ 4, 
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8.1.7 f = Mk 

We present a general theorem about even Mk-perfects, but we first prove 

LEMMA 8.1 If min (1 < m ~ n), then 

1 + .!. 
m 

(k=1,2, ••• ) • 

PROOF. Suppose the canonical prime factorization of n is given by 
-_--el es 
n - P1 •• ·Ps (ei > 0, i=l,2, .•• ,s). Then the divisor m of n must be of 

a1 a 
the form m = p 1 •••Pss (0 ~ ai ~ ei, i=l,2, ••• ,s, where at least one ai is 

positive). Hence 

> 1 + ___ 1 __ _ 
1 + .!. □ 

0 1 °2 as 
P1 P2 .• •Ps 

m 

THEOREM 8.4 There al'e no even ~-perfects N such that the exponent of 2 in 

the canonicaZ factorization of N is 2 2k + 1. 

PROOF. Suppose contrariwise that N = 2aN1 (N1 odd and a 2 2k+1) is~­

perfect. Then we have 

(8.2a) (2k+1 - 1)(2a-k + 1) Mk(N1) so that 

~(N1) 2a+1 
(8.2b) 
~ = (2k+1 - 1)(2a-k + 1) 

From (8.2a) it follows that 2k+l_1IN and from lemma 8.1 we infer that 
1 

Mk(N1) 
1 + 

1 
---2 > 

Ni 2k+1 
- 1 

2k+1 2a-k 
> 

2k+1 
- 1 2a-k + 1 

which contradicts (8.2b). 

THEOREM 8.5 There are no odd M1-perfects. 

□ 
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(8 .3) 

None of the exponents can be greater than 2 because, if so, then 
e. e.-1 

M1 (pi1 ) (pi+1)(pi1 +1) would have at least two prime factors 2, whereas 

the right hand side of (8.3) contains exactly one prime 2. Hence, N is 3-

free, which implies that M1 (N) = cr(N). But in the proof of theorem 8.1 we 

showed that there are no 3-free odd a-perfects. 

We do not know whether tl1ere is an odd Mk -perfect for k ? 2. 

8.1.8 f = Lk and f = ¾ 

We have not found general theorems for f = Lk and f = Rk *> as we did for 

□ 

f = '!'k and f = Table 8.1 gives a list of Lk-perfects for k=l,2,3,4 and 

table 8.2 gives a list of ¾-perfects for k=l,2,3,4. These perfects were 

computed by trial and error. 

TABLE 8.1 

Some Lk-perfects for k=l.,2,3,4, found by trial and error 

k Lk -perfects 

1 2.3, 227, 237. 13, 245231, 245319.31.151 

2 2.3, 227 · 

3 2.3, ' 2431, 2531.61 

4 2.3, 227, 2431 

* ~1 ) with the following exception: if p = 3.2 -1 (kElNo) is a prime, then 
2k+2 3 . . 
• .p is an ¾-perfect. A table of all k's 5 1000 for which p is prime 
may be found .in [ 34]. 



TABLE 8.2 

Some ¾:-perfects for k=l,2,3,4, found by trial and error 

k ¾-perfects 

1 2.3 

227 

233.11 

243.5.19 

253.5.7 

26327. 13 .17 .67 

27327.11.13.131. 

283.5.7.19.37 

293.5.7.13.103 

2103.5.7.13.79 

2123.527.31.41.4099 

21332547.11.13.79.149.631 

21632547.13.19.29.79.113.631.65539 

253.47 
6 2 3.5.79 

273.7.11.13 

2 8 3 27 .13 . 1 7. 271 

29327.11.13.527 

2103.5.7.13.1039 

211 327.11.13.43.2063 
2327.11.13.43.257.4111 

213335229.31.71.283 

2143.5.7.23 231.79 

215335219.31.683.32783 

2163.5.7.11 311279.241.307.65551 

k ¾:-perfects 

2 2.3 

4 

227 

243.23 

253.7.13 

26 3 27 .13. 71 

27335231 

28327.11.13.263 

29335229.3L173 

210327.11.13.43.1031 

211 335223.31.137 

212345.7.11 217.19.47.373 

213335219.31.911 

21534537.13.19.23.47 

216335219.31.683.2731.65543 

2.3 

227 

2431 

i52 t9.31 

27365217.31.53 

210335231.53.211. 

211 36527.11.17.31 

212327.11.13.43.4127 

213335223.31.229.457.2741 

53 
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8. 2 £-.AMICABLE PAIRS 

8.2.1 f "' a. 

More than 1100 a-amicable pairs are known 26], the smallest pair being 

{220,284}. 'I'he four largest known pairs (with 32-, 40-, 81- and 152-digit 

numbers) were recently computed by TE RIELE [31]. In the lists off-amicable 

pairs (for f ~ a) given in the sequel, those f-amicable pairs, that are also 

a-amicable pairs, are omitted. 

* 8.2.2 f = cr (= 

In 1970, WALL [41] found more than 600 -amicable pairs. HAGIS in 1971 and 

TE RIELE in 1973 also investigated cr*-amicable pairs, both unaware of WAI.L's 

thesis. HAGIS [21] computed all -amicable pairs {m,n} with m < n and 

m $ 106 [21]. TE RIELE [32] published a list of more than 1100 -amicable 

pairs, including nearly all those pairs published by Wall. For some other 

new -amicable pairs, see [24]. 

8.2.3 f = '¥k (k=i,2,. .• ) . 

Many '¥k-amicable pairs may be constructed from the known a-amicable pairs 
k [26] as fol.lows. Suppose the pair {m,n} is er-amicable and m = p m1 and 

k n = p n1 where k > 0, (p,m1 ) = 1, (p,nl.) = 1, and m1 and n1 are (k+l)-free. 

Then it follows from the definition of '¥k that the pairs {pam,pan}, 

(a=0,1,2, •.• ) are '¥k-amicabl.e, In our list of '¥k-amicable pairs (table 8.3, 

pp. 56-58) we have not included these pairs, in order to save spa.ce, The 

pairs given in table 8,3 were found partly by the method described in 

chapter 7, partly by a systematic computer search for all pairs, the smal­

lest element of which does not exceed 104 , partly by use of one of the 

three following lemma's and partly by trial and error. 

LEMMA 8,2 If the t;z;;o positive integers p = 2k+i+2k-1 and q 

primes, then the pairs 

LEMMA 8.3 Suppose 

AB 

k-i k 
2 +2 -1 are 



55 

is a factorization of the positive integer 2k(2k-1)+2k-i_ the three 
k k positive integers p = 2 -i+A, q = 2 -l+B and r = (p+1) (q+1)-1 are primes, 

then the pairs 

LEMMA 8.4 Suppose 

is a factorization of the 

positive integers p = 
then the pairs 

A " B, 

·t. . k ( k k+i If t'· th pos1.- -1.-ve 1.-nteger 2 2 -1) +2 . ,ie ree 
q = 2k-1+B and r = J;e+l) ~51+i)_ - 1 are primes, 

2J. 

where a=k, k+l, ••. , 

The proof of these lemma's follows easily by solving the equations 

{: 
k(m) = 'Pk(n) 

k(m) = m + n 

for the pairs {m,n} given in the lemma's. 

f 

Table 8.4 gives 

1'J.c and f •~ ¾:· 

(k=l,2), Lk- (k=l,2,3,4) and¾: - (k=i,2,3,4) amicable 

pairs, which are not at the same time er-amicable pairs. They were found 

partly by a computer search for all pairs {m,n} with m < n and ms 104 , and 

partly by trial and error. 
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TABLE 8.3 

Some 'l'k-a.micables for k=l,2,3,4, found by various methods (see text) 

k 

1 (2m-l5n-l)1330 

(2m-l5n-l)1550 

2m5n7 .11 

Lmsn-1479 

2m5n13 .23 

{2m5n-l1L139 

{
2m5n7.53 

2m5n-l19.107 

{
2m5n11.23.29 

2m5n+l31.53 

J3m5n7i.1~. 23 

l.3m5n-l7i19.83 

{
2m7n11i13.109 

2m7n+i1 19 

{
2m5n19i11.113 

2m5n19i+171 

2m5n11 i43.89 

{2msn11 i+i359 

(2m-i5n-2)3850 

(2m-l5n-2J4790 

(2m-l7n-2) 11270 

(2m-l7n-2)12922 

(2m-l5n-2 )14950 

(2m-l5n-2)15290 

(2m-l5n-2)18550 

(2m-l5n-2)20330 

(2m-l5n-l)73370 

(2m-l5n-l)82150 

(3m-i5n-27i.-l)156975 

(3m-l5n-27i.-l)165585 

(2m-l7n-l11i-l)218218 

(2m-l7n-l11i-l)225302 

(2m-l5n-i19i-l)236170 

(2m-i5n-l19i-l)256310 

(2m-l5n-l11i-l)420970 

(2m-l5n-l11i-l)434390 

3m5n7i1L17 

{3m5n-l7i-l29.251 

( 3m-! _,.--,.,. .•... ,.) 687225 

Sn- 27i~·2 ) 764295 

(m,n21) 

(m2l, n~2) 

(m ,n, i.21) 

{
2m5n31i13.29 (2m-l5n-l31i-2 )3622970 (m,n21, 122) 

·-······-···--·----··--- 2m5n+l31 i-l41.61 ___ (2m-l _31i-2 ) 3876550 ______________ _ 

2 2m3 (2m·· 2 ) 12 (m22) 
{ 2m+2 (2m- 2) 16 

2m5 (2m-J)40 (m23) 

{ 11 )44 



"rABLE 8. 3 (continued) 

k 

2 (cont.) 

3 

(3m-J)12285 

(3m-J)13923 

m 
{

3 5.7.13.23 

3m+17.13.47 

3m-2 (94185) 

3m-2 ( 115479) 

{
2m7 (2m-Jl 56 

2m+3 = (2m-3)64 

{
2m11 = (2m-4)176 

2m-l23 = (2m-4)184 

{2m13.19 
2m+l139 

m {2 11.29 
2m+289 

{2m13.17 
2m-l503 

(2m-3)1976 

(2m-J)2224 

(2m-J)2552 

(2m-3 )2848 

(2m-4)3536 

(ill-4)4024 

(Jm-5 )161595 

(3m-S)184005 

3m5n7.109 = (3m-55n-4 )115880625 

{3m-2sn-l59.659 ~ (3m-55n-4 )131223375 

(m:?:3) 

(m?2) 

(m?3) 

(m?3) 

(m?5) 

{
3m5n7.199.967 = (3m-55n-3)40916066625 (m?S, n?3) 

_______________ 3m-2sn47.290399 ___ (3m-S5n-J)46064541375 _____________ _ 

4 2m+i23 (2m-4)736 (m?4) 

Lm47 (2m- 4)752 

2m+219 (2m-4 )1216 (m?4) 

Lm79 (2m-4 )1264 

57 
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TABLE 8.3 (concluded) 

k 

4 (cont.) 
{

2m19.83 = (2m-4 )25232 

2m+l839 = (2m-4 )26848 

m 
{

2 19.107 

2m+3269 

m 

{
2 17 .151 

2m+l1367 

(2m-4 )32528 

(2m-4)34432 

(2m-4)41072 

(2m-4)43744 

(2m-4)54128 

(2m-4 )57472 

(2m-4 )75616 

(2m-4)80624 

(m:?:4) 

(m:?:4) 



TABLE 8.4 

The Mk-, Lk- and !\:-amicable pairs {m,n} such that m<n and m:<:1 

and some pairs, found by trial and error 

f = Mk 

k 

1 

2 

f Lk 

k 

1 

2 

3, 4 

f 1\. 

f-amicable pairs 

{
3608 ( 2\ L 41) 

3952(2 413.19) 

none with rn :<: 104 

f-amicable pairs 

{
168(233.7) 

248(2 331) 

{
920(235.23) 

952(237.17) 

{
1008(24327) 

1592(23199) 

{
8272(2411.47) 

8432(2417.31) 

none with m s 104 

k f-amicable pairs 

2 

3 

4 

{
366(2.3.61) 

378(2.337) 

{
3864 .7.23) 

4584(2 33.191) 

{
26448(243.19.29) 

28752(243.599) 

none with ms 104 

{
10194(2.3.1699) 

10206(2.367) 

{ 
9520(245.7.17) 

13808 ( 24863) 

·{ 154B(i3243) 

2456(23307) 

{ 
5720(235.11.13) 

7384(2313.71) 

{
16268 ti7283) 

17248 1) 

{
16104(233.11.61) 

16632(23337.11) 

59 
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8.3 f-CYCLES OF LENGTH l > 2 

8.3.1 f = cr. 

Fourteen cr--cycles of length f!_ = 4 and one each for l = 5 and l = 28 are 

known [ 18]. 

* 8.3.2 f = cr. 

One o*-cycle of length l = 3, 8 for l 4, one each for l = 25, ,f = 39 and 

l = 65 are known [24], [33]. 

8.3.3 f = '!'3 , f = L3 , f = R1• 

Table 8.5 gives the only three f-cycles of length l > 2 (not at the same 

time being a-cycles) which are known to us. They were found by trial and 

error. 

TABLE 8.5 

Three aliquot f-cycles of length l > 2, that are not a-cycles 

f aliquot f-cycle 

'!'3 4 r917 r5344 
(m 2: 5) 

2m-21L29.43 = 2m--5. 109736 

2m-21L1453 127864 

2m47.89 133856 

4 { 4040(235.lO!J 
5140(i5.257) 

5696(2689) 

5194(2.7 253) 

R1 3 !"' (2.3.139) 
846 (2.3 2,nJ 

1026(2.3\9) 



CHAPTER 9 

SOLVING THE f(x)-x=m 

In this chapter we investigate the equation 

(9 .1) f(x) - x = m, 

for f E F and m E lL If (9.1) has no solution x EID for some m, then mis 

called f-untouehable, otherwise, mis called f-touchable. 

In [14], ERDOS proved that the lower density of the a-untouchables is 

positive. ALANEN [1] found the 570 CJ-untouchables :S 5000. 

THEOREM 9.1 Let f E F, Suppose that f satisfies the additfonaZ condition 

(9. 2) 

alZ divisors a of n. Mis even and f-abundant, and if M' is an even 

61 

and f-abundant divisor of M, then the 

satisfying m = M' (mod M), is 2: .!..( 1 

l01iier density of the f-untouchables m, 
M' 

- f (M' ) -M' ) > O. M 

Note that for M' = M, this statement reduces to: if Mis even and f­

abundant, then the lower density of the f-untouchables m, satisfying 

m = 0(mod M), is 2: ft - f(M\-M. 

Before proving this theorem, we give two lemma's. 

LEMMA 9. 1 The nwnber of 2-fu Zl numbers :S x is 0 

_!?ROOJ::..:._Any 2-full number n can be uniquely represented in the form n = a 2b 3, 

where a E ]Xi and b is squarefree, If T(x) is the number of 2-full numbers 

$ x, then it follows that 
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T(x) s L (x/b3)1/2 
b 3sx 
bis squarefree 

for x + 00 D 

The next lemma is a special case of a more general result of Scour-

field * ) . 

LEMMA 9 • 2 If f E F, then for any d E E the nwnber of posi ti'/Je integers 

n S X such that d r f(n), is 0(x) for X + OO 

PROOF OF THEOREM 9.1. First notice that (9.2) implies that for any prime 

divisor p of n 

(9. 3) f(n) - n? n/p. 

Let A (N) be the number of n E N satisfying 

f(n) - n s N, and 

(9. 5) f(n) - n - M' (mod M) . 

'.C'his number is finite for any N EE. Indeed, if n = p, then 

f (n)-n ~ 1 1 M' (mod M). If n :i.s not a prime, and if p1 is the smallest 

prime divisor of n, then we have p 1 s I/ii., so that by (9.3) we have 

f(n)-n? n/p1 ? I/ii.. From (9.4) it follows that n s N2 . 

If A1 (Ni is the number of odd n, satisfying (9.4) and (9.5), H A2 (N) 

is the number of even n, with n 1 -M' (mod M), satisfying (9.4) and (9.5) 

and :i.f A3 (N) is the number of even n, with n = M'(mod M), satisfying (9.4) 

and (9.5), then we obviously have 

(9. 6) 

If n is odd then by (9.5), f(n) is also odd. Si.nee, for odd p, f(p) = p+l is 

even, n must be 2-full. Suppose n=p2 • Then by (9.3) f(n)-n?p, so that the 

1
') E.J. SCOURFIELD, Non-divisibility of some muZtipliaative funat?'.ons, 

Acta Arithmetica, 22(1973) 287-314. 
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2 number of odd n p , satisfying (9.4) and (9.5), is s rr(N), which i.s O(N), 

for N-+ 00 • If n., p 2 , and if p 1 is the smallest prime divisor of n, then we 

have p 1 s n 113 , so that, by (9.3), f(n)-n 2 n/p1 2: n213 • From (9.4) it fol­

lows that n s N312 , and by lemma 9 .1, we conclude that the number of odd 

n., p 2 , satisfying (9.4) and (9.5) is O(N314), for N ➔ 00 Hence 

(9. 7) O(N) for N-+ 00 

If n is even, then (9.3) il'lplies that f(n)-n 2: n/2, so that, by (9.4), 

n S 2N. 

If n % -M'(mod M), then by (9.5) we have f(n) F O (mod M). It follows from 

lemma 9.2 that the number of positive integers n s 2N such that 

f(n) f O(mod M) is O(N), so that 

(9 .8) a (N) for N-+ 00 

If n - -M'(mod Ml, then, since M'IM, we have M'ln and it follows from (9.2) 

that 

f (M') < f (n) 
M' - n 

so that 

f(M') - M' 5 f(n) - n 
M' n 

By use of (9.4) we find that 

Hence 

M' 
N • f (M ' ) - M ' • 

N s 
M f (M') - M' • 

Combining this with (9.8), (9.7) and (9.6), we conclude that the upper 

density of the numbers n satisfying (9.5) is at most M'/(M(f(M')-M')), so 

that the upper density of the f-touchables m, satisfying m = M' (mod M), is 

also at most M'/(M(f(M')-M')). From this we finally conclude that the lower 
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density of the f-untouchables m, satisfying m - M' (mod M), is at least 

1 
M 

M' 
M ( f (M' ) -M' ) □ 

Of the examples off given in chapter 3, only the functions CT and 'fk 

(k=l,2, ••• ) satisfy (9.2), so that theorem 9.1 applies to them. 

Since M = 30 is squarefree, we have f(30) = 72 > 60, so that 30 is an 

f-abundant number for all f E F. Therefore, we may apply theorem 9.1 with 

M = 30, and M' = M, yielding 

COROLLARY 9 .1 Fo1° al,7,, functions f E P which satisfy (9. 2), the louJe.r 

density of the f-untouchahles m, which are= O(mod 30), is 
1 30 1 

:?: w( 1 - 42> = 10s· 

It is not difficult to improve this lower bound when we consider 

special choices off. As an example, we shall derive 

COROLLARY 9.2 The lower denB1;•ty of the a-untouchables is > .0324. 

To prove this, we note that every even number belongs to at most one 

of t.he following congruence classes: O(mod 24), 12(mod 24), 30(mod 60), 

20(mod 60), 40(mod 120), 70(mod 420) and 350(mod 2100). Every class is of 

the form M' (mod M), where M' IM and both M' and M are even and a-abundant. 

Hence theorem 9.1 applies to all these classes, so that the lower density 

of the even a-untouchables is at least 

1 1 1 1 1 1 11 
+ 96. + 210 + 660 + 600 + 7770 + 206850 > • 0324 • 

Since for all f E F we have 

f (pq) - pq p + q + 1 ' 

for primes p and q {p >' q), and since almost all even numbers can be 

written as the sum of two prime numbers (proved by VAN DER CORPUT [9], 

ESTERMANN [15] and TSCHUDAKOFF [37]), it follows that the density of the 

odd f-untouchables is zero, for all f E F. 

Corollary 9.1 implies that for all f E P, satisfying (9.2), there 

are infinitely many £-untouchables. Although belongs to this class 
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of functions, we shall prove now, in a more constructive way, that there 

are infinitely many f 1-untouchables. Unfortunately, this proof does not seem 

to be applicable to other functions f E F. 

THEOREM 9.2 The numbers 2n3.R (n=1,2, ••• ), where R is fixed and (6,R) 1, 

are either all f 1-touatzable or else are all f 1-untouahable. 

Before proving this theorem, we derive 

LEMMA 9.3 Any solution x = x0 of the equation 

(9.9) (n E Ji! and (6,R)=1) 

PROOF. Let x0 be a solution of (9.9) with canonical factorization 
s e· 

x 0 = ni=l pi 1 • Then we have 

Now x0 must be even, since, if x0 is odd, then f 1 (x0)-x0 is also odd. This 

gives, with p 1 = 2, 

3 ands~ 2, yielding 

2 13 2 2 
e e [ 

D 

PROOF OF THEOREM 9.2. Let a E RI! be fixed and let REE so that (R,6) = 1. 

Suppose 2a3.R is f 1-touchable. According to lemma 9.3, any solution of the 

equation 

a has the form x0 = 2 3.S, for some S with (6,S) 1. From the definition of 

¥ 1 it follows that 
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for all integers e 2: -a+L Hence all numbers 2n3.R (n=1,2, •.• ) are 1¥1-

touchable. 

Now suppose 2a3.R is 1¥ 1-untouchable. Then all numbers 2n3.R (n=1,2,. .. ) 

must be 1¥ 1-untouchable, since if any one of them is 1¥ 1-touchable, it fol­

lows from the first part of this proof that they are all 1¥ 1-t.ouchable. D 

According to lemma 9.3, any solution x = x0 of the equation 

'JI 1 (x) -x '" 6R, ( 6, R) '" 1, must have the form x 0 6S, (6,S) = 1. Now we have 

I2'¥ 1 (s) - 6S 6[21¥1 (S) - S] 2: 6S, 

with equality if and only if S = L Hence it follows immediately that 

30 6.5 is 1¥1-untouchable, and that, since 42 = (30)-30, the number 

42 6.7 is 1¥1-touchable. Application of theorem 9.2 shows that the numbers 

2n3.5 (n=l,2, ••• ) are all '¥1-unt.ouchable, whereas the numbers .7 

(n=1,2, ••• ) are all 1¥ 1-touchable. 

In [1] ALANEN has given an algorithm for the computation of every 

solution x of the equation 

(9.10) CT (x) - X = 11 for all n 5c N, 

where N E :N is given (yielding all a-untouchables ,;; NJ . The largest value 

of N, to which A.LANEN applied his algorithm is N = 5000. We have improved 

the algorithm, with respect to the required amount of memory, as follows, 

Let u(x)-x=:s(x). The situation occurs that the values of a, s(a), ap~ and 
i 

s(ap~) are knouJn (a,e E :N, pi is the i-th prime and (a,pi) = 1), whereas 
e+1 

the value of s(api ) must be computed. In Alanen's procedure this is done 

by use of the relation 

(9.11) s 
e+2 

s(a)s(p. ) +as 
l. 

The values of s(p~+2) ands 
i 

) are available in an array TABLE, where 

TABLE[i,j] + 1 ' 
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for i=1, 2, ••• , 11 (N) and j=2, 3, ••• , [ log 2N] + 1. In our procedure, instead of 

(9.11), we use the relation 

(9.12) 

the validity of which may be easily verified. Now we only need to store the 

primes pi, for i=1,2, .•• , 11(N), so that the required amount of memory for 

(9.12) is of the order of magnitude of 11(N), instead of 11(N)log2N required 

for (9.11). 

With this improvement, we have applied Alanen's algorithm (to f = cr) 

with N = 20000. With some appropriate modifications, the algorithm could 

also be adapted for the computation of all solutions of f(x)-x = n, for all 

n s N, for other f € F. In particular, we have applied the modified algo-

* rithm with N = 20000 to f = '¥ 1 , '¥2 , M1 , L1 and R0 (= cr ). 

Results of these computations are collected in tables 9.1, 9.2, 9.3 and 9.4. 

Table 9.1 displays (for the functions f above) the number of even and 

the number of odd £-untouchables s 20000; the number of n E :N for which 

f(n)-n is even and f(n)-n s 20000 (= Ae = Ae(20000)); the number of n E :N 

for which f(n)-n is odd and 1 < f(n)-n < 20000 (= A0 = A0 (20000). Note that, 

for all f € F, f(n)-n = 1, if n is a prime); and, finally, the value of 

the function 

TABLE 9.1 

f 

(J 

'¥1 

'¥2 

Ml 

L1 

RO 

1 Ae 
10000(1 - 10000> 

number of £-untouchables 
$ 20000 

even odd 

* 2565 1 (5) ) 

2896 0 

2360 2(5,7) 

2485 1 (5) 

2181 1 (7) 

157 3(3,5,7) 

A A e 0 

13434 1454747 

13854 1457942 

13948 1454702 

13891 1454829 

14468 1454994 

47083 1544668 

*i The odd £-untouchables are given in parentheses. 

A 1 e 
10000(1~ ioooo) 

2610 

2502 

2479 

2493 

2353 

90 
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The last column of table 9.1 appears to be a reasonable approximation to the 

number of even f-untouchables. 'I'his may be explained heuristically as 

follows. When N1 balls are rando~ly distributed among N2 (initially void) 

boxes, it can be shown, that the expected number of void boxes is given by 

Hence, on the assumption that the even values of f(n)-n s N are randomly 

distributed among the numbers 2,4,6, ... ,N (assume N is even), we may expect 

the function 

(9.13) 

where A8 (N) is the number of n for which f(n)-n is even and f(n)-n SN, to be 

a reasonable approximation to the number of even f-untouchables s N. 

Unfortunately, the value of Ae(N) can not be given a priori (the value of 

(20000) in table 9.1 is a by-product of Alanen's modified algorithm). 

However, we can give an asymptotic upper bound for Ae (N) , for any given 

f E F. As an illustration, we will carry this out for f ~CT.We recall that 

Ae (N) is the number of n E N, for which CT (n)-n is even and CT (n) -n s N. 

As in the proof of theorem 9.1, it is readily seen that the even numbers 

n EN, which contribute to Ae (N), are ,;; 2N, and that the number of odd 

numbers n E N which contribute to Ae (N) is O (N), for N ➔ 00 • Hence, we have 

Furthermore, it is known (see for instance [40], pp.197-8, exercise 49.7) 

that the density of the even CT-abundant numbers is greater than 0.229, so 

that asymptotically, for at least 0.229N + O(N) of the even numbers n 

between N and 2N, we have 

CT(n) - n > n > N. 

Hence, 

(N) $ N - 0.229N + O(N) 0.771N + O(N) . 
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From (9.13) we conclude that (under the a3sumption of the random distribut­

ion of the even values of o (n) -n among the numbers 2, 4, 6, ... ,N) the number 

of even a-untouchables s N is, asymptotically, greater than 

~(1 - ~)0.7?lN+O(N) Rl 0.1069N(1 + 0(1)) • 
2 N 

Let df(n) be the number of solutions x of the equation f(x)-x = n. In 

table 9.2 we give the values of n s 20000 for which df is maximal, and the 

corresponding maximum. We also list the least number k0 for which there i.s 

no odd number n s 20000, satisfyi.ng 

TABLE 9.2 

f n (even) (n) n (odd) (n) kO 

a 11194 10 18481 576 406 

17914 10 

16384 9 18481 573 393 

17594 9 

17914 9 

1194 9 18481 576 374 

17594 9 

17914 9 

Ml 1.1194 11 18481 576 387 

17914 11 

11194 9 18481 576 374 

17594 9 

17914 9 

14848 26 18481 588 412 

•rable 9.3 presents the number of even n s 20000, for which df(n) k, 

for k••O, 1 , 2, •. 
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TABLE 9.3 

Number of even n :S 20000, for which df(n) = k, k:0,1,2, .•• 

k f = a 

0 2565 2896 2360 2485 2181 157 

1 3655 3299 3662 3598 3627 703 

2 2370 2053 2407 2400 2584 1342 

3 924 1054 1085 971 1081 1621 

4 308 405 329 327 333 1639 

5 102 167 90 132 120 1379 

6 33 71 35 38 40 1042 

7 27 37 18 27 17 673 

8 8 15 1J. 10 14 496 

9 6 3 3 7 3 325 

10 2 3 200 

11 2 145 

12 82 

13 58 

14 43 

15 27 

16 26 

17 20 

18 12 

19 2 

20 2 

21 3 

22 0 

23 1 

24 

25 0 

26 
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In table 9.4 all -untouchables :S 20000 are given, including their 

canonical factorizations. 'rhese numbers are connected with a conjecture of 

DE POLIGNAC [28] which states that any odd number> 1 is of the form 

where k E N, and p is either a prime or the number 1. Since, if p is odd, 
k k k k (2 p)-2 p = ( ) (p+l )-2 p 2 +p+l, the truth of this conjecture would 

imply that all even numbers> 2 are -touchable (except perhaps those even 

numbers which are of the form ). However, ERDOS [12] and VAN DER CORPUT 

[8] proved that the density of the odd numbers :for which DE POLIGNAC' s 

conjecture is false, is 

TABLE 9.4 

* The CJ -untouchables :S 20000 

2(2) 6002(2.3001) 
3(3) 6174(2.3(2)7(3)) 
4(2(2)) 6270(2.3.5.11.19) 
5(5) 6404(2(2)1601) 
7(7) 6450(2.3.5(2)43) 

374(2 1L17l 6510(2.3.5.7.31) 
702(2.3(3)13) 6758(2.31.109) 
758(2.379) 6822(2.3(2)379) 
998(2.499) 6870(2.3.5.229) 

1542(2.3.257) 6884(2(2)1721) 
1598(2.17.47) 7110(2.3(2)5.79) 
1778(2.7.127) 7178(2.37.97) 
1808(2(4)113) 7332(2(2)3.13.47) 
1830(2.3.5.61) 7406(2.7.23(2)) 
1974(2. 3. 7.47) 7518(2. 3. 7 .179) 
2378(2.29.41) 7842(2.3.1307) 
2430(2.3(5)5) 7902(2.3(2)439) 
291.0 (2. 3. 5.97) 8258(2 .4129) 
3164(2(2)7.113) 8400(2(4)3.5(2)7) 
3182(2.37.43) 8622(2.3(2)479) 
3188(2(2)797) 8670(2.3.5.17(2)) 
3216(2(4)3.67) 8790(2.3.5.293) 
3506(2.1753) 8850(2.3.5(2)59) 
3540(2(2)3.5.59) 8862(2.3.7.211) 
3666 (2.3.13.47) 8916(2 (2) 3. 743) 
3698(2.43(2)) 8930(2.5.19.47) 
3818(2.23.83) 8982(2.3(2)499) 
3846(2.3.641) 9116(2(2)43.53) 
3986(2.1993) 9518(2.4759) 
4196(2(2)1049) 9522(2.3(2)23(2)) 
4230(2.3(2)5.47) 9558(2.3(4)59) 
4574(2.2287) 9570(2.3.5.11.29) 
4718(2.7.337) 9582(2.3.1597) 
4782(2.3.797) 9642(2.3.1607) 
5126(2.11.233) 9930(2.3.5.331) 
5324(2(2) 11 (3)) 10002(2.3.1667) 
5610 ( 2 • 3. 5 • 11 . 1 7 l 100 2 2 ( 2 . 501 ll 
5738(2.19.151) 10062(2.3(2)13.43) 
5918(2.1L269) 10200(2(3)3.5(2)17) 
5952(2(6) 3.31) 10238(2.5119) 

10254 (2.3.1709) 
10358(2.5179) 
10620(2(2)3(2)5.59) 
10754(2.19.283) 
10778 (2 .17. 31 7) 
10782 (2. 3 (2) 599) 
11082 (2.3.1847) 
11172(2(2) 3. 7(2) 19) 
11438(2. 7.19.43) 
11542 (2. 29.199) 
11 7 72 ( 2 ( 2) 3 ( 3) 109) 
11790 (2. 3(2) 5 .131) 
11802(2.3.7.281) 
11910 ( 2. 3. 5. 39 7) 
12 2 34 ( 2 • 3. 20 39 I 
12252(2(2) 3.1021) 
12372 (2 (2) 3.1031) 
12596(2(2)47.67) 
12806 (2 .19. 337) 
12878(2.47.137) 
13092(2(2) 3.1091) 
13298(2.61.109) 
13352(2(3)1669) 
13410(2.3(2)5.149) 
13800(2(3)3.5(2)23) 
1 390 2 ( 2 . 3. 7. 3 31) 
1 396 2 ( 2 . 3. 1 3. 179) 
14022(2.3(2) 19.41) 
14048(2 (5) 439) 
140 5 2 ( 2 ( 2) 3. 11 71) 
14078 (2. 7039) 
14108(2 (2) 3527) 
14142 (2.3.2357 l 
14250(2.3.5(3) 19) 
14382 (2. 3 (2) 17 .47) 
145 32 ( 2 ( 2) 3. 7. 17 3) 
14606(2 .67 .109) 
14612 (2 (2) 13. 281) 
14682(2.3.2447) 
15038 (2. 73. 103) 

15060(2 (2) 3.5.251) 
15162(2.3.7.19(2)) 
15 30 0 ( 2 ( 2) 3 ( 2) 5 ( 2) 17) 
15350 (2. 5 (2) 307) 
15374 (2. 7687) 
15402 (2. 3.17 .151) 
15958(2.79.10 ) 
15998(2.19.421) 
16014(2.3.17.157) 
16118(2.8059) 
16508 (2 (2) 4127) 
16630 (2.5.1663) 
16754(2.8377) 
16770(2.3.5.13.43) 
16788 (2 (2) 3.1399) 
17040 (2 (4) 3. 5. 71) 

7078 (2 8539) 
17 340 ( 2 ( 2 I 3. 5. 1 7 ( 2) ) 
17438(2.8719) 
17468 (2 (2) 11. 397) 
17490(2.3.5.1L53) 
17558(2.8779) 
17580(2(2) 3.5.293) 
17652 (2 (2) 3.1471) 
17862(2.3.13.229) 
17958(2. 3. 41. 73) 
8210(2.3.5.607) 

18566 (2 .9283) 
18608(2 (4) 1163) 
18612 ( 2 ( 2) 3 ( 2) 11. 4 7) 
18686(2.9343) 
18846(2.3(3) 349) 
18870(2.3.5.17.37) 
19058(2 .13. 733) 
19 260 ( 2 ( 2) 3 ( 2) 5. 10 7) 
19358(209679) 
19362(2,3.7,46) 
19632(2(4)3.409) 
19650(2.3.5(2) 131) 
19710 (). 3 (3) 5. 73) 
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The even numbers> 2 in table 9.4 cannot be of the form 2k+p+1 (for 

some odd prime p and k E N), and, by inspection, we find that 4 is the only 

number in this table of the form 2k+2, so that, if we subtract 1 from all 

even numbers> 4 in this table, we have a set of numbers, for which DE 

POLIGNAC's conjecture is false. For the sake of completeness, we give in 

table 9.5 the remaining exceptions s 20000. 
k 

If B(N) is the number of pairs (k,p) for which 2 +p s N (where k EN 

and pis 1 or an odd prime), then we have 

[log2N] 

B(N) l 1r(N - 2k) • 

k = 1 

By the same argument used in estimating the number of even f-untouchables, 

we conclude, under the assumption of the random distribution of the numbers 
k 2 +p among the odd numbers, that the expected number of exceptions s N to 

the conjecture of DE POLIGNAC is 

Since B(20000) = 28232, our approximation gives 10000(1 - - 1---) 28232 
10000 

594.2, whereas the actual number of exceptions s 20000 is 590. 

By using the estimate B(N) < 1T(N)log2N, we find for large N that the 

expected number of exceptions s N is 

Rl .0279N(1 + 0(1)) • 
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TABLE 9.5 

The remaining exceptions :s; 20000 to the conjecture of DE POLIGNAC 

127 2579 4855 7379 9371 11285 13285 15071 16865 18637 
149 2669 4889 7387 9391 11317 13393 15101 16867 18719 
251 2683 5077 7389 9431 11335 13451 15113 16973 18787 
331 2789 5099 7393 9457 11347 13469 15119 17021 18817 
337 2843 5143 7417 9473 11411 13589 15121 17047 18881 
509 2879 5303 7431 9613 11435 13603 15127 1 7083 18889 
599 2983 5405 7535 9787 11533 13619 15149 17089 18895 
809 2993 5467 7547 9809 11549 13679 15187 17113 18897 
877 2999 5557 7583 9907 11579 13735 15217 17137 18899 
905 3029 5617 7603 9941 11593 13841 15223 17147 18911 
907 3119 5729 7747 9959 11627 13859 15247 17229 18959 
959 3149 5731 7753 10007 11695 13897 15359 17257 18971 
977 3239 5755 7783 10027 11729 13973 15419 17269 19007 

1019 3299 5761 7799 10079 11743 14009 15521 17305 19093 
1087 3341 5771 7807 10121 11857 14023 15551 17327 19117 
1199 3343 5923 7811 10235 11921 14039 15607 17369 19135 
1207 3353 6021 7813 1032 7 11993 14081 15641 17371 19139 
1211 3431 6065 7867 10379 12007 14101 15701 17411 19163 
1243 3433 6073 7913 10391 121.31 14143 15 719 17429 19177 
1259 3637 6119 7961 10409 12191 14227 15779 17519 19273 
1271 3643 6161 8023 10447 12203 142 31 15787 17593 19319 
1477 3739 6193 8031 10451 12223 14279 15809 17669 19345 
1529 3779 6247 8087 10483 12239 14303 15853 17735 19379 
1549 3877 6283 8107 10511 12373 14347 15869 17759 19483 
1589 3967 6433 8111 10513 12401 14375 15943 17767 19583 
1619 4001 6463 8141 10553 12427 14383 16025 17773 19807 
1649 4013 6521 8159 10607 12431 14407 16027 17827 19819 
1657 4063 6535 8287 10697 12479 14437 16031 17849 19889 
1719 4151 6539 8363 10873 12517 14459 16109 17887 19949 
1759 4153 6547 8387 10949 12671 14467 16165 17909 19961 
1783 4271 6637 8411 10963 12727 14473 161 77 17921 
1859 4311 6659 8429 11015 12731 14489 16181 7977 
1867 4327 6673 8467 11023 12733 14533 16213 18033 
1927 4503 6731 8527 11039 12749 14585 16361 18089 
1969 4543 6791 8563 11069 12 791 14639 16405 18103 
1985 4567 6853 8587 11083 12881 14765 16409 18155 
2171 4589 6941 8719 11105 12929 14809 16499 18209 
2203 4633 7151 8831 11137 12941 14879 16543 18307 
2213 4649 7169 8873 11141 13001 14917 16559 18359 
2231 4663 7199 8887 11207 13083 14921 16601 18391 
2263 4691 7267 8921 11219 13093 14975 16645 18427 
2279 4811 7289 8923 11227 13099 14981 16727 18487 
2293 4813 7297 9101 11231 1314 7 15013 16739 18517 
2465 4841 7319 9239 11239 13169 15041 16783 18551 
2503 4843 7343 9307 11279 13217 15043 16849 18613 
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