H.J.J. TE RIELE

A THEORETICAL AND COMPUTATIONAL STUDY OF GENERALIZED ALIQUOT SEOUENCES

CONTENTS

PREFACE (vii)
PRELIMTNARTES AND NOTATION (ix)
CHAPTER 1. GENERALIZED ALIQUOT SEQUENCES AND THE CLASSICAL CASE 1
CHAPIER 2. GENERAL PROPERTIES OF ALIQUOT f-SEQUENCES 4
CHAPTER 3. TEST-CASES FOR THE COMPUTATIONAL EXPERIMENTS 13
CHAPTER 4. THE DISTRIBUTION OF THE VALUES OF f 15
CHAPTER 5. THE MEAN VALUE OF $f(n) / n$ 25
CHAPTER 6. COMPUTATIONAL RESULTS ON ALIQUOT E-SEQUENCES WITH LEADER $n \leq 1000$ 31
ChAPTER 7. UNBOUNDED ALIQUOT Ψ_{k}-SEQUENCES 34
CHAPTER 8. ALIQUOT f-CYCLES 49
8.1 f-PERFECTS 49
8.2 f-AMICABLE PAIRS 54
8.3 f-CYCLES OF LENGTH $\ell>2$ 60
CHAPTER 9. SOLVING THE EQUATION $f(x)-x=m$ 61
REFERENCES 74

PREFACE

Aliquot sequences are defined according to the following rule: a leading term is given and every subsequent term is the sum of the "aliquot parts" of the preceding term. The aliquot parts of a number >1 are all divisors (including 1) less than that number. When a term equals one of the preceding terms, we have a so called cycle. Examples of cycles are pexfect numbers (cycle-length=1) and amicable number pairs (cycle-length=2). These sequences were studied already by the Pythagoreans and later on by Euler, Catalan, Dickson, and many others.

The advent of (high-speed) computers has stimulated the renewed interest in aliquot sequences, because the computers made possible the extended computation of "difficult" sequences (i.e. sequences the terms of which become too large for factorization by hand), especially in order to get more statistical information about the asymptotic behaviour of aliquot sequences. This information is interesting, in particular in view of the famous Catalan-Dickson conjecture which states that all aliquot sequences are bounded. In fact, very recently and on the basis of much statistical and heuristical matexial, R.K. Guy has put forward the conjecture that almost all aliquot sequences with even leading term are unbounded:

In this monograph a theoretical and computational study of generalized aliquot sequences is presented. Generalized aliquot sequences are sequences every term of which (except the leader) is the sum of certain, but not necessarily all aliquot parts of the preceding term.

In chapter 1 generalized aliquot sequences are defined by use of a set F of arithmetical functions f which determine the aliquot parts to be summed in the computation of a term from the preceding one. For this reason, generalized aliquot sequences will be denoted by f -sequences.
(viii)

Chapters 2 to 5 mainly present theoretical results. In chapter 2 , for any $f \in F$ the existence of $f-s e q u e n c e s$ with arbitrarily many monotonically increasing terms is proved. Moreover, the structure of cycles is investigated, and two construction methods for cycles are discussed. In chapter 3 five classes of functions $f \in F$ are indicated, which in subsequent chapters serve as test-cases for the computational experiments. In chapter 4 the distribution of the values of the functions $f \in F$ is investigated. Chapter 5 presents two methods for the computation of the mean value of the quotient of two subsequent terms of an f-sequence.

Chapters 6 to 9 mainly present computational results and analyses. In chapter 6 we present a selection of the results of systematic computations of f-sequences, for the testcases of chapter 3. The main subjects of chapter 7 are the proof of the existence of unbounded f-sequences, for certain $f \in F$, and the construction of such unbounded sequences. Chapter 8 deals with the computation of cycles for the test-cases of chapter 3. Finally, in chapter 9 we study untouchable numbers, i.e. numbers which can only be leaders of f -sequences.

The author ${ }^{\text {s }}$ interest in aliquot sequences was awakened by Dr J.D. Alanen; he is very grateful to him for his interest and encouragement.

PRELIMINARIES AND NOTATION

As usual. N will denote the set of positive integers and \mathbb{N}_{0} the set of non-negative integers. Throughout, p will denote an axbitrary prime number, unless explicitly stated otherwise, and for any $r \in \mathbb{N}, p_{r}$ is the r-th prime $\left(p_{1}=2\right)$ 。

By $\left(a_{1}, a_{2}, \ldots, a_{n}\right)(n \geq 2)$ we mean the greatest common divisor of the positive integers $a_{1}, a_{2} \ldots a_{n}$. If $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1$, we say that $a_{1}, a_{2} \ldots a_{n}$ are relatively prime.

By $\left(a_{1}, a_{2}, \ldots, a_{n}\right)_{k}(k \in \mathbb{N})$ we mean the greatest common k-th power divisor of $a_{1}, a_{2}, \ldots, a_{n}$. If $\left(a_{1}, a_{2}, \ldots, a_{n}\right)_{k}=1$, we say that $a_{1}, a_{2}, \ldots, a_{n}$ are relatively k-prime. For any k the integer 1 is considered to be a k-th power divisor of any positive integer.

A unitary divisor d of n is a divisor of n with $(d, n / d)=1$ i.e.. every prime p dividing d does not divide n / d. If d is a unitary divisor of n , we write $\mathrm{a} \| \mathrm{n}$.

A k-ary divisor d of $n(k \in \mathbb{N})$ is a divisor of n with $(d, n / d)_{k}=1$, i.e., every prime power p^{k} dividing d does not divide n / d.

A positive integer is k-free ($k \in \mathbb{N}_{g} k \geq 2$) if it is not divisible by the k-th power of any prime. A 2 -free integer is also called squarefree.

A positive integer is $k-f u l Z(k \in \mathbb{N}, k \geq 2)$ if any of its prime divisors has multiplicity $\geq k$.

If $f: \mathbb{N} \rightarrow \mathbb{N}$ is an arithmetical function, then $n \in \mathbb{N}$ is called f-abundant, whenever $f(n)>2 n$.

Let $S=\left\{n_{1}, n_{2}, \ldots\right\}$ be an infinite set of positive integers and let $S(n)(n \in \mathbb{N})$ be the number of elements of S not exceeding n. Then the lower (asymptotic) density and the upper (asymptotic) density of S are the values of
$\lim _{n \rightarrow \infty} \inf S(n) / n$ and $\quad \lim _{n \rightarrow \infty} S(n) / n$, respectively.

(x)

If the lower and upper density are equal, we say that the (asymptotic) density of S exists, with this common value.

Let $f(x)$ and $g(x)$ be two functions of the real variable x. Then by $f \sim g(x \rightarrow \infty)$ we mean that $\lim f / g=1$. By $f \approx g$ we mean that there are constants C_{1} and C_{2} such that $C_{1} g<f<C_{2} g$. The mean value $M\{f\}$ of an arithmetical function $f: \mathbb{N} \rightarrow \mathbb{N}$ is the value of $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f(n)$, provided that this limit exists.

In the tables factorized numbers will sometimes be given with exponents in parentheses; for example, $2(2) 3.5 .11$ (2) means $2^{2} 3.5 .11^{2}$.

CHAPTER 1

generalized aliouot sequences and the classical case

\{Tears of joy over man's

 tortuous journey to the beyond .. Elvin J. Lee\}Let $E: N \rightarrow W$ be an arithmetical function with the following two properties:

P1. f is multiplicative, i.e., if $(a, b)=1$, then $f(a b)=f(a) f(b)$.
P2. For any $e \in \mathbb{N}$ a polynomial $W_{e}(x)$ of degree e in x is given such that
for any prime $p E\left(p^{e}\right):=W_{e}^{f}(p)$. The coefficients of $W_{e}^{f}(x)$ are
restricted to the values 0 or 1 and $W_{e}^{f}(1) \geq 2$.
The set of all functions f with properties $P 1$ and $P 2$ will be denoted by F. It follows that if $E \in F_{\%}$ then

$$
\begin{aligned}
& f(1)=1, f(p)=p+1, \\
& \text { either } f\left(p^{2}\right)=p^{2}+1, \text { or } f\left(p^{2}\right)=p^{2}+p \text {, or } f\left(p^{2}\right)=p^{2}+p+1 \\
& \text { either } f\left(p^{3}\right)=p^{3}+1 \text {, or } f\left(p^{3}\right)=p^{3}+p \text {, or } f\left(p^{3}\right)=p^{3}+p^{2} \text { or } f\left(p^{3}\right)=p^{3}+p+1 \\
& \text { or } f\left(p^{3}\right)=p^{3}+p^{2}+1 \text {, or } f\left(p^{3}\right)=p^{3}+p^{2}+p \text {, or } f\left(p^{3}\right)=p^{3}+p^{2}+p+1,
\end{aligned}
$$

EXAMPIE 1.1 If for any $e \in \mathbb{N}, W_{e}^{f}(x):=x^{e}+x^{e-1}+\ldots+x+1$, i.e. all coefficients of $W_{e}^{f}(x)$ are equal to 1 , then f is the sum of the divisors function. It will be denoted, as usual, by σ.

EXAMPLE 1.2 If for any $e \in \mathbb{N}, W_{e}^{f}(x):=x^{e}+1$, then f is the sum of the unitary divisors function. It will be denoted, as usual, by σ^{*}.

It also follows from $P 1$ and $P 2$ that $f(n)$ is the sum of n and certain other divisors of n; which other divisors depends on the choice of the polynomials $W_{e}^{f}(x)$. It is customary to call the divisors of n which are less than n the aliquot divisors of n.

DEFINTTION 1.1 An aliquot f-sequence with leader $n \in \mathbb{N}$ (briefly called an f -sequence on n , or n -sequence if this gives no confusion) is a sequence
$n_{0}, n_{1}, n_{2}, \ldots$ of positive integers, such that
(1.1) $\left\{\begin{array}{l}n_{0}=n \text { and } \\ n_{i+1}=f\left(n_{i}\right)-n_{i}\end{array}\right.$

$$
(i=0,1,2, \ldots)
$$

Since $f\left(p^{e}\right) \geq p^{e}+1$, we have $f(n)-n>0$ for all $n \geq 2$, for any $f \in F$. The term n_{i} is sometimes denoted by $n: i$ (for typographical convenience). An n-sequence is terminating if there exists a value of ℓ for which $n_{\ell}=1$. and this ℓ is also denoted by $\ell_{f}=\ell_{f}(n)$. An n-sequence is periodic if there is an $\ell^{\prime}>0$ and a $c>0$ such that $n:\left(\ell^{3}+c\right)=n: \ell^{\prime}$. The least ℓ^{\prime} with this property is also denoted by $\ell_{f}^{\prime}=\ell_{f}^{\prime}(n)$ and the least positive c, corresponding to this l^{\prime} : is the period (or cycle length), and will be denoted by $c=c_{f}=c_{f}(n)$. The c different numbers $\left\{n: \ell^{\prime}, n:\left(\ell^{\prime}+1\right) \ldots\right.$, $\left.n:\left(\ell^{\prime}+c-1\right)\right\}$ are called an (f-)cycle of length c.
If $n<m$ and the two f-sequences on n and m, respectively, have a term in common, which is larger than all previous terms in either sequence, then the f-sequence on m is said to be tributary to the f-sequence on n. A sequence which is not tributary to any other one is called a main sequence. Thus a bounded n-sequence is main if n is the least number which leads to its maximum. For the example $f=\sigma$, we have $318: 4=498: 3=798$, and 318 is the least number leading to the maximum $722961=318: 32$, so the σ-sequence with leader 318 is main and the 498 -sequence is txibutary to it. Both sequences are terminating. The 562 -sequence is characterized by the first four terms 562, 220, 284, 220; thus it is periodic, $\ell_{\sigma}^{:}(562)=1$ and $c_{\sigma}(562)=2$. For the 220 -sequence we have $\ell_{\sigma}(220)=0$ and $c_{\sigma}(220)=2$.

The classical example of an f-sequence is the case in which $f(n)$ is the sum of all divisors of $n(f(n)=\sigma(n))$, so that $f(n)-n=\sigma(n)-n$ is the sum of all aliquot divisors of n.

CATALAN [7] was probably the first one to study this case. He conject ured that every (aliquot) σ-sequence contains either unity or a perfect number. PERROTT [27] gave the counterexample 220, 284, 220, .. and DICKSON [10] revised Catalan's conjecture to: Every (aliquot) o-sequence contains either unity or a cycle (which can be a perfect number, or an amicable pair as in Perrot's counterexample, or a cycle of length greater than two). The verification of this conjecture is very cumbersome, in particular when the terms become large, because in order to compute a term n_{k+1}. the
complete factorization of n_{k} is needed.
The σ-sequence with least starting value and unknown behaviour is currently the 276 -sequence. D.H. LEHMER [18] has recently computed the $433-r d$ term of this sequence, which is a 36 -digit number. At present, there are 98 sequences with leader less than 10^{4} whose behaviour is unknown. Most computational results on σ-sequences have been collected by Guy and SELFRIDGE in [18].

Nowadays, many researchers believe that the Catalan-Dickson conjecture is false. A partial result in this direction is LENSTRA's theorem (private communication dated April 10th, 1972): For any given $t \in \mathbb{N}$, σ-sequences can be constructed with at least t monotonically increasing terms. TE RIELE [30] proved the same theorem, but on the condition that there are infinitely many even perfect numbers.

CHAPTER 2

general properties of aliouot f-SEQUENCES

In this chapter some general properties of f -sequences and f-cycles are proved.

PROPOSITION 2.1 Let $\mathrm{f} \in \mathrm{F}$ and let
$a_{i}, a m_{i+1}, \ldots, a m_{i+k}$
(i $\geq 0, k \geq 1$)
be $k+1$ consecutive terms of an f-sequence with $\left(a, m_{i+j}\right)=1$ for $j=0,1, \ldots, k-1$. If $b \in \mathbb{N}$ is such that $f(b) / b=f(a) / a, b \neq a$, and $\left(b, m_{i+j}\right)=1$ for $j=0,1, \ldots, k-1$, then

$$
\mathrm{bm}_{i}, \mathrm{bm}_{i+1}, \ldots, \mathrm{bm}_{i+k}
$$

are also $k+1$ consecutive terms of an $\mathrm{f}-$ sequence.

Proof. Under the hypotheses, we have

$$
\begin{aligned}
f\left(b m_{i+j}\right)-b m_{i+j} & =f(b) f\left(m_{i+j}\right)-b m_{i+j}= \\
& =\frac{b}{a}\left[f(a) f\left(m_{i+j}\right)-a m_{i+j}\right]= \\
& =\frac{b}{a}\left[f\left(a m_{i+j}\right)-a m_{i+j}\right]= \\
& =\frac{b}{a} \cdot a m_{i+j+1}= \\
& =b m_{i+j+1} \quad \quad(j=0,1, \ldots, k-1)
\end{aligned}
$$

COROLLARY 2.1 If in proposition 2.1, $\left\{\operatorname{am}_{i}, a_{i+1}, \ldots, a m_{i+k-1}\right\}$ is an f-cycle of length k_{s} then $\left\{\operatorname{bm}_{\mathrm{i}}, \mathrm{bm}_{\mathrm{i}+1} \ldots \ldots \mathrm{bm}_{i+\mathrm{k}-1}\right\}$ is also an f-cycle of the same length。

Given an f-cycle, one may try to apply this corollary by looking for numbers a and b, satisfying the conditions of proposition 2.1. Application of this corollary to σ^{*}-cycles (for the definition of σ^{*}, see example 1.2 in section 1) yielded several hundred new σ^{*}--cycles (see TE RIELE [32]).

PROPOSITION 2.2 Let $\mathrm{f}, \mathrm{g} \in \mathrm{F}, \mathrm{f} \neq \mathrm{g}$, and let

$$
a m_{i}, a m_{i+1}, \ldots, a m_{i+k}
$$

be $k+1$ consecutive terms of an f-sequence with $\left(a_{,} \mathrm{m}_{i+j}\right)=1$ for $j=0,1, \ldots, k-1 ;$ let, moreover, m_{i+j} be squarefree for the same values of j. If $b \in \mathbb{N}$ is such that $\left(b_{s} m_{i+j}\right)=1$ for $j=0,1, \ldots, k-1, b \neq a$, and $g(b) / b=f(a) / a$, then

$$
\mathrm{bm}_{i}, \mathrm{bm}_{i+1}, \ldots, \mathrm{bm}_{i+k}
$$

are also $k+1$ consecutive terms of a g-sequence.

Proof. Under the hypotheses, we have

$$
\begin{aligned}
g\left(b m_{i+j}\right)-b m_{i+j} & =g(b) g\left(m_{i+j}\right)-b m_{i+j}= \\
& =\frac{b}{a}\left[f(a) g\left(m_{i+j}\right)-a m_{i+j}\right]= \\
& =\frac{b}{a}\left[f(a) f\left(m_{i+j}\right)-a m_{i+j}\right]= \\
& =\frac{b}{a}\left[f\left(a m_{i+j}\right)-a m_{i+j}\right]= \\
& =\frac{b}{a} \cdot a m_{i+j+1}= \\
& =b m_{i+j+1} \quad(j=0,1, \ldots, k-1)
\end{aligned}
$$

 of length k , then $\left\{\mathrm{bm}_{\mathrm{i}}, \mathrm{bm}_{\mathrm{i}+1} \ldots . . \mathrm{bm} \mathrm{i}_{\mathrm{i} k-1}\right\}$ is a g-cycle of the same length.

Application of this corollary to known o-cycles of length 2 (LeE \& MADACHY [26]) yielded several hundred new σ^{*}-cycles (see TE RIELE [32]).

THEOREM 2.1 Let $N \in \mathbb{N}(\mathbb{N} \geq 3)$ and $f \in E$ be given. Then there exist infinitely many f-sequences with at least N consecutive increasing terms.

PROOF, Let $q_{1}, q_{2}, \ldots, q_{N}$ be a sequence of N primes defined by
(2.1) $\left\{\begin{array}{l}q_{1}=2, q_{2}=3, \\ q_{i}^{2} \mid q_{i+1}+1\end{array}\right.$

$$
(i=2,3, \ldots, N-1)
$$

The existence of such a sequence follows from Dirichlet's theorem on the occurrence of an infinitude of primes (hence certainly one) in the arithm.etic progression $t q_{i}^{2}-1(t=1,2, \ldots)$. Now choose n_{0} such that

$$
\begin{equation*}
n_{0}=m_{0} q_{1} q_{2} \ldots q_{N} \tag{2.2}
\end{equation*}
$$

with $\left(q_{i}, m_{0}\right)=1$ for $i=1,2, \ldots, N$.
Let $n_{0}, n_{1}, n_{2}, \ldots$ be the f-sequence with leader n_{0}. Then

$$
\begin{aligned}
n_{1} & =f\left(n_{0}\right)-n_{0}= \\
& =f\left(m_{0}\right)\left(q_{1}+1\right)\left(q_{2}+1\right) \ldots\left(q_{N}+1\right) \cdots m_{0} q_{1} q_{2} \ldots q_{N}
\end{aligned}
$$

which by (2.1) may be written in the form

$$
n_{1}=m_{1} q_{1} q_{2} \cdots q_{N-1}
$$

with $\left(q_{i}, m_{1}\right)=1$ for $i=1,2, \ldots, N-1$.
Proceeding in the same way with $n_{1}, n_{2} \ldots, n_{N-2}$, we find that for $k=1,2, \ldots, N-1$

$$
n_{k}=m_{k} q_{1} q_{2} \ldots q_{N-k}
$$

with $\left(q_{1}, m_{k}\right)=\left(q_{2}, m_{k}\right)=\ldots=\left(q_{N-k k}, m_{k}\right)=1$.
Hence $6 \| n_{k}(k=0,1, \ldots, N-2)$ so that

$$
\begin{aligned}
n_{k+1} & =f\left(n_{k}\right)-n_{k}= \\
& =f(2) f(3) f\left(n_{k} / 6\right)-n_{k}= \\
& =1.2 f\left(n_{k} / 6\right)-n_{k} \\
& >12 n_{k} / 6-n_{k}=n_{k} .
\end{aligned}
$$

Hence the N terms $n_{0}, n_{1} \ldots, \ldots n_{N-1}$ of the f-sequence with leader n_{0} are increasing. The existence of infinitely many such sequences follows from the existence of infinitely many numbers m_{0} satisfying (2.2).

Theorem 2.1 was first proved, in this form, for $f=\sigma$ by LENSTRA (private communication dated April 10th, 1972) and for $f=\sigma^{*}$ by TE RIELE [33].

Very recently, for $f=\sigma$ some stronger results have been obtained by ERDÖS *) and GUY ${ }^{* *)}$. Erdös proved that for all leaders $n \in \mathbb{N}_{s}$ except a sequence of density 0 , and for every $t \in \mathbb{N}$ and $\delta>0$,

$$
(1-\delta)\left(n_{1} / n\right)^{i}<n_{i} / n<(1+\delta)\left(n_{1} / n\right)^{i}
$$

for $1 \leq i \leq t$. Guy proved: given any prime p, any $t \in \mathbb{N}_{\text {, }}$ and any $\rho>1$, there are aliquot sequences containing t consecutive terms, each greater than ρ times the previous one, but whose only prime divisors exceed p.

THEOREM 2.2 Let $f \in F$ and Let $\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ be an f-cycle of length k $(k \geq 1)$, where k is odd. If the k numbers $n_{i}(i=1,2, \ldots k)$ contain the prime 2 to the same power, then

$$
\left(f\left(n_{1}\right)_{g} f\left(n_{2}\right), \ldots f\left(n_{k}\right)\right)=2\left(n_{1}, n_{2}, \ldots, n_{k}\right)
$$

othemvise

$$
\left(f\left(n_{1}\right), f\left(n_{2}\right) \ldots, \ldots\left(n_{k}\right)\right)=\left(n_{1}, n_{2}, \ldots, n_{k}\right)
$$

PROOF . Since $\left\{n_{1}, n_{2} \ldots n_{k}\right\}$ is an E-cycle, we have

$$
\begin{equation*}
f\left(n_{1}\right)=n_{1}+n_{2}, f\left(n_{2}\right)=n_{2}+n_{3} \ldots f\left(n_{k-1}\right)=n_{k-1}+n_{k} f\left(n_{k}\right)=n_{k}+n_{1} \tag{2.3}
\end{equation*}
$$

Note that, for $i=1,2, \ldots, k$ we have $f\left(n_{i+k}\right)=f\left(n_{i}\right)$ and also

$$
\begin{aligned}
& E\left(n_{i}\right)-E\left(n_{i+1}\right)+f\left(n_{i+2}\right) \cdots+(-1)^{k-1} E\left(n_{i+k-1}\right)= \\
& =\left(n_{i}+n_{i+1}\right)-\left(n_{i+1}+n_{i+2}\right)+\left(n_{i+2^{+n_{i+3}}}\right)-\ldots+(\cdots 1)^{k-1}\left(n_{i+k-1}+n_{i+k}\right)=
\end{aligned}
$$

*) P. ERDÖS, on asymptotic properties of aliquot sequences, Math. Comp.
**) $\frac{30(1976)}{\text { R.K. GUY, A1iquot sequences, manuscript, } 1976 .}$

$$
=n_{i}+(-1)^{k-1} n_{i+k}=n_{i}\left(1+(-1)^{k-1}\right)
$$

so that

$$
\begin{equation*}
\sum_{j=i}^{i+k-1}(-1)^{j-i} f\left(n_{j}\right)=2 n_{i} \tag{2.4}
\end{equation*}
$$

since k is odd.
Let $a=\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ and $b=\left(f\left(n_{1}\right), f\left(n_{2}\right), \ldots, f\left(n_{k}\right)\right)$. From (2.3) it follows that $a \mid f\left(n_{i}\right)(i=1,2, \ldots, k)$, so that $a \mid b$. On the other hand, (2.4) implies that $b \mid 2 n_{i}(i=1,2, \ldots, k)$, so that
(2.5) either $b=a$ or $b=2 a$.

If every n_{i} contains 2 to the same power, then n_{i} / a is odd and $n_{i} / a+n_{i+1} / a=f\left(n_{i}\right) / a$ is even; thus in (2.5) we can only have $b=2 a$ 。 If not every n_{i} contains 2 to the same power, then there is an index j such that n_{j} contains the least power of 2 and n_{j+1} contains a higher one. For that index j we have $n_{j} / a+n_{j+1} / a=f\left(n_{j}\right) / a$ is odd, so that in (2.5) we can only have $b=a$.

This theorem generalizes a theorem of BORHO [4].
COROLLARY 2.3 Let $\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ be an f-cycle of length $k>1$ with k odd and let $\left(n_{1}, n_{2}, \ldots, n_{k}\right)=a>1$.
Then from theorem 2.2 it follows that

$$
\left(a, n_{i} / a\right)=1
$$

$$
(i=1,2, \ldots, k)
$$

is impossible.
Suppose contrariwise that $\left(a, n_{i} / a\right)=1$ for $i=1,2, \ldots, k$. If a is odd and at least one of the n_{i} / a is even, then we have by theorem 2.2:

$$
\left(f\left(n_{1}\right), \ldots, f\left(n_{k}\right)\right)=\left(n_{1}, \ldots, n_{k}\right)
$$

so that

$$
f(a)\left(f\left(n_{1} / a\right), \ldots, f\left(n_{k} / a\right)\right)=a
$$

This is impossible, since $f(a)>a$.

If a is even, or if n_{i} is odd for all $i=1,2, \ldots, k$, then we have by theorem 2.2:

$$
\left(f\left(n_{1}\right), \ldots, f\left(n_{k}\right)\right)=2\left(n_{1}, \ldots, n_{k}\right)
$$

so that

$$
f(a)\left(f\left(n_{1} / a\right) \ldots, f\left(n_{k} / a\right)\right)=2 a
$$

Hence $f(a)=2 a$; this implies that $n_{i+1} \geq n_{i}$, for all $i=1,2, \ldots, k$, so that $k=1$, a contradiction.

REMARK 2.1 DICKSON [10] proved this corollary for $f=\sigma$.

REMARK 2.2 In [24], LAL, TILLER \& SUMMERS remark that (we quote)
"for unitary sociable groups, it appears that no regular groups of order >2 exist". In our terminology: a regular unitary group of order k is a σ^{*}... cycle $\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$, for which $\left(n_{1}, n_{2}, \ldots, n_{k}\right)=a>1$ and $\left(a, n_{i} / a\right)=1$ for $i=1,2, \ldots, k$. Corollayy 2.3 implies that no regular unitary sociable groups of odd order >2 exist.

Next we prove a theorem about the finiteness of the number of f-cycles of certain form, but we first give two lemmas.

LEMMA 2.1 If $f \in F, a \in \mathbb{N}_{3}$ and p is a prime number, then there exist positive integers $x_{1}, x_{2}, \ldots x_{g}$, such that

$$
\frac{f\left(p^{a}\right)}{p^{a}}=\left(1+\frac{1}{x_{1}}\right)\left(1+\frac{1}{x_{2}}\right) \ldots\left(1+\frac{1}{x_{g}}\right)
$$

where $g=g(a)$ is the number of coefficients equal to 1 in the polynomial $W_{a}^{f}(y)-y^{a}, i, e, g=W_{a}^{f}(1)-1$. In particulax, when

$$
f\left(p^{a}\right)=p^{a}+\sum_{i=1}^{g} p^{a_{i}}
$$

with $a>a_{1}>a_{2}>\ldots>a_{g-1}>a_{g} \geq 0$, we may take

$$
\begin{equation*}
x_{j}=\frac{p^{a}+\sum_{i=1}^{g-j} p_{i}}{p^{a^{g-j+1}}} \tag{2.6}
\end{equation*}
$$

$$
\text { for } j=1,2, \ldots, g
$$

[^0]If

$$
f\left(p^{5}\right)=p^{5}+p^{3}+p^{2}+1
$$

then we have

$$
\begin{aligned}
\frac{f\left(p^{5}\right)}{p^{5}} & =\frac{p^{5}+p^{3}+p^{2}+1}{p^{5}}=\frac{p^{5}+p^{3}+p^{2}+1}{p^{5}+p^{3}+p^{2}} \cdot \frac{p^{5}+p^{3}+p^{2}}{p^{5}}= \\
& =\left(1+\frac{1}{p^{5}+p^{3}+p^{2}}\right) \frac{p^{3}+p+1}{p^{3}+p} \cdot \frac{p^{3}+p}{p^{3}}= \\
& =\left(1+\frac{1}{p^{5}+p^{3}+p^{2}}\right)\left(1+\frac{1}{p^{3}+p}\right)\left(1+\frac{1}{p^{2}}\right)
\end{aligned}
$$

so that $x_{1}=p^{5}+p^{3}+p^{2}, x_{2}=p^{3}+p$ and $x_{3}=p^{2}$.
PROOF of lemma 2.1. By (2.6) we have

$$
\begin{aligned}
& \prod_{j=1}^{g}\left(1+\frac{1}{x_{j}}\right)=\frac{x_{1}+1}{x_{g}} \prod_{j=1}^{g-1} \frac{x_{j+1}+1}{x_{j}}= \\
& =\frac{p^{a-a} g_{+p^{1}} a^{-a} g_{+\ldots++} p^{a-1}{ }^{-a} g_{+1}}{p^{a-a_{1}}} \prod_{j=1}^{g-1} \frac{p^{a-a} g-j+\sum_{i=1}^{g-j-1} p^{a_{i}-a^{g-j}+1}}{p^{a-j+1}+\sum_{i=1}^{g-j} p^{a_{i}-a} g-j+1}= \\
& =\frac{f\left(p^{a}\right)}{p^{-a_{1}+a} g} \prod_{j=1}^{g-1} \frac{p^{-a} g-j}{p^{-a} g-j+1}= \\
& =\frac{f\left(p^{a}\right)}{p^{-a_{1}+a_{g}}} p^{a^{-a} g-1+a_{g-1}-a_{g-2}+\ldots+a_{2}-a_{1}}= \\
& =\frac{f\left(p^{a}\right)}{p^{a}} .
\end{aligned}
$$

LEMMA 2.2 (BORHO [3]). The equation

$$
\prod_{i=1}^{k}\left[\prod_{j=1}^{t_{i}}\left(1+\frac{1}{x_{i j}}\right)-1\right]=1
$$

where $k, t_{1}, t_{2} \ldots . t_{k}$ are given, has only finitely many solutions in positive integers $x_{11}, x_{12}, \ldots, x_{k t_{k}}$ 。

Proof. See [3].

THEOREM 2.3 Let $f \in \mathrm{~F}$ and let there be given positive integers
$k_{g} s_{1}, s_{2}, \ldots, s_{k}, e_{11}, e_{12}, \ldots, e_{1 s_{1}}, e_{21}, e_{22}, \ldots, e_{2 s_{2}}, \ldots, e_{k 1}, e_{k 2}, \ldots, e_{k s_{k}}$.
Then there exists only a finite number of f-cycles $\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ where n_{i} has the canonical factorization

$$
n_{i}=p_{i 1}^{e_{i 1}}{ }_{p_{i 2}}^{e_{i 2}} \ldots p_{i s_{i}}^{e_{i}}
$$

$$
(i=1,2, \ldots, k)
$$

Proof. The numbers $n_{1}, n_{2}, \ldots, n_{k}$ form an f wycle of length k. It follows that

$$
\begin{aligned}
1 & =\frac{n_{2}}{n_{1}} \cdot \frac{n_{3}}{n_{2}} \cdot \ldots \cdot \frac{n_{k}}{n_{k-1}} \cdot \frac{n_{1}}{n_{k}}= \\
& =\left(\frac{f\left(n_{1}\right)}{n_{1}}-1\right)\left(\frac{f\left(n_{2}\right)}{n_{2}}-1\right) \ldots\left(\frac{f\left(n_{k}\right)}{n_{k}}-1\right)= \\
& =\prod_{i=1}^{k}\left[\left(\prod_{j=1}^{s_{i}} \frac{f\left(p_{i j}\right)}{e_{i j}}\right)-1\right]
\end{aligned}
$$

By Lema $2.1 f\left(p_{i j}^{e_{i j}}\right) / p_{i j}^{p_{i j}}$ may be written in the form

$$
\left(1+y_{1}^{-1}\right)\left(1+y_{2}^{-1}\right) \ldots\left(1+y_{g}^{-1}\right)
$$

for some positive integers $y_{1} \ldots y_{g}$, where $g=g\left(e_{i j}\right)$. Hence, on the assumption that

$$
\prod_{j=1}^{s_{i}} \frac{f\left(p_{i j}^{e_{i j}}\right)}{p_{i j}}=\prod_{j=1}^{t_{i j}}\left(1+\frac{1}{x_{i j}}\right)
$$

with $t_{i}=\sum_{j=1}^{s_{i}} g\left(e_{i j}\right)$, we have

$$
1=\prod_{i=1}^{k}\left[\left(1+x_{i 1}^{-1}\right)\left(1+x_{i 2}^{-1}\right) \ldots\left(1+x_{i t_{i}}^{-1}\right)-1\right]
$$

for some positive integers $x_{11}, x_{12}, \ldots, x_{1 t_{1}}, \ldots, x_{k 1}, \ldots, x_{k t_{k}}$.

By lemma 2.2 this equation can have only finitely many solutions in positive integers.

COROLIARY 2.4 By choosing $f=\sigma$ and $f=\sigma^{*}$, respectively, the following two theorems of BORHO [3] follow easily from theorem 2.3:

There are only finitely many aliquot σ-cycles of length k, with less than $L(L \in \mathbb{N})$ prime factors (in the product of the k terms of the cycle).

There are only finitely many aliquot σ^{*}-cycles of length k, with less than $\mathrm{L}(\mathrm{L} \in \mathbb{N}$) distinct prime factors (in the product of the k terms of the cycle).

CHAPTER 3

TEST-CASES FOR THE COMPUTATIONAL EXPERIMENTS

In chapter 1 we saw that for every $f \in F, f(n)$ is the sum of certain divisors of n. Here we consider some particular f by specifying which divisors are to be summed. It is easily verified that these functions f have property P1 (multiplicativity) and property ${ }^{p} 2$ (existence of the polynomials $W_{e}^{f}(x)$ for all $\left.e \in \mathbb{N}\right)$ so that $f \in F$. The proofs are omitted, but the polynomials W are included.

EXAMPLE 3.1 If $f=\sigma$ (the sum of $\alpha Z 2$ divisors of n), then

$$
W_{e}^{\sigma}(x)=x^{e}+x^{e-1}+\ldots+x+1 \quad(e=1,2, \ldots)
$$

The number of divisors to be summed is $p^{{ }^{\Pi} \| n} n^{(e+1)}$.
EXAMPLE 3.2 For $k \in \mathbb{N}_{0}$ we define $M_{k}(n)$ as the sum of the ($k+1$)-ary divisors of n, so that

$$
W_{e}^{M_{k}}(x)= \begin{cases}x^{e}+x^{e-1}+\ldots+x+1 & (e \leq 2 k) \\ x^{e}+\ldots+x^{e-k}+x^{k}+\ldots+x+1 & (e>2 k)\end{cases}
$$

In this case, the number of divisors to be summed is $e^{\Pi} \min (e+1,2 k+2)$.

$$
p^{e} \| n
$$

EXAMPLE 3.3 For $k \in \mathbb{N}$ we define $\Psi_{k}(n)$ as the sum of those divisors d of n for which n / d is $(k+1)$-free, so that

$$
W_{e}^{\Psi} k(x)= \begin{cases}x^{e}+x^{e-1}+\ldots+x+1 & (e \leq k) \\ x^{e}+x^{e-1}+\ldots+x^{e-k} & (e>k)\end{cases}
$$

In this case, the number of divisors to be summed is $p^{\Pi} \prod_{\|}^{m i n}(e+1, k+1)$.
EXAMPLE 3.4 For $k \in \mathbb{N}_{0}$ we define $L_{k}(n)$ as the sum of those divisors d of n, such that any prime p which divides d has an exponent which is at most k less than that of p in n. For convenience, we define the integer 1 to be such a divisor of any $n \in \mathbb{N}$. It easily follows that

$$
W_{e}^{L_{k}}(x)= \begin{cases}x^{e}+x^{e-1}+\ldots+x+1 & (e \leq k) \\ x^{e}+x^{e-1}+\ldots+x^{e-k}+1 & (e>k)\end{cases}
$$

The number of divisors to be summed here is $p^{e^{\Pi} \| n} \min (e+1, k+2)$.
EXAMPLE 3.5 For $k \in \mathbb{N}_{0}$ we define $R_{k}(n)$ as the sum of those divisors d of n, such that any prime p which divides n / d has an exponent, which is at most k less than that of p in n. In this case we have

$$
W_{e}^{R_{k}}(x)= \begin{cases}x^{e}+x^{e-1}+\ldots+x+1 & (e \leq k) \\ x^{e}+x^{k}+x^{k-1}+\ldots+x+1 & (e>k)\end{cases}
$$

and the number of divisors to be summed here is the same as in example
3.4, $\mathrm{E}=\mathrm{I}_{\mathrm{K}}$ 。

REMARK 3.1 We have

$$
M_{0}=L_{0}=R_{0}=\sigma^{*}
$$

where σ * denotes the usual "sum of the unitary divisors" function.

These five examples of (classes of) functions will serve as test-cases for our computational experiments. Some of them are well-known, like σ and σ^{*}. The function Ψ_{1} (also known as the Dedekind function) plays an important role in WALL's study [41]. The other functions given here, have never been used, as far as we know, to generate aliquot sequences.

CHAPTER 4

THE DISTRIBUTION OF THE VALUES OF :

In this chapter we investigate the (natural) density of the values of the function $f \in F$, counting multiplicity.

Since $f(n) \geq n$, the number of all $n \in \mathbb{N}$ such that $f(n) \leq N$ is finite for any $\mathbb{N} \in \mathbb{N}$. The number of n satisfying $f(n) \leq N$ is denoted by $\#(f, N)$.

THEOREM 4.1 If $\mathrm{f} \in \mathrm{F}$, then $\Delta \mathrm{f}=\lim _{\mathrm{N} \rightarrow \infty} \frac{\#(\mathrm{f}, \mathrm{N})}{\mathrm{N}}$ exists and
(4.1) $\Delta f=\prod_{p}\left\{\left(1-\frac{1}{p}\right) \sum_{e=0}^{\infty} \frac{1}{f\left(p^{e}\right)}\right\}$.

PROOF. According to the definition of F, for any $f \in \mathbb{F}, \mathrm{e} \in \mathbb{N}$ and prime p, $f\left(p^{e}\right)$ can be written as

$$
f\left(p^{e}\right)=\sum_{i=0}^{e} c_{e, i} p^{e-i}
$$

where $c_{e, 0}=1$ and $c_{e, i}=0$ or $1(i=1,2, \ldots, e)$. By the multiplicativity of f, we have for any $n \in \mathbb{N}$

$$
f(n)=n p_{p} e^{\|} \sum_{i=0}^{e} c_{e, i} p^{-i}
$$

Now for $r, k \in \mathbb{N}$ we introduce the function $f_{r, k}: \mathbb{N} \rightarrow \mathbb{N}$, defined by

$$
f_{r, k}(n)=n \sum_{\substack{p \leq p_{r}}}^{e^{n} \sum_{i=0}^{\min (e, k)} c_{e, i} p^{-i} .}
$$

We first give two lemmas.

LEMMA 4.1 For any $r, k, N \in \mathbb{N}$ we have

$$
\begin{equation*}
\#\left(f_{r, k}, N\right) \leq N \prod_{j=1}^{r}\left\{\left(1-p_{j}^{-1}\right) \sum_{e=0}^{k} \frac{1}{f\left(p_{j}^{e}\right)}+p_{j}^{-k-1}\right\}+(k+1)^{r} \prod_{j=1}^{r} p_{j} \tag{4.2}
\end{equation*}
$$

and

PROOF of lemma 4.1. For every r-tuple ($t_{1}, t_{2}, \ldots, t_{r}$) with $0 \leq t_{j} \leq k+1$ $(j=1,2, \ldots, r)$, define $A\left(t_{1}, t_{2}, \ldots, t_{r}\right)$ to be the set of positive integers n with $p_{j}^{t} j \| n$ for $t_{j}<k+1$ and $p_{j}^{t} j \mid n$ for $t_{j}=k+1$. For example, if $r=4$ and $k=2$, then $A(1,0,3,2)$ is the set of all numbers $n \in \mathbb{N}$ of the form $\mathrm{n}=2.5^{3} 7^{2} \mathrm{~m}$, where $(2.3 .7, \mathrm{~m})=1$.
If $n \in A\left(t_{1}, t_{2}, \ldots, t_{r}\right)$, then by the definition of $f_{r_{s} k}$ we have

$$
f_{r, k}(n)=n \prod_{t_{j} \leq k} f_{r, k}\left(p_{j}^{t}\right) / p_{j}^{t} \prod_{t_{j}=k+1} f_{r_{g} k}\left(p_{j}^{e\left(t_{j}\right)}\right) / p_{j}^{e\left(t_{j}\right)}
$$

where $e\left(t_{j}\right)$ is the exponent such that $p_{j}^{e\left(t_{j}\right)} \| n$. Hence,

$$
n \Pi_{1} \leq f_{x_{p} k}(n) \leq n \Pi_{1} \Pi_{2}
$$

where

$$
\pi_{1}=\prod_{t_{j} \leq k} f\left(p_{j}^{t} j\right) / p_{j}^{t} j
$$

and

$$
\Pi_{2}=\prod_{t_{j}=k+1} \sum_{i=0}^{k} p_{j}^{-i}(\geq 1)
$$

It follows that for $N \in \mathbb{N}$ we have

$$
\mathrm{n} \leq N \Pi_{1}^{-1} \Pi_{2}^{-1} \Rightarrow f_{r, k}(n) \leq N
$$

and

$$
n>N \Pi_{1}^{-1} \Rightarrow f_{r_{\imath} k}(n)>N
$$

From the definition of $A\left(t_{1}, t_{2} \ldots, t_{r}\right)$ it follows that among any $\prod_{j+1}^{r} p_{j}^{t} \prod_{t_{j} \leq k} p_{j}$ consecutive numbers, precisely $\prod_{t_{j} \leq k}\left(p_{j}^{-1}\right)$ belong to
$A\left(t_{1}, t_{2}, \ldots, t_{r}\right)$. Hence, the number of positive integers $n \in A\left(t_{1}, t_{2} \ldots, t_{r}\right)$ satisfying $f_{r, k}(n) \leq N$ is not less than

$$
\begin{equation*}
N \Pi_{1}^{-1} \Pi_{2}^{-1} \prod_{j=1}^{r} p_{j}^{-t} \prod_{t_{j} \leq k}\left(1-p_{j}^{-1}\right)-\prod_{t_{j} \leq k}\left(p_{j}^{-1}\right) \tag{4.4}
\end{equation*}
$$

but not greater than

$$
\begin{equation*}
N \Pi_{1}^{-1} \prod_{j=1}^{r} p_{j}^{-t} \prod_{t_{j} \leq k}\left(1-p_{j}^{-1}\right)+\prod_{t_{j} \leq k}\left(p_{j}^{-1)}\right. \tag{4.5}
\end{equation*}
$$

For different r-tuples $\left(t_{1}, t_{2}, \ldots, t_{r}\right)$ the sets $A\left(t_{1}, t_{2}, \ldots, t_{r}\right)$ are disjoint and their union (over all t_{j} with $0 \leq t_{j} \leq k+1, j=1,2, \ldots r$) is \mathbb{N}. Hence, in order to find an upperbound and a lowerbound for the total number of $n \in \mathbb{N}$ satisfying $f_{r, k}(n) \leq N\left(i . e . \#\left(f_{r, k}, N\right)\right.$), we must sum the upperbound (4.4) and the lowerbound (4.5) over all r-tuples ($t_{1}, t_{2} \ldots, t_{r}$). The inequalities (4.2) and (4.3) then follow after some (simple) calculations.

LEMMA 4.2 For any $x_{0} k_{, N} N \in \mathbb{I N}$ satisfying $k \leq r-1$ and $N<(k+2)^{r} \prod_{j=1}^{r} p_{j}$ we have

$$
\begin{equation*}
\#(f, N) \geq \#\left(f_{r-1, k}, N_{r-1, k}\right) \tag{4.6}
\end{equation*}
$$

where

$$
s_{r-1, k}=\prod_{j=1}^{r-1}\left(1+\frac{1}{p_{j}^{k}\left(p_{j}-1\right)}\right)^{-1} \prod_{j=r}^{3 r-1}\left(1-p_{j}^{-1}\right) .
$$

PROOF of lemma 4.2. Let $T_{n, r_{g}}:=f_{r_{g} k}(n) / f(n)$. If y is an arbitrary positive real number, then we clearly have

$$
f_{r, k}(n) \leq y \Rightarrow f(n) \leq y / T_{n, r, k}
$$

Replacing r by $r-1$ and y by $N T, x-1, k$, we get

$$
f_{r-1, k}(n) \leq N T_{n, r-1, k} \Rightarrow f(n) \leq N,
$$

so that

$$
\begin{equation*}
\#\left(f_{s} N\right) \geq \#\left(f_{r, k}{ }^{N T} T_{n, r-1, k}\right) . \tag{4.7}
\end{equation*}
$$

If some $n \in \mathbb{N}$ satisfies $f_{r-1, k}(n) \leq N T N_{n, r-1, k}$, it follows that

$$
f(n) \leq N<(k+2)^{x} \prod_{j=1}^{r} p_{j}<\prod_{j=1}^{2 r} p_{j} g
$$

since $k+2 \leq r+1$. Hence the number of different prime factors of n is certainly less than $2 r$. Now we have for $T_{n, r-1, k}$:

$$
\begin{aligned}
& 1 \geq T_{n, x-1, k}=\frac{f_{r-1, k}(n)}{f(n)}= \\
& =p^{e^{\eta} \| n}\left(\sum_{i=0}^{k} c_{e, i} p^{-i}\right)\left(\sum_{i=0}^{e} c_{e, i} p^{-i}\right)^{-1} p^{e} \prod_{n}\left(\sum_{i=0}^{e} c_{e, i} p^{-i}\right)^{-1} \\
& p \leq p_{x-1} \quad p>p_{r-1} \\
& \text { e >k } \\
& =p^{e^{\prod n}}\left(1+\sum_{i=k+1}^{\infty} p^{-1}\right)^{-1} p^{-1} \prod^{n}\left(\sum_{i=0}^{\infty} p^{-i}\right)^{-1}= \\
& p \leq p_{r-1} \quad p>p_{r-1} \\
& \text { e >k } \\
& =p^{e^{\Pi} \| n}\left(1+\frac{1}{p^{k}(p-1)}\right)^{-1} p^{e^{\Pi} \| n}\left(1-p^{-1}\right) . \\
& p \leq p_{r-1} \quad p>p_{r-1} \\
& e>k
\end{aligned}
$$

Since the number of different prime factors of n is less than $2 r$, the value of this last form is certainly greater than

$$
\prod_{j=1}^{r-1}\left(1+\frac{1}{p_{j}^{k}\left(p_{j}-1\right)}\right)^{-1} \prod_{j=r}^{3 r-1}\left(1-p_{j}^{-1}\right)=s_{r-1, k}
$$

So we have $1 \geq T_{n, r-1, k}>S_{r-1, k}$. Combining this with (4.7) yields (4.6). The proof of theorem 4.1 proceeds as follows. Clearly, for any $x, k, n \in \mathbb{N}$ we have $f(n) \geq f_{r_{g} k}(n)$, so that for any $N \in \mathbb{N} \#\left(f_{g} n\right) \leq \#\left(f_{r, k}, N\right)$. Hence,

$$
\lim _{N \rightarrow \infty} \sup \#(f, N) / N \leq \lim _{N \rightarrow \infty} \sup \#\left(f_{r, k}, N\right) / N
$$

Since $(k+1)^{r} \prod_{j=1}^{r} p_{j}$ is bounded for fixed r and k, it follows from lemma 4.1.

$$
\lim _{N \rightarrow \infty} \sup \not \#\left(f_{r, k}, N\right) / N \leq \prod_{j=1}^{r}\left\{\left(1-p_{j}^{-1}\right) \sum_{e=0}^{k} \frac{1}{f\left(p_{j}^{e}\right)}+p_{j}^{-k-1}\right\}
$$

for any fixed $r_{r} k \in \mathbb{N}$. From the inequalities $p^{e}<f\left(p^{e}\right)<(p+1)^{e}$ it easily follows that

$$
\lim _{r, k \rightarrow \infty} \prod_{j=1}^{r}\left\{\left(1-p_{j}^{-1}\right) \sum_{e=0}^{k} \frac{1}{f\left(p_{j}^{e}\right)}+p_{j}^{-k-1}\right\}=\prod_{p}\left\{\left(1-p^{-1}\right) \sum_{e=0}^{\infty} \frac{1}{f\left(p^{e}\right)}\right\}
$$

Hence,
(4.8) $\quad \lim _{N \rightarrow \infty} \sup \#(f ; N) / N \leq \prod_{p}\left\{\left(1-p^{-1}\right) \sum_{e=0}^{\infty} \frac{1}{f\left(p^{e}\right)}\right\}$.

If we can prove, on the other hand, that
(4.9) $\quad \lim _{N \rightarrow \infty} \inf \#(f, N) / N \geq \prod_{p}\left\{\left(1-p^{-1}\right) \sum_{e=0}^{\infty} \frac{1}{f\left(p^{e}\right)}\right\}$.
then theorem 4.1 clearly follows.
From now on, we assume that $x, k, N \in \mathbb{N}$ are such that $k \leq x-1, k$ laxge, and
(4.10) $\quad(k+1)^{r} \prod_{j=1}^{r} p_{j} \leq N<(k+2)^{r} \prod_{j=1}^{r} p_{j}$.

By lemma 4.2 we have
(4.11) $\#\left(\mathrm{E}_{\mathrm{N}} \mathrm{N}\right) \geq \#\left(\mathrm{f}_{\mathrm{r}-1, \mathrm{k}}, \mathrm{NS}_{\mathrm{r}-1, \mathrm{k}}\right)^{\prime}$.
where

$$
s_{r-1, k}=\prod_{j=1}^{r-1}\left(1+\frac{1}{p_{j}^{k}\left(p_{j}-1\right)}\right)^{-1} \prod_{j=r}^{3 r-1}\left(1-p_{j}^{-1}\right)
$$

From the theorem of Mextens

$$
\prod_{p \leq x}\left(1-p^{-1}\right) \sim \frac{e^{-\gamma}}{\log x} \quad(x \rightarrow \infty)
$$

where γ is Euler's constant, and from the theorem of Tchebychef:

$$
\pi(x) \times x / \log x
$$

it follows that $\lim _{x \rightarrow \infty} \prod_{j=x}^{3 x-1}\left(1-p_{j}^{-1}\right)=1$.
Furthermore, we have

$$
\begin{equation*}
1>\prod_{j=1}^{r-1}\left(1+\frac{1}{p_{j}^{k}\left(p_{j}-1\right)}\right)^{-1}>\prod_{j=1}^{x-1}\left(1-p_{j}^{-k}\right)>\zeta^{-1}(k) \tag{k>1}
\end{equation*}
$$

which tends to 1 for $k \rightarrow \infty$. Hence, $S_{r-1, k}$ tends to 1 from below when k and r tend to infinity. Now by lemma 4.1, (4.3), with x replaced by $r-1$ and N by $\mathrm{NS}_{r-1, k}$ we have

$$
\begin{array}{r}
\#\left(f_{r-1, k}, N S_{r-1, k}\right) \geq N S_{r-1, k} \prod_{j=1}^{r-1}\left\{\left(1-p_{j}^{-1}\right) \sum_{e=0}^{k} \frac{1}{f\left(p_{j}^{e}\right)}+\left(p_{j}^{k+1}+p_{j}^{k}+\ldots+p_{j}\right)^{-1}\right\}- \\
-(k+1)^{r-1} \prod_{j=1}^{r-1} p_{j}
\end{array}
$$

From (4.10) it follows that $(k+1)^{r-1} \prod_{j=1}^{r-1} p_{j} \leq \frac{N}{(k+1) p_{r}}$. Using this and (4.11)
gives

$$
\#(f, N) \geq N S_{r-1, k} \prod_{j=1}^{r-1}\left\{\left(1-p_{j}^{-1}\right) \sum_{e=0}^{k} \frac{1}{f\left(p_{j}^{e}\right)}+\left(p_{j}^{k+1}+p_{j}^{k}+\ldots+p_{j}\right)^{-1}\right\}-\frac{N}{(k+1) p_{r}}
$$

Dividing by N and letting N, k and x tend to infinity gives (4.9).

REMARK 4.1 Three proofs of this theorem have been given for the special case $\mathrm{f}=\sigma$. In the first one ERDÖS [13] used analytic results of SCHOENBERG; but did not give the vallue of $\Delta \sigma$. DRESSLER [11] was the second one to prove this theorem for $f=\sigma$. His elementary proof also gives the value of $\Delta \sigma$. Our proof of the more general theorem 4.1 is based on DRESSLER's method. BATEMAN [2] proved theorem 4.1 for $f=\sigma$ using the WIENER-IKEHARA theorem.

In table 4.1 we give the (approximate) value of Δf for some $f \in F$, where the absolute error in this value is always less than 2.10^{-5}. The accuracy of this table is justified by theorem 4.2.

TABLE 4.1

Some values of Δf	
f	Δf
σ	.67274
$M_{0}\left(=\sigma^{*}\right)$.76872
M_{1}	.67887
Ψ_{1}	.70444
Ψ_{2}	.67848
L_{1}	.68618
L_{2}	.67541
R_{1}	.71070
R_{2}	.68950

THEOREM 4.2 Let $\varepsilon>0$ be a (small) number and let Q be a (Targe) prime. Let $\left(1-\frac{1}{p}\right) \sum_{e=0}^{\infty} \frac{1}{f\left(p^{e}\right)}=: 1-a_{p}, f \in F$. If the series

$$
s=\sum_{p} \log \left(1-a_{p}\right)
$$

is approximated by

$$
\tilde{s}_{Q}=\sum_{p \leq Q} \log \left(1-\tilde{a}_{p}\right),
$$

where

$$
\begin{equation*}
\left|a_{p}-\tilde{a}_{p}\right|<\varepsilon \tag{4.12}
\end{equation*}
$$

for $\mathrm{p}=2,3,5, \ldots$,
then

$$
\left|s-\tilde{s}_{Q}\right|<\frac{4}{3 Q}+2 \varepsilon \pi(Q)
$$

where $\pi(Q)$ is the number of primes $\leq \Omega$.
Proof We show that, if

$$
s_{Q}=\sum_{p \leq Q} \log \left(1-a_{p}\right)
$$

then

$$
\text { (i) }\left|s-s_{Q}\right|<\frac{4}{3 Q} \quad \text { and } \quad \text { (ii.) }\left|S_{Q}-\tilde{S}_{Q}\right|<2 \varepsilon \pi(Q)
$$

from which the theorem follows.

$$
\begin{equation*}
\left|s-s_{Q}\right|=\left|\sum_{p>2} \log \left(1-a_{p}\right)\right|<\sum_{p>Q}\left|\log \left(1-a_{p}\right)\right| . \tag{i}
\end{equation*}
$$

From the definition of f it follows that

$$
\begin{aligned}
1-a_{p} & =\left(1-\frac{1}{p}\right)\left(1+\frac{1}{f(p)}+\frac{1}{f\left(p^{2}\right)}+\ldots\right) \\
& <\left(1-\frac{1}{p}\right)\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\ldots\right)=1 .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
1-a_{p} & \geq\left(1-\frac{1}{p}\right)\left(1+\frac{1}{p+1}+\frac{1}{p^{2}+p+1}+\ldots\right)= \\
& =\left(1-\frac{1}{p}\right)\left(1+\frac{p-1}{p^{2}-1}+\frac{p-1}{p^{3}-1}+\ldots\right) \\
& >\left(1-\frac{1}{p}\right)\left(1+\frac{p-1}{p^{2}}+\frac{p-1}{p^{3}}+\ldots\right) \text { or }
\end{aligned}
$$

(4.13)

$$
\text { a. } 1-a_{p}>\left(1-\frac{1}{p}\right)\left(1+\frac{1}{p}\right)=1-\frac{1}{p^{2}}
$$

so that

$$
0<\left|\log \left(1-a_{p}\right)\right|<\left|\log \left(1-\frac{1}{p}\right)\right|
$$

By using the inequality $|\log (1-x)|<\frac{x}{1-x}$ for $0<x<1$, we get

$$
0<\left|\log \left(1-a_{p}\right)\right|<\frac{1}{p^{2}-1} \leq \frac{4}{3 p^{2}}
$$

Hence,

$$
\begin{aligned}
\left|s-s_{Q}\right| & <\sum_{p>Q}\left|\log \left(1-a_{p}\right)\right|<\frac{4}{3} \sum_{p>Q} \frac{1}{p^{2}}<\frac{4}{3} \int_{Q+1}^{\infty} \frac{d x}{(x-1)^{2}}=\frac{4}{3 Q} . \\
\left|s_{Q}-\tilde{s}_{Q}\right| & =\left|\sum_{p \leq Q}\left\{\log \left(1-\tilde{a}_{p}\right)-\log \left(1-a_{p}\right)\right\}\right| \\
& \leq \sum_{p \leq Q}\left|\log \left(1+\frac{a_{p}-\tilde{a}_{p}}{1-a_{p}}\right)\right| .
\end{aligned}
$$

By (4.12) and (4.13) we have

$$
\left|\frac{a_{p}-\tilde{a}_{p}}{1-a_{p}}\right|<\frac{\varepsilon}{1-\frac{1}{p^{2}}}<\frac{4}{3} \varepsilon
$$

since $p \geq 2$. Hence

$$
\left|\log \left(1+\frac{a_{p}-\tilde{a}_{p}}{1-a_{p}}\right)\right|<\frac{\frac{4}{3} \varepsilon}{1-\frac{4}{3} \varepsilon}<2 \varepsilon
$$

for $\varepsilon<\frac{1}{4}$. From this we deduce that

$$
\left|s_{Q}-\widetilde{s}_{Q}\right| \leq \sum_{p \leq Q} 2 \varepsilon=2 \varepsilon \pi(Q)
$$

REMARK 4. 2 It is easy to approximate

$$
a_{p}=\left(\frac{1}{p}-\frac{1}{f(p)}\right)+\left(\frac{1}{p f(p)}-\frac{1}{f\left(p^{2}\right)}\right)+\ldots
$$

by

$$
\tilde{a}_{p}=\left(\frac{1}{p}-\frac{1}{f(p)}\right)+\ldots+\left(\frac{1}{p f\left(p^{i-1}\right)}-\frac{1}{f\left(p^{i}\right)}\right)
$$

with an accuracy prescribed by (4.12), by choosing i large enough. In fact, we have

$$
\begin{aligned}
\left|\frac{1}{p f\left(p^{j-1}\right)}-\frac{1}{f\left(p^{j}\right)}\right| & =\left|\frac{f\left(p^{j}\right)-p f\left(p^{j-1}\right)}{p f\left(p^{j-1}\right) f\left(p^{j}\right)}\right| \\
& <\frac{p^{j}+p^{j-1}+\cdots+p+1-p^{j}}{p \cdot p^{j-1} \cdot p^{j}}= \\
& <\frac{1}{p^{j}\left(p^{-1}\right)} \quad \text { for } j=1,2, \ldots
\end{aligned}
$$

so that

$$
\begin{aligned}
\left|a_{p}-\tilde{a}_{p}\right| & <\left|\frac{1}{p f\left(p^{i}\right)}-\frac{1}{f\left(p^{i+1}\right)}\right|+\left|\frac{1}{p f\left(p^{i+1}\right)}-\frac{1}{f\left(p^{i+2}\right)}\right|+\ldots \\
& \leq \frac{1}{p^{i+1}(p-1)}+\frac{1}{p^{i+2}(p-1)}+\ldots=\frac{1}{p^{i}(p-1)^{2}}
\end{aligned}
$$

In order to obtain the values of Δf given in table 4.1 , we chose $Q=10^{5}$ and for every $p \leq Q$ we determined $i=i_{p}$ such that $\frac{1}{p^{i}(p-1)^{2}}<\varepsilon=10^{-10}$.

CHAPTER 5

THE MEAN VALUE OF $f(n) / n$

For any $f \in F$ let

$$
\bar{f}(n):=f(n)-n
$$

$(n \in \mathbb{N})$.
so that

$$
\frac{\bar{f}\left(n_{i}\right)}{n_{i}}=\frac{f\left(n_{i}\right)-n_{i}}{n_{i}}=\frac{n_{i+1}}{n_{i}}
$$

where n_{i} and n_{i+1} are two consecutive terms of an f-sequence.
The purpose of this section is to determine the mean value $\mathbb{M}\left\{\frac{\bar{f}(n)}{n}\right\}$ of $\frac{E(n)}{n}$. Note that

$$
\begin{aligned}
M\left\{\frac{\bar{f}(n)}{n}\right\} & =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \frac{\bar{f}(n)}{n}= \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left(\frac{f(n)}{n}-1\right)= \\
& =\left(\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \frac{f(n)}{n}\right)-1=M\left\{\frac{f(n)}{n}\right\}-1
\end{aligned}
$$

The mean value of an arithmetical function g may be determined by the following two theorems.

THEOREM 5.1 If g is an arithmetical function and $h=g * \mu, i, e . s$

$$
\begin{equation*}
h(n)=\sum_{\left.d\right|_{n}} g(d) \mu\left(\frac{n}{d}\right) \tag{5.1}
\end{equation*}
$$

$$
(n \in \mathbb{N})
$$

where μ denotes the Mobius function, then

$$
\text { (5.2) } \quad M\{g\}=\sum_{n=1}^{\infty} \frac{h(n)}{n} .
$$

provided that this series is absolutely convergent.

Proof By the Möbius inversion formula,

$$
g(n)=\sum_{\left.d\right|_{n}} h(d)
$$

so that

$$
\begin{aligned}
\frac{1}{N} \sum_{n=1}^{N} g(n) & =\frac{1}{N} \sum_{n=1}^{N} \sum_{d \mid n} h(d)=\frac{1}{N} \sum_{d=1}^{N} h(d)\left[\frac{N}{d}\right]= \\
& =\sum_{d=1}^{\infty} \frac{h(d)}{d}-\sum_{d=N+1}^{\infty} \frac{h(d)}{d}-\frac{1}{N} \sum_{d=1}^{N} h(d)\left(\frac{N}{d}-\left[\frac{N}{d}\right]\right)
\end{aligned}
$$

clearly

$$
\lim _{N \rightarrow \infty} \sum_{d=N+1}^{\infty} \frac{h(d)}{d}=0
$$

Next observe that

$$
\left|\frac{1}{N} \sum_{d=1}^{N} h(d)\left(\frac{N}{d}-\left[\frac{N}{d}\right]\right)\right| \leq \frac{1}{N} \sum_{d=1}^{N}|h(d)|=\frac{1}{N} \sum_{d=1}^{N} d\left|\frac{h(d)}{d}\right|
$$

From the absolute convergence of $\sum_{d=1}^{\infty} \frac{h(d)}{d}$, and a well-known theorem of Kxonecker (see KNOPP [23], p.129), it follows that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{d=1}^{N} d\left|\frac{h(d)}{d}\right|=0
$$

We apply this theorem to the function $g(n)=\frac{M_{k}(n)}{n} \quad(k=0,1,2, \ldots)$, and we first show that

$$
h(n)=\sum_{\left.d\right|_{n}} \frac{M_{k}(d)}{d} \mu\left(\frac{n}{d}\right)=O\left(n^{-\frac{1}{2}}\right)
$$

$$
(n \rightarrow \infty)
$$

We have $h(1)=1$ and for any prime p and $e \in \mathbb{N}$

$$
h\left(p^{e}\right)=\frac{M_{k}\left(p^{e}\right)}{p^{e}}-\frac{M_{k}\left(p^{e-1}\right)}{p^{e-1}}
$$

By the definition of M_{k}

$$
h\left(p^{e}\right)= \begin{cases}p^{-e} & 1 \leq e \leq 2 k+1 \\ p^{-e}\left(1-p^{k+1}\right), & e>2 k+1\end{cases}
$$

from which it is easily seen that

$$
\left|h\left(p^{e}\right)\right| \leq p^{-e / 2}
$$

Because of the multiplicativity of h, it follows that

$$
h(n)=O\left(n^{-1 / 2}\right)
$$

$$
(n \rightarrow \infty)
$$

and from this it is clear that we may apply theorem 5.1.
Because of the absolute convergence of $\sum_{n=1}^{\infty} \frac{h(n)}{n}$ and the multiplicativity of h, theorem 286 of [22] gives

$$
\sum_{n=1}^{\infty} \frac{h(n)}{n}=\prod_{p}\left\{1+\frac{h(p)}{p}+\frac{h\left(p^{2}\right)}{p^{2}}+\cdots\right\}
$$

so that
yielding

$$
\begin{aligned}
& M\left\{\frac{M_{K}(n)}{n}\right\}=\prod_{p}\left\{1+\frac{1}{p}\left(\frac{M_{K}(p)}{p}-1\right)+\frac{1}{p^{2}}\left(\frac{M_{k}\left(p^{2}\right)}{p^{2}}-\frac{M_{k}(p)}{p}\right)+\ldots\right\}= \\
& =\prod_{p}\left\{\left(1-\frac{1}{p}\right) \sum_{j=0}^{\infty} \frac{M_{k}\left(p^{j}\right)}{p^{2 j}}\right\}= \\
& =\prod_{p}\left[\left(1-\frac{1}{p}\left\{\sum_{j=0}^{2 k} \frac{p^{j}+p^{j-1}+\ldots+p+1}{p^{2 j}}+\right.\right.\right. \\
& \left.\left.+\sum_{j=2 k+1}^{\infty} \frac{p^{j}+\ldots+p^{j-k}+p^{k}+\ldots+1}{p^{2 j}}\right\}\right]= \\
& =\prod_{p}\left\{\left(1-\frac{1}{p}\right)\left(\frac{p^{3}-p^{-3 k}}{(p-1)^{2}(p+1)}\right)\right\}= \\
& =\prod_{p}\left\{\left(1-p^{-2}\right)^{-1}\left(1-p^{-3 k-3}\right)\right\}= \\
& =\frac{\zeta(2)}{\zeta(3 \mathrm{k}+3)} \\
& (k=0,1,2, \ldots),
\end{aligned}
$$

COROLLARY 5.1

$$
M\left\{\frac{M_{k}(n)}{n}\right\}=\frac{\zeta(2)}{\zeta(3 k+3)}
$$

$$
(k=0,1,2, \ldots)
$$

We may determine the mean value of the functions $\Psi_{k}(n) / n, I_{k}(n) / n g$ and $R_{k}(n) / n$ in the same way as the mean value of $M_{k}(n) / n$ was determined. However, we shall perform this in another way, namely by combining the next theorem ([25]) with theorem 5.1.

THEOREM 5.2 If

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} g(n)
$$

exists, then the generating Dixichlet series

$$
G(s)=\sum_{n=1}^{\infty} \frac{g(n)}{n^{s}}
$$

converges for $s>1$, and moreover

$$
\begin{equation*}
\lim _{s \neq 1}(s-1) G(s)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} g(n) \tag{5.3}
\end{equation*}
$$

Under the hypothesis of theorem 5.1, $\operatorname{M}\{g\}$ exists, so that theorem 5.2 applies. Therefore, we should like to know the generating Dirichlet series of $g(n)$.
The functions g which we shall consider $\left(g(n)=\Psi_{k}(n) / n, I_{k}(n) / n, R_{k}(n) / n\right.$ and for the sake of completeness $\left.M_{k}(n) / n\right)$, partly coincide with $\sigma(n) / n$. Hence, we first compute the multiplicative function $g_{2}(n)$, implicitly defined by the convolution product

$$
\begin{equation*}
g=g_{1} * g_{2} \tag{5.4}
\end{equation*}
$$

where $g_{1}(n)=\sigma(n) / n \quad(n \in \mathbb{N})$. It is well-known that $G(s)$ is then determined by

$$
\begin{equation*}
G(s)=G_{1}(s) G_{2}(s) \tag{5.5}
\end{equation*}
$$

where $G_{1}(s)$ and $G_{2}(s)$ are the generating Dirichlet series of $g_{1}(n)$ and
$g_{2}(n)$, respectively. Now it is readily seen that
(5.6) $\quad G_{1}(s)=\sum_{n=1}^{\infty} \frac{\sigma(n)}{n} \cdot n^{-s}=\zeta(s) \zeta(s+1) \quad(s>1)$.

From (5.5) and (5.6) we infer that

$$
\begin{aligned}
\lim _{s \downarrow 1}(s-1) G(s) & =\lim _{s \downarrow 1}(s-1) G_{1}(s) G_{2}(s)= \\
& =\zeta(2) \lim _{s \downarrow 1} G_{2}(s)
\end{aligned}
$$

Hence, by theorem 5.2, we finally have
(5.7) $\quad M\{g\}=\zeta(2) \lim _{s \downarrow 1} G_{2}(s)$.

For each of the considered functions g, table 5.1 presents the order of magnitude of $h(n)$ (so that theorem 5.1 applies), the multiplicative function $g_{2}(n)$, its generating Dirichlet series $G_{2}(s)$, and, finally, the mean value $M\{g\}$ according to (5.7).

TABLE 5.1
Mean value $M\{g\}$ and intermediate results for various g

$g(n)$	$\begin{aligned} & h(n) \\ & (n \rightarrow \infty) \end{aligned}$	$\begin{aligned} & g_{2}(n) \\ & \left(g_{2} \text { is multiplicative }\right) \end{aligned}$	$\begin{aligned} & G_{2}(s) \\ & (s>1) \end{aligned}$	$\begin{aligned} & M\{g\} \\ = & \lim _{s \downarrow 1} G_{2}(s) \zeta(2) \end{aligned}$
$\begin{aligned} & M_{M_{k}}(n) / n \\ & (k=0,1,2, \ldots) \end{aligned}$	$O\left(n^{-1 / 2}\right)$	$\begin{aligned} & g_{2}\left(p^{2 k+2}\right)=-p^{-(k+1)} \\ & g_{2}\left(p^{i}\right)=0, i \in \mathbb{N}, i \neq 2 k+2 \end{aligned}$	$\frac{1}{\zeta((k+1)(2 s+1))}$	$\frac{\zeta(2)}{\zeta(3(k+1))}$
$\begin{aligned} & \Psi_{\mathrm{k}}(\mathrm{n}) / n \\ & (\mathrm{k}=1,2, \ldots) \end{aligned}$	$O\left(n^{-1}\right)$	$\begin{aligned} & g_{2}\left(p^{k+1}\right)=-p^{-(k+1)} \\ & g_{2}\left(p^{i}\right)=0, i \in \mathbb{N}_{g} i \neq k+1 \end{aligned}$	$\frac{1}{\zeta((k+1)(s+1))}$	$\frac{\zeta(2)}{\zeta(2(k+1))}$
$\begin{aligned} & L_{k}(n) / n \\ & (k=0,1,2, \ldots) \end{aligned}$	$O\left(n^{-1 / 2}\right)$	$\begin{aligned} & g_{2}\left(p^{k+2}\right)=-p^{-(k+1)} \\ & g_{2}\left(p^{i}\right)=0, i \in \mathbb{N}, i \neq k+2 \end{aligned}$	$\frac{1}{\zeta((k+2) s+k+1)}$	$\frac{\zeta(2)}{\zeta(2 k+3)}$
$\begin{aligned} & R_{k}(n) / n \\ & (k=0,1,2, \ldots) \end{aligned}$	$O\left(n^{-1 /(k+1)}\right)$	$\begin{aligned} & g_{2}\left(p^{k+2}\right)=-p^{-1} \\ & g_{2}\left(p^{i}\right)=0, i \in \mathbb{N}_{8} i \neq k+2 \end{aligned}$	$\frac{1}{\zeta((k+2) s+1)}$	$\frac{\zeta(2)}{\zeta(k+3)}$

CHAPTER 6

COMPUTATIONAL RESULTS ON ALIOUOT f-SEQUENCES WITH LEADER $n \leq 1000$

In order to get some insight into the behaviour of aliquot f-sequences, we have carried out some computer calculations on the functions f, described in chapter 3. From the definitions it is clear that, with increasing k, the $M_{k}-{ }^{-}, \Psi_{k}-$, $L_{k}-$ and R_{k}-sequences coincide more and more with the σ-sequences. Therefore, we have computed these sequences only for some small values of k. For $f=M_{k}(k=1,2), f=\Psi_{k}(k=1,2,3,4), f=I_{k}(k=1,2,3,4)$ and $f=R_{k}$ ($k=1,2,3,4$) we have computed all $n-$-sequences for $1 \leq n \leq 1000$, stopping after reaching a term greater than 10°. Table 6.1 gives frequency counts of the number of sequences incomplete at the bound 10^{8}, and (in parentheses) the corresponding number of incomplete main sequences; next the number of periodic sequences and the number of terminating sequences. In chapter 7 some of the incomplete $\Psi_{1}-, \Psi_{2}-$ and Ψ_{3}-sequences will be proved to be unbounded. The last column of table 6.1 gives the number of these sequences with the corresponding number of (unbounded) main sequences (in parentheses). For purposes of comparison the corresponding results for $f=\sigma$ and $f=\sigma$ * are included in table 6.1.

Table 6.2 gives the first term greater than 10^{8} in all incomplete main sequences with first term ≤ 1000, of which the behaviour is unknown to us.

TABLE 6.1
Frequency counts of the (aliquot) f-sequences on $n \leq 1000$,
for various choices of f

f	numbe sequence at	(main) incomplete d 10^{8}	number of periodic sequences	$\left\|\begin{array}{c} \text { number of } \\ \text { termin- } \\ \text { ating } \\ \text { sequences } \end{array}\right\|$	number of incomplete (main) sequences proved to be unbounded (in chapter 7
σ	30	(11)	22	948	
σ^{*}	0		86	914	
M_{1}	38	(9)	17	945	
M_{2}	28	(11)	23	949	
Ψ_{1}	15	(3)	151	834	15 (3)
Ψ_{2}	8	(4)	457	535	7 (3)
Ψ_{3}	94	(23)	143	763	45 (11)
Ψ_{4}	34	(11)	31	935	
L_{1}	8	(3)	56	936	
L_{2}	47	(12)	18	935	
L_{3}	17	(7)	21	962	
I_{4}	42	(8)	23	935	
R_{1}	0		34	966	
R_{2}	34	(5)	24	942	
R_{3}	16	(4)	21	963	
R_{4}	35	(9)	22	943	

TABLE 6.2
10^{8} bounds of incomplete main sequences

$f=\sigma$	$f=\Psi_{3}$	$f=L_{3}$
$138: 69=147793668$	$180: 26=131598960$	$120: 32=121129260$
$276: 32=121129260$	$282: 62=102277120$	$552: 86=126294174$
552 : $36=114895284$	$318: 34=152730624$	$570: 80=141073044$
$564: 22=196505388$	$360: 43=127848510$	$840: 15=139098120$
$660: 50=144750606$	462 : $36=154178412$	$896: 45=188579412$
$702: 21=139130668$	$564: 23=102691584$	$966: 49=102182706$
$720: 69=132775020$	$702: 17=199796580$	$1000: 50=134757462$
$840: 15=139098120$	$714: 36=181993620$	
$858: 30=159862836$	$720: 92=113704960$	
$936: 26=111494688$	$840: 15=139098120$	$f=L_{4}$
966 : $35=181027656$	852 : $42=100106240$	
	$936: 36=105164730$	$138: 21=139098120$
		$180: 108=173393484$
$\mathrm{f}=\mathrm{M}_{1}$		$276: 32=121129260$
	$\mathrm{f}=\Psi_{4}$	$448: 37=114895284$
$120: 30=100491408$		$564: 24=125050980$
$216: 43=155349264$	$120: 23=124250364$	$858: 33=133562928$
$402: 32=124353480$	$276: 32=121129260$	$864: 30=104767338$
462 : $45=161499768$	$564: 62=124774110$	$966: 34=102297492$
$570: 43=108977466$	$570: 56=143028208$	
$642: 23=115388280$	$600: 65=148695936$	
$660: 23=103608720$	$642: 41=107321286$	$\mathrm{f}=\mathrm{R}_{2}$
$840: 15=139098120$	$702: 29=116227422$	
$966: 43=121249806$	$840: 15=139098120$	$282: 53=136831950$
	$858: 29=113150496$	$318: 38=106216404$
	$936: 21=130295840$	$504: 18=139098120$
$\mathrm{f}=\mathrm{M}_{2}$	$966: 39=125235882$	$570: 35=109215852$
		$720: 19=119423880$
$180: 30=121823520$		
$276: 32=121129260$	$f=L_{1}$	
$552: 36=114895284$		$\mathrm{f}=\mathrm{R}_{3}$
$564: 84=166139664$	282: $94=108787260$	
$570: 107=109946862$	$750: 51=124400724$	$138: 46=121129260$
$600: 73=123828888$	$858: 77=215879274$	$600: 67=116465076$
$720: 48=137975796$		$720: 46=144750606$
$840: 15=139098120$		$840: 15=139098120$
$864: 28=197379960$	$\mathrm{f}=\mathrm{L}_{2}$	
$936: 21=102579864$		
$966: 35=119896080$	$180: 71=160477212$	$E=R_{4}$
	$282: 31=107259180$	
	$360: 42=117609900$	$138: 22=122945760$
$f=\Psi_{2}$	$474: 32=114583824$	$180: 89=105128120$
	$480: 71=229226172$	$276: 32=121129260$
$756: 20=208430376$	$660: 84=120023082$	$480: 30=135688812$
	$702: 39=162230796$	$552: 36=114895284$
	$720: 31=154052736$	$570: 53=114809502$
	$840: 15=139098120$	$840: 15=139098120$
	$936: 33=126864192$	864 : $37=164699262$
	$960: 105=101902724$	$966: 38=158510148$
	$966: 32=171433320$	

CHAPTER 7

UNBOUNDED ALIOUOT Ψ_{k}-SEQUENCES

In the preceding chapter we mentioned the discovery of unbounded fsequences. As table 6.1. shows, unbounded sequences were found only in the cases $f=\Psi_{1}$, $E=\Psi_{2}$ and $E=\Psi_{3}$. How these sequences were found may be best illustrated by the data given in table 7.1. Our attention was immediately attracted to the regular pattern in the prime factors of the terms from 318 : 12 onwards. More explicitly.

$$
\begin{aligned}
318: 31 & =3^{3} \cdot(318: 12), 318: 50=3^{3} \cdot(318: 31) \\
318: 32 & =3^{3} \cdot(318: 13), ~ 318: 51=3^{3} \cdot(318: 32) \\
& : \\
& \\
318: 47 & =3^{3} \cdot(318: 28), \\
318: 48 & =3^{3} \cdot(318: 29) \\
318: 49 & =3^{3} \cdot(318: 30)
\end{aligned}
$$

Therefore, the 67 terms in table 7.1 , together with their prime factorizations, strongly suggest the unboundedness of the sequence. A precise proof follows easily from the following discussion.

Let $n_{0}, n_{1} \ldots n_{l}$ be $\ell+1(\ell>0)$ consecutive terms of a Ψ_{k}-sequence, and suppose that for $i=0,1, \ldots, k-1$ we have

$$
\begin{equation*}
n_{i}=q_{1}^{e_{i 1}} \ldots q_{s}{ }^{e_{i s_{m}}} \tag{7.1}
\end{equation*}
$$

where $q_{1}, q_{2} \ldots . q_{S}$ are $s(>0)$ different primes, $\left(q_{1} q_{2} \ldots, q_{s}, m_{i}\right)=1$ and $e_{i j} \geq k$ for $j=1,2 \ldots, \ldots$. Let us write n_{ℓ} as

$$
\begin{equation*}
n_{\ell}=q_{1}^{e_{\ell 1}} \ldots q_{l}^{e_{\ell s_{m}}} \tag{7.2}
\end{equation*}
$$

TABLE 7.1
The aliquot Ψ_{1}-sequence with leader 318

rank	term	factorization		rank	term	factor	ization
0	318	2.3.	53	34	674406	2.3 (4)	23.181
1	330	2.3.	5. 11	35	740826	2.3(4)	17.269
2	534	2.3.	89	36	833814	2.3(4)	5147
3	546	2.3.	7. 13	37	834138	2.3(4)	19.271
4	798	2.3.	7. 19	38	928422	2.3 (4)	11.521
5	1122	2.3.	11. 17	39	1101114	2.3 (4)	7.971
6	1470	2.3.	5. 7(2)	40	1418310	2.3(4)	5.17.103
7	2562	2.3.	7. 61	41	2220858	2.3(4)	13709
8	3390	2.3.	5.113	42	2221182	2.3(4)	13711
9	4818	2.3.	11. 73	43	2221506	2.3(5)	7.653
10	5838	2.3 .	7.139	44	2863998	2.3(5)	71. 83
11	7602	2.3.	7.181	45	3014658	$2.3(5)$	6203
12	9870	2.3.	5. 7. 47	46	3015630	2.3(5)	5. 17. 73
13	17778	2.3.	2963	47	4752594	2.3(5)	7. 11.127
14	17790	2.3.	5.593	48	7191342	2.3(5)	14797
15	24978	2.3.	23.181	49	7192314	2.3(6)	4933
16	27438	2.3.	17.269	50	7195230	2.3(7)	5. 7. 47
17	30882	2.3.	5147	51	12960162	2.3 (7)	2963
18	30894	2.3.	19.271	52	12968910	$2.3(7)$	5.593
19	24386	2.3.	11.521	53	18208962	$2.3(7)$	23.181
20	40782	2.3.	7.971	54	20002302	2.3(7)	17.269
21	52530	2.3.	5. 17.103	55	22512978	$2.3(7)$	5147
22	82254	2.3.	13709	56	22521726	2.3(7)	19.271
23	82266	2.3.	13711	57	25067394	2.3 (7)	11.521
24	82278	2.3(2)	7.653	58	29730078	2.3(7)	7.971
25	106074	2.3(2)	71. 83	59	38294370	2.3 (7)	5. 17.103
26	111654	2.3 (2)	6203	60	59963166	$2.3(7)$	13709
27	111690	2.3(2)	5. 17. 73	61	59971914	2.3(7)	13711
28	176022	2.3 (2)	7. 11.127	62	59980662	2.3 (8)	7.653
29	266346	2.3(2)	14797	63	77327946	2.3 (8)	71. 83
30	266382	2.3 (3)	4933	64	81395766	2.3 (8)	6203
31	266490	2.3 (4)	5. 7. 47	65	81422010	2.3 (8)	5.17.73
32	480006	2.3(4)	2963	66	128320038	2.3(8)	7. 11.127
33	480330	2.3 (4)	5.593				

where $\left(q_{1} q_{2} \ldots q_{s}, m_{\ell}\right)=1$ and $e_{\ell j} \geq 0$ for $j=1,2, \ldots s$.
Moreover, suppose that
(7.3) $\quad m_{0}=m_{\ell}$, and, if $\ell>1$, then $m_{0} \neq m_{j}$ for $j=1,2, \ldots, \ell=1$.

Now four possible cases may be distinguished.
Case 1. $e_{\ell j} \geq e_{0 j}$ for $j=1,2, \ldots, s$, with strict inequality for at least one j. Then by (7.2), $(7,3)$ and (7.1),
where $a=\Pi_{j=1}^{s} q_{j}{ }^{q_{j}-e_{0 j}}$.
Now observe that

$$
\begin{aligned}
n_{\ell+1} & =\Psi_{k}\left(n_{\ell}\right)-n_{\ell}=\Psi_{k}\left(a n_{0}\right)-a n_{0}= \\
& =a\left\{\Psi_{k}\left(n_{0}\right)-n_{0}\right\}=a n_{1}
\end{aligned}
$$

so that $n_{\ell+1}=a n_{1}$. Similarly,

$$
\begin{aligned}
n_{\ell+2} & =a n_{2} \\
& : \\
& \because \\
n_{2 \ell-1} & =a n_{\ell-1} \cdot a n d \\
n_{2 \ell} & =a n_{\ell}=a^{2} n_{0}
\end{aligned}
$$

By induction, we infer that for $r=1,2, \ldots$

$$
n_{x \ell+j}=a^{Y} n_{j}
$$

$$
(j=0,1, \ldots, \ell-1)
$$

so that the ${ }_{k}{ }_{k}$-sequence with leader n_{0} is increasing (since a >1), and hence unbounded. We propose to call a the multiplier of this unbounded

$$
\begin{aligned}
& =a n_{0} \text { 。 }
\end{aligned}
$$

sequence. Furthermore, observe that it is periodic in the sense that for $r=1,2, \ldots$ we have

$$
\begin{gathered}
\left(q_{1} \ldots q_{s}\right)^{k} m_{0} \text { divides } n_{r l} \\
\left(q_{1} \ldots q_{s}\right)^{k} m_{1} \text { divides } n_{r \ell+1} \\
\vdots \\
\left(q_{1} \ldots q_{s}\right)^{k} m_{\ell-1} \text { divides } n_{r \ell+\ell-1}
\end{gathered}
$$

Therefore, we propose to call ℓ the semi-period of the unbounded sequence. The example in table 7.1 has $\ell=19$ and $a=27$.

In table 7.2 we have drawn the directed graphs of the unbounded f-sequences mentioned in table 6.1, for $f=\Psi_{1}, \Psi_{2}$ and Ψ_{3}. Every number ≤ 1000 for which the $f-s e q u e n c e$ is found to be unbounded appears in one of the digraphs. Every first term of the "semi-periodic" part of the sequence is marked with an asterisk. The semi-period ℓ and the multiplier a are given at the foot of the sequence. Details of the semi-periodic parts of the unbounded sequences can be found in table 7.3.

Case 2. $e_{\ell j} \leq e_{0 j}$, for $j=1,2, \ldots s$, with strict inequality for at least one j. Then by (7.1), (7,3) and (7.2),

$$
\left.\begin{array}{rl}
n_{0} & =\left(\begin{array}{ll}
\prod_{j=1}^{s} & q_{j}^{e}
\end{array}\right) m_{0}=\left(\prod_{j=1}^{s} q_{j}^{e_{0 j}}\right.
\end{array} m_{\ell}=\prod_{j=1}^{s}\left(q_{j}^{e_{0 j}^{-e_{\ell j}}}\right)^{s} \prod_{j=1}^{q_{j}}{ }_{\ell j}^{q_{l}}\right)_{\ell}=
$$

where $a=\pi_{j=1}^{s} q_{j}^{e_{0 j}^{-e}}{ }_{l j}$.
Now observe that

$$
\begin{aligned}
\Psi_{k}\left(a n_{\ell-1}\right)-a n_{\ell-1} & =a\left\{\Psi_{\ell}\left(n_{\ell-1}\right)-n_{\ell-1}\right\}= \\
& =a n_{\ell}=n_{0}
\end{aligned}
$$

so that $a_{\ell-1}$ is a predecessor of n_{0}. Therefore we choose $n_{-1}=a n_{\ell-1}$.
table 7.2
Directed graphs of unbounded f-sequences

TABLE 7.2 (continued)

TABLE 7.2 (concluded)

	$\mathrm{f}=\Psi_{3}$	
726(2.3.11(2))	570 (2.3.5.19)	858(2.3.11.13)
	$\begin{aligned} & \longrightarrow \downarrow \\ & 870(2.3 \cdot 5.29) \end{aligned}$	$\stackrel{\downarrow}{1158(2.3 .193)}$
	$\stackrel{\downarrow}{1290(2.3 .5 .43)}$	$\stackrel{\downarrow}{17^{7}(2.3(2) 5.13)}$
	$\stackrel{\downarrow}{1878(2.3 .313)}$	$\stackrel{\downarrow}{2106(2.3(4) 13)}$
	$\stackrel{\downarrow}{1890(2.3(3) 5.7)}$	$\begin{gathered} \downarrow \\ 2934(2.3(2) 163) \end{gathered}$
	$\stackrel{\downarrow}{ } \quad \stackrel{\downarrow}{7}(2.3(2) 5.43)$	$\begin{gathered} \downarrow \\ 3462(2.3 .577) \end{gathered}$
	$\begin{gathered} \stackrel{\downarrow}{6} 6426(2.3(3) 7.17) \end{gathered}$	$\begin{gathered} \stackrel{\downarrow}{3474(2.3(2) 193)} \end{gathered}$
	$\stackrel{\downarrow}{10854(2.3(4) 67)}$	$\stackrel{\downarrow}{4092(2(2) 3.11 .31)}$
	$\begin{gathered} \stackrel{\downarrow}{13626(2.3(2) 757)} \end{gathered}$	$\begin{gathered} \downarrow \\ 6660(2(2) 3(2) 5.37) \end{gathered}$
	$\stackrel{\downarrow}{15936(2(6) 3.83)}$	$14088(2(3) 5.587)$
	$\begin{gathered} \downarrow \\ 24384(2(6) 3.127) \end{gathered}$	$\stackrel{\downarrow}{21192(2(3) 3.883)}$
	$\stackrel{\downarrow}{37056(2(6) 3.193)}$	$\stackrel{\downarrow}{31848(2(3) 3.1327)}$
	$\stackrel{\downarrow}{56064(2(8) 3.73)}$	$\begin{gathered} \downarrow \\ 47832(2(3) 3.1993) \end{gathered}$
	$\stackrel{\downarrow}{*} 86016(2(12) 3.7)$	$\stackrel{\downarrow}{* 71808(2(7) 3.11 .17)}$
	-	。
	$l=13, a=1024$	$1=13, a=1024$

Similarly,

$$
\begin{aligned}
& n_{-2}=a n_{\ell-2}, \\
& \vdots \\
& n_{-\ell+1}=a n_{1} \cdot \text { and } \\
& n_{-\ell}=a n_{0}=a^{2} n_{\ell} .
\end{aligned}
$$

By induction we infer that for $r=1,2, \ldots$

$$
n_{-r \ell+j}=a^{r_{n}}{ }_{j}
$$

$$
(j=0,1, \ldots, l-1)
$$

so that we now have a decreasing (since a > 1) sequence of infinitely many predecessors of n_{0}. Again, we call ℓ the semi-meriod and a the multiplier of this sequence.

Case 3. $e_{\ell j}=e_{0 j}$ for $j=1,2, \ldots$, . In this case, obviously, $n_{\ell}=n_{0}$, so that the numbers $n_{0}, n_{1}, \ldots, n_{\ell-1}$ form a Ψ_{k}-cycle of length ℓ.

Case 4. There are indices $j_{1}, j_{2} \in\{1,2, \ldots, s\}$ so that $e_{l j_{1}}<e_{0 j_{1}}$ and $e_{\ell j_{1}}>e_{0 j_{2}}$. Now it is no longer possible to construct unbounded sequences of the kind described in cases 1 and 2 , but yet it is still possible to construct arbitrarily long increasing or decreasing sequences, according as $n_{\ell} / n_{0}>1$ or $n_{\ell} / n_{0}<1$. Again, ℓ is called the semi-period of the sequence.

According to table 7.2 , the Ψ_{3}-sequence of $120=2^{3} 3.5$ is unbounded with semi-period 1 and multiplier 2. Also, 120 is a multiply perfect number because $\sigma(120)=3.120$. The following theorem gives a method to construct unbounded Ψ_{k}-sequences of semi-period 1 from multiply perfect numbers.

THEOREM 7.1 If N is a multiply perfect number, $i_{0} e_{0,} \sigma(N)=s N$ for some positive integer $s>2$, if $s-1=p^{a}$ for some prime p and some positive integer as and if $N=p^{k} N_{1}$, where $\left(p, N_{1}\right)=1, N_{1}$ is $(k+1)$-free and k is some positive integer >1, then the aliquot Ψ_{k}-sequence with leader N is un bounded with semi-period 1 and multiplier p^{a}.

Proof. Since $N=p^{k} N_{1}$ is ($k+1$-free, we have $\Psi_{k}(\mathbb{N})=\sigma(\mathbb{N})$, so that

$$
\Psi_{k}(N)-N=\sigma(N)-N=s N-N=p^{a} N
$$

Furthermore, from the definition of Ψ_{k} (chapter 3) it follows that

$$
\begin{aligned}
\Psi_{k}\left(p^{a} N\right)-p^{a} N & =\Psi_{k}\left(p^{a+k}\right) \Psi_{k}\left(N_{1}\right)-p^{a} N= \\
& =p^{a_{\Psi_{k}}\left(p^{k}\right) \Psi_{k}\left(N_{1}\right)-p^{a} N=} \\
& =p^{a}[\sigma(N)-N]= \\
& =N p^{2 a} .
\end{aligned}
$$

By induction we infer that

$$
\Psi_{k}\left(p^{j a_{N}}-p^{j a_{N}}=N p^{(j+1) a} \quad(j=0,1, \ldots), \square\right.
$$

In all, except two, of the multiply perfect numbers in the lists [5], [6], [16], [17] and [29], the highest exponent occurs as exponent of 2. Hence, for these numbers the condition $N=p N_{1}$, with $\left(p, N_{1}\right)=1$ and N_{1} is ($k+1$)-free, can only be satisfied if we choose $p=2$, but then $s-1$ must be a power of 2. Application of theorem 7.1 yields

COROLLARY 7.1 Every multiply perfect number N in the lists cited above, satisfying $\sigma(N)=3 N$, resp. $\sigma(N)=5 \mathrm{~N}$, is the starting value of an unbounded $\Psi_{k(N)}$-sequence with period 1 and multiplier 2, resp. 4 , where $k(N)$ is the exponent of 2 in the canonical factorization of N. (There are 6 cases with $\sigma(N)=3 N$ and 66 cases with $\sigma(N)=5 N$.

The two exceptional multiply perfect numbers mentioned above are

$$
\begin{aligned}
& N=2^{2} 3^{2} 5.7^{2} 13.19 \text { and } \\
& N=2^{7} 3^{10} 5.17 .23 .137 .547 .1093
\end{aligned}
$$

COROLLARY 7.2 For all positive integers $m_{i n} n \geq 2$ the Ψ_{2}-sequence with leader $2^{m} 3^{2} 5.7^{n} 13.19$ is unbounded with semi-period 1 and multiplier 3. COROLLARY 7.3 The Ψ_{10}-sequence with leadex $2^{7} 3^{10} 5.17 .23 .137 .547 .1093$ is unbounded with semi-period 1 and multiplier 3.

A computer search for Ψ_{k}-sequences, described in the cases $1-4$ above, was undertaken. Let $Q=\left\{q_{1}, q_{2}, \ldots, q_{s}\right\}(s>0)$ be a set of different prime numbers, let $m_{0}>1$ be some integer such that ($m_{0}, q_{1} \ldots q_{s}$) $=1$, and let $c=\left(q_{1} \ldots q_{S}\right)^{k}$. The sequence $m_{0}, m_{1} \ldots$ is defined as follows:
by dropping all pxime factors

$$
i=0,1,2 \ldots
$$

$$
q_{1}: q_{2} \ldots q_{s} \text { from it }
$$

so that $\left(m_{i+1}, q_{1} \ldots q_{s}\right)=1 . \quad$.

If this sequence is periodic, i.e., if there are indices i_{1}, i_{2} with $0 \leq i_{1}<i_{2}$ so that

$$
m_{i_{2}}=m_{i_{1}}
$$

then from the definition of Ψ_{k} it follows that the Ψ_{k}-sequence of

$$
q_{1}^{e_{1}} q_{2}^{e_{2}} \ldots q_{s}^{e_{s}} m_{i_{1}}=n_{0}
$$

contains a cerm

$$
q_{1}^{q_{1}^{j}} q_{2}^{e_{2}^{j}} \ldots q_{s}^{e_{s}^{j}} m_{i_{2}}=n_{i_{2}-i_{1}} \quad\left(e_{j}^{j} \geq 0, j=1,2, \ldots, s\right)
$$

provided that the exponents $e_{1} \ldots, e_{S}$ are chosen sufficiently large. In this way, we arrive at precisely one of the four cases discussed above, according as

$$
\begin{aligned}
& m_{i+1} \text { is obtained from the number } \\
& \Psi_{k}\left(m_{i}\right)-c m_{i}=\Psi_{k}(c) \Psi_{k}\left(m_{i}\right)-c m_{i}
\end{aligned}
$$

$e_{j}^{i} \geq e_{j}$ for $j=1,2, \ldots, s$ with strict inequality for at least one j (case 1). $e_{j}^{i} \leq e_{j}$ for $j=1,2, \ldots, s$ with strict inequality for at least one j (case 2), $e_{j}^{j}=e_{j}$ for $j=1,2, \ldots, s$ (case 3), or
$\exists j_{1}, j_{2} \in\{1,2, \ldots, s\}$ with $e_{j_{1}}<e_{j_{1}}$ and $e_{j_{2}}>e_{j_{2}}$ (case 4).
For $k=1,2,3$ and for the sets $Q=\{2\},\{3\},\{5\},\{2,3\},\{2,5\},\{3,5\}$ and $\{2,3,5\}$ we have computed the sequences $m_{0}, m_{1} \ldots$ for all $m_{0} \leq 1000$, until we found a term $m_{i_{0}}$ with
(i) $\quad m_{i_{0}}=m_{j}$ for some $j<i_{0}$, or
(ii) $m_{i_{0}}=1$, or
(iii.) $m_{i_{0}}$ has a prime factor $>10^{8}$. or two prime factors $>10^{4}$.

After finding a periodic sequence, the corresponding Ψ_{k}-sequence was com-puted. In table 7.3 we have listed all special Ψ_{k}-sequences found in this way. The sequences belonging to case 3 (ψ_{k}-cycles) are listed in chapter 8_{8} table 8.3, where general f-cycles are treated.

EXAMPLE $k=2, Q=\{2\}$,

$$
\begin{aligned}
& m_{0}=63=3^{2} 7, \\
& m_{1}=119=7.17, \\
& m_{2}=133=7.19, \\
& m_{3}=147=3.7^{2}, \\
& m_{4}=63=m_{0} .
\end{aligned}
$$

The corresponding Ψ_{2}-sequence with leader $2{ }^{e} \mathrm{~m}_{0}(\mathrm{e} \geq 2)$ is

$$
\begin{aligned}
& n_{0}=2^{e} 3^{2} 7 \\
& n_{1}=2^{e} 7.17 \\
& n_{2}=2^{e} 7.19 \\
& n_{3}=2^{e} 3.7^{2} \\
& n_{4}=2^{e+2} 3^{2} 7=2^{2} n_{0} .
\end{aligned}
$$

It is clear that we can choose $e=2$ and $e=3$, so that we have found two unbounded Ψ_{2}-sequences, both with semi-period $\ell=4$ and multiplier $a=4$. The general terms are

$$
\begin{array}{ll}
n_{4 j}=2^{e+2 j_{3}} 2 \\
n_{4 j+1}=2^{e+2 j_{7}} \\
n_{4 j+2}=2^{e+2 j_{7}} 19 \\
n_{4 j+3}=2^{e+2 j_{3}} 7^{2}
\end{array} \quad(j=0,1 \ldots ; e=2 \text { or e=3)}
$$

These sequences are listed in table 7.3 as follows:

terms	characteristics
$2^{m} 3^{2} 7$	$m \geq 2$
$2^{m} 7.17$	monotonically increasing
$2^{\text {m }} 7.19$	case 1
$2^{\mathrm{m}} 3.7^{2}$	$\ell=4$
$2^{m+2} 3^{2} 7$	$a=4$

In the first column, the terms of the periodic part are given, together with the first term of the next period, so that the behaviour of the sequence is completely determined.

Some characteristics of the sequence are given in the next column, namely

- the admitted values of the parameter(s).
- whether the sequence is (monotonically) increasing or decreasing,
- the case to which the sequence belongs.
- the semi-period ℓ 。
- the multiplier a.

TABLE 7, 3
Special aliquot Ψ_{k}-sequences $(k=1,2,3)$ belonging to the cases 1,2 and 4

$k=1$			
terms	characteristics	terms	characteristics
5 (m) 31	$\mathrm{m} \geq 8$	$3(\mathrm{~m}) 5(\mathrm{n}) 7$	$m \geq 1, n \geq 8$
$5(\mathrm{~m}-1) 37$	mon. decr.	3 (m) 5 (n-1) 29	mon. decr.
$5(\mathrm{~m}-2) 43$	case 2	3 (m) $5(n-1) 19$	case 4
$5(\mathrm{~m}-3) 7$ (2)	$1=8$	$3(\mathrm{~m}) 5(\mathrm{n}-1) 13$	$1=15$
$5(\mathrm{~m}-4) 7.13$	$a=5(6)$	$3(\mathrm{~m}) 5(\mathrm{n}-2) 47$	
$5(\mathrm{~m}-5) 7.31$		$3(\mathrm{~m}) 5(\mathrm{n}-3) 149$	
$5(\mathrm{~m}-6) 11.41$		$3(\mathrm{~m}) 5(\mathrm{n}-3) 7.13$	
$5(\mathrm{~m}-7) 769$		$3(\mathrm{~m}+2) 5(\mathrm{n}-4) 7(2)$	
$======$		$3(\mathrm{~m}+2) 5(\mathrm{n}-5) 7.29$	
$5(\mathrm{~m}-6) 31$		$3(m+2) 5(n-5) 181$	
		$3(\mathrm{~m}+2) 5(\mathrm{n}-6) 19.29$	
$2(\mathrm{~m}) 3(\mathrm{n}) 5$ (i) 281	$\mathrm{m}_{\mathrm{s}} \mathrm{n} \geq 1, \mathrm{i} \geq 3$	$3(m+2) 5(n-6) 409$	
2 (m) 3(n) 5 (i-1) 1979	mon. incr.	$3(m+2) 5(n-6) 13.19$	
2 (m) 3 (n) $5(\mathrm{i}-1) 47.59$	case 1	$3(\mathrm{~m}+3) 5(\mathrm{n}-6) 67$	
$2(\mathrm{~m}) 3(\mathrm{n}) 5(\mathrm{i}-1) 4139$	$1=8$	$3(\mathrm{~m}+3) 5(\mathrm{n}-7) 11.19$	
$2(\mathrm{~m}) 3(\mathrm{n}) 5(\mathrm{i}-1) 11.17 .31 \mathrm{a}=5(2)$$2(\mathrm{~m}) 3(\mathrm{n}) 5(\mathrm{i}-2) 53959$		$==============$	
		$3(m+3) 5(n-5) 7$	
$2(\mathrm{~m}) 3(\mathrm{n}) 5(\mathrm{i}-1) 29.521$			
$2(\mathrm{~m}) 3(\mathrm{n}) 5(\mathrm{i}+1) 29.31$		$2(\mathrm{~m}) 3(\mathrm{n}) 5.7 .47$	$m, n \geq 1$
$==============$		2 (m) 3(n) 2963	mon. incr.
$2(\mathrm{~m}) 3(\mathrm{n}) 5(\mathrm{i}+2) 281$		$2(\mathrm{~m}) 3(\mathrm{n}) 5.593$	case 1
		2 (m) 3 (n) 23.181	$1=19$
$\begin{aligned} & 5(\mathrm{~m}) 11.13 \\ & 5(\mathrm{~m}-1) 293 \end{aligned}$	$m \geq 9$	$2(\mathrm{~m}) 3(\mathrm{n}) 17.269$	$a=3(3)$
$5(m-1) 293$ $5(m-2) 13.23$	mon. decr. case 2	$\begin{aligned} & 2(\mathrm{~m}) 3(\mathrm{n}) 5147 \\ & 2(\mathrm{~m}) 3(\mathrm{n}) 19.271 \end{aligned}$	
$5(\mathrm{~m}-3) 521$	$1=10$	2 (m) 3 (n) 11.521	
$5(\mathrm{~m}-4) 17.31$	$a=5(8)$	$2(\mathrm{~m}) 3(\mathrm{n}) 7.971$	
$5(\mathrm{~m}-5) 821$		$2(\mathrm{~m}) 3(\mathrm{n}) 5.17 .103$	
$5(\mathrm{~m}-6) 827$		2 (m) 3 (n) 13709	
$5(\mathrm{~m}-7) 7(2) 17$		2 (m) 3 (n) 13711	
$5(\mathrm{~m}-8) 7.269$		$2(\mathrm{~m}) 3(\mathrm{n}+1) 7.653$	
$5(\mathrm{~m}-8) 709$		$2(\mathrm{~m}) 3(\mathrm{n}+1) 71.83$	
$========$		2 (m) $3(n+1) 6203$	
$5(\mathrm{~m}-8) 11.13$		$2(\mathrm{~m}) 3(\mathrm{n}+1) 5.17 .73$	
		$2(\mathrm{~m}) 3(\mathrm{n}+1) 7.11 .127$	
		2 (m) $3(\mathrm{n}+1) 14797$	
		$2(\mathrm{~m}) 3(\mathrm{n}+2) 4933$	
		$2(\mathrm{~m}) 3(\mathrm{n}+3) 5 \cdot 7.47$	

TABLE 7.3 (continued)
$\mathrm{k}=2$

terms	characteristics	terms	characteristics
$\begin{aligned} & 2(\mathrm{~m}) 3(\mathrm{n}) 5.7(\mathrm{i}) 13.19 \\ & ============= \\ & 2(\mathrm{~m}) 3(\mathrm{n}+1) 5.7(\mathrm{i}) 13.19 \end{aligned}$	$\begin{aligned} & m, n, i \geq 2 \\ & \text { mon. incr. } \\ & \text { case } 1 \\ & l=1 \\ & a=3 \end{aligned}$	$\begin{aligned} & 5(\mathrm{~m}) 103 \\ & 5(\mathrm{~m}-2) 11.59 \\ & 5(\mathrm{~m}-3) 23.53 \\ & 5(\mathrm{~m}-5) 89.109 \\ & ========== \\ & 5(\mathrm{~m}-3) 103 \end{aligned}$	$\begin{aligned} & m \geq 7 \\ & \text { mon. decr. } \\ & \text { case } 2 \\ & l=4 \\ & a=5(3) \end{aligned}$
$\begin{aligned} & 2(\mathrm{~m}) 3(\mathrm{n}) 11.13 \\ & 2(\mathrm{~m}) 3(\mathrm{n}-1) 5.13(2) \\ & ============== \\ & 2(\mathrm{~m}-1) 3(\mathrm{n}+2) 11.13 \end{aligned}$	$\begin{aligned} & m \geq 2, n \geq 3 \\ & \text { mon. incr. } \\ & \text { case } 4 \\ & 1=2 \end{aligned}$	$3(\mathrm{~m}) 5.7$ $\mathrm{~m} \geq 6$ $3(\mathrm{~m}-1) 103$ mon. decr. $3(\mathrm{~m}-3) 5(2) 17$ case 2 $3(\mathrm{~m}-2) 127$ $1=6$ $3(\mathrm{~m}-4) 521$ $\mathrm{a}=3(3)$ $3(\mathrm{~m}-4) 233$ $=========$ $3(\mathrm{~m}-3) 5.7$	
$\begin{aligned} & 2(\mathrm{~m}) 3(2) 7 \\ & 2(\mathrm{~m}) 7.17 \\ & 2(\mathrm{~m}) 7.19 \\ & 2(\mathrm{~m}) 3.7(2) \end{aligned}$	$\begin{aligned} & m \geq 2 \\ & \text { mon. incr. } \\ & \text { case } 1 \\ & 1=4 \end{aligned}$		
$2(m+2) 3(2) 7$		$2(\mathrm{~m}) 5.89$ $\mathrm{~m} \geq 2$ $2(\mathrm{~m}+2) 5(3)$ mon. in $2(\mathrm{~m}) 3(2) 5.13$ case 1 $2(\mathrm{~m}+1) 3.13 .17$ $1=6$ $2(\mathrm{~m}+1) 3.367$ $\mathrm{a}=2(3)$ $2(\mathrm{~m}+1) 5(2) 59$ $============$ $2(\mathrm{~m}+3) 5.89$	
$\begin{aligned} & 2(\mathrm{~m}) 3(\mathrm{n}) 7(2) 43 \\ & 2(\mathrm{~m}+1) 3(\mathrm{n}-1) 7.907 \\ & 2(\mathrm{~m}+1) 3(\mathrm{n}-3) 5.7 .3089 \\ & 2(\mathrm{~m}+1) 3(\mathrm{n}-1) 5.7(2) 11(2) \\ & ==================== \\ & 2(\mathrm{~m}) 3(\mathrm{n}+3) 7(2) 43 \end{aligned}$	$\begin{aligned} & \mathrm{m} \geq 2, \mathrm{n} \geq 5 \\ & \text { mon. incr. } \\ & \text { case } 1 \\ & 1=4 \\ & \mathrm{a}=3(3) \end{aligned}$		
$\begin{aligned} & 3(\mathrm{~m}) 13.743 \\ & 3(\mathrm{~m}-1) 11.13 .113 \\ & 3(\mathrm{~m}) 5.13 .59 \\ & 3(\mathrm{~m}) 5.13 .53 \\ & 3(\mathrm{~m}) 13.239 \\ & 3(\mathrm{~m}-1) 13(2) 31 \end{aligned}$	$\begin{aligned} & m \geq 3 \\ & \text { mon. decr. } \\ & \text { case } 2 \\ & 1=6 \\ & a=3(2) \end{aligned}$	$3(\mathrm{~m}) 7.101$ $\mathrm{~m} \geq 10$ $3(\mathrm{~m}-1) 5.283$ mon. decr. $3(\mathrm{~m}-2) 43.73$ case 2 $3(\mathrm{~m}-4) 7.2011$ $1=10$ $3(\mathrm{~m}-6) 5.11 .19 .79 \mathrm{a}=3(3)$ $3(\mathrm{~m}-6) 5.41 .409$ $3(\mathrm{~m}-6) 5.11 .29 .41$ $3(\mathrm{~m}-6) 5.19 .691$ $3(\mathrm{~m}-7) 5.31 .1051$ $3(\mathrm{~m}-8) 386549$ $==========$ $3(\mathrm{~m}-3) 7.101$	
$3(\mathrm{~m}-2) 13.743$			
$\begin{aligned} & 3(\mathrm{~m}) 13.2459 \\ & 3(\mathrm{~m}-1) 13.11 .373 \\ & 3(\mathrm{~m}-2) 13.5 .11 .157 \\ & 3(\mathrm{~m}-2) 13(2) 17.41 \\ & 3(\mathrm{~m}-2) 13.6311 \\ & 3(\mathrm{~m}-3) 13.17 .619 \\ & 3(\mathrm{~m}-2) 13.43 .53 \\ & 3(\mathrm{~m}-2) 13(2) 109 \\ & ================ \\ & 3(\mathrm{~m}-3) 13.2459 \end{aligned}$	$\begin{aligned} & m \geq 5 \\ & \text { mon. decr. } \\ & \text { case } 2 \\ & 1=8 \\ & a=3(3) \end{aligned}$		

TABLE 7.3 (concluded)

CHAPTER 8

ALIOUOT f-CYCLES

The subject of this chapter is the study of (aliquot) f-cycles, for special choices of f. This chapter is divided into three sections: section 8.1 deals with f-cycles of length 1 (also called f-perfects), in section 8.2 we treat f-cycles of length 2 (also called f-amicable pairs) and in section 8.3 we study f-cycles of length $\ell>2$. We notice that it follows from the definitions in chapter 3 that any ($2 k+2$)-free o-cycle is an M_{k}-cycle $(k=0,1,2, \ldots)$, that any $(k+1)$-free σ-cycle is a Ψ_{k}-cycle $(k=1,2, \ldots)$, and that any $(k+2)$-free σ-cycle is an L_{k}-cycle $(k=0,1,2, \ldots)$ and also an \mathbb{R}_{k}-cycle $(k=0,1,2, \ldots)$.

8.1 f-PERFECTS

8.1.1 $f=\sigma$

24 even σ-perfects are known, the smallest being $N=6$ and the largest being $\mathbb{N}=2^{p-1}\left(2^{p}-1\right)$ with $p=19937$ [38]. Whether there exists any odd perfect number is not known at present. If one exists, it must exceed 10^{50} [19] *) and contain at least eight different prime factors [20].
8.1.2f $=\sigma^{*}$

5 even σ^{*}-perfects are known, the smallest being $N=6$ and the largest being $N=2^{18} 3.5^{4} 7.11 .13 .19 .37 .79 .109 .157 .313$ [36], [39]. It is easy to prove that odd σ^{*}-perfects do no exist.
$8.1 .3 \mathrm{f}=\Psi_{1}$
There are infinitely many Ψ_{1}-perfects, namely $N=2^{m} 3^{n}(m, n=1,2, \ldots)$, and there are no other ones [41].

[^1]
$8.1 .4 \mathrm{f}=\Psi_{2}$

THEOREM 8.1 The only Ψ_{2}-perfects are 6 and $2^{m_{7}}(\mathrm{~m}=2,3, \ldots)$.

PROOF. From the definition of Ψ_{2} it follows that

$$
N=p_{1} p_{2} \ldots p_{r} q_{1}^{\alpha_{1}}{ }^{q_{2}}{ }_{2}^{\alpha_{2}}{ }^{\alpha_{S}}{ }_{s}
$$

$\left(p_{1} \ldots p_{r}, q_{1} \ldots q_{S}\right.$ are different primes, all $\left.\alpha_{i} \geq 2\right)$ is a Ψ_{2}-perfect, if and only if
(8.1) $\quad \bar{N}:=p_{1} p_{2} \ldots p_{r} q_{1}^{2} q_{2}^{2} \ldots q_{s}^{2}$
is Ψ_{2}-perfect. But \bar{N} is 3-free, so that $\Psi_{2}(\bar{N})=\sigma(\bar{N})$.
Therefore, we look for numbers \bar{N} of the form (8.1) which satisfy $\sigma(\bar{N})=2 \bar{N}$. The only even numbers with this property are 6 and 28. If $\overline{\mathbb{N}}$ is odd, then it is well-known that $r=1$ and $p_{1} \equiv 1(\bmod 4)$. Since STEUERWALD [35] proved that these numbers $\bar{N}=p_{1} q_{1}^{2} \ldots q_{s}^{2}$ cannot be σ-perfect, our proof is complete.
$8.1 .5 f=\Psi_{3}$
THEOREM 8.2 The only Ψ_{3}-perfects are 6 and 28.
Proor. By the same argument as in the proof of theorem 8.1 we look for the 4-free σ-perfects. It is easy to see that there are only two numbers of this kind, namely 6 and 28 .
$8.1 .6 \mathrm{f}=\Psi_{k}$
By the same argument as in the case $f=\Psi_{2}$ we can prove the general
THEOREM 8.3 The even Ψ_{k}-perfects ($k \geq 1$) are
(i) the even ($k+1$)-free o-perfects, and
(ii.) the numbers $2^{k+i}\left(2^{k+1}-1\right)$, for $i=1,2, \ldots$ provided that $2^{k}\left(2^{k+1}-1\right)$ is o-perfect.

We cannot answer the question whether there exist any odd Ψ_{k}-perfects for $k \geq 4$.

$8.1 .7 \mathrm{f}=\mathrm{M}_{\mathrm{k}}$

We present a general theorem about even M_{k}-perfects, but we first prove
LEMMA 8.1 If $m \mid n(1<m \leq n)$, then

$$
\frac{M_{k}(n)}{n} \geq 1+\frac{1}{m}
$$

$$
(k=1,2, \ldots)
$$

PROOF: Suppose the canonical prime factorization of n is given by $n=p_{1} \ldots p_{s}\left(e_{i}>0, i=1,2, \ldots, s\right)$. Then the divisor m of n must be of the form $m=p_{1}^{\alpha_{1}} \ldots p_{s}^{\alpha} \quad\left(0 \leq \alpha_{i} \leq e_{i}, i=1,2, \ldots s\right.$, where at least one α_{i} is positive). Hence

$$
\begin{aligned}
\frac{M_{k}(n)}{n} & =\frac{M_{k}\left(p_{1}^{e_{1}}\right)}{e_{1}} \ldots \frac{M_{k}\left(p^{e_{s}}\right)}{p_{1}}= \\
& \geq\left(1+\frac{1}{p_{1}}\right) \ldots\left(1+\frac{1}{p_{s}}\right)> \\
& >1+\frac{1}{p_{1}{ }^{1} p_{2} \ldots p_{s}}=1+\frac{1}{m}
\end{aligned}
$$

THEOREM 8.4 There are no even M -perfects N such that the exponent of 2 in the canonical factorization of N is $\geq 2 k+1$.

Proon. Suppose contrariwise that $N=2{ }_{N} N_{1}\left(N_{1}\right.$ odd and $\left.a \geq 2 k+1\right)$ is $M_{k} \cdots$ perfect. Then we have
(8.2a) $\quad\left(2^{k+1}-1\right)\left(2^{a-k}+1\right) M_{k}\left(N_{1}\right)=2^{a+1} N_{1}$. so that
(8.2b) $\quad \frac{M_{k}\left(N_{1}\right)}{N_{1}}=\frac{2^{a+1}}{\left(2^{k+1}-1\right)\left(2^{a-k}+1\right)}$.

From (8.2a) it follows that $2^{k+1}-1 \mid N_{1}$ and from lemma 8.1 we infer that

$$
\begin{aligned}
\frac{M_{k}\left(N_{1}\right)}{N_{1}} & \geq 1+\frac{1}{2^{k+1}-1}> \\
& >\frac{2^{k+1}}{2^{k+1}-1} \frac{2^{a-k}}{2^{a-k}+1}=\frac{2^{a+1}}{\left(2^{k+1}-1\right)\left(2^{a-k}+1\right)}
\end{aligned}
$$

which contradicts (8.2b).

THEOREM 8.5 There are no odd M_{1}-perfects.

$$
\begin{equation*}
M_{1}\left(p_{1}^{e_{1}}\right) \ldots M_{1}\left(p_{s} e_{s}\right)=2 p_{1}^{e_{1}} \ldots p_{s}{ }^{e_{s}} \tag{8.3}
\end{equation*}
$$

None of the exponents e_{i} can be greater than 2 because, if so, then $M_{1}\left(p_{i}{ }_{i}\right)=\left(p_{i}+1\right)\left(p_{i}^{e_{i}-1}+1\right)$ would have at least two prime factors 2 , whereas the right hand side of (8.3) contains exactly one prime 2 . Hence, N is 3 free, which implies that $M_{1}(\mathbb{N})=\sigma(\mathbb{N})$. But in the proof of theorem 8.1 we showed that there are no 3 -free odd σ-perfects.

We do not know whether there is an odd M_{k}-perfect for $k \geq 2$.
$8.1 .8 \mathrm{f}=\mathrm{L}_{\mathrm{k}}$ and $\mathrm{f}=\mathrm{R}_{\mathrm{k}}$
We have not found general theorems for $f=I_{k}$ and $f=R_{k}{ }^{*}$) as we did for $f=\psi_{k}$ and $f=M_{k}$. Table 8.1 gives a list of L_{k}-perfects for $k=1,2,3,4$ and table 8.2 gives a list of R_{k}-perfects for $k=1,2,3,4$. These perfects were computed by trial and error.

TABLE 8.1
Some L_{k}-perfects for $k=1,2,3,4$, found by trial and error

k	L_{k}-perfects
1	$2.3,2^{2} 7,2^{3} 7.13,2^{4} 5^{2} 31,2^{4} 5^{3} 19,31.151$
2	$2.3,2^{2} 7$,
3	$2.3,2^{2} 7,2^{4} 31,2^{5} 31.61$
4	$2.3,2^{2} 7,2^{4} 31$

[^2]TABLE 8.2
Some R_{k}-perfects for $k=1,2,3,4$, found by trial and error

k R_{k}-perfects	k R_{K}-perfects
$\begin{aligned} & 2.3 \\ & 2^{2} 7 \\ & 2^{3} 3.11 \\ & 2^{4} 3.5 .19 \\ & 2^{5} 3.5 .7 \\ & 2^{6} 3^{2} 7.13 .17 .67 \\ & 2^{7} 3^{2} 7.11 .13 .131 \\ & 2^{8} 3.5 .7 .19 .37 \\ & 2^{9} 3.5 .7 \cdot 13.103 \\ & 2^{10} 3.5 .7 \cdot 13.79 \\ & 2^{12} 3.5^{2} 7.31 .41 .4099 \\ & 2^{13} 3^{2} 5^{4} 7.11 .13 .79 .149 .631 \\ & 2^{16} 3^{2} 5^{4} 7.13 .19 .29 .79 .113 .631 .65539 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 2^{2} 7 \\ & 2^{4} 3.23 \\ & 2^{5} 3.7 .13 \\ & 2^{6} 3^{2} 7.13 .71 \\ & 2^{7} 3^{3} 5^{2} 31 \\ & 2^{8} 3^{2} 7.11 .13 .263 \\ & 2^{9} 3^{3} 5^{2} 29.31 .173 \\ & 2^{10} 3^{2} 7.11 .13 .43 .1031 \\ & 2^{11} 3^{3} 5^{2} 23.31 \cdot 137 \\ & 2^{12} 3^{4} 5.7 .11217 .19 .47 .373 \\ & 2^{13} 3^{3} 5^{2} 19.31 .911 \\ & 2^{15} 3^{4} 5^{3} 7.13 .19 .23 .47 \\ & 2^{16} 3^{3} 5^{2} 19.31 .683 .2731 .65543 \end{aligned}$
$\begin{aligned} & 3.3 \\ & 2^{2} 7 \\ & 2^{4} 31 \\ & 2^{5} 3.47 \\ & 2^{6} 3.5 .79 \\ & 2^{7} 3.7 .11 .13 \\ & 2^{8} 3^{2} 7.13 .17 .271 \\ & 2^{9} 3^{2} 7.11 .13 .527 \\ & 2^{10} 3.5 .7 .13 .1039 \\ & 2^{11} 3^{2} 7.11 .13 .43 .2063 \\ & 2^{12} 3^{2} 7.11 .13 .43 .257 .4111 \\ & 2^{13} 3^{3} 5^{2} 29.31 .71 .283 \\ & 2^{14} 3.5 .7 .23^{2} 31.79 \\ & 2^{15} 3^{3} 5^{2} 19.31 .683 .32783 \\ & 2^{16} 3.5 .7 .11^{3} 17^{2} 79.241 .307 .65551 \end{aligned}$	$4 \begin{aligned} & 2.3 \\ & 2^{2} 7 \\ & 2^{4} 31 \\ & 2^{6} 5^{2} 19.31 \\ & 2^{7} 3^{6} 5^{2} 17.31 .53 \\ & 2^{10} 3^{3} 5^{2} 31.53 .211 \\ & 2^{11} 3^{6} 5^{2} 7.11 .17 .31 \\ & 2^{12} 3^{2} 7.11 .13 .43 .4127 \\ & 2^{13} 3^{3} 5^{2} 23.31 .229 .457 .2741 \end{aligned}$

8.2 f-AMICABLE PAIRS

8.2.1 $\mathrm{f}=\sigma^{\circ}$

More than 1100 -amicable pairs are known [26], the smallest pair being $\{220,284\}$. The four largest known pairs (with 32-, 40-, 81- and 152-digit numbers) were recently computed by TE RIELE [31]. In the lists of f-amicable pairs (for $f x$ o) given in the sequel, those f-amicable pairs, that are also σ-amicable pairs, are omitted.
$8.2 .2 \mathrm{f}=\sigma^{*}\left(=\mathrm{M}_{0}=\mathrm{L}_{0}=\mathrm{R}_{0}\right)$.
In 1970, WALL [41] found more than $600 \sigma^{*}$-amicable pairs. HAGIS in 1971 and TE RIELE in 1973 also investigated σ^{*}-amicable pairs, both unaware of WALL's thesis. HAGIS [21] computed all σ^{*}-amicable pairs $\{m, n\}$ with $m<n$ and $\mathrm{m} \leq 10^{6}$ [21]. TE RIELE [32] published a list of more than $1100 \sigma^{*}$-amicable pairs, including nearly all those pairs published by Wall. For some other new σ^{*}-amicable pairs, see [24].
$8.2 .3 f=\psi_{k}(k=1,2, \ldots)$.
Many Ψ_{k}-amicable pairs may be constructed from the known omamicable pairs [26] as follows. Suppose the pair $\left\{m_{,} n\right\}$ is o-amicable and $m=p^{k} m_{1}$ and $n=p^{k} n_{1}$ where $k>0,\left(p_{s} m_{1}\right)=1,\left(p, n_{1}\right)=1$, and m_{1} and n_{1} are $(k+1)$-free. Then it follows from the definition of Ψ_{k} that the pairs $\left\{p^{a} m, p^{a} n\right\}_{\text {, }}$ $(a=0,1,2, \ldots)$ are Ψ_{k}-amicable. In our list of Ψ_{k} mamicable pairs (table 8,3, pp. 56-58) we have not included these pairs, in order to save space. The pairs given in table 8.3 were found partly by the method described in chapter 7, partly by a systematic computer search for all pairs, the smallest element of which does not exceed 10^{4}, partly by use of one of the three following lemma's and partly by trial and error.

LEMMA 8.2 If the two positive integers $p=2^{k+i}+2^{k}-1$ and $q=2^{k-i}+2^{k}-1$ are primes, then the pairs

$$
\left\{2^{a} p, 2^{a+i} q\right\}
$$

$$
(a=k, k+1, \ldots)
$$

are Ψ_{k}-amicable $(k=2,3, \ldots ; i=1,2, \ldots, k-1)$.
TEMMA 8.3 Suppose

$$
A B=2^{k}\left(2^{k}-1\right)+2^{k-i}
$$

$$
A \neq B_{8}
$$

is a factorization of the positive integer $2^{k}\left(2^{k}-1\right)+2^{k-i}$. If the three positive integers $p=2^{k}-1+A, q=2^{k}-1+B$ and $r=2^{i}(p+1)(q+1)-1$ are primes, then the pairs

$$
\left\{2^{\mathrm{a}+\mathrm{i}} \mathrm{pq}, 2^{\mathrm{a}} \mathrm{r}\right\} \quad \text { where } \mathrm{a}=\mathrm{k}, \mathrm{k}+1, \ldots
$$

are Ψ_{k}-amicable $(k=2,3, \ldots i \quad i=1,2, \ldots, k-1)$.
LEMMA 8. 4 Suppose

is a factorization of the positive integer $2^{k}\left(2^{k}-1\right)+2^{k+i}$. If the three positive integers $p=2^{k}-1+A_{3} q=2^{k}-1+B$ and $r=\frac{(p+1)(q+1)}{2^{i}}-1$ are primes, then the pairs

$$
\left\{2^{\mathrm{a}} \mathrm{pq}, 2^{\mathrm{a}+i_{r}}\right\} \quad \text { where } \mathrm{a}=\mathrm{k}_{8} \mathrm{k}+1, \ldots
$$

are Ψ_{k}-amicable $(k=2,3, \ldots i=1,2, \ldots, k-1)$.
The proof of these lemma's follows easily by solving the equations

$$
\left\{\begin{array}{l}
\Psi_{k}(m)=\Psi_{k}(n) \\
\Psi_{k}(m)=m+n
\end{array}\right.
$$

for the pairs $\left\{m_{g} n\right\}$ given in the lemma's.
$8.2 .4 \mathrm{f}=\mathrm{M}_{\mathrm{k}}{ }^{\circ} \mathrm{f}=\mathrm{I}_{\mathrm{k}}$ and $\mathrm{f}=\mathrm{R}_{\mathrm{k}}$.
Table 8.4 gives $M_{k}-(k=1,2), L_{k}-(k=1,2,3,4)$ and $R_{k}-(k=1,2,3,4)$ amicable pairs, which are not at the same time σ-amicable pairs. They were found partly by a computer search for all pairs $\{\mathrm{m}, \mathrm{n}\}$ with $\mathrm{m}<\mathrm{n}$ and $\mathrm{m} \leq 10^{4}$, and partly by trial and error.

TABLE 8.3
Some Ψ_{k}-amicables for $k=1,2,3,4$, found by various methods (see text)

k	Ψ_{k}-amicable pairs	
1	$\left\{\begin{array}{l} 2^{m_{5} n} 7 \cdot 19=\left(2^{m-1} 5^{n-1}\right) 1330 \\ 2^{m_{5}} 5^{n+1} 31=\left(2^{m-1} 5^{n-1}\right) 1550 \end{array}\right.$	($m, n \geq 1$)
	$\left\{\begin{array}{l} 2^{m_{5} n^{n}} \cdot 11=\left(2^{m-1} 5^{n-2}\right) 3850 \\ 2^{m_{5} 5^{n-1}} 479=\left(2^{m-1} 5^{n-2}\right) 4790 \end{array}\right.$	$(\mathrm{m} \geq 1, \mathrm{n} \geq 2)$
	$\left\{\begin{array}{l} 2^{m_{7} n_{5}} .23=\left(2^{m-1} 7^{n-2}\right) 11270 \\ 2^{m} 7^{n-1} 13.71=\left(2^{m-1} 7^{n-2}\right) 12922 \end{array}\right.$	$(\mathrm{m} \geq 1, \mathrm{n} \geq 2)$
	$\left\{\begin{array}{l} 2^{m_{5} 5^{n}} 13.23=\left(2^{m-1} 5^{n-2}\right) 14950 \\ 2^{m_{5} n-1} 11.139=\left(2^{m-1} 5^{n-2}\right) 15290 \end{array}\right.$	$(m \geq 1, n \geq 2)$
	$\left\{\begin{array}{l} 2^{m_{5} 5^{n} 7.53}=\left(2^{m-1} 5^{n-2}\right) 18550 \\ 2^{m} 5^{n-1} 19.107=\left(2^{m-1} 5^{n-2}\right) 20330 \end{array}\right.$	$(m \geq 1, n \geq 2)$
	$\left\{\begin{array}{l} 2^{m_{5} n_{1}} 11.23 .29=\left(2^{m-1} 5^{n-1}\right) 73370 \\ 2^{m_{5} n+1} 31.53=\left(2^{m-1} 5^{n-1}\right) 82150 \end{array}\right.$	($\mathrm{m}, \mathrm{n} \geq 1$)
	$\left\{\begin{array}{l} 3^{m} 5^{n_{7}} 13.23=\left(3^{m-1} 5^{n-2} 7^{i-1}\right) 156975 \\ 3^{m_{5} 5^{n-1}} 7^{i} 19.83=\left(3^{m-1} 5^{n-2} 7^{i-1}\right) 165585 \end{array}\right.$	$(m, j \geq 1, n \geq 2)$
	$\left\{\begin{array}{l} 2^{m} 7^{n} 11^{i}{ }_{13} \cdot 109=\left(2^{m-1} 7^{n-1} 11^{i-1}\right) 218218 \\ 2^{m} 7^{n+1} 1_{1}^{i+1} 19=\left(2^{m-1} 7^{n-1} 11^{i-1}\right) 225302 \end{array}\right.$	$(\mathrm{m}, \mathrm{n}, \mathrm{i} \geq 1)$
	$\left\{\begin{array}{l} 2^{m_{5} n_{1}} 19^{i} 11.113=\left(2^{m-1} 5^{n-1} 19^{i-1}\right) 236170 \\ 2^{m_{5} n_{1}} 9^{i+1} 71=\left(2^{m-1} 5^{n-1} 19^{i-1}\right) 256310 \end{array}\right.$	($m, n, i \geq 1$)
	$\left\{\begin{array}{l} 2^{m_{5} n_{11}} i_{43.89}=\left(2^{m-1} 5^{n-1} 11^{i-1}\right) 420970 \\ 2^{m_{5} n_{11}}{ }^{i+1} 359=\left(2^{m-1} 5^{n-1} 11^{i-1}\right) 434390 \end{array}\right.$	$(m, n, i \geq 1)$
	$\left\{\begin{array}{l} 3^{m_{5} n_{7} i_{1}} 1.17=\left(3^{m-1} 5^{n-2} 7_{7}^{i-2}\right) 687225 \\ 3^{m_{5} n-1} 7^{i-1} 29.251=\left(3^{m-1} 5^{n-2} 7^{i-2}\right) 764295 \end{array}\right.$	$(m \geq 1, n, i \geq 2)$
	$\left\{\begin{array}{l} 2^{m} 5^{n} 31^{i} 13.29=\left(2^{m-1} 5^{n-1} 31^{i-2}\right) 3622970 \\ 2^{m} 5^{n+1} 31^{i-1} 41.61=\left(2^{m-1} 5^{n-1} 31^{i-2}\right) 3876550 \end{array}\right.$	$\left(m_{8} \cap 1, \quad i \geq 2\right)$
2	$\left\{\begin{array}{l} 2^{m} 3=\left(2^{m-2}\right) 12 \\ 2^{m+2}=\left(2^{m-2}\right) 16 \end{array}\right.$	$(\mathrm{m} \geq 2)$
	$\left\{\begin{array}{l} 2^{\mathrm{m}} 5=\left(2^{\mathrm{m}-3}\right) 40 \\ 2^{\mathrm{m}-1} 11=\left(2^{\mathrm{m}-3}\right) 44 \end{array}\right.$	$(\mathrm{m} \geq 3)$

TABLE 8.3 (continued)
$k \quad \Psi_{k}$-amicable pairs

2 (cont.) $\left\{\begin{array}{l}2^{m} 5.13=\left(2^{m-2}\right) 260 \\ 2^{m+1} 41=\left(2^{m-2}\right) 328\end{array} \quad\right.$ (m²)
$\left\{\begin{array}{l}3^{m} 5 \cdot 7 \cdot 13=\left(3^{m-3}\right) 12285 \\ 3^{m-1} \cdot 13 \cdot 17=\left(3^{m-3}\right) 13923\end{array} \quad(\mathrm{~m} \geq 3)\right.$
$\left\{\begin{array}{ll}3^{m} 5.7 .13 .23 & =3^{m-2}(94185) \\ 3^{m+1} 7.13 .47 & =3^{m-2}(115479)\end{array} \quad(m \geq 2)\right.$
$\left\{2.5^{m_{7}} .59=5^{m-3}(103250) \quad(\mathrm{m} \geq 3)\right.$
$\left\{2.5^{m-1} 2399=5^{m-3}(119950\right.$
$3 \quad\left\{\begin{array}{lr}2^{m} 7=\left(2^{m-3}\right) 56 \\ 2^{m+3}=\left(2^{m-3}\right) 64 & (m \geq 3)\end{array}\right.$
$\left\{2^{m+3}=\left(2^{m-3}\right) 64\right.$
$\left\{\begin{array}{ll}2^{m_{11}}=\left(2^{m-4}\right) 176 \\ 2^{m-1} 23=\left(2^{m-4}\right) 184\end{array} \quad(m \geq 4)\right.$
$\left\{\begin{array}{l}2^{m} 13.19=\left(2^{m-3}\right) 1976 \\ 2^{m+1} 139=\left(2^{m-3}\right) 2224\end{array} \quad(\mathrm{~m} \geq 3)\right.$
$\left\{\begin{array}{ll}2^{m} 11.29=\left(2^{m-3}\right) 2552 \\ 2^{m+2} 89 & =\left(2^{m-3}\right) 2848\end{array} \quad(m \geq 3)\right.$
$\left\{\begin{array}{l}2^{\mathrm{m}} 13.17=\left(2^{\mathrm{m}-4}\right) 3536 \\ 2^{\mathrm{m}-1} 503=\left(2^{\mathrm{m}-4}\right) 4024\end{array} \quad(\mathrm{~m} \geq 4)\right.$
$\left\{\begin{array}{l}3^{m} 5.7 .19=\left(3^{m-5}\right) 161595 \\ 3^{m-2} 5.29 .47=\left(3^{m-5}\right) 184005\end{array} \quad(\mathrm{~m} \geq 5)\right.$
$\left\{\begin{array}{l}3^{m} 5^{n} 7.109 \\ 3^{--2}\end{array}=\left(3^{m-5} 5^{n-4}\right) 115880625 \quad(m \geq 5, n \geq 4)\right.$
$\left\{3^{m-2} 5^{n-1} 59.659=\left(3^{m-5} 5^{n-4}\right) 131223375\right.$
$\left\{3^{m_{5} n_{7}} .199 .967=\left(3^{m-5} 5^{n-3}\right) 40916066625 \quad(m \geq 5, n \geq 3)\right.$
$\left\{3^{m-2} 5^{n} 47.290399=\left(3^{m-5} 5^{n-3}\right) 46064541375\right.$
$4\left\{\begin{array}{l}2^{m+1} 23=\left(2^{m-4}\right) 736 \\ 2^{m} 47=\left(2^{m-4}\right) 752\end{array}\right.$
$\left\{\begin{array}{l}2^{m+2} 19=\left(2^{m-4}\right) 1216 \\ 2^{m} 79=\left(2^{m-4}\right) 1264\end{array}\right.$
$(m \geq 4)$

TABLE 8.3 (concluded)
$k \quad \Psi_{k}$-amicable pairs

4 (cont.)	$\left\{\begin{array}{l} 2^{m} 19.83=\left(2^{m-4}\right) 25232 \\ 2^{m+1} 839=\left(2^{m-4}\right) 26848 \end{array}\right.$	$(\mathrm{m} \geq 4)$
	$\left\{\begin{array}{l} 2^{\mathrm{m}_{19}} 19.107=\left(2^{m-4}\right) 32528 \\ 2^{m+3} 269=\left(2^{m-4}\right) 34432 \end{array}\right.$	$(\mathrm{m} \geq 4)$
	$\left\{\begin{array}{l} 2^{m_{1}} 17.151=\left(2^{m-4}\right) 41072 \\ 2^{m+1} 1367=\left(2^{m-4}\right) 43744 \end{array}\right.$	$(\mathrm{m} \geq 4)$
	$\left\{\begin{array}{l} 2^{m} 17.199=\left(2^{m-4}\right) 54128 \\ 2^{m+3} 449=\left(2^{m-4}\right) 57472 \end{array}\right.$	$(\mathrm{m} \geq 4)$
	$\left\{\begin{array}{l} 2^{m+1} 17.139 \end{array}=\left(2^{m-4}\right) 75616 .\right.$	$(\mathrm{m} \geq 4)$

TABLF 8.4
The $M_{k}-, L_{k}$ - and R_{k}-amicable pairs $\{m, n\}$ such that $m<n$ and $m \leq 10^{4}$, and some pairs, found by trial and error

$\begin{gathered} f=M_{k} \\ k \end{gathered}$	f-amicable pairs	
1	$\left\{\begin{array}{l} 3608\left(2^{3} 11.41\right) \\ 3952\left(2^{4} 13.19\right) \end{array}\right.$	$\left\{\begin{array}{l} 9520\left(2^{4} 5.7 .17\right) \\ 13808\left(2^{4} 863\right) \end{array}\right.$
2	none with $\mathrm{m} \leq 10^{4}$	
$f=L_{k}$		
1	$\left\{\begin{array}{l}168\left(2^{3} 3.7\right) \\ 248\left(2^{3} 31\right)\end{array}\right.$	$\left\{\begin{array}{l} 1548\left(2^{2} 3^{2} 43\right) \\ 2456\left(2^{3} 307\right) \end{array}\right.$
	$\left\{\begin{array}{l} 920\left(2^{3} 5.23\right) \\ 952\left(2^{3} 7.17\right) \end{array}\right.$	$\left\{\begin{array}{l} 5720\left(2^{3} 5.11 .13\right) \\ 7384\left(2^{3} 13.71\right) \end{array}\right.$
	$\left\{\begin{array}{l}1008\left(2^{4} 3^{2} 7\right) \\ 1592\left(2^{3} 199\right)\end{array}\right.$	$\left\{\begin{array}{l} 16268\left(2^{2} 7^{2} 83\right) \\ 17248\left(2^{5} 7^{2} 11\right) \end{array}\right.$
2	$\left\{\begin{array}{l} 8272\left(2^{4} 11.47\right) \\ 8432\left(2^{4} 17.31\right) \end{array}\right.$	
3,4	none with $\mathrm{m} \leq 10^{4}$	
$\mathrm{f}=\mathrm{R}_{\mathrm{k}}$k		
1.	$\left\{\begin{array}{l} 366(2.3 .61) \\ 378\left(2.3^{3} 7\right) \end{array}\right.$	$\left\{\begin{array}{l} 16104\left(2^{3} 3.11 .61\right) \\ 16632\left(2^{3} 3^{3} 7.11\right) \end{array}\right.$
	$\left\{\begin{array}{l} 3864\left(2^{3} 3.7 .23\right) \\ 4584\left(2^{3} 3.191\right) \end{array}\right.$	
2	$\left\{\begin{array}{l} 26448\left(2^{4} 3.19 .29\right) \\ 28752\left(2^{4} 3.599\right) \end{array}\right.$	
3	none with $\mathrm{m} \leq 10^{4}$	
4	$\left\{\begin{array}{l} 10194(2.3 .1699) \\ 10206\left(2.3^{6} 7\right) \end{array}\right.$	

8.3 E-CYCLES OF LENGTH $\ell>2$
8.3.1 $\mathrm{E}=0$ 。

Fourteen σ-cycles of length $\ell=4$ and one each for $l=5$ and $\ell=28$ are known [18].
$8.3 .2 \mathrm{f}=\sigma^{*}$.
One σ^{*}-cycle of length $\ell=3,8$ for $\ell=4$, one each for $\ell=25, \ell=39$ and $\ell=65$ are known [24], [33].
8.3.3 $\mathrm{f}=\Psi_{3^{\prime}} \mathrm{f}=\mathrm{L}_{3}, \mathrm{f}=\mathrm{R}_{1}$ 。

Table 8.5 gives the only three f-cycles of length $\ell>2$ (not at the same time being σ cycycles) which are known to us. They were found by trial and error.

TABLE 8.5
Three aliquot f-cycles of length $\ell>2$, that are not o-cycles

f	ℓ	aliquot f-cycle	
Ψ_{3}	4	$\left\{\begin{array}{l} 2^{m} 3917 \\ 2^{m-2} 11.29 .43 \\ 2^{m-2} 11.1453 \\ 2^{m} 47.89 \end{array}=2^{m-5}\left\{\begin{array}{l} 125344 \\ 109736 \\ 127864 \\ 133856 \end{array}\right.\right.$	$(m \geq 5)$
L_{3}	4	$\left\{\begin{array}{l} 4040\left(2^{3} 5.101\right) \\ 5140\left(2^{2} 5.257\right) \\ 5696\left(2^{6} 89\right) \\ 5194\left(2.7^{2} 53\right) \end{array}\right.$	
R_{1}	3	$\begin{cases}834 & (2.3 .139) \\ 846 & \left(2.3^{2} 47\right) \\ 1026\left(2.3^{3} 19\right)\end{cases}$	

CHAPTER 9

SOLVING THE EQUATION $f(x)-x=m$

In this chapter we investigate the equation

$$
\begin{equation*}
f(x)-x=m \tag{9.1}
\end{equation*}
$$

for $f \in \mathbb{F}$ and $m \in \mathbb{N}$. If (9.1) has no solution $x \in \mathbb{N}$ for some m, then m is called f-untouchable, otherwise, m is called f-touchable.
In [14], ERDOOS proved that the lower density of the o-untouchables is positive. ALANEN [1] found the 570 o-untouchables ≤ 5000.

THEOREM 9.1 Let $f \in \mathrm{~F}^{\text {. Suppose that }} \mathrm{f}$ satisfies the additional condition
(9.2) $\quad \frac{f(d)}{d} \leq \frac{f(n)}{n}$,
for all divisors a of n. If M is even and f-abundant, and if M is an even and f-abundant divisor of M, then the Zower density of the f-untouchables m, satisfying $m \equiv M^{8}(\bmod M), \quad i s \geq \frac{1}{M}\left(1-\frac{M^{8}}{f\left(M^{\top}\right)-M^{B}}\right)>0$.

Note that for $M^{8}=M$, this statement reduces to: if M is even and $f=$ abundant, then the lower density of the f-untouchables m, satisfying $m \equiv O(\bmod M)$, is $\geq \frac{1}{M}-\frac{1}{f(M)-M}$.

Before proving this theorem, we give two lemma's.
LEMMA 9.1 The number of $2-$ fuil numbers $\leq x$ is $O(\sqrt{x})$, for $x \rightarrow \infty_{0}$
Proor. Any 2-full number n can be uniquely represented in the form $n=a^{2} b^{3}$. where $a \in \mathbb{N}$ and b is squarefree. If $T(x)$ is the number of 2 -full numbers $\leq x$, then it follows that

$$
T(x) \leq \sum_{\substack{b^{3} \leq x \\ b \\ \text { is squarefree }}}\left(x / b^{3}\right)^{1 / 2}<\sqrt{x} \sum_{b=1}^{\infty} \frac{1}{b^{3 / 2}}=O(\sqrt{x}) \quad \text { for } x \rightarrow \infty \text {. } \square
$$

The next lemma is a special case of a more general result of Scourfield *)。

IEMMA 9.2 If $f \in F$, then for any $d \in \mathbb{N}$ the number of positive integers $n \leq x$ such that $d \gamma f(n)$, is $O(x)$ for $x \rightarrow \infty$.

PROOF OF THEOREM 9.1. First notice that (9.2) implies that for any prime divisor p of n
(9.3) $f(n)-n \geq n / p$.

Let $A(N)$ be the number of $n \in \mathbb{N}$ satisfying
(9.4) $\quad f(n)-n \leq N$, and
(9.5) $f(n)-n \equiv M^{3}(\bmod M)$.

This number is finite for any $\mathbb{N} \in \mathbb{N}$. Indeed, if $n=p$, then $f(n)-n=1 \nexists M^{2}(\bmod M)$. If n is not a prime, and if p_{1} is the smallest prime divisor of n, then we have $p_{1} \leq \sqrt{n}$, so that by (9.3) we have $f(n)-n \geq n / p_{1} \geq \sqrt{n}$. From (9.4) it follows that $n \leq N^{2}$.

If $A_{1}(N)$ is the number of odd n, satisfying (9.4) and (9.5), if $\mathbb{A}_{2}(N)$ is the number of even n, with $n \nexists-M^{\prime}(\bmod M)$, satisfying (9.4) and (9.5) and if $A_{3}(N)$ is the number of even n, with $n \equiv M^{\prime}(\bmod M)$, satisfying (9.4) and (9.5), then we obviously have

$$
\begin{equation*}
A(N)=A_{1}(N)+A_{2}(N)+A_{3}(N) \tag{9.6}
\end{equation*}
$$

If n is odd then by (9.5), $f(n)$ is also odd. Since, for odd $p, f(p)=p+1$ is even, n must be 2 -full. Suppose $n=p^{2}$. Then by (9.3) $f(n)-n \geq p$, so that the

[^3]number of odd $n=p^{2}$, satisfying (9.4) and (9.5), is $\leq \pi(N)$, which is $O(N)$, for $N \rightarrow \infty$. If $n \neq p^{2}$, and if p_{1} is the smallest prime divisor of n, then we have $p_{1} \leq n^{1 / 3}$, so that, by (9.3), $f(n)-n \geq n / p_{1} \geq n^{2 / 3}$. From (9.4) it follows that $n \leq N^{3 / 2}$, and by lemma 9.1 , we conclude that the number of odd $n \neq p^{2}$, satisfying (9.4) and (9.5) is $O\left(N^{3 / 4}\right)$, for $N \rightarrow \infty$. Hence
\[

$$
\begin{equation*}
A_{1}(\mathbb{N})=o(N) \tag{9.7}
\end{equation*}
$$

\]

for $N \rightarrow \infty$.

If n is even, then (9.3) implies that $f(n)-n \geq n / 2$, so that, by (9.4), $\mathrm{n} \leq 2 \mathrm{~N}$ 。

If $n \neq-M^{\prime}(\bmod M)$, then by (9.5) we have $f(n) \neq 0(\bmod M)$. It follows from lemma 9.2 that the number of positive integers $n \leq 2 N$ such that $f(n) \nexists O(\bmod M)$ is $O(N)$, so that

$$
\begin{equation*}
A_{2}(\mathbb{N})=o(N) \tag{9.8}
\end{equation*}
$$

for $N \rightarrow \infty$.

If $n \equiv-M^{\prime}(\bmod M)$, then, since $M^{1} \mid M$, we have M^{1} / n and it follows from (9.2) that

$$
\frac{f\left(M^{8}\right)}{M^{n}} \leq \frac{f(n)}{n}
$$

so that

$$
\frac{f\left(M^{8}\right)-M^{8}}{M^{8}} \leq \frac{f(n)-n}{n}
$$

By use of (9.4) we find that

$$
n \leq N \cdot \frac{M^{8}}{f\left(M^{8}\right)-M^{8}}
$$

Hence

$$
A_{3}(N) \leq \frac{N}{M} \cdot \frac{M^{8}}{f\left(M^{8}\right)-M^{8}}
$$

Combining this with $(9.8),(9.7)$ and (9.6), we conclude that the upper density of the numbers n satisfying (9.5) is at most $M^{\prime} /\left(M^{\prime}\left(f^{\prime}\right)-M^{\prime}\right)$), so that the upper density of the f-touchables m, satisfying $m \equiv M^{\prime}(\bmod M)$, is also at most $M^{\prime} /\left(M\left(f\left(M^{8}\right)-M^{8}\right)\right)$. From this we finally conclude that the lower
density of the f-untouchables m, satisfying $m \equiv M^{\prime}(\bmod M)$, is at least
$\frac{1}{M}-\frac{M^{9}}{M\left(f\left(M^{9}\right)-M^{9}\right)}$.
Of the examples of f given in chapter 3 , only the functions σ and Ψ_{k} ($k=1,2, \ldots$) satisfy (9.2), so that theorem 9.1 applies to them.

Since $M=30$ is squarefree, we have $f(30)=72>60$, so that 30 is an f-abundant number for all $f \in F$. Therefore, we may apply theorem 9.1 with $M=30$, and $M{ }^{\prime}=M$, yielding

COROLLARY 9.1 For all functions $f \in F$ which satisfy (9.2), the lower density of the f-untouchables m, which are $\equiv 0(\bmod 30)$, is $\geq \frac{1}{30}\left(1-\frac{30}{42}\right)=\frac{1}{105}$.

It is not difficult to improve this lower bound when we consider special choices of f. As an example, we shall derive

COROLLARY 9.2 The Zower density of the owuntouchables is > .0324.

To prove this, we note that every even number belongs to at most one of the following congruence classes: $0(\bmod 24), 12(\bmod 24), 30(\bmod 60)$, $20(\bmod 60), 40(\bmod 120), 70(\bmod 420)$ and $350(\bmod 2100)$. Every class is of the form $M^{\prime}(\bmod M)$, where $M^{\prime} \mid M$ and both M^{\prime} and M are even and σ-abundant. Hence theorem 9.1 applies to all these classes, so that the lower density of the even σ-untouchables is at least

$$
\frac{1}{72}+\frac{1}{96}+\frac{1}{210}+\frac{1}{660}+\frac{1}{600}+\frac{1}{7770}+\frac{11}{206850}>.0324
$$

Since for all $f \in F$ we have

$$
f(p q)-p q=p+q+1
$$

for primes p and $q(p \neq q)$, and since almost all even numbers can be written as the sum of two prime numbers (proved by VAN DER CORPUT [9], ESTERMANN [15] and TSCHUDAKOFF [37]), it follows that the density of the odd f-untouchables is zero, for all $f \in F$.

Corollary 9.1 implies that for all $f \in F$, satisfying (9.2), there are infinitely many f-untouchables. Although Ψ_{1} belongs to this class
of functions, we shall prove now, in a more constructive way, that there are infinitely many Ψ_{1}-untouchables. Unfortunately, this proof does not seem to be applicable to other functions $f \in F$.

THEOREM 9.2 The numbers $2^{n} 3 . R(n=1,2, \ldots)$, where R is fixed and $(6, R)=1$, are either all Ψ_{1}-touchable or else are all Ψ_{1}-untouchable.

Before proving this theorem, we derive
LEMMA 9.3 Any solution $x=x_{0}$ of the equation
(9.9) $\quad \Psi_{1}(x)-x=2^{n} 3 . R$,
($n \in \mathbb{N}$ and $(6, R)=1$)
has the form $\mathrm{x}_{0}=2^{\mathrm{n}} 3 . \mathrm{S}$, where $(6, \mathrm{~s})=1$.
PRoof. Let x_{0} be a solution of (9.9) with canonical factorization $x_{0}=\prod_{i=1}^{S} p_{i} e_{i}$. Then we have

$$
\Psi_{1}\left(x_{0}\right)-x_{0}=\prod_{i=1}^{s}\left(p_{i}^{e_{i}}+p_{i}^{e_{i}-1}\right)-\prod_{i=1}^{s} p_{i}^{e_{i}}=2^{n_{3}} 3 . R .
$$

Now x_{0} must be even, since, if x_{0} is odd, then $\Psi_{1}\left(x_{0}\right)-x_{0}$ is also odd. This gives, with $p_{1}=2$,

$$
2^{e_{1}-1} 3 \prod_{i=2}^{s}\left(p_{i}^{e_{i}}+p_{i}^{e_{i}-1}\right)-2^{e_{1}} \prod_{i=2}^{s} p_{i}^{e_{i}}=2^{n_{3}} 3 . R
$$

Hence $p_{2}=3$ and $s \geq 2$, yielding

$$
2^{e_{1}}{ }^{e_{2}}\left[2 \prod_{i=3}^{s}\left(p_{i}^{e_{i}}+p_{i}^{e_{i}^{-1}}\right)-\prod_{i=3}^{s} p_{i}^{e_{i}}\right]=2^{n_{3}} 3 . R
$$

so that $e_{1}=n$ and $e_{2}=1$.
PROOF OF THEOREM 9.2. Let $a \in \mathbb{N}$ be fixed and let $R \in \mathbb{N}$ so that $(R, 6)=1$. Suppose $2^{a_{3}}$. R is Ψ_{1}-touchable. According to lemma 9.3 , any solution of the equation

$$
\Psi_{1}(x)-x=2^{a} 3 \cdot R
$$

has the form $x_{0}=2^{2} 3 . s$, for some s with $(6, s)=1$. From the definition of Ψ_{1} it follows that

$$
\Psi_{1}\left(2^{e} x_{0}\right)-2^{e} x_{0}=2^{e_{\Psi}}\left(x_{0}\right)-2^{e} x_{0}=2^{e+a} 3 . R
$$

for all integers $e \geq-a+1$. Hence all numbers $2^{n} 3 . R(n=1,2, \ldots)$ are $\Psi_{1}-$ touchable.
Now suppose $2^{a} 3 . R$ is Ψ_{1}-untouchable. Then all numbers $2^{n} 3, R(n=1,2, \ldots)$ must be Ψ_{1}-untouchable, since if any one of them is Ψ_{1}-touchable, it follows from the first part of this proof that they are all Ψ_{1}-touchable.

According to lemma 9.3, any solution $x=x_{0}$ of the equation $\Psi_{1}(x)-x=6 R,(6, R)=1$, must have the form $x_{0}=6 S,(6, S)=1$. Now we have

$$
\Psi_{1}\left(x_{0}\right)-x_{0}=12 \Psi_{1}(S)-6 S=6\left[2 \Psi_{1}(S)-S\right] \geq 6 S
$$

with equality if and only if $s=1$. Hence it follows immediately that $30=6.5$ is Ψ_{1}-untouchable, and that, since $42=\Psi_{1}(30)-30$, the number $42=6.7$ is Ψ_{1}-touchable. Application of theorem 9.2 shows that the numbers $2^{n} 3.5(n=1,2, \ldots)$ are all Ψ_{1}-untouchable, whereas the numbers $2^{n} 3.7$ $(n=1,2, \ldots)$ are all Ψ_{1}-touchable.

In [1] ALANEN has given an algorithm for the computation of every solution x of the equation

$$
\begin{equation*}
\sigma(x)-x=n \tag{9.10}
\end{equation*}
$$

$$
\text { for all } n \leq N
$$

where $N \in \mathbb{M}$ is given (yielding all owuntouchables $\leq N$). The largest value of N, to which ALANEN applied his algorithm is $N=5000$. We have improved the algorithm, with respect to the required amount of memory, as follows. Let $\sigma(x)-x=: s(x)$. The situation occurs that the values of $a, s(a), a p_{i}^{e}$ and $s\left(a p_{i}^{e}\right)$ are known $\left(a, e \in \mathbb{N}_{1}, p_{i}\right.$ is the $i-$ th prime and $\left.\left(a, p_{i}\right)=1\right)$, whereas the value of $s\left(a p_{i}^{e+1}\right)$ must be computed. In Alanen's procedure this is done by use of the relation

$$
\begin{equation*}
s\left(a p_{i}^{e+1}\right)=s(a) s\left(p_{i}^{e+2}\right)+a s\left(p_{i}^{e+1}\right) \tag{9.11}
\end{equation*}
$$

The values of $s\left(p_{i}^{e+2}\right)$ and $s\left(p_{i}^{e+1}\right)$ are available in an array TABLE, where

$$
\operatorname{TABLE}[i, j]=s\left(p_{i}^{j}\right)=p_{i}^{j-1}+p_{i}^{j-2}+\ldots+p_{i}+1
$$

for $i=1,2, \ldots, \pi(N)$ and $j=2,3, \ldots,\left[\log _{2} N\right]+1$. In our procedure, instead of (9.11), we use the relation

$$
\begin{equation*}
s\left(a p_{i}^{e+1}\right)=p_{i} s\left(a p_{i}^{e}\right)+s(a)+a \tag{9.12}
\end{equation*}
$$

the validity of which may be easily verified. Now we only need to store the primes p_{i}, for $i=1,2, \ldots, \pi(N)$, so that the required amount of memory for (9.12) is of the order of magnitude of $\pi(N)$, instead of $\pi(N) \log _{2} N$ required for (9.11).

With this improvement, we have applied Alanen's algorithm (to $\mathrm{f}=\sigma$) with $N=20000$. With some appropriate modifications, the algorithm could also be adapted for the computation of all solutions of $f(x)-x=n$, for all $n \leq N$, for other $f \in E$. In particular, we have applied the modified algorithm with $N=20000$ to $f=\Psi_{1}, \Psi_{2}, M_{1}, L_{1}$ and $R_{0}\left(=\sigma^{*}\right)$. Results of these computations are collected in tables 9.1, 9.2, 9.3 and 9.4.

Table 9.1 displays (for the functions f above) the number of even and the number of odd f-untouchables ≤ 20000; the number of $n \in \mathbb{N}$ for which $f(n)-n$ is even and $f(n)-n \leq 20000\left(=A_{e}=A_{e}(20000)\right)$; the number of $n \in \mathbb{N}$ for which $f(n)-n$ is odd and $1<f(n)-n<20000\left(=A_{0}=A_{0}(20000)\right.$. Note that, for all $f \in F_{f} f(n)-n=1$, if n is a prime); and, finally, the value of the function

$$
10000\left(1-\frac{1}{10000}\right)^{A} e
$$

TABLE 9.1

f	number of E-untouchables ≤ 20000 even	A_{e}	A_{0}	$10000\left(1-\frac{1}{10000}\right)_{e}$	
σ	2565	$\left.1(5)^{*}\right)$	13434	1454747	2610
Ψ_{1}	2896	0	13854	1457942	2502
Ψ_{2}	2360	$2(5,7)$	13948	1454702	2479
M_{1}	2485	$1(5)$	13891	1454829	2493
L_{1}	2181	$1(7)$	14468	1454994	2353
R_{0}	157	$3(3,5,7)$	47083	1544668	90

[^4]The last column of table 9.1 appears to be a reasonable approximation to the number of even f-untouchables. This may be explained heuristically as follows. When N_{1} balls are randomly distributed among N_{2} (initially void) boxes, it can be shown, that the expected number of void boxes is given by

$$
N_{2}\left(1-\frac{1}{N_{2}}\right)^{N_{1}}
$$

Hence, on the assumption that the even values of $f(n)-n \leq N$ are randomly distributed among the numbers $2,4,6, \ldots, N$ (assume N is even), we may expect the function

$$
\begin{equation*}
\frac{N}{2}\left(1-\frac{2}{N}\right)^{A} e^{(N)} \tag{9.13}
\end{equation*}
$$

Where $A_{e}(N)$ is the number of n for which $f(n)-n$ is even and $f(n)-n \leq N$, to be a reasonable approximation to the number of even f-untouchables $\leq N$. Unfortunately, the value of $A_{e}(N)$ can not be given a priori (the value of A (20000) in table 9.1 is a by-product of Alanen's modified algorithm).

However, we can give an asymptotic upper bound for $\mathbb{A}_{e}(\mathbb{N})$, for any given $f \in \mathcal{F}$. As an illustration, we will carry this out for $f=\sigma$. We recall that $A_{e}(\mathbb{N})$ is the number of $n \in \mathbb{N}^{\prime}$ for which $\sigma(n)-n$ is even and $\sigma(n) \cdots n \leq N$. As in the proof of theorem 9.1, it is readily seen that the even numbers $n \in \mathbb{N}$, which contribute to $A_{e}(\mathbb{N})$, are $\leq 2 N$, and that the number of odd numbers $n \in \mathbb{N}$ which contribute to $A_{e}(N)$ is $O(\mathbb{N})$, for $N \rightarrow \infty$. Hence, we have

$$
A_{e}(\mathbb{N}) \leq N+O(\mathbb{N})
$$

Furthermore, it is known (see for instance [40], pp.197-8, exercise 49.7) that the density of the even σ-abundant numbers is greater than 0.229 , so that asymptotically, for at least $0.229 \mathrm{~N}+O(\mathrm{~N})$ of the even numbers n between N and 2 N , we have

$$
\sigma(n)-n>n>N
$$

Hence,

$$
A_{e}(N) \leq N-0.229 N+O(N)=0.771 N+o(N)
$$

From (9.13) we conclude that (under the assumption of the random distribution of the even values of $\sigma(n)-n$ among the numbers $2,4,6, \ldots, N$) the number of even σ-untouchables $\leq N$ is, asymptotically, greater than

$$
\frac{N}{2}\left(1-\frac{2}{N}\right)^{0.771 N+O(N)} \approx 0.1069 N(1+0(1))
$$

Let $d_{f}(n)$ be the number of solutions x of the equation $f(x)-x=n$. In table 9.2 we give the values of $n \leq 20000$ for which d_{f} is maximal, and the corresponding maximum. We also list the least number k_{0} for which there is no odd number $n \leq 20000$, satisfying $d_{f}(n)=k_{0}$.

TABLE 9.2

f	n (even)	$d_{f}(\mathrm{n})$	n (odd)	$a_{f}(n)$	k_{0}
σ	11194	10	18481	576	406
	17914	10			
Ψ_{1}	16384	9	18481	573	393
	17594	9			
	17914	9			
Ψ_{2}	11194	9	18481	576	374
	17594	9			
	17914	9			
M_{1}	11194	11	18481	576	387
	17914	11			
L_{1}	11194	9	18481	576	374
	17594	9			
	17914	9			
R_{0}	14848	26	18481	588	412

Table 9.3 presents the number of even $n \leq 20000$, for which $d_{f}(n)=k$. for $k=0,1,2, \ldots$.

TABLE 9.3

Number of even $n \leq 20000$, for which $d_{f}(n)=k, k=0,1,2, \ldots$

k	$f=\sigma$	$f=\Psi_{1}$	$f=\Psi_{2}$	$\mathrm{f}=\mathrm{M}_{1}$	$f=L_{1}$	$\mathrm{f}=\mathrm{R}_{0}=\sigma^{*}$
0	2565	2896	2360	2485	2181	157
1	3655	3299	3662	3598	3627	703
2	2370	2053	2407	2400	2584	1342
3	924	1054	1085	971	1081	1621
4	308	405	329	327	333	1639
5	102	167	90	132	120	1379
6	33	71	35	38	40	1042
7	27	37	18	27	17	673
8	8	15	11	10	14	496
9	6	3	3	7	3	325
10	2			3		200
11				2		145
12						82
13						58
14						43
15						27
16						26
17						20
18						12
19						2
20						2
21						3
22						0
23						1
24						1
25						0
26						1

In table 9.4 all σ^{*}-untouchables ≤ 20000 are given, including their canonical factorizations. These numbers are connected with a conjecture of DE POLIGNAC [28] which states that any odd number >1 is of the form $2^{k}+p$, where $k \in \mathbb{N}$, and p is either a prime or the number 1 . Since, if p is odd, $\sigma^{*}\left(2^{k} p\right)-2^{k} p=\left(2^{k}+1\right)(p+1)-2^{k} p=2^{k}+p+1$, the truth of this conjecture would imply that all even numbers >2 are σ^{*}-touchable (except perhaps those even numbers which are of the form $2^{k}+2$). However, ERDÖS [12] and VAN DER CORPUT [8] proved that the density of the odd numbers for which DE POLIGNAC's conjecture is false, is positive.

TABLE 9.4
The σ^{*}-untouchables ≤ 20000

$2(2)$	$6002(2.3001)$	$10254(2.3 .1709)$	$15060(2(2) 3.5 .251)$
$3(3)$	$6174(2.3(2) 7(3))$	$10358(2.5179)$	$15162(2.3 .7 .19(2))$
$4(2(2))$	$6270(2.3 .5 .11 .19)$	$10620(2(2) 3(2) 5.59)$	$15300(2(2) 3(2) 5(2) 17)$
$5(5)$	$6404(2(2) 1601)$	$10754(2.19 .283)$	$15350(2.5(2) 307)$
$7(7)$	$6450(2.3 .5(2) 43)$	$10778(2.17 .317)$	$15374(2.7687)$
$374(2.11 .17)$	$6510(2.3 .5 .7 .31)$	$10782(2.3(2) 599)$	$15402(2.3 .17 .151)$
$702(2.3(3) 13)$	$6758(2.31 .109)$	$11082(2.3 .1847)$	$15958(2.79 .101)$
$758(2.379)$	$6822(2.3(2) 379)$	$11172(2(2) 3.7(2) 19)$	$15998(2.19 .421)$
$998(2.499)$	$6870(2.3 .5 .229)$	$11438(2.7 .19 .43)$	$16014(2.3 .17 .157)$
$1542(2.3 .257)$	$6884(2(2) 1721)$	$11542(2.29 .199)$	$16118(2.8059)$
$1598(2.17 .47)$	$7110(2.3(2) 5.79)$	$11772(2(2) 3(3) 109)$	$16508(2(2) 4127)$
$1778(2.7 .127)$	$7178(2.37 .97)$	$11790(2.3(2) 5.131)$	$16630(2.5 .1663)$
$1808(2(4) 113)$	$7332(2(2) 3.13 .47)$	$11802(2.3 .7 .281)$	$16754(2.8377)$
$1830(2.3 .5 .61)$	$7406(2.7 .23(2))$	$11910(2.3 .5 .397)$	$16770(2.3 .5 .13 .43)$
$1974(2.3 .7 .47)$	$7518(2.3 .7 .179)$	$12234(2.3 .2039)$	$16788(2(2) 3.1399)$
$2378(2.29 .41)$	$7842(2.3 .1307)$	$12252(2(2) 3.1021)$	$17040(2(4) 3.5 .71)$
$2430(2.3(5) 5)$	$7902(2.3(2) 439)$	$12372(2(2) 3.1031)$	$17078(2.8539)$
$2910(2.3 .5 .97)$	$8258(2.4129)$	$12596(2(2) 47.67)$	$17340(2(2) 3.5 .17(2))$
$3164(2(2) 7.113)$	$8400(2(4) 3.5(2) 7)$	$12806(2.19 .337)$	$17438(2.8719)$
$3182(2.37 .43)$	$8622(2.3(2) 479)$	$12878(2.47 .137)$	$17468(2(2) 11.397)$
$3188(2(2) 797)$	$8670(2.3 .5 .17(2))$	$13092(2(2) 3.1091)$	$17490(2.3 .5 .11 .53)$
$3216(2(4) 3.67)$	$8790(2.3 .5 .293)$	$13298(2.61 .109)$	$17558(2.8779)$
$3506(2.1753)$	$8850(2.3 .5(2) 59)$	$13352(2(3) 1669)$	$17580(2(2) 3.5 .293)$
$3540(2(2) 3.5 .59)$	$8862(2.3 .7 .211)$	$13410(2.3(2) 5.149)$	$17652(2(2) 3.1471)$
$3666(2.3 .13 .47)$	$8916(2(2) 3.743)$	$13800(2(3) 3.5(2) 23)$	$17862(2.3 .13 .229)$
$3698(2.43(2))$	$8930(2.5 .19 .47)$	$13902(2.3 .7 .331)$	$17958(2.3 .41 .73)$
$3818(2.23 .83)$	$8982(2.3(2) 499)$	$13962(2.3 .13 .179)$	$18210(2.3 .5 .607)$
$3846(2.3 .641)$	$9116(2(2) 43.53)$	$14022(2.3(2) 19.41)$	$18566(2.9283)$
$3986(2.1993)$	$9518(2.4759)$	$14048(2(5) 439)$	$18608(2(4) 1163)$
$4196(2(2) 1049)$	$9522(2.3(2) 23(2))$	$14052(2(2) 3.1171)$	$18612(2(2) 3(2) 11.47)$
$4230(2.3(2) 5.47)$	$9558(2.3(4) 59)$	$14078(2.7039)$	$18686(2.9343)$
$4574(2.2287)$	$9570(2.3 .5 .11 .29)$	$14108(2(2) 3527)$	$18846(2.3(3) 349)$
$4718(2.7 .337)$	$9582(2.3 .1597)$	$14142(2.3 .2357)$	$18870(2.3 .5 .17 .37)$
$4782(2.3 .797)$	$9642(2.3 .1607)$	$14250(2.3 .5(3) 19)$	$19058(2.13 .733)$
$5126(2.11 .233)$	$9930(2.3 .5 .331)$	$14382(2.3(2) 17.47)$	$19260(2(2) 3(2) 5.107)$
$5324(2(2) 11(3))$	$10002(2.3 .1667)$	$14532(2(2) 3.7 .173)$	$19358(2.9679)$
$5610(2.3 .5 .11 .17) 10022(2.5011)$	$14606(2.67 .109)$	$19362(2.3 .7 .461)$	
$5738(2.19 .151)$	$10062(2.3(2) 13.43)$	$14612(2(2) 13.281)$	$19632(2(4) 3.409)$
$5918(2.11 .269)$	$10200(2(3) 3.5(2) 17)$	$14682(2.3 .2447)$	$19650(2.3 .5(2) 131)$
$5952(2(6) 3.31)$	$10238(2.5119)$	$15038(2.73 .103)$	$19710(2.3(3) 5.73)$

The even numbers >2 in table 9.4 cannot be of the form $2^{k}+p+1$ (for some odd prime p and $\mathrm{k} \in \mathbb{N}$), and, by inspection, we find that 4 is the only number in this table of the form $2^{k}+2$, so that, if we subtract 1 from all even numbers >4 in this table, we have a set of numbers, for which $D E$ POLIGNAC's conjecture is false. For the sake of completeness, we give in table 9.5 the remaining exceptions ≤ 20000.

If $B(N)$ is the number of pairs (k, p) for which $2^{k}+p \leq N$ (where $k \in \mathbb{N}$ and p is 1 or an odd prime), then we have

$$
B(N)=\sum_{k=1}^{\left[\log _{2} N\right]} \pi\left(N-2^{k}\right)
$$

By the same argument used in estimating the number of even f-untouchables, we conclude, under the assumption of the random distribution of the numbers $2^{\mathrm{k}}+\mathrm{p}$ among the odd numbers, that the expected number of exceptions $\leq N$ to the conjecture of DE POLIGNAC is

$$
\frac{N}{2}\left(1-\frac{2}{N}\right) B(N)
$$

Since $B(20000)=28232$, our approximation gives $10000\left(1 \frac{\left.-\frac{1}{10000}\right)^{28232}==.}{}=\right.$ $=594.2$, whereas the actual number of exceptions ≤ 20000 is 590 .

By using the estimate $B(N)<\pi(N) \log _{2} N$, we find for large N that the expected number of exceptions $\leq N$ is

$$
>\frac{N}{2}\left(1-\frac{2}{N}\right) \pi(N) \log _{2} N \approx .0279 N(1+0(1))
$$

TABLE 9.5
The remaining exceptions ≤ 20000 to the conjecture of DE POLIGNAC

127	2579	4855	7379	9371	11285	13285	15071	16865	1863
149	2669	4889	7387	9391	11317	13393	15101	16867	18719
251	2683	5077	7389	9431	11335	13451	15113	16973	18787
331	2789	5099	7393	9457	11347	13469	15119	17021	18817
337	2843	5143	7417	9473	11411	13589	15121	17047	18881
509	2879	5303	7431	9613	11435	13603	15127	17083	18889
599	2983	5405	7535	9787	11533	13619	15149	17089	18895
809	2993	5467	7547	9809	11549	13679	15187	17113	18897
877	2999	5557	7583	9907	11579	13735	15217	17137	18899
905	3029	5617	7603	9941	11593	13841	15223	17147	18911
907	3119	5729	7747	9959	11627	13859	15247	17229	18959
959	3149	5731	7753	10007	11695	13897	15359	17257	18971
977	3239	5755	7783	10027	11729	13973	15419	17269	19007
1019	3299	5761	7799	10079	11743	14009	15521	17305	19093
1087	3341	5771	7807	10121	11857	14023	15551	17327	19117
1199	3343	5923	7811	10235	11921	14039	15607	17369	19135
1207	3353	6021	7813	10327	11993	14081	15641	17371	19139
1211	3431	6065	7867	10379	12007	14101	15701	17411	19163
1243	3433	6073	7913	10391	12131	14143	15719	17429	19177
1259	3637	6119	7961	10409	12191	14227	15779	17519	19273
1271	3643	6161	8023	10447	12203	14231	15787	17593	19319
1477	3739	6193	8031	10451	12223	14279	15809	17669	19345
1529	3779	6247	8087	10483	12239	14303	15853	17735	19379
1549	3877	6283	8107	10511	12373	14347	15869	17759	19483
1589	3967	6433	8111	10513	12401	14375	15943	17767	19583
1619	4001	6463	8141	10553	12427	14383	16025	17773	19807
1649	4013	6521	8159	10607	12431	14407	16027	17827	19819
1657	4063	6535	8287	10697	12479	14437	16031	17849	19889
1719	4151	6539	8363	10873	12517	14459	16109	17887	19949
1759	4153	6547	8387	10949	12671	14467	16165	17909	19961
1783	4271	6637	8411	10963	12727	14473	16177	17921	
1859	4311	6659	8429	11015	12731	14489	16181	17977	
1867	4327	6673	8467	11023	12733	14533	16213	18033	
1927	4503	6731	8527	11039	12749	14585	16361	18089	
1969	4543	6791	8563	11069	12791	14639	16405	18103	
1985	4567	6853	8587	11083	12881	14765	16409	18155	
2171	4589	6941	8719	11105	12929	14809	16499	18209	
2203	4633	7151	8831	11137	12941	14879	16543	18307	
2213	4649	7169	8873	11141	13001	14917	16559	18359	
2231	4663	7199	8887	11207	13083	14921	16601	18391	
2263	4691	7267	8921	11219	13093	14975	16645	18427	
2279	4811	7289	8923	11227	13099	14981	16727	18487	
2293	4813	7297	9101	11231	13147	15013	16739	18517	
2465	4841	7319	9239	11239	13169	15041	16783	18551	
2503	4843	7343	9307	11279	13217	15043	16849	18613	

REFERENCES

[1] J. ALANEN, Empirical study of aliquot sewies, MR 133/72, Mathematisch Centrum, Amsterdam, July 1972. $\{61,66\}^{*}$)
[2] P.T. BATEMAN, The distribution of values of the Euler function, Acta Arith. . 21 (1972) 329-345. \{20\}
[3] W. BORHO, Eine Schranke für befreundete Zahlen mit gegebener Teiler anzahl. Math.Nachr. 63 (1974) 297-301. \{10,11,12\}
[4] W. BORHO, Uber die Fixpunkte der k-fach iterierten Teilersummenfunktion, Mitt.Math.Gesells. Hamburg, 9 (1969) 34-48. \{8\}
[5] A.L. BRown, Multiperfect numbers, Scripta Math., 20 (1954) 103-106. \{42\}
[6] A.L. Brown, Multiperfect numbers, - Cousins of the perfect numbers - No. 1, Recr.Math.Mag., 14 (1964) 31-39. \{42\}
[7] E. CATALAN, Propositions et questions diverses, Bull.Soc.Math. France, $16(1887-8) 128-129 .\{2\}$
[8] J.G. VAN DER CORPUT, On the conjecture of de Polignac, Simon Stevin, 27 (1950) 99-105 (Dutch). \{71\}
[9] J.G. VAN DER CORPUT, Sur Z'hypothèse de Goldbach pour presque tous Les nombres pairs, Acta Arith. 2 (1937) 266-290. \{64\}
[10] L.E. DICKSON, Theorems and tables on the sum of the divisors of a number. Quart.J.Math., 44 (1913) 264-296. \{2\}
[11] R.E. DRESSLER, An elementary proof of a theorem of Erdös on the sum of divisors function, J.Number Theory, 4 (1972) 532-536. \{20\}
[12] P. ERDöS, On integers of the form $2^{k}+p$ and some related problems. Summa Brasiliensis Math. 2 (1950) 113-123. \{71\}
[13] P. ERDÖs, Some remarks on Euler's ϕ function and some related problems. Bull.Amer.Math.Soc., 51 (1945) 540-544. \{20\}
[14] P. ERDÖS, Uber die ZahZen der Form $\sigma(n)-n$ und $n-\phi(n)$, Elem. der Math. . 28 (1973) 83-86. $\{61,62\}$
[15] TH. Estermann, On Goldbach's problem: Proof that almost all even positive integers are sums of two primes, Proc.London Math.Soc. 44 (1938) 307-314. \{64\}

[^5][16] B. FRANQUI, M. GARCIA, Some new multiply perfect numbers, Amer.Math. Monthly, 60 (1953) 459-462. \{42\}
[17] B. FRANQUI, M. GARCIA, 57 new multiply perfect numbers, scripta Math. 20 (1954) 169-171. \{42\}
[18] R.K. GUY, J.L. SELFRIDGE (editors), Combined report on aliquot sequences, Proc. 4th annual Manitoba Conf.Numer.Math., Winnipeg, 1974. $\{3,60\}$
[19] P. HAGIS, JR., A Zower bound for the set of odd perfect numbers, Math. Comp. . 27 (1973) 951-953. \{49\}
[20] P. HAGIS, JR. Every odd perfect number has at least eight prime factors, Notices Amer,Math.Soc. 22 (1975) A-60. \{49\}
[21] P.HAGIS, JR., Unitary amicable numbers, Math. Comp. 25 (1971) 915-918. $\{54\}$
[22] G.H. HARDY, E.M. WRIGHT, An introduction to the The Theory of Numbers, 4th ed., Oxford Univ. Press, New York, 1960. \{27\}
[23] K. KNOPP, Theory and application of infinite semes (transl. from the 2nd German ed. by R.C. Young), London, etc., Blackie, 1928. \{26\}
[24] M. LAL, G. TILLER, T. Summers, Unitayy sociable numbers, Proc. 2nd annual Manitoba Conf.Numer.Math., Winnipeg, 1972, 211-216. $\{9,54,60\}$
[25] E. LANDAU, Handbuch der Lehre von der Verteilung der Primzahlen, Reprinted by Chelsea, 1953. \{28\}
[26] E.J. LEE, J.S. MADACHY, The history and discovery of amicable numbers, J.Recr.Math. , 5 (1972), Part 1: 77-93, Part 2: 153-173, Part 3: 231249. $\{5,54\}$
[27] J. PERROIT, Sur une proposition empirique enoncée au Bulletin. Bull. Soc.Math. France, 17 (1888-9) 155-156. \{2\}
[28] A. DE POLIGNAC, Six propositions arithmologiques dêduites du crible d'Eratosthène, Nouv.Ann.Math. 8 (1849) 130-133. \{71\}
[29] P. PouLer, La chasse cux nombres, Fascicule I, Bruxelles, 1929. \{42\}
[30] H.J.J. TE RIELE, A note on the Catalan-Dickson conjecture, Math.Comp.. 27 (1973) 189-192. \{ 3\}
[31] H.J.J. TE RIELE, Four Zarge amicable pairs, Math.Comp. 28 (1974) 309-312. $\{54\}$
[32] H.J.J. TE RIELE, Further results on unitary aliquot sequences, NW2/73, Mathematisch Centrum, Amsterdam, March 1973. $\{5,54\}$
[33] H.J.J. TE RIELE, Unitary aliquot sequences, MR 139/72, Mathematisch Centrum, Amsterdam, September 1972. $\{7,60\}$
[34] H. RIESEL, Lucasian criteria for the primality of $N=h .2^{n}-1$, Math. Comp.. 23 (1969) 869-875. \{52\}
[35] R. STEUERWALD, Verschörfung einen notwendigen Bedingung für die Existenz einen ungeraden vollkommenen Zahl, S.-B.Math.-Nat.Abt. Bayer. Akad.Wiss.: (1937) 68-72. \{50\}
[36] M.V. Subbarao, L.J. WARren, Unitary perfect numbers, Canad.Math. Bull., 9. (1966) 147-153. \{49\}
[37] N.G. TSCHUDAKOFF, Uber die Dichte der Menge der geraden Zahlen, welche nicht als Summe zweier ungerader Primzahlen darstellbar sind, Izv. Akad.Nauk. SSSR, Ser.Mat. (1938) 25-40 (Russian). \{64\}
[38] B. TUCKERMAN, The 24th Mersenne Prime, Proc.Nat.Acad.Sci. USA, 68 (1971) 2319-2320. \{49\}
[39] C.R. Wall, A new unitary perfect number, Notices Amer.Math.Soc. 16 (1969) 825. \{49\}
[40] C.R. WALL, Selected topics in elementary number theory, Univ.of South Carolina Press, Columbia, S.C., 1974. \{68\}
[41] C.R. WALL, Topics related to the sum of unitary divisors of an integer, Ph.D.Thesis, Univ. of Tennessee, March 1970. \{14.49,54\}

OTHER TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

A leaflet containing an order-form and abstracts of all publications mentioned below is available at the Mathematisch Centrum, Tweede Boerhaavestraat 49. Amsterdam-1005, The Netherlands. Orders should be sent to the same address.

MCT 1 T. VAN DER WALT, Fixed and almost fixed points, 1963. ISBN 906196 0029.

MCT 2 A.R. BLOEMENA, Sampling from a graph, 1964. ISBN 9061960037.
MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model and method, 1964. ISBN 9061960045.
MCT 4 G. DE LEvE, Generalized Markovian decision processes, part II: Probabilistic background, 1964. ISBN 9061960061.
MCT 5 G. DE LEVE, H.C. TIJMS \& P.J. WEEDA, Generalized Markovian decision processes, Applications, 1970. ISBN 9061960517.
MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 9061960061.
MCT 7 W.R. VAN ZWET, Convex transformations of random variables, 1964. ISBN 906196007 x.

MCT 8 J.A. ZONNEVELD, Automatic numerical integration, 1964. ISBN 906196 0088.

MCT 9 P.C. BAAYEN, Universal morphisms, 1964. ISBN 9061960096.
MCT 10 E.M. DE JAGER, Applications of distributions in mathematical physics, 1964. ISBN 906196010 X.

MCT 11 A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964. ISBN 906196 0118.

MCT 12 J.A.TH.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MOKKEN \& A. VAN WIJNGAARDEN, Formal properties of newspaper Dutch, 1965. ISBN 9061960134.

MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of print; replaced by MCT 54 and 67.
MCT 14 H.A. LAUWERIER, Calculus of variations in mathematical physics, 1966. ISBN 9061960207.

MCT 15 R. DOORNBOS̈, Slippage tests, 1966. ISBN 9061960215.
MCT 16 J.W. DE BAKKER, Formal definition of programming languages with an application to the definition of ALGOL 60, 1967. ISBN 906196 0223.

MCT 17 R.P. VAN DE RIET, Formula manipulation in ALGOL 60, part 1. 1968. ISBN 9061960258.

MCT 18 R.P. VAN DE RIET, Formula manipulation in ALGOL 60, part 2. 1968. ISBN 906196038 x.
MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968. ISBN 9061960266.
MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial differential equations, 1968. ISBN 9061960274.

MCT 21 E. WATMTE, The compactness operator in set theory and topology. 1968. ISBN 9061960282.

MCT 22 T.J. DEKKER, ALGOL 60 procedures in numerical algebra, part 1, 1968. ISBN 9061960290.
MCT 23 T.J. DEKKER \& W. HOFFMANN: ALGOL 60 procedures in numerical algebra, part 2, 1968. ISBN 9061960304.
MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 9061960606.
MCT 25 E.R. PAERL, Representations of the Lorentz group and projective geometry, 1969. ISBN 9061960398.
MCT 26 EUROPEAN MEETING 1968, Selected statistical papers, part I, 1968. ISBN 9061960312.
MCT 27 EUROPEAN MEETING 1968, Selected statistical papers, part II, 1969. ISBN 9061960401.
MCT 28 J. COSTERHOFF, Combination of one-sided statistical tests, 1969. ISBN 906196041 x .
MCT 29 J. VERHOEFF, Error detecting decimal codes, 1969. ISBN 9061960428.
MCT 30 H. BRANDT CORSTIUS, Excercises in computational Iinguistics, 1970. ISBN 9061960525.
MCT 31 W. MOLENAAR, Approximations to the Poisson, binomial and hypergeometric distribution functions, 1970. ISBN 9061960533.
MCT 32 I. DE HAAN, On regular variation and its application to the weak convergence of sample extremes, 1970. ISBN 9061960541.
MCT 33 F.W. STEUTEL, Preservation of infinite divisibility under mixing and related topics, 1970. ISBN 9061960614.
MCT 34 I. JUHÁSz, A. VERBEEK \& N.S. KROONENBERG, Cardinal functions in topology, 1971. ISBN 9061960622.
MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 9061960630.
MCT 36 J. GRASMAN, On the birth of boundary Zayers, 1971. ISBN 9061960649.
MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DUIJVESTIJN, E.W. DIJKSTRA, P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN ARETZ, W.L. VAN DER POEL, J.P. SchaAP-KruSEman, M.V. WILKES \& G. ZOUTENDIJK, MC-25 Informatica Symposium, 1971. ISBN 9061960657.
MCT 38 W.A. VERLOREN VAN THEMAAT, Automatic analysis of Dutch compound words, 1971. ISBN 9061960738.

MCT 39 H. BAVINCK, Jacobi series and approximation, 1972. ISBN 9061960746.
MCT 40 H.C. TIJMS, Analysis of (s, S) inventory models, 1972. ISBN 9061960754.
MCT 41 A. VERBEEK, Superextensions of topological spaces, 1972. ISBN 90 61960762.

MCT 42 W. VERVAAT, Success epochs in Bernoulli trials (with applications in number theory), 1972. ISBN 9061960770.
MCT 43 F.H. RUYMGAART. Asymptotic theory of rank tests for independence. 1973. ISBN 9061960819.

MCT 44 H. BART, Meromorphic operator valued functions, 1973. ISBN 9061960827.

MCT 45 A.A. BALKEMA, Monotone transformations and limit lows. 1973. ISBN 9061960835.
MCT 46 R.P. VAN DE RIET, ABC ALGOI, A portable language for formula manipulation systems, part 1: The Zanguage, 1973. ISBN 9061960843.
MCT 47 R.P. VAN DE RIET, ABC ALGOL, A portable language for formula manipulation systems, part 2: The compiler, 1973. ISBN 9061960851.
MCT 48 F.E.J. KRUSEMAN ARETZ, P.J.W. TEN HAgEN \& H.L. OUDSHOORN, An ALGOL 60 compiler in ALGOL 60, Text of the MC-compiler for the EL-X8, 1973. ISBN 906196086 X.
MCT 49 H. KOK, Connected orderable spaces, 1974. ISBN 9061960886.
MCT 50 A. VAN WIJNGAARDEN, B.J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER, M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS \& R.G. FISkER (Eds). Revised report on the algorithmic Zanguage ALGOL 68, 1976. ISBN 906196.0894.

MCT 51 A. HORDIJK, Dynamic programming and Markov potential theory. 1974. ISBN 9061960959.
MCT 52 P.C. BAAYEN (ed.), Topological stmetures, 1974. ISBN 9061960967.
MCT 53 M.J. FABER, Metrizability in generalized ordered spaces, 1974. ISBN 9061960975.
MCT 54 H.A. LAUWERIER, Asymptotic analysis, part 1. 1974. ISBN 9061960983.
MCT: 55 M. HALL JR. \& J.H. VAN LINT (Eds), Combinatorics, part 1: Theory of designs. finite geometry and coding theory. 1974. ISBN 9061960991.
MCT 56 M. HALL JR. \& J.H. VAN LINT (Eds), Combinatorics, part 2: graph theory, foundations, partitions and combinatorial geometry, 1974. ISBN 9061961009.

MCT 57 M. HALL JR. \& J.H. VAN LINT (Eds), Combinatorics, part 3: Combinatorial group theory, 1974. ISBN 9061961017.
MCT 58 W. ALBERS, Asymptotic expansions and the deficiency concept in statistics, 1975. ISBN 9061961025.
MCT 59 J.L. MIJNHEER, Sample path properties of stable processes, 1975. ISBN 9061961076.
MCT 60 F. GÖBEL, Queueing models involving buffers. 1975. ISBN 9061961084.

* MCT 61 P. VAN EMDE BOAS, Abstract resource-bound classes, part 1. ISBN 9061961092.
$\dot{\operatorname{MCT}} 62$ P. VAN EMDE BOAS, Abstract resource-bounả classes, part 2. ISBN 9061961106.
MCT 63 J.W. DE BAKKER (ed.), Foundations of computer science, 1975. ISBN 9061961114.
MCT 64 W.J. DE SCHIPPER, Symmetrics closed categories, 1975. ISBN 906196 1122.

MCT 65 J. DE VRIES, Topological transformation groups 1 A categorical approach. 1975. ISBN 9061961130.
MCT 66 H.G.J. PiJLs, Locally convex algebras in spectral theory and eigenfunction expansions. ISBN 9061961149.

```
* MCT 67 H.A. LAUWERIER, Asymptotic analysis, part 2.
                ISBN 906196119 X.
* MCT 68 P.P.N. DE GROEN, Singularly perturbed differential operators of
                second order. ISBN 9061961203.
* MCT 69 J.K. LENSTRA, Sequencing by enumerative methods.
                                    ISBN 9061961254.
    MCT 70 W.P. DE ROEVER JR., Recursive program schemes: semantics and proof
                        theory, 1976. ISBN 9061961270.
    MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision processes, 1976.
                ISBN 9061961297.
* MCT 72 J.K.M. JANSEN, Simple periodic and nonperiodic Lame functions and
                their applications in the theory of conical waveguides.
                ISBN 9061961300.
* MCT 73 D.M.R. LEIVANT, Absoluteness of intuitionistic Zogic.
                                    ISBN 906196122 x.
    MCT 74 H.J.J. TE RIELE, A theoretical and computational study of general-
                ized aliquot sequences. ISBN 9061961319.
* MCT 75 A.E. BROUWER, Treelike spaces and related connected topological
                spaces. ISBN 9061961327
* MCT 76 M. REM. Associons and the closure statement. ISBN 9061961351.
* MCT 77
* MCT 78 E. de Jonge, A.C.M. van Rooij, Introduction to Riesz spaces, 1977.
                ISBN 9061961335
* MCT 79 M.C.A. VAN ZUIJLEN, Empirical distributions and rankstatistics, 1977.
                ISBN 9061961459.
* MCT 80 P.W. HEMKER, A numerical study of stiff two-point boundary problems,
                                    1977. ISBN 9061961467.
    MCT 81 K.R. APT \& J.W. DE BAKKER (eds), Foundations of computer science II,
                part I, 1976. ISBN 9061961408.
    MCT 82 K.R. APT \& J.W. DE BAKKER (eds), Foundations of computer science II,
        part II, 1976. ISBN 9061961416.
* MCT 83 L.S. VAN BENTEM JUTTING. Checking Landau's "Gmundlagen" in the
                automath system, 1977. ISBN 9061961475.
MCT 84 H.L.I. Busard, The translation of the elements of Euclid from the
                Arabic into Latin by Hermani of Carinthia books vii-xii, 1977.
                ISBN 90.61961483
```

An asterik before the number means "to appear".

[^0]: Before proving this lemma we give an example.

[^1]: *) Recently, this bound has been replaced by 10^{100}. See M. BuXTON \& B. STUFFLEFIELD, On odd perfect numbers, Notices Amer.Math. Soc.

 22 (1975) A-543.

[^2]: *) with the following exception: if $p=3.2^{k+1}-1\left(k \in \mathbb{N}_{0}\right)$ is a prime, then $2^{k+2} 3 . p$ is an R_{k}-perfect. A table of all $k^{\varepsilon} s \leq 1000$ for which p is prime may be found in $[34]$.

[^3]: *) E.J. SCOURFIELD, Non-divisibility of some multiplicative functions, Acta Arithmetica, $22(1973)$ 287-314.

[^4]: *) The odd f-untouchables are given in parentheses.

[^5]: *) Numbers in curly brackets refer to the page(s) in this thesis where the reference occurs.

