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PREFACE 

The present treatise is a corrected version of the author's Ph.D. dis

sertation, written at the University of Amsterdam in 1974/75 under the 

direction of Professor A.S. Troelstra. My research, as well as the produc

tion of the dissertation, were generously supported by the Mathematical 

Center, and as is customary for such dissertations, it now appears as a 

Mathematical Centre Tract. 

The text that follows is divided into two parts. Part A deals with 

theories whose arithmetical fragment is part of IA* := Heyting's arithmetic 

IA extended with transfinite induction over all recursive well-orderings. 

Such theories (as well as some others closely related to them) are named 

"regular". It is shown that fairly strong intuitionistic theories, and -

in particular - the intuitionistic impredicative theory of types, are 

regular. 

In part B we treat maximality (or "absoluteness") properties of in

tuitionistic (Heyting's) propositional and predicate logic IL0 and IL1 for 

regular theories. Here, Lis said to be ma:dmal, (or "absolute") for T if 

for some arithmetical relations Ai of the same arity as Pi (i=l, ••• ,k). The 

maximality is W'!ifor'/71 if the Ai's are independent of F. We are also inter

ested in having the substituted relations Ai as low as possible in the 

arithmetical hierarchy. 

Refined versions of the results of part A are incorporated in LEIVANT 

[AJ, while the theorems of part B together with several other maximality 

results are proven in LEIVANT [BJ. Nevertheless, the present exposition 

might still be useful to the interested reader. In contrast to the afore

mentioned papers, we use here natural deduction systems, and the proofs, 

especially in part B, illustrate the convenience of using natural deduction 

to straightforwardly formalize one's intuitive ideas. The sections in part 

B motivating the proofs are particularly relevant here. The sequential cal

culi used in our [AJ and [BJ allow more succinct presentations, but at the 

cost of concealing to some extent the motivating ideas. Also, our exposi

tion here is more leisurely, so that, in conjunction with the use made of 

natural deduction, the effect is to reduce the effort required from the 

reader. 
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To do justice to the reader, we should place the maximality results 

proven here amongst other similar results. 

Since we prove "absoluteness" of IL, the interest in treating proposi

tional logic IL0 lies only in reducing the complexity of the substituted 

sentences (O-ary relations). D.H.J. de JONGH and C.SMORYNSKI [73J have 

proved that there exist uniform arithmetical substitutions, and also -

locally - r~ substitutions for IL0 and T =IA.Theorem I of part B below 

improves this by making the r~ substitutions depend only on the number of 

propositional letters in the schema F. However, by a uniformization lemma 

proved in LEIVANT [BJ §1.2, already the local r~-absoluteness implies com

pletely uniform absoluteness with r~ substitutions. From this, using meta

mathematical properties of IL0 , one easily derives uniform absoluteness 

also with (binary) disjunctions of TT~ sentences as substitutions (idem, 

§1.6). Similar statements are also true when IA is replaced by any regular 

T, and also for T extended with either Church's Thesis CT0 or the Indepen

dence-of-Premiss Principle IP0 (cf. TROELSTRA [73J for their statement). 

When Markov's Principle Mis added, r~ absoluteness fails (since 

rIA+M ,,A+A for any r~ sentence A), but IL0 is uniformly r~ absolute for 

T + IP0 + M (cf. idem). 

Turning to Intuitionistic Predicate Logic IL 1, we should start by men

tioning a proof of DEJONGH [73J of a relativized version of absoluteness. 

Theorem II of part B below states the uniform TT~ absoluteness of IL1 for 

any regular theory T. IL 1 is also uniformly r~ absoluteness for such T 
0 (LEIVANT [BJ §2.4) but not even locally r 1 absolute for IA (LEIVANT [76J; 

this was also proved in §B.6 of the original version of the dissertation). 

Nevertheless, r~-absoluteness does hold for certain fragments of IL 1 

(LEIVANT [BJ thm.2.VII). 

All theories mentioned above, for which IL 1 is proved absolute, are 

r.e., and the "regular" ones are in IA*. Allowing for more complex substitu

tions, one obtains in one stroke maximality of IL 1, for all regular theo

ries, with the substitutions independent also of the theory; namely - one 

proves the uniform maximality of IL 1 for IA* (LEIVANT [BJ thm.2.VIII). The 

complexity of the substitutions may be somewhat reduced for IL0 • 

For logic with equality, we have the TT~ (and r~) uniform absoluteness, 

for regular theories, of IL 1 extended with the following axioms: 

VxVy(x=y v ,x=y) 

3x 13x2 .•• 3xn[ '!". 
O<i<JSn 

(idem §2.6). 

,x.=x.J 
l. J 

n 2, 3, ••• 



As noted in section 2 of the introduction below, there is no straight

forward connection between classical and intuitionistic absoluteness. For 

Classical Predicate Logic CL 1, local~~ absoluteness (for sound arithmetic 

theories) is an immediate consequence of the refinement obtained by HILBERT 

and BERNAYS [39] to Godel's Completeness Theorem. The uniformization tech

nique of LEIVANT [BJ mentioned above may be applied here, to yield uniform 

L~ (and TT~) absoluteness of CL 1 (idem, thm.211). 





INTRODUCTION 

(For unexplained terminology see the preliminary section P below.) 

Int. I. The concept of absoluteness and the main results 

Our central aim i~ this treatise is to prove that the formal systems 

of intuitionistic propositional and_ predicate logics (L0 and L1 resp.) are 

"schematically complete" for intuitionistic (Heyting's) arithmetic A, as 

well as for certain extensions of A. Let us first describe these results 

as cases of a general type of problems. 

Let L be a system of logic, and let M be a system of mathematics based 

on the language of L; i.e., the language of M contains all the logical con

stants of the language of Las well as constants or definable objects for 

each type of parameter of ·that language. (Examples: (I) Lis first order 

predicate logic and Mis ZF set theory; (2) Lis second order logic and M 

is second order arithmetic; (3) Lis first order logic without first-order 

parameters (but with first-order "bound" variables, of course), and Mis 

second order logic.) 

Let C be a class of defined constants in the language of M. A schema 

Fin the language of Lis C-absoZute for M if for each instance F* of F 

which comes from F by substituting constants of C for parameters of the 

corresponding type, 

(I) 

Lis said to be C-absoZute for M if 

(2) L {FI Fis C-absolute for M }, 

i.e., if 

(3) 

(Several other alternatives have been proposed to name the above property 

of L: "L is maximal (schematically complete, saturated) w.r.t. M", and 

"Mis faithful to L".) 

When Mis based on L, the implication from left to right in (3) is 
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trivial, the interesting part being of course the converse direction. This 

has been occasionally expressed in a contrapositive-like form: 

(4) 

In our treatment below we prove cases of (4), which is intuitionistically 

independent of (3). Assuming however Markov's principle for prim. rec. 

predicates, 

773x A(x) ➔ 3x A(x) (A arithmetical, quantifier free), 

(4) clearly implies (3) (by contraposition). 

Actually the results proved below give the instance F* of F for (4) 

constructively, independently of the premiss, and quite uniformly. Namely, 

for a large class of "regular" theories T, which includes A (cf. A.I): 

THEOREM I, Given a regular theory T, L0 is L~-absolute for T. For any given 

schema F of L0 the substitutions depend only on the number of propositional 

variables in F. 

0 
THEOREM II, For T as above, L1 is n2-absolute for T, with substitutions 

which depend on T only. 

These theorems are stated in more detail in B.O below. 

D,H.J. de Jongh had proved already in 1969 the absoluteness of L0 for 

intuitionistic arithmetic A (and extensions A~ of A with transfinite induc

tion over some prim. rec, well ordering~). SMORYNSKI [72] shows that 

the meta-substitutions may be taken to be L~ (though depending on each 

schema), and H. FRIEDMAN [73] proves that by allowing the meta

substitutions to be TT~ one gets uniform absoluteness. This last result is 

a corollary of our theorem II. 

All the results just mentioned were obtained by classical methods. 

Uniform absoluteness is however formalized as a TT~ statement, since it has 

roughly the form 

where PrL and Pr1 are prim. rec. proof predicates for Land T resp., and 
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0 where f is a fixed prim. rec. function. For n2 sentences, however, prov-

ability in classical arithmetic implies provability in intuitionistic arith

metic (cf. TROELSTRA [73]). 

So the main novelty of theorem I is the "locally-uniform" r.~ substitu

tion. We nevertheless present this result in some detail, for two reasons. 

Firstly, it may be used as an expository introduction to the proof of 

theorem II; secondly, the method employed might turn out to be helpful in 

solving a number of other problems ·concerning the relation between L0 and 

A. 
As to predicate logic, de Jongh has proved (unpublished) the (local) 

absoluteness of L1 for A, but where i.n each formula all quantifiers are 

restricted to a fixed unary predicate. This restriction allows a model 

theoretic treatment using Kripke models with a constant universe, and a 

special notion of "forced realizability" which utilizes results from the 

theory of Turing degrees. 

Int. 2. Absoluteness in relation with some well-known results 

For classical first order logic L~ absoluteness is an immediate corol

lary of HILBERT-BERNAYS [39]'s proof of Godel's completeness theorem, where 

one has: 

(5) 1-f C F • there is a L'i~ instance F* of F s. t. ,F*. 
LI 

Hence, if I-fly F and 1-M F* then M is not (classically) sound for A~ sen

tences, and thus L~ is A~-absolute for any theory M (in a language which 

extends the language of Peano's arithmetic) which is sound for A~ sentences. 

L~, but even for classical sim-The same situation occurs not only for 
C ple type theory L00 • 

It seems here the right place to note that absoluteness results for 

classical systems arehardly related to absoluteness of (the corresponding) 

intuitionistic systems. Given (4) for classical Le, Mc, nothing is said 

even about the propositional rule of excluded third, p v ~p (which is in

tuitionistically invalid and unprovable). Conversely, if (4) is given for 
' ' ' ' ' LI d MI h LL F d ' 1 . 1 intuitionistic systems an , ten fT I oes not necessari y imp y 

C M I 1-fMc F for the classical completion M of M Hence the easy proof of 

absoluteness for L~ is of no help in solving the problem for L1, while the 

uniform result for L1 does not imply the uniform TT~ absoluteness of L~. 



4 

Another blind alley is to try to imitate the method of the proof of 

(5) in the treatment of the intuitionistic case. Of course, there is a com

pleteness result for L1 relative to Kripke's semantics which is analogous 

to (5), i.e.: 

(6) [-f L F => 
I 

0 there is a ~ 2 Kripke model Kin which Fis not valid 

(cf. e.g. THOMASON [68]). Here, however, K is not necessarily a Kripke model 

for any numerical instrance F* of F since the models standing at each node are 

not necessarily models of arithmetic. Therefore every use of Kripke's seman

tics must refer here directly to Kripke's models for arithmetic, as done in 

de Jongh's and Smorynski's proofs mentioned above, but this is a totally 

different method. 

Let us finally compare absoluteness with a conservative e~tension re

sult. Let A denote arithmetic A with predicate variables and with an axiom 

schema of arithmetical comprehension: 

ACA 3X Vx [ Ax +-+ Xx J 

(A in the language of A). Then A is a conservative extension of A (cf. 

TROELSTRA [73] 1.9.8), and L1 is trivially contained in A. A is also con

servative over L1 (compare MAEHARA [58] thm.I), i.e., 

for any schema A[P 1, ••• ,Pn] of L1• Absoluteness of L1 for A reads on the 

other hand 

for every B1, ••. ,Bn in the language of A! Notice that the absoluteness of 

L1 for A implies the absoluteness of L1 for A; this can be easily derived 

from the fact that A is conservative over A. 

Int. 3. Infinitary derivations and the subformula property. 

The central method of proof used below in establishing absoluteness of 

L0 and L1 is an analysis of infinitary derivations, i.e. (roughly), of 
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derivations with the "w-rule". 

SCHUTTE [51] seems to have been the first one to notice the usefulness 

of systems of infinitary derivations for the metamathematical study of 

arithmetic. He was chiefly interested in extending to arithmetic one of the 

main advantages of Gentzen's systems for logic, namely - their subformula 

property. We say that a proof-figure 7T satisfies the subformula property 

if every formula which occurs in 7T is a subformula of the formula derived 

by 7T. A calculus a: of proof-figures satisfies the subformula property if 

the subsystem a:0 of~ containing only those proof-figures of a: which satisfy 

the subformula property is complete for a:, i.e., if for every proof-figure 

7T of a: deriving a formula (or a sequent) a there is a proof 7TO oft which 

derives o and satisfies the subformula property. Gentzen proved that his 

sequential systems for first order classical and intuitionistic logic satis

fy the subforinula property (by "cut elimination"; cf. GENTZEN [35]), and 

PRAWITZ [65] proved that the same holds for GENTZEN's [35] system of natural 

deduction (by "normalization"). 

Although cut elimination and normalization for the corresponding calculi 

for arithmetic can also be carried out with some important metamathematical 

consequences (such as consistency and the "existential definability" proper

ty), the subformula property for these calculi is not implied, 

Call a calculus a: of proof-figures for arithmetic good, if there is a 

predicate Inf(x,y) such that the following hold, for each sequence of for

mulas F1, ••• ,Fk,G (k ~ O). 

(I) If FJ ••• Fk is an instance of an inference rule of a:, then 
G 

ra: Inf(.( 'Fi', ••• , rFk,), rG 1 ), 

(2) f-a: Inf((rFj' , ••• ,rFk.,), rG 1 ) +. Fl & ••• & Fk + G. 

Thus, e.g., if a: generates HA and has all sentences of HA as axioms, a: is 

not good. But all standard calculi for arithmetic are good. 

THEOREM. Ifanr.e.goodaaZculus a:offinatary proof figuresisaomplete for 

Heyting's arithmetia A and satisfies the elementary derivability aonditions 

(af. TNI below, or e.g. SMORYNSKI [75]) then a: proves that t does not 

satisfy the subformula property. 

~-Leta: be a calculus as above; the subformula property of a: is 

formally expressible as an arithmetical (actually a TT~) sentence,~ say. 

Since the proof figures oft are finite, we can prove in A by induction on 

the length of proof figures that~ implies the local reflection principle 

for a:; i.e., 
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(7) 

for each specific arithmetical F (cf. TNI). Taking in (7) in particular 

F := 7Sp~ we get (since~ is complete for A) 

and so by propositional logic 

But this implies by the theorem of LOB [55] 

since~ is assumed to satisfy the elementary derivability conditions. QED. 

Schiitte's idea was to restore the subformula property for the systems 

of arithmetic by giving up the finiteness condition. The reason that cut

elimination for arithmetic does not imply the subformula property is the 

presence of the induction rule; hence this rule, which for a natural deduc

tion system may be given by 

r 
A(O) 

[A(a)J 

ll(a) 

A(a+I) 
VxA(x) 

(using the notations of GENTZEN [35], PRAWITZ [65]), is replaced by an in

stance of an infinitary V-introduction rule (w-rule): 

r 
A(O) 

r ll(O) 

A(O) A(I) 

r ll(o) LI(!) 

A(O) A(!) A(Z) 

VxA(x) 

(compare PRAWITZ [71]). Obviously, this infinitary V-introduction rule may 



take over the role of the finitary VI, Similarly the [3E] inference rule 

r 
3xA(x) 

[A(a)J 

ti(a) 

B 

B 

may be replaced by a corresponding infinitary rule 

r 
3xA(x) 

[A(O)J 

ti(O) 

B 

[A()) J 

ti()) 

B 

B 

By iterating these translations each finitary derivation ti is mapped into 

a well-founded infinitary derivation ti00 having the same derived formula and 

the same open assumptions as ti, (For a formal definition of the infinitary 

derivations see A.I). 

7 

The mapping above may be described as one which replaces (hereditarily) 

each expression (i.e., formula or derivation) e:(p) which "depends" on a 
~ 

list p of parameters, and where the parameters range irrrpZicitZy over the 

natural numbers, by an ex-pZicit enumeration {e:(;)}~ of the closed expressions 
~~ n 

which correspond to a substitution [n/p] of numerals for those parameters. 

For the system of infinitary proof figures obtained in this manner, a 

normalization theorem can be proved (cf. e.g. A.3 below), and in this case 

the subformula property does follow. The method leads also to a number of 

interesting applications (cf. e.g.; KREISEL-LEVY [68] remark on p,126, 

PARIKH [73], PARSONS [60], LEIVANT [A]). The general pattern of these ap

plications consists in embedding the (finitary) formal system to be inves

tigated into a ("semi-formal") system of infinitary proof figures, which. 

then allows a smoother proof theoretic analysis. 

It is precisely this method which is used in the proof of absoluteness 

in part B below. We treat those theories whose arithmetical fragment can be 

embedded as above in a system of infinitary proofs of arithmetic. These 

proofs are subsequently transformed ("normalized") to ones which satisfy a 

number of structural properties, the most important of which is the sub

formula property described above, 
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Int. 4. Provably correct derivations; regular theories 

An infinitary derivation of the kind described in Int. 3 may be viewed 

formally as an assignment of sequents (or their Godel codes) to certain 

nodes of the universal spread; the assignment may be made total by attach

ing Oto the rest of the nodes (A.I.I below). But while for a calculus t 

of finitary proof figures (based on an r.e. set of inference rules) we may 

formally define a prim. rec. proof predicate Prft(p,rF 7 ), this obviously 

cannot be done for the arithmetization of infinitary proofs. If Prf00 (~,rF') 

should be a formal proof predicate for the proofs described in Int. 3 above, 

then we should have (in elementary analysis V0 plus A~00 as defined in sec

tion P below) 

(8) F 

for every prenex arithmetical F (compare A.2.2,1). So the system of infini

tary proof figures is classically complete, and Prf00 cannot even be arith

metical. 

The completeness of the infinitary systems for classical truth expressed 

by (8) illustrates the potential generality of the analysis of infinitary 

proof figures as a technique in meta-arithmetic: whatever classically sound 

theory Tis given, an embedding of its arithmetical fragment into infinitary 

proofs is guaranteed. On the other hand one may wish to utilize the recur

sive enumerability of the embedded theory T, as we do in part B below, and 

so one has to restrict the class of infinitary derivations into which Tis 

embedded. There are several simple methods for doing this, all having more 

or less equal merits. We find it particularly convenient to restrict the 

image of the embedding by requiring that each infinitary proof figure in 

it is proved to be a correct proof in a given (r.e.) theory T1 (in a langu

age extending the language of analysis V0 ). I.e., one considers the deriva

tions which are shown in T1 to be well-founded and to respect the inference 

rules. An enumeration of these derivations can easily be extracted from an 

enumeration of T1, and so the class of infinitary derivations considered is 

r.e. in T1. 

To sum up, we wish to exploit two properties of a given theory T: 

firstly, that the arithmetic fragment A[T] of T, i.e., the arithmetic sen

tences provable in T, is r.e.; and secondly, that A[T] can be investigated 

through an analysis of the structure of infinitary derivations. Both con

ditions- are indeed satisfied if 
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(9) A[TJ .s A°0 [T I J 

for some r.e. T1, where A00[T1Jis (roughly, cf. A.1.2) the system of infini

tary derivations proved in T1 to be correct and normal, and where the inclu

sion refers to the derived sentences. When this is the case, we say that T 

is reguZa:P (A.1.2). For the proof of theorem II in B.4 below, the infinitary 

derivations examined have to be recursive, so for that proof (9) is strength

ened to 

A[T] £ 

where A00 [T1J are (roughly) the recursive derivations of A00[T 1J. When T rec 
satisfies (IO) (and another minor condition, cf, A,1,2) we say that Tis 

strongly reguZa:P. 

Our feeling now is that regularity (as well as strong regularity) are 

conditions which are quite general and natural, There are a number of argu

ments supporting this feeling. 

[a] By (8) above we have for any theory T ~ Y0 + At00 

( 11) 

where A [TJ is the fragment of prenex formulae of A[TJ. As A [T] is classi-
p p 

cally complete for A[TJ, (II) implies that any classical r.e. theory T sat-

isfies 

(where the first inclusion is trivial) and so any such T which is consis

tent with YO + A<oo is regular. 

[b] Obviously, regularity and strong regularity are preserved under restric

tion, It is therefore quite satisfactory to know that some strong theory, 

in which a large part of current intuitionistic mathematics can be formal

ized, is (strongly) regular. We indeed show in A.4 below that intuitionis

tic type theory Lw is strongly regular. 

[c] If Tis (strongly) regular and sound, then so is T extended with any 

schema of transfinite induction over some prim.rec, well-ordering (cf, 

A.2.4 for a precise statement, a proof and a discussion of its significance). 



[d] The class of regular theor±es is closed under the operation of adding 

self-consistency (A.2.2.4), and so this class is closed under transfinite 

progressions along L~ paths in Kleene's 0. 

Int. 5. The method of proof 

The proofs of theorems I and II are both composed of two parts. 

(i) A reduction of the problem, using proof-theoretic methods. For theorem 

I we show, roughly, that given a regular theory T and a schema F of L0 , if 

F* is a LO meta-substitution of F then 
I 

(I 3) I+ F 
Lo 

and 

where U is a specific schema and where u* comes from U by the same meta-

substitution (B.2,0). The proof theoretic reduction of theorem II is simi

lar, with L1 in place of L0, with T strongly regular and with IT~ meta-sub

stitutions. In the proof of theorem I the schema U is fixed for all schemata 

with a certain bound on the number of propositional letters used, while in 

the proof of theorem II U is fixed altogether. 

(ii) A solution of the reduced problem. We find instances u* of the corre

sponding u and of the kind required, for which lru* is impossible. 

Step (ii) uses the recursive enumerability of T, and is (in both proofs) 

a generalization of Godel,'s first incompleteness theorem (B. I ,B.5). On the 

other hand the proof of step (i) in each case utilizes the embedding of 

A[T] in the set of normal infinitary derivations. (Here we define "normal

ity" in a somewhat broader sense which renders the arguments a bit simpler). 

The idea of the proof-theoretic reduction is the following. Let T = 
A00[T 1J. Then (13) is a consequence of the provability in T1 of 

(14) ( l+r_ F ) 
0 

& 
oo r *1 Prf (cf,, F ) ➔ 

oo r *, 
3\jJ Prf (l/J, U ). 

Assuming the premiss of (14), one analyses the structure of cf, and, using 

l+i_ F, shows how to "extract" a derivation ljJ (for u*) from cf,. 
0 

The precise nature of this "extraction" will be clear from the heuris-

tic discussions (B.2.1, B.4.2) and from the technical details of the proofs 

(B.2.2-6, B.4.3-11). There is however a difference between the proofs of the 

two theorems which should be noted outright. In contrast to L0 , L1 is not 
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decidable, and as a consequence one has to weaken the proof-theoretic reduc

tion of theorem II to 

( l-lz. F ) 
I 

& 
co r *, Prf (d, F ) 

--rec 

where Prf00 is the proof predicate for recursive infinitary derivations. 
--rec 

Compared to (14), the premiss here is strengthened and the conclusion is 

weakened, Furthermore, (15) is not proved in the r.e, theory T 1, but in a 
0 certain L2-enumerated extension of it (cf. B.3). 

Int. 6. Normalization of infinitary derivations; regularity of the theory 

of types 

In Int. 3 above we have quoted Schutte's result stating that every in

finitary derivation (of arithmetic) can be brought into a "normal" ("cut 

free") form which satisfies the subformula property; this in turn is used 

in our proof of absoluteness as indicated in Int. 5 (the additional struc

tural requirements we are using are inessential to the proof of normaliza

tion). The traditional proofs of normalization of infinitary derivations 

(SCHUTTE [51][60], FEFERMAN [68], TAIT [68], MARTIN-LOF [68]) all use ordi

nal assignments, following GENTZEN's [36][38] consistency proofs. This evolu

tion is quite evident: ordinals can be assigned to well-founded infinitary 

trees in a natural way, so extending Gentzen's idea was the first thing 

which came to mind while passing from finite to infinitary proof figures. 

In part A below we present however a new proof of normalization which 

does not use the technique of ordinal assignments. We do so simply topermit 

a certain generalization which will be explained below, and for which the 

technique of ordinal assignment is not so adequate, 

Cut elimination for (a sequential calculus for) the classical theory 

of types L~ is known since TAKAHASHI [67] (for the theory of species L2 
proofs were discovered independently also by PRAWITZ [68] and TAIT [66]). 

From the work of GIRARD [71 ][72] (as expounded in detail in MARTIN-LOF [73]) 

we also know an effective procedure which transforms each proof of L into 
w 

a normal one; and like for Gentzen's systems for first order logic L1, we 

get for Lw (and ipso facto for L2) normal proofs which do satisfy the sub

formula property. However, when a normal proof TT of L2 proves a formula F 

in which a second order quantifier occurs, then the subformula property of 

TT is of limited interest: suppose e.g. that 3X G[X] is a subformula of F, 



12 

then so is G[H] for every formula H including e.g. F itself. This is an 

evident drawback if one refers to the interpretation of arithmetic in L2, 

as given by PRAWITZ [65], since under this interpretation first order sen

tences of arithmetic are always mapped to second order formulae. 

Consequently, a system of type theory which does satisfy the subformu

la property for arithmetical sentences must be built up firstly by extending 

the language to include the language of arithmetic, and secondly by expand

ing the first order parametric expressions into explicit infinitary proof 

figures (as in Int. 3 for first order arithmetic). I.e., a system L: is 

adopted for the union of the languages of A and of Lw, whose inference rules 

are those of the infinitary system for arithmetic, plus the rules of Lw for 

higher order quantification. 

We are now ready to justify our abandoning the technique of ordinal 

assignment. We wish to prove a normalization theorem for L:, because then 

we may conclude that Lw is regular: Lw is embedded in L: in an obvious man

ner, and every normal derivation in Lw of an arithmetical sentence must ac

tually be a purely arithmetical derivation, because it must satisfy the sub

formula property. So, if Tis a theory in which these facts are provable, 

then 

A[L J 
w 5.: 

(cf, A.4.9), and so Lw is regular. 

It is easily seen however (cf. TN 3) that if the normalization theorem 

for L00 was to be proved by assigning an ordinal notation to each proof fig-w -
ure, then notations should be available for all "provable ordinals" of Lw. 
Such notations are unfortunately not known at present. 

There remains the possibility of assigning ordinals (in place of ordin

al notations) to the proof figures, as done e.g. by SCARPELLINI [71] p.156; 

the proof of normalization is then carried out in some formal set theory (ZF 

say). But then it seems unrealistic to expect either an optimal result, or 

a proof within Lw of a normalization theorem for the systems obtained by re

stricting L00 to languages with a bound on formula-complexity. The method 
w 

described in part A below does have, on the other hand, the properties just 

mentioned, in analogy to the well-known normalization proofs for arithmetic. 

In proving the normalization theorem for L00 (A.4) we combine the ideas 
w 

of PRAWITZ's [71] "validity" argument, the work of GIRARD [71][72] and the 

"geometrical" treatment of infinitary proof figures of LEIVANT [A]. For 

another application of the normalization theorem for L00 see TN 4. 
w 



TECHNICAL NOTES TO THE INTRODUCTION 

TN I. The elementary derivability conditions for an r.e. system T and a 

provability predicate PrT for it are 

DI. I ,.. , 
-· Pr ( F ) T-T 

D2. I ,.. -, 
T PrT( F) ( ,.. (' 7 7) + PrT PrT F) 

D3. 

The local reflection principle is proved in IC by a straightforward 

induction on the length of derivations as follows. Each inference step of 

IC is of the form 

< CTi > i<n 
T 

[p] 

where a.(i<n), Tare formulae or sequents whose validity is equivalent to 
l. 

certain sentences Fi(i<n), G (resp.). Assume now that a proof figure 6 of 

IC is given, with 

r. 
l. < CTi >. 

6 
1.<n 

- T 
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6 is finite, and so there is a (restricted) truth definition Tr in A which 

applies to all formulae occurring 

ind. hyp. we have Tr(rF. 7 ) (i<n), 
- l. 

in 6 (cf. e.g. TROELSTRA [73] 1.5.4). By 

and since M F. -+ G is simply a rule of 
l. l. 

IC, we thus get Tr(,..G7 ). 

The predicate Tr above depends on 6, but if 6 is known to satisfy the 

subformula property, then Tr depends only on the derived formula of 6. So 

we actually have, in A (and hence in IC) 

( I ) 3p [ PrflC(p,rF7 ) & "p satisfies the subformula property" J + 

+ Tr(rF-,) 

for each sentence F. But 

~ ·= 3p Prfa;(p,rF') + 3p [ Prfa;(p,rF7 ) & "p satisfies the 

subformula property"], 
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so (I) implies 

for each sentence F. 

TN 2. KREISEL [65] proves that no r.e. system~ of finitary proof figures 

built up from derived rules of A and which is complete for A can be proved 

in A to satisfy the subformula property. Our statement is stronger since 

the subformula property is simply false (not only unprovable) provided~ 
0 is sound for I 2 sentences (i.e., for ,Sp). 

-a: 
The reference to the reflection principle made in Kreisel's proof men-

tioned above is redundant, since the result quoted is obvious already from 

Godel's second incompleteness theorem: one proves trivially in A that no 

derivation of O = T may satisfy the subformula property, and so if 

then~ proves its own consistency. 

TN 3. Suppose that we can prove in Lw for a certain prim, rec. well-order

ing --< 

TI-< • = Vx [ Vy.<x P(y) -->- P(x) ] -->- Vx p(x) 

where Pis a predicate-parameter. We then have (trivially) a proof {d~} of 

(" for Tr4. 
w,rec 

Suppose that {d~} is normalized into {d~}; an anlysis of {d;} 

using the subformula property, shows that {d;} must have a specific struc-, 
ture for which the Brouwer-Kleene well-ordering< associated with {d~} is 

equivalent (in Y0) to,< itself (i.e., Tr< and Tr-<• are equivalent in Y0 for 

each predicate Pin the language of Y0). Taking various-< we find that the 

ordinal of {~} may be any "provable ordinal" of Lw, i.e., any ordinal over 

which t.i. is provable in Lw. 

TN 4. A memo of G. Kreisel from 1973 proposes another application of the 

normalization of L00
• Kreisel's aim there is to answer a question of 

w 
M.J. Beeson about a possible intuitionistic analogue to the KREISEL-

SHOENFIED-WANG [60] completeness result (which reads: Peano's arithmetic 
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extended with transfinite induction over all prim. rec. well-orderings is 

complete for classically true sentences). As a partial answer to that ques

tion, Kreisel's memo sketches a possible proof that Heyting's arithmetic A 

extended with t.i. over all prim. rec. well-orderings is complete at least 

for A[L2J (i.e., the arithmetical fragment of the theory of species). A 
00 00 

system similar to L2 (:= the recursive derivations in L2) is presented, 
,rec 

and it is assumed that the normalization of that system can be proved. But 

if {d} is a normal proof of L00

2 which derives an arithmetical sentence F, ,rec 
then {d} is actually a proof of A00 by the subformula property. By t.i. rec 
over the Brouwer-Kleene well-ordering corresponding to {d}, and using a re-

stricted truth definition for the subformula of F one gets that Fis true. 

The missing normalization step is proved in A.4 below. The proof re

mains however incomplete, since one uses not only t.i. over the proof tree 

{d}, but also the fact that {d} describes a correct derivation; this last 

assumption is a IT~ sentence which is not necessarily provable in A. However, 

this hiatus may be filled up as follows. 

Given a quantifier free unary predicate E, define 

x < y & Vz~y E(z) 

v y < x & 3z~y ,E(z) 

-<'Eis of course prim. rec., and if Vx E(x) then-<'E is simply<, and so it 

is certainly well founded. Let 

where 

ZES ·= z is an element of the finite set of natural numbers en

coded bys (via the binary encodement say). 

It is easily seen that, in A, 

E 
Vy"'):x A (y) 

and so by t.i. over.c(E 
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(I) 
E 

\/x A (x). 

But in A one proves outright 

(2) 

Since Eis decidable, we get from (I) and (2) 

\/x E(x). 

So, if \/x E(x) is true, then~ is well-founded and \/x E(x) is provable by 

t.i. over<E. This completes now Kreisel's sketch: given a derivation TT of 

Lw which proves an arithmetical sentence F, one maps trivially TT into an in-

finitary derivation {d} of L00 for F. By the normalization theorem of 
w,rec 

A.4 below, dis mapped into a_normaZ derivation {e} of L00 for F which 
w,rec 

is, by the subformula property, a purely arithmetical derivation. Now one 

looks at A extended with t. i. over -<E and over -<e, where -<;; is defined as 

above if \/x E(x) expresses the local correctness of the derivation {e}, and 

where-<e is the Brouwer-Kleene well-ordering associated with the proof-tree 

{e}. In the extended theory we can now conclude as above that Fis true, 

We thus have: 

THEOREM; L is conservative over A extended with t.i. over prim. rec. weZZ
w 

founded orderings. 
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PRELIMINARIES 

P.I. SYNTACTICAL NOTIONS 

P.1.1. The propositional constants we use are&, v, + and .L (for absurdity); 

negation is definable in terms of+ and .L: 

F •= F + .L 

We find it convenient to distinguish syntactically between "free" and 

"bound" variables. The label "variable" is reserved to "bound" variables, 

while the "free" variables we call parameters. 

P.1.2. We often have to distinguish between different occurrences of the 

same syntactic object cr (usually a formula, sometimes a term or a param

eter). An accurate definition of "an occurrence of cr in -r" may be found 

e.g. in STEEN [72] p.13. We shall write Q (underlined) when referring to an 

occurrence of cr; usually the specific occurrence refered to will be e'ither 

obvious from the context or irrelevant to it. 

In a formula!_+ Q_, Fas well as all its sub- (occurrences of) formu

lae are said to be negatively bound by the shown occurrence of+,~ is 

said to be a negative subforrrrula of A if the number of implications nega

tiv~ly binding~ in A is odd; if this number is even then Bis a positive 

subforrrruZa of A. (compare PRAWITZ [65] p.43). 

P.1.3. We shall usually use natural deduction calculi for generating formal 

theories. In these calculi there are for each logical constant Kan in

troduction rule [KI] and an elimination rule [KE]. The natural deduction 

calculi were invented by G. GENTZEN [35]; good introductions to them may 

also be found in PRAWITZ [65], [71]. We shall freely use the terminology 

of these works for dealing with natural deductions. 

We also adopt the following convention: if n is a natural deduction 

deriving a formula F (or a sequent s) we write: (resp.,!) in place of 

n when we wish to express this fact explicitly. On the other hand¾ (with 

a separating horizontal line) stands for the deduction which extends 

n =: by deriving G from F. 
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P.2. FORMAL SYSTEMS 

P.2.1. Intuitionistic propositional and first-order predicate logics 

(L0 and L1 respectively) 

The language of L0 is built up from the propositional parameters 

("letters") p0 ,p 1, ••. and from the propositional constants&, v,-->- and .l. 

The language of L1 is built up as usual from predicate parameters 

Pr(i,n20,P: is n-place), first-order parameters a0 ,a1, ... and first-order 

variables x0 ,x1, ... , the propositional constants and the first-order quan

tifiers V,3. 

The theories L0 and L1 are generated by the corresponding natural de

duction calculi (GENTZEN [35], PRAWITZ [65]). A rough picture of these 

calculi may be obtained by looking at A.I.I. below. 

P.2.2. Second-order logic L2 (the theory of species) 

The language of L2 contains, in 

Pr of L1 also second order variables 

order quantifiers V(n), 3(n) 

addition to the second order parameters 

X~(i,n20) and corresponding second 
l. 

The theory L2 is now generated by a natural deduction calculus as in 

version I of PRAWITZ [65] p.65, i.e., without referring to ).-abstraction 

(compare A.4.1 below). 

P.2.3. The theory of types L 
w 

The simple types are generated inductively by starting with Oas a 

basic type (the type of "first-order objects"), and passing from a sequence 

T1, •.. ,Tn of types (n20) to a new type (T 1, ••• ,Tn), the type of properties 

of tuples <T 1, ..• ,Tn1 of terms of types T1, ..• ,Tn respectively. In particu

lar () is the type of propositions. 

The language of Lw is built up now similarly to the language of L2 , 

but with variables and predicates P:, x: (i20) for each type T and with 
l. l. 

corresponding quantifiers VT, 3T. 

The intuitionistic (simple) type theory Lw is generated once again by 

a natural deduction system in an obvious manner (for details see 

MARTIN-LOF [73]). 

The theories Lk (k = 0,1,2,3 ... ) may now be defined to be Lw restricted 

to the types whose definition is of length 5 k. 
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P.2.4. Intuitionistic (Heyting's) arithmetic 

Here we have in addition to the first order variables and parameters of 

L1 also a first-order constant O and function symbols f~ (i~O,n~I). Each 
11. 

fi denotes a function from :Nn to :N , and we may take f O to denote the 

successor function. The first-order terms are now built up in a standard 

manner. If a term contains occurrences of ("free") variables we shall say 

that it is a pseudo-teY'ffl; otherwise it is a pure teY'ffl. 

The language of A contains only a single second order predicate which 

is binary; we write of course t = s for =(t,s). 

A is now generated by a natural deduction calculus which includes, in 

addition to the inference rules of L1: 

(i) inference rules expressing Peano's third and fourth axioms; 

(ii) an inference rule expressing the principle of induction; 

(iii) all defining equations for prim.rec. functions, where each f~ is 
l. 

interpreted as the i'th n-place prim.rec. fnction. 

For details cf. PRAWITZ [71]. 

P.2.5. L1A: L1 extended to the language of A. 

The language of L1A is the union of the languages of L1 and of A, i.e., 

we extend the language of A with predicate letters P~ (i,n~O). 
l. 

L1A is now generated by a calculus of natural deductions based on the 

rules of L1• 

Note that the language of L1A is more restricted than the language of 

HASo (Heyting's arithmetric with species variables) of TROELSTRA [73] 1.9.3, 

where quantification over second order variables is also allowed. 

P.2.6. Elementary analysis V0 
The language of V0 is the extension of the language of A obtained by 

allowing function parameters g~ (i,n~O), function variables~~ (i,n~O) and 
l. l. 

function quantifiers V~~. 3~~ (i~O). 
l. l. 

The natural deduction calculus for V0 is obtained by joining to the 

inference rules of A inference rules for function quantification; e.g., 

the rule of V-elimination for function-variables: 

where hn is either a function constant f~ (j~O) or a function parameter 
J 
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Note that we do not have in Y0 any comprehension rule, and consequently 

the function parameters and variables may be interpreted to range over 

prim.rec. functions. Y0 is therefore a conservative extension of A (cf. 

HOWARD-KREISEL [66], where Y0 is denoted by H). 

P.2.7. Classical theories 

For each intuitionistic theory Tone obtains the classical completion 

Tc of T by joining to T either the axiom schema of double negation, 

or the axiom schema of excluded third, 

A V ,A. 

P.3. ARITHMETIZATION OF METAMATHEMATICAL NOTIONS 

P.3.1. Finite sets of numbers {n0 , ••. ,nk} may be encoded by 

n· 
2 1 

which is a one-to-one prim.rec. function. 

The set-theoretical relations E, c etc. are then encoded by prim.rec. 

relations for which we use the same notation (E, c etc.). 

P.3.2. Let ◄ ► stand for the coding of finite sequences given in TROELSTRA 
[73] 1.3.9. We take 

The prim.rec. functions for projection (n)i' cancatenation U*V and 

length lth(n) corresponding to the coding O are then defined (as for 

4 ►) in an obvious manner. 

We shall use the following properties of() 

(I) () is onto the positive integers. 

So an algorithm may produce the code of a node in the universal spread 

which satisfies a certain property, and may yield O when no such node exists. 

(2) ni < <n0 , ••. ,ni) (i'.>k) 

( 3) ( n0 , ••• , ni) < ( n0 , ••• , nk, nk+ I , ••• , nk+n{ 

(4) u<v,,. U*{m}<v*(m) and(m) *u<(m~*v. 
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We let u-<v stand for the prim. rec. relation "u is (a code of) a proper 

initial segment of (the sequence encoded by) 

rec. function which satisfies 

v" 
' 

and we let tail be a prim. 

P.3.3. We shall frequently use the notations of KLEENE [52][69] for dealing 

with general recursive functions: the standard prim.rec. predicates T,T~, 

the result-extracting function U, 

{n} (resp. {n}¢) for the partial recursive (resp. recursive in ¢) 

function with index n, 

! {n}(x) 

! ! {n} 

t "" s 

for 

for 

3y T(n,x,y) 

Vx !{n}(x) (i.e .• , {n} is a total function) 

for "t ands are both well-defined and equal, or they 

are both undefined". 

P.3.4. We shall implicitly assume throughout this treatise that some stan

dard Godel coding of syntactical objects is given. 

For arithmetization of proofs we shall use: 

Dery (x) for "x encodes a derivation of (a standard calculus generating) 

the theory T"; 

Prf fx,y) for "x encodes a proof of T for the formula (sentence, se-

quent) encoded by y"; 

PrT (y) for 

P. 4. MATHEMATICAL SCHEMATA. 

P.4.1. The axiom-schema of choice from numbers to numbers AC 00 reads: 

Vx3y A(x,y) ➔ 3¢Vx A(x,¢(x)) 

P.4.2. The schema of transfinite induction TI~ over a (fixed) binary 

relation --< 

TI""' Vx [ Vy-<. x A(y) ➔ A(x) ] ➔ Vx A(x) 
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P.4.3. The axiom-schema of bar induction, or "induction over well founded 

trees" 

where 

BI V,P [ WF(,P) + Ind [A,,P] J 

WF(,P) := Vx3x ,P(x(x)) = 0 

Ind[A,¢] ·= Vu { Vn J[A,¢,u*(n)] ➔ J[A,¢,u]} ➔ Vu J[A,¢,u] 

J[A,¢,u] != Vv--<u <P(v) f O ➔ A(u) 

(~ is the initial-segment relation between codes of finite sequences). 

Here the function¢ is thought of as representing a tree, namely, the 

set of nodes u in the universal spread which satisfy 

Vv<u q:(v) f 0 

When¢ is known to satisfy 

then we may replace the J above by 

J 1[A,¢,u] != ¢(u) f O ➔ A(u). 

BT is easily seen to be derivable in Y~ + AC 00 . It is also not difficult 

to verify that our schema BI is a special case of the schema of bar induction 

for monotonic predicates BIM of HOWARD-KREISEL [66] p.326 as well as of the 

schema of bar induction for decidable predicates BID on p.336 there. 



PART A. Regular theories and normalization of infinitary derivations._ 

A.I. DEFINITION OF REGULAR THEORIES 

This chapter is a self-contained introduction to part B. The reader 

who wishes to do so may skip A.2 - A.4. 

I.I. DESCRIPTION OF Am 

By a sentenae we mean a closed formula of A. A' sequent iis a syntac

tical object of the form a.,. F where a is a finite set of sentences and F 

is a sentence. a is the pPeaedent, or anteaedent of the sequent, and Fis 

the suaaedent, or the aonalusion. 

We use here the absurdity symbol l. though it is definable as O I 

(GENTZEN [33] §6) because one of our aims is to get a formal separation 

between logic and arithmetic. 

PJ:>opositional PUles of Am: 

[T] a_,. F where F E a 

[&I] 
~_,.Fa ~.,. Fl 

[&E.] 
~.,. Fa&FI 

(i=a, I) 
~ _,. Fa&FI 1 a• F. 

1 

~,F • G a*F +G a_,. F 
[+I] 

a=!>F+G [+E] 
a,. G 

(where ~,F stands for ~ u {F}) 
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a• F. ~ * FavF 1 ~•Fa • G ~,F 1 ,. G 
[vI. J 1 (i=a, I); [vE] 

1 ~.,. FavF 1 a_,. G 

a .,. l. 
[l.] a_,. F 
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Quantification and arithmetiaaZ ruZes of A00
: 

[TE] 

[FE] 

[VI] 

[VE] 

[3E] 

a•E 

a•E 

a • .l 

where Eis a true equation when every function 

symbol f~ is interpreted as the j'th i-place prim. 
J 

rec. function. 

where Eis a false equation. 

{a • F(ii.)} - n>w 
~ • VxF(x) 

~ => VxF(x) 

~ • F(t) 

~ => 3xF(x) 

(ta term); 

{ a,F(ii.) => G} 
- n<w 

a• G 

[3I] 
~ • F(t) 

a• 3xF(x) 

A function¢ is a derivation of A00 (notation: Der00 (¢)) if 

(I) { n I ¢n j O} is a tree of (codes of) finite sequents under the 

obvious partial ordering: 

¢u = 0 -+ ¢(u'k{ n)) = O, 

cj,(u'k{ n)) = 0 -. cj,(u*( n+I )) = O; 

(where* denotes concatenation of sequent numbers). 

(2) For every u (= the code of a node in the universal spread) (¢u) 0 is 

the code of one of the inference rules p above (under some fixed en

codement), while (¢u) 1 and (¢(u*(n))) 1 (n<w) are codes of sequents 

which relate as the conclusion and the premiss sequents of p (and 

when no n'th premiss is required, (cj,(u'k{n))) 1 = O). 

(3) ¢ is well-founded: VX3x, ¢(X(x)) = 0, 

EXAMPLE I. The ("informal") derivation 

[T] {A}• A [TE] {A} => 0 = 0 

[&I] {A} => A & 0 = 0 

is formalized.by the function~ defined by 



cf,() := ('&I-,, '{A}~ A & 0=07 ) 

cj,( 0) := ( 'T-,, '{A}~ A-,) 

cj,( I) := ( 'TE,, '"{A} ~ 0 = 0-,) 

:= 0 for every u .j: {( ),( 0),( I)}. 

EXAMPLE 2. The derivation 

{ [TE] 

is formalized by the cj, defined by 

cj,O := r- -, r ( "> ( YI , 0 ~ Yxfk x)=0 

cf, (n) := (,..TE...,,'0 ~ fk{n)=Q,) for n<w 

cj,u := 0 if lth{u) > I • 
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A number d is a recursive derivr.::tion of A"" (notation: Der 00 (d)) if {d} is --rec 
a total function (i.e., Yx3yT(d,x,y)) and clauses (1)-(3) above hold when 

cf, and= are replaced by {d} and ,,, respectively. 

Prf00 (cj,,s) := Der00 {cj,) & (cf, 0) I = s 

Prf00 (cj,,'F,) := Prf00 {cj,,r-~F,) 

(The formal ambiguity of Prf00 will never cause any trouble.) 

A derivation cf, is normal (notation: NDer00 {cj,)) if: 

(I) No major (i.e., leftmost) premiss of an elimination rule in cj, is 

derived by an instance of an introduction rule; 

(2) No major premiss of an elimination rule nor a premiss of an instance of 

[31] or [FE] is derived by an instance of [vE], [3E] or[~]. 

(The reference to [31] and [FE] in (2) is made for technical reasons: it 

simplifies a bit the proofs in part B, since it implies that equations may 

stand only at top nodes of the normal derivations treated there.) 

Predicates like NDer: (d), NPrf00 (d,,..F...,), Prf00 (d,s) etc. are defined --~ec --rec --rec 
now in an obvious manner. 
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The central property of normal derivations is the subforrrruZa property: 

every formula occurring in a normal derivation is a subformula of the de

rived sequent. Another property of normal derivations which we use is the 

· · ' ' · · If f 00 ( ,.. -,) h 00 ( (Q) r -,) disJunction instantiation property: Pr ~. FvG ten Prf ~ , F or 
f oo( (0) r- -,) h (Q) • h II • -II- • • --

Pr ~ , G , were~ is t e main subderivation of¢ 
-(0) 
(~ (u) := $((O)*u)) (see A.3.8/9). 

REMARK. The use of sequents in the formulation of A00 above should not mis

lead the reader to view A00 as a sequential calculus. Sequents are used here 

only as a convenience in describing a natural-deduction system. In sequential 

calculi the precedent and the succedent of a sequent play a symmetric role, 

and there are two introduction rules for each logical constant, while here 

(as in all natural deduction systems) there is an introduction and an elimi

nation rule for each constant, both operating on the succedent. 

1.2. REGULAR AND STRONGLY REGULAR THEORIES 

Let T be a theory in the language of analysis. Writ~ 

== {F 

A00 [T] == {F I 3d [TI- NPrf00 (d,,..F.,)]} rec --rec 

or, otherwise stated, 

- ,... oo r,.., 
:= Pry -,-,3¢ NPrf (¢, F) 

Pr (,F-,) ,.. f 00 ( ,.. -,)-, := 3d Pry NPr rec d, F • 
-Aoo [TJ 

rec 

In A.3 below we prove (in V0 + Lw + BI say) that each derivation¢ of 

A00 can be mapped into a derivation ~N which is normal, recursive in¢ and 

proves the same sequent as¢. Hence, if T 2 V0 + Lw + BI, we can replace 

in all the definition above NPrf by Prf. 

We could formally strenghten the absoluteness results proved in part B 

below by modifying the definitions of !'.!Aoo[T]' !'.!Aro [T] above in yet another 
rec 

way, namely - by inserting double negations wherever they make sense. We do 

not see however any natural applications of these refinements. 
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An r.e. set A* of sentences of arithmetic closed under Modus Ponens is 

a regular nwriber theory when for some consistent r.e. theory Tin the lan

guage of analysis (cf. P), A* ~ A'"[TJ. A theory r* in a language extending the 

language of arithmetic is regular if ACT*], i.e., th.e arithmetical frag111ent 

T* · · A*r* of , 1s a regular number theory. When referring to , as above, we 

shall assume that T ~ Y0 +BI.This assumption does not of course affect the 

generality of the discussion, since anyhow 

and we may replace a given theory T by T + Y0 +BI.On the other hand, this 

convention renders the set of infinitary derivations of A00[T] closed under 

operations which are proved in Y0 + BI to preserve the correctness of proofs. 

A theory r* is strongly regular if there is a theory T (as above) s.t. 

Aoo [TJ 
rec 

and where 

is consistent. Here AC~0 is a ";c1egative" intuitionistic version of the 

axiom of choice from numbers to numbers: 

AC~0 Vx-.-.3y A(x,y) - -.-.3aVx A(x,ax) 

and ITi is the set of all true TT~ sentences. Formally, a proof predicate 

Prfr+ for T+ may be defined from a proof predicate PrfT for T by the TT~ 

predicate 

3x<p "x encodes a conjunction of instances 

of BI, AC~0 and of true TT~ sentences" 

& PrfT(p,imp(x,rF-,)) 

where imp is a prim.rec. function which satisfies 

rG +F-.. 

The motivation for the condition on T+ is of a technical nature, and will 

be clear from the proof of theorem II in B. 
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A.2. GENERAL PROPERTIES OF THE CLASS OF REGULAR THEORIES 

The aim of this chapter is to show that the class of regular theories 

is quite large, and that it satisfies some natural closure properties. 

(compare Int.4). 

2.1. ARITHMETIC, THE THEORY OF SPECIES AND TYPE THEORY ARE (STRONGLY) 

REGULAR 

There is an obvious embedding of A in A00 (cf. Int.3), and so rec 

A 5 A00 [Y0 + BIJ. rec 

Hence A is regular. In A.4 below we also prove that the theory of species 

L2, as well as type theory are regular; namely, 

A[L J 
w 

s A00 [L2 + Y0 + BI] rec 

-c A00 [L + Y + BIJ rec w 0 

(actually Bl is redundant everywhere, and even after dropping it the inclu

sions are proper. See LEIVANT [A]). So L2 and Lw are also regular. Of 

course, the last assertion implies the first two ones, since 

A 5 A[L2J 5 A[Lw], and when T1 5 T2, then the (strong) regularity of T2 
implies trivially that of T1• 

Assuming that Lw + Ac;0 + rr; is consistent (or that L~ + AC00 is 

I-consistent, cf. KREISEL-LRVY [68] §9) we have 



(the operation ()+is defined in A.1.2) must also be consistent. Hence 

A, L2, Lw are all strongly regular. 

2.2. ADDING SELF-CONSISTENCY TO A REGULAR THEORY 

2.2.1. LEMMA. There exists a prim.rec, function p s.t. 

for any prenex TT~ sentence F. 

29 

PROOF. If Eis an equation, and {p('E,)} describes the singleton derivation 

[TE] =i- E 

then, clearly, 

0 Next, if F is LI, F == 3xEx, then 

(I) F -+ 

[TE] =i- E(µx.Ex) 

[31] =i- F 

Finally, if Fis TT~, F =· 'v'xFOx, then (I) where {p('F,)} is defined to be 

the description of 

['v'I] =i- F 
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pis now a prim.rec. function by the s.m.n. theorem. 0 

REMARK. (I) above is of course uniform, i.e., for a TT~ open formula F(x), 

Vx [ F(x) 

r - , r , (where F(x) is sub( F(a) ,~(x)) := the result of substituting the 

numeral with value x for the parameter a in F). So, for a L~ sentence 

3xF(x) ::: G 

( trivially) • 

But here d cannot depend primitive recursivelu on 'G1 • (Already for L~ sen

tences G _ 3x F(x) one cannot have d depending recursively on G, since one 

can extract recursively from d a number p s.t. F(p). A partial resursive ~ 

yielding d = ~rG 1 would therefore allow one to decide recursively member

ship in an arbitrary TT~ set.) 

2.2.2. LEMMA. Let T be (strongly) regular, 

Ts A00[TI] (Ts A00 [Tl]) rec 

say. If F is a L~ sentence consistent wUh T 1 (with T7) then T + {F} is 

(strongly) regular. 

PROOF. By the remark at the end of 2.2.1. 

and since T1 2 Y0 ~ A we thus have 

i.e. 

l)_oo [Tl +{F} J F 
rec 
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so 

Together with the consistency conditions assumed for T1 + {F} this concludes 

the proof. D 

2.2.3. LEMMA. If Tis regular then it is consistent. 

PROOF. We have trivially (in Y0) 

and so, if T1 is consistent then A00[T1J is also consistent, and so must be 

every T ~ A00[T1J. D 

2.2.4. PROPOSITION. Let T be (strongly) regular, 

( T ~ A'" [T 1 J J rec 

where T1 (T7) is sound for negations of TI~ sentences. If ConT is a canonical 

consistency sentence for T then T + Co¾ is (strongly) regular. 

PROOF.Tis regular and therefore r.e. By 2.2.3 Tis also consistent, and 

so ConT is a true TI~ sentence which must therefore be consistent with T1 
(with T7). So by 2.2.2 T + Co¾ is (strongly) regular. D 

By the same token, if T1 is sound for negations of TI~ sentences, then 

T + (global w-consistency of T) is regular, since the statement added is TI~. 

Note that the global consistency of Tis equivalent to uniform reflection 

for TI~ on T + (uniform reflection on T) (cf. SMORYNSKI [77] thm.1. I.). 

2. 3. THEORIES ''GENERATED BY TRANSFINITE INDUCTION" ARE REGULAR 

Let~ be a binary predicate and write x~y for ~(x,y). 

Step~[A(x)] := VyiX A(y) ->- A(x) --x 

Vx Step-< [A(x) J 
X 

-+ Vx A(x). 
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2.3.I. PROPOSITION. Let T be (strongly) regular-, T ~ A00[T1J where T1 is 

sound for~: sentences. Let-< be a prim.rec. well-ordering, then 

T< == T + { TI-<[A(x)J } 
-x A arithmetical 

is (strongly) regular. 

PROOF. Let x~y be expressed by an equation fk(x,y)=O (fk prim.rec.), and 

define 

X --(z y 

Given an arithmetical formula A(x) define the partial recursive function 

¢2 = Au.¢(z,u) = Au.{a}(z,u) as a formal description of the following deri-,. 

vation of A'"'. 

-+ A(ii)} 
n<w 

where!: is 
n,z 

(i) the derivation (represented by) 

[T] n-< z [T] n=z 

[FE] .L [FE] .L 

n-< Z V n=z [ .L J A(fi) [ .L J A(fi) 

[VE] A(Ii) 

[➔I] ii~ z ➔ A(fi) 

if ii=' z is false (and where we have skipped the premisses of all sequents); 

(ii) the derivation 

[T] Vx Step<[A(x)J,. Vx Step~[A(x)] 
--x --x 

[VE] .. Vy~n A(y) -+ A(n) 

[➔E] 

[➔I] 

Vx Step-<[A(x)J,. A(ii) 
--x 
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if ~.i'~ is true, and where 6 is described by ct, • n n 
cp is defined here in terms of rep,= a (via {a}), and so cp is well de-

fined by Kleene's recursion theorem (cf, e.g. KLEENE [52] p.352, thm. XXVII). 

We may pick the index a to be that one given (primitive recursively) by the 

proof of the recursion theorem, and define d(z) by {d(z)} = Au.{a}(z,u). 

dis a prim. rec. function by the s.m.n. theorem, 

Further, let {e} = {e~'A} descr;be the derivation 

6 

{ Vx Step~[A~x)] ~ Vx.<z A(x)} z<w 

[VI] 

[+I] 

Vx Step~[A(x)] ~ VzVx~z A(x) 
--x 

~ Vx Step' [A(x)] + VzVx1z A(x) --x 

where 6 is described by {d(z)}. The derived formula of {e} is clearly a 
z 

variant of TI~[A(x)]. 
-x 

Using a suitable instance of TI<[B(x)], namely with 
-x 

oo ~ ,A~ 4y , 
Prf (e y , TI [A(x)]) 
--rec -x 

we find quite directly that {e~'A} is total, and describes a derivation in 

A00 of TI{[A(x)J, Hence 
rec -x 

I It is easily verified that w< is a set of Ll.1 sentences, and since T1 is 

assumed to be sound for Li: sentences, T1 + W-< must be consistent. Hence T-< 

is regular. The proof for strong regularity is similar. D 

2.3.2. The interest in proposition 2.3 .I springs from the proof theoretic 

power of the schemata TI~[A(x)] (with~ a prim.rec. well-ordering, A arith-x 
metical) which are complete for classically true arithmetical sentences 

(cf. KREISEL, SHOENFIELD & WANG [ 60] § 7 thm. 6). 

It should be noted that the converse of 2.3,1 is false: not every 
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regular theory is an extension of A (say) by {TI-{ [A(x)] }A . h for some -{. 
-x arit • 

The main reason for this is simply that a regular theory is not necessarily 

d 1 f b A • o A soun : et F be a alse ut -independent n2 sentence; then + F is regular 

by 2.2.2. 

If we restrict attention to classically sound regular theories, and 

relativize the whole discussion to classical systems, then the converse of 

2.3.I does hold, simply by the Kreisel-Shoenfield-Wang theorem mentioned 

above. For intuitionistic truth and formal systems we do not however yet 

have an analogue to that theorem (compare TN4). 
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A.3. NORMALIZATION IN A00 

3,1. AN INFORMAL DESCRIPTION OF THE "NORMALIZATION STRATEGY" 

We prove here that every derivation (j> of A00 for a sequent ~,. F can be 

transformed into a derivation (j>N for~,. F which is normal in the sense of 

I.I, i.e., no major premiss of an instance of an elimination rule in ~N is 

derived by an introduction rule, and no major premise of an instance of an 

elimination rule, of [31] or of [FE] is derived by an instance of [vEJ, 

[3E] or[~]. Further, (j>N is recursive and continuous in (j> ' that is, the 

value of (j>N at any given node u in the universal spread is computed recur-

sively from the value of (j> at a finite number of nodes. 

The transformation of (j> into ~N uses, as in the treatment of finite 

natural deductions, "reduction-steps" which eliminate local violations in (j> 

of the requirements of normality. For lack of a better name we call these 

violations cuts, in analogy to the traditional nomenclature for sequential 

calculi. 

One unfortunate situation is that a reduction which eliminates one cut 

may create new ones; this is familiar from the finitary case. Here, in 

addition, the number of reduction-steps cannot be finite, and their order 

is important. What is essential to the success of the procedure we shall 

describe is that for each specific node u we can compute ~N(u) by performing 

only a finite number of reductions on (j>. An insight into this can be ob

tained by looking at the more general treatment given in LEIVANT [A], where 

it is also shown that the order of the reductions is relevant only up to 

obvious requirements. 

The properties of reduction sequences proved in LEIVANT [A] are in a 

way analoguous to the strong normalization property of finitary proofs, 

i.e. - every reduction sequence starting with a given finitary natural de-
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duction terminates. The proofs use however arguments on the geometry of in

finitary derivations which are combinatorially tedious. For our purpose 

here all this is irrelevant, so we confine ourselves to the more modest 

task of giving one method of obtaining ~N from~-

The normalization strategy we use can be roughly described as follows. 

Suppose that we have computed already ¢N(v) for every v < u. Under our 

conventions on the coding of sequences this means in particular that 

¢N(v) is given for every v-< u. These values have been computed by con

structing a certain reduction sequence 

(cf. 3.1 below), where for v < u 

now how to extend(*) by 

so that ~N(v) := ¢k+m(v) for v ~ u. Examine the inference rules of ¢k at 

u,u*(O),u*(O,O), •.• , as long as these are eliminations (or [3I] or [FE]); 

since ¢k is well-founded, this must come to an end. If no cut occurs 

immediately above any of the examined nodes, let~:= 0 (i.e., stop); 

else - let ¢k+I be obtained by a reduction at the uppermost (i.e., maximal) 

such cut. The process is repeated as long as cuts are found, and our point 

(to be proved below) is that this may happen only finitely many times. 

It should be noted that in ¢k above more than one cut can occur along 

u,u*(O), ••• ; namely, if we have a chain of instances of [vE] and [3E]. If 

the inference rule in ¢k at u is not an elimination (or [3I] or [FE]) then 

the sequence u,u*(O), ... is empty, and the condition form:= 0 is satisfied 

trivially. 

3.2. SOME CONVENTIONS 

We slightly modify the formulation of A00 in I.I, so as to allow a 

smoother exposition. Let an indexed formuZa be a pair (n,F), which we write 

as~. where n is a natural number and Fa formula. A sequent is now a syn

tactical object of the form~=> G, where~ is a finite set of indexed 

formulae and G is a formula. The inference rules remain as in I.I, except 



for the "discharging" inferences; Le., the [vE] rule for example takes 

the form 

a-. B 

[~Ik] and [3Ek] are defined similarly. 
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W. 1. o. g, we make the convention that two occurrences of the same formula which 

are "dis~harged" at distinct nodes of a derivation cj> are given distinct 

indices. Note that normalization for the modified A00 implies normalization 

for the original formulation: indices can be just ignored in cj> and cj>N. They 

are indeed useful only as track-keepers through the normalization proof. 

There is one more modification we make in A00
, but this one does weaken 

the results. We add to the rules of A00 the replacement rule 

,! -. F(t) 
where t' t. 

[R] _!-.F(t') 

The reason we make this modification is of course our concern for the 

reader's time and patience: its presence allows a simplified formulation of 

the reduction steps (see 3.3.2 below). 

The normalization proof for the original version can be found in 

LEIVANT [A] (where it is shown that the obvious "term replacing" derivations 

which take the place of [R] can be inserted into the proof of normalization). 
In the absoluteness proofs in part B we do use however normalization for the 

original A00
, without [R], because a separation between logic and arithmetic 

is utilized there, and this separation is destroyed by using [R] in the re

ductions. 

To shorten the discussion of infinitary proof figures we shall use the 

following notational conventions. Given a derivation cj> of A00 we shall write 

pcj>,u and scj>,u for the inference rule and the sequent (respectively) standing 

at the node u in cj>, i.e., 

and when scj>,u =~then acj>,u := E_, Fcj>,u == G. Also, we shall freely use 

geometriaal representation of derivations, e.g., 



38 

{ cf> (m) } 
m<w 

cf> 

(where cpu := AX.c/>(u*x) ). cf>[~] will denote the result of joining the finite 

set of indexed formulae a to all the premisses of sequents in cf>, i.e., 

When 
cf> 

[ ]() (r cf>,u, r .,u Fcf>,u,) cp ~ u := p , ~ u~ • 

cf> ' 
k 

~•A=> B 

a => B 

1/J 1/J then 
b => A 

is defined as the derivation which comes by replacing (or "grafting on") 

each top node of cf>[E_] of the form ~UE_,kA => A (where necessarily::_~~) by 

1/J[~J, and dropping [kA] from all premisses of the result. 

Finally, we shall mark in this chapter by asterisks in the margins 

those passages which can be omitted when only the negative (i.e., free of 

v and of 3) fragment of the language of A is treated: the reader will get 

a more transparent view of the proof by skipping these sections on a first 

reading. The beginning of a paragraph to be skipped is marked by I*, its 

end by *I, and isolated phrases by*• 

3.3. PROPER REDUCTIONS 

3.3.1. The critical inference rules are all the elimination rules 

([&E],[+E],[vE],[VE] and [3E]), [31] and [FE]. These are the rules which 

may induce a cut: 

C ( ) II cf>' u . 1 · . . d cf>' U* (0) ut cp,u ·= p is an e imination an p an 

introduction rule, or pcf>,u is critical 

and pc/>,u*(O) is [vE], [3E] or [.LJ". 



3.3.2. Detour reductions 

(i) &.-reduction: 
l. 

[&I] ~ • A0 & A1 

[&E] a_,. A. 

(ii) -reduction: 

cf, {O, 0) 

k 
~•A• B 

l. 

[+I] a• A+ B 

[+E] 

* (iii) v.-reduction: 
l. 

cf> <o, o > 

[vE] 

a• B 

a• B 

a• B 

(i=l,2). 

cf, <O, i > 

a• A. 
l. 

~=1 
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(i=O,I). 

cf,{) > 

[kA] 

cf, {O, 0 > 

a• B 
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(iv) V-reduction: 

,<o,n> 

{ .! ,. A(n) }n<w 

[VI] _!,. VxA(x) 

[VE] _!,. A(t) 

[RJ _!,. A(t) 

where n0 is the value of the term t (recall that we treat only sen

tences, and so all terms are closed). 

* (v) 3-reduction: 

4> (O,O) .. 

_!,. A(t) 

[3I] _!,. 3xA(x) 

<f, (n+l) 

k -{ _!, A(n) • B} 
n<w 

[3E] a,. B 

where no is the value of t, and 

4> (0, 0) 

_!,.A(t) 
1jJ := 

[R] _!• A(n0 ) 

1jJ 

k -[ A(n0)J 

<n0+J) 

4> 

a,. B 



I* 3.3.3. Perrrrutative reductions 

Let p be a critical inference rule. 

vp-reduction: 

cf, (0, 0) cf, (0 ,j ) 

[vE] a => B { ,I. (n) } 
't' n>0 

[p] a=> C 

cf, (0 'j ) 

cf, (0, 0) 
~,kAj * B { cf,(n)[kAj] }n>O 

{ [p] 

[vE] 

k 
a, A. => C 
- J 

a=>C 

*I 3p-reduction: analogous, with [3E] in place of [vE]. 

3.3.4. Absurdity reductions 

Let p be a critical inference other than [FE] • 

.lp-reduction: 

cf, <o,0) 

[.L] { cf, (n+ I ) } 
n<w 

cf, <o,0) 

[p J a=> B 
[.1] a => B 

41 
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~-[FE]-reduction: 

cp (O,O) 

cp (O,O) 

a=> E 

[FE] a=>~ 

The absurdity reductions are the converse of the expansion reductions 

of PRAWITZ [71], 3.3.3. While Prawitz's aim is to show that the intu

itionistic absurdity rule can be reduced to a Post rule (more generally, 

that an intuitionistic first order system is conservative over the system 

of its Post rules, cf. PRAWITZ [71], 3.5.5), our aim is to get normal deri

vations where, roughly speaking, breaking into the internal structure of 

formulae is avoided when possible. 

3.3.5. If cpu Fl 1jJ and cp 1 comes from cp by replacing cpu by 1jJ (i.e., 

if 

if 

v~u 

V = U*W 

then cp Fl cp 1 , and we also write more specifically cp f: cp 1 • 

cp w cp 
I 

·= 31jl [ cp & & 

Vi <n 1P ( i) ~ 1P ( i + I ) J 

cp F cpl : = 3n cp W cp I • 

3.4. DEFINITION OF THE NORMALIZATION STRATEGY; THE NORMALIZATION PREDICATE 

3.4.I. Write (n)i for (n,.,.,n). 

i times 

& 

"u influences v in cp". 

Vw "pcp,w is critical" ] 
V~WiU 
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3.4.2. Define 

( I.) Vw [ Inf1(¢,w,u) -+ ,cut(¢,w) J 

(2) {j}(¢,v) := µu:<;;v. 3w[Infl(¢,w,u) & Cut(¢,w)]. 

I.e., u is a "clear node" in the derivation ¢ if no cut occurs at a node 

which "influences" u in ¢. The function {j} picks out the first node up to 

the argument v which is not clear in¢. Here the natural ordering:,; is taken 

in the definition in order to simplify the definition of the normalization 

procedure defined below. Under our conventions u ~ v implies u:,; v, but re

placing:,; in the definition of {j} by~ would destroy the linear order of 

the reduction steps we have in mind, and implied by 3.4.4 below. 

We further define 

(3) 
{k}(¢,v) :"' 0 

:I::! max[u \ Infl(¢,u,{j}(¢,v)) &Cut(¢,u) J 
if ~(¢,v), 

otherwise, 

I.e., for the node {j}(¢,v) =: w defined above {k} picks the maximal node 

y which influences wand where a cut occurs. 

'non-critical rule 

critical infer=c•a { 

3.4.3. We define the derivation 

¢ ~~ {r}(¢,u) 

(4) 

W*<O>n+l 

\ W*<O>n 
i . 

{r}(¢,u) :"" ¢ otherwise. 

w ·~ {j}(¢,v) 

u ·~ {k}(¢,v) 

is among w, ••• ,w'k(0}0 

by 
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Using this notation we now define the normalization functional 

cp I-+ X.v.'¥(,P,v) 

by defining'¥_ {n} through 

(5) '¥(,P,v) :~ {n}({r}(,P,{k}(cp,v)),v) if {k}(cp,v) if, 0, 

otherwise. 

It is seen outright that (5) is a correct Herbrand-Godel definition of'¥ 

as a partial recursive functional (compare e.g. PETER[67] p.195 or KLEENE[52] 

sec.54). The reader less familiar with the Herbrand-Godel definition may 

prefer to note that, is well-defined by Kleene's recursion theorem 

(KLEENE[52] p.352, thm. XXVII) and that the index n is given primitive 

recursively (from the definition (5)) by the proof of that theorem, The intu

itive meaning of'¥= {n} is this: if 

then 

if, 0 

and so 

{k}(,P,v) ~: u f 0 

as in the illustration above. Letting 

we take 



If 

then {j}($,v) °' 0 and so {k}($,v) °' 0 and 

In other words, '¥($,v) is obtained by a series of reductions 

where 

u :o, {k}($ ,v) ,/, 0. 
t t . 

If and when for some t we get 

Vw~v Clear($ ,v) 
-- t 

we stop and set 

'¥($,v) :o, $t+l(v). 

1{ $t+I 
t 

Note that '¥ ($,v) = {n}(~-,v) may be defined by different reduction 

sequences for various values of v, and so it is not evident prima facie 

that {n}($,v) is at all a derivation. 

- Vv3x T$(n,v,x) & VX3y {n}($,X(y)) °' 0 

"$ is normalizable". 

We shall also refer below to the function 

45 
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.~ { {l
0

}({r}(4>,{k}(4>,v)),v) + I 
{l}(4>,v) 

if 3w~v ~c1ear(4>,w) 

otherwise. 

which, like {n} above, may be formally defined by a use of the recursion 

theorem. Intuitively {t}4> measures the length of computation of {n}4>. 

3 4 4 Wh { }( ) d . LI • • • en for some v k 4>,v ~= u # 0 and 4> ru ¢1, we write¢ r* ¢1• 

Ifv1 ~v2 and 

then 

trivially, and so 

I 
Hence ¢ I~ ¢ 1 for at most one ¢ 1• 

We further define 11 to be the t-time iteration of IJ. So {n}(¢,v) is 
* * 

(when converging) ¢1(v), where ¢ 1 is uniquely determined by 

¢ L{l}(¢,v) ¢ 
r* I 

3.4.5. LEMMA. Let Der00 (¢). 
----- -- ·-1 
(a) Nmble(¢) ++ Vi/J [ ¢ /=* 1/J + ~(1/J) J 
(b) ¢ /.11/J + s¢,O = sifJ,O 

(c) ¢ ~ 1/J + {n}¢ • {n}i/J. 

PROOF. Obvious from the definitions. D 

3.4.6. LEMMA. Let Der00 (¢). If¢ ~I 1/J and w { u then 1/Ju ¢u and 
V: 1/J,u*<m> ~.u~> w ms = s~ • 

PROOF. Immediate. □ 
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3.4.7. LEMMA. Let Der00 (¢). If 

(I) 

(2) 

(3) 

then Clear(lj!,v). 

PROOF. Assume (I) - (3), and towards proving Clear(lj!,v) assume 

(4) Infl(lj!,u,v), 

If w ~ U*<O> then we must have by (3) and (4) 

(5) for some k, 0 ~ k ~ n + I. 

We know from 3.4.6 that (2) implies 

(6) Vy;/-w lj!(y) ¢(y) 

and by (4) 

(7) 
i 

II lj!,V*<O> Vi~n p is critical". 

. From (5), (6) and (7) 

i 
(8) Vi<k "p¢,v*<O> is critical" 

while (2) implies that p¢,w must also be critical, from which by (8) and (5) 

(9) Infl(¢,w,v) 

and so by (I) ,Cut(¢,w) contradicting (2). Hence 

But now we get from (6) 
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and from (4), (JO) and (6) 

(12) Infl (</>, u, v). 

(I) and (12) imply ,Cut(<j>,u), from which by (II) ,cut(¢,u), as required. D 

PROOF. Assume the premiss; then by the definition of the predicate Nmble 

we have 

(I) 

It remains to prove that {n}</> is locally correct and cut free. 

Fix a node v. By the argument of 3.4.4 !{n}(<j>,v) implies that 

(2) <I> 1J,11,}(q,,v) ¢ 
* V 

for a certain derivation¢ for which 
V 

(3) 

(4) 

Likewise we have for each ma derivation ¢V*<m> s.t. 

(5) 

(6) 

(7) 

By 3.4.4 reduction sequence (2) is necessarily a subsequence of (5) (for 

each m). Fixing m, we thus have for certain xO, ••• ,xt, w1, ••• ,wt' t ~ O, 



(8) 

We prove by induction on t that 

(9) 

( 10) 

( 11) 

Vw~v Clear(x ,w) 
--- t 

for the given m. 

Fort= 0 (9) - (11) are trivial (cf. (3)). Assuming (9) - (11) fort, we 

have by (9) 

(12) 

and so by 3.4.7 

while by 3.4.6 (12) implies 

ljJ (v) 
V 

and 

This completes the induction. We thus have from (8) 

(14) 

(IS) 

(by (JO)) 

(by (4)) 

(by (II)) 

(by (7)) 

relate according to the inference rule 

is a locally correct derivation. Further, 
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so 

we have 

(16) (by (4)) 

(by ( I 4)) 

while 

( 17) (by (7)) 

But (6) implies that ,Cut(~ 0 ,v) and so (16) and (17) imply 
{n} . -- V*< > u u*<O> 

,Cut(¢ ,v), since Cut(x,u) depends on pX, and pX, only. Hence 

{n}¢ is cut-free. □--

3.5. GENERALIZED REDUCTIONS; STABILITY 

The concepts defined in this section are analogues of the ones defined 

for the finitary natural deduction system for A in LEIVANT [74], i.e., 

they are based on the ideas of PRAWITZ [71]'s "validity argument". 

3.5.1. The measure of complexityµ on the sentences of the language of A is 

defined by recursion on their length as follows. 

µ(E) := 0 if Eis an equation 

µ(A & B) :=µ(Av B) := max[µ(A), µ(B)] 

µ('v'xA(x)) := µ(3xA(x)) := µ(A(O)) 

µ(A+ B) := max[µ(A) + I, µ(B)J. 

We also write, for a derivation¢ of A00
, 

i.e. - 1¢1 is the derived sentence of¢. 

3.5.2. We define now simultaneously by (metamathematical) recursion (on n) 

two predicates: 



and 

St (cf>) ----n 

n 
cp II= 1jJ 

(for "cf> is stable and µ ( I cf> I) ,s n") 

The metamathematical recursion yields an explicit definition of St and 
n m ----n 
II= in terms of St and II= with m<n. When cf> is recursive, cj>x"" {d}x say, --m . 
then these predicates are arithmetical (compare LEIVANT [74] §7), and 

SI 

given a (hyperarithmetical) truth definition for the full language of A, one 

can define (arithmetically in this truth definition) predicates ~ and II= s. t. 

(I) 
+-+ St ({d}) 

----n n 
{d} II= {e} +-+ {d} II= {e} 

} 

But there are no arithmetical predicates ~. II= satisfying (I). Likewise, 

a truth definition for the full language of Y0 provides uniform predicates 

St and II= for arbitrary derivations cj>. 

m 
3.5.3. Assume now ;• II= to be defined for every m<n, and let µ(lcf>!) ,s n 

(i) 

(ii) 

. l nil I If ¢ ru 1jJ where u :"" {k}(cj>,<>) ,f, 0 then ¢ = lji. ({k} is defined in 

3.4.3. Note that we may have x 1 I=! x2 while {k}(x 1 ,<>) = O). 

cf> 

~=> AO ~=>Al 

[&I] ~ => A0&A1 a=> A. 
l. 

(i=0,1) 

(iii) cj>(O) 

* (iv) 

k 
~•A=> B 

[+I] a=>A+B 

whenever 1jJ 
1jJ 

a=> A 

a=> A. 
l. 

and 

a=> B 

a=> A. 
l. 

(i=0,1) 
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(v) 

(vii) 

(viii) 

(ix) 

Notice 

<I> (0) 

{ a ,. A(;;;) }m<w n 
II= I 

[VI] a,. VxA(x) 

<I> (O) 

~,. A(t) 

[31] ~,. 3xA(x) 

<I> (O) 

~,. Al v A2 { 

n 
IF I 

<I> (j ) 

k ,. B a, A. 
- J 

[vE] a ,. B 

<I> (0) <I> (m+I) 

<I> (O) 

~,. A(t) 

}j=J,2 

~,. 3xA(x) { k -
~• A(m) ,. B }m<w 

[3E] a,. B 

<I> (Q) 

a,. .L 
1~1 

<I> (0) 

[.L] a ,. A a ,. .L 

that the reduction is always at() in 

n 
I I= I 

n 
II= I 

clauses 

n n 
II= II= I : (x) is the transitive closure of 

no 
(so in particular <P II= <P and <I> II= <j>). 

n 

(m<w) 

<I> ( j) 

k a, A. ,. B 
- J 

<I> (m+I) 

k 
~• A(m) ,. B 

(ii)-(ix). 

(xi) Stn (<P) != V<P 1 [ <P II= <1> 1 _.. Nmble(<P 1) J. 

(j=l ,2) 

(m<w) 

We refer to reduction steps (ii)-(ix) as improper reductions. Reductions 

(vii) and (viii) we label more specifically as simoZifications (because of 

their similarity to PRAWITZ [71 ]' s "immediate simplification" reductions). 

n 
In the discussion below we write g(<P) for St (<P) and <P II=$ for 

---n 

<I> II=$ where n := µ(J<PJ). 
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3.5.4. LEMMA. 

(a) g(¢) + Nmble(¢) 

(b) ¢ I= ¢1 and g(¢) + St(¢ 1) 

(c) g(¢) iff [~(¢) and [¢ II= 1/J by improper reductions+ Nmble(l/J)]J. 

PROOF. (a) Irmnediate, since¢ iJJ ¢. (b) and (c) are immediate from the defini

tions. D 

3.5.5. ¢ = 
¢ is stable at kA if whenever 

1/J 
1/J g(l/J) 

£~A 

1/J 
then [kA] is stable. 

¢ 

¢=a! Bis strongly stable (notation: SSt(¢)) if when~ 

1/Ji,n. are stable derivations with ll/Ji,n-1 = Ai' then 
i i 

1/J. 

{ 
i,ni 

} n. 
[ iA.] =: 0 i n. 

iA. E a 
¢ 

i 

n. 
{ iA.}., and 

i i 

is stable, where 0 is defined analogously to the definition at the end of 

3.2 for the substitution of a single derivation 1/J. We write here¢ H- 0. 

3.5.6. LEMMA. SSt(¢) --+ St(¢). 

PROOF. Irmnediate, since the singleton derivations 

1/J ·= [ [T] a~ A. ] 
i,ni · i 

are trivially stable. D 
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3.6. THE STABILITY THEOREM; TREATMENT OF THE NON-CRITICAL INFERENCE RULES 

3.6.1. Our aim is to prove the following 

THEOREM (in YO+ BI) 

(i) Der00 (<j,) -+ SSt(c/>) 

(ii) Der 00 (<j,) - ~($) 

(Hi) Der00 (c/>) -+ Nmble(cj>). 

Here (i) implies (ii) by 3,5.6, and (ii) implies (iii) by 3.5.4. The 

proof of (i) proceeds by BI on the proof-tree </i. I.e., one proves 

and so by BI SSt(c/>O) and <PO= <j,. 

For the top nodes of cl>, i.e. - where pc/>,u is [T] or [TE], the premiss of 

(I) is satisfied trivially, and the conclusion is immediate from the defi

nitions. So our main concern is to prove (I) for the other cases for p¢,u. 

The cases of non-critical inference rules are treated in 3.6.3 below, the 

proof for the critical rules being postponed to 3.7. 

3.6.2. LEMMA. Asswne Der00 (cj>) and Clear(<j,, ( >). Then 

(m) 
(i) Nmble(<j,) +-+ Vm Nmble(c/> ) 

(ii) If Nmble(c/>), then 

{n}¢(m> = ({n}q>)(m> 

PROOF, [a] Assume Nmble(cj>). For each m and v we prove 

(I) 

(m) 

i.e., (ii). But then ! !{n}q> implies that ! !{n}c/> and WF({n}</i) implies 
(m > <m> 

WF({n}</i ), so Nmble(q> ) for every m. 



cp<m> 

<O> 

The proof proceeds by induction on {l} (<P, (mhv), i.e., we prove by 

induction VcpVi P(<P,i), where 

P(<P,i) := {l}(cp, (m)*V) ""i --+ {n}(cp {m) ,v) ""{n}(<P, (m)*v). 

Since, by Nmble(<P), !{l}(cp,(mhv), we get (1). 

Basis. If {l}(cp,(m)*v) ""0 then 

and so trivially 

(3) <m> Clear(<P ,v). 

Hence 

{ n}(<P (m), v) :"" <P (m) (v) by (3) 

by (2). 
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Ind. Step. Let {l}(cp,(m) *V) > ·:i, <P II~ cp 1 for some u, where Infl(<P,u,w) for 

some w:,; (m)*v. 

Clear(<P,{)) (which we are assuming from the start) implies Clear(cp 1 ,0) 

by 3.4.7, and also u I(), which in turn implies that 

(4) 
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So ¢1 satisfies the lennna's conditions, while 

{l}(¢ 1,<m)*v) = {l}(¢,(m)*v) .,_ I. Hence 

(m) (m) 
{n}(¢ ,v) ""{n}(¢ 1 ,v) by (4), in any case (cf. 3.4.4) 

by ind.hyp. 

since by 3.4.4 {n}¢ {n}¢1 

[b] Assume Vm Nmble(¢ (m)). First, Clear(¢, 0) implies {n}(¢, 0) "" ¢ O; 

so to prove Nmble(¢) it suffices to prove 

We cannot here use induction on {,f_}(¢,(m} *v), because !{l}(¢,(m) *V) is _pre

cisely what we have to prove. So fixing m and v, we proceed by induction on 

{p}(¢,m,v) :"" 

< (w)o> 
Basis. {p}(¢,m,v) ""O. Then for every w :-:; (m) *V U}(¢ ,tail(w)) ""0, 
-- < (w)o> 
hence Clear(¢ ,tail(w)) and so Clear(¢,w). So we have 

¢ (m) (v) 

(m) 
""! {n}(¢ ,v). 

Ind. Step. Let {p}(¢,m,v) > O. Then there is at least one w :-:; <m>*V s.t. 
<(w)o> . I 

,Clear(¢ ,tail(w)) and so ,Clear(¢,w). Hence, ¢ f* ¢1, where the reduc-

tion occurs at some node u which influences w, and 

(5) 

at tail(u) 



we have 

.:.. I and so 

while (as in [a]) we conclude by 3.4.7 from the assumed Clear($,<>) that 

Hence 

(m) 
"" {n}($ 'v) 

3.6.3. LEMMA (in Y0). Let Der00 ($). 

(i) If p$,() is [+I] 

k 
~•A"'°' B 

by ind.hyp. 

by (5) and 3.4.5. □ 

(0 > • k 
say, and$ ~s stahZe at A then~($). 
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(ii) If pep,() is a non-critical inference other than [-+I], and Vm g(cp <m>) 
then g(cp). 

PROOF. Let cf> Jf=n ljJ; we have to shaw Nmble(lji). 

<m> Case [a]. n = O, ljJ = cp. In any case we assume here Vm St(cj> ) and so by 
<m> 

3.5.4 Vm Nmble(cj> ). By 3.6.2 this implies Nmble(cj>). 

Case [b], n = m+I, ¢ f= 1 ¢1 lf=m lji_, Here p¢,<> is not critical, so Clear(¢,<>) 

and hence {k}(qi,<>) ""'O; thus necessarily ¢ 11=1 ¢ 1 by an improper reduction, 

When p¢,<> is [R] such a reduction is impossible, We are then left with the 

following cases. 

If pep,() is [-+I] as in (i) above, then 

,for some stable lji, 

(O > . k 
so g(¢ 1) since¢ is stable at A. Hence Nmble(ljJ) . 

. cf>() 
If p ' is [&I], [VI], [vI] or[~] the proof is similar, D 

s 

cf> is stable at kA under ljJ A B if whenever 
a* V 

s 
ljJ If= b * A 

[vI] b *Av B 

then [kA] is stable. (Asymmetric definition for ljJ 

¢ 

cf> is stable at kA(~) under ljJ if whenever 
~ * 3xA(x) 

s 

ljJ If= .£. * A(t) 
t = n 

[3I] .£_ * 3xA(x) 

and 

ljJ • ) 
B v A 



~ 

e := ~ • A(t) 

[R] ~•A(;;) 

e 
*I then [kA(;;)] is stable. 

3.7.2. MAIN LEMMA. Let¢ be a derivation of A00 which satisfies one of 

(i)-(iii) below; then~(¢). 

(i) p¢,() is a critical inference rule other than [vE] and [3E] (i.e. -
( i) 

[&E], [+E], [VE], [31] or [FE]) and ft.. ~(¢ ). 
i=0, I 
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I* (ii) p¢,O is [vEk], F¢,<O) == A1 v A2, 

k . (O) . 

ft.. Nmble(¢(i>), and ¢(j) is 
i=0,I,2 

stable at A. under ¢ (J=l ,2). 
J 

(iii) p¢,O is [3Ek], F¢,(O) =: 3xA(x), and for each m<w Nmble(¢(m)) 

(m+I) • k - (0) 
and¢ ~s stable at A(m) under¢ . 

¢ (O) 
PROOF. (I) Method: the proof proceeds by a primary BI on the tree {n} 

I.e., formally speaking we prove 

(I) Vm Q(¢,u*(m)) -+ Q(¢,u) 

where 

Q(¢,u) ·= Vlj, [ Der00 (lj,) & Nmble(lj,(O)) & 

(O) (0) 

"{n}lj, is a subtree of ({n}¢ )u 11 

-+ "the lemma holds for tj," ]. 

(0) 

Assuming WF({n}¢ ), as we do by the lemma's assumptions, we get from (I) 

by BI Q(¢,()), which trivially implies that the lemma holds for¢. 

Further, we shall use a secondary (ordinary) induction on {l}(¢ <o>,()), 

i.e., we prove Vm R(¢,m) where 

R(¢,m) := Vlj, [ Der00 (lj,) 

{l}(l)J <o >' 0) 

(Q) ( O) 

& "{n}lj, is a subtree of {n}¢ " 

""m -+ "the lemma holds for lj, 11 ]. 

& 

Now assuming !{l}(¢ <o>,()) as we do by the lemma's assumptions, we get 

trivially from R(¢,{l}(¢<o>,())) that the lemma holds for¢. 
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(II) A preliminary observation: If$ satisfies one of (i)-(iii), and 

$ r! ~I by a reduction at some (0)*u"" {k}($,()), then $1 satisfies the 

same condition as$ does. The proof is immediate from the definitions. 

(III) Let $ satisfy one of (i)-(iii), $ IF1 $1 IF1 $2 • • • IF1 $ • u1 u2 un n 
We have to prove Nmble($n). 

If n = 0 and Clear($,<>), then Nmble($) by 3.6.2(i). If ,Clear($,<>), 

{k}($,O) z O, then$~\ 1/1 for some 1/1, and we shall see in (IV) below that 

then St(l/1); hence by 3.4.4/5 Nmbie($). Finally, if {k} ($,0) z (0) *U then 

$ F! 1/1 with 1/1 satisfying the lemma's conditions by (II) above, and 
$(0) Fl 1/l(O) where u QI {k}(/O> ,0 ). So {n}$(O) = {n}w<o> while 

u 
{l}($(0) ,O) QI {l}(l/J(O) ,0) + I. Hence by the secondary ind.hyp. applied to 

1/1, St(l/1) and so (3.4.4/5) Nmble($). 

I Next, if n > 0, it obviously suffices to prove St($ 1). If$ F* $1 we 

have St($ 1) as above. 

If$ IF1 $1 by an improper reduction then p$,() must be one of [3I], 

[vE], [3E]. For the first one, $1 = /O> which is assumed stable (case (i) of 
(m+)) 

the lemma); for the last two, $1 = $ for some m < w, which is assumed 

stable (cases (ii), (iii)). So g_($ 1) in any case. 

(IV) It remains to prove that whenever $ F~) 1/1 and () ""{k}($, 0) then 

St(l/1). We inspect cases for the type of reduction, i.e. - for p$,() and 
""1", (0) 
p • 

case (a). p$,() is [+E], 

subcase (aa). p$,<O> is [+I], 

$ <0,0) 

.!!_,kA,. B $(!) 

a =+ A 

a,. B 

$ ( I ) 

F~ > 

[kA] 

$ {O ,O) 
=: 1/1. 

a_,. B 



Then, since E.!_(¢ <I>), 

by an improper reduction; and as E.E_(¢(O)) by assumption, E.E_(w), 

I* subcase (aS). p¢,(O) is [vE]; 

¢(0,0) { ,co,i> } 

~=>Al v A2 ~,kAj => B + C j=l,2 ¢ (]) 

[vE] a => B + C a=>B 

[+E] a=> C 

¢ <0, j > /I)[kA.] 
J t •-'•· * B ➔ C k } 

¢(0,0) 
a, A. => B 

- J - J 

~=>Al v A2 [+E] a,kA. => C ·-1 2 
- J J-' 

[vE] a=> C 

=: w 
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(0 > (0 > 
We assume {k}(¢,()) ~(),and so Clear(¢ ,<>). Hence, by 3,6.2, St(¢ ) 

W (0) ¢ (0,0) 
{n} {n} is a proper subtree of implies Nmble(¢(O,O>), and 

(0) --

{n}¢ • So w has a "lower" BI measure than¢, and to conclude that E.E_(w) 

it remains to check that w satisfies case (ii) of the lemma. 
(0} (j) . 

We have found that Nmble(w ). We check next that Nmble(w ) (J=l,2), 

also by BI. 
( I ) 

and ¢ behave 

Finally, 

,,,<j,1) ____ _.(l)[kA.]. bl b . . _.(l)[kA J 
o/ o/ is sta e y assumption, since o/ • 

. J J 
in the same way for all properties concerning reductions. 

b . l"f" . . S ( (0)) . 1· S ( (j,0)) H (j) y a simp i ication reduction; so t ¢ imp ies t w • ence. w 
- W(j,0) -¢(0,j) 

satisfies case (i) of the lemma. Since {n} {n} is a proper 



*I 

62 

<P(0) 
subtree of {n} , we get by Bl hyp. 

(") (') 
St(w J) and so Nmble(w J) (j=l,2). 

It remains to verify that W(j) is 
- k -- (0) 
stable at A. under w • So assume 

J 

(I) 
a=> A. 

J 

(O) 
If n = 0, then Cut(<jl ,()), so {k}(<ji,()) ~(),contradicting the as-

sumption of (IV). Else, and 

<P(O,O) J e u"" {k}(<jl<o,o>,O) 
ru • 

then 

{k}(<P,{)) "" (0,0hu ~ 0, 

again a contradiction. 

Finally, if <P(O,O} J~ 0 by an improper reduction, then this must be a 

simplification, because reduction (I) preserves the derived formula. 

So p<ji,(O,O} is [vE] or [3E], and as p<ji,(O) here is [vE], we thus have 

Cut(<ji,(0)), contradiction {k}(<ji,())"" () once again. Hence (I) is simply 

impossible under the inspected conditions. 

subcase (ay) p <P' (0) is [3E]. Similar to (af3). 

subcase (all) p <P' (0) is [.L]. 

<P (0, 0) 

a => .L <P (I) 

[.L] a=>A ➔ B a=> A 
<P 

[➔E] a => B 

<P <o,o> 

r=~ > 

a => .L 
=: w 

[.L] a => B 
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(O) • • (O) JL (0 0) Here St(¢ ) is assumed, while¢ F ¢ ' by an improper reduction, 

so g(¢ <o,oT) outright from the definition of stability. 

case (b). p¢, () is [&E] - similar to case (a) • 

case (c). p ¢, () is [VE]. 

subcase (ca). p 
¢, (Q) 

is [VI]. 

{:~•::m> tw 
(O ,m0 ) 

¢ 

Fl 
~ • A(i.O) 

¢ 
[VI] ~ • VxA(x) [R] ~ • A(t) 

[VE] ~ • A(t) 

where m0 is the value oft. Here St(¢(O)) by assumption, and 
(0,m ) 

¢<a> If=¢ o = 1/J<o>. So St(l/J<O>) and by 3.6.3(ii) g(l/J). 

=: 1/J 

Other subcases of (c) are treated like the analogous subcases of (a). 

case (d). p ¢, () 

case (e). p ¢, () 

subcase (ea). p 

is [FE] or [31]; 

is [vE]. 

¢,0 is [vI]. 

¢(0,0) 

a• A. 
i 

¢ <o,O) 

[kA.] 
i 

¢ (i) 

a•B 

the proof is as for (aS) - (ao). 

a•B 

(i=l ,2). 

Then g(l/J) outright from the statement of condition (ii). 
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subcase (el3). p 
<P' (0) 

<P <o,o > 

a*B - I 
v B2 

<P 
[vE.l] 

<f, (0, 0 > 

=: 1jJ 

is [vE]. 

<P(O,i) 

{ ~..e.Bi * Al 

~*Al 

[vEk] 

<P <O, i) 

{
~,.tBi * Al 

[vEk] 

v A2} i=I ,2 

v A2 

a*C 

a* C 

and recall that we assume {k}(<f,,()) ""'-().We find that the BI measure 
(O) 

of 1jJ is lower than that of <f, as in (aS), and that Nmble(ijJ ), 
Nmble(ijJ(i,j)) (i=l,2; j=0,1,2) and that the induction measure of ijJ(i) is 

lower than that of <f, (i=l,2). To conclude St(ijJ(i)) and so Nmble(ijJ(i)) (i=l,2) 

as in (aS) we have to check here that ijJ(i)~atisfies case (ii) of the lennna, 
(' ') k (' O) 

i.e., that in addition to the above 1jJ i,J is stable at Aj under 1jJ i, 

(i=l,2; j=l,2). I.e., we have to verify that when 

(I) 

then 

1jJ (i,O) 

I; 

[kA.] 
J 

<t> <o,i> II= 

</> (j )[.tB. J 
i 

I; 

=: e 

. 1 (' . 2) (O) II= {O,i) . l'f' ' ' h (I) is stab e i,J=I, • But <f, <f, by a simp i ication, so wit 

we have <o> 11= • • · <. ') 1 <P e, and so, since <f, satisfies case ii of the ennna, 
I; 

[kA.J 
J 

(i) 
is stable as required. Now we can apply BI hyp. to 1jJ , and 

<f,(j\.lB.] 
i 
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. d h ( (i)) fin tat St 1/1 (i=J,2). 

We conclude from this St(i/1) as in (a6) (i.e., as in (aB) the stability 
(i) l <O > • - • f · d 1 b {k} ( () ) <) ) of 1/1 at Bi under 1/1 is satis ie vacuous y ecause ¢, ~ • 

subcases (ey),(eo). p¢,(O) is [3E] or[~]. Analogous to (e6) (compare (ao)). 

_c_a_s_e_,_(f_)~. p¢,() is [3E] - like case (e), mutatis mutandis (compare also 

(c) for the use of [R]). D *I case 

3.7.3. LEMMA (in Y0 +BI). Let Dercx,(¢); ifVm SSt(¢(m)) then SSt(<j>). 

PROOF. [a] If¢ is a singleton derivation (i.e., 

then SSt(¢) outright from the definition. 

[b] If p¢,() is [+I], 

<I> (0) 

<I> 

p¢,() is [T] or [TE]) 

then by our convention on indexing kB i ~• so ¢(O) is stable at kB, and 
I 

by 3.6.3{i) ¢1 is stable. 

[c] If p¢,() is a non-critical inference other than [+I], then¢....+ <1> 1 
implies outright¢ (m) .._.. ¢~m>, so Vm SSt(¢ (m)) implies Vm ~(¢~m)) and by 

3.6.3(ii) ~(¢)). 

[d] If p¢,() is a critical inference other than [vE], [3E] we obtain that 

SSt(¢) as in [c], using 3.7.2(i) in place of 3.6.3(ii). 

[e] p¢, () is [vE] or [3E]; ¢ .._.. ¢1 implies ¢ (O) .._.. ¢~0 >, so if ¢:o> II= 1/1 
(0) . 

then we get from SSt(¢ ) that St{ip). Consequently, we find as in [b] 

above that ¢1 satisfies the conditions of 3.7,2(ii) (respectively, 

3.7.2(iii)), and so St(¢ 1). D 

This concludes the proof of theorem 3.6.1. 

3.8. THE SUBFORMULA PROPERTY 

For simplicity, we refer to ACX) as given in I.I, · "th t · d. · i.e., wi ou in exing 

and without the replacement rule [R]. 
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Ad hoc definitions: 

F sub of G ·= F is a sub formula of G or F - .L. 

F sub of ~ ·= F sub of some G E a. 

~ sub of b := every F E a is sub of b. 

SI = ~F sub of s2 =~ := ~ u {F} sub of b u {G}. 

THEOREM (subformula property). Let NDer00 (¢), then for every u s¢,u suh of 
¢, () 

s • 

(Note that the theorem refers also to equations!) 

PROOF (in V0 ; BI is not used). The theorem is an immediate consequence 

(by ordinary induction on the codes of nodes) of 

(i) if u = v*(m} is a major premiss of an elimination rule, then 

F¢,u sub of ~¢,u. 

(ii) Otherwise, then s¢,u sub s¢,v. 

(ii) is clear by inspection of cases. If p¢,u is [FE], 

@-+ a,.E 

(v--+ [FE] a ,. .L 

say, then p¢,u cannot be an introduction, since Eis an equation, and can

not be [.L] or an elimination - by our definition of normality. So necessar

ily p¢,u~O} is [T], and so E sub ~ and (ii) is satisfied. 

(i) is proved by induction on the length of the branch u,u*(O},u*(O,O}, ••• 

in¢, which by WF(¢) must be finite. Since¢ is normal, if p¢,u is an elimi

nation, then p¢-;-ii"*(O} is either an elimination or [T], so by ind.hyp. (i) 

holds for U*(O}, i.e., 

(I) 

(a) If p¢,u is [&E] or ['v'E] then a¢,u = a¢,u*(O} and F¢,u sub of F¢,u*<o>, 

so by (I) we have (i) for u. 
(b) If p$,u is [+E], then a¢,u = a¢,u*(O} = a¢,u*()} while F¢,u and F¢,u*()} 

¢ U*(O} - -
sub of F' , so by (1) we are done. 
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(c) If p~,u is [vE] or [3E], then s~•u*(m+l) sub of s~•u*<o>, and s~,u sub 
~ U*(l) of s' ; so by (1) u satisfies (i). D 

3.9. THE DISJUNCTION INSTANTIATION PROPERTY 

PROPOSITION. If rA* A1 v A2 (where A* 

then either rA * A1 or rA * A2 • 

PROOF. By the. normalization theorem (3.4.8, 3.6.1) if• 'Pr00 (rA1vA2,) then 
-- ii!> • - cpI>. 
for some ~ ~ (~,r-.A1vA2,). Inspection on the cases for p' shows 

that the only possible case for this inference is [vI]. So 
oo (O) r , 

Prf (~ , -.A. ) for i=I or 2. 0 
- l. 
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A.4. NORMALIZATION IN L;; L00 IS REGULAR 

4.0. As explained in Int. 6, the chief raison d'etre of the departure 

of the normalization proof in A.3 from the traditional method of ordinal 

assignments is our wish to smoothly extend the proof to higher order systems: 

the "abstract" argument used in the proof may be adapted to the infinitary 

system L00 which combines A00 with the language and the inference rules of 
Ill 

simple type theory L. For the reader familiar with GIRARD [71],[72] it is 
Ill 

probably clear by now how to combine Girard's proof of normalization of L 
Ill 

with the argument of A.3 so as to get a normalization proof for L00
• The more 

Ill 

sceptic reader might like some details, and as a compromise we give below 

a somewhat detailed indication of the proof for the system L;, which com

bines A00 with the language and rules of the theory of species L2• This 

should make it clear that the notions of A.3, though applying to infinitary 

proof figures, may be combined without further ado with Girard's proof for 

the corresponding finitary systems. A detailed normalization proof for L00 may 
Ill 

then be easily supplied by the patient reader. 

The main consequence of the proof is that type theory L (and ipso facto 
Ill 

also the theory of species L2) are regular theories, namely 

A[L J 
Ill 

.s A00 [L + BIJ rec w 

(for refinements cf. LEIVANT [A]). Assuming that Lw +BI+ AC~0 is consistent 

(cf. A.I) we have that L is 
Ill 

also strongly regular. This last assumption is 

an immediate consequence of the consistency 

As indicated in TN4, another corollary 

C 
of Lw + AC00 • 

of the normalization of L00 is 
Ill 

that L 
Ill 

is conservative over A extended with the schema of transfinite in-

duction over each well-founded p.r. ordering. 
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4.1. DESCRIPTION OF L; 

The language of L; is the language of A extended with variables and 

parameters for species of n-tuples, {X?}. , {P?}. , n<w, and corresponding 1. 1.<w 1. 1.<w 
universal quantification vx?. 

I.-

When Vn is a variable or a parameter, Fis a formula, G is a pseudo-

formula (i.e. - some first order variables possibly occur unbounded in G) 

and; is an n-tuple of first-order variables, we write F[G[;]/V] for the 

(pseudo-) formula which comes from F by substituting (simultaneously) 

G[t/;] for every occurrence P(t) in F. Usually no confusion occurs if we 

skip;, and so we shall do below, 

The inference rules of L2 are those of A00
, with the addition of the 

· second order quantification rules: 

a=> VX A[X/P] 

where P does not occur.in~ (and X,P are of the same type). 

a => VX A 

~=> A[G/X] 

Derivations and recursive derivations are defined now as for A00
• We 

shall use the notations Der00
, Der00 etc. in this chapter for derivations 

-- --rec 
of L;. 

Without loss of generality we assume that each derivation satisfies 

the convention on parameters of PRAWITZ [71] 1.2.4, i.e. - that no parameter 

which occurs in the derived sequent of a derivation cp is the proper para-

meter of any [V2IJ-inference, and that the same parameter is not the proper 

parameter of two distinct [V2IJ-inferences. Note that any given derivation 

cj> may be made to conform to this convention by replacing any occurrence of 

a parameter p by p. where u is the code of the node for which that occur-
J+tt 

rence acts as the proper parameter when there is such a node (else u := O), 

and where j is the largest index of the parameters which occur in the de

rived sequent of cj>. 
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4.2, PROPER REDUCTIONS; NORMALIZATION 

00 00 2 
The critical inference rules of L2 are those of A plus [VE]. Cuts 

are defined accordingly as in 3.3.1. 

Reductions r=1, W, f etc. on derivations are defined as in 3.3, 

with the addition of permutative- and absurdity-reductions with [Y2EJ 

as the lower (critical) inference rule, and of 

cp<o,O) 

v2-reductions: 
~ => F[P/X] cp <o,O )[G/P] 

a=> F[G/X] 

Other functions and predicates defined in 3.3 are now adapt~d to L; by 

taking into account the above modifications. 

4.3. BASES, BASING FUNCTIONS 

A basis is a set B of derivations (of L;) which satisfies: 

"' E B and "' L1 "' 'f 'f r* 'fl 

A basing function is a finite function S from the second order parameters 

of the language to bases. We write S = {(P.,B.)}._1 k also as 
1 1 1- , ••• , 

This notation makes it easy to denote an extension of a given basing func

tion. (A basing function does not range over occurrences of parameters: 

our convention on parameters makes this unnecessary.) 

Given a formula F and a basing function S, the basing function (S~F) 

is defined to be the restriction of S to parameters occurring in F. 
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4.4. GENERALIZED REDUCTIONS; STABILITY 

The measureµ on formulae of L00 is defined as in 3.5.1, with the ad-
2 

ditional clause: 

µ(VXA) := µ(A). 

We refer to triplets <¢,8,F), where¢ is a derivation, 8 a basing 

function and Fa formula, s.t. 1¢1 := F¢,<> is a substitution instance F* 

of F, and where 8 = (S~F) (F may be thought of as the "skeleton" of¢). 
n 

We define by metamathematical recursion the predicates 11= and St over 
~ 

the triplets satisfying µ(F) ~ n (n~O). The nature of this recursion is the 

same 

(i) 

(ii) 

(iii) 

as in 3.5.2, and we shall omit the index n 

If 

If 

¢ r~ ¢1 where u :<>< {k}(¢,()) I 0 

(¢,8,F) lr1 <¢ 1,S,F>. 

St(ijl,8,F), liJil F* 

[➔I J 
m 

* * a,..F -➔ G 

1jl 

1r1 <c~*J ,s,G>. 

¢<o> 

then 

,8, F -➔ G) 

then 

where G is any formula, Pis the proper parameter of the main inference 

of¢ and U is any basis. 
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(iv) (.--------
[&I] a,,. & Fj 

<<ti<i>,f3,P.) 
l. 

(i=O,J). 

Other improper reductions are adapted from the corresponding reductions in 

3.5.3 in the same manner. 

IF is the transitive closure of IF 1• 

where M(<ti 1,s 1,F 1) is the formal predicate expressing 

Here, if P J Domain(f3) we let <ti 1 E s1 (P) be definitionally true. 

<ti is strongZy stabZe (notation: SSt(<ti)) if for every derivation <1i* 

which comes from <ti by substituting (pseudo-) formulae for parameters, and 

for every basis function f3, if 

n. 
{ [ iA. J } 

1. iEI (like in 3.5.5) 

* <Ii 

where St(w.,(f3~A.),A.), 
- l. l. l. 

4.5. LEMMA. Let Der00 (</i). 

(i) If SSt(<ti) then ~(</i,(B~l<til),l<til) for any basing function f3. 

(ii) If ~(<li,8,F) for some f3,F, then Nmble(<ti). 

PROOF. (i) Let, in the definition of SSt(</i) above, <1i* := <ti and <tiH := 4i* 

by taking 

* [ [T] a<li ,O ,,.A. J 
l. 

(singleton derivations). 

(ii) Take IF of length O in the definition of ~(</i,S,F). D 



4.6.1. LEMMA. Given a basing function Sand a foY'mUZa F, Zet 

[ S ,F] := { cj, J "I cj, J is a substitution instance of F" 

& St(cj,,(S~F),F) }. 

Then [S,F] is a basis. 

PROOF. Immediate from the definitions. D 

4.6.2. SUBSTITUTION LEMMA. Let P not OCCU1' in G. 

(or, put differently, 

PROOF. By induction on µ(F). 

I. Assume 

(I) ~(cp,s*,F) wheres* := S[[S;G]J. 

If F = P, F[G/P] = G, then (I) implies cj, E s*(p) = [S,G], and so 

~(cj,,S,F[G/P]) outright. 

If Ff P, let 

k (cj,,S,F[G/P]) I~ (ip,y,H). 

We prove by (a second) ·induction on k that 

M(ijJ,y,H) := Nmble(ijJ) & [ H = Q(t) -+ 1jJ E y(Q) ]. 

Basis. k = O, 1jJ = cj,, and so Nmble(ijJ) by (I) and 4.5. Further, if 

H = F[G/P] = Q(t) then Ff P implies F = Q(t) , and so 

1jJ = cj, E $ * (Q) by (I) 

=: S(Q) = y(Q) since Qt P 

73 



74 

Ind. step. Let 

!Lk ( } r l)J,y,H 

and inspect cases for the first reduction. The only non-trivial cases are 

the following 

[a] [+I]-reduction; F - A -+ B, 

s, 

where g(x,S,A[G/P]). But µ(A) < µ(F), and so by the first ind.hyp. 

* g(x,S ,A). Hence 

* and so by (I) gC$ 1,s ,F 1). We may therefore apply the second ind.hyp. 

to <$ 1,s 1,F 1[G/P]} and conclude M(l)J,y,H). 

[b] [V2IJ-reduction; F = \fX A 

F 1 - A[Q/X]. 

So 

and so by (I) 

(2) 

In order to apply ind.hyp. to ($ 1,s 1,F 1[G/P]} we have to know however that 

(I) applies, i.e., that 

(3) where 
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But (S 1tG) = (StG) because P does not occur in G, and so 

hence (2) implies (3), as required. 

II. Assume 

(4) St(~,S,F[G/P]) 

and let 

As in I above we prove that M($,y,H} by induction on k. The induction step 

is symmetric to that in I, while for the induction basis we note that when 

F = P, F[G/P] = G, then 

~ € a*(p) := [S,G] 

by (4). 0 

The reader might note, in cC>nnection to the proof above, that 

GIRARD's [72] proof of the substitution lennna is not quite accurate: the 

application of the ind.hyp. given at bottom p.II.1.6 should yield [~,y/_~,G]£_ 

within the l.h.s., in place of [~,!.J£.• 

4.7. LEMMA. Let <~,a,F> be a tPiplet as above, and, p~.<> be a non-aroitiaal 

inferenae. If Vm. SSt(~ (m)) then SSt(~). 

PROOF. The proof is totally analogous to that of 3.6.3. To take as an 

example the only essentially new case, let p~,() be [V2IJ, 

~ (O )[P] 

!, -. F[P/X] n. 
~ a= { iA, }. 

a-.VXF 1 1 
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and let¢*+ come from¢ as in 4.4, i.e 

n.i/li 
{[ iA. ]}. . 

1 1 

¢* 

In analogy to the proof of 3.6.3, we have to show that ~(s,S,F[P/X]) for 

any basing function S, and where 

s := 

(¢*+) (O)[G] 

a~ F[G/X] 

for some formula G. P cannot occur in a and therefore, it does not occur in 

any ij,. (by the convention on 
1 

- . ( 0 )* 
parameters). Hences may be obtained from¢ 

by first substituting G for P and then substituting the derivations l/J •• Since. 
_l. 

~St(¢ (O)) is assumed we thus get St(s,S,F[P/X]) as required. 0 

4.8. LEMMA. Let <¢,S,F) be a triplet as above, p¢,<> be a critical node. If 
(m) 

Vm SSt(¢ ) then SSt(¢). 

PROOF. Here a3ain the proof is analogous to the proof in 3.7.2-3 for the 
¢ () 2 

first order case. Since p • is not [VI], 

must imply that s1 = S, F1 = F; hence the proof in 3.7.2 for derivations is 
¢ () 2 

trivially adapted to triplets. The only exception is the case p • =[VE], 

where we have to show (in step (IV)) that if 

where 

s[P] 

},. * !!_ ~ F [P/X] s 
¢ * ¢1 * * a~ VX F !!_ ~ F [G /X] 

* !!_ ~ F [ G * /X] 
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then St(,1,a,F[G/X]). We have, by an improper reduction, 

for any basis B. Since St(n,B,VXF) is assumed here, we thus get 

(1) 

But picking up in particular B := [B,G] we get from (1) by the substitution 

lemma 

as required. D 

4.9. THEOREM. Every derivation of L; is no1'171a"lizab"le. 

PROOF. Assume Derm(,). As in 3.6.1, we get from 4.7, 4.8 by BI SSt(,) and 

so by 4.5 Nmble(,). □, 

4. IO. THE REGULARITY OF . L2, ~w 

Since there is a truth definition for L2 in L3 (by Tarski's method, 

compare e.g. TARSKI [36]), the proof of normalization of L2 above is easily 

seen to be formalizable in L3 + BI, and so 

where Lm2 is the system of recursive derivations of Lm2• The first inclu-,rec 
sion is an immediate corollary of the obvious embedding of L in Lm 2 2,rec' 
When a derivation {d} of L; proves, an arithmetical sentence, then the 

normal form {n}{d} of {d} i;r:cderivation in Lm2 which satisfies the 
,rec 

subformula property, and therefore must actually be 

The local correctness and wellfoundedness of {n}{d} 

a derivation of Am • rec 
are proved in the theory 

in which the normalization of {d} is proved, hence the second inclusion in 

(1). 

Actually the embedding of L2 in Lm2 mentioned above assigns to each ,rec 
particular (finitary) proof n of L2 a proof~ of L; where there i~ a bound n 
on complexity of formulae, Thus for~ the normalization proof uses the 
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predicates lrm,; only form$ n, and using a truth definition inn!

analysis for a suitably large k = k(n) this proof is formalizable in 

L; +BI.Hence (I) is refined to 

Analogously we have 

A[L J ~ A00 [L + BIJ. 
w rec w 
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PART B. Absoluteness theorems. 

B.O. STATEMENT OF THE RESULTS 

When F[p 1, ••. ,pk] is a scheme of L0 with (at most) the k propositional 

letters shown, and when A1, ••• ,~ are arithmetical sentences, write 

F[A1, •.• ,~J for the sentence which comes from F[p 1, ••• ,pk] by substituting 
. n1 nk . 

Ai for every occurrence of pi (1.= I, ..• , k). When F[P 1 , ••• , Pk ] 1.s a scheme 

of L1 with (at most) the k predicate letters shown, where pii is 
n. 

n.-place, and A.1. is an arithmetical formula with n. free variables 
l. l. l. 

(i=I, •.. ,k), write F[A1, ••• ,~] for the formula which comes from 

F[P 1, ••• ,Pk] by replacing every atomic subformula Pi(x 1, ••• ,Xni) by 

Ai (xi' ••• ,xni). 
Regular and strongly regular number theories are defined in A.I above. 

THEOREM I 

LetA*be 

Al' •• ·•~ 

(Locally uniform !:~ absoluteness . of L0). 

a reguZar number theory. For every k < w 

s. t. 

there are :EO sentences 
I 

Or more preciseZy: there is a quantifier-free (q.f.) formuZa E0 (x) s.t. 

\/kVxL -Fml(x)[-,PrL (x) 
~ 0 

is provabZe in A + "A* is reguZar", where 

~(x) == 11 x is the g.n. of a schema in the Zanguage of L011 ; 

v(rF,) ,, h .- t e number of propositionaZ Zetters occurring in F", 
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k and sub O is a pl'im. rec. function which satisfies 
I:l 

k (r ], r , r , sub O F[p 1, ••• ,pk , E0 ) = F[3xE0<k,x), ••• ,3xE0(k,x)]. 
I:l 

THEOREM II (Globally uniform TT~ absoluteness for L1). 

Le~ A* .be a strongly regula'l' nwnber theo'l'/1. The'l'e a'l'e TI~ pNdicates 
{A~}. • s.t. i i,J<w 

Or more precisely: the'l'e is a q.f. fo'l'l'TTUla E1(x) s.t. 

VxL -Fml(x)[~ (x) ➔ ,~*(sub 0(x,rE 1,))] 
-I-- I --U 

2 

where subre is a pl'im. rec. function which satisfies 

2 

where 

n. 
Q/(~) :: Vx3y E1< x,y,i,ni,( ;». 
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B.I. RECURSION-THEORETIC SOLUTION OF A REDUCED FORM OF THOEREM I 

1,0. We wish to find I~ sentences A1, .•• ,'\; s.t. 

* If the theories L0 and A are replaced by their classical completions then 

~1,.,.,'\; may be defined by truth-tables arguments using recursion-theoretic 

methods only, as in KRIPKE [ 63] and in MYHILL [72 ]. The complications for 

the intuitionistic case are the result of the presence of implications in 

the schema F, or more precisely - of negative nestings of implications. It 

is in such cases that the intuitionistic interpretation of the logical con

stants is expressed in an impredicative manner ("for every construction, •• 

there exists a construction, •• "). 

As in A.3., let us count the negative nestings of implications by a 

measureµ, i.e., 

:= 0 for atomic F, 
- -, r---,r-, µ1 FvG := max[µ F ,µ G ], 

µrF➔G1 := max[µrF 7 +J,µrG 7 ]; and for the full language of L1, 

µrVxF 7 := µr3xF 7 := µrF-, 

We shall see that for schemata F s.t. µrF 7 ~ I the classical recursion

theoretic methods work. The complexity invo.lved in the growth of the 

µ-measure is further illustrated by the fact (cf. LEIVANT [74]) that the 

consistency of~ is provable in ~+I for every k, where 

~·=A restricted to formulae F s.t. µrF 7 ~ k. 
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I.I. STATEMENT OF THE REDUCED SOLUTION 

We define a sequence Uk of propositional schemata, where 

Uk - Uk[p 1, ••• ,pk] and µ~Uk~ SI as follows. 

uo == .L 

U I [ p] : = pv,p • 

Assuming Uk to be defined, let 

We shall solve in this section (*) for the schemata Uk, i.e., 

0 k k PROPOSITION. We aan unifo1'TT!Zy aonstruat LI sentenaes A1, ... ,¾ s.t. 

(k<w). 

Here A* may be taken to be any aonsistent r.e. extension of A whiah satis

fies disjunation instantiation (the so-aaUed "disjuantion property"), i.e., 

I- AV B 
A* 

n- A or r B], 
A* A* 

1.2. Actually proposition I.I gives a solution of(*) for aZZ schemata F 

s.t. µrF, s I, on account of the following 

PROPOSITION. For any sahema F of L0 s.t. µrF, s I, 

SKETCH OF PROOF. Use a primary induction on k (= the number of proposition

al letters occurring in F), secondary induction on the length of F, and 

ternary induction on the length of the left main subformula of F. D 

1.3. LEMMA (propositional logic. Compare KLEENE [52] §33). 

[al] If Q is a positive oaaurrenae of a subforrrru.Za of F, then 



E 1-L F ➔ F[H/Q_] 
0 

(where F[H/G] aomes from F by replaaing the oaaurrenae Q. by H). 

[a2] If Q. is a negative oaaurrenae in F, then 

~ E 1-L F[H/Q_J ➔ F. 
0 
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[b] Let Fq be the propositional schema whiah aomes from F by replaaing 

(sirrrultaneously) every oaaurrenae of some (fixed) propositional letter 

pin F by pvq, where q is a fixed propositional letter. Then 

I- q ,q L F ➔ F. 
0 

PROOF. [a]: Straightforward by induction on the length of F (simultaneously 

for [al] and [a2]). 

[b]: Since q 1-L pvq, we get by repeated application of [a2] 
0 

I- Fq- ➔ F where Fq- comes from F by replacing only negative occur-LO , 
rences pin F by pvq. But ,q 1-L pvq ➔ p, so we get by iterated application 

0 
of [al]: (**) ,q 1-L Fq ➔ Fq-. (*) and (**) yield [b]. 0 

0 . 

1.4. SIMPLIFIED DEFINITION OF EFFECTIVELY INSEPARABLE R.E. SETS 

It is just to smoothen the exposition that we use the following 

LEMMA. Two disjoint r.e. sets A,B are effeatively inseparable iff there 

is a (total) reaursive funation f s. t. 

PROOF. 

W. n A 
l. 

W. n B 
J 

I. The "if" direction is trivial, since the function f satisfies more 

than what is required from a function of effective inseparability (cf. e.g. 

ROGERS [67] p.94). 

II. Let, on the other hand f 1 be a (partial) recursive function for the 

effective inseparability of A and B, and let i,j satisfy 
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(I) An W. = 0, B n W. 
l J 

By the reduction principle (cf. ROGERS [67J, p,72) there are functions 

g,h s.t. 

(2) W(")cW.; g l - l Wh(j) C W., 
- J 

(3) wg(i) u Wh(j) = w. u w. and 
l J 

(4) wg(i) n wh(j) 0. 

Take now 

Then 

while by (4), (2), (I) and the assumed An B 0, 

(7) 

For the f defined by 

[Wg(i) n wh(j)J u [Wg(i) n AJ u 

u [Wh(j) n BJ u [An BJ 

f(i,j) := f 1(g'(i),h'(j)) 

we have now, by (6) (7) and the choice of f 1 that f(i,j) i W. u W. as re-
l J 

quired.It is easily seen, in addition, that f may be extended to a total 

function. D 

1.5. DEFINITION OF THE DESIRED L~ SENTENCES 

The following construction generalizes the method of MYHILL [72]. Let 

A,B be r.e. sets, effectively inseparable (in the sense of I ,4) through the 

function f, and let A* be any consistent r.e. extension of A which satisfies 
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the disjunction instantiation property. Following SHEPHERDSON [60] we may 

define (explicitly) a L~ formula F(a) - 3xF0 (x,a) s.t. 

A= {m I IA* F(m)}; B = {m I I- ,F(m)} 
A* 

(To see that this holds also intuitionistically, either inspect Shepherdson's 

proof, or observe that the equations above are formalizable as TI~ statements 

and recall that for such sentences derivability in classical arithmetic im

plies derivability in intuitionistic arithmetic.) 
k 

We construct now, by recursion on k, an infinite sequence {A,}. s.t. 
:i. 1-<w 

(2) I k k 
f Uk[A. , ••• ,A. J for every distinct i 1, ... ,ik. 
A* 1 1 1 k 

Basis: By the assumed properties of A* there is a L? Rosser sentence R for 
-*-- I 
A; set A. :~ R for every i. 

]_ 

Recursion step: Assume A~, 
0 ]_ 

i < w to be defined and to satisfy (2). We define 

a sequence of LI sentences k 
{G.}., 

J J •,(J) 
s,t. no finite boolean combination of 

the G~'s implies in A* 
J 

boolean combination we 

Sub-basis: Let 

k k Uk[A. , .•• ,A. ] 
1 1 1 k 

mean here a set 

for some distinct i 1, ••• ,ik. (By a 

{H.}. where H. is either G~ or -,G~.) 
J.J J J J 

(3) w {m I 31 distinct il, ... ,ik for which F(m) IA* 
k k 

:= Uk[A. , ••• ,A. ]} g(l ,k) 1 1 1 k 

(4) Wh( I ,k) {m I 31 distinct i I' ••• ' ik for which ;F(m) IA* 
k k := u k[A. , ... ,A. ]} 
1 1 1 k 

Now Wg(l,k) n A= 0 and Wh(l,k) n B 0 by (I) and (2). Hence 

f(g(l,k),h(l,k)) ~ wg(l,k) u wh(l,k)" 

Define 

G~ ·= F(f(g(l,k),h(l,k)); 

then 

(5) as required. 
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k k Sub-recursion step: Assume that G1, ••• ,G1 are defined, and satisfy 

(6) 

Define 

- * I k k W := {m I 31 distinct i 1, ••• ,ik s.t. F(m), G - Uk[A. , .•• ,A. J 
g ( 1 + 1 , k) A* i 1 ik 

* k k for some boolean combination G of G1, ••. ,G1} 

As in the treatment of the sub-basis we have here 

W n A=~; g(l+l ,k) wh(l+l ,k) n B 

So, defining 

k 
Gl+I ::: F(f{g(l+l ,k) ,h(l+l ,k))), 

we have 

G*lf [k k] .. * k k 
A* Uk A. , ••• ,A. for every boolean combination G of G1, ••• ,Gl+I' 

il ik 

Main recursion step continued: Define now A~+I to be (the purely r~ equiva

lent of) A~ v G~. To conclude the proof, assume 
i i 

I k+I k+I 
- Uk 1[A. , ••• ,A. J for some distinct i 1, ••• ,ik+l' 
A* + i I ik+ I 

* By the disjunction instantiation property of A we get, w.l.o.g., 

I- Ak.+I k+I k+l ➔ Uk[A. , ••• ,A. ]. 
A* ii i2 J.k+I 

B 11 . h defi'ni'ti'on of Ak.+l, thi's · l' ut reca ing t e J imp ies 
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Gk_ I [ k k k V Gk. J - Uk A. v G. , ••• ,A. 
ii A* i2 i2 ik+I ik+I 

which by I .3 [b] implies 

contradicting the construction of the sequence G~. Hence 
J 

I k+I k+I 
fA* Uk I [A. , ••• ,A. J 

+ ii ik+I 

as required. D 

Note, finally, that the above construction can be rendered totally 
k 

uniform. That is, every Ai can be presented as 3xB(f'(i,k),x) for a suit-

able total recursive function f'. This formula does not belong, strictly 

speaking, to the formalism of A. E,ut it is equivalent to the following for

mula of prim. rec. arithmetic: 

wher-e e is the g.n. of the function f', T and U are Kleene's computation

predicate and result-extrating function respectively. We have thus proved 

theorem I for schemata F s. t. µ ,.F.1 ~ I. D 
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B.2. PROOF-THEORETIC REDUCTION OF THEOREM I 

2.0. Here we prove, for a regular number theory A*~ A00[T], 

To simplify notations we shall actually prove the proposition for 

A* c A00 [T] (in place of A00[TJ). A proof of the general version stated - rec 
above is obtained trivially mutatis mutandis. Combined with the solution 

given in section 2 for the schemata Uk, this implies theorem I, since 

A00 [T] as well as A00[T] are r.e. and satisfy the disjunction instantiation rec 
property. 

The proposition is proved as follows. In 2.1 - 2.7 below we prove 

(for some prim.rec. f) 

(I) f-y0+BI -.Prl0("F-,) & Nprf;ec(d, .... F[A1, ••• ,¾J') 

-+ Nprf;ec(fd,r-Uk[A1, ••• ,¾J.,). 

So, for a theory T ~ Y0 +Bland a proof-predicate PrT for it which is 

proved in A to be closed under Modus Ponens, 

(2) 

-+ PrTr-NPrf00 (fd,....Uk[A 1, ••• ,A_ J°'').,. - --rec -1< 



But PrL is a prim.rec. predicate, so (2) implies 
0 

(3) 

for any A* !:: Aoo [TJ, 
rec 

(3) is proved in any extension of A where A*!:: A00 [TJ is proved. 
rec 

2.1. HEURISTICAL CONSIDERATION LEADING TO THE REDUCTION 

89 

2.1.1. Assume the premiss of 2.0(1). It means that a normal derivation d of 

Fin A00 is given where some quantification or arithmetical rule must rec 
occur, because -,Prl rF-.. We "climb up" in the proof-treed in search for -o 
such an occurrence, starting at the root ( ), 

To allow a smoother semi-formal exposition, let us write - for a node u -

pd,u for the inference rule encoded by ({d}u) 0 , and 

for the sequent coded by ({d}u) 1• 

At every stage of our search ind we arrive at some node u where the 

Fd,u · ~0 b . . f h f L d h sentence is a ~ 1 su stitution o a sc ema o 0 , an were 

P (,.. d,u-,) . d,u Fd,u b . h 1 f L -i_,E_LO s , i.e. a => cannot e proven using t e ru es o 0 

only. 

Suppose now that a node u is "selected" at a given stage of the search. 

If pd,u is a propositional rule, then at least one of the premisses u*( n), 

2 f · d . f (,.. d,uM n)-,) b n :S o u in must satis y -.PrLo s , ecause 

since u is "selected". We "climb up" to the leftmost of 

P ( ,.. d,u"') -, rL s -o 
these premisses. 

d u 
p' cannot be [VI] or [VE], by the subformula property of d, because 

V does not occur in F[A1, ••• ,"k]• 
If Pd,u . [ 3E] d P (,.. d,uM Oh) (. h . . . is , an -i_.E_Lo s i.e., t e maJor premiss is 

not provable using propositional rules only), then we climb up to u*(O), 

Else, we proceed simultane.ously to all minorpremissesuMn+J), n :S w. 

The major premiss Fd,uM O) == 3zCz must be a :r:0 sentence, by the sub-
I 

formula property. So for every n 
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d,u C- Fd,u .!!. , n => 

h C · . d Fd, u . .-O b . . f . . were n is an equation, an is a ~ 1 su stitution o a propositional 

schema. It is easy to see (2.3 below) that if Prl (r-ad,u,Cn=>Fd,u-,) for 
-o -

some n, then P.rl Cad,u,,.Fd,u-,), which contradicts our assumption that the -o -
node u is selected, It follows that all nodes u*(n+I) corresponding to 

the minor premises of pd,u satisfy our conditions on "selected" nodes. 

Now since dis a well founded tree, any successive selection of nodes 

as above must terminate. Such a "search" cannot terminate at a top-node of 

the derivation 
(i) if Pd,u 

(ii) if pd,u = 

d, because 

[TE] then Fa,u is an equation, and sou is not selected; 
r- du-, 

[T] then Prl ( s ' ). -o 
Hence the search determined by any successive choice of minor (or major) 

premisses of instances of [3E] must stop at some node u s.t. pd,u is either 

[31] or [FE]. 

2.1.2. Let us now consider how this information on the "search" described 

above may be used to construct a proof in A;ec for Uk[A 1,.,.,f\J, To start 

with, take the simplest case, where k = I, F = F[3xEx], and let u be some 

terminating node of the search. 

Case 1. pd,u = [31] 

the node @-

d,u~O) 
p 

[31] 

a => Et 

a=> 3xEx 

Ob . 1 h . f 1 d 'u*( O) b . d . 1 If vious y, t e in erence rue p cannot e an intro uction rue. 
d, U*( O) . [ ] h h h f. . p is +E, ten we ave t econ iguration 

a=> G + Et a=> G 

the node @--+ a=> Et 

But no subformula of F[A1,.,.,f\J has the form G+Et where Et is an equation. 
d U*( 0) 

Sop• cannot be [+E], and the cases [&E] and ['v'E] are ruled out like-

wise. pd,u~O) cannot be one of [i], [vE], [3E], by our definition of nor

mality. We are thus left with the case that u~O) is a top node of d, and 
d,u*(O) p is [TE] or [T]. In the first case we may construct 



[TE] * Et 

[3I] * 3xEx 

So we have obtained a derivation for u1[3xEx], 
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On the other hand, the case pd,u*(O) = [T] is ruled out as follows, 

Assume that pd,u~O) =[Tl.Then Et E ~• and since d derives a sequent •F 

with an empty precedent, Et must be "discharged" ind somewhere below the 

node u, Again by the subformula property of d, this discharge cannot be at 

an instance of [➔I] or of [vE], and so it must be at an instance of [3E], 

and we should have the following configuration (where t = n.), 

b • 3xEx 

a* En 

G)-+ a* 3xEx 

.£_, En * B 

[3E] b * B 

0 Here the two indicated occurrences of L 1 formulae must be identical for the 

case considered, Since the node u is selected, so must be v, but not v~O), 

This means that ~Prl (~a*3xEx~), but Prl (~b*3xEx~). From the configuration 
0 - - 0 -

just shown we must have, however,.£_~~• and this is a contradiction, 

Case 2. pd,u = [FE], a•E say. 

[FE] a* .L 

As in case I, we find that u~O) must be a top node of d, and since E here 
d,u~ 0) is a false equation, we are left with the case that p is [T]; so we 

must find ind the following configuration: 

[T] a•E 

l: 
n 

b * 3xEx .£_,En * B 

[3E] b • B 



92 

and we may assume w.l.g. (by the well-foundedness of d) that the configura

tion of the type shown does not repeat itself within any of the subderi

vations E. Since u is selected, so must be v, and hence v~m+l) for every 
m 

m < w. Each search in a subderivation E must come to an end at some node 
m • d u>\{ 0) 

um, and the argument of case I· (about ruling out p ' = [T]) shows that 
d,~. 

since v>l{O) is not selected, p is not [31], and must therefore be [FE]. 

Hence we can extract from the configuration above the derivation: 

[T] 3xEx • 3xEx 
rl 

[FE] 

3xEx,E: ~ EU} 
3xEx,En • i n<w 

[3E] 3xEx • i 

[ +I] • -,3xEx 

[vI 1] • 3xEx v -i3xEx 

and again we find a derivation in A00 for u1[3xEx]. This concludes our 
rec 

observation on the case that k = I, F = F[3xEx]. 

2.1.3. Consider now the case k = 2, i.e., F - F[3xE0x,3xE 1xJ. Here the 

following configuration may occur 

{ E } 
n n<w 

(v-, [3E] a• B 

where the node u is selected, and the search continues to the minor sub

derivations E (i.e. - PrL (~a• 3xE0x.,)). But now, from our argument for 
n -o -

the case k = I it is clear that, for the node u at which the search in the 
m 

minor subderivation Em terminates FUm $ 3xE0x (m<w). So we may apply the 

argument for the case k = I to each of the minor subderivations separately, 
* . and extract from each of these a derivation Em for 3xE 1x v ,3xE 1x. Since 

the method of doing this is uniform, we can actually collect the derivations 

E* to yield the following derivation of A00 

m rec 



93 

[T] 

[3E] 3xE0x => 3xE 1x v ,3xE 1x 

[➔I] => 3xE0x ➔ 3xE 1x v ,3xE 1x 

[vI0J => u2[3xE0x,3xE 1xJ 

Iterating this process with some technical symmetrization arguments, we 

obtain 2.0(1). 

2.2. NOTATIONS 

Subordinated (d,u,v) == 3w, n<v [ v=w'k{ 0 > & w'k{ n+ I >-< u & 
d,w 

p [3E]] 

"vis a major premiss node of an instance of [3E] 

ind, and u is a node in one of the minor sub

derivations of this instance". 

Here -< stands for the initial-se,gment relation (between sequent-numbers). 

1 d (d ) 11 d,u . . 11 & ..,prL (rsd,u,) & Se ecte ,u == F is not an equation 
0 

:= 

:= 

l . ( ( O ) ) p (r d, W*( 0 )-,) ] Vw<u Subordinated d,u,w* ➔ ....E_Lo s • 

{Fd,v I Subordinated(d,u,v)} 

{Ee .!!.d,u IE an equation} 

:= U [A. , ••• ,A. J where 
m 1 1 im 

(set-theoretic difference) 
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0 2.3. LEMMA._Let A1, ••• ,~ be LI sentences, let~• G be foY'med of subforrrrulae 

of F[A1, ••. ,~J only, where G is not an equation, and let Ebe an equation. 

Then 

PROOF. Let TI be a normal proof for~.~ which uses propositional inference

rules only, and let TI* come from TI be eliminating E from all precedents of 

sequents in TI. Check by inspection on cases for inference rules that TI* is 

a correct derivation. (Note that by normality no formula of the form E + H 

may occur in TI). □ 

2.4. LEMMA. (in A) 

(a) (d ) [ d,u [31] v pd,u = [FE] v Selected ,u -+ p = 3nS2 Selected(d,u*(n)) J 

(b) Selected(d,u) & pd,u = [3E] & 

-+ Vn>O Selected(d,u*(n)) • 

PROOF. Assume Pd,u f [3I],[FE] and the premiss of (a), and consider cases 
for Pd,u. Pd,u b [T] [ J ( Pd,u cannot e or TE, because Selected d,u). is not 

[VI] or [VE] by the subformula property of d. If pd,u is a propositional 

inference-rule, the proof is immediate. We are left with the case that pd,u 

is [3E]. If P (" cf, u*To)::;) then we are done (for part (a)). Else, then ,.:.El.o s 

Selected(d,u*(n)) for every n > 0 by 2.3. D 

2.5. ASSIGNMENT OF DERIVATIONS TO THE SELECTED NODES. 

00 .. -n Assume NPrf (d, F[A1, ••• ,A..J) --rec -K as above. We define a function {a(d,u)} 

recursive in {d} and u by the conditions given below (compare the definition 

of {n} in A.3.4.3). By the s.m.n.-theorem a(d,u) is then a prim.rec. function. 

{a(d.u)} is intended to be the formal description of a derivation of A00 for 
~,u U bd,u,.Ud,u 

(i) If ,Selected(d,u), then {a(d,u)} = O. 

(ii) Else, and pd,u = [3I], then {a(d,u)} describes the finite derivation 
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d,u bd,u Fd,u-i.< Q) 
~ u_ ,. 

[31] d,u bd,u Fd,u 
~ u_ .,. 

instances of [+I]} 

and of [vl] 

d,u bd,u Ud,u 
~ u_ .,. 

d u d u d,u-i.< O) Note that, by the argument of 2.1.2, F' ~ ~' and that p is 

either [T] or [TE]. So the figure above is indeed a derivation. 

(iii) Else, and pd,u [FE], Let {a(d,u)} describe formally 

[T] ~,u u ~d,u.,. Fd,u-i.< O) 

[FE] ~,u u ~d,u.,. .L 

[.L] ~,u u ~d,u.,. Ud,u 

(iv) Else, and pd,u is a propositional inference rule, Let u-i.<n) be the 

leftmost premiss of u ind s.t. Selected(d,u-i.<n)) (cf. 2.4.(a)), and 

let {a(d,u)} := {a(d,u-i.<n))}. 

(v) 

[T] 

d u Else, and p • = [3E];. 

Subcase A: If -.PrL (r-sd,u-i.<Oh), let a(d,u) := a(d,u-i.<O)). 
-o 

Subcase B: Else, and 3xEx == Fd,u*(O) ~ ~d,u, then let {a(d,u)} 

describe the figure 

E' 
n 

du du 
~• u~' ,3xEx • 3xEx { d,u-i.< n) bd,u 3xE ud,u*<n > } 

E-0 u_ • x,. O<n<w 

i~stances of} 
[vl] 

d,u bd,u Ud,u 
~ u_ .,. 
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Here, if E is described by {a(d,u-k( n)) }, then E' comes from E by n n n 
joining the formula 3xEx to all precedents. Note that by the casers 

conditions 

bd,u-k( n> = bd,u u {3xEx} 

I d,u-k( n) = ad,u u {E~} for n > O. ~ .::0 

Ud,u-k(n) - Ud' u-M I) 

Subcase C. As subcase B, but 3xEx E bd,u. Then let {a(d,u)} describe 

d,u u bd,u ~ 3xEx ~o 

[3E] 

E 
n 

{ d,u-k( n> bd,u 3 E Ud,u fl 
~ u_ , x x ~ O<n<w 

d,u bd,u Ud,u 
~ u_ ~ 

d u*( n) d u 
Note that here U' = U' for every n. 

2.6.1. LEMMA~ 

ty
0

+BI ~ec(d,~F[A1, ••• ,~J,) & Selected(d,u) -+ 

NPrf00 (a(d,u),~a~•uubd,u~d,u,). 
--rec -v 

PROOF.Straightforward from the definition of a(d,u) above. D 

2.6.2. LEMMA. For F,A1, .•• ,1\ as above 

PROOF. Let n be a normal proof of F[A1, ••. ,1\J which uses propositional in

ference-rules only. All formulae occurring inn are subformulae of 

F[A1,.,,,J\], and a trivial inspection shows that by replacing A1,.,.,J\ 

throughout the proof by p1, ••• ,pk respectively we get a correct derivation 

of L0 for F[p 1, ... ,pk]. 0 



2.7. PROPOSITION. 

NPrf (d,rF[A1, ••• ,A ]~) & ~PrL (r-F~) -+ 
--rec -1< o 

NPrf°" (a(d,( )),r-~k[A1, ••• ,A_ ]~) 
--rec -1< 

PROOF. Use 2.6.1 for u = 0, which by the premiss and 2.6.2 must be a 

selected node. D 

97 
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B.3. STRUCTURE OF THE PROOF OF THEOREM II 

3. 1. PRELIMINARIES 

3.1.1. Fix a q.f. formula E(x) :: f(x)=O (where f is a fixed prim.rec. 

function). We shall use the following notations. 

E* :: Vi,u,zVx3y E(x,y,i,u,z) 

BE[w] := V(i,n,z) [ ,!:-~(( i,n,z),w) ~ Vx3y E( x,y,i,n,z) J 

where Ineq(a,b) is an equation which expresses the inequality a I b. More 

intuitively, 

E ...l,. ...l,. n ...l,. 

B [(j,m,<s»J :: V(i,n,<t» ~ ~ E,(t) 
(i,n,<t»!<j,m,<s» i 

We further define the sequent 

sE[w] :: BE[w] ~ Vx3y E(x,y,(w) 0 ,(w) 1,(w) 2 > 

E (w) I 
= B [w] ~ E(w)O ((w)2,o•••••(w)2,(w)I) 

i.e. 

E ~ 
s [ (i,n,( z)}] -

E The sequents s [w] play here the same role as the schemata Uk in the treat-

ment of L0 above. 
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3.1.2. Let Ebe an equation as above. An E-sentence is a sentence built up 

using the formation rules of L1 only, with E~ taken in place of the predicate 

lettersP~ (i,n=O,I, ..• ). An E-atom is an E-sentence of the form E~(t 1, ... ,t ). 
i i n 

We call the indicated occurrences oft. in the E-atom above (i=I, ••• ,n) the 
i 

formal occurrences in E~(t). Since the order of formally-occurring terms in 
i 

each E-atom is fixed by the very definition of Ei' it is uniformly decidable 

whether two E-atoms are instances of the same E~. 
i 

Let d be a normal derivation in.A00 

rec 
of an E-sentence. By the subfor-

mula property of d every formula occurring ind is either an E-s~ntence, 

an equation E(t) 0 or a IO sentence 3y E((p,y,i,n,z)). It is easily seen 
I 

that if we replace every formal occurrence of each term t (in some formula 

ind) by the numeral n s.t. n=t, we get a correct and normal derivation 

of the same E-sentence. We call such a normal derivation an E-derivation. 

Notation: E-Der(d); E-Prf(d,rF,). Since we deal with E-derivations only, 
--- --- n n1 ¾ 

we consider only E-atoms of the form E.(iii1 , ... ,iii ). If F[P. , ..• ,P. J is 
i n i1 ig 

a schema of L1 whose predicate-letters are among those shown, we write 
E n1 nq r E , r , r , 

F forF[E., •.. ,E.].So F =subrro(F,E). 
i1 iq -- 2 

3.1.3. We write [3E 1] for an instance of [3E] whose major premiss (i.e. 

the consequent of the leftmost premiss-sequent) has a q.f. matrix. For an 

instance of [3E] which does not satisfy this we write [3E*]. 

3.2. DERIVATION OF E-SENTENCES IN L1A 

L1A is L1 extended to the language of A (cf. P.2.5). 

3.2.1. LEMMA. Let every fo'l'T/TUla in ~,F be either an E-sentence, an open 
0 

I 1 fo'l'T/TUla or an open equation. Let b be a set of closed equations. Then 

a u b rL A F 
I 

PROOF. Assume ~ u .£. rL AF, and let~ be a normal derivation of L1A for 
I 

~ u .£. r F (cf. PRAWITZ [65]). By induction on the length of ~, using the 

subformula property and the definition of E-atoms, one proves easily that 

every formula occurring in~ is either an E-sentence or an open I~ or q.f. 

formula. Hence formulae in bare actually not used in~, and so~ rL AF. 0 
I 
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3.2.2. LEMMA. Let ~,F be closed formulae of L1• Then 

where 

E E 
a := {G I G e: a}. 

PROOF.The proof of PRAWITZ [65],[71] for the normalization of L1 applies 

trivially to L1Aand is easily seen to hold also for our definition of norma

lity (for L1A only the trivial p~-reductions have to be considered in addi

tion), So let/'; be a normal derivation (in the sense of A.I.I) of L1A for 

aE I- FE and let £ be an occurrence of a formula in t,, G not an E-sentence, 

By the subformula property oft,, G must then have one of the forms 

[a] E(u,v,i,n,z} or [b] 3y E(u,y,i,n,z}. 

By the normality of/'; G must either 

(i) be an equation (case [a]) occurring at a top-node of/'; (by 2.1.2) 

(ii) occur immediately below a top formula, or 

(iii) occur as a premiss of 3E derived by VE (in case [b]). 

Note now that E~ is defined so that the order of variables in each 
l. 

E-atom is fixed, so that the two first variables of the matrix are bounded 

hy the V3 quantifiers preceding it. Furthermore, two E-atoms formed from 

distinct E: are syntactically distinct, and the rule [FE] is not used in L1A. 

Hence every occurrence Gas above must occur in a subderivation of/'; of the 

form 

(I) 

E(u,v,i,n,z} 
31 

[ 3yE(u,y,i,n,z> 
] VI 

~ Vx3yE(x,y,i,n,z> 
j 

Vx3yE(x,y,i,n,z} r 
VE 

3yE(u,y,i,n,z> H 
JI (I) 3E 

H 



Replace the subderivation IT of 6 by 

[ 
I: 

]. 
* 

Vx3yE(x,y,i,n,z) 
IT := J 

r 
H 

Note that n* is normal. Repeating this operation we get by induction on 

the number of occurrences of L~ formulae in 6 a derivation 6* where all 
* n ~ occurrences are of E-formulae, Replace in 6 every occurrence Ei(v) of an 

IOI 

E-atom (including occurrences as a subformula) by P~(;), and the result is 
1 

a correct derivation of LI for ~ f- F. D 

3.3. We wish to prove theorem II, which is trivially implied by the follow

ing more formal version. 

THEOREM II (restated), For any T 2 Y0 + BI there is a q.f. E(x) s.t. 

where 

& 

-+ 

"x encodes a formula in C" 
0 

-4 !Ee (x) ], 
0 

0 0 and where C0 is the aZass of formulae of the form n 2+-1,L2 , and !Eco is a 

truth definition for C0• 

+ Con(T) := Vx [ "x encodes a conjunction of instances of 
- 0 AC00, of BI, and of true n 1 sentences" 

-+ ,Prr+(neg(x)) ]. 
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3.4. THE PROOF-THEORETIC REDUCTION 

The proof of theorem II proceeds now as follows. Fix an equation E 

and a schema F of L1 as above. In sec. 4.3 below we define a (classically) 

rr: predicate Crit(d,u) for which we prove 

Since T ~ Y0+B1 we get from (I) 

(2) 

and so 

(3) L r ,- E, 
'A+CMP(T)+RfnC (T) Pry E-Prf(d, F ) 

0 

,,3u Crit(d,u). 

On the other hand we prove in 4.7-4.11 below 

(4) ~y +BI+AC- E-Der(d) & Crit(d,u) & Res(d,u,x) -4-

0 00 

oo r-E -, 
,,3$ NPrf ($, s [x] ) 

where 

Res(d,u,x) •= Vy [ T(d,u,y) -+ 

"if succedent((Uy) 1) encodes E:(t) then x=(i,n,(t))" ]. 

Since T+ ~ Y0+Bl+AC;0 (cf.A.1.2) and CMP(T) + CMP(T+) trivially, we get 

from (4) 

(5) r, PrT,-E-Der(d).., --+ 
A+CMP(T) 

Pr (,-Crit(d,u) & Res(d,u,x) ,-+ --
r-E .,, 

➔ ,,NPr( s [x]) ). 
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But Crit(d,u) and Res(d,u,x) are TT~ and T+ is complete for true TT~ sentences, 

so 

r- cor E -,-, 
PrT+ -,,NPr s [x] • 

We have however trivially 

~A "{d} is total" - 3x Res(d,u,x) 

and so 

L r- -, 
'A+CMP(T)+Rfnc (T) Pry E-Der(d) --+ 

0 

3x Res(d,u,x). 

Hence we get from (6) 

(7) & 3u Crit(d,u) -+ 

Combining (3) and (7) yields 

(8) & & 

r "'r' E[ ],, -,-,3x Pr -,-,NPr s x • 
-r 

But from 3.2.2 we have 

L r -, 
r;1. -,Pr L F 

I 
(Fa schema of L1) 

so 

(9) I r--, 
rA+CMP(T)+RfnC (T) ,PrL F 

0 I 

& 
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This completes the proof theoretic-reduction. Note that for any 

predicate Crit (not necessarily n°) for which (I) and (4) hold, we could 
-- I 

prove a statement (7+) similar to (7), but with Pry+r3x ,,NPr00rsE[x]'' as 

the succedent; there is however no way to pull the existential quantifier 

out of the provability predicate here. 

3.5. SOLUTION OF THE REDUCED PROBLEM. 

In this part of the proof of theorem II, given in B.S below, we prove 

for every L~ theory S the existence of a q.f. E(x) s.t. 

( JO) & * -.,E 

where Pr8 is a fixed L~ provability predicate for S, and where 

(11) ->- Pr8 (x) ]. 

. 0 
1.e., Sis complete for L2 sentences, (Here Tr 0 (x) is a (canonical) truth 

definition for L~ sentences). --Yz 
We wish to apply (10) to S = A00[T+J, where T and T+ are as in A.1.2. 

First, note 

so 

Also, for E~ sentences F we have directly (compare A.2.2.1) 

( I 4) f-y F ->- NPr oor F' 
0 

and since y+ ~ Y0, and quite trivially CMP(T) + CMP(r+), this implies 

(IS) 



By the definition of Pr however 
-y+ 

and so 

( 16) 

Hence we get from (15) and (16) 

(17) 

for every n? F , 

0 for every :r:2 F. 

for ever_y I:~ formula F. 

Now observe that steps (15)-(17) can be uniformly formalized (within A), 
i.e., (11) holds for S = A00[YJ, as wanted. 
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From (10) for S = A00[T+], (9) and (13) we now have by predicate logic 

(18) 

for some fixed quantifier-free E(x). 

We proceed now to prove (1) and (4) (the proof-theoretic reduction) 

and (1) (the recursion-theoretic solution) which together imply as we have 

just seen theorem II. 
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B.4. THE PROOF-THEORETIC REDUCTION FOR THEOREM II 

4. 1. LEMMA. Let the nwneraZ ii not ooaur in!.• F, 3xGx. 

(i) If (1) !_,Gii f-L A F then 
I 

(2) !_,Gv f-L A F where vis a parameter whioh does not OOOU1' 

1 • Gn, F. i.n !_, 

(ii) If!_ f-L A Gii then !_ f-L A Gv (for v as above). 
1 1 

~- Given a normal derivation of L 1A for (1) replace every occurrence of 

n by v and observe, by inspection on cases for the inference rules, that 

the result is a correct derivation. The proof of (ii) is similar, D 

4.2, SEMI FORMAL HEURISTIC OUTLINE OF THE REDUCTION 

4.2.1. PI'eZiminacy notations. 

R1(d,u) 

R2(d,u) 

R/d,u) 

R4 (d,u) 

R5 (d,u) 

r d,u-, 
:: -,PrL As • 

1 
:: "all equations in ad,u are true". 

"Fd,u is an E-sentence". 

"Fd,u is an E-atom, and pd,u is [VI]". 

"Fd,u is a r.~-sentence". 

Note that each Rj(d,u) may be formally defined as a TT~ predicate. Example: 

R3(d,u) :: Vy [ T(d,u,y) -+ "succedent((Uy) 1) is the g.n. of an 

Start(d,u) := 
Crit 1 (d,u) :: 

ft.. R. (d,u). 
i=I,2,3 1 

ft.. R.(d,u), 
i=I ,2,4 1 

E-sentence" ]. 



4.2,2. Locating an arithmetical inference in E-derivations 
(the predicate CritJ. 
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We want to define a predicate Crit and to prove for it 3.4(1),(4). The 

idea is that when E-Der(d) and Crit(d,u) ("u is a critical node in the 

proof-tree described by d") then the subderivation du of d (where 

{ du} := Ax. {d} (u*x) ) has sufficiently nice properties so as to enable the 

extraction from it of a derivation for sE[w] for some w. 

As a first attempt to define such a predicate we try as in the proof 

of theorem I to look, when E-Prf(d,'"F-,) and ,PrL 1A (°F-,), for a "genuine" 

use of an arithmetical inference in d. A starting node f,or such a search 

upwards may be any node v of d s.t. Start(d,v). When Start(d,v) we can 

weakly find (i.e., ,-,3) a node V*(n) s.t. Start(d,v*(n)), using lemma 4.1 
d * --*- dv. I 

when p ,vis [VI] or [3I ], and the truth of E and 3.2.1 when p ' is [3E J 

(lemma 4.4 below). Thus the search up ind may continue. The only cases where 

this process stops are when R4(d,v) or when pd,v is [FE]. In the last case, 

the definition of normality of A.I.I implies (as in 2.1.2) that a false equa

tion occurs in ~d,v, contradicting R2(d,v). Thus, by the well-foundedness 

of the proof-treed, we find a node u > v s.t. Crit 1(d,u). 

When Cri't (du) we t 11 f' d' h bd · · u*(m) __ 1 , , can ac ua y in in eac su erivation d an 

inference of the form 

G 

(G is a true equation and Fd,u*w 

yield a derivation of the form: 

o:: ) 
m m<w 

d u*(m) 
- F' ). So these can be collected to 

[VI] 
~ n~ 

B[ (i,n, (t) )] ,. E. (t) 
i 

where Fd,u == E~(t), and each~ is (schematically) of the form(*). 
i m, 

Unfortunately, the crude statement that the situation above occurs is 

not n ~, essentially because there is no bound on the length of the w corre

sponding to each m<w. A certain refinement of the argument is therefore 

necessary, 
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4.2.3. HeUI'istic for the disjunction-free fragment 

Assume, again, E-Der(d) and Crit 1(d,u). The subderivation du of d 

then takes the form 

(I) 

[VI] ~ • Vx3yE(x,y,i,n,(t)) 

where each E is formally described by du*(m>. 
m 

From each E we wish to extract a derivation in A00 of 
m 

(2) B[(i,n,(t))] • 3yE(m,y,i,n,(t)). 

Fix some m, and let us analyse the structure of Em. 

We assume first that dis a derivation for a disjunction-free 

E-sentence; this implies by the subformula property that disjunction does 

not occur in the derivation d, and in particular, in the subderivation Em 

we are looking at, 

In addition we may assume 

(3) 

Because if Start(d,w), w)-u then we could start our initial search afresh; 

this could not be iterated indefinitely, because dis well-founded. 
. d u*(m) Consider now the main inference rule of Em, p ' • By the subformula 

property of d we have to consider the following cases only. 

Cases (i)-(iiia): contradiction to (3). 

(i) pd,u*(m) = [.L]; then sd,u*(m,O) = a•.l and so Start(d,u*(m,O)) contra

dicting (3). 

(ii) [VE]; 

(4) 

k _,_ 
a• E.(s) 
- J 

[VE] a• 3yE(m,y,i,n,(t)) say. 



Recall that E~(;) = Vx3yE(x,y,j,k,( s)), and so necessarily 
J 

(i,n, (t)) = (j ,k, <t» (syntactical identity). Therefore 
d,u*(m,0) _ d,u d S (d ( 0)) · · (3) s = s an so tart ,u* m, , contradicting 

once again. 

(iiia) [3E 1]; since dis normal, ~m must then have the following form 

(compare the first part of 4.5.4 below): 

[VE] 
(5) 

ll 

k ..,_ 
a=> E.(s) 
- J 

a=> 3zCz p<w 
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First, if ( j ,k,(;)) _ ( i,n,(t)) then Start(d,u*(m,0,0)) as in (ii), 

contradicting (3). 

Cases (iiib).(iv): the search continues. 

(iiib) If, in (iiia), 3zCz is true, let p := µz.Cz, and consider - in place 

of~ - its subderivation r (formally described by du~m,p+l >). 
m p 

Before concluding the case pd,u~m) = [3E 1] let us turn first to case 

(iv) If pd,u*(m} is [3E*], then guided by lemma 4.1 we pick the first 
- . d u~m} d u~m O) numeral p which does not occur in the sequents s' , s' ' , 

and we consider (as in case (iiib)) the subderivation du*(m,p+I >. 

Cases (iiic),(v): happy ending. 

(iiic) If pd,u*(m} is [3EIJ, and (iiia) and (iiib) do not apply, then in (5) _.,, 
(j,k,(s)) f (i,n,(t)) and 3zCz is false; so we can extract from (5) 

(6) 

the following derivation in A'"' of (2): 

[VE] 

[VE] 

B[ (i,n, (t))J 

k ~ 
E. (s) 

J 

3zCz 

J [FE] 

l [.L] 

3yE(~,y,i,n,(t)) 

(here we dropped the precedents of sequents). 

( ) [3 J b 2 2 ( 0) . h d . d d d,u* <m,0) v . I; y .I. u* m, is ten a top-no e in , an sop 

is either [T] or [TE]. In the first case Fd,u*<m,O)E ~; but all 
. . Fd,u*(m,0} . . . equations in a are true, so is in any case a true equation. 
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These are all the cases in the absence of disjunction. Cases (i),(ii), 

(iiia) rule out possible failures of the construction; cases (iiib),(iv) 

allow the search to continue, while cases (iiic) and (v) yield the required 

derivation for (2). 

Note that if E* is true, then 3zCz in (6) is also true, and so case 

(iiic) is excluded. Our argument here must however be independent of E* 

(cf. 3.4(4)-(6)), and so this case has to be considered throughout. 

In order to clarify a bit the form of a search which proceeds through 

(iiib),(iv), let us consider for example the outcome of case (iv), and 

suppose that now case (ii) applies tor (:= the derivation formally de-
u*(m p+l) P. 

scribed by d ' ). I.e., the following configuration occurs: 

a,cp => E:1-(t) 
- 1 

a• 3zCz [VE] ~,Cp • 3yE(i,y,i,n, (t)) 

the node~ 

Here (3) implies, as in (i)-(iii), 

and 

which by 4.1(i) and the choice of p give 

r p+1 

contradicting Crit 1(d,u). So we have adapted the argument of (ii) to the 

case that a search for a proof of (2) proceeds via case (iv). Other arguments 

are adapted in about the same way, and this allows the iteration of the 

search through (iiib),(iv) above. 

By the well-foundedness of d the process must terminate, that is, 

one of cases (iiic),(v) ultimately appears, and we obtain a proof for (2), 

as desired. 

4.2.4. Disjunction reconsidered 

When disjunction does occur in the derivation d above, we must add to 

(i)-(v) above another case: 

(vi) pd,u*(m) is [vE]. We then consider simultanuously both minor premisses 

of pd,u*<m>,i.e., the nodes u*(m,l) and u*(m,2). 
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As in the last paragraph of 4.2.3, let us see what happens if case (ii) 

applies now to both u*(m,l) and u*<m,2). We have then the following config

uration: 

ti 
n ~ 

~,G 1 * Ei (t) 
n ~ 

~,G2 * Ei (t) 

[VE] ~,G1 * 3yE( ••• > [VE] ~,G2 * 3yE(, •• ) 

[vE] a* 3yE(m,y,i,n,(t)) 

As in the last paragraph of 4.2.3, 

and so 

contradicting Crit 1(d,u), 

This argument may be generalized to conclude that, at least for one 

successive choice of minors of [vE] in the search described by (iiib),(iv), 

(vi) the construction leads to a node falling under one of the cases (iiic), 

(v),thus allowing a construction of a proof of A00 (incidently of A00 
) for (2). rec 

The assertion that this is the case is now seen quite easily to be 

formalizable as a TI~ predicate (over d,u), 

4.3. FORMALIZATION OF THE PREDICATE Crit 

Step(d,w,p) ·= W Step. (d,w,p) 
i=J ,2,3--i 

where 

Step 1 (d,w,p) : = 11 d,w 
p [3E 1], and if Fd,w*(O) 

== 3zCz then p = µz.Cz + 111. 

Step2(d,w,p) ::: 11 d,w 
p [3E*], and if Fd,w*(O) 

== 3zCz then p is 

I + the value of the first numeral which does not 

occur in d,w d,w*(O) 11 s ,s 

Step3 (d,w,p) := 11 d,w 
p = [vE] and I:,; p:,; 211 • 
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These three predicates correspond to cases (iiib), (iv) and (vi) in 

4.2.3/4, where the search described there proceeds to the p'th premise of 

the node w. It should be noted that Step is a t,~ predicate. For example 

Step 1 (d,w,p) Vx,y [ T(d,w,x) & T(d,w*(O),y) -+ A(x,y,p) ] 

3x,y [ T(d,w,x) & A(x,y,p) J 

where 

.'.!!.qF is a (t,~) truth predicate for equations, and inst is a prim.rec. func

tion which satisfies inst(r3xGx',n) = rGn". 

Selected(d,v) 

where 

Final(d,v) ::: 

where 

Fina1 1(d,v) == 

FinalzCd,v) := 

Final3 (d,v) := 

== Vi<lth(v) Step(d,(vji),(v).) 
l. 

( for i 5: 1th ( v) ) 

W Final. (d,v) 
i=J,2,~1. 

Selected(d,v) & p 
d,v 

[.L] or 

Selected(d,v) & p 
d,v [3E 1] 

Selected(d,v) & p 
d,v [3I]. 

[VE] 

These predicates correspond to the cases in 4.2.3 where the construc

tion may stop, whether successfully or not. 

. + ( r "') Final d,v, A • + ( r "') := Final2 d,v, A 

where 

. + ( r- ') Final2 d,v, A 
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Wh f 4 2 n (~) d, u . + ( ,... ., en or •• 3 A= Ei t = F then Final d,v, A) expresses the 

conclusion of the construction by one of (iiic), (v), or possibly its con

tinuation through (iiib). In any case, a "failure" through one of (i)-(iiia) 

is excluded. It is important to note that Final and Final+ are both 6~ 

predicates. 

Let us use the binary encodement of finite sets of numbers. The pre

dicates nEx, x=0 etc. are then just prim.rec. arithmetical expressions. 

Bar(d,x) ·= x f 0 & 

VwEx { Final(d,w) & Vu,y<x [ pd,u = [vE] 

& 

I.e., a "bar" for d is a finite non-empty set of "final" nodes, which 

intersects both minor subderivations of each instance of vE if it intersects 

one of them. 

-+ 3w F . 1+(du*(m) .-Fd,u-,) J 
EX~ ,w, 

Note that Crit is intuitionistically equivalent to a TT~ predicate. 

. ++ ,... -, 
Final (d,v,A) 

• ++ ,... ., 
Final 2 (d, v, A ) 

where 

. ++ r., 
Final2 (d,v, A) := . + ( r 7) Final2 d,v, A & ,Tr o(rFd,v*(O),) 

-rl 
. ++ ( ) Final3 d,v := Final3 (d,v) & ~F(rFd,v*(O)-,). 

. ++ . . . . 4 Final corresponds to a real termination of the search described in .2.3. 

In contrast to Finat however, Fina/+ is a ~ predicate, and not a 6~ one. 
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4.4 - 4.6. PROOF OF 3.4(1): THE EXISTENCE OF A CRITICAL NODE 

(first part of the proof theoretic reductions) 

4.4. LEMMA. 

f-y +BI [ E* & ~(d) & Start(d,u) J -. -,-,3w>-u Crit 1 (d,w). 
0 

PROOF. Denote the formula to be proven by R(u). First, we prove below by 

BI using the well-foundedness of the proof-tree·d the (open) formula 

S(u) := [ E* & E-Der(d) & Start(d,u) & -iR4 (d,u) ] --->

-,-,3w ),,-u §!fil:.t(d,w). 

Assuming VuS(u), R(u) follows easily by a second use of BI, where S(u) is 

to be used for the induction step, 

Towards proving S(u) by BI assume the premiss of S(u), assume 

VnS(u*(n)), and consider cases for pd,u which by the normality of d can 

only be one of the following: 

(i) d,u . [TJ p l.S • This contradicts R1(d,u). pd,u is also not [TE] by 

R/d,u). 

(ii) pd,u is [FE]. As in 2.1.2 the normality of d implies then that 
d,u*(O) . [ J d Fd,u d,u d' . R (d ) p is T , an so € ~ , contra 1.ct1.ng 2 , u • 

(iii) pd,u is a propositional rule, [31] or [VE]. If ,-,Prl
1
A('sd,u*(n),) 

,- d,u, 
for all n<3, then of course ,-,Prl 1A s , since all the rules con-

sidered in this case are rules of L1. This contra-
. ,- d U*(n)-, 

diets R1(d,u). So -,,3n<3 -,Prl 1A( s' ). For the cases considered 

the subformula property of d implies trivially R.(d,u) --->- R.(d,u*(n)) 
J J 

for j = 2,3, and so we conclude that ,,3n<3 Start(d,u*(n)). 

{iv) d u * -p' is [3E ]. Let p be the first numeral which does not occur in 
d u d U* (O) s' , s' , and prove 

like in (iii), using 4.I(i). That is, for the u considered 



-+ 

-+ 

while by the choice of p and 4.l(i) 

& P r- d,u*(p+I )., P r- d,u, 
_E_L A s -+ _E_L A s 

I I 

Since this contradicts the assumed premiss of S(u), one gets (*) by 

intuitionistic prop. logic (cf, KLEENE [52], p.119,*60i,g). 

I 15 

(v) pd,u is [VI]. Let p be the first numeral.which does not occur in sd,u, 

and proceed to prove ,,Start(d,u*(p+I)) like in (iii), using 4.l(ii). 

( . ) d' u . [ I J d' U* ( 0) - • h C . f S. R ( d ) vi p is 3E , F =. 3zCz, w ere z is q, • • 1.nce 1 , u , 
r- d,u, 

i.e., ,PrLiA s , we get from 3.2.1 VmR 1(d,u*(m+I)). R/d,u) im-

plies VmR3 (d,u*(m+I )) trivially. Finally, for each m R2(d,u) and ciii 
imply outright R2 (d,u*(m+I)). Summing up we hence get 

(*) Start(d,u) & 3zCz -+ 3z Start(d,u·Hz)). 

But by the subformula property of d 3zCz is a subformula of then° 
2 

sentence E*, and so E*-->- 3zCz, while by the assumed VnS(u*(n)), 

So we get from(*) 

Start(d,u) & E* -+ -,-,3w >-u Start(d,w) 

as wished. D 

4 .5. I. LEMMA. 

~y +Bl E-Der(d) & Crit 1 (d,u) & ,3v ~u Start(d,v) -+ Crit2(d,u). 
0 

We prove this lemma as a corollary of 
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4.5.2. LEMMA. Let A be an E-sentence. Then 

ry +Bl E-Der(d) 
0 

& Crit 1 (d,u) 

w & Bar(d ,x) 

& 
• + w rd u, 

VyEx ,Final (d ,y, F' ) 

P (r d,w_ud,u,) 
,,_E_L A ~ ..,,,, • 

I 

4.5.3. Proof that 4.5.2 implies 4.5.1 

w 

U*(m) 
Selected(d ,z) 

Assume the premiss of 4.5.I. For each m<w this implies the first five 

conjuncts of 4.5.2 for w = u*(m), z = <>, and also 

,PrL A(r~d,u*(m)~d,u,) 
I 

since ad,u*(m) = ad,u here. So, by the contrapositive form of 4.5.2, and quan

tifying over m, 

3 F . 1+(du*(m) rFd,u,) J 
YEX ~ ,y, 

(note that Final+ is decidable); i.e. , Cri t 2 (d, u) as required. D 

4.5.4. Proof of 4.5.2 

Write S(w) for the closure over x,z of the formula to be proved. By BI 
the problem reduces to showing 
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So assume 

(I) and 

(2) the premiss S-(w) of S(w). 

Note first that the definition of Selected implies, by a trivial induction 

on lth(w) 

(3) Fd,w = Fd,u*(m) = 3y E(m,y,i,n, (t)) 

(4) R2 (d,w) ::: "all equations in ad,w are true". 

. d,w 
Consider now cases for p 

(i) [T], Then Fd,w € ad'w. But by the subformula property of d no L~ sen

tence may be discharged ind, because an E-sentence has no subformula 

of the form GvH, G+H or 3zG where G is L~. So this case is ruled out. 

A similar argument excludes the cases [&E] and [+E]. 

(ii) [.L]. Then sd,w*(O) = ~d,w=>.L, while -,Start(d,w*(O)) implies (by (4)) 

so 
P (r d,w Fd,u-,) 

.,.,_E-L A ~ ,. • 
I 

(iii) [VE]. Then (3) implies 

On the other hand ,Start(d,w*(O)) implies 

( 6 ) P ( rd,w*(Oh) .,.,_;:-L A s • 
I 

Here d,w*(O) d,w (S) ( 6 ) . 
~ = ~ so and yield 

(iv) [3E 1J, Fd,w*(O) ::: 3zCz. Let Bar(dw,x). 

. . + w rd u~ -Subcase [a]. () € x. Then -,Final (d , (), F ' ) by S (w), and so by 
. + ---. d W*(O 0) du 

the definition of Final for this case F ' ' = F ' , and we get 

as in (iii) 

P ( r d,w Fd,u-,) .,.,.:.E.t_ A ~ => . 
I 



118 

(v) 

(7) 

Subcase [b]. 0 ~ x. _Then, since x ,; ¢ by the definition of Bar, we 

must have for some p Step(dw,(),p). This means that the premiss of 

S(w*(p)) is satisfied, and hence by the BI hyp. (I) applied to W*(p) 

,.. d,w - d,u-, 
,,PrL A(!!:_ ,C(p)=+F ). 

I 

But C(p) is here a true equation, so by 3.2.1 

P (,.. d,w Fd,u,) . 
,,_!._L A !!:. =+ • 

I 

* d,w*(O) _ [3E ], F =: 3zCz. Let p be the first numeral which does not 
. d w d W*(O) occur in s ' ,s ' · • We have then as in (iv)[b] 

..,-,PrL A(rsd,w*(p+I ).,) _ (r d,w C(-) Fd,u,) 
= -,-,pr L A ~ ' P .,. ' 

I I 

and as in (iii) we get 

which together with (7) and lemma 4.1 yields 

P (r d,w~~d,u,) 
,'"l_!_L A !!:. ....,, • 

I 

(vi) [vE], Fd,w*(O) =: G1 v G2 • Let 

(8) 

x(j) == { y J (j )*y E x } (j=l,2). 

Then, by the definition of Bar, S (w) implies 

while trivially 

(j=l,2). 

Apply now, as in (iv) and (v), the BI hyp. (I) to w*(j) (j=l,2), to 

yield 

P (r d,w Fd,u-,) -,-, rL A a ,G.=+ 
- I - J 

(j=l ,2). 

On the other hand we get as in (iii) 



which together with (8) yields 

P (r d,w Fd,u7) 
77__E_L A ~ .,. • 

I 

(vii) [31]. Then the definition of Bar implies 

(9) 
w Bar(d ,x) -+ x = { O}. 

For this case, Final+(dw,(),rFd,u,) automatically, while by S-(w) 

(9) implies 7Final\dw,(),rFd,u7 ), so this case is ruled out. D 

4.6. PROPOSITION. 

119 

PROOF. Straightforward from 4.4 and 4,5,1 using BI and the well-foundedness 

of the proof-treed. D 

Applying proposition 4.6 to u () we get assertion 3.4.(1). 

4.7 - 4.11. PROOF OF 3.4(4). (Second part of the proof-theoretic reduction) 

4. 7. LEMMA. 

w 
-+ 3x Bar(d ,x). 

PROOF. Straightforward by BI and the well-foundedness of d. D 

4.8.1, Let us use the following ad hoc terminology. 

"x is a bar" := 'v'u,vEx u{v 

"x is ind" := 'v'uEx {d}u4'0 

X f::: y == "x and y are bars" & 

'v'uEy 3vEx (viu) & 3uEy 3VEX (v,<u) 

X Fd y := "x and y are ind" & X f::: y. 
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LEMMA ( in YO + BI) • If d is we ZZ-founded, i.e., 

Vx3n {d}(x(n)) °' O, 

d then f.= is we ZZ-founded: 

PROOF. Apply BI to 

S(u) == Vl/J {{ (u)} Fd 1/J(O) -+ 3n -,[ 1/J(n) Fd 1/J(n+I) J }. □ 

4.8.2. PROPOSITION. 

~y +BI E-Der(d) & Crit(d,u) -+ 
0 

PROOF. Assume E-Der(d) and Crit(d,u), and fix m. We shall apply BI to the 

well-ordering -;;,~f 4.8.1.--;:-prove below that 

(1) Vyd:::,Jx S(y) -+ S(x) 

for 

3 F • 1++(du*(m) ,-F·d,u,) 
-+ ,, w ~ ,w, .. 

Then, by BI on ~ applied to S we get 

(2) Vx S(x). 

But by 4.7 we have 

(3) for some x 

and so by (2) 

3 F. 1++(du*(m) r-Fd,u-,) ..,., w ~ ,w, 



as required. 

Towards proving (1) assume Vyd~ x S(y) and the premiss of S(x), 
U* (m) • 

Bar(d ,x). By Crit2(d,u) then 

Observe the two possible cases for pd,u*(m)*w =: p. 

(i) If p is [3E 1J, Fd,u*{m)*w*(O) == 3zCz, assume 

(5) 3zCz v ,3zCz 

. ++ u*(m} d,u ) f" . . f If ~3zCz then Final 2 (d ,w, F by de inition. I 3zCz let p := 

tly 4.7., for some y 

u 
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µz.Cz. 
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Let 

y' encode the set { w*(p+l)*v I VEY} 

then we have quite trivially 

for x' := (x\{w}) u y' (set theoretic operations), and also x' d::ii x. 

So by BI hyp. 

(6) 3 F . 1++(du*(m) 'Fd,u,) .,., w ~ ,w, • 

Here (6) depends on (5), but since (6) is negated (5) is eliminable 

(cf. KLEENE [52], p.119 *58b-c,*5Ja). 

(ii) If p is [31] by our .definition of normality (cf. A. I;.!). pd,u~m) *w*(O) 

cannot be other than [T]. But we have R2 (d,u~m) *w~O)) because of 
u~m) 

R2 (d,u*(m)) and Selected(d ,w). 
d u*(m)*w*<O> . ++ u*(m) du 

Hence .'.!:!:qF( F' ) and so Final3 (d ,w, F' ). 0 

4.9. LEMMA. There are prim.rec. functions f. (j=2,3) s.t. 
J 

ry E-Der(d) 
0 

PROOF. 

00 • ~ ~ ~ d v~ 
-+ Pr (f.(d,v,(i,n,(t))), B[(i,n,(t))]-F' ), 

-rec J. 

(i) Let { f 2 (d,v, (i,n, (t)) )} describe the tree 

[T] B[] • B[(i,n,(t))] 

[VE] B[J • ~( (j ,k, (;)), (i,n, (t)}) + Fd,v*(O,O) [TE] B[] • ~( ) 

[+E] B[],. Fd,v*(O,O) 



r == m 

[T] B[(i,n~(t))],Cm • Cm 

[FE] B[(i,n,(t))],Cm • ~ 

UJ 
~ - d V 

B[(i,n,<t»],Cm•F' 

(ii) Let {f3 (d,v,(i,n,<t>>)} describe the tree 

[31] B[(i,n,(t))] • Fd,v 

f.( ••• ) are indices of functions recursive in {d}, and by the s.m.n.
J 

theorem f. are indeed prim. rec. functions. ,The l_)roof of the lennna for 
J ' 

these functions is now straightforward. The only less trivial detail 

is the correctness of the [TE] inferences in the definition of 
. ++ rn...i...-, ·k~ n~ 

f2 • From Fmal2 (d, v, E/t) ) we only know that E/s) and E/t) are 

not syntactically identical, but this does not exclude, prima facie, 

that; and tare numerically equal. Recall, however, that oy our 

definition of E-Der in 3.1 t and; are tuples of numerals, and there

fore their numerical equality would imply their syntactical identity. D 

4.10. COROLLARY. 

PROOF. Innnediate from 4.8 and 4.9. D 

4.11. PROPOSITION(= 3.4.(4)). 

~y +Bl AC- E-Der(d) & Crit(d,u) 
0 + 00 

00 r- j. .., 

-+ ,,3¢ NPrf (¢, s[(i,n,(t))] ). 

123 
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PROOF. Assume the premiss; then by 4.10 

oo r . ~ d u*(m)~ Vm~~3x NPrf (x, B[(1,n,(t))]=>F' ) 
--rec 

and so by AC~0 

(I) 

Define now~ recursively in w: 

The matrix of the positive form of (I) for w obviously implies 

and so (I) implies the succedent of the proposition. D 
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B.5. SOLUTION OF THE REDUCED PROBLEM FOR L1 (proof of 3.5(10)) 

5.1. PROPOSITION(= 3.5(10)). Let S be a L~ enumerated theory (with prov

ability-predicate 3xVy Prf8 (x,y,rF,) say) which is L~ complete. Then there 

is a q.f. formula E(x) s.t., in the notation of 3.5, 

The proof given below is based on KRIPKE [63]. 

* ,,E. 

0 5.2. LEMMA. For Sas above, there exists a L2 predicate J(x) s.t. 

(i) ~A Vx,y [ J(x) & J(y) -+ x=y ] 

(ii) ~ -,J(iii) for every numeral m. 

PROOF. Let neg and sub2 be prim.rec. functions s.t. for every formula F 

where xis the numeral with value x, and where F[t/a] is the formula which 

comes from F by replacing every occurrence of the parameter a by (the closed 

term) t. Define 

L L(a,b) 3x [ K(x,a,b) & Vz<xVw<z ,K(z,a,w) ] 
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(here the g.n. rL, is the code of the fixed 

formula L(a,b), while the defining symbol Lis 

understood as a predicate) 

We may assume w.l.g. that the g.n. of a proof is larger than the g.n. 

of the formula it derives, becau~e PrfS can be replaced by Prf8(x,y,z) := 
== 3x 1 <x Prf8 (x',y,z) & x = 2x •3z. This change is harmless in all other 

respects. Hence 

(I) L(m,n) ++ 1*(m,n) 

is provable in A, where 1* is defined like L except that the bounded quanti

fier Vw<z is replaced by an unbounded Vw; and so 

(2) rA Vx,y [ J(x) & J(y) -+ x=y J. 

Next suppose 

(3) rs ,J(m) for some m, 

i.e., 
,- ,--,--, 

3m3xVy Prf8 (x,y, ,L( L ,m) ). 

Then 

which is just ,,3m L(rL,,m) by (1) and the definition of L. 

But by ~(S) 
2 

while the definition of L implies 

so (4), (5), (6) together imply ,,3xVy Prf8 (x,y,r~,), contradicting 

Con(S). D 
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5.3.t. LEMMA. For Sas above there is a L~ prediaate M(x), s.t. for every 

q.f. prediaate P(x) 

~ -,Vx [ M(x) ++ P(x) ] • 

PROOF. Let U(n,x) be a binary q.f. predicate which enumerates all unary q,f. 

predicates (by Kleene's enumeration theorem, cf. e.g. KLEENE [52], §58), 

and let J be as in 5.2. Define 

M(x) == 3y [ J(y) & U(y,x) ]. 

By 5.2(i) then 

J(m) f--A Vx [ M(x) ++ U(m,x) J for every numeral m. 

But by 5.2(ii) 

~s ,J(iii), 

so 

~S -,Vx [ M(x) ++ U(m,x) J for every m, as desired. D 

5. 3. 2. LEMMA. Lemma 5, 3, 1 hol,ds aZso when M is required to be TT~. 

PROOF. Replace the M = 3yVz l1c)(x,y,z) defined above by Vy3z ,M0(x,y,z). D 

5.4. PROOF OF 5.1 (concluded), Let M(z) be given by 5.3.2, and write M(z) 

as Vx3y E(x,y,z). 

(i) 

(ii) 

r-E--, r-E--, Assume now Pr8 s (n) for some n (i.e., 3xVy Prf8 (x,y, s (n)) ). 
E -By the form of the sequent s (n) we have then 

f--s VzfnM(z) --+ M(;;:) 

and therefore 

f--s -,Vz [ Z'f;;: ++ M(z) ] 

contradicting 5.3.2. 

Assume -,E*, i. e. , -,VzM(z). Then, by ~o(S), ,~(,...-.VzM(z).,). 
2 

But taking P(z) := z=z in 5.3.2 we get ~ -,VzM(z), a contradiction. 

□ 
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INDICES 

References are to sections. When a number of references is given for 

the same item the most relevent one is occasionally underlined. 

Index of notions 

Here are given the ad hoc notions of this dissertations together with 

some terms of general use. 

Absoluteness 

absolute schema 

absolute logic 

antecedent 

base, basing function 

completeness theorem 

conclusion (of a sequent) 

critical inference rules 

cut 

cut elimination 

derivability conditions 

derivation (infinitary) 

disjunction instantiation property 

effective inseparability 

E-sentence, E-atom, E-derivation 

formal occurrence 

incompleteness theorem 

indexed formula 

influence 

inference rules 

arithmetical 

critical 

propositional 

quantification 

second order 

Kreisel-Shoenfield-Wang theorem 

Kripke models 

Lob theorem 

normal derivation 

Int. I, B.0 

Int. I, B.6.3. 

Int. I, B.O 

A. I. I. 

A.4.3. 

Int.2 

A.I.I. 

A.3.3. 

A.3. I., A.3.3. 

Int.3 

TN! 

A.I.I. 

A. I. I., A.3.9 

B. I .4. 

B.3.1.2. 

B.3.1.2. 

Int.5, TN2 

A.3.2. 

A.4. I. 

P. I. 

A.I.I. 

A.3.3., A.4.2. 

A.I.I. 

A.I.I. 

A.4. I. 

TN4, A.2.3. 

Int. I, Int.2 

Int. 3 

~-. A.3. I. 



normalization 

ordinals, ordinal notations, ordinal 

assignments 

reduction steps 

absurdity 

detour 

generalized 

improper 

permutative 

proper 

second order 

simplification 

reflection principle 

regular theory 

strongly regular theory 

replacement rule 

sentence 

sequent 

stable derivation 

strongly stable 

stable under ••• 

stable at ••• under •.• 

subformula (negative, positive) 

subformula property 

succedent (of a sequent) 

transfinite indction 

transfinite progression 

truth definition 

well-foundeduess 

w-rule 

Index of Formal theories (script majuscules) 

Int.3, Int.6, ~• A.4 

Int.6 

A.3.1 

A.3.3.4. 

A.3.3.2. 

A.3.5, A.4.4. 

A.3.5.3. 

A.3.3.3. 

A.3.3. 

A.4.2. 

A.3.5.3. 

Int.3, TNI 

Int.4, A.1.2. 

Int.4, A.1.2 

A.3.2. 

A.I .I. 

A. I. I, A.3.2. 

A.3.5. 

A.3.5.4. 

A.3.7.1. 

A.3.7.1. 

P. I 

Int.3, Int.6, TNI, TN2, 

A.I.I, A.3.8. 

A.I.I. 

Int.4, TN3, TN4, A.2.3. 

Int.4 

TNI, A.3.5.2, B.4.3. 

A.I. I. 

Int.3 

P.2. 

A.I.I. 

Int. I 

Int.2 

B.1.0. 

B.3.3. 
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A[TJ 

AP[TJ 
Abd[T] 

A"° [TJ 
rec 

L,L0,L1,L1A,L2,L3,Lw 

L"" 
2 

L"" 
2,rec 

L"" 
w 

Index of formal schemata 

ACoo 

ACoo 
ACA 

BI 

MpR 
TI 

Int.4 

Int.4. 

Int.4, 

Int.4, 

P.2. 

A.4.0, 

A.4.9. 

Int.6, 

P.2. 

(bold-face majuscules) 

P.3. 

A. 1.2. 

Int.2. 

P.3. 

Int.I. 

A.I .2. 

A.1.2. 

A.4. I. 

A.4.0. 

P.3, TN3, A.2.3. 

Index of formal sentences, predicates and functions 

(Standard lettertype, underlined when more than one letter is used. 

Predicates and sentences start with a capital letter, functions do not -

with the exception of Kleen's result-extracting function U). 

A AS 
n' 

Abs 

Bar 

C n 
Clear 

CMP 

Comp 

Con 

Crit 

Crit 1 
Crit2 

Cut 

Der 

B.6. I. 

B.6.3. 

B.4.3. 

B.6. I. 

A.3.4.3. 

B.3.3. 

B.3.5. 

A.2.2, B.3.3. 

B.3.4, B.4.2.2, B.4.3. 

B.4.2. 

B.4.3. 

A.3.3. 

P.4. 



Der00
, Der00 

--rec 

Em n' E[F ,F ,P,Q] , m n 

E-Der, E-Prf 

Eq 

.A.,J__,___L_ , A • 4 • I 

B.6.1. 

B.3.1 .2. 

B.6.1. 

Final, Final., Final+, Final:, Final++, Final:+ B.4.3. 
---]. ---]. --]. 

imp 

Infl 

{ j} 

{k} 

{l} 

L0-Fml, LcFml 

1th 

M 

{n}, {n}<j, 

NDer00
, NDer00 

, NPrf00
, NPrf00 

-- --rec --rec 
neg 

Nmble 

Prf00 

--rec 

Res 

Rfn 

s 

~ 
SSt 

St, St 
- -n 

Start 
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