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CHAPTER 0 

INTROVUCTION ANV SUMMARY 

o.o. In..tJwd.u.ctoJty 1t.emaJclu, 

The present work is a result of antenna research carried out in the preced­

ing years by the Numerical Mathematics and Service group of the Department 

of Mathematics and the Theoretical Electrical Engineering group of the De­

partment of Electrical Engineering at the Technological University Eindhoven. 

The fir-st research object concerned the investigation of a corrugated coni­

cal-horn antenna with circular cross-section and large flare angle, the so­

called "scalar feed" [1], [2], [3]. 

This was followed by a contract-research program of the European Space Re­

search and Technology Centre (ESTEC) for the investigation of the propaga­

tion and radiation properties of an elliptical waveguide with anisotropic 

boundary conditions [4], [SJ. In the ESTEC report [4] we suggested some to­

pics for further research work, and one of these is the investigation of a 

corrugated conical-horn feed with elliptical cross-section and large flare 

angle. This feed illuminates a parabolic satellite reflector which has an 

elliptical aperture and which is used for telecommunication purposes, e.g., 

for Western Europe (see figure 0.1) or for time zones in the U.S.A. This 

problem, however, has so far appeared to be too difficult. 

We investigate an easier problem, namely, the electromagnetic field inside 

a conical horn with an elliptical cross-section and an arbitrary flare an­

gle, bounded by a perfectly conducting rather than an anisotropic surface. 

The mathematical results of this work and the expertise gained by it will 

be used as tools for further investigations of horns with anisotropic boun­

dary conditions. 

o. 1. SumllWUJ 

The first problem in the investigation of the electromagnetic field inside 

a conical-horn feed with elliptical cross-section is to select a suitable 

coordinate system, with the following properties: 

(1) the boundary of the cone must be a coordinate surface; 

(2) the scalar Helmholtz equation must be separable; 

(3) the parametric representation of the coordinate system must be chosen so 

that the solutions of the separated equations are easy to find. 
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A coordinate system that satisfies these conditions is the sixth coordi­

n,ate system of Eisenhart, viz., the sphero-conal system parametrically re­

presented by trigonometric functions as described for the first time by 

Kraus [6] in 1955, Separating the Helmholtz equation, we obtain three equa­

tions: 

(1) for the r dependence; the differential equation of the spherical Bessel 

functions; 

(2) for the~ dependence: the Lame differential equation with periodic boun­

dary conditions; 

(3) for the 6 dependence: the Lame differential equation with non-periodic 

boundary conditions. 

Up to now t.~ere is virtually nothing known about the analytical solutions 

of the Lame differential equation with non-periodic boundary conditions. In 

this work, however, we show that they art connected with the periodic solu­

tions of the Lame equation. 

We observe the same phenomenon in the case of the solutions of the Mathieu 

equation by separating the Helmholtz equation in the elliptic-cylinder 

coordinates. Between the solutions of the separated equations of the scalar 

Helmholtz equation we have now found a relationship in four systems, viz., 

the cylindrical polar, the spherical polar, the elliptic-cylinder and the 

sphero-conal coordinate systems. Figure 0.2 displays an overview of these 

solutions, and it is easy to see that these solutions transform into one 

another by the corresponding transition of the coordinate systems. As in 

the spherical polar coordinate system, the electromagnetic field inside a 

hom can be expressed in terms of two independent scalar Debye potentials. 

And in the same way as described in the spherical polar coordinate system 

we give a mode classification of the electromagnetic field. 

0.2. Compu,t:a;Uonal ~ema!Clu, 

We have developed a set of procedures in ALGOL 60 for calculating the perio­

dic and non-periodic solutions of the Lame equations. These procedures, and 

directions for use, are obtainable from the author on request. 

We have calculated the first forty modes of the electromagnetic field in-
Q 

side a horn with an eccentricity of 0.9 and a flare angle of 60 . 

The results of the calculated periodic solutions were compared with the nume­

rical results of the finite-difference method with h 2 extrapolation applied 

to the Lame differential equation with periodic boundary conditions. The 
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calculations a.greed to 10 decimals. The results of the computed non-periodic 

solutions werecompared with those of a fifth-order Runge-Kutta method. These 

calculations agreed toll decimals. Both of the calculations mentioned above 

were performed in double-length arithmetic to guarantee high accuracy. All 

calculations were performed on the digital Burroughs computer B6700 of the 

Computer Centre of the Technological University Eindhoven. 

o. 3. Appe.n.dLx. 

In this section a new representation of the elliptic coordinates is intro­

duced, and this contains the polar coordinates as a special case by taking 

the focal distance (2h) zero. At the same time, the ~quations obtained from 

the Helmholtz equation on separation tend to the corresponding equations 

of the polar coordinate system. 

The coordinates of the elliptic system denoted by r,~ are related to the 

Cartesian coordinates x,y by means of 

x = /ri2 + r 2 cos(~), y=rsin(~) 

with h > 0 and O $ ~ < 2n, r ~ O. 

First of all we observe that for h = 0 the polar coordinate system is ob­

tained. The coordinate curves are determined by the following two equations: 

2 
X 

2 2 h cos (~) 

2 
1 • 

These equations represent an ellipse and a hyperbola, respectively, with 

foci (h,O) and (-h,O). 

The eccentricity of the ellipse is given by 

If h = 0, and consequently e = O, the ellipse becomes a circle and the equa­

tion of the hyperbola degenerates into 

(--x- - __x_) (--x- + __x_) 0 , 
cos(~) sin(~) cos(~) sin(~) 

and this is the equation of a pair of straight lines. 
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Now we verify whether the coordinate curves are mutually perpendicular at 

each point in the plane. For that purpose we determine the tangent vectors 
ax a~ 

to the parameter curves a; and ~ : 

. dX dX 
It follows indeed that (0~, a;;> = 0. 

(
-(/h2 + r 2)sin(~)] 

r cos(~) 

The scale factors of this coordinate system are 

h l~I = r := ar 
r 2 + h2sin2 (~) 

h2 +r2 
h := l~I , ~ a~ 

Again, if h = 0 these scale· factors are identical with those of the polar 

coordinate system. 

Now we shall investigate the separation of the Helmholtz equation. 

We shall suppose that the function u = u(r,~) satisfying the Helmholtz equa­

tion 

can be factored as 

u (r,~) = R(r) 41(~) • 

Then we obtain the following two second-order differential equations: 

d241 + (k*2h2sin2(~) + v2)41 

dl o, 41(~) 41 (~ + 21T) , 

in which v2 is the separation constant. Again, if h = 0 we obtain the well-

known differential equations of the polar coordinate system. 

We can divide the~ solutions into four classes and we can expand these 

functions into trigonometric Fourier series [7;21], [8;187]: 

* ce2n(~;k h) 

* ce2n+l (~;k h) 

a, 

,;- (2n+1) 
l A2R.+-l cos ( (2R, + 1) ~) , 

R.=0 



"' * }: B (2n+1) . ((2t se2n+l (<p;k h) 2t+l sin 
t.=O 

"' * }: B (2n+2) . ( (2t se2n+2 (<p; k h) 2t+2 sin 
i=O 

The corresponding r solutions are [ 7; 158]: 

* ce2n (r;k h) 

* ce2n (O;k h) 

A (2n) 
0 

5 

+ 1) <p) , 

+ 2)<p) . 

"' * ce2n+l (r;k h) 
ce2n+l (O;k*h)v'ii2 + r 2 

~k*hrAi2n+1) 

I;' (2n+1) * 
l (2i+1)AU+l J2Hl(k r), 

i=O 

* se2n+l (r;k h) 

* se2n+2 (r;k h) 

o. 4. Re6e1Le.nc.u 

"' I;' (2n+l) * 
l B2t+l J2Hl (k r) 

t=O 

se2n+2 (0;k*h)vh2 + r 2 

J.,,k *2h 2rB?n+2) 

"' I;' (2n+2) * 
l (2t + 2)Bzt+2 JZR,+2 (k r). 

t=O 
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*2 Solutions of the separated Helmholtz equation ~u + k u 0. 

Elliptic-cylinder coordinate system (r,~,z) 

, (2m) , (2ml 
[ l A2R. J 2R, (kc r)][ l A2R. cos(2R.~)], m = 0,1,2, ••• 

R.=0 n R.=0 

(X) (X) 

cg (r> z: (2m+1) 
r>Jc Z: 

(2m+1) 
(2R, + l)A2R.+1 J2R.+1 (kc A2R.+l cos((2R.+1)~)], 

R.=0 n R.=0 
0,1,2, ••• e-ynz m = 

(X) 

(2m) 
(X) 

(2m) . [g (r) z: 2R.B2R, J2R,(kc r> Jc z: B2R, sin (2R.~)], m = 1, 2, ••• 
R,=1 n R.=1 

(X) (X) 

, (2m+1) , (2m+1) . 
[.l B2R.+1 J2R.+1 (kc r)][ l B2R.+1 Sl.n((2R.+1)~)], m = 0,1,2, ••• 
R.=0 n R.=0 

where g(r) = hi.2 + r 2/r. 

Cylindrical polar coordinate system (r,~,z) 

J 2m(kc r)cos(2m~), m = 0.1,2, ••• 
n 

J 2m+l (kc r)cos({2m+1)~), m = 0,1,2, ••• 
n 

J 2m(kc r)sin(2m~), m = 1,2, ••• 
n 

J 2m+l (kc r)sin((2m+1)~), m = 0,1,2, ••• 
n 

k2 *2 2 
c - k = yn 

n 

Figure 0.2. (continued on page 9) 



*2 Solutions of the separated Helmholtz equation ~u + k u = 0. 

Sphero-conal coordinate system (r,8,f) 

m ~ 

[ l T(2R.)A~;m>p~R,(cos(8))][ l A~;m>c9s(2R.f)], m=0,1,2, ••• 
R.=0 n R.=0 

m = 0,1,2, ••• 

m = 1,2, ••• 

[ f (81 k) l (2R.+1) T (2R.+1) B~::;1> p~R.+l (cos (8))] • 
R.=O n 

m 
~ (2m+1) 

• [ l B2R.+l sin((2R.+1)f)], m = 0,1, ••• 
R.=0 

where f(81k) 
/2 - k2cos2 (8) 

sin (8) 

Spherical polar coordinate system (r,8,f)· 

2m Pv (cos(8))cos(2mf), m = 0,1,2, ••• 
n 

2111½1 
Pv (cos (8)) cos ( (2m + 1) f), m = O, 1,2, ••• 

n 

2m 
P"n (cos(8))sin(2mf), m = 1,2, ••• 

2m+1 
Pv ·(cos(8))sin((2m+ 1)f), m = 0,1,2, ••• 

n 

9 
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CHAPTER 1 

CONICAL C001?VTNATE SYSTEMS 

1.0. Tntlwduc:ti..on 

Of the eleven coordinate systems of Eisenhart [77656], [8794] in which the 

scalar wave equation is separable, we shall need the sphero-aonaZ system. 

However, we shall first study conical coordinate systems in general. 

1. 1 • The genvc.a£. c.on.ica.l c.ootc.di.nax.e .6 lj.6:tem 

This system is based on a family of concentric spheres and an orthogonal 

net of curves on the unit sphere. The conical coordinates, denoted by 

r,0,~, are related to the familiar Cartesian coordinates x,y,z by 

x = rf(0,~), or 

where fi (i = 1,2,3) are the Cartesian components of the unit vector.!_ de­

fined in a certain domain D of the a,~ plane to be specified later on. 

We have 

1 , 

and 

The tangent vectors to the parameter curves at the point (r,a,~l are given 

by 

The length of these tangent vectors have the nature of scale factors and 

we define them as: 

Points for which h 0h~ = 0 are singular points of the parametric representa­

tion. In the vicinity of these points there is no one-to-one mapping on the 

Cartesian coordinates. 
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The set of orthogonal unit vectors in the r, 8 and q, directions, which vary 

from point to point, are defined as 

where 

Thus, we can write each vector at the point (r,8,q,) in a unique way as: 

1. 2. Ve.ctoJt opeJt.atoJUi .ln :the. ge.nvc.a.l c.on,lc.al. c.ooJr.cUna.te. .6 y-6.tem 

In this section we shall deduce some vector identities in the general or­

thogonal curvilinear coordinates [31298]. 

Let 

Then 

div F = div(F e + (F8e 8 +Fe)) 
- r-r - q,-q, 

For convenience we shall define 

div F 

and 

div F := div F e = ,!_ Lcr2F ) 
r- r-r 2 ar r r 

The operators with index rare the radial operators and those with index t 

are the transversal ones, i.e. transversal in relation tor, 
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Similarly we have for the curl of a vector 

curl F 

with 

curlr~ := (curl !.>e~e + (curl!_)~~~ 

1 dF a 1 a dF 
= ~a/ - a'r(h~F~) }~e + ~a ar<heFe) - a·e r}~~ 

~ . 

and 

Let now 

g g(r,6,~) 

then 

In the same way as before we define 

and 

gradtg • = L !2. e + L !2. e · * ae -e * a he h~ ~ -~ 

With a the scalar Laplace operator we have 

divrgradrg + ¼ divtgradtg 
r 



This can be written as 

with 

and 

In differential geometry the scalar transverse Laplace operator ~tis 

known as the Beltrami operator or the second differentiator of Beltrami 

[11225]. 

1. 3. TILi..gon.ome,,tJr,Lc. 60Jt.m 06 the ,6phvr.o-c.on.a£. -6!J,6,tem 

13 

The sphero-conal system is usually described mathematically in the algebra­

ic form and/or in the elliptic-functional form [71659], [8;105]. 

In 1955 however, Kraus described the system with the help of trigonometric. 

functions. This parci111etric representation is very important to the present 

work and therefore we shall investigate the trigonometric form [4], [SJ, 

[6]. 

The coordinates of the sphero-conal system, denoted by r,e,~, are related 

to the Cartesian coordinates by 

x = r cos(~}sin(0) , 

y 

where 

0 < k < 1, 0 < k' < 1, k2 + k 12 1 , 

and 

r <!: o, D := { ((;),~) I O ~ 0 ~ 7T, 0 ~ ~ < 27T} , 
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First of all we observe that if k = 1, and consequently k' = 0, this coor­

dinate system reduces to the spherical polar coordinate system [8799]. 

Now we verify whether the coordinate curves are mutually perpendicular at 

each point in space. For that purpose we determine the tangent vectors to 
ax a~ !l the parameter curves ~ , ai and clcp [3 7 298], 

cos (cp) sin (8) 

~ = sin (cp) /2 - k2cos2 (8) 

/2 - k 12sin2 (cp)cos(8) 



r cos (<p) cos (0) 

if= rk2sin(<p)cos(0)sin(0)/ 1 - k2cos2 (0) 

· -r sin(0)/2 - k' 2sin2 (<p) 

-r sin (<p) sin (0) 

~: = r cos (<p) /1 - k2cos2 (0) 

2 · 2 2 
-rk' cos (0) sin (<p) cos (<p) / 1 - k' sin (<p) 

It follows that, indeed, 

clx clx <aa , a;> = o ~ 

We also find that the vector product 

clx 
is a positive multiple of the vector a'; and hence r,0,<p form, in this or-

15 

der, a right-handed system of coordinates. The scale factors of this coor­

dinate system are 

2 2 2 . 2 k' cos (<p) + k sin (0) 

1 -k2cos2 (0) 

2 2 2 . 2 k' cos (<p) + k sin (0) 

1 - k 12sin2 (<p) 

We observe again that if k = 1 these scale factors are identical with those 

of the spherical polar coordinate system. 

The coordinate surfaces are determined by the following equations 

(1. 1) 

(1. 2) 
x2 + k2y2 

sin2 (0) 1 - k2 cos2 (0) 

(1.3) 
k'2z2 x2 

----,---- + ----
1 - k •2sin2 (<p) cos2 (<p) 

2 , 
cos (0) 

2 
y 

sin2 (<p) 
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Equation (1.1) represents a sphere with centre at the origin. If 6 ~ n/2 

equation (1,2) represents a cone with the vertex at the origin. The cross­

section of this cone with a plane z = z0 ~ 0 is an ellipse satisfying the 

equation 

2 2 
X -2-=-2-- + _2 ___ 2 ___ 2 __ _ 

z0tan (6) z0 (sec (6)/k - 1) 
1 • 

The major axis, lying in the y,z plane, is denoted by 2a, in which 

a = 

and the minor axis, lying in the x,z plane,is denoted by 2b, in which 

The eccentricity is 

k' e := 2 2 k cos (6) 

z 

X Figure 1.2. 

If k 1, and consequently e O, the elliptic cone becomes a circular cone. 
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Equation (1.3) represents an elliptic cone with the vertex at the origin. 

The cross-section of this cone with a plane y = y0 # 0 is an ellipse which 

satisfies the equation 

2 2 
Z X _2 ___ 2 ____ 2 ___ + -2--2--

Yo (csc (~)/k' - 1) y0cot (~) 

The major axis, lying in the y,z plane, is denoted by 2a, in which 

a = 

and the minor axis, lying in the x,y plane,is denoted by 2b, in which 

The eccentricity is 

z 

Figure 1.3. 

' \ 
\ 
I 
I 

a I 

I 
I 

_) 
.,. I 

I 
I 
I 
I 

I / 

' I I 
'' I ' 

' I 
' \ I / 

'\.Ji 

we observe that if k = 1 equation (1.3) degenerates into 

(_x __ - ___L_.) c-· _x __ + _,l._) = 0 
cos(~) sin(~) cos(~) sin(~) ' 

and this is the equation of a pair of planes. 

y 
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Now we investigate the one-one correspondence between the Cartesian coordi­

nate system and the sphero-conal system. For that purpose we consider the 

functional determinant 

2 r 

If r = 0 or (cos(~) = 0 and sin(6) = 0), the functional determinant is zero 

and we have locally no one-to-one mapping on the Cartesian coordinate sys­

tem. 

Each point (0,6,~) is mapped onto the origin of the Cartesian coordinate 

system, 

(cos(~) = 0 and sin(6) = 0) holds if: 

e o, ~ 7T/2; this corresponds to the half-line k'z - ky = o, y;:: o, x=0; 

e = o, ~ 37T/2; corresponding to k'z + ky = 0, y~ o, X = 0; 

e 7T, ~ 7T/21 corresponding to k'z + ky = 0, y ;:: o, x = 0; 

e 7T, ~ 37T/2; corresponding to k'z - ky = o, y ~ o, X = 0, 

z 

y 

Figure 1.4. 
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We observe that if 8 = 0 the elliptic cone (1.2) degenerates into a sector 

of the y,z plane determined by the conditions x = O, IYI s (k'/k)z. 

To each point inside this sector there exist two coordinate triples, viz., 

(r,O,qi) and (r,O,;r-qi). 

If qi= ;r/2 the elliptic cone (1.3) degenerates into a sector of the y,z 

plane determined by the conditions x = O, lzl S (k/k')y. 

At each point inside this sector, however, the mapping from (r,8,qi) to 

(x,y,z) is one-to-one. 

We observe that if k = 1 the sectors corresponding to 8 = 0 and 8 = ;r dege­

nerate into the z axis (this is also true in the spherical polar coordinate 

system). 

If 8 = n/2 the elliptic cone (1.2) degenerates into the whole x,y plane, 

and if qi= 0 the elliptic cone (1.3) degenerates into the whole x,z plane. 

1. 4. Single.-val.u.e.d f,wicti.orn. in. :the. 1ipheJt.O-c.on.al -&y1i.te.m 

It is convenient to enlarge the domain D of definition to - 00 < 8,qi < 00 • 

First of all, we observe that in this extended domain the following rela­

tions hold: 

(i) ~(r,8,qi) = ~(r,8,qi+2n), periodicity relation. 

(ii) ~(r,8,qi) = ~(r,-8,n-qi), reflection relation with respect to the point 

(r,O,n/2). 

(iii) !,(r,8,qi) = _!(r,2n-8,n-qi), reflection relation with respect to the 

point (r,n,;r/2). 

It is evident that if F(x,y,z) is a single-valued function in the whole JR3 

space, then 

f(r,8,qi) := F(x(r,8,qi) ,y(r,8,qi) ,z (r,8,qi)) 

obeys the following relations: 

(i) f(r,8,qi) 

(ii) f(r,8,qi) 

(iii) f(r,8 ,Ql) 

f (r,e ,qi+2;r), 

f(r,-8,n-qi), 

f(r,2n-8,;r-qi). 

In addition, if (x,y,z) = (O,O,O) then f(0,8,qi) is independent of 8 and qi. 
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Now let f(r,0,~) be continuously differentiable in r ~ O,-"' < e,~ < 00 • 

Then, after some analysis, it turns out that the relations (i), (ii) and 

(iii) are sufficient conditions to guarantee that f corresponds to a conti­

nuously differentiable function F{x,y,z) in the wholeJR3 space. 

We observe that the function f{r,0,~) is doubly periodic with respect to 0 

and~, that is, periodic in both 0 and~ with period 2TI. Further, the 

points (r,0,TI/2) and (r,TI,TI/2) are centres of symmetry of f{r,0,~) in the 

extended domain - 00 < e,~ < oo. 

THEOREM 1.1. Let f{r,0,~) be a continuously differentiable function in the 

domain r ~ O, - 00 < e,~ < 00 • Then f is a single-valued continuously diffe­

rentiable function of the point (x,y,z) if and only if f satisfies the 

following conditions: 

{i) f{0,0,~) is independent of 0 and ~-

{ii) f{r,0,~) 

{iii) f(r,0,~) 

1. s. Re.oeJte.n.c.e6 

f{r,0,~+2TI), periodicity condition. 

= f{r,-S,TI-~) } reflection conditions. 
= f {r ,2TI-0 1 TI-~) 
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CHAPTER 2 

THE SCALAR HELMHOLTZ EQUATION IN THE CONICAL COORVINATE SYSTEM 

2.0. In;tJwdumon, 

There are a number of problems in physics and engineering defined in a co­

nical domain and formulated in terms of potentials satisfying the scalar 

Helmholtz equation, For a simple mathematical description of these problems 

it is recommendable that the boundary of the domain is a coordinate surface, 

in order that separation of variables may be successful. 

From now on we take the origin of coordinates at the apex of the cone. It 

should be understood that our cone is actually a half-cone in the sense of 

mathematics. Thus the cone C is defined by a set of straight half-lines 

from the origin through the points of a simple closed piecewise-smooth 

curve on the unit sphere. It is natural to define the interior G* of the 

cone corresponding to the interior of the curve on the unit sphere. We de-. 
fine Gas part of the cone C between two concentric spheres with radii r 0 

and r 1 (0 < r 0 < r 1) centred about the origin. The domain G is part of G* 
- . 

between and on the two concentric spheres, and G :=Gu G. 

In this chapter we shall investigate the scalar Helmholtz equation 

(2. 1) *2 0 - 2 ~u + k u = O, ~ E G, u EC (G), u EC (G), u 1 0 

with bounda:r:y conditions, either 

(2. 2) u = 0, ~ E G (Dirichlet condition) , 

or 

(2. 3) 
au an = 0, ~ E G (Neumann condition) • 

Here n is the outward normal, k* is the wave number defined by k* 

which w/2TI is the frequency and c is the phase velocity. 

2. 1. Se.paJta;ti.,on, on :the. vMlable. r 

w/c in 

Let r,e,~ be general conical coordinates in the sense of section 1.1. Be­

cause the boundary conditions (2.2) and (2.3) are independent of r we shall 

first separate the r dependence. For that purpose we suppos·e 

u (r,6,~) R(r)v(0,~) • 



The Helmholtz equation (2 .1) is then transformed into 

1 *2 v(8,cp)i1rR(r) + 2 R(r)l1tv(8,cp) + k R(r)v(8,cp) 0 , 

where 

as in chapter 1. 

It follows that 

(2.4) 

in which v (v + 1) * = µ 

r 

'1tv(8,cp) * 
v(8,cp) = v(v + l) = µ 

is the separation constant. 

For the r dependence we now obtain the following equation: 

d 2 dR. *2 2 dr(r ~) + (k r - v (\I + 1)) R = 0 • 
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We observe that this is the differential equation of the "spherical" Bessel 

functions with the linearly independent solutions 

and 

h:(2 ) (k* ) J r-;-- H(2 ) (k* ) 
\I r ~v ;;;; v+J, r • 

Here, H~!~ ~d H~!L are the Hankel functions of the first and second kinds, 

h~l) and h~) are called the "spherical" Hankel functions [11437]. 

2. 2. The ..tltan6 ve/1.6 e dependenc.e 

From (2,4) we obtain for the 8,cp dependence 

with boundary condition, either 

v = O, (8,cp) e O (Dirichlet oondition) , 

or 

av e ~ ) an= 0, ( ,cp) E " (Neumann condition • 
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Here 

fl := {(8,cp) I ( 8 I q)) is on a simple closed piecewise-smooth curve 

on the unit sphere} I 

n := { (8, cp) I (8, cp) is the interior of non the unit sphere} 

and 

Consequently, we have to investigate the eigenvalues and the eigenfunctions 

of the Dirichlet and Neumann problems for the Beltrami operator ~tin a do~ 

main non the unit sphere. It is easy to see that the Beltrami operator with 

either the Dirichlet or the Neumann boundary condition is a Hermitian opera­

tor with respect to the inner product 

(2.5) (u,v) = II u(8,cp)v(8,cp)h;(8,cp)h;(8,cp)d8dcp 

n 

Moreover, if h; and h; are both positive and bounded inn, ~tis uniformly 

elliptic here. From the spectral theory of elliptic Hermitian operators [4] 

it is not difficult to see that the following theorem holds. 

THEOREM 2.1. Consider the two eigenvalue problems 

with boundary condition, either 

v = 0, (8,cp) E Q (Dirichlet condition) , 

or 

av ;, an= 0, (8,cp) E" (Neumann condition) • 

If h; and h; are continuous and nonzero inn, either eigenvalue problem 

admits a denumerable set of eigenvalues having the following properties. 

The eigenvaluesµ* 
n 

are real and form an infinite sequence (with 00 as the 

* * only accumulation point) such that O < µ1 ~ µ2 ~ 

* * case, and O = µ0 < µ1 ~ •.• in the Neumann case. 

••. in the Dirichlet 

The corresponding eigenfunctions vk(8,cp) can be chosen such that they 

form a complete set of orthogonal eigenfunctions with respect to the inner 

product (2. 5) • □ 
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To indicate a proof of this theorem we shall first transform the Beltrami 

operator with the aid of stereographic projection and conformal mapping into 

the two-dimensional Laplace operator multiplied by a function positive on 

the unit disk and show that this operator has a compact inverse. The theo­

rem then follows from the well-known theory of compact Hermitian operators. 

We do this in the following steps. 

(i) The unit sphere is given by the equation 

2 2 2 
X +y +z 1 

and we identify the north pole with the point (0,0,1). We choose the 

parameter representation of the unit sphere so that the north pole 

lies outside s'i. 

We then consider the stereographic projection [2;20] from the north 

* pole on the complex z plane that coincides with the x,y plane in the 

Cartesian coordinate system. This transformation is given by 

* z * * X + iy ~ " ,_XE" 1 -z 

where x* and y* are functions of 6 and~-

Let 

ax* ax 1 --=----+ ae ae 1 - z 

* .£L = ~-1- + 
ae ae 1 - z 

ax* ax 1 --=----+ a~ a~ 1 - z 

X OZ 
2 as , 

(1 - z) 

y az 
2 as , 

(1 - z) 

X oz 
2 ~ I 

(1 - z) 

** laz*I and h~ := ~ 

then, after some calculation, 

and 
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The operator tt transforms into the operator 

* ·* defined in the domain O bounded by the simple closed curve O as . 
stereographic projection of O and O, respectively. 

This operator can also be written as 

* in which R is the distance from the north pole to the point z. 

(ii) According to the Riemann mapping theorem [2;172] we can map o* with 

the aid of a conformal mapping 

* ~ = g(z) =,+in 

on the unit disk 

'* 0 is mapped on 

We have now shown the equivalence of the eigenvalue problems 

(9 ,q>) E 0 

with boundary condition, either 

v(S,q>) = O, (9,q>) E Q 

or 

a 
cln V ( 9 , (j)) = 0 , ( 9 , (j)) E 0 

and the eigenvalue problems [2;175] 

-2 * f (,,n)l~v + µ V = 0, (,,n) E B 

with boundary condition, either 

vc,,n) = 0, c,,n> E B (Dirichlet condition) , 

or 
. 

0, (,,n) EB (Neumann condit~on) 



-2 Here f (~,n) is defined as 

We observe that the inner product (2.5) becomes 

(u,v) = J f f 2 (~,n)u(~,n)v(~,n)d~dn • 

B 
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(iii) Invoking theorems (2.28) and (2.35) of the appendix the proof of our 

theorem is complete. 

2.3. SepaluLti..on 06 the vaJUablu 8 and~ 

In the previous section we considered the spectral properties of the trans­

verse Laplace operator on a domain n of the unit sphere with either Dirich­

let or Neumann boundary conditions. The choice of the coordinates 8 and~ 

was relatively unimportant there, so long as the operator ~t remains uni­

formly elliptic inn. Now we shall be more specific. If n corresponds to a 

cone with elliptic cross-section, we want to choose 8 and~ such that the . 
boundary n becomes a curve 8 = 80 = constant, so that we are able to sepa-

rate the coordinates 8 and~- Hence we choose for 8 and~ those of the 

sphero-conal coordinates introduced in section 1.3, and consider the domain 

n corresponding to the parameter values 0 < 8 < 80 , -=<~<=.Since we 

want to consider only functions that are regular inn, we now have to ad­

join the regularity conditions of section 1.4. 

We now reconsider the eigenvalue problem (v,µ*) (which we will call the Bel­

trami problem) : 

(2.6) 

a 1 - k' sin(~) (V 2 2 

~1 - k2cos2 (8) 
* + µ V = 0, 

(2. 7) v(8 ,2,r) 

(2.8) 

either 
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{2. 9) 0 {Dirichlet condition) 

or 

(2 .10) 0 (Neumann condition) • 

The conditions at~= 0,2n may be replaced by v(0,2n+~) = v(0,~) if we ex-

tend v to a 2n-periodic function and v(0,n-~) 

low the line e = O. 

v(-0,~) if we extend v be-

It should be stressed that the existence of eigenvalues and eigenfunctions 

for n has already been shown; these functions when considered as functions 

of e and~ of the sphero-conal system certainly satisfy the regularity con­

ditions. We shall now, by separation of variables, construct a set of so­

called separable solutions of the above boundary-value problem and show 

that from these solutions in this way all eigenfunctions of the transverse 

Laplace operator inn (with either Dirichlet or Neumann conditions) can be 

obtained by finite linear combinations. 

The selection of·the sphero-conal coordinate system and the boundary and regula­

rity conditions leads to separating the eigenfunctions v(0,~) as 

v(0,~) = 0(0)'P(~) . 

Then the equation (2.6) separates into the following two Lame equations: 

(2.11) Ii 2 2 d Ii 2 2 d0 * 2 . 2 * 1-k cos ceid0 c 1-k cos cei de>+(µ k sin cei->. )8 = o 

and 

(2 .12) 0 

where A* is the separation constant. 

For simplicity we put A A*+ k' 2µ* Then equations (2.11) and (2.12) 

are transformed into 

(2.13) 0 

and 

(2, 14) /1 -k 12sin2 (~)~(/2 -k 12sin2 (~) d'P) + 
d~ d~ 

* 2 2 * + ( µ ( 1 - k ' sin ( ~) ) - ( µ - A) ) IP = 0 

respectively. 
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DEFINITION 2.2. A function 4>(~) is called periodia if q,(~) 

A function 4>(~) is called even eymmetria if 4>(n-~) = q,(~). A function q,(~) 

is called odd eymmetria if 4>(n-~) = -~(~). □ 

DEFINITION 2.3. A function v(8,~) is called eepa:z,able if v(8,~) = 0(8)~(~). 

A function v(8,~) is called etro'Yl{Jly eeparab·te if v(8,~) = 0(8)~(~) with 

~(~) symmetric (that is, even or odd symmetric). 

LEMMA 2.4. If qn eigenfunction v(8,~) of the Beltrami problem is separable 

then v(8,~) is either strongly separable or the sum of two independent 

strongly separable eigenfunctions. 

□ 

PROOF. If v(8,~) is an eigenfunction of the Beltrami problem then, since 

the coefficients of the Beltrami operator are even functions of~ that have 

period n, v(0,n-~) is also an eigenfunction. It follows that 

and 

are also solutions of the Beltrami problem. These functions are independent, 

unless one of them is identically zero. we observe that w1 (8,~) =w1 (8,n-~) 

and w2 (8,~) = -w2 (8,n-~): 

If v(8,~) is separable, i.e., v(8,~) = 0(8)~(~) then 

and 

and these functions are, obviously, strongly separable. 0 

We now have to find appropriate auxiliary conditions for 0 and~-

From the periodicity condition (2.7) it follows that v(8,~) = v(8,~+2n), 

hence the solutions of the Lame equation (2.14) must satisfy the periodici­

ty condition~(~)= ~(~+2'11") or, equivalently, ~(0) = ~(2'11") and 4>'(0) =~'(2'11"), 

The right-hand boundary condition belonging to equation (2.13) follows di­

rectly from (2.9) and (2.10): 

0(80) = 0 (Dirichlet problem) 
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or 

0 (Neumann problem) . 

In order to find a boundary condition for the 6 equation at the left-hand 

end point 6 0, we observe that from the regularity conditions (2.8) it 

follows for a separable eigenfunction v(6,~) = 8(6)i(~) that 

and 

Hence for strongly separable eigenfunctions we have 

(2 .15) dS (0) 0 . f ,. ( ) . . """"a:e" = J. ., ~ is even symmetric , 

(2 .16) 0(0) = 0 if W(~) is odd symmetric . 

Conversely, we can find eigenvalues and strongly separable eigenfunctions 

of the two-dimensional Beltrami problem by looking for non-trivial solutions 

* of the~ and 6 equations (2.14) and (2.13) with the same values ofµ and 

A and satisfying the conditions 

(i) 

(ii) 

(iii) 

i(~) is periodic and symmetric 

r-~:(O) = 0 if i is even symmetric, 

lS(O) = 0 if i is odd symmetric. 

{

8(60) = 0 in the Dirichlet case, 

d8(60 ) __ 
d6 0 in the Neumann case. 

The above considerations may be summarized in the following theorem: 

THEOREM 2.5. v(6,~) = 8(6)i(~) is a strongly separable eigenfunction cor­

* responding to the eigenvalueµ of the Beltrami problem if and only if 

there exists a A such that 

(i) W(~) satisfies (2.14) and is periodic and symmetric, 

(ii) .8(6) satisfies (2.13) and the boundary conditions 

dS(O) = 0 if w is even symmetric, 
d6 



8(0) = 0 if w is odd symmetric, 

8(60) = 0 in the Dirichlet case, 

d8 
d6 (60) = O in the Neumann case. 
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D 

From lemma 2.4 it is obvious that the strongly separable eigenfunctions 

span the space of all separable eigenfunctions; we will show presently that 

they even span the space of all eigenfunctions. 

LEMMA 2.6. If 8(6)w(~) is a strongly separable eigenfunction with eigen­

* valueµ then the separation constant A satisfies 

0 < A * < µ = V(V + 1) • 

PROOF. If 8 (~ 0) satisfies equation (2.13), then 

0 

*k2 - µ 0 • 

By integrating by parts and using the boundary conditions (2.15) and (2.16) 
d8 * respectively, as well as (8 x de'e=eo = O, it follows that A<µ. 

If w satisfies the equation (2.14), then 

27T 

-( 1 -k..,sin (~)-)w(~)d~ -k' µ f d fi ? 2 dw - 2 * 
d~ d~ 

d~ + 

0 

27T 

+ A f 0 • 

0 

By integrating by parts and using the periodicity conditions, it follows 

that A > O. 

REMARK. The complex conjugate of 8(6) and w(~) is denoted by 0(6) and~(~).□ 
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* We now investigate the spectrum of the ip problem for a given µ = v (v + 1). 

Let ~(ip;A) be a solution of equation (2.14) that satisfies the periodicity 

conditions 

(2.17) 

and 

(2.18) 

Then (since the coefficients of the differential equation have period TT) 

~(ip+TT;A) is also a solution of equation (2.14) that satisfies the periodi­

city conditions (2.17) and (2.18). It follows that 

and 

also satisfy (2.14), (2.17) and (2.18); at least one of them is non-trivial. 

we observe that w1 (ip;A) = w1 (ip+TT;A) and hence w1 (ip;A) is a solution with 

period n. Also, w2 (ip;A) is a solution with period 2n, for which w2 (ip;A) = · 
= -w2 (ip+TT;A). From this we may conclude that (2.14) with the periodicity 

conditions (2.17) and (2.18) is equivalent to (2.14) on the interval (O,n) 

with the boundary conditions 

~(O;A) = ~(TT;A) and d~(O·A) = d~(TT·A) 
dip ' dip ' 

or 

~(O;A) = -~(TT;A) d~ d~ 
and dip (O;A) = - dip (TT;A) • 

Hence we have to investigate the following Sturm-Liouville eigenvalue pro­

blems. 

PROBLEM A. 

with the periodicity conditions 

~ (0) = ~ (TT) 1 !!!.(Q) = !!!.(TT) 
dip dip 
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PROBLEM B. 

with the periodicity condition 

With the aid of lemma 2.6 and theorem 3.1 from [3;214] we can formulate the 

following theorem: 

* THEOREM 2. 7 •~ For any µ > 0 the eigenvalues '- i, i <!: 0, of problem A and the 

eigenvalues X1 , i <!: 1, of problem B, form infinite sequences {with mas the 

sole accumulation point) such that 

For). AO there exists a unique eigenfunction without any zero in [O,n]. 

For). X2i+l and).= A21+2 , i <!: 0 there exist eigenfunctions ~2i+l{~) and 

~21+2 {~) respectively with precisely 2i + 2 zeros in [O ,n) • For ). = X2i+l 

and X = X21+2 there exist eigenfunctions i 2i+l {~) and i 2i+2 {~) respectively 

with precisely 2i + 1 zeros in [O,n). The eigenfunctions ~i (~), i <!: 0 and 

11 (~), i <!: 1 together can be chosen such that they form a complete set of 

orthonormal eigenfunctions with the inner product 

n 

{u,v) f □ 
0 

LEMMA 2.8. If~{~) is an eigenfunction corresponding to the eigenvalue). of 

the~ problem then~(~) satisfies either ~{n+~) =~{~)or ~{n+~) = -~(~). 

PROOF. The functions $1 (~,).) and $2 (~,).) are independent, unless one of 

them is trivial. Consequently, if the eigenvalue~ is simple then one of 

these functions must be trivial. If, however, ). has multiplicity 2 then 

from theorem 2.7 it follows that the corresponding eigenfunctions both be­

long either to problem A or to problem B; in the first case $2 (~;).) is zero, 

in the other case w1 (~;).) is zero. □ 
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LEMMA 2.9. Each eigenspace of the~ problem has an orthonormal basis consis­

ting of symmetric eigenfunctions. 

PROOF. If~(~) is an eigenfunction of the~ problem with eigenvalue A then, 

since the coefficients of the differential equation are even and have period 

TI, ~(TI-~) is also an eigenfunction of the~ problem. 

It follows that 

and 

are also solutions of the~ problem. It follows from substitution of 

~+(TI-~) at appropriate places in the integrand that (x 1 ,x2) = 0. Hence 

x1 and x2 are orthogonal and independent unless one of them is trivial. We 

observe that x1 (~) = x1 (TI-~) and X2(~) = -x2 (TI-~). 

From theorem 2.7 we know that an eigenvalue A has at most multiplicity 2. 

If A is simple then one of the functions x1 and x2 must be trivial. Hence 

~(~) is symmetric. 

Let now A have multiplicity 2 and let ~ (~) , ~(~) be an orthonormal basis 

for the corresponding eigenspace. If for one of the functions~ and~ both 

x1 and x2 are non-trivial then because (x1 ,x2) 0 we can choose these 

functions x1 and x2 as an orthogonal basis f~r the eigenspace corresponding 

to A. In the other case the functions~ and~ are both symmetric, and since 

they are orthogonal they can be chosen as a basis. □ 

The results arrived at above may be summarized in the following theorem: 

* THEOREM 2. 10. For any µ > 0 the eigenvalues of the ~ problem form an in-

finite sequence A0 ,A 1,... (with 00 as the only accumulation point) such that 

The eigenfunctions ~i' i ~ 0, can be chosen such that 

(i) they satisfy either ~i(TI+~) = ~i(~) or ~i(TI+~) = -~i(~), 

(ii) they are symmetric, 

(iii) if two eigenvalues (Ai Ai+l) are equal then either 
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or 

Moreover <l>i is even symmetric and <l>i+i is odd symmetric, or vice versa, 

(iv) they form a complete set of orthonormal eigenfunctions with respect to 

the inner product 

(u,v) I271 u(cp)v(cp) 
-✓-;::1=-==k=,=2=s=i=n=2=(=cp:-) dcp • 

0 

REMARK. In comparison with theorem 2.7 the eigenvalues are numbered so 

that the following statement about zeros of the eigenfunctions holds: w0 
has no zero in [0,271). w4i-l and w4i have precisely 4i zeros in [0,271), 

i 1,2, •••• <I>4i+i and <I>4i+2 have precisely 4i+2 zeros in [0,271), 

i 0,1,2, .•• 

□ 

THEOREM 2.11. Independent strongly separable eigenfunctions of the Beltrami 

problem are orthogonal with respect to the inner product ( 2 • 5) :' 

(u,v) 

* PROOF. Letµ be an eigenvalue of the Beltrami problem to which one or 

* more strongly separable eigenfunctions belong. If the eigenvalueµ is 

simple then the corresponding strongly separable eigenfunction is orthogo-

* nal to all other eigenfunctions, a consequence of theorem 2.1. Letµ now 

be multiple and let u = 8i<l>i and v = 8j<l>j be independent strongly separable 

eigenfunctions then 

(u,v) 

+ I 
0 

0 

271 

0,(6)0.(6) 
-;::=l.=;::::=;:::==- d6 + 
/1 - k2cos2 (6) 
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From theorem 2.7 it follows that two independent eigenfunctions ~i and ~j 

of the~ problem satisfy 

I 
0 

21T 
~i (~)~. (~) 

-;===~==- d~ 
/1 - k • 2sin2 (~) 

0 • 

If Air Aj then it follows from (2.13) and the boundary conditions that 

60 

f 
0 

If Ai,= A then according to theorem 2.10 
j 

odd symmetric, or vice versa. 

Consequently 

f 
0 

21T 
cos2 (~) ~- (~) ~. (~) 

-;:===i===J=-- d~ 
/1 -k 12sin2 (~) 

0 • 

0 • 

~i is even symmetric and ~j is 

Hence also in this case 0i~i and 0j~j are orthogonal. D 

* THEOREM 2.12. The eigenspace corresponding to an eigenvalueµ of the Bel-

trami problem can be spanned by a finite number of mutually orthogonal 

strongly separable eigenfunctions. 

* .PROOF. Let v(6,~) bean eigenfunction corresponding toµ. Since the functions 

~n(~) constitute a complete orthonormal set (see theorem 2.10), we can ex­

pand v(6,~) in a Fourier series 

with 

(2.19) a* c0> := 
n 

r 
n=O 

21T 

I 
0 

a* c0> ~ <~> n n 
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From the equation 

2 2 2 . 2 [k' cos c,1 + k sin (B)Jd, 0 

it follows after some calculations that e*ce), n = 0,1, ... is a solution of 
n 

the equation 

From the boundary conditions (2.9) or (2.10) and the definition of e* it 
* n 

follows that en satisfies the right-hand boundary condition 

en(B0) = 0 (Dirichlet condition) 

or 

de 
dBn(8 0) = O (Neumann condition) 

* The appropriate boundary condition for en at 8 0 can be found as follows: 

v(B,,> satisfies the regularity conditions 

v(o,,> = v(O,n-,> 

and 

We know, however, that wnc,> is symmetric. Combining these facts it follows 

from (2.19) that e* satisfies the left-hand boundary condition 
n 

or 

8rt(O) = 0 if wn is odd symmetric 

de 
n 

a1)(0) = 0 if wn is even symmetric. 

Comparison with theorem 2.5 shows that each eigenfunction v(e,,> of the 

Beltrami problem is a (possibly infinite) linear combination of strongly 

separable eigenfunctions e*w c,J. we shall show in two independent ways 
n n 

that these sums are necessarily finite. 
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(i) For each n, for which e* 1 O, the expression e*~ (~) is a non-trivial 
n n n 

eigenfunction of the Beltrami problem corresponding to the eigenvalue 

* * µ. Theorem 2.1 states that each eigenvalueµ has finite multipli-

city, however. 

(ii) From lemma 2.6 it follows that if e* 1 0 then the corresponding A n n 
tisfies O < A < µ* 

n 
Since 00 is the only accumulation point of the 

sa-

sequence A0 ,A 1 , •.• only a finite number of e* are not identically zero. 
n 

* Let nowµ have multiplicity M with independent eigenfunctions 

Let ~.8., j = 1, ••• ,N be strongly separable Beltrami solutions, occurring 
J J 

with nonzero coefficient in at least one of the Fourier expansions of 

v 1, ••• ,vM. Then these functions, which by theorem 2.11 are mutually ortho­

* gonal, span an N-dimensional eigenspace corresponding toµ which contains 

the space spanned by v 1 , ••• ,vM. Hence N = M. □ 

COROLLARY 2.13. The strongly separable eigenfunctions of the Beltrami pro­

blem span the same space as the collection of all eigenfunctions of the 

Beltrami problem. □ 

Consequently, when in the future we consider eigenfunctions of the Beltrami 

problem we shall restrict ourselves, without loss of generaltty, to the 

strongly separable eigenfunctions of the Beltrami problem. 

2.4. Appe.ncli..x. 

2.4.0. Intltoduc;t;o~y ~e.ma.JL/ui 

Let throughout this section 

/x2 + x2 
1 2 

B := {x I lxl < 1} , 

B := {x I lxl 1} 

. 
B=BUB, 

f(x) € c0 (B) A f(x) F O. 
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DEFINITION 2.14. we note the set of all square Lebesgue integrable complex 

valued functions on Bas the space L2 (B), which will be considered as a 

Hilbert space with the inner product defined by 

(u,v) := J f 2 (x)u(x)v(x)dx 

B 

and the norm by 

II u 112 := (u,u) J f 2 (x)u(x)u(x)dx. 

B 

DEFINITION 2.15. L;(B) := {u(x) I u(x) E L2 (B) II (u,1) 

□ 

ol. □ 

LEMMA 2.16. With the inner product and the norm such as defined in defini-

* tion 2.14, L2 (B) is a separable complex Hilbert space [5;27]. □ 

Now we consider the two-dimensional eigenvalue problems 

-2 0 - 2 f l'.u+Au=0,XEB,uEC (B),uEC (B),u;;!0 

with the boundary condition, either 
. 

u = 0, x E B ( Dirichlet condition) 

or 

au • 
on= 0, x EB (Neumann condition) • 

L'. is the two-dimensionai Laplace 

normal. 

a2 
operator - 2- + 

ox1 

a2 
- 2-. Here n is the outward 
ax2 

LEMMA 2, 17. Let U E 1 -C (B) , u E c2 (B) then 

Jt.u dx .I au ds 
an 

B B 

. 
where ds is the element of the arc of B. □ 
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0 - 1 1 2 LEMMA 2,18. Let u EC (Bl, u EC (Bl and v EC (B), v E c (Bl then 

f (uf>v + (grad(u) ,grad(v)) )dx"' .f u :: ds 

B B 

This is Green's first identity. □ 

LEMMA 2.19, Let U E c1 (Bl , U E C2 (B), v 1 -E C (B) , V E C2 (B) then 

f (ul:.v - vl:.u)dx .f av au (u-- v an)ds an 
B B 

This is Green's second identity. □ 

DEFINITION 2.20. Let S(x;y) be a fundamental solution of the Laplace equa­

tion with unit source at y, then 

□ 

LEMMA 2.21, Let u E c1 (B), u E c2 (B), y EB and S(x;y) be a fundamental so~ 

lution of the Laplace equation with unit source at y, then 

u(y) "' - f S(x;y)l:.u(x)dx + 

B 

This is Green's third identity. 

f (S(x·y)au(x) - u(x)as~x;y))ds 
, ' an n X 

B 

LEMMA 2.22. Let u E c1 (B), u E c2 (B), u JO be a solution of Dirichlet's 

eigenvalue problem 

with the boundary condition 

u "' o, X E B , 

then 

f (grad(u) ,grad(u))dx 

B 

II u 112 
> 0 

□ 

□ 
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1 - 2 LEMMA 2.23. Let u EC (Bl, u EC (B), u 1 0 be a solution of Neumann's eigen-

value problem 

with the boundary condition 

then 

f (grad(u),grad(u))dx 

B 

II u 112 

Hence, if u constant, then A 0, else A> 0. 

The last two lemmas are a consequence of Green's first identity. 

2. 4 .1. Vbuc.hle:t '-6 ugenvalue pMb.tem 

DEFINITION 2.24. Green's function G(x;y), x EB, y EB is defined as fol­

lows: 

(1) G(x;y) is a fundamental solution of the Laplace equation with unit 

source at y. . 
(2) G(x;y) = 0, XE B. 

LEMMA 2.25. For the domain B, Green's function is given by 

G(x;y) =-.!....log( 1x-yJJ +.!....log(lyJ•lx-y*J> 2TI I 2TI 

where x EB, y EB and y* := ~y. 
IYI 

We now consider Dirichlet's eigenvalue problem 

-2 O 2 f ~u +AU= 0, u E c (B), u EC (B) 

. 
with the boundary condition u = 0, x EB. With the aid of Green's third 

identity and the property of symmetry of G(x;y) we obtain 

u(x) = A f G(x;y)f2 (y)u(y)dy, x EB. 

B 

D 

D 

D 
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This representation also applies if u E c0 (:s), u E c2 (B) [4;225]. Let:\=.!.., 
µ 

then 

µu(x), XE B. 

B 

Let now u E L2 (B), then, with the aid of Weyl's lemma [4;225-226,199], the 

following equivalence theorem holds. 

THEOREM 2.26. Dirichlet's eigenvalue problem 

-2 0 - 2 0 f Liu+ :\u = O, x EB, u E c (B), u E c (B), fEC (B), u;tOAf~O 

with the boundary condition u = O, x EB, is equivalent to the eigenvalue 

problem 

1 
µu(x), x EB,µ= 'f, u E L2(B), u ;t O. □ 

B 

For the sake of convenience we shall write this eigenvalue problem in the 

operator notation 

in which the integral operator Tis defined by 

(Tu) (x) := f G(x;y)f2 (y)u(y)dy . 

B 

LEMMA 2.27. The integral operator Tis a linear, Hermitian, compact opera­

tor; Herm,itian with relation to the inner product from definition 2.14. 

PROOF. Linearity is trivial. Because G(x;y) = G(y;x), 

(Tu,v) = (u,Tv) = I f 
B B 

2 2 f {x)f (y)G(x;y)u(y)v(x)dxdy 

Moreover f(x)G(x;y)f(y) is square integrable over Bx B, which means 

f I 2 2 2 f (x)G (x;y)f (y)dxdy < 00 • 

B B 

So Tis a Hilbert-Schmidt operator [5;86,182], hence compact. □ 
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With the aid of the spectral theorem of compact Hermitian operators [5;202], 

and from lemma 2.27 and theorem 2.26 we obtain 

THEOREM 2.28. Dirichlet's eigenvalue problem 

-2 O - 2 f Liu+ AU = 0, X E B, U E C (B) , u E C (B) , U '/; 0 

with the boundary conditions u = O, x e: B has denumerably many positive 

eigenvalues Aj' j = 1,2, .•• with corresponding orthonormal eigenfunctions 
0 - 2 

uj e: C (BJ, uj e: C (B). D 

2. 4. 2. Neumann'.& e,igenvalue pMbR.em 

To solve Neumann's eigenvalue problem we shall introduce two Neumann func­

* tions, namely N(x;y) and N (x;y). 

DEFINITION 2.29. Neumann's function N(x;y), x EB, ye: Bis defined as fol­

lows: 

(1) N(x;y) is, as a function of x, a fundamental solution of the Laplace 

equation with the unit source at y. 

(2) 

(3) 

aN 1 • 
an(x;y) = - 2TT, XE B 

X 

.f N (x;y) dsx 

B 

0 • 

LEMMA 2.30. Neumann's function N(x;y) for the domain Bis given by 

N(x;y) 

where XE B, y EB and * y 
1 :=M2y 

DEFINITION 2.31. Neumann':s function N*(x;y), x e: B, ye: Bis defined as 

follows: 

(1) N*(x;y) is, as a function of x, solution of 

-6 (x - y) 
f 2 (x) +---
111112 

D 

D 
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* oN . 
(2) r-<x1y) = o, X € B • 

nx 

.I * (3) N (x;y)dsx 0 

B 

Since the Neumann function as defined above is perhaps not conventional, 

the following explanation may be given, 

With the aid of lemma 2.17 we obtain 

= J f2(x) dx - 1 = 0 

B II 1112 

oN* • 
and therefore it is possible to postulate 'a'n(x;y) = O, x EB, We observe 

* 

□ 

that N (xiy) is determined uniquely but for a solution of a Neumann problem, 

** For convenience we suppose that N (x;y) satisfies the first two conditions 

of definition 2.31, Then 

* ** N (x;y) N (x;y) + g(x;y) 

where g(x;y) is a solution of Neumann's problem 

with the boundary condition 

*(x;y) = 0 1 x EB 

For fixed y, this problem has as solution g(x;y) = c(y), This constant is 

* defined by the third condition of definition 2,31. Hence N (x;y) is unique-

ly determined, 

* LEMMA 2.32, Neumann's function N (x;y) for the domain Bis given by 

B 

I ~ f2 (y) ~ N(x;y) 2 dy 
11111 

Now we consider Neumann's eigenvalue problem 

-2 0 - 2 f bu+ AU= 0, u € C (B), u € C (B), u 1 0 

with the boundary condition 

~ = 0 • on , X € B • 

With the aid of Green's second identity we obtain 

□ 
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u (x) ;i. J * 2 J t2 (v) N (x;y)f (y)u(y)dy + ~ u(y)dy. 
B 11111 

B 

From leDlllla 2.17 

A J f 2 (y)u(y)dy O. 

B 

We shall now exclude A= 0 with the corresponding eigenfunction u - 1. Hence 

B 

and it follows that 

J * 2 u(x) = A N (x;y)f (y)u(y)dy. 

B 

THEOREM 2.33. The "restricted" Neumann eigenvalue problem 

f-26u +AU= 0 , x EB, u E c1 (B), u E c2 (B), u t constant 

ith th b d d . · au O • · ' 1 t th ' 1 w e oun ary con ition an= , x EB is equiva ent o e eigenva ue 

problem 

J * 2 1 N (x;y)f (y)u(y)dy = µ u, XE B 

B 

For simplicity we write this eigenvalue problem in operator notation 

in which the integral operator Sis defined by 

(Su) (x) := J * 2 N (x;y)f (y)u(y)dy • 

B 

LEMMA 2,34. The integral operator Sis a linear,Hermitian,compact operator. 

PROOF. Analogous to that of lemma 2.27. D 



46 

Using the spectral theorem of compact Hermitian operators we infer: 

THEOREM 2.35. The "restricted" Neumann eigenvalue problem 

-2 1 - 2 
f ~u +AU= o, XE B, u EC (B), u EC (B), u t constant 

au • 
with the boundary condition an= 0, x EB, has denumerably many positive 

eigenvalues A . , j = 1, 2, ••• with corresponding orthonormal eigenfunctions 
1 - J 2 

uj E C (Bl , uj E C (Bl • □ 
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LAME EQUATIONS 
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This chapter is most important to our whole work. In fact, we here show that 

the solutions of the~ Lame equation are related to those of the 8 Lame 

equation. 

Results about solutions of the~ Lame equation are known since a long time 

(Ince, [4], [5]). For the 8 Lame equation very little has been published, 

however. 

Sometimes Levine is quoted as to have obtained various results on the solu­

tions of the 8 Lame equation, but his report [BJ although announced (in [7]) 

has not appeared. 

Kong [6] in his doctoral thesis says that for lack of a better method of 

computing the 8 Lame solution he used a numerical approach, viz., a 4th-or­

der Runge-Kutta method. 

In 1948 Erdelyi investigated the~ Lame solutions by representing them by 

a series, infinite in general, of associated Legendre functions of the first 

kind [3]. 

In 1956 Sleeman expressed the Lame solutions associated with the corres­

ponding Lame polynomials by means of series of associated Legendre functions 

of the second kind [11]. 

These results for the~ case have led us to the idea of representing the 

solutions of the 8 Lame equation in terms of series of Legendre functions. 

The result obtained in this way, viz., the connection between the coeffi­

cients of the solution of the~ equation and those of the solution of the 

corresponding 8 equation seems to be new (but similar to existing results 

for the periodic and non-periodic solutions of the Mathieu equation [9]). 



48 

3 .1. Solution6 06 the. cp Lame e.quatlon. 

In the previous chapter we were led to Lame's equation 

(3 .1) 0 

0 < k' < 1, 0 ~ cp < 2TI, 

with periodicity condition ~(cpl = ~(cp+2TI) for the cp solutions. 

Here, vis a fixed parameter and A is the eigenvalue. Let (A,~(cp)) be a 

solution of this eigenvalue problem. In this section we shall show that to 

each such eigenfunction ~(cp) there corresponds uniquely an eigenvector u of 

a certain infinite tridiagonal matrix, corresponding to the same eigenvalue 

A. 

In the previous chapter we proved that we can restrict ourselves, without 

loss of generality, to 2TI-periodic eigenfunctions ~(cp) satisfying 

(i) either ~(TI+q>) 

(ii) either ~(TI-cp) 

~(cp) or ~(TI+cp) 

~(cpl or ~(TI-cp) 

-~(cp) 

-~(cp). 

Starting from these properties we can divide the eigenfunctions into four 

classes and we may expand these eigenfunctions into trigonometric Fourier 

series, namely 

I: 

II: 

III: 

IV: 

L (2n) (cp) := 
CV 

L(2n) (cp) := 
sv 

00 

t (2n) 
l A2r cos(2rcp), n = 0,1,2, ••• 

r=0 

{ ~(cp) = ~(TI+cp) 

00 

t (2n+1) 
l A2r+l cos((2r+l)cp), n = 0,1,2, •.• 

r=0 

{ ~(cp) -~(TI+cp) 

00 

l B~!n)sin(2rcp), n 
r=l 

{ ~(cp) = ~(TI+cp) 

00 

1,2, 3, ... 

t (2n+1) . 
l B2r+l sin((2r +_l)cp), n = 0,1,2, ••• 

r=0 

{ ~ (cp) -~(TI+cp) ~(TI-cp)} • 
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We remark that the upper indices of the four classes of periodic Lame solu­

tions are related to the ordinal numbers of the corresponding eigenvalues. 

Substitution of these formal series into the differential equation (3.1) 

shows that the coefficients must satisfy the following recurrence relations 

in which A := A - ~v(v + l)k 12 (for the sake of convenience we have omitted 

the upper index) 

I: 0 , 

k' 2 2 2 - -(v-2r+2)(v+2r-1)A + [(2r) (1-~k') - AJA -
4 2r-2 2r 

k'2 
- - 4-(v - 2r - 1) (v + 2r + 2) A2r+2 O, r 2 I 3 I • • • • 

II: Q I 

k'2 
- 4 (v - 2r - 2) (v + 2r + 3)A2r+3 0, r 1, 2, . . • . 

III: 0 , 

k 12 2 
- -(v-2r+2)(v+2r-1)B + [(2r) (1-~k 12J - A]B -

4 2r-2 2r 

k'2 
- 4 (v - 2r - 1) (V + 2r + 2) B2r+2 O, r 2, 3, • • • • 

IV: Q I 

k 12 2 2 
- - 4-(v-2r+l)(v+2r)B2r-l + [(2r+1) (1-~k') - A]B2r+l -

k'2 
- - 4-(v - 2r - 2) (v + 2r + 3)B2r+3 0, r 1,2,3, •• 
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We remark that all coefficients satisfy the homogeneous three-term recur­

rence relation of the type 

with 

b 
lim ....E. = 1 
z-+o:> Cr 

and 
a 1 + k2 

lim....E.= 2 
z-+o:> Cr ~ 

By virtue of Perren's theorem (see theorem 3.7) the three-term recurrence 

relation has two linearly independent solutions {y(l)} 2r and {y( 2)} 2r' say, 

which satisfy 

( 1) 
. Y2r+2 k-1 

lim~= k+l 
r+o:> Y2r 

and 

(2) 
y 

1 . 2r+2 _ ~ 
im (2) - k - 1 

r-- Y2r 

Hence, it is possible to choose the coefficients in such a way that 

A (2n) 

1 . ~­
J.m (2n) -

r-+<x> A2r 

A(2n+l) 
. 2r+l 

lJ.m (2n+l) 
r-+<x> A2r-l 

B (2n+l) 
2r+l 

lim (2n+l) 
r-+<x> B2r-1 

We observe that only for special values of A, the so-called eigenvalues, do 

the above conditions hold, because the coefficients must also satisfy the 

initial two-term (recurrence) relation. 

By this choice of the coefficients the trigonometric Fourier series with 

their derivatives converge uniformly on [0,2~] and satisfy the differential 

equation (3.1). Summarizing we have the following theorem: 

THEOREM 3.1. 

L~~n) (cp) and 

If the coefficients of the series for L( 2n) (cp) L< 2n+l) (cp) 
CV ' CV I 

L (2n+l) (cp) satisfy 
SV 

(i) the corresponding recurrence relations, 

(ii) 

A (2n) 
1 . 2r+2 _ 

im (2n) -
r+o:> A2r 

A (2n+l) 
. 2r+l 

lJ.m (2n+l) 
r+oo A2r-1 

B (2n) 

li ~= 
m (2n) 

r+o:> B2r 

B (2n+l) 
2r+l 

lim (2n+l) 
r-+<x> B2r-l 

then these series and their derivatives converge uniformly in [0,2~] and 

satisfy the differential equation (3.1). □ 

The relations I, II, III and IV can also be written in matrix notation, and 

then we obtain the following eigenvalue equations for infinite tridiagonal 

matrices. 



I: ao co AO AO 

bO a2 c2 A2 A2 

A 

b2r-2 ~2r c2r A2r A2r 

II: al cl Al Al 

bl a3 c3 A3 A3 

A 

b2r-1 a2r+1 c2r+1 A2r+1 A2r+1 

III: a2 c2 B2 B2 

b2 a4 c4 B4 B4 

= A 

b2r-2 a2r c2r B2r B2r 

~ IV: al cl Bl Bl 

l\ a3 c3 B3 B3 

= A 
...; 

b2r-1 a2r+1 c2r+1 B2r+1 B2r+1 

with elements 

aO := O, a 1 := (1-\k' 2) -v(v+l)k 12/4, a 1 :=(l-\k12 ) +v(v+l)k 12/4; 

a =a :=r2 (1-\k 12), r=2,3, •.. ; r r 2 
bO := -v(v+l)k' /2; 

b = b := -(v-r)(v+r+l)k 12/4, r = 1,2, .•. ; r r 2 
c O :=-(v-1)(v+2)k' /4; 

2 
cr =er:= -(v-r-1)(v+r+2)k' /4, r 1,2, •..• 
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Analogously to the Mathieu function [9;188] we can normalize the eigenvec­

tors so that 

and 

Hence, 

27f 27f 

.!. I (L (ml (cpl l 2dcp 
7f C\/ 

1 
= -

7f 
I (:L~~) (cp) /dcp 1 

0 

lim 
k'+O 

00 

2 (A(2n))2 + 
0 

}: 
r=1 

00 

}: (A (2n+1) )2 

r=O 2r+1 

00 

I (B(2n))2 

r=l 2r 

00 

I (B(2n+1))2 

r=O 2r+1 

0 

cos (mcp l , lim 
k'+O 

L (ml (cpl 
S\/ 

sin(mcpl • 

(A(2nll2 = 1, 
2r 

}: 
r=O 

A(2n) > 0' 
2r 

00 

1, }: A (2n+1) 
> 0 ' 

r=O 
2r+1 

00 

1, I 2r B (2n) 
> 0 ' 

r=l 2r 

00 

1, }: (2r + 1)B <2n+l) > 0 • 
r=O 

2r+1 

In the next chapter we shall give algorithms for calculating the eigenva­

lues and the corresponding eigenvectors of these infinite tridiagonal matri­

ces, 

3. 2. So£.utioYl-6 oo :the. a Lame. e.qu.a:Uon. 

As proved in the previous chapter, we can restrict ourselves to the strong­

ly separable eigenfunctions 0(6)~(cpl of the Beltrami problem (see corollary 

2 .13). 

we were led to the a Lame equation 

(3. 2) 

with the left-hand boundary conditions 

~:(0) = O, if ~(1T-cp) = ~(cp) (i.e., ~ is even symmetric) 

and 

8-(O) = O, if ~(1T-cp) = -~(cp) (i.e., ~ is odd symmetric) • 

0 

The a equation (3.2) can be obtained from the cp equation (3.1) by substitu­

tion of 



q, = arccos(ik 

with 

For thE,m 

k'cos(q,) 

from which follows 

idq, 

ik sin(~) 
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d8 

Hence from the q, solutions of the Lame equation (3.1) we can obtain formal 

8 solutions of the Lame equation (3.2) corresponding to the four classes of 

the periodic Lame solutions: 

I: 

II: 

III: 

IV: 

and 

L (2n) (8) := 
CV 

00 

~ r (2n) 
L (-1) A2r cosh(2rW), n = 0,1,2, •••• 

r=0 

00 

L (2n+1) (8) := 
sv l {-1) rA~;:11) sinh((2r + l)W), n = 0,1,2, •••• 

r=0 

00 

L (2n) (8) := 
sv l (-1) rB~;n> sinh(2rw), n = 1,2, •••• 

r=0r 

L (2n+1) (8) := 
CV 

00 

~ r (2n+1) 
L (-1) B2r+l cosh((2r+l)W), n = 0,1,2, •••• 

r=O 

These solutions satisfy the respective left-hand boundary conditions. 

THEOREM 3.2. The series for L( 2n) (8) L< 2n+H(8) L( 2n) (8) and L< 2n+l) (8) 
CV ' SV ' SV CV 

converge uniformly on any closed subinterval [0,80] of [0,~/2] and satisfy 

the differential equation (3.2). 



54 

PROOF. With the aid of theorem (3.1) it follows that 

lim 
ur>oo 

m+l (2n) 
(-1) A2m+2cosh ((2m + 2) 1/1) 

m (21'1) 
(-1) A2m cosh(2m1/IX 

In the other three cases we obtain the same limit; this limit is a monotoni-
1 - k cally increasing function of 8, 8 E [0,1r/2) with range [l+k, 1). D 

The series converge very slowly for 8 near 1r/2. For that reason we now try 

to find series that converge faster. 

If k = 1, the 8 Lame equation (3.2) reduces to the differential equation of 

Legendre. Consequently, the solutions of class I transform into 
2n 2n+1 

Pv (cos(8)) and those of class II into Pv (cos(8)), n = 0,1,2, ••. 

Our conjecture is now that, if k < 1, the non-periodic solutions of class I 

can be written as: 

and, similarly for class II 

00 

~ 2m+1 
0(8) L c2m+lpv (cos(8)) 

m=O 

From the properties of the Legendre functions we find that the left-hand 

boundary conditions are satisfied. 

Just as with the periodic solutions, we substitute 

0(8) l 
m=O 

in the Lame equation (3.2). 

Using lemma 3.15 and Legendre's differential equation we obtain the fol­

lowing general three-term recurrence relation: 

(3. 3) 
k' 2 2 2 + (m (1 - Lk' ) - A)c + -4- cm-2 • m 

k'2 
+ - 4-(v -m) (v+m+ 1) (v -m-1) (v +m+2)cm+2 0, m :c: 3 



with A = A - ~V(V + 1)k 12 • 

If m = 0, we obtain the two-term relation 

k'2 
-Ac0 + - 4- v (v + 1) (v - 1) (v + 2) c2 O . 

Using the relation 

P1 (cos(8)) 
V 

we obtain form 1 

-1 
-v (v + 1) P v (cos (8)) [2;144] 

If m 2, we make use of the relation 

-2 
v(v -1) (v + 1) (v + 2)Pv (cos(8)) 

and then we obtain 

k'2 
-2- co+ 
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[2;144] 

We now observe that these recurrence relations can be transformed into the 

recurrence relations of the periodic Lame solutions, by substitution 

c = T(m)A 
m m 

where T(m) has to satisfy the recurrence relation 

T(m) = -(v-m) (v+m+1)T(m+2), m = 0,1,2, ••• 

T(m) is defined unequivocally except for an arbitrary multiplicative con­

stant. For instance we can take 

Conversely, if {A2m}:=O and {A2m+l}:=O are the solutions of the recurrence 

relations corresponding to the classes I and II of the periodic Lame solu­

tions then 

00 

t 2m 
L T(2m)A2mPv (cos(8)) 

m=O 

and 
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co 
, 2m+1 
L T(2m + 1)A2m+lpv (cos(6)) 

m=O 

formally satisfy the 6 Lame equation (3,2) and the corresponding left-hand 

boundary conditions. 

Before investigating the convergence properties of these series we shall 

first construct the 6 Lame solutions corresponding to the classes III and 

IV of the f Lame equations, Again, if k = 1, the solutions of class III 
2m 

reduce to P (cos(6)), m = 1,2, ••• and the same applies to class IV, namely 
2m V 

P V ( cos ( 6 )) , m = 0, 1 , 2 , • .. , 

However, simple series of Legendre functions alone will not do in this case. 

It is perhaps more natural to expect that, if k < 1, the non-periodic solu­

tions of the classes III and IV can be written as series of Legendre func­

tions multiplied by an odd function f(6;k): 

co 
, 2m 

III: 0(6) := f(6;k) L d2mPv (cos(6)) 
m=1 

and 

co 
, 2m+1 

IV: 0(6) := f(6;k) L d2m+lpv (cos(6)) 
m=O 

2m For 6 +Owe have Pv (cos(6)) 

know that for class III 0(0) = 0 

quire 

(sin(6)) 2m (viz., lemma 3.12). Since we 

d dB(O) .1. O it follows that we must re­an dB r 

-1 
f(6;k) ~ 6 as 6 + 0 . 

From the left-hand boundary condition of class IV we obtain the same asymp­

totic condition for f(6;k). In the degenerated case we must require 

f(6;1) = 1. 

An appropriate choice of f(6;k) which satisfies these requirements is 

f (6 ;k) := /2 - k2cos2 (6) 
sin(6) 

Now we substitute 



in the equation (3.2) and it follows that 0 satisfies the equation 

I 2 2 d / 2 2 d0 * 2 2 ~ i1 -k cos (8)d8 (v1 -k cos (8)d8) + (µ (1 - k cos (8)) - ).)8 -

~ 2 2 
2k I 2 cot ( 8) d0 + k I ( 1 + cos ( 8) ) 0 = 0 

d8 sin2 (8) 

and we observe that, if k = 1, this equation reduces to the equation of 

Legendre, Just as in the previous cases we substitute 

00 

0(8) I 
m=1 

in the above-mentioned equation. 
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With the aid of lemma 3.16 and the differential equation of Legendre we 

obtain the general three-term recurrence relation 

k 12 m 2 2 4 m - 2 dm-2 + (m ( 1 - ~' ) - A) dm + 

k 12 m 
+4 iii'+2(v-m)(v+m+1)(v-m-1)(v+m+2)dm+2 =O, m~3. 

If m = 2, we obtain the two-term relation 

Using the relation 

-1 
-V ( V + 1) P V ( cos ( 8)) [2;144] 

we obtain form= 1 

Again, we observe that these recurrence relations can be transformed into 

the recurrence relations of the periodic Lame solutions in this way by sub­

stitution 

d = mT(m)B • 
m m 
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Conversely, if {B2m}:=l and {B2m+l}:=O are the solutions of the recurrence 

relations corresponding to the classes III and IV of the periodic Lame solu­

tions then 

and 

/1-k2cos2 (8) 
sin(8) 

/2 -k2cos2 (8) 
sin(8) 

00 

, 2m 
L (2m)T(2m)B2mPv (cos(8)) 

m=l 

00 

, 2m+1 
L (2m+1)T(2m+1)B2m+lpv (cos(8)) 

m=0 

formally satisfy the 8 Lame equation (3.2) and the corresponding left-hand 

boundary conditions. 

Consequently, corresponding to the four classes of the periodic Lame solu­

tions, we have now four classes of formal 8 solutions of the Lame equation 

(3. 2) : 

I: 

II: 

III: 

IV: 

00 

, (2n) 2m L (2n) (0) := 
cpv L T(2m)A2m Pv (cos(8)), n = 0,1,2, •.. 

m=0 

L (2n+1) (8) := 
cpv 

L (2n) (8) 
spv 

L ,2n+l) (8) := 
spv 

00 

, (2n+1) 2m+1 
L T ( 2m + 1 l A2m+ 1 P v ( cos ( 8) ) , n = 0, 1 , 2 , .•• 

m=0 

/2-k2cos2 (8) 
sin(8) 

, (2n) 2m 
L (2m)T(2m)B2m Pv (cos(8)), 

m=l n=l,2, ••. 

00 

L (2m+1)T(2m+1)B~!~1l) • 
m=0 

2m+1 
Pv (cos(0)), n = 0,1,2, ••• 

Since a solution of the 8 Lame equation is, up to a multiplicative constant, 

uniquely defined by the eigenvalue and the initial condition at 0 = 0, these 

solutions are the same as those derived before, but for a normalization fac­

tor. 

We remark that all the recurrence relations of Pm(cos(8)), m = 0,1,2, •.• , 
V 

v > 0 we have used, also hold for the associated Legendre functions of the 

second kind Qm(cos(0)), m = 0,1,2, ••. , taking into account the essential 
V 

restriction v > 0. Hence, we have another four classes of non-periodic so-

lutions of the Lame's equation, corresponding to the four classes of perio-



die solutions, namely 

I: 

II: 

III: 

IV: 

co 
(2n) , (2n) 2m 

L ( 0) : = L. T ( 2m) A2 Q ( cos ( 0)) , n = 0, 1 , 2 , ••• 
cqv m=O m v 

L (2n+1) Ce) := 
cqv 

L (2n) (0) 
sqv 

L(2n+1) (e) := 
sqv 

co 
, (2n+1) 2m+1 
L. T ( 2m + 1) A2m+ 1 Qv ( cos ( e)) , n = O , 1 , 2 , ..• 

m=O 

co 
, (2n) 2m 
L. (2m)T(2m)B2 Q (cos(e)), 

m=l m v 
n=l,2, ••• 

/2.-k2cos2 (0) 
sin (0) 

co 

l (2m+ 1)T(2m+ l)B~!:;l) • 
m=O 

2m+1 • Q\) ( cos ( 0) ) , n = 0 , 1 , 2 , .•• 

These solutions are not bounded ate= 0. We observe that these solutions 

and the previous ones are pairwise independent solutions of the 0 Lame 

equation (3.2). 

THEOREM 3.3. The series for L( 2n) (0), L( 2n+l) (0), L( 2n) (0) and L( 2n+l) (0) 
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cpv cpv spv spvlf"'+'k 
converge uniformly on any closed subinterval [o,e0J of [0,2 arctanWHll 

and satisfy the differential equation (3.2). 

PROOF, With the aid of theorem 3.1 and lemma 3.18 it follows that 

(2n) 2m+2 
A2 2 T ( 2m + 2) P ( cos ( 0) ) 

lim m+ v 
(2n) 2m 

~ A2m T(2m)Pv (cos(0)) 

k -1 2 
= k + l tan (l:!0) 

In the other three cases we obtain the same limit. □ 

THEOREM 3.4. The series for L( 2n) (0) L( 2n+l) (0) L( 2n) (0) and L( 2n+l) (0) 
cqv ' cqv ' sqv sq~ 

converge uniformly on any closed subinterval [e 1 ,e0J of (2 arctanWt;t 

2 arctan~)) and satisfy the differential equation (3.2). 

PROOF. With the aid of theorem 3.1 and lemma 3.20 it follows that 

(2n) 2m+2 { 2 A2m+2T (2m + 2) Qv (cos (0)) __ k _ 1 cot (l:!0), e :;; rr/2 
lim 
m-+<x> A2(

2n)T(2m)Q2m(cos(0)) k+l tan2 (l:ie), e > rr/2 
m v 

In the other three cases we obtain the same limit. □ 
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3. 3 • The. .ln6,i,n,l:te. W.cliag anal. ma;tJr,Lcu 

In this section we shall derive some properties of the infinite tridiagonal 

matrices corresponding to the classes I to IV of the <p Lame solutions. 

Let L be defined by 

L := -/2-k 12sin2 (<p)!!...(/2-k 12sin2 (<p)!!.._l + v(v + 1)k 02sin2 (<p) , 
d<p d<p 

then the <p Lame eigenvalue problem can be written as 

L<P = ;\<P , <l>(<p) = <P(<p + 211) • 

It is easy to verify that Lis a Hermitian operator with respect to the 

inner product 

211 

(u,v) := f 
0 

-1 
It follows from well-known results that the inverse operator L is a com-

pact (integral) operator in L2 (0,211). 

Now consider the set of functions 

which is orthonormal with respect to the inner product 

211 
1 <u,v> := 11 f u(<p)v(<p)d<p 

0 

We remark that this inner product is equivalent to the inner product ( , ) • 

In section 3.1 we expanded the eigenfunctions of the <p Lame eigenvalue pro­

blem into a Fourier series in terms of this basis. Before proceeding we 

shall first prove a lemma. 

LEMMA 3.5. Let H be a separable Hilbert space with two equivalent inner pro­

ducts ( , ) and < , > • 

Let L be a linear operator defined in a dense subspace DL c H, with a com­
-1 

pact inverse L 

Let L be self-adjoint with respect to the inner product ( , with eigen-

values ;\n' n = 1,2, ••• and corresponding eigenfunctions fn' n = 1,2, .•• , 



fn € DL. 

Let {i1}:=l be a complete orthonormal system, with respect to< , >. 

Let A be the infinite matrix defined by 

i,j = 1,2, •.• 

Then A possesses the following properties: 

(i) 

(ii) 

A has a compact inverse. 

The eigenvalues of A are A , n = 1,2, ••.• 
n 

2 (iii) The components of the corresponding eigenvectors ~n E R. satisfy 

j = 1,2, •.• 
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These eigenvectors are orthonormal with respect to the inner product 

H 
[ X , X ] : = X Cx , C, j : = ( i j , i 1,) • -n -m -n -m i 

The matrix A maps a dense subspace of R. 2 into R. 2 • 

PROOF. Consider the equations 

<(L - Anl)fn,i/ = O, n fixed, i 1 , 2, •.. 

or 
00 

<(L - A I) l <f n'ij>ij,ii> 0 I n j=l 

and this results into 

00 

l <Li ,i ><f ,i > A <f n'ii> 
j=l j i n j n 

or abbreviated 

Ax A X 
-n n-n 

with 

Aij := <Lij,ii>, (~n)j := <f n'ij> 

2 Since f 1,f2 , •.• span H, ~1,~2 , •.• span R.. Hence the matrix A maps a dense 
2 2 subspace DA of R. into R, and (A 1,~1),(A2 ,~2), ••• are a set of eigenpairs 

of this mapping. Conversely, if (A,:Y is an eigenpair of A, then (A,f) where 
co 

f = l (:Yiii is an eigenpair of L. 
i=l 
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The matrix A has a compact inverse A-l defined by 

-1 < -1 > 
(A ) ij : = L q, j , q, i , i,j = 1,2, .•• 

Hence A has a point spectrum that coincides with that of L. (We observe 

that in general A is not Hermitian.) 

Because Lis self-adjoint relative to the inner product ( , ), we can nor­

malize the eigenfunctions fn in such a way that 

n,m 1 , 2, • . • • 

Consequently, 

co "' 
0 l <f m'q,i>q,i, l <f , (j) • >q, ) 

nm i=l j=l n J j 

co co 

l l <fm,q,i>(q,i,q,j)<fn,q,j> 
i=l j=l 

or abbreviated 

in which c is defined as 

i,j 1,2,3, •••• 

With the aid of this lemma and the results of theorem 2.10 of chapter 2 

the following theorem holds. 

THEOREM 3.6. For v > 0 and O < k' < 1 the infinite tridiagonal matrices cor­

responding to the four classes of the periodic Lame solutions have the fol­

lowing properties: 

(i) They can be considered as mappings of dense subspaces of t 2 into t 2 , 

having a compact inverse. 

(ii) They have a real point spectrum, consisting of simple eigenvalues only. 

□ 
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3. 4. Appendbc. 

THEOREM 3.7. (Perron's theorem [10]). Let 

n=l,2,3, ••• 

be a three-term recurrence relation with bn F 0, n = 1,2, ••• and lim an= a 
n-+<» 

and limb = b F O. 
n+m n 

If the characteristic polynomial t 2 + at 

t 2 with lt11 > lt2I, then the recurrence 

tions y(l) and y( 2) satisfying 

+ b has two different zeros t 1 and 

relation has two independent solu-

n n 

and 

respectively. 

DEP'INITION 3.8.Pochhammer's symbol (a)n is defined by 

(a)o := 1 

LEMMA 3.9. 

(a)n := a(a+l)(a+2) ••• (a+n-1), 

rca + n) 
real 

where r(x) is the gamma function [1;256]. 

n = 1,2,3, ••• [1;256]. 

DEFINITION 3.10. The hypergeometric function is defined by 

□ 

□ 

□ 

F (a,b; c; z) < 1, c F 0,-1,-2, ••• [1;556].□ 

LEMMA 3.11. The associated Legendre function of the first kind Pm(x), 
\) 

-1 s x s 1, is defined by 
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Pmv ( x) ( -1) m r ( v + m + 1) ( 2 ~m___ 1 1 1. ( 1 ) ) = -2m I rcv-m+1) 1-x) F( +m+v,m-v; +m;-, -x I 

m. 
m = 0,1,2, ••• , V > 0 [2;148]. 0 

LEMMA 3,12. 

+ ef ( 1 - X) 2 ] 1 m = 0 1 1 , 2 , ••• 1 V > 0 ( X t 1) • 

With the aid of the recurrence relation 

m 
2 dPv (x) m 

(1-x )~= (v+1)xP~(x) -(v-m+1)Pv+l(x) [2;161] 

and lemma 3.12 follows 

LEMMA 3.13. 

1 
• {-m + 2 (m+l)[(v+1)(m+v+1)(m-v) -

- 2(v+1)(m+1L-(v+m+l)(v+m+2)(m-v-1)] • 

LEMMA 3.14. 

P~(1) 1 

o, m = 1,2,3, ••• 

0 
dPv(cos(9)) I 

d9 9=0 O 

1 
dP )cos (9)) I v (v + l) 

d9 9=0 2 

(x + 1) • 

□ 

□ 
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m 
dP \I (cos (8)) I 

d8 8=0 = O, m = 2,3, •••. □ 

LEMMA 3,15. 

dP~(x} . m-2 
x~= l..i(v-m+2)(v+m-1)(v-m+l)(v+m)P\I (x} + 

PROOF. [3]. Using the recurrence relation 

m 
2 dP\l(x) ~ m+l m 

(1 -x )--- = -✓1 -x~ P (x) - mxP (x) 
~ \I \I 

we obtain 

dPm(x) 2 
x -"-- = _.:!._ Pm+l (x) -~ Pm(x) 

dx /1 - x2 \I 1 - x2 \I 

= ~-Pm+l (x} + m(m - l)x Pm(x}] _ ·,ix2 Pm(x) 
/1 - x2 \I ~ " 1 - x2 " 

Using the recurrence relation 

(3.4) [2;161] 

we have 

(3 .5) 

Substituting (3.4) in (3.5)once more we obtain 

m m-2 + !..i(v-m+l)(v+m)(P (x} +(v-m+2)(v+m-1)P (x)) -\I \I 
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m-2 = ~(\I -m+ 1) (\I +m-1) (\I -m+2) (\I +m)Pv (x) + 

LEMMA 3.16, 

m 
dP v (x) 

3xm ~ = ~(m-2) (v -m+ 1) (v +m) (v -m+ 2) • 

m-2 2 m 
(v+m-1)Pv (x) + '2(v(v+1) +m +2)mPv(x) + 

m+2 (m2 + 2) m 
+ ~(m + 2)Pv (x) - 1 _ x 2 mP\I (x) 

PROOF. This is analogous to the proof of lemma 3.15, [3]. 

LEMMA 3.17. The associated Legendre function of the first kind P~(cos(8)), 

0 s 8 < w can also be defined as 

□ 

□ 

• F(-v, v + 1; 1 +m; (sin('28)) 2) [2;147], [2;144]. □ 

With the aid of this lemma we can investigate the asymptotic behaviour of 

P~(cos(8)) (m-+ co). 

LEMMA 3.18. The associated Legendre function of the first kind P~(cos(8)), 

Os 8 < w, v > O, m = 0,1,2, ••• has the following asymptotic expansion: 

□ 
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LEMMA 3.19. The associated Legendre function of the second kind Qm(cos(6)), 
V 

0 < 6 < TI is defined in terms of hypergeometric series by 

m (-l)m m 
Qv(cos(6)) := ~ r(v+m+l)r(m-v)(cot(l:16)) 

• [F(-v, v+l; l+m; (cos(l:!6)) 2) -

- (-l)mcos (TIV) (tan(l:16)) 2~(-v, v + 1; 1 + m; 

[2;141], [2;143]. 

With the aid of this lemma we can investigate the asymptotic behaviour of 

Q~(cos (6)) {m -+ ex,). 

D 

LEMMA 3,20. The associated Legendre function of the second kind Q~(cos(6)), 

0 < 6 < TI, v > O, m = 0,1,2, ••• has the following asymptotic expansion: 

Q~(cos(6)) = ';;( r(v+m+l)r(m-v)({cot(l:!6))m 

m m ,,1 1 - (-1) cos (TIV) (tan (l:16)) + c (-)), (m -+ ex,) • 
m D 
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CHAPTER 4 

EIGENVALUES ANV EIGENVECTORS OF THE PERIOVIC LAME SOLUTIONS 

4.0. In:tlr..odue:U.on 

In the previous chapter we obtained four infinite tridiagonal matrices cor­

responding to the four classes of the~ solutions. we also derived a few 

spectral properties of the matrices. 

Starting from these properties we shall develop algorithms for the computa­

tion of the eigenvalues and the corresponding eigenvectors of the tridiago­

nal matrices. These algorithms are closely connected to the continued-frac­

tion algorithms devised by Blanch [1] and Bouwkamp [2], [3]. 

4 • 1. Calc.ui.a,Uo n o 6 e.,ig envaluei. 

For the sake of convenience we shall only investigate the eigenvalues A 

(rather than A, see section 3,1) of the (redefined) infinite tridiagonal ma­

trix A corresponding to class I: 

' bO 'al ' cl 

' 
A := ' ' ' ' ' 

b n-1 a C 
n n 

' ' ' ' ' ' with elements 

a : = ( 2n) 2 ( 1 - ¼k' 2) + ¼v ( v + 1) k' 2 , n = 0, 1, 2 , • • • , n 

b0 := -¼k 12v(v+l) , 

2 
bn :=-l-.ik' (v-2n)(v+2n+l), n= 1,2, ••• , 

2 
en:= -l-.ik' (v-2n-l)(v+2n+2), n = 0,1,2, ••• 

From the previous chapter we know that the matrix A (when considered as the 

matrix of a mapping from a dense subspace DA c i 2 in i 2 relative to the na­

tural basis in i 2) has a compact inverse and a positive point spectrum. It 

follows that the matrix AT has the same spectrum as A and has also a compact 
T inverse. Since the matrix A is diagonally dominant (see appendix) we shall 

speak in terms of the eigenvalues of AT rather than those of A. 
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In chapter 2 we proved that of all eigenvalues A of A, we only need those 

eigenvalues satisfying 

O < ~ < v (v + 1) 

Let, for a given v > O, the integer N be so that 

2N - 1 < V $ 2N + 1 

Then, for j ~ N, bjcj > O, but bNcN may be negative (see appendix). There­

fore, we partition the matrix AT as follows: 

in which 

ao bO 

T 
co al 

Al := 

0 aN+l bN+l 0 
T 

cN+l aN+2 bN+2 

A2 := \ \ 
\ \ \ 

0 0 
\ \ 

' \ 

We first show that for Re (A) s v (V + 1), A~ - AI 2 has a compact inverse. 

Since AT has a compact inverse, the matrix A~ and also, for each A, A~ -AI2 
satisfies the Fredholm alternative, 

either 

or 

T 
A2 - AI 2 has a compact inverse 

It is easy, to verify that the matrix A~ - AI2 is strictly diagonally domi­

nant for all A satisfying Re (A) s v (v + 1) (see appendix). Consequently, 
T T 

from (A2 - AI 2) x2 = 0 it follows that x2 = 0 (see appendix) , hence A2 - J.I 2 

has a compact inverse for Re (A) s v (v + 1) • 

Now let A, 0 < ;\ < v (V + 1) , be an eigenvalue of the matrix AT with eigen­
T I TT vector x = (x1 x2) • Then 
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(4. 1) 

or, written differently, 

N+l ~ = ~ 
where eN € lR , (eN)i = oN,i' i = 0,1, ... ,N, and eN+l E lR, (eN+l>i =oN+l,i' 

i = N+l,N+2, •••• Taking into account that (A~ - AI 2)-l is compact it fol­

lows that x1 r 0 and 

(4, 2) 

where 

Since (4.2) implies (4.1) the following theorem holds: 

THEOREM 4. 1. A, 0 < A < \I(\/ + 1) , is an eigenvalue of A if and only if 

0 • 

Now we investigate the function a(A). Consider (for some A~\/(\/ +1)) the 

equation 

in which y ED c t 2 with components yi, i 
A2 

Let nt be defined as 

i\+1 
nt := -- t - Yi , N+l ,N+2,.. • • 

N+l, •••• Then a(A) 

It is easy to verify that the nt satisfy the recurrence relation 

D 
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and that 

a(A) 1 

As proved in the previous chapter, we have (with the aid of Perren's theo­

rem 3.7) that 

lim Y ~+ 1 = ~ 
R.-+«> y R, k + 1 

Bence there is an integer M such that O < 11 < 1 form> M. Starting from 
m T 

this result and the property that the matrix A2 - AI 2 is strictly diagonal~ 

ly dominant for all A satisfying A s v (v + 1) (see appendix) , it is easy 

to prove by induction that O <·11R. < 1, for R. = N+1,N+2, •••• 

consequently 

0 < a(A) < 
___ .. 1 ____ < 1 

A - bN+l °N i ~+1 

we observe that if bNcN Owe do not need a(A). Now let 

Po().) := 1 , 

pl (A) := a0 - A , 

pi+l(A) := (a1 - A)p1 (A) - b1_ 1c1 _1p1_1 (A), i = 1,2, ••• ,N-1 

PN+l (A) := (~ - A - bNcNa ().)) pN (A) - bN-l cN-lpN-l (A) , 

be the principal minors of the matrix 

We shall prove that these functions form a Sturm sequence on [O,v(v+l)], 

i.e. that they satisfy: 

(i) p0 (A) does not vanish on [O,v(v+l)]; 

(ii) if p1 ,(A) = 0 for some A € [O,v(v+l) ], 1 s i s N, then 

pi-1 (A)pi+l ().) < O; 

(iii) sign(p1 (0)) = 1 andsignp1 (v(v+1)) = (-1) 1 , i 0,1,2, ••• ,N+l; 

(iv) PN+l (A) has at most simple zeros in [O,v(v+l)]. 
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Since bici > O, i = 0,1, ••• ,N-1 (see appendix), it is well known that 

constitute a Sturm sequence on (-~,~). It follows that the requirements (i) 

and (ii) are fulfilled. (Also for i = N since the difference between 

PN+l (A) and P;+l (A) is proportional to pN(A).) 

In order to prove (iii) we observe (see appendix) that 

and its principal minors are diagonally dominant for Re(A) s O. 

The same holds for 

in case Re(A) ~ v(v + 1). 

It follows that sign(pi(O)) i 1 and sign(pi(V(V+l))) = (-1) , i=0,1,,.N+l. 

Finally, we have to prove (iv). Since p0 , ••• ,pN,P:+l is a Sturm sequence 

* and PN+l (A) is a polynomial of degree N + 1 it follows that pN+l (A) has N + 1 

simple zeros on [O,V(V+l)] which are strictly separated by the zeros of 

* * = 1,2,,,.,N+l and ~+l := PN+l/pN. 

IV( V+l J 

X 

Figure 4,1. 
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* The function qN+l ().) is a monotonically decreasing function with simple 

poles at the zeros µi, i = 1,2, ••• ,N of pN().) and one simple zero in each 

of the intervals [0,µ 1), (µi,µi+ 1), i = 1,2, ••• ,N-1 and (µN,v(v+l)) (being 

* the zeros of pN+l ().)). 

From C\ii) it follows that ~+l (0) > 0 and qN+l (v(v + 1)) < O and it follows 

that ~+.l (v (v + 1)) < bNcN"' (v (v + 1)). 

Now we prove that for O S Re().) < v (v + 1) the function ~+l ().) has pre­

cisely N + 1 zeros. We observe that the number of poles µi, i = 1,2, ••• ,N of 

the function ~+l().) that lie in the region Os Re().) s v(v+l) is inde-

* pendent of bNcN. If bNcN = 0 then ~+l ().) = qN+l ().) has N + 1 simple zeros 

in [O,v(v+l)). Consequently, for bNcN ~ 0 there are N+ 1 zeros in 

0 S Re().) S v (v + 1) • We know that ~+l ().) has at least one zero in each 

interval [0,µ 1), (µi,µi+l), i = 1,2, ••• ,N-1 and (µN 1 v(v+l)). Hence, the 

zeros of qN+l().) are simple. 

Summarizing, we have proved that the functions pi().), i = 0,1,2, ••• ,N+l 

form a Sturm s~quence on [0, v.(v+l) J. 
T Hence we calculate the eigenvalues). of A satisfying O <). < v(v+l) by 

the method of bisection, as described in [6;302]. 

4.1.0. Cai.c.ula:ti.on 06 a().) 

In this section we shall construct an algorithm to calculate a().). Let rt 

be defined as rt:= nt/ct. Then we proved that 

in which rN+l satisfies the recurrence relation 

with (since ct+ m) 

lim rt= 0 
t+m 

These recurrence relations may be interpreted as the fundamental recurrence 

formulas for tpe following continued fraction [1]1 



(m) 
Let rR. and am, m ~ N + 1 be defined as follows: 

r (m) (m) 
m := o, rR.-1 := 

a 
m 

1 
:= ----------~(m_,_), 

aN+l - A - bN+1cN+1rN+1 

or in terms of a continued fraction 

-... -

Let us denote the approximants a of a(A2) by 
m 

It is easy to verify by induction [1] that the A satisfy the recurrence 
m 

relation 

= (a +l - A)A - b c A l' m = N+l,... , m m mmm-

with 

~ = 0 and ~+! = 1 

The denominators Bm satisfy the recurrence relation 

B 1=<a+1 -A)B -bcB 1,m=N+1, ••• , m+ m m mm m-

with 

Consider 

where 

75 



76 

It is easy to verify that 

and consequently 

where 

Bm-1 
b c --e: 
mm Bm+l m 

Consequently, the o satisfy the recurrence relation 
m 

0 =-----~-1 ____ _ 
m+l b c 

, m = N+l,... , 
1 ______ m~m ___ _ 

(am+l - ;\) (am - ;\) 

with starting value oN+l = 1. 

0 
m 

Summarizing, we have the following continued-fraction algorithm: 

f := 
b c mm 

m (a 

0 
m+l 

e: 
m+l 

m 

1 
:= 

1 f 0 - mm 

f 0 
mm 

:= 
1 f o - mm 

:= lim et 
m 

~ 

, ll1 N+1,N+2, ••• , 

I 0 
N+l := 1 I 

1 
(om+l - l) e:m, e:N+l e: 

m 
~+1 - ;\ 

1 

a._ - ;\ 
N+l 

The convergence requirement is [ 1], that from an index M onward, 0 < fm < ¼, 

m ~ M. In our case, 

lim f 
~m 
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It is easy to verify that 

1 k 11 f < J 2 2 , m = N+1,N+2, ••• 
m (2 - k' ) 

Bence, for all practical values oi k 12 , viz. k 12 s 2/j ~ 0.93, fm < \, 
2 + 13 

m = N+1,N+2, •••• 

It appears, however, that for k 12 > 0.93, after some terms, fm also satis­

fies f <\.Consequently, it follows that 0 < f 6 <~and numerical sta-m mm 
bility is ensured. 

4.2. Ca.lc.uLat-lon 06 ugenvectoll.6 

Let A be an eigenvalue of the matrix~- The corresponding eigenvector 
Tl TT x = (x1 x2) satisfies 

or, written differently, 

(4.3) 

Using the definition of a(A) it follows that x1 satisfies the equation 

(4.4) 

In the previous section we derived an algorithm for the computation• of the 

eigenvalues A s v (V + 1), using bisection and Sturm sequences. 

Let now r be such a computed eigenvalue, and x the corresponding eigenvec­

tor. 

First, we shall calculate the first N + 1 components of the vector x with 

the aid of equation ( 4. 4 ). To determine the ratios of the components of the 

eigenvector we only need N equations. Bence we can omit one equation. 

We take' as omitted equation that equation for which I ai - r1 , i-= 0, 1, ••• ,N 

takes its minimal value. Lets be the index of the omitted equation. Since 

the ai are monotonically increasing we have ai - 't < 0, (i < s) and 
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a. - I > 0 (i > s). 
J. 

Let ri be defined by ri := -xi/(cixi+l). We determine r 0 , ••. ,rs-l from the 

equations 

= 1/(a. - °K - b. le. 'lri 1>, i = 1, ••• ,s-1. 
J. J.- J.~ -

* * - * * Let ri be defined by ri := -xi+l/(bixi). We determine rN_ 1 , •.• ,rs-l from the 

equations 

The required N + 1 components of the eigenvector are 

where 

s-1, ••• ,o 

If we do not need more than N+ 1 components of the eigenvector, there is no­

thing more to do, But in most cases we do need considerably more components, 

depending on the desired accuracy of the Lame functions. Suppose we do need 

M (M > N) components of the eigenvector. With the aid of (4.3) we calculate 

the ratios of the components of the remaining components of the eigenvector. 

Let now ri be defined by ri := -xi+l/(bixi). Then the ri satisfy the back­

ward recurrence relation 

with 

~(Nl) 
we use now Miller's algorithm [4]: Take N1 >Mand set rNl := O. Calculate 
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Then we calculate 

1' 

rN-1 ~(Nl) 
:= ~(Nl) r 1 , i = N, ••• ,M • 

rN-1 

After this we select another integer N2 > Nl. If now 

I (Nl) _ (N2) I < (N2) i _ ri ri Eri , - N,N+l, ••• ,M 

(N2) . 
then we take r 1 as an approximation of r 1 , i = N, ••• ,M. 

Let Ebe the desired relative tolerance for~- In the previous chapter we 

proved, with the aid of Perron's theorem, that 

~ X 
11m..,¼;!:!.=~ 
i-- x1 k + 1 

A good choice of the integer N1 is such that 

The above-defined algorithm depends on the three indices N,M ands. 

The index N is determined by the relation 2N - 1 < v s 2N + 1. 

The index M depends on the desired accuracy of the Lame functions. 

The index s has to be chosen so that the algorithm has good numerical sta­

bility. 

Since A is computed by using bisection and Sturm sequences we may expect 

that we obtain an acceptable eigenvalue in the sense that 

in which n is of the order of the relative machine precision. 

We say that the corresponding computed eigenvector xis an acceptable one, 

if 

IIAx - '>:xii s IIATII 
IIS?II n 1 • 

We observe that the above-given algorithm for the computation of eigenvec­

tors is essentially one inverse iteration corresponding to the initial 

vector es. 
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Starting from this initial vector we have 

(A - r1)~ = e 
s 

so that we determine~ and then normalize it to give 

satisfying 

The residual corresponding to xis very small if le,I is very large. From 

[BJ we know that there exists an index s such that leT~I is very large. In 
s 

our case, however, the "best" value of sis that index for which 

because the components of the eigenvector have a reasonably sharp maximum 

at index s. 

Since it happens that all rows, except .one (for which la. - Al is minimal), 
l. 

of the matrix (AT - AI) are diagonally dominant it follows that our choice 

of s, viz. that value for which la. - r, is minimal, is a good one. 
l. 

Moreover in one iteration the enrichment of the required eigenvector rela-

tive to the others is directly dependent on the smallness of r - A rela­

tive to the other r - Ai. 

Since in our case Ir - A [ !> n II A~ II and the other ~ - Ai are of order 1 we con­

clude that the computed eigenvector xis acceptable in the above-defined 

sense. 

Finally, it follows from [7] that by this choice of the index s all the 

components of the eigenvector have a relative error at most of the order 

of n. 

4.3. Appe.n.cli.x 

b 0 := -¾k 12v(v+1) 1 

b := -l-,ik 12 (v-2n)(v+2n+1), n 
n 

0,1,2, •.• 

1, 2, ••• 



= ~k• 2n(2n+l) -l..ik 12v(v+1); 

2 
en:= -¼k' (v-2n-1)(v+2n+2), n = 0,1,2, ••• , 

~k 12 (n+ 1) (2n + 1) -¼k 12v(v + 1) 

Let, for a given v > 0, the integer N be so that 

2N-1 <\I$ 2N+1 

we observe that: 

(i) a > o, n = 0,1,2, ••• ; n 
(ii) b < o, n$N-1 and b > 0, n ~ N + 1; n n 
(iii) C < o, n $ N-1 and c ~ o, n ~ N; 

n n 
(iv) b ~ 

N 
o, 2N - 1 < \) $ 2N; b < 

N 
o, 2N < \) $ 2N + 1. 

It is easy to verify the following (in)equalities: 

(i) 

(ii) 
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la0 I - lb0 I = o, la0 I + lb0 J =k 12vcv + ll < v(v + ll; 

J a J - J b J - J c 1 J = 4n 2 > 0 , 1 $ n $ N - 1 n n n-
la I +lb J +Jc 1 1 (4n2 -v(v+l))k2 + v(v+l) < v(v+l), l$n$N-.1; n n n-

(iii) 

(iv) 

(v) 

1 an I - Jbn I - J cn_ 1 I (4n2 - \I (V + 1)) k 2 + \I (\I+ 1) > \I (\I+ 1), n ~ N + 1; 

JaNl-lbNJ-lcN_1 1 4N2 (1-~k' 2) + ~k 12 (v(v+1)-2N) > 0; 

l~I +JbNI +lcN_ 1 J (l-~k 12 )(4N2 -v(v+1)) + k_ 12N+v(v+1), 

2N - 1 < \I $ 2N; 

J aN I - I bN I - I cN- l I 

l~I + JbNJ + lcN_ 1 I 

2N < \I $ 2N + 1 • 

4N2 > 0; 

(4N2 - \l(V+l))k2 + \l(V+1) < v(v+1), 

From these results we may conclude: 

(i) 

(ii) 

(iii) 

AT is diagonally dominant; 
T T 

A1 - bNcNa(0)eNeN - AI 1 and its principal minors are diagonally domi-

nant for A< 01 
T T 

A1 - bNcNa (v (V + 1)) eNeN - AI 1 and its principal minors are diagonally 

dominant for A~ v (v + 1) 1 

(iv) A; - AI2 is diagonally dominant for A $ v(v + 1). 

THEOREM 4.2. Let B be an infinite co111Plex matrix strictly diagonally domi­

nant. From x € t 2 and Bx= 0 it follows x = 0, 
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PROOF. By definition 

x. = - 1- l BijxJ., i 
1 Bii jfi 

1,2, .... 

In particular, if xr f O is the largest component in absolute value then it 

follows that 

Ix I < Ix I r r 

Contradiction. Hence x = O. 
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CHAPTER 5 

ELECTROMAGNETIC FIELVS IN THE SPHERO-CONAL SYSTEM 

5.0. Intlwduet.lon 

In this chapter we apply the theory of Lame functions to electromagnetic 

fields inside a perfectly conducting cone with elliptical cross-section. 
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In analo«;nr to the case of the circular cone, the electromagnetic fields will 

now be analysed in terms of two types of partial fields which are due to 

the transverse electric waves {TE-fields) and transverse magnetic waves 

{TM-fields} [4;483]. The papers of Debye [2], Bouwkamp and Casimir [1], and 

Wilcox [5] are essential for this chapter. 

5. 1. Elec.tlwmagnet.lc. 6,i.eld -in .the -lntvuOJt 06 a c.one w-l:th e.U,lp:Uc.l:ll e11.o,1;,1;­

-6ec.:ti.on 

We consider a cone with the vertex at the origin of the Cartesian coordinate 

system and main axis along the z axis. In the sphero-conal system we des-. 

cribe the main cone by the parameter k and the angle e0 {see chapter 1). 

Throughout this section we consider a linear homogeneous non-conducting iso­

tropic medium, free of charges and currents with permittivity E and permea­

bilityµ, bounded by two concentric spheres lc.l = r 0 and 1:.1 = r 1 , O<r0 <r1 , 

and the surface of the cone, e = e0 • 

We shall confine ourselves to the requirements imposed by a perfectly con­

ducting boundary surface of the cone, that is, Er= 0 and E~ = 0 for 

r 0 < r < r 1 and 8 = e0 • 

For this region we have [4;5]: 

£ = E!, B = µ!!_, p = 0 and J = 0 

The Maxwell equations now are 

curl E + aH o, µ -= = at 

curl H -
clE o, E -= = at 

div E = o, div H = 0 

-iwt Throughout this secti~n a time dependence e is assumed but always sup-

pressed. We can represent the fields as 
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~ -iwt and !! = Re(!!_e ) 

~ ~ we observe that! and!! are complex functions independent of time. 

THEOREM 5.1. Let us consider a space domain D bounded by two concentric 

spheres l~I = r 0 and l~I = r 1, O < r 0 < r 1 and by a perfectly conducting 

surface of an elliptical cone, r 0 < r < r 1~ 8~= e0 , 0 s ~ < 2ff. Let there 

be in Dan analytic electromagnetic field!,,!!. with vanishing radial compo-
~ nents Er and Hr. It then follows that! and!! are identically zero within D. 

PROOF. Starting from the Maxwell's equations and from Er = Hr O we obtain 

the following equations: 

(5 .1) 
a 1<~ 

aaCh~H~) 
a *~ 

= ~CheHe) 
a *~ 
aaCh~E~) 

a *~ 
= ~CheEe> 

a ~ a ~ iWe::r:E8 =a(rH) -iwµrH8 = 8 (rE ) 
r ~ r ~ 

~ a ~ a ~ iW€rE - -(rH) , iWµrH = °ar(rE8) 
~ ar e ~ 

* * in which he and h~ are the scale factors of the sphero-conal system (see 

chapter 1). The integration with respect tor can be carried out immediate­

ly. From the last four equations we get 

~ ik*r -ik*r 
t'µrH~ = A1(8,~)e - Bl(8,~)e 

ik*r -ik*r 
t'µrH8 = A2 (e,~)e - B2 (e,~)e , 

~ ik*r -ik*r 
l&rE~ = -A2 (8,~)e - B2 (8,~)e 

in which k*2 = w2µe:. 

Introducing the new variables 

e 
e := f -;::==dt===-

0 

and the functions 

dt 

k 12sin2 (t) 
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vk• 2cos2 (cp) 
2 2 

i 1,2, Ai := + k sin (e)Ai, 

(5.2) 

Bi vk• 2cos2 (cp) 2 2 i 1,2, := + k sin (e)Bi' = 

we readily get from (5.1) 

From the boundary condition E (r,e0 ,cp) = 0 we conclude, using the maximum 
cp ~ ~ 

principle of harmonic functions, that A2 and B2 are identically zero. Hence 

Be and Ecp are identically zero. Substituting these results in equations 

(5.1) we obtain 

aA1 ai1 ai1 ai1 
a8' = QI a;- = 0 I a'!!' = QI aw = Q 

It thus follows that A1 and B1 are constant. Since Hep and Ee are uniformly 

bounded and consequently so are A1 and B1, we may conclude by taking e = O, - ~ - -cp = w/2 in (5.2), that A1 and a1 are identically zero. Hence e, and Ee are· 

identically zero. This completes the proof. □ 

RBMARIC. If we have a coaxial elliptical cone then there exists an electro­

magnetic field with non-vanishing components 

and 

the so-called TEM-fields, in which a 1 and b1 are constant. 

DEFINITION 5.2. A region in space n is simply connected if every continuous 

closed s.urface and every continuous closed curve lying inn can be contrac­

ted to a point without passing outside of n. D 
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In analogy to the case of the spherical waves [4;483], we can express the 

electromagnetic fields in a simply connected region in space by means of 

two scalar functions, the so-called Debye potentials. 

THEOREM 5.3. Any electromagnetic field in a simply connected space domain 

can be written as 

E = iw curl(IT1r=r) + curl curl(IT2r=r) , 

H = -iwe curl(IT re) +.!.curl curl(IT1re_r) , 
2 -r µ 

where rr 1 and rr2 satisfy the reduced wave equations: 

~rr 1 + w2µeIT 1 = o, ~rr2 + w2µerr 2 = o. 

PROOF. Take Jones's proof [4;483] for the analogue of spherical Debye poten­

tials, and replace the scale factors of the spherical polar coordinates by 

those of the sphero-conal system. It should be remarked that Jones's proof 

implicitly assumes certain connectivity properties of the domain. If the do-

main is simply connected, the proof is correct. □ 

This proof again demonstrates how easy it is to generalize results known in 

spherical polar coordinates to corresponding results in sphero-conal coordi­

nates. We observe that we can decompose the electromagnetic fields in a 

simply connected domain in space into two partial fields: 

(i) The TE-fields, with vanishing radial component Er: 

~ ~ 1 E = iw curl(IT1re ), H = - curl curl(IT1re) • 
- -r - µ -r 

(ii) The TM-fields, with vanishing radial component Hr: 

We now investigate the electromagnetic fields in a space domain bounded by 

two concentric spheres l~I = r 0 and I~!= r 1, 0 < r 0 < r 1 and by a perfect­

ly conducting surface of an elliptical cone, r 0 < r < r 1, 6 = e0 • This do­

main is simply connected. Hence we can decompose the electromagnetic 

fields into TE-fields and TM-fields, as described before. Now we must re­

quire that the electric field components tangential to the cone surface 

vanish. This means: 



(i) 

(ii) 

E 
<p 

-iw a 
=--II 

h* ae 1 
0 (TE-fields) 

e 

a2 2 
E = --(II r) + w µelI 2r 

r ar2 2 

1 a2 
E = -- ---(II r) 0, 

<p rh* ara<p 2 
<p 

o, 
(TM-fields) 

in which r 0 < r < r 1 , 0 = e0 , 0 $ <p < 2TI. 
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Condition (ii) implies that either II2 (r,e0 ,<p) = 0 or Er is identically zero. 

However, in the latter case the field is identically zero, as follows from 

the uniqueness theorem 5.1. 

THEOREM 5.4. Let us consider a space domain bounded by two concentric 

spheres l~I = ro and l~I = r 1 , 0 < r 0 < r 1 and by a perfectly conducting 

surface of an elliptical cone, r 0 < r < r 1, e = e0 , Os <p < 2TI. 

Any electromagnetic field can be decomposed into a TE-field and a TM-field. 

The TE-field is given by 

~ 1 
E = iw curl(II1·re ), H = - curl curl(II1re) 

-r - µ -r 

in which II 1 is a solution of the Helmholtz equation: 

with boundary (Neumann) condition 

The TM-field is given by 

in which II2 is a solution of the Helmholtz equation: 

with boundary (Dirichlet) condition 

D 



88 

In chapter 2 we proved that the solutions of the Dirichlet and the Neumann 

problem, respectively, form a complete set of orthogonal functions. This im­

plies that, given E and H on part of the sphere lxl = r 0 , 0 s 6 < 60 , 
r r -

0 s ~ < 2~ and a radiation condition,the electromagnetic field inside the 

cone is determined in a unique way. 

5.2. Cla.!iJi6iea:tlon 06 the mode& 

We shall classify the TE and TM modes in such a way that if the elliptical 

cross-section degenerates into a circular one, that means k2 ➔ 1, TE and TM 

modes are transformed into the well-known spherical TE and TM modes 

[3;280]. 

The TE modes are classified as 

TE, 1 , 2>: h, 1 , 2> (k*r)L(m) (6)L(m) (~) m 
e mn v cpv cv ' 0 I 1 ,2 f • • • 

n n n 

n = 1,2,3, ••• , where vn is the nth positive root of the equation 

L~:~(60) 0; 60 defines the boundary surface of the cone. 

1,2 ,3, ... 

n = 1,2,3, ••• , where vn is the nth positive root of the equation 
m L (60) = 0; 60 defines the boundary surface of the cone. spv 

The TM modes are classified as 

n = 1,2,3, ••• , where 
d (m) I 
d6 ~cpv( 6) 6=60 = O; 

n = 1,2,3, ••• , where 
d (m) I 
d6 Lspv(S) 6=60 = O; 

0 ,1,2, ••. 

vn is the nth positive root of the equation 

e0 defines the boundary surface of the cone. 

1,2, ..• 

vn is the nth positive root of the equation 

e0 defines the boundary surface of the cone. 

2 (m) Cm) m We observe that if k ➔ 1, L (6) and L (6) reduce to P,.(cos(6)). cpv spv v 

L(m) (~) and L(m) (~) reduce to cos(m~) and sin(m~). 
CV SV 
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CHAPTER 6 

COMPUTATION OF THE ASSOCIATEV LEGENVRE FUNCTIONS OF THE FIR.ST KINV 

6.0. IntJr.oduruon 

For the computation of the a Lame solutions to calculate the modes in a per­

fectly conducting cone as described in the previous chapter, we need the as­

sociated Legendre functions of the first kind, P~ ( cos (a) ) , 0 :s: 0 < f , v > 0, 

m =·o,1,2, •••• Because in the literature with which the author is familiar 

no algorithms at all are available to compute these Legendre functions, we 

shall derive a stable algorithm, 

6.1. Compu.ta;Uonai. a6peet6 06 the .thltee-tvr.m ~eeU/Vr.enee ~u.ation-6 

To calculate the associated Legendre functions of the first kind, P~(cos(S)), 

0 :s: 0 < f, m = 0,1,2, ••• , we take the three-term recurrence relation 

(6.1) 

where x = cos(S). 

For computational reasons we transform the functions Pm(cos(S)) so that the 
\) 

maximum magnitude is smaller than or equal to 1. 

Using lemma 6.3, we put 

f(v+l) m 
: = r ( V + m + 1) p 'V ( COS ( 9) ) 

and the three-term recurrence relation (6.1) then becomes 

(6.2) 1jJ + 2m cot(0)1jJ +v-m+l1jJm-l=O,m=1,2,3, ••• 
m+l v + m + 1 m v + m + 1 

Let 

2 p(t) = t +at+ b 

be the characteristic polynomial of the ·recurrence relation (6.2), with 

a= lim 2m cot(S) = 2 cot(S) 
m-+a> v + m + 1 

and 

b lim \/ - m + 1 
v + m + 1 

DJ-+00 

-1 . 
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The zeros of p(t) are 

and 

t 2 = -cot(~0) • 

By virtue of Perren's theorem (see theorem 3.7) the three-term recurrence 

relation has two linearly independent solutions {fm} and {gm}, say, which 

satisfy 

and 

f 
lim m+l = tan(~8) 
~ fm 

g 
lim ~ = -cot(~8) • 
~ gm 

We observe that leDDDa 3.18 implies 

1/lm+l 
lim -- = tan(~8) 
~ 1/lm 

and hence {ij,m} is a minimal solution to (6.2). 

To calculate the minimal solution {ij,} with backward recursion, we need a 
- m 

normalization relation of the form 

(6 .3) 

co 

l amij,m = s, s ~ 0, 
m=O 

where am are given constants ands is a given non-vanishing function. The 

normalization relation (6.3) must satisfy the following conditions: 

(i) Isl must not be small compared to the first non-vanishing term la '1' I m.,,m ' 
because dangerous cancellation of figures will occur. 

(ii) The normalization relation must converge as fast as or faster than the 

backward recursion, because otherwise we should have to calculate too 

many terms. 

From lemma 6.8 we obtain normalization relations which satisfy (i) namely 

(6.4) 

and 

wO + 2 I c-1>mw2m = cos eve>, I cos eve> I~ ~12 
m=l 
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00 

(6.5) sin(v6), lsin(v6) I <!: ~-12. 

'1T 
We observe that these series converge very slowly for 6 near 2 . Let now 

and 

:= L I a Vi 
Vin m=n+l mm' 

then Miller's algorithm [2;37] is as follows. 

Select an integer N: 

Calculate: 

-b 
.·= 0 r(N) .·= ___ n_~ 

' n-1 (N) 
, n N,N-1, ••• ,1 , 

an+ rn 

(N) 
SN := o, 

(N) 
sn-1 

r(N) (a 
n-1 n 

(N)) + s , 
n 

n N,N-1, ••• ,1 

Vi (N) s Vi(N) (N) Vi (N) 1,2, ••• ,N := , := n = 
0 + (N) n rn-1 n-1' 

ao so 

with 

2n 
an:= v + n + 1 cot(6) 

and 

v - n + 1 :=----.,.. 
v + n + 1 

I 

, 

D 

Let M be the number of Legendre functions we need for the calculation of 

the 6 Lam~ functions for a desired degree of accuracy. 

Initially, we select an integer N1 such that 

N -M 
(tan(~6) l ) < E 

where Eis the desired relative accuracy. After this we select another in­

teger N2 > N1 • If 

(N1) (N2) (N2) 
l'./Ji - Vii I~ El'./Ji I 

with i 
(N2) 

0,1,2, ••• ,M, then we take './Ji as an approximation of './Ji, 



(Nl) (N2) 
i = 0,1, •.. ,M, else we redefine ~i := ~i and further we increase N2 
and repeat the algorithm as often as necessary. 

TT 
we observe that this algorithm converges very slowly for 8 near 2 
For this, three reasons can be given, namely: 

1/1 
lim m+l = tan(~8) and hence the minimal solution decreases very 
~ 1/lm 

(i) 

slowly; 

(ii) the difference between the minimal solution and the dominant one is 

very small; 

(iii) the normalization relations (6,4) and (6.5) converge very slowly, 
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The algorithm was tested with the aid of lemma 6.11, for Os 8 s 85°, be­

cause there are no accurate tables to refer to. The range of 8 is sufficient 

for the application to the theory of electromagnetism as treated in the pre­

vious chapter. 

6.2. Appendlx. 

LEMMA 6,1. 

-1 < x < 1, m = 1,2,3, ••• , v real [1;161]. □ 

LEMMA 6.2. 
2TT 

P~(cos (8)) f (cos(8) +i sin(8)cos(q>))vcos(mq>)dq, 

0 

0 ~ 8 < 2!. v > -1, m = 0 1 2 - 2 , , , , ••• 

[1;159]. □ 

LEMMA 6,3, 
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DEFINITION 6.4. Let Yn+l + anyn + bnyn-1 = o, n = 1,2, ••• be a three-term 

recurrence relation with two linearly independent solutions fn and gn. If 

then fn is said to be the minimal solution and gn a dominant one of the 

three-term recurrence relation. D 

LEMMA 6.5. 

()0 

~ f(\/ + l) m (z+(z2 -l)~cos(•'•))\/, P\/(z) + 2 t. f(v+m+l) P\/(z)cos(ml/J) = .,, 
m=l 

in which 1/J and\/ are real and Re(z) > 0 [1;166]. 

LEMMA 6.6. 

0,1,2, ••• , \/ real [1;143], 

Using lemma 6.5 and lemma 6.6 we obtain: 

LEMMA 6.7. 

()0 

- 2i ~ (-l)m f(v+l) P\/2m+1(x)cos((2m+1)1jl) 
t. r (v + 2m + 2) 

m=O 

(x + i/2 - x2 cos (1/J)) \/, 0 < x < 1, 1jJ and \/ real • 

If 1/J O, then from lemma 6.7 we obtain: 

LEMMA 6,8. 

cos(\/8) 

and 
()0 

□ 

□ 

□ 

-,2 ~ (-1) m r (\/ + l) p 2\/m+l (cos (8)) = sin(v8), O < e < 'IT v real. 
t. r (v + 2m + 2) - - 2' 

m=O 
□ 
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1T 
If~= 2 , however, we obtain from lemma 6.7: 

LEMMA 6.9. 

00 

( ) 2 t rev+ l) p\)2mcx) = x", 0 < x < 1, v real. □ 
p \) X + ;.1 r (V + 2m + 1) 

LEMMA 6.10. 

[1;145] • D 

LEMMA 6.11. 

P v (cos (8) cos (8 ') + s1n(8) sin(8 ') cos (q,)) = P v (cos (8)) P v (cos (8 ')) + 

00 

t r (v -m + 1) m m 
+ 2 t.. rcv+m+l) Pv(cos(8))Pv(cos(8'))cos(mq,) 

m=l 

0 s 8 < 1r, 0 s 8' < 1r, 8 + 8 1 < 1r, q, real [1;169]. D 

LEMMA 6.12. 

and 

0 < X < 1, m = 0,1,2, ••• [1;144] • D 

[1] Erd~lyi, A., w. Magnus, F. Oberhettinger, F.G. Tricomi, Higher trans­

cendental functions. Vol. I. New York, McGraw-Hill, 1953. 

[2] Gautschi, w., Computational aspects of three-term recurrence relations. 

SIAM Rev. i (1967), 24-82. 
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CHAPTER 7 

FURTHER INVESTIGATIONS INTO THE LAME FUNCTIONS 

7.0. IntJr,oduw.on 

This chapter supplements the original doctoral dissertation. 

In section 3.2 we derived solutions of the 6 Lame equation in terms of Le­

gendre functions in a heuristic way. We proved that these series converge 

uniformly in any closed subinterval of [ 0, 2 arc tan ( ✓ ( 1 + k) / (1 - k) ) , and 

this is sufficient for our practical applications in conical waveguides. 

However, Prof. Boersma [2] remarks, that for example in diffraction problems 

we need solutions defined in any closed subinterval of [0,TI). For that rea­

son he had found new series for L( 2n) (6) and L( 2n+l) (6), namely: 
cpv spv 

L (2n) (6) 
cpv 

L(2n+1) (6) 
spv 

}: 
m=O 

00 

l (-1)1l\r(2m+ 1)B2(2n+ll)P 2m+l(k cos(6)) . 
m=O m+ v 

On the same way as described in section 3.2 we obtained new series for 

L <2n+l) (6) and L <2n) (6): 
cpv spv 

L (2n+1) (6) sin ( 8) }: (-1) m(2m + 1) T (2m + 1) A~ 2n~1) P2m+1 (k cos(6)) 
cpv ✓1 - k2cos 2 (8) m=O m+ V 

00 

L(2n) (6) sin(6) }: (-1)m(2m)T(2m)B( 2n)P2m(k cos(6)) 
spv ✓1 - k 2cos 2 (6) m=l 

2m V 

Up to now all the 6 series are found in a heustic way. 

, 

Inspired by the existing results for the periodic and non-periodic solutions 

of the Mathieu equation, we shall derive the former 6 solutions (in terms 

of Legendre functions) with the aid of integral equations of the periodic 

Lame solutions. 

7 • 1 • I n.te.gll.af. 1te.p1tu e.n;ta,t,[o w., o 6 8 J.i olU-ti..o w., 

Let 

2TI 

J 
0 



be any of the many known integral equations for the Lame~ solutions (cf. 

Arscott [1]). 

Then by substitution 

k'cos(~) = ik sin(8) 
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{see section 3.2) we obtain an integral representation of a 8 Lalile function: 

211" 

0 (8) = ½ J 
0 

Starting from appropriate kernels and~ solutions we shall now derive 8 so­

lutions. 

Arscott [1] deduced 24 kernels which can be classified into eight types. 

Four our purpose there are four appropriate kernels, namely: 

(i) 

(ii) 

(iii) 

(iv) 

ik' 
Pv{k cos(~)cos{~)) , 

ik' 
k'sin{~)sin{~)P~{k cos(~)cos{~)) , 

ik' 
k cos(~) cos(~) P~ (k'sin{~) sin(~)) 

7. 2. PeJLlodic. ~ ~olu;tloYl-6 

In section 3.1 we expanded the periodic eigenfunctions of the~ problem in­

to trigonometric Fourier series. But it should be remarked that these eigen­

functions can also be expanded into trigonometric Fourier series multiplied 

by the function 

[4;65], [SJ • 

We then obtain the same four classes, namely: 

L (2n+1) ( ) 
CV ~ 

✓1 - k' 2sin2(~) I c~;n>cos(2m~) 
m=O 

00 

~-~-~-- ,;- (2n+1) 
✓1 - k' 2 sin2 (~) L c 2m+l cos((2m+ 1)~) 

m=O 
00 

✓,...1---k-,~2~s-i_n_2_(_~)-}: o~!n) sin(2m~) 
m=l 
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00 

L (2n+ll ( l 
sv q> 

,---.,.,.-...,.,,--- ~ ( 2n+ 1 l . 
✓1 k' 2 sin2 (q>l l o2m+l sin((2m+llq>l 

m=O 

We now observe that the recurrence relations for the coefficients C and 
m 

Dm can be transformed into the previous recurrence relations, by substitu-

tion 

* where T (ml has to satisfy the recurrence relation 

* T (ml := (m+v+ll(m-vl T*(m+ 2l 
(m - v + ll (m + v + 2l 

and the appropriate initial values. We can take 

PO(O) 
T*(ml := ---'-"---

Pm(Ol P-m(Ol 
V V 

We remark that for T(ml defined in section 3.2, we have 

T(ml 

(see lemma 7.ll. This we shall assume to be done. 

7 • 3 • The. 0 ~ olu;ti.o vu, 

With the aid of the integral representations given in section 7.1 and the 

periodic q> solutions given in section 7.2, it is easy to derive the corres­

ponding 8 solutions in terms of Legendre functions in the following way. 

il Starting from the kernel 

the function L( 2nl (8l is expressible as 
cpv 

L(2nl (8l 
cpv 

1 = -
11 

00 

L (2nl (q>l dq> 
CV 

L 
m=O 

T* (2ml A <2nl 
2m 

211 

_111 I Pv(sin(-8lcos(q>llcos(2mq>ldq> 

0 



Using lemma 7.4 we obtain 

L( 2n) (8) = ~ T(2m)A2(2n)P2m(cos(8)) • 
cpv m=O m v 

Likewise, L( 2n+l) (8) is expressible as 
cpv 

L (2n+1) (8) 
cpv 

ii) Starting from the kernel 

the function L( 2n) (8) is expressible as 
spv 

L (2n) (8) 
spv 

2'11' 

✓1-k2cos2 (8); J 
0 

00 

✓'"1 ___ k...,2~c-os...,2.,.,c'""'0.,...) I T* (2m)B <2n> • 
m=l 2m 

2,r 

; J sin(~)P~(sin(-8)cos(~))sin(2mq,)d~ 

0 

Using lemma 7.8 we obtain 

L (2n) (8) = ✓1 - k2cos2 (8) 
spv sin(8) 

00 

I (2m)T(2m)B2(2n)P2m(cos(8)) 
m=l m V 

Likewise, L( 2n+l) is expressible as 
spv 

00 

99 

L(2n+1) (8) = ✓1-k2cos 2 (8) 
spv sin(8) 

~ (2n+1) 2m+1 
l (2m+ 1)T(2m+ 1)B2m+l Pv (cos(8)). 

m=O 

iii) Starting from the kernel 

the function L( 2n) (8) is expressible as 
cpv 
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27T 

L(2n) (0) = .!_ J 
cpv 7T 

0 

P ( ✓1 - k2cos 2 ( 0) sin ( cp)) 
v L (2n) ( ) d 

CV cp cp 

21T 

J P v ( ✓1 - k 2cos 2 ( 0) sin ( cp) ) cos ( 2mcp) dcp • 

0 

Using lemma 7.5 we obtain 

L(2n) (0) 
cpv 

Likewise, L( 2n+l) (0) is expressible as 
spv 

L (2n+1) (0) 
spv I 

m=0 

iv) Starting from the kernel 

i:• cos(cp)cos($)P~(k'sin(cp)sin($)) 

the function L( 2n+l) (0) is expressible as 
cpv 

00 

=-sin(0) l T*(2m+l)A~::;1> , 
m=0 

21T 

L(2n+l)()d 
CV cp cp 

1T 
f cos(cp)P~ ( ✓1-k2cos 2 (0) sin(cp)) cos( (2m+ 1) cp)dcp. 

0 

Using lemma 7.9 we obtain 

sin(0) , m (2n+1) L (2n+1) (0) 
cpv l ( -1) ( 2m + 1) T ( 2m + 1) A2m+ 1 

✓1 - k 2cos 2 (0) m=0 

Likewise, L( 2n) (0) is expressible as 
spv 



L (2n) (0) 
spv 

IOI 

It is easy to verify that also the following kernels are valid: 

i) ik' 
Qv C7c cos (cpl cos (cj,)) , 

ii) k' sin (cp) sin(cj,) Q' (ikk' cos (cp) cos (cj,)) , 
V . 

iii) Qv(k'sin(cp)sin(cj,)) , 

iv) i:' cos(cp)cos(cj,)Q~(k'sin(cp)sin(cj,)) 

Consequently, with the aid of the lemmas 7.12 and 7.13 and the above kernels 

it is easy to obtain series expansions for the functions L( 2n) (0) L< 2n+l) (0) 
cqv ' cqv ' 

L <2n> (0) and L <2n+l) (0) • 
sqv sqv 

7.4. Appe.ncllx 

LEMMA 7.1. 

LEMMA 7.2. 

Taking$ 

LEMMA 7.3. 

-2m-l . m + v + 1 m - v 
P~(O) = ~ s1.n(1TV)r( 2 )r(-2 -) 

1T 

Pv(cos($)cos(0) + sin($)sin(0)cos(cp)) = 

Pv(cos($))Pv(cos(0)) + 2 l 
m=l 

,r/2 we obtain 

00 

, m -m m 
+ 2 l (-1) Pv (O)Pv(cos(0))cos(mcp) 

m=l 

Using this lemma we obtain 

[3;145]. D 

[3;168] • D 

D 
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LEMMA 7.4. 

LEMMA 7.5. 

LEMMA 7.6. 

1 
1T 

1 
1T 

1 
1T 

0 

0 

0 

21T 

J m_-m m 
P (sin(-6)cos(q>))cos(mcp)dcp = (-1) P (0)P (cos(6)), 

\) \) \) 

m = 0,1,2,... D 

21T 

J · m+l -2m 2m 
P ( ✓1-k:Lcos:L(6)sin(q>))cos(2mq>)dcp=(-1) P (0)P (kcos(0)), 

\) \) \) 

m=0,1,2, •••• D 

21T 

J P)h - k 2cos 2 (6) sin(cp)) sin( (2m + 1) qi) dq> 

By differentiating of the formula of lemma 7.3 with respect to cp we obtain 

LEMMA 7.7. 

sin(6)sin(cp)P~(sin(6)cos(q>)) 

00 

,;- m -m m 
2 l (-1) mPv (0)Pv(cos(6))sin(mq>) 

m=l 

Using this lemma we obtain 

LEMMA 7.8. 

LEMMA 7.9. 

21T 

; J sin(q>)P~(sin(-6)cos(q>))sin(mcp)dq> 

1 
1T 

0 

0 

21T 

J cos ( q>) P' ( 11 - k 2cos 2 0 sin ( q>) ) cos ( ( 2m + 1) q>) dq> 
\) 

(-1) m ( 2m + 1) 

h - k 2cos 2 (6) 

P-( 2m+l) (0)P2m+l(k (6)) 0 1 2 v v cos , m = , , , • • • • 

□ 

□ 

□ 
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LEMMA 7 .10. 

1 
1T 

0 
J 

2,r 

cos (<p) P' (/1 - k 2cos2 (8) sin (<p)) sin(2m<p) d<p 
\) 

(-1) m+l ( 2m) 

11- k 2cos2 (8) 

LEMMA 7 .11. 

Taking~ 

Qv(cos(~)cos(8) + sin(~)sin(S)cos(<p)) = 

Pv(cos(~))Qv(cos(8)) + 2 l 
m=l 

,r/2 we obtain 

LEMMA 7.12. 

+ 2 I 
m=l 

[3;169] • 

By differentiating of this formula with respect to <p we obtain 

LEMMA 7.13. 

sin(8)sin(<p)Q~(sin(8)cos(<p)) 

00 

t m -m m 2 l (-1) mPv (O)Pv(cos(S))sin(m<p) 
m=l 

7. 5 . Re.6 e1te.11c.e.6 
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□ 
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□ 



104 

[4] Erdelyi, A., W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher trans­

cendental functions, Vol. III, New York, McGraw-Hill, 1955. 

[SJ Ince, E.L., Further investigations into the periodic Lame functions. 

Proc. Roy. Soc. Edinburgh Sect. A. 60 (1940), 83-99. 



OTHER TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS 

A leaflet containing an order-form and abstracts of all publications men­
tioned below is available at the Mathematisch Centrum, Tweede Boerhaave­
straat 49, Amsterdam-1005, The Netherlands. Orders should be sent to the 
same address. 

MCT 1 T. VAN DER WALT, Fixed and almost fixed points, 1963. ISBN 90 6196 
002 9. 

MCT 2 A.R. BLOEMENA, SC1l1lpling from a graph, 1964. ISBN 90 6196 003 7. 

MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model 
and method, 1964. ISBN 90 6196 004 5. 

MCT 4 G. DE LEVE, Generalized Markovian decision processes, part II: Pro­
babilistic background, 1964. ISBN 90 6196 005 3. 

MCT 5 G. DE LEVE, H.C. TIJMS & P.J. WE:EDA, Generalized Markovian decision 
processes, Applications, 1970. ISBN 90 6196 051 7. 

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 1. 

MCT 7 W.R. VAN ZWET, Convex transformations of random variables, 1964. 
ISBN 90 6196 007 X. 

MCT 8 J.A. ZONNEVELD, Automatic numerical integration, 1964. ISBN 90 6196 
008 8. 

MCT 9 P.C. BAAYEN, Universal moPphisms, 1964. ISBN 90 6196 009 6. 

MCT 10 E.M. DE JAGER, Applications of distributions in mathematical physics, 
1964. ISBN 90 6196 010 X. 

MCT 11 A.B. PAALMAN-DE ~URANDA, Topological semigroups, 1964. ISBN 90 6196 
011 8. 

MCT 12 J.A.TH.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MOKKEN & A. VAN 
WIJNGAARDEN, Formal properties of newspaper Dutch, 1965. 
ISBN 90 6196 013 4. 

MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of print; replaced 
by MCT 54 and 67. 

MCT 14 H.A. LAUWERIER, Calculus of variations in mathematical physics, 1966. 
ISBN 90 6196 020 7. 

MCT 15 n. l))()RNBOS, Slippage tests, 1966. ISBN 90 6196 021 5. 

MCT 16 J.W. DE BAKKER, Formal definition of prograrrvning languages with an 
application to the definition of ALGOL 60, 1967. ISBN 90 6196 
022 3. 

MCT 17 R.P. VAN DE RIET, Formula manipulation in ALGOL 60, part 1, 1968. 
ISBN 90 6196 025 8. 

MCT 18 R.P. VAN DE RIET, Formula manipulation in ALGOL 60, part 2, 1968. 
ISl:!N 90 6196 038 x. 

MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968. 
ISBN 90 6196 026 6. 

MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial 
differential equations, 1968. ISBN 90 6196 027 4. 



MCT 21 E. WATTEL, The compactness operator in set theory and topology, 
1968. ISBN 90 6196 028 2. 

MCT 22 T .J. DEKKER, ALGOL 60 procedures in nwnerical algebra, part 1, 1968. 
ISBN 90 6196 029 0. 

MCT 23 T.J. DEKKER & W. HOFFMANN, ALGOL 60 procedures in nwnerical algebra, 
part 2, 1968. ISBN 90 6196 030 4. 

MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 90 6196 060 6. 

MCT 25 E.R. PAERL, Representations of the Lorentz group and projective 
geometry, 1969. ISBN 90 6196 039 8. 

MCT 26 EUROPEAN MEETING 1968, Selected statistical papers, part I, 1968. 
ISBN 90 6196 031 2. 

MCT 27 EUROPEAN MEETING 1968, Selected statistical papers, part II, 1969. 
ISBN 90 6196 040 1. 

MCT 28 J. OOSTERHOFF, Combination of one-sided statistical tests, 1969. 
ISBN 90 6196 041 X. 

MCT 29 J. 'imRHOEFF, Error detecting decimal codes, 1969. ISBN 90 6196 042 8. 

MCT 30 H. BRANDT CORSTIUS, Excercises in computational linguistics, 1970. 
ISBN 90 6196 052 5. 

MCT 31 W. MJLENAAR, Approximations to the Poisson, binomial and hypergeo­
metric distribution functions, 1970. ISBN 90 6196 053 3. 

MCT 32 L. DE HAAN, On regular variation and its application to the weak 
convergence of sample extremes, 1970. ISBN 90 6196 054 1. 

MCT 33 F.W. STEUTEL, Preservation of infinite divisibility under mixing 
and related topics, 1970. ISBN 90 6196 061 4. 

MCT 34 I. JUHASZ, A. 'imRBEEK & N.S. KROONENBERG, Cardinal functions in 
topology, 1971. ISBN 90 6196 062 2. 

MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 90 6196 063 o. 
MCT 36 J. GRASMAN, On the birth of boundary layers, 1971. ISBN 90 6196064 9. 

MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DuIJVESTIJN, E.W. DIJKSTRA, 
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN 
ARETZ, W.L. VAN DER PoEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES&. 
G, ZOUTENDIJK, MC-25 Informatica Symposiwn, 1971. 

ISBN 90 6196 065 7. 

MCT 38 W .A. 'imRLOR)!:N VAN THEMAAT, Automatic analysis of lJutch compound words, 
1971.'·rsBN 90 6196 073 8. 

MCT 39 H. BAVINCK, Jacobi series and approximation, 1972. ISBN 90 6196 074 6. 

MCT 40 H.C. TIJMS, Analysis of (s,S) inventory models, 1972. ISBN90 6196075 4. 

MCT 41 A. WRBEEK, Superextensions of topological spaces, 1972. ISBN 90 
6196 076 2. 

MCT 42 W. 'imRVAAT, Success epochs in Bernoulli trials (with applications in 
number theory), 1972. ISBN 90 6196 077 O. 

MCT 43 F.H. RUYMGAART, Asymptotic theory of rank tests for independence, 
1973. ISBN 90 6196 081 9. 

MCT 44 H. BART, Meromorphic operator valued functions, 1973.tISBN 906196 082 7. 



* MCT 67 H.A. LAUWERIER, Asyrrrptotic analysis, part 2. 
ISBN 90 6196 119 X. 

MCT 68 P.P.N. DE GROEN, Singularly perturbed differential operators of 
second order, 1976. ISBN 90 6196 120 3. 

MCT 69 J.K. LENSTRA, Sequencing by enumerative methods, 1977. 
ISBN 90 6196 125 4. 

MCT 70 W.P. DE ROEVER JR., Recursive program schemes: semantics and proof 
theory, 1976. ISBN 90 6196 127 o. 

MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision processes, 1976. 
ISBN 90 6196 129 7. 

MCT 72 J.K.M. JANSEN, Sirrrple periodic and nonperiodic Lame functions and 
their applications in the theory of conical waveguides. 
ISBN 90 6196 130 0. 

* MCT 73 D.M.R. LEIVANT, Absoluteness of intuitionistic logic. 
ISBN 90 6196 122 x. 

MCT 74 H.J.J. TE RIELE, A theoretical and corrrputational study of general­
ized aliquot sequences, 1976. ISBN 90 6196 131 9. 

MCT 75 A.E. BROUWER, Treelike spaces and related connected topological 
spaces, 1977. ISBN 90 6196 132 7. 

MCT 76 M. REM, Associons and the closure statement, 1976. ISBN 90 6196 135 1. 

* MCT 77 W.C.M. KALLENBERG, Asyrrrptotic optimality of likelihood ratio tests in 
exponential families, 1978. ISBN 90 6196 134 3. 

MCT 78 E. DEJONGE, A.C.M. VAN ROOIJ, Introduction to Riesz spaces, 1977. 
ISBN 90 6196 133 5. 

MCT 79 M.C.A. VAN ZUIJLEN, Errrpirical distributions and rankstatistics, 1977. 
ISBN 90 6196 145 9. 

* MCT 80 P.W. HEMKER, A numerical study of stiff two-point boundary problems, 
1977. ISBN 90 6196 146 7. 

MCT 81 K.R. APT & J. W. DE BAKKER (eds) , Foundations of corrrputer science II, 
part I, 1976. ISBN 90 6196 140 8. 

MCT 82 K.R. APT & J .W. DE BAKKER (eds), Foundations of corrrputer science II, 
part II, 1976. ISBN 90 6196 141 6. 

* MCT 83 L.S. VAN BENTEM JUTTING, Checking Landau's "Grundlagen II in the 
automath system, 1977. ISBN 90 6196 147 5. 

MCT 84 H.L.L. BUSARD, The translation of the elements of Euclid from the 
Arabic into Latin by Hermann of Carinthia (?) books vii-xii, 1977. 
ISBN 90 6196 148 3. 

MCT 85 J. VAN MILL, Supercorrrpactness and Wallman spaces, 1977. 
ISBN 90 6196 151 3. 

* MCT 86 S.G. VAN DER MEULEN & M. VELDHORST, Torrix I, 1977-. 
ISBN 90 6196 152 1. 

* MCT 87 S.G. VANDERMEULEN & M. VELDHORST, Torrix II, 1978. 
ISBN 90 6196 153 x. 

* MCT 88 A. SCHRIJVER, Matroids and linking systems, 1978. 
ISBN 90 6196 154 8. 



* MCT 89 J.W. DE RoEVER, CompZe;,; Fou.YYt,er transformation and anaZytia 
fu:nationaZs with unbounded carriers, 1978. 
ISBN 90 6196 155 6. 

* MCT 90 
* MCT 91 J.M. GEYSEL, Tra:nsaendenae in fields of positive aharaateristia, 

1978. ISBN 90 6196 157 2. 
* MCT 92 P.J. WEEDA 

MCT 93 H.C. TIJMS (ed.) & J. WESSELS (ed.), Markoa decision theory, 1977. 
ISBN 90 6196 160 2. 

An asterisk before the number means "to appear". 


