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CHAPTER 0
INTRODUCTION AND SUMMARY

0.0. Introductory remasks

The present work is a result of antenna research carried out in the preced-
ing years by the Numerical Mathematics and Service group of the Department
of Mathematics and the Theoretica; Electrical Engineering group of the De-
partment of Electrical Engineering at the Technological University Eindhoven.
The first research object concerned the investigation of a corrugated coni-
cal-horn antenna with circular cross-section and large flare angle, the so-
called "scalar feed" [1], [21, [3].

This was followed by a contract-research program of the European Space Re-
search and Technology Centre (ESTEC) for the investigation of the propaga-
tion and radiation properties of an elliptical waveguide with anisotropic
boundary conditions [4], [5]. In the ESTEC report [4] we suggested some to-
pics for further research work, and one of these is the investigation of a
corrugated conical-horn feed with elliptical cross-section and large flare
angle. This feed illuminates a parabolic satellite reflector which has an
elliptical aperture and which is used for telecommunication purposes, e.g.;
for Western Eurcpe (see figure 0.1) or for time zones in the U.S.A. This
problem, however, has so far appeared to be too difficult.

We investigate an easier problem, namely, the electromagnetic field inside
a conical horn with an elliptical cross-section and an arbitrary flare an-
gle, bounded by a perfectly conducting rather than an anisotropic surface.
The mathematical results of this work and the expertise gained by it will
be used as tools for further investigations of horns with anisotropic boun-

dary conditions.

0.1. Summary

The first problem in the investigation of the electromagnetic field inside
a conical-horn feed with elliptical cross-section is to select a suitable

coordinate system, with the following properties:

(1) the boundary of the cone must be a coordinate surface;
(2) the scalar Helmholtz equation must be separable;
(3) the parametric representation of the coordinate system must be chosen so

that the solutions of the separated equations are easy to find.



A coordinate system that satisfies these conditions is the sixth coordi-
nate system of Eisenhart, viz., the sphero-conal system parametrically re-
presented by trigonometric functions as described for the first time by
Kraus [6] in 1955. Separating the Helmholtz equation, we cbtain three equa-

tions:

(1) for the r dependence; the differential equation of the spherical Bessel
functions;

(2) for the ¢ dependence: the Lamé differential equation with periodic boun-
dary conditions;

(3) for the 6 dependence: the Lamé differential equation with non-periodic

boundary conditions.

Up to now there is virtually nothing known about the analytical solutions
of the Lamé differential equation with non-periodic boundary conditions. In
this work, however, we show that they ar® connected with the periodic solu-
tions of the Lamé equation.

We cobserve the same phenomenon in the case of the solutions of the Mathieu
equation by separating the Helmholtz equation in the elliptic-cylinder
coordinates. Between the solutions of the separated equations of the scalar
Helmholtz equation we have now found a relationship in four systems, viz.,
the cylindrical polar, the spherical polar, the elliptic-cylinder and the
sphero-conal coordinate systems. Figure 0.2 displays an overview of these
solutions, and it is easy to see that these solutions transform into one
another by the corresponding transition of the coordinate systems. As in
the spherical polar coordinate system, the electromagnetic field inside a
horn can be expressed in terms of two independent scalar Debye potentials.
And in the same way as described in the spherical polar coordinate system

we give a mode classification of the electromagnetic field.

0.2. Computational remarks

We have developed a set of procedures in ALGOL 60 for calculating the perio-
dic and non-periodic solutions of the Lamé equations. These procedures, and
directions for use, are obtainable from the author on request.

We have calculated the first forty modes of the electromagnetic field in-
side a horn with an eccentricity of 0.9 and a flare angle of 600.

The results of the calculated periodic solutions were compared with the nume-
rical results of the finite-difference method with h2 extrapolation applied

to the Lamé differential equation with periodic boundary conditions. The



calculations agreed to 10 decimals. The results of the computed non-periodic
solutions were compared with those of a fifth-order Runge-Kutta method. These
calculations agreed to 11l decimals. Both of the calculations mentioned above
were performed in double-length arithmetic to guarantee high accuracy. All
calculations were performed on the digital Burroughs computer B6700 of the

Computer Centre of the Technological University Eindhoven.

0.3. Appendix

In this section a new representation of the elliptic coordinates is intro-
duced, and this contains the polar coordinates as a special case by taking
the focal distance (2h) zero. At the same time, the equations cbtained from
the Helmholtz equation on separation tend to the corresponding equations

of the polar coordinate system.

The coordinates of the elliptic system denoted by r,p are related to the

Cartesian coordinates x,y by means of

X = th + r2 cos(9), y = r sin(9)

with h > 0 and 0 < 9 < 2m, r 2 0.

First of all we observe that for h = 0 the polar coordinate system is cb-

tained. The coordinate curves are determined by the following two equations:

x2 Xi x2 y2
—_— =1, - =1,
h2 + r2 r2 h2c052(¢) hzsinz(m)

These equations represent an ellipse and a hyperbola, respectively, with
foci (h,0) and (~h,0).
The eccentricity of the ellipse is given by

h
e

2 4 g2

If h = 0, and consequently e = 0, the ellipse becomes a circle and the equa-

tion of the hyperbola degenerates into

( X - Y ) ( X + Y 3\
cos (@) sin (9)’ ‘cos (p) sin(g)’

=0,

and this is the equation of a pair of straight lines.



Now we verify whether the coordinate curves are mutually perpendicular at

each point in the plane. For that purpose we determine the tangent vectors

to the parameter curves ié and ﬁé H
or £l

2 2 2 2, .
0% _ (x/Yh™ + £)cos () dx -(Vh" + r")sin(9)
= , = .
or sin (@) 39 r cos (9)
. 9x 0x
It follows indeed that (= ,+5) = 0.
ar ' 9¢

The scale factors of this coordinate system are

2 2 .2 /r““““““"
noa= |2 S\ /X rhisint@ 38 /2, 12552, .
r or 02 42 (o 99

Again, if h = 0 these scale factors are identical with those of the polar

coordinate system.

Now we shall investigate the separation of the Helmholtz equation.
We shall suppose that the function u = u(r,9) satisfying the Helmholtz equa-

tion

M+ k¥ =0

can be factored as
u(r,9) = R(x) ®(9) .

Then we cbtain the following two second-order differential equations:

2 2 4 2 2 dR *2 2 2 _
Vﬁ + r dr(¢£ + r dr) + (k "x V)R=0,

2
a’ Z + (k*zh
do

25in?(p) + v e =0, 8(p) = d(gp + 2m ,

in which vz is the separation constant. Again, if h = 0 we cbtain the well-
known differential equations of the polar coordinate system.
We can divide the ¢ solutions into four classes and we can expand these

functions into trigonometric Fourier series [7;21], [8;187]:

0
Ly o (2n)
ce, (9;k’h) = zzo A, cos (249)

cos((2% + 1)o) ,

ce2n+1

(-]
' = T afim)
2=0



-
* o (2n+1) .
se, ., (0ik h) = ) Bypep Sin((22 + 1o) ,
2=0
x v _(2n+2)
se, ., (0ik h) = 220 Bypyp Sin((22 +2)9) .

The corresponding r solutions are [7;158]:

ce, (0O;k h) <«
* _ 2n (2n) *
Ce, (rik'h) = o) ) By Ty (kT
A 2=0
0
2 2
ce (0;k h)Yh™ + ¥~ =«
* 2n+1 (2n+1) *
ce (xik h) = ) (22+1)a Joo. k1),
2n+1 Ek*hrA;2n+1) 2=0 28+1 29+1
se! . (0ik h)
* 2n+1 "’ (2n+1) *
Se (r;jk h) = ———————————ee J (k ) ’
2n+1 5k*hB§2n+1) =0 29+1 28+1
se! (O;k*h)V£2 + r2 0
Se, . (rik'nh) = —28¥2 § e+ an
! - +2 °
2n+2 %k*2h2r32(2n+2) 2=0 29+2 2% ‘
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Solutions of the separated Helmholtz equation Au + k*2u = 0.

Elliptic-cylinder coordinate system (r,¢,z)

7 oal2m v (2m)
L Z k nll)] a cos(22¢)], m = 0,1,2,...
120 B In <, gm0 2%
v (2m+1) (2m+1)
['-;:(r)l{0 (22 + 18" 22+1(k r)][z Ao+t cos ((28+1)9) ],
e-Yan m=20,1,2,...
T 2 2m)
[g(r)zgl 21.32(;1) (k r)][ z B( m)s1n(22cp)], m=1,2,...
T (2mH1) (2m+1) _, _
[Z Bypst 2“1(1: r) 1L Z Byoyp Sin((22+1))], m = 0,1,2,...
where g(xr) = 2 + r2/r.
h+o0

Cylindrical polar coordinate system (r,¢,z)

J2m(kcnr)cos(2mcp), m=0,1,2,...

— z J2m+1(kcnr)cos((2m+1)q:), m=20,1,2,...

(kc r)sin(2mp) , m = 1,2,...
n

2m+1(k nr)s:u'l((21n+1)(p), m=0,1,2,...
2 *2 2
k -k =Y,

n

Figure 0.2. (continued on page 9)



Solutions of the separated Helmholtz equation Au + k*zu = 0.

Sphero-conal coordinate system (r,6,9)

~

¥ Z T(20) 22" 2“(cos<e)>1[ Z aizm

£=0 2=0

cos(22¢)]1, m=0,1,2,...

(2m+1) 2£+1 (2m+1)

L) Te+)a (cos (8)) 1L E A cos ((28+1)9) 1,

L 2041 Ty 20+1
2=0 n m=0,1,2,...
n{t 2 oo L e | 2eens® 32‘°°s‘°))][ Z By sin(29)],
n =1 n

m=1,2,...

e [ unreunsi™ Y e2% (cos0))] -
220 +1
) Béifzi)sin((zz+1)¢)], m=0,1,...
[ 22
where f(e;k) = —-L—:—Lgeg——(gl-

sin(0)

k'+ 0

Spherical polar coordinate system (x,6,9)

2m(cos(e))cos(chp),'m =0,1,2,...

v
n
P2 (05 (8))cos ((2m+1)9), m = 0,1,2,...
hél'z)(k*r)< n
n Pim(cos(e))sin(me), m=1,2,...
n
2m+1
P (cos(0))sin{((2m+1)¢), m = 0,1,2,...

\Y
L n
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CHAPTER 1
CONICAL COORDINATE SYSTEMS

1.0. Intrnoduction

Of the eleven coordinate systems of Eisenhart [ 7;656], [8;94] in which the
scalar wave equation is separable, we shall need the sphero-conal system.

However, we shall first study conical coordinate systems in general.

1.1. The general conical coordinate system

This system is based on a family of concentric spheres and an orthogonal
net of curves on the unit sphere. The conical coordinates, denoted by
r,0,9, are related to the familiar Cartesian coordinates Xx,y,z by

x= rg(e /9), or

X rfl (e,(P), Y= rfz (9,(9), z = rf3(ep(p) 7

where fi (i =1,2,3) are the Cartesian components of the unit vector f de-

fined in a certain domain D of the 6,¢ plane to be specified later on.

We have
(£,6) = 1 A A
ool I°r1 2 3 4
and
9f, of of, of of , of
QE B Lo il 22 3773 o

by

The length of these tangent vectors have the nature of scale factors and

we define them as:

) 9 of 9 9f
b, o= |35l = tong o= |55 = xlggle ng = 53] = 2l52l

Points for which hehw = 0 are singular points of the parametric representa-

tion, In the vicinity of these points there is no one-to-one mapping on the

Cartesian coordinates.
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The set of orthogonal unit vectors in the r, & and ¢ directions, which vary

from point to point, are defined as

=H’=f'e =-1-—§é=-1—3£'e =—1—-2§=-1__-a-£,
-r 9dr =’ =6 h, 96 * 30 ' =9 h 29 * 9
6 h (0] h
] P
where
h
hY .= _£=|_.£| = 2 )28
6 r EL:) r 9pl°

Thus, we can write each vector at the point (r,0,9) in a unique way as:

= + °
V= ve +Veeg t Ve

1.2. Vector operatorns in the genenal conical coordinate system

In this section we shall deduce some vector identities in the general or-

thogonal curvilinear coordinates [3;298].

Let

F = F(r,0,9) = Frgr + Fe_e_9 + F(pgcp .
Then

div F = div(Frgr + (FGEO + Ftpgcp))

1 9 3
_hehm -a?(hehq’Fr) + -———{ae(h Fg) + a—(p-(heF(p)} .

For convenience we shall define

divF:=divF+idivF

- r- r t=
and
oF 2F
. s 1 3 2 _ r r
d:.vr:f_‘ := div Frer = r2 Br(r Fr) TS + el
divtg = r d.].v(Fege + F(pgtp)

1 3
= —n{ae(h Fg ) + -.&J(heF(p)]’ .
hehq)

The operators with index r are the radial operators and those with index t

are the transversal ones, i.e. transversal in relation to r.
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Similarly we have for the curl of a vector

curl F := curl F + L curl F
- r- r t=-
with
curlr_F_‘ := (curl g‘_)ega + (curl p_‘)q)g¢
OF oF
_1 r 29 1 .9 r
= E;[T - s?(hq?FqJ)}ge + Eg{ar(he}?e) - 558,
and
curl F := —E;—{E—(h F) - 3—(h F,)le
t= h6h¢ 96 g g 90 608’ Zr
1 ] * ] *
= STy T syheTe) ey -
heh
?
Let now
g =gl(z,0,9)
then
=2 1l 3g I R
grad g 3r °r * r{ > % T % £l gm}
he h¢

1
gradrg + T gradtg o
In the same way as before we define

gradrg = 21 e

dr -r
and
=L 13
gradtg =T 96 + = 50 gw .
h6 h¢

With A the scalar Laplace operator we have

: . 1 .. 1
Ag := div grad g (dJ.vr + - dlvt)(gradr + = gradt)g

1]

. 1
dlvrgradrg + r2 divtgradtg .
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This can be written as

1
Ag = Arg + - Atg

p)
X
with
_1 3, 23g
by = =57 5D
X
and
13 f;_gg 2 Bo 3g
b g = A 35 % 35 +-5$-(—* z)q))} .
h'h h h
07 6 @

In differential geometry the scalar transverse Laplace operator At is
known as the Beltrami operator or the second differentiator of Beltrami
[1;225]:

1.3. Trigonometric gorm of the sphero-conal system

The sphero-conal system is usually described mathematically in the algebra-
ic form and/or in the elliptic-functional form [7;659], [8;105].

In 1955 however, Kraus described the system with the help of trigonometric

functions. This parametric representation is very important to the present

work and therefore we shall investigate the trigonometric form [4], [5],

[el.

The coordinates of the sphero-conal system, denoted by r,0,9, are related

to the Cartesian coordinates by

x = r cos(g@)sin(6) ,

r sin(@) /1 - k%cos?(8) ,

z = r/l - k'zsinz(w)cos(e) ’

<
[}

where

0<k<1,0<k' <1, k2 +k'?=1,

and

0,D:=1{(8,9) | O<06<m,05¢<2r}.

L]
I\
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Figure 1.1.

First of all we observe that if k = 1, and consequently k' = 0, this coor-
dinate system reduces to the spherical polar coordinate system [8;99].

Now we verify whether the coordinate curves are mutually perpendicular at
each point in space, For that purpose we determine the tangent vectors to

x  x 3% 3,
the parameter curves 3e 1 35 and T [3;298],

cos (9) sin (6)

8% _ |y fy _ 2 2
5z sin (@) V1 k“cos™(0) |,
V1l - k'zsinz(w)cos(e)
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(¢ cos (¢) cos (6)
%§-= rk%sin () cos (8) sin (8) /71 - k2cos2(8)| ,
-Lr sin(8)V1 - k'2sin? (9)
(-r sin(9)sin (6)
2%‘= r cos (9)Vl - kzcosz(e) .
2 A 2 .2
\-rk'“cos (8) sin (9) cos (9) /¥1- - k'“sin” ()

It follows that, indeed,

9x 90X, _ )
(Be'aq))_O-

We also find that the vector product

X

XhE
u:b;:

)
is a positive multiple of the vector 3% and hence r,9,¢9 form, in this or-
der, a right—handed system of coordinates. The scale factors of this coor-

dinate system are

- 19% _
by = lBr =1,
h, = |2 - r\/<'2cosz(¢) + k%sin® (0)
° % 1 -k%cos? (0)
n, = |35 = r\/k'ZCOSZw) + K2sin® (0)
’ B 1 - k'%sin? (9)

We observe again that if k = 1 these scale factors are identical with those

of the spherical polar coordinate system.

The coordinate surfaces are determined by the following equations

(1.1) %2+ g%+ 22 =2,
2 2.2 2
(1.2) Ly K2 el
sin” (0) 1 - k" cos“ (6) cos” (0)
,2.2 2 2
(1.3) k 2z PN SN AN

1 - k'zsinz(w) cosz(w) sinz(w)
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Equation (1.1) represents a sphere with centre at the origin. If 6 # /2
equation (1.2) represents a cone with the vertex at the origin. The cross-
section of this cone with a plane z = z, # 0 is an ellipse satisfying the

equation

x2 Y2
+ =1
zgtanz(e) zg(secz(e)/k2 - 1)

The major axis, lying in the y,z piane, is denoted by 2a, in which
a= |z0I¢sec2(e)/k2 -1

and the minor axis, lying in the x,z plane,is denoted by 2b, in which

b = |z0tan(e)| .

The eccentricity is

Vaz - b2 _ k'

a /& - k2cosz(9)

e :=

X Figure 1.2,

If k = 1, and consequently e = 0, the elliptic cone becomes a circular cone.
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Equation (1.3) represents an elliptic cone with the vertex at the origin.
The cross-section of this cone with a plane y = ¥g # 0 is an ellipse which

satisfies the equation

2 2

3 5 2 5 + 5 xz =1, ¢ #0,7 .
Yglesc™(9)/k'™ = 1) ygcot®(e)

The majdr axis, lying in the y,z plane, is denoted by 2a, in which
> .
a= IyOIVcsc (q))/k‘2 -1,

and the minor axis, lying in the x,y plane,is denoted by 2b, in which
b = |yocot(¢)] .

The eccentricity is

k

Y1 - x'2sin? ()

e =

1]

1

\

-— \ -

-~

Figure 1.3. \\J/

We observe that if k = 1 equation (1.3) degenerates into

X
(—= L

\ - +-y )=0I
cos (9) sin(9) " "cos (9) sin (@)

and this is the equation of a pair of planes.
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Now we investigate the one-one correspondence between the Cartesian coordi-
nate system and the sphero-conal system. For that purpose we consider the

functional determinant

2 2 2 .2
det(%é , %é , %é) = hhgh = 2 k' cos (9) + k sin (6) : .
r e ¢ /(1 - k2cos2(8)) (1 - k'2sin?(p))

If r = 0 or (cos(9) = 0 and sin(8) = 0), the functional determinant is zero
and we have locally no one-to-one mapping on the Cartesian coordinate sys-
tem.

Each point (0,0,9) is mapped onto the origin of the Cartesian coordinate
system,

(cos (9) = 0 and sin(8) = 0) holds if:

6 =0, 9 = 1/2; this corresponds to the half-line k'z - ky =0, y20, x=0;

]

=0, 09 3m/2; corresponding to k'z + ky =0, y< 0, x= 0;

6
6 =m, 9 = 1/2; corresponding to k'z + ky =0, y 2 0, x = 0;
8 =m, ¢ = 31/2; corresponding to k'z - ky =0, y £ 0, x =0,

©
n
N|§

Figure 1.4.
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We observe that if 6 = O the elliptic cone (1.2) degenerates into a sector
of the y,z plane determined by the conditions x = O, Iyl < (k'/k)z.

To each point inside this sector there exist two coordinate triples, viz.,
(x,0,9) and (x,0,7-9).

If ¢ = m/2 the elliptic cone (1.3) degenerates into a sector of the y,z
plane determined by the conditions x = 0, |z| < (k/k")y.

At each point inside this sector, however, the mapping from (r,0;9) to
(x,y,2) is one-to-one.

We observe that if k = 1 the sectors corresponding to & = 0 and 6 = 7 dege-
nerate into the z axis (this is also true in the spherical polar coordinate
system) .

If 6 = /2 the elliptic cone (1.2) degenerates into the whole x,y plane,
and if ¢ = 0 the elliptic cone (1.3) degenerates into the whole x,z plane.

1.4. Single~valued functions in the sphero-conal system

It is convenient to enlarge the domain D of definition to =» < 8,9 < =,
First of all, we observe that in this extended domain the following rela- .
tions hold:

(L) x(r,9,9) = x(x,0,9+2m), periodicity relation.

(ii) x(x,6,9) = x(r,-08,7-9), reflection relation with respect to the point
(x,0,m/2),

(iii) x(x,0,9) = 5(r,2ﬂ-9,n—¢), reflection relation with respect to the

point (r,m,n/2).

It is evident that if F(x,y,2) is a single-valued function in the whole:lR3

space, then
£(z,0,9) := F(x(x,0,9),y(x,9,9),2(r,0,9))

cbeys the following relations:

(i) f(rrel‘p)
(ii) £(x,9,9)
(iii) £(x,0,9)

f(x,0,0+2m),

flr,~0,m-9),

£(x,2m-0,m-09).

In addition, if (x,y,z) = (0,0,0) then £(0,0,¢9) is independent of 6 and ¢.
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Now let f(r,6,¢) be continuously differentiable in r 2 0, =® < 8,0 < ®,
Then, after some analysis, it turns out that the relations (i), (ii) and
(iii) are sufficient conditions to guarantee that f corresponds to a conti-

nuously differentiable function F(x,y,2z) in the whole Eg space.

We observe that the function £(r,0,9) is doubly periodic with respect to 0
and ¢, that is, periodic in both 6 and ¢ with period 27, Further, the
points (r,0,m/2) and (r,m,m/2) are centres of symmetry of f(r,0,9) in the

extended domain == < 6,9 < o,

THEOREM 1,1. Let £(r,0,9) be a continuously differentiable function in the
domain r 2 0, =» < 6,9 < ®, Then f is a single-valued continuously diffe-
rentiable function of the point (x,y,z) if and only if f satisfies the
following conditions:

(i) ~ £(0,9,9) is independent of 6 and ¢.

(ii) £(r,6,9) = £(r,0,0+27m), periodicity condition.

(ii) £(x,8,9) = £(x,-0,m-0) reflection conditions.
= f(xr,2m-6,m-@)
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CHAPTER 2
THE SCALAR HELMHOLTZ EQUATION IN THE CONICAL COORDINATE SYSTEM

2.0. Intnoduction

There are a number of problems in physics and engineering defined in a co-
nical domain and formulated in terms of potentials satisfying the scalar
Helmholtz equat%on. For a simple mathematical description of these problems
it is recommendable that the boundary of the domain is a coordinate surface,

in order that separation of variables may be successful.

From now on we take the origin of coordinates at the apex of the cone. It
should be understood that our cone is actually a half-cone in the sense of
mathematics. Thus the cone C is defined by a set of straight half-lines
from the origin through the points of a simple closed piecewise-smooth
curve on the unit sphere. It is natural to define the interior G* of the
cone corresponding to the interior of the curve on the unit sphere. We de-
fine é as part of the cone C between two concentric spheres with radii rj

and r, (0 <r, < r1) centred about the origin. The domain G is part of el

0
between and on the two concentric spheres, and G :=G U G.

In this chapter we shall investigate the scalar Helmholtz equation

2.) Mu+k%u=0,xcc uec@,uec’@,ufo

with boundary conditions, either

(2.2) u=0, X € G (Dirichlet condition) ,
or
(2.3) %§'= 0, x € é (Neumann condition) .

* * .
Here n is the outward normal, k is the wave number defined by k = w/c in

which w/2m is the frequency and ¢ is the phase velocity.

2.1. Separation of the variable r

Let r,0,¢ be general conical coordinates in the sense of section 1.1. Be-
cause the boundary conditions (2.2) and (2.3) are independent of r we shall

first separate the r dependence. For that purpose we suppose

u(r,9,90) = R(r)v(6,0) .
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The Helmholtz equation (2.1) is then transformed into

v(e,qJ)ArR(r) + -1—2- R(r)Atv(e,tp) + k*zR(r)v(e,cp) =0,
r

where
* *
h h
1 9,209 1 3 ¢ 3 ] 6 3
A = e e (rT =) And A i (o ek e e e )
r 1:_2 or or t h*h* 36 n* 36 99 h* 99
(F} 0 (0]
as in chapter 1.
It follows that
*2
2 (ArR(r) + k “R(x)) Atv(e,’p) "
(2.4) r ) T { pry v(v+1) = u

in which v(v+1) = u* is the separation constant.

For the r dependence we now obtain the following equation:

d 2 d *2
-d-;(rER)+(k 4

2 _ V(V+1))R=0 .

We cbserve that this is the differential equation of the "spherical” Bessel
functions with the linearly independent solutions

(1) , * 2\ /_T (1) , *
h\’ (k xr) = __*—.H\)'F‘i(k x)
2k r

and
' a*e =\ /T n) e
2k
Here, H\E:'_;): and H\ff}z are the Hankel functions of the first and second kinds;

(2)

h\(’l) and h\, are called the "spherical" Hankel functions [1;437].

2.2, The transvernse dependence

From (2.4) we cbtain for the 6,9 dependence
* 0,= 2
Atv+uv=0, 0,9) e 8, vecC(Q,vecC (), vZO

with boundary condition, either
v =0, (8,9) € { (Dirichlet condition) ,
or

5= 0, (0,0) € & (Neumann condition) .
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Here
) := {(0,9) I (6,9) is on a simple closed piecewise-smooth curve
on the unit spherel} ,
Q := {(6,9) | (8,9) is the interior of ? on the unit sphere}
and

G:=0u8.

Consequently, we have to investigaté the eigenvalues and the eigenfunctions
of the Dirichlet and Neumann problems for the Beltrami operator At in a do-=
main £ on the unit sphere. It is easy to see that the Beltrami operator with
either the Dirichlet or the Neumann boundary condition is a Hermitian opera-

tor with respect to the inner product

(2.5 (v = ” u(8,9)v(8,0)hg (6,9)h (8,9)d0d0 .
Q

*
0
elliptic here. From the spectral theory of elliptic Hermitian operators [4]

* -
Moreover, if h, and h¢'are both positive and bounded in @, At is uniformly

it is not difficult to see that the following theorem holds.

THEOREM 2.1. Consider the two eigenvalue problems
* 0,= 2
Atv +uv=0, (6,9) e, vecC (R, vecC (R, vO

with boundary condition, either
v =0, (6,) € § (Dirichlet condition) ,

or

%% =0, (6,9) € { (Neumann condition) .

If h; and h; are continuous and nonzero in ﬁ, either eigenvalue problem
admits a denumerable set of eigenvalues having the following properties.
The eigenvalues u: are real and form an infinite sequence (with ® as the
only accumulation point) such that 0 < u: < u; < ... in the Dirichlet

* *
case, and 0 = uo < u1 < ... in the Neumann case.

The corresponding eigenfunctions vk(6,¢) can be chosen such that they
form a complete set of orthogonal eigenfunctions with respect to the inner
product (2.5). O
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To indicate a proof of this theorem we shall first transform the Beltrami

operator with the aid of stereographic projection and conformal mapping into

the two-dimensional Laplace operator multiplied by a function positive on

the unit disk and show that this operator has a compact inverse. The theo-

rem then follows from the well-known theory of compact Hermitian operators.

We do this in the following steps.

(1)

The unit sphere is given by the equation

x2 + y2 + 22 =1

and we identify the north pole with the point (0,0,1). We choose the
parameter representation of the unit sphere so that the north pole
lies outside &.

We then consider the stereographic projection [2;20] from the north
pole on the complex z* plane that coincides with the x,y plane in the

Cartesian coordinate system. This transformation is given by

* * i -
z* =x +1iy = X+ iy ’ €

X
1-2 = !

* *
where x and y are functions of 6 and ¢.

9x 9x _ 1 X 9z
EL] 36 1 ~ z 2 38 '

*
3y 9y 1 + v 9z

— YN
EL) 90 1 - z (1 - z)2 90
Bx' _9x 1 . x 3z
= - ’
3Q 3p 1 z (1 - z)2 £l

&y _ ¥y _ 1t L _ ¥ 3z
0

g 1 - z (- z)2 0]
Let
* *
*% 9z *% 9z
he = |59 and h¢ 1= 3;—

then, after some calculation,

Lk *
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The operator At transforms into the operator

1 22 82

( +
\
(1 - 2)2

)

*27

ax*? 3y

defined in the domain Q* bounded by the simple closed curve o~ as
stereographic projection of Q and ﬁ, respectively.

This operator can also be written as

(Efoz(-iii- + —33—9
’
2 Bx*z ay*2

~ *
in which R is the distance from the north pole to the point z .
(ii) According to the Riemann mapping theorem [2;172] we can map 2" with
the aid of a conformal mapping
*
T =g(z) =g+ in
on the unit disk

2

B = {(g,m | £ +n%<1}.
é* is mapped on
B = {(&,n) | €2 +n% =1} .

We have now shown the equivalence of the eigenvalue problems
*
Atv +uv=0, (6,9) €@
with boundary condition, either

V(e:‘P) = OI (GICP) € 5.2

or
2 (e, =0, (0,0) € &
an v ’(P = ’ lq) € ’
and the eigenvalue problems [2;175]
-2 *
£ (gln)ACV +uv = Or (E,n) €B,
with boundary condition, either

v(g,m) =0, (§,n) € B (Dirichlet condition) ,

or

%;'V(E:ﬂ) =0, (§&,n) € B (Neumann condition) .
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Here f—z(E,n) is defined as

£2(E,m = &g 2MD2 2F e 3.

We observe that the inner product (2.5) becomes

(u,v) =J J £2(€,mu(E,n) v(E,n) dEdn .
B

(iii) Invoking theorems (2.28) and (2.35) of the appendix the proof of our

theorem is complete.

2.3. Sepanration of the variables 6 and ¢

In the previous section we considered the spectral properties of the trans-
verse Laplace operator on a domain @ of the unit sphere with either Dirich-
let or Neumann boundary conditions. The choice of the coordinates © and ¢
was relatively unimportant there, so long as the operator At remains uni-
formly elliptic in . Now we shall be more specific. If Q corresponds to a
cone with elliptic cross-section, we want to choose © and ¢ such that the
boundary ﬁ becomes a curve 6 = 60 = constant, so that we are able to sepa-
rate the coordinates 6 and ¢. Hence we choose for 6 and ¢ those of the
sphero-conal coordinates introduced in section 1.3, and consider the domain
 corresponding to the parameter values 0 < 6 < 90, -» < @ < ©, Since we
want to consider only functions that are regular in {, we now have to ad-

join the regularity conditions of section 1.4.

We now reconsider the eigenvalue problem (v,p*) (which we will call the Bel-

trami problem) :

/E—kzcosz(e)/ﬁﬂ— k'?sin2(¢)rb 1 - kzcosz(e) ]
(2.6) z_2 2. 2 |58 22, . 96) "
k'“cos“(9) + k"sin”(0) 1 -k'"sin" (9)
T )
gﬂ\ /L_%g%JﬂgT]]VW*v:o, 0 <8 <By, ~<g<m, v7O
1 - k%cos”(8)

- v =
(2.7) V(e,21T) = V(e,O), SQJ(e'z“) = a(p(elo) ’
X v v
(2.8)  v(0,1-0) = v(0,0), FHO,™-9) = - Z£(0,0) ,

either
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(2.9) v(60,¢) = 0 (Dirichlet condition)
or

(2.10) §§{90,¢) = 0 (Neumann condition)

The conditions at ¢ = 0,27 may be replaced by v(0,2m+9) = v(0,9) if we ex-
tend v to a 2m-periodic function and v(6,T-¢) = v(-6,9) if we extend v be-
low the line 6 = 0.

It should be stressed that the existence of eigenvalues and eigenfunctions
for  has already been shown; these functions when considered as functions

of 6 and ¢ of the sphero-conal system certainly satisfy the regularity con-
ditions. We shall now, by separation of variables, construct a set of so-
called separable solutions of the above boundary-value problem and show
that from these solutions in this way all eigenfunctions of the transverse
Laplace operator in £ (with either Dirichlet or Neumann conditions) can be
obtained by finite linear combinations.

The selection of the sphero-conal coordinate systemand the boundary and regula-

rity conditions leads to separating the eigenfunctions v(6,9) as
v(6,9) = 8(6)2(9)

Then the equation (2.6) separates into the following two Lamé equations:

2

2.1y A -kzcosz(G)g?(/l -x%cos? () gg-) + (" k%sin2(8) -2M)e =0

and

2.120 —k'2sin2(q))-g$(/1 -x'%s1n° (9) %) + 1" x'2cos? () +2%)8 = 0

*
where A is the separation constant.
For simplicity we put A = 2 k'zu*. Then equations (2.11) and (2.12)

are transformed into

2.13) -kzcosz(e)g—e-(y/l -k%cos?(8) gg) + - KPcos?(8)) - B =0

and

2 2 d 2 2 4o
(2.14) /1-k"sin (CP)-d?(/l—k' sin” (o) a;) +

+ ¥ - k%sin@) - wF -ae=o0

respectively.
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DEFINITION 2.2. A function ®(9) is called periodic if ®(9p) = ®(2m+9).
A function ¢(9) is called even symmetric if ¢(m-¢) = ¢(¢9). A function &(p)
is called odd symmetric if ®(m-9) = -9(g). ]

DEFINITION 2.3. A function v(8,¢) is called separable if v(6,9) = 6(8) % (9).
A function v(0,9) is called strongly separable if v(6,9) = 8(8)&(9) with
@(p) symmetric (that is, even or odd symmetric). O

LEMMA 2.4. If an eigenfunction v(8,9) of the Beltrami problem is separable
then v(6,¢) is either strongly separable or the sum of two independent

strongly separable eigenfunctions.

PROOF. If v(6,9) is an eigenfunction of the Beltrami problem then, since
the coefficients of the Beltrami operator are even functions of ¢ that have

period 7, v(6,m-9) is also an eigenfunction. It follows that
w,(8,9) :=%(v(8,0) + v(8,7-9))
and
Wy (0,0) :=4(v(8,9) - v(68,7-9))
are also solutions of the Beltrami problem. These functions are independent,
unless one of them is identically zero. We observe that w1(6,¢) =w1(6,w-¢)

and w2(e,¢) = -wz(e,w—w):
If v(0,9) is separable, i.e., v(6,9) = 8(8)®(9) then

W (0,9) = 18(6) (¢(9) + @(m-9))

and
w,(8,9) = %8(8) (2(p) - @(m-9))

and these functions are, obviously, strongly separable. 8]

We now have to find appropriate auxiliary conditions for 8 and ¢.

From the periodicity condition (2.7) it follows that v(0,9) = v(6,¢+2m),
hence the solutions of the Lamé equation (2.14) must satisfy the periodici-
ty condition @(¢9) = ®(9+2%) or, equivalently, 9(0) = &(2m) and &'(0) =¢'(27).
The right-hand boundary condition belonging to equation (2.13) follows di-
rectly from (2.9) and (2.10):

9(60) = 0 (Dirichlet problem)
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or
gel(e ) = 0 (N blem)
a5 = eumann problem) .

In order to find a boundary condition for the 6 equation at the left-hand
end point & = 0, we observe that from the regularity conditions (2.8) it

follows for a separable eigenfunction v(8,¢9) = 8(8)®(9) that
8(0)2(p) = 6(0)d(m~p)

and
ae _ dae a
55(0)¢(¢) = 55(0)¢(“ 9) .

Hence for strongly separable eigenfunctions we have

as (0)

(2.15) 39

=0 if ¢(¢) is even symmetric ,

(2.16) 8(0) = 0 if ¢(¢) is odd symmetric .

Conversely, we can find eigenvalues and strongly separable eigenfunctions

of the two-dimensional Beltrami problem by looking for non-trivial solutions
*

of the ¢ and © equations (2.14) and (2.13) with the same values of ¥ and

A and satisfying the conditions

(1) ®(9) is periodic and symmetric .
ae . .
==(0) = 0 if ¢ is even symmetric ,
. ae
(ii)

8(0) = 0 if ¢ is odd symmetric .

8(60) = 0 in the Dirichlet case ,
(iid)
dG(eo)

T = 0 in the Neumann case .

The above considerations may be summarized in the following theorem:

THEOREM 2.5. v(6,9) = 0(6)%(¢) is a strongly separable eigenfunction cor-
responding to the eigenvalue u* of the Beltrami problem if and only if

there exists a A such that

(1) @(9) satisfies (2.14) and is periodic and symmetric,
(ii), 8(6) satisfies (2.13) and the boundary conditions

dgéO) =0 if ¢ is even symmetric ,
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8(0) = 0 if ¢ is odd symmetric ,
8(60) = 0 in the Dirichlet case ,

ae .
ag(eo) = 0 in the Neumann case . O

From lemma 2.4 it is obvious that the strongly separable eigenfunctions
span the space of all separable eigenfunctions; we will show presently that

they even span the space of all eigenfunctions.

LEMMA 2.6. If 8(0)®(9) is a strongly separable eigenfunction with eigen-

*
value U then the separation constant A satisfies

0 <A < u* =v(v + 1)

PROOF. If 8 (# 0) satisfies equation (2.13), then

90 90 )
&/ -x2cos? 0D 8(0a0 + (uF - n) | OI8O g,
ae 4de / 2.2
1 -k“cos“6
0 0
60 ,
2
- ¥k J cos“(6)8(0)8(8) @ =0 .
/1 - k?cos?(8)
0
By integrating by parts and using the boundary conditions (2.15) and (2.16)
respectively, as well as (8 x ggoe=e = 0, it follows that A < u*.
If ¢ satisfies the equation (2.14), then
27 2m 2 -
- [
J SNV RERFCINT.  JRPRALN J sin @00 4,
/1 - x'2gi
0 0 1 - k'“sin“(¢)
2w _
. J 2(9) 3(9) do =0 .
/1 - x'2sin2(g)

0

By integrating by parts and using the periodicity conditions, it follows
that A > 0.

REMARK. The complex conjugate of 8(6) and ®(¢) is denoted by 8(8) and 3(9).0
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We now investigate the spectrum of the ¢ problem for a given u* =v(v+1).
Let ®(¢;A) be a solution of equation (2.14) that satisfies the periodicity

conditions
(2.17) ®(0;A) = ¢(2m;A)
and
3o do
(2.18) dcp(O.A) = d¢(2ﬂ,l)
Then (since the coefficients of the differential equation have period T)

®(p+m;A) is also a solution of equation (2.14) that satisfies the periodi-
city conditions (2.17) and (2.18). It follows that

Yy (9354) == H(@(9:2) + 2(9+m;R))

L(9(9;A) - @(9+m;A))

also satisfy (2.14), (2.17) and (2.18); at least one of them is non-trivial.
We observe that ¢1(¢;A) = ¢1(¢+H;A) and hence wl(w;k) is a solution with
period . Also, ¥,(9;A) is a solution with period 2m, for which ¥, (9;d) =~
= —wz(w+n;k). From this we may conclude that (2.14) with the periodicity
conditions (2.17) and (2.18) is equivalent to (2.14) on the interval (0,m)
with the boundary conditions

as _4ase
®(0;A) = &(m;A) and dw(o,x) = EE(H'A)
or
_ . ae . __gas .
®(0;A) = -®(m;A) and EF(O,A) aa{w,h) .

Hence we have to investigate the following Sturm-Liouville eigenvalue pro-

blems.

PROBLEM A.

1 —k'25in? ((p)g—(p(\/l —k‘zsinzw)gg') + - w'kZsin(g))e = 0

with the periodicity conditions

2(0) = &(m, %(m - -f%(n)
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PROBLEM B.

-k 262 (00 -k 282 @)%Y + (4 -u* k' 2sin(0))3 = 0
de de
with the periodicity condition
~ ~ as as
[ = -9 = = - &2 .
(0) (m, d(p(O) dcp(Tr)

With the aid of lemma 2.6 and theorem 3.1 from [3;214] we can formulate the

following theorem:

*
THEOREM 2.7. For any U > 0 the eigenvalues Ai' i 2 0, of problem A and the
eigenvalues Ai’ i 2 1, of problem B, form infinite sequences (with « as the

sole accumulation point) such that

0 < AO < Al < A2 < Al < A2 < 13 < A4 < A3 < A4 cee .

For A = A, there exists a unique eigenfunction without any zero in Lo,n].

= = i > . .
For A 12i+1 and A A21+2, i 2 0 there exist eigenfunctions ¢2i+1(¢) and
¢2i+2(¢)~respectively with precisely 21-+3 zeros in EOL“)' For A = 121+1
and A = A2i+2 there exist eigenfunctions ¢21+1(¢) and ¢21+2(¢) respectively

with precisely 2i +1 zeros in [0,m). The eigenfunctions ¢i(¢), i 2 0 and
31(¢), i 2 1 together can be chosen such that they form a complete set of

orthonormal eigenfunctions with the inner product

™

(u,v) = J u(e)vie) dp . 0
0 Y1 - k'zsinz(w)

LEMMA 2.8. If ¢(¢9) is an eigenfunction corresponding to the eigenvalue A of
the ¢ problem then &(¢) satisfies either & (m+¢) = d(¢) or d(m+9) = -d(p).

PROOF. The functions wl(m,k) and ¢2(m,k) are independent, unless one of
them is trivial. Consequently, if the eigenvalue X is simple then one of
these functions must be trivial. If, however, A has multiplicity 2 then
from theorem 2.7 it follows that the corresponding eigenfunctions both be-
long either to problem A or to problem B; in the first case w2(¢;k) is zero,

in the other case‘w1(¢:l) is zero. O
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LEMMA 2.9. Each eigenspace of the ¢ problem has an orthonormal basis consis-

ting of symmetric eigenfunctions.

PROOF. If ®(¢p) is an eigenfunction of the ¢ problem with eigenvalue A then,
since the coefficients of the differential equation are even and have period
m, ®(m-¢) is also an eigenfunction of the ¢ problem.

It follows that

L(0(9) + 2(m-9))

X1(¢) :

5(2(9) - &(m-9))

xz(m) :

are also solutions of the ¢ problem. It follows from substitution of
¢ > (m-9) at appropriate places in the integrand that (xl,x2) = 0. Hence
Xy and x2 are orthogonal and independent unless one of them is trivial. We

observe that Xl(m) = xl(ﬂ—w) and xp(9) = —x2(n—¢).

From theorem 2.7 we know that an eigenvalue X has at most multiplicity 2.
If A is simple then one of the functions Xq and Xy must be trivial. Hence
¢(9p) is symmetric.

Let now A have multiplicity 2 and let ¢(9), a(m) be an orthonormal basis
for the corresponding eigenspace. If for one of the functions ¢ and 3 both
Xq and X, are non-trivial then because (Xl'XZ) = 0 we can choose these
functions Xq and X, as an orthogonal basis for the eigenspace corresponding
to A. In the other case the functions ¢ and ¢ are both symmetric, and since

they are orthogonal they can be chosen as a basis. 0
The results arrived at above may be summarized in the following theorem:

*
THEOREM 2.10. For any ¥ >0 the eigenvalues of the ¢ problem form an in-
finite sequence AO,Ai,... (with ©® as the only accumulation point) such that

0 < 10 < 11 < A2 < A3 < A4 < te. .

The eigenfunctions ¢i, i 2 0, can be chosen such that
(1) they satisfy either @i(n+m) = ¢i(m) or Qi(ﬂ+¢) = -¢i(¢),

(ii) they are symmetric,

(iii) if two eigenvalues (Ai = Ai+1) are equal then either
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()

¢i(ﬂ+¢) éi(w) A ¢i+1(N+¢) =

¢i+1

or

¢i(w+¢) -®i(w) A ®i+1(n+m) = —¢i+1(¢) .

Moreover Qi is even symmetric and ¢i+ is odd symmetric, or vice versa,

1
(iv) they form a complete set of orthonormal eigenfunctions with respect to .

the inner product

2w
(u,v) = J u()v(9) 0

ao .
o Y1 - k'2sin?(p)

REMARK. In comparison with theorem 2.7 the eigenvalues are numbered so
that the following statement about zeros of the eigenfunctions holds: 00

has no zero in [0,2m). @ and ¢4 have precisely 4i zeros in [0,2m),

4i-1
i=1,2,,.. . ¢ and ¢4i+

4i+1
i=20,1,2,...

i

2 have precisely 4i +2 zeros in [0,2w),

THEOREM 2.11. Independent strongly separable eigenfunctions of the Beltrami

problem are orthogonal with respect to the inner product (2.5) ¢

27 e0

v = J J u(8,9)v(8,9) (k' 2cos?(9) + k?8in(8))
/1 - k'zsinz(m)/& - k2cos?(8)

dodé

0 O

PROOF. Let u* be an eigenvalue of the Beltrami problem tb which one or
more strongly separable eigenfunctions belong. If the eigenvalue u* is
simple then the corresponding strongly separable eigenfunction is orthogo-
nal to all other eigenfunctions, a consequence of theorem 2.1. Let u* now
be multiple and let u = ei¢i and v = ej¢j be independent strongly separable

eigenfunctions then

0
2m ¢i(¢)¢,(¢)k'zcbsz(¢) 0 8, (8)8, (0)
(u,v) = J . de J —t dae +
0 /& - k'zsinzw 0 Y1 - k%cos?(8)
2m eO

8. (9)0, (¢) 8. (8)8, (6)
+ J i ao J 3 x%in?(9)as .
/1 - x'2sin? (g) /1 - k2cos2 (8)

0 0



36

From theorem 2.7 it follows that two independent eigenfunctions ¢, and ¢

i ]
of the ¢ problem satisfy

27
I ¢i(¢)¢j(¢)

de
/1 - k'2sin2 (g)

=0 .

(Qi,éj) =
0

If Xi # Aj then it follows from (2.13) and the boundary conditions that

0 .
CRGENO)
(8,,6,) = J =L 1 ___s=-o0.
J 0 Y1 - k%cos?(8)
Hence 81@1 and ej¢j are orthogonal.
. If Ai = Aj then according to theorem 2.10 @i is even symmetric and ¢j is
odd symmetric, or vice versa.
Consequently
2
" cos” (918, (90, (0)
[
1 -k'2sin?(¢)
0
Hence also in this case Oi¢i and 8j¢j are orthogonal. O

*
THEOREM 2.12. The eigenspace corresponding to an eigenvalue U of the Bel-
trami problem can be spanned by a finite number of mutually orthogonal

strongly separable eigenfunctions.

*
PROOF. Let v(6,9) be an eigenfunction corresponding tou . Since the functions
¢n(¢) constitute a complete orthonormal set (see theorem 2.10), we can ex-

pand v(6,9) in a Fourier series

- *
nzo 8_(8)2 (¢)

v(6,0)

with

Jz“ v(6,0)4_(9)

Y1 - k'25in2(p)

*
(2.19) en(e)

de .
0
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From the equation

2T, + v vie,0 18 (0)

V1 - k'2sin?(9)

[k'zcosz(w) + kzsinz(e)]dw =0

0

*
it follows after some calculations that en(e), n=20,1,... is a solution of

the equation

%
4as
/1 -k2cosz(6)-g—e(/1 —k2cos2(9)de—n) + (u*(l —kzcosz(e)) -')\n)Q:l =0 .

From the boundary conditions (2.9) or (2.10) and the definition of 8; it
follows that 8: satisfies the right-hand boundary condition
n(60) = 0 (Dirichlet condition)

or

ae
n ‘o
35—490) = 0 (Neumann condition) .

*
The appropriate boundary condition for Gn at 8 = 0 can be found as follows:
v(0,9) satisfies the regularity conditions
v(0,9) = v(0,m-9)

and
ov _ _ v _
35¢0/9) = - 55(0,m9) .

We know, however, that ¢n(¢) is symmetric. Combining these facts it follows
*
from (2.19) that On satisfies the left-hand boundary condition

Bn(O) =0 if ®n is odd symmetric

or

ae
n :
33_(0) =0 if ¢n is even symmetric .

Comparison with theorem 2.5 shows that each eigenfunction v(6,¢) of the
Beltrami problem is a (possibly infinite) linear combination of strongly
separable eigenfunctions 8:¢n(¢). We shall show in two independent ways

that these sums are necessarily finite.
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(i) For each n, for which 8: # 0, the expression G:Qn(w) is a non-trivial
eigenfunction of the Beltrami problem corresponding to the eigenvalue
u*. Theorem 2.1 states that each eigenvalue u* has finite multipli-
city, however. '

(ii) From lemma 2.6 it follows that if 8: Z 0 then the corresponding An sa-
tisfies 0 < An < u*- Since ® is the only accumulation point of the

sequence Ao,ll,... only a finite number of 8; are not identically zero.

*
Let now u have multiplicity M with independent eigenfunctions

Vl(e"P) 1V2(9 19)senn IVM(e /9) .

Let ¢jej' j=1,...,N be strongly separable Beltrami solutions, occurring
with nonzero coefficient in at least one of the Fourier expansions of
vl,...,vM. Then these functions, which by theorem 2.11 aie mutually ortho-
gonal, span an N-dimensional eigenspace corresponding to U which contains
the space spanned by VireserVye Hence N = M. 0
COROLLARY 2.13. The strongly separable eigenfunctions of the Beltrami pro-
blem span the same space as the collection of all eigenfunctions of the

Beltrami problem. 0

Consequently, when in the future we consider eigenfunctions of the Beltrami
problem we shall restrict ourselves, without loss of generality, to the

strongly separable eigenfunctions of the Beltrami problem.

2.4. Appendix

2.4.0. Introductory nemarks

Let throughout this section

(xl,xz), le = V%2 + x% ’

)
W

1
B := {x | |x| <1},
B:={x | |x|] =1},
B=BUB,

£(x) e cO(B) A £(x) £0 .
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DEFINITION 2.14. We note the set of all square Lebesgue integrable complex
valued functions on B as the space L2(B), which will be considered as a

Hilbert space with the inner product defined by

(u,v) := sz(x)u(x)\_r(x)dx
B
and the norm by

hal? := (u,u) = [ﬁunmmame. 0
B

*
DEFINITION 2.15. L,(B) := {u(x) | u(x) € L,(B) A (u,1) = O}. 0

LEMMA 2,16. With the inner product and the norm such as defined in defini-
tion 2.14, L;(B) is a separable complex Hilbert space [5;27]. 0

Now we consider the two-dimensional eigenvalue problems

£ %M+ u=0,xeB, uec’®, uecc’@, uzo
with the boundary condition, either

u=20, x € B (Dirichlet condition)
or

9 °
3§-= 0, x € B (Neumann condition) .

2 2

A is the two-dimensional Laplace operator 2—§-+ 3—5 . Here n is the outward
9x 9x

normal. 1 2

LEMMA 2.17. Let u € c1(§), u e C2(B) then

fAu dx = I g% ds ,

B B

where ds is the element of the arc of B. : O
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LEMMA 2.18. Let u € CO(B), u € C1(B) and v ¢ c1(B), v € C2(B) then

J (uAv + (grad(u),grad(v)))dx= J u g% ds .
B .

This is Green's first identity. . O
1 - 2 1 = 2
LEMMA 2,19, Let u € C°(B), ue C°(B), ve C(B), v e C°(B) then

= ‘22 -y du
[ (vAv - vAu)dx = .[ (u -V an)ds .
B

This is Green's second identity. ' O

DEFINITION 2.20. Let S(x;y) be a fundamental solution of the Laplace equa-

tion with unit source at y, then

-AS(xiy) = 8(x - y) . ]

LEMMA 2,21, Let u € Cl(ﬁ), u € C2(B), y € B and S(x;y) be a fundamental so-

lution of the Laplace equation with unit source at y, then

uly) = - I S(x;y)Au(x)dx + J (S(x;y)égﬁﬁi - u(x)2§%§1x14dsx .
s .
This is Green's third identity. O

LEMMA 2.22. Let u € Cl(ﬁ), u € cz(B), u Z 0 be a solution of Dirichlet's
eigenvalue problem
f—zAu + Au =0
with t&ﬁ boundary condition
u=0, x¢B,
then

J (grad(u) ,grad(u))dx

A =2 >0 O

Ial?
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LEMMA 2.23. Let u € Cl(ﬁ), u € CZ(B), u Z 0 be a solution of Neumann's eigen-
value problem
f-zAu +Au=0

with the boundary condition

%% =0, x € é ’
then
J (grad(u) ,grad(u))dx
A =2 )
lha P
Hence, if u = constant, then X = 0, else A > 0. O

The last two lemmas are a consequence of Green's first identity.

2.4.1. Dirndchlet's eigenvalue problLem
DEFINITION 2.24. Green's function G(x;y), X € B, y € B is defined as fol-
lows:

(1) G(x;y) is a fundamental solution of the Laplace equation with unit

source at y.
(2) G(x;y) =0, x € B. ]

LEMMA 2.25. For the domain B, Green's function is given by

1
G(x;y) = - %;-log(lx - yl) + 5= log(lyl'[x - y*])
- * 1
where x ¢ B, y ¢ Band y := T—Ti-y. O
Y

We now consider Dirichlet's eigenvalue problem

£ 20+ =0, ue B, uec’®
with the boundary condition u = 0, x € B. With the aid of Green's third

identity and the property of symmetry of G(x;y) we obtain

u(x) = A f Gxiy) E2 (Y uly)dy, x € B .
B
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This representation also applies if u € CO(E), u € C2(B) [4;225]. Let A==%q
then

I G(x;y)fz(y)u(y)dy = pu(x), x € B .
B

Let now u € L2(B), then, with the aid of Weyl's lemma [4;225-226,199], the

following equivalence theorem holds.

THEOREM 2.26. Dirichlet's eigenvalue problem

f_zAu +Au=0, xe€ B, ue CO(E), u € C2(B), fECO(E), uZOAf#0

with the boundary condition u = 0, x € é, is equivalent to the eigenvalue

problem

J G(x;y)fz(y)u(y)dy = pu(x), x € B, u = LS r U € L2(B), uzo .0

A
B

For the sake of convenience we shall write this eigenvalue problem in the

operator notation

Tu = Yu, u € L2(B)
in which the integral operator T is defined by

(Tu) (x) := JG(x;y)fz(y)u(y)dy .
B

LEMMA 2.27. The integral operator T is a linear, Hermitian, compact opera-

tor; Hermitian with relation to the inner product from definition 2.14.

PROOF. Linearity is trivial. Because G(x;y) = G(y;x),

(Tu,v) = (u,Tv) = f f f2(x)f2(y)G(x;y)u(y)v(x)dxdy .
B B

Moreover f(x)G(x;y)£f(y) is square integrable over B X B, which means

f f £2(x)62 (x1y) £2 (y) dxdy < ® .

So T is a Hilbert-Schmidt operator [5;86,182], hence compact. 0
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With the aid of the spectral theorem of compact Hermitian operators [5;202],

and from lemma 2.27 and theorem 2.26 we obtain

THEOREM 2.28. Dirichlet's eigenvalue problem

-2 -
f Au+Au =0, x€ B, ue CO(B), u € C2(B), uzo

with the boundary conditions u = 0, x € é has denumerably many positive
eigenvalues Aj' j=1,2,... with corresponding orthonormal eigenfunctions

u e L@, u c2(m). ]

2.4.2. Neumann's eigenvalue problLem

To solve Neumann's eigenvalue problem we shall introduce two Neumann func-

tions, namely N(x;y) and N*(x;y).

DEFINITION 2.29. Neumann'‘s function N(x;y), x € B, y € B is defined as fol-

lows:

(1) N{(x;y) is, as a function of x, a fundamental solution of the Laplace ’

equation with the unit source at y.

oN 1 .

(2) 3;—(x;y) =-S5 XeB.
X
(3) f N(x;y)ds, =0 . O

LEMMA 2.30. Neumann's function N(x;y) for the domain B is given by

1 1
N(xiy) = = 5= log(|x - y|) - 5= 1og(|y|-]x - ¥*])
- * 1
where x € B, y € Band y := T_TE y . 0
Y

DEFINITION 2.31. Neumann's function N*(x;y), X € B, y € B is defined as

follows:

*
(1) N (x;y) is, as a function of x, solution of

£ (x)
I 1P

AxN*(x;y) ==8(x - y) +
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N _ .
(2) 3;;(x;y) =0, x €B,
N .
(3) I N (x;y)dsx =0 . O

Since the Neumann function as defined above is perhaps not conventional,
the following explanation may be given.

With the aid of lemma 2.17 we obtain

* ' 2
9N _ * _ £°(x) B
J 30 (x,y)dsx = JAXN (x;y)dx = J > dax 1 =0
3 x B i

P .
and therefore it is possible to postulate 5%—(x;y) = 0, x € B, We observe
*
that N (x3y) is determined uniquely but for a solution of a Neumann problem.
*%
For convenience we suppose that N (x;y) satisfies the first two conditions

of definition 2.31., Then
* *%
N (x;y) = N (x;y) + g(x;y)
where g(x;y) is a solution of Neumann's problem
Ag(x;y) = 0, x € B

with the boundary condition

3 .
ﬁ-(x;y) =0, x€B.

For fixed y, this problem has as solution g(x;y) = c(y). This constant is
*
defined by the third condition of definition 2.31. Hence N (x;y) is unique-

ly determined.
*
LEMMA 2,32, Neumann's function N (x;y) for the domain B is given by

* ~ f2(~) ~
N (x;y) = N(x;y) = N(x;y)———%— dy . O

B e

Now we consider Neumann's eigenvalue problem

f_zAu + Au =0, ue CP(E), u € C2(B), uzo

with the boundary condition

%% =0, x € é .

With the aid of Green's second identity we obtain
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* 2 £2 (y)
u(x) = A IN (x:y) £° () uly)dy + J—Lu(y)dy .
. s I P

From lemma 2.17
2
A £ (y)u(y)dy = 0 .
B
We shall now exclude A = O with the corresponding eigenfunction u = 1. Hence
2
£ (y)u(y)ay = 0
B
and it follows that

a(x) = A IN*(x;y)fz(y)u(y)dy .
B

THEOREM 2.33. The "restricted" Neumann eigenvalue problem
-2 _ 1= 2
f “Au+Au=0, xe€eB, ueC (B), ue C(B), u?# constant

with the boundary condition §E-= 0, x € B is equivalent to the eigenvalue

problem

I N (x;9) £2 () u(y)dy = ~u, x € B

B

= |-

. 1 *
K=y, uce L2(B), uZo.
For simplicity we write this eigenvalue problem in operator notation
*
Su = wu, u € L,(B)
in which the integral operator S is defined by

(sw) (x) := J N (i) £2 (g) uly) dy -
B

LEMMA 2.34. The integral operator S is a linear, Hermitian, compact operator.

PROOF. Analogous to that of lemma 2.27. ]
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Using the spectral theorem of compact Hermitian operators we infer:

THEOREM 2.35. The "restricted" Neumann eigenvalue problem
-2 1 - 2
f "Au+ Au=0, xe€ B, ue C (B), ue C (B), u# constant

with the boundary condition %§-= 0, x € é, has denumerably many positive
eigenvalues Aj' j=1,2,... with corresponding orthonormal eigenfunctions

uy e c1(§), uy € C2(B). 0O
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CHAPTER 3
LAME EQUATTONS

3.0. Introduction

This chapter is most important to our whole work. In fact, we here show that
the solutions of the 9 Lamé equation are related to those of the 6 Lamé
equation. )

Results about solutions of the ¢ Lamé equation are known since a long time
(Ince, [4], [5]). For the 6 Lamé equation very little has been published,

however.

Sometimes Levine is quoted as to have obtained various results on the solu-
tions of the ® Lamé equation, but his report [8] although announced (in [71])
has not appeared.

Kong [6] in his doctoral thesis says that for lack of a better method of
computing the € Lamé solution he used a numerical approach, viz., a 4th-or-

der Runge-Kutta method.

In 1948 Erdélyi investigated the ¢ Lamé solutions by representing them by
a series, infinite in general, of associated Legendre functions of the first
kind [31].

In 1956 Sleeman expressed the Lamé solutions associated with the corres-
ponding Lamé polynomials by means of series of associated Legendre functions
of the second kind [11].

These results for the ¢ case have led us to the idea of representing the

solutions of the 0 Lamé equation in terms of series of Legendre functions.
The result obtained in this way, viz., the connection between the coeffi-
cients of the solution of the ¢ equation and those of the solution of the
corresponding O equation seems to be new (but similar to existing results

for the periodic and non-periodic solutions of the Mathieu equation [9]).
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3.1. Solutions of the ¢ Lamé equation

In the previous chapter we were led to Lamé's equation

(3.1) /qi-k'zsinz(w)ga(Vq —k'zsinz(m)§E§ +O - vv+ 1k %sin’(9))0 = 0

O0<k'<1,0=<¢ <21,

with periodicity condition ®(9) = ¢(¢+2m) for the ¢ solutions.

Here, V is a fixed parameter and A is the eigenvalue. Let (A,%(9)) be a
solution of this eigenvalue problem. In this section we shall show that to
each such eigenfunction ®(¢) there corresponds uniquely an eigenvector u of

a certain infinite tridiagonal matrix, corresponding to the same eigenvalue
A.

In the previous chapter we proved that we can restrict ourselves, without

loss of generality, to 2m-periodic eigenfunctions ®(¢) satisfying

(i) either ®(m+9) = ®(9) or ¢ (m+9)

-o(9)
-%(9) .

(ii) either &(m-g)

1]

®(9) or o(m-9)

Starting from these properties we can divide the eigenfunctions into four
classes and we may expand these eigenfunctions into trigonometric Fourier

series, namely

(), . _ % _(2n) -~
I: ch () := z A2r cos(2rg), n = 0,1,2,...
r=0
{e(p) = o(m+g) = &(m-9)} .
. (2041) .« _ v _(2n+1) )
II: Loy (@) := rZO Ayl lcos((2r+1)9), n = 0,1,2,...
{o(g) = -o(m+g) = -0(m-9)} .
III: L;in)(w) = ) Béin)sin(2r¢), n=1,2,3,...
r=1
{2(9) = &(m+p) = =d(m-9)} .
2n+1)
IV: L;3n+1)(¢) =) Bérﬁz )51n((2r-t1)¢), n=0,1,2,..

r=0

{2(9) = -9(m+g) = o(m-g)}
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We remark that the upper indices of the four classes of periodic Lamé solu-
tions are related to the ordinal numbers of the corresponding eigenvalues.
Substitution of these formal series into the differential equation (3.1)
shows that the coefficients must satisfy the following recurrence relations
in which A := 2 - Hv(v+ l)kl2 (for the sake of convenience we have omitted

the upper index)

2

k
I: -AAO - -—4-—(\)-1)(V+2)A2 =0,
x'? 2 k'?
- TV(v+1)AO + [4(1 -%k'") - A]A2 - T(\)—3) (\)+4)A4 =0,
-E—z—(v—z +2)(v+2r-1)A + [ )2(1-1:1:'2) - Ala,_ -
2 o v¥er 2r-2 r 2r
k12
- Sv-2r-DvH2r+2)a, L, =0, ¥ = 2,3,...
11: [(1-%k2) _vwsanre? o -5"—2—(\)-2)( +3)A, = 0
: 4 1777 v 3 =Y
k12

7} (v 2r+1)(\)+2r)A2r_1 + [(2r+1)“(1 -%k?' )‘ A]A2r+1

2
L
- E4—-(v—2r-2)(v+2r+3)A2r+3 =0, r=1,2,...
2 k12
III: [4(1-%k'“) - I\ZIB2 - T(v—a) (v+4)B4 =0,
-]—:i(\)"z +2)(v+2r-1)B + [ (2 )2(1~lzk'2) - A]B -
2 o r 2r-2 r 2r
K2
- S v-2r-1)(v+2r+2)B, =0, 1 =2,3,...
2 k' 12
IV: [(1-%"7) +v(v+1)-—4-—A331 -T(v—Z)(v+3)B3=O ,

-’—‘-ﬁ(v-z +1) (v+2r)B +[r+1)2(1 -5 - AlB -
2 o VFeriBypat r 2r+1

e
kl
- —4—(\)—2r-2) (\)+21:+3)132r+3 =0, r=1,2,3,..
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We remark that all coefficients satisfy the homogeneous three-term recur-

rence relation of the type

b ¥opo t3¥p, ¥y 40 =

with

b a 2
lim <=1 and 1im-c£=21—+—]5§.
o Sr oo °r . 1 -k

By virtue of Perron's theorem (see theorem 3.7) the three-term recurrence

(1)} (2)}

relation has two linearly independent solutions {y 2r and {y P say,

which satisfy

(1) (2)

Y Yy
2r+2 _ k-1 . 2r+2 _ k+1
lim 1) k+1 and lim ) " k-1°
y2r y2r

Hence, it is possible to choose the coefficients in such a way that

A(2n) A,(2n+1) B(2n) (2n+1)
1im 2x+2 = lim 2r+1 = lim 2x+2 = lim 2r+1 - k-1
oo A(2n) - A(2n+1) T B(2n) oo B(2n+1) k+1
2r-1 2r 2r-1

We observe that only for special values of A, the so-called eigenvalues, do
the above conditions hold, because the coefficients must also satisfy the
initial two-term (recurrence) relation.

By this choice of the coefficients the trigonometric Fourier series with
their derivatives converge uniformly on [0,27] and satisfy the differential

equation (3.1). Summarizing we have the following theorem:

THEOREM 3.1. If the coefficients of the series for L(2n)( ), L (2n+1)(¢),
(2n)(¢) and L(2n+1)(¢) satisfy

(i) the corresponding recurrence relations,

(2n) (2n+1) (2n) (2n+1)
(14) Lig 2r¥2 Bor+1 Lim Borv2 _ Borét k-1

= = - = 7
oo A(2n) oo A(2n+1) pvoo B(2n) rbeo B(2n+1) k+1
2r 2r-1 2r 2r-1

then these series and their derivatives converge uniformly in [0,27] and

satisfy the differential equation (3.1). O

The relations I, II, III and IV can also be written in matrix notation, and
then we obtain the following eigenvalue equations for infinite tridiagonal

matrices.



I: ao co Ao AO
by 3 9 A, A
. = Al ,
b2r-2 qzr c2r A2r A2r
L JL < L <
Iz jay o A 2y
b, a3 ¢ A3 A3
: = Al 2 ,
Por-1 22rs1 Sorst]||Porst Aor+t
III: a2 c2 B2 Bz
b, 3, ¢ B, By
: = A . '
b2r—2 a2r c2r BZr BZr
o~ 1h 7 r .
IV: a1 c1 B1 81
b1 a3 c3 B3 B3
= Al . ,
Por-1 22r41 S2r+1||B2r+1 Bor+1

with elements
:=0, a, := (1 —!:k'z) -«\)(v+1)k'2/4, '51 = (l—lsk'z) +v(v+1)k'2/4;

DR ; 5

a, = ar = r°(1-%"'%), r=2,3,...;

by = V(v +1)k'?/2;

b =B _:=-(v-nv+r+Dk'?/a, r=1,2,...;
ey 1= =(v=1) (v +2)k'2/4;

C_=C_ i=-(v-r-1)(vér+2)k'2/4, £ =1,2,...

r r

51
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Analogously to the Mathieu function [9;188] we can normalize the eigenvec-

tors so that

27 2™
1 (m) 2. _1 (m) 2. _
= f (L’ (@) “de = = I (L (9))“dp = 1
0 0
and
lim L‘f’(w) = cos(mp), lim L(t)(m) = sin(mg) .
k'v0 € k'v0 S
Hence,
(2m) 2. ¢ (2.5 . ¢ (2n)
2,7 % + ) (a,2")2 = 1, ) A, >0,
r=1 r=0
T, (2n+1) 2 T (2n+1)
z (Bprpy V=10 L a7 >0,
r=0 r=0
v ..(2n).2 v (2n)
) (Byr ) =1, ) 2r By >0,
r=1 r=1
T ,.(2n+1) 2 _ e (2n+1)
) (Byryy %=1, ) (2r+1)B, """ > 0.
r=0 r=0

In the next chapter we shall give algorithms for calculating the eigenva-
lues and the corresponding eigenvectors of these infinite tridiagonal matri-

ces.

3.2. Sofutions of the © Lamé equation

As proved in the previous chapter, we can restrict ourselves to the strong-
ly separable eigenfunctions 8(0)®(9) of the Beltrami problem (see corollary
2.13).

We were led to the 6 Lamé€ equation

(3.2) /é-kzcosz(e)gE{V€-k2c052(9)ggd + (1 - k2cos?(8)) - 18 = 0
with the left-hand boundary conditions

%g(O) =0, if ¢(m-¢) = ®(9) (i.e., ¢ is even symmetric)

8(0) =0, if ¢(m-9) = -%(9) (i.e., % is odd symmetric)

The 6 equation (3.2) can be obtained from the ¢ equation (3.1) by substitu-

tion of
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ik sin(®), _

¢ = arccos X ) = 7+ iy
with
- ]
Y = log k .
/1 - k2c0s2(8) + k sin(e)J
For then

k'cos(¢) = ik sin(R)
from which follows

ide - a6
/1 - k'2sin2(9) V1 - k?cos? (8)

Hence from the ¢ solutions of the Lamé equation (3.1) we can obtain formal
6 solutions of the Lamé equation (3.2) corresponding to the four classes of

the periodic Lamé solutions:

) (2n) 0 ¥ 4 T, (20) _
I: Loy (8) := I 0, " cosn(2rd), n = 0,1,2,... .
r=0
(2n+1) % _r, (204D) _
II: Lgg  (8) = rEO (-0 2, 2% sinh((2r + W), n = 0,1,2,... .
(2n) ¥ r_(2n) _
III: Lo () = ] (D7, Vsinh(2rd), n = 1,2,... .
r=0
) (2n+1) o _ v . r_(2n+1) _
v: Loy (8) = rZO (-1)¥B, 3y cosh((2r+1)¥), n = 0,1,2,... .
and
IJJ = log k' -l

/1 - k%cos?(8) + k sin(elJ ’

These solutions satisfy the respective left-hand boundary conditions.

(2n+1)

THEOREM 3.2. The series for L(2n) (2n+1)(9), L(Z“)(e) and ch

cv (80 Igy Sv ®)
converge uniformly on any closed subinterval [0,60] of [0,7/2] and satisfy

the differential equation (3.2).



54

PROOF. With the aid of theorem (3.1) it follows that

m+1_(2n)
y (-1)"a, Lpeosh((me2)¥) 2lvl _
Lo m_(2n) - T T+k =
iigald (-1) A2m cosh (2my).

1-k,v1 -k2c052(6)~+k sin(6),2
7 .

T 1+ ko k'
In the other three cases we obtain the same limit; this limit is a monotoni-
cally increasing functionof 8, 6 ¢ [0,7/2) with range [—i—;—t, 1). g0

The series converge very slowly for 6 near m/2. For that reason we now try
to find series that converge faster.

If k = 1, the 0 Lamé equation (3.2) reduces to the differential equation of
Legendre. Consequently, the solutions of class I transform into

Pin(cos(e)) and those of class II into Pin+i(cos(6)), n=20,1,2,... .
Our conjecture is now that, if k < 1, the non-periodic solutions of class I
can be written as:

o

_ 2m
8(0) = mZO cszv (cos (0))

and, similarly for class II

bt 2m+1
E c2m+1Pv (cos(6)) .
m=0

6(6) =

From the properties of the Legendre functions we find that the left-hand
boundary conditions are satisfied.
Just as with the periodic solutions, we substitute

©

8(e) = ) cmPt(cos(e))
m=0

in the Lamé equation (3.2).
Using lemma 3.15 and Legendre's differential equation we obtain the fol-

lowing general three-term recurrence relation:

2

~

(3.3)

'bI

o, *+ @i -kk?) - e+

2

k
+--Z-—(v—m)(\ﬂ-m+1)(v-m—1)(v+m+2)cm+2 =0, m

v
w
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with A = A = X&v(v +1)k'2.
If m = 0, we obtain the two-term relation

2

kl
-Aco + —4—\)(v+1)(\)-1)(\)+2)c2 =0 .

Using the relation
Pl (cos(0)) = —\)(\)+1)P\-)-1(cos(6)) [2;144]

we obtain for m = 1

12 12

l2 _.k___ - k_._ - - =
((1=%Kk') === v(v+l) =MNe +=— (V-1 (V+2) (v-2) (v+3)cy=0.

If m = 2, we make use of the relation

Pi(cos(e)) = v(v—l)(v+1)(v+2)P;2(cos(6)) [2;144]

and then we obtain .
2 2

k v 2 ]_<__ - - ) =
=5 % + (4(1-%k'") - A)c2 + i (v=23) (v 2)(v-+3)(v-+4)c4 0.

We now observe that these recurrence relations can be transformed into the

recurrence relations of the periodic Lamé solutions, by substitution

Cp = T(m)Am

where T(m) has to satisfy the recurrence relation
T(m) = ~-(V-m)(v+m+1)T(m+2), m=20,1,2,... .

T(m) is defined unequivocally except for an arbitrary multiplicative con-

stant. For instance we can take

- +
270 ("—5——1-)1"(— %)
T(m) :=
V+m+1 -V
re——rds
Conversely, if {AZm}:=O and {A2m+1}:=0 are the solutions of the recurrence

relations corresponding to the classes I and II of the periodic Lamé solu-
tions then

©

2m
2 T(2m)A2mPv (cos (8))
m=0

and
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2m+1 -

] T(m + Da, BT (cos(8))

=0 +1

formally satisfy the 6 Lamé equation (3.2) and the corresponding left-hand
boundary conditions.

Before investigating the convergence properties of these series we shall
first construct the 6 Lamé solutions corresponding to the classes III and
IV of the ¢ Lamé equations. Again, if k = 1, the solutions of class III
rgduce to Pim(cos(e)), m=1,2,... and the same applies to class IV, namely
P "(cos(8)), m = 0,1,2,... .

However, simple series of Legendre functions alone will not do in this case.
It is perhaps more natural to expect that, if k < 1, the non-periodic solu-
tions of the classes III and IV can be written as series of Legendre func-

tions multiplied by an odd function £(0;k):

_ . v 2m
III: 8(8) := £(0;k) mzl d, P, (cos (0))

and

2m+1

Iv: 8(6) := £(6;k) ) dyriiPy (cos(0)) .
m=0

For 6 - 0 we have sz(cos(e)) ~ (sin(e))2m (viz., lemma 3.12). Since we

v 36 (0)

know that for class III 8(0) = 0 and 36 # 0 it follows that we must re-

quire
-1
£(6;k) ~06 " as 6 -0 .
From the left-hand boundary condition of class IV we obtain the same asymp-
totic condition for £(6;k). In the degenerated case we must require
£(6;1) =1 .
An appropriate choice of f£(8;k) which satisfies these requirements is

Yl - kzcosz(e)

£(8:k) 2= Sin(6) .

Now we substitute
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vl - kzcos (6)

6(8) = 515 (0)

8(6)

in the equation (3.2) and it follows that ] satisfies the equation

2

/A -x2cos (e)—-(/1-k cos (e) ) + 051 - K%cos?(8)) - B -

2(1 + cos?(8))
sinz(e)

™

2 a8  k
- ' = =
2k cot(e)de + 0
and we observe that, if k = 1, this equation reduces to the equation of

Legendre. Just as in the previous chses we substitute

oo
8(8) = ) a P (cos(8))
m Vv
m=1
in the above-mentioned equation.
With the aid of lemma 3.16 and the differential equation of Legendre we

obtain the general three-term recurrence relation

2
k' _m 2,0 a2y _
ooz A, t @ - - N+
k'2 m
+fT1;§W—mHv+m+1Hv—m—1Hv+m+ﬂﬁm2=0,mzl
If m = 2, we obtain the two-term relation
2
' - -
(4(1 -3k ) —A)d . S k' (v-3)(v+4)(v-2)(v+3) i =o0.
4 2 4
Using the relation
pl(cos(8)) = —\)(\)+1)P;1(cos(9)) [2;144]
we obtain for m = 1
2, k'? k'2 (v-2) (v+3) (v=1) (v +2)
((1 =3%k* )+—4—v(v+1)-A)d1+—4— 3 d3=0.

Again, we observe that these recurrence relations can be transformed into
the recurrence relations of the periodic Lamé solutions in this way by sub-
stitution

d =mT(m)B_ .
m m
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0
Conversely, if {BZm}m=1 and {B are the solutions of the recurrence

}no
2m+1 " m=0
relations corresponding to the classes III and IV of the periodic Lamé solu-
tions then

/1 - k?cos? (8)

v 2m
=17 00) ) (2m) T (2m)B, P " (cos (8))

m=1

/1 -x%cos? (8) E 2m+1

sin(0) L (2m-+1)T(2m-+1)B2m+1Pv (cos (0))

formally satisfy the 6 Lamé equation (3.2) and the corresponding left-hand
boundary conditions.

Consequently, corresponding to the four classes of the periodic Lamé solu-
tions, we have now four classes of formal 6 solutions of thevLamé equation

(3.2):

) (2n) ., _ v (2n) _2m _
I: Lepy (&) = ) T(2m)a, " P (cos(8)), n = 0,1,2,...
m=0

) (2n+1) . v (2n+1) _2m+1 _

II: Logy  (®) := mZO T(2m+ 1A, P (cos(8)), n = 0,1,2,...
(2n) /1 -x%cos?(®)  § (2n) _2m
III: Ly ) ==~ — I (2mT2mB, VP (cos(8)),
m=1
n=1,2,...

v- L2nl) oA - k%cos? (8) E (m + 137 (2m + 1520

: spv o sin(6) mTLo2iem 2m+1

m=0
2m+1

P, (cos(8)), n=20,1,2,... .
Since a solution of the 6 Lamé€ equation is, up to a multiplicative constant,
uniquely defined by the eigenvalue and the initial condition at 6 = 0, these
solutions are the same as those derived before, but for a normalization fac-

tor.

We remark that all the recurrence relations of Pﬁ(cos(e)), m=20,1,2,...,
v > 0 we have used, also hold for the associated Legendre functions of the
second kind Qf(cos(e)), m=20,1,2,..., taking into account the essential
restriction v > 0. Hence, we have another four classes of non-periodic so-

lutions of the Lamé’'s equation, corresponding to the four classes of perio-
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dic solutions, namely

1: 120 () 1= 7§ T2m a2 o2 (cos (6)), n = 0,1,2,...

cav m=0
. (2n+1) v (2n+1) 2m+1 _

II: ch\) (g) := mzo T(2m+1)a, Q (cos(8)), n=20,1,2,...
(2n) /1 -xPcos®(9) o (2n) 2

111: L (o) = SRS T 2miT2mB, Q (cos (0)),
sqv sin(@) 21 v

o n=1,2,...

(2n+1) _ /1 -k cos (6 (2n+1)

IV: quv (9) 51n(9) (2m+1)T(2m+1)B2m+1

m—O
2m+1

° Q\) (cos(6)), n=0,1,2,
These solutions are not bounded at 6 = 0. We observe that these solutions
and the previous ones are pairwise independent solutions of the 6 Lamé
equation (3.2).
(2n (2n+1)

(2
Yo, 1 cpv (), Lg

converge uniformly on any closed subinterval [0, 8 ] of [0,2 arctanG

) (2n+1)

(6) and L, (e)

))

THEOREM 3.3. The series for L

and satisfy the differential equation (3.2).

PROOF. With the aid of theorem 3.1 and lemma 3.18 it follows that

(2n) 2m+2
A, +2T(2m+2)P (cos (6)) k-1

ézn)T(Zm)P (cos (6)) k+1

tanz(ﬁe)

lim
m>o

In the other three cases we obtain the same limit. O

THEOREM 3.4. The series for L(;n)(e), (), L (8) and L(2n+1)(e)

cqv
converge uniformly on any closed subinterval [61,6 ] of (2 arctanw

(2n+1) (2n)

2 arctan )) and satisfy the differential equation (3.2).

PROOF. With the aid of theorem 3.1 and lemma 3.20 it follows that

(2n) 2m+2

Ay +2T(2m+2)Q (cos(8)) , _, cot?(49), 8 < 1/2
Lim =50 = x+1 2
me A, T(2m)Q ™ (cos (8)) tan“(%0), 6 > m/2

In the other three cases we obtain the same limit. O
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3.3. The infinite tridiagonal matrices

In this section we shall derive some properties of the infinite tridiagonal
matrices corresponding to the classes I to IV of the ¢ Lamé solutions.

Let L be defined by

L= A —k'zsin2(<p)g—(p(/1 -k'zsinZ(cp)g—q)) + viv+Dk'%sin’(9) ,
then the ¢ Lamé eigenvalue problem can be written as

L = A0 , O(9) = d(p +2m) .

It is easy to verify that L is a Hermitian operator with respect to the

inner product

2m
() e I uvie) _ 4
Y1 - k'2sin? (¢)

0

It follows from well-known results that the inverse operator L_1 is a com-
pact (integral) operator in L2(0,2n).

Now consider the set of functions

{emcos(me)}:=o u {cos((Zm-+1)¢)}:=O u {sin(chp)}::1 u

v lsin(@n+ DR Y (ey = W2, e =1, m=1,2,...) ,

which is orthonormal with respect to the inner product

2
1 ——
<u,v> := p J u(e)v(e)de .
0

We remark that this inner product is equivalent to the inner product ( , ).
In section 3.1 we expanded the eigenfunctions of the ¢ Lamé eigenvalue pro-
blem into a Fourier series in terms of this basis. Before proceeding we

shall first prove a lemma.

LEMMA 3.5. Let H be a separable Hilbert space with two equivalent inner pro-
ducts ( , ) and < , >.

Let L be a linear operator defined in a dense subspace D, <€ H, with a com-

-1 L
pact inverse L .,
Let L be self-adjoint with respect to the inner product ( , ) with eigen-

values Xn’ n=1,2,... and corresponding eigenfunctions fn’ n=1,2,...,
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fn € DL.
Let {@i}:=1 be a complete orthonormal system, with respect to < , >.

Let A be the infinite matrix defined by

Aij = <1040, i,3=1,2,... .

Then A possesses the following properties:

(i) A has a compact inverse.
(ii) The eigenvalues of A are An; n=1,2,... .

(iii) The components of the correspondingeigenvectors:_cn € 22 satisfy

(K )4 = <E005%0 3= 1,2,... .

These eigenvectors are orthonormal with respect to the inner product
[x ,x ] := £cx s C,. = (9.,0,) .
=n -m “n " m" "ij bR

The matrix A maps a dense subspace of £, into %,.

2 2

PROOF. Consider the equations
<(L - AnI)fn,¢i> =0, n fixed, i = 1,2,...

or

<(L-Ar1) )
n j=1

and this results into

<fn'¢j>wj'¢i> =0,

-]
521 <L¢j,¢i><fn,¢j> = An<fn,¢i>

or abbreviated

A}-‘n = Aﬂ:-(l'l

with

Aij = <L¢j'¢i>' (§n)j = <fnr¢j> .

Since f1'f2”" span H, XirXpreee span 22. Hence the matrix A maps a dense

subspace DA of 22 into 22 and (Al,gl),(kz,gz),... are a set of eigenpairs

of this mapping. Conversely, if (A,x) is an eigenpair of A, then (A,f) where
o

f = E (x) ,9, is an eigenpair of L.
=1 i'i
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The matrix A has a compact inverse A_1 defined by

-1 -1
@ Dy 3%

.
[
A
[l
S
~
©
v
~

i,9 =1,2,... .

Hence A has a point spectrum that coincides with that of L. (We cbserve
that in general A is not Hermitian.)

Because L is self-adjoint relative to the inner product ( , ), we can nor-
malize the eigenfunctions fn in such a way that

, nm=1,2,... .

(fml fn) = 6m

Consequently,

L

-]
$ = ( z <f ,9.>9,, z <f£ ,9.>09.) =
nm i=1 m i i =1 n’'j j
o -]
= 2 Z <f£ ,0.>(9,,9.)<f _,9.>
i=1 §=1 m i i’"3 n’j
or abbreviated
xHCx =36
-n -m nm
in which C is defined as
cij = (¢j,¢i), i,j =1,2,3,... .

With the aid of this lemma and the results of theorem 2.10 of chapter 2
the following theorem holds.

THEOREM 3.6. For v > 0 and O < k' < 1 the infinite tridiagonal matrices cor-
responding to the four classes of the periodic Lamé solutions have the fol-

lowing properties:

(i) They can be considered as mappings of dense subspaces of 22 into £2,
having a compact inverse.

(1i) They have a real point spectrum, consisting of simple eigenvalues only.

O
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3.4. Appendix

THEOREM 3.7. (Perron's theorem [10]). Let

¥ tay +by ;=0 n=123...

n+l
be a three-term recurrence relation with bn #0, n=1,2,... and lim an = a
asd
and lim b = b # 0. n

n-e
If the characteristic polynomial t2 + at + b has two different zeros t1 and

t, with |t1[ > |t2|, then the recurrence relation has two independent solu-

2 4
tions yél) and yéz) satisfying

(1)
Yn+1 _
(1) 1
¥y

lim
n->o

[
t

and

(2)
y
lim —‘(‘;“)i = t,
n->e

n

respectively. 0

DEFINITION 3.8.Pochhammer's symbol (a)n is defined by

(a)0 =1
(a)n = a(a+l)(a+2)...(a+n-1), n=1,2,3,... [1;256]. 0
LEMMA 3.9.
_T(a + n)
(a)n “_r('a) —
where T'(x) is the gamma function [1;256]. 0

DEFINITION 3.10. The hypergeometric function is defined by

* (a) (b))

F(a,bjc;z) := o ar 2%, |z| <1, ¢ #0,-1,-2,... [1;5561.0
n=0 n "’

LEMMA 3.11. The associated Legendre function of the first kind Pt(x),

-1 £ x £ 1, isdefined by
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()" T(v+m+1)

m _ L2k .. . _
Pl(x) = s o (X)) (1 +m+v,m-v;l+m; %(1-%)),
m=0,1,2,..., v >0 [2;148]. O
LEMMA 3.12.
m,, _ (DB Tw+m+1) 2 km m+v+1)(m=v) . _
Py = e Thoarn L TF) Ty (o
2 m!
+@1-x°21, m=0,1,2,..., v>0 (x4 1) . O

With the aid of the recurrence relation

dPr\‘)1 (x)
dx

(1 —x2)

(v + 1)xPl\1:(x) - (v-m+ 1)1>’\”‘+1 (x) [2;161]

and lemma 3.12 follows

LEMMA 3.13,
arP™ (x) m
o2 v NP Tvtm+l) o 2)% (m-1)
ax o, T(v-m+D)  *
m.
1
. {-m+-2—(m—+1—)[(\)+1)(m+\)+1)(m—\)) -
-2(V+1)(m+1) = (v+m+1)(V+m+2)(m-v-1)] -
c-x +d1-00 (x4 . O
LEMMA 3.14.
0 -
P (1) =1
Pl:’l(l) =0, m=1,2,3,...

dPS (cos (8))
4ae 0=0

]
o

1
de(cos(e)) v+l
de 0= 2




m
de(cos(e))

de =0
LEMMA 3.15.
dPg(x) . m-2
x—G;—ﬂ=%W-m+2Hv+m-1Hv-m+1Hv+MPv (x) +
2
+R(Vv+1) + m)P% ) + 2P (x) - —B— p(x) .
v v 1-—x2 v

PROOF. [3]. Using the recurrence relation
apl (x) —
(1 —x2)——%;—— = =71 —x2 P$+1(x) - me?(x)

we obtain

m
ap_(x) 2
x —> - X Pm+1(x) _ _mx

dx /1-x2 v 1—x2

m
Pv(X)

X m+1 m(m-1)x _m m2x2 m, .
= ———{-P (x) + —————P (x)] - P (x) .
fi .2 Vv fi .2 V 27y
1-x 1-x 1-x
Using the recurrence relation
2mx m m+1 m-1
(3.4) ———— P (x) = -P_ (x) - (v-m+1)(v+mP ~(x) [2;161]
/1_x2 AY \Y AY
we have
m
ap_'(x)
(3.5 x —— = =™+ B L™ 4

I 2

2
+ w-m+ ) P )] - BE pBy
v 2 v
1 - x
Substituting (3.4) in (3.5) once more we obtain
m, .
ap_ (x)
v _ m+2 _ m
X e %(Pv (x) + (Vv-m)(v +n1+1)Pv(x)) +

65

+&W—m+1HVHMWSM)+W-m+2HV+m—DPT2mH -
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m2x2 m
————sz(x)
1 -x

K(Vem+1) (vem-1) (v-m+2) (v +m)1>§'2(x) +

2
L(v(v+1) +m2)p§(x) + %P$+2(x) - —%x—z

+

P:(x) . 0

LEMMA 3.16.

m
de(x)

—a ¥m=-2)(v-m+1)(v+m)(V-m+2) -

3xm

rm- 10220 + B +1) +n’ +2)mel(x) +

2
i+ 2)pM P - 22

1 - x

+

mPe(x) .

PROOF. This is analogous to the proof of lemma 3.15, [3]. g

LEMMA 3.17. The associated Legendre function of the first kind P?(cos(e)),
0 £ 6 < 7 can also be defined as
(-1 T(v+m+1)

Pj(e0s(8)) = STy ooy (ean(30) " -

« F(-v, v+1; 1+m; (sin(%0))%) [2;1471, [2;1441. O

With the aid of this lemma we can investigate the asymptotic behaviour of

p‘\‘j(cos(e)) (m + »).

LEMMA 3.18. The associated Legendre function of the first kind P?(cos(e)),

0<06<mm, v>0,m=0,1,2,... has the following asymptotic expansion:

m (- rv+m+1)
Pyleos(®)) = o=t a+ D)

(tan(30)™(1+d(D) @+ . 0O
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LEMMA 3.19. The associated Legendre function of the second kind Qg(cos(e)),
0 < & < 7 is defined in terms of hypergeometric series by

-n=

== TV +m+1)T(m-V) (cot (4)™ -

Q:(cos(e)) =
« [F(-v, v+1; 1+m; (cos(46))?) -
- (=1)%cos (1) (tan(%0)) ®F(~v, v +1;1 +m;
(sin(%0))%)1  [2;141], [2;143]. O

With the aid of this lemma we can investigate the asymptotic behaviour of

Q(cos(8)) (m > ).

LEMMA 3.20. The associated Legendre function of the second kind Q?(cos(e)),
0<6<m, v>0,m=20,1,2,... has the following asymptotic expansion:

_qyI
QB (cos(8)) = (Tl)— T'(v+m+1)T(m-v) ((cot(40))™ -
m.
- (-1)"cos (1) (tan (50))™ + 6(2)), (@ > =) . 0
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CHAPTER 4
EIGENVALUES AND EIGENVECTORS OF THE PERIODIC LAME SOLUTTONS

4.0. Introduction

In the previous chapter we obtained four infinite tridiagonal matrices cor-
responding to the four classes of the ¢ solutions. We also derived a few
spectral properties of the matrices.

Starting from these properties we shall develop algorithms for the computa-
tion of the eigenvalues and the corresponding eigenvectors of the tridiago-
nal matrices. These algorithms are closely connected to the continued-frac-
tion algorithms devised by Blanch [1] and Bouwkamp [2], [3].

4,1, Calewlation of eigenvalues

For the sake of convenience we shall only investigate the eigenvalues A
(rather than A, see section 3.1) of the (redefined) infinite tridiagonal ma-
trix A corresponding to class I:

3% %o
\ \\
AN
by "2y ¢
\\ R \\
A := \\ \\ \\
N . N
n-1 an cn
AN \ \
o \ \ \—
\
with elements
a = (20 -4%'?) 4w+ 0k, 0= 0,1,2,...
by = Ak2yv+1) ,
b_ := k' 2(v-2n) (v42n+1), n=1,2,... ,
c = -kk'’(V-2n-1)(v+2n+2), n = 0,1,2,... .

From the previous chapter we know that the matrix A (when considered as the
matrix of a mapping from a dense subspace DA < 22 in 22 relative to the na-
tural basis in £2) has a compact inverse and a positive point spectrum. It
follows that the matrix AT has the same spectrum as A and has also a compact
inverse. Since ﬁhe matrix AT is diagonally dominant (see appendix) we shall

speak in terms of the eigenvalues of AT rather than those of A.
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In chapter 2 we proved that of all eigenvalues A of A, we only need those
eigenvalues satisfying

0 <A <v(v+l) .
Let, for a given v > 0, the integer N be so that

2N-1 < v < 2N+1 .

Then, for j # N, > 0, but b _c_ may be negative (see appendix). There-

bjcj NN
fore, we partition the matrix A~ as follows:

B i
Ay lb O
1
AT = _,___.é_;_N____
N|
]
T
o o
1
in which
_ - — b -
% %y O AN+ PN+ O
€0 1 by Cn+1 2n+2 Prs2
AT o= AT = \ \ \
1 ! 2 . \ \ \ )
b N \ \
N-1 * \ \
c a AN A \
L_O N=-1: 9 J L O . N v

T
We first show that for Re(A) < v(v+1), A2 - AIZ has a compact inverse.

T
and also, for each A, A, -AI

T T
Since A" has a compact inverse, the matrix A 2 2

2
satisfies the Fredholm alternative,

either
T
sz#o (A2 - AI2)x2 =0
or

T
A, - AIz has a compact inverse .

It is easy, to verify that the matrix Ag - 112 is strictly diagonally domi-

nant for all A satisfying Re(A) < V(v +1) (see appendix). Consequently,
from (Ag - AIz)x2 = 0 it follows that X, = 0 (see appendix), hence Ag -AIZ
has a compact inverse for Re(A) < v(v+1).

T
Now let A, 0 < A < v(Vv+1), be an eigenvalue of the matrix A" with eigen-

vector x = (xT ng)T. Then
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(4.1) ————— e - =2

or, written differently, R

T ~T
Byxy ¥ BylegygXp)ey = A%y o

T ~ T
cylen®y) ey + ByXp = Axy

~

N+ ~ %
where eN € R N,i’ i=o0,1,...,N, and eN+1 €R , (eN+1)i~6N+1,i'

i = N+1,N+2,... . Taking into account that (A'g - 112)'1 is compact it fol-

1 -
’ (eN)i =6

lows that Xy # 0 and

T T
(4.2) (a; - bea(Meenx = Ax,
where
~T T -1.
@A) == ey, (B = ALy &,

Since (4.2) implies (4.1) the following theorem holds:

THEOREM 4.1. A, 0 < A < v(v+1), is an eigenvalue of A if and only if

T T
det(z;1 - AI, - chNa()\)eNeN) =0 . 0

1

Now we investigate the function o(A). Consider (for some A < v(v+1)) the
equation

T ~ ~

(By = ALY = ey

in which § e b, < 22

2
Let nz be defined as

with components ?i, i =N+l,... . Then a(A) = ;N+1'

__Yany

n, : , & = N+1,N+2,... .
2 v y2

It is easy to verify that the ny satisfy the recurrence relation
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nz_1 = , & = N+2,...
and that

o(A)

aer T A T Py

As proved in the previous chapter, we have (with the aid of Perron's theo-
rem 3.7) that

Lip i k-1
tow Yy k+1°

Hence there is an integer M such that 0 < nm < 1 for m > M, Starting from
this result and the property that the matrix Ag - lIz is strictly diagonal-
ly dominant for all A satisfying A < v(v+1) (see appendix), it is easy

to prove by induction that O <'n2 <1, for & = N+1,N+2,... .

Consequently

0 < a(A)f<

We observe that if b _c_= 0 we do not need a(A). Now let

]
-
~

po(k)
pl(l) = ay - A,
\)

[

P (ai - A)pi(k) -b nn,i=1,2,...,N-1 ,

i-1%-1Pi-1
A) := (ay - R chNa(A))pN(l) -b

i+l

M\

Pyyt N-1°N-1PN-1

be the principal minors of the matrix

T T
A1 - AIl - chNa(A)eNeN R
We shall prove that these functions form a Sturm sequence on [0,v(v+1)],

i.e. that they satisfy:

(1) py(A) does not vanish on [0,v(v+1)];

(ii) if pi(A) = 0 for some X € [0,v(v+1)], 1 £ i < N, then
Pi_l(A)Pi+1(l) < 0; .

(iii) sign(pi(O)) = 1 and sign pi(v(v-bl)) = (—1)1, i=0,1,2,...,N+1;

(iv) (A) has at most simple zeros in [0,v(v+1)].

Pyt
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Since bici >0,1i=20,1,...,N-1 (see appendix), it is well known that

*
Po M) sevspy(A) By, (V) = (@ -Mpy(A) - b

N-1°N-1Pn-1 )

constitute a Sturm sequence on (-*,®). It follows that the requirements (i)
and (ii) are fulfilled. (Also for i = N since the difference between

* :
Pyt (A) and Pyt (A\) is proportional to pN()\) .)

In order to prove (iii) we observe (see appendix) that

T T

A1 - chNa(O)eNeN - AII
and its principal minors are diagonally dominant for Re(}X) < O.
The same holds for

T T

1!;1 - ch:Noz(v(v+1))eNeN - AIl

in case Re(A) 2 v(v+1).

It follows that sign(pi(O)) = 1 and sign(pi(\)(v+1))) = (—l)i, i=0,1,,.N+1,

Finally, we have to prove (iv). Since po,...,pN,p;\;_,_1 is a Sturm sequence
and p;H(A) is a polynomial of degree N+1 it follows that pN_’_l()\) has N+1
simple zeros on [0,v(v+1)] which are strictly separated by the zeros of
pN()\). Consider now q, := pi/P:L-l' i=1,2,...,N+41 and q;;“ i= p§+1/pN.
Then qN+1(Al - q;+1(x) - b,

Graphs of qN+1(A) and chNa(A) against A are given below.

by cNaO\)

|
I
|
|
|
]
;V(V+U
|
|
|
|

Figure 4.1,
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*
N+1
poles at the zeros ui, i=1,2,...,Nof pN(A) and one simple zero in each

The function g (A) 1is a monotonically decreasing function with simple

of the intervals [O,ul), ), i=1,2,...,N-1 and (uN,v(v+1)) (being

" (Mg rHi4

the zeros of pN+1(A))-

From (iii) it follows that qN+1(0) > 0 and qN+1(v(v +1)) < 0 and it follows
*

that qN+1(v(v-+1))< chNa(v(v-+1)).

Now we prove that for 0 £ Re(A) < v(v+1) the function qN+1(A) has pre-

cisely N+ 1 zeros. We observe that the number of poles ui, i=1,2,.,..,N of

the function qN_'_l()\) that lie in the region 0 < Re(A) < v(v+1) is inde-

(A) has N+1 simple zeros

pendent of chN. If b = 0 then qN+1(A)

_ *
N°N = 1
in [0,v(v+1)). Consequently, for chN # 0 there are N+ 1 zeros in
0 < Re(A) < v(v+1). We know that qN+1(A) has at least one zero in each

interval [0,u1), (ui,u ), i=1,2,...,N-1 and (uN,v(v +1)). Hence, the

i+1
zeros of qN+1(A) are simple.

Summarizing, we have proved that the functions pi(k), i=0,1,2,...,N+1
form a Sturm sequence on [0,v(v+1)].

Hence we calculate the eigenvalues A of aT satisfying 0 < A < v(v+1) bf
the method of bisection, as described in [6;302].

4.1.0. Calolation of a(A)

In this section we shall construct an algorithm to calculate a(A). Let xgy
be defined as ry := nz/cz. Then we proved that

1
a(A)
+1 T A 7 PyetOner T

in which rN+1 satisfies the recurrence relation

1
r, , = - — , & = N+2,N+3,...
2-1 a, A bzczr2

with (since ¢

+oo)

L

limr, =0 .
fr L

These recurrence relations may be interpreted as the fundamental recurrence

formulas for the following continued fraction [1]:



1 | P 1N41| _ Pe2%N+2| o
N+t T2 FN+2 - A FN+3 - A

a(A) = A

(m)

Let r and um, m 2 N+1 be defined as follows:

2
r = 0, ) 1= 1 ; ¥ =nmm-1,,,.,N+2 ,
n -1 a,-A-b,c r(m)
2 27878
I 1 _
m (m) '
et T A T Py et Tt

or in terms of a continued fraction

W ot | PenCwt| Puet®e
n FN+1-)‘ laN+2_A ay ~

Let us denote the approximants o of a(Az) by

o = Am/Bm .
It is easy to verify by induction [1] that the Am satisfy the recurrence
relation

=(a

el T )l)'Am—bch 1 m=N+1,... ,

Am+1 m m-
with

AN =0 and AN+1 =1.

The denominators Bm satisfy the recurrence relation

= (a - )\)Bm -bcB , m=N+1,...,

B
m+1

m+1 m m m-1
with
BN =1 and BN+1 = aN+1 -
Consider
c = a o = m+1 Am _ Dm+1
+1 ° Tml N B
w+l . mtl n Bm+1 Bm Bm+1 m
where
= B - .
Dm+1 Am+1 m Bm+1Am

75
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It is easy to verify that

and consequently

Bm—l
Em+1 = mcm B em = (6m+1 - 1)€m
m+1
where
6m+1 = (am+1 - A)Bm/Bm+1 -

Consequently, the Gm satisfy the recurrence relation

1
6m+1 = 5o , m=N+1,... ,
1 - oo — &
(am+1 —A)(am - N "

with starting value 6N+1 =1.

Summarizing, we have the following continued-fraction algorithm:

bmcm
f = m = N+1,N+2,... ,
m (a_ - A)(a - !
m m+1
1
6m+1 T1-f6 " N+l Ly
m m
fmam 1
€ := e = (6 1)e_, € ,
+1 1-£386 +1 m’ N+1 -
o n'm " o agey T A
i= 0o + € 1= 1
+1 +17 ON+1 -
o n ageg T A
o(A) := lima_ .
m>o

The convergence requirement is [1], that from an index M onward, O <fm'<%,

m 2 M. In our case,

4

'
limfm=—-—k——2—2<
> 4(2 - k')

=
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It is easy to verify that

4
1]
fm<%- k '22,m=N+1,N+2,... .
(2 -k')
Hence, for all practical values oﬁ k'2, viz. k'2 < ——zig: = 0.93, fm < Y,
2 + V3

m = N+1,N+2,... .
It appears, however, that for k'2 > 0.93, after some terms, fm also satis-
fies fm < 4. Consequently, it follows that O < fme < % and numerical sta-

bility is ensured.

4.2, Caleulation of eigenvectons

Let X be an eigenvalue of the matrix A. The corresponding eigenvector

X = (xflxg)T satisfies

\ .
A ! X |"‘1
C
_____ W N_ = 2
b )
Ni N
! 2| [*2 l"z
or, written differently,
(a, - AML)x, + c (3% .x)e_ =0
1 TR S VA VT LT N '
(4.3) | (A, - AI)x., = -b_(e x )&
: 2 2% T Pxte*1’ N
Using the definition of a(A) it follows that X, satisfies the equation
(4.4) (A, - AI, -bcoa(Meex, =0
. 1 [ Vi SR Ve N S

In the previous section we derived an algorithm for the computation: of the
eigenvalues A < Vv(v+1), using bisection and Sturm sequences.

Let now x be such a computed eigenvalue, and % the corresponding eigenvec-
tor.

First, we shall calculate the first N+ 1 components of the vector X with
the aid of equation (4.4). To determine the ratios of the components of the
eigenvector we only need N equations. Hence we can omit one equation.

We take as omitted equation that equation for which |ai - il, i=0,1,...,N
takes its minimal value. Let s be the index of the omitted equation. Since

the a, are monotonically increasing we have a, - X o< 0, (i < s) and
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a; =% >0 (i>5s).

Let r, be defined by r, := -xi/(cixi+1). We determine TgreserZy_y from the
equations

r, = 1/(a0 -A

r, = 1/(ai - A - bi—lciélri—l)' i=1,...,8-1.

* , * 0~ o~ . * *
Let ri be defined by ri.— xi+1/(bixi). We determine rN—l""'rs—l from the

equations

r = 1/(aN - - a(A)chN) ,

~ *
= 1/(ai -A - biciri), i =N-1,...,8+1 .

The required N + 1 components of the eigenvector are

EAYE IRRERTS RS TE SIPTRRRS
where
xg = 1, xi = —rici ny i=s-1,...,0
X, =-r, b % i = s+ N
X, = -rg_,b. g% 4 i=stl, 0N

If we do not need more than N+ 1 components of the eigenvector, there is no-
thing more to do. But in most cases we do need considerably more components,
depending on the desired accuracy of the Lamé functions. Suppose we do need
M (M > N) components of the eigenvector. With the aid of (4.3) we calculate
;he ratios of the components of theremaininQbomponentsofthe eigenvector.

be defined by r, := /(bi§i). Then the r, satisfy the back-

Let now r i

i i1

ward recurrence relation

r, = 1/(ai+1 - - bi+1ci+1ri+1)' i =N,N+1,...
with
limr, =0 .
o
] ~(N1)
We use now Miller's algorithm [4]: Take N, > M and set r " := 0. Calculate
~(N1) 5 ~(N1) _ _ .
r, = 1/(ai+1 A bi+1ci+1ri+1 ), i = N1 1,...,N-1 .
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Then we calculate

N1)  _ SN-1oavn)
ri = ;(Nl) ri , i=N,...,M .
N-1

After this we select another integer N2 > N1. If now

lr(Nl) _ r.(N2)l < Er(N2)
i i

i , i =N,N+1l,...,M

then we take r?Nz)

i as an approximation of ri, i=N,...,M.

Let € be the desired relative tolerance for §M' In the previous chapter we

proved, with the aid of Perron's theorem, that

i+l k-1

lim —— = .
i Xy k+1
A good choice of the integer N1 is such that
N,-M
- 1
(1 k) <e.

The above-defined algorithm depends on the three indices N,M and s.

The index N is determined by the relation 2N-1 < v < 2N+1.

The index M depends on the desired accuracy of the Lamé functions.

The index s has to be chosen so that the algorithm has good numerical sta-
bility.

Since x is computed by using bisection and Sturm sequences we may expect

that we obtain an acceptable eigenvalue in the sense that
X = a| < nlall

in which n is of the order of the relative machine precision.
We say that the corresponding computed eigenvector X is an acceptable one,
if

lax - 2% T
T snIIAlll.

We cbserve that the above-given algorithm for the computation of eigenvec-
tors is essentially one inverse iteration corresponding to the initial

vector eS o
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Starting from this initial vector we have

~
~

a - AI)X = e

so that we determine % and then normalize it to give
X := §/(e:§) ,

satisfying

Try

(a - AD)x = es/(esx) .

The residual corresponding to X is very small if le:§| is very large. From
[8] we know that there exists an index s such that !eZ§| is very large. In
our cvase, however, the "best" value of s is that index for which

1%,] = nax |%,]

i=0

because the components of the eigenvector have a reasonably sharp maximum
at index s. .
Since it happens that all rows, except .one (for which ai -2 is minimal),
of the matrix (AT - MI) are diagonally dominant it follows that our choice
of s, viz. that value for which lai - xl is minimal, is a good one.
Moreover in one iteration the enrichment of the required eigenvector rela-
tive to the others is directly dependent on the smallness of X -1 rela-
tive to the other A - A,.
Since in our case [X - A| <nll AT I and the other A - A, are of order 1 wecon-
clude that the computed eigenvector X is acceptable in the above-defined

sense.

Finally, it follows from [7] that by this choice of the index s all the
components of the eigenvector have a relative error at most of the order

of n.

4.3. Appendix

a = (2n)2(1 —%k'z) +Bv(v-+1)k'2, n=20,1,2,... ;

by = k' Zv(v+1) ;

b = k2 (v-2n) (v+2n+1), n=1,2,... ;
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Lk'2n(2n+1) ~¥k'2V(V+1) ;

(o]
i

= k' 2(v-2n-1)(v42n+42), n=0,1,2,... ,

bk'2(n+1)(2n+1) ~%k'Zu(v+1) .

Let, for a given v > 0, the integer N be so that
2N-1 < v < 2N+1 .
We observe that:

(i) a >0,n=0,1,2,...;

n

(ii) bn<0,nSN—1 andbn>0, n2N+1;

(iii) cn<0,nSN—1 andanO,nZN;

(iv) bNZO, 2N-1 < v £ 2N; bN<0, 2N < v £ 2N +1.

It is easy to verify the following (in)equalities:
(1) lagl=1Ipyl =0, lag| + |p, =k 1) < VOV H1);
(ii) |an|—|bn|—|cn_1| =4n2>0, 1<ns<nN-1

(4r12—\)(\)+1))k2 + v(v+1) < v(v+1l), 1snsN-1;

n n n-l|
(iii) |a_| -|b | -]e
(iv) |a
Jagl + Iyl + Iy

2N-1 < v £ 2N;
@ lagl - Inyl - loy,|
lagl +Ib| + 1o, |

2N < v £ 2N +1.

(4n? - v(v+1)k2+v(v+1) > v(v+1), n = N+1;
aN?(1 -3k'2%) + Bk'Z(v(v+1) —2N) > 0;
(1-%k'2) (4N° -v (v +1)) + k'?

1]

N+v(v+1),

aN? > 0;

(AN% - V(V+1))KZ + V(v +1) < v(v+1),

]

From these results we may conclude:

(1) AT is diagonally dominant;

(i1) A‘f - chNa(O)eNeg - )\11 and its principal minors are diagonally domi-

nant for X < O0;

(iid) AT - chNa (v(\)+1))eNe£ - AIl and its principal minors are diagonally

dominant for A 2v(v+1);

(iv) Aj - AL, is diagonally dominant for A S V(V+1).

THEOREM 4.2. Let B be an infinite complex matrix strictly diagonally domi-
nant. From x € 2,2 and Bx = 0 it follows x = 0.
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PROOF. By definition

X, = L E B,.xyy 1= 1,2,... .

1By gpy 1373

In particular, if x, # 0 is the largest component in absolute value then it

follows that
[x,| < |x.] -

Contradiction. Hence x = 0. 0
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CHAPTER 5
ELECTROMAGNETIC FIELDS IN THE SPHERO-CONAL SYSTEM

5.0. Introduction

In this chapter we apply the theory of Lamé functions to electromagnetic
fields inside a perfectly conducting cone with elliptical cross-section.

In analogy to the case of the circular cone, the electromagnetic fields will
now be analysed in terms of two types of partial fields which are due to

the transverse electric waves (TE-fields) and transverse magnetic waves
(TM-fields) [4;483]. The papers of Debye [2], Bouwkamp and Casimir [1], and

Wilcox [5] are essential for this chapter.

5.1. Electromagnetic field in the interion of a cone with elliptical cross-
section

We consider a cone with the vertex at the origin of the Cartesian coordinate
system and main axis along the z axis. In the sphero-conal system we des-.
cribe the main cone by the parameter k and the angle 90 (see chapter 1).
Throughout this section we consider a linear homogeneous non-conducting iso-
tropic medium, free of charges and currents with permittivity € and permea-

bility u, bounded by two concentric spheres |§J =x, and |§J =1, O'<r0 <xy,

and the surface of the cone, 6 = 90.
We shall confine ourselves to the requirements imposed by a perfectly con-
ducting boundary surface of the cone, that is, Er = 0 and E¢ = 0 for

£, <rc«< r, and 6 = 60.

For this region we have [4;5]:

D=¢E B

]
=
o
°
n
o
o
=}
0,
o
]
|o

The Maxwell equations now are

)
curl E + u 3%~= o,

oE
curl H - € 3 = 0,

divE =0, divE=0.

Throughout this section a time dependence e_lwt is assumed but always sup-

pressed. We can represent the fields as
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E = Re(Be ™%) and H = re(Ee™MY) .

We observe that E.and g are complex functions independent of time.

THEOREM 5.1, Let us consider a space domain D bounded by two concentric

spheres ]5] = r, and ]§| =r;, 0<ry<r

0 0 1

surface of an elliptical cone, x, <rc«< Xy

be in D an analytic electromagnetic field E, E'with vanishing radial compo-

and by a perfectly conducting
6 = 60, 0 £ ¢ < 27. Let there

nents Er and Er' It then follows that E and E are identically zero within D.

PROOF. Starting from the Maxwell's equations and from Er==Hr = 0 we obtain

the following equations:

9 *r~ _ 9 *~ 3 *~ _ 9 K~
(5.1) 3§%hm3¢) = a¢(heHe) ’ ae(h¢E¢) = am(heEe) '

{WErB, = S (¢ ) —ionrd, = 278 )

i 6 = 37 xr o) iwny 6 = Bz r. 0’ !

jwerE = - 3—( H,) iwprH = 2—( E,.)

iwex ¢ B¢ Fhg) v iopr 9~ dr gl v

* *
in which he and h¢ are the scale factors of the sphero-conal system (see

chapter 1). The integration with respect to r can be carried out immediate-

ly. From the last four equations we get

* L%

JerE = Al(e,¢)eik r, Bl(e,w)e_lk r
* Lk

/ITquJ = Al(e.q))eik r- Bl(e.cv)e_lk £,

* *
~ ik -ik
AurB, = A, (8,0)e™ ¥ - B, (0,0)e " ©,

*

L %
JE}EQ -Az(e,w)elk ¥ - B,(8,9)e r

[}

in which k*2 = wzue.

Introducing the new variables

0 ?
~ dt ~ t
6 := f r @ = J d

V1 - k2cos? (t) Y1 - k'2gin2 (t)

0 - 0

and the functions
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A,
1

v’{:'2cosz(cp)+kzsin2(e)1\i, i=1,2,

(5.2)

Bi s

/{c'zcosz(cp)+kzsin2(6)Bi, i=1,2,

we readily get from (5.1)

L~ ~ a2 32
AR, =0, B, =0, i=1,2, (A:=< 5%+
96 9

From the boundary condition E¢(r,eo,¢) = 0 we conclude, using the maximum

2 and B2 are identically zero. Hence

ﬁe and E@ are identically zero. Substituting these results in equations

(5.1) we obtain

principle of harmonic functions, that a

e T S A T
oF ! 9P Y1 "y )

It thus follows that Kl and El are constant. Since §¢ and E are uniformly

. ]
bounded and consequently so are A1 and Bl’ we may conclude by taking € = 0,

¢ = /2 in (5,2), that X and B, are identically zero, Hence EQ and E are

1 1 0
identically zero. This completes the proof. 0

REMARK. If we have a coaxial elliptical cone then there exists an electro-

magnetic field with non-vanishing components

L a K *
£ - (a,e™ ¥+ b e ¥ Ty /[/erk 2cos® (9) + k2sin?(6) ]
and
* *
B, = (aleik r. blen:Lk JC)/[*/I.Trv/k'zcosz(cp) +kzs:'m2 ©)1] ,

the so-called TEM-fields, in which a, and b, are constant.

1 1

DEFINITION 5.2. A region in space { is simply connected if every continuous
closed surface and every continuous closed curve lying in @ can be contrac-
ted to a point without passing outside of f. O
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In analogy to the case of the spherical waves [4;483], we can express the
electromagnetic fields in a simply connected region in space by means of

two scalar functions, the so-called Debye potentials.

THEOREM 5.3. Any electromagnetic field in a simply connected space domain

can be written as

|2
n

iw curl(legr) + cugl curl(Hzrgr) ’

jm?
n

1
-iwe curl(Hngr) + ﬁ-curl curl(legr) '

where H1 and H2 satisfy the reduced wave equations:

2

AHl + w uell + wzuen =0 .

=0, Al )

1 2
PROOF. Take Jones's proof [4;483] for the analogue of spherical Debye poten-
tials, and replace the scale factors of the spherical polar coordinates by
those of the sphero-conal system. It should be remarked that Jones's proof
implicitly assumes certain connectivity properties of the domain. If the do-

main is simply connected, the proof is correct. ]

This proof again demonstrates how easy it is to generalize results known in
spherical polar coordinates to corresponding results in sphero-conal coordi-
nates. We observe that we can decompose the electromagnetic fields in a

simply connected domain in space into two partial fields:
(i) The TE-fields, with vanishing radial component Er:

~ X ~_l
E = iw curl(re ), H = m curl curl(legr) .

(1i) The TM-fields, with vanishing radial component Er:
E = curl curl(Hzrgr), H = -iwe curl(ll,re ) .

We now investigate the electromagnetic fields in a space domain bounded by

two concentric spheres |§J = ry and IE! =r,, 0 <r and by a perfect-

6 = 8,. This do-

1’ 0%
ly conducting surface of an elliptical cone, rg <r< Xy, 0
main is simply connected. Hence we can decompose the electromagnetic
fields into TE-fields and TM-fields, as described before. Now we must re-
quire that the electric field components tangential to the cone surface

vanish. This means:
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: 5 ooziwd oo_ -
(1) E¢ = o ) H1 =0 (TE-fields)
8
E = 33—(n r) + wlpellxr = 0
r 3 272 2 '
(i1) o (TM-fields)
E = (Hzr) =0,

(0] rh* dxdg

in which r, < r < Xy, 6 = 60, 0 < ¢ < 2m.

0
Condition (ii) implies that either H2(r,60,¢) =0 or Er is identically zero.
However, in the latter case the field is identically zero, as follows from

the uniqueness theorem 5.1.

THEOREM 5.4. Let us consider a space domain bounded by two concentric
spheres lgl = rg and [§| =1 0 < x, < r, and by a perfectly conducting
surface of an elliptical cone, rg <r < Ty, 6 = eo, 0= ¢ < 2m.

Any electromagnetic field can be decomposed into a TE-field and a TM-field.

The TE-field is given by

~ . ) ~ 1
E = iw curl(legr), H= m curl curl(Hirgr)
in which Hl is a solution of the Helmholtz equation:
AN, + wluell, = 0
1 Mt

with boundary (Neumann) condition

3H1
35—(r,60,¢) =0 .

The TM-field is given by
E = curl curl(Hzrgr), H = -iwe curl(Hzrgr)

in which II, is a solution of the Helmholtz equation:

[\S)

2
AH2 + w usH2 =0

with boundary (Dirichlet) condition

nz(rreor¢) =0 . O
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In chapter 2 we proved that the solutions of the Dirichlet and the Neumann
problem, respectively, form a complete set of orthogonal functions. This im-

plies that, given Er and Hr on part of the sphere ]ﬁj =r <0 <86

OI O OI
0 S ¢ < 21 and a radiation condition, the electromagnetic field inside the

cone is determined in a unique way.

5.2. Classification of the modes

We shall classify the TE and TM modes in such a way that if the elliptical
cross-section degenerates into a circular one, that means k2 + 1, TE and ™™
modes are transformed into the well-known spherical TE and TM modes
[3;280].

The TE modes are classified as

(m)

g (1/2), h(1,2)(k*r)L(m) (L (9), m=0,1,2,...
n

€ mn \Y cpVv
n Pn

n=1,2,3,..., where vn is the nth positive root of the equation

(m) _n. .
chv(eo) = 0; 60 defines the boundary surface of the cone.

(m)

me{lr2), (1.2) @), m=1,2,3,...
n

* (m
02 r)Lspi ©"

n n

n=1,2,3,..., where vn is the nth positive root of the equation

spv(ﬂo) 0; 90 defines the boundary surface of the cone.

The TM modes are classified as

(m)

{12, p{1e2) g r)L(ml (@, m=0,1,2,...
n

n n

e (G)L

n=1,2,3,..., where V is the nth positive root of the equation
a (m)

ae (6) = 0; 60 defines the boundary surface of the cone.
0
TM(1 2, h(1 2)(k*r)L;ml (e)L( )(@), m=1,2,...
n PV “n

n=1,2,3,..., where v is the nth positive root of the equation
a (m)

de (9) = 0; 60 defines the boundary surface of the cone.
O
We observe that if k2 >1, L( )(6) and L(m)(Q) reduce to P (cos (0)) .
(m)(¢) and L(m)(w) reduce to cos(mm) and sxn(mw)
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CHAPTER 6
COMPUTATION OF THE ASSOCIATED LEGENDRE FUNCTIONS OF THE FIRST KIND

6.0. Introduction

For the computation of the 6 Lamé solutions to calculate the modes in a per-
fectly conducting cone as described in the previous chapter, we need the as-
sociated Legendre functions of the first kind, P?(cos(e)), 00 < g—, v>0,
m=0,1,2,... . Because in the literature with which the author is familiar
no algorithms at all are available to compute these Legendre functions, we
shall derive a stable algorithm.

6.1. Computational aspects of the three-term necuwurence relfations

To calculate the associated Legendre functions of the first kind, Pg(cos(e)),

m
06 < 7 m=0,1,2,..., we take the three-term recurrence relation

(6.1) Pl (y) 4 2IX

v /1 -x2

where x = cos(6).

PUx) + (vem+ 1) (vemPY (x) =0, m=1,2,3,...

For computational reasons we transform the functions Pt(cos(e)) so that the
maximum magnitude is smaller than or equal to 1.
Using lemma 6.3, we put

o Tv+1)
m -~ T(v+m+1)

¥

m
Pv(cos(e))

and the three-term recurrence relation (6.1) then becomes

2m v-m+1 _ _
€20 Vpuy * Tamat OOy i Yy T O m T L2

Let
2
p(t) =t° + at + b

be the characteristic polynomial of the ‘recurrence relation (6.2), with

a = lin 220L) _ 5 oot (o)
m>e
and
. V-m+ 1
b= lim vV+m+1 1
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The zeros of p(t) are

tan(%0)

ot
]

t
]

-cot(%8) .

By virtue of Perron's theorem (see theorem 3.7) the three-term recurrence

relation has two linearly independent solutions {fm} and {gm}, say, which

satisfy
£
Lim 2L o tan(y0)
m>© m
and
g
lim mtl -cot (%6) .
m>® m

We observe that lemma 3.18 implies

m+1

lim = tan(%0)

mre lJJm
and hence {wm} is a minimal solution to (6.2).
To calculate the minimal solutionb{¢m} with backward recursion, we need a

normalization relation of the form

©
(6.3) ] oy =s,s#0,
m'm
m=0
where am are given constants and s is a given non-vanishing function. The

normalization relation (6.3) must satisfy the following conditions:

(1) |s[ must not be small compared to the first non-vanishing term |umwm|,
because dangerous cancellation of figures will occur.

(ii) The normalization relation must converge as fast as or faster than the
backward recursion, because otherwise we should have to calculate too

many terms.
From lemma 6.8 we obtain normalization relations which satisfy (i) namely
(-]
(6.4) Yot 2 1 (—1)%2m = cos(v8), |cos(ve)| = %2
m=1

and
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m -
(6.5) -2 mzo (-1, ., = sin(ve), |sin(ve) | = /2 .

i
We observe that these series converge very slowly for 6 near 5 . Let now

- wn+1
n wn
and
1 -]
s_ = — z oy,
n wn m=n+1 mm

then Miller's algorithm [2;37] is as follows.

Select an integer N:

Calculate:
N ““n
rI\(I ) := 0, rx?_\li = ——-—m)— , n=N,N~1,...,1,
a_ +r
n
n) (N) _ _(N) (N) _ _
Sy := 0, Sn—l = rn_l(an + s, ), n =N,N~-1,...,1,
N) S Ny _ (M) (N) _
(po = ——-—-——a . m , lpn = rn_lllin_l: n=1,2,...,N,
o™ %o
with
2n
E IR
and
V-n+1
Py S VFm AL .

Let M be the number of Legendre functions we need for the calculation of
the 6 Lamé functions for a desired degree of accuracy.

Initially, we select an integer N1 such that

N -M
(tan(%6) ) <€

where € is the desired relative accuracy. After this we select another in-

teger N2 > Nl' If

with i = 0,1,2,...,M, then we take wi as an approximation of wi,
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(nN,) (N,)
i=0,1,...,M, else we redefine wi = i 2 and further we increase N2
and repeat the algorithm as often as necessary.
m
We observe that this algorithm converges very slowly for 6 near 5 -

For this, three reasons can be given, namely:

l1"m~4-1

(i) lim m
me  m
slowly;

= tan(%0) and hence the minimal solution decreases very

(ii) the difference between the minimal solution and the dominant one is
very small;

(iii) the normalization relations (6.4) and (6.5) converge very slowly.

The algorithm was tested with the aid of lemma 6.11, for 0 < 6 < 85°, be-
cause there are no accurate tables to refer to. The range of 6 is sufficient
for the application to the theory of electromagnetism as treated in the pre-

vious chapter.

6.2. Appendix
LEMMA 6.1.

m+1 2mx m m-1

P (x) + P (x) + (V-m+1)(v+mP (x) =0,

-1<x<1,m=1,2,3,..., vreal [1;161]. O
LEMMA 6.2,

n 2m
m _il(v+m+1) .. Y
Pv(cos(e)) Rl e J (cos(8) +1i sin(6)cos(¢)) cos(me)de
' 0

0€60c< -;l,v >-1, m=0,1,2,...
[1;159]. 0
LEMMA 6.3.

| (cos (o)) | < TERED 0 <e<Z, m=0,1,2,..., v>0. O

T(v+1) '
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DEFINITION 6.4. Let y_ .

recurrence relation with two linearly independent solutions fn and 95 If

+ anyn + bnyn-l =0, n=1,2,... be a three-term

1i
n*®

:,La I-’-’H’
]
o

then fn is said to be the minimal solution and g, @ dominant one of the

three-term recurrence relation. O
LEMMA 6.5.
T T+ 2k
vV + m _ _ \Y
Pv(z) + 2 L Tvint D Pv(z)cos(m\b) = (z+ (z 1) “cos (¥)) ,
in which ¥ and v are real and Re(z) > 0 [1;166]. ]

LEMMA 6.6.

pl\l)l(x+j_0) = i-mP’\rj(x), -1 <x<1,m=0,1,2,..., v xreal [1;143],

O
Using lemma 6.5 and lemma 6.6 we obtain:
LEMMA 6.7.
v (-DPr(v+1) _2m
P\)(x) + 2 Z m?v (x) cos (2my) -
m=1
v T(v+1) 2m+1
m v+ m _
- 2i 2 (-1) mi’v (x)cos((2m+1)Y) =
m=0
= (x+it’1-x2 cos(',(l))v, 0<x<1, ¥ and v real . ]

If ¥ = 0, then from lemma 6.7 we obtain:

LEMMA 6.8.

m.
(1) T+ 1) p2mc0g(0)) = cos (v6)

P (cos () + 2 m§1 To 7 2m+ D Fv

and

v m_T(v+1) 2m+1 s m
2 ) (1) Tvim a3y Pv | (cos(8)) =sin(v8), 0<8<7, v real.
m=0 0
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If ¢y = g-, however, we obtain from lemma 6.7:
LEMMA 6.9.
v T(v + 1) 2m _wy
P\)(X)+2m§1—__r(v+2m+1) Py(x) =x, 0<x<1,vrel . O
LEMMA 6.10.
o, _ 2" T (% + %V + 4m) .
P (0) = 75 cos(%ﬂ(v-Fm))TTTfrggj:QET [1;145] . O
LEMMA 6.11.
Pv(cos(e)cos(e') +sin(e)sin(9')cos(¢))==Pv(cos(6))Pv(cos(e')) +
+ 2 mzl {,'2—35%‘:—3-pﬁ(cos(e))p’\‘;(cos(e-))cos(m(p)
0<B6<m,0<0"'<mM, 6+460'"<m, ¢real [1;169]. AD
LEMMA 6.12,
P?(-x) = (—1)m[P$(x)cos(ﬂv) - %—Qﬁ(x)sin(ﬂv)] ,
and
QB (-x) = (-1)m+1[Qm(x)cos(wv) + T p®(x)sin (mv) ]
v v 27y
0<x<1,m=20,1,2,... [1;144] . ]

6.3. Regenences

[1] Erdélyi, A., W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher trans-
cendental functions. Vol. I. New York, McGraw-Hill, 1953.

[2] Gautschi, W., Computational aspects of three-term recurrence relations.
SIAM Rev. 9 (1967), 24-82.
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CHAPTER 7
FURTHER INVESTIGATIONS INTO THE LAME FUNCTIONS

7.0. Introduction

This chapter supplements the original doctoral dissertation.

In section 3.2 we derived solutions of the 6 Lamé equation in terms of Le-
gendre functions in a heuristic way. We proved that these series converge
uniformly in any closed subinterval of [0,2 arctan(/TIfIE77TT:763, and

this is sufficient for our practical applications in conical waveguides.
However, Prof. Boersma [2] remarks, that for example in diffraction problems

we need solutions defined in any closed subinterval of [0,m). For that rea-

son he had found new series for L(Z“)(e) and L(2n+1)(6), namely:
cpv spv
(2n) .. _ v (2n) _2m
Lepy (8 = ) (-l)mT(Zm)Azm p."(k cos (8)) ,
m=0
(2n+1) v (2n+1) _2m+1
Lopy (O _mZO (—1)mT(2m+1)B2m+1 P (k cos(8)) .

On the same way as described in section 3.2 we obtained new series for
L(2n+1) (2n)

ey (®) and L S0 (0) :
(2n+1) sin(6) ° m (2n+1) _2m+1
L () = ——~—— ¥ (-1)"(2m+1)T(2m+1)A P (k cos(8)) ,
cpv V1 -kZcosZ(8) m=0 2mtl v
120 g) - 2100 7 n)®mrems 2V Xk cos(0)) .

PY 1 - kZcos2(8) m=1

Up to now all the O series are found in a heustic way.

Inspired by the existing results for the periodic and non-periodic solutions
of the Mathieu equation, we shall derive the former 6 solutions (in terms
of Legendre functions) with the aid of integral equations of the periodic

Lamé solutions.

7.1. Integhal nepresentations of 6 solutions

Let
2m

8(p) = A J N(9,4) 8($) dé
0 V1 - k'zsin2(¢)
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be any of the many known integral equations for the Lamé ¢ solutions (cf.
Arscott [1]).
Then by substitution

k'cos(p) = ik sin(6)

(see section 3.2) we obtain an integral representation of a 6 Lamé function:

8(6) =% f K(6,¢) 2($)dp .
V1 - k'zsin2(¢)

Starting from appropriate kernels and ¢ solutions we shall now derive 6 so-
lutions.
Arscott [1] deduced 24 kernels which can be classified into eight types.

Four our purpose there are four appropriate kernels, namely:

. ik'
(i) Pv(T cos(9)cos(4)) ,
(ii) k'sin(q))sin(d))P\')(i—kk—l- cos(9)cos(¢)) .,
(iii) Pv(k'sin(¢)sin(¢)) '

, ik! . :

(iv) - cos(m)cos(¢)P;(k'51n(m)51n(¢)) .

7.2. Periodic ¢ solutions

In section 3.1 we expanded the periodic eigenfunctions of the ¢ problem in-
to trigonometric Fourier series. But it should be remarked that these eigen-
functions can also be expanded into trigonometric Fourier series multiplied

by the function

/1 - k'Zsin%(9)  [4;651, [5] .

We then obtain the same four classes, namely:

L(Zn)(w) = V1 - x'?%sin?(9) 2 Céin)cos(me) ,

cv
m=0

on+1 v (2n+1
L2 (g = EEEEEONY {2 cos((2m+ Do)

\

L(2n)(¢) =Vl - k'zsin2(¢) 2 Déin)sin(me) ,
m=1

sV
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L2 ) - T o ZinZ(e § P W gin(en+ ) .
m=0

sV 2m+1

We now observe that the recurrence relations for the coefficients Cm and

D can be transformed into the previous recurrence relations, by substitu-
tion
* *
C =T (mA and D =T (m)B
m m m m
*
where T (m) has to satisfy the recurrence relation

(m+v+1) (m=-v) *
(m=-v+1)(m+v+2) T (m+2)

T*(m) 1=

and the appropriate initial values. We can take
0
Pv(O)

T*(m) = —_—,

-m
P,(0)P "(0)

We remark that for T(m) defined in section 3.2, we have

2% (0)

(see lemma 7.1). This we shall assume to be done.

7.3. The 6 solutions

With the aid of the integral representations given in section 7.1 and the
periodic ¢ solutions given in section 7.2, it is easy to derive the corres-

ponding 6 solutions in terms of Legendre functions in the following way.

i) Starting from the kernel
ik'
Pv(-k— cos (@) cos(¢))

(2n)
PV

the function Lc (8) is expressible as

2
P_(sin(-6)cos(9))
nioy () = % J Y 3% (9) ag
0 /1 - k'ZsinZ(9)
. 27
o * (2n) 1 .
= )T (2ma, ™ - J P (sin(-6)cos (9))cos(2mp)dy .

m=0 0
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Using lemma 7.4 we obtain

(2n) _2m

(2n)
L om Pv (cos (6))

cpy (©) = Y T(2maA

m=0

(6) is expressible as

Likewise, Lé2n+1)

(2n+1)P2m+1(cos(e)) .

L(2n+1)
2m+1 v

cpy (0 = 1 T@m+1a

m=0

Starting from the kernel

k'sin(w)sin(¢)P\')(i—::-l- cos (9) cos (¢) )

the function L(Z“)(e) is expressible as
spv
27 ., Vs
(2n) n 51n(¢)Pv(51n(—9)cos(¢))
Ls v (8) = ¥1-k2cos2(6) - -
P Vi-k'zsinz((p)

0

[ (2n)
V1-kZcosZ(8) § T (2m)B,

m=1

2w
. %— I sin(m)P&(sin(—e)cos(m))sin(2m@)dm .
0

Using lemma 7.8 we obtain

L (2n)
sv

(2n) .. _ /1-k%cos2(8) « (2n) _2m
Lepy (® = ~intey — mzl (2m) T(2m) B, "~ P (cos (8))
Likewise, L;2n+1) is expressible as
(2n+1) . /1-k%c0s2(8) v (2n+1) _2m+1
Lspv ®) = = ) o+ DTCEm+ DBy Py

m=0

iii) Starting from the kernel

Pv(k'sin(w)sin(¢))

(

the function chg)(e) is expressible as

99

(p) do

P (cos(8)) .
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L PV(VI-chosz(e)sin(w))

(2n) 1 J (2n)
L (8) == L (9)de
cpv m 0 q—jfi17gzngay- cv
- 27
= 2 T*umAun)i J P (/1 - kZ2cos?(8) sin(p)) cos (2mg) dp.
2m T v
m=0
0
Using lemma 7.5 we obtain
(), _ % (2n)_2m
Lepy (O = Yo« 1)“‘fr(2m)A2m P, (k cos(6))
m=0
- (2n+1) . ,
Likewise, Lspv (6) is expressible as
@n+l) o _ v (2n+1) 2m+1
Lepy (0 = ) (1)“*r(2m+1)132m+1 PC" (k cos(0)) .

m=0

iv) Starting from the kernel

EEL cos(m)cos(¢)P&(k'sin(¢)sin(¢))

the function Léﬁﬁ*l)(e) is expressible as

2m cos(¢)P6(V1-kzcosz(e)sin(w))

Lézi)’“)(e) = -sin(e)L [ .
P m o YT - k'Zsin?(9)
(2n+1)
LC\) (q))dq)
=-sin(e) ] T (2m+1)aliitt)
m=0
27T
. % I Cos(m)PG(VI-kzcosz(e)sin(w))cos((2m+—1)¢)d¢.
0
Using lemma 7.9 we obtain
(2n+1) sin(6) T m (2n+1)
L () = ——"~—— § (-1) (2m+1)T(2m+ 1)A
cpv /T - k%c0s2(8) m=0 2mt1

. P3m+1(k cos(0)).

(23)(6) is expressible as

Likewise, L
sp
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(2n) _2m

(2n)
L om Pv (k cos(0))

__sin(®) ot
spv - )

1 -k“cos4(6) m=1

(8) (-1)™(2m) T(2m) B

It is easy to verify that also the following kernels are valid:

i) Qv(igl cos (9)cos (¢)) ,

ii) k'sin(9)sin($)0! (FE= cos(g)cos(4))
iii) Qv(k'sin(m)sin(¢)) ,

iv) B cos (9) cos (4) Q! (k*sin(g) sin($)) .

Consequently, with the aid of the lemmas 7.12 and 7.13 and the above kernels

(2n) (2n+1)
(8), chv (0),

it is easy to obtain series expansions for the functions chv

1% (6) ana 1?71 (g .

sqv sqv

7.4. Appendix

LEMMA 7.1.
P2(0) = =il in(r) T BXYEL p @Yy r3;445] O
v T 372 si 2 2 i .

LEMMA 7.2.

Pv(cos(w)cos(e) + sin(y)sin(0)cos(g)) =

P (cos(¥))P (cos(8)) + 2 ) (—1)mP;m(cos(¢))Pg(cos(ﬂ))cos(mw)
m=1

[3;168] . O

Taking y = w/2 we obtain

LEMMA 7.3.
m, . _
Pv(Sln(e)COS(¢)) = Pv(O)Pv(cos(e)) +
+2 ] (-1"p "(0)P (cos(6)) cos (mp) . 0
m=1

Using this lemma we obtain
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LEMMA 7.4.
2m
1 f P (sin(-8)cos (¢))cos (mp)dp = (—1)%;m(0)p‘3(cos(e)) ,
0 m=0,1,2,... . 0
LEMMA 7.5.
2m
% J Pv(r/l—kzcosz(e)sin(cp))cos(2mq))dq)=(—1)m+1P;2m(0)P\2)m(k cos(0)),
0 m=0,1,2,... . O
LEMMA 7.6.
27
-_rl—r- J Pv(ﬂ—kzcosz(e)sin(cp))sin((2m+1)<p)d<p =
0

- 2
= (0" " (0)p2™ (x cos(0)), m = 0,1,2,... . O
By differentiating of the formula of lemma 7.3 with respect to ¢ we obtain

LEMMA 7.7.
sin(e)sin(q))P\',(sin(G)cos(tp)) =

2 ) (—1)’”mp;m(0)p‘\‘)‘(cos(e))sin(mm) . 0
m=1

Using this lemma we obtain

LEMMA 7.8.
2w

BN

J sin(q))P\')(sin(—e)cos(cp))sin(mq))dq) =
0

(-n™
sin(9)

mP;m(O)Pl\]:(cos(e)), m=0,1,2,.. . O
LEMMA 7.9.
2m
j cos(‘P)P\')(Vl—kzcosze sin(9))cos((2m+ 1)9)de =
0

3 |-

m
LD _@mtl) -@mHl) gy p2mHl o0 o c6)), m=0,1,2,... . O
v v
1 - k4cos“(0)
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LEMMA 7.10.
27
%— I cos(w)P;(Vl-kzcosz(e)sin(¢))sin(2m¢)dm =
0
m+1

£ Cm P;zm(O)Pim(k cos(0)), m=1,2,... . 0

/1 -kZ%cos2(8)
LEMMA 7.11.

Qv(cos(w)cos(e) + sin(y)sin(8)cos(9)) =

P (cos($))Q (cos(®) + 2 ] (1) "(cos (%)) Q] (cos(8))cos (mp)

m=1
[3;169] . 0
Taking § = 7/2 we obtain
LEMMA 7.12.
Q,(sin(®)cos(9)) =P (0)Q (cos(®)) +
+2 31 (-1)"p ™ (0) @} (cos (8) ) cos (mp) . 0
o= ,

By differentiating of this formula with respect to ¢ we obtain

LEMMA 7.13.

sin(G)sin(m)QQ(sin(e)cos(m)) =

2y (-l)mmP;m(O)Pl\I:(cos(e))sin(mtp) . 0
m=1
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