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CHAPTER 1 

INTROVUCTION 

In the last two decades much attention has been given to Markov decision 

processes. Markov decision processes were first introduced by Bellman [ 2 J 

in 1957, and constitute a special class of dynamic programming problems. In 

1960 Howard [ 35] published his book "Dynamic programming and Markov process­

es". This publication gave an important impulse to the investigation of 

Markov decision processes. 

We will first give an outline of the decision processes to be investigated. 

Consider a system with a countable state spaces. The system can be con­

trolled at discrete points in time t = 0,1,2, ••• , by a decision maker. If 

at time t the system is observed to be in state i € s, the decision maker 

can select an action from a nonempty set A. This set is independent of the 

state i € S and of the time instant t. If he selects the action a € A in state 

i € s, at time t, the system's state at time t+l will be j € S with proba­

bility pa(i,j) again independent oft. He then earns an immediate (expected) 

reward r(i,a). 

Usually, the problem is to choose the actions "as good as possible" with re­

spect to a given optimality criterion. 

we will use the (e:x:peated) total reward ariterion. 

So the problem is: 

1} to determine a recipe (decision rule) according to which actions should 

be taken such that the (expected) total reward over an infinite time ho­

rizon is maximal; 

2) to determine the total reward that may be expected if we act according 

to that decision rule. 

In first instance the following solution techniques for Markov decision 

processes with a finite state space and a finite action space were availa­

ble: the policy iteration algorithm developed by Howard [35], linear pro­

gramming [11], [13], approximation by standard dynamic programming [35]. 
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A disadvantage (especially for large scaled problems) of the former two me­

thods is that each iteration step requires a relatively large amount of com­

putation. 

Furthermore, the convergence of the method of standard dynamic programming 

is very slow. 

Hence, the construction-of numerical methods for determining optimal solu­

tions has been the subject of much research in this area. Moreover, much 

attention has been paid to the generalization of the model as described by 

Bellman and Howard. Both subjects will be studied in this monograph. 

MacQueen [46] introduced an improved version of the standard dynamic pro­

gramming algorithm by constructing, in each iteration step, improved upper 

and lower bounds for the optimal return vector. His approach yields a rath­

er fast algorithm for solving finite state space finite action space Markov 

decision processes. 

Modifications of the afore mentioned optimization procedures have been given 

by e.g. Hastings [25], [26] who proposed a Gauss-Seidel-like technique and 

Reetz [60] who based his optimization procedure on an overrelaxation idea. 

Modifications have also been given by Porteus [59], Wessels [74], van Nunen 

and Wessels [55], and van Nunen [53], [54]. 

By and by several extensions of the original model were presented. The fi­

nite state space and finite action space restriction was dropped. For 

example Maitra [48] and Derman [14] studied Markov decision processes with 

a countable state space and finite action space, whereas Blackwell [ 5] and 

Denardo [12] already investigated Markov decision processes with a general 

state and action space, 

The restriction of equidistant decisionpointswas dropped as well; see 

Jewell [37], [38]. 

As a remaining restriction, however, a bounded reward structure is assumed 

in the above articles. 

This restriction has been releasedrecently,see Lippman [44], [45], Harrison 

[24], Wessels [75], Hinderer [31], and Hordijk [33]. 

In this monograph we will investigate Markov decision processes on a coun­

tably infinite or finite state space and with a general action space. Fur­

thermore, we allow for an unbounded rewaPd structure, We do not require the 

transition probabilities to be strictly defective.with respect to the usual 
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supremum norm. We assume the existence of a function b: S -+ JR and a positi­

ve function µ: S -+ JR+ := {x € JR I x > O} such that 

the functionµ will be used to construct a weighting function, or a bound­

ing function. Moreover, we assume 

3 V V (') l pa(i,j)µ(j) s: pµ(i) • 
O<p<l i€S a€A 1 j€S 

In order to guarantee the existence of the total expected reward we assume 

the function b on S to be a charge with respect to the transition probabi­

lity structure (see section 4,1). 

These assumptions on the reward and transition probability structure arise 

in fact by a combination and a slight extension of the conditions as pro­

posed by Wessels [75] and Harrison [24]. As will be shown in the final 

chapter the assumptions allow e.g. the investigation of a large class of 

discounted Markov and Semi-Markov decision Processes, Lippman's assumptions 

[45] are covered as well, see van Nunen and Wessels [56], 

We will develop a set of optimization procedures for solving Markov deci­

sion problems, satisfying the described conditions, with respect to the 

total reward criterion. This will be done by using the concept of stopping 

time (see also Wessels [74]), which results in a unifying approach. This 

set of methods includes the procedures for finite state, finite action 

space Markov decision processes as proposed by Howard [35], Reetz [60], 

Hastings [25] MacQueen [46]. A main role in our approach wi11 be played by 

the theory of monotone contraction mappings defined on a complete metric 

space of functions on s. This space will be denoted by V, 

The concept of stopping time will be used to define a set of contraction 

mappings on V. ,Given a decision rule and given the starting state i € s we 

may define the stochastic process {st I t = 0,1,,,.} where st denotes the 

state of the system at time t. Roughly speaking a stopping time is a recipe 

for terminating the stochastic process {st I t ~ O}, For each stopping time 

(denoted by 6) we define the mapping u0 of V by defining (U0v) (i) as the 

supremum over all decision rules of the expected total reward until the 

process is stopped according to the stopping time o, given that the process 

starts in state i € s, while, in addition, a terminal reward v(j) is eamed 
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if the process is stopped in state j € s. u0 is proved to be a monotone con­

tractive mapping on the complete metric space V. 
For stopping times that are nonzero (see section 2.2) u0 will be strictly 

contracting, its fixed point being equal to the requested optimal expected 

total reward over an infinite time horizon (denoted by v*). Hence, the 

fixed point is independent of the chosen nonzero stopping time. This implies 

that for each 

by a sequence 

stopping time 

* nonzero stopping time o, V may be approximated successively 
o o o 

vn := U0vn-l ,starting from any v0 € V. So for each nonzero 

owe have 

0 * V ➔ V 
n 

These results may be formulated alternatively as follows: for each nonzero 

stopping time o, v* is the unique solution of the optimality equation 

The class of described methods may be extended. 

For a special class of stopping times, which we called transition memory­

less stopping times (see section 2.2), the mappings U0 produce the oppor­

tunity of determining in each iteration step a decision rule of a special 

type for which the supremum by applying U0 is attained or approximately 

attained (see chapter 5). Such a decision rule will be called a stationary 

Markov strategy (denoted by f=). We define the mapping Lf of Vin a similar 

way as we have defined u0 , with the difference that the expected reward by 

applying the stationary Markov strategy f= is computed instead of the sup­

remum over all decision rules. 

For transition memoryless nonzero stopping times we define for each 

X € :N = {1,2, ••• } a mapping UiX) of V. 
If the supremum by computing u0v is attained for a stationary Markov stra­

tegy (f=) then 

U (X) 
0 V 

(n) 
:= lim U0 V • 

n--

with X € N , 
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If this supremum is not attained Uil) is defined by using a Markov strategy 

for which the supremum is approximated (see chapter 6). Uil) is neither 

necessarily contracting nor monotone. However, the monotone contraction pro­

perty of the mappings u~ and Lf enables the use of u<l) as a base for suc-
u 6 6 

cessive approximation methods. 

For each transition memoryless nonzero stopping time 6 and each l f! :N u { 00 } 

61 
a sequence vn defined by 

converges to v*. Here f: is chosen such that L:nv!:1 approximates u6v!: 1 
sufficiently well. So each pair (6,l) yields a successive approximation of 

v*. Moreover, the stationary Markov strategy found in then-th iteration of 

such a procedure 
61 

The vectors vn-l 

becomes (E-)~timal for n sufficiently large. 
61 and v enable us to construct upper and lower bounds for 

* n the optimal return V. In addition, the availability of upper and lower 

bounds allows an incorporation of a suboptimality test. The use of upper 

and lower bounds and a suboptimality test may yield a considerable gain in 

computation time, see section 7.3. 

We conclude this introduction with a short overview of the contents of the 

subsequent chapters. 

In the first three sections of chapter 2 some basic notions required in the 

sequel are presented. After the introduction of some notations (section 

2 .1) we discuss in sections 2. 2 and 2. 3 the concepts of stopping time and 

weighted supremum norms respectively. The final section of chapter 2 is 

devoted to some properties of weighted supremum norms. 

In chapter 3 we treat Markov reward processes. (stochastic processes with­

out the possibility of making decisions). In section 3.1 the Markov reward 

model is defined. Reward functions may be unbounded under our assumptions. 

In section 3,2 the concept of stopping time is used to define the contrac­

tion mappings on the complete metric space V (introduced in section 2.3). 

A discussion of the assumptions is the topic of the final section 3.3. 



6 

The study of Markov decision processes starts in chapter 4. After a descrip­

tion of the model {section 4.1), section 4.2 contains the introduction of 

decision rules and assumptions. These assumptions will be a natural exten­

sion of those in chapter 3. Under our assumptions some results about Markov 

decision processes will be proved {section 4.3). The final section (4.4) is 

again devoted to a disC1J,ssion of the assumptions. 

In chapter 5 the concept of stopping time is used to generate a whole set 

of optimization procedures based on the mappings u0 • For each decision rule 

~, not necessarily a stationary Markov strategy, and each stopping time o 
a contractive mapping L; of V will be defined and investigated {section 

5.1). Next, {section 5.2) the operator U0 will be studied. Finally, we will 

present necessary and sufficient conditions for the stopping times under 

which we can restrict the attention to stationary Markov strategies only 

{transition memoryless stopping times), 

In chapter 6 we investigate value oriented successive approximations based 

on the mappings uf•>. The term "value oriented" is used since in each itera­

tion step extra effort is given to obtain better estimates for the total 
00 

expected reward corresponding to the stationary Markov strategy fn. 

Chapter 7 will be used to construct upper and lower bounds for the optimal 

* reward V. In this chapter also a suboptimality test will be introduced. In 

the third section of this chapter we show how our theory may be used in 

the special case of a Markov decision process with a finite state space and 

a finite action space. We indicate the relation with the existing optimiza­

tion procedures. 

In the brief chapter 8 we weaken the assumptions as imposed in chapter 4, 

This weakened version corresponds to the N-stage contraction assumption 

introduced by Denardo [12]. It will be proved that N-stage contraction with 

respect to a given bounding function implies the existence of a new bound­

ing function satisfying the assumptions of chapter 4. 
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we conclude this monograph with--a chapter in which we show that a number of 

specific Markov decision processes is covered by our theory. We will also 

show how a number of the existing approximation methods for certain systems 

of linear equations are included in our treatment of Markov reward proces­

ses (chapter 3). The final part of this chapter consists of an example. In 

this example we treat an inventory problem. 





CHAPTER 2 

PRE LI MINARI ES 

The goal of this chapter will be the introduction of some of the notions 

which play an important role throughout this monograph. 
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First (section 2.1) we will give some notations and we will introduce the 

measurable spaces relevant for the stochastic processes that will be inves­

tigated. 

Next (section 2.2) stopping times are introduced. We will allow for random­

ized stopping times. Several specific stopping times will be described. 

In section 2.3 a bounding functionµ is introduced. The functionµ will be 

used to define a weighted supremum norm. In the following chapters this 

bounding function will appear to be one of the tools for handling Markov 

decision processes with an unbounded reward structure and with a transition 

probability structure that needs not to be contractive with respect to the 

usual supremum norm. 

Using the bounding functionµ a Banach space Wand a complete metric space 

V are defined. 

Finally (section 2.4), we discuss some properties of bounding functions. 

2 • 1. No:t:a:tlon6 

As mentioned in the introductory chapter we study a system which is ob­

served to be in one of the states from a state spaae s at times t = O, 1, ••• 

We assume S to be countably infinite or finite, and represent the states 

by the integers, starting with zero. So if the state space is finite, Sis 

represented by {0,1, ••• ,N}, where N+ 1 is the number of states. If Sis 

countably infinite it is represented by {0,1,2, ••• }. A path is a sequence 

of states that are subsequently visited. 

REMARK 2.1.1. The state O is included in the state space in order to be 

able to deal with processes with defective transition probabilities on 

{1,2, ••• } or {1,2, ••• ,N}. This is done in the usual way by defining for 

i <! 1, p(i,O) := 1 - l p(i,j) and p(O,O) := 1. It follows that O is an ab-
j<!:1 

sorbing state. Therefore, without loss of generality in the sequel we may 

and shall assume that in the state space S the state O is absorbing and the 

transition probabilities satisfy l p(i,j) = 1 for all i Es. 
jES 
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NOTATIONS 2.1.1. 

(i) Sk := S x S x ••• x s, the k-fold Cartesian product of s, so s 1 s. 
00 00 

S := S x S x ••• , S is the set of all paths. 

(ii) Let a E sk, with k ~ n, k,n E JN then a(n) denotes the row vector of 

the first n components of a. 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

ka is the number of components of a. So ka = n if and only if a E Sn. 

The i-th component of a E Sn, n ~ i is denoted by [a]. 1• 
1-

Hence a E Sn may be written as a= ([aJ0 ,[aJ1 , ••• ,[a]k _1). 
a 

y := (a,13) := ([a]O,[a]l,••:_1[a]ka-1'[f3]0, ••• ,[f3]kf3-1), ky=ka+k/3, 

where a,13 E G00 with G00 := u sk. 
k=l 

The term (column) veator is used hereafter for a real valued function 

on s. 
(viii) The term matri:J; is used hereafter for a real valued function on s 2• 

(ix) The (i,j)-th element of a matrix P will be denoted by p(i,j). 

(x) PO is the identity matrix (with diagonal entries equal to one and 

other entries equal to zero). 

(xi) Matrix multiplication and matrix-vector multiplication are defined 

as usual (in all cases there will be absolute convergence). 

(xii) Pn is then-fold matrix product P x P x ••• x P, the (i,j)-th entry 

of Pn is denoted by p(n) (i,j). 

(xiii) Let v,w be vectors, then vs w if and only if v(i) s w(i) for all 

i ES; v < w if and only if vs wand for at least one i ES 

v(i) < w(i). 

measurable space Let S 0 be the a-field of all subsets of s, then the 

(n0 ~F0) is defined to be the product space, with n0 s 00 and F0 is the a­

algebra on n0 generated by the finite products of the a-field S0 • 

In order to be able to use the concept of stopping time in an adequate way 

we extend the measurable space cn0 ,F0 ) to the measurable space cn,F). The 

space cn,F) will play a main role in the sequel. Let the set E := {0,1} and 

let S be the a-field of all subsets of S x Ethen the measurable space 

cn,F) is defined to be the product space with n := (S x E) 00 and Fis the 

a-algebra on n generated by the finite products of the a-field S. 
So n0 contains all sequences of the form 
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whereas O contains all §l;!q\lenCE!§I .. of the form 

2 • 2 • S:topp.lng .umUi 

We now are ready to introduce our notion of stopping time. We will not use 

the term stopping time in the standard way. However, as follows in these­

quel of this monograph, there is a direct relation between our definition 

and the usual one. 

DEFINITION 2.2.1. A (randomized) stopping time is a function o: G00 + [0,1] 

satisfying 

(2.2.1) 0(0) = 11 Va€G [VkSk [o(a(k)) r O] ,._ [o((a,O)) = 1]] • 
"" a 

DEFINITION 2.2.2. The set of all (randomized) stopping times is~-

REMARK 2,2.1. 

(i) Roughly speaking for each a e sk, we will use 1 -o(a) as the probabi­

lity that a stochastic process on S is indicated to stopp at time k -1 

in state [a]k-l given that the states [ab, [a] 1, ••• ,[a]k-l have been 

visited successively. 

(ii) From now on we will use the less formal notation o(a,B), o(i) instead 

of o((a,B)) and o((i)) respectively. 

DEFINITION 2,2.3. 

(i) o €~is said to be a nonrandornized stopping time if and only if 

VaeG o(a) € {0,1}. 
00 

(ii) o e ~ is said to be a memoryless stopping time if and only if 
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(iii) o E t:,. is said to be an entry time if and only if o is nonrandomized 

and memoryless. 

DEFINITION 2.2.4. A nonempty subset G c G,., is said to be a goahead set if 

and only if 

(i) V [ (a ,f3) E G _. a E G] 
a,f3EG"' 

(ii) (0) E G 

(iii) 

NOTATIONS 2.2.1. 

(i) Gn is the goahead set of those sequences of G.,. for which the compo­

nents [a]. are zero for i ~ n, if there are any. So 
l. 

"' n 
Gn := ( U 

k=l 
Sk) u {(a,f3) I a E u 

k=l 

(ii) For a goahead set G we define G(i) by 

G(i) := {a e G I [aJ0 = i}, i E S , 

LEMMA 2,2.1. The characteristic function of a goahead set is a nonrandomized 

stopping time, 

PROOF. Straightforward, 

DEFINITION 2.2.5. o Et:,. is said to be a nonzero stopping time if and only 

if 

□ 
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REMARK 2.2.2. 

(i) A nonrandomized stopping time is nonzero if and only if 

(ii) A nonzero stopping time o € A, which is an entry time, has the follow­

ing property 

V o Ca) 1 • 
aeG00 

DEFINITION 2.2.6. A goahead set is said to be nonzero if and only if Sc G. 

DEFINITION 2.2.7. Let o0 ,o 1 EA then o0 S o1 if and only if 

LEMMA 2.2.2. Let Q be an index set and suppose for each q e Q, G is a go­q 
ahead set. Leto be the with G corresponding stopping time (o is the q q q 
characteristic function of G ). 

Let o-,o+ be defined by 
q 

o- (a) := inf o (a), o+ (a) := sup o (a) 
qEQ q qEQ q 

respectively, then o-,o+ are elements of A. 

o- and o+ corresponds to the g.oahead sets n G , u G respectively. 
qEQ q qEQ q 

PROOF. The proof follows by inspection. 

DEFINITION 2. 2. a. The nonrandomized stopping function -r: fl -+ rt u { 00 } is 

defined by 

(i) -r (w) 1) 

(ii) -r(w) 

□ 
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DEFINITION 2.2.9. A stopping time o is said to be transition memoryless if 

and only if 

V [(k > 1) A (Vk<k [o(a(k)) ,&OJ)] .. [o(a) 
aeG a 

co a 

DEFINITION 2.2.10. A goahead set is said to be transition memoryless if and 

only if the corresponding nonrandomized stopping time is transition memory­

less. 

LEMMA 2.2.3. Memoryless stopping times are transition memoryless. 

We will now give some simple examples of nonzero stopping times. The exam­

ples 2.2.1-2.2.4 are nonrandomized stopping times, which can be expressed 

in terms of goahead sets. Example 2.2.S is a simple illustration of a ran­

domized stopping time. The examples 2.2.2-2.2.S give transition memoryless 

stopping times, see also Wessels [74], and van Nunen and Wessels [SS]. 

EXAMPLE 2.2.1. G := G or in terms of stopping times V o(a) n aeG 
1 else 

o (al = o. n 

EXAMPLE 2.2.2. The goahead set GE is defined by 

00 i-1 
:= u {O}k, GH(i) := { (i,a) I a E 

k=l 
u GH(j) }u{i}, for i ,& O. 

j=O 

EXAMPLE 2.2.3. 

00 

G := S u ( u 
k=2 

with B c s. 

00 

Bk) u { (a, S) I a E s u ( u Bk), a € 

k=2 

EXAMPLE 2.2.4. The goahead set GR is defined by 

00 

u 
k=l 

00 

u 
k=1 



00 00 

GR(i) := {a I a€ u {i}k} u {(a,13) I a€ u {i}k, 13 €GR(O)}, i € s\{o}. 
k=l k=l 

EXAMPLE 2.2.s. c5 is given by Vi€S\{O} c5 (i) = '2 else c5 (a) 1. 

2. 3. We,i.ghted .6 up.1!.emwn no.lUll.6 

DEFINITION 2. 3. 1. A real valued function µ on s is said to be a bounding 

function if and only if 

(i) µ (i) > O, for all i € S\{O} • 

(ii) µ (0) = 0 • 

DEFINITION 2.3.2. Letµ be a bounding function, then Wµ is the set of vec­

tors such that 

(2.3.1) 

REMARK 2.3.1. Note that w(O) 0 for each w € Cl/µ. 

DEFINITION 2. 3. 3. Let µ be a bounding function. Then, for each w € W µ , the 

µ-norm of w is defined by 

kill.L sup µ (i) 
i€S\{O} 

LEMMA 2. 3. 1. The space W with this J.1-norm (weighted supremum norm) is a 
µ 

Banach space. 
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PROOF. The proof is straightforward. D 

DEFINITION 2.3.4. Let the matrix A be a bounded linear operator in Wµ. The 

norm of A is defined by 

IIAII := sup IIAwll • 
µ llwll=l µ 

µ 
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REMARK 2.3.2. 

(i) It is easily verified that if a(0,1) = a(0,2) = ••• = 0 

sup 
ii;;S\{0} 

µ-1 (i) I la<i,j)lµ<j> , 
j€S 

and if this supremum is finite then A is a bounded linear operator. 

(ii) The concept of bounding function is studied in more detail in sec­

tions 2.4, 3.3, 4.4, and 8.1. 

(iii) We refer to Wessels [75], who introduced the concept of weighted sup­

remum norms in this context and to Hinderer [31], who used Wessels' 

idea of weighted supremum norms for defining bounding functions. 

DEFINITION 2.3.S. Let b be a vector with b(0) 

set of vectors V is defined by µ,b,p 

V := {v I (v- (1-p)-1b) i;:W}. 
µ,b,p 'II 

REMARK 2.3.3. Note that also v(0) 

v1 ,v2 € V. 

0, and let p € [0,1). The 

DEFINITION 2.3.6. The met'L'ic d,, on V b is defined by 
,. µ, ,P 

for any v1,v2 € V b • 
'II, ,P 

LEMMA 2.3.2. A set V b with the metric d is a complete metric space. 
'II, ,P 'II 

Unless explicitely mentioned we fix µ, b, and p for the remaining part of 

this monograph. Referring to these fixed µ, b and P. we will omit the sub­

scripts µ, b, p. 

2. 4. Some 11.e.maJr.lUi on boundlng 6une,tlon6 

In this section we give some properties of a bounding functionµ' with re­

spect to the corresponding spaces W , and V , • 
'II 'II 



LEMMA 2.4.1. Suppose S contains a finite number of elements. Let µ0 be a 

bounding function and wn E W (n ~ 0) then 
µo 

[II wn - w 11µ
0 

-+- O] ,. [II wn - w IIµ, -+- 0, for all bounding function µ '] • 

PROOF. For a proof we refer to books on numerical mathematics, see e.g. 
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Collatz [ 8 ], Krasnosel'skii [42]. D 

LEMMA 2.4.2. Suppose S contains a finite number of elements and µ0 is a 

bounding function, then 

(i) 

(ii) 

where Bis a matrix. 

PROOF. The proof of (i) follows directly from the fact that 

[II B 1~
0 

< 1] • lim Bn O , 
n-+oo 

where O is the matrix with all entries zero. The proof of (ii) can be found 

in e.g. Krasnosel'skii [42]. □ 

LEMMA 2.4.3. Suppose µ0 is a bounding function and Bis a nonnegative matrix 

with finite µ 0 -norm, then 

30 ai [IIBnll < 1] •3, [IIBIIµ, < 1]. 
µo µ 

PROOF. For a proof we refer to van Hee and Wessels [29], who proved this 

theorem for (sub-) Markov matrices, but their proof can easily be extended 

to this lemma. □ 



18 

REMARK 2.4.1. 

(i) Note that in lemma 2.4.3 Sis not required to be finite. 

(ii) If Sis countably infinite the linear space W may contain elements 

that are not bounded. If µ(i) ➔ m for i ➔ m then it is also permitted 

for j w (i) j ➔ m. 

(iii) Note that it is not requested that the µ-norm of b exists. If theµ­

norm of b exists then clearly W = V. 
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CHAPTER 3 

MARKOV REWARV PROCESSES 

In this chapter we restrict ourselves to Markov reward processes. So we ex­

hibit our method for the first time in a relatively simple situation. 

After defining the model (section 3.1) we introduce the assumptions on the 

reward structure and the transition probability structure. As mentioned we 

require neither the reward structure to be bounded nor the transition pro­

babilities to be strictly defective. 

Next (section 3.2) we show that each nonzero stopping time o E ~ defines a 

contraction mapping (L0) on the complete metric space V. The fixed point 

appears to be independent of the stopping time. It equals the total ex­

pected reward over an infinite time horizon. In the final section (3.3) we 

discuss the assumptions on the reward structure and the transition probabi­

lities in relation to the bounding functionµ and the function b. 

3.1. The. M<vtkav JLe.WaJLd model 

We consider a system that is observed to be in one of the states of Sat 

discrete points in time t = 0,1, •••• If the system's state at time tis 

i E s, the system's state at time t + 1 will be j E s with probability 

p(i,j), independent of the time instant t. 

ASSUMPTION 3.1.1. 

(i) Vi,jES 0 ,5; p (i I j) s 1 

(ii) ViES I p(i,j) 1 
jES 

(iii) p(O,O) = 1 

For each i Es the unique probability measurel'i on cn0 ,F0) is defined in 

the standard way, see e.g. Neveu [52], Bauer [ 1 J by defining the probabi­

lities of cylindrical sets. 

n-1 
(3. 1. 1) ]Pi ({wo I [wo]o=R-o,[wO]l =R-1,····[wo]n =R-n}) :=oi,R-ok~O p(R-k,R,k+l), 

where n E Z+ and o .. is the Kronecker symbol 
l., J 
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if i j 

else. 

Given the starting state i e Sand the matrix P (with entries p(i,j)) we 

consider the stochastic process {s0 I n ~ O}, where s 0 (w0 ) = [w0 J • So 
,n ,n n 

s 0 is the state of the process at time n. The stochastic process ,n 
{s0 I n ~ O} is a Markov chain with stationary transition probabilities. ,n 
See e.g. Ross [62], Feller [17], Karlin [39], Cox and Miller [ 9], Kemeny 

and Snell [ 40]. 

For each stopping time & e 6 and each starting state i e S we define in a 

similar way the unique probability measure JP. ,, on (S'l,F) by giving for 
1., u 

n e z+ 

with R,k e s and ~ e E. 

This defines for each i e S and & e 6 a stochastic process { (s ,e ) I n ~ 0}, 
n n 

where sn(w) := in' en(w) := dn. 

So sn , en are the state and the value of en at time n. 

REMARK 3.1.1. The stochastic process {(sn,en) In~ O} is not a Markov 

chain since the value & (a) may depend on the complete history 

([aJ0 ,[aJ 1, ••• ,[a]k _ 1) for each a e G=. 
a 

Formula (3. 1. 2) shows the connection between Pi and JP i, 6 • 

For each we S'l, w = ((i0 ,d0 ),(i 1,d1) •• ) we define w0 by w0 := (i0 ,i1 ,i2 , •• ). 

For B0 e F O we define the set B e F by 

It is easily verified that for s0 e F O and each & e 6 we have for i e s 

(3.1. 3) P.(B0 ) =JP. ,,(B) • 
l. i,u 
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Let f 0 be a measurable function on (!'20 ,F0). The function f on (!'2,F) is then 

defined such that 

It follows from formula (3.1.3) that 

where Ei f 0 , Ei,lif denote the expectation of fo and f with respect to the 

probability measures Pi and Pi, Ii respectively. 

In the sequel we omit the subscript O in f 0 • The process {s0 ,n In~ O} 

will thus be denoted by {s I n ~ O}. n 

NOTATION 3. 1. 1. By Ef, Elif we denote the vector with components Ei f, Ei,lif 

respectively. 

We now state the assumptions on the reward structure and the transition 

probabilities of the system considered in this section. Therefore, we first 

introduce the reward function. At each point in time a reward is eamed. We 

assume this reward to depend on the actual state of the system only. Sothe 

reward function r is a vector. 

ASSUMPTION 3.1.2. 

(r - b) € IJI • 

ASSUMPTION 3.1.3. 

00 

ASSUMPTION 3.1.4. 

II P II < 1 • 

ASSUMPTION 3.1.S. 

(Pb - Pb) € W .• 
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REMARK 3.1.2. 

(i) Since b(O) 

r(O) = O. 

Oandµ(O) 

(ii) If b ¢ W, then r ¢ W. 

O, assumption 3.1.2 implies that also 

(iii) In terms of potential theory (see e.g. Hordijk [33]) the second as­

sumption states that bis a charge with respect to P, which implies 

the existence of the total expected reward over an infinite time ho­

rizon. 

(iv) Assumption 3.1. 4 means that the transition probabilities are such 

that the expectation of µ (s 1), with respect to P. is at most IIJP II•µ (i). 
- i 

This implies that the process has a tendency to decrease its µ-value. 

(v) The final assumption states that, given the starting state i 0 € s, 
the difference between the expected one-stage reward and Pr(i 0 ) lies 

between -Mµ (i ) and Mµ (i ) for some M € lR + and all i € S. 
0 0 0 

(vi) Note that if b € W the assumptions 3.1.2-3.1.S may be replaced by 

0(a) r € w, 
(bl IIP II < 1. 

LEMMA 3.1.1. 

(Pr - pb) € W 

PROOF. II Pr - pb II S: II Pb - pb II + 211 r - b II =: M1 , which is finite according to 

the assumptions 3.1.2-3.1.S. 

LEMMA 3. 1. 2. For M1 as defined in the proof of lemma: 3. 1. 1, we have 

n = 1,2, ••• , 

with p 0 := max{IIPll,p}. 

PROOF. The proof proceeds by induction.The statement is true for n = 1. 

Suppose it is true for arbitrary n ~ 1. Using the assumptions 3.1.2-3.1.5 

we then have 

□ 

□ 



LEMMA 3.1. 3. 

V iES lim (P~) (i) 
~ 
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0 • 

PROOF. The proof is a direct consequence of assumption 3.1.3 and the fore-

going lemma. 

For each n :2: 1 we define the vector V n by 

(3.1.4) 

LEMMA 3. 1.4. 

V 
n 

PROOF. The proof follows by inspection. 

□ 

□ 

Clearly Vn(i) represents the total expected reward over n time periods when 

the initial state is i Es. 

THEOREM 3 • 1. 1. 

lim V E V • 
n-+oo n 

00 

PROOF. The convergence of l Pnr follows from assumption 3.1.3 and 3.1.2, 

since, 

I 
n=O 

n 
P r I 

n=O 

n=O 

00 

Pnb + l Pn(r - b) • 
n=O 

We now have by lemma 3.1.2, 

00 00 00 00 

, n -1 n n , n n. , n-1 -2 
II l Pr- (1-P) bll =II l (P r-p b) II~ l IIP r-p .oil~ l M1np 0 •M1 (1-p 0 ) • 

n=O n=O n=O n=O D 
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DEFINITION 3.1.1. The total expected reward vector Vis defined by 

3. 2. Con:tlta.cti.on mapplng~ and ~:topplng .ti.mu 

LEMMA 3.2.1. Let v E V then 

(i) Pnlvl exists for all n E £+, 

(ii) lim (Pnlvl> (i) = O, i Es. 
n-+«> 

-1 
PROOF. v E V implies that v can be written as v = (1 -p) b + w where w E W. 

So Pn Iv I S ( 1 - p) -lpn I b I + Pn I w I which is defined. Moreover, since 
00 00 

l Pnlbl and l Pnlwl exist we find part (ii) of the lenma. 
n=O n=O 

DEFINITION 3.2.1. The mapping Ll of V is defined by 

L1v := r + Pv, V € V • 

LEMMA 3.2.2. 

(i) 

(ii) 

(iii) 

L 1 maps V into V. 
L1 is a monotone mapping. 

The set { v E V I II v - ( 1 - p ) - lb II s 

self by L1 • 

-2 
M1 (1 - p) } is mapped into it-

(iv) L1 is strictly contracting with contraction radius II P II. 

(v) The unique fixed point of L1 is v. 

PROOF. 

(i) 
-1 

L1 v = r + Pv = r + P ( ( 1 - p) b + w) , with w E W. So 

-1 -1 -1 II L 1 v - ( 1 - p) b II = II r + ( 1 - p) Pb+ Pw - ( 1 - p) b II 

S II b + ( 1 - p) - lPb - ( 1 - p ) - lb II + II Pw II + II r - b II 

s II (1-p)-1 (Pb-Pb) ll+IIPll•llwll+llr-bll 

= (1-p)-111Pb-pbll+IIPll•llwll+llr-bll < 00 

□ 
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The proof of part (ii) is trivial. 
-1 -2 

(iii) Let llv - (1-p) bll S M1 (1-p 0 ) then 

-1 -1 IIL1v-(1-p) bll=llr+Pv-(1-p) bllS 

-1 . -1 -1 
SIIP(v-(1-p) b)ll+ll(l-p) Pb-(1-p) b+rll 

(iv) 
-1 

Let v 1 , v 2 E: V then v 1 , v 2 can be given by v 1 = ( 1 - P ) b + w 1 and 
-1 w v2 = (1-p) b + w2 respectively where w1 ,w2 E: • So v 1 -v2 =w1 -w2 , 

thus 

By choosing v1 and v2 such that w1 = JJ and w2 = 0 equality is.ob­

tained. 

The last part of the leDDDa follows directly from 

00 

L1v = r + P( l Pnr) = 
n=O 

r + l 
n=1 

00 

Pnr = l Pnr = V 
n=O 

00 

where the interchange of sunmations is justified since l Pnlrl < 00 .D 
n=O 

Now we return to the concept of stopping time. Note that the stopping func­

tion Ton O is a random variable. So we can define the random variable sT 

by 

if T = n , 
(3.2.1) 

if T = 00 

Given the starting state i E: Sand the transition probabilit~es the distri­

bution of T is uniquely ·determined by the choice of c5 E: ti.. 
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LEMMA 3.2.3. Leto€~ be a nonzero stopping time, then 

PROOF. The proof follows directly from the definition of T and the defini-

tion of nonzero stopping time. D 

DEFINITION 3.2.2. Leto€~. the mapping L0 of Vis defined component-wise 

by 

T-1 
(Lov)(i):=E. o[ l r(sk) + v(s,)], 

J.' k=O 
i € s • 

REMARK 3.2. 1. Note that as a consequence of the definitions of o and V, 

(Lev) (0) = 0 for all v € V. 

EXAMPLE 3. 2. 1. Let o € ~ be the nonrandomized stopping time that corres­

ponds to the goahead set Gl. and let v € V then 

r(i) + l p(i,j)v(j) • 
jES 

EXAMPLE 3.2.2. Leto€~ be the stopping time that corresponds to the go­

ahead set GH and v € V then 

r(i) + l p(i,j) (L0vl (j) + l p(i,j)v(j) • 
j<i j~i 

EXAMPLE 3.2.3. Leto€~ be the stopping time that corresponds to the go­

ahead set GR then 

(1-p(i,ill- 1r(i) + (1-p(i,i))-l l p(i,j)v(j), i fO. 

jfi 

DEFINITION 3.2.3. The matrix P0 is defined to be the matrix with (i,j)-th 

element (p0 (i,j)) equal to 

"" 
== I JP. o<s 

n=O J.' n 
j, T n) • 
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LEMMA 3. 2. 4. Let II E fl be a nonzero stopping time then 

P11 := IIP 15 II s (1-inf ll(i)) + (inf ll(i))IIPII < 1. 
iES iES 

co 

PROOF. First note that II P II II is finite, since II P 11 11 s l II Pn II < co (assump-

tion 3.1.4). n=O 

For II E fl we define the stopping time ISM E fl by 

t,.i 
co 

if a E u (S\{O})k 

IIM(a) == k=M+l 

else • 

Now, 

since 

co 

I II P II II - II P II II I s l II Pn II • 
M n=M 

So it suffices to prove the lemma for stopping times ISM. This will be done -c 

by induction with respect to M. 

Let /ln c fl be the set of stopping times with 

fl := {II E fl I ll(a) = n 0 for all a E u 
k=n+l 

K 
(S) } • 

So 1::.0 only contains the stopping times with ll(i) = O for all i Es\. For 

II e 1::.0 we have II P II II = 1. 

Suppose II E 1::.1 is a nonzero stopping time, then 

(1-11 (i))µ(i) + II (i) l p(i,j)µ (j) 
jES 

s [(1 -11 (i)) + II (i)II P 11]µ(1) < I 
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Since .S € ti. 1 is supposed to be a nonzero stopping time, there exists a mun­

ber e: > 0 such that .S (i) > e:, for all i € s which implies II P,s II = P,s < 1. 

Now we state the induction hypothesis: Suppose for arbitrary n ;;: 1 

II P,s II S 1 on li.n and II P,s II < 1 if .S € li.n is nonzero • 

Let .S € li.n+l, we define .Si (a) := .S (i,a) for i € S and a € c;.,.. It is easily 

verified that .S . € ti. • 
l. n 

Now for each i € s we have 

n+1 
p 6 (i,j)µ(j) = l l Pi ,s<sm = j, T = m)µ(j) 

jt::S m=O ' 

n+1 
+ l Pi ,s (sm = j, T = m)]µ(j) 

DF1 1 

n+1 
= (1 - .S(i))µ(i) + .S(i) l l l p(i,k) " 

j€S DF1 keS 

(1 - .S (i))µ(i) + 

n 
+ .S(i) l p(i,k) l l Pk ,s (s =j, •=m)µ(j) 

keS j€S DFO 'i m 

S (1 - .S (i))µ(i) + .S (1) l p(i,k)µ(k) 
keS 

s; (1 - .S(i))µ(i) + .S(i)IIPll)µ(i) • 

So if .S € li.n+l is a nonzero stopping time then 

This completes the proof. D 
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LEMMA 3,2, 5, Let 6 € 6 then LIS V = V, 

PROOF, We first mention a property of Markov chains which holds for non-anti­

cipating stopping mechanisms 

Ejr (sk) = Ei ,c6r (sT+k> I ST = j l 

Consider for each i 1a s 

T.-1 
(L6v) (i) = Ei l l r(sk) + V(sT)] 

' k=O 

T-1 oo 

= Ei 6[ l r(sk)] + l l Pi 6 (sn =j, T =n)V(j) 
' k=O n=O j€S ' 

T-1 oo oo 

=Eiil r(sk)]+ l l Pi 6 (sn=j,T=n) l Ejr(sk) 
' k=O n=O j€S ' k=O 

T-1 oo oo 

=Ei i l r(sk)]+ l l l Pi 6 csn=j, T=n)Ejr(sk) 
' k=O n=O j€S k=O ' 

T-1 
=Ei 6[}: r(sk)] + 

' k=O 

co co 

+ l l l Pi 6(s =j, T=n)Ei .,[r(s kl Is = j] 
n=O j€S k=O ' T ,u T+ T 

T-1 oo oo 

= Ei i l r(sk) J + l Ei 6r(sT~k) =Ei 6 l r(sk) =V(i) 
, k=O k=O I , k=O 

where the interchange of summations is justified by the fact that 

00 

l Eilr<sn>I <co. 
n=O 

LEMMA 3.2.6. Let 6 € 6 then 

(i) L6 maps V into V. 

(ii) L6 is a monotone mapping. 

(iii) L6 is strictly con·tracting if and only if 6 is nonzero. 

(iv) The contraction radius of L6 equals P 6 = II P 6 II, 

D 
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{ I -1 -2 
(v) The set v € V II v- (1-p) bll s (1 -p 0 ) M'} is mapped by L0 in it-

2M1 
self, where M' := r:-;;- and M1 is defined as in the proof of lennna 

0 
3. 1.1 by M1 := II Pb - Pb II + 211 r - b II. 

PROOF. The proof of (i) follows from lennna 3.2.S and theorem 3.1.1; since 

V € Veach v € V may be written as v = V + w with w € W. Now L0v=L0 (V+w) = 

= L0V + P0w = V + P0w € V. The monotonicity of L0 is trivial. 

To prove (iii) we first note that v1 ,v2 € V iuply that (v1 - v2), 

(L0v 1 - L0v2 ) are elements of W. Moreover v 1 ,v2 may be given by v 1 =V + w1, 

v2 = V + w2 with w1,w2 € W. So 

L0 is strictly contracting if and only if o is nonzero follows from lennna 

3.2.4. The contraction radius equals II P0 II as is verified by choosing 
-1 

v 1 = V + µ and v2 = v. The last assertion follows from II v- (1 -p) b II s 

SM1 (1-p )-2 soeachv€ {v€ VI llv- (1-p)- 1bll:S (1-P )-2M1 lmaybe 
0 0 

written as v = V + w, where the µ-norm of w €Wis at most 

Now 

-1 -1 IIL0v- (1-p) bll = IIL0 (V+w) - (1-p) bll s 

-1 
sllv-(1-p) bll+IIPoll•llwll 

-2 -2 
S M1 (1 -p 0 ) +p 0 (Ml +M') (l -P 0 ) = 

-2 -2 = ((1 +p 0)M1 +p0M') (1-p~) S M' (l -p 0 ) • □ 

THEOREM 3.2.1, For any nonzero stopping time o € 6 the mapping L0 has the 

unique fixed point V (independent of o). 

PROOF. The proof follows directly from the fact that Vis a couplete metric 

space and the foregoing lennnas. □ 



LEMMA 3.2. 7. 

II P0 II =: 
2 
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(ii) Suppose o 1,o 2 are nonrandomized nonzero stopping times corresponding 
1 2 to the goahead sets G and G then 

Gl c G2 ,. o1 $ o2 and thus p0 ~ p0 
1 2 

(iii) Let Q be a set of indices, let o correspond to the nonzero goahead set 
q 

G then g 
p +$sup po 

0 qE:Q q 
and p 

0 

LEMMA 3.2.8. Leto E: n be nonzero, v~ E: V and v~ := 

(i) 0 
V +V (in µ-norm) n 

(ii) 0 $ 0 0 + V LovO VO ,. V (in µ-norm) n 

(iii) 0 
~ 

0 0 t V LovO VO ... v (in µ-norm) n 

where the convergence is component-wise. 

PROOF. The proof of (i) is a direct consequence of theorem 3.2.1, whereas 

parts (ii) and (iii) follow from the monotonicity of the mapping L0 and 

theorem 3.2.1. □ 

So the determination of the total expected reward over an infinite time 

horizon, v, may be done by successive approximation of V by v0 , with arbi-
n 

trary nonzero stopping time o and arbitrary element vi of V. 
Particularly if o1 , 08 , OR are the nonrandomized nonzero stopping times 

corresponding to the goahead sets G1 , ~• GR respectively, the following 

well-known successive approximations converge to the return vector V 
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(i) 

(ii) 

(iii) 

component-wise defined by 

oH o 
:= r(i) + 2 p(i,j)v (j) + 2 p(i,j)v Hl (j), 

j<i n j~i n-

oH 
with v0 e Vi 

0 
v R is component-wise defined by 

n 

i E S 1 

0 OR -1 -1 
vn (i) := (1-p(i,i)) r(i) + (1-p(i,i) 2 p(i,j)v ~l (j), i E S 1 

j~i n 

0 
Furthermore if in each of these approximations v0 is chosen as required in 

lemma 3.2.S(ii) or (iii) the convergence will be monotone. 

3. 3. A ai..6c.Uli-6-i.on. on. .the a.6-6ump.t-i.oru. 3. 1. 2-3. 1. 5 

The following lemmas will clarify some of the relations between the bound­

ing functionµ and the function b (remind remark 3.1.2(vi)). 

LEMMA 3.3.1. Suppose 3M'EJR+ Vies [b(i) ~ -M'µ(i:)] then there exist a p', 

0 < p ·• < 1 and a bounding function µ ' such that 

(3.3.1) 

(3.3.2) 

IIPll,Sp'<l µ 

II rllµ, < "' • 

PROOF. Choose M3 := max{211Pb-pbll •(1·-p )-1 ,2M'}, p' := p + ~(1-p) and µ 0 • 0 0 

µ' (i) := b(i) + M3µ(i), ti:ien clearlyµ• is a bounding function. Now 

llrll , 
µ 

+ 

sup (Ir (i) I) (b (i) + M3µ (i)) -l 
iES\{O} 

sup ( lb (i) I) (b (i) + M3µ (i)) -l 
iES\{0} 

sup <lr(i) -b(i) I> (b(i) +M3µ(i))-l <"' • 
ieS\{0} 



Furthermore 

s pb + II Pb - pb II • µ + P M3µ µ· 0 

:!, p 1µ I • 

In a similar way the following lelllllla can be proved. 

LEMMA 3.3.2. Suppose 3M'E'.IR+ ViES [b(i) s M'µ(i)]; then there exist a P', 

0 < p' < 1 and a bounding functionµ' such that (3.3.1) and (3.3.2) are 

satisfied. 
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□ 

The latter two lemmas express that if the reward function is bounded from 

one side (with respect to the weighting factors µ(i)), a new bounding func­

tionµ' can be defined such that the Banach space Wµ, contains b, r, Vn and 

v. However, for the existence of such a bounding functionµ•, the condition 

that bis bounded from one side (with respect toµ) is essential, as is 

illustrated by the following example. 

EXAMPLE 3. 3.1. S 

r(O) = O. Let i 0 

:= {0,1,2, ••• }, p(O,O) = 1, ViES\{O} p(i,O) = 1-p, 
i 2 := min { (i + 2) > p}, if i 0 is even then we redefine 

iE'.N 
i 0 := i 0 + 1. 

For all O < i < i 0 the rewards and transition probabilities are given by 

r(i) = O, p(i,i) = p, p(i,j) = 0 for j -1- i and j -1- O. For i > ~i0 , we. 

choose 

with 

p(2i,2i+2) =p(2i-1,2i+1) =p(l-ai) , 

p(2i,2i + 1) =p(2i -1,2i +2) =Pai , 

r(2i+1) 

b r; µ(i) lfori-/-0. 

p(2i,j) 0 otherwise; 
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We clearly have II P IIµ = p • 

Moreover it is easily verified that 

and 

co 

l l p(n)(2i,j)lr<j)I s 
n=O j€S 

co 

-i 
p 

co 

r 
n=i 

-2 
n 

l l P(n) (2i+1,j)lr(j)I s p-(i+l) 
n=O j€S 

It can also be verified that 

vi€S I}: pCi,j)b(j) - pb(i) I o • 
j 

So the assumptions 3.1.2-3.1.S are satisfied. 

co 

r 
n=i+l 

-2 
n 

However, no bounding functionµ• exists for which P' < 1 and llrl~, < co. 

This follows since r(2i) = (i)-2p-i, r(2i+1) = -(i+1)-2p-(i+l) for 

i > ~i0 implies that an eventual bounding functionµ• should satisfy 

1 -i -2 
µ' c21> ~ i P c1> =: µ0 c2i> 

for some M € JR+ and i > ~i0 • 

Assume the existence of a bounding function µ' and a p' < 1 such that 

(3.3. 3) 

We define 

µ' ~ .!_ Pµ' p I 

Then, substituting µ0 in the right hand side of (3.3.3) yields, for i > 2i 1 , 

the condition 
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with S := ¾,c 1 ; p') > 1. 

Substituting µ1 (i) in (3.3.3) yields for i > 2i 1 

Iterating in this way proves that no bounding function exists. 

REMARK 3. 3.1. 

(i) It is easily verified that the assumptions 3.1.3 and 3.1.4 do not im­

ply assumption 3.1.5. By replacing the rewards in the above example by 

lrl the assumptions 3.1.3 and 3.1.4 remain satisfied whereas assumption 

3. 1. 5 fails. 

(ii) If bis bounded from one side (in µ-norm) it follows from lemma 3.3.1 

or 3.3.2 that r is a charge with respect to P, since 

co 

I Pnlrl II , -1 
~ (1-p'J llrll, , 

n=O 
µ µ 

co 

I Pnlrl(i) ~ c 1 - p , > - 11 r <i> I cµ, <i> > - 1, i f, 0 • 
n=O 

In this case assumption 3.1.3 may be replaced by the assumption that 

bis bounded from one side (in µ-norm). 





CHAPTER 4 

MARKOV VECISION PROCESSES 

As mentioned in chapter 1 we consider in this and the following chapters 

Markov decision processes. 
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In section 4.1 the model is described. Next, in section 4.2, decision rules 

and the assumptions on the transition probabilities and on the reward struc­

ture will be introduced. Again the assumptions will allow for an unbounded 

reward structure. They are in fact a natural extension of the assumptions 

3.1.2-3.1.5 to the case in which decisions are permitted. A number of re­

sults about Markov decision processes will be proved under our assumptions 

(section 4.3). For example, the existence of €-optimal stationary Markov 

decision rules will be shown. For Markov decision processes with a bounded 

reward structure this result has also been obtained by Blackwell [ 5] and 

Denardo [ 12]. 

Harrison [24] proved the same for discounted Markov decision processes with 

a bounding function µ(i) = 1 for i e s\{O}. Moreover, in section 4.3 we 

prove the convergence (in µ-norm) of the standard dynamic prograllllDing algo­

rithm. 

The final section will be devoted again to a discussion on the assumptions. 

4.1. The MaJt.k.ov decl6ion model 

We consider a Markov decision process on the countably infinite or finite 

state space Sat discrete points in time t = 0,1, •••• In each state i e S 

the set of aatione available is A. We allow A to be a general set and suppose A 

to be a a-field on A with {a} e A if a e A. If the system's actual state 

is i e Sand action a e A is selected, then the system's next state will be 

j es with probability pa(i,j). 

ASSUMPTION 4.1.1. 

(ii) 

(iii) 
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(iv) pa(i,j) as a function of a, is a measurable function on (A,A) for each 

i,j ES. 

If state i ES is observed at time n and action a EA has been selected, 

then an immediate (expected) reward r(i,a) is earned. So frOIJl now on the 

reward function r is a real valued measurable function on S x A. 

The objective is to choose the actions at the successive points in time in 

such a way that the total expected reward over an infinite time horizon is 

maximal. A precise formulation will be given in the following sections. 

It will be shown later on (chapter 9) that our model formulation includes 

the discounted case (with a discounted factor e < 1), since e may be sup­

posed to be incorporated in the pa (i, j) • The same holds for semi-Markov 

decision processes where it is only required that tis interpreted as the 

number of the decision moment rather than actual time. For semi-Markov de­

cision processes with discounting, the resulting discount factor depends on 

i,j and a E A only, and may again be supposed to be incorporated in the 

transition probabilities pa(i,j). 

4. 2. Vew-lon IWlu and a.6.6 umpt,i,on6 

In the first part of this section we are concerned with the concept of de­

cision rules. Roughly, a decision rule is a recipe for taking actions at 

each point in time. A decision rule will be denoted by w. The action to be 

selected at time n, according tow, may be a function of the entire history 

of the process until that time. We allow for the decision rule w to be such 

that for each state 1 Es actions are selected by a randan mechanism. This 

random me.chanism may be a function of the history too. 

DEFINITION 4.2.1 •. 

(i) An n-stage history hn of the process is a (2n + 1)-tuple 

hn := Cio,zo,i1,z1,···•zn-1'in), it ES, zt E A •. 

(ii) Hn, n :.:: 0 denotes the set of all possible n-stage histories. 

(iii) s is the product a-field of subsets of Hn generated by S0 and A. 
n 



DEFINITION 4.2.2. 

(i) Let a be a transition probability of (H ,S) into (A,A), n ~ O. So 
""Il n n 

(a) for every hn E Hn 

(b) for every A' E A 

4n<•lhn) is a probability measure on (A,A); 

a (A'I•> is measurable on (H ,S ), 
,i n n 

Then a deaision rule (n) is defined to be a sequence of transition 

probabilities, n := (q0 ,q1,q2, ••• ). 

(ii) The set of all decision rules is denoted by D. 

DEFINITION 4,2.3. 
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(i) A decision rule n = (q0 ,q1, ••• ) is called nonrandorrrized if (c•lhn) 

is a degenerated measure on (A,A) for each n ~ O, i.e. 

3aEA [4n (alhn) = 1]. The set of all nonrandomizeddecision rules is N. 

(ii) A decision rule n = <4a,q1, ••• ) is said to be Mazokov or memoryless 

if for all n ~ 0 4n<•lhn) depends on the last component of hn only. 

(iii) The set of all Markov decision rules is denoted by RM. 

(iv) A decision rule is said to be a Mazokov-strategy if it is nonrandomi­

zed and Markov. 

(v) The set of Markov strategies is denoted by M. 
(vi) A Markov strategy can thus be identified with a sequence of func­

tions {f In= 0,1, ••. } where f is a function from S into A. Such 
n n 

a function is called a (Markov) poliay. The set of all possible po-

licies is denoted by F. 

(vii) A Markov strategy is called stationary if all its component policies 

are identical. We denote by f= the stationary Markov strategy with 
= component f. F denotes the set of all stationary Markov strategies. 

(viii) For n = (f0 ,f1,. •• ) EM and g E F we denote by (g,n) := (g,f0 ,f1 , .. ) 

the Markov strategy that applies g first and then applies the poli­

cies of n in their given order. 

For n EN we define the measurable space ( (S x A) n ,S~ ,A> , where S~ ,A is the 

product a-field generated by S0 and A. The product space cn0 ,F0 ) is the 
,A ,A 

space with n0 A= (S x A)= and F0 A the product a-field of subsets of 
00 , , 

(S x A) generated by S0 and A. For each n = (4a,q1, ••• ) and each n E :N we 

define for ((S x A)n,s~ A) and (S x A,S ) the transition probability on 
n n , O,A 

( (S x A) ,SO,A) as follows 
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p (BX A' I n,n+l 

where BE S0 and A' e: A. 

I 
ie:B 

/n(in 1 i) f ~+l (da I 

A' 

For each decision rule 7T € D and each starting state io € S (as a conse­

quence of the Ionescu Tulcea theorem, see e.g., Neveu [52]), the sequence 

transition probabilities {pn,n+l \i -defines a unique probability measure Pro 
on cn0 ,A,FO,A). So we may consider the stochastic processes {(sn,an) J n:2:0} 

and {s J n 2: O} where s and a are the projections on the n-th state 
n n n 

space and n-th action space respectively. This means that sn is the state 

and a is the action at time n. 
n 

It may be verified that for the simplified situation considered in chapter 

3, the Ionescu Tulcea theorem would yield the probability measure JP .• 
io 

NCYrATIONS 4.2.1. 

(i) 
1T 

Let v be a real valued function on (n0 ,A,FO,A). We denote byEiv 

expectation of v with respect to the probability measure JP~. 
J. 

the 

(ii) E7Tv denotes the vector with i-th component equal to E:v. 

(iii) If 7T ~Dis a stationary Markov strategy 7T = {f,f, ••• } we may useE7, 

(iv) 

(v) 

(vi) 

J. 

Ef instead ofE~, JI? respectively. 
f J. 

By r we denote the vector with components r(i,f(i)). 

By Pf we denote the matrix with (i,j)-th element equal to pf(i) (i,j). 
0 For each 7T € D we define P (7T) := I, where I is the identity matrix, 

and the matrix 

to JP~ (s = j). 
J. n 

So if 7T € M; 1T 

Pn(7T), (n > 0) is the matrix with (i,j)-th entry equal 

f f f 
(f f ) th n() p Op 1 ... P n-1 0, 1, f 2, .. • en P 1T = 

The stochastic process {s ,a J n 2: O} is not necessarily a Markov process 
n n 

since the decision rules 7T € D may be such that actions are selected depend-

ing on the complete history of the process. If 7T is Markov then the stochas­

tic process {sn J n 2: O} is a, not necessarily stationary, Markov chain. 

Moreover, if 7T is a stationary Markov strategy, then the stochastic process 

{s In :2: O} is a Markov chain with stationary transition probabilities. 
n 
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As mentioned, we will use the expected total reward over an infinite time 

horizon as a measure for the effectiveness of a decision rule ,r·• If at 

time n the history hn := {i0,z0 ,i1,z1, ••• ,in} has been observed and action 

zn E A is selected at that point in time, then the total reward (return} 

over n time periods is 

Without assumptions on the reward function rand the transition probabili­

ties pa(i,j} there is of course no guarantee that under an arbitrary deci­

sion rule ir, Vn has a finite expectation. In order to guarantee the exis­

tence of the expectation of Vn and the total expected reward over an infi­

nite time horizon for an arbitrary decision rule ,r we generalize the assump­

tions 3.1.2-3,1,5 to the situation in which decisions (actions} are allowed. 

ASSUMPTION 4,2.1, 

ASSUMP'I'ION 4,2,2, 

00 

l Pn (,r} I b I < 00 • 

n=O 

ASSUMPTION 4.2.3. 

ASSUMP'I'ION 4,2,4, 

REMARK 4.2.1, 

(i} Note that if A contains one element only, the assumptions coincide 

with those in section 3.1. 
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(ii) As a consequence of the definition of the bounding function µ and the 

function b assumption 4.2.1 implies that V r(O,a) = O. Since for 
aEA 

i = 0 the reward and the transition probabilities are in fact indepen-

dent of a E A the actions may be identified. 

(iii) rf may be written as rf = b + yf where yf E W. 
(iv) f 

We define p* := sµp {IIP II} and p 0 := max{p,p*}. 
fEF 

LEMMA 4.2.1. 

(i) 3M€'.IR.+ 
f - prg II s M , vf FIIPb ,gE 

(ii) 3M€'.IR.+ vf F IIPfrg 
,gE 

- pb II s M , 

(iii) 3M€1R.+ vf,g,hEF IIPfrg - prh II S M 

PROOF. We will only prove part (iii) since the proof of the other parts 

proceeds along the same lines 

LEMMA 4.2.2, 

< 0, • 

f 
PROOF. For 11 = (f0 ,f1 , ••• ) , Pn(11) Ir nl 

n-1 f 
IIPn(11)IIS IT IIPkllsp~ 

k=O 

f f 

□ 

Since y n E W for all fn E F we have II Pn (11)y n II S P~M1 , where M1 is chosen 

in accordance with assumption 4.2.1. 
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So, 00 f 
I 11Pn(1T)y nil -1 :. (1-p*) Ml 

n=O 

which implies 

00 f 
I Pn(1T) jy nl :. -1 

( 1 - p *) M1 • µ • 
n=O 

This yields the result 

00 f 00 00 f 
I Pn(1T) Ir nl :. I Pn(1T) jbj + I Pn(1T) IY nl < 00 • D 

n=O n=O n=O 

REMARK 4.2.2. In terms of potential theory (see e.g. Hordijk [33]).Lemma 

4.2.2 says that the reward structure is a charge structure with respect to 

the transition probabilities. 

4. 3. Some pJr.OpeJLti..e-6 o 6 Ma1r.k.ov decw-lon plt.oc.e-6.6 u 

In the previous section we have introduced the assumptions on the reward 

and the probability structure. In this section a number of results in Markov 

decision theory will be proved under our assumptions. We shall first prove 

that the total expected reward over an infinite time horizon for every de­

cision rule 1T ED is an element of the complete metric space V. Let 1T be an 

arbitrary decision rule, Given the initial state i ES the decision rule 

determines the unique probability measure JP: on cn0 ,A,FO,A) as described in 

the previous section. 

LEMMA 4.3.1. For each 1T € D, 11Pn(1T) II~ p~. 

PROOF. The proof proceeds by induction. The statement is trivial for n = O, 1. 

Suppose it is true for some n ~ 1, then 

l JP~(s+l=j)µ(j) 
jES l. n I I 

H A 
n 

I 
jES 

q (dajh )pa (s ,j )1? ~ (dh ) µ (j) 
n n n l. n 
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s f P~(dhn}p*µ(sn) 

H 
n 

l pa(sn,j}µ (j} 
j 

LEMMA 4.3.2. There exists a M € JR.+" such that for all ,r € D, and all 

n=0,1,2, ••• 
,r n. n-1 

IIE r (s , a } - p .o II s p 0 M (n + 1} • 
n n 

□ 

PROOF. The proof proceeds along the same lines as the proof of lemma 3. 1 • 2 • 

Choose M := i2M1 + M2} where M1 is such that Vf€F llrf - bll s M1 and M2 is 

such that IIP rg - prhll s ~ for all f,g,h € F. Then the proposition is true 

for n = 0,1, as follows from lemma 4.2.l(ii}. Assume it is true for an ar­

bitrary n ~ 1, then we have to prove that it is true for n + 1. We first 

note that for all n ~ 1 and for all i € S 

as follows from 

a 

-pr(s ,a)] 
. n n 

,r ~ n 
SEi[ I. p (s ,j)(b(j)+M1µ(j))-pr(s ,a)] 

j€S n n n 

,r 
S Ei[pb(s ) +M2µ(s ) +p M1µ(s ) -pr(s ,a)] 

n n * n n n 



Using this inequality and the induction hypothesis yields 

pE~r(s ,a ) +E11[r(s a ) -Pr(s ,a )] 
i n n i n+l' n+l n n 

~ P2-E~r(s 1,a 1) + 2p~M\l(i) 
i n- n-

In a similar way it may be proved that 

Let the decision rule 11 be given. The expected n-period reward by using 

decision rule 11 given the initial state i €Sis defined by 

n-1 
(4.3.1) V (i) ·= E 11 ~ ( ) 

11,n • i k~O r sk'<ic • 

THEOREM 4.3.1. For all 11 € D, define the corresponding total expected re­

ward vector v11 by 

then 

V 
1T 

llv 
1T 

:= lim V 
n-+<x> 1T ,n 

with M 
0 

where Mis defined as in the proof of lemma 4.3,2, 
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□ 
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PROOF, 

□ 

So for each Tr € D the corresponding expected total reward over an infinite 

time horizon exists and·is an element of V. We now want to prove the exis­

tence of e: -optimal Markov strategies. 

DEFINITION 4,3,1. 

(i) A decision rule Tr* is said to be e:-optimal, if and only if 

(ii) 

for all Tr € D • 

* A decision rule Tr is said to be optimal, if and only if 

V * :.!: V,r , for all ,r € D • 
'Ir 

THEOREM 4. 3. 2. (i) For every e: > 0 and Tr = (q0 ,q1 , ••• ) € D there exists a Mar- · 

* kov strategy Tr € M such that for all i € S 

(ii) 

V * (i) :.!: V'lr (i) - e:µ (i) , 
'Ir 

REMARK 4, 3.1. 

(i) Part (ii) is proved in a more general setting by van Hee [28], To 

prove his theorem van Hee used a result of Derman and Strauch (which 

was generalized by Hordijk [33]) in which was stated that for fixed 

i € S and an arbitrary Tr € D there is a Tr* € RM such that 

'Ir* 
j,an€A']=P [s i n for all j € s, A' € A. 

We will use a slightly different approach that proceeds along the 

same lines as a proof given by Blackwell [ 5] for discounted Markov 

decision processes with bounded rewards. 
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(ii) The result ol:itafoeCf"by van Hee covers the corresponding results of 

Blackwell [ 6 J (positive dynamic programming), Strauch [66] (negative 

dynamic programming), Hordijk [34] (convergent dynamic programming) 

and our result (contracting dynamic programming). 

(iii) For discounted (semi-) Markov decision processes with a finite state 

space and a finite decision space an elementary proof is given in 

Wessels and van Nunen [76]. 

co 

PROOF OF THEOREM 4.3.2. Choose N such that l P~(n+l)M S ¼£ where Mis as 
N+l 

defined in the proof of lemma 4.3.2. Now if n' is another decision rule 

such that Clo=~• qi= q 1, ••• ,qN =~then 

co 

II V - V , II s 2 l pn(n + 1)M s ~e: • 
'If 'If N+1 ° 

This enables us to assume that 'If is Markov from some point (say N + 1) on. 

So 'If might be represented by 'If= (q0 ,q1, ••• ,qN,fN+i'fN+2 , ••. ) with fk E F 

for k > N. We will show that there exists a decision rule TI" of the form 

TI":= (4c,q1, ••• ,~_1,fN,~+i''"') such that 

v'lf" Ci) ~ vn, Ci) - e:'µ(i), e:' > 0 • 

* Using this fact N times will produce the desired Markov strategy 'If, if e:' 

is sufficiently small, 

For each j € S we define 

co 

" n' I !.. Ei [r(s ,a ) SN+l = j] 
n=N+1 n n 

j) > O, 0 otherwise. 

We determine the action fN (i) € A such that 

(4. 3. 2) 
f (i) 

r(i,fN(i)) + l p N (i,j)~;1 Cj) ~ 
jES 

for 

~ sup {r(i,a) + l pa(i,j)";1 Cj)} • e:'µ(i) • 
aEA jES 'If 
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However, since 

and 

it will be clear that TT" with fN such that (4,3,2) holds has the desired 

property. D 

As a consequence of the foregoing theorem we can state the following corol­

lary. 

COROLLARY 4,3.1. For all i € S, all TT€ D and each e > 0 we have 

So if we look for an e-optimal decision rule TT , and its corresponding total 

expected retum over an infinite time horizon V TT , it is allowed to restrict 

the investigations to Markov strategies. 

LEMMA 4.3.3. For each v € V and each TT € M we have 

V i€S lim (Pn (TT) v) (i) = O • 
n-+co 

PROOF. From lemma 4.3,2 it follows that IIPn(TT)b - pl\ill ➔ O for n ➔ =. 
-1 

Since v may be written as v = (1 -p) b + w, with w· €Wand since 

II Pn (TT) II s pn the statement will be clear. D 
* 

Now in a similar way as we have introduced the mapping L1 on Vin chapter 3 

we introduce the mapping L1 of V for each f € F. 



DEFINITION 4. 3. 2. Let f E F, v E V, then the mapping L f of V is defined 
1 

component-wise by 

or in vector notation 

r(i,f(i)) + l pf(i) (i,j)v(j) , 
jES 

i € s , 
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REMARK 4.3.2. For P := Pf, r := rf the results of chapter 3 may be obtained. 

So we have e.g. 

(i) Li is a monotone mapping of V into V. 
(ii) Li is a contraction mapping on V with contraction radius II Pf II =: Pf. 

(iii) Lfvf'"' =vi''° • 

We now define the well-known optimal return operator u1 on V (see e.g. 

Blackwell [ 4], MacQueen [46], Harrison [24] or van Nunen [53], [54]). 

DEFINITION 4.3.3. The mapping u1 of Vis defined component-wise as follows 

(u1v) (i) := sup h(i,a) + l pa(i,j)v(j) }, 
aEA jES 

or in vector notation 

f 
:= sup L1v 

fEF 
:= sup {rf + Pfv} • 

fEF 

i € s , 

REMARK 4.3.3. It will be clear that u1v(i) gives the supremum of the expec­

ted return that can be earned if we start in state i at time t = 0, use 

decision a EA at time t = 0 and receive v(j) if, as a result of that de­

cision, state j ES is reached at time t = 1. 

THEOREM 4.3. 3. 

(i) u1 maps V into V. 

(ii) u1 is a monotone mapping. 
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(iii) u1 is a contraction mapping with contraction radius 

f 
:= supllP II:= 

:f€F 
sup pf = p * < 1 • 
fEF 

{ I -1 -2 
(iv) u1 maps ve: V llv- (1-P) bll~ (1-p 0 ) M)intoitself,whereM0 

is defined as in theorem 4.3.1. 

(v) * * u1 has a unique fixed point V; so V is the unique solution in V of 

the optimality equation 

(4. 3.3) 

(vi) Let v0 EV then the sequence vn := u 1vn-l converges in µ-norm to v*. 

PROOF. Clearly for any e > 0 and v e: V there exists an f e: F such that 

tfv ~ u 1v - eµ. It now follows from remark 4.3.2(i) that u 1 maps V into V. 
The monotonicity of u 1 is trivial. Let v 1 and v2 EV. For any e > 0 choose 

f,g E F such that 

Then 

on the other hand 

which yields 

Since e > 0 was chosen arbitrary we have 
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By using v 1 := (1-p)-lb + R,µ and v2 

ly verified that for any E > a 

-1 + 
:= (1-p) b, with R, E lR, it is easi-

for R, sufficiently large, So the contraction radius of u 1 equals v 1 • 

Let v E {v EV j llv - (1-p)- 1bll S (1-p ,-2M}then for each E > a there 
0 0 

exists an f E F such that Lfv ~ u1v - Eµ, However, since for each f € F, 

Li maps {v EV I llv - (1-p)-1bll S (1-p 0 )-2M)into itself, also part (iv) 

of the theorem is proved. The assertions (v) and (vi) are direct consequences 

of the fact that u1 is a contraction mapping from the complete metric space 

V into V, see e.g. Ljusternik and Sobolew [43], D 

THEOREM 4, 3,4, 

(i) v s v* for all 11 E D. 
1T 

* (ii) For each E > a there exists an f E F such that Vt"~ V 

(iii) Let 11 E M and g E F then [v( l > v J ~ [v > v J. g,11 1T if' 1T 

- Eµ, 

(iv) TT* is optimal if and only if V * satisfies the optimality equation 
1T 

(4,3,3), so V = v*. 
11* 

PROOF. Suppose 11 = {fa,f1, ••• } is an arbitrary element of M. Then, 

fa fl fn * n+l * * fa fl fn * 
L1 ~l ,,,L1 V S u 1 V = V for each n ~a.However, Ll Ll ••• L1 V 

= V + pn(11)v*, so letting n +~we have as a consequence of leDlllla 4.3,3 
1T ,n 

that 

lim v s v* 
n~ 

1T ,n 

As a consequence of theorem 4,3,2 the statement (i) is true for all deci­

sion rules 11 since it is true for Markov strategies. 

(ii) Choose f E Fin such away that Liv*~ v* - E(l-P 0 )µ, with E > a, 

then 

so, letting n ➔ ~,we have 
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* V 00 ;:;: V - e:µ • 
f 

LiVff. Now since Li is monotone we have 

so again, letting n + 00 , we obtain 

(iv) If vff* = v* then trivially 

Reversely if ff* is optimal then 

f00 would be better then ff* and 

* ff is optimal (see part (i) of this theorem). 
f L1V * S V * for all f € F since otherwise 

ff * ff 
thus ff would not be optimal. Hence, 

u1vff* s Vff*. However, since u1 is a monotone operator we have 

so 

lim tf;v * 
n-+oo ff 

* = V S V 

this yields the equality 

v* 

REMARK 4.3.4. 

V 
* ff 

* ff 

(i) If V 00 ~ v* - e:µ then f 00 is e:-optimal. 
f 

(ii) we will often denote V 00 by vf. 
f 

□ 

(iii) From part (iii) of the foregoing theorem we see that Howard's policy 

improvement routine [35], remains valid in this more general setting. 

(iv) A proof of the foregoing theorems for discounted Markov decision pro­

.cesses with a general state and action space but with a bounded reward 

structure was given by Blackwell [SJ. For discounted Markov decision 

processes with countable state and action space and with a bounded 

reward structure an elementary proof was given by Ross [62]. For 

bounded rewards a proof can also be found in Denardo [ 12]. 
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For two actions a0 ,a1 € A and i €sit is possible that r(i,a0) = r(i,a1) 
a a 

and Vj€S p O(i,j) p 1 (i,j). we then say that a0 and a 1 coincide with re-

spect to i € s, otherwise a0 and a 1 are different with respect to state 

i € s. 
Let A (i) contain representatives for all classes of coinciding actions with re­

spect to i € s. We say A(i) is finite if A(i) contains only finitely many elements. 

LEMMA 4.3.4. If A(i) is finite for each i € S then there exists an optimal 

stationary Markov strategy. 

PROOF. If, for each i € s, the action set A(i) is finite then, since the 

supremum which defines the mapping u1 is defined component-wise there will 

f * * exist an f € F such that L1 V = V , 

V oo 

f 
* V 

which means that f00 is optimal. 

REMARK 4.3.5. 

(i) A proof of this lemma, for discounted Markov decision processes with 

□ 

a bounded reward structure, is also given by Blackwell [ 5] and Derman 

[15]. 

(ii) If A(i) is not finite for each i € S then it is easy to construct coun­

ter examples showing that an optimal decision rule may not exist, see 

e.g. Blackwell [ 5 ]. 

* Our interest is in fact the computation of the optimal return vector V and 

the determination of an (E-)optimal stationary Markov strategy. We will 

prove that as a consequence of the theorems 4.3.3 and 4.3.4 the method of 

successive approximation may be used to determine the optimal return vector 

v* and an (E-)optimal stationary Markov strategy. 

DEFINITION 4.3.4. A function g defined on the power set of Finto Fis said 

to be a ahoiae funation if and only if for each nonempty set B ~ F we have 

g(B) € B. 
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From now on we assume g to be an arbitrary but given choice function, 

REMARK 4.3.6, For the existence of a choice function, in a general situa­

tion as we have defined it here, we need the axiom of choice, we introduce 

the choice function only for notational convenience. 

For the processes we described, the fullstrengtheness is never required 

since we have to make only countably many choices. In the first place, only 

at the successive points in time n = O, 1, • • • a policy f has to be selected 

from a nonempty set B c F. Secondly, since s may at most be countable, for 

each f E F only countably many actions have to be selected, 

Usually, in practical situations, the choice function can be given expli­

citly. This is specifically true in the situation that Sand A are finite, 

since in that situation also F contains finitely many elements. 

DEFINITION 4.3.5, Fore> 0 we define the mapping u1 ,e of V by 

with f := g({f I 11u1v - L1vll < d), from theorem 4.3.3 it follows that u1 ,e 

is well defined fore> 0, 
f L1v then e may be zero in that case we define 

f = g({f 
f u1v = L 1v}). 

LEMMA 4.3.5, The mapping u1,e maps V into V. 

PROOF, The proof is evident since for each f E F 
f L1 maps V into V, □ 

DEFINITION 4.3.6, 

(i) A mapping B of V into Vis said to bee-monotone (e ~ 0) if for each 

v,w EV, with v ~ w, we have 

Bv ~ Bw - eµ • 

(ii) A mapping B. of V into Vis said to bee-contracting (e ~ 0) with con­

traction radius p' if for each v,w EV we have 

II Bv - Bw II ~ p 'II v - w II + e • 
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LEMMA 4.3.6. The mapping u1 (E > 0) has the following properties 
,E 

(i) u1,E is &-monotone (E > O). 

(ii) u1,E is &-contracting with contraction radius \1 1• 

If u1, 0 is defined then u1, 0 has these properties as well. 

PROOF. 

(i) Let v,w € V be such that v ~ w; then since u1 is a (0-)monotone map­

ping we have 

So 

D 

LEMMA 4.3.7. Let v0 € V and suppose u1, 0 is defined. Let ~e sequence vn be 

defined by vn := u110vn-l and let fn := g({f I u1vn-l = L1vn_1J>, then 

(i) 

(ii) 

(iii) If v0 €Vis chosen such that u1v0 ~ v0 then 

PROOF. 

(i) II vn - v* II = II ~v0 - v* II = II ~v0 - ~v* II ~ P~I v0 - v* II • 
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(ii) Consider 

f f f f f 
(Lt)kvn - vn = (Lt)kvn - (Lt>k-1vn + (Lt)k-lvn - ... + Ltvn -vn 

which yields 

-1 k-1 
s p (1 - p ) (1-p )II v - v 111 • 

* * * n n-

By letting k+ w we have 

llvf -vllS(1-p)-1pllv -v 1 11. 
n * * n n-n 

f n The final part follows from the monotonicity of u1 and L1 • 

LEMMA 4. 3. a. Let e: > 0 and v0 € V such that 

Let the sequence vn (n ~ 0) be defined by 

□ 

where fn 

then 

:= g(B ) with B := {f € FI Lf1v 1 ~ max{v 1 ,u1v 1 -e: (1 -p )µ}} , 
n n n- n- n- 0 

(i) 

(ii) 

II v - v* II < e:, for n sufficiently large , n 

PROOF, We define IS := (1 -p 0 )e:, Note that Bn is not empty. Namely, if 

v 1 ~ u1v 1 - ISµ, then f := f 1 already suffices, since 
n- n- n n-



f 
Since, L1n-l is monotone we have 

f 1 2 fn-1 
(L n- ) v <!: Ll vn-2 = v 1 n-2 n-1 • 

Similarly, we have fork E JiJ 

which yields by letting n-+ m 

v S V m =: Vf • 
n f n 

n 

However we know already v* <!: Vf, so 
n 

The inequality vn <!: vn-l follows directly from the definition of vn. 

* It now remains to be proven that vn-+ V in µ-norm. Since vn <!: vn-l this 

convergence will be monotone. 

Continuing in this way we get, 
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n * · II *11 Now, since u1v0 -+ V (in µ-norm) we have the final result vn - V <€for 

n sufficiently large. □ 

REMARK 4. 3. 7. It is easy to find a starting vector v0 E V satisfying 
-1 + 

v0 (i) s u1v0 (i) - Eµ(i) namely v0 := (1-p) b - R.µ for R. ElR chosen suf-

ficiently large. 
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LEMMA 4.3.9. Let v0 E V. Let the sequence vn be defined by 

(i) lim V = n 
* V (in µ-norm) I 

n-+«> 

(ii) * lim vf V (in µ-norm) I 

n-+«> n 

PROOF. Let M := II Vo - v* II, then 

::; V 1 + V 1 M = V 1 (M + 1) • 

The first part of the proof follows now by induction. 
* n Suppose llvn - VII::; v 1 (M + n) for some n ~ 0 then 

n+l n 
::; V 1 + V 1 (V 1 (M + n) ) 

So since the induction hypothesis holds for n 

this implies part (i) of the lemma. 

Choose e: > O. 

n+l 
V l (M + (n + 1) ) • 

0,1 it holds for all n, 

Note that as a consequence of part (i) there exists a NE N such that 

Now, as a consequence of (a) we have 



fn k fn k fn k-1 
(L1 ) vn-1 - vn-1 11 = II (L1 ) vn-1 - (L1 ) vn-1 + 

fn k-1 fn 
+ (L1 ) vn-1 -. • .+ L1 vn-1 - vn-1 11 

So by letting k + 00 we have II V f 
n 

Similarly, we deduce from (b) 

- V II< l:ie: n-1 

II v* - v II < l:ie: , n > N • 
n-1 

(n > N). 

59 

Since e: was chosen arbitrarily this implies part (ii) of the lemma. D 

So the computation of v*,the optimal total expected reward over an infinite 

time horizon, may be executed by successive approximation of v* by v as 
n 

describ.ed in the lemmas 4.3.8 and 4.3.9. Moreover, for each e: > O the Mar-

kov strategy f 00 is e:-optimal for n sufficiently large. n 

4.4. Rema.Jl./i6 on :the a.tiiiumptiol'l-6 4.2. 1-4.2.4. 

The first assumption (4.2.1) stated that the difference between band rf is 

bounded in µ-norm for f € F. This assumption arises by combining the assump­

tions of Wessels [75] and Harrison [24] on the reward structure and the 

transition probabilities. As proved in section 3.3 our assumptions are more 

general than the assumptions of Wessels and Harrison separately. Assumption 

4.2.2 is introduced to ensure the existence of the (conditional) expecta­

tions of the stochastic variables. If we use an extended notion of expecta­

tion (see van Hee and van Nunen [30]) assumption 4.2.2 may be replaced by 

the weaker assumption 

This assumption was first used by Harrison [23 ]. Assumption 4.2.3 requires 

that also for a€ A the expectation of µ(s 1) is at most p*µ(s 0 ). This im­

plies that for each decision rule~ the corresponding stochastic process 

{sn In~ O} has a tendency to decrease its µ-value and/or to fade. The 

final assumption requires that, for each i € S and each a E A, the expected 

one-stage reward differs not too much from the immediate reward r(i,a). 
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For µ(i) = 1, i,; 0 and the usual notion of expectation our assumptions in­

clude the assumptions as used by Harrison [24] for discounted Markov deci­

sion processes. If b E W, the Markov decision processes as described by 

Wessels [75] are obtained, For a specific choice of a bounding functionµ 

and b E W, the idea of using weighted supremum norms is used by Lippman [44], 

[45] for semi-Markov decision processes, see also van Nunen and Wessels [56]. 

Wijngaard [78], used the idea of a specific (exponential) weighted supremum 

norm for inventory problems with respect to the average reward criterion. 

Hinderer [31] used the idea of bounding functions for finite horizon Markov 

decision processes. 

For µ(i) = 1, i,; 0 and b E W our assumptions reduce to the well-known as­

sumptions for Markov decision processes (see e.g. Denardo [12)) to guarantee 

the existence of the total expected reward over an infinite time horizon 

3 <1 v.~o V A I pa(i,j) ~ p • 
p ir aE j,fO 

Finally, we want to extend the lemmas 3.3.1 and 3.3.2 to the case in which 

decisions are allowed. 

LEMMA 4.4.1. If 3 + V b(i) ~ -Mµ(i) then there exists a number p' with 
M€lR iES 

O < p' < 1 and a bounding functionµ• such that 

II pf II , ~ p ' < 1 • 
µ 

LEMMA 4 4.2. If 3 + V b(i) ~ Mµ(i) then there exists a number p' with 
. • MEJR iES 

O < p' < 1 and a bounding functionµ' such that 

3 , ........, vf II rf II , ~ M and 
M t.11:<' EF µ 

So if in addition to the assumptions 4.2.1-4.2.4 the rewards are bounded 

from one side (with respect to the bounding functionµ) then it is possible 

to define a new bounding functionµ' such that the Banach space W, of vec-
* µ 

tors v with II v II , < 00 contains V and V f for f E F. Moreover, the operators 
µ * 

L1 and u 1 are contraction mappings on Wµ' with fixed points Vf and V res-
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pectively. If b is bounded from oner side with respect to the bounding func­

tionµ, the assumption 4.2.2 may be omitted. In that case it is easily pro­

ven that the reward structure is a charge with respect to the transition 

probabilities (see Hordijk [33] and Groenewegeri [21]), i.e. for each ff€ M, 
ff= (f0 ,f1, ••• ) we have 

00 f 
l Pn(ff)lr nl < oo, 

n=O 

which follows from 

00 f -1 f 
II l Pn(ff) Ir nl IIµ, s (1-p') sup llr I~, < 00 • 

n=O f€F 





CHAPTER 5 

STOPPING TIMES ANV CONTRACTION IN MARKOV VECISION PROCESSES 

In this chapter we will use the concept of stopping time as introduced in 

chapter 2 to generate a whole set of optimization procedures for solving 

Markov decision processes satisfying the assumptions 4.2.1-4.2.4. 
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The idea of using stopping times for generating such a set was introduced 

by Wessels [74]. Wessels used nonrandomized stopping times to generate a 

set of optimization procedures for finite state space, finite action space 

discounted Markov decision processes. 

In this chapter this set of optimization procedures is extended by allow­

ing randomized stopping times. Furthermore, the class of problems for which 

the procedures hold is generalized by using the less restrictive assumptions 

4.2.1-4.2.4. The set of optimization procedures will include the known solu­

tion techniques as introduced by Blackwell [ 4 J, Hastings [ 25], Reetz [ 60] 

and van Nunen [54] for discounted Markov decision problems. Recently, again 

for finite state finite decision space Markov decision processes, Porteus 

[59] also introduced a set of optimization procedures. He introduced a num­

ber of transformations which might be used to investigate transformed Mar­

kov decision processes with the same (e-)optimal policies and the same 

(possibly transformed) optimal return vector cv*>. A number of the trans.:. 

formations introduced by Porteus are in fact covered by our approach. 

1T 
After some preliminaries the contraction mappings L6 of V will be introduc-

ed and investigated (section 5.1). We will restrict the considerations to 

nonrandanized decision rules, which is justified by the results of the pre­

ceding chapter. Then (section 5.2) the optimal return operator 06 on V will 

be defined. For each stopping time 6 €~the mapping 06 yields a policy im­

p:z,ovement procedure on which the determination of an (e-)optimal Markov 

strategy t'" and the successive approximation of v* and Vf may be based. we 

will prove that the sequence v! , arising by successive application of 06 on 

an arbitrary element v~ € V converges to v* if and only if the stopping 

time 6 is nonzero. Moreover, we prove in section 5.2 that by using 06 atten­

tion can be restricted to stationary Markov strategies,if and only if the 

stopping time 6 is transition memoryless. 

Finally, we will give algorithms which determine an (e-)optimal Markov 

* strategy and compute the optimal return vector V by means of successive 

approximation. 
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s. 1. The contJia.c,ti,on mapp-i.ng L~ 

n sn sn For each n € lN we define the measurable space ( (S x E x A) , A) , where A 

is the product a-field generated
00

by S and A. The product space (f!A,FA; is 

the Space with f!A := (S x Ex A) and F the product a-field of subsets of 
co A 

(S x E x A) generated by S and A. 

In a similar way as in chapter 3 we define, for each stopping time a E: 6 

each decision rule~:= (q0 ,q1 , ••• ) E: N and each starting state i E: s, a 

probability measure P:,a on (f!A,FA) in the standard way by giving the pro­

bability for cylindrical sets in f!A' wA := ((i0 ,d0 ,z0),(i1,d1,z1), ••• ). 

'\•¾ = zk, fork= 0,1, ••• ,n}) = 

where a. i is again the Kronecker symbol (see section 3.1). 
l.r 0 

This probability measure can also be obtained in a similar way as in chap­

ter 4-by using transition probabilities. 

For each ~ = (q0 ,q1 , ••• ) E: N each n E: N, and a E: 6 we then define for 

(S x E x A,SA) the transition probabilities P!,n+l on ( (S x E x A)n ,S~) as 

follows 

I 4n+i (da.·I (i0 ,z0 , ••• ,in,zn,i)) , 

A' 

where A' € A and B and E' are elements of the power set of S and E respec­

tively. 
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For each decision rule ff e N and each starting state i es, as a conse­

quence of the Ionescu Tulcea theorem (see e.g. Neveu [52]) these transition 
c5 ff 

probabilities p +i induce a unique probability measure P. c5 on (OA,F ) • n,n i, A 
So we may consider the stochastic processes {s In~ O}, {(s ,e) In~ O}, 

n n n 
{(sn,ea,an) In~ O}, where as in chapter 3 and 4, sn ,en, an are the pro-

jections on then-th state space, then-th E space and then-th action 

space respectively. 

NOTATIONS 5.1.1. 

ff 
(i) For f a real valued function on ('1,F) we denote by Ei c5f the expecta-

ff , 
tion of f with respect to the probability measure P. c5. 

ff i,ff 
(ii) Ec5f denotes the vector with i-th component equal to Ei c5f• 

(iii) If ff e Mis a stationary Markov strategy, ff = (f,f, ••• ) then Ef c5 , 
f ff ff , 

Ec5 may be used instead of Ei,cS' Ec5 respectively. 

Clearly, the probability measure P~,cS on ('1,F) induces a unique probability 

measure on the coarser measurable space cn0 , F 0) • 

LEMMA 5.1.1. For each c5 e A, ff e N and i e s the probability measure induc-
ff ff 

ed by Pi, c5 on the coarser measurable space co0 , F 0 ) equals Pi. 

ff ff 
PROOF. The statement follows directly from the definitions of JP i, c5 and Pi. D 

We now extend the mapping Lc5 of chapter 3 (defined by using the stopping 

fwiction T) for the situation in which decisions are allowed. 

DEFINITION 5.1.1. For each c5 e A and ff e N the mapping L~ of Vis defined 

by 

i € s , 

or in vector notation 
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REMARK 5 • 1 • 1. 

(i) We recall that v(s,l := v(O) = 0 if, 

(ii) Note that for all o e: A, ,r E N, v e: V we have (L;v) (0) o. 

LEMMA 5.1.2. If o is the nonrandomized stopping time corresponding to G1 
'IT fo and 'IT= {q0 ,q1, ••• } EN, then L0 equals L1 as defined in chapter 4 where 

f 0 is defined by f 0 (i) = zi and zi e: A is the action for which q0 (zili) 1. 

Consequently for that o , L~ is a monotone mapping of V -+ V, L~ is strictly con-
f 

tracting with contraction radius p O O and fixed point V f • 
0 

'IT 
DEFINITION 5.1.2. For each o e: A and 'IT e: N the matrix po is defined to be 

the matrix with (i,j)-th element equal to 

00 

L ]P~ 0 (s 
n=O 1 ' n 

j, 1" n) • 

'IT 
REMARK 5.1.2. Note that for each o EA and 'IT e: N we have p0 (0,0) 

Vje:S\{O} p~ (O,j) O. 

LEMMA 5.1.3. Leto be a nonzero stopping time and let 'IT EN, then 

IIP;II:;; (1 - inf o(i)) + inf o(i)P* < 1. 
iES iES 

1 and 

PROOF. The proof proceeds along the same lines as the proof of lemma 3.2.4.D 

LEMMA 5.1. 4. 

'IT 'IT 
suppose o1 :;; o2 then for all 'IT e N, p 0 ~ P0 (i) 

(ii) 

1 2 
Suppose o1,o 2 are nonrandomized stopping times G1 and G2 are the go-

ahead sets corresponding to o 1 and o 2 • Then 

for all 'IT EN. 

(iii) Let Q be an index set and suppose for each q E Q, o EA is a non­q 
randomized stopping time then for all 'IT EN 
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'If s 'If 
P + sup p 0 

O qEQ q 

'If 'If 
P 2:: inf PIS 
0- qEQ q 

LEMMA 5.1.S. Leto EA and ,r EN, then L; maps V into V. 

PROOF. From the foregoing chapter we know that there exists a M' E JR+ such 

N -1 + that for all 'If E II v,r - (1 - p) b II s M' • Choose, for each v E V, M E JR 
-1 V 

such that llv - (1-p) bll = M. So for all 'If EN we have 
V 

Let 'If:= C4o,q1 , ••• ) EN and i Es let f 0 (i) be de£ined as in lemma s.1.2. 

Then 'lfi is defined by 'lfi := ('lo,qi,•••> with 

' Let AN contain all stopping times with the following property 

' Then it is easily verified that for each i E s, 'If E N and o e AN 
'If 

P O (T S N V.·, = 00) = 1. 
i, ' 

Let 15 E AN+l' and define for each i E S, o i E A by o i (a) := o (i ,a) for each 

NE ~ sk h 1 1 o 1:,' N ~ k=l , ten C ear y i E N. r:M, 

T-1 
= (1- o Ci) )v(i) + o Ci) [r(i,f0 Ci)) +E: l l r(sk'¾l +vCs,l le0 =OJ] 

' k=l 

(1-o(i))v(i) +o(i)[r(i,fo(i)) + 
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f (i) 
s (1-o (i))v(i) +o (i)[r(i,f0 (i)) + l p O (i,j)[vf (j) + (M'+M )µ(j)]J 

j€S O V 

S (1-o (i))v(i) +o (i)[Vf (i) +p (M' +M )µ(i)] 
0 * V 

s vf (i) + (1-o (i)) (M' +M )µ(i) +o (i)P (M' +M )µ(i) 
Q • V * V 

s vf (i) + (M' +Mv)µ (i) • 
0 

In a similar way it may be proved that 

I ff 
Since for o € A0 , L0v € V, as is easily verified, it follows by induction 

that for all o € A, L;v € V. 

LEMMA 5~1.6. Leto€ A and ,r € N, then 

(i) 

(ii) 

(iii) 

(iv) 

,r 
L0 is 
L,r . 0 l.S 

time; 

monotone. 

strictly contracting if and only if o is a nonzero stopping 
,r 

in this case the contraction radius equals P0 , 
,r 

For each nonzero stopping time, L0 possesses a unique fixed point 
. ,r V 
VO€ • 

The set {v € V I llv - (1 -p)-1bll s (1.J.p )-2M1 } is mapped in itself 
0 

,r ,r -1 
by L0 whereM':= (1-p0) Mand Mis defined as in theorem 4,3,1, 

□ 

PROOF. Part (i) of the lenma is trivial. To prove part (ii), let v 1 ,v2 € V, 
. -1 

then v 1 and v2 can be given by vk = (1-p) b + wk (k = 1,2), where wk€ W. 

So llv1 - v2 11 = llw1 - w2 11. 

Hence 

The fact that L~ is strictly contracting if and only if o is a nonzero stop­

ping time is a consequence of lemma 5.1.3. The contraction radius equals 
,r -1 -1 

IIP0 II as is easily verified by choosing v 1 = (1-p) b + µ, v2 = (1-p) b. 
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Part (ii) of the lemma is evident since L; is a contraction mapping on the 

complete metric space V (see e.g. Ljusternik and Sobolew [43]). The final 

statement is clear since 

Hence 

Similarly 

11 . I -1 -2 Vo,s{vEV llv-(1-p) bll$(1-po) M'}. 

1T 1T 1T -2 L0v S V0 + p 0 (1 - p 0 ) M'µ $ 

$ (1 - p)-ib + (1 - p 0 )-
2M µ + (1-~)-2•p;M'µ 

S (1 - p)-lb + (1 - p 0 )-
2M1µ. 

LEMMA 5. 1. 7. 

□ 

(i) Leto E ~ be a nonzero stopping time and let 11 := (f,f, ••• ) be a sta­

tionary Markov strategy, then L! has the unique fixed point Vf inde­

pendent of the stopping time. 

(ii) If 11 EN is not stationary then there exists a situation 

{pa(i,j),r(i,a)} for which nonzero stopping times o 1 and o2 E ~ exist, 
1T 1T 

such that L0 and L0 possess different fixed points. 
1 2 

PROOF. 

(i) If 11 is a stationary Markov strategy then the process {s I n ~ O} is n 
a Markov chain with rewards only depending on the current state. 

Theorem 3.2.1 now implies the result. 

(ii) Suppose 11 := (q0 ,q1, ••• ) E N is nonstationary then A contains two or 

more elements. Let n0 EN be such that 

(a) for all k < no qk (fo (i) j io, fo (io) ,i1, fo (ill, ••• ,ik) 1 

(note that n0 ~ 1). 

(bl for at least one j 0 Es and at least one path 
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Let r(i,z) := b(i) for i € s\{j0 } and all z € A, choose r(j0 ,f0 (j0)) := 

= b(j0) and r(j 0 ,z) b(j0) + tµ for all z € A\f0 (j0). Choose 
zl . z2 

p (i,J) = p (i,j) > 0 for all i,j €Sand z 1,z2 € A such that the 

assumptions 4.1.1, 4.2.1-4.2.4 are satisfied. So for each ,r the sto-

chastic process {sn' n ~ 

o corresponding to G1, 
no 

0} is a Markov chain. Now by choosing o1 , 

G respectively it is easily verified that 
no 

the fixed points of the mappings L,r and L,r are different fort suf-o1 o 
ficiently large. no D 

5. 2. The op:tlmai. Jtetu/c.n mapping u 0 

LEMMA 5.2.1. Let i € S, let o € A and v € V, then for each e > 0 there 
1T i 1T 

exists a decision rule ,ri € N such that L0 v(i) ~ L0v(i) - eµ(i) for all 

,r € N. 

PROOF. The existence of a M € JR+ such that for all 1T € N, 
1T -1 

L0v s (1-p) b + Mµ follows from lemma 5.1.5. So for each i € s there 

i N ffi () 1T ex sts a ,ri € such that L0 vi ~ L0v(i) - eµ(i). 

DEFINITION 5.2.1. The mapping u0 of Vis defined component-wise by 

REMARK 5.2.1. Note that the supremum over 1T € N is taken canponent-wise. 

THEOREM 5.2.1. Let o € A, then 

(i) u0 maps V into V. 

(ii) U0 is monotone. 

D 

_(iii) U O is a contraction mapping if and only if o. is nonzero. The contrac­

tion radius v0 of U0 satisfies v0 := sup p;. 
-1 1r1:.N -2 

(iv) The set {v €VI llv - (1-p) bll S (1-p 0 ) M'} is mapped into itself 
1T 

by U O , where M' is defined as in lemma 5. 1. 6 with p O replaced by v O• 

* (v) If o is nonzero then u0 possesses the unique fixed point V, or equi-

valently v* is the unique solution in V of the optimality equation 

(5.2.1) 
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PROOF. Part (i) of the proof follows directly from lemmas 5.1.5 and 5,2.1. 

Part (ii) is trivial. 

(iii) Let v,w € V and e: > 0. Let i € s, choose 1T 0 ,1r 1 E N such that 

and 

We then have 

U0v(i) - U0w (i) ~ 

and 

U0v(i) - U0w(i) ~ 

This implies 

for all 1T E N • 

1T 
L0 Ov(i) 

1To 
- L0 w(i) + e:µ (i) 

1To l P 0 (w(j) - v(j)) + e:µ (i) 
jES 

1T 
L0 1v(i) 

1T 
- L0 1w(i) - e:µ(i) 

1T 
l p/(i,j) (v(j) - w(j)) - e:µ(i) • 
j 

Since e: was chosen arbitrarily we have 

It follows from lemma 5.1.3 that u0 is strictly contracting for nonzero o. 
Now we prove that the contraction radius is \/ 0 • Let 1r0 be such that 

1T 1T 
II PO O II ~ v O - ~e: and let i 0 € s be such that l P/<io,j)µ(j) ~ (\/0 -e:)µ(io). 

jES 
-1 

Then choose v := (1 - p) b + JI,µ and w := (1 -p)-1b. Let M € :u/ be such that 

1To -1 -1 
L0 ((1-p) b) ~ (1-p) b - Mµ (see lemma 5.1.5). Consider U0v(i0 ) -U0w(i0 ) 



72 

'IT 

u0 v (i0 l - u0 w (i0J ~ ¾ 0v (i0 l - (1 -P > -lb (i0) - Mµ (i0) 

'IT 

~ l p0o(i0 ,j)tµ(j) - 2Mµ(i 0 ) 
jES 

for 1 chosen sufficiently large (1 > 2:). 

This implies v 0 is the contraction radius. 
'IT • 

Since IIP0 II = 1 if o is not a nonzero stopping time (see the proof of lemma 

5.1.3) we have also proved that U0 is not strictly contracting in this case. 

(iv) It is a direct consequence of lemma 5.1.6 that 

is mapped into itself by U0 • 

(v) We first note that for o nonzero U0 has a .unique fixed point. The final 

* part of the theorem follows by considering U0V 

* Now choose E > 0 and f E F such that Vf ~ V - Eµ. In theorem 4.3.4 we have 

proved that such an f exists. Let rr € F00 be defined by rr := (f,f, ••• ). 

Then 

f 
However, (see remark 4.3.2), we already know L0Vf = Vf, which implies 

u0v*(i) ~ Vf(i) - Eµ(i) and since E was chosen arbitrarily we have 

i € s • 

On the other hand u0v*(i) s v*(i) as can be proved inductively. This proof 

proceeds in a similar way as the first part of the proof of lemma 5.1.5. D 
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o o 
COROLLARY 5.2. 1. Leto i. X be nonzero and let v0 € V. Let the sequence vn 

be defined by 

then 

(in µ-nonn) • 

LEMMA 5.2.2. 

(i) Let 01,02 € A be nonzero and suppose o 1 S o 2 , then "o s "o • 

(ii) 01 ,o 2 € A 1 
1 2 2 

Let be non randomized and nonzero, let G and G be the go-

ahead sets corresponding to o 1 and 02 respectively, then 

In the previous chapter we have proved the existence of (e-)optimal sta­

tionary Markov strategies. Regrettably, the procedure as described in co­

rollary 5.2.1 does not produce such (£-)optimal Markov strategies. So we 

should like to characterize nonzero stopping times which allow for the use 

of stationary Markov strategies only. The following two theorems provide 

the main step for such a characterization. 

THEOREM 5. 2. 2. If o € ti. is transition memoryless, e > 0 and v € V, then 

there exists an f € F such that for all i € S 

Hence 

f sup L0v 
f€F 

PROOF. Let v € V. We will define a new Markov decision process such that 

L;v(i) (of the old process) is the total expected reward over an infinite 

time horizon (for the new process) if the starting state is i and strategy 
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n € N is used. Hence, for this new Markov decision process attention may be 

restricted to memo:r:yless Markov strategies, as is proved in chapter 4. This 

implies that for the determination of u6v in the original problem, the res­

triction to stationa:r:y Markov strategies is permitted too. 

We will assume, as is allowed without loss of generality, 6(i) = 1 for all 

i € s. We define the new Markov decision process in the following way: 

s, the new state space, is the union of two copies of S; 

So the states in S are two times represented in s. For the states i* &: S* c: S 
a . 

and all a € A we define p (i*,O*) := 1 and r(i*,a) = v(i). For the states 

in s* we define 

r(i*,a) := r(i,a) • 

It is easily verified that L;v(i) is just the total expected reward over an 

infinite time horizon if the process starts in state i and decision rule n 

is used. 

Transition memo:r:yless stopping times are the only stopping times for which 

a restriction to memo:r:yless or stationa:r:y Markov strategies is always al­

lowed: this fact is expressed in the following theorem. 

□ 

THEOREM 5.2.3. Suppose the stopping time 6 €~is not transition memo:r:yless, 

then there exists a Markov decision process with state space S (i.e. there 

exists a set A and numbers {pa(i,j)}, {r(i,a)} such that for this Markov 

decision process 

f REMARK 5.2.2. In fact sup L6v may not be defined. 
feF 



PROOF OF THEOREM 5.2.3. o El is not transition memoryless, implies the 

existence of states i 0 ,j 0 Es and two paths a,y E ~ (S\{O})k such that 
k=O 

o(a,i0 ,j 0) < o(y,i0,j 0). For n E (S\{O})O we define o(n,i0 ,j 0) :=o(i0,j0) 

where n is a or y. Let 

which implies c > 1. The case o(y,i0 ,j 0 ) = 1 requires a slight, self-evi­

dent modification. 

We will construct a counterexample satisfying the following conditions 

(1) ViES\(iO) A(i) contains only one element, whereas A(i0 ) contains two 

elements, A(i0 ) := { 1,2}. 

(2) For all i ES, it B := {[a]0 ,[a] 1, ••• ,[a]k _1,[y]0 , ••. [y]k _1,i0 ,j 0} 
a Y 

we have pa(i,i) := p, pa(i,j) := 0 for j E S\{i,O}; p(i,O) := 1 - p; 

r(i,a) := O; v(j) := O. Moreover, p(O,O) := 1. 
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(3) For all i EB and all j, pa(i,j) := 0 if j t Bu {o}, else pa(i,j) > O. 

(4) V, . V (') l pa(i,j) s p; viEB vaEA(i) [pa(i,O) = 1- l pa(i,j)]. 
i,JEB aEA 1 jEB jEB 

(5) µ(i) = 1 for if 0. 

As a consequence of condition (1) the index a in pa(i,j) and r(i,a) can be 

omitted if if i 0 • 

For the investigation of u0v the following form has to be maximized with 

respect to a for n = a,y respectively 

(5.2.2) r(io,a) + l pa(io,j) (Uo v) (j) 
jEB n 

00 

where on is defined by on(S) := o(n,i0 ,S) for all 8 E u 
k=l 

respectively. 

The second term in (5.2.2) may be written as 

(5.2. 3) 

+ I pa(i0 ,j)o cn,i0 ,j>r<j,a) + 
jEB 

+ l pa(i0 ,j)o(n,i0 ,jl I pa(j,k)U0 _v(k) 
jEB kEB n,J 

a,y 
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with o . (SJ = o (n,i0 ,j{S) for SE 'r; sk and n o.,y. 
n,J k=l 

Suppose i 0 t- j 0 • 

Let p 1 (io,jo) := q F 0; p 2 (io,jo) := \q. Let for j E B\{jo}, 

p 1 (io,j) := p 2 (io,j) := £; for i F io and all j EB p(i,j) :=£.We define 

v(jo) := [1 - o (o.,io,joiJ-lq-l and v(j) := 0 for j r jo; r(j) := 0 for 

j E B\{i0 }; we will choose lr(i0 ,a)I < 2 for a= 1,2. 

It is now easily verified that U0 ·v (j) , U0 v (kl are bounded by 
-1 n n · 

M := v(jO) +2(1-p) ,J 

So formula 5.2.2 can be given (using 5.2.3) for n o. by 

fr(io,1) + 1 + 0(£) 

lr(i0 ,2) + ½ + 0(£) 

for£+ 0 

for £ + 0 

For n y we have 

for £ + 0 

for £ + 0 

. 1 1 1 
Choose r(i0 ,2) = 0 and r(i0 ,1) =+ 2 ~2 - 2c). Then in state i 0 after path o. 

decision 1 has to be selected whereas in state i 0 after path y decision 2 

is optimal if e is chosen sufficiently small. 

Suppose jO = i 0 • 
1 (. . ) Let P io' io : = q; 

1 (. . ) 2 (. . ) P io,J := P io,J 

Then formula (5.2.2) 

p 2 (io,iol := ½q; V(j) := r(j) := 0 for j E B\{io} 
2 -1 -1 = q, q « 1 and choose v(i0 ) :=[1-o(a,i0 ,i0 )] q 

can be given for n = o. by 

{"'o•" + 1 + 0 (q) for q + 0 

r(io,2) + ½ + 0(ql for q + 0 

For n y we have 
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1 + - + O(ql 
C 

+ .!_ + O(q) 
2c 

for q-+ 0 

for q-+ 0. 

This implies in a similar way as for i 0 f j 0 that in state i 0 after path a 

decision 1 is optimal whereas after path y decision 2 is optimal in state 

i 0 (for q chosen sufficiently small). D 

OOBOLLARY 5.2.2. Let 6 € t:,. be nonzero and transition memoryless and let 
6 6 

v0 E: V, then the sequence { vn}, n ~ O defined by 

converges in µ-norm to v*. 

PK>OF. The statement follows directly from the foregoing theorems 5.2.1 and 

5.2.2. D 

DEFINITION 5.2.2. For£ > O and 6 E: I:,. transition memoryless, we define the 

mapping u,, of V by 
u, e: 

with f := g({f I 11u6v - L:vll < d). Fran theorem 5.2.2 it follows that u6 ,£ 

is well defined fore:> 0. If V EV 3fE:F u6v = Lrv then e: may be zero, in 
fv f 

that case we define u610v := L6v, with f := g({f I u6v = L6v}). 

LEMMA 5. 2. 3. The mapping U 6 , £ maps V into V. 

LEMMA 5.2.4. The mapping u6 ,e: ,.e: > 0 and 6 transition memoryless and non­

zero, has the following properties 

(i) u6 ,e: is e:-monotone. 

(ii) u6 ,e: is e:-contracting with contraction radius v6 • 

If u6 , 0 is defined then also u6 , 0 has these properties. 
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0 
LEMMA 5.2. 5. Leto E A be transition memoryless and nonzero, let v0 E V, 

and suppose U O, 0 is defined. Let the sequence v! be defined by 

and let fn := g({f 

(i) llv° n 
- v* II s: v~I v~ - v* II 

(ii) 11 v0 II s; 
-1 . o 

- v 0 11 n - vf ( 1 - \} 0) \/ Oil V n n-1 n 

(iii) if 
0 V is chosen such that 0 0 then VO€ 0 a,ovo ~ VO 

0 VO :S: * 
vn-1 $ vf $ V 

n 
n 

PROOF. 

(i) 

II v° - v* II = II unv° - rf:v* II :s: v~I v0 - v* II 
n o O o ci 0 

f f f f f 
(ii) (L/lkv~ - v~ = (L//v~ - (L/lk-lv~ + (L//-lv~ - ••• + L/v~ -v~ 

So 

So dior k + 00 we find 

f 
Part (iii) of the lemma follows from the monotonicity of 0010 and L0 n. D 
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LEMMA 5.2.6. Let e: > O, let o E-l:i be transition memoryless and nonzero and 
o o o 

let v0 E V such that v0 ~ U0 v0 - e:µ. Let the sequence vn (n 2: O) be defined 

by 

I f o o o 
where fn := g(Bn)' with Bn :={f L0vn-l.: max{vn_ 1 ,u0vn_ 1 -e:<l-v0)µ}} 

then 

(i) llv 
0 - v*II for n sufficiently large < E n 

(ii) 0 0 * 
vn-1 ~ V ~ vf ~ V 

n 
n 

PROOF. The proof is completely analogous to the proof of lemma 4, 3. 8. D 

REMARK 5.2.3. 

(i) Also in this situation it is easy to find a starting vector v~ E V 
o o o -1 

such that U0v0 .: v0 + e:µ by choosing e.g. v0 := (1 - p) b - R.µ with 

R. E JR+ sufficiently large. 

(ii) It follows by combining part (i) and (ii) of the foregoing lemma that 

II V f - v* II < s for n sufficiently large. 
n 

0 LEMMA 5.2.7. Leto Et, be transition memoryless and nonzero and let v0 EV. 
Let the sequence v0 be defined by 

withe: 
n 

(i) 

n 

v 0 := u v0 
n o,e: n-1 

n 

n 
:= v 0 and fn 

* V (in µ-norm) , 
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(ii) * V (in µ-norm) • 

PROOF. The proof is completely analogous to the proof of lemma 4.3,9. D 

REMARK 5.2.4, 

(i) From the preceding lemmas it follows that for any nonzero transition 

memoryless stopping time & €~the determination of the optimal retum 

ve·ctor v* can be done by successive approximation of v* with a sequence 
& . 

vn as described in lemma 5,2.5-5,2.7. Moreover, for each E > 0 the po-

licy fn is E-optimal for n sufficiently large, So in fact each nonzero 

transition memoryless stopping time produces a poZiay improvement pro­

cedure for solving the Markov decision problem. 

(ii) For finite state space Markov decision processes with a bounded reward 

structure and nonrandomized stopping times, many of the results given 

in this chapter may be found in Wessels [ 74] and van Nunen and Wessels 

[55]. 
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CHAPTER 6 

VALUE ORIENTEV SUCCESSIVE APPROXIMATION 

In the previous chapter we have developed policy improvement procedures for 

Markov decision processes. Here we will deal mainly with policy improvement 

value determination procedures. Procedures of this type require extra compu­

tational effort, in each iteration step, in order to find better esti-

mates for the actual value vector Vf. 
n 

In section 6.1 we will show that each transition memoryless stopping time 

o E ~ (so in fact each policy improvement procedure) generates a whole set 

of policy improvement value determination procedures. In section 6.2 some 

aspects of the value oriented methods will be discussed and connections 

with results of other authors will be given. 

From now on we will restrict the considerations to transition memoryless 

nonzero stopping times. This restriction is made since stationary (Markov) 

strategies are in fact the relevant decision rules, as is proved in theorem 

4.3.4, and transition memoryless stopping times are the only stopping times 

for which a restriction to stationary strategies is always allowed (see sec­

tion 5.3). In spite of this restriction, the existing policy improvement 

procedures, as introduced by Howard [35], Hastings [26], Reetz [60], and 

the present author [54], are contained in the set of policy improvement pro­

cedures generated by transition memoryless stopping times. 

6.1. PoUey ~mpMvemen.t va£.ue. dete.Jrmlna.ti..on pMeeduli.u 

For each o E ~ that is transition memoryless and nonzero, a set of value 

oriented procedures will be based on an extension of the contraction map­

ping U0 of V. 

DEFINITION 6.1.1. The set of all transition memoryless nonzero stopping 

times is denoted by~•. 

DEFINITION 6.1.2. Fore> o, o E ~•, and A EN we define the mapping u;A) 
u,E 

ciV~ 
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with f := g({f I 11u0v- Lfvll < e:l). 
From theorem 5.2.2 it follows that u(A) is well defined for E > o. 

(oo) O ,E 
We define the mapping u~ of V by 

u 1 E 

f 
If Vv€V 3f€F U0v = L0v, then E may be zero. In that case we define 

uJ~~v := (L!/v and ui7~v := lim uf~v = Vf with f := g({f I u0v = L:v}). 
;i.._ , 

LEMMA 6.1.1. For A € :N u { 00 }, and cS € ti.', U (A) maps V into V. 
0 1 E 

LEMMA 6. 1. 2. Let cS € ti. ' , let E > O and A € :N u { 00 } , then 

(1) U(A) is not necessarily &-monotone. 
0 ,E 

(11) U(A) is not necessarily &-contracting. 
O 1 E 

PBOOF. The statements follow directly from the following example, where the 

exact value of Eis irrelevant, since only finitely many Markov policies 

are available. We choose E = 1. Leto€ ti.• correspond to G1 ,s\{o} := {1,2}, 

µ(1) := µ(2) := 1, A(l) := A(2) := {1,2}, p 1 (1,1) := p 1 (2,l) := p2 (2,2) :=0 

p2 c1,2i := o, p1 c1,2i := p 1 c2,2> := lc2,1> := ic1,1> := o.99, 

r(l,1) := r(2,1) := 10, r(l,2) := r(2,2) :=0, v1 (1) := v 1 (2) :=0, 

v2 (1) ·:= 100, v2 (2) := 10. Now it is easily verified that 

{fl11u0v1 
f 1} {f = ( 1)} Bl := - L0 V 1 11 S 1 

and 

:= {flllu0v2 - f {f = (2)} B2 Lov2IIS:1} = 2 

However, for A+ oo we have 

(A) 1000 (A) (0) □ 0 o,1v1 + <1000>' 0o,1v2 + 0 

From the foregoing lemma it may seem impossible to use the mapping u5A) in 
u,E 

a similar way as we have used U0 and U0 • However, the structure of Markov 

decision processes enables us to base o~EU0(A) approximation procedures for 
,E 

solving the Markov decision process. This will be proved in the sequel of 

this section. We will first assume that u010 is defined. In practical situa­

tion this assumption is often satisfied. 



LEMMA 6.1.3. Let 6 E t:,.t- and suppose U0 O is defined. Let A EN U {m} and 
OA CA CA ' CA let v0 be such that u6v0 ~ v0 • Let the sequence v be defined by 

OA (A) CA n 
vn := u610vn-l' then 

(i) VOA ~ VOA ~ * 
vf ~ V n-1 n n 

(ii) VOA f * llv CA * 1:J CA - v* II V v II~ v01v0 n n 

fl 
Since L0 is a monotone contraction on V 

fl 
Moreover, it follows from the monotonicity of L0 that 

CA f2 CA fl CA CA 
Now, since u6v1 = L0 v1 ~ L0 v1 ~ v1 it is similarly verified that 

CA CA CA 2 CA v2 ~ v 1 and v2 ~ u6v0 • The proof proceeds further in an inductive way 

using the monotonicity and contraction properties of the mappings U0 and 
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f n CA * L0 and the fact that U0v0 f V (see lemma 5.2.5). □ 

CA OA CA 
REMARK 6.1.1. It is easy to find a v0 c: V such that u6v0 ~ v0 (see re-

mark 5.2.3). 

LEMMA 6.1.4. Let 6 c: t:,.• and suppose u0 0 is defined. Let Ac: Nu { 00 } and 
CA CA ' 

v0 EV. Let the sequence vn be defined by 
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then 

(i) 

(ii) lim vf 
n-->oo n 

* V 

* V 

(in µ-norm) 

(in µ-norm) , 

PROOF. We will prove the lemma A £ ·JN since the proof of the lemma for),.= 00 is 

a direct consequence of the foregoing 

fl 

{OO) cSoo 
lemma. Namely, u010v0 = vf. This 

1 
implies U0 0vf ~ L0 Vf = Vf. So after the first iteration step the con-

, 1 1 1 

ditions of the foregoing lemma are satisfied. 

Proof of part (i) of the lemma: First, we remark that 

as follows from 

o>. * The proof of vn ~ V - £µ for n sufficiently large is more complicated. 

We will first prove 

(6.1. 1) 

and 

Similarly we find 
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So 

By induction it follows that 

(6. 1.2) 

This proves formula (6,1.1). 

NA }. -1 Let e: > O, let N be such that (A - l)v (1 -v6 ) M < e:. Then (6.1,2) with 

n = N implies 

Similarly we find 

This implies 

(6.1.3) 

From formula (6. 1. 2) with n = N + 1 we have 

which yields 

Substituting the right hand side of formula (6.1.3) in.the above formula we 

get 
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So 

However, from formula (6,1.2) we have 

In a similar way as for N + 1, N + 2 this yields 

In general 

So fork+ oo we get 

This completes the proof of part (i) of the lemma. 

Note that it follows from this proof that 

01. o:>.. 
V O 3N,,,.T V N II U,, v - v · 11 < e: • e:> ""' n> u n n 

(ii) Fore:> 0 and n sufficiently large we have 

So for all k E :N 



This results in 

llvf -v*ll<2e:, 
n 

for n sufficiently large. 

Until now we have proved the convergence of sequences v!A to v* under the 

restrictive condition that 0010 is defined. In the sequel of this section 

this assumption will be replaced by weaker assumptions. 

THEOREM 6,1.1. Leto E !:::.'. Let A E:N U {oo} and let v~A EV. Let the 

sequence v!A be defined by 

withe: n 

(i) 

(ii) 

where f 
n 

nA 
:= v 0 • Then 

DA 
lim V 

n+"' 
n 

lim vf 
J1700 n 

* 
V (in µ-norm) 

* 
V (in µ-norm) 
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□ 

PROOF. The proof proceeds along the same lines as the proof of lemma 6.1.4 

with the exception of the first part where a slight modification is required. 

Define 

then 
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fl 
as follows from the monotonicity and contraction property of L0 • Moreover 

In general we find induc:ti vely 

The final part of the theorem proceeds in a similar way as the proof of 

lemma 6.1.4. D 

LEMMA 6.1.5. Let e: > o, let o € 6. 1 • Let 
o). o). 

that v0 ~ U0v0 - e:µ. Let the sequence 

A € lN u { 00 } and let v~A € V such 
o). 

vn be defined by 

where fn := g(Bn) with Bn := {f I L:v!~l ~ max{v!~l ,u0v!~l - e: (1 - v0) µ}. 

Then 

(i) llv 
o). 

n 
- v* II < e:, for n sufficiently large , 

(ii) 
o). o). * 

vn-1 ~ V ~ vf ~ V n n 

PROOF. The proof may be found stra~ghtforwardly by using similar arguments 

as in lemma 6.1.3 and the foregoing theorem (6.1.1), see also the lemmas 

4.3.8 and 5.2.6. 

REMARK 6.1.2. As mentioned earlier it is not difficult to find a starting 
o). o).< o). 

vector v0 EV such that v0 - u0v0 - e:µ. 

THEOREM 6.1.2. Let e: > O, let o € 6.'. Let A€ lN u { 00}, and let v~A E V. 

Let the sequence v0A be defined by 
n 

□ 



(i) 

(ii) 

II v0X - v* II < 2e: for n sufficiently large , 
n 

II V f - v* II < 3e: for n sufficiently large • 
n 

PROOF. The proof proceeds in a similar way as the proof of lemma 6.1.4. 

Also in this case it will be clear that 

So 

and 

f f X-1 
(Lo 1/v~A - (Lo 1/-1v~x :.!: - "o Mµ 

f2 o7' oX oX o7' 
Lo v1 - v1 :.!: Uov1 - v1 - nµ 

f1 oX oX 
- nµ :.!: 

X 
:.!: Lo v1 - v1 -voMµ - nµ • 

Inductively we find 

So for n sufficiently large 

(6.1.4) 
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So from formula (6.1.4) with n = N we have 

Iterating in this way we get 

Now since 

we get 

This yields by applying u6 

(6.1.5) 

From formula (6. 1. 4) with n = N + 1 we have 

and 

In a similar way as for n = N this yields 

So 
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By using (6.1.5) we find 

and 

So for k ➔ 00 we have 

ol ..,_ * lim inf VN+k "'- V - e:µ • 
k+«> 

This proves part (i) of the lemna. 

The final part follows in a similar way as the proof of part (ii) of lemma 

6.1.4. □ 

REMARK 6. 1. 3. 

(i) Note that the 
0 

foregoing theorem (for A = 1) states that, for any o Et,.', 

e: > O, and v0 EV we have for 

(a) II v0 - v* II < 2e: 
n 

(bl II v f - v* II :s: 3e: , 
n 

for n sufficiently large. 

0 
V := U.t- nVO l n u, n-

(ii) From the foregoing theorems and lemmas it will be clear that for any 

* o Et,.' and for any A E:N u { 00 } the optimal return vector V may be ap-

proximated by a sequence v o>. as described in the theorems 6 .1.1 and 6. 1. 2 
n 

and the lemnas 6.1.3-6.1.5. Moreover, the policy fn becomes (e:-)op-

timal for n sufficiently large. So in fact each o Et,.• and each 

A E :N u { 00 } produce a policy improvement value determination procedure 

for solving the Markov decision problem. 
o>. 

(iii) Note that for A= 1 the sequences vn coincide with the corresponding 

sequences v0 discussed in chapter 5. n 



92 

6. 2. Some. Jr.emvr.fu, on the. value. olLle.nte.d me.t.hodti 

In this section we shall try to illustrate what really happens when we use 

a value oriented successive approximation method. Furthermore, connections 

with existing solution techniques for Markov decision problems will be given, 

We shall restrict ourselves here to the situation that u010 is defined. In 

the preceding sections we have seen how the results can be extended if this 

restriction is released. 

In a very simple situation, finite state and decision space discounted 

Markov decision processes, it has been illustrated by the author [53] that 

for o corresponding to G1 the mapping Ui~b produced better estimates for 

V f compared to the estimates of. the mapping U0 • This might be expected 
n 

since in each iteration step extra computational effort is spent to find 

better estimates for Vf (the value vector of the actual policy fn). 

n f f 
For v € V and o €~•,let f := g({f I L0v = u0v}). Then, since L0Vf = vf we 

have 

This implies that in general u1A)v is a better estimate for the total ex­

pected return Vf under the actual policy f than U0v. 

Choose v0 € V such that u0v0 :.?: v0 • It is easily verified that the sequences 
OA (A) OA o o . v :=_U,, 0v 1 and v := u,, 0v 1 both started with the chosen v0 satisfy n u, n- n u, n-

For some examples we refer to van Nunen [53]. In [53] we have shown for 

finite state space finite decision space discounted Markov decision proces-
OA (A) OA 

ses that, for o € t corresponding to G1 the value vector v := u,, 0v 1 . n u, n-
may be interpreted as the total expected reward over nA-time periods if the 

strategy 

AX AX 

f ,f , ••• ,f ,f 1•···,f 1•···,f1,···•f1 n n n n- n-

is used and the terminal value vector equals v~A. A similar interpretation 

may be given if more complicated stopping times are used. 
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If c5 is nonzero and A = 00 , then ·the algorithms as described in theorem 

6.1.1 are clearly of the policy iteration type, see e.g. Howard [35], Mine 

and Osaki [SO]. This means that in each iteration step the value vectors 

Vf (total expected return over an infinite time horizon) of the actual po-
n 

licy fn' is computed exactly. The choice of c5 6 ti.• only determines the way 

of looking for possible improvement of policies. For any c5 € ti.• in the case 

A= 00 , each iteration step brings a strict improvement of the values Vf 
n 

'l * unti the optimum V is reached. This occurs in a finite number of steps if 

only finitely many Markov policies are available. For A= 00 , in the first 

iteration step, the value vector vf is computed exactly. So after one 
1 

iteration step the condition Uc5, 0v ~ v, as required in lemma 6.1.3, is sa-

tisfied; from then on the convergence will thus be monotone. 

Howard's policy iteration algorithm [35], [SO], for finite state space fi­

nite decision space discounted Markov decision processes equals the example 

c5 corresponding to G1, A= 00 , µ(i) = 1 and b(i) = O for i € s\{O}. 

If in this situation c5 is replaced by the stopping time corresponding to 

the goahead set G8 we get Basting's modified (Gauss-Seidel) policy itera­

tion algorithm (26]. As mentioned, for A = 1 and c5 corresponding to G1 the 

successive approximation methods yield the standard dynamic programming 

method as described by e.g. Bellman [3], Blackwell [4], [SJ, MacQueen [46]. 

In this chapter the procedures have been defined for a fixed number 

A€ lN u { 00 }. However, it is not essential that A is fixed for all itera­

tion steps. The value of A may depend pn the number of the iteration step 

and even on specific aspects of the actual iteration process. 

For numerical experiences with a value oriented method we refer to van 

Nunen (53]. 





CHAPTER 7 

UPPER BOUNVS, LOWER BOUNVS ANV SUBOPTIMALITY 

In the previous chapters we have proved the convergence of the sequences 
t'l t'iA 

vn, vn, vn , as defined in the preceding chapters to the optimal return 
* ~ vector V. We have also proved that the Markov strategy fn found in the 
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n-th iteration step of the actual algorithm is E-optimal for n sufficiently 

large. In general the convergence proceeds at a geometric rate, since we 

have required IIPfll ~ p* < 1 for all f € F {see lemma 5.2.5). The question 

now arising is whether one is able to construct better estimates for Vf 

and v* 
can be 

at an earlier stage of the iteration process. We will show 

done by extrapolation based on the differences vt'l - vt'l 1• 
n n-

Upper and lower bounds for the value vectors V f 

porate a test for the suboptimality of policies~ 

and v* enable us 

n 
that this 

to incor-

Section 7.1 will be devoted to the construction of upper and lower bounds. 

Section 7.2 will deal with the concept of suboptimality of policies. In the 

final section 7.3 we restrict the considerations to finite state space Mar­

kov decision processes. The concepts of bounds and suboptimality will be 

considered with respect to these processes. Several numerical aspects will 

be discussedi relations with the work of other authors will be given. 

7. 1. Uppvi. bound& and lowvi. bound& 6oJt. v f and v* 
n 

We will treat the concept of bounds in a similar way as Porteus [58], [59] 

did in the finite state case with t'l corresponding to G1, b = 0 and the un­

weighted supremum norm. We also refer to van der Wal [71] who treated the 

concept of bounds in a similar way for finite state space Markov games with 

b = 0 and the unweighted supremum norm. 

DEFINITION 7.1.1. Let v! be a sequences of vectors in V, then we define 
t'l t'l 

an, Sn for n = 1,2, ••• by 

t'l inf [ {vt'l {i) - vt'l l {i))µ-l{i)] a := n i€S\{0} n n-

Bt'l := sup [ ci Ci> - vt'l 1 (i))µ-l{i)] 
n i€S\{0} n n-



96 

Moreover, we define 
0 0 

Zn' yn by 

{'"' 
inf (µ-l(i) I p:(i,j)µ(j)) if 

0 
.: 0 CL 

0 fEF if0 jES n 
Zn := 

\) 0 if 
0 

< 0 CL n 

r 
if so .: 0 

0 n 
yn := 

inf inf (µ-l(i) I pi (i,j) µ (j)) if so < 0 
fEF if0 jES n 

LEMMA 7.1. L 

(i) 

(ii) 

(iii) 

PROOF. Since Lt is a monotone mapping it is straightforwardly verified that 

o o 
s y •S •µ 

n n 

We will prove part (ii) only for N = 1. For general N the proof follows by 

induction. Choose an arbitrary E > 0 and choose f 1,f2 E F such that 

Then 

and 



Since e: was chosen arbitrarily this implies part (ii). 

Part (iii) follows similarly by using the definition of u., • 
u ,e: 

6 
LEMMA 7.1.2. Let 6 € IP, v0 € V and suppose 0610 is defined. Let these-

quence v6 be defined as in lemma 5.2.5 then n 

(i) 86 > 0 • 86 > 0 and thus v6 
6 6 

n n-1 = Yn = Yn-1 

(ii) a6 0 .. a6 1 < 0 and thus v6 
6 6 

< = z = z n-1 . n n- n 

P:ROOF. 

(i) 
6 6 6 -1 O < 8 = sup [(v (i) - v 1 (i))µ Ci)]= 
n i~O n n-

(ii) 

inf [(u6v6_ 1 (i) - u6vn6_2 (i))µ- 1(i)] ~ 
i~O n 

f 1 6 6 -1 6 
~ inf [(P n- (vn-l - vn_2) (i))µ (i)] ~ an-l • 

i~O 

6 COROLLARY 7. 1. 1. Let 6 € t,.' , v O € V and suppose U 6 , 0 is defined. Let the 
6 sequence vn be defined as in lenuna 5.2.5 then 

00 

(i) }: 
k=l 
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□ 

□ 
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(ii) 

PROOF. Fors!> 0 and a!< 0 the proof of part (i) and (ii) follows from 

the foregoing two lemmas. 

The other cases are trivial. D 

0 
LEMMA 7.1.3. Leto E l:i.', let v0 EV and suppose u010 is defined. Let the 

sequence v0 be defined as in lemma-5.2.5. 

(i) 

n 
0 

The sequence un (n ~ 1) defined by 

o o o o -1 o 
U := V + y (1 - y ) S •µ 

n n n n n 

* yields monotone nonincreasing upper bounds for V 

. Moreover 

(ii) 

(iii) 

PROOF. 

u° + v* 
n 

The sequence t 0 (n ~ 1) defined by 
n 

yields monotone nondecreasing lower bounds for Vf 

Moreover 

t 0 + v* 
n 

0 

and thus for Vf. 
n 

* and thus for V • 
n 

0 N o VO+ UN o N-1 o N-1 o 
UV = ovn - Uc vn + Uc vn - ••• + Uovn - V 

o n n n 

0 
N 

< else•µ s V + I n 
k=1 

Yn n 

see lemma 7.1.l(ii). 



So for N + m we find 

0 The monotonicity of un follows from 

The statements 

fn No 
(Lo ) vn-1" 
The convergence 

about the lower bounds follow similarly by considering 

of u0 and t 0 to v* follows from lemma 5.2.S. n n 
Part (iii) follows by inspection. 

REMARK 7.1.1. 
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□ 

(i) Note that for o chosen corresponding to G1 the bounds may be used for 

the sequence vn as defined in lelllllla. 4.3.7. 

(ii) If in the situation as described in le!IDDa 7.1.3 the starting vector 

vi is chosen such that U0vi ~ v~ then it is easily verified that 
o o o o o 

an~ 0 for all n ~ 1. This implies zn zn-l and yn yn-l for all 

n > 1. 

0 LEMMA 7.1.4. Let the sequence vn be defined as in lelllllla. 5.2.6, then 

(i) 0 
The sequence wn (n ~ 1) defined by 

w0 (i) n 

where u! is defined as in le11DDa 7.1.3, yields monotone nonincreasing 

* upper bounds for v and thus for V f • 
n 
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o 
(ii) The sequence xn , (n ~ 1) defined by 

x0 (i) 
n := max{x° l (i) ,R.0 (i)}, n > 11 i e: S\{O} n- n 

where R. 0 is defined as in lemma 7.1.3, yields monotone nondecreasing 
n * 

lower bounds for V • 

PROOF. The proof proceeds along the same lines as the proof of the fore­

going lemma. 

We first remark that v0 - v0 ~ 0 for all n since n n-1 

so for all n > 1 

Now consider 

.For N+ m we obtain the requested result. 

For the lower bounds we have 

v° + n 

So for N ➔ m we have 
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The 

llwc5 
n 

, xc5 follows from the definition of wc5 and xc5 whereas 
n n n 

follows from lemma 5. 2. 6. D 

REMARK 7.1.2. From the foregoing proof it will be clear that ic5 is a lower 
n 

bound for V f • 
n 

c5 
LEMMA 7.1.5. Let vn be defined as in lemma 5.2.7, then 

(i) 

(ii) 

c5 
the sequence wn (n ~ 1) defined by 

wc5 (i) := 
n 

c5 where un is defined as in lemma 7.1.3,yields monotone nonincreasing 

upper bounds for v* and thus for V f • 
n c5 

the sequence xn (n ~ 1) defined by 

xc5 (i) 
n 

:= max{xc5 1 (i),ic5(i)}, n > 1, i E S\{O} 
n- n 

where i~ is defined as in lemma 7.1.3, yields monotone nondecreasing 

lower bounds for v*. 

(iii) 

PROOF. The proof of the first two parts proceed in a similar way as the 

proofs of the foregoing lemmas whereas the final part follows from lelllllla 

5.2.7. 

REMARK 7. 1. 3 • 

□ 

(i) A lower bound for V f may be found in a similar way as in lemma 7. 1. 4 
n 

(see also remark 7.1.2). 
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(ii) 

(iii) 

Note that if 15 is chosen corresponding to G1 then the bounds may be 

used for the sequences v and f as defined in lemma 4.3.8. 
n n '5}. 

Upper and lower bounds for the sequences vn as defined in chapter 6 

can be obtained in a similar way. We will illustrate this by giving 
15}. 

the bounds for the sequences vn as defined in lemma 6.1.4, i.e. 

15}. 15}. 
(1 15}.) -11315}. u := V + n n - Yn n µ 

R,15}. 15}. 
(1 -

'5}._)-1 15}. 
:= V + z a µ n n n . n 

where 

fn+1 15}. . 15}. -1 
:= sup[ (L15 v . (i) -v (i))µ (i)] , 

iFO n n 

f 
:= inf[ (L_. n+lv'5}. (i) - v'5}. (i)) µ -l (i)] 

iFO u n n 

d 15}. 15}. 
an y , z 

15 n 15 n 
yn and zn. 

are defined by means of 13'5}. and z 15 A in a similar way as 
n n 

7. 2. The. -6ubop:ti.ma,Ut.y o 6 Ma/1.k.ov polidu and -6 ubop:t:,,i..mal a.mo/1.6 

We first want to remark once more that we still restrict ourselves to tran­

sition memoryless nonzero stopping times. 

DEFINITION 7.2.1. 
00 

(i) A Markov policy f E F is called suboptima'l if f is not optimal. 

(ii) A Markov policy f E Fis called e-suboptima'l if f00 is note-optimal. 

LEMMA 7.2.1. Suppose u,R. € V are an upper bound ana a lower bound for the 

value vector v*, and let 15 E ~•, then 

(i) 

(ii) 



PROOF, 

(i) In chapter 5 we have proved f E F is optimal if and only if Lfv* 

(ii) 

* moreover we have proved U0V 

consequently f is suboptimal. 

So 

Iterating in this way yields 

* V. However 

* V 

* V - e::µ • 
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* V ; 

which implies that V f < v* - e::µ. D 

It would also be nice to make assertions as to the (e::-)suboptimality of 

actions. 

DEFINITION 7,2.2. 

(i) An action ao E A(i) is said to be suboptimal with respect to state 

i Es if there exists no optimal policy f E F with f(i) = a0 • 

(ii) An action a0 E A(i) is said to be e::-suboptimal with respect to state 

i ES if there exists no e::-optimal policy f E F such that f(i) = a0 • 

* LEMMA 7. 2. 2. Let o E !:i.', u, JI. E V be an upper bound and a lower bound for V • 

Let i Es. For each f E F we define the set F~ c F by 
l. 

then 

Ff := {f' E F I f' (j) 
i 

f(j) for all j # i} 

(i) The action a E A(i) is suboptimal with respect to i ES if for each 
f 

f E F with f(i) = a there exists an f' E Fi such that 
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(ii) The action a E A(i) is e:-suboptimal with respect to i € S if for each 

f € F with f(i) = a there exists an f' € 
f 

F. such that 
]. 

f Lf'R, L0 u < 0 - e;µ 

PROOF. The proof proceeds in a similar way as the proof of the foregoing 

lemma. 

The assertions of the foregoing lemma may also be expressed in terms of 

maximizing over the decisions in state i Es as follows. 

COROLLARY 7.2.1. Let a E ~•, and u,R. EV be an upper bound and a lower 

* bound for V. Denote by fa E Fa Markov policy with f(i) = a then 

(i) the action a' E A(i) is suboptimal with respect to i ES if for all 

f I 

L0a u(i) < 
f 

sup (L0 a) R. (i) 
aEA(i) 

D 

(ii) The action a' E A(i) is e:-suboptimal with respect to i ES if for all 

f I 

L0 a u(i) < 
f 

sup (L0 a) R. (i) - e:µ (i) 
aEA(i) 

E.specially for computational purposes it would be desirable to maximize 

component-wise in the determination of U0 v, U0 ,e: v. Sufficient conditions to 

allow a component-wise maximization may be found in the following lemma. 

LEMMA 7.2.3. Let a E ~• and suppose (eventually after renumbering the state 

space) that 

(7.2.1) 



then 

(1 - 6(i}}v(i} + 

6(i) sup {r(i,a} + l pa(i,j}[(1-6(i,j})v(j}+6(i,j}U6vcj}] 
ai;:A(i) j<i 

i' l Pa(i,j}v(j}} 
j~i 
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PROOF. The proof of the lemma follows directly by analysing the transformed 

problem as described in the proof of theorem 5.2.2. D 

REMARK 7.2.1. The transition memoryless nonzero stopping time G8 and GR as 

described in the examples 2.2.2 and 2.2.4 and the stopping time 6 correspon­

ding to G1 satisfy the conditions of the foregoing iemma. 

In the next section we will consider into more detail situations as des­

cribed in formula (7.2.1). This will be done for finite state space Markov 

decision processes. 

LEMMA 7.2.4. Let 6 i;: A', and let Jl.,u i;: V be a lower and an upper bound for 

v* respectively and suppose (7.2.1) is satisfied, then 

(i} the action ~ € A(i} is suboptimal if 

< sup {r(i,a)+ l pa(i,j}[(1-6(i,j})Jl.(j}+6(i,j}U6R.(j}]+ l pa(i,j)Jl.(j)}. 
ai;:A(i) j<i j~i 

(ii) The action a i;: A(i) is e-suboptimal if the first term under {i) is 

smaller than the second term minus eµ(i} {6(1))-1• 
\ 

PK>OF. The proof follows by inspection. D 
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:REMARK 7,2,2. 

(1) For o corresponding to G1 the condition required in lemma 7.2,4(1) 

reduces to 

ao , 
p (1,j)u(j) < sup 

aEA(i) 
{r(i,a) + l pa(i,j)R.(j)}. 

jES 

(11) The latter suboptimality criterion can be expressed more explicitly 

if the upper and lower bounds are given in terms of v and v 1, see , n n-
e.g. MacQueen [47]. 

(111) Better criteria can be obtained if we impose additional conditions 

on the transition probabilities, see e.g. Hubner [36]. 

7. 3. Some Jte.maJUUi on. 6,l.n.U:e .6ta1:.e ,t,pace MaJtk.ov dec,U-lon. p1Wc.U.6U 

For practical pu:r:poses (the finite state space) Markov decision processes 

become more and more important. Many practical problems such as inventory 

problems, replacement problems and Marketing problems may be described by 

Markov decision models. We refer to e.g. Scarf [63], Tijms [67], Howard 

[35], Hastings [25] and Wessels and van Nunen [73], 

Sometimes it will be self evident to approximate Markov decision processes 

with a countable state space by finite state sp~ce processes, this is done 

e.g. by Fox [19]. 

For the solution of Markov decision problems in the finite state case, li­

near programming [ 13], [49], and policy iteration may be used. If the under­

lying decision space contains only a finite number of elements, both me~ 

thods yield an optimal solution in a finite number of steps. However, dif­

ficulties arise if the state space is large. For example, the policy itera­

tion method requires in each iteration step the solution of a system of 

linear equations of the size of the number of sta~s. For solving Markov 

decision problems with a large state space, successive approximation me­

thods that avoid the solution of the large systems of linear equations, be~ 

come preferable. This is especially true if the concept of extrapolation is 

used to construct upper and lower bounds, see Schellhaas [64], MacQueen 

[46], Porteus [59], Finkbeiner and Runggaldier [18], Das Gupta [22] and 

the present author [54], 
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As we have seen upper and lower bounds enable us to incorporate a test for 

the suboptimality of actions. Such a test may also reduce the required com­

putational effort considerably, see e.g. Grinold (20], MacQueen [47], 

Porteus [SB], Hastings and Mello [27], and Hubner [36]. 

Hinderer [32] derived in a similar way bounds for finite stage dynamic pro­

grams in the case b € W, o corresponding to G1 and the usual supremum norm. 

In [31] Hinderer extended his results by using weighted supremum norms as 

introduced by Wessels [74]. 

A number of the described techniques for solving Markov decision problems 

with respect to the total reward criterion can be used in a modified way 

for solving these problems with respect to the average reward criterion, 

see Odoni [57], White [77], Schweitzer [65], Morton [51], Veinott [69] and 

van der Wal [70]. Also for Markov games similar techniques can be used; see 

van der Wal [71], [72]. Since periodic Markov decision processes (see e.g. 

Carton [ 7], Riis [61]) can be described as ordinary Markov decision pro­

cesses, by incorporating the period in the state definition the same holds 

for such processes. 

For Markov decision processes with a finite state space the assumptions 

4.1.1, 4.2.1-4.2.4 reduce in fact to the well-known ass~tions 

(n-stage contraction), see for instance Denardo [12] or Porteus [59]. For 

finite state space problems van Hee and Wessels [29] have proved the equi­

valence between the existence of a bounding functionµ' such that II Pf I~ , ~ P < 1 

for all f € F and N-stage contraction. We will discuss the concept of N­

stage contraction in chapter B. 

The use of a bounding function may be interpreted as the transformation of 

the problem in an equivalent one (in a similar way as Porteus did in his 

recent paper [59] (the similarity transformations)). This can be done by 

defining transformed rewards r(i,a) := µ- 1 (i)r(i,a) and transformed transi­

tion probabilities pa(i,j) := µ- 1 (i)pa(i,j)µ(j). Then the optimal value 
~* ~* -1 * * vector of the transformed problem (V) equals V = µ V, with V the opti-

mal return of the original problem as is straightforwardly verified. 

Also the use of stopping times for successive approximation procedures may 

be viewed upon as investigating a transformed problem with 

and 
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As proved in the preceding chapters the optimal return vector v* then 

equals v* of the original problem. 

For finite state space Markov decision processes the last mentioned trans­

formation corresponds to the pre-inverse transformation as introduced by 

Porteus [59]. 

Let the norm of the pX'oqess be defined by sup II Pf II and let the speatral, 
f€F 

X'ad:ius of the process be defined by sup yf, with yf the spectral radius of 
f€F 

Pf (its maximum absolute eigenvalue) then it will be clear that the choice 

of an adequate transition memoryless nonzero stopping time yields a trans­

formed process with a reduced spectral radius. The choice of the µ-function 

however may influence the norm of the transformed process but does not al­

ter the spectral radius. 

A reduction of the spectral radius improves the performance of the value 

iteration while a reduction of the norm of the process (using an adequate 

µ-function) may improve the bounds introduced in section 7. 1. 

For computational purposes it will be desirable that for each f € F and 

each o € 6' the matrix with (i,j)-th entry equal to Pf(i) (i,j)o(i,j) pos­

sesses the triangular structure as described in formula (7.2.1). As mention­

ed earlier, if the stopping times corresponding with G1 , GR,~ are used 

then (7.2.1) is satisfied. For o corresponding to G1 the approximation pro­

cedure described in lelllllla 4.3.6,results in 

max fr(i,a) + l pa(i,j)v _1 (j}} • 
a€A(i} j€S n 

For o corresponding to GR the procedure described in lemma 5.2.4 may be 

represented more explicitly by 

which is the well-known Jacobi iteration, see e.g. Porteus [59]. By choos­

ing o such that o corresponds to GR with exception of o(i,i), i ES for 

which it is allowed that o(i,i} < 1 for each i E S\{O} we get a successive 



109 

overrelaxation procedure. An arbitrary choice of o such that (7.2.1) is sa­

tisfied may yield a combination of overrelaxation and Gauss-Seidel-like pro­

cedures. 

For o corresponding to GH the procedure as described in lemma 5.2.4 can be 

executed component-wise 

max {r(i,a) + l pa(i,j) v~ (j) + l pa(i,j)v0 
1 (j)} 

aE:A(i) j<i j~i n-

Of course the way in which the state space is ordered may influence the 

rate of convergence the process, see e.g. Kushner and Kleinman [41]. 

As described in the previous sections all those methods allow for the con­

struction of lower and upper bounds and for the use of suboptimality cri­

teria. Which procedure is preferable for solving a given finite state space 

Markov decision process depends on the problem under consideration. If we 

want to compare two different procedures it will be necessary to compare 

the corresponding sequences of upper and lower bounds. However, where the 

* estimates for V in then-th iteration step of a specific algorithm may be 

better then those of another algorithm (other stopping time) this does not 

mean unfortunately that it is possible to construct in an easy way, bounds 

that are better too. We have illustrated this phenomenon by some examples 

in [54]. Moreover the question whether additional effort spent for the 

computation by 11Pre sophisticated stopping times and the computational gain 

in the number of requested iterations, is evenly matched, cannot be answer­

ed in general. For numerical experiences in these directions we refer to 

Porteus [58], Schellhaas [64] and Kushner and Kleinman [41]. 

The use of value oriented procedures, as described in chapter 6, for solv­

ing finite state and decision space Markov decision problems may yield a 

considerable gain in computational effort. This is the case if the policy 

improvement procedure requires many operations i.e. if the total number of 

decisions is large compared with the number of states. Furthermore, in 

practice optimal policies are achieved after a relatively small number of 

iteration steps, whereas a nonnegligable number of iterations is still re­

quired to satisfy the convergence criterion. Especially for the last reason 

it will be profitable to adapt the value of A during the iteration process. 

For numerical experiences with the value oriented method in the case 6 cor­

responding to G1 we refer to [53]. 
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CHAPTER 8 

N-STAGE CONTRACTION 

In chapter 4 we have required in fact one.stage contraction with respect to 

the bounding functionµ i.e. 

3P, < l V II pf II S P' • fEF µ 

This assumption may be weakened to the case of the so-called N-stage con­

traction. The extension is comparable with Denardo's [12] concept of N­

stage contraction in its strengthened form introduced for the unweighted 

supremum norm case. We will prove that if the N-stage contraction ass'Ulllp­

tion in its strengthened form is satisfied instead of assumption 4.2.2, 

this implies the existence of a bounding functionµ• such that, the assump­

tions 4.2.1-4.2.2 are satisfied whenµ is replaced byµ'. Moreover we will 
o IL\ . 

indicate the convergence (in µ-norm) of the sequences v n, vn, v n as defined 

in the preceding chapters under the N-stage contraction assumption in its 

strengthened form. 

8. 1. Convuge.nc.e. widu. the. ,t,:tlt.e.ngthe.n.e.d N-,t,tage. c.on.tl!.a.c,Uon a.6-6umption. 

First we will introduce the strengthened N-stage aontraation asswnption. 

ASSUMPTION 8.1.1. 

(i) 

(ii) 

THEOREM 8.1.1. Suppose, the assumptions 4.2.1, 4.2.3, 4.2.4 and 8,1.1 are 

satisfied then there exists a bounding functionµ' such that 
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(iii) 

PROOF. Choose a such that P * < aN < 1 where P * < 1 follows from assumption 

8.1.1 and defineµ• by 

00 

µ ' : = sup l .!... Pn (ir) • µ 
'll'l!M n=O an 

Then for 'II' 

N 00 f f 
sup ~ .!... Pm('II') ~ _1_ P m+1 (p m+nN) 

L m L N ••• µ 
'11'€M m=O a n=O an 

fO fN-1 * 
However, since P ••• P µ S p µ it holds that 

Hence 

N m * -N -1 -m µ• S sup L P ('11') (1 - pa ) a µ 
'11'€M m=O 

on the other hand 

as follows from the definition ofµ' and the fact that Markov strategies 

dominate all decision rules, for a proof see van Hee [28]. We also refer to 

van Hee and Wessels [29]. 

This implies aµ' 2: Pfµ' for all f € F, so V f€F II Pf IIµ, S a < 1. From the de­

finition ofµ' we seeµ' 2: µ. Now the proof of part (i) and (iii) is trivial. 

□ 

The foregoing theorem proves that the strengthened N-stage contraction as­

sumption implies the existence of a.bounding functionµ' such that for this 

new bounding function the assumptions 4.2.1-4.2.4 are satisfied. 
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REMARK 8.1. 1. Also Lippman [45J-·gives conditions for N-stage contraction. 

However, it is_proved in van Nunen and Wessels (56] thatthese conditions 

imply the existence of a bounding function µ' such that for µ' the assump­

tions 4.2.1-4.2.4, with b = O, are satisfied. 

on one hand one could say the strengthened N-stage contraction assumption 

yields no real extension since it guarantees the existence of aµ' with the 

described properties. on the other hand the strengthened assumption 8.1.1 
~ ~X 

also guarantees the convergence of the sequences vn, vn, vn , as defined in 

the previous chapters, with respect to the original µ-norm. This will be 

indicated in the sequel of this section by proving that the above statement 

is true for the sequences as defined in lemmas 4.3.7 and 5.2.5. 

THEOREM 8.1.2. Suppose the assumptions 4.2.1, 4.2.3, 4.2.4 and 8.1.1 are 

satisfied then for each f e: F we have 

(i) 

(ii) 

Lf is a mapping V-+ V. 
1 

(LilN is a contraction mapping of V into V with contraction radius P', 
where N and p ' follow from assumption 8. 1. 1. 

f f (iii) For each v0 e: V the sequence vn defined by 

converges to Vfm. 

PROOF. The proof of the first two parts of the lemma is straightforward. 

· To prove part (iii), note that if Li has a fixed point it has to be the 

fixed point of (Li)N. 

Let V be the fixed point of (Li) N then V is a fixed point of Li as follows 

from 

That vf -+ v (in µ-norm) for n -+ m is proved by choosing e: > 0 and k e: :N 
n 

such that 
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Let n > Nk, then n can be written as n = Nk1 + R. with k 1 ;;?: k and 1 S R. S N, 

Where C := max{1, (sup II pf II) N}. 
f€F 

That V equals Vt° is easily verified. 

Part (iv) follows in the standard way 

THEOREM 8.1.3. Suppose the assumptions 4.2.1, 4.2.3, 4.2.4 and 8.1.1 are 

satisfied and suppose u110 is defined, then 

(1) u1 0 maps V into V. 
, N 

(ii) (u1 ,o> is a contraction mapping of V into V with contraction radius 

p' where N and p' follow from assumption 8.1.1. 

(iii) the sequence vn defined for v0 € V by 

* converges to V (in µ-norm). 

* * ~ * (iv) II vnN - V II :s; (p ) ii Vo - V II 

PROOF. The first part of the lemma is trivial. Part (ii) holds since the 

N-stage contraction assumption 8.1.1 is satisfied. The final parts follow 

in a similar way as the final parts of the foregoing theorem. 

□ 

□ 

We finish this chapter with a theorem concerning the sequence v6 as defined 
n 

in lemma 5.2.S(iii). 



115 

THEOREM 8.1.4. Suppose the assumptions 4.2.1, 4.2.3, 4.2.4 and 8.1.1 are 

satisfied, and let o be a transition memoryless nonzero stopping time and 

suppose 0010 is defined, then 

(i) U0 0 maps V into V. 
' o o o o (ii) Suppose v0 EV is such that u010v0 ~ v0 then the sequence vn defined 

by 

converges to v* in µ-norm. 

PROOF. The proof follows directly from the fact that 

* * and the fact that u O V V • □ 





117 

CHAPTER 9 

SOME EXPLANATORY EXAMPLES 

In section 9.1 we will describe how a number of specific Markov decision 

processes, namely discounted Markov decision processes and (discounted) 

semi-Markov decision processes are covered by the theory developed in this 

monograph. 

In section 9.2 we will show how the theory developed in chapter 3 can be 

used to generate successive approximation procedures for solving systems of 

linear equations of the form 

Ax r , 

where A can be described A= I - P, where I is the identity matrix and P 

satisfies the assumptions of chapter 3. Four special cases will be indicated. 

In section 9.3 the monograph will be concluded with an example concerning 

an inventory problem. The problem is the countable state space discounted 

equivalent of the inventory problem with average reward criterion as treat­

ed by Wijngaard [78]. 

9. 1. Some example.6 06 Ji peu6,lc. MaJtkov deU6,lon. pMc.UJ> u 

We start with a remark concerning the applicability of our model. In chap­

ter 4 we have introduced the reward r(i,a) as the innnediate return if the 

system is in state i €Sand action a€ A is selected. However in several 

situations the one stage return will depend on the subsequent transition 

that occurs aswell. So the one stage return can be composed of two parts, 

an amount r 1 (i,a) depending on the actual state i €Sand the selected ac­

tion a€ A, and an amount r 2 (i,a,j) which depends on the next state (j) 

that is visited aswell. However we can still use our model if we define 

r(i,a) as an expected one stage return.i.e. 

r(i,a) := r 1 (i,a) + L pa(i,j)/(i,a,j) 
j€S 

We will now consider disaoW1.ted Markov decision processes, treated for fi­

nite state space finite decision space Markov decision processes by e.g. 

Howard [35] and for general state space, general action space Markov deci­

sion processes with a bounded reward structure by e.g. Blackwell [SJ. The 

difference between the models we have discussed and discounted models is 
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that in the latter situation the reward earned at time n is weighted by a 

factor Sn, where S .:: 0 is the discountfactor. We denote the transition pro­

babilities for the discounted process by qa(i,j) for i,j ES and a EA. For 

an arbitrary Markov strategy TI:= (f0 ,f1, ••• ) we define Qn(TI) with respect 

to the transition probabilities qa(i,j) in a similar way as we have defined 

Pn(TI). Then the total e~pected discounted reward over an infinite time hori­

zon equals 

"' f l SnQn (TI) r n 
n=O 

By incorporating the discount factor Sin the transition probabilities i.e. 

pa(i,j) := Sqa(i,j) the total expected discounted reward equals 

So if for these redefined transition probabilities and for the reward struc~ 

ture the assumptions of chapter 4 are satisfied then discounted Markov deci­

sion processes are covered by the theory developed in the previous chapters. 

Usually this discountfactor is supposed to be smaller than one (i.e. 

0 ~ S < 1). However, depending on the transition probabilities it may be 

allowed that S.:: 1. 

For discounted Markov decision processes with S < 1, b = 0 and with µ (i) 1 

if i ,f, 0 the assumptions of chapter 4 are satisfied if the rewards are 

bounded. 

We now consider semi-Markov decision processes as introduced by Jewell[37], 

[ 38]. 

For semi-Markov decision processes state transitions do not neccessarily 

occur at equidistant points in time. The time (t) between two state transi­

tions is a random variable with a probability distribution function F~ .(t). 
l., J 

The probabilities of the state transitions are as in chapter 4. So if imme-

diately after a transition, the state of the system is i ES and action 

a E A(i) is selected, then the system's next state will be j with a proba­

bility denoted by qa(i,j) where the qa(i,j) satisfy the assumption 4.1.1. 
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tl I dF~ . (t). 
1., J 

Such a transition will occur before time t 1 with probability 

o-
we can consider the embedded Markov decision process, in discrete time by 

defining the state of the embedded process at time n (n = 0,1, ••• ) to be 

the state immediately after then-th transition of the original decision 

process (see e.g. Mine and Osaki [SO], Ross [62], De Cani [10]). 

For semi-Markov decision processes with respect to the total expected re­

ward criterion (without discounting) the total expected reward over an in­

finite number of transitions, (using~= (f0 ,f1 , ••• ) and Qn(~) as we did 

before) equals 

So provided that for the embedded process the assumptions of chapter 4 are 

satisfied the theory of the preceding chapters can be applied. 

In the theory of semi-Markov decision processes with discounting, one as­

sumes that rewards incurred at time t are discounted by a factor St. In a 

similar way as in the ordinary discounted case the discountfactor can be 

incorporated in the transition probabilities for the embedded process i.e. 

00 

9.2. The -60£.ui:,lon 06 -6y-6.te.m6 06 line.aJr. equ.a.:tlon-6 

Suppose the following system of linear equations has to be solved 

(9.2.1) Ax= r 

with A:= I - P, where I is the identity matrix and P satisfies the condi­

tions as imposed in chapter 3 with µ(i) := 1, i ,f O and b(i) :=O for i e: s. 
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For each 6 EA we have proved in chapter 3 that the sequence 

converges to the solution of (9,2,1) if and only if 6 is a nonzero stopping 

time. 

So for each nonzero stopping time we have a successive approximation method 

for solving (9.2.1), For some specific stopping_times these methods are al­

ready known from numerical mathematics (see e.g. Varga [68]). This will be 

shown in this section. So the convergence of these numerical methods to the 

solution of the system of linear equations {9.2.1) follow at one blow from 

theorem 3, 2, 1. 

EXAMPLE 9.2.1. Let 6 EA' correspond to the goahead set GR. We have for 

each i E S 

(9.2,2) 

with Vo EV. 

We define Das the diagonal matrix with diagonal entries (1..;.p(i,1)) and 

define F and Eby the strictly upper and strictly lower triangular parts of 

P. Then clearly (I - P) can be expressed by 

I - P = D - E - F , 

6 Now vn can be given by 

6 -1 6 -1 
vn := D (E + F)vn-l + D r. 

This iterative method is known as the point Jacobi or point total step me~ 

thod (see Varga [68]). 

EXAMPLE 9.2.2. Let 6 E A' correspond to the goahead set G~ with G~(O) =G8 (0), 
1-1 co 

G~(i) := { (a,S) I S E u G~(j), a E u {i}k}, then v! can be given compo-
j=O k=l 

nentwise by (see also example (iii) on page 32) 
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(9.2.3) 

+ 1 l p(i,j)vo _1 (j) • 
1 -p(i,i) j>i n 

By using the matrices D, E and Fas defined in the previous example, formu~ 

la (9.2.3) can be given by 

(D - E) v6 = Fv0 + r , n n-1 

or alternatively by 

This iteration method is known as the point Gauss-Seidel or point single 

step iterative method. 

EXAMPLE 9.2.3. Leto€ A' be the transitio~ memoryless nonrandomized stopp­

ing time such that o(a) = o([a]k _1) for a€ G8 (see example 9.2.2), o(a) =O 
a 

elsewhere. Moreover choose o(i) such that 

V o (i,i) (1-p(i,i)) = o (j,j) (1-p(j,j)) 
i,j€S 1-0 Ci,i)pCi,i) 1-0 Cj,j)pCj,j) 

i,'O 

0 
Then vn can be expressed component-wise by 

Vo (i) o (i) 1 - o (i) 0 
(9.2. 4) 

1-oCi)pCi,i) r(i) + 1 -o(i)p(i,i) vn-1 (i) + n 

+ 
o (i) l p(i,j>v!<j> + 1- o (i}p(i,i) j<i 

+ 
o (i) l p(i,j)vo 1 (j) 

1- o (i)p (i,i) j>i n-

By defining w 

be given by 

:= ° Ci) (l -p(i,i)) and using the matrices D, E, F (9.2.4) can 
1 - o (i)p (i,i) 

o o 
(D - wE)vn = wr + ((1-w)D + WF)vn-l 
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This is known as the point successive overrelaxation method. 

EXAMPLE 9.2.4. Suppose the state space is partitioned in blocks 

B1 = {1,2, ••• ,n1}, s 2 = {n1 +1, ••• ,n2} and so on. Let P be given by 

P 1, 1 

P2,1 
p := 

I 
p 

n, 1 
: 

P.1, 2 

P2,2 

' 

p 
n,2 

' 

p 
~,n 
' 

where P contains the entries p(i,j) with i € Bn and j € B • We define n,m m 
the matrices D, E and F by 

D := I -

0 o-- -- 0 P 1,2 Pl,3 

P2,1 0 - -- - 0 0 P2,3 p - -

E = ' F = 2,4 
' ' ' P3, 1 P3,2 ' 0 ' 

' ' ' ' ' ' ' 

Now let o € a• be the transition memoryless nonrandomized stopping time 

with o (1) 1 for all 1 € s, and o (1,j) = .1 if j = 0 or there is some n e:N 

such that i,j € B , let o (i, j) = 0 elsewhere. Now it is easily verified 

that 0 o n 
V := L0vn-l can be given by n 

o -1 o -1 
vn D (E + F)vn-l + D r. 

This iterative method is known as the block Jacobi iterative method (see 

e.g. Varga [68]). 
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From the foregoing examples it will be clear that the so called block suc­

cessive overrelaxation iterative method can be found by combining the ideas 

used in example 9.2.3 and 9.2.4. Of course several other options (other 

choices of o) are available. The previous examples are only given to illus­

trate how the concept of stopping time can be used to generate the itera­

tive methods for solving systems of linear equations of the form (9.2.1). 

9.3. An lnven:tolUj p.11.0ble.m 

The :i,nventory problem we deal with in this final section will not show the 

full strength of the described methods. 

It only illustrates the power of the concept of bounding function (weighted 

supremum norm). Therefore, in the remaining part of this section, the vector 

b is taken equal to the zero vector (V. b (i) = 0) • In our example we treat 
i.E:S 

the discrete analogue of the inventory problem studied by Wijngaard [78]. 

However we will not investigate whether optimal strategies exhibit a speci­

fic structure or not. 

We will first describe what we will mean here with an inventory problem. 

An inventory problem consists of 

(i) A state space containing the allowed inventory levels. Here, we as­

sume the allowed inventory levels to be integers, We allow for back­

logging which explains why the inventory levels can be negative. 

(ii) Decision spaces A(i) containing for each inventory level i €~the 

possible orders. We assume the orders to be nonnegative integers. So 

A(i) might be given by e.g. A(i) = {0,1, ••• ,N} if at level i all or­

ders of size 0 up to N are allowed. We assume the leadtime to be 

zero. 

(iii) A distribution function of the demand (d) per period. We assume this 

demand to be nonnegative. For k € z+ the probability that the demand 

equals k is pk we assume p0 ~ 1. Moreover we assume 

(9. 3.1) 
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(iv) A cost function c1 on z+ into JR+. For each k E z+, c 1 (k) gives the 

ordering costs of k units. 

A cost function c 2 on z into JR+. For each k E z, c 2 (k) gives the one 

period (expected) inventory and stock out cost if at the beginning of 

the period k units are available (note that k < 0 means a shortage) 

we assume 

[c1 (k)exp(-k) < M] 

(9.3.2) 

(v) An optimality criterion. Here we will use the total (expected) dis­

counted reward criterion with discountfactor S (0 < S < 1). 

We will now adapt the formulation of the inventory problems in such a way 

that they are covered by the models developed in the preceding chapters. 

Of course it is possible to label the inventory levels withN u {o}. How­

ever, we will use the state space S := z u {O'} to maintain the correspon­

dence with the inventory problems as treated by Wijngaard. The state 0' re­

presents the fictive absorbing state. We define the bounding functionµ on 

S by 

µ (0') := 0; µ (i) for i E z . 

We define the transition probabilities pa(i,j) with a E A(i), i,j ES and 

i 'f' O' by 

r••-j for j ~ i + a 

Pa (i, j) := 1 - a for j 0' I 

0 else. 

For i = O' we define p(O' ,O') = 1. 

we define for i E s\{O'} and a E A(i) the rewards r(i,a) by 

r (i, a) 



THEOREM 9. 3.1. Let m,M,R e: Z such that m < 0 < M, R ~ M - m and 

l pkexp(k) < exp(R) • 
k=O 

Suppose A(i) is such that 

Then 

(i) 

(ii) 

(iii) 

i ~ M * V ae:A(i) i + a ~ M 

i > M * A(i) = {O} • 

3M,,..,,+ vie:S V lr(i,a)I ~ M'µ(i) , ""' ae:A(i) 
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PROOF. The parts (i) and (ii) follow straightforwardly. To prove the final 

part of the theorem we use a result of Wijngaard [78]. From Wijngaard theo­

rem 5.4 and the boundedness ofµ on [m,MJ it follows that 

Multiplying both sides by Sn we have for n sufficiently large that the 

n-stage assumption B.1.1 is satisfied. □ 
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