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CHAPTER 1
INTRODUCTION

In the last two decades much attention has been given to Markov decision
processes. Markov decision processes were first introduced by Bellman [ 2]
in 1957, and constitute a special class of dynamic programming problems. In
1960 Howard [35] published his bock "Dynamic programming and Markov process-—
es", This publication gave an important impulse to the investigation of

Markov decision processes.
We will first give an outline of the decision processes to be investigated.

Consider a system with a countable state space S. The system can be con-
trolled at discrete points in time t = 0,1,2,..., by a decision maker. If
at time t the system is observed to be in state i € S, the decision maker
can select an action from a nonempty set A. This set is independent of the
state 1 €S andof the time instant t. If he selects the action a € A in state
i e S, at time t, the system's state at time t+1 will be j € S with proba-
bility pa(i,j) again independent of t. He then earns an immediate (expected)

reward r(i,a).

Usually, the problem is to choose the actions "as good as possible" with re-

spect to a given optimality criterion.

We will use the (expected) total reward criterion.

So the problem is:

1) to determine a recipe (decision rule) according to which actions should
be taken such that the (expected) total reward over an infinite time ho-
rizon is maximal;

2) to determine the total reward that may be expected if we act according

to that decision rule.

In first instance the following solution techniques for Markov decision
processes with a finite state space and a finite action space were availa-
ble: the policy iteration algorithm developed by Howard [35], linear pro-

gramming [11], [13], approximation by standard dynamic programming [ 35].



A disadvantage (especially for large scaled problems) of the former two me-
thods is that each iteration step requires a relatively large amount of com-
putation.

Furthermore, the convergence of the method of standard dynamic programming
is very slow.

Hence, the construction-of numerical methods for determining optimal solu-
tions has been the subject of much research in this area. Moreover, much
attention has been paid to the generalization of the model as described by

Bellman and Howard. Both subjects will be studied in this monograph.

MacQueen [46] introduced an improved version of the standard dynamic pro-
gramming algorithm by constructing, in each iteration step, improved upper
and lower bounds for the optimal return vector. His approach yields a rath-
er fast algorithm for solving finite state space finite action space Markov
decision processes.

Modifications of the afore mentioned optimization procedures have been given
by e.g. Hastings [25], [26] who proposed a Gauss-Seidel-like technique and
Reetz [60] who based his optimization procedure on an overrelaxation idea.
Modifications have also been given by Porteus [ 59], Wessels [ 74], van Nunen

and Wessels [55], and van Nunen [53], [54].

By and by several extensions of the original model were presented, The fi-
nite state space and finite action space restriction was dropped. For
example Maitra [48] and Derman [ 14] studied Markov decision processes with
a countable state space and finite action space, whereas Blackwell [ 5] and
Denardo [12] already investigated Markov decision processes with a general
state and action space.,

The restriction of equidistant decision points was dropped as well; see
Jewell [37]1, [38].

As a remaining restriction, however, a bounded reward structure is assumed
in the above articles.

This restriction has been released recently, see Lippman [44], [45], Harrison

[24], wessels [75], Hinderer [31], and Hordijk [33].

In this monograph we will investigate Markov decision processes on a coun-
tably infinite or finite staie space and with a general action space, Fur-
thermore, we allow for an unbounded reward structure, We do not require the
transition probabilities to be strictly defective.with respect to the usual



supremum norm. We assume the existence of a function b: S * R and a positi-
ve function u: S >R = {xemr I x > 0} such that

Vies VaeA(i) lr@,a -pw] <uw ,
the function p will be used to construct a weighting function, or a bound-
ing function. Moreover, we assume

a . . . .
Fo<o<1 Vies Yaea(i) jzs p (1,300 (3) = pu(d) .

In order to guarantee the existence of the total expected reward we assume
the function b on S to be a charge with respect to the transition prcbabi-
lity structure (see section 4.1).

These assumptions on the reward and transition probability structure arise
in fact by a combination and a slight extension of the conditions as pro-
posed by Wessels [75] and Harrison [24]. As will be shown in the final
chapter the assumptions allow e.g. the investigation of a large class of
discounted Markov and Semi-Markov decision Processes. Lippman's assumptions

[45] are covered as well, see van Nunen and Wessels [56].

We will develop a set of optimization procedures for solving Markov deci-
sion problems, satisfying the described conditions, with respect to the
total reward criterion. This will be done by using the concept of stopping
time (see also Wessels [74]), which results in a unifying approach. This
set of methods includes the procedures for finite state, finite action
space Markov decision processes as proposed by Howard [35], Reetz [60],
Hastings [25] MacQueen [46]. A main role in our approach will be played by
the theory of monotone contraction mappings defined on a complete metric

space of functions on S. This space will be denoted by V.

The concept of stopping time will be used to define a set of contraction
mappings on V. Given a decision rule and given the starting state i € S we
may define the stochastic process {st | t=0,1,...} where s, denotes the
state of the system at time t. Roughly speaking a stopping time is a recipe
for terminating the stochastic process {st l t = 0}. For each stopping time
(denoted by 8) we define the mapping Ug of V by defining (Usv)(i) as the
supremum over all decision rules of the expected total reward until the
process is stopped according to the stopping time §, given that the process

starts in state i € S, while, in addition, a terminal reward v(j) is earned



if the process is stopped in state j € S. UG is proved to be a monotone con-
tractive mapping on the complete metric space V.

For stopping times that are nonzero (see section 2.2) U6 will be strictly
contracting, its fixed point being equal to the requested optimal expected
total reward over an infinite time horizon (denoted by V*). Hence, the

fixed point is independent of the chosen nonzero stopping time. This implies
that for each nonzero stopping time §, V* may be approximated successively
by a sequence vi = Udvn—l , starting from any v. € V. So for each nonzero

0
stopping time 6 we have

These results may be formulated alternatively as follows: for each nonzero

. . * . . . . :
stopping time §, V' is the unique solution of the optimality equation

v = Ugv, in V.

The class of described methods may be extended.

For a special class of stopping times, which we called transition memory-
less stopping times (see section 2.,2), the mappings 06 produce the oppor-
tunity of determining in each iteration step a decision rule of a special
type for which the supremum by applying UG is attained or approximately
attained (see chapter 5). Such a decision rule will be called a stationary
Markov strategy (denoted by fw). We define the mapping Lg of V in a similar
way as we have defined U5' with the difference that the expected reward by
applying the stationary Markov strategy fw is computed instead of the sup-

remum over all decision rules,

For transition memoryless nonzero stopping times we define for each

A eN=1{1,2,...} a mapping Uék) of V.

If the supremum by computing UGV is attained for a stationary Markov stra-

tegy (fw) then

£ A-1

gMy .= (L(;f))\v = @h @) v, with dew,

§

(@) .
U6 is defined by

lim Uén)v .
n-»e

Uéw)v :



If this supremum is not attained U is defined by using a Markov strategy

(A)

8
n)

Us

for which the supremum is approximated (see chapter 6). is neither

necessarily contracting nor monotone. However, the monotone contraction pro-

£ (A)

perty of the mappings U, and LG enables the use of U6 as a base for suc-

§
cessive approximation methods.
For each transition memoryless nonzero stopping time § and each A € N U {=}

a sequence ng defined by

SA ) Sx _ () _8A _ n, A _SA
o el; AANEL IS AP (Lg ) Vo4
£
* C n S\ . SA
converges to V . Here fn is chosen such that L6 V-1 approximates UGVn—l

sufficiently well. So each pair (§,)A) yields a successive approximation of
V*. Moreover, the stationary Markov strategy found in the n-th iteration of
such a procedure becomes (e-)optimal for n sufficiently large.

The vectors Viil and vﬁx enable us to construct upper and lower bounds for
the optimal return V . In addition, the availability of upper and lower
bounds allows an incorporation of a suboptimality test. The use of upper
and lower bounds and a suboptimality test may yield a considerable gain in

computation time, see section 7.3.

We conclude this introduction with a short overview of the contents of the

subsequent chapters.

In the first three sections of chapter 2 some basic notions required in the
sequel are presented. After the introduction of some notations (section
2,1) we discuss in sections 2.2 and 2.3 the concepts of stopping time and
weighted supremum norms respectively. The final section of chapter 2 is

devoted to some properties of weighted supremum norms.

In chapter 3 we treat Markov reward processes. (stochastic processes with-
out the possibility of making decisions). In section 3.1 the Markov reward
model is defined. Reward functions may be unbounded under our assumptions.
In section 3.2 the concept of stopping time is used to definé the contrac-
tion mappings on the complete metric space V (introduced in section 2.3).

A discussion of the assumptions is the topic of the final section 3.3.



The study of Markov decision processes starts in chapter 4. After a descrip-
tion of the model (section 4.1), section 4.2 contains the introduction of
decision rules and assumptions. These assumptions will be a natural exten-
sion of those in chapter 3. Under our assumptions some results about Markov
decision processes will be proved (section 4,3). The final section (4.4) is

again devoted to a discyssion of the assumptions.

In chapter 5 the concept of stopping time is used to generate a whole set
of optimization procedures based on the mappings UG' For each decision rule
T, not necessarily a stationary Markov strategy, and each stopping time §

a contractive mapping Lg of V will be defined and investigated (section
5.1) . Next, (section 5.2) the operator Us will be studied. Finally, we will
present necessary and sufficient conditions for the stopping times under
which we can restrict the attention to stationary Markov strategies only

(transition memoryless stopping times).

In chapter 6 we investigate value oriented successive approximations based
on the mappings Uék). The term "value oriented" is used since in each itera-
tion step extra effort is given to obtain better estimates for the total

expected reward corresponding to the stationary Markov strategy f:.

Chapter 7 will be used to construct upper and lower bounds for the optimal
reward V*. In this chapter also a suboptimality test will be introduced. In
the third section of this chapter we show how our theory may be used in
the special case of a Markov decision process with a finite state space and
a finite action space. We indicate the relation with the existing optimiza-

tion procedures.

In the brief chapter 8 we weaken the assumptions as imposed in chapter 4.
This weakened version corresponds to the N-stage contraction assumption
introduced by Denardo [12]. It will be proved that N-stage contraction with
respect to a given bounding function implies the existence of a new bound-

ing function satisfying the assumptions of chapter 4.



We conclude this monograph with a chapter in which we show that a number of
specific Markov decision processes is covered by our theory. We will also
show how a number of the existing approximation methods for certain systems
of linear equations are included in our treatment of Markov reward proces-
ses (chapter 3). The final part of this chapter consists of an example. In

this example we treat an inventory problem.






CHAPTER 2
PRELIMINARIES

The goal of this chapter will be the introduction of some of the notions
which play an important role throughout this monograph.

First (section 2.1) we will give some notations and we will introduce the
measurable spaces relevant for the stochastic processes that will be inves-
tigated.

Next (section 2.2) stopping times are introduced. We will allow for random-
ized stopping times. Several specific stopping times will be described.

In section 2.3 a bounding function u is introduced. The function u will be
used to define a weighted supremum norm. In the following chapters this
bounding function will appear to be one of the tools for handling Markov
decision processes with an unbounded reward structure and with a transition
prabability structure that needs not to be contractive with respect to the
usual supremum norm.

Using the bounding function p a Banach space W and a complete metric space
V are defined.

Finally (section 2.4), we discuss some properties of bounding functions.

2.1, Notations

As mentioned in the introductory chapter we study a system which is ob-
served to be in one of the states from a state space S at times t=0,1,...
We assume S to be countably infinite or finite, and represent the states
by the integers, starting with zero. So if the state space is finite, S is
represented by {0,1,...,N}, where N+ 1 is the number of states. If S is
countably infinite it is represented by {0,1,2,...}. A path is a sequence

of states that are subsequently visited.

REMARK 2.1.1. The state 0 is included in the state space in order to be
able to deal with processes with defective transition probabilities on
{1,2,...} or {1,2,...,N}. This is done in the usual way by defining for

i=21, p(i,0) :=1 - z p(i,j) and p(0,0) :=1. It follows that O is an ab-
j21
sorbing state. Therefore, without loss of generality in the sequel we may

and shall assume that in the state space S the state 0 is absorbing and the

transition probabilitieé satisfy z p(i,j) =1 for all i € S.
jes
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NOTATIONS 2.1.1.

(1) Sk := S xS x%x ,,, X8, the k-fold Cartesian product of S, so 81 = S.

[

o
S =8 X8 X ...; S is the set of all paths.

(i) Let a € S5, withk 2 n, k,n € N then o ™

denotes the row vector of
the first n components of o.
(iii) ka is the number of components of a. So ka =n if and only if o es”.

(iv) The i-th component of o € S%, n 2 i is denoted by [a]i_

1
(v) Hence o ¢ S" may be written as o = ([a]o,[a]l,...,[a]k 1)
o
(vi) v := (a,B) := ([a]o,[all,..._,[a]ka_l,[BJO,...,[BJkB_l), ky =k, tkgs
where o,B € G with G := U sk.
k=1

(vii) The term (column) vector is used hereafter for a real valued function
on S.

(viii) The term matrix is used hereafter for a real valued function on Sz.

(ix) The (i,j)-th element of a matrix P will be denoted by p(i,j).

(x) PO is the identity matrix (with diagonal entries equal to one and
other entries equal to zero).

(x1i) Matrix multiplication and matrix~vector multiplication are defined
as usual (in all cases there will be absolute convergence).

n

(xii) P is the n-fold matrix product P x P x .., x P, the (i,j)-th entry

of P" is denoted by p(n)

(i,3).
(xiii) Let v,w be vectors, then v < w if and only if v(i) < w(i) for all
i€ S; v <wif and only if v £ w and for at least one i € S

v(i) < w(i).

Let SO be the o-field of all subsets of S, then the measurable space

(QO,FO) is defined to be the product space, with Q. = s~ and FO is the 0~

algebra on QO generated by the finite products of ghe o-field SO'

In order to be able to use the concept of stopping time in an adequate way
we extend the measurable space (QO,FO) to the measuyable space (?,F). The
space (2,F) will play a main role in the sequel. Let the set E := {0,1} ana
let S be the o-field of all subsets of S X E then the measurable space
(Q,F) is defined to be the product space with Q := (S X E)w and F is the
o-algebra on Q generated by the finite products of the o-field S.

So QO contains all sequences of the form

Wy == (io,ii,iz,...), i, e s,
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whereas £ contains allAsgqueﬁces“of the form
W = ((iO'dO)’(il'dl)""')' i, €8, d €E.

2.2. Stopping Zimes

We now are ready to introduce our notion of stopping time. We will not use
the term stopping time in the standard way. However, as follows in the se-
quel of this monograph, there is a direct relation between our definition

and the usual one.

DEFINITION 2.2.1. A (randomized) stopping time is a function &: G_ + [0,1]
satisfying
(2.2.1) 6(0) =1; V [v (6™ #0]=1[68((,0)) =111 .

QEG, kska

DEFINITION 2.2.2. The set of all (randomized) stopping times is A.

REMARK 2.2.1.

(i) Roughly speaking for each o € Sk, we will use 1 -68(a) as the probabi-
lity that a stochastic process on S is indicated to stopp at time k-1
in state [a]k_1 given that the states [a%,[a]i,...,[a]k_l have been
visited successively.

(ii) From now on we will use the less formal notation 6(a,B), 8(i) instead

of §((a,B)) and 8((i)) respectively.

DEFINITION 2.2.3.

(1) 8 € A is said to be a nonrandomized stopping time if and only if

Vuer §(a) € {0,1} .

(ii) & € A is said to be a memoryless stopping time if and only if

)13 .

(k) _
v [v. -1 [8§("™") #01=[8() = 6([a]k -1

<
QEG k'ka o
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(iii) 8§ € A is said to be an entry time if and only if § is nonrandomized

and memoryless.,

DEFINITION 2.2.4. A nonempty subset G © G, is said to be a goahead set if

and only if

(i) Vu,Ber [@,B) e G=o0 € G]
(ii) (0) € G
(iii) VaeG [(a,0) € G] .

NOTATIONS 2.2.1.

(1) Gn is the goahead set of those sequences of G, for which the compo-

nents [a]i are zero for i 2 n, if there are any. So

noox ® k
G :=(u s9 ufl{@,B) |Be u {0}, aes®.
=1 k=1

(ii) For a goahead set G we define G(i) by

G() :={aeq | [a]o =i}, ies.

LEMMA 2.2.1. The characteristic function of a goahead set is a nonrandomized

stopping time.
PROOF. Straightforward.

DEFINITION 2.2.5. 6§ € A is said to be a nonzero stépping time if and only

if

3s>0 vies 8@ > e .
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REMARK 2.2.2.

(1) A nonrandomized stopping time is nonzero if and only if

Vieg §) = 1.

(ii) A nonzero stopping time 8§ € A, which is an entry time, has the follow-

ing property

VaeG @) =1,
-]

DEFINITION 2.2.6. A goahead set is said to be nonzero if and only if S ¢ G.
DEFINITION 2.2,7. Let 60,61 € A then 60 < 61 if and only if

<
Vaeg So@) S 8y @ .
«©
LEMMA 2,.2.2. Let Q be an index set and suppose for each q € Q, Gq is a go-
ahead set. Let 6q be the with Gq corresponding stopping time (Gq is the
characteristic function of Gq).
Let 6-,6+ be defined by
§7(a) := inf §_(a), 8§ (a) := sup &_(a)

qEQ qeQ

respectively, then 6-,6+ are elements of A.

6~ and st corresponds to the goahead sets n G _, U Gq respectively.
qeQ qeQ

PROOF. The proof follows by inspection. 0

DEFINITION 2.2.8. The nonrandomized stopping function t: Q ~ gt U {=} is
defined by

]
Q
I

.

1]
Q
]
o
>
ol
1]
-

(i) T(w) = n & (4

0 for all t e 27) .

(ii) T(w) = © & (dt'
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DEFINITION 2.2.9. A stopping time § is said to be transition memoryless if
and only if

Voeo [0 > D A Vg D8y 40T = [8@@) = 8(lal, _ilal, )]

13 1
o o o

DEFINITION 2,.2.10. A goahead set is said to be transition memoryless if and
only if the corresponding nonrandomized stopping time is transition memory-

less.
LEMMA 2,2.3. Memoryless stopping times are transition memoryless.

We will now give some simple examples of nonzero stopping times. The exam-
ples 2.2.1-2.2.4 are nonrandomized stopping times, which can be expressed
in terms of goahead sets. Example 2.2.5 is a simple illustration of a ran-
domized stopping time. The examples 2.2.2-2.2.5 give transition memoryless

stopping times, see also Wessels [74], and van Nunen and Wessels [55].

EXAMPLE 2.2.1, G := G, or in terms of stopping times VaeG §(a) =1 else
n
§(a) = 0.

EXAMPLE 2.2.2. The goahead set GH is defined by

© i-1
G (0 = u 0¥, 6 (1) :={(,0 |ae U G (9 Iu{i}, fori # O.
H H . H
k=1 J=O
EXAMPLE 2.2.3.
G:=5u(u B ul(B |[aesu(u B, e u {0}
k=2 k=2" k=1

with B < S.
EXAMPLE 2.2.4. The goahead set GR is defined by

® k
G_(0) := u {0} ;
R k=1



G (i) := {a |ae v (151 v {@,B) |ae u {i}k, Beg_(0)}, i e s\{ol.
k=1 k=1 R

EXAMPLE 2.2.5. 8 is given by V.

1es\{0} §(i) = % else §(a) = 1.

2.3. Weighted supremum noxms

DEFINITION 2,3.1. A real valued function W on S is said to be a bounding

function if and only if

(i) H(i) > 0, for all i e s\{o} .

(ii) H(@) =0 .

DEFINITION 2.3.2, Let U be a bounding function, then Wu is the set of vec-

tors such that

(2.3.1) 3 |wii) | < meu(d) .

Mert Vies

REMARK 2,.3.1. Note that w(0) = O for each w € Wu.

DEFINITION 2.3.3. Let U be a bounding function. Then, for each w € wu , the

p-norm of w is defined by

IIw “11 = sup J_v_:(_:.)_l_ .

1es\{0} H (i)

LEMMA 2,3.1. The space Wu with this U-norm (weighted supremum norm) is a

Banach space.

15

PROOF. The proof is straightforward. O

DEFINITION 2.3.4. Let the matrix A be a bounded linear operator in Wu. The

norm of A is defined by

lall = sup llawll .
lwll =1
i
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REMARK 2.3.2.

(i) It is easily verified that if a(0,1) = a(0,2) =...=0

lall = swp w @ ¥ Jat,dlua)
ies\{0} jes

and if this supremum is finite then A is a bounded linear operator.
(1i) The concept of bounding function is studied in more detail in sec-
tions 2.4, 3.3, 4.4, and 8.11
(1ii) We refer to Wessels [75], who introduced the concept of weighted sup-
remum norms in this context and to Hinderer [31], who used Wessels'

idea of weighted supremum norms for defining bounding functions.

DEFINITION 2.3.5. Let b be a vector with b(0) = 0, and let p € [0,1). The
set of vectors V is defined b
H,b,p ef

-1
V = - - w .
wb,p {v]| v=- (1-p)""p) € u}

REMARK 2,.3.3. Note that also v(0) = 0 for v € V and vy-v, € Wu for
Vv, € v.

DEFINITION 2.3.6. The metric du on V is defined by

H,b,p

du(vl'VZ) := Hvl-v Il for any v,,v, € v

27y u,b,p

LEMMA 2.3.2. A set Vu b,0 with the metric du is a complete metric space.
L 4

Unless explicitely mentioned we fix u, b, and p for the remaining part of
this monograph. Referring to these fixed u, b and p we will omit the sub-

scripts u, b, p.

2.4. Some nemarks on bounding functions

In this section we give some properties of a bounding function p' with re-

spect to the corresponding spaces Wu, and Vu,.
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LEMMA 2.4.1, Suppose S contains a finite number of elements. Let H, be a
bounding function and w, € wu (n 2 0) then

-]

L wn—wll = 0]=[l wn—wllu,-*O, for all bounding function u'l .

(-]

PROOF. For a proof we refer to books on numerical mathematics, see e.g.

Collatz [ 8], Krasnosel'skii [42]. 0

LEMMA 2.4.2, Suppose S contains a finite number of elements and H, is a

bounding function, then

. n
(1) Disl, <11=v, 3 08", <17,

. n
(ii) 3w [is "u < 1] = Elu, [IlBllu, <11,

-]
where B is a matrix.
PROOF. The proof of (i) follows directly from the fact that

fiell, <1]=1umB" =0,
U, e

where 0 is the matrix with all entries zero. The proof of (ii) can be found

in e.g. Krasnosel'skii [42]. 0

LEMMA 2,.4.3. Suppose W, is a bounding function and B is a nonnegative matrix

with finite | —norm, then

n
Ty OB, <133, OB, <13,

o

PROOF. For a proof we refer to van Hee and Wessels [29], who proved this
theorem for (sub-) Markov matrices, but their proof can easily be extended

to this lemma. 0
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REMARK 2.4.1.

(1)

(ii)

(iii)

Note that in lemma 2.4.3 S isnot required to be finite,

If S is countably infinite the linear space W/ may contain elements
that are not bounded. If u(i) = «» for i -+ « then it is also permitted
for lw(i)| > ®,

Note that it is not requested that the p-norm of b exists. If the u-

norm of b exists then clearly W = U,
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CHAPTER 3
MARKOV REWARD PROCESSES

In this chapter we restrict ourselves to Markov reward processes. So we ex-
hibit our method for the first time in a relatively simple situation.

After defining the model (section 3.1) we introduce the assumptions on the
reward structure and the transition probability structure. As mentioned we
require neither the reward structure to be bounded nor the transition pro-
babilities to be strictly defective.

Next (section 3.2) we show that each nonzero stopping time § € A defines a
contraction mapping (LG) on the complete metric space V. The fixed point
appears tobe independent of the stopping time. It equals the total ex-
pected reward over an infinite time horizon. In the final section (3.3) we
discuss the assumptions on the reward structure and the transition probabi-

lities in relation to the bounding function p and the function b.

3.1. The Markov neward model

We consider a system that is observed to be in one of the states of S at
discrete points in time t = 0,1,... . If the system's state at time t is
i € S, the system's state at time t+1 will be j € S with probability
p(i,j), independent of the time instant t.

ASSUMPTION 3.1.1.

(1) Vi,jeS 0 <p(i,j) =1

(ii) V. o 1 pi,d) =1
ies jes

(iii) p(0,0) =1 .

For each i € S the unique probability measure Pi on (QO,FO) is defined in
the standard way, see e.g. Neveu [52], Bauer [ 1] by defining the probabi-
lities of cylindrical sets.

n-1

G.1.1) 2, oy | Lwglg=2g,Logdy =200 lug] =2 D ==6i’20k20  JUSEAID

where n € &' and Gi 3 is the Kronecker symbol

’
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1 ifi = j
1ed 0 else .
Given the starting state i € S and the matrix P (with entries p(i,j)) we
consider the stochasti 2 = .
e stochastic process {SO,n | n 2 0}, where so’n(wo) [moln So
s, n is the state of the process at time n. The stochastic process
’
{so n | n 2 0} is a Markov chain with stationary transition probabilities.
’
See e.g. Ross [62], Feller [17], Karlin [39], Cox and Miller [ 91, Kemeny
and Snell [40].
For each stopping time § € A and each starting state i € S we define in a

simlar way the unique probability measure ]P on (?,F) by giving for
,6

nez

(3.1.2) Pi,‘s({w | Luly = (Rgrcy)oLwly = (L,e)eee [0l = (2 ,c)D =

n 1-ck cp n-1
6- HEG(Q I"Ig' )] [1-6(9: If' l-olk)] I P(R' lg'
TN 0™ A

ar
with 2k € S and ¢ € E.

This defines for each i € S and § € A a stochastic process {(sn,en) | n201,
where sn(m) =1, en(m) = dn.

So S, ’en are the state and the value of e, at time n.

REMARK 3.1.1. The stochastic process {(sn,en) | n 2 0} is not a Markov
chain since the value § (o) may depend on the complete history

([a]O;EaJl,...,[a]ka_l) for each o € G_.

Formula (3.1.2) shows the .connection between ]P. and IP. 5 *

I
For each w € Q, w = ((1o,d ), (11,d )ea) we def:l.ne wo by wy = (iO'il'iz"')'
For B, € F we define the set B € F by

0
={w€Q|mO€BO}.

It is easily verified that for BO € FO and each § € A we have for i € S

(3.1.3) Pi(BO) =Pi,6(B) .
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Let fo be a measurablewkﬁhcﬁioﬂ“on (QO,F The function f on (?,F) is then

defined such that

R

flw) := fo(wo) .

It follows from formula (3.1.3) that

i 0
probability measures P and:lPi s respectively.
’

whereiE.fO, Ei 6f denote the expectation of £, and f with respect to the
’

i
In the sequel we omit the subscript O in f.. The process {s

o | n2 o0}
will thus be denoted by {s_| n > 0}.

O,n

NOTATION 3.1.1. By Ef, Esf we denote the vector with components E, £, Ei 6f
4

i
respectively.

We now state the assumptions on the reward structure and the transition

probabilities of the system considered in this section. Therefore, we first
introduce the reward function. At each point in time a reward is earned. We
assume this reward to depend on the actual state of the system only. Sothe

reward function r is a vector.

ASSUMPTION 3.1.2.

(r -b) elW.

ASSUMPTION 3.1.3.

(=]
] ] <o .
n=0

ASSUMPTION 3.1.4.

el <1 .

ASSUMPTION 3.1.5.

(Pb - pb) € W..
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REMARK 3.1.2.

(i) Since b(0) = 0 and u(0) = 0, assumption 3.1.2 implies that also
r(0) = 0.

(ii) Ifb g W, thenr ¢ W.

(1ii) In terms of potential theory (see e.g. Hordijk [33]) the second as-
sumption states that b is a charge with respect to P, which implies
the existence of the total expected reward over an infinite time ho-
rizon.

(iv) Assumption 3.1.4 means that the transition prcbabilities are such
that the expectation of H(s,), with respect to P, is at most e leu(i).
This implies that the process has a tendency to decrease its u-value.

(v) The final assumption states that, given the starting state i € S,
the difference between the expected one-stage reward and pr(io) lies
between -Mu(i ) and Mu(i ) for some M ¢ R and all i es.

(vi) Note that if b € W the assumptions 3.1.2-3.1.5 may be replaced by

(a) r e W,
() el < 1.
LEMMA 3.1.1.

(Pxr - pb) ¢ W .

PROOF. IPr - pbll S lPb - pbll + 2lr - bll=:M, , which is finite according to

1
the assumptions 3.1.2-3.1.5. 0

LEMMA 3.1.2. For M1 as defined in the proof of lemma 3.1.1, we have

12% - o™l < Mneo™ Y, n=1,2,...,
with p_ := max{lPl,p}.
PROOF. The proof proceeds by induction.The statement is true for n = 1.

Suppose it is true for arbitrary n > 1. Using the assumptions 3.1.2-3.1.5

we then have

+ +
2™ e = o™ ol < 1B = p™) Il + lp™Bb - o™ p
< Iplone™™h) + oMeb - bl
n n
< Mmpl + MpT = M (n+1)p] . O

1
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LEMMA 3.1.3.

Vieg Lim (™) (i) = lim (") (1) =0 .
me m®

PROOF. The proof is a direct consequence of assumption 3.1.3 and the fore-

going lemma. 0

For each n 2 1 we define the vector Vn by

n-1
(3.1.4) Vv =E ] z(s) .
k=0
LEMMA 3.1.4.
n-1
v = z Pkr .
n
=0
PROOF. The proof follows by inspection. 0

Clearly Vn(i) represents the total expected reward over n time periods when

the initial state is i € S.

THEOREM 3.1.1.

limv eV .
o B

o
PROOF. The convergence of 2 Pr follows from assumption 3.1.3 and 3.1.2,

. n=0
since,

oo -] o
Y Pr = §J P+ ] Plx-b) .
n=0 n=0 n=0

We now have by lemma 3.1.2,

Y er--0) b=l § @ c-o"mlc [ IP"r-p"pls Zanr:—l-Ml(l-po)—
n=0 n=0 n=0 n=0 0
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DEFINITION 3.1.1. The total expected reward vector V is defined by

<
i
i 18
w
R

3.2. Contraction mappings and stopping times

LEMMA 3.2.1. Let v € V then

+
(i) Pn|v| exists for all n € & ,

(ii) 1im @%|v]) @) =0, i € s.
n>e

-1
PROOF. v € V implies that v can be written as v = (1-p) b + w where w € W.
So Pn|v| < (1 —p) -1 nlbl + Pn[wl which is defined. Moreover, since

z Pnlb] and Z P ]wl exist we find part (ii) of the lemma. |
n=0 n=0

DEFINITION 3.2.1. The mapping L, of V is defined by

1

le:=r+Pv, vel.

LEMMA 3.2.2.

(i) L, maps V into V.

(ii) L1 is a monotone mapping.

(iii) The set {ve V | llv- (1 -p)-lbll < Ml(l-po)_z} is mapped into it-
self by L1.

(iv) L, is strictly contracting with contraction radius lIPIl.

(v) The unique fixed point of L1 is V.

PROOF.
(i) L1v=r+Pv=r+P((1—p)-1b+w),withwew. So
-1 -1 -1
Ille- (1-p) bll=llr+(1-p) Po+Pw- (1-p) bl
<lb+(1-p) " Yeb- (1-p) oll+lpwl+liz-bl

I(1-p) b -pb) 4P llwl+lzr-bl

A

(1-0)"Meb-pbl+IPllwl+lz-bll < @ .
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The proof of part (ii)“i;”tiivigl.
(iii) Let llv - (1 —p)_1b|| <M1 —po)—2 then

(iv)

v -9 bl =z +pv- (1-p) ol <

I ¢v=(1-p) " 1b) I +1l (1-p) "1Pb = (1-p) " 1b + Il

IA

!

24 1-0,) " Ypb-pbli+lr-Dl

In

M, (1=p,)

2

SMp (1-p ) "+ (1 -po)-i[IIPb-pbll+2llr-bll]

-2
< M1(1'°o) .

Let Vv, € V then VeV, can be given by vy = (1 —p)_lb + Wy and
-1 . v =w. -
v, = (1-p) b+ LD} respectively where WioW, € W. so VTV, =W, W,

thus

- = - = - < ol - .
Hle L1V2" IIP(v1 v2)H IIP(w1 w2)H llPIIIIw1 wzﬂ

1

By choosing vy and v, such that Wy = ¥ and Wy = 0 equality is ob-

tained.

The last part of the lemma follows directly from

00 0
Lv=r+2(] P'n
n=0 n=1 n=0

1]
K
+
o~
v
K
]
I~ 8
L
(o]
N
]
<

©
where the interchange of summations is justified since Z Pnlrl <[]
n=0

Now we return to the concept of stopping time. Note that the stopping func-

tion T on £ is a random variable. So we can define the random variable sT

by

(3.2.1) s, 3=

s ift=n,
n

0 if T L

Given the starting state i € S and the transition probabilities the distri-

bution of T is uniquely determined by the choice of § e A.
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LEMMA 3.2.3. Let § € A be a nonzero stopping time, then
3y>0 Vies Ei,ST 2Y .

PROOF. The proof follows directly from the definition of T and the defini-

tion of nonzero stopping time. 0

DEFINITION 3.2.2. Let § € A, the mapping Lg of V is defined component-wise
by

T-1
(Lgv) (i)=='Ei’6[k£0 r(s,) +v(s)l, ies.

REMARK 3.2.1. Note that as a consequence of the definitions of § and V,
(Lgv) (0) = 0 for all v € v.

EXAMPLE 3.2.1. Let 8§ € A be the nonrandomized stopping time that corres-
ponds to the goahead set Gi and let v € V then

(Lgw) (1) = r(i) + J p,v) .
jes

EXAMPLE 3.2.2. Let § € A be the stopping time that corresponds to the go-
ahead set G, and v € V then

(Lgv) (1) = x(i) + L PN @EWG) + [ pli,Hv) .
3<i 321

EXAMPLE 3.2.3. Let § € A be the stopping time that corresponds to the go-
ahead set GR then

Q-pE,in e@ + 1-p,in~ Y ¥ pi,d)vid), i#o.
3#i

(LGV)(i)

DEFINITION 3.2.3. The matrix PG is defined to be the matrix with (i,j)-th
element (ps(i,j)) equal to

®
pd(ilj) :=n§0 JPi'(S(Sn =3, T= n) .
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LEMMA 3.2.4. Let § € A be a nonzero stopping time then

:=Hpéus (1 -inf 8(i)) + (inf S(@))pll <1 .

o
8 ies ies

-]
PROOF. First note that IP; |l is finite, since el < 1 1Pl < » (assump-
tion 3.1.4). n=0
For § € A we define the stopping time GM € A by

o

0 ifae u (s\oh*

. k=M+1
SM(a)-—

S (a) else .
Now,

Yoo Inew Vion I PsM" - el < e,

since

h-tegtl < L we™n.
M n=M

]"P5

So it suffices to prove the lemma for stopping times 6M. This will be done
by induction with respect to M.

Let An c A be the set of stopping times with

(-]

K
by =18 e | 6(@) =0 forallae u () }.
k=n+1

So AO only contains the stopping times with 8(i) = 0 for all i € s\. For
§ € Ay we have HPSH = 1.

Suppose § € A1 is a nonzero stopping time, then

1] pgli,u@E) = § [P, s(sp=3, T=0) +P, (s, =3, T=1Tu(j)
jes s\ jes 1,60 i,8 "1

(1-8@NHUE) + 86(1) ) pE,NuG)
jes

IA

[(1-8(1)) + S(DIPNIn(i) < 1
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Since § € A1 is supposed to be a nonzero stopping time, there exists a num-
ber € > 0 such that § (i) > €, for all i € S which implies I Bgll = p5 < 1.

Now we state the induction hypothesis: Suppose for arbitrary n 2 1
P, < 1 onA_ andllpll < 1 if 8§ € A_ is nonzero .
§ n § n
Let § € An+1 +we define Gi.w) :=8(i,a) for i € S and @ € G,. It is easily

verified that 6§, € A_.
i n

Now for each i € S we have

) ) nfl
p (i,3)u(d) = P, (s =3, T =mu(j
jes 8 jes mo T8 m

L B, 5 (sg=3, T=0) +

jes
n+1
+ m£1 Pys (sp= 3, T=mlue)
n+1
= (1-8@HH@E + 6@ L Y I plk
jeS m=1 kesS

"By g (s,=3 T=m | ep = 0/ 5y = KIH(I)

(1 = 8@))Hu) +

n
+ 8(1) ) p.k) ) ) B g (s,=3, T=mU()
kes jes m=0 i

A

(1 - §@HuE) + 6{1) ) pl,k)n(k)
keS

< (1 =-68@))u + slrhu) .
So if 6 € An+1 is a nonzero stopping time then
Ipglh=pg < 1.

This completes the proof. ]
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LEMMA 3.2.5. Let 8 € A ‘i-_ﬁén'La\}; v.

PROOF. We first mention a property of Markov chains which holds for non-anti-
cipating stopping mechanisms

Ejx(sy) =Ei,(6r(s’c+k)Isr =3 if P (s =3 >0, ke .

Consider for each i € S

T-1
(LgV) (4) =Ei'6[k-2—-o r(s,) + V(s))]

-1 ®
=Ei'6[k§—:0 x(s,)] + D) P, (s, =3, T=0)V()

n=0 je€S
T=1 © ®
= Ei’&[kzo r(sk)] + n.g_o- jés Pi,tS (sn =5, T =n)k£o Ejr(sk)
T-1 w© @
-1
=Ei'6[kzo r(s )] +
¥ Zo jzs kZO Pi,s(e =3 TEmE (lrts 0fs =)
=1 ® i ®
= Ei’6[k=o r(sk)] +kZO Ei,dr(s'wk) =Ei,6 kZo (s, ) =V(i)

where the interchange of summations is justified by the fact that

©

n.—z_o Ei]r(sn)l <, 0

LEMMA 3.2.6. Let § € A then

(i) Lg maps V into V.
(ii) La is a monotone mapping.
(iii) LG is strictly contracting if and only if 8 is nonzero.

(iv) The contraction radius of Lj equals ps = Il Ps Il
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(v) The set {v e V | v - (l-p)-lbll < Q1 -po)—zm'} is mapped by L; in it-

2M
self, where M' := T-p and M1 is defined as in the proof of lemma
§
3.1.1 by M, := IPb - pbll + 2lx - bl

PROOF. The proof of (i) follows from lemma 3.2.5 and theorem 3.1.1; since
Ve ll each v € V may be.written as v =V +wwith w e . Now Lgv=Lg(V+w) =
= LgV + Pgw = V + Pew € V. The monotonicity of Ly is trivial.

To prove (iii) we first note that VeV, € V imply that (v1 -v2) '

(Lé.v1 - LGVZ) are elements of W. Moreover v1,v may be given by vy =V + Wye

2
vy =V +w, with Wy W, € W. so

Iogvy = Lgvol = IIPgw, = Powy Il < IPgllellw, - w,ll .

LG is strictly contracting if and only if § is nonzero follows from lemma
3.2.4. The contraction radius equals Il Psll as is verified by choosing
il <
-2 2 -1 -2
< M1(1—p°) soeach ve {vel I v - (1-p) 'Bll< (1-p)) M'} may be

v, =V + ¥ and v, = V. The last assertion follows from lv-(1-p)"

written as v = V + w, where the u-norm of w € W is at most

-2 -2
lwilh< (1-p) "My + (1-p)) "M .

Now

1

IlLgv= (1-0) bl = L, (v+w) - (1 -0 ol <

SIv- (-0 "l + Np el

-2 -2
s M, (1-p)) +05(M1+M')(1-D°) =

2 2

s M'(l-p) °. O

(1+pg)My +p M) (1=p )"

THEOREM 3.2.1., For any nonzero stopping time § ¢ A the mapping LG has the

unique fixed point V (independent of §).

PROOF. The proof follows directly from the fact that V is a complete metric

space and the foregoing lemmas. 0
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LEMMA 3.2.7.
(i) If 61,62 € A and 61 < 52 then

oy s=lpg lzlpg Il =:p, .
61 61 62 62

(ii) Suppose 51,82 are nonrandomized nonzero stopping times corresponding
to the goahead sets G1 and G2 then
1 2
G <« G =6, £6,_ and thus p 2 p
1 2 61

%

(iii) Let Q be a set of indices,letéqcorrespondtothenonzerogoaheadset

Gg then
I < sup Ps and p _ 2 inf P6 .
s qeQ g S qeQ  q
LEMMA 3.2.8. Let 8§ € A be nonzero, v6 e U and v6 := L (v(S ) then
0 n § 'n-1
; §
(1) vh >~V (in u-norm)
§ $ §

(ii) stb < vb = vy + v (in p-norm)

§. 68 6 )

(iidi) stb > Vb =V, + v (in y-norm)

where the convergence is component-wise.

PROOF. The proof of (i) is a direct consequence of theorem 3.2.1, whereas
parts (ii) and (iii) follow from the monotonicity of the mapping LG and
theorem 3.2.1. il

So the determination of the total expected reward over an infinite time
horizon, V, may be done by successive approximation of V by v:, with arbi-
trary nonzero stopping time § and arbitrary element vg of V.

17 §

Particularly if § §_ are the nonrandomized nonzero stopping times
corresponding to the goahead sets Gl' GH' GR respectively, the following

H' R

well-known successive approximations converge to the return vector V
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§ §
. 1 1 . 1
(i) v, #=r+Pv ., with vy € V;
GH
(ii) Vo is component-wise defined by
6H GH 6H
v (i) = r(i) + I pl,v () + ) pl, v (), ies,
Lo n S, n-1
i<i j=i
6H
with v~ € v;
§

(iii) vnR is component-wise defined by

8 §
v ) = (1 -p(,d) x@) + (L -p,0) T [ pl v R G), 4 e s,
3

6R
i # 0, with vy € V.
§ . .
Furthermore if in each of these approximations Yo is chosen as required in

lemma 3.2.8(ii) or (iii) the convergence will be monotone.

3.3. A discwssion on the assumptions 3.1.2-3.1.5

The following lemmas will clarify some of the relations between the bound-

ing function u and the function b (remind remark 3.1.2(vi)).

LEMMA 3.3.1. Suppose 3 s [b(i) 2 -M'u(:)] then there exist a p'.,

'ert Vie
0 < p' < 1 and a bounding function p' such that

(3.3.1) Pl Sp' <1

(3.3.2) izl <= .

+%(1-p,) and

o

PROOF. Choose M, := max{ZHPb-pblh'(1-p°)_1,2M'},_p' =

p'(i) := b(i) + M3u(i), then clearly u' is a bounding function. Now

-1
el = sup  (Jxr@)]) ) +mu()
u ies\{0}

IA

-1
sup  ([b(i)]) (b(i) +Mzu(i))
ies\{0}

+

-1
s (|r(@) -bW ) @) +MuE) T <@ .
ies\{o}
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Furthermore

Pu' = P(b+M3]-l) < pb + Pb - pb + p°M3u

< -
< pb + lIPb pbllu M+ p M

<p'u' . O
In a similar way the following lemma can be proved.

LEMMA 3.3.2. Suppose 3, o+ V, o [b(i) < M'u(i)]; then there exist a p',
0 <p' <1 and a bounding function u' such that (3.3.1) and (3.3.2) are
satisfied.

The latter two lemmas express that if the reward function is bounded from
one side (with respect to the weighting factors u(i)), a new bounding func-
tion u' can be defined such that the Banach space wu, contains b, r, Vn and
V. However, for the existence of such a bounding function u', the condition
that b is bounded from one side (with respect to u) is essential, as is

illustrated by the following example.

EXAMPLE 3.3.1. s := {0,1,2,...}, p(0,0) =1, Vies\{o} p(i,0) = 1-p,

r(0) = 0. Let i, := min {(—4£—02 > p}, if i, is even then we redefine
0 LeN i+2 0

i, = i, +1.

0 0
For all 0 < i < i0 the rewards and transition probabilities are given by

r(i) =0, p(i,i) =p, p(i,j) =0 for j # i and j # 0. For i > %io, we .

choose

inJi+2)=in-1ﬂi+1)=pﬂ—aﬁ P

p(2i,2i+1) =p(2i-1,2i +2) =pa, ,
with

. -2 -
a, = 5(1-pEEN2); re2n) = W%
i i
r(2i +1) = —(i-+1)_2p-(l+1); p(2i -1,3) = p(2i,j) = O otherwise;

b=1r; u(i) =1 for i # 0.
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We clearly have Il Pllu =p.

Moreover it is easily verified that

© ©

I I p@endlem]set ] a7,
n=0 jes n=i
and
z z p(n) (21‘.+1,j)|r(j)| < p-(i+1) z n—2 .
n=0 jeS n=i+1

It can also be verified that

]
o

Vies I§ P, 1B - pb ()]
So the assumptions 3.1.2-3.1.5 are satisfied.

However, no bounding function MU' exists for which p' < 1 and izl ‘, < o,
This follows since r(2i) = (1) 20%, r(2i+1) = 1+ 1) %~ G+ gy
io> ?':io implies that an eventual bounding function U' should satisfy

i,,..-2

wed zseTtw ™ = e

u'(2i +1) Z%I-p—(i-‘.l) G+1)72 = wy(2i+1)

for some M € ]R+ and i > lzio.

Assume the existence of a bounding function u' and a p' < 1 such that
(3.3.3 vy d '

.3.3) u' 2 ET Pu' .
We define

i1 = max{io,lfu',n{(-i—'j'—)2 >%(1+p")}} .

€N + 1

Then, substituting ¥, in the right handside of (3.3.3) yields, for i > 2i1,
the condition
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W) 2 Bu (@) =2 u @),

. 1 1 +p"
with B := -p—,(—z—"-) > 1.

Substituting ul(i) in (3.3.3) yields for i > 2i1

W) 2 Bu (1) = B2 (@) .
1 0
Iterating in this way proves that no bounding function exists.

REMARK 3.3.1.

(i) It is easily verified that the assumptions 3.1.3 and 3.1.4 do not im-
ply assumption 3.1.5. By replacing the rewards in the above example by
|r| the assumptions 3.1.3 and 3.1.4 remain satisfied whereas assumption
3.1.5 fails.

(ii) If b is bounded from one side (in u-norm) it follows from lemma 3.3.1

or 3.3.2 that r is a charge with respect to P, since

o
-1
I Zo P x| s =en el .

©

I PPlrl@ < a-pn Hrw|aran™, 140,
=0

In this case assumption 3.1.3 may be replaced by the assumption that

b is bounded from one side (in u-norm).
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CHAPTER 4
MARKOV DECISTION PROCESSES

As mentioned in chapter 1 we consider in this and the following chapters
Markov decision processes.

In section 4.1 the model is described. Next, in section 4.2, decision rules
and the assumptions on the transition probabilities and on the reward struc-
ture will be introduced. Again the assumptions will allow for an unbounded
reward structure. They are in fact a natural extension of the assumptions
3.1.2-3.1.5 to the case in which decisions are permitted. A number of re-
sults about Markov decision processes will be proved under our assumptions
(section 4.3). For example, the existence of e-optimal stationary Markov
decision rules will be shown. For Markov decision processes with a bounded
reward structure this result has also been cbtained by Blackwell [ 5] and
Denardo [ 12].

Harrison [24] proved the same for discounted Markov detision processes with
a bounding function u(i) = 1 for i € S\{0}. Moreover, in section 4.3 we
prove the convergence (in u-norm) of the standard dynamic programming algo-
rithm.

The final section will be devoted again to a discussion on the assumptions.

4.1. The Markov decision model

We consider a Markov decision process on the countably infinite or finite
state space S at discrete points in time t = 0,%,... . In each state i € S
the set of actions available is A. We allowA to bea general setand suppose A
to be a o-field on A with {a} € A if a € A. If the system's actual state

is 1 € S and action a € A is selected, then the system's next state will be

j € S with probability p>(i,3).
ASSUMPTION 4.1.1.

. a,. .
1) Vaea Vi, jes P W3 20,

‘s a .. .
(i1) Vaea Vies L PTG =1,
jes

css a =
(iidi) VaeA p (0,0) =1,



38

a,, . . . .
(iv) p°(i,3J) as a function of a, is a measurable function on (A,A) for each

i,j e s.

If state i € S is observed at time n and action a € A has been selected,
then an immediate (expected) reward r(i,a) is earned. So from now on the

reward function r is a real valued measurable function on S X A,

The objective is to choose the actions at the successive points in time in
such a way that the total expected reward over an infinite time horizon is

maximal. A precise formulation will be given in the following sections.

It will be shown later on (chapter 9) that our model formulation includes
the discounted case (with a discounted factor B < 1), since B may be sup-
posed to be incorporated in the pa(i,j). The same holds for semi-Markov
decision processes where it is only required that t is interpreted as the
number of the decision moment rather than actual time. For semi-Markov de-
cision processes with discounting, the resulting discount factor depends on
i,j and a € A only, and may again be supposed to be incorporated in the

transition probabilities p2(i,3j).

4.2. Decision nules and assumptions

In the first part of this section we are concerned with the concept of de-
cision rules. Roughly, a decision rule is a recipe for taking actions at
each point in time. A decision rule will be denoted by m. The action to be
selected at time n, according to w, may be a function of the entire history
of the process until that time. We allow for the decision rule T to be such
that for each state i € S actions are selected by a random mechahism. This

random mechanism may be a function of the history too.

DEFINITION 4.2.1.°

(1) An n-stage history h of the process is a (2n+1)-tuple

hn = (lolzolllrzir-o-lzn_llln)I lt €S, Zt €A.

(ii) Hn, n 2 0 denotes the set of all possible n-stage histories.

(iii) Sn is the product o-field of subsets of H_ generated by SO and A.
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DEFINITION 4.2.2.
(i) Let a, be a transition probability of (Hn,Sn) into (a,A), n 2 0. So

(a) for every h e Hn qn(']hn) is a probability measure on (A,A);
(b) for every A' € A qn(A'[') is measurable on (Hn,Sn).

Then a dectsion rule (T) is defined to be a sequence of transition
probabilities, :=(q0,q1,q2,...).

(1i) The set of all decision rules is denoted by D.

DEFINITION 4.2.3.

(i) A decision rule T = (qO'ql"") is called nonrandomized if q;i' hn)
is a degenerated measure on (A,A) for each n = 0, i.e.
3a€A [qn (alhn) = 1]. The set of all nonrandomized decision rules is N.

(ii) A decision rule w = (qo,qi,...) is said to be Markov or memoryless
if for alln 2 0 qn(*lhn) depends on the last component of hn only.

(iii) The set of all Markov decision rules is denoted by RM.

(iv) A decision rule is said to be a Markov-strategy if it is nonrandomi-
zed and Markov.

(v) The set of Markov strategies is denoted by M.

(vi) A Markov strategy can thus be identified with a sequence of func-
tions {£ | n=0,1,...} where £ is a function from § into A. Such
a function is called a (Markov) policy. The set of all possible po-
licies is denoted by F.

(vii) A Markov strafegy is called stationary if all its component policies
are identical. We denote by fw the stationary Markov strategy with
component f. F°° denotes the set of all stationary Markov strategies.

(viii) For m = (£,,£,,...) € M and g € F we denote by (g,T) := (CI % JPPRY
the Markov strategy that applies g first and then applies the poli-

cies of T in their given order.

For n €N we define the measurable space ((S x A)n,Sg a) ¢ Where Sg a is the
’ ’
product o-field generated by SO and A. The product space (QO A’FO A) is the
’ ’
space with @, , = (S X a)” and FO a the product o-field of subsets of
’ ’

(s x A)co generated by SO and A. For each 7 = (qo,ql,...) and each n € N we
define for ((s X A)n,Sg A) and (S X A,SO A) the transition probability on
’ ’
(s x &)™,8% ) as follows
0,a ;
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Poner B XA | grzg),een, (i ,z)) o=

z
n,, . . . .
= 'Z p (i ,1) fqm_l(dal HgrZgreeeri iz 41))
ieB A

where B € S; and A' ¢ A,

For each decision rule T € D and each starting statei0 € S (as a conse-
quence of the Ionescu Tulcea theorem, see e.g., Neveu [52]), the sequence
transition probabilities {pn'n+1§1aefinesa unique probability measureiPr
on (QO,A'FO,A)' So we may consider the stochastic processes {(sn,an)|x120}
and {Sn I n 2 0} where s, and a are the projections on the n-th state
space and n-th action space respectively. This means that sy, is the state
and a, is the action at time n.

It may be verified that for the simplified situation considered in chapter
3, the Ionescu Tulcea theorem would yield the probability measure Pi .

0

NOTATIONS 4.2.1.

(i) Let v be a real valued function on (QO,A'FO,A)' We denote iy:E:v the
expectation of v with respect to the probability measure P, .
(ii) E"v denotes the vector with i-th component equal to Ezv.
(iii) If m ¢ D is a stationary Markov strategy m = {f,f,...} we may use Ef,
‘Ef instead of E:, JETr respectively.
(iv) By rf we denote the vector with components r(i,f(i)).
(v) By Pf we denote the matrix with (i,j)-th element equal to pf(i)(i,j).
(vi) For each m € D we define Po(n) := I, where I is the identity matrix,
and the matrix Pn(n), (n > 0) is the matrix with (i,j)-th entry equal
to P (s, = 3. £ £ £

Soif me M; ™ = (£50£,+£5,-..) then P(m =P 071 p ot

The stochastic process {sn,an | n 2 0} is not necessarily a Markov process
since the decision rules T € D may be such that actions are selected depend-
ing on the complete history of the process. If m is Markov then the stochas-
tic process {sn I n 2 0} is a, not necessarily stationary, Markov chain.
Moreover, if T is a stationary Markov strategy, then the stochastic process

{sn | n 2 0} is a Markov chain with stationary transition probabilities.
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As mentioned, we will use ﬁheméxpected total reward over an infinite time
horizon as a measure for the effectiveness of a decision rule m. If at
time n the history hn = {iO'ZO'il’zl""'in} has been observed and action
zn € A is selected at that point in time, then the total reward (return)

over n time periods is
n
(4.2.1) V(b ,z) := kgo r(iz) .

Without assumptions on the reward function r and the transition probabili-
ties pa(i,j) there is of course no guarantee that under an arbitrary deci-
sion rule m, Vn has a finite expectation. In order to guarantee the exis-
tence of the expectation of Vn and the total expected reward over an infi-
nite time horizon for an arbitrary decision rule 7 we generalize the assump-

tions 3.1.2-3.1,5 to the situation in which decisions (actions) are allowed.

ASSUMPTION 4.2.1.

3 hef - ol <m.

MeR" VeeF

ASSUMPTION 4.2.2.

-]

su

ﬂez Z PPmp| <.
n=0

ASSUMPTION 4.2.3.

£
<
3 <t Veep 1P 50, -

ASSUMPTION 4.2.4.

£
- < .
aMdR" VfEF P - pbll < M

REMARK 4.2.1.

(1) Note that if A contains one element only, the assumptions coincide

with those in section 3.1.
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(ii) As a consequence of the definition of the bounding function M and the
function b assumption 4.2.1 implies that VaeA r(0,a) = 0. Since for
i = 0 the reward and the transition probabilities are in fact indepen-

dent of a € A the actions may be identified.

£

(iii) et may be written as f=b+ y~ where yf e W.

(iv) We define p_ := sup {I pE I} ana p, == max{p,p }.
feF

LEMMA 4.2.1.

. £ _ g
(i) Ayt Vf,geF IP"b - px?ll < M,

(i) 1259 - ppll < M,

3
“MeR* Vf, geF

‘s " f g h
- < .
(iii) BMéIR"' Vf,g,hEF " r pr s M

PROOF. We will only prove part (iii) since the proof of the other parts
proceeds along the same lines

g

£ £ h
IP"b + P7y® = pb = py |

Ilerg - prh Il
< 18%s - obll + 1P5yI1 + ollyR

1855 - obll + 1B NI yT N + oyl < o . o

IA

LEMMA 4.2.2.

® £
Ay Y} PPmr? <.
n=0

£ £
PROOF. For m = (£,,€,...), PPm[r *l = "m b +y 7

n n-1 fk n
" mills 1T llp ™Il
k=0

£ £
Since y © ¢ W for all £, € F we have he™(my 2l < pr;Ml, where M, is chosen

in accordance with assumption 4.2.1.
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So, © £ 1
I 12%my ®ls a-p) '

n=0 1

which implies

© £
Y PPy ?| s (1-p*)'1M1-u .
n=0

This yields the result

0 f o oo f
I P"mx® < ] P"mlpl + ] P"m|y®| <= . O
n=0 n=0 n=0

REMARK 4.2.2. In texrms of potential theory (see e.g. Hordijk [33]). Lemma
4.2.2 says that the reward structure is a charge structure with respect to
the transition probabilities.

4.3, Some properties of Markov decision processes

In the previous section we have introduced the assumptions on the reward

and the probability structure. In this section a number of results in Markov
decision theory will be proved under our assumptions. We shall first prove
that the total expected reward over an infinite time horizon for every de-
cision rule T € D is an element of the complete metric space V. Let T be an
arbitrary decision rule, Given the initial state i € S the decision rule
determines the unique probability measure PE on (f F. ) as described in

o,A"°0,A
the previous section.

LEMMA 4.3.1. For each T € D, o™ (m) Il < p:.

PROOF. The proof proceeds by induction. The statement is trivial for n=0,1.

Suppose it is true for some n 2 1, then

™ . . . a . ™ .
jés P (s =3 = f f jgs q (daln )p% (s ,3)P; (ah )u(3)
A
n
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(@) J’ qn(da|hn) g pa(sn,j)u(j)

(dh e u(s )

i
"

I ®l(s, = Do,ut) < o™i . O
fes

LEMMA 4.3.2. There exists a M € ]R+ such that for all ™ € D, and all
n=0,1,2,...
T n-1
b o3 r(sn,an) - o™l = P, M+1) .

PROOF. The proof proceeds along the same lines as the proof of lemma 3.1.2.

Choose M := (2M is such that V IIr - bll £ M, and M, is

1 1 1 2

such that IIP - pr = M, for all f,g,h € F. 'I'hen the proposition is true

for n = 0,1, as follows from lemma 4.2.1(ii). Assume it is true for an ar-

+ M ) where M

bitrary n 2 1, then we have to prove that it is true for n+1. We first .

note that for alln 21 and for all i € S

IE Lz (s ) - pr(sn,an)] I <

n+1’%n+1

as follows from

m
I:i[r(sn+1'an+1) - pr(sn,an)] =

=E [ el cee j j
‘ JZS P (s IJ)J qn_‘_l( a | o139 ,an_l,sn,an,J)r(J,a) +
- p?:(sn,an)]

a
SE[L ] p (s 03 G) +Mu(E)) -px(s sa)]
jes
< E{lpb(s)) +Myu(s ) +p Mu(s ) -pr(s_,a)]

m .
sE LM, + 20 M)u(s )]

T
S P (My+20 MOE u(s _,) S..._p (M, +20 M) u(i) <p Mu(:.) .
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Using this inequality and the induction hypothesis yields

N ™ i
Eix(s, qr8,) = PEX(s sa) +Bilx(s 02 ) -px(s ,a)]

IA

T n
PE,x (sn. an) + p Mu(i)

T
< o x(s _j,a ) + 200w (d)

N oee

o™ Elr (s gia) + 0+ DMU(L)

IA

+1 1 .
™ b (1) +pT T M () +pT (4 (D)

A

+1 .
p™ (1) +p "+ 2)mu) .
In a similar way it may be proved that

Elr(s )2 0™ ) + 02w M) . o

a
n+1’“n+1

Let the decision rule m be given. The expected n-period reward by using

decision rule T given the initial state i € S is defined by

n-1

. T
(4.3.0) v () =E; kzo r(s i) -

THEOREM 4.3.1. For all m € D, define the corresponding total expected re-

ward vector V. by

then
Iv. = (1-p) " 'blis(1-p ) %M, with M_:=(p ) 'M
m Py R o * Po

where M is defined as in the proof of lemma 4.3.2.
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PROOF.
o

Iy (&"x(s ey ¥ ls T oKk (1-p ) 2. 0
k=0 k k=0 ) o

So for each T € D the corresponding expected total reward over an infinite
time horizon exists and -is an element of V. We now want to prove the exis-

tence of e-optimal Markov strategies.

DEFINITION 4.3.1.

(i) A decision rule T is said to be e-optimal if and only if

V*ZV_“—eu, for allm € D .

™

* .
(1i) A decision rule ™ is said to be optimal if and only if

>
V*_Vﬂ, for all m € D .

THEOREM 4.3.2. (i) For everye >0 andw = (qo,ql,...) € D there ekists a Mar-
*
kov strategy ™ € M such that for all i € S

v, @) 2 V,"(i) - eu(i) ,

T
(ii) sup V_ (i) = sup V_(i) .
U i
T eM o TeD

REMARK 4.3.1.

(i) Part (ii) is proved in a more general setting by van Hee [28]. To
prove his theorem van Hee used a result of Derman and Strauch (which
was géneralized by Hordijk [33]) in which was stated that for fixed
i € S and an arbitrary m € D there is a * € RM such that

*
m = 9 '] = m = 9 ' ol '
Pi[sn 3, aneA] P, (s, = 3/ aneA] for all jeS, A' €A,
We will use a slightly different approach that proceeds along the
same lines as a proof given by Blackwell [ 5] for discounted Markov

decision processes with bounded rewards.
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(1i) The result obtained by van Hee covers the corresponding results of
Blackwell [ 6] (positive dynamic programming), Strauch [66] (negative
dynamic programming), Hordijk [34] (convergent dynamic programming)
and our result (contracting dynamic programming).

(iii) For discounted (semi-) Markov decision processes with a finite state
space and a finite decision space an elementary proof is given in
Wessels and van Nunen [76].

©

PROOF OF THEOREM 4.3.2. Choose N such that ) pr(n+1)M < % where M is as
N+1
defined in the proof of lemma 4.3.2. Now if 7' is another decision rule

such that q6 = dgr qi = q11'°'lqﬁ = q then

-]
v -v <2 § p"m+1)MS %e .
m v Ne1 °

This enables us to assume that T is Markov from some point (say N+ 1) on.
3 = .o i E

So T might be represented by T (qo,ql,...,qN, N+1’fN+2" ) with fk F

for k > N. We will show that there exists a decision rule 7" of the form

™ := (qO'ql'""qN-l'fN'fN+1"°') such that

Vﬂ“(i) P-4 Vﬂ,(i) -e'u(d), e' >0 .

*
Using this fact N times will produce the desired Markov strategy 7 , if e’
is sufficiently small.

For each j € S we define

-]
N+1 . _ ! .
Voo (3) 2= z E, [r(sn,an) |sN+1-j] for
n=N+1
Tr ' . s
Pi (SN+1 = j) > 0, 0 otherwise .

We determine the action fN(i) € A such that

£ (i)
(4.3.2)  r@,EW) + ] p"  @HVEIG) 2
jes
> sup {r(i,a) + ) pa(i,j)Vﬁtl(j)} < e'u(i) .
a€n jes
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However, since

. . ON L N
VoW =V ) +Exsya) + e (s Y ()]

m T jes
and
£ (s)
: . N Ly NHD L
() = Vo () + EfLr (s, By (sy) +j§s p N Vs v I,

it will be clear that ™" with fN such that (4.3.2) holds has the desired
property. O

As a consequence of the foregoing theorem we can state the following corol-

lary.
COROLLARY 4.3.1. For all i € S, all m € D and each € > 0 we have

sup V1T (L) > Vw(i) - eu(d) .
noeM o

So if we look for an €-optimal decision rule T , and its corresponding total
expected return over an infinite time horizon VTr » it is allowed to restrict

the investigations to Markov strategies.
LEMMA 4.3.3. For each v € V and each m ¢ M we have

. n
VieS lim (P (m)v) (i) = 0 .
n->«o

PROOF. From lemma 4.3.2 it follows that 1P (mb - p™bll + 0 for n + =.
Since v may be written as v = (1 —p)—lb + w, with w € W and since

Ie™ (m Il < pz the statement will be clear. O

Now in a similar way as we have introduced the mapping L1 on V in chapter 3

we introduce the mapping Lf of U for each £ € F.
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DEFINITION 4.3.2. Let £ € F, v € V, then the mapping Lf of V is defined

component-wise by

L) (@) = r@,£6) + ] pt®

jes

i,j)v(3) , ies,

or in vector notation
Lv := rf + va .

REMARK 4.3.2. For P := Pf, r := rf the results of chapter 3 may be obtained.

So we have e.g.

(1) Lf is a monotone mapping of V into V.

(ii) Lf is a contraction mapping on V with contraction radius Ipfll =: of.
R .

(iii) lefw Vfw

We now define the well-known optimal return operator U1 on V (see e.qg.

Blackwell [ 4], MacQueen [46], Harrison [24] or van Nunen [53], [54]).
DEFINITION 4.3.3. The mapping U1 of V is defined component-wise as follows
(U, (@) :=swp {r,a) + I pPw,Hvd}, ies,

a€A jes

or in vector notation

U,v := sup Lfv := sup f + ot} .

feF feF

REMARK 4.3.3. It will be clear that Ulv(i) gives the supremum of the expec-
ted return that can be earned if we start in state i at time t = 0, use
decision a € A at time t = 0 and receive v(j) if, as a result of that de-

cision, state j € S is reached at time t = 1.

THEOREM 4.3.3.

(i) U, maps V into V.

(ii) U1 is a monotone mapping.
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(iii) U1 is a contraction mapping with contraction radius

vy o= sup||Pf" := sup pf =p, < 1.
feF feF

(iv) U, maps {ve V |||v - (1 -D)_lb“ < (1 -po)_zmo}into itself, where M,

1 .
is defined as in theorem 4.3.1.
* *
(v) U1 has a unique fixed point V ; so V is the unique solution in V of

the optimality equation
(4.3.3) v=0U,v.
*
(vi) ILet vy € V then the sequence v, = Ulvn-l converges in W-norm to V .

PROOF. Clearly for any € > 0 and v € V there exists an f € F such that

£, =
Liv 2 U

The monotonicity of 01 is trivial. Let vy and v, € V. For any € > 0 choose

v - €U, It now follows from remark 4.3.2(i) that U, maps V into V.

f,9 € F such that

£ g
= - . > -
L1v1 Ulv1 €U ; le2 U1V2 €Y .
Then
£ £ £
- < - = -
U1v1 U1V2 le1 + €U le2 P (v1 v2) + €U ,

on the other hand

- = p9 - -
g, v €Y = P (v1 v2) €Y ,

11 172 171 172
which yields
lu,v, = U, v, Il < maxﬂIPfH 1e9mliv, - v, 0l + ¢
171 1727 7 ! 1 2 :

Since € > 0 was chosen arbitrary we have

- < -
IIUlv1 UIVZH V1Hv1 v2H .



51

1.

b + fu and v, := (1-p)° 1

By using v, := (1-p)" b, with & € R', it is easi-

ly verified that for any € > 0

||U1v1 - Uivzll > (\)1-1-:)||v1 - v, ll = (\)1-5)2

2

for % sufficiently large. So the contraction radius of 01 equals v

1
Let ve {velV ] lv = (1-p) 1}:’II < (1-p°)_2MO} then for each € > 0 there
exists an £ € F such that Lfv 2 U,v - €u. However, since for each f € F,

1 1

Lf maps {veV |lv- (1-p) lblls (1-p,)72

M }into itself, also part (iv)

of the theorem is proved. The assertions (v) and (vi) are direct consequences
of the fact that U, is a contraction mapping from the complete metric space
V into V, see e.g. Ljusternik and Sobolew [43]. 0

THEOREM 4.3.4.

(1) v, < V" for all m € D.

*
(ii) For each € > 0 there exists an £ € F such that V_ 2 V - €U,

(iii)LetTreMandgeFthen[V( > v 1=1Lv > v,

g,m) g T
(iv) ¥ is optimal if and only if V A, satisfies the optimality equation
T
(4.3.3), so Vv = V*.
*

PROOF. Suppose T = {fo'fl""} is an arbitrary element of M. Then,

£, £ £ £ £ £
* * *

L10L11...Llnv* < U?-HV =V for each n 2 0. However, L1 Lll...LinV =
= V'rr n + p (W)V*, so letting n + © we have as a consequence of lemma 4.3.3

’
that

Vo=lmv sV .
n>® n

As a consequence of theorem 4.3.2 the statement (i) is true for all deci-
sion rules T since it is true for Markov strategies.

B* s v* - e(1-p_)u, with € > 0,

(ii) Choose f € F in such a way that L1

then
£fin_* * n-1,.
L)V 2V - e-p )[14p, 4ot ol u,

so, letting n -+ «, we have
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*
V.2V -€eu.
£
(iii) v

= L?V“. Now since L is monotone we have

(g,m) 1

g > ! g
whH™, =2 @wH¥ v 2 o2l v,

so again, letting n * ®, we obtain

* *

(iv) If Voxr =V then trivially ™ is optimal (see part (i) of this theorem).
fV

o * 1 Tr*

£ would be better then ™ and thus T would not be optimal. Hence,

*
Reversely if m is optimal then L < V%* for all £ € F since otherwise

U1V * <V .+ However, since U1 is a monotone operator we have
m

™
n,
UV LSV,
™ ™
so
Lindv =v v ,
1" *
n->o ki ™

REMARK 4.3.4.

(1) IfV_ 2V - euthen £ is e-optimal.
£
(ii) We will often denote V _ by V
£

(iii) From part (iii) of the foregoing theorem we see that Howard's policy

£

improvement routine [35], remains valid in this more general setting.
(iv) A proof of the foregoing theorems for discounted Markov decision pro-
.cesses with a general state and action space but with a bounded reward
structure was given by Blackwell [5]. For discounted Markov decision
processes with countable state and action space and with a bounded
reward structure an elementary proof was given by Ross [62]. For

bounded rewards a proof can also be found in Denardo [12].



53

For two actions ao,a1
a a

and VjeS P 0(i,j) =p l(i,j). We then say that a, and a, coincide with re-

spect to i € S, otherwise ag and a, are different with respect to state

grAhahd ine S it is possible that r(i,ao) = r(i,al)

ies.
Let A(i) containrepresentatives for all classes of coinciding actions with re-

spect toi € S. Wesay A(i) is finiteif A(i) contains only finitely many elements.

LEMMA 4.3.4. If A(i) is finite for each i € S then there exists an optimal
stationary Markov strategy.

PROOF. If, for each i € S, the action set A(i) is finite then, since the

supremum which defines the mapping U, is defined component-wise there will

1
*
exist an f£f € F such that LfV* =V,
vV = lim (Lf)nv* =v,
£ >
which means that f is optimal. 0

REMARK 4.3.5.

(1) A proof of this lemma, for discounted Markov decision processes with
a bounded reward structure, is also given by Blackwell [ 5] and Derman
L15].

(ii) If A(i) is not finite for each i € S then it is easy to construct coun-
ter examples showing that an optimal decision rule may not exist, see

e.g. Blackwell [ 51].

Our interest is in fact the computation of the optimal return vector V* and
the determination of an (e-)optimal stationary Markov strategy. We will
prove that as a consequence of the theorems 4.3.3 and 4.3.4 the method of
successive approximation may be used to determine the optimal return vector

*
V' and an (e-)optimal stationary Markov strategy.

DEFINITION 4.3.4. A function g defined on the power set of F into F is said
to be a choice function if and only if for each nonempty set B ¢ F we have
g(B) € B.
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From now on we assume g to be an arbitrary but given choice function.

REMARK 4.3.6. For the existence of a choice function, in a general situa-
tion as we have defined it here, we need the axiom of choice. We introduce
the choice function only for notational convenience.

For the processes we described, the full strengtheness is never required
since we have to make only countably many choices. In the first place, only
at the successive pointsin time n = 0,1,... a policy f has to be selected
from a nonempty set B < F. Secondly, since S may at most be countable, for
each f € F only countably many actions have to be selected.

Usually, in practical situations, the choice function can be given expli-
citly. This is specifically true in the situation that S and A are finite,

since in that situation also F contains finitely many elements.

DEFINITION 4.3.5. For € > 0 we define the mapping Uy e of V by
’
_ . £
Ul,ev 3= LV,

with £ := g({£ | "Ulv - Lfv" < €}), from theorem 4.3.3 it follows that Uy e
’

is well defined for € > 0.

_ £ , ,
If VVEV af%F uv = Lyv then € may be ;ero in that case we define
Ul,Ov := Liv, with £ = glf | uv = le}).

LEMMA 4.3.5. The mapping U maps V into V.

1,e

PROOF. The proof is evident since for each f € F Lf maps V into V. 0

DEFINITION 4.3.6.

(i) A mapping B of V into V is said to be e-monotone (€ 2 0) if .for each

v,w € V, with v 2 w, we have
Bv 2 Bw - €U .

(ii) A mapping B of V into V is said to be €-contracting (€ 2 0) with con-

traction radius p' if for each v,w € V we have

IBv - Bwll < p'llv - wll + € .



LEMMA 4.3.6. The mapping U1 e (e > 0) has the following properties
’

(i) U, ¢ is e-monotone (¢ > 0).
’
(ii) U1 e is €-contracting with contraction radius V.
’
If U1 0 is defined then U1 0 has these properties as well.
’ ’
PROOF.
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(i) Let v,w € V be such that v 2 w; then since U, is a (0-)monotone map-

1
ping we have

U v-0 wW2Uv=-©¢€u-=-10U

w2 -€U .,

(ii) - u, v-1U

=
A

u,v - Ulw + EUW ,
U v-21 w2Uv- €U - U1w o

So

< - + €<V - + € .
HUl’ev Ul,ew" "UIV Ule 1IIv wll

LEMMA 4.3.7. Let v, € V and suppose U

1,
£
= := =1
defined by v : Uy, 0%n-1 and let £ : glf | Uy 1Vn_1J), then
(i) Ilv. - v lI's oM. - V'l
n * 0 ’
(ii) v, —v s (t=p) ollv. = v I
fn n * * 'n n-1" "'

(iii) 1If Vo € V is chosen such that Uyv 2 vq then

n
PROOF.
* * n_*x *
i - = - = - < - .
(i) v, = V¥l = lujvy - V¥l = lujvy = UVl < pQlvy = V'

0 is defined. Let the sequence Vi be
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(ii) Consider

f

£
n. k
(L1 )

£ f £
_ n, k n, k-1 n k-1_ _ n_ _
VTV, T (L1 ) vy (L1 ) vt (L1 ) v, Teeet Liv -v
which yields

£ £
n. k -1 k-1 n
Il ) vn—vn!l < (1-p)) (1=p L, vn-vnll

-1 k-1
Sp, (l-p)) "(l-p )llvn - vn_11| .
By letting k + = we have
v, v lis@-p)ollv v . II.
fn n * * n n-1
n
The final part follows from the monotonicity of U, and L, . 0

LEMMA 4.3.8. Let € > 0 and vy € V such that

Vies [Vo(i) s (U1VO) (i) - en(d)] .
Let the sequence Y (n 2 0) be defined by

1 'n-1"'

: . ~ £
where £ := g(B ) with B i={f e F| Lyv,

> - -
12 ma.x{vn_l,Ulvn_1 e (1 po)u]} ,
then
(i) I v, - vl <€, for n sufficiently large ,
(ii) sv sv, sV
ii VoSV, SV, .
n
PROOF. We define § := (1 -p )e. Note that B is not empty. Namely, if
Vi1 2 Ulvn—l - 8u, then fn := fn_1 already suffices, since
n-1
= = .
Y-t TP Ype2 ® Vpe2
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. n-1 .
Since, L is monotone we have

1

£
(1:.1n 1)2Vn_2 > 1" v _=v

Similarly, we have for k € N

£
n. k >
(L1 ) Vo1 Z v,

which yields by letting n > «

n

follows directly from the definition of AAR

2
The inequality Va V-1

*
It now remains to be proven that v * V in u-norm. Since v P V-1 this
convergence will be monotone.
fn
= > - > - -
v L1 Vo1 Ulvn_1 Su 01 (Ulvn_2 Su) Su
> 0%y -pbu-6
1Vp—2 " P oM Ho.
Continuing in this way we get,
n n-1 n n
Vo2 Uy m U+ Heeakp ) 2 UV - el - pu .

* *
Now, since Ulzv0 + V (in p-norm) we have the final result v, -V I < € for

n sufficiently large. O

REMARK 4.3.7. It is easy to find a starting vector vy € V satisfying
-1 +
Vo(i) < U1VO(i) - €U (i) namely v, := (t-p) b - u for & € R chosen suf-

ficiently large.
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LEMMA 4.3.9. Let vy € V. Let the sequence A be defined by

Vo T Ul,e Vn-1 '
n
. _.n £
th = = -
with € :=v, and let f gUlf e F | "U1vn—1 LV 4 II'< an}), then
: . *
(1) lim v, = \4 (in y-norm) ,
n->e
s s *
(ii) lim Vf =V (in u-norm) ,
n-e n ’
PROOF. mtm:=n%-fH,an
* *
Ilv1 -v —||v1 - Uyvg + Uy -V Il
< | u, vl +llu u, VI
V1 10 1Yo ~ Y1

< =
< v1 +\)1M \)1(M+1) .

The first part of the proof follows now by induction.

*
Supposellvn -vis v?(M + n) for some n 2 0 then

£
* n+1 *
- < - -
Ilvn+1 vl IIL1 A ulvnn +||U1vn u,v Il
< n+1 n n+1
< \)1 +\)1(\)1(M+ n)) =\,1 M+ (n+1)) .

So since the induction hypothesis holds for n = 0,1 it holds for all n,
this implies part (i) of the lemma.

Choose € > 0.

Note that as a consequence of part (i) there exists a N € N such that

(a) Vn>N an - Vn—l" < he(l - vl)
- < -
(b) Voon 101Vpoy = Voo IS 8@ = vy .

Now, as a consequence of (a) we have



59

£ ’ £ £
n. k _ n, k _ n, k-1
||(L1 ) v -1 vn—l" —||(L1 ) Vo1 (L1 ) vo_y*t
£ £
n, k-1 n
+ (L) vy meet Lo - Vn—l"
< (1-v )'1(1—vk)llv -v_ <%
1 1" 'n n-1 :

So by letting k+« we have |l Ve - vn-l" < ke (n > N).
n

Similarly, we deduce from (b)
*
lv:i -=v <%/, n>N.
n-1
Since € was chosen arbitrarily this implies part (ii) of the lemma. 0

*
So the computation of V ,the optimal total expected reward over an infinite
time horizon, may be executed by successive approximation of v* by v, as
described in the lemmas 4.3.8 and 4.3.9. Moreover, for each € > 0 the Mar-

00
kov strategy fn is e-optimal for n sufficiently large.

4.4. Remarks on the assumptions 4.2,1-4.2.4.

The first assumption (4.2.1) stated that the difference between b and rf is
bounded in u-norm for £ € F. This assumption arises by combining the assump-
tions of Wessels [75] and Harrison [24] on the reward structure and the
transition probabilities. As proved in section 3.3 our assumptions are more
general than the assumptions of Wessels and Harrison separately. Assumption
4.2.2 is introduced to ensure the existence of the (conditional) expecta-
tions of the stochastic variables. If we use an extended notion of expecta-
tion (see van Hee and van Nunen [30]) assumption 4.2.2 may be replaced by
the weaker assumption

Ve, ger PEle9] <=
This assumption was first used by Harrison [23]. Assumption 4.2.3 requires
that also for a € A the expectation of u(sl) is at most p*u(so). This im-
plies that for each decision rule T the corresponding stochastic process
'{sn I n 2 0} has a téndency to decrease its u-value and/or to fade. The
final assumption requires that, for each i € S and each a € A, the expected:

one-stage reward differs not too much from the immediate reward r(i,a).
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For u(i) = 1, 1 # 0 and the usual notion of expectation our assumptions in-
clude the assumptions as used by Harrison [24] for discounted Markov deci-
sion processes. If b ¢ W, the Markov decision processes as described by
Wessels [75] are obtained. For a specific choice of a bounding function u
and b € W, the idea of using weighted supremum norms is used by Lippman [441],
[45] for semi-Markov decision processes, see also van Nunen and Wessels [561].
Wijngaard [78], used the idea of a specific (exponential) weighted supremum
norm for inventory problems with respect to the average reward criterion.
Hinderer [31] used the idea of bounding functions for finite horizon Markov
decision processes.

For H(i) = 1, i # 0 and b € W our assumptions reduce to the well-known as-
sumptions for Markov decision processes (see e.g. Denardo [12]) to guarantee

the existence of the total expected reward over an infinite time horizon

i <
3M€R+ Vies VaeA |r(1,a)| M

Y p?,9) s .
j#0

3o<1 Vigo Yaea

Finally, we want to extend the lemmas 3.3.1 and 3.3.2 to the case in which

decisions are allowed.

LEMMA 4.4.1. If 3 s b(i) 2 -Mu(i) then there exists a number p' with

MRt Vie
0 < p' <1 and a bounding function u' such that

3 ||rfuu,sw and upfuu, Sp'<1.

M'eRrt erF

LEMMA 4.4.2. If 3 s b(i) < Mu(i) then there exists a number p' with

. MeR* Vie
0 < p' < 1 and a bounding function u' such that

£y < £
< P <p' <
aM'dR* erE ¢ lh, M and erF Il !h, P 1.
So if in addition to the assumptions 4.2.1-4.2.4 the rewards are bounded
from one side (with respect to the bounding function u) then it is possible
to define a new bounding function p' such that the Banach space wu, of vec-
*
tors v with Ilvllu, < » contains V and Ve for £ € F. Moreover, the operators
£

*
L1 and 01 are contraction mappings on wu, with fixed points Vf and V res-
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pectively. If b is bounded from one side with respect to the bounding func-
tion W, the assumption 4.2.2 may be omitted. In that case it is easily pro-
ven that the reward structure is a charge with respect to the transition
probabilities (see Hordijk [33] and Groenewegen [21]), i.e. for each m ¢ M,
= (fO'fl"") we have

o £
z Pn(n)lr n| <o,
n=0

which follows from

© £
Iy 2®m]e®, < (1-0m tsup s, <=
n=0 u feF
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CHAPTER 5
STOPPING TIMES AND CONTRACTION IN MARKOV DECISION PROCESSES

In this chapter we will use the concept of stopping time as introduced in
chapter 2 to generate a whole set of optimization procedures for solving
Markov decision processes satisfying the assumptions 4.2.1-4.2.4.

The idea of using stopping times for generating such a set was introduced
by Wessels [74]. Wessels used nonrandomized stopping times to generate a
set of optimization procedures for finite state space, finite action space
discounted Markov decision processes.

In this chapter this set of optimization procedures is extended by allow-
ing randomized stopping times. Furthermore, the class of problems for which
the procedures hold is generalized by using the less restrictive assumptions
4.2.1-4.2.4. The set of optimization procedures will include the known solu-
tion techniques as introduced by Blackwell [ 41, Hastings [25], Reetz [60]
and van Nunen [54] for discounted Markov decision problems. Recently, again
for finite state finite decision space Markov decision processes, Porteus
[59] also introduced a set of optimization procedures. He introduced a num-
ber of transformations which might be used to investigate transformed Mar-
kov decision processes with the same (e-)optimal policies and the same
(possibly transformed) optimal return vector (V*). A number of the trans-

formations introduced by Porteus are in fact covered by our approach.

After some preliminaries the contraction mappings Lg of V will be introduc-
ed and investigated (section 5.1). We will restrict the considerations to
nonrandomized decision rules, which is justified by the results of the pre-
ceding chapter. Then (section 5.2) the optimal return operator UG on V will
be defined. For each stopping time § € A the mapping Us yields a policy im-
provement procedure on which the determination of an (€-)optimal Markov

*
strategy f°° and the successive approximation of V and V_ may be based. We

£
will prove that the sequence Va , arising by successive application of UG on

* . .
an arbitrary element v6 € V converges to V' if and only if the stopping

time § is nonzero. Morgover, we prove in section 5.2 that by using UG atten-
tion can be restricted to stationary Markov strategies.if and only if the
stopping time § is transition memoryless.

Finally, we will give algorithms which determine an (e-)optimal Markov
strategy and compute therptimal return vector V* by means of successive

approximation.
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5.1. The contraction mapping Ig

For each n € IN we define the measurable space ((S X E X A)n,sg), where S;
is the product o-field generated by S and A. The product space (QA,FA) is
the space with QA :i= (S X E X A)°° and FA the product o-field of subsets of
(S x E x A)° generated by S and A.

In a similar way as in'chapter 3 we define, for each stopping time 6§ € A ,
each decision rule T := (qo,qi,...) € N and each starting state i € S, a
probability measure P:,G on (QA,FA) in the standard way by giving the pro-
bability for cylindrical sets in QA ; Wy = ((io’do'zo)'(il’dl'zl)"")‘

m . _ - - =
Pi,ade | s = i .e =d,a =z, forks= 0,1,...,n}) =

n-1 =z
i, P Ul

0 k=0
"

=38 )

1 %
ST L8 (i sendy) (=8 (gseeriy ) Srq (z 10,2001 02y 000 4))]

k=0

where Gi i is again the Kronecker symbol (see section 3.1).
’
0

This probability measure can also be obtained in a similar way as in chap-

ter 4.by using transition prcbabilities.
For each T = (qo,qi,...) € N each n € N, andd € A we then define for

$ n on
sas s 7ies X B X
(s x E x A,SA) the transition probabilities Py, n+t on ((S X E x A) ’SA) as
follows

-8

Pt B X E' X All(io, orZghreeen (L 04 42)) =

%n . oql-d, . . .yqd
z X P (in,i)[d(io,...,ln,l)] [1 —6(10,...,1n,1)] .
ieB deE' .

f qn+1(daj (LgrZgreseri 12 01)) o
Al

where A' € A and B and E' are elements of the power set of S and E respec-

tively.
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For each decision rule m € N and each starting state i € S, as a conse-
quence of the Ionescu Tulcea theorem (see e.g. Neveu [52]) these transition
fasas §
probabilities Pn,n+1
So we may consider the stochastic processes {sn | n=2o0}, {(s e)) In 2 o},

induce a unique probability measure ]P ,8 on (Q ,F )

{(sn,en,an) | n 2 0}, where as in chapter 3 and 4, s,re + a are the pro-
jections on the n-th state space, the n-th E space and the n-th action

space respectively.

NOTATIONS 5.1.1.

(1) For £ a real valued function on (f,F) we denote by E <Sf the expecta-
tion of f with respect to the probability measure Pi 5.

(ii) Eaf denotes the vector with i-th component equal toE Gf'

(iii) Ifm e M is a stationary Markov strategy, T = (f, f,..'.) then Ef,G ,
Eg may be used instead of E ,8" EG respectively.

Clearly, the probability measure P" on (2,F) induces a unique probability

i,6
measure on the coarser measurable space (QO’FO) .

LEMMA 5.1.1. For each § ¢ A, T € N and i € S the probability measure induc-

ed by PT.; s on the coarser measurable space (QO,FO) equals P:_‘Lr.
, ‘
L u
PROOF. The statement follows directly from the definitions of ]Pi 5 and Pi.D
’

We now extend the mapping L(S of chapter 3 (defined by using the stopping

function T) for the situation in which decisions are allowed.

DEFINITION 5.1.1. For each § € A and m € N the mapping Lg of U is defined
by

-1
4 . m s
(Lgv) (1) == Eils[kzo r(s ,a) +v(s)]l, ies,

or in vector notation

: T-1
(L:sr)v:=E:sr [kzo r(s,,a) + v(sT)] .
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REMARK 5.1.1.

(i) We recall that v(sT) = v(0) =0 if T = o,
(ii) Note that for all § € A, m ¢ N, v € U we have (1gv) (0) = O.

LEMMA 5.1.2. If § is the nonrandomized stopping time corresponding to G1

m
and T = {go,ql,...} € N, then Lg equals Lio as defined in chapter 4 where
fO is defined by fo(i) =z and z; € A is the action for which qo(zili) = 1.
Cm%@mﬂy&rmuﬁ,%mammmmmmmNﬁW”h%isﬂﬁdhcw—
£

tracting with contraction radius 060 and fixed point Vf .
0

T
DEFINITION 5.1.2. For each § ¢ A and ™ € N the matrix Pg is defined to be
the matrix with (i,j)-th element equal to

0
m,.. . _ u = = =
pa(l,J) = Z ‘Pi,G(sn =3j, T=n) .
n=0
m
REMARK 5.1.2. Note that for each § € A and ™ € N we have pg(0,0) =1 and
u oy
Yjes\{o} Ps(©s3) = O
LEMMA 5.1.3. Let § be a nonzero stopping time and let ™ ¢ N, then

oy i= Ilpglls (1 - inf §(i)) + inf S(i)p, <1 .
iesS ies

PROOF. The proof proceeds along the same lines as the proof of lemma 3.2.4.[]

LEMMA 5.1.4.
(i) Suppose §, < &, then for all m e N, pTr >l .
1 2 61 52
. : 2
(ii) Suppose 51,62 are nonrandomized stopping times G~ and G~ are the go-

ahead sets corresponding to 61 and 62. Then

6t c G2 =8, < §,, and thus 91r 2 pTT » for all melN.
1 2 61 62

(iii) Let Q be an index set and suppose for each g € Q, Gq € A is a non-

randomized stopping time then for all m € N



67

w m T . T
p+Ssu906 ’ p ZJ.an‘s .

6" qQ q 8§ g0 q
LEMMA 5.1.5. Let § € A and 7™ € N, then Lg maps V into V.

PROOF. From the foregoing chapter we know that there exists a M' € ]R+ such
that for all meN "V& -1 -p)_lb" < M'. Choose, for each v € V, M€ r
such that llv - (1 —p)_le =M . So for all T € N we have

-1 -1
||v—V_"||S||v- (1-p) bII+IIv1r - (1-p) b= M+ M.

Let T := (qo,ql,...) e N and i € s let fo(i) be defined as in lemma 5.1.2.
Then T, is defined by T, := (qj,qj,...) with '

veols . . ol iy s .
qk( llO,ZO,...,lk) : qk+1( lJ.,fo(:L),J.o,zo,...,J.k) .
Let A;q contain all stopping times with the following property

V. 5 gk 8@™) go=ss@ =1,

k=N+1

]
Then it is easily verified that for each i € S, ™ € N and S € AN
P 6(1: N VT =® =
Let § € A 1 and define for each i € S, 6 € A by 6 () :=8(i,a) for each

(- k [
o € kgl S™, then clearly Gi € AN. Now,

T—
[kz s () + vis )]

Lgv(i)

' =1
(1-8(1))v) +8 (@) [x(i, £, (1) +E:'5[kzl r(s,,a) +v(s) ey =01]

(1-6(1))v(i) +6(i)[r(i,fo(i)) +

fo(i) -1
+1 p (L,3) - E 6 L z r(s, ,a) +vis, )11
jes
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£.(1)
(1-8())v(d) +8 Wlr(,£y(1)) + I p? @, Hhv, () + (M'+M ) w (3) 1
jes 0

A

< (1-8(1))v(i) +5(i)[Vf (1) +p, (M +Mv)11(i)]
0

< Vfo(i) + (1 -5(1':)) (' +M Ju (i) +8(1)p (M +MO)u(i)

A

Vf0 (L) + M +Mv)u(i) .

In a similar way it may be proved that

Lev(i) 2V, (1) - (M + M)u(d) .
£ v
0
So Lgv e V.
Since for § € AC')' L:;v € V, as is easily verified, it follows by induction
that for all § € A, L:Srv e V. 0

LEMMA 5.1.6. Let § ¢ A and m € N, then

(i) Lg is monotacne.

(ii) Lg is strictly contracting if and only if § is a nonzero stopping
time; in this case the contraction radius equals pg.

(iii) For each nonzero stopping time, Lg possesses a unique fixed point
'vg e V.

(iv) Theset {ve V]|lv- (1-p)"

by Lg where M':= (1 —pg)-lM and M is defined as in theorem 4.3.1.

o< (1 lpo)-ZM'} is mapped in itself

PROOF. Part (i) of the lemma is trivial. To prove part (ii), let ViV, € v,
then vy and v, can be given by v = (1 -—p)-lb + W (k = 1,2), where w}, e W.
So Ilv1 - v, Il = |Iw1 - w2||.
Hence
m T m Ul T
- = - < -
] Lgvy ~ Lgvy =1 Pgw, = Pow, =1 Ps II-Ilw1 W, .

The fact that Lg is strictly contracting if and only if § is a nonzero stop-

ping time is a consequence of lemma 5.1.3. The contraction radius equals
IIP.:ST Il as is easily verified by choosing vo= -p)_lb +u,v, = (1 —p)_lb.
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Part (ii) of the lemma is evident since Lg is a contraction mapping on the
complete metric space V (see e.g. Ljusternik and Scbolew [43]). The final

statement is clear since

VielveV|lv-a-pmlolls a-p)72u}.
Hence
LMy < v+ 0Tt = 0 ) "2y <
sV = Vs T Ps o) MM =
-1 -2 -
S@-p) b+ (1-p) Mu+ (1-p) 2-pgm'u
-1 -
su-p o+ -0 2w
Similarly
Lyv 2 (1-0) b - (1-p) 2M'u . O

LEMMA 5.1.7.

(1) Let § € A be a nonzero stopping time and let 7 := (f,f,...) be a sta-
tionary Markov strategy, then Lg has the unique fixed point Vf inde-
pendent of the stopping time.

(ii) If ™ € N is not stationary then there exists a situation
{pa(i,j),r(i,a)} for which nonzero stopping times 61 and 62 e A exist,

m
such that L6 and Lg possess different fixed points.
1 2

PROOF.

(i) If ™ is a stationary Markov strategy then the process {sn I n = 0} is
a Markov chain with rewards only depending on the current state.
Theorem 3.2.1 now implies the result.

(ii) Suppose T :=(qo,q1,...) € N is nonstationary then A contains two or

more elements. Let n0 € N be such that

(@) for all k < ny q (£5(1) iy, €y (i) siyrEy (i) enerdy) =1
(note that n, 2 1).
(b) for at least one jo € S and at least one path

a, (fo(jo)Iio,fo(io),il,fo(il),...,jo) =0.
0
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Let r(i,z) :=b(i) for i € S\{jo} and all z € A, choose r(j,,f,(jy)) :=

= b(jgy) and r(jo,z) = b(jo) + 2y for all z € A\fo(jo). Choose
z z

1, . 2. . s )

p (i,3) =p “(i,j) > 0 for all i,j € S and Z,s2, € A such that the
assumptions 4.1.1, 4.2.1-4.2.4 are satisfied. So for each T the sto-
chastic process {sn, n 2 0} is a Markov chain. Now by choosing 51 '

6n corresponding to Gl’ Gn respectively it is easily verified that

0 0
the fixed points of the mappings Lg and Lg are different for % suf-
ficiently large. ! ) 0

5.2. The optimal neturn mapping Ug

IEMMA 5.2.1. Let i € S, let § ¢ A and v e“V, then for each € > 0 there

exists a decision rule m, € N such that Lalv(i) > Lgv(i) - gy (i) for all

T € N.

PROOF. The existence of a M € :IR+ such that for all 7 € N,
m -1
LGV < (1-p) b + My follows from lemma 5.1.5. So for each i € S there

exists a T, € N such that Lgiv(i) 2 Lgv(i) - eu(i). 0
DEFINITION 5.2.1. The mapping UG of V is defined component-wise by

Usv(i) := sup Lgv(i) .
meN

REMARK 5.2.1. Note that the supremum over ™ ¢ N is taken component-wise.

THEOREM 5.2.1. Let § € A, then

(i) Us maps Y/ into V.
(ii) Us is monotone.
(iid) U6 is a contraction mapping if and only if 8 is nonzero. The contrac-

tion radius VG of U6 satisfies VG = sup pg.
meN
(iv) The set {v e V | llv - (1-9)-1bll < (1-p,) 2M'} is mapped into itself

by Us o where M' is defined as in lemma 5.1.6 with pg replaced by Vge
*
(v) If 6§ is nonzero then Ug possesses the unique fixed point V , or equi~-

valently V* is the unique solution in V of the optimality equation

(5.2.1) v=0UwWw.
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PROOF. Part (i) of the proof follows directly from lemmas 5.1.5 and 5.2.1.
Part (ii) is trivial.

(iii) Let v,we V ande > 0. Let i € S, choose Wo,ﬂl € N such that

“0 T
Lo v(i) 2 Lov(i) - eu(i)
§ ()

and

m
lew(i) 2 ng(i) - eu(i), for all me N .
We then have

o "o
Ugv(i) = Ugw(i) € LgTv(i) = Low(i) + en(d)

"o
=1 pg W(3) - v(3)) + en(d)
jes
and
T ™

Ugv() - U (@) 2 Lglv() - nglwii) - e

™
= I pg D (@) - wi) - e .
3
This implies
L T
lugv(a) - ugw(i) | < maxlipg  IIpg I} |vii) - wid)] + enti) .
Since € was chosen arbitrarily we have

Ugv - ugull s vlv = wll .

It follows from lemma 5.1.3 that U6 is strictly contracting for nonzero 6.

Now we prove that the contraction radius is VG. Let 9 be such that

s L
Ilp‘soll 2 Vg - 4€ and let iy € S be such that ) pdo(io,j)u(j) z (Vg —€)U(ig) -
- jes_
Then choose v := (1 -p) 1b + 24 and w := (1 =-p) 1b. Let M € Ig'be such that

™

L0 p) = (1 -py7t

b - MU (see lemma 5.1.5). Consider 06V(i0) _UGW(iO)
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™
Upvlig) = Upwlig) 2 L v(ig) = (1-0) (i) ~Mu (i)

"o
I pgoige)2H(3) - 2Mu (i)
jes

v

v

(Vg = €) (io) - 2Mu (io) Z (Vg - 2€)Lu (ig)

for £ chosen sufficiently large (£ > 2%%.

This implies Vs is the contraction radius.

SinceIIPg" =1 if § is not a nonzero stopping time (see the proof of lemma
5.1.3) we have also proved that Us is not strictly contracting in this case.

(iv) It is a direct consequence of lemma 5.1.6 that
-1 -2
veV|llv- 1-p) bl < (1-0,) %u"}

is mapped into itself by Us-
(v) We first note that for ¢ nonzero Us has a unique fixed point. The final

*
part of the theorem follows by considering UGV .

-1
* U *
UV (i) = supE, [ ) r(s,,a) +V (s)].
8 reN i,s§ =0 k' %k T

*
Now choose € > 0 and f € F such that Vv V - €l. In theorem 4.3.4 we have

>
£2
proved that such an f exists. Let T ¢ F© be defined by ™ := (£,£f,...).
Then

=1
* . £ .
UV (L) 2E] oL L s f(s)) + ve(s)] - enld) .
k=0
='vf, which implies

waever, (see remark 4.3.2), we already know Lgvf

USV*(i) > Vf(i) - €U (i) and since € was chosen arbitrarily we have
*
UV @) 2 v, ies.

On the other hand USV*(i) < V*(i) as can be proved inductively. This proof

proceeds in a similar way as the first part of the proof of lemma 5.1.5. []
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I . § s
COROLLARY 5.2.1. Let § € A be nonzero and let Yo e V., Let the sequence v,
be defined by

s _ U 8
vy = Usvo g e
then
. 8 *
limv_ =V (in y-norm) .
ne n

LEMMA 5.2.2.

(i) Let 61,62 € A be nonzero and suppose 61 4 62, then v, s Vg
1 2
(ii) Let 51,52 € A be nonrandomized and nonzero, let G1 and 62 be the go-

ahead sets corresponding to 61 and 62 respectively, then

2

G1 c G w.él < 62 and thus v Z v

51 B 2

In the previous chapter we have proved the existence of (e-)optimal sta-
tionary Markov strategies. Regrettably, the procedure as described in co-
rollary 5.2.1 does not produce such (e-)optimal Markov strategies. So we
should like to characterize nonzero stopping times which allow for the use
of stationary Markov strategies only. The following two theorems provide

the main step for such a characterization.

THEOREM 5.2.2. If § € A is transition memoryless, € > 0 and v € V, then

there exists an £ € F such that for all i € S
£ . . .
Lgv(d) 2 Uév(l) -eu(d) .
Hence

UGV = sup Lgv .
feF

PROOF. Let v € V. We will define a new Markov decision process such that
Lgv(i) (of the old process) is the total expected reward over an infinite

time horizon (for the new process) if the starting state is i and strategy
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m ¢ N is used. Hence, for this new Markov decision process attention may be
restricted to memoryless Markov strategies, as is proved in chapter 4. This
implies that for the determination of Ugv in the original problem, the res-
triction to stationary Markov strategies is permitted too.

We will assume, as is allowed without loss of generality, §(i) = 1 for all
i € S. We define the new Markov decision process in the following way:

5, the new state space, is the union of two copies of S;

* *
s = {i ] i e sl, S* 1= {i* [ i e s}.

So the states in S are two times represented in S. For the states i* eS*<=§
and all a € A we define pa(i*,0¥) := 1 and r(i*,a) = v(i). For the states

*
in S we define

I .. .
pa(11,12) F=pa(11,12)5(11,12) ,

L s g N
PU(iysiy) t=p (i) (1=8(1y,1,))

r(i¥,a) := r(i,a) .

It is easily verified that LGV(l) is just the total expected reward over an
infinite time horizon if the process starts in state i and decision rule 7

is used. 0

Transition memoryless stopping times are the only stopping times for which
a restriction to memoryless or stationary Markov strategies is always al-

lowed: this fact is expressed in the following theorem.

THEOREM 5.2.3. Suppose the stopping time § € A is not transition memoryless,
then there exists a Markov decision process with state space S (i.e. there
exists a set A and numbers {pa(i,j)}, {r(i,a)} such that for this Markov
decision process

ALy [Lgv 2 Ugv - eull .

>0 3feF

REMARK 5.2.2. In fact sup Lgv may not be defined.
feF
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PROOF OF THEOREM 5.2.3. 8§ € A is not transition memoryless, implies the

oo
O,jo € S and two paths o,y € U (S\{O})k such that
k=0

§(arigidg) < 8lysigsdg). For n e (s\{01 ® we define 8(niigidg) +=6(ig 3y

existence of states i

where n is o or y. Let

[1 - G(ali )1l =: cf1 - G(Y’io'jo)]

0’30

which implies ¢ > 1. The case §(y,i ) = 1 requires a slight, self-evi-

0’30
dent modification.

We will construct a counterexample satisfying the following conditions

(1 Vies\(io)

elements, A(iy) := {1,2}.

A(i) contains only one element, whereas A(io) contains two

(2) For all i €5, i £B := {[aly,lad,,...,Tad _,,D¥]g, .. D¥], _1,i0,j0}
o Y

we have p°(i,i) o, p2(i,j) := 0 for § € s\{i,0}; p(i,0) := 1 - p;
r(i,a) := 0; v(j) := 0. Moreover, p(0,0) := 1,
(3) For all i € B and all j, po(i,j) := 0 if j £ B u {0}, else p2(i,3) > O.

a, . . a,. -1 a;. .
4 Vi,jéB VaeA(i) jéB P (i,3) = pi VieB VaeA(i) (p"(1,0 =1 jEB p 31

(5) u(i) =1 for i # 0.

As a consequence of condition (1) the index a in pa(i,j) and r(i,a) can be
omitted if i # io.
For the investigation of UGV the following form has to be maximized with

respect to a for n = a,y respectively

(5.2.2)  r(iga + ] P (13) (U5 W) (3)
jeB n

-
where Gn is defined by Gn(B) := G(nIiOIB) for all B e U sk and n = o,y
respectively. k=1

The second term in (5.2.2) may be written as

(5.2.3) pa(io,jo)(l =8 g3 v+ I P g (1-8M,ig,3)v(d)
#3,

+ z pa(iolj)s(nliolj)r(jla) +
jeB

+ 1 p%Ugd8migd) I prEu, vk .
jeB keB n,J
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(-]
with 6 () =6(M,i. ,j,8) for Be U S° and n = a,y.
n.Jj 0" k=1

Suppose iO # jo.

Let pi(ioyjo) i=q # 0; Pz(io'jo) := %q. Let for j € B\{jo},

P (io,j) = pz(io,j) := €; for i # io and all j € B p(i,j) := €. We define
v(ig) = [1 = 8(,i5,3)1 'q ! and v(3) =0 for § # 3y; () := 0 for

j e B\{io}; we will choose |r(io,a)| <2 for a=1,2.

It is now easily verified that Us v(j), U6 v(k) are bounded by

-1
M= v(ig) +2(1-p) . n n.3J

So formula 5.2.2 can be given (using 5.2.3) for n = o by

¥
o

j}(io,1) +1+0(€) fore

lr(io,Z) +% + 0() for e ~ 0 .
For n = Yy we have
r(i,1) + 4+ 0() fore 0
o' c
r(i 2)4~£— +0(e) fore~>0
o' 2c :

1
Choose r(i0,2) = 0 and r(io,i) =+ 5%—%-— 1—0. Then in state i, after path o

2c 0

decision 1 has to be selected whereas in state iO after path Yy decision 2

is optimal if € is chosen sufficiently small.

Suppose jO = io.
Let pl(io,io) = q; pz(io,io) i= k@i V(3) = r(§) := 0 for j e B\{iy}

) . R -1 -1
p (io,j) ﬁ=p2(i0,j) = q2, q << 1 and choose v(10):=[1 —G(a,lo,lo)] 1q .

Then formula (5.2.2) can be given for n = a by

r@ig,1) + 1+ 0 (q) for g >~ 0

r(iy,2) +% +0(@ forq=0.

For n = y we have
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r(ig,1) + %-+ Otq) forgq—+0

. 1
r(10,2) +5o+ O(gq) for g+ 0 .

This implies in a similar way as for io # jo that in state i after path o

0
decision 1 is optimal whereas after path y decision 2 is optimal in state

i, (for g chosen sufficiently small). a

COROLLARY 5.2.2, Let § € A be nonzero and transition memoryless and let

§
vy € V, then the sequence {vi}, n 2 0 defined by

v‘S = sup Lfv‘S
n feF § 'n-1

*
converges in U-norm to V .

PROOF. The statement follows directly from the foregoing theorems 5.2.1 and
5.2.2. a

DEFINITION 5.2.2. For € > 0 and § € A transition memoryless, we define the
mapping UG,e of U by

with £ := g({f I||U6V - Lgvﬂ < €}). From theorem 5.2.2 it follows that Us ¢
!

is well defined for € > 0. If V Lfv then € may be zero, in

veV Fger UsV = Ls 2
v, with £ := g({f | Ugv = st}).

that case we define U v =L

§,0 §

LEMMA 5.2.3. The mapping U maps V into V.

S,e

LEMMA 5.2.4. The mapping U , € >0 and § transition memoryless and non-

§,€e
zero, has the following properties

(i) UG is e-monotone.
1€

(ii) U6 e is e-contracting with contraction radius V&'
’

IfU is defined then also U has these properties.

§,0 §,0
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§
IEMMA 5.2.5. Let § € A be transition memoryless and nonzero, let Yo eV
and suppose UG 0 is defined. Let the sequence vﬁ be defined by
’

[}

~ 5
n *= Ys,0%-1

5 o

_ § _ _£8
and let £ := g({f I UsV_q = stn_ll), then
. § * S *
) vy = VIS vllvg = VI
(i) v = v s a-vo "hoae® - W8
n fn § § 'n n-1

(iii) if v6 € I is chosen such that U v‘S > v6 then

0 §,0°0 0

[ § *
Vi SV SV, SV oL
n
PROOF.
. § _ M8 R .

(i) vn UGVO This implies

198 = VoI = 1g0v) - VIS Vi - VI

£ £ f § £
. nk6 § _ nk § _ nkla n.k-1¢§ _ ng§ _
(ii) (LG ) v, - vn--(L(s ) A (LG ) v, +(L ) Vo "'+L<S v, -V
So
o,k L, -1 Ky .ns 6
Il (L - anl < (1 —vd) (1- (vé) )"L6 v - anl .

So for k > » we find

S -1 § $
Il v, - vnll < (1 -v(s) "5"Vn \AN) Il
n
fn
Part (iii) of the lemma follows from the monotonicity of US 0 and L(S .
’
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LEMMA 5.2.6. Let € > 0, let § €A be transition memoryless and nonzero and
§ § §

let Vg € V such that vy < UGVO - €EU. Let the sequence Vo (n 2 0) be defined

by

. . = £ 8 s

where £ := g(B ), with B :={£ | Lgvp_g 2 max{vn_l,Usvn_1 e(l vs)u}} ’
then
. § * .
(1) ] v, -V I < € for n sufficiently large
(ii) B dcv v

n-1 n £

n

PROOF. The proof is completely analogous to the proof of lemma 4.3.8. 0

REMARK 5.2.3.

(i) Alsointhis situation it is easy to find a starting vector vg eV

such that U(Svg P vg + ey by choosing e.g. vg == (1 -p)-lb - 2y with
L € ]R+ sufficiently large.
(ii) It follows by combining part (i) and (ii) of the foregoing lemma that

*
Il Ve -V I < ¢ for n sufficiently large.
n

LEMMA 5.2.7. Let § € A be transition memoryless and nonzero and let vg e V.

Let the sequence vi be defined by

§ 8
Yn = Us,¢ Vn-1 ¢
. n § £8
iz .= - <
with € := vy and £ : g{e | I UsVoo1 =~ LVt II'< en}) , then
. . § * X
(i) lim v, = v (in py-norm) ,
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*
(ii) lim Vf =V (in pu-norm) .
n>e n
PROOF. The proof is completely analogous to the proof of lemma 4.3.9. O

REMARK 5.2.4.

(1)

(i1)

From the preceding lemmas it follows that for any nonzero transition
memoryless stopping time 8 € A the determination of the optimal return
vector V* can be done by successive approximation of V* with a sequence
vg as described in lemma 5.2.5-5.2.7. Moreover, for each € > 0 the po-
licy fn is e-optimal for n sufficiently large. So in fact each nonzero
transition memoryless stopping time produces a policy improvement pro-
cedure for solving the Markov decision problem.

For finite state space Markov decision processes with a bounded reward
structure and nonrandomized stopping times, many of the results given

in this chapter may be found in Wessels [74] and van Nunen and Wessels
[551].
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CHAPTER 6
VALUE ORTENTED SUCCESSIVE APPROXIMATION

In the previous chapter we have developed policy improvement procedures for
Markov decision processes. Here we will deal mainly with policy improvement
value determination procedures. Procedures of this type require extra compu-
tational effort, in each iteration step, in order to find better esti-

mates for the actual value vector Vf .

n
In section 6.1 we will show that each transition memoryless stopping time
§ € A (so in fact each policy improvement procedure) generates a whole set
of policy improvement value determination procedures. In section 6.2 some
aspects of the value oriented methods will be discussed and connections

with results of other authors will be given.

From now on we will restrict the considerations to transition memoryless
nonzero stopping times. This restriction is made since stationary (Markov)
strategies are in fact the relevant decision rules, as is proved in theorem
4.3.4, and transition memoryless stopping times are the only stopping times
for which a restriction to stationary strategies is always allowed (see sec-
tion 5.3). In spite of this restriction, the existing policy improvement
procedures, as introduced by Howard [35], Hastings [26], Reetz [60], and
the present author [54], are contained in the set of policy improvement pro-

cedures generated by transition memoryless stopping times.

6.1. Policy Aimprovement value determination procedures

For each 6§ € A that is transition memoryless and nonzero, a set of value
oriented procedures will be based on an extension of the contraction map-

ping Uy of V.

DEFINITION 6.1.1. The set of all transition memoryless nonzero stopping
times is denoted by A'.
. . . (A)
DEFINITION 6.1.2. For € > 0, § ¢ A', and A € N we define the mapping UG e
’
of V by

oM

o EA
§,ev T (Lg)v
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with £ := g({£ | lugy - vl < eh.
From theorem 5.2.2 it follows that UéA;
’

éwl of V by
’

is well defined for € > 0.

We define the mapping U

= £ :
If VveV afeF Uav = st, then € may be zero. In that case we define

) _ £ () _ .. n_ . . _ £
UG,OV 1= (LG) v and UG,OV = ii: UG,OV = Vg with f := g({f l Ugv = LGV}).

LEMMA 6.1.1. For A e N U {»}, and § € A', UéA; maps V into V.
’

LEMMA 6.1.2. Let § ¢ A', let € > 0 and A € N U {=}, then

M)
UG,E

L. A)
(ii) Ué,e

(1)

is not necessarily €-monotone.

is not necessarily e-contracting.

PROOF. The statements follow directly from the following example, where the
exact value of € is irrelevant, since only finitely many Markov policies

1 , s\{o} := {1,2},
p(1) == u(2) := 1, A(1) = A(2) := {1,2}, p*(1,1) := p*(2,1) := p2(2,2) :=0
p2(1,2) := 0, pl(1,2) := pl(2,2) := p2(2,1) := p2(1,1) := 0.99,

r(l,1) := r(2,1) := 10, x(1,2) := r(2,2) :=0, v1(1) := v1(2) :=0,

v2(1)':= 100, v2(2) := 10. Now it is easily verified that

are available. We choose € = 1. Let § € A' correspond to G

= £ = =
B, = {f[IIUsvl Lyv, s 1} = {£ = (D}
and
B, := {flluv, - tiv 1 <13 = (£= @)
2 ° §°2 §2 2 :
However, for A -+ « we have
() 1000 ) 0
Us,1V1 > Yooo' s Us,1v2 > (o) - O
From the foregoing lemma it may seem impossible to use the mapping Uéli in
14
a similar way as we have used U, and U . However, the structure of Markov

§ S,e

A A
decision processes enables us to base on U

()
§,e
solving the Markov decision process. This will be proved in the sequel of

approximation procedures for

this section. We will first assume that U is defined. In practical situa-

§,0
tion this assumption is often satisfied.
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LEMMA 6.1.3. Let § € A" and suppose U is defined. Let A € N U {=} and

82 sn_ 6x __ 050 3

let Yo be such that UGVO 2 vy - Let the sequence vy be defined by
Sx  _(A)_8A

n T UG,Ovn-l' then

. SA SA *

(i) Vi1 < v < vf <v

n
s SA * SA * N *
(ii) IR A L Al R R A
. GA S P

where f := g{£ | Ugv, Lgv 4D

., SA SA
PROOF. Since USVO 2 vy we have

£
18X SA
2 o
Ls %o =V
£
Since L6 is a monotone contraction on V

£
S 1 6A £1.2 5% 1 A_SA SA
S SLGVO < (LG) A ...S(L )'wv Vo =Vy -

Moreover, it follows from the monotonicity of L61 that

£
Vf = lim (le)nv6A Uélévgk = vfx .
1 e '
£ £
Now, since Usv = LGZ ik 2 le ik 2 va it is similarly verified that
§ 5
vzl 2 viA and gA g gl. The proof proceeds further in an inductive way

using the monotonicity and contraction properties of the mappings UG and

Lg and the fact that Ug gk rv* (see lemma 5.2.5). 0

REMARK 6.1.1. It is easy to find a ng ¢ V such that Uavgl > VSA (see re-
mark 5.2.3).

LEMMA 6.1.4. Let § € A' and suppose U is defined. Let A ¢ N U {»} and

I3 &1 8,0
Vo € V. Let the sequence Vi be defined by

VSA U()\) SA-
n §,0 Vn-1
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then

(1) lim va)‘ = V* (in p-norm)
neo O

. . *

(ii) lim Vf =V (in p-norm) ,
n>© n
_ A _ _£ 8A

where f  := g({f | Ugv ~, = Ldvn-l})'

PROOF. We will prove the lemma A € IN since the proof of the lemma for A=w is

§oo
a direct consequence of the foregoing lemma. Namely, UG g) Vo = Vf . This
£ 1
implies U6 0Vf 2 LG 1Vf = V.f . So after the first iteration step the con-
! 1 1

ditions of the foregoing lemma are satisfied.

Proof of part (i) of the lemma: First, we remark that

v‘”‘ < v+ vnAII v‘”\ - V*II_'u p
n J 0

as follows from

SA ni 6)\ UnAV < vn}\lvﬁl

< * 1l
Vo -V (Ug) s vy = Villu.

*
The proof of vf:‘ 2 V - el for n sufficiently large is more complicated.

We will first prove

(6.1.1) Ve>0 aNéN Vn_>.N [Udvix - vﬁ)‘ > -epl .
Let M := I Uéng - vgxll. Then
Uavg}\ - vg)\ 2 -Mu
and
: (Ugv, 0)‘) - Lzlvg)‘Z-(p:I)MuZ-vdmu .

Similarly we find



So

By induction it follows that

SA SA ni
(6.1.2) UGVh - vn 2 —vs My .

This proves formula (6.1.1).

1

Let € > 0, let N be such that (A -1)VNA(1 -vg)_ M < €. Thenv(6.1.2) with

n = N implies

L:N+1U6VEA 2 UGVSA - v?kmu 2 ng - 2v§AMu .
Similarly we find
82 Ertaen . Eneta-1 en WA 82 NA
Vner T (B ) vy Z g )T vy = Vg Mu) 20gv = (A= 1) VMU
This implies
(6.1.3) %ﬁilzuﬁél—vca—nv?ml.

From formula (6.1.2) with n = N+ 1 we have

SA SA (N+1) A
Usne1 = Va1 " Vs M
which yields
SA SA (N+1) A
vN+2 2 UGVN+1 - (A-—l)v6 My .
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Substituting the right hand side of formula (6.1.3) in the above formula we

get

3\ 2 8% NA+1 (N+1) A
V2 ZUGVN - (>\—1)\:6 My (A 1)ve My .
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So

SA 3 8A NA+2 (N+1)A+1
U<5vN+2 > USVN - (A —1)\)6 Ml - ()\—1)\)<S

My .
However, from formula (6.1.2) we have

81 SA (2)A
UsVe2 = Vw2 ~ Vs Mu .

In a similar way as for N+1, N+2 this yields

Mu

SA S\ (N+2) A
Vne3 2 UgVnez = A Dvg Mu

SA 3 82 _ _ (N+2) X (N+1) A+1 NA+2
Vs = YsVy (A 1)["5 T+ Vg +vg IMu .

In general

SA SA ) (N+k-1) A (N+k=2) A+1 NA+k-1

Vi 2 Ulng (A 1)[\)6 +Vs AEERR AN ]
A k-1 1

YTha-vh T

> Uk - - -
GV (A 1)\)5 (1 (\)(S

So for k + » we get

1

lim inf w2 2 v -0 -0 1 -vY) Ty 2 v - e
mInf Yk 8

This completes the proof of part (i) of the lemma.
Note that it follows from this proof that

N llu v“—v‘”‘ll <e .

V€>0 E’Nél\l Vn> §n n

(ii) For € > 0 and n sufficiently large we have

S

SA Sh *
"UGVn - v, I < 1:(-:(1-\)6) and ||vn - vl <% .

So for all k e N
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k-1

SA
™ SRR BER) ann“ N I RS P
§ § 'n n n
2=0
This results in
*
IIvf -vil<2e,
n
for n sufficiently large. O

*
Until now we have proved the convergence of sequences vgx to V' under the

restrictive condition that U is defined. In the sequel of this section

§,0
this assumption will be replaced by weaker assumptions.

THEOREM 6.1.1. Let § € A', Let A e N U {«} and let vg)‘ e V. Let the

$
sequence vnl be defined by

VGA .= U()\) VGA ,
n §,e_ n-1
n
with €_ := vnl. Then
n $
(1) lim VGA =V (in y-norm)
nreo
*
(ii) lim Vf =V (in y=-norm)
mo n
SA £ 8
where £ := g{£ | hogv ~y = Lgvp I < e D).

PROOF. The proof proceeds along the same lines as the proof of lemma 6.1.4

with the exception of the first part where a slight modification is required.

Define
=i LS Sy
- 6 Yo 0
then
1 A SA 1 A-1 GA A-1
) vy (L ) Yo 2 Vs Mu ,
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£
as follows from the monotonicity and contraction property of 181' Moreover

£ £
S SA 2 8 SA A 1 8\ SA A
U6V vy 2 L6 vy - vy 2 “VegH + Lg vy T vy 2 —VS(M-+1)U .

In general we find inductively

£
SA _ 8 s L n+1v§A _ V§X

ni
UGVn Vh s o o 2 =V (M + n)u .

The final part of the theorem proceeds in a similar way as the proof of

lemma 6.1.4. -0

SA
LEMMA 6.1.5. Let € > 0, let § € A', Let A ¢ N U {~} and let vy € V such

that ng < Usvgl - €U. Let the sequence vﬁA be defined by
£
SA n, A _SA
Vo T Tg) vy

- . - £ 8) 82 82
where £ := g(B ) with B/ ={£ | Lgvy_q 2 max{v 10UV, g — €01 vd)u}.

n-
Then

(i) HvﬁA - v < e, for n sufficiently large ,
SA S\ *

ii < < o

(ii) vn_1 vn < Vf v

PROOF. The proof may be found straightforwardly by using similar arguments
as in lemma 6.1.3 and the foregoing theorem {6.1.1), see also the lemmas

4.3.8 and 5.2.6. 0

REMARK 6.1.2. As mentioned earlier it is not difficult to find a starting

SA ) SA SA
vector v, € I/ such that o < UGVO - EU.

THEOREM 6.1.2. Let € > 0, let § € A'. Let A ¢ N u {»}, and let Vgx e V.

Let the sequence vﬁx be defined by

SX_ () 6
Yn T Ué,nvn-l ’



with n := 15(1-\)5)3. Then

. SA * .
(i) I v'oo-V I < 2¢ for n sufficiently large ,
*
(ii) I Ve -V Il < 3¢ for n sufficiently large .
n

PROOF. The proof proceeds in a similar way as the proof of lemma 6.1.4.

Also in this case it will be clear that

SA * nx S\ * n SA *
vn—VS(U‘S) VO—VS\)-G}‘“VO -V llen .
So
SA * Ay SA *
vV +\)g||vo -V lleu .
SA S\
Let M := IIUGV0 - Y I + n. Then
f
1 6 SA
L‘5 VO - v0 2 - My
and
£ £
1.2 68X 1.A-1 82 A-1
(LB ) vy - (LB ) Vg % - Vg M
T TN TSN S S VO
s V1 TV V1 TV n
f
1 62 SA A
2 L5 V1 - V1 -nu 2 -VSMM - N .
Inductively we find
S 7 S . PR SR S0
s “n-1 = Vn-1 8 n gt Vs

A (n-1)

2 —vs

mi- Ben( - v

So for n sufficiently large

|
<
v

2
(6.1.4) [§) v, > U —E:(l-\)s) H .

89
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So from formula (6.1.4) with n = N we have

£ £
N+1)2v6)‘2 L N'va‘--\)s(l —\)6)28112 vs}‘ —\)6(1 —va)zsu -(1 -vs)zeu.

(Ls N 2L YN N

Iterating in this way we get

c .
SA 5 NHL SA 1

A=-1 2 A2 2 2
125 Yy Vs (=) T v T v ) Tk (=) Jen .

Now since

£
1\H-lv(”\ 2 U va)‘ - %1 —v6)3su

Ls s VN

we get

SA SA A-1 2
Vot 2 UsVy T~ [\)6(1—\)6 )+1:(1-v6) ](l—va)eu

A
> UGVN - (1 -V5)€11 .

This yields by applying U(S

SA 2 6\
(6.1.5) UGVN+1 2 UGVN - va(l—\)s)eu .

From formula (6.1.4) with n = N+1 we have

fw2.2 60 Tz en

2 8 2
(Lg ) Vg Zhg Vigef Ve (1T Vg) EnZ v,y - (LHvg) (1-ve) en

N+

£

A N+2_8A A-1 2
Vira 2 Ls Vyger T v6[1 + Vg Feaot Vg ](1-\)6) EU

In a similar way as for n = N this yields .

SA S\
Va2 2 UsVner — (L Vglen .

So

SA 2 8\
UsVirn = UgVyep ~ Vo (L -Vglen -
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By using (6.1.5) we find )

SA 3 8 2
USVN+22 UGVN —vG (1 -vc)eu 'ch“ -va)eu
and
LfN+3612036)\ 02 v+ 1101 —vare
s Vw2 = UsVy T Vs t Vg L1 -VelEd

So for k + © we have

. SA *
lim inf vN+k 2V =-€u .
ko

This proves part (i) of the lemma.
The final part follows in a similar way as the proof of part (ii) of lemma
6.1.4. 0

REMARK 6.1.3.

(1) Note that the foregoing theorem (for A = 1) states that, for any S € A' '

e >0, andvaveehave forv‘S = U
0 n S
(@ Ivd - vl < 2¢

® v, - vl < 3,
n

for n sufficiently large.

(ii) From the foregoing theorems and lemmas it will be clear that for any
8 € A'" and for any A € N u {~} the optimal return vector v* may be ap-
proximated by a sequence v, as described in the theorems 6.1.1 and6.1.2
and the lemmas 6.1.3-6.1.5. Moreover, the policy fn becomes (€-) op-
timal for n sufficiently large. So in fact each § € A' and each
A e N u {»} produce a policy improvement value determination procedure
for solving the Markov decision problem.

(iii) Note that for A = 1 the sequences vfl)‘ coincide with the corresponding

$
sequences v, discussed in chapter 5.
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6.2. Some nemarks on the value orniented methods

In this section we shall try to illustrate what really happens when we use

a value oriented successive approximation method. Furthermore, connections
with existing solution techniques for Markov decision problems will be given.
We shall restrict ourselyes here to the situation that 06’0 is defined. In
the preceding sections we have seen how the results can be extended if this
restriction is released.

In a very simple situation, finite state and decision space discounted

Markov decision processes, it has been illustrated by the author [53] that
the mapping ng)
,0

for § corresponding to G produced better estimates for

1
Vf compared to the estimates of. the mapping U;. This might be expected
n

since in each iteration step extra computational effort is spent to find

better estimates for V (the value vector of the actual policy fn).

£
n
For ve Vand § ¢ A', let £ := g({f | Lgv = USV})' Then, since Lgvf = V. e
have
() _ £ £ A £A
llUs'ov Vell =1 @) "v = @) vl < (o) llv - vl .
This implies that in general Uék)v is a better estimate for the total ex-

pected return V_ under the actual policy f than Ugve.

£
Choose vg € V such that Ugv, 2 v,. It is easily verified that the sequences
§X__ _(L)_6) 5 00 40

v :=1U v and v_. := U v both started with the chosen v
n §,0 n-1 n §,0

-1 o satisfy

For some examples we refer to van Nunen [53]. In [53] we have shown for

finite state space finite decision space discounted Markov decision proces-
A A)_Sx

ses that, for § € A corresponding to G1 the value vector v, = Ué évn—l

B - ’

may be interpreted as the total expected reward over nA-time periods if the

strategy

1

A X A X A X
r 1 T 1 I
SV SNPPRYE AT NPT RRRIL SPTRELYE SR TR

SA . . .
is used and the terminal value vector equals vy . A similar interpretation

may be given if more complicated stopping times are used.
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If § is nonzero and A = ®, then the algorithms as described in theorem
6.1.1 are clearly of the policy iteration type, see e.g. Howard [35], Mine
and Osaki [50]. This means that in each iteration step the value vectors

Vf (total expected return over an infinite time horizon) of the actual po-
n

licy fn, is computed exactly. The choice of § € A' only determines the way
of looking for possible improvement of policies. For any 6 € A' in the case

A = «, each iteration step brings a strict improvement of the values Vf
n

*

until the optimum V is reached. This occurs in a finite number of steps if
only finitely many Markov policies are available. For A = ©, in the first

iteration step, the value vector Vf is computed exactly. So after one

1
iteration step the condition UG oV 2 v, as required in lemma 6.1.3, is sa-
’

tisfied; from then on the convergence will thus be monotone.

Howard's policy iteration algorithm [35], [50], for finite state space fi-
nite decision space discounted Markov decision processes equals the example
1 A EZ®, u(i) = 1 and b(i) = 0 for i € s\{o}.

If in this situation 6 is replaced by the stopping time corresponding to

§ corresponding to G

the goahead set GH we get Hasting's modified (Gauss-Seidel) policy itera-
tion algorithm [26]. As mentioned, for A = 1 and § corresponding to G, the
successive approximation methods yield the standard dynamic programming
method as described by e.g. Bellman [3], Blackwell [4], [5], MacQueen [46].
In this chapter the procedures have been defined for a fixed number

A e N u {»}. However, it is not essential that A is fixed for all itera-
tion steps. The value of A may depend opn the number of the iteration step
and even on specific aspects of the actual iteration process.

For numerical experiences with a value oriented method we refer to van
Nunen [53].
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CHAPTER 7
UPPER BOUNDS, LOWER BOUNDS AND SUBOPTIMALITY

In the previous chapters we have proved the convergence of the sequences
§ SA
Var Vor Vo4 as defined in the preceding chapters to the optimal return

vector V. We have also proved that the Markov strategy f: found in the
n-th iteration step of the actual algorithm is e€-optimal for n sufficiently
large. In general the convergence proceeds at a geometric rate, since we

" have requiredlleH £p, <1 for all £ ¢ F (see lemma 5.2.5). The question

now arising is whether one is able to construct better estimates for Vf

n

*

and V at an earlier stage of the iteration process. We will show that this
J §

can be done by extrapolation based on the differences LA A

Upper and lower bounds for the value vectors Vf and v enable us to incor-

porate a test for the suboptimality of policies?

Section 7.1 will be devoted to the construction of upper and lower bounds.
Section 7.2 will deal with the concept of suboptimality of policies. In the
final section 7.3 we restrict the considerations to finite state space Mar-
kov decision processes. The concepts of bounds and suboptimality will be
considered with respect to these processes. Several numerical aspects will

be discussed; relations with the work of other authors will be given.

7.1. Upper bounds and Lowern bounds for Ve and v*
n

We will treat the concept of bounds in a similar way as Porteus [58], [59]
did in the finite state case with 6 corresponding to Gl' b = 0 and the un-
weighted supremum norm. We also refer to van der Wal [71] who treated the
concept of bounds in a similar way for finite state space Markov games with

b = 0 and the unweighted supremum norm.

DEFINITION 7.1.1. Let vi be a sequences of vectors in V, then we define

§ $
o, B forn=1,2,... by

8 . YT B
o) := inf [(v°@) -+ . @)Hw (1)1,
" jes\{o} * n-1

8= s [l - amiwl.

ies\{0}
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. Moreover, we define zg, yi by

. . -1 . .o . .
inf inf (g (i) Z pg(l,])U(J)) if ai 20
§ _ |feF i#0 jes
Zp T 3
Vs if aa <0
L n
s ’va if Bfl 20
o 7 -1 £ 8
inf inf (W (1) ] pg(,3)u(3)) if£8 <O .
LFeF i#0 jes

LEMMA 7.1.1.

§ 6 £6 £6 § 6
: eq oy < - B
(i) VfEF z t0 U stn stn < Y, Bn.u

-1
. 8§ N, 6, §_ NS 8§ N, .6,
(1) ()Mo ustive -l s g)MB ., Newm
. 6. 5 R 5 . 6.8,
(iii) VE:>0 %h G HTEN < Ué,evn - UG,svn—i = Yn Bn Wt oen .

PROOF. Since Lg is a monotone mapping it is straightforwardly verified that

£8 _ _£38 £.68 8 5,6,
Lgv, ~ Lgv 4 = Ps (v, - vn_l) Sy, Bn u
£6 _£8 _ _f § s, 8,

Lévn - LGVn—l = Ps(vn - Vn_l) 2 Zn o U .

We will prove part (ii) only for N = 1. For general N the proof follows by

induction. Choose an arbitrary € > 0 and choose fl,f2 € F such that

£ £
18 [ 2 $
L6 vn 2 UGVn - €W and LG Vn—l 2 Udvn_1 - EY .
Then
£ £ £
§ § 16 1,6 §
USVn - UGVn-l < L6 vt Eu - Lg LA PG (vn - vn_i) + €M
§ 8
s.yn Bn U + eu

and



£
§ § 268 _ 2,8
Uﬁvn Udvn-i 2 L6 A LG Vo1 EU = P(S (vn Vn—l) - EM
2 2Z eq_*u - EU .

Since € was chosen arbitrarily this implies part (ii).

Part (iii) follows similarly by using the definition of U6 c*
’

S

LEMMA 7.1.2. Let § € A", vy € V and suppose Ug o is defined. Let the se-
’

quence vﬁ be defined as in lemma 5.2.5 then

. 8 s § 6
(i) Bn> 0=’Bn_1>0and thus Vg =y =y _,
(i) ai <0= ag_l < 0 and thus Vg = zf1 = zf]_l .
PROOF.
(1) 0<8 =swred@w -+ W twi-=
n N n n-1
i#0
= sup [y, () - U’ @ )]
i#0
£ 6 8 -1 8
< i:g Lee vy = v )@ @I<g .
(i1) 05 sl -+ Lt =
n 3 n n-1
i#0
= inf [(Usvfl_l(i) - Uavi_z(i))u_l(i)] z
i#0
fi-1 6 8 -1 8
2 inf [(P Wy = V)W @l zae .
i#0

COROLLARY 7.1.1. Let § € A', vg € V and suppose UG,O is defined. Let the

sequence Vg be defined as in lemma 5.2.5 then

. S 8k 8 _,.8 v & .k
(1) kzl (v,) BnS(yn-l)kzl (v _q) "8

8
n-1
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iy v o8k §_,8 %
(ii) Zl (z) o 2(“n-1)k£1 (z

§ )kad
n-1 n-1

PROOF. For Bﬁ > 0 and ai < 0 the proof of part (i) and (ii) follows from
the foregoing two lemmas.

The other cases are trivial.

§
LEMMA 7.1.3. Let § € A", let v, ¢ V and suppose Ug o is defined. Let the
’

sequence vi be defined as in lemma -5.2.5.

(i) The sequence ui (n 2 1) defined by

s 8 .8 §.-1,8
LD AR yn(l - yn) Bn n

*
yields monotone nonincreasing upper bounds for V and thus for V

.

£
. n
-Moreover

u6 v v,
n
. 8 .
(ii) The sequence Zn (n 2 1) defined by

28 =By 26(1 - z‘s)'la‘sru
n n n n n

*
‘'yields monotone nondecreasing lower bounds for V_ and thus for vV .

fn
Moreover
26 + v
n
- [
T R T A T N e R AL
PROCOF.
§ [
Ugvﬁ = vﬁ + Ugvi - Ug 1.8 + Ug 1vh N UGVn -V
N
§.k,6,
Svo+ L (v ) BH

see lemma 7.1.1(ii).
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So for N + @ ye find

* $§ § §,-1,8
Vi sv +ty (Q-y) Bu.

The monotonicity of uﬁ follows from

§ ) _ .8 S § §.-1.6 ) § -1.8
Y T un-l - vh Vn-1 + yn(1 -yn) Bnu - Yn-l(1 -yn—l) Bn-1u
§ 8 § 2 §.-1.6
< (yn_l)Bn_1u+ (yn_i) (1 -yn) Bn_1u+
§ § -1.6
Yy -y ) B _us0.

The statements about the lower bounds follow similarly by considering

£

n,N §

(L

s ) Vo1

The convergence of uz and 2: to V* follows from lemma 5.2.5.

Part (iii) follows by inspection. ]

REMARK 7.1.1.

(1)

(ii)

Note that for § chosen corresponding to G, the bounds may be used for

1

the sequence v, as defined in lemma 4.3.7.

If in the situation as described in lemma 7.1.3 the starting vector
vg is chosen such that UGV6 2 vg then it is easily verified that
§
n

§ $

_ —
o’ 2 0 for all n 2 1. This implies z, = zn_1 and Yn = Yoq for all

n> 1,

LEMMA 7.1.4. Let the sequence vﬁ be defined as in lemma 5.2.6, then

(1)

The sequence wg (n 2 1) defined by

§ § §,-1
Wy i=ouy ot (1—y1) 6(1-\)6)11

wﬁ(i) 1= min{wi_l(i) ,uﬁ(i) + (1 -yﬁ)—le(l -vs)u(i)}, n>1, ies\{0}

where ug is defined as in lemma 7.1.3, yields monotone nonincreasing
upper bounds for V* and thus for Vf .
n
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§
(ii) The sequence X (n 2 1) defined by

8 § 8
x (1) :=max{x  (1)4 (1)}, n> 1, i es\{0}

where 2‘; is defined as in lemma 7.1.3, yields monotone nondecreasing

*
lower bounds for V .

PROOF. The proof proceeds along the same lines as the proof of the fore-
going lemma.

We first remark that vfl - v<5 2 0 for all n since

n-1

vfl(i) 2 max{vfl_l(i) ,U‘Svf1 (i) - e(l—vs)u(i)}

~1
§ _ ¢ _ § _ .6
so for alln > 1 Yo=Y, 4= Vs and z = zn—l'
Now consider
N
§ k § 1 6
Ulgvn = Vi + Z (U'o‘ UJ(; n

Usvﬁ 1) - vﬁ (1)

§ N -1
Sv. +(1-v)(l-v,) "sup[ - Ju
n § 8 1#0 u(i)
s . L U - ud )
SV o+ (1-vg) (1-v) i;lg[ ey +e(1—v6)]u

§ N -1..8 6
Sv +(1=-v)(l-ve) [By +e(l-v)lu .
For N > ® we obtain the requested result.
For the lower bounds we have

£ N £
(Lnuiq:"i* ) ((Lnks N

§ s § N-1 -1

8
> v, + zn(l - (zn) ) (1 -zn) oM .

So for N - @ we have
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) 5 -
V., 2 v + z‘s(l - 26) las'u=26 .
fn n n n n n

The monotonicity of wﬁ rxi follows from the definition of wg and x6 whereas

||wi - xi" < 2(1 -va)—l follows from lemma 5.2.6. 0

§
REMARK 7.1.2. From the foregoing proof it will be clear that 2n is a lower

bound for Vf .
n

LEMMA 7.1.5. Let vi be defined as in lemma 5.2.7, then

(i) the sequence wﬁ (n 2 1) defined by

§ $ § -1
Wy = uy o+ v6(1-y1) M

$ -
wo (1) = minlw)_ (0,0 (1) + 0 -0 WY, @>1D, Les\{o}

where u is defined as in lemma 7.1.3,yields monotone nonincreasing

upper bounds for V* and thus for Vf .
n

(ii) the sequence xi (n 2 1) defined by

§ 8
x4 = R

-

5 5
% (@) = max(x)_ (0,220} 0> 1, i e s\{0}

where ln is defined as in lemma 7.1.3, yields monotone nondecreasing

lower bounds for V*.

cs s § [ n -1 [ *
(iii) IIwn - an < 2(v6) (¢! -VG) (Ilv0 -=Vvill+n .

PROOF. The proof of the first two parts proceed in a similar way as the

proofs of the foregoing lemmas whereas the final part follows from lemma
5.2.7. 0

REMARK 7.1.3.

(1) A lower bound for Vf may be found in a similar way as in lemma 7.1.4

n
(see also remark 7.1.2).
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(ii) Note that if § is chosen corresponding to G1 then the bounds may be
used for the sequences Vi and fn as define?lin lemma 4.3.8.

(iii) Upper and lower bounds for the sequences vn as defined in chapter 6
can be obtained in a similar way. We will illustrate this by giving

$
the bounds for the sequences vnA as defined in lemma 6.1.4, i.e.

A Sx , 86X, =1,8)
uos= v o4 (1 - Y, ) Bn H
LGA .= VGA + - zél)—laéku
n n n n
where
) Fat1 82 8\, . -1
Bn := sup[(L6 v o (i)=v_ (@)u “@I1,
- n n
i#0
8 fat1 82 S, . -1
a "~ == infl (L; v @) -v E))u (1]
i#0
and ygl, zgx are defined by means of Bﬁx and zik in a similar way as

§ §
yn and zn.

7.2. The suboptimality of Markov policies and subopiimal actions

We first want to remark once more that we still restrict ourselves to tran-

sition memoryless nonzero stopping times.

DEFINITION 7.2.1.

(i) A Markov policy f € F is called suboptimal if £ is not optimal.
(ii) A Markov policy f € F is called e-suboptimal if £ is not €-optimal.

LEMMA 7.2.1. Suppose u,% € V are an upper bound and a lower bound for the

value vector V*, and let § ¢ A', then
. £ . .
(i) [Lau < UGZ] = f is suboptimal

(ii) [Lgu <UL - eul] = £ is e-suboptimal .
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PROOF.

. . . . * *
(1) In chapter 5 we have proved f € F is optimal if and only if 1§V =V ;

* *
moreover we have proved UGV = V . However

£ % £
LGV < Léu < USI < UGV =V ,

consequently f is suboptimal.
(ii) Lgv* < Lgu < Uak -€eus< U(SV* - €U = v* - €U .
So
(Lg)zv* < L§(V* - gy) < Lgv* <y - €Y .
Iterating in this way yields
(Lg)nv* < V* - €|

which implies that V_ < V* - ep. O

£
It would also be nice to make assertions as to the (e-)suboptimality of

actions.

DEFINITION 7.2.2.

(1) An action ag € A(i) is said to be suboptimal with respect to state

i € S if there exists no optimal policy f € F with £(i) = ay.

(ii) an action a, € A(i) is said to be e-suboptimal with respect to state

i € S if there exists no e-optimal policy £ € F such that f(i) = ay-

*

LEMMA 7.2.2. Let § € A'yu,% € V be an upper bound and a lower bound for V .
Let i € S. For each f € F we define the set Ff c F by

£

F, :
i

{£' eF | £°(3) = £(3) for all j # i}

then

(i) The action a € A(i) is suboptimal with respect to i € S if for each

£
f € F with £(i) = a there exists an f' ¢ Fi such that
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£ £'
Lyu < Lg L.
(ii) The action a € A(i) is €-suboptimal with respect to i € S if for each

f e Fwith £(i) = a there exists an f' € Ff such that
£ £!
Léu < LG L - eu .

PROOF. The proof proceeds in a similar way as the proof of the foregoing

lemma. . O

The assertions of the foregoing lemma may also be expressed in terms of

maximizing over the decisions in state i € S as follows.

COROLLARY 7.2.1. Let 6§ € A', and u,? € V be an upper bound and a lower
*
bound for V . Denote by fa € F a Markov policy with £(i) = a then

(1) the action a' € A(i) is suboptimal with respect to i € S if for all

f ,€eF
a

o £
Ly u(i) < sup (L HL(L) .
a€A (i)

(ii) The action a' € A(i) is e-suboptimal with respect to i € S if for all

£, €F
a

' f
u(i) < sup (L 3)ye (i) -ep (i) .
aeA(i)

L@
§

Especially for computational purposes it would be desirable to maximize
component-wise in the determination of UGV’ UG eVve Sufficient conditions to
’

allow a component-wise maximization may be found in the following lemma.

LEMMA 7.2.3. Let § € A' and suppose (eventually after renumbering the state
space) that

(7.2.1) V. V. [p®(i,3)8(i,3) =01,

ies "j2i VaeA (1)
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then

Ugv(i) := sup Lgv(i) = (1 -8(1))v(i) +
feF

§(1) suwp {r(i,a+ § p NI -8,IVEH+ENUVE]
aeA(i) j<i

+ ) p2,vHY .
32i

PROOF. The proof of the lemma follows directly by analysing the transformed
problem as described in the proof of theorem 5.2.2. 0

REMARK 7.2.1. The transition memoryless nonzero stopping time GH and GR as
described in the examples 2.2.2 and 2.2.4 and the stopping time § correspon-

ding to G1 satisfy the conditions of the foregoing lemma.

In the next section we will consider into more detail situations as des-
cribed in formula (7.2.1). This will be done for finite state space Markov

decision processes.

LEMMA 7.2.4. Let § € A', and let %,u € V/ be a lower and an upper bound for
v respectively and suppose (7.2.1) is satisfied, then

(i) the action a

o0 € A(i) is suboptimal if

a a
rag) + [ p C@,HII-8(,3)u@) +8 @ NUuE@I+ | b 01, 9)u(9)
J<i j2i

< sup {r(i,a) + z pa(i,j)[(l -6(i;j))£(j)+6(i,j)UG%(j)] + z pa(i,j)l(j)}.
aeA (i) j<i j=i

(ii) The action a € A(i) is e-suboptimal if the first term under (i) is

smaller than the second term minus eu(i)(é(i))-l.

PROOF. The proof follows by inspection. O
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REMARK 7.2.2.

(i) For § corresponding to G, the condition required in lemma 7.2.4(i)
reduces to
a

r(i,ao) + z P 0(i,j)u(j) < sup {r(i,a) + z pa(i,j)R,(j)} .
jes | aeA (i) jes

(ii) The latter suboptimality criterion can be expressed more explicitly
if the upper and lower bounds are given in terms of Vi and Vo
e.g. MacQueen [47].

_q’ see
(iii) Better criteria can be obtained if we impose additional conditions

on the transition probabilities, see e.g. Hiibner [36].

7.3. Some nemarks on finite state space Markov decision phrocesses

For practical purposes (the finite state space) Markov decision processes
become more and more important. Many practical problems such as inventory
problems, replacement problems and Marketing problems may be described by
Markov decision models. We refer to e.g. Scarxf [63], Tijms [67], Howard
[35], Hastings [25] and Wessels and van Nunen [73].

Sometimes it will be self evident to approximate Markov decision processes
with a countable state space by finite state space processes, this is done
e.g. by Fox [19].

For the solution of Markov decision problems in the finite state case, li-
near programming [13], [49], and policy iteration may be used. If the under-
lying decision space contains only a finite number of elements, both me-
thods yield an optimal solution in a finite number of steps. However, dif-
ficulties arise if the state space is iarge. For example, the policy itera-
tion method reguires in each iteration step the solution of a system of
;inear equations of the size of the number of states. For solving Markov
decision problems with a large state space, successive approximation me-
thods that avoid the solution of the large systems of linear equations, be-+
come preferable. This is especially true if the concept of extrapolation is
used to construct upper and lower bounds, see Schellhaas [64], MacQueen
[46], Porteus [59], Finkbeiner and Runggaldier [18], Das Gupta [22] and
the present author [54].



107

As we have seen upper éﬁéviower“bounds enable us to incorporate a test for
the suboptimality of actions. Such a test may also reduce the required com-
putational effort considerably, see e.g. Grinold [20], MacQueen [47],
Porteus [58], Hastings and Mello [27], and Hibner [ 36].

Hinderer [32] derived in a similar way bounds for finite stage dynamic pro-

grams in the case b € W, § corresponding to G, and the usual supremum norm.

In [31] Hinderer extended his results by usin; weighted supremum norms as
introduced by Wessels [ 74].

A number of the described techniques for solving Markov decision problems
with respect to the total reward criterion can be used in a modified way
for solving these problems with respect to the average reward criterion,
see Odoni [57], white [77], Schweitzer [65], Morton [51]1, Veinott [69] and
van der Wal [70]. Also for Markov games similar techniques can be used; see
van der wal [71], [72]. Since periodic Markov decision processes (see e.g.
Ccarton [ 7], Riis [61]) can be described as ordinary Markov decision pro-
cesses, by incorporating the period in the state definition the same holds
for such processes.

For Markov decision processes with a finite state space the assumptions
4.1.1, 4.2.1-4.2.4 reduce in fact to the well-known assumptions

3 lefll<M ana 3 3 .V RII(Pf)n||Sp<1 ,

MeR* VfEF neN ~p<l ' fe

(n-stage contraction), see for instance Denardo [12] or Porteus [59]. For
finite state space problems van Hee and Wessels [29] have proved the equi-
valence between the existence of abounding function ' such that |l pf "u S e <1
for all f € F and N-stage contraction. We will discuss the concept of N-
stage contraction in chapter 8.
The use of a bounding function may be interpreted as the transformation of
the problem in an equivalent one (in a similar way as Porteus did in his
recent paper [59] (the similarity transformations)). This can be done by
defining transformed rewards T(i,a) := u_l(i)r(i,a) and transformed transi-
tion probabilities Sa(i,j) = u_l(i)pa(i,j)u(j). Then the optimal value
vector of the transformed problem Cab) equals v = u_lv*, with v* the opti-
mal return of the original problem as is straightforwardly verified.
Also the use of stopping times for successive approximation procedures may
be viewed upon as investigating a transformed problem with

;f £7 !

:=E6 z r(sk) and P = P, .
k=0
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As proved in the preceding chapters the optimal return vector G* then
equals V" of the original problem.

For finite state space Markov decision processes the last mentioned trans-
formation corresponds to the pre-inverse transformation as introduced by
Porteus [59].

Let the nom of the progess be defined by sup 21l and let the spectral
radius of the process be defined by sup Yf, with Yf the spectral radius of

feF
Pf (its maximum absclute eigenvalue) then it will be clear that the choice

of an adequate transition memoryless nonzero stopping time yields a trans-
formed process with a reduced spectral radius. The choice of the U-function
however may influence the norm of the transformed process but does not al-
ter the spectral radius.

A reduction of the spectral radius improves the performance of the value
iteration while a reduction of the norm of the process (using an adequate

u-function) may improve the bounds introduced in section 7.1.

For computational purposes it will be desirable that for each £ € F and
each § € A' the matrix with (i,j)-th entry equal to Pf(i)(i,j)é(i,j) pos—
sesses the triangular structure as described in formula (7.2.1). As mention-
ed earlier, if the stopping times corresponding with Gy GR, GH are used
then (7.2.1) is satisfied. For § corresponding to G1 the approximation pro-

cedure described in lemma 4.3.6.results in

vo eV V¥ gvid) = max {x(,a + ] pPEIv_ ().
aeA (i) jesS

For § corresponding to GR the procedure described in lemma 5.2.4 may be

represented . more explicitly by
§
vy € v,

V) = max A———rg,a) r—— ] 2@, v (1)}
aeA(i) 1_P (i,1i) l'_P (il_i) j#i

which is the well-known Jaccbi iteration, see e.g. Porteus [59]. By choos-
ing 8 such that § corresponds to GR with exception of 6(i,i), i € S for

which it is allowed that 6(i,i) < 1 for each i ¢ S\{0} we get a successive



109

overrelaxation procedufé;“An argitrary choice of § such that (7.2.1) is sa-
tisfied may yield a combination of overrelaxation and Gauss-Seidel-like pro-
cedures.

For § corresponding to GH the procedure as described in lemma 5.2.4 can be

executed component-wise

8
Vo e Vo v (i) = max {r(i,a) + ] pa(i,j)vﬁ(j) + 1 PR Hve .
. o i n-1
aeA(i) j<i j=2i

Of course the way in which the state space is ordered may influence the

rate of convergence the process, see e.g. Kushner and Kleinman [41].

As described in the previous sections all those methods allow for the con-
struction of lower and upper bounds and for the use of suboptimality cri-
teria. Which procedure is preferable for solving a given finite state space
Markov decision process depends on the problem under consideration. If we
want to compare two different procedures it will be necessary to compare
the corresponding sequences of upper and lower bounds. However, where the
estimates for V* in the n-th iteration step of a specific algorithm may be
better then those of another algorithm (other stopping time) this does not
mean unfortunately that it is possible to construct in an easy way, bounds
that are better too. We have illustrated this phenomenon by some examples
in [54]. Moreover the question whether additional effort spent for the
computation by more sophisticated stopping times and the computational gain
in the number of requested iterations, is evenly matched, cannot be answer-
ed in general. For numerical experiences in these directions we refer to
Porteus [58], Schellhaas [64] and Kushner and Kleinman [41].

The use of value oriented procedures, as described in chapter 6, for solv-
ing finite state and decision space Markov decision problems may yield a
considerable gain in computational effort. This is the case if the policy
improvement procedure requires many operations i.e. if the total number of
decisions is large compared with the number of states. Furthermore, in
practice optimal policies are achieved after a relatively small number of
iteration steps, whereas a nonnegligable number of iterations is still re-
quired to satisfy the convergence criterion. Especially for the last reason
it will be profitable to adapt the value of A during the iteration process.
For numerical experiences with the value oriented method in the case & cor-

responding to G, we refer to [531].

1
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CHAPTER §
N-STAGE CONTRACTION

In chapter 4 we have required in fact one stage contraction with respect to

the bounding function u i.e.

Y
ap'<1 " feF

et <o .

This assumption may be weakened to the case of the so-called N-stage con-
traction. The extension is comparable with Denardo's [12] concept of N-
stage contraction in its strengthened form introduced for the unweighted
supremum norm case. We will prove that if the N-stage contraction assump-
tion in its strengthened form is satisfied instead of assumption 4.2.2,

this implies the existence of a bounding function u' such that, the assump-
tions 4.2.1-4.2.2 are satisfied when W is replaced by u'. Moreover we will
indicate the convergence (in u-norm) of the sequences v vg, vﬁx as defined
in the preceding chapters under the N-stage contraction assumption in its

strengthened form.

8.1. Convengence unden the strengthened N-stage contraction assumption

First we will introduce the strengthened N-stage contraction assumption.
ASSUMPTION 8.1.1.

: £
(i) 3 Yeer e~ <™

MeR*

£, £ £

172 N *
P <
(i1) Nen E'p*<1 Vfl,fz,...,fNeF e "p "...p <o .

THEOREM 8.1.1. Suppose, the assumptions 4.2.1, 4.2.3, 4.2.4 and 8.1.1 are

satisfied then there exists a bounding function u' such that

(i) 3 I =f

- <
vert Veer b"u' M -

(ii) 3 ik, < pr
u

p'<1 erF
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PR £ <
(iii) 3wm+VﬁF"Pb pb%.—M.

N

* *
PROOF. Choose 0 such that p < a” < 1 wherep < 1 follows from assumption

8.1.1 and define H' by

o
H' := sup 2 l—-Pn(W)’u .
TeM n=0 o™

Then for m = (fo'fl"")

Y 1 T 1 £ +1 £ +nN
W' = sup | —="m ] — " e T,
meM m=0 o n=0 o™

£ £
. 0 N-1 * .
However, since P ~...P U < p U it holds that

£ £
*
p Wl pmmN, o "By,

Hence

N
p' S sup ) PRM (1 - pfa ™y

meM m=0

on the other hand

1 _f
- ] 2 — ]
erF H B EHR

as follows from the definition of u' and the fact that Markov strategies

dominate all decision rules, for a proof see van Hee [28], We also refer to

van Hee and Wessels [29].

£ ;

This implies op' 2P U' for all £ € F, so erF "PfHu, < o € 1. From the de-

finition of u' we see U' 2 p. Now the proof of part (i) and (iii) is trivial.
C

The foregoing theorem proves that the strengthened N-stage contraction as-

sumption implies the existence of a bounding function u' such that for this

new bounding function the assumptions 4.2.1-4.2.4 are satisfied.
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REMARK 8.1.1. Also Lippman [45] gives conditions for N-stage contraction.
However, it is proved in van Nunen and Wessels [56] that these conditions
imply the existence of a bounding function p' such that for u' the assump-
tions 4.2.1-4.2.4, with b = 0, are satisfied.

On one hand one could say the strengthened N-stage contraction assumption
yields no real extension since it guarantees the existence of a u' with the
described properties. On the other hand the strengthened assumption 8.1.1
also guarantees the convergence of the sequences Ve vg, vﬁx, as defined in
the previous chapters, with respect to the original u-norm. This will be
indicated in the sequel of this section by proving that the above statement

is true for the sequences as defined in lemmas 4.3.7 and 5.2.5.

THEOREM 8.1.2. Suppose the assumptions 4.2.1, 4.2.3, 4.2.4 and 8.1.1 are

satisfied then for each f € F we have

(1) Lf is a mapping V -+ V.

(ii) (Lf)N is a contraction mapping of V into V with contraction radius p',

where N and p' follow from assumption 8.1.1.
£

o € V the sequence v: defined by

(iii) For each v

converges to Vfw.

£ _ oy E
(iv) v = Vel s vy = vl .

PROOF. The proof of the first two parts of the lemma is straightforward.

"To prove part (iii), note that if Lf

1 has a fixed point it has to be the

fixed point of (Lf)N.
£
Let V be the fixed point of (Lf)N then Vv is a fixed point of L, as follows

from
ey - v =1 wh™v - whMis ezl - vi.
That vﬁ + V (in u-norm) for n -+ «® is proved by choosing € > 0 and k € N

such that



£ Nk f
I L) vy - viils e .

Let n > Nk, then n can be written as n = Nk1 + 2 with ky 2k and 1 £ 2 <N,

Nk Nk
f.n _ £, £ 1 f _ £L8 f 1 f £.2
Il (Ll) v - vl = I_l @) (@ vo) - vl =1 (Ll) ((L1) vo) - (Ll) vl

Nk
< nef il (Lf) 1v§ vl <ec.

Where C := max{l,(suplleH)N}.
feF
That V equals Vfw is easily verified.

Part (iv) follows in the standard way

nN f

£ _ £ £ nN * £
hvy = Vel =lh@p™vg - ap™v i< )n“vo - vl 0

THEOREM 8.1.3. Suppose the assumptions 4.2.1, 4.2.3, 4.2.4 and 8.1.1 are

satisfied and suppose U is defined, then

1,0

(i) U, o maps V into V.
’

(ii) (U1 0)N is a contraction mapping of V into V with contraction radius
’

p' where N and p' follow from assumption 8.1.1.

(1ii) the sequence v, defined for Vo € V by
Vo T U1,0vn-1
*
converges to V (in u-norm).
. * *. N, *
i - < -
(iv) llvnN vl ||vo vil.

PROOF. The first part of the lemma is trivial. Part (ii) holds since the
N-stage contraction assumption 8.1.1 is satisfied. The final parts follow

in a similar way as the final parts of the foregoing theorem. O

$ .
We finish this chapter with & theorem concerning the sequence vn as defined

in lemma 5.2.5(iii).
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THEOREM 8.1.4, Supposehfhé éssﬁﬁptions 4,2.1, 4.2.3, 4.2.4 and 8.1.1 are
satisfied, and let 6 be a transition memoryless nonzero stopping time and
suppose U6 0 is defined, then
’
(i) U© maps V into V.
) Ug,q map

L. § . 8
(ii) Suppose vp € V is such that U‘S’ov0 2

vg then the sequence vﬁ defined
by

§ [
Vo T U6,0Vn—1

converges to V* in u-norm.
PROOF. The proof follows directly from the fact that
£ N6 N §

erF (LG) Yo < UsVo

and the fact that U6V* = V*.
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CHAPTER 9
SOME EXPLANATORY EXAMPLES

In section 9.1 we will describe how a number: of specific Markov decision
processes, namely discounted Markov decision processes and (discounted)
semi-Markov decision processes are covered by the theory developed in this
monograph.

In section 9.2 we will show how the theory developed in chapter 3 can be
used to generate successive approximation procedures for solving systems of

linear equations of the form

where A can be described A = I - P, where I is the identity matrix and P
satisfies the assumptions of chapter 3. Four special cases will be indicated.
In section 9.3 the monograph will be concluded with an example concerning

an inventory problem. The problem is the countable state space discounted
equivalent of the inventory problem with average reward criterion as treat-
ed by Wijngaard [78].

9.1. Some examples of specific Markov decision processes

We start with a remark concerning the applicability of our model. In chap-
ter 4 we have introduced the reward r(i,a) as the immediate return if the
system is in state i € S and action a € A is selected. However in several
situations the one stage return will depend on the subsequent transition
that occurs aswell. So the one stage return can be composed of two parts,
an amount rl(i,a) depending on the actual state i € S and the selected ac-
tion a € A, and an amount r2(i,a,j) which depends on the next state (j)
that is visited aswell. However we can still use our model if we define

r(i,a) as an expected one stage return-.i.e.

r(i,a) := r%(i,a) + z pa(i,j)rz(i,a,j) .
jes
We will now consider discounted Markov decision processes, treated for fi-
nite state space finite decision space Markov decision processes by e.g.
Howard [35] and for general state space, general action space Markov deci-
sion processes with a bounded reward structure by e.g. Blackwell [5]. The

difference between the models we have discussed and discounted models is
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that in the latter situation the reward earned at time n is weighted by a
factor Bn, where B 2 0 is the discount factor. We denote the transition pro-
babilities for the discounted process by qa(i,j) for i,j € S and a € A. For
an arbitrary Markov strategy T := (fo'fl"") we define Qn(n) with respect
to the transition probabilities qa(i,j) in a similar way as we have defined
P (T). Then the total expected discounted reward over an infinite time hori-

zon equals

it £
z BnQn(w)r n
n=0

By incorporating the discount factor B in the transition probabilities i.e.

pa(i,j) = Bqa(i,j) the total expected discounted reward equals

© £
z PPmxr .
n=0

So if for these redefined transition probabilities and for the reward struc-
ture the assumptions of chapter 4 are satisfied then discounted Markov deci-
sion processes are covered by the theory developed in the previous chapters.
Usually this discountfactor is supposed to be smaller than one (i.e.

0 £ B < 1). However, depending on the transition probabilities it may be
allowed that B 2 1.

For discounted Markov decision processes with 8 <1, b=0 and with u(i) = 1
if i # 0O the assumptions of chapter 4 are satisfied if the rewards are

bounded.

We now consider semi-Markov decision processes as introduced by Jewelll 37],
[38]. _

for semi-Markov decision processes state transitions do not neccessarily
occur at equidistant points in time. The time (t) between two state transi-
tions is a random variable with a probability distribution function F:,j(t)'
The probabilities of the state transitions are as in chapter 4. So if imme-
diately after a transition, the state of the system is i € S and action

a € A(i) is selected, then the system's next state will be j with a proba-

bility denoted by qa(i,j) where the qa(i,j) satisfy the assumption 4.1.1.
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£

2w,

1
Such a transition will occur before time t, with probability f dFi 3
’

1
. o~
We can consider the embedded Markov decision process, in discrete time by
defining the state of the embedded process at time h (n = 0,1,...) to be

the state immediately after the n-th transition of the original decision

process (see e.g. Mine and Osaki [50], Ross [62], De cani [10]).

For semi-Markov decision processes with respect to the total expected re-
ward criterion (without discounting) the total expected reward over an in-
finite number of transitions, (using T = (fo’fl"") and Qn(ﬂ) as we did

before) equals
bt n fn
1 fme ™.
n=0

So provided that for the embedded process the assumptions of chapter 4 are
satisfied the theory of the preceding chapters can be applied.

In the theory of semi-Markov decision processes with discounting, one as-
t

sumes that rewards incurred at time t are discounted by a factor B~. In a

similar way as in the ordinary discounted case the discountfactor can be

incorporated in the transition probabilities for the embedded process i.e.
-]

poi,§) == f B ar® | ()1q® (i, ) .
i,]

9.2. The sofution of systems of Linear equations

Suppose the following system of linear equations has to be solved
(9.2.1) Ax = r

with A := I - P, where I is the identity matrix and P satisfies the condi-

tions as imposed in chapter 3 with u(i) =1, i # 0 and b(i) :=0 for i € S.
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For each 8§ € A we have proved in chapter 3 that the sequence

converges to the solution of (9.2.1) if and only if § is a nonzero stopping
time.

So for each nonzero stopping time we have a successive approximation method
for solving (9.2.1). For some specific stopping times these methods are al-
ready known from numerical mathematics (see e.g. Varga [68]). This will be
shown in this section. So the convergence of these numerical methods to the
solution of the system of linear equations (9.2.1) follow at one blow from

theorem 3.2.1.

EXAMPLE 9.2.1. Let § € A' correspond to the goahead set G- We have for

each i € S

1

“Tpa,n W+

S § .
(9.2.2) vn(i) :=Iﬁvn_1(1)

1 I ;
T j;i pU,d)v,_,(3) with vy e V.

We define D as the diagonal matrix with diagonal entries (1 -p(i,i)) and
define F and E by the strictly upper and strictly lower triangular parts of
P. Then clearly (I -P) can be expressed by

I-P=D-E-F.

Now vﬁ can be given by

-1 § -1
Vn =D (E + F)Vn_1 +D r.

This iterative method is known as the point Jacobi or point total step me-
thod (see Varga [68]).

EXAMPLE 9.2.2. Let § € A' correspond to the goahead set Gﬁ with Gé(O) =GH(0),
i-1 )

Gy(d) == {,B) | Be u Gy(3), a e v {i}k}, then v° can be given compo-
§=0 k=1 n

nentwise by (see also example (iii) on page 32)
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g

1
1-p(i,i)

-
TS L, P v ) +

j<i

©.2.3 L@ = r(i) +

1

a8
T L ) pi, v, _,3) .

1

By using the matrices D, E and F as defined in the previous example, formu—

la (9.2.3) can be given by

§ __.6
(D - E)vn = F‘vn_1 +r,
or alternatively by
§ _ -1_ 8 -1
v, = (D - E) Fvn_1 + (D E) 'r.

This iteration method is known as the point Gauss-Seidel or point single

step iterative method.

EXAMPLE 9.2.3. Let § € A' be the transition memoryless nonrandomized stopp-

ing time such that §(a) = 6([a]k _y) for a € G (see example 9.2.2), §(a) =0

1
o
elsewhere. Moreover choose §(i) such that

(i, i)(1-p(i,iN_8G,3)Q-p,3))
i,jes 1 =8 (i,i)p(i,i) 1-8(3,3)p(3,3)
i#0

§
Then v, can be expressed component-wise by

1-8(4) &
T8 MpL,D ‘a-1d 7

8 (i)
1-8@i)p(i,i)

(9.2.4) vﬁ(i) r(i) +

S (i)

s
T eE D L, PEv@) +

3<t

8 (i) Z ; ay 8 .
+ ————— pli,j)v. (3) .
1-8@)p(i,i) o4 ’ n-1

By defining & := §(i) (L -pli,i))

= i th tri D, E, F (9.2.4) can
T-8§(p 1) and using the matrices D, E, ( )

be given by

§ _ §
(D - wE)vn = wr + ((1 -w)D + uul?‘)vn_-1 .
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This is known as the point successive overrelaxation method.

EXAMPLE 9.2.4. Suppose the state space is partitioned in blocks
B, = {1,2,...,n1}, B, = {n1 +1,...,n2} and so on. Let P be given by

(P ----
1,1 1,2 Pin ]
Pyt Pap vt Py TUUC
P := [ ~ [
1 \\ |
] \\ [
[} \\ \
p' P P’
n,1 n,2 tee n,n
[} 1 ~

where Pn o contains the entries p(i,j) with i € B and j € Bm. We define

’
the matrices D, E and F by

D :=1I~ O 2,2
0 0---- I A
g o |T201 OI:" I L I
N ! N
P31 F3,2> ' 0. .
] N ! ~N \\
' N | ~ N
1]

Now let § € A' be the transition memoryless nonrandomized stopping time
with 6(1) = 1 for all i € S, and 6(i,j) = 1 if j = 0 or there is some n €N
such that i,j € Bn , let 6(i,j) = O elsewhere. Now it is easily verified

that vﬁ := L can be given by

§Vn~-1
S -1 § -1
vn =D "(E + F)vn__1 +D r.

This iterative method is known as the block Jacobi iterative method (see

e.g. Varga [68]).
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From the foregoing exampies it will be clear that the so called block suc-
cessive overrelaxation iterative method can be found by combining the ideas
used in example 9.2.3 and 9.2.4. Of course several other options (other
choices of §) are available. The previous examples are only given to illus-
trate how the concept of stopping time can be used to generate the itera-

tive methods for solving systems of linear equations of the form (9.2.1).

9.3. An {nventony problem

The inventory problem we deal with in this final section will not show the
full strength of the described methods.

It only illustrates the power of the concept of bounding function (weighted
supremum norm). Therefore, in the remaining part of this section, the vector
b is taken equal to the zero vector (VieS b(i) = O)V. In our example we treat

the discrete analogue of the inventory problem studied by Wijngaard [ 78].
However we will not investigate whether optimal strategies exhibit a speci-

fic structure or not.

We will first describe what we will mean here with an inventory problem.

An inventory problem consists of

(i) A state space containing the allowed inventory levels. Here, we as-
sume the allowed inventory levels to be integers. We allow for back-
logging which explains why the inventory levels can be negative. »

(ii) Decision spaces A(i) containing for each inventory level i € Z the
possible orders. We assume the orders to be nonnegative integers. So
A(i) might be given by e.g. A(i) = {0,1,...,N} if at level i all or-
ders of size 0 up to N are allowed. We assume the leadtime to be
zero.

(iii) A distribution function of the demand (d) per period. We assume this
demand to be nonnegative. For k € z¥ the probability that the demand

equals k is p, We assume p, # 1. Moreover we assume

o«

(9.3.1) ) pexp k) <@ .
k=0 ,
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(iv) A cost function ¢y on Z+ into Eﬁﬂ For each k € Z+, c1(k) gives the
ordering costs of k units.
A cost function ¢, on Z into Efﬂ For each k € &, c2(k) gives the one
period (expected) inventory and stock out cost if at the beginning of
the period k units are available (note that k < 0 means a shortage)

we assume

yar* Yieg+ [61 Kexp(-k) < m]
(9.3.2)

3 [cz(k)exp(-|k[) <M.

MR Vkez

(v) An optimality criterion. Here we will use the total (expected) dis-

counted reward criterion with discountfactor B (0 < B < 1).

We will now adapt the formulation of the inventory problems in such a way
that they are covered by the models developed in the preceding chapters.

Of course it is possible to label the inventory levels with N u {0}. How-
ever, we will use the state space S := & U {0'} to maintain the correspon- .
dence with the inventory problems as treated by Wijngaard. The state 0' re-
presents the fictive absorbing state. We define the bounding function ¥ on

S by
p") :=0; u(i) = exp(|i]) fori ez .

We define the transition probabilities pa(i,j) with a € A(i), i,j € S and
i# 0' by

Bpi+a—j for j£i+a,
p2(i,3) =141 -8 for y =0' ,
0 else .

For i = 0' we define p(0',0') = 1.
We define for i € s\{0'} and a € A(i) the rewards r(i,a) by

r(i,a) = —cl(a) - cz(i + a) .
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THEOREM 9.3.1. Let m,M,vli €z s‘iéh that m < 0< M, RS M - m and

©

I pemk) < exp( .
k=0

Suppose A(i) is such that

i < = 2
. i i} VaeA(i) a R

< i <
i M»VaeA(i) i+as M

i>M=a() = {0} .

Then
. N
(1) I ert Vies Yaea(i) Izl < wuw
(i) 3 v_ _Iefi sue
M"eR* " feF u
£ f £
0.1 N

, <o
(iii) 3p-<1 en Vfo"“'fNGF e "p "...p "lIsp" .

PROOF. The parts (i) and (ii) follow straightforwardly. To prove the final
part of the theorem we use a result of Wijngaard [78]. From Wijngaard theo-

rem 5.4 and the boundedness of ¥ on [m,M] it follows that

>N 0, 1 n *
X v v <
HM dR+ neN fopooo,f EFB (P P «eoP )u Mu °

Multiplying both sides by 8" we have for n sufficiently large that the

n-stage assumption 8,1.1 is satisfied. o
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