
PJUn-ted a.:t. :the Ma.:t.hema.:Uc.a.l Cen.tlte, 49, 2e BoeJLhaave;.,:tJw.a.:t., Aml.i:teJLdam.

The Ma.:t.hema.:Uc.a.l Cen.tlte, 6ou.nded :the 11-:th 06 Feb11..u.My 1946, M a non
p11..06U inJ.i:tUu.tion cum,lng a.:t. :the pll..omoUon 06 pUll.e ma.:t.hema.:Ue1, and w
app.U.c.a.:UonJ.i. Lt M ,tiponJ.ioll..ed by :the Ne:theJr.1.a.nd,ti GoveJLn.men-t th/1..ough the
Ne:the.Jt.fund,ti 011..gan.,i,za.:Uon 6011.. :the Advan.c.emen-t 06 PUite Re;.,ea11..c.h (Z .W.O),
by :the Mun.,i,upa.lay 06 Aml.i:teJLdam, by :the Un,lveMUy 06 Am,ti:teJLdam, by
:the F11..ee Un.,lveMUy a.:t. Aml.i:teJLdam, and by indu,ti.t.JUe;.,.

MATHEMATICAL CENTRE TRACTS 70

W.P. DE ROEVER Jr.

RECURSIVE
PROGRAM SCHEMES:
SEMANTICS AND
PROOF THEORY

MATHEMATISCH CENTRUM AMSTERDAM 1976

AMS(MOS) subject classification scheme (1970): primary 68A05, 02J10,
secondary 68J20, 68K10, 02J99.

ACM-Computing Reviews-categories: 5.24, 5.21.

ISBN 906196127 0

CONTENTS

Contents

Acknowledgements

Abstract

0, SURVEY

0.1. Objectives

0.2. Structure of the paper

0.3. Related work

I, A FRAMEWORK FOR PROGRAM CORRECTNESS

I. I. Introduction

I • 2. A framework for program correctness

1.3. The formulation of specific correctness properties of

programs

2, THE PROGRAM SCHEME LANGUAGE PL

2.1. Definition of PL

2.2. The union theorem

3. THE CORRECTNESS LANGUAGE MU
3.1. Definition of MU
3.2. Validity of Scott's induction rule and the translation

theorem

3.3. Rebuttal of Manna and Vuillemin on call-by-value

4. AXIOMATIZATION OF MU

V

V

vii

ix

3

5

9

12

14

18

24

32

37

43

4. I. Axiomatization of typed binary relations 44

4.2. Axiomatization of Boolean relation constants 47

4.3. Axiomatization of binary relations over cartesian products 49

4.4. Axiomatization of the "µ/' operators 53

5. APPLICATIONS

5.1. An equivalence due to Morris

5.2. An equivalence involving nested while statements

5.3. Wright's regularization of linear procedures

5.4. Axiomatization of the natural numbers

S.S. The primitive recursion theorem

58

60

61

62

65

vi

6, AXIOMATIC LIST PROCESSING

6.1. Lists, linear lists and ordered linear lists 68

6.2. Properties of head and tail 75

6.3. Correctness of the TOWERS OF HANOI

6.3.a. Informal part 77

6.3.b. An axiomatic correctness proof for the TOWERS OF

HANOI 80

7. ASSESSMENT 86

APPENDIX I: SOME TOOLS FOR REASONING ABOUT COMPUTATION MODELS 89

APPENDIX 2: PROOFS OF MONOTONICITY, CONTINUITY AND SUBSTITUTIVITY 99

APPENDIX 3: PROOF OF TARSKI'S "UNPROVABLE ASSERTION" 106

REFERENCES 108

vii

ACKNOWLEDGEMENTS

I wish to express my gratitude to the Mathematical Centre for providing

the opportunity and the atmosphere which made the research described in this

monograph possible.

I am deeply indebted to J.W. de Bakker for his continuous help, advice and

criticism. Furthermore, I am grateful to David Park for his interest in my

research, and for critically reading a preliminary edition.

The original incentive which led to this work arose out of the lectures of

E.W. Dijkstra, C.A.R. Hoare and N. Wirth at the International Summer School

on Program Structures and Fundamental Concepts of Programming, organized

by F.L. Bauer, H.J. Helms and M. Paul in 1971.

I thank (in alphabetical order) P.C. Baayen, Peter van Emde Boas, Joost

Engelfriet, Henk Goeman, Michael Gordon, Peter Hitchcock, Giles Kahn, Erik

Krabbe, Robin Milner, Maurice Nivat, Reind van de Riet, Paul Vitanyi and

A. van Wijngaarden for their various suggestions, Th. Gunsing, and Tobias

Baanders for the editing, Astrid Schuyt-Fasen for the Sisyphean labor of

typing my arduous manuscript, and D. Zwarst, J. Suiker and J. Schipper for

the printing.

The results of my investigations in the field of semantics of programming

languages such as reported in this monograph would not have been possible

without the pioneer work of J.W. de Bakker, Robert Milner, David Park and

Dana Scott.

ix

ABSTRACT

The language PL for first-order recursive program schemes with call

by-value as parameter mechanism is developed, using models for sequential

and independent parallel computation. The language MU for binary relations

over cartesian products which has least fixed point operators is formally

defined, and the validity of the monotonicity, continuity, and substitu

tivity properties and Scott's induction rule is proved. After specifying

an injection between PL and MU, it is proved that this injection induces a

translation; hence the body replacement characterization of the semantics

of recursive program schemes results in the same input-output behaviour as

the least fixed point characterization. Then MU is axiomatized using a

many-sorted generalization of Tarski's axioms for binary relations, Scott's

induction rule and fixed point axiom, and new axioms to characterize pro

jection functions, whence, by the translation result, a calculus for first

order recursive program schemes is obtained. Next we define an operator

composing relations with predicates, the so-called 11011-operator, relate the

properties of this operator axiomatically to the structure of the relations

and predicates composed, and demonstrate the relevance of this operator to

correctness proofs of programs in general and proofs involving the call-by

value parameter mechanism in particular. Axiomatic proofs are given of nu

merous properties of recursive program schems, some of which involve differ

ent modular decompositions of a program. Our calculus is then applied to the

axiomatic characterization of the natural numbers, lists, linear lists and

ordered linear lists, and used to prove many properties relating the head,

tail and append list-manipulation functions to each other. Finally both

an informal and an axiomatic correctness proof is given of the well-known

recursive solution of the Towers of Hanoi problem.

Keywords: semantics of progrannning languages, recursion, call-by-value,

least fixed point operators, axiomatization of polyadic binary relation

algebras, Scott's induction rule, axiomatic program correctness, axiomatic

list processing, predicate transformers.

0. SURVEY

O. I. Objeatives

The objectives of the present investigation are to provide a self

contained description of:

). A conceptually attractive framework for studying the foundations of

program correctness.

2. An expedient axiomatization of the properties of first-order recursive

programs with call-by-value as parameter mechanism.

Ad I.

In reasoning about programs and their properties one is always con

fronted with the following two aspects:

I.I A program serves to describe a class of computations on a possibly

idealized computer. In consequence, most programmers aonaeptuaZize

its execution. Whether this conceptualization figures on the very con

crete level of bit manipulation or on the very abstract level of an

ALGOL 68 machine, it always uses some model of computation as vehicle

for the process of understanding a program. (However, the level on

which this conceptualization takes place does matter when considering

the ease with which one reasons about the outcome of a program: the

less the amount of detail necessary to understand the operation of a

program, the better the insight as to whether a program serves its

purpose.)

1.2 If we abstract from this variety in understanding a program, we arri

ve at the relational structure which embodies the mathematical essence

of that program: its properties.

This leads one to consider two notions of meaning:

2

operational and mathematical semantics.

How do these notions relate?

First, one has to choose a language, whose operational semantics is defined

by some interpreter. Then, one decides which properties of the computations

defined by this interpreter to investigate. Finally, one gives an indepen

dent mathematical characterization of these properties.

Our choice has been the following one:

a. To introduce an idealized interpreter for a language for first-order

recursive program schemes with call-by-value as parameter mechanism

(first-order recursive programs manipulate neither labels nor proce

dures as values).

b. To consider the input-output behaviour of programs as a property sub

ject to investigation.

c. To use Scott's least fixed point characterization for the input

output behaviour of recursive procedures in the setting of binary

telations and projection functions,

However, other choices are very well possible, e.g., BEKIC [I],

BLIKLE [3], KAHN [32] and MILNER [48] incorporate also the intermediate

stages of a computation into their mathematical semantics. *) This does not

necessarily imply that then all properties of a computation have been taken

into account (whence equivalence becomes equality). For instance, the two

sequences (A1(A2A3)) and ((A1A2)A3) may be considered equivalent, as their

execution amounts to executing the same elementary statements in the same

order: first A1 , then A2 and finally A3 , although these elementary state

ments are differently grouped together (cf. corollary 2.1).

Ad 2.

Once the appropriate mathematical semantics has been defined, a pro

per framework for proving properties of programs is obtained. As the proofs

of these properties may be quite cumbersome and lengthy, one might wish to

investigate the possibilities of computer-assisted proofs. cf. KING [34],

MILNER [47] and WEYRAUCH and MILNER [63]. One then has to calculate the

*) A possible approach in this direction is suggested in appendix I.

3

correctness of a program, whence a formal system is needed. Our system

is an extension of the one given in DE BAKKER and DE ROEVER [II] in that we

consider binary relations over ca:t'tesia:n products of domains, i.e., our

domains are structured.

Other formal systems are considered in MILNER [47], which axiomatizes

higher order recursive functionals with call-by-name as parameter mech

anism, and SCOTT [57], which contains an axiomatization of the universal

:>.-calculus model called "logical space".

0.2. Structure of the paper

Chapter 1

Expression of properties of programs as properties of relations. Introduc

tion to the correctness operator 11011 between relational terms and predi

cates: ~ satisfies X0 p iff X terminates for input~ with output n and out

put n satisfies p.

Chapter 2

Formal definition of PL, a language for first-order recursive program

schemes with call-by-value as parameter mechanism, which allows for mutual

ly dependent recursive declarations. Rigorous investigation of the input

output behaviour o of the program schemes of PL, consisting of proofs for

(1) o is a homomorphism with respect to the algebraic structure of PL,

(2) the main theorem, the union theorem, using monotonicity, substitu

tivity and transformation of a computation into a normal form, (3) the

modularity property, using the least fixed point property; the modularity

property relates to the modular design of program schemes and is applied to

yield a two-line proof for the tree traversal result of section 4.5 of

DE BAKKER and DE ROEVER [II].

This chapter is a generalization of chapter 3 of DE BAKKER and MEERTENS

[12].

Chapter J

Formal definition of MU, a language for binary relations over cartesian

products, which has "simultaneous" least fixed point operators. Rigorous

investigation of the mathematical semantics of MU, consisting of proofs

4

for (I) the monotonicity, substitutivity and continuity properties, (2)

the union theorem (3) validity of Scott's induction rule (4) the trans

lation theorem, which relates the input-output behaviour o of the recur

sive program schemes defined in chapter 2 to the mathematical interpreta

tion of certain terms of MU, by stating that the tody replacement character

ization of the semantics of recursive program schemes results in the same

input-output behaviour as the least fixed point characterization. Rebuttal

of MANNA and VUILLEMIN [43] on the subject of call-by-value.

Chapter 4

Axiomatization of MU in four successive stages: (1) a many-sorted version

of Tarski's axioms for binary relations; derivation of, amongst others, the

fundamental lelllllla f- R;S n T = R; (R;T n S) n T, (2) axiomatization of

boolean relation constants; derivation of the properties of the 11011 oper

ator, (3) axiomatization of projection functions; derivation of another

characterization of the converse of a relation, involving the application

of the conversion operator to projection functions, but not to the rela

tion itself, (4) axiomatization of the least fixed point operatorsµ., re-
1

sulting in a calculus for first-order recursive program schemes with call-

by-value as parameter mechanism; derivation of the monotonicity, fixed

point, least fixed point, generalized iteration and modularity properties;

statement of a result on functionality of terms.

Chapter 5

Application of the calculus for recursive program schemes developed in

chapter 4 to the formal derivation of (I) an equivalence due to MORRIS

[SO], (2) a property involving nested while statements, contained in sec

tion 5.1 of DE BAKKER and DE ROEVER [II], using modular decomposition and

simultaneous µ-terms, (3) the regularization of linear procedures following

WRIGHT [65]. An applied calculus for the natural numbers N featuring an im

proved axiom system for Nanda deriviation of the characterizing property

of the 0quality relation between natural numbers. Axiomatic proof of the

primitive recursion theorem using structural induction.

Chapter 6

Formal list manipulation, applied calculi for lists, linear lists and

5

ord.ered Zinear Zists. Linear lists as a special case of ordered linear

lists. Proofs for (I) a characterization of termination of and associa

tivity of the aonaatenation function with ordered linear lists as argu

ments, (2) many properties relating the head, taiZ and concatenation func

tions with ordered linear lists as arguments to e&ch other, (3) both in

formal and formal versions of correctness of the Towers of Hanoi program.

Chapter 7

Assessment consisting of (I) a listing of the four main (technical) accom

plishments of this paper, (2) some open problems, the main one being proof

or disproof of Park's conjecture of the completeness of our axiomatization of

polyadic binary relations, and (3) a brief discussion of the vast discrep

ancy between intuitive insight in the correctness of a program, and under

standing of the artifici,al reasoning involved in the axiomatic correctness

proof of such a program.

0.3. Related work

We discuss the reZationaZ approach to the correctness of recursive

procedures, confining ourselves to those methods which are based upon the

least fixed point characterization of the semantics of these procedures.

Within the context of recursive function theory, this characterization was

stated and proved originally by KLEENE [35], where it appears as the first

recursion theorem.

The recursion induction rule for recursive procedures over arbitrary domains

was formulated by McCARTHY [45]; for more references to the pre-1969 state

of affairs in this branch of programming theory see DE BAKKER [8].

About 1969 the least fixed point characterization was formulated again in

dependently by BEKIC [I], MORRIS [49], PARK [SI], and SCOTT and DE BAKKER

[59]. MORRIS stated the result within the A-calculus, using Curry's para

doxical combinator Y. PARK formulated his theory (initially) within the

second-order predicate calculus, and discovered the fixed point induction

rule. SCOTT and DE BAKKER, using a relational framework, discovered that

powerful induction rule which now carries Scott's name, and formulated the

µ-calculus, a formal system based upon this rule.

BURSTALL formulated in [SJ the rule of structural induction, whose main at

traction (according to me) is its informal flavour (see for instance section

6

6.3.a of the present paper for an informal correctness proof of the Towers

of Hanoi and section 3.4.1 of DE ROEVER [16], in which an informal correct

ness proof for a version of Floyd's iterative tree marking algorithm, cf.

exercise 2.3.5.7 of KNUTH [36], is given).

MANNA began his impressive series of publications by expressing program

correctness within the first-order predicate calculus [39,40].

In 1970 MILNER generalized the µ-calculus to a system dealing with polyadic

functions [46], and PARK formulated his theory within the context of

polyadic relations [52].

In 1971 DE BAKKER devoted his monograph [9] to an investigation of the

µ-calculus, proving a completeness result for those recursive procedures

which correspond to flow diagrams; MORRIS formulated the truncation induc

tion rule [SO].

DE BAKKER and DE ROEVER [II] crossbred the µ-calculus with Tarski's algebra

of relations [61] to yield an axiomatic framework for proving equivalence,

(partial) correctness and termination of first-order recursive program

schemes with one variable. The present paper amplifies on the latter in

that (I) the restriction to one variable is removed by considering arbitrary

subdivisions of a state, and (2) the distinction on the one hand and the

connection on the other between operational and mathematical semantics is

clarified (MORRIS [49] also studies this topic). Subdivisions of a state

are incorporated within the relational framework by considering relations

over cartesian products of domains; these were introduced in MILNER [46]

and PARK [52].

The connection between induction rules and termination proofs is described

by HITCHCOCK and PARK in [28] and elaborated in Hitchcock's dissertation

[27], which also contains a correctness proof of a translation of recursive

programs into flowcharts with stacks and clarifies the notion of represen

ta,tion of (recursive) data structures.

Greatest fixed points, introduced by PARK in [SJ], are applied in

MAZURKIEWICZ [44] to obtain a mathematical characterization of divergent

computations and may lead to the axiomatization of Hitchcock and Park's

results within an extension of our framework.

In DE ROEVER [17] relational calculi are developed for first-order recursive

procedures each parameter of which may be either called-by-value or called

by-name; in DE ROEVER [66] it is proved that the input-output behaviour

of first-order recursive procedures whose parameters are called-by-name

7

can be expre~sed within the ordinary framework of polyadic relations

such as developed in this thesis, i.e., without any need for special points

such as Scott's undefined element [55] or De Roever's basepoint [16].

In a different setting BLIKLE and MAZURKIEWICZ [4] also use an algebra

of relations to investigate programs.

The equivalence between the method of inductive assertions and the

least fixed point characterization is the subject of DE BAKKER and MEERTENS

[12]. In general, the number of inductive assertions required to character

ize a system of mutually dependent recursive procedures turns out to be in

finite; however, in the regular case this number is finite, as is proved in

FOKKINGA [22]. The completeness of the method of inductive assertions for

general recursive procedures, as opposed to the merely regular ones, is

treated in DE BAKKER and MEERTENS [13].

The relation between the least fixed point characterization and various

rules of computation is studied by MANNA, CADIOU, NESS and VUILLEMIN in a

number of papers: MANNA and CADIOU [41], MANNA, NESS and VUILLEMIN [42],

MANNA and VUILLEMIN [43], CADIOU [7] and VUILLEMIN [62]. In section 3.3 we

demonstrate that MANNA and VUILLEMIN are mistaken in their conclusion that

call-by-value does not lead to the computation of least fixed points;

DE ROEVER [15,16,17] and DE BAKKER [14] explain the reason why. In [62]

VUILLEMIN, furthermore, compares the power of various induction rules.

The distinction between operational and mathematical semantics and the

need for a mathematical semantics has been convincingly argued in SCOTT

[55,56] and SCOTT and STRACHEY [60].

ROSEN [53] studies conditions under which normal forms for computations

exist; implicitly, normal forms are used in appendix 1 to derive the "dif

ficult" half of the union theorem.

The works of DIJKSTRA [18,19], HOARE [29,30] and WIRTH [64] relate to

the present paper in that we provide a possible axiomatic basis for some

techniques of structured programming; e.g., our correctness operator 11011

is independently described in DIJKSTRA [20]*).

*) Some confusion is caused by the fact that the intended meaning of
Dijkstra's wp-operator is not captured by his axioms, as can be shown by
a counterexample. However, in the functional case such confusion does not
exist; then our 11011 operator and his wp-operator are the same.

8

Recently, BURSTALL and THATCHER [6], and GOGUEN and THATCHER [24]

unified operational and mathematical semantics within the framework of

category theory.

Scott's discovery of A-calculus models [54] gave a powerful impetus to

the field of formal semantics of programming languages; for a discussion of

the literature related to and based upon this discovery, see SCOTT [58],

9

1. A FRAMEWORK FOR PROGRAM CORRECTNESS

I. I. Introduction

This report is devoted to a calculus for recursive programs written in

a simple first-order programming language, i.e., a language in which

neither procedures nor labels occur as values.

In order to express and prove properties of these programs such as equiva

lence, correctness and termination, one needs a more comprehensive language.

We shall abstract in that language from the usual meaning of programs

(characterized by sequences of computations) by considering only the input

output relationships established by their execution.

Thus we are interested only in the binary relation described by a program,

its input-output behaviour:

the collection of all pairs of an initial state of the memory, for

which this program terminates, and its corresponding final state of

the memory.

EXAMPLE I.I. Let D be a domain of initial states, intermediate states and

final states.

a. The undefined statement L: goto L describes the empty relation Q over D.

b. The dummy statement describes the identity relation E over D.

c. Define the composition R1;R2 of relations R1 and R2 by

{ <x,y> I 3z <x,z> E R1 and <z,y> E R2}.

d. In order to express the input-output behaviour of the conditional if p
-1 -

Let DI be p (~) then s 1 else s2 one first has to transliterate p:
-I

and D2 be p (false) then the predicate pis uniquely determined by the

10

pair <p,p 1 > of disjoint subsets of the identity relation defined by:

<x,x> E p iff x E D1 , and <x,x> E p' iff x E D2• This way of looking at

predicates is attributed to KARP [33]. If Riis the input-output behav

iour of Si, i = 1,2, the relation described by the conditional above is

p;R1 u p';R2 •

e. Let TI. : Dn + D be the projection function of Dn on its i-th component,
1

i J, ••• ,n, let the converse R of a relation R be defined by
V

R {<x,y> <y,x> ER} and let R1, ••• ,Rn be arbitrary relations over D.

Consider

Rl;~I n ••• n R jTI n n

This relation consists exactly of those pairs <x,<y 1 , ••• ,yn>> such that

<x,yi> E Ri for i = l, ... ,n. Thus (*) terminates in x iff all its com

ponents Ri terminate in x. Observe the analogy with the following: The

evaluation of a list of parameters called-by-value terminates iff the

evaluation of all its constituent actual parameters terminates. This

suggests the possibility of describing the call-by-value parameter mech

anism relationally, an idea which will be worked out in chapters 2 and 3.

Note that the input-output behaviour of recursive procedures has not been

expressed above; this will be done by extending the language for binary

relations with least fixed point operators, introduced by SCOTT and

DE BAKKER in [59].

Once the input-output behaviour of a program has been described in rela

tional terms, its correctness properties should be proved within a relation

al framework, e.g., properties of conditionals such as listed in McCARTHY

[45] are proved as properties of p;R1 u p';R2 .

Suitably rich programming- and relational languages, called PL and MU, and

a precise formulation of the connections between the two by means of a

translation will be specified in the next section and will justify that the

axiomatization of MU results in a calculus for recursive programs.

The problem which correctness properties of programs can be formulated

within MU will be discussed in section 1.3 and is closely related to the

expressiveness of this language itself.

EXAMPLE 1.2. With Das above, let the univePsai relation Ube defined by

u = D X D.

II

a. R1 s R2 and R2 s R1 together express equaZit;y of R1 and R2, and will be

abbreviated by R1 = R2 • If programs s1 and s2 have input-output behav

iour R1 and R2 , respectively, then s1 and s2 are called equivaZent iff

R1 = Rz-

b. Es R;R and Es R;U both express totaZit;y of R.

c. R;R s R expresses tpansitivit;y of R.

d. R;R s E expresses that R describes the graph of a function, i.e., func

tionaUt;y of R.

e. R;R n E = {<x,y> <x,y> € E and <x,y> € R;R}

= {<x,y> x = y and 3z[<x,z> €Rand <z,y> € R]}

= {<x,x> :lz[<x,z> € R]}.

Hence R;R n E determines that subset of E which consists of all pairs

<x,x> such that there exists some z with <x,z> € R: this indicates a

correspondence with a predicate expressing the domain of aonvePgenae

of R. Note that R;R n E = R;U n E.

f, Let p s E. Then p;U n U;p s p expresses that p contains at most one pair

<a,a> only. This can be understood by deriving a contradiction from the assump

tion that both <a,a> € p and <b,b> € p for different a and b: for that

implies that both <a,b> € p;U and <a,b> € U;p, whence <a,b> € p;U n U;p

and therefore <a,b> € p for different a and b, contradicting p s E. This

requirement therefore states the correspondence of p with the character

istic function of an atom. *)

The axiomatization of MU proceeds in several stages.

First a sublanguage for binary relations over cartesian products is axiom

atized by adding the following two axioms to typed versions of Tarski's

axioms for binary relations (see [61]):

*) This observation is due to Peter VAN EMDE BOAS.

12

with rri denoting the projection function of an n-fold cartesian product on

its i-th component, i = J, ••• ,n, and Ethe identity relation over this

product.

In the resulting formal system one can derive properties such as

R = (R;R n E);R, obtained from example 1.2.e, and Rl;nl n R2;rr2 =

= (R1;R1 n E);(R2;R2 n E);(R1;¥1 n R2;n2), obtained by combining examples

I. I. d and I . 2. e.

Secondly we axiomatize the least fixed point operators by (I) Scott's in

duction rule and (2) an axiom stating essentially the fixed point property

of terms containing these operators. Both of these were formulated for the

first time in [59].

The addition of further axioms to the system for MU yields various

applied calculi, used, e.g., for the characterization of a number of spe

cial domains such as: finite domains with a fixed number of elements

(axiomatized below), finite domains ([27]), natural numbers (chapter S) and

various kinds of lists (chapter 6).

EXAMPLE J.3. Following example 1.2.f an atom a is characterized by

a o: E and a;U n U;a o: a.

Now D contains precisely n elements iff E o: D x Dis the disjoint union of

n atoms a 1 , ••• ,an, i.e., iff

(I) ai;U n U;ai 0: ai' i = I, ... ,n,

(2) al u a2 u u a E, n

(3) a. n a. St' < i < j .::_ n,
]. J -

(4) u 0: U;ai;U, i = I, ... ,n.

1.2. A framework for program correctness

In the previous section we discussed program correctness as follows:

Starting with a scheme T, one considers its input-output behaviour and re

alizes that this is a relation, whence its properties should be expressed

and deduced within a relational framework.

The present section presents an outline of the formalization of this point

of view as contained in chapters 2 and 3.

In section 2.1 we define PL, a language for first-order recursive program

13

schemata.

First-order recursive program schemata are abstractions of certain classes

of programs. The statements contained in these programs operate upon a

state whose components are isolated by projeation fu:nations; a new state is

obtained by (I) execution of elementary statements, the dunnny statement or

projection functions (2) calls of previously declared and possibly reaur

sive procedures (3) execution of conditional statements (4) the parallel

and independent execution of statements s1, ..• ,Sn in the aall-by-value

produat [S , ••• ,S], a new construct which unifies properties of the
I n

assignment statement and the call-by-value parameter meahanism and allows

for the expression of both of these concepts, and (5) composition of state

ments by the 11 ; 11 operator.

The definition of the operational semantics of these schemata involves an

abstraction from the actual processes taking place within a computer by

describing a model for the computations evoked by execution of a program.

This leads to the characterization of the input-output behaviour or opera

tional interpretation o(T) of a program scheme T.

In section 3. I we define MU, a language for binary relati,Jns over

cartesian products which has least fixed point operators in order to

characterize the input-output behaviour of recursive programs.

As the binary relations considered are subsets of the cartesian product of

one domain or cartesian product of domains and another domain or cartesian

product of domains, terms denoting these relations have to be typed for the

definition of operations.

Elementary terms are individual relation constants, boolean relation con

stants, logical relation constants (for the empty, identity, and universal

relations~, E, U and projection functions Tii) and relation variables.

Corrrpound terms are constructed by means of the operators 11 ; 11 (relational or

Peirce product), 11 u11 (union), "n" (intersection), 11 ~ 11 (converse) and 11 - 11

(complementation) and the least fixed point operators"µ.", which bind
l.

for i = l, ... ,n, n different relation variables inn-tuples of terms pro-

vided none of these variables oaaurs in any aorrrplemented subterm, i.e.,

these terms are syntaatiaally aontinuous in these variables.

Terms of MU are elementary or compound terms.

The well-formed formulae of MU are called assertions and are of the form

<P 1- '¥, where <P and '¥ are sets of inclusions between terms.

A mathematiaal interpretation m of MU is defined by:

14

(I) providing arbitrary (type-consistent) interpretations for the individ

ual relation constants and relation variables, interpreting pairs

<p,p 1 > of boolean relation constants as pairs <m(p),m(p 1)> of disjoint

subsets of identity relations (cf. KARP [33]) and interpreting the

logical relation constants as empty, identity and universal relations

and projection functions,

(2) interpreting "·" ' ' "u", "n", llvll

' "-" as usual,

(3) interpreting each µ-term µiXI ... Xn[a 1, ... ,an] as the i-th component of

the least fixed point of the functional <a 1, ••• ,an> acting on n-tuples

of relations.

An assertion ~ f- '¥ is valid provided for all m the following holds:

If the inclusions contained in~ are satisfied by m, then the inclusions

contained in'¥ are satisfied by m.

The precise correspondence between the operational semantics of PL and

the mathematical semantics of MU is specified by the translation theorem of

chapter 3:

After defining an injection tr between schemes and terms we prove that tr

induces a meaning preserving mapping, i.e., a translation, provided the in

terpretation of the elementary statement constants and predicate symbols

specified by o "agrees" with the interpretation of the individual relation

constants and boolean relation constants specified by m. If these require

ments are fulfilled the resulting correspondence between PL and MU is il

lustrated by

T 1----->- tr (T)

I

.j, .j,

o(T) m(tr(T)).

Thus we conclude that, in order to prove properties of T, it suffices to

prove properties of tr(T), whence axiomatization of MU leads to a calculus

for first-order recursive program schemata.*)

1.3. The forrrruZation of specific correctness properties of programs

*)By an abuse of language we suppress any mention of interpretations o
and m satisfying o(T) = m(tr(T)).

15

Globally, in order to formulate the correctness of a program one has

to state certain criteria which have to be satisfied in a specific environ

ment. If these criteria depend on input-output behaviour only, one might

hope to express them in the present formalism.

Sometimes this condition is not satisfied. Then these criteria concern in

trinsic properties of the computation processes involved. As these are the

very features we abstracted from, one cannot expect to formulate them in MU.
For instance, when trying to formulate the correctness criteria for the

TOWERS OF HANOI program discussed in chapter 6, it turns out that the re

quirement of moving one disc at a time cannot be expressed in our language.

Accordingly we restrict ourselves to criteria which can be formulated in

terms of input-output behaviour only.

These may be subdivided as follows:

(a) Equivalence of or inclusions between programs.

(b) Termination provided some input condition is satisfied.

(c) Correctness in the sense of HOARE [29]:

Given (partial) predicates p and q and a relation tr(T) describing

(the input-output behaviour. of) a program T *), this criterion is

expressed by

Vx,y[p(x) AX tr(T) y + q(y)]

and amounts to

if x satisfies p and T terminates for x with output y, then y

satisfies q.*)

These criteria can all be formulated as inclusion between terms:

For (a) this is evident. As to (b): Let p be represented by <p,p'> satis

fying p s E, p's E and p n p 1 = O, and tr(T) describe program T, then

...___,,
p s tr(T);tr(T)

*) This corresponds with p{T}q in Hoare's notation and with {p}T{q} in
Dijkstra's notation (cf. [19]).

16

or, equivalently,

p 5: tr(T) ;U

both express (b) (note that p E R;R is equivalent top E R;U).

As to (c): Let p and q be represented by <p,p'> and <q,q'>, then (c) is ex

pressed by

p;tr(T) E tr(T);q.

It will be clear that the underlying supposition for the expression of these

criteria is that we are able to express all the predicates involved indeed.

This was not the case in the formalism described by SCOTT and DE BAKKER in

[59] in which predicates were only expressible by primitive symbols, no

operations on these symbols or other ways of constructing them being avail

able.

Our main device for the construction of new predicates is the " 0 "

operator defined by

Vx[{X 0 p){x)+--+ 3y[xXy and p{y)JJ. *)

Accordingly, if X = tr(T) then (tr(T)ep)(x) is true iff T produces for in

put x ~ output y which satisfies p.

In the present formalism X0 p can be expressed by

Xop X;p;U n E.

In example J.2 we showed that X;X n E = X;U n E = X0 E describes the domain

of convergence of X, Thus XoE is the least predicate p satisfying X = p;X,

In chapter 4 we obtain the following characterization of X0 p:

Xop n{q I X;p E q;X}.

*)
Let X denote the function f, then (X 0 p)(x) p(f(x)),

Therefore Xop is the least predicate q, sometimes called the weakest pre

condition, satisfying X;p ::_ q;X.

This observation raises the following question:

When does

X;~ X•p ;X

hold?

17

We shall prove that(*) holds if X;X ~ E, i.e., X denotes the graph of a

function.

Therefore the translation theorem implies that

one is allowed to retract predicates ocaurring in between statements

on input conditions provided these statements describe functions,

i.e., are deterministic.

18

2. THE PROGRAM SCHEME LANGUAGE PL

2. I. Definition of PL

PL is a language for first-order recursive program schemes using call

by-value as parameter mechanism.

A statement scheme of PL is constructed from basic symbols using these

quencing, conditional, call-by-value product operations and recursion, and

contains a type indication in the form of a superscript <n,s> in order to

distinguish between input domain Dn and output domain Ds. The call-by-value

product [s 1, .•. ,Sn] expresses the independent parallel execution of state

ments s 1, ••• ,sn, yielding for input x an output <y 1, ••• ,yn> composed of the

individual outputs of Si' i = l, ..• ,n, and is used to describe the assign

ment statement and the call-by-value parameter mechanism as follows:

Assignment statement. An assignment statement xi:= f(xi 1, ••• ,xim) occurring

in an environment x 1, ••• ,xn of variables is expressed by

[n 1, ••• ,Tii-l ,[nit•···,Tiim];S,ni+l' ••• ,Tin], where S denotes f.

Call-by-value pa,pameter mechanism. A procedure call

proc(f 1 (x 1, ••• ,xm), ••• ,fn(x 1, ••• ,xm)) with parameters which are called-by

value is expressed by [s 1, ••• ,Sn];P, were Sk denotes fk, fork= l, .•. ,n,

and P denotes proc.

A d.eclaration scheme of PL is a possibly empty collection of pairs

P. = S. which are indexed by some index set J; for each j E J such a pair
J J

contains a procedure symbol P. and a statement scheme S. of the same type
J J

as P .•
J

A program scheme of PL is a pair consisting of a declaration and a state-

ment scheme.

The well-formed formulae of PL are called assertions.

DEFINITION 2.1 (Syntax of PL)*)

Types. Let G be the collection {a,a 1 , •.. ,S,S 1 ••. } of possibly subscripted

*) Sections 2.1 and 2.2 follow closely section 3 of DE BAKKER and MEERTENS
[12] which deals, however, with schemes operating upon one variable.

greek letters, A domain type is (1) an element of G, (2) any string

x sn), where s 1 , .•. ,snare domain types. A type is a pair <n,s>

of domain types.

Basia symbols. The class of basic symbols is the union of the classes of

relation and procedure symbols.

Relation symbols. The class of relation symbols R is the union of the

classes of elementary statement symbols, predicate symbols, constant sym

bols and variable symbols.

19

a. The class of elementaJ7Y statement symbols A contains for all types <n,s>

elements denoted by An,s,A~'s,, ••

b. The class of prediaate symbols B contains for all n elements denoted by
n,n n,n n,n n,n

P ,Pl , ••• ,q ,ql , ••• •

c. The class of aonstant symbols C contains the symbols Qn,s for all types
(nlx ..• xnn)'nl (nlx ••• xnn)'nn

<n,s>, En,n for all n and 11 1 , ... ,11n for all

types n 1, .•• ,nn•

d. The class of variable symbols X, introduced for purposes of substitution,

contains for all types <n,s> elements denoted by

xn, s, x~, s, ••• , yn, s, ••• , z n, s, • • • •

Proaedu:r>e symbols. The class of procedure symbols P contains for all types

<n,s> the symbols Pn,s,P~'s, ••.

Sahemes.

a. Statement sahemes. The class of statement schemes SS (arbitrary elements

sn ,s ,S~ ,s, ••. , vn ,s, ••• ,wn ,s, •••) is the smallest collection satisfying:

I. A u C u X u P s SS. *)

2. If s~• 6 ,s~•S E ss then (Sl;Sz)n,s E ss. **)

3. If pn,n EB and s~•s,s;•s E ss then

4, If
Tl,s 1 n,sn

SI ' •• •,Sn

Hence, a predicate symbol is no statement scheme.

These parentheses will be often deleted, using the following conventions:
(I) the outer pair of parentheses is suppressed, (2) right preferent pa
renthesis deletio~. E.g., A1\A2 _stands for (A1;A2) and A1;A2;A3 stands
for A1;(A2 ;A3) which stands in its turn for (A1;(A2 ;A3)).

20

b, DeaZa:r>ation sahemes. The class of declaration schemes VS (arbitrary

elements D,D1, •••) contains all sets {Pj'~ <= Sj'~}jEJ with Jany index

set, and, for each j E J, P. E P and S. E SS, such that no S. contains
J J J

any X E X.

c. ProgPam sahemes. The class of program schemes PS (arbitrary elements

T,T1, •••) contains all pairs <D,S> wit4 DE VS and SE SS. If D = ~.

<D,S> will be written ass.

AssePtions. An atomia fonnuZa is of the form T1 S T2 with T1 ,T2 E PS. A

fo!'fTlUZa is a set of atomic formulae {Tl,l s T2, 1}lEL with L any index set.

An _assertion is of the form <I> 1- 'I' with 'I' and <I> formulae.

Rema:r>ks. I. T1 = T2 will be used as abbreviation for T1 s T2, T2 s T1•

2. Brackets around domain types, and type indications in general, will be

omitted provided this causes no confusion.

DEFINITION 2.2. (Substitution)

Substitution opePator. Let SE SS and J be any nonempty index set such that,

for J. E J, {R.}. Jc Xu P denote a set of pairwise distinct variable or
J JE -

procedure symbols, and {V.}. J denote a set of statement schemes such that
J JE

R. and v. are of the same type, then S[V./R.]. J is defined as follows:
J J J J JE

a. If S = R. for some j E J, then S[V./R.]. J = v ..
J J J JE J

b. If S Rand, for all j E J, R # R., then S[V./R.J. J = R.
J J J JE

c. If S = s 1;s2, (p + s 1,s2) or [s1, ••• ,S], then S[V./R.]. J =
n J J JE

= S1[VJ./RJ.]J.EJ;s2[VJ./R.]. J' (p + S1[V./R.]. J,s2[V./R.].) or
J J E J J J E J J J EJ

[S 1[V./R.J. 3 , ••. ,s [V./R.]. 3J, respectively.
J J JE n J J JE

S. Sis defined as S[X./P.]. J' where {P.}. J contains all procedure symbols
J J JE J JE

occurring ins.

CZosed. If no XE X occurs in SE SS, Sis called closed.

Rema:r>ks. I. From now on the substitution operator is used in the following

forms: taking for J the index set of some declaration scheme, we (a)

restrict ourselves to R. E X, for j E J, and (b) reserve the 11"'11 opera
J

tor for substitution with R. E P and V. = X., for j E J. Hence, explicit
J J J

substitution in Sis performed as in (a). This explains our notion of

aZosed statement scheme.

2. The substitution operator can be generalized to formulae by writing

{VI l c v2 l}l L[V./X.]. J for {VI l[V./X.]. Jc v2 l[V./X.]. J}l L' , - , E J J JE , J J JE - , J J JE E
restricting ourselves as above.

3. If J = {l, ..• ,n}, S[V./X.]. J is written as S[V./X.]. 1 or
J JJE J JJ=, ••• ,n

S(V 1, .•• ,Vn). If J = {I} we also use S[V/X].

21

4. S[V./X.]. J is defined according to the complexity of S. Therefore prop
J J JE

erties such as the chain rule, S[V./X.]. 3[W./X.]. J =
J J JE J J JE

= S[V.[W./X.]. 3/X.]. J can be proved by induction on the complexity of
J J J JE J JE

s.

An inteYtpretation of the schemes of PL is determined by an initial

interpretation o0 which extends to an operationaZ interpretation o of pro

gram schemes using models for sequential and independent parallel (to char

acterize the call-by-value product) computation.

DEFINITION 2.3. (Initial interpretation). An initial interpretation is a

function o0 , such that

a. For each n E G, o0(n) is a set denoted by Dn' and for each compound

domain type (n 1 x ••• x nn), o0 (n 1 x ••• x nn) is the cartesian product

of o0 (n 1), ••• ,o0(nn).

b. For An,s EA and xn,s EX, oo(An's) and oo(Xn's) are subsets of

o0 (n) x o0 (s),

c. For pn,n EB, o0 (pn'n) is a partial predicate with arguments in o0(n).

d, For each projection function symbol

the projection function of o0(n 1) x

coordinate.

nix •• ,xnn,ni
11,

l.

••• x oo(nn)

nix ... xnn,ni
, o O (11 i .) is

on its i-th constituent

e. For all constants nn,s and En,n, o (nn,s) and o (En'n) are the empty
0 0

subset of o0 (n) x o0(s) and the identity relation over o0(n), respec-

tively.

The main problem in defining the semantics of a program scheme opera

tionaZZy is the fact that the resulting computation cannot be represented

serially in any natural fashion: factors s 1, ••• ,sn of a product [S 1, .•. ,Sn]

first all have to be executed independent of another, before the computa

tion can continue. Therefore the computations involved are described as a

parallel and sequentially structured hierarchy of actions, a corrrputation

modeZ.

22

At the first level of such a hierarchy any execution of a factor of a prod

uct is delegated to the second level; assuming this results in an output,

this output becomes available as a component of the input for the still-to

be-executed part of the original scheme, if present. When all these compo

nents have been computed, the remaining computation at the first level, if

present, is initiated on the resulting vector. The same holds, mutatis

mutandis, for the relative dependency between computations on any n-th and

n+l-st level of this hierarchy, if present.

Provided one has a finite computation, this delegating will end on acer

tain level, On that level the execution (of a factor of a product on a pre

vious level) does not anymore involve the computation of any product on a

state, whence this computation can be characterized by a sequence of, in

our model, atomic actions of the following forms: (I) computation of a by

some-initial-interpretation-interpreted relation symbol (2) replacing a

procedure symbol by its body, without changing the current state and (3)

making a choice between two possible continuations of a computation, de

pending on whether a by-some-initial-interpretation-interpreted predicate

symbol is true or false on the current state.

The extension of an initial interpretation o0 to an operational inter

pretation o is defined in

DEFINITION 2.4. (Computation model)

Relative to an initial interpretation o0 and a declaration scheme D, a com

putation model for xSy is pair <x 1s 1x2 •.. x S x 1 ,CM> with S. E SS for n n n+ i

i = l, ••• ,n, s 1 = S, x 1 = x and xn+l = y, consisting of a computation se-

quence and a set of computation models relative to o0 and D, called a.sso

ciated computation models, satisfying the following conditions:

a. If Si= R or Si= R;V with RE Au Cu X, <xi,xi+I> ~ o0 (R) and i n

or Si+I V, respectively.

b. If Si= Pj or Si= Pj;V and Pj = Sj ED, then xi+I xi and si+I sj

or Si+J = Sj;V, respectively.

c. If Si= (V 1;v2);V3 then CM contains an associated computation model for

xi v1;v2 xi+! and Si+!= v3•

*) As described in appendix I, this definition implies that the set of com-
putation models can be structured as an algebra. This superposition of
structure allows for simple proofs about certain transformations, by in
duction arguments on the complexity of these models, in case these
transformations are morphisms w.r.t. this structure.

23

d. If Si= (p + v1,v2) or Si= (p + v1,v2);V3 and o0(p)(xi) is either true

or false, then x1.'+I = x. and, if o0 (p)(x.) =true thens. 1 =V 1 ors. = 1. 1. -- 1.+ 1.+)

= V1 ;V3 , and, if o0 (p) (xi)= false then Si+I = v2 or si+I = v2 ;v3, respectively.

e. If Si= [V 1, ••• ,Vk] or Si= [V 1, ••• ,Vk];V, xi+I = <y 1 , ••• ,yk> such that

CM contains associated computation models for xiV 1y 1, for I= I, ••• ,k,

and i ~nor Si+J = V, respectively.

Remark. A computation model represents the entire computation of program

<D,S> on input x (= x 1) resulting in output y (= xn+I' for some n). At each

step of its constituent computation sequence, Si is the statement which re

mains to be executed on the current state x .. Clause a describes the execu-1.
tion of elementary statements, clause b reflects the aopy ruly for proce-

dures, clause c describes preference in execution order, clause d describes

the conditional and clause e describes the independent execution of state

ments, terminating iff all its constituent statements have terminated. The

meaning of";" is expressed by clause c and the second part of clauses a,

b, d and e, and expresses continuation of a computation with appointed suc

cessor,

Suppose one defines a computation model as a set of computation se

quences such that each "delegated" computation sequence occurs in this set.

This leads to undesirable results, as demonstrated by the program scheme

T = <P <== [P,P];TT 1,P>. Clearly, T defines~- However the set

{xPx[P,P];TT 1<x,x>TT 1x} is a computation model for xTx in the sense of this

definition (P, VAN EMDE BOAS),

DEFINITION 2.S.

Operational interpretation. Let T = <D,Sn'~> be a program scheme and o0 be

an initial interpretation. Then the operational interpretation of this

scheme is the relation o(T) defined as follows: for each <x,y> E o0 (n) x

x o0 (~), <x,y> E o(T) iff there exists a computation model w.r.t. o0 and D

for xSy.

Validity.

a. T1 s T2 satisfies o iff-o(T 1~ s o(T2) holds. If T1 s T2 satisfies all

o, it is called valid.

b. ~ satisfies o (is valid) iff all its inclusions satisfy o (are valid).

24

c. An assertion V r V such that, for all o, if~ satisfies o, then V

satisfies o, is called valid.

Rema.rk. In case it is clear from the context that the same declaration scheme

D is used with varying statement schemes S, o (<D,S>) will be abreviated to o(S).

2. 2. The union theorem

First we mention properties of the operationa~ interpretation o such

as o(s 1;s2) = o(s 1);o(s2), o(p + s1,s2) = m(p);o(s 1) u m(p');o(s2),

o([s 1, ••• ,Sn]) = o(S 1);~ n ••• n o(Sn);~), the fixed point property

o(P.) = o(S.) and the monotonicity property. Then the union theorem is
J J

proved as a culmination of these results. Finally we establish the least

fixed point property, which is a generalization of McCarthy's induction

rule (cf. [45]), and prove a lemma legitimating the modu.Za.r design of pro

gram schemes.

LEMMA 2, 1.

a. Ifs€ Au Cu X then o0(s) = o(S).

b. o(S1 ;S2) = o(S1) ;o(S2).

c. o(p + s1,s2) = m(p);o(s 1) u m(p');o(s 2), tvith m(p) and, m(p') d.efined as

foZW/JJs: <x,x> € m(p) iff o0(p)(x) = true and <x,x> € m(p') iff

o0 (p)(x) = false. - -d. o([S 1, ••• ,Sn]) = o(S 1);0(7T 1) n ... n o(Sn);0(7rn).

e. (Fi~ed point property, fpp) o(Pj) = o(Sj), for eaah j € J.

Proof. By induction on the complexity of the statement schemes concerned. D

Remarks. 1. From the definitions and parts a, b, c and d of lemma 2.1 the

validity of standard properties of program schemes, such as the validity

of gs Sand E;S = S easily follows. These and similar properties will

be used without explicit mentioning.

2. As execution of [s 1, ••• ,Sn] corresponds to computation of a list of a

actual parameters which are called-by-value, part d of lemma 2.1 implies

the relational description of the call-by-value parameter mechanism.

25

LEMMA 2.2. (Monotonicity).

{V 1 J' ~ V2 .}. J f- S[V 1 ./X.]. J ~ S[V2 ./X.]. J' , ,J JE ,J J JE ,J J JE

Proof. By induction on the complexity of S.

a. s xj, then o(s[v 1,j/xjJjEJ) = o(v 1,j) ~ o(v2 ,j) = o(s[v2 ,j/Xj]jEJ'

b. SE (Ru P) - {X.}. J' then o(S[Vl ./x.J. J) = o(S[V2 ./X.]. J) = O(S).
J JE ,J J JE ,J J JE

c. S s 1;s2 , then o((S 1;s2)[V 1,/Xj]jEJ) =
o(s 1[V 1 ./X.]. J;S 2[v1 ./X.]. J) = (len:ma 2.1)

,J J J E ,J J J E
O(S 1[V 1 ./X.J. J);o(S 2[V 1 ./X.]. J) c (induction hypothesis)

, J J J E ,J J J E -
o(S 1[V2 ./X.]. J);o(s2[V2 ./X.]. J) = (lemma 2.1)

,J J JE ,J J JE
O(S 1[v2 ./X.]. J;s 2[v2 ./X.]. J) = o((S 1;s2)[V2 ./X.]. J).

,J J J E ,J J J E ,J J J E

d. S = (p + s 1,s2) or S = [S 1 , .•• ,Sn]' similar to c. D

COROLLARY 2.2, (Substitutivity rule).

{V1 . = v 2 .}. J f- S[V 1 ./X.]. J = S[V2 ./X.]. J'
,J ,J JE ,J J JE ,J J JE

Next we state a technical result concerning substitution.

LEMMA 2.3.

a. For closed s, S[P./X.]. J = S.
J J J E

~

b. For arbitrary S, {V. c P.}. J f- S[P./X.]. J[V./X.]. Jc S[V./X.]. J'
J - J JE J J JE J J JE - J J JE
~ ~ ~

C, For arbitrary s, S[V./X.]. J = S[V./X.]. J'
J J JE J J JE

Proof. Follows from the definitions, properties of substitution and mono

tonicity, by induction on the complexity of S. D

Informally, if a recursive procedure Pn,s terminates for a given ar

gument, this happens after a finite number of "inner calls" of this proce

dure. We may think of these calls as being nested (where a call on a deeper

level is invoked by a call on a previous level). By the recursion depth of

the original call we mean the depth of this nesting. At the innermost level,

calls of Pn,s are not executed again, whence they may be replaced by nn,s

without affecting the computation.

This process of replacement can be generalized to calls of sinruZtaneousZy

declared recursive procedures: Let s 0•s be a statement scheme. Then S(n)

26

is obtained from S by u:niformly replacing calls of P~'~ at level n by nn,~
for j E J with s<O) defined as n°,s. We may think ofJo(S(n)) as restrict

ing o(S) to those arguments which during execution of S cause execution of

calls of P, with recursion depth less than n.
J

Thus we conclude that

x o(S) y iff 3n[x o(S(n)) y].

THEOREM 2.1. (Union theorem). Let S be a closed statement scheme. Then, for

aU operational interpretations o,

o(S) U o(S(n)).
n=O

In order to prove the union theorem we need some auxiliary definitions

characterizing (I) which occurrences of procedure symbols are executed in a

computation model, (2) the relation between occurrences of the same proce

dure symbol in proceeding computations, (3) statement schemes obtained by

successive uniform replacement of procedure calls by their bodies and

(4) s<n).

DEFINITION 2.6.

Executable occurrence. A procedure symbol P. occurs executable in a compu-
J

tation model CM if it occurs in some computation sequence x 1 s 1 x2 •••

••• xn Sn xn+I contained in CM, such that for some i, I $ i $ n, Si Pj

or S. = P,;S.
l J

To id.entify. Let CM be a computation model with constituent sequence

x 1 s1 x2 ••• xn Sn xn+l' Consider an occurrence of Pj in some S, with S

occurring in Si, I$ i $ n. This occurrence directly id.entifies the corre

sponding occurrence of Pj in S occurring in Si+! ors; below, in each of

the following cases:

(a) s. R;S and Si+! = S with R E A u Cu X,
l

(b) s. Pk;S and Si+! = Sk; S, ~J,
l

(cl) s. (S);V3 and S occurs as first statement s' of the associated com-
l *)

I
putation model for xiSxi+I'

*) Hence, for some v1 and v2, S

27

(c2) s. = (VI ; V 2) ; S and Si+ I = s,
:\,_

(di) s. (p + S,V) or S. = (p + V ,S), and Si+I = s,
].].

(d2) s. (p + s,v1);V2 or Si= (p + v 1,s);V2 , and Si+! = S;V2,
].

(d3) s. (p + v 1,v2);S and Si+! = v 1;s or Si+! = v 2;s,
].

(el) s. [V 1, ••• ,Vm] or Si = [VI , ••• , V m] ; V, and S = Vk for some k,
].

I ~ k ~ m, CM contains an associated computation model CM' for

x.Sx. 1 k' and S occurs as first statement S 11 of the constituent com-
1. 1.+ '

putation sequence of CM',

(e2) Si= [V 1, ••• ,Vm];S and Si+I S.

The relationship to identify is defined as the reflexive and transitive
*) closure of the relationship to identify directly, defined above.

S[OJ = S,

S(O) = rl,

s[k+IJ=S[S~kJ/x.J. fork= 0,1,2, •..•
J J JEJ

S(k+I) = ~scs<.k);x.J. f k O I 2 J J J e:J or = , , , • • • •

. (n+I) (n) [n] The connect1.ons between P , S and S are established in

LEMMA 2.4. Let n be a na-tural number. Then P~n+I)

= ~[Q./X.]. J and s[k+I] = s[k][lJ_ J
J J JE

Proof. We prove the second result only. Use induction on n.

(I) - ~ L0J I. k = O. S - S[Q./X.]. J = S [Q./X.]. J'
J J JE J J JE

2. Assume the result for n = k. We have

Lk+1J ~ S [Q,/X.]. J = S[S. /X.]. J[Q,/X.]. J = (lemma 2.3)
,,----, J J JE J J JE J J JE ;,.------'

~ [k] . ~ [k]
S[S. /X.]. J[Q./X.]. J = (cha1.n rule) S[S. [Q./X.]. J/X.]. J

J J JE J J JE J J J JE J JE

= (induction hypothesis) S[S~k+l)/X.]. J = s(k+2). O
J J JE

In order to prove a(S) c U O(S(n)) we shall transform a computation
- n=O

model for xSy for some n into a computation model for xS(n)y.

Let S be closed and CM be a computation model for xSy with constituent se

quence x 1 S1 x2 •·· xn Sn+I xn+I" If no 'occurrences of Pj in Sare executed

to compute y, all occurrences of Pj identified by occurrences of pj in s 1

*)
Hence, if Si= Pj or Si= Pj;V, the only or first occurrence, respec-
tively, of Pj in Si identif1.es no occurrence in Si+)•

28

may be replaced by arbitrary statements of appropriate type for all j E J

without affeating the aomputation of y:

LEMMA 2.5. Let CM and S be as stated above. If CM aontains no exeautable

oaaurrenaes of P., the following holds: If statemPnt sahemes V. are of the
J J

same type as P. for all j E J, there exists a aomputation model for
~ J

xS[V./X.]. JY•
J J J E

Observe as a corollary that by choosing Q for V. one obtains a computation

model for xS(l)y. If P. is executed in CM, ther~ exists at least one occur
J

rence of P. identifying an earliest executable occurrence of P. with res-
J J

pect to a certain order. CM can then be transformed into a computation

model in which all occurrences of P. in CM identified by such an occurrence
J

are replaced by Sj' except the executable one, which is deleted together

with the xi Si part in which it is contained. The resulting model still

computes the same output as CM, but contains at least one executable occur

rence of some P. less than CM, as at least one application of the copy-rule
J

has been dealt with:

LEMMA 2.6. (VAN EMDE BOAS). Let CM and S be as stated above. If for some

j E Jan oaaurrenae of P. in s1 identifies an exeautable oaaurrenae of P.,

there exists a aomputati~n model for xS[IJY whiah aontains at least one J

exeautable oaaurrenae of P. less than CM.
J

A S[k] [I J [k+ I J b 1 2 4 d 1 · . f 1 2 6 1 d s S y emma • , repeate app ication o emma • ea s

finally to a computation model for xS[n]y in which all executable occur-

rences of P.
J

have been removed for all j E J. Therefore lemma 2.5 applies,
Tr yielding a computation model

(n+I)
for xS n [Q./P.]. Jy and hence, by lennna 2.4,

J J J E
for xS y:

LEMMA 2. 7. Let CM and S be as stated above. Then there exists for some n a
aomputation model fo1• xS(n)y.

The proofs of these three lemmas are contained in appendix I.

Next we prove U o(S(n)) ~ o(S):
n=O

First we show that for each J. E J and each k, P~k) c P .• Use induction on
J - J

k.

I. k = O. Clear.

(k+l) (k) _ ~ (k-1)/ 2. Assume the result fork. P. = (lerrnna 2.4) S. - S.[S. X.]. J
J J J J~ J]€

S.[P~k)/X.]. Jc (induction hypothesis and lerrnna 2.2) S.[P./X.]. J
J J J]€ - J J J]€

S. = (leunna 2.1) P .•
J J

Next we show that S(k) s S : s<k) = s[s~k-l) /x.J. 3
J J J €

s (letmna 2.2) S[P./X.]. J = (leunna 2.3) S.
J J]€

00

Thus U
n=O

s(n) s S follows. D

Remark. In the sequel we abbreviate "For all a, o(S)

s=Us(n)_
n=O

~ (k) S[P. /X.]. JS
J J J €

As a corollary to theorem 2,1 we immediately obtain the least fixed

point property (called lfpp) of procedures:

COROLLARY 2.3. {s.[v./x.J. Jc v.}. J L {P. c v.L 3 •
J J J JE - J JE I J - J JE

Proof. Use P. =
J

J. P~O) c V. is
J - J

U P~k) and induction on k.
k=O J
clear.

2. Assume the result fork,

s (induction hypothesis)

then p~k+l) = s~k)
~ J J
s . [V. /X.] . J C V .•

J J J]€ - J

~ (k)
= S. [P. /X.]. J S

J J J J €

□

Remark. Combination of the fixed point and least fixed point properties

yields, for all i E J,

o(p.) = n{o(V.) I o(Sk[V./X.]. 3) s o(Vk), for all k E J}.
1. 1. J J]€

29

This formula may be misunderstood on account of notational difficulties;

however, by standard mathematical practice, it is an abbreviated linearized

form of the much more unwieldy formula below:

o(Pi)
For

k E

n o(Vi).
all <Vk>kEJ s.t. for each

J, o(Sk[V./X.]. 3) co(Vk)
J J J E -

This characterization of o(Pi) is the key to the definition of the mathe

matical interpretation of µ-terms in the next section.

30

The following lemma legitimates the modular approach to programming

and is a simple consequence of fpp (lemma 2.1.e), the substitutivity rule

(corollary 2.2) and lfpp (corollary 2.3).

LEMMA 2.8. (Modularity lemma). Let J and K be disjoint index sets, Zet S.
J

for aZZ j E J be a cZosed statement scheme of which the procedure syniboZs

are indexed by K, and Zet Sand, for aZZ <j,k> E J x K, sj,k be cZosed

statement schemes the procedure syniboZs of which are indexed by J, then

<{P. = S.[S. /X] K}. J'S>=
J J J, Q, Q, Q,E J E

= <{P. k = s. k[S.[P. /X] K/X.]. J} . k J K'S[S.[P. /X J K/X.]. J> J , J , J J ,Q, Q, Q,E J J E < J , >E X J J , ,Q, ,Q, Q,E J J E

is vaZid.

PROOF. The case J = {O} and K = {1,2} is considered to be representative.

Then one has to prove <PO = SO(s 1(PO),S2(PO)),PO> =

= <Pl 4== Sl(So(Pl,P2)),P2 = S2(So(PI ,P2)),So(P),P2)>.

Consider the following declaration scheme:

{Po <:= so<s1 (Po) ,S2(Po)) ,Pl -= SI (So(Pl ,P2)) ,P2 <:= S2(So(Pl ,P2))'

P3 = So(Pl'P2),P4 = Sl(Po),Ps =- S2(Po)}.

With respect to this declaration scheme one proves PO = P3 by applying lfpp

on {PO~ P3, pl~ P4, p2 ~ PS, P3 ~ PO, p4 ~ Pl, PS~ P2}.
E.g., sO(s 1 (P3),s2(P3)) ~ P3 is derived by s O(s 1(P3),s2(P3)) =

= (fpp and substitution rule) s O(s 1(s O(P 1,P2)),S 2(s O(P 1,P2))) = (similarly)

s O(P 1,P2) = (fpp) P3 •

As P3 = (fpp) sO(P1,P2), the desired result is obtained by deleting decla

rations for uncalled procedures. D

Let us introduce the following convention. Calls of recursive proce

dures P, with P declared by P == (p ➔ S;P,E), are written as p * S. Hence

declarations of such Pare omitted.

Next we demonstrate how to apply this lemma to obtain a simple proof

for a tree-traversal result in DE BAKKER and DE ROEVER [II], section 4.5,

and mention that the equivalences between certain procedures which do not

have the form of while statements and nested while statements, contained in

the same paper, section 5.1, can be proved as simple application of modu

larity, too. We quote, mutatis mutandis:

"The following problem, which at first sight appeared to be a problem

of tree searching, was suggested to us •.• by J.D. ALANEN.

Suppose one wishes to perform a certain action A in all nodes of all

trees of a forest (in the sense of KNUTH [36], pp. 305-307). Let, for

x any node, s(x) be interpreted as "has x a son?", and b(x) as "has x

a brother?". Let S(x) be: "Visit the first son of x", B(x) be: "Visit

the first brother of x", and F(x): "Visit the father of x". The problem

posed to us can then be formulated as:

<P = A;(s + S;P;F,E);(b + B;P,E),P>

<P <=- A;(s + S;P; b* (B;P);F,E),P; b* (B;P)>."

This equivalence can be obtained from lemma 2.8 by taking P1;P2 for s0 ,

A;(s + S;P0 ;F,E) for s1 and (b + B;P0 ,E) for s2•

31

32

3. THE CORRECTNESS LANGUAGE MU

3. J. Definition of MU

MU is a formal language for binary relations over cartesian products

which has least fixed point operators in order to characterize the input

output behaviour of recursive program schemes, Its semantics will be des

cribed using elementary model-theoretic concepts. This involves a mathemat

iaal, as opposed to operational, characterization of its semantics, and re

sults in a rigorous definition of its interpretations m, which will be

axiomatized in the next chapter.

DEFINITION 3.J. (Syntax of MU)

Basia symbols. The class of basic symbols is the union of the classes of

symbols for individual relation constants, boolean relation constants, log

ical relation constants and relation variables.

a. The class of individual relation aonstant symbols A contains for all
~ 1 t d db An,s An,s An,s types <n,s> e emen s enote y , 1 , ••• , i , ••• ,

b. The class of Boolean relation constant symbols B contains for all n elements
d t d b n,n n,n d ,n,n ,n,n eno e y p , p 1 , • • • an p 1 , , , • , q , • • •

c. The class of logical relation aonstant symbols C contains for all types

n,s n,s n,n nlx ••. xnn,ni . _
concerned the symbols fl ,U ,E ,11i , l. - I, ... ,n.

d. The class of relation variable symbols X contains for all types <n,s>

1 d d b Xn,s xn,s zn,s e ements enote Y , 1 , ••• , , ••• •

Terms. The class of terms T, with arbitrary elements

is the smallest collection satisfying:

a. Au Bu Cu X ~ T

n,s n,s n,s a ,a 1 , ••• ,T , •••

33

b. If on' 1; E r, then 01; 'n and on' 1; E r.
c. If on,i::,,i::,B ET then (o;,)n,B ET, and if on,i::,,n,i; ET then

(o u ,)n,i::,(o n ,)n,i; ET. *)

nl,i;I nn,i;n
X , •.. ,Xn denote pairwise distinct

ni,i;i
relation variables then µix 1, •• Xn[o 1,,,.,on] ET, for i= 1, ... ,n.

Free var>iabZes. An occurrence of a relation variable Xis free in o iff this

occurrence is not contained in a subterm of cr of the form JJ, ••• X •·· [•••].
l.

SyntaatiaaZZy aontinuous. A term o is syntactically continuous in X if no

free occurrence of X in cr lies within any subterm T.

WeZZ-formed terms. A term cr is well-formed if, for all terms

µiX 1 .•. Xn[o 1, ••. ,on] occurring as subterms of cr, each oj is syntactically

continuous in each~• j,k = J, •.• ,n.

Assertions. An atorrria formula is of the form cr 1 ~ o2 with o 1,o 2 ET. A for

rrruZa is a set of atomic formulae {cr 1 , 1 ~ o2, 1}lEL with L any index set. An

assertion is of the form q, j- '¥ with q, and 'I' formulae.

Remarks. I. o1 = o2 is an abbreviation for o 1 ~ o2 , o2 ~ o 1 and µ 1X1[o 1J
is written as µX[o].

2, For empty q,, q, j- 'I' is written as j- 'I'.

DEFINITION 3.2. (Substitution)

Leto ET and J be any index set, {X.}. J denote a set of pairwise disjoint
J JE

relation variables, and{,.}. J denote a set of terms, such that, for j EJ,
J JE

X. and T, are of the same type, then o[,./X.]. J is defined as follows:
J J J J JE

In accordance with the convention, that";" binds stronger than "n" and
"n" binds stronger than "u", the parentheses around o; T, o n T and o u T

will be often deleted. If the reader so wishes, he may stipulate any con
vention for parenthesis insertion in case the same binary operators occur
adjacently. However, by associativity of these operators, the need for
this is limited.

34

a. If cr X. for some j € J then cr[T./X.]. J = T.,

b. If J

c. If cr

tively.

J J J J€ J

0 or cr €Au Bu Cu (X - {X.}. J) then cr[T./X.]. J cr.
J J€ J J J€

crl or (JI then cr[T./X.]. J=~) T, .]. J or cr)[T./X.]. J'
J J J€ J J J€ J J J€

d. If cr = cr 1;cr2, cr 1 u cr 2 or cr 1 n cr2 then cr[Tj/Xj]jEJ =

= crl[T,/X.]. J;cr2[T,/X.]. J' cr)[T./X.]. Ju cr2[T./X.]. J or
J J J€ J J J€ J J J€ J J J€

cr 1[T./X.]. J n cr 2[T,/X.]. J' respectively.
J J J€ J J J€

e. If cr = µ.Z 1 ••• Z [cr 1, ••• ,cr J then, for i = l, ••• ,n,
1. n n

cr[T,/X.], J = µ.Y1···y [cr)[Y,/Z,], {I }[T./X.]. J*'"'' J J J E 1. n "' "' "'€ , ••• , n J J J €
••• ,cr [Y 0 /Z 0] 0 {I }[T./X.]. J*J' * n "' "' "'€ , ... , n J J J E

where J J - {j I jEJ and (3i[J:s;i:s;n and Z. =X.])}, whence
1. J

{X.}. J* {x.}. J - {x. I jEJ and (3i[J:s;i:s;n and z. = x.J)},
J]€ J JE J 1. J

respec-

and Y1, ••• ,Yn are pairwise distinct relation variables such that,

for i = l, ••• ,n,

I. Yi and Zi are of the same type,

2, for j E J, Y. f x.,
1. J

3, Yi does not occur in any crk (k = l, ••• ,n), nor in any Tj (j E J*),

4. (to make the definition definite) the choice of Yi is determined in

advance, e.g., if for i = l, ••• ,k Yi has been chosen, and k < n, then

Yk+I is taken to be the first variable in some fixed alphabetical

arrangement of the variables such that it fulfills (I) to (3) above,

Remarks. I. Thus cr[T./X.]. J is obtained from cr by simultaneous substitu
J J JE

tion of,. for X., replacing bound variables whenever necessary in order
J J

to prevent binding of free occurrences of~ in any substituted Tj' and

omitting substitution for bound variables (cf. HINDLEY, LERCHER and

SELDIN [26], definition 1.4), for j € J.

2. Definition 3.2 is extended to formulae by writing

{crl,l S cr2,l}lEL[Tj/Xj]jEJ for {crl,l[Tj/Xj]jEJ S cr2,l[Tj/Xj]jEJ}lEL 0

3, Properties involving the substitution operator such as the chain rule

can be proved by induction on the complexity of cr.

4. If J = {J, ••• ,n}, cr[T./X.]. J is written as cr[T./X.J._ 1 or
J J JE J J J- , ... ,n

cr(T 1, ••• ,Tn). If J = {I} we also use cr[T/X].

35

Compared with the everyday relational language the µ-terms

µiX 1, •• Xn[, 1 , ••• ''n] represent the only new feature of MU and its predeces

sors (cf, SCOTT and DE BAKKER [59], DE BAKKER [9] and DE BAKKER and

DE ROEVER [II]). In order to explain their interpretation we first describe

the concept of continuity.

A term, induces upon interpretation of its constants a functional of

tuples of relations to relations by selecting a fixed component of these

tuples as interpretation for each free variable occurring in,, Therefore

interpretations of variables, called variabZe vaZuations v, have to be

separated from interpretations of constants, called initiaZ interpretations

1, Thus a pair <,,1> determines a functional; this functional is called

modeZ function and denoted by <P 1 <,>.

Continuity of <P <,> in x1, ••• ,X can now be defined as follows: Let, be a
i n

term, x 1, ••• ,Xn be variables, 1 be an initial interpretation and v and, for

each j EN, v., be variable valuations satisfying, for i = I , .•• ,n,
00 J

v(X.) = u0 v.(X.), v.(X.) c v. 1(X.) and v(X) = v.(X) for X different from
l. j= J l. J l. - J+ l. J

X., for all j. Then <P <,> is continuous in x1, ••• ,X iff <P <,>(v)
1. 00 1 00 n 1

= .u0 <P <,>(v.) for all v and <v.>. 0 considered above and all 1.
J= 1 J J J=

This concept derives its importance from the fact that only if

"' "' < > t" · X x is Scott's induction rule for '1' 1 <, 1>,.,,,'1' 1 'n are con 1.nuous 1.n 1, ... , n'

establishing properties of <P <µ.X 1 ••• X [, 1, ••• ,,]>(v) valid.
1 1. n n

A syntactically sufficient, although not necessary condition for continuity

of <ji 1 <,> in x 1, ••• ,Xn' is the following one: free occurrences of x 1, ••• ,Xn

are not contained in complemented subterms of,, i.e., , is syntactically

continuous in x 1, ••• ,xn.

We therefore define the interpretation of µiX 1 ••• Xn[, 1 , ••• ,,n] only if

, 1, ••• ,,n are syntactically continuous in x 1 , ••• ,Xn' and refer to HITCHCOCK

and PARK [28] for more general considerations.

DEFINITION 3.3. (Semantics of MU)

Assignment of -t;ypes. An initiaZ assignment of types is a function

t 0 : G ➔ V, where G is the collection of possibly subscripted greek letters

and Vis a class of non-empty domains. An assignment of types, relative to a given

initial assignment of types t 0 , is a function t defined by(!) for n E G,
t(n)=t0(n), and (2) for any compound (domain type, cf. definition 2.1)

(n 1 x ... xnn), t(n) = t(n 1) x ... x t(nn). For n E G, t(n) will be referred

36

to as D, and for n=(n 1 x, .• xn) with n. E G, i
n n 1.

t, ... ,n, t(n) will be

referred to as D x ••• x D
nl nn

Initial interp~etation. Relative to a given assignment of types t, an ini
n1xn2

tial interpretation is a function

for all types involved.

1: Au Bu C -- U 2 satisfying
n1 ,D2€v

a. 1(An's) ~ t(n) X t(;).

b. For pn,n,P,n,n € B, 1(pn'n) and 1(p'n'n) are disjoint subsets of the

identity relation over t(n).

c. 1(nn,s) is the empty subset of t(n) x t(;), 1(En'n) is the identity
s nix .• ,xnn,ni

relation over t(n), t(Un,) is t(n) x t(;) itself and 1(Tii)

is the projection function of t(n1) x ••. x t(nn) on its i-th consti

tuent component.

V~able valuation. Relative to a given assignment of types t, the class of

variable valuations V contains the functions v
n1xn2

X + U 2 , satis-
n1 ,D2€V

Mod.el fu:nation. Relative to a given assignment of types t and an initial
D xn

¢ <crn's> : V + 2 n sis defined as
t

interpretation t, the model function

follows for well-formed terms crn's:

a. ¢1<R>(v)

b. ¢ 1 <X>(v)

1 (R), R € A u B u C.

v(X), X € X.

c. ¢1<cr 1;cr 2>(v) = ¢1<cr 1>(v);¢ 1<cr 2>(v), ¢1 <cr 1 ucr 2>(v)=¢ 1 <cr 1>(v) u¢1<cr2>(v),

(~ -------------¢ 1 <cr 1 n cr2> v) = ¢1<cr 1>(v) n ¢1<cr 2>(v), ¢1<cr>(v) = ¢1<cr>(v),

¢ <cr>(v) = ¢ <cr>(v).
t 1

d. ¢, <µ.XI ... X [cr 1, ... ,cr]>(v)
1 1. n n

(n{<v'(Xk)>~=l I ¢1<crk>(v') ~ v'(¾), k=l, ..• ,n, and v'(X)=v(X) *)

for X € X - {X1, ... ,X }}) .
n l.

*)cf. remark on page 29,

Interpretation of terms. An interpretation of terms is a triple <t0 ,1,v>

where each term o is interpreted as ¢1<o>(v). This triple will often be
) . . () *) referred to as m. Then ¢1<o>(v is abbreviated by mo •

Satisfaation. An atomic formula o 1 s o2 satisfies an interpretation of

terms miff m(o 1) s m(o 2). A formula {o 1 , 1 s o2 , 1}1€L satisfies an inter

pretation of terms miff o 1, 1 s o2 , 1 satisfies m for all 1 EL.

VaZidit;y. An assertion 4> ~ '¥ is valid iff for every interpretation of

terms m such that 4> satisfies m, '¥ satisfies m.

Remark. The definition of µ-terms can be straightforwardly generalized to

the case where the µ-operators bind an infinite number of variables in an

infinite sequence of terms.

The results of the next section are formulated and proved in such a way

that they still apply if this generalization is effected.

3.2. Validit;y of Saott 1s induation rule and the translation theorem.

37

First the union theorem for MU is proved. This theorem is then applied

to proving (I) validity of Scott's induction rule and (2) the translation

theorem.

The reader who has followed the technical development of the previous chap

ter will observe a certain analogy between the results contained therein

and the results of the present section. Notably, monotoniait;y is used in

both chapters in proving union theorems. The substitutivity property, how

ever, plays a more important role in this section and the aontinuit;y prop

erty is only defined in section 3.1. We state these properties in the fol

lowing lemmas and refer to appendix 2 for proofs.

(• ') **) b . de LEMMA 3.1. Monotom.city • Let J e any -z.n x set, x. E Xfor aU j E J.1 o E Tbe
J

syntaatiaally aontinuous in Xj' j € J, and variable valuations v 1 and v 2
satisfy (I) v 1(Xj) s v2(xj) for j € J and (2) v 1(X) = v2(X) for

X € X - {X.}. 3. Then the following holds:
J J €

¢<o>(v 1) s ¢<o>(v2).

*) In the sequel mis often called the mathematiaal interpretation, as op-
posed too, the operational interpretation.

**) Reference to a given initial interpretation is tacitly assumed. Accord-
ingly, ¢1<o> will be written as ¢<o>,

38

LEMMA 3.2. (Continuity). Let J be any index set, X. EX for aUj E J, cr E Tbe
J

syntaatiaaUy aontinuous in Xj , j E J, and v and vi (i E N) b~ variable

valuations whiah satisfy, for i EN and j E J, (I) v(X.) = .uO v.(X.),
J 1.= 1. J

(2) v. (X.) c v.+l (X.)
1. J - 1. J

and (3) v(X) = v.(X) for XE X - {X.}. J" Then the
1. J J E

fo Uowing ho ld.B:

¢<cr>(v) = .U ¢<cr>(v.).
1.=0 1.

LEMMA 3.3. (Substitutivity), Let J be any index set, cr ET, X. EX and
J

T. ET for j E J,
J

¢<Tj>(v2) for j E

following hold.B:

and variable valuations v 1 and v2 satisfy (I) v 1(xj) =

J and (2) v 1(X) = v2(X) for XE X - {Xj}jEJ' Then the

¢<cr>(vl) = ¢<cr[T./X.]. J>(v2>·
J J JE

COROLLARY 3.1. (Change of bound variables). If Y1, ••• ,Yn do not occur free

in cr 1 , ••• ,crn,

¢<µ.YI ••• Y [crl[Yl/Xl]l=I , •.. ,cr [Yl/Xl]l=I]>(v).
1 n , ... ,n n , ... ,n .

Proof. Follows by definition 3.2 from lemma 3.3. D

The union theorem for MU states that least fixed points

<¢<µ 1x1 ••• Xn[cr 1, ••• ,crn]>(v), ••• ,¢<µnXl •. ,Xn[cr 1, ••• ,crn]>(v)> of continuous

functionals Av<¢<cr 1>(v),.,.,¢<crn>(v)> can be obtained as unions of sequences

of finite approximations <¢<cr~>(v),, •• ,¢<cr~>(v)>, i=O,I, ... , with crt simi

larly defined as S~i), k l,, •• ,n, cf, definition 2.6.

nl ,1::1 nn,i:;n
Let x1 , ••• ,Xn E X be the free variables in

i O nk,1::k
ET, then crk is defined by (I) crk = n and

i
crk[cr1/x1Jl=l, ••• ,n' fork= 1, .•. ,n.

THEOREM 3,1, (Union theorem for MU), Let cr 1, ••• ,crn ET be syntaatiaally

aontinuous in x1 , ••• ,Xn E X. Then the following hold.B for aU variable

valuations v:

39

k I , ••• ,n.

Proof. The proof splits into three parts. In the first part we prove
i i+l . N ¢<ak>(v) s ¢<ak >(v) for i E , in the second part

00 i
¢<µkXI ... X [a 1, ... ,a]> (v) s . U ¢<ak> (v), and ir. the third part

n n i=O
00 i

¢<µkX 1 ... Xn[a 1, ... ,an]>(v) ~ i~O ¢<ak>(v) (the reverse inclusion).

Part 1. By induction on i. Obviously, ¢<a~>(v) c ¢<a!>(v~.
. i-1 i i

Assume by hypothesis ¢<ak >(v) s ¢<ak>(v) and prove ¢<ak>~v) s

k = J, ... ,n. Define variable valuation v1 by v 1(~) = ¢<a~>(v) for

k = J, ... ,n and v 1(x) = ~(X), otherwise.
i+I i

Then ¢<ak >(v) = ¢<ak[a1/x1J1=J, ... ,n>(v) = (substitutivity) ¢<ak>(v1).

Similarly, ¢<a!>(v) = ¢<ak>(v2) with v2 defined by v2(~)
i-1

¢<ak >(v) for

k = J, ... ,n and v2 (x) = v(X), otherwise.

As a 1, ... ,an are syntactically continuous, ¢<at~~~)= ¢<ak>(v2) ~
.'.:. (monotonicity and hypothesis) ¢<ak>(v1) = ¢<a~ >(v), fork= l, ... ,n.

Part 2. c: Define variable valuations v' and, for i EN, v., as follows:
- . i

00 i
v'(x_) = .U ¢<ak>(v) fork= J, ... ,n, and v'(X) = v(X), otherwise, and -K i=O .
similarly vi(\;)= ¢<a~>(v) fork= J, ... ,n, and vi (X) = v(X), otherwise.

Then v'(\;) = iMo vi(\;) fork= J, ••• ,n and v'(X) = vi(X), otherwise. In

i i+I
part I we proved ¢<ak>(v) S ¢<ak >(v), whence vi(~) s vi+I(~). As ak is

syntactically continuous in x1, ... ,X, the assumptions for continuity are
oo n

fulfilled, whence ¢<ak>(v 1) = i~O ¢<ak>(vi) = (substitutivity)
00 i+ I 00 i

i~O ¢<ak >(v) = i~O ¢<ak>(v) = v'(~). Thus v' satisfies ¢<ak>(v')sv'(~)

fork= J, ••• ,n and v'(X) = v(X), otherwise, whence

(n{<V"(X1)>~=l J ¢<a1>(v") S v"(X1), l=I, ... ,n, and v"(X)=v(X)

for XE X - {x 1, ... ,Xn}} \ s

s v'(~) = .u ¢<at>(v).
i=O

Part 3. ~: Let v' satisfy ¢<ak>(v') s v'(\;) fork= J, ... ,n and v'(X)

= v(X), otherwise.
i

Then we prove ¢<ak>(v') s v'(\;) for i EN by induction on i. Obviously,
0

¢<ak>(v') s v' (\;)·

40

. i+J
Assume by hypothesis ¢<cr~>(v 1) s v'(¾) and prove ¢<crk >(v') s v'(¾),

k=J , ••• ,n.

Define variable valuation v" by v"(~)

v"(X) = v' (X), otherwise.

I, ••• ,n and

i+J (') - [i/] (') (. . .) (") Then ¢<crk > v - ¢<crk cr1 x1 l=l, ••• ,n> v = subst1tut1v1ty ¢<crk> v s

i
s (monotonicity, as v"(¾) = ¢<crk>(v') s v' (¾) by hypothesis and v"(X) =

00 i
= v'(X), otherwise) ¢<crk>(v')sv'(¾). Thus i~O ¢<crk>(v) = (Xl' ... ,Xn not

occurring in cr!) i~O ¢<a!> (v') s v' (¾). As this holds for all v' considered

above,

(O{<v 1 (X1)>~=l I ¢<cr1>(v') s v'(X1), l=J, ... ,n, and v'(X)=v(X)

for XEX-{x1, ... ,xn}}\, D

Scott's induction rule is the main innovation of SCOTT and DE BAKKER

[59], represents a general formulation for inductive arguments which does

not assume any knowledge of the integers, and unifies methods for proof by

induction such as recursion induction (McCARTHY [45]), structural induction

(BURSTALL [SJ) and computational induction (MANNA and VUILLEMIN [43]).

Its formulation is given by

I:
nk,i;k

qi I- 'l'[µkXI ... X [crl' ... ,cr]/x_]k=l ' n n -le , ••• ,n

where qi has no free occurrences of Xi, and 'I' only contains occurrences of

Xi which are not contained in complemented subterms.

THEOREM 3.2. (Validity of Scott's induction rule, I). If qi and 'I' ewe for

mulae such that qi does not contain any free ocaurrence of¾• k = J, .•• ,n,

and all terms contained in 'I' ewe syntactically continuous in¾•
k = J, ••• ,n, then I is valid.

41

Proof. Let v be any variable valuation satisfying~. let v' be defined by

v'(X.) = ¢<µ X ••. x [cr 1, .•• ,cr]>(v) fork= l, ..• ,n and v'(X) = v(X),
-l.c k J· n n

otherwise, and let 'l,l ~ • 2 , 1 be any atomic formula contained in

f = {,1,1 ~ '2,1}1EL 0

We prove ¢<, 1 1[µkX 1 ••• X [cr 1, ••• ,cr]/X. Jk=I >(v) ~ , n n -K , ••• ,a
~ ¢<,2 l[µkXI ••• X [cr1,···•cr]/X. Jk=I >(v). , n n -K , ••• ,n
By substitutivity, ¢<,. 1[µkX 1 ..• X [cr 1, ••• ,cr J/X. Jk=I n>(v) ¢<,. l>(v'), J, n n -K. , ••• , J,
j = 1,2.

v. be defined l.
and v.(X) = v(X), otherwise, i EN.

l. ex,

Then¢<,. 1>(v') = ,U ¢<,. 1>(v.), j
J' 1.=0 J' l.

ex,

by vi(~) I, ... ,n,

I ,2, by continuity.
ex,

Therefore we must prove .u ¢<, 1 1>(v.)
1.=0 ' l.

~ U ¢<,2 , 1>(vl..) in order to ob
i=O

tain the desired result.

It is sufficient to prove ¢<, 1,1>(vi) ~ ¢<,2 ,1>(vi) by induction on i.
i nk,l;;k

For i = 0, crk = Q , whence ¢<, 1, 1>(v0) ~ ¢<,2 ,1>(v0) follows by sub-

nk,!;;k
stitutivity from validity of ~ I- f[Q /X.]k=I , as (I) v and v0 -K , ... ,n
differ only in their assignments of relations to x1, ••• ,Xn' (2) ~ satisfies

v and x 1, ••• ,Xn do not occur free within~. whence (3) ~ satisfies v0 •

Assume as hypothesis ¢<, 1,1>(vi) S ¢<,2, 1>(vi)' 1 EL, and prove ¢<, 1, 1>(vi+I) ~

¢<,2,l>(vi+I), l EL.

Validity of ~,f ~ ncrk/x. Jk=I implies in particular that if ~ and f -le , ••• ,n
satisf~ v., f[crk/x. Jk=I satisfies v .• Now~ satisfies v. by an argu-

1. -K , .•. ,n 1. 1

ment similar to the one above for i = O. By hypothesis, f satisfies v .•
l.

Therefore we conclude that f[crk/X. Jk=l - satisfies v. and in,particular -K , ••• ,n 1.

¢<,I l[crk/X. Jk=I n>(vi.) ~ ¢<,2 1[crk/X. Jk=I >(v.). By definitions , -7.c '• • •, ' --1c. , •• • ,n l.

¢<~>(vi+I) follows by substitutivity, whence

= ¢<,j,l>(vi+I), j = 1,2, by substitutivity,

Finally we define the mapping tr: PL+ MU (compare section 1.2) and

prove the translation theorem.

42

DEFINITION 3,5. (tr), The mapping tr of program schemes of PL into terms of

MU is defined as follows: consider a program scheme

T =<{Pk¢= Sk}k=I ,S>, with all procedure symbols contained in S
, • • • , n

amongst those denoted by P , ••• ,P, then tr(T) is inductively defined by
I n

a. tr(R) = R, for i EA u Cu X.

b. tr(P.) = µ.X 1 ... x [tr(s1), ... ,tr(S)], i = l, ... ,n.
1 1 n n

c. tr(S 1;s2) = tr(S 1);tr(S2), tr(p + s 1,s2) = p;tr(S 1) u p';tr(S2) and

n ,1; 1 x •• • xi;
tr([s 1, ••• ,Sn] n) = tr(S 1);¥1 n ••• n tr(Sn);irn' with TTi of

type <i; 1x ... xi;n,i;i>' i = I, ... ,n.

THEOREM 3.3. (Translation theorem), Leto be an operational interpretation

of PL, m be a mathematiaal interpretation of MU, and o and m satisfy (I) if

RE Au Cu X then o(R) = m(R) and (2) if p EB then o(p)(x) = true iff

<x,x> E m(p) and o(p)(x) = false iff <x,x> E m(p'). Then o(T) = m(tr(T))

for all TE PS, i.e., tr is meaning preserving relative too and m.

Proof. By induction on the values under a certain measure of the complex

ities of the program schemes concerned and relative to some declaration

scheme D = {P. <= S.}. 1 • Let Nu N x {O} be well-ordered by o<, with
J J J= ' ••• ,n

o< defined by:

x ~ y iff (I) x EN and y EN and x s y, or (2) x EN and y EN x {O}, or

(3) x = <u,O> and y = <v,O> and us v.

Then this measure of complexity is the function c

defined by

a. If SE Au Cu X then c(S) = I.

b. If SEP, then c(P) = <0,0>,

PS+ Nu N x {0},

c. If S s 1;s2 , S = (p + s 1,s2), let x or <x,O> be the maximum of c(S 1)

and c(S 2) under the well-order • Then c(s 1;s2) and c(p + s 1,s2) are

defined as x+J or <x+l,O>.

d. If S = [s 1, ••• ,Sn] let x or <x,O> be the maximum of c(S 1), ••• ,c(Sn)

under the well-order o(, Then c(S 1, ••. ,Sn) is defined as x+I or <x+l,O>.

Thus c(Si) ~ c(s 1 ;s2) and c(Si) 1 c(p + s 1 ,s2) for i = J ,2,

c(S.) ~ c([S 1, ... ,S]), i = l, ... ,n, and c(S~k)) ~ c(P.) fork EN and
1 n J J

j = l, ... ,n.

43

Hence c provides the basis for the inductive proof of the translation theo

rem below:

a. If SE Au Cu X then o(S) = m(tr(S)) is obvious.

b. If S = s 1;s2 then O(S 1;s2) = (lemma 2.1) O(S 1);o(s2) = (induction hypo

thesis) m(tr(s 1));m(tr(S 2)) = m(tr(S 1);tr(S2)) = m(tr(s 1;s2)).

c. Ifs= (p + s 1,s2) then o(p + s 1,s2) = (lemma 2.1) m(p);o(s 1) u

u m(p');o(s2) = (induction hypothesis) m(p);m(tr(S 1)) u

u m(p');m(tr(s2)) = m(p;tr(s 1) u p';tr(s2)) = m(tr(p + s 1,s2)).

d. Ifs= [s 1 , ••• ,s J then o(S) = (lemma 2.1) o(s 1);o~ n n
-c..---- n ___,,

n o(Sn);O(Tin) = (induction hypothesis) m(tr(S 1));m(TI 1) n n

n m(tr(Sn));m(TI:) = m(tr(S 1);TI 1 n ••• n tr(Sn);11n) = m(tr([S 1 , ... ,Sn])).
• 00 (i)

e. If S = P. then O(P.) = (union theorem for PL) .U o(P.) = (lemma 2.4)
J J i=O J

.TI0 O(S~i)) = (induction hypothesis) .TI0 m(tr(S~i))).
1= J 1= J

tr(S~i)) = tr(S.)i is easily proved by induction on i. Hence
oo J (i) J oo ~ i M .U m(tr(S.)) = .U m(tr(S.)) = (union theorem for U)

i=O J ~ i=O ~ J .
m(µjx 1 ••• Xn[tr(s 1), ••• ,tr(Sn)] = m(tr(Pj)), J = t, ... ,n. D

COROLLARY 3.3. The body replacement characterization of the semantics of

the considered recursive program schemes results in the same input-output

behaviour as the least fixed point characterization.

3.3. Rebuttal of Manna and Vuillemin on calZ-by-value

In [43] MANNA and VUILLEMIN discard call-by-value as a computation

rule, because, in their opinion, it does not lead to computation of the

least fixed point. Clearly, our translation theorem invalidates their

conclusion. As it happens, they work with a formal system in which least

fixed points coincide with recursive solutions computed with call-by-name

as rule of computation; this has been demonstrated in DE ROEVER [15]. Quite

correctly they observe that within such a system call-by-value does not

necessarily lead to computation of least fixed points. We may point out

that observations like this one hardly justify discarding call-by-value as

rule of computation in general.

For more remarks on the topic of parameter mechanisms (or rules of computa

tion) and least fixed point operators we refer to DE ROEVER [17] and

DE BAKKER [14].

44

4. AXIOMATIZATION OF MU

The axiomatization of MU proceeds in four successive stages:

I. In section 4.1 we develop the axiomatization of typed binary relations.

2. This axiomatization is extended in section 4.2 to boolean constants.

3. The axiomatization of projection functions in section 4.3 then results

in the axiomatization of binary relations over cartesian products.

4. The additional axiomatization of µ-terms in section 4.4 completes the

axiomatization of MU.

4.1. Axiomatization of typed binary relations

Consider the following sublanguage of MU, called MU0:

The elementary terms of MU0 are restricted to the individual

relation constants, relation variables and logical constants

nn,s, En,n and un,sof MU, i.e., boolean constants and projection

functions are excluded,

The aorrrpound terms of MU0 are those terms of MU which are con

structed using these basic terms and the 11 ;", "u", 11 n", 11 ~ 11 and

11 - 11 operators, i.e., the 11µ. 11 operators are excluded.
l

The assertions of MU0 are those assertions of MU whose atomic

formulae are inclusions between terms of MU0.

MU0 is axiomatized by the following axioms and rules:

I. The typed versions of the axioms and rules of boolean algebra (including

axioms for n and U).

2. The typed versions of Tarski's axioms for binary relations (cf. [61]):

r1 I- (xn,e;Ye,1,;);zs,s = xn,e;(Ye,1,;;zs,s)

T2 1--in,s = xn,s

45

y3 I- (Xn'e;Y8,€;)v = y8,s;Xn,e

r4 1-xn,s;Es,s xn,s

3. u
4. The substitution rule:

if~ r ~ then ~[•. /x.J. Jr ~[•. /x.J. J'
J J JE J J JE

for all suitable ~.~,J, {,.}. J' {X.}. J as defined in 3.1 and 3.2.
J JE J JE

In the sequel we omit parentheses in our formulae, based on the asso-

ciativity of binary operators and on the convention that

over "n", which has in turn priority over "u".

LEMMA 4. I.

b. I- nn,s;xs,e

c. I- En'n;xn,s

nn,e,xn's;ns,e = nn,e

xn ,s

d. I- un,s;us,e un,e

e. I- 'tin,€; = ns,n' En,n = En,n' ifl,s us,n

"·" '
has priority

f. I- xn,s;(Ys,e u zs,e) = xn,s;Ys,e u xn,s;zs,e,(xs,e u ys,e);ze,n
= xs,e;ze,n u ys,e;ze,n

g. I- (Xn,s u yn,s)v = Xn,s u yn,s ,(Xn,s n yn,sr = Xn,s n yn,s Jn,s = in,s.

Proof. Except for the proof of lemma 4.1.d which is obtained using U and a

law of boolean algebra, the proofs for the typed case are similar to the

proofs for the untyped case as contained in TARSKI [61]. D

Lemma 4. I.a expresses monotonicity of "v" and ";". Together with the

obvious monotonicity of "u" and "n", this will be used in lemma 4.9 to

establish monotonicity of syntactically continuous terms in general.

Remarks. I. Henceforward the laws of boolean algebra are used without ex

plicit reference.

2. Type indiaations are omitted provided no aonfusion arises.

46

LEMMA 4.2. f-x;Y n z = X;(X;Z n Y) n z*) •

Proof. X;Y n Z X; (U n Y) n Z
.:,-

X; ((X;Z u X;Z) n Y) n Z =

= {X; (X;Z n Y) n Z} u {X; (X;Z n Y) n Z}. Also Z;X n Z;X ri' whence by T5 ,

x; cz:ir ~

by T2, T3 and lennna 4.1, (X;X;Z) n z = ri, thus n z ri.

Therefore, X; (X;Z n Y) n Z = ri, whence X;Y n Z = X; (X;Z n Y) n Z follows. □

The first applications of lennna 4.2 follow in the proof of lennna 4.3,

in which a number of useful properties of relations and functions are for

mally derived. Remember that X0 E has been defined as X;U n E (section 1.3).

By aonvention the 11011 ope:r>ator has a higher priority than the ";" operator.

LEMMA 4.3.

a. X;X s E f- X; (Y n Z) X;Y n X;Z
V

b. X SE f- X = X

f-
V

X;X c. X = XoE ;X, X = X; XoE, XoE n E, X;U X•E ;U

d. X SY, Y;Y s E f- XoE; y = X
n n

V V

e. ~ n Xi;Yi x 1 oE; ... , X oE• (n Xi;Yi); Y1,,E; . .. , y oE.
i=l n ' i=l n

Proof. a. S· Clear.

:!.• X;Y n X;Z = (lennna 4.2) X; (X;X;Z n Y) n X;Z ::: (assumption) X; (Y n Z).

b. X = X n E = (lemma 4.2) X;(X;E n E) n Es X;X s X. Thus X::: X, whence

X ~ ~ x.

c. X = X0 E ;X: x x n u (lennna 4.2) X;(X;U n E) n u X;(X;U n E).
Thus, by T3 , X = (X;U n E).., ;X = (part b) XoE ;X.
XoE = X;X n E: Direct from lennna 4.2.

X;U = X0 E ;U: X;U = (from above) (X;U;U n E);X;U;:; (lennna 4.1) XoE ;Us

S X;U;U = X;U.

d. 2· XS Y implies Y;X s Y;Y s (assumption) E, whence X;X;Y s (part b

and T3) X and (X;X n E);Y s X;X;Y s X.

E• Immediate from part c.

e. We prove X;Y n z = XoE ;(X;Y n Z) only. :?.• Obvious.

S· X;Y n z = (part c) XoE ;X;Y n z = (part b and lennna 4.2)
XoE ;(XoE ;Z n X;Y) n z S XoE ;(X;Y n Z). □

*) This assertion can also be proved without making use of the 11 - 11 operation,
by using projection functions; an example of that style of proof is given
in appendix 3.

47

The given axiomatization of MU0 is incorrrpZete. This can be understood

as follows:

Consider the assertion

I- x1;x2 n Y1;Y2 n z1;z2 ~

~ x1;(X1;Y 1 n x2;Y2 n (X1;z 1 n x2;z2);(z 1;Y1 n z2 ;Y2));Y2•

This assertion holds in every proper relation algebra, and is therefore

valid in MUO• However, in LYNDON [37] a finite relation algebra (i.e., a

finite algebra satisfying the untyped versions of the axioms and rules for

MUO) is exhibited which is not isomorphic to any proper relation algebra

and in which the assertion stated above does not hold.*) Therefore this

assertion does not follow from our axiomatization of MuO:*)whence the result.

We emphasize that this observation does not contradict the result of

HITCHCOCK and PARK [28] that every valid assertion of MU0 can be effective

ly translated into a valid sentence of first-order predicate calculus, thus

implying, by the existence of a semi-decision procedure for first-order

predicate calculus, that there exists such a procedure for MUO•

We refer to LYNDON [38] for a very complicated compZete axiomatization of

proper relation algebras.

4. 2. Axiomatization of boo Zean r>e Zation cons tan ts

Partial predicates are represented within MU by pairs <pn,n,p,n,n>

whose interpretation is restricted to pairs of disjoint subsets of the

identity relation corresponding to inverse images of true and false. MU
-- --- 0

is extended to MU 1 by adding the boolean relation constants of MU to the

basic terms of MUO• MU 1 is axiomatized by adding the following two axioms

to those of MUO:

*)

p1 ~ Pn,n ~ En,n, P,n,n ~ En,n

p2 ~ Pn,n n P,n,n = Qn,n.

Properly speaking, LYNDON constructs a relation algebra in which

if x1;x2 n Y1;Y2 n z1;z2 # Q then

(X1;Y 1 n x2;Y2 n (X1;z 1 n x2;z2);(z1;Y 1 n z2 ;Y2)) # Q

does not hold.

**)However, as demonstrated in appendix 3, this assertion can be proved using
our axiomatization of MU2•

48

The translation theorem implies O(p + s1,s2) = m(p;VL(S 1) u p;VL(S2)),

provided o(S.) = m(VL(S.)), i = 1,2,and o(p) is represented by <m(p),m(p 1)>.
1 1

Thus axiomatization of _MU 1 leads to a theO'l'/1 of conditionals, This will be

demonstrated by deriving the usual axioms for conditionals, cf. McCARTHY

[45], as a corollary from

LEMMA 4.4. I- p = p, p;q = p n q.

Proof. p = p: Follows from lemma 4.3.b, and axiom P1•

p;q = p n q: £• Since r p £ E,q £ E,monotonicity implies

r p; q £ q, p; q £ p. Thus r p; q £ p n q.
L . V <"' .., D ~- , p n q = (lemma 4.2) p;(p;q n E) n q £ p; p;q n E) s p;p;q s p;q.

COROLLARY 4.1. Using the notation (p + X,Y) = p;X u r';Y, we have

r (p + (p + X,Y),Z) = (p + X,Z),(p + X,(p + Y,Z)) =

= (p + X,Z),(p + (q + xl,X2),(q + Yl,Y2)) = (q + (p + xl,Y)),(p + X2,Y2)).

Proof. Innnediate from lennna 4.4, using P1 and P2 • D

COROLLARY 4.2. r p;X n Y = p; (X n Y).

Proof. p;X n Y = (lennna 4.2) p;(p;Y n .X) n Y = (lemmas 4.3.a and 4.4)

p;Y n p;X = (lemma 4.3.a) p;(X n Y). □

In section 1.3 we already mentioned the 11011 operator, defined by

X0 pni/;p;U n E. The basic properties of this operator are collected in*)

LEMMA 4.5.

a. I- (X;Y} 0 p = Xo(Yop)

b. r (X 1J Y)op = Xop U Yop

c. r (X n Y)op
V'

= X;p;Y n E

d. r X;p £ Xop ;X **)

e. X;X £ E r X;p = Xop ;X

f. X;p £ q;X r Xop £ q

*) Some connections between µ-te2'1778 and the 11 0 11 operator are collected in
section 5.3.

**) Henk Goeman has observed that one can prove X;p=X0 p;X iff X;X0 p;Xsp;U;p.

Proof. a. By definition, (X;Y) 0 p = X;Y;p;U n E and X0 (Y 0 p) =

= X;(Y;p;U n E);U ri E. Since by lemma 4.3.c I- Y;p;U = (Y;p;U n E);U,

the result follows ..

b. Immediate from the definitions and lemma 4.1.

c. X;p;Y n E = (lemmas 4.2 and 4.4) X;p;(p;X n Y) n E = (corollary 4.2

and lemma 4.4) X;p;(X n Y) n E = (lemma 4.3.b) (X n Y);p;X n E =

= monotonicity and lemma 4,3,c) (X n Y);p;U n E.

49

d, Applying lemma 4.3.cwe obtain j- X;p = (X;p;U n E);X;p Ee (X;p;U n E);X=

= Xop ;X.

e. ~- By part d above.

~- Xop ;X = (lemmas 4,2 and 4,4) X0 p ;X;(X; X0 p ;Un E) Ee (lemma 4.3.c)

X;(X;X;p;U n E) .::_ (assumption) X;(p;U n E) = (corollary 4,2) X;p.

f. Assume X;p ~ q;X. Then j- X0 p = X;p;U n E ~ q;X;U n E Ee (corollary 4.2) q. D

Observe that from parts d and f of lemma 4.5, we obtain that the fol

lowing equality holds in all interpretations (compare section 1.3):

Xop n{q I X;p ~ q;X}.

4,3. Axiomatization of binary relations over cartesian products

The language MU 2 for binary relations over cartesian products is ob

tained from MU 1 by adding, for i = 1 1 ••• ,n, projection function symbols
n1x •. ,xn ,n.

11i n 1 to the basic terms of MU 1 , for all types concerned. MU2 is

axiomatized by adding the following two axiom schemes to the axioms and rules

of MU 1:
n 11 ·i'i' E

I- x 1 ;Y 1 n

= (x1 di\ n

n' n

n Xn;Yn

n Xn;i'i'n);(11 1;Y 1 n ... n 11n;Yn),

n 1x,,,xn ,n 1x, •• xn
where 11i is of type <n 1 x •.• x nn,ni>' E stands for E n n and

Xi and Yi are of types <8,ni> and <ni,,>, respectively.

An assignment xi := f(x 1, ••• ,xn) is expressed by a statement scheme V of

the form [11 1, ••• ,11. 1,s,11. 1, .•• ,11]. Hence Hoare's axiom for the assign-1.- 1.+ n
ment (cf. [29])

*)
Note added in print: By a conjecture of PARK our axiomatization of MU
is complete; this conjecture is supported by the fact that the asser-2
tion mentioned at the end of section 4.1, which is not provable using
Tarski's a~iomatization of binary relation algebras only, can be proved
by also us1.ng C1 and C2, as demonstrated in appendix 3.

50

~ {p(x1, ••• ,x. 1,f(x1, ••• ,x),x. 1, ••• ,x)}x. := f(x 1, ••• ,x){p(x1, ••• ,x)}
i- n i+ n l. n n

corresponds with the assertion I- tr(V) 0 p ;tr(V).::. tr(V);p, as q1{V}q2 is

expressed by q 1;tr(V) .::_ tr(V);q2 , and (tr(V) 0 p)(x1, ••• ,xn) =

= p(x1, ••• ,x. 1,f(x1, ... ,x),x. 1, ••• ,x) (compare section 1,3). As func-
i- n i+ n

tionality off implies t«V);tr(V) .::_Eby lennna 4.11 below, this assertion

follows from (the more general) lennna 4.5.e. Thus the axiomatization of MU2
leads to a theory of assignments.

The following lemma establishes some necessary relationships between

projection functions and the E and U constants.

LEMMA 4.6. For i=l, .•• ,n:

nix •. ,xnn,ni n- ,n. n1x ..• xn ,n 1x.,.xn
a. f- 7f. oE l. l. E n n

].

n Ix .•• xn , n. n. , ~ n Ix ... xn .~
b. f- 7f. n l. ;U l. U n

].

_,ni,nlx, •• xnn nlx ... xnn,ni n. ,n.
C, f- 7f. ; 1T.

El. l.
].].

"n i 'n Ix ••• xnn n Ix .•• xn 'n. n. ,n .
d. f- 7f. • 7f n J u]. J for i 'f' j ' j

]. ' j
I , ••• ,n.

nlx,,.xn ,nlx,,,xn
n... f d E n n, then E c,·OO. a. Let En enote n., n. n

(lennna 4.3.c) 1r. 0 E l. l. c E. l. n

(C 1)1r.;ir. n E l. l. n

(part a above)
nix ••• xn .~

U n

c. Consider, e.g., n = 2 and i = I:
nl ,nl n1 ,nl nl ,nl nl ,nl nl ,nl

E (lemma 4. I • d) E ;E n U ;U

n1,n1 V n1,n2..., nl,nl n2,n1
(C2) (E ;1r 1 n U ;1r 2);(1r 1;E n 1r 2;u)

(lennna 4, J and part b above) 11 1 ;1r 1.

d. Consider, e.g., n = 2, i = I and j = 2:

n1 ,n 1 n1 ,n2 n1 ,n 2 n2,n2
E ;U n U ;E

nt ,nl v 11 1 ,n2 v 11 1 ,n2 n2 ,n2
(C 2) (E ;1r 1 n U ;1r 2);(1r 1 ;u n 1r 2 ;E)

(part b above) ii1;1r2• D

51

Already in example I.I we signalled the analogy between R X.;TI. and
i=I 1 1

a list of parameters called-by-value. From this point of view properties
n v nix ••• xnn,nlx ••• xnn n

such as (n X. ;1T.) 0 E n
i=I 1. 1. · i=I

n. ,n.
X. 0 E 1 1 - the computation 1.

of such a list terminates iff the computations of its individual members

terminate

value of a

n .,,
- and (n X.;TT.);TT. =

i=l 1. 1. J

n ni 'ni
(.n X. 0 E);X. - the request for the
1.=l 1. J

parameter contained in such a 1.ist amounts to computation of the

individual value of this parameter plus termination of the computations of

the other parameters - are intuitively evident. These and similar proper

ties follow from the following lemma and its corollary.

LEMMA 4. 7. For k, 1 $; n,

V

, ... ' X. oE; (n X. ;Y) ; Y oE
1 k i.=s ,j=J, ... ,k 1 j st sl

J t

, ... '
t=l , •.• ,1

k 1
= (n x • ; .;;' •) ; < n 1T s ; Y s) , with 1T • of type < n 1 x • • • x n , n . >, and x.

j = l 1 j 1 j t= l t t 1 n 1 1. j

andY of types <9,n. >and <n ,I;>, respectively.
st l.j st

Proof. The case of n = 3, k = 1

resentative. Hence we prove

Xl 0E ,·X2°E ·X ·Y. y oE ·Y oE ' 2' 2' 2 '3

By lemma 4.6, XI ; ;:; I n x2 ;rf 2

n I ,I;
1T2;Y2 n 1T3;Y3 = 1Tl;U n 1T2;Y2 n TT 3 ;Y3 , whence

n I ,I;
(C2) x1 ;U

(lemma 4.3.c) Xl 0E ;u9•1; n x2;Y2 n u9 '1;; Y3°E

(lemma 4.3.e)
e~ e~ ~ "' v X 0E ·X oE ·(X oE ·U ,s n X ·Y n U ,s. Y oE)· y oE• y oE

I ' 2 ' I ' 2' 2 ' 3 ' 2 ' 3 •

3 is rep-

By corollary 4.2, X1°E ;u9 •1; n X2;Y2 n u9 •1;; Y3°E = XloE ;X2;Y2; Y30E,

whence the result follows by lemma 4.4. D

52

n n
COROLLARY 4. 3 • I- (n X. ; TI •) 0 (n 11 . ; p . ; rr .)

i=I i i i=l i i i

of type <0,ni> and pi of type <ni,ni>.

= (corollary 4.2 and lemma 4.5.a) X1°p 1 , ••• , Xn°Pn· D

One of the consequences of lemma 4.7 is

n-1 n-1 n-1
I- (n x.;n.);(n 11i;Yi) n Xi;Yi'

i=I l. l. i=l i=l

with 11i' Xi and Yi of types <n 1 x ••. xnn,ni>' <0,ni> and <ni,s>, respec

tively.

= nn for simplicity, then, apart from the intended

interpretation of 11. as special subset of Dn x D,
].

"axiom C2 for n-1, in which 11 1, ••• ,11n-l are interpreted as subsets of

Dn-l x D "follows from" axiom C2 for n, n > 211 •

This line of thought may be pursued as follows:

Change the definition of

and introduce projection

type in that only compounds (n 1xn 2) are considered,

function symbols 11 1 (nxs),n and 112 (nxs),s only. For
nix •. ,xnn,ni

as (••• ((n 1xn2)xn 3)x.,.xnn) and 11i as,

. ((17lx172)x173),(17]x172) (17lx172),nl
e.g., for n = 3 and i = 1,2,3,11 1 ;11 1

((n 1xn2)xn 3),(n 1xn2) (n 1xn2),n2 ((n 1xn 2)xn 3),n3
11 1 ; 11 2 and 11 2 Then it is a

simple exercise to deduae C1 and C2 for n = 3 from axioms C1 and C2 for

n = 2. This indicates that our original approach, may be conceived of as a

"sugared" version of the more fundamental set-up suggested above. These con

siderations are related to the work of HOTZ on X-categories (cf. HOTZ [31]).

Arbitrary applications of the 11~ 11 operator can be restricted to pro-

53

jection functions, as demonstrated below; this result will be used in sec

tion 5.3 to prove Wright's result on the regularization of linear proce

dures.

LEMMA 4.8. r x
Proof. We prove X = ~ 1;(E n rr 1;X;~2);rr2• The result then follows by lemma

4.3.b.

Hence,

n 1;(rr 1 ;X;n2 n E)

(lemma 4.3.a) n1;(rr 1~ n rr 2;n2) --((X;n2n'ifl);~

(lemma 4.6)rr2°E;~)

4. 4. Axiomatization of the 11µ. 11 operators
l.

MU is obtained from MU 2 by introducing the"µ/ operators, and is

axiomatized by adding Scott's induction rule, formulated in section 3.2 and

referred to as I, and the following axiom scheme to the axioms and rules

of MU2 :

M r {cr.[µ.X 1 ••• X [cr 1 , ••• ,cr]/X.J._ 1 !::
J l. n n l. 1.- , ... ,n

!:: µ.x 1 ••• x [cr 1, ••• ,cr J}._ 1 •
J n n J- , ... ,n

The axiomatization of MU is motivated by the need to provide a con

venient axiomatization of PL. Thus one expects axiomatic proofs of (the

translations of) properties of PL such as the fixed point (lemma 2.1.e) and

least fixed point (corollary 2.3) properties, monotonicity (lemma 2.2)

and modularity (lemma 2.8), as the union theorem is embodied in Scott's in-

54

duction rule and substitution is by lemma 3,3 a valid rule of inference.

These proofs are provided by the following lemmas:

LEMMA 4.9.
a. If , 1(x1, •.. ,Xn,Y), •.. ,,n(X1, .•. ,Xn'Y) are monotonic in x1, ... ,Xn and Y,

i.e., Al s:_B1,···,An+I s:_Bn+I J-,i(A1,•··,An+I) s:_,i(Bl, ... ,Bn+I), i=l, ... ,n,

then Y1 s:_ Y2 I- {µl 1 ••• Xn[, 1(x1, .•• ,xn,Yl), ... ,,n(XI' ••• ,xn,Yl)J s:_

S:. µ.Xl ... x [,1<x1,····x ,Y2) , ••• ,T (X1•···,x ,Yz)]}._I • J n n n n J- , ••• ,n

b. (Monotonicity). If ,(X1, ••• ,Xn) is syntactically continuous in

x 1, ••• ,Xn then, is monotonic in x1, ••• ,Xn, i.e.,

XIS Y1, ... ,Xn S Yn r T(X1, ... ,Xn) S ,(Y1, ... ,Yn).

c. (Fixed point property). r {T.[µ.X 1 ... X [, 1, ••• ,T]/X.J._ 1 J i n n i i- , ••• ,n
= µ.x 1 ••• x [, 1, ... ,, J}._ 1 •

J n n J- , ••• ,n

d. (Least fixed point property, PARK [51]).

{,.(Y1, ... ,Y) s:. Y.}._ 1 I- {µ.x 1 ... x c,1, ••• ,, Jc Y.}. •
J n J J- , ••• ,n J n n - J J=l, ... ,n

Proof. a. Use 1, taking {Y 1 s Y2} for~ and

{X. S µ.Xl ... x [,1<x1,····x ,Yz), ... ,T (X1•····x ,Y2)]}._l for 'I', J J n n n n J- , ... ,n

and T. (X1, .•• ,X , Y1) for o., j = I, ••• ,n.
J n J

I. r {QJ. s:_ µ.X 1 ... X [, 1(X1, .•• ,X ,Y2), ••. ,, (X1, ••. ,X ,Y2)]}. __ 1 •
J n n n n J , ••. ,n

Obvious.

By monotonicity of,. in
J

b. Follows by induction on the complexity of,, using lemma 4.1.a. and

part a above.

c. 2· Use 1, with~ empty and taking {X. c µ.X x [, , J}
. . . J - JI"" n !'""' n j=l, ... ,n

for 'I', proving the induction step with part b above.

d. s:_. M.

d. Use 1, taking {,.(Y1, ••• ,Y) S Y.}._ 1 for~ and {X. s:_ Y.}. I
J - n J J- , ... ,n J J J= , ••• ,n

for 'I', proving the induction step with part b above. D

Modularity is but one of the many consequences of the generalized

iteration lemma below. Form= I this lemma asserts that simultaneous mini

malization by µ.-terms is equivalent to successive singular minimalization
i

by µ-terms.

55

LEMMA 4.10. (Generalized iteration). Let k be a natural number s.t. k ~ 2,

Zet K = {I, ••• ,k} be subdivided into two nonempty and disjoint subsets

I= {pl' ••• ,pm} and J = {q 1, ... ,qn}' whence k = m+n. Then the foUowing

hoZds:

For pi E I,

I-µ z1···z [p , ••• ,p J p. m+n I m+n l.

µ.X 1 ••• X [o 1[µ.Y 1 ••. Y [o 1, ••• ,o]/Y.]1: 1, ••.
1. m J n m+ m+n J J=

n
•.• ,o [µ.Y1··-Y [o 1•····0]/Y.]. I], m J n m+ m+n J J=

where o - Pp [X./Zp.lp.El[Y./Zq.Jq•EJ' s = l, •.. ,m, and
s sl.1.1. J JJ

om+s - Pqs[Xi/ZPi]piEI[Yj/Zqj]qjEJ• s = l, ... ,n.

Proof. Generalized iteration is a generalization of the iteration property

(cf. BEKIC [I], SCOTT and DE BAKKER [59]). For ease of notation, we estab

lish this property just for the case I= {l, •.• ,m} and J = {m+l, ••• ,m+n};

the general version should be clear.

We use the following notation:

I, ... ,m+n,

µ.X
l.

n
- µ.X1···x [ol[µ.Y1···y [o 1•····0]/Y.]. 1•··· l. m J n m+ m+n J J=

••• ,o [µ.Y 1 ••• Y [o 1, ••• ,o]/Y.]1: 1], i
m J n m+ m+n J J=

l, ... ,m,

D.Y(X1, ••• ,x) - µ.Y 1 ••• Y [o 1, .•• ,o J, j
J m J n m+ m+n

I, ... ,n.

~:pix~ µi' i = l, ••• ,m.

First we notice that µ.Y(µ 1, ••• ,µ) ~ µ ., j = l, .•• ,n, follows by the
J m m+J

least fixed point property (lfpp, lemma 4.9.d) from

o +.(µ 1, ••• ,µ ,µ +i•···,µ +) = (fixed point property, fpp, lemma 4.9.c) mJ mm mn
µ ., j = l, ... ,n.

m+J
Then the result follows also by least fixed point property from

oi(µ 1, ••• ,µm,µlY(µ 1, ••. ,µm), ••• ,DnY(µ 1, ... ,µm)) ~ (monotonicity,

lemma 4.9.b) oi(µ 1, ••• ,µm,µm+l'''"'µm+n) = (fpp) µi' i = 1, ••• ,m.

56

~= µ. c (l.X, i = 1, ••• ,m, andµ . ~ (l.Y((l 1X, ••• ,(l X), j
1. - 1. m+J J m

I, ... ,n.

Follows by the least fixed point property from

oi(p 1x, ••• ,(lmX,µ 1Y((l 1X, ••• ,(lmX), ••• ,pny(p 1x, ••• ,µmX))

i = I, ••• ,m, and

om+j(p 1x, ••• ,µmX,(l 1Y(µ 1X, ••• ,(lmX), ••• ,(lnY((l 1X, ••• ,(lmX))

µ.Y(p 1x, ••• ,µ X), j = 1, ••• ,n. □
J m

COROLLARY 4.4. (Modularity). For i = 1, .•• ,n,

I- µiXI • • .Xn[ol (T 11 (XI'··· ,Xn), • • • ,Tlm(XI' • • · ,Xn)),. · ·

... ,a (T 1(x 1, ••. ,x), ..• ,T (x1, ••• ,x))J
n n n nm n

(fpp)

0i {µilXI I·· .Xnm[T 11 (a I (XI I'··· ,Xlm)' • • • •0n (Xnl '· • • ,Xnm))' • • ·

••• ,T (ol(XIJ'"""'xl), •.. ,a (X 1•····x))], ••• ,µ .•••). nm m n n nm 1.m

Proof. We use the following notation:

µ.
l.

µ ..
l.J

- µiX1···Xn[ol(Tll(Xl, ••• ,xn), ••• ,Tlm(Xl, ••• ,xn)), •••

..• ,a (T 1(x1, ••• ,x), ••• ,T (x 1, ••• ,x))J, i = 1, ••• ,n,
nn n nm n

- µ.X1··-X x11···x [01•····0 ,T11•····T], i = J, ••• ,n, 1. n nm n nm
- µ(i-l)*n+jXIJ'"'Xnm[Tll(ol(Xll'"'"'Xlm), ••• ,on(Xnl'''"'Xnm)), .••

• , • , T nm (• • •) J , i = I , ••• , n, and j = I , .•. , m,

- µ. +.x1 ••• x x 11 ••• x [o 1(x 11 , ... ,x 1), ••• ,a (X 1 , ••• ,x),
l.*n J n nm m n n nm

TI /XI, ••• ,Xn) ''' • ,Tnm(XI,.' • ,Xn)],

i = I, .•. ,n, and j = I, ..• ,m.

We have to prove: 1- µ. = a. (µ. 1 , ••• , µ .) , i = I , .•• , n.
l. l. l. im

This result is a straightforward consequence of parts a, band c below.

a. µi = pi·

Pi= (generalized iteration, leilDila 4.10)

µ.X1···x [01[µ1.Y11···y [T11<x1,····x), .•. ,T (X1•····x)]/YI.]~ 1•··· l. n J nm n nm n J J=
••• ,a[µ .Y11···y [T11<x1,····x), ••• ,T (X1•····x)]/Y .]~I]= n nJ nm n nm n nJ J=
= (fpp, lemma 4.9.c) µ .•

l.

b. ()1.. = (fpp) o.(p. 1 , •.• ,µ.).
i l. im

c.µ .. =µ ..•
l.J l.J

µ .. =(generalized iteration)
l.J n

µ .. Y11···y [Tll[µ.Xl ••• x [ol(Y11•····y1), ••• ,a (Y 1•····y)]/X.]. 1•··· l.J nm 1. n m n n nm 1. 1.=
••• ,T [µ.X1···x [ol(Y11•···,Y1), •.• ,a (Y 1•····y)J/x.]1: I] nm 1. n m n n nm 1. 1.=
= (fpp) µ... □

l.J

57

Modularity itself has some interesting applications, too, e.g., corollary

4.5 below and the tree-traversal result of DE BAKKER and DE ROEVER [II]. The

proof of this result, using modularity in MU, is a straightforward trans

formation of the proof given at the end of section 2.2, which uses modular

ity in PL

COROLLARY 4.5. f- {µ.x 1 ••• x [cr 1 , ••• ,cr Jv =
1. n n

= µ.X1···x [cr1<x1•····x)v, ••• ,cr (X1•····x)""]}._I •
1 n n n n 1- , ••• ,n

Proof. Let ,(X) be X and ,.(X1•····x) be cr.(X1•····x), i = 1, ••• ,n. Then
1. n 1. n

corollary 4.5 can be formulated as the following consequence of modularity:

= µ.X 1 ••• X [,(, 1(x1, ••• ,X)), ••• ,,(, (X1 , ••• ,X))]. 0
1. n n n n

The last lennna of this chapter states some sufficient conditions for

provability of@ f- cr;cr £ E, i.e., fu:nationaZity of cr, and is frequently

applied in combination with lemma 4.5.e (X;X £ E f- X;p = Xop ;X).

LEMMA 4.11. (Functionality). The assertion@ f- cr;cr .=.Eis provabZe if one

of the foUOIJYlng assertions is provabie:
n

a. If a= .U1 cr.,then@ f- fo. 0 E ;cr. cr.oE ;cr.} 1 • . u
1.= l. l. J J l. Sl.<JSn

u {o. ;cr. £ E}._ 1 •
1 1 1- , ••• ,n

b. Ifcr=cr 1;111 n ••• ncrn;,rn,then@ f- {cr.;cr. cE}. I •
1 1 - 1= , ••• ,n

c. If a= a1;a2,then@ f- cr1;cr 1 £ E, cr2 ;cr2 £ E.

d. Ifa=a 1 ncrz,then@ f- cr1;cr 1 ,SEOl'@ f- cr2 ;cr2 sEol"@ f- cr1;cr2 sE

Ol' @ f- a2 ;cr I £ E.

e. If a = µiXI ••• Xn[cr 1 , ••• ,crn],then

@,{X. ;X. £ E}._1 f- {cr. ;cr. c E}. I •
1 1 1- , ••• ,n 1 1 - 1= , ••• ,n

Proof. Straightforward. D

In the foUOIJYlng ahaptel's t.1e shaU often use the foUOIJYlng notations:

I. [cr 1, ••• ,crn] fol' cr 1;u1 n ••• n crn;~n•

2. [cr 1j ••• jcrn] fol' 'lf 1;cr 1;ii\ n ••• n 'lfn;crn;i'n.

58

5. APPLICATIONS

5. 1. An equivalenae due to Morris

In [50] MORRIS proves equivalence of the following two recursive pro

gram schemes:

f(x,y) = if p(x) then y ~ h(f(k(x),y))

and

g(x,y) = if p(x) ~ y else g(k(x),h(y)).

We present a proof in our framework.

The following equivalence is stated without proof:

LEMMA 5.1. 1-- [A11 ••• IA. 11A,IA, 11 ••• IA]pr.=
i.- l. i.+ n l.

= [A11 ••• IA, 1 IEIA•+il••· IA J;u.;A .•
i.- l. n l. l.

THEOREM 5.1. (MORRIS)

Let F = µX[[plEJ;u 2 u [p' IEJ;[KIEJ;X;H] and G = µX[[plEJ;u 2 u [p' IEJ;[KIHJ;X].

Then

1-- F = G, [EIHJ;G = G;H.

Proof. Let~ be empty, f(X,Y) = {X = Y, [EIHJ;Y = Y;H},

cr(X) = [plEJ;u 2 u [p'IEJ;[KIEJ;X;H and ,(Y) = [plEJ;u2 u [p'IEJ;[KIHJ;Y.

Hence, we must prove

1-- f(µX[cr(X)], µY[,(Y)]) (5.1.1)

We intend to use Scott's induction rule. Unfortunately, this rule (as formu-

59

lated in section 3.1) does not apply to (5.1.1), as, in case of a sirrrul

taneous induction argwnent, it only yields results about components of one

simultaneous µ-tenn.

However, the observation that

I- µ1XY[cr(X),r(Y)] µX[cr(X)]

and

are straightforward applications of the iteration lemma (lemma 4.10), gives

us the equivalent assertion

to which Scott's induction rule does apply.

Henceforth, such transitions will be tacitly assumed.

Thus, we have to prove:

I. I- 'I' (fl ,n). Obvious.

2. X = Y, [EIHJ;Y = Y;H I- cr(X) = ,(Y), [EIHJ;,(Y) = ,(Y);H.

a. cr(X) = ,(Y) [plEJ;n 2 u [p'JE];[KIEJ;X;H = (hyp.)

[plEJ;n2 u [p'IEJ;[KIEJ;Y;H = (hyp.)

[pjE];n2 u [p'IEJ;[KIEJ;[EjH];Y = (C2)

[plEJ;n2 u [p'IEJ;[KIHJ;Y.

b, [EIHJ;,(Y) ,(Y);H: [EjH];([pjE];n2 u [p'JEJ;[KIHJ;Y)

[EjHJ;[pJEJ;n2 u [EIHJ;[p'IEJ;[KjHJ;Y = (C2)

[pjH];n2 u [p';KjH;H];Y =
(lemma 5.1) [plEJ;n2;H u [p';KjH];[EjH];Y =
(hyp.) [pjEJ;n2;H u [p'jE];[KjH];Y;H =
([pjE];n2 u [p'IEJ;[KIHJ;Y);H. D

Remark. Bruno COURCELLE pointed out to me, that, although a formal deri

vation of F = G does not seem to be feasible using the least fixed point

property instead of Scott's induction rule, no one has proved as yet the

impossibility of such a proof.

60

5.2. An equivalenae involving nested while statements

A proof of the following equivalence appeared, in a slightly different

formulation, in [II]:

(5. 2. I)

where A*E stands for µX[A;X u E] and 11 *11 has priority over";".

The present author feels, however, that the proof contained therein ob

scures some of the issues involved; these are: modular deaomposition and

the use of simultaneous reaursion (compare modularity: lemma 2.8 and corol

lary 4.4). This can be understood as follows:

I. The modular decomposition of A1;x u A2;x u E as cr 1 (X,cr2(X)), with

cr 1(X,Y) = A1;X u Y and cr 2(X) = A2;X u E, leads to

µ1XY[A1;X u Y, A2 ;X u E] = (iteration) µX[A 1;X u µY[A2;x u E]]

= (fpp) µX[A 1;X u A2;x u E].

2. A1*E ;(A2; A1*E)*E = µ1XY[A1;XuE, A2;X;YuE];µ 2XY[A1;XuE, A2;X;YuE],

which is also a consequence of iteration (lemma 4.10).

These observations suggest that (5.2.1) is a consequence of the following

equivalence:

THEOREM 5 • 2 • ~ µ I = µ I ; µ 2 , µ 2 = µ 2 ,

with µi - µiXY[A 1;X u Y, A2;x u E] and µi - µiXY[A 1;x u E, A2;X;Y u E],

i = 1,2.

Proof. ~= Follows by the least fixed point property (lemma 4.9.c) from:

a. cr1<P:1;P:2,P:2) = A1;µ1;µ2 u µ2 = (Al;µ! u E);µ2 = (fpp) µ1;µ2'

b. cr2(µ1;µ2) = A2;µ1;µ2 u E = (fpp) p:2.

::, • We prove ~ µ 1 ; µ 2 ~ µ 1 , µ 2 ~ µ 2 ,

with P: 1;02 ~ P: 1;µ 2 ~ µ1 as obvious consequence.

Let , 1(X) = A1;X u E and , 2 (X,Y) = A2;X;Y u E. Then we must prove, using

Scott's induction rule:

2. X;µ2 ~ µI' y ~ µ2 I- Tl(X);µ2 ~ µI' Tz(X,Y) ~ µ2.

a. Tl(X);µ 2 = (A 1;X u E);µ 2 ~ (hyp.) A1;µ 1 u µz = (£pp) µ1•

b. Tz(X,Y) = Az;X;Y u E ~ (hyp.) Az;X;µ2 u E ~ (hyp.) Az;µI u E

= (£pp) µ2. D

5.3. Wright's regula:rization of linear procedures

In [65] WRIGHT obtains the following results:

61

a. The class of recursively enumerable subsets of N2 is the smallest class

of sets with the successor relation Sas member and closed under the

operations""'", ";" and "µX[Q u P;X;R]", where Q, P and Rare subsets of

N2 which are contained in this class.

b. In the proof of part a the main auxiliary result can be generalized to a

setting in which N is replaced by any abstract domain V. This general

ization is:

(5. 3. I)

In the present calculus (5.3.1) can be proved axiomatically.

The following two auxiliary lemmas are needed:

Proof. Straighforward from lemma 4.5.c. D

LEMMA 5. 3. f- µX[A;X u B] op = µX[AoX u Bop J.

Proof. Amounts to a straightforward application of Scott's induction rule. D

Now Wright's result (5.3.1) follows from theorem 5.3 below by two applica

tions of lemma 5.3.

THEOREM 5.3. (Wright)

f- µX[Q u P;X;R] TTl;µX[(E n Til;Q;Tiz) u [PjR];X] 0 E ;TI2.

L R

62

Proof. s: Follows by the least fixed point property from:

¥1; R0 E ;112 = (fpp) n1 ;{ (E n 11 1 ;Q;TT2) U [PJRJ;R} 0 E ;112 = (lemma 4.5.a)

¥1;(E n 11 1;Q;TI2);112 u TT1; [PJRJ•(R•E) ;112 = (lemma 4.8)

Q u n1; [PJR] 0 (RoE) ;11 2 = (lemma 5,2)

Q u n\; (E n. 11 1 ;P;1i\; R0 E ;112;R;112) ;11 2 = (lemma 4.8)

Q u P;111; RoE ;112 ;R.

2: One derives by similar techniques:

whence by lemmas 4.8 and 5,2

and by the least fixed point property

By lemma 4.6.c one therefore obtains

The reader might notice that ;:; 1 ;µX[(11 1 ;Q;;:;2 n E) u [PJR];X] 0 E ;112 does not

correspond with any program scheme. Using work of GARLAND and LUCKHAM [23]

this has been remedied in I. GUESSARIAN [25] by replacing this term by an

equivalent one which does correspond with a program scheme.

5.4. Axiomatization of the natural nwnbers

In general, programs manipulate data with a special structure, such

as natural numbers, lists and trees. Consequently, proofs about the input-

output relationships of these programs often make use of the specific

structural properties of these data. In order to axiomatize such proofs, we

have to axiomatize relations over special domains. This is effected by

adding certain axioms, characterizing the structural properties of these

data as properties of certain relation constants (cf. example 1.3), to the

general system of chapter 4. As the relational language MU is particularly

suited to express induction arguments, the sequel is devoted to (I) the

axiomatization of domains satisfying some induction rule and (2) the axiom-

63

atic derivation of properties of recursive programs manipulating data which

belong to these domains.

To begin with, we discuss below an axiom system for the natural num

bers N which improves on a similar system described in DE BAKKER and

DE ROEVER [II]. In the next section an axiomatic proof of the primitive re

cursion theorem is presented involving a simple termination argument; the

reader should consult HITCHCOCK and PARK [28] for a more elaborate theory

of termination. Chapter 6 contains axiom systems for various types of trees

and correctness proofs of programs, such as the TOWERS OF HANOI, which ma

nipulate these structures.

In [II] the natural numbers N were axiomatized as follows:

Nonlogical constants are a boolean relation constant n,n and an individPo
ual relation constant Sn,n. These satisfy:

NI r S;S n Po = ri.

N2 r S;S ~ E,

N3 r S;S = E,

N* r E ~ µX[p 0 u
..,

4 S;X;S].

Clearly, the intended interpretation of p0 is {<O,O>} and of Sis

{<n,n+I> I n EN}. However, these axioms model also a:ny number of disjoint

copies of N:

Let J be any nonempty index set, DJ be the disjoint union .v N. of
JEJ J

JJI copies of N, mJ(p0) be {<<O,j>,<O,j>> I j E J} and mJ(S) be

{<<n,j>,<n+l,j>> I n EN, j E J}.

Then <DJ,mJ(p0),mJ(S)> satisfies N1, N2, N3 and N;.

Let R* = µX[R;X u E]. Note that

r' µX[R;X u E] µX[X;R u E] (5. 4. I)

is a consequence of Scott's induction rule.

Then we exclude disjoint copies of N from being models by replacing N: by

r u

64

This can be understood as follows:

Assume to the contrary that the underlying domain of some model for

N1, N2 , N3 and N4 contains two disjoint copies of N:*say Na and Nb.

Certainly <Oa,°t,> € U, whence N4 implies <Oa,Ob> € S ;pO;s*. By N1
v* * and N2 , <Oa,Oa> € S and <Ob,Ob> € S are the only pairs contained

ins* ands* with Oa as first and Ob as second element, respectively,

Therefore, by definition of";", <Oa,Ob> € p0 , and this contradicts

Po 5=. E.

Henceforth, N designates the (domain) type of the natural numbers, i.e., of any

structure satisfying N1, N2, N3 and N4•

As first consequence of these axioms atomicity of p0 is derived. Fol

lowing example 1.2.f this is expressed by

p0;u n U;p0 = (lemma 4.3.e) p0 ;U;p0 5=. (N4)
...., \J* * (fpp and (5.4.1)) pO;(S;S u E);pO;(S ;S

Proof. v* *
Po;s ;po;s ;po

u E);pO =

(N 1 and N2) p0;p0 ;p0 = (lennna 4.4) Po• D

* Secondly, N4 follows from

LEMMA 5.5. I- E = µX[p O u s;x;sJ.

Proof. 5=.: Derive I- E n s* ;po; s* 5=. µX[po u S;X; SJ by Scott Is induction rule.

Then the result follows from N4•

We prove

As

the proof of this splits into two parts:

* * V a.En p0;s = (lemma 4.3.e) Pon p0 ;s 5=. Po 5=. (fpp) µX[p 0 u S;X;S].

..... * ...,,., * b. E n S;X;pO;s = (N 1 and N2 , (5.4.1) and fpp) S;S n S;X;pO; (S ;S u E) =

*)
As the reader will have understood, the suppressed domain types of the
assertions in this section and the following one are all equal to N, and
the se~antics must be interpreted accordingly. The same holds, mutatis
mutandis, for the next chapter.

65

(NI) S;S n S;X;po;s*;s ~ (hyp., lennna 4.3.a) S;µX[po u S;X;S];S ~
~ (fpp) µX[p 0 u s;x;sJ.

~: Straightforward from Scott's induction rule. D

Let eq stand for µX[[p 0 jp0J u [SjSJ;X;[S,SJJ.

Clearly, <<n,m>,<n,m>> E eq iff n = m. In relational formulation, this

amounts to

a. [polPo];TTI = (lemma 4.6.b) (TTl;po;TII n TT2;po;~2);(TTI n TT2;U)

(C2) TT I ;po n TT2;po;U = (lennna 4.3.e) TT) ;po n TT2;po;U;po =
(lennna 5.4 and monotonicity) TT 1;p0 n TT 2;p0 .

b, [po1Po];TT2 = TTl;po n TT2;po is similarly derived.

c. Combination of parts a and b then yields (5.4.3).

Next we prove (5.4.2).

(5.4.2)

(5.4.3)

~: Use Scott's induction rule on eq. By lennna 5.5 we have to prove parts

d and e below:

d. [polPoJ;TT1 = [polPoJ;TT2 ~ TT2·

e. X;TTI ~ TT2 I- [sjs];X;[sls];TT2·

(slsJ;X;[SIS];TT2 = [SISJ;X;TTl;S ~ [sls];TT2;S

~: Similarly. D

5.5. The primitive recursion theorem

This is the following theorem:

THEOREM 5,4. Let G: Nn + N and H: Nn+2 + N be primitive recursive func

tions. Then there exists an unique total function F: Nn+I + N such that,

for all x1, ••• ,xn,Y EN:

66

Proof. To simplify the notation we taken I.

The minimal solution of (5.5.1) is

(5.5. I)

We prove below that µTis total. By the least fixed point property, then

certainly µT ~ F, if Fis any solution of (5.5.1). If Fis a function, then

µT ~ F implies by lemma 4.3.d that µT = µT 0 E;F, whence µT = F follows from

totality of µT. It remains to be demonstrated that such an F exists, i.e.,

µTis functional; this follows from Scott's induction rule by repeated

application of lemma 4.11. D

LEMMA 5.7. G0 E1• 1 = E1• 1, HoE 1• 1 = E3•3 ~ E2 ' 2 '.=.

with crj,k = cr NxNx ••• xN,NxNx ••• xN.

j times k times

Proof. Assume G0 E1 'I = El' I and Ho El' I

Then

holds by lemma 5.5 and

I 2 µT;U ' ,

(5.5.2)

follows from Scott's induction rule as proved below, whence the result.

We prove the induction step only:

(lemma 4.3.c by totality of TI 1, G and H)

I 22 .., Iv 32 [E p0];U' u [TI 1,TI2;S,[E S];µT];U'

(lemma 4.6.b)

[Ejpo];u2•2 u [Til,TI2;S,[EISJ;µT];(Til;u 1•2 n TI2;u 1•2 n TI3;u1•2)

I 2 2 v J 2 Iv J 2 [E p0J;U ' u (1T 2;S;U ' n [E S];µT;U ')

~ [Ejp0J;u2•2 u [EjsJ;µT;u 1•2;[ElsJ

2 (hyp.) CEJp0 u s;x;sJ. □

67

Rema:!'k. Since in the proof above the induction argument applies to the very

structure of the underlying domain, we run here up against the axiomatic

counterpart of Burstall's structural induction (cf. [5]).

68

6. AXIOMATIC LIST PROCESSING

6.1. Lists, linear lists and ordered linear lists

For our purpose it is sufficient to characterize a domain of lists as

a collection of binary trees which is closed w.r.t. the following opera

tions:

(I) taking a binary tree t apart by applying the car and ccJ:r, functions, re

sulting in its constituent subtrees car(t) and cdr(t), if possible;

otherwise, tis an atom and satisfies the predicate at, whence

at(t) = t,

(2) constructing a new binary tree from two old ones by application of the

function cons,

where car, cdr and cons are related by car
'---"' cdr = cons;1r2 •

,.____,,
cons;1r 1 and

... (6.1.1)

Thus we introduce one (applied) individual constant consnxn,n and one (ap

plied) boolean constant atn,n and postulate these to satisfy the following

axioms:
LI r ,_,, Enxn,nxn cons;cons

L2 r '-' En,n cons;cons ~

L3 r at n
-...,

cons;cons = nn,n

L4 r En,n ~ µX[at u [cons;1r 1;X,cons;1r2;X];cons].

Remarks. I. L1 implies that cons is total and also that cons is a function;
,____.. '-----"

hence cons;1r 1 and cons;1r2 are also functions. L2 yields that cons is a

function, L3 that an atom can never be taken apart, and L4 that any list

is either an atom or can be first taken apart and then fitted together

again.

69

2, Satisfaction of these axioms establishes <D ,at,cons> as a structure of
n

lists. This leads us to introduce a new type, L, reserved for lists, re-

sulting in <L,L> and <LxL,L> as new types for at and cons. If there is

no confusion between different domains of lists, Lis also used to in

dicate a domain of lists.

3. An interesting application of this axiom system is the correctness proof

of an iterative tree marking algorithm contained in section 3.4 of

DE ROEVER [16] (this algorithm is essentially due to FLOYD, cf. exercise

2.3.5.7 of KNUTH [36]).

Linear lists are lists with the additional property that car(l) is

always an atom.

Thus we obtain axioms for linear lists by replacing L1 by

I- cons; ccms

and postulating L2, L3 and L4 .

The reader may wonder why we didn't replace L4 by

J- En,n .c: µX[at u [car,cdr;X];cons].

The reason for this is, that LL 1, L2 and L3 imply

I- µX[at u [car,·X,cdr·,X],·cons] = µX[at u [car dr·X]· J (6 I 2) ,c , ,cons , . . . • •

cf. the proof of lemma 6.J.b.

LL is then introduced as type for linear lists.

With linear lists as domain and range some interesting properties can be

proved, such as

(I) if cone stands for µX[cons u [TI 1;car,[TI 1;cdr,TI2J;X];cons], i.e.,

conc(l 1,12) = if atom(l 1) ~ cons(1 1,12) else cons(car(l 1),

conc(cdr(l 1),12)), (6.1.3)

then cone is associative, i.e., conc(conc(l 1,12),1 3)

= conc(1 1,conc(l2 ,13)), cf. McCARTHY [45],

(2) if first and Zast stand for (at u car) and µX[at u cdr;X], ••• (6.J.4)

70

respectively, then conc;first

(3) cone is a totai function.

TT 1;first and conc;last

It is proved in lemma 6.3 that these properties of linear lists can be ob

tained as corollaries of the analoguous properties for ordered linear lists.

Ord,ered Zinear Zists are linear lists with the additional property

that some relation holds between the subsequent atoms of these lists.

For convenience, we do not use a relation o<.' ,holding, e.g., between 11 and

12 : 11 o<.' 12, but introduce the characteristic predicate-< of this relation:

<1 1,12>-< <11'12> iff 11 o<' 12 , i.e., ot... = TT 1;o<..';'ir2 n E. • .. (6,1.5)

In principle-<' need not be a partial order at all; many interesting prop

erties can be proved without this requirement: theorems 6.1 and 6.3 estab

lish (I) and a variant of (2) above for ordered linear lists and theorem

6.2 establishes conc 0 E = -<, i.e., conc(l 1,12) is defined iff 11 -<' 12•

In order to axiomatize ordered linear lists we introduce therefore a
nxn nxn LL L - [J · boolean constant o< • , replace I by rcons;cons = TT 1;at,TT2 ;o<, i.e.,

<car(l),cdr(l)> o<. <car(l),cdr(l)>, and stipulate that <ati,ati+I> o<.

o<. <ati,ati+I> holds for all subsequent atoms ati and ati+I which constitute

an ordered linear list. This leads to the following axioms for ordered

linear lists:

OLL 1 r '-' [TT I ;at,TT2] ;o< cons;cons

OLL2 r '-' En,n cons;cons '.:::

OLL3 r at n cons;cons = nn,n

OLL4 r En,n '.::: µX[at u [car,cdr;X];cons] *)

OLL5 r o<. = [TT 1 ;last,TT2;first]oo<,

with last and first as defined in (6.1.4).

Remarks. 011 is introduced as type for ordered linear lists and

(at u [car,cdr;XJ;cons) will be referred to as T011 . Then OLL4 reads as

I- En,n 2:. µX[TOLLJ.

First some simple properties of at, car, cdr, cons and o< are collected

in

*) We might have chosen L4, alternatively, as follows from the related dis-
cussion above, cf. (6,1.2).

LEMMA 6.1. Let at' denote [car,cdr];cons (or cons;cons, which is equiva

Zent) then the foZZowing properties hoZd for

71

a. Lists: I- E = µX[at u [car;X,cdr;X];cons], at u at'

cons;at = n.
E, cons;at' cons,

b. Linear Zists: I- E = µX[at u [car,cdr;X];cons], cons;cons

car;at = car, car;at' = n.

c. Ordered Zinear Zists: I- cons;cons = 11 1°at;o<.

Proof. a. E = µX[at u [car;X,cdr;X];cons]: ~. Axiom L4 •

b.

~- Use 1 with~ empty, taking {X ~ E} for~ and (at u [car;X,cdr;XJ;cons)

for cr.

at u at' E

cons;at' cons

cons;at n

...___,,
11 1oat cons;cons

car;at car

car;at 1 n

E µX[at u [car;X,cdr;X];cons]

(fpp) at u [car,cdr];cons.

cons;at' = cons;cons;cons

cons;at = cons;ccifisoE ;at

Obvious from LL 1•

(L 1) cons.

(L 2) cons; (cons;cons n at)=

cons;11 1;at = (lemma 4.5.e) cons;cons 0 E ;11 1°at ;11 1
= (from above) cons;cons•E ;11 1 = c'ons;11 1•

cons·11 ·at' = ' I ,
= cons;11 I; (at

\./
cons;[11 1;at,112];11 1;at'

n at')= (LL3) n.
E = µX[at u [car,cdr;X];cons]: Prove (6.1.2),

µX[at u [car;X,cdr;X];cons] = µX[at u [car,cdr;X];cons],

- µX[TLL]

first, using lfpp (lemma 4.9.d) in both directions:

~: at u [car;µX[T11],cdr;µX[T11JJ;cons = (LL 1 and lemma 4.3.c)
____,

at u [cons;[11 1;at,112];11 1;µX[T11J, cdr;µX[T 11JJ;cons

= at u [c'ons;11 1;at;µX[T11J,cdr;µX[T11JJ;cons = (fpp and part a above)
'--' at u [cons;11 1;at,cdr;µX[T11 JJ;cons = (from above)

at u [car,cdr;µX[T11JJ;cons = (fpp) µX[T 11J.

~: Similarly.

The remainder of the proof is similar to that of part a above.

c. cons;cons = 11 1°at ;~: Obvious from 0LL 1• □

In the proofs of this chapter the following property, lelllllla 4.5.e, is

72

often implicitly applied: X;X ~ E r X;p = X0 p ;X. Functionality of the

terms involved is proved by repeated application of lemma 4.11 and may re

quire in the induction steps X;X ~ E as additional hypothesis and___.....
ToLlX); ToLiX) ~ E as additional conclusion.

Next we establish an auxiliary lemma.

LEMMA 6.2. r [[1r 1;at,1r2J;cons,1r3J;conc =

[1r 1;at,1r2J;o< ;[1r 1,[1r2 ,1r3J;conc];cons.

Pr-oof. r [[1r 1 ;at,1r2J;cons,1r3J;conc =

= [[1r 1;at,1r2J;cons,1r3];[1r 1;car,[,r 1;cdr,1r2];conc];cons

= [[1r];at,1T2];cons;cons;1r],[[1T];at,1T2];cons;c'ons;1T2•1T3];conc];cons, as may

be proved using c2 and (6.1.1),

••• = (0LL 1) [[1r 1;at,1r2];~;1r 1,[[1r 1;at,1r2];~;1r 2 ,1r3J;conc];cons, whence by

lemma 4.5,e and cor. 4.2 the result follows. D

The fundamental theorem of this section is

THEOREM 6. I. r cone; first = o<; ,r I; first, cone; last = <><; ,r 2; last.

Proof. We derive r cone; first = o<;1r I; first as an example; the proof of

r conc;last = o<;1r 2;last uses similar techniques.

By lemma 6.1 it is sufficient to prove j- [1r 1;µX[TOLLJ,1r 2J;conc;first

= [1r 1;µX[TOLLJ,1r 2J;o{.;1r 1;first. Use I with~ empty, taking

{[1r 1;x,1r2J;conc;first = [1r 1;x,1r2J;o<;1r 1;first} for 'I' and TOLL for o, *)

r 'I' (Q). Obvious.

'l'(X) r 'l'(TOLL(X)).

I. [1r 1;at,1r2J;cons;first = (lemma 6,1) [1r 1;at,1r2J;cons;car

= (0LL 1) [1r 1;at,1r2];~;1r 1 = [1r 1;at,1r2];~;1r 1;first.

2. The nucleus of the proof:

[1T 1 ;car, [1T 1 ;cdr ;X,1r2] ;conc]o-< =

(0LL5) [1r 1;car,[1r1;cdr;X,1r2J;conc;first]o-<

= [1r 1;car,[1r 1;cdr,1r2J;[1r 1;X,1r2J;conc;first] 0 o<. = (induction hypothesis)

*)
This corresponds with structural induction on the first coordinate, cf,
section 5,5.

[TI 1;car,[TI 1;cdr,TI2];[TI 1;X,TI2];-<.;TI 1;first]oo<. =
= [TI 1;car,[TI 1;cdr;X,TI2J;«;TI 1;first]oo< = (lemma 4.5.e)

[TI 1;car,[TI 1;cdr;X,TI2] 0 -< ;[TI 1;cdr;X,TI 2];TI 1;first] 0 o<. = (cor. 4.2)

[TII ;cdr;X,TI2]oo(;[TI I ;car,[TI I ;cdr;X,TI2];TI I ;first]o-<. =

73 ·

= [TI 1;cdr;X,TI 2Joo< ;([TI 1;car,TI 1;cdr;X];[TI 1;last,TI2;first])oo(= (lennna 4.5.a)

[TI 1 :cdr;X,TI2]oo(; ([TI 1 ;car,TI 1 ;cdr;X]o([TI 1 ;last,TI2;first]o-<)) (OLL5)

[TI I ;car,TI I ;cdr;X] 0 o(;[TI 1 ;cdr;X,TI2] 0 -<.

3. [[TI 1;car,TI 1;cdr;X];cons,TI2];conc;first = (lemmas 6.1 and 6.2)

[TI 1;car,TI 1;cdr;X] 0 -< ;[TI 1;car,[TI 1;cdr;X,TI2];conc];cons;first

= (using cons;first = oe;rr 1;at, lennna 4.5.e and part 2)

[TI 1 ;car,TI 1 ;cdr;X] oo(; [TI 1; cdr;X,TI 2] 0 o< ;TI 1 ;car.

4. [[TI 1;car,TI 1;cdr;X];cons,TI2];o<;TI 1;first = (lennna 4.5.e)

[[TI 1;car,TI 1;cdr;X];cons,TI2] 0 o<. ;[TI 1;car,TI 1;cdr;X];cons;first

= (using cons;first = o<:;TI 1;at, lennna 4.5.e and cor. 4.2)

[[TI 1;car,TI 1;cdr;X];cons,TI2] 0 -< ;TI 1;car.

5. [[TI 1;car,TI 1;cdr;X];cons,TI2] 0 -< = (0LL5 and cor. 4.2)

[TI 1 ;car,TI 1 ;cdr;X] 0 -< ;[TI 1 ;cdr;X,TI 2] 0 o<.

6. The proof of the induction step follows from part I and

[TI 1;[car,cdr;X];cons,TI2];conc;first =

= [[TI 1;car,TI 1;cdr;X];cons,TI2];conc;first = (part 3)

[TI 1 ;car,TI 1 ;cdr;X] 0 -< ;[TI 1 ;cdr;X,TI2] 0 o<. ;TI 1 ;car = (parts 4 and 5)

[TI 1;[car,cdr;X];cons,TI2];o<;TI 1;first. D

We apply this theorem for the first time in

THEOREM 6.2. r conc 0 E = o<.

Proof.

I. conc 0 E (fpp)

([TI 1;at,TI2];cons u [TI 1;car,[TI 1;cdr,TI2];conc];cons)oE.

2. ([TI 1 ; at, TI 2] ; cons) o E = [TI 1 ; at, TI 2] oo<.

3. ([TI 1;car,[TI1;cdr,TI2];conc];cons)oE =
(OLL5 and theorem 6.1) [TI 1;car,[TI 1;cdr,TI2];o<;TI 1]o-< =
[TI 1;car,TI 1;cdr] 0 o<'. ;[TI 1;cdr,TI2]oo<. =
[TI 1 ;[car,cdr];cons,rr2Jo-<:.

74

By combining parts I, 2 and 3 one obtains the result from lemmas 4.5.b and

6. t. D

Next we prove the classical

THEOREM 6.3. (Associativity of cone).

Proof. By lemma 6. I it is sufficient to prove

1- [[11 1;µX[TOLLJ,rr 2J;conc,rr 3J;conc = [11 1;µX[TOLL],[rr 2,rr 3J;conc];conc. Use I

with~ empty, taking {[[11 1;x,rr2J;conc,rr 3J;conc = [11 1;X,[rr2;rr3J;conc];conc}

for 1 and TOLL for cr.

r 1(Q). Obvious.

1(X) r 1(ToLlX)). Follows from parts I and 2 below.

I. Lemma 6.2 and theorem 6.1 imply [[11 1;at,rr2J;cons,rr2J;conc

= [11 1;at,[rr2 ,rr3J;conc];cons.

2. [[[11 1;car,rr 1;cdr;X];cons,rr2J;conc,rr3J;conc =
(fpp, OLL5, theorem 6.1) [[11 1;car,[rr 1;cdr;X,112J;conc];cons,11 3J;conc

(similarly) [11 1;car,[[11 1;cdr;X,112J;conc,11 3];conc];cons =
(hypothesis) [11 1;car,[11 1;cdr;X,[112 ,11 3J;conc];conc];cons

[11 1;[car,cdr;X];cons,[112,11 3];conc];conc. D

Finally we observe that, although intuitively not obvious, linear

lists are a special case of ordered linear lists.

This follows from

(I) totality of last and first for linear lists, the proof of which is a

matter of routine,

and

(2) the fact that substitution in OLL 1, ••• ,0LL5 of Enxn,nxn for ,nxn,nxn

results in LL 1, ••• ,LL4 *)and I- Enxn,nxn = [11 1;1ast,112 ;first]oEnxn,nxn,

. . [1 . J nxn, nxn () which is proved by 11 1; ast,112;first 0 E = corollary 4.3

(11 1;last)oEn,n ;(112;first)oEn,n = 11 1o(lastoEn'n) ;11 2o(firstoEn'n)

= (part I above) 11 1oEn,n_ ;11 2oEn,n = (lemma 4.6) Enxn,nxn.

Hence we have, a fortiori,

*) By (6. J.2).

75

LEMMA 6.3. Any property of ordered Zinea.r lists holds upon substitution of
o(b ELLxLL,LLxLL -I': l. l. t y J or -inea.r -is s.

6.2. Properties of head and tail

The head and tail functions hd and tl, both of type <N+xOLL,OLL>,

where N+ is the type of the positive natural numbers and OLL the type of

ordered linear lists, are defined by

(I) hd(n,l) is the ordered linear list of n elements which constitutes the

initial part of 1 of length n, if extant, and

(2) tl(n,l) is the ordered linear list which constitutes the remainder of

1, after hd(n,l) has been chopped off, if possible.

If both sides are defined, clearly properties such as

conc(hd(n,l),tl(n,1)) = 1, tl(n+l,l) = cdr(tl(n,l)),

conc(hd(n,l),car(tl(n,l))) = hd(n+l,l), tl(n,conc(hd(n,1 1),12)) = 12 and

hd(n,conc(hd(n,1 1),1 2)) = hd(n,1 1) are valid and therefore amenable to

proof within our system.

First we observe that the axioms for N+ are the axioms for N which are

modified by "renaming" Po as pl (p0 is renamed as p;, too).

Next we introduce some notation:

hd denotes µX[TI 1°p 1 ;TI 2 ;car u [TI2 ;car,[TI 1;s,TI2 ;cdr];X];cons],

tl denotes µX[TI 1°p 1 ;TI2 ;cdr u [TI 1;S,TI2 ;cdr];X],

(6. 2, I)

(6.2.2)

(6.2.3) TI, . denotes [TI, , ••• ,TI.].
il, ... ,in 11 in

Then the above mentioned properties are established in

THEOREM 6.4.

a. ~ [hd, tlJ ; cone [hd,tlJ 0 <>< ;TI2 , of type
+ <N xOLL,OLL>.

b. ~ tl;cdr [TI 1;s,TI2J;tl of type
+ <N xOLL,OLL>,

c. ~ [hd,tl;car];conc [TI I; S, TI 2] ;hd of type
+

<N xOLL,OLL>.

d. ~ [TI 1,[TI 1 2 ;hd,TI3];conc];tl
'

76

[hd, tlJ 0 -< + + , of -type <N xOLL,N xOLL>

Proof. The techniques required for proving this theorem are illustrated by

proving parts a and e.

a. First we prove r [hd,tl];conc ~ 1r2" Then the result follows from

[hd,tl];conc = (lennna 4.3.d) ([hd,tl];conc) 0 E ;1r2 = (theorem 6.2)

[hd,tl] 0 -< ;1r2•

Apply 1, with~ empty and talcing {[hd,tl];X ~ 1r 2} for'¥ and

(cons u [1r 1;car,[1r 1;cdr,1r2J;X];cons) for cr. Then 'l'(X) r 'l'(cr(X)) follows

from parts I and 2 below.

I. [hd,tl];cons = (OLL 1) [hd;at,tl];o<;cons = (fpp and lennna 6,1)

1r 1°p 1 ;[1r2;car,1r2;cdr];o<;cons ~ (OLL2) 1r 2•

2. [hd,tl];[1r 1;car,[1r 1;cdr,1r2J;X];cons = [hd;car,[hd;cdr,tlJ;X];cons

= (fpp and lennna 6. I)

[1r 2;car,[[1r1;s,1r2 ;cdr];hd,[1r 1;s,1r 2;cdr];tl];X];cons ~ (hypothesis)

[1r2;car,[1r1;s,1r2;cdr];1r2J;cons ~ (OLL2) 1r 2•

e, Apply 1, with~ empty, taking {[1r 1,[1r 1 2;hd,1r3J;conc];X ,
= [1r I 2 ; hd, 1r 3] 0 oC ; 1r I 2 ; X} for '¥ and (1r Io p I ; car u, .
u [1r2;car,[1r 1;s,1r2;cdr];X];cons) for cr. Then '¥-(X) r 'l'(cr(X)) follows from

part I and 4 below.

I. It follows from lennna 4.3.d that [1r1 2;hd,1r3J;conc;car ~ (fpp) 1r 2;car ,
and ([1r 1, 2 ;hd,1r3J;conc;car) 0 E = [1r 1, 2;hd,1r3] 0 (concoat 1) = (fpp)

[1r 1 2;hd,1r3] 0 (conc 0 E) (theorem 6,2) [1r 1 2 ;hd,1r3J 0 o<. together imply . ,
[1r 1 2 ;hd,1r3J;conc;car [1r 1 2;hd,1r3Joo< ;1r2;car. , .

2. [1r 1 2;hd,1r3J;conc;cdr
•

= [1r 1, 2;hd,1r 3] 0 o<. ;(1r 1°p 1 ;1r3 u 1r 1°pj ;[1r 1, 2 ;hd;cdr,1r3J;conc) is

proved similarly.
...,

3. 1r 1 2;hd;cdr = (fpp) [1r 1;s,1r2;cdr];hd.
'

4. [1r 1,[1r 1 2;hd,1r3J;conc];1r 1°p; ;[1r2;car,[1r 1;s,1r2;cdr];X];cons ,
= (parts I and 2)

[1r1,2;hd,1r3]oo(;1rlopj

[1r 2 ;car,[1r 1;s,1r2 ;cdr,1r3];[1r 1,[1r 1, 2 ;hd,1r 3J;conc];X];cons

(hypothesis)

[7r 1,2;hd,1r3]oo<_ ;1r I opj

[1r2;car,[1r 1;s,1r2 ;cdr,1r3J;[1r 1, 2 ;hd,1r3Jo-< ;1r 1, 2 ;X];cons

77

[11 1 2; hd' 11 3 J O o<. ; 11 1 ° p j ;
' v [112 ;car,[[11 1;s,112;cdr];hd,11 3] 0 o<: ;[11 1;s,112;cdr,113];11 1, 2;X];cons

(part c)

[11 I 2; hd, 11 3 Jo o<: ; [11 I 2 ; hd; cd r, 11 3 Jo -< ; 11 I op j
' [11 2;car,11 1, 2;[; 1;s,112;cdr];X];cons = (usiqg 0LL5)

[11 1, 2 ;hd,11 3J 0 « ;11 1, 2; 11 1°p; ;[11 2;car,[11 1;s,112;car];X];cons. D

Since ol... = 11 1;o<'...';'ir2 n E (6.1.5), transitivity of the refotionc<..', i.e.,

the property<><.. ';o(.' .'.:_--<.', implies 11 1, 2°al.;112 , 3°o(_ .'.:_ 11 1, 3°c<., transitivity

of the predicate o<.- in its two argwnents or transitivity of~, for short.

This follows from 11 1 2oo<'._;11 2 3ool- = (11 1;..z1 ;1r2 n E);(112;aG';n3 n E) =
' ' =11•-.L'·'ii- n11·~••rr nEc11•-<.'•-<-'·rr nEc(assumption)

I' ' 2 2'~ ' 3 - I' ' ' 3 -
11 ._,,.~11 nE-11 o.,,:, .•• (6.2.1)
1•~ ' 3 - 1,3 •

COROLLARY 6. 1. Let o(be transitive (in its two argwnents), then

a. ~ [[11 1;s,112J;hd,113J 0 c(=

= [11 1, 2;hd,11 1, 2;tl;car] 0 -< ;[11 1, 2 ;tl;car,113Joo(;[11 1, 2;hd,11 3J 0 <.

b. ~ ([11 1;s,112J;tl) 0 E = [hd,tl;car] 0 ~ ;[tl;car,tl;cdr]oc(;[hd,tl;cdr]o<><:.

Proof.

a. [[11 1;s,112];hd,11 3Joc(= (theorem 6.4.c) [[11 1, 2;hd,11 1, 2;tl;car];conc,113] 0 c(=

= (theorem 6.1) [11 1 2;hd,11 1 2;tl;car] 0 -< ;[11 1 2;tl;car,113J 0 -<, whence the
' . ' result can be deduced from the assumption.

b, ([11 1;s,112];tl) 0 E = (theorem 6.4.f) [[11 1;s,112];hd,[11 1;s,112];tl] 0 ~

=(theorem 6,4,b and 6.4.c) [[hd,tl;car];conc,tl;cdr]o~= (theorem 6.1

and transitivity of oe) [hd,tl;car] 0 o< ;[tl;car,tl;cdr] 0 P(;[hd,tl;cdr]oo(, D

6.3. Correctness of the TOWERS OF HANOI

6.3.a. Informal, part

We present an informal argument for the correctness of a certain ver

sion of the TOWERS OF HANOI program. This version looks in ALGOL-like nota

tion as follows:

procedure TVH(n,x,y,ll,l2,l3); integer n,x,y; ordered linear list ll,l2,l3;
if n=l then MOVE(n,x,y,ll ,l2,l3) else

78

begin n:= n-1; y:= alt(x,y); TVH(n,x,y,ll,l2,l3);

y:= alt(x,y); MOVE(n,x,y,ll,l2,£3); x:= alt(x,y);

TVH(n,x,y,ll,l2,l3); n:= n+I; x:= alt(x,y)

procedure MOVE(n,x,y,ll,l2,l3); integer n,x,y; ordered linear list ll,l2,l3;

g x=1Ay=2 then begin l2:= cons(car(ll),l2); ll:= cdr(ll) end else

if x=)Ay=3 then begin l3:= cons(car(ll),l3); ll := cdr(ll) end else

if x=2Ay=3 then begin l3:= cons(car(l2),l3); l2:= cdr(l2) end else

if x=2Ay=I then begin ll:= cons(car(l2),ll); l2:= cdr(l2) end else

!!_ x=3Ay=I then begin ll := cons(car(l3),ll); l3:= cdr(l3) end else

if x=3Ay=2 ~ begin l2: = cons(car(l3),l2); l3:= cdr(l3) end else

undefined;

integer procedure alt(x,y); integer x,y; if x.::I A xs3 A y.::I A ys3 then

alt:= 6-x-y ~lse undefined

To which conditions does correctness of TVH amount?

First we have to assume the transitivity of the relation ordering the order

ed linear lists considered above. We do not wish to elaborate this assump

tion in the present informal setting; for this the reader is referred to

the next section.

Let us assume x ~ y, then execution of TVH(n,x,y,ll,l2,l3), if defined,

I. Has to result in the removal of the top n discs of the pin "identified

by" x, to the pin identified by y.

2. These discs are moved in correct order, i.e., never a larger disc is

placed on a smaller disc.

3. The discs are moved one at a time.

As to (3): we cannot formalize this requirement, as the present formalism

deals only with input-output relationships and not with inter

mediate stages: cf. section 1.3.

As to (2): this condition is implicit in our approach as all functions are

only defined for ordered linear lists. Thus, the question

whether or not the order is disturbed amounts to whether or not

the execution is defined.

As to (1): let us declare R(n,x,y,ll,l2,l3) by

procedure R(n,x,y,ll,l2,l3); integer n,x,y; ordered linear list l1,l2,l3;

if x=)Ay=2 then begin l2:= conc(hd(n,ll),l2); ll:= tl(n,ll) end else

if x=IAy=3 then begin l3:= conc(hd(n,ll),l3); ll:= tl(n,ll) end else

if x=2Ay=3 then begin l3:= conc(hd(n,l2),l3); l2:= tl(n,l2) end else

if x=2Ay=I then begin ll:= conc(hd(n,l2),ll); l2:= tl(n,l2) end else

if x=3Ay=I ~ begin ll:= conc(hd(n,l3),ll); £3:= tl(n,l3) end else

if x=3Ay=2 then begin l2:= conc(hd(n,l3),l2); l3:= tl(n,l3) end else

79

undefined.

If we assume x f y, (I) amounts to

TVH(n,x,y,ll,l2,l3) = R(n,x,y,l1,l2,l3),

provided both sides are defined.

Proof. As TVH(l,x,y,ll,l2,l3) = R(l,x,y,lJ,l2,l3) follows from the decla

rations, we concentrate on the case n > I:

The induction hypothesis is TVH(n-l,x,y,ll,l2,l3) = R(n-l,x,y,ll,l2,l3),

provided both sides are defined. Start with statevector

'o = <n,l,2,ll,l2,l3>.

I. Execution of n:= n-1; y:= aZt(x,y); TVH(n,x,y,Zl,Z2,Z3) with , 0 as input

results in

, 1 =·<n-l,1,3,tl{n-1,ll),l2,conc(hd{n-1,ll),l3)~,

by the induction hypothesis,

2. Execution of y:= aZt(x,y); MOVE(n,x,y,Zl,Z2,Z3) with , 1 as input results

in

, 2 - <n-l,l,2,cdr(tl(n-1,ll)),cons(car(tl(n-l,ll)),l2),

conc(hd(n-1,ll),l3)>

3. Execution of x:= aZt(x,y); TVH(n,x,y,Zl,Z2,Z3); n:= n+l; x:= aZt(x,y)
with , 2 as input results in

, 2 - <n,l,2,cdr(tl(n-1,ll)),

Expr I

conc(hd(n-l,conc(hd(n-1,ll),l3)),cons(car(tl(n-1,ll),l2))),

Expr 2

tl(n-l,conc(hd(n-1,ll),l3))>.

Expr 3

80

We demonstrate that, provided s3 is defined, s3 equals

<n,t,2,tl(n,ll),conc(hd(n,ll),l2),l3>.

Expr I: cdr(tl(n-1,ll)) = tl(n,ll) by theorem 6.4.b.

Expr 2: I. hd(n-1,conc(hd(n-t,ll),l3)) = if hd(n-J,lt) ~ l3 then hd(n-1,ll)

~ undefined,

by theorem 6.4.e.

2. conc(hd(n-l,ll),cons(car(tl(n-I,ll)),l2))

= conc(conc(hd(n-I,ll),car(tl(n-J,ll))),l2), by associativity of

cone, theorem 6.3.

3. conc(hd(n-t,lt),car(tl(n-1,lt))) = hd(n,ll), by theorem 6.4.c.

Thus Expr 2 = if hd(n-1,ll)-<. l3 then conc(hd(n,ll),l2)

else undefined.

Expr 3: tl(n-l,conc(hd(n-1,lt),l3)) = if hd(n-1,ll) ,< l3 then l3
else undefined,

by theorem 6.4.d.

Thus s3 = if hd(n-t,ll)-< l3 then <n,t,2,tl(n,lt),conc(hd(n,ll),l2),l3>

else undefined, whence the result. D

6.3.b. An aziomatie eorreetness proof for the TOWERS OF HANOI

First we introduce some auxiliary notions:

By example 1.3 it is possible to axiomatize a three-element set {a,b,c}

of type l• Furthermore we need the function alt of type <l,_l> defined by:

if x ~ y then alt(x,y) E {a,b,c} - {x,y}, and alt(x,y) is undefined, other

wise. Then alt has the following properties: alt(x,y) = alt(y,x),

alt(alt(x,y),x) = y and alt(alt(x,y),y) = x. The formal definition of alt,

using the predieates a, band c, and the subsequent derivation of these pro

perties is a matter of routine.

~i-j DEF ~i,i+l, ••• ,j ,for i < j.

+ + Secondly we define TVH, of type <N x1x2xOLLxOLLxOLL,N xlxlxOLLxOLLxOLL>,

by

TVH DEF

and

with

81

[n 1_2,n2, 3;alt,n4_6J;MOVE;[n 1,u2, 3;alt,n3_6J;X;

T2

[n 1;s,u2, 3;alt,n3_6JJ

T3

MOVE DEF Pa,b;[n1_3,u4;cdr,[u4;car,u5J;cons,n6J u

u Pa,c;[n 1_3 ,u4 ;cdr,n5 ,[u4;car,n6J;cons] u

u Pb,c;[n 1_4,u5 ;cdr,[n5 ;car,u6J;cons] u

u Pb,a;[n 1_3,[u5 ;car,u4J;cons,u5 ;cdr,n6J u

u Pc,a;[n1_3,[u6;car,u4J;cons,n5 ,u6;cdr] u

u Pc,b;[n1_4 ,[u6;car,u5J;cons,n6;cdr].

for x,y € {a,b,c},

••• (6. 3, I)

••• (6.3.2)

Thirdly we define p 1 , 0 and R in order to express correctness of TVH: eq

and

cf. (6.3.2).

0 DEF n2°a ;[nl,4;hd,ns]o~ ;[nl,4;hd,n6]oo(u

0
a

u u2°b ;[n 1, 5 ;hd,n4Jo-< ;[n1, 5 ;hd,u6Jo.(u

Ob

U u2°c; ;[n1 ,6 ;hd,n4Joo< ;[n 1, 6;hd,u5Joo<.

oc

R DEF Pa,b;[n1_3,n1, 4;tl,[n1,4 ;hd,u5J;conc,n6J u

u Pa,c;[n1_3,n1, 4;tl,u5 ,[n1,4 ;hd,n6J;conc] u

U Pb,c;[n1_4,n1,S;tl,[n1,S;hd,n6J;conc] u

••• (6.3.3)

82

u Pb,a;[TI 1_3,[TI 1, 5 ;hd,TI4];conc,TI 1, 5 ;tl,TI6] u

u Pc,a;[TI 1_3,[TI 1, 6;hd,TI4];conc,TI5 ,TI 1, 6;tl] u

u Pc,b;[TI 1_4 ,[Til, 6;hd,TI5];conc,TI 1, 6;tl].

Then the correctness of TVH is established by

THEOREM 6.5. (Correctness of TOWERS OF HANOI). Let-<'.- be transitive

(in the sense indicated in (6.2.1)), then

I- p' ·O·TVH eq' '
p' ;O;R. eq

Proof. The proof of this theorem proceeds by induction on N+, i.e., we prove

f- P~q;[TI);µX[pl u S;X;S],TI2-6];0;TVH

= P~q;[Til;µX[p) u S;X;S],TI2-6];0;R

by applying 1 as follows: let~ be empty, ~ be

{p~4 ;[TI 1;X,TI2_6J;O;TVH = p~4 ;[TI 1;X,TI2_6J;O;R} !nd cr be (p 1 u S;X;S). Then
V N+ N

the result follows from µX[p 1 u S;X;S] = E ' , cf. lemma 5.5.

We adopt the following strategy:

Using the notation introduced in (6.3. I) we associate in the proof of the

induction step terms P0 , ••• ,P3 and QO, ••• ,Q3, which are defined below, with

p' •O·T u
eq' : 0 I

I

I

Po Qo

Then our correctness proof consists in proving, with~ as hypothesis,

••• (6.3.4)

and

Pl;Tl;TVH;T2;TVH;T3 =

= (parts I and 2) Q1;TVH;T2;TVH;T3

(part 3) P2;T2;TVH;T3 =

(parts 4, 5 and 6) Q2;TVH;T3

83

*) (part 7) P3;T3 = (part 8) Q3 , (6.3.5)

since po - 111opl ;p~q;O, Qo = 111°pl ;p~q;O;R, pl= p~q;[111;S;X;S,112_6];0

and Q3 = p~q;[11 1;S;X;S,112_6J;O;R, whence (6.3.4) and (6.3.5) together imply

P~q;[111;(pl u S;X;S),112-6];0;TVH = P~q;[111;(pl u S;X;S),112-6J;O;R.

Without loss of generality we prove

p~q;[11 I ;X,112_6J;O;TVH = p~q;[11 I ;X,112_6] ;O;R f

f- [11 1;(p 1 u S;X;S),112;a,113;b,114_6J;Oa;TVH

Next terms Pi and Qi are defined as below, i = 0, ••• ,3.

Let Oa(X) DEF [[11 1;x,114J;hd,115] 0 -< ;[[11 1;x,114];hd,116Jo-<., whence

112°a ;Oa(E) = O (see (6.3.3), and let O b =F [11 4;hd,115Jo~ and
a a, DE I,

0 D=EF [11 1 4 ;hd,116] 0 ~, whence O = 11 2°a ;O b;O • For Ob and O we in-a,c , a a, a,c c
troduce similar notations.

po DEF [lll;pl' 11 2;a,ll3;b,1T4_6J;Oa.

Qo DEF [l11;P1• 112;a,ll3;b,ll4_6J;Oa;R.

pl DEF [11l;S;X;S,112;a,113;b,114-6J;Oa.

Q1 DEF Oa(S;X;S);[11 1;s,112_6J;[11 1;x,112;a,113;c,114_6J;Oa.

Pz DEF Oa(S;X;S);[111;S,112-6J;

[11 1;x,112;a,113;c,[11 1;x,114J;tl,115 ,[[11 1;x,114J;hd,116J;conc].

Q2 DEF Oa(S;X;S);[11 1;s,112_6];[111,11 2;c,113;b,[11 1;x;s,114J;tl,

[[11 1;x,114J;tl;car,115J;cons,[[11 1;x,114J;hd,116J;conc];

[11 I ;X,112-6J;oc.

P3 DEF Oa(S;X;S);[11 1;s,112_6J;[11 1;x,112;c,113;b,[11 1;x;s,114J;tl,

[[11 1;X,[[11 1;x,114J;hd,116J;conc];hd,

*) Parts I to 8 refer to the formal proof at the end of this section.

84

[[TT 1;X,TT4];tl;car,TT5];cons];conc,

[TT 1;X,[[TT 1;X,TT4];hd,TT6J;conc];tl].
v

Q3 DEF [TT 1;S;X;S,TT2;a,TT3;b,TT4_6J;Oa;R.

Finally we prove the induction step as indicated in (6.3.4) and (6.3.5).

Assume transitivity of o<.., i.e., TT 1, 2°-<'.;TT2 , 3°o<. =. n1, 3oo(, and the induc

tion hypothesis~-

The proof of P0 ;TVH = Q0 is a matter of routine and therefore omitted.

~ ~ N+ ,N+ •
I. [TT 1;S;X;S,TT2;a,TT3;b,TT4_6J;, 1 = (S;S = E , cf. axiom N3)

[TT 1;s,TT2_6J;[TT 1;X,TT2;a,TT3;c,TT4_6J.

[TT 1;S;X;S,TT2 ;a,TT 3;b,TT4_6 J;Oa;[TT 1;s,TT2 ,TT2_3;alt,TT4_6J = (leillllla4.5.e)

= Pl;'l;Oa(S) = (corollary 6.1.a,-<... being transitive, and part))

Oa(S;X;S);[TT 1;S,TT2_6J;[TT 1;X,TT2;a,TT3 ;c,TT4_6J;Oa = Q1•

3. Q1;TVH = (hypothesis)

Oa(S;X;S);[TT 1;S,TT2_6J;

[TT 1;X,TT2;a,TT 3;c,[TT 1;X,TT4];tl,TTS'[[TT1;X,TT4J;hd,TT6];conc] P2•

P2;[TT 1_2 ,TT2 3;alt,TT4_6J;MOVE;[TT 1,TT2 3 ,alt,TT4_6J =

(theorem 6.4) Oa(S;X;S);[TT 1;S,TT2_6J;

[TT 1;X,TT2;c,TT3;b,[TT 1;x;S,TT4];tl,[[TT 1;x,TT4];tl;car,TT5];cons,

[[TT 1;X,TT4];hd,TT6];conc].

5. Q2;[TT 1,6 ;hd,TT4]o~ =

[[TT I ;x, [[TT I ;X,TT4 J ;hd,TT6] ;cone] ;hd, [TT 1 ;X; s, TT 4 J; tlJ•-<- ;Qz

(theorem 6.4) [[TT 1;x,TT4J;hd,TT6] 0 ~;

[[TT 1,X,TT4];hd,[TT 1;X;S,TT4J;tl]oo(;Q2.
6. (i) Q2 = ([TT 1;X;S,TT4];tl) 0 E ;Q2 =

[[TT 1;X,TT4];hd,[TT 1;X;S,TT4];tl]o~ ·Q' , 2·

= Oa(S;X;S);[TT 1;S,TT2_6J;[[TT 1;X;S,TT4J;hd,TT6] 0 "'

• •• ; [[TT 1 ; X, TT 4 J ; hd, TT 6 JO o(_ •

By combining parts 4, 5 and (i), (ii) above,we obtain

P2;T2 = oa(S;X;S);[TT 1;s,TT2_6J;Q2;oc,b' P2;,2 : Oa(S;X;S)~[TT 1;s,TT2_6J;Q2;oc,a

is proved similarly. Thus we have P2;,2 = Oa(S;X;S);[n 1;S,TT2_6J;Q2;oc = Q2.

85

8. (i) [[TI 1;X,[[TI 1;X,TI4J;hd,TI6];conc];hd,[[TI 1;x,TI4];tl;car,TI5];conc];conc =

= (theorem 6.4) [[TI 1;X,TI4];hd,TI6] 0 o<.;

[[TI 1;X,TI4J;hd,[[TI 1 ;X,TI4J;tl;car,TI5];conc];conc

(theorems 6.3 and 6.4) [[TI 1;x,TI4];hd,TI6] 0 -<-;

[[TI 1;X;S,TI4];hd,TI5];conc.

(ii) [TI 1;x,[[TI 1;X,TI4];hd,1r6J;conc];tl = (theorem 6.4)

[[TI 1;X,TI4];hd,TI6]o--<-;TI6 •

(iii) By part 6(ii), Oa(S;X;S);[TI 1;S,TI2_6 J ••• ;[[TI 1 ;X,TI4];hd,TI6] 0 ol.

By combining parts (i), (ii) and (iii) above, we obtain

P3 = Oa(S;X;S);[TI 1;S,TI2_6J;

[TI 1;X,TI2 ;c,TI3;b,[TI 1;X;S,TI4];tl,[[TI1;X;S,TI4];hd,TI5];conc,TI6],

whence P3;T3

86

7. ASSESSMENT

The present investigation shows that:

J, A conceptually attractive framework for a mathematical theory of cor

rectness of programs comprises:

I.I. The notion of execution of a program by introducing an idealized

interpreter.

1.2. An operational semantic function o which abstracts the relevant

information from the computations defined by this interpreter.

1.3. A mathematical language (with semantic function m) in which to

express and derive properties of programs,

1.4. A translation :tJc. between programs and terms of this mathematical

language, i.e., a mapping satisfying

o(T) m(:tJc.(T))

for every program T.

2. A theory of correctness of programs requires an operator describing

the interaction between programs and predicates; in the present theo

ry this is the " 0 " operator.

3. The " 0 " operator is crucial to an expedient axiomatization of the call

by-value parameter mechanism.

4. The axiomatization of correctness proofs of recursive programs can be

applied to the axiomatization of recursive data structures; this leads

to a unified theory of recursive programs and recursive data.

Our system of proof is based on the least fixed point characteriza-

87

tion, as opposed to Floyd's method of inductive assertions [21]; the least

fixed point characterization derives from McCarthy's recursion induction

[45]. We restricted ourselves to the axiomatization of first-order programs

with a particular parameter mechanism, call-by-value. As demonstrated in

LYNDON [37] the given axiomatization of MU0 is incomplete; however, as

noted by PARK (personal connnunication) our·axiomatization of Mll2 may very

well be complete. Consequently, the following problems remain open:

I. An axiomatization of call-by-value for higher-order programs.

2. The equivalence of the least fixed point characterization with a gen

eralization of the method of inductive assertions is proved by DE BAKKER

and MEERTENS in [12] in case of a simple language for recursive programs

with one variable.

Generalization of this result to more complicated programming languages.

3. Proof or disproof of Park's conjecture that our axiomatization of MU2
is complete.

The diligent reader of these chapters should pause a moment, and

ponder upon the vast discrepancy existing between

and

the aombination of inruition, understanding, and plausibility of

arguments used, by whiah a human being gets aonvinaed of the truth

of some statement,

the linguistia obstaales whiah are posed by the awiomatia method,

and the sheer size of the resulting rrr1.ahine-aheakable proofs, whiah

seems inversely proportional to any understanding by a human being.

Even if one tries to meet halfway between these two seemingly contradictory

extremes, as in the informal correctness proof of the Towers of Hanoi pro

gram contained in section 6.3.a, one still faces the problem that the human

brain (a product of five billion years of evolution) has its own direct

methods of grasping a problem, methods which lead to a process of under

standing often orders of magnitude faster than the means by which this

human brain understands the meticulous step-by-step derivations of

artificial reasoning.

We may view this monograph as embodying an experiment about the extent to

which a limited portion of the workings of the human intellect, in this

88

case in the field of semantics of progranming languages, may be replaced by

artificial reasoning.

While this experiment is motivated by the need to replace the frail and

error-prone intuitive human reasoning in order to obtain machine-checkable

proofs, the fact remains that artificial reasoning of the type and complex

ity as presented in this monograph is not particularly suited anymore

for human understanding.

89

APPENDIX J: SOME TOOLS FOR REASONING ABOUT COMPUTATION MODELS

Definition A.I.I below imposes an algebraic structure upon the set of com

putation models relative to some initial interpretation o0 and some decla

ration scheme D, thus making this set into an algebra. Next we propose an

alternative to our method of defining the operational interpretation of a

program scheme, an alternative which captures the whole structure of the

computations involved in executing a statement scheme. Then we prove that

certain transformations essential to the proofs of lemma 2.5, 2.6 and 2.7

are morphisms with respect to the algebra of computation models. These

lemmas then follow as simple corollaries of this fact.

DEFINITION A.I.I. Let o0 be some initial interpretation and let D be some

declaration scheme. Then we define the following (partial) operations be

tween computation models, where it is understood that all computation

m:>dels involved are computation models relative to o0 and D:

a. Let CM1 = <x1 v 1 x2 v2 xn Vn xn+I' CM 1> be a computation model for

x 1 Vi's xn+I with v 1 EA u Cu Xu P, let

b.

CM2 ; ;Yi W1 y2 w2 •.. ym Wm ym+I' CM2> be a computation model for

Y1 W1' Ym+I' and let xn+I y1, then the computation model CM 1;cM2 is

defined by

Let CM1 <xi vi x2 v2 ... X V xn+I, CM 1> be a computation model for n n
x vn,e x with v 1 = V' ;V" for some statement schemes V' and V" let I I n+I ,

CM2 = <yl WI Y2 w2 ... ym w Ym+I' CM2> be a computation model for m
we,i;;

and let xn+I y I, then the computation model (CM1) ;CM2 Y1 I Ym+I'
defined by

(CM1);CM2 = <xi (VI) ;WI YI WI ... ym Wm Ym+I' {CM1} u CM2>.

is

c. Let CM= <x1 v 1 x2 v2 ••• xn Vn xn+I' CM> be a computation model for

x vn,e x let wn,e be an arbitrary statement scheme, and let pn,n be I I n+l'
a predicate symbol. If

(I) oO(p) =. true, then the computation model (oO(p) ➔ CM,W) is defined

by (oO(p) + CM,W) = <x1(p ➔ v 1,W) x 1 v 1 •.. xn Vn xn+I' CM>,
(2) oO(p) = false, then the computation model (oO(p) ➔ W,CM) is defined

by (oO(p) + W,CM) = <x1(p ➔ W,V 1) x 1 v 1 ••• xn Vn xn+I' CM>.

d. Let for j = I , ••• , n, CM. = <x . 1 V . 1 x . 2 V. 2 . . • x . . V . . x . . , CM . >
J J, J, J, J, J,mJ J,mJ J,mJ+I J

n, ej
be computation models for x. 1 V. 1 x. 1, and let x 1 1 J, J, J,mj+ ,

90

then the computation model [CM1, ••• ,CMn] is defined by

[CM1•···,CMn] = <xl,l[Vl,l' 000 'Vn,l]<xl,ml+l' 000 'xn,mn+l>,{CMl, ... ,CMn}>.

Remark. With definition A.I.I in mind, one may conceive of the following

notion of operational interpretation, which differs from the one defined in

def. 2.5:

The operational interpretation $D<S>(o0) of a statement scheme S

relative to the initial interpretation o0 and the declaration

scheme Dis the set

{CM J 3x,y[CM is, relative o0 and D, a computation model for x Sy]}.

This definition captures the whole structure of the computations involved

in executing Sand resembles the method of defining the semantics of MU as

given in def. 3.3, in that both wD and $D<S> are conceived of as functions.

Definition 2.5 of the operational interpretation o(S) of a statement scheme

S relative to o0 and D can be recovered from $D<S>(o0) by forgetting the

internal structure of the computation models constituting $D<S>(o0) and pre

serving the external input-output relationship of these models.

After defining the appropriate operations one can establish results such as:

Wn <SI; S2> (o 0)

$D<(Sl;S2);S3>(oo)

$D<(p ➔ Sl,S2)>(00)

$D<[S1,···• 8n]>(oO)

$D<Sl>(o0);$D<S2>(o0)

($D<Sl;S2>(o0));$D<S3>(o0)

(o0(p) + wn<S 1>(o0),s2) u (o0(p) + s 1,wn<s2>(o0))

[$D<Sl>(o0), ••• ,$D<Sn>(OO)],

from which the proofs of parts b, c and d of lemma 2. I can be derived.

Let us now analyse how the notions "to identify" and "executable occur

rence", defined in def. 2.6, relate to this way of structuring computation

models:

a. CM CM1 ;CM2 :

<xi VI x2 v2

y 1 and

91

It follows from the definitions that

(I) Two occurrences of some procedure symbol, which are both contained

in CM., identify each other w.r.t CM. iff the corresponding occurences
1 1

in CM, i.e., in cs~ or CM., identify each other w.r.t. CM, i = 1,2; an
1 1

occurrence of some procedure symbol contained in w1 identifies also the

corresponding occurrences of this symbol in then copies of w1 contained

* in cs 1•

(2) An occurrence of some procedure symbol contained in CMi is execut

able w.r.t. CM. iff the corresponding occurrence in cs! or CM. is
1 1 1

executable., i = 1,2; these are the only executable occurrences.

b. CM= (CM 1);CM2 :

CM) = <xi VI x 2 V2 V;W for some statement

schemes V and W,

CM

* +--cs2

y W y I' {CM1} u CM2>. m m m+

It follows from the definitions that

(I) Two occurrences of some procedure symbol, which are both contained

in CM1 (or CM2) identify each other w.r.t. CM 1 (or CM2) iff these

occurrences (or, the corresponding occurrences contained in cs; or

CM2) identify each other w.r.t. CM; an occurrence of some procedure

symbol contained in v1 or w1 also identifies the corresponding oc

currence of this symbol in (V 1);W1•

(2) An occurrence of some procedure symbol contained in CM1 (or CM2) is

executable w.r.t. CM 1 (or CM2) iff this occurrence as contained in

CM (or, its corresponding occurrence in cs; or CM2) is executable

w.r.t. CM; these are the only executable occurrences.

CM

cs 1

<.x (p + W1 ,W2) y 1 W1 ••• yn Wn Yn+l' CM 1> and x

* -+---cs 1

92

It follows from the definitions that

(I) Two occurrences of some procedure symbol which are both contained in

CM 1 identify each other w.r.t. CM 1 iff the corresponding occurrences

in cs~ or CM1 identify each other w.r.t. CM; an occurrence of some

procedure symbol in w1 identifies also the corresponding occurrence

of this symbol in (p ➔ w1,v2).

(2) An occurrence of some procedure symbol contained in CM 1 is execut

able w.r.t. CM 1 iff its corresponding occurrence in cs~ or CM1 is

executable w.r.t, CM; these are the only executable occurrences.

CM.
J

x. . V • • x . . 1 , CM . > , j = I , ••• , n ,
J,mJ J,mJ J,mJ+ J

CM <xl[VI 1•···,V l]<xl I 1•···,x 1>,{CMl, .•• ,CM} > , n, ,m + n,nm+ n

and x1 = xj, 1, j = I, .•. ,n.

It follows from the definitions that

(I) Two occurrences of some procedure symbol both contained in CM. iden
J

tify each other w.r.t. CM. iff they identify each other w.r.t. CM,
J

j = 1, .•. ,n; an occurrence of some procedure symbol contained in

V. 1 as occurring
J'

ing occurrence of

in [v 1, 1, •.. ,Vn,IJ also identifies the correspond

this symbol contained in CM., j = 1, ••• ,n.
J

(2) An occurrence of some procedure symbol contained in CM. is execut
J

able w.r.t. CM. iff it is executable w.r.t. CM, j = 1, ..• ,n; these
J

are the only executable occurrences.

Next we define two transformations of computation models, ~I and ~2 ,

which are essential to the proofs of lennnas 2.5 and 2.6:

In the following definition x 1 v1 x2 v2 ••• xn Vn xn+I stands for the con

stituent computation sequence of any model CM.

Let CM contain no executable occurrences of any P., j E J, and W. E SS be
J J

for every j E J of the same type as Pj, then t 1(CM) is obtained from CM by

executing the following steps:

Step 1: Consider for every j E J all occurrences of P. in CM identified by
J

occurrences of Pj in v1.

Step 2: Replace all considered occurrences by w., for all j E J.
J

93

For arbitrary CM, t 2(CM) is obtained from CM by executing the following

steps:

Step 1: Consid.er for every j E J aU occurrences of P. in CM id.entified by
J

occurrences of P j in V 1•

Step 2: Mark all those consid.ered occurrences which are executable.

Step 3: Replace aU other consid.ered occurrences of P. by S. (~th P. = S.).
* J J J J

Step 4: Replace every combination ... ~ Pj ~+I Sj ~+2 ... by ...

... ~ sj ~+2 ... and every combination~ P;;s ~+I sj;s ~+2

•.. by ••• x. S.; S x. 2 ••• , where P: denotes the marking of P.
K J K+ J J

performed in step 2.

Transformations t 1 and t 2 are morphisms w.r.t. the operations defined above

(in def. A.I.I), i.e.,

(I) t 1 (CM1 ;CM2) tl(CMl);tl(CM2),

t 1 ((CM1) ;CM2) (ti (CMI)); ti (CM2),

ti ((oo(p) + CM,W)) (o0 (p) + t 1(CM),w[w./x.J. 3), *)
J J J E

ti ((oo(p) + W,CM)) (o0 (p) + wcw./x.J. 3 ,t1(CM)) *) . and
J J JE

t 1 ([CM1, ••. ,CMn]) [t 1 (CM 1), ••• , t 1 (CMn)],

(2) t 2(cM1;CM2) t2(CMl);t2(CM2),

t2((CMI) ;CM2) (t2 (CM1));t2(CM2),

t2«oo(p) + CM,W)) [!] (o0 (p) + t 2 (CM),w), *)

t2«oo(p) + W,CM)) [!]
(o0 (p) + w ,t2(CM)) *) and

t2([CM1,···,CMn]) [t2(CMI)' •.• ,t2(CMn)J.

LEMMA 2.5*. Let S be a closed statement scheme, CM be a computation mod.el

for x S y containing no executable occurrences of P., j E J, and W. E SS
J J

be for every j E J of the same type as Pj, then transformation t 1 is a mor-

phism (in the sense indicated above) of the algebra of computation models

(d.efined in d.ef. A.1.1) into itself, which transforms CM into a computation

mod.el for S[W./X.]. 3 .
J J JE

These formulae hold only in case Wis closed.

94

Proof. By induction on the complexity of the statement schemes concerned.

We use the notation indicated above in our analysis of the notion "to iden

tify".

a. S = R, RE Au C (REX does not apply, S being closed): Obvious from

definitions 2.2 and 2.6.

b. S P.: Does not apply as CM contains no executable occurrences of P ..
J J

c. S v1;w1: Step I of t 1 results in considering for all j E J those oc

currences of Pj in CM which are identified by occurrences of Pj in v1;w1•

These occurrences are:

(I) The occurrences of Pj in CM identified by occurrences of Pj in v 1.

These correspond exactly with the occurrences of Pj in CM 1 identi

fied by occurrences of Pj in v1 in CM 1•

(2) The occurrences of Pj in CM identified by occurrences of Pj in w1 as

contained in v 1;w1• These are:

(2a) The occurrences of P. in CM corresponding with the occurrences
J

of Pj in CM2 identified by occurrences of Pj in w1 in CM2.

(2b) The remaining occurrences of Pj in cs7 identified by occur

rences of Pj in w1 as contained in v 1;w1•

Then step 2 is performed; the occurrences of group above are replaced

by Wj - this corresponds exactly with t 1(CM 1) - then the occurrences of

group 2a are replaced by Wj - this corresponds exactly with t 1 (CM2) -

and finally the occurrences of group 2b are replaced by W. - corres-
~ *)J

ponding exactly with the extra occurrences of w1[W./X:l. J necessary for
J J J E

the construction of t 1(CM1);t 1(CM2) from t 1(CM1) and t 1(CM2).

It follows that t 1(CM) = t 1(CM 1);t1(CM2).

By the induction hypothesis t 1(CM 1) and t 1(CM 2) are computation models

for x v1[W./X.]. J z and z w1[W./X.]. J y for appropriate z, whence, by
J J JE J J JE

definitions 2.2 and 2.6, t 1(CM) is a computation model for ,,......____,,,
(V 1;w1)[W./X.]. J"

J J JE

d. S = (V 1);W1: Step of t 1 results in considering for all j E J those

occurrences of P. in CM which are identified by occurrences of P. in
J J

(V 1);W1• These are:

P.
J

P.

(I) The occurrences of

(2) The occurrences of
J

w1 - these correspond

in CM 1 identified by occurrences of Pj in v 1•

in cs; or CM2 identified by occurrences of Pjin

exactly with the occurrences of Pj in CM2

identified by occurrences of Pj in w1 in CM2.

(3) The occurrences of Pj in (V 1);W1•

95

Then step 2 is applied; the occurrences of group I above are replaced by

Wj - this corresponds exactly with t 1(CM 1) - then the occurrences of

group 2 are replaced by Wj - this corresponds e~{actly with t 1 (CM2) -

and finally the occurrences of group 3 are replaced by W. - correspond-
~ *) J ing exactly with the occurrence of ((V 1);W1)[W./X.]. J necessary for the

J J J E
construction of (t 1(CM 1));t1(CM2) from t 1(CM 1) and t 1(CM2).

It follows that t1(CM) = (t 1(CM 1));t1(CM2).

By the induction hypothesis t 1(CM1) and t 1(CM2) are computation models

for x V1[W./X.]. J z and z w1[W./X.]. J y for appropriate z, whence, by
J J JE J J JE

definitions 2.2 and 2.6, t 1(CM) is a computation model for ------((Vl);Wl)[W./X.]. J"
J J J E

e. S = (p +v 1 ,v2) or S D

COROLLARY: LEMMA 2.5.

LEMMA 2.6*. Let S be a closed statement scheme and CM be a computation

model for x Sy, then t 2 is a morphism (in the sense indicated above) of the

algebra of computation models (defined in definition A.1.1) into itself,

which trans forms CM in to a computation model for x S [1 J y.

Proof. By induction on the complexity of CM.

We use the notation indicated in our analysis of the notions "to identify"

and "e·xecutable occurrence".

a. S = R, RE Au C (REX does not apply, S being closed): Obvious from

definitions 2.2 and 2.6.

b. S = P.: CM has the following form: <x P. x S ..•. y, CM>.
J J J

+---- cs'-+

Thus t 2(CM) = <cs' ,CM>, as in step I only the first occurrence of Pj is

considered, which is executable, whence in step 2 this occurrence is

marked, step 3 does not apply, and step 4 results in the deletion of the

* part P. x.
J

c. S = v1;w1: Step I of t 2 results in considering for all j E J those oc

currences of Pj in CM which are identified by occurrences of Pj in v1;w1•

*) The reader should not be confused in case IEJ.

96

These occurrences are:

(I) The occurrences of P. in CM identified by occurrences of P. in v1•
J J

These correspond exactly with the occurrences of Pj in CM1 identi-

fied by occurrences of Pj in v 1 in CM 1•

(2) The occurrences of Pj in CM identified by o~currences of Pj in w1 as

contained in v1;w1• These are:

(2a) The occurrences of P. in CM corresponding with the occurrences
J

of Pj in CM2 identified by occurrences of Pj in w1 in CM2•

(2b) The remaining occurrences of Pj in cs; identified by occur

rences of Pj in w1 as contained in v1 ;w1, which are all non

executable.

Next step 2 is performed: the executable occurrences of groups I and 2a

above are marked, group 2b containing no executable occurrences.

Hence we obtain

* * CM*. . with Vk, w1 and i indicating the result of marking the executable occur-

rences of Pj in Vk, w1 and CMi, k = l, ... ,n, I= 1, ••. ,m, i = 1,2, which

are considered in step I.

Then step 3 is performed, whence we obtain

* [I] * [I] * [I]
<xi V1[Sj/Pj]jEJ;W1 x2 V2[Sj/Pj]jEJ;W1 ••• xn Vn[Sj/Pj]jEJ;W1

** cs I ----------

xn+I w*1[S./P.]. J y2 w*2[S./P.]. J
--+ J J JE J J JE

y w*cs./P.J. J Ym+I' CM;*ucM*2*>,
** m m J J JE

cs2

. h *c / J *c / J CM** . . . wit Vk S. P .. J' w1 S. P .. J and . indicating the result of replacing
J J JE J J JE i

the non-executable (unmarked) occurrences of P. considered in step I by S.,
* * * J J

in Vk, w1 and CMi , k = 1, ••• ,n, 1 = 1, ••• ,m, i 1,2.

The problem with the construct obtained in step 3 is that parts occur of
* the form ••• z1 V;S. zl+l P. z1+2 S .••• , violating definition 2.4 of com-

• J • J J [J] * *
putation model (e.g., if V1 = w1 = P., then w1 = S. but w1[S./P.]. J = P.).

J J J J JE J
In step 4 these parts are deleted in order to obtain a proper computation

model.

Finally step 4 is performed:
** Application of this step to cs 1 and CM** results in

I

97

and CMj,

with

* * * t 2(CM1)=<xi1 V. [S./P.]. J x. V. [S./P.]. J ••• x. V. [S./P.]. J xi +l'CM 11 >
1 1 J J JE 1 2 1 2 J J JE 1 s 1 s J J JE s

by the induction hypothesis, whence v: [S./P.]. J = Vil], x. = x and
1) J J J E 1)

xi = xn+I' as the set of indices k for which parts v:[sj/Pj]jEJ;Wil] ~+I
s

**. are deleted from cs 1 1.s the same set as the set of indices k for which

parts v*[s./P.]. J x. 1 are deleted from
k J J JE K+

x 1 v*1[S./P.]. J x2 v*2[S./P.]. J x v*[S./P.]. J xn+I' the result of
J J JE J J JE n n J J JE

applying steps I, 2 and 3 to cs 1•

Application of step 4 to cs;* and CM;* results by the induction hypothesis

in

y. W~ [S./P.]. J y. w: [S./P.J. J ••• y. w: [S./P.]. J y. I and CM2, J1 J1 J JJE J2 J2 J JJE Jt Jt J JJE Jt+

the two constituent parts of t 2 (CM2), whence yj = xn+I' yj +I= y and
[!] [I] I t [I] [I]

W. = w1 • Thus we conclude that t 2(CM) = t 2(CM1);t2(CM2). As V ;W
JI

(V 1;w1)[t] by definitions 2.2 and 2.6, t 2(CM) is a computation model for

S[I]
X Y•

COROLLARY: LEMMA 2.6: Let CM be a computation model for x Sy, with S

closed and with constituent sequence x 1 v 1 x2 v2 ••• xn Vn xn+t· If for

some j E J at least one occurrence of P. in v1 identifies an executable oc

currence of P j, t 2 (CM) is a computation] model for x S[1 J y which contains

at least one executable occuPPence of P. less than CM.
. J

Proof. Follows from lennna 2.6* by a simple induction argument, as t 2 is a

morphism. D

LEMMA 2. 7. Let CM be a computation model for x S y and S be closed. Then

there exists for some k a computation model for x S(k) y.

98

Ppoof. By applying lemma 2.6 n times in succession one obtains a computa

tion model for x S[n] y; this follows from lemma 2.4 (S[m][I] = S[m+J]) and

the fact that, if S[m] is closed, S[m+I] is also closed.

Let 1 be the smallest number such that S[l] contains no executable occur-

rences of P .• This number exists as every application of lemma 2.6 de
J

creases the number of executable occurrences of P., if any. Then the con
J

di tions of lemma
LlJ x s cn./x.J. J

J J JE
As by lemma 2.4

2.5 are satisfied, whence some computation model for

y exists.
~

s[l][n./X.]. J = s(l+I), it suffices to take l+I fork.
J J JE

D

99

APPENDIX 2: PROOFS OF MONOTONICITY, CONTINUITY AND SUBSTITUTIVITY FOR MU

LEMMA 3. I. (Monotonicity). Let J be any index set, Xj EX for aU j E J, cr E Tbe

syntaatiaally aontinuous in all Xj, j E J, and variable valuations v1 and

v2 satisfy

(I) v 1(Xj) ~ v2(Xj), j E J,

(2) vl(X) = Vz(X), XE X - {Xj}jEJ'

then the following holds:

Proof. By induction on the complexity of cr.

a. cr EA u Bu Cu X: Obvious.

V

b. cr = 0 1 ;oz, 0 1 u 0 2• 0 1 n °2• 0 1:
¢<cr 1 ;cr2>(v1) = ¢<cr 1>(v1);¢<cr2>(v1) and <x,y> E ¢<cr 1>(v 1);¢<cr2>(v 1) iff

3z[<x,z> E ¢<cr 1>(v1) and <z,y> E ¢<cr 2>(v 1)J.

By the induction hypothesis, ¢<cri>(v 1) .=. ¢<cri>(v2), i = I ,2.

Thus <x,y> E ¢<cr 1>(v 1);¢<cr2>(v1) implies <x,y> E ¢<cr 1>(v2);¢<cr2>(v2),

whence ¢<cr 1;cr 2>(v 1) ~ ¢<cr 1;cr2>(v2) follows from the definitions.

The cases cr = cr 1 u cr 2 , cr 1 n cr 2 and cr 1 are proved similarly.

c. cr = o1: By syntactic continuity of cr in all X., j E J, no X. occurs in
J J

cr 1 for any j E J, whence ¢<cr 1>(v1) ¢<cr 1>(v2).

Therefore ¢<crj>(v 1) = ¢<cr 1>(v 1) = ¢<cr 1>(v2) = ¢<cr;>(v2).

d. cr = µkXI ••• Xn[cr1,···,crn]:

¢<cr>(v2) =

(n{<vi(Xl)>~=I ¢<cr1>(v2) ~ v2(X1), 1 =I, •.• ,n, and

v2(X) = v2(X), XE X - {X 1, ... ,Xn}})k ... (a.2.1)

Let v2 satisfy the conditions mentioned in (a.2.1).

Define vj by: vj(X1) = v2(x1), 1 = l, ... ,n, and vj(X) = v 1(X),

x EX - {x1, •.• ,xn}.

Then the conditions for monotonicity, w.r.t. the index set Ju {l, .•• ,n},

and vj and v2, are fulfilled, whence by the induction hypothesis:

1 = l, ... ,n.

100

Thus,

$<cr1>(vj) ~ vj(X1), 1 = I, ••. ,n, and

vj(X) = v1(X), XE X - {X1, •.. ,Xn}} ~

~n{<vi(Xl)>~=I I $<crl>(v2) ~ vz(Xl), 1 = I, ... ,n, and

Vz(X) = v2(X), XE X - {x,, ... ,Xn}},

whence

LEMMA 3.2. (Continuity). Let J be any index set, Xj EXforalZ-jEJ,aETbe

syntaatiaaZZy continuous in aZZ X., j E J, v and v. (i EN) be variable
J i

valuations satisfying, for i EN and j E J,

00

(I) v (X.) = U v. (X.) ,
J i=O i J

(2) v.(X.) c v. 1(x.),
i J - i+ J

(3) v(X) = v;(X) for XE X - {X.}. J'
L J J E

then the foZZowing hoZds:

$<cr>(v) = U $<cr>(vi).
i=O

Proof. ~: By monotonicity (lemma 3.1).

~: By induction on the complexity of a.

a. a EA u Bu Cu X: Obvious.

b. a= a 1;a2,a1 u a2,a1 n a2 ,a 1:

$<cr 1;cr2>(v) = $<cr 1>(v);$<cr2>(v) ~ (induction hypothesis)
00 00 00 00

.U $<cr 1>(v.);.U $<cr2>(v.)
i=O i J=O J

U U $<cr,>(v;);$<cr2>(vJ.),
i=O j=O L

by a property of relations.

00

U $<a >(v.);$<cr2>(v.) ~ E1 follows from
i=O I i i -

$<cr 1>(v;);$<cr2>(vJ.) ~ (monotonicity) $<cr 1>(v (' '));$<cr2>(v (" ')).
L max i,J max i,J

co

Thus, ¢<o 1;o2>(v) ~ i~O ¢<o 1;o 2>(vi).

The cases o = o1 u o2 , o 1 n o2 and cr1 are proved similarly.

c. o = °J: By syntactic continuity of o in all Xj' j E J, no Xj occurs in

o1 for any j E J, whence ¢<o 1>(v) = ¢<o 1>(vi~.

Therefore ¢<crj>(v) = ¢<o 1>(v) = ¢<o 1>(vi) = ¢<°J>(vi) for all i EN,
co

whence ¢<cr1>(v) = .U ¢<cr1>(v.).
1.=0 l.

d. o = µkX 1 ... Xn[o 1, •.. ,on]:

Define vi, for all i EN, by

vi= {vi I ¢<01>Cvl) ~ vi(Xl), 1 = 1, ... ,n, and

v!(X) = v.(X), XEX-{xl, ... ,x }}.
i. l. n

co

IOI

Then .U
1.=0

¢<o>(v.) = ,U (n{v!(x_) Iv! EV.}). 1. 1.=0 1. -K 1. 1.
... (a.2.2)

Next define valuation v~, for i EN, by:
l.

*<)- r•c)I, V} *c) vi xl - n, vi xl vi E i , 1 = I , ••• , n, and vi X

for XE X - {X1, ... ,Xn}.
co

co * Then U ¢<o>(v.)
i=O 1.

U v1.(X__) follows directly from (a.2.2) (a.2.3)
i=O k

Let E2 be defined by

Ez = n{.u v!(X) I for all i EN, v! E V.}. (a.2.4)
1.=0 1. k 1. 1.

First we shall prove that ,U v~(X) = E2, and then that ¢<o>(v) ~ E2, 1.=0 1. -le
whence the result follows from (a.2.3).

co * . uo v. (X__) E2: 1.= l. ~1c

Since for v! V. i E N *
c v! (~) holds, c· E and vi(~) we have

co l. co l. - l.
* .u vi(~) ~ U v!(~)· hence

1.=0 i=O 1. '
co * co

i~O v/~) ~ n{ u v! (~) I v! E V.} = E2 follows.
i=O 1. l. l.

* co * ~: We prove below that vi E Vi' for i EN, whence E2 ~ i~O vi(~)

follows from E2 's definition.

By definition, for i EN, v:(xl) ~ v1cxl), for l=l, ... ,n and vi E vi,

* and v/X) = vi(X), for XEX-{X1, ... ,Xn}.

Therefore the conditions for applying monotonicity (lenuna 3.1) are

fulfilled, whence

* ¢<o1>(v.) ~ ,n
l. V,EV,

l. l.

* ¢<o1>(vi) ~ ¢<o1>(vi) ~ vi(X1) for all vi E Vi' and
* vi(X1) = vi(X1), 1 = l, ... ,n.

102

Moreover, v~(X)
l.

for i E N.

First we demonstrate that one can restrict oneself in (a.2.4) to inter-

sections of unions of vi(X1) such that vi(X1) ~ vi+l(X1), 1 = 1, ••. ,n:

Let <v!>~ 0 be a sequence consisting of valuations which satisfy for
l. 1.=

every i EN, $<cr1>(vi) ~ vi(X1), 1 = I, ... ,n, and vi(X) = vi(X), for

XE X - {x 1, ••• ,Xn}.

f • II 00 f 11 De 1.ne <vi>i=O as o ows:
00

For every i E N, v'.'(x1) = .n. vJ! (X1), 1
l. J=l.

XE X - {X 1, ... ,Xn}.

I, ... ,n, and v'.' (X) l.

This sequence of valuations satisfies the following properties:

t. For every i EN, $<cr1>(vi) ~ vi(X1), 1 = I, ... ,n.

This can be deduced from the fact that, for all j ~ i,

v ! (X),
l.

$<cr1>(vi) ~ (monotonicity) $<cr1>(vJ') ~ vJ(X1), 1 = J, ••• ,n.

2. For every i EN, vi(X1) ~ vi+l(X1), I= 1, ••• ,n.

3. i~O vi(Xl) ~ i~O vi(Xl), 1 I, ... ,n.

Therefore, as every n-tuple < U v!(X1)>n1 1 with <v!>. 0 satisfying the
i=O 1. = 1. 1.=

conditions mentioned above contains coordinatewise an n-tuple

<.U v'.'(X1)>n1_ 1 with <v'.'>~_0 also satisfying these conditions, in addi-
1.=0 l. - l. l.-

tion to the extra condition v'1.·'(X1) c v'.' (X), 1 = l, ..• ,n, i EN, one - 1.+l 1
can restrict oneself in (a.2.4) to k-th components of intersections of

the latter.

Define v" by v"(X1) = i~O vi(X1), 1

XE X - {Xl, ... ,xn}.

I, ..• ,n, and v"(X) v(X),

Then the conditions for continuity, w.r.t. the index set Ju {J, ••. ,n},
II If oo and v and <vi>i=O' are fulfilled, whence by the induction hypothesis:

Hence,

00

$<cr 1>(v") = (continuity) U $<cr1>(v~") ~ (point I above)
i=O 1.

00

U vi(X1)
i=O

for 1 1, ••• ,n.

(n{<v'(X1)>~=! I cp<cr1>(v') s v'(X1), 1 = l, ..• ,n, and

v' (X) = v(x), XE X - {x 1, ••• ,Xn}})k !:'. (from above)

"' n (n{<.U v~(X1)>1_ 1 1.=0 l. -

(from above) E2• D

LEMMA 3.3. (Substitutivity). Let J be any ind.ex set, a ET, X. EX and
J

T j E T be of the same type for j E J, and variable valuations v 1 and v2

satisfy

(!) vl(X) = Vz(X), XE X - {Xj}jEJ'

(2) vl(Xj) = <p<Tj>(vz), j E J,

then the following hold.s:

cp<cr>(v 1) = cp<cr[T./X.], 3>(v 2).
]] JE

Proof. By induction on the complexity of a.

We only consider the case cr = µmX 1 ••• Xn[cr 1 , ••• ,an].

By definition,

µ x1 ••• x [cr 1 , ... ,cr J[T./X.J. J
m n n J J JE

µ Y1 ••• Y [cr 1[Y1/x1J1_ 1 [T./X.]. J*''''
m n - , ... ,n J J JE

•.• ,a [Y1/x1J1_ 1 [T./X.]. J*],
n - , ... ,n J J JE

103

* with J = J - {t, ... ,n} and Y1, ••• ,Yn relation variables d!fferent from Xj,

j E J, and not occurring in crk, k = I, ... ,n, or Tj' j E J.

Let

cp<crk>(v'1') S v'i'(~), k = I, ••. ,n,and

v1'(X) = v 1(X), XE X - {X 1 , ... ,Xn}})m'

I , ••• ,n, and

104

v 1 (X)

and

¢<crk[Yl/Xl]l=I [T./X.]. J*>(vz') ~ vz'(Yk)' , ... ,n J J JE
'--------- --

a'
k

k

In order to prove ¢<cr>(v1) = ¢<cr[Tj/Xj]jEJ>(v2), that is E1
prove E2 = E3 and then E1 = E2 :

~= Let v2 satisfy v2(X) = v2(X), for XE X - {Y1, ..• ,Yn}, and

¢<crk>(v2) ~ v2(Yk), k = I, ... ,n.

E3 , we first

Define vj by vj(X) = v2(X) for XE X - {Xj}jEJ

for j E J, and define vj' by vj'(X) = v2(x) for x

vj'(Xj) = ¢<T/(v2), for j E J*.

and vj(Xj) = ¢<Tj>(v2),
EX - {X.}. J* and

J JE

By the induction hypothesis, ¢<crk[Y/X1 Jl=l, •.. ,n> (v'i) = ¢<crk> (v' 2).

As x 1, ... ,Xn do not occur in crk[Y/X1Jl=l, •.• ,n' ¢<crk[Y/X1Jl=l, ••. ,n>(vj')

= ¢<crk[Yl/Xl]l=l, ••• ,n>(vj),

Moreover ¢<crk>(vi) ~ Vz(Yk) = vj(Yk), k = !, ... ,n, as

{X.}.J n{Y 1, ••• ,Y}=0.
J JE n

Thus ¢<crk[Y1/x1Jl=l, .•. ,n>(vj) ~ vj(Yk), k = J, ••• ,n.
Furthermore v 11(X.) = ¢<T.>(v2') = (Y 1 , ••• ,Y do not occur in T.) ¢<T.>(v2) =

J J n J J
= v1(Xj), j E J, and vj(X) = v2(X) = v2 (X) = (asslllllption) v1(X) for

XE X - {Xj}jEJ ~ {Y 1, ••• ,Yn}, whence vj satisfies the conditions mentioned

in E2 •

'() n - '() n b • E E As <v1 Yk >k=I - <v2 Yk >k=I' we o tain 2 ~ 3.

~: Let vj satisfy vj(X) = v 1(X), XE X - {Y 1, .•• ,Yn} and

¢<crk[Y1/Xl]l=l, ••• ,n>(vj) .'.:_ vj(Yk), k = 1, ••. ,n.

Define v2 by v2(Yk) = vj(Yk), k = l, •.• ,n, and v2(X) = v2(X), otherwise.

Now (I) v1(Xj) = v1(xj) = ¢<Tj>(v2) = (Y 1, .•• ,Yn do not occur in Tj)

¢<Tj>(v2), j E J,

105

(2) vj(X) = v1(X)=v2(X) = v2(X), XE X - {Xj}jEJ - {Yl' ••. ,Yn}, and

(3) vj(Yk) = v2(Yk), k = J, .•. ,n,

imply together that the induction hypothesis may be applied, whence

¢<crk[Yl/Xl]l=I [,./X.]. J>(vz') = ¢< 0 k[Yl/Xl]l=I n>(vj). , ••. ,n J J JE ,••••

Since crk[Yl/Xl]l=J [,./X.]. J = crk[Yl/Xl]l=I n[,J./XJ.JJ.EJ* = crk, , • •. ,n J J J E . , • • •,

as no x1, ••• ,X occur in crk[Y1/x1J1=l , n , •.• ,n

follows, k = l, ••• ,n. As v2(X)

duced that E2 ~ E3.

El= E2:

~: Let v'{ satisfy ¢<crk>(v'1') ~ v1'(¾), k J, •.. ,n, and v1'(X) = v1(x),

XE X - {X1, ••• ,Xn}.

Define vj by v1(Yk) = v1'(¾), k = l, •.• ,n, and vj(X) v 1(X),

XE X - {Y 1, ••• ,Yn}.

By the induction hypothesis, ¢<crk> (v'1')

Therefore, ¢<crk[Y1/x1J1=l, ••. ,n>(v1)
k = l, ••• ,n. As vj(X) = v 1(X), XE X -

E1 .::. E2 holds.

= ¢<crk[Yl/Xl]l=l, ••• ,n>(vj).
¢<cr >(v") c v"(X) = v'(Y) k 1-11< lk'
{Y 1, ••• ,Yn}' it can be deduced that

c: As crk[Y1/x1Jl=l [X1/Y1Jl=I crk, the proof of this part is , ... ,n , ... ,n
similar to the proof above. D

106

APPENDIX 3: PROOF OF TARSKI'S "UNPROVABLE ASSERTION"

THEOREM.

r x1;x2 n Y1 ;Y2 n z1;z2 ~

Proof.

A. [X1,Y 1,z 1J = [X1,Y 1,z 1J;(TI 1;X1 ;Y 1;i2 n E).

,2: -trivial.

------(lelllllla 4.3.c) [X1,Y 1,z1J; ([Xl'Yl,Zl] 0 E)

- [Xl,Yl,Zl];{(Til;xl n TI2;YI n TI3;Zl);U n E}

~ [X1 ,Y 1,z 1J;{(TI 1;x1 n TI 2 ;Y2);U n E}

(le= 4.5,c) [X 1,Y 1,z 1J;(TI 1;x1;Y2 ;ir2 n E).

B. Hence, x1;x2 n Y1 ;Y2 n z1;z2 = [X 1 ,Y 1,z 1J;(TI 1;X2 n TI 2 ;Y2 n TI 3 ;z2)

(by part A) [X1 ,Y 1,z 1J;(TI 1;x1 ;Y 1;i2 n E);(TI 1;11;z 1;i3 n E);

(TI3 ;z 1;Y 1;i2 n E);(TI 1;x2 ;Y2 ;i2 n E);(TI 1 ;x2 ;z2 ;ii-3 n E);

(TI3;Z2;Y2;n2 n E);(Til;X2 n TI2;Y2 n TI3;Z2)

[Xl,Yl,Zl];(Til;Xl;Yl;i2 n Til;XiY2;\r2 n Til;Xl;Zl;n3 n Til;X2;x2;*3 n

TI iz I ; YI ; n 2 n TI 3 ; Z iY 2 ; ii 2 n E) ; (TI I ; x2 n TI 2 ; Y 2 n TI 3 ; Z 2)

[x1, Y 1 ,z 1 J; {TI 1; (x1 ;Y 1 n x 2 ;Y2) ;'fr 2n TI 1; (x1 ;Z I n x 2 ;z2) ;ii 3 n TI 3 ; (Z 1 ;Y I n z2 ;Y2) ;ii-2n E};

(Til;X2 n TI2;Y2 n TI3;Z2)·

(TI 1 ; (x1 ;YI n x/Y;t;TI 2n E); (TI 1; (X1 ;z 1 n x 2 ;Z2); ii- 3n E); (TI 3 ; (Z 1 ;Y 1 n z 2 ;Y2) ;ir' 2n E),

E2

Hence,

3

D. By (B) and (C),

x1;x2 n Y1;Y2 n z 1;z2 ~ [X1,Y 1,z 1J;E3;(rr 1;x2 n rr 2;Y2 n rr 3;z2) ~

[x1,Y 1,z 1J;[rr 1,rr 1;(X1;Y1 n x2;Y2 n (x1;z 1 n x2;z2);(Z 1;Y1 n z2;Y2)),rr3J;

(rr 1;x2 n rr 2;Y2 n rr 3;z2) =

[Xl,Yl,Zl];[rrl;X2 n rrl;(xl;YI n x2;Y2 n (Xl;ZI n x2;Z2);

107

(Z 1;Y 1 n z2;Y2));Y2 n rr3 ;z2)

x1;x2 n x1;(X1;Y 1 n x2;Y2 n (X1;z 1 n x2;z2);(Z 1;Y1 n z2;Y2));Y2 n z 1;z2 ~

x1;(X1;Y 1 n x2;Y2 n (X1;z 1 n x2;z2);(Z 1;Y 1 n z2;Y2));Y2• D

108

REFERENCES

[I] BEKIC, H., DefinahZe operations in generaZ aZgebra, and the theory of

automata and fZowcharts, Report IBM Laboratory Vienna, 1969.

[2] BEKIC, H., Towards a mathematicaZ theory of processes, Technical Re

port TR 25.125, IBM Laboratory Vienna, 1971.

[3] BLIKLE, A., An aZgebraic approach to programs and their computations,

in: Proc. of the Symposium and Summer School on the Mathemati

cal Foundations of Computer Science, High Tatras, Czechoslo

vakia, 1973.

[4] BLIKLE, A. & A. MAZURKIEWICZ, An aZgebraic approach to the theory of

programs, aZgorithms, Zanguages and recursiveness, in: Proc.

of an International Symposium and Sununer School on the Mathe

matical Foundations of Computer Science, Warsaw-Jablonna, 1972.

[SJ BURSTALL, R.M., Proving properties of programs by structuraZ induc

tion, Comput. J., ~ (1969) 41-48.

[6] BURSTALL, R.M. & J.W. THATCHER, The aZgebraic theory of recursive pro

gram schemes, in: Category theory applied to computation and

control, E.G. Manes (ed.), University of Massachusetts, 1974.

[7] CADIOU, J.M., Recursive definitions of partiaZ functions and their

computations, Thesis, Stanford University, 1972.

[8] DE BAKKER, J.W., Semantics of programming Zanguages, Advances in In

formation Systems Science, Vol. 2, Plenum Press, 1969.

[9] DE BAKKER, J.W., Recursive procedures, Mathematical Centre Tracts 24,

Amsterdam, 1971.

[JO] DE BAKKER, J.W., Recursion, induction and symboZ manipuZation, in:

Proc. MC-25 Informatica Symposium, Mathematical Centre Tracts

37, Amsterdam, 1971.

[II] DE BAKKER, J.W. & W.P. DE ROEVER, A caZcuZus for recursive program

schemes, in: Proc. IRIA Symposium on Automata, Formal langu

ages and Programming, M. Nivat (ed.), North-Holland, Amster

dam, 1972.

[12] DE BAKKER, J.W. & L.G.L.T. MEERTENS, SimpZe recursive program schemes

and inductive assertions, Mathematical Centre Report MR 142/72,

Amsterdam, 1972.

109

[13] DE BAKKER, J.W. & L.G.L.T. MEERTENS, On the corrrpleteness of the induc

tive assertion method, Prepublication, Mathematical Centre

Report IW 12/73, Amsterdam, 1973.

[14] DE BAKKER, J.W., Least fixed points revisited, Mathematical Centre Re

port IW 22/74, Amsterdam, 1974.

[IS] DE ROEVER, W.P., A formalization of various parameter mechanisms as

products of relations ~ithin a calculus of recursive program

schemes, in: Seminaires IRIA, tteorie des algorithmes, des

langages et de la programmation, 1972, pp.55-88.

[16] DE ROEVER, W.P., Recursion and parameter mechanisms: an axiomatic

approach, in: Automata, Languages and Programming, 2nd Collo

quium, University of Saarbrucken, July 29 - August 2, 1974,

Edited by J. Loeckx, Lecture Notes in Computer Science no. 14,

Springer Verlag, Berlin, etc.

[17] DE ROEVER, W.P., Call-by-value versus call-by-name: a proof-theoretic

corrrparison, in: Proc. of the third Symposium and Summer School

''Mathematical Foundations of Computer Science", Jadwisin, 1974,

Lecture Notes in Computer Science, Springer Verlag, Berlin, etc.

[18] DIJKSTRA, E.W., Notes on structured programming, in: C.A.R. Hoare,

E.W. Dijkstra & O.J. Dahl, Structured Programming, Academic

Press, New York, 1972.

[19] DIJKSTRA, E.W., A short introduction to the art of programming, Report

EWD 316, Technological University Eindhoven, 1971.

[20] DIJKSTRA, E.W., A sirrrple axiomatic basis for programming language

constructs, Indagationes Mathematicae, 36 (1974) 1-15.

[21] FLOYD, R.W., Assigning meanings to programs, in: Proc. of a Symposium

in Applied Mathematics, Vol. 19, Mathematical Aspects of Com

puter Science, J.T. Schwartz (ed.), AMS, Providence, R.I.,

1967.

[22] FOKKINGA, M.M., Inductive assertion patterns for recursive procedures,

in: Proc. of Symposium on Programming, Paris, April 9-11,

1974 (to appear).

[23] GARLAND, S.J. & D.C. LUCKHAM, Translating recursion schemes into pro

gram schemes, in: Proc. of an ACM Conference on Proving Asser

tions about Programs, Las Cruces, New Mexico, January 6-7, 1972.

110

[24] GOGUEN, J.A. & J.W. THATCHER, Initial algebra semantics, in: Proc. of

the 15th conference on Switching and Automata Theory, New Or

leans, pp. 63-77, 1974.

[25] GUESSARIAN, I., Sur une reduction des schemas de programmes polyadi

ques a des schemas monadiques et ses application, Memo GRIT

no. 73.05, Universite de Paris, 1973.

[26] HINDLEY, J.R., B. LERCHER & J.P. SELDIN, Introduction to combinatory

logic, London Mathematical Society Lecture Note Series 7, Cam

bridge University Press, 1972.

[27] HITCHCOCK, P., An approach to formal reasoning about programs, Thesis,

University of Warwick, Coventry, England, 1973.

[28] HITCHCOCK, P. & D. PARK, Induction rules and proofs of termination,

in: Proc. IRIA Symposium on Automata, Formal Languages and

Programming, M. Nivat (ed.), North-Holland, Amsterdam, 1972.

[29] HOARE, C.A.R., An axiomatic basis for computer programming, Comm. ACM,

~ (1969) 576-583.

[30] HOARE, C.A.R., Proof of a program: FIND, Comm. ACM, _!i (1971) 39-45.

[31] HOTZ, G., Eindeutigkeit und Mehrdeutigkeit formaler Sprachen, Elec

tron. Informationsverarbeit. Kybernetik, I (1966) 235-246.

[32] KAHN, G., A preliminary theory of parallel programs, Rapport LABORIA,

IRIA, 1973.

[33] KARP, R.M., Some applications of logical syntax to digital computer

programming, Thesis, Harvard University, 1959.

[34] KING, J.C., A program verifier, Thesis, Carnegie-Mellon University,

1969.

[35] KLEENE, S.C., Introduction to Metamathematics, North-Holland, Amster

dam, 1952.

[36] KNUTH, D.E., The Art of Computer Programming, Vol. I, Fundamental

Algorithms, Addison Wesley, Reading (Mass.), 1968.

[37] LYNDON, R.C., The representation of relational algebras, Ann. of Math.

(2), ~ (1950) 707-729.

[38] LYNDON, R.c., The representation of relational algebras, II, Ann. of

Math. (2), 63 (1956) 294-307.

111

[39] MANNA, Z., The correctness of programs, JCSS, 1_ (1969) 119-127.

[40] MANNA, z., Properties of programs and the first-order predicate cal

culus, JACM, _!i (1969) 244-255.

[41] MANNA, Z. & J.M. CADIOU, Recursive definitions of partial functions

and their computations, in: Proc. of an ACM Conference on

Proving Assertions about Programs, Las Cruces, New Mexico,

January 6-7, 1972.

[42] MANNA, Z., NESS, S. & J. VUILLEMIN, Inductive methods for proving prop

erties of programs, ibidem,

[43] MANNA, Z. & J. VUILLEMIN, Fixpoint approach to the theory of compu

tation, Comm. ACM, ..!2_ (1972) 528-536.

[44] MAZURKIEWICZ, A., Proving properties of processes, PRACE CO PAN CC PAS

Reports~. Warsaw, 1973.

[45] McCARTHY, J., A basis for a mathematical theory of computation, in:

Computer Prograrmzing and Formal Systems, pp.33-70, P. Braf

fort and D. Hirschberg (eds.), North-Holland, Amsterdam, 1963.

[46] MILNER, R., Algebraic theory of computable polyadic functions, Compu

ter Science Memorandum _!I, University College of Swansea, 1970.

[47] MILNER, R., Implementation and application of Scott's logic for compu

table functions, in: Proc. of an ACM Conference on Proving

Assertions about Programs, Las Cruces, New Mexico, January

6-7, 1972.

[48] MILNER, R., An approach to the semantics of parallel programs, Edin

burgh Technical Memo, University of Edinburgh, 1973.

[49] MORRIS JR., J.H., Lambda-calculus models of prograrmzing languages,

Ph.D. Thesis, M.I.T., December 1968.

[SO] MORRIS JR., J.H., Another recursion induction principle, Comm. ACM,

.!i (1971) 351-354.

[SJ] PARK, D., Fixpoint induction and proof of program semantics, in:

Machine Intelligence, Vol. 5, pp.59-78, B, Meltzer and

D, Michie (eds.), Edinburgh University Press, Edinburgh, 1970.

[52] PARK, D., Notes on a formalism for reasoning about schemes, Unpub

lished notes, University of Warwick, 1970.

112

[53] ROSEN, B.K., Tree-mani'{)Ulating systems and Churah-Rosser theorems,

J. Assoc, Comput. Mach., 20 (1973) 160-187,

[54] SCOTT, D., Models for the A-aaleulus, Unpublished notes, University

of Oxford, 1969.

[55] SCOTT, D., Outline of a mathematiaal theory of aomputation, in: Proc.

of ·the Fourth Annual Princeton Conference on Information Scien

ces and Systems, pp.169-176, Princeton, 1970.

[56] SCOTT, D,, Mathematiaal aonaepts in programning language semantias,

in: Proc. Spring Joint Computer Conference 1972, pp,225-234.

[57] SCOTT, D., Data types as Zattiaes, Unpublished lecture notes, Mathe

matical Centre, 1973.

[58] SCOTT, D., Data types as Zattiaes, in: Lecture Notes of the Kiel Sum

mer School, Springer Lecture Notes, Springer Verlag, Berlin,

etc,, 1974.

[59] SCOTT, D, & .J,W. DE BAKKER, A theory of programs, Unpublished notes,

IBM Seminar, Vienna, 1969.

[60] SCOTT, D. & C. STRACHEY, Towards a mathematiaal semantias for aomputer

languages, in: Proc. of the Symposium on Computers and Auto

mata, Microwave Research Institute Symposia Series Vol. 21,

Polytechnic Institute of Brooklyn, 1972,

[61] TARSKI, A., On the aaleulus of relations, J. Symbolic Logic, i (1941)

73-89.

[62] VUILLEMIN, J,, Proof teahniques for reaursive programs, Thesis, Stan

ford University, 1972.

[63] WEYRAUCH, R.W. & R. MILNER, Program aorreatness in a meahanized Zogia,

in: Proc. of the First USA-JAPAN Computer Conference, 1972,

pp.384-390.

[64] WIRTH, N., Program devefopment by stepwise refinement, Co11D11. ACM, 14

(1971) 221-227.

[65] WRIGHT, J.B., Charaaterization of reaursively enumerable sets, J. Sym

bolic Logic, 37 (1972) 507-511.

[66] DE ROEVER, W.P.,First-order reduation of aall-by-name to aall-by-value,

in: Lecture Notes in Computer Science no, 32, Mathematiaal

Foundations of Computer Saienae 1975, Springer Verlag, Berlin, etc.

OTHER TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

A leaflet containing an order-form and abstracts of all publications men
tioned below is available at the Mathematisch Centrum, Tweede Boerhaave
straat 49, Amsterdam-1005, The Netherlands. Orders should be sent to the
same address.

MCT T. VAN DER WALT, Fixed and almost fixed points, 1963. ISBN 90 6196
002 9.

MCT 2 A.R. BLOEMENA, Sampling from a graph, 1964. ISBN 90 6196 003 7.

MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model
and method, 1964. ISBN 90 6196 004 5.

MCT 4 G. DE LEVE, Generalized Markovian decision processes, part II: Pro
babilistic background, 1964. ISBN 90 6196 006 1.

MCT 5 G. DE LEVE, H.C. TIJMS & P.J. WEEDA, Generalized Markovian decision
processes, Applications, 1970. ISBN 90 6196 051 7.

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 1.

MCT 7 W.R. VAN ZWET, Convex transformations of random variables, 1964.
ISBN 90 6196 007 X.

MCT 8 J.A. ZONNEVELD, Automatic nwnerical integration, 1964. ISBN 90 6196
008 8.

MCT 9 P.C. BAAYEN, Universal morphisms, 1964. ISBN 90 6196 009 6.

MCT 10 E.M. DE JAGER, Applications cf distributions in mathematical physics,
1964. ISBN 90 6196 010 X.

MCT 11 A.B. PAALMAN-DE ~URANDA, Topological semigroups, 1964. ISBN 90 6196
011 8.

MCT 12 J.A.TH.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MOKKEN & A. VAN
WIJNGAARDEN, Formal properties of newspaper Dutch, 1965.
ISBN 90 6196 013 4.

MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of print; replaced
by MCT 54.

MCT 14 H.A. LAUWERIER, Calculus of variations in mathematical physics, 1966.
ISBN 90 6196 020 7.

MCT 15 R. OOORNBOS, Slippage tests, 1966. ISBN 90 6196 021 5.

MCT 16 J.W. DE BAKKER, Formal definition of programming languages with an
application to the definition of ALGOL 60, 1967. ISBN 90 6196
022 3.

MCT 17 R.P. VANDERIET, Formula manipulation in ALGOL 60, part 1, 1968.
ISBN 90 6196 025 8.

MCT 18 R.P. VANDERIET, Formula manipulation in ALGOL 60, part 2, 1968.
ISBN 90 6196 038 X.

MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968.
ISBN 90 6196 026 6.

MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial
differential equations, 1968. ISBN 90 6196 027 4.

MCT 21 E. WATTEL, The compactness operator in set theory and topology,
1968. ISBN 90 6196 028 2.

MCT 22 T.J. DEKKER, ALGOL 60 procedures in nwnerical algebra, part 1, 1968.
ISBN 90 6196 029 0.

MCT 23 T.J. DEKKER & W. HOFFMANN, ALGOL 60 procedures in nwnerical algebra,
part 2, 1968. ISBN 90 6196 030 4.

MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 90 6196 060 6.

MCT 25 E.R. PAERL, Representations of the Lorentz group and projective
geometry, 1969. ISBN 90 6196 039 8.

MCT 26 EUROPEAN MEETING 1968, Selected statistical papers, part I, 1968.
ISBN 90 6196 031 2.

MCT 27 EUROPEAN MEETING 1968, Selected statistical papers, part II, 1969.
ISBN 90 6196 040 1.

MCT 28 J. OOSTERHOFF, Combination of one-sided statistical tests, 1969.
ISBN 90 6196 041 X.

MCT 29 J. \IERHOEFF, Error detecting decimal codes, 1969. ISBN 90 6196 042 8.

MCT 30 H. BRANDT CORSTIUS, Excercises in computational linguistics, 1970.
ISBN 90 6196 052 5.

MCT 31 W. M:>LENAAR, Approximations to the Poisson, binomial and hypergeo
metric distribution functions, 1970. ISBN 90 6196 053 3.

MCT 32 L. DE HAAN, On regular variation and its application to the weak
convergence of sample extremes, 1970. ISBN 90 6196 054 1.

MCT 33 F.W. STEUTEL, Preservation of infinite divisibility under mixing
and related topics, 1970. ISBN 90 6196 061 4.

MCT 34 I. JUHASZ, A. VERBEEK & N.S. KROONENBERG, Cardinal functions in
topology, 1971. ISBN 90 6196 062 2.

MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 90 6196 063 o.
MCT 36 J. GRASMAN, On the birth of bounda.ry layers, 1971. ISBN 90 6196064 9.

MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DuIJVESTIJN, E.W. DIJKSTRA,
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN
ARETZ, W.L. VAN DER PoEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES &

G. ZOUTENDIJK, MC-25 Informatica Symposiwn, 1971. ISBN 90
6196 065 7.

MCT 38 W.A. \IERLOREN VAN THEMAAT, Automatic analysis of Dutch compound words,
1971. ISBN 90 6196 073 8.

MCT 39 H. BAVINCK, Jacobi series and approximation, 1972. ISBN 90 6196 074 6.

MCT 40 H.C. TIJMS, Analysis of (s,S) inventory models, 1972. ISBN 90 6196 075 4.

MCT 41 A. VERBEEK, Superextensions of topological spaces, 1972. ISBN 90
6196 076 2.

MCT 42 W. \IERVAAT, Success epochs in Bernoulli trials (with applications in
number theory), 1972. ISBN 90 6196 077 o.

MCT 43 F.H. RUYMGAART, Asymptotic theory of rank tests for independence,
1973. ISBN 90 6196 081 9.

MCT 44 H. BART, Meromorphic operator valued functions, 1973.,ISBN 9061960827.

MCT 45 A.A. BALKEMA, Monotone transformations and limit lca,Js, 1973.
ISBN 90 6196 083 5.

MCT 46 R.P. VAN DE RIET, ABC ALGOI,, A portable language for formula manipu
lation systems, part 1: The language, 1973. ISBN 90 6196 084 3.

MCT 47 R.P. VAN DE RIET, ABC ALGOL A portable language for formula manipu
lation systems part 2: The compiler, 1973. ISBN 90 6196 0851.

MCT 48 F.E.J. KRUSEMAN A.RETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, In ALGOL
60 compiler in ALGOL 60, Text of the MC-compiler for the
EL-XB, 1973. ISBN 90 6196 086 X.

MCT 49 H. KOK, Connected orderable spaces, 1974. ISBN 90 6196 088 6.

MCT 50 A. VAN WIJNGAARDEN, B.J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER,
M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER
(eds.), Revised report on the algorithmic language ALGOL 68.
ISBN 90 6196 089 4.

MCT 51 A. HORDIJK, Dynamic programming and Markov potential theory, 1974.
ISBN 90 6196 095 9.

MCT 52 P.C. BAAYEN (ed.), Topological structures, 1974. ISBN 90 6196 096 7.

MCT 53 M.J. FABER, Metrizability in generalized ordered spaces, 1974.
ISBN 90 6196 097 5.

MCT 54 H.A. LAUWERIER, Asymptotic analysis, part 1, 1974. ISBN90 6196 098 3.

MCT 55 M. HALL JR. & J.H. VAN LINT (eds.), Combinatorics, part 1: Theory
of designs finite geometry and coding theory, 1974.
ISBN 90 6196 099 1.

MCT 56 M. HALL JR. & J.H. VAN LINT (eds.), Combinatorics, part 2: Graph
theory; founda,tions, partitions and combinatorial geometry,
1974. ISBN 90 6196 100 9.

MCT 57 M. HALL JR. & J.H. VAN LINT (eds.), Combinatorics, part 3: Combina
torial group theory, 1974. ISBN 90 6196 101 7.

MCT 58 W. ALBERS, Asymptotic expansions and the deficiency concept in sta
tistics, 1975. ISBN 90 6196 102 5.

MCT 59 J.L. MIJNHEER, Sample path properties of stable processes, 1975.
ISBN 90 6196 107 6.

MCT 60 F. GoBEL, Queueing models involving buffers. ISBN 90 6196 108 4.

* MCT 61 P. VAN EMDE BoAS, Abstract resource-bound classes, part 1.
ISBN 90 6196 109 2.

* MCT 62 P. VAN EMDE BoAS, Abstract resource-bound classes, part 2.
ISBN 90 6196 110 6.

MCT 63 J.W. DE BAKKER (ed.), Founda,tions of computer science, 1975.
ISBN 90 6196 111 4.

MCT 64 W.J. DE SCHIPPER, Symmetries closed categories, 1975. ISBN90 6196
112 2.

MCT 65 J. DE VRIES, Topological transformation groups 1 A categorical ap
proach, 1975. ISBN 90 6196 113 0.

* MCT 66 H.G.J. PIJLS, Locally convex algebras in spectral theory and eigen
function expansions. ISBN 90 6196 114 9.

* MCT 67 H.A. LAUWERIER, Asymptotic analysis, part 2.
ISBN 90 6196 119 X.

* MCT 68 P.P.N. DE GROEN, Singulary pertlibed differential operators of
second order. ISBN 90 6196 120 3.

* MCT 69 J.K. LENSTRA, Sequencing by enwnerative methods.
ISBN 90 6196 125 4.

MCT 70 W.P. DE IbEVER JR., Recursive program schemes: se111(J;yttics and proof
theory. ISBN 90 6196 127 o.

* MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision processes.
ISBN 90 6196 129 7.

* MCT 72 J.K.M. JANSEN, Simple periodic and nonperiodic Lame functions and
their applications in the theory of eletroma.gnetism.
ISBN 90 6196 130 0.

* MCT 73 D.M.R. Leivant, Absoluteness of intuitionistic logic.
ISBN 90 6196 122 x.

*·MCT 74 H.J.J. Te Riele, A theoretical and computational study of general
ized aliquot sequences. ISBN 90 6196 131 9.

An asterisk before the number means "to appear".

