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INTRODUCT ION

For a long time it was recognized that in many cases the set A(XY) of
morphisms from X into ¥ in a category A is endowed with an additional
structure, such as the structure of an abelian group or a topological space.
This observation led to the theory of additive categories and, about 1965,
to the theory of enriched catagories. In 1966 S. EILENBERG and G.M. KELLY
published their fundamental paper (losed Categories ([6]) in which they
gave a detailed treatment of the basic theory of closed categories, monoidal
closed categories and symmetric monoidal closed categories.

A closed category V is a category VO equipped with a functor V from VO
into the category of sets § (in many examples a forgetful functor, but in
the general theory of closed categories V need not be faithful) and an in-
ternal Hom-functor [-,-]: V; X VO«+ VO such that V[X,Y] is the set VO(XY)
of morphisms from X into Y.

A monoidal category V is a category VO equipped with a bifunctor
e VO X VO—+ VO, called the tensor product functor, which is associative
up to a natural isomorphism a, and has a two-sided identity I, alsc up to
natural isomorphisms 1 and rx. Although we use the notation and terminology
of tensor products, categorical products and even categorical sums give
also rise to monoidal structures.

For a closed category V as well as for a monoidal category V one can
define the concept of a V-category A, that is a "category" whose Hom-
functor takes its values A(XY) in the category UO' With a V-category A is
associated an ordinary category AO' called the underlying category of A,
with the same class of objects and such that AO(XY) = VA(XY). (In order to
be able to define the underlying category AO in the monoidal case one must

assume that V is normalized, i.e. eguipped with a functor V: UO -+ 8§ and a



natural isomorphism Lyt VX > VO(I,X) ). One can alsc define V-functors and
-natural transformations, and a great part of the ordinary set-based cate-~
gory theory can be lifted to the V-level.

A monoidal closed category is a monoidal category which is also closed,

the two structures being related by a natural isomorphism

Pyynt [xey,z] — [x[vz]].

This isomorphism induces an adjunction of the bifunctors ~-8- and [~,~]:

) — |/
Tyz O(XQY,Z) O(x[vz])
and this adjunction induces an interesting interaction between the monoidal
structure and the closed structure.

A symmetric monoidal closed category is a monoidal closed category

with a symmetric monoidal structure, i.e. with a natural isomorphism

: X —
CXY Y YK

such that c c

vx %xy = lxey’

The exact definitions of all these concepts are to be found in [6];
they will be recalled in the sequel.

This tract could be considered as a supplement to the paper Closed
Categories of EILENBERG and KELLY ([6]). It contains an exposition of the
basic theory of two structures which are closely related to the closed and
the monoidal closed categories, and the treatment is along the lines in-
dicated in [6]. Although for the reader's convenience the definitions of the
the relevant concepts and some of the theorems will be repeated here, for a
good idea of the theory developed in the sequel, some familiarity with the
theory of closed categories, as exposed in [6], is desirable.

After a first chapter of introductory character, in chapter II symmet-
ric closed categories are introduced and investigated. A symmetric closed

category is a closed category with an additional natural isomorphism

Syvz’ [xCyz]1] — [vlxz]1]

such that s = 1[X[YZ]]' The existence of a monoidal structure is

vxz ®xvz



not assumed. The natural isomorphism s induces a self-adjunction of the in-

ternal Hom-functor:

Ogyz? VoXLvzD) + Vo (vixz]).

Many of the closed categories which appear in mathematics are symmetric
closed categories; in fact, any symmetric monoidal closed category is a
symmetric closed category. For example, the closed categories TOP(poZ) of
topological spaces (the function spaces supplied with the point open topol-
ogy), AMOD of modules over a commutative ring A, BAN1 of Banach spaces and
linear contractions, and GRAPH of graphs are all symmetric closed catego-
ries, with the natural isomorphism s given by

(( flylx = (fx)y

Sxyz
(wvhere £: X [¥2], x € X and y € ¥). All these examples are in fact sym-
metric monoidal closed categories.

In [15] A. KOCK conjectures that, "as soon as a reasonable definition
of (non-monoidal) symmetric closed category has been found"” the closed
categoxry of T-algebras generated by a commutative monad T will turn out to
be symmetric closed. His conjecture is correct, as is shown in a separate
paper (W.J. DE SCHIPPER [21]). In KOCK's example a monoidal structure seems
to be absent.

The structure of symmetric closed categories is considerably richer
than that of closed categories. The symmetry allows us to define the dual
A* of a V-category A and to introduce contravariant V-functors. In this
context, the introduction of V-natural transformations, in [6] a rather
complicated procedure using a generalized Yoneda lemma, becomes rather
simple, because the bifunctor A(-,~): A; X A0—+ VO (where AO is the under-
lying category of the V~category A) can be defined straightforwardly. All
the "canonical” natural transformations turn out to be V-natural. It is
possible to define a kind of V-natural transformations in the context of
symmetric closed categories without reference to the underlying category of
a V~category; this is shown in W.J. DE SCHIPPER [20].

In chapter III, semi monoidal closed categories are introduced and
studied. Let us first give an example. The cartesian product induces a sym-

metric monoidal structure in the category TOP of topological spaces. The



interaction of this monoidal structure with the closed structure induced by
the point open topology is not exactly that of a monoidal closed category.

There exists a natural transformation

Pyyz [xxy,z] — [x[vz]]

and all the axioms of a monoidal closed category are fulfilled, but the
transformation p fails to be a natural Zsomorphism, as is required in the
definition of a monoidal closed category. In the third chapter we give an
axiomatic treatment of such structures. A semi monoidal closed category is
a monoidal category which is also closed, the two structures being related

by a natural transformation

T vz’ [xzlelyw] — [x8Y,Z6W].

One can then define a natural transformation

Pyyz* [xey,2] — [x[vz]1]

and prove all the axioms of a monoidal closed category although p need not

be a natural Zsomorphism. One can also define the tensor product A8B of the
V-categories A and B, and V-bifunctors. We also investigate what happens if
both the monoidal and the closed structure are symmetric. In that case all

the "canonical® natural transformations turn out to be V-natural.

We do not treat the extra structure which arises when the bifunctor @
is the categorical product in VO' i.e. a right adjoint to the diagonal
functor A: VO-—+ VO X Vo. So in the example TOP(pot), the theory of semi
monoidal closed categories does not describe the whole interaction between
the internal Hom~functor and the Cartesian product. For example, the natural

isomorphism

bz’ [x,yxz] — [X,¥] x [X,z]
is not considered.
In chapter IV we investigate monoidal symmetric closed categories. A

monotidal symmetric closed category is a monoidal closed category in which



the closed part is symmetric. (Recall that a symmetric monoidal closed
category, defined by EILENBERG and KELLY, is a moncidal closed category in
which the monoidal part is symmetric.) In a monoidal symmetric closed cate-

gory we have two adjunctions

L UO(X®Y,Z) i Vo(x[\zz])

and

- VO(X[YZ]) - VO(Y[xz]).
These induce a strong interaction between the monoidal structure and the
closed structure; in fact, the monoidal structure is completely determined
by the closed structure and the existence of the natural isomorphism p
which is subject to one axiom. We first show that monoidal symmetric closed
categories and symmetric monoidal closed categories are essentially the
same. Next we show that each monoidal symmetric closed category is a sym~—
metric semi-monoidal closed category, so that the results of chapter III
are valid for monoidal symmetric closed categories.

The final chapter V contains examples which illustrate the investi-
gated structures and show that they are omnipresent in mathematics. We give
an example of a symmetric closed category which is not a monoidal symmetric
closed category, and another example (the category of Hausdorff spaces, the
function spaces supplied with the compact open topology) shows that a
monoidal closed categorxry need not be a semi-monoidal closed category.

The theory of symmetric closed categories and semi monoidal closed
categories is developed to roughly the same extent as EILENBERG and KELLY
develop the theory of closed and monoidal closed categories in [6]. So
topics as V-adjunctions, V-monads, cotensored V~categories etc. are not
considered. An application of the theory of symmetric closed categories to
the theory of V-monads is given in a separate paper [21]. A coherence
theory for the investigated structures is also missing. The coherence re-
sults of G.M. KELLY and S. MACIANE [11] for symmetric monoidal closed cate-
gories are not used, although application of these results might possibly
lead to shorter proofs in the final sections of chapter IV, after we have
proved that monoidal symmetric closed categories and symmetric monoidal
closed categories are essentially the same. I have preferred to give con=-
structive proofs in these sections, since such proofs provide more insight
in the dependencies between the various natural transformations and prop-

erties.



CHAPTER |

PRELIMINARIES

1. NOTATIONS AND CONVENTIONS

Since this tract can be considered as an extension of the paper [6]
Closed Categories by S. EILENBERG and G.M. KELLY, our notation is chosen to
agree with theirs, with only a few differences of minor importance which
are mentioned below.

If A is a category, A(XY) denotes the Hom-set of all morphisms in A
from X into Y. We use A" for the dual of a category A, and ™ A" — B" for
the dual of a functor T: A — B. The symbol S is reserved for the category
of sets. The several natural transformations which occur in S are denoted by
symbols in italics (see the propositions II.2.5, II1.2.4 and IV.3.4).

Following EILENBERG and KELLY, we often omit brackets and commas. For
a Hom~-set we usually write A(XY), not A(X,Y) and for a bifunctor T we mostly
write T(XY), not T(X,Y). We also often omit indices if no confusion is
likely. For example, . [vz] — [[xv]{x2]] is often abbreviated to *. o1

Yz
QX)thobA is a family of moxphisms with aX: TX —* SX we abbreviate to
o = aX: T -+ SX.

a = (

The most important difference between our notation and that of
EILENBERG and KELLY is that we use the symbol [~,-] for the internal Hom~
functor in a closed category, whereas they use the symbol (~-,~). Ordered
pairs are denoted by angular brackets { ~,~). Another difference is that we
have chosen the symbols d and e for two particular natural transformations,
occurring in Chapter IV, section 2, in agreement with more recent publica-
tions, whereas they use the symbols u and v, and that we have reserved the
symbol £ for the middle four interchange isomorphism (Chapter II, section 1)
whereas they use the symbol m. We have used the symbols u, v and m for
other particular natural transformations.

In the sequel we do not go into the questions concerning foundations.



We have chosen for a theory of categories, based on a set theory with uni-
verses. For our purposes it suffices to work with two universes Uo and U1
with UO € U1. A category A is called a Uo—category if the class of objects
ob A is a subset of UO and if for each pair of objects X and Y the set
A(XY) is an element of UO. The categories which are considered are supposed
to be Uo-categories. For example if we speak about the category of closed
categories CC we mean the category of closed Uo—categories. CC itself is
not a Uo—category, but a Ui—category.

For a discussion of the foundations, and also for the general theory
of categories we refer to MACLANE's book [17]. Sometimes we use the language
of hypercategories (= 2-categories). For a definition we refer to [6].

In the remaining two sections of this chapter we recall the definition
of generalized natural transformations and we formulate two theorems about

adjointness of bifunctors which are used in the chaptexs II and IV.

2. GENERALIZED NATURAL TRANSFORMATIONS

In this section we recall the definition of generalized natural
transformations. This concept includes the oxdinary natural transformations
but also extraordinary kinds of natural transformations. The contents of
this section are taken from S. EILENBERG and G.M. KeLLY [7]. In that paper
the definition of generalized natural transformations is given and the
question of their composition is treated. The related notion of dinatural
transformations, introduced by E. DUBUC and ROSS STREET, is mentioned in
T171.

2.1. DEFINITION. Let A, B, C and E be categories. Consider functors

T: A x B x B —E

s: Ax " x C— E.
Let

a = aXYZ: T(XYY) — $({Xz22)
be a family of morphisms in E, indexed by (X,Y,Z) € ob A x ob B x ob (. This
family is called a generalized natural transformation if the following

three diagrams commute:



A(X,x%) T(-¥Y) E(T(XYY),T(X'YY))
(2.1) S(-22) E(1,a)
E(s(xz2)¥s(x'22)) E@, 1) E(T(XYY) IS (X'2Z))
B(y,¥") TxY!-) E(T(XY'Y),T(XY'Y"))
(2.2) T(X~¥Y) E(1,a)
E (T (XY*Y) ¥T (XYY)) E(1,a) T (v y) TS (x22))
C(z,2) S (xz2-) F(S(x22),5(X22"))
(2.3) S(X-2%) E(a,1)
E(s(xz°2') Is(x22')) E@, 1) E(T (xvY) ¥s(%2Z°))

If we evaluate these diagrams at f: X — X', g: Y = ¥' and h: 2 -~ Z°

we obtain the following commutative diagrams:

T (XYY) T£11) T (X' YY)
(2.4) a a

S(XZZ) S(fi1) S(X'27)

T(XY'Y) T(lig) T(XY'YY)
(2.5) T(lgl) a

T (XYY) a S (X27)

T (XYY) a S (X72)
(2.6) a S(1ih)

s(x ;z,) S(ih1) S(x3z)

These three diagrams can be taken together in a single commuting

diagram:

T (XYY) T(igh) T(XY'Y) T(flg) TXY'YY)
{(2.7) a a

s (xgz)__ SN s(x'zzt),  Stihl) S(x'2'2")




In view of the generalization of the notion of natural transformation
to V-natural transformation in chapter II we prefer to use the form (2.1) -

(2.3) of the naturality conditions, in which the morphisms £,g and h do not

occur.

2.2. REMARK. Let I be a category with one object *, and one moxphism. If
B

A =1, T is given by the object T(x%x) of E, which we shall also denote by

I we can identify A x B* x B with A, writing TX for T(X**); if also

i

T. By taking two at a time of A, B, C to be I we obtain the following three

special cases of generalized natural transformations:

1) a family of morphisms

where T,5: A — E, is called natural if the following diagram commutes:

T

A(X, %) E(Tx, %)
(2.8) s E(1,a)
E(sX,8x") Eta,1) E(rxisx')

Evaluation at £: X -+ X' gives a commutative diagram

% TE -
(2.9) a a
SX St &

Hence a: T — S is an ordinary natural transformation.

2) a family of moxrphisms

a = aY: T(YY) —> S

x
where T: B® x B> £ and S ¢ ob E, is called natural if the following

diagram commutes:
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T(Y'~)

B(y,¥") E(T(Y'Y),T(Y'Y"))

(2.10) T(-Y) E(l,a)

E(1,a)

E(T(Y'Y),T(YY)) E(T(Y'Y);S)

Evaluation at g: Y — Y' gives a commutative diagram

T(Y'Y) T(1g) T(Y'Y")
(2.11) T(gl) a
T(YY) a

3) a family of morphisms

=a :T =
a aZ S(zz)
*
where S: C x C— E and T ¢ ob E, is called natural if the following
diagram commutes:

s(-2)

C(z,z") E(s(zz),s(22*))

(2.12) S(-2') E(a,1)

E(a,1)

E(s(z'z'),8(22")) E(r,s(22'))

Evaluation at h: 2 — Z' gives a commutative diagram

T S(2Z)

(2.13) a s(i,h)

S(h,1)

S(z*z*) S(2z')

The latter two types of natural transformations are the so-called
extra~ordinary natural transformations. We shall meet them frequently in
the sequel, for the first time in the next section. We shall omit the pre-
fix generalized, so that "natural transformation" is sometimes used in the

sense of "generalized natural transformation".
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3. ADJOINT BIFUNCTORS

In this section we formulate for later reference some theorems about
adjoint bifunctors. They are the bifunctor analogues of well-known theorems
about adjoint functors. For the theory of adjoint functors we refer to [17]
chaptex IV, where the reader may also find a theorem about adjoint bifunctors
(section 7, Theorem 3). We also formulate some statements about bijections
between classes of natural transformations in an adjoint situation. These
bijections are the prototypes of bijections which play an important role

in the chapters II and IV.

1. THEOREM. (Bifunctor analogue of a theorem about covariant adjoint
*
functors.) Let A, B and C be categories. Let T: A x B — C and H: B x C— A
be functors.

Then the following conditions are equivalent:

a) There exists a natural isomoxrphism

T Myyn C(T(XY),2) — A(X,H(YZ)).

b) There exist natural transformations

d = dxy’ ¥~ H(Y,T(XY))

and

e = eYZ: T(H(YZ),Y) =+ 2

such that the following diagrams are commutative

H(Y,Z) H(Y,Z)

H(Y, T(H(YZ) ¥))

T (X,

(3.2) T(dy,r1)
T(H(Y,T(XY)),¥)

T(X,¥)

////// ®y,T (xY)
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c¢) There exists a natural transformation
d= dxyz X — H(Y,T(XY))

with the following property:
for each morphism h: X -+ H(YZ) there exists exactly one morphism

g: T(XY) —» Z such that H(l,g)dXY = h.

X h H(Y,Z) ¢
//

i

i

|

|

X

Iy /,//?Hl,g)

-

H(Y,T (X)) T(
d) There exists a natural transformation

e = e, T(H(Y¥Z) ,¥) — Z
with the following property:
for each morphism g: T(XY) — Z there exists exactly one morphism

h: X — H(YZ) such e ZT(h,l) = g.

Y
X T(X,Y) J z
l \\\
ERY T(h,1) ~o
| (h,1) N 4y
¥ N
H(YZ) T(H(YZ),Y

If the four equivalent conditions are fulfilled, the relations between

m, d and e are given by the following formulas:

(3.3) Iy = "xv, v vy ey’
(3.4) e, = 1wt (1 )
. vz © "u(yz),vz ' ‘u(yz)

(3.5) (g) = H(l,g)dxY for g: T(XY) -~ Z

Tyyz

-1
{3.6) WXYZ(h)

eYZT(h,l) for h: X - H(YZ).
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PROOF. If we keep Y fixed, the theorem is well-known (see for example [17]
chapter IV, section 7, theorems 2 and 3). The naturality of T vy in the
variable ¥ is equivalent to the (generalized) naturality of dXY and eYz in
the variable Y. The latter means that for each morphism g: ¥ -+ ¥' the

following diagrams commute:

b4 sl (¥, T (XY))
a H(1,T(ig))
H(Y',T(XY')) Hlgl) H(YIT(x¥"))
TH(Y'Z),Y) TEGY D nmz) v
T(1,9) e
T(H(Y'Z),Y¥") c z 0

3.2. DEFINITION. If the equivalent conditions of theorem 3.1 are fulfilled,
the ordered triple (T,H,n) is called an adjunction of bifunctors. The bi~
functor T is called a left adjoint of the bifunctor H and H is called a
right adjoint of T. m is called the adjunction-isomorphism, d is called the

wunit and e is called the counit of the adjunction.

3.3. PrROPOSITION. ([6], Chapter II, lemma 3.1). Let (T,H,r) be an adjunc~
tion of bifunctors as in theorem 3.1. Let D be a category, let P: A — D
and Q: C ~+ D be functors and let Y ¢ ob B.

Commutativity of the diagram

C(T(XY),2) " A(x,8(¥2))
Q P
(3”7)D(QT(XY).,Q ) D(px,PH(YZ))
Dia,1) T(1,8)
s
(PX, %)

deteymines a bijection between natural transformations

o= oy PX — or (XY)
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and natural transformations

B = B,: PH(VZ) — Q7.

If we take Z = T(XY) and evaluate diagram (3.7) at 1T(XY) we see how

o depends on B:

[+
PX X or (X,Y)

(3.8
: \;;;;\\\\\\‘7 ////////é;;;;)
PHIX,T(XY))

If we take X = H(YZ) and evaluate diagram (3.7) at ey we see how B

depends on o:

Z

PH(Y,2)

B
z O
(3.9) “m /eyz/

or (H(Y¥2),Y)

Commutativity of each of the diagrams (3.8) and (3.9) also completely

determines the bijection given by commutativity of diagram (3.7). [

3.4. PROPOSITION. Let (T,H,7v) be an adjunction of bifunctors as in theorem
3.1. Let D be a category, let P: D — A and Q: U — C be functors and let
¥ ¢ ob B.

Commutativity of the diagram

D(x,2)

(3.10} C(ox,0z) , A(PX,PZ)
Cla,1) A(L,B)

C(T(PX,¥),0%) Alpxla(Y,02))

determines a bijection between natural transformations

@ = o: T(PX,Y) — OX
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and natural transformations
B = BZ: PZ ~ H(Y,QZ).

If we take X = Z and evaluate diagram (3.10) at 1Z we see how 8

depends on o:

pz\ z H(Y,02)
(3.11) dPZ,Y H(l,az)

H{Y,T(PZ,Y))

If we take Z = X and evaluate diagram (3.10) at 1X (after we have re-

placed w by ﬂ~1) we see how o depends on B8:

T(PX,¥)

(63
X X
(3.12) T(Bx\ /;,Qx

T(H(Y,QX) ,¥)

Commutativity of each of the diagrams (3.11) and (3.12) also com~
pletely determines the bijection given by commutativity of diagram (3.10). [

3.5. THEOREM. (Bifunctor analogue of a theorem about right adjoint contra-
variant functors.) Let A, B and C be categories. Let H: A* x C - B and

*
K: B® x C ~— A be functors.

Then the following conditions are equivalent:

a) There exists a natural isomorphism

O = Oyynt A(X,R(YZ)) — B(Y,H(XZ)).

b) There exist natural transformations

m=m, Y - H(K(YZ),2)

and

n o= ngs X - K(H(XZ),2)
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such that the following diagram commutes:

H(X,2)

e H{X ,Z)

(3.13) Hm /

H(K(H(X2),2),2)

K(Y,2)

K(Y z)
(3.14) K(m /

K(B(K(YZ);2),2)

¢) There exists a natural transformation

m=mg,: Y — H(K(YZ),Z)

with the following property:

for each morphism h: ¥ — H(XZ) there exists exactly one morphism

g: ¥ — K(¥Z) such that H{g,1)m = b,

h
e H(X,2)
g
/// ¢
mYZ /// H(gfl) :ﬂ.g
g ¥
H(K(YZ),2) K(YZ)

d) There exists a natural transformation

n = ng,: X - K(HE(X2),2)

with the following property:

for each morphism g: X - K(YZ) there exists exactly one morphism
h: ¥ - H(XZ) such that K(h,1)n

= g.‘
g
b4 FjS},Z) ?
N RO ii!h
K(H(XZ),2)

If the four equivalent conditions are fulfilled, the relations between
o, m and n are given by the following formulas:
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(3.15) Byr = %k(vz), vz Tk (vz)’

-1
3.16) Az = 9%,m(x2),2 YH(xz)

(3.17) (g) = H(g,l)mYZ for g: X —r K(YZ)

UXYZ

-1
(3.18) UXYZ(h)

K(h,1)n,, ~ for h: Y — H(XZ). 0

3.6. DEFINITION. If the equivalent conditions of theorem 3.5 are fulfilled,
the triple (K,H,0) is called a right adjunction of bifunctors. The bifunc-
tors X and H are called right adjoint. o is called the adjunction isomor—

phism.

3.7. PROPOSITION. Let (K,H,0) be a right adjunction of bifunctors as in

*
theorem 3.5. Let D be a category, let P: A — D and Q: B — D be functors
and let Z ¢ ob C.

Commutativity of the diagram

A(x,K(¥2)) o ~B(Y,H(X2))

P Q

(3.19)  D(pxlpx(yz)) D(QH(XZ) JoY)
D(1,8) D(a,1)
D(px,QY)

determines a bijection between natural transformations

o=y P —r QH(XZ)
and natural transformations

B = Byz PK(YZ) — QY.

If we take X = K(Y¥Z2) and evaluate diagram (3.19) at 1K(YZ) we see how

B depends on o:
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PK(Y,Z)

B
Y ov
(3.20) m A

QH(K(YZ) ,2)

If we take Y = H(XZ) and evaluate diagram (3.19) at nXZ we see how o

depends on B8:

QH (X ,2)

a
PX X
(3.21) \\\;;EE\\\\\\ ////////égzz;)

PK(H(XZ) ,Z)

Commutativity of each of the diagrams (3.20) and (3.21) also com-
pletely determines the bijection, given by commutativity of diagram (3.19). [

3.8. PROPOSITION. Let (K,H,0) be a right adjunction of bifunctors as in
theorem 3.5. Let U be a category, let P: D — A and Q: D* —» B be functors
and let 2 ¢ ob C.

Commutativity of the diagram

D(x.¥)

,4////EL/”///////////h\\\\\\\\\\ Q
T e

A(L,0) B(1,8)

(3.22) A(PX,PY)

B(QYIH(PX,2))

A(PxIKR(QY,Z))
determines a bijection between natural transformations
o =0,: PY = X(QY,Z)
and natural transformations

B = By: QX — H(PX,2),

If we take Y = X and evaluate diagram (3.22) at 1X we see how 8 depends

on G:
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pon H(PX,Z)

B
ox *
(3.23) mm Hla,,1)

H{K(QX,2),2)

If we take X = Y and evaluate diagram (3.22) at iy {(after we have re-

placed ¢ by 0-1) we see how o depends on B:

PY. K{(QY,2)
n

%y
PY,% %1)
\\7 /
K(H(PY,2),3)

Commutativity of each of the diagrams (3.23) and (3.24) also complete-

(3.24)

ly determines the bijection given by commutativity of diagram (3.22). [
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CHAPTER |l

SYMMETRIC CLOSED CATEGORIES

1. CLOSED CATEGORIES

In this section we recall the definition and some properties of a
closed category. For more information about closed categories, the readerxr

is referred to [6], chapter I.

1.1. DEFINITION. A closed category is an ordered 7-tuple
V= (VO,V,[—,-],I,i,j,L) consisting of:

(i) a category VO (called the underlying category of V);

(ii) a functor V: VO —+ S (called the basic functor of V);

(iii) a functor [-,-]: V; x UO — VO (called the Znternal Hom functor);
(iv) an object I of UO;

(v) a natural isomorphism i = i_: X - [IX] in VO;

(vi) a natural transformation j

it

I — [XX] in VO;

3.2
X »
X [vz] — [[xv1[x2]] in v,

(vii) a natural transformation L

vz'©
These data are to satisfy the following six axioms:

CCO. The following diagram of functors commutes:

CCl. The following diagram commutes:

L

[yv] [[xy]1lxy1]
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CC2. The following diagram commutes:

.
[xy] o LLXX][xY1]
i 3,11
[zlxyl]
CC3. The following diagram commutes:
LY
[wz] ol LYW1[¥Z]]
LX
X
[([xwllxz]1] f1,L7]
Fxy]
(¥, 17
[CCxyIlzwlI[[xyIlxz]]] ’ [Cywll[xv1lxz11]
CC4. The following diagram commutes:
LI
[xy] s LLIX]JTY]]
[1,i]
CcCs. ViEXX](lx) = jX: I - [xx].

1.2. DEFINITION. Let V = (VO,V,[~,—],I,i,j,L).and

i = (Vé,V',[—,—]',I',i',j',L') be closed categories; we write [XY] for
[x¥l*, a closed functor o: V — V® is an ordered triple & = (¢,$,¢O> con-
sisting of:

(i} a functor ¢: VO - Va;

(ii) a natural transformation § = $XY: olxY] =~ [¢X,9¥] in Va;

{iii) a morphism ¢°: I — ¢I in Ué,

These data are to satisfy the following three axioms:
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CFl. The following diagram commutes:

It i’ . [¢X,¢X]
¢°J T$
1 ¢3 olx %]

CF2. The following diagram commutes:

¢X [xv,¢x]
¢i T[¢O,1]
ol1 %1 $ [¢1,0x]

CF3. The following diagram commutes:

oly,z] oL ¢Llxyl, [xz]]
$[ l@
Loy, ¢2] [olxvl, ¢lxz]]
L.Ml 1[1,$]
06,11
[[¢x,0v],[¢x,921] ! o LOLXYI,[¢X,021]

1.3. DEFINITION. Let ¢ = (¢,$,¢0) and ¥ = ¢ w,@,wo) be closed functors
Y — V. A closed natural transformation n: & —> ¥: V —» V' is a natural
transformation n: ¢ > Y: VO-+ Vé satisfying the following two axioms:

CNi. The following diagram commutes:

$I 1 VI
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CN2. The following diagram commutes:

$lx vl n pix vl
A
lw
$ Lux, vyl
l[nrlj
[oX, $¥] [1.n] . [ox, Y]

i1.4. THEOREM. ([6] Theorem I.3.1 and theorem I.4.2). Closed categories,
closed functors and closed natural transformations form a hypercategory CC,

¢,$,¢0) : V= V' and

it

if we define the composite of ¢

$,xp0) : V¥~ V" to be X = (X,Q,XO) : V — V", where

(i) X is the composite VO -2, Vé 3, Va;
N
(ii) Qxy is the composite Yo[XY] w¢ I, rex,ev] Lo [yox,pevl;

ooy 0 e e O g0 ,

(iii) ¥  is the composite I" —— YPI® —L—r YPI;
if we define the composite of n: & — é° and g: ®' —+ &" to be gn and if
for ¥Y: V! —r UV, Ko  — W* and n: @ —> ¢*': V —> W, we define n¥ to be ny
and Xn to be yn. [

1.5. PROPOSITION. ([6], lemma I.2.2). Let U be a category. Let V: V - 8

and [~-,-]: VO % U e V be functors satlsfy:mg CCO. Let I € ob V , let

i=dgs X Lix] and j = jX: I — [XX] be natural transformations satlsfy—
ing CC5.

Then for any g: [XX] - Y in UO' the composite
1 b [xx] -y
is the image of 1X € VO (xX) = V[XX] under the composite map
vixx] s yy Y5, yrrv]. 0

1.6. PROPOSITION. ([6], proposition I1.2.3). Let UO be category. Let

x
V3 Vo-né-s and [~,~]: VO
let i =i X — [1x] be a natural isomorxphism and let j = Jgr T [x%] be
a natural transformation satisfying CC5. Let L = L};Z: [vz] — [[xvy1[xz]] be

X VO — VO be functors satisfying CCO. Let Iecob VO,
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a natural transformation. Then the axiom CCl is equivalent to any of the
following:

¥ X e -
ccie, (VLYY)(ly) = l[xY]'

ceLt. (VL§Z)g = [1,g] ¢ VO([xy][xz]) for g ¢ Vo(yz);

(111 X = - ] @
cecive, VL, = (-7 VO(YZ) — VO([xyj[xzj).

In particular, in a closed category the properties CC1°, CC1" and CCLl*%
hold. [J

1.7. PROPOSITION. ([6], propositions I.3.4 and 3.5). Let V and V' be closed
categories and let ¢: VO'—+-V6 be a functor.

Commutativity of the diagram

vlIix]
(vi)~ ! \
(i.1) 4% 4 veL¢r,ox]
,r .0
9 lv [6-,1]
VX viit vilre,¢x]

sets up a bijection between morphisms ¢0: It —+ ¢I and natural transforma-
tions ¢0: Vo V¢ VO-—+ S.

If ¢O and ¢O are related by (1.1) and if § = $XY: ¢lxy] — [¢%,9Y] is
a natural transformation, then property CFl is equivalent to the commuta-

tivity of the following diagram:

(1.2) ¥

vEelxy] vel¢x,dv] O

A
1.8. DEFINITION. A closed functor @ = (¢,¢,¢0) s V=V is called normal if
V = Vi¢ and ¢0 = 1l V—V'.



2. SYMMETRIC CLOSED CATEGORIES

2.1. DEFINITION.
V = (VO,V,["y"']l

A symmetric closed category is an ordered 8-tuple

I,i,j,L,8) consisting of:

(i) a category VO (called the underlying category of V);

(ii} a functor
(iii) a functor
(iv) an object
(v) a natural
(vi) a natural
(vii) a natural

(viii) a natural

V: V0 —>» 8 (called the basic functor of V);
[-,-1: VS x VO-—+ VO (called the internal Hom functor);
I of VO;

isomorphism i = i_: X — [IX] in VO;

transformation j = jy: I — [XX] in VO;

éz: [vz] — [[xy1[xz1] in V;

isomoxphism s = S— [x[yz]] — [¥[x2]] in Vo.

transformation L L.

These data are to satisfy the following seven axioms:

CCO. The following diagram of functors commutes:

CCi. The following diagram commutes:

[yyl ™ L o LLXYI[xY]]

SCCl. The following diagram commutes:

[x[v¥z]1] o LX[¥2]]

8 s

[vlxz]1]

25
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SCC2. The following diagram commutes:

[x [¥[zw]]] L1,s] _[x [2lywl]]
s s

[v [x({zwll] [z [x[ywll]
l[i,s] j[l,s]

[y Czlxw]]] ° [z [y(xwll]

SCC3. The following diagram commutes:

[y [wzl] s .. [w [yz1l
X
L
[xv] [x[wz]]] (1,253
l[l,s]
[fxy] [wlxz11] s [w [[xy1[xz1]]

SCC4. The following diagram commutes:

X
[x ¥l L . [[xx] [xy]]
[1,i]l [§,1]
[x [1v]] ° . [T [x¥1]
CC5., Vi[xx](lx) = jx: I — [xx].

2.2. DEFINITION. Let V = (Vo,v,[n,-],l,i,j,L,s) and

Vi = (Vé,V',[—,-]',I’,i',j',L',s') be two symmetric closed categories; we
write [Xv] for [xy]®.

A symmetric closed functor &: V — V' is an ordered triple ¢ = (¢,$,¢0)

consisting of:

(i) a functor ¢: VO — Vé;
(ii) a natural transformation $ = $XY: oLxy] — [¢X,4¥Y] in Vé;

(iii) a morphism ¢O: I' = ¢I in Vé.

These data are to satisfy the following two axioms:
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CFl. The following diagram commutes:

It i’ W LoX,0x]
i¢° 3
¢TI ¢3 - 0LX X1

SCF3. The following diagram commutes:

o[x [vz]] bs LoLY [x2]]
[$ |
Lox,9lvz]] Loy, ¢[xz]11
[1,$] (1,41
[¢x [¢¥,¢z1] s’ Lov [¢%,0z]]

2.3. DEFINITION. Let & = (¢,$,¢0) and ¥ = (¢,$,¢0) be symmetric closed

functors V —> V', A symmetric closed natural transformation
n: & —> ¥: V> Ut

is a natural transformation n: ¢ —> P: VO-—+ V6 satisfying the axioms CN1

and CN2 of definition 1.3.

2.4. THEOREM. Symmetric closed categories, symmetric closed functors and
symmetric closed natural transformations form a hypercategory SCC, if we

define the several sorts of composites as in theorem 1.4.
PROOF. A straightforward verification of the axioms. [J

2.5. PROPOSITION. The symmetric closed category of sets.

We obtain a symmetric closed category, denoted by S, if we define:

VO = § (the category of sets); V = 1S; [-,-] = S(~,-): S xS — S; for 1

we take a one point set {*}, chosen once for all;

X
(LYZh)g = hg (h ¢ S(YZ) and g € S(XY));
({84459 ¥)x = (gx)y (g e S(X,8(¥2)); x ¢ Xi v e ¥);
(ixx)* = ¥ (x € X);
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CONVENTION. Throughout this tract the canonical transformations in the sym-
metric closed category S are denoted by symbols in italics. (See also the

propositions III.2.4 and IV.3.4). []

3. RELATIONS BETWEEN NATURAL TRANSFORMATIONS IN THE FIRST BASIC SITUATION

In this section we investigate the relations between the data for a
symmetric closed category. For that purpose we define the first basic situ-

ation, which consists of:

(i) a category VO;

(ii) a functor [~-,~1: Vg x VO — VO;

(iii) an object I of l/o;

(iv) a natural isomorphism 0 = I VO(X[YZ]) —»'UO(Y[XZ]) satisfying

(3-1) Iyxz " Oxvz 1V0(x[yz])”

The existence of a natural isomorphism Tyyg? VO(X[YZ]) —+'V0(Y[XZ])
with (3.1) is equivalent (cf. theorem I.3.5) to the existence of a natural

transformation

m=m: ¥ [{yzlz]

with the property that the following diagram commutes:

vz

[vz] g [ Y2

(3.2) m {m,1]

[[Lyzlzlz]
The relation between ¢ and m is given by the equations

(3.3) Bz = Oryvzlvz vzl

(3.4) (g) = [g,l]myz for g: X - [¥2].

Igyz,

The natural transformation m has the following property:

for each morphism h: ¥ — [XZ] there exists exactly one morphism
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g: X - [¥Z] such that [g,l]mYZ = h.

Y o [X2]
F 4

(3.5) m ///TgAJ

-

[[vz1z]"~

We have already seen in section I.3 that a right adjunction of bifunc-
tors induces bijections between several classes of natural transformations.
We now describe the bijections which are of importance for the theory of

symmetric closed categories.

In the first basic situation, commutativity of the diagram

VO(Y[wz])
(3-6) [x,~] o
VO([XY] [x[wz]1D) Vo(w [vz])
X
Vo(l,sxwz) Uo(l,LYz)
[

VO([XY] [wlixzlD)

Vo(w [Ixy1lxz1])
sets up a bijection between natural transformations

S = Syt [x[wz]] — [wlxz]]

and natural transformations

X
Loyt [vz] — [[xyl[xz]1].

[
i

If we take W = [¥2Z] and evaluate at mYZ we see how L depends on s:

X
L

[y z] o LLXY] [x21]

(3.7) m [([1,m],1]

[[Cyzllxzl] [xz]] (s, 1] o LLx[Cy2z]21] [x21]

If we take Y = [WZ] and evaluate at 1 we see how s depends on L:

[wz]
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[x [wzl] s o LW [x2]]

(3.8) m [m,1]

r®,13

[CCx[wz11lxz]1] [xz1] o LLLW2z]Zz] [x2]]

Commutativity of each of the diagrams (3.7) and (3.8) also completely
determines the bijection given by commutativity of (3.6).

Also in the first basic situation, commutativity of the diagram

U (i)
(3.9) [x,-1 [-,2]
VO([XY] [xwl) UO([wz] [yz])
Z X
Vo(i,RXW) UO(1,LYZ)
Vo (Cxy] [(wz1lxz1D) ° » Vo (wz] [[xy1x21])

sets up a bijection between natural transformations

X
L= Lg,: [yz] — [[xyllxz]]

and natural transformations
R =R : [x0] — [[Wz1[x2]]
= Rewt - :

If we take W = Y and evaluate at 1Y we obtain the formula

b4 Z
(3.10) Lyg = 0(Ryy)

and hence also

]

Z X
(3.11) RXY G(LYZ),
Each of the two formulas (3.10) and (3.11) alsoc completely determines
the bijection given by commutativity of (3.9).
The two bijections mentioned above induce a bijection between natural

transformations

S = Syt [x(wz1] — [wlxzl]
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and natural transformations

— Z . 1
R = Ry : [xy] — [[yzllxz]l].

The same bijection is given by commutativity of the following diagram:

l¢;
VO(Y [wz]) . vo(w [yz1)
(3.12) l[x,—] l[~,[xz]]
VD([xy] [xlwzlD UO([[Yz][xz]] [wlxzlD)
\\ Z
Vo(l'sxwz) UO(RXY,1)
VO([XY][w[xz]])
If we take ¥ = [WZ] and evaluate at l[wz] we see how s depends on R:
[x[wz]] s W [Wlxz]]
(3.13) e (m,1]
[[lwzlz1lxz1]
and if we take W = [¥Z] and evaluate at n., we see how R depends on s:
RZ
[xy] o LLYZI[%2]]
(3.14) [Mﬂ\ //S'
[xLlvzlz]1]

Commutativity of each of the diagrams (3.13) and (3.14) also completely
determines the bijection given by commutativity of diagram (3.12).

Finally, commutativity of the diagram

[x,-] /
Vo(x Y) __bo([xx] [xy])
(3.15) Vo(l,iy) UO(jx'l)
a
VO(X [zxD) h,VO(I [xyD

sets up a bijection between natural transformations
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{ =i s s
=iy [1v]
and natural transformations

J= 3 T [xx].

If we take Y = X and evaluate at 1x we obtain the formula

(3.16) = o(iX).

Ix
3.1. PROPOSITION. Let V be a symmetric closed category. Define a natural
: VO(X[YZ]) — VO(Y[XZ]) by © = Vs___, using CCO.

XYZ XYZ XYZ
Then we obtain the first basic situation, L and s are related by (3.6) and

isomorphism 0 = o

i and j are related by (3.15).

PROOF. From CCO and SCCl it follows that we obtain the first basic situation.
From CCO, CCl and CC5 it follows that VL§Z = [X,~]: VO(YZ) —%‘VO([XYJ[XZ])
(proposition 1.6). If we apply V to SCC3 and use CCO we obtain (3.6); if we
apply V to SCC4 and use CCO we obtain (3.15). [

4. RELATIONS BETWEEN SOME PROPERTIES IN THE FIRST BASIC SITUATION

4.1. PROPOSITION. Suppose that in addition to the first basic situation we

have natural isomorphisms

S = Syunt [(x[vz]] — [v[xz]]
with

Syxz Sxvz = lrxCyz1]

and

i= ix: X - [IX],
and natural transformations

X

L= Lg,: [vz] — [[xyllxz]1]
7
R =R : [xy] — [[vzllxz]]

and

=iy I [xx1,
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which are connected by (3.6), (3.9) and (3.15).

Then:

{(a) CCl is equivalent to CC4.

(b) CC2 is equivalent to commutativity of the following diagram:

4.1 Jr/z////////// \\\\\\\\2\\
Y

[xx] e LLXYI[xYI]

(c) CC3 is equivalent to SCC3 and to commutativity of any of the following

diagrams:
[y wl & » [[wz] [¥z1]
LX
(4.2) [[x¥] [xw]] [1,.%
l[l,RZ]
[[xy] [[wzllxz]1] s .. [[wz] [[xv1[x211]
[y [wzl] s [w [vz1]
R[xz]
(4.3) e [[lyz1{xz]] [wlxzll]l
[Rz,l]
[1,s]

[Cxy] [xX[wz1]] o LLXY] (wlxz11]

PROOF. First we note that (3.9) (together with (3.7) and (3.15)) implies

the commutativity of the following diagrams:

R[xz]
[w [xy]l] o [LExy1lxz]] [wlxz1]l]
(4.4) [1,R?] 1[LX,1]
[w [[vz1xz]]] s o [[¥z] [wlxz11]
R[XZ]
Cw [yz1] o LLLYZI0x21] [wlxz]11]
(4.5) 1,15 [R%,1]

1]

[w [[xyllxz]11] o LOxy] [wlxz]l]
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RZ
(x z] o [[22] [x2]]
(4.6) [1,i] (5,13
[x (1z1] s » [I [x21]
(a) Apply o to each leg of CCl:
X . . X .
o(L7+3) = [§,110(@™) by the naturality of ¢
= [3,118" by (3.11)
= s[1,1] by (4.6)
and
g(j) = i by (3.15).

Hence CCl is equivalent to commutativity of the following diagram:

[xv]

IS

4.7) [1,i] ~_ i

& S
[x[1v1] o LI0x¥]]

Commutativity of diagram (4.7) is equivalent to commutativity of the fol-

lowing diagram:

X [[xyl ¥]

(4.8) i [1,i]

{1 %] we LLXY] [1Y]]

as can be seen from the following two diagrams:

X [[xy] vl
i
i Cxllxylyll  (4.7) |[1,1]
[1,m (3.14) s
¥

[1 x] B [Cxy] [1v]]




[x ¥]

%

(1 [xy]]
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o LX Y]

(4.8

b4
R

(3.2)
m [m;l:f

[[Cxyly] v]
[CCxylyl [xvll

(3.13)
s

[1,1]

[m,1]

o (X [1Y]]

Finally an application of ¢ to each leg of (4.8) shows that the commutati-
vity of this diagram is equivalent to CC4: '

o(f1,ilm)

it

i

and

[1,i]

[1,iJo (m)

o(®i) = [1,1J0(RY

= [i,1
(b) Apply ¢ to each leg
o([3,10L%) =
and
o(i) =3

Hence CC2 is eqguivalent

{c) Apply ¢ to each leg

i

a([l,LX]LY)

and

1t

of CC2:

o(Lx

RY 5

Y3

by the naturality of ¢

by (3.3)

by the naturality of o

by (3.10).

by the naturality of ¢

by (3.11)

by (3.15)

to commutativity of diagram (4.1).

of CC3:

L1,

L1,

LX]o(LY)

X, %
L7IR

by the naturality of o

by (3.11).
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c([LX,l]L[XY]Lx) = [Lx,l]o(L[XY])LX by the naturality of o
= [Lx,l]R[XZJLX by (3.11)
= s[1,R%1* by (4.4).

Hence CC3 is equivalent to commutativity of diagram (4.2). The following

two diagrams show that this property is equivalent to SCC3:

[y [wzl] ° . [w [vz]]
(3.13)
\\\\\\;E\\‘\‘\~\\\\\\\\~ ///////:::]
Lt [Clwzlz] [vz]]
(4.2) [1 L ]
[[xv] [x[wz1]] U[wz]z] [[xy][xzjj] ri,0%g
[1,RZ]
[1,s1 (3.13)[[xy] [[[wz]z][xz]]] [m,1]
ﬁn,l]]
[{xy] [wlxz]11] o LW [[xy1{xz11]
RZ
{y wl [fwz] [vzl]
X
L ! [1,m] (3.14)
[[xy] [xwl] [y [[wzlz]]
X —
1,[1m]] ‘//;y//// .
7 [1,L ]
[1,r7] (3.14) [[xy] [x[[wz]z]1]] scc3
[1,s]
L
[[xy] [Lwzllxz]l]] s e LLWZ] [[xy1lxz]]1]

Finally, commutativity of diagram (4.5) together with the assumption that

s*s = 1 implies the equivalence of SCC3 to commutativity of diagram (4.3).

0
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4.2. THEOREM. Let U = <V0,V,[°,—],I,i,j,L,s) be a symmetric closed cate-
gory. Then Y = (VO,V,[—,—],I,i,j,L) is a closed category.

PROOF. If we define o = Vs then we are in the first basic situation. L and
s are related by (3.6) and i and j are related by (3.15) (proposition 3.1).
By proposition 4.1 we have CCl = CC4 and SCC3 = CC3. Finally, SCC4 together
with the commutativity of (4.7) implies cc2. [

4,3. PROPOSITION. Suppose that besides the first basic situation UO etc.
with natural isomorphisms s and i and natural transformations L,R and j
connected by (3.6), (3.9) and (3.15), we have a second instance Vé etc.
with natural isomorphisms s',i' and natural transformations L',R' and j',
again connected by (3.6), (3.9) and (3.15). Let ¢: VO — Vé be a functor,

let ¢0: I' — ¢I be a morphism in Vé and let § = § olxy] — [¢%,¢¥] be

th
a natural transformation in Vé such that the following diagram commutes:

VO(x [vz]1) ._VO(Y [xz1)

| y
(4.9) V6(¢X,¢[YZ]) V6(¢Y,¢[XZ])

A . A
V6(1,¢) V0(1r¢)

Vi (ox [ov,¢21) w Vg (oY [, 921)

Then we have the following implications:

(a) CFl «= CF2;
(b} CF3 =% SCF3 and these properties are also equivalent to commutativity

of the following diagram:

olx v] o=’ _ ¢[[yz] [x2z]]
K l A
(4.10)  [¢%,4v] [olyz], ¢lxz]]
l R‘¢Z [1,$]
(4,13

[[ov,¢2] [¢x,62]1] Colvzl, [ox,921]

¥
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PROOF. If we evaluate diagram (4.9) at g € VO(XEYZ]) we obtain a commuta-

tive diagram

Y ¢0(q) o $LX Z]
(4.11) o' l " (§.69) %
LeLyz],¢2] Log, 1] — [6%,¢2]

In particular, if we take X = [¥Z] and g = 1[YZ] we obtain:

¢m

¢Y w oLLYZ] 2]

(4.12) m' l b
I

[lov,92],02] Lo, 1] w LOLYZ],¢2]

(a)} Apply o' to each leg of diagram CFl:

o'($xx'¢j'¢o) [¢0,1]0‘($XX'¢j) by the naturality of o¢f

= 142,18 41 by (4.11) and (3.16)

and

i

o' (§7) = i by (3.16).

This proves CFl <= CF2.
(b) Bpply o' to each leg of diagram CF3:

0'([1,$]°$'¢LX) = [1,$]0($*¢LX) by the naturality of ¢!
A Z
= [1,6]°¢"¢R by (4.11) and (3.11)
and
c*([$,13-L'¢X'$) = [$,1]R'¢Z°$ by the naturality of ¢' and

(3.11).
Hence CF3 is equivalent to commutativity of diagram (4.10). The fol-

lowing two diagrams show that this property is equivalent to SCF3:
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olx [vz]] oLy [xz]1]
(3.13)
Z ¢lm,1]
oR oLl vz]z] [xz]] A
. ¢
¢
$ v
(4.10) [ollvzlzd, ¢lxz1] Loml [y, 40x2])
[1,6]
Lox, olvz]] [¢llvzlz]),[¢x,921]
R *2 [$,11
[C¢lvz],32],06%,$2]] (1,47
A A
[LLov,d2],z],06x,421]
[m*,1]
r 97 (3.13)
[oy,02]] s' Loy [¢x,¢2]]

[ox

Z
OR

olx v] w0LLY2z] [XZ]]
(3.14)
m\ bs
g olx [[yzlz]] $
A
¢ SCF3 1
[1,4¢m]
Cox, ¢¥] oL 90X, 9L [¥Z12]] Colyzl,¢lxzl]
A
(4.12) £1,¢]
[1,m"] Cox,[olvz],¢z]]
e [1,06,1] (1,61
R (3.14) ot
[oX,[L6Y,921627]
S ]
’ (4,17 | |
[LoY,92] [¢X5421] b SLo0Y2] [4X,02]]
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4.4, THEOREM. If ¢ = (¢,$,¢0): UV~ V' is a symmetric closed functor. Then

€ .= <¢,$,¢O): Y — “V' is a closed functor.

PROOF. Let ¢: V— V' be a symmetric closed functor. The following diagram

shows that diagram (4.9) commutes:

o=Vs

vix [vz]] W VLY [x21]
¢ b9
6 (1.2)  vrelx [vzll V'és Lovrely [xz1] (1.2) |9
A
V' AR

4
v'lox,¢lyz]] V' of SCF3 vloy,olxz]]

vil1,61 vii1,81

P —x7! 1 1

o'=v's o VoY [9%,92]]

vilex [ov,¢2]]

Proposition 4.3 then implies that CF2 and CF3 are consequences of CFl and

scr3. [

4.5. PROPOSITION. (cf. [6], proposition I.3.8). Let V and V' be two sym—
metric closed categories. Let ¢: VO — Vé be a functor and let
A A

O = Byyt olxy] — [¢X,¢¥] and 9y = Sy VX = V'$X be natural transforma-

tions. Suppose that the following four properties hold:
(i) V' is faithful;

(ii) Diagram (4.9) commutes;

(ii) The following diagram commutes:

vixy]

(1.2) ¢ ¢

i A
vielxy] v'e

o V'[0X,0Y]

(iv) ¢OX: V¥ — V'¢X is an epimorphism for each X ¢ ob VO.

Define a morphism ¢0: I' - ¢I by

0 = [ syicl
(4.13) o = (V l¢I ¢0I Vi) 1,-

A .
Then ¢ = <¢,¢,¢O>: V> V' is a symmetric closed functor.
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PROOF. If ¢O is defined by (4.13) then the commutativity of (1.2} is equi~

valent to CFl (proposition 1.7). Consider the image of diagram SCF3 under

AR
vielx [yz1] vigs w-VioLy [xz]]
¢ 7
) (1.2) Vix [v2)1°70 _vilv.[x21]  (1.2) Vo
¢ ¢
ViILox, ¢lvz1] (4.9) V'[¢Y!¢[XZ]]
vi1,$] v, 8]
viox,[¢v,021] vist=’ =%v”[¢YT[¢x,¢z]]

i epi i i i is tative;
Since ¢O[X[YZ]] is an epimorphism, the exterior diagram is commu e

since V' is faithful this implies scFr3. [

5, THE NATURAL TRANSFORMATION Riy: [xy] = [[yzllxz]]

Let V be a symmetric closed category. According to (3.9) and (3.11)

we define in VO a natural transformation

— Z -
R = Ry, [xv] — [[yzllxz]1]
by
z X
(3.11) Roy = 0(Lg ).

Then the relation between R and s is given by (3.13) and (3.14).

5.1. PROPOSITION. Let Vo be a category; let V: VO——+ S and

b3
[=y=T: VO

i= igs X [1X] be a natural isomorphism and let j = Iy I — [%x] be a

x VO — VO be functors satisfying CCO; let I € ob VO’ let

natural transformation such that CC5 is fulfilled. Then for a natural trans-
formation R = RiY: [xy] — [[vzl[xz]] in VO the following conditions are

equivalent:
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(a) The following diagram commutes:

(5.1) 3

[xx] R _ [[xz1[xz]]

Z = .
(b)  (VRy )1y = Yrxz1’

() (VRe)g = [g,1] € V ([vz][xz]) for g « Uy xv) ;
7
(q) VRXY = [~2]: Vo(xy) — UO([Yz][xz]).

Since in a symmetric closed category V diagram (5.1) commutes, the proper-

ties (b), (c) and (d) also hold in V.

PROOF. The proof is similar to that of proposition 1.6 and depends on CC5

and proposition 1.5. [

5.2. PROPOSITION. Suppose that in addition to the first basic situation we

have a functor V: Uo — § satisfying CCO, a natural isomorphism

: [%[y2]] — [¥[x2]] and a natural transformation

S = Syvz
R = R§Y: [xyl - [[v2z][xz]] which are connected by (3.12). Then we have:
(VRZ )1, = 1 iff Vs, =0
R tx = lrxz1 * Sxvz = “xvz°
PROOF'.

. Z _
(i) Suppose (VRXX)lX = 1[XZ]'
Apply V to diagram (3.13) and use CCO; take X = [wz] and evaluate at

1[wz] € VO([wz][wz]):

= (v[m,1]~VRZ)1

VS gz *rwz] [wz]

by assumption

Vim 112

it

Mz

Hence VSXWZ = UXWZ by (3.3).

(ii) Suppose VsXYZ = OXYZ'

Apply V to diagram (3.14) and use CCO; take Y = X and evaluate at 1X:
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Z
(VRXX)lX = (vS~v[1,m])1X
= (Vs)m
= ¢ (m) by assumption
= 1y, by (3.3) and (3.4). 0

5.3. PROPOSITION. Suppose that in addition to the first basic situation we
have a functor V: V0 —+ 8§ satisfying CCO. Then the following conditions

are equivalent:

(a) The following diagram commutes:

Vo(x [vzl) ﬁVO(Y [xz])
Lv lv
(5.2) S(vx,vlyz]) S(vy,vixz])
LS(i,VYZ) S(i,vxz)
8

S(vx,S(vy,vz)) S(vy,S(vx,vz))

(b) The following diagram commutes:

vy v » VI[¥2] 2]
(5.3) m v
S(S(vy,vz) ,vz) SOyzeD) s(vlvzl,va)

In a symmetric closed category these conditions hold (if we define

o by UXYZ = VSXYZ)"

Note that if we evaluate (5.2) at g € VO(X[YZ]) we obtain the formula
(5.4) V((V(nyzg))y)x = V((Vg)x)y for x € VX, y ¢ V¥
and if we evaluate (5.3) at y € VY we obtain the formula

(5.5) (V((VmYZ)y))g = (Vg)y for g ¢ vlyz] = VO(YZ).



44

PROOF.

(a) = (b). Let ¥,2 € ob VO; g e VO(YZ) and y € VY. Then:

W(Vmy)g = (V(((Vo)1)y))g by (3.3)

v(i(vi)gly by (5.4)

]

(Vvg)y by CCO.

(b) = (a). Let X,¥,2 ¢ ob V_, g ¢ VO(X[YZ]), % ¢ VX and y € VY. Then:

Ol

]

V((V(og))ylx = (V((V(lg,1Im))y))x by (3.4)

= (V((Vlg,1]-vm)y))x

= (V((Vm)y+*g))x by CCO
= (V((Vm)y)*Vg)x

= (V((vm)y)) (Vg)=x

= (V((Vg)x))y by (5.5).

If / is a symmetric closed category, then the proof of proposition
4.1 implies the commutativity of diagram (4.8). If we apply V to that dia-
gram and use CCO and proposition 5.1 we cbtain the following commutative

diagram:

vy Vm v, (Lvz1z)

Vi Vo(i,i)
[-z]

VO(IY) .MVO([YZ][IZ])
Evaluation at y € VY gives

ie(Vm)y = [(Vi)y,1]: [v2] — [12].

If we apply V and evaluate at g € VO(YZ) we obtain
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(V(ie (Vm)y))g = Vi (V((Vm)y))g

and
VO((Vi)y,l)g = g-(Vi)y
= (Vo(l,g)-vi)y
= (VieVg)y by the naturality of Vi
= Vi((Vg)y).
Since Vi is a natural isomorphism, we have proved (5.5). 0

5.4. THEOREM. (cf. [6], proposition I.3.11).

The symmetric closed functor V: V -+ S.

If V is a symmetric closed category, the functor V: VO — S admits a
unique extension to a normal symmetric closed functor (V,G,VO): V-— 8

which we still shall denote by V. We have:

A .
Vav = Vg vixyl — S(VX,VY)

and

Vo = (vi®

1
)1

T°

PROOF: Consequence of the propositions 5.3 and 4.5. [

6. CATEGORIES OVER A SYMMETRIC CLOSED CATEGORY

In this section we first recall the definition of a V-category, given
in [6], for the case that V is a closed category. Then we investigate the

extra structure in the case that V is a symmetric closed category.

6.1, DEFINITION. Let V be a closed category. A V-category A consists of the

following four data:

(1) a class ob A of “objects";
(ii) for each X,Y € ob A an object A(XY) of UO;
(iii) for each X € ob A a morphism ig I > A(XX) in VO;
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(iv) for each X,Y,2 € ob A a morphism
X .
Loy A(yz) — [A(xy),A(xz)] 1n.Vo.

These data are to satisfy the following three axioms:

vCli. The following diagram commutes:

A(yy) L o LA (xy) A (xy) ]

VC2. The following diagram commutes:

A(xy) [A(xx) ,Axy)]

i 03,11

[1,A(xy)]

VC3. The following diagram commutes:

Y
A (wz) L . [A(Yw) ,A(¥z) ]
X
[A (xw) ,A (x2) ] 1,25
LA(xy)
(¥, 13
[LA(xy) , A(xw) ] [A(xy) ,A(xz)]1] w LA(YW) , [A(xY) ,A(x2) 1]

6.2. DEFINITION. Let A and B be V-categories. A V-functor T: A — B con-
sists of the following two data:

(i) a function T: ob A — ob B;

(ii) for each X,Y € ob A a morphism Tyt A(xy) — B(TX,TY) in VO.

These data are to satisfy the following two axioms:
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VF1. The following diagram commutes

I
] j
T
A(yy) bl . B(TY,TY)
VF2. The following diagram commutes:
LY
Awz) o LACYW) ,A(Y2Z)]
lTWZ
B(Tw,TZ) [1,'I‘YZ]
LTY
[Ty 1 CA(vw) ,B(TY,T2) ]

[B(Ty,Tw) ,B(TY,T2)]

6.3. PROPOSITION. ([6], theorem I.5.1) V-categories and V-functors form a
category V, if we define the composite of T: A => B and S: B — ( to be
P: A — C where PX = STX (X € ob A) and P, is the composite

T 3
A(xY) X 5 B(TX,TY) X, 1Y 5 C(STX,STY) . i

6.4. PROPOSITION. ([6], theorem I.5.2). If U is a closed category we get

a V-category, also denoted by V if we take ob V = ob UO’ V(xy) = [X,¥] and

take for j and L those of the closed category V. Moreover, if A is any

U-category and X € ob A we get a U-functor X: A = UV if we take LYy = A(xy)
X

X
and (L )YZ = LYZ' 0

6.5. PROPOSITION. ([6], proposition I.5.4). An S-category A may be identi-
fied with an ordinary category A if we identify the image of j: * — A(XX)
with 1X and identify (Lizg)h with the composite gh, where g e A(YZ) and

h € A(XY). An S-functor is then an ordinary functor, and in particular the

functor 1: A — S is the left represented functor A(x-). [
6.6. PROPOSITION. Let V be a symmetric closed category. Suppose that the
following data are given:

(i) a class ob A of "objects";

(ii) for each X,Y € ob A an object A(XY) of V0‘

Then there is a bijection between morphisms
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Lﬁz: A(vz) — [AxY),A(x2)]
and morphisms

RiY: Axy) — [A(vz),A(x2)]
given by

(6.1) Riy = U(Liz)-'

Suppose that for each X,Y,Z € ob A we have such morphisms L§Z and Riy,
related by (6.1), and that for each X € ob A we have a morphism

jX: I — A(XX). Then:

(a) vC1 is equivalent to commutativity of the following diagram:

/Y
A(xY) [A(yy) Axy) ]
(6.2) T [3,1]
[r,Axy)]

(b) VC2 is equivalent to commutativity of the following diagram:

(6.3) j j

R

A (X8) [A(xY) ,A(xy) ]

(c) VC3 is equivalent to commutativity of the following diagram:

RY
A (xW) o LAY AR ]
Z
(6.4) lR
[A(wz),A(xz) ] [1,8%1
LA(Yz)
[Rz,l]

[LA(yz) ,A(wz)] [A(yz),A(xz)]1] . [A(wy) [A(vz) A (xz)]]

Consequently, if A is a V-category and RiY is defined by (6.1) then these
properties hold.



49

PROOF .

(a) : Apply 0 to each leg of VCl1.
(b) : Apply ¢ to each leg of VC2.
(c) : Just as (3.9) implies commutativity of (4.4) and (4.5), (6.1) implies

commutativity of the following diagrams:

RA(XZ)
[A(pQ) ,A(x¥)] w LLA(XY) A (x2) JTA (PQ) ,A (%2) 1]
Z X
(6.5) [1,RXY] [LYZ,H l
[A(PQ) [A(Y2Z),A(xz)1] N .. [A(¥z)[A(PQ) ,A(x2) 1]
RA(XZ)
[A(pQ),A(vZ)] [LA(yz) ,A(xz) LA (PQ) ,A(x2)1]
X Z
(6.6) [l,LYz] [RXY,ljl

[A(pQ) [A(xY),A(x2)]1] CA(xy)[A(PQ) ,A(xz) 1]

A computation similar to the one in the proof of proposition 4.1 shows

that VC3 is equivalent to commutativity of the following diagram:

A (yw) ®’ o LA(WZ) ,A(Y2)]
|
(6.7) [A(xY),A(xw)] (1,.%1
[1,8%]

[Axy) [Awz),A(x2)1] o LA(w2z) [A(xY),A(x2)]]

By axiom SCCl we may reverse the direction of the bottom arrow. If we apply

0 to each leg of the resulting diagram we obtain (6.4):

o(sL1,25¥1R%) = o ([R%, 115" (X2 g% by (6.6)
= [Rz,l]o(RA(XZ))RZ by the naturality of o
= 18,110 0 g by (6.1,
and
0([1,RZ]LX) = [1,RZ]O(LX) by the naturality of o

[1,rR%18% by (6.1). 0
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6.7. PROPOSITION. Let V be a symmetric closed category; let A and B be

V-categories. Suppose that the following data are given:

(i) a function T: ob A — ob B;

(ii) for each X,Y € ob A a morphism Tyy® A(XY) ~— B(TX,TY) in Vo'

Then VF2 is equivalent to the commutativity of the following diagram:

&2
A (yw) o [A(WZ) ,A(YZ)]
Tyw
(6.8) B(TY,TW) [l,TYZ]
/1%
[Twz,lj

[B(Tw,T2),B(TY,TZ)] [Awz) ,B(TY,T2) ]

Consequently, if T is a V~functor then this property hold.

PROOF. Diagram (6.8) is the image of VF2 under o. [J

6.8. PROPOSITION AND DEFINITION. (cf. [6], propositions III.2.1 and
IIX.2.2). If V is a symmetric closed category and A is a V-category, the
*

following data define a V~category A , called the dual of A:

(i) ob A* = ob A;
(1) AT (xy) = A(¥x);
(ii) j;: I — AY(xx) is Jpt T AGKR);

(iv) L;;: A*(vz) — [A* (xv),A%(x2)] is ngz Azy) - [A(YR),A(zx) 1.

If T: A— B is a U-functor then the following data define a V-functor
* * *
T: A — B:
%
(i) T X = TX;

(ii) T:Z: A*(vz) — B (T'v,T"2) is T, A(z¥) — B(12,TY).

PROOF. Immediate consequence of the propositions 6.6 and 6.7:
*

vel for A" is (6.3); vC2 for A¥ is (6.2); ve3 for A¥ is (6.4).
*

VF1 for T is VF1 for T; VF2 for T is (6.8). O
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6.9. PROPOSITION. (cf. [6], proposition III.2.3). If V/ is a symmetric
* %
closed category the assignments A+> A" and T+ T constitute an involutory

functor D: V* — ng 0

6.10. REMARK. Let A be a V-category and let A* pe its dual.

Define R;i: A" (xv) — [A™(v2),A"(x2)] by R:i = O(ng)’

Then R.Z Ayx) — [A@Y),A@zx]. O

Xy Lix:
6.11. DEFINITION. Let A and B be V-categories. A V-cofunctor T: A — B
is a V-functor T: A® -+ B.

So a V-cofunctor T: A — B consists of a function T: ob A — ob B
and a family of morphisms Tyt A(yx) — B(TX,TY) (X,Y € ob A) satisfying the
following two axioms:

vr = VF1. The following diagram commutes:

(6.9) j 3

A(Yy) o B(TY,TY)

vr %2, The following diagram commutes:

&Y
A(zw) [Awy) ,A(zY)]
Tz
(6.10) B(Tw,TZ) [l,TYZ]
LY
[TYw,ll

[B(Ty, W) ,B(TY,TZ) ] e LA(WY) ,B(TY,T2Z)]

6.12, PROPOSITION. If A is any lU~category and Z ¢ ob A we obtain a V-
cofunctor R°: A — U if we take R°X = A(x2) and
Z

_ 2 . .z %
(R gy = Ry A(xy) - [A(¥z),A(x2)] = [R"y,R"%].

PROOF. VFO1 for R* is (6.3) and VF02 for B* is (6.4). [
6.13. DEFINITION. Let V be a symmetric closed category and let A,B and C

be V-categories. A quasi~V-bifunctor P: {A,B)— C is an ordered pair

P =(8,T) consisting of
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i

s¥: A— C of Y- functors, indexed by Y € ob B;

™. B —C of V-functors, indexed by X € ob A.

(i) a family S

(ii) a family T

These data are to satisfy the following two axioms:
QVF1. s¥x = T8y for each X € ob A and Y € ob B;
we denote this object by P(XY).

QVF2. The following diagram commutes:

SW
A(x2) . C(P(XW) ,P(2W))
(6.11) SY LP(XY)
C(p(xY),P(2ZY)) [C(p(xY),P(xw)) ,C(P(XY),P(2W))]
iRp(zw) ro¥ 11
[r%,1]
[C(p(zY),P(zZW)) ,C(P(XY),P(2W))] ! o [B(yw) ,C(P(x¥),P(zw))]

Note that QVF2 is equivalent to commutativity of the following diagram:

B (¥wW) ™’ » C(P(2Y) ,P(2ZW))
(6.12) X LLP(XY)
C(p(xY),P(xW)) [C(p(xy),P(2Y)),C(P(XY),P(2W))]
F (2 l[SY,l]
[s”,1]

[C(p(xw),P(zZW)),C(P(XY),P(2W))] o LA(XZ),C(P(XY),P(2W))]

The V-functors s': A — C and T°: B — C are called the partial V-functors

of the quasi-V-bifunctor P.

6.14. PROPOSITION. Let U be a symmetric closed category, and let A be a
*
V-category. The V-functors ®%: A" — V and 1¥: A — U are the partial V-

functor of a guasi-U-bifunctor
*
Hom A: (A" ,A) — VU,

Z
On the objects we have Hom A(XZ) = ¥z = §%x = A(xz).

PROOF. QVF1 holds by the preceding line. It remains to prove that QVF2
holds. Axiom SCC2 for V implies the commutativity of the following diagram



(use (4.4) and (3.14)):

[x[vz]] ° » [¥[x21]
(6.13) lR[Yw] lR[XW]
[[Cyz]lywlllx[ywl]] [[Cxz]lxwlllylxwll]
lELY,lj l[LX,l]
[zwllx[yw]]] L1,s] + [zwll¥lxw11]

If we apply V to this diagram, taking X = [¥Z] and evaluate at IEYZ] we

obtain the following commutative diagram (we have used CCO, proposition
5.1, and (3.13)):

L[YZ]
[zw] w LLCYZ]2]00Y2]W]l]
(6.14) 1Y L
[Cyzllywl] [m,1]

RWL \S
(3.13)

[CCywlw] [LvzIwll m1] Cy([yzIwl]

S

Now we are prepared to prove QVF2:
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{6.15)

Alzx) R [A(XY) ,A(ZY) ] g [LA(zY) Az 1,[A(XY) ,A(zW) 1]
[l,RW]
(6.4) [A(xy) [A(yw),A(zw) 1] rr¥, 1113
& [Rw,l] RA(ZW)
[LAw AW ] [A(yw) ,A(zw) 1] [CLA (W) Azw) JA(zw) 1 fA(xY) ,A(zw) 1]]
A(zw) [ie?,
LA(YW)
[I[A(Yw) A(zw) JA(zw) ] [[ATYW) ,A(xw) JA(zm) 1]
CA () A (20 ] (6.14) (m, 1] .1
LA AGH) ] CAGrw) CLA () A (xw) JA(zi) 1
y
[CCA (v A JA o) 1- LA (vw) LA (xw) JA(zw) 1] 1,08 11
A0 £1[R 113
[ILA(YW) A () ]A(xw)] [A(xy) ,Azw) 11
\il
[(r", 111
(3.10) m,1] \

LAY A 1.[A(xy) ,A(zw) 1]

¥, 1)

[A(vwy -TA(xY) ,A(zw) 1]

14
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7. THE UNDERLYING CATEGORY OF A U-CATEGORY

In [6], section 1.6 it is shown that a closed functor &: V -— V¢ (V
and V' closed categories) induces a functor ¢ : V - U:. In [6], section
1.7 this is applied to the particular closed functor V: V — 8. We restrict

ourselves to this special case. V is a closed category.

7.1. DEFINITION. ([6], section I.7). Each V category A determines an or-
dinary category V*A = AO' called the underlying category of the V-category
A. This category (considered as an S-category (cf. proposition 6.5)) is

defined as follows:

(i) ob A0 = ob A;
(ii) Ao(xy) = VA(XY) (X,Y € ob AO);
(iii) The j°' of AO is the composite

0 .
(7.1) w Vo vi V3 vAxx)

so that 1X € VA(XX) is the image of * under (7.1):
(iv) The L' of AO is the composite

X
(7.2) vAz)___ " vTAG) Ay 1Y S(VA(xy) VA (x2))
so that the composite in AO of g € VA(XY) and h ¢ VA(Y2) is

(7.3) hg = (V((VLX)h))g-

Each V-functor T: A — B determines an ordinary functor VT = TO: AO-4 BO

called the underlying functor of the V-functor T. This functor (considered

as an S-functor) is defined by:

(i) T X = TX (X ¢ ob AO);
(11) (7.4) Tof = (VTXY)f for f € AO(XY).
7.2. PROPOSITION. ([6], proposition I1.7.2) V*V = VO. O
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7.3. DEFINITION AND REMARK. ([6], section I.7). For the underlying functor
of the V-functor LX: A — U EILENBERG and KELLY adopt the special notation
A(X~-): AO — VO' so that

X
(7.5) A(x-) = v L.

The value of A(%-) on the object Y is A(XY), and its value A(Xf) on the

morphism £ € VA(YZ) is given by
X
(7.6) A(XE) = (VLO)E.

They alsc show the commutativity of the following diagram of functors:

AO

(7.7) A(x-) AO(X—)
A\

A NS

In the particular case A = U one has V(x-) = [x-1: UO — VO.

7.4. REMARK. THE SYMMETRIC CASE.

Now we assume that V is a symmetric closed category. If A is a V-
category with underlying category AO then one can prove that the R' of AO
is the composite

Z
(7.8) VAxy) TR viAz) A ] Y, S(vA(vz),vA(x2))

so that the composite in AO of g € VA(XY) and h e VA(YZ) is
%
(7.9) hg = (V{(VR )g))h.

From (7.8) it follows that (A*)0 = (AO)*, Consequently, if T: A¥ — B

is a V-functor, then its underlying functor is Ty (A*)0 = (Ao)*—~+ BO;
so we can consider the underlying functor of a V-cofunctor T: A - B as a
cofunctor T.: AO — BO' .,

For the underlying functor of the V-cofunctor R : A — U we adopt the

notation A(~Z): A; —— UO' so that
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(7.10) At-z) = V8.

The value of A(~Z) on the object Y is A(YZ) and its value A(£fZ) on the

morphism f € AO(XY) is given by
2
(7.11) A(fz) = (VR)E.

Analogous to (7.7) we now have a commutative diagram of functors

(7.12) A(-2 A, (-2)

v
Vs -3

In the particular case A = V we have V(~2) = [~2]: V;~—+ Voa

7.5. PROPOSITION. Let A,B and C be V-categories and let P = {§,T):
{A,B) — C be a quasi-V-bifunctor. The underlying functors Sg: AO-+ CO
X . 5 o
and Tyt BO — CO are the partial functors of a bifunctor Py AO % BO - CO
which is called the wnderlying bifunctor of the quasi~V-bifunctor P.

PROOF. QVF1 implies that sgx = T§Y (= (X¥)). QVF2, (7.7) and (7.12) imply
the commutativity of the following diagram: (we abbreviate P(Xi,Yj) by
Pij(i.Je{l,Z})):

s¥2
Ag (X r%5) 2 #Co (B orPyy)

P11 /////
VL —C(Pll—)

,#// (7.7)
So QVF2 Vo(CtP g Pyp) CPyyePyp) oy =)
X1
VO(T S 1) v

v '

ColPyprPyy) Vo By v, Cley vPyo)) Vo(CoRy Py )) Loy 0P)00)
P22
VR ““=C(~p,,) X2
if/////GZTT 't v
C(Pll,P22))

Co(Pop) |V (C(Ry 1R, VO(T§1,1)
(7.1 v
: X |
Vv (1:2,1) _
VO(CO(le,pzz),Co(pll,Pzz)) 00 __VO(BO(Yl,YZ),CO(Pil,Pzz))
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If we evaluate this diagram at g € Ao(xlxz) and h € BO(Y1Y2) we obtain
Y 2geT>h = T°2heg lg: ;
S0 g T0 h = T0 h SO g: P(XlYl) R P(X2Y2). This means that the functors

SY and TX are the partial functors of a bifunctor P

o s A x BO e CO. 0

o' "o
7.6. PROPOSITION. Let A be a l~category. The underlying bifunctor of the

quasi-V~bifunctor Hom A: (A*,A) —» | is the bifunctor
*
hom A: AO x AO e Vo

which is defined by

(i) hom A(XY) = A(xY);

(ii) hom A(gh) = A(th)A(ng) = A(gY2)A(X1h)
for g € AO(X2X1) and h € AO(Y1Y2).

We shall write A(gh) for hom A(gh).

The following diagram of functors is commutative:

AOXAO

(7.13) hom hom AO

-

In the particular case A = I/ we have hom V = [~,-]: V; X VO<“+ VO.
PROOF. Consequence of proposition 6.13, remark 7.4 and proposition 7.5. 0

7.7. DEFINITION. ([6], section I.10). Let A and B be V categories and let

T and 8: A — B be V-functors. a V-natural transformation o: T — S: A — B
is a family of morphisms Oyt TX — SX is BO' indexed by the objects of A,
satisfying the following axiom:

VN. The following diagram commutes:

A(xy) o B(TX,TY)

(7.14) S B(l,0.)
Xy Blay,1) ¥
B(sx,sY) B(TX,SY)
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7.8. REMARK. In [6] this definition is given for a closed category V. In
*
that case the definition of the functor B(-,SY): BO - VO (appearing in the

bottom arrow of VN) is rather complicated. If V is a symmetric closed cat-

gory then the definition of B(-,SY) is much easier (see remark 7.4).

7.9. DEFINITION. (cf. [6], section III.5). Let V be a symmetric closed cat-
*
egory; let A and B be V -categories, let P = (S,T): (A" ,A) — B be a
quasi-V-bifunctor and let Y be a fixed object of B. A family of morphisms
in BO
Y= Yy ¥ — P(XX) (X € ob A)
is said to be V-natural if the following axiom is satisfied:

VN'. The following diagram commutes:

TX
Axx) B(P(XX) ,P(XX"))
SX| B(Yxrl)
B(Yxl ’1)
B(P(X'X'),P(XX")) w B(Y,P(XX"))

Similarly, a family of morphisms in BO

§ = Sx; P(XX) == ¥ (X € ob A)

is said to be V-natural if the following axiom is satisfied:

VN". The following diagram commutes:

X
A(xxt). S we B(P(X'X) ,P(XX))
' B(1,8,)
B(1,8,,)
Bp(x*x),P(xX'x")) = L BEE'X,Y)

With this definition of two extraordinary kinds of V-natural trans-

formations we are able to formulate the following theorem:

7.10. THEOREM. If V is a symmetric closed category the families of morphisms
i, 3, L, R, s and m are V-natural in every variable. Moreover, if Ais a V-

category, the families of morphisms j, L and R are V-natural in every variable.
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PROOF. Let A be a l~category.

(1) The V-naturality of j is expressed by the commutativity of the fol-
lowing diagram:

A(xY) L LA(xXX) A (x¥) ]
rY [5,1]
[A(YY) A(xY) ] [3,1] LT AGRY) ]

The commutativity of this diagram follows from VC2 and (6.2).
(ii) The V-naturality of L§Z in the variable Z is expressed by VC3 and in

the variable X by (6.15). If we apply ¢ to VC3 we obtain the following

commutative diagram which expresses the V-naturality in Y:

Axyh) x w [A(Y'2) ,A(¥2) ]
(7.14) e
[Axy) ,A(xy")] r1,1%3
lRA(xz)

X
[LA(xy'),A(xz) ] [A(xy),A(xzy1] L7 .1] . [A(Y'2) [A(xY),A(x2)1]

(iii) The V-naturality of RiY in the variable ¥ is expressed by (6.4). If

we apply ¢ to this diagram we obtain the following commutative diagram,

. . Z
which expresses the V-naturality of R__ in ¥:

XY
LX
A(Y'y) e LA(XY') A(xY) ]
(7.15) [RZ
[A(¥z),A(Y'2)] [1,8%]
RA(xz)
: [&%,1] .
[LA(y z),A(xz) ] [A(¥z) ,Ax2)]] [Axy)y [A(yz),Axz)]]

If we apply o to diagram (6.15) we obtain a commutative diagram which

Z
expresses the V-naturality of RXY in Z:
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X
A(zz") o LA(X2Z) ,A(x2")]
(7.16) lLY LAZ)
[A(yz) ,A(yz*)] [LA(Y2) ,A(x2)] [A(yz),A(xz")]]
RA(XZ') [&%,1]
[Rz',lj

[[A(vz") ,A(xz")] [A(¥z),A(xz")]] = LA(XY) [A(Y2Z) ,A(xz")1]

(iv) The V-naturality of i is expressed by CC4.
(v) If we apply o to each leg of diagram (4.3) we obtain the following

commutative diagram, which expresses the V-naturality of sX in X:

YZ
[xx'] =Y L [[x'[v213[x[vz]]]
5
(7.17) [[x'zﬂ[xz]] [1,s]
Ve
[CyCxz130¥[x'217] [s,1] . [[x*[¥21[¥(xz]]]

If we reverse the direction of the bottom arrow in diagram (4.3)
(which is allowed by axiom SCCl), and if we again apply 0 to the re-
sulting diagram, we obtain a commutative diagram which expresses the

V-naturality of s in Y:

RZ
[yy:] e LLY'2]1[Yv2]]
LX
(7.18) gH¥2] [[x[y'2110x[vz1]1]

L[l,s]
[s,1]

[[y*[xz]]1lvlxz11] e LLXLY 2130y (x27]]

As we have seen, axiom SCC2 implies the commutativity of diagram (6.13).
If we apply o to each leg of (6.13) we obtain a commutative diagram

which expresses the lU-naturality of s in Z:
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[2'2] L . [[vz'1[vz]]
(7.19) X lLX
[[xz'] [xz]] [CxCyz'1I[x[vz]]]
¥ i [1,s]
[Cy[xz'1] [¥[x2]]] [s, 1] . [[x[vz'110¥(x21]]

(vi) The V-naturality of m, in the variable Y is expressed by the commu-

tativity of the following diagram, which is a consequence of SCCi,

(3.13) and (3.14):

[yy'] (1,m] L [y([v'z1z1]

(7.20) RZI (3-%13) Itm,ﬂ

[fyrzlilyz 1] o LLLYz]z]0vr2]2]]

Z
R

The V-naturality of mYZ in the variable Z is expressed by the commu~

tativity of diagram (6.14). 0

7.11. PROPOSITION. (cf. [6], proposition I.8.4). Let A be a U-category,
let f ¢ AO(XY) and h € AO(YZ). The morphisms A(fZ): A(YZ) — A(XZ) are the
components of a V-natural transformation Lf: LY—~+ LX: A — U and the
morphisms A(Xh): A(XY) -— A(XZ) are the components of a V-natural trans-

*
formation Rh: RY — R%: A — .

PROOF. We rewrite the diagrams (6.15) and (7.16), changing the letters:

A(xY) a e CACYW) A (x30) ]
le LA(YZ)

[A(vz),Axz)] [[A(yz) ,A(yw) ] [A(yz) A(xw)]]
RA(XW) [LY,l]

[CA(xz) Ay ] [A(z) ,AGan 1] _tE 1] [Azw) TA(vz) A () 11
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o LA(XY) ,A(x2)]

A(yz) 2
L
[A (wy) ,A(wz) ]
RA(XZ)
[Rz,l]

LA(WY)

LA (wy) ,A(xy)] [A(wy) ,A(xz)]]
[RY,1]

o LA(XW) [Awy) ,A(xz)]]

[[A(wz) ,A(xz)] [A(wy),A(xz)]1]

If we apply V to these diagrams, and evaluate at £ € AO(XY) and h € AO(YZ)

we obtain the following commutative diagrams:

LY
A(zw) w LA(YZ) A (¥W) ]
X [1,AEW) ]
[AGxz) sAcan T PAURY ] raiygy  AGan ]
RY
A (XW) o LA (WY) LA (XY) ]
R [1,A(xn)]
[Awz) Azl PAG ATy Az ] 0
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CHAPTER il

SEMI MONOIDAL CLOSED CATEGORIES

1. MONOIDAL CATEGORIES

In this section we recall the definition and some properties of a mo-
noidal category. We conform to the numeration of the axioms in [6], section
II.1. For the definition of a monoidal category and for some examples we

also refer to [17].

1.1. DEFINITION. A monoidal category is an ordered 6~tuple
Y = (VO,Q,I,r,l,a) consisting of:

(i) a category UO (called the underlying category of V);

(ii) a functor =-@-: VO x UO — V0 (called the temsor product functor);

(iii) an object I of VO;

(iv) a natural isomorphism r = Tyt X®I — X;
(v) a natural isomorphism 1 = lX: IRX —+ X;
(vi) a natural isomorphism a = aXYZ: (XBY) ®Z —r X®(YOZ) .

These data are to satisfy the following two axioms:

MC2. The following diagram commutes:

(X8I) BY a X8 (I8Y)
rel 181

XY
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MC3. The following diagram commutes:

((x0y)@z)eW_— 2 . (X8Y)®(Z8W)
a®l

(x® (Y8Z) ) 8w a
a

X8 ( (Y82Z) 8W) 16a X® (Y8 (Z8W) )

1.2. DEFINITION. A symmetric monoidal category is an ordered pair

V= (mV,c) consisting of

(i) a monoidal category Ty = (VO,G,I,r,l,a);

(ii) a natural isomorphism c = Syt XY — Y®X.

These data are to satisfy the following two axioms (above MCZ2 and MC3):

‘MC6. The following diagram commutes:

XOY 1 X®Y

YK

MC7. The following diagram commutes:

(X®Y) 827 a e XO (YBZ)
c®l c

(Y®X) ®2Z (¥Y®2z) 8%
a a

Y8 (X82) 18 . Y8 (28X)

1.3. PROPOSITION ([10]). In a monoidal category V the following diagrams

commute:

Mci. (I8%)®Y a I8 (X8Y)

181 1

X@Y
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MC4 . (¥BY)®I a X® (Y8I)

\\:\\\\\\\\\\x /«//////i;;//
BY

Moreover, lI = Ly I®I — I (property MC5).

In a symmetric moncidal category the following diagram commutes:

X®I < I®X
\\\\\E\\\\\\\\\\k\ 4’//////////3T//,
b4 0

i.4. REMARK. For monoidal and symmetric monoidal categories S. MacLang [13]

MC8 .,

has proved ccherence theorems. A coherence theorem states that every dia-
gram of a certain class commutes. In this case the class of diagrams con-
sists of those diagrams which are built up from instances of units, a, ¥
and 1 and, in the symmetric case, ¢, by multiplications ®. For an exact
description of the meaning of coherence we refer to [16] or to [17], sec-
tion VII.2. In the sequel we will use the coherence of a,r,l and ¢ several

times.

1.5. DEFINITION. In a symmetric monoidal category V one can construct,
suitably combining a,a_l and ¢ (the details being irrelevant by coherence)
a unique natural isomorphism

£ = f (XQY) B (Z28W) — (XOZ)® (YOW)

vz’

called the middle four interchange <somorphism.

The following diagram shows some possible constructions of £:



(X0Y) ® (Z8W)

-1 \
a a

((x8Y)82)&W "R (ve (zow) )
a®l 18a“1
(x® (Y®Z) ) 8W a A X@((YéZ)@W)
(1.1) (1®8c)®1 £ 18 (c®1)
(X8 (28Y) ) &W a M X8 ( (Z®Y) 8W)
a Y1 iva
((x&z)év)ew X® (28 (YOW) )
a a_l

Y
(X®Z) ® (Y®W)

1.6. DEFINITION. Let U = <V0,®,I,r,l,a) and V' = (Vé,@',I‘,r',l',a') be

monoidal categories; we write ® for @'. A monoidal functor

®: V— V' is an ordered triple ¢ = (¢,$,¢O) consisting of

(i) a functor ¢: V0-+ Vé;

(ii) a natural transformation ¢ = $XY

(iii) a morphism ¢0: If — ¢I.

: OX®OY > ¢ (X®Y) ;

These data are to satisfy the following three axioms:

MF1. The following diagram commutes:

ll

I'®0X ox
¢O®1 61
PIBGX ¢ ¢ (I®X)
MF2. The following diagram commutes:
HX®I* r' ¢x
1®¢0 I¢r
¢ ®

XD I
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MF3. The following diagram commutes:

(6X®PY)BYZ a $X8 (pY®Pz)
po1 183"
¢ (X0Y) 892 $XB¢ (Y8Z)
§ §
¢ ( (X8Y)8Z). ba o (X8 (Y8z))
Let V = (mU,c) and V¢ = (mV‘,c') be symmetric monoidal categories.

A symmetric monoidal functor ®: V — V' is a monoidal functor
¢ = (¢,$,¢O): By — ™Y+ yhich satisfies the additional axiom:

MF4. The following diagram commutes:

HROPY c’ HYBOR
[} ¢
b (X8Y) gc b (Y8X)

1.7. DEFINITION. Let @ = {$,3,0°%: V — V' and ¥ = Co,5,0%5: v~ U ve

monoidal functors. A monoidal natural transformation

n: & =~ Yz V - V¢
is a natural transformation n: ¢ —> P: VO - Vé satisfying the following
two axioms:

MN1. The following diagram commutes:

Tt

oI Ny I

MN2. The following diagram commutes:

nén
$XBOY i PROYY

o

[ ]

n

¢ (XRY) P (X8Y)
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If ¢ and ¥: V =+ V' are symmetric monoidal functors, a symmetric mo=-
noidal natural transformation n: ¢ — ¥: V — V¢ is simply a monoidal nat-

ural transformation n: & — V: Dy By,

1.8. THEOREM. ([6] theorem II.1.3). Monoidal categories, monoidal functors
and monoidal natural transformations form a hypercategory Mon, and symmet-
ric monoidal categories, symmetric monoidal functors and symmetric monoi-
dal natural transformations form a hypercategory SMon.

For the rules of composition we refer to [6], theorem II.1.3 and to theo-
rem II.1.4 of this tract. []

2. SEMI MONOIDAL CLOSED CATEGORIES

2.1. DEFINITION. A semi monoidal closed category is an ordered quadruple

V = (mV,cV,G,T) consisting of

(i) a monoidal category By w <V0,®,I,r,1,a);
(ii) a closed category Y = (VO,V,[~,~],I,i,j,L)
with the same VO and I as mV;

~

(iii) a natural transformation V = ny: VX X VY =+ V(X®Y) in S;
(iv) a natural transformation T = I [xzlelyw] — [xeY,zew].

These data are to satisfy the following seven axioms:
PMCCO. The following diagram commutes:
v

vExzIxvlvw] v([xz]elyw])

Q- vr

v Roy, z6W ]
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PMCCl. The following diagram commutes:

(Cxplelyol) [ zwW] a [xple([volelzul)
o1 ieT
[x®Y,PeQlelzw] [xplelv®z,08wW]
T T
[ (x®Y) 82, (P8Q) @W] [x® (¥®z) ,P® (Q8W) ]

NV
[ (x®¥)®z, PR (Qaw) ]

PMCC2. The following diagram commutes:

18I I 1
i®3] 3
[xxlelvy] T [x8Y ' xeY]
PMCC3. The following diagram commutes:
18[ %2 ] 1 LIx 2]
3181
[rrlelxz] [1,1]
T
f1,11
[ 18X, I8%7] ! [18X,Z]
PMCC4. The following diagram commutes:
[xzle1 r [% 2]
1®jI
[xzlel11] [r,1]
T
[x®I,781] [1,x] [xeI,7]
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PMCC5. The following diagram commutes:

xOY i o[ I, %X8Y]
i®i f1,1]
[xxlel1v] T [181,; %8Y]

PMCC6. The following diagram commutes:

[pzlolow] ver L Lxp1lxz] 8l [vQl[yw]]
T T
[PeQ; zew] [[xplelyQl, [xzlelywl]
i [1,7]
[[xev,reQl; [xeY,zew]] tr, 1] [[xplelyQ]l, [xeY,zewl]

2.2. DEFINITION. A symmetric semi monoidal closed category is an ordered
quadruple V = (SmV,SCV,G,T) consisting of

(i) a symmetric monoidal category S0y = (UO,Q,I,r,l,a,c);

(ii) a symmetric closed category 5CY = (VO,V,[—,—],I,i,j,L,s)
sm
%

H

with the same VO and I as
(iii) a natural transformation G = GXY: V¥ X VY - V(¥®Y);
(iv) a natural transformation T = TXYZW: [xzlelyw] — [xev,zew].
These data are to satisfy the axioms PMCCQO, PMCCl, PMCC2, PMCC3, and the
following two axioms:

PMCC7. The following diagram commutes:

[xzlelvwl c sl YWIO[ X2 ]
7 T
[x®v, ZoW] Lo, el Y8, Wez]
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PMCC8. The following diagram commutes:

[zl xpllelwl¥Ql] 58s [x[zpllely[wel]
T T
[zew, [xpl8lyQl] [xey,[zplo[wQl]
[1,7] [i,7]
[zew, [xoY,PQ]] ° [xeY, [zew,Pegl]

2.3. THEOREM. In a symmetric semi monoidal closed category the properties
PMCC4, PMCC5 and PMCC6 hold, as well as the following properties:

(a) The following diagram commutes:

ey m L [X%0Y,7ew] zew]
(2.1) ndm fr,1]
[[xz]zlel [ywlw] T L [xzlelyw], zew]
(b) The following diagram commutes:
RZoR"
[xplelyol el LPZI[xZ] 10 [owllvw]]
T T
(2.2) [xov,P80] [[pzlelowl, [xzlelvw]l]
RZW [1,7]
[Lpeg, zewl [xey,zew]l] Lz,1] (Lrzlelow]l [xey,zew]]
(c) The following diagram commutes:
£

([xplelzrl)®([volelws])

wLLxplelyol) e ([zrls[us])

TRT
|
[xez,PporR]8[ Yow, o8s]

(2.3) T

[ (x82)® (v8W) , (PBR)® (Q8S) ]

[f,1]

TQT
[xey,peglel zew, ReS]
T
[ (xeY)® (z8W) , (PRQ)® (R®S) ]

[1,£]

[ (x8Y)® (zeW) , (POR)® (08S) ]



Consequently, if V =

category, if By is the ‘underlying’ monoidal category of s

is the ‘underlying® closed category of =

noidal closed category.

PROOF .

(i)

( va sC
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Y,v,T) is a symmetric semi monoidal closed

Py ang if V

SV then ¢ V V V T) is a semi mo-

PMCC4 is a consequence of PMCC3 and PMCC7 (together with MC6 and MC8):

[xvylax .m[x v]
[o]
®[XY]'/////I/’//
je1
[XY]é[II]~_~muf__4M[II]®[XY] PMCC3
T [x,1]
[1e%,18Y]
T PMCCT
(1,11
[1,c] M8
[toxiver] __ . [I8x, Y]
,,,Ei/ig//////’/ [1,z] \\\\\\L\\\\\\N
[¥®1, Y®I] (1,x] tker v

(i1}

The commutativity of diagram (2.1) follows from PMCCO and PMCCS8.

If we apply V to diagram PMCC8 and use PMCCO we obtain the following dia-

gram:
vl z[xp1IxvIwl¥Ql] Vexvs=oxa VIX[ZP ] v YT ]
v
PMCCO PMCCO
- v(lzlxp ]&[W[YQ]]inféflwqu([X[ZP]]® [vlwolDy ~&-
VT
\ i
v zew, [Xple[vol]l PMCC8 v xey, [zeplelwgl]
vli,7] vl1,7]
Ve=0

vl zew, [xev,peQl]

vl zey, [zew,reo]]
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If we take 2 =
(2.1)

[xp] and W = [¥Q] and evaluate at {(1,1) we obtain diagram

(iii) PMCC5 is a consequence of PMCC2 and (2.1):

X®Y. [1,xev]
(11.3.16)
m £3.1
[[xe¥7,xev], x8v]
i®i mem (2.1) [T,11l  PMCC2 (1,11
(I1.3.16) 0
[[xxIx]ellyyly] L Lx%IOLYY] ) XOY]
j1lel31] [j®5,1]
[1x]elTy] T [1&1 xev]
(iv) The commutativity of (2.2) follows from PMCCB and (2.1):
7 W,
[xple[¥0] R oR L [[PzICxz] 18l [QwIlyw]]
(i,mi®[1,m] 1I.3.14 S8
/
[x[[pzlz]llelyl[QWiwl] T
PMCC8
o T
[xey,[[Pzlz]ellowlw]] [[rzlelowl, [xzlelvwl]
[1,mem] L1/T]
[xev, P80l (2.1) [xey,[[rzlelQw],zew]l]
[1,m] [1[T11] [1,7]
R¥®| 11.3.14 [xdy [[peQ,zewlzew]] s
S
[[rag,zewl, [xey,zew]] [r,1] ([rzlelowl, [xaY,zew]]
{v) PMCC6 is a consequence of (2.1) and (2.2):
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pXert
[pzlelowl sl [P 1[xz] )0l [yl lywl]
11.3.10
mdm Z W -
[rR™,11e[r ,1]~
~‘\\\—\\\\\\N\\w\\“‘““‘K«x‘\~\\wﬁh’////
(2.1)
m ; T T
T {T,1]
[1,7] |
[17]1] L [R%eR", 17
[pog,zew] (lred, 1] ° ) [[xplelvo],[xz]lelyw]]
(T2l ) pg
T
L X8YIrr 3,10 (2.2) | [1,7]
(R 11
[T,1]

[ [xev, P8Ql, (oY, 2z8w]] [[xplel¥D], [ xeY,z8W]]

(vi} The commutativity of (2.3) is a consequence of PMCC1 and PMCC7. The

proof, for which one needs a rather big diagram, is left to the reader. [J

2.4. PROPOSITION. The symmetric semi monoidal closed category of sets.
We obtain a symmetric semi monoidal closed category, denoted by S, if we
supply the category of sets with the symmetric closed structure defined
in proposition II.2.5, with the symmetric monoidal structure induced by
the cartesian product, and if we define TXYZW: [%z] x [yw] — [xxv,zxw]
by I'Cg,h? {x,y? =({gx,hy) (ge [¥2]; he [W]l; x e X; vy e ¥). [

2.5. DEFINITION. Let V and V' be semi monoidal closed categories.
A& semi monoidal closed functor ¢: V — V* is an ordered quadruple
& = (¢,$,$,¢0) consisting of:

(i)  a functor ¢: vy — Vg

#

(ii) a natural transformation : OX®PY —>r ¢ (X®Y) ;

dlxyd — [ox,0v];

Xy

it

®
. A
(iii) a natural transformation ¢YY:
£9

(iv) a wmorphism ¢O: I — ¢I,

such that:
(1) Py i= (¢,$,¢0): By ws ™Y+ is a monoidal functor;
2) o := (¢,$,¢0): CY —+ V¢ is a closed functor,

and in addition:
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PMCF. The following diagram commutes:

oLxz106[ Y] e ~[0X,6z18L¢Y, 6]
] T
¢ ([xzlelywl) [ox8oY, dZOOW]
¢T
o[ koY, Zow] [1,31
¢
(3,11

[ (x0Y) ;¢ (ZowW) ] [ OX®PY, ¢ (Z'W) ]

Let V and V' be symmetric semi monoidal closed categories;

a symmetric semi monoidal closed functor ¢: V —- V' is an ordered quadruple
~ 0

® =(¢,3,8,0°) as above, such that

S
]

(1) (¢,$,¢0): STy — STy g 4 symmetric monoidal functor;
(2) Co,8,0%: SCU — Sy
(3) property PMCF holds.

e
H]

is a symmetric closed functor;

2.6. PROPOSITION. The semi monoidal closed functor v: V -— S.

Let { be a (symmetric) semi monoidal closed category. We obtain a (symmet-
~ A

ric) semi monoidal closed functor V: V — S if we define V = (V,V,V,VO)

where

(i) Ve VO -+ S is the basic functor of cV;
(ii1) v = VXY: VX x V¥ — V(¥®Y) is the natural transformation given in the
definition of V;

Loy A A .
(iii) V = VXY: vixy] - S(VX,VY) is Veyi

(iv) VO: {%} = VI is vO * o= (ViI)—11.

PROOF. By [6] proposition I.3.11 the functor V admits an extension to a
A
closed functor °V := (V,V,VO): CY CS. In order to prove that
By .= (V,G,VO): By — Tg is a monoidal functor we note that the following

diagram is commutative:
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-~

\Y
VXXVY Xy ¥ (ZBY)
V(igil/////////1Vi
Vixvi vlz1,x8y]
N v(lixlel1v]) PMCCS
v PMCCO vT vii,1]
-8
virxIxv[l1vy] VL I®I, X8y ]

This diagram agrees with [6],II.8.4. Hence from [6] proposition II.8.1 it

follows that "V: ™V — ™ is a monoidal functor. Next we prove PMCF for V:

A A
vxzIxvlyw] v - S(VX,VZ) XS(VY, VW)
v
v([xzlelywl)
T
e
PMCCO
VT
S(VExVY, VZXVW)
v[xey, z8w] .
N S(1,v
Y
SV, 1)

S(V(x8Y) ,V(zawW))

g S (VEXVY, V (Z8W))
Evaluate this diagram at {g,h) e v{xzIxv{yw]:
(S(1,V) «T=UxV) (g,h) = V(VgxVh)

and

(S(V,1) +0-vre¥) (g,n) = S(¥,1)V(gen) by PMCCO

i

V(g8h) vV,

hence the diagram commutes by the naturality of v. If V is a symmetric semi

A
monoidal closed category then Sy = (V,V,VO): SCY — ®€g is a symmetric
closed functor (theorem IT.5.4) and W = (V,G,VO): Sy s STg i 5 sym-

metric monoidal functor ([6], proposition III,1,3). [J

2.7. DEFINITION. Let & =< ¢,3,%,4°) ana v = ¢y,3,0,v%): UV — V' be (sym-
metric) semi monoidal closed functors. A (symmetric) semi monoidal closed
natural transformation n: & — ¥: V — V' is a natural transformation

ne ¢ = P: VO — Vé which is a (symmetric) closed natural transformation
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c . .
n: o — Sy: Y — CV‘ and a (symmetric) monoidal natural transformation
: m@ — mW: By s By, This means that n satisfies the three axioms

MN1 = CNi, MN2 and CN2Z.

2.8. THEOREM. (Symmetric) semi monoidal closed categories, (symmetric)
semi monoidal closed functors, and (symmetric) semi monoidal closed natural
transformations form, with the obvious rules of composition, a hypercate-

gory PMCC (SPMCC respectively). [I

3. TENSOR PRODUCTS OF V-CATEGORIES

In this section U is a semi monoidal closed category. If we suppose
/ to be symmetric, this will be mentioned explicitely. V-categories,
V/-functors and V-natural transformations are defined to be CV—categories,
“y-functors and “V-natural transformations (cf. [6] sections I.5 and I.10,
and this tract, sections II.6 and II.7), the monoidal structure of V
playing no part in these definitions. However, the monoidal structure of V
enables us to define a tensor product of V-categories, and as a next step,
V-bifunctors. We develop the theory parallel to the theory of tensor prod-
ucts of categories over a symmetric monoidal category in [6], chapter III,
sections 3, 4 and 5, as far as we need it. In chapter IV, section 11 we
shall show that these two concepts in fact coincide in the case that V is

a symmetric monoidal closed category.

3.1. PROPOSITION. If A and B are V-categories, the following data define
a V-category A®B:

(i) ocb A8B = ob A X ob B;
(ii)  (ASB) € xy) {X'¢' N = A(RX")BB(YY');
(iidi) j(XY): T -+ (A8R) ( XY) (X¥)) is the composite

-1
1 o
(3.1) I T 76l 383 | Axx)es(yy)

. {xy)
GV Dygigny (grygny®

- [ (ABB) (( XY (x*Y')), (ABB) ({ xy) {(x"y* N ]

(ABB) (Xt ¥t Y { X"y )) =

is the composite
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X Y
1 IIGI'l ¥ "
A(x'x")8B (Y'Y")_X_}_.__Y_L[A (xx") A xx"y I®[B(yy*) ,B(yy") ]

(3.2)

__._T___‘_,[A (XX')®B(YY*) ,A(xx")8B(yy")]

PROOF. VC3 for A®B follows from VC3 for A and B and PMCC6 for V:

L<x'y')
(3.2)
LOL
L [1,nl8[1,1] [1,18L]
3 for A and B T
{xy) ; —
L ] (3.2) Cxy)
(3.2) (L,1Jeln,1] [LeL,1] [1,n ]
LOL T

‘ [1,1] (1,71
PMCC6
L [T,1 %@L,lj
[L( XyY) 17

In a similar way, VCi follows from VCl for A and B and PMCC2 for V; and
VC2 follows from VC2 for A and B and PMCC5 for V. [J

& <o

3.2, PROPOSITION, If T: A~ C and S: B — D are V~functors, the following
data define a V-functor T®S: A®B — (®D:

(i) (TeS){XY) = (TX,8Y);
(ii) (ms)(XY) (xrye ) (ABB) (( x¥) (X*Y")) — (C8D) ( TX,8Y) (TX',8Y"))
is Tyy ®Syy,: A(xx")eB(yy') — C(TX,TZ')eD(sSY,sy').

The proof is straightforward and is left to the reader. []

3.3. PROPOSITION. The assignments (A,B)l—+ A®B and (T,s)+— T®S constitute
“a functoxr ®: V. x UV -— U . []
* * *
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3.4. PROPOSITION. Let V be a symmetric semi monoidal closed category, and
. X ( an" )
let A and B be V-categories. Define Ryv) (xryt )

(ABB) € xy) {x'y")) —> [(ABB) (( X*y*) {X"¥")), (A8B) € XY} (x"y") ] by

{X"y") B (L( XY) )
gy) (xyy T TWogryey (xnymy
( X"y") . .
Then R<XY> (xryr) 18 the composite
X" Y"
l@ )
A(xxr)yeB(yy®) P Oy [A(x x) ,A(xx") I@[B (v y") ,B(yy")]
t [A x")®B(y'y"™) A(xx")eB(vy®") ]
PROOF.
LX) Ly,
(1r.3.11)
m ™ g
[r,1] (3.2)
RY eRY (2.1) [LX®LY, 1] T
T
mem ¥, 1160, 13
(Xr.3.11) 0

3.5. COROLLARY. If V is a symmetric semi monoidal closed category then

(A8B) * = A*eB"

and

k3 % %
(T®S) T ®S . 0

We recall [6], proposition I.5.3: If V is a closed category, we obtain a
V~category T with a single object * if we take I (#%) = I, take j: I — I (#%)
to be 1.: I — I, and take L: I(x%) — [I(##%),I(+*)] to be ip I [1z].
Moreover, if A is a V-category and X ¢ ob A we get a U-functor

3% T— A if we set 3 = X and take 3% T(x%) — A(XX) to be

jx’ I — A(XX).
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3.6. PROPOSITION. A V-functor a,p.: (AB)8&C - A®(B8C) is defined by

a{{xy)z) = (x{yz»
and
a: ((A8B)®C) €{xY)Z) {{X'Y")Z2")) — (AB(BBC)) (( x(¥z)),{x{¥*'29))

a: (A(xx')eB(yy"))eC(zz') — A(xx')e(B(yy')el(zz%)).
A V-functor Ty A®l — A is defined by

r{x,) =%
and

r: (ART) (X, %) (X' %)) — A(XX")
is

r: A(XX')er — A(XX').
A V-functor lA: I8A ~ A is defined similarly by

L{*,%) =%
and

L: (IBA) ((#,%),(%,X")) — A(XX")
is

L: IRA(XX') — A(xx').

r,l and a are natural isomorphisms in the category V* and (V*,®,I,r,l,a)
is a monoidal category.
If U is a symmetric semi monoidal closed category then a V-functor

C4R ABB ~— BRA is defined by

¢ {Xy) ={y¥x)
and

c: (ABB) ((x¥) (x'y*)) — (BeA) € y¥x) (¥'x*))
is

c: A(xXx')eB(yy') — B(YY')®A(XX').

C is also a natural isomorphism in the category V, and (V*,Q,I,r,l,a,c) is

a symmetric monoidal category.
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PROOF. The proofs of VF1l and VF2 for a,l,r and ¢ are straightforward veri-
fications. Clearly, a,r,1 and c are natural isomorphisms. The axioms MC2
and MC3 and, in the symmetric case, MC6 and MC7, are immediate consequences

of the corresponding axioms for mV. 0

3.7. DEFINITION. Let A B and C be V-categories. A V-functor S: A®B — C is
also called a V=bifunctor. Given a V-bifunctor S: A8B ~»  we define for

each X € ob A a U~functor S(%~): B — C as the composite

Similarly, for each Y € ob B we define a V-functor S(-¥): A~ C as the

composite

-1 Y
A r Aol 8y AsB S °

The V-functors €(X-) and S(-Y) are called the partial V-functors of the
V-bifunctor S.

From this definition it follows that:

(i) S(X~)Y = S(~¥)X = S(XY) for all X ¢ obA and Y € ob B;

(ii) the following two diagrams in VO are commutative:

S(%-) o,
B(y ¥*) w L (S(XY),5(xY*))
-1
(3.3) 1 S xy) (xyt)
8B (Yy) jel A(xx) @B (YY)
S(-¥) .,
Ax x*) i C(S(xY) ,S(X'V))
- 5
(3.4) x (XYY (YD)
A(Xx') BT 183 A (xx") 8B (YY)

3.8. PROPOSITION. Let V be a symmetric semi monoidal closed category, and

let S: A8B — ( be a VU-functor. Let S, = (S(~Y))._ and
1 Y € ob B

s, = (S(Xw))X ¢ ob A Pe the families of partial V-functors. Then-(sl,sz>:

{A,BY = C is a quasi~V-bifunctor.



PROOF. QVF2 for (51,52>:

Alx x) s(=¥') C(s(XY') ,8(X'Y"))
_ (3.4 Stxeny (xy 1)
185 LS (XY)
cet VF2 for S
(3.4) 18y 18L LOL
S(~Y) 183 | (II.4.1) [C(s(xy)s(xy")),C(S(XY)8(x'¥")) ]
18R T
> Rr®1 [51]e1 ™, [s,1
s [1,s]
FoR [s(x~),1]
C(s(xv),5(x'y))
(je1,1]
T T (3.3)
(11.6.8) fy81,1] ! [j81,1]
S XY [1,s] (1,s]
[381,1]
) 1
Ls, 1] (3.3) !
s sy ) e G ans @) I [S(x'=),1]

(B(yy"),C(s(XY)s(x'y"))]

(§ commutes since it is the image of CCl under o).

]

4, THE V-BIFUNCTOR TEN: Vel — V AND ITS PARTIAL V-FUNCTORS.

4.1.

(1) Ten (XY) = X®Y;
(i) Ten vy (xry)?
is TXYX'Y':

[xx'Ielyy'] — [xev,%'0Y°].

PROPOSITION. A V-bifunctor Ten: V@V — V is defined by

(Vel)y (xy) (x'y*)) - U(Ten { X,¥Y), Ten (X'Y'))
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PROOF. VF1 for Ten:

[xx]lelyy]
\
Ten [X®Y, X8Y]

(Vel) ((xy) { x¥?

VF2 for Ten:

(xy)

(Val) (x'y*) (x"y")) L [(VeV) K xy Y (x'y")), (Vel) ¢ xy) (x"y")) ]
\ (3.2)
[x'x"Joly'y"] ([xx'Jelyy' ], [xx"1elyy"]]
T
Ten T
[ JxxJJel[yyr vy 1]
[x oy, X"0y"] PMCC6 [1,7] [1,7en]
LX8Y
[[xx'Jelyy' ], [xey,x"8y"]]

[r,1]

>
[(VeV) € xy),(x'¥")),[xey,x"8y"]]

D

[[xey,x'ey' ], [xeY,X"8Y"]]
[Ten,1]

4.2. DEFINITION. For the partial V-functors of the V-bifunctor Ten we adopt

the special notation H® = Ten (x+) and X® = Ten (~¥). So the V-functors

B Vo v and K': V— V (X,Y € ob VO) are defined by:
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(i) B = K'X = X8Y
and
(ii) Hizz [vz] — [x®Y,%82] and Kiz: [xz] — [xevY,zZ8Y]

are determined by the commutativity of the following diagrams:

o
[y 2] vz . [X8Y, %87]

(4.1) 17t o
wlvz] 81 [xx]1elyz]

<Y

[x z] Xz [x®Y,28Y]

(4.2) ot T
[xzleI 183 [xz]alyy]

4.3. PROPOSITION. The underlying functor V*HX: UO<-+ VO of the U-functor
B U — U is X®-; the underlying functor V*KY: VO-—+ VO of the V-functor

KY: U — U is -®v.

PROOF. Consider the following diagram:

Y
vix z] VK VI X®Y,2Z8Y]
-1
Vr (4.2) vT
-1 3
r v([xz ®I)___Y£1?31_¢_V([XZ]@[YY]) PMCCO | ~-®~
MF2 for V G 5
0
9 .
vixzIx{«} PV yrxgpixvr  PV3 URTALYIRSS!
Evaluate this diagram at g e v[x2]:
Y
(VK g = (VKYer) (g, *)
= g@(Vj°VO)* by the commutativity of the diagram
= g&l by [6] proposition I.7.2.

Thus we have proved V*KY = ~®Y.
Similarly, V+Hx = X8-. [
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4.4, PROPOSITION (The V-naturality of T).

The morphisms TXYZW: [xzlelyw] — [X®Y,z8W] are V-natural in the variables

Z and W; if V is a symmetric semi monoidal closed category then the mor-

phisms T, . are U-natural in all variables. The U-naturality of T, . 1is
expressed by commutativity of the following four diagrams:
w'w) L o [Ovw'] [vwl]
2 H[xz]
(4.3) [zew* , zew] (fxzlelyw'] [xzlelywl]
l 5% [1,7]
[[xoy,zew'] [xey,zew]] [z, 1] [[xzlelyw'] [xeY,z8W]]
[z'2] L . [[x2'] [x2]]
"l K[YW]
(4.4) [z'ew,zew] [[xz'lelyw] [xz]elywl]
Rt [1,7]
[[xey,z'ew] [xeY,Zew]] [z, 1] we LLXZ']0[YW] [xeY,Z8W]]
[y v'] R CCy'w] [ywl]
. q-x2]
(4.5) [x®y, %8y ] [[xzlely'w] [xzlelvwl]
[[xey',zew] [xoY,zew]] LT, 11 o L[2Z]I8[Y'W] [x0Y,2Z8W]]
[x x'] ®’ .. [[x'z] [xz]]
n4 xLywl
(4.6) [xeY,x'®Y] [[x'zlelyw] [xz]elywl]
L R [i,7]
[T,1]

[[x'ey,zew] [xRY,zeW]] [[x*zIelyw] [x®Y,zew]l]
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PROOF. Proof of the commutativity of diagram (4.4):

LX
(z:z] [lxz+]) (%211
-1 -1
r
1%s1
[zezler .~ [[xz'1[xzllex
(4.2) @7 (4.2)
<" 103 }@@[[m][yw]] 103 el
[z z}atww]w]eo[[wj[m]]
T T
AL 8 @? PMCCE [[xz']ea[?iw} [xzlelvw]]
X8 [1,1]
[[xey,z ewl [xov,zew]] (r,1] [[xz Jolvw] [xov,z0w]]

The commutativity of diagram (4.3) follows in a similar way from PMCCE,

the commutativity of (4.5) and (4.6) is a consequence of the commutativity

of (2.2). 0

4.5, PROPOSITION (The V-naturality of X and H).
The morphisms 1{1( s Lyzl - [2ev,%0z] and Ki‘;zz [xz] — [xev,z8¢] are V-

natural in the vari ble Z; if V is a symmetric semi monoidal closed catego-

ry then ng and K are V-natural in every variable. The V-naturality of
Hﬁz and K§Z is eypressed by commutativity of the following six diagrams:
LY
[z z] wLL¥20] [yzl]
HX
X

(4.7) [xezt,%02] L1.87]

LX@Y

X
[[xoy,x02'] [xev,x071] (e, 1] e LLYZ1] [X0Y,%02]]
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7
vy v'] R , [[y'z] [vz]]
.
(4.8) [xey, X8Y" ] [1,HXJ
X2
- (%, 1]
[[xey',xez] [x8Y,xez]] w [LY'2] [xev,x021]
7
[x xv] K o [XOZ,X°07Z]
l Y L X8Y
(4.9) [xey,x'8Y] [[xey,x0z] [xeY,x'0z1]
Rx'®z [HX,1]
[aX ,1]
[lx'ey,x'ez] [20Y,X'0Z]1] o [[¥Z] [x0Y,%'821]
X
[ziz] L [fxz'] [xzl1]
<Y
(4.10)  [z'®Y,2z8Y] (1,151
KoY
[KY,1] ]
[[x®y,z'eY] [x8Y,Z8Y]]1. [[xz'] [xey,z8y]]
Z
[x x'] R _ [[x*z] [x2]]
- |
(4.11) [xey,x'ov] [1,KYJ
R28Y
' [KY,1] .
[[x'®y,zevy] [xeY,28Y]] o LLX'2] [x0Y,70Y]]
z
[y v*] H [zev,zZ8y" ]
. L X8Y
(4.12) [xey,x8Y*] [[xey,zev] [xey,zey']]
RZ®Y‘ [Ky,lj
[KYI,l]

[[xey",z0v'] [x0Y,7207']1]

w LLXZ] [x®Y,20Y']]
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PROOF. (4.7) is VF2 for Hx, (4.8) is the image of (4.7) under o; (4.10) is
VF2 for KY, (4.11) is the image of (4.10) under o (cf. diagram I1.6.8)
(4.12) is QVF2 for H and K, (4.9) is the image of (4.12) under ¢ (cf. dia~-
gram 11.6.12). [

4.6. PROPOSITION. If g: X — W then the morphisms g®l: X®Y — WY are the

y-components of a V-natural transformation

B 55— 8 U — U,

If h: ¥ — W then the morphisms 1®h: X®Y —> X®W are the X~components of a

V-natural transformation

PROOF. VN for HY:

[y z] £ ~ [X8Y,%87]
1! (4.1) T
18 vz] 181 [xxle{yz]
g | (a.1) j®1 [1,gl81 [1,981]
[wwlalvz] [g,1181 [xwielyz]
T T
[waytwez] tget, 1] [x8Y, Wz ]

The proof of VN for Kh is similar. (]

4.7. PROPOSITION. (The V~naturality of a,l,r and c)

The isomorphisms a : (X®Y)®Z —r X8(YR2Z), lxz IBX — X and rX: X1 — X

XYZ
are V-natural in every variable. If U is a symmetric semi monoidal closed
category then the isomorphism Cxyt X®Y —+ ¥Y®X is V-natural in every vari-
able. These V-naturalities are expressed by the commutativity of the fol-

lowing diagrams:
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<Y
[xx] o LX'OY,X8Y]
Z
K
(4.13) ko4 [ (X'®Y)®Z, (X8Y)®Z]
[1,al
[a,1] .
[x'®(v8z) ,X8(¥827) ] o L (X'8Y)®Z, X8 (Y8Z) ]
uX
[y,vy] o LXOY',X8Y]
1 K2 l <2
(4.14) [y'ez,vez] [ (x®Y"')®Z, (X0Y)B®Z]
Bx [1,a]
[a,1]
[xe(¥'8z) ,x8(¥8z) ] o [ (XBY')®Z, %@ (Y82Z) ]
£ ¥OY
[z¢,2] o [ (X0Y)®2', (X0Y)®Z]
uY
(4.15) [yez®,vez] [1,a]
7
[a,1] _
[x&(Y®z') , X8 (Y82z) ] [ (X®Y)®Z', X8 (Y8Z) ]
ul
[x'x] [18x',18X]
/
(4.16) [1,1] [1,1]
[18x*,X]
<X
[x'x] [x'®1,%x81]
(4.17) [r,1] [1,r]
[x'®I,Xx]
<Y
[x*x] w LX'OY, XOY]
(4.18) u® l [1,cl
[vex',yex] e, 1] » [X'®Y,YexX]
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X
[y® v¥] o [XBY ", XBY ]

(4.19) &* [1,c]
[¥'®X, Yox] Le, 1] o [X8Y ", YOX]

PROOF. Proof of the commutativity of diagram (4.13)

[x'x] [x'®Y,x8Y]

- 1
e 83
T
183
e (4.2)
L
189
[1,al
PMCC1
T

{a,1]

[x'®(vazZ) , X8 (Yez) ] [{x o) 8z,%8 (vez) ]

The commutativity of the diagrams (4.14) and (4.15) follows in a similar
way from PMCCI.
Proof of the commutativity of diagram (4.16):

'
[x'x] [rex',18%]

-1 (4.1)

I®[X'X]_EEE;_4@.[II]&[X'X]
[11] L11]

PMCC3

[rex',%] .

The commutativity of diagram (4.17) follows in a similar way from PMCC4

Proof of the commutativity of diagram (4.18):
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[xix]

v
X [x'®Y,x8Y]
o1 (4.2) T
-1
1 8 187
crelxtxl_[xvxler D, [xixlelyy]
[1,c]

[yoxt,y8x]

v <
H (4.1) j®}\\\\ c

[yylelx¥x]

[e,1]

PMCC7+MC6

o LETOY,¥Y8X]

The commutativity of diagram (4.19) follows from (4.18) and MC6.

4.8. PROPOSITION. Let ¢ = (¢,$,$,¢0): {/ =+ V' be a semi monoidal closed

functor. Then the following diagrams commute:

A
oLy 2] ¢ [ov,02]
1
ou® L g ¢%
(4.20) o[ xey, xez] [ox84Y, pX80Z]
$ [1,$]
(9,11
Lo (xey),d(%82z) ] [oxedy, ¢ (x02) ]
A
olx =] ¢ [ox,02]
ox* xr¢Y
(4.21)  ¢lxwy,z0Y] [ox0oY, 6280Y ]
) [1,31
[¢,1]

Lo (x0Y), ¢ (z8Y) ]

PROOF. Proof of the commutativity of diagram (4.20):

[¢x&¢y,¢(za&)3
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A
o
¢ly z] o L0V, 03]
-1
1 {25////
A #
Teslvz] "% 1velgv,ez]
g1t 0
¢ ®1
MF 1
dIBOLYZ] ¢0®1
(3 1)
o (zalyz]) oI®[ oY, 02]
' j'81 ox
$3@1 VEl (4.1) HY
% (4.1) 9381 oLxxIal oy, ¢2]
oH ¢ (j®1) A
18 A
®1
olxxled[vzl
o~ A A
) B¢
o (Lxxlelyz]) Lox,¢0x] [¢¥,¢2]
o[ %@y, X82] [pX®0Y, dXSOZ ]
PMCF N
$ [1,9]
[$,11

Lo (x8Y), ¢ (%82) ]

[px®0Y, ¢ (X02) ]

The proof of the commutativity of (4.21) is similar. []

5. THE NATURAL TRANSFORMATIONS dXY: X - [¥,%8Y] AND uY

5.1. DEFINITION. The natural transformations

d

and

are defined by

(5.1)

a..: X — [v, xev]

XY

= u,: ¥ — [X,x87]

YX

the following diagrams:

4
X X [v,xev]
i [1
KY
fz'x] [18Y, X8Y]

% vy — [X,%8v]
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¥ ol X, XBY]
(5.2) i (7,17

[z'v] ek K81 , XBY ]

5.2. PROPOSITION. (The V-naturality of d and u)

dXY is V-natural in the variable X and uYX is V-natural in the variable Y.
If V is a symmetric semi monoidal closed category then d and u are V-nat<
ural in both variables. The V-naturality of d and u is expressed by the

commutativity of the following diagrams:

[x x] [1,d [x:[y,xev]1]
(5.3) K’ [a,1]
[x*8y, %ev] v [Ty, xev] [v,xev]]
Ly v+] " [xey,x0Y"]
Y
(5.4) el [ly,xev], [y, xev' 1]
4,11
[ly?, zey'] [v,xey*]] Ld, 1] [, [y, x8v" 1]
[y'vl (1,u] oYX, x87]]
(5.5) w [u,1]
[xey',%8Y] vt [[x,x0v*] [%,x87]]
x x¢] < o L 5BY , X' BY ]
X
(5.6) g & [[x,xev] [x,x'®Y]]
fu,1]
[u,1]

Chxs,wev] [x,x'0v]] [y [x,x'ey]]




PROOF. Proof of the commutativity of diagram (5.3):

[x'x] [1,a]
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[x:ly,x8y]]

\\\\\\\Efiii (5.1) [1,[1-11]]
Y
AN Jobnxd
[i,11 i[i,l]
(1,553 1,017,117

®

(4.10) -
[1,[1

I8y
,/,,///E/,,/////”’””V e tied
LY

Proof of the commutativity of diagram (5.4):

[x ey, x6v]

Xy *
[v.v*] R

\%\
(4.16) .
HI -1
r17t1
X;;:\\\\\\\\iiFliijgj//////”’
R

T (4.12) (K ',1ﬂ

" I[Ky,l] ? ref,11 Y
L

) -1
[if1 ~,11] v
! K ,1]
18V \\\\\\\\\yk
IR CIE)
v [y 7,13,1]
L [a,1]

(i,1]

[da,1]

e [[Y;X‘@Y].[Y,X@Y]]

[[yy,xev*] [v,xey" 1]

(5.1)

;17 [a,1]

[i,1]

[wey,%0v ) o o LLY, %0Y] [v,20v¢]]

[x [y, %oy ]]

The commutativity of the diagram (5.5} and (5.6) is proved similarly. O
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5.3. PROPOSITION. The following diagrams are commutative:

X8I
(5.7) r i
X d g L L, XTI ]
I d [%,18%]
(5.8) 3 1,11
[xx]
d
b4 . YOZ , KB (YBZ) ]
(5.9) d [1,al
<2
[v,%8y] [yez, (x8Y)ez]

PROOF. Proof of the commutativity of diagram (5.7):

x X@T i
[1,r‘1]
<X (4.17)
[1x3 [IRI,%81]
i (5.1) + MCS [r;l;IE\\\\\\%§
b 4 d o | T, X1 ]

The commutativity of diagram (5.8) follows in a similar way from VF1 for XK
and (5.1).



Proof of the commutativity of diagram (5.9):

X d o L Y®Z., X® (YBZ) ]
i (5-1) [1“1'1]
Yoz
[z x] K [18(Y®Z) X6 (Y8Z) ]
la,1] ??1
v [1 "®1,1
a (5.1) X (4.13) [ (I8Y)8%,%x8TY87) ] [1,al
[1,al
7
[rey,xev]____ X | [(18v)8Z, (X0V)82Z]
(17,1 1 tet, 13
<&
[y, x®Y] s L Y®Z, (XBY) 827 ]

5.4. PROPOSITION. Let V be a symmetric semi monoidal closed category.

Then the following diagrams commute:

(5.410) u
[y,%8Y] L1l oy, Y@X]
X8y ded [z,x8z]6lw, vyew]
(5.11) a T
[zew, (xeY)® (zZew) ] [1,£] [zew, (X02)® (Y8w