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PREFACE

This tract is a corrected version of my thesis [GOBEL 19T4]. The main
change is in Chapter 2, where the proofs of theorems 2.1 and 2.2 have been
corrected and simplified following suggestions by Dr. W. Vervaat, to whom

I express my thanks for his constructive criticism.

I am indebted to Prof.dr. J.Th. Runnenburg for his guidance and cooperation
during the preparation of the thesis, his contributions to the results,

and his patience throughout the whole process.






CHAPTER 1

INTRODUCTION

1.1 THE FRAMEWORK

In this book we consider some queueing models, most of which can be

considered as specific cases of the following situation.

Customers arrive at a single service channel, called "filling-line",
carrying loads of varying sizes and of M different types, to be indicated
by j = 1,2,...,M. Each customer carries one type only; we use the term
"j-customer" if his load is of type j.

1)

The n-th customer (n = 1) arrives at time ¥y Yyt ..t Yo where the

variables Yos¥qse-. are identically distributed, non-negative, and indepen-

dent, with fy = Al

<w, We will frequently assume that the ¥, are
exponentially distibuted. Sometimes it is convenient to assume a customer

numbered 0, who arrives at time O.

The probability that the n-th customer is a j-customer is pj (3 =1,....M),
independently of the arrival times and the types of the other customers.
Occasionally, we use the abbreviation Aj for Apj.

The service operation consists in transporting the loads through the filling-
line into buffers of given capacities. A customer leaves the system when
this transport has been completed. There is onl& one filling-line. The
switch-over time from one filling-operation to the next is O.

The buffers, which can be emptied, can contain loads of only one type at a
time. This is perhaps the most essential feature' of our models. However,
after a buffer has been emptied, it can be used for another type. Only one
buffer can be emptied at a time. Filling and emptying a buffer can be done

simultaneously.
Figure 1.1 shows some of the features of the situation.

We usually make the following assumption on the filling- and emptying-times.
The emptying-time Ej of a load of type j (j = 1,...,M) has a distibution

function which may depend on j:
P{Ej < s} = Sj(s),

1) Random variables will be underlined.
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with Sj(s) = 0 for s < 0, and when the emptying-time is s, the filling-time
is ajs where aj is a non-negative constant.

In some cases, we allow a more general relation between filling- and
emptying-times.

When the sizes of the loads play a role, as is the case in finite buffers
or in any question on the amount in the buffers, we usually assume that
such sizes are proportional to the emptying-times.

The service discipline, i.e. the rule according to which we determine (a)
the customer to be admitted to the filling-line, (b) the loads to be
removed from the buffers, will be specified later. In many, but not in all,

cases we will adopt the first-in-first-out discipline.

1.2 THE ORIGIN OF THE PROBLEM

Queueing occurs in a great variety of situations, and it always involves
money, directly or indirectly. This commonplace highly applies to the field
from which our problem originates. There, the customers are oil-tankers for
which waiting is so expensive that very large investments to diminish their
waiting-time are appropriate. For example, the problem how to choose the
buffer sizes is an important problem.

The results presented in the following chapters hardly contribute to the
solution of a practical problem of this kind but we hope that they are of
interest apart from a possible application to the above-mentioned or a

different area.



1.3 SUMMARY OF CHAPTERS 2 TO 5

The common feature of the models in chapter 2 is: the number of buffers, K,
is equal to the number of types, M, and all buffers have infinite capacity.
In chapter 3, we consider one infinite buffer and M > 1.

In chapter 4, we consider K infinite buffers with 1 < K < M.

When the capacity of the buffers is infinite, we restrict our attention to
"almost empty" buffers. This will be made precise later.

In the final chapter 5, some finite-buffer models will be discussed.
Sometimes we step outside the framework of §1.1, but in any case, our
assumptions are stated at the beginning of each chapter. Most of the results

are on the waiting-time.

1.4 SOME RELATED MODELS

The three most salient features of the class of models described in §1.1
-are the following.

A) There are several types of customers.

B) Each customer requires two types of service, viz. filling and emptying.
C) The filling- and emptying-operation for one customer do not take place

in series or parallel but are linked in a different manner.

A different although related class of models arises when instead of C), we
impose the restriction that for each load, emptying can start only when the
filling-operation has been completed. We then have two servers in series
(with some complications), whereas the models of §1.1 are essentially single-

server models.

The feature of several types is very essential in our models. Its con-
sequences are exhibited most distinctly in §3.21, where the model is as
simple as possible in other respects (one infinite buffer, service in order
of arrival). It is true that we do allow finite filling-rates there, but a
comparison of the results for finite and infinite filling-rates shows that

this does not complicate the formulas to a great extent.

The relation between queueing-theory and the theory of dams is well-known.
Our model is most reminiscent of dam theory when the number of types is 1,
which is the case in §2.21, §5.3 and 5.4. Note that feature C) mentioned

above arises in a dam-model as soon as the filling-rate is finite, which is



quite & natural assumption to make. A model of this kind has been considered
by Cohen (see [COHEN 19T4]) who uses the term "gradual input".

A model with several types of customers in which the distribution of the
service time of a customer depends on the type of his predecessor, has been
considered by Gaver (see [GAVER 1963]). The dependence in question is due
to the occurrence of an "orientation time" which the server needs whenever
the type of the customer changes. As noted in [GOBEL 1965], Gaver's model is

simpler than ours since his orientation times do not accumulate.

1.5 SOME NOTATIONAL CONVENTIONS

As noted before, random variables will be denoted by underlined letters,
usually latin lower-case, with or without subscripts. The corresponding
capital is used for the distribution function (df, plural dfs), and the
corresponding capital with a "cup" for the Laplace-Stieltjes transform (LST)

of that 4f. For example, let ¢ be a random variable. Then

c(x) = P{c < x},

Ge .

&(r)

This convention overrules certain well-established conventions, but it has
distinct advantages. We have not attempted to extend the convention to two-
dimensional dfs. Instead of "the LST of the df of c" we will usually speak
of "the LST of c".

The symbol A means "has the seme df as". The symbol 0 denotes the end of a
' proof. The conditional probability of the event A, given B, is denoted by
P{A|B}, and a similar convention applies to conditional expectation.
Finally, a sequence of symbols of the form {A(x) - [x:=y]} has the same
meaning as {A(x) - A(y)}. This convention is used to shorten A(x) - A(y)
when A(x) is a complicated form (which will usually depend on numerous other
quantities other than x, e.g. y). Some simple rules for the above notation

are

{{A(x) - [x:=y1} - [x:=z]} = {A(x) - [x:=z]}
and
{A(x) - [x:=y1}B(y) = {A(x)B(y) - [x:=yl}.



In the second example, A and B may contain other variables than x and y,

respectively, but B should not depend on x.

1.6 SOME SIMPLE RELATIONS

In the sequel, especially in Chs. 2 and 3, the following simple relations

may be useful. Consider an infinite, empty buffer, and suppose a customer

enters the system. If s is his emptying-time, then certain other quantities

of interest can be expressed at once in s, o, w, where w is the emptying-

rate (unit of amount per unit of time). The figure below gives this infor-

mation in a convenient format.

f\\\ s emptying-time

| . . .

| \\\ os filling-time

| N .

I AN w(1-a)s height of maximum

I N

: y ws size of load
ws,

|

i

|
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I

|

Y
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Figure 1.2

Sometimes it is more convenient to express these quantities in terms of u,

~ the filling-time.

7
,
’

wo  u

—_
>

u filling-time
o u emptying-time
w(a—1-1)u height of maximum

we size of load

Figure 1.3



1.7 ORGANIZATION

We have used the decimal notation for the numbers of sections, so that e.g.
§3.11 precedes §3.2.

Theorems, lemmas and figures are indicated by a chapter-number followed by
a point, followed by a number which identifies the theorem etc. within the
chapter. Formula-numbers follow the same convention and are enclosed in

brackets.



CHAPTER 2

INFINITE BUFFERS; K = M

2.1 INTRODUCTION

When both the number of types of customers and the number of buffers are
equal to M, it is possible to assign a buffer to each type. That is what

we do in this chapter.

When, moreover, the buffers are infinite and almost empty, the behaviour

of the customers will only be influenced by the filling operation, and not,\
for example, by the way in which the buffers are emptied. Hence, as far as
the customers are concerned, we have a well-known queueing-model, viz. the
GIG|1 model. In some cases, depending of course on the further assumptions
one makes, more or less explicit results on the waiting-time, the queue

length, and other quantities, can be found in the existing literature.

.We will therefore consider not the customers but the loads, in particular
the waiting-time of the loads, the amount in the buffers, and the so-called

wet periods.

2.2 FILLING AND EMPTYING IN ORDER OF ARRIVAL

If customers of one type fill one infinite buffer, explicit results on the

amount in the buffer can be obtained.

The amount in the buffer immediately after the departure of the n-th
customer will be denoted by gn; the amount at time t by_g(t). As the
strategy for emptying the buffer we choose: the emptying line is busy at
time t when z(t) > O.

We consider, as usual, the process in the almost empty buffer, i.e. z(0) is

finite with probability 1. We assume that z(0) has a given distribution.

The emptying-time for the n-th load will be denoted by 5. the size of the
n-th load by ws > and the filling-time by as . We assume that

(2.1) W =gs < =,



If o = 0, the process z(t) is, in principle, the virtual waiting-time
process for the G|G|1 queue, hence a well-known process, which we will not

consider here.

If o > 1, the process is rather trivial, although in a detailed treatment,
several cases would have to be distinguished, none of which, however, is

really interesting.

Hence we assume 0 < o < 1. A typical realization of the process is shown in

figure 2.1.

= -

The arrows indicate the arrivals of customers 1, 2, 3, 4. Customer 1 stops
filling at C and leaves the system. During the interval AG, the emptying-
line is busy on 1's load. Customer 2 enters at B, has to wait a while, and
starts filling at time C. At time D he leaves the system. Customer 3 does
not wait, and at F he leaves the system. At time J the buffer becomes

-empty, etc.

The process z(t) contains an important imbedded process, viz. the relative
maxima of the amount in the buffer. In many practical situations the maxima
are of prime interest. In order to obtain information on these maxima, we
consider the busy periods "induced by the filling operation". Following
[COHEN 1974] we use the term "inflow periods". Such an inflow period starts
when a customer who has not waited, starts to fill; it ends when a customer
stops filling while no customer is waiting. In figure 2.1, the inflow

periods are AD, EF, and KIL.

At each moment when an inflow period ends, the amount in the buffer has a
local strong maximum, and conversely. (By definition, the realization z(t)

has a local strong maximum at t = to if there exists an e such that



It—tol < g and t # to imply z(t) < z(to).)

Let ¥ be the height of the n-th local strong maximum, u the length of the
n-th inflow period, and X% the time from the end of the n-th inflow period
until the first arrival of a customer. We assume that the interarrival

times are exponential. Then it follows that x;axé,... are also exponential-

ly distributed, mutually independent, and independent of Uyslyseee -

The time required to empty the buffer completely, starting with an amount

Xn’ is equal to w'lzn, provided no customer enters in the corresponding
1v <
-1 o

w(a _1)En+1' See also figure 2.2a.

interval. Hence, if w will be equal to

' .
¥ the ngxt maximum V. . .

(a)

Fi e 2.2

If w_1v > x%, then there will be a positive amount v - wy' left in the
Y -n n

buffer at the arrival of the next customer (see figure 2.2b), and Vo1 is

given by v, - Qxé + w(a_1-1)gn+1.

Summarizing these two cases, we have:

(2.2) v = w(a-1-1)u

-
“n+1 “n+1 + max(ngn mxn).

If we write v. = ww_+ w(a—1—1)u , then (2.2) reduces to
-n “n =n

-1
. = + - -¥').
(2.3) W = 08x(0,¥ +(a” -1)u -y7)
Note that in both cases, W is the minimum amount in the buffer between
the moments at which v and v_ are realized. Hence w_is independent of
-n-1 -n -n
the pair (u ,xé). Furthermore, the distribution of u_ does not depend on
“n -n
n (n 2 2). Hence, (2.3) has the Lindley structure, and we have at once the

following result:
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-1 . e ,
If (a -1)51_1n < 515, ¥, has a limiting distribution with LST

*

(2.4) m1)=—4t%§TT (Re 1> 0),
1-) —=E
T
where i(r) 8 the LST of x def (a_1—1)u (n = 2), and where p* = Ax,..
=n -n ? =2

Since u is a busy period, i(r) satisfies a Kendall-Takécs equation (see

e.g. [TAKACS 19621, p.58):
(2.5) %(1) = 8((1-a) T+ar-orX(7)),

where § is the LST of s .
“n

From (2.5) we find (n 2 2)

(1-a)és
gEn = T-xafs
and
2, 2
N (1-a)“8s
Ex =

0 (oaags)3

and therefore, from (2.4):

A(1-a)24s®

Gw =

2(1-Aafs) 2(1-Afs)
where w is a random variable with LST ﬁ(r).

Since w_and x are independent, the limiting LST of v_ is given by
-n “n -n
V(t) = X(wt) Wor).

To conclude this section, we consider the wet periods. A wet period is a
maximal open interval during which z(t) > 0. Hence, when 0 < o < 1, a wet
period may be considered as a busy period with respect to the emptying
operation. It follows that the wet periods are independent of a as long as
0 <o < 1, and that they can be found by taking a = 0. In fact, their LST

B is given by the functional equation

B(1) = 8(A+t=AB(1)).
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2,22 K=M22

Note that we allow general a's again.

We assume that the loads are taken out of the buffers in the order of filling (which
coincides with the order of arrival of the corresponding customers). We assume

that at time 0 a customer numbered 0, arrives.

Let ¥, be the waiting-time of the n-th customer, i.e. the time from his
arrival until the start of his filling operation. Let X be his filling-
time, £ the time required for removing thé n-th load from the buffer if
the emptying-line operates at full capacity, ¥, the time between the n-th
and (n+1)-st arrival times, iﬂ the type of the n-th customer, and z, the
waiting-time of the n-th load from the moment of arrival of the customer
until the moment at which the removal of the n-th load from the buffer

starts. For a pictorial summary of these definitions we refer to figure 2.3.

arrival arrival start end
=1y n‘ v fil:lLing X fi];ling
l c e
n n
a a b d
n-1 n n n
Zn start Sn end
emptying emptying
Figure 2.3

It is neither necessary nor desirable to take account of the types at this
stage. Hence, the random variables En and N are mixtures of the correspond-
ing conditional variables given the type. Note also that the original as-
sumption that for each type, the filling-time is a constant times the
emptying-time, is nowhere used in this section. Indeed, it is sufficient to
assume that under the condition in =3, X and 5, have a simultaneous dis-

tribution with all mass either in the first or in the second octant.
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LEMMA 2.1.

(2.6) AP max(O,Enfzn-xn),
(2.7) 2, = max(0,¥ 4x -y , z +s -y ).

PROOF. For the n-th customer (or load), we define following epochs (n = 1).

: arrival time,
start of filling,
: start of emptying,
: end of filling,

AP P de o e

: end of emptying.

From the definition of ¥, we have

By T8ty

The (n+1)-st customer starts to fill as soon as possible, that is: on his
arrival, or else when the n-th customer has completed his filling operation.

Hence

Dppq = mex(z g, d ).

Likewise we have

Sy = By, e ).

Once a customer has started to fill the buffer, there are no restrictions

on this operation, and we have simply

+

d b X .
“n -n “n

The emptying operation is completed at time 41

emptying-line has operated at full capacity. This condition is not necessar-

8 provided the

ily fulfilled when the emptying occurs quicker than the filling for the
(n+1)-st customer. As soon as the buffer becomes empty, the emptying will

occur at the (slow) filling-rate, and the filling and emptying operations



13

are completed simultaneously. Since there are no further restrictions on

the emptying operation, we have

= + d.).
£n max(sn'gn*—n)

With the aid of the above five relations, we find

Yor1 T Braq T 2peq T

) =

Zoe1 T Sper T By T (R gee e,

= mex(uoeayy) =

= max(Wp g oSyt ey d e ) =

= +s - +x —
max(O,_z_n_§n ,En_}_c_nxn),

which completes the proof. 0

When all filling-times are 0, the model is equivalent to the case o = 0 of
section 2.21. Hence, we may (and do) assume that for at least one type of

customers, the value of aj is not zero.

LEMMA 2.2. If 2520 and ¥, =0, then W has the same distribution as
. ' o= +...
(2.8) My = gmax (vt oty 41,

and z has the same distribution as

(2.9) z' = max {u +...tu. +v.+...+v )

“n ogjcksn O =j=1-3 —*%=~1""2
where U, = s.-¥i, ¥y = XY Furthermore : Lol . are identically dis-
tributed; VgoXqsee- ave identically distributed; each set of u's and v's

in which no index occurs more than once is a set of independent random

variables.



1h

REMARK. The variables u; introduced here have nothing to do with the inflow

periods of §2.21.

PROOF. With the aid of (2.6) and (2.7) one can prove the following pair of

relations by induction on n.

2.10 \J = max V +..0tV

( ) <k< { 1 1},

2.11 +

( . ) 4 <m-a‘x< {U ]I---'U : 1|U. Feooatu 1}-

From the obvious fact that Byslys.. . are identically distributed and in-
dependent, as well as Xb’zﬁ""’ it follows that one can renumber the

variables in the right-hand sides of (2.10) and (2.11) to obtain (2.8) and
(2.9). The last statement of the lemma follows at once from our assumptions

ony., s, and X 0

The following lemma goes back to a result of Runnenburg (see [RUNNENBURG

19601); its present form is due to VERVAAT (personal communication, 19Th).
His proof is quite simple due to the fact that he considers the probability

space Q pointwise.

LEMMA 2.3. Let 1,
variables, as well as v SAPREY with 530 = Uy 630 = s and let

PPRRE be identically distributed independent random

—0
1
= - o FVLteL, .
My nax k(20+"'+33-1 I3 +-Y-k-1)

0<j<k
Then

P{iig Mk = max(u1,u2)} =1,

PROOF. Let utu,+...+w . = ku, + ke, (k),

Totup*e e ¥ g = Ky * kep(k),

then Mk can be written as

M o= 02?;(1{ (%u1+(1~%)u2+ f{- 51(k)+(1-'%)52(k))~.
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For almost all w ¢ § one has gq(k) + 0, §2(k) + 0 as k + «, hence for

each of these w's

de (k) + (1-)e,(x)

converges to 0 uniformly in j as k - =, Hence for these values of w one has

M o= o(1) + max (fu + (1-Ly,) = o(1) + max(y ,u,) (k+w). O
— . k k"2 - 1272

0<j<k
REMARK. In Runnenburg's formulation of the lemma, the sequences u and v are
required to be independent. It moreover gives only the 1i%§gp Mk instead of
the limit.

The following two theorems deal with the limiting d4f

Z(z) def 1im P{z < z}.
n>o -n
In [GOBEL 19741, the proof of what is now Theorem 2.2 was rather clumsy,
and strictly spoken, incorrect since it required the present, stronger,
version of Lemma 2.3. Vervaat's proof means a considerable simplification,

again made possible by pointwise considerations in Q.

THEOREM 2.1. If ( EO’EO) has an arbitrary df in the first quadrant, but is

independent of the sequence BosYs
v 2 O with v Z 0, then Z(z) = 0.

Y415¥ 5.0, and 2f u 2 O with u # O or

PROQF. First we consider the case 2y =¥, = 0.

Suppose §v 2 0 and v # O. From (2.6) and (2.7) we have z, = W, hence
= 1i < < 11 <
z(z) %ig Plz <z} < lim P{w, < zl}.

Now Lindley's analysis [LINDLEY 1952] shows that the latter limit does

exist and is zero, hence Z = 0.

Suppose &u = 0 and u # 0. Since x, 2 0, it follows from (2.9) that

4
Z =7
-n  -n

v

}

max {u t...tu. -y.-...=y
0<j<k<n 3=1 = k-1

= max {utocty 3=t
ochen O L-17 T
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say, so that Z(z) < lig P{tn < z}, and the same argument as above shows
L I

that Z = 0.

Next we consider the case 2, = Zgs ¥y = Wy It can be shown that 241 has
the same df as z! , = max(A,B,C), where
(A= max _ {w+...tu, +v.+...4v, o}
B2 ociBiEnr Wt gty b
2.12 B=w,+ max {u +...+u. . +v.+...+v }
(2.12) B =g+ mex fugh. i gt d
=z +u +...tu.
£=1zy*1y, By

It follows that

¥y = Vo Zg = 2g) < Pz, sz | 25 =y = O,

hence, applying the result of the first case, we find that Z = 0.

Finally, in the case where (EO,W ) has an arbitrary distribution in the

first quadrant, it follows at once from Lebesgue's theorem on dominated

convergence that again Z = 0. []

THEOREM 2.2. If (EO’EO) has an arbitrary df in the first quadrant, but is

independent of the sequence 13¥qs++5 and If max(4u,4v) < 0, then

oYt
72(z) exists and is a df.

PROOF. It can be shown that z def max ( )

has the same df as z'
—n+1 -
where (cf. (2.12))

+1 A 0BnG

A = max {u +...tu. +v.+...+v },
™ 0<j<ks<n-1 3-173 k-1
B =w + max {ut...+u. +v.+..4v D,
70 ogien 3=17J N
= + + ... .
8y = 2o * 2 5,

Take a fixed w for which lim u (w) = &u and lim v_(w) = év. For such w we
n3o n = e n -
have Cn(w) > —o, Bn(w) + - (on account of Lemma 2.3), and A =2y, (take

J =0, k=1 1in the definition of A ), so that z! = A for sufficiently
-n —n ~n

+1
large n. Since én is non-decreasing, it follows that



A def 1lim A = 1lim z'
- >0 T n>eo —Nn

exists and is independent of the choice of z ,w..
-0’0

We now show that z is finite with probability 1.

For each n, let 5n be defined as the smallest integer with

A = max {ut...tu. FV.t..+v 1.
0sj<k —9=179 k-1

If'{kn(w)} were unbounded, then, applying Lemma 2.3, {An(w)} would contain
a subsequence converging to -, contradicting éh 2. Hence kn(w) is
bounded, hence An(w) is bounded, hence z(w) is finite.

Since we have strong convergence to z, we have convergence in distribution. [

Now supposing that max(8u,4v) < 0, the question arises whether Z can be
determined. The general case (i.e. all aj arbitrary) seems to be very hard.
Only by considering the simultaneous df of z, and M» we obtained some
result, namely a rather unpleasant integral equation for this 4f. We proceed

as follows.

Using the notation of lemma 2.2, we write the equations (2.6) and (2.7) as

follows:

= +
¥pq = mEx(O v ),

= + + .
Z max(0,w +V_,z Hn)

If we define

for n = 1,2,..., then it can be shown that if z and w are 2 O, Fn(z,w)

satisfies

(2.13) Fn+1(z,w) = I J Fn(z—u,zAw—v)deG(u,v),

-00¢ 00

where z A w denotes min(z,w), and where

2 . .
(2.14) a“G(u,v) = gpj P{u < w Sutdu; v < ¥ < VAV | i = jt.
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The existence of

(2.15) F(z,w) = lim F_(z,w)
>0 n

can be shown as follows. If EO = Eb
as in the proof of lemma 2.2 shows that the pair (En’Eh) has the same dis-

= 0, then the same renumbering-argument

tribution as the pair (gé,g%) as defined in lemma 2.2. Hence, if

Zy = ¥, = 0 then
Frep(2ow) = Plz g s asw <)
= P{5-:'1+1 s Z;Eﬂ+1 < W)
< P{z' < z;y%+1 < w}
< P{z' < z;y; < w}l =
= P{z < 23w < w} = Fn(z,w).

Hence the limit F(z,w) exists in that case.

It can be shown, in the same manner as in the previous theorem, that this

limit exists also when the pair (go ) is given arbitrary deterministic

o

start values or a d4f Fo(z,w), provided the pair (EO ) is independent of

B
the sequences En.and an It can also be shown that the limit is invariably
equal to F(z,w). By applying Lebesgue's theorem, it then follows from

"(2.13) that F satisfies the integral equation

o

(2.16) F(z,w) = J Jm F(z-u,ZAw;v)de(u,v).

Furthermore, the function F(z,w) given by (2.15) is a distribution function

provided 4u and v < 0, as a consequence of the following lemma.

LEMMA 2.4, If Fn(x,y) 18 a pointwise converging sequence of two-dimensional
dfs, the marginal dfs of which conmverge pointwise to dfs, then
F(x,y) = lm F (x,y) <8 a df.

PROOF. Fn(x,y) is a df, hence x < x' and y < y' imply
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F (x'y') - F (x,y') = F (x',y) + F _(x,y) 2 0.
If we let x' - » and y' + =, we obtain
1 - Fn(x:m) - Fn(m;Y) + Fn(xsy) 2 0,

or, employing Gn(x) and Hn(y) as notations for the marginal dfs:

—_

- Fn(x,y) < {1-GH(X)} + {1—Hn(y)}.

Hence,

—_

- F(x,y) = {1-Fn(x,y)} + {Fn(x,y)-F(x,y)} <

A

{1-G(x)} + {G(x)—Gn(x)} + {1-H(y)} +

+

(H(y)-E ()} + {F_(x,3)-F(x,y)}.

Now 1 - G(x) and 1 - H(y) can each be made < e by choosing x and y suffi-
ciently large. The remaining three terms can then each be made < e by

choosing n sufficiently large. Hence lim F(x,y) = 1.
Xyye

Continuity "from the right" can be shown as follows. Let x < x' and y < y'.

Then

F(x',Y') - F(x',y) + F(X'ay) - F(x,y)

n

F(x',y') - F(x,y)

IN

F(msy') - F(WQy) + F(X',w) - F(x:m)

H(y') - H(y) + &(x') - Ga(x),

and since G and H are continuous from the right, it follows that

F(x',y') - F(x,y) can be made arbitrarily small.
It is easily shown that the other conditions for F to be a df (x < x' and
¥y < y' implies F(x',y') - F(x,y') - F(x',y) + F(x,y) 2 0; F(-=,y) = 03

F(x,-») = 0) are satisfied. This proves the lemma. [
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F(z,w) is the only solution of (2.16) among dfs. This can be shown as fol-
lows. Suppose F (z,w) is any df satisfying (2.16). Now take this F* as the
df of (go,yo). Then, according to (2.13), F will be the df of all pairs
.. * *
(gn,gn), and the sequence F ,F, ,F,,... converges trivially to F , hence F

is equal to the (unique) limit F.

In summary, the limit F(z,w) is a df which satisfies the integral equation
(2.16) with de(u,v) given by (2.14), and it is the only df which satisfies
(2.16). However, we have not been able to solve (2.16); its only possible

use seems to lie in a numerical determination of F(z,w).
Here we leave the general case until further notice.

Suppose all a. < 1, or, more generally, P{g_rl < §n} = 1 (for all n). It
follows from (2.7) that in this case

Zneq = mex(Oszyteyy)-

Hence, when §u < 0, §v < 0, the LST of Z is given by
v T(1-2és)

2(t) = TS

Although in this special case, the simultaneous df F(z,w) is not required to
determine Z(z), it would be interesting to find F(z,w). RUNNENBURG (oral com-

munication) formulated this problem, and he solved it in the following manner-:

Let max(4u,§v) < 0, and let ﬁ(o,r) and é(o,r) be defined by

-0W-TZ
e — =,

f‘(U,T)

-0X-=TS
geTORTTIE,

é(o;’l’)

By using the method of collective marks and analytic continuation he showed
that

Flo,t {AB(o,7)-(A-1-0)} =
(2.17)

- - v v v v
= ¢ 22120 50, 0)8(0,1) + A =% F(a-1,7)B(A-1,1)

A-T A-T

for all g, t with t =2 0, g+t = 0. The left-hand side of (2.17) is 0 when
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(2.18) 3Blg,t) = A-1-0

which may be considered as an equation in ¢ with T as a parameter. The
question whether (2.18) has a solution ¢ = g(t) in a suitable region, can
be answered affirmatively. (This depends on §x < §s, and this follows from

P{x < s} = 1).

By substituting ¢ = £(t) into the right-hand side of (2.17) he then ob-
J . . 3 - . .
tained an expression for F(A-t,7), which is then again substituted into

(2.17). The final result is

t(1-1és){g(1)-0}
g(0){3B(o,t)-(A-1-0)}

(2.19) Flo,0) =

By series expansion at 0 = T = 0 one can then obtain mixed moments like
6wz as an explicit function of (mixed) moments of the pair x, s. In partie-

cular:

2

2 2 2
5 v Exs ATy, (1->\u)>\v3 (1=au)a v,

A
(1-Av)éwz= 5 6x"s + 5557 T(Tow) ~ G(1-w) 2

L(1-av
2

5 = x, V3 = x.

To conclude this section, we consider the wet periods and the wet j-periods,

to be defined below.

where u = §s, u, = Eg?, v = 68X, v

‘The moment t belongs to a wet period if and only if, by definition, there
is a non-empty buffer at time t. Clearly, the wet periods do not change
when we take all aj equal to 0, and the problem of finding the distribution
of the wet periods is a classical one. In fact, the result given at the end

of section 2.21 remains valid provided we interpret é(T) as z p,§j(1).
J

By definition, the moment t belongs to a wet-j-period if and only if the
Jj-buffer is not empty at time t. So a wet j-period starts when a j-customer
starts to fill the empty j-buffer, and it ends when the j-buffer becomes
empty.

What can we say about the distribution of the wet Jj-periods? In the first
place, it is independent of the filling-process and hence independent of

a1,a2,...,aM, and we may choose a1 = a2 = .. = aM = 0. Without loss of
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generality we may further assume that M = 2, for, if we consider the wet

1-periods, all types different from type 1 may be identified.

A typical realization of the process is shown in figure 2.4. At the epochs
A, B, C, F, J, K, M a customer arrives, and fills the buffer of his type at

an infinite rate. The numbers near the peaks indicate the types.

Note that the arrival of a 2-customer at B causes a delay of the emptying

operation for the l1-customer who arrives at C, so that at F, the 1-buffer

1

2

is not empty, and the wet 1-period which starts at A, ends at H. The next
1-period starts at J, and ends at L, in spite of the arrival of a 2-customer

at K. The difference lies in the arrival at M, outside the service-time JL.

. We consider an empty system, into which a l1-customer enters, who is served
during the open interval S of lemgth s (i.e. his emptying-time is s). The
customers, if any, who arrive in S are grouped to sequences which, by
definition, are completed each time when a 1-customer enters. If no 1-cus-
‘tomer arrives in S, no sequence is formed. A 2-customer (named X) arriving
during S belongs to a sequence if and only if there is a 1-customer who
arrives later than X and before the end of S. Hence, when we consider the
types, the sequences are of the form 1 or 2,1 or 2,2,1 or 2,2,2,1 etc. Let
n be the number of such sequences (g 2 0). Following a well-known argument
(see [ KENDALL 19511), we now change the order of service as follows. When
the initial 1-customer departs, we start to serve the customers of the
first sequence as well as all customers who enter during the service-time
of the customers of the first sequence, as well as all customers who enter
during the service time of those customers, etc. Then we treat the second
sequence and its "tail" in the same way, etc. Note that the completion of
the wet 1-period is not influenced by this change of the order of service,

since, by construction, there is always a l-customer present when at least
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-one sequence (or part of it) remains. The length ¢ of the wet 1-period under

consideration is thus given by

(2.20) e=st+eitelt ...+l

where gi (i=1,2,...,n) denotes the duration of service on the i-th sequence

and its "tail". Hence

(2.21) c!& s, +s5_ + ...+
g, =5

+
17 % &

s
I

where Bqseees S are the service times of the 2-customers in the sequence,

and where m is the number of 2-arrivals between two consecutive 1-arrivals.

Let s be the expected emptying-time for the i-customers, and let p = A
+ A

u, +
171
oMo+ Then, if p < 1, one finds from (2.20) and (2.21):

(1) = &, (v -2 8, (1))

and

v v
- where F1 and A1 are the LST of c and c¢', respectively.

As a check, one may verify that in the case of no 2-customers (AZ =0,

A= A1), the equations become

vy

(e.22)  H(0)

a
S1(1—X1—A1A1(T)),

(T)a

[}
e

(2.23) A, (1)

1 1

which is equivalent to the Kendall-Takédcs functional equation:
(2.24) F(1) = 8(t=a-AT(1)).

The same result is found if one admits 2-customers with service-times

identically zero (éz(T) = 1).

For the expectation of ¢ we find from (2.20) and (2.21)
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. u, (142 ,u1,)

=2y

Note that each epoch of any 1-period belongs to an ordinary wet period,
hence, in a sense, the l-periods are smaller than the wet periods. On the
other hand, it is possible to choose Ai and s such that &c is larger than
&b. This somewhat paradoxical situation can be achieved quite easily, e.g.

. 1 1
if X1 = g0 My T 3, A2 =3 My = 1, then éc = 6, whereas (from 2.2k4)

b = —E— = L4},

2.3 EMPTYING THE BUFFERS WITH PRIORITIES

In Section 2.22, both the filling and the emptying operations take place

in the order of arrival of the customers. We now consider amodel in which the
emptying order is different. It is not unusual that such a change makes the
problem much more difficult. Therefore we simplify the model by assuming
that the filling occurs infinitely fast. (The waiting-time of the customers
is then identically 0). We now have, as it were, eliminated the buffers

from the model, and an M|G|1-model remains with the special features of

(a) different types of customers and (b) priorities.

The loads now play the role of the customers and "departure of a customer"

has to be interpreted as "completion of the emptying operation on a load".

If we assign linear priorities to the M classes, we obtain a well-known
problem; see e.g. [COBHAM 19547 and [KESTEN & RUNNENBURG 1957]. We do not

consider these priorities here.

In many of the practical situations to which our model applies, it is quite
natural to adopt a different form of priorities, which one might term

opportunist priorities. This means the following:

(a) when a j-customer departs who leaves at least one j-customer waiting,

the next customer to be served will be the j-customer who arrived first;

(b) when a j-customer departs who leaves no j-customer waiting, a discipline
of sub-priorities will be used to determine which of the customers
waiting, if any, will be served (unless M = 2, in which case no sub-

priorities have to be defined);

(¢) a customer who proceeds to the counter will be served immediately.
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In the special case M = 2, these priorities have been termed alternating;
they have been considered by various authors. In [AVI-ITZHAK, MAXWELL, and
MILLER, 1965], a formula for the expected waiting-time is given, which
coincides with a result in [GOBEL 1969]. In [TAKACS 19681 and [GOBEL 19691
the formulas for the generating functions f and g (see below) are derived,
by different methods. Alternating priorities are also treated in Chapter T
of [JAISWAL 1968].

In this section we consider, in the special case M = 2, the amount in the
buffers and the wet periods for this model. We exclude service times that

are identically zero.

The process is started as follows. To each set of integers k, a, b with
k=1or2,az20,b >0, we assign non-negative numbers P O(a,b) with
2

the following properties:

1) (a,b) = 1;
FAENC

0, b > 0 implies p, o(a,b) = 03
bl

2)

[l
o
.

3) a >0, b =0 implies P, O(a,b) =
t ]

If a+b > 0, we define P O(a,b) as the probability that a 1-loads and b 2-
t]

loads are in the buffers at time 0, while priority is given to type k. If

a=Db= 0, we define P O(a,b) as the probability that no loads are present
2

at time O and that the first customer to arrive is of type k.

Let p. n(a,b) be the probability that the n-th departing customer is of

J>
type J and leaves a 1-loads and b 2-loads.

For complex x and y with |x| < 1, |y| £ 1, we define the generating func-

tions

b
fn(x,y) (a,b)xay ,

[}
[l ]

a b
(a,b)x y .

g, (x,¥) n

!

The limits as n + » of these functions are given by the theorem below, but

first we need some additional notation and a few lemmas.

Let UJ = gij(j=132)’ p = )\1/>\3 q = >\2/)\, pj = Ajuj(j=1’2)’ p = p1+02-
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LEMMA 2.5. (from [FELLER 19661, p.417). If §1 ig the Laplace transform of
a probability distribution with expectation 0 < Uy S @, and tf Ay >0, then
the equation x = ﬁ1(z+x1-x1x) has a unique solution x(z) < 1, and x is the
Laplace transform of a distribution, which is proper if and only if

Auy < 1, defective otherwise.

We apply this lemma with z = Ap=Ao¥ (keeping 0 < y < 1), and we denote the

solution of
N

(2.26) x = 5, (A=2,x-2,¥)

by x = g(y). Similarly, we denote the solution of
v

(2.27) y = Sa(x—xlx-xzy)

by ¥ = n(x). Note the similarity between these equations, the equation
(2.18), and the Kendall-Takécs functional equation (e.g. (2.24)).

n

Let y(x) = g(n(x)), 8(y) = n(&(y)), and let y and s" denote iterates of

v and §, respectively.

LEMMA 2.6. If p < 1, then the sequence y, 6(y), 62(y),... 18 strictly in-
creasing for all y € [0,1).

PROOF.It is sufficient to show that y < 8(y) < 1 for y < 1. We start by
noting that

-S.T

3,(1) = e | = (1-5,7) = 1-u

1 T

so, from (2.26):

E(y) = §1(A-A1E(y)—kgy) 2 1-u, (A=A E(y)-Ay).

2

This yields the useful inequality

1-&(y) < (1-y).
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Similarly

1 -n(x) <
Taking x = £(y) in the last inequality, we obtain

p,P
T—S(y)s( 12

T (e (1)

P1Po

From p < 1 it follows that p' = v4+———=7—— < 1, hence
(1-0,)

(1—02)

1-8(y) £o'(1=y) < 1=y

(provided y < 1), hence ¥ < &(y).

Finally, 8(y) < 1 follows from &(y) = n(E(y)), &(y) > 0, and the fact that
each value of n is a value of ée, which is the LST of S, £0.0

LEMMA 2.7. If p < 1, then ﬁig 6N(y) =1 for all y € [0,1).

PROOF. Let y ¢ [0,1). The sequence y, &(y), 62(y),... is bounded from above
by 1. Hence; the 1limit exists on account of the previous lemma, and it is

< 1. However, a limit < 1 is impossible on account of y < &(y) in the in-
terval [0,1). Hence the limit equals 1, For y = 1, the assertion in the

lemma is trivial.
THEOREM 2.3. If p < 1, the limits

f(x,y) = Lim £ (x,y)

and

glx,y) = lim g, (x,¥)

exist and are given by

(1-p)8, (A=A x=2,y)

(2.28) f(x,y) = B, (Ah XAy

. [ E {1—p5(5n(y))—q5n+1(Y)} -3

n=0 n=0

{1-pv“<x>-qn<yn<x>>}]
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and

(1—03S2(>\—)\1x—)\2y)
y—Sz(A—A1x-A2y)

(2.29) g(x,y) =

n=0

o

{1-QH(Yn(x))-pYn+1(x)} -7 {1-q6n(y)—p£(6n(y))}].

n=0

OUTLINE OF PROOF. With the aid of the method of collective marks (or other-

wise) one can derive the functional equations

v
(2.30) xfn+1(x,y) = S1(A—A1x-12y) .

- [£ale)£, 0,348, (2,008, (0, 004tz (0,014, 0,03 .

(2.31) ve .. (x,y) = éQ(A—x1x—A2y) .

n+1
- [oa03)-8,1,0042, (0,12, (0,00vavtz, 0,004, (0,003
Letting n + ®, one can show in the same way as in section 4 of [KESTEN &
RUNNENBURG 19571 that the limits f and g exist provided p < 1, and that f
and g satisfy the limiting equations
v
‘(2.32) {x-8, (02 x2 3 )} £(x,y) = 8, (A-a x=0y) -

. [—f(o,y)+g(x,0)-g(0,0)+px{f(0,0)+g(0,0)}],

<
(2.33) -8,00-0 x-2,y) Ye(x,y) = 8,000 x-Ay) -
- [~tx,00+2(0,3)-(0,0)ay2(0,0)+g(0,0)3 .
Since f(x,y) is analytic for |x| < 1, |yl < 1, and since the other factor in
the left-hand side of (2.32) is O when x = £(y), it follows that the right-

hand side of (2.32) is 0 for x = £(y):

(2.34) - £(0,y) + g(&(y),0) - g(0,0) + pg(y){£(0,0)+g(0,0)} =0
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and similarly
(2.35) - g(x,0) + £(0,n(x)) - £(0,0) + an(x){£(0,0)+g(0,0)} = 0.
In particular we may substitute x = £(y) in the last identity, to obtain:
(2.36) - g(g(y),0) + £(0,8(y)) - £(0,0) + a8(y){£(0,0)+g(0,0)} = 0.
Adding (2.36) to (2.34), we obtain

- £(0,y) + £(0,6(y)) - {£(0,0)+g(0,0)}{1-pe(y)-qs(y)} = 0.

. . n
Since this relation holds not only for y, but for arbitrary iterates & (y)

of y, we obtain, by summation over n from 0 to N:

N
(2.37) £00,y) = F(0,67 (y)) - {£(0,0)+(0,0)} § {1-pes™(y)-as"" (¥)}
’ n=0
N+1 ¥ n+1 n
(2.38) g(x,0) = gy (x),0) - {£(0,0)+g(0,0)} § {1-py" ' (x)-an(y"(x))}.

n=0

. - n+1 n .
Now the series ){1-py  (x)-an(y (x))} is convergent provided p <1, for the
n-th term can bg written as

p{1-y"1(x)} + al1-6"(£(x))}.

For convergence it is sufficient to show that for all x e [0,1) both
1-y(x) and 1-6(x) are < p'(1-x) for some p' < 1. As we have seen earlier,

we may in fact choose

' P1P5

e - (1-91)(1‘02) :

Hence we may let N + « in (2.37) and (2.38), and since f and g are com-

tinuous, we have

(2.39) £(0,y)

£(0,1) = (£(0,01+g(0,0)3 J {1-pe(6™(y))-as™ ' (3)},
n=0

£(1,0) = (£(0,00+&(0,0)3 T {1-py™ (x)=an(x™(x))}.
n=0

(2.40) g(x,0)
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Substituting (2.39) and (2.40) into (2.32), we find
(2.41) {x-é1(A—A1x—A2y)}f(x,y) = é1(x—x1x—xey) .
. [—f(0,1)+g(1,0)—g(0,0)+{f(0,0)+g(0,0)}{px +

o] 11-pE(6" ()-8 (30} - T {1-pyn”(x)-qn(Ynm)}}].
0

Since the expression in the square brackets is O when x =y = 1, we have
(2.42) £(0,1) - pf(0,0) = g(1,0) - qg(0,0).

With the aid of this relation, (2.41) can be slightly simplified, and we
obtain (2.28), with £(0,0) + g(0,0) instead of 1-p as a factor in the right
side. A proof of £(0,0) + g(0,0) = 1-p can be given by comparing the
present process with the process where the customers are served in order of
arrival. A little reflection shows that if the n-th departing customer :
leaves no customers under one discipline, then the n-th customer leaves no
customers under the other discipline. (The same is true for the arrival of

a customer in an empty system.) Hence, since £(0,0) + g(0,0) = 1-p under

the "fifo" discipline, it follows that this relation holds in the present

system *), and we obtain (2.28).
Formula (2.29) follows similarly, and the proof is complete. O

As an application consider Qn’ the amount in the 1-buffer at the departure
of the n-th customer (i.e., at the completion of the emptying operation on

the n-th load).

THEOREM 2.4. If p < 1, then

v _Tgn
H.(t) = 1lim ge
1 N-yoo

exists and is given by

H (1) = 208, (w7),1) + g8, (w,),1).

*) In [GOBEL 1969] it was shown that p{£(0,0)+g(0,0)} = (1-p)f(1,1); hence
we now know that p = £(1,1) and q = g(1,1).
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PROOF. Suppose the n-th customer leaves Eh 1-customers. Then

-th -th
-n

ge g e ™ §n=a)P( a) =

a =
-n

; —T(§4+...+§a)
e

w
1 -
E {p1,n(a,b)+p2,n(a,b)} =

-Tw1_s_1 a _
g é ge {p1,n(a,b)+p2’n(a,b)} =

£ (8,(w,1),1) + g (B, (w,1),1).

If p < 1, the limit as n - « of the last member exists, hence the theorem. [

As a second application, consider the "queue length". Let En be the number
of loads (irrespective of type) in the buffers at the moment when the

emptying operation on the n-th load is completed.

THEOREM 2.5. If p < 1, then

(-]

D(x) = 1im J P{t =t}x"
e =g 1

exists, and is given by f£(x,x) + g(x,x).

PROOF. Suppose t = a +b , where a refers to 1-loads and b to 2-loads.
—_— n -n-n ~n -n

‘Then a straightforward calculation shows that
J Plt =t}x" = £ (x,x) + g _(x,x)
g n? n
and the theorem follows. [J

Now we consider the process at a different sequence of epochs. When service
on a 1-load starts and the load handled last is of type 2, then we say that
a I-period starts. At such a moment, the number of 2-loads in the buffer

is 0, and it may or may not have been 0 during an interval of positive

length ending at that moment. The start of a 2-period is defined similarly.

Let gﬂ be the number of j-loads in the system just before a j-period starts

in the stationary process.
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Let
K.(x) = Z P{g_.=n}xn (3 = 1,2)
3 oo 9
THEOREM 2.6.
= gﬂx,O)-gng,O)
K, (x) g(1,0)-qg(0,0) °*

_ £(0,y)-pf(0,0)
Ky(y) = £(0,1)-p£(0,0)

PROOF. Define the events

B, = {a 1-period starts},
= {51=0} n B
B3 = {p_1>0} naB

13
1
Then K1 may be written as
K, (x) = Z P{n.=n | B 7.
1 =1 1
0
Furthermore,

P{B.}
= - 2 - pg(0,0) _
P{n,=0 | B} = P(B,1+P(B,)  1(0,0)+g(1,0)-g(0,0)

- 0,0
g(1,0)-qg(0,0)

If n > 0, then

P{n,=nnB, } p,(n,0)
Plo=n | B} = P(B,} 8(1,0)-a8(0,0)"

and the formula for K1(x) follows. The formula for K2(y) follows by a suit-
able interchange of symbols. [

A closely related quantity is g;, the number of j-loads in the buffers just

after a j-period starts. Let Kg(x) be its generating function.
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THEOREM 2.

* _ g(x,0)-(1-px)g(0,0)
Ky(x) = g(1,0)-qg(0,0)

PROOF. Obviously, g: = max(1,g1), and the theorem follows after a straight-

forward calculation. [

APPLICATION. Let h' be the amount in the 1-buffer just after a 1-period has

started. Then a standard calculation shows that

APPLICATION. Let ¢1(T) be the LST of the (maximal) intervals during which
the 1-buffer is not empty. Then

o, () = Kj(x,(1)),

where x1(r) is the LST of the wet-periods when the 2-customers are deleted

from the process.

2.4 FILLING-PRIORITIES

When one adopts a filling-discipline other than 'first in, first out', one
is faced with the difficulty of defining a reasonable emptying discipline.

Let us briefly consider some possibilities. We start with a simple model.

A. Type 1 has preemptive filling priority over all other types;
a, = 0. Buffer 1 is emptied only when buffers 2,...,M are empty;
the types 2,...,M are served in order of arrival.

In this case, we can apply the results of section 2.2 (or 2.1) to the types
2,...,M. The 1-customers have waiting-time 0. For the loads of type 1, we
have an M|G|1 model with 'interrupted service', which is treated e.g. in
[AVI-ITZHAK & NAOR 19631, model A.

B. Types 1,...,k (1 < k < M) have preemptive filling priority over

the remaining types; o, = ... = = 0. The loads of types 1,...,k

a

1 k

are removed from their respective buffers in order of arrival when
no loads of types k+1,...,M are present. The types k+1,...,M are

served in order of arrival.



3k

For the loads of types 1,...,k, the situation is more complicated than it
is for the 1-loads in model A. However, it seems feasible to generalize the

results of [AVI-ITZHAK & NAOR 1963], model A, in this direction.
C. Model A with 'non-preemptive' instead of 'preemptive'.

The waiting-time of the 1-customers may have a value > O now; its LST can

be determined in a straighforward manner. We have not considered the

1-loads in this model.

D. Model A with '0 < a1' instead of 'a1 =0'.

Here the filling-process of types 2,...,M is interrupted by the 1-customers,
and the emptying-process of the l-customers is interrupted by the others.
The model looks very complicated, but this seems inherent to each model in

which filling-priority is given to a type with a # O.



CHAPTER 3

CUSTOMER INTERFERENCE IN ONE INFINITE BUFFER

3.1 INTRODUCTION

In this chapter, we assume one infinite buffer which is almost empty, and

M types of customers (M > 1).

The n-th customer arrives at time ¥, ety 1 (n 2 1) where each ¥ has

an exponential distribution with &y. = A_1 and where YyoXs--- aTe mutually
i

independent.

The type of the n-th customer is denoted by jn' We assume that Pj’ defined

by

p; = PLi =)} (5= 1seeest)

‘does not depend on n, that all pj > 0, and that the variables jﬂ’ie"" are

mutually independent and independent of the arrival process.

Let the filling-time and the emptying-time for the n-th customer be denoted

by r and 5 respectively. We assume that

}?{5n <s}t=1,

s
5,
i.e. Fj(r,s) = Fj(s,s) for r 2 s > 0. (For a discussion of this assumption

32,52),...
are mutually independent, independent of the arrivals process, and that each

see section 3.22). Further we assume that the pairs (34,§4), (

(gn,§n) is independent of j,,Jj,,... except (possibly) in'

The waiting-time of the n-th customer is denoted by W We assume that ¥,

has a given distribution, which may depend on Yy but which is independent

of the rest of the process.

The only emptying-strategy we consider in this chapter is: the emptying-

line is busy whenever the buffer contains a positive amount.

3.2 FILLING IN ORDER OF ARRIVAL

In this section and its sub-sections, we assume that filling takes place in
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order of arrival and that the filling station is never idle when there is
a customer waiting, unless the buffer contains goods of a type differing

from the type of the first customer in the queue.

3.21 The waiting~time

In this subsection, we will obtain the transient behaviour of the waiting-
time in principle, the stationarity condition, and the limiting behaviour

in a more explicit form.

The method is roughly as follows. We consider, beside the process defined
above ("the original process"), a modified process in which each customer
who finds the emptying-line occupied, waits with filling until the emptying-
line is idle, regardless of the type in the buffer. The modified process is

fairly simple and serves as a basis for obtaining results for the original process.

First we state some lemmas.

LEMMA 3.1. [TAKACS 19621. In an M|G|1 queueing model, let A be the density
of the arrivals process, 5(t) the LST of the service times, and %k(r) the
LST of the waiting-time of the k—th customer (k > 1). Then the generating
funetion of ﬁk(r) ig given by

=
A-T-AxS(T)

T

{(k—'r)VrJ1 (1)

(3.1) T (0" = C ot o= aenz]
kZ1 kTX T Z}

where |x| < 1 and z is the root with smallest absolute value of
(3.2) z = x5(A-2z).

We also need a slightly more general result, pertaining to the conditional
waiting-time of the k-th customer, given that the preceding customer has a

service-time with LST éj(r).

Denoting the LST of such a waiting-time by Wk(r|j-), we have the following

lemma.

LEMMA 3.2. In the above notation, the generating function of ﬁk(1|j-) s
given by

= §.(1) o
¥ sy EFT AT J Kk o
k; W (tlio)x = {—ﬂ—— ; W (x - [t := A]}.
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PROOF. Using the method of collective marks, it is easy to establish

(3.3) W (085(1) = 1 03, () + (el (e30).

(See also [RUNNENBURG 19651, p.402; our T is RUNNENBURG's A-AX,) Multi-

+1

plication by xk and summation over k immediately gives the desired result.[

Although lemma 3.2 has a wider applicability, we apply it mainly to our

model with éj(r) equal to the LST of the emptying-times of the j-customers.

Hence

In the next lemma, we assume the conditions of our model, in particular on
the way in which the types are assigned. We will denote by s an "uncondi-
tional" emptying-time, hence a random variable with 4af Eijj(w,s).

LEMMA 3.3. If Afs < 1 then the limits

v . . v .
w(tlj+) = Lim W (tlj-),

f

W(t) = lim ﬁk(r>
k>0

exist, and
v
) S.(t)W(t)
Witlje) At [y ~ [T := ATS.
A=T T

PROOF. The statement about ﬁ(r) is a well-known result. From formula (3.3)
we obtain

x%k<r)éj<T>_Tﬁk(x)éj(x)
A=T

v -
Wk+1(rl.] ) =

and by letting k + «, we obtain both the existence of and the formula for

w(tlj-). O

v v
REMARK. If éj is independent of j in lemma 3.3, then W(tl|j.) = W(t) for all
T and all j, and we may solve for ﬁ(T), obtaining the Pollaczek-Khintchine

formula, as is proper.
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We return to the "original process". Consider the n-th customer (n = 1).

Let gn be defined as follows.

k
-5

{n if 11 = je = ... = jn’
min {k|k > 1} in-k # jn} otherwise.

Let én(r]j) be the conditional LST of the waiting-time of the n-th customer
(in the original process) given that in = j, and let én(rlj;k) be the con-
ditional LST of the same variable under the condition in =Js gn = k. (In
other words: the n-th customer is the k-th of a sequence of j-customers.)
Then, of course,

n
L G le150pGe g5y =

(3.4) ¢ (x13)

n-1
Y .o\ k
L Cylrlisk)p;
k=1

-1 v . n-1
(1-pj) + Cn(TlJ,n)Pj .

Let u be a complex number with |u| < 1. Then from (3.4) we have

o0 . .
Z cn(m)u‘f =1, +%,
n=1

where
[+

4 . -1 n
) Cn(TIJ;n)P? u,
o J
n=1

M
I

@ ooty k-1 n
1 L C (eldsk)p; (1-p)u.
n=2 k=1 J J

%

The sum 21 can be reduced with the aid of lemma 3.1. Since the condition
jn =Js gn = n implies that all customers 1,2,...,n are of type j, the
service-times of lemma 3.1 have to be interpreted as filling-times here,
with df Fy(r,=) and LST éj(r). We obtain

> =———m A=t 4 i) - = A=
1 x—r—xégﬁﬁgf?T { o Cq(tld) - [ =1 Azj]}
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where zj is the root with smallest absolute value of

uk.(A-2z.)
Z. = . . -AZ.)o
i B J

Next we reduce X_.. The symbol qj will be used as an abbreviation for 1—pj.

2
S v 4 N
,= 1 ] Cllisklp: qu =
k=1 n=k+1 i
Toor g . k-1 k
=1 1 Cm+k(T|J;k)P- u qjup =
k=1 m=1 J
s -1m w . k
= 7 apiu § ¢, (r13E)(pw).
mn=1 Jd k=1 m+k 3

Again we apply lemma 3.1:

5 Tug. © o (Aot s .
2 - A—T-Apjﬁﬁ.(Tj' ] u { . Cpaq(ldst) - [t := A—Azj]}

J m=1
where zj has the same meaning as in 21.

. e ae . d .
Now we turn our attention to the modified process. Consider Cm+1(TIJ;1).
By construction, the (m+1)-st customer is the first of a sequence of

j-customers. Hence

¢ (eldsn) = B (1 #3),

v
where H refers to the modified process. Hence, using the abbreviation
A = A-t-Ap.uk, (1
P; J( )s

1q. @
T =l JA-T v NG .
2 A { p mz1 Hm+1(T|;m#J)u [t := A ij] .

Since, from an elementary calculation,

B (t)-p.B . (tlj*)
£ (x]5 45) = _mHl TPty TH
m+1 Jm J qj ?

we obtain after some rearrangement
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=17 i (o™ D s A—Azj]} +
1
p:T - ® ) o+
-4 {‘;— ; B (tlgeu™ " = [t := A-Azj]}.
If we take m = O in the first line of this formula, we have just 21 (since

(1) = & (x15)),

hence

where
.= DALY (o™ - [r o= A-)\zj]},
1

A
PsT

o= o
A

n {A:I ) ﬁm+1(le-)um+1 - [t := A—Azj]}.

1
Let the LST of the emptying-times be denoted by $(1). Hence
0 v © s
§(r) = J p.5.(1) = o, J TS (w,3).
R N J 0 J
dJ
Applying lemma 3.1 again, now to the modified process, we can rewrite the sum

ZTﬁm(r)um, occurring in 23, as follows
[+
- v
2=t JH ()" =
T m
1
_ u(X—T -t oy T |
A—t-AuS(1) { T H1(T) [r := A-az ]}

where z' is the root with smallest absolute value of
v
z' = uS(A-Az').

v
The sum Z? Hm+1(T|j-), occurring in Zh’ can be reduced with the aid of
lemma 3.2. We do not write down the result, but just note that - in prin-

ciple - the sum

©

v .
)y Cn(TIJ)un
n=1
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has been determined up to solving the equations for z'j and z'.
Now we turn our attention to the stationary state of the original process.

A suggestion for proving limit theorems contained in [SMITH 19581, p.257-258

can be used to prove the existence of lim C (wlj).
n*>* n

The epoch t belongs to a busy period if, by definition, the buffer is not
empty at time t. In this sense, the busy periods of the original process
coincide with those of the modified process. Now if p = Afs < 1, the ter-
mination of a busy period is a certain event in the modified process, hence
in the original process. Also, the expected duration of each busy period is

finite.

Consider the n-th customer in the original process. The probability that
¥osw under the condition that he is the k-th of his busy period and that
he is of type j, is independent of n. Hence, in order to prove that Cn(wlj)

has a limit as n + «, it is sufficient to prove that for each k the number

Pn k= P {the n-th customer is the k-th of his busy period}
2

tends to a limit Q , say, with Q 2 0 and ZTQK = 1.

Let x be the number of customers in the first busy period. Then it is easy

to verify that

0 if n < k,

Pn,k =

P . = P{x > k},

k,k n-x

Pn,k = 121 P{x = 1}Pn—i,k if n > k.

Now we need the following lemma. (It is the second part of Theorem 1,
Ch. 13 in [FELLER 19671.)

LEMMA 3.4. Let £iofpsens and b

. - 00
with £, >0, £ = ]} £,

»++. be defined by

RELIERRD be sequences of non-negative reals

=1,g= zii fi < ®, b= 2; bi < w, Let the sequence

MR

vn = bn + f vn_1 + f2vn_2 + ...+ fnv .

1 0

Then



Lo
lim v = L} .
n-o g

REMARK. We have replaced FELLER's requirement that f be non-periodic with

the stronger "f1 > o".

We apply the theorem with £, = P{x = i} for all i, and with

Py

]
‘t~
H
-

b.

i 0 for i # k.

It is easily seen that the conditions of the theorem are éatisfied, and

that for the generated sequence we have

vO = .. = vk_1 =0,
v, = P{x = k},
v =P K for n > k.

Hence we have

P{x2k}
ko &x

%

lim P
nso O
The assertion ZT Q = 1 follows from the fact that £x is finite (and that x
assumes the values 1,2,... only, so that &x = zk P{x = k}).

We may conclude that C(wl|j) = %ig Cn(wlj) exists for each j.

From theorem 1 on p.408 of [FELLER 1966] it now follows that the LST
~l-. .X -
C(tl3) = lim C (rl3)
n->oo

exists too, so by applying ABEL's theorem we may conclude that

©

bx15) = 1im (1) C (xliu® = Lin (1-0)(235,).

Note that Zj’ occurring in X_ and Zh, depends on u. However, zj is a con-

3
tinuous function of u (which can be shown quickly with the aid of a
theorem from [FELLER 1966], p.417-418), and from now on we use the notation

Zj for the root with smallest absolute value of the "limiting equation"
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. . = p.R.(A-Az.).
(3.5) 23 pJRJ(A zJ)

The 1lim (1-u)Z_ can now be written as
u*1 3

T A-T .. o ¢ n o
X—T—Apjﬁj(r) {—?— ﬁi? (1-u) ] Hm(T)u - [t := A-Azj]}.

The 1i? (1-u) § ﬁm(r)um, occurring here, exists when Afs < 1 (see e.g.
y> . .
[TAKACS 1962],1theorem 10 on p. 69), and is then given by

v t(1-18s)
i) = e
which is, of course, the Pollaczek-Khintchine formula mentioned earlier.

Hence, when Aés < 1, we have

A-T ¥

(3.6) " lim (1—u)Z3 = 3:?:15§§3T¥7 {—;— H(t) - [T := l-Azj]}

u1
with Zj given by (3.5).

By applying lemma 3.3, we can determine lim (1—u)):h in exactly the same

manner. The result is w1

(3.7) 1lim (1-u)>:h =3

u~»>1 T

P.T {Aéj(r)ﬁ(r)

- [t := A—xz.]}.
-T-lpjﬁj(T) J

So we obtain C(t j) as the difference of the right sides of (3.6) and (3.7);

after some reduction, we finally obtain

v

Yooy T H(1) .= 1
(3.8) c(tl3) A—T-Apjﬁj(T) { . (A-T—Apjéj(T)) - [t := A-Azj]I.
In the special case of infinite filling rates, we have ﬁj(r) = 1 and
zj = pj, and hence

J

v Sy = T H(t) =

(3.9) c(tl3d) qu—r { - (A-T Apjéj(r)) [t : qu]}.

It is for some purposes more convenient to keep the conditional LST
v
Hm+1(lem#j) and its limit as m + « in the formulas. If we use the abbrevi-
ation

H(rli_#3) = dim £, (c1i #),
m->co
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then we obtain instead of (3.8) and (3.9):

1q, ,
(3.10) é(T[j) = X:;:xg%ﬁfT?T {A%I H(T|j_1fi) - [t := A—Azj]}
J J

for finite filling-rates, and

Q4 (e
40 1sy i T 4 . s _
(3.11) C(tlj) = R {—;— H(tlj_#3) - [t := qul}

for infinite filling-rates.

The moments of the limiting distribution may be determined from (3.8) by
differentiation and letting T -+ 0. For example, the first moment &c of the
unconditional limiting distribution C(w) = zj ij(w]j) is given by

p.é(s.-r.)-T.
(3.12) EE B Iy My R

]
o0
=3

1

el

-— 2 3
i 4

where

e
—~
>
|
>
N
~

= i - S -
, ——J—sz (2;-p;8,(12z;))

and where gj, Ej and h are random variables with LST éj’ éj’ ﬁ, respectively.

One might ask whether the moments of the transient distributions converge
to the moments of the limiting distribution. A partial answer can be ob-

tained as follows.

Let jn be, as before, the type of the n-th customer, and let gn be the
number of customers in the system just after the departure of the n-th
customer. Then {(jn,jn+1,gn); n=1,2,...} is an irreducible, aperiodic
Markov-chain with a discrete state space. Let f be any non-negative state
function. Let ¢n be the expected value of f just after the n-th transition,
and ¢ the expected value of f in the stationary state (which is known to
exist and to be independent of the initial state). Then, according to
theorem 4.3 of [KESTEN & RUNNENBURG 19571:

1lim ¢_ = ¢.

e O
In particular, the moments of gn converge to the moments of the queue length
g in the stationary state.

It has been shown in [LITTLE 1961] and in [JEWELL 1967] that under certain

conditions one has
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&c = MGg.

Now JEWELL's Assumption II is easily seen to hold in our case, and his

Assumptions I, III, IV follow from p < 1.

Hence the above question can be answered affirmatively for the first moment

of the waiting-time.

3.22 Arbitrarily related filling- and emptying-times

In §3.1 we made the assumption P{z.n < En} =1, i.e. r < s for each realisa-
tion (r,s) of (r,s). Suppose now that for certain values of j, both

r < s and r > s could occur. Then we would have the situation of chapter 2
within a j-sequence. We have refrained from inserting such a complicated

process into the process of the present chapter.

Of course, if for certain values of j, each realisation (r,s) satisfies

§ < r, so that all mass of Fj(r,s) lies in the first octant, we may "sweep"
the mass to the diagonal r = s and thus still apply the results of section
3.21, provided the remaining values of j have all mass in the second octant

from the beginning.

3.23 Markov-dependent types

Now we consider a model in which the sequence of types jq’ie"“ is an ir-
reducible aperiodic Markov-chain with time-independent transition
probabilities Pij' The initial distribution of the types will be denoted
by P*j’ the stationary distribution by "j'

Presently, we will have to make a restrictive assumption on the dfs of the

emptying times.

Since it seems less natural here to consider the conditional d4f Cn(wlj), we
Jjust take the unconditional df Cn(w). In the same way as in section 3.21

we then find

oo./ n_
; Cn(t)u =X, +I,

where



L6

_ TP, 4 A-T ¥ . s _
= § Athp. K. (1) {_?— Cyrliy=d) - [r e= A"xzj]}

Jd J
and
5 Retia -ty oy . ivors _sq.
o = § i(éj) X:¥:X5§EG§ET;7-{—?— ; Ho o (elf =1)P(j =ihu” +
- [t := X—ij]}

o4
with z. given by z. = p..uR.(A=Az.).
j given by z; = p; . J( J)

ﬁm+1(rljm=i) is much more difficult to determine here than in section 3.21,
since in the modified process, the service-times are dependent now (through

the types).

In order to reduce 22, we now assume that the dfs of the emptying-times are

independent of the types, as well as the df of E1' It then follows that
v . - . .
Hm+1(T]J =i) does not depend on i, and we obtain

£ =73 ¥ {A:z E IR T I S ]}
55 (55) AtapgpuRg(0) LT g went T : 51

It is still not possible to reduce 22 in the same way as in section 3.21
since P{jm=i} does not have a simple form. But we can derive the én(r)

(n 2 2) from the formula for ¥, as the coefficient of u", after which it is

.4 2
easy to obtain C(T).

We first introduce the abbreviation

Since Pi; < 1, it follows that [A| < 1 for sufficiently small values of T.

Now ¥, can be written as

2
=1 1 S H E (au)® {—:1 E B (0)P{j =i} - [1 := A-Az.]}
25 i@ M ko T3 m J

and the coefficient of un+1 is
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FETC D = B

LEMMA 3.5. If B sByse - 18 a bounded sequence with the limit B and if

|A] < 1, then
n-1
lim ) Aan_k = T%K )
n>e k=0
PROOF. Define BO = B_1 = B_2 = ... = 0, Then
n-1 ®
k k
Y AB. . = ) AB .,
k=0 n-k k=0 n-k

(1)P(j =1} - [ :

b7

and this has a limit as n - @ by the theorem on dominated convergence, and

the limit is equal to

v kg o B
kZO A'B =70

. Y .
We apply the lemma with Bk = Hk+1(T)P{;k=1}..We take p < 1.to ensure that

%ig ﬁk(r) exists. The resulting expression for the limit &) is

. (1-p..)
P A-T ¥
&(1) =} {——— H(t) - [T := A-Az.]}
> A-t-Ap..R.(1 T .
j Pyt () J
A
with z. given by z. = p..R.(A-Az.).
J & v J pJJ J( J)
As a check one may put ﬂj = pjj = Pj' This gives
) 1p.q. Aot
c(r) = g A-r-Apjs(r) {—;— H(t) - [t := A-Azjj}

O

which is, in the special case where the modified process is independent of

the types, equivalent to the unconditional version of (3.10), as is proper.

3.24 The inflow-periods

An inflow-period is defined as a maximal interval during which the amount
in the buffer increases. To avoid degenerate cases, we assume that each

filling-time is positive with probability 1. A j-inflow-period is defined

as an inflow-period with type j in the buffer.

At the arrival of the n-th customer, four cases can be distinguished:
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A) The buffer is empty.

B) The buffer is not empty; jn—1 # jn'

C) The buffer is not empty; jn—1 = jn; the (n-1)-st customer has completed
his filling-operation.

D) The buffer is not empty; jn—1 = jn; the (n-1)-st customer has not com-
pleted (perhaps not even started) his filling-operation.

In all cases but the last, an inflow-period starts when the n-th customer
begins to fill the buffer. Hence, there are three possibilities for the way

in which an inflow-period can start.

L4
The LST Bj(r) of the length of a j-inflow-period under the condition that
case A or C occurs and in = j, has been determined by RUNNENBURG. His result

is as follows.

THEOREM
v v éj(‘r)_éj(x-)\jiﬁ)
.1 B. = G.(A-A.+1) + (1-Dp. ¥ N
(.13 B = §mr) (o) S

where éj 18 the LST of the busy periods w.r.t. the emptying—times of the
J-customers if the other types are deleted from the system.

PROOF. Suppose M = 2 and suppose at time 0 a 1-customer enters the empty

system. These restrictions are not essential.

We apply a variant of the method of collective marks (cf. [RUNNENBURG 1965])
by introducing a Poisson-process of t-catastrophes with density t, indepen-
dent of the process we are studying. The LST ﬁ1(r) can then be interpreted

as the probability of the event E
terval [0, 31]}, where b

1 = {no t-catastrophe occurs in the in-

1 is a random variable with LST é1(r).

A 2-customer may or may not arrive in the interval [0131]. The probability

of E, n {no 2-arrival in [O,pq]} is equal to é1(k2+T), which can be seen at

once by interpreting the arrival of a 2-customer as a A, -catastrophe. The

probability of the remaining part of E1 can be found aszfollows. Let E2 be

the event {no t-catastrophe occurs in the service-times of the l-customers

who arrive before the arrival of the first 2-customer}. Let k be the number
of 1-customers who arrive before the first 2-customer, including the

1-customer who arrives at time 0. Then
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Now the event E1 n {a 2-arrival in [O,Qq]} is part of E2 and has as its

complement in E2 the event E3 = {before the first 2-arrival, a 1-inflow
period is completed without a t-catastrophe during its service times; in
the other service-times of 1-customer arriving before the first 2-arrival
no t-catastrophe occurs}. Conditioning w.r.t. the number of 1-customers
arriving after the completion of the first 1-inflow period and before the

2-arrival, we obtain

o (1-p, )G, (A *1)
P(E.} = & (A +1) {8, (1) (1-p, ) = riz2 °
3 172 kZO T Py Py 1—p1S1(1:)’
so that . .
. . s1(T)-G1(12+T)
B1(T) B GT(A2+T) * (1—p1) 1—P1é1(1)

and (3.13) follows by a simple extension. []

A j-inflow period of case B is more difficult to treat, due to the fact
that, when such an inflow-period starts, several j-customers will be
present in general. Instead, we will only consider a related discrete

variable.

Suppose that at the arrival of the n-th customer, case B occurs, and sup-

pose_,j_n = Jj. We will determine the generating function
a ..
§(x= | B; Jn=J)

of the number of j-customers present in the system just after the n-th
customer starts to fill, who have arrived earlier than any non-j-customers

who may be present at that epoch.

Note that {case B} = {Eh >0} n {gn_1 # Jn}. Hence, using the abbreviation
E = {Jn-1 #'Jn = j}, we have for a > 1:
Pla=a;w >0;E} P{a=a;E} P{a=a|E}
N = " - - r 5
P{w >O0;E} Py, >0;E} ~ P{w >0[i _,#j}

P{g_:a'B; -J-n=j} =
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and therefore, after a simple calculation

(3 14) é( aIB' i =3) = x + __:EiﬁiE%lEl__
. S S ¢ FIE T

Under the condition E, the variable gf def a-1 is precisely the number of
j=customers who arrive before the first non-j-arrival during the waiting-
time ¥, of the n-th customer, given that he is the first customer of a
j-sequence. We start the waiting-time process in the stationary state

(ef. §3.21), so that w_ has ﬁ(1|jh1#j) as its LST. After a straightforward
calculation, it then follows that E(x§1E) is given by

a _ _X 3 : .
(3.15) §(x=|E) = = {1—pj+pj(1—x)H()\-)\jxli_1#3}.

It remains to determine the denominator of the right-hand-side of (3.14).
By letting T+ « in lemma 3.3, we find P{En>0|_in_1=j} =1- éj (A\W(A) and hence

~

S(A)-p.5.(1)
____.___.Ls]__ w()\)_

1-p.
pJ

P{yn>oljﬂ_1#j} =1 -

In constrast to the situation in §3.21, there is no simple way here to
eliminate the condition E either from (3.1L4) or from (3.15) due to the
fact that the probability of an arbitrary inflow-period being of

type j, is not equal to Pj' E.g., consider a very congested system with
M = 2. Then the above-mentioned probability is approximately % (j=1,2),
since one will observe an alternation of 1- and 2-inflow-periods most of

the time.

3.3 FILLING WITH PRIORITIES

We conclude this chapter with some comments on a model in which the filling-

operation is subject to priorities.

We recall that the emptying discipline in the present chapter is "the
emptying line is busy whenever the buffer contains a positive amount".
Since there is only one buffer, such an emptying discipline is, in a sense,
the only reasonable choice. Hence, here we do not have the difficulty
alluded to in §2.4.

For the filling discipline there are many possibilities. Although linear
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priorities are the most common in the literature, we have hardly considered
that possibility; most of our effort has been spent on a model with M = 2
in which the filling operation is subject to alternating priorities as
defined in §2.3. However, the results are quite complicated and of an im-
plicite nature. Moreover, we have not been able so far to surmount certain

technical difficulties.

After this negative information, it is perhaps desirable to motivate our
choice of alternating priorities. In the first place, from the point of
view of efficiency, alternating priorities seem to be tailor-made for a
buffer model of the type in this chapter. Secondly, they are mathematically
attractive because of the fact that, as long as customers of type 1 are
served, the customers of type 2 can be neglected entirely, and vice versa.
(Cf. the end of §2.3 and also §L4.3k.)



CHAPTER L4

K INFINITE BUFFERS; 2 < K < M

4.1 INTRODUCTION

In this chapter, we assume K infinite buffers which are almost empty, and M

types of customers with 2 < K < M,

The n-th customer arrives at time Yo * oee ¥ (n > 1) where each y; has
an exponential distribution with Ex{ = A—1 and where PAY SETRRRLEL indepen-

dent.

The type of the n-th customer is denoted by in. We assume that pj, defined
by

p; = PLi;=3) (5= 1yeenM)

does not depend on n, that all pj > 0, and that the variables jq,jg,...

are mutually independent and independent of the arrivals process.

Unless stated otherwise, the filling-times are identically O. The emptying-

time for the n-th customer is denoted by §n; we assume that s are

TEPPERE
independent, independent of the arrivals process, and that each = is in-

dependent of iq’jg"" except (possibly) jn'

The waiting-time of the n-th customer is denoted by ¥ . We assume that w,
has a given distribution, which may depend on lb and 11, but which is in-

dependent of the rest of the process.

Because of the complexity of the model, there is no obvious choice for the

filling discipline.

The very popular 'fifo' discipline has several points in its favour. In the
first place, it is considered faZir in many situations where the customers
have diverging interests. Secondly, it is optimal (it minimizes O%E) within
a class of disciplines satisfying certain assumptions; see [Kingman 1962] or
[Cohen 1969], p.L463 ff. However, in setting up a mathematical model, these
advantages have little weight. What really turns the scale is the fact that

the 'fifo' discipline is mathematically manageable.

Now, in the complex models we are considering, the 'fifo' discipline may be

far from optimal and far from simple. The actual strategy chosen in real



53

situations of this type will in general depend on various details, that we
have not incorporated in our framework. What we will do in the sequel is
to consider certain restrictions or special cases which are at least manage-

able and perhaps realistic.

L.2 FIXED ASSIGNMENT OF BUFFERS TO TYPES

In this section, we restrict the possible strategies by partitioning the
types into K groups and assigning one buffer to each group. A customer may

fill only the buffer of his own group.

We number the buffers 1,2,...,K. The number of types assigned to buffer i

. > .= .
be m; (m; > 0, Zml M)

The restriction having been made, a fairly natural choice for the filling

and emptying disciplines presents itself, depending on the values of

Wyse e sty

4,21 All groups but one of size 1

Suppose m1 = ... = My 4 = 1 and hence mK = M - K+1. The emptying operator
gives preemptive priority to buffer K. Due to the nature of our problem,
the preemptive priority is of the resume type here. (This means the follow-
ing: suppose the emptying operator has interrupted the service of a load, L
say, of a type < K, due to the arrival of a type 2 K in buffer K. Then the
emptying operator will after some time resume his service of load L, and
the time spent earlier on load L is not lost.) The buffers 1,...,K-1 are
emptied in any order. The filling-discipline is as follows: customers of
types 1,...,K-1 £ill their buffer at their arrival (they never have to wait).
The customers of types K,...,M (who share buffer K) form a queue and f£ill
buffer K in order of arrival (under the usual restriction that a buffer

may contain at most one type).

The process of the K,...,M-customers is not at all influenced by the other

types and is given by the results of section 3.2 (with filling-times 0).

Even when the filling- and emptying-times for types K,...,M have a simul-

taneous distribution "in the second octant", the results of §3.2 apply.

However, when there is a type 2 K with a sufficiently large filling-time

(larger than its emptying-time), the process may not become stationary
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even though it may be possible that a process with a stationary state is
obtained by giving low priority to such a type at the emptying-line,

causing this line to operate at full capacity when the system is not empty.

If there are one or more types < K with non-zero filling-times, the situa-

tion is essentially more complex. We do not consider this case.

Returning to the special case of qll filling-times equal to zero, we note
that in such a case one can, in principle, choose an optimal assignment of
the types to the buffers from the (K¥1) possible assignments, where
"optimal" is meant in the sense of giving lowest expected waiting-time of

an arbitrary customer in the stationary state.

h,oo Allm. 22
——1

Suppose that all mi 2 2, i.e. each buffer is shared by at least two types.
The empyting takes place in order of arrival. The filling-discipline is as
follows: within each group, the customers fill their buffer in order of
arrival, and otherwise as soon aé‘possible. Note that the filling does not,

as a rule, take place in order of arrival.

We consider, along with the original process, a modified process in which
each customer who finds the emptying-line occupied, postpones his filling

until the total amount of goods in the buffers becomes O.

Let J be the group of the n-th customer, P{§n=J} (3 =1,...,K). Let
a2, be the arrival time of the n-th customer, <, the time at which he fills
the buffer in the original process, and e the time at which the emptying-

line completes the operation on the n-th load.

Note that the epoch 2 coincides for the original and the modified process,

as well as the epoch e .
-n

Consider the n-th customer. Suppose in = j and suppose type j belongs to
group J.

The number t, (depending on n) is defined as follows. If there exists an

index t < n with 4, =J, then t

all t < n, then t

1 is the largest such index. If gt # J for

1= 0 by definition. In the latter case, we also assign

the artificial value 0 to io,e and w,..
-0

2Ep 88 ¥
We now consider the waiting-time of the n-th customer in the original

process, i.e. w = c -a . There are two cases:
n -n-n
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Incase 1, c 2a andc 2¢ ,and since there are no further restrictions

on ¢_, we have
¢
C_ = max\a ,C .

It follows that in case 1, ¥ satisfies the relation

(b.1) w_ = max {0,w, —(y, +...+ )},
-n —34 Xiq -1

\2
v

14°

In case 2 (which includes the artificial case), <, and <, , hence

a
-

= max(§n e )

<n %,

and

(k.2) w = max{O,gt +s, —(xt +"'+In—1)}’
278 TR

in the modified process, given

where 5t1 is the waiting-time of customer t,

that j = j, ‘121 #3, %1 = J.

Now (4.1) can be used to express ¥ in terms of a waiting-time in the modi-
fied process. In other words, when case 1 applies, we may continue back-
wards, neglecting non-J customers, until a J-non-j customer occurs. More

precisely: we inductively define a strictly decreasing sequence of

indices 34,32,..., all depending on n, as follows. Suppose i = 2, Ei—1 >0
and it = j. If there exists an index t < t. , with J, = J then t. is the
i-1 —i-1 =t -1

largegi-such index. If J, # J for all t < t. then t. = 0 by definition.
-t -1 -1

-1?

The sequence t has a finite number of terms: when Ei =0 or

1,_§2,...
it- # Jj, no further t's are defined. The length of the sequence is called r.

By applying (L4.1) repeatedly, it is then easily seen that W can be written

as follows.

()4.3) En = max{o,_gt +—‘t -(lEr+...+xn_1)}.
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We are now ready to determine the limit as n + « of the conditional LST of
v under the condition jn = j. We will usually abbreviate an event like
{d,=3>t,=t,} to {j,t 1}, ete.

-TW

(h.k) se Pl =

-TW

Y ) (e -n'j,r,t1,...,tr)P{r,t1,...,trlj} =

r t1,...,tr

) é(e

tiaeeeaty,

-t max{o,str+§$r-(1ir+---+In_1)}

j’rstr) °
. P{r,t1,...,tr|j}

It is easily shown that

n-r r-1 . _
(1-wJ) P; if t, =0,

(4.5) Plr,t st [3) = net o
(1—WJ) r p. (

3 wJ—pj) if t, > 0,

hence the summand in (4.4) is independent of tyse.est, ;5 and the summation

over t1,...,tr_ may be executed, giving

1
-TW n  n-r st -1
(1.6) se tlp=3 1 ("

) o P{r,t,,....t |3} ¢
r=1 t_=0 ! r

r-1

—t{max O’Etr+§tr‘(¥tr+"’+¥n-1)}

- &(e j3r,tr)-

For the moment, we forget about the interpretation of the variables ¥;s we

introduce variables Y_qs¥_ps--+ €ach of which is exponentially distributed
with parameter A, and such that the set of variables y D APTIEE is in-
dependent of the rest of the process.
-TW
Y

We claim that &(e Ij) may be approximated by

n n-r m-t,-1 -1 max{o,gt +s¢ -(xt +...+xn_1)} )
(4.7) s = r; . l 3 o )s roror |J‘,tr,r).
=1t =-
Bt =T
. (T-ﬂJ) Py (nJ- j)°

Indeed, since the absolute value of every LST is at most 1, and since for
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each r, the terms with tr > 0 are the same in both sums of (L4.6) and (L4.T7),

we have

(4.8) &(e —nlj)—sn

n 0 n-t..-1 n-t_-r
r- r r-1
+ ) 1 ( _ )(1—“J) P; (m; pJ)
and after substituting r = s+1 in both sums and n-tr = t in the second sum,
we readily find that the right-hand-side of (4.8) may be reduced to

)n

n-1
- _+D. + (1-m_+p.
(1-m pJ) (1-my P;
which tends to 0 as n + », (Here we make use of the fact that each group
contains at least two types).
Hence

-TW

n| . _
11m ‘E(e J)—SnI = 0.

Now we assume that the expected (unconditional) emptying-time is less than
(so that the modified process has a stationary state) and that the modi-

fied process is started in the stationary state.

Then the distribution of Et under the condltlon {j,t ,r} does not depend
on t mor on r. If we 1ntroduce variables g and §*, denoting the waiting-
tlme in the stationary modified process and the emptying-time respectively,

for an arbitrary j-customer, then (4.7) may be written as follows:

n n-r {0, +s" }
= . -7\ - tmax{0,g +s =y -...-y __
g = Z (n ? ) . s r Th-1 <
n r=1 t == T
r
n-tr—r r—1
X (1"'"J) pj ('"J—Pj)s
or with t = n-tr and s = r-1:
n-1 o ax{0,g +s" }
- -T m B ¥S <Y L —ee-Y
s = 1 1 (ts.])ge In-t In-1’
s=0 t=s+1
t=-s-1
x (1-m) -s- S(w 7P ) =
1 . { *+ *
S =1y, ~T max{0,g 45 -y -.. .-y} t-s-1_s
= (7] e (1-m5) P;

s=0 t=s+1

(1T P )»
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which is a sum of n positive terms, eachof whichis independent of n. Since
Sn is moreover bounded from above by 1, it follows that %}g Sn = S exists.

Hence

-TW
%(le) def 15m e ™

>

3)

exists too, and is equal to S.

Now it is easily shown that the form

n-1 o -t(y, +...+y, )
- tmg—
z z (ts1)5e 1 Ly (1-ﬂJ) S 1p%(nJ— .)
s=0 t=s+1 J J
Am_-p.) AD.
J i n} . v,
may be reduced to Py g {1 - (T+Aw ) I which means that W(tl|j) (or S)
. J g J

may be written as

v (0 *, K )
(4.9) W(tlj) = (7" MEEITETE TRy

where z is exponential with parameter X(WJ—pj) and independent of gf and

v
g%. Hence W(t|j) is just the conditional LST of a customer in an M|G|1
model (with A~1("J-Pj)—1 as the expected arrival interval), under the con-

dition that the predecessor of that customer is a J-non-j customer.
v
Hence, we may apply lemma 3.3 with A replaced by A(nJ-pj), Sj(T) by

&(t|0-non-j) €T f(e Blg =a.3 £5)
Tld= -J = e o ’Jn d /s

and ﬁ(T) by the unconditional LST of an arbitrary customer's waiting-time

in the stationary state of the modified process. The result is

ﬁ(le) = A(“J—PJ)T {é(T]J—non—j)ﬁ(T)

A(WJ-Pj)—T T - [t := A(“J-Pj)]}

4.23 General m.
e

If at least two but not all m, are greater than 1, we speak of "general mi".
Suppose, without restriction, that e 13 My yqoee ool > 13

1 £ L £ K-2. A suitable choice of the filling- and emptying disciplines
will enable us to treat the case of general m, by combining sections 4. 21

and 4.22., 1In fact, types 1,...,L are given preemptive priority at the
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filling-line, whereas they have access to the emptying-line only when there
are no loads of types L+1,...,M in the system. Types L+1,...,M are subject
to the discipline of §L.22.

As before, the waiting-time of types 1,...,L is 0, while the waiting-times

of types L+1,...,M are not influenced by types 1,...,L.

Note that this policy, although somewhat complicated to formulate, is mathe-
matically surprisingly manageable and also has the appearance of making

a very efficient use of the buffers, given the fixed assignment.

Also note that section L.21 is not a special case of the present case, due
to the fact that it is essential that the Ty for types L+1,...,M are strict-
ly between O and 1.

4.3 TWO RELAXATIONS OF A RESTRICTED PROCESS

In this section and its subsections we take K = 2 unless stated otherwise.
(In any case we keep M > K 2 2). The emptying discipline is always: "Empty
in order of arrival". The filling discipline is defined in the subsections.
Since filling occurs at an infinite rate, the emptying operation governs
the existence of a stationary state, and a necessary condition for this to

exist is Aés < 1.

4,31 The restricted process

Suppose filling tekes place in order of arrival under the restriction that
a total of at most two loads is allowed in the two buffers together. (The
easiest way to visualize this restriction is to imagine that the odd-
numbered customers use buffers 1, the even-numbered customers buffer 2. But
we do not require the customers to do this. The reason is given in §k.32).

The resulting process is called the restricted process.

Of course, when the above restriction is not present in a practical situa-
tion, it would be unwise to impose this discipline. But it is fairly easy to
conceive of practical situations where the restriction does occur. (See also
the interpretation at the end of this subsection.) As suggested by the
titles of §4.3 and §4.31, +the main reason why we consider the restricted

process is that we need the results in §4.32 and L.33.

We are interested in hn’ the waiting-time of the n-th customer. Let us
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define the following epochs pertaining to the n-th customer:

a arrival,
’bn : filling,
(S start of emptying,
gn : end of emptying,
o thet B = Bye, ¥, = 8,078 5, = e

Further we define

e =¢-b,
“n -n-n
W =cCc-a .
“n -n-n

Figure 4.1 gives a pictorial summary of these definitions.

|
a
|
|
I
I
f b ic d
h e s
N
W

Figure 4.1

THEOREM 4.1. In the model and the notation introduced above we have

(L.10) A max(O,Eﬁ+§n—xn),
(4.11) gn+1 = max(O,Eh—xn),

and ¥ 8 and ¥, are independent.
PROOF. From the definitioniof the process we see that

= max(a d)

c
“n+1 “n+1°=n
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hence

M1 T o180

1] [}
EE
~ o~
o [
-

0

+

2]

1

o

)

I
B
»
)
=
&
1

42

which proves (4.10).

We also have

by = maxlag,nd ),

since the (n+1)-st customer fills the buffer either at his arrival or at

the epoch at which the load of the (n-1)-st customer leaves the buffer,

1 > = >
whichever occurs last. Hence bn+1 2 max(gn,gn_1) En and pn+1 > 2n+1 and
therefore

>
(4.12) D12 max(gn,§n+1).

On the other hand, from ¢ = max(a ,d ) it follows that ¢ =2d ., so
“n ~n’~n-1 =n ~ —n-1

that

(k.13) mex(a,  q.c,) 2 max(a, 14 1) =D 4.

From (4.12) and (L4.13) we infer

By = max(a, e,

hence
By = pyqmgnyq = max(Ooe-a -y
= max(O,Eh-xn).
The independence of Wo» 8> ¥ is obvious. 0

We have not made use of the fact that xo,xq,xe,... are exponential.
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From theorem 4.1 we see that the results of Chapter 3 can be applied to the
variables ¥s while (4.11), or more conveniently the following result,

enables us to obtain h from w .
-n -n

v . .
LEMMA L4.1. For Re(t) 2 0, T # A, the LST H ,ofh ., i8 given by

v v
AWn(T)—TWn(A)
A-T -

(k. 1h) Hop(T) =

PROOF .

ée-@nﬂ - r aw_(w) {r

00
e—T(w;y)Ae_Aydy + f
w=0 y=0

A e"‘ydy} ,
y=w
which reduces to 4.1k, 0

Lemma 4.1 and lemma 3.1 may now be used to obtain a closed form for the

generating function of ﬁn(r).

v N
If we assume A§s < 1, the existence of W(t) = lim W (1) follows from lemma

e n
3.3. From (L4.14) we then see at once that

exists too, and is given by

(4.15) H(r) = M)=H(A)

A-T

By differentiation, we obtain the following simple formula for the first

moment :

fn = gy o 1M

2T

The above resultsmay be extended to K = 2, although much of the simplicity

is lost.

In concluding this subsection, we note that the variable gn has a simple
interpretation in an ordinary l1-server model: it is the amount of time
during which a customer has to wait (from his arrival) until the first
epoch at which the number in the queue before him, including the customer

who is being served, is at most K-1.
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4,32 First relaxation

In this subsection we consider a discipline which may best be defined with

the aid of the process of §L4.31 . Let in be the type of the n-th customer.

Then we advance the filling epoch from b to x , where x (n 2 1) is de-
“n “n “n

fined by

max(gn,gn_1) if d =4 4 and n = 2,

X

-
b otherwise.
-n

This means that a customer advances his filling-epoch provided he is of the
same type as his predecessor. Also, we now require that such a customer
uses the same buffer as his predecessor. Here we see why in §4.31 the
customers are not required touse the buffers alternatingly. In fact, if
the customers would do this in the present process, a buffer might contain
two types. For example, suppose a l-customer enters an empty system and
fills buffer 1, and suppose that within his emptying-time, a 2-customer
arrives, immediately followed by another 2-customer. It is easy to see that
in this case it is not possible to advance the filling-epoch of the third

customer to the epoch x as defined above.
The resulting process is called the first relaxation.

We claim that the above definition is permitted in the sense that the
condition "the number of types in the buffers is at most 2" is always

satisfied.

It is convenient to state and prove this together with some simple auxili-

ary relations.

THEOREM k.2,

A)

:lsn

£ <b (n21),

B) x

IA

ey

1 5%

C) At any time, each buffer contains at most one type.
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PROOF.

A. By definition x = b,. Suppose 8,1 5% <Db (n > 2). Then

1 -1 n-1 -~ -n-1 =
1) s

either x =b or a < x =max(a ,x ,) < max(a ,b
“n - -n -’ n-1 -n’-n-

< max(gn,gn) =Db-

B. If x = max(a ,x .), thenx 2 x is immediate. If x =b ,
“n —n’~n-1 -n  ~n-1 n

then x =Db 2D =X .
n -n -n-1 =n-1

C. Consider a fixed realization of the process of §4.31. We succes-

sively determine X sXgseee o We claim that before the shift of the

2
filling epoch of customer n from bn to X type jn is present in
the system at each epoch of the interval (xn,bn). Assuming that

the claim is justified with respect to customers 1,2,...,n-1, we

show that it is justified for customer n.

If # j_ or a_ =1b_, then no shift takes place and there is
n-1 n n n

nothing to prove.

Suppose J = i,

interval (max(an,x

and a, < bn. The shift takes place along the
n—1)’bn) < (xn_1,bn) = (xn_1,bn_1) u [bn_1,bn).
Now (xn_1,bn_1) contains type Jj (=Jn_1) because of the induction
hypothesis. And an< bn implies bn = dn_2 < dn_1 hence

[bn-1’bn) c [bn-1’dn—1) during which interval the system obviously

contains jn— (=jn), so the shift is permitted.

1

To complete the proof, we note that since x, = b,, the induction

1 1?
can be started. [

A practical situation in which the above discipline is effectuated may

arise when for certain reasons (e.g. technical or administrative)

a) the filling-line is switched to the other buffer if and only if a cus-
tomer arrives who differs in type from his predecessor,

b) such a customer has to wait until the buffer is empty.

Now suppose we are interested in é(le), the limiting LST of the waiting-

time gn = 5n_§n of the n-th customer under the condition ln =J.

Within a sequence of consecutive customers of the same type, we have the
situation of §3.21 (with infinite filling-rates). In fact, it can be shown

that formula (3.11) continues to hold. In the present process, the



situation is actually a little simpler, since ﬁ(rlj_1¢j), occurring in

(3.11), does not depend on j here. This can be shown as follows.

Consider the (n+1)-st customer in the restricted process of §4.31. His

waiting-time h ., is given by (4.11), i.e.

By = max(0u)

and neither v nor Y, depends on Ay Hence
H(tli_,#3) = H(x),
and we have

J Q. -
8e1d) = 1o 5 0 - e o= a1}
Clj"‘l‘ J

with i(r) given by (L4.15).

If K > 2, this is still true for the present process, in the sense that

v
(3.11) holds with a different, more complicated expression for H(t).

4.33 Second relaxation

Let us define a and En as in §L4.31, and X (n 2 3) now by

max(agsxy ¢) i 4y = dps

(4,.16) X = max(gh,gn_z) if in—1 # in = jn-Q’
Dn otherwise.

Further we define: x, = b
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17 Bys Xp = by By = dps xp = By 3T Ay £ e e i
§4.32 we shift the filling epochs from pn to X - We also require the cus-

tomers to fill the buffer which already contains their type, if possible.

THEOREM 4.3.

A) a <x <b
“n " *n " -

B) Filling does not take place in order of arrival.

C) At any time, each buffer containg at most one type.
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PROOF.
A. Analogous to part A of theorem L4.2.

B. It suffices to give an example occurring with positive probability
starting from an empty system. Suppose a l-customer arrives, and
then within his emptying-time a 2-customer, a 3-customer, and a
2-customer , respectively. Then the fourth customer fills before

the third, as is easily seen.

C. We start in the same manner as in the proof of theorem 4.2, part
C. Consider a fixed realization. If j # J, # dppore =5,

and a_ < b_, the proof
n n

n-1
there is nothing to prove. If jn = jn_1
of §4.32 can be copied. We only have to consider the case:
In-1 7 In T dp2 and &0 < bype
From a_ < b_we see that b = d . The shift takes place along

n n n n-2
the interval (xn,bn) = (max(an,xn_e),bn) < (xn—Q’dn—2) =
= (xn-2’bn—2) u [bn_z,dn_2), and in each of the last two intervals
the system contains type jn 5 = jn, so the shift is again

permitted.

To complete the proof, we note that from the definition of X, en

X, it is obvious that the induction can be started. O
REMARK. The above proof is comparatively simple because of the use of the
quantities dn. The process is in fact quite complicated. For example, it
may happen that during an interval of the form (xn,bn) all types occur in
the buffers. Also, two intervals (xn1,bn1) and (xng’bng) with jn1 # jn2

may have an intersection of positive length.

Practical situations where this discipline may occur are of the same kind
as those of §4.32, the difference being that here it requires a pair of

non-j-customers to interrupt a j-sequence.

v
We will now determine G (t|j), that is: the conditional LST of &, =X -2
n “n=n

under the condition jn = j. First we require some definitions.

From the n-th customer counting backward, let m be the number of pre-
decessors until the occurrence of two successive non-j-customers. More

precisely: m, = 1, m = 2, and for n 2 3:

1 2
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(n if jq = j and ii = j or ii—1 = ji+1 = j
for all i with 1 < i < n,

n-1 if jq 3, jQ = j and ii = j or ji—1 = ji+1 =J
for all i with 2 < i < n,

AE

| min {m|m = 1, in-m 43, in-m-1 # j} otherwise.

We define k as the number of indices i for which n-m < i1 < n and ii =Jj.
=n -n

K, i =3

The n-th customer is called the k-th of a j-sequence if 5n

We now have

& (x13) = T & (xlmx)rm,klj}

m,k

where the events jn =j, mo=m, gn = k have been abbreviated to j, m, k,

respectively, and where the sum is over all pairs (m,k) with 1 < k <m < n.

Writing p instead of pj and q instead of 1—pj, it is easily shown that

[(k-1\_k-1 n-k ifm
n-k q

P{m,k|j} = <( -1 )pk—1qn—k if

n,

=]

n-k-1 = -1,

(z:;>pk—1qm-k+2 if m € n-2.

For example, if m < n-2, then the event in =J, mo=m, 5n = k occurs if
an§ only if in =37, in—m 3, in-m—1 3, ii = j for k-1 values of i with
n-m £ i < n and there is at most one non-j-customer between each pair of
otherwise successive j-customers. So there are k-1 spaces between these
j-customers, each of which spaces may or may not be occupied by a non-j-
customer, under the restriction that a total of m-k spaces is occupied,
and the formula for P{m,k|j} if m < n-2 follows.

The other cases (m=n and m=n-1) can be proved similarly.
Hence, observing that én(le,m,k) is independent of k, we have

v . - - -
G (tlj,n) ) (k ;)pk 1ok

k21 VT
v . -1 k-1 n-k
G (tlj,n-1) } ( )P q o+
n k>1 n-k-1

2 k-1 k-1 m-k+2
I G (<lgm) ( )p e
k31

msn-2 Rk

én(le)

+

+
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1)

LEMMA 4.2. Let N be a natural number, and x and y positive reals. Then

(e i (- (),

Ks1 W= /§2+hxy 2 2

PROOF. Define f (x) = } (k"1)xk. Then from
N g \N-k

() = G2) + (2s0)

it follows that fN(x) = fo_1 N2 -
(with x as a parameter), which can be solved by standard methods, giving
N N . 1 [2
= = 3 +
fN(x) c1l1 + c2A2 with l1’2 1(x+ vx“+Lx) and where c, and c, can be

found from f1(x) = x and f2(x) = x2. To obtain the result of the lemma; it

(x) + xf_ (x), a difference equation for f

suffices to take xy_1 instead of x and to multiply by x_1yN. 0

Applying the lemma and forming the generating function of én(le), we ob-

tain for |ul < 1:

b3 .
) Gn('rIJ)un =
n=2

/‘21u ‘{21("1)'21("’2)“122("’1)'qzz(w2)+q223(w1)'q223(w2)}
P +lpq

where

(W)= ] én(rlj,n)wnun,
n2

Zz(w) = ) én(le,n-1)wn-1un,
n2

23(W) =y 7 én(rlj,m)wmun,
n22 m<n-2

_ptelpg p=/p°+hpq
w1 © 2 - 2 :

Using the method of §3.21, 23(w) can be reduced as follows.

1) A binomial coefficient of the form (i) with a and b non-negative in-

tegers has, by definition, the value O when b > a.
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(4.17) 23(W) =

1
o~
o~
(9!
I~
<
g
=
e
]

o o "
= E Z Gn(1|j,m)wmun =

8

v . .
mz1 hZQ Gm+h(TIJ’m)(uw)mu =

-] -]

h ¥ . m
Iouw LG (tli.m) ()" =
h=2 @m=1 0o

(t1ds1)

u TUuw h+1
A=T=Auw T

|
o~

- [t :

o (A-1)&
= h { A-Auw]} =
h=2

o
_ W A-T .. h+1
T A=T-Auw { T hZZ éh+1(T|J’1)u - Lt

A-Auw]},

where we have evaluated the sum over m by applying lemma 3.1 with g=1,

X = uw.
) v - J - - 3 . - .
Now Gh+1(T|J,1) = Hh+1(T|Qh_1#J,QﬁfJ), and applying a small extension of

lemma 4.1, we obtain

_51_{ﬁh(leh—1¢j) e x]}.

4 .
Gh+1(TIJ’1) -

Substituting this into (4.17), we obtain after some reduction

(4.18) To(w) = AT 1Y g s B A-Auw]}.
3 { hZZ nldne

A-T-uw (T

If we denote lim (1=u)z (w) by x,(w), we have from (4.18):
1 3 b

), (w) = A {l %(le;1#j);— [t := A-Aw]}

A-T-w T

where ﬁ(leh1¥j) is given by lemma 3.3 in principle.

Since the analogous contributions of 21(W) and zz(w) are 0 in the limit,

we have simply

2
-9

é(TlJ) /—QT\ {Zh(w1 )-Zh(we)}-
P +i4pq

The extension to K = 2 is not so simple here as it is in §4.32.
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4.34 Concluding remarks

A related process of interest is what one might call "the full relaxation
of the restricted process". By this we mean the process that arises when
each customer fills as soon as possible with the proviso that in doing so
he does not cause any customer to fill later than in the restricted
process. The full relaxation is a very complicated process and we have
obtained no results for it. Even in the special case of exponentially dis-

tributed emptying-times our attempts have been without success.

A process that looks much more promising is obtained by imposing
"opportunist filling-priorities". For concreteness' sake we take K = 2,

M = 3. The filling-discipline is then as follows. When a customer of type

J arrives, he may fill as soon as he can (i.e. at once, provided the

system does not contain the other two types), giving preference to a buffer

containing j over an empty buffer. Emptying is in order of filling.

Suppose we are interested in the waiting-time of the customers. The
resulting process can be analyzed by first neglecting the j-customers
entirely. If j = 1, say, the time-axis is partitioned into intervals of k4
kinds: idle periods, 2-periods, 3-periods and 2-3-periods. (We speak of a
2-period when only type 2 is in the buffers, etc.). Now when a 1-customer
arrives, his waiting-time is 0, unless he arrives during a 2-3-period, in
which case he has to wait till the end of that period. At that epoch a
1-2-period or a 1-3-period starts (the length of which will depend, among
other things, on the number of l1-customers then present), and the above-
mentioned partition of the time-axis is replaced by a different one. Using
the technique applied in §2.3 (which is given in [GOBEL 1969] in somewhat
more detail), it seems feasible to obtain results on the waiting-time in

this way.



CHAPTER 5

ONE FINITE BUFFER

5.1 INTRODUCTION

In this chapter we consider a system with one finite buffer of capacity A.
The number M of types is 1, except in §5.5 where we consider a relatively
simple case with M > 1.

Filling and emptying takes place in order of arrival. Emptying takes place
whenever the buffer contains a positive amount. A precise definition of the
filling-discipline will be given in the various sections. We assume that
emptying takes place at unit rate (wj = 1), which is not a severe restriction.
The filling-time per unit of load is aj with 0 < aj < 1.

We assume that the n-th customer (n = 1) arrives at time 8 =¥y ty,*t vee
+ ¥4 where each ¥ is exponential with parameter A.

In §5.5, where M > 1, we use pj and jn in the same sense as in the previous-
chapters and we make the usual assumptions about these quantities.
Throughout this chapter we assume that the n-th customer carries an amount
s, where Sj(s) = P{s Ss|jn=j} does not depend on n. The variables
xo,xq,xe,...,s],52,53,... are assumed to be independent.

In §5.2 we discuss some overflow-models, by which we mean models in whlch a
customer who encounters a full buffer, leaves the system. In §5.3 to 5.5,
when a customer notices that the buffer is full, he slows down his filling

and fills at the emptying-rate. Here we speak of retention models.

5.2 OVERFLOW MODELS

We consider models with a, = 0 only. Let us define the filling discipline

as follows. Suppose at time gn—o, the buffer contains an amount En' If

R gn < A, the n-th customer fills the buffer on his arrival and departs.
If s, t En > A, he puts an amount A - i in the buffer, while the remainder
of his load (an amount s, + En - A) is taken elsewhere. Here we have, in
fact, a well-known model in dam theory. The amount s, * En - A is usually
called the "overflow".

The waiting-time and the ‘filling-time of each customer are 0. The sequence
gn is more interesting. It is treated in detail in Chapter 5 of [COHEN 1969].

We repeat some of the simplest results. The process En satisfies
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(5.1) t

toer = max(o,mln(gnf§n,A)—1n).

Let the corresponding unbounded process gn be defined by

(5.2)
By = max(Ouh by

If M\s < 1, then the df of t tends to a limit T(w) which is given by

H(w)

By (V<A

(5.3) T(w) =
1 (W 2 A),

where H is the limiting df of Qn‘(given by the Pollaczek-Khintchine formula).
Note that T(w) is continuous for all w > O, in particular at w = A.

Moran and Prabhu, among others, have considered a related overflow model,
with a constant time (1, say) between successive arrivals. Effectively, their

starting point is a process En defined by the relation

(5.4) e = max(O,m1n(§n+§n,k)-m),
where k is the capacity of the buffer (or dam), m (< k) is the size of the
desired release, and En the amount in the buffer at time n-0. The relations
(5.1) and (5.4) are very similar. For results on this model we refer to
[MORAN 1954] and [PRABHU 1958]. A simple relation for the limiting df of .

analogous to (5.3), does not seem to exist in this model.

If we use the notation med(a,b,c) for the median of a,b,c, then (5.4) may be

written as

(5.5) t

Y4 = med(0,§n+§n-m,k—m).

In this form, Moran's model has a close resemblance to an example given in

1
[KEILSON 1963]. Keilson ) considers the process

(5.6) t g = med(0,t +u ,A),

L) See also [COHEN, 19691, p.466-LolL,
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where u has a density ¢(u) on R! which is for negative values of u of

Chu
the form c,e 2 and where &gn < 0. It is easy to see that the choice
w=s ¥ where = and ¥, are independent and ¥y, is exponentially
distributed with Exn < égn satisfies this condition. He obtains the follow-

ing result.

(w < A),
(5.7) ™(w) =
1 (w 2 4),

where c is a constant (which depends on A) with H(A) < ¢ < 1 and where H is,
as before, the limiting 4f of the unrestricted process. In this case, T has
a jump at A,

In the special case where both I and Y, have exponential distibutions, one
obtains the following explicit result. Let Egn = u_1, 8xn = X—1, p = Au_1.
Then for 0 < w < A, T(w) is given by

1 - em(u_}‘)W .
(5.8) T(w) = ;—tTﬁE;:TE:KTK if A # u,
and by
(5.9) W) = 22 g =,

Note that p < 1 is not required here. When p = 1, the limiting distribution

is "H-shaped" (a mass in 0 and in A, and a uniform distribution in

1
2+)\A
between).

5.3 A RETENTION-MODEL WITH INFINITE FILLING-RATE

In this section we again take M = 1, o, = 0. We define the filling-discipline

1
as follows. The n-th customer waits until the filling-line is no longer used
by customer n-1, and then (at time pn) he fills or starts to fill. Let the
amount in the buffer at time b -0 be t . If t +s < A, the n-th customer
-n =n =n =n
fills the buffer instanteously and departs. If t < A and t +s_ > A, the
=n -n =n
n-th customer puts an amount A—En in the buffer at once, and the remainder

of his load at a rate 1 (viz. the emptying-rate). If En = A, the n-th
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customer "fills" the buffer at a rate 1.
In the subsections, we consider the waiting time Mo the process En’ and

the filling-time r .
-1

5.31 The waiting-time

Let w = b -a be the waiting-time of the n-th customer and h = c -a the
“n -n-n “n “n-n
waiting-time of the n-th load, where <, is the epoch at which the emptying-

line starts operating on the n-th load.
We further introduce the epochs gn and e, the end of the filling and the
emptying-operation, respectively.

We then have the following simple relations

by = mex(a 0.4 ),

Cpeq = maxla g gee)s

d =Db +r ,

=n  “n

e =_c +s .

=n  -n-n
Also, h 4 =c 48 .4 = max(ozgnfgn—xn) = max(0,c +s -8 - ), hence
(ef. (5.2))
(5.10) gn+1 = max(O,gn+§n-zn).

It follows that the process gn does not depend on A, This is intuitively
clear.

In the same way, one may prove that
(5.10a) W = mex(0,w +r -y ),

but this relation is virtually useless since the filling-times Iyslpseee
are mutually dependent (cf. §5.33). However, ¥ can be obtained at once

from h :
“n
(5.11) ¥, = max(O,gn—A).

This can be shown as follows. Since w = 1, gn can be interpreted as the

amount present in the system (i.e. in the buffer or carried by a customer)
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at the epoch gn-o. If hn < A, filling can start at once, hence v, = 0. If
En > A, the n-th customer has to wait until an amount gﬂ-A has been removed

from the system, and (5.11) follows.

Now suppose Aés < 1. Then gn has a limiting distribution as n - « with LST

given by the Pollaczek-Khintchine formula

(o) = =gl

T ooaAS(1)

where p = Afs = A/u.

v
Consequently, ¥, has a limiting distribution; we denote its LST by W(t,A).
We introduce h as a random variable with LST ﬁ(r), which is independent of

5ys8psecestgsYqseee Then we can write

. -tmax(0,h-4) -TwW
(5.12) W(t,A) = fe = fe ,

where w = max(0,h-A).

When S is of a simple form, W(t,A) or even the df of w, can be determined
explicitely. In other cases, we may rewrite (5.12) in a different form which
can be more useful. We proceed as follows.

We restrict T to non-negative reals. As a function of A, W(T,A) is defined
for all real A, it is non-decreasing and continuous; some values are

v, v v v
W(t,-») = 0 (provided t > 0), W(t,0) = H(1), W(t,») = 1.

LEVMA 5.1. The derivative of W(t,A) with respect to A exists for all real
A # 0, and is given by

TeTA Jw e-ThdH(h).
max(A,0)

PROOF. If A < 0, it follows from (5.12) that W(t,A) = eTAﬁ(r), hence the

statements of the lemma.

Hence suppose that A > 0. Let dA be a (small) positive number. Then
W(T,A+dA) - ﬁ(T,A) = J“ {e_Tmax(O’h-A_dA)-e_Tmax(o’h-A)}dH(h).
o

When h < A, the integrand is 0. When A < h < A+dA, the contribution to the
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integral is o(dA), hence negligible. (This rests on the continuity of H for

h > 0.) When h > A+dA, the integrand may be written as
e_T(h_A){1+TdA+O(dA)2—1},

and we have

e—T(h-A)

f(r,a+an) - W(t,A) = {<aa+0(aa)2}an(n),

JA+dA

hence

lim
dA+0

W Aran)H(c,A) _ TJW < B-A) s (n).

dA A

A similar argument can be used to obtain the left hand derivative, and the
statements of the lemma for A > 0 follow. [

We now define a transform of W(t,A) with respect to A by

(5.13) W(t,0) %F J "%a ii(7,a), (o 2 0).
0
$
Note that W(t,0) is not 1, but 1-H(t).
From (5.13) and lemma 5.1 it follows that

%(T,U) J e—OATeTA J e_ThdH(h)dA =
ot A

TJ:=O(Jh=O e(T-U)AdA)e_ThdH(h),

which reduces to

(5.14) ¥(r.0) = - A=)

This formula can be used for example to obtain a transform of &w, by differ-

entiating (5.14) with respect to T and letting 1 - 0. The result is

® oA _ 1=H(a)
(5.15) JO e b = - =

The various interchanges of operations, required to obtain this result, are
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allowed since the functions involved are non-negative.

The transient behaviour of ¥, may be treated as follows. In analogy to
(5.14) we have

& H (1)-H (o)
(5.16) n(r,o) =- —
and hence, for |x| < 1:
W(t,0,x) def ) %n(T,O)Xn = - ;%; { E ﬁn(T)xn—[T 1= o]} .
n=1 n=1
Lemma 3.1 can now be applied to z:=1ﬁn(r)xn, and we obtain
(5.17) W(t,0,x) = ?%% {K:;:iig?;j {Ail ﬁ1(r)—[r = A—Az]}—[r = c]},

where z is usual root of z = xé(x—xz).

5.32 The amount in the buffer

In §5.3, En has been defined as the amount in the buffer at pn-O, i.e. just

before the filling starts. An equivalent definition would have been "the

amount in the buffer at a -0". For, if a = b , this is trivially true. But
-n -n -n

a, < En means that the n-th customer has to wait before he can start

filling, which implies that the buffer is full at the epoch gh-o; hence at

b -0. So if a # b , then t = A according to both definitions, hence in

-n “n " -n -n

this case, too, the definitions are equivalent. This observation implies

the simple relation

(5.18) t,= min(lx_n,A),

and if Aés < 1, En has a limiting df T given by
H(w) (v < A4),

(5.19) T(w) =

1 (w2 A).

A close relation exists between (5.3), (5.7) and (5.19). E.g. from (5.19),
it follows that
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H(w)

H(A) (w < a),
P{t < w|t < A} =

1 (WZA)Q

and the right hand side coincides with that of (5.3). This is intuitively
clear if we take into account the following facts:

1) whenever t +s_ < A, the value of t as defined by (5.1) coincides with
-n-n —n+

1

the value of 3n+1 as defined by (5.10) and Y4 = m1n(gn+1,A);
2) the present process can be given the property P{t = A} = 0 by removing

X
from the time axis the intervals during which En = A;

3) the variables ¥, are exponential.
In the same way, one may guess (5.3) from (5.7), or (5.7) from (5.19).

From (5.11) and (5.18) it follows that

(5.20) t. =h -W
“n  -n -

Since t and w are so closely related, it does not seem desirable to treat

En extensively. We just give the following results.

If

(5.21) P(r,a) %€ ge

where t is a random variable with df T, and if

(5.22) $(r,0) dgfj e™ha,b(x,0),
0
then
(5.23)  H(r,0) = =T (1 - fi(o+1))
and
7\ _ 1 = T(0)
(5.24) jo e~ha, gy = 1=Tla),

5.33 The filling-time

It is easily seen that r, satisfies the relations
(5-25) r, = max(0,s +t -A),
(5.26) r = med(0,§ﬂ+hn-A,§n).
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From (5.26), one can obtain the transform

-Tr

¥ ®
R(t,0) = J e 0AdAEe
0

where r has an obvious meaning. Along the lines of the proof of (5.1L), we
find

(5.21)  R(r,0) = == #(0){8(0)-B(r)}.

5.4 A RETENTION MODEL WITH FINITE FILLING-RATE

In this section we take, as before, M = 1 but we assume now that the fil;ing—
rate is finite. In fact, dropping the index 1, we assume 0 < o < 1.

- The filling-discipline is defined as follows. The n-th customer waits until
the filling-line is no longer in use by customer n-1, and starts to fill
(at time En)' He fills at a rate o | as long as the buffer is not full; when
the buffer is or becomes full, he fills at a rate 1.
It is interesting to compare the basic relations in §5.3 with those in the
present section.

The waiting-time h, till the start of the emptying-operation still satisfies
(5.28) h ., = max(0,h +s -y ).

Likewise, in analogy to (5.10a):

(5.29) oeq = max(O,Enfgn-xn).
But instead of (5.11), we now have

(5.30) ¥y = max(0,¥ as -y h g -A).

This will be proved presently. First we need the relations for r, and En'

It is easily seen that r, satisfies
(5.31) r = max(a§n,§n+§n-A).

We further claim that
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(5.32) =

This can be shown as follows. Let bn and < be defined as in §5.3. Then

- = b . - . i 1 1 -
gn A yn Now suppose <, En > A. During the interva [bn,gn) the empty:
ing-line is busy only on loads numbered n-1 or lower. These loads have been
put in the system prior to yn. This leads to a contradiction and we conclude
that gn-yn < A. Formula (5.32) now follows at once from the obvious fact

t =min(h -w_,A).

“n “n -n

To prove (5.30), we substitute (5.31) and (5.32) into (5.29):
ey = mex(0,u, b, Yy W be Aoy =

max (0, o8,y o8, iy mAe,) =

mex( 0,3, sV by =)

The last step is not quite obvious. It amounts to saying that if A, X, Y

are reals with A > 0, then
(*) max(0,X,Y-A) = max(0,X,max(Y,0)-A).

In fact, if Y 2 0, this is immediate, while if Y < 0, then Y-A < 0 and
max(Y,0)-A < 0, so that the maximum in (%) is O or X, both on the left and
right hand side.

This completes the proof of (5.30).

Let U, = S.-¥., ¥, T as;-¥., and suppose that h, and w, are identically O.

1

Then we can prove, in the same way as in Chapter 2 that the pair (gn,yn)

has the same df as the pair (h',w') where
“n**n

(5.33) h' = max {u +...+ }
T Gepenet 1
and
1 = - ..
(5.34) W Osizgzn-1 T TP

where Kij is 1 minus Kronecker's Gij'

The same arguments as in Chapter 2 now show that the limits
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W(w) = lim P{Eh < w}
n-ro
and

F(h,w) = lim P{Qn Sh; w < w}
n->o
exist, and that these limits are distribution functions provided Egi <0
and Ezi < 0. Furthermore it can be shown that F satisfies the integral

equation

(5.35) F(h,w) = IJF(hA(A+w)+y—s,w+y—as)ds(s)xe-kydy.

5.5 A RETENTION MODEL WITH SEVERAL TYPES OF CUSTOMERS

In this section we take M > 1 and a1=...=aM=O. The filling-discipline is
defined as follows. If the n-th customer is of the same type as his pre-
decessor, he behaves as in §5.3. If the n-th customer is not of the type of
his predecessor, he waits until the buffer is empty, then puts an amount
min(gn,A) in thé buffer instantaneously, and then a possible rest of his
load, of size max(0z§n-A), at a rate 1.

The watting—time of the n-th customer until filling is called W+ The
conditional LST of Y, under the condition jn = j is denoted by Wn(T,AIJ).

We define gn in the same way as in §3.21. Then

RZ] 5(e

n-1 -TW
) E(e e
k=1

—'['_’VITI
j ,k)P{5n=k|J} =

-TW
. k-1 -nf . n-1
J’k>Qij +5<e IJ:n)Pn .

Forming the generating function we obtain

v .
Wn(T,AIJ)

W(T,A,X[j) dgf z Wn(T,Alj)xn =Y + X

n=1 1 2°
where © nei v
y = Z Z 5( -n| . k) k-1_n
1 € ds quj X
n=2 k=1
s = E 6( R )Pn-1xn
5 = L e Jon Jp; .

In 21, we may change the order of summation, substitute n = k+m, and change

the order of summation again, obtaining
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o o -TW.
-1 Hyetm]| . k
I, = T oa.p: X" E(e m|J,k)(ij) .
w=1 99 k=1
Transforming with respect to A, we obtain
* oA 5 “1m v [° -oA “yetm| . k
(5.36) e 4,r, = boa.p: Xt ) e d,q6le j.k (pjx) .
0 m=1 99 k=170
T,

If k = 1, the integral in (5.36) is 0, since &(e
-T .
é(e Em'”]J,?), where h .

j,1) is equal to
1 is as in §5.3, and the 4df of gm+1 does not depend
on A. '
If k > 1, the (k+m)-th customer is not the first of a j-sequence, and
hence, applying a slight generalization of (5.16), the integral in (5.36)
can be written as

T

Y v .
Wk+m(r,o|j,k) = - {Hk+m(TlJ,k)—[T := o]},

Substituting this into (5.36), we obtain

o

® oA _ Ei T S om 2 . k i
Io S B p; -0 m£1 * {k22 Hk+m(T[J’k)(pJX) ~tr = G]}'

oo q. 0
J e_OAdAZ1 = - T 7
0 B3 ™70 m=q
Tp.X
AT A=t . e
(5.37) '{A-T—Apjxéj(r) { . ﬁm+1(T|J)—[T = A—Azj]} +

—ﬁm+1(T[j)pjx-[r = c]}

where zj is the root with smallest absolute value of

z §.(x=2z.)
. = <XD . —AZ.)e
3P J

The sum 22 can be treated in a similar manner, but the result has no influ-

ence upon the limit we are interested in, viz.

.y def .. «~ .
W(T,A]J) € 1im Wn(T,A[J).

n->oo

The existence of this limit can be shown using exactly the same argument as
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in §3.21. Hence the transform
3 . def [ -oA. ¥ .
W(t,ol3) %° J e °AdAW(T,A|J)
: 0

exists, too.
.. . .Y .
Since l%?(1-x)22 = 0, as indicated earlier, we can now obtain W(t,o|j) from
X

(5.37) by applying Abel's theorem performing a permitted change of operators:
%(T,olj) = I e_OAdA<lim(1-x)Z1> = lim(1—x)J e—cAdAZ1.
0 x4 1 x4 0

From (5.36) we then obtain the final result:

g LTyt T A=T ¥ Ty 1
W(t,olj) = pp {A—T-APJSJ(T) {—;— H(t|j)-[t := A-Azj]}—H(T]J)-[T = OJI

where zj is the root with smallest absolute value of

.= p.S.(A-2z.).
ZJ pJ J( J



8l

SUMMARY

A great variety of queueing problems exist that can be adequately des-
cribed by a mathematical model involving one or more buffers. An example:
the customers are oil-tankers arriving at a refinery where the various
types of crude oil have to be stored temporarily. The practical problem
here is to choose the number and sizes of the buffers such that the cost of

the buffers and the waits of the tankers are balanced.

In order that a model of such a complex situation be manageable, certain
simplifying assumptions have to be made. E.g., in the greater part of our
treatise we have assumed that the buffers have infinite capacity. Even then,
questions on the waiting-time of the customers, say, can be answered only

in special cases.

We have divided the various possibilities into four groups, corresponding
to the chapters 2,3,4,5. In chapter 2, there are as many infinite buffers
as there are types of customers. This assumption entails trivial answers to
certain obvious questions, thereby inviting other questions. As a result,

chapter 2 stands a little apart from the remainder.

In chapter 3, or more precisely in §3.21, the central result is derived,
giving the waiting-time of a customer in a model where an arbitrary number
of types of customers share one infinite buffer. The rest of chapter 3

presents some variations on this theme.

In chapters 4 and 5, where the results of §3.21 are applied repeatedly, we
consider some models involving several infinite buffers and one finite

buffer, respectively.
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