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INTRODUCTION 

This thesis deals with totally ordered compact topological spaces 

(supplied with interval topology). A compact ordered space will be 
IT I! called a cor. 

In chapter I some fundamental concepts are developed. For each 

cor X the notion of a a-sequence is introduced; this is, roughly 

speaking, a transfinitely continued subdivision into closed left and 

right intervals, where a subdivision into disjoint intervals is pre

ferred to a subdivision into intervals with a common end point. If V 

is a a-sequence for a cor X, then 8(V) is the least ordinal with 

the property that all intervals of the subdivision of order u are one

point intervals. For each cor X the ''split ting degree'' 0 (X) will be 

• the least ordinal in the class of all 8(V). It is shown that 0(X) 1S 

Cl 
if Z = {0,1} denotes the 

(l 
a topological invariant. For instance, 

lexicographically ordered product of a factors {O,l} , where a is an 

ordinal number, then 

topological spaces. 

0(Z ) = c:i; this means that all 
Cl 

z 
Cl 

are different 

Finally the relation between e(X) and the occurrence of sequences 

of certain type in Xis investigated. In some of these results the 

generalized continuum hypothesis is used. Theorems, which rest on this 

hypothesis are marked by an asterisk(*) . 
. 

In chapter II it is shown that all Z a are homogeneous, where a 
w 

is a countable ordinal, whereas all other Z (S>w) are not homogeneous. 
B 

Also Zw+l minus isolated points is homogeneous. It is not known if 

there are any other homogeneous car's with infinitely many points. 

In chapter III the relation between the splitting degree, the 

weight and the density of a cor Xis investigated. It is shown that 

the weight (the density) of a zero-dimensional or a connected cor 

equals the ( 0(X) 

=w?t +l), where ~denotes the least ordinal number of which 

dinal number is ~ • 

or 

the car-

In chapter IV a survey of the literature is given. 

• 



10 

I am grateful to the Mathematical Centre, Amsterdam, which gave 

me the opportunity to carry on the investigations which are dealt with 

in this treatise. Here I wish to thank also Miss L.J. Noordstar and 

her staff and Mr. D. Zwarst for typing and printing the manuscript • 

• 



11 

LIST OF SYMBOLS AND NOTATIONS 

1. Greek letters and sometimes also small latin letters denote 

, ordinal numbers; 

gothic letters like J1Z, J7 etc. and 1c denote cardinal numbers. 

2. If X 

if u 

• 
l.S 

• 
l.S 

a set, then f XI denotes the cardinal nwnber of X; 

an ordinal nwnber, then lul denotes the cardinal number of 

3. (i) In the class of ordinal numbers, w. denotes the initial number 
l. 

n with ordinal index i; also w
0

=w, w
1 

= 

(ii) If :>t is a cardinal number,then 

ordinal nwnber u, such that lul =~; 

w:Jt' will denote the least 

we write : )t. = I w . I 
1 1 

• , 

also: • 

(continuum hypothesis). 

4. If a is an ordinal number, then 

W = W(a) = {ufu < a} 
0. 

en &:t 

W = W(a) = {ufu < a} 
Ct 

* 5. If a is an ordinal number, then a denotes the inverse order type. 

6. If p = (p. ) . 
1 1 <a 

is a sequence of type a, then 

if 8 < a. -

and q 

where s. = p. 
1. 1 

s. = q. 
l. l. 

= (p.). 
l. 1 <8 

= (q.). 
i i < B 

, then 

pq = (s. ) . +B ' 1. 1<a 

if i < a 

if a. < i < a.+ 8 • -
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8. If X and Y are linearly ordered sets, then 

X u,y 

9. 

means that X and Y are similar (i.e. there is a one to one map f 

of X onto Y which is monotone: x
1 

< x
2 

implies f (x
1

) < f (x2 )). 

If X • linearly ordered set, and a,b€.X (a< b) , then 1S a == 

(i) I - a,b ={xla<x<b} - - -
• closed interval; 1(1) r(I) b. 1S a - a, -- -

(ii) J = (a, b) = { x I a< x < b} 

is an open interval. 

If K is both an open and a closed interval, then K is called a 
I. 

clopen interval. 

10. An ordered pa~r of elements a and b (first coordinate a, second 

coordinate b) is also denoted by (a,b); 

if confusion with an open interval is possible, we write a,b for 

the ordered pair. 

11. Theorems which are proved with the aid of the (generalized) con

tinuum hypothesis are marked with an asterisk<~>. 

12. If A and Bare sets, then A<:::B means that Ac.Band A ~ B. 

• 

• 



§1. 

CHAPTER I 

Fundamental examples and fundamental properties of 

compact ordered spaces 

1.1. A ''linearly ordered set'' is a pair (X, <) where X is a set, and < 

is a subset of X x X, with the properties 

(i) "t/x EX: (x,x) < 

(ii) 

(iii) 

V x , y , z E X : _( x , y ) ~ < and 

Vx, y E. X: x=y or (x, y) i < 

(y,z) E. < J ..... (x,z) e < 

or (y,x)i. < • 
• 

< is called the ''ordering'' of (X, <). 

In the following the linearly ordered set (X,<) will mostly be denoted 

by X. 

Instead of (x,y)e < we shall always write x<y. 

For definitions and properties of the notions '' '' '' order type, well-
ff II • ft [ J ordered set, ordinal number etc. see for instance Hausdorff 1 or 

Sierpinski [ 3 J . 

1.2. If Xis a linearly ordered set, and ACX, then by< an ordering 

is induced in A. 

< 
A 

For definitions and properties of the notions '' supremum (infimum) of A'', 

''A is bounded'', ''x is complete'' etc. see for instance Kelley [1 ., Chap -

ter o. 

1.3. Suppose for each ordinal number a which is less than a given ordin

al number u, we are given a linearly ordered set X 
a. 

Then the ''lexicographically ordered product'' X 
a<u a. 

= (X ,< ). 
a o. 

is defined as the 

set of all sequences x = (x) 
(la.<µ 

(x E. 
a 

X (l for all a.<µ ) with an order-

ing < which is given by 

x<y 
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In particular, if Xis a linearly ordered set, then x 0 is the lexi-
' 

cographically ordered product X, where X = X for all a<u ; and 
a< a a 

if both X and Y are linearly ordered sets, then X• Y is the lexicogra-

phically ordered product a< 2 X
0

, where X0 =X and x
1

=Y. 

It is clear, that 

1.4. In the following the sets will be denoted by 

easy to see that Z is similar to the Cantorset. 
w 

§2. 

z . It • 1S 
Cl 

2 .1. A ''linearly ordered topological space'' is a pair (X, '::I ) , where 
< 

X = (X,<) is a linearly ordered set, in which a topology 1 is defined 
< 

by the subbase consisting of all sets { x Ix< a} and { x Ix> b} (a, b E. X). 

In the following the space (x,,) will mostly be denoted by X. 
< 

It is known that a linearly. ordered space is completely no1·1nal; cf. 

Bourbaki [ 1 J . 

A topological space (T,1) is said to be ''orderable'' if there exists an 

ordering < of T, such that (T,,) 
< 

and (T,j) are homeomorphic. 

2. 2. If X is a linearly ordered space, and Ac X, then the relative 

be denoted by j(A). 
< 

pology which is induced 

In general it is 

in A by j will 
< (A) 

not true that (A,1 ) 
< 

is homeomorphic to (A,~ ); 
<A 

even not if A is closed in X • 

• 

Example: 

X = {xix irrational; 

A= {xix irrational; 

- /2 < X < fi} 
=-

- v'2 ~ x < 0} U { ½ ✓2} • 
J 

to-

A is closed in X, but is not homeomorphic to (the first 

space has an isolated point; the second has not). 

2.3. If A is a compact subset of (X,1<) then A is closed in 

bounded in (X ,<); 

(X ,'J ) and 
< 

and if (X,,) itself is compact, then (X,<) has both a least and a 
< 

greatest element. 
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• 

If A is a compact subset of (X,J<), then (A,<A) is complete. On the 

other hand it is possible that A is closed and bounded in X, and that 
(A) 

(A,<A) is complete,whereas (A,1< ) is not compact; 

Example! 

X = { X j -1 ~ X ~, + 1 } "- { 0 } 

A= {xl-l~x <0} . 

Theorem 1: The assertions '' (X, <) is complete'' and ''Any bounded closed 

subset of (X,, ) is compact'' are equivalent. 
< 

Proof: see Kelley [1], Chapter V, problem C. 
I 

Corollary: The assertions 11
(X,<) is complete and has both a least and 

'' a greatest element and 11
(X,':J ) is compact'' are equivalent. 

< 

If (X, j) is connected, 
< 

each connected linearly 

then clearly (X,<) is complete. Consequently 

ordered space is locally compact. 

Theorem 2: If A is a compact subset of X = (X,7 ), 
< 

Proof: 

(i) It is clear, that '] C 'J (A) 

<A < 

then 'J = 7(A). 
<A < 

'J(A) (ii) Now take O t: ; 
< 

then for each p ~ 0 there exists an inter-

val I = (r,s), IE. j 
< J 

such that 

pE.Anic:o. 

Since A is compact, b== inf { x Jp < x, x, A} exists and b" A; 

if b=p, then choose a 2 E. A in such a way that p < a
2

< s; . 

if b > p, then let a
2 

= b. 

Choose a1 in an analogous way. 

If now one puts I' = (a1 ,a2 ), it follows that 

pEAnI'c: O, I'€ • 

This means that O E. 

Ct 2.4. Theorem 3: z 
a 

= { 0, 1} is compact and zero-dimensional for all a. 

Proof: 

(i) Let Ac z. ; 
a. define b = (b.). by transfinite induction in the 

1. i< ex 
following way: 

bo = 0 if a 0 = 0 for all a 

ho = 1 else; 

= (a.). ~ 
l. 1 <a. 

A 
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if b. is defined for all i < v, then let l. . 

b - o, if a - 0 for all a - (ai)i<a - - -\) V 
~A with the property that 

b. for • a. - l. < V -1 1 

b - 1 else. -
\) 

It is clear that b = sup A. 

This means that (Z ,<) 
a 

is complete, and so (Z ,1 ) is a < 

(ii) Let Acz , a= (a1 )i<a ~ A, b = {bi)i<a '- A. 
(l 

compact. 

If a< b and if 10 is the least index i with the property a
1 

that a. = O, bi= 1), 
1 0 0 

then define p = (p1 )i<a by 

and (qi)i<a by q --

pi .. = 

P. = io 
pi= 1 

qi - ai -
q. == 1 io 

0 qi --

Then a < p < q < b and { x I p < x < q} = 0. - -

if 1 > i 0 

b. if • • - l. < 10 -
1 

if i> • 
10. 

b. (so 
1 

This means that Z is totally disconnected and consequently is zero
a 

dimensional. 

'' Remark: In the following the phrase compact linearly ordered topolo-

gical space'' will always. be abbreviated to t I 'I cor • 

3 .1 • Let X be a cor. 

X tt ,, '' Two elements a, b E. will be called neighbours (and a is a left neigh-

bour (of b) '', b is a ''right neighbour (of a)'') if a< b and { xi a< x < b}= 0. 

Both a and bare also referred to as 't • t t jump points . 

If in X, for any increasing or decreasing sequence {x.}. 
1 i<a with the pro-

-perty that xi and xi+l are neighbours for all i< a, all elements 

same sequence are identified, then the resulting space is denot~d 

It is obvious that x"' is a connected cor. 
' 

of the 

* by X .. 
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Theorem 4: (i) A clopen subset of a cor Xis the union of a finite 

number of disjoint clopen intervals. 

(ii) Acor Xis not connected if and only if there are two neigh

bours in X. 

Proof! obvious. 

3.2. Let X be a car. 

By a e -sequence for X 

8-decompositions V = 

we mean a (transfinite) sequence V = { V J of 

y 
is defined as follows: 

p p E. 
y 

( 0) 
, X = X 

(ii) If VY has been defined for y<~ , then V
0 

is defined in the fol

lowing way: 

· f :r 1 and J X (e:) I = 1 a. 1 u= £+ 

c. 

then 

then 

x<o > = 
pO 

p 

and X ( E) is not connected 
p 

= { xf x ~ a} fl 
X (e:) 

p 

fl X (e:) 
p J 

for two neighbours a and b (a< b) 

if o= e:+1 and X(£) is connected 
p 

then X (o) - {xix< a} (\ 
X (E) -pO p 

X (o) - { xi x > a} n X (e:) 
-pl p ' 

for an a such that inf X (e:) < a< sup 
p 

d. if o is a limit number 

then 
n 
y<o 

X(E) 
p 

(cf. Novak __ 2_ , where for the case of a connected cor a ''dyadic par-
• 

ti tion'' P is defined; such a ''dyadic partition'' can be considered as 
. 

the system of non-degenerate intervals which are the elements of the 

. meinbers of .a certain e -sequence VP) • 
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It is clear that for every a-sequence: 

(i) Va v'p E. Z : X(o.) is a closed interval /: 0 
a. p 

(ii) 'va.: U x<a) = x 
pe z p 

a 

(iii) Va. Vx,y,p,q : [ 
(a) 

(p < q ,x E.. X , 
p 

X (a)) y C, ➔ 
q 

If Xis a cor, then for every a-sequence V and for every x~X there 

exists an ordinal number 

= µ (V) = inf { u I 3 p ~ Z 
X µ 

We put 
0 = 0 (V) = sup u .. 

X X 

In the case of a connected cor the definition of the order of a 

dyadic partition Pas given by Novak coincides with 0(VP). For a con

nected cor the following theorem is also contained in Novak [3]. 

Theorem 5: If V is a e -sequence for the cor X, and 0 = 0 (V) , then 

Proof: 

(i) Take XE. X. 

Now consider a sequence 

Consequently 

(a) 

a.<u 

XE. X (a) C 
P (a) 

(p(a) £ Z ) such that 
Cl 

X (B) f 
p(S) ora>S, 

a 11 a. < v so that 

X (a+l) G: 
p(a+l) 

a<v 

for 

x<a+l) 
p(a+l) 

is a subset of X, which is the union of Jvl disjoint, non-void sets; 

this means that )vi~ !xi . 
So for every x f X there exists an ordinal v , with the properties : 

X 



It is clear that 

and so 
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Iv xi ~ I X I 

{ x} = 
( V ) 

X X 
p 

for some 

e = sup 
X 

1J < sup x-
X 

V ' X 

p E. z . 
V 

X 

(ii) From the definition of e it follows that 

V x t. x 3 P = p < x > " z : { x} = x (a ) . e P 

Then 

is a 1-1-map of X into z
6 

this means that 

f : X -+ p (x) 

• 
' 

Theorem 6: If X is a cor and V is a 0 -sequence for X, then 

0 = e (V) = 
)' p 

= 1} . 

Proof: 

(i) = 1} 

(ii) One can easily prove (by transfinite induction), that a dis-

and x<Y) is disconnected, then it follows from the above thatµ > y 
p ( ) X 

for al 1 x E. X y ; 

p == . p 
. (y) (y) 

such that 1 nf X < x < sup X : µ > y ; 
. p p X 

is connected then for all x 

consequently in both cases e > y. 

= 1.} • 
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Definition: If Xis a cor, then 

0 = 0(X) = inf {O(V)jv is a-sequence for X} 

is called the splitting degree of X. 

It is clear that 0(X) is invariant under similarity maps of X=(X,<). 

We shall show, however, introducing a topological invariant (ordinal 

number) 1(X) - which is proved to be equal to 0(X) - that 0(X) is 

also a topological invariant;that is, if two cor's (X,:7<,) and (Y,1<,,) 

are homeomorphic, then 0(X) = 0(Y); we can for111ulate this also in 

the following way: if a compact Hausdorff space is orderable in more 

than one way, then the splitting degree is the same in all cases. 

3.3. Let T be a compact Hausdorff space. 

By a T-sequence for T we mean a (transfinite) sequence U = {U} 

y p pt.Z 
duction is defined as follows: y 

(ii) If UY has been defined for y < 6, then v
6 

is defined in the 

following way: 

a. if o= e:+1 and IT(t:)I= 1 

-- pl p 
• 

b. if 6 = e: +l and T (e:) is not connected, 
(6) P (6) 

then let T O and T 1 be two disjoint, non-void subsets 

of are clopen in T(e:) and the union of which 
p (E) p 

is T 
p 

( e:. ) ( o·) if .r = 1 d T c. u e: + an is connected, then let T 
O 

and 
< o> P Ce: J P 

T 1 be two non-void proper subsets of T , which are 
p (e:) p . 

closed in T , and which moreover have the properties 
that T(o) 

pO pl p 

d. if o is a limit number 

then 

• 
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It is clear that for every T -sequence: 

(i) Va 

(ii) Va • • 

V pc Z : T (a) 

p~Z p 
Cl 

is closed and i 0 

T • 

If Tis a compact Hausdorff space, then for every -r-sequence U and 

for every t '- T there exists an ordinal number 

We put 

T = T (U) = sup u t . 
t 

Theorem 7: If U is a T -sequence for the compact Hausdorff space T 

and T = T (X) , then 

• 

Proof: analogous to the proof of theorem 5. 

Theorem 8: If T is a cor and U is a T -sequence for T then 

T = T {U) = inf { y I V p ~ Z 
y 

Proof: analogous to the proof of theorem 6. 

p 
= 1}. 

Theorem 8 does not hold for arbitrary compact Hausdorff spaces. A 

counterexample is obtained if one defines a r-sequence U for the unit 

square Tin R
2

, which is most clearly suggested by the following se

quence of pictures (observe that the sequence of subdivisions is in

deed a r-sequence: if A en Bare two non-void closed proper subsets 

of a rectangle S in R
2

, such that Au B = S, then I A n BI = t.): 

T 

It is clear that i:(U) 

ir<-2> 
00 

'J.".2) 
01 

== w, whereas inf { Y I Vp ._ z 
y 

• • 

• 

I 
I I 

I 

p = 1 }>w + w • -
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Definition: If Tis a compact Hausdorff space, then we define: 

t = -r(T) = inf {T(U)lu is a -r-sequence for T}. 

It is clear that l(T) is a topological invariant. 

3.4. Lemma: Let X be a 

Let u = {u l - u 
y y y 

be a t-sequence for X, such 

that T(U) = T(X) = t. 

Suppose T!W and let t = ..i 0+v0 , where µ 0 is a limit ordinal and v 0 is 

an integer ~ O • 
• 

= { V } V = { X (y 
y y y p p E, z 

with the property that fo_r every limit number µ !s µ 0 and fot 

Then there exists a 6-sequence V 
• 

pf. Z\J there is a q=q (p) E. Zµ such that 

(i) 

(ii) 

if v is a limit number <µ 

Proof: 

1. Let µ = w. 

a. If Xis connected, then 

<1> I T. ={xx<a} 
1 =: 
0 

where (io ,il) - (0,1) or - (1, 0) for some - -

Then - T(l) X(l) - T~l). - -. ' 1 10 11 

• 

a E. X. 

for X, 

every 

• 

b. If Xis not connected, then are the • of union 

a finite number of disjoint clopen intervals: 

without loss of generality we may suppose 

(all elements of 11 are less than all elements of J
1 

etc.) 
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Now define 

(X ( 
2 ) X ( 2 ) ) . b . t 0 d f X ( l ) 

00 , 01 is an ar 1 rary - ecomposition o 
0 

(2) (2) 
xlO = Jl, xll = 12u J2u ... 

(3) (3) (3) (3) (3) (3) . 
(XOOO' XOOl)' (XOlO ,XOll)' (XlOO ,XlOl) are arbitrary e -

. . (2) (2) (2) 
decompositions of x00 ,x01 ,x

10 
respectively 

110 2 111 

etc. 

c. In both cases a and bone finds an integer 

( Y1 = 1 in case a and y 
1 

= k + 1-1 in case b) such 

y > 1 
1 --

that V 
y 

is defined 

for Y ~ Y1 and moreover 

• • 

d. Now suppose that a non-decreasing sequence of integers Ym ~ m 

(m=l,2, ... ,n) has been found and that VY has been defined for all 

Y ~yn (n ! Yn < w) in such a way that for all m< n 

\/pE.Z 
ym 

: 3 q = q ( p) E. z . : 
m 

(y) 
X m C 

p 

q (p I y ) = q ( p) I k if 
k 

and k< m. 

Now, if p E. z J y 
n 

let 

< Y > ·c > 
(i) if X n = Y. 1 () p 1 p 

l.. p 
exists an integer o'(p)> 1 

= 
V' 

£ 

perty that 

(Y ) {e:) 

p u u E, 
e: 

(y ) 
X n n 

p 
and 

for i=O or 1, then take o' (p) = 0 

i=O and 1, then, according to c, there 

such that a 
(y) 

f X 
n 

or 
p 

a-sequence { V' (p)} .r: , ( ) 
e: e: < u p 

can be defined with the pro-



Vt~ z 0, : 

if y~+l (p) = y + 6' (p) 
n 

• 
• 
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(Y ) ( 6 1
) 

(X n ) C 
p t 

this means that 

r IY = P-+-- n 

Y(l) 
1 c:. 

n+ 

or 

• 

' 

(Y' ) 
X n+l c T(n+l)] 

r s 
• 

(iii) Put o = max 
p E. z 

yn 

(1 , o' ( p)) , y 
n+l 

= max 
pE Z 

yn 

(n+l,y' 
1

(p)); 
n+ 

then also Y 1 = Y + 
n+ n 

(iv) Now we have defined the intervals 

( y' ) 
X n+l 

pt t (. z f ' pt E. z ' ) . 
o Ya+l 

If for some p E. Z y : O' (p) = 6 -1, then define 
n 

by an arbitrary 

( y 1) 
X n+ 

ptO 

( y 1> 
and X n+ 

ptl 
(y' ) 

If for some p 4 Z : 61 (p) = 6 -2, then define 
yn 

( y 1) 
n+ 

XptOO ' 

(y 1> n+ 
XptOl ' 

by 2 arbitrary 

Etcetera. 

0-decompositions of 
( y' ) 

X n+l 
pt . 

Then it follows that Vy 

moreover 

is defined for y < y 
1 = n+ (n+l < y 

1
< w) and 

- n+ 

Vr6Z 
Yn+l 

• • 3 s = s(r)E.Z 
1 n+ 

{y ) 
: X n+l c 

r 

(n+l) 
T 
s(r) 

·. s-(r 1·yn) = s·cr·)I n. 

Then clearly is also satisfied if m = n+l. 
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(v) We can take together the foregoing in the following way: 

There is a (beginning of) a e -sequence { V } 
y y 

for X 

V == { X ( y) } 
y p pt::.Zy 

and there is a non-decreasing sequence of 

integers Yn ~ n, with the property that for all n < w and for all 

p~ Z there exists a q=q(p)E. Z. such that 
yn n 

q <p I Y > = q <P> Im 
m 

if m < n 

(Y) 
X n C T(n) 

p q(p). 

e. Now take pE. Zw and define q = q (p) E. z 
w 

by 

then 

q In = q ( p I Y ) for n < w ; 
n 

X (w) = n n 
p n<w n<w-

2. Let JJ be a limit ordinal, and let Vy be defined for ally with 

the property that there exists a limit number v < µ such that y < v < JJ; 

and let for all limit numbers v < 

VP i z : 3 q = q < p) '-
" 2 

a. Let µ = v + w • 

Take p' ~ z . 
\) 

q(plA) = q(p)IA 

From 1. it follows that there 

p' n n6Z 
y 

3s = s(r) E. Z : 
w 

if .\ is a limit number < v. 

exists a a-sequence {V (p')} 
(v) Y y<~ 

for X , such that 
> p 

T(v +w) n 
q(p' )s 

(V) 
X ' p 

and so (if p'r = p, q(p')s = q(p)) 

' . 

• 
• pjv = p' ➔ : [ q (p) ( \) = q(p') and 

• 

' 
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this holds for every p'~ Z; consequently V is defined for all 
\) ' y 

y < u and clearly 
=-

is also satisfied if v= u. 

b .If u is not of the forn1 v+w , then lJ is the limit of a transfi

nite sequence of limit ordinals {v+w} • 
\) < lJ 

In this case V 
y 

is defined already for all y < lJ • 

Now take p~Z 
lJ 

and define q = q (p) t. Z 
lJ 

by 

q I ( v +w) = q ( p ( v +w ) ) for v < u ; 

then V can be defined by 
u 

= T(u) 
q 

and it is clear that is also satisfied for v = u. 

• 

3. Now the lemma is proved by transfinite incluction. 

Theorem 9: If X is a cor then O (X) ::::: T (X). 

Proof: 

Without loss of generality we may suppose that both 0 (X) and T(X) > w. 

(i) Each 0-sequence is a T-sequence; hence 0(X)> T(X); 

(ii) Now take at-sequence U = 

that -r ( U) = t (X) . 

{ u } 
y y 

Let T = µ -+ v , where u 
0 0 0 

is a limit ordinal 

Then there exists a 6 -sequence V 

the property 

= { V} 
y y 

U = { T (y )} 
y q qE-Z 

y 

and v is an integer 
0 

V = { X ft )} 
y p p £. z 

y 
( u ) (u ) 

X
0

cT 0
. 

p q 

such 

> o. 
with 

For all qE. Z 
(~ ) uo 

at most Iv I T -decompositions are 
O (U) 

needed for splitting 

up T O into 
q points. This means that T O < 

<u > Iv ol q -
ly (for all 

sitions are 

That means 

p E. Z ) IX O I~ 2 • So also at most Iv I 
lJO p (u ) 0 

needed for splitting up T O into points. 
q 

0 (V) < 1J + v = T 1 and so O (X) < 1(X) • 
11111 0 0 = 

Corollary: O(X) is a topologjcal invariant. 

e -decompo-
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Theorem 10: If both X and Y are cor's, and XcY, then 

0(X) < O(Y) -

if Y is zero-dimensional or if Xis connected. 

Proof~ clear. 
• 

Remark: If X and Y are cor I s and X CY then it may happen that 

example: Y = ro,2 L: ce _. 

X = 

0(X) > O(Y); 

0(X) = w+w > w = 0(Y) 

3.5. For Z we define the 11 f t 

regular 0-sequence W = {W} 

w 
y p p ~ z 

y 

y y 
in the following way: 

(i) w = { z } 
o a 

(ii) if y > 1 and - p ~ Z then 
yp p 

p 

. ,. 
0000 ...• 1111 .... } 

• 

It is clear that W indeed is a a-sequence for Z • 
Cl 

If, 

all 

when y < a, t;, 

pe z z<Y) 
y ' p 

This means that 

for al 1 p E. Z . 
Ct 

is determined in such a way that y + E:, = a , 

is similar to Z • 
( ) ~ I Z y I > 1 for all 
p p E. z 

y 
if y <a., whereas 

* For Z 
,,,..o. 

we define the 

= { z*< y)} 
P P ~ zy 

I 1 t I 
regular 0-sequence w* = { vf°} 

' 
y y 

in an analogous way: 
y 

(i) W,M. = {Z*} 
o a 

(ii) if y ~ 1 and 
• 

p~ z y then 

p --- p 
x j PoP1 P2. . . • 0000 .••• I~[ x~ PoP1 P2 ..•. 

• 

It is clear that Wis indeed a f Z* . a-sequence or 
Ct 

then for 

p 

= ,., 

1111 •... } 

If, 

all 

when y <a, , is dete11nined in such a way that y + £;, = a , then for 

P e. z z*<y> 
y ' p 

is similar to 
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This means - if one writes a= v+n where vis a limit ordinal (or O) 

all p 6 Z if y < v 
y 

and n is an integer 
= 

p 
or all p E. Z if y > v. 

y 

Lemma: 1. If V = { V} V 
y 

= { X (y )} 
p p" z is an arbitrary e-

sequence for Z 
a 

y y 
, then 

\/y < Ct -

2. If 

sequence for 

V = { V } 
y y 

z* then , 
Ct 

\;/y < Cl 
= 

Proof: 

3 PE. z • 
• 

y 

V = { x<y)} 
y p 

3 p ~.z • • 
y 

1. If y=O the assertion is obvious. 

y 

z<Y)c x<Y> 
p p 

• 

p C, z l.S 

y 

z*<Y>c X (Y). 
p p 

Let the assertion be proved for y < o (O< ex) -
there exists a p'E such that 

an arbitrary 8-

are obtained from 
(ol) 

Z, by splitting up this inter
P 

val into 

and X(cS) 
p'l 

a left interval and a right 
(6 ) 

interval; in the same way 

are obtained from X , 1 . 
p 

Then Z (~ ~ c: X (~ ~ 
p 1 p 1 

for instance for 

for at least one of the two possibilities i=l,2; 

i=l. 

If one puts p'l Cc> = p, then Z c 
p 

X (o). 
p 

(ii) If 6 is a limit nwnber, there is a 

(p(E) '- Z ) such that 

sequence { p (e:)}. 
e: < 0 

e: 
if 11 < e: < o 

now, if one defines p ~ z 6 such that 

Pie:= p(e) for all£< o, 



then 

(o > z 
p 

--
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n n 
e: < 0 

2. The proof is completely analogous to 1. 

Corollaries: In case l : e (W) < e(V) 

In case 2 : e(W*)< e(V). 

Theorem 11: 1. 0(Z) = a 
Ct 

• 

2. O(Z*) = v, if a=v+n, where vis a limit number (or 0) 
Q'. 

and n is an integer> O. 

Proof: 

1. 0 (W) = a, so O(Z ) < a. 
Ct. -

On the other hand if Vis an arbitrary a-sequence for Z , then 
a 

a= e (W) < o ( v) . 
Consequently 0 (Z ) = a. 

Ct 

2. Proof is analogous to 1. 

Remark: In general it is not true that Q(X) =ex 

limit number and n is an integer> 0-- implies 

V, * Example : X = W (n) -.. 0 (X) = n , 0 (X ) = 0. 

Thus we have the following theorem: 

where ex =v+n, v is a 

* 0 (X ) = v. 

Theorem 12: 1. If a~ B , then Z 
Cl 

and Zn are different topological 

spaces • 
• 

2. If a=v+n, B= 1.1 +m, where v ,µ are limit numbers (or 0) 

* * and n,m are integers 

spaces if v~ µ • 

>O, then Z and z
8 

are different topological .. ex 

§4. 

4.1. The lexigrographically ordered product X•Y will in the follow-
' 

ing sometimes be denoted by a figure 
• 

• 



• 

y 

--I 
I 
I 
I 
I 

I 
I 
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________ ..,.._, 

•(x,y) 

I 
I 
I 

I 
I 

I 
I I 
I I 
I I ---------------· 

X 

where the pairs (x,y) are thought to be ordered as described i1 

4.2. If X and Y are cor's and Y is the image of X under a contj 

map, then it may happen that 0(X) < 0 (Y) . 

Example: 

al bl cl dl e fl 1 . , l t . ' • 

a2 b2 c2 d2 e2 f2 
) I I • t ' 

z2 a3 b3 c3 d3 e3 f3 
I I I ~ I ' 

a4 b4 c4 d4 e4 f4 
I 111 I ' • I 

' 

Zw 

a'=c'=e' 
1 1 1 

b'=d'=f' 
1 1 1 

al 
2 

b' 
2 

a' 
3 

b' 
3 

c' 
2 

d' 
2 

z3 c' 
3 

d' 
3 

e' 
2 

f' 
2 

e' f' 
3 3 

e'=d'=f' 4 4 4 
' 

z 
w 

' 
' 

The map which is, for shortness sake, denoted by the following; 



a.b. ➔ a'b' • • 
]. 1. l. 1. 

c.d. C' d t 
• • 

1. 1. 1 l. 

e. f. e'f' • • 
1. 1 l. l. 

is obviously a continuous map of 

= w+2 < w+3 = O(Z 3 ). 
w+ 
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z 
w+2 

(i=l,2,3,4) 

(i=l,2,3,4) 

( i =1 , 2 , 3 , 4) 

onto Z 3 ; but 0(Z 2 ) = 
w+ w+ 

Theorem 13: If Xis a connected cor and f is a continuous map of X 

onto the cor Y, then 

Proof: 

O(Y) < 0(X). 
••• 

(i) The image of a closed interval is clearly a closed interval. 

(ii) If is a limit number, let {X.}. be a sequence of closed 
1 1.<u + 

intervals in X, such that X. c X. if i > j; and let X = . fi X .• 
1 J 1<1.J l. 

Then 
+ 

f [x J == n f [ X.] . 
l. 

For suppose that 
n 

i< u 

then take 
u E. n 

i< u 
f [ X. 

so 
3x.E. x., x+ : u = f(x.); 

1 1 l. 

in each neighbourhood there is an x.; this means that at least 
l. 

one of the two points v = . + + . inf X , w = sup X is an accumulation 

point of the set { X.} . 
]. 1<µ 

,for instance v has this property; since 

however f(x.) = u 
]. 

for all i and since f is a continuous map, it fol-

lows that f(v) = u; consequently 

{iii) Now let V = { V } - V y y y 
be a 

for X, such that O (V) = 0 (X). 

We show that, by transfinite induction, a a-sequence W 

W = { Y(y)} - for Y can be defined such that 
y p pE.Z 

y 

'r/pE- Z 3q = q(p) E. Z : Y(y) C f 
y y p 

q(p I e::) = q(p) I e: for all e: < y. 

• 

a -sequence 

= { w} 
y y 

for all y 
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(0) 
1. y = y = 

(1) 
and f [ x1 J are closed intervals in Y, with union =Y, 

one of the following situations occurs (if necessary by changing the 

letters) 

y y t----- - ----4 y 

f f 

In all cases 
(1) 

and Y
1 

· can be defined in such a way that 

Vi(i=l,2) 

2. Now suppose that W is defined for y<cS such that for all those y 
y 

2 .1. Leto= 01 +1. 

VP E. zo 
1 

Since f 
qO 

VP e. z 3q = q (p) E- z 
y y 

q(pl£) = q(p)I£. 

(0 ) 
: Y l C f 

p 

( 01) 
X ]· 

q ' 

Co 
are closed intervals in 

(6) 

q 

union f 
q it is clear that in all possible situations Y(o) 

PO 
can be defined in such a way that 

• 

• 
• • • 

And this can be done for all p ~ Z
0 

. 

with 

and 

a way that is satisfied 
for y = 6 too. 

2.2. Leto be a limit number. 

Take p E. z~: and define q = q (p) by 

• 

q I E: = q (Pf E ) for al 1 e: < cS • 
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Then it follows that 
• 

= n 
e:<6 • 

Consequently W can be defined in such a way that 
0 

is satisfied 

for y= o • 

(iii) If u= 0(X), then for the 0-sequence W which was defined above 

.. 

As 
q 

= 1 and so If [ X (u 
q 

I= 1 for all q E. z 
lJ 

, it follows that 

for all 
p 

This means that 

p E. z 
ii 

0 (W) < 

Consequently 0(Y)< 0(X). 
C 11 ' 

• 

lJ = 0 (X) • 

Theorem 14: If a<B then Z is a continuous image of Z~ . 
- Ct )) 

Proof: 

The natural map f : p ➔ pla of ZB onto Z
0 

is obviously continuous. 

Theorem 15: If Xis a cor there exists a least a, say a , such that 
0 

X is a continuous image of Z .Moreover a < 0 (X). 
a o-= 

Proof: 

If V = {V} 
y y 

u= e (V), then 

p E. z . 
JJ 

Then cp : p ➔ 
(u) 

X 
p 

is a 0-sequence for X, and 
• 

. Say X (JJ) == { x (}.I)} for al 1 
p p 

is a continuous map of Z 
u 

onto X. 

Remark: It may happen that a < 0 (X). 
0 

Example: Ct. (Z 
3

) < w+2 < w+3 = 0 (Z 3 ) • 
o w+ - w+ 

4.3. Let X be a cor. 

Let V = 

Let 

{V } 
y y 

It is clear that 

(i) p E. ¾ ,o<u 

V 
y be a 0-sequence for X. 

r(X (lJ) )~ 
p 
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(ii) T >v >D :::, D 
T \) 

r (X (T))) n ( 1 (X { 1 ) ) (iii) T>'J >D -• -p ' p -
2 I -r (iv) IDT,~ • 

Theorem 16: D • closed • X a. 1S in 
1 

b. If • limit number, then D u D 1S a -'t - • T \) 
V<T Proof: 

a. Without loss of generality we may suppose that D ~ X .. 

a p E. Z , 
't 

{-r) 
such that y '- X. ; 

p 
since 

b. 

follows that 

Consequently is open and D 
T 

is closed. 

Since u D C. D , it follows that 
\) ·r 

v< T 

u D C D - D • - J 
v<t \) 1 T 

now take, if possible, 

xE-D '\.. LJ D • , 

then for some p E. Z 
1 

X = 

Since 

one has 

1 (X (T)) 
p 

hence 

• 

--

't v<T V 

or 

sup 1 (X (v)) Pl\) , 
V<T 

XE. u D. 
V<T \) 

also 

r (X (T)) 
p 

- inf r(X(v)); - pjv \)<-r 

If e = e (V) there does not necessarily exist an x e. X with the proper-

ty that µ 
X 

Example: 

= e . 

• 

Let f be a 1-1-map of a subset A of 

Let H be the set of all pairs 

z 
w onto W(n). 



ordered by 

(a,x) 
a 

(a,O) 
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if 

if 

a E. A, xa E. Zf (a) 

aE.Z '\_ A 
w 

(a,u) < (b,v) if a< b in Z 

(a,u) < (a,v) if u=O, 
w 

viO or if U < V in 

It is clear that His a cor 

(i) Since ZJJC. H for all 

for all u < n, and so 0(H) > 0 .. 

< 0 , it follows that 0(H)> Q(Z) = u 
- u 

-
On the other hand there is a 0-sequence V for H with the property 

6(V) = Q (namely ''the regular 0-sequence for Z , for each a£ A con
w 

'') tinued by the regular a-sequence for Zf(a) . 

Consequently 0(H) = n. 

(ii) If Vis the a-sequence for H which is mentioned in (i), there 

does not exist an x E. H such that LJ (V) = n. 
X 

{iii) H satisfies the first axiom of countability. 

Theorem 17: Let V be a e -sequence for the cor X; let l-lx = u x (V), 

e= e <v>. 
If for some xE.X it is true that 

lJ > 
X 

• 

(and this is certainly the case, 

creasing or increasing) sequence 

Proof: 

if O > w~), then there exists a (de

of · type w7tin X. 

In all cases there exists a p E. Z such that 
wi"c 

X == n 
P v< w)t 

x<v>e:: x<-r) 
Plv PjT if T < V <w')t 

If one puts 

(-r) b (T) 
if T~ W)t a 

p T PT 
( w ) ( w ")t) 

* 1 (X ~ ) , * a - b - r(X ), - -
p p 
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then it follows from 

pairs 

that all elements of the sequence of ordered 

are different; thus 

Now define the sequence 

following way 

(T ) 
{ a µ } 

l.J 
by transfinite induction in the 

(0) 
= a , 

(TV) 
if a has been defined for all v<u , and if A is 

the 

let 

le~st index such that 
l 1 U) ( ).) 

a = a ; 

define the sequence 

If both the type of 

(-r ) 
{ b v } 

, then it follows that 
(T ) 

{a 1J } 
ll 

so 

and so 
{ 

and a forteriori 

this is a contradiction. 

in an analogous 

and the type of 
u 

• 

Consequently at least one of the sequences 
(T 

type w)t, ; for instance this holds for { a u 

of a sequence of type w~. 
:>t. 

are less than 

(TU) (T ) 

{b has the 

} . Then a* is the limit 
µ 

Theorem 18: If IX I> 2 1 
and V is a 0 -sequence for X, then e (V)>w. 1 • 

- 1+ 
If 6 (V) 

lJ (V) = w. 1 • 
X 1+ 

= w. 1 then moreover there exists an x ~ X such that 
l.+ 



Proof: 

If T< w. 
1 

then 
1+ 
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)t_ 
2 1 , 

)t_ 
u 

T<W i+l 
D 

T 
2 

1 
< 2 

1+ 

LJ D a: X, 
t<w 

1 
.,. i+ ~ 

0(V)> w. 
1

. 
1111111 1+ 

If e (V) = w. 1 then it follows from 
1+ 

xe.x, U D • 
,-< W. 1 1' 

1+ 

)t. 
1 

-

r 

1 that . ' 
\J = w . 1 for every 

X 1+ 

Theorem 19: If I xi > 2 there • 1S a point x E::. X that is the limit of a 

sequence of type w. 1 , 
1+ 

or there is a point y E. X that is the limit of 

* a sequence of type w. 1 · l.+ 

Proof: Follows from theorem 17 and theorem 18. 

Corollary: If I xi > then X does not satisfy the first axiom 

of countability. 

Assertions in which the (generalized) continuum hypothesis is used 

will in the following be denoted by an asterisk. This will be the 

case among others if one of the following assumptions is used: 

(i) 
m 

2 • 
1.S 

also: 

the least cardinal 
m 

<Tl ➔ 2 <ll -

number> m; 

(ii) 

(iii) 

m 
if n is a limit cardinal and 'Jl7 < n then also 2 < n 
WI 

2 is not a limit cardinal and w m is regular. 
2 

eorem 20: If I xi 
If e(V) = )t 

1J (V) = 
X 

Proof: 

If -r < w)t then 

etc. (cf. the proof 

> )t and V is a 8-sequence for X, then 0 (V) > /t. ... 
then moreover there exists an x E. X such that 

I D I < 
T 

..... 

u D <Jt•°)t=k, 
T < W)t T -

of theorem 18). 

• 



38 

*Theorem 21: If I XI > It there is a point x E.. X that is the limit of a .. 
sequence of type or there is a point y ~ X that is the limit of 

w f(' ' 
* a sequence of type w)t. 

Proof: Theorem 17 and theorem 20. 

Theorem 22: If in X there exists a sequence of type w~ or a sequence 

* of type w ~ , then 

8(V) ~ w)t 

for every 6-sequence V for X •1 ) 

Proof: 

Let {x.}. 
1 1 

be 
< W:)t 

an increasing sequence of type in X and let 

y = sup x .• 
. 1 
1 < W)t 

1. Let w~ be 

Let V = {V } 
y y 

regular. 

V = { X (y)} 
y p pt.Z 

y 
be a a-sequence for X. 

(i) Now consider the set D of all y < e (V) with the property that 

there exists a q (y) E. Z such that 
y 

(Y) (y) . 

it is clear that D = {yly < o} 

If X(o) is the intersection of 

for 

all 
P <a> y < 6), then one has l(X ) = y. 

p 

some o > 0. 

q(y) 
= q (y) ·for all 

Since y = Jim xi is not a left neighbour if follows that O is a limit 
1 w~ ( ) 

number; it follows that e (V) > c . 

(ii) If now x. is the least x. such that x.> l(X(y)), then 
1 1 1 p 

i . y< . y<e- . 
y. Because of 

• 

Consequently 0 (V) ~w.; . 

2. Let w)t be singular. 

Then wit is the limit of a sequence of regular ordinals w < w--u : 
<X-+l A 

lim 
et< A 

Since for all a< A there exists an increasing sequence { x.} . < 
1 1 wa +l 

• 

in 

1) In the case of a connected car this theorem is also c_ontained in Novak [ 3]. 
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X it follows 

9 (V) > w • 

from 1. that 9(V)> w 
1 a+ for all a<A. This means that 

Finally it should be observed, that there exist cor's with the pro

perty that two a-sequences V and V' can be constructed such that 

1 a <v> I i I e <v' > I • 
Essentially following Novak[~ , p.383 an example can be obtained as 

follows. 
• 

For every countable a there exists a * 0-sequence V(a) for Z such 
~ 

w 
that 0(v(a))~a. Now let f be a 1-1-map of W(n) into z 

w 
• Then define 

a 8-sequence V for 

a-sequence for x1 , 

X = xl ·X2 (Xl = x2 = 

''for each a e f[W(n)] 

* z·) such that Vis the regular 
w 

continued by the a-sequence 
-1 ,, 

V(f (a)) for x
2

• Clearly 8 (V) = n. 

On the other hand it is easy to construct a 0-sequence V' for X, such 

that 6 (V' ) = w + w • 

§ 5. 

Let A be the set of positive integers< n in natural ordering. n 
Let I be the unit interval [0,1] . 
Define X by X =I.A. 

n n n 

Theorem 24; X and X are different topological spaces if n;zfm. n m 
Proof: 

Suppose n> m. 

If n > 2 m=l then X - , n is totally disconnected and X is connected. 
m 

If n > 3, m=2 then X 
n 

two isolated points. 

Now suppose n > m > 2. 

has continuously many isolated points and X 
m 

has 

A set {(a,2),(a,3), •.. ,(a,n-1)} 

points in X will be denoted by 
n 

(a E. I) of 

B(n). and 
a ' 

n-1 successive isolated 

B(m) (c X) is defined in 
a m 

an analogous way. 

(i) If Sand Tare two disjoint sets of isolated points in 

with the property that for al 1 a ~ I 

T f'\ 

then it is clear that 

X 
n 



40 

S\S = T\T 

(ii) Now suppose there is a topological map f of X 
n 

onto X. 
m 

a. If p and q (p < q) are points in X such that the set { xi p< x < q} 
m 

b. 

is infinite, 

r 4i f B (n) 
C 

then there exists a 

• 

B (n) such that p < r < q for all 
C 

We can show this in the following way: Take an infinite sequence 

of points in X between p and q; now, if the assertion is 
m 

not true, for every y. there exists a z. such that 
-1 -1 1 1 (n) 

whereas f (y.) and f (z.) belong to the same B ; 
1 1 a 

z. < p or 
J. -

then the sets 

and {z.}. have different accumulation points, whereas 
l l<W 

-1 
the sets { f (y. ) } . 

l. l.<w 
and 

-1 
{f (z.)}. 

1 l <W 
have the same accumula-

tion points. 

al 
set. Now choose 

(n) n) 

{ x( p2 < x < q
2

} is an infinite set. 
a2 

Etcetera. 

We thus obtain 

have different 
-1 

two sequences { p.}. and {q.} in X which 
1 1<w 1 i<w m 

accumulation points, whereas the sets{ f-l (p. )} . 
1 1<W 

and { f ( q 
1
. ) } . 

1<w 
have the same accumulation points. 

• 

• 

in 



CHAPTER II' 

!,)n the homogenei_ty of ~ .. ~omEa,c_t ordere~ space 
' 

§1. 

A topological space T is called homogeneous, if for every p,q E. T 

there exists an autohomeomorphism f of T with the property f(p)=q. 

Theorem 1: A homogeneous cor X satisfies the first axiom of count

ability. 

Proof: 

Since Xis compact, every countable infinite 

cumulation point, say y. Then y is the limit 

set {x.}.< has an ac-
1 l. W 

of a countable sequence, 

and so, since Xis homogeneous, also a=inf Xis the limit of a count

able sequence. Consequently i·n a there is a countable local base. 

Because of the homogeneity of X this means that X satisfies the first 

axiom of countability • 
• 

Theorem 2: If X is a cor, and I xi >·t , then X is not homogeneous. 

Proof: Chapter I, theorem 19, corollary and theorem 1. 

Theorem 3: A homogeneous cor Xis zero-dimensional. 

Proof: 

Let Y be a component of X. If IYI >1, let a=inf Y, b=sup Y and take c 

such that a< c < b. If now C denotes the component of X to which x 
X 

belongs., then obviously C "- {a} = Y , {a} is a connected subspace of 
a 

X, whereas C ' {c} 
C 

means that X is not 

= Y '\. {c} is 

homogeneous. 

a disconnected subspace of X. This 

Consequently IYI =land Xis zero-

dimensional. 

The following lemma presumably will be known. 

0 
Le11una: If a.and B=w are countable limit ordinals, and a<S, then 

there exists 

lim 
i<a 

µ = B. 
i 

an increasing sequence(~.). of 
1 l. <o. 

type o., such that 
• 
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Proof: 

1. We first observe that for every countable limit ordinal T there 

exists a sequence (Oi)i<W of type w , such that ~im ll1 = T : if 
l < W 

the set W(t) is well ordered like a sequence of type w, 

then for the sequence (o) one can take an increasing subsequence 
i 1 <W 

of ( "1) i < tlJ • 

2. Mow we show that it is sufficient to prove the lemma for ordinal 

n,.-bers a of the form a =w Y (1 < y < o). -
Let 

>iow, if 

fine 

a .. a' + 

y K 

+ ••• + w .n 
K 

> ••• > y > 0), and thus 
K 

• 

6 
is an increasing sequence with limit w 

it i ::;; i if i < a• 

\J. = a'+ v1 if a'< i<a ,· 
l -

, we de-

0 
then also ( \j ) 

i 1 
is an increasing sequence with limit 

< a 
U) • 

3. We now prove the lemma by transfinite induction with respect to 6. 

(i) if 6:1 the assertion is obvious 

(ii) suppose the lemma is proved for o < E 

(ii , 1) Let £ :c 01 + 1 -
. 61+1 01 £ 

= w ::ti.) = w .w == 8 . w. 
1 

Then 8 

Now 81 is the lim.it both of an increasing sequence (vi) 1 < a and of 

an increasing sequence · if we define , 

-i - for all i such that 
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then (µi) i < a. is an increasing sequence with limit 8 . 

(ii,2) Let£ be a limit number. 

Then Eis the limit of an increasing sequence 

e: s = w --
E 
n 

lim w 
n<w 

• 

( £ ) , and 
n n < w 

£ 

Since 8 >a there exists an integer N < w such that w n >a if 

N < n < w; without loss of generality we may suppose that N=O. 
£ e: e:o 

NOW, if Vo = { 'V I V < w } and V 
En n 

= { v I w n-l ~ v < w n} (n=l, 2, 3, ... ) , 

then each 
(n) 

w is the limit of 

v. E. V • And 
1 n 

Now, putting 

a itself is the 

u . 
l 

U• 1 

(0) -- V. 
l 

(n) -- V. 
1 

( (n)) . a sequence v. . 
1 l < 

limit of a sequence 

if 

if .\ l < i < n-
). 

n 

we find a sequence (u .). with the limit G . 
1 1<a. 

of elements 
a. 
( A . ) . • J J <W 

( n=l , 2 , 3 , ... ) , 

In the following, we denote by Z' 
1 w+ 

the cor which is obtained from 

Z 1 by removing the isolated points. Clearly Z' 1 is similar to 
w+ w+ 

I .{0,1} '- { (0,0), (1,1)} , where I is the unit interval [o,1] . 

Theorem 4: Let X - Z , 
- WO. 

or let X = Z' 1· w+ 
1. If pis not a jump point, or if pis a left neighbour, then 

{xi X ~. p} z a. • 
w 

2. If pis not • a Jump point, or if pis a right neighbour, then 

{xlp< x} 

Proof: (for the case that X --
a. Let { p I 3 i 0 < w 

a. 
L - • p, -- • -

1 

R { p I 3 i
0 

< w 
a. - • p . -- -• 

1 

In both cases we suppose that 

property. 

z 
wa. ' I et I ~ ko> 

1 if i > i } = 0 
0 if i > i } = 0 • 

i is the least index with the required 
0 

It is clear that a left neighbour (right neighbour) belongs to L (to 

R), and moreover, that a point of L (of R) is a left neighbour (right 

neighbour) if and only if i
0 

is a non-limit number. 
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b. The following notation is used: if 

denotes a well-ordered sequence (t.). 
1 1< U 

of typeµ , then 

y -,, , ► 

ab ••• c ••• d ••• eeee •.• 

means that c is the element with index Bin the given sequence (thus 

e if i > y. -
(i) Let p EL, and let (mA)A be the well-ordered sequence of in-

dices for which 

Now define 

V 
0 

. Cl 
is a sequence of type w 

if A is a non-limit number 

• 

n m 
-t:i ► ~ . ► 
000 .•. ~ x .~ p0 p1 p 2 . . . 0 1111. . . . } 

t 

if A is a limit number and n = 
A 

lim 
i<A 

m .• 

Also 
w 

0 
= { x j x ~ 0 1111 . . . } 

X 111. . . 1 000 . .. < X < 1111. . . Q 1111 .. • } - -
if A is a non-limit number 

,\ 

= {xllll ... O 0000 . .. < X < 1111 ... 
A----► 
0 1111 . • . } 

It is clear that all sets V ,W 
,\ A 

Then also the ordered unions 

").,<wa 
are similar, and consequently 

.. == 

• 
if A is a limit number • 

(0 < A < wCJ.) are sirni lar to Z 
~ a· 

w 

and 
').. <w a 

(ii) In the same way it can be proved, that 

1 
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{xlp<x} V> 

if p E. R 
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(iii) Now it follows from (i) and (ii) that 

{xlp~x~q}v, 

if p E: R, q E. L, p < q. 

(i) If Sis a countable limit 

z u 
w 

then Z et may be 
w 

considered as the ordered union of type B of sets A1 ( 0 < i < B) , wh i ch 
== =-

are such that A . (..,,"') Z a i f O < i 
1 w -

For, there exists an increasing sequence(µ.) 
1 i<S 

and we may take 
µ 

., J) _,,v:· -- 1J. 

= {xix~ 111 ... 0 1111 ..... } 
µ . 

l.-
, __ ? "" .,. '") 

with the limit 

11· ,1 
. .-, 

= { x I 111 ... 1 000 .. . < X = < 111. . . 0 
,_, __ ► } 

1111 •.• 

= {xllll ... 
'V • 
J 
0 

if i is a non-limit number 

u . 

/al: -

a w , 

if i is a lirni t nt1mber a11d v. = lim u . 
l. j<i J 

(ii) In the same way we n1ay sl1ow; If Bis a countable limit ordinal, 
a 

and B!w, then Z a 
w 

may be considered as the ordered union of type 

of sets A. (0 < i < $), which are such that 
1 - = A. V") 

1 
if and 

* B 

d. (i) Let p be a non-jump point and let (m\), 
A J\.<B 

sequence of 

Now take 

indices, for which p 
m_x 

= 1 ; th en B i. s 

be the well-ordered 

a limit number. 

B. = 
J. 

--

~ 
0 1111 . • . • } 

--- ,. .. , -~ 
1111. . . . } 

if i is a 11on-limi t number 

n m . 
• ---4~- - -> 

== == 

if i is a limit number and n = • 
1 

m .• 
J 
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It now easily follows from b that 

u 
i<B 

and so 

B. V") LJ 
l. i < 8 

A. , 
1 

Z a 
w 

(ii) In the same way it is shown that 

Z a • 
w 

Theorem 5: If Z a is a homogeneous topological space. 
w 

Also Z' 1 is a homogeneous space. 
w+ 

Proof: 

(i) If I is a clopen interval which is properly contained in 

and which is such that I "> Z a , then also 
w 

(Z a, I) v, Z a .. 
w w 

For, if p = inf I, q = sup I, then at most one of the sets 

I 
p 

= { x I x < p} , I = { x I x > q} is void; 
q 

if I i 0 (and/or I ~ 0), then 
p q 

I v, Z · 
p WO. 

(and/o:r Iq v, Z wCl ) ; and in all three possible cases we have 

I UI V') 
p q z Cl 

w 

(ii) Now take p,q t. Z 0 ; P < q. 
w 

Then p (respectively q) is the intersection of a decreasing sequence 

of clopen intervals 

we may suppose that 

I (respectively 
n 

Il n Jl = 0. 
Let f 0 be an order-preserving map of 

fn be an order-preserving map of In\ 

Then the function f, defined by 

J ) • 
n 

Without loss of generality 

Z wo. "-... 11 onto 

I 1 onto J \ 
n+ n 

z Cl '\ Jl, and let 
w 

J 1 (n:::::1,2,3, •.• ). n+ 

f (x) = f (x) 1.· f x L I \ I "' ·1 n n n+ 

f(p) = q 

is an autohomeomorphism of .Z a . 
w 

Consequently Zais homogeneous. 
w 

Theorem 6: If 
• Y= a Cl B +w , and 8 > w , -

Proof: 

• 

then Z is not homogeneous • 
y 

Without loss of generality we may suppose B = E: 
O+W , E > a. -
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q 

(i) Choose p = (pi)i<y in such a way that 

3 j 1 k : (i < j, k < ~ and p.=O, p =1) 
J k 

: p.=0. 
1 

Then it is clear, that each neighbourhood O of p contains a subset 
p 

which is similar to Z £ a 1 and so for every neighbourhood O of p 
w +w p 

we have 

(cf. Ch.I, theorem 10) 

(ii) Now choose q = (q.). in such a way that 
1 1 <y 

Then there exists neighbourhoods 

and for which consequently 

0 of q, 
q which are similar to Z 0 , 

w 

0 (0 ) 
q 

a. = w 

(iii) This means that ZQ a is not homogeneous. 
µ+W 

If Xis a connected cor, then Xis said to be order-homogeneous, if 

all closed intervals consisting of more than one poirit, are similar 

(and so are similar to X). 

Theorem 7: An order-homogeneous connected cor X satisfies the first 

axiom of countability. 

Proof: 
. 

Since X is connected, there is an increasing sequence (x.).< 
1 1 W 

in X; 
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and since Xis compact y = lim x. exists. Because of the order-horno-
1 . • 

l.<W X / . f X b . d d genei ty it follows that every z E. , z ;c in , may e consi ere as 

the limit of an increasing sequence of type w. In the same way it is 

shown that every z E X, z ~ sup X, may be considered as the 1 imi t of a 

decreasing sequence of type w. 

This means that X satisfies the first axiom of countability. 

Theorem 8: If Xis a connected cor, and Ix!> A, then Xis not order

homogeneous. 

Proof: 

Theorem 7 and chapter I, theorem 19. 

The following result has been obtained before by Terasaka [1] (cf. 

also Arens [1] ) . 

Theorem 9: If lc.l<)t. == 0., 
* then Z Ct is an order-homogeneous topological 

space. 

Proof: 

w 

Following 

show that 

the method used in the proof of theorem 
• 

4., we can easily 

* * {x!x~p}V">Z Ct for all p>inf Z a 
W l..l 

* and that {x Ix> p} v, Z o. 

* for all p < sup Z Ct 
w 

order-homogeneous. 

. From this it immediately follows that 

4. 

* Z a 
w 

w 
• 1S 

If Xis a connected cor, we denote by X the topological space which 

is obtained from X by identification of inf X and sup X. 

Theorem 10: If ex= v+n, R= l.i+m, where \} and u are limit nwnbers (or 0) 
*t *t and n,m are integers~ O, then Za and ZB are different topological 

spaces 

Proof: 

if viu .. 
*+ Clearly T(Z ) 
CL 

= v, = \J • 

Theorem 11: If Xis an order-homogeneous connected cor, 

homogeneous topological space. 

t 
then X • 1S a 

Proof: 

Let a= inf X, b = sup X; in Xt we write c=a=b 

ty, in the other cases we denote the points of 

by the same letters). 

Now take p, q E. X t 

(for sake of simplici
t X and those of X 
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(i) If p 

f I [a,p] is 

and qi c, then let f be a map of X onto X, such that 

a similarity map of [a,p] 

similarity map of [P, b on to [q, b] . 

This induces an autohomeomorphism ft 

• 

onto 

of 

[ a , gJ and f l [P, b is a 

t 
such that f (p) = q. 

(ii) If p = c, q ~ c, then choose (in X) r such that a< r < b. 

And let £ be a map of X onto X, such that fj [a,r] is a similarity 

map 

of 

of [a, r] on to [q, b 

r, b] onto [a,qJ . 
and such that f I [r,b] is a similarity map 

This again induces an autohomeomorphism ft of xt such that ft(p) = q. 

Cor9llary: 

• 

*t 
z Ci 

w 
is a homogeneous topological space. 



CHAPTER III 

On the connection between splitting degree, density 

and weight of a compact ordered space 

§1. 

By the density of a topological space X we mean 

d = d (X) = inf { ft I 3 N c X : N = X, IN I = )tJ. 

By the weight of a topological space X we mean 

w = w(X) = inf{Jtj3 base~for X:1§31 = ~}. 

The following theorem is well-known 

Theorem 1: If Xis a T
1
-space, then 

,.,.. 

Proof: 

(i) If~ is a base of X with the property that l~l =wand 

I (x) is the family of all O E- f3 such that x e o, then 

n O = {X} • 
0 f. I (x) 

So x ➔ I (x) is a one to one map of X into ~), and consequently 

IX I 

(ii) Obvious (every base is a subset of (X)) • 

Theorem 2 (see Arhangelskii [1] ) : If X is a compact Hausdorff space, 
then 

Proof: 

If p,q ~ X, then let the open sets 0 
pq and O 

qp be such that 



51 

pt o , q f. o , o n o = 0. 
pq qp qp pq 

Let '3 be the family of all finite intersections of sets O . Then 43 
pq 

is a base for X. For, if O is an open set in X and if p 1. O then 

finite subcover 

n 
() 

i ::::::1 

and 

p E. 

0 
pq. 

1 

n 
n 
i=l 

but then 

0 C: 0 
pq. 

l. 

Since l~I = IXI , it follows that w(X) ~ jXI • 

Theorem 3 (see Pospisil [1] ) : If X is a Hausdorff space, then 

2d 
d~1x1~2 . 

Proof: 

Let N be a subset of X such that 

N = X, I NI = d. 

Let I(x) be the family of all A~ (N) with the property that x £ A. 

Because of the Hausdorff property, we have I(x) i I(y) if xi y. Con-

sequently x -+ I (x) is a one to one map of X into ( (N)). This 
d 

means that Ix(~ 22 • 

Theorem 4 (see de Groot [1] ) : If X is a regular T1 -space, then 

d 
d < w < 2 • - -

Proof: 

(i) A set O in a topological space is said to be regular, if it 

is equal to the interior of its closure, that is if 

• 

-o 
0 = 0 • 

Now it will be proved that a regular T1 ~space has a regular open base 

(i.e. a base of regular sets). 

For, let~ be the family of all regular sets. 

I 
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Let U be an open set and let x 6 U. Then there exists a closed neigh

bourhood V of x, with the property that V c U, and such that 

XE.We: V = Ve U 

for some open W. Then also 

-0-0 
xt.W CW c Vc.U. 

Putting B 
-o-o 

= w we see that B = 
-o 

B (cf. Kelley [1] , p.45 above 

and p.57, exc.E), so that BE.~. 

Hence §3 is a base. 

(ii) Let N c. X be such that 

Because of the regularity we may conclude that.o1 n NJ o2n N if 

is a one to one map of 

into 

§2. 

Lemma: If Xis a cor and {x.}. < 
1 l 

sequence of type w1t in X, then 

Proof: 

Wft, 
d(X) 

is an increasing (decreasing) 

-

(x. x. ) . is a disjoint family of non-void open 

intervals with cardinal number~ • 

* Theorem 5: If Xis a cor, then 

Proof: 

(i) if w = IX I , then it follows from 

(ii) if w < jxj, there is a {decreasing or increasing) sequence of 

type w w 
Then it 

in X (Chap.I, th.21); this means d > w and - consequently d=w. 

follows from w < I xi ~ 2w that d ~ I XI !i 2d. 

Theorem 6: Let X be a cor, and let N be dense in X. If V is a e -
sequence for X, then 

6 (V) sup lJ (V) + 1. 
X6N x 



Proof: 

Let n = n(V) = sup 
X E. N 

ll (V) • 
X 
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Now suppose that X I > 3 for some p e. Z • Then there exists a 
P ( ).. (n) n 

point c such that l(X n )<c <r(X ). This means that c'f,D • Since, 
P - P n 

however, NcD = D and N = X, this is a contradiction. 
n n (n) 

, and so 6(V) < n+l. 

Remark: It may happen that 8{V) = n(V) + 1. 

let z'' 
w+l 

be the cor, which is obtained 

-

from z 
1 

by identi
w+ 

Example: 

fication of (a,O) and (a,1) for all rational a; if now Vis the regu-

* 

lar e '' -sequence for Z 1 , 
w+ 

then 6(V) = w+l, n {V) = w. 

In the case of a connected cor (an ordered continuum), the following 

theorem has been obtained before by Novak [3] • 

Theorem 7: If Xis a car, and Vis a 8-sequence for X, then 

< d. -
Proof: 

If I µx I ~ 7t , and thus \Jx ~ w )t, for some x E. X, then it fol lows from 

Chap. I, theorem 17 , that there exists a sequence of type in X. 

Then from lemma 1 we may conclude that d ~ -it. Consequently f 1,.1x I ~d 

for all x•X. If now N is dense in X, and INI = d, it follows from 

lemma 2, that 

d2 = d • 

Theorem 8: If Xis a cor with density d and weight w, and if Vis a 

6-sequence for X, then 

Moreover, • in 

at least two of the equality signs hold. 

Proof: 
I 

The first part of the asserti_on is an immediate consequence of the 
• 

foregoing theorems. 

Moreover, if in 
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at least two of the inequality signs hold, we have 

and this is a contradiction, since 

Corollary: For every cor X we have in particular 

and in 

at least two of the equality signs hold. 

Examples: (i) if X = z w+2 

(ii) if x = zw+l 

then IO J < d 

then d < w 

(iii) if X =Z 
w 

then w < I xi 
(iv) if X = H (see p.34) then 10r= d = w = lxl • 

Theorem 9: Let X be a cor, with density d, weight wand splitting 

degree 0. 

1. If O=w~ or 0 = w7c+l then d = 

2. If 

Proof: 

1. Let V be a a-sequence for X, such that 8(V) = 0. 

It is clear that 

• since 

it follows that 

Sod< °}t. -

D 
-r 

= D = D = X · 
w~ uJ~+1 ' 

On the other hand it follows from 101 < d that 

Consequently d 

)e < d. -

2. Let V be a a-sequence for X, such that 8(V) = e, and let 



N = LJ D • 
T <w)t- T 

Then the family of all sets 

{xJ a< x < b} 

is a base for the topology in X. 
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(a, b 6 N) 

For, let O be an open set; without loss of generality we may suppose 

that 

Now take y E. o. 

0 = 0 = {x Ir< x < s} • rs 

(i) if y has both a left neighbour 'y and a right neighbour y', 

then 'y and y' belong to a certain DT (L< w)t), and so belong to N; 

hence 
yE:. o, ,c 0 

YY 

0, r t: §3 
yy 

(ii) if y has a left neighbour 'y, but no right neighbour, then 

'y E. N and moreover, since N = X, there is a z E. N such that y < z < s; 

hence 
yE.0, C 0 

yz 

0 E. '3. 'yz 
Etcetera. 

Now we have 
--

and so w < It'. -
On the other hand it fol lows from I 0 I ! d that 

Consequently w = R-. 

§3. 

Let X be a cor. 

)t < d and so ft < w. - -

Let P be the set of jump points in X, and let Q be the set of pairs 

{a,b} in which a and bare neighbours. Clearly f P( = IQI. 

*Theorem 10: 1. If !Pf = lxl , then w = lxl 
2. If J Pl < I XI , then w = d. 

Proof: 

1. Let be a base for the topology in X. 
• • • 

• 
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Since every set {xix< q, q a right neighbour} is open, 

that for every left 11eighbour p there exists a member 

pis t.hegreatestelement. Hence f~l~IPI = lxl, and 

2 .. I.At N b,e a subset of X such that 

-
N = 

Then clearly the family~ of all sets 

{xfa<x<b} 

is a base for the topology in X • 
• 

(a,be.PuN) 

it follows 

of §a o.f which 

so w = I xf • 

Since I Pf < IXI - and so I Pl !i d - it follows that I Pu NI = d and 

consequently I fa I~ d. Hence w = d. 

Corollary: If Xis connected, then 
'_., lllilt!I= 

.., , 
w = d (cf. Mardesic and 

Theora 11: I. If Xis a connected cor, then 

e < =- wd 
II. If Xis a zero-dimensional cor, then 

(i) S<w .. d + 1, 

,a.. 

IP I IX I (i) O<w if < ,_ d 

* (ii) O<w • - w 

Papic [ 1], 
p .176). 

Remark: Part I of the theorem has been obtained before by Novotny [2] • 

Proof: 

We give the proof of the theorem for case II. 

1. We first observe the following: if Y is a zero-dimensional cor, 

and p,q,r E.. Y, then there exist two successive 8-decomposi tions of Y 
(2) such that no two of the points p I q and r belong to the same Y • 
p 

2. If a is an ordinal number, then we write a= v + m , where v is 
a a a 

a limit number {or 0) and m is an integer > O. Then let a .. 

-a =v +m•2 
a a 

(so for a limit n1..1.n:tber we have a = a). 
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3. We first prove that 0 < wd + 1. 

Let N be such, that Ne X, N = X, I NI = d. 

Let S be the set of those points sin X, which have both a left neigh

bour 's and a right neighbour s'; then Sc N. 

Let A be the set of all pairs { 's,s} and {s,s'} , and let R::: Nu A. 

Then I RI = d. 

Finally suppose that {r.}. is a well-ordering of R. 
1 1 < wd 

a. We show that by transfinite induction, a 6-sequence V = {Vyly 

V = {X(y)} . - for X can be defined such that for ally< w y p p~Z ,_ d 
y 

we have 
V P E,, z_ y 

where t . = { r . } i f r. E. N and t . = r . i f r . ~ A • 
1 1 1 1 l 1 

(i) Let VY be defined for Y < c 
1 

and suppose the assertion 

holds for all those Y. 

Put O= 61 +1; then o = 01+2. 

(01) 
Since Ix n 

p 1 1 
successive 8-decom-

positions of 
(ol) 

X can be defined in such a way that 
p 

(ii) Let cS = o be a limit number and let V 
y 

be defined for y<6, 

such that 

Then 

is satisfied. 

p 
a and b, a J b, 

this means that 

1< 1 -

such that 

a,bE. U 
i < y 

p 
. u.r 
1<u 

t. I 
1 

< 1. -

for some p E. Z0 , then there exist points 

t. for 
]. 

u t.; 
i < 0 1 

some y < o and so 

a bE.X(yl) n U t. , 
' PY i< y i 
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t!o I 5 

(y) 
p-y 1<Yi 

> 2 - . 

Thi& i.s a contradiction. 

b. In particular we have 

\jp&Z 
(tu d) 

u t < 1 • X n • ..,. 
p i < w i wd d 

(w) 
, 

Since i t is dense 
u..d i 

in X, it follows from 
. d 

.2 that X < 3. - ' p 
. (w ) 

however, if X d ·. = 3, then obviously 
p 

= {'s,s,s'} for some 

s 6 S; this means that { s, s'} 
(w) 

X d n 
p 

This is a contradiction. 
Cwd) 

Consequently · X · < 2 for 
p -

= t
1 

for some i < wd, so that 

all p E. Z and so 0 ~ wd + 1. 
wd 

4. We now show that 8 ! w d_i f I PI = IQ l < IX I • 
Let be such that Nc.X, N = X, !NI = d. 

Let R = N u Q; since IQ I < IX I - and so IQ I ~ d - we have l RI = d. 

Let {r 1 } 1 < ·. be a wel I-ordering of R. 
wd 

In a manner analogous to that 

a 6-sequence V = {V} 
y y 

-v 
y 

used in 3. we 

= {X(Y)} 
p p 6 Z 

can show the existence of 

for X such that 

for all y !r w d, 

\/p6Z... y 

y 

: X (y) n 
p i 

u t, 
< y 1 

where t 1 = { r i} if r 1 c. N and t 1 = r i if r i 6 Q. 

In particular we have 

< 1, = 

• • . µ t. < 1 
l w d l. . 

Since . U 
i <w 

d 
(w ) 

t. is dense in X, it follows from 
l 

that 
(w ) 

X d < 3 • if 
p ' 

X: d = 2 
p 

or :3, then = {a,b} or = {a,b,c} for some pair 

of neighbours {a,b} and -in the second case - {b,c}; but then 
• 
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. u t. 
i< wd l. 

> 2. {a, b} = ti for some i < w d, so that 

(wd) 
From this we conclude that X 

p = 1 for all p ~ Z • 
wd 

Let {x.}. be a well-ordering of X. 
i i<wlxl 

As in 3. it is shown that there exists a 8-sequence 

V= V {V } = { X (y)} for x, 
y y y p p& z 

X. 
T/pez_ • • y 

So in particular 

6. Finally we show that0<w w• == 
If I Pl - IX I we have w = IX I - , 

I:f I Pl < IX I , we have w=d; so 

· X (y) n 

• 
• 

• • 

p 

p 

l. < l. 

• so a~wlxl --, 
0<w - w - • = d w 

such 

< -

w • w 

that 

1 .. 

<l, 

~orollary: If Xis a zero-dimensional cor or a connected cor, then 

a. e > 

b. 0 > -

wit+ 2 implies d > 

w + 1 implies w > 7t. 
")t 

Example: d(Z) - I o. I if a - wlal --c,. 

> I o. I if a. > wla.l+ -
w(Z) - I a I if a. - wlal - -

(l 

> I a I if a. > wlal+ -

or if a. - wlal + 1 -

2 

1 

In fact, if L and R are subsets of Z w defined by 
?t 



60 

R = {x (xi) i . 

< WIC 
then 

I LI - I RI -

31 < 
0 

)t --

• 
• 

X =1 
i 

X =0 
i 

if 

(for instance L = 
1 

L(io), where L(io) = {xlxl..=l 
WJt, 

Moreover 

by the continuum hypothesis). 

-L = R ::::Z 
W)c-

From this it also follows that 

• 

·. a,rk: Theorem 11 does not hold for an arbitrary cor. 

Bx.ample: X = W(n) U [0,1] (ordered union) 

S(X) = r2+w 

>w +l (=f2+1) 
d 

< = n>. 

• 

i > i } 
- 0 

and 

• 



CHAPTER IV 

Literature and additional remarks 

§1 

(i) Sierpinski [1] and Cuesta Dutari [s] proved that every ordered 

set of cardinal number <">t 
= \) is similar to a subset of Z • See also 

Sierpinski [3] , p. 460. 
w 

V 

This result was already obtained in Hausdorff 
w 

, p.182 (where in-

stead of Z a set 
wv 

following assertion 

of the f Ol"Jfl { 0 1 1 '2} V is used). In fact, even the 

holds: If H 
a 

is the subset of Z 

of all sequences (x.). with the 
l. l. < w 

wa. 
property that there 

which consists 

• 1S 
a. 

such that x. =land x.=0 for i> 1
0

, then every ordered set 

some i 0 < w
0

; 

of cardinal 
li 1 0 l. 

number<~ is similar to a subset of H (in this case H is said to = Cl Cl Cl 

was ordinal numbers 

a of the first kind and by Gillman [1] for ordinal numbers a of the 

second kind. (The result of Sierpinski is also a consequence of his 

theorem, that HB+l is an n
8
+1 -set and a theorem proved in Hausdorff 

both these 

facts are proved, in a very short way, by Mendelson [1] . 
If one uses the generalized continuum hypothesis, it is easy to see 

that I H I = It- . 
a CL 

In this connection it should be observed that in general it is not 

true that a cor X, such that imbedded topologically 

. z* in Z or in . 
WV WV 

For instance, X = Z 
w 

into z* (in z and 
wl wl 

both of an increasing 

of type w). 

cannot be imbedded 

are no 

topologically into Z or 
w 

points which are th~ limit in z* there 
wl 

sequence of type wand of a decreasing sequence 

' 

(ii) It was observed in Ch.I, theorem 14 that each Z 
a 

is a continuous 

image of z
8 

subset of Z 
a 

if a<B. It can also easily be proved that each closed 

is a retract, i.e. a continuous image of z .. 
a 
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On the other hand it is by no means true that every compact Hausdorff 

space is a continuous image of sane cor (al though every comp,act metric 

space is the continuous image of Z; cf. for instance Kelley 
w 

166). 

[3] ) , 
This can easily be seen by the following argument (de 

which might be useful also in other cases; 

1. In a cor every sequence has a convergent subsequence. 

[1] 1 p. 

Groot 

2. The property '' every sequence has a convergent subsequence'' is 

invariant under continuous mappings. 

3. In the Stone-eech compacti fication BN of the natural numbers N 

the closure of each infinite subset of N is homeomorphic to SN, 

and consequently N has no convergent subsequence. 

This means that SN is not the continuous image of any cor. The same 

is true for each space which contains SN as a subset. Thus for in

stance the topological product X of continuous many spaces x1 (!Xii~ 2) 

is not the continuo,us image of any cor. Taking all X. = {0,1} or all 
l. 

x
1 

= ,_ (the unit-interval of real numbers) we obtain a zero-dimen-

sional compact space and a connected, locally connected compact space 

respectively, which are not the continuous image of any cor. 

(iii) The well-known theorem of Hahn-Mazurkiewicz states, that for a 

space P to be compact, connected, locally connected, and metric, it is 

necessary and sufficient that P be the image of the unit interval of 

the real numbers under a continuous mapping into a Hausdorff space 

(cf. for instance Hocking-Young [1] , p.129). This includes the re

sult that, for locall:V connected metric compacta, connectedness and 

pathwise connectedness coincide. According to Marde§ic [1] a general

ization of these results to non-metric spaces is not possible; i.e. 

1. If a space X is said to be ''connected by ordered continua'' pro

vided, for each p,air of points x0 ,x1 E. X there is a connected 

cor C and a continuous map~ : C ~ X which maps the end-points 

of C into x0 and x1 respectively, then there exists a locally 

connected compact Hausdorff space which is connected but is not 

''connected by ordered continua''. 

2. There exist connected and locally connected compact Hausdorff 

spaces which are not the continuous image of any connected cor. 
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An example has been given in (ii). Other examples of such spaces 

are given in Mardesic [2] • 

(iv) Mardesic [2] proves the following theorem: Let X be a continuwn 

(i.e. a connected compact Hausdorff space) and Can ordered continuum 

(i.e. a connected car) and let I denote the real line segment; now,if 

there exists a continuous mapping of C onto Xx I, then X has the Sus

lin property. (A topological space Xis said to have the Suslin pro

perty if each family of disjoint open sets of Xis at most countable.) 

From this it follows among other things that I is the only non-degener

a te ordered continuum C which admits a continuous mapping C + C x C on

to its square. 

Mardesic and Papic [1] consider the class K of spaces which are con

tinuous images of ordered continua. A characterization is given of 

those product spaces AX (of non-degenerate continua 
a£ a X) which 

a 
belong to K. In fact, in order that such a product space X 

a e: A a 
(jAI >l) be the continuous image of an ordered continuum it is neces-

sary and sufficient that all X 
a 

be metric Peano continua and that 

in this case the product space is itself a Peano continuum 

and thus a continuous image of I. 

Treybig [1 generalizes part of this result to the case in which the 

factors need not be connected; theorem: if each A and Bis a compact 

Hausdorff space which contains infinitely many points and A x B is the 

continuous image of a compact ordered space, then both A and B have a 

countable base (and so are metrizable). 

(v) Marde§ic [3] proves that the inverse limit of a monotone inverse 

system of ordered continua is itself an ordered continuum. Moreover 

each ordered continuwn is the inverse limit of a monotone inverse 

system, consisting only of arcs. 

If T is a continuum, then a fi.ni te sequence (U1 , ••• , Un) of open 

sets U. in Tis called 
1 

a ''chain'', if u.n U. ~ 0 if and only if 
1 J 

I i- j I ~ 1 • T is said to be a ''chainable continuum'' if every open cover-

ing of T admits a chain-refinement (u1 , •.. ,U ); and if . n 
covering of T admits a chain-refinement with connected 

every open 

U., then T 
1 

is 
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called ''strongly chainable''. It is proved that the following three 

classes of spaces coincide: 

(a) ordered continua 

(b) strongly chainable continua 

(c) locally connected chainable continua. 

§2. 

(i) Bilenberg [1] says a topological Hausdorff space (X, :7) to be an 
., 
ordered topological space'', if X is an ordered set with ordering < , 

such that J c:. 'J < • He shows that a connected topological 

'' '' ( · f T h is orderable i.e. there is an ordering< or ·, sue 

and only if T xT \{(t,t) ft i1. T} is not connected. 

space T=(T ,,) 

that Jc 'J ) i :f 
< 

Moreover two orderings of a connected topological space are equal or 

inverse to each other. 

(ii) Banaschewski [1 considers ordered spaces (X, 7 ) and their com-
< 

pact extensions 6 (x,J<) which are obtainable by means of Dedekind 

cu ts. (Rdnark: Mac Neil le [1] , § 11 proved that every partially order,,, .. 

ed set S can be completed by means of ''Dedekind cuts''; cf. also Birk

hoff [1] , p.58. Addition of a least and a greatest element, if neces

sary, then leads to a compactification of S.) o(X,7<) is connected if 

and only if (X, <) is dense, i . e. Y x • y E X (x < y) 3z E. X: x < z < y. If 

(X,<1 ) and (X,<2 ) are dense and o(X,<
1

) and 0 (x,<
2

) are homeomorphic, 
' 

then <1 and <2 are either identical or inverse to each other. (It 

should be observed that (X, <1 ) and (X, <
2

) may be homeomorphic if 

(X, < 1 ) is dense and (X, < 2 ) is not; example: (X, < 
1

) = O, 1 . '- { ½} , 
(X , < 2 ) = ( l , 1] U- [ 0 , ½) ) . 

(iii) A '' '' cut point in a connected space Xis a point r such that 

X '\ { r} == A u B where A and B are separated, i . e. A n B = A" B = 0. 

Following Hocking and Young [}.] we denote by E (p,q) the subset of X 

consisting of the points pen q together with all cut_points r of X 

that separate p and q, i . e . X , { r} = A u B ; A n B = A n B = ~, p E. A , 

q f. B. If a relation < is defined in E(p,q) such that, for all 

x,y 6 E(p,q), x < y if and only if x=p or x separates p and y in X, 

then it is easily proved that< is a simple order in E(p,q). The fol-
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lowing theorem is known (cf. for instance Hocking and Young [1] , p.53): 

If Xis a compact connected Hausdorff space with just two non-cut 

points a and b, then X = E(a,b) and the order topology in E(a,b) coin

cides with the topology in X. In other words! Xis orderable. 

(iv) Any compact zero-dimensional metric space is homeomorphic-to a 

subset of the Cantor set (cf. for instance Hocking and Young [1, p. 

100), and so is orderable. 

This in particular holds for countable compact Hausdorff spaces,since 

these spaces have a countable base (and so are metrizable) and are 

zero-dimensional; in this connection, it may be remarked that, accord

ing to Mazurkiewicz and Sierpinski [1] , every countable compact Haus

dorff space is homeomorphic to a well-ordered space of a type which 

has the fo1111 
0. 

w .n+l, where a is a countable ordinal number and n is an 

integer> O. 

Lynn [1] observes that even a zero-dimensional separable metrizable 

space is orderable. 

(v) In Herrlich [1] several conditions are found that a topological 

space be orderable. A space is called end-finite if no connected sub

set has more than two non-cut points. From the results obtained by the 

author the following will be mentioned. 

1. A connected T1 -space is orderable if and only if it is end-finiti 

and locally connected. 

2. A totally disconnected metric Lindelof space is orderable if and 

only if it is zero-dimensional. 

3. A countable space is orderable if and only if it is metrizable. 

Also conditions are found that a space is locally orderable, which 

means that every point has an orderable neighbourhood. 

§3. 

(i) It is known that a linearly ordered topological space is complete

ly no:r,nal; cf. Bourbaki [ lJ . 
Ball [1] shows that every open covering U of a linearly ordered space 

x, which is such that each point of Xis an element of at most count-
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ably many sets of U, has a 1 ocal ly finite refinement. In p,arti cular, 

Xis countably paracompact .. 

(ii) Ball [2] gives three sets of conditions, each of which implies 

that a connected linearly ordered space is separable. 

(iii) A space Xis said to have the fixed point property, if every 

continuous map of X into X leaves a point fixed. It is known that a 

connected cor has the fixed point property. Cohen [1] shows that the 

direct product of two connected cor's has the fixed point property. 

§ 4. 

)t-0 
(1) Novak [1] constructs six ordered continua of power 2 containing 

saples the sets of occurring point characters are {c00 ,c
01

},{c
00

,c
10

}, 

{cOO,cOl'clO'cll} • {cOO'COl'cll} ' {cOO'clO'cll} ' {Coo'c11} • 

(If w1 and wj are regular initial ordinal numbers, then a point is 

said to have the character c .. if it is the limit of an increasing se-
lJ 

quenc,e and of a decreasing sequence of type w i and w j respectively.) 

Misik [1] constructs such a continuum with a set of point characters 

{cOO,cOl'clO} . 

Novotny [1] shows that one of the examples of Novak is similar to 
tt ,, 

the ultra continuum constructed by Bernstei 

seven examples of ordered continua of power 2 

[1] . He al~o 

and density 2 

• 1ves 
0 

• 

(ii) Novak [2] 
cor) C. 

• considers an ordered continuum (that is, a connected 

a. He calls a system P of closed (non-degenerate) intervals a ''dyadic 

'' partition of C, if 

1. V x, Y f. P : X n Y = Y or X n Y = X or I x n YJ ! 1 

2 .. Ce P 

3 • \/ x c. P 3x 1 , x2 , P : x1 u x
2 

= x , I x
1 

n x
2
j = 1 

4. If {x1 } i E 1 is a decreasing (transfinite) sequence of inter

vals x:1 , P, then Q x1 , P or I Q x
1 
I = 1. 

In each dyadic partition the decomposition {X
1

,x
2

} of an interval • 
XE- P according to 3. is clearly unique. If one puts x

1 
n x

2 
= { p} , 
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' 

then pis called ad-point. 

Now, it is easily shown that Pis a dyadic partition of C if and only 

if Pis the system of non-degenerate intervals which are elements of 

the members of a a-sequence V (cf. theorem 5 of the paper of Novak). 

b. If A is an interval in Cora point, which is nod-point, then 

the subsystem P(A) of P consisting of all XE. P with the property that 

AC. P, is clearly well-ordered; the ordinal number of this system is 

called the order of A.If Ais ad-point then there are two well-ordered 

subsystems P 1 (A) and Pr(A) of P consisting of intervals which contain 

A; the greater of the two ordinal numbers of P (A) and P (A) is called 
1 r 

the order of A. The supremum of the orders of al 1 P(X) , XE. P, is call-

ed the o~der of the dyadic partition P. 

Now, it can easily be proved that the order of a dyadic partition P 

is equal to 0(Vp), {see Ch.I,p.18),if VP is thee-sequence, which cor

responds to V. 

c. Several other theorems, based on these ideas, are proved. Finally, 

it is shown that every ordered continuum of power 

least one point with character c 00 if and only if 

d. Novak does not consider the infimum of all orders of dyadic par

titions (which would be the splitting degree 0, as defined in Ch.I). 

Novotny [2] proves for an ordered continuum C the existence of a par

tition of order at most w , where "Jt is the density of C. 
\) \) 

(iii) J. Novak [3] defines the following sets of cardinal numbers for 

an ordered continuum C. 

P = { le j3 a e. C: a has point character c 
a po 

Q = { ft' 13 a 6 C: a has point character c 
a po 

and/t
a 

and )C' 
n 

I = { 7t 13 isolated subset D of C, such that 

= min( "Jt- , Jt ) } 
P a 

= max ( 7t- , ~ ) } 
p 0 

I'= { ~ 13 disjoint system of non-degenerate intervals in C, with 

cardinal nwnber ft} 
M = { rtl3subset D of C, such that D = C, lnl = It} 
R = { ~ 13 dyadic partition of C with cardinal number /t} . 
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If now p,q,s,i,i' and r 2 are the respective suprema of the sets P,Q, 

S,I,l' and R, and if m and r 1 are the respective minima of the sets 

Mand R, then it is proved that 

and 

and 

s < r < r < m = max ( i , r 1 ) = max ( i , r 2 ) 
.. 1- 2-

+ 
r 2 ! s , 

where s + is the least cardinal number, such that )t < s + for every 

E. s .. 
It is shown that R = {s} or R = {s+} or R = {s,s+} . M. Novotny [3] 

proves several other relations of this kind; for instance lcl~2q. 

(iv) Erdos and Rado [1] prove, using the generalized continuum hypo

thesis, the following theorem: 

A cardinal ntlmher )t has the property that for every ordered set 

S of power )t 

1. there is subset • s of type a in w)t-

or 2 • there is a subset in s of type * wit 
3. for all w)t there exist subsets or a < 

* type a , 

if and only if Jf= sup It is regular. 
< )t m 

• in S, both of type a and of 

(i) Arens ·[1] discusses order-homogeneous connected cor' s. For in

stance, it is proved that the lexicographically ordered product Lw 

is an order-homogeneous connected cor, if the same is true for L. 

Terasaka. (1] proves that all z* are order-homogeneous. 
wa 

(ii) According to Hausdorff [1] , p.179-181 there exist ordered sets 

of arbitrary high power with the property that all open intervals are 

similar. 

Va.zquez Garcia and Zubieta Russi [3] show that such a set has at 

most the cardinal number of the continu,,m if it is complete. 
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(iii) It is a well-known fact (cf. for instance Kamke [1] ) that an 

ordered set Xis similar to the set of the real numbers if it has the 

following properties. 

1. there exists neither a least, nor a greatest element 

2. X is complete 

3. X has a countable dense subset. 

From this it easily follows that an ordered space Xis homeomorphic 

to the space of real numbers if 

1. Xis homogeneous 

2. Xis connected 

3. X has a countable base. 

(iv) It is easily seen that a count-

able base admits continuous many autohomeomorphisrns. For, if there 

are countable many isolated points, the assertion is obvious. In the 

other case the assertion follows from the fact that there is either 

a separable connected subspace, which is consequently homeomorphic to 

an interval of the real numbers, or the space is zero-dimensional 

and so is homeomorphic to the Cantor set. 

Jonsson [1] and Rieger [1] both give an example of an infinite com

pact ordered zero-dimensional space such that the only homeomorphism 

of S onto Sis the identity mapping. 

In this connection it may be observed that de Groot [1] proved the 

following theorem: There exists a family {F} y 
of 2~ zero-dimensional 

subsets of the real line, such that no F can be mapped locally topo
y 

logically into or continuously onto itself or any other F , ; if F 
y y 

is mapped into itself, we must exclude 

the occurring sets 

the existence will 

F 
y 

be 

are not compact. 

proved of a cor 

trivial maps. However, here 

In de Groot and Maurice [1] 
of continuous power and with 

continuous weight which is rigid, i.e. which has no autohomeomorphisms 

except the identity mapping. 
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