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CHAPTER 1

INTRODUCTION

1.1, SOME TYPICAL PROBLEMS

Many books about probability and statistics mention the weak and strong
laws of large numbers for samples from distributions with finite expectation
only. However, both laws also hold for distributions with infinite expecta-
tion and then the sample average tends to infinity with increasing sample
size. One would expect a gradual increase of the average with the size of
the sample. In general, however, this proves to be wrong as can be seen in
plots of averages of simulated samples. See MIJNHEER (1968). These plots
show that the average takes a large jump upwards from time to time and de~
creases between the jumps. These jumps are due to large observations. This
surprising behavior of the sample average constituted a starting point of
the present study.

The first problem that arises in this connection is that, in general,
there is no simple expression for the distribution function of the sum of
two independent random veriables. Only for stable random variables do we
know the distribution of the sum of an arbitrary number of independent and
identically distributed random variables. Therefore we shall mainly consie-
der stable random variables. In some cases we also consider independent and
identically distributed random variables with the property that suitably
normalized sums of these variables have a limiting distribution, which is
then necessarily stable.

In the remainder of this section we describe a few typical results con-
cerning the behavior of the sample average. Though these results hold for a
wide class of distributions, including certain stable distributions, we asw

sume here, for the sske of simplicity, that X Xe,.@» are independent and

19
identically distributed random variables with common distribution function

Flx) =1 -%x" for x> 1and 0 < ¢ < 2. The moments of these random vari-
ables satisfy

EX? < o for p <o
and

EX? = ® for p 2 a.



We distinguish three cases, viz. 0 < a < 1, a = 1 and 1 < a < 2. Here we
give only a rough description of the behavior of the sample average. The
exact formulation will be given in the theorems and remarks in the follow-
ing chapters. There one can also find the values of the constants cj(a) and

cz(a).

The case 0 < g < 1

Theorem 6.2.1 implies that

X1+...+X

)(T-G)/a
n1/a

= ¢, (a) a.8.

= (2log log n 1

lim inf
e

Roughly speaking this means that the sample average tends to infinity at

least as fast as

n(1—a)/u -(1—a)/a9

c1(a) (210g log n)

while it approaches this lower bound infinitely often. The results in the

theorems 8.1,1 and 10.2.1 show that, with probability 1,

X 4. ..4% 0] for ¢ > O
lim sup 7 ! (n ) =
1/a 1+e) /o ’
n-e n ' (log n) - for e = 0
which implies that the sample average will exceed n(1"a)/a(log n)1/m infi-

nitely often. The influence of max(X1,...,Xn) on the partial sums Xytoo 4%
is studied by DARLING (1952). It appears that the maximal term is the domi-

nating one in the partial sum. See also theorem 10.2.1.

The case o = 1
For this case we find (cf. theorems 6.3.1, 8.1.1 and 10.2.1)

X1+"'+Xn
lim inf  gropepregr—
e (2/7)n log n
and
X .. 4% 0 for e > 0
. 1 n .
lim sup =

1+
N+ (2/m)n(log n) € o for € = 0



with probability 1.

The case 1 < a < 2

Now the random variables have finite expectation. By the law of large
numbers, the sample average converges with probability 1 to EX1. Because the
variance is infinite the classical law of the iterated logarithm does not
hold. However, as a consequence of theorem 6.4.1 we have

X+, .+X ~ nEX
lim inf 1/a1 = (a11)/a
oo n ' “(2log log n)

cz(a) a.8.

and by theorems 8.1.1 and 10.2.1 it follows that, with probability 1,

X.+...+X_ - nEX 0 for e > 0
1 n 1

)( 1+e)/a

1lim sup
nee

1/a
n / (log n o for e = 0

1.2. ORGANIZATION

As explained in section 1.1 stable distributions play an important role
in solving our original problem. The definition and basic properties of
these distributions will be given in chapter 2. The general theory of stable
distributions was initiated by LEVY. For examples and applications we refer
to FELLER (1971). In other cases too, we shall refer to this or other re~
cent books, rather than to the original literature. For example, for the
proof of theorem 2,1.2 we refer to BILLINGSLEY (1968), even though this
theorem was already well-known long before 1968.

The explicit form of a stable distribution function is known only in a
few special cases. However, expansions for the tails are known in general.
These expansions are given in theorem 2.1.7. Sometimes, we can give an asymp-
totic expression for one tail of the distribution function of a (non-normal)
stable random variable in terms of the tail of a standard normal distribu~-
tion function. The corresponding random varisbles are called completely
asymmetric. This relation between the tails of the distribution functions
will be applied in many places.

There exists an extensive literature on stable random variables and
stable processes. Many authors consider only special cases. Thus, there are

papers where the stable random variables are assumed to be either symmetri-



cally distributed or positive. Other authors exclude the case a = 1, be~
cause in this case we have to take a shift into consideration. In chapters
4,5,6 and 8 we shall extend some theorems which are known only for such
special cases. In chapter U for example, the theorems in the first two sec-
tions are known. In view of the techniques applied, it has been conjectured
that the theorems in the last two sections would also hold. We prove that
this is indeed the case.

As can be seen in the table of contents, many chapters are divided in
four sections, viz. called: the case o = 2, the case 0 < o < 1, the case
o = 1 and the case 1 < o < 2. Here a denotes the so-called characteristic
exponent of the stable distribution. The reason why we have to consider
these cases separately is that the left tail of the distribution function
of a completely asymmetric stable random variasble differs in these four
cases.

In chapter 3 we shall discuss some properties of the Wiener process
and other stable processes. In sections 3.3 ~3.6 we prove some technical
lemmas for the previously mentioned four cases. Section 3.3 deals with the
Wiener process. The lemmas for this case were known before. However, in the
proofs quantities were used which are not defined for other stable processes.
Here we prove these lemmas in such a way that the proofs for the other sta-
ble processes follow the same pattern.

In chapters 4 and 5 we establish generalized laws of the iterated log~
arithm for completely asymmetric stable processes. The cases o = 2 and
0 < a < 1 are already proved in the literature. The case 1 £ a < 2 for
small times can be proved by using the lemmas of sections 3.5 and 3.6 For a
" Wiener process the theorem for large times easily follows from the theorem
for small times. For other stable processes separate proofs are necessary
for small times and for large times. These proofs are very similar however.
The lemmas in chapter 3 are formulated in such a way that they can be ap~
plied directly in the proofs for smell times. For that reason the theorems
for small times are considered first.

In chapter 6 we prove similar theorems for partial sums of independent
and identically distributed completely asymmetric stable random variables.
The proofs are partly derived from the theorems of chapter 5.

The law of the iterated logarithm describes the local behavior of the
sample paths near a fixed point. In chapter 7 we establish Hdlder-type theow

rems for the Wiener process and completely asymmetric stable processes.



Up to this point, we essentially comnsidered only completely asymmetric
stable processes or completely asymmetric stable random varisbles. In chap-
ter 8 we prove laws of the iterated logarithm for arbitrary stable processes
and random variables. In the special case of completely asymmetric distribu-
tions these theorems supplement the results obtained in previous chepters.

Chaepter 9 deals with functional laws of the iterated logarithm. In sec-
tion 9.1 we summarize some results for the Wiener process. In the other sec~
tions we derive similar theorems for completely asymmetric stable processes.

As explained in the introduction our starting point was the behavior
of the sample average for random variegbles with infinite moments. Up to
chapter 9 we mainly considered stable processes or stable random variables.
In section 10.1 we quote results for non-stable random veriables with asymp-
totically normal partial sums. Finally, in section 10.2 we discuss non-sta-

ble random variables with asymptotically stable partial sums.

1.3. ABBREVIATIONS AND CONVENTIONS

Here we explain some conventions and notation which are used through-

out this monograph.

Asymptotics
£(t) = 0(g(t)) for t - tys if If(t)g_1(t)| is bounded in some neighborhood
of to;

£(t) = o(g(t)) for t - tys if 1im f(t)g"(t) = 03

ot
£(t) ~ g(t) for t >t , if lin £(t)g” (t) = 1.

tot

0

Probability

(2,F,P) denotes a probability triple. 9 is the sample space, F is a o-field
of subsets of Q and P is a probability measure on F. An element of Q is de~
noted by w. Random variables are denoted by capitals. X d Y means: X and Y

have the same distribution.

Functions
Let f be a function on the real line, then

f(t0+) = lim f(t) and f(tou) = lim £(t).
tht thty
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. + o .
The functions f and £ are defined by

f+(t) = max(0,f(t)) for all real t
£7(t) = max(0,-f(t)) for all real t.
Abbreviations
8.S. almost surely
iff if and only if
i.i.4. independent and identically distributed
1.0. infinitely often
L.I.L. law of iterated logarithm
r.V. random variable
w.p.1 with probability 1
i} end of proof.

1.4, SOME PROBABILITY THEORY

Many theorems in the following chapters are of the type P[An i.0.] =
= 0 or 1 according as some conditions are fullfilled or not. The usual way
to prove theorems of this type is to apply the Borel-Cantelli lemma (cf.
BREIMAN (1968a)).
LEMMA 1.b4.1. Let A1,A2§.ee be a sequence of events.
a. If | PLAJ < @ then P[A_i.0.]1 =0
b. If the events {A} are independent and if ) P[A, ] = « then PLA, i.0.]1= 1.

Application of this lemma is made difficult by the assumption of indew
pendence in part b. One usually constructs a new sequence of independent
events out of the given sequence and applies part b to this new sequence.
We shall proceed in a different way and use the following extension of part
b. The proof of this extension can be found in SPITZER (196k4).

LEMMA 1.h.2. If ] PIA ] = = and
)
P[A.AAk]
20 e J
lim inf J“1nk“1
o 2

[} Pra 1l
k=1 g

A

Cy



then PLA_i.0.] 2 .

The following result is well-known (cf. BREIMAN (1968a)).

LEMMA 1.4.3. Let S.,S,,... be successive sums of i.7.d. random variables,

1?7
such that max P[S -8. <« 0] = ¢ < 1. Then

1€j<n J

Pl max S. > x] < (1—c)-1 Ps > x].
1<j<n ) n

In sections 3.3 through 3.6 we prove similar lemmas for stable pro-

cesses.

Let (Q,F,P) be a probability triple and let {Xt} be a collection of
r.v.'s indexed by a parameter t in some interval I < IR. We call this col~
lection a stochastic process and write {X(t) : t ¢ I}. F(X(s), 0 s < t)
is the o-field spanned by X(s) for 0 < s < t. A process {X(t) : 0 £t < =}
has independent increments if for any t > 0, F(X(t+s)-X(t), s > 0) is inde~
pendent of F(X(s), 0 £ s < t). We say that the process has stationary incre-
ments if the distribution of X(t+s)-X(t), s = 0, does not depend on t. In
the study of sample path properties of stochastic processes (that is the
study of X(.,w)) we need the following concepts.

DEFINITION 1.k4.1. A non-negative random varisble T will be called a stop=-

ping time if for every t z 0,
{T <t} e F(X(s), 0 £ 8 £t).

Intuitively, we can say that a stopping time T only depends on the sto-
chastic process up to time T. A process satisfies the strong Markov proper-
ty if the process starts afresh at any stopping time T. To be more precise,
let F(X(s), s £ T) be the o-field of events B ¢ F such that B n {T < t} ¢
¢ F(X(s), s s t) for all t = 0. Then the strong Markov property holds if,
for any stopping time T, the process {X1(t) : 0 <t < o}, defined by

X, (t) = x(T+t) - x(T),

has the same distribution as {X(t) : 0 £ t < »} and is independent of
F(x(s), s s T).



1.5. SOME REAL ANALYSIS

A positive function L, defined on [xo,w) (where x. is some positive

0
real number), is said to be slowly varying at infinity if, for all t > O,

lim L(tx) L’1(x) =1,

K00

An exposition of the theory of slowly varying function can be found in
FELLER (1971). The next theorem gives a representation of slowly varying
functions. See for proof FELLER (19T1).

THEOREM 1.5.1. 4 function L varies slowly at infinity iff it is of the form
x
L(x) = a(x) eXP(f vy ely) day),
1

where e(x) ~ 0 and a(x) + a € (0,°) as x + «,

EXAMPLES
a. L(x) = (log x)P for x > 1 and p > 0;
P
b, L(x) = e(log x) : for x > 1 and 0 < p < 1;
c. L{x) = e(log log x) log x for x > e.

Let f be an arbitrary finite real-valued function on some interval

[a,bl. Let P = {a = Ky S Xq < .. <x = b} be a partition of [a,b]. We
define
n
+ +
8pf = .Z (f(xi)-f(xi_1))
i=1
and
e n e
8,f = .z (f(xi)_f(xi_1)) .
i=1
Then
STe - s0f = £(b)-f(a)
pt TRt T THES.

We define the positive variation of f over [a,b] (resp. negative variation)



by V+f(b) = gup S;f (resp. V £(b) = sup S;(f)). Similarly, for any
P

+ - . .. .
t e [a,b], V £(t) (resp. V £(t)) will denote the positive {resp. negative)

variation of f over [a,t]. If f is of bounded variation over [a,b] we have
+ -
£(t) - £(a) =V £(t) - V (t) for all t ¢ [a,bl.

To conclude we present a short survey of the main properties of non-
decreasing functions. For the proofs we refer to the book of SAKS (1964).

Let A be the Lebesgue measure on [0,1].

THEOREM 1.5.2. Let f be a finite non-decreasing function on [0,1]. Then

a. f may be represented uniquely as fa+fs, where fa s absolutely continuous
and T, 18 singular.

b. the pointwise derivative f of T exists almost everywhere and is a version
of the Radon-Nikodym derivative of f, with respect to A.

@ B

Note that this implies T = fa'

REMARK 1.5.1. A finite singular non-decreasing function f on [0,1] has the
following property. For all € > 0, there exist a finite number of disjoint

intervals (xi°yi]’ i=1,...,n, such that

n
To Jooq Magayy) < e

. n
2. f increases on Ui_

1 (xigyi] by less than €.

Moreover, we can find, for all € > O, a number m = De and a set Bf, which
. . . .- . ] s
is a union of intervals of the form (Jm.1,(3+1)m ), such that X(Bf) < g

and f increases less than ¢ on Bf.

Let f be an arbitrary finite real-valued function on [0,1]. For every

positive number m we define the fumction ﬂmf by
o= .= .
ﬂmf(Jm )= f(jm ) for j=0,,..,m
and linear on [jm"1a(j+1)mm1] for j=0,...,m=1.
The following lemma is an immediate consequence of theorem 1.5.2.b {cf.

SAKS (196L4)). It may be found in WICHURA (1973), for m = % and n - o, with

a proof based on the martingale convergence theorem.

LEMMA 1.5.1. Let f be a finite non-decreasing function on [0,11. Then the

potntwise derivative of m T converges almost everywhere to f = T, for m » o,
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CHAPTER 2

STABLE DISTRIBUTIONS
2.1. GENERAL THEORY

In this chapter we summarize the well-known theory of stable distribu~
tions. The complete theory of stable distributions has first been given in
GNEDENKO-KOLMOGOROV (1954). Most results can also be found in general books
on probability, for example BREIMAN (1968a), LUKACS (1970) and especially
FELLER (1971) and IBRAGIMOV-LINNIK (1971). For further details we refer to

these books.

DEFINITION 2.1.1. The distribution function F is called stable if for each

n, and i.1.d. random varisbles X .,,X.n with common distribution function

100"
F, there exist constants a, > 0 and bn such that the random varisable

1

1. - o, -
(2.1.1) a, (X +xn bn)

1
has distribution funection F.

THEOREM 2.1.1. For every stable distribution there exists a unique constant

o e (0,2] such that a = n1/aa

PROOF. See FELLER (1971). [0
The constant a is called the characteristic exponent or index of the stable

distribution. If (2.1.1) holds with bn = (0 the distribution is called strict-
ly stable.

THEOREM 2.1.2. In order that a distribution function F be stable, it is nec-

essary and sufficient that its characteristic function is given by

ivt - clt1®{1 - iBsign(t) tan(na/2)}  if o # 1
(2.1.2) log f(t) =

Liyt - ¢lt] - iB(2/n)ct log |t| if a =1,

N
—

where a, B, vy and ¢ are real constants with ¢ 2 0, 0 < o £ 2 and |B|
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PROOF. See GNEDENKO-KOLMOGOROV (195k4). [

Here o is the characteristic exponent.

Because y and c¢ merely determine location and scale we shall consider
only stable distributions with y = 0 and ¢ = 1. Note that by doing so we
are excluding the degenerate case ¢ = 0. From the representation of the
characteristic function in theorem 2.1.2 it follows thet the distribution
function F may be differentiated an arbitrary number of times. Especially
it follows that each stable distribution has a continuous density. We shall
write F(.;0,R) resp. p(.3a,8) for the distribution function resp. density
of a stable lew with parameters o, B, vy = 0 and ¢ = 1. Moreover, the choice
Yy = 0 implies that we consider stable random variables with expectation e-
qual to zero (when it is finite). In case B = 0 the distributions are sym-
metriec. Distributions with |B| = 1 are commonly called completely asymmetric
stable distributions. In case 0 < o < 1 the stable laws with |B| =1 are one~-
sided, i.e. their support is [0,») in case 8 = 1 and (-=,0] in case B = -1.

Using theorem 2.1.2 one easily proves the following theorems.

THEOREM 2.1.3. Let X
F(.30,8). Then

1,...,Xn be 7.7.d. with common distribution function

d 1/a .
Fos =
X1 +Xn n X1 if o # 1

and

e

X +...+Xn«(2/n)8nlog n=nX if o = 1,

1
Theorem 2.1.3 implies that the norming constant bn is equal to O for
o # 1 and (2/7)Bn log n for o = 1. Because b may be unequal to zero for
a = 1 the proofs of many theorems for this case are more delicate than for
o # 1. For that reason many authors do not give a detailed investigation of
the case o = 1,

THEOREM 2.1.k. Let X, and X, be ©.7.d. with common distribution function

¥(.3058). Then for arbitrary positive s and t

S1/QX1 . t1/04X2 d (s+t)1/ax1 if a1
and

d
s X, + tX. = (s+t)X1 + (2/m)B{(s+t)log(s+t)-slog s - tlog t} Zf a= 1.
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THEOREM 2.1.5. Let X be a random variable with distribution function F(.;a,B).
Then there exist i.1.d. random variables Y1 and Y2 with common distribution
function F(.;0,1) such that:

in case o # 1
d
X = pY1 - qu,
where p,q > 0, p™+a® = 1 and p®-q* = B;
and in case o = 1

d
X = pY,+(2/m)plog p - q¥,~(2/m)qlog q,

where p,q > 0, ptg = 1 and p-q = B.

EXAMPLES. There are three cases where p(.;a,B) is known explicitly.

2 1
1. Normal distribution f£(t) = e v p(x;2,0) = an”2e™*
. . . -1t -1, 2 -1
2. Cauchy distribution f(t) = e p(x;1,0) = 7 (x"+1)" .
1
4 —m
3. £f(t) = e 21t plx;3,1) = (2nx3)'2e 2% por x > 0.

Let X be a r.v. with distribution function F(.;3,1) and let U be a r.v.
with the standard normal distribution. Then there exists the following rela-

tion between these random variables.
(2.1.3)  x&y2,

ZOLOTAREV (1966) has given integral representations of distribution
functions of stable laws. In the following theorem we give the expansions
of the densities in the tails of the stable distributions. Because
1=F(=x30,8) = F(xja,~8) or p(-x;0,8) = p{x;a,~B) it is no restriction to as-
sume B 2 0. A complete summary of the asymptotic formulas for stable densi-
ties has first been given by SKOROHOD (1961). The proofs are also given in
the book of IBRAGIMOV and LINNIK (1971). Teble 1 and theorem 2.1.6 give the

expansions for both tails.
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TABLE 1
B =1 0<B <1
0<oa<1|x40 IV |x>® I |x+=e I |x=+we I
o= 1 x+-o V |x>® II | x> -0 II"|x=>e II
1<a<2 |x+-o VI |x+® IIT | x+ -0 III |x- III
o =2 K VII X > ©
THEOREM 2.1.6.
. v ~-on
I. p(xjo,B) = p— Z An x for x > 0,
n=1
where
n+1
(2.1.4) Ay = “(:LLIF‘HE:‘Q (1+32tan2(1ra/2))n/2sin nl(na/2) +
+ arctan(Btan(ma/2))].
1 ¥ - -2
II. p(x+(2/m)Blog x31,8) = peon Z An x o+ 0(x ) for x + «,
n=1
where
(2.1.5) A = ;117 Im { e_ttn(i-fiB—(Z/n)Slog t)%at.
: 0
1 N —-on ~(N+1)o-1
III. p(x30,8) == J A x + 0(x ) for x =+ o
X n
n=1
where A s given by (2.1.4).
1 1 1 1
IV, plxsa,1) = (2/a)%(2n) 2(2B(a))? (A(a)/2) 8" "2(@)/2,
-B(a)x_x(a) _):é‘_"l -
e L1+ 0(x )] for x ¥ 0,
where
(2.1.6)  Aa) = a(1-a)”"
and o o
(2.1.7)  Bla) = (1-a)a'™® (cos(ra/2)) .



a3 2 g"x
V. p(~x31,1) = 2 (ﬂ/h)(v%g) exp{ (rx/4)~(2/me) " }-
—{-X(L-s)
{1+ 0(e )} for x + »,

VI, pl-xsa,1) = (20)3(2m)"2(2B(a))P (A(a)/2) 2k 1M @)/2,

B(a) -i(a) A%%l +g
LT 01+ 0(x )] for x » =,
where M o) <8 defined by (2.1.6) and
o -l
(2.1.8) B{a) = (ozu-1)oc0L-'1 Icos(na/2)|a~1.
1 X2/l
VII. p(x32,0) = Ve e X for all x.

The formulas in the cases marked by asterisks can be derived from the cor-
responding formulas without asterisks by the substitution of -x for x and
-8 for B.

REMARK 2.1.1. By using Stirling's formula one easily finds a convergent ma-

jorant of the series in theorem 2.1.6 part I. Note that the series

L]

—1;1; DA x ™ in part III of theorem 2.1.6 is divergent. FELLER (1971) and
n=1

BERGSTROM {1952) have given a convergent series expansion for this part of
theorem 2.1.6, See for example FELLER (1971). IBRAGIMOV and LINNIK (1971)
give more terms in the asymptotic expansions of the left tail of the com-

pletely asymmetric stable distributions (the cases IV, V and VI).

From the expansions in theorem 2.1.6 we can deduce the following esti-
mates for the tails of the distribution function. Table 1 and theorem 2.1.7

give a summery of the expansions of the tails of F(.;u0.B).
THEQREM 2.1.7. Let U be the standard normal random variable.

I, II and III.

A

1 -
1= F(x30,8) ~ ~—x

¢ for x » »,

where A, 8 given by (2.1.4) 2f o # 1 and by (2.1.5) 2f o = 1.
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o
2(1-@)]

1 1™
IV.  F(xsa,1) ~ (2/a)?PlU 2 (2B(a))®x for x + 0,

where B(o) <8 given by (2.1.7).

-wx/h]

;
V. Flx;1,1) ~ 2% PLU 2 2(me)”? e for x & =,

N S
2(@—1)]

VI. Fxja,1) ~ (2a)% PIU = (ZB(a))%(—x) for x » ww,

3 -3 -1 ~x2/h
VII., F(x32,0) = P[2%U 2 -x] ~ 7 2(-x)" e for x + ~o,

]

The formulas in the cases marked by asterisks can be derived as in theorem
2.1.6.

PROOF. The parts I up to VI easily follow from theorem 2.1.6 by straight-
forward integration. Part VII is the well-known estimate for the tail of the
standard normel distribution function. A proof of this estimate is given in

FELLER (1957). O
With these estimates the following lemma is easily proved.

LEMMA 2.1.1. Let X be a random variable with distribution function F(.;0,B).
Then

E[x|% < o for all a < a
and

B|x|® = = for all & 2 a.

We shall meke frequent use of the following property of the tail of the

stendard normal distribution function.

LEMMA 2.1.2. Let U be a standard normal random variable. Then for all &

PIU 2 x + a/x] ~ e"® Plu = x] for x » o,
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2.2. DOMAINS OF ATTRACTION

Let X1,X2,... be a sequence of i.i.d. random variables with common dis—

tribution function F.

DEFINITION 2.2.1. The distribution function F belongs to the domain of at-
traction of a non-degenerate distribution function G if there exist norming

constants a_ > 0, b_ such that the distribution of a'1(X +...¥X - b ) con~
n n n 1 n n

verges weakly to G.

We say a random variable belongs to the domain of attraction of a non-degen=-

erate distribution G if its distribution function does.

THEOREM 2.2.1. Only stable distribution functions have non-empty domains of

attraction.

PROOF. See IBRAGIMOV and LINNIK (1971). 0O

NOTATION. By appropriate choice of the norming constants & and bn we may
consider the stable distributions with y = 0 and ¢ = 1 only. We write F
(or X) € D(a,B).

The following criterion can be used for determining whether a distribu-

tion function F is in the domain of attraction of a stable law.

THEOREM 2.2.2. F ¢ D(a,B) Zff
either o = 2 and

f yzdF(y) i8 slowly varying at infinity

lylsx

or 0 < a < 2 and both

() x% [1 = F(x)+F(-x)] = L(x) with L(x) slowly varying at infinity

. . F(-x) 1-B8 -
(27) T )T () T a @ x e

PROOF. See IBRAGIMOV and LINNIK (1971). 0O
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Let F ¢ D(a,B). Then a must satisfy one of the following conditions.

In case o = 2

n f xzdF(x)
|x|za
(2.2,1) = —
a
n

TN
.

in case 0 < o < 1

n L(a )
(2.2.2) 2 — r(1-a) cos(na/2),

a
n

in case o = 1

n L{a )
n 2
(2.2.3) - e .
n
and in case 1 < a < 2
n L(a )
n r{2-a) o
(2.2.4) = gharonr |cos(2 .
n

The other norming constant bn may be chosen as follows:

0
b =4dn a, ff: sin(x/an) ar(x)
n ft: x dF(x)

In all cases it follows that a = n1/a

finity.

for 0

for «

for 1

#

h{n), where h is slowly

varying at in-

DEFINITION 2.2.2. A distribution function F (or a r.v. X with distribution

function F) belongs to the domain of normal attraction of a stable law with

characteristic exponent o (0<as2)if it belongs to its domain of attraction

with 8 = ni/uh(n) where h has & non-zero finite limit for n + «,

NOTATION, F (or X) e DN(ags),

REMARK 2.2.1. One can give necessary and sufficient conditions in terms of

characteristic functions in order that a random varisble belongs to the do=-
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main of attraction of a stable law. See BEILKIN (1968) and IBRAGIMOV and
LINNIK (1971).

REMARK 2.2.2. Let X;,X,,... be i.i.d. e Dy(a,8) with o # 1,2. CRAMER (1963)
has shown that, under some restrictions om the tails of the distribution
function of X1,

-1
1P[an (x,

+...+Xn—bn) < x] - Flxa,B)| = 0(n“1/a) for n +

uniformly in X.

REMARK 2.2.3. Let X1,X be positive i.i.d. random variables with

PORE

(2.2.5) P[X1 2 x] = L(x)x® for x 2 x5 > 0 and o # 1,2,

where L is a continuous slowly varying function. By theorem 2.2.2 it follows
that X1 e D(a,1). By (2.2.2) and (2.2.4) we can take a, such that

(2.2.6) ag I'(1-a) cos(ma/2) = n L(an) for 0 < a < 1
and
(2.2.7) & T(2~a) |cos(na/2)| = (a~1) n L(s ) for 1 < a < 2.

LIPSCHUTZ (1956a) proved the following large deviations result. Let r(m)

tend to infinity with n and
=8
(2.2.8) {log n) = 0(r(n)) for any & > 0.

Assume that the function L(x) in (2.2.5) satisfies the following relation

1. (x,n) 1, (x,n) 1. (x,n)
(2.2.9) Linx) _ 14— + -2 + 0f 2 ) £ + o
L(n) r(n) r(n)? r(n)? “
for
(2.2.10) r(n)"2 <X < r(n)S/a5

where 11(x,n) and lz(x,n) are 0(r(n)®) for any ¢ > 0. Take any ¢ ¢ (0,2)

and let for n » «
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1=
x, +0, x> (B(e)/(2-¢)log r(a_)) @ for 0 < o < 1
n n
and
Q1
x, > == x| < ((2-¢)log r(a )/B(a)) ° for 1 < a < 2.

Then in case 0 < g < 1

—
(2.2.11)  Plar (Kpheos) < x T~ (2/a)?p(0 2 (28(a))? x 201703,

where B(a) is defined by (2.1.7)

and in case 1 < a < 2

-
2.2.12 Hoo ot E «BX - ~
( ) Pla, (x1 X "EXi-o . -EX )< x ]

1

S
~ (20)2P[U 2 (2B(G))%(~xn)2(a_1)],

where B(a) is defined by (2.1.8).
In chapter 10 we shall discuss LIPSCHUTZ's result and give an interpre-

tation of the assumption (2.2.9) for the function L.
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CHAPTER 3

STABLE PROCESSES

In the first two sections of this chapter we shall give the definition
and some properties of the Wiener process and other stable processes. In the
next sections we prove some technical lemmas. Because we make use of the ex-~
pansions given in theorem 2.1.7 we have to distinguish the four cases a = 2,

O<aoa<t,a=1and 1 <ac<?2.

3.1. THE WIENER PROCESS

There exist several constructions of the Wiener process. In this sec-

tion we give two of these. See ITO and McKEAN (1965) for other constructions.

DEFINITION 1.3.1. {W(t) : 0 £ t < =} is called a Wiener process or Brownian
motion on a probability triple (Q,F,P) if

(a) W : [0,°) xQ - IR;

b) W(0,w) = 0 for each w;

¢) W(t,.) is F-measurable for each t;

d) for 0 < t, < t2<_,,<tn, the increments
w(t1)9 W(tz)-w(t1),,.,,W(tn)—w(tn_1)
are independent and normally distributed, with means 0 and variances

s tomboseest —t

1° 72

According to Kolmogorov's consistency theorem, there is such a process
on a suitably chosen probability triple. We shall always take
{W(t) : 0 £t < =} to be a separable version. This implies the existence of
a set QO with P[QO] = 1 such that W(.,w) is continuous on Q.. (See FREEDMAN
(1971) or BREIMAN (1968a).)

Let C[O,») be the set of real-valued continuous functions on [0,»). We

0°

endow C[O,~) with the metrizable topology of local uniform convergence.
Cl0,») denotes the smallest o-field containing all open sets in C[O,»). Con-

sider the following mepping

h:Q = Clo,»)
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defined by h(w) = W(.,w). This mapping is measurable and defines a probabil-
ity measure Pn! on (cL0,»),CL0,»)). This probability measure is called the
Wiener measure PE,O'
Let C[O0,1] be the set of all real-valued continuous functions on the
interval [0,1]. The natural topology for C[0,1] is the sup-norm topology.
C[0,1] denotes the smallest o-field containing all open sets in C[O,11.
BILLINGSLEY (1968) gives another comstruction of the Wiener measure on
(cLo,11,CL0,11). Let UysUysee

tion (on some (Q,F,P)). Define the random function

. be i.i.d. with a standard normsl distribu-

i

(3.1.1) U (60) = 05 (U (@) U (0)) "2 (nt-[nt 1)

] (w).

Urntg+1
Let Pn be the distribution of the random function Un on C. Then BILLINGSLEY
(1968, theorem 9.1) proves that the sequence {Pn} converges weakly to a lime
it and that this limit coincides with the Wiener measure PE,O on
(c[0,1]1,C[0,11). Let W be a measurable mapping from some (Q,F,P) to
(cf0,11,C[0,1]) with the property

Pl{w : Wlw) ¢ A}] = P, LAl for A e C[O,1].

.0
Denote the value at t of W(w) by W(t,w). Then {W(t) : 0 £t < 1} is a Wiener
process on [0,1] with continuous paths.

In a similar fashion WHITT (1970a) proves the existence of the Wiener

measure on (CL0,»),C[0,»)).

PROPERTIES. Let {W(t) : 0 < t < =} be a Wiener process, then so are

1. {~W(t) : 02t < o}

2. {(W(t+t)-W(t) : 0t <=
3. {eW(tT) 0t < w)

b feBi(et) 05t <o, o (fized) > 0}
5. {W(t1)-w(t1—t) 10t <, (fived) }

, T (fized) > 0}

1

The proofs of these properties are easy.

THEOREM 3.1.1. Let {W(t) : 0 £ t < =} be a Wiener process. Then

a. The strong Markov property holds
b. For almost all w the function W(.,w) i8 nowhere differentiable and of
unbounded variation on every interval.
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PROOF. BREIMAN (1968a). 0O

THEOREM 3.1.2. Let {W(t)

o
A

t < 1} be a Wiener process. Then for x 2 0

#

P[ max W(t) = x]
Ot

2 PIW(1) = xJ.

PROOF. BILLINGSLEY (1968). [

There exists an extensive literature on the Wiener process. See for ex-
ample FREEDMAN (1971) and ITO and McKEAN (1965). We shall give other proper-
ties of the Wiener process in the following chapters. In these chapters we
consider the local behavior of the sample path W(t,w) for small and large

values of t (L.I.L.), & HOolder~type theorem and Strassen's theorem.

3.2. STABLE PROCESSES

One may give constructions of stable processes analogous to the ones
for the Wiener process. Let X be a random varisble with distribution func-
tion F(.30,8), 0 < a < 2 and |B] s 1.

DEFINITION 3.2.1. {X(t) : 0 £t < =} is called a stable process on a proba-
bility space (Q,F,P) if

(a) X : [0,») x  + IR;

(b) X(0,w) =0 for each w;

(e¢) %x(t,.) is F-measurable for each t;

(a) for 0 < ty < E,<e..<t, the increments
x(t1), x(tg)-x(t1),...,x(tn)—x(tn )

are independent and

-1

in case o # 1,2 they are distributed like
1/a 1/o. 1/a

X, (t2—t1) x,a.a,(tn-tn_1) X

in case « = 1 they are distributed like

t.X + (2/U)Bt110g t1,...,(tn-tn

1 )X + (Z/N)B(tn~tn_1)10g(tn—t

1)'

- e

REMARK 3.2.1. Condition (d) in definition 3.2.1 may be replaced by the con-
ditions

(di) {X(t) : 0 £t < »} has stationary and independent increments

and
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[ifeN

(a,) x(t) £ /% for o # 1,2

[}=H

t X + (2/m)Btlog t for a = 1.

Let D[0,») be the set of real-valued functions on [0,») which are right-
continuous and have finite left-hand limits. Then there exists a version of
{X{t) : 0 £t < »} with all sample paths in D[0,~) (cf. BREIMAN (1968a)).

One may construct the stable measure P (with O<o<2 and |B|s1) on DLO,»)

a,B

just as P is constructed on C[0,») in section 3.1.

We ni&ogive a construction of the stable measure similar to Billings-
ley's construction of the Wiener measure. Let D[0,1] be the set of real-
valued functions on [0,1] which are right-continuocus and have finite left-
hand limits. SKOROHOD (1956) has defined several topologies on D[0,1]. In
appendix 1 we shall give the definitions of two topologies, viz. the J1~
end M,~topology. Let DL0,1] be the o-field of Borel-sets for the J~topolo-
gy

Let X ,X be i.i.d. with common distribution F(.:;0,8). Define the

TR
sequence of random elements Xn(t) of DLO,1] by

~1/a

Xn(t) = n (x1+e.,+x[nt]) if o # 1

n—1(X EE 'S (2/n)plntllog n) if a = 1.

1 [ntl ™

By SKOROHOD (1957, theorem 2.7) the distribution of Xn converges weakly un—
der the J1—topology to & limit and this limit coincides with the stable mea-
sure Pa,ﬁ'

Both the J1
DLO,»). See for example STONE (1963) and WHITT (1970b). Then we can prove

the existence of the stable measure on D[0,») in a similar way.

- and M1—topologies can be generalized to topologies on

For O < oo < 1 and B =1 we shall give another construction for the sta-

ble process. Let X1,X be i.i.4. random variebles with common distribu~

paeen
tion function F, and let {Y(t) : 0 £ t < «} be a Poisson process with para-
meter A > 0 and independent of the random variables Koo k21,2000 Define
the process {X(t) : 0 £ t < ®} by

~

X(t) = X1+"'+XY(t)'

In other words: denote the jump points of the Poisson process by T1,T?,..°9
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let the process i(t) have a jump of height X1 at time T1, height X2 at time

T2 etc. and be constant between two successive jump points. The process

{X(t) : 0 £t < =} is called & compound Poisson process. Then

Eehlﬂt)=emﬁm‘[ [exp(iux) - 11 aF(x).

0
The stable process {X(t) : 0 £t < =} with o ¢ (0,1) and B = 1 satisfies

o0

E eV x(t) . exp{mt J [exp(iux) - 1] %,
0 X
with m = a{F(1—a)sin(na/2)}_1, corresponding to the choice AdF(x) = mx” 1" %x.

For more details of this construction we refer to the book of BREIMAN (1968a).
We see from this construction that the sample paths of X(t) are non-decreas-
ing pure jump functions. Thus X(t) has only upward jumps and between two suc-

cessive jumps the sample paths are constant.

THEOREM 3.2.1. Let {X(t) : 0 £t < =} be a stable process (0<a<2 and |Bs1).

Then
a. The strong Markov property holds
b. There are no fixed discontinuities.

PROOF. BREIMAN (1968a). [

Stable processes with [B| = 1 are called completely asymmetric. Pro=
cesses with 8 = 1 (resp. 8 = ~1) have only positive (resp. negative) jumps.
In case B = 0 the stable processes are symmetric. (See also property 1 be-
low.) The completely asymmetric stable process with o = } and 8 = 1 can be

obtained from the Wiener process in the following way.

THEOREM 3.2.2. Let {W(t) : 0 < t < =} be a Wiener process. Define X(t) =
= min{v : W(v) = t}. Then {X(t) : 0 £ t < »} 45 a completely asymmetric

stable process with o = 3 and B = 1.

PROOF. See ITO and McKEAN (1965). [

PROPERTIES. Let {X(t) : O
and B. Then

A

t < =} be a stable process with parameters o

1. {~X(t) : 0 £t < =} 28 a stable process with parameters o and -B.
2. {x(t+1)=X(1) : 0=t <= | t (fized) > 0} is a stable process with

parameters o and B.
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3. In case o # 1
e o™ty & Vg

for £t > 0.
In case o = 1

x(+™ D -(2/m)pt ™ 10g 71 a4 x(£)-(2/7)8tlog t

¢! t
for t > 0.
L, For a # 1
{c“1/“x(ct) : 0st<w,c> 0} 728 a stable process with parameters
o and B,
for o = 1

{7 %(ct)-(2/7)Btlog ¢ : 0 5t < = , ¢ > 0} i8 a stable process with
parameters o = 1 and B.

5. {X(t1)—X((t1—t)— ) : 0t < t1(fixed)} is a stable process with para—
meters o and B. (We define X(0-) = 0.)

3.3, SOME LEMMAS FOR THE CASE o = 2

In this section we consider the Wiener process {W(t) : 0 £ t < =}. We
shall prove some lemmas, which are the tools in the proofs of the theorems
in the following chapters (in the case a = 2). Consider two intervals of
length t and t' as below.

[

t!

Let t' £ t, denote the length of their intersection by A and suppose that

0 < A < %, Then we have

(3.3.1) 0<Astr

A
o
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and
(3.3.2) A< t.

Let ¢ be a non-negative, continuous and non-increasing function on (0,«).

We shall give bounds for the probebility

P = PLW(t) < —t%¢(t) A W(t=Att ' )-W(t-A) < ~(t')%¢(t‘)].

We distinguish three cases, which are - roughly spesking - characterized by

1. A/t near O,
2, A/t bounded away from O and 1,
3. A/t near 1.

Define the function y by
(3.3.3) Wt = e(t)

U is a standard normal random variable.

LEMMA 3.3.1. Let ¢(s) » = for s + 0. For all positive e there exist positive

congtants to and 8 such that

P. < (1+e) PLU < -¢(t)] PLU < —¢(t')]

for all &, t', t satisfying (3.3.1), (3.3.2), t < ty and Atmlwg(I/t)w2(1/t’) <
< 8, where Y 28 defined by (3.3.3).

PROOF. Take ¢ > 0 and ¢ a positive number smaller than log(1+e).

PLU(t) < ~t20(t) A W(b=ttt!)-W(t=8) < ~(t')P0(") A

g
it

A W(E)=W(t-8) < ~t2(6)=(£-0)3 (=4 (t)e/0(£))T +

PLW(E) < ~t20(t) A W(bohbt')-W(td) < —(t')2

+

(t") A
A W(E)-W(t-a) > —t%¢(t)—(t—A)%(-¢(t)+c/¢(t))] <

PLU < "(t/A)%¢(t)~(t"A)%A—%(-¢(t)+c/¢(t))] +

A

(3.3.4)

PIW(t-4) < (t~A)%(—¢(t)+c/¢(t)} PLW(t=A+t *)=W(t-A) <

+

< —(t')%¢(t')].
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The first probability in (3.3.L4) can be bounded by
3 1
(3.3.5)  PLU < -(1-0/t)%c(t/8)%/¢(t)1.

Choose c6_1 > 2+¢. Then for At’1¢2(1/t)w2(1/t') < § the probability in
(3.3.5) is less than

P[U < —(1—A/t)%(2+e)¢(t')] =

= o(PLU £ ~¢(t)] PLU s -¢(t')1) for t (and t') + O.
The first factor in the second term of (3.3.4) is equal to
PLU < -¢(t)+c/¢(t)].

The desired result follows from lemma 2.1.2. [J

LEMMA 3.3.2. Let ¢(s) + « for s + 0. For every constant c e (0,1) there

exist two positive constants C, and c, (independent of A,t' and t) such that

1
2, -1
-Co¥ (t )

P, <C, e PLU < -¢(t")]

I 1

for all A, t', t satisfying (3.3.1), (3.3.2) and At—1w2(1/t')/w2(1/t) 5 e,
where § s defined by (3.3.3).

PROOF. Choose a number a ¢ (0,1) such that (1-3)2—(a2+1)c > 0.

g
]

PLW(t) < —t%¢(t) A W(t-A+t")-W(t-a) < —(t’)%¢(t') A

A W) =W(tb) < ~t20(t)(1-a(1-0/t)2)] +

PLW(E) < ~626(t) A Wbttt )W(t-8) < ~(67)20(5") A

EN

A W(E)=-W(t-a) > —t%¢(t)(1-a(1~A/t)%)] <
(3.3.6) < P[U < »(t/A)%¢(t)(1-a(T—A/t)%)] +

PIW(t=~A) < —a(t—A)%¢(t)] PLW(t~A+t ¥ )~-W(t-A) < n(t*)%¢(t')3@

ES

The last term in (3.3.6) can easily be bounded by using theorem 2.1.7 VII.

By means of the same theorem we can show that for t' - 0
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PO < ~(6/8)26(t) (1-a(1-8/t)%)1 < PLU < ~(£/8)20(t)(1-8)] =

= 0(P[U < ~a¢p(t)] PLU < -¢(£7)1)

because t' -+ 0 implies (t/A)%¢(t) + o, If t' (and hence t) is bounded away

from zero the result of the lemma is trivial. [

LEMMA 3.3.3. Let ¢(s) + = for s +~ 0. Let c € (0,1) and C > O be two con-
stants. Then there exist two positive constants Cq and C), such that

~0,,((5=0)/6 )05 (s™")
e

P_<C PIU < -¢(t)]

I 3

1

for all b, t', t satisfying (3.3.1), (3.3.2), At™ ¢ (c,1) and

(1-At_1)%w(t-1) > C, where ¢ 8 defined by (3.3.3).

PROOF. Just as in the proofs of the lemmas 3.3.1 and 3.3.2 we have for any

constant A

PI < PLU < «¢(t)(1+(t-0)A/t)] +

+ P[U < —(t/(t-A))%¢(t)+(A/(t-A))%¢(t)(1+(t«A)A/t)}~

PLU < «¢(t*)].

We take O < A < 3. By theorem 2.1.7 VII we know that there exist two posi-

tive constants A1 and A2 such that

2,, =1

=B, ((£-0)/£)y7(£7 )
(3.3.7) PLU < -¢(t)(1+(t-0)A/t)] < A, e PLU s -¢(t)1.
There exists a positive constant <y (independent of A and t) such that for

all A and t with A/t € (c,1)
~(t/(t~A))%¢(t)+(A/(t~A))%¢(t)(1+(t—A>A/t) < wc1(t«A)%t”%¢(t).

Then by theorem 2.1.7 VII it follows that there are two positive constants

B1 and B2 such that

. -B,((6-0)/6)¥7(+7")
(3.3.8)  PLU < ~c (8-8)%¢7%¢(¢)] < BLe © .
From the estimstes (3.3.7), (3.3.8) and the monotonicity of ¢ the desired

result easily follows if we take Cy = A,+B, and C) = min(A2,B2). 0
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REMARK 3.3.1. Results similar to the lemmas 3.3.1, 3.3.2 and 3.3.3 are prov-
ed in the paper of CHUNG, ERDGS and SIRAO (1959). They make use of the mag-
nitude of the correlationcoefficient of the random variables W(t) and
W(t-A+t')=W(t-A), which is equal to A(tt') 2. Our formulation in terms of
the ratio of the length A of the intersection and the length t of the lar-

gest interval can also be used in case we are considering stable processes.

REMARK 3.3.2. Let I1
t and t' and length of the intersection A > 0. We write x(I) for x(r)-x(s)

end I, be two arbitrary intervals of [0,») with length

for any real function x; s and r are the endpoints of an interval I. One
easily sees that we can deduce similar bounds as in lemmas 3.3.1, 3.3.2 and
3.3.3 for the probability

PEW(I1) < »t%¢(t) A w(12) < ~(t')%¢(t')]s

We conclude this section by stating the following result of KIEFER
(1969).

LEMMA 3.3.4. Let T,L,8 and x be positive numbers with T < L. Then

v

a. P[  sup [W(t )—W(t2)| x] < 4 PLIW(T)| 2 %]

1
O$t1<t25T

and
1

v

b, P[  sup |W(t1)«w(t2)| x] 2 W(L~T+8)s” PLIW(T+28)] = x].

O$t1<t25L

|t2~t1IST

3.4, THE CASE 0 < o < 1

In this section we give the analogous lemmas for the case O<a<1. Let
first {X(t) : 0 £t < =} be the completely asymmetric stable process (B=1)
with characteristic exponent a ¢ (0,1) and ¢ a positive continuous non-de-
creasing function on (0,®) with the property ¢(s) -~ 0 for s + 0. We define

the function ¢ by

O

(3.4.1) w(t"1) = {ZB(a)}%{¢(t)} 2(1-a)’

where B{a) is defined by (2.1.7). Let U be a standard normal random variable
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and X a r.v. with the same distribution as X(1). By theorem 2.1.7 IV we have
3 -1
(3.k.2)  PLX < ¢(t)] ~ (2/a)® PLU 2 $(t™ )] for t + O.

Let I1 and 12 be two arbitrary intervals of [0,») with length t and t' and
length of the intersection A > 0. In the first three lemmas we give bounds
for the probability

Vag g0,

P = PLX(I,) < /% (t) A X(1,) < (¢')
Again it is no restriction to suppose that the intervals are situated as in
section 3.3 and satisfy (3.3.1) and (3.3.2). In that case the proof of the
first three lemmas can be found in MIJNHEER (1973).

LEMMA 3.4.1. For all positive e there exist positive constants t, and 8§ such
that

P < (1+e) P[X < ¢(£)] PLX < ¢(t%)]

1

for all A, t', t satisfying (3.3.1), (3.3.2), t < %, and Atm1w2(t— ) < 8,

where |V 18 defined by (3.4.1).

LEMMA 3.4.2. For every constant c € (0,1) there exist positive comstants
¢, and c, (independent of A, t' and t) such that

SR
P <C e PLX = ¢(t")]
for all &, t%, t satisfying (3.3.1), (3.3.2) and sl < ¢y where Y is de—

fined by (3.4.1).

LEMMA 3.4.3. Let ¢ € (0,1) and C > 0 be two constants. Then there exist two
constants C3 and Ch such that

-0, (=2)/6 )65 (67

L Cye P[X < ¢(t)]

for all a, t', t satisfying (3.3.1), (3.3.2), At—1 € (c,1) and
(1=-at")E(7") > ¢, where v i defined by (3.4.1).
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In the following lemme we consider the process {X{t) : 0 <t < =} with
0<a<1and |8] s 1. This lemma is the analogue of lemma 1.4.3 for stable

processes.

LEMMA 3.k.4. Let {X(t) : 0 £t < =} be a stable process with 0 < o < 1,
18] £ 1 and let k(a,B8) = P[X(1) s 01. Then for all positive t and x

P[ sup X(s) = x1 < (1-k(a,8))"" PIX(t) = x1.
Ossst

PROOF. Similar to the proof of lemme 2.2 in MIJNHEER (1973). [

REMARK 3.4.3. In case B = 1 the sample paths are non-decreasing. Then we

have

Pl sup X(s) 2z x] = P[X(%) 2 xJ.
0ssst

REMARK 3.4.4. BREIMAN (1965) has shown

- ?% arcten(f tan(wa/2))

k(a,8) = P[X(1) < 03 =..;«

for 0 <o < 1,

3.5, THE CASE o = 1
In this section we give similar lemmas as in sections 3.3 and 3.k4. Let
first {X(t) : 0 £ t < =} be the completely asymmetric stable process with

a=8=1, let ¢ be & non-negative, non-increasing function on (0,») and

¢{s) » « for s - 0. Define the function y by
1
(3.5.1) p(t7") = 2(ne) ™ exp(mg(t)/b).

Let U be the standard normal r.v. and X a r.v. with distribution function

F(.31,1). Then we have by theorem 2.1.7 V

1
(3.5.2)  PIX < -¢(t)] ~ 2% PLU 2 p(+™1)] for t ¢ O.
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Let I1 and 12 be two intervals of [0,») with lengths t and t', and length

of the intersection A > 0. We shall give bounds for the probability

PI = P[X(I1)—(2/n) t log t £ -to(t) A

A x(12)-(2/n) t'logt' < ~t'¢(t")].

The proofs of the first four lemmas do not differ appreciably from those of
the lemmas in section 3.3. Again we may restrict ourselves to intervals sit-
uvated as in section 3.3 and satisfying (3.3.1) and (3.3.2). We shall only
work out the points of difference between the proofs of the first two lem-
mas and the corresponding ones in MIJNHEER (1973). In that paper the proofs
of lemmas 3.5.3 and 3.5.4 are given.

LEMMA 3.5.1. For all e > O there exist positive constants ty and § such that

P, < (1+e) PIX £ =¢(t)] PIX < -¢(t")]

for all A, t', t satisfying (3.3.1), (3.3.2), t < ty and

st WP (/6002 (1/61) < 8, where ¢ is defined by (3.5.1).

PROOF. Take € > O and ¢ a positive number smaller than log(i+e). As in

the proof of lemma 3.3.1 we obtain

(3.5.3) P < PLX(t)-X(t-4) < (2/7)(t log t - (t-A)log(t-A)) —np(t) +

+ (4/m)(b=0)log(1-cy™2(1/%))] +

-2

+ P[X < ~¢(t')] PLX < ~¢(t)-(L4/m)log(1-cy ™ (1/¢))1.
The first probability on the right in (3.5.3) is equal to
(3.5.4)  prx < & tlosbo(bohliog(v-b)-blogd () + 2 (B q)10g(1-cy™(t7))1.

1
We now use the assumption At 1q)2(1/t)1p2(1/t') < § with & < c(2+¢) ! e ?
- implying that A/t is small for small t -~ and apply theorem 2.1.7 V. In
this way we show, as in the proof of lemma 3.3.1 that the probability in

(3.5.4) is

o(P[X < -¢(£)] PLX < -¢(t")] for t ¢ O.
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The second term on the right in (3.5.3) easily gives the desired result by
using theorem 2.1.7 V and lemma 2.1.2. [

LEMMA 3.5.2. For every constant c e (0,1) there exist two positive constants

c, and C, (Zndependent of A, t' and t) such that

~cut (67"
P sC e P[X s -¢(t7)]
for all A, t', t satisfying (3.3.1), (3.3.2) and At—1¢2(1/t*)/w2(1/t) < e,
where Y 1s defined by (3.5.1).

PROOF. Define the positive number aj by (-——1-5-)1/ C=14 12., Choose
28.0 2&0
a e (O,ao). Just as in the proof of lemms 3.5.1 we have
(3.5.5) P, PLX < —4(t) + %-ﬁié~1og o+ %‘tlogt—AlogAZ(t—A)log(t—A)] .

+ P[X < «¢(t*)] PIX < -¢(t)-(L4/n)log al

After some algebra one finds that the first term on the right in (3.5.5) is

1

o(P[X s -¢(t*)] PLU 5 -ap(t” )1) for t' ¢+ 0. (I

LEMMA 3.5.3. Let ¢ € (0,1) and C > O be two constants. Then there exist two

constants C, and Ch such that

3

—cu((t—A)/t)we(t'1)
P.<C.e PLX < -4(t)]

for all A, t*, t satisfying (3.3.1), (3.3.2), at e (c,1) and

1
(1-0t"")2y(+7") > C, where v is defined by (3.5.3).

LEMMA 3.5.4. Let the fumction x be such that for some constants ¢y and ¢,
e, < -x(p) + (2/7)log p < c,

for all positive p. Define the constant k, by
-1

ki o= PLX(1) < c1—-1],
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Then for all positive t and for sufficiently large p

X(s)=(2/m)s log s
s

< k,] PEHM%M < “X(P)] - k1 P[X(1) < __x(p)]

a, P[ inf < -x(p)]

t~tpm1SSSt

b, P[ inf_ X(s)-X(r)-(2/n)(s-r)log(s-r) < -x(p)] = k? PLX(1) < -x(p}].
Osrstp s-r
tutp—TSSSt

In the following lemma we not only consider the completely asymmetric

stable process with o = B = 1, but all stable processes with o = 1 and
I8l < 1.
LEMMA 3.5.5. Let {X(t) : 0 £ t < =} be a stable process with a = 1 and

-1 < B £ 1. Then for any pair of positive numbers b, and b, we have

1

X(s)-(2/m)Bs log s . .1 . (")

PL sup S for x + =,
b1Sssb2
PROOF. We distinguish the cases 8 2 0 and 8 < 0. Let x > 0,
B, = (2/7) min slogs and B, = (2/m) max slogs. The event
b,sssb b, <s<b
1 2 1 2
{v: sup X(s)—(2/z)Bs log s . <}
b1Sssb2
is contained in
{w sup X(s) = b.x + BB.} for B8 = 0
1 1
b,s85b
1 2
and in
{w : sup X(s) 2 b.x + 8B} for B < O.
1 2
b1SSSb2

In both cases the proof of the lemma follows a similar pattern as the proof
of lemma 2.2 in MIJNHEER (1973). We sketch the proof only for 8 < 0. Let T

be the event that there exists some s € [b1,b2] with X(s) > b.x + BBZ_ The

1
r.v. S is defined on I' to be the infimum of these numbers s. By the right-
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continuity
x(s) z b x + 8B,

By the strong Markov property we have for s ¢ [b1,b ) and

B3 = max(0,(b )log(bznbl))

2
2704

P[X(b,)-X(s) 2 (2/7)8 B, [ rTas=s]=

= P[(be—s) x(1) =2 (2/x)8 B3-(2/ﬂ)B(b2—s)log(b2—s)] > P[x(1) =2 0],

Denote this last probability by p. Then

P[r] = p"1 PLX(1) 2 b;1(b1x+BB2+(2/n)B B3m(2/n)8b210gb2)]«

By the estimate in theorem 2.1.7 II this part of the lemma easily follows. [J

3.6. THE CASE 1 < o < 2

In this section we give lemmas corresponding to the lemmas in section
3.3 for the case 1 < o < 2. {X(t) : 0 £t < »} is the completely asymmetric
stable process with 1 < o < 2 and B = 1. Let ¢ be a non-negative, continu~-
ous, non-increasing function on (0,») with ¢(t) » < for t + 0. Define the
function ¢ by
a

(3.6.1) ¢(t“1) = {2B(a)}%{¢(t)}2(“'1)‘

The r.v. X has the same distribution as X(1). Then by theorem 2.1.7 VI

1

(3.6.2)  PLX < ~p(t)] ~ (20)% PLU > 9(t™ )] for t > 0.

Let I1 and I2 be two intervals of [0,») with length t and t', and length of

the intersection A > 0. We give bounds for the probability

Py = PIX(I,) < 1% 5) A x(1,) <)Y% (£1)1.

We may restrict ourselves to intervals situated as in section 3.3 and sat-
isfying (3.3.1) and (3.3.2). The proofs of lemmas 3.6.1 and 3.6.2 follow
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the exact lines of the corresponding lemmas for the case a = 2. The proofs
of lemmas 3.6.3 and 3.6.4 are given in MIJNHEER (1973).

LEMMA 3.6.1. For all positive e there exist positive constants t, and §
such that

Po < (1+e) PIX < ~¢(t)] PLX < -¢(¢")]

for all &, t', t satisfying (3.3.1), (3.3.2), t < tO and

st” P /eWP(1/8) < 8, where y is defined by (3.6.1).

LEMMA 3.6.2. For every constant c e (0,1) there exist two positive constants
c, and c, (independent of A, t' and t) such that

~cu° (67"
P_<C, e PLU < ~¢(t")]

I 1
for all A, t', t satisfying (3.3.1), (3.3.2) and pt™ Wo(1/)/WP(1/8) < c,
where Y s defined by (3.6.1).

LEMMA 3.6.3. Let ¢ ¢ (0,1) and C > 0 be two constants. Then there exist two
positive constants Cq and C), such that

¢y ((e-0)/0 )P ()
e

P.<C PLX < -¢(t)]

I 3

1

for all A, t', t satisfying (3.3.1), (3.3.2), At~ € (c,1) and

-
(1-At-1)éw(t~1) > C, where Y is defined by (3.6.1).

In the following lemma we not only consider the completely asymmetric

stable processes with 1 < o < 2 and B = 1, but all stable processes with

1 <a <2 and [B] < 1.
LEMMA 3.6.4. Let {X(t) : 0 £t < =} be a stable process with 1 < o < 2 and
8l < 1. Define the constant k(a,B) by
k(a,8) = P[X(1) < 0].
Then for all positive t and all negative x

a. P[ inf X(s) < x] < k"1(a,3) PLX(t) < x]
0<sst

b. P[L inf {X(s)-X(t)} < x] < k“z(a,s) PLx(t) < x].
Osr<s<t
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CHAPTER k4

GENERALIZED LAWS OF THE ITERATED LOGARITHM FOR SMALL TIMES

In this chapter we are interested in the local behavior near t = 0 of
the sample paths of the Wiener process and the completely asymmetric stable
processes. In the case of completely asymmetric stable processes (8 = 1) we
obtain sharp lower asymptotic results by using the relation between the left
tail of the distribution of the completely asymmetric stable laws (8 = 1)
and the tail of the standard normal distribution as given in theorem 2.1.7
parts IV, V and VI. We shall prove the result only for the case a = 1. The

proofs in the other cases are similar and can be found in the literature.

L.,1. THE CASE o = 2

In this section we formulate Kolmogorov's integral test.

THEOREM 4.1.1. Let {W(t) : 0 £t < =} be a Wiener process. Let ¢(t) be posi~
tive, continuous and non—increasing for sufficiently small t and define
w(t_1) = ¢(t). Then

1
Pl{w: there exists some to(w) > 0 such that Wit,u) < t%6(t)
for all t < to(m)}] = 0 or 1

according as the integral
T ye1 - (t)
(h.1.1) I(y) = f p(t)t e dt

diverges or converges.

PROOF. By property 3 of section 3.1 theorem 4.1.1 is equivalent to the gen~
eralized L.I.L. for large times. The proof for that case is given by MOTOO
{1959). One can also give a proof by making use of the Borel-Cantelli lemma.
This proof is similar to the proof in section 4.3 and rests on the lemmas

of section 3.3. [

As a consequence of this theorem we have

lim sup W) T
40 (2t log log t~ ' )°
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and by symmetry

lim inf W(t) = - a.8¢

t+0 (2t log log t_1)

i

4,2, THE CASE 0 < o < 1

THEOREM 4.2.1. Let {X(t) : O

process with 0 < o < 1 and B

iA

t < »} be a completely asymmetric stable

1. Let ¢{(t) be positive, continuous and non-
decreasing for sufficiently small t and define the function y by

o

% )}—2(1"(1)

w7 = (2B(a)}2(0(t

Ed

where the constant Bla) <8 given in (2.1.7). Then

% (x)

Pl{w: there exists some to(m) > 0 such that X(t,w) 2
for all t < to(w)}] = 0 or 1
aceording as the integral (4.1.1) diverges or converges.

PROOF, BREIMAN (1968b) has given a proof following Motoo's proof in the case
a =2, [

As a consequence of this theorem we have

1im inf x(t) = {2B(a)}(1~a)/a a.5.

£40 t1/“(2log log t“1)‘(1““)/“

This result was first proved by FRISTEDT (196k4). Similar results were ob-
tained for increasing processes with stationary independent increments
(these processes are also called subordinators end are not necessarily sta-
ble) by FRISTEDT and PRUITT (1971).

4.3, THE CASE o = 1

THEOREM L.3.1. Let {X(t) : 0 £t < =} be a completely asymmetric stable
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process with a = B = 1. Let ¢(t) be positive, continuous and non-increasing
for sufficiently small t and define the function ¥ by

(5.3.1) (67" = 2(re) Fexp(no(t)/h).

Then

(k.3.2) Pl{w: there exists some to(w) > 0 such that X(t,w)=(2/7)t log t =
<

z «t¢(t) for all t to(m)}] =0 or 1

according as the integral (4.1.1) diverges or converges.

Below we give a proof of theorem U4.3.1 based on the Borel-Cantelll lemma.
We need the following lemmas. Similar results are to be found in LIPSCHUTZ
{1956b) and FELLER (1943).

Define the sequence {tk} by

- ek/log k

(4.3.3) by

k=1,2,...

and for § > 0 the functions

i
{2(1~8)1log log t}?

Hi

(h.3.) oy (e)
and

1
{2(1+8)1log log t}%.

(k.3.5) wg(t)

LEMMA 4.3.1. Let 6§ > 0 and let vy and ¥, be defined by (4.3.4) and (4.3.5).
If theorem 4.3.1 holds for all functions ¢ satisfying

(4.3.6) vole) = wle) < u,(e),

where ¢ 18 defined by (4.3.1), then it holds in general.

PROOF. L. We first prove the following assertion. Let I(y) < = then
vi(t) > w1(t) for sufficiently large t. Assume that the set {t:y(t) < w1(t)}
is not bounded, then there exists an increasing sequence {vn} with ¢(vn) <

< w1(vn)e Then for sufficiently large m and n + «
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v
n 2 6,2 n
I(y) > f w(t)t"1e”%w (t)ge > w1(vn)e"§¢1(vn) f t71at > =,
V. W
m m

which contradicts I(y} < .

il. Let ¢ be an arbitrary function satisfying the conditions of theo-
rem 4.3.1 and I{y) < =. Define the function § by

(5.3.7)  §(t) = min(max(y,(£),u(t)),0,(t)).
Let ¢ correspond to § as ¢ does to ¢ by (4.3.1). From the assertion in part
L. of the proof we have y(t) > w1(t) for sufficiently large t. This implies
(t) = min(y(t),y,(t)) for large t and I($) < I(¥)+I(p,) < =. The assumption
that theorem 4.3.1 is proved for $ gives for almost all w

¥(t,w)-(2/7)t log t 2 ~t$(t) for t < to(w)
and hence certainly, since a(t) < ¢(t), we have for almost all w

¥{t,w)-(2/n)t log t 2 ~tod(t) for t < to(w)s

Thus the lemma is proved in the convergent case,

Lil, Let ¢ be an arbitrary function satisfying the conditions of theo-
rem 4.3.1 and I(y) = =, Define the function § by (L4.3.7). If the set
{ta:yp(t) < ¢1(t)} is bounded we have for sufficiently large t w1(t) < p(t)
implying §(t) = min(w(t),wz(t)), This implies I($) = », If, on the contrary,
the set {t:y(t) < ¢1(t)} is not bounded, we obtain I(§) = =, by an argument
similar as in part 4. Hence, by the assumption of the lemma, for almost all

w there exists a decreasing sequence {té} (which depends on w) such that
[ [ ¥ Ry
X(tnsw) (2/w)tn log t} < tn¢(tn)a
Because I(wg) < = we have for almost all w
o) i [ | H
X(tn,w) (e/n)tn log t; 2 tn¢2(tn)

for sufficiently large n. Then we have for sufficiently large n
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@(tg) < ¢,(t!) implying ¢(t!) < $(t£). This yields for almost all w

X(tﬁ,w)~(2/n)t£ log té < -t£¢(tg). 0

LEMMA 4.3.2. Let ¢ be a positive, continuous and non-decreasing function
satisfying v(t) s wz(t). Let the sequence {tk} be defined by (4.3.3). Then

o - 3% (e,
I(y) < » iff e < o,
5 w(tk)
PROOF. From (4.3.3) it follows that
(4.3.8) (tk-tk_1)t1_{1 ~ (log k)—1 for k - =,

From the proof of lemma %.3.1 part 4 we know that I(y) < o implies y(t) >

2
1
> ¢1(t) for sufficiently large t. Because w(t)t-1e 2y (¢) is decreasing for

large t, we have for sufficiently large k

2 t

£ -t P(e) 2

(h3.9) (BN yge S[ se) Ay
< bt

2
£t -39 (¢, )
k k-1> k1
< (=1 y(t Je .
( b 4 k1

In case I(y) < = the function ¢ satisfies for large t
-1 2
18 < (2 log log t) v (t) s 1+46.

Then by (4.3.3) and (4.3.8) we have for some positive constant a,

(EE%%§21) w(tk) > ET€;T .

Then one part of the assertion in the lemma now follows easily.

2
. Rl
e < o, the assumption y(t) < ¢2(t) guarantees

In case z
% w(tk)
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the existence of a constant a. such that

2
t., =t a,
k k—1> 2
=1 Y(t ) S mp—
( tk,—T k=1 w(tk--1)

This implies the other part of the assertion in the lemma. []

PROOF of theorem 4.3.1. By the preceding lemmas we may restrict ourselves

to the case where w1 LGV < wz. This implies
(4.3.10) (h/n)log[2_1(ne)%{2(1—6)log log t~1}%] < ¢(t) =
< (h/w)log[2“1(ne)%{2(1+5)1og log t-I}%].
Hence
(5.3.11)  ¢(t) ~ (2/n)log log log g for t + 0.

Suppose the integral (4.1.1) converges and let the sequence t, be dew

fined by (4.3.3). Consider the events

A inf X(t)—(E/:)tlog t . “¢(t;1) for k=1,2,...

-1 -1
tk+1<tst k

Then

P[Ak] <k, PLX(1) = -¢(t£1)]
by . lemma 3.5.4.a

1
~ 2% PIU 2 v(t, )] for k =
by theorem 2.1.7T V
2
-3 - -3 (tk)
~km {W(tk)} e for k -

by theorem 2.1.7 VII.

By lemma 4.3.2 I(y) < = implies Xk P[Ak] < o, Hence from the Borel-Cantelli
lemma it follows that P[Ak i.06.]1 = 0. Thus for almost all w there exists a
number ko(w) such that
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X(t,0)-(2/7)t1log t = —t¢(t;1) > ~to(t)

-1 ]
for t e [tk+1’tk ] and k = kO'

Suppose the integral (4.1.1) diverges. With the same sequence {tk} we
define the events

1 -

-1 - -1, =1
: X(tk )-(2/Tr)tk log tk < ntk ¢(tk ).

Bk
By theorem 2.1%1.7 part V and part VII

- -1 m%we(tk)
P[Bk] ~ {w(tk)} e for k » =,

By lemms 4.3.2 divergence of the integral (4.1.1) implies Zk P[Bk] = w, In
order to apply the extension of the Borel-Cantelli lemma we have to compute
n n

] ) P[B, A B.]
i=1 =1+ d

lim inf

n-re o 2
{3y PplB. 1}

=1 7

Consider for fixed i and j(> i) the term P[Bi A Bj] =

1 w1

= P[X(tE’) < (2/ﬁ)t£1log t; -t;1¢(tz1) A X(t31) < (2/n)tg1log(t. )—t§1¢(t31)],

J
By meking use of the lemmas in section 3.5 we can obtain the following re-
sults.

a. For each ¢ > 0 and § > 0 there exists a number io such that for all

iz io and § 2 i+(log i)2+6 we have by lemma 3.5.1

(h.3.12) P[Bi A Bj] < (1+e) P[Bi] P[Bj]“

b. Let M be an arbitrary positive (large) number. We now consider ew
vents with

(4.3.13) M 'log i < j-i < (1og i)°¥S,

By lemma 3.5.2 it follows that there exist constants ii* C1 and C2 such that
for i =z i1
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2
(h.3.14) P[Bi A Bj] s Cee P[Bj].
Let, for fixed j, R. be the number of values i satisfying (4.3.13). Then
R, = 0((10g 5)%%%) for j > ®. By (14.3.10) and (L.3.14) we have that there

exists a constant &, such that for every j

*
(4.3.15) g P[B, A Bj] < a, P[BjJ,

where Xz denotes the summation, for fixed j, over all events Bi satisfying

(4.3.13) and i = iy

¢. For indices satisfying
(4.3.16) i< j < i+M 'log i

there exist, by lemma 3.5.3, constants i29 C. and Ch such that for i 2 i

3 2

2

P[B. A B, =¢C
i J 3

PLB. 1.
i

By (4.3.3) and (4.3.6) we have for i 2 i2

“06(j“i)

P[B. A B.l s C_e PLB.1,
1 J 5 1

where C  and C6 are positive constants. Hence for i 2 i2 there exists a
constant a, such that

2

Fk
(k.3.17) )77 PIB; 4 Bj] < s, P[B.],

J

where 23* restricts the summation to all values of J satisfying (4.3.16).
Let i3 = max(io,i1,iz), For n > i. we have, by (Lk.3.12), (4.3.15) and

(h.3.17),

3

n n n
Y ] P[B, ABJ= P[B.]J+2 ) ) P[B, A B,] <
i=1 g=1 0+ 4 321 J §<§ o

n n n
< (1+213+2a1+2a2) jE} P[Bj] + (1+e) 121 521 PLB, ] P[Bj],
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Hence
n n
L 1 PB; AB.]
. d=1 3= i
lim inf =
n-ew a 2
{}] P[B.1}
=1 7

and the divergence part of the theorem follows from lemma 1.4.2. 0

Two consequences of theorem 4.3.1 are

X(t)~(2/7)tlog © + 2

(%.3.18) 1lim inf { log(melog log £y =

£40 ® "
2
= log 2 8.8,
and hence
. x(t) ~
(4.3.19) l1$+3nf (37m)tios T = 1 8.5, .

L.h, THE CASE 1 < a < 2

THEOREM b.k4.1. Let {X(t) : 0 £ t < =} be a completely asymmetric stable
1, let ¢ be a positive, continuous and non-

#

process with 1 < a < 2 and B

increasing function and define

o
ot™Y) = t2(a)Pea(e)iRle) |

where Bla) is defined by (2.1.8). Then

Pl{w: there exists some to(w) > 0 such that X(t,w) 2 —t1/a¢(t)
for all t s to(w)}] = 0 or 1
according as the integral (4.1.1) diverges or converges.

PROOF. The proof is similar to the proof for the case o = 1 and to those of

generalized L.I.L. theorems for t - = and partial sums. (See chapters 5 and

6.) O
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This theorem implies

X(t)
(2log log t

—1)(a—1)/a = “{2B(a)}—(a—1)/u 8.5,

lim inf

aa—
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CHAPTER 5

GENERALIZED LAWS OF THE ITERATED LOGARITHM FOR LARGE TIMES

The duality between small and large times is given in property 3 of
section 3.1 for the Wiener process and in property 3 of section 3.2 for
other steble processes. By using this duality we obtain the generalized
laws of the iterated logarithm for large times. In this chapter we shall
not give proofs of the theorems but only formulate the results, make some
remarks and give references (if they exist). Theorem 5.1.1 for the Wiener
process follows immediately from property 3 of section 3.1 and theorem
L.1.1. The assertion in property 3 of section 3.2 is weaker than that of
property 3 of section 3.1. Therefore, the theorems for stable processes
with o # 2 do not follow in this way. They can be proved by making use of

exactly the same methods as in chapter k.

5.1. THE CASE o = 2

THEOREM 5.1.1. Let {W(t) : 0 £ t < =} be a Wiener process, ¢ a positive,

continuous and non~decreasing function and take ¢V = ¢. Then

;
Pl{w: there exists some to(m) > 0 such that W(t,w) < t7¢(t)
for all t 2 to(m)}] =0 op 1

according as the integral (4.1.1) diverges or converges.

An elegent proof of this theorem is given by MOTO0O (1959).

As a consequence of this theorem we have Khintchine's classical law

of the iterated logarithm

lim sup w(t) T 1 8.8.
tso (2t log log t)?
and by symmetry
lim inf u(t) o= ] 8.8

tro (2t log log t)?
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5.2, THE CASE 0 < a < 1

A

THEOREM 5.2.1. Let {X(t) : 0 £ t < =} be a completely asymmetric stable

process with 0 < o < 1 and B

1. Let ¢ be a positive, continuous and non-

increasing function and take

e
~“2(1—a).

() = £28(a)121s(t)
Then

Pl{w: there exists some to(m) > 0 such that X(t,w) = t1/q¢(t)

for all t+ 2 t,(w)}] = 0 or 1

0

according as the integral (4.1.1) diverges or converges.

A proof is given by BREIMAN (1968b) following MOTOO's proof for the Wiener

process.

As a consequence we have

X(t) - (tea)/o
(o7a = 2Bla)) o

lim inf Ta -
tro £ 7 (2log log t)

This last result was first proved by FRISTEDT (1964). For general increasing
processes with stationary independent increments similar results are obtain-
ed by FRISTEDT and PRUITT (1971).

5.3, THE CASE a = 1

THEOREM 5.3.1. Let {X(t) : 0 € t < =} be a completely asymmetric stable
process with o = B = 1. Let ¢ be a positive, continuous and non-decreasing
function and take

y(t) = 2(ne)'% exp(me(t)/L).

Then
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Pl{w: there exists some to(w) > 0 such that X(t,u)-{2/n)tlog t 2
2z ~t¢(t) for all t = to(m)}] =0 or 1

according as the integral (4.1.1) diverges or converges.

As & consequence we have

X(t)-(2/m)t log t
t

{5.3.1) lim inf { + (2/7)1log(melog log t)} =

100

= (2/7)log 2 8.5,
and

(5.3.2) 1lim inf 1 8.5, .

x(t
. (2/m)t log t

This last consequence is also proved by MILLAR (1972). See also section 6.3.

5.4, THE CASE 1 < a < 2

THEOREM 5.4%.1. Let {X(t) : 0
process with 1 < a < 2 and B

i

t < =} be a completely asymmetric stable

1. Let ¢ be a positive, continuous and non-
decreasing function and take
]

o(t) = (2B(a))E(s(1)1200" 1)

Then
Pl{w: there exists some to(w) > 0 such that £(t.w) = —t1/a¢(t)
for all t z to(w)}] = 0 or 1
according as the integral (4.1.1) diverges or converges.
As & consequence we have
lim inf X(t) = {2B(a)}~{0=1)/e 8.5, .

oo t1/a(210g log t)(a—T)/a
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CHAPTER 6

GENERALIZED LAWS OF THE ITERATED LOGARITHM FOR PARTIAL SUMS

Throughout this chapter X1,X2,... will be i.i.d. random variables.
Write Sn = X1+...+Xn. The theorems will be formulated for the standard nor-
mal r.v. and completely asymmetric stable random variables. Partially the
theorems follow from the results in chapter 5, because we now consider the
processes at discrete points t=1,2,... . As we saw in section 4.3 the proofs
of generalized L.I.L. theorems rest on the Borel-Cantelli lemma. It is
therefore obvious that these theorems are also true for those random veri-
ables in the domain of attraction for which the distribution function of the
normalized sum converges sufficiently fast to the corresponding stable dis~

tribution. This is discussed further in chapter 10.

6.1, THE CASE o = 2

Following FELLER (1943) we first sketch the historic development of the
L.I.L.. Let Y be a randomly selected point of the interval (0,1) and let its

binary expansion be given by

[
B
~1
=<
=}
N

We define Xn = 2Yn-1. Then the random veriables X1,X2,... are i.1i.d. with
common distribution P[X1=1] = P[X1=—1] = %. The sum Sn is the difference of
the frequencies of occurence of the digits 1 and 0 among the first n places

in the expansion of Y.

1. HAUSDORFF (1913):

1

s, = 0(né+€) 8.5, for every e > 0.
2, HARDY-LITTLEWOOD (191Lk):
;
S = 0((n log n)?) a.8. .

n
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3. STEINHAUS (1922):

1
H
lim sup Sy/(2n log n)” < 1 B.5. .

n-oo

4. KHINTCHINE (1923):

1
Sn = 0((n log log n)?) a.s.

5, KHINTCHINE (192L4):

;
lim sup Sn/(zn log log n)? = 1 BeSe o

-

6. LEVY (1933):
0 ifa> 3

1 1
P[S_ > n®(2 log log n + a log log log n)%i.o.] =
n 1 ifa < 1.

7. KOLMOGOROV-ERDOS (1942):

If ¢ is non-decreasing, then

2

P[Sn >n°¢p(n) i.0.1 = 0 or 1

according as the integral I(¢), defined by (L4.1.1), converges or diverges.

The last result gives a complete solution for i.i.d. Bernoulli trials.
The above results have been extended in various directions. For example to
other random variables with finite or infinite variance, not identically
distributed r.v.'s or dependent r.v.'s.

HARTMAN and WINTNER (1941) show that

S
{6.1.1) lim sup s = 8.5,

il
e {2n log log n)?

for i.i.d. X1,X2,...2with E X, =0 and 02(Xi) =1, i.e. X, e DN(2,0). The
case X, €D(2,0) and o™ (X;) = = is studied by FELLER (1968). STRASSEN (196k4)
proves a beautiful generalization of Hartmen-Wintner's result, that we shall
discuss in chepters 9 and 10. In most proofs of L.I.L. type theorems the
rate of convergence in the central limit theorem plays an important role.

STRASSEN, however, obtains his result by embedding the r.v.'s Xi in the
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Wiener process.

FELLER (1943) generalizes the Kolmogorov-Erdds result to general ran-
dom variables X, subject to some conditions. For example to 1.i.d. random
variables Xk satisfying E Xk = 0 and E|Xk12+€ < o for gome positive e¢. In
this section we formulate his theorem for i.i.d. random varisbles with a

standard normal distribution.

THEOREM 6.1.1. Let TS STRER be ©.7.d. random variables with a standard nor-
mal distribution and ¢ a positive, continuous and non-decreasing function

on (0,°). Then

,
PLS, 2 n%¢(n) i.0.1 = 0 op 1

according as I(¢), defined in (4.1.1), converges or diverges.

REMARK 6.1.1. For almost all w there exists, for all v ¢ [~1,1], a sequence
{nk(v,m)} such that

8 )(w)

n, (v,w
lim v k .
ko {nk(vsw)}é{Z log log nk(v,w)}5

6.2. THE CASE 0 < a < 1

THEOREM 6.2.1. Let XY,XEQ... be 2.%.d. random variables with common distri-

bution function F(.j;a,1) with 0 < a < 1. Let ¢ be a positive, continuous

and non~increasing function on (0,) and take

o]

(6.2.1) pit) = {2B(u)}%{¢(t)}-2(1“°‘) )
Then

PlS_ < n1/“¢(n) i.0.1 = 0 or 1

according as the integral (4.1.1) converges or diverges.

PROOF. The proof of this theorem, and extended to the case of positive, con~
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tinuous r.v.'s in the domain of attraction of a completely asymmetric law (with
some restrictions on the right-hand tail) is given by LIPSCHUTZ (1956b) and
KALINAUSKAITE (1971).

This theorem implies

S
(6.2.2) lim inf S = {ZB(a)}(1'a)/a 8.5, .
n>o n1/a(210g log n)—(1—a)/a

REMARK 6.2.1. For almost all w there exists, for all v 2 1, a sequence
{nk(v,w)} such that

S (v,w) (@)

k
{210g log nk(v,w)}"

}(1—a)/a

lim = v {2B(a)

Koo {nk(V,w) (1-a)/o

}1/a

6.3. THE CASE o = 1

THEOREM 6.3.1. Let X1,X2,,.. be Z.7.d. random variables with common distri-

bution function F(.31,1). Let ¢ be a positive, continuous and non-decreas—
ing function on (0,o) and take

1
(6.3.1)  (t) = 2(ne) “exp(mp(t)/L).

Then

P[Sn~(2/n)nlog n £ -np(n) i.0.1 = 0 or 1

according as the integral (4.1.1) converges or diverges.
PROOF. MIJNHEER (1972). 0

REMARK 6.3.1. Take
¢(t) = (2/m)log(me log log t)-(2/n)log 2+(2/m)log A.

By (6.3.1) this is equivalent with
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1
p(t) = (21 log log t)%.
Then
P[Sn«(elw)nlog n < -né¢(n) i.0.1 = 0 or 1

according as A > 1 or s 1.

This implies

Sn~(2/n)nlog n 2
(6.3.2) lim inf { = + ;~log(we log log n}} =
jokatd

2
=7 log 2 8,8. .

REMARK 6.3.2. As a consequence we have

8

.. n
(6.3.3) ll§+inf (377 )nios n

The result (6.3.3) was proved by MILLER (1967) in case X; € P(ay1) with some
restrictions on the right tail.
From the expansions for the tails of the distribution function (theorem

2.1.7 part II and part V) one easily proves

(6.3.4)  s_/{(2/n)nlog n} £
and

(6.3.5) E X, = o,
The latter implies

Sn/n —  © 8,8, .
From a paper of CHOW and ROBBINS (1961) we know that

S
(6.3.6) linm sup ?E7;T§EBE_E- = o 8.8, -

n-ee

The result (6.3.6) is also a consequence of theorem 8.1.1.
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Let us now consider the results (6.3.2) up to (6.3.6). Roughly speak-
ing we can say that the average Sn/n tends to » like (2/w)log n. Moreover,
from (6.3.3) and (6.3.6) we have the surprising result: for almost all w
there exist (infinite) sequences {nk(w)} and {mk(w)} such that

Snk(w)(w)

(2/ﬂ)nk(w)log(nk(w))

lim
ko

Sm ()
(2/W)mk(w)log(mk(m))

lim
koo

6.4, THE CASE 1 < @ < 2
THEOREM 6.4.1. Let Xy s Xy be 2.i.d. random variables with common distri—
bution function F(.ja,1) with 1 < o < 2. Let ¢ be a positive, continuous
and non~decreasing function on (0,») and take

o]

(6.h.1) P(t) = {2B(a)}%{¢(t)}2(a'1) )

Then

P[Sn < _n1/a¢(n) i.ocl =0 ort

according as the integral (4.1.1) converges or diverges.

PROOF. The convergence part of this theorem follows immediately from the
convergence part of theorem 5.h4.1.

The r.v.'s Sn’ n=1,2,..., have the same distribution as a completely
asymmetric stable process {a e (1,2); B = 1) {X(t) : 0 £t < =} at the
points t=1,2,... . The divergence part of theorem 5.4,1 implies that for

=t (w) such that

almost all w there exist a sequence tk Kk

ey ).

(6.Lk.2) X(tk) < -t x

k

We shall show that the inequality (6.4.2) is also true for infinitely many
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integer values of t. Let n, be defined, for each k, as the nearest integer

k
to ek/log k. Define the events
1/a
: § - .
By snk m ()

As in the proof of theorem 4.3.1 we have X P[Bk] = o gnd by making use of

the lemmas in section 3.6 and by lemma 1.4.2 it follows that

P[Bk i.o.] = 1. 0

As a consequence we have

8 (a=1}/c

lim inf = ~{2B(a)}

e n1/a(2log log n)(a—1)/a

REMARK 6.4.1, Note that the distribution function F(.j;a,1), with 1 < a < 2,
has support (~we,), LIPSCHUTZ (1956b) has established an integral-test for
partial sums of positive, continuous random variables e D(a,1) with some
assumptions on the right tail. See also KALINAUSKAITE (1971).
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CHAFPTER T

HOLDER~TYPE THEOREMS

The generalized L.I.L. theorems in chapter 4 give the local behavior
of the sample paths near t = 0. By the properties 2 of sections 3.1 and 3.2
we obviously have the same behavior in the neighbourhood of every fixed
point t(>0). In this chapter we consider processes on [0,1] and we study a
modulus of continuity result for the Wiener process and completely asymme-

tric stable processes.

T.1. THE CASE o = 2

Consider the Wiener process {W(t) : 0 £ t < 1}. We saw in theorem
3.1.1.b thet almost all sample paths are continuous functions on [0,1]. Let
¢ be a positive, continuous and non~increasing function. Consider the prob=

ability

(7.1.1) P[{w: there exists some Ao(w) > 0 such that |W(t+h,w)-W(t,w)| <

,
< AP¢(A) for @1l 0 £ t < 1-A and O < A < Ao(w)}].

In this section we establish an integral test, comparable to the criterion
in the generalized L.I.L. for W(t) at time t = 0, for deciding whether the
probability in (7.1.1) has the value zero or one. Concerning this problem
of the modulus of continuity of W(t) we have the following historic develop-

ment. Let the function ¢ be defined by
~1
Pt ) = ¢(t).

1. LEVY (1937):
() = o(2 log t)%.

The probability in (7.1.1) is zero for ¢ < 1 and one for ¢ > 1. As & conse~

quence of this result we have

13 W§t+A2«W(t)E -
im  sup = 8.8, .

)
€40 0sts1-A (24 log(a™ )2
0<A<e
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2. SIRAO (195L):
.
y(t) = (2 log t + ¢ log log t)%.
The probability in (7.1.1) is zero for c¢c < -1 and one for ¢ > 5.

3. CHUNG, ERDOS and SIRAO (1959):

The probability in (7.1.1) is zero or one according as the integral

= 1.2
(1.1.2)  3(y) = f PBe)e? tlag
diverges or converges.

REMARK T7.1.1. Let the function ¢ be defined by

ne1 3
[2 logt + 5 103(2)(t) + 2 z3log(k)(t) +c 1og(n)(t)]§,
k=

(7.1.3) ¥(t)

where log( (t) = log(log(k_1)(t)) and n 2 3. Then integral (7.1.2) con-

k)
verges for ¢ > 2 and diverges for ¢ < 2,

T.2., THE CASE 0 < a < 1

In this section we shall establish a similar integral test for the com-
pletely asymmetric stable process {X(t) : 0 < t < 1} with characteristic ex-
ponent 0 < a < 1 and B = 1. Let ¢ be a positive, continuous and non-decreas—
ing function. We define the function y by

o3
(T.2.1) w61y = {2B(a)Plo(t)} 2010

A

THEOREM 7.2.1. Let ¢ and ¢ be defined as above and let {X(t) : 0 = t < 1}
1. Then

be the completely asymmetric stable process with 0 < a < 1 and B

(71.2.2) Pl{w: there exists some Ao(w) > 0 such that X(t+b,0)-X(t,0) =

v

A1/G¢(A) for all 0 £t < 1=A and 0 < A < Ao(m)}] =

0 or 1

according as the integral (7.1.2) diverges or converges.

As in the proof of the L.I.L. type theorems we may restrict ourselves

to special choices for ¢. We define the functions ¢1 and w2 by
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(7.2.3) w1(t) (2 log t - 10 log log t)%

and

1
(2 log t + 10 log log t)2.

(7.2.4)  yy(6)

LEMMA T.2.1. Let y, and ¥, be defined by (7.2.3) and (7.2.4). If theorem
7.2.1 holds for all functions ¢ such that

(1.2.5)  yy(e) = p(e) <y (%),

where ¢ is defined in (7.2.1), then it holds in general.

PROOF. The proof of this lemma has the same pattern as the ome of lemma
4.3.1, We follow the proof of lemme 1 in the paper of CHUNG, ERDOS end
SIRAO (1959). Define the function § by

$(t) = min(max (p(t),0,(6))u,(8)).

Let $ correspond to @ as ¢ does to ¥ by (7.2.1). From the proof of CHUNG,
ERDOS and SIRAO we borrow the following results:

(7.2.6) 1f J(y) < = then $(t) £ ¢(t) for large t.
(7.2.7)  3(¥) < = iff J(P) < =

Suppose J{¥) < = and hence that J(§) < = and
(7.2.8) $(h) = ¢(h) for sufficiently small h

by (7.2.7) and (7.2.6). Then it follows from the assumption of the lemms
that for $ the probability in (7.2.2) is equal to 1. Then for almost all

w we have

1/an 1/a

X{t+d,w0)=X(t,0) 2 A7 T0(A) 2 4 To(d)
for all t € [0,1=-A] and A sufficiently small. Thus the lemma is proved in
the convergence case.

Suppose J(¥) = ® and hence J($) = », By the assumption of the lemme
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A
the probability in (7.2.2) is equal to 0 for ¢. Hence, for almost all w

there exist sequences {tn}’{tﬁ}’ tﬂ > tn with the properties

(1.2.9)  X(&2,0)-X(t ) < (¢/-t )"/ % (1=t )
and

(7.2.10) tﬁ_tn + 0 for n + =,

Because J(¢2) < o ye have by the assumption of the lemma that there exists,
for almost all w, & number AO such that

X(t+h,w)=-X(t,0) > A1/“¢2(A)

for all t end A < A,. Together with (7.2.9) this implies, for sufficiently

large n,
A
(7.2.11) ¢(t£«tn) < ¢(t£—tn).
Now {(7.2.9) and (7.2.11) imply for almost all w
1
X(6!0)-X(t_0) < (615 )/ %p(e0ot ).

This proves the lemma in the divergence case. []

PROOF of theorem T.2.1. By the lemma T7.2.1 we may restrict our attention
to the case where (7.2.5) holds. This is equivalent to

1= e
(7.2.12)  {2B(a)} ® {2 1log LT log log t'1} g op(t) <
] M1wa
< {2B(a)} ¢ {2 log t"1 - 10 log log tw1} o
and yields
1-a 1=
o(t) ~ {B(a)} * {log ™'} @ for t + 0.

Thus the restriction (7.2.5) implies that ¢(t) » 0 for t =+ 0.
Suppose the integral (7.1.2) converges. For p=1,2,..., k=0,1,...,2%,
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j=[p/3],...,p and j+k s 2P ye define the event D? X by
J___ ,J__ /e 2
X(*—=)~ X( ) < ( ) e D ).

By theorem 2.1.7 IV we have uniformly in j and k

. 1/a .
D4 A2 are
P[Dj’k] PLX(1) < ( : ) o 2P)]
. 2(1-a) 2P o
(2/u) PLU > ( ) w(s;g)] =
= 0(1) PLU > w(J+2)] for p + =,
since
s 5P
122y 2067y By - (2 + o1/ Eg) for p > =.

This and convergence of the integral (7.1.2) imply (see the proof of CHUNG,
ERDOS and SIRAO in the case o = 2)

of Ezp f PIDY 1<

p=1 k=0 j=[p/3]1 9K

and hence P[D? " i.0.1 = 0.
9
For arbitrary fixed t,t+A ¢ [0,1] and A < 3 we define integers p,J and
k by

(1.2.13)  (p+1)2 "1 < p < p27P
and

(7.2.14)  (k=1)2"P < ¢t £ k2™® < (54k)27P < t+a < (j+k+1)27P

This implies [p/3]1 < j < p for p 2 9 and

K40 ,0)-X(t 0) > X(EE, 0)-x(E,0).
oP oP
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Hence, for almost all w, we have for sufficiently small A (i.e. sufficiently

large p end all t ¢ [0,1-A])

1/mcb(*"”—e).

_ 5 (d*2
X(t+h ,0)=X(t 0) (2p ) -

Because of the monotonicity of ¢ the right-hand member is larger than

A1/a¢(A). Thus the theorem is proved for the case of convergence.

In the divergence case we define the event E? X by
3

. . 1o .
Phs ST S L
x( - ) X(EP) (2p) ¢(2p)

for p=1,2,..., k=0,1,...,2°, j=[p/2]+1,...,p and j+k < 2P, It is sufficient

to prove PLEY

5k i.o0.] = 1. To prove this assertion we apply lemma 1.4.2, We
£

P
order the events E? K If En = E? K and En' = E?, k! then n < n' iff one of
k] 3 @
the following conditions holds:
1. p<p’
2. p=p' and j > j'
3. p=p', J=J" and k < k',

- oo ¥ -
This arrangement implies j2 P j'e P forn <n'. Divergence of the inte-
gral (7.1.2) implies ) P[En3 = =, (See the proof for a = 2.) Consider two
¥

events E = E- _ and E ' = E?, ; with n < n' and let A_ _, > O denote the
n J,k. n J Qk n,n

- - -ty ¥ - !'_
length of the intersection of [k2 p,(j+k)2 Py ang [k'27P L(3T+Kk' )2 Py we
arrive at the following three conclusions.

1. By lemma 3.4.1 there exist, for any positive e, a number Py and a

positive constaent § such that
(7.2.15) P[En A En,] < (1+e) P[En] P[En,]
for all events En and En" withn <n', p 2 Py and

~1.p.2,.-1.p
(7.2.16) An’n,J 257§ 2¥) < s,

2. Let 0 < ¢ < 1. Computations similar to those in the paper of CHUNG,
ERDOS and SIRAO (1959) yield for fixed n'
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%
(7T.2.17) ¥ PLE A E ] <M PIE,I,

where z* denotes the summation over all events En with n < n' such that

An n,j—12p < ¢ and for which (7.2.16) does not hold. M1 is a constant inde-
®

pendent of n'.

3. In case

1 ~1,p

(7.2.18) 3 g ¢ = Angn,a 2% < 1

(the choice ¢ 2 3 in (7.2.18) restricts the values of p' to p' = p, p+l or
p+2) the conditions of lemma 3.L4.3 are fulfilled for large p. Following the

computations in the proof for o = 2 we obtain for every fixed n
(1.2.19) Y PLE_ A E_,1 s M, P[E_]
n n' 2 n~®

where )" restricts the summation to all n' > n for which (7.2.18) holds
and where M2 is a constant.
From the estimates (7.2.15), (7.2.17) and (7.2.19) it follows that

N o ¥ N
lim inf (] PIE D)™ ] ] PIE AE,]=
Woroo n=1 n=1 n=1

N N
= lim inf ( § PLE 1) 2e2:] ) PIE AE_ 1< t+e.
N0 n=1 n n<n’ n n

Letting ¢ + O we obtain lim inf < 1. Now we can apply lemme 1.4.2 in order

to conclude P[En i.o.nl= 1. [0

REMARK T7.2.1. Taking

Jeg )

o
¢(a) = {2B(a)} * {2(1+8)1og(a™ )} ©
we find that the probability in (7.2.2) is zero or one according as 6 < 0

or § » Q0. Hence one obtains

lim dinf X{t+A)=X(t) - {ZB(a)}(1"a)/a

e40 0StE<T-A A1/q{21og(Am1)}_(T"a)/a
O<A<e
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This result was first proved by HAWKES (1971).

T.3. THE CASE o = 1

THEOREM 7.3.1. Let ¢ be a non-negative, continuous and non—-increasing func-
tion and {X(t) : 0 < t < 1)} the completely asymmetric stable process with
a = 8 = 1. Define the function y by

ot 1) = 2(me) Rexp(me(t)/h).
Then

(7.3.1) Pl{w: there exists some Ao(w) > 0 such that X(t+d,w)~X(t,w)+
«(2/m)}Alog A = ~A$(A) for all 0 < t € 1-5 and
0 <A < Ao(w)}] = 0 or 1

according as the integral (7.1.2) diverges or converges.

PROOF. Agein we may restrict ourselves to functions ¢ satisfying (7.2.5).

Hence

¢(t) ~ (2/w)log log . for t + 0

and this implies ¢(t) + « for t + O.
Assume (7.1.2) converges. For p=1,2,..., k=0,1,...,2p, J=lp/31....,p
and j+k+1 < 2P we define the event D? X by

b

{x((j+k)2‘P+s)-x(k2”P~r)-(2/n)(jgfp+r+s)1og(j2"9+r+s)} < (22,
P

inf

Osr,ssQ—p

52 Perag
The restriction (7.2.5) implies that the conditions in lemma 3.5.U4b are

fulfilled uniformly in j. Thus

2 a2
P[Dg,kj < K, PIX(1) < - 2P)].

By theorem 2.1.7 V this implies that, uniformly in J and k,

P(DY 1= 0(1) PLU 2 (3§1)] f >
ER 2 Wes or P T
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Convergence of (7.1.2) gives, as in the proof of CHUNG, ERDas and SIRAO for

the case o = 2, P[D? X
B

and k by (7.2.13) and (7.2.14). For almost all w, we have for sufficiently

i.o.] = 0. For arbitrary t,t+A ¢ [0,1] we define p,J

large p
X(t+a)-X(t)-(2/m)Alog A
: >
ine  (EUIR)™Pre ) x(k2™Por)-(2/n) (jR Prr+s)iog(jR Prrs, |
Osr,s<2”? 32 Perts

> —o(22) > _g(a).
2P

In the divergence case we define P Kk by
?
X((3+1)27P)-x(x27P)~(2/r) j2 P10g(527F) < -327P¢(527F)

for p=1,2,..., k=0,1,...,2°, j=[p/21+1,...,p and j+k < 2P, The remainder of
the proof closely resembles the proof of theorem T.2.1. However, the neces~
sary estimation of the lim inf occurring in lemma 1.4.2 differs on one point.
This difference arises in connection with lemma 3.5.2. We want to use this
lemms for the case 0 < At_1 < ¢ < 1, In that case At—1w2(1/t')/w2(1/t) is
not necessarily less than one. However, one only has to invoke lemma 3.5.2
in case that p'~S5logp' < p < p'. Then by the restriction (7.2.5) we know
that for any pair of constants (c,c1) with 0 < ¢ < c, <1, the restriction
At“1 < ¢ implies At"1w2(1/t')/¢2(1/t) < ey

Then, as in the proof of theorem T7.2.1 we can show P[En i.o.l = 1 and

for sufficiently large p' (or p).

hence the theorem is proved. [J

REMARK 7.3.1. Taking
6(8) = (2/m)log(re log(a™"))=(2/n)log 2 + (2/7)log(1+s)

the probability in (7.3.2) is zero or one according as § < 0 or § > O.

Hence

log(me log(AmT))}] =

lim [ in¥f
e¥0 0Ost<sti-p
O<A<e

{X(t+A)—X(t)-(2/n)Alog A,2
A ™

log 2 8.8,

SRS
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and

1im  inf (Xexa)-xX(t)-(2/m)Mlog Ay . 4

€40 0st<1-A  (2/m)Alog log(a™')
Q<Ah<e

7.k, THE CASE 1 < o < 2

THEOREM T.b4.1. Let ¢ be a non-negative, continuous and non~increasing func-
tion and {X(t) : 0 < t < 1} the completely asymmetric stable process with
1 <a<2and B = 1. Define the function ¢ by

[¢]

(T0) w7 = ena)yigeeny®lent)

Then

(7.4k.2) Pl{w: there exists some Ao(m) > 0 such that X(t+h,w)-X(t,w) 2

-N%(A) for all 0 £t < 1«8 and 0 < A < Ao(w)}] =

Y

0 or 1

i

according as the integral (7.1.2) diverges or converges.

PROOF. Again we may restrict ourselves to functions y satisfying (7.2.5).
Hence it follows by (7.4.1)

o1 O 1

o(t) ~ (Bla)} * {log t™'} ° for t ¢ 0

and this implies ¢(t) + = for t ¢+ 0.
Suppose the integral (7.1.2) converges. For p=1,2,..., k=0,1,...,2F,

3=[p/334...,p and j+k+1 < 2P we define the event D? . by
3

. . Vo .
inf (R ) x(E o)) < () g2y,
osr,s<2”P 2P oF 2P oP

By lemma 3.6.4b we have

. . oo
PIDE 1 € k2 (a,1) PLX(ER) < () o(L2))
s P oP oP
-2 FERANFIY]
=k “(a,1) PX(1) < -(j+2) o ( QP)]°
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Consequently, by theorem 2.1.7 VI we have, uniformly in j and k,

oP

H@$]=om)muzw§§n for p + .

Hence it follows that P[D? K i.0.] = 0. For any t and A we define integers
b

P, and k by (7.2.13) and (7.2.14). For almost all w, we have for sufficient-
ly large p

"

X(t+h,0)-X(t ,w) inf {X(i%§+-s,m)-x(3i-r,m)} >

osr,s<2”? 2 2P

P T
-4y TRy 2 _a%0a).
2P 2P

v

In the divergence case we define the events E? k by
k]

. . e
Arky e KN e e
X(QP) X(zp) (QP) ¢(2P)

for p=1,2,..., k=0,1,...,2%, j=[p/21+1,...,p and j+k < 2P, The proof that

P[E? X i.0.] = 1 ig the same as for the case o = 1. []
3

REMARK 7.h4.1. Taking

a1 o1

8(8) = {2B(a)} @ (2(1+8)10g(a™ ")} ©
we have that the probability in (7.4.2) is zero or one according as 6§ < O

or § > 0. Hence

lim inf X(t+a)-X(t)

e10 0st<i-p 8/ %210g(a~1)3lo-1)/0
Q<h<e

= ~(oB(o)y~ (e 4 o
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CHAPTER 8

L.I.L.~TYPE THEOREMS FOR THE HEAVY TAILS

In the chapters 4,5 and 6 we have proved generalized laws of the iter-
ated logarithm for completely asymmetric stable processes (B=1) for t + O,
t > » and for partial sums. In that way we obtain lower limits for the rate
of growth of the sample paths of these stable processes for small and for
large times. In the proofs we made use of the relation between the left tail
of the distribution function F(.j;a,1) and the tail of the standard normal
distribution function, as given in theorem 2,1.7 parts IV, V and VI. In this
chapter we shall obtain upper limits for the rate of growth of the sample
paths of completely asymmetric stable processes (B=1). We apply the expan-
sions of the right tail of the corresponding distribution functions F(.3a,1)
given in theorem 2.1.7 parts I, II and III. For the other stable distribu-
tions (|B|#1) we have the same expansions for both tails of the distribution
function. By using these expansions we also obtain upper-~ and lowerbounds
for the rate of growth for stable processes with |B] # 1, In this chapter
we establish integral tests similar to the criteria in the chapters 4,5 and
6. We distinguish three cases: partial sums, stable processes for t =+ « and

stable processes for t ¢ 0.

8.1. PARTIAL SUMS

We first give some eariy results.

1. LﬁVY (1931) « MARCINKIEWICZ (1939):
Let X1,X2,.,e be independent random variables with distribution function
F1,F

PR Suppose that, uniformly for large x and all k,

ex® < 1 - Fk(x)+Fk(—x) < cx %,

where a,c and C are positive constants with a ¢ (0,2). In case 1 £ o < 2 we

assume

t
lim [ x dFk(x) = Q,
TR

Let A be a positive increasing function such that A(2t)/A(t) + 1 for t - =,
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Define the sequence {an} by

a = {n(log n)r{log n)}1/a.

Then
PLIX.4...*X | >a d1.0.] =0 or 1
1 n n

according as Z HK%ET converges or diverges.

LEVY proved this result in case O < a < 1. In chapter 10 we formulate
an extension, proved by FELLER (1946), without conditions on {an}. Other
authors also proved similar results using the methods used for the L.I.L.

for the case o = 2. We mention the following ones.

2. LIPSCHUTZ (1956b):
Let X1,X2,... be positive 1.i.d. random variables with common distribu~
tion function F ¢ D(o,1) with a # 1,2 and let y be a positive continuous

non-decreasing function. Then

in case 0 < a < 1
oo 1.0.] = H
P[X1 x> anw(n) i.o.]l =0 or 1;

in case 1 < a < 2

}[}{1|'¢' Xn IIEX1 > anli’(ﬂ) 1"0'] 0 or
&CCOIding as

(8.1.1)  K(y) = N
f 9% (t)

converges or diverges. The constants a eare defined by (2.2.2) and (2.2.4).
3. CHOVER (1966):

Let XT’XZ"" be i.i.d. with common distribution function F(.;a,0) with
0 < a < 2., Then

(1+e)/a i.o.]

P[IX1+...+an > n1/a(log n) =0 or 1

according as € > 0 or e < 0.
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L, HEYDE (1969):
Let X1,X2,... be i.1.d. random varisbles with common distribution func-

tion F € DN(a,B) with a # 1,2 and |8| # 1. Then

1/u( 1+e) /o .

P[|X1+...+an >0 log n)( i.o.]l =0 or 1

according as € > 0 or ¢ < 0,
In the sections 2 and 3 of this chapter we shall refer to similar theo-
rems for stable processes for large and small times.

Let X1,X 5+.. be 1.i.d., random varisbles with common distribution func-

tion F(.;a,B). We define the sequence {T(n;o,B8)} by

(8.1.2) T(n;a,B) = (X1+,..+Xn)n_1/a for o # 1
= (X1+"'+Xn ~ (2/7)Bnlog n)n—1 for a = 1,

By theorem 2.1.3 it follows that for every a and B

(8.1.3) T(nja,B) d for all n.

1
In this section we shall prove the following theorem.,

THEOREM 8.1.1. Let the sequence {T(nja,B8)} be defined by (8.1.2) and let ¥

be a positive, continuous and non-decreasing function. Then

a. for a € (0,2) and B € (~1,1]

P{T(n;0,8) 2 v(n) i.0.1 = 0 or 1

according as the integral K(y). defined in (8.1.1), converges or diverges
b. for a € (0,2) and B ¢ [~1,1)

P{T(nja,8) < -¥(n) i.c.1 = 0 ort

according as the integral K(y), defined in (8.1.1), converges or diverges.

Let € > 0. We define the function w1 and wz by
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i-e
(8.1.4)  y (t) = (log t)
and
lre
o

(log t)

(8.1.5) wz(t)

In the proof of theorem 8.1.1 we apply the following lemma.

LEMMA 8.1.1. Let € > 0 and let W1 and wg be defined by (8.1.4) and (8.1.5).
If theorem 8.1.1 holds for all functions V satisfying

(8.1.6) w1(t) < p(t) < b, (t)

then it holds in gemeral.
PROOF, The proof has a similar pattern as the proof of lemma L4.3.1.

L. In the same way as in the proof of part 4 of lemme 4.3.1 we show

that convergence of K(¢) implies y(t) > ¢1(t) for sufficiently large t.

L. Let y be an arbitrary function satisfying the conditions of theorem
8.1.1 and K(y) < . Define the function § by

(8.1.7)  ¥(t) = min(max(y (t),v(t)),p,(t)).

2
Then, for sufficiently large t, we have @(t) = min(w(t),wz(t)), implying
K(&) < ®, The function § clearly satisfies (8.1.6). By the assumption that
theorem 8.1.1 holds for all functions satisfying (8.1.6) we have

P[T(n;0,8) 2 $(n) i.0.1 =0
and obviously
P[T(n3a,8) 2 $(n) i.0.] = 0.

ilL. Let ¥ be an arbitary function satisfying the conditions of theo-
rem 8.1.1 and K(¢) = ., Define § by (8.1.6). In the same way as in the proof
of part Li{{ of lemma L4.3.1 we obtain K({) = @. By the assumption that theo-
rem 8.1.1 holds for all functions satisfying (8.1.6) we have
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P[T(nja,8) = $(n) i.0.1 = 1
and

P[T(nj;a,8) > wg(n) i.0.] = 0.

Thus there exists a sequence {nk} such that $(n ) < wz(nk) and

k

(8.1.8)  P[T(n;a,B) 2 qﬁ(nk) i.0.1 = 1.

The inequality $(nk) < wz(n )} implies $(nk) 2 w(nk). This yields, in view

of (8.1.8),

k

P[T(n;a,B) = ¢(n) i.0.] = 1,

Thus the restriction (8.1.6) can also be made in case the integral

(8.1.1) diverges. [

PROOF of theorem 8.1.1. Because F(xja,B) = 1-F(-x;0,-B) we have only to
prove part a of the theorem. By lemma 8.1.1 we may restrict ourselves to
functions Y satisfying ¢1 s P < wea

Suppose K(y) < =, Let ¢ > 1 and let n denote the largest integer smal-

ler than cr. We define the following events

A T(n;0,8) 2 y(n);
1/a
B : max s = o, vin_ ) for o # 1,
n_<nsn n o
r r+1
max T(n;a,B) = w(nr) for a = 1
n_<nsn
r r+

and for o # 1

- n1/aw(nr),

r n r
Then

(8.1.10) 1lim sup An c lim sup Br'
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By lemme 1.4.3 and remark 1.4.1 there exists, for o # 1, a constant k(a,B)
such that P[Br] < k—1(a,B) P[Cr]' The expansion of the tail of F(.;a,8) in
theorem 2.1.7 parts I and III implies

) Vom )1 = o

P[Cr] = P[X1 > (nr/n . *E—~—;) for r + =,

r+1

Let {X(t) : 0 < t < =} be a stable process for which the r.v. X(1) has dis-
tribution function F(.3;1,8). Then

X(n)-(2/m)Bnlog n

pL z y(n_)] <
n_<nén n ¥oy
r r+1
X(nrt)—(2/ﬂ)8nrtlog(nrt)
< Pl sup 3 2 w(nr)] =
=1 r
1stSnr nr+1
= P[ sup X(t)—(Q/E)Btlog,t 2 w(nr)]
1<t5n;1nr+1

by property 4 of section 3.2. By lemma 3.5.5 it follows that for a = 1

= -—-1 ©
P[Br] O(w(nr)) for r + o,

Thus we have for all o € (0,2) that there exists some positive constant k

such that
) P[B.] < kK(p) < = .

This yields P[lim sup Ah] = P[1lim sup BrJ = Q.

Suppose K(y) = =». Because, for every positive A,

{1im sup Iﬁ%%%zﬁl > A}

is a tail event we have

P{lim sup Eiﬁfﬁjﬁl-> Al =0or 1.
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Thus, in order to prove the divergence part of the theorem we only have to

show
P[T(n;a,8) = y(n) i.0.1 > O.

Define the sequence n. as in the convergence part with ¢ so large that
1/a 1

1-2(e=1)" > > Define the events

D_: \P(nr) < T(n ;0,8) < Zw(nr).

1

Then there exists a positive constant k such that P[Dr] =k "Ef—-—-for
v (n)
r >~ © and this yields ) P[Dr] = », In case o # 1 we have for r < s
T

- /o 1/a /o 1/a

P[DrADs] = P[nr w(nr) < Snr < en w(nr) A w(ns) < Sns < 2ns w(ns)] <
t/a 1/a
< PID_] P[Sno snr 2 w(ns)—2nr w(nr)] <
n 1/a o, o
< 2 .
< Plp 1 PLX, 2 (ns_nr) ¥(n) 2(ns_nr) ¥(n )] <k P(D 1 P[D_I,

where the constant k1 can be chosen independent of r and s.

In case o = 1 we have for r < s

P[DrADs] P[nrw(nr) < Sn ~(2/n)6nrlog n < 2nr¢(nr) A

r

A nsw(ns) < Snsm(z/n)ﬁnslog n < 2nsw(ns)]

N

PLD ] Pisns_snr > nsw(ns)+(2/ﬂ)8nslog n, - 2nr¢(nr)~(2/n)snrlog n ]

A

P[Dr] P[X1 2 (ns—nr)“1(nsw(ns) + (2/n)anlog n_ - Enrw(nr) +

- (2/n)6nrlog n, - (E/ﬂ)B(ns«nr)log(nS—nr)]

A

PID I PLX, 2 3y(n ) + BA(r,s)],

nslog o - nrlog n, - (nsmnr)log(ns—nr)

ERLM

vhere A{r,s) = — is uniformly
s 1T
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bounded by & constant which depends only on c¢. By the expansion in theorem

2.1.7 part II we have
P[p AD 1 < k. P[D 1 P[D 1,
r s 1 r s

where k1 may be chosen independent of r and s. Hence for all o € (0,2) lem~
ma 1.4.2 yields P[Dr io.l>0. 0O

REMARK 8.1.1. Divergence of the integral K(y) implies K{Ay) = « for all pos-

itive A. Consequently

lim sup Eiﬁfﬁiﬁl EDY a.s.

and this yields

lim sup Eiﬁfgjﬁl = 8.8,

in case K(¢) = o,

CHOVER (1966) makes use of his version of theorem 8.1.1 to prove that

1

lim sup |T(n;a,0)|log log n e1/a a.s. .

-0

This result is extended to the cases ]6| # 1 (and o#1) by HEYDE (1969).

CHOVER (1966) has also given some other limit points of the sequence
1
{lT(n;a,O)IIOg log n

and |8] < 1, by

}. We define the sequence {T(nja,8)}, for 0 < a < 2

1
log log n

~

(8.1.11)  T(n;a,B) = sign(T(n;a,8)) |T(n;a,8)|

The following theorem gives some limit points of this sequence {T(nya,B)1.

THEOREM 8.1.2. Let the sequence {T(n;a,8)} be defined by (8.1,11) for
0<ac<2and |B| 1. Then, with probability 1, all points of the following
intervals are limit points of {(T(n3a,B)}.
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[-e/o 1/ for 1< a <2 and [B| # 1
e 13 1T<sa<2 B =~
[_1’?1/a3 1 1<q <2 g =1
. 1/a’_é'f:&] o e ! a,e1/a] 0 <a <1 |8 # 1
[_31/a’ 11 0<ac< 1 B = -1
[1 1/a] 0<a=<1 g =1

REMARK 8.1.2. In case 1 < a < 2 and all B and in case 0 < a < 1 and |B] = 1

theorem 8.1.2 gives all a.s. limit points. I do not know about the points
1 1

in the interval (-e 1—a,e 1_OL)

in case 0 < o < 1 and |B] # 1.

In the proof of theorem 8.1.1 we need the following lemmsa, which is a

simple extension of a lemma proved by SPITZER (1956).

LEMMA 8.1.2. Let the sequence {T(n;a,B)} be defined by (8.1.2) and let {a }

be a non-increasing sequence of positive real numbers. Then for all o z 1

P[0 < T(nja,B) < a i.o.]l =0 or 1

according as the series ) a converges or diverges.
PROOF. Denote the event

(8.1.12) 0 < T(nj3a,B) < e

by Dn. Then P[Dn] = P[0 < X,
a bounded density it follows that

< an]. Because each stable random variable has

P[Dn] = O(an) for n -+ o,

Then the convergence part easily follows.

In the divergence part we may suppose, without loss of generality, that
1

g £ - _ We compute for m > n
n n logn

P[DnADm] = P[0 <€ T(nja,B) < a A 0 € T(mja,B) < am]
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/ .
PO <8S < n1/aa AQ<S < m]/aa ] if a # 1
n n m m

if o = 1.

N

PO < Sn—(E/n)Bnlog n < e A 0 < Sm—(2/n)8mlog m < mam]

We first consider the case a # 1.

. n il
P[D AD ] = {J £ plxlax} £ (ydy,

where fj is the density of Sj =X +...+X‘j for j=1,2,... . Because the ran-

1
dom variables Xj’ J=1,2,..., have a stable distribution fn satisfies

(8.1.13) £ (.) = n’1/“f1(n'1/“,) for o # 1

and f1 is bounded. Thus

1/a
(8.1.14) PID.AD ] < M () a a .
n m Me=11 n m

In case a = 1 we obtain the same upperbound. Now the density fn satisfies

~1

(8.1.15) fn(. + (2/7)Bnlog n) = 2 e (n”.).

1

If m > 2n we have m(m_n)—1 < 2 and because f1 is bounded away from zero

near the origine, (8.1.14) implies the existence of a constant k, such that
(8.1.16) P[DnADm] < kOP[Dn] P[Dm].

By (8.1.14) we have for fixed n

2n 2n 1/a
5 PDAD1sMa o (B a.

e n m D oeq W m

Some algebra shows that for n - «
-1
on . 1/a 0({log n) ) for 1 < a <2
] =) e =
m-n il

for o = 1.



78

By lemma 1.4.2 the divergence part of the lemma follows immediately. [J

8

PROOF of theorem 8.1.2. Let the subsequence n._ be defined by n, = [Yk 1 with

k k
vy > 1 and § > 1. One can show that for O < a < 2 and -1 < B £ 1

P[T(nk;a,s) > ¢(k) i.0.]1 = 0 or 1

according as K(y) converges or diverges. The proof of this assertion is sim-

ilar to that of theorem 8.1.1 and is therefore omitted. It easily follows
1

that ead is, with probability 1, a limit point of %(n;a,s), Thus, w.p.1, every

1/a

point of [1,e '] is limit point of T(n;a,B) for all o and -1 < B < 1. Theo-

rem 8.1.1 part a. implies that, in case o ¢ (0,2) and -1 < B < 1,

. ~ 1/o
(8.1.17)  1im sup T(nja,B) = e a.s. .
Theorem 6.2.1 implies that, in case o ¢ (0,1) and 8 = 1,

(8.1.18) 1im inf %(n;a,e) = 8.5, «

For o ¢ (0,1), it follows that the set of all limit points of {T(nja,1)} co-

1/a3' Because

incides almost surely with [1,e

(8.1.19)  Fl-x30,-8) = 1-F(x;a,8)

we have also proved theorem 8.1.2 in case 0 < o < 1 and B = -1,

In case 1 £ o < 2 and [s < 1 we define the subsequence n_ by n_ =

k k

§
= max(k,[Yk 1) for fixed y > 1 and § > 0. Repeating the argument of lemma
8.1.2 we can show

PLO < T(nk;a,s) < ay i.ocl = 0 or 1

according as Z &, < ®or =« Then we easily obtain that all points of

[-1,1] are limit points of T(nja,B8). In case 1 < o < 2 theorem 6.4.1 implies
(8.1.20) 1lim inf T(nja,1) = =1 a.s. .

In case o = 1 the result (8.1.20) follows from theorem 6.3.1., This completes
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the proof for the case 1 £ o < 2 and 8 = 1 and because of (8.1.19) also for
the other cases with 1 £ a < 2.

In case 0 < a < 1 and IBI # 1 we define the subsequence o, by n =
§
= ms,x(k,[yk 1) for vy > 1 and 8§ 2 1~a. Now we can show that

PlO < T(nk;a,B) < e 1.0.] = 0 or 1

according as converges or diverges. Remark that, also in case 0 < a < 1,
i

we can define the events D, by (8.1.12) and give an upperbound for P[DnADm]
1 1

1““] ufe 1—a,1]. 0

as in (8.1.14). Then we obtain the limit points in [-1,~e

8.2. LARGE TIMES

In this section we prove the analogue of theorem 8.1.1 for stable pro-
cesses, Let {X(t) : 0 £ t < »} be a stable process. KHINTCHINE (1937) has

given an integral test in order to determine whether the event

(8.2.1) {w: there exists some to(w) > 0 such that [X(t,w)]| s t1/a¢(t)

for all t 2 to(w)}

has probability zero or one. FRISTEDT (1967) has given a similar result for
subordinators. Symmetric processes with stationary, independent increments
(not necessarily stable) are studied by FRISTEDT (1971).

As in section 8.1 we define the process {T(t;a,B8) : 0 < t < «}, with

o € (0,2) and B e [~1,1] by

#

(8.2.2)  T(t;a,8) £/ %% (e) for a # 1

t_1{X(t)-(2/W)Btlog t} for a = 1,

Hi

It follows from the definition of a stable process that
T(tia,B) g x(1) for t > 0, o € (0,2) and B ¢ [~1,1].

THEOREM 8.2.1. Let the process {T(t;a,B) : 0 < t < =} be defined by (8.2.2)

and let y be a positive, continuous and non—decreasing function. Then



80

a. For a € (0,2) and B € (~1,1]

Pl{w: there exists some to(m) > 0 such that T(t3a,B8) < y(t)
for all t = to(w)}] =0 or 1

according as the integral (8.1.1) diverges or converges
b. For a € (0,2) and B ¢ [-1,1)

Pl{w: there exists some to(w) > 0 such that T(t;a,B) 2 «P(t)

for all t = to(w)}] =0 or 1

according as the integral (8.1.1) diverges or converges.

PROOF. Again it is sufficient only to prove part a and we may suppose that
1-g 1+e

(log t) * < w(t) < (log t) * . We have only to prove the convergence part

because theorem 8.1.1 implies the divergence part.

Define the events Cr, r=1,2,..., by

-1
sup  T(t3a,8) > p(2°7 ).
25 Tep o

By lemmas 3.4.4, 3.5.5 and 3.6.4b it follows that
PLC.1 = 0((y(2")™) for r » @,

It follows, as in the proof of theorem 8.1.1, that for all a ¢ (0,2)
Z P[Cr] < o, implying P[Cr i.0.]1 = 0. Therefore, for almost all w, there

exists a number ro(m) such that

sup  T(t30,8) < y(2°71)

2r—1sts2r

for all r 2 ro(w). Then the theorem follows by making use of the monotonicity
of y. [I
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8.3. SMALL TIMES

The duality between small and large times for stable processes, given
in property 3 of section 3.2, indicates that we may establish & similar theo-
rem for small times (cf. the references given in section 8.2). The proof of
the following theorem follows the same pattern as the proof of theorem 8.1.1

and is omitted.

THEOREM 8.3.1. Let the process {T(t;a,8) : 0 £t < =} be defined by (8.2.1)

and let V be a positive, continuous and non-decreasing function. Then

a. For a € (0,2) and B ¢ (~1,1]

P[{w: there exists some to(m) > 0 such that T(tiu,B8) < w(t“i)

for all t+ <t (w)}] = 0 or 1

0

according as the integral (8.1.1) diverges or converges

b. For o € (0,2) and B € [-1,1)

-1

Pl{w: there exigts some to(w) > 0 such that T(t3a,B) = -p(t )

for all © < to(w)}] =0 or 1

according as the integral (8.1.1) diverges or converges.
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CHAPTER 9

FUNCTIONAL LAW OF THE ITERATED LOGARITHM

To state the theorems in this chapter we remember that CLO,1] is the
Banach space of all real-valued continuous functions on [0,1] with sup-norm
||.]|c and metric dc' The set D[0,1] will be the set of real-valued functions
on [0,1] which are right-continuous and have finite left-hand limits. In ap-
pendix 1 we define two topologies on DL0,1]. In section 1.5 we have defined

the mapping
T plo,1] — c[o0,1]
as the following piecewise linear approximation

(9.0.1) nm}(j/m) = x(j/m) for j=0,1,...,m

and linear on the sub-intervals [j/m,(j+1)/m] for j=0,...,m~1.

DEFINITION 9.0.1. Let K be the subset of absolutely continuous functions
x € CL0,1], such that x(0) = 0 and

! 2
j (%(t))%at < 1.
0
The set K is compact. (See for example FREEDMAN (1971), lemma 78(d).) Let

4o

CO (resp. C+) be the subclasses of CL0O,1] of increasing (resp. non-decreas-

ing) functions. Then we have

+ +

CO c C < CLo,t1],

The increasing and non-decreasing functions of K constitute the subclasses
.

Kg and K with

K+ < K+ < K
o .
Every finite non-decreasing function x is almost everywhere differen-
tiable and we denote his derivative by %X. From theorem 1.5.2 we know that
¥ is a version of the Radon-Nikodym derivative of the absolutely continuous

part X of x with respect to Lebesgue measure. We define the mapping I
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9.1. THE CASE o = 2

STRASSEN (196k4) proved the following functional law of the iterated
logarithm for the Wiener process {W(t) : 0 £ t < »}. Let the sequence
{f :n 2 3}
n

£ ¢ [0,1] x 9+ IR
n

be defined by

fn(t,m) = W(nt,w)/(2n log log n)%

for n=3,4,... .

THEOREM 9.1.1. For almost all w, the indexed subset
{fn(.,w) :n 2z 3}

of ¢l[0,11 28 relatively compact, with limit set K.

In fact STRASSEN proved the theorem for the Wiener process in IRk. By
using the Skorohod representation (see chapter 10) of a random variable
Y e DN(E,O) he proved the so called strong tnvariance principle. This strong
invariance principle will be stated in chapter 10. VERVAAT (1972) has obtain-
ed similar results in C[0,») instead of C[0,1].

9.2, THE CASE 0 < a < 1

Let {X(t) : 0 £t < =} be a completely asymmetric stable process with
0 <a<1and 8= 1. We introduce the following mapping



8k

defined by
a

Ci(y)1 20070 4y

(9.2.1) () = |
0

Define the sequences of functions {fn :n 2 3} and {g(.,n,m,.) : m e N, n23}
£ 200,11 x 2> R

and
glegn,my.) 2 [0,1] x N x N x @ » IR

by
1m0y lea 1

(9.2.2) fn(taw) = (2 log log n) & {2B{a)} ¢ n @ Xnt,w)
and

(9.2.3) glt,nmuw) = Da"mfn(t’w)°

THEOREM 9.2.1. Let ¢ > 0O,

= n {e,m,w) such that

a. For almost all w and all m there exists a number n, 0

+
dc(g(esnamaw)sK ) <€

for all n 2 nge

b. For all h ¢ XK' there exists a number mo(s,h) such that
Pl{w: dc(g(e,n,m,w),h) < e for infinitely many n}l = 1
for all m 2 mo(egh)g
For r=2,3,..., let 0, be the nearest integer to

(9.2.4)  of/(log r)?

For a positive integer m, there exists an integer r(m) such that for r = r(m)



85

n
r+1 piiy
(925 <k

Obviously this implies that, for r 2 r(m), we have ,jnr+1 < (j+1)nr for all
J=04s00sm=1, For fixed m and all r 2 r(m) we define the random variables
Aj’r (304000 ym=1) by

. -1 . - -
(9:2.6) Ay o = DX((3+1nm )X, @)1 1

In the proof of theorem 9.2.1 we need the following lemma. The proof of this

lemma will be given in appendix 2.

LEMMA 9.2.1. Let the sequence {nr} be defined by (9.2.4) and the random var—
tables Aj p by (9.2.6) for r =z r(m), Then, for ¢ > 0 there exists a number
Hd
k (depending on m and e, but not on r) such that for all r z r(m),
Yot

2 -
P[AO’r+...+Am_1,r > (1+g)” 2log log nr] < kr i

PROOF of theorem 9.2.1.

Part a. By the definition of g(.,n,m,w)

o
m-1 "

I(Da"mfn) = jZO [m(fn((j+1)/m)_fn(j/m))i-1-a o

1(g)

1 1 a
A e 1 .. -
n ™% 28(a)(2log log n)” § [n “(X(n(j+1)/m)-X(aj/m))] "%,

520

H

Taking n, es in (9.2.4) and r 2 r(m) so that (9.2.5) is fulfilled, we define
the events Br by

(9.2.7) B = {v: max 10 £ (2 0)) > (1+e)°}.

n_<nsn
r r+]

Because the paths of the completely asymmetric stable processes for 0 < a < 1

are increasing functions we have
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1

P[B_ ] < P[{uw: n %
Ir

7

2B(a)(2lo0g log nr)“.

[¢)

-

M1 -

T T, S (e1) /mae)X(a, 3/me))] > (14e)°1]

2
+a0 et
P[Ao,r Am—T,r > (1+e)” 2log log nr],

where Aj r is defined in (9.2.6). By lemma 9.2.1
H

P[B ] s kr~ "€
r

and hence 2 P[Br] < ®, By the Borel-Cantelli lemma it follows that for al-

most all w there exists a number no(a,m,w) such that

I(Danmfn(.,w)) < (1+€)2

for n = no(e,m,w). Since g(.,n,m,w) is obviously increasing, it follows that

- +
+e Ble st yMyw) € or almost a wand n 2 n_le,m,w) and because any
(1+e)”" &l ) Ky £ 1m 11 a O( ) and

. . + .
function in KO 1s bounded by 1,

1

dc(g(esn:mgm)5(1+€)~ g(e:n:mﬁw)) < €

for almost all w and n > no(e,m,w).

1

. . + - -
Part b. Fix h € K and € > 0. Because I({1+e) h) < 1 and dc(h,(1+s) 1h) < e

we shall further assume I(h) < 1., By uniform continuity, there exists an in-

teger m (e,h) such that for all m > m_(e,h)

0 )

(9.2.8) aj = h((j+1)/m)-n(j/m) < e/k for j=0,...,m~1,

Choose m > max(mo(s,h),16e‘2) and define the sequence {nr} by n = n' and

2
§ = me" /16~1, Then 8§ > 0 and by theorem 6.2.1 we have

1 1w Ty

P[x(n) < n® (2B(a)) * (2(1+8)log log nf- % i,0.1= 0.

This implies: for almost all w, there exists an integer r_ (e,w,m) such that

0
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(9.2.9)  gln™ ,n_,m,u) =

1=a 1 _ -

[(21log log nr) “ n, % (28(a)) %m X(nr/m,w)

.
] 2(1~a) m—1

A

e/l for r = ro(sgw,m)@
Choose positive Ej for j=1,...,m=1 such that

€. < a./m if a. # 0
J J/ J i
(9.2.10)

€5 < t~;(l+m)_1 otherwise,
and such that

T 5
(9.2.11) = § (a, +¢,)" < 13

j=1 dJ J

e 1
this is possible because m 2 a? < I(h) < 1. (By lemma 80 in chapter 1 of

FREEDMAN (1971).) =1
Define for j=1,...,m~1 the events

(9:2.12) 6l = tur (as-e)" < 6((541)/men mon)-g(i/mn ime) S 5 + )

and

_ L)

The events C(J)9 J=1,. .. ,m=1 and r=1,..., are independent. Therefore the
r

! P[Cij)Xw By (9.2.2) and (9.2.3)

events D, are also independent and P[D ] =H?;1

: 1 1
P[Cia)] = P[(a.j_ej)+ m?(2log log nr)é <

a
- Ty 1
{2B(a)}% x(1) 2(1-a) < (aj+ej) m% (2log log nr)ﬁla

"

Because of theorem 2.1.6 IV there is a number k such that

2
. -m{a.+e.)” log log n
P[CﬁJ)] e Jd r’

w
=
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and hence there exists a number k1 such that
-1 2
-m log log n a.te. k
g logn, ] ( stes)

P[Dr] B k1 e J=1

1
T r logm

by (9.2.11). This implies Z P[Dr] = », The Borel-Cantelli lemma gives
P[Dr i.0.1 = 1. Consequently, there exists for almost all w a sub-sequence

ﬁr(w) such that

A

dc(g(°9ﬁramaw)ah) dc(g(°9ﬁramaw)9"mh) + dc(“mhah)

-

-1
) g +efbh < e. [
=1

A

e/l +
J

Using compactness of K+, we obtain from theorem 9.2.1 part a that, for
almost all w and fixed m, the limit points (which in general may depend on
w) of g(.,n,m,w) are in k', Note that K is & non-random set. Theorem 9.2.1
part b ensures that a.s. there are g(.,n,m,w) arbitrarily close to any
(fixed) point in k', Note that the exceptional nullset in part b depends on h.
The existence of a countable dense subset of K+ (see FREEDMAN (1971) lemma
100) implies that for almost all w there exist, for every h ¢ K+9 increasing

sequences nk(w) and m _ such that

lim 4 (g(ean (w)s 9m)sh) = 0,
koo © k mk
We now transform theorem 9.2.1 into one for the sequence {fn}e For

every non-decreasing function x on [0,1] we define J = {t: x{t) < =}.

DEFINITION 9.2.1. Let K(o) be the set of non-decreasing functions on [0,1]
with the properties
1. %(0) = 0,

2., % is strictly increasing on JX;
a

3. [; [x(¢)] -0 g < g,
X

Note that a function in K{o) may have positive jumps. With regard to finite-

ness of a function x ¢ K(a) we distinguish the following cases:
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L. x(1) < =, Then J = [0,1] and x satisfies I(Daxa < 1.
AL, x tends continuously to infinity in some point to e (0,1]. Then I =
[O,to).
AL, x jumps to infinity at t

0 (i.e. x(to—) <o and x(to+) = »), We redefine

x(to) = x(to—) and have J_ = [0,t 1.

THEOREM 9.2.2. Let the sequence {fn} be defined by (9.2.2) and let the set
K(o) as in definition 9.2.1. Then

a. Let £ be an arbitrary non—decreasing function on [0,1] and assume that
there 18 a set A, with P[A] > 0, and such that for all w € A there exists

a sequence n, = nk(m) for which £ (.yw) » £(.) in all continuity points

k

of £ in J,. Then £ ¢ K(a). k
b. Let £ ¢ K(a). Then, for almost all w, there exists a sequence n = nk(w)
such that £, ~converges to f in all continuity points of f in Jpe

k
PROOF. WICHURA found an error in the original proof. We now give a corrected

proof, following the original idea but making use of lemma 1.5.71.

Part a. Let £(1) < =, We first prove that f has to be strictly increasing on

£ Then there exists,

for large m, a number j such that [jm“1,(j+1)m—1] is contained in J. Because

[0,11. Suppose f is constant on some subinterval J of J

fn converges to f in every point of J, we have for all w ¢ A that

k 0

Myw) = mn1[m(fnk(iil’w)_fnk(ﬁ’w))] 2(1-a)

(iil

o ’nk ,msw)-g(;llan

€ k

s ok . . . + . .
tends to infinity for k + «, Since every function in K 1is bounded by 1, this

. +
contradicts the fact that g(.,n ,m,.) approaches K as guaranteed by theorem

k
9.2.1 part a.

The restriction to [0,1] in (9.2.2) is arbitrary. Every (finite) in~
creasing function f on an interval has at most countably many discontinui-
ties. We can choose to > 1 such that f is continuous in every point jm—lto,
with j=0,...,m, for all m, and prove the theorem on [0,1] by way of the core
responding theorem on [O,t&. Thus we may, wi:hout loss of generality, sup-
pose that f is continuous in every point jm , with j=0,...,m, for all m.

Let € > 0. The above remarks imply that, for sufficiently large k,

(9.2.13) dc(ﬂmfnk,ﬁmf) < e on A
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and also

A.
(9.2.14) dc(Danmfnk,Daﬂmf) < g on

Thus, on A, the sequence D L f tends to the limit D m fe Theorem 9.2.1
"k
+
part a implies that D T e K . Now it remains to show that D f e K . We

shall prove that D ki f converges to D f as m tends to 1nf1n1ty. As K is
closed, this will 1mply that Daf € K+. Consider the sequence {D " f} =0"

Lemma 1.5.1 and Fatou's lemma give

(9.2.15) 1lim inf p,m.f 2 D.f
m>oo

a
and from Jensen's inequality we obtain

(9.2.16) Danmfa < Df,

Because

nmf(t) for all t ¢ [0,1]
we have

(9.2.17) Dwn f 2D x f.
o m g o m

Together with (9.2.15) and (9.2.16) the result in (9.2.17) implies

lim Dnm £f=1DFf_ .
o m a'a
e

This completes the proof of part a for the case where £f(1) < =,

In case f(1) = « and Je = [O,to] for some t_ e (0,1) the proof is simi-

0
lar to the case Jf = [0,1] if we divide Jf into m disjoint intervals of e-
gqual length. In case Jf = [O,to) for some to ¢ (0,1] we can repeat the proof

for every interval [0,t1] with 5, < to.

Part b. Teke € > 0, £ ¢ K(a) and suppose J = [0,1]. From definition 9.2.1
it follows that f is strictly increasing and I(D f ) < 1. An argument simi-

lar to (9.2.16) and (9.2.17) yields I(Daﬂmf) <1, 1mply1ng D L f e KO De-
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fine for j=0,...,m~1

o o (m) . -1 . =1
(9.2.18) aj = aj = Danmf((3+1)m ) - Daﬂmf(Jm ).
Then &j > Q0 for j=0,...,m~1. Choose m > 1 so large that aj < ¢ for all j.
Now we basically repeat the proof of part b of theorem 9.2.1, but we
apply lemma 1.4.2. Again we may suppose I(Daﬂmf) < 1. Choose for j=0,...,m-1

positive numbers Ej as in (9.2.10) and such that

m--1 2
(9.2.19) m § (a, + sj) < 1.

j=0 Y
Then we have

m-1 >
(9.2.20) m § (a, -e,) < 1.

)

Define for j=0,....m~1 the events CiJ by (9.2.12) and the events Er by

— ()
(9.2.21) E = n c.

(0)
s
are independent and as in the

The events E_ are not independent because Ey is not independent of C for

(0) olm=1)

r 3rees
proof of theorem 9.2.1.b it follows that z P[Er] = o,

Consider P[ErAES3 for r < s. By the independence of the increments of

s > r. For fixed r the events C

stable processes we have

M1 .
plE_AE 1= PLEACO)T 1 preldly,
r B r 8 ,j=1 s

By theorem 2.1.7 part IV and calculations similar to those in section 7.2
we have: there exists a constant k (independent of r and s) and a number
ro such that

(9.2.22) P[ErAEs] <k P[Er] P[ES]

for r = ro and s 2 r + 2log log r. In the case r < s < r + 2log log r we

obtain
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m-1 .
; (3)
(9.2.23) P[ErAEs] < P[Er] 321 P[CS 1<
m-1

2
-m .Z (aj—ej) log log n

<k PEJe 9
1 r

where k, is independent of r and s.

Then, using (9.2.20), (9.2.22) and (9.2.23), we find

n o B n
lim inf { § PIE1}" § ] PIEAE_] < k.
r r s
r=1 r=1 s=1
Lemma 1.4.2 implies P[Er i.,0.]1 = 1 and hence, in particular, P[ U Er] = 1,
r=1
Therefore, for almost all w, the sequence n, contains an index fi{w) for which

m-1
a4 (D £a,Dom £) < ] es < e/h.
J=0
More precisely, for j=1,....m,
-1 J=1 J=1
IDaﬂmfﬁ(Jm ) - .z ai] < _2 € a.s.
1=0 1=0

By the definition of Da and since aj # 0, for all j, we have for all j

|fﬁ(jm_1) - f(jm'T)! <ce 8.8. ,

2(1-a
where ¢ = m{(1—m-1) % _1}. Note that this constant can be bounded by
snother constant 019 which depends on o, but not on m. Thus, independently

of ¢ (and m), we have for all j

(9.2.2k) lfﬁ(jm'1) - f(jm—1)| <c.e a.s.

1

Let NysNpsess be a decreasing sequence of real numbers tending to zero.

(mg)

For each ns there exists a number m. > 1 such that a. < n for j=0,...

(m)

ceegm.~1, where a.
1 J

1
is defined by (9.2.18). The result (9.2.24) yields the
existence of a set Ai, with P[Ai] = 1, such that for each w € Ai there is &

ﬁi(m) with the property
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.= |
(9.2.25) Ifﬁi(Jmi w) = £(ju )| < ey
for j=0,...,mi. Obviously we have P[nAi] = 1., Fix some w € nAi' Because

£(1) < », the sequence fﬁ is uniformly bounded. Helly's first theorem yields
i
the existence of a subsequence f; vhich converges weakly to some non-decreas—
i
ing bounded function f. By (9.2.25) we have, for any w e nAi, that £ = £ in
all continuity points of f. )

In case J, = [O,to] (resp. [O,to)) with 0 <t < 1 (resp. 0 < t. < 1)

0 0

we proceed as in part a. [J

REMARK 9.2.1, WICHURA (1973) has independently proved results of a similar
nature for partial sum processes. He extends the space D[0,») with functions

that may have the value « and he also extends the M. -topology to this (new)

1
space. Define the sequence of functions fn

£ :[0=) x02 >R

analogous to f_ in (9.2.2) using the partial sum process. Then he proved rel-

ative compactness of {fn} in the (extended) M1—topology.

REMARK 9.2.2. As a consequence of theorem 9.2.1 part a we have for all in=-

tegers m

lim sup Daﬂmfn(1) <1 a.s,
n->x

or equivalently

—_

) 2B(a))? Bl Fy (o1 )n/m)<x(in/m) ] 20100
lim sup : < N
oo Z;i;;iziﬁ‘;;g jzo [ (n/m)1/“ ] E 8.8

9.3. THE CASE o = 1

In this section we consider the completely asymmetric stable process
{X(t) : 0 £t < «} with characteristic exponent o = 8 = 1. The mappings L
and I are defined by (9.0.1) and (9.0.2). Let C be the subclass of CL0,1]

of almost everywhere differentiable functions. D, is defined by

1
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and

(9.3.1) D1x(t) = 2(ne)_% ( e dy.

Define the sequences of functions {fn(t,w),n > 3} and {g{t,n,m,w);
nz3,meN} by

-1

(9.3.2) fn(t,w) =n {X(nt,w)-(2/7)nt log n} + (2/7)t log(2log log n)

and

(9.3.3) glt,nm,w) = D1wmfn(t,w).

Let n_ be defined by (9.2.4) and let r(m) be as in (9.2.5). Define the ran-
dom variables Aj . for j=0,...,m-1 and r > r(m) by

?
/m) +

(9.3.8) A, _ = ((j+Vn /m-jn_, /m)”" {X((j+1)n_/m)-X(jn

J.Tr r+l r+1

= (2/m)((§+1V)n /m=jn_, . /m) log ((j+1)n,/m)-jn . /m)}.

In the proof of the first theorem in this section we need the following

lemma. The proof of this lemma will be given in appendix 2.

LEMMA 9.3.1. Fix m. Let n_, r(m) and Aj r be as above, let ¢ > 0 and define
®

m-1
_ -1
i = jgo b(me)”" exp(~(n/2) As v (1'€j,r))’
where ¢. _ = 0((log r)“g) for r + =, Then

d T
P[Kr > 2(1+e)log log n, for infinitely many rl = 0.
THEOREM 9.3.1. Let {g(.,n,m,w) : n 2 3, m ¢ N} be defined by (9.3.3). Then
theorem 9.2.1 is true for this sequence.

PROOF.

Part a. We shall only give the points of difference with the proof of theo-
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rem 9.2.1. Remember that the sample paths of the process X(t) are in D[0,1]
and may decrease (continuously) but that all jumps have to be positive. We
make use of the results in section 7.3.

Define the random variables Bj n and Cj n for j=0,...,m=1 and n ¢ N by
L] 2

(9.3.5) By . = (n/m)'[X(n(§+1)/m)-X(nj/m)=(2/7) (a/m) log (n/m)]
and
(9.3.6) ¢, = 2(re)? exp(rB, /4).
Then
-1 -1 -1 "B, /2
I(g) = 2 bime) (2log log n) e d» =
j=0
~ -1 m-1 o
= (2log log n) jZo Cj,n'

Let n_ be defined by (9.2.4). Then we can find for every n a number r such

that nosno<n . If r > r(m) so that (9.2.5) is fulfilled, we can write

r+1

B. E] Q1 + Q2 + Q3 + Qh’

jon
where
Q =4y (0 (G+1)/an, 3/n),
Q = [{(n~nr)(j+1)/m}”{x(n(jﬂ)/m)«x(nr(jm)/m) +
- (2/7)(n-n_)(§+1)n log((n-n_) (j+1)/m)}] + (n-n )(j+1)n"",
Qy = [{(n,,-0)j/m}" (X(n_,  §/m)-X(nj/m)=(2/x) (n_, ,-n)ju"" -
* log((n , ,-n)j/m)}] - (nr,rrn)jn"'1
and

Q, = (2/ﬂ)(n/m)—1{—(n/m)log(n/m)+(n~nr)(j+1)mfilog((n~nr)(j+1)/m) +
+ (n.+1~n)jm—1log((nr+1—n)j/m) +

r

. - o] . -] L1
+ (nr(3+1)m‘ -n,,qdm )log(nr(g+1)m -n_,4Jm Y.
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If n= n_, we define Q2 = 0.

First we consider Q- By the definition of n we have (nr(j+1)~jnr+1)/n =

= 1-0({log r)'2) for r + «, Hence by lemma 9.3.1
m-1

PL }
=0

b(ne)™" exp(=(n/2)a; ((3+1)n =jn,,Jn) >

B
[o]

> (1+¢) 2log log n for infinitely many r]

Consequently, for almost all w, there exists a number r, r1(s,m,w) such

that
-
)

<

LA, ((j+D)nn'-in

- T2 Y5,r r re1”

-1 -1
(9.3.7) (2log log nr) Z b{me)” e
J=0
<1+ ¢ for all r 2 Ty
Next we turn to Q2 and assume n > n Define the process

F (t) 0t <) vy

r*

(9.3.8)  X.(t) = n | {x(n

- Do )—(2/ﬂ)nr+1t logn_, .}

r+1t r+1° "

The expression in square brackets in Q2 is distributed as X(1) and equals

1

an! ) o+

(9.3.9)  m, (3+1)7 (mon )X ((3+1)mm” a7, T

pep) =X (3410 m

- (2/w)(j+1)(n-nr)m"1n;1110g((j+1)(n—nr)m—1n;l1)}

By property 4 in section 3.2, the process {ir(t) : 0t <1} is a stable

process with o = B = 1, Now we have

N (n=n_) < 1-n )= 0((log r)-g) for r -+ =,

(9.3.10) Byp1 = Ppaq T v r+l

Hence, by theorem 7.3.1, for almost all w there exists a number rz(e,m,m)

such that (9.3.9) is larger than or equal to
(9.3.11)  ~(2/7n)log(we/2)~(2/n)log log(m(j+1)—1nr+1(n—nr)'1)-(2/w)log(1+a)

for r = Tye Consequently Q2 is bounded from below by a function of r, say

-¢(r), and by (9.3.10) and (9.3.11) ¢(r) = 0((log )™ ') for r » =. A simi-
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lar lower bound can be given for Q3,
. . -2
Q,,4 can be expanded for large r. This term is 0(log log r{log r) ~) for
r + o for every Jj. Using all these estimates we have for almost all w: there

exists a number r3(e,m,w) such that
2
(9~3-12) I(g('snsmam)) = (1+€)

for n 2 nr3(e,m?w)'
Part b. Again we may suppose I(h) < 1. It is possible to give a proof simiw
lar to that of theorem 9.2.1.b by using theorem 6.3.1. We shall not do so.
We shall follow the proof of theorem 9.2.2.b instead.

Fix m such that (9.2.8) holds. We first consider the case where h is
strictly increasing, so that aj > 0 for all j=0,...,m~1. Choose ej for
=040 501 sg;h that (9.2.10), (9.2.19) and (9.2.20) are fulfilled. Define

the events cﬁa
fined by (9.3.3). Take n, = o, Using the definition of g(.,n,m,w) and pro-

and E  as in (9.2.12) and (9.2.21), where g(..n,m,w) is de~
perties of the completely asymmetric stable process we find that

prcld)y
r

]

P[(aj~ej) < 2(ne)'%m_1exp{n(n/h)(m/nr)x(nr(j+1)/m) +

X(nrj/m)~(2/ﬂ)(nr/m)log nr}exp{—%log(elog log nr) <

< (aj+8j)]

] 1
P[(ajuej)m%(2log log n_)* 2(ne) Rexp(-nx(1)/h) <

it

1 1
H 3
< (a.+e.)m"(2log log n )°1.
( 3 J) (21og log r)

Now we use theorem 2.1.7 V to prove zr P[Er]=<n (c.f. section 9.2). In or-

der to apply lemma 1.4.2 we have to bound

(0),

{(P[E_] P[E_1}"' P[E AE ] = {P[E_] P[c(o)]}“1 PI[E_AC
I s r 8 r r s

]

for r < . As in the case 0 < a < 1 we have

[

.
PECiO)] ~ 2 P[U 2 (a ~eo)m§(210g log ns) ] for s » w,

0
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(0)

For s > r+1 we can bound P[ErACs

1 vy

-1

PLE,) PLA_ < 2(re) ™ expl-(n/M)nln ) (X(n /n)-X(n,) +

- (2/7r)(ns/m—nr)log(ns/m-nr)} <al,

where n n
S O(mr“5+1lo (mr—s)) S
] j Bgmmny n -mn
A, = {(aoteo)m (2log log ns) } . {e
n
T
m~1 1 j D -mn
« { I (a.;e.)mé(elog log n_)°} .
j=o J J r

After some algebra (9.2.22) follows for r = ry and s 2 r+2log log r. In the
other cases the estimate (9.2.23) can be derived. Thus it follows that

P[Er i.o.] = 1. Therefore, for almost all w there exists a subsequence ﬁr(w)
such that

dc<g( -sﬁrnmsw)’h) < E.

If h is not strictly increasing, then some of the a. will vanish for
large m. We distinguish two cases. In case a_ = 0 we have PEC(O)]> 1-8§ for

0 s
s = sO(G) and it follows that
-1 -1
{P[Er] P[ES]} P[ErAESJ < (1-6) for s > s.(8)

and all r < s, If & # 0 and aj = Q0 for some j € {1,...,m~1}, then we re-

place the product in A, by

n
T

n_-mn
r

} S

* 1
1"{(a.~c.)m?(21log log n
( 3 J) (210g 1og n )

i

where " means the product of all those factors with aj #0. O

We recall that in the case where 0 < a < 1 the fn are non-decreasing
and that we have characterized their limit points within the class of non-
decreasing functions that may be infinite from some point on. Now the fn be-
long to DLO,1] and we shall consider limit points in the class DL0,1] of

functions f on [0,1] which have no discontinuities but jumps and are such
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that -» < f(t) < ®» for all t and that f = » on [t,1] whenever f(t) = =. For
£ ¢ D[0,1] we shall denote the interval where f is finite by Jf. We define
the following subelass of DL0,1].

DEFINITION 9.3.1. Let K(1) be the set of functions x on [0,1] with the pro-

perties

1. x(0) = 0 and x is bounded below;
2. x = X + X where X is non-decreasing and singular with respect to

Lebesgue measure and X, is absolutely continuous;

3. Ume) ™' [ exp(-mx(t)/2) at < 1.

J
b'd

Note that a function in K(1) cennot have negstive jumps. Moreover, 2. im-

plies that x is differentiable almost everywhere on Jx so that the integral

in 3. is well defined.

THEOREM 9.3.2. Let the sequence {(f } be defined by (9.3.2) and the set K(1)
as in definition 9.3.1. Then

a. Let £ be itn DL0,1] and assume that there is a set A, with P[A] > 0, and

such that, for all w e A, there exists a sequence n,_ = nk(w) for which

k
£ (v sw) > £(.) 2n all continuity points of f in Jgr Then f € K(1).
k
b. Let £ € K(1). Then, for almost all w there exists a sequence n = nk(w)

such that f  ~converges to f in all continuity points of £ in J

X £

PROOF.

Part a. We follow the proof of theorem 9.2.2 part a. Again we suppose that
Je = [0,1]. Also, because f ¢ D[0,1], it has at most countably many discon-
tinuities., By the argument in the proof of theorem 9.2.2 part a we may as—
sume that, for all m, the points jm—1, j=0,...,m, are continuity points of
f.

By theorem 9.3.1 part a the set of limit points of g(.,n,m,w) =
w D11rmfn .,w) is, for every fixed m, w.p. 1 contained in K+° From Schwarz's
inequality we have (see FREEDMAN (1971) lemma T78a) for g e K" and all POSIL~
tive integers m

0 < g((5+1)/m)-g(3/m) < u™?

for j=1,...,m. It easily follows that f cannot have negative jumps. Take
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€ > 0. We have for sufficiently large k

(9.3.13) dc(nmfnk,ﬂmf) < g on A.

and

)
(9.3.14) dC(D1ﬂmfn ,D

ﬂmf) < g on A.
k

1

Thus on A, the sequence D1wmf tends to the limit D1ﬂmf. It follows that

DT f e K for all m. Consequently

m-1

W(me)™! Y (@ e(a/2)(£((§41)/m)-1(§/m))7) <
J3=0
-1 m-1 -1 -
< W(mme)” ) expl(w/2)m” (£((j+1)/m)~£(j/m))"} <
3=0
< I(D1ﬂmf) + 14("rre)'-1 <1+ h(ﬂe)_1i
This yields
m~1
To(E((3#1) /m)-£(3/m))” s e/2 for all m.
5=0

Thus, the negative variation V' f is a finite continuous function on [0,1].

Now, the assumption Je = [0,1] implies that f is of bounded variation on Je

and thus we can write f = V+f - V' f, where V+f and V £ are both non~decreas~
ing functions.
Applying mertingale theory WICHURA (1973) shows V f is absolutely con-

. . . +

tinuous and lim D1ﬂ £ = D1f . Because K+ is closed we have D1f e K and
oo o a a

this implies f ¢ K(1).

Part b. Let £ ¢ K(1) and J_ = [0,1]. As in the proof of theorem 9.2.2 we

f
have, by Jensen's inequality and properties of functions in K(1),

Drnf<Dwnf =D L.
Tm Tma 1 a

This yields nfe K(1). In the proof of theorem 9.3.1.b we have already
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proved P[Er i.0.] = 1. From the definition of D, we easily obtain that, for

1
sufficiently large m, there exist, for almost all w, infinitely many numbers

n such that
(9.3.15)  ~(4/m)10g(t+n™") < £ (ju™ ,w)-2(im") < ~(4/m)log(1-u ")

for j=0,...,m. It follows that, for almost all w, there exists {nk(m)} such

that fh converges to £ on a non-random countable dense subset of [0,1].
k
In order to conclude £ - f in the continuity points of f we first
prove the following assertion. For all € > 0 and 0 £ t < 1, there exists a

real constant A > O (independent of t) such that for almost all w there is

& number n, = no(w) such that
inf {f (t+6)~Ff (£)} > ~¢ for n 2 n_.
o<ssp B n 0

Define the event Cn by

inf {f (t+8)-1 (t)}
o<ésp B n

in

el o0

As in the proof of lemmas 3.5.4 and 3.5.5 we can show that there exists a

constant k such that
PLC T < k PLE (t+a)-f (%) < -(2/m)log(ne(1+e)/L)]
for sufficiently small A. In a similar fashion one shows that

P[Dr] <k P[ min {fn(t+A)—fn(t)} < ~{2/7)log(we(1+e)/U)1,
n_<nsn
r r+1 n
r+i
where o ig defined by (9.2.4) and Dr = U Cn. Hence by lemms 3.5.4

n=n
r

P[Dr] <k, PLX(1) < =(2/m)log(ine(i+e)log log nr)],

Theorem 2.1.7 part V yields Z P[Dr] < ®, Then the assertion follows from
the Borel-Cantelli lemma.

For every continuity point of f we choose points t19 t2 in the counteble

dense subset where fn converges to f and such that t1 £t < tgﬁ tgwt1 <A
k
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and !f(te)—f(t1)] < g. Then, for almost all w,

lim sup £ (t)-£(t)| =2
l - | < 2e

Koo

for all t. [

REMARK 9.3.1. As a consequence of theorem 9.3.1.a we have for all integers m

i < 3 3
lim sup D1nmfn(1) <1 a.s
riroo

or equivalently

j+1 j -
2 | mot - Tox(@EUED) B 28,00,
1 e erere—————————— m m T m m
lim sup {Vne V2log log n Z ¢ }
nsm g L0g =0
<1 8BS, o

9.4, THE CASE 1 < o < 2
Let {X(t) : 0 £ t < =} be the completely asymmetric stable process with
1 < a < 2, Define the sequences {fn(.,m) :n 2 3}, {g(.,n,myw) : n 23, meN}

and the function Da by

fn : [0, x0 » W forn > 3

—

Q
[

—

a1

(9.4.1) fn(t,w) = X(nt,w) n *{2B(a)} * (2log log n) o ;

D« C C+

o

£ —o
(9.k.2) D x(t) = f a1 4y

0

and

(9-h-3) E(t,nsmsm) = Daﬂmfn(t’m)‘
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Let n be defined by (9.2.4) and let r(m) be as in (9.2.5). Define the ran-

dom variebles Aj , for j=04¢..,m=1 and r 2z r(m) by
3

1 1 [*]

- - T
(9.8.8) &y = 2B(a)n® ((3+1)nn, ) OTHIX((G+ 00 /m)-X(in /)T

5 1
In the proof of the first theorem in this section we need the following

lemma. The proof of this lemma will be given in appendix 2.

LEMMA 9.4.1. Fix m. Let n_, r(m) and A, _ be as above, let € > O and e, =
) r JsT Jaer
= J{{log r) ") for r + = Then
1

Mew
PL Y A, (1-e, ) > 2(1+e)log log n_ for infinitely many r] = 0.
sho 4o Ty r

THEOREM 9.k.1. Let {g(.,n,m,w) : n 2 3, m e N} be defined by (9.4.3). Then

theorem 9.2.1 18 true for this sequence.

PROCF.

Part a. It is sufficient to prove that for almost all w there exists a num-

- - ] 2
ber n, = no(e,m,m) such that I(g) = I(Danmfn(t,w)) < (1+e)” for n = D,

1 o
M| e e
o LX((5+1)n/my0)-X(50/m,0) 1" 0 %n}® n"2B(a) .
§=0

1

(9.4.5)  I(g)

« (2log log n)"1 =

2

%

-1 me 1
(2log log n) X C. N
3=0 ds

where the random variable Cj n is defined by
¥

o 1 1

€5 o = (OX((§#)n/m)-x(Ga/m) 1732001 5 2lam1) (200mT) (o8,

Suppose n = B (m)* For every such n we can find an integer r 2 r(m) such

that n. € n <n . Then we can write
r r+1
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(9.5.6) " RX((§+1)n/m)-X(jn/m)} = q, + Q, + Q.

where
Q, = n"1/°{x((j+1)n/m)—X((j+1)nr/m)}s
a, = 07 x((5+1)n_/m)-X(jn_, ,/m)}
and
Q, = 2 Y x(3n_  /m)-X(jn_/m)}
3 1 T :

Define the process {ir(t) : 0t <1} by

~1/a.

Xr(t) = X(nr_”t)nr+1

This process is a completely asymmetric stable process with characteristic

exponent a. Then

/

(9.5.7)  {(3+1)(mmn ) /m} ™ H((5+1)n/m)X((3+1)n_/m} =

1 1 =1

- 1o Vo, . 1o .. wl w1 oy~ . -] -
=n oG+ ) (nen)) (x ((G+1)nm” 0, )-X ((G+1)nm n )}
By theorem T.k4.1 Q, is for almost all w bounded from below by
o= 1 a1 1

«(2B(a){- * {2(1+e)10g(mnr+1(j+1)"1(n-nr)“1)} @ {(j+1)(1~-nr/n)/m}u

for r > ro(e,m,w)e Using (9.3.10) we have that Q, > - for r > r1(a,m,w)«
In the same way one shows Q3 > - for r > r2(egm,m), In view of the

lower bounds for Q1 and Q3 we find

a A o1
in " [(a,+0,%a,)7 1% ' m =1 (2B(a)} = [(@y-2e)73% " m ¥ (28(a))

Ol

1 -
< tap+2e1™ ! m ¢ (28(0)} < Ajgr{(j+1)nr/n—jnr+1/n}aw1 + 2ce

for r 2 r3(egm9w) and some constant c. Note that (j+1)nr/n—jnr+1/n =
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= 1-0((log r)_z) for r + =, By lemma 9.4.1 we have for almost all w and

rz rh(e,m,m)
I(g) < (1+e) + (2log log n)~ ' 2ce.

This implies that for almost all w there exists a number no(e,mgm) such that
I(g) < (1+e)2 for alln 2 no(s,m,m).
(3)

Part b. Again we may suppose I(h) < 1. Define s aj, €., Cr

3 and Er as in
the proof of theorem 9.2.1.b. Then

M1 (.) M1
P[E 1= 1 Plc¥/1= 1
Ir r .

+ 1
Pl(a.-c.) m°(2log log nr)% <
=0 =0 J J

Q
< (28(a))(rx(n) 17201 ¢ (aj+ej)m%(zlog log n_)?1.

Using theorem 2.1.7 part VI we have z P[Er] = o,
Consider P[ErACiO)] for r < s. This probability can be bounded by

~1/a

P[Er] P[-A, < (ns/m—nr) {X(ns/m)-X(nr)} < -A ]

where

1 2{o=1 a=1

- — 1 1 - ——

Ai = (1umnr/ns) a{[(aoiso)+m§(210g log ns)g] % (2B(a)) * .
2(a-1 o1 1
oy 3o ry P

- jzo [(a,%e;) n" (210g log n)"] (28(a)) * (a,/n )%}

In the case 8, # 0 the quantity A tends to « if s-r - «. Then
1

PL-A, < (n_/m-n ) *{(X(a_/m)-X(n )} < -A_] ~
1
n (20)2 P[B_<U<B]I, for s-r + ®
&

SR -
where Bi = ~{2B(a)}? A+2(a"1)
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Then (9.2.22) follows for r 2 r, and s > r+2log log r.

In the case a, = 0 it follows that

{P[E_1 P[E ]}'1 PLE AE ] < {PEC(O)]}“1 < (1—5)""1
T S r S S

for s = so(a).

The proof can be finished as in the cases 0 < o < 1 and o = 1, []

DEFINITION 9.4.1. Let K(a) be the set of non-decreasing functions with the

properties

1. x(0) = 03

2. x is absolutely continuous on [0,1];
o

3. f;[:'c(t)]““1 at < 1.

The following theorem deals with non-decreasing limit points only.

THEOREM 9.4.2. Let the sequence {fn} be defined by (9.4.1) and let the set
K(o) as in definition 9.4.1. Let ¢ > O,

a. Let T be an arbitrary non-decreasing function and assume that there is
a set A with PLA] > 0 and such that, for almost all w, there exists a se-

quence n, = nk(w) for which the sequence f_ (.,w) conmverges to -f. Then

k
f e K(a) and for almost all w e A dc(fn s=T) > 0 for k » =,
k
b. For all f e K(o) there exists a number mo(e,f) such that

Pl{w: dc([nmfn(.,m)]",f) < e for infinitely many n}l = 1

for all m 2 mo(e,f).

PROOF.

Part a. As in the proofs of theorems 9.2.2 and 9.3.2, every (non-increasing)
.. . o e +
limit point f of {fn} satisfies g = Dunmf € X for every m. It follows that
. + . o . .
g = lim g, € K . Computations similar to those in the proof of theorem 9.2.2
D f .
o’a
It remains to prove f = fa. Let € > 0. Suppose fs(1) = f(1)—fa(1) > 0.

part a give g

Construct a set Bf as in remark 1.5.1., This set consists of intervals
1. BN . . .
,(j+1)m ) for a certain m. Let n, be the number of interval contained

in Ef, For ny > 0, there exists an integer j with (jmui,(j+1)m_1) € Ef and

(Jm”
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1

ne (£(3+1)m™ )=£(Gm ) = m<fs(1)-g)n5‘.

This implies that the function Daﬂmf increases on ﬁf more than

02

n m_1)2(a_1).

o
2(a-1)
(fs(1)—5) o o

This contradicts Danmf € K+.

Part b. This part of the theorem follows directly from theorem 9.h4.1 part
b. 0O

REMARK 9.k4.1. Theorem 9.4.2 part b suggests that the negative variation of
any limit point is &bsolutely continuous. This is indeed the case, as fol-
lows from WICHURA (1973), who also describes all other limit points.

REMARK 9.4.2. As a consequence of part a of theorem 9.4.1 we have, for all

integers m,

lim sup Danmfn(1) <1 a.8.
ne
or, equivalently,

[+

3 101 . . e
1lim sup ——iggigll-—'r ) {% [X(Jil)—x(%)]_}z(a-T) <1 a.s.

n-e (21log log n)? j=0
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CHAPTER 10

DOMAINS OF ATTRACTION

In the preceding chapters we considered stable processes or partial
sums of i.i.d. stable random variables. Occasionally we have already noted
that the theorems also hold for more general processes or for partial sums
of random variables in the domain of attraction. Here we consider some of
these generalizations in more detail. In section 10.1 we give some results
for the case a = 2 (normal distribution and the Wiener process). In section

10.2 we study the case 0 < o < 2 and |B]| < 1.

10,1, THE CASE o = 2

Let X1,X2,... be i.i.d. random variables with Xi € DN(E,O). Suppose
EXi = 0 and 02(Xi) = 1, The next theorem shows that we can embed these i.i.d.
random variables in a Wiener process {W(t) : 0 £ t < »} on some probability
triple (Q,F,P). The proofs of the theorems in this section can be found in
FREEDMAN (1971).

THEOREM 10.1.1. There exist non-negative random variables T,sT
(Q,F,P) such that

coe ON
2

a. T1, TQ"T1’ T3—T2,... are 1.7.d. random variables

b. BT, = Exﬁ
c. W(T1), W(T2)MW(T1), W(TS)--W(T2),..° are i.t.d. random variables
d. w(r,) £ x..

1

The representation of random variables € DN(E,O), given in theorem 10.1.1

is called the Skorohod representation. The Skorohod representation permits
us to generalize theorems for a Wiener process or partial sums of indepen=~
dent r.v.'s with distribution function F(.;2,0) to theorems for partial sums
of random variables in DN(Z,O). We formulate, for example, the strong invar—
iance principle proved by STRASSEN (1964). Define, for each integer n > 3
and all w, the function fn(.,m) e C[0,1] by
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1
(2n log log n)—é(x1(m)+...+xi(w)) for i=0,...,n}
(10.1.1) £ (i/n,0) =

and linear on [i/n,{i+1)/n] for i=0,...,0=1.

THEOREM 10.1.2. Let X1’X2’°" be i.7.d. random variables with EX1 = 0 and
02(X1) = 1 and let {fn} be defined by (10.1.1). For almost all w, the indexed

subset {fn(.,w) : n 2 3} of CL0,1]1 28 relatively compact, with limit set K,

which is given in definition 9.0.1.

As a consequence we have the law of the iterated logarithm of HARTMAN
and WINTNER (1941).

THEOREM 10.1.3. Let X1,X .. be 2.7.d. random variables with EX1 = (0 and

2%
02(X1) = 1. Then

X +oootX
. 1 n
lim sup o= ] 8.5,

n . (2n log log n)?®

In case X i=1,2,,,,,are i.1i.d4. r.v.'s with Xi e D(2,0) and og(Xi) = ®

we have by theorem 2.2.2 that

H(x) = j ¥2a #(y)
lylsx
"1(

" X1+...

.qﬁ+Xn) converges weakly to a standard normal r.v.. FELLER (1968) has studied

is slowly varying at infinity. Let a, be defined by (2.2.1) then a
the question under which restrictions on H

X 4., .+X
. 1 n

lim sup i)

ne an(2log log n)?

= 1 .8

10.2. THE CASE o # 2

In this section we consider i.i.d. random variables X:.L§ im1,2,00., 10

the domain of attraction of stable distributions. The definitions, criteria
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for attraction and norming constants are given in section 2.2.
We begin with & quite general result of FELLER (1946) that has impor-
tant implications for the problem at hand. The proof rests on Kronecker's

lemme and three-series criterion.

THEOREM 10.2.1. Let Y.,Y,,... be ¢.<.d. random variables with BlY.| = =.

Then, for any sequence Vs for which ynn"1 increases, we have
] st .0, = d
LY, Ynl >y, i.0.3=00r1

according as

ZP[!Yn[ >y, 1 converges or diverges.

Obviously theorem 10.2.1 implies that
oo i.0.] = i.0.1.
P[|Y1 v >y, i.0.3 =Py | >y i0.]
Suppose that XiQ i=1,2,..., are positive i.i.d. random variables with

(10.2.1)  PLX, 2 x] = Lix)x™® for x = x; > 0 and 0 < a <1,

where L is slowly verying at infinity. This implies X, € D(a,1). Applica~

1
tion of theorem 10.2.1 yields

PX.+...%% >y d.0.]1=0 or 1
1 n n

according as

ZL(yn)yn_a converges or diverges,

provided ynn“1 increases. A similar result could be obtained by generalizing
theorem 8.1.1 but then one would have to impose restrictions on L.
Next we consider analogues of the results in section 6.2. As a conse~

quence of theorem 6.2.1 we obtained

K, towotX
1 n

2log log n)”

(6.2.2) lim inf = {2B(a)}(1““>/“ 8.5,

n-ree

n1/u( (1=a)/a

for i.i.d. random variables Xi’ i=1,2,..., with a completely asymmetric sta-
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ble distribution with 0 < a < 1 and B = 1. Now we consider random variables
with distribution function given by (10.2.1). Define the norming constants
a by (2.2.2). We can ask under what conditions on the slowly varying func-

tion L

X, *eootX
1 n

)—(1"@)/3

8.8,

(10.2.2) 1lim inf }(1—a)/a

> &n(2lcg log n

{2B(a)

An extension of theorem 6.2.1 given by LIPSCHUTZ (1956b) yields that (10.2.2)
holds under the restrictions given in remark 2.2.3. In particular, for the
case X, € DN(a,1), i.,e. if L(x) tends to a finite comstant for x + «, (10.2.2)
is always true. Under a slightly weaker condition than given in remark 2.2.3
we shall prove the following theorem. Let € > 0 and define the sequences bn

and e for n > 1 by

1+¢
(10.2.3) b= (log n) 2-o
and

1+¢
(10.2.4) ¢ = (logn) ©

THEOREM 10.2.2. Let e > 0 and let {b } and {c_} be defined by (10.2.3) and
(10.2.4). Let XT’XZ"
tion given by (10.2.1). Assume that

.. be 1.7.d. random variables with distribution func—

(10.2.5) L(anx)/L(an) — 1 for n + »

uniformly in x € [bn,an. Then (10.2.2) <s true.
PROOF. Using (10.2.1), (10.2.4) and (2.2.2) we find

}:P[Xn >8] Zan e L(ancn) < o,

The Borel-Cantelli lemms implies that, w.p. 1, Xn < ac. for sufficiently

large n.

Define the truncated random variables
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X' =X ifX <ab
n n nn

0 otherwise.

By properties of slowly varying functions (FELLER (1971) theorem 2 of secw
tion VIII.9) we obtain

2 -1 2=0
] ~ ®
B(X') a{2-a) (ab ) L{a b ) for n > «

This yields, by (2.2.2) and (10.2.5)
Za-z(zlog log n)2(1—a)/aE(X')2 < o,
n n
It follows from theorem 3.27 in BREIMAN (1968a) that

Xid,, . +X'
1 n

an(Qlog log n)~

—+ 0 8.8,

(1-a)/a

> W v,
Thus, only the random variables Xn = Xn 1[& b L8 c

10 obtained by truncation
at a b endac ., contribute to the lim inf in (10.2.2).
Let A > 0. There exists a number n(A) such that for all n = n(A) we

have
(10.2.6) |L(anx)/L(an)-1| < A

for all x ¢ [bn,cn]° This implies, by theorem 2.1.7 part I and (2.2.2), the

existence of a number A, such that

1

(10.2.7) 1~F((1—A1)“1/“x,u,1) < PIX_ > ann_1/ax] < 1mF((1+A1)"1/ax§a,1)

for x e [n1/abn,n1/acn] and n sufficiently large.

Define random variables §n with distribution functions %n such that

-1/a 1/a

(10.2.8)  1-F((1-a,) Xy0,1) < 1_§n(x) < 1-F((1+A1)" Katts1)e

Then we can deduce upper- and lower bounds for the distribution function of

gn = i1+eea+§n. Just as only the truncated r.v.'s X; contribute to the
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lim inf in (10.2.2), we can now prove a similar assertion for the r.v.'s E; =

zie‘]

n [n1/ab ,n1/ac ]
n’_ n

dom variables X . Because we can take A (and A1) arbitrarily small we can

show that (10.2.2) is true for the random variables in' Therefore, (10.2.2)

. Therefore, we may restrict our attention to the ran-

holds for i.i.d. r.v.'s Xi’ i=1,2,..., with distribution function given by

(10.2.1) and satisfying (10.2.5). This completes the proof. [

REMARK 10.2.1. The assumption (10.2.5) is comparable with (2.2.9). Comparing
the interval [bn,cn] with the interval in (2.2.10), we see that [bn,cn] is

shorter.

REMARK 10.2.2. The above results show that we may consider the random vari-
ables in for solving our problem. The property (10.2.8) of their distribu~
tion functions suggests that Xn can be embedded in a completely asymmetric
stable process, by using a stopping time which degenerates at the value 1,
for n tending to infinity. Such an embedding technique might also enable us
to work under a weaker condition than (10.2.5) which does not imply that the
stopping times degenerate. So far, however, I have not been able to prove

the existence of such stopping times even under condition (10.2.5).

REMARK 10.2.3. In view of the techniques applied in this section, it must

be possible, by similar reasoning, to prove results in case o 2 1.
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APPENDIX 1

TOPOLOGIES ON D[0,1]

In section 3.2 we defined D[O,1] as the set of all real-valued func-
tions on [0,1], which are right-continuous and have finite left-hand limits.
In SKOROHOD (1956) five topologies on D[0,1] are studied. We shall define
two of these below.

Let A denote the class of strictly increasing, continuous mappings of
[0,1] onto itself. If X ¢ A, then A(0) = O and A(1) = 1. For x,y € D[0,1]

we define the metric

dx (x,y) = inf{sup|x(t)-y(A(t))] + sup|t-r(t)]|}.
1 Aeh t t

This metric defines the J1-topology, The sequence X € plo, 1] is J,-conver-

gent (or converges in the J. ~topology) to a fumction x ¢ DL[O,1] if

1

1lim d, (xn,x) = 0,

oo 1

The graph r.of xe D[0,1] is the closed set of pairs (t,z), such that
z lying between x(t-) and x(t). A parametric representation of the graph

r, is a pair of functions (t,¢) such that
v [0,1]1 » [0,1]

is continuous and non-decreasing,
r s [0,1] » R

is continuous, and such that (t,z) ¢ Fx iff a number u ¢ [0,1] can be found

with t = t(u) and 2z = z{u). Note that if (T1,C1) and (7 ,§2) are parametric

2
representations of Tx, there exists a non-decreasing function A such that

Ty = T2°A and g, = gecke Define a metric R in Béz by

RU(t1a2y)5(05025)) = [, ] + |zp-g, ]
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Let x,y € D[0,1] and let (Tx,;x) and (ty,cy) be parasmetric representations

of their graphs. We define

dM1(xsy) = inf sEp R((Tx(u),ry(u)),(cx(u),cy(u)))g

where the infimum is taken over all parametric representations of Fx and I‘ye
This metric defines the M1—tapology.

Convergence in the J1-topology implies convergence in the M1wtopology,
The converse is not true. For the proof of this assertion and necessary and
sufficient conditions for convergence in both topologles we refer to

SKOROHOD (1956).
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APPENDIX 2

In this appendix we shall give the proofs of the lemmas 9.2.1, 9.3.1
and 9.h%,1. Throughout h, denotes the density of the chi-sgquare distribution

with i degrees of freedom.

PROOF of lemms 9.2.1. It is sufficient to prove the lemma only for suffi-

ciently lsrge r. The intervals (,jnr+ m‘1,(j+1)nrm-1), j=0,...,m~1, are dis-

1
joint. This implies that the random variables Aj - defined in (9.2.6), are
2

independent .

Aj , has the same distribution as bj r-2B(a)[X(1)]-u/(1_a), where
3 9
_ . -1 o=1/(1-a)
by .= {(3+1)n -3} .

By theorem 2.1.6 part IV we have the following expension for the right tail

of the density f. _ of vo! A,
JsT JsT J.T

1
fj r(x) =(hﬂax)—2e“x/2{1 + O(X_%+E)} for x + «,

Note that the density fj v is independent of j and r. If 0 < a < 3 it fol-
2

lows, from theorem 2.1.6 part I, that there exists a constant ¢ = c(a) such

that fj o S ch,. On the other hand, if 3 <o < 1 there is, for every x5 > 0,
3
a constant c = c(a,xo) such that fj r(x) < ch1(x) for x = Xy
¥
Choose 0 < § < g¢. For sufficiently large r we have
1< bj < 14§ for j=0,...,m=1,
k]
Then we have in case o € (0,3]
P[A, +...%A > 2(1+s)2log log n_ 1 <
O,r m-1,1r r
< Plb A 44070 A > (1+a)‘1(1+s)2 2log log n_J]
- 0,r O,r m-1,r m-1,r T

A

2 -
™ PLX 2 (1+6) T(1+€)? 210g log nJ

~f-g

A

kr
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For the case o € (3,1) we only give the proof for m = 2, For m > 2 the

proof is similar. Consider

-1 x
I(x) = h, (x) Jo fo’r(t)f1’r(x~t)dt

for x > 2x .. Then

0
—1 Xo x-—xo X
I(x) = b, (x) {J + J + I }
0 xo x-xo
XO X
<e h£1(x) Jo fo’r(t)h1(x-t)dt + c2 + ¢ h51(x) [x—x hT(t)f1’r(x-t)dt.

0

The first and last terms on the right are 0((x—xo)_%) for x + », This im-

plies the existence of a constant s such that

I(x) < c, for x 2 2x0,

. -1 -1
Consequently the density of bO,rAO,r 1,rA1,r

X = 2xo and the lemma follows. []

is bounded by c?h2(x) for

PROOF of lemma 9.3.1. Using a similar argument as in the proof of lemma
9.2.1 we can prove the following assertion. For all xO,C > 0 there exist
a number rj = ro(xo) and a constant ko
Jj.r and x) such that the density of the random variable

= ko(xo,ro,c) (voth independent of

b(me) ™" exp(=(n/2)a; (1-e; )

can be bounded by k0h1(x) for all x € [xO,C log r] end r 2 Ty
Choose a constant ¢ such that C > 2m(1+e/2). For fixed r the random

variables AO,r""°Am—1,r° defined in (9.3.4), are independent. Denote the

density of Kr by ér’ In a similar way as in the proof of lemma 9.2.1 we can

show Er(x) < khm(x) for x e [me,C log r] and some constant k (independent

of r). Thus, for sufficiently large r,

r1+€/2 P[Kr > 2(1+e)log log nr]

= r1+€/2 {P[Kr 2 (¢ log r] + P[2(1+e)log log n < Kr < ¢ log rl}

. r1+e/2 P[Kr > ¢ log r] + kr1+e/2 P[XQm > 2(1+e)log log nr],
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Just es in the proof of lemma 9.2.1 the last term on the right is bounded.

Because Kr is a sum of i.i.d. random variables we have
P[Kr 2Clogrl] <m P[h(ne)-1exp(—(1r/2)x(1)(1-5j r)) b Cm“1log rl.
®

By theorem 2.1.7 parts V and VII it follows that

r1+€/2 P[Kr > C log r]l = o(1) for r = o,

Now apply the Borel-Centelli lemma. (]

PROOF of lemma 9.k4.1. Let fj r be the density of Aj r From theorem 2.1.6
® 3
part VI it follows that

. ~1 3
iiﬁ h, (x)fj’r(x) = (a/2)2.

By the continuity of f. - Ve have for all x. > 0 that there exist numbers

0

E]

ry = ro(xo) and k, = ko(ro,xo) such that this density is bounded by koh1(x)
for all x 2 Xq° Then we prove as in case 0 < a < 1, for sufficiently larger,

me 1
P[_z A r(1‘€j,r) > 2(1+e)log log n ]

=0 v

m=1 -1-g/k
<PL Y A, > 2(1+e/2)log log n_] < kr .

j=0 BEYS r

Now the Borel-Cantelli lemma yields the desired result. [J
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