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CHAPTER 1 

INTRODUCTION 

As ''deficiency'' is the unifying topic:: of this study, we shall start by 

introducing this concept. Let there be given two statistical procedures A 

and B. If A is based on N observations, we need~ observations for B to 

attain the same level of performance vJith both procedures. 

Usually, A and B are comps.red by means of the ratio N /~. If it exists, 

lim N/k__ is called the asymptotic relative effiaienay (ARE) of B with 
N >oo -~ 
respect to A and denoted as e. Such efficiency computations a.re by now al-

1 

most classical: as early as 1925 Fisher ( 1925) found e = 2/rr in comps.ring 

the median and the mean for the estimation of normal location. It should 

always be kept in mind that the information contained in the single number 

e is of an asymptotic nature. As we are interested in finite, preferably 

even small sample sizes N, this information becomes more valuable according 

a,s the convergence of' N/~ towa.rds e becomes faster. Hence, when e has been 

found, the natural next step is to investigate this rate of convergence, 
• 

for e:xa,mple by looking at the behaviour of e~ - N as N -+ 00 • This may be done 

for all cases where O < e < oo, but we shall always restrict ourselves to 

the by far most interesting case where e = 1. For then we have a second, 

perhaps even stronger reason for further investigation: from the fact that 

e =. 1 we cannot even deduce which of the two proced1.1res A and B is better. 

Hence a study of the difference ~-N is not merely useful to get info1·rc,a

tion about the rate of convergence of N/¾f towards 1, but here it may also 

reveal which of the two procedures is preferable. Fore# 1, e~ - N only 

supplies some additional infor1r1a.tion, but for e = 1 this n1Jmher becomes of 
• • • • :1.mporta.nce 1.n 1 ts own right. 

Although this difference ~ - N seems to be a very natural quantity to 

examine, historically the ratio N/~ was preferred by almost all authors 

in view of its simpler behaviour. The first general investigation of - N 

was ca.rried out by Hodges and Lehmann ( 1970) • They naroP. ~ - N the 

defiaienay of B with respect to A and denote it as~- If ~t: ~ exists, it 

is called the asymptotic deficiency of B with respect to A and denoted as 

d. At points where no confusion is likely, we shall simply call d the 

deficiency of B with respect to A. 



U11der tl1~ &s,1U11ption t? • i we eval.ua.te ~ and d in the followin.g vay. 

!)er1c1te the perfona11nce criteria for A and B as P ,\\ N and PB N respectively .. 
I"\.' It 

Ir A a.rid B are tests, PA ,N w1d PB ,H may be the powers of these tests, if' A 

&nd B are JX:iir·1t e•tiaatora, PA ,I and PB ,N may be expec·ted sc;iuared errors, 

(;f~'tf! .. By defi11i t,ion,, ~ • ~-• aay, for ea.ch N, be found :from 

( 1. 1 ) 

I;n order to aolve ( 1 .. 1), ~ has to be treated as a continuous variable. 

Thi, can be done in a aa.tisfactory 

(er .. Hoops -.nd Lehmann (1970)). 

Generally P .. and P a.re not known exactly a.nd we have to use approxi-. A,I B,I 
atio:tla. Here theae are obtained by observing that P A,B and PB,N will 

typica.117 11atisf)' &ayfll)totic expan.sions of the ro1:11 

for certain c, a and b not depending on I and certain constants s > O and 

r , O. The leading te:t:11 in both expansions is the same in view of the :fact 

that e • 1 .. F:ro. (1.1) and (1.2) it now ea.sily follows that 
• 

( 1. 3) . b-a 1-s 1- · 
· · re · 

Bence 

±• , 0 < s < 1 , 

{ l. 4) d • {~:-a.} 
' 

re , s = 1 , 
0 , s > 1 • 

A usetul property of deficiencies is the following: if a third procedure C 



is given, for which the perfo1·1na:nce criterion PC ,N also has an expansion 

of the form (1.2), the deficiency d of C with respect to A satisfies 

d = d
1
+d

2
, where d 1 is the deficiency of C with respect to Band d

2 
is the 

deficiency of B with respect to A. 

3 

The situation wheres= 1 seems to be the most interesting one. Hodges and 

Lehmann ( 1970) demonstrate the use of' deficiency in a n11mber of' simple 

examples f'or which this is the case. One of' these problems is the following: 

consider a sample x 1 , .•• ,~ from a distribution F with mean~ and variance 
2 2 . -1,N ( )2 a. Now cr can be estimated by~= N li= 1 Xi-~ , but also by 

( )-1,N ( -)2 . - -1\'N 
~ = N-1 li= 1 Xi-X , with X = N li=,xi, if we do not know~ or do not 

da.re to rely on its given value. Both estimators are unbiased and therefore 
2 2 

we compare cr (~) and a(~) 

( 1 • 5) - 4 .r. - cr N 
4 y(N-1 )+2 

= cr N(N-1) ' 

4 where y+1 = µ 4/a, the standardized fourth central moment of F. Application 

of (1.2) and (1.3) to (1.4) shows that d = 2/y. If' Fis normal, y = 2 and 

hence d = 1: the price of not knowing the mean is asymptotically one addi

tional observation. Note that in the norxoal case not only d = 1 , but also 

~ = 1; in fact,'~ a.nd M' are -N+1 identically distributed. 

The present thesis consists of' a n1Jmber of applications of the deficiency 

concept. Below we give for each of the problems considered an indication 

of the probJem, of' the results, and of' the way in which these are obtained. 

In chapter 2 the following problem is considered: x1 , ••• ,Xm are independent 
• 

random variables (r.v. 's), all having distribution P9 ,Y1 , ••. ,Yn a.re inde-

pendent r. v. 's , all having distribution Pe, where 6, ~ E 0 c R 1 • From 
,...,, -

Lehmann (1959) it follows that the test fore= e against e > e that 

rejects the hypothesis f'or large values of l~=,xi, conditionally given 

tion under suitable conditions. These conditions are satisfied for example 

in the case of the 2x2 table, where\~ 
1
x. and'~ 1Y. are binomial r.v.'s. Li= 1. LJ= J 

Usually the test is performed with equal sample sizes m = n. If the 

criterion of' optimality is the unconditional power of the test, this choice 

is known to be asymptotically optimal in the sense that the optimal value 

of y = m/(m+n) - the total n11mber of ex-

periments, tends to infinity. Here we obtain the optimal value of y to 



-

4 

r-J 

( -1/2 a (m+n) ) • Attention is restricted to the case where le-el ➔ 0 as 

(m+n) ➔ oo, at such a rate that for a fixed size a> 0, 8, the error of the 

second kind, remains bounded away from O and 1-a. 

In order to compute deficiencies we need expansions like (1.2) for the 

powerfunctions. We first expand the conditional distribution function 

(d.f.) of the test statistic, both under hypothesis and alternative. From 

this we obtain an expansion for the conditional power. By taking expecta

tions we a.rrive at an expansion for the unconditional power. Finally, from 

this expansion y t can be determined. Comparison of the expansion of the 
op 1 

power form= yopt(m+n) and m = 2(m+n), gives the deficiency~ of t~e 

traditional choice m = n with respect to the optimal choice. The asymptotic 

deficiency d proves to be finite. For the special case where a= we even 

positive, 

binomial r.v. 's with pa.ra:roeters (m,p1 ) and 

p
1 

= p2 under the hypothesis and p 1 > p2 = 

the alternative. Then d satisfies 

_ (2p-1)2 

d - 36p( 1-p) 

-1 ( ) -1 

and 6, 

and 

(n,p2 ) respectively, where 

standard 

norma] d.f. and a(a) is the error of the first (second) kind. For 

0.03 s p s 0.97 this gives d s (u -u )2 , for 0.01 s p s 0.99, 
~ 1. Then 

we have that for pin the given intervals the price of not using the 

optimal choice but simply m = n is asymptotically at most 1 or 3 additional 
• observations. 

In chapters 3 and 4 we compare various tests for the one sample problem. In 

its most general form this problem can be fo1·mulated in the f'ollowing way: 

given a sample x1 , ••• ,~ of independent identically distributed (i.i.d.) 

r.v.'s with common d.f. G, we have to test the hypothesis H that the 
0 

distribution dete1:1nined by G is syrnmetric about zero, i.e. G(x) + G(-x) = 1 

for all x, against the alternative H
1 

that it is not. H0 is called the 

hypothesis of syr11metry. In this formulation, H
1 

is too large to construct 

tests, having optimal properties against all points of H. Therefore one 
1 

1.J.sually restricts H1 to some class of interesting alternatives, after which 

optjmal tests against this family are derived. The most common choice is 



H1 : G(x) = F(x-e), e > O, the family of one-sided location alternatives 

for a fixed d.f. F that is sy:rr1metric about zero. 

5 

A well-known class of tests for the one sample problem is the class of 

linear one sa.rnple rank tests, for example Wilcoxon' s signed rank test or 

the absolute normal scores test. Such tests are not only distribution-free, 

but also relatively easy to compute, a combination which in general is not 

achieved by other tests for the one sa.mple problem, such as the test based 

on X = N i= 1xi, the one sample t-test or the permutation test based on X. 

One would expect that the price for these desirable properties would be a 

loss of efficiency, but, at least asymptotically to first order, this is 

not the case if one considers contiguous location alternatives 

(1967) prove that the 

asymptotically most powerful rank test against H~ has ARE e = 1 with respect 

to the asymptotically most powerful test. For the normal case this means 

that the absolute normal scores 
- . . and the X-test. The restriction 

test has e = 1 with respect to the 

( -1/2 toe= ON ) is rather natural, 

t-test 

as for 

such sequences of alternatives the power remains bounded away f'rom 1. 

In view of the above, it seems interesting to know deficiencies of asympto

tically most powerful rank tests with respect to the other types of test, 
• 

as was suggested by Hodges and Lehmann (1970). To this end we need asympto-

tic expansions as in (1.2) for the power functions of the tests involved. 

For linea.r rank tests for the one sample problem these expansions have been 

obtained by Albers, Bickel and van Zwet ( 197 4); the two sa.mple problem is 

dealt with by Bickel a.n.d van Zwet ( 1974). A review of asymptotic expansions 

in nonparametric statistics is given by Bickel (1974). 

Chapter 3 is devoted to asymptotic expansions for one sample rank tests. It 

contains the results of Albers, Bickel and van Zwet (1974) and some ex

tensions; an outline of the proofs is given but we omit a number of techni

cal details for which the interested reader is referred to Albers, Bickel 

and van Zwet ( 1974). The idea is that the rank test statistic is a s11m of 

independent random variables, conditionally under the vector Z of order 

satistics of I x1 I , ••• , 1 ·~ I • Hence we can give Edgeworth expansions in this 

conditional situation. 

An unconditional expansion for the distribution of the test statistic, and 

hence for the power of the test, follows by taking the expectation with 

respect to Z of the conditional expansion. The evaluation of this expecta-

• 
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tion is a highly technical matter. 
• 

In order to be able to justify the above mentioned Edgeworth expansions we 

have to exclude cases where the lattice character of the statistic is too 

pronounced. This occurs for example with the sign test. This test is there-

fore dealt with seperately. 

In chapter 4 similar expansions are derived for several other tests: para

metric tests, pe1-mutation tests and tl1e randomized rank score tests due to 

Bell and Doksum (1965). After this, deficiencies can be evaluated of the 

rank tests with respect to the other types of test. For example, the de

ficiency of the absolute normal scores test with respect to the.t-test and 

the X-test satisfies~= O(log log N); the asymptotic deficiency of the 

permutation test based on X with respect to the t-test equals zero. 

Chapter 5 is devoted to the application of the results of chapters 3 and 4 
to estjmation of location. Consider again the situation where x1 , ••• ,~ 

are i.i.d. r.v.'s from F(x-e), in which F(-x) = 1-F(x) for all x. For some 

of the test statistics considered in chapters 3 and 4 there exists a well

known estimator of e which is closely related to this test statistic in the 

sense that, for all a, 

s P (T s O), 
-a 

where Tis the test statistic, Sis the estimator and P8 denotes probability 

under e. From (1.5) it is clear that the expansion for the d.f. of T, ob

tained in chapter 3 or 4, immediately leads to an expansion for the d.f. of 

s. 

The above correspondence exists for example between the maximum likelihood 

estjmators and the locally most powerful parametric tests of section 4. 2 

and between the estjmators due to Hodges and Lehmann (1956) and the corres

ponding rank tests of chapter 3. The expansions thus obtained can be used 

for deficiency comparisons between these estimators. It appeaxs that the 

deficiency between two 

ponding tests for size 

estjmators 
1 a = • 
2 

equals the deficiency between the corres-

By using certain generalizations of the Cramer-Rao bound - the so called 

Bhattacharyya bounds - we obtain a lower bound to order N- 1 for the 

variance of an unbiased estjmator. We conclude the chapter by evaluating 



the deficiency of the estimators considered with respect to this lower 

bound. 
' 

Finally, in chapter 6 we give the results of a number of mJmP.rical in

vestigations. These give an indication of the extent to which the asymp

totic results obtained in chapters 3 and 4, are of value for small to 

moderate sample sizes. 

7 

In the first place we investigate the 1)ehaviour of the expansions for the 

power of the ra.nk tests in chapter 3 as approximations of the :finite sample 

power. For this p1lrpose we have at 011r disposal a number of exact power 

results :from literature. These are available for rather small sample sizes 

-5 to 20- for e.g. Wilcoxon's signed rank test and the absolute normal 

scores test against norxx1al and logistic location alternatives. Comparison 

of these values with those resulting from our expansions shows that here 

the expansions perform very well for these sample sizes already. It also 

shows that they are much better than the usual normal approximations. 

One should keep in mind that the optimistic conclusions above depend on the 

kind of test and alternative under consideration. If we have long-tailed 

distributions under the alternative, the situation becomes entirely dif

ferent. For example in the case of Wilcoxon's signed rank test against 

Cauchy alternatives not only the norma.l approximation, but also our ex-
• • pansion leads to very bad results for the same range of sample sizes as 

above. 

In section 4.6 we found approximations to o(1) for the deficiencies between 
• • • • various tests. Here we compare some of these asymptotic expressions to 

deficiency values that are obtained nurn~rically. We consider the absolute 

normal scores test, the t-test and the X-test against norm~l location al

ternatives for sample sizes 5-10,20 and 50. The results thus obtained show 

a satisfactory agreement between the ni.unerical and asympt.otic values. 
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CHAPTER 2 

TH!~ OPTIMAL RATIO OF SAMPLE SIZES FOR COMPARING TWO DISTRIBUTIONS 

2. 1 • I!rr'RODUCTIOB 

tion p, t,he y i all ha.Ting distribution P. We ass11me that P and P belong to a 

f•ily of distributions P, characterized by a real pa.ra.meter e !' P, 
- ( \ , ~ t , • ·.p J e e: e c R • ::· e , 

DIFllllflOI 2.1.1 .. 'P is the class of continuous functions VJ on R 
1 

with 

;( O) • 1 , O < ;{ t) < 1 for t ;. 0 and sup { $ ( t) : It I > 'ff} < 1 . 

:OIIPIIITIOl 2.1.2. Por ♦ E: ,, P1, is the class of all distributions Pon 

(0 11 1,2, .... } with characteristic functions P satisfying IP(t)I s lJJ(t) for 

it I s -; .. for ♦ € 'f P is the class of all di stri but ions P that are abso-
" 2♦ 

llltely continuous vith respect to Lebesgue measure and satisfy IP (t) I ~ w( t) 

tor &11 t. 

Througho1.1t th.ii chapt.e·r ve suppose that the fa.mi.ly P belongs to either P 1 iP 
a f"""·· · e\,,,.; .... ""'l·• c,...-i•c• 0.1> • (Jr f' 2• .· , ¥ r & G 11,i,.-. ~·t;;.J • ·"'1 • lJV · · -.. . · 1. ,,.. • 

Before con·tinuing, we shall give an explanation of the definitions above. 

First we recall some results about lattice distributions (cf. Feller ( 1966)). 

A. r.v. I has a lattice distribution P if there exist real numbers a and h 

vi th h > 0 such that all vs.J ues of X can be represented as x = a+ \>h for some integer v. 

If h0 is the la.rgest nt1aber such that all values of' X can b,e represented as 

a+ vh0 , it is called the span or P .. _ The characteristic. function (c.:f. )p 

of' Xis periodic with period 2,r/h0 and IP(t)f < 1 for O < t < 21T/h
0

. 

!fov it is easy to see how we arrive at P
1
~. We are interested in families 

of distributions that are concentrated on a fixed lattice and that all have 

the sea~ span. Then it is no loss of generality to ass11me this lattice to 

be {0~1,2, ... } and this span to be 1. Note that it is.equivalent to ass1une 

tbe.t the lattice is {0,1,2, ... } and that Jp(t)l < 1 for O < ltl s Tr. We 

axTive e.t P ,, by using the above stronger version of the second asst1mption. 

In this way distributions with span larger than 1 and degenerate distribu

tions are not only excluded, but the elements of P1lJJ remain bounded away 



from such distributions and we can formulate results that are uniformly 

true for all PE P
1

W. 

A similar explanation can be given for P2W. Here the condition on p serves 

to ensure that the elements of P2W remain bounded away from lattice dis

tributions. 

We continue our exposition by introducing 

(2.1.1) X = 
m 

I 
i=1 

x., y = 
J. 

n 
I 

j=1 
y. , 

J 
T = X+Y, N = m+n. 

9 

,-..,; ,.,,, 

Let 8 and 6 be the para.meter values corresponding to P and P, respectively. 
,.._, 

A possible way to compare P and Pon the basis of x1 , ..• ,Xm and Y
1

, ... ,Yn 
,.._, ,.,,, 

is to test H0 : e = e against H
1 

: e > e by rejecting H
0 

for large values 

of X, conditionally on T = t. This test is in many cases the uniforrnl y most 

powerful unbiased (UMPU) test for H0 against H
1

, as will be shown in 

section 2.2. 

usually the test is perfor111ed with equal sample sizes 1 
m = n = -N. In this 

2 
chapter it is investigated which choice of m/N is optimal, given N, as 

N ➔ 00
• Here the criterion of optimality is the unconditional power of the 

test. We restrict attention to the Pitman-case: a sequence of alternatives 

is chosen which converges to the hypothesis at such a rate that for fixed 

level of significance a the power remains bounded away from a and 1. Then 

it is shown that m = n is optimal to first order only, but that the de-
• • a • • ,. • • • • ficiency of this choice with respect to the optimal choice is finite. 

In section 2.2 conditions are given under which the test is UMPU. Also in 

this section an expansion is derived for the conditional distribution of X 

given T = t. In section 2.3 the unconditional power is obtained, which 

enables us to find an expression for the optimal ratio m/N and for the de-

ficiency - This is done in section 2.4. 
Finally, section 2.5 contains another application of the results in section 

2.3. 

• 

2.2. PRELIMINARIES 

First we shall show that the test considered in the previous section is 

for the case where Pis an exponential family with monotone likelihood 
ratio. 
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densities f (x) = c(e) h(x) exp(Q(8)x) with respect to a fixed a-finite 
0 

measure µ. Suppose that 0 is an interval in R 1 and. that Q is continuous 

and increasing one. Let x1, ..• ,xm, Y1, •.. ,Yn be independent r.v. 's, the 

xi all ha,ving distribution P8, the Yi all having distribution~- Finally, 
,._, 

let X,Y,T and N be defined as in (2.1.1). Then the test fore = e against 
....., 

e > e tha,t rejects the hypothesis for Za:.rge values of X, conditionally on 

.T = t, is UMPU. 

PROOF. The joint density 
2 . measure v on R is 

• • of X and Y with respect to an appropriately chosen 

where t = x+y. As 0 x 0 is a rectangle and Q is continuous and increasing, 

{(Q(6)-Q(6),Q(0)) : 6,0 E 0} is a quadrangle. In view of theorem 4.4.3 of 

Lehmann (1959) this shows that the test under consideration is UMPU for 
....., ...... 

H0 : Q(e) = Q(e) against H1 : Q(e) > Q(e). Hence, by the monotonicity of Q, 

the desired result follows. D 

REMARK. In the case where Q is decreasing, the test is of co1.1rse UMPU for 
,..,,, ,._, 

• a = e against e < e . 

The conditions of this letntua are often satisfied for :families P c P or 
1$ 

Pc P 2tlJ. In the first case µ can be taken as counting measure, in the 

second case as Lebesgue measure. We consider the following examples, where 

n is a positive constant, 

LE 2.2.1. P={P} with P {1} = 1-P {O} = p, n s p s 1- n.Hence X and Y 
p p p . 

are binomial r.v.'s. The c.f. p of P satisfies Ip (t)I = 11-p+pe1 tl = 

for a suitable choice of lJ;. F11rthe1~ore, Q(p) = log{p/( 1-p)}, which in

creases. 

,1.•..u. LE 

P;x { k} = 

p C p1tJl 

. 

2.2.2. The family of Poisson distributions P = {PA} with 
-A k 

e A /(k!), k = 0,1,2, .•• and).~ n. Again, for a suitable~, 

and Q(A) = log A is increasing. 



EXAMPLE 2. 2. 3. The fa.mily o:f geometric distributions P = 
(k-1) 

P {k} = p(1-p) , k = 1,2, ... and O < p s 1-n. Again, 
p 

Pc P1$, but now Q(p) = log(1-p) decreases in p (c:f. the 

lemma 2 • 2 • 1 ) • 

{P } with 
p 

for a suitable$, 

remark following 

EXAMPLE 2.2.4. The family 

determined by the density 

of exponential distributions P = {pA} where 
-Ax fA(x) = Ae , x > O and O < s n. Now Pc 

for a suitable choice of$, and Q(A) = - decreases. 

1 1 

The examples above can all be placed in the framework of a 2x2-table. In the 

first example we compare two Bernoulli experiments in the following way: the 

first experiment, which has probability of success p
1

, is performed m times 

and the second experiment, which has probability of success p2 , is per

formed n times. The hypothesis p 1 = p2 is tested against the alternative 

p 1 > p 2 on the basis of X, the number of successes obtained with the first 

experiment, conditionally on X+Y, the total n1.1mber of successes. It is well

known that the conditional distribution of X under the hypothesis is hyper

geometric. The second example can be looked at as a limiting case of the 

first one for small p-values, as the binomial distribution with parameters 

A. The conditional 

distribution of X under the hypothesis is binomial for this case. 
a 

In the third example we also compare two Bernoulli experiments, but now the 

first (second) experiment is performed until m(n) successes - or, equiva

lently> failures - have occurred. The above hypothesis is tested here on the 

basis of the n11mber of trials with the first experiment, conditionally on 

the total number of trials performed. Finally, the fourth example is the 

continuous analogue of the third example. 

We now rett1,rn to the general case, where P c P 11P or P 2W. In order to find 

the optimal ratio m/N, we must compute the unconditional power of the test, 

which is the expectation with respect to T of the conditional power. For the 

evaluation of this conditional power, we have to know the conditional dis

tribution of X, given T = t, under H0 , as well as under H1 • First this dis

tribution is found for Pc P,w; the case Pc p2w follows by analogy. As we 
' 

shall restrict attention to local alternatives, the following lemma is more 
,..,,., 

general than needed here since it holds for general e and e. It is given in 

the present form as it may be of some interest of its own. 
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2.2.2. Suppose that x1 , ..• ,Xm, Y1 , •.. ,Yn are independent r.v. 's, the 

Xi u.Jith distribution P8, the Yi with distribution P0, where P0, 

2 ~ ~2,.., 
letµ, o, µk (µ,a ,µk) be the expectation, variance and k-th central 

moment of x
1 

{Y
1 

), k = 3,4, .... Moreovei), assume tha.t positive constants 
2 "'"'2 vX1 vY 1 

b., B and V exist such that a ~ b, a ~ b, Ee s B and Ee ~ B for 

lvl s v. Then for aZl non-negative integers m, n and t such that 
constants c and 

e:, a>e have for each non-negative integer 1 the foZ'lowing expansion 

(2.2.1) 

-1 -4 ~ 6 IRI s A[N + N (t-mµ-nµ) ]. 

-2 2 ...., 
no mµ+ma (t-nµ)) 

2 ~2 ' mo +no 

~ 

(2.2.2) 

1 2 ""'2 -3/2 n3/2~3 - m3/2a3 
2 

:m. a n a 

and A depends on P8, ~ in P1l/J, m, n, t and J. oniy th-Pough b, B, v, c., e: 

and lp. 

PROOF. We have 

(2.2.3) 
1 

P(X ~ llT=t) - [ I 
k=O 

t 
P(X=k)P(Y=t-k)]/[ I 

k=O 
P(X=k)P(Y=t-k)]. 



13 

The procedure is as follows: we give an expansion for P(X=k) for the 

central k-values. From this expansion we jmmediately derive a similar ex

pa.nsion f'or P(Y=t-k), which leads to an expansion for P( X=k)P( Y=t-k), for 

central k-values. After showing that the P(X=k)P(Y=t-k) fork in the tail 

of the distribution can be neglected, the s1.1ms in ( 2. 2. 3) can be evaluated. 

First we give an expansion for P(X=k). Let Pz be the cha.racteristic 
iuX ,~ ( ) iuk tion of a r.v. Z. As pX(u) = Ee = lk=O P X=k e ~ we have 

(2.2.4) 1 
P(X=k) = 2Tr 

1f 

-Tf 

( ) -iuk Px u e du, k = 0,1,2, .... 

From the definition of P
1

$ it 

PE P1$. This implies that 

follows that for each c
1 

E (O,n) there exists 

-s 1-E1 for c 1 ~ I u I s; n, unifo1·mly for all 

(2.2.5) lul s: 1r. • 

Using (2.2.5) and the fact that e: s; m/N s; 
1/2 

(2.2.6) P(X=k) 

,,._, 

for some C > O. 

1 =----
2 1 /2 

1rm o 

c 1m a 

1/2 -cm o 
1 

1-e:, (2.2.4) becomes 
-iu{k-mµ,,) 

1/2 m a 

m o 

,..., 

vX 
Let w = u+iv be a complex number. From the fact that Ee 1 ~ B for !vi -s V 

it follows that Px (w) is analytic for lvl < V. Also, in analogy to Feller 
1 

(1966) one may derive a bound for the error in approximating Px (w) in the 

region lvl < V by finitely many terms of its power series. For~= 1,2, •.• 

define 

From 

and 

• • 
1.W = e 1.W 

- 1 - - - -1 ! . . . . . . . . . . 
(iw)M-1 
( M-1 ) ! • 

w w 
e-Im zldzl :s;; I w I max ( 1 , e -v ) , 

0 

w 
M = 2,3, ••• , 
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• 

it follows that 

(2.2.7) M = 1 ,2,. • • • 

Substitution of wx
1 

for win (2.2.7) and taking expectations shows 

• 

(2.2.8) 
lW Ip X ( w) - 1 - 1 ! EX1 - • • • • • -

1 

lwlM M -vX1 
~ M! · · E[ I x1 I max( 1 ,e ) J = 

M 
M= 1 ,2, .•• , 

for lvl < V, as 
vx, 

Ee ~ B for lvl ~ V. As an application of (2.2.8) we 
. 2 

have, since a ~ b > O, 

2 
= 1 - w -

2m 
for 

1/2 Iv I < m av. 

For some positive constant c 2 , which we may choose< 
1 /2 

~ c 2m a. Hence, for 

V, Px -1-1 1 
these w, 

satisfies 

we may expand 
1 1 2 
,-µ 

Consequently 

to obtain 

-
2 

w - - -2m 

log Px- ( w ) 
mµ 1/2 

we may choose~ c2 , 

(2.2.9) 

m <J 

Furthermore, there 

such that for lwl 

2 
---) w I < + 2 -
m o 

Hence, for these values of w 

(2.2.10) 

Using (2.2.9) and (2.2.10) we can now 
2/3 Suppose lk-mµI ~ CN /log N for some 

• • • exists a positive 
1 2 

constant c
3

, which 

• 

deal with the integral in (2.2.6). 

positive constant C and choose 
1 /2 . (k-mµ) 

c 1m a - 1 112 
m o 

and+ 



• 
l.S 

gration o:f 

a,rrive at 
X-mµ 

( 1 / 2 . ( k-mµ ) ) 
c1m o-1 1/2 

m cr 

15 

(2.2.11) P(X=k) -- 1 

2 1/2 

-iw(k-my .. ) 
1/2 

P ( w ) m a dw + 
X-mµ 1/2 e 

+ 0(1 k-ml! 
1/2 m o 

1rm cr 

I 

. ( 1/2 .(k-mu )) -c m o-i ... 
1 1/2 

m o 

m o 

.,.., 
-CN) + e • 

• 

Application of (2.2.10) to the integral in (2.2.11) and of (2.2.9) to the~ 

remainder in (2.2.11) leads to 

1 
- 2 

(2.2.12) 

(k-mµ) 2 

2 
mcr 

2--11m o 
1/2 e 

-c m o 
1 

3 
+ 4 

2 
~k-mµ) ) 

2 mo 

. ( . _( k-mµ ) ) 3 
lµ3 U-l 1/2 

m o 1 - ------..:::..-- + 
6 1/2 3 m cr 

(k-m 

mo du+ 

"' 
-CN) + e . 

Upon evaluation of the integ~al in ( 2. 2. 12), where we use the fact that 

lk-mµI s CN213;1og N, we :finally arrive at 

- 1 (;it-mµ) 2 

2 2 mo 
P(X=k) = ..,,;,.e ____ _ 

( 211ma2 ) 112 

• 

(2.2.13) 
µ3 

[ 1 - 1 /2 3 
6m o 

0( -1 -4 6 + N +N lk-mµI )], 

where the rP.mainder only depends on P8 through b,B, V and v,. 

Since lt-mµ-n;I s cN213;1og N, lk-mµI ~ CN213;1og N implies 

lt-k-nµI s (C+c)N213;1og N. Hence, for lk-mµI s CN213;1og N we also have 
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(2.2.14) 

-4 + N 

~ 

lt-k-nµJ 6)J. 

As we shall have to Stlro over k, the 

P(Y=t-k) from (2.2.13)-and (2.2.14), 

expression, obtained for P(X=k). 

has to be replaced by an integral 

that 

(2.2.15) 

(2.2.16) 

where 

(2.2.17) 

2"'2 2 
~ [mna cr ]1/2 + ma (t-mµ-n....,µ), k-mµ = 2 ""'2 y k 2 .....,2 

ma +no mo +no 

2~2 ...,2 
t-k-riµ = - [mno o ]1/2 + 

2 ....,2 yk 
n cr ,..., 
2 ,v2 ( t-mµ-nµ), 

y = 
k 

mcr +no mo +no 

2 -2 -2 2 
[mo +ncr ]1/2[k _ ___,.;n......;a___ mo ,..., 

2-2 2 "'2 mµ - 2 ,...,2(t-nµ)J. 
nmcr cr ma +no mo +no 

As a consequence we have 

(2.2.18) 
2 (k-mµ) 

2 
mo 

...., 2 
(t-mµ-nµ) 

2 ...,2 
mcr +ncr 

From (2.2.15) it follows that lk-mµI s CN2/ 3 /log N 
-some c 

defined by (2.2.17) with k replaced by x 

,. 

and lt-mµ-nµ I s 
4 

> O. Hence, if' y 
X 

• 
l.S 

over 

(2.2.19) 
k+ 1 / 2 - - 1 y2 -

e 2 xdx = e 
k+1/2 

k-1/2 
[1 -

2 ..... 2 
(mcr +no )1/2( -k) + 

2"'2 X yk 
k-1/2 

2 -2 
O(mcr +na 

+ 2"'2 
mna a 

= e 

2 --2 
O(mcr +no 

2 ...... 2 
nm.a a 

mna cr 

2 (x-k) ]dx = 

In the same way it can be shown that the lower order terms can be replaced 

by appropriate integrals. For example 



(2.2.20) 
k+1/2 

k-1/2 
(x-mH )3 -

1/2 e 
m a 

1 
2 y 2 

X dx = 

2 
+ O(k-mµ) ) J 

3/2 3 
m a 

1 2 
- y 

= 2 k[(k-mB )3 
e 1/2 

m a 

k+1/2 

k-1/2 

1 2 
- 2 yx 

e d.x = 

17 

From (2.2.18), (2.2.19) and expressions similar to (2.2.20) it follows that 

every term in the product o:f the expressions in (2.2.13) and (2.2.14) can 

be replaced by the corresponding integral. Upon doing this and using 

(2.2.15) we arrive at 

• 

(2.2.21) 
_, 2 

P(x k)p(y t k) _ [-(t-mH-nv) J/[ 2 ( 2+ '""2)1/2] = = - - exp 2 ~2 n ma na 
2(mcr +no ) 

0( -1 -1 6 -4 ~ 6 
+ [N +N yk+N (t-mµ-nµ) ] 

Yk+1/2 - 1 2 2 y 
e dy) , 

for lk-mµI ~ CN
2

/ 3/log N, with 

(2.2.22) 

-- e 

1 2 
- y 2 µ3 

1 - ... ·, / 2 '3 { 3 [ ( 2 --2 Y + 2 ....,2 t-m µ-n µ J + 
6m cr mcr +na ma +na 

2 ,.,,.2) Y + 2 · ....,2 ( t-mµ-nµ)] } + 
mcr +ncr mo +no 

"' 

2 -2 y 
n a mo +no 

1/2-
n o "' 
2 _ 2 (t-mµ-nµ)J + 

mo +no 

2 
-

1/2--n cr ,..., 3 
2 _,2 (t-mµ-nµ)J } 

ma +no 
dy. 

With (2.2.21) and (2.2.22) we have :found an approxjmation :for the central 

k-values; it remains to show that the siJros over lk-mµ I > CN213 /log N o:f both 

P(X=k)P(Y=t-k) and g(yk) are sufficiently small. 
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2/3 
First k - 1/ 
lt-mµ-nµI ~ cN2/ 3/1og N imply in view of (2.2.15} that lykl > cN /log N, 

~ for some constant c > O. Hence 

(2.2.23) 

1 2 

= 0( 
3 - y 1 

= O(N- ). 
lyl>cN /log N 

For P(X=k)P(Y=t-k) we proceed in the following way. According to (2.2.21) 

to (2.2.23) we have 

mµ+CN 2/ 3/log N 
l P(X=k)P(Y=t-k)= exp[-

mµ-CN213;1og N 
(2.2.24) 

( -1 -4( -)6)] (1 + 0 N +N t-mµ-nµ • 

~ 2 

2 ~2 
2(mcr +no ) 

As X+Y is a sum of independent r. v. 's, an expansion similar to ( 2. 2. 14) 
,.., 2/3 

holds for P(X+Y=t) for lt-mµ-nµI s; cN /log N. In particular, P(X+Y=t) 

equal.a the right side of (2.2.24). This implies that 

(2.2.25) L 2/3 P(X=k)P(Y=t-k) = 
lk-mµl>CN /log N 

The s1l!ll.s in ( 2. 2. 3) can now be approximated. For any l we have 

(2.2.26) 
1 ,.., 2 1 
I P(X=k)P(Y=t-k) =exp[---------

k=O 2(mcr +na ) k=O k 

( -1 -4 ~ 6 + 0 N +N (t-mµ-nµ) )}, 

where we use (2.2.21) for lk-mµI s CN213;1og N and (2.2.24) and (2.2.25) for 

lk-mµf > CN213 /log N. From (2.2.26) it iirnnediately follows that 



(2.2.27) P(XsllT=t) 
l 

= c I 
k=O 

t 
) 0 -7 -4 ~ 6 , 

g(yk + (N +N (t-mµ-nµ) ]/[ l 
k=O 

-1 -4 ~ 6 + O(N +N (t-mµ-nµ) )]. 

It remains to insert (2.2.22) in (2.2.27). We can write g(yk) as 

Yk+1/2 - 1 y2 
2 

e 

where b, a 0 , and a
0

, a
1 

and a
2 

are given in (2.2.2). This implies 

In o~ these results in 

(2.2.27) leads to the desired expressions (2.2.1) and (2.2.2). Finally 

uniformity of' the 0-symbol in m, 1 and tis evident f'rom the method of 

proof'. D 

the 
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COROLLARY 2.2.1. Under the conditions of lemrna 2.2.2 we have for each 
( ( -1 -4 ...., ) 6 ) o e 0,1] an e:x:pansion to ON +N (t-mµ-nµ ) for P(X<llT=t) + oP(X=llT=t 

if we repZace y1+ 1/ 2 by y1 +8_ 112 in (2.2.1). 

PROOF. The result follows jmmediately from lemma 2.2.2 by noting that 

P(X<lJT=t) + oP(X=llT=t) = (1-o)P(X~l-1 IT=t) + oP(X:sllT=t) and that 

--

In the second case, where Pc P2~, a sjmilar expansion holds. 

LEMMA 2.2.3. Let Px (Py) be the aharacteristia function of x1(Y1) and 
1 v1 ~ 

suppose t"hat flPx (u)I du s B, flPy (u)I du s B for some v ~ 1. Let P
0

, 
·1 , 

Pe E Pc p2~ for some~€~, let t and 1 be real n'lQl'lbers and suppose th,at 

the remaining aonditions of Zen1111a 2.2.2 continue to hold. 

Then the aoncZusion in (2.2.1) aontinues to hold, if y
1

+
1

/
2 

is replaced 
by y1 . 
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PROOF. As X1 and Y1 have densities 

X. given T = t 
l. 

fx (x) and fy (y), the conditional 
1 1 

density of X is given by 

rx(x) .fy(t-x) 

fT(t) .. 

0 otherwise. 

_oo X _oo 

= IPx Im~ IPx Iv and therefore 1
00 IP (u)[du < B. Under this condition, the 

1 1 _oo X 
Fourier inversion theorem yields 

• 

(2.2.28) ( ) 
-1UX _ 

PX u e du -
_oo 

1 __ _...;.__ 

- 1/2 

1/2 
C m 0 

1 

. (x-mµ ) 
-iu 1/2 

u m cr + 
P(X-mµ)( 1/2 )e du 

+ 1 
271" 

2·-11m cr 
1/2 

-cm a 
1 

• 

( -iux 
PX u)e dx. 

m a 

From the definition of P2~ it follows that for each c 1 > 0 there 

c 1 , uniform] y :for 

exists 

all 

PE P2W. This implies that 

it follows that the second integral 
. ( 8) . 1 . in 2.2.2 is exponentially small. 

Since (2.2.10) still holds in the present case, the first integral in 

(2.2.28) can be handled in the sam~ way as in the proof of lernma 2.2.2. 

Hence, for lx-mµI can be approximated by the right 

side of ( 2. 2. 14), upon changing k into x. The remaining pa.rt of the proof 

is analogous to and simpler than the proo:f of Jemma 2.2.2. D 
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2.3. AN EXPANSION FOR THE UNCONDITIONAL POWER 

,.._, "' ,.._, 
The conditional power of the test of e = e against e > 8 (ore< 8) that 

rejects the hypothesis for large values of X, given T = t, is denoted as 

TI • Corollary 2.2.1 and lemma 2.2.3 enable us to find an expansion for ta • 
n for those t that satisfy lt-m~-nµI $ cN213;1og N. This will suffice to ta 
find an expansion for the unconditional power, which is denoted as n, 

a. 
under the assumption of local alternatives. In the following lemma we give 

• such an expansion. 

LEMMA 2.3.1. Let Pe, Pe E P, wher,e Pc P,i.t, or Pc p2l/J for some tJ; E '¥. 

Suppose there exist positive constants e:, b, C, V and O <a.< 1 such tha.t 
vX 1 vY 2 2 ,..., 1 / 2 

s 1-c, Ee s C, Ee 1 s C for lvl s V, o, ~ ~ b, lµ-µI s CN- , e: s m/N 

la2-;'2 1 s 
V 

JI p X1 I 
P21.J, then also asswne tha.t 

V 
s c, flPy I s C for some v ~ 1. 

1 

Then the unaond.itional power na satisfies 

(2.3.1) 

where 

(2.3.2) 

and where A depends on P6, P0 in P11.J, or, P21.J,, m and n only through e:, b, C, 

V and tJ). 

PROOF. We give the proof for the case where Pc P1~. The proof for the 

other case is similar but requires some minor notational changes which are 

left to the reader. As long as nothing is said to the contrary, we restrict 

attention to those t that satisfy lt-mµ-nµI ~ cN213;1og N, for some c > O. 

According to corollary 2.2.1 we have under H
1 
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(2.3.3) 

with y1 , a0 , a
1 

and a2 as defined in (2.2.2). Under H
0 

we have 

(2.3.4) 

"" ,..,,,, ,.,,,,, ,...._, 

where y1 , a 0 , a 1 and a2 are derived from y
1

, 
2 ~ ~2 ~ 

• a
2 

by replacingµ, 

cr and u3 byµ, o and µ
3 

everywhere. 

Let lta and <Stet be such that P0 (X<ltalT=t) + ctaPO(X=lta.!T=t) = 

From (2.3.4) and the fact that u = 0(1) it follows that 
a 

~ 

1-a = <P(u ). a. 

as ~ ~ ~ -1 2 - 2 ~ 2 
In order to find·~ta' we 

must know y1 +o _ 112 . To this end, note that 
ta ta 

~2 2 ~ 
na mµ+mcr (t-nµ) _ (t-nµ) _ 

2· ,._,2 . -
ma +no 

and hence 

~2 2 ~ 
na mµ+mcr ( t-nµ) 

2 "'2 ma +na 

-2 ....., "'2 ...., 
no m µ+mcr ( t-nµ) - .....,2 ~ 

ma +ncr 

mn ,..., 
= ::::!!.(µ-µ) + 

N 

Combining this result and (2.3.5) we get 

~ N 1 /2 mn "' 
Y1 +o -1/2 = [yl +o -1/2 -( ...2) (N(µ-µ) + 

ta ta ta ta mncr 
2 ~2 Ncr2 

--
N cr mcr +no 

,.., 2 --2 2 "'2 ~ 
= [ u _ ( mn ) 1 / 2 ( µ ;;µ ) J [ 1 _ n ( cr -a ) J _ ( mn ) 1 / 2 ( cr -cr ) ( t-:-mµ -nµ ) + 

a N a 2N -2 N ,..,,3 N 
a a 



as lµ-µI = O(N-112 ) and la2-cr2 1 = O(N- 112 ). From (2.3.3) it now follows 

that 

2 ...,2 

(2.3.7) _ n ( o -o ) J } + 
2N "'2 a 

• I ,..., 0 -1 -2 ,..., 2 From (2.2.2) it follows that a 0-a0 1 = (N +N (t-mµ-nµ) ), 

0 _, -3/2 ,..., 
(N +N (t-mµ-nµ)). 
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Inserting these results and the expressions for a
1 

and a 2 from (2.2.2), we 

get 

(2.3.8) 

where g(u) is defined by (2.3.2). 
a 

The expansion in (2.3.8) only holds for lt-mµ-n;I < cN213;1og N, but this 

suffices to find TI = EnT. Let S be a set satisfying a a 

Sc {t : lt-mµ-nµI < cN213;1og N} 

and let r8 (t) be the indicator function of S. Then 

(2.3.9) ,..., ( -1 
TI -g(u) = E(nT -g(u )) = E[(T-mµ-nµ)I 8 T)]O(N ) + 

a a a a 

a a ( 8c) 

,.._, - ,.._, vx, 
As ET= mµ+nµ, E[(T-mµ-nµ)I 8 (T)J = -E[(T-mµ-nµ)I(SC)(T)J. Because Ee ~ B, 

i= 1 J= J 
EIT-mµ-nµlr = 0(~12 ) for all positive real r, by the Marcinkievitz-Zygmund-
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rv 6 3 
Chung-inequality (cf. Chung ........ (1951)). In particular, E(T-mµ-nµ) = O(N ). 

simplifies to 

(2.3.10) -1 -ITI -g(u )I= O(N +E{[IT-mµ-nµl+1]I (T)}). 
et et ( 8c) 

Application 

1/r+1/s = 1 

of Holder's inequality shows that for all r,s > 1 with 

(2.3.11) 

• 

for some O < T < 1/6 

(2.3.12) 

for all p > o. Now (2.3.1) follows from (2,3.10), (2.3.11) and (2.3.12). The 

uniformity in P0 , P8 and m follows again from the method of proof. 0 

For exponential families with monotone likelihood ratio the expression for 

g(u) in (2.3.2) can be simplified by using the result in the next lemma. 
a 

LEMMA 2.3.2. Let 

having densities f
8

(x) = exp(Q{e)x)/c(e) with respect to a a-finite measure 
2 - -2 ,...., 

v. Let µ., a and lJ.3 ( µ, cr and µ 3 ) be the expeotation, variance and third 
,..._, 

centi»al, moment of a r.v. with distribution P
6

(P6). Let e, a c 0 be such 

that JQ(e)-Q(a)I s CN- 112 and o <~sf exp{(Q(a)+e)x}dv s c < ~, 
~ l'V ,....,, r,,,,,I 

O <cs J exp {(Q(e)-e)x}dv s C <~,for constants c, C, C and e > o. Then 

we have, 

(2.3.13) 

,..._, 
unifonnZ.y for fixed c, 

...., 2 -2 2 -1 
(µ-µ)~ - {cr -cr )a = O(N ). 

3 

PROOF. Let T = Q(e) and define d(T) = f eTXdv(x). Then J xk:f (x)dv(x) = 

{2.3.13) may be expressed in terms of the values of the functions d(k) and 
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...., 
a at the points Q(e) and Q(e), fork= 1,2,3. Under the conditions above on 

e, d(k) and dare uniformly bounded away from zero and infinity at the 

point Q(e). As IQ(e}-Q(e)I s CN-112 , this will also hold at the point Q(e) 
for N sufficiently la.rge. Furthermore, 

Inserting this in ,.., 2 "'2 2 
(µ-µ)µ 3 - (o -cr )cr leads to the desired result. D 

If ( 2. 3 .13) 

(2.3.14) 

holds, g(u) simplifies to 
a 

We now apply the results of this section to the four examples given in 

section 2.2. Here lemma's 2.2.1 and 2.3.2 clearly apply. Hence~ is the 
a 

power of the UMPU test for these cases and under the conditions of lemma 

2.3.1 it may be appro~imated by (2.3.14). Let n
1 

and n
2 

be positive con

stants. 

·~LE 2.3.1. P(X1=1) = 1-P(X1=0) = p 1 , P(Y1=1) = 1-P(Y1=0) = p 2 = P, 

2 "' -1 2 

2 -2 -1 2 -1 ,.., -1 2 vX --
= (1-p )+p ev for all v. It follows that we may apply lemm~ 2.3.1. Hence 1 1 

(2.3.15) ~ = l-t(u -[ mn ]1/2 
a a p(1-p) 

[ ( 1-2p) (N-2n) 

6p(1-p)N3/ 2 
bu + [ mn J 1 /2 l!-2p )_(n:+N_)_ b2] + O( N-1 ) . 

a p(1-p) 6p(,-p)N5/2 

EXAMPLE 2 .3 .2. x1 (Y 1 ) has a Poisson distribution with pa.rameter A
1 

( A
2

), 

where n
2 

:s; 
- 2 ,.._,2 ...., -1/2 

µ = A1,and thereforeµ-µ 
vx1 - +A ev 

Ee = e 1 1 for all v. Hence 

' 

' 
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(2 .. 3.16) 7T = 
Ct 

------ bu + 
a ). N a A N 6>.N3/2 a 

+ [mn]1/2 (n+N) b2] + O(N-1 ). 
>. 6AN5/2 

~LE 2.3.3. x1(Y 1 ) has a geometric distribution with para.meter p 1(p2 ), 
1 

with n2 ~ p 1 
' 

2 ( 1-p1) 
cr = 2 'µ3 = 

P1 

(1-p1)(2-p 1 ) ,.., bN-1/2 _1 
3 and therefore~-µ= - 2 + O(N ), 

P1 p 

2 -2 
o -cr = -

(2-p) 

P3 
bN-1/ 2 + O(N-1 ). ~ = O(N-112). Furthermore, " µ3-µ3 

V V ( 1 ) = p1e /(1-[1-p1]e ), for v < log 1_p • Hence 
1 

(2.3.17) 1T = 1_g,(u +[mn]1/2 b)-¢(u +[mn]1/2 b)[~p-2)(N-2n) 
a a 1-p pN a 1-p pN 6p( 1 _p)N3/2 

+ [ mn] 1/2 
1-:p 

bu + 
a. 

LE 2.3.4. x1(Y1) has an exponential distribution with parameter >i. 1 ( A2 ), 
-1/2 . 1 with n2 ~ ). 1 < A2 

2 1 2 - b - 1 / 2 - 1 2 ,..,,2 a = 
2

, µ
3 

= 
3

, and therefore µ-v = - · N + O(N ) , cr -cr = 

2b -1 2 -1 - -1 2 -- - = ')../ ( A-v) , for 

v < X, and 
u2 1 2 

1 A 

(2.3.18) 1T = 
O'. 

1/2 1/2 
___ -4>(u + (mn) b )[-

a AN 
(N-2N) 
3)..N3 / 2 

bu + a. 

2.4. OPTIMAL RATIO AND DEFICIENCIES 

In this section we solve the main problem of this chapter: which choice of 

In order to find the second order term we set 1 -1 2 . 

For a given f, denote the power at level a. by n f and the expression in 
a., 

(2.3.2) by g(u ,f). Under the conditions of lemma 2.3.1 we have 
a. 



(2.4.1) 

as changes inf cause changes 

and (2.4.1) it follows that 

Of O(N-3/2) i·n ( ) 
if f-g u ,f. 

(2.4.2) 
,..._, 

+ f 

Obviously, (2.4.2) reaches its maximum for 

(2.4.3) 

,.._, 
1-1 r,., 

f = [u { 3 ( u:u) -
o a. 6;3 a 

-c2 cu:u)J + O(N-1/2). 
cr 

Consequently, 

(2.4.4) if -if = N-112~[u 
a,f0 a.,O a. 

Ci. , a. 
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From (2.3.2) 

,.._. 

Define is bounded. As a. is a constant, with 

O <a.< 1, it follows that 

* * -1/2 + O(N-3/2)], 
a., O a. a. N 0 

(2.4.5) 

where to (2.4.5) shows 

that the deficiency of the choice m = n with respect to the optimal 

choice m/N = 1 + f N- / 2 satisfies 
2 0 ' 

(2.4.6) 

Hence the This is finite, which may 

seem surprising in view of the fact that the difference between the optjmal 
. 1 -1 2 -1 . 
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asymptotic deficiency to be infinite. That this is not the case is explain-

) 
. 1 . 

ed as follows: the leading term in g(u ,f is symmetric around Y = 2 , in 
1 "' a -1 2 1 -1 /2 

a a 1 _ 1 o 
implies y(1-y) = 4 + O(N ). 

We finally apply these results to our examples. In the first place, 

(2.3.13) holds in all examples considered, and hence (2.4.3) simplifies to 

~ 
(2.4.7) 

µ 
f = - ---3- [4u 

0 4-3 a 2 (J 

The expression in (2.4.7) becomes more transparant if we eJiminate 

N112(µ-µ)/; by using its relation to the power of the test. Denote 1-na, 
N1/2 µ-11 -1/2 

the error of the second kind, as 8. From a = ~ (u - 2 ( ....,r)) + O(N ) it a a 
then follows that 

...., 

Hence 

(2.4.8) 

-2 

(2.4.9) l-13 2 -1/2 -6 (u -u8) + O(N ). 
36a a ,._, 

µ 
In most ------~ a reasonable upper 

bound ford. In the special. case where the erro~g of the first and second 

to O(N- 1). We conclude this section by making some remarks on each of the 

examples of section 2.3 separately. 

LE 2.4.1. For e~arople 2.3.1, (2.4.8) specializes to 

f = ( 2:rc 1 ), · ( u -u ) . 
0 12[p( 1-p)J 1 /2 Ct 8 

Remembering that m/N = y O = 

of the first kind has to be 

1 -1/2 
2 + f 0N , we may conclude that, if the error 

smaller (larger) than the error of the second 

kind, one should perfo1·m more-(less) often the experiment whose probability 

' 
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2 2 = ( 2p- 1 ) / c 9 ( 1 - ( 2p- 1 ) ) J • Hence, if lua-uel < 1, then d SD 
1 1 T . . f 

~ 2 - 36D. his gives or example 

for 

d s 1 for 

0.03 s p s 0.97 and d s 3 for 0.01 s p s 0.99. 

EXAMPLE 2.4.2. For exa.mple 2.3.2 we find f 0 = -(ua.-uS)/(12/11.). If one wants 

to have a< S, then one should perform the experiment with the 

parameter more often. Furtheiuore, 

EXAMPLE 2.4.3. For example 2.3.3 

LE 2.4.4. For example 2.3.4 f 0 = -(u -u )/6. 
Ct s 

2.5. COMPARISON OF SAMPLING RULES FOR BERNOULLI EXPERIMENTS 

smallest 

< 1. 

In the previous section the results of section 2.3 were used to solve the 

main problem of this chapter. Here we briefly discuss another application 

of these results. 

Consider two Bernoulli experiments, with probability of success p 1 and p2 , 

respectively. We shall give an asymptotic carr1pa.rison of the perfo1'11lance of 

two sampling rules in testing the hypothesis p 1 = p
2 

against the alterna

tive p 2 = p, p 1 = p + ~, 6 > O. The first of these sampling rules is the 

''Vector-at-a-Time'' (VT) rule, which simply states that m and n, the numbers 

of trials with both experiments, are equal. (cf. Sobel and Weiss (1970)). 

From example 2.3.1 it follows that for this rule the power ;r of the UM.PU 
Ct 

test satisfies 

The second sampling rule we consia er is the ''Play-the-Winner'' ( PW) rule, 

which prescribes that one continues with the same experiment after each 

success and that one switches to the opposite experiment after each failure. 

As soon as r failures have occurred with both experiments, sampling is 

terrr,inated. In this situation there also exists an m.1PU test for 

H
0

: p 1 = p
2 

against H
1 

: 

the power n* of this test 
a 

p and 1-p in (2.3.17). We 

P
2 

= P, p 1 = p + 6, 6 > O. An approximation to 

is supplied by example 2.3.3, if we interchange 
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(2.5.2) 
( 1+ p ) ~ } + 0 ( r - 1 ) • 

- 4p(1-p) 

In order to make the PW rule and the VT rule comparable, it seems reasonable 

to chooser, for each n, in such a way that the powers of the t-wo tests 

under consideration are equal. From (2.5.1) and (2.5.2) it follows that 

* ( -1) 1~ -~ I= 0 n for a a 

r = n(1-p}(1 + -.,...;;;;;...._-.-

Now there are various criteria according to which we can compare the two 

sampling rules. For exa.mple, we may prefer the rule that has the lowest ex

pected num~er of trials on the poorer experiment, i.e. the experiment with 

the smallest probability of success. Another criterion is the expected 

n1.1rn'ber of failures that could have been avoided by using the better experi

ment throughout. Finally, a third criterion is the expected total n11rnber of 

trials. 

We consider the first criterion. For the VT rule the expected numoer of 

trials on the poorer experi.ment obviously equals n. From ( 2. 5 .3) we obtain 

that for the corresponding PW rule this expectation is 

n(1 + 3 
2(1-p) 6) + 0(1). 

Hence the PW rule requires in expectation 3nA/{2(1-p)} additional observa

tions on the poorer experiment. 

As concerns the other criteria mentioned above, we note that the second 

criterion is equivalent to the first~ whereas the third criterion will 

certainly not pre:fer the PW r1JJ .. e if the first criterion pre:fers the VT ruJ e. 

Hence, according to all criteria, the PW rule is asymptotically worse than 

the VT i•u) e for the problem of this section, uni:form.J y in p. Apparently the 

fa.ct that the PW ruJ.e has a tendency to use the better experiment more 

o:ften, is outweighed by the fact that the negative binomial distribution has 

a la.rger skewness than the binomial distribution. 



31 

CHAPTER 3 

ASYMPTOTIC EXPANSIONS FOR NONP ....... L.r>..L·~TRIC TESTS FOR THE ONE SAMPLE PROBLEM 

3.1. INTRODUCTION 

In this chapter we shall give asymptotic expansions for the distribution 

functions of one sample linear rank statistics and also for the power func

tions of the corresponding tests. These have been derived by Albers, Bickel 

and van Zwet (1974); the present chapter contains the results of this paper 

and two extensions. We only sketch the proofs. 

Our starting point in establishing the above expansions will be the so 

called Edgeworth expansions (cf. Cramer (1946), Feller (1966)). For the 

distribution function (d.f.) R(x) of any r.v. X with mean O and variance 1 
....., 

we can give a formal Edgeworth expansion R(x) 
, 

in powers of N- 2 • For 

eYarople, to O(N- 1 ) this looks like 

(3.1.1) R(x) = 

-1 
N K4 3 

24 (x -3x) + 
- ' • 

-1 2 
N K 

+ 
' 

1 

and N, respectively, and 4> and <f> denote the d.f. and the density of the 

standard normal distribution. 

Such expansions have been used for rank tests before, for example by Hodges 

and Fix (1955), Fellingham and Stoker (1964), Sundrum (1954), Witting 

(1960) and Rogers (1971). These authors, however, restrict attention to the 

special case of the one or two sample Wilcoxon test. Furthermore, with the 

exception of Rogers, they do not bother to show that (3.1.1) is a valid 

expansion, but merely recomrnend it as an approximation on purely n1.1m~rical 

grounds. Rogers gives an Edgeworth expansion R(x) to O(N-1) for the two 

sa.mple Wilcoxon distribution R(x) under the hypothesis, and proves that 

sup IR(x) - R(x)I = o(N-1). 
X 

Here we shall justify expansions to O(N- 1 ), not only under the hypothesis, 

but also under contiguous alternatives, for quite general test scores. In 

section 3.2. we give a basic expansion for the d.f. of a linear rank 
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statistic, without any assumptions at all about the alternative. In the 

next section we restrict attention to contiguous alternatives and obtain a 

more explicit form for this expansion. This expression still involves sums 

of functions of moments of order statistics. These are replaced by appro

priate integrals in section 3.4 under the assumption of smooth scores and 

contiguous location alternatives. Finally, in section 3.5, we consider the 

sign test as a separate case, since it cannot be handled by the general 

methods of this chapter, because of its pronounced lattice character. 

3.2. THE BA.SIC EXPANSION 

Let x1 , ••• ,~ 

o < z1 < z2 < 

of x1 , ••• ,~· 

be i.i.d. r.v.'s with common d.f. G and density g, and let 

••• < ZN denote the order statistics of the absolute values 

(3 .. 2.1) 

If I XR . l = Z • , define 
J J 

V. = 
J 

1 

0 

if ~- > o, 
J 

otherwise. 

We introduce a vector of scores a = ( a 1 , •.• , 8N) and define the statistic 

(3 .. 2.2) T == }:a. V •• 
J J 

Throughout this section 

• 

shall be concerned with obtaining an asymptotic expansion for the distribu

tion of T as N ➔ ~. 

Our notation strongly suggests that we a.re considering a fixed underlying 

d.f'. G and :perhaps also a fixed infinite sequence of' scores as N ➔ 00 • How

ever, this is merely a matter of notational convenience and our main con

cern will in fact be the case where the d.f. depends on N and the scores 

forrn a triangu]a,r array aj :N' j = 1, ••• ,N, N = 1 ,2,. • • • 

The r. v. T is of course ....... the general linea.r rank statistic for testing the 

hypothesis that g is s~mmetric about zero. Under this hypothesis, v1, ••• ,VN 

are i.i.d. with P(Vj=1) = 1/2. For general G, v1, ••• ,VN are not indepen

dent. However, one easily verifies that conditionally on Z = (z 1 , ••• ,ZN), 

the r.v.'s v1, ••• ,VN are independent with 

g(Z.) 
(3.2.3) • 

As independence allows us to obtain expansions of Edgeworth type, we shall 

~a.rry out the following :program to arrive at an expansion :for the distribu-



tion of T. First we obtain an Edgeworth expansion :for the distribution of 

Ia. W., where w1, ..• ,WN are independent with p. = P(W.=1) = 1 - P(W.=O). 
J , J J J J 

Having done this, we substitute the random vector P = (P1 , ... ,PN) defined 

33 

in (3.2.3) :for p = (p1 , ••• ,pN) in this expansion. The expected value of the 

resulting expression will then give us an expansion for the distribution of 

T. 

In carrying out the first part of' this program, we shall indicate any de

pendence on p = (p1 , ••• ,pN) in our notation. Consider the r.v. 

(3.2.4) 

where 

Ia. (W .-p.) 
J J ,1 
T(p) 

2 \ 2 
T (p) = lp.(1-p.)a. 

J J J 

denotes the variance of Ia. W •• Obviously (3.2.4) has expectation O and 
J J 

variance 1. Let R(x,p) and p(t,p) denote the d.f'. and the characteristic 

function (c.f.) of (3.2.4) respectively. Denote the Edgeworth expansion to 
"' ,-.J a ,..,,.,, 

p(t,p) = J00

00 
exp(itx) ~(x,p)dx, the Fourier transform of" r. 

,..., ,._. 

To justify a f'onnal Edgeworth expansion R, i.e. to show that IR - RI is in-

deed o(N- 1), one usually invokes the following result (Feller (1966)). 

3.2.1. Let R be a d.f. -with vanishing expeata~ion and a.f. p. Suppose 
,,,...., ,,..,,,,,,,,, r-..1 "' 

that R - R vanishes at ±00 and that R has a derivative r such ~hat lrl ~ m. 
r-.1 

Finally, suppose that r has a continuously differentiable Fourier transfoPrn 
"" ,..., ...., 
p such that p(O) = 1 and p'(O) = O. Then, for all x and T > O, 

(3.2.6) IR(x) - R(x)I ~ 1 

PROOF. See Feller (1966). 

T 

-T 

p(t)-p(t) 
t 

dt + 24m 
rrT • 

To prove that 

T = b. N312 , 

IR - RI= o(N-1), it suffices to show that e.g. for 

the integral in (3.2.6) is o(N- 1). For the case we are • consi-

dering, this may be done largely in the standard manner (Feller (1966)), by 

splitting the integral into several parts. Require that f'or some positive 

J . J J J 
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that 

P (t,p) = exp I log PW.-p. (ajt/-r(p)) 
J J 

around t = 0 :for 
,.._, ,.._, 

of this expansion with p(t,p) shows that lp(t,p) - p(t,p)I is • Compa.rison 

sufficiently small on this interval to ensure that 

• 

we cannot expand p anymore, but as p and p are 
• • both small here, we s1mply use 

dt s Q(t,:e) 
t 

dt + 

,.._, 

p(t,p) 
t 

dt. 

The last integral on the right is shown to be sufficiently small :for 
• 

ltl ~ log(N+1) without any difficulties. As it can be shown that 

lp(t,p) I s exp [-~t2+ct4/(96c2N)], we also have that the following integral 

is sufficiently small 

p(t,p) 
t 

dt, 

for some positive constant b
1

• Hence it remains to estimate 

dt. 

Here or1e usually makes what Feller calls the extravagantly luxurious as

surnpt ion that the c. f. ' s of all s1)rnmanrls are uni:ror:mJ y bounded away from 1 

in absolute value outside every neighbourhood of O. Obviously, this con

dition is not satisfied in 011r case where the s11mmands a .W. a.re lattice 
J J 

r.v. 's. Weaker sufficient conditions of this type a.re known, but all seem 

to imply at the very least that the s11m itself is non-lattice. In our case 

this would exclude for instance both the sign test and the Wilcoxon test. 

On the other hand, it is clear that one has to exclude cases where the sum 
,,._, 

(3 .2. 4) can only ass1,1me relatively :few di:f:ferent values. As R is continu-

ous, one cannot allow R to have j,1mps of O(N-1) or larger. Thus the sign 

test, where jumps of order N-112 occur, will certainly have to be excluded. 
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However, it is exactly the simple lattice character of this statistic that 

makes it easily amenable to other methods of expansion (see section 3.5). 

For the Wilcoxon statistic on the other hand, all jumps are O(N-312 ) and 
the assumptions we shall make will not rule out this case. 

For p(t,p) we have 

(3.2.8) 
N 

lp(t,p} I = n 
j=1 

a.t 
1-2p. ( 1-p. ) ( 1-cos --;,,-.-) 

J J T p) 

1/2 
• 

This is exponentially small if for a positive :fraction of indices j the 

following two conditions are simultaneously satisfied : E 

a.t/-r(p) differs at least n from the nearest multiple of 
J 

s p. ~ 
J 

2ir, for 

0 < e < 1, n > O. For our purpose this must hold for all t with 

1-e and 

some 

this is the case, then obviously 

Edgeworth expansion is justified. 

(3.2.7) is su:f-
ficiently small, and the 

We s11mma,rize this result in the following theorem, where the two cor1ditions 

above are replaced by one weaker, but less intuitive condition. 

THEOREM 3.2.1. Suppose that positive numbers c, C, o and e exist such that 

~ cN < s, 
J J J J 3/2 J J 

esp. s 1-e} ~ oN~ for some~~ N- log N, where A is Lebesgue measure. 
J 

Then 

sup 
X 

where A depends on N, a and p only through c, C, o and e. 

PROOF. For a formal and detailed proof see Albers, Bickel and van Zwet 

( 1974). □ 

REMARK. If we require }: I a. 15 
-5/4 J 

stead of A.N in (3.2.9). 

s CN 
• This 

. \ 4 instead of la. s: 
J 

is the ''natural'' 

CN, we get A.N-312 in

order of the remainder. 

Before we replace p by the random vector P = (P1 , •.• ,PN) defined in (3.2.3) 
and compute the unconditional distribution of T by taking the expected 

value, two modifications must be performed. 

In the first place, we have to change the standardization of la.W. into one 
J J 
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that does not involve p. As before, let w,, ... ,WN be i.i.d. with 

P(W.=1) = 1 - P(W.=O) = 
,..., ,.., ,.., ,..., 

(p1 , ••• ,pN) be a vector with Os pj s 1 
J J 

for all j, and consider 

p., let p = 
J 

(3.2.10) 
* ,.., Ia.(W.-p.) 

R (x,p,p) = p( J ,l .. J s x). 
r-.> 

T( p) 
2,..,. 

Here -r (p) 
,..,. ,..,, 2 

= rp.(1-p.)a. in accordance with {3.2.5). From the fact that 
J J J 

I < p . -p. ) a . ,..., 
p), 

T(p) T p 
• 

we can i m:mediately derive an expa.nsion for R * by means of ( 3. 2. 9) • 

The second modification is that everywhere in this expansion we expand 

T(p)/T(p) in powers of [T2(p} - -r2 (p) ]/T2(p); the reasons for this will 

become clear in the sequel. The result of these steps is the following lemma. 

LEMMA 3.2.2. If the conditions of theorem 3.2.1 a:t:>e satisfied and in 
\,..., l".J 2 

addition lp.(1-p.)a. ~ cN, we have 
J J J 

(3.2.11) sup IR*(x,p,p) - Jr(x,p,p)I s 
X 

,.., 
whe-Pe A > O depends on N, a, p, p only through c, c, o and € and where 

(3.2.12) 
~ ,.., 
R (x,p,p) (x-u) + 

2 2 ,.., 
1" ( p ),-T ( p) 

2 ,.., 
T (p) 

4 2 [(x-u) -6(x-u) + 3]}, 

with u = [}: { p . -p. ) a. J /-r ( p) . 
J J J 



PROOF. See Albers, Bickel and van Zwet (1974) . 

We shall now replace p by P = (P 1 , ... ,PN) in 

tions. Define the vector n = (n 1, ..• ,uN) by 

(3.2.13) TI. = EP., 
J J 

....,* "'J 

R (x,p,p) and take ex:pecta-

. N J = ,, ••• , . 

-It will play the role of p. Then the following theorem can be formulated. 

THEOREM 3.2.2. Let x1 , •.. ,~ be i.i.d. with common d.f. G and density g, 

and Zet T, P and u be defined by (3.2.2), (3.2.3) and (3.2.13). Suppose 

that positive era c, C, o, o' and€ exist with o' < min(o/2,c2c-1) 

and such -that 

(3.2.14) 
4 

~ cN , la . :S CN , 
J 

(3.2.15) y(,) = A{x I 3.lx-a.l < ~} ~ oN~ for some 
J J 

(3.2.16) 
g(x,) 

P{ e: :S --------,.-- ;?: 1-0' . 

Then there exists A> O depending on N, a and G only through c, C, o, o' 
and e: and such that 

(3.2.17) sup 
X 

_,* 
- ER (x,P,n) I :S 

J J J J 

PROOF. Here we only sketch the proof. For a complete proof see Albers, 

Bickel and van Zwet (1974). Using (3.2.16) one can show that for 

o'' E: ( o' ,min( o/2 ,c2c- l ) ) 

P(E) ~ -2N( o''-o' )2 
e , 

where E = {P I e s; P. :S 1-e: for less than ( 1-o'' )N indices j}. On Ee, 
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a. 2: cN implies both a.P.(1-P.) ~ c N and a.n.(1-~.) ~ c N, for some c* 
J J J J J J J * 

depending only on c, C, o'', o' and e: and satis:fying O < c < c . .AJ.so 

y(r;) 2: oNr; implies y(e,r;,P) 2: (o-2o'')Nr; on Ee, where o-2o'' is positive by 
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asstnption. Hence, under the conditions of this theorem, a, P and ,r satisfy 
,..., 

c · • d . l - 3 2 2 ·r C .r d on. E the conditions for a,, p an p in ecr11x1a. • • , 1 c, , u an e: are 

· t · b * C.. o-2cS '' and £ .. depend .;ng only on replaced there by posi ive n1lm era c , ,, ., .l. 

c, c, 0 , o' and E• In dealing with the set E it will suffice to note that 

it* (x,P ,-r) is bounded. Of course, R* ( x ,P ,n-), being a probability, is also 

bounded. 

E sup lR*(x,P,,r) 
X 

-· - R (x,P,v)I. 

Applying lemma 3.2.2 on Ee and using the boundedness of 

find that (3.2.18) 
• 
lS 

J J J 

where the order symbol is uniform. for fixed c, C, o, o' and e:. This expres

sioo. CM be shown to be of the order of the right side in ( 3. 2. 17) . 0 

. -·( . We note that the boundedness of R x,P,n) on E plays an important role in 

the above proof. Because t(P) may be arbitrarily small on E, this explains 

why we had to remove -r ( p) from the denominator of the expansion • in J emroa. 
. . . ~ . 2 2 ,..., 2 ,.., 

3.2.2 by expanding T(p)/t(p) in powers of [T (p)-T (p)]/T (p). 

Although theorem 3.2.2 is for111ally stated as a result for a fixed, but 

arbitrary value of N, it is of course meaningless for fixed N becau.se we do 

not investigate the vay in which A depends on c, C, o , o ' and e:. In fact 

the theorem is a purely asymptotic result. Let us for a moment indicate 

dependence o,n I by a superscript. Thus for N = 1 , 2 , ... , consider the dis

tribution of the statistic T(N) based on a. vector of scores 
(B) (B) {N) . . N . . . 

values of c, C, o, o' end e: with o' < min( o/2, c2c-1). The theorem asserts 

fixed c , C, o, o' and i::, then the error of the approximation 

~•(x,P(H) ,1r (!)) is 

. J J 

for these 
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as N ➔ 00 • Moreover, the order of the remainder is uniform for all such se

quences a ( N) , G ( N ) , N = 1 , 2 , • • • • 

Assumption ( 3. 2. 15) ma.y need some clarification. It is clear from the 

sketch of the proof of theorem 3.2.1 that the role ot' the y(E,C,P) and y(s) 

conditions in theorem 3. 2. 1 and theorem 3. 2. 2 respectively, is to ens11re 

that the a. do not cluster too much around too few points. Assumption 
J 

(3.2.15) is certainly satisfied if for some k;?:: oN/2, indices j
1
,j 2 , .•• ,jk 

· -3/2 exist such that a. -a. ~ 2N log N for i = 1 , .•. ,k. Under condition 
Ji+1 Ji 

(3.2.14) this will typically be the case. Consider for instance the impor-

tant case where aj = EJ(Uj :N), where u1 :N < u2 :N < ••• < UN:N are order 

statistics from the uniform distribution on (0,1) and J is a continuously 

differentiable, nonconstant function on (0,1) with J 4 
< 00 • Here both 

(3.2.14) and (3.2.15) are satisfied for all N with fixed c, C and c. The 

same is true if a.= J(j/(N+1)), provided that J is monotone near O and 1. 
J 

For a large class of underlying d.f.'s G, the right side of (3.2.17) is 
. - ( -1) un1fortt1l y a N • Still theorem 3. 2. 2 does not yet provide an explicit ex-

pansion to order N- 1 for the distribution of T since we are still left with 

the task of computing the expected value of R*(x,P,1T). This is of course a 

trivial matter under the hypothesis that g is syrrrrnetric about zero and, 

more generally, in the case where, for some n > 0, g(x)/g(-x) = n for all 
. ( )-1 x > o. In this case P. = n 1+n with probability 1 for all j and an ex-

J 
pansion for the distribution of Tis already contained in theorem 3.2.1. 

-* For fixed alternatives in general, however, the computation of ER (x,P,n) 

presents a fo11tiidable problem that we shall not attempt to solve here. It 

would seem that what is needed, is an expansion for the distribution of a 

linear combination of functions of order statistics. 

In the remaining part o:f this chapter we shall restrict attention to se

quences of alternatives that are contiguous to the hypothesis. Heuristically 

1 1 . -1 2 . - -1 . 
be 

J 1 /2 J J J 
of O(N- ) as before. In the first place this allows us to sj,mplify 

,..,* 
ER (x,P ,TT) considerably as a ntlDlber o:f te1ms may now be relegated to the 

J * -1 J 
more important, however, is the fact that U = 't' ( 1T) I ( P. -n . ) a. will now be 

1 /2 "'* J J J * O(N- ) and that we may therefore expand R (x,P,,r) in powers of U. This 

means that we shall be dealing with low moments of linear combinations of 
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f1.mctions of order statistics rather than with their distributions. We need 

hardly point out that a heuristic a.rgument like this can be entirely mis

leading and that the actual order of the remainder in our expansion will of 

co1.1.rse have to be investigated. 

Define 

(3.2.19) K(x) = t(x) + ~(x) 

Ia~(27r.-1) 
+ J J 

J 

2 (x -3x)}, 

2 where o (Z) denotes the variance of a r.v. z. Carrying out the type of com-

putation outlined above we arrive at the following simplified version of 

theorem 3.2.2. 

THEOREM 3.2.3 .. Theorern 3.2 .. 2 continues to hold if (3.2.17) is replaced by 

I a. < 21r. -1 ) . 
s x ) - K ( x - .], .) ) s; (3.2.20) sup 

X 
J 

J J J 

PROOF. See Albers, Bickel and van Zwet ( 1974). 

Theorem 3.2.3 provides the basic expansion for the distribution of T under 

contiguous alternatives. In section 3.3 we shall be concerned with a 

further sjmplification of this expansion and a precise evaluation of the 

order of the remainder terrtt. 

3.3. CONTIGUOUS ALTERNATIVES 

We first consider the case of contiguous location alternatives. Let F be a 

d.f. with a density f that is positive on R1., sytnmetric about zero and four 

times differentiable with derivatives f(i), i = 1, ••• ,4. Define functions 

(3.3.1) 
f(i) 

, i = 1, ••• ,4, $- = 
l. f 



and suppose that positive n12mbers e: and C exist such that for 

00 

sup { 
_oo 

Let x1 ,x2 , ••• ,~ be 

0 :s; 

m. 
I tµ. ( x+y) I 1 f ( x) dx : 

l. 
lyl ~ e:} :s; C, i = 1, ••• ,4. 

• • 
1..1 .d. with common d.f. G(x) = F( x-e) where 

-1/2 
CN 

for some positive C. Note that (3.3.2) and (3.3.3) together imply conti-

gu.ity. Let O < z1 < ••• < ZN again denote the order statistics of 

JX11, ... ,l~I, and let T be defined by (3.2.2). Probabilities, expected 
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values and variances under G will be denoted by 2 
P

6
, E

8 
and 0 8 ; under F they 

will be indicated as P
O

, 

4 }:a. 3 
K

9 
( X) = ~ ( X ) + cp ( X) { J ( X -3x ) 

12(}:a~) 2 
J 

(3.3.4) 2 (x -1) + 

+ 

Tl = • 

J 

) -1 We shall show that K8 (x-n is an expansion to order N for the d.f. of 

J J 
theorem 3. 3. 1 and 

an evaluation of the order of the remainder will be given in theorem 3 .3 .2. 

Let n(8) denote the power of the one-sided level a test based on T for the 

thesis of s:yrx,rnP.try against the alternative G(x) = F(x-8). Suppose that 

for same e: > 0 

(3.3.6) e: s a s 1-e:. 

We prove that an expansion for n(e) is given by 
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where u = 
0. 

tribution • 

• 

4 
,.._, 

~(e) = 1 - K (u -n) + ~(u -n) ----
e a a. 12 (}:a~)2 ex a 

J 
-1 

~ (1-a) denotes the upper a-point of the standard normal dis-

THEOREM 3.3.1. Suppose that positive numbers c, c, c and E exist such that 

(3.2.14), (3.2.15), (3.3.2) and (3.3.3) are satisfied. Then there exists 

A> O depending on N, a, F a:nd e onZy through c, c, o and£ and such that 

(3.3.10) 

sup 
X 

2T-La. 
IP ( J 

e 2 1/2 
(Ia.) 

J 
• 

In! ~ A, 

2 2 

(La~) 3 2 La~ 
J J 

-1 
:s; AN • 

If, in addition, (3.3.6) is satisfied there exists A' > 0 depending on N, 

a, .F, e and a only through c, C, o and e and such that 

PROOF. The first step is to show that the conditions of the present theorem 

imply the conditions of theorem 3.2.3. This comes down to the verification 

of (3.2.16), which is easily done by applying (3.3.2) and (3.3.3). Hence 

theorem 3.2.3 holds and we must show that (3.3.8) is implied by (3.2.20). 

This is achieved by Taylor expansion with respect toe, which is a highly 

technical and laborious procedure; the interested reader is referred to 

appendix 1 of Albers, Bickel and van Zwet (1974). The main problem is that 

not only P. = f(Z.-0)/[f(Z.-0)+f(Z.+6)], but also its distribution depends 
J J J J 

one because z. is the j-th absolute order statistic of a sample from 
J 

F(x-8). 

~ 

Once the expansion for K(x established, 
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it remains 
~ 2 1 2 

J J J 
remainder in (3.2.20) are of the order of the remainder in (3.3.8). 

and the 

Then 

(3.3.8) is proved. 

As concerns (3.3.9) and (3.3.10) we note that both are immediate conse

quences of the results of appendix 1 in Albers, Bickel and van Zwet 

(1974). The one-sided level a test based on T rejects the hypothesis if 

(2T-Ia.)/(La~) 112 ~ ~ , with possible randomization if equality occurs. 
J J Ct 

Taking e = 0 in (3.3.8) we find that 

and hence because of 

(3.3.12) ~ = u -o. a 

4 
Ia. 

,] 

(3.2.14) and (3.3.6) 

J 

The power of this test against the alternative F(x-6) is 

7f ( a ) = 1 - K ( t; -n) + e a. 
(3.3.13) 

In (3.3.13) we expand K6(~a.-n) 

using (3.2.14) and (3.3.10) we 

REMARK. As we shall see 

around u -n. Noting that 
0. 

find (3.3.11,). D 

-1 I~ -u I = O(N ) 
Ci Ci 

• therefore our expansion 
J J -1 -1 

is of the form K8 (x) = ~(x) + N A(x) + o(N ), 

a certain bounded A(x). -1/2 There is no term of the order N because of a 

certain syrottLetry in the situation. 
' 

For i = 1,2,3, define functions,. 
l. 

on (0,1) by 

f ( i) ( F-1 ( 1 +t) ) 
2 

f ( F-1 ( 1 +t ) ) 
2 

• 

and 

and 

f'or 

THEOREM 3.3.2. Suppose that positive numbers Cando exist such that (3.3.3) 

1. Then 

there exists A'' > O ·depend.ing on N, F and e only thY}ough C and cS and such 

that 
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For the highly technical proof of this result the reader is referred to 

appendix 2 of' Albers, Bickel and van Zwet (1974). 

The more general case where x1 ,x
2

, ••• ,~ are i.i.d. r.v.'s with common d.f. 

G(x) = F(x,0) can be dealt with analogously; the computations become even 

more laborious but no new techniques are needed. For this reason we only 

give the results and omit the proofs. 

Suppose that (3.3.3) holds and that 

f .. (x,e) = 
1J 

0i+j+1 

axi+, a ej 
F(x,6) 

exists for i+j :s; 4, i ~ -1, j ~ O. We shall simply write f(x,6) for the 

density :r00(x,e) and ass11rne that f(x,O) = f(-x,O) for all x. Next we define 

,..,, 

"' .. J.J 

f .. 
- - 1J -

f 
, 

(3.3.15) for i+j :s; 4, i ~ -1, j ~ O. 

~ tJJ .• (x) = VJ •• (x,O), 
1J l.J 

Assume that positive n1.1ml)ers ~ and C exist such that for 

0, 1 

(3.3.16) sup { 
0) m. . 6 ~ 1+J -I VJ •• ( x, y) I [ 1 +lJ) 11 ( x, y) ] f' ( x, 0 ) dx : 

l.J -_<XI 

I y I 

Under the additional assumption 

_00 

r0i(x,e)a.x = o, i = 1,2, o s e 

:s; i+j :s; 4, 

s e:} s c. 

it may be shown that (3.3.3) and (3.3.16) together imply contiguity. 



Define 

(3.3.17) 

where 

(3.3.19) 

• 

Here f; 01 (x) 

(3.3.20) 

12(la~)2 6(Ia~) 312 
J J 

2 2 2 

.__J.__.;-~--~--U-.-~~~----=~~-~-~-x+ 
B1a~ 

J 

e4 - 2 e2 ~ 
- 2<Ia.E0Po2(Z.)) x- 2 1/2 Ia.E0Po2(Z.) + 

2Ia. J J (Ia. ) J J 
J J 

e3 ,..., 
3<Ia.) J J 

J 
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i(e) = 1 - R (u -n) + ~(u -n) a a a 

Now we have in analogy to theorem 3.3.1 

4 Ia. 
,1 3 (u -3U ). a a 

THEOREM 3.3.3. Suppose that positive numbe~s c, C, o and£ exist such that 

(3.2.14), (3.2.15), (3.3.3) and (3.3.16) are satisfied. Then there exists 

A> o depending on N, a, F and e only through c, c, o and£ and suah that 

I 

2T-}:a. 

x (Ia•) 
J 

s x) - K (x-n)I ~ e 

- 0 01 J O 01 J 

+ 

If, in addition, (3.3.6) is satisfied, there exists A' > 0 depending on N., 

a, F, e and a on'ly through c., C, o and E and. such that 
' 

-1 /4 3 

We conclude this section with some remarks on the relation between the 

general and the location case. In the first place, condition ( 3- 3- 16) is a 

explains why it does not occur in (3.3.2). 

In the location case f(x,e) is not only sy1ort1etric in x about x = 0, but 
,..,, 

also in e about e = x. Then ~01 (x) = - ¢ 1(-x) = w (x), p 2 (x) = O, 
_ ~ 1 3 o 1 o_ 

~01 (x) = 0 and p03(x) = ~3~ 1(x)-6~ 1(x)¢2(x)+~3(x)J. ~nserting these results 

in (3.3.17) and (3.3.20) we again obtain (3.3.4) and (3.3.5). In view of 

these f'acts, the main difference between K0 (x) and ic9 (x) is the presence of 

the terms 



in ( 3. 3 .. 17) . 

0 ( N-1 /2). 

-
8 2 ,..., 

2 1/2 Ia.E0Pa2(z.) -
(Ia.) J J 

J 

The first of these terms 

0 4 ~ 2 

2Ia~ 
J 

is in general not O(N- 1 ) 
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but only 

The first three terms on the right side of (3.3.22) and (3.3.23) are again 

generalizations of the remainder in ( 3. 3. 8) and ( 3. 3. 11). The last terrn in 

(3.3.22) and (3.3.23), however, is new. It is due to the fact that 
• 

( -7 /6) more precise: with the aid of theorem 3.3.2 it can be shown to be ON • 

If in this theorem 

we get O(N-514 ). 

This concludes our treatment of the general case; in the next section we 

again restrict attention to contiguous location alternatives. 

3.4. EXACT AND APPROXIMATE SCORES AND CONTIGUOUS LOCATION ALTERNATIVES 

The expansions given in section 3.3 for contiguous location alternatives 

can be simplified further if we make certain assumptions about the scores 

a .. Consider a continuous function Jon (0,1) and let 
J 

u,:N < u2 :N < ••• < UN:N denote order statistics of a sample of size N from 

the unifoi·m distribution on ( 0, 1). For N = 1 ,2, .•. we define the exact 

scores generated by J by 

(3.4.1) a.= a.N = EJ(U. N), J
0 = 1,2, ... ,N, 

J J J: 

and the approximate scores generated by J by· 

• 

(3.4.2) a. 
J 

. 1 N J = , .•. , . 

For almost all well known linear rank tests the scores are of one of' these 

two types. The locally most powerful rank test against location alternatives 

of' type Fis based on exact scores generated by the function -,
1

, where 

~, is defined in (3.3.14). 

So far, we have systematically kept the order of the remainder in our ex-
. d 0( -S/4 ) F · · pansions own to N . rom this point on,however, we shall be content 

with a remainder that is o(N-1), because otherwise we would have to impose 
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rather restrictive conditions. In the previous sections, we have also con

sistently stressed the fact that the remainder depends on a and F only 

through certain constants occuxring in our conditions, thus in effect in

dicating classes of scores and distributions for which the expansion holds 

uniformly. As the n11mber of these constants is becoming rather large, we 

prefer to formulate our results from here on for a fixed score function J 

and a fixed d.f. F. The reader can easily construct uniformity classes for 

himself by using the results of section 3.3 and tracing the development of 

appendix 2 of Albers, Bickel and van Zwet (1974). 

DEFINITION 3.4.1. J is the class of functions Jon (0,1) that are twice 

continuously differentiable and nonconstant on (0,1) and satisfy 

(3.4.3) 

(3.4.4) 

0 

lim sup t( 1-t) 
t➔O, 1 

F is the class of d.f'. 's Fon 

metric about zero, fo1J.r times 
-1 1+t 

'¥ i ( t ) = $ i ( F ( 2 ) ) , m1 = 6, 

CX) 

R1 with positive densities f that are 

differentiable and such that for lp. = 
4 1 

m
2 

= 3, m3 = 3 , m4 = 1, 

m. 
(3.4.5) lim sup I lJJ. ( x+y) l 1 f(x)dx • 1, ... ,4, < oo, l. --

1 
y-+O -00 

(3.4.6) lim sup t ( 1-t) 
t➔O, 1 

For J e J and FE F, let 

. [ 

' 

1 

0 

'l'''(t) 
3 1 

< 
'¥1(t) 2· 

1 1 

0 0 



(3.4.8) 

(3.4.9) 

(3.4.10) 

(3.4.11) 

1 
_ N-1/20 J 0J(t)'¥ 1(t)dt 
K

8
(x)+cp(x) ------{ 

N 
- 2 \" c ov ( J ( U . N ) , '¥ 1 ( U . N ) ) } , 

j~1 J: J: 

1 
~ N-1/20 J0J(t)'¥ 1(t)dt 

- 2 

-n = 

,r.(e) 
l. 

1-1/N O O 

1 /N 
J'(t)~;(t)t(1-t)dt}, 

( -.,) ( "') -1 = 1 - K . u -n + <I> u -n N e,i a a 

N 

I 
j=1 

1-1/N 
(J'(t))2t(1-t)dt + 

1 /N 

for i = 1,2. Then, in the notation of section 3.3, we have for contiguous 

location alternatives and exact scores 

THEOREM 3.4.1. Let F € F, J € J, a.= EJ(U. N) for j = 1, .•. ,N, and let 
-1/2 J J: 

O ~a~ CN , €~a ~ 1-e for positive C and e. Then, for every fixed 

J, F, C and E, there exist positive nwnbers A,o 1,o 2, ••• suah that 

lj_m oN = 0 and for every N 
N 

(3.4.12) 

(3.4.13) 

(3.4.14) 

sup 
X 

sup 
X 

2T-Ia. 
p ( J 

J 

2T-Ia. 
p (· ,1 

J 

1-1/N 

1 /N 

I 1r ( e ) -1r 1 ( e ) I s 

IJ'(t)l(IJ'(t)I + 

-1 
oN N , 



50 

(3.4.15) ln(e)-ir
2
(e)I :s: 

- -3/2 + .AN 

-1 
oN N + 

1-1/N 
I J' ( t ) I ( I J' ( t ) I+ I '¥ • ( t ) I ) ( t ( 1-t ) ) 1 / 2 d t • 

1/N 1 

PROOF. For fixed J E J, positive constants c, C, and o exist for which 

(3.2.14) and (3.2.15) hold for all N (cf. one of the remarks following the 

proof of theorem 3.2.2). Similarly, for fixed FE F, (3.3.2) is satisfied 

and it follows that the conclusions of' theorem 3. 3. 1 hold with A and A' 

depending only on F, J, C and~. From appendix 2 of Albers, Bickel and 

van Zwet (1974) it is clear that (3.4.5) and (3.4.6) imply that the con

clusion of theorem 3. 3. 2 holds with A'' depending only on F and C. In this 

appendix it is also shown that 

(3.4.16) 

(3.4.17) 

(3.4.18) 

(3.4.19) 

(3.4.20) 

1 N 

N l 
j=1 

1 N 

j=1 

k 4-k 
a. E'¥ 1 (U. N) = 

J J: 0 

1 

+ o(1), k = 1, •.• ,4, 

1 
J(t)'i'

1
(t)'l'

2
(t)dt + o(1), 

0 

N • 1 aJ. 
J= . 

E'¥3(uj:N) = J(t)'¥3 (t)dt + 0(1), 
0 

a.'¥ 1(u. N)) = 
J J: 

1 1 
J(s)J(t)'¥~(s)'l'i(t)[sAt-st]dsdt+o(1), 

0 0 

and furthermore N 

a. E'¥1 (U. N) 
J J : 

___ j~1 ___ , __ ··--- -
N -

< I a~)112 
j=1 J 

(3.4.21) 

N 

I c ovar ( J ( U .• N) , '¥ 
1 

( U .. N) ) 
_ 1 .j= 1 J • J • 

+ 
0 0 

N 2 
I (J (J(U .. N)) + 

j=1 J. 



-1 
+ o(N ) 

1-1/N 
( J' ( t)) 2t ( 1-t) dt + 

1/N 

1-1/N 
IJ' (t) I ( IJ' (t) I 

1/N 

+ 

From (3.4.16) to (3.4.20) it is clear that K (x) in (3.3.4) satisfies 
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_, -1 
K6(x) = K0(x) + o(N ). Applying this 

e _, 
to the expansions K8 (x-n) and TI(6) in 

~ 
theorem 3.3.1 and expanding these functions of n around the point n = n, we 

get the desired results in view of (3.4.21). D 

In general the expansions given in theorem 3.4.1 will not hold if the exact 
• 

scores are replaced by approximate scores a.= J(NJ 1 ), because n - n will 
J -1 + . 

then give rise to a different term of order N . If J = - o/ 1 , however, it is 

clear from appendix 2 of Albers, Bickel and van Zwet (1974), that expansions 

(3.4.13) and (3.4.15) are valid for approximate as well as exact scores. 

Also for J = - f 1 , these expansions may be simplified because F € F implies 

that by partial integration (cf. lemma 4.2.1) 

(3.4.22) 

(3.4.23) 

1 1 
f 1(s)o/1(s)~ 1(t)o/~(t)(sAt-st)dsdt 

0 0 

1 

r... r-,; 

1 

0 

It follows that in this case n, K9 , 2 (x-n) and TI2 (e) reduce to 

(3.4.24) 

(3.4.25) 

where 

(3.4.26) 

2 
- 3n X 

1 
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and 

* '7T (e) 

Finally we note that for FE F, - '11 1 cannot be constant on (0,1) because the 

distribution is not 

differentiable at zero. It follows that - ~
1 

€ J for every FE F. We have 

shown 

THEOREM 3.4.2. Let FE F and Zet either a.= -E~ 1(u .. N) for j = 1, ... ,N or 
. J J • 

e ~a~ 1-e for positive C and e. Then, for every fixed F, C and e, there 

exist positive numbers A, o1, o2, ••. such that lim oN = O and for every N 
N >oo 

(3.4.28) 

(3.4.29) 

sup 
X 

2T-1a. 
P ( · J S X ) - Le ( X ) S 
s <Ia~) 112 

J 

+ AN-3/2 

* ln(e) - n (8)1 

1-1/N 

1/N 
( '11' ( t) ) 2 ( t ( 1-t) ) 1 / 2 dt, 

1 

1-1/N 

1/N 

At this point it may be useful to make some remarks concerning the ass1Jmp

tions in theorems 3.4.1 and 3.4.2. Conditions (3.4.4) and (3.4.6) ensure 

that J' and o/ 1 do not oscillate to wildly near O and 1. They also limit the 

growth of these functions near O and 1, but in this respect conditions 

(3.4.3) and (3.4.5) for i = 1 are typically much stronger. Together with 

(3.4.4) and (3.4.6) they imply that J'(t) = o((t(1-t))-5/ 4) and 

1 • 

For expansions (3.4.13), (3.4.15), (3.4.28) and (3.4.29) to be meaningful 

rather than just formally correct, even stronger growth conditions have to 

be imposed. Consider, for example, expansion (3.4.29) and suppose, as is 

near 1, then the right side in (3.4.29) is O(N-1 ) and the expansion makes 
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/l-i/N(W'(t)) 2t(1-t)dt 
1r(e) = 0 1 2N ____ 1 _2 ______ + 0 N ) , 

f 
0

'¥
1
(t)dt 

. ( ) ( )-1-0 and if 'it ~ 1-t near 

(3.4.29) is 1r(6) = 1-~(u -n ) 
et 1 

1 for some O < o < 

+ O(N-1+2o). 

1 
6 , all we • have left in 

We conclude this section with a few applications of theorems 3.4.1 and 

3.4.2. The tedious computations will be omitted almost completely. First we 

consider Wilcoxon's signed rank test (W), which is based on the scores 
• 

a.= 

location alternatives G(x) = F(x-0), with F(x) = 1/(1+e-x) and e = O(N-1/ 2 ). 

As in this case - w1(t) = t the conditions of theorem 3.4.2 are easily 

verified and we get 

(3.4.30) = 1-t(u -n) 
a 1 

-1 
+ o(N ), 

N 1/2 . where n1 = ( 3 ) e. The power of W against norxna,l (N) alternatives 

G(x) = t(x-8), e = O(N-112 ) may be found from theorem 3.4.1. We now have 
-1 1+t 

, 1(t) = - ~ ( 
2 

) and therefore 

lim ( 1-t) 
t➔ 1 

as for positive x 

'¥ '' ( t) 
1 = lim ( 1-t) 

t-+1 
------= 
2¢ ( ~ -1 ( 1 +t ) ) 

2 

_ 1 . x(1-~(x)) _ 1 < 3 
- im ( x) - 2, 

X-+-<x> q> 

cp(x)(1 _ 1 ) 
X 3 

< 1 - t(x) < <1>(x) • 
X 

X 

The remaining conditions of' theorem 3. 4. 1 a.re verified easily and we may 

apply (3.4.15). The expression thus obtained can be simplified further by 

eval11ating for k = O, 1 ,2, 3 ,4 

1 

0 

This can be done by partial 

occur that are not entirely 

For the first one we note 

integration. In doing so, only two integrals 
. ~ 2 00 2 2 

trivial: r
0 

~ (x)~(x)d.x and r
0 

~ (x)~ (x)d.x. 
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00 

¢2 (x)~(x)dx = (21T)-3/ 2 

0 

2 1 2 
oo X -x - 2 y 

e dydx = 
Q -CO 

1 2 2 . 2 71'/4 00 - 2 r (2cos<P+sinq,) 
e rd.rd¢ = 

-1T/2 0 

-rr/4 

-rr/2 

def, _ = ( 2,r ) - 3 / 2 
2 1+cos ¢ 

1 
dt 

2+t2 
--

Ftlrthermore, :for x > 0, we have 
2 

X 

Hence, 

1 2 2 
X X - 2 (y +z ) 1 

e dydz = 2 rr 
_oo 

2 
X -1T . 2 

1 1 2sin qi )def> ( 1-e + + 
21T 21T 

1T /4 1T 

00 

----1T /4 
( 1-e 

-1T/2 

2 
2cos ¢)dcp + 

1 - 1 
1T 

2 

2 
X ----

1T 

e 
,r/4 

. 2 2sin cp 

1 ) 

d¢. 

- X (2 + 
(x, 2 

e 
. 2 

sin ct> dxd4> = <t>
2 (x)<t>2 (x)dx = 

0 TI/4 0 

1 1 
= 4✓1r - 2~ ✓1T 

7f 
(2 + _ _;,,..__ 

1T/4 s1.n ¢ 

Application of these results leads to 

(3.4.31) 
arctan 

a .. {u (----- - L) + 
N a 20 

1 1 

+ u n ( - 713 - ------) 
et 20 3 

+ (44 _ 
20 

6 a.rctan t/2 
✓2 - -----) + 

TT 

6 
.-.,;2 ( + n 

1 
arctan t-12 

1T 

The second test we consider 

is based on the scores a.= 
J 

1T 

43 TT) 
- 20 + 9} 

-1) + o(N , 

is the one sample normal scores test (NS) which 
-1 1 +U1 ·N 

E~ ( 2· ). Its power against the normal and 

logistic alternatives described above satis:fies 



(3.4.32) 

where n 1 = N112e and 

(3.4.33) 

~ n (arctan 

+ 2 
0 

23 ✓2 + 1 _ '1T) _ 1 
20 12 3 2 

0 

2 
{u -1 + 

Ct 

where now n = (N) 112e. We note that theorem 3.4.2 ensures that (3.4.32) 
'1T 
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will also hold for van der Waerden's one sample test which is based on the 

approximate scores a.= ~-1[(N+1+j)/(2(N+1))]. To evaluate the integral in 
J 

(3.4.32) and (3.4.33) we write 

-1 1 

(3.4.34) 
0 

....._ _____ ~~---- dx = 
cp(x) 

1 1 
= 2 log log N + 2 log 2 - 2 

00 

log x cp(x)dx + 
0 

+ (2~(x)-1){(1-~(x))x-~(x)} ( 1 1 
4>(x) dx + o 1) = 2 log log N + 2 log 2 + 

0 

+ 0.05832 ••... + 0(1), 

where the final result is obtained by n1.1merical integration. 

3.5. THE SIGN TEST 

The method developped in this chapter cannot be used for the sign test, as 

was pointed out in section 3. 2. The lattice cha.racter of the sign test is 

too pronounced, which is caused by the fact that all scores are equal for 

this test. However, it is exactly this equality of scores that yields 

another, very simple method of finding and justifying a powerexpansion for 

the sign test: it makes it possible to -write T as 

• 
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T = l 1, 
X.>O 

J 

the number of positive elements in the sample. This has a binomial distri-

bution, both under the hypothesis and under alternatives. With the aid of 

a well-known expansion for the binomial distribution function, this leads 

to the desired expansion for the power of the sign test. 

Let x1,x2 , .•• ,~ be i.i.d. r.v.'s with continuous d.f. F(x-6), where 

F(-x) = 1 - F(x) for all x. Define 

Let O <a< 1 and let n(e) be the power of the sign test with size a for 

H : 6 = 
0 

Here 

0 against H1 

~ 1r(e) = 1 

y = 
a 

: e > O. Define 

where [y] is the integer part of y. 

LEMMA 3. 5. 1. Suppose that IT I s; C fo-:e some constant C > O. Then there 
• 

e:r:is ts A > O depending on N, e and F only through C such that 

PROOF .. Let Y have a binomial distribution with parameters N and p, where 
0 < p < 1. 

Uk = 0 ( 1), 

Define q = 1-p, a2 = Npq, u = 
k 

the following expansion holds 

P(Y s k) = 

(k-Np)/cr fork= 0,1, .•• ,N. If 

3 . 
-- Uk+ 1 / 2 + 6a Uk+ 1 / 2-1 + , 2 ., } + 

72a 
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Expansions of this type a.re given by Molenaar ( 1970). 

Clearly T = lx•>01 has a binomial distribution with para.meters N and p, 

= P
0
(x

1 
> -e) = 1 - F(-e) = F(e) = For this 

choice of p, 

P-,g -r ( -2) 
6a = 3N +ON ' 

and hence (3.5.4) sjmpliries to 

For power computations, we need an expansion for P
6

(T < k) + yP
8

(T = k), 

for O < y 5 1. Note that 

and 

with 

Hence 

- (. ) + y ( 1 -y __ ) 
- ~ Uk+ -1/2 2 

Y 2a 
cf>'(u ) + O(N-312 ) = 

k+y-1 /2 

k+y 
1 

- Np-2 

a (1 - y( 1-y)) 
2 • 

2cr 

- T ( 2 ) = ~ {U ( ) + ---- u· ( )-1 + k y 3N k y 

Under Ho L = o. Let ka and ya be such that Po(T < ka) + yaPO(T = ka) = 

= 1-a = t(u ), with k an integer and O < y ~ 1. As O <a< 1, a constant, a a a 
we have u = 0( 1) and we may use (3. 5. 7). This leads to 

a 
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k +y -1/2N-1/2 
a. a ( 1 

1/2N112 

2-y ( 1-y ) a a · - ~-----) 
N 

= u -
a 

which shows that ya satisfies (3.5.3). Under H
1 

we have T > 0 and 

1 - 1r(e) = P9(T < k) + y P8(T = k ). Before applying (3.5.7) again we note 
0. 0. Cl 

that 

( -1/2) k +y -1/2N 1+TN -1/2 
a. a 

( 1 -
2y ( 1-y ) 

a a )( 1 _ 
N 

2 -1/2 
T ) 
N 

--

k +y -1/2N-1/2 
_ ( a a )( 
- / - T 1 -

1 /2N 
1 2 

2y (1-y) 2 
a a )(l + T + O(N-2)) = 

N 2N 

= ( U -T) ( 1 
a 

2 2Ty ( 1-y ) 
+ ~) + __ a=--N_..;::;;a.._ _ 

3 (u -u) 
Ct Ct 

12N 

Inserting this result in (3.5.7), we get 1r(e) = ;(e) + O(N-312 ). The uni

forrai ty of the 0-symbol is evident from the proof. D 

COROLLARY 3.5.1. If 1-rl ~ C and F ha,s a density f that is three times dif

ferentiah'le with sup lf(3 )(x) I ~ c, for some constants e:, C and c > O, we 
~ lx I ~e: 

may replaae 1r(e) ~n lerrma 3.5.1 by 

The constant A deperuie on N., e and F only th.rough e:, C and c for this 
-choiae of ir( e). 

PROOF. Immediate. 0 

The conditions of the lexame. and its carol] a.ry are satisfied for e.g. the 

normal or the logistic d.f.; the double-exponential d. f. satisfies the con

ditions of the lem:ro~, but not of its corollary. 



CHAPTER 4 

DEFICIENCIES BETWEEN VARIOUS TESTS FOR THE ONE SAMPLE PROBLEM 

4.1. INTRODUCTION 

-1) One of the results of the previous chapter is an expansion to a(N for 

the power of the locally most powerf'lll ( 1·,MP) rank test for the one sample 

problem. In this chapter we obtain similar expansions for various other 

types of test that are in some sense optjmal for this one sample problem. 

Using the expansions thus obtained, we can evaluate deficiencies between 

any pair of the tests involved. Such evaluations make sense since the IMP 

rank test has asymptotic relative efficiency 1 with respect to all tests 

considered in this chapter. 
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In section 4.2 we investigate two parametric tests; in section 4.3 permu

tation tests are dealt with. Scale invariant tests are considered in 

section 4.4, the randomized rank score tests due to Bell and Doksum (1965) 
in section 4.5. Finally, the deficiency evaluations mentioned above 5 take 

place in section 4.6. 

4.2. RIC TESTS 

Let x1 ,x2 , ••• ,~ be i.i.d. r.v.'s with d.f. F(x-e), where Fis known and 

has a density f that is positive on R1 and symmetric about zero. For the 

testing problem H0 : e = O against H1 : e > 0 the Neyman-Pearson lemma 

asserts that the test that rejects H
0 

for J a.rge values of 

against the alternative e = e
1

• It 

follows that for every e > o, the envelope power at a equals the power at 

S., where 
J 

J J J 

In general, a uni:fo1·1nly most powerful (UMP) test against H
1 

does not exist 

and no single test attains the envelope power for all e > O. If this is the 

case, one may consider the use of the I,MP test in the sense of Lehmann 

(1959), p. 342. A test 4> 0 is I.MP if, given any other test <t> with these.me 

level, there exists~> Osuch that the powers satisfy~$ (e) ~ ~<t>(e) for 

all O < e <~-A IMP test of e = O against e > O exists aRd is defined by 

the fact that it maximizes ~•(o) among all tests with the same level. It 



60 

follows that in the present case the I,MP test is based on the teststatistic 
s* 

J= J J J J 

In the sequel we shall derive power expansions to o(N-1) for the envelope 

* power and for the test based on S. First we shall deal with the envelope 

power; the * . result for S is proved in a similar fashion. 

Since Sis a sum of i.i.d. r.v.'s, the obvious thing to do is to establish 

S, both under F(x) and . ( -1 ) Edgeworth expansions too N for the, d.f. of 

F(x-e). Before we ca.n evaluate the standardized c11mulants required for 

such expansions, the following preliminaries a.re needed. Ass11me that f is 

five times continuously differentiable and define 

(4.2.1) 

where r;
0 

(4.2.2) 

• 

llJ.(x) d 1 f {x) 
I f(x), • - l. -- -• 

l. dxl. 
• 

d l. 
l;.(x)= (log f(x)), • 

l. -• -]. dxl. 

= log f. The connection between the~- and 
J. 

1,2, ... ,5, 

0,1, .•• ,5, 

z;;. is as follows 
l. 

Next we give two J enicoas. For lemma 4. 2. 1 , compare lemm,:i. a of Hajek and 

Sida.k ( 1967), p. 19; the second lerr,111a is proved in Albers, Bickel and 

van Zwet ( 1974) and is an application of Taylor's formllla with Cauchy's 

form of the remainder. 

LEMMA 4.2.1. Leth be a reaZ differentiable function with derivative h'. 

If lh] and )h 'I are both swronable, we have lim h(x) = o. 
X > I oo 

00 

PROOF. f_00 lh'(x)ld.x < 00 and hence by the dominated convergence theorem 
C 

Jim J Y h'(x)dx = 0 for any pair of sequences {c} and {c'} with c ➔ co, 
'J"i;, ::x, C \) V V V 

c' ➔ 00 for v ➔ 00 and c' s c for all v. This implies that h( c )-h(c') + O 
V V V V V 

for v ➔ 00
, i.e. lim h(x) exists. Since h itself is also s11mm,:i.ble it follows 

x· ➔ co 

that lim h(x) = O. In the $8me way of course lim h(x) = o. O 
X >oo X > oo 



LEMMA 4.2.2. Let q(x,t) be a funation of -two variables possessing 

derivatives of order s; k+1 in t in a neighbourhood of O. Then if S 

r.v. and m ~ 1 

(4.2 .. 3) Elq(S,t) -
k 

I 
j=O 

• 

tJ m 
q

0 
.(s,o) ., I s 

,J J. 

m 
sup {EI 40 ,k+ 1 ( S, vt) I : O s; \J ~ 1 } • 

• i.s any 

Suppose moreover that for j = 

Then 
0,1 , ..• ,k, Eq0 .(S,O) exists and is finite. 

,J 

(4.2.4) 

m It I k+l m 
~ 2 ( ( k+ 1) ! ) 
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PROOF. We have (c.f. J. Dieudonne (1960), p.186, Titchrnarsh (1939), p.368) 
• 

k 1 
q(S,t) = I 

j=O 

provided that the integral converges. Hence the left side of (4.2.3) is 

bounded by 

This obviously remains true even if the integral diverges for some values 

of S. An application of Lyapunov's inequality and Fubini's theorem 

completes the proof of' (4.2.3) and a similar argument disposes of (4.2.4). D 

2 We denote expectation and variance under F(x-e) by E8 and 0 8 a~d under F(x) 

0 are denoted by K
3 

and 
8 0 0 

K 4 or by K3 and K 4. 

Now we can evaluate the necessary moments and c1.1mulants. 
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LEMMA 4.2.3. 

lim oN = 0. 
N-+oo 

(4.2 .. 5) 

Let {o} be a sequenae of positive 
N 

Let for some N 

real numbers with 

Suppose that positive constants e a:nd C exist such that 

(4 .. 2.6) 
1 -co 

Then there exists A> o depending on N, 8 and F only through {oN}, e: a:nd C 

and such that 

0 I K -
3 

4 
~ ANe , 

2 
~ A0 , 

PROOF. As E0S = NE0s1 we have to find E0s1• Expansion around a= O shows 
that 

(4 .. 2.8) 

Application of lero111F\. 4.2.2 with g_(x,t) = r;
0
(x-t) 

4 -

j=O J 

Conditions (4.2.5) and (4.2.6) ensure that 

• 

4 
L 

j=O 

gives 

J • 

is bounded for 

ANS 3, 
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i = 1, ... ,5 and for N sufficiently large. Hence by Holder's inequality and 

0 1 
also 

bounded. This shows that the expectation of the last term in (4.2.8) is 

O( e 4 ). 

The remaining te:t1D.s in ( 4. 2. 8) a.re dealt with in the following-way. First 

we note that E0 z; ( 2 i_ 1 ) ( x1 ) =. O, i = 1 ,2 ,3, by virtue of the sy1runetry of f. 

From (4.2.6) we have /co lf(i)(x)ldx < ~, i = 0,1, .•. ,5. Hence by lemma 

4.2.1, lim f (x = O, 1 = 1, ••• ,5, where f = f, and thus 
x..++co 

•• 

•• 
O, i = 1, ... ,5. These two steps show that 

-- -

• 

With this the statement for E
0

S -is proved. 

The fo1"1t1ula analogously; the only point that needs some 

explanation is the expansion of 2 
s 1. 

• 

3 

1 3 
+ ~r;o<x1-e>-_I r;.(x,) 

J=O J 

2 

82 
+ 3 

1 2 e j 

j=O J J. 

• 

1 1 (-e)j e2 
- ~ r;o ( x1 -a)-. I r;J. ( x, ) . , J 6 

J=O J. 

without using more than (4.2.6) . 

--
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As concerns 
• • • we have by definition 

Let R0 and p0 be the d.f. and c.f., respectively, 

) 
....,, . -1 

F(x ·• Let R0 be the Edgeworth expansion to a (N ) 
~ - ,...,, 

let p 
O 

be the Fo1.1rier tra.nsforcn of' R0 . Define 

of (s-E0S)/o0(s) under 

for R0 (cf. (3.1.1)) and 

3 - ____.;;. ___ - 3)(x -3x) . 

0 1 1 

The following lemma gives an upper bound for I R0-R; I. 

LEMM.A 4.2.4. Let {oN} be a sequence of positive real. nu.TlU)ers with 

N-1➔! oN = 0 and suppose that ( 4. 2 • 5 ) and ( 4. 2 • 6 ) hold. Suppose in addition 

that there exist positive constants c and n such that 

(4.2.10) y €TC (0,1), 

where the interval t has length at least n. Then there exists A > o depend

ing on N, e and F only through {oN}., e:, c., c and n and such -that 
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(4.2.11) 
X 

PROOF. Upon inserting the expressions for 
t"V 

0 0 
K3 and K4 from (4.2.7) in the 

Edgeworth expansion R
0

, we obtain in view of' (4.2.9) that 

X 

· . · ,.., - 2 -1 2 2 Hence it remains to show that 

proof of this result is almost standard (cf. Feller (1966)), we do not give 

many details here. The emphasis will be on showing that, under condition 

(4.2.10), the distribution of s1 satisfies a strong non-lattice condition, 

i.e. that the modulus of its c.f. remains bounded away from 1 outside a 

neighbourhood of O. 

From lerortt~ 3. 2. 1 it is clear that it is sufficient to prove that 

where T = 

T 

-T 

bN1/2 min(N,e-2 ), for some b > 0. In analogy to the rank test 

case we bound the integral by 

(4.2.12) 

+ 

and show that these three integrals a.re sufficiently smal • 

follows that E01J.,f(x1 ) ~ c, :for some c > o, depending on c and n. According 
2 2 2 2 - . to (4.2.7), a0(s1) = E0w1 (x1 ) + O(e ) and hence a 0 (s 1 ) ~ c/2 for N suffi-

can 

be expanded a.round t = O, 

where 
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{oN}, E, C, c and n. From this it is clear that the first integral in 

(4.2.12) is O(N-312 ). 

Just as in the sketch of the proof of theorem 3.2.1, one can show that 

ltl~log(N+1) 

is sufficiently small. Hence it remains to show that the second integral 
• in 

is an odd function, we find 

(4.2.13) 
0 
• 

+ e [e + 

• 

- e ]f(x)dx s 

s 2 
00 

I cos ttP 1 (x) I f(x)dx + 
0 

00 

0 

r,:
0 

( x+e )-2;
0 

( x-0) 
it[ 8 - 2z; 1 (x)J 

e -1 

The last integral in (4.2.13) is less than or equal to 

(4.2.14) I t I 
00 , 0(x+0)-t0(x-6) 

I e - 2z: 1 ( x) I :f ( x) a.x s 
0. 

...., 

:f(x)dx. 

for lvl s 1 and some C > O. The :first inequality is a consequence of lemma 
4.2.2, the second of (4.2.2) and (4.2.6). 

on T. This interval has the 
,,.,,,,; ,,..,,,. . ,...,, 

form T = (a,a+n), where O <a< 1-n and n s n < 
...., . 

1. Leto and c be constants 
with O < 

'IT ,.._. ,-.; ...., 
< 2 and c > 0 and define, for a fixed ltl ~ c, the set T by 

,.., 
L = {y)3 integer k, k~+c (k+1 )7r-o} n T. 
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,..._, ,..._, ......, 
Let A be Lebesgue measure and denote A(t) as A. We shall show that A~ n/2 

,..._, 

for o sufficiently small and depending only on c, c, C and n. Obviously, we 
,...,, ,.._, ......, 

have A(T n Tc)= n-A and therefore 

(4.2.15) >i.({yla + 

,..., ,...,, 
n-A 

4 
,.._, 

:;; y :s:; a+n -

,.._, ,..._, 

n->-- } 
4 

,...., ,.__, 

Tl-A 
2 . 

( 4 I d ( -1 I Condition .2.10) implies that dy t~ 1 F (y))I ~ tic on T. From the dif-

ferentiability conditions on f and the a.ssumption that f(x) is positive for 

all x, it follows 

of the 
"" ,._, ,.,._, ,....,,, r,,,J 

for,,1 (k,r-o ~kir+o) as y increases from a+( n-.X) /4 to a+n-( n-.X) /4. Here (z] 

stands :for the integer part 

"" "" ,...., r,,.,J ,....,,,, ,-,,.,,,J 

(4.2.16) -1}n. 

r-.; 

This inequality leads to the desired lower bound for A. Take 
,....., 2 ,-.,.,J ~ ,....,, 

8 = min {ncc/16, cnn /(128C)}. If (n-A)cc:;; 86, then 
~ ,r,.,; rw "'-' ,....._, "" ""-' 

A~ n-80/(cc) ~ n-n/2 ~ n/2. If (n-A)cc ~ 80, (4.2.16) implies that 

,,.,,,,_, r,.J (""t,.,J ,..._, 

I ( -1 ,..., 11-A ) ( -1 ( Tl-A ) I ~, F (a+n - 4 ) -~ 1 F a+ 4 ) ~ 

and hence 

(4.2.17) 

According to (4.2.6) the integral in (4.2.17) is at most C and therefore 

~ ~ n-{32oC/(cn)} 1/ 2 ~ n/2. 
,...,, 

In view of the above, there exists a positive constant o, depending only on 
,,..,, ,,,.,., ,...., r-J 

c, c, C and n and such that, for all It! ~ c, we have A(T) =A~ n/2 and 

on T 

,.., 
Hence~ for ltl ~ c, 

(4.2.18) 2 

00 

lcos{t~ 1(x)}!f(x)d.x = 
0 

,..., 

1 _ on. 
2 
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Combination of (4.2.14) and (4.2.18) leads to 

~ on - 2 

for ltl bolmded above because of ( 4. 2. 6). 
"' . 

Therefore, co
0

(s
1

) s c
1 

if c is chosen sufficiently 
2 ( ) -; . . hand, cr
0 

s1 ~ c 2. Together this gives 

~ 

1 2 1 2 -2 1 2 

,..., N 
I PO ( t ) I s ( 1 - on/ 4 ) and 

small. On the other 

0 such that for 
,.._, 

s 1-on/4. But then 

b N( 1 c, 

Let R6 be the d.f. of (S-E6S)/o9(S) under F(x-6). If x1 has d.f. F(x-0), the 

r.v. Y1 = x1-e clearly has d.f. F(x). Furthermore, 

s, = (1/S)log{f(x,-a)/f(X,)} = (1/(-a))log{f(Y,-(-6))/f(Y,)}. 

Hence by changing e into(-6) 
~* pansion R8 for R8 , such that 

conditions of lemma 4.2.4. 

in the right side of (4.2.9), we get an ex

under the 

~* "'* ~ Prom R0 and R6 an expansion n8 (e) for the envelope power TI8 (e) can be found 

easily. Define 

(4.2.19) --

(cf. (3.4.24) and (3.4.26)) and 

(4.2 .. 20) 
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LEMMA 4.2.5. Let {cN} be a sequence of positive real numbers with 

suppose 

~n addition thats'~ a~ 1-E' for some constant e' > o. Then there exists 

A> o, depending on N, e, a and F only through {oN}, £, c, c, n and£' and. 

such that 

(4.2.21) 

PROOF. From (4.2.9) it follows that the critical value~ satisfies 
Ct 

(n -3) 
(4.2.22) ~ = u -

Ct Ct 

Furthermore, we have for n
8

(e) 

(4.2.23) 

E0S and cr0(s) are given in (4.2.7), E8S and o0 (s) follow by changing e 
into (-0) in these expressions. Application of this and (4.2.22) to (4.2.23) 

leads to (4.2.21), with an additional remainder term of order 

N112e4cp(N112e). This tertn can be omitted, as N112e4<P(N 112e) = O(N- 112 e2 ). D 

REMARKS. 1. Conditions (4.2.6) and (4.2.10) determine a class of d.f.'s F 

for which expansion (4.2.20) holds uniformly. If we restrict attention to 

a fixed F, condition (4.2.6) can be weakened to 

lim sup 
y-+0 _oo 

< 00 , • 
l = 1, ... ,5. • 

Furthermore, condition (4.2.10) can be omitted: if no uniformity is re

co:n-

uniform d.f'.'s. But these d.f.'s are already ruled out by the fact that 

their density is not everywhere positive a,nd d.if:ferentiable. 

2. We have treated location alternatives withe= 0(1), • since we 

shall need the results for such e in section 5.2. The typical case o:f in-

terest, however, remains the case of contiguous location alternatives, 

and hence 1/{1-~(u
0
-n1 )}, are 0(1). 
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As announced at the beginning of this section, we 
* N * 

• shall also give a power-

expansion for the IMP test based on S * where Sj = - w1(Xj). 

Under F(x) we have 

1 ,2 • 

• Under F(x-8) the necessary moments can be found by using 

-- -

3 
I 

j=O 

where Y1 = x1-e has d.f. F(x). Proceeding in this way, we obtain expansions 

similar to (4.2.9), which are justified in a manner analogous to lemma 
,..., 

4.2.4. The final result is the following expansion TI8*(e) for the power 

ns*<e): 

(4.2 .. 24) 

+ N-
11~e 2

}. Comparison of (4.2.20) a.nd (4.2.24) gives 

3 
~ ~ n1 
w (8)-n *(8) = 4 (3n -n -3)~(u -n ) = S S . 2 N 3 2 Cl 1 

where equality only occ1irs if w;<x1 ) is constant a.s., i.e. if x
1 

is 
. . ,..,,_, ,..... 

norrnlilly d1str1 buted. The fa.ct that 1r 8 ( e) = 1r s* ( e) here is obvious, since 

4 . 3 . PERMUTATION TESTS 

We shall start by showing how permutation tests can be derived in a natural 
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way (cf. Lehmann (1959)). Consider again the one sample problem: 

x1 ,x2 , .•. ,~ are i.i.d. r.v. 's. Under the hypothesis they come from a d.f. 

F, which has a density f that is positive on R 1 and syo1metric around zero, 

under the alternative they come from a d.f. G which has a density g that is 

not syrriroetric around zero. Let X = (x
1

, ••• ,XN). In the previous section we 

considered I.MP tests for this problem, which, of course, are not distribu-

tion-free. Here we shall restrict attention to distribution-free tests and 

search for the most powerful one in this restricted class. 

a distribution-free test, then 4> must have the same size a for all 
I 

the family of all d. f. 's with a continuous syr:nmetric density, i.e. 

4> has to be sjmilar with respect to PX. A concept related to similarity is 

Neyman Structure (NS): a test 4> has NS with respect to a statistic T if T 

is sufficient for X with respect to PX and E(~(X)IT) = a a.s. under PX. If 

4> has NS, it is simila.r; the converse holds if T is also complete with 

respect to PX. Let Z = (z 1 , ... ,ZN) denote again the vector of absolute 

order statistics of the X •• As Z is sufficient and complete with respect to 
J 

PX, the class of all similar tests for the one sample problem coincides 

with the class of all tests having E(cp(X)IZ) = a. a.s. under I!
0

• This last 

condition can also be stated as 

(4.3.1) ( 2NN ! )- 1 l qi ( y) = a a. s. , 
ycS(x) 

where S(x) is the set of ally= (y
1

, ••• ,yN), • • • giving rise to the same z as 

x .. 

Any test satisfying ( 4. 3. 1 ) is called a pe..t"Illutation test. In particular, 

every rank test satisfies (4.3.1) and therefore rank tests form a subclass 

of the family of permutation tests. This implies that the most powerful 

pe1·1nutation test for a certain alternative is always at least as good as 

the most powerful rank test for that alternative. As they both possess the 

desirable property of being distribution-free, permutation tests are 

superior to rank tests. The only reason to prefer rank tests over pei1lluta

tion tests is of a practical nature: rank tests are much easier to apply. 

In view of this relation between rank tests and perinutation tests, it seems 

interesting to make deficiency compa.risons between them. To this end we 

shall derive in this section a power expansion for the most powerful per-

1111,tation test. First we shall derive the explicit fo1"D1 of its test-statis-

tic if we consider a fixed alternative, under which the X. 
1 

come from a d.f. 
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G. Then we have for the conditional power 

E(ct,(X)IZ) Y=sif£1 y) _ -

-- l cp(y) ___ N __ ,. -, 

yE:S(x) j=1 J 

where R = (R 1 , ••• ,~) is the vector of ranks for (IY
1

1 , ••• ,IYNI) and 

sign Y = (sign Y1, ... ,sign YN). Conditionally under (4.3.1), E(cp(X)IZ) is 

maximal if 

<f>(x) = 

N 
1 for TT 

j=1 
g(x.) 

J 

0 otherwise, 

where c(Z) depends on Z 

powerful pexmutation test rejects for 

conditionally under Z. 

~ c(Z), 

f(x.) is constant over S(x), the most 
J 

J= J J 

We now restrict attention to contiguous location alternatives g(x) = f(x-e), 
. 0 N-1 /2 . . with ~ e ~ D , for some positive constant D. Then the most powerful 

N N J- J J 
t. 11og{:f(-IX.l-8)/f(-IX.I)} = \_ 

1
1og{f(Z.+e)/f(Z.)} is constant given 

LJ= J J lJ= J J 
Z = z, we can equivalently use 

1 N :r(x.-e) 

J=1 J 
- log 

f'(-IX.1-e) 
1 

f (-Ix. I ) J = 20 
J 

l x.>o 
J 

f(X.-0) 
1 og ___,.__....J_..,... 

f' ( X. +e). 
J 

A drawback of the above test is the fact that it is only optim.al against 

one particular, alternative 01 • For a composite hypothesis we may therefore 

prefer the T,MP pe::r:"Ill.utation test, which is based on 

u = -
X.>Q 

J 

with ~, as defined in (4.2.1). The relation between U and the statistic of 

the most powerful permutation test is 

X.>O 
J 

log 
f(X.-0) 

,] ' -
f(X.+0) -

J 
u -
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with O ~ v 1 , v 2 ~ 1 and z-; 3 as de:fined in (4.2.1). This relation is the same 

* * ( as between Sand S in the previous section. Note, however, that S-8 = 0 e) 

is the 
( -1 

= 0 N ), while the difference in the power of the two permutation tests 
. 0( -5/4) 4 . . is N , as is shown in lemma .3.5. Hence, as concerns deficiencies, 

both tests perform equally well. 

We shall proceed to give a power expansion for the test based on U. The 

unconditional distribution of U can be found easily, but since the critical 

value depends on Z, this does not lead to the power. We have to go through 

the following procedure: the distribution o:f U, conditionally on Z, has to 

be found, whereupon the conditional power can be evaluated as a function of 

Z. Then the unconditional power is found by taking the expectation with 

respect to Z. 

In order to find the conditional distribution o:f U, it is useful to re-

present U as U = 
J= J J J l. 

Z. is positive, 
J 

and V. = 0 otherwise. With this representation we can apply 
J 

• various results :from Chapter 3. Just as 

ally on Z, the following situation: the 

a.re independent with 

(4.3.2) 

We introduce the following notation 

in this chapter we have,condition

- $ 1(zj) are constant and v1, •.• ,VN 

(4.3.3) P. = P8(v.=1 IZ), p. = P6(vJ.=1lz), 
J J J 

Q. = 2P.-1, q. = 2p.-1, 
J . J J J 

and A, a, P, p, Q, q are the corresponding N-djmensional vectors. Condi

tion.ally under Z = z, 2U has variance 

(4.3.4) 2 
T --

N 

I 
j=1 

2 2 
( 1-q. )a., 

J J 
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and the statistic 
'J= J J 

and variance 1. Its third 

and fourth 

Define 

(4.3.6) 

· · N1 / 2 d N t. l . cumulants, multiplied by an respec 1ve y, are given by 

K = 
3 

1/2 ~ 2 3 3 -2N ( l q . ( 1-q . ) a . ) /-r , 
j=1 J J J 

K 4 = -2N ( ( 1-q. ) ( 1- 3q . ) a . ) /-r . 
j=1 J J J 

a .p.) 
J J 

j Ix-a. I 
J 

1-e}, 

where O < e: < 1/2, r; > 0 and A is Lebesgue measure. 

The following lemma supplies an expansion for R6 (xlz). From this point on, 

s1.1n1coation always runs from j = 1 to j = N, unless stated otherwise. 

4.3.1. Let z and e be such that there exist positive numbers c, C, 

o and e: for which the following conditions hoZd 

1 , 2 2 
N l ( 1-q . ) a . ~ 

J J 
c, 

N J 
c, y(e:,r;,q) ~ cSNr;, 

for some r; ~ N-312 log N. Then there exists A> o, depending on N, z and a 
only th:Pough c, C, c5 and e: artd such that 

(4.3.7) 3 (x -3x)} + R, 

4 
2 la. 

( X -1 ) + _,___..],____ 
12(NB)2 

where Bis an arbit 1.4,..L positive constant and 

(4.3.8) 
J J J J 

-2 2 -2, 2 4 -2 \ 3 + N IT -NBl+N llq.a.l+N llq.a. I}. 
J J J J 

PROOF. Under the above conditions, theorem 3.2.1 can be applied to R6(xlz). 

This means that 

""" where R8 is the Edgeworth expansion to • i.e. 



(4.3.10) 

3 (x -3x) + 

-1 2 
N K3 

72 
5 3 ( x - 1 Ox + 1 5x ) } • 

From (4.3.5) we obtain 

t 3 , 3 3 
1/2 lq.a.-lq.a. NB 3/2 

(NB) '1" 

( -2, 3 + 0 N ILq.a.l 
J J 

. 2 I 1-r -NB 

0( -1 2 -1, 2 4) + N 1-r -NBI + N lq.a. , 
J J 

-1, 3 3 ) + N llq.a.l , 
J J 

Substitution of these expressions in (4.3.10) leads, in combination with 

(4.3.9), to the desired result. D 

u:uH._lK. The expansion in (4.3.7) is formally correct for any choice of 
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B > O. In future applications we shall choose B such that the expression in 

(4.3.8) is small. This is achieved 

obvious thing to do in view of the definitions (4.3.3) and (4.3.4). 

Let 1r(8lz) be the conditional power of the test based on U and let a be the 

size of' the test. In the next 1 e,,rrna an expansion for 1r( a I z) is given. 

LEMMA 4.3.2. Let z and a be such that the conditions of lemma 4.3.1 are 

satisfied and such that IIq.a.1 s c 1 N112 for some constant c' > o. If 
1 /2 J J 

thermore Os es DN- , e' s as 1-e' for positive constants D and E', 

we have 

1r(elz) = i(elz) + R, 
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whe-:rae 

(4.3.11) = 1-~ ( u -e (NB) )-4> ( u -6 (NB) ) · 
3 

/ 2 { ( u + 
a a 3(NB) a 

4 

12(NB) a a 
-

+ 1 ' .] 
2 NB 

e (NB) 1 / 2 + 

1 
- 8 

Iq.a .-eNB 
J J ' ... 

2 (Iq.a.-eNB) 
112 1 .J .J ( u -8 ( NB ) ) + -

1 
+ 2 

{NB) 1 /2 2 NB a 

(NB)3/2 

with Ban arbitrary positive constant and 

(4.3.12) 
J J J J J 

where A> O depends on N, a, e and z onZy through c, c, o, E, c', D and e'. 

PROOF. The conditions of lemrna 4.3.1 are satisfied for some e ~ 0. There

fore they must be satisfied also for 0 = O, because this is the most 

favourable case, as then all q. are 0. From (4.3.7) and (4.3.8) it follows 
J 

that 

(4.3.13) 
12(NB) J 

Since e' ~a~ 1-E', u = 0(1) and therefore we derive from (4.3.13) that 
a 

the conditional critical value~ of the test based on 2(U-lp.a.)/T, 
a J J • • satisfies 

(4.3.14) t; = u -a a 

4 Ia . . ] 
12(NB)2 a a J 



The connection between n(elz) and~ is n(elz) = 
a J J 

> ~ lz). Together with (4.3.6) this gives 
a. 

(4 .. 3.15) 
Ia~ 112 

1-n(elz) = R (~ ( · J) e a. 2 
'[ 

Using (4.3.14) we obtain 

where 

-
'[ 

= u -0(NB) 112 + 
Ct 

2 
T -NB 

NB + 

lq.a.-8NB 
J J + 

(NB) 1 /2 

J,_J, ,. . .. .. + R 
(NB)3/2 1' 

, 2 2 
lq .a. 

J J + 
NB 

-2 2 2 2 -2 2 2 2 -2 2 2 - 4 
J J J J J J J 

J J J 

By the following relations, R1 can be simplified considerably 

J J J J 

J J 

J J J J J J 

JJ JJ JJ JJ 

We also have 
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J J J J J 

JJ JJ JJ . J 

J J J J 

Application of these results leads to 

(4.3.16) 1/2 = u -8(NB) + -
a 

Ia. a.-NB 
--1 

12 a a (NB)2 2 NB 

}:q.a.-8NB 
- J ,1 + ,1 L J I wl .,1 

(NB)1/2 2 (NB)3/2 

(4.3.17) 
J J J J J 

According to (4.3.15), n(elz) can be found by substituting expansion 

(4.3.16) in expansion (4.3.7) for R
8
(xlz). We shall first consider the 

~(x)-term, and after this the xkcp(x) te1"lll::;;, for k = 0, 1,2,3. The following 
• • expansion 1s used 

(4.3.18) 

• 

a a 2 

Iq.a. ,12 
J J - u + 8(NB) + 
T a 

"[' 

2 
1 1 / 2 I a · 1 /2 l q • a · 

- -(u -e(NB) ){~ ( · J) _ ,1 ,1 - u + 
a 2 a a 2 T 

T 

Cl 2 T I",/ • 'T . '-II 

After son1e calculations this leads to 



- <P ( u -8 (NB) 1 / 2 ) + 
Ct 

\ 2 2 
lq.a. 

.J J -
NB 

4 Ia. 
1 ( u 3 -3u ) J + 

1 2 a. et ( NB) 2 

Ia~-NB / /2 
+ -J.e(NB) 1/ 2 " J - J-e(NB) 112{3+0(NB) 1 2 (u -8(NB) 1 )} • 

2 NB 8 a 

(La~-NB) 2 

J I l T 

(NB) 2 
- , ,J J - -( u -8 ( NB ) ) ,J .l + 

(NB)1/2 2 a NB 

(Iq.a.-6NB)(La~-NB) 

2 a. ( NB) 3/2 
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The remainder is still 0(R2 ) by virtue o~ the conditions 

0 ~ 6 ~ DN- 112 , B constant and Ia~~ C. They ensure that 
J 

I \ I < 'N1/2 lg_. a. - c , 
J J 

every term 

occurring in (4.3.16) and (4.3.17), is 0(1). 

A simpler version of (4.3.16) suffices for the xk¢(x) terms 

Ig_.a . 
• ) .J -
T 

-1 -1 2 2 -1 2 -1 2 

J J J J J 

It follows that 

(4.3.20) 

Inserting (4.3.19) and (4.3.20) in (4.3.7) leads to the required expression 

(4.3.11) for n(0lz), with remainder 

-2 \ 2 4 -2, 3 + N llq.a.l+N llq.a.l}. 
J J J J 
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Finally observe that 

J J J J 

-5/2, 3 , 2 2 -3, 3 2 -2, 2 2 2 
N I l q. a. I I l q. a. I :S N (lg_. a. ) +N ( l q. a. ) , 

J J J J J J J J 

-3, 3 2 -2, 3 0( -3/2 -9/4,, 313/2) N (Lq.a.) +N I lg_.a. I = N +N lq.a. • 
J J J J J J 

This shows that the remainder (4.3.12) has the required order. D 

The next step is to show that under e, the set of Z-values for which the 

conditions of the previous lemma are not satisfied, has a sufficiently 

small probability. The following definition is analogous to (4.3.3) 

'"" 
A.= -1J;

1
(X.), 

J J 

f(X.-8) ~ 
P. = -f-(X-.---e)+f(X.+e)' 

J J J 

....., 
Q. = 

J 

,...., 
2P.-1, 

J 
j = 1, •.. ,N. 

LEMMA 4.3.3. Let f be symmetric around zero, positive 1 on R and 
,..,, /Ow 

tinuously differentiable. Assume that positive constants E', D, n, c, C and 

n' exist, such that 

(4.3.21) 

(4.3.22) 

00 

( 4. 3 .-23) sup { 
_oo 

10 ~ 
1JJ 1 ( x+y ) f ( x ) dx : I y I ~ n} s C , 

for y in a subinterval -r of ( O, 1) with Zength at least n'. Then there 

exists A> o, depending on N, e, F and a only th.rough£', D, ~, C and n' and 

such that (4.3.11) and (4.3.12) hold for all z-values, except fo~ those 
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• i,n a 

PROOF. We have to verify that the conditions of lemma 4.3.2 are satisfied, 
· -5/4 . except on a set of probability of order N , i.e. we have to show that 

there exist constants c, C, o, £ and c' such that 

1 
N J 

(4.3.26) 
J J 

( r Q) > ~Nr f r _> N-3/ 2 log N, y s,~, - u ~, or some~ 

(4.3.28) 

except on a set of probability O(N-5/4). 

First consider (4.3.25). As ~1 
r.v.'s and in view of (4.3.23) 

• 1s odd, we 

we have 

From Chebyshev's inequality we obtain 

have lA~ 
J 

• 

"'4 ...., 4 . . 
= IA. . The A. are 1. 1. d. 

J J 

At this point we use an inequality which is given by Chung (1951) and due to 

Marcinkievitz, Zygmund and Chung: if Y1, .•• ,YN are independent r.v.'s, all 

having mean zero, we have, for all p ~ 1, 

..,.. 

where the constant Conly depends on p. By taking 1 , •.• ,N 

and p = 5/4, it follows that 

Together with (4.3.23) and (4.3.29) this implies 
J 

N(C+d) = NC, 

except on a set B1 with 
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The next condition to verify is (4.3.26). As was mentioned in theorem 

3.3.1, (4.3.21) and (4.3.23) imply (3.2.16). For the present case this 

In theorem 3.2.2 it was shown that under this condition (4.3.26) holds, 

except on a set of probability ,provi e that A. ~ c , for some 
J 

c* > c. By applying Chebyshev's inequality one shows that 
2 ~2 ~2 . 2 -5/4 

N + 00 , (4.3.24) implies that 

(4.3.30) 
,..._, 

on a subinterval of' (0,1) with length at least n'/2. Therefore 

00 

2 
iµ 1(x)f(x-6)dx = 

1 
2( -1 1/J 1 0+F ( y)) dy > O. 

-co 0 

The third condition we have to deal with is (4.3.27). Inspection of the 

sketch of the proof of theorem 3.2.1 shows that this condition only serves 

to prove that 

(4 .. 3.31) 

where IPI is given by (cf. (3.2.8)) • 

cos A.t 
Ip ( t) I s exp{-IP. ( 1-P. ) ( 1 - .J · ) } = 

J J T 

,..._, 

,..._, ....., 2 A .t 
= exp{-2IP.(1-P.} sin J }. 

J J . 2T 
• 

Instead of' verifying (4.3.27) we shall prove (4.3.31) directly. From 

(4.3.30) and a similar argument as in lemma 4.2.4 it follows that 

E 
. 2 e sin 

,..., 
At = 

1 

1 

0 

for ltl ~ c, where c is some positive constant. 

moments exist and an application of Chebyshev's 

some positive constant c 1, with probability 1 -

. 2 -
As sin A1t is bounded, all 

inequality shows that for 
O(N-5/4), 



1 
N 

. 2 ,._, > 
sin A.t - c , 

J 1 

T
2

/N = {L(1-Q:)A~}/N is bounded from below as well as from above. Hence, 
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c 0 > O, such that for all ltl ~ with proba-

bility 1 - O(N-S/4 ) ~ 

' 

, I 
N 

,..,, 

2 
A.t 

sin •1 
2T 

,..., 

~ C • 
1 

Now there exists e > O, depending on c 1 , such that at most 
,..., I"¥ ,.._, 

a fraction c 1/2 

probability of the Pj does not lie in the interval (€,1-€), again with 

1 -

, 

with probability 1 - O(N-514 ). Together with (4.3.32), this proves the 

It remains to prove (4.3.28). As Q. and A. are 
,_ rv J J 

we have I l Q . A . I :S l I Q . A . I ~ L I Q • A . I . Bee aus e 
J J J J J J 

~ _ r(x
1
-e)-r(x

1
+e) 

Q1A1 = -

it follows that 

< -

0 

1 

1 

0 

--

both odd functions of 

1 2 
t1J (x

1
-ve)d\l}. 

) 0 1 

z., 
J 

As O :Se~ DN- 112 , it remains to prove that, with probability 1 - O(N-5/ 4) 

N 

l 
...., 
CN. 

j=1 0 

This is done in the same way as in which (4.3.25) is proved; therefore we 
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only mention that an application of Fubini's theorem shows that 

sup 
lvf~1 

,.._, 
('I 

I..., • □ 

COROLLARY 4. 3. 1 • Under the conditions of lemrr1a 4. 3. 3, the power rr ( e ) of the 

permutation vest based on u, satisfies 

(4.3.33) 

,._, 

where n(0lz) and R a:re given in (4.3.11) and (4.3.12) and A is a positive 
.,..., ,..._, 

constant, depending on N, e, F and a only through D:, n, c, C and 

PROOF. On Be 7T( 0 I z) satisfies 

we obtain 

.,..., 
rr(0lz) = n(Slz) + R. Hence, for 7T(6) = 

n' • 

where IB is the indicator function of B. Now n(0lz), being a probability, 
• 
is bounded, and therefore 

,..., 
care. First, 

~(u -6(NB) 12 ) is bounded, and thus contributes O(N-514 ). The next three 
a ,.._, 

terms of n( e I Z) can be split into a bounded part and a pa.rt that has the 
,..., 

form of one of the remaining terms in 1T(6IZ): 

-2 
N 

J J J 

r,,,J 

The remaining terms of rr(0IZ), and the terms of R, can all be treated in 
-1 \' 2 the following way. Take for example the first term, N ( lA. -NB) • On the 

J 
part of B where N-1(LA~-NB) S 1, the contribution to the expectation is 
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any r.v. Y with d.f. H, and all p ~ 1, 

00 

lyldH(y) s 
00 

Thus the total contribution of But 

these tenns already occur in E0R. Inspection of the other terms shows that 

their contribution is always O(E
6
R). D 

~ 

Our final task is the derivation of simple expressions for E
6
~(elZ) and 

• 
1S 

done by expanding ~A~ around e =Oto the appropriate order. Note that 

[f(X1-e)+f(X1+e)J and implicitly as x1 comes from F(x-e). We introduce the 

following notation 

f(x+2e )-f(x) -- f(x+28 )+f( X) ' a (x,e) = -r ,s 

l-th derivative of 

4r,s(x,e), h(x,e) and $ 1(x+e) respectively, with respect toe. In the next 

le1r1rna we evaluate the necessary moments. 

LEMMA 4.3.4. Let f be five times differentiable and suppose that positive 
~ -1/2 aonstants C, D and n exist, sueh that o s es DN and 

(4.3.34) sup { 
_o:, J 

,..., 

: ly I s n} :::; c, j = 1 , .•. , 5. 

,..., 
Then there ists A> O, depending on N, e and F only through C, D and n 

and such that 

E IQ.2'A( 5-r) I < AN-r/2 r = 0 1 2 e 11 - , , ,, 

(4.3.35) 



86 

PROOF. For 1 = 1,2,3,4 we have 

(4 .. 3.36) 

for sonte C > o. Differentiation of h yields that 

b{x,o) • o, lh(x,e) I s; 1, 

l+ f' (~+28) 
f(x) 

( f x+26 + 1 )2 + 
f .x) 

_ 96 f' (x;tw26 )f''(x+20) / ( f (x+~e) + 1 )3 + 
f2(x) f(x) 

+ 96(r' x+2e )3 /(~(x+2~ )_ + 1 )4 
f.x) f(x) ' 

( ) . 3 ) - 12,f,1(x)$2 X + 6lf, 1(x , 

l , ~ / j ( x+2 e ) I , 
J 

1 = 1,2,3,4. 

Under F(x-e), x1 has the same distribution as x1+e under F(x). Hence 

We now prove the results in the first line of (4.3.35). Note that 

" 
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(4 4) -1/2 . . .pl because o:f .3.3 and the fact that O ~ e :S DN • Application o~ emma 

4.2.2 gives 

e sup 
0:Sv:S 1 

since h(x,O) = O. Furthermore, for some c* > O, 

Using (4.3.36), (4.3.37) and Holder's inequality, one obtains 

(1) 2 ;· 

, j=1 J 

( 1 ) 
:S c

1
, for some c 1 > O, and there-

:fore E8 IQ1A1 I = O(N-1 /2). Similarly, 

0 1 1 :S 
2 

sup E
0

lq_
2 3

(x1 ,ve)I ~ 
0:Sv:S 1 ' 

2 3 . · 
<-
- 2 O:Sv:::;;1 J=1 J J 

The second line of (4.3.35) is proved by continuing in the same way. For 

r = 0,1,2 we have 

r+·1 
< e 
- (r+1) ! 

e(r+1) 
C* :S _,.( _r_+_1-:--) -! sup 

0:SvS1 

(r+1) -
= O(N 2 ) • 

2 E9~1(x1 ) is evaluated in the following way 
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3 
~ e sup 

3! osvs:1 

63 * 
-< - C 

3! 
sup 

osvs1 

As $2+ and ¢t3 are odd, the corresponding moments are zero. Also, in 
1 2 1 . 2 4 

section 4.2 we fo11nd by partial integration that E0 lJ> 1w2 (x1 ). = 2/3 E0tJJ 1 (X1 ) 

O 1 3 . 1 . 0 1 1 0 22 1 2 
the expression in (4.3.35) for E8~ 1 = E6 lJ> 1 (X 1 ) • 

~ ~ Finally E
8
Q1A1 has to be found. 

84 * 
s 4! C 

osvs1 j=1 J 

sup 
osvs1 

( . ) 
By applying (4.3.36) and (4.3.37), can be obtained, which 

leads to the desired formula in (4.3.35). D 

We are now in a position to give a sjmple expansion for n( e). 

THEOREM 4.3.1. Suppose that positive 

that ( 4. 3. 21 ) , ( 4. 3. 22) and ( 4. 3. 24) 

m. 
00 J 

- ,.., 
constants D, n, c, C and e' ist such 

hold and such that 

sup { . It . ( x+y) I f ( x) dx : J y I s n } 
_a:, J 

,.., 
s c, j = 

Then there exists A > O depending on N, 8., F arld a only th:rough D, n, ';;., C 
and e ', suah that 

(4.3.38) 



where 

,..._, 

(4.3.39) n(e) = 

- -

and n1~ n2 and n3 as defined in (4.2.19). 

nu + 
1 Cl 

PROOF. The results of lemma 4.3.4 strongly suggest the choice of 
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constant as was proved in lemma 4.3.3. The conditions of the present 

theorem contain the conditions of lero,nas 4. 3. 3 and 4. 3. 4. Hence we may use 
~ ~ ~ -3/2 (4.3.35) in E(n(BIZ)). After some algebra we obtain n(e) = E6n(elz)+O(N ). 

Hence, in order to prove (4.3.38), it suffices in view of (4.3.33), to 

prove that 

begin with the last term 

J J 

-- < -
J J 

< -
J J J J 

Another application of the ine~uality due to Marcinkievitz, Zygmund and 

Chung disposes of the remaining two terms. If Y1~ ..• ,YN are . . ' 1.1 .d. r.v. s 
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with mean zero, this inequality implies that 

Hence 

-- --

and in the the announced 
J J 

unifonnity in (4.3.38) is an immediate consequence of the uniformity in the 

conditions. D 

REMARK. The remainder is O(N-S/4) instead of O(N-312 ) only because of the 

fact that in lemma 4.3.1 the Edgeworth expansion of theorem 3.2.1 is used~ 

which approximates to O(N-514 ). If in theorem 3.2.1 condition Ia~ s CN is 

J 
chapter 3. Hence by changing of m1 = 10 to m1 = 25/2 one obtains a remain-

der of O(N-312 ). 

We conclude this section by considering again the permutation test based on 
u* 

power of the Ju*-test and define 

In the following 

log 
f ( x,i-a ) .... * _ 1 

26 

f(x.-e) 
log ---:-__.J'--..,_... 

f ( X. +6 )=' 
J 

1 
= 20 log 

r( z .-e) 
J " 

:r( z. +e) • 
J 

* lemma we prove that ,r ( e) agrees with 7T(0) 

LEMMA 4.3.5. Under the aonditione of theorem 4.3.1 we have 



...., 

whePe n(e) is given by (4.3.39). 

PROOF • .As u* = LA~V. is of the Ra.me form as U = LA. V., the proof consists 
J J J J 

of showing that all lecr11n.as in this section continue to hold in the case 
* . of U, provided that some minor changes are made. Thus lemma 4.3.1 and 

4.3.2 clearly hold for the u*-test, if a. is replaced 
J 

Lemma 4.3.3 remains valid without any changes at all, 

* by a. everywhere. 
J 

because 
~ 1 1 
A.= - 2 $ 1(X.-v 1e) - 2 w1(X.+v2e), 0 ~ v 1 , v2 ~ 1 and therefore (4.3.21) 

J J J * *2 
and E

0
A

1 
> o. Corollary 
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4.3.1 also continues to hold in the same form. Hence it finally remains to 

adapt lemma 4.3.4. Expansion around e = O shows that· 

2 

1 2 1 
+ . . • • . . 

In a similar way as in lemma 4.3.4 one shows that the first two statements 

in (4.3.35) remain valid if replaced 
,..,* 

by A
1

• Moreover, 

(4.3.42) 

...., 
The expressions in (4.3.35) are used to obtain E

6
n(0IZ) from (4.3.11). In 

* 2 rv '"'"* (4.3.11), E9 (A1) and E6Q1A1 only occur in 

(IA~2-NB) (lQ.A~-0NB) 

NB (NB) 1 /2 • 

But in view of (4.3.42), this expectation differs at most O(N-312 ) from the 
- ~* expectation of the same expression in A. instead of' A .• D 

J J 

4.4. SCALE INVARIANT TESTS 

' . 
One of the advantages of the use of rank tests 1s the fact that such tests 

are distribution-free. This was the motivation in the previous section to 
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compare their behavio11r to that of most powerf'ul distri bution-:free tests. 

Another nice property of rank tests is their scale invariance. In analogy 

to the previous section it therefore seems worthwhile to compare IMP rank 

tests with most powerful scale invariant tests. Let again x
1 
,x

2
, ••• ,~ be 

i.i.d. r.v. 's :from a d.f. F(x-e), where f = F' is syrrimetric around zero and 

positive on R
1

• According to Hajek and Sidak (1967) the most powerful scale 
• invariant test :fore= O against a simple alternative e > 0 reJects the 

hypothesis for large values of 

oo N 
(4.4.1) { TT 

0 j=1 

oo N 
TI 

0 j=1 

In Hajek 
.J • ,. 

and Sidak (1967) it is also shown that in the normal case this 

test is equivalent with Student's one sample t-test. Unfortunately, for 

general f we are unable to find an expansion for the d.f. of the statistic 

in ( 4. 4. 1 ) • 

We conclude this section with a remark on the relation between the most 

powerful permutation test f'or the normal case and the t-test, being the 

most powerful scale invariant test for this case. Note that if f is the 

* norma.1 density, the permutation tests based on U and U are both equivalent 

to the,permutation test based on Ix .. Under the conditions of theorem 4.3.1 
J 

its power satisfies, according to (4.3.38) and (4.3.39) 

eu 2 

- a ¢(u -N1/28) + O(N-5/4). 
4N1/2 et 

(4.4.2) ,r(e) 

But this expansion also holds for the power of the t-test, as is sho"Wll by 

Hodges and Lehmann ( 1970). Hence, in particular, the normal perrnutation

test has deficiency zero with respect to the t-test if normal location 

alternatives are considered. This rather striking phenomenon can be made 

more transparant by looking directly at the two test statistics involved. 

For this approach the reader is referred to Albers, Bickel and van Zwet 
( 1974). 

4.5. RANDOMIZED RANK SCORE TESTS 

In the preceding sections of' this chapter we considered tests that are only 

slightly better than the LMP rank test in the sense that the asymptotic 

relative efficiency (ARE) of the L rank test with respect to these tests 
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always equals one. Here we consider the opposite case: randomized rank score 

(RRS) tests are worse than LMP rank tests, but also have ARE 1 with respect 

to these tests. 

RRS tests have been introduced by Bell and Doks1.1m ( 1965) for the two sample 

problem. By proceeding analogously, we define a RRS test for the one sample 

problem. As before, x1 , ... ,~ are i.i.d. r.v. 's 

d.f. F has a density f that is symmetric around 

from F(x-e), where the known 
. . R1 W zero and positive on . e 

l h . . . * * FD a so ave an auxiliary independent sample x
1

, ••• ,~ from • enote 

( ) ( * *) * ( *) x1 , ••• ,~ as X and x1 , ... ,~ as X. Let Z Z be the vector of order 

test the hypothesis of symmetry against the restricted alternative F(x-e), 
e > O, by rejecting the hypothesis for large values of 

L = IA. V., 
J J 

-* where A.= - ~ (Z.), 
J 1 J 

V. = 1 
J 

if the X. corresponding 
Ni 

to z. is positive and 
J 

V. = -1 otherwise. l 
J 

always means lj=,. 
The statistic of the I,MP rank test may be expressed as T = I (EA. )V .• Note 

J J 
that a subscript in EA. is superfluous since the X~ always come from F. 

J J 
Hence L can be interpreted as the randomized counterpart of T. An advantage 

of Lover T lies in the fact that its computation requires no tables of EA .• 
J 

Moreover, in some cases, L has under the hypothesis a continuous, known and 
2 tabulated distribution, e.g. nor111a.l or x , whereas special tables are 

needed for the distribution of T under the hypothesis. One may suspect that 

the price :for these advantages will be a loss of power of the RRS test. 

However, Bell and Doksum have shown that its ARE with respect to the IMP 

rank test equals one. There:fore it seems worthwhile to obtain an 

for the power of the RRS test in order to obtain a comparison to 

stead of o ( 1 ) • 

• expansion 

( -1) . o N in-

In deriving such an expansion, we exploit the resemblance between the RRS 

test, the IMP rank test and the IMP permutation test. For the IMP permuta

tion test the scores a.re - ~, (Zj). These a.re also random and of the same 

form as the A. used here. The typical dif:ferenc'e, however, is that the per-
J 

mutation testscores are based on the sample itself, whereas the RRS test-

scores are found :from a second, independent sa.mple which comes from F under 

H0 as well as under H1 • The independence thus obtained between the A. and 
J 

• 

.. 
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the V. enables us to apply the results of chapter 3 to a much larger extent 
J 

tl1an was possible for permutation tests. 

* * ~ * ~ Denote - t/J ( z . ) as a. , - lJ., ( X. ) as A. and - l/J 1 ( x. ) as a. . Let V. = 
1 J J 1 J J J *J * J 

( 1+v. )/2, 
J 

j = 1, ... ,N. Hence L = 2LA.V.-IA .. Conditionally on Z = z , Lis 
J J J 

• equiva-

lent to Ia.V .. Moreover, in view of the independence of A. 
J J J 

the sa.me case as in chapter 3 .. Define 

* XI z ) , 

y(c) = A { x I 3 • I x-a . l 
J J 

< t;}, 

and V. we have 
J 

we have exactly 

where A denotes Lebesgue measure. The following l~mma supplies an expansion 

* for R0 (xlz ). 

* LEMMA 4.5.1. Suppose that z is suah that there exist positive constants 

c., C and c5 for which 

for some~~ 

J 

-3/2 
N 
l"V 

constants D., C, e., 

(4.5 .. 3) sup { 

m = 
1 

(4.5.4) 

log N. Moreover., assume 
,..,, 
c and n suah that 

-<lO 

m. 
I w. ( x+y) I J 

J 

= 3, m = 
3 

f'(x)dx : 

that there are positive 

,._, 

e} s C, j = 1, ... ,4, 

on a subinterval T of ( O, 1) with tength at Zeast n. Then there ex·ists A > o, 
depending on N, z *, e and F on 'Ly t"fzraoug h c., C, o , D , c, £ , ';; and n , suah that 



whePe K
0
(x) is given by (3.3.4) and 

y = [x - e 
X 

t 2 \~2 
[l(a.EA.-EA. )] la. -1/2 

J J ' . J ][ .] J 
(NF.A2)1/2 NEA2 

1 1 

• 

,..,2 
PROOF. In the first place we note that EA1 remains bounded away from zero 

occurs 
""2 .... 2 1 2 
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* 2 1 2 ~2 1 2 ~2 ~2 -1 2 

and L = 2Ia.V.-Ia .. In view of the conditions of the present lemma, we can 
J J J 

ap:ply theorem 3. 3. 1 , where the a.rgument of 

[x + - 8 • 

The obvious way to proceed is to show that the conditions of this lecoma are 

satisfied for all z*, except for those in a set B with sufficiently small 

probability. Then the unconditional distribution of L follows by taking 

first have to replace K
8

(yx) by an appro~imation that can be controlled on 

B. Define 

• 

82 
+---

2NEA2 
1 

~(x) + cp(x) 

2 2 2 \ {Ia.EA.-cr (la.A.)}x + 
J J J J 

- X ___ J ___ - 8 
2 -2 

1 
- 8 

-

(NEA2)2 
1 

( 3 8 
X -3X) - -

2 

_____ • .._] ___...J...____.,,,J__ X 

2 NEA2 
1 

NEA1 

J J J 

+ 
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LEMMA 4. 5. 2. Under the aondi tions of Zerrrna 4 • 5 . 1 we have 

~ sup IK
0

(yx)-K0(x)I ~ AR. 
X 

PROOF. As '(;;:~-EA2 )/(NEA2 ) remains bou.nded away :from -1, 
l J 1 1 

we get the fol-

lowing expansion for y 
X 

}:(a.EA.-EA~) 
y = {x - e · ·1 J •1 } { 1 

X (~)1/2 
1 

\ -2 ~ t 2 
L L(a.EA.-EA.) 

1 1 1 

2 "'2 --2 

- ----"'-----'..,__........._~------- + O(R[l+lxl]). 
2 <NEA2)3/2 

1 

Under the conditions of lernzna. 4. 5. 1 , 

:fore 

1/y = 0( 1/x) as 
X 

lxl ➔ ~,and there-

1 2 3 1 
~(y) = ~(x) + ~(x){(y -x)- 2 x(y -x) } + 0( ly -xi ~( 2 x)). 

X X X X 

As for all p > O, xpcj>(x) = 0(1), (4.5.7) and (4.5.8) together show that 

\ ~ --2 
1 l(a.-EA.1) 

1 
, ~2 ""'2 2 

1 3 (L(a.-EA,)) a 2 
+ ..,,_ ( 3x-x ) ,J + - ( 1 - X ) 

8 (™2)2 2 
1 

( \ 2 2 l(a.EA.-EA.)) 
,J J J + O(R) • 

NEA2 
1 

62 
- X 2 

From (4.5.7) it is clear that 

(4.5.10) -1/2 . 2 + 8N 12 (a.. EA. -EA. ) I ) . 
J J J 

By means of Holder's inequality we show that the coefficients of the second 



J J J 

Finally, 

J 

(4.5.12) 

k = 1,2,3,4. 

...., 
Combination of (4.5.9), (4.5.11) and (4.5.12) leads to K8(x). 0 

Now we can give an expansion for the unconditional distribution of L. 

Define 

,.._, ...., 

--

4.5.3. Let there be positive constants D, e, C, c and n such that 

(4.5.2), (4.5.3) an,d (4.5.4) hotd. Suppose in addition that 
00 10 ...., 

!_
00

~ 1 (x)f(x}dx ~ C. Then there exists A> O depending on N, e and F only 
,l'oJ ,.., 

through D, e::, c, c and n, suah that 

sup 
X 

,._,. 
where K

6
(x) and Rare given by (4.5.5) and (4.5.6) respectively. 

+ ER}, 

PROOF. The scores A. we use, have the same distribution as the scores 
J 
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-lJ,
1 
(Zj) for the I,MP permutation test under the hypothesis and therefore we 

can apply lemma 4.3.3. This shows that under the conditions of the present 

lemma the results of lemma's 4.5.1 and 4.5.2 hold, except on a set B with 

In view of corollary 4.3.1 it remains to prove that EIK8 (x)IBI = O(ER). To 

this end we note that 

4 
O(Ia.+N). 

J 



2 J J 2 2 J J J4 J 2 2 
and cr (Ia .A.) = 0( (Ia.) +N2 ). Furthermore, Ia. ::;; (la.) 

are of this order 

third and fourth 
,..,,2 J J 2 J J J 

proved for the re-~ ...,_.., ~ 
maining terms of K

8 
in a manner analogous to the proof for the correspond-

ing terms in corollary 4.3.1. D 

COROLLARY 4.5.1 .. Under the conditions of Zemma 4. 5.3 we have 

sup IR ( x )-R (x) I 
x e e J J 

J J J J J J 

where 

• 

+ e3 3 ~2 112 I(EA.)E0 {3w 1 (z.)-6w1$2 (z.)+~3(z.)} + 
6 (NEA ) J ;i J J 

1 

PROOF. In view of le·oma 4.5.3 the essence of the proof is the evaluation of 
~ EK0(x) and ER from (4.5.5) and (4.5.6). The first term in (4.5.5) that 

deserves attention is o2(la.A.). Its expectation with respect to z* is 
J J 
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--

--

By Schwarz' inequality the last term in (4.5.16) is at most E[L(A.-EA.) 2 J2 ; 
J J 

by applying the same inequality to the second term we arrive at 

Nov we treat the remaining terms in (4.5.5). We begin by noting that 

J J J J 

, 2 , 2 , "'2 "'2 3 3 / 2 
EL(A.EA.-EA.) = - la (A.)~ Ell(A.-EA.)I = O(N ). 

J J J J J J 

\ 2 1 r ~2 ~2 1 r 2 1 r 2 Next we observe that l(A.EA.-EA.) = 2l(A.-EA.) - 2l(A.-EA.) - 2 la (A.). 
J J J J J J J J 

This leads to 

2 -2 "-'2 1 ..... 2 ':"2 2 E{}:(A.EA.-EA.)I(A.-EA.)} = 2E[l(A.-EA.)] + 
J J J J J J J 
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F1.1rthermore, 

--
J J J J J J 

2 \ \ 2 2 = a (l(EA. )A.)+ (la (A.)) , 
J J J 

--
J J J J J J 

J J J J 

J J J 

Substitution of these results in (4.5.13) gives (4.5.14) and (4.5.15) with 

an additional tex·m of order N- 1 e2 ( l a2 (A.) )2 • As 
J 

this term may be omitted. D 

A further simplification of (4.5.14) and (4.5.15) is achieved by applying 

theorem 3.3.2 and the results of' section 3.4. In doing so, we restrict 

attention to a fixed d.f. F. One of the consequences of this restriction is 

that condition (4.5.3) can be given a weaker formulation, whereas condition 

(4.5.4) can be omitted altogether (cf'. the first rema.rk following lemma. 

4.2.5). Let ~(a) be the power of' the test based on Land define 
• 

X 

N -

X + __ ...:;....__.__ + n 
18 1 



....., 
n ( 0) = 1-4l(u -n ) + 

et 1 

u -
Ct 
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-

where~,, n , n , n are defined in (3.3.14), (3.4.24), (3.4.26). Let F be 
1 2 3 

the class of d.f.'s F, defined by (3,4.5) and (3.4.6). We now arrive 
at our final result. 

4 
00 10 THEOREM .5.1. Suppose tflat Fis such that F ~ F and f_ 00tJJ 1 (x)f(x)dx < 00 • 

Let there be positive constants c and£ such that o s es CN- 112 and 

e ~as 1-£. Then, 

A, o 1 , 8 2 , • • • such 

(4.5 .. 20) 

sup 
X 

for every fixed F, C and e there 

thatµ: cSN = O and for> every N 

2 
L-8NE

0
tJJ

1
(x

1
) 

0 1 1 

1-1/N 

1/N 

-3/2 + AN 

are positive numbers 

PROOF. We check that under the conditions of this theorem the results of 

theorem 3.3.2 and lernrna 4.5.3 bold. As was mentioned after theorem 3.4.2, 

the fact that FE F implies that 

Hence theorem 3.3.2 holds and 

The other remainder te:t·ios in ( 4. 5. 14) a.re dealt with in an analogous 

0 and 

1, already suffices to ensure that ecr(L(EA. )A.) = o( 1) ,E[L(A.-EA. )2 ] 2 = 
....., 1 J J J J 

o (N), 

and hence that IR8 (x)-R0(x)I = o(N- ). 

The fact that the conditions of the present theorem also imply the results 

of lemma 4.5.3 and corollary 4.5.1 is verified in the same way as in which 

it is shown that theorem 3.4.1 implies theorem 3.3.1. Application of the 

results in (3.4.16)-(3.4.23) to (4.5.15) yields (4.5.19). From this, 

(4.5.20) follows in the usual way. 0 
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REMARK. Note that under the hypothesis the theorem asserts that 

P ( L < x) = ¢(x)-¢(x) 
(n2-3 ) 3 -1 
24N (x -3x) + o(N ). 

0 [NE ~2(X )]1/2 -
0 1 1 

This agrees with the fact that under H0 the statistics 

have the same distribution. 

4.6. DEFICIENCIES 

In this section we obtain the deficiencies among the various tests con

sidered. Firot we summarize the results of Chapter 3, section 4.2, 4.3 and 

4.5. x1, ... ,~ are i.i.d. r.v. 's from a d.f. F(x-6), where f = F' is sym-

t . d . . R1 me ric around zero an positive on . Denote the power 

of the MP para:roF:tric test, based on 1 /e Llog{ f ( X. -0 ) / f ( X. ) } by 7T 
1 

( 0 ) , 
J J 

of the LMP parametric test, based on -Iw 1(X.) by TI2(e), 
of the MP permutation test, based on (1/28) X·>O log{f(Xj-0)/f(Xj+e)} 

J 

of the IMP perm~tation test, 

of the LMP 

of the IMP RRS test, based on -I~1(z~)V. 
J J 

by 7T 
3 

( 6), 

by 7T 4 ( 8 ) , 

by 7T S ( 8 ) , 

by 1r 6( 0). 

Note that n 1(e) is the envelope power. The following two types of con-

ditions will be imposed: 

(4.6.1) 

f is k times differentiable and~-= 
J 

satisfies 

lim sup 
y-+O 

00. 

_oo 

m. 
I ~ . ( x+y) I J f ( x ) dx < 00 , j = 1 , • • . , k , 

J 

where k is a positive integer and m. 
J 

> o, j = 1 , •.• ,k, and 

(4.6.2) 1:im sup t(1-t) 
t-+O, 1 

3 -1 1 +t 
2 , where f 1(t) = w1(F ( 2 )). 

Now we introduce four classes of d.f.'s F, determ:ined by such conditions 

{Fl (4.6.1) holds fork= 5, m. = ~, 
J J 

lim sup 
y+O 

00 

_00 

10 w1 (x+y)f(x)dx < 00}, 



F = 
3 

00 

_oo 

4 

m4 = 1; (4.6.2) holds}, 

10 
tJ., 1 (x)f(x)dx < 00 }. 
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Finally, let K = (k .. ) be the 6x4 matrix 
J.J 

(n2-3)/24 

(n2-3)/24 

-n2 /12 

-n2 /12 

-(n -3)/24 
2 

-(n -3)/24 
2 

(n2-3)/24 

(n2-3)/24 

-n2 /12 (n2-3)/24 

-(5n2-3)/24 (n2-3)/24 

-(n,..-3)/24 
C. 

-(n -3)/24 2 

-(n -3)/24 2 

-(n -3)/24 2 

• 

2 2 

2 2 

(2112 -3n3 )/72 

(5n2-12n
3
+9)/72 

(5n2-12n3+9)/72 

(5n2-12n3+9)/72 

(5n2-12n3+9)/72 

(5n2-12n
3
+9)/72 

After these preliminaries, the following theorem can be formulated. 

THEOREM 4.6.1. Suppose there are positive aonstan~s c, C and£ suah that 

Fe F2 if i = 3,4, FE F3 if i = 5 and FE F4 if i = 6. Then, for every 

fixed F, c, C and£, there exists positive numbers A, o1, 02, ..• suah that 

lim oN = O and for every N and i = 1,2, ... ,6 
N >-oo 

(4.6.3) 

where 

and 

+ R. ' l. 
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PROOF. The result is jmmediate in view of theorem 3.4.1, 3.4.2, lemma 4.2.5, 

theorem 4.3.1, lemma 4.3.5 and theorem 4.5.1. Note that here the result is 

given for a fixed F, not only in the case of rank tests and RRS tests, but 

also in the case of parametric and permutation tests (cf. the remark fol

lowing lemma 4.2.5). 0 

REMARK. If FE F
3

, the sum of variances occurring in k
53 

and k63 , can be 
• written as 

IR I 

1-1/N 

1/N 

1-1/N 

1/N 

+ R, 

Denote the deficiency of the test with power 1T. ( e) with respect to the test 
l 

with power nj(e) as dN(i,j); if it exists, the corresponding asymptotic 

deficiency is denoted as d(i,j) (i,j = 1, ... ,6). In the ~allowing theorem 

we give dN(i+1,i) and, if possible, d(i+1,i), i = 1, ... ,5. As deficiencies 

are transitive, this suffices to find dN(i,j) for all i and j. 

THEOREM 4.6.2. UndeP the aonclitions of theorem 4.6.1 we have 

d(2,1) 

d(3,2) l dN ( 3 , 2,J -d ( 3 , 2 ) I 

• 

, 

1 2 2 1 2 -
a a 1 1 a 1 N 

J. 1+ 1 a 1 
Application of (4.6.3) and the definition of K = (k .. ) leads to the de-

J.J 
sired result. 0 

REMARK. d(2,1) is independent of a, dN(5,4) only depends on a and 8 through 
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APPLICATION 1. We rirst consider the normal case F = 4>. In section 3.4 it 

has already been veriried that~ E F
3

• The other 

be checked in the same way. Hence we may use all 

F. also 
l 

results 

d 4 6 2 A n = N1/2e - . an • • • s 1 , n2 = 3, n
3 

- 2, it follows that 

1 d(2,1) = O, d(3,2) = 2 
2 u , 
Ct 

d(4,3) = 0, 

2 1 1 +U. 
= 'o (~- ( J:N)) - 1 + o 

l 2 2 N' 

1 2 = -(u - 1) 
2 Cl 

According to (3.4.34), 

u. +1 
--

1+U. 

0 

contain¢, as may 

of theorems 4.6.1 

dx + 0(1) = 

= 1/2 log log N + 1/2 log 2 + 0.05832 ... + 0(1). 

Hence d(5,4) and d(6,5) do not exist, but on the other hand, dN(S,4) and 

~(6,5) are of order log log N. 

In section 4.4 it is mentioned that the asymptotic deficiency d(3,t) of 

the normal permutation test with respect to the t-test equals zero. This 

result enables us to compare the t-test with the other tests we are con

sidering. We have for example 

(4.6.4) d( t, 1 ) 

(4.6.5) 
2 -1 1+U. · N 

d (5 t)::: 'o (4> ( ,,,J• )) 
N ' l 2 

1 
- - + 0 • 

2 N 

The first result was already obtained by Hodges and Lehmann (1970). 

A final remark on the nor1c1al case is that dN( 6, 1) = 2dN( 5, 1) + aN: the de

ficiency of the RRS test with respect to the envelope power is twice the de

ficiency of the norma,l scores test with res:pect to the envelope power, a

part from a term that tends to zero as N ➔ ~. 

APPLICATION 2. As a second example we take the logistic d.f .. F(x) = 1/(1+e-x). 
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n2 = n3 = 9/5'J 

for i = 1, ..• ,5: 

d(2,1) 

d(5,4) 

N6
2 

-- 60 

- 3 - 10' 

, d(3,2) --
2 

u 
d(6,5) a. -- 5 

2 
u N 112e ✓3 u 

Ct Ct. , d(4,3) o, + --
5 15 

3 + • 10 

d(2,1) and d(3,2) can be made more transparant by using the relation 
• • • between e and the power of the test. If we want to achieve a certain 

1-B at level cx, it follows from S = ¢(u -✓3N112a/3) + O(N- 1 ) that 
Ct. 

and therefore 

2 
(u(l+ue) 

d(2,1) = 
20 

u (2u +us) ex a 
= -----=---

5 • 

• 

power 
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CH.APTER 5 

DEFICIENCIES OF SOME RELATED ESTIMATORS 

5.1. INTRODUCTION 

In this chapter we take advantage of the correspondence between some of the 

teststatistics we considered in chapters 3 and 4, and some well-known 

estimators. This correspondence imt11ediately gives expansions to o(N-1 ) for 

the distribution of these estimators. The expansions can be used to make 

deficiency comparisons between the estimators. 

By applying certain generalizations of the Cramer-Rao bound - the so called 

Bhattacharyya bounds - we obtain a lower bound to o(N-1 ) for the va,ri.ance 

of an unbiased estimator. We also derive the deficiency of the estimators 

considered with respect to this lower bound. 

In section 5.2 maximum likelihood estimators are dealt with; in section 

5.3 we consider Hodges-Lehmann estimators. 

5.2. MAXIMUM LIKELIHOOD ESTIMATORS 

Let x1, ... ,~ be i.i.d. r.v.'s from F(x-e), where f = F' is symmetric 

a.round zero and positive on R 1 • In section 4. 2 we considered the test for 
. * N . . 

r,,J . 

1r8*(e) for its power ,r8*(e) in (4.2.24). From this a simiJar expansion for 
.... 

the distribution of the maxim1lm likelihood est:i.mator (MLE) e o:f a can be 
.... .. derived. Since e is translation invariant, we may • • restrict attention to 

the case e = O. Probabilities are then denoted as P0 , otherwise as P
8

• 

De:fine 

(5.2.1) 

(5.2.2) 

where 

_ 2 1 /2"' - P0 ([NE0~1(x1)J e ~ x), 

~(x) = 
(n2-3) 

24 + 
2 

X 

72 
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LEMMA 5. 2. 1 • Suppose that f is five times differentiable and 
ex, 

lim sup 
y+O 

I lJ} • ( x+y ) I 5 / j f ( x ) dx < 00 , j = 1 , • • • , 5 • 
_co J 

Moreover., asswne that tj; 1 is non-increasing. Then for ever,y fixed d. f. F 

there exists A > O sueh that for all x 

(5.2.4) 

PROOF. By definition, 
N -1/2 J- J_ -1/2 

vi is non-increasing, the events {I._1 rp 1(X.-N x) > O} and {e < N x} 
1 J- J -1 /2 

a.re essentially the same. Furthe1~ore 9 under e = 0, x1-N x has the same 
-1 /2 · th t distribution as x1 under e = -N x. Together this shows a 

N N 

(- TN) j=1 J <- TN) J=1 

Let { oN} be a sequence of positive real n1.unbers defined by oN = b. N-p f'or 
1 

some b > 0 and O < p < 

Then, f'or 8 = - N- 112x and a fixed F, the conditions of lemmas 4. 2. 4 and 4. 2. 5 
are satisfied (cf. the first rema.rk after lamma 4. 2. 5). Hence we can use 

the expansion in (4.2.9) for the probabilities on the lef't and right side 

of (5.2.5). The first consequence of this is that these probabilities 

differ at most O(N-312+N-312x2 ) and therefore 

(5.2.6) 

. ( * 

e at level a, (5.2.6) becomes 
- X X 1 -3/2 -3/2 2 

By replacing ~S* by its expansion is*' as given in (4.2.24), for a= 1/2, 
• we arrive at 

which proves 

• 

• 

• 
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RE • Linnik and Mitrofanova (1965) have given Edgeworth expansions to 

O(N-k) for the distribution of 0 under rather restrictive conditions. Re

cently, Cibi~ov (1972) has announced results where such expansions are ob

tained under minimal assumptions. 

W h . ( -1) e now ave an expansion to o N for the distribution of 

In order to answer the question, whether this also gives an expansion to 
-1 2 1 2 .... 

first consider the following 

frequently occurring situation (cf. Hodges and Lehmann ( 1956), Cherno:ff 

( 1956)). A no:r·ttia.l sequence of estimators TN has an asymptotic distribution 
. th . 2 2 . wi variance T • Call T the variance of the asymptotic distribution. On 

the other hand, the variances of TN tend 

finity. Call a2 the asymptotic variance. 

that a2 = T
2 • We can only assert that a2 

l . . 2 d . to a 1m1.t a , as N tens to in-

Now it is not necessarily true 
2 d . . 1 · ~ T an strict inequa ity may 

occur. This arises, loosely speaking, when very large errors occur with 

very small probabilities. If one wants to take this possibility into 

account, one should use o 2 as a criterion of perfo1-mance:, otherwise one 
2 can use T • 

In the present 

no1·med sequence 

situation we define 

{ NE qi 2 ( X ) } 1 / 2 6 
2 the following analogue of "t' for the 

0 1 1 

00 CX) 

00 

Application of (5.2.2) shows that 

(5.2.8) 

On the other ha,nd, we of course have the va.riance 

we shall denote 

of performance. It is therefore desirable to have 
2 2 ( -1) · · l · d crN =TN+ o N • Such conditions are supp ie by 

,,.., 

L:EMMA 5. 2. 2. Let there be constants k > 10 and C > 

of 2 1 2~ 

2 2 . · crN or TN as a criterion 

conditions under which 

the following len1,11A .• 

< 00 

2 ~ 1 
and~, - w2 ~con R. If condition (5.2.3) is aiso satisfied, we have, 

for every fixed d. f. F, a constant A> 0 depending on N oniy throu.gh k and 
,..., 
c, such that 
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PROOF. As -

N 
= p < I 

0 . 1 J=· 

s AN 

,..., 

(k-10) 

+ 2(k+2)} 
• 

~ c > O, we have for x > 0 

N 
.... X \" = Po(a > TNN) = P ( L 

0 .. 1 J= 

where O ~ p. ~ 1, j = 1, ... ,N. Application of Chebyshev's inequality leads 
J 

to 

N 
(5 .. 2.10) I 

j=1 

application of the inequality, due to Marcinkievitz, Zygmund and Chung 

(cf. 4.3.40), leads to 

(5.2.11) 
N 

E IN-1/2 \ ,/, (X )lk < 
0 l '1'1 J. oo. 

• 1 J= 

·. Combining (5.2.9) - (5.2.11) we obtain that, for x > O, 

(5.2.12) 

In view of the symmPtry off, we have for all x 

and hence, for all x, 

' 

(5.2.13) 

N 

..... 
:s; o ) = P

0 
( e ~ - 4::-) , 

vN 

• 

( ( 
• 00 2 

From 5.2.12) and 5.2.13) it follows that f _
00 

x dHN(x) < 00 • But then 

()0 , 

00 A 

(S.2.13) also implies that !_00 xd~(x) = 0 (i.e., 9 is unbiased), and hence 
2 00 2 ( ) crN = J_~ x dHN x. By another application of the syncrnetry off and by 

• 

• 

. . •. ,, I 

' ' 



partial integration, this leads to 

Let {pN} be a sequence of 

In view of lemma 5.2.1 we 

This leads to 

0 

00 

QO 

~ 

From (5.2.2) it follows that, for all x, HN(-x) = 1-~(x) and hence 
2 00 ...., 

'!N = 4! 0 x(1-HN(x))dx. F11rthermore, from (5.2.2) it is also clear that 
OO rv 3 12 

fp x(1-HN(x))dx = O(pN exp{- ~N}) and therefore 
N 

00 

(5.2.15) 

Application of 

3 -
= O(N 2 

1 2 

x( 1-HN(x) )dx + O(pNe + PN • 

the integral in (5.2.15) 
1 
2 

shows that 

which is the desired result. O 

( 6 ) 2 ( -1 /2 K. Linnik and Mi trofanova 1 9 5 prove that aN = 1 + o N ) , under 

stronger conditions. 

111 

In the above lPmma. we have given conditions under which 

o(N-1). In the sequel we shall no longer consider both 
2 

2 2 
crN and ~N agree to 

kinds of variances 

but always take 'tN as our criterion of perfox·ma.nce. 

between the MLE and other estimators. An application of this kind occurs in 

the next section, where the MLE is compared to Hodges-Lehmann estimators. 
' 

In the present section another possibility is treated: here we use (5.2.8) 

• 



112 

biased estimator. 

The first lower bound we consider is the well-known Cramer-Rao (CR) bound. 

The assumptions which are necessary to apply this bound are satisfied if 

the conditions of lemma 5.2.1 hold. We have for any unbiased estimator 

UN(X1, ... ,XN) of e that 

(5.2.16) 1 • 

The variance of the asymptotic may be 

smaller 
1 than this lower bound, but only on a subset of 0 c R of Lebesgue 

meas1Jre zero. (cf. Bahadur (1964) and Rao (1965)). Comparison of (5.2.8) 

and (5.2.16) shows that the variance of the asymptotic distribution of 

asymptotically equal to the CR bound and hence the MLE 

is optimal to this extent. 

Now Bhattacharyya (1946) has developped a series of refinements of the CR 

bound, which can be applied if stronger conditions are satisfied than are 

necessary for the CR bound. The k-th Bhattacharyya (B) bound for 
2 2 1 2 

J= J 
CR bound and the (k+1)-th B • • bound is obtained from the k-th B bound by 

adding a term of -k order N • -1) Hence, for comparison to O(N , the second B 

bound is needed. From Davis ( 1951) we obtain that the ass11m11tions, needed 

for this bound, a.re satisfied if the conditions of lemma 5.2.1 hold. 

FUrthermore, it follows that, in view of the symmetry off, a 1 
• = O, 1.e. 

the second B bound coincides with the CR bound for the present case . 

...... 
general the MLE e is not 

t . ( -1) . 2 imal to ON • The difference between TN and the second B bound equals 

(5 .. 2.17) 
n -3 

N 
= ___ 2 ___ 2_ :?! O' 

N{E
0

tt, 
1 

( x
1 

) } 

op-

whe:re equality occurs only if lJ,' is constant a.s., and this is the case i:r 
1 

x1 has a normal distribution. 

Finally we restate the result in terms of deficiencies. We have 

02 
o2 (a) = ---

NE0~1(X1) NEolp,<x,) 

1 -----=-----+----------
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This implies that the asymptotic deficiency of the MLE with respect to the 

second B bound • finite and J.S equals 

(5.2.18) d -- 2 2 • 

{E0¢1(X,)} 

HODGES-LEHMANN ESTIMATORS 

Let be i.i.d. ' r .v. s from F(.x-6), 

around zero and positive 

statistics of the x, , . 
Zj is positive, and v. = 

J 

on R 
1

• 

and 

Let z 1 , •• 

V. define 
J 

0 otherwise, for • 
J 

where f --
be the 

if the 

F' • symmetric 

absolute order 

x. 
1. 

corresponding 

-- 1 , ••• ,N. In 3 we 

to 

con-

sidered the for the hypothesis of symmetry against 

chapter 

F(x-0), a > o, 
based on T 

from a d.f. 

a. V., 
J J 

with a. 
J 

-- * EZ., 
J 

where * z,, • • • are order statistics 

From this rank test, Hodges and Lehmann (1963) have derived an estjmator 

of e. • Define --
the distribution 

,.._, 

and 62 

estimator. 

-- inf { e: 
Hodges 

1 
2 IN * . 1 EZ. 

J= J 
and X-0 

. - . of T 1 s s:_y1ametric 

T(X-8) < then 

and Lehmann prove 

-- ( X -0 1 , 

around ll • 
,_ ...... 
e --
that • 

1S 

Let 
• 
1S 

Under the hypothesis, 

-- sup { 6: T(X-0) > 

the Hodges-Lehmann 

µ} 

(HL) 

translation invariant and 

distributed syrnmetrically around e. Hence it suffices to find the distribu-
,.., ,.., 

tion of 8 fore= O. The close connection between e and T makes it easy to 
-find • an expansion for the d. :f. o:f e :from the • expansion for the d.f. of T, 

which we obtained in chapter 3. We restrict attention to the case where T 
• 
1.S the 

where 

locally most 

--

,,.._, 

~(x) --

powerful rank test, 

+ xq,(x) 
N -

and n
3 

are defined in ( 5 .2. 2), 

where a. --
J 

N 

I 
.j=1 

-EO 1P 1 ( z j) . 

+ 
2 

X 

72 

and 

Define 

< ••• < 

< UN:N are order statistics of a sample of • size from the 
U1 :N 

uniform • • d1str1bu-

tion on ( 0, 1 ) . Let F be the class of d.f.'s introduced • in 
. .. . 

definition 3.4.1. 

The following lemma gives conditions under which • 
1.S o ( N-1 ). 

that F F and that 1P 1 non-increasing. Then, for 

every 

Suppose 

fixed F and every • • pos-z,ttve constant C, there • exi,st positive numbers 
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o1,o2 , ... suah that lim oN = 0 and for all lxl ~ C 
N >oo 

~ PROOF. From the construction of 8 and the monotonicity of ~1 it follows 

that 

(5.3.2) 

cf. Hodges and Lehmann (1963). Note that expression (5.3.2) is completely 

analogous to (5.2.5). The remaining part of the proof is therefore analogous 

to the proof of lemm~ 5.2.1. We only mention that under the conditions of 

the present lemma, theorem 3.4.2 can be applied. 0 

In analogy to the previous section, we use as a criterion of performance 
~ for 6 

00 00 

(5.3.3) 
~2 2 ~ ( 

,o,J 2 
X d~(x) xd~(x)) = T = -

N _oo _oo 

N 2 
l 00('¥,(U .. N) 

1 7 3 . -1 J • 
1 + N{n3 + J- } . -

12 n2 
Jl'JI Ill - - - 4 2 

E0$1(X1) 

Comparison of (5.2.8) and (5.3.3) leads to 

(5.3.4) 

N 2 
I ao(', (U .. ·N)) 

"'2 2 ·=1 J. T -1' = _J _______ -

N N NE $2(X) 
0 1 1 

• 

• 

It follows that the deficiency of the HL estimator e with respect to the 
..... 

MLE e equals 

- + 0(1). 

Note that dN equals the deficiency of the IMP rank test with respect to the 

IMP test for the size a= 1/2 (cf. Albers, Bickel and van Zwet (1974)). 

Finally, the deficiency of the HL estimator with respect to the second 

B bound is the s11m of the deficiencies in (5.2.18) and (5.3.5). 
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CHAPTER 6 

-

FINITE S..AMPLE COMPUTATIONS 

6.1. INTRODUCTION 

In section 3.4 we derived expansions for the power o:f one sample linear 

rank tests based on exact or approximate scores against contiguous location 

alternatives. In section 6.2 to 6.4 we investigate the performance of these 
• ex::pansions as approxima.tions to the finite Rample power. In particular we 

compare these expansions to the us1..Jal normal approximations. 

In section 4.6 deficiencies of the above rank tests with respect to various 

other types of tests :for the one sample problem have been obtained. Section 

6.5 is devoted to the comparison of these expressions with deficiencies 

:ror :finite sample sizes that are obtained n1.1merically. We focus attention 

on the normal case and consider the test based on the sample mean, the 

t-test and the one sample normal scores test. 

6.2. THE NORMAL SCORES AND THE WILCOXON TEST AGAINST NORMAL AND LOGISTIC 

ALTERNATIVES 

Here we shall consider the one sample normal scores (NS) test and the one 

sample Wilcoxon (W) test, both against normal (N) location alternatives 

G(x) = ~(x-6) and logistic (L) location alternatives G(x) = 1/[1+exp(-x+0)]. 
-1/2) 4 We ass1.1me that 8 is non-negative and e = O(N • From section 3. we have 

(6.2.1) 

(6.2.2) 

(6.2.3) 

N 
- 1 + 2 I 

j=1 

1+U. 

= 1-~(u -n) -
CX. 2 

= 1-t(u -n ) -
ex. 3 

arct 2 3 2+ 1 - 4 -rr ) - 6 
20 

0. 0. 
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' 

{6.2 .. 4) 
2 6 

• 1 
2 6 arctan T/2 

+ n4 (---,r---

1 12 arctan T/2 
------) 

1T 

_ 43 + 1T) 
20 9 

44 
+ (20 -

1 
6 arctan T/2 

✓2 - -----) + 
1T 

where u
1 

:N < ••• < UN:N are order statistics from the uniform distribution 

on (0,1) and 

(6.2.6) 

-1 ( 1 ) 
4> 1 - 2N 

0 

(2~(x)-1)(1-~(x)) dx + o(l) = 
. q,(x) 

1 1 = 
2 

log log N + 2 log 2 + 0.05832 •... + o(1). 

Upon evaluation of the coefficient.s, (6.2.3) and (6.2.4) become 

(6.2.7) 

(6~2.8) 

+ 0.13675 + 0.00281 

• 
. 

2 
n -3 

1 N 

2 l 
j=1 

1+U. 

{O. 19904 

u2 + 0.10693 
a 

We shall now investigate how well the exact power is approximated by 

(6.2.1) - (6.2.4) for small samples. We shall also compare this approxima

tion to the usua.l norn1al approximation, which approximates to o ( 1) instead of 
-1 o(N ). The necessary results about exact powers of the tests involved can 

be found in papers by Klotz ( 1963) and Thompson, Govindarajulu and Eisenstat 

(1967). 

Klotz gives the small sample power for the normal scores test and the 

Wilcoxon test against normal alternatives, for sample sizes N = 5(1)10 at 

significance levels~= k/2N for various integers k and for shifts 
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8 = 1/4(1/4)3/2(1/2)3. The non-standard levels k/2N are necessary to avoid 

randomization. In short, his method consists of selecting the k = a.2N 

orderings V = (v1 , ••• ,VN) that give rise to the largest values of 

J= J: J 
orderings. The evaluation of such probabilities involves the evaluation of 

an N-dimensional integral. By using a recursive scheme, this problem can be 

reduced to the computation of None-dimensional integrals. In this way 

Klotz can go as far as N = 10, obtaining exact results in fo1Jr decjmal 

places. 

For larger sample sizes the amount of computation that is necessa.ry for 

this method, becomes prohibitive and one has to turn to Monte Carlo methods, 

as is done in the paper by Thompson et al. (1967). 

They give the power for the normal scores and the Wilcoxon test against 

both no111,al and logistic alternatives for N = 1 O, 20, a = O. 01, 0. 025 and 

0.05 and e = 1/4(1/4)1,3/2. In their paper these results are collected in 

table 4.1, where it is indicated that the test sizes considered are 

~ = 0.01, 0.025 and 0.10. However, the last value should be 0.05. This is 

not only evident from the ruJrn~rical results obtained, but also from a 

remark elsewhere in the paper. 

The method used by Thompson et al. is the following: first the required 

critical values are found by using Edgeworth approximations up to an 

appropriate order under the hypothesis. Then,for each combination of N, 0 

and a under consideration, 1000 trials are conducted. Each trial consists 

of' drawing a random sample of size N from the standard no.:r·mal or logistic 

distribution, shifting it over 8, forming the Wilcoxon and normal scores 

teststatistics and counting the nu,rnber of sa,mples for which the tests 

reject the hypothesis. This procedure results in unbiased power estimates 

with standard deviation at most 0.016. 

In order to compute ( 6. 2. 1 ) to ( 6. 2. 4), we ca.n use ( 6. 2. 6) for the sum of 

variances occurring in (6.2.1) and (6.2.3). Another possibility is to use 

values that are obtained numerically. Klotz (1963) gives a table of 

N 

I 
j=1 J : 

Thompson et al. (1967) give 

30, 50 and 100. As 

N 
= N - l 

j=1 

-1 ( · )/ 2 [E~ { 1+Uj:N 2}] , 
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these results enable us to :find the s1.1m of va.riances f'or various sample 

sizes. For the sarnple sizes we shall consider, we list in table 6.2.1 the 

nUIDerical values and the values supplied by the second approximation in 

(6.2.6). 

N 

5 
6 

7 
8 

9 

10 

20 

50 

100 

Table 6.2.1 
1+U. 

. . N 2 -1 J:N 

n"t1merical approxjmation 

0.693 
0.724 

O. 752 

0.777 
0.794 
0.810 

0.911 

1 .022 

1 .080 

1 1 8 
2 

log log N + 2 log 2 + 0.05 32 

o.643 

0.696 

0.738 
0.771 

0.798 
0.822 

0.953 

1. 087 
1. 168 

Tables 6.2.2 - 6.2.7 (p.128-p.133) give the results of the comparison of" 

the approximations (6.2.1) - (6.2.4) to the normal approximation and to the 

results of Klotz and Thompson et al. We have used the m1mArically obtained 

slightly better than using the second approximation in table 6.2.1: :for 

N = 5 or 6 the difference is always less than O. 004, for la.rger N it is 

even less than 0.001. 

Inspection of these table shows that (6.2.1) - (6.2.4) supply excellent 

approximations for all N, a and 8 under consideration. They always con

stitute a substantial improvement over the usual normal approximation, 

which yields values that a.re system.a.tically too large. This bias is cor

rected by the O(N-1 ) term, as may also be seen from (6.2.1) to (6.2.4). 

6.3. THE WILCOXON TEST AGAINST CAUCHY ALTERNATIVES 

In the previous section we have 

mation already gives reasonable 

considered cases where the norroal approxi
-1 results. Adding terms of order N merely 

constitutes an jmprovem.ent ~ however substantial it may be, over an already 
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rather satisfactory approximation. In view of this, it seems more interest

ing to consider situations where the no1mal approximation performs very 

badly. If in such a case the approximation to o(N-1) does give reasonable 

results, we have found an approximation for a situation where none was 

available yet. 

A case in which the norroal approximation leads to very bad results occ11rs 

for example if Wilcoxon's test is used against location alternatives from 

a Cauchy distribution. For this case, an expansion to o(N-1) can be justi

fied. The stands.rd Cauchy distribution has density f(x) = 1/{,r(1+x2 )}. 

Hence, in the notation of' chapter 3, $ (x) = -2x/(1+x2), $ (x) = 
2 2 2 1 2 2 

-
···· F( x) = ( arctan x) /1r+ 1 /2 and therefore F-1 { ( 1+t) /2} = tg( nt/2), 

• 

- ~ 1(t) = sin 1rt. Finally, for Wilcoxon's test, we have J(t) = t. From 

these facts it can easily be verified that the conditions of theorettt 3. 4. 1 

are satisfied. After elementary integrations we find that the power irW,C(e) 
. ( ) - -1 satisfies irW,C 0 = irW,C(e) + o(N ), where 

(6.3.1) 
n<f>(u -n) 

1-~(u -n) - __ a __ 
a N 

_ 21) + 
20 

( 6 
2 

1T 

2(11 
UCL 20 

+...1.. __ 6) 
20 2 ' 

1T 

The exact power results for this case ere obtained from a paper by Arnold 

(1965). Using the same approach as Klotz (1963), Arnold gives the power for 

Wilcoxon's test against alternatives from t-distributions - 4 

degrees of freedom. Note that the Cauchy distribution is the t 1-distribu

tion and that the no:r,nal. distribution is the t -distribution. The sample m 

sizes considered a.re N = 5 ( 1 ) 10, the levels are a = k/2N :for various k and 

the shifts a.re µ = 1 /4, 1 /2, 1, 2 and 3. To obtain a better comparison with 

the case of normal alternatives, Arnold has scaled all densities f he con-

00 2 -1 . 

derd density 1/{1r(1+x )} is replaced by f(x/o)/o, with 1/o = 6.314/1.645 = 

= 3.838. Since the power for a shift µ and a density f(x/o)/o under the 

hypothesis is the same as the power for a shift µ/o and a density :f(x) 
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under the hypothesis, the results from Arnold's paper and those obtained 

:from (6.3.1) become cor11pa.rable by inserting 8 = µ/a = 3.838µ in (6.3 .. 1), 

instead of e = l.l• 

In analogy to the previous section we compare the exact results with the 

norn1al approxjme.tion and with ( 6 .3. 1 ) . The normal appro:xima.tion is very 

bad. It tends to 1 too fast for increasingµ. However, the expansion in 

(6.3.1) leads to even worse results: as lJ increases, this approximation 

tends to O very fast. A typical result is 

Table 6.3.1 

N = 8, a= 0.05469 = 14/256 

. 

power 

µ exact noI-mal appr. appr. 6.3.1) 

1/4 .35 . .46 .32 

1/2 -57 .92 .06 

1 . 74 1.00 -,o-9 
2 .86 1.00 -3x10-9 

3 .90 1 .oo -2x10-9 

• 

Ap:ra,rently we have not succeeded in finding a useful approximation by con-

sidering higher order terms. The expansion ( 6.3 .1) obviously has a very 

local character. It will only give reasonable results for very small values 

o:r e. Here ''small'' means that these a-values give rise to values of 1r ( e) 
considerably below 0.5, and this region is of little practical interest. 

The local character of (6.3.1) is borne out by computation of the coeffi

cients in this expansion. We 

(6.3.2) ( . 1 /2 ) = 1-~ u -0.55N 8 -a 

1/2 _ 2 + o.05u N e-o.1o+o.14Ne} ± 0.00 ..... 
a 

- ( ) · (0-25)1/2 This shows that ,rw ,C e reaches its ma,x, m11m for e ~ 0 . 42 F:::s 1 . 1 . As any 

approximation of the power ,rW,C(e) should be increasing, it follows that 
,..,,, 
nw,c(e) is certainly unreliable for 0 ~ 1.1. Since 0 = 3.838µ, we have that 

(6.3.1) is certainly bad forµ~ 0.3, which agrees with table 6.3.1. 
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A similar inspection of (6.2.7) and (6.2.8) shows that here the coefficient 
1/2 3 . 

of N 0 ~(u -n) is much smaller than is the case in (6.3.2). Hence, these a 
approximations first reach their maximum in e if e is large, i.e. if n(8) 

is already very close to 1. This explains their excellent performance. 

6.4. THE SIGN TEST AGAINST NORMAL, LOGISTIC AND DOUBLE EXPONENTIAL 

ALTERNATIVES 

In section 3-5 an expansion was derived for the power n(e) of the sign test. 

Let -r = N112 (2F(0)-1) and y = (N+1+N112u )/2-[{N+1+N112u )/2], where [y] 
a. a. CL 

denotes the integer part of y. Then, for all e such that Tis bounded, 

(6.4.1) 

Here we shall investigate the performance of (6.4.1) as an approximation 

to the exact power, in the case of normal, logistic and double exponential 

alternatives. The last type of alternatives is considered since the sign 

test is the locally most powerful rank test against such alternatives. For 
. 1 2 e 2 

1/2 -e ( -e 1/2 -e) 
T = N (1-e )/ 1+e ) and T = N · (1-e , respectively. 

The paper by Thompson et al. (1967), discussed in the previous section, 

also contains Monte Carlo estimates of the sign test power against these 

three types of alternatives. The values of N, a and e that are considered, 

ere the sa,mP. as in the previous section. We compare approximation (6.4 .1) 

with these estimates, and also with the normal approximation. The results 

are collected in tables 6.4.1-6.4.3 (p.134-p.136). It appe-a,rs that (6.4 .1) 

is better than the normal approximation, but the improvement is less 

striking than in section 6. 2. For a n1rmber of combinations of N, a and e 
f"or which both approxj_mations perform rather well (e.g. where the absolute 

error is less than 0.03), the normal approximation is even slightly better. 

However, in cases where larger errors occur (e.g. larger than 0.06), ap-

proxjmation (6.4.1) is always substantially better 

mation. The explanation of the fact that including 

than the normal approxi
-1 . terms of order N is less 

ef:fective 

character 

than in section 6.2, probably lies in the pronounced lattice 
• • • of the sign test statistic. 
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6.5. DEFICIENCIES BETWE~N TESTS FOR THE NORMAL CASE 

In chapter 4 an approximation to 0(1) for the deficiency of the locally 

most powerful rank test against alternatives F(x-8) was found with respect 

to various other tests that are optima~ in some sense for the one sample 

problem. Here we shall go into the question to what extent such an asymptotic 

expansion is useful as a prediction of the deficiency for finite sample 
• sizes. 

We shall restrict attention to normal alternatives. This case is very in

teresting, as some of the competitors of the locally most powerful rank 

test, i.e. the normal scores test, are well-known. In the first place, the 

para.metric 
. J= J J J= - J_, N 

Furthermore, in the normal case the teststatistic of the locally most 

powerful scale invariant test is explicitly known: it is the t-test statis

tic. Let dN(NS,X)(dN(NS,t)) denote the deficiency of the normal scores test 

with respect to the X-test (t-test) based on N observations. Now we have 

from (4.6.4) and (4.6.5) that 

(6.5.1) 

where 

The remaining 

1 2 
+ ?Ia, 

N 

I 
j=1 

1+U. 
1 - 2· 

part of this section is devoted to the comparison of dN(NS,X) 
,..,, ...., 

and of dN(NS,t) with dN(NS,t). For the approximations dN we 

can use the values of N 2 -1 
given in the first column of 

table 6.2.1. The exact values are obtained as follows: if the power of the 

normal scores test for a certain sample size N is available, we determine 

the sa.rnple size kN for which the X-test ( or the t-test) reaches the same 

power, and this gives dkN = N-~- Here the role of N and kN has been inter

changed because of the fact that for the normal scores test only a limited 

number of exact power values is available, whereas the exact power of the 

other two tests can be obtained rather easily for any sample size. For con-
"' ,.._, ,.._, 

venience we compare dkN with dN rather than with dk. As dk -dk = 0(1) and 
,.._, ,..., 
d -d = 

N ~ 
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• • • 

impression is confirmed by the numerical results. 

In the above kN is treated as a continuous variable, which is interpreted 

as follows: for non-integer kN' we select sample size [kN] or [kN]+1 with 

probability 1-kN+[kN] and kN-[kN] respectively. Here [y] means the integer 

part o:f y. This yields an expected sample size kN and an expected power 

N N kN 
' 

The first series of comparisons is based on the exact values of the p•ower 

of the normal scores test, obtained by Klotz (1963) (cf. section 6.2). The 

in a straightforward manner. Klotz also tabulated the exact efficiency 

ekN(NS,t) = kN/N o:f the normal scores test with respect to the t-test. Now 

dkN(NS,t) immediately follows from the relation dkN(NS,t) = N{1-ek (NS,t)}. 

depends on N and~ and that dN(NS,t) only depends on N. Here and in the 
N 2 -1 

from table 6.2 .1. The agreement of the exact and asymptotic results appe-ars 

to be satisfactory already at these ~ma.Jl sample • sizes. 

The results of Thompson et al. (1967) from section 6.2 for the power of the 

norcnal scores test against no1·n1al alternatives, can also be used for de-

fie iency ~amputations. Here we deal with Monte Ca.rlo estimates instead of 

with exact values. This leads to values of dkN(NS,X) and dkN(NS,t) which 

are also subject to error. As in general dkN = N-kN is much smaller than N, 

the relative error in dkN will be much larger than the relative error in 

the power estimates. To give an impression of the reliability of the obtain

ed values of dN, we also evaluate the values of dN for the power estimates 

plus or minus their standarddeviation. We only use the power values for 

N = 20: f'or N = 1 O we already have the exact results of ,,Klotz, which are 

much more inforraative. 

- "" . . .. The necessary power values of the X-test are again 1mmediately given by 

1-t(u -N112 a). For the power values of the t-test we proceed in the follow
et 

ing way: the critical values involved are found from Owen (1962). Further-

more, Resnikoff and Lieberman (1957) have tabulated the non-central t-dis-

tribution function 

trality paramP.ters 

(f+1) 112k/4, fork 

for various degrees of freedom f and various non-cen-

o. These o's are of the form (f+1) 112u, whereas we need 
Ct 

= 1, .•. ,6. 'Hence the necessary power values cannot be 

found directly from these tables. Using the description of the method of 
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computation that is contained in the introduction to the tables, a program 

was written to obtain the power values for the values of a considered ne-re. 
According to Resnikoff and Lieberman the accuracy is :four decimal places, 

which amply suffices for our purposes. The deficiency results are collecte.d 

in table 6.5.2. (p.138). They are not. very conclusive, as the estimates of 

the exact deficiency appear to be very crude, but again it seems that the 

asymptotic results to reasonable predictions. 

For sa.mple sizes larger than 20, no results about the power of the normal 

scores test are available in literature. Yet it seems desirable to have 
,.._. 

some idea about the agreement between the dkN and dN 

Therefore, we use the simulation method described by 

• for such sample sizes. 

Thompson et al. (1967) 

to obtain estimates for the power of the normal scores test for sa,1r1ple 

sizes larger than 20. 
,..,, 

In section 6.2 we already mentioned that this method involves conducting N 

f;imu.lations, each consisting of drawing a random sa:mple of size N from the 

stands.rd normal distribution, shifting it over 6 • contputing 

J= J: J 
exceeds the critical value c • Here we supply some more details. In the 

a ,..., 
first place, we restrict attention to the case where N = 1600 and N = 50. 

For this value of found in tables by 

Govindarajulu and Eisenstat (1964). As these values are exact tb five de

cimal places, their contribution to the error in the power estimates can be 

neglected. 

For N as large as 50 it is impracticable to evaluate the exact critical 

values c and we have to use Edgeworth expansions, as advised and tabulated 
Cl 

by Thompson et al. Denote these approximate values as c~. The portion of 

the error in the power estimate, due to the use of c~, may be estimated as 

follows: according to Thompson et al. the use of c' instead of c causes an 
ct Cl 

error of at most 2% in the test size a, i.e. 

c ' ) - P0 ( T > c ) I s o . 02ct • 
et a 

The distribution of (T-E0T)/cr0(T) is asymptotically standard normal and 

therefore (ca-E0T)/cr0 (T) ~ ua. Hence 

P (T > c') -
0 a. 

• 

> C ) ~ 
a 

c -ET 
a. 0 

~( cr (T)) 
0 

c'-E T a O 
- ~( a (T)) 

0 

C -C' 
Cl Cl 
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Denote the 

1T' and let 

exact power P6 (T > c ) as n, the approximate 
-1 a 

power P8 (T > c') as 
a 

un = ~ (1-'IT). In analogy to (6.5.4) we have 

C -C' 

(6.5.5) 'IT' - 1T~ 
Cl. Cl. 

2 
As a0 (T) ~ lead to the following upper bound 

for the error that is caused by the use of inexact critical values 

q> ( u ) 

Ct. 

The main source of error remains of course the fact that we use simulation 

methods to :find 

..... 
1'. = 

l. 

...., .... 
1T. For i = 1, ... ,N, define the r.v.'s n. 

l. 

T > c' for the 
a 

O, otherwise. 

,.., .,... 

. th 
1 sample, 

by 

Moreover, define 
..... "'-1 N .... 
n=N '. 

1 
TI •• Li= 1 

1T clearly is an unbiased estimate of n' . If 

all samples are drawn independently, we have as an unbiased estimate for 

its variance 

-- .-
TI ( 1-TI) -- ,.._, . 

N 

--The variance of Tr can be reduced by using the antithetic method that is also 

applied by Thompson et al .. Here we independently draw N/2 samples x1 , •• ,XN 
...... 

from ~ ( x-0) and form the other N/2 sa.mples by taking 26-X 1 , ••. ,28-XN for 
...., 

each of the first N/2 sa.mples. Note that if x1 has d. f. <El ( x-0), this is 
,A. 

also the case for 2e-x1. Now the ni 
...., 

form N/2 pairs of dependent ' r.v. s. Each 

pair has the same covariance, which we denote as Covar, and the pairs are 
..... ,..., 

mutually independent. The variance of n is {n'(1-n')+Covar}/N. From the 

construction of the pairs it is clear that Covar< 0 and therefore this 
.... 

method decreases the variance of n .• Computation of Covar is too complicated, 

but the estimated values of Covar that are obtained from our numerical 

results, indicate that the reduction is rather smaJ.l. In view of this, the 

conjecture of Thompson et al. that o2(;) becomes about ten times smaller 

seems far too optimistic. The main advantage o~ the antithetic method lies 
,..., 

here in the reduction of the time, needed to form the N samples. 
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The expressions in 
-norma.l scores test is only slightly worse than the X-test and the t-test. 

Hence we may expect the critical regions of the three tests to be much the 

sa.me. As the power of the X-test and the t-test can be obtained with high 

acc1Jracy for all N, a and e , the above resemblance enables us to achieve a 
2 .... ~ 

further reduction of o (n). For each of the N samples that • 
is dra-wn, we 

-not only note whether T > c', but also whether the X-test and the t-test 
CL 

exceed their respective critical values. To be precise, we define for 
• • A -"' ,.._,,_, 

i ,J ,k = 0, 1 the r. v. 's n. "k as n .. k = N x the n1:1mber of samples for which 
J.J J.J 

the X-test does (does not) reject the hypothesis if i = 0(1), for which 

the t-test does (does not) reject the hypothesis if j = 0(1) and for which 

the normal scores test does (does not) reject the hypothesis if k = 0(1). 
A .... ..... .... ..... 

Moreover, let 

we have 
l.J• 

~- .
0

+n .. 1 , and define 
l.J J.J 

TI. k and TI .k analogously. Then 
1. • • J 

... ... .... ..... ..... ..... ..... 
1T = + ,r 110 = 1rt +1r.10 - n.01 = 

..... 

= ""x- + n -
II 1 • 0 

.... ..... 
where ,rt and 

the power 'ITX 

'ITx are 

the 

unbiased estimates of the power 1Tt of the t-test and 

can be obtained -of X-test, respectively. Since 

exactly, we can improve on TI by considering the 

..... .... ... ..... 
1T1 = nt + 1T -• 10 

= n+ 

.... .... 

71"1.0 - 1T o. 1 

..... A 

1Tt and TIX 
following two estimates 

Note that 1r 1 and 11'2 are also unbiased estimates of 1r'. From the close 

resemblance o~ the critical regions of the three tests it follows that 
~ A ~ ~ 

iT .1 o , n. 01 , 7r 1 • 0 and 1T O• 1 estimate very small probabilities. Hence, their 

variances are also small. In view of this and of (6.5.9), we may expect 
2( ..... ) 2( ..... ) . 2 ..... that a 1r 1 and cr n2 are considerably smaller than cr (n) and hence this 

approach yields another reduction of o2(;). Unbiased estimates for the ... .... 
variances of 1T

1 
and 1r

2 
are 
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,..,._,_ 1 A -' 

N { 1T • 1 0 ( 1 -,r • 1 0 ) 
.... .,,.._ 

+ 11 • 0 1 ( 1 -'Tf .. 0 1 ) 

(6.5.10) 

.... .... 
+ 110.1( 1-iro.1) + 

.... 
As our 

2( .... ) . 
Cf n

3 
1S 

ultimate estimate we use 1T 
3 

An unbiased estimate for 

.... - .,.. 

(6.5.11) 
~ ~ ~ ~ ~ 

- 1T.011T0.1 + 1r.10n0.1 + n1.0n.01}/( 2N) • 

• 

Together with (6.5.5) this leads to the following estimated standard 

deviation of the obtained power estimates • 

(6.5.12) {[0.02a. .... 2 (-. ) } 1 /2 
cr n3 • 

The numerical results are given in tables 6.5.3 and 6.5.4 (p.139). We also 

give the values of <\I that sre obte.ined if we use the power estimates plus 

or minus their standard deviation. Again the agreement between finite and 

asymptotic results is satisfactory. 

The general conclusions of this section are that the asymptotic results 

seem to provide a reasonable approximation of the exact values and that the 

normal scores test requires only very few additional observations to attain 

the same power against no.r·mal alternatives as the X-test or the t-test. 
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N 

5 

6 

7 

8 

8 

9 

9 

9 

10 

10 

10 

10 

10 

Table 6. 2. 2 

Power of the normal scores test against normal alter

natives. The upper, middle and lower numbers give the 

exact values obtained by Klotz, the approximations 

(6.2.1), and the normal approximations, respectively. 

t:l 1/4 1/2 3/4 1 5/4 3/2 
['1. 

. 1 t5 .27: . t50 .629 .781 .888 
.06250 . 146 .284 .465 .654 .810 .913 

. 165 .339 .557 .759 .896 .966 

. 125 .2o3 . t50 • J t:::> .807 . 911 
.04688 . 126 .268 .465 .670 .834 .933 

• 144 . 326 .564 .780 .917 .977 
. 155 .332 . 556 .760 .897 .966 

.05469 . 156 -336 .566 .775 .910 .973 
. 1 ,.. 4 . 3c 0 . 64c .852 .c 56 

It. .991 
.614 . 167 .369 .818 .936 I .983 

.05469 . 168 .373 .623 .829 .944 I .987 
. 186 . 426 .6 8 .890 .973 .996 
.212 .438 .684 .866 .958 .991 

.07422 .213 .441 .692 .875 .964 .993 
.230 .488 .750 .917 .982 .997 
.. 1 o4 .271 -

. 51 5 .750 . 90 + .973 
.02734 . 104 .274 . 524 .765 .917 .979 

. 121 • ': 3' r . 62< .860 .966 .995 

. 132 .326 . 581 .803 -932 .983 
.03711 . 133 .329 .590 .816 .942 .988 

. 1 0 .388 .679 .888 .975 .997 
• 164 .380 .642 .8-1-7 -953 .990 

.04883 . 165 .384 .650 .857 .960 .992 
1 2 .4~8 . '·24 .910 .982 .998 

.006 .025 .077 . 178 .327 .501 
.00098 .006 .027 .092 .229 .439 .669 

1 1 .064 .234 . 26 .·804 .950 
.o48 . 158 .362 .612 .820 .937 

.00977 .o48 . 160 .373 .636 .845 .954 
.061 .22 • 14 • ,..c 6 • C 47 . 9c 2 
• 102 .283 . 544 .785 .928 .983 

.02441 . 102 .285 .553 .798 .938 .987 
• 11 < .348 .6 6 .883 .. 976 .997 
. 186 .431 .706 . 894 .974 .996 

.05273 . 186 .434 .712 .901 .978 .997 
.204 .485 .774 .939 .990 .999 
.288 .572 . 820 .950 .991 .999 

.09668 .289 .575 .825 .953 .992 .999 
. 305 .610 .858 .969 .996 1. 000 --



N 

5 

6 

7 

8 

8 

9 

9 

9 

10 

10 

10 

10 

10 

Table 6 .2. 3 

Power of the Wilcoxon test against normal alterna

tives. The upper, middle and lower numbers give the 

exact values obtained by Klotz, the approximations 

( 6. 2. 4) , and the no1-mal approximations, respectively. 

e 1/4 1/2 3/4 1 5/4 3/2 
a. 

• 145 .278 .450 .629 .781 .888 
.06250 • 146 .283 .462 .650 .805 .909 

• 162 .329 .542 .742 .884 .959 
• 125 .263 • 50 • :) t .807 . 911 

.04688 • 126 .268 .464 .669 . 832 . 931 
. 141 .. 316 • 47 . ,.,63 .c 06 • c1·•2 

• 155 . 332 . 556 .160 .897 .966 
.05469 .155 .334 .563 .771 .907 .972 

• 170 . 37~ .632 .837 • <; 48 .98c 
• 167 .369 .614 .818 .936 .983 

.05469 • 167 .370 .619 . 825 .941 .986 
• 181 .413 .681 . 878 .968 .995 
.212 . i3::i • J 3 • jb5 .95 .991 

.07422 .211 .437 .686 .870 .961 .992 
.225 .475 -735 .906 • C 78 .9c7 
.10 .211 .515 -750 .904 .973 

.02734 .104 .275 .525 .765 .916 .979 
• 117 . 324 .60Cl .844 • c 5S . (,( 3 
• 132 .326 .581 .804 .933 .984 

.03711 . 132 . 328 .589 .. 814 .940 .987 
. 146 . 3· ·5 .660 .874 -910 .995 
. 164 . 379 .640 .846 .953 .990 

.04883 . 164 . 381 .646 .853 .957 .992 
. 1 ,.. 8 . 424 .706 .899 .978 .997 
.006 .025 .011 . 178 .327 .501 

.00098 .006 . 031 . 105 .262 .489 .719 
01 .060 .218 . 4c • I •• • 8 • C 38 -

.o48 • 158 .362 .612 .820 .937 
.00977 .049 . 164 .382 .646 .853 .957 

. 025 . 21 • 4c -: ..... 3' . 8 • • • 

. 102 .282 .544 .785 .928 .983 
.02441 . 102 .286 .554 .798 .937 .987 

. 1 1 • - 3 I .636 . 86c C' ., • CC 6 • -
• 184 .427 .701 . 891 .973 .996 

.05273 • 185 . 430 .10, .897 .976 .996 
.470 .758 . 2c . S>88 ._m • 199 

.286 .567 .815 .948 .990 .999 
.09668 .286 .568 .817 .949 .991 .999 

.299 . 596 .845 .963 .995 1.000 

129 

" 
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N 

10 

10 

10 

20 

20 

20 

Table 6.2.4 

Power of the normal scores test against nor

mal alternatives. The upper, middle and lower 

n1Jmbers give the Monte Carlo powers obtained 

by Thompson et al., the approximations (6.2.1), 

and the normal approximations, respectively. 

6 1/4 1/2 3/4 1 3/2 
a 

.o 1 .160 • 365 .622 .95 + 

.01 .049 .163 .377 .64o .956 

.062 .228 .518 .798 .992 

.086 .285 -554 .794 .990 

.025 .104 .289 .559 . 802 .988 

.121 .352 . 660 .885 .997 

• 178 . 425 .697 .896 .998 

.05 .179 .423 .702 .895 .997 

.196 .475 .766 .935 .999 

.112 .406 .781 .955 -
.01 .098 .396 .778 .964 1 .000 

.113 . 464 .848 .984 1. 000 

. 199 .551 .874 .988 -
.025 . 182 .558 .885 .988 1. 000 .. 

.200 .609 .918 .994 1.000 

.296 .683 .940 .995 -
.05 .282 .689 .941 .996 1. 000 

.299 .723 .956 .998 1 .000 

• 



Tab .. le 6 .. ? . 5 

Power of the Wilcoxon test against normal alter

natives. The upper, middle and lower numbers give 

the Monte Carlo powers obtajned by Thompson et 

al., the approximations (6.2.4), and the normal 
• • • approximations, respectively. 

e 1/4 1/2 3/4 1 3/2 
N Ct 

.041 • 158 .366 .621 .952 

10 .01 .050 .166 .386 .650 .958 

. 060 .217 .497 .778 .990 

.o84 .288 .556 .793 .,990 

10 .025 .104 .290 .559 .802 .987 

• 118 . 339 .640 . 871 .996 
• 

.171 .412 .690 .893 .998 

10 .05 . 178 .419 .697 .891 .996 

• 192 .460 .749 .926 .999 

. 106 .396 .768 .953 -
20 . 01 .097 .392 .774 .962 1. 000 

. 109 .444 .829 .. 980 1. 000 

• 185 .520 .868 .982 -
20 .025 . 180 .550 . 879 . 986 1. 000 

. 193 .589 .906 .992 1.000 

.276 .650 .924 .993 -
20 .05 .278 .679 . 936 .995 1. 000 

.. 290 .705 .949 .997 1. 000 
• 
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Table 6.2.6 

Power of the normal scores test against logis

tic alternatives. The upper, middle and lower 

numbers give the Monte Carlo powers obtained 

· by Thompson et al., the approximations (6.2.3), 

and the normal approximations, respectively. 

e 1/4 1/2 3/4 1 3/2 
N a. 

. 029 . 063 . 133 .239 .486 
' 

10 . 01 .028 .066 . 131 .226 .. 467 
.030 .076 . 162 .294 .637 
.056 . 144 .244 .373 .632 

10 .025 .062 . 130 .233 .364 .636 
.065 . 143 .267 .430 .763 
. 122 .220 .353 .507 .755 

10 .05 .112 .212 .346 .498 .762 
. 115 .226 .380 .555 • 849 
.046 . 144 .301 .510 .849 

20 .01 .043 .131 .293 . 504 .850 
.045 

I 
. 143 .578 .928 .332 

.103 .238 .458 .653 .929 
20 .025 .089 .229 .437 .657 .927 

.092 .242 .473 .713 .966 

. 166 .358 .560 .763 .963 
20 .05 . 152 .337 . 568 .771 .965 

.155 .351 . 598 .810 .984 
• 



N 

10 

10 

10 

Table 6.2. 7 

Power o:f the Wilcoxon test against logistic 

alternatives. The upper, mjddle and lower 

numoers give the Monte Carlo powers obtained 

by Thompson et al., the approximations (6.2.2), 

and the normal approximations, respectively. 

e 1/4 1/2 3/4 1 3/2 
ct. 

' • 028 .061 . 131 .2 0 • +86 

.01 .028 . 065 . 132 .231 .489 

.031 .079 . 169 .308 .660 

.055 . 139 .243 . 373 .637 

. 025 .062 . 131 I .237 .374 .662 
I 

.066 . 148 .277 .447 . 782 
-

• 121 .230 .356 .516 .770 

.05 • 112 .215 • 355 .512 . 785 

• 117 .232 .391 .572 . 863 

.o44 . 133 • 301 . 520 . 860 

20 . 01 .043 . 134 .302 .522 .872 

.046 • 150 .348 .601 .939 

. 093 .232 .447 .648 .926 

20 .025 .090 .234 .450 .677 .941 

. 094 .252 .491 . 733 .972 

. 152 .338 .557 . 762 .964 

20 .05 . 154 . 345 .583 • 789 .973 

. 159 .362 .615 .826 .987 

133 



134 

10 

10 

10 

20 

20 

Table 6. 4. 1 

Power of the sign test against normal alter

natives. The upper, middle and lower values 

give the Monte Ca.rlo powers obtained by Thomp

son et al., the approximations (6.4.1), and 

the normal approximations, respectively. 

6 1/4 1/2 3/4 1 3/2 

.042 • 128 .284 .487 .832 

. 01 .041 . 123 .270 • 455 .741 

.o44 . 132 .275 .433 .660 

.071 .207 .386 .591 .921 

.025 .085 .213 .403 .601 .846 

. 091 .227 . 409 .579 • 782 

.148 .328 .555 .761 .967 

.05 . 152 .334 .558 .749 .928 

. 154 .332 .534 .696 .863 

.070 .263 .558 .823 -
. 01 .071 .264 .567 .815 .978 

.074 .270 .547 .766 .939 

. 137 .403 .719 .915 -
.025 . 138 .408 .721 .908 .993 

. 141 .402 .686 .863 .972 

. 211 . 524 .826 .961 -
20 .05 .220 .535 .818 .951 .997 

.223 • 527 .788 .920 .987 



N 

10 

10 
• 

10 

20 

20 

20 

Table 6.4.2 

Power of the sign test against logistic al

ternatives. The upper, middle and lower values 

give the Monte Carlo powers obtained by Thomp

son et aJ.. , the approximations ( 6. 4. 1 ) , and 

the noI-mal approximations, respectively. 

' e 1/4 1/2 3/4 1 3/2 
a. 

.026 .058 . 112 . 192 .409 
.01 .025 .056 . 108 . 184 .385 

.027 .060 . 116 . 194 . 375 -

.049 .110 • 177 .288 .533 
. 025 .056 .110 • 191 .296 .530 

.059 . 118 .204 .309 .519 

.095 . 191 .298 .449 .. 691 

.05 . 104 . 190 . 305 .437 .684 

. 105 . 192 .304 .427 .642 

.031 . 100 .219 .4oo .739 
.01 .037 • 1 o4 .228 .399 . 737 

.038 . 109 .235 .398 .696 

.079 . 189 .351 . 552 .875 

.025 .079 . 191 . 364 .. 561 .856 

.080 . 194 • 360 • 542 . 811 

. 129 .290 .480 .678 .936 

.05 . 137 .289 .488 .683 .918 

. 138 .291 .483 .663 .. 884 
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N 

10 

10 

10 

20 

20 

Table 6.4.3 

Power of the sign test against double exponen

tial alternatives. The upper, middle and lower 

numbers give the Monte Carlo powers obtained by 

Thompson et al., the approximations (6.4.1), 

and the nonaal approximations, respectively. 

6 1/4 1/2 3/4 1 3/2 
a 

.050 • 135 .261 .404 .662 

. 01 .o48 . 130 .249 . 381 .604 

. 052 . 140 .255 .372 . 552 
-

.097 .226 .381 .510 .773 

.025 .097 .223 .377 . 525 .737 
.104 .237 .385 . 516 .690 

.176 .369 .535 .691 .890 

.05 .170 .347 -530 .680 .856 

.172 .344 .509 .638 -792 

.072 .256 .501 .712 .951 
.01 .086 .280 .528 .732 .926 

.091 .285 .513 .692 .874 

• 155 • 424 .670 .858 .979 
.025 . 163 • 428 .686 .852 .971 

.. 166 .. 421 .655 .807 -935 

.243 .547 .779 .914 .992 
20 .05 .254 .555 .791 .915 .987 

.256 .546 .763 . 881 .966 



6 
N 0. 

5 0.06250 
-

6 0.04688 

7 0.05469 

8 0.05469 

8 0.07422 

9 0.02734 

9 0.03711 

9 0.04883 

10 0.00098 

10 0.00977 

10 0.02441 
' 

10 0.05273 

10 0.09668 

Table .t? .• 5 .. 1_ 

De:ficiencies under normal alternatives of the 

normal scores test with respect to the X-test 

and the t-test. The 11pper and lower nt1mbers 
• give (NS,t),respectively. 

-· "" 
1/4 1/2 3/4 1 5/4 3/2 ~(NS,X) 

1. 364 1 • 413 1. 463 1. 501 1.536 1. 566 1. 370 
0. 010 , 0.080 0.090 0.095 0.100 0. 105 

1. 582 1.650 1. 711 1. 771 1. 835 1 .909 1. 629 
o. 102 o. 120 0.138 0.150 o. 162 o. 168 

1. 480 1. 541 1. 595 1. 642 1. 690 1. 744 1. 534 
0.119 0.133 0. 154 0.168 o. 175 o. 182 

I 
1. 726 1. 782 1. 520 1. 577 , . 630 l , . 611 1. 559 

o. 160 0.184 0.224 0.232 o. 200 I o. 216 

1.310 1. 358 1. 401 1. 440 1. 479 1. 521 1. 321 
0.176 0.200 0.216 0.232 0.240 0.256 

2.036 2. 104 2. 175 2.240 2.300 2.352 2. 141 
o. 162 o. 180 0.207 o. 225 0.243 0.252 

1.818 1. 886 1. 954 2.031 2.098 2. 160 1. 888 
o. 180 0. 198 0.225 0.234 0.261 0.279 

1. 623 1. 682 1. '739 1. 796 1. 865 1.945 1 1. 666 
0. 180 o. 198 0.234 0.243 0 .. 261 0.261 

4.629 4.835 5.061 5. 293 5.510 5.719 5. 104 
0.710 0.800 0.920 1.040 1.180 1. 310 

2.804 2.912 3.018 3.110 3.218 3.309 3.037 
o. 190 0.210 0.240 0.260 0.280 0.290 

2. 125 2.211 2.287 2. 357 2.423 2.494 2.252 
0.170 0.200 0.230 0.250 0.280 0.290 

1. 574 1. 638 1.696 1. 753 1. 820 1. 875 1. 621 
0.210 0.230 0.250 0.270 0.290 0.310 

1 • 171 1.216 1.254 1.294 1. 327 1. 333 1. 156 
0.250 0.280 0.300 0.320 0.340 -

137 

-~ ~(NS ,t) 

o. 193 
, 

0.224 

0.252 

0.277 

0.277 
~-~···---"~ . . "'- - .. 

0.294 

0.294 

0.294 

0.310 

0.310 

0.310 

0.310 

0.310 
' 
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N 

20 

20 

20 

• 

Table 6. 5. 2 

Deficiencies under normal alternatives of the normal scores 
-

test with respect to the X-test and the t-test. The upper 
-

numbers give (NS,X) if one uses the power estimate plus 

its standard deviation, the power estimate itself and the 

power estimate minus its standa.rd deviation, respectively. 

The lower numbers sjmjlarly give (NS, t). 

,.._, -
~(NS,t) e 1/4 1 /2 3/4 ~(NS,X) 

(). 

0.01 

0.025 

0.05 

N 
50 

50 

50 

-2.8,0.2,3.2 1.9,2.5,3.2 2.2,2.9,3.4 3. 118 
-5.3,-2.4,o.6 -0.9,-0.2,0.5 -0.5,0.1,0.7 

--· 
-2.0,0.0,2.1 1.8,2.5,3.2 1.9,2.8,3.8 2.333 
-3-9,-1.9,0.2 -0 . 1 , 0 . 6 , 1 . 2 -0. 1 :s O. 8, 1 • 6 

-1.4,0.3,1.9 1.2,2.0,2.7 0.0,1.7,3.2 1. 764 
-2.1,-1.0,0.6 -0.2,0.6,1.3 -1.5,0.4,1.7 

Table 6.5.3 

Power ot' the normal scores test against nonnal 

alternatives. The first number gives the power 

estimate, the second gives its standa.rd deviation. 

' 0 o.4o 3 
10 \12 

a 
' ' 

0.05 0.871 0.004 0.907 0.004 

0.025 0.781 0.005 0.833 0.005 

0.01 0.660 0.006 0.714 0.006 

o. 411 

O. 411 

O. 411 



N 

50 

50 

50 

Table 6.5.4 

Deficiences under no1·1nal alternatives of the normal scores 
-

test with respect to the X-test and the t-test. The organ

ization of this table is the same as for table 6.5.2. 

--
~ • ,.,., - 1-.J 

o.4o .:::. '12. ~(NS,X) ¾(NS,t) 
10 Ct 

0.01 2.6,3.1,3.7 3.0,3.6, +.1 3.23 
-0.2,0.4,0.9 0.3,0.8,1.2 0.52 

-

0.025 2.5,3.2,3.7 1.7,2.4,3.0 2.45 
0.7,1.3,1.9 -0. 1 , 0. 5 , 1 • 1 o. 52 

0.05 1.1,1.8,2.5 0.3,1.0,1.8 1. 87 
-0.2,0.5,1.2 -0.9,-0.2,0.5 0.52 - ; .. 
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