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CHAPTER 1
INTRODUCTION

As "deficiency" is the unifying topic of this study, we shall start by
introducing this concept. Let there be given two statistical procedures A
and B. If A is based on N observations, we need kN observations for B to

attain the same level of performance with both procedures.

Usually, A and B are compared by means of the ratio N/kN' If it exists,

%ig N/kN is called the asymptotic relative efficiency (ARE) of B with
respect to A and denoted as e. Such efficiency computations are by now al-
most classical: as early as 1925 Fisher (1925) found e = 2/7 in comparing
the median and the mean for the estimation of normal location. It should
always be kept in mind that the information contained in the single number
e is of an asymptotic nature. As we are interested in finite, preferably
even small sample sizes N, this information becomes more valuable according
as the convergence of N/kN towards e becomes faster. Hence, when e has been
found, the natural next step is to investigate this rate of convergence,
for example by looking atthebehavioux'ofekN - N as N+ . This may be done
for all cases where 0 < e < =, but we shall always restrict ourselves to
the by far most interesting case where e = 1. For then we have a second,
perhaps even stronger reason for further investigation: from the fact that
e = 1 we cannot even deduce which of the two procedures A and B is better.
Hence a study of the difference kN-N is not merely useful to get informa-
tion about the rate of convergence of N/kN towards 1, but here it may also
reveal which of the two procedures is preferable. For e # 1, ekN - N only
supplies some additional information, but for e = 1 this number becomes of

importance in its own right.

Although this difference kN - N seems to be a very natural quantity to
examine, historically the ratio N/kN was preferred by almost all authors

in view of its simpler behaviour. The first general investigation of kN -N
was carried out by Hodges and Lehmann (1970). They name kN - N the
deficiency of B with respect to A and denote it as dN. If %ig dN exists, it
is called the asymptotic deficiency of B with respect to A and denoted as
d. At points where no confusion is likely, we shall simply call 4 the
deficiency of B with respect to A.



Under the assumption e = 1 we evaluate dN and 4 in the following way.

Denote the performance criteria for A and B as P and PB N respectively.
H]

A,N
If A and B are tests, PA N and PB § Bey be the powers of these tests, if A
“ k] bl
and B are point estimators, PA N and PB N Bey be expected squared errors,
b k] .

etc. By definition, dN = kN—N may, for each N, be found from

(1.1) PA,N = PB,kN'

In order to solve (1.1), kN has to be treated as a continuous variable.

By

This can be done in a satisfactory manner by defining P for non-integral

kN as
Pooie, © Dy )Pg,pc 3+ Oy Dy 0P pyc 34
Ky Ly Ly

(cf. Hodges and Lehmann (1970)).

Generally PA N and PB N are not known exactly and we have to use approxi-
3 b

mations. Here these are obtained by observing that PA N and PB N will
k] 2

typically satisfy asymptotic expansions of the form

=< 1
=—+ + ol

PA,N e N;is Nr

(1.2)

1
+
r+s o r+s)’

Pppg = ot
¥ N N

B,N
for certain c, a and b not depending on N and certain constants s > 0 and
r # 0. The leading term in both expansions is the same in view of the fact

that e = 1. From (1.1) and (1.2) it now easily follows that

(1.3) ay = &2 y(1=e) , o(y(1-s)y,
Hence
) tw , 0<s <1,
0 7S>1.

A useful property of deficiencies is the following: if a third procedure C



is given, for which the performance criterion P also has an expansion

c,N
of the form (1.2), the deficiency d of C with respect to A satisfies
da= d1+d2, where d, is the deficiency of C with respect to B and d2 is the
deficiency of B with respect to A.
The situation where s = 1 seems to be the most interesting one. Hodges and
Lehmann (1970) demonstrate the use of deficiency in a number of simple
examples for which this is the case. One of these problems is the following:
consider a sample X1""’XN from a distribution F with mean £ and variance
o°. Now o° can be estimated by M = N—1Z§_1(Xi—£)2, but also by
-1¢N =\2 . = -1eN T .

! = - - =

MN (N-1) zi=1(xi X)°, with X = N Zi=1xi’ if we do not know £ or do not

dare to rely on its given value. Both estimators are unbiased and therefore

we compare 02(MN) and GE(Mﬁ)
(1.5) 2o) = " T, oPayg) = o rl=tle
. o (My) =0 g0 My N(N-1) °

where y+1 = Uh/ﬁh, the standardized fourth central moment of F. Application
of (1.2) and (1.3) to (1.4) shows that d = 2/y. If F is normal, y = 2 and
hence d = 1: the price of not knowing the mean is asymptotically one addi-
tional observation. Note that in the normal case not only 4 = 1, but also

= 1; in fact, and M' are identically distributed.
+1

The present thesis consists of a number of applications of the deficiency
concept. Below we give for each of the problems considered an indication

of the problem, of the results, and of the way in which these are obtained.

In chapter 2 the following problem is considered: X ,...,Xm are independent

random variables (r.v.'s), all having distribution ;G’YT""’Yn are inde-
pendent r.v.'s, all having distribution Pg, where 6, 8 € 0 ¢ R'. From
Lehmann (1959) it follows that the test for 6 = 6 against 6 > 6 that
rejects the hypothesis for large values of Z?=1Xi’ conditionally given
Z?=1Xi + z?=1Yj’ is uniformly most powerful unbiased (UMPU) for this situa-
tion under suitable conditions. These conditions are satisfied for example

in the case of the 2x2 table, where Z?=1Xi and zg=1Yj are binomial r.v.'s.

Usually the test is performed with equal sample sizes m = n. If the
criterion of optimality is the unconditional power of the test, this choice

is known to be asymptotically optimal in the sense that the optimal value
1

of vy = m/(mtn) satisfies Yopt = >+ 0(1) as (m+n), the total number of ex-

periments, tends to infinity. Here we obtain the optimal value of y to



-1/2 . . . ~
o((m#n) / ). Attention is restricted to the case where |6-6] -~ O as
(mtn) + w, at such a rate that for a fixed size a > 0, B, the error of the

second kind, remains bounded away from O and l1-a.

In order to compute deficiencies we need expansions like (1.2) for the
powerfunctions. We first expand the conditional distribution function
(d.f.) of the test statistic, both under hypothesis and alternative. From
this we obtain an expansion for.the conditional power. By taking expecta-
tions we arrive at an expansion for the unconditional power. Finally, from
this expansion Yopt can be deterTined. Comparison of the expansion of the
power for m = yopt(m+n) and m = E(m+n), gives the deficiency dN of the
traditional choice m = n with respect to the optimal choice. The asymptotic
deficiency d proves to be finite. For the special case where o = B we even
have 4 = O(N_1/2),

positive, but usually rather small. For example, let Z?=1Xi and Z§=1Yj be

and hence d = 0. For other choices of a and B, 4 is

binomial r.v.'s with parameters (m,p.) and (n,p2) respectively, where

1
P, = p, under the hypothesis and P, > Py, = P» Py=P, = 0((m+n)—1/2) under

the alternative. Then d satisfies

_ (2p-1)?
d = 36p(1-p) (ua_uB) '

-1

Here u =0 (1-a), u, = 0_1(1—8), where ¢_1 is the inverse of the standard

B
normal d.f. and a(B) is the error of the first (second) kind. For
0.03 £ p < 0.97 this gives d < (ua-us)z, for 0.01 < p £ 0.99,

d < 3(u@_u3)2' In most applications u, - g B| < 1. Then

we have that for p in the given intervals the price of not using the

will satisfy |ua-u

optimal choice but simply m = n is asymptotically at most 1 or 3 additional

observations.

In chapters 3 and 4 we compare various tests for the one sample problem. In
its most general form this problem can be formulated in the following way:
given a sample X1""’XN of independent identically distributed (i.i.d.)
r.v.'s with common d.f. G, we have to test the hypothesis HO that the
distribution determined by G is symmetric about zero, i.e. G(x) + G(-x) = 1

for all x, against the alternative H1 that it is not. HO is called the

hypothesis of symmetry. In this formulation, H, is too large to construct

1
tests, having optimal properties against all points of H1. Therefore one

usually restricts H, to some class of interesting alternatives, after which

1
optimal tests against this family are derived. The most common choice is



ﬁ1 : G(x) = F(x-8), 6 > 0, the family of one-sided location alternatives

for a fixed d.f. F that is symmetric about zero.

A well-known class of tests for the one sample problem is the class of
linear one sample rank tests, for example Wilcoxon's signed rank test or
the absolute normal scores test. Such tests are not only distribution-free,
but also relatively easy to compute, a combination which in general is not
achieved by other tests for the one sample problem, such as the test based
on X = N_1Z§=1Xi’ the one sample t-test or the permutation test based on X.
One would expect that the price for these desirable properties would be a
loss of efficiency, but, at least asymptotically to first order, this is
not the casé if one considers contiguous location alternatives

H’1‘ : G(x) = F(x-9), 0 = 0(1\1'1/2). Héjek and 5iddk (1967) prove that the
asymptotically most powerful rank test against H? has ARE e = 1 with respect
to the asymptotically most powerful test. For the normal case this means
that the absolute normal scores test has e = 1 with respect to the t-test
and the X-test. The restriction to g = O(N-1/2) is rather natural, as for

such sequences of alternatives the power remains bounded away from 1.

In view of the above, it seems interesting to know deficiencies of asympto-
tically most powerful rank tests with respect to the other types of test,
as was suggested by Hodges and Lehmann (1970). To this end we need asympto-
tic expansions as in (1.2) for the power functions of the tests involved.
For linear rank tests for the one sample problem these expansions have been
obtained by Albers, Bickel and van Zwet (19T4); the two sample problem is
dealt with by Bickel and van Zwet (19T4). A review of asymptotic expansions

in nonparametric statistics is given by Bickel (197L4).

Chapter 3 is devoted to asymptotic expansions for one sample rank tests. It
contains the results of Albers, Bickel and van Zwet (1974) and some ex-
tensions; an outline of the proofs is given but we omit a number of techni-
cal details for which the interested reader is referred to Albers, Bickel
and van Zwet (19T4). The idea is that the rank test statistic is a sum of
independent random variables, conditionally under the vector Z of order
satistics of IX1I""’|XNI' Hence we can give Edgeworth expansions in this

conditional situation.

An unconditional expansion for the distribution of the test statistic, and
hence for the power of the test, follows by taking the expectation with

respect to Z of the conditional expansion. The evaluation of this expecta-



tion is a highly technical matter.

In order to be able to justify the above mentioned Edgeworth expansions we
have to exclude cases where the lattice character of the statistic is too
pronounced. This occurs for example with the sign test. This test is there-

fore dealt with seperately.

In chapter 4 similar expansions are derived for several other tests: para-
metric tests, permutation tests and the randomized rank score tests due to
Bell and Doksum (1965). After this, deficiencies can be evaluated of the
rank tests with respect to the other types of test. For example, the de-
ficiency of the absolute normal scores test with respect to the.t-test and
the X-test satisfies dN = 0(log log N); the asymptotic deficiency of the

permutation test based on X with respect to the t-test equals zero.

Chapter 5 is devoted to the application of the results of chapters 3 and 4
to estimation of location. Consider again the situation where X1""’XN

are i.i.d. r.v.'s from F(x-8), in which F(-x) = 1-F(x) for all x. For some
of the test statistics considered in chapters 3 and U there exists a well-
known estimator of @ which is closely related to this test statistic in the
sense that, for all a,

(1.5) P (T <0) < PO(S < a) < P_a(T < 0),

_a
where T is the test statistic, S is the estimator and Pe denotes probability
under 8. From (1.5) it is clear that the expansion for the d.f. of T, ob-
tained in chapter 3 or L4, immediately leads to an expansion for the d.f. of
S.

The above correspondence exists for example between the maximum likelihood
estimators and the locally most powerful parametric tests of section 4.2
and between the estimators due to Hodges and Lehmann (1956) and the corres-
ponding rank tests of chapter 3. The expansions thus obtained can be used
for deficiency comparisons between these estimators. It appears that the
deficiency between two estimators equals the deficiency between the corres-
ponding tests for size o = 3¢
By using certain generalizations of the Cramér-Rao bound - the so called
Bhattacharyya bounds - we obtain a lower bound to order 1\1_1 for the

variance of an unbiased estimator. We conclude the chapter by evaluating



the deficiency of the estimators considered with respect to this lower

bound.

Finally, in chapter 6 we give the results of a number of numerical in-
vestigations. These give an indication of the extent to which the asymp-
totic results obtained in chapters 3 and 4, are of value for small to

moderate sample sizes.

In the first place we investigate the behaviour of the expansions for the
power of the rank tests in chapter 3 as approximations of the finite sample
power. For this purpose we have at our disposal a number of exact power
results from literature. These are available for rather small sample sizes
-5 to 20~ for e.g. Wilcoxon's signed rank test and the absolute normal
scores test against normal and logistic location alternatives. Comparison
of these values with those resulting from our expansions shows that here
the expansions perform very well for these sample sizes already. It also

shows that they are much better than the usual normal approximations.

One should keep in mind that the optimistic conclusions above depend on the
kind of test and alternative under consideration. If we have long-tailed
distributions under the alternative, the situation becomes entirely dif-
ferent. For example in the case of Wilcoxon's signed rank test against
Cauchy alternatives not only the normal approximation, but also our ex-
pansion leads to very bad results for the same range of sample sizes as

above.

In section 4.6 we found approximations to 0(1) for the deficiencies between
various tests. Here we compare some of these asymptotic expressions to
deficiency values that are obtained numerically. We consider the absolute
normal scores test, the t-test and the X-test against normal location al-
ternatives for sample sizes 5-10,20 and 50. The results thus obtained show

a satisfactory agreement between the numerical and asymptotic values.



CHAPTER 2
THE OPTIMAL RATIO OF SAMPLE SIZES FOR COMPARING TWO DISTRIBUTIONS

2.1. INTRODUCTION

Let X1""’Xm’ Y1""’Yn be independent r.v.'s, the Xi all having distribu-
tion P, the Yi all having distributionP. We assume that P and P belong to a
family of distributions P, characterized by a real parameter 6 : P,

PeP= (P}, 6 c0c R'.

DEFINITION 2.1.1. Y is the class of continuous functions Y on R1 with
v(0) =1, 0 < Y(t) <1 fort # 0 and sup {Y(t) : [t] > 7} < 1.

DEFINITION 2.1.2. For ¢ € Y, P1¢ is the class of all distributions P on
{0,1,2,...} with characteristic functions p satisfying le(t)| < ¢(t) for
|t] < m. For ¥ ¢ ¥, PEW is the class of all distributions P that are abso-

lutely continuous with respect to Lebesgue measure and satisfy [p(t)| < ¢(t)

for all t.

Throughout this chapter we suppose that the family P belongs to either P1¢

or P2 for a suitable choice of V.

"
Before continuing, we shall give an explanation of the definitions above.
First we recall some results about lattice distributions (cf. Feller (1966)).
A r.v. X has a lattice distribution P if there exist real numbers a and h
with h > 0 such that all values of X can be represented as x = a + vh for some integer v.
If‘hois‘thelargestnumbersuch that all values of X can be represented as

a + vh, it is called the span of P. The characteristic. function (c.f.)p

of X is periodic with period 2ﬂ/h0 and |p(t)] < 1 for 0 < t < 2n/ho.

Now it is easy to see how we arrive at P We are interested in families

of distributions that are concentrated o;wa fixed lattice and that all have
the same span. Then it is no loss of generality to assume this lattice to
be {0,1,2,...} and this span to be 1. Note that it is equivalent to assume
that the lattice is {0,1,2,...} and that |p(t)| < 1 for 0 < |t]| < 7. We
arrive at P1¢ by using the above stronger version of the second assumption.

In this way distributions with span larger than 1 and degenerate distribu-

tions are not only excluded, but the elements of P1 remain bounded away

v



from such distributions and we can formulate results that are uniformly

true for all P € P1¢'

A similar explanation can be given for P Here the condition on p serves

2y°
to ensure that the elements of P2¢ remain bounded away from lattice dis-

tributions.

We continue our exposition by introducing
m n
(2.1.1) X= ) X.,Y¥Y= )} Y., T=3X+Y, N =mtn.

Let 6 and ) be the parameter values corresponding to P and 5, respectively.
A possible way to compare P and P on the basis of X1""’Xm and Y1""’Yn

is to test H0 : 0 = 6 against H1 : 8 >0 by rejecting HO
of X, conditionally on T = t. This test is in many cases the uniformly most

for large values

powerful unbiased (UMPU) test for HO against H1, as will be shown in

section 2.2.

Usually the test is performed with equal sample sizes m = n = %1L In this
chapter it is investigated which chcice of m/N is optimal, given N, as

N + =, Here the criterion of optimality is the unconditional power of the
test. We restrict attention to the Pitman-case: a sequence of alternatives
is chosen which converges to the hypothesis at such a rate that for fixed
level of significance o the power remains bounded away from o and 1. Then
it is shown that m = n is optimal to first order only, but that the de-

ficiency of this choice with respect to the optimal choice is finite.

In section 2.2 conditions are given under which the test is UMPU. Also in
this section an expansion is derived for the conditional distribution of X
given T = t. In section 2.3 the unconditional power is obtained, which
enables us to find an expression for the optimal ratio m/N and for the de-
ficiency of the traditional choice m = %JH. This is done in section 2.k,
Finally, section 2.5 contains another application of the results in section

2.3.

2.2. PRELIMINARIES

First we shall show that the test considered in the previous section is

UMPU for the case where P is an exponential family with monotone likelihood
ratio.
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LEMMA 2.2.1. Let P = {Pe : 0 € 0} be a family of distributions on R' having
densities fe(x) = c(8) h(x) exp(Q(6)x) with respect to a fixed o-finite
measure u. Suppose that 0 18 an interval in R' and that Q ©s continuous
1,...,Yn be independent r.v.'s, the
the Yi all having distribution PE' Finally,

and inereasing on 0. Let XpseeosX 5 ¥
X; all having distribution P>
let X,Y,T and N be defined as in (2.1.1). Then the test for 6 = 8 against
0 > 8 that rejects the hypothesis for large values of X, conditionally on

T = t, <g UMPU.

PROOF. The joint density of X and Y with respect to an appropriately chosen

measure v on R2 is
£o (x,¥) = ¢"(8) ¢"(8) expl (Q(6)-a(8))x + Q(®)t1,

where t = x+y. As 0 x O is a rectangle and Q is continuous and increasing,
{(Q(G)—Q(a),Q(a)) :0,0 € 0] is a quadrangle. In view of theorem 4.4t.3 of
Lehmann (1959) this shows that the test under consideration is UMPU for

HO : Q) = Q@) against H1 : () > Q(8). Hence, by the monotonicity of Q,
the desired result follows. [J

REMARK. In the case where Q is decreasing, the test is of course UMPU for

6 =8 against 6 < §.

The conditions of this lemma are often satisfied for families P c P1¢ or
Pc P2w' In the first case u can be taken as counting measure, in the

second case as Lebesgue measure. We consider the following examples, where

n is a positive constant,

EXAMPLE 2.2.1. P= {Pp} with PP{1} = 1—PP{O} =p,n<ps< 1-n. Hence X and Y
are binomial r.v.'s. The c.f. p_ of P_ satisfies|p_(t)| = |1—p+pelt] =

= {1—2p(1-p)(1—cost)}1/2 < {1—2n(1-n)(1—cost)}1/2. ghis shows that P P1 ,
for a suitable choice of Y. Furthermore, Q(p) = log{p/(1-p)}, which in- i

creases.

EXAMPLE 2.2.2. The family of Poisson distributions P = {PX} with
ik} = e_klk/(k!), k = 0,1,2,... and A > n. Again, for a suitable ¥,
Pc P1¢ and Q(A) = log A is increasing.
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EXAMPLE 2.2.3. The family of geometric distributions P = {P_} with
P ) = p(1-p) 571, o
Pc P1¢’ but now Q(p) = log(1-p) decreases in p (cf. the remark following
lemma 2.2.1).

k =1,2,... and 0 < p £ 1-n. Again, for a suitable ¥,

EXAMPLE 2.2.4. The family of exponential distributions P {PA}‘where P, is

A
. . A
determined by the density fx(x) =xe"*, x>0and 0< A <n. Now P c P2w’

for a suitable choice of ¥, and Q(A) = - X decreases.

The examples above can all be placed in the framework of a 2x2-table. In the
first example we compare two Bernoulli experiments in the following way: the
first expefiment, which has probability of success P> is performed m times
and the second experiment, which has probability of success Py> is per-
formed n times. The’hypothesis P, =P, is tested against the alternative

P, > p, on the basis of X, the number of successes obtained with the first
experiment, conditionally on X+Y, the total number of successes. It is well-
known that the conditional distribution of X under the hypothesis is hyper-
geometric. The second example can be looked at as a limiting case of the
first one for small p-values, as the binomial distribution with parameters
(N,%) tends to the Poisson distribution with parameter A. The conditional

distribution of X under the hypothesis is binomial for this case.

In the third example we also compare two Bernoulli experiments, but now the
first (second) experiment is performed until m(n) successes - or, equiva-
lently, failures - have occurred. The above hypothesis is tested here on the
basis of the number of trials with the first experiment, conditionally on
the total number of trials performed. Finally, the fourth example is the

continuous analogue of the third example.

We now return to the general case, where P ¢ P__ or P2¢' In order to find

v
the optimal ratio m/N, we must compute the unconditional power of the test,
which is the expectation with respect to T of the conditional power. For the
evaluation of this conditional power, we have to know the conditional dis-

tribution of X, given T = t, under HO’ as well as under H,. First this dis-

1
tribution is found for P < P1¢; the case P ¢ P2¢ follows by analogy. As we

shall restrict attention to local alternatives, the following lemma is more
general than needed here since it holds for general 6 and 8. It is given in

the present form as it may be of some interest of its own.
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LEMMA 2.2.2. Suppose that X1,...,Xm, Y
Xi with distribution P
Pg e PcP

1,...,Yn are independent r.v.'s, the

02 the Yi with distribution Pa; where Pe,
w2 {bﬁesgme VeV, Let X, Y, T and N be defined as in (2.1.1);
i (M50 sWy ) be the expectation, variance and k-th central
moment of X, (¥,), x = 3,h,-é-. Morfgver, ass$§e that positgge constants
b, B and V exist such that o 2 b, o 2 b, Ee | < B and Be | < B for

vl < V. Then for all non-negative integers m, n and t such that
2/3

let u, 02, u

|t-mu-np | < cN“/>/log N and € < m/N < 1-¢ for some positive comstants c¢ and

€, we have for each non-negative integer 1 the following expansion

i) = 2
(2.2.1) P(X <1 | 7=t) = olyy ) + ¢y ) agra,y) a*ay(y],142)) + R,
where
IR| < ALN™| + N‘h(t-mu-nﬁ)6j.
Here
_ m02+n;2 1/2 ng2mu+m02(t—n:)
v, = (5= "7(1 - — )»
1 2~p 2
mnoc O mo +no
o 1o M o2 TR
o = LmoPms?) 1/2(I3(n0%1/2 Z3(mo 172y
0o 2 o\ o o\ Tmp
g mo o no
1 ~2, 2 ~2.5/2  mngo.1/2 ~ ,mnooy1/2
(2.2.2) - E(t—mu-nu) (mo“+nc<) [ (=) "= (=) ""1,
3¢ 2 3~
[0 o]
1 N~y 2 2D u3ngz 53m02
a, = - —(t-mu-nu)(mo“+no“) [ + 1,
1 2 2 ~2
o g
a = - l-(m02+n32)_3/2[u n3/233 - m3/203]
~
2 6 3 m1/203 3 n1/203

and A depends on P Py in P m, n, t and 1 only through b, B, V, c, €

6’ 1w
and .
PROOF. We have
1 t
(2.2.3) P(X < 1|T=t) = [ } P(X=k)P(Y=t-k)1/[ | P(X=k)P(¥=t-k)].

k=0 k=0
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The procedure is as follows: we give an expansion for P(X=k) for the

central k-values. From this expansion we immediately derive a similar ex-
pansion for P(Y=t-k), which leads to an expansion for P(X=k)P(Y=t-k), for
central k-values. After showing that the P(X=k)P(Y=t-k) for k in the tail

of the distribution can be neglected, the sums in (2.2.3) can be evaluated.

First we give an expansion for P(X=k). Let p, be the characteristic func-
tion of a r.v. Z. As px(u) = gt = Z;=O P(X=k)eluk, we have

m .
(2.2.4) P(X=k) = 5% J pX(u)e’lukdu, k=0,1,2,...
-T

From the definition of P1 it follows that for each ey € (0,m) there exists

€, € (0,1) such that IpX1(u)| < 1—51 for c, < |ul € w, uniformly for all

Pe P1w. This implies that

(2.2.5) log(w)l < (1-51)m, for ¢, < |ul < m

Using (2.2.5) and the fact that € < m/N < 1-¢, (2.2.4) becomes
1/2 =iu(k-my)
c.m ag 1/2 ~

m

(55)e 9 au + 0(e M)
m ag

1

:
172 P Xemy
2mm ‘o 1/2c

—c1m

(2.2.6) P(X=k) =

2

~

for some C > 0.

vX
Let w = u+iv be a complex number. From the fact that Ee T <Bfor |vl =V

it follows that DX1(W) is analytic for |v| < V. Also, in analogy to Feller
(1966) one may derive a bound for the error in approximating Py (w) in the

region |v| < V by finitely many terms of its power series. For M = 1,2,...

define
(w) = ¥ o q - 3¥_ - iiﬂlgil

Py T e T

From
Yo YV _Im 2 -V
lp,(w)| = IJ e "dz| < J e ldz| < |w| max(1,e '),
0 0
and
W
pM(W) =i J pM_1(z)dz, M=2,3,... ,
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it follows that
(2.2.7)  Ipy(w)l = 15—

,1), M=1,2,...

Substitution of wX1 for w in (2.2.7) and taking expectations shows

(2.2.8) | (w) 1 iw EX: Liﬂlg:l EXM-1! <
.2, px1 w) -1 -5 Ry vac Y, 1 <
M -vX M
M
< I;! E[|X1I max(1,e 1)] = O(lﬁT_)’ M=1,2,...,
vX

for |v| < V, as Ee 1 < B for |v| < V. As an application of (2.2.8) we

. 2
have, since ¢ 2 Db » 0,

. 3
2 iy w L
W W 3 lwl 1/2
pe (=) =1 - = - + 0( ), for |v| <m ' “oV.
X1—u m1/2a 2m 6m3/2o3 m2
For some positive constant c¢,., which we may choose < V, Px - satisfies
Re{px _u(w/(m1/26))} >£;for lwl < 02m1/2o. Hence, for these w, we may expand
log ¢ (w/(m1/2o)) to obtain
X1-u
. 3
tog o, () < ¥ T gl
X-u m1/20 2m 6m3/2o3 n?
Consequently
. 3
2 iy w k4
log p W W 3 [w_|
X-my ( )= -5 - + 0( )»
m1/20 2 6m1/203 m
1/2 . oL .
for |w| < c2m 0. Furthermore, there exists a positive constant c3, which
we may choose < Chs such that for |w| < c3m1/20
W w2 le2
(2.2.9) 11og by (75-) + 51 <7
m' "o
Hence, for these values of w
W —w2/2 iu3w3 -1 1, ,6 lez/h
(2.2.10) ) ( ) =e (1 = —==—— + O([N" "+N" ' |w| Je )).
X-mp'_1/2 1/2 3
m’'“g 6m ' “g

Using (2.2.9) and (2.2.10) we can now deal with the integral in (2.2.6).

Suppose |k-mu| < CN2/3/log N for some positive constant C and choose
¢y < cge Then the rectangle with vertices i_c1m1/20 and i_c1m1/2o - iiﬁ%%%l
m "o
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1/

is contained in |w| < cm 20 for N sufficiently large. By complex inte-

. 1/2 .
gration of pX_mu(W/m1/20 exp{~iw(k-myu)/(m / o)} over this rectangle, we
arrive at (c1m1/20-i(k;7; ) )
m ' “o -iw(—%%%—)
= = —1__ v m O dw +
(2.2.11)  P(X=k) 173 [ Py-my(757)e
2mm o m o

1 1/2
k- . (k- -Cn
+ 0(!—7%%— | sup | oy (:p1-nrgil%§l)l +e ).
H .
m' o O<v<t mg

Application of (2.2.10) to the integral in (2.2.11) and of (2.2.9) to the

remainder in (2.2.11) leads to

2
o /2 1.2
e mo2 cm- 9 o s ius(u—i 15%%51)3
(2.2.12) P(X=k) = iz 172 ¢© [1 m'g
om /g -c.m - 1/2 3
1 6m ' “g
1,2 (k-my)
(u” + )
. 0(m"+m“|u-i(—‘;‘—7§“—)161e b me” 'y |qu +
m (o}
2
1 2 2 3 (k-my)
T E S T - : eN
+ 0(|k—;ﬁ‘/1§—|e O 4™
m (o}

Upon evaluation of the integral in (2.2.12), where we use the fact that
|k-mp| < CN2/3/log N, we finally arrive at

1 (eemp)®
( e § o Y3 k-my k-mu,3
2.2.13) P(X=k) = [1 - 3(—75)- (75" +
(2m02)1/2 6m1/203 m1/2(J _ m1/2c
+ 0(N'1+N-hlk—mu|6)],

where the remainder only depends on P

2/3

6 through b,B, V and ¢.

/log N, |k-mu| < CN2/3/log N implies
|[t-k-nn| < (C+c)N2/3/log N. Hence, for |k-mu| < CN2/3/log N we also have

Since |t-mp-np| < cN
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_ l_St—k—nﬂ)z .
2 g u ~ ~
=t- = € - 3 t-k-np - t-k-nu,3
(2.2.14)  P(¥=t-k) oreP) 172 [ 6n1/283{3( n1/2;) (n”2~ )7} +

+ O(N'1 + N"h |t-k—nﬁ|6)3.

As we shall have to sum over k, the expression, obtained for P(X=k).
P(Y=t-k) from (2.2.13) and (2.2.14), has to be replaced by an integral over
the interval (k -2,k +7). First note that

2
~ mnogg2 1/2 m02 ~
(2.2.15)  k-mp = (2RO O _4V/ey B9 (v pyon}),
~2 k 2, ~2
mo“+no mo”+no
mnczg2 1/2 32 ~
(2.2.16)  tek-np = - [ Ve 4+ B9 ({ my-ny),
~2 k 2, ~2
' mg +no mg +ngo
where
2, ~2 ~2 2
+ ~
(2.2.17) y. = (mo_4no”.1/2p,  _mg . mo o, tyg
k 2~2 2, ~2 2, ~2
nmo* o mo+no mg +no

As a consequence we have

2 ~ .2 ~.2
(k-my) (t=k-np)° _ 2 . (t-mp-ny)
(2 2.1 8) ) + ~5 = yk + 5> o .
mg no mg +no

2/3

From (2.2.15) it follows that |k-mp| < CN°/~/log N and |t-mu-nj| <

< cN2/3/log N imply kal < 5N1/6/log N, for some ¢ > 0. Hence, if Yy is

defined by (2.2.17) with k replaced by x

2

:
K+1/2 -ty Y 2 2

(2.2.19) J e 27Xy 27K J 01 - (1‘3'10—‘21,11;—)1/2(x—k)yk +
Kk=1/2 Kk=1/2 I

2, ~2 2, ~2
+ 0B (1)32) 00 + 0BIERT (xk)?Tax =

2~ 2~
mno ¢ nmo o
1.2
“2 Vg 1 12
= e {1+0(N + N yk)}.

In the same way it can be shown that the lower order terms can be replaced

by appropriate integrals. For example
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k+1/2 -=y2
(2.2.20) J (5%%%—)3e 27% gy =
k-1/2 m "o
1 2
2 k+1/2 - —
= [(5:EE_)3 + O(E:Ekl_)][ v/ e 2 Ix ax =
m1/20 m3/203 k-1/2
-+ yF "
=e 2 k[(ﬁﬁ%g—)3 + 0(N'1/2+N'1/2y§+m'5/21t-mu-nﬂl )].
m o

From (2.2.18), (2.2.19) and expressions similar to (2.2.20) it follows that
every term in the product of the expressions in (2.2.13) and (2.2.14) can
be replaced by the corresponding integral. Upon doing this and using

(2.2.15) we arrive at

. . ~ 2
(2.2.21)  P(X=k)P(Y=t-k) = expE:LE:%H:%gl—]/[2n(m02+n52)1/2][S(Yk) +
: ‘ 2(mo"+ng”)

-1 -1 6 =4 ~6 yk+1/2 - _;' y2
+ O([N +N yk+N (t-mp-np) 1 e dy)],
Yk-1/2
for |k-mp| < CN2/3/log N, with
(2.2.22) g(yk) =
V. 1 2
k+1/2 - Sy ~2 1/2 .
= e 2 (1 -5 Py ¢ B (tomuni)] 4
Ye-1/2 6m "o mo +ng mo +no
~2 1/2
1/2 ~
S LR )V BT () 10 +
2 2 2. ~2
mo +no mg +ng
u 2 1/2~
. 5 -
¥ 132~3 &y ~2)1/ ¥ - p(tomueni) 1 +
6n o mo +no mg +no
2 1/2~
1/2 ~
- (55 / vy - ‘“EL——JE(t—mu—nu)]B} dy.
~2 2, ~2
mg +no mg +no

With (2.2.21) and (2.2.22) we have found an approximation for the central
k-values; it remains to show that the sums over |k-mp| > CN2/3/log N of both
P(X=k)P(Y=t-k) and g(yk) are sufficiently small.
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. . 2/3
First g(yk) is considered. Choose C > 2c,then |k-mp| > CN / /log N and

2/3 P 1/6/log N,

|t-mu-np| < cN“/°/log N imply in view of (2.2.15) that lykl > cN

for some constant ¢ > 0. Hence

(2.2.23) 1

le(y, )l =
Ik-mul>CN2/3/log N k

lely, )< ) .
k |yk|>CN1/6/log N

1.2
-=y -1
solf e Geihe 27 ap = o).
lyl>cN ’*"/log N
For P(X=k)P(Y=t-k) we proceed in the following way. According to (2.2.21)
to (2.2.23) we have

2/3
mp+CN='~/log N 2 N
(2.2.24) ¥ P(X=k )P(Y=t-k)= expl[- LE—E%—EE%—]/[2n(m02+n02)1/2]
mu-CN2/3/ng N 2(mo“+nc")

01+ o+ (bomp-ni) )3,

As X+Y is a sum of independent r.v.'s, an expansion similar to (2.2.1k)
holds for P(X+Y=t) for |t-mu-np| < cN2/3/log N. In particular, P(X+Y=t)
equals the right side of (2.2.24). This implies that

(2.2.25) )

P(X=k)P(Y=t-k) =
Ik—mu|>CN2/3/log N

~2
= o(on 32972 (eomumny) gy

t—mu-n§)6]exp[—%' 5
(mo“+no")

The sums in (2.2.3) can now be approximated. For any 1 we have

: (t-mu-nj)> 2 ~2.1/2.. %
(2.2.26) I P(x=k)P(Y=t-k) = expl- ~—b-2i=]/[2n(mo™+no") "1 ] ely, )+
k=0 2(mo " +no") k=0
+ O(N_1+N‘h(t—mu—nﬁ)6)},

where we use (2.2.21) for |k-mu| < CN2/3/log N and (2.2.24) and (2.2.25) for
|k-mp| > CN2/3/log N. From (2.2.26) it immediately follows that
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1 . t
(2.2.27) P(xsilr=t) = [ ) gly,) + O(N'1+N'h(t—mu-nu)6]/[ ) ely,) +
k=0 k=0
+ 0 e (fomuoni) 61

It remains to insert (2.2.22) in (2.2.27). We can write g(yk) as

Vrr/2 - 142
gly )= e 2 (1+b-a_y-a y2—a y3)dy
k [6) 1 2 ?
Yk-1/2

(N_1/2+N_3/2(t—mu—na)2) and 8> a and a

vwhere b, a , a, and a, are all 0 ] 5

1 2
are given in (2.2.2). This implies

1
kzo gly,) = ¢(y1+1/2)(1+b—a1) +

2
+ + + .
$(¥y4qpp)lagrayy g pten (g, p*2)]
In particular,2£=0 g(yk) = 1+b—a1+0(N_1). Substitution of these results in
(2.2.27) leads to the desired expressions (2.2.1) and (2.2.2). Finally the
uniformity of the O-symbol in m, 1 and t is evident from the method of
proof. [

COROLLARY 2.2.1. Under the conditions of lemma 2.2.2 we have for each
8 € (0,11 an expansion to O(N_1+N_h(t—mu—n:)6) for P(X<1|T=t) + 8P(X=1|T=t)
if we replace Y141/2 by Vi4g-1/2 TP (2.2.1).

PROOF. The result follows immediately from lemma 2.2.2 by noting that
P(X<1|T=t) + SP(X=1|T=t) = (1-8)P(X<1-1|T=t) + 6P(X<1|T=t) and that

_ -1
(1_6)®<yl_1/2) + 6<I>(yl+1/2) = ¢(Yl+6_1/2) + O(N )- |

In the second case, where P c P2 , & similar expansion holds.

v

LEMMA 2.2.3. Let pX1(°Y ) be the characteristic function of X1(Y1) and
suppose that [lox (u)]¥au < B, prY1(u)|vdu < B for some v 2 1. Let P,
Pg e Pc P2¢ for some y € ¥, let t and 1 be real numbers and suppose that

the remaining conditions of lemma 2.2.2 continue to hold.

Then the conclusion in (2.2.1) continues to hold, if Y141/2 18 replaced

by yy-
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PROOF. As X1 and Y1 have densities fX1(x) and fYT(y)’ the conditional

. m . . .
density of X = zi Xi given T = t 1s given by

=1

fX(x).fY(t—x)

e if £ (t) >0
£o(t) T
Tx7=t(X)=
0 otherwise.
Hence P(X<1|T=t) = ffw fX(x)fY(t-x)dx/fo_cm £ (x)fy (t=x)ax. For m 2 v, lo I =

= |0X1|m < leyx IV and therefore fmm|px(u)ldu < B. Under this condition, the
1 -

Fourier inversion theorem yields

(2.2.28) fx(x) = é%‘f_m pX(u)e~iuxdu =

. X-mp
m1/20 L _lu(—TZE_)
—_— p —=)e du +
2T /20 J-—c1m1/20 (X—mu) m1/20

0 (u)e—luX

1
+——
2m J X
|u|>c1

dx.

From the definition of P2¢ it follows that for each c, > 0 there exists
e, € (0,1) such that Ipx1(u)l < 1-e, for [ul = co uniformly for all

Pe P2 This implies that

v

(Wl = loy, (WI™ < (1= ™" Vo, (W1,
X | X

le
X 1 1

for |ul > c,. As (u)1¥ is summable, it follows that the second integral

1 loy
in (2.2.28) is exponéntially small.
Since (2.2.10) still holds in the present case, the first integral in
(2.2.28) can be handled in the same way as in the proof of lemma 2.2.2.
Hence, for |x-mp| < CN2/3/log N, fX(x) can be approximated by the right
side of (2.2.14), upon changing k into x. The remaining part of the proof

is analogous to and simpler than the proof of lemma 2.2.2. [J
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2.3. AN EXPANSION FOR THE UNCONDITIONAL POWER

The conditional power of the test of 6 = ) against 6 > ) (or 6 < g) that
rejects the hypothesis for large values of X, given T = t, is denoted as

"ta' Corollary 2.2.1 and lemma 2.2.3 enable us to find an expansion for

L. for those t that satisfy lt—mu-nal < cN2/3/log N. This will suffice to

find an expansion for the unconditional power, which is denoted as Ty
under the assumption of local alternatives. In the following lemma we give

such an expansion.

LEMMA 2.3.1. Let Py, Py € P, where P < PW

Suppose there exist positive constants €, b, C, V. and 0 < o < 1 such that
vX v ~ ~ _

€ <m/N<1-€ Ee lsc, Be 15¢C for vl v, o2, 6221, |yl <cn /2,

|6°-5% | o 1/2 and |u3-;3| < CN~1/2. If Pc P2¢ then also assume that

flpx1lv c, flpy1lv < C for some v = 1.

or P c P2¢ for some ¥ e VY.

IA

IA

Then the unconditional power m, satisfies

1

(2.3.1) Im, - glu )l = AN,
where
- mn\1/2 u-i mn,1/2 u-i
(2.3.2) gluy) = 1—<I>Eua—(N) (T)]“¢[ua‘(w) ( 5 )]
'ﬁ‘ ~ ~
23 (u=byn#Ny _ 1m 07-0
[u“{6~3( S )( X ) 21\1( o )} o+
[o}
o )/ n 0?8 Ty nom g
N g ‘2Nt ~2 653 5 N d
and where A depends on Pgs Py in P1¢ or P2¢’ m and n only through €, b, C,

V and V.

PROOF. We give the proof for the case where P ¢ P__ . The proof for the

11
other case is similar but requires some minor notational changes which are
left to the reader. As long as nothing is said to the contrary, we restrict
attention to those t that satisfy |t—mu—n;l < cN2/3/log N, for some ¢ > O.

According to corollary 2.2.1 we have under H1
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(2.3.3) P.(X<1|T=t) + 6P, (X=1|T=t)

1 1 = 0y eqy0) * 0 s g )leg

2 R ~ 6
taiegarse t 2 Wigig pt2) ]+ OO N (tomioni) )

with Vs 8gs 8 and a, as defined in (2.2.2). Under HO we have

1

(2.3.4) P (X<1l|T=t) + GPO(X=llT=t) =9 (o +

0 (V145-10) * 6 (7 45 17208,

~~ ~ D -1, =L ~\6
+ ] -—
*a Vst R o (Y 4s-q/272) 7 + O(N 4 (tomu-nu)”),
where yl, aO, a1~and a2 are derived from yl, ao, a1 and a2 by replacing u,
and u3 by 4, 0 and u3 everywhere.

< —3 = = = - =
Let 1ta and th be such that P (X ltalT t) + dtaPO(X ltaIT t ) 1-a = o(u ).

0
From (2.3.4) and the fact that u, = 0(1) it follows that

~ _ ~ o~ ~ 2 -1, =b ~6
(2.3.5) ylt +6ta_1/2 =u, - [a0+a1ua+a2(ua+2)] + 0(N '+N (t-mp-nu) ),
as ;O’ g1 and gg are O(N_1/2+N_3/2(t—mu—n;)2). In order to find meys Ve
must know yl +§. -1/2° To this end, note that
to “ta
~2 2 ~ ~2
no mu+mc~(t—nu) = (tenh) - =22 (fomuonil),
mo“+no mo“+no

and hence

nggmu+m02jt—nﬁ) _ no- mﬁ4m32(t—na) = ZB(u-p) +

2, ~2 ~2,
mo +no mo +no2

mn 02—52 -1 ~
+ [5(—=") + 0(8 ) )(t-mu-nu).
N o

Combining this result and (2.3.5) we get

(2.3.6) ¥ =[5 SRy Ty .
1tu+5t -1/2 lta+6ta_1/2 mnﬁg N
mn 02—02 -1 ~ ch -1/2
+ {—5(——:5—) + O(N )}(t—mu—nu))](—————zg) =
N g mo +no

= [u -(E2)1/2(gk g _

(02—02)]__(mn)1/2(02—02\(t—mu—nu)

a ‘N o aNt 2 N ~3 / N

- (a4, (u242) 1 + O ™ (bemun) ),

+
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as lu-ul = O(N_1/2) and |02—52| = O(N—1/2). From (2.3.3) it now follows
that

: mn,1/2 u—; n 02—;2
(2.3.7) 1—ﬂta = ¢{[ua_(if) (—g“)][1 - Eﬁ(——gg—)]} +

~ 2 ~2 ~
+ ¢[ua—(ﬁ)1/2(%3)3[-(%)1/2(" =0\ (t-mp-ny)

)
N 03 N

~ ~ 2 .
+ ao+a1[ua-(i“§-)1/2(£§ﬂ>3 + ayllu_ - ("Ilq—n)”z(ﬁ—g—‘in £} +

N

~ o~ ~ 2 -1~ ~.6
- ao—a1ua—a2(ua+2)] + O(N 4N (t-mp-np) ).

From (2.2.2) it follows that |a0—;OI = O(N_1+N_2(t—mu—n:)2), Iaz—gzl = 0(N'1),

'ﬁ‘ ~
~ o _om 3.p-u -1,.,=3/2 ~
a,-a, "o < { = ) + 0(N 4N (t-mu-nu)).
Inserting these results and the expressions for &, and a, from (2.2.2), we
get
1/2,u-1 1/2 (t 0 0=

- _(mn H=}yq om0 —my-ny) [(E =9y

(2.3.8) “tot g(ua)+¢[uot (N) ( G )](N) NG ( 02 )

~ 7 .
- %(Eég) g%] + O(N-1+N_u(t-mu—nu)6),

where g(ua) is defined by (2.3.2).

2/3

The expansion in (2.3.8) only holds for |t-mp-np| < eN°/>/log N, but this

suffices to find T, = E“Ta' Let S be a set satisfying
S c{t : |t-mp-np| < cN2/3/log N}

and let IS(t) be the indicator function of S. Then

(2.3.9) ﬂu—g(ua) = E(ﬂTq—g(ua)) = E[(T-mu—nE)IS(T)]O(N_1) +

1

+ 0(N” +N_hE[(T—mu-n;)6I (T)1) + O(E[InTa—g(Uu)lI

s o (mM71).

(s7)
vX

As ET (T)]. Because Ee 1 < B,

EeVY1

myu+ny , E[(T-mu—n:)IS(T)] = —E[(T-mu—n;)I(
B for |v| s Vand T=]_,
E|T-mp-np|¥ = O(Nr/z) for all positive real r, by the Marcinkievitz-Zygmund-

n 5¢)
.o+ ), :
X1 ZJ=1 YJ, we have

N
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Chung-inequality (cf. Chung (1951)). In particular, E(T—mu~n;)6 = O(NS).
Furthermore,ﬁTa and g(uu) are both bounded. In view of these facts, (2.3.9)
simplifies to

(2.3.10)  Im —g(u )l = O(N “+E([|T-mu-nn|+11T _ (T)}).
a o c
(s7)
Application of H8lder's inequality shows that for all r,s > 1 with
1/r+1/s = 1

(2.3.11)  E{[|T-mp-np|+1]1 NCIRE (B | T-mu-npi|+177} /T (&L T . (7)1%} /5 =
(s7) (s%)

= o(x'/rp(r € 5%)1'/5).
. . . ~ 1/2+1
From Chebyshev's inequality we have, if we choose S={t:|t-mu-np| < N },

for some 0 < T < 1/6
(2.3.12)  P(T € §°) = O(E|T-mu-npi |[PxP(1/2+T)y - o(y7PT),

for all p > 0. Now (2.3.1) follows from (2.3.10), (2.3.11) and (2.3.12). The

uniformity in Pe, Pg and m follows again from the method of proof. (I

For exponential families with monotone likelihood ratio the expression for

g(ua) in (2.3.2) can be simplified by using the result in the next lemma.

LEMMA 2.3.2. Let P = {Pe :9ec0cR}bea family of distributions on R'

having densities f,_(x) = exp(Q(0)x)/c(8) with respect to a o-finite measure

0

v. Let yu, 02 and My (u, 02 and u3) be the expectation, variance and third
(P~). Let 6, 8 € © be such

~ -1/2 ~ 6 9

that 1Q(8)-Q(8)| < CN and 0 < ¢ < [ exp{(Q(6)+e)x}dv < s

0<c < f exp {(Q(8)-e)x}dv < C < =, for constants ¢, C, C and ¢ > 0. Then

we have, uniformly for fized ¢, C, C and €

central moment of a r.v. with distribution P

< o

(2.3.13)  (u-iuy - (°-52)62 = o).

PROOF. Let T = Q(6) and define d(t) = / e “dv(x). Then S xkf (x)dv(x) =
0

=d(k)(1)/d(r),k =1,2,..., and therefore the expression on the left side of
(k)

(2.3.13) may be expressed in terms of the values of the functions d and



25

d at the points Q(6) and Q(8), for k = 1,2,3. Under the conditions above on
9, d(k) and d are uniformly bounded away from zero and infinity at the
point Q(6). As 1Q(8)-Q(8)] < CN_1/2, this will also hold at the point Q(8)

for N sufficiently large. Furthermore,

o

1

a'®)q(®)) = a'®(ae)) + ta®)-a(e)1a ™ (a(e)) + o).

Inserting this in (p-p)u, - (02—;2)02 leads to the desired result. [

3

If (2.3.13) holds, g(ua) simplifies to
_ mn\1/2, u-p mn,1/2 H:E
(2.3.14) g(ua) = 1-¢[ua ( N) (B = )] ¢[ua—( N) ( = )]

_‘N’_3_p_-_§ N-2n mn\1/2, -2 3 (N
(S B=Bny, (o) 1/20 SO,

We now apply the results of this section to the four examples given in
section 2.2. Here lemma's 2.2.1 and 2.3.2 clearly apply. Hence L is the
power of the UMPU test for these cases and under the conditions of lemma

2.3.1 it may be approximated by (2.3.14). Let n, and n,. be positive con-

2
stants.

EXAMPLE 2.3.1. P(X,=1) = 1-P(X,=0) = p,, P(Y,=1) = 1-P(¥ Y,=0) = p, = P,

where n2 P, < Py < 1-n2 and P, =D, +bN~ 1/2, b = 0(1). Then B =Dy
o = P (1-p,), u (1-2p,)p, (1-p.) &nd therefore u-p = b 1/2
2.2 1 (122 372 oY), ok, = 0172 e
+ ,U-u =
373

g = (1-2p)bN~ . Furthermore, Ee e

= (1-p1)+p1e for all v. It follows that we may apply lemma 2.3.1. Hence

_ mn 1/2 b mn_ 1/2 b
(2.3.15)  w = 1-¢(ua-[——————P(1_p)] AR Sy ey ¥
1-2p) (N-2n) mn 1/2 (1-2p)(n+N) .2 -1
bu + [ 7] + 0(N ).
Cen( p) p3/2 o (- g

(A5)s

EXAMPLE 2.3.2. X (Y1) has a Poisson distribution with parameter i, (2,

'1/2, b = 0(1). Then

1
where n2 <A, < A, < n1, Ae = A, A, = A+DN
= bN-1/2. Furthermore,

2 1 A > ~
u=a ,and therefore uy-yu = o -0
VX.‘ } +)\ eV
Ee = for all v. Hence

= H3THg
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- 1/2 b (En 1/2 by (N=2n)
(2.3.16)  m = 1-0(u -[5° p-o(u (51 N)[exm3/ bu, +
+ [gg]1/2 (n#N) b ] som ).
A /2

<

EXAMPLE 2.3.3. X (Y ) has a geometric dlstrlbutlon with parameter p1(p2)

1/2 = L
with n, < p, < p2 € 1-ny, Py = P, Py = PN = 0(1). Then u = P,
(1-p,) (1-p.)(2-p,) - -1/2
02 = 1 s U, = ! ! and therefore y-u = ) LI 0(1\1'1 ),
2 3 3 2
P p1 b
~ 2~ - - ~ -
02—02 = - (2-p) bR 1/2 + 0(N 1), H3-Hg = o(N 1/2). Furthermore,
VX1 vp v 1
Ee = p,e /(1-[1—p1]e ), for v < log (1—1)—)' Hence
~F1

mn]1/2_h;)_¢(ua+[&]1/2 b (p—2}§1\1—-2n}bu +

(2.3.07) . = 1-a(u 7S -2 PN (g 2

+ [mn 1/2 §2-22£n+N) b2] +0(N—1)
1= P 6p (1-p)N 5/2 '

EXAMPLE 2.3.k4. X1(Y1) has an exponential distribution with parameter A (A,),

: -1/2 ) ; Ve
with n25)\1<)\25n1, A2=A’ A1=A+bN 9b=0(1)- Thenu=ﬂ,
of = L, u i, and therefore p-y = - lN-”g + O(N_1), 602 =
12 3 3 A2
1 N
vX
= - ‘2‘)?’ N—1/2 + 0(N” ), Hy—Hg = O(N-”z). Furthermore, Ee 1. A/ (A=v), for
ul,-1/2
v <A, and |py, (u)] = (1 +=5) . Hence
X.I )\2
1/2 1/2
(mn) (mn) "“v (N-2N)
«Je = 1= —————-—_ b +
(2.3.18)  m = 1-e(u +"% olu_* o)L= 3AN3/2 u,

1/2
4 {m) ~“(Wn) 5 S%n) v21 + 0N ).
32N

2.4, OPTIMAL RATIO AND DEFICIENCIES

In this section we solve the main problem of this chapter: which choice of

y = m/N is optimal as N + »? From (2.3.2) it is evident that y = -;- + O(N_1/2).
In order to find the second order term we set y = %+ fN-1/2, with £ = 0(1).
For a given f, denote the power at level o by “a,f and the expression in
(2.3.2) by g(ua,f). Under the conditions of lemma 2.3.1 we have
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(2.4.1) Tyt Ta,0 - glu ,f)-g(u ,0) + o(w3/?),

as changes in f cause changes of 0(1\1_3/2

and (2.4.1) it follows that

) in na’f—g(uu,f). From (2.3.2)

N
I

1/2

~ 1/2 ~
_ oyl _ (p=p) 2 N "“(u-p)
(2.4.2) My Mg, 0 = N 6l = - = +
o~ 2 ~2
+ fu {%(P—:lm”2 - %(Lig—)m” %)+
o
~ _1/2
1/2 1/2 2 ~2  p.N ~
+ f (11 ){N (0’ -0 )_ 3 (U-U)}] + O(N-3/2)'
F L ~D ~ i
o 60
Obviously, (2.4.2) reaches its maximum for
¥ ~ 2 ~2 ~ 2~2 4 ~
(2.4.3) = [u, {——(P—;ﬂ) He=2y + w2 e - sty
o o 6 3 G
pe o o

[2(252)1 ¥ O(N_1/2).

Consequently,
-1/2 02000 - iy 2 -3/2

(2.4, k) LI =N ¢fu - = WM (EZHy et 4 o(y ).

o,fy "a,0 a o5 o 0

% N1/2 it .

Define by = =5 (HgE). Note that by is bounded. As o is a constant, with

0 <o <1, it follows that

™ = 1-¢[ua-b§+A(ua,b§)N"1/2 - 2y 21 4 o 32y,

a;fo O

(2.4.5)

m =1-®[ua—b§+A(ua,b;)N_1/2 + 0(N‘3/2)],

a0
where IA(ua,bg)l < C for some C > 0. Application of (1.2) to (2.4.5) shows
that the deficiency of the choice m = n with respect to the optimal
choice m/N = % + foN' /2, satisfies

(2..6)  ay = (2r))® + o2y,

Hence the asymptotic deficiency d equals (2f0)2. This is finite, which may

seem surprising in view of the fact that the difference between the optimal

choice vy, and 1 is O(N_1/2) rather than O(N—1). This suggests the
0 2
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asymptotic deficiency to be infinite. That this is not the case is explain-
ed as follows: the leading term in g(u ,f) is symmetric around y = %, in
fact 1= 1-¢(ua-[NY(1-y)3‘/2(l‘—§E)) +0(v?), anay = 1. o2
implies y(1-y) = % + O(N—1).

We finally apply these results to our examples. In the first place,
(2.3.13) holds in all examples considered, and hence (2.L4.3) simplifies to

~

u ~
(2.4.7) £, = - hi3 [ - N1/2(E§E)] + o172y,
2ho

The expression in (2.4.7) becomes more transparant if we eliminate

N1/2(u-;)/g by using its relation to the power of the test. Denote 1-m,,

the error of the second kind, as B. From B = @(ua i 5 (E%B)) + O(N—1/2) it
then follows that

1/2 ~
Nl o (qoway) + o /3).
2 o o B
Hence
n
(2.5.8) £ = - —3 (u-u)+ o0 "/?),
0 ~3 "o B
12¢
;2
(2.4.9)  ay = =3 (uu)® + 02
360 ~
. . M3 2
In most applications Iua—uBI < 1, which makes (—:§) a reasonable upper
bound for d. In the special case where the errogg of the first and second

1/2) and the choice of m = n is therefore optimal

kind are equal, £, = o(n~
-1 . . .
to O(N ). We conclude this section by making some remarks on each of the

examples of section 2.3 separately.

EXAMPLE 2.4.1. For example 2.3.1, (2.4.8) specializes to

= (2p-1)
f = ———L—_l—/—é (ua—us).

Remembering that m/N = v = %—+ fON-

of the first kind has to be smaller (larger) than the error of the second

1/2, we may conclude that, if the error

kind, one should perform more (less) often the experiment whose probability

of success differs most from %. Furthermore, (2p—1)2/(36p(1-p)) =
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= (2p—1)2/[9(1 (2p—1) ). Hence, if |ua-u | <1, then & < D for
172 1

lp-1/2] < "{9D/(9D+1)] 2 - 36

0.03 < p < 0.97 and & < 3 for 0.01 < p < 0.99.

This gives for example d < 1 for

EXAMPLE 2.4.2. For example 2.3.2 we find fo = —(uu—us)/(12/k). If one wants

to have a < B, then one should perform the experiment with the smallest

parameter more often. Furthermore, d < D if A < §%~and lua-uBI < 1.

EXAMPLE 2.L4.3. For example 2.3.3 £, —(2—p)(ua—u6)/[12(1—p)1/2].

EXAMPLE 2.4.4. For example 2.3.4 £, —(ua-u )/6.

B
2.5. COMPARISON OF SAMPLING RULES FOR BERNOULLI EXPERIMENTS

In the previous section the results of section 2.3 were used to solve the
main problem of this chapter. Here we briefly discuss another application

of these results.

Consider two Bernoulli experiments, with probability of success P, and Py»
respectively. We shall give an asymptotic comparison of the performance of
two sampling rules in testing the hypothesis P, = b, against the alterna-
tive P, = P> Py =D + A, A > 0. The first of these sampling rules is the
"Vector-at-a-Time" (VT) rule, which simply sstates that m and n, the numbers
of trials with both experiments, are equal. (cf. Sobel and Weiss (1970)).
From example 2.3.1 it follows that for this rule the power Ty of the UMPU

test satisfies

_ /2., _ g1 2p)A
(2.5.1) m, = 1-elu, A(z;(;ﬁ;y) (1 Lo (1 p))} + 0(n” ),
for A = O(n_1/2) and € < p, < p; < 1-¢ for some constant e > O.

The second sampling rule we consider is the "Play-the-Winner" (PW) rule,
which prescribes that one continues with the same experiment after each
success and that one switches to the opposite experiment after each failure.
As soon as r failures have occurred with both experiments, sampling is
terminated. In this situation there also exists an UMPU test for

H0 I P p2 against H1 t P,
the power n of this test is supplied by example 2.3.3, if we interchange
p and 1-p in (2.3.17). We find for A = O(r 1/2)

=P, Py =D+ A, A > 0. An approximation to

and € < P, < Py < 1-¢
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‘. B xyi/2 _ (Rl L oo
(2-5-2) T[a = 1-@{11(!‘ (1_p)(2p (1 - ’-‘»P(1—p)} + O(I' ).

In order to make the PW rule and the VT rule comparable, it seems reasonable
to choose r, for each n, in such a way that the powers of the two tests
under consideration are equal. From (2.5.1) and (2.5.2) it follows that

*, -1
lwa-nal = 0(n” ') for

(2.5.3) r = n(1-p)(1 + y &)+ 0(1).

3
2(1-p
Now there are various criteria according to which we can compare the two
sampling rules. For example, we may prefer the rule that has the lowest ex-
pected number of trials on the poorer experiment, i.e. the experiment with
the smallest probability of success. Another criterion is the expected
number of failures that could have been avoided by using the better experi-
ment throughout.'Finaliy, a third criterion is the expected total number of

trials.

We consider the first criterion. For the VT rule the expected number of
trials onthe poorer experiment obviously equals n. From (2.5.3) we obtain
that for the corresponding PW rule this expectation is
n(1 + 3 A) + 0(1).
2(1-p) .
Hence the PW rule requires in expectation 3nA/{2(1-p)} additional observa-

tions on the poorer experiment.

As concerns the other criteria mentioned above, we note that the second
criterion is equivalent to the first, whereas the third criterion will
certainly not prefer the PW rule if the first criterion prefers the VT rule.
Hence, according to all criteria, the PW rule is asymptotically worse than
the VI rule for the problem of this section, uniformly in p. Apparently the
fact that the PW rule has a tendency to use the better experiment more
often, is outweighed by the fact that the negative binomial distribution has

a larger skewness than the binomial distribution.
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CHAPTER 3
ASYMPTOTIC EXPANSIONS FOR NONPARAMETRIC TESTS FOR THE ONE SAMPLE PROBLEM

3.1. INTRODUCTION

In this chapter we shall give asymptotic expansions for the distribution

functions of one sample linear rank statistics and also for the‘power func-
tions of the corresponding tests. These have been derived by Albers, Bickel
and van Zwet (1974); the present chapter contains the results of this paper

and two extensions. We only sketch the proofs.

Our starting point in establishing the above expansions will be the so
called Edgeworth expansions (cf. Cramér (1946), Feller (1966)). For the
distribution function (d.f.) R(x) of any r.v. X with mean 0 and variance 1
' ~ 2
we can give a formal Edgeworth expansion R(x) in powers of N 2. For
example, to O(N_1) this looks like
-1 -1

~ N 3 L

(3.1.1)  B(x) = 0(x) = ¢(x) |—2x"1) + —Hx-30) +

N_1K2
3.5 3
+ 2 (x”-10x +15x)],

1
where kg and k) are the third and fourth cumulant of X, multiplied by N?
and N, respectively, and ¢ and ¢ denote the d.f. and the density of the

standard normal distribution.

Such expansions have been used for rank tests before, for example by Hodges
and Fix (1955), Fellingham and Stoker (196L4), Sundrum (195k4), Witting
(1960) and Rogers (1971). These authors, however, restrict attention tc the
special case of the one or two sample Wilcoxon test. Furthermore, with the
exception of Rogers, they do not bother to show that (3.1.1) is a valid
expansion, but merely recommend it as an approximation on purely numerical
grounds. Rogers gives an Edgeworth expansion R(x) to O(N_1) for the two
sample Wilcoxon distribution R(x) under the hypothesis, and proves that

sup |R(x) - R(x)| = o(w" ). .

Here we shall justify expansions to O(N—1), not only under the hypothesis,
but also under contiguous alternatives, for quite general test scores. In

section 3.2. we give a basic expansion for the d.f. of a linear rank
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statistic, without any assumptions at all about the alternative. In the
next section we restrict attention to contiguous alternatives and obtain a
more explicit form for this expansion. This expression still involves sums
of functions of moments of order statistics. These are replaced by appro-
priate integrals in section 3.4 und;r the assumption of smooth scores and
contiguous location alternatives. Finally, in section 3.5, we consider the
sign test as a separate case, since it cannot be handled by the general

methods of this chapter, because of its pronounced lattice character.

3.2. THE BASIC EXPANSION

Let X1""’XN be i.i.d. r.v.'s with common d.f. G and density g, and let
0 < Z1 < 22 < ... < ZN denote the order statistics of the absolute values
of x1,...,xN. If lij|.= zj, define

1 if >0
vV, = { XRj ’

(3.2.1)

J 0 otherwise.

We introduce a vector of scores a = (a1,...,aN) and define the statistic

(3.2.2) T = Xaj Vs

Throughout this section Z always means Z?=1, unless stated otherwise. We
shall be concerned with obtaining an asymptotic expansion for the distribu-

tion of T as N » «,

Our notation strongly suggests that we are considering a fixed underlying

d.f. G and perhaps also a fixed infinite sequence of scores as N - «, How-
ever, this is merely a matter of notational convenience and our main con-

cern will in fact be the case where the d.f. depends on N and the scores

form a triangular array a. = 1,...,, N =1,2,... .

JiN? J
The r.v. T is of course the general linear rank statistic for testing the

hypothesis that g is symmetric about zero. Under this hypothesis, V1""’VN

N
dent. However, one easily verifies that conditionally on Z = (Z1,...,Z

are i.i.d. with P(Vj=1) = 1/2. For general G, V1,...,V are not indepen-

)»
N
the r.v.'s V1""’VN are independent with

g(z.)

(3.2.3) Pj = P(Vj=1|Z) = g(zj)+g(_zj).

As independence allows us to obtain expansions of Edgeworth type, we shall

carry out the following program to arrive at an expansion for the distribu-
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tion of T. First we obtain an Edgeworth expansion for the distribution of
Zaj ﬁj, where W, ,... W are independent with p; = P(Wj=1) =1 - P(Wj=0).
Having done this, we substitute the random vector P = (P1""’PN) defined
in (3.2.3) for p ='(p1,...,pN) in this expansion. The expected value of the
resulting expression will then give us an expansion for the distribution of

T.

In carrying out the first part of this program, we shall indicate any de-

pendence on p = (p1,...,pN) in our notation. Consider the r.v.

AW.-p.)
oy T
(p)
where
2 _ 2
(3.2.5) (p) = ij(1-pj)aj

denotes the variance of Za. W.. Obviously (3.2.4) has expectation 0 and
variance 1. Let R(x,p) and p(t,p) denote the d.f. and the characteristic
functior (c.f.) of (3.2.4) respectively. Denote the Edgeworth expansion to
0(r™") for R(x,p) as R(x,p) (ef. (3.1.1)). Let T(x,p) be = R(x,p) and
olt,p) = I:;exp(itx) *(x,p)dx, the Fourier transform of T.

To justify a formal Edgeworth expansion ﬁ, i.e. to show that |R - R| is in-

deed o(N-1), one usually invokes the following result (Feller (1966)).

LEMMA 3.2.1. Let R be a d.f. with vanishing expectation and c.f. p. Suppose
that R - R vanishes at = and that R has a derivative T such that |T| < m.
Finally, suppose that T has a continuously differentiable Fourier transform
o such that 5(0) = 1 and p'(0) = 0. Then, for all x and T > O,

~ 1 T
(3.2.6) IR(x) - R(x)| < - J T

“L———Q—(t)EN(t)\dt + 2m
-1

PROOF. See Feller (1966).

To prove that |R - R| = O(N-1), it suffices to show that e.g. for

T=5b . N3/2, the integral in (3.2.6) is O(N_1). For the case we are consi-
dering, this may be done largely in the standard manner (Feller (1966)), by
splitting the integral into several parts. Require that for some positive

constants C and c, Zag < CN and te(p) = 2pj(1—pj)a§ > cN. As this implies
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(CC-2)1/hN-1/u

IA

that (max aj)/r(p) , we can expand
dJ

p(t,p) = exp [z log Py o (ajt/T(p))]
Jd 7J

around t = 0 for [t]| < c1N1/h

Comparison of this expansion with p(t,p) shows that |p(t,p) - p(t,p)| is

, for some positive s depending on C and c.

sufficiently small on this interval to ensure that

~

(t,p)-p(t,p)

-5/4
Jltl<c N1/b t " :
=

at =0

On c N1/h 3/2

1
both small here, we simply use

< |t| € b.N we cannot expand p anymore, but as p and ; are

J|9£E‘Iﬁiﬁlﬁlpl!dt < I,RL%LElIdt + f'EL%4El‘dt.

The last integral on the right is shown to be sufficiently small for
[t| = log(N+1) without any difficulties. As it can be shown that
lo(t,p)| < exp [—%t2+Cth/(96c2N)], we also have that the following integral

is sufficiently small

p(t,p)

J 1/k 1/2 ‘ t b,
c,N Slt|Sb1N

for some positive constant b1. Hence it remains to estimate

(3.2.7) 3/2 'gi%fElldt.

Jb1N1/25|tISbN
Here one usually makes what Feller calls the extravagantly luxurious as-
sumption that thec.f.'s of all summands are uniformly bounded away from 1
in absolute value outside every neighbourhood of 0. Obviously, this con-
dition is not satisfied in our case where the summands ajwj are lattice
r.v.'s. Weaker sufficient conditions of this type are known, but all seem
to imply at the very least that the sum itself is non-lattice. In our case
this would exclude for instance both the sign test and the Wilcoxon test.
On the other hand, it is clear that one has to exclude cases where the sum
(3.2.4) can only assume relatively few different values. As R is continu-
ous, one cannot allow R to have jumps of O(N—1) or larger. Thus the sign

1/2

test, where jumps of order N occur, will certainly have to be excluded.
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However, it is exactly the simple lattice character of this statistic that
makes it easily amenable to other methods of expansion (see section 3.5).

(v3/2)

For the Wilcoxon statistic on the other hand, all jumps are 0 and

the assumptions we shall make will not rule out this case.

For p(t,p) we have

N a.t y1/2
(3.2.8) lo(t,p)| = {1-2p.(1;p.)(1—cos —Jl—)} .
=1 J J t(p)
This is exponentially small if for a positive fraction of indices J the
following two conditions are simultaneously satisfied : e < pj < 1-¢ and
ajt/T(p) differs at least n from the nearest multiple of 2w, for some

0<e<1,n>0. For our purpose this must hold for all t with

b11\11/2 < Jt] < b.N3/2

ficiently small, and the Edgeworth expansion is justified.

. If this is the case, then obviously (3.2.7) is suf-

We summarize this result in the following theorem, where the two conditions

above are replaced by one weaker, but less intuitive condition.

THEOREM 3.2.1. Suppose that positive numbers c, C, § and e exist such that
L 2 :
Zaj < CN, Zajpj(1-pj) 2 ol and v(e,z,p) = A{xliij Ix—ajl < g,

e < pj < 1-e} 2 8Ng for some ¢ 2 N-3/2 log N, where A is Lebesgue measure.
Then
(3.2.9) sup IR(x,p) - B(x,p)| < AN/,

X

where A depends on N, a and p only through c, C, § and e.

PROOF. For a formal and detailed proof see Albers, Bickel and van Zwet
(1974). O
3/2

REMARK. If we require Zlajis < CN instead of Zag < CN, we get AN~ in-

stead of A.N_S/h in (3.2.9). This is the "natural" order of the remainder.

Before we replace p by the random vector P = (P1""’PN) defined in (3.2.3)
and compute the unconditional distribution of T by taking the expected

value, two modifications must be performed.

In the first place, we have to change the standardization of Zajwj into one
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that does not involve p. As before, let W ,...,WN be i.i.d. with

1
=1) = - =0) = = 1 <D, <
P(Wj 1) =1 P(Wj 0) P;> let p (p1,...,pN) be a vector with 0 < p; < 1

for all j, and consider

Za.(W.-g.)

—Jd JJ <
T(p)

Here 12(5) = zij(1-§j)a§ in accordance with (3.2.5). From the fact that

(3.2.10)  R"(x,p,p) = B( x).

(p.-p.)a. ~
R*(x,p,S) = R([x - Z_El_gl_il] IiEl, 0),

<(p) T(P)
we can immediately derive an expansion for‘R* by means of (3.2.9).
The second modification is that everywhere in this expansion we expand
2
(

w(p)/7(p) in powers of [t (p) - r2(§)]/12(5); the reasons for this will

become clear in the sequel. The result of these steps is the following lemma.

LEMMA 3.2.2. If the conditions of theorem 3.2.1 are satisfied and in
addition ng(1-5j)a§ > cN, we have

(3.2.11)  sup |R*(x,p,p) - R (x,p,p)| <
< awt 4 N‘3/2§I(pj-5j)2|aj|3 + 131%(p) - A%,

where A > 0 depends on N, a, p, D only through c, C, 8 and € and where

~

2 2
(3.2.12) ﬁ*(x,p,g) = R(x-u,p) - ¢(x-u) {%.I_iglii_iEl (x-u) +

°(p)
~ ~ ~2\ 3
+ %'E(Pj_pj;(l-6pj+6pj)aj [(x-u)2—1] +
o (p)
2 2,~ 2
+ ';; C 2'1 ( )) [(x-u)>-3(x-u)] +
°(p)

(p) 2 2~
B Tt @) (pn)tg(xu)? + 310,
12N2 °(p)

with u = [X(pj-pj)aj]/r(p).
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PROOF. See Albers, Bickel and van Zwet (19TL4).

We shall now replace p by P = (P1""’PN) in §*(x,p,5) and take expecta-

tions. Define the vector m = (n1,...,wN) by
(3.2.13) ms = EPs, J= 1,...,0.
It will play the role of S. Then the following theorem can be formulated.

THEOREM 3.2.2. Let X,,...,X; be ¢.4.d. with common d.f. G and density g,
and let T, P and w be defined by (3.2.2), (3.2.3) and (3.2.13). Suppose
that positive numbers c¢, C, 8, §' and ¢ exist with §' < min(6/2,c20—1)
and such that

(3.2.14) &?zén,hgscm

(3.2.15) v(z) = A{x | Hjlx-ajl < ¢} = 8Nz for some ¢ 2 N_3/2 log N,

g(X,)
(3.2.16)  Ple < ETETTIE%:iTT < 1-g} 2 1-8'.

Then there exists A > 0 depending on N, a and G only through c, C, &, &'
and € and such that

T—Za.n.

(3.2.17) sup 'P(_TG‘}‘;L) -_E‘ﬁ*<x,1>,n)| <

< A{N'5/“+N'3/h[2{E(Pj-nj)2}5/2]2/5+N'3/2[Z{E|Pj-nj[3}2/3]3/2}.

PROOF. Here we only sketch the proof. For a complete proof see Albers,
Bickel and van Zwet (1974). Using (3.2.16) one can show that for
" ¢ (8',min(8/2,e%C™ "))

P(E) < e'QN(G"'G')Z,

where E= {P | ¢ < P, < 1-¢ for less than (1-8")N indices j}. On E°,

2 . . J 2 * 2 *. *
Xaj > cN implies both Zaij(1-Pj) > ¢ N and Zajwjﬁ-vrj) > ¢ N, for some c
depending only on ¢, C, 8", 6' and ¢ and satisfying O < ¢* < c. Also

v(z) 2 6Nz implies y(e,z,P) = (6-26")Ng on E®, where §-26" is positive by
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assumption. Hence, under the conditions of this theorem, a, P and w satisfy
on E° the conditions for a, p and 5 in lemma 3.2.2, if ¢, C, § and e are
replaced there by positive numbers c*, C, 6-26" and €, depending only on
c, C, 8, §' and €. In dealing with the set E it will suffice to note that
B*(x,P,m) is bounded. Of course, R (x,P,m), being a probability, is also

bounded.

As P([T—zajnj]/r(n) < x) = ER*(x,P,m), the left side of (3.2.17) is bounded
above by

(3.2.18)  E sup |R"(x,P,m) - R (x,P,m)].
X
Applying lemma 3.2.2 on E® and using the boundedness of
IR*(x,P,1) - B*(x,P,1)| together with P(E) = 0(N"2'") we find that (3.2.18)

1s

o>/ 4 N'3/22E(Pj-nj)2

- 2 2 3
lay1% + 17815 () - 2(m)17),
where the order symbol is uniform for fixed ¢, C, 6, 8' and €. This expres-

sion can be shown to be of the order of the right side in (3.2.17). O

We note that the boundedness of ﬁ*(x,P,ﬂ) on E plays an important role in
the above proof. Because T(P) may be arbitrarily small on E, this explains
why we had to remove t(p) from the denominator of the expansion in lemma

3.2.2 by expanding t(p)/t(p) in powers of [rz(p)-re(g)]/rz(i).

Although theorem 3.2.2 is formally stated as a result for a fixed, but
arbitrary value of N, it is of course meaningless for fixed N because we do
not investigate the way in which A depends on ¢, C, §, 8' and €. In fact
the theorem is a purely asymptotic result. Let us for a moment indicate
dependence on N by a superscript. Thus for N = 1,2,..., consider the dis-

tribution of the statistic T(N) based on a vector of scores
N N N N

0 2 () ()

values of ¢, C, 8§, &' and € with &' < min(§/2, c20_1). The theorem asserts

that if for each N, a(N) and G(N) satisfy (3.2.14) - (3.2.16) for these

fixed ¢, C, 6, &' and e, then the error of the approximation
Eﬁ*(x,P(N),n(N)) is

when the underlying d.f., is G' '. Fix positive

o2t 4 N—3/h[z{E(P§N)_ﬂ§N))2}5/2]2/5 . N-3/2[2{E1P§N)_H§N)‘3}2/3]3/2)’
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as N + «», Moreover, the order of the remainder is uniform for all such se-

quences a(N), G(N), N=1,2,...

Assumption (3.2.15) may need some clarification. It is clear from the
sketch of the proof of theorem 3.2.1 that the role of the y(e,z,p) and y(z)
conditions in theorem 3.2.1 and theorem 3.2.2 respectively, is to ensure
that the a. do not cluster too much around too few points. Assumption

(3.2.15) is certainly satisfied if for some k 2 §N/2, indices j1,j2,...,j

k
2N'3/2

exist such that a. =-a. =2 log N for i = 1,...,k. Under condition

1+1 1 .
(3.2.14) this will typically be the case. Consider for instance the impor-
), where U <U < U_. . are order

N 1:8 ° C2:n < 0t S nen
statistics from the uniform distribution on (0,1) and J is a continuously

tant case where 8 = EJ(Uj_

differentiable, nonconstant function on (0,1) with Jh < «, Here both
(3.2.14) and (3.2.15) are satisfied for all N with fixed c, C and 8. The

same is true if aj-= J(j/(N+1)), provided that J is monotone near O and 1.

For a large class of underlying d.f.'s G, the right side of (3.2.17) is
uniformly O(N-1). Still theorem 3.2.2 does not yet provide an explicit ex-
pansion to order N"1 for the distribution of T since we are still left with
the task of computing the expected value of R (x,P,m). This is of course a
trivial matter under the hypothesis that g is symmetric about zero and,
more generally, in the case where, for some n > 0, g(x)/g(-x) = n for all
x > 0. In this case Pj = n(1+n)-1 with probability 1 for all j and an ex-
pansion for the distribution of T is already contained in theorem 3.2.1.
For fixed alternatives in general, however, the computation of Eﬁ*(x,P,w)
presents a formidable problem that we shall not attempt to solve here. It
would seem that what is needed, is an expansion for the distribution of a

linear combination of functions of order statistics.

In the remaining part of this chapter we shall restrict attention to se-

quences of alternatives that are contiguous to the hypothesis. Heuristically
-1/2)
(N

the situation is now as follows. Since g(x)/(g(x)+g(-x)) = % +0 ,

Pj -1 ana T - % will be 0(1\1‘1/2
of O(N-1/2) as before. In the first place this allows us to simplify

ER" (x,P,7) considerably as a number of terms may now be relegated to the
remainder and functions of "j may be expanded about the point m. = %u Much

more important, however, is the fact that U*='f4(n) Z(Pj-wj)aj will now be

), whereas Pj—nj will be O(N-1) instead

O(N—1/2) and that we may therefore expand R (x,P,m) in powers of U'. This

means that we shall be dealing with low moments of linear combinations of
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functions of order statistics rather than with their distributions. We need
hardly point out that a heuristic argument like this can be entirely mis-
leading and that the actual order of the remainder in our expansion will of

course have to be investigated.

Define
N Ja2 E(2P.-1)2 - ho?(Ja.P.)
(3.2.19)  K(x) = #(x) + ¢(x) {- 5 x+
22&.
J
I
Jad(2m.-1) ) )
+ (x5-1) + (x°-3x)1,
3(za§.)3/2 : 12(Ja5)° e

where 02(Z) denotes the variance of a r.v. Z. Carrying out the type of com-
putation outlined above we arrive at the following simplified version of
theorem 3.2.2. '

THEOREM 3.2.3. Theorem 3.2.2 continues to hold if (3.2.17) is replaced by

2T-)a - Ja.(2m.-1)
(3.2.20) sup |P( 5773 S x) - K(x - RIE
x ( aj) ( aj)

< A{N's/h + Z{E(2P5-1)h}5/h + N—3/u[2{EIPj—ﬂjf3}h/9]9/h}.
PROOF. See Albers, Bickel and van Zwet (197h4).

Theorem 3.2.3 provides the basic expansion for the distribution of T under
contiguous alternatives. In section 3.3 we shall be concerned with a
further simplification of this expansion and a precise evaluation of the

order of the remainder term.

3.3. CONTIGUOUS ALTERNATIVES

We first consider the case of contiguous location alternatives. Let F be a

d.f. with a density f that is positive on RT, symmetric about zero and four

(1)

times differentiable with derivatives £~ ', i = 1,...,4. Define functions
f(i) .
(3.3.1) v; =F »i= Toeeash,



b1

and suppose that positive numbers e and C exist such that for

L
om=bmy =3, =g, =1,
(3.3.2)
sup {J ]wi(x+y)l f(x)ax : |yl <e} ¢, i=1,...,b4
Let X1,X2,...,XN be i.i.d. with common d.f. G(x) = F(x-6) where
(3.3.3) 0<80c< CN-1/2

for some positive C. Note that (3.3.2) and (3.3.3) together imply conti-

guity. Let 0 < Z, < ... < Z_ again denote the order statistics of

1 N
IX1I,...,|XNI, and let T be defined by (3.2.2). Probabilities, expected
values and variances under G will be denoted by P,, E, and 02' under F they

6> 70 0°

will be indicated as P., E. and 02. Define

0> 70 0
la b aF o¥(25)
(3.3.4) Ke(x)=¢(x) + ¢(x) {—‘]—— (x3-3x) —e——J———z—3-‘}-2- (x -1) +
12(2 )2 3(Ja%)
J Jd
2 2 2
3 12 0w1(zj) - UO(Xaj¢1(Zj))]x +
Jd
P 3(2.) - 60, (2.)0,(2.) + v (2.)1)
612 2,172 LajEoL307(25) = 60, (25)0,(25) + v5(2)13,
a.E ¢.(2.)
(3.3.5) n=-eZ 21/2 )
(zaj)

We shall show that Ke(x-n) is an expansion to order N_1 for the d.f. of
(2T-Zaj)/(2a§)1/2. The expansion will be established in theorem 3.3.1 and

an evaluation of the order of the remainder will be given in theorem 3.3.2.
Let n(6) denote the power of the one-sided level o test based on T for the
hypothesis of symmetry against the alternative G(x) = F(x-6). Suppose that
for some ¢ > 0

(3.3.6) € <o < 1-g.

We prove that an expansion for m(6) is given by
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Ja! 5
2)2 (ua_3ua)’

(3.3.7) m(e) = 1 - Ke(ua-n) + ¢(ua-n) 12(Zaj

where u, = ¢-1(1—u) denotes the upper a-point of the standard normal dis-

tribution.

THEOREM 3.3.1. Suppose that positive numbers c, C, 6 and € exist such that
(3.2.14), (3.2.15), (3.3.2) and (3.3.3) are satisfied. Then there exists
A > 0 depending on N, a, F and 8 only through c, C, § and € and such that

2T—Za. :
szp lpe(f§;§37%§ < x) - Kg(x-n)| <
3
(3.3.8)
< o/t N_3/h93[z{E0|Wj(Zj)—EO¢1(Zj)|3}h/9]9/h},
(3.3.9) Inl <4,
3 2 2
. IZa.EOw1(Z.)| SN Za.Eow1(z.) !
2.3/2 > 2 ’
(3.3.10) (Qa;) Le;
-——iii——- |Ya.E [3w3(z ) - 6v (2%, (2.) + ¢ _(2.)] < !
(Za?)1/2 3077145 1°%57%2 37 N ’
J

If, in addition, (3.3.6) is satisfied there exists A' > O depending on N,
a, F, 6 and a only through ¢, C, § and € and such that

(3.3.11)  |n(8)-7(e)| = ar{n">/* + N_3/h63[Z{EOIw1(Zj)—EOw1(Zj)|3}h/9]9/h}.
PROOF. The first step is to show that the conditions of the present theorem
imply the conditions of theorem 3.2.3. This comes down to the verification
of (3.2.16), which is easily done by applying (3.3.2) and (3.3.3). Hence
theorem 3.2.3 holds and we must show that (3.3.8) is implied by (3.2.20).
This is achieved by Taylor expansion with respect to 6, which is a highly
technical and laborious procedure; the interested reader is referred to
appendix 1 of Albers, Bickel and van Zwet (19T4). The main problem is that
not only Pj = f(Zj—e)/[f(Zj—e)+f(Zj+9)], but also its distribution depends
on 6 because Zj is the j-th absolute order statistic of a sample from
F(x-8).

2 1/2])

Once the expansion for K(x - [Zaj(2ﬂj-1)]/[(zaj) has been established,
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2 1/2])

it remains to show that |X (x - [Zaj(Eﬂj—1)]/[(2aj) - K, (x-n)| and the

0
remainder in (3.2.20) are of the order of the remainder in (3.3.8). Then

(3.3.8) is proved.

As concerns (3.3.9) and (3.3.10) we note that both are immediate conse-

quences of the results of appendix 1 in Albers, Bickel and van Zwet

(1974). The one-sided level o test based on T rejects the hypothesis if

(2T—Zaj)/(2a§)1/2 2 £, with possible randomization if equality occurs.

Taking 6 = 0 in (3.3.8) we find that
L

1o 8(g,) - 8(E,) (£3-35,) = o + 0y,

i R
12(Za§)2

and hence because of (3.2.1L4) and (3.3.6)

» Ja!
(3.3.12) &, =u, - 12152535_(u3_3uu) + oYy,
J

The power of this test against the alternative F(x-8) is

7(6) = 1 - Ky(E,on) +
(3.3.13)
+ O(N—S/h+N—3/h63[Z{EO!¢1(Zj)-Eow1(Zj)|3}h/9]9/h).

In (3.3.13) we expand Ke(Ea—n) around u -n. Noting that lEa—ua|= O(N-1) and
using (3.2.14) and (3.3.10) we find (3.3.11). O

REMARK. As we shall see in section 3.L, cg(Zaj¢1(Zj)) is typically O(N) and
therefore our expansion is of the form Ke(x) = o(x) + N_TA(X) + O(N-1), for

-1/2

a certain bounded A(x). There is no term of the order N because of a

certain symmetry in the situation.

For i = 1,2,3, define functions ¥, on (0,1) vy
-1,1+t f(l)(F-1(l§£))

(3.3.14) v () =v.(F (F)) = ——m — -

_ £(F (7))
THEOREM 3.3.2. Suppose that positive numbere C and & exist such that (3.3.3)
18 satisfied and that I?;(t)l s,c(t(1—t))_h/3+6 for all 0 < t < 1. Then
there exists A" > 0 depending on N, F and 6 only through C and § and such
that
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,3}h/9}9/h N—s/h-

_3/)4 3 "
v "8 [Z{E01¢1(Zj)—EO¢1(Zj) <A

For the highly technical proof of this result the reader is referred to
appendix 2 of Albers, Bickel and van Zwet (197L).

The more general case where X1,X2,.

G(x) = F(x,0) can be dealt with analogously; the computations become even

.. are i,i.d. r.v.'s with common 4.f.
bl

more laborious but no new techniques are needed. For this reason we only
give the results and omit the proofs.

Suppose that (3.3.3) holds and that

8i+j+1

fij(x,e) = axi+1aej F(x,0)

exists for i+j € 4, i 2 =1, j 2 0. We shall simply write £(x,0) for the

density foo(x,e) and assume that f(x,0) = f(-x,0) for all x. Next we define
f..
v =i
ij -1
(3.3.15) for i+j <k, i2-1, 320

wij(x) = $ij(x’o)’

Assume that positive numbers € and C exist such that for

B
n
o
v
=]
n
w
.
=]
n
wlE
-
B
=
1
-
v
-
v
1
-
.
()
v
o
w
-
I
-
+
[N
I
=
v

IA
Q

tad m. .
(3.3.16)  sup {f ;5 (ey)| l+JE1+wf”(x,y)]f(x,o)dx Dyl < e)

Under the additional assumption

N _
J £.(x,8)ax =0, i=1,2,0s<0scn /2

it may be shown that (3.3.3) and (3.3.16) together imply contiguity.
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Define X
Ta. za Eql¥g,(%3)-¥g,(-2;)]
(3.3.17)  Ry(x) = o(x)+o () i—m—(x>-3x)+0—1 s (x-1) +
12(Zaj) 6(Xaj)
2
e T8 000 (2,)-vg, (2105 (Ja. Ly, (2,)-v, (-2:)7) .
82&?
3
L 2
] ~ 2 _® ~
- 5§;§(ZajE°p°2(Zj)) x zi;§377§‘2aonp02(zj) +
° Ja.E p,(2.)}
2172 L8;58Po3\2;5) 7>
S(Xaj)
where
~ 1 2 2
(3.3.18) po2(X) = E{woz(x)-wo2(-x)—wo1(x)+wo1(—x) +
(0_q1)=b_ (=) (W G+ (=x) =9, ()T ()9, (-x) )T,

(3.3.19)  Byglx) = Lk (x)=0o 5 (=)=30y , (x)0, ()30, (=)0 (%) +

03

+ 30, (), () (82, ()42 () +
- §(¢11(x)+w11<—x)—w1o(x)two1(x)—wo1(-x)])(w_12(x>—¢_12(—x))} +
+ 300, )+ 5 (=) =30 ) ()Y (=30 ()b (=x)=b ()9, (%) +

= Vo (O ()b () (B (x) =¥y (=) +

01

2

() (2,

(-x) +

()92 (=3))3E, (x)+300,,, ()=

10 21

= 30, (1) (¥, (04 (3=, () (8 (x) =0, (<)) +

+

305, (1) (¥, ()4, (-x))3E2, ()1

Here 501(x) = - %{w 11(x)-w 11(—x)]. Finally define
e Ja. E0[¢01(z )=y, (-24)]
(3.3.20) n=73 |
2 (z 2)1/2

%3
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Ja

(3.3.21)  7(8) = 1 - Ry(u 1) + o(u,-7) ——lz— (ul-3u ).
12(Zaj)

Now we have in analogy to theorem 3.3.1
THEOREM 3.3.3. Suppose that positive numbers c, C, & and € exist such that

(3.2.14), (3.2.15), (3.3.3) and (3.3.16) are satisfied. Then there exists
A > 0 depending on N, a, F and 6 only through c, C, § and € and such that

- 27-)a,
(3.3.22) sup |P,( < x) - K, (x-n)| <
X 0 (Za§)1/2 ( _
< 1x{1\1'5/l‘+1v‘3/1‘e3[E{EOlwm(ZJ.)—Eowo1(zj)l3}1‘/9]9/"L +

|334/99/%

+

-3/L443
N> [Z{Eol¢01(—zj)—EO¢01(—Zj)

+

-1/Lg3 _ ‘

If, in addition, (3.3.6) is satisfied, there exists A' > 0 depending on N,
a, F, 8 and o only through c, C, § and € and such that

(3.3.23)  [m(0)-7(6)| < A'{N—S/h+N_3/h63[z{EOI¢O1(Zj)-E0¢01(Zj)|3}h/9]9/h+

-3/L,3 3,4/9.9/L
+ N "o [Z{Eolwo1(-zj)-Eow01(-zj)| R LA

-1/43
+N e co(faj[¢01(zj)-w01(—zj)])}.

We conclude this section with some remarks on the relation between the
general and the location case. In the first place, condition (3.3.16) is a
straightforward generalization of condition (3.3.2) except for the $_11—
term. In the location case, |$_11(x,6)| = Ig% F(x-e)/é% F(x-8)| = 1, which
explains why it does not occur in (3.3.2).

In the location case f(x,0) is not only symmetric in x about x = 6, but

also in 6 about 6 = x. Then ¢o1(x) = - w01(-x)=-—w1(x), 502(X) =0,

501(x) =0 and'503(x)= -%{3w?(x)—6¢1(x)w2(x)+w3(x)]. Inserting these results
in (3.3.17) and (3.3.20) we again obtain (3.3.4) and (3.3.5). In view of
these facts, the main difference between Ke(x) and Ke(x) is the presence of

the terms
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-JE——ZaES (z)-—ei—(ZaEE (z.))%x
(za§)1/2 j0502 7] 22&? JjT0702 73

in (3.3.17). The first of these terms is in general not O(N_1) but only
o2y,

The first three terms on the right side of (3.3.22) and (3.3.23) are again
generalizations of the remainder in (3.3.8) and (3.3.11). The last term in
(3.3.22) and (3.3.23), however, is new. It is due to the fact that

- . 2 . .
(x) = 0 does not hold in general. As GO(Zaj[¢01(Zj) ¢01( Zj)]) is typic

_S/A). To be
(x~178y,

P
02
ally 0(N), this remainder term is of the right order, i.e. 0(N

more precise: with the aid of theorem 3.3.2 it can be shown to be (
If in this theorem |¥!(6)] = 0((t(1-6))™/"*%) instead of 0((£(1-t))™/3*),
we get O(N—S/h).

This concludes our treatment of the general case; in the next section we

again restrict attention to contiguous location alternatives.

3.L4. EXACT AND APPROXIMATE SCORES AND CONTIGUOUS LOCATION ALTERNATIVES

The expansions given in section 3.3 for contiguous location alternatives
can be simplified further if we make certain assumptions about the scores
aj. Consider a continuous function J on (0,1) and let

Uiaw < Y2un < o0 < Uy
the uniform distribution on (0,1). For N = 1,2,... we define the exact

denote order statistics of a sample of size N from
scores generated by J by
(3.4.1) aj =a, = EJ(U..N), J = 1,2,...,N,

and the approximate scores generated by J by~

= = J(=-
(3.4.2) sy =y = Ik

Y, J=1,...,N.

For almost all well known linear rank tests the scores are of one of these
two types. The locally most powerful rank test against location alternatives
of type F is based on exact scores generated by the function _wﬂ’ where

¥, is defined in (3.3.1L4).

So far, we have systematically kept the order of the remainder in our ex-

-5/k)

pansions down to O(N . From this point on,however, we shall be content

with a remainder that is o(N_1), because otherwise we would have to impose
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rather restrictive conditions. In the previous sections, we have also con-

sistently stressed the fact that the remainder depends on a and F only

through certain constants occurring in our conditions, thus in effect in-

dicating classes of scores and distributions for which the expansion holds

uniformly. As the number of these constants is becoming rather large, we

prefer to formulate our results from here on for a fixed score function J

and a fixed 4.f. F. The reader can easily construct uniformity classes for

himself by using the results of section 3.3 and tracing the development of
appendix 2 of Albers, Bickel and van Zwet (197h).

DEFINITION 3.4.1. J is the

class of functions J on (0,1) that are twice

continuously differentiable and nonconstant on (0,1) and satisfy

1
(3.4.3) J Jh(t)dt < o,
0

"
(3.4.4) lim sup t(1-t |——L—l 2.
t>0,1
F is the class of d.f.'s F on R' with positive densities f that are sym-
metric about zero, four times differentiable and such that for w = f(l)/f
- -1 1+t - _ L -
i( ) ‘J—'i(F ( ))9 6': m2 3: 3 - 35 mh
0 m,
(3.4.5) 1lim sup [ lw‘(x+y)| Tr(x)dx < =, i=1,...,k4,
y—)-O -0
"(t) 3
(3.4.6) lim sup t( —t)' ; <=,
20,1 )] 2

For J e Jand F e F, let

-1 f; Jh(t)dt

(3.h.7) K (x) = o(x)e () i——2—— (x7-3x) +
12(f J(t)dt)
1/2 J (t)w (t)dt (x2_1) . e2 )
3(f 3 (t)at)3/2 or! P (t)at
0

+

1
2 2
LJO J (t)?1(t

1/2 3

11
)at - J J J(s)w;(s)J(t)w;(t)(sAt-st)dsdt]x +
0’0

6(f J (t)dt)

3
7z J J(t)[3w?(t) - 6Y (£)v,y(t)+y (t)latd,
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(3.4.8) Ky 1(x) =
% (v () -1/2 féJ(t)W1(t)dt N 25 )
K (x)+¢(x { J(u., +
o 2(f;J2(t)dt)1/21 rfvas = 7
N
-2 521 cov(J(Uj:N),w1(Uj:N))},
(3.4.9) Ke,z(X) =
1
N -1/2 S I(e)y. (L)t 1-1/N
Ko (x)+¢(x) ? 2 ? 773t 01 2 1 J (3'(£))26(1-t)at +
2(foJ (t)at) fOJ (t)at 1/N
1-1/N
2| T remea-na,
1/N
1
5.8y, (t)dt
(3.4.10) ; = —'N1/29“—QT7?—J——-T7§,
(fOJ (t)at)
. IR A (O LTI
(3.4.11) ni(e) =1 - Ke’i(ua—n) + Cb(ua-n)N 12([(1)J2(t)dt)2 (uu-3ua),

for i = 1,2. Then, in the notation of section 3.3, we have for contiguous

location alternatives and exact scores

THEOREM 3.4.1. Let F ¢ F, J ¢ J, a. = EJ(U..N) for j = 1,...,N, and let
0<o < CN_1/2, € <o < l-e for pogitive CJc.md e. Then, for every fixzed
J, F, C and e, there exist positive numbers A,61 ,62,. .. such that

1im 6y =0 and for every N

N>

) - K (x-ﬁ)l 5 N,

IA

2r-Ja,
(3.4.12) sup .P ( 6.1
b'e 9

<X
°(gaD)'/?

or-Ya, -
(3.4.13) swp [Py < 1) - K LR
X ( aj) >

1-1/N
-3/2 J [T (e) 11T ()| + W'(t)|)(t(1—t))1/2dt,
1/N 1

IA
O
=
+

+ AN

(3.4.14) Iw(e)-n1(9)| < 8y N'1,
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(3.4.15) In(6)-m,(0)1 = & N+

1-1/N
+ AN_3/2 J

13 () 113 (6) 1+192 () 1 (5 (1)) Pae.
1/N
PROOF. For fixed J € J, positive constants c, C, and § exist for which
(3.2.14) and (3.2.15) hold for all N (cf. one of the remarks following the
proof of theorem 3.2.2). Similarly, for fixed F e¢ F, (3.3.2) is satisfied
and it follows that the conclusions of theorem 3.3.1 hold with A and A'
depending only on F, J, C and €. From appendix 2 of Albers, Bickel and
van Zwet (1974) it is clear that (3.4.5) and (3.4.6) imply that the con-
clusion of theorem 3.3.2 holds with A" depending only on F and C. In this

appendix it is also shown that

: N 1
(3.4.16) % a2 = J J2(t)dt +0(1),
=1 9 o
(3.4.17) 1 g ar EWh-k(U ) = I1 Jk(t)wh'k(t)dt +0(1), k=1 in
. . N j=1 j 1 ,J N 0 1 2 9e e ey 3
1 N T
(3.4.18) 1 521 o B (UL (U, ) = JO Fe)w (8)¥ (t)as + o(1),
;X 1
(3.4.19) T Z1 8 EW3(Uj:N) = Jo J(t)w3(t)dt +o0(1),
1 . I 11 ' '
(3.4.20) 7O (521 jw1(Uj:N)) = JOJOJ(S)J(t)W1(S)Wl(t)[sAt—st]dsd$+0(1),
and furthermore N
v'/2 Yy a; BY, (U, 1)
(3.4.21) §=1 -
=17
N
= -= +
(rgfwan) 2 N (P e)ae) /2

. féJ(t)W1(t)dt % . )
R S i . J(u. +
N (féJz(t)dt)3/2 j=1U J:N
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f1J(t)W (t)at 1 f};g/N J'(t)w'(t)t(1-t)dt

-1
+o(y ) = (1 2( /21X (1 2( 1/2

+

t)dt) t)dt)

L

féJ(t)W1(t)dt J1-1/N( ( ))2 ( )
—_— J'(t))t(1-t)at +
N (f;Je(t)dt)3/2

1/N

: 1=1/N
o) + 002 [ )11 )]+ 1) D16 Zat).

1/N

From (3.4.16) to (3.4.20) it is clear that X (x) in (3.3.4) satisfies

~ _ L ~
K, (x) = K. (x) + o(N 1). Applying this to the expansions K,(x-n) and m(8) in

o o 8 -
theorem 3.3.1 and expanding these functions of n around the point n = n, we

get the desired results in view of (3.4.21). O

In general the expansions given in theorem 3.4.1 will not hold if the exact

scores are replaced by approximate scores 8 = J(=1=), because n - n will

then give rise to a different term of order N . ¥;1J = - W1, however, it is
clear from appendix 2 of Albers, Bickel and van Zwet (19T4), that expansions
(3.4.13) and (3.4.15) are valid for approximate as well as exact scores.
Also for J = - W1, these expansions may be simplified because F € F implies

that by partial integration (cf. lemma 4.2.1)

101 1 1
(3.4.22) f J w1(s)w;(s)w1(t)w;(t)(sAt-st)dsdt = ﬁfow?(t)dt-ﬁ{J w2(t)dt)2

0’0 0!

1 . 1 1
(3.1.23) JO ¥ (6)T6Y, (6)¥,(6)-¥ (£ Jat = %f-fowf(t)at + fowg(t)dt.

It follows that in this case n, K, .(x-n) and m,(6) reduce to

8,2

(3.h.24)  n. =n'"2erg 42 Rixed 1172,

(x—n ) ) 2 3
(3.4.25) Ly(x) = @(x-n ) + -——————{n [6(x -3x) + 6n (x°-1) - 3njx = 5071 +
1 1/N
(w'(t)) t(1-t)dt
+ 12n3n? + 9nf(x-n1) + 36 1/N n1},
B3 (X,)
where
ny = Bur(x, ) /LEE(x )P,
(3.4.26)
_ 2 2 2
Ny ¢2(X1)/[E0¢1(X1)J s
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and
* ny(g-n,) 2
u(3-h-27) T (8) = 1—®(uu-n1) + “‘——7§ﬁ———{-6n2(ua—1)+3(n2—3)n1ua +
f1—1/N

i (w;(t))et(1-t)dt}

2
+ (5n_-12n_+9)n5 - 36
2 3 1 E0¢f(x1)

Finally we note that for F e F, - W1 cannot be constant on (0,1) because the
density f(x) = % A exp(-Alx|) of the double exponential distribution is not
differentiable at zero. It follows that - ¥, € J for every F ¢ F. We have

1
shown

THEOREM 3.L4.2. Let F € F and let either a; = —EW1(Uj_N) for j = 1,...,N or
a; = - W1(ﬁ%7) for j = 1,2,...,N. Suppose that 0 < 6 < CN_1/2 and
€ < a < 1-¢ for positive C and €. Then, for every fiwed F, C and €, there

exist positive numbers A, 61, Sps ven such that lim 6y =0 and for every N
Moo
2T-)a.,
9( 2,1/2
(Zaj)

< GNN_1 + An'3/2 j

(3.4.28) sup |P

<

< x) - Le(x)

1-1/N
(v;(t))z(t(1-t))‘/2dt,
/N

1-1/N

(3.4:20) (o) ~ n"(0)] < 6" 4 i3/ J (wﬁ(t))2(t(1-t))1/2dt.

1/N
At this point it may be useful to make some remarks concerning the assump-
tions in theorems 3.4.1 and 3.L.2. Conditions (3.4.4) and (3.4.6) ensure
that J' and W% do not oscillate to wildly near O and 1. They also limit the
growth of these functions near O and 1, but in this respect conditions
(3.4.3) and (3.4.5) for i = 1 are typically much stronger. Together with
(3.4.4) and (3.4.6) they imply. that J'(t) = o((t(1-t))_5/h) and

W;(t) = 0((t(1—t))-7/6) near O and 1.

For expansions (3.4.13), (3.4.15), (3.L.28) and (3.4,29) to be meaningful
rather than just formally correct, even stronger growth conditions have to
be imposed. Consider, for example, expansion (3.L4.29) and suppose, as is
typically the case, that ¥} remains bounded near 0. If W;(t) = 0((1-t)_1)
near 1, then the right side in (3.4.29) is O(N-1) and the expansion makes

sense. However, if W;(t) is of exact order (1—t)_1, the expansion reduces to
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1=1/N, 12112
ndlu,=n,) o7 (Y (6)) 6 (1-t)at v o

n(e) = 1—¢(ua-n ) -

1 2N )s

1.2
f0W1(t)dt

and if ¥i(t) ~ (1-)"""% near 1 for some 0 < & <

(3.4.29) is w(e) = 1-¢(ua-n1) + 0(N“1+25)

, all we have left in

o=

We conclude this section with a few applications of theorems 3.4.1 and
3.4.2. The tedious computations will be omitted almost completely. First we
consider Wilcoxon's signed rank test (W), which is based on the scores

a'j = E%T. This is the locally most powerful rank test against logistic (L)
location alternatives G(x) = F(x-8), with F(x) = 1/(1+e™*) and 6 = O(N—1/2).
As in this case - W1(t) = t the conditions of theorem 3.4.2 are easily

verified and we get

)y ¢(u,-n )n1 1
(3.4, = 1-p(u -n,) - —2 11
(3.4.30) “w,L(e), 1-¢(u -n,) 50N 3ua+uan1+2+n 2y + oy,

Ny 1/2 . .
where n, = ( ) '“6. The power of W against normal (N) alternatives
G(x) = (x-e) = 0(N~ 1/2) may be found from theorem 3.4.1. We now have
W1(t) = ¢_1(1 t) and therefore

(-0 | T 1oy 2
lim (1-t) | oy~ | = lim (1-t) ——5— =
1 v 2¢(<p'1(1%t))

1im x(1-0(x)) =1 < 3
¢(x) 2

X—>o0
as for positive x
1_1 olx)
o) - T5) < 1 - alx) < £

The remaining conditions of theorem 3.L.1 are verified easily and we may
apply (3.4.15). The expression thus obtained can be simplified further by
evaluating for k = 0,1,2,3,4

]
[ Yk[¢-1(l§x)]h-kdy.
0

This can be done by partial integration. In doing so, only two integrals
occur that are not entirely trivial: f: ¢2(x)¢(x)dx and f; ¢2(x)¢2(x)dx.

For the first one we note
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2 1.2
o0 © X X =Y
f 2 (x)e(x)ax = (2m)~3/2 J J e 2" gyax =
0 Q7 =
-3/2 m/h e —%12(2c052¢+sin2¢)
= (2m) J J e rdrd¢ =
-m/2’0
= (2‘")-3/2 Jn/h —Ld = (2'")—3/2 J1 ‘ﬂ =
-m/2 1+cos ¢ - 2+t2
1 arctan’%#é 1
“wr T )
Furthermore, for x > 0, we have 5
X
1 2, 2 -
x x -z (y™+z) n 2
6°(x) LJ J . dydz = ——J (1-e 2°°85 ®yq4 4
2m 2
=00/ —00 —1T/2
2 2
X X
™ - 3m/2 T .2
.= (1 2sin ¢)d¢ + a =1 - 1 e 2sin ¢ a6
2m an m
m/h m /b
Hence, x2 :
-=(2 + )
o ) ™ oo 2 . 2
J $2(x)0%(x)ax = J 02(x)ax - —15 J J e SIN ¢ gxq =
0 0 o Jn/W o
_1 1" 1 \=1/2. 1
T Wr T on/n I (2 + . 2 ) 4 =577
Slm/y sin“¢
Application of these results leads to
~ ~ 1
n¢(ua—n) 5 6 arctan EV2
= =y - { _ 9
(3.4.31) nW,N(e) = 1-0(u -n) g u( - 50 *
12 arctan lVé 6 arctan l¢2
_~ko 2, L Ll N _ |
+u i - 23 )+ (e - Ve - ———)
6 arctan lv?
PR+ &3 - B Iy o,
where n = (%9)1/26.

The second test we consider is the one sample normal scores test (NS) which
. -1,14U5:x .
1s based on the scores aj = Eb ( > ). Its power against the normal and

logistic alternatives described above satisfies
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n,¢(w_-n.)
1 o 1 2
1-¢(ua-n1) e {ua—1 +

(3.4.32) “NS,N(e)

o™ (1--1)
, J 28 (20(0)-1)(1-0(x)) 411 4 o)
5 o(x) ’

where n1 = N1/26 and

~ oy 2
ne(u-n) u o
e e p e B

(3.4.33) ™ (o)

NS,L 1-e(u-n) -

-1, 1
PR F (1-2%) (20(x)-1) (1-0(x)) ax}+o(x~ 1),

~2 23 m 1
n~(arctan 56/2+ . e

1273 " 2
where now n = (E)1/26. We note that theorem 3..4.2 ensures that (3.4.32)
will also hold ;or van der Waerden's one sample test which is based on the
approximate scores aj = ¢T1[(N+1+j)/(2(N+1))]. As concerns the integral in
(3.4.32) and (3.4.33), one can show that (ef. Bickel and ven Zwet (1978),
formulas (5.54) and (5.55))

-1 1
o (1-3p) (26(x)-1) (1-9(x))

CRIES ) ax = } log log N + By + 0(1),
0

where y is Euler's constant

v = lim {J5_; § - log k} = 0.5T7216. ..
k-0

3.5. THE SIGN TEST

The method developped in this chapter cannot be used for the sign test, as
was pointed out in section 3.2. The lattice character of the sign test is
too pronounced, which is caused by the fact that all scores are equal for
this test. However, it is exactly this equality of scores that yields

another, very simple method of finding and justifying a powerexpansion for

the sign test: it makes it possible to write T as
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the number of positive elements in the sample. This has a binomial distri-
bution, both under the hypothesis and under alternatives. With the aid of
a well-known expansion for the binomial distribution function, this leads

to the desired expansion for the power of the sign test.
Let X, X550 .., be i.i.d. r.v.'s with continuous d.f. F(x-8), where
F(-x) = 1 - F(x) for all x. Define

(3.5.1) T = N1/2(2F(e)-1).

Let 0 < a < 1 and let w(8) be the power of the sign test with size a for
H : 06 =0 against H, : 6 > 0. Define

0 1
~ A T¢(ua_T) 2 2
(3.5.2) m(e) =1 = @(ua—r) - ———7§ﬁr-{ua+uar—3r +2hyu(1-ya)—3}.
Here
1/2 1/2
D T ¢ D -1/2
(3.5.3) e e e R o(N )s

where [y] is the integer part of y.

LEMMA 3.5.1. Suppose that |t| < C for some constant C > 0. Then there
exists A > 0O depending on N,8 and F only through C such that

In(e) - 7(8)| < ax3/2,

PROOF. Let Y have a binomial distribution with parameters N and p, where
0 <p< 1, Define q = 1-p, o = Npq, u, = (k-Np)/o for k = 0,1,...,N. If
u = 0(1), the following expansion holds

(3.5.4) P(Y < k) =

Ba..2

3
.D 1 (5-1’+pq)uk+1/2+(-2+2Pq)uk+1/2} .
k+1/2" 60 ‘lk+1/27

= ¢{u ) +

7202

+ o33y,
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Expansions of this type are given by Molenaar (1970).

Clearly T = ZX->O1 has a binomial distribution with parameters N and p,
with p = Pe(x1 >0) = Po(x1 >-p)=1-"F(-8) = F(p) = %(1+TN-1/2)

choice of p,

. For this

il R -2
6o 3 T o),
and hence (3.5.4) simplifies to
2 1,3 -3/2
(3.5.5) BT k) = 0luy,q /ot 35 (o pm1) + (e o7 720} O 3.

For power computations, we need an expansion for Pe(T < k) + yPe(T = k),
for 0 < y < 1. Note that

Pe(T < k) + YPG(T =k) = yPe(T < k) + (1-y)Pe(T < k-1)

and
Y¢(uk+1/2) + (1-Y)¢(ukr1/2) =

- 1=y) . -3/2 _

- Q(uk+v-1/2) * xé;§x—'¢ (uk+y-1/2) + 0y ) =

= ¢(“k(v)) + o33,
with

1
e N A )
= —-———— -

(3.5.6) Ty (y) 5 (1 202 ).
Hence
(3.5.7) Po(T < k) + P (T = k) =

. 2
= ol )+ 3% (y)

(w3 )
-1) + :ikilég;ﬂﬂﬁ—q + o(n372),

Under H. 7 = 0. Let k and y be such that P (T <k )+ yP (T =k ) =
0 o o 0 o a0 a
= l-q = @(ua), with k an integer and 0 < Y, €1 As 0 < a <1, a constant,

we have‘ua = (0(1) and we may use (3.5.7). This leads to
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k +y -1/2N-1/2 2y (1-y.) (3w )
S o TTaly _ Moy _3/2
(3.5.8) 1/2N”2 (1 - = ) = R (N ),

which shows that Yy satisfies (3.5.3). Under H1 we have T > 0 and

1 -w(8) = Pe(T < ku) + YaPG(T = ka)' Before applying (3.5.7) again we note
that

-1/2

k +y  =1/2N(1+TN )=1/2 2y (1=y.) 2 -1/2
(3.5.9) 2o (1-—=—""20 -1 =
1/21\11/2 N N
k +y -1/2N-1/2 2y (1=y_) 2
()1 - —2 %y eIy O(N_z)) =
1/2N1/2 N 2N

3
2 2ty (1-y ) (ul-u )
[ a o o o
(u -t) (1 + Z5) + N - e o

-3/2y,

-3/2)

Inserting this result in (3.5.7), we get w(8) = n(e) + O(N . The uni-

formity of the O-symbol is evident from the proof. [

COROLLARY 3.5.1. If |t| < C and F has a density f that is three times dif-
ferentiable with sup |f(3)(x)l < ¢, for some constants e, C and c > 0, we

~ x|<e
may replace w(0) <n Llemma 3.5.1 by

7(8) = 1 —Q(ua-2N1/2ef(0)) - ag Q ¢(ua-2N1/29f(o)){u2 +

+ 2N1/29f(0)ua'2Ne2(£%¥§¥-+ 6(f(0))2) * 2hYa(1-Ya)_3}°

The constant A depends on N, 6 and F only through e, C and c for this
choice of m(8).

PROOF. Immediate. 0

The conditions of the lemma and its corollary are satisfied for e.g. the
normal or the logistic d.f.; the double-exponential d.f. satisfies the con-

ditions of the lemma, but not of its corollary.
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CHAPTER 4
DEFICIENCIES BETWEEN VARIOUS TESTS FOR THE ONE SAMPLE PROBLEM

4.1. INTRODUCTION

One of the results of the previous chapter is an expansion to 0(N71) for
the power of the locally most powerful (ILMP) rank test for the one sample
problem. In this chapter we obtain similar expansions for various other
types of test that are in some sense optimal for this one sample problem.
Using the expansions thus obtained, we can evaluate deficiencies between
any pair of the tests involved. Such evaluations make sense since the LMP
rank test has asymptotic relative efficiency 1 with respect to all tests

considered in this chapter.

In section L4.2 we investigate two parametric tests; in section 4.3 permu-
tation tests are dealt with. Scale invariant tests are considered in

section 4.4, the randomized rank score tests due to Bell and Doksum (1965)
in section 4.5. Finally, the deficiency evaluations mentioned above, take

place in section L4.6.

L.2. PARAMETRIC TESTS

Let X1,X2,...,XN be i.i.d. r.v.'s with d.f. F(x-6), where F is known and

has a density f that is positive on R' and symmetric about zero. For the.
testing problem H0 : =0 against H, : 6 > O the Neyman-Pearson lemma
asserts that the test that rejects H

1

0
n§=1[f(xj—61)/f(xj)] is most powerful against the alternative 6 = 0

for large values of

. It
1
follows that for every 6 > O, the envelope power at 8 equals the power at

8 of the test that rejects H_ for large values of S = Z?

1

S. == log [f(X.-08)/f(X.)].

5 = ¢ log [x(x-0)/£(x,)

In general, a uniformly most powerful (UMP) test against H, does not exist
and no single test attains the envelope power for all 6 > 0. If this is the

S., where
J

0 =1

case, one may consider the use of the LMP test in the sense of Lehmann
(1959), p. 342. A test 9o is LMP if, given any other test ¢ with the same
level, there exists A > 0 such that the powers satisfy w¢0(e) > w¢(e) for
all 0 < § < A. A IMP test of 8 = O against 6 > O exists and is defined Dby
the fact that it maximizes m'(0) among all tests with the same level. It
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follows that in the present case the LMP test is based on the teststatistic

* N * . *
S =), S., with S, = - £'(X.)/f(X.).
Li=1 53> : (%,)/2(x,)

In the sequel we shall derive power expansions to O(N_1) for the envelope
power and for the test based on S*. First we shall deal with the envelope

power; the result for s* is proved in a similar fashion.

Since S is a sum of i.i.d. r.v.'s, the obvious thing to do is to establish
Edgeworth expansions to o(N_1) for the d.f. of S, both under F(x) and
F(x-6). Before we can evaluate the standardized cumulants required for
such expansions, the following preliminaries are needed. Assume that f is

five times continuously differentiable and define

b0 = EEEL (), i=1.2,0.05,

(4.2.1) ff
r,(x) = 2= (108 £(x)), i= 0,1,00055,

dx

where EO = log f. The connection between the ¢i and Ci is as follows
=y = 9,5, Ty = Y30, U2
By T Vg To T oV Ly T Um0 bty
£, = by =302l y+12y2y -6y
L NS~ BAS Rc] 172 71?2
o = U_=5¢.),-10y, P +30y ¢2+20w2w —60w3¢ +2h¢5
5 5 °F1%h 2"3 1¥2 173 172 1°

Next we give two lemmas. For lemma 4.2.1, compare lemma a of Hijek and
$iqdk (1967), p.19; the second lemma is proved in Albers, Bickel and
van Zwet (19T4) and is an application of Taylor's formula with Cauchy's

form of the remainder.

LEMMA L4.2.1. Let h be a real differentiable function with derivative h'.
Iflh| and |n'l are both summable, we have lim h(x) = 0.
X++oo

PROOF. ffmlh‘(x)ldx < » and hence by the dominated convergence theorem

&iﬂ fzz h'(x)dx = 0 for any pair of sequences {cv} and {cs} with ¢ =+ =,

c; + o for v + « and cs se for all v. This implies that h(cv)-h(c;) + 0
for v > », i.e. %ig h(x) exists. Since h itself is also summable it follows

that 1lim h(x) = 0. In the same way of course lim h(x) = 0. []
X0 X =00
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LEMMA 4.2.3. Let {GN} be a sequence of positive real numbers with
lim GN = 0. Let for some N
N

(4.2.5) 0 <8< &
Suppose that positive constants e and C exist such that
(k.2.6) sup{J lwi(x+y)|5/l f(x)dx : |yl e} <C, i=1,...,5.

Then there exists A > 0 depending on N, 0 and F only through {SN}, e and C
and such that

3
2 Ne 2 2, b L
(x,) + SpIEwo (X)) - SEw, (X,)I} < ANe ',

N
IEOS'{' 2 Eovy

2
2 2 N6 N 2 2 2 3
log (8)-{NE 7 (X)) + SFL5EG, (X,)-3Bgu, (X, )-9(E w7 (X,))" 1} < Ave~,
(4.2.7)
0 0 2 2 N 2
[k, = ————————=75{3(E ¢5 (X)) -E v, (X,)]| < Ae",
3 2(E0w$(x1))3/2 071" 0¥v1 ™M
L
E v, (X,)
Ikp-{—25—1— - 3}| < he.

(B (x,))

PROOF. As E S = NE_ S, we have to find EOS1' Expansion around 6 = O shows

0 01
that ’
_ - o
(4.2.8) 8, = plgo(X=0)-c(X)] = - £, (X)) + S g, (X)) +
2 3 b J
&)+ g )+ grgx-e) - T ) B

Application of lemma 4.2.2 with q(x,t) = co(x-t) gives
1 ¥ g-e)j
E, lglz,(X,-8) - jzocj(x1) sl s

N
< ‘g—! SuP{EOlCS(X1—\)9)|; 0<v<1}.

Conditions (4.2.5) and (4.2.6) ensure that Eolwg/l(x1-6)| is bounded for
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i=1,...,5 and for N sufficiently large. Hence by HSlder's inequality and
the triangle inequality, we get from (4.2.2) that ]EociS/l(X1-e)| is also
bounded. This shows that the expectation of the last term in (4.2.8) is

! v
0(e7).

The remaining terms in (L4.2.8) are dealt with in the following way. First

we note that EO§(21 1)(X ) =0, 1 = 1,2,3, by virtue of the symmetry of f.
From (4.2.6) we have f If( )(x)ldx <o, i=0,1,...,5. Hence by lemma
h.2.1, lim f(l 1)( ) = O, i=1,...,5, where f(o) = f, and thus

Xyto

Eo¢i(X1) = fiw f(l)(x)dx =0,1i=1,...,5. These two steps show that

3

__ 8 2 6
EySy = - 3 Egv(X,) + op Byl- ng( 1= (X)v

2
0 (X #1297 (X, Dy, (X)) +

3
- 6w (X )1+ O(e ).

By partial integration and another application of lemma 4.2.1 we observe

2 _ L _ L 2
that E0¢1(X1)¢2(X1) = 2/3 Eow1(x1) and EO¢1(X1)w3(x1) = 2/3 E0¢1(x1)-E0w2(x1).
With this the statement for EOS is proved.
The formula for cg(s) is proved analogously; the only point that needs some

explanation is the expansion of S?

.

2 8 6>
87 = =5, (X)8, + 35,(X,)8; - Tgra(X))s, +
+ a1 ?x ) % (x,) j—"—"—ﬂ]s =
a0 %178 - s A LTIt
= £2(x,) (e (x) + S b (xe(x) + & 2x) +
=58y = e, X)Xy 3 &\ le3lsy L %'y
3 o)
+ —{co(X -9)- ZOCJ T ][—c1(X1) —{co( X -90)- cO(X )3+
1 L:ﬂl_
+ 5ley (X, -e)-JZoc (X)) 1 2e,(x,) +
o 2 i=ﬁlij i (x.)
- ale(X %3 3! 6 53* %70

By expanding S? in this way it is possible to deal with the remainder terms

without using more than (L4.2.6).
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As concerns KO and Kg, we have by definition

3

0 _ y1/2 2.3/2 _
= L Z Eq(85-EoS; 31/ Z Eo(85-EyS5)717" =

J=1 j=

3,3
B, (8,-E;S,) /ay(s,),

N[ Z (B, (8,-E, 85 ) -30,, (s )}1/C Z 5.)1° =
J=1 J=1 J

L L
EO(S1-EOS1) /00(81)—3.

The third and fourth central moment of S, are found in the same way as

3 _ 2 2 L 2
E,S, and GO(S ) We get E (5,-E;8,)” = (8/2)[3{Ew (X )} -Ew (x,)]1 + 0(67)
and E (S -E S, ) = Egv, (X ) + 0(8). From this the required expressions for
0
3

K and Kﬁ follow 1mmed1ately. ]
Let R and po be the d.f. and c.f., respectively, of (S —EOS)/U (8) under
F(x). Let RO (ef. (3.1.1)) and

let pO be the Fourier transform of RO. Define

be the Edgeworth expansion to o(N~ 1) for R,

(4.2.9)  Bx) = o(x)+6(x) 9 (3(E 4°(X,))°
0 XITelx [ 1/2(Eolp (x, )y372° 7 o1 *

i
R Bobp (%)

b 2
- E ¢, (X,)}H(x"-1) -
o¥1'™ 2LN (Eowf(X1))2

3)(x3-3x)].
The following lemma gives an upper bound for |Ro'§;l'

LEMMA L.2.k4, Let {GN} be a sequence of positive real numbers with
%}g 6y =0 and suppose that (4.2.5) and (L4.2.6) hold. Suppose in addition
that there exist positive constants c and n such that

(4.2.10) |%w¢erH2c, v etc(0,1),

where the interval t has length at least n. Then there exists A > O depend-
ing on N, 8 and F only through {GN}, €, C, ¢ and n and such that
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(k.2.11) sup IR
x

O(X)-ﬁg(x)l < A{N‘3/2+N'1/262}.

PROOF. Upon inserting the expressions for Kg

Edgeworth expansion ﬁo, we obtain in view of (4.2.9) that

and Ki from (4.2.7) in the

sup lﬁo(X)-ﬁg(X)l < A{N'3/2+N'1/292}.

X

-3/2,371/262) | pg the

proof of this result is almost standard (cf. Feller (1966)), we do not give

Hence it remains to show that sup IRO(x)—ﬁo(x)I < A{N

many details here. The emphasis will be on showing that, under condition

(k.2.10), the distribution of S, satisfies a strong non-lattice condition,

1
i.e. that the modulus of its c.f. remains bounded away from 1 outside a

neighbourhood of 0.

From lemma 3.2.1 it is clear that it is sufficient to prove that

T  p (t)-p.(t)
f l-—o——T-Q——Idt < aw 321292y,
-7

where T = bN1/2 min(N,B-g), for some b > 0. In analogy to the rank test

case we bound the integral by

po(t)—ﬁo(t)

t

0
lat + I—()J(C—t)ldt +

c1N1/25|t ISbN1/2min(N,B_2)

(k.2.12) |
|1‘,|Sc11\l1/2

Pplt)
t

+ |
c1N1/25ltleN1/2min(N,e-2)

lat,

and show that these three integrals are sufficiently small.

1N1/2. Let Wo(t) be the c.f. of S1—EOS1
under Hj, then po(t) = exp[N log wo{t/(N1/200(S1))}]. From (4.2.10) it
follows that Eowﬁ(x1) 2 ¢, for some ¢ > 0, depending on ¢ and n. According

to (4.2.7), 03(81) = Eowf(x1) + 0(62) and hence 03(81) > ¢/2 for N suffi-

First consider the interval |t] < ¢

ciently large. This proves that for some c, >0, Re[wo{t/(N1/200(S1))}] 2 %
for |t| < ¢ N1/2. Therefore log w {t/(N1/2o (s,))}, and hence log p.(t), can
1 0 1/20 1 0

be expanded around t = 0, for |[t]| < e, N, Doing so, we find that

0o(t) = Bo(t)+(t), where |M(t)] < N73/2]%1%Q( It])exp(-t7/k) for
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el s e n'/?
{SN}, €, C, ¢ and n. From this it is clear that the first integral in

(h.2.12) is O(n"3/2),

, and Q is a polynomial with coefficients that depend only on

Just as in the sketch of the proof of theorem 3.2.1, one can show that

'Eo(t)
t

J lat

[t1210g(N+1)

is sufficiently small. Hence it remains to show that the second integral
in (4.2.12) is O(N_3/2+N‘1/292). Using the fact that L is an even and ¢,

is an odd function, we find

© itz (x) -itg,(x) iE[r, (x-08)-z (x)+6z, (x)]
(h.2.13)  lw(e)l = f [e ' +e | 170 0 ! +
0
B . it
. e1t61(X)[e-§-[t;0(X+9)-CO(X)-GE1(X)] .
A (x-0)-t (x)+62, (x)]
- e If(x)dx| <
g (x+0)-z (x-6)
- o) it 2 ()]
<2 J | cos tw1(x)|f(x)dx + I e (x)ax

0

The last integral in (4.2.13) is less than or equal to

|t|Jw co(x+e)-co(x-9)

(h.2.14) | 5 -2;1(x)!f(x)dx <
0.
'tLZ Eyl2t,(X,+v0)| < o 21413,

for |vl £ 1 and some c> 0. The first inequality is a consequence of lemma
4h.2.2, the second of (4.2.2) and (4.2.6).

Next we investigate the behaviour of w (F~ (y)) on T. This interval has the
form T = (a, a+n), where 0<ac< 1-n and n<n<1.Let § and © be constants

with 0 < 6§ < % and ¢ > O and define, for a fixed |t| 2 :, the set T by

= {y|3 integer k, km+§ < tw1(F—1(y)) < (k+1)m=-8} n T.
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Let A be Lebesgue measure and denote A(T) as A. We shall show that A = n/2
for § sufficiently small and depending only on c, ;, C and n. Obviously, we

have A(T n ?c) = n-A and therefore

oy ~ ~

(b.2.15)  Ayle + B2 sy s esn - B2 0 70 2 15

|
>

Condition (4.2.10) implies that Ié%'tw1(F—1(y))l 2 |tlc on T. From the dif-
ferentiability conditions on f and the assumption that f(x) is positive for
all x, it follows that == w (F 1(y)) is continuous on T. Hence (L.2.10)
also implies that w (7! (y)) is monotone on t. This gives, together with
(4.2.15), that tw (F-1(y)) traverses at least [iﬂ:§%£lﬁl] intervals of the
form (km-6,km+8) as y increases from a+(n-i)/4 to a+n-(n-A)/4. Here [z]
stands for the integer part of z. Because tw1(F—1(y)) is monotone on T

~ ~

(4.2.16)  I6l|v, (77 (asn - B2))-y, (77 (2 + 2F2))

v

qrdo=pleltly gy,

This inequality leads to the desired lower bound for X. Take
§ = min {ncg/16, cnne/(1280)}. If (n-A)ce < 88, then
X2 7-868/(cc) = ;"n/2 2 n/2. If (;—X)cz > 88, (4.2.16) implies that

Iy (F’1(a+n - —EA))_¢1(F'1(a + ﬂ:l))| > §ﬁ~x2cn

1 8s

and hence

1
o) v )ley 2
0

(;_xz2c"
326

According to (4.2.6) the integral in (4.2.17) is at most C and therefore

X = 5-3260/(em)} /2 > nye.

Ih view of the above, there exists a positive constant 3, depending only on
c, Z, C and n and such that, for all |t| = ;, we have A(?) =2 > n/2 and

~

on T

|cos{t¢1(F—1(y))}| < 1-8

Hence, for |t| 2 ¢,

o2

o 1
(4.2.18) 2 J Icos{tw1(x)}lf(x)dx = J lcos{tw1(F_1(y))}|dy <1 - 2?.
0 0
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Combination of (L4.2.14) and (4.2.18) leads to

1/2 &, 621413 /026 (5.))

lwo{t/(N > NERIP

00(31))}1 <1 -

1/2

for |t| = cN 00(81). Now 03(81) is bounded above because of (4.2.6).

Therefore, 500(81) < ¢, if ¥ is chosen sufficiently small. On the other

1
hand, 05(81) > ¢/2. Together this gives

IROTC A XERMIIERINE L e N O

for It = c.n'/2

1
c1N1/2 < ltl < b

log(£)1 s (1-8n/8)" ana

. Hence, there exists a constant b > 0 such that for
N1/29‘2 we have Iwo{t/(m1/gco(s1))}| < 1-3n/k. But then

p(t)
0 b
| T ldat < S

2) 1

w1 - Y = ow3/3).

Ic1m1/2s|t|sbm1/2min(1\1,a‘ O

Let Ry be the d.f. of (s—Ees)/oe(s) under F(x-6). If X, has 4.f. F(x-8), the

r.v. Y, = X -0 clearly has d.f. F(x). Furthermore,

5, = (1/8)108{£(X,~8)/2(X)} = (1/(-8))10glr(Y,~(-6))/(x,)}.

Hence by changing 6 into(-6) in the right side of (4.2.9), we get an ex-
pansion ﬁg for Ry, such that sup |Re(X)-§;(x)| < A{N—3/2+N—1/262} under the

conditions of lemma L4.2.4.

From ﬁ; and ﬁ; an expansion ?s(e) for the envelope power ﬂs(e) can be found

easily. Define

L 2
E v, (X,) E ¥, (X,)
(k.2.19) o, = N1/26[Eowf(x1)l1/2, n, = ——Qj%——l—75= n = ——9—2——1——5,
[Eow1(x1)3 [E0w1(X1)]
(ef. (3.4.24) and (3.4.26)) and
. S n1(n2-3) 5
(L.2.20) ws(e) = 1—¢(ua—n1)+¢(ua—n1)[*-Eﬂﬁ——-(ua-n1ua—1) +

3
M
*Ton (2n2—3n3)]-
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LEMMA L4.2.5. Let {GN} be a sequence of positive real numbers with

1&2 8y = 0 and assume that (4.2.5), (4.2.6) and (4.2.10) hold and suppose
in addition that €' < a < 1-e' for some constant €' > 0. Then there exists
A > 0, depending on N, 0, o and F only through {GN}, e, C, ¢, nand €' and
such that

'3/2+N—1/262}.

(4.2.21) |ns(e)_%s(e)l < AN

PROOF. From (4.2.9) it follows that the critical value Ea satisfies

T].I (n2‘3) P (n2"3) 3 _3/2 -1 /2 >
(k.2.22) B, =y, - _""Téﬁ'“(ua'1) + ——Ezﬁ—(ua—3ua) + 0(N +N 67).

Furthermore, we have for ﬂs(e)

EOS—EeS oo(s)

(4.2.23) ms(8) = 1-R ([E  + o,(8) 301(8))'

E,S and UO(S) are given in (4.2.7), E,S and Oe(S) follow by changing 6
into (-8) in these expressions. Application of this and (L4.2.22) to (L4.2.23)
leads to (L.2.21), with an additional remainder term of order

n'/26%(8"/20). This term can be omitted, as N'/26%(n'/26) = o(w~ /22, O

REMARKS. 1. Conditions (L4.2,6) and (4.2.10) determine a class of d.f.'s F
for which expansion (4.2.20) holds uniformly. If we restrict attention to

a fixed F, condition (4.2.6) can be weakened to

lim sup Jw |¢§/i(x+y)lf(x)dx < o, i=1,...,5.
y0 Jee t

Furthermore, condition (4.2.10) can be omitted: if no uniformity is re-

quired, we only need that w1(F—1(y)) is non-constant on (0,1). This con-

dition is always satisfied, since w1(F—1(y)) is constant on (0,1) only for

uniform d.f.'s. But these d.f.'s are already ruled out by the fact that

their density is not everywhere positive and differentiable.

2. We have treated location alternatives with 6 = 0(1), since we
shall need the results for such 6 in section 5.2. The typical case of in-
terest, however, remains the case of contiguous location alternatives,

where 6 = O(N_1/2). Then n,, and hence 1/{1-¢(ua—n1)}, are 0(1).
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As announced at the beginning of this section, we shall also give a power-
. * * *
expansion for the IMP test based on S = Z§=1 Sj’ where Sj = - ¢1(Xj).

Under F(x) we have

*, 2k 2k *\2k-1 _ _
E(8)7 = E¥] (X, Eo(s1) =0, for k = 1,2.
Under F(x-6) the necessary moments can be found by using

S =y (X) = - LK) = - g (Y)) - 0E(Y,) - L r(v) +

1= VX = - (X)) = - g () = 00, () - T agl
3 3 Jj

) 8

=g oY) F Lo (X)) + jzo i) 570

where Y1 = x1-e has d.f. F(x). Proceeding in this way, we obtain expansions

similar to (4.2.9), which are justified in a manner analogous to lemma

Lh.2.4. The final result is the following expansion ;S*(B) for the power
*(0):

Ty ()

- ny(ny=3) 5
(k.2.24) nS*(e) = 1—¢(ua—n1)+¢(ua—n1)[———Eﬂﬁr—(ua—n1ua—1) +
2
+ 75&(5n2—12n3+9)]-
Under the assumptions of lemma 4.2.5 we have lns*(e)-FS*(e)I < A{N“3/2 +
+ N_1/262}. Comparisoﬁ of (4.2.20) and (4.2.24) gives
N n>
mg(8)-1x(8) = 5% (3n3—n2—3)¢(ua-n1) =
w2362 (41 (x.))
= 2 2 11/; ¢(u,-n;) = 0,
a
8[E0w1(X1)]
where equality only occurs if w;(X1) is constant a.s., i.e. if X1 is

normally distributed. The fact that ;S

comes from &(x-6).

(0) = ;S*(S) here is obvious, since

S and S* are equivalent if X1

4.3. PERMUTATION TESTS

We shall start by showing how permutation tests can be derived in a natural
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way (cf. Lehmann (1959)). Consider again the one sample problem:
X1,X2,...,XN are i.i.d. r.v.'s. Under the hypo?hesis they come from a d.f.
F, which has a density f that is positive on R and symmetric around zero,
under the alternative they come from a d.f. G which has a density g that is

not symmetric around zero. Let X = (X1,...,X ). In the previous section we

N
considered LMP tests for this problem, which, of course, are not distribu-
tion-free. Here we shall restrict attention to distribution-free tests and

search for the most powerful one in this restricted class.

If ¢ is a distribution-free test, then ¢ must have the same size a for all
F e PX’ the family of all d.f.'s with a continuous symmetric density, i.e.
¢ has to be similar with respect to PX. A concept related to similarity is
Neyman Structure (NS): a test ¢ has NS with respect to a statistic T if T

is sufficient for X with respect to PX and E(¢(X)|T) = o a.s. under PX' If
¢ has NS, it is similar; the converse holds if T is also complete with

respect to PX' Let 2 = (Z1,...,Z ) denote again the vector of absolute

N
order statistics of the Xj' As Z is sufficient and complete with respect to

P,, the class of all similar tests for the one sample problem coincides
with the class of all tests having E(¢(X)|Z) = a a.s. under H_ . This last

0
condition can also be stated as

(5.3.1) WO 4(y) = a aws.,
yes(x)

where S(x) is the set of all y (y1,...,yN), giving rise to the same z as

X

Any test satisfying (4.3.1) is called a permutation test. In particular,
every rank test satisfies (L4.3.1) and therefore rank tests form a subclass
of the family of permutation tests. This implies that the most powerful
permutation test for a certain alternative is always at least as good as
the most powerful rank test for that alternative. As they both possess the
desirable property of being distribution-free, permutation tests are
superior to rank tests. The only reason to prefer rank tests over permuta-

tion tests is of a practical nature: rank tests are much easier to apply.

In view of this relation between rank tests and permutation tests, it seems
interesting to make deficiency comparisons between them. To this end we
shall derive in this section a power expansion for the most powerful per-
mutation test. First we shall derive the explicit form of its test-statis-

tic if we consider a fixed alternative, under which the Xi come from a d.f.
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G. Then we have for the conditional power

B(o(X)12) = §  ¢(y) BlZ=zRerasien Yesign y) _

yes(x) P(Z=z)
N
n g(yj)
= o(y) —=1 5 s
yes(x) I Taely.)
yes(x) j=1 9

where R = (R .,RN) is the vector of ranks for (|Y1|,...,|YN1)'and

..,sign YN). Conditionally under (4.3.1), E(¢(X)|2) is

100"

sign Y = (sign Y,

maximal if

N
1 for T g(xj) 2 c(2),
o(x) = J=1
0 otherwise,

where c(Z) depends on Z only. As ﬂ?=1 f(xj) is constant over S(x), the most
powerful permutation test rejects for large values of ﬂ§=1{g(xj)/f(xj)},
conditionally under Z.

We now restrict attention to contiguous location alternatives g(x) = f(x-6),

with 0 < 6 < DN-1/2, for some positive constant D. Then the most powerful

§=1 Log{£(X,-0)/£(X,)}. As
2§=1log{f(-|xjI-e)/f(-IXjI)} = 2§=1log{f(zj+6)/f(zj)} is constant given
Z = z, we can equivalently use

permutation test can be based on (1/6)]

N £(X.-0) f(-1X.1-9) 1 f£(X.-0)
26 .Z [log —y— - ¢ Fx.) 2~ 20 L log wp'Tey-
J=1 J J Xj>0 J

A drawback of the above test is the fact that it is only optimal against

one particular alternative 6,. For a composite hypothesis we may therefore

1
prefer the LMP permutation test, which is based on

u=- I v(x),
X.>0 J
J
with ¥, as defined in (4.2.1). The relation between U and the statistic of

the most powerful permutation test is

1 ) £(X.-0) 62 Z
v log =U - [z (X.-v_ 8)+z_(X.+v,.0)],
29 Xj>0 f(Xj+6) 1205 379 30y 2

J
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with 0 < v < 1 and gy 88 defined in (4.2.1). This relation is the same

s V5 =
as between1S aid S* in the previous section. Note, however, that S-S = 0(8)
1nstead of 0(8 ) as is the case here. This explains why = *( )—ﬂ (e) =
= 0(N” ), while the difference in the power of the two permutatlon tests
is o(n” 5/k ), as is shown in lemma 4.3.5. Hence, as concerns deficiencies,

both tests perform equally well.

We shall proceed to give a power exfansion for the test based on U. The
unconditional distribution of U can be found easily, but since the critical
value depends on Z, this does not lead to the power. We have to go through
the following procedure: the distribution of U, conditionally on Z, has to
be found, whereupon the conditional power can be evaluated as a function of
Z. Then the unconditional power is found by taking the expectation with

respect to Z.

In order to find the conditional distribution of U, it is useful to re-
present U as U = - X?=1 w1(Zj)Vj, where Vj = 1 if the X, corresponding to
Zj is positive, and Vj = 0 otherwise. With this representation we can apply
various results from Chapter 3. Just as in this chapter we have,condition-

ally on Z, the following situation: the - ¢1(Zj) are constant and V <V

1° N

are independent with

£(z.-0)
4 )
f(Zj+e)+f(Zj—6)

(4.3.2) Pe(Vj=1) = 1-Pe(vj=o) = =1,...,N.

We introduce the following notation

Aj = - ‘1)1(2':])9 aj = - ¢1(Zj):
(4.3.3) P, = Pe(Vj=1IZ), p; = Pe(Vj=1|z),
.= 2P.-1, q. = 2p.-1
9 PR T S I

and A, a, P, p, Q, q are the corresponding N-dimensional vectors. Condi-

tionally under Z = z, 2U has variance

N
(4.3.4) 12 = X (1-q7
J=1

)at,

e O

2
J
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and the statistic 2(U - X§_1ajpj)/r has mean O and variance 1. Its third
N 1/2

and fourth cumulants, multiplied by N and N respectively, are given by

N N
= _2N1/2(.Z qj(1—q§)a§)/r3, k), = —2N(_£ (1-q§)(1—3q§)ah)/rh.

(4.3.5) .
J=1 J=1 J

K3

Define N
2(U - z' a.p.)
4.3.6) R (x|z) =P ————JIEL—:LE—-< x|
(h.3. 0 ) T = Xiz s

v(est,q) = Mx|3 integer j Ix-ajl <z, Iqjl < 1-¢},

where 0 < € < 1/2, £ > 0 and A is Lebesgue measure.

The following lemma supplies an expansion for Re(xlz). From this point on,

summation always runs from j = 1 to j = N, unless stated otherwise.

LEMMA L4.3.1. Let z and 0 be such that there exist positive numbers c, C,
§ and € for which the following conditions hold
1 Z(1—q%)a? >c, 1 Za% < C, y(e,z,q) = 8Nz,
N 373 N &7
for some ¢ 2 y3/2
only through c, C, 8§ and e and such that

log N. Then there exists A > 0, depending on N, z and 6

Jaed Jar

(1.3.7) Rylxlz) = e(x)lre(x)i—dm (x°-1) + —i— (x7-3x)} + &,
3(NB) 12(NB)

where B is an arbitrary positive constant and

(4.3.8) IRl < A{N-S/h+N-5/2|2qja§|[Te-NBl+N-3/2|zq§a§! ¥

+ N-E|12-NB|+N—2|Zq§a§|+N-2Iqua?I}.

PROOF. Under the above conditions, theorem 3.2.1 can be applied to R_(x|z).

[¢]
This means that

(4.3.9) Re(xlz) = ﬁe(xlz) + O(N-S/h)’

where R, is the Edgeworth expansion to O(N—1) for R

0 , 1.e.

6
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. N_1/2K3 .
(4.3.10) Re(xlz) = @(x)—¢(x){—‘—g‘—— (x=1) +

5 -1.2
+ 5y 4 (x3—3x) + 723 (x5-10x3+15x)}.
From (4.3.5) we obtain
3133
_ u1/2 ijaj'ijaj NB\3/2 _
K3 = =2N ( 3/2 )(—2 =
(NB) T
3 .
=p =i -2 3 1.2, -1,v 33
2 37 + 0(N |ijaj| |T°-NB| + N |ijaj|),
b 2L inen L
B ekt N I ot
L 2 2 2
(wB) T NB

+ (v ' <2mB| + N_1Zq§a§),

Ky = K

-1 3 -1 33 -1 3
Kk, = 0(1)0(N .a%| + N catl) = O(N .atl).
3¢5 = 0010 IZ% 1 lz% 1) = o IZ% i)
Substitution of these expressions in (4.3.10) leads, in combination with
(4.3.9), to the desired result. [

REMARK. The expansion in (4.3.7) is formally correct for any choice of

B > 0. In future applications we shall choose B such that the expression in
(L.3.8) is small. This is achieved by taking B = EO¢$(X1)’ which is the
obvious thing to do in view of the definitions (4.3.3) and (4.3.4).

Let w(6]|z) be the conditional power of the test based on U and let a be the

size of the test. In the next lemma an expansion for w(6|z) is given.

LEMMA L4.3.2. Let z and 0 be such that the conditions of lemma 4.3.1 are
satisfied and such that |Ja;e.| < on'/?
furthermore 0 < 8 < DN°1/2, e’

we have

for some constant c' > 0. If

< a < 1-¢' for positive constants D and €',

n(6lz) = 7(6lz) + R,



6 -

where
~ 1/2 1/2 Eq’a$
(1.3.11)  w(elz) = 1-0(u_-6(NB) '“)-¢(u -6 (NB) )[;Z§§;%7§{(ua +
b
—e(NB)1/2)2 1}+———4L—75 (- 3u 6(NB)1/2+3u GZNB 93(1\13)3/2
» 12(NB)
2
q5a’ (Za.—NB)
+ 30(w8)/?) & %-z—%ﬁd(uu—e(NB)1/2) + %‘—~—§§——- o(np) /2 +
( a2.-NB)2
- g-—z—ﬂ——g—— o(nB) ' /2(3+0(wB) /2 (u -0(nB)/2)} +
(NB) @
2
- quaj—eNB “x (quaj-QNB) (u ~0(wB)"/?) 4
.(NB)1/2 2 NB o

2
(quaj—eNB)(Zaj—NB)
)3/2

+

% {1+e(NB)1/2(ua—e(NB)1/2)}],

(VB

with B an arbitrary positive constant and

(4.3.12)  |R| = A{N—5/h+N-3lZa?—NBI3+N_3/2lijaj—eNBl3+N_3/2(Zq§a§)3/2 +

+ N 9/h|z 3 3/2 3/2 z 3 3| + N IZq?a%I

2
where A > 0 depends on N, o, 6 and z only through ¢, C, 8§, €, c', D and €'.

PROOF. The conditions of lemma 4.3.1 are satiéfied for some 6 2= 0. There-

fore they must be satisfied also for 8 = 0, because this is the most

favourable case, as then all qj are 0. From (4.3.7) and (4.3.8) it follows

that

Ta

(4.3.13) R (x]z) = o(x)+¢(x) 1—-2—(—3——2 (x3-3x) + O(N'S/”m"?lza?-msn.
NB)

Since €' < a < 1-¢', u, = 0(1) and therefore we derive from (4.3.13) that

the conditional critical value ga of the test based on 2(U—ijaj)/1,

satisfies

L

z N 2 2

(4.3.14) £ = —d 3 2-3u ) + 0(N vy 2 7a2 xB) ).
o YT 12(nB)> 4 Ie



The connection between w(6|z) and ga is m(6lz) = Pe([2U-Zaj]/(2a§)1/2 >
> Ealz). Together with (4.3.6) this gives

la

| Ta5 1p  laes
(4.3.15)  1-n(elz) = Re(Ea(‘;El) - —dz).

Using (4.3.14) we obtain

1., laa. Ja%a2
(__J_) /2——‘]—‘1=u-9 NB)1/2 1

= — 4
o 1_-2 T o ( 5 ua = .
h
L 172 s
(u -3u, ) . + Ee(NB) o
- 3o(um)'/2 («°-mB)° _ Laje;-oNE +
1 (ij&j-eNB)(Tg_NB)
T2 3/2 + R,
(NB)
where
e 2 5/4
= 0on#(Ja%a )P0 %1 aSed 1 faS-wBl + W2 a%ad + ¥ 4
2

+ N‘2|Xa§-NB| + 8323 + N_5/2|quaj—eNBl(TQ-NB)E}.

By the following relations, R1 can be simplified considerably

N‘5/2|Zq 8 eNBI(T NB) 3/2|Zq s85- eNB|3 + N ]T NBI3

N_2IZa§—NBI <v32 . N_3|Za§-NBI3,

-2p 2 2 v 2 -3/2 3/2 , y31v42.x33
N quajliaj-NBl < N '5()q ) |Zaj-NBx ,

We also have

N2(:2-NB)2 = ¥ Z(Zag-NB)g + O(N-QZq |Za -NB| + N2(Jq%a%)?),

Jd Jd
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N'3/2(ijaj-eNB)(T2-NB) = N_3/2(quaj—eNB)(Za§—NB) +
+ O(N_3/2|quaj-eNBIZq§a§ '3/2(2q 8 ,-6NB (Za -NB) +
+ O(N_3/2(Zq§a§)3/2 3/2I2q 8 -6NB| )
Application of these results leads to
Za? 1/2 Ya.a. 1/2 1/2 q?a%
(4.3.16) gu(—7§) - ——%—1 = ua-e(NB) 2(u -6(NB) '°) ——ﬁgi +
T
M 2
Ya. Ja2-NB (Ja- NB)
1,3 1 1/2 35(x8)1/2
- —(u”-3u )_.__.J_ + =0(NB) ___J_ —dd 4
2% et e - gom (35)2
2
i ZQjaj-eNB 1 (quaj-eNB)(Zai:yB) . =
(v8) /2 2 (ws)3/2 2°

(4.3.17) R, = O{N_S/h+N_3IZa§—NBI3 + N_3/2|quaj-BNB|3 + n3/3(g i 3)3/2}.
According to (4.3.15), n(6]z) can be found by substituting expansion

(4.3.16) in expansion (4.3.7) for R (x|z). We shall first consider the
¢(x)-term, and after this the x ¢( ) terms, for k = 0,1,2,3. The following
expansion is used

Ja2 . Ja.a.
(4.3.18) ¢(ga(—7§)1/2 - ——ﬁ—ﬂd = @(ua-e(ma)”2

T

) +

Ja? Ja.a.
+ glu -o(me)/2)re ()2 L L g+ o(wm) /2

T
T

Ja2 Ja.a.
- %(ua-e(NB)1/2){£a(—¥§J1/2 -l s o(we) /2127 +

I} 12 lag
+ 01 (2 L i

T T "9t 9(NB)1/2 3)

After some calculations this leads to



I la.a
(1.3.19) oG () /2 - ) < ey oum)/?)
T

22
B q.a. .
+ ¢(ua-e<NB>1/2)[ (u,-0(x8)' /%) B 1) B

Ja2_NB
+ %e(NB)]/Q i —0(NB)1/2{3+6(NB)1/2(ua—6(NB)1/2)}

2 12
(Eaj-NB) quaj—eNB

1/2

(Zq.a.-SNB)2

- %(ua-e(u3)1/2) i +

(x8)2  (wB)

+ %ﬂ1+e(NB)1/2(u —e(we)/2)

O(Rr.).

2
(quaj-GNB)(Zaj—NB)] .
2

(NB)3/2

T9

The remainder is still O(R ) by virtue of the conditions |Xq 8 | < 'N1/2,

0 <6 <DN 1/2, B constant and Za C. They ensure that every term
occurring in (4.3.16) and (4.3.17), is 0(1).

A simpler version of (4.3.16) suffices for the xk¢(x) terms

Va2 Ja.a.
LR - o) s n,
T

-1/2

Ry = 0N N4 1Zq 8 +N IZa?-NB|+N qujaj—eNBl).
It follows that
Ja2 Yq.a. Za? Ya.a.
Sy/2 - TNk Sy _LATEy o
(k.3.20) (aa(T2) =) ¢(ca(12) -—r) =

= (u,~0(18)" /) %o (u -0 (w3) /2 + 0(x,).

Inserting (4.3.19) and (4.3.20) in (L4.3.7) leads to the required expression

(4.3.11) for w(6]z), with remainder

-1,.-3/2 3 -5/2 3.2 -3/2 3.3
O{R + (N 4N Iquajl)R3+N Iquajllr -NB|+N Iquajl +

3
IZq 8 I+N lquajl}.
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Finally observe that

3
v/217q.031 1128l < v9*17q.a313 24w 3 11%nm1 3,
J J Jd J
-2 3 -9/h 3,3/2,,.~3/2 3
.a’ .a.-0 < .as .a.-0NB
N |2anJ||ZanJ NB| < N IZanJI +N IZanJ NB| >,

-5/2 3 22 -3 3,2, =2,v 2 2,2
N .8 0| < .a3) 4N ~a5 )<,
IZanJIIZanJI N (ZanJ) + (ZanJ)

-3 3,2, -2 3 -3/2,,=9/L 3,3/2
N .a7) +N .axl = 0(N +N .a% .
(ZanJ? IEanJI ( |XanJ| )
This shows that the remainder (4.3.12) has the required order. [0

The next step is to show that under 6, the set of Z-values for which the
conditions of the previous lemma are not satisfied, has a sufficiently
small probability. The following definition is analogous to (4.3.3)

N - f(xj-e) -
Aj="¢1(xj), P,j = f(Xj—e)+f(Xj+6)’ QJ = QPj'1’ J = 1,...,N.

LEMMA L4.3.3, Let f be symmetric around zero, positive on R' and twice con-
tinuously differentiable. Assume that positive constants €', D, n, ¢, C and

n' exist, such that

(4.3.21) 0 <6 <DN ,

(4.3.22) €' < a < 1-g',

(4.3.23)  sup {fm w:O(X+y)f(x)dx : lyl <n} sC,
(h.3.20) I e, (FT N 2 C,

for y in a subinterval v of (0,1) with length at least n'. Then there
exists A > 0, depending on N, 6, F and o only through €', D, c, ¢ and n' and
such that (4.3.11) and (L4.3.12) hold for all z-values, except for those
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in a set Buwith Py(B) < a4,

PROOF. We have to verify that the conditions of lemma 4.3.2 are satisfied,
except on a set of probability of order N-S/h, i.e. we have to show that

there exist constants ¢, C, 8§, € and c¢' such that

1 v, b
(k.3.25) 3 ZAj <c,
1 2,2
(4.3.26) T Z(1-Qj)Aj > e,
(b.3.27) v(e,z,Q) = 8N¢, for some ¢ 2 y3/2 log N,

' 1/2
(4.3.28) IXQjAjl <e'n’”,

except on a set of probability O(N"S/h).

~)

First consider (4.3.25). As ¥, is odd, we have ZAE = ZAj. The Kg are i.i.d.

r.v.'s and in view of (L.3.23) we have
sup , EGIA' | <c.
0<0<DN ~ 2 J

From Chebyshev's inequality we obtain
1 ~l ~h -5/2_ 1 ~l ~yy5/2
(4.3.29)  Py(ly X(Aj-EeAj)l 2 a) £ a7 E I Z(Aj-EeAj)l .

At this point we use an inequality which is given by Chung (1951) and due to
Marcinkievitz, Zygmund and Chung: if Y1""’YN are independent r.v.'s, all

having mean zero, we have, for all p 2 1,

ElJY.1%P < SvP'ElY. %P,
J o d
- ) ~yo o~y
where the constant C only depends on p. By taking Yj = Aj-EeAj’ J = 1,000,
and p = 5/4, it follows that

1y b 5/2 4 -9/h ~y o~y 572 a5/~ Sl 5/0
Eg Iy Z(Aj-EeAj)l < CN ZEelAj-EeAjl = CN /7R 1A -BgA 177 .

Together with (4.3.23) and (4.3.29) this implies that ZK? < N(C+d) = NC,

except on a set B, with Pe(B1) = O(EdZNJ—s/h).

1
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The next condition to verify is (L.3.26). As was mentioned in theorem
3.3.1, (4.3.21) and (4.3.23) imply (3.2.16). For the present case this
means that Pe(e < 51 < 1-g) > 1-8' for some &' with 0 < &§' < min(é/2,c

In theorem 3.2.2 it was shown that under this condition (4.3.26) holds,
(>

20'1).

except on a set of probability 0 , provided that ZA? > c*N, for some
e* > . By applying Chebyshev's inequality one shows that

ZA§ = ZK? > N(bef—d), except on a set B2, with PG(BE) = O(EdgN]—S/h).
Hence it only remains to prove that EeK? is positive. Since 6 -+ 0 as
N > o, (4.3.24) implies that

(4.3.30) I v (o477 (v 2 C,

on a subinterval of (0,1) with length at least n'/2. Therefore

~2
E A1

o 1
AT = J W5 ()2 (x-0)ax = J e+ (y))ay > 0.

0 1
The third condition we have to deal with is (4.3.27). Inspection of the
sketch of the proof of theorem 3.2.1 shows that this condition only serves

to prove that

12{t) a4 = o(n73/2),

(4.3.31) sje 155

Jb'N1/2slt[sbN
where |p| is given by (cf. (3.2.8))

cos A.t

(4.3.32)  Jo(t)] s exp{-JP,(1-P,)(1 - —4)) =

~

L. o Kt
= =-2)P.(1-P. i .
exp{-2] J( J)51n 7%;}
Instead of verifying (4.3.27) we shall prove (4.3.31) directly. From

(4.3.30) and a similar argument as in lemma 4.2.4 it follows that

1
E, sin® At = J sin2 {tw1(e+F‘1(y))}dy > 0,
0

for all t bounded away from zero. As sin2 A1t is bounded, all moments exist
and an application of Chebyshev's inequality shows that N—1 Z sin2 ljt is
° 3 with Pe(B3)=
0(N"") for all r > 0. Note that B3 is in fact B3(t). To overcome this com-

also bounded away from zero for all such t, except on a set B

plication, we note that in view of the continuity of sin Ajt in t, we can for
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each to choose B (t) equal to B3(t ) for all t in some neighbourhood of tge
If N z AJ is bounded, which is the case except on a set Bh with P (Bh) =
o(n~ /h),.the length of this neighbourhood can be bounded away from zero.

1 will hold on a set
1,b1,b2 positive constants, except on a set 35 which
is a union of B), and at most O(N) sets B3(t). In view of the above, PG(B ) =

O(N_E/h). Furthermore, we note that, with probability 1- O(N_S/h) T /N =

Hence we can now conclude that N ) sin? Ajt 2c
< |8 < b N with ¢

{Z(1—Q )A }/N is bounded from below as well as from above. It follows that
for b N1/2 < |t] < 6032 with probability 1- 0w >/%)

Now there exists € > 0, depending on cys such that at most a fraction c1/2

of the PJ does not lie in the interval (2,1—2), again with probability

1/2
1 - O(N-s/h). Hence, for all b*N / < |t} < bN3/2,
A

.. p At p At e N E(1-E)e,N
2P5(1—Pj)51n —J—gr > e(1-€) [}sin _J_ar -—2—]2 —

with probability 1 - O(N—s/h). Together with (4.3.32), this proves the

validity of (L4.3.31), except on a set B, with PS(B6) = O(N_S/u).

6
It remains to prove (4.3.28). As Q. and Aj are both odd functions of Zj’
we have ALl < ALl < iN.K.I. Because

|ZQJ J| 2lQJ J Z QJ J

£(X,-6)-£(X,+0)
1517 21X, -0)+£(X,+6) =

1 f‘(X1+v9)f(X1—ve)+f(X1+v6)f'(X1—v6)

= 269, (X,) f

it follows that

5 dv,
0 (f(X1+v6)+f(X1-ve))

1
~ ~ 4
|Q1A1| < 26|w1(X1) fo {5 w1(x1+ye) + % ¢1(X1-ve)}dv! <

1 1
2
s e{lyl(x, )] + ¢2(X +v0)dv + wz(x -v8)av}.
1 1 171
v 0 0
-1/2 . . -
As 0 < 6 < DN / » it remains to prove that, with probability 1 - O(N 5/h)

N o1, .
Z J w1(x.+ve)dv < CN.
=170 J

This is done in the same way as in which (4.3.25) is proved; therefore we
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only mention that an application of Fubini's theorem shows that
1o 5/2
EOIJ w1(X11y0)dv| < sup E Iw (X +v0)| < O
0 lv]<1
COROLLARY L4.3.1. Under the conditions of lemma 4.3.3, the power w(8) of the
permutation test based on U, satisfies

(4.3.33)  In(e)-Eym(612)| < AER,

6

where T1(61z) and R are given in (4.3.11) and (4.3.12) and A is a positive
constant, depending on N, 6, F and o only through €', D, n, g, Cand n'.

PROOF. On B m(0|z) satisfies m(6lz) = 7(6lz) + R. Hence, for m(8) =

we obtain

E,m(612)

In(8)-Ey(T(012)+R)| < EgIn(012)I,(2)I+E, | (n(612)+R)I (2)],

where I is the indicator function of B. Now 7(6]z), being a probability,
is bounded, and therefore E, |W(9|Z)I (z)] = O(N-s/h).

The term qu(n 812z) +R)I (Z)| has to be treated with more care. First,
@(ua—e(NB) ) is bounded and thus contributes O(N~ 5/h). The next three
terms of m(6|Z) can be split into a bounded part and a part that has the

form of one of the remaining terms in 7(0]Z):
-3/2 3 -3/2 N2(542) 24y 2
N ZQjAjl <N ZA Llagasl = v o(Ia) v (f1Qua. 1) <

< 2(B2+0°NB% )+2n"2( ZA?-NB)2+2N_1(2IQ5AJ|—6NB)2

N2 ZAg < N-2(2A§)2 < 232+2N'2(2A§-NB)2

2.2

-1 2.2 -1 2 -1 2
N AT SN AL < 20 NB +2N JA.|-ONB)".
ZQJ ; (ZIQ,J 5D (ZIQJ ;! )

The remaining terms of 7(6|Z), and the terms of R, can all be treated in

the following way. Take for example the first term, N—1(2A§—NB). On the

part of B where N_1(ZA§—NB) < 1, the contribution to the expectation is
_5/h)

clearly O(N . On the remaining part of B the contribution is
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O(N_3E9IZA§-NBI3) because for any r.v. Y with d.f. H, and all p 2 1,

-0

f lylan(y) j Iy 1Pam(y) < J lyIPan(y) = El¥IP.
lyl=1 yl=1

Thus the total contribution of this term is O(N_S/h

these terms already occur in E

w3 EGIZA§—N3|3). But
GR' Inspéction of the other terms shows that
their contribution is always O(EGR). 0

Our final task is the derivation of simple expressions for ESF(SIZ) and

E,R. To this end, Eeﬁﬁif has to be evaluated for various r and s, which is
done by expanding afK? around 6 = 0 to the appropriate order. Note that

Eeaﬁxﬁ has a double dependence on 6: explicitly in 61 = [f(X1—e)-f(X1+9)]/

[f(X1-6)+f(X1+9)] and implicitly as X, comes from F(x-8). We introduce the

1
‘following notation

n(x,0) = SEBEXL @ (x,0) = 17 (x,0)45(xk0).

(1)

), h(l)(x,e), 12 (x+8) denote the l-th derivative of

(1)
Let qr’s(x,e
. s(x,e), h(x,8) and ¢1(x+e) respectively, with respect to 6. In the next
b

lemma we evaluate the necessary moments.

LEMMA L4.3.4. Let f be five times differentiable and suppose that positive

-1/2

constants E& D and n exist, such that 0 < § < DN and

(1.3.34)  sup {j o5 Gew) 177 g)ax + Iyl s nd €8, 5= 1,005,

-00

Then there exists A > 0, depending on N, 6 and F only through G, D and n
and such that

Eelﬁfﬁg5'r)| <avT?, p=o0,1,2,

g FEM-T) gty 14 < AN—(r+1)/2, r=0,1,2,
(4.3.35) o1 ot

|E9Kf-{EoKf + %; Eo¢?(x1)}| < an3/2,

12,3, K, - {eEOEf + %; E0(§ w?(x1)-¢§(x1))}| < AN"Z,
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PROOF. For 1 = 1,2,3,4 we have

(x+6)

W b, (x+0) = 43 (xr0),

(4.3.36) ¢$2)(x+e) v (x+6) - 3w1(x+6)¢2(x+6) + 2¢?(x+9),

3
(1) IS
o, (+e) | < T v, J (x+0) ],
=1 7

for some C > 0. Differentiation of h yields that

h(x,0) = 0, |h(x,8)] <1,

x+26)

L £'(x+20) / (fi‘(x) + 1)2, h(1)(x’o) = ¢1(X),

f(x)

h(1)(x,6) =

+ 1)2 +

h(e)(x,e) 8 £"(x+26) / (f§x+26)

£(x) (x)

- re(EriRe)yz tlxie) , )3

b

(4.3.37) h(e)(x,o) = 2(¢2(x)-wf(x)),

(3)
- % £'(x+20)F"(x+26) / (fix+2e) + 1)3 +
£ (x) £x)
£'(x+26),3,,£(x+26) L
L P A e m SR DA
203 (x,0) = by (x) - 120, (x)uy(x) + 693(x),
1 .
M (x,0)1 < T ) ;w;/J(x+2e)|, 1=1,2,3,h.
5=1

Under F(x-6), X, has the same distribution as X +6 under F(x). Hence

BoQyhy = Eo(-n)7(x,,0) (- )%(x,%0) = Bpa (x,,0)(-1)""%.

We now prove the results in the first line of (L4.3.35). Note that

= 5 - P =
EBIA1I = Ee|w1(X1)| = EO|¢1(X1+9)| =0(1),
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-1/2

because of (4.3.34) and the fact that 0 < 6 < DN . Application of lemma

4.2.2 gives

| = Eolq1’h(x1,e)l < fsup E Iq$1i( X,,v0) 1,

Osv<i

since h(x,0) = 0. Furthermore, for some C* > 0,

)

18101 < cram Pyl o

¢1| + |h¢
Using (4.3.36), (4.3.37) and HS8lder's inequality, one obtains

124" (x,v0)1 < 0¥ ] 3 o) 1+ 192 I (xrzve) 13
] J—1
Hence, by (L.3.34), oSuRy E |q§ 3(X ,ve)| < C,» for some C, > 0, and there-
fore Ee|§1K?I-0(N°1/2) Slmllarly,

2

2~3 g
E_IQA7] <= sup E_| (x ,v0)| <
o' 1t 2 05v<1 q2 30
2
< %gc sup B[ Z {|w5/J(x +v0)| + IwS/J(x +2v0)1}] = 0(N 1),
0<v<i J=1

The second line of (4.3.35) is proved by continuing in the same way. For

r = 0,1,2 we have

(h r) r_ ~h r L
Ime@Ky =BG | = IBga, ) (X;0)-6"Egu (X)) <
r+1
9 r+1)
< +——— sup | (x,,v8)| <
(r+1)! eusi qr ber™™1
(r+1) rEQ 5/;
< sup E.[ {lw (X, +ve)| +
e ¢ osvst O =1
) _!r+1)
+ |¢§/J(x1+2ve)l}] =om 2 ).

Eewf(x1) is evaluated in the following way
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|E ¢2(x )-{E ¢2(x )+26E [y ¢ (X )-¢3(x )]+
8v1 ™M 0¥1' "™ 0-Y172 M/ T¥

25 142 2 4
+ 07BNV, (X )40 9 (X )=5070, (X, 430, (X)13] <

3 3
< 9' 6

1,ve)l S 37 *sup E[ 2 {IwS/J(X +v0)| +
v 0w Jj=1

=
c.'
S
o
E?

+ Iwg/j(x1+ve)|}] = 0(N‘3/2).

As ¢ wg and ¢1 are odd, the corresponding moments are zero. Also, in )y
section 4.2 we found by partlal 1ntegrat10n that E )] wz(x ) =2/3 Ev, (X )
and Ep, ¢3(x ) = 2/3 Egb, (x )-E ¢2(x ). Appllcatlon of these results ylelds
the expression in (4.3.35) for E K = Ee¢ (X ).

Finally E9Q1A1 has to be found.

L
Oqs 3(x1,o)e—. <ty sw B |q§ )(x1,ve) <

0 0=<v<1

'~ w

IEgQ, 4,
i

IA
Ico
=

=

- ¢* sup E of 2 {I¢S/J(x +vo)| + Iw5/3(x +2v0) 111 = O(N"Q).
(OESVES j-

By applying (4.3.36) and (4.3.37), E oquz( 1,O) can be obtained, which
leads to the desired formula in (L4.3. 35)

We are now in a position to give a simple expansion for w(6).

THEOREM L.3.1. Suppose that positive comstants D, n, c, C and &' exist such
that (4.3.21), (4.3.22) and (L.3.24) hold and such that
© m.
sup {J ijJ(x+y)|f(x)dx : lyl <0} <G, §=1,...,5,

-00

m-] = 10, mj =5/3, 3 = 2,.0455.

Then there exists A > 0 depending on N, 6, F and o only through D, n, c, C
and ¢', such that

(4.3.38) Im(e)-m(0)]| < AN'S/h,
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2y 7 72

and nys N, and ny as defined in (4.2.19).

PROOF. The results of lemma 4.3.4 strongly suggest the choice of

B = Eowf(x1) in ET(6]Z). This is allowed, as Eowf(x1) is a positive

constant as was proved in lemma 4.3.3. The conditions of the present

theorem contain the conditions of lemmas 4.3.3 and 4.3.4. Hence we may use
(4.3.35) in E(F(OIZ)). After some algebra we obtain m(8) = EBF(GIZ)+0(N_3/2).
Hence, in order to prove (4.3.38), it suffices in view of (4.3.33), to

prove that ER = O(N_S/h). Consider the expression for R in (4.3.12). We

begin with the last term

¥, 1163 A | < v TRy 1R < v TR, 1T RN = 03

2

-3/2 3,3 -1/2, %3>3 -1/2 ~3 _ en=3/2
N EGIZQjAjI < N B IQA]] < E, IQ AJl = 0(x709),

N—3/2 2 3/2 -3/2E9(26§K + Z z Q2X26222 3/h

E lXQ 45 1173 g

A

-3/2 -3/2 2r232y2y3/h
N/ %E XIQ A3 HIER A E#Z QA5 Q547)

—1/2 A2)3/2 - O(N-3/2)’

I

Eg |Q A1| + (

-3/2

<N

+ N-3/2 ~2~6 —1/2(E661K?)2 - O(N—3/2).

EeQ1A1 + N
Another application of the inequality due to Marcinkievitz, Zygmund and

Chung disposes of the remaining two terms. If Y1""’YN are i.i.d. r.v.'s
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with mean zero, this inequality implies that
(4.3.%0) EIZY?I < EN1/2ZEIYjI3 - 6N3/2E[Y1l3.
Hence

N—3EGIZA§—NBI3 g, 11(& —E A 13 = 0o(v73g I T(K —E A )3
~p ~2030 0 23/2  ~2  ~2 03
+ IE6A1—EOA1| ) = 0(N EeIA1—EeA1l

y3/2 2)2}3/2 ¥3) = 0w 3/2),

{E (A —E A

-3/2

and in the same way N E IZQjAj—eNB|3 = O(N_B/e)

. Finally, the announced
uniformity in (4.3.38) is an immediate consequence of the uniformity in the

conditions. O

—S/h) -3/2y

REMARK. The remainder is O(N instead of O(N

fact that in lemma 4.3.1 the Edgeworth expansion of theorem 3.2.1 is used,

only because of the

which approximates to O(N_B/h). If in theorem 3.2.71 condition Zag < CN is

replaced by XIaJ.I5 <CN, the remainder becomes 0(N~3/2), as was remarked in
chapter 3. Hence by changing of m, = 10 to m, = 25/2 one obtains a remain-
der of O(N—3/2).

We conclude this section by considering again the permutation test based on

u* = (1/20) Tx.50 108 {£(X;-0)/£(X;+0)}, instead of on U. Let 77(8) be the
power of the “U*-test and define
o1 £(X,-8) _, 1, £(x.-8)
5 " 2 08 f(xj+e)’ &5 = 28 98 f(xj+9)’
N £(2.-0) 1 £(z.-0)
A. = = log a. = 55 log .
AL f(Zj+6)’ i 28 f(zj+9)

In the following lemma we prove that n*(e) agrees with m(8) up to O(N_S/h).

LEMMA 4.3.5. Under the conditions of theorem 4.3.1 we have

In*(0)-7(6)| < an>/",
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where () is given by (L4.3.39).

PROOF. As U = ZA;VJ is of the same form as U = ZAjV., the proof consists
of showing that all lemmas in this section continue to hold in the case

of U*, provided that some minor changes are made. Thus lemma 4.3.71 and
4.3.2 clearly hold for the U*-test, if aj is replaced by a; everywhere.
Lemma 4.3.3 remains valid without any changes at all, because

K; = - % ¥, (x;=v,0) - %-w1(xj+v2e), 05 v, v, < 1 and therefore (4.3.21)
and (4.3.23) ensure that 0582y ESIA:|1O < ¥ ana ESKTQ > 0. Corollary
4.3.1 also continues to hold in the same form. Hence it finally remains to

adapt lemma 4.3.L4. Expansion around 6 = O shows that

2
~% _ _e— 3
Ay == 0 (X)) - g (X)) = 30 0,(X)) + 207(X ) + e N
(4.3.41)
N 2
()% = v30x) + St ua(x,) - 30Pu,(x)) + 203(x) + oo

In a similar way as in lemma 4.3.L4 one shows that the first two statements

in (4.3.35) remain valid if A, is replaced by K:. Moreover,

1

2
~% 2 ~2 B -3/2
Eg(A])" = EgAT + 3 E0w1w3(x1) + O(N )s

(4.3.42)
@A) = 5, @A) + D8 ypa(x) + 0
BglQu8,) = EglQuh,) + 7 By ¥5(X, ¥,
The expressions in (4.3.35) are used to obtain Ee?(GIZ) from (4.3.11). In

~ ~k
(4.3.11), Ee(A:)Q and EQ, K, only occur in

(Ja*2_yB)  (JQ.K%-enB)
1 1/2 J 3 J
Ee[e o (NB) NB - 1/2

(NB)

(w32

But in view of (4.3.42), this expectation differs at most 0 ) from the

. . Lo~ ~%
expectation of the same expression in Aj instead of Aj' 0

4.4, SCALE INVARIANT TESTS

One of the advantages of the use of rank tests is the fact that such tests

are distribution-free. This was the motivation in the previous section to
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compare their behaviour to that of most powerful distribution-free tests.

Another nice property of rank tests is their scale invariance. In analogy
to the previous section it therefore seems worthwhile to compare IMP rank
tests with most powerful scale invariant tests. Let again X1,X2,...,XN be
i.i.d. r.v.'s from a 4.f. F(x-6), where f = F' is symmetric around zero and
positive on R'. According to Hajek and $idék (1967) the most powerful scale
invariant test for 6 = 0 against a simple alternative 8 > O rejects the

hypothesis for large values of

> N N-1 = N N-1

(k.h.1) {f m £(AX.-8)A dx}/{[ M £(AX.)A" dal.
0 j=1 J 0 j=1 J

’ e ... . . . .

In Hajek and Sidék (1967) it is also shown that in the normal case this

test is equivalent with Student's one sample t-test. Unfortunately, for

general f we are unable to find an expansion for the d.f. of the statistic

in (L.Lk.1).

We conclude this section with a remark on the relation between the most
powerful permutation test for the normal case and the t-test, being the
most powerful scale invariant test for this case. Note that if f is the
normal density, the permutation tests based on U and U* are both equivalent
to the permutation test based on XX.. Under the conditions of theorem 4.3.1
its power satisfies, according to (4.3.38) and (4.3.39)

2

ou
(hho2) (o) = 1-a(u N"/%0) - —2 4(u N'Z0) + o),

- hN1/2
But this expansion also holds for the power of the t-test, as is shown by
Hodges and Lehmann (1970). Hence, in particular, the normal permutation-
test has deficiency zero with respect to the t-test if normal location
alternatives are considered. This rather striking phenomenon can be made
more transparant by looking directly at the two test statistics involved.
For this approach the reader is referred to Albers, Bickel and van Zwet

(1974).

L.5. RANDOMIZED RANK SCORE TESTS

In the preceding sections of this chapter we considered tests that are only
slightly better than the IMP rank test in the sense that the asymptotic
relative efficiency (ARE) of the LMP rank test with respect to these tests
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always equals one. Here we consider the opposite case: randomized rank score
(RRS) tests are worse than IMP rank tests, but also have ARE 1 with respect
to these tests.

RRS tests have been introduced by Bell and Doksum (1965) for the two sample
problem. By proceeding analogously, we define a RRS test for the one sample

problem. As before, X1,...,X are i.i.d. r.v.'s from F(x-6), where the known

d.f. F has a density f that gs symmetric around zero and positive on R1. We
also have an auxiliary independent sample X:,...,Xg from F. Denote
(Xy5-+.5%;) @s X and (X},...,X}) as X*. Let 2(2") be the vector of order
statistics for the absolute values lX1I,...,|XN|(|XTI,...,IX;I). Now we
test the hypothesis of symmetry against the restricted alternative F(x-6),

® > 0, by rejecting the hypothesis for large values of
L = AV,
zJJ’

where Aj = - ¢1(Zg), Vj = 1 if the Xi corresponding to Zj is positive and

Vj = -1 otherwise. z always means Z§=1.

The statistic of the LMP rank test may be expressed as T = Z(EAj)Vj. Note
that a subscript in EAj is superfluous since the X; always come from F.
Hence L can be interpreted as the randomized counterpart of T. An advantage
of L over T lies in the fact that its computation requires no tables of EAj.
Moreover, in some cases, L has under the hypothesis a continuous, known and
tabulated distribution, é.g. normal or x2, whereas special tables are
needed for the distribution of T under the hypothesis. One may suspect that
the price for these advantages will be a loss of power of the RRS test.
However, Bell and Doksum have shown that its ARE with respect to the IMP
rank test equals one. Therefore it seems worthwhile to obtain an expansion
for the power of the RRS test in order to obtain a comparison to o(N—1) in-
stead of o(1).

In deriving such an expansion, we exploit the resemblance between the RRS
test, the IMP rank test and the IMP permutation test. For the IMP permuta-
tion test the scores are -‘w1(Zj). These are also random and of the same
form as the Aj used here. The typical difference, however, is that the per-
mutation testscores are based on the sample itself, whereas the RRS test-
scores are found from a second, independent sample which comes from F under

HO as well as under H1. The independence thus obtained between the Aj and
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the Vj enables us to apply the results of chapter 3 to a much larger extent
than was possible for permutation tests.

* ~ ~ -
Denote - ¢1(zj) as a., - w1(Xf) as Aj and - w1(x3) as a.. Let Vj = (1+Vj)/2,
j=1,...,N. Hence L = 2ZAjvj-2Aj. Conditionally on 2"

e

z*, L is equiva-

lent to Za.V.. Moreover, in view of the independence of Aj and Vj we have

Pe(Vj=1|z*) = Pe(Vj=1). Hence in the conditional situation we have exactly
the same case as in chapter 3. Define

L-eNEK?

(weR?) /2

*

Ry(xlz") = Py( < xlz’),

= AMx|3.|x-a.| < ¢}
v(z) x| Jlx aJI cl,

where A denotes Lebesgue measure. The following lemma supplies an expansion
for Re(xlz*).

LEMMA L4.5.1. Suppose that 2" ie such that there exist positive constants
c, C and § for which

(4.5.1) Zag < CN, Za§ > cN, y(z) 2 8Nz,

3/2

for some t = N log N. Moreover, assume that there are positive

constants D, 5, €, ¢ and n such that
(L.5.2) 0<6 <DN ,
o m, -
(4.5.3) sup {J ij(x+y)l J f(x)ax : Iyl <€} <C, § = 1,...,k4,
m, =6,m, =3, m, = 4/3, m =1,
a4 =1 ~
(bs) I NI 2 E,

on a subinterval t of (0,1) with length at least n. Then there exists A > 0,
depending on N, z*, 8 and F only through c, C,6,D,C,¢e,c and n, such that

supIRe(xlz*)-Ke(yx)l < A{N—S/h+N-3/h63tE{EIAj—EAj13}h/9]9/u},
x
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where Ke(x) ig given by (3.3.4) and

[§(a.BA.-EAZ)] JaZ _1/2

1C ] .
~2.1/2 ~2
(NEA ) NEA]

=[x -6

PROOF. In the first place we note that EA2 remains bounded away from Zero
in view of (L4.5.4). Hence no problems arise from the fact that EA occurs

in the denominator of (L-eNEA?)/(NEA?)”2

e(L/(Z 2)1/2 < o) /Py )a2 ek }'1/2)

and L = 22& V. -Za . In view of the condltlons of the present lemma, we can

Next we observe that R (x12%) =

apply-theoran3 3. 1, where the argument of K is

~2
- a’, a.E (-, (Z.))
[x + G(NEA1)1/2][2“%§]—1/2 -0 2—1—8—77%——1——
NEA] (Ia3)

As Eo(-w1(Zj)) = EAj, the desired result follows. [

The obvious way to proceed is to show that the conditions of this lemma are
satisfied for all z*, except for those in a set B with sufficiently small
probability. Then the unconditional distribution of L follows by taking
expectations with respect to Z*. However, as Ke(yx) is not bounded on B, we
first have to replace Ke(yx) by an approximation that can be controlled on
B. Define
Tt

(h5.5) K (x) = 8(x) + $0)]——dosa30) +

12(NEA )

oJaEA,

2
2)3/2( -1) +

3(NEA

'—%—175 JogEyt3v(z;) +
6(NEA ) J J

1

2 2 2

2
—— {z (Za A Yix o+

2NEA1

(a -EA ) ( .EA.-EA?)

NEK1 (NEA2)1/2

i (J(s5-E20))? Bone) 8 z(;;?_EK?)z .m -EA§> (
8 (NEA?)? 2 (m:mg)y2 e

2 NEK?

2,,2
) 62 (Z(a.EA.-EAJ.)) x]

(4.5.6) R = N—s/h + N73|X(g§-EK?)|3 + e3N'3/2[Z(ajEAj_EA§)|3
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LEMMA 4.5.2. Under the conditions of lemma 4.5.1 we have

sup |K
x

o(r,)Kg(x)] < AR

PROOF. As X(E?—EX?)/(NEK?) remains bounded away from -1, we get the fol-

lowing expansion for Yy

J(a.EA,-EAZ) (32— ~2) /2
(h.5.7) oy ={x -0 —*];5‘]1—/-2-']—}{1 D
x (NEA?) NEA1
}(32-EAS) (a.5a,-5A%) (1(a5-5%2))2
= x - g x i 'ez wCRVER +%XZ St
NEA, (NEE;) (NER®)
Y(a EA.—EA?)Z(az-EA?
8 s N R |

Under the conditions of lemma 4.5.1, 1/yx = 0(1/x) as |x| + =, and there-

fore
_ 1 2 3.1
(4.5.8) oy, ) = o(x) + ¢(X){(yx-X)- 7 x(y =)} + 01y =xI70(3 x)).

As for all p > 0, xP¢(x) = 0(1), (4.5.7) and (4.5.8) together show that

J(52-EA%) I(a.EA, -EA%)
= 1 1
(590 slr) = obx) + ot} Fx LT - o e
1 1
( (32-EA2)}(a.BA,-FA)
+ g (3x-x) —J——E - —— s+ 2 (147 ejmsh, E;g/QJ L4
e (NER])

2 (V(a.EA.-EA2))
_%x_zfa_a?__a__} + 0(R).

NEA1

From (4.5.7) it is clear that
_ -1 o2 2 -1/2 2
(k.5.10)  y_=x+ O(N xIZ(aj-EA1)] + 6N lZ(ajEAj-EAj)l).

By means of Hdlder's 1nequa11ty we show that the coefficients of the second

order terms in Ke(x) are O(N . Together with (4.5.10) this leads to
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(b.5.11)  Kyly,)-0(y,) = Ky ()-0(x) + O(NZIJ(EE-EK)) | +

0 1
. en"3/2|2(ajEAj-EA§)l) = Ky(x)-0(x) + O(R).
Finally,
e(h‘k)(Xag)'k/e - (9)(h—k)(NEK§)—k/2 + O(N-2|2(§§_Eif)l) =
(4.5.12)
= o) /2 4 or), k= 1,23,

Combination of (4.5.9), (4.5.11) and (L4.5.12) leads to K,.(x). O

6
Now we can give an expansion for the unconditional distribution of L.

Define

(L-eNEKf )

75 S x).

6 (NEA$)1/2

LEMMA L4.5.3. Let there be positive constants D, e, E, ¢ and n such that
(4.5.2), (4.5.3) and (L4.5.4) hold. Suppose in addition that
ffmwzo(x)f(x)dx < C. Then there exists A > 0 depending on N, 8 and F only
through D, €, C, ¢ and n, such that

Re(x) =P

(4.5.13) sup [Re(x)_Eﬁe(x)l < A{NP3/)-&63

X

where Ee(x) and R are given by (4.5.5) and (L4.5.6) respectively.

PROOF. The scores Aj we use, have the same distribution as the scores
'¢1(Zj) for the LMP permutation test under the hypothesis and therefore we
can apply lemma h,3.3. This shows that under the conditions of the present
lemma the results of lemma's 4.5.1 and 4.5.2 hold, except on a set B with
py(3) = 08 /Y).

In view of corollary 4.3.1 it remains to prove that E]Ke(x)IBl = 0(ER). To

this end we note that

MECWIE Zag+Z(EAj)h < JapsTma; = O(Jassm).
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L1kew1se |2a EA | and IXa E {3¢ (Z ) =6y wz(Z )+¢3(Z )}I are of this order
and ¢ (Xa As) = o((XaJ) +N2). Furthermore Za z 2N2EA? +

+ E{X(aj~(EK%)} . Hence the contribution of the second, third and fourth
term of KG to EIKQIB| is O(ER). The same result can be proved for the re-
maining terms of Ke in a manner analogous to the proof for the correspond-

ing terms in corollary L4.3.1. O
COROLLARY 4.5.1. Under the conditions of lemma 4.5.3 we have

(b.5.14)  sup IR, (x) K (x)] = A{N‘5/“ 33y emia e %007

X

+ N—102E[Z(A3—EA5)2]2+N—1e{1+eo(2(EAj)Aj)}{E[z(Aj-EAj)2]2}1/2},

where
5 v EK?
(h5.15)  Fo(x) = alhrele)- Sty 30
1
~l
y1/2g M ZEA EA.-3EA
+ =y = ~2)3/2 Ly 3(eR2) /2y (xPo1) +
92 2,2
+ —NZ{Z(EAj) 267 Z(EA }x +
EA1
e S(ma B (353(2.)-60, 0, (2 (7)) +
6 (Ei2) 172 L(EAIEG {307 (25) =60 0, (25 )+y5(24)

1

+ —L (A
(NER ”f)1/2 3 }

PROOF. In view of lemma L4.5.3 the essence of the proof is the evaluation of
EK (x) and ER from (L. 5 5) and (4.5.6). The first term in (4.5.5) that

deserves attention is c Ea A ). Its expectation with respect to 7" is
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(4.5.16)  Bo(Tv, (2))v,(2,)12") = EEo[Zw1(Z§){¢1(Zj)-Eow1(Zj)}]2 =

*
EEB,LLEY, (23){v,(2)-Epw,(2)} +

+

L0, (2)-Ev, (2503, (2,)-Bp, (2,) 1% =

cz(Z(EAj)Aj)+2EE0E(2Ew1(z;){wT(zj)-E0w1(zj)})(Z{w1(z§)-Ew1(z§)}.

* * 2
. {¢1@j)—Eow1(zj)})]+EE0£X{w1(Zj)-Ew1(Zj)}{¢1(Zj)—E0w1(Zj)}] .

By Schwarz' inequality the last term in (4.5.16) is at most E[Z(Aj-EAj)z]Q;

by applying the same inequality to the second term we arrive at
Eo2(Jy, (25)y,(2,)12%) = o°(J(EA,)A,) +
0471737717 Jd J

2]1/2

+ 0(o(T (B4, )A;)TE(] (4,-EA, )%} + E{Z(Aj-EAj)Z}z).

Now we treat the remaining terms in (4.5.5). We begin by noting that

~2 2o ~2 2y 2 sl om0
E[Z(Aj-EAj)J =0, EEZ(Aj-EAj)J = N(EA,-(EA7)"),
2y _ _v.2 %2 _52v3 _ 503/2
EX(AjEAj-EAj) Yo (Aj), EIZ(Aj EAj)I 0(n>"°).

2 1¢,72 72 1 2 1 2
Next we observe that A.EA.-EA7) = ) (AT-EA,) - =) (A.-EA. - = A.).
[(A;EA;-EAS) = o] (A5-EAY) - 2)(A;-EA;)" - 3lo" (A;)

. dJ J
This leads to

21072 m32\1 = dorv (32 212
E{Z(AjEAj-EAj)Z(Aj-EAj)} = 2E[Z(Aj EAj)] +

doevin mn 127 (R2_m32Y1 =
- pB(1(A-EA )" (AL-FA))

nﬂ?

B (Ei2)?} + 0(N1/2{E[2(Aj—EAj)2]2}1/2).
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Furthermore,
EEX(AjEAj—EA§)12 = BLJ(EA,)(A,-EA,) - 202(Aj)]2 -
Z(EA Zc
m2u5m54mﬁn3 0(EIT (EA (A-EA)I3+ (Io%(a;))°) =

0(n{Jo°(a } + (T12A, | (Bl ,-EA 1331/393) <

1

(N3/h[2{E|Aj-EAj|3}“/9J9/” + WJo?(41%).

Substitution of these results in (4.5.13) gives (4.5.14) and (4.5.15) with

an additional term of order N 182(2 (Aj))g. As

2 2 _ Cor 272
(Yo (Aj)) < EEZ(Aj EAj) 1°,

this term may be omitted. O

A further simplification of (4.5.14) and (4.5.15) is achieved by applying
theorem 3.3.2 and the results of section 3.4. In doing so, we restrict
attention to a fixed d4.f. F. One of the consequences of this restriction is
that condition (L.5.3) can be given a weaker formulation, whereas condition
(4.5.4) can be omitted altogether (cf. the first remark following lemma
L.2.5). Let m(6®) be the power of the test based on L and define

(n,-3) n,(n, +3)
(1597 Lylx) = o) + B 233y 4 L2 (P &

nf(n2+1) 3(3n3+n2) :/g/N(w (t))zt(1—t)dt
A T T 3

]
E0w1(x1)
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n1¢(ua-n1)r (5h2~3)

(4.5.18)  W(6) = 1-0(u,-n,) + 8 1 T2 2 .
2 =1/N 02

. n,(ny-3) . - (12n,-5n,-9)n’ i Lo (4(e) t(1-t)dt]

2L o T2 EO¢?(X1) s

where W1, nys Nys Ny aTE defined in (3.3.1L4), (3.4.24), (3.4.26). Let F be

the class of d.f.'s F, defined by (3.4.5) and (3.4.6). We now arrive
at our final result.

THEOREM L4.5.1. Suppose that F is such that F ¢ F and ffwwlo(x)f(x)dx < w,
Let there be positive constants C and € such that 0 < 6 < CN_1/2 and
€ <o < 1-e, Then, for every fixed F, C and e there are positive numbers

A, 61, 62,... such that lim GN = 0 and for every N

2
L-ONE ¥, (%) -1

(4.5.19) sup lPé( < x) - Ly(x)| < 8N +

x O meplx12 v
372 (171N 2 1/2
a2 [T )0 B,
1/N
~ 1-1/N
(h.5.20)  Im(6)-m(e)] = GNN_1 + a2 f (w{(t))Q(t(1-t))1/2dt.
1/N

PROOF. We check that under the conditions of this theorem the results of
theorem 3.3.2 and lemma 4.5.3 hold. As was mentioned after theorem 3.4.2,
the fact that F ¢ F implies that W%(t) = 0([t(1-t)]—7/6) near O and 1.
Hence theorem 3.3.2 holds and

w3 o] cmla -m, 1300 < oY),

The other remainder terms in (4.5.14) are dealt with in an analogous

fashion. One may show that the condition IW;(t)l = 0(1:(1—1‘:,))_5/h near 0 and
1, already suffices to ensure that GO(Z(EAj)Aj) = 0(1),E[Z(AJ—EAJ)2]2 = o(N),
and hence that IRe(x)—ﬁe(x)l = o(v ).

The fact that the conditions of the present theorem also imply the results
of lemma 4.5.3 and corollary L4.5.1 is verified in the same way as in which
it is shown that theorem 3.L4.1 implies theorem 3.3.1. Application of the
results in (3.4.16)-(3.4.23) to (4.5.15) yields (L4.5.19). From this,
(4.5.20) follows in the usual way. O
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REMARK. Note that under the hypothesis the theorem asserts that

(n,-3)

L < x) = o(x)-¢(x) —Eﬁﬁ——(x3—3x) +o(n 1.

(
0 2 1/2
[NE0w1(x1)J

¥ ovx)

the statistics L and _zj“1 5

This agrees with the fact that under HO

have the same distribution.

4.6. DEFICIENCIES

In this section we obtain the deficiencies among the various tests con-
sidered. First we summarize the results of Chapter 3, section 4.2, 4.3 and
4.5, X1""’XN are i.i.d. r.v.'s froT a d.f. F(x-0), where f = F' is sym-
metric around zero and positive on R . Denote the power
of the MP parametric test, based on 1/6 Elog{f(xj-e)/f(x.)} by ﬂ1(e),
of the IMP parametric test, based on —zw1(X.) vy T,.(6),

2
of the MP permutation test, based on (1/29)@

.- .+0
X;>0 1og{f(xJ 9)/f(XJ+ )}
by "3(6)9
of the IMP permutation test, based on -ZX->O w1(Xj) by nh(e),

dJ
of the IMP rank test, based on -ZEOw1(zj)vj by ns(e),
of the IMP RRS test, based on -Zw1(z§)vj vy T (6).
Note that ﬁ1(8) is the envelope power. The following two types of con-

ditions will be imposed:

2(3)

f is k times differentiable and wj = satisfies

(4.6.1)

o m,
lim sup [ Y. (x+y)] J p(x)ax < @, J = 1,...,k,
¥>0 —o o d

where k is a positive integer and mj >0y, jJ=1,...,k, and
¥i(t)
¥1E)

(L.6.2) lim sup t(1-t) |

(6) = v, (' (1E),
t>0,1

3
< =
| 59 where Y 1

1

Now we introduce four classes of 4.f.'s F, determined by such conditions

-t
n

;= {F 1 (b.6.1) holds for k = 5, m, = ?, j=1,...,5},

-
L[}

F1 n {F | lim sup I w:o(x+y)f(x)dx < «},
y>0 -



-
L[}

{F | (L.6.1) hoids for k = L, m, = 6, m,

1; (L.6.2)

=3’

y

-
[}

L F3 n {F | J_m ¢1O(x)f(x)dx < «},

Finally, let K = (kij) be the 6xL4 matrix

(n,-3)/2k  -(n,-3)/2h -(n,-3)/24
(n,-3)/2k  =(n,-3)/2k ~(n,-3)/2k
-ny/12 (n,-3)/2k -(ny-3)/2k
-ny/12 (ny-3)/24 -(ny-3)/2k
g2 (nym3)/eh ny/i2-TeBv, (ug )/, )}

~(5n,-3)/24 (n,=3)/2k " (5n,=3)/2b-Jo%(¥ (U, AW (X))
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m3=

holds},

wls

9

(2n2-3n3)/72

(5n —12n3+9)/72

2
(5n2—12n3+9)/72
(Sn2—12n3+9)/72
(5n2—12n3+9)/72

(5n2-12n3+9)/72

After these preliminaries, the following theorem can be formulated.

THEOREM L4.6.1. Suppose there are positive constants c, C and €

such that

e < N1/2e < Cand € £ a < 1-e. Moreover, assume that F € F1 if i = 1,2,
Fe F2 if i = 3,4, Fe F3 ifi=5andF eF) if i =6. Then, for every

fixed F, ¢, C and e, there exists positive numbers A, 6,5 8
ﬁiﬁ 6N = 0 and for every N and 1 = 1,2,...,6

(4.6.3)  7.(8) = 1-8(u -n,) + D¢ty {k. u>+k. un
i o 1 N i1 a0 1270 1
where
n, = o(uep2(x,)"/2, n, = tr (xR RA(x)PP,
ny = (BQa(X BN (X))
and
IR, | . av3/2, IR,| < av3/2, IRyl < ar—/t,
I < a8, in ] s e, IRgl < s

PIRRR

such that

2
*hy otk nyl + Ry,
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PROOF. The result is immediate in view of theorem 3.L4.1, 3.4.2, lemma L4.2.5.
theorem 4.3.1, lemma 4.3.5 and theorem 4.5.1. Note that here the result is
given for a fixed F, not only in the case of rank tests and RRS tests, but
also in the case of parametric and permutation tests (cf. the remark fol-

lowing lemma 4.2.5). [0

REMARK, If F ¢ F3, the sum of variances occurring in k__ and k63’ can be

53

written as

N 1-1/N ' 5 "
Yo {W1(U5:N)} = I1/N (¥1(£))%t(1-t)at + R,

1-1/N
IR| < sN + AN‘1/2 J (W%(t))e(t(1—t))1/2dt.

1/N

Denote the deficiency of the test with power ni(e) with respect to the test

with power nj(e) as d_(i,j); if it exists, the corresponding asymptotic

N
deficiency is denoted as d(i,j) (i,j = 1,...,6). In the following theorem

we give 4 _(i+1,i) and, if possible, d(i+1,i), i = 1,...,5. As deficiencies

N
are transitive, this suffices to find dN(i,j) for all i and J.

THEOREM L4.6.2, Under the conditions of theorem 4.6.1 we have

a(2,1) = n2(3n,mn,=3)/12, lay(2,0-a(2,1) < v /2,

a(3,2) = (ny-1)u2/h=(n,=3)n u/6, 18,(3,2)-a(3,2)] < av~ /%,
a(h,3) = 0, Ia(4,3)1 = av7Y,
ay(5:) = (Bo?(¥, (U INMAERE(K ) I=(ny=1)/4 + 6y,

ay(6,5) = (ny=1 02/ + (JoP (v, (U, DVAEWE (X)) 1=(nym1) /e + 6y

PROOF. As @{ua—e(N+dN)1/2(E0wf(x1))1/2} = ¢(ua—n1)—n1¢(uu-n1)dN/(ZN)+0(N_2),

. . . -1
t = - -
it follows that dN(1+1,1) {2N(ﬂi(6) ﬂi+1(9))}/{n1¢(ua n1)}+0(N ).
Application of (4.6.3) and the definition of K = (kij) leads to the de-

sired result. [

REMARK. d4(2,1) is independent of a, dN(S,h) only depends on o and 6 through
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GN’ dN(6,5) only depends on 6 through GN.

APPLICATION 1. We first consider the normal case F = &, In section 3.l it
has already been verified that @ € F3. The other Fi also contain ¢, as may
be checked in the same way. Hence we may use all results of theorems 4.6.1

and 4.6.2. As n, = N1/29, n, =3, ng = 2, it follows that

n
[ g
Q
n
—
L=
1
—_
—_
L;
~
~
1

ay(5,4)

-1y + Jo2 (o™ (—Ly) 4 s

dN(6,5)

According to (3.4.34),
o™ (1-1/2m)

U. +1
JoP(e™ (1)) = f 2elr)=D1=bx)) g 4 0(1) =

0 (x

= 1/2 log log N + 0.288608... + o(1).

Hence d(5,4) and d(6,5) do not exist, but on the other hand, dN(S,h) and
dN(6,5) are of order log log N. ‘

In section 4.4 it is mentioned that the asymptotic deficiency d(3,t) of
the normal permutation test with respect to the t-test equals zero. This
result enables us to compare the t-test with the other tests we are con-

sidering. We have for example
1.2
(4.6.14) alt,1) =7 Uy

+ 6

14U,
v 2, =1, 3N 1
(4.6.5) dN(S,t) = Jo (o ( 5 )) - 5+ &y

The first result was already obtained by Hodges and Lehmann (1970).

A final remark on the normal case is that dN(6,1) = 2dN(5,1) + 8¢ the de-
ficiency of the RRS test with respect to the envelope power is twice the de-
ficiency of the normal scores test with respect to the envelope power, a-
part from a term that tends to zero as N » =,

APPLICATION 2. As a second example we take the logistic d.f. F(x) = 1/(1+e™%).
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As w1 = 1-2F, one easily verifies that F ¢ ﬁ2=1 Fi' We have n1=(N/3)
ny =ng = 9/5, 202(W1(Uj_N)) = 1/6 + 0(1) and therefore d(i+1,i) exists

for i =1,...,5:

1/26,

62 ui uaN1/26/3
a(2,1) =5 » a(3,2) = 5+ ——¢ » 4(L,3) =0,
u2
=3 = 2,3
a(5,4) =75, a(6,5) = =+ 35 .

d(2,1) and d(3,2) can be made more transparant by using the relation

between 6 and the power of the test. If we want to achieve a certain power

1-B at level a, it follows from B = @(uu—/3N1/26/3) + O(N_1) that
N1/29 = /B(ua+u8) + O(N—1) and therefore
(ua+u8)2 ua(2ua+u3)

a2,1) = —%5 —» 43, =75
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CHAPTER 5
DEFICIENCIES OF SOME RELATED ESTIMATORS

5.1. INTRODUCTION:

In this chapter we take advantage of the correspondence between some of the
teststatistics we considered in chapters 3 and 4, and some well-known
estimators. This correspondence immediately gives expansions to O(N_1) for
the distribution of these estimators. The eXpansions can be used to make

deficiency comparisons between the estimators.

By applying certain generalizations of the Cramér-Rao bound - the so called
Bhattacharyya bounds - we obtain a lower bound to o(N_1) for the variance
of an unbiased estimator. We also derive the deficiency of the estimators

considered with respect to this lower bound.

In section 5.2 maximum likelihood estimators are dealt with; in section

5.3 we consider Hodges-Lehmann estimators.

5.2. MAXIMUM LIKELIHOOD ESTIMATORS

Let X X be i.i.d. r.v.'s from F(x-0), where f = F' is symmetric

sees
aroun; zero and positive on R1 In section 4.2 we considered the test for
6 = 0 against 6 > 0 based on s* = - z 3=1 ¥, (x .) and derived the expansion
S*(e) for its power *(6 in (k.2. 2&) Fram this a 51m11ar expansion for
the distribution of the maximum likelihood estimator (MLE) 9 of 8 can be
derived. Since 5 is translation invariant, we may restrict attention to

the case 6 = 0. Probabilities are then denoted as P., otherwise as P_.

0 9
Define
(5.2.1) H(x) =P ([NEOw (x, )31/2 < x),
(n,-3) 2
(5.2.2) ﬁN(x) = o(x) + %ﬁ{- —gT ’;2 (5n2 12n +9)},
where

np = Bght(X)/(EA(x,))? and ny = Bua(x,) /(B (X))
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LEMMA 5.2.1. Suppose that f is five times differentiable and

(5.2.3) lim sup J |lp.(x+y)[5/j flx)dx < ©, j = 1,...,5.
o T

Moreover, assume that by is non-increasing. Then for every fixed d.f. F
there exists A > 0 such that for all x

(5.2.4) | (x)H ()] < AMr3/2y3/2,2y
~ . N
PROOF. By definition, 6 is the value of 6 for which 2j=1 ¢1(Xj—e) = 0. As
- - -1/2
¥, is non-increasing, the events {X§_1 ¢1(Xj_N 1/2x)> 0} and {g < N / x}
- -1/2

are essentially the same. Furthermore, under 6 = O, X1—N x has the same

distribution as X1 under 6 = -N—1/2x. Together this shows that
N - N
. L) 2 .
(5.2.5) P( 'x)(-Z1 xp1(xj) >0) <P (8 <) < P(_ x)(.; w1(xJ) 0)
- 9 N J

Let {GN} be a sequence of positive real numbers defined by 8y =D- NP for
some b>0 and O <p <-1é-. We first restrict attention to the case where |x| < GNN1/2.
Then, for 6 =- N_1/2x and a fixed F, the conditions of lemmas 4.2.4 and k.2.5

are satisfied (cf. the first remark after lemma 4.2.5). Hence we can use

the expansion in (4.2.9) for the probabilities on the left and right side
of (5.2.5). The first consequence of this is that these probabilities

differ at most O(N—3/2+N—3/2x2) and therefore

* -3/2+N—3/2X2).

8 <Xy = <0) + 0(N
(5.2.6) Po(6 < 77) _P(— x)(s 0) (
. /
. * 1 -3/2,. =3/2_2
Under 6 = 0, the symmetry of s* gives PO(S <0) = 5+ o(n 3/ +N x7).
Hence, if ws*(e,u) denotes the power of the s* test against the alternative

9 at level a, (5.2.6) becomes

“ - -3/2.2
p (5 < &) = tomg(- Fod) + 0™ P 3/2.8).
as given in (4.2.24), for a = 1/2,

By replacing m., by its expansion T

S* g*?

we arrive at )
Py(6 < %) = By (x(Bi(x)2) + 032352,

which proves (5.2.4) for |x| < GNN1/2.

. ~ ~ -3/2, ~3/2.2

From (5.2.2) it follows that |H(-x)|=|1-H (x)] <alx 3/2,573/242} por

| x| ZGNN1/2. As HN(x) is non-decreasing, this shows that (5.2.4) also holds
for |x| 2 GNN1/2. 0
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REMARK. Linnik and Mitrofanova (1965) have given Edgeworth expansions to
O(N-k) for the distribution of § under rather restrictive conditions. Re-
cently, éibiéov (1972) has announced results where such expansions are ob-
tained under minimal assumptions.

We now have an expansion to 0(N~1) for the distribution of {NEowf(X1)}1/2§.
In order to answer the question, whether this also gives an expansion to
o(N_1) for the variance of {NEOw?(X1)}1/26, we first consider the following
frequently occurring situation (cf. Hodges and Lehmann (1956), Chernoff
(1956)). A normal sequence of estimators TN'has an asymptotic distribution
with variance 12. Call T2 the variance of the asymptotic distribution. On

the other hand, the variances of T _ tend to a limit 02, as N tends to in-

N
finity. Call 02 the asymptotic variance. Now it is not necessarily true
that 02 = Te. We can only assert that 02 2 T2 and strict inequality may

occur. This arises, loosely speaking, when very large errors occur with
very small probabilities. If one wants to take this possibility into
account, one should use 02 as a criterion of performance, otherwise one

2
can use T .

In the present situation we define the following analogue of 12 for the

normed sequence {NEowi(X1)}1/26

0

(2 e[ Pl - ([ a0,
Application of (5.2.2) shows that

2 (ng - %“2‘1)
(5.2.8) L e

On the other hand, we of course have the variance of {NEO¢?(X )}1/25 which

1
2

we shall denote by o5. Again one might use either o  or T, as a criterion

N° N N
of performance. It is therefore desirable to have conditions under which
0; = Tﬁ + O(N_1). Such conditions are supplied by the following lemma.

LEMMA 5.2.2. Let there be constants k > 10and ¢ > 0 such that EO|¢1(X1)Ik < ®
and ¢? -V, 2 TonRr. If condition (5.2.3) Zs also satisfied, we have,
for every fized d.f. F, a constant A > 0 depending on N only through k and
¢, such that
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(k-10)

{1+ )
2 2 2(k+2)

|oN-rN < AN .

PROOF. As - ¥} = w? -, 2 ¢ > 0, we have for x > 0
2 1/2 - X N X
(5.2.9) 1-HN(x{EOw1(X1)} ) = PO(G > N) = PO(j£1 w1(Xj - 7ﬁ) <0) =
N N N N o
- ' - -’
= Po(jz1 ¢1(Xj) < N 521 ‘111(Xj Oj 7ﬁ0 < PO(jZ1 w1(Xj) < -xvNe),

where 0 < pj <1, j=1,...,N. Application of Chebyshev's inequality leads
to

N N
(5.2.10) Po( 21 w1(xj) < -x/N¥) < EO|N-1/2 321 ¢1(xj)|k(x8>—k

k
DIE <,

application of the inequality, due to Marcinkievitz, Zygmund and Chung
(ef. 4.3.40), leads to

As ¢1(X1),...,w1(XN) are i.i.d. r.v.'s with mean zero and Eolw1(X

N
(5.2.11) EOIN‘”2 ) w1(X.)Ik < »,
=1

Combining (5.2.9) - (5.2.11) we obtain that, for x > 0,

(5.2.12) 1—HN(x) = 0(x° ).

In view of the symmetry of f, we have for all x

N
Po(6 <) =P (Y v.(x.)=20) =
° ARG - IF S
N -~
=P v,(X,) < 0) =Py (6 2-70),
() g=1 Y

and hence, for all x,

(5.2.13) HN(-x) = 1-HN(x).

From (5.2.12) and (5.2.13) it follows that ffm x°dH
(5.2.13) also implies that / , xdHy
oﬁ =/ x2dHN(x). By another application of the symmetry of f and by

-0

N(x) < ©, But then

(x) =0 (i.e.,8is unbiased), and hence
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partial integration, this leads to

(5.2.14) o§ =2 f: xdeN(X) =) fz x(1—HN(X))dX
(n'/?).

Let {p } be a sequence of positive real numbers with p,_ > « and pN (4]

In view of lemma 5.2.1 we have HN HN( x) = 0(N 3/2 3/2 2

This leads to

) for |x| < oy

pN o0
02 =) J x(1—ﬁN(x))dx + h[ x(1-H _(x))dx + O(N—3/Eph)-

N 0 QN N N
From (5.2.2) it follows that, for all x, ﬁN -x) = _HN and hence
hf x(1 H (x))ax. Furthermore, from (5.2.2) it is also clear that
f: x(1-H (x))dx = 0(p3 5 expl- }) and therefore
N
w 1.2
2 2 _ [ 372, ~3/2h
(5.2.15) oy = by | x(1—HN(x))dx + O(QNe + N pN).
0
N
Application of (5.2.12) to the integral in (5.2.15) shows that
R
2 2 _ ., -k+2, 3~ 2N, _-3/2 4
o Ty = O(pN +oe +N pN).
%(1«:+2)'1
For given k, it is most favourable to choose oy = N . Then
-3 (k=5
2 2 2 ‘“k+2
oy Ty = o(n ),
which is the desired result. []
. . 2 _ -1/2
REMARK. Linnik and Mitrofanova (1965) prove that o5 = 1 + o(N ), under

N
stronger conditions.

In the above lemma we have given conditions under which o§ and T§ agree to

o(N_1). In the sequel we shall no longer consider both kinds of variances

but always take T;

The expression for TE

between the MLE and other estimators. An application of this kind occurs in

as our criterion of performance.

in (5.2.8) can be used for deficiency comparisons

the next section, where the MLE is compared to Hodges-Lehmann estimators.
In the present section another possibility is treated: here we use (5.2.8)

for a comparison of rﬁ with certain lower bounds for the variance of an un-
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biased estimator.

The first lower bound we consider is the well-known Cramér-Rao (CR) bound.
The assumptions which are necessary to apply this bound are satisfied if
‘the conditions of lemma 5.2.1 hold. We have for any unbiased estimator
UN(X1,. .,XN) of 8 that
2 2 1/2 g
>
(5.2.16) [} ({NEOW1(X1)} UN) > 1,

1/ZUN may be
smaller than this lower bound, but only on a subset of 0 c R1 of Lebesgue

measure zero. (cf. Bahadur (196L4) and Rao (1965)). Comparison of (5.2.8)

The variance of the asymptotic distribution of {NEOW?(X1)}

and (5.2.16) shows that the variance of the asymptotic distribution of
{NEowﬁ(X1)}1/26 is asymptotically equal to the CR bound and hence the MLE
is optimal to this extent.

Now Bhattacharyya (1946) has developped a series of refinements of the CR
bound, which can be applied if stronger conditions are satisfied than are
necessary for the CR bound. The k-th Bhattacharyya (B) bound for

o? (1 ¥2(x,)} /2y } has the form 1 + vl ajN_j: the first B bound is the
CR bound and the (k+1)-th B bound is obtained from the k-th B bound by
adding a term of order N E. Hence, for comparison to O(N_T), the second B
bound is needed. From Davis (1951) we obtain that the assumptions, needed
for this bound, are satisfied if the conditions of lemma 5.2.1 hold.

Furthermore, it follows that, in view of the symmetry of f, a, = 0, i.e.

1
the second B bound coincides with the CR bound for the present case.

2 _ a1
As T =1+ £?3— 3N, .
timal to 0(N '). The difference between Ty and the second B bound equals

-1)/N, it follows that in general the MLE 8 is not op-

-3t oax)
N

3

(5.2.17) 520,

- 2
N{E0w1(x1)}
where equality occurs only if ¢; is constant a.s., and this is the case if

X1 has a normal distribution.

PFinally we restate the result in terms of deficiencies. We have

2
g
P(8) = —— > —— + o(x D),
NEOw1(X1) NE0w1(X1)
2 2
™ ] 00(¢{(x1))

2 - 2 2 2 3°
NE0w1(x1) NEOw1(X1) N {EO¢1(X1)}
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This implies that the asymptotic deficiency of the MLE with respect to the

second B bound is finite and equals

2
o (! (X))

(5.2.18) 4 = -EL—é%—¥L—75 .
{E0w1(x1)}

5.3. HODGES-LEHMANN ESTIMATORS

Let X;5... Xy be i.i.d. r.v.'s from F(x-6), where f = F' is symmetric

1°°
around zero and positive on R1. Let Z1,...,Z be the absolute order

statistics of the X1""’XN and define Vj =

Zj is positive, and Vj = 0 otherwise, for j = 1,...,N. In chapter 3 we con-

-

if the Xi corresponding to

sidered the test for the hypothesis of symmetry against F(x-6), 6 > 0,
*

* . .
1,...,Z are order statistics

based on T = XN_ a.V., with a. = EZf, where Z
J=1 33 J J N

from a 4.f. F*.

~

From this rank test, Hodges and Lehmann (1963) have derived an estimator 6
of 8. Define u = % 2?=1 Ezg and X-6 = (X1-9,...,XN—6). Under the hypothesis,
the distribution of T is symmetric around u. Let 51 = sup {6: T(X-8) > u}
and 62 = inf {6: T(X-6) < p}, then 6 = (91+62)/2 is the Hodges-Lehmann (HL)
estimator. Hodges and Lehmann prove that 6 is translation invariant and
distributed symmetrically around 6. Hence it suffices to find the distribu-
tion of 8 for 8 = 0. The close connection between 8 and T makes it easy to
find an expansion for the d.f. of ) from the expansion for the d4.f. of T,
which we obtained in chapter 3. We restrict attention to the case where T

is the locally most powerful rank test, i.e. where aj = —Eow1(Zj). Define

2
Po({NEOw1(x1)

KN(x)

. ),

X
+ 75-(5n2—12n3+9)},

x(x) 2§ J:N
o(x) + = 35 -

(5.3.1) K (x)
KN * 2Eowf(x1)

where n, and n_are defined in (5.2.2), ‘!’1(t)=w1(F—1(1%t)) and U <

<
2 3 LD I
< Uy, are order statistics of a sample of size N from the uniform distribu-
tion on (0,1). Let F be the class of d.f.'s introduced in definition 3.4.1.

The following lemma gives conditions under which IKN-ENI is O(N_1).

LEMMA 5.3.1. Suppose that F € F and that ¥, s non—increasing. Then, for

every fixed F and every positive constant C, there exist positive numbers
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61,62,... such that lim 8y =0 and for all |x| s C
Neyoo

O NEITRER ol

PROOF. From the construction of 8 and the monotonicity of w1 it follows
that
X ~ X X

- < < - <
(5.3.2) PO(T(X 7ﬁ) <) < Po(e < 7&) < PO(T(X 7ﬁ) u),
cf. Hodges and Lehmann (1963). Note that expression (5.3.2) is completely
analogous to (5.2.5). The remaining part of the proof is therefore analogous
to the proof of lemma 5.2.1. We only mention that under the conditions of

the present lemma, theorem 3.4.2 can be applied. O

In analogy to the previous section, we use as a criterion of performance
for 6

00

(5.3.3)  B=| E& - (| sk -

N
N
2
¥y (U.
1 J{ 7 3 .2100( 1< J:N) )
=1+ n, -=5N, -5 + °o
N3 12 2 T L E0¢?(X1)

Comparison of (5.2.8) and (5.3.3) leads to

Yo
i§1°o(v1(Uj:N))

2
NEOw1(X1)

(n2-1)

(5.3.4) T N

2
N

N

It follows that the deficiency of the HL estimator 8 with respect to the

MLE 6 equals

¥
.£1°o(w1(Uj:N)) (ny=1)
(5.3.5) ay =4 - —5— +0(1).

Note that dN equals the deficiency of the IMP rank test with respect to the
IMP test for the size a = 1/2 (cf. Albers, Bickel and van Zwet (1974)).
Finally, the deficiency of the HL estimator with respect to the second

B bound is the sum of the deficiencies in (5.2.18) and (5.3.5).
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CHAPTER 6
FINITE SAMPLE COMPUTATIONS

6.1. INTRODUCTION

In section 3.4 we derived expansions for the power of one sample linear
rank tests based on exact or approximate scores against contiguous location
alternatives. In section 6.2 to 6.4 we investigate the performance of these
expansions as approximations to the finite sample power. In particular we

compare these expansions to the usual normal approximations.

In section 4.6 deficiencies of the above rank tests with respect to various
other types of tests for the one sample problem have been obtained. Section
6.5 is devoted to the comparison of these expressions with deficiencies

for finite sample sizes that are obtained numerically. We focus attention
on the normal case and consider the test based on the sample mean, the

t-test and the one sample normal scores test.

6.2. THE NORMAL SCORES AND THE WILCOXON TEST AGAINST NORMAL AND LOGISTIC
ALTERNATIVES

Here we shall consider the one sample normal scores (NS) test and the one
sample Wilcoxon (W) test, both against normal (N) location alternatives
G(x) = ¢(x~6) and logistic (L) location alternatives G(x) = 1/[1+exp(-x+6)].

We assume that 6 is non-negative and 6 = O(N—1/2). From section 3.4 we have

(6.2.1)  m . (6) = 1-0 b il .
e Ns,N 7 T TR YT T ANt Yy
N 14U,
~ree 1T )« o™,
5=
(6.2.2) .. _(8) = 1-9 + lki{ 2ru n +2+n2}) + o(v")
e w,n'®) = 1= vy gt 3u tugngten, o),

' n
- 3{ 2
(6.2.3) "NS,L(G) = 1—¢<ua—n3 + TN ua+uan3(—5+2n)+f23—12/?) +

N 14U,
j=1
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1
. _ NS 6 arctan E/Z
(6.2.4) "w,N(e) = 1"¢<ua‘“h + if{ua(_____;_____ﬁ - g%) +
1 1
L 2 12 arctan EVZ Ll 6 arctan ﬂ¢2
* uanh(QO - 5/3 - ————7?_—___—ﬁ + (55 -2 - —____F—___—_) +
1
6 arctan V2
2 L 2 43 r }) -1

+ nh( - + §/3 -5t 9) +o(N ),
where U1:N < ve. < UN:N are ordér statistics from the uniform distribution
on (0,1) and
(6.2.5) n, = N1/26, n, = (2)1/26, ng = (%)1/29, n, = (3TN)1/26,

-1

N 14U, o (1-3p)
(6.5.6) } o2t (Ve J (20)=1)(1=001)) & 4 o(1) <

= y2 o(x)

dJ 0

= % log log N + 0.288608... + o(1).

Upcn evaluation of the coefficients, (6.2.3) and (6.2.4) become

n .
(6.2.7) "Ns,L(e) = 1—¢(ua—n3 + T% 0.08333{u§ + 0.10693 ung *
' N 14U, |
+ 0.50245 + 0.05565 n§ - % ) 02(¢-1(__§1;H))}) +o(x ).
J=1
N 2
(6.2.8) o n(e) = 1-¢(ua-nh + 5{0.1990k u_ - 0.00278 u n) +

+ 0.13675 + 0.00281 nﬁ}> +o(m M.

We shall now investigate how well the exact power is approximated by
(6.2.1) = (6.2.4) for small samples. We shall also compare this approxima-
tion to the usual normal approximation, which approximates to 0(1) instead of
O(N-1). The necessary results about exact powers of the tests involved can-
be found in papers by Klotz (1963) and Thompson, Govindarajulu and Eisenstat
(1967).

Klotz gives the small sample power for the normal scores test and the
Wilcoxon test against normal alternatives, for sample sizes N = 5(1)10 at

significance levels a = k/2N for various integers k and for shifts



M7

8 = 1/4(1/4)3/2(1/2)3. The non-standard levels k/2N are necessary to avoid
randomization. In short, his method consists of selecting the k = a.2N

orderings V = (V "’VN) that give rise to the largest values of

e
T= X?=1 EJ(Uj:N1)Vj and adding the probabilities associated with these
orderings. The evaluation of such probabilities involves the evaluation of
an N-dimensional integral. By using a recursive scheme, this problem can be
reduced to the computation of N one-dimensional integrals. In this way
Klotz can go as far as N = 10, obtaining exact results in four decimal

places.

For larger sample sizes the amount of computation that is necessary for
this method, becomes prohibitive and one has to turn to Monte Carlo methods,

as is done in the paper by Thompson et al. (1967T).

They give the power for the normal scores and the Wilcoxon test against
both normal and logistic alternatives for N = 10, 20, o = 0.01, 0.025 and
0.05 and 6 = 1/4(1/4)1,3/2. In their paper these results are collected in
table 4.1, where it is indicated that the test sizes considered are

a = 0,01, 0.025 and 0.10. However, the last value should be 0.05. This is
not only evident from the numerical results obtained, but also from a

remark elsewhere in the paper.

The method used by Thompson et al. is the following: first the required
critical values are found by using Edgeworth approximations up to an
appropriate order under the hypothesis. Then,for each combination of N, ©
and o under consideration, 1000 trials are conducted. Each trial consists
of drawing a random sample of size N from the standard normal or logistic
distribution, shifting it over 6, forming the Wilcoxon and normal scores
teststatistics and counting the number of samples for which the tests
reject the hypothesis. This procedure results in unbiased power estimates

with standard deviation at most 0.016.

In order to compute (6.2.1) to (6.2.4), we can use (6.2.6) for the sum of
variances occurring in (6.2.1) and (6.2.3). Another possibility is to use
values that are obtained numerically. Klotz (1963) gives a table of
E¢-1{(1+U.. )/2} for N = 5(1)10, whereas Thompson et al. (1967) give

N -1 2
Zj=1[E¢ (1405, )/2}17 for W = 10(1)20, 30, 50 and 100. As

2 1 N -1 2
1 o“o {(1+Uj:N)/2} =N - 521 [E® {(1+Uj:N)/2}] ,

[ e =]

J
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these results enable us to find the sum of variances for various sample
sizes. For the sample sizes we shall consider, we list in table 6.2.1 the

numerical values and the values supplied by the second approximation in (6.2.6).

Table 6.2.1
o ¥ 2.1 "Y5.y
Approximations of Zj=1 "¢ (_ g. )
N numerical approximation 1 log log N + 0.288608

5 0.693 0.527
6 0.72k4 0.580
T 0.752 0.621
8 0.777 0.655
9 0.794 0.682
10 0.810 0.706
20 0.911 0.837
50 1.022 0.971
© 100 1.080 1.052

Tables 6.2.2 - 6.2.7 (p.128-p.133) give the results of the comparison of the
approximations (6.2.1)1 (6.2.4) to the normal approximation and to the re-
sults of Klotz and Thompson et al. We have used the numerically obtained

values for Z?=1 °2¢—1{(1+Uj-N)/2} in (6.2.1) and (6.2.3).

Inspection of these tables shows that (6.2.1) - (6.2.4) supply excellent ap-
proximations for all N, o and 6 under consideration. They always constitute
a substantial improvement over the usual normal approximation, which yields
values that are systematically too large. This bias is corrected by the
O(N_1) term, as may also be seen from (6.2.1) to (6.2.4).

Note that by absorbing the N_1—term in the argument of ¢, we have arrived
in (6.2.1) = (6.2.4) at slightly different, but asymptotically equivalent
versions of (3.4.30) - (3.4.33). As {1-0(x)-e¢(x)} - {1-0(x+e)} ~ -52x¢(x)/2
for small e, it follows that the approximations considered in the present
chapter will tend to be slightly smaller (larger) than those from chapter 3
if the power which is approximated is larger (smaller) than 1/2. Since both
versions tend to overestimate the exact power, this seems to indicate that

the formulas (6.2.1) - (6.2.4) are slightly preferable.

6.3. THE WILCOXON TEST AGAINST CAUCHY ALTERNATIVES

In the previous section we have considered cases where the normal approxi-
mation already gives reasonable results. Adding terms of order I\I-1 merely

constitutes an improvement, however substantial it may be, over an already
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rather satisfactory approximation. In view of this, it seems more interest-
ing to consider situations where the normal approximation performs very
badly. If in such a case the approximation to O(N_1) does give reasonable
results, we have found an approximation for a situation where none was

available yet.

A case in which the normal approximation leads to very bad results occurs
for example if Wilcoxon's test is used against location alternatives from
a Cauchy distribution. For this case, an expansion to O(N_1) can be justi-
fied. The standard Cauchy distribution has density f(x) = 1/{w(1+x2)}.
Hence, in the notation of chapter 3, ¢1(x) = —2x/(1+x2), we(x) =

= 2(3x°-1)/(14x°) and y,(x) = - 2hx(x2-1)/(14x°)3. Furthermore,

F(x) = (arctanx)/m+1/2 and therefore F_1{(1+t)/2} = tg(wt/2),

- W1(t) = sin wt. Finally, for Wilcoxon's test, we have J(t) = t. From
these facts it can easily be verified that the conditions of theorem 3.k4.1
are satisfied. After elementary integrations we find that the power nw,c(e)
satisfies ww’c(e) = ;W,C(e) + O(N—1), where

(6.3.1) (8) = 1—¢<ua—n + n{u2(1—1— - %) +
™

W,C Mt '20

with n = (3m)'/2

o/w.

The exact power results for this case are obtained from a paper by Arnold
(1965). Using the same approach as Klotz (1963), Arnold gives the power for
Wilcoxon's test against alternatives from t-distributions with 13 1, 2 and 4
degrees of freedom. Note that the Cauchy distribution is the t1-distribu—
tion and that the normal distribution is the t_-distribution. The sample
sizes considered are N = 5(1)10, the levels are o = k/2N for various k and
the shifts are p = 1/4, 1/2, 1, 2 and 3. To obtain a better comparison with
the case of normal alternatives, Arnold has scaled all densities f he con-
siders in such a way that IT.GhS f(x)dx = 0.05. Here 1.645 = ¢_1(0.95). As
% IZ.31h (1+x2)_1dx = 0.05, this means for the Cauchy case that the stan-
dard density 1/{n(1+x2)} is replaced by f(x/o)/o, with 1/0 = 6.314/1.645 =
= 3.838. Since the power for a shift u and a density f(x/c)/c under the
hypothesis is the same as the power for a shift u/c and a density f(x)
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under the hypothesis, the results from Arnold's paper and those obtained
from (6.3.1) become comparable by inserting 6 = u/o = 3.838u in (6.3.1),
instead of 6 = yu.

In analogy to the previous section we compare the exact results with the
normal approximation and with (6.3.1). The normal approximation is very
bad. It tends to 1 too fast for increasing p. However, the expansion in
(6.3.1) leads to even worse results: as p increases, this approximation

tends to O very fast. A typical result is

Table 6.3.1

N =8, a = 0.05469 = 14/256

] power

u exact|normal appr.| (6.3.1) (6.3.1)'
7/ .35 .46 .32 .32
1/2 ] .57 .92 .06 LT

1 el 1.00 .00 1.00

2 .86 1.00 .00 1.00

3 .90 1.00 .00 1.00

Apparently we have not succeeded in finding a useful approximation by con-
sidering higher order terms. The expansion (6.3.1) obviously has a very
local character. It will only give reasonable results for very small values
of §. Here "small" means that these 6-values give rise to values of w(6)
considerably below 0.5, and this region is of little practical interest.
The local character of (6.3.1) is borne out by computation of the coeffi-
cients in this expansion. We find

(6.3.2) Ty () = 1-¢(ua—0.55N1/26 Fn /2

6{—O.O3u2 +
[0

+ O.OSuaN1/29-O.1O+O.1hN82}) + 0.00.....

This shows that ;W C(e) reaches its maximum for 6 =~ (%432)1/2 ~ 1.1. As any
L] .
approximation of the power ™y C(9) should be increasing, it follows that
~ H]
T C(e) is certainly unreliable for 6 > 1.1. Since 6 = 3.838u, we have that
bl

(6.3.1) is certainly bad for u 2 0.3, which agrees with table 6.3.1.
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A similar inspection of (6.2.7) and (6.2.8) shows that here the coefficient
1 . . .

of N /263¢(ua—n) is much smaller than is the case in (6.3.2). Hence, these

approximations first reach their maximum in 6 if 6 is large, i.e. if m(8)

is already very close to 1. This explains their excellent performance.

Just as in section 6.2, we note that in (6.3.1) we have used the {1-6(x+e)}-
version of the expansion. Again, we. can also consider the variant
1-8(x)-e¢(x), which has been denoted by (6.3.1)' in table 6.3.1. Clearly,

in the present case this last version is better than the first. At least,

it is less bad; in particular it is slightly better than the normal approxi-

mation instead of being worse.

6.4. THE SIGN TEST AGAINST NORMAL, LOGISTIC AND DOUBLE EXPONENTIAL
ALTERNATIVES

In section 3.5 an expansion was derived for the power w(6) of the sign test.
1

Let T = N /2(2F(9)—1) and Yy = (N+1+N1/2ua)/2—[(N+1+N1/2ua)/2], where [y]

denotes the integer part of y. Then, for all 6 such that T is bounded,

(6.4.1) m(6) = 1—¢(ua-r + 7%ﬁ{u§+uaT—3T2+2hYa(1—yu)-3}> + O(N_B/Q).

Here we shall investigate the performance of (6.4.1) as an approximation
to the exact power, in the case of normal, logistic and double exponential
alternatives. The last type of alternatives is considered since the sign
test is the locally most powerful rank test against such alternatives. For
1/2fg exp(—x2/2)dx,

, respectively.

these three alternatives we have 1 = (2N/T)
T = N1/2(1-e'e)/(1+e'e) and T = N1/2(1-e'6)

The paper by Thompson et al. (1967), discussed in the previous section,
also contains Monte Carlo estimates of the sign test power against these
three types of alternatives. The values of N, o and 6 that are considered,
are the same as in the previous section. We compare approximation (6.4.1)
with these estimates, and also with the normal approximation. The results
are collected in tables 6.4.1-6.4.3 (p.134-p.136). It appears that (6.4.1)
is better than the normal approximation, but the improvement is less
striking than in section 6.2. For a number of combinations of N, o and ©
for which both approximations perform rather well (e.g. where the absolute
error is less than 0.03), the normal approximation is even slightly better.
However, in cases where larger errors occur (e.g. larger than 0.06), ap-
proximation (6.4.1) is always substantially better than the normal approxi-
mation. The explanation.of the fact that including terms of ordex'N-1 is less
effective than in section 6.2, probably lies in the pronounced lattice

character of the sign test statistic.
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6.5. DEFICIENCIES BETWEEN TESTS FOR THE NORMAL CASE

In chapter L an approximation to 0(1) for the deficiency of the locally
most powerful rank test against alternatives F(x-6) was found with respect
to various other tests that are optimal in some sense for the one sample
problem. Here we shall go into the question to what extent such anasymptotic
expansion is useful as a prediction of the deficiency for finite sample

sizes.

We shall restrict attention to normal alternatives. This case is very in-
teresting, as some of the competitors of the locally most powerful rank
test, i.e. the normal scores test, are well-known. In the first place, the
parametric tests based on E?=1 log{f(Xj—e)/f(Xj)} and E?=1 - w1(Xj) re-
spectively, both reduce to the test based on the sample mean X = N §=1Xj'
Furthermore, in the normal case the teststatistic of the locally most
powerful scale invariant test is explicitly known: it is the t-test statis-
tic. Let dN(NS,i)(dN(NS,t)) denote the deficiency of the normal scores test
with respect to the X-test (t-test) based on N observations. Now we have

from (4.6.4) and (L4.6.5) that

~

(6.5.1) dy(N8,X) = dN(Ns,i) +0(1), ay(ns,t) = EN(Ns,t) +0(1),
where
N 1+U0.
~ o 12 ~ _ 2 -1 PNy, 1
(6.5.2) dy(NS,X) = d(NS,t) + u;, dy(Ns,t) = 521 o“e” (—3=5) - 5
The remaining part of this section is devoted to the comparison of dN(NS,i)
with EN(NS,K) and of dN(NS,t) with EN(NS,t). For the approximations EN we

can use the values of 2§=1 02¢_1{(1+Uj_ /2}, given in the first column of

"
table 6.2.1. The exact values are obtained as follows: if the power of the
normal scores test for a certain sample size N is available, we determine
the sample size kN for which the X-test (or the t-test) reaches the same

power, and this gives de = N-kN

changed because of the fact that for the normal scores test only a limited

. Here the role of N and kN has been inter-

number of exact power values is available, whereas the exact power of the
other two tests can be obtained rather easily for any sample size. For con-

venience we compare di, with EN rather than with EkN' As de-EkN = 0(1) and
EN-Ek = O(I\I_1 log log N), this modification seems rather harmless, which
N
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impression is confirmed by the numerical results.

In the above kN is treated as a continuous variable, which is interpreted
as follows: for non-integer kN’ we select sample size [kN] or [kN]+1 with
probability 1-kN+[kN] and kN—[kN] respectively. Here [y] means the integer
part of y. This yields an expected sample size kN and an expected power

-k _+ - .
(1-ky [kN])w[kN] + (ky [kN])"[kN]ﬂ

The first series of comparisons is based on the exact values of the power
of the normal scores test, obtained by Klotz (1963) (cf. section 6.2). The

power of the X-test is 1—<I>(uu—1\l1/2

8) and hence de(NS,i) can be evaluated
in a straightforward manner. Klotz also tabulated the exact efficiency
ekN(NS,t) = kN/N of the normal scores test with respect to the t-test. Now
de(NS,t) immediately follows from the relation de(NS,t) = N{1—ekN(NS,t)}.
The results are collected in~table 6.5.1. (p.137). Note that EN(NS,T() only
depends on N and o and that dN(NS,t) only depends on N. Here and in the
sequel, we use for z§=1°2¢-1{(1+Uj°N)/2} the numerically obtained values
from table 6.2.1. The agreement of.the exact and asymptotic results appears
to be satisfactory already at these small sample sizes.

The results of Thompson et al. (1967) from section 6.2 for the power of the
normal scores test against normal alternatives, can also be used for de-
ficiency computations. Here we deal with Monte Carlo estimates instead of
with exact values. This leads to values of de(NS,i) and de(NS,t) which

are also subject to error. As in general de = N-k._ is much smaller than N,

N
the relative error in de will be much larger than the relative error in
the power estimates. To give an impression of the reliability of the obtain-

ed values of dN’ we also evaluate the values of d_ for the power estimates

N
plus or minus their standarddeviation. We only use the power values for
N =20: for N = 10 we already have the exact results of Klotz, which are

much more informative.

The necessary power values of the X-test are again immediately given by
1—¢(ua—N1/2e). For the power values of the t-test we proceed in the follow-
ing way: the critical values involved are found from Owen (1962). Further-
more, Resnikoff and Lieberman (1957) have tabulated the non-central t-dis-
tribution function for various degrees of freedom f and various non-cen-

trality parameters 8. These 8's are of the form (f+1)1/2

(£+1)"/2
found directly from these tables. Using the description of the method of

u,» whereas we need

k/4, for k = 1,...,6. Hence the necessary power values cannot be



12k

computation that is contained in the introduction to the tables, a program
was written to obtain the power values for the values of § considered here.
According to Resnikoff and Lieberman the accuracy is four decimal places,
which amply suffices for our purposes. The deficiency results are collected
in table 6.5.2. (p.138). They are not very conclusive, as the estimates of
the exact deficiency appear to be very crude, but again it seems that the

asymptotic results to reasonable predictions.

For sample sizes larger than 20, no results about the power of the normal
scores test are available in literature. Yet it seems desirable to have

some idea about the agreement between the de and dN

Therefore, we use the simulation method described by Thompson et al. (1967)

for such sample sizes.

to obtain estimates for the power of the normal scores test for sample

sizes larger than 20.

In section 6.2 we already mentioned that this method involves conducting ¥
simulations, each consisting of drawing a random sample of size N from the
standard normal distribution, shifting it over 6, computing

T = z?=1 E®—1{(1+Uj'N)/2}Vj and counting the number of samples for which T
exceeds the criticai value cy Here we supply some more details. In the
first place, we restrict attention to the case where N = 1600 and N = 50.
For this value of N, the scores E®—1{(1+Uj:N)/2} can be found in tables by
Govindarajulu and Eisenstat (1964). As these values are exact to five de-
cimal places, their contribution to the error in the power estimates can be

neglected.

For N as large as 50 it is impracticable to evaluate the exact critical
values Sy, and we have to use Edgeworth expansions, as advised and tabulated
by Thompson et al. Denote these approximate values as c&. The portion of
the error in the power estimate, due to the use of c&, may be estimated as
follows: according to Thompson et al. the use of c& instead of c, causes an

error of at most 2% in the test size a, i.e.

' - <
(6.5.3) IPO(T > ca) PO(T > Ca)l 0.02a.
The distribution of (T—EOT)/GO(T) is asymptotically standard normal and
therefore (ca—EOT)/co(T) ~ u . Hence

c -E T c'-E_ T c -c'
o 0 o o

a 0 ~
oO(T)) - Q('OO(T)) cO(T) ¢(ua)'

(6.5.4) PO(T >cy) = Py(T > c )= o

0
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Denote the exact power P, (T > ca) as T, the approximate power Pe(T > c&) as

¢}
™ and let u = ®_1(1—n). In analogy to (6.5.4) we have
c -c!

o o
¢(u_).
o (1) 2o

(6.5.5) T - T S
As Og(T) ~ Ug(T) = N/4, (6.5.3)-(6.5.5) lead to the following upper bound

for the error that is caused by the use of inexact critical values

¢(u_)
¢(u )

[+

(6.5.6) [m'=m| < 0.02a

The main source of error remains of course the fact that we use simulation

methods to find 7. For 1 = 1,...,ﬁ, define the r.v.'s %i by

1, T. > c& for the ith sample,

0, otherwise.

Moreover, define mT=N | 1:_1

all samples are drawn independently, we have as an unbiased estimate for

T..ow clearly is an unbiased estimate of «'. If
i

its variance

(6.5.7)  o2(m) = 2li=m)

~ .

N

The variance of 7 can be reduced by using the antithetic method that is also
applied by Thompson et al.. Here we independently draw ﬁ/z samples X1""XN
1o+ 20K for
has d.f. ®(x-6), this is

from ®(x-8) and form the other N/2 samples by taking 26-X
each of the first N/2 samples. Note that if X1
also the case for 26-X.. Now the %i form N/2 pairs of dependent r.v.'s. Each

pair has the same cova;iance, which we denote as Covar, and the pairs are
mutually independent. The variance of T is {n'(1-m")+Covar}/N. From the
construction of the pairs it is clear that Covar < 0 and therefore this
method decreases the variance of T. Computation of Covar is too complicated,
but the estimated values of Covar that are obtained from our numerical
results, indicate that the reduction is rather small. In view of this, the
conjecture of Thompson et al. that 02(;) becomes about ten times smaller
seems far too optimistic. The main advantage of the antithetic method lies

here in the reduction of the time, needed to form the N samples.
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The expressions in (6.5.2) for aﬁ(NS,i) and EN(NS,t) suggest that the
normal scores test is only slightly worse than the X-test and the t-test.
Hence we may expect the critical regions of the three tests to be much the
seme. As the power of the X-test and the t-test can be obtained with high
accuracy for all N, o and 8, the above resemblance enables us to achieve a
further reduction of 02(%). For each of the N samples that is drawn, we
not only note whether T > c&, but also whether the X-test and the t-test
exceed their respective critical values. To be precise, we define for
i,j,k = 0,1 the r.v.'s ﬁ.. as ;.. = ﬁ_1xthe number of samples for which

- ijk 1ijk
the X-test does (does not) reject the hypothesis if i = 0(1), for which
0(1) and for which

the t-test does (does not) reject the hypothesis if j

the normal scores test does (does not) reject the hypothesis if k = 0(1).

-~ -~

Moreover, let ﬂij.= "ijo+"ij1’ and define ni.k and ﬂ.jk analogously. Then
we have . :
= +A +A +A =A-§-‘.~ - =
= To00" Moo T o100 T 110 T "t T "0 7 "ot
(6.5.8)

where ;t and Ty are unbiased estimates of the power L of the t-test and

the power L of the X-test, respectively. Since L and s can be obtained

exactly, we can improve on T by considering the following two estimates

Ty =T E T 4T Mg = ™ (M),

(6.5.9)

-~ -~ -~

2 =gt Tyo " To.q = ™ (mg - mg)s

-~

™

-~

Note that w1 and n2 are also unbiased estimates of 7', From the close

resemblance of the critical regions of the three tests it follows that

-~ -

™ and T estimate very small probabilities. Hence, their

"10° ".01° M.0 0.1
variances are also small. In view of this and of (6.5.9), we may expect

that 62(ﬂ1) and 02(n2) are considerably smaller than 02(5) and hence this

approach yields another reduction of 02(v). Unbiased estimates for the

variances of m and m, are
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o?m) = B7GE jo(=n 1)+ 1 o (1= o)+ 2 w1 T
(6.5.10)
Pa) =85, (em, Y +a (len ) +eon a3
2 1.0 1.0 0.1 0.1 1.0°0.1
AZ Eur ultimate estimate we use ;3_= (;1+;2)/2. An unbiased estimate for
o (n3) is

5%(n3) = (o%(n)) + S(mN/h + {my g

(6.5.11)

-~ - PN

= T™01"0.1 T ™. 10"0.1

-~

1.0".01}/(2N) -

+
Together with (6.5;5).thié leads to the following estimated standard
deviation of the obtained power estimates.

$lu_) -
(6.5.12)  {[0.02a ——"<12 + & (n3)}‘/2.

o(u )
The numerical results are given in tables 6.5.3 and 6.5.4 (p.139). We also
give the values of dN that are obtained if we use the power estimates plus
or minus their standard deviation. Again the agreement between finite and

asymptotic results is satisfactory.

The general conclusions of this section are that the asymptotic results
seem to provide a reasonable approximation of the exact values and that the
normal scores test requires only very few additional observations to attain

the same power against normal alternatives as the X-test or the t-test.
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Table 6.2.2

Power of the normal scores test against normal alter-
natives. The upper, middle and lower numbers give the
exact values obtained by Klotz, the approximations

(6.2.1), and the normal approximations, respectively.

1/4 1/2 3/k 1 5/h4 3/2

.1L45 278 450 .629 .781 .888
5 .06250 . 146 284 .L465 654 .810 .913
165 .339 .557 . 759 .896 .966

.125 .263 450 .6L6 .807 911
6 .04688 .126 .268 465 .670 834 .933
L1l .326 .564 .780 917 977

.155 .332 .556 . 760 .897 .966
7 .05L469 .156 .336 .566 LTT5 .910 .973
JATh .390 .649 .852 .956 .991

167 .369 614 .818 .936 .983
8 .05469 .168 .373 .623 .829 .9kl .987
.186 L4226 .698 .890 .973 .996

212 .L438 .68L4 . 866 .958 .991
8 .0Tk22 .213 Ll .692 .875 .964 .993
.230 .488 .750 917 .982 .997

.10k 271 .515 .750 .90k .973
9 L0273k .10k 274 .524 .T65 917 .979
121 .337 .629 .860 .966 .995

.132 .326 .581 .803 .932 .983
9 .03711 .133 .329 .590 .816 .9k2 .988
.150 .388 .679 .888 .975 .997

.16k .380 .642 . 8L7 .953 .990
9 .0L4883 .165 .38L4 .650 .857 .960 .992
L182 .438 .72k .910 .982 .998

.006 .025 LOT7 .178 .327 .501
10 .00098 .006 .027 .092 .229 .439 .669
.011 .064 234 .526 .80k .950

.0k48 .158 .362 612 .820 .937
10 .00977 .08 . 160 .373 .636 .845 .95
.061 .225 .51k .796 .9hT .992

.102 .283 .5kl .785 .928 .983
10 L0244 .102 .285 .553 .798 .938 .987
.119 .348 .656 .883 976 .997

.186 431 .706 .89L LOTh .996
10 .05273 .186 43l .712 .901 .978 .997
204 .485 LT .939 .990 .999

.288 .572 .820 .950 .991 .999
10 .09668 .289 .575 .825 .953 .992 .999
.305 .610 .858 .969 .996 | 1.000
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Table 6.2.3

Power of the Wilcoxon test against normal alterna-
tives. The upper, middle and lower numbers give the
exact values obtained by Klotz, the approximations

(6.2.4), and the normal approximations, respectively.

i > ) 1/h 1/2 3/h 1 5/4 3/2
.1k45 .278 50 .629 .81 .888

5 .06250 .146 .283 JL62 .650 .805 .909
.162 .329 .542 .The .884 .959

.125 .263 450 .6L6 .807 .911

6 .0Lk688 .126 .268 pran .669 .832 .931
141 .316 .5hT .763 .906 .972

: .155 .332 .556 .T760 .897 .966

7 . 05469 .155 .33k .563 LT .907 .972
. 170 .379 .632 .837 .9L48 .989

L167 .369 61k .818 .936 .983

8 .05469 167 .370 .619 .825 .91 .986
.181 .13 .681 .878 .968 .995

212 436 .683 .865 .958 .991

8 .0Th22 211 437 .686 .870 .961 .992
.225 L5 .735 .906 .978 .997

.10L 271 .515 .750 .90L .973

9 .02734 . 104 .275 .525 .765 .916 .979
117 .324 .609 8Ll .959 . 993

.132 .326 .581 .80k .933 .98l

9 .03711 .132 .328 .589 .81k .9ko .987
L 146 .375 .660 .87k .970 .995

.16k .379 .6L40 .8L46 .953 .990

9 .0kLk883 . 164 .381 .6L46 .853 .957 .992
.178 L2l . 706 .899 .978 .997

.006 .025 L0T7 .178 .327 .501

10 .00098 .006 .031 .105 262 .L489 .7T19
.010 .060 .218 497 .778 .938

.0k8 .158 .362 612 .820 .937

10 .00977 .0kg .16L .382 .6L46 .853 .957
.059 .215 .493 175 .937 .989

.102 282 .5kl .T785 .928 .983

10 L0244 .102 .286 .554 .798 .937 .987
.115 .335 .636 .869 971 .996

.18k Lot .701 .891 .973 .996

10 .05273 .185 430 .T707 .897 976 .996
: .199 470 .758 .929 .988 .999

.286 .567 .815 .9L8 .990 .999

10 .09668 .286 .568 .817 .9k9 .991 .999
.299 .596 .8L45 .963 .995 | 1.000
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Table 6.2.1

Power of the normal scores test against nor-

mal alternatives. The upper, middle and lower

numbers give the Monte Carlo powers obtained

by Thompson et al., the approximations (6.2.1),

and the normal approximstions, respectively.

8 1/4 1/2 3/4 1 3/2
N o
.ol .160 .365 .622 .95L
10 .01 .0kg .163 37T 640 .956
.062 .228 .518 .798 .992
.086 .285 .55k LTk .990
10 .025 [ .10b .289 .559 .802 .988
.121 .352 .660 .885 .997
.178 .hes .697 .896 .998
10 .05 179 RITK .702 .895 .997
.196 L75 766 .935 .999
.12 ko6 .781 .955 -
20 .01 .098 .396 .T78 .96L .000
.113 R .848 .98L . 000
.199 .551 .87k .988 -
20| .025 .182 .558 .885 .988 .000
".200 .609 .918 .99k .000
.296 .683 .9k4o0 .995 -
20 .05 .282 .689 .91 .996 .000
.299 .723 .956 .998 .000




Table 6.2.5

Power of the Wilcoxon test against normal alter-
natives. The upper, middle and lower numbers give
the Monte Carlo powers obtained by Thompson et
al., the approximations (6.2.4), and the normal

approximations, respeéctively.

6 1/4 1/2 3/k 1 3/2

.okt .158 . 366 .621 .952
10 .01 .050 . 166 .386 .650 .958
.060 217 ek .T78 .990

.08k .288 .556 .793 .990

10 | .025 | .104 .290 .559 .802 .987
.118 .339 .6ko 871 .996
71 Jh12 .690 .893 .998

10 .05 .178 19 697 .891 .996
.192 460 .Tho .926 .999
.106 .396 .T68 .953 -

20 .01 .097 .392 LTTR .962 1.000

.109 o lbh .829 .980 1.000

.185 .520 .868 .982 -
20 .025 .180 .550 .879 .986 1.000
.193 .589 .906 .992 1.000

276 .650 .924 .993 -
20 .05 .278 679 .936 .995 1.000
.290 .705 .949 .997 1.000

131
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Table 6.2.6

Power of the normal scores test against logis-

tic alternatives. The upper, middle and lower

numbers give the Monte Carlo powers obtained

by Thompson et al., the approximations (6.2.3),

and the normal approximations, respectively.

) 1/k 1/2 3/4 1 3/2
N o
.029 .063 .133 .239 .L86
10 .01 .028 .066 .131 .226 Y
.030 .076 .162 .29k .637
.056 | .1k | o.2uh | .373 632 |
10 | .025 . 062 .130 .233 .36L .636
.065 .143 267 .430 .763
.122 .220 .353 .507 .755
10 .05 112 .212 .346 .498 .762
.115 .226 .380 .555 .8l49
.0L6 N .301 .510 .849
20 .01 .043 .131 .293 .504 .850
.0Ls5 L1543 .332 .578 .928
.103 .238 458 .653 .929
20 .025 .089 .229 3T 657 .927
.092 .2h2 473 .T13 .966
. 166 .358 .560 .T763 .963
20 .05 .152 .337 .568 LTT1 .965
.155 .351 .598 .810 .98k
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Table 6.2.7

Power of the Wilcoxon test against logistic
alternatives. The upper, middle and lower
numbers give the Monte Carlo powers obtained
by Thompson et al., the approximations (6.2.2),

and the normal approximations, respectively.

8 /4 1/2 3/k 1 3/2

N o
.028 .061 .131 .2kho 186
10 .01 .028 . 065 .132 .231 .489
.031 .079 .169 .308 .660
. .055 .139 .243 .373 637
10 .025 .062 .131 .237 .37k .662
. 066 .148 277 LhhT .782
.121 .230 .356 .516 .TT0
10 | .05 .112 .215 .355 .512 .785
117 .232 .391 .572 .863
Mo .133 . 301 .520 . 860
20 | .01 .0k43 .13k .302 .522 .872
.0k6 .150 .348 .601 .939
.093 .232 Lkt 648 .926
20 | .025 .090 .23h 450 677 .9l
.09k .252 .ho1 .T33 .972
.152 .338 557 .762 .96k
20 .05 .154 .35 .583 .789 .973
.159 .362 .615 .826 .987
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Power of the sign test against normal alter-

natives. The upper, middle and lower values

Table 6.4.1

give the Monte Carlo powers obtained by Thomp-

son et al., the approximations (6.4.1), and

the normal approximations, respectively.

9 1/4 1/2 3/h 1 3/2
N o}
.0k2 .128 284 487 .832
10 .01 . 041 .123 .270 .455 LT
oLk .132 .275 433 .660
.071 .207 .386 .591 .921
10 | .025 .085 .213 .4o3 .601 .846
.091 .227 .Log .579 .782
. 148 .328 .555 .T61 .967
10 .05 .152 .33k .558 .Tho .928
.154 .332 .53k .696 .863
.070 .263 .558 .823 -
20 .01 .0T1 .26k .567 .815 .978
.07k .270 .5hT .766 .939
JA37 ko3 .719 .915 -
20 | .025 .138 ko8 .T21 .908 .993
1 Jbo2 .686 .863 972
.21 .52h .826 .961 -
20 | .05 .220 .535 .818 .951 .997
.223 .527 .788 .920 .987




Power of the sign test against logistic al-

Table 6.4.2

ternatives. The upper, middle and lower values

give the Monte Carlo powers obtained by Thomp-

son et al., the approximations (6.L4.1), and

the normal approximations, respectively.

) 1/h 1/2 3/ 1 3/2

N [}
.026 .058 112 .192 .Log
10 .01 .025 .056 .108 .18k .385
. 027 .060 .116 .194 .375
.0kg .110 7T .288 .533
10 .025 .056 .110 .191 .296 .530
.059 .118 .20k .309 .519
.095 .191 .298 .hlLog .691
10 .05 .10k .190 .305 437 .68k
.105 .192 .30k et .62
.031 .100 .219 .hoo .739
20 | .01 .037 .10k .228 .399 .T37
.038 . 109 .235 .398 .696
.079 .189 .351 .552 875
20 | .025 .079 .191 .364 .561 .856
.080 . 194 .360 .5h2 .811
.129 .290 480 678 .936
20 .05 L137 .289 .188 .683 .918
.138 .291 .183 .663 .88k

135
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Table 6.4.3

Power of the sign test against double exponen-

tial alternatives. The upper, middle and lower

numbers give the Monte Carlo powers obtained by

Thompson et al., the approximations (6.4.1),

and the normal approximations, respectively.

[} 1/4 1/2 3/L 1 3/2

N o
.050 .135 .261 Lok .662
10 .01 .04k8 .130 .2hkg .381 .60k
.052 .1k0 .255 .372 .552
.097 .226 .381 .510 773
10 .025 .097 .223 .377 .525 .T37
.10k .237 .385 .516 .690
76 .369 .535 .691 .890
10 | .05 .170 347 .530 .680 .856
172 .34k .509 .638 .792
.0T2 .256 .501 .T12 .951
20 .01 .086 .280 .528 .T32 .926
.091 .285 .513 .692 .87k
.155 Jhok .670 .858 .979
20 .025 .163 428 .686 .852 .971
.166 RIT-Y .655 .807 .935
.2h3 .5hT LTT9 .91k .992
20 .05 .25h .555 L7911 915 .987
.256 .546 .763 .881 .966
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Table 6.5.1

Deficiencies under normal alternatives of the

normal scores test with respect to the X-test
and the t-test. The upper and lower numbers
give de(NS,X) and de(NS,t),respectively.

G /% | 1/2 | 3/h 1 5/4 | 3/2 EN(NS,X) EN(Ns ,t)
N o

5 06250 1.3641 1.413 [ 1.463 | 1.501 | 1.536 | 1.566 1.370
: 0.070{ 0.080 | 0.090 | 0.095 | 0.100 | 0.105 0.193

610.0u688 1.582| 1.650 | 1.711| 1.771 [ 1.835 | 1.909 1.629
* 0.102| 0.120 | 0.138 | 0.150 | 0.162 { 0.168 0.224

7 05469 1.480( 1.541 ] 1.595 | 1.642 [ 1.690 | 1.74k 1.534
: 0.119| 0.133| 0.154 4 0.168 | 0.175 | 0.182 0.252

8|0.05u60 | 1520 1.577 | 1.630 | 1.677 | 1.726 | 1.782(| 1.559
ihad 0.160| 0.184 | 0.200 | 0.216 | 0.22k4 | 0.232 0.277

8| 0. 07422 1.310| 1.358 | 1.401 | 1.4k0 | 1.479 | 1.521 1.321
: 0.176| 0.200 | 0.216 | 0.232 | 0.240 | 0.256 0.277

9 10,0273k 2,036 | 2.104 | 2.175 | 2.240 | 2.300 | 2.352 2.1k
* 0.162| 0.180 | 0.207 | 0.225 | 0.243 | 0.252 0.294

9 03711 1.818| 1.886 | 1.954 | 2.031 | 2.098 | 2. 160 1.888
‘ 0.180| 0.198 | 0.225 | 0.234 | 0.261 | 0.279 0.294

9 | 0.04883 1.623] 1.682 [ 1.739 | 1.796 | 1.865 | 1.945 1.666
* 0.180| 0.198 | 0.234 | 0.243 | 0.261 | 0.261 0.294

h.629| 4.835}5.061|5.293|5.510 | 5.719 5.104
1010.00098 | "775 | 0.800 | 0.920 | 1.040 | 1.180 | 1.310 0.310

10/ 0. 00977 2.804| 2.912 | 3.018 | 3.110 | 3.218 | 3.309 3.037
: 0.190| 0.210| 0.240 | 0.260 | 0.280 | 0.290 0.310

10l 0. 024k | 2-125] 2.211 2.287 | 2.357 | 2.423 | 2. koL 2.252
) 0.170| 0.200| 0.230 | 0.250 | 0.280 | 0.290 0.310

1010.05273 1.5T4 | 1.638| 1.696 | 1.753 | 1.820 | 1.875 1.621
: 0.210} 0.230 | 0.250 | 0.270 | 0.290 | 0.310 0.310

1.171] 1.216 | 1.254 | 1.294 | 1.327 | 1.333 1.156
1010.09668 0.250| 0.280 | 0.300| 0.320 | 0.3k0 - 0.310
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Table 6.5.2

Deficiencies under normal alternatives of the normal scores

test with respect to the i-test and the t-test. The upper

numbers give de(NS,i) if one uses the power estimate plus

its standard deviation, the power estimate itself and the

power estimate minus its standard deviation, respectively.

The lower numbers similarl give (NS,t).
Y
N

1/4 3 )13
il g / 1/2 3/4 dy (N8 ,X) |d (NS ,t)
2010.01 -2.8,0.2,3.2 1.9,2.5,3.2 2.2,2.9,3.4 3.118
. -5.3,-2.4,0.6| -0.9,-0.2,0.5| -0.5,0.1,0.7 0.411
-2.0,0.0,2.1 1.8,2.5,3.2 1.9,2.8,3.8 2.333
2 .2 ~ 9 4 3 b} F ’
0]0.025 -3.9,-1.9,0.2{ -0.1,0.6,1.2 | -0.1,0.8,1.6 0.411
20|0.05 —1-h,0.3,1.9 1.2,2.0,2.7 0.0,1.7,3.2 1.76k4
-2.7,-1.0,0.6 | -0.2,0.6,1.3 | -1.5,0.4,1.7 0.411
Table 6.5.3
Power of the normal scores test against normal
alternatives. The first number gives the power
estimate, the second gives its standard deviation.
] 0.k0 %5v5
N o
50 0.05 0.871  0.00k4 0.907 0.00k
50 0.025 0.781 0.005 0.833 0.005
50 0.01 0.660 0.006 0.714  0.006




Deficiences under normal
test with respect to the

ization of this table is

Table 6.5.4

alternatives of the normal scores

X-test and the t-test. The organ-

the same as for table 6.5.2.

S 0.10 %\/5 d (s, %) | d (ns,t)
50 [o.01 | 583 LET LSS e L T o
so | 0.025 | 52353 T | LTRAS0 2
s0 [ o.0s | 1131588 1 OB 0 T s
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