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PREFACE 

Combinatorics has come of age. It had its beginnings in a number of 

puzzles which have still not lost their charm. Among these are EULER's 

problem of the 36 officers and the KONIGSBERG bridge problem, BACHET's 

problem of the weights, and the Reverend T.P. KIRKMAN's problem of the 

schoolgirls. Many of the topics treated in RoUSE BALL's Recreational Mathe

matics belong to combinatorial theory. 

All of this has now changed. The solution of the puzzles has led to 

i 

a large and sophisticated theory with many complex ramifications. And it 

seems probable that the four color problem will only be solved in terms of 

as yet undiscovered deep results in graph theory. Combinatorics and the 

theory of numbers have much in common. In both theories there are many prob

lems which are easy to state in terms understandable by the layman, but 

whose solution depends on complicated and abstruse methods. And there are 

now interconnections between these theories in terms of which each enriches 

_the other. 

Combinatorics includes a diversity of topics which do however have 

interrelations in superficially unexpected ways. The instructional lectures 

included in these proceedings have been divided into six major areas: 

1. Theoey of designs; 2. Gr-aph theoey; 3. Combinatorial group theoey; 

4. Finite geometey; 5. Foundations, partitions and combinatorial geometey; 

6. Coding theoey. They are designed to give an overview of the classical 

foundations of the subjects treated and also some indication of the present 

frontiers of research. 

Without the generous support of the North Atlantic Treaty Organization, 

this Advanced Study Institute on Combinatorics would not have been possible, 

and we thank them sincerely. Thanks are also due to the National Science 

Foundation for the support of some advanced students, in addition to the 

support of those with their own NSF grants. The IBM Corporation has kindly 

given us financial support to supplement the NATO grant. The Xerox Corp

oration has helped with donations of material and equipment. 

Finally we must acknowledge the extensive activities of the Mathematical 

Centre of Amsterdam in making all the arrangements necessary for holding this 

conference and preparing these proceedings. 

M. HALL, Jr. 

J.H. VAN LINT 
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MATHEMATICAL CENTRE TRACTS 57, 1974, 1-26 

DIFFERENCE SETS *> 

M. HALL, Jr. 

California lnstituta of Technology, Pasadena, Cal. 91103, USA 

1. INTRODUCTION 

A symmetric block design Dis a special kind of incidence structure 

[7,11,21] consisting of v points and v blocks, each block containing k 

distinct points, each point lying on k distinct blocks, and every pair of 

distinct points lying on A different blocks. Counting the point pairs in two 

ways we have 

(1.1) k(k-1) = A(v-1). 

A further consequence [11, p.104] is that any two distinct blocks have A 

points in common, so that there is a duality between the points and blocks. 

An automorphism a of Dis a one-to-one mapping of points onto points 

and blocks onto blocks preserving incidence. It may happen that D has a 

group G of automorphisms which is transitive and regular on the points (and 

as can be shown also transitive and regular on the blocks). Identifying the 

points with .elements of G and a block with the set of k points on it, a 

single block will determine all the rest. A set of k elements B = {d1, ••• ,~} 

from a group G of order v such that the translates Bg = {d1g, ••• ,~g} form 

a symmetric block design Dis called a difference set. 

At first glance the concept of difference set might appear to be too 

restrictive to be of much interest. But difference sets are in fact quite 

numerous and have many interesting properties. Fork~ 100 there are at 

least 85 difference sets with Ga cyclic group [1], and there are a number 

of other cases in this range with G non-cyclic. 

*) This research was supported in part by NSF grant GP 36230X. 
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A remarkable fact, first discovered by the author [10] for finite pro

jective planes is that if G is Abelian the design D often has a still larger 

group of automorphisms. It may happen that there is an integer t, necessari

ly prime to v, such that the mapping x ➔ xt is not only an automorphism of 

G but is also an automorphism of the design D. Such an integer is called a 

multiplier. There are a number of theorems proving the existence of multi

pliers. Every known difference set for which G is cyclic has non-trivial 

multipliers. 

Studies of difference sets have led to very interesting connections 

with finite geometries, algebraic number theory, and group characters among 

other subjects. 

Sections 2, 3, 4 of this paper give some properties of automorphisms 

of designs, a formal definition of a difference, and the simplest form of 

the multiplier theorem. Section 5 gives a list of the known types of 

difference sets and a few sporadic sets. Section 6 gives a brief sketch of 

the general theory and some of its results. 

2. AUTOMORPHISMS OF DESIGNS 

A general incidence structure Sis a system ({p},{B},I) with two sets 

of objects, {p} a set of "points" and {B} a set of "blocks" together with 

an incidence relation I such that pIB for certain points p and certain 

blocks B. If T = ({q},{c},J) is another incidence structure, then an 

incidence preserving map of S into Tis a mapping¢ of {p} into {q} and {B} 

into {c} such that pIB implies p¢JB¢ for all p E {p} and BE {B}. 

In general the incidence preserving map is a homomorphism of S onto T. 

If¢ is a one-to-one mapping then it is an isomorphism of S onto T. An iso

morphism of S onto itself is called an automorphism. Clearly the automorph

isms of an incidence structure form a group. 

The incidence structures which will be considered here are the "partial

ly balanced incomplete block designs" or more briefly "designs". For these 

if there are v points and b blocks, each block contains k distinct points, 

every point lies on r blocks, and every pair of distinct points lies on 

exactly A blocks. 

These parameters satisfy the two well-known relations 

(2.1) bk= vr, r(k-1) = A(v-1). 
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To avoid certain trivial designs we assume 2 < k < v-2. With a design 

D = D(v,b,r,k,\) we associate an incidence matrix A= [a.,], i=1, ••• ,v; 
l.J 

j=1, ••• ,b where, if we number the points Pi, i=1, ••• ,v in an arbitrary way 

and blocks B., j=1, ••• ,b also 
J 

0 if P. t. B .• Then it is 
l. J 

(2. 2) 

arbitrarily, we put a .. = 1 if P. I BJ. and 
l.J l. 

well known that A satisfies 

Here AT is the transpose of A, Iv is the v xv identity matrix, and J the mn 
m x n matrix all of whose entries are l's. 

Writing B = (r-\)Iv + \Jvv we can easily evaluate the determinant of 

B, obtaining 

(2.3) det B v-1 (r-\) (r+(v-1)\). 

The relations (2.1) together with the assumption 2 < k < v-2 imply that 

r > A so that det B > O. From this it follows that the rank of the v x b 

matrix A is v, we obtain FISHER's inequality 

(2.4) b;,: v. 

If b = v and so also r = k the design is called a symmetria design. 

If a is an automorphism of a block design let Pa be the permutation of 

the points p + (p)a and Qa the permutation of the blocks B + (B)a. The fact 

that a preserves incidences can be expressed in terms of the incidence 

matrix A 

(2. 5) 

For if A [aij] the matrix on the left is [a(i)a(j)a] and as incidences 

are preserved this is identical with A. Conversely permutation matrices Pa 

and Qa satisfying (2.5) determine an automorphism of the design with 

incidence matrix A. 

THEOREM 2.1. (PARKER). An automorphism of a symmetria bZoak design D fixes 

the same number of bZoaks as points. 

PROOF. From (2.2) and (2.3) the incidence matrix of a symmetric block 

design is non-singular. Hence from (2.5) we may obtain 

(2. 6) 
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and this gives for the traces 

(2.7) 

But tr(Pa) is the number of points fixed by a and tr(Qa) is the number of 

blocks fixed by a and so the theorem is proved. D 

COROLLARY. If G is a group of automorphisms of a symmetria bZoak design D, 

then the permutation representations of G <a,s, ••• > on the points 

<Pa,Ps,···> and on the bZoaks <Qa,Qs,···> have the same aharaater. 

A well-known property of symmetric designs is given by the following 

theorem. 

THEOREM 2.2. If A is the inaidenae matrix of a symmetria design D with 

parameters v,k,A, then AT is the inaidenae matrix of a dual symmetria design 

(interahanging points and bZoaks) o* with the same parameters. 

Thus for A we have 

{ 
AAT (k-A)I + AJ, AJ = kJ, JA = kJ, 

(2.8) 
ATA ATJ = kJ, JAT (k-A)I + AJ, = kJ. 

Note that this implies that any two distinct blocks of D have exactly A 

points in common. 

3. DIFFERENCE SETS 

Let D be a symmetric block design with parameters b = v, r k, and A. 

We shall suppose that D has a group G of automorphisms of order v which is 

transitive and regular on the points. Then if we take an arbitrary point P 

as a "base point", the points (P)x = Px as x ranges over G consist of all v 

points of D, each occurring exactly once. This gives a correspondence 

between the points of D and the elements of G making an arbitrary point P 

correspond to the identity of G. From theorem 2.1 and its corollary the 

same will be true of the blocks where taking an arbitrary block B the blocks 

(B)x = Bx as x ranges over G will consist of all blocks of D each occurring 

exactly once. 

The parameters v,k,A necessarily satisfy 



(3.1) k(k-1) = A(v-1). 

We shall identify the points of D with the elements of G, following 

the correspondence above. Let B be an arbitrary block and consider the k 

points in D 

(3.2) 

Then for any block Bx 

(3.3) 

5 

Two points rands will occur together in Bx if for some di and dj we have 
-1 -1 -1 -1 

dix = r, djx = s. Here didj = rs • Conversely if didj = rs we may 

determine x uniquely by d.x =rand it will follow that d.x = s. Hence for 
1 -1 . J 

any d # 1 there are exactly A choices d.d. = d with d.,d. € {d1 , ••• ,d }. 
1 J 1 J ~k 

Similarly with d # 1 the blocks Band Bd have exactly A points in common. 

This means that for exactly A choices of di there is adj with di 
-1 

dj di d. 

d.d or 
J 

THEOREM 3.1. Let B = {d1 ,d2 , ••• ,dk} be a set of k distinat elements in a 

group G of order v, and let k(k-1) = A(v-1). If either of the aonditions 

Cl) or (2) holds, both will hold. 

(1) For every d # 1 there are exaatly A ahoiaes di,dj € B suah that 
-1 

didj = d. 

(2) For every d # 1 there are exaatly A ahoiaes di,dj € B suah that 
-1 

dj di= d. 

Then the sets Bx= {d1x,d2x, ••• ,~x} will be the bloaks of a symmetria bloak 

design D whiah has Gas an automorphism group transitive and regular on the 

points of D and also on the bloaks of D. 

PROOF. Clearly the v blocks Bx are all of size k. For a fixed di' the 

elements dix as x ranges over G give each element of G exactly once, so that 

each element of Gisin exactly k blocks. For the incidence matrix A of the 

system D of these points and blocks condition (1) is equivalent to AAT = 

= (k-A)I + AJ while condition (2) is equivalent to ATA = (k-A)I + AJ and as 

these are equivalent to each other the theorem is proved. D 

DEFINITION. A set B = {d11••·,dk} of distinct elements in a group G of 

order v, where k(k-1) = A(v-1) is called a differenae set if for any d # 1 

in G there are exactly A choices di,dj € B such that didjl d. 
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If G is an Abelian group written additively then the condition is on 

differences d,-d., and this is historically the origin of the term differ
i J 

ence set. 

4. THE MULTIPLIER THEOREM 

The residues O, 2, 3, 4, 8 (mod 11) are an (11,5,2) difference set in 

the additive group G of residues modulo 11. We check the difference property 

1 !!! 3 2 !!! 4 3, 6 !!! 3 8 !!! 8 2, 

2 !!! 2 0 !!! 4 2, 7 !!! 0 4 = 4 8, 

( 4 .1) 3 !!! 0 8 !!! 3 o, 8 !!! 8 0 !!! 0 3, (modulo 

4 !!! 4 0 !!! 8 4, 9 !!! 0 2 !!! 2 4, 

5 !!! 2 8 !!! 8 3, 10 !!! 2 3 !!! 3 4. 

The corresponding design Dis a symmetric design with parameters (v,k,A) 

(11,5,2). We list the blocks and the points on them 

BO: 0,2,3,4,8, B6 6,8,9,10,3, 

B1: 1,3,4,5,9, B7 7,9,10,0,4, 

(4.2) B2: 2,4,5,6,10, BB s,10,0,1,s, 

B3: 3,5,6,7,0, B9 9,0,1,2,6, 

B4: 4,6,7,B,1, B10: 10,1,2,3,7. 

BS: 5,7,8,9,2, 

11) 

Here the design D has further automorphisms. Specifically the mapping 

x ➔ tx of residues modulo 11 where tis one of 1,3,4,5,9 is an automorphism 

of D. Since a mapping x ➔ tx fixes the point O, from theorem 2.1 it must 

also fix a block, and in this case the block B1 is fixed by all these auto

morphisms. In this case the full group of automorphisms includes still 

further elements one being given by the permutations 

The full group of automorphisms of Dis the simple group L2 (11) of order 660. 

It is a remarkable fact that many difference sets lead to designs D 

with further automorphisms beyond the given group G of order v. We will 

define the tenn multiplier in this context. 
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DEFINITION. An integer tis a multiplier of the difference set {d1 ,d2 , ••• ,c\J 
in the Abelian group G of order v if the mapping x + xt is an automorphism 

of the design D determined by the difference set. 

Note that multipliers are defined over Abelian groups. With G Abelian 

of order v, a multiplier t must necessarily be such that x + xt is an auto

morphism of G since every element of G must be of the form xt with x from G, 

and so (v,t) = 1. Clearly the multipliers form a multiplicative group of 

residues modulo v. 

THEOREM 4.1. The integer tis a multiplier of the Abelian difference set 

{d1 ,d2 , ••• ,<\} if and only if {df,d1, ••• ,~} = {d1w,d2w, ••• ,dkw} for some 

w € G. 

t PROOF. If tis a multiplier of B = {d1 , •• ;,<\} then x + x maps B into some 

block Bw = {d1w,d2w, ••• ,dkw}. Conversely if {d1,d1, ••• ,~} = {d1w, ••• ,<\w} 

then x ➔ xt takes an arbitrary block Bu= {d1u, ••• ,dku} into Bwut, and is 

an automorphism of the design. D 

THEOREM 4.2. Multiplier theorem (HALL & RYSER [14]). Let {d1 , ••• ,<\} be a 

(v,k,\) difference set over an Abelian group G of order v. Then if pis a 

prime such that (i) plk-\, (ii) (p,v) = 1 and (iii) p >\,then pis a multi

plier of the difference set. 

PROOF. We assume the group G to be written multiplicatively. We shall work 

with the group ring ZG over the rational integers z. The elements of the 

group ring are formal sums A=' a(g)g, a(g) € z. Addition and multi-lgEG 
plication are defined by the rules 

l a(g)g + l b(g)g = }:(a(g) + b(g))g, 
g g g 

(I a(g)g)(I b(g)g) = I( I a(g)b(hv k. 
g g k gh=k 

With these rules ZG is an associative ring with identity. 

With the difference set {d1 ,d2 , ••• ,<\} we associate the element 0(d) 

of the group ring 

(4.3) 0(d) 

We also write, using a symbolic notation, for any integer t, defining 0(dt) 
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by 

(4.4) 

Then from theorem 4.1 the proof of theorem 4.2 reduces to proving for some 

w € G 

(4.5) 

Let us also define the element T of ZG by 

(4.6) T = l x. 
X€G 

With this notation the fact that {a1 , ••. ,dk} is a (v,k,A) difference set 

takes the form, writing k-A = n, 

(4.7) 

Here by k-A we mean (k-A)l where 1 is the identity of G. For in the left
-1 

hand side of (4.7) the identity appears k times as d.d. , i=1, ••• ,k, and 
-1 ii 

every other d € G appears exactly A times as d.d .• Since the identity is 
i J 

one of the elements of T, its k occurrences are counted as (k-A) + A, and 

the A occurrences of every d ~ 1 are counted in AT. 

Since the binomial coefficients (3), j=l, .•• ,p-1 are multiples of the 

prime p we always have (A+B)p =AP+ BP+ pR in ZG with R some element of 

ZG. Hence 

(4.8) 0(d)p = af + d~ + ••• + ~ + pW 

Multiplying (4.7) by 0(d)p-l we have 

(4.9) 

Here since xT = T for any x €Git follows that 0(d)T 

(4.10) 

kT, and (4.9) becomes 

Now p divides n = k-A. If p does not divide k then p divides kp-l_l, while if 

p divides k, then also p divides A, so that in all cases p divides A(kp-l_l). 

Thus (4.10) takes the form 

(4.11) 



with some Vin ZG. Combining {4.8) and {4.11) we have 

{4.12) 

If x 1 , ••• ,xv are the elements of G then the left-hand side takes the form 

Ia.x. where the a. are non-negative integers such that 
J. J. J. 

{4.13) 

Comparison with the right-hand side shows 

{4.14) ai II A (mod p), i=l, ••• ,v. 

9 

Also since we have assumed p > A it follows that ai ~ A in every case. Thus 

if S = Li sixi we have from (4.12) 

(4.15) 

so that si ~ 0 in every case and also 

(4.16) 

But since k(k-1) 

(4.17) 

As a consequence 

la = L psi+ AV. 
i i i 

A(v-1) we have k2-Av k-A 

(4.18) pST =pl s.T = nT. 
i J. 

n so that 

Applying the automorphism x ~ xP of G to the relation (4.7) gives 

(4.19) 

-1 Applying the automorphism x ~ x of G to (4.12) gives 

(4.20) 

* where S 

The product of the left-hand sides of {4.7) and (4.19) is the same as 

the product of the left-hand sides of (4.12) and (4.20). Equating the right

hand sides gives 
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(4.21) 

* Since pST nT and pS T nT this simplifies to 

(4.22) 

or 

(4.23) 

2 
n 

\ -1 
l s.x. 

J J 

2 
n . 

Since the coefficients si are all non-negative we cannot have si > 0 and 

s. > 0 for i # j since this would give x.x~1 # 1 a'positive coefficient on 
J i J 

the left of (4.23). Hence only ones. is different from 0 and as p}:s. = n 
i i 

we conclude that for some w E G 

(4.24) pS = nw. 

Now (4.12) takes the simpler form 

(4. 25) 

multiplying this by 9(d) we have 

(4.26) 

which becomes 

(4.27) nw9(d) + \kT 

or 

(4.28) nw9 (d) + \kT, 

whence 

(4.29) 

By theorem 4.1 this proves that pis a multiplier and completes the proof 

of theorem 4.2. D 

This theorem has been very useful in proving that certain difference 

sets do not exist and in constructing others when they do exist. In this 

connection the following theorem is useful. 

THEOREM 4.3. If tis a multiplier of the design D(v,k,\) there is a block 

fixed by the multiplier. If (v,k) = 1 there is a block fixed by every multi

plier. 
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t PROOF. The automorphism x + x given by the multiplier fixes the identity 

element of G. Since this is one of the points of the design, by theorem 2.1 

there is a block fixed by this automorphism. Let {d1 , ••• ,~} be the differ

ence set and write y = d1d2 ••• ~. Then in the block Bs the product of the k 

elements is ysk. If (v,k) = 1 there is exactly one x with yxk = 1 in G and 

clearly the block Bx will be fixed by every multiplier. 0 

Consider the difference set with v = 111, k = 11, A= 1. Here 

k-A = n = 10 and so 2 and 5 are multipliers. By theorem 4.3 there is a block 

B fixed by both of these multipliers. If c is a point of this block then 
2 4 5 are all in this block. 2 -1 5 -4 and;\= 1 this is c,---c ; C I C As Cc = C C = C 

possible only if c 5 2 and 
4 = c whence 3 

1. But in G there are only C C C 

three elements satisfying c 3 = 1 and so we cannot find a block of 11 distinct 

elements of this kind. Hence no difference set exists for these parameters. 

If v = 73, k = 9, A= 1, as n = k-A 8, p = 2 is a multiplier. Let us 

write Gin additive form as the group of residues modulo 73. Then in the 

block B fixed by the multiplier let c be an element not the O residue. Then 

the difference set will include 

c, 2c, 4c, Be, 16c, 32c, 64c, 55c, 37c (mod 73). 

These will be all 9 elements of the difference set and without loss of 

generality we may take c = 1 to obtain the (73,9,1) difference set 

(4.30) 1, 2, 4, 8, 16, 32, 37, 55, 64 (mod 73). 

In theorem 4.2 the condition (i) plk-A is the source of the multiplier, 

while condition (ii) (p,v) = 1 is clearly necessary for p to be a multiplier. 

But in every known case the condition (iii) p > A appears to be unnecessary, 

though it is required in the proof using (4.15) to show si ~ O. Indeed for 

every known difference set in which G is cyclic, there is a prime dividing 

k-A but not v and every such prime is a multiplier. There are however Abel

ian difference sets without multipliers. For example there is an Abelian 

difference set with parameters (16,6,2) the group G being the elementary 

Abelian group of order 16. 

5. THE KNOWN DIFFERENCE SETS 

There are several families of difference sets known. Most of these 
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depend on arithmical properties of residues modulo primes or on finite fields. 

Type S. (Singer difference sets [23]). These are hyperplanes in the n-dimen

sional projective geometry PG(n,q) over GF(q). The parameters are 

n+l 1 -~ 
V - q-1 k 

n 
~ 
q-1 

A 
n-1 q -1 

q:T 

Type Q. (Quadratic residues in GF(q), q = 3 (mod 4)). 

V q pr= 4t-1, k 2t-1, A = t-1. 

2 Type H6 . (pis a prime of the form p = 4x +27). There will exist a primitive 

root modulo p such that Ind (3) = 1 (mod 6). The (p-1)/2 residues a. such r l. 

that Ind (a.) 
r J. 

= o, 1 or 3 (mod 6) will form a difference set with parameters 

V = p = 4t-1, k = 2t-1, A = t-1. 

Type T. (Twin primes). Let p and q = p+2 be primes. Let r be a number such 
i 

that r is a primitive root of p and also of q. Then r (mod pq) 

i=l, ••• ,(p-1) (q-1)/2 and O,q, ••• , (p-l)q (mod pq) form a difference set with 

v = pq = 4t-1, k = 2t-1, A= t-1. 

Type B. (Biquadratic residues of primes p 
2 

4x +1, x odd). Here 
2 2 2 

v = p = 4x +1, k = x, A= (x -1)/4. 

Type a0• (Biquadratic residues and zero modulo primes p 
2 

4x +9, x odd). Here 
2 2 2 

v = 4x + 9, k = x +3, A = (x +3)/4. 

Type o. (Octic residues of primes p 

Here v = p, k = a 2 , A= b 2 • 

64b2+9 with a, b both odd). 

Type o0 • (Octic residues and zero for primes p 
2 2 b even). Here v = p, k = a +6, A= b +7. 

Type w4 • (A generalization of T developed by WHITEMAN [27]). Let p be a 

prime p = 1 (mod 4) and let q 3p+2 also be a prime. Suppose also that 

pq = V = 1+4X 
2 

with x odd. Then take r to be a primitive root of both p and 

Writing d (p-1) (q-1)/4 the residues 1,r,r 2 d-1 O,q,2q, ••• ,(p-1)q q. , ... ,r 

(mod pq) are a difference set with v = pq, k = (v-1)/4, A= (v-5)/16. 

Type GMW. (GoROON, MILLS & WELCH [9]). The parameters are the same as those 

of the Singer type. 



V 

n+1 1 
~ 

q-1 
k A 

n-1 
L-..:.!.. 

q-1 

Here if we can write n+1 in the form n+1 = mM with m ~ 3 and if Mis the 

product of r prime numbers, not necessarily distinct, then hllere are at 

least 2r inequivalent difference sets with these parameters. 
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Type H(2). v = 22m, k = 22m-l - 2m-l, A= 22m- 2 - 2m-l. Here G is the 

direct product of m groups of order 4 (some may be the cyclic group, other 

the four group). These difference sets and designs are most easily described 

by their relation to Hadamard matrices, as will be done in the next section. 

L. BAUMERT [1] has listed the known 85 cyclic difference sets for which 

3 ~ k ~ 100. Most of these are special cases of the types listed above. 

There are 74 different possible parameters v, k, A and for no other para

meters with kin this range is a cyclic difference set possible. There is a 

cyclic difference set with v = 133, k = 33, A= 8 but in all other cases the 

parameters are those of the listed types. For the projective planes with 
2 

v = n +n+l, k = n+1, A= 1 the writer has shown that the solution is unique 

when n = 2, 3, 4, 5, 7, 9, 11, 13, 16, 25, 27, 32, and there is certainly a 

Singer difference set whenever n = q = pr is a prime power, but for other 

prime powers in this range it is conceivable that other difference sets 

exist. 

(5.1) 

For v 

(5.2) 

There 

Cyclic difference sets 

121, 

121A: 

v = 133, k = 33, A= 3 

1, 4, 5, 14, 16, 19, 20, 21, 25, 38, 54, 56, 57, 64, 66, 70, 

76, 80, 83, 84, 91, 93, 95, 98, 100, 101, 105, 106, 114, 123, 

125, 126, 131 (mod 133). 

k = 4, A 13 there is the Singer system of 3 spaces in 

1, 3, 4, 7, 9, 11, 12, 13, 21, 25, 27, 33, 34, 36, 39, 44, 

55, 63, 64, 67, 68, 70, 71, 75, 80, 81, 82, 83, 85, 89, 92, 

99, 102, 103, 104, 108, 109, 115, 117, 119. 

are also three other difference sets with these parameters 

121B: 1, 3, 4, 5, 9, 12, 13, 14, 15, 16, 17, 22, 23, 27, 32, 34, 

36, 39, 42, 45, 46, 48, 51, 64, 66, 69, 71, 77, 81, 82, 85, 

86, 88, 92, 96, 102, 108, 109, 110, 117. 
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121C: 1 , 3, 4, 7, 8, 9, 12, 21, 24, 25, 26, 27, 34, 36, 40, 43, 49, 

(5. 3) 63, 64, 68, 70, 71, 72, 75, 78 , 81, 82, 83, 89, 92, 94, 95, 97, 

102, 104, 108, 112, 113, 118, 120. 

121D: 1 I 3, 4, s, 7, 9, 12, 14, 15, 17, 21, 27, 32, 36, 38, 42, 45, 

46, 51, 53, 58 I 63 I 67, 68, 76, 79, 80, 81, 82, 83, 96, 100, 103, 

106, 107, 108, 114, 115, 116, 119. 

For the parameters v = 127, k = 63, >. 31 there are six non-isomorphic 

difference sets, three corresponding to the listed type, and three others. 

127A: Type Q. 

1' 2, 4, 8, 9, 11, 13, 15, 16, 17 I 18, 19, 21, 22, 25, 26, 30, 

31, 32, 34, 35, 36, 37, 38, 41, 42, 44, 47, 49, 50, 52, 60, 

61, 62, 64, 68, 69, 70, 71, 72, 73, 74, 76 I 79, 81, 82, 84, 

87, 88, 94, 98, 99, 100, 103, 104, 107, 113, 115, 117, 120, 

121, 122, 124. 

127B: Type H6 • 

1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 19, 20, 23, 24, 25, 

27, 28, 32, 33, 38, 40, 46 I 47, 48, so, 51, 54, 56, 57, 61, 

63, 64, 65, 66, 67, 73, 75, 76, 77, 80, 87, 89, 92, 94, 95, 

96, 97, 100, 101, 102, 107, 108, 111, 112, 114, 117, 119, 

122, 123, 125, 126. 

127C: Singer-hyperplanes in PG(6,2). 

1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 15, 16, 17, 18, 24, 27, 28, 

29, 30, 31, 32, 34, 36, 39, 47, 48, 51, 54, 56, 58, 60, 61, 

62, 64, 65, 67, 68, 71, 72, 77, 78, 79, 83, 87, 89, 94, 96, 

(5. 4) 97, 99, 102, 103, 105, 107, 108, 112, 113, 115, 116, 117, 

120, 121, 122, 124. 

127D: 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 16, 17, 18, 19, 24, 25, 

26, 27, 28, 31, 32, 34, 35, 36, 38, 47, 48, so, 51, 52, 54, 

56, 61, 62, 64, 65, 67, 68, 70, 72, 73, 76, 77, 79, 81, 87, 

89, 94, 96, 97, 100, 102, 103, 104, 107, 108, 112, 115, 117, 

121, 122, 124. 

127E: 1 , 2, 3, 4, s, 6, 8, 9, 10, 12, 15, 16, 17, 18, 19, 20, 24, 

25, 27, 29, 30, 32, 33, 34, 36, 38, 39, 40, 48, so, 51, 54, 

55, 58, 59, 60, 64, 65, 66, 68, 71, 72, 73 I 76, 77, 78, 80, 

83, 89, 91, 93, 96, 99, 100, 102, 105, 108 I 109, 110, 113, 

116, 118 I 120. 



127F: 1 , 2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 19, 20, 21, 22, 24, 25, 

27, 29, 32, 33, 37, 38, 39, 40, 41, 42, 44, 48, 49, so, 51, 

54, 58, 63, 64, 65, 66, 69, 73, 74, 76, 77, 78, 80, 82, 83, 

84, 88, 89, 95, 96, 98, 100, 102, 105, 108, 111, 116, 119, 

123, 125, 126. 

Two difference sets for V = 36, k = 15, \ = 6 have been given by 

P.K. MENON [18]. The non-Abelian group of order 6, isomorphic to the sym-
2 2 3 2 metric group s3 can be given by 1, a, a, b, ab, ab where a = 1, b = 1, 

ba2 = ab. 

Taking G = s3 x s3 the 15 elements 

( 1, 1) , (1,b), (b, 1) , (b,ab), (ab,b), 

(5.5) 2 (a,a ) , (a ,ab) , (ab,1), 2 (ab,a b), 2 (a b,ab), 
2 (a , a) , 2 (1,a b), 2 (a b,1), 2 (a b,b), 2 (b,a b), 

form the difference set. This is one of the few known difference sets for 

which G is non-Abelian. 

Also for G = z6 x z6 where z6 is the cyclic group of order 6, taken 

here as residues modulo 6 

(5.6) 

(Q,Q) t (0,1) I (1,Q) I (1,3) f (3,1) I 

(2,4), (0,3), (3,0), (3,5), (5,3), 

(4,2), (0,5), (5,0), (5,1), (1,5). 

The writer has found a simpler form for such a difference set 

(5.7) 

(1,1) f (2,2) I (3,3) f (4,4) I (5,5) f 

(0,1), (0,2), (0,3), (0,4), (0,5), 

(1,0), (2,0), (3,0), (4,0), (5,0). 

These are examples of difference sets of Hadamard types. 

6. GENERAL THEORY OF DIFFERENCE SETS 

15 

Let G be a finite Abelian group of order v. Then from the theory of 

representation of finite groups [8] it is well-known that over the complex 

field the irreducible representations are all of degree one. This is to say 

that if for each x E G there is a non-singular matrix M(x), and if M(xy) = 

= M(x)M(y), then there is a matrix S such that s-1M(x)S = A(x) and A(x) is 
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a diagonal matrix for all x E G. Thus A(x) = x1 (x) + ••• + xm(x} where for 

x E G, xi(x) is a complex number and x1 (xy) = x1 (x)xi(y), i=l, ••• ,m. We call 

these x's characters. Since x(l) = 1, each character x(x) is some r-th root 

of unity if xr = 1 and so for all x E G, x(x) is av-th root of unity. The 

characters themselves may be multiplied, defining (xixjl (x) = Xi (xlxj(x), 

all x E G. Under this rule the characters themselves form a group which is 

in fact isomorphic to G. In particular there are exactly v distinct charact

ers. The character x0 with the property x0 (x) = 1 for all x E G is called 

the pl'incipal ahamate:r. 

The characters may readily be extended to the group ring ZG, where if 

(6.1) 

we put 

(6.2) 

A = l a(g) •g 
gEG 

X(A) l a(glx(g}. 
gEG 

Clearly for each character X, A~ x(A) is a ring homomorphism of ZG into the 

complex numbers. A simple but useful property involving all characters is 

(6.3) I x<gl 
X 

if g = 1 

ifg,f,1. 

A powerful application of this, if A is given by (6.1) is 

(6.4) l x(Ag-1) = va(g). 
X 

Another simple property is 

(6.5) 

(6.6) 

I x<gl 
gEG 

if X Xo 

if X 'I Xo· 

D = dl + d 2 + ••• + <\• 

Dt = dt + dt + ••• + dt, 
1 2 7c 

t any integer , 

Then (4.7) takes the form 



(6. 7) 

Hence if xis any non-principal character of G, then 

(6.8) 
-1 

X(D)x(D ) = n. 
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Here x(D) is an algebraic integer in some subfield of the field of v-th roots 

of unity and x(D-1) is its complex conjugate. Thus the existence of a differ

ence set is related to the factorization of n in various cyclotomic fields. 

An application of these methods is a proof of the following result due 

to MANN [17]. His original proof was more complicated. 

THEOREM 6.1. A difference set with 1 < k < v-1 over an elementary Abelia:n 

2-group necessa:r>ily has parameters 

or the corrrplementa:ry parameters 

V = 

PROOF. Let D be a difference set over the elementary Abelian group G of order 
r -1 -1 2. Then since g g for every g € G, in (6.7) we will have D = D and so 

(6. 9) D2 = n + :>..T. 

If xis any non-principal character of G then 

(6.10) X (D) 2 n. 

Now x(g) ±1 for every g E G and so x(D) is a rational integer. Thus 

(6.11) 

With 

(6.12) 

2 
n = s , X (D) 

D L a(g)g 
g 

k of the a(g) are +1 and v-k are O. Using (6.4) 

(6.13) 2ra(g) = L x(Dg-1). 
X 

From (6.11) this gives for some integer c(g) 

k. 
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(6.14) 

Taking some x for which a(x) = 0 we have 

(6.15) 0 = k + c(x)s 

so that s divides k. Let us write 

(6.16) k = hs. 

Taking some y for which a(y) = 1 we have 

(6.17) 2r = k + c(y)s = hs + c(y)s 

whences divides 2r so thats 2t for some exponent t. Here 

(6.18) A= k-n = hs - s 2 

Also from k(k-1) = A(v-1) we have 

(6.19) 

This simplifies to 

(6.20) 

which gives 

(6.21) 

Here 22r-Zt-Z ~ 2r so that r ~ 2t+2. If r = 2t+2 then h 2r-t-l±1 = 

2t+l±1 and k =2th= 2Zt+l±2t, A= k-n = z2t±2t and v = 2r 2Zt+z, the 

parameters of the theorem. If r > 2t+2, then 22r-Zt-Z_zr+l ~ 1+2r, and also 

22r-Zt-Z_zr+l = 1 (mod 2r). But if z2 = 1 (mod 2r) then z = ±1 (mod 2r-l) 

and if z ~ ±1, then lzl ~ 2r-l_1. Thus (6.21) yields 

(6.22) 

If h-2r-t-l ~ 2r-l_l then h ~ rr-l and k =2th~ 2r+t-l, but as v = 2r > k 

this is possible only if t = O. On the other hand if 2r-t-l_h ~ 2r-l_1, then 

2r-t-l ~ 2r-l and again this is possible only if t = O. In either case t = 0 

and k = h. Then (6.21) becomes 

(6.23) 



so that k-2r-l = ±(2r-l_1) giving k 

solutions excluded by assumption. D 

1 or k 
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v-1 the trivial 

The difference sets of theorem 6.1 all exist. They are special cases of 

Hadamard difference sets, so called because of their relation to Hadamard 

matrices. An Hadamard matrix H = [hij] is a square matrix of order N with 

hij = ±1 which satisfies 

(6.24) 

The matrices 

-1 -1 -1 

(6.25) 1 ] , 
-1 

-1 

-1 -i 

-1 -1 

-1 

-1 -1 -1 

are Hadamard matrices of orders 1, 2, 4 respectively. It is easy to show 

that the order of an Hadamard matrix is 1, 2, or 4m for m=l,2, ••• and it is 

conjectured that Hadamard matrices exist for all these orders. At present 

the first undecided order is 188 with m = 47. 

For square orders 4m2 , a symmetric block design with v = 4m2 , k = 2m2-m, 
2 2 2 2 A= m -m or its complement with v = 4m, k = 2m +m, A= m +m can be used to 

determine a Hadamard matrix of order N 

point is in the i-th block and putting 

4m2 by 

h .. = -1 
lJ 

putting h .. = +1 if the j-th 
1.J 

otherwise. And it is not 

difficult to show that if a Hadamard matrix of order v has exactly k ele

ments which are +1 in every row, the rows will determine a symmetric block 

design with the parameters above. The third matrix in (6.25) of order 4 is 

of this type with the trivial design v 4, k = 1, A = o. 
In particular a difference set in a group G of order 4m 2 

with V = 

k = 2 A m2±m determines 2m ±m, = a Hadamard matrix of this kind. The differ-

ence sets with v = 36, k = 15, A= 6 in (5.5), (5.6) and (5.7) are of this 

kind. 

If Hand Kare Hadamard matrices of orders N and M respectively then 

the Kronecker product H x K (sometimes called the direct product or tensor 

product) is also a Hadamard matrix of order MN. Here 
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(6.26) H X K = 

h 11 K h12K 

h21K h22K 

The proof of the following theorem is straightforward and will be 

omitted. It is due to MENON [18] who, however, did not recognize the 

relation to Hadamard matrices. 

THEOREM 6.2. If Hand K CU'e Hadamard matrices given by difference sets over 

groups G1 and G2 respectively, then H x K is a Hadamard matrix given by a 

difference set over G1 x G2• If D1 is the difference set for Hover G1 and 

D2 for Kover G2 then in the direct product G = G1 x G2 = (G 1,G2) the 

difference set Dis the union of (D1 ,D2) and (D1 ,o2) where Di, i=1,2, is the 

complement of Di in Gi, 

COROLLARY. There are difference sets with v 
m = 2a+b-1 3b_ 

4m2, k 

PROOF. This follows from the theorem since such sets exist for v 

v = 36. 0 

4 and 

Th d · · th 22t+2 h b ' 1 e esigns wi v = ave een extensive y investigated, in par-

ticular by BLOCK [2] and recently by KANTOR [15]. 

In a finite field GF(q), q = pr, pa prime, the multiplicative group H 

of non-zero elements is cyclic of order pr-1. If pr-1 ef thee-th powers 

of elements form a subgroup of Hof order f and index e in H. If Dis a 

difference set over G, the additive group of GF(q), it may happen that the 

e-th powers are multipliers of D. Several of the types listed in section 5 

are of this kind. 

If g is a prim~tive root of GF(q) thee-th power cyclotomic numbers 

are the numbers (i,j) where (i,j) is defined to be the number of solutions 

gs of 

(6.27) 2 
g + 1 

t 
g , s = i (mode), t = j (mod e). 

If D has thee-th powers of elements of GF(q) as multipliers, then (consider

ing D to be the block fixed by these multipliers) D will consist of one or 
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more cosets of He and possibly the zero element. A knowledge of the cyclo

tomic numbers (i,j) will determine the number of differences in each coset 

of He, and so will determine which combinations will give a difference set. 

The author [13] has shown that the cyclotomic numbers (i,j) may be determ

ined by the character table of the group G* of transformations x ➔ aex+b, 

a# 0 where G* is of order prf. Fore= 2, 4, 6, 8 difference sets of types 

Q, B, B0 , H6 , o, o0 exist when q = pr satisfies the appropriate conditions. 

Except for the case Q where e = 2, &rithmetical considerations show that for 

q = pr the conditions are only satisfied when r 1 and q =pis a prime. 

This was shown by the writer fore= 4, 6, and by STORER [24] also for 

e = 8. 

The multiplier theorem can be generalized, though the generalizations 

would be trivial if the condition p >\could be dropped. One such general

ization is 

THEOREM 6.3. Let D be a difference set of k elements in the Abelian group G 

of ord,er v. Let n 1 = p 1p 2 ••• ps be a divisor of n = k-\ where p 1 , ••• ,ps are 

distinct primes. If (n1 ,v) = 1, n 1 > \ and if t is an integer such that 
e. e-

t= p,i (mod v) for an appropriate power p.i, i=1, ••• ,s, then the automorph-
i i 

ism a of G defined by x ➔ xt is a multiplier of the difference set. 

The proof is almost identical with the proof of the multiplier theorem. 

* In other cases for some divisor w of v and for a group G of order w which 

is a homomorphic image of G, it may be possible to find a multiplier t wlth 

e*(dt) g*e*(d) holding in G*, the asterisks denoting homomorphic images. 

Such at is called aw-multiplier. For example with v = 177, k = 33, \ = 6 

it can be shown that 3 is a multiplier for w = 59 and this can be used to 

show that there is no difference set. There are also non-numerical multi

pliers a, where a is an automorphism of G which is also an automorphism of 

the v-k-\ design. This concept was introduced by BRUCK [4] but no multiplier 

theorem has been found for these. 

It is conjectured that conditions (i) plk-\, (ii) (p,v) = 1 are suf

ficient for p to be a multiplier, and the condition (iii) p >\is unnecessary 

If conditions (i) and (ii) are not sufficient for what values of v will p 

fail to be a multiplier? R. MCFARLAND [16] has proved a theorem which sheds 

some light on this question. 

He defines a quantity M(m) for every positive integer mas follows: 

M(1) = 1, M(2) = 7, M(3) = 3•11•13, M(4) = 2•3•7•31. Form~ 5 let 
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u = (m2-m)/2 and let p be a prime divisor of m with pe the highest power of 

p dividing m. Then if mis not a square let M(m) be the product of the 

distinct odd prime factors of 

(6.28) 
2 2e 2 u 

m,M (m /p ) ,p-1,p -1, ••• ,p -1. 

If mis a square let M(m) be the product, of the distinct prime factors in 

(6.28), including 2. 

THEOREM 6.4. (McFARLAND). Let D be a difference set with parameters 

(v,k,A,n) in an Abelian group G of order v and exponent v*. Let 

for some integer n1 where the pi's are distinct primes. Suppose there are 

integers t,f1 , ••• ,fs such that 

If either 

f * = p s (mod v ) • 
s 

then tis a multiplier of D. 

There are a number of results based on the factorization (6.8) of n in 

various cyclotomic subfields of the v-th roots of unity. These tend to be 

highly technical and depend on the theory of the prime ideal factorizations 

in these fields. Nevertheless, many of the consequences can be described in 

relatively simple terms. Most of these results are due to work of MANN [17], 

TuRYN [25,26] and YAMAMOTO [28]. 

These results are best described by some special terminology. If a, b, 
c c+l c . care integers (c ~ 0) and a divides b while a does not, then a is 

said to strictly divide b. Let p be a prime and let pe strictly divide w, 

so that w = pew1 with (p,w1) = 1. If there exists an integer f > 0 such that 

pf= -1 (mod w1) then pis said to be self-conjugate modulo w. If all the 

prime divisors of an integer mare self-conjugate modulo w, then mis said 

to be self-conjugate modulo w. 
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THEOREM 6.5. (MANN [17]). Let w > 1 be a divisor of v and assume a non

trivial, v,k,).. differenae set exists with w-muZtipZier t .:: 1. Let p be a 

prime divisor of n for whiah (p,w) = 1. If there exists an integer f.:: 0 

suah that tpf a -1 (mod w), then n is striatZy divisible by an even power 

of p. If v* is the e:x:ponent of G and v* = w, then there is only the trivial, 

differenae set with k = v. 

The BRUCK-RYSER-CHOWLA theorem [S,6] asserts that for the existence of 

a symmetric design with parameters v, k,).. it is necessary that 

(i) if vis even, n = k-).. is a square; 

(ii) if vis odd there exists a solution in integers x, y, z not aZZ zero of 

Condition (i) was first fou!td by SCHUTZENBERGER [22]. 

If there is a v, k,).. difference set then further equations of this 

type must be solvable. 

THEOREM 6.6. (HALL & RYSER [14]). If there is a ayaZia v, k,).. differenae 

set then the foZZowing equation has solutions in integers x, y, z not aZZ 

zero 

(6.29) 

where w is any odd divisor of v. 

THEOREM 6.7. (YAMAMOTO [28]). If there is av, k,).. AbeZian differenae set, 

if q is an odd divisor of v, and if r is a prime suah that re striatZy 

divides n, then the foZZowin~ equation is solvable in integers x, y, z not 

au zero 

(6.30) 

THEOREM 6.8. (TuRYN [26]). Assume a non-trivial, AbeZian v, k,).. differenae 

set exists; Let m2 divide n and suppose that m > 1 is self aonjugate 

modulo w for some divisor w > 1 of v. If (m,w) > 1 then m :,; v/w. If 

(m,w) > 1 then ms 2r-lv/w, where r is the nurriber of distinat prime faators 

of (m,w). 

THEOREM 6.9. (MANN [17]). If Pl (v,n), and if v = pev1, and pf a -1 (mod v1) 

for sane f -== 0 there is no ayaZia v, k, ).. differenae set. 
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THEOREM 6.10. (TuRYN [26]). There is no cyclic difference set with v 
2 2 'f , • k = 2m ±m, A= m ±m ~ m ~s a pnme power. 

2 4m , 

Most of these are non-existence theorems. The author [12] in 1956 

studied cyclic difference sets with 3 ~ k ~ 50 and was able to determine 

existence or non-existence in all but 12 cases whose parameters are given 

here: 

V k A n V k A n 

45 12 3 9 120 35 10 25 

36 15 6 9 288 42 6 36 

(6.31) 96 20 4 16 100 45 20 25 

64 28 12 16 208 46 10 36 

175 30 5 25 189 48 12 36 

171 35 7 28 176 so 14 36 

These 12 cases in part inspired the efforts to find non-existence theorems. 

Theorems 6.9 and 6.10 exclude all of these except (v,k,A,n) = 171,35,7,28 

which is ruled out by theorem 6.5 with p = 2, t = 1 and the congruence 

29 = -1 (mod 171) with w = v* v, and (v,k,A,n) = 120,35,10,25 which is 

ruled out by theorem 6.8 with m = 5, w = 30 since 5 = -1 (mod 6), (m,w) = 5 

and so r = 1, but we do not have 5 ~ 2°,120/30 = 4. 
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AND GENERALIZED POLYGONS *> 

D.G. HIGMAN 

University of Michigen, Ann Arbor, Mich. 48104, USA 

A high point in the combinatorial approach to the theory of finite per

mutation groups is WIELANDT's theory of invariant relations, culminating in 
2 his theorem on groups of degree p [16]. In section 1 we give a few rudiments 

of WIELANDT's theory in the context of the_theory of G-spaces, illustrating 

the concepts by a proof, which seems first to have been made explicit by 

R. LIEBLER [12], of a theorem of ALPERIN [1]. 

In section 2 we axiomatize certain combinatorial aspects of the theory 

of G-spaces, defining the class of combinatorial structures which we call 

aoherent aonfigurations [7,8,9] and listing some results about these from 

[9]. Association schemes as defined by BoSE & SHIMAMOTO [2] are a special 

class of coherent configurations. 

In section 3 we turn to generalized polygons, which were introduced by 

J. TITS in connection with the problem of classifying finite groups with 

{B,N)-pair {cf. [3,6,14]). Here we apply the results listed in section 2 

to generalized polygons, obtaining a proof {essentially that of KILMOYER & 

SOLOMON [11]) of the FEIT-HIGMAN theorem, and a proof thats s t 2 for gen

eralized quadrangles and octagons having s+1 points on each line and t+1 

lines through each point, with t > 1. 

The author is happy to express thanks to J.E. McLAUGHLIN for suggestions 

which simplified section 3, especially for the use of Lagrange interpolation. 

1. G-SPACES AND INVARIANT RELATIONS 

X and Y will be finite non-empty sets. We regard a subset f of Xx Y 

as a relation from X to Y, and put f~ = {(y,x) I (x,y) e f} {the aonverse 

Research supported in part by the National Science Foundation. 
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of fl and f(x) = {y E YI (x,y) E f} for x EX. 

An action of a group G on Xis a map xxG ➔ X, (x,g) ~ xg, such that 

x(gh) = (xg)h and xl = x for all x EX and g,h E G, where 1 is the identity 

element of G. Specifying an action of G on Xis equivalent to specifying a 

homomorphism of G into the symmetric group lx on x. 

AG-space is partitioned into its G-orbits, which are the equivalence 

classes under the equivalence relation: x ~ y if and only if xg = y for 

some g E G. AG-space is transitive if there is just one G-orbit. 

A subset Y of a G-space Xis invariant under G if Yg = Y for all 

g E G. Then G acts on Y and the G-orbits in Y are G-orbits in X. The G

orbits in a G-space X are transitive G-spaces. For x EX, the subgroup Gx 

= {g E GI xg x} of G is called the stabilizer of x in G. 

If X and Y are G-spaces, then so is Xx Y under the componentwise 

action ( (x,y) ,g) ,.... (xg,yg). A relation F £ XxY which is invariant under this 

action is called an invariant relation from X to Y. If 0 is the totality 

of G-orbits in Xx Y, then the invariant relations from X to Y are just the 

unions of members of 0. 
Assume from now on in this section that x and Y are transitive G-f3paces. 

Choose x EX and y E Y. Then {f(x) I f E O} is the partition of Y into G -
X 

orbits and {f"(y) I f E O} is the partition of X into G -orbits. Thus 
y 

f(x) +➔ fu (y), (f E 0) 

is a one-to-one correspondence between the G -orbits in Y and the G -orbits 
X y 

in X. The lengths lf(x) I and lfu(y) I of corresponding orbits are proportional 

since Ix 11 f (xl I = I Y 11 f" (yl I = If I • 

We illustrate these concepts as follows. Suppose that F = xxY is an 

invariant relation. Then Fis partitioned into G-orbits F = U f with 
fEOF 

OF = 0, and Fu= fE~ f". Taking (x,y) E F we have that 
F 

f(x) +➔ fu (y), 

is a one-to-one correspondence between the Gx-orbits in F(x) and the Gy

orbits in Fu (y). 

To apply this, start with a transitive G-space X, choose a EX and 

a subgroup Hof Ga' and construct a transitive G-space Y and an invariant 

relation Fas follows: 



Y is the totality of conjugates Hg 

acting on Y by conjugation, 

Then (a,H) E F, 

-1 
g Hg (g E G) of Hin G, with G 

F(a) is the totality of conjugates of H which are contained in G, 
a 

GH is the normalizer NG(H) of Hin G (NG(H) = {g E GI Hg= H}), 

and 

Fv(H) is the set of fixed points of Hin G. 

It follows therefore, that 
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THEOREM 1.1. (ALPERIN [1]). If Xis a transitive G-space, a E x,and His a 

subgroup of G, then there is a one-to-one correspondence between the 
a 

conjugate classes in G of conjugates of H which are contained in G and the 
a a 

NG(H)-orbits of fixed points of H. 

Finiteness plays no essential role in this proof of ALPERIN's theorem. 

In addition to the corollary in [1], theorems of JORDAN [15; 3.5-3.7], 

MANNING [15; 3.6'] and WITT [15; 9] are immediate corollaries of theoreml.1. 

This proof of ALPERIN's theorem seems first to have been made explicit by 

R, LIEBLER [ 12]. 

2. COHERENT CONFIGURATIONS 

As suggested by section 1, we consider configurations (X,O) consisting 

of a (finite) non-empty set X and a set O of binary relations on x2 . Thus 0 
is a subset of the power set P(x2) of the cartesian square x2 of x. There 

is no loss in generality in the restriction to relations on a single set, 

since, for example, a relation from X to Y can be regarded as a relation 

on the disjoint union of X and Y. We put R equal to the boolean subalgebra 
2 

of P(x) generated by 0. If f 1,f2 , ••• ,fs E O and x,y Ex, an (f1 , .•• ,fs)-

path from x toy is an (s+1)-tuple (x1, ••. ,xs+l) such that x1 = x, xs+l y 

and (xi,xi+l) E fi, 1 ~ i ~ s. We call (X,O) coherent if the following 

axioms (I) through (IV) are satisfied. 

(I) 

(II) 

2 0 is a partition of x. 
I = { (x,x) I x E x} E R. 
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(III) 

(N) 

f € 0 implies fv € 0. 

For all f,g,h € 0 and (x,y) € h, the number of (f,g)-paths from x to 

y is independent of the choice of (x,y) € h. 

The number of (f,g)-paths from x toy is lf(x) n gv(y) I and can be 

denoted by afgh for (x,y) € h if (X,0) is coherent, in which case the non

negative integers afgh are the intersection numbers of (X,0). The number 

r = IOI is called the rank. 
2 

If Xis a G-space for a group G and O is the set of G-orbits in X, 

then (X,0) is coherent. We refer to this situation as the group case. 

A coherent configuration is homogeneous if I€ 0 and syrronetric if the 

pairing f i-+ fu (f € 0) is trivial, i.e. if every f € 0 is symmetric. A sym

metric configuration is necessarily homogeneous. In the group case, homo

geneity is equivalent to transitivity of the G-space. 

Symmetric coherent configurations are equivalent to association schemes 

as defined by BoSE & SHIMAMOTO [2]. 

The boolean algebra R of a coherent configuration is a semigroup under 

composition and the idempotents in Rare of particular interest. We do not 

go into this here but turn at once to the adjacency algebra, which is the 

centralizer algebra in the group case. 
2 

We denote by Mat~ X the totality of matrices¢: X +~,regarded as an 

algebra over~ with respect to matrix (i.e. pointwise) addition and matrix 

multiplication. For f € 0, 1f: x2 +~will be the characteristic function 

off, or, otherwise thought of, 1f is the adjacency matrix of the graph 

(X,f). If (X,0) is coherent, then the set B = {1f I f € O} is a basis of a 

subalgebra A of Mat~ x, called the adjacency algebra of (X,0). 

(X,0) will be called corronutative if A is commutative. A symmetric 

configuration is necessarily 9ommutative and a commutative configuration is 

necessarily homogeneous. As used by DELSARTE [4], the term association 

·scheme is equivalent to commutative configuration. Section 3 will illustrate 

the importance of the non-commutative case. 

For applications we often need the following translation of the axioms 

(I) through (IV). 

THEOREM 2.1. Let B be a set of non-zero (0,1)-matrices in Mat~ x such that 

(1) 1 = I¢EB ¢ is the all 1 matrix, 1(x,y) = 1 for all x,y € x, 
(2) the identity matrix is a sum of members of B, 

(3) ¢ € B implies that ¢t € B, and 

(4) B spans a subalgebra A of Mat~ x. 



Then (X,0) with O ={supp¢ I ¢EB}, is a coherent configuration with 

adjacency algebra A. 

Now we list some basic facts about A, :referring to [9] for proofs. 

THEOREM 2.2. A is semisimple. 
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THEOREM 2.3. There is a unitary matrix u effecting a complete reduction of 

A, i.e. such that for all¢ EA, 

where l 1 , .•. ,lm are the inequivalent irreducible representations of A. 

We put ei = degree of li and call zi the multiplicity of li. The char

acter i;i of A afforded by l. is defined by~-(¢) trace li(¢). We have 
2 i i 

i;i (I) = ei and I:=l ei = r, I:=l eizi = !xi. 

We write l (¢)=(a~.(¢)) and list the a~.: a 1,a2 , ••. ,a. 
a iJ iJ r 

write ax= aaji and hA c z. For f € 0 and x € domain f, lf(x) I 

a 
If aA = aij' we 

a ~ 1 
of X and we put vf = !f(x) I and ~f = m ~fu• 

is independent 

There is a distinguished irreducible character of A of degree 1 called 

the principal character. In the homogeneous case this means that if we 

choose a notation so that i;: 1 is the principal character, then e 1 = z 1 = 

and i; 1 (~f) = vf for all f € 0. 
Of fundamental importance are the Schur relations 

(2 .1) 

which imply the orthogonality·relations 

(2.2) 

(2.3) 

Assume that l (¢*> 
a 

l (¢)* for all a and¢, or equivalently, that 
a 

for all f E 0,1 ~ cr ~ r. 

This will hold if the complete reduction of A is afforded by a unitary 

matrix. Then we have the Krein condition 
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(2.4) 

Choose A andµ, 1 s A,µ s r, such that A= I andµ 

put 

Then C 
a 

I 
f€0 

aA (~f) aµ(~f) ~ 

lfl 2 

a = (c1j) is hermitian positive semidefinite. 

(Actually (2.3) is needed only for the a0 occurring in the definition of Ca 
to have this conclusion for a particular Ca.) (2.4) extends a result of 

L.L. SCOTT Jr. [13]. 

3. GENERALIZED POLYGONS 

An incidence struatul'e (P,L,F) consists of two disjoint non-empty sets 

P and Land a relation F: PxL. The members of the sets Pu L, P, Land F 

will be called eZ.ements, points, tines and :(lags respectively. Two elements 

x and y are incident if (x,y) €Fu Fu, so the flags are the incident point

line pairs. An incidence structure can be represented by a bipartite graph 

in which the vertices are the elements and the edges are the flags. 

A path of Z.ength d from an element x to an element y is a (d+l)-tuple 

(x0 ,x1, ... ,xd) of elements such that xi-land xi are incident for all i, 

1 sis d. The distanae p(x,y) between two elements is the length of the 

shortest path from x toy, or m if no such path exists. 

A genePaZ.ised n-gon, where n is an integer> o, is an incidence struc

ture (P,L,F) satisfying the following two conditions for all elements x and y: 

(A) for each x, the maximum distance p(x,y) is n; 

(B) if p (x,y) < n, then there is exactly one path of length < n fromx toy. 

A genePaZ.ised poZ.ygon is a generalized n-gon for some n. The general

ized polygons considered here'will be assumed to satisfy the following addi

tional condition: 

(C) each line is incident with the same number s+l of points and each point 

is incident with the same number t+l of lines. 

The generalized polygons withs= t = 1 are just the ordinary polygons. 

We asswne from now on that st> 1. According to the FEIT-HIGMAN theorem (to 

be proved below as theorem 3.1), n €{3,4,6,8,12} ands= 1 or t = 1 if n 12. 

A generalized triangle is the same thing as a projective plane. There is a 

fairly extensive literature about generalized quadrangles, but very little 

seems to be known about generalized n-gons with n > 4. Simple groups of 

Lie type of rank 2 act on generalized polygons. These groups are listed at 



the end of the section. 

Note that the duaZ {L,P,F) of a generalized n-gon is a generalized 

n-gon. 

33 

We now construct a coherent configuration based on the set F of flags 

of a generalized n-gon {P,L,F), and systematically apply the results out

lined in section 2. For this we need to determine the irreducible represen

tations of the adjacency algebra. 

If x € F, then x = {x1,x2) with x1 € P and x2 € L. We start with the 

symmetric relations 

and 

Composing relations in the usual way we see that s 2 I or Su I according 

ass= 1 ors> 1, T 2 = I or Tu I acco~ding as t = 1 or t > 1, and that the 

2n relations 

S, ST, STS, ••• , ~• 
n-1 

I ~=~ 
. n n 

T, TS, TST, ••• , ~ 
n-1 

constitute a partition O of F2• This uses only the conditions (A) and (B). 

Put A= ~sand B = ~T. We readily verify that for each f = ••• STS ••• in 

0, ~f = ••• ABA •••• In particular, therefore 

(3.1) •~•••,= BAB ••• 
n n 

At this point we invoke condition {C) to obtain the relations 

(3.2) 2 A = (s-l)A + sI and 
2 

B = (t-l)B + tI. 

It follows that the matrices ~f' f € 0, constitute a basis of a subalgebra, 

A of Mat~ F, and hence by theorem 2.1 that (F,0) is a homogeneous coherent 

configuration with adjacency algebra A. Moreover, A~ U and B~ V will deter

mine a matrix representation of A if and only if U and V are matrices such 

that the conditions (3.1) and (3.2) are satisfied with u and Vin place of 

. A and B. 
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First we consider the !-dimensional representations of A. 

Case n = 2m. In this case A has four distinct linear characters i; 1 , ••• ,i; 4 : 

A B 

1;1 s t 

1;2 -1 -1 
(3.3) 

1;3 s -1 

1;4 -1 t 

The principal character is i; 1 , so 

that is: 

(3.4) if n 2m, then )F J 
(st)m - 1 (l+s) (l+tJ 

st - 1 

Case n = 2m+1. Here there are two distinct linear characters i; 1 and i; 2 as in 

the first two rows of (3.3). From the relation (3.1), 

m+l m m s t = i; 1 ((AB) A) 
m m+l 
st so 

(3.5) if n is odd, thens t. 

Next we determine the 2-dimensional irreducible representations of A. 
It turns out to be sufficient to find the real irreducible representations 

with composition factors affording i; 1 and i; 2 • Thus we look for real matrices 

with u f O, such that V has trace t-1 and determinant -t, i.e. such that 

(3.6) b+c = t-1 and u2 = bc+t. 

Since ( 3. 6) implies ( 3. 2) , A>+ U, B >+ V will be a representation if and 

only if 

(3.7) (UV)m (VU)m if n 2m and (UV)mU V(UV)m if n 2m+1 • 



We need the products 

(
-b 

UV = SU 

uw 

-u) 
SC I 

-su) 
2 I 

S C 

W = (-b SU) 
-U SC 

2 2 
(
-b +su (-b+sc}u) 

WV= 2 2 • (-b+sc}u -u +sc 

Assume that u and V satisfy (3.6} and (3.7}, u ~ O. The matrices UV 

and W do not commute, otherwise we would have b2+u2 = b2+s2u2 and 
2 bsu - usc =bu+ s uc, whences= t = 1, contrary to assumption. 
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By (3.7}, (UV}r = (W}r with r = n/2 or n according as n is even or 

odd. But (UV}r =al+ b(UV},a,b €«,sob~ 0 would imply that UV and W 

commute. Hence (UV}r is a scalar matrix, sd the similar matrices UV and W 

have distinct eigenvalues A andµ= ~A with ~r = 1, ~ ~ 1. 
2 2 ~ Now the determinant of UV is su -bsc = s(u -be}= st, so A= vst8 and 

·µ = /st'e-l with e2r = 1 and 8 ~ 8-l. Since trace UV= -b+sc = Af(8+8-1}, 

(3.8} 
{ (s+l)b 

(s+l)c 

~ -1 s(t-1) - vst(8+8 } , 

~ -1 t-1 + vst(8+8 ) • 

If Xis a 2x2 matrix with distinct eigenvalues A,µ, then fork=l,2, ••• , 

In particular, therefore, for X = UV or Wand k=l,2, ••• 

(3 .9) 

We use (3.9} to determine the character of our representation. We have 
~ -1 trace U s-1, trace V = t-1, trace UV= trace W = -b+sc = vst(8+8 }, 

trace UW = b+s2c = s(t-1} + (s-1}M(8+8-1}, and trace WV= -b2 + (s-1}u2 + 
2 2 2 + SC = -b + (s-l}(bc+t} + SC = (s-l}t + (b+c} (-b+sc} = 
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(s-l)t + (t-1)/st(6+6- 1). Hence by (3.9), 

and 

k 
trace (UV) 

trace (UV)ku 

r-:, k-1 -(k-1) - vst(6 -6 ) (s-1)} = 

s k -k 
+ rst' <t-ll c0 -0 J} 

The trace of V(UV)k is obtained from that of (UV)kU by interchangings and 

t. Thus, ifs is the character afforded by our representation, then 

(3.10) 

k k ,-:-, k k -k 
s((AB)) = s((BA)•) = (vst) (6 +6 ) , 

s ( (AB)kA) = (v'st)k {(s-1) (6k+1_6-(k+1)) 
0 - 0-1 

= (Af)k {(t-1) (6k+l_9-(k+l)) 
0 - 0-1 

s k -k 
+ ✓s'2 (t-1)(6 -0 J}, 

Now choose band c according to (3.8), with 02r = 1, r = n/2 or n 

according as n is even or odd, 6 = cosa+isina F ± 1. Then -b+sc = 

Af(6+6-l) = 21st' cosa, so bc+t =a~ 0 would imply that -b2 + s(-t+a) 

= 2bAf cosa, or (b + Af cosa) 2 - st sin2a = sa ~ O, and hence sina = O, or 
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6 = ±1, contrary to assumption. Hence the solutions of u2 = bc+t are real. 

For such au the matrices u and V satisfy (UV)r = (VU)r. We consider the 

cases of even and odd n separately. 

Case n = 2m. In this case we have (UV)m = (VU)m = (fsi)m6mI and hence A1-+ u, 
B>+ Vis a representation. We obtain m-1 inequivalent irreducible represen

tations of degree 2 on taking Ea primitive n-th root of unity and 6 = Ei, 

i=l,2, ••• ,m-1. The sum of the squares of the degrees of the irreducible 

representations of A obtained so far is 4+4(m-1) = 2n, the dimension of A, 
so all irreducible representations are accounted for in this case. 

We now apply the orthogonality relations (2.2) to determine the multi

plicity z of each irreducible character p. In our present case we have 

m-1 k 2 k 2 k 2 m 2 .eJ.!.1..1 FI = l { 2P ( (AB) ) + p ( (AB) A) + p (B (AB) ) } + p ( (AB) ) - ( 1) 2 
z k k k m p 

k=O (st) s (st) (st) t (st) 

For the linear characters t 1, ••• ,t4 the respective multiplicities are 

zl 1, z = 2 
(st)m, 

s s2m_1 
ifs z3 Z4 = - -2-- t , m 

(3.11) s - 1 
m s - t (st)m - 1 

} Z3 t --- st - 1 m -tm ifs 'F t • s 
m s - t (st)m - 1 

Z4 s --- st- 1 m -tm s 

Now take p = t as in (3.10). Then 
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Hence 

(3.12) 

Let£ be a primitive n-th root of unity, take 0 

(3.12) and add to obtain that 

£ and 0 -£ in 

and hence that (£-£-1) 2 €~-Since£ is a primitive n-th root of unity with 

n = 2m ~ 4, it follows that n = 4,6,8 or 12. 

Now 

(s-1) (t-1) 
vst €~. 

0 + 0- 1 
Assume thats> 1 and t > 1, then ,..-;-, €~and we obtain the indicated 

. vst 
solution on taking the indicated choice of 0: 

0 conclusion 

n = 6 primitive 6-th root st a square 

n = 8 primitive 8-th root 2st a square 

n = 12 primitive 12-th root 3st a square 

primitive 6-th root st a square 

In particular, if n 12, thens 1 or t 1. 



The multiplicities of the irreducible characters of degree 2 in the 

cases n = 4, 6 and 8 are as follows: 

n = 4. 

stlFI z = .....,.---------
s 2 t + t 2s + s + t 

z = stlFI 
± 2{s2t + t 2s - st+ s + t ± (s-1) (t-1) /st} 

n = a. 

z± = 
4{s2t + st2 -

stlFI 

2st + s + t ± (s-1) (t-1)/2st'} 

z = stlFI 

2{s2t + st2 + s + t} 

Now we turn to the case of odd n. 
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Case n = 2m+1. Here we can verify directly using (3.9) that (UV)II\J = V(UV)m 

if and only if en = 1. Taking E to be a primitive n-th root of unity and 
i 8 = E , i=l,2, ••• ,m, we obtain m inequivalent irreducible representations 

of degree 2. With the two irreducible representations of degree 1, this 

accounts for all.irreducible representations of A. 
Since s t, the formulas (3.10) become 

By (2.2) 

2IFI --= z 

m 
2 I 

k=O 

sk(s-1) (ek+1_8-(k+1) + 8k_8-k) • 

8 - e-1 

r; ( (AB)kA) 2 

2k+1 
s 

r; ( (AB)mA) 2 

2m+1 
s 
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2 
~ 

s 

m 

I 
k=O 

2n -1 (s-1) 2 
2 (n+2) - 4 - 1 (6+6 +2)-s-- = 

(6-6- i2 

2n{1 -
2 

~} 
s 

-1 
Hence 6+6 E ~, and taking£ to be a primitive n-th root of unity, this 

implies that n = 3. 

Of course the main conclusion from our discussion so far is the 

celebrated theorem of WALTER FEIT and GRAHAM HIGMAN [S,11], 

THEOREM 3.1. If a generalized n-gon has s+l points on each line a:nd t+l 

lines through each point, with st> 1, then n = 3,4,6,8 or 12. Ifs> 1 

a:nd t > 1, then 

(1) st is a square in case n 

(2) 2st is a square in case n 

(3) n ,f 12. 

6, 

8, a:nd 

The methods under discussion here do not give any results for project

ive planes, so we assume from now on that n is even. 

To apply the Krein condition to the linear character s 3 we need the 

values of s 1 and s 3 : 

n=4 n=6 n=8 

sl 1 st st st s 2t st2 s2t2 s2t2 s3t2 s2t3 s3t3 s3t3 s4t3 s3t4 4 4 
s t 

1 s -1-s 
2 2 2 3 2 3 3 4 3 4 

s3 -s -s s s s s -s -s -s -s s s 

The condition is 
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3 
3 3 6 3 6 

I 
1;3 C<I> fl 

1 
s 1 

2 
s s s s 

4 0 $ 
2 

+-- t2 - 22- 42+""°T4+ 44 n = 2 
f€0 i; 1 (<!> fl s s t s t s t s t 

6 9 6 9 
s s s s 

6 +44+ 
s6t4 46-66 n = 

s t s t s t 

n = 8 

where the sum stops as indicated in the respective cases. 

In case n = 8 this becomes 

1 2 1 2 1 2 2 1 3 
1 + s -

t2 
(l+sl + 4 s(l+sl - - s (l+sl + S s (l+sl ~ Q I 

t t6 t 
i.e. 

ts - t 6 (l+sl 
4 

+ t s (l+sl 
2 2 

- t s ( l+sl 
3 

+ s ~ 0 , 

i.e. 

8 6 6 4 4 2 2 2 3 (t -t l - (t -t ls+ (t -t ls - (t -lls ~ O, 

6 4 2 2 3 2 4 2 
Assuming t > 1, therefore, t -t s+t s -s ~ O, i.e. (t -s) (t +s) ~ 0. 

Hences S t 2 • In case n = 4 we obtain the same inequality, but for n = 6 

there is no conclusion. We have proved 

THEOREM 3.2. If a generalised quadrangle or octagon has s+l points on eaoh 

line and t+l lines through eaah point, with t > 1, thens s t 2 • 

The simple groups of Lie type of rank 2 act on generalized polygons. 

We list these groups, their Weyl groups Wand the parameters n,s,t for the 

corresponding generalized polygons which we refer to as generalized polygons 

of Lie type, 
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type identification w n s t 

A2 (q) PSL3 (q) L3 3 q q 

B2(q) PSP4 (q) DB 4 q q 

A3(q) PSU4 (q) DB 4 
2 

q q 

A4(q) PSU5 (q) DB 4 
2 3 

q q 

G2(q) Dickson's group Dl2 6 q q 

3 triality group 6 
3 

D4 (q) D12 q q 

F4 (q) 8 
2 

Ree group D16 q q 

From the table we see that theorem 2 gives the right inequality to 

.quadrangles and octagons. The irreducible representations of A have been 

obtained in a form satisfying (2.3), and, using (3.9) we can easily write 

out the full matrix A= (aA(~f)) and apply the full force of the Krein 

condition in case n = 6. Unfortunately there is no conclusion for this case, 

and worse yet, we have no way of determining failure short of carrying 

through the entire procedure. We originally proved theorem 3.2 for quadran

gles by a quite different method [10] which can be extended to give the 

result for octagons, but also gives no result for hexagons: Maybe there are 

hexagons withs> t 3 • Although there are many known quadrangles which are 

not of Lie type, the only known generalized hexagons and octagons (satis

fying (C)) seem to be those of Lie type. 
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2-TRANSITIVE DESIGNS 
*) 

W.M. KANTOR 

University of Oregon, Eugene, Oregon 97403, USA 

INTRODUCTION 

A great deal of work was done on 2-transitive groups during the last 

century and the beginning of this one. There has been a recent resurgence 

of interest in them for several reasons. First of all, many finite simple 

groups either have 2-transitive permutation representations or are closely 

related to groups that do. Also, recent work on finite simple groups has 

made the study of permutation groups more accessible. Finally, the close 

relationship between these groups and finite geometries has been recognized 

and has benefitted both group theory and geometry. 

This survey will be concerned with designs having 2-transitive auto

morphism groups. A complete account of the relationship between designs and 

groups, as it was known in 1968, is contained in the beautiful book of 

DEMBOWSKI [40]. However, quite a lot has been done since then. 

Since this is a combinatorics conference, I will try to minimize the 

group theory. However, the interplay between the groups and the designs 

they act on is fundamental to the subject: the fact that the automorphism 

group G of a design V permutes both the points and blocks of V suggests 

that these two actions should be played off against one another. Moreover, 

the manner in which designs o,ccur in group-theoretic situations is a basic 

source for geometric problems and geometric theorems. 

The difference between the study of 2-transitive designs and 2-tran

sitive groups seems to be as follows. In the former case, one makes an 

assumption concerning the set stabilizer (or point-wise stabilizer) of a 

block: its transitivity properties, index in G, etc. In the latter case, 

one assumes structural properties of the stabilizer of one or more points. 

Just how fine a distinction this is can be seen from papers of O'NAN [128, 

135], HARADA [63], AsCHBACHER [2,5], SHULT [149], KANTOR, O'NAN & SEITZ 

[107], and HERING, KANTOR & SEITZ [66], where designs are explicitly or 

*) The preparation of this paper was supported in part by NSF Grant GP 37982X. 
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implicitly obtained in the course of "purely" group-theoretic investigations. 

So as not to give a false impression, it should be noted that the re

lationship between permutation groups, geometry and combinatorics has been 

known for a long time - see the books of BURNSIDE [18] and CARMICHAEL [32]. 

There are also important relationships between projective planes and 

groups. However, I will not discuss collineation groups of projective, 

affine, or inversive planes at all - that would require a survey paper of 

its own. Incidentally, most of the problems and methods considered here 

become meaningless or trivial in the case of such planes. I hope to demon

strate the richness of the geometric nature of a subject spawned in part 

by, but quite different from, projective planes. 

The organization of this paper is as follows. Section 1 consists of 

little more than geometric and group-theoretic notation. Section 2 dis

cusses the elementary, well-known construction of designs from 2-transitive 

groups. 

In the remaining sections, G will be an automorphism group 2-transitive 

on the points of a design V. One natural approach is to first try to find V, 
and then find G. Unfortunately, even if Vis known to be a projective or an 

affine space, it is still very difficult to determine G (see section 3). 

This fact is, in turn, undoubtedly partly to blame for the difficulties 

encountered in the situations described in sections 6-10. 

Section 4 contains a brief discussion of the geometry of the Mathieu 

groups. These designs and groups will arise in later sections. 

The subject matter of this survey properly begins in section 5. There, 

and in the remaining sections, a variety of possible restrictions on 2-tran

sitive designs are discussed. In each case, classical projective or 

affine spaces satisfy the adqitional hypothesis and partly motivate its 

study. With the exception of section 5, the goal will be the determination 

of V, not of G. 

Section 5 is devoted almost exclusively to results of O'NAN. The main 

geometric application of his striking classification theorems is to the 

subgroup of G fixing all the blocks through a point of V. 
HALL [58] considered the case where the 2-transitive design Vis a 

Steiner triple system. In section 6, a more general situation is studied: 

A= 1, and the stabilizer of two points fixes all points on the line 

through them. 
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In section 7, it is assumed that the pointwise stabilizer of a block 

of Vis transitive on the complement of the block. An added combinatorial 

bonus here is the relevance of geometric lattices. 

However, the richest combinatorial structure occurs in section 8, 

where Vis assumed to be a symmetric design. As the length of the section 

indicates, more work has been done in this case than in any other. There 

are also several applications, which are discussed in sections 8 and 9; 

these include difference sets (section 8), Hadamard matrices (section 9), 

symmetric 3-designs (section 9), the suborbit structure of permutation 

groups (section 8), and the reducibility of certain complex polynomials 

(section 8). 

Section 9 briefly discusses symmetric 3-designs. Finally, section 10 

contains a variety of miscellaneous topics. An appendix lists the known 

2-transitive groups. 

Throughout the paper -and especially in section 10- I have occa

sionally digressed slightly from the main topic, In most cases, geometric 

questions related to 2-transitive groups are raised, even if designs are 

not involved. In fact, it would be absurd to claim that the only relation

ship between combinatorics and 2-transitive groups is through designs. The 

best examples of this, which will not be described here, are the graph 

extension theorem of SHULT [147] and the growing theory of 2-graphs 

(SEIDEL [143]; HIGMAN [71]; TAYLOR [155,156]). Also, if G is 2- but not 

3-transitive, G determines graphs on S - {x} which have yet to be studied. 
X 

Probably the 1110st basic problem in the combinatorial approach_to 2-tran-

sitive groups is to find ways to use groups, designs, and graphs 

simultaneously. Thus far, this problem has been considered briefly in only 

two papers: SIMS [150] and O'NAN [133]. 

I am indebted to the following people for comments which helped in 

the preparation of this survey: P. CAMERON, M. FRIED, N. ITO, W. KNAPP, 

H. NAGAO, P, NEUMANN, and R. NODA. 

1, BACKGROUND 

A, Designs 

A design V consists of a set S of points ("varieties" of wheat in the 

original statistical context), together with certain subsets called bZoaks, 
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such that the following conditions hold for some integers v,b,k,r,A: 

there are v points, b blocks, k points per block, r blocks per point, and 

A blocks through any two distinct points. The following non-degeneracy 

conditions will also be assumed: v ~ k+2 > 4, and some k-subset of Sis 

not a block. The parameters v, b, k, r, A satisfy vr = bk and A(v - 1) = 

r(k - 1). Also, b ~ v (FISHER'S inequality). 

Vis a symmetric design if b = v, or equivalently, if r = k. The 

parameters v, k, A, and n = k - A then satisfy further restrictions (see 

DEMBOWSKI [40, § 2.1]), but these will not be needed. A Hadamard design is 

a symmetric design with v 2k+1. 

If xis a point of a design V, then V denotes the set S - {x} of 
X 

points together with the sets B - {x}, where Bis a block on x. Vis called 

an extension of V. 
X 

If Bis a block of V, then VB denotes the set of points of Band the 

sets B n c, where C is any block other than B. This is again a design if V 

is symmetric. 

The corrrplementary design V• of Vis the design having the same point 

set as V, and whose blocks are the complements of those of V. 
At-design is a design V such that each set oft points is in the same 

number At> 0 of blocks. If At= 1, Vis also called a Steiner system 

S(t,k,v). 

A line of V consists of the intersection of all the blocks containing 

two given points. Two points are contained in a unique line. While lines 

of a design can usually have different sizes, they will automatically have 

the same size in this paper. Note that, when A= 1, blocks are lines; in 

this case, I will use the more suggestive term line. Also, if A= 1, a 

subspace of Vis a set~ of points such that, whenever x and y are distinct 

points of~, their line is contained in~-

An automorphism of Vis a permutation of the points which also per

mutes the blocks. The automorphisms of V form a group Aut V, the auto

morphism group of V. The fact that Aut V permutes both the points and 

blocks is crucial. 

If Vis a symmetric design, the dual design V has the roles of points 

and blocks interchanged.Vis symmetric, with the same parameters as V. 
An antiautomorphism (or correlation) of Vis an isomorphism 6: V + V. Then 

6 induces an isomorphism V + V, also called 6, by acting on the points and 

blocks of Vas 6 does on the blocks of V. e is a polarity if e2 = 1 (i.e. 

if x E y6 implies y E x6 ). If g is in Aut V, so is e- 1ge. The group 
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(Aut VJ <9> contains Aut Vas a subgroup of index 2, and contains all anti

automorphisms of V. 
The following notation will be used for the classical geometries: 

PGe(d,q), 1 $ e $ d-1, denotes the design of points and e-spaces of PG(d,q); 

and 

AGe(d,q), 1 $ e $ d-1, denotes the design of points and e-spaces of AG(d,q). 

As usual, PG(2,q) = PG1 (2,q) and AG(2,q) = AG1 (2,q). The automorphism 

group of PG(d,q) is PfL(d+l,q). 

In section 7, geometria lattiaes will arise. These are (finite) lat

tices L such that each element is a join of points (i.e., atoms), and which 

satisfy the exchange condition: if x and y are points, and XE L, then 

x IX and y <xv X imply x < y v X. Each XE L then has a dimension 

dim(X), where dim(O) = -1, dim(X) = dim(Y) - 1 if X < Y is maximal in Y, 

and dim(X VY)+ dim(X A Y) $ dim(X) + dim(Y) (for all X,Y EL). Moreover, 

bases of X can be introduced as sets of dim(X) + 1 points of L, none of 

which is in the join of the rest. The usual replacement conditions then 

hold for bases. 

B. Permutation groups 

Let H be a group induaing a group of permutations on a finite set S of 

points. It is essential to allow the possibility that non-trivial elements 

of H induce the identity on S. H(S) denotes the (normal) subgroup of H 

consisting of those h EH fixing every point of s, that is, the pointwise 

stabilizer of s. HS denotes the group of permutations of s induced by H. 

Thus, HS;;;:, H/H(S). 

xh denotes the image of x ES under h EH. Xh denotes the image of 

x £sunder h EH: xh {xh I' x Ex}. 

Hx = {h EH I xh X} is the (set) stabilizer of x in H. Clearly, Hx 

contains the pointwise stabilizer H(X) of X, and HX induces the permutation 

group H~ ,;;;:,.HX/H(X) on x. It is convenient to abbreviate H{x} Hx. If, say, 

X,Y £ s then HXY = Hx n Hy. 

xH denotes the orbit of x under H: xH {xh I h EH}. The orbits of H 

partitions. 
H 

His transitive if x = S for some (and hence each) x. Clearly, His 

transitive on each of its orbits.His regular if it is transitive and 
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H 1 for some (and hence each) x. His primitive on s if His transitive 
X 

on Sand H is a maximal subgroup of H. Hist-transitive on s if it acts 
X 

transitively on the ordered t-subsets of S. In this case, Hx is (t-1)-

transitive on S - {x}. His sharply t-transitive if it is regular on the 

set of ordered t-subsets of S; fort~ 2, all such H have been determined 

(ZASSENHAUS [171,172]; JORDAN [89, pp.345-361]; HALL [57, pp.72-73]). 

The rank of a transitive group His the number of orbits of H. Thus, 
X 

having rank 2 is the same as being 2-transitive. An involution in His an 

element of order 2. 

C. Preliminary lemmas 

(1) ORBIT THEOREM. If G $ Aut V, then G has at least as many block-orbits 

as point-orbits, If Vis syrronetric, these numbers are the same (see 

DEMBOWSKI [40, p.78]). 

(2) If Vis a syrronetric design, then each g E Aut V fixes the same number 

of points and blocks (see DEMBOWSKI [40, p.81]). 

(3) If Vis syrronetric and 1 ~ g E Aut V, then g fixes at most ½v points 

(FEIT [44]). As noted in KANTOR [102], FEIT's proof shows that, if g 

fixes exactly iv points, then g is an involution and v = 4n. 

(4) Let H act as a pe:rmutation group on s. Let K $ H. Then the normalizer 

NH(K) of K is contained in the set-stabilizer HQ(K) of the set Q(K) 

of fixed points of K. Moreover, if g E G then Q(Kg) = Q(K)g 

(5) ORBIT LENGTH. If x = xH is an orbit of Hons, then lxl = IH:H I is 
X 

the index in Hof the stabilizer of x. 

(6) Suppose His as in 1B and let x and Y be orbits of H. If dis the 

g.c.d of lxl and IYI, and x Ex, then each orbit of H on Y has size 
X 

divisible by IYl/d. In particular, if d = 1 then G is transitive on Y. 
X 

2. CONSTRUCTIONS 

A. Basic construction 

(1) Let G be 2-transitive on the finite sets. Let B be any k-subset of s, 
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and asswne that G is not transitive on (unordeped) k-subsets of s .. 

Then the distinct sets Bg, g € G, are the biocks of a design 

V = V(G,S,B). 

PROOF. Each Bg has IBI = k points. If xg = y, then g sets up a 1-1-

correspondence between the blocks on x and those on y; this provides us 

with r. The same proof yields A. D 

(2) G ~ Aut V(G,S,B), and G is transitive on biocks. Hence, V(G,S,B) has 

b = IG:GBI biocks (see 1C(5)). In particuiar, V(G,S,B) is symmetric if 

and oniy if IG:GBI = v. 

Of course,-the trouble with this construction is that B, and hence V, 
may be totally unrelated to the action or structure of G. It is necessary 

to choose B carefully if Vis to provide information about G. This is what 

will be done in later sections. One can, for example, assume that Bis the 

set of fixed points of G , x ~ y, or that G(B) is transitive on S - B. xy 
In almost every case of interest, Bis an orbit of some subgroup of G, 

so that GB is transitive on B. Note that, if A= 1, then necessariiy GB is 

2-transitive on B. 

PROOF. If x,y,x',y' € B, x ~ y and x' ~ y', then any g € G such that 

xg = x' and yg = y' must fix B. D 

If Gist-transitive, then V(G,S,B) is clearly at-design. 

B. When is A= 1? 

Suppose V = V(G,S,B), where Bis the set of fixed points of some sub

set W of G (where x ~ y). ln this situation (as in the general one) it is xy 
natural to ask when A= 1. The simplest answer is due to WITT [169]: 

(1) A= 1 if wg s;.G and g € G impiy wg = w. 
xy 

PROOF. If x,y € Bg, then wg fixes x and y by 1C(4). That is, wg s._Gxy' 

so wg = w. Thus, Bg B. D 

This result has been used in a variety of circumstances. For example, 

if G is cyclic, it applies to every subgroup W ~ 1 of G fixing more xy xy 
than two points; this was very useful in the determination of all such 

groups (KANTOR, O'NAN & SEITZ [107]). The designs and groups that arise 
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here are very interesting. Assume that G does not have a regular normal 
3 2 

subgroup and that G has such a subgroup w. Then v = q + 1, r = q, and 
xy 

k = q + 1 for some prime power q. (In the terminology of DEMBOWSKI [40, 

p.104], these are the parameters of a unital.) There are just two possibil

ities. One is that G is PSU(3,q) or PGU(3,q), and the design consists of 

the absolute points and non-absolute lines of a unitary polarity of 
2 PG(2,q ) • (See O'NAN [128] for a detailed study of this design.) In the 

other case, q = ie+l for some e 2:: 0, and G is a group of Ree type (see 

WARD [163] and KANTOR, O'NAN & SEITZ [107] for some properties of G and 

the design); the case q = 3 will arise again in section 6, where the design 

is called V(4). 

There is, of course, an obvious t-design analogue of WITT's result. 

There are some other interesting conditions which imply A= 1. The 

most striking one is due to O'NAN [130]: 

(2) Suppose Bis the set of fixed points of w ~ G . Assume that no element 
xy 

of G - w is conjugate in G to an element of w. Then\= 1. 
xy X 

It is worthwhile to compare this with 2B(1). The main hypothesis there 

concerns conjugates of w, while in 2B(2) it concerns conjugates of elements 

of W. On the other hand, 2B(1) considers all conjugates, while 2B(2) only 

considers conjugates in Gx. 

The proof of 2B(2) is elementary, but not straightforward. The main 

application is as follows: 

(3) Suppose N is a normal subgroup of G , y -I x, N cf 1, and N fixes more 
X y y 

than two points. Then 2B(2) applies tow= N (O'NAN [130]). 
y 

PROOF. Suppose g E G. Ttlen wg n G 
X xy 

~ Ng n G = N 
xy y = w. □ 

Note that N fixes every block through x. Both 2B(2) and 2B(3) are 

crucial in the proofs of the theorems in section 5. 

(4) Suppose G < K < G and B = {x} u yK. Then V(G,S,B) has\ 1 if 
XY X 

either 

(i) for any three points x,y,z, G has an element interchanging y and 
X 

z (O'NAN, unpublished; ATKINSON [6]; at-design version has been 

found by NEUMANN [122]); or 

(ii) !Bl ~ 4 (O'NAN, unpublished). 
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A few comments are needed concerning 2B(4). If A= 1 for a given 

V(G,S,B), let x,y EB, x ,/. y, and set K=G ThenG <K<G .Thismakesthe 
xB. xy X 

hypothesis of 2B(4) seem more reasonable. 

One example of 2B(4i) is provided by the following unpublished result 

of SHULT (applied to H = Gx acting on X = S - {x}). Suppose His transitive 

on X, and some involution t EH fixes exactly one point. Then, if y,z EX, 

y ,f. z, there is a conjugate oft interchanging y and z. 

3. COLLINEATION GROUPS 

A. Projective spaces 

Let G be a collineation group of PG(d,q) which is 2-transitive on 

points. The only known examples are: G ~ PSL(d+l,q), the group of projec

tive collineations of determinant 1; and the peculiar but fascinating 

example G ~ A7 acting on PG(3,2). 

It seems unlikely that other examples exist, but this has been veri

fied in only a few cases. WAGNER [162] proved this ford~ 4, D.G. HIGMAN 

(unpublished) ford= 5,6, and KANTOR [102] ford= 7,8, or when d = s 0 for 

a prime divisors of q-1. The same conclusion holds if some non-trivial 

element of G fixesa(d-2)-spacepointwise (WAGNER [162], HIGMAN [68], 

KANTOR [102]). 

Here are two interesting properties of G. 

(1) If Eis a plo:ne, then G: aontains PSL(3,q) (WAGNER [162]). 

(2) If His a hyperplane, then GH is 2-tro:nsitive on s - H (KAi~TOR [93]). 

Additional (but technical) properties of Gare found in KANTOR [102]. 

(3) Since the example G ~ A7 'will arise in sections 6-8, it is perhaps 

worthwhile to discuss it in some detail. By one of the flukes of nature, 

A8 ,.;:, PSL(4,2) (see 4A(2) for a proof). Thus, PG(3,2) does indeed have a 

collineation group G ,.;:,A7 • Thus, A8 can be regarded as acting on the 8 co

sets of G, or on the 15·14/2 2-sets of points of PG(3,2). By 1C(6), G is 

transitive on these 2-sets. It follows that G is indeed 2-transitive. 

By 1C(5), if x ,/. y then jG I= 12. Take a point z not on the line L 
xy 

through x and y. It is easy to see that G cannot contain any non-trivial 

elation (= transvection), so G = 1. Again by 1C(5), G must be transi-
xyz xy 

tive (and hence even regular). on the 12 points not in L. 

It is now not difficult to prove Gx ~ PSL(3,2) and Gxy ~ A4 . 
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B. PERIN's results 

What happens if some kind of additional transitivity is assumed in 3A? 

This question was posed and almost completely answered by PERIN [139]: 

Suppose G is transitive on the t:ria:ngZes of points of PG(d,q). Then 

G ~ PSL(d+1,q), e:x:aept pePhaps if q = 2 and dis odd. (In 3A(3), the col

lineation group A7 of PG(3,2) was shown to be transitive on triangles.) 

If G is tPansitive on tetPahecJ,r,a, then G ~ PSL(d+1,q). 

The proof is ingenious and surprisingly easy. It depends solely on 

elementary number theory and elementary group theory. 

PERIN's results are certainly the strongest and most useful ones 

concerning 2-transitive collineation groups of finite projective spaces. 

They arise several times in later sections of this survey. They have also 

been useful elsewhere: they were involved in one of the first proofs used 

for the determination of the 2-transitive permutation representations of 

the groups PSL(n,q). This in turn led CURTIS, KANTOR & SEITZ [36] to the 

determination of the 2-transitive representations of all the finite 

Chevalley groups. 

c. Affine spaces 

(1) Now let G be a collineation group of AG(d,q) 2-transitive on points. 

Here, the question is whether G must contain the translation group V of 

the space. The only known counterexample is G ,:;;::,PSL(3,2) :;;;:.PSL(2,7) 

acting on AG(3,2). 

Suppose, for a given d and q, G must contain V. Then by 3A(2), 

each 2-transitive collineation group of PG(d,q) must contain PSL(d+l,q). 

The only d and q for which it is known that G > v must hold is d = s 0 

for a prime divisors of q-1 (KANTOR [102]). 

It is important to note that there are many 2-transitive groups 

G > V. The classification of these groups is equivalent to the classi

fication of finite groups of semilinear transformations transitive on 

non-zero vectors. 

(2) If G is also transitive on triangles, it can be shown that G > V, 

except perhaps if q = 2 and dis odd. If G is transitive on tetrahedra, 

then G > v. 
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D. Generalizations 

PERIN [139] studied the more general situation in which G is a collin

eation group of PG(d,q) transitive one-spaces. When combined with KANTOR 

[100], the result is that G is 2-transitive on points if 2 $ e $ d-2, 

except for groups of order 31•5 line-transitiveonPG(4,2); if 3 $ e $ d-3, 

then G ~ PSL(d+1,q) except perhaps if q = 2 and dis odd; if 4 $ e $ d-4, 

then G ~ PSL(d+1,q). 

Suppose next that G is a collineation group of AG(d,q) transitive on 

e-spaces, where 1 $ e $ d-1. It is then easy to see (by 1C(6)) that Gx is 

transitive on thee-spaces through x. If 2 $ e $ d-2, this essentially re

duces the problem to the one of the preceding paragraph. 

4. THE MATHIEU GROUPS 

The Mathieu groups will appear several times in the remainder of this 

survey. The following brief description of these groups and some of their 

properties is based primarily on WITT [169,170] and LUNEBURG [111]. 

(1) There are unique Steiner systems W22 = S(3,6,22), W23 = S(4,7,23), and 

w24 = S(5,S,24), discovered by WITT [169]. If xis a point of Wv' then 

(Wv)x = wv-1 for v = 24, 23, and (W22>x = PG(2,4). 

Aut W is (v-19)-transitive on points and transitive on blocks. 
V 

Write M24 = Aut W24 and M23 = Aut W23 • If x and y are in W24 , x ~ y, 

then (M24 ){x,y} = Aut w2; contains M22 = (M24)xy as a subgroup of 

index 2. The three groups M24 , M23 and M22 are simple groups, the 

"large" Mathieu groups. 

If x,y and z are distinct points of W24 , then (M24 )x = M23 , 

(M24)xy = M22' (M24){x,y} = Aut W22 = 
(M24 >{ } = PfL(3,4). Suppose Bis x,y,z 
and (M24 ) (B) is regular on S-B; here, 

of (W24 ) = PG(2,4) if x,y,z EB. xyz 

Aut M22' (M24> = PSL(3,4), and 
xyz B 

a block of W24 • Then (M24 )B ~ AS 

(M24 ) (B) induces an elation group 

(2) M24 provides an easy proof that AS:;;:. PSL(4,2). Namely, consider 

G = (M24 )B. By 4A(1), GB;;;:, AS. But G(B) is elementary abelian of order 



16, and is normal in G. It follows readily that AB is isomorphic to a 

subgroup of the automorphism group PSL(4,2) of G(B). Since 

IABI = jPSL(4,2) I, this proves AB~ PSL(4,2). 
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(3) Any two blocks Band C of W24 meet in 0, 2 or 4 points. M24 is transi

tive on the ordered pairs of blocks whose intersections have a fixed 

size. Also, if IB n cl= 4, then the symmetric difference B + C is a 

block. 

Any two blocks of w23 meet in 1 or 3 points. M23 is again transi

tive on the ordered pairs of blocks meeting in 1 or in 3 blocks. 

Any two blocks of W22 meet in O or 2 points. M22 is transitive as 

above. 

(4) If B0 is a block of W22 , there are 16 points outside B0 and 16 blocks 

missing B0 • These form a symmetric design with parameters v = 16, k = 6, 

A= 2 and full automorphism group (Aut M22 )B: s 6 •v ~ Sp(4,2)•V, where 

V = M22 (B0 ) is an elementary abelian group of order 16. This design is 

S-l(4) in the notation of BB(4). 

(5) The remarks in 4A(4) can be interpreted inW 24 as follows (CAMERON 
* * * * [24]). Fix a block B of W24 and set S = S-B If x,y EB, x f y, 

of all blocks B such that B n B* = {x,y}. By 4A(4), let S be the set 
* xy * 

Is I= Is I= 16, ands and 
~ * 

S yield a symmetric design. 
~ 

Let z EB - {x,y}. Then S and S 
xy xz 

also determine 

(16,6,2)-design: call BES and CE S incident if IB 
~ xz 

All the resulting symmetric designs are isomorphic (they 

the notation of BB(4)). 

a symmetric 

n c n s*I = 1. 

are s-1 (4) in 

(1) There are unique Steiner systems W11 = S(4,5,11) and W12 = S(5,6,11). 

If x, y and z are three points of W12 , then (W12 )x = W11 , (W11 >xy is 

the miquelian inversive plane of order 3, and (W11 )~z = AG(2,3). Write 

Mv = Aut Wv' v = 11,12. Then Mv is sharply (v-7)-transitive on the 

points of Wv, and is transitive on blocks. M11 and M12 are both simple; 

(M12 ){x,y} = PfL(2,9). 

GB fil!, G:~ s 6 if Bis a block of W12 • Also, S-B is another block, 

and G{B,S-B} ~ Aut s6. 
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(2) w12 is obtained from W24 as follows. ~et sand C be blocks of the latter 

design such that Is n cl= 2. Then their symmetric difference s+c has 

size 12, and (M24 >s+c is just M12 • Note that Is n (S+c) I= 6; the blocks 

of w12 are precisely the intersections of size 6 of s+c with blocks of 

w24• 
If x,y,z € s+c, then (W 12 )xyz = AG(2,3) is embedded in 

cW24 ) = PG(2,4) as the unital preserved by Pru(3,2) = cW 12 ){ }" xyz x,y,z 
The latter group is precisely the full collineation group of AG(2,3). 

Moreover, the canplement of s+'c again has the form s 1+c1 (where 

ls1 n c 1 1 = 2), and (M24 >{s+c,sl+cl} = Aut M12 contains M12 as a sub

group of index 2. 

(3) In the notation of 4S(2), fix a point pt S+C. Then M11 = (M24 >s+c,p 

is 3-transitive on s+c (as well as on cs1+c1) - {p}). The w12 deter

mined by s+c has exactly 22 blocks through p. Together with the points 

of W12 (i.e., S+c), these form a 3-design V with v = 12 and k = 6. If 

x € s+c, then Vx is a symmetric (11,5,2)-design. Aut V = M11 , and 

Aut Vx = (M11 )x,;;;: PSL(2,11). The designs Vx and V will reappear in 

sections 8 and 9. 

C. Applications and characterizations 

(1) The Mathieu groups are intimately linked to the sporadic simple groups 

of CONWAY [34,35], HIGMAN & SIMS [72], McLAUGHLIN [119] and FISCHER 

[48]. For descriptions of these groups, see the above papers, LUNESURG 

[111], and SEIDEL [143]. 

Several characterizations of Mathieu groups will appear in sections 

7 and 9. The following characterizations do not, however, fit into the 

framework of those sections. 

(2) Let V be a Steiner system S(t,k,v). Suppose Gs Aut Vis transitive on 

the ordered (t+l)-tuples of points not contained in a block, and also 

on the ordered (t+2)-tuples of points no t+l of which are contained in 

a block. Then V is PG(2,q), AG2 (d,2), W22 , W23 , or W24 (TITS [158]). 

(3) Let V be a Steiner system S(t,2t-2,v). Assume that, whenever Sand C 

are distinct blocks and Is n cl= t-1, necessarily s+c is a block. Then 

Vis AG2 (d,2) or W24 • This striking result is due to CAMERON [29]. 

Actually, CAMERON proves a stronger theorem characterizing PG1(d,2) and 

w23· 



(4) I know of no satisfactory characterizations of the designs W11 or W12 

in terms of the action of M11 or M12 on them. These 2-transitive de

signs do not seem to fit into any known general design setting as do 

the other three WITT designs. (There is, however, a lattice-theoretic 

setting; see KANTOR [103].) 

5, NORMAL SUBGROUPS OF G 
X 

A. Situation 
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G is 2-transitive, and N is a non-trivial normal subgroup of Gx. Of 

course, I have in mind placing some restrictions on Gx of a geometric 

nature. Nevertheless, many purely group-theoretic results have been proved 

recently which are very useful to geometry. Here are two of these: 

if N is regular on S - {x}, then G is of known type (HERING, KANTOR & 

SEITZ[66], SHULT [146]); if Isl is odd, INI is even, and all involutions 

in N fix only x, then G is either known or has a regular normal elementary 

abelian subgroup (AsCHBACHER [ 3]) • 

B. O'NAN's results 

The best work presently being done on 2-transitive groups is due to 

O'NAN. Some of his general results are described in 5B and then applied in 

5C. 

(1) Suppose N is abelia:n a:nd not semiregular (i.e., N f 1 for some 
y 

y E s-{x}). Then PrL(n,q). ~ G ~ PSL(n,q) for some n ~ 3 a:nd q (O'NAN 

[130]). 

(2) Suppose N n Ng= Nor 1 for aU g E G, a:nd N is not semiregular. Then 

PfL(n,q) ~ G ~ PSL(n,q) for some n ~ 3 a:nd q (O'NAN [132]). 

(3) Suppose N is ayalia. Then either G has a regular normal subgroup, or 

G ~ PSL(2,q) or PSU(3,q) for a prime q, or G is PfL(2,8) (O'NAN, un

published; AsCHBACHER [4]). 

(4) If N is abelia:n, and INI a:nd !nl are odd, then G has a regular normal 

subgroup (O'NAN [135]). 
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. 
Further beautiful results are found in O'NAN [133]. While these are 

not strictly geometric, he finds yery ingenious ways to use designs and 

graphs in his arguments. 

O'NAN [ 134] considered the 3-transitive analogue of the above situation. 

Be classified those 3-transitive groups G such that G has a non-trivial 
xy 

abelian normal subgroup. 

c. Applications 

O'NAN's applications of his results are also basic for his proofs. Let 

V be a design and suppose Gs Aut Vis 2-transitive on points. 

Let N be the group of g e: Gx fixing all blocks on x. Then N is normal in Gx. 

Clearly, N is a very natural geometric subject. It corresponds to 

groups of central collineations of projective spaces, and dilatation groups 

of affine ones. 

By 5B(2), Vis a projective space if N r 1 for some yr x. By 5B(3,4), 
y 

Vis severely restricted if N is cyclic or if N is abelian and INI and v 

are both odd. The same is true if INI is even but each involution in N 
fixes only x (AsCBBACBER [3]). However, the case N abelian, INI odd, and v 

even has not yet been settled. 

A slightly different application of 5B(2) is found in 8E(1). 

There are, of course, analogous applications tot-designs with t > 2. 

6. G FIXES k POINTS 
xy 

A. Situation 

G is 2-transitive on s. If x r y, G fixes precisely k points, where 
xy 

2 < k < v. 

Let L be 

W = G ) , {Lg 
xy 

the set of fixed points of G By WITT's result 2B(1) (with 
xy L I g e: G} yields a design V with A= 1. Moreover, GL is 

sharply 2-transitive on L, from which it follows that k is a prime power. 

Possibly the main property of V and G is that the set of fixed points 

of any subgroup of G is a subspace of V (defined in 1A). In spite of all 

the subspaces of V this usually guarantees, it is very hard to get solid 

information about V. 



B. Known examples of V 

(1) AG 1 (d,k). 

(2) PGl (d,2). 

(3) A unique design V(4) with v 

G ;;;', PfL(2,8). 
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28, k 4. In this case, necessarily 

Note that, even if Vis AG1 (d,k) or PG1 (d,2), in view of section 3 it 

is still very difficult to determine G. This fact is undoubtedly one of the 

major obstacles to the study of V itself. Note also that G ~A7 occurs here 

for PG1 (3,2), in which case Gxy ~ A4 is regular on S-L (cf. 3A(3)). 

C. Classification theorems 

The study of the present situation was initiated by HALL [58] in the 

case k 

of G. 

3. His and all subsequent results have depended on 2-subgroups 

(1) Suppose k = 3 and some line is the set of fixed points of an involu

tion. Then Vis AG 1 (d,3), PG(2,2), or PG 1 (3,2). (M. HALL [58] combined 

with J. HALL [55] or TEIRLINCK [157].) 

(2) Suppose some involution fixes just one point. Then G has a regular nor

mal elementary abelian p-subgroup, where pis an odd prime and plk. 
(This is an easy consequence of GLAUBERMAN [53] and FEIT & THOMPSON 

[46]. The case k = 3 is in HALL [58], and is very elementary.) 

The best result known is due to HARADA [63]: 

(3) Assume that all involutions fix at most k points. Then one of the 

following holds: 

(i) Vis AG(2,k), PG(2,2) or PGl (3,2); 

(ii) Vis AG1 (3,k) with k odd; or 

(iii) Vis an affine translation plane of odd order k. 

(Actually, this is slightly different from HARADA's original formula

tion; see the Appendix of KANTOR [105].) 

The only known non-desarguesian examples of (iii) have order k = 9. 

Results of HUPPERT [77] imply that there is a unique such example with 

G solvable. If G is non-solvable, results contained in CZERWINSKI [37] 

and HERING [65] show tnat the "exceptional" nearfield plane of order 9 
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is the only example possible; unfortunately, as of the writing of the 

present survey, these results had not quite been completely proved. 

(4) Assume that G is transitive on non-incident point-line pairs. Then Vis 

AG 1 (d,k) or PG 1 (d,2). (HALL and BRUCK fork= 3; see HALL [60] or 

DEMBOWSKI [40, pp.100-101]; KANTOR [99] in general. Other special cases 

are due to ITO [84] and OSBORN [136]. A variation on this theme is 

found in BUEKENHOUT [ 14].) 

(5) If some non-trivial 

either Vis PG1 (d,2) 

ahelian subgroup. 

element of G fixes all lines through x, then 
X 

or V(4), or G has a regulo..r normal elementary 

PROOF. 5B(2) or 5B(3) applies to a non-trivial normal subgroup of Gx 

minimal with respect to fixing all lines through x. D 

It is easy to see that 6C(5) contains 6C(2); however, 6C(2) is the 

far more useful result. 

D. Subplanes 

(1) In [SB], HALL showed that, when k = 3, V has a su:lspace PG(2,2) or 

AG(2,3). Because of the 2-transitivity of G, V has many such concrete 

subplanes. What is lacking is a way to tie these subplanes together in

to a projective or affine space. 

KANTOR [105] proved the following awkward result, which both gen

eralizes HALL's result and implies 6C(4). V must have a subspace 

such that either 

(i) 1~1 = ki, i ~ 2, and G~ is 2-transitive, has a regular normal 

subgroup, and has no involution fixing more than one point; 

(ii) k = 3 and~ is PG(2,2); 

(iii)~ is an affine transl>ation plane, and G~ contains the translation 

group and is flag-transitive or has exactly two flag-orbits (of 

the same size); or 

(iv) k is a power of 2, and~ is the design V(k) obtained from the 

dual of the complement of a completed conic in PG(2,2k). 

Note that, if k is prime,~ is AG1 (i,k) in (i) and AG(2,k) in 

(iii), so V must have AG(2,k) as a subplane if k > 3 is prime. As in 

6C(2), it is very likely that CZERWINSKI [37] and 
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HERING [65] will imply that the only non-desarguesian planes which 

might arise in (iii) are the exceptional nearfield plane of order 9 or 

the plane obtained from the exceptional solvable 2-transitive group of 

degree 81 found by HUPPERT [77]. 

Once again, a method is needed for tying all these subplanes to

gether. 

(2) In this context, it is natural to recall the standard methods of glu

ing planes toge.ther to form projective or affine spaces: the axioms of 

VEBLEN & YOUNG [161], and the theorem of BUEKENHOUT [11]. Groups are 

not needed for these (nor even finiteness). 

Let V be a design with A= 1. If each triangle is contained in a 

subspace which is a projective plane, then V consists of the points 

and lines of a projective space (VEBLEN & YOUNG [161]). 

If each triangle of Vis contained in an affine plane of order 

> 3, then V consists of the points and lines of an affine space 

(BUEKENHOUT [11]). This is false if k = 3 (see HALL [58]). But here, 

if Aut Vis primitive on points (e.g., if Aut Vis 2-transitive), then 

V is an affine space. (This is contained in FISCHER [ 4 7 J; it is also an 

easy consequence of HALL [58] and GLAUBERMAN [53]). 

J. HALL [55] and TEIRLINCK [157] have also handled the case where 

each triangle of Vis in a projective or affine plane (a situation 

which arises in proving 6C(1)). 

There are further interesting geometric questions of this sort 

that can be asked, with or without a group present; see BuEKENHOUT & 

DEHERDER [17]. 

E. Higher transitivity 

It is natural to modify the situation under consideration as follows: 

Gist-transitive on S, and the stabilizer oft points fixes exactly k 

points, where 2 < t < k < v. This time, the design Vis a Steiner system 

S(t,k,v). If Bis a block, G: is sharply t-transitive. 

(1) Suppose that t = 3. The only known examples of V are: 

(i) ~G2 (d,2), and (ii) if PGL(2,qi), i ~ 2, is regarded as acting on 

GF(qi) u { 00 }, the blocks of V are the sets (GF(q) u { 00 })g, 
i 

g E PGL(2,q ). Note that miquelian inversive planes are special 

cases of (ii) • 
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It is not difficult to prove that the designs in (ii) have 
i PrL(2,q) as their full automorphism groups. For this reason, it seems 

as if the present situation should be much easier than that of 6A: 

if k > 4, G should be small. 

Unfortunately, nothing is known here other than variations on the 

2-transitive results of 6C and 6D. Thus, G acts on s-{x} as a group 
X 

satisfying the condition 6A. There is a natural definition for sub-

spaces: sets~ of points such that the block of V through any three 

points of~ is again contained in~- There is always a subspace which 

is AG2 (3,2) or is as in (ii) (where k = q+1); see KANTOR [105]. 

BUEKENHOUT [12,13] has proved other design versions of results related 

to 6C and 6D. 

(2) According to a remarkable result of NAGAO [120], the case t ~ 4 does 

not occur. I will outline a proof, using an approach somewhat simpler 

than NAGAO's. 

Suppose G exists; without loss of generality, t = 4. This time, 

G: is sharply 4-transitive. There are thus just three cases (JORDAN 

[89, pp.245-361]; HALL [57, pp.72-73]): 
B 

(I) k 5 GB~ s5 ; 

(II) k 

(III) k 

(I) Here it is straightforward to use arguments of HALL [58] to find 

a subspace which is an extension of AG2 (3,2) or the (miquelian) 

inverse plane of order 3. However, no such extensions exist. 

(This elementary, highly combinatorial appr~ach was not used by 

NAGAO. In fact, case (I) was the hardest for him, requiring a 

complicated argument and involving the FEIT-THOMPSON theorem.) 

(II) Lett E G be an involution and let f be its number of fixed 

points. Fix a 2-cycle (x,xt) oft. If (y,yt) is any other2-cycle, 
t t then {x,x ,y,y} belongs to a unique block B, and t fixes 

B. Since tB is in A6 , it fixes exactly two points z 1,z2 of B. 

Conversely, any two fixed points z 1,z2 oft uniquely determine a 
t 

2-cycle (y,y ). Hence, t has exactly ½(v-f) - 1 = ½f(f-1) 
t 2 

2-cycles other than (x,x ). Thus, v=f +2. In particular, f > 2. 
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On the other hand, there are exactly (v-3)/(k-3) blocks con

taining three fixed points oft, of which (f-3)/(k-3) consist 
2 

entirely of fixed points. Thus, f +2 = v = Q = f (mod 3), which 

is impossible. 

(III) The same type of argument as in (II) shows that each involution 

t has exactly f = .f7:2 fixed points. If (x,xt) is a 2-cycle, then 

t commutes with some involution u E G Here, t and u fix ex-
xy 

actly g < f common points. 

Let 6 be the set of fixed points oft. Then 6 is a subspace 

of the design, and again as in (II), u fixes exactly g = lf-2 

points of 6. Here g ~ 2. There are (v-2) (v-3)/9•8 blocks con

taining two points fixed by t and u, of which (f-2)(f-3)/9•8 are 

fixed pointwise by t and (g-2) (g-3)/9•8 are fixed pointwise by 
2 2 

both involutions. However, the conditions v = f +2, f = g +2, 

and (v-2) (v-3) = (f-2) (f-3) = (g-2) (g-3) = 0 (mod 9) cannot be 

met. 

This contradiction proves NAGAO's theorem. Note that, in (II) and 

(III), the arguments were purely combinatorial, almost not requiring G. 

7. JORDAN GROUPS 

A. Situation 

Vis a design, Gs Aut Vis 2-transitive on points and transitive on 

blocks, and G(B) is transitive on S-B. Intuitively, this means that V has 

many "axial automorphisms". 

JORDAN [88] (= [89, pp.313-338]) initiated the study of essentially 

this situation from the point of view of permutation groups. Almost 100 

years later, HALL[S8] noticed the geometric content of JORDAN's assumptions. 

B. Examples 

(1) PGe(d,q), 1 Se S d-1. 

(2) AGe(d,q), 1 Se S d-1 if qf2, and 2 Se S d-1 if q=2. 

(This restriction is needed to eliminate the degenerate case q 2, 

e = 1, where lines have only two points.) 

(3) The Witt designs W22 , W23 and W24 (see section 4). 
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For the latter designs, G must be M22 , Aut M22 , M23 , or M24 • By PERIN' s 

results (see 3B), if Vis PGe(d,q) then G ~ PSL(d+l,q), except perhaps if 

e = 1, q = 2, and dis odd. (The collineation group G ~ A7 of PG(3,2) is, 

in fact, an example of this exceptional situation; see 3A(3).) Similarly, 

3C applies when Vis AG (d,q). 
e 

C. Basic properties 

(1) First of all, v ~ 2k. 

W. KNAPP has been kind enough to look into the history of this 

result. That v ~ 2k implies the 3-transitivity of G was first proved 

by JORDAN [88, Theoreme 1] (and not by MARGGRAFF [114], as stated on 

p.34 of WIELANDT [166]). KNAPP found that, in his two inaccessible 

papers, MARGGRAFF [114,115] proved the impossibility of v < 2k (see 

WIELANDT [166, pp.34-38] for a proof), and also showed that v ~ ~kif 

v-k is not a power of 2 (but obtained no characterizations of this 

exceptional case). Finally, KNAPP noted inaccuracies in the reference 

to MARGGRAFF in WIELANDT's bibliography. 

For the case v ~ 6k, see 7D(2). 

(2) Now let L consist of the set of intersections of fconilies of blocks. 

Certainly, Lis a lattice (this has nothing to do with V). In fact, 

Lis a geometric lattice (see 1A for the terminology). Moreover, G is 

transitive on bases of L, and, if x EL, then G(X) is transitive on 

S-X (KANTOR [105], using different terminology). 

PROOF. Let 0 #XE Land X c B,C with Band C different blocks. 

Then ls-(B u CJ I v-2k+,IB n cl > 0 by (1). Since G(B) is transitive 

on S-B and G(C) is transitive on S-C, G(B n C) is transitive on 

S-(B n C). It follows that G(X) is transitive on S-X. Consequently, 

G(X) is transitive on those YE Lin which Xis maximal, so that xis 

maximal in Xv y for ally E S-X. This proves that Lis a geometric 

lattice, and the remaining assertions follow easily. 0 

(3) There is a great deal of information contained in (2). For example, 

G is 3-transitive if and only if lines have just two points, and is 

4-transitive if and only if planes have just three points. 



(4) If X € L, G(X) induces an automorphism group G(X) on the interval 

[x,s] = {y € L IX s Y}. G(X) is 2-transitive on those elements of 

[x,s] of dimension 1 + dim(X). If dim(X) s dim(G) - 3, then G(X) and 

the blocks in [X,S] provide a group and a design satisfying the same 

conditions as G and V. 
Similarly, suppose for simplicity that G is not 3-transitive. 
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X 
Let X € L be neither~, a point, nor a line. Then GX also acts on the 

interval [~,x] as in 7A. 

(5) By (4) and some classical geometry (or KANTOR [105], or DoYEN & HUBAUT 

[43]), if suitable intervals [x,s] or [~,x] are of known type, Vis 

essentially known. (See KANTOR [105, 6.5] for a precise statement.) 

This fact provides very nice inductive possibilities. 

D. Characterizations 

(1) If k = 3, then Vis PGl(d,2) OP AG1 (d,3). (This is the HALL-BRUCK 

theorem; see 6C(4).) 

(2) If vs Gk, then Vis a pPojeative OP affine spaae, W22 , W23 , op W24 
(KANTOR [105]). MoPeoveP, in this aase, G is even known. 

(3) If GB is 2-tpansitive on S-B, then Vis PGd-1 (d,q), AGd-1 (d,2), w22' 

W23' OP w24' and G is known (KANTOR [105]). 

(4) If G(B) has an abelian subgPoup tPansitive on s-B, the aonalusions of 

(3) hold. 

PROOF. BY 7C(5), without loss of generality G is not 3-transitive, so 

lines have h > 2 points. ,Fix x € B. Then the given abelian group 

As G(B) is transitive on the (v-k)/(h-1) < jAj lines Of x not in B. 

It follows that some a~ 1 in A fixes all lines through x. Now a result 

of O'NAN [130] (see 5B(2)) completes the proof. O 

Special cases of (4) are found in KANTOR [105,106], and McDoNOUGH 

[117,118]. 

(5) If v-k is a pPime poweP, the aonalusions of (3) hold. (KANTOR [104]; 

special cases are in KANTOR [105,106], and McDoNOUGH [117,118]. Stronger 

results are proved in KANTOR [104].) 
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PROOF. By 7C(5), without loss of generality A= 1. Let p be the prime 

dividing v-k. Let B n C = x. A Sylow p-subgroup P of G(B) is transitive 

on S-B. Since IP:Pcl = r-1 < v-k, Pc fixes no point of S-B. Since Pc 

normalizes a Sylow p-subgroup Q of G(C), it centralizes some q # 1 in 

the center of Q. Then q fixes the set B of fixed points of PC. Now the 

transitivity of Q on s-c implies that q fixes all lines through x. 

Once again, O'NAN's theorem 5B(2) completes the proof. D 

(6) If G(B) has a suhgroup normal in GB and regular on s-B, then the con

clusions of (3) hold or Vis PG1 (3,2) or AG2 (4,2). (KANTOR [97]; 

special cases have already been mentioned in 6C(4). This result, and 

its proof, were motivated by the HERING-KANTOR-SEITZ-SHULT theorem, 

already mentioned in SA.) 

E. Applications 

(1) KANToR & McDoNOUGH [106] showed that, if G is a permutation group of 

degree v = (qn-1)/(q-1) containing the 2-transitive group PSL(n,q), 

n ~ 3, then either G contains the alternating group or 

PSL(n,q) $ G $ PfL(n,q). 

PROOF. If G is as much ask= (qn-l_l)/(q-1) transitive, results of 

WIELANDT [164] imply that G is alternating or symmetric. If G is not 

k-transitive, let V have as blocks {Hg I g E G}, where His a hyper

plane. Now use any one of D(3, 4, or 5). D 

Unfortunately, the preceding proof does not apply when n = 2. That 

case is far more interesting than the case n ~ 3, since 

PSL(2,11) < M12 < A12 and PS~(2,23) < M24 < A24 • In fact, the study of 

groups G satisfying PSL(2,p) < G < A 1, with p prime, is precisely what 
p+ 

led MATHIEU to the discovery of M12 and M24 . NEUMANN [124] has recently 

proved that G is necessarily 4-transitive here. For an application of this 

problem to coding theory, see SHAUGHNESSY [144]. 

(2) Several of the classification theorems concerning Jordan groups can be 

interpreted as stating that certain natural attempts at generalizing 

M22 , M23 and M24 lead to nothing new. 

(3) PRAEGER [141] has recently used D(2) in the course of proving some 

general results concerning 2-transitive groups. Another recent appli-



cation of JORDAN's original situation is made in the beautiful paper 

of SCOTT [142]. 

F. Problem 

Besides the obvious problem of determining all designs admitting 

Jordan automorphism groups, there is a natural, interesting type of prob

lem these designs lead to. 

First, can G be acting on the set S of points of PG(d,q) or AG(d,q) 

without V being PGe(d,q) or AGe(d,q) for some e? The answer is no for 

PG(d,q), q > 2, by results of PERIN [139] (see 3B). 
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Now let's forget the group, and just consider the remaining geometric 

situation. Can a design with ). 1 be constructed using all the points, and 

some but not all e-spaces, of a projective or affine space? Such designs 

are probably rare. There is an obvious generalization of this question in 

which a generalization oft-designs is involved. 

Next, can a design with).> 1 be constructed using some but not all 

e-spaces, in which the lines of the design consist of all the lines of the 

underlying geometry? i conjecture that this is impossible. 

8. 2-TRANSITIVE SYMMETRIC DESIGNS 

A. Situation 

Vis a symmetric design, and GS Aut Vis 2-transitive on points. 

2A(2) indicates the group-theoretic interpretation of this situation. 

Note that the complementary design V• satisfies the same conditions as V. 

B. Examples 

There are several very interesting examples of 2-transitive symmetric 

designs. It is only necessary to describe one of V,V•. In each case, V has 

polarities. 

(1) Projective spaces: PGd_ 1 (d,q). Of course, Aut V = PrL(d+l,q). In view 

of section 3, from this example it should already be clear that there 

will be serious obstacles to the study of G. 
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(2) The unique 11-point Hadamard design W11 • Here v = 11, k = 5, A= 2 

(compare 4B(3)). The only possible G is G = Aut W11 ~ PSL(2,11). Here, 

GB~ A5 acts as A5 on Band as PSL(2,5) on S-B. W11 has polarities 6, 

and G<6> ~ PGL(2,11). 

(3) G. HIGMAN's design w176 (see G.HIGMAN [73]; SIMS [150]; SMITH [152, 

153]; CONWAY [35]). Here, v = 176, k = 50, and A 14. The only possi

ble G is G = HS, the sporadic simple group of D.G. HIGMAN & C.C. SIMS 

[72]. GB~ PSU(3,5) has rank 3 on B (and GxB ~A7 if x EB), while GB 
3 

acts on S-B in its usual 2-transitive representation of degree 5 +1. 

Also, W176 has polarities$, and G<$> ~Aut HS. 

W176 has a fascinating property: there is a 1-1-correspondence 6 

from 2-sets of points to 2-sets of blocks which is preserved by G. 

Here, 6 is not induced by a polarity of W176 • Moreover, G{x,y} 

= G{x,y}e ;;;i. z2 x Aut A6 • 

(4) The symplectic symmetric designs S8 (2m), one for each m ~ 2 and E = ±1. 
2m m-1 m m-1 m-1 1 -1 

Here v = 2 , k = 2 (2 +e), A= 2 (2 +e). S (2ml and S (2ml are 

complementary designs. 

Set G Aut S8 (2m). Then G has a regular normal elementary abelian 
2m 

2-subgroup V of order v = 2 , and G = VGx' V n Gx 1, where 

Gx ~ Sp(2m,2) is a symplectic group acting on Vin the usual way. 

GB~ Sp(2m,2) is 2-transitive on Band S-B. If x EB, then GxB is the 

orthogonal group G08 (2m,2). 

Moreover, by 2A, the preceding properties of G completely deter

mine S8 (2m). It is remarkable that these properties were implicitly 

contained in work of JORDAN 100 years ago (see JORDAN [89, pp.XXI

XXIII] and [90, pp.229-249]). 

Any subgroup of G of the form VT, with T ~ Gx transitive on 

V - {1}, is 2-transitive on S8 (2m); for example, T can be Sp(2e,2f) 

whenever ef = m. The question of whether every 2-transitive auto

morphism group necessarily contains V leads to the same difficulties 

as in 3C. 

In view of the action of G on V, there is an involution t E G 
X X 

fixing exactly ½v points (tis a transvection). If x 1 and x2 are 

distinct points, there is a unique conjugate oft interchanging x 1 
and x2• 

S8 (2m) has interesting combinatorial properties. Let+ denote the 

symmetric difference of sets of points. If B, C and Dare any blocks, 
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then B+c+D is either a block or the complement of a block. (This prop

erty alone does not quite characterize these designs.) If B ~ C, then 

VB+C is transitive on B+C. (This property does characterize SE(2m), 

assuming only that Vis anautomorphismgroup of a symmetric design 

regular on points; see KANTOR [101].) 

Here's another description of S 1 (2m). Consider the dual of a 

completed conic in PG(2,2m). Use the dual of the knot as the line at 

infinity of AG(2,2m). Let B be the union (in AG(2,2m)) of the remain

ing 2m+1 lines. Then the translates of Bare the blocks of S 1 (2m). 

A similar description of S1 (4(2e+1)) can be given in terms of the 
2(2e+1) . -LUNEBURG-TITS affine planes of order 2 (defined in LUNEBURG 

[110,111]): once again, the dual of a suitable oval can be used, in 

which the dual of the line at infinity is the knot. I know of no other 

planes which yield any designs S1 (2m) ·in this manner, but such planes 

undoubtedly exist (and merit study). 

A (-1,1)-incidence matrix of SE(2m) is a Hadamard matrix known 

since the last century: the tensor product of m Hadamard matrices of 

size 4. BLOCK [9] first noticed (using this incidence matrix) that 

Aut S- 1 (2m) is 2-transitive on points for each m. He pointed this out 

to me in 1968. All the properties of SE(2m) just described were proved 

at that time, and eventually appeared in KAN'I'oR [101]. The designs 

were later rediscovered by RUDVALIS (1969, unpublished), HILL [74], and 

CAMERON&SEIDEL [30]. The latter paper provides an interesting rela

tionship between these designs and coding theory. 

c. Basic properties 

The most famous result concerning 2-transitive symmetric designs is 

the beautiful theorem of OSTROM & WAGNER [137]: if A= 1, then Vis a 

desa:r-guesian projective plane. consequently, I will assume A> 1 through

out this section. 

(1) G is 2-transitive on blocks. If Bis a bloak, then GB is transitive on 

Band s-B, and du.ally. Moreover, if (v,k) = 1, then G is transitive 
xB 

on S-B (by 1C(6ll, and dually. 

(2) If G8 is 2-transitive on both Band S-B, then the dual statements hold 

and G has rank 3 on s - {x}. (More generally, in KANTOR [93] it is 
X 

proved that, if G is an automorphism group of a design 2-transitive on 
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points and transitive on bloaks, and if GB is 2-transitive on both B 

d h h k f s-{ X} t . f. d if an S-B, tent e ran po Gx sa ~s ~esp s 5, an even p s 3 

v -# 2k.) 

(3) If Vis a Hadamard design, G is neaessarily 2-transitive on S-B. This 
B 

will be proved in 8C(5) below. Further special transitivity properties 

are found in KANTOR [93], especially Lemma 4.2. 

(4) In KANTOR [93], a great deal of attention is paid to the case k/v-1 

(which is equivalent to (k,\) = 1, and which holds in PGd-l (d,q) and 

H11 J. Assume this condition. Then GB rrrust be primitive on S-B. (In 

view of KANTOR [91, 4.7 and 4.8], the same conclusion holds under much 

weaker numerical restrictions.) Also, G has a simple normal subgroup 

2-transitive on points. 

Of course, the example SE(2m) shows that the last assertion does 

not hold in general. KANTOR [93] showed that V has the parameters of 

SE(2m) for some m,E if G has a regular normal subgroup. 

(5) As an example of the proofs of transitivity properties, I will prove: 

if k-1/v-1 (or equivalently, if \/k), then GB is 2-transitive on B. 

(Note that this implies 8C(2) when Vis the complementary design of a 

Hadamard design.) 

PROOF. Gx is transitive on the v-1 points-# x, and on the k blocks B 

on x. By 1C(6), each orbit of GxB on S - {x} has size divisible by 

(v-1)/(v-1,k). But k \•(v-1)/(k-l) implies that (v-1,k) = (v-1)/(k-1). 

Thus, GxB has an orbit on B - {x} of size divisible by k-1. 0 

In the next section it will be seen how desirable it is to have 

sufficiently strong transitivity results. 

D. The DEMBOWSKI-WAGNER theorem 

This theorem provides the basic characterization of projective spaces 

needed for the study of symmetric designs. Namely: 

Vis a projeative spaae if any one of the following holds: 

(i) every line meets every bloak; 

(ii) every line has at least 1 + (v-1)/k points; or 

(iii) G is transitive on ordered triples of non-aollinear points. 



Slightly stronger combinatorial characterizations are found in 

DEMBOWSKI [40, pp.65-67], and KAN'l'OR [92,93]; in particular, the latter 

reference describes the relationship with geometric lattices. 

PROOF. If Lis a line of V (the intersection of the A blocks containing 

two points), there are v-A-ILI (k-A) blocks missing L. Since (v-A)/(k-A) 

= l+(v-1)/k, this implies that (i) and (ii) are equivalent; assume both 

of them. If x t L, and if p blocks contain x and L, then there are 

k-p = ILi (A-p) blocks on x not containing L. Thus, pis a constant, so 

planes can be defined, and each is determined by any triangle in.it. 

Suppose Land Mare distinct lines of a plane E. Then some block B ~ L 

does not contain E. Since B meets M, L n M =En (B n M) ~ 0. Thus, Eis 

a projective plane, so Vis a projective space (WBLEN & YOUNG [161]). 

71 

Now assume (iii). Then GL is transitive on Land S-L. By the Orbit 

Theorem 1C(1), GL has just two block-orbits. Since these must be the blocks 

containing Land the blocks meeting L once, (i) holds. D 

E. classification theorems 

Many theorems have been proved classifying 2-transitive symmetric 

designs under suitable additional conditions. A catalogue of these follows. 

(1)_ If G(B) ~ 1, then V is a projeative spaae (ITO [81]). Thus, in the 

remainder of this section it may be assumed that G(B) = 1. 

PROOF. G is 2-transitive on blocks. G(B) is a non-trivial normal subgroup 

of GB. Each non-trivial element of G(BJ,. fixes more than one point, and 

hence more than one block (1C(2)). A theorem of O'NAN [132] (see 5B(2)) 

now applies. (Of course, this wasn't ITO's original proof.) D 

(2) If V has the same pal'ameters as PGd-l (d,q), then Vis PGd-l (d,q) 

(KAN'l'OR [ 98]) • 

(3) If k is prime, then V is w11 or a projeative spaae (KANTOR [93]; the 

case where v and k are prime is due to ITO [3]). From this it follows 

easily that Vis W11 or a projective space if (v-1)/2 is prime. 

(4) If n = k-A is p:r>ime, Vis w11, <Wu>', pr PG(2,n)' (KANTOR [93]). 

(5) If k/2 is prime, then Vis a projeative spaae, PG(2,2) ', cw 11 ) 1 , S1 (4), 

or S-1 (4) (ITO & KANTOR [87]). 
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(6) If n/2 is prime, then Vis S 1 (4) or S- 1 (4). 

(7) If k-1 is prime and\> 2, then Vis (W 11 )' or PGd-l (d,2)'. 

PROOF. Write k-1 = p. Then \(v-1) = p(p+1) and k > \+1 imply plv-1, so 

p I IGI. A Sylow p-subgroup of G fixes a block Band a point x, and is 

transitive on B - {x}. Thus, GB is 2-transitive on B. By 8E(10) (see 

below), it may be assumed that GB is not 3-transitive on B. Also, by 

8E(1), G(B) = 1. BURNSIDE [18, p.341] and classification theorems now 

yield the precise structure of GB, from which V = (W 11 )' is readily 

deduced. D 

(8) If k-1 and v are prime, then Vis (W 11 ) 1 (ITO [83]). 

Note that theorems 8E(2)-(8) all assume nothing more than numerical 

restrictions. In theorems 8E(9)-(14), further transitivity conditions will 

be imposed. 

(9) If Vis a Hadamard design, and GB is 2-transitive on B, then Vis W11 

or a projective space (KANTOR [93]). 

(10) If GB is 3-transitive on Band\> 2, then Vis PGd-l (d,2) '. 

This is an unpublished result of CAMERON and KANTOR. The idea of the 

proof is as follows. As usual, VB consists of the points of Band blocks 

F B. Here, VB is a 3-design. If x EB, then VB has the same number k-1 

of points F x as blocks on x. Thus, VB is a symmetric 3-design, so a 

theorem of CAMERON [22] (see 10A,B) yields k = 4µ+4, \ = 2µ+2 or 
2 2 

k = (µ+2) (µ +4µ+2) + 1, \ = µ +3µ+2 (compare CAMERON [25]). 

In the first case, \(v-1) = k(k-1) implies v = 2k-1, and 8E(9) 

applies to V•. In the second case, if xi B then G has rank 3 on the 
xB 

blocks through x, and the parameter restrictions of HIGMAN [69] yield a 

contradiction. 

(11) If GB is 2-transitive on both Band S-B (compare 8C(2)), \ > 2, and 

3 points exist lying on no block, then Vis PG(d,2) '. 

The proof is very similar to that of 8E(10). Note that the desired 3 

points are easily shown to exist if k ~ \ 2-\+1, except when Vis PG(3,\-1). 



(12) If A= 2 a:nd GB is 2-tra:nsitive on s-B, then Vis PG(2,2)', W11 or 

S-l (4) (CAMERON [29] and KANTOR [93]). 

73 

-1 
(13) If GB is 4-tra:nsitive on B, then Vis PG(2,2)', W11 or S (4). (This 

easy consequence of 8E(10) and 8E(12) is due to CAMERON [29].) 

Further results of these types are found in KANTOR [3]. The following 

is quite a different sort of result, which (in spite of its technical na

ture) will be used in 8G. 

(14) Suppose klv-1, x ¢ B, a:nd GxB has a cyclic subgroup A regular on the 

points on Band the blocks on x. Then Vis W11 or a projective space 

if either (i) k has no proper divisor= 1 (mod A), or (ii) k < (A+1) 2 

(KANTOR [93]). (In the projective space case, the given cyclic group 

is a Singer cycle of B.) 

Some characterizations are also known for the designs S£(2m) and W176 • 

(15) If some g F 1 in G fixes at least ½v points, then Vis S£(2m) 

(KANToR [101]). 

(16) If some g F 1 fixes S-(B+C) pointwise for some BF c, then Vis S£(2m) 

or PGd-1 (d,2) (KANTOR [101]). 

Both 8E(15) and 8E(16) rely heavily on FEIT's result 1C(3} and the 

DEMBOWSKI-WAGNER theorem 8C. The only possible automorphisms g which 

actually occur in 8E(15) and 8E(16) are elations of the underlying classi

cal geometry. 

(17) If G has a regular normal subgroup, and if GB is 2-transitive on both 

B a:nd S-B, then Vis S£(2m) (KANTOR [101]). 

(18) Suppose G preserves a 1-1-correspondence from 2-sets of points to 

2-setsofblocks.If n = (A-2//4, then Vis W176 or S 1 (4). (KANTOR, 

unpublished; this was proved under additional transitivity assumptions 

by SMITH [152]). 

F. Prime v and .linked systems 

(1) One of the main sources of interest in 2-transitive symmetric designs 

is permutation groups G of prime degree v. These are necessarily 
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solvable or 2-transitive (BURNSIDE [18, p.341]. Very few 2-transitive 

examples are known: PI'L(d+l,q) 2 G 2 PSL(d+l,q) acting on PG(d,q), for 

rare pairs d,q; PSL(2,11) with v 

the first two types yield symmetric designs (see 10A for the sense in 

which M23 produces a generalization of a symmetric design). This 

naturally leads to the study of symmetric designs with prime v. The 

reader is referred to NEUMANN [123] for an excellent survey of the 

general question of 2-transitive groups of prime degree. 

(2) If Vis a symmetric design, vis prime, and Aut Vis transitive, then 

Vis obviously a difference set design. See HALL [56,61] (and his talk 
*) 

at this conference), MANN [113], and DEMBOWSKI [40] for the defini-

tions and basic properties of difference set designs. 

Of importance in the present context is the well-known fact that, 

if A is an abelian automorphism group regular on the points of a sym-
-1 

metric design V, and if vis odd, then the map a ➔ a , a EA, does 

not induce an automorphism of V. More generally: an involutory auto

morphism of a design cannot fix just one block (NEUMANN [121]). 

Also, if V and A are as above, then V admits polarities. 

In the case of 2-transitive symmetric designs with v prime, the 

only other known way of using the primality of vis through modular 

character theory (as in ITO [82,83]). 

(3) In 1955, WIELANDT posed the following problem: can a 2-transitive 

group of prime degree v have more than two conjugacy classes of sub

groups of index v? Certainly, two are possible, as has been noted in 

BF ( 1). 

*) 

Thus, suppose G is 2-transitive on each of the sets s 1, .•• ,su, 
u > 2, Is. I= v for each i, 

l. 
and the stabilizer of a point xi in Si 

fixes no point in any s., 
J 

determines a 2-transitive 

orbits on S .• Thus: 
J 

{ 
if xi E Si and xj E 

cident with both xi 

and x. are incident 
J 

j ti. By 2A(2), each pair (s.,s.), it j, 
l. J 

symmetric design. By 8C(l), Gx. has two 
l. 

s., i.;, j, then the number of ¾E Sh, h F i,j, in
J 

and x., depends only on i,j,h and whether x. 
J l. 

or not. 

CAMERON [24] considered this situation from a purely combinatorial 

point of view. A system of linked symmetric designs consists of sets 

s 1, ••• ,sµ, µ > 2, and an incidence relation between each pair of sets 

turning each pair into a symmetric design, such that(*) holds. 

Mathematical Centre Tracts, 57, pp. 1-26. 
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Needless to say, there is a lot of arithmetic information in this 

situation. CAMERON rediscovered some such unpublished information due 

to WIELANDT and to ITO, but in the more general combinatorial setting. 

The conditions proved there are, however, too technical to reproduce. 

Additional numerical information has been obtained by ITO. For example, 

very recently, ITO [68] has shown that if vis prime, then for some 

design (S.,S.) neither k nor v-k can divide v-1. 
l. J 

Furthermore, NEUMANN [123] used a computer to show that WIELANDT's 

original situation cannot occur if p < 2,000,000. The proof of this 

provided a test for the available numerical data. 

(4) WIELANDT has proved that, in the original situation in 8F(3), G can be 

the full automorphism group of at most one of the designs. (A proof is 

found in CAMERON [24].) 

(5) The combinatorial setting is as interesting as WIELANDT's group

theoretic one: examples exist. 

(a) Let V be a 2m-dimensional vector space over GF(q), q = 2e. Let 

Sp(2m,q) act on Vas usual. Then G = V•Sp(2m,q) has exactly q 

classes of complements to V (POLLATSEK [140]). Clearly, the scalar 

transformations act on this family of q sets, and it is not hard to 

see that Aut G is 2-transitive on these q sets. Since each pair of 

sets determines an S£(2me), this is a linked system of designs 

having v = 22me andµ= q. 

(b) A much larger system is possible for a given v = 22m. Namely, 

a system of linked symmetric designs withµ= 22m-l has been 

constructed by GoETHALS from the KERDOCK [108] codes (see CAMERON 

[24] and CAMERON & SEIDEL [30]). 

(c) CAMERON [24] notes the following construction for examples (a) and 

* (b) when v = 16. In the notation of 4A(5), S , S , S , S * xy XZ yz 
(with x,y,z three points of B) form example (a) with m 1, e = 2. 

* * S , together with the seven sets S , y E B - {x}, for a fixed 
* xy 

x EB, form example (b) with m = 2. 

In each of examples (a)-(c), each symmetric design is isomorphic 

to S£(2~) for some~- No other examples are known of symmetric designs 

arising in linked systems. 
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' (6) If s 1, ..• ,sµ is a linked system, its automorphism group H consists of 

those permutations of s 1 u ••• u Sµ which preserve both the partition 

and incidence. In example (a), His 2-transitive on the q systems; the 

subgroup of H fixing each set Si is 2-transitive on each Si. 

In example (b), His known only form= 2. Namely, from (cl it is 

* clear that H contains (M24 )xB* ~ A7•v, where V = M24 (B) is elementary 

abelian of order 16. In fact (CAMERON & SEIDEL [30]), 

* H ~ A8 •v ~ SL(4,2)•V, where V fixes S and each sxy, while A8 acts as 

usual on these 8 sets. The subgroup of H fixing 2 of the 8 sets is 

A6 •v, and induces an automorphism group of the resulting design S- 1 (4). 

Some properties of H for certain types of linked systems (e.g., 

when vis prime) are found in WIELANDT [167] and CAMERON [24]. 

G. Some difference set designs 

In this section, a special class of difference set designs will be 

considered. These are of interest for both combinatorial and number

theoretic reasons (see HALL [61] and MANN [113]). 

(1) Let v be an odd prime power, and set F = GF(v). Let 1 < k < v-1 and 

klv-1, and let B = B(v,k) be the subgroup of F* of order k. Let V(v,k) 

have the elements of Fas points and the translates B+a, a E F, as 

blocks.Bis a difference set in F+ if and only if V(v,k) is a sym

metric design. 

The designs V(v,~(v-1)) are the Hadamard designs of PALEY [138], 

where v = 3 (mod 4) can be any prime power. 

By DEMBOWSKI [40, p.35] (or an easy Singer cycle argument), 

V(v,k) cannot be a projective space if A> 1. If A= 1, the only 

desarguesian exceptions are PG(2,2) and PG(2,8). 

(2) PROBLEM: what is Aut V(v,k)? 

Clearly, Aut V(v,k) contains the group S(v,k) of all mappings 

x + bx0 +a, b EB, a E F, cr E Aut F. In only three cases is 

Aut V(v,k) > S(v,k) known, namely, V(11,5) = w11 , V(7,3) = PG(2,2) and 

V(73,9) = PG(2,8). These are almost certainly the only possibilities. 

This problem can be reformulated in terms of permutation poly

nomials. Let f(x),g(x) E F[x], and assume that both polynomials act as 

permutations of F. If 
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Needless to say, there is a lot of arithmetic information in this 

situation. CAMERON rediscovered some such unpublished information due 

to WIELANDT and to ITO, but in the more general combinatorial setting. 

The conditions proved there are, however, too technical to reproduce. 

Additional numerical information has been obtained by ITO. For example, 

very recently, ITO [68] has shown that if vis prime, then for some 

design (S.,S.) neither k nor v-k can divide v-1. 
l. J 

Furthermore, NEUMANN [123] used a computer to show that WIELANDT's 

original situation cannot occur if p < 2,000,000. The proof of this 

provided a test for the available numerical data. 

(4) WIELANDT has proved that, in the original situation in 8F(3), G can be 

the full automorphism group of at most one of the designs. (A proof is 

found in CAMERON [24].) 

(5) The combinatorial setting is as interesting as WIELANDT's group

theoretic one: examples exist. 

(a) Let V be .a 2m-dimensional vector space over GF(q), q = 2e. Let 

Sp(2m,q) act on Vas usual. Then G = V•Sp(2m,q) has exactly q 

classes of complements to V (POLLATSEK [140]). Clearly, the scalar 

transformations act on this family of q sets, and it is not hard to 

see that Aut G is 2-transitive on these q sets. Since each pair of 

sets determines an SE(2me), this is a linked system of designs 

having v = 22me andµ= q. 

(b) A much larger system is possible for a given v = 22m. Namely, 

a system of linked symmetric designs withµ= 22m-l has been 

constructed by GoETHALS from the KERDOCK [108] codes (see CAMERON 

[24] and CAMERON & SEIDEL [30]). 

(c) CAMERON [24] notes the following construction for examples (a) and 

* (b) when v = 16. In the notation of 4A(5), S, S , S , S * xy XZ yz 
(with x,y,z three points of B) form example (a) with m 1, e = 2. 

* * S , together with the seven sets S , y E B - {x}, for a fixed 
* xy 

x EB, form example (b) with m = 2. 

In each of examples (a)-(c), each symmetric design is isomorphic 

to SE(2t) for some t. No other examples are known of symmetric designs 

arising in linked systems. 
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(6) If s 1, ... ,sµ is a linked system, its automorphism group H consists of 

those permutations of s 1 u ••• u Sµ which preserve both the partition 

and incidence. In example (a), His 2-transitive on the q systems; the 

subgroup of H fixing each set Si is 2-transitive on each Si. 

In example (bl, His known only form= 2. Namely, from (cl it is 

* clear that H contains (M24 )xB* ~ A7•v, where V = M24 (B) is elementary 

abelian of order 16. In fact (CAMERON & SEIDEL [30]), 
* H ~ A8 •v ~ SL(4,2)•V, where v fixes S and each sxy, while A8 acts as 

usual on these 8 sets. The subgroup of H fixing 2 of the 8 sets is 

A6 •v, and induces an automorphism group of the resulting design S- 1 (4). 

Some properties of H for certain types of linked systems (e.g., 

when vis prime) are found in WIELANDT [167] and CAMERON [24]. 

G. Some difference set designs 

In this section, a special class of difference set designs will be 

considered. These are of interest for both combinatorial and number

theoretic reasons (see HALL [61] and MANN [113]). 

(1) Let v be an odd prime power, and set F = GF(v). Let 1 < k < v-1 and 

klv-1, and let B = B(v,k) be the subgroup of F* of order k. Let V(v,k) 

have the elements of Fas points and the translates B+a, a E F, as 

blocks.Bis a difference set in F+ if and only if V(v,k) is a sym

metric design. 

The designs V(v,~(v-1)) are the Hadamard designs of PALEY [138], 

where v = 3 (mod 4) can be any prime power. 

By DEMBOWSKI [40, p.35] (or an easy Singer cycle argument), 

V(v,k) cannot be a projective space if A> 1. If A= 1, the only 

desarguesian exceptions are PG(2,2) and PG(2,8). 

(2) PROBLEM: what is Aut V(v,k)? 

Clearly, Aut V(v,k) contains the group S(v,k) of all mappings 

x ➔ bx0 +a, b EB, a E F, cr E Aut F. In only three cases is 

Aut V(v,k) > S(v,k) known, namely, V(11,S) = w11 , V(7,3) = PG(2,2) and 

V(73,9) = PG(2,8). These are almost certainly the only possibilities. 

This problem can be reformulated in terms of permutation poly

nomials. Let f(x),g(x) E F[x], and assume that both polynomials act as 

permutations of F. If 



f(x+b) - g(x) E. B VxEF,VbEB, 

then the pair (f,g) determines an automorphism of V(v,k). Conversely, 

each automorphism determines such a pair (f,g), where f is the permu

tation induced on blocks and g the one on points. 
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(3) Write G = Aut V(v,k), and assume G > S(v,k). If vis prime, then G is 

2-transitive on points by BURNSIDE's theorem on groups of prime degree 

(see BURNSIDE [18, p.341]). If k = ~(v-1), G must also be 2-transitive 

(KANTOR [93]; compare CARLITZ [31]; McCONNEL [116]; BRUEN & LEVINGER 

[10]). 

However, it is not known in any other cases that G must be 

2-transitive if G > S (v,k). 

(4) If G > S(v,k) and k = ~(v-1), then V = PG(2,2) or w11 (KANTOR [93]; 

for some small values of v, this was proved by TODD [159] and F. HERING 

[67]). 

More generally, if G is. 2-transitive then V = PG(2,2) or W11 

provided that either 1 + 1k" > (v-1)/k or k has no proper divisor 

= 1 (mod ;\). 

PROOF. 8E(14) applies with A= {x + bx I b EB}. D 

Further information when G is 2-transitive (but when the above 

numerical conditions do not hold) is found in KANTOR [93]. The fact 

that, even for these specific designs, it is not known whether Aut V 

can be 2-transitive, indicates the sad state of affairs concerning 

2-transitive symmetric designs! 

H. An application to the irreducibility of polynomials 

A very unexpected sort of occurrence of 2-transitive symmetric designs 

has recently been found by M. FRIED. Let K be a subfield of the complex 

field C. If f(x) E. K[x] and g(x) E. C[x], it is natural to study the irre

ducibility of f(x) - g(y) in C[x,y]. This question leads to difference set 

designs having 2-transitive automorphism groups! 

The following discussion is based primarily on FRIED [49,50] (see also 

CASSELS [33]). f(x) is called indecomposable over Kif it is not possible 

to write f(x) = f 1 (f2 (x)) with fi E K[x] and deg fi > 1, i=l,2; assume that 

this is the case. Assume further that g(x) cannot be written g(x) = f(ax+b) 
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t 
for some a,b E c, a i o. Finally, assume that f(x) - g(y) TT hi (x,y) 

with hi (x,y) E C[x,y] irreducible and t > 1. 
i=1 

FRIED shows that it may be assumed that deg f = deg g v, say. 

Then g(x) is indecomposable over c. Moreover, t = 2. Write k = deg h 1 (x,y). 

Then there is a difference set mod v with k elements. The corresponding 

symmetric design V admits a 2-transitive automorphism group G. (Here, G can 

be interpreted as the Galois group of a suitable extension field of C(x).) 

Furthermore, G is generated by permutations s 1 , ..• ,sµ, withµ~ 3, 

such that (i) s 1 ... sµ is av-cycle on points, and (ii) I ~(s.) v-1 
i i 

= ~(s 1 ... sµ). (Here, ~(si) is the smallest integer~ such that si is the 

product of~ transpositions.) 

Of course, PGd-l (d,q) and W11 are the only known cyclic difference set 

designs V for which Aut Vis 2-transitive; (Examples 8B(3) and 8B(4) do not 

admit transitive cyclic automorphism groups.) FEIT [SO] enumerated all 

cases in which these designs can arise in FRIED's situation; each case 

produces a pair of polynomials f(x), g(x). 

Needless to say, conditions (i) and (ii) are weird from a geometric or 

group-theoretic point of view. Nevertheless, it should be clear that they 

merit further study. 

Note that the study of the polynomial f(x) - g(y) is remarkably remi

niscent of the situation in 8G(2). 

In more recent work of FRIED [Sl], 2-transitive designs have arisen 

in which b = 2v and some element of order v has one v-cycle on points and 

two on blocks. 

I. 2-transitive suborbits 

One recent occurrence of 2-transitive symmetric designs has been in 

work of CAMERON [19,20,21,26], on multiply-transitive suborbits (i.e., 

orbits of Gx) of primitive permutation groups. Since these will be dis

cussed in CAMERON's talk at this conference, the reader is referred to that 
*) talk and the above papers. 

*) Mathematical Centre Tracts 57, pp. 98-129. 
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J. Problems 

(1) The case A= 2 should be feasible. The combinatorial structure here is 

extremely rich (see HUSSAIN [78,79], HALL [62], and CAMERON [23,29]). 

So, for that matter, is the permutation structure: GB must be 2-tran

sitive on B; if x,y EB, x f y, then either GB is 3-transitive on 

B, or GxyB has two orbits of length (k-2)/2 on B - {x,y} (KANTOR [3], 

CAMERON [23]). CAMERON [23,29] has indicated a possible approach to 

this problem. 

Note that only three examples are known: PG(2,2)', W11 and 

s-1<4>. 

(2) In the situation of 8C(2), there is a natural strongly regular graph 

structure on S - {x}. Unfortunately, the parameter restrictions on 

this graph and the tactical decomposition relations of DEMBOWSKI [38; 

40, pp.60-61] involve too many unknowns. The latter relations were 

studied by KANTOR [93,101]; the former, in a purely combinatorial 

setting, by CAMERON [25] (using a method of GoETHALS & SEIDEL [54]). 

All the results thus far are very inconclusive. 

(3) Prove that Vis SE(2m) if G has a regular normal subgroup. As already 

mentioned in 8C(4), in this case V has the same parameters as some 

SE(2m). 

(4) No satisfactory characterization of W176 is known. W176 and (W 176 ) 1 

are probably the only 2-transitive symmetric designs with\> 2 and 

v-2k+\ > 2 in which G preserves a correspondence 0 as in 8E(18); 

no numerical restrictions should be needed. (The main reason for the 

restriction in 8E(18) is to prevent k from being too large relative 

to\.) If such a e exists, V can be replaced (if necessary) by V• in 

order to obtain {x,y} c X n Y if {x,y} 8 = {X,Y}. Then 2(v-1)/k is an 

integer T (so this situation is similar to the one considered in 

KANTOR [93], where klv-1). If 1 is odd, G{ } is transitive on {x,y} 8 , x,y 
if x EB, GB is transitive on the 1 points y EB - {x} for which 

0 X 
{x,y} . 

and 

B E 

SMITH [152] has proposed a reasonable axiom one can assume in 

addition to the existence of e in order to try to characterize W176 , 

but this is too technical to state. 
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(5) Each of the known 2-transitive symmetric designs has polarities. 

Study these, and find some way to use them in the characterization of 

self-dual designs. 

When vis prime, V automatically has "natural" polarities. 

However, no effective use has been found for them. 

(6) The proof of 8E(2) in KANTOR [93] indicates that, when n is a power of 

a prime not dividing A, V should be W11 or a projective space. 

(7) Remove the numerical restrictions (i) and (ii) of 8E(14) and 8G(4). 

(8) Answer WIELANDT's question (see 8F(3)). More generally, decide exactly 

what parameters can occur for linked systems (compare 8F(5)). 

9. SYMMETRIC 3-DESIGNS 

A. CAMERON'S theorem 

A symmetPia 3-design is a 3-design V such that V is a symmetric 
X 

design for each x. CAMERON [22] proved that the parameters of V must 

satisfy one of the following conditions (whereµ is the number of blocks 

on any three points): 

(i) V 4µ + 4, k = 2µ + 2 (Hadamard 3-design); 

(ii) 2 
1 

2 2 +3µ+2; V (µ+2) (µ +4µ+2) + = (µ+1) (µ +5µ+5), k = µ 

(iii) V 112, k = 12, µ 1 (extension of a projective plane V of order 
X 

10); or 

(iv) v = 496, k = 40, µ 3. 

Note that the A for Vis given by A= k-1. Case (i) occurs if and 

only if there is a vxv Hadamard matrix. The only other case known to occur 

isµ= 1 in (ii), when Vis W22 . 

For a generalization of CAMERON's theorem, see CAMERON [27]. 

B. 3-transitive automorphism groups 

(1) Now suppose GS Aut Vis 3-transitive on points. Then G is a 2-tran
x 

sitive automorphism group of the symmetric design V (cf. section 8). 
X 

It is not hard to show that cases (iii) and (iv) cannot occur. 

Cases (i) and (ii) remain open. Some special values ofµ have, however, 
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been ruled out by CAMERON [19], such as when 2 $ µ < 103 or µ+1 is a 

prime power. 

For a remarkable occurrence of case (ii) -which originally led 

CAMERON to his theorem- see CAMERON [20,26]. 

(2) If GB is 3-transitive on B, then Vis AGd-l (d,2), the wiique Hadama:l'd 

3-design with 12 points, or W22 . (This follows readily from 8E(9) and 

8E(ll).) 

(3) Suppose next that Vis a Hadamard 3-design. NORMAN [127] proved that 

v = 12 ifµ is even. A slight modification of his argument shows that 

the same conclusion holds if G is 3-transitive on parallel classes of 

blocks. Note that, by 5B(4), the unique Hadamard 3-design having 12 

points satisfies these conditions. The case n even -where V should be 

AGd-l (d,2)- remains open. 

C. Hadamard matrices 

An automorphism of a Hadamard matrix Hof size n is a pair (P,Q) of 

monomial nxn matrices such that PHQ = H. The automorphisms form a group 

G = Aut H containing 1 = (I,I) and -1 = (-I,-I) in its center. G = G/<-1> 

acts faithfully as a permutation group on the union of the sets of rows 

and columns of H. 

It may be assumed that the first row rand column c of H consist of 

l's. Deleting columns 1 and n+l of (H,-H) produces the (-1,1) incidence 

matrix of a Hadamard 3-design V. Then G is the automorphism group of V. 
C 

In view of this, the results in B(2) and B(3) apply to V. These in turn yield 

results about H. For example, if G is 4-transitive on rows, then n = 4 or 

12. Another characterization of the case n = 12 follows from 6G(4) 

(KANTOR [94]). 

Suppose n = 12. Then B(2) and the discussion of Ge imply that 

Ge ~M11 , from which G ~M12 follows easily. However, G i, M12 x <-1>. 

At the end of 4B(2) it was noted that IAut M12 1 = 2jM12 1. The resulting 

outer automorphism can be visualized in the present context as follows. 

(P,Q) E G implies that PHQ = H, and hence (since His symmetric) that 

QtHPt H, so (Qt,Pt) E G. Thus, (P,Q) + (Qt,Pt) is an automorphism of G, 

and induces one of G; these are both outer automorphisms (see HALL [59]). 
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10, FURTHER TOPICS AND PROBLEMS 

A. Block intersections 

Let V beat-design, t ~ 2. According to a generalization of FISHER's 

inequality b ~ v, if v ~ k+~t then b ~ ([~Vt]) (WILSON & RAY-CHAUDHURI 

[168]). Equality holds only if t = 2s for an integers, and then Vis 

called a tight t-design. (This is evidently a generalization of symmetric 

designs.) WILSON & RAY-CHAUDHURI also proved that, if Vis a 2s-design, 

then Vis tight if and only if there are at mosts different intersection 

sizes IB n cl, where Band C run through all pairs of distinct blocks (cf. 

CAMERON [25]). 

It is natural to consider 2s-transitive automorphism groups of tight 

2s-designs. Partly motivated by the group-theoretic context, ITO [BS] has 

just completed a proof that the only tight 4-designs are degenerate 

(v = k-2), W23 , or its complementary design (W23 ) '. The cases> 2 

remains completely open in both the combinatorial and group-theoretic 

contexts. 

One way to guarantee that at-design V has few intersection sizes 

/B n c/ is to assume that G = Aut Vis block-transitive and has small 

block-rank p; thus, GB has exactly p block orbits (so there are at most 

p-1 different sizes /B n c/ with Bf C). This was considered by NODA [126] 

when Vis a Steiner system S(t,k,v). He assumed t = 3 or 4 and p = 3 or 4, 

and showed V must be W22 , W23 , W24 or AG2 (3,2). The proofs are very 

similar to tight design arguments. (In fact, the case t = 4, p = 3 follows 

from the aforementioned results of WILSON & RAY-CHAUDHURI.) 

It should also be possible to handle the case t = 2, A= 1 and p = 3. 

Here, GB is transitive on the lines disjoint from B, and Gx is 2-transitive 

on the lines through x. Presumably, V must be AG(2,k) or PG1 (d,k-1). NODA 

has observed that Vis AG(2,k) if G is not line-primitive; moreover, in 

unpublished work, he has used an argument of HIGMAN [70] to show that Vis 

PG1 (d,k-1) if v > k2 (k-1) 2 (k-2) 2 + k2 - k + 1. 

B. Parallel relations 

Let V be a design. A parallel relation on Vis an equivalence relation 

partitioning the blocks into classes, each of which partitions the points 

of V. Each parallel class has v/k blocks, and there are exactly r parallel 

classes. 



Relatively little is known about subgroups G of Aut V which pre

serve II . If the classical affine space (or plane) case is excluded, 

little is known beyond NORMAN's theorem (see 9B(3)) and the following 

result of CAMERON [28]. 
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(1) Let V be the degenerate design with k = 2 and A= 1, whose bZoaks are 

just the 2-sets of points. Asswne that v > 3, G is 3-transitive, and G 
d preserves II. Then either v = 6 and G ~ PGL(2,5), or v = 2 for some d 

and V aan be regarded as the design AG 1 (d,2) with the obvious paraZZeZ 

relation. 

PROOF. Let x,y,z be any three points. Then G fixes the block through z 
xyz 

parallel to {x,y}. Hence, G fixes k ~ 4 points. If k = v then 
xyz 

ZASSENHAUS [172] can be used to show that v = 6 and G is PGL(2,5). If 

k < v, 6D(l) can be applied to yield k = 4. If Band Care two blocks of 

this S(3,4,v), and if IB n cl= 2, then B - B n c, B n c, and C - B n c 
are parallel. Hence, B+C is a block of the S(3,4,v). It follows easily 

that the S(3,4,v) is AG2 (d,2) (compare 4C(3)). D 

Actually, CAMERON's proof does not use 6D(l). In fact, it was while 

I was eliminating one case of CAMERON's situation that 6D(l) and 6E(1) 

were born. 

More recently, CAMERON has obtained a generalization of lOB(l) to 

groups preserving a parallelism of the trivial design of all k-sets of a 

v-set (1 < k < v). 

The natural extension of lOB(l) to the case of triangle-transitive 

automorphism groups of more general designs V (with II) remains open. 

(2) If V and II are as before, then b ~ v+r-1; moreover, b = v+r-1 if and 

onZy if any two bZoaks meet in O or k2/v points (see DEMBOWSKI [40, 

pp.72-73]). When b = v+r-1, Vis called an affine design. Clearly, 

affine designs provide a common generalization of Hadamard 3-designs 

and affine spaces. A theorem of DEMBOWSKI [40, p.74] characterizes 

affine spaces AGd-l (d,q), q > 2, among affine designs; this result 

is similar to the DEMBOWSKI-WAGNER theorem (see 8C). But relatively 

little attention has been paid to automorphism groups, so perhaps a 

few additional remarks are worthwhile. 

Consider V, II, and G:,; Aut V preserving II. Let G have t point
p 

orbits, tb block-orbits, and t 11 parallel-class orbits. If Vis an 
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affine design, then tb + 1 = tp + t 11 (NORMAN [127]). In general, it 

turns out that one can at least say tb + 1 ~ tp + t 11 • Also, if V is 

affine and g E G, then fp + 1 fb + f II, where fp , fb and f II are the 

numbers of points, blocks and parallel-classes fixed by g. From these 

facts, further results can be deduced as in KANTOR [91]. 

Incidentally, it should be noted that the arguments on pp.113-114 

of DEMBOWSKI [40] show tha~ the number of non-isomorphic affine de

signs having the same parameters as AGd_ 1 (d,q), d ~ 3, is enormous 

(and in fact ➔ 00 , as d ➔ 00 or q ➔ 00 ). However, I conjecture that af

fine spaces are the only affine designs which are not Hadamard 3-de

signs and whose automorphism groups are transitive on ordered pairs 

of non-parallel blocks. 

c. Transitive extensions 

Let H be a give~ group, possibly given together with a specific 

transitive permutation representation on a set S'. A tra:nsitive extension 

cf His a 2-transitive group G on a set S such that, for some x Es, 

G ~ H; 
X 

if, moreover, His given as acting on S', then it is also required 

that Isl= js• 1+1 and that G acts on s-{x} as H does on S'. 
X 

A basic open problem concerning 2-transitive groups is: if His known 

as an abstract group, find all transitive extensions of H. Needless to say, 

very few groups H have transitive extensions. 

Transitive extensions have been studied geometrically by DEMBOWSKI 

[39], HUGHES [75,76], and TITS [158]. Their approach was to extend designs 

associated with groups such as the collineation group of AG(d,q) or 

PG(d,q), given as acting 2-transitively on the points of the corresponding 

affine or projective space. 

Much more generally, TITS (unpublished) has shown that a Chevalley 

group over GF(q), acting on a class of parabolic subgroups, has no tran

sitive extensions if q is not very small. Still more generally, SEITZ 

(unpublished) has obtained the same conclusion if His isomorphic to a 

Chevalley group over GF(q) and (q, lsl-1) = 1. 

D. Some maximal subgroups of alternating or symmetric groups 

Let H be a transitive permutation group on s, about which a lot is 

known. PROBLEM: determine all permutation groups G on S containing H. 
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Here, I have in mind some "geometric" group Hand set S. The case 

H = PSL(n,q), n ~ 2, with S the set of points of PG(n-1,q), has been dis

cussed in 7E(l). In general, if His chosen "large" enough, and G > H, 

then G will presumably have to be 2-transitive. PROBLEM: handle the case 

H PSL(n,q), n ~ 4, and S the set of e-spaces of PG(n-1,q), where 

1 s e s n-2. 

I have settled the case H = Sp(2m,2), in its 2-transitive represen

tations of degree 2m-l(2m±l): if G > H then G is alternating and symmetric. 
+ 

The elementary proof uses transvections and the geometry of GO-(2m,2). 

The reader should have no difficulty in listing many other, similar 

questions. Perhaps the most intriguing general question of this type con

cerns a Chevalley group H acting on a set S of parabolic subgroups. 

E. Sp(2m,2) and .3 

SHULT [148] has obtained some graph-theoretic characterizations of 
m-1 m Sp(2m,2) in its 2-transitive representations of degree 2 (2 ±1). 

However, no characterization is known in terms of designs. The difficulty 

is that no really interesting designs seem to have Sp(2m,2) as a 2-transi

tive automorphism group. 

Precisely the same difficulty occurs in the case of CoNWAY's smallest 

group .3, in its 2-transitive representation of degree 276 (see CONWAY 

[35]). In both cases, the 2-graph approach seems more relevant than the 

design one (cf. SEIDEL [143]). 

APPENDIX 

The known 2-transitive groups 

The following is a list of all the known 2-transitive groups G having 

no regular normal subgroup. 

( 1) G = A or S , IS I = n. n n 
(2) PSL(d+l,q) SGS PfL(d+l,q); Sis the set of points or hyperplanes of 

PG(d,q). 

(3) PSU(3,q) SGS PfU(3,q); Sis the set of q 3+1 points of the corre

sponding unital. 
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(4) G has a normal Ree subgroup; Sis the set of q 3+1 points of 
. . 2e+l the corresponding unital (q = 3 ). When e = 0, G ~PfL(2,8), 

acting on the points of V(4) (see 6B(3)). 

(5) Sz(22e+l) ~ G ~ Aut Sz(22e+l); Sis the set of (2 2e+l) 2 + 1 points of 

the corresponding inversive plane or ovoid (see LUNEBURG [111]). 

I I m-1 m + 
(6) G Sp(2m,2), s = 2 (2 ±1), Gx = Go-(2m,2). 

(7) G PSL(2,11) acting on the 11 points or blocks of W11 (see 8B(2)). 

(8) G A7 acting on the 15 points or planes of PG(3,2) (see 4A). 

(9) The Mathieu groups M11 , M12 , M22 , Aut M22 , M23 and M24 in their 

usual representations on the points of the corresponding Steiner 

systems. 

(10) G = M11 acting 3-transitively on the 12 points of a Hadamard 3-design 

(see 4B(3), 9B and 9C). 

(11) G HS acting on the 176 points or blocks of W176 (see 8B(4)). 

(12) G = .3, Isl = 276. 
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SUBORBITS IN TRANSITIVE PERMUTATION GROUPS 

P.J. CAMERON 

Merton College, Oxford OXT 4JD, England 

With any graph we can associate a group, namely its automorphism 

group; this acts naturally as a permutation group on the vertices of the 

graph. The converse idea, that of reconstructing a graph (or a family of 

graphs) from a transitive permutation group, has been developed by 

C.C. SIMS, D.G. HIGMAN, and many other people, and is the subject of the 

present survey. In his lecture notes [23], HIGMAN has axiomatised the com

binatorial objects that arise from permutation groups in this way, under 

the name coherent configurations; but I shall discuss only the case where 

a group is present. My own introduction to the theory was via the unpub

lished paper of P.M. NEUMANN [30]. 

In section 1, the construction and some of its basic properties are 

described. Also in this section I introduce the basis matrices and the cen

traliser algebra they generate. The theory of this algebra has played an 

important role in the study of permutation groups and of various combinato

rial objects (in such papers as [20],[22],[30],[2],[12],[16]); but here I 

shall be more concerned with other aspects of the theory, those which may 

be described as more "graph-theoretic". 

Section 2 is about paired suborbits. In graph-theoretic terms, we have 

a directed graph, and ask about the relations between the actions of the 

stabiliser Ga. of a vertex a on the vertices joined "to" and "from" a. 

In section 3 the subject is more group-theoretic. Suppose the action 

of Ga on the vertices adjacent to a (or perhaps just the number of such 

vertices) is given. What can be said about the structure of Ga? After 

pioneering work by TUTTE [41],[42] and SIMS [34], the most powerful results 

here are due to WIELANDT [47]. 
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Sections 4 and 5 are closely related. In section 4 we take once more 

the graph-theoretic viewpoint and investigate further transitivity proper

ties of undirected graphs; in the following section these investigations 

are put back in group-theoretic context, and generalisations of them are 

studied. One of the themes of this section is the deduction of bounds for 

the rank of a primitive permutation group from hypotheses about the stabi

liser of a point. 

Section 6 discusses some aspects of algebraic relations (such as com

mutativity) between basis matrices. There are no general results here, 

since none seem to exist, and it appears to be an untilled field full of 

thorny problems; a special case is considered, to illustrate the ideas. 

For the general theory of finite permutation groups, the reader is 

referred to the book by WIELANDT [45]. It should be mentioned that, unless 

specifically stated otherwise, all permutation groups are finite. 

1. INTRODUCTION AND NOTATION 

With the exception of section 4, the point of view throughout these 

notes is a group-theoretic one. We take a transitive permutation group, 

associate with it a class of directed or undirected graphs, and use the 

graphs to get information about the group. All the graphs involved have 

the property that their automorphism groups act transitively on vertices 

and on directed edges, and indeed any graph r with this property is covered 

by our remarks (simply by taking G = Aut r as a permutation group on the 

vertices off). So the process is essentially a two-way one, and both 

points of view should be kept in mind. Of course, if we start with a graph, 

the general machinery produces a whole family of graphs, whose interrela

tions can be studied. 

Suppose G is a transitive permutation group on a set n. G has a na

tural action on n x n, defined by 

(a,Slg (ag,Sgl 

for all a,S En, g E G. Son x n is partitioned into orbits r O,r 1, ••• ,rr-l 

under the action of G. These are called suborbits of G, and their number 

r is the rank. (If lnl > 1 then r ~ 2, since the diagonal r 0 

{(a,a) I a En} is always an orbit. Note that r = 2 if and only if G is 
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doubly transitive on n.) We can regard each suborbit ri as a G-invariant 

relation on n, or alternatively (if i > 0) as the edge set of a directed 

graph which admits Gas a group of automorphisms transitive on vertices 

and directed edges. The suborbit paired with a given suborbit r (or the 

converse relation tor) is 

r* {(B,a) I (a,S) € r} . 

Other notation in common use is r• (WIELANDT [45]) and ru (HIGMAN [23]). 

r is self-paired or syrronetric if r = r*. If r is self-paired, we can re

gard it as an undirected graph. 

The suborbits are the minimal G-invariant binary relations on n, and 

any G-invariant relation is the union of a subcollection of them. (Some

times I shall call such a relation a generalized suborbit.) Of particular 

importance are the G-invariant equivalence relations. There are always at 

least two of these, the diagonal r 0 and the whole of n x n. Given any non

diagonal suborbit r, there is a unique G-invariant equivalence E which is 

minimal subject to containing r. This is "generated" by r in a certain 

sense which we shall make precise. Consider the undirected graph correspond-

* * ing to r (that is, the relation r u r ) . E contains r u r (by symmetry) 

and so it contains the relation of being connected by a path in r u r* (by 

transitivity). However, this latter relation is an equivalence, and so is 

equal to E. SIMS showed that we can give a simpler description of E. 

THEOREM 1.1. The smallest G-invariant equivalence relation containing r 
is the relation of being connected by a directed path in r. 

PROOF. For a En, let E'(a) be the set of points reachable by directed 

r-paths from a. Clearly, if S E E' (a), then E' (B) £ E' (a). But if g is an 

element of G with ag = S, then E' (a)g = E' (B), and so IE' (a) I = IE' (S) I. 

It follows that E'(a) = E'(S), and in particular a E E'(S). Thus E' is sym

metric. It is obviously reflexive and transitive, so it is the minimal 

equivalence relation E containing r. D 

G. GLAUBERMAN, who lives in Chicago, formulated this result as follows. 

The graph r (interpreted as a one-way system) has the property that, when

ever it is possible to walk from a to S, it is possible to drive. Clearly 

not all directed graphs have this property! It is a consequence of our tran

sitivity assumption. (This formulation was communicated to me by L. SCOTT.) 
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we can phrase the result in yet another way. The set of G-invariant 

relations on Q, with the operation of composition, forms a semigroup. The 

union of all members of the subsemigroup generated by r is the smallest 

equivalence relation containing r. We may say this is the equivalence re

lation generated by r. 

It is not difficult to show that if (a,S) Er and g E G satisfy ag = S, 

then the subgroup of G fixing the equivalence class of E containing a is 

the subgroup generated by Ga and g. (Ga is the subgroup of G fixing a.) In 

particular, r is connected if and only if <Ga,g> = G. 

The group G is said to be primitive if the only G-invariant equivalen

ce relations are the trivial ones r 0 and Q x Q. By theorem 1.1, G is primi

tive if and only if the graph of every non-diagonal suborbit is connected; 

this occurs if and only if <Ga,g> = G for all g i Ga; that is, if and only 

if Ga is a maximal subgroup of G. 

As defined in WIELANDT's book [45], a suborbit is an orbit of Ga in 

n. There is a natural one-to-one correspondence between the two concepts: 

· if r 0 , ... ,rr-l are the G-orbits in Q x n, then r 0 (a), ... ,rr-l (a) are the 

Ga-orbits inn, where 

ri (a) set of points joined "from" a in ri. 

Conversely, ri is the G-orbit containing (a,S), for some SE ri(a). The 

subdegree associated with r. is \ r. (a) \ = \ r. \ / \ n J, the valency of the 
1 1 .1 

graph ri. It follows that paired suborbits have the same subdegree. 

The graph-theoretic interpretation of suborbits often provides simple 

proofs of old theorems on suborbits and subdegrees. As an example I give 

SIMS' proof of Theorem 17.4 in WIELANDT's book. 

THEOREM 1.2. If G is primitive, with subdegrees l=n0 ,n1 , ... ,nr-l (in in

creasing order), then n 1n. 1 ~ n. for i=l, ... ,r-1. 
1- 1 

PROOF. Let~ be the generalised suborbit r 0 u u ri-l" Since G is pri-

mitive, there is a r 1-edge (y,o) from a pointy E ~(a) to a point o i ~(a); 

say y E r. (al, 0 E r k (al, with j < i ~ k. The number of r 1-edges with ini-
J 

tial point in r. (a) and terminal point in rk (al is at most n 1nj ~ nlni-1, J 
and also at least nk ~ ni; so n 1ni-l ~ n .• □ 1 
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We do not really need primitivity; connectedness of r 1 will suffice. 

If r 1 is self-paired, a simple change in the argument gives the result 

(n1-l)ni-l 2 ni for i=2, ••• ,r-1. 

If r. and r. are suborbits, 
1. J 

their composition r. or. is the genera-
1. J 

lised suborbit consisting of the pairs (a,S) for which there exists a 

pointy with (a,y) E ri, (y,S) E rj. For convenience later on, we make the 

additional arbitrary assumption that a F S. (This is relevant only if 

* r j r i. l 
Since G is transitive on directed edges of each rk, the number of 

points y for which (a,y) E ri, (y,S) E rj, depends only on which suborbit 

contains the pair (a,S); we shall let aijk denote this number, if 

(a,S) Erk. Note that aijk = O if k F O and rk i ri O rj. These intersec

tion numbers satisfy various identities, which can be verified by counting 

arguments: 

(1.1) r-1 

l aijk 
j=O 

r-1 

l alit atjm 
t=O 

r-1 

l alkm aijk' 
k=O 

where n. is the subdegree of r 1., o .. the Kronecker delta, and r.* = r~. 
1. 1.J 1. 1. 

The last of these relations is proved by counting quadrilaterals in 

two ways, as shown in fig. 1.1. 

r. 
J 

m 

Fig. 1.1 

The basis matrix Ci corresponding tori is the matrix with rows and 

columns indexed by~, with (a,S) entry 1 if (a,S) E ri, 0 otherwise. 

The basis matrices (adjacency matrices of the graphs) satisfy 



(1.2) 

C, C, = 
1. J 

I, 
r-1 

I 
i=O 

C, 
1. 

J (the all 1 matrix), 
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The last equation is proved by observing that the (a,S) entry of C.C. is a. 'k 1. J 1.J 
if (a,S) Erk. It follows that the span of c 0 , ... ,cr-l (over~) is an alge-

bra of dimension r, which is semi-simple (by the second equation). Further

more, G can be represented as a linear group on the vector space ~n with 

basis indexed by n (elements of G permute the basis vectors in the natural 

way); it is easy to verify that a given matrix commutes with all the per

mutation matrices if and only if its (a,S) entry depends only on the sub

orbit containing (a,S), that is, if and only if it lies in the span of 

c 0 , ••• ,cr_1 • Thus these matrices span the centraliser algebra of the per

mutation matrices. The fifth equation of (1.1) can be interpreted as the 

.associativity of basis matrices: 

r-1 r-1 r-1 r-1 
(C1Ci)Cj = I ( I alitatjm 

) C = I ( I alkmaijk) C c 1 (CiCj). m m 
m=O t=O m=O k=O 

This is an example of the interaction between the algebra and the graph 

theory. Another is the fact that C, and C. commute if and only if 
1. J 

aijk = ajik for all k (see also section 6). 

Since the centraliser algebra is semi-simple, it is a direct sum of 

matrix algebras of degrees e0 , ..• ,es over~- Since its dimension is r, we 

have le~= r; and we can assume that e 0 = 1, since (ni) is a 1-dimensional 

direct summand of Ci. ~Q is a natural module for this algebra, and is a 

direct sum of irreducible submodules; suppose the natural module for the 

i-th summand of the algebra has multiplicity g1.·· Then lnl = l e.g., and 1. 1. 
g0 = 1 (by the PERRON-FROBENIUS theorem). Double centraliser theory shows 

that the numbers ei and gi are respectively multiplicities and degrees 

of the irreducible representations of G which occur in the permutation re

presentation on ~n. 
If we know enough about the algebra (for example, all intersection 

numbers), we can in principle compute the numbers ei and gi. First we com

pute the irreducible representations of the algebra. This is made easier 

by the fact that there is an isomorphism from the centraliser algebra to 

the intersection algebra whose elements are r x r matrices (and so in 
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general much smaller). The intersection matrix Mi of ri is defined to 

have (l,m) entry alim· Then 

r-1 

l alit atjm 
t=O 

r-1 

l alkm aijk 
k=O 

( r~l a. 'k Mk) 
k=O iJ lm 

,r-1 
= lk=O aijk Mk, and the map CiH- Mi is an algebra isomorphism. 

In the case where all ei are equal to unity (so the centraliser alge

bra is commutative), an irreducible representation associates with each 

basis matrix an eigenvalue, and the gi are the multiplicities of these 

eigenvalues. The equations Trace(Ci) jnjoiO are now a set of linear 

equations for the gi. 

The main applications of the theory are in finding non-trivial "inte-

grality conditions" on the intersection numbers, by computing the degrees 

and multiplicities and observing that they must be integers. ([20],[22], 

[4], for example.) Other papers (such as [43],[30]) start with the degrees 

and multiplicities and compute the intersection numbers. Neither of these 

will be our chief concern. 

There is a little more information that can be gleaned from the permu

tation character TI of G. TI is the character of the permutation representa

tion of G on ~n, that is, TI(g) is the number of fixed points of g, for 

g E G. If the irreducible constituents of TI appear with multiplicities 

e 1, •.. ,es, we know that r =le~ and the principal character 1G has multi

plicity e 0 =1. (Thus, G is doubly transitive if and only if TI 1G + x, 

where xis irreducible.) We can also obtain a formula for the number of 

self-paired suborbits. The FROBENIUS-SCHUR number n of an irreducible 
X 

character x of G is defined to be +1 if xis of the first kind (the charac-

ter of a real representation), -1 if xis of the second kind (a real cha

racter not afforded by any real representation), and O if xis of the third 

kind (complex-valued). This can be extended to an arbitrary character by 

linearity; thus nTI is the number of constituents of TT of the first kind 

minus the number of the second kind (counted with multiplicity). Now 

n = (jGj)-l l TI(g2) (see [15; 3.5]), from which it follows that n is TI TI 
gEG 
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the number of self-paired suborbits of G (see [10]). (Note that this num

ber is at least 1.) An irreducible of the second kind must occur with even 

multiplicity in any real representation. So if all the multiplicities ei 

are 1, then# self-paired suborbits =#real irreducible constituents of n, 

# non-self-paired suborbits =#non-real irreducible constituents of n. 

2. PAIRED SUBORBITS 

One of our main concerns will be with relations among the different 

subconstituents (transitive constituents of the stabiliser of a point) 

in a transitive permutation group. In complete generality there can be no 

relationships at all, as the following example shows. Let H be a permuta

tion group on a set A, .not necessarily transitive. Let V = FA be a vector 

space over F = GF(p) (p prime) with basis indexed by A; then H acts as 

a group of linear transformations on V. Let G = {~h+v I h EH, v EV} • 

. G is transitive oh V, and G0 ~ H has a union of orbits t:.(0) on which it 

acts as H does on A. Of course, if His intransitive on t:., then none of the 

graphs corresponding to suborbits in t:.(0) is connected, and a connected 

component of one of them contains none of the others. We might expect that 

two suborbits which generate the same equivalence relation might be better 

behaved. As shown in theorem 1.1, paired suborbits always fulfil this con

dition. And indeed paired subsconstituents always share at least one pro

perty: they have the same degree. 

There is a general machine for producing bad behaviour in paired sub

orbits. Suppose H is a group, an_d K and L are isomorphic subgroups of H 

which are embedded "differently" in H. Embed Hin G, the symmetric group 

of degree IHI, by means of its regular representation.Kand Lare each 

represented by IH:KI times the regular representation, and so are isomor

phic as permutation groups. Thus there is an element g E G such that Kg= L. 

Indeed there are many such g, and we can usually choose one such that 
-1 

H n Hg= L (and then H n Hg = K). Represent Gas a permutation group on 

the right cosets of H (acting by right multiplication), and let a, y, y' 
-1 

be the cosets H, Hg, Hg • Then G = H, G = L, G I K, and (y',a)g = a ay ay 
= (a,y). Soy and y' belong to paired suborbits affording the representa-

tions of Hon the right cosets of Land K respectively. 
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EXAMPLES. 

1. H = s 4 , K = <(12),(34)>, L = <(12)(34),(13)(24)>. One suborbit affords 

the (rank 3) representation of s 4 on unordered pairs, while the other is 

not faithful (since L~ H) but affords the regular representation of 

H/L;: s3 . 

2. H = M12 , Kand Lare non-conjugate subgroups isomorphic to PSL(2,11); 

one is maximal and the other is not. (Thus one constituent is primitive 

and the other is imprimitive.) 

3. H = Sn x Sk (n > 2k), K;: L;: Sn-k x sk. One constituent is the repre

sentation of Sn on ordered k-tuples of distinct elements, while the 

other is faithful. 

These examples, which could be multiplied, indicate that many elemen

tary properties (such as order, rank, primitivity, and regularity) are not 

necessarily shared by paired subconstituents (or "preserved under pairing"). 

The first positive result was proved by SIMS (see [31]): 

THEOREM 2.1. If G is transitive on Q and r is a suborbit with subdegree 

greater than 1, then G r(a) and G r*(a) have a common non-trivial epimor-
a a 

phic image. 

I shall outline SIMS' proof of this result, which goes by contradic-

tion. First, note that if a group G acts on rand I:;, and if Kr and Kt; are the 
Gr and Gt; kernels of these actions, then - G/Kr S!! G/K/:;; G/KrKt; is a common 

epimorphic image of Gr and Gt;. If the only such epimorphic image is tri-

vial, then G = KrKt;, whence Gt; /:; . . 
Kr and a fort~on G 

/:; /:; 
= G for y e: r. y 

Suppose G, acting on Q with suborbit r, is a counterexample. We prove 

by induction the statements about the r-graph: 

Ak G permutes paths of length k transitively; 

if (a1 , ... ,ak) is a path of length k-1, then 

* * G r(ak) = G r(ak) and G r (a1) = G r (a1) 
a1 •.. ak ak al •.. ak al 

A1 and B1 are trivially true. If¾ and Bk hold, and (a1 , ... ,ak) is as in 

Bk, then G r(ak) and G r*(ai) have no common non-trivial epi-
al ..• ak al ... ak 

morphic image (by Bk and hypothesis), so G 

r* (a1) G r* (a1) for ao al ... ak+l 

and Bk+l hold. 



So G acts transitively on paths of length k for all k, a contradic

tion since the number of such paths is lnl Ina) lk and goes to infinity 

with k. 
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SIMS' idea was employed by CAMERON [8,I] to show that a variety of 

properties of transitive groups are "preserved under pairing". The most 

important of these are double transitivity and the property of containing 

the alternating group. The first of these can be expressed thus. Let r be 

a directed graph whose automorphism group is transitive on vertices and 

directed edges. Then the properties of transitivity on the two kinds of 

figure shown in figure 2.1 are equivalent. 

Fig. 2.1 

The most general result in [8;I] asserts that a property P of transi

tive groups of degreed> 1 is preserved under pairing if it satisfies the 

two conditions 

(i) Gn € P, Gs H implies Hn € P; 
(ii) if G acts transitively on rand b., with lrJ 

Gr i P, and y € r, then Gt,_€ P. 
y 

More recently I have found a more general necessary condition; it is awkward 

to state, but implies (for example) that if n is large enough (for given k), 

the property of acting as Sn or An on k-element subsets is preserved under 

pairing. Compare this with examples 1 and 3 above. 

A significant advance was made by KNAPP [26], who found an alternative 

method of proof. Again I shall illustrate by proving SIMS' result (theorem 

2.1). Suppose a group G is a counterexample to the theorem; let n be a set 

affording a permutation representation of G of maximal degree for which the 

theorem is false, and r the suborbit involved. If (y,a),(a,6) € r, then as 
before G r(a) = G r(a) r*(a) r*(a) . . ay a and G06 = G0 • Thus G is transitive on r, 

and~= {((y,a),(a,6)) € r x r} is a suborbit, with G( )~(y,a) ~ G r(a) = 
r (a) ~* (a 6) r* (a) r* (a) Y ,a ay 

= G and G ( 0 ) ' ~ G O = G • Thus the theorem is false for a a,µ Clµ a 
the action of G on r, and lrl = JnJ lr(a) J > JnJ, contradicting the maxima-

lity of In!. 

KNAPP was able to extend the argument to show 
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THEOREM 2.2. Suppose Pis a property of transitive groups of degreed> 1 

such that 

(i) Pis preserved under pairing; 

(ii) groups in Pare primitive; 

(iii) if Y is a regular normal subgroup of a group x E P, then X/Y has 

no normal subgroup isomorphic to Y.. 

Let G be a transitive permutation group on Q with suborbit r such that 

lr(a) I= d and G f(a)E P. Then G f(a) ~ G r*(a) (as abstract group). 
a a a 

Note that (ii) is satisfied by most known properties satisfying (i), 

while (iii) is usually a very weak requirement. Note also that we cannot 

* conclude that the representations of G0 on f(a) and r (a) are equivalent, 

even under much stronger hypotheses. 

It might be expected that stronger results might hold about paired 

suborbits in primitive groups. However, nothing seems to be known except 

for consequences of the more general relations between subconstituents in 

primitive groups, to be discussed in the next section. Paired subconsti

tuents need not be equivalent, even when they are multiply transitive; but 

the worst examples I know are very much milder than the general examples 

discussed previously. 

Even when paired constituents are isomorphic as permutation groups, 

they may look quite different geometrically. For example, let G be a group 

doubly transitive on Q, and~ a fixed set of G{a,S}" Let s( 2) denote for 

the moment the collection of 2-element subsets of a set S. G is transitive 

on Q( 2), and has a generalized suborbit r defined by f({a,S}) 

might expect that there would be a fixed set~• for G{a,S} in Q such that 

* r ({a,S}) = ~( 2), but this need not be the case; it can occur that the mem-

bers of r*({a,S}) are pairwise disjoint, even when this set is a single 

suborbit! See ATKINSON [l;II]. 

In multiply transitive groups there are possibilities of more general 

kinds of pairing. Suppose G is k-transitive on Q, and IQI > k. As in section 

1 there is a natural correspondence between G-orbits on ordered (k+l)-tuples 

of distinct elements of Q and G -orbits on Q - {a1 , ... ,ak}. Now there 
a1 ••• ak 

are potentially (k+l)! orbits "paired" with a given one, corresponding to 

the (k+l)! possible rearrangements of a (k+l)-tuple. (The number of these 

which are distinct is the index in Sk+l of the group of permutations induc

ed by G on a (k+l)-tuple in the given orbit.) The results of this section 

apply to any two orbits "paired" by a transposition, and so to any two 
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"paired" orbits, since transpositions generate the synunetric group. How

ever, we might expect that fork> 1 stronger results would hold. This has 

not been investigated. 

It is clear that SIMS' and KNAPP's proofs depend on the finiteness of 

n and G. If n is infinite, then any kind of bad behaviour is possible. Thus 

any two transitive permutation groups (not necessarily of the same degree) 

can occur as paired subconstituents in a transitive permutation group. The 

counterexample machine works even better. Instead of embeddings in synunetric 

groups, we can simply apply the HIGMAN-NEUMANN-NEUMANN construction [24]; 

BRITTON's lemma [6] guarantees that the element g exists. In bad cases, 

SIMS' argument often shows that G acts transitively on paths of length k 

for every k; yet G may have uncountably many orbits on one-way infinite 

paths. The very simplest example is the directed tree in which every vertex 

has one edge entering it and two leaving it . 

. 3 . MORE GENERAL RELATIONS BETWEEN SUBCONSTITUENTS 

Suppose we are concerned with permutation groups with a given subde

gree v (or with graphs of a given valency v having automorphism groups 

transitive on vertices and directed edges). We know then that the stabili

ser of a point has a homomorphism into the synunetric group on v letters. It 

is very important to get hold of the kernel of this homomorphism; but this 

is a difficult problem. SIMS conjectured that at least the size of the ker

nel is bounded, provided the group is primitive. 

SIMS' CONJECTURE. There is a function f on the natural numbers with the 

property that, if G is a primitive permutation group with a suborbit r with 

lrta) I= v, then !Gal~ f(v). 

We might expect a similar function to exist under the weaker hypothe

sis that the r-graph is connected; but this is false, as can be seen by con

sidering the directed graph with vertices (i,j), where 0 ~ i ~ n-1, 

0 ~ j ~ m-1, and edges ((i,j),(i+l,k)) for all i,j,k, where the first coor 

I I I I n-1 dinate is taken mod n. Here f(a) = m but Ga = (m!) (m-1)! The underly-

ing undirected graph has a similar property. 

We observe two simple cases: f(l) = 1, f(2) = 2. For if lr(a) I= 1 

then the r-graph is a directed polygon. If jr(a)I = 2 and 6 = r* a r, then 
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l~(a) I= 2 and~ is self-paired, so the ~-graph is an undirected polygon. 

SIMS [34;I] showed that f(3) = 48, and QUIRIN [31] reports an unpublished 
4 6 

result of SIMS and THOMPSON that f(4) = 2 3. No other values are known. 

However, we can find structural restrictions on Ga when we are given 
r ca J Ga The first, discovered by JORDAN, is Theorem 18.4 of WIELANDT: 

THEOREM 3.1. If the r-graph is connected and pis a prime dividing IG I, 
Ct 

then p divides IG f(a) l
a 

P i I Gar (al I, PROOF. Suppose f and suppose g is an element of order p fixing 

a. By assumption, g fixes every point of f(a); then g fixes every point at 

distance 2 from a; and so on. It follows that g = 1, a contradiction. So 

WIELANDT generalized this result to composition factors, assuming G is pri-

mitive; a composition factor of G is 
I'(et) Ct 

of Ga . It need not, however, be a 

a composition factor of some subgroup 

composition factor of G f(a) itself. 
Ct 

For example, let G = s2n-l act on the set of (n-1)-element subsets. Ga= 

= Sn-l x Sn, but if f(a) is the set of (n-1)-element subsets disjoint from 

r (a) 
a, then Ga = S, and (if n ~ 6) An-l is a composition factor of Ga but 

r (a) n 
not of G • Note that An-l is a composition factor of the stabiliser of 

. ~ r (a) . . 
a point in Ga • This is quite general, as a result of WIELANDT shows 

(see [21, Theorem 1.1]). 

Suppose K is a stable functor on finite groups, that is, K associates 

with any group a characteristic subgroup and has the property that 

K(X) SY~ X implies K(Y) = K(X). KNAPP [26] shows 

THEOREM 3.2. If G is primitive with a suborbit r, and K is a stable functor 

such that K(Gae> acts trivially on both I'(a) and r*ceJ (where (a,8) EI'), 

then K(Gae> = 1. 

The proof is very similar to that of theorem 3.1: K(GaB) fixes every 

point reachable from a by an "alternating" path of typer, r*, r, r*, ... , 

* and this set includes a connected component of r O r. Note that connected-

ness of r is not enough here, as the previous example shows. 

Examples of stable functors include 

(i) OA, where A is a set of finite simple groups (OA(X) is the smallest 

normal subgroup Y of X such that all composition factors of X/Y lie 

in A). This includes OTT, for TT a set of primes (smallest normal sub

group whose index is a TT-number); 



(ii) OA, largest normal subgroup whose composition factors belong to A. 

This includes O, largest normal n-subgroup; 
n 

(iii) F, the Fitting subgroup (largest normal nilpotent subgroup). 
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A Apply theorem 3.2 to O, where A is the set of composition factors of 

Gaf3r(a) and Ga13r*(f3), (a,f3) € r. If K(a), K*(a) are the kernels of the ac

tions of G on r(a) ,r*ca) respectively, then OA(G f3i s K(aJ n K*(f3), so 
A a a 

0 (Gaf3) = 1. In particular, the composition factors of K(a) belong to A. 

This is the cited result of WIELANDT. 

Deeper results on the structure of Ga in a primitive group G can be 

obtained using normaliser and centraliser theorems of WIELANDT for subnor

mal subgroups. In this way WIELANDT [47] was able to show that, if M(a) is 

the subgroup of G fixing {a} u r(a) u er O r*) (a) pointwise, and M*(a) is 

similarly defined, then one at least of M(a) and M*(a) is a p-group, for 

some prime p. This has the following consequence, closely related to SIMS' 

conjecture: 

.THEOREM 3.3. If G is primitive and r is a suborbit with lr<a> I= v, then~ 

for some prime p, G has a normal p-subgroup of index at most v!((v-1)!)v. 
a 

The fact that G has a normal p-subgroup of bounded index (given v) 

was first proved by THOMPSON [39]. KNAPP [26] has shown that, if G r(a) is 
a 

2-homogeneous (transitive on unordered pairs) or if vis prime, then the 

bound can be improved to v!(v-1)!, and we have seen that this is best pos-

sible. In several cases KNAPP 

of G when G r(a) is given. 
a a 

is able to determine the precise structure 

Sometimes it is possible to prove that the normal p-subgroup referred 

to must be trivial.*Applying theorem 3.2 with K = F (or O ), we see that, 

'f G r(a) d G r (f3) h 1 'l t ub pth ith d i af3 an af3 ave no norma ni poten s group en ne er oes 

so in this case M(a) or M*(a) = 1, and we deduce that 

s v!((v-1)!)v, or (if G r(a) is 2-homogeneous or vis prime) 
a 

s v!(v-1)! * 
r(a) r (a) 

This is particularly useful when Ga and Ga are 2-primitive, 

in particular when v = p+1 for some prime p dividing IG I. In this case, 
* a 

if M(a) and M (a) are non-trivial, then the stabiliser of a point in 

G r(a) or G r*(a) has a regular normal subgroup. Doubly transitive groups 
a a 

with this property have been determined by HERING, KANTOR & SEITZ [19], 
real so we can pin down the structure of Ga very precisely. This has been 

done by GARDINER [17;I] in the case where r is self-paired and v = p+1; 



112 

he was able to determine the structure of G. The result will be discussed 
Cl. 

further in the next section. 

Application of these techniques, together with theorems about abstract 

finite groups, to the problem of primitive permutation groups with small 

subdegrees has resulted in a complete determination of such groups with a 

subdegree 3 (SIMS [34;I], WONG [48]), and of such groups with a subdegree 
. r (al 4 under the extra hypothesis that Ga is a 2-group (SIMS [34;II]) or the 

alternating group (QuIRIN [31]); partial results on subdegree 5 are obtai

ned by QUIRIN [31] and KNAPP [26]. 

There are a number of results which assert that, under certain condi

tions, Ga acts faithfully on a generalized suborbit 6(0.). This is true if 

G is primitive on Q and one of the following holds: 

(i) Ga is primitive on every suborbit not contained in 6(0.) (MANNING [27]); 

(ii) 6 contains r or r* for every suborbit r (WIELANDT [44]); 

* (iii) Ga is 2-primitive on 6(0.), 6 = 6 , and either Ga is primitive on 

(6 ° 6) (a), or I (6 ° 6) (a) I f. j6(o.) I ( j6(o.) 1-1) (MANNING [27]). 

A curious open conjecture asserts that the same result holds if G is pri

mitive and Ga acts regularly on 6(0.). This is known to be true if the sta

biliser of a point in 6*(o.) fixes additional points there ([45, Theorem 

18.6]), and soin particular if 6 is self-paired. It is false if we assume 

only that the 6-graph is connected, even with the extra hypothesis; see 

example 1 of section 2. 

Finally, I mention an extension of some of these results to doubly 

transitive groups due to SIMS [35]. Theorems like those of this section 

hold for the stabiliser of two points in a doubly transitive group Gunder 

a weaker assumption than 2-primitivity of G, namely the assumption that G 

is not an automorphism group of a block design with A 1 . For example, 

suppose G is 2-transitive, f(o.,S) is an orbit of GS' and pis a prime di

viding !Go.SI but not IGo.Sr(o.,S) 1. Then oP' (Gas) is Cl.weakly closed in Gas 

with respect to G, since it is generated by all the elements of p-power 

order in Go.S' and it fixes f(o.,S) pointwise; then WITT's lemma applies. 

(See result 2.B.1 of KANTOR's talk at this meeting [25] for discussion, or 

Theorem 9.4 of WIELANDT [45].) 
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4. DIGRESSION ON TRANSITIVITY IN GRAPHS 

Throughout this section, r is a connected undirected graph whose auto

morphism group G is transitive on vertices and directed edges. (Thus we 

fix attention on a particular suborbit r, replace primitivity of G by con

nectedness of r, but assume that r is self-paired.) 

Suppose that G is transitive on (ordered) paths of length 2. If r con

tains a triangle, then any two points joined by a path of length 2 are 

adjacent, and r is a complete graph Kv+l· We shall ignore this possibility, 

and assume that r contains no triangles. Let b. be the graph with the same 

vertex set as r, in which two vertices are adjacent if and only if they are 

joined by a path of length 2 in r. (That is, b. = r O r.). Then G acts 

transitively on vertices and directed edges of b., and sob. is regular with 

valency v(v-1)/k, where vis the valency of rand k = \r(a) n f(8) \ for 

(a,8) Eb.; k is a measure of "how many quadrilaterals r contains". b. has at 

most two connected components, with exactly two if and only if r is bipar-

tite. The first result shows how conditions on the structure of b. influen

cer. 

THEOREM 4.1. If a connected component of b. is a complete graph, then r is 

the incidence graph of a (possibly degenerate) self-dual symmetric design 

V satisfying 

(il Aut Vis doubly transitive on the points of V; 

(ii) if 8 is a block, then Aut(V) 8 is doubly transitive on the points in

cident with 8. 

PROOF. b. has two components; call the vertices of one component points, 

and those of the other blocks, and call a point and block incident if they 

are adjacent in r. The conditions are easily verified. D 

At this meeting, KANTOR will discuss such designs ([25; section 8]). 

Of the known symmetric designs with doubly transitive automorphism groups, 

all are self-dual, and all except one (the HIGMAN design H176) satisfy con

clusion (ii) of theorem 4.1. These designs give us examples of such graphs. 

The degenerate designs have k = v or k = v-1; the corresponding graphs are 

K and the graph obtained from K 1 1 by deleting the edges of a match-v,v v+ ,v+ 
ing. (Note: our v and k are the design parameters k and A.} 

Strong conclusions about b. can be drawn if k is large enough. 
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THEOREM 4.2. Either ks v/2or a connected component of 6 is a complete 

graph. 

PROOF. Suppose k > v/2;take o1,a2 E 6(a). Then 

To refine this result, we need to consider more systematically the 

sets r(a) n f(o). Call elements of r(a) and 6(a) points and blocks respec

tively, and call a point and block incident if they are adjacent in r. 

Provided k > 1, this gives a design V whose blocks can be identified with 

the sets r(a) n f(o); v and k agree with the design parameters denoted by 

the same letters, and A= k-1 • 

. h 2 2 4 2 h" h . ~-THEOREM 4.3. E~t er v(v-l)k(k -3k+v) S 2(v-k) (v-k-1) (W ~c ~mp&~es 

k < (2v) 415 ), or a connected component of 6 is a complete m-partite graph 

K for some m,n (that is, K with the edges of m pairwise vertex-n,n, ... ,n mn 
disjoint Kn's deleted.) 

PROOF. Let G1 and G2 be the graphs with vertex set 6(a) defined thus. Two 

vertices are adjacent in G1 if (as blocks) they are not disjoint and no 

block is disjoint from both; two vertices are adjacent in G2 if and only if 

(as blocks) they are disjoint. Both graphs admit the vertex-transitive 
6(a) 

group Ga , and so are regular, with valencies d 1 and d2 respectively. 

Two points which are not adjacent in G1 are joined bya path of length at 

most 2 in G2 ; so l+d2+d2 (d2-1) ~ v(v-1)/k-d1 • From design theory we find 

that d2 S (v-k) 2 (v-k-1)/k(k2-3k+v). (See [B;II].) An easy counting argument 

shows that, if a1 and a2 are adjacent in G1 , then 6(o1)-6(a) = 6(o 2)-6(a). 

If G1 is connected, then this holds for all o1 ,a2 , whence the second al

ternative of theorem 4.3 holds. Otherwise d 1 S v(v-l)/2k - 1. Putting the 

three inequalities together gives the result. D 

Curiously, only five graphs with k > 2 are known which fail to satisfy 

the second conclusion of theorem 4.3. These are the HIGMAN-SIMS graph on 

100 vertices with v 22, k = 6, two of its subgraphs (one on 100 vertices 

with v = 15, k = 5, obtained by deleting the edges of two vertex-disjoint 

HOFFMAN-SINGLETON subgraphs; the other on 77 vertices with v = 16, k = 4, 

on the vertices not adjacent to a given vertex), and graphs obtained from 
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the first and third by a "doubling" construction described below. It seems 

likely that the bound of theorem 4.3 can be improved substantially, and 

that graphs satisfying the second alternative can be described more pre

cisely. (Note that such graphs must be bipartite.) 

In passing, I note that a similar·argument gives bounds for certain 

strongly regular graphs, such as those with no triangles and those asso

ciated with generalized quadrangles. 

Our hypotheses imply that Ga acts doubly transitively on f(a). Strong

er results can be obtained by increasing the degree of transitivity assum

ed. To state them, we need some definitions. 

If His a Hadamard matrix, define a graph rH whose vertices are sym

bols (r.,£) and (c.,£), where i and j index rows and columns of H respecti-
l. J 

vely and£= ±1; (ri,£) and (c., £') 
J 

are adjacent if and only if the (i,j) 

entry of His££'. rH and rH, are isomorphic if and only if Hand H' are 

related by permuting and changing of rows and columns and (if necessary) 

transposing; thus rH is a convenient "equivalence-invariant" of H. 

If r is a non-bipartite graph satisfying our hypotheses, we can con

struct a bipartite graph satisfying them, with the same v and k, by the 

following "doubling" construction: vertices are symbols (a,£), where a is 

a vertex of rand£= ±1; (a,£) and (S,£') are adjacent if and only if a 

and Sare adjacent in rand££'= -1. 

THEOREM 4.4. Suppose that, with the hypotheses of this section, G is 
a 

triply transitive on r(a), Then one of the following occurs: 

(i) k v, f K ; 
v,v 

(ii) k v-1, r = Kv+l,v+l with the edges of a matching removed; 

(iii) v 2d, k =v/2, r is the incidence graph of the complementary design 

of PGd-l (d,2); 

(iv) k =v/2, r = rH for some Hadamard matrix H; 
2 (vl v = (µ+1) (µ +5µ+5), k (µ+1) (µ+2) for some positive integerµ, and 

2 2 
r is strongly regular on (µ+1) (µ+4) vertices, or is obtained from 

such a graph by "doubling"; 

(vi) k ~ 2. 

The main idea in the proof is this. We may suppose 2 < k < v-1. The 

design Vis now a 3-(v,k,µ) design, for some positive integerµ. Also, the 

number of blocks incident with a point y(= lr(y) - {a}ll is equal to the 

number of points different from y(= lr(a) - {y}\). So Vis a symmetric 



116 

3-design (an extension of a symmetric design), so the main result of 

CAMERON [9] applies. (See [25; section 9], for this result and discussion 

of symmetric 3-designs.) If a connected component of~ is a complete graph, 

then (iii) holds (see [25; 8.E.10]). Otherwise it can be shown that (iv) or 

(v) occurs. 

THEOREM 4.5. Suppose, with the hypotheses of this section, that G acts as 
a 

the symmetric or alternating group on r(a), and that r contains a quadri-

lateral (that is, k > 1). Then one of the following holds: 

(i) k v, r K . 
v,v' 

(ii) k v-1, r = K v+l,v+l with the edges of a matching removed; 

(iii) k 2, r Qv (the v-dimensional cube); 

(iv) k 2, V ~ 5, r is obtained from Qv by identifying opposite vertices; 

(v) k 2, V = 4, r is a unique graph on 14 vertices; 

(vi) k 2, V 5, r is a unique graph on 22 vertices. 

The graphs under (v) and (vi) are the incidence graphs of the unique 

(7,4,2) and (11,5,2) designs. Note that Ga acts on r(a) as the symmetric 

group in all cases except (vi). Theorems 4.3-4.5 are proved under the 

stronger assumption of primitivity in CAMERON [8]. 

Another direction in which the hypotheses can be strengthened is that 

of requiring transitivity on longer paths. we say G = Aut r is s-path 

transitive if it is transitive on paths of lengths. If r is a circuit, 

then G is s-path transitive for every s; but for any other finite graph, 

there is an upper bound on the degree of path-transitivity. It has been 

conjectured thats$ 7 for any graph which is not a circuit. Ifs~ 3 and 

r contains a quadrilateral, then it is a complete bipartite graph K ; so v,v 
we shall assume that (in the previous notation) k = 1. The graph Ov whose 

vertices are the (v-1)-element subsets of a (2v-1)-element set, adjacent 

if disjoint, admits the 3-path transitive automorphism group s2v_ 1 ; here 

Gar(a) is the symmetric group Sv However, it appears thats-path transiti

vity withs~ 4 places severe restrictions on the structure of G r(a). 
a 

THEOREM 4.6. If v = 3 and G is s-path transitive thens s 5. 

This was proved by TUTTE [41], [42]. TUTTE's work provided the inspi

ration for later research by SIMS on primitive permutation groups with a 

subdegree 3. SIMS [34] and DJOKOVIC [14] were able to extend it to the 
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case v = p+l (p prime) under the hypothesis that G contains a subgroup H 

which is s-path regular (that is, Hiss-path transitive and only the iden

tity fixes ans-path). In this case JG J = (p+l)ps-l, and G O is a p-group a aµ 

(for 8 E f(a)); calculations in this p-group show thats s 5 ors= 7. 

The general problem was attacked by GARDINER [17;I], by combining 

these methods with those of WIELANDT discussed in section 3. WIELANDT's 

result (preceding theorem 3.3) is used to produce a p-group, normal in GaB' 

in which SIMS' calculations can be carried out. GARDINER'S result is 

THEOREM 4.7. If v = p+l (p prime) and G is s (but not s+l)-path transitive, 

thens s 5 ors= 7. 

In subsequent papers [18], [17;II], GARDINER has weakened the assump

tion on v. However, the general conjecture remains open. 

EXAMPLES of graphs withs-path transitive groups. 

For graphs of valency 3, all those with primitive groups have been de

termined by WONG [48]. Graphs of valency v > 3 withs~ 4 seem much less 

common. The only known examples are the incidence graphs of certain self

dual generalized (s-1)-gons; in all cases v-1 is a prime power, and if 

s = 5 ors= 7 then v-1 is an odd power of 2 or 3 respectively. See TITS 

[40]. The resemblance of theorem 4.7 to the conclusions of FEIT & HIGMAN 

[16] is striking, since the methods are completely different. 

Another unsolved problem is the exact relation between the degree 

of path-transitivity of G and the degree of transitivity of Ga on r(a). 

GARDINER has conjectured that, if G is 4-path transitive, then Ga is 2-pri

mitive on r(a). The significance of this conjecture is clear from remarks 

in section 3. 

A further kind of transitivity has been studied by BIGGS [4] and 

others. A graph r is called distanee-transitive if it is connected and its 

automorphism group G acts transitively on (ordered) pairs of vertices at 

distance i for every i with Os is d, where dis the diameter of r. In 

particular, G is transitive on vertices and directed edges. However, G may 

not be 2-path transitive, since r may contain triangles. The main technique 

in the study of distance-transitive graphs is the computation of eigenva

lues and multiplicities for the basis matrices. This is simplified by the 

facts that the basis matrix of r generates the centraliser algebra (and 

so it has d+l distinct real eigenvalues), and the intersection matrix is 
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tridiagonal. (Similar remarks apply if the transitivity of G is replaced 

by appropriate "coherence" or "metric regularity" conditions; graphs such 

as Moore graphs satisfy these conditions, and this method was used by 

BANNAI & ITO [2] and DAMARELL [12] to show the non-existence of such graphs 

with diameter and valency greater than 2. Graphs satisfying these condi

tions will be discussed at this meeting by DELSARTE [13] under the name of 

metric or P-polynomial association schemes. See also [4],[22],[23].) 

Two other ideas are relevant to the study of distance-transitive 

graphs. The first is the observation of D.H. SMITH [36] that if r is distan

ce-transitive and G = Aut r is imprimitive, then r is either bipartite or an

tipodal. er is antipodal if the relation of being equal or at distanced is 

an equivalence relation on the vertex set, where dis the diameter of r.) 

If r is antipodal but not bipartite, then by identifying vertices at dis

tanced we obtain another distance-transitive graph with primitive automor

phism group. Secondly, if r is distance-transitive with given valency, it 

may be possible to obtain a bound for IG I by the methods of section 3. 
a 

Often such a bound can be converted into a bound for the diameter of r. 

(This is true if r has valency 3 [5] or is bipartite [37].) If both steps 

can be done, the complete determination of such graphs is reduced to a 

finite amount of calculation. 

5. COMBINATORIAL RELATIONS AMONG SUBORBITS 

Through this section we shall assume that G is primitive. We are con

cerned with the consequences of assumptions about the action of Ga on some 

or all of its orbits. The prototype is a theorem of MANNING [28], which 

asserts that, if G is doubly transitive on f(a), where lr(a) I > 2, then 
a 

G has an orbit 6(a) with l6(a) I > lr(a) I, or G is triply transitive. The 
a 

hypothesis implies that G acts transitively on figures of the first kind 

in figure 2.1 (or on paths of length 2 if r is self-paired), and hence that 

6 r* 0 r is a single suborbit; l6(a) I v(v-1)/k, where v = lr(a) I and 

k lr*(a) n r*(o) I, (a,o) E 6. Now our situation is very similar to that 

of the last section, and by similar arguments we can prove (as in [8]): 

THEOREM 5.1. Either v(v-1)k(k2-3k+v) 2 s 2(v-k) 4 (v-k-~) 2 or G is doubly 

transitive. 
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This considerably strengthens MANNING's theorem, but is again probably 

not best possible; in all known cases except two, ks 2 or G is doubly 

transitive. The two exceptions both have rank 3. 

THEOREM 5.2. If G is triply transitive on real, or if G has rank at most a a 
3 on 6(a), then one of the following holds: 

(i) ks 2; 

Ciil lnl = (µ+1l 2 Cµ+4J 2 , v = 
2 (p+l) (µ +5µ+5), k (µ+1) (µ+2), for some po-

sitive integerµ, and G has rank 3; 

(iii) G is doubly transitive. 

THEOREM 5.3. If G r(a) is the symmetria or alternating group, then one of 
a 

the following holds: 

(i) k = 1; 

(ii) lnl v-1 v odd, = 2 , G V . s or V . Av; 
2v-1 V 2v-1 

(iii) G = sv+l or Av+l" 

These results can be regarded as rank-bounding theorems; from acer

tain hypothesis we deduce either a (stronger) conclusion or a bound for the 

rank of the primitive group G. (This is valuable because of the existing 

techniques for studying multiply transitive groups and groups of small 

rank.) Such theorems have occurred from time to time in the literature; I 

shall digress to discuss ·some of them, classified according to the type of 

hypothesis. 

1. Hypotheses about the degree n = Jnl 
Let p denote a prime. A classic theorem of BURNSIDE [7] asserts that, 

if n = p, then G is soluble or doubly transitive. (In the former case, 

G is the group {xi-+ amx+b I a,b E GF(p), a f O}, where mis a fixed 

divisor of p-1.) Related results are due to WIELANDT [43],[46]: If 

n = 2p then G has rank at most 3, and G is doubly transitive unless 
2 

p 2a +2a+1 for some integer a; in the latter case, the subdegrees are 

a(2a+1) and (a+l) (2a+1), and the intersection numbers are also polyno

mials in a. cs5 and A5 , acting on 2-element subsets, provide examples 

with a= 1.) Similar results for n = 3p have been found by NEUMANN [30] 
2 

and SCO'I"I' [33], and for n = 4p by COOPER, incomplete as yet. If n = p 

then one of the following holds: G has a regular normal subgroup (so 

Gs AGL(2,p)); Gs SP wr s 2 (acting on the vertices of the square lat

tice graph); G is doubly transitive. 
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2. Group-theoretic assumptions 

In this class may be put BENDER's theorem [3] on strongly embedded 

subgroups; a crucial part of it states that, if Ga is strongly embedded 

in G, then either G has a regular normal subgroup of odd order, or G 

is doubly transitive. (In the latter case BENDER has determined the pos

sible groups.) Another such result is the FEIT-HIGMAN theorem [16] which 

asserts that, if G has a BN-pair of rank 2 and Ga is a maximal parabolic 

subgroup, then IG I= 2 or G has rank 2, 3, 4, 5 or 7. 
a 

3. Numerical conditions on suhdegrees 

It follows from the theorem of BANNAI & ITO [2] and DAMERELL [12] on 
r-2 Moore graphs that, if G has subdegrees 1, a, a(a-1), •.• , a(a-1) , then 

either a= 2 or r $ 3. Similar results are given by HIGMAN [22]. 

4. Hypotheses about the action of G on some or all of its orbits 

Theorems 5.1-5.3 are of this type, and others follow. 

MANNING's theorem implies that, in a primitive permutation group G, 

if G is doubly transitive on every suborbit different from {a}, then 
a 

JGaJ = 2 or G is doubly transitive. This suggests defining the suhrank of 

a transitive permutation group to be the maximum rank of the stabiliser of 

a point on its orbits, and making the conjecture that in a primitive group 

of subrank m, either the rank is bounded by a function of m, or JG I= m. 
a 

(As originally formulated, the second alternative was that Ga has a non-

trivial regular orbit. This is implied by the condition !G I= m, and is equivalent 
a 

to it if the conjecture at the end of section 3 is correct. Frobenius groups, 

and many other examples, show that this possibility must be allowed.) If 

true, the conjecture implies the existence of functions f and g defined by 

f(m) min{r I G primitive & subrank(G) = m implies 

rank(G) s r or IG I= m}, 
a 

g(m) min{r I 3 finite set S of permutation groups such that G pri

mitive & subrank(G) = m implies rank(G) $ r or !Gal= m 

or G is isomorphic to a group in S}. 

It would be interesting to have exact values for f(m) and g(m) where 

they are defined. Clearly f(2) = g(2) = 2. Lower bounds for suitable values 

of m can be obtained from specific groups: 
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1. Let F = GF(q2), where q = 2n, and 

G = {xi-+ aq-lxcr + b J a,b € F, a F O, a€ Aut F, cr2 = 1}. 

G0 is a dihedral group of order 2(q+1) and has q-1 orbits of length 
n-1 · n 

q+1, one containing each non-zero element of GF(q). So f(2 +1) ~ 2. 

2. Let G = Sn wr sk, in its representation of degree nk. G has rank k+1 

and subrank [(k+2) (k+3)/6], independent of n. So g([(k+2) (k+3)/6]) ~ k+1. 

Form= 3, these bounds are exact [10]: 

THEOREM 5.4. If G is a primitive pe!'111Utation group uJith subrank 3, then one 

of the foZZowing hoZds: 

(i) G has rank at most 3; 

(ii) JG J = 3, G is a Frobenius group; 
a 

(iii) G is the group of exampZe l, uJith rank 4 and degree 16. 

PROOF. If all subdegrees are at most 5, or if JG J is odd, then the result 
a f(a.) . 

can be proved by ad hoa arguments. If Jr(a.) J ~ 6 and JG J is even for 
a 

. some suborbit r, then the complete graph on r(a.) is partitioned into sub-

graphs corresponding to at most two suborbits; by RAMSEY'S theorem, one 

of these contains a triangle. Sob & b O b for some suborbit b. Then it is 

shown that the b-graph has diameter at most 2. Regarding the application 

of RAMsEY's theorem, it is worth noting that the three graphs in case 

(iii) are non-degenerate with respect to the next case of the theorem 

(that is, none of them contains a triangle). D 

Primitive groups with rank and subrank 3 have been investigated by 

character-theoretic methods by ~1.S. SMITH [38], who has found strong re

strictions on their parameters. A number of examples exist, including 

Sn wr s2 , the split extension v22n • 0±(2n,2), PfU(4,q2) (for prime power 

q), and the HIGMAN-SIMS and McLAUGHLIN groups. The graph-theoretic ana

logue of this situation is a strongly regular graph r with the property 

that the restrictions of r to the points adjacent and non-adjacent to any 

point are both strongly regular. The arguments of [38] extend to this si

tuation, using the algebras associated with "coherent configurations" in 

place of the centraliser algebras of permutation groups. The result is that 

either such a graph is of pseudo-Latin square or negative Latin square type 

[29], or the parameters of it or its complement are given by 
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n = 
k 

1 

>. 

µ 

2 2 2 
2(2r-s) (r(r-1)-(2r+l)s)/(s+r -r) (s-r -3r), 

2 
(r-s)((2r+l)s-r(3r+l))/(s-r -3r), 

2 
(r-1-s) ((2r+l)s-r(3r+1))/(s+r -r), 

2 2 
r(r-1-s) (s+r +r)/(s-r -3r), 

2 2 (r+l) (r-s) (s+r -r)/(s-r -3r), 

wheres and rare integers satisfying 

-s > r(r+l), 

(s-r2 -3r) j 2r2 (r+l l 2 (r+2) , 

(s+r2-r) I 2r2 (r-1) (r+l/. 

(Here, as in [20], n is the degree, k and 1 the subdegrees, and>. andµ 

the intersection numbers a 111 and a 112 .) SMITH remarks that these condi

tions have nine infinite families of solutions (withs an integer polyno

mial in r), and also proves uniqueness (in the group-theoretic situation) 

for small values of the parameters. 

Another generalization of MANNING's theorem can be obtained by re

laxing the condition that G is doubl~ transitive on all non-trivial sub

orbits. Thus, it is proved in [11] that 

THEOREM 5.5. If G is primitive on n and G is doubly transitive on all non
a 

diagonal suborbits except possibly one, with jG I > 2, then G has rank at a 
most 4. If the rank is 4, then the two doubly transitive suborbits of G 

are paired with each other, and the degrees, subdegrees, and intersection 

numbers are polynomials in a single integer parameter. 

The only known example of such a rank 4 group is PSU(3,32) acting on 

36 points, with subdegrees 1, 7, 7, 21. The stabiliser of a point is 

PSL(3,2), and the non-trivial suborbits can be identified with the points, 

lines, and flags of PG(2,2). Indeed, this is the only known primitive rank 

4 group with non-trivial pairing of suborbits. 

MANNING's theorem in fact implies a stronger statement than the one 

we have taken as a model for generalization: If G is primitive on n, and Ga 

is doubly transitive on its largest orbit, then jG j = 2 or G is doubly 
a 

transitive. Thus it would be desirable to bound the rank of a primitive 

group Gunder the assumption that Ga acts with prescribed rank, but not 

regularly, on its largest orbit. All that is known here is that if ~(a) is 

the largest Ga-orbit and f(a) any non-trivial Ga-orbit, then the permutation 

characters of Ga on f(a) and ~(al must have a non-principal irreducible 
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constituent in co,mmon, provided Jt(a) I > 1. (For otherwise G is transiay 
tive on 6(a), for y € r(a); so 6(a) is a G -orbit and hence is fixed by 

y 
<G ,G >. But <G ,G > = G unless JG I= 1.) a y a y a 

Another general question, suggested by theorem 5.2, is this. Suppose 

G is primitive, r is a self-paired suborbit, and the actions of Ga on r(a) 

and (r O r) (a) are prescribed. When are these conditions consistent, and 
J 

when do they imply a bound for the rank? (For example, if Ga= M22 acts on 

r(a) and (r o r)(a) as on the points and blocks of the Steiner system, then 

G has rank 3 and is isomorphic to HS. For v16sp(4,2) on the points and 

blocks of the (16,4,3) design, there exists a rank 3 extension, Aut M22 ; 

for v64G2 (2) on the points and blocks of the (64,4,3) design, neither 

answer is known.) 

6. ALGEBRAIC RELATIONS AMONG SUBORBITS 

We saw in section 1 that the rank of a transitive group is the sum of 

squares of multiplicities of irreducible constituents of the permutation 

character, while the number of self-paired suborbits is the sum of multi

plicities of irreducibles of the first kind minus the sum for those of the 

second kind. If the multiplicities are e0=1, ••• ,es, then the centraliser 

algebra (generated by the basis matrices) is a direct sum of matrix alge

bras of degrees e0 , ••• ,es over C. Thus all multiplicities are equal to 1 

if and only if all pairs of basis matrices commute. This must be the case 

if the rank is at most 5, but need not be so for rank 6. (More generally, 

if e > 1, then 1G + ex is not a permutation character. For in any transi

tive group there is an element g with no fixed points; if TI= 1G + ex, then 

-1/e = x(g) is an algebraic integer.) 

The case where the centraliser algebra is commutative is very impor

tant, and is discussed in section 29 of WIELANDT [45]. Certain group theo

retic conditions (such as the existence of a regular abelian subgroup, or 

the existence of an element interchanging any pair of points, guarantee 

that this holds. Less trivially, GLAUBERMAN has remarked that if the Sylow 

2-subgroups of Gare cyclic or generalized quaternion, and G acts by con

jugation on its set of involutions, then the centraliser algebra is commu

tative; he asks if this fact can be used to obtain an alternative proof of 

the theorem that such a group, if primitive, has a regular normal subgroup. 
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In other situations we may have only the weaker information that a 

particular pair c., C, of basis matrices commute. This has the obvious 
1 J 

consequence that a. 'k = a .. k for all k; but sometimes it is possible to go 
1] ]1 

further. I shall illustrate this with a discussion of a normal basis matrix 

(one which commutes with its transpose) corresponding to a doubly transi

tive subconstituent. 

Suppose Ga is doubly transitive on f(a), with r ~ r* and lr(a) I= v. 

Then r* 0 r is a single suborbit, with subdegree v(v-1)/k for some k (sec

tion 5). Also, Ga is doubly transitive on r* (a) (section 2), and so r • r*is a 

single suborbit, with subdegree v(v-1)/k' for some k'. Counting in two ways 

quadrilaterals of the first kind in figure 6.1 gives 

so 

k k'. 

y 

a 

Fig. 6.1 

Although the subdegrees are equal, the suborbits r* or and r or* may or 

may not be equal. An example where they are not equal is given in [B;I]; 

for one where they are equal, see theorem 5.5. If C, D, D' are the basis 

matrices of r, r* 0 r, r or* respectively, we have 

vI + kD, vI + kD'; 

so r* 0 r = r O r* if and only if c is a normal matrix. we shall call r 

normal if this occurs. 

THEOREM 6.1. r is normal if and only if I (I' 0 I') (a) I < 
2 

V • If this holds 

and G is primitive, then G has the same permutation character on I'(a) and 

* r (al. 
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PROOF. The r-graph contains figures of the second kind in figure 6.1 if 

and only if r is normal (since (y,o) E (r* o I') n (I' 0 r*)). Also, the 

graph contains such figures if and only if \ (r O I') (a)\ < v 2 (for there are 

two paths of length 2 from a to 8). Supposer is normal and G has different 

* permutation characters on r(a) and r (a). Then G is transitive on paths of 

length 2, so r or is a single suborbit, with subdegree v2/l for some in

teger 1. Counting these figures in two ways, 

2 
\n\ ; 1(1-1,, 

so 

(v-1) k v(l-1). 

Since r is normal, 1 > 1, and so v divides k; thus v = k, and G is imprimi

tive by theorem 5.1. (The structure of the graph is obvious.) D 

If G is primitive, we can push the counting argument further. Ga has 

the same permutation character on f(a) and r*(a), so these are the points 

and blocks of a symmetric design with parameters (v,K,A), possibly trivial. 

Then r O r is the union of two suborbits with subdegrees vK/1 and v(v-K)/1' 

for some 1, l'. Now the count gives 

\n\ ;K 1(1-1) + \n\ v(~~Kl l' (1'-1), 

(v-1) k K(l-1) + (v-K) (l'-1). 

* If the representations of Ga on r(a) and r (a) are equivalent, we can 

assume K = 1, whence it follows that 1 = 1, l' = k+l. If Ga is triply 

transitive on f(a) then this hypothesis holds, and in addition k = 1, 
, r(al 1 = 2. (If, further, Ga is the symmetric or alternating group of suf-

ficiently large degree, it can be shown that G has a regular normal sub

group.) Other solutions which actually occur are v 7, k = 2, K = 1 = 4, 
2 

l' = 1 (PSU(3,3 ), degree 36, rank 4) and v = 11, k = 2, K = 1 5, l' = 1 

(M12 , degree 144, rank 5). 

The concept of normality has also been used in a rank-bounding theo

rem [ 11]. 
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The formulae for the rank and number of self-paired suborbits show 

that, if the centraliser algebra is non-commutative, then there are non

self-paired suborbits. Is it even true that there will be non-normal sub

orbits? Does there exist an example of a basis matrix which is not even 

diagonalisable? 

Sometimes it has been shown that there is an absolute bound, greater 

than 1, on the multiplicities. (For example, in some cases where the Sylow 

2-subgroup has rank 2 or 3, and G acts by conjugation on its involutions, 

the multiplicities are at most 2 or 3.) It is tempting to conjecture that 

a general result of this kind holds, and it may be worth studying situati

ons where such a bound exists. If the multiplicities are at most d, the 

centraliser algebra is a sum of matrix algebras with degrees at most d, and 

so it satisfies certain identities. These identities have combinatorial 

interpretations in the graphs, similar to.that considered for normality; 

but I do not know how to exploit these conditions. 
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INTRODUCTION 

The purpose of this report is to give a simplified and more or less 

systematic account of certain developments at the interface between finite 

group theory and combinatorial theory. At the present time it is virtually 

possible to characterize the graphs associated with the so-called classical 

groups on the basis of an exceedingly crude graph-theoretic hypothesis. Such 

a theorem commands an obvious relevance to finite group theory since it may 

be used as a tool for diagnosing the presence of a "classical group" -that 
2 is, to tell whether a finite group G contains one of the groups PGU(n,q ), 

PSOE(n,q),(E=±l) or PSp(2n,q). Of course in this case, the crudity (or 

simplicity, if one prefers) of the graph-theoretic hypothesis means that 

such a graph is more easily realized within a finite group, and this feature 

serves in making such a diagnostic tool more widely applicable. The phrase 

"virtually possible to characterize" appears above because certain extremal 

cases and certain rather tight open cases are also present. To be more 

specific, graphs which contain a vertex lying on an edge with every remaining 

vertex, and any generalized quadrangle may also appear along with the "clas

sical-group-graphs" in the conclusion·of the theorem. In practice, when the 

graph is realized in a finite group, say with vertices being a conjugacy 

class of subgroups and edges some convenient relation between these sub

groups, the case that one vertex lies on an edge with each remaining vertex 

usually implies something very extreme for the group G, and so can usually 

be handled. Coming to grips with the case of generalized quadrangles is 

usually more difficult. Nonetheless nice applications of the theorem in 

finite groups exist (see section 10). 
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In the hope that this theorem may prove useful in other problems, 

both inside and outside of finite group theory, I have tried to give a 

rather simplified presentation of this theorem. (Because some of the deeper 

results on polar spaces and buildings are necessarily deferred to Professor 

TITS' forthcoming book, the present treatment will bear a closer resemblance 

to a boyscout handbook on prepolar spaces and groups, rather than any sort 

of complete treatise.) The characterization theorem presented is really 

a linking together of a number of theorems. The chain of theorems begins 

with VELDKAMP's important work on finite polar spaces fifteen years ago, 

and this work was subsequently streamlined and extended to infinite polar 

spaces by TITS [32,29]. It is worth noting, therefore, that the presenta

tion in sections 2 through 7 does not require the structures in question 

to be finite; but only that they have finite rank, a notion in this context 

roughly analogous to having finite dimension. 

Possible variations of the characterization theorem to graphs of non

isotropic or non-singular projective points or to structures associated 

.with other Chevalley groups is discussed in section 9. Section 10 concludes 

with a few historical notes concerning the origins of the problems and 

their applications to finite group theory. 

1. THE MAIN THEOREMS 

We begin with the basic characterization theorem for finite graphs. 

Throughout, the word "graph" means an undirected graph without loops or 

double edges. Thus a graph is a set V of vertices and a set E (called the 
(2) ed,ge set) which is a subset of V , the set of all 2-sets of elements of V. 

The graph is said to be finite if Vis a finite set. A graph (V,E) is called 

aompZete if E = v< 2>; If Xis a subset of v, the subgraph x means the graph 
( (2)) ~. X,EnX • A a~~que means a complete subgraph of (V,E). (Note that in some 

quarters of this world, "clique" means "maximal complete subgraph"; it does 

not here.) 

THEOREM A. Let G = (V,E) be a finite graph. Suppose, for eaah ed,ge (x,y) in 

E there ewists a aZique C(x,y) aontaining x and y suah that 

(i) lc(x,y) I <!: 3. 

(ii) If we v-c(x,y), then w either lies on an edge with e:caat7,y one member 

of C(x,y) or on an ed,ge with eVe1'/f member of c(x,y). 



132 

Then one of the following conclusions holds: 

(a} There exists a vertex in v lying on an edge with every other vertex ofv. 

(b} (V,E) ~ S where S is the graph whose vertices are the points of a 
11 11 

semiquadric s11 with edges being pairs of points of S11 which are perpen-

dicular with respect to 11. 

(c) Each C(x,y) is uniquely determined by x andyand (V, {C(x,y) I (x,y) EE}) 

is a generalized quad,rangle. 

(d} (V,E) is totally disconnected; that is., the edge set Eis empty. 

In case (b}, 11 is either a non-degenerate polarity of a projective 

Desarguesian space P and S is the set of absolute points with respect to 
11 

11 (i.e. points p E P such that p E 11(p}) or else 11 is a (proportionality 

class of) non-degenerate quadratic form(s} on P and S11 is the set of singular 

points of P with respect to 11 (i.e. points p E P such that 11 (p) = 0) . In 

either case it makes sense to define "perpendicular with respect to 11 11 • 

Thus S11 denotes the absolute points under a non-degenerate unitary, orthog

onal or symplectic polarity, or else the singular points of a non-degenerate 

quadratic form of a Desarguesian projective space over a field of character

istic 2. The point is that as a graph G is uniquely determined up to isomor

phism. 

The significance of case (c) is that the C(x,y) are actually maximal 

cliques, C(x,y) may be viewed as the "line" through x and y, and if Lis a 

line and q a point in V not on L, then q is collinear (on a line) with 

exactly one member of L. It does not follow that all C(x,y) 'shave the same 

cardinality as the following example shows: Let A and B be sets of size 3 

and 4 respectively. Set V = AXB and let (p,q) EE if and only if p and q 

either agree in their A-coordinate or their B-coordinate, but not both. The 

graph becomes a 3x4 grid with rows and columns forming the seven "lines". 

If, however, there exists a vertex lying on at least three lines of a gener

al graph in case (c), then it is not difficult to see that all "lines" -that 

is, the C(x,y)'s- have the same cardinality. Thus the "grids" are the only 

examples in which !C(x,y) I does not assume a constant value. For this reason 

(and for the reason that the "grids" are determined up to isomorphism) one 

frequently excludes these from the definition of generalized quadrangle 

(see PAYNE [16]). 

Case (d) is a graph determined up to isomorphism. 

As mentioned in the introduction, this theorem is pieced together from 

a number of other theorems. Moreover, this piecing together could have been 
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done so that a version of the above theorem for infinite graphs could have 

been obtained. How this is done will become apparent (though somewhat 

clumsy to state) as we break up the above theorem into the pieces which 

make it work. For this purpose, we introduce an abstract concept designed 

to mimic the hypotheses of theorem A. This concept is due to BuEKENHOUT 

[8] (who unfortunately gave it a name rather awkward for me to use. I hope 

he will forgive me if I rename it for this report.): 

DEFINITION 1.1. A prepolar spaae is a set of points Panda collection L of 

distinguished subsets of P called lines such that 

(i) every line contains at least two points, 

(ii) for each line Land point p € P-L either there is exactly one point of L lying 

on a line with p, or each point of L lies on some line with p. 

If Pis a prepolar space with the property that every line has cardi

nality at least 3, and if we let Ebe the set of collinear pairs of points 

of P then (P,E) is a graph satisfying the hypothesis of Gin theorem A. 

Note that in the definition of a prepolar space, it is not assumed that 

different lines have the same cardinality, nor that two points lie in at 

most one line. This last avenue of generality even makes it appear inappro

priate to even have called these blocks "lines" • The following theorem shows 

that in all the interesting cases, we might just as well call them lines. 

We say a prepolar space is linear if every pair of points lies in at most 

one line. 

THEOREM B. (BuEKENHOUT & SHULT [8]). A prepolar spaae either aontains a point 

aollinear with all other points or is a linear prepolar spaae. 

In the case that a prepolar space P contains a point collinear with 

all other points, the space is said to be degenerate. If P contains no such 

point, Pis said to be non-degenerate. 

A subspaae of a prepolar space (P,L) is a subset of mutually collinear 

points of P such that any line through two points of the subset lies entire

ly within the subset. A prepolar space has rank"n if the greatest lower 

bound on the length of a tower of subspaces of (P,L) is n+l. (Note that the 

empty set and the subsets of P containing a single point are subspaces, so, 

for example, generalized quadrangles are simply prepolar spaces of rank 2.) 

One next defines a polar spaae s (following TITS' simplification of 

VELDKAMP's axioms) as a set S of points with a family of distinguished 
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subsets closed under intersection called subspaces (of the polar space S) 

subject to certain axioms outlined more fully in section 5. One then proves 

THEOREM c. (BUEKENHOUT & SHULT [8]). Let (P,L) be a non-degenerate prepolar 

space of finite rank all of whose lines have cardinality~ 3. Then (P,L) 

together with its subspaces is a polar space. 

As we shall see shortly, every polar space together with its minimal 

proper subspaces as its collection of lines, is a prepolar space. We may 

therefore speak of the rank of a polar space as being its rank as a prepo

lar space. The next link in the chain is the fundamental theorem of TITS & 

VELDKAMP [29,32], classifying polar spaces of rank at least three. 

THEOREM D. (TITS & VELDKAMP). Lets be a polar space of finite rank n ~ 3. 

Then exactly one of the following situations is realized. 

(1) sis a polar space S(rr) of a projective space with a polarity deter

mined by a trace-valued a-hermitian form. 

(2) sis a polar space S(Q) of a projective space with Q a non-degenerate 

pseudoquadratic form on a division ring K of characteristic 2 with 

respect to an antiautomorphism a such that a2 = 1 and 

{t EK I t 0 = t} ~ {u + u0 I u EK} 

(3) sis a polar space S(rr) of a Desarguesian projective space coordini

tized by a field of characteristic different from 2, equipped with a 

syrrrplectic polarity rr. 

(4) sis a polar space of rank 3 whose maximal subspaces are Moufang planes 

(one polar space for each Cayley division algebra). 

(5) sis a polar space of rank 3 corresponding to a 3-dimensionalprojec

tive space Pon a non-corrorrutative division ring (s corresponds to the 

classical Klein quadric in the corrorrutative case). 

Most of the technical terms, appearing in the statement of this theo

rem (for example a-hermitian and pseudoquadratic) are defined in the next 

section. In case the polar space contains a finite number of points, cases 

(4) and (5) of the above theorem do not arise and one is left with a her

mitian, symmetric or alternating (symplectic) polarity on a finite projec

tive space, or the totally singular points with respect to a quadratic form 

on a Desarguesian projective space over a field of characteristic 2. A 

polar space of rank 2 is precisely a generalized quadrangle and it is now 



clear that theorems B, C and D, together, yield theorem A. 

The next few sections are devoted to a description of sesquilinear 

forms, pseudoquadratic forms and their associated polar spaces. 

2. SESQUILINEAR FORMS 
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Let V be a right vector space over a division ring K and let cr be an 

antiautomorphism of K. Then a cr-sesquilinear form is a biadditive mapping 

f: vxv + K such that 

(2 .1) f(xa,yb) acr f(x,y)b 

for all x,y EV and a,b EK. We shall use the term "sesquilinear form" to 

mean "cr-sesquilinear for some (possibly unspecified) antiautomorphism cr of 

K". If c is a non-zero scalar in K, the mapping cf defined by (cf) (x,y) 

= c,f(x,y) is a cr'-sesquilinear form with cr' being the composition of cr with 
-1 

· the inner automorphism of K induced by conjugation by c • We say cf is 

proportional to f. Obviously proportionality is an equivalence relation on 

the set of sesquilinear forms. 

A cr-sesquilinear form is called reflexive if f(x,y) = 0 implies 

f(y,x) = 0 for any pair of vectors x,y in V. The first observation is 

PROPOSITION 2.1. A cr-sesquilinear form f is reflexive if and only if there 

exists a non-zero saalar £ E K suah that for every pair of veators x,y Ev 

(2.2) f(x,y) = f(y,x)cr,£ 

-1 rJ 
This is shown by proving that h(x,y) = f(x,y) f(y,x) is a constant 

function on the subset of V x V consisting of pairs (u,v) such that f (u,v) ,f 0. 

Clearly if f(x,v) = 0, then h(x,y) = h(x,y+v). Similarly if f(u,y) = 0, 

h(x,y) = h(x+u,y). By passing through a chain of translations in each 

argument in this way, h can be shown to be a constant function on the sup

port of f. 

But if f satisfies (2.1), this relation can be iterated to yield the 

following relations between cr and£: 

(2. 3) 

(2. 4) 

rJ -1 
£ = £ 

2 -1 
cr is the inner automorphism of K induced by conjugation by£ 
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A a-sesquilinear form satisfying (2.2) (and hence (2.3) and (2.4)) is 

called (a,e)-hermitian. Several special cases are distinguished: If e = 1, 

the form is simply called a-hermitian and if£= -1, it is called a-anti

hermitian. If a= lK, a-hermitian forms are called symmetric, and a-anti

hermitian forms are called alternating. Proposition 2.1 states that every 

reflexive sesquilinear form is a (a,e)-hermitian form. Starting with an 

arbitrary a-sesquilinear form g we can always construct from it a reflex

ive form which is (a,e)-hermitian (for the same a) by choosing e so that 

(2.3) and (2.4) hold and setting 

(2.5) f(x,y) = g(x,y) + g(y,x)a,e 

Are all of the reflexive sesquilinear forms obtained by such a semi-sym

metrization process? The answer is "no". In case the reflexive (or (a,e)

hermitian) form f is.obtained from a a-sesquilinear form g via (2.5) we say 

that f is trace-valued. 

PROPOSITION 2.2. A (a,e)-hermitian form f is trace-valued if and only if 

for each vector x Ev, f(x,x) lies in the subgroup {t + ta•e I t EK} of 

the additive group of K. 

For certain choices of (a,e,K), (a,e)-hermitian forms are always trace

valued. Indeed 

PROPOSITION 2.3. Asswne a is an antiautomorphism of a division ring Kand e 

is an element of K related to a by (2.3) and (2.4). Then a necessary and 

sufficient condition that f be trace-valued is that 

(2.6) 

This condition always holds if char K ~ 2, or if a acts non-trivially on the 

center of K. 

If f is a reflexive sesquilinear form, the symmetric relation on V 

defined by Rf= {(x,y) Ix EV, y EV, f(x,y) O} is called the perpendicu-

7,ar relation (with respect to f) and we write x .Lf y or x .L y if (x,y) E Rf. 

Then as f is (a,e)-hermitian, x.L = {y EV Ix.Ly} is a subspace of codi

mension at most one in V. If X is any subset of V, set X.L = 

= {x EV I f(y,x) 0, Vy Ex}, and write Rad V for v.1. We say f is non

degenerate if Rad V = (0). A subspace W of Vis called totally isotropic 
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(with respect to f) if W ~ w~. 

PROPOSITION 2.4. If X and Y a:r>e WO ma:r:imal totally isotropia subspaaes, 

xnY has the same aodimension in both x and Y. Consequently, any wo mazimal 

isotropia subspaaes of v (which exist by Zorn's lemma) have the same dimen

sion, n. 

This invariant cardinal number n is called the Witt index of f. To prove 

the first statement in proposition 2.4 suppose dim(Y/XnY) > dim(X/XnY). Then 

if x 1 and Y1 are complements of xnY in x and Y respectively, the space 

X + ext n Y1) is a totally isotropic space properly containing X, contrary 

to the maximality of X. 

3. PSEUDOQUADRATIC FORMS 

Again let K be a division ring, Va right vector space over K, cr an 

,antiautomorphism of Kand ea non-zero element in K such that (2.3) and 

(2.4) hold. Following TITS [29], let K denote the subgroup of the addi-
cr, E ( ) 

tive group of K, {t - t 0 •e It€ K}. Set K cr,e = K/K , the quotient cr I E 

group. 
(cr E) 

A function Q: V+K ' is called a (cr,e)-quad:riatia fol'ITI, or a pseudo-

quad:riatia form relative to cr and e if there exists a cr-sesquilinear form 

g: vxv + K such that 

(3.1) Q(x) = g(x,x) + K , Vx € v. 
(1 IE 

PROPOSITION 3.1. Q: V+K(cr,e) is a pseudoquad:riatia fo!'ITI with respeat to a 

and e if and only if there exists a traae-valued (cr,e)-he!'ITlitian fol'ITI 

f: vxv + K suah that 

(3.2) Q(x + y) = Q(x) + Q(y) + (f(x,y) + K ), Vx,y € V. 
0, E 

Given Q, the trace-valued form f of (3.2) is uniquely determined. If we 

write f = BQ we may think of Bas a map from the set Q of all (cr,e)-cr, E 

quadratic forms into the set S of all trace-valued (cr,e)-hermitian forms. 
0, E 

PROPOSITION 3.2. The mapping B: Q +s is onto. If Q is inker B, Q(x) cr,e cr,e 
lies in Kcr,e/K where Kcr,e is the subgroup {t €KI t + tcr•e = o}. Bis 

C1, E 

bijeative if and only if (2.6) holds. 
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A subspace x of Vis totally singular if Q(X) = 0 in K(cr,E). If Xis a 

totally singular subspace for Q, it is clearly isotropic for the (cr,E)

hermitian form SQ. 

PROPOSITION 3.3. The aonverse statement, that if xis a totally isotropia 

subspaae with respect to SQ, then xis totally singular with respect to Q, 

is true if (2.6) holds. 

It can be shown, by redoing the proof of proposition 2.4, that 

PROPOSITION 3.4. If x and Y are two ma:x:imal totally singular subspaces of 

V then dim(X/XnY) = dim(Y/XnY), whence dim X = dim Y. 

This uniform dimension of the maximal totally singular subspaces is 

called the Witt index of the pseudoquadratic form Q. 

4. PROJECTIVE SPACES AND POLARITIES 

A projective space Pis a system of points Panda family L of distin

guished subsets called lines such that 

1) two points lie on exactly one line, 

2) there exist four points, no three of which are collinear, 

3) (Pasch'saxiom) if L1 and L2 are two lines meeting at a point p, and if 

band care two points in L1-(p) and d and e are two points in L2-(p), 

then the line L3 passing through band d meets the line L4 passing 

through c and e non-trivially. 

A subspace X of a projective space Pis a subset X of points such that 

every line Lin L either lies in X or meets X in at most one point. Among 

the subspaces of P can be counted the empty set, called a subspaae of dimen

sion -1. If the subspace X consists of a single point we say that Xis a 

a-dimensional subspaae; if x consists of a single line, xis 1-dimensional; 

and if some line is a maximal subspace of X, then all lines in X meet each 

other non-trivially, eaah line is a maximal subspace of X and Xis called 

a 2-dimensional subspaae, or a projective plane. 

Let V be a right vector space of dimension at least 3 over a division 

ring K. If we let P denote the collection of 1-dimensional subspaces of V 

and let L be the set of 2-dimensional subspaces of V, each such subspace 

viewed as a collection of 1-dimensional subspaces (i.e. as subsets of P), 
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then (P,L) is a projective space. Projective spaces constructed in this way 

are called Desa;roguesian. (Actually, "Desarguesian" is traditionally given 

an axiomatic definition equivalent to the one given here [31].) One of the 

most basic theorems of projective spaces is the following: 

THEOREM 4.1. Any projective space properly containing a projective plane as 

a subspace is Desa;roguesian. 

Suppose xis a point in the projective space P. Then it is easy to 

show that subspaces maximal with respect to not containing x (these exist 

by Zorn's lemma) are in fact maximal subspaces of P. Such subspaces are 

called hyperplanes of P. Let S denote the lattice of all subspaces of P. 

A mapping 7f: S ➔ S is called a polarity if 7f reverses inclusion ( that is, 

X ~ Y implies Y7f ~ X7f) and for each point x E P, x7f is either Pora hyper

plane of P. (This definition follows TITS [32, p.128] and generalizes 

slightly the definition of a polarity given in DEMBOWSKI [10, p.42].) The 

rank of a polarity is the codimension of P7f in P. The polarity 7f is called 

non-degenerate if P7f = Ill. 

If Pis a Desarguesian projective space obtained from the right vector 

space V over a division ring Kand f is a (cr,E)-hermitian form on V, then 

the perpendicular map X ➔ Xl. (the "perpendicular" of X with respect to f) 

among the subspaces of V induces a polarity 7f: S ➔ S, where S is the set of 

subspaces of the projective space P. Clearly if f and 7f correspond in this 

way, f is non-degenerate if and only if 7f is. In this case we say that the 

polarity 7f is represented by f. If f is a trace-valued form we say that 7f 

is a polarity of trace type. 

THEOREM 4.2. Let P be the projective space of a vector space v. Every 

pola;roity of rank at least 2 in Pis represented by a (a,E)-hermitian form 

f on v. 

Similarly, a pseudoquadratic form Q: V ➔ K(cr,E) defines a perpendicular 

relation on the vectors of V which also induces a polarity of P. We are now 

in a position to discuss polar spaces. 

5. ABSTRACT POLAR SPACES AND THE THEOREMS OF TITS AND VELDKAMP 

The following definition is a simplification (due to TITS) ofVELDKAMP's 

axioms. 



140 

DEFINITION 5.1. A polar spaae sis a set of points together with distin

guished subsets called subspaaes such that 

(i) a subspace together with the subspaces it contains is ad-dimensional 

projective space with -1 < d < n-1 for some integer n called the 

rank of S; 

(ii) given a subspace L of dimension n-1 and a point p E S-L, there exists 

a unique subspace M containing p such that dim(MnL) = n-2; it con

tains all points of L which lie together with pin some subspace of 

dimension one; 

(iii) the intersection of any two subspaces is a subspace; 

(iv) there exist disjoint subspaces of dimension n-1. 

Let TI be a polarity on a projective space P. Assume Pis Desarguesian 

and TI is represented by the trace-valued non-degenerate (cr,E)-hermitian 

form f. Let S(TI) be the set of absolute points of P, so S(TI) ={pEP lpEpTI}. 

Then calling the totally isotropic subspaces X of P (that is, those sub

spaces X such that X<X) "subspaces of S(TI)", S(TI) becomes a polar space. 

Similarly, let P be the projective space of a vector space V and let Q 

be a pseudoquadratic form on P. A singul~r point of Pis a point corres

ponding to a !-dimensional subspace of V whose vectors vanish under Q. Let 

S(Q) be the set of singular points of P and let the subspaces of S(Q) be 

those subspaces of Plying in S(Q). Then S(Q) becomes a polar space. 

A complete proof of theorem D can be obtained from TITS' book [29]. The 

proof generally seems to proceed in two basic stages (though off in the 

margin there are exceptional cases for each stage): first one studies what 

occurs if the polar space can be embedded in a projective space (one reaches 

a virtual classification here); and second, one proves (with a few exceptions) 

that almost all polar spaces are embeddable. By an embedding of a polar 

space S into a projective space P we mean a triple (P,TI,¢) where TI is a 

polarity of P, ¢ is an injection of S into the set S(TI) of absolute points 

of P such that 

(a) ¢(S) spans P, 

(b) for every subspace X of s, ¢(X) is a subspace of P totally isotropic 

with respect to TI. 

It then turns out that when an embedding is possible the structure of 

S(TI) completely controls the structure of ¢(S) (and hence S). This is 

because (assuming lines in S contain at least three points) if x and y are 

not collinear in S but ¢(x) and ¢(y) are perpendicular with respect to 
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places ¢(x) in the radical, PTI. The classification begins with 
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THEOREM 5.1. (Part of Theorem 8.6 of TITS [29]). Let (P,TI,¢) be a projec

tive embedding of a polar spaces of rank~ 2 where TI is represented by a 

(a,E)-hermitian form. 

(i) If a and E satisfy condition (2.6) (of proposition 2.3 above), TI is 

non-degenerate and ¢(S) = S(TI). 

(ii) Suppose a and E do not satisfy (2.6). Then there exists an embedding 

(P,TI,¢) of s, a morphismµ: P+P (as projective spaces) such that 

¢•µ = ¢ and µ and TI induce TI on P, and a pseudoquadratic form Q such 

that TI= SQ (the "sesquilinearization" of Q) and ¢(S) = S(Q). The 

morphismµ is unique up to isomorphism. 

Most of the rest of the proof emerges from 

THEOREM 5.2. (Due originally to VELDKAMP). A thick polar space of rank~ 3 

whose maximal subspaces are Desarguesian is embeddable (that is, a (P,TI,¢) 

exists). 

This gives only a vague idea, to be sure, but the full development will 

appear in TITS' monumental work [29]. 

We next describe the other links in the characterization theorem, those 

showing that non-degenerate prepolar spaces are polar spaces. 

6. NON-DEGENERATE PREPOLAR SPACES ARE LINEAR 

Let S be a prepolar space. If two points x and y lie together on at 

least one line of S we say that they are collinear. We may thus also regard 

Sas a graph (undirected, without loops) with respect to the relation of 

being collinear. We write A(x) for the set of all points of S distinct from 

x but collinear with x, that is, the vertices adjacent toxin the graph. 

We define the radical of s by 

(6. 1) Rad(S) = {x € S I {x} u A(x) = s} , 

simply the set of points collinear with all remaining points. Recall that 

Sis non-degenerate if and only if Rad(S) is empty. 

We begin with a degeneracy criterion: 
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PROPOSITION 6.1. Lets be a prepola.:r> space and La line of sand b some 

point of L such thats= union A(u), where u ranges over L - {b}. Then 

Rad(S) is non-empty. 

PROOF. If L has only 2 points, the result is obvious from the hypothesis 

on L. So we assume L has at least three points. Let 6 be the intersection 

of the A(u)'s as u ranges over L - {b}, and set X = {weS IA(w) nL={u}}. 
u 

Since Sis a prepolar space this produces a partition of the points of Sas 

(6. 2) S = (L - {b}) + 6 + l X , 
u 

u 

where, in the last sum, u ranges over L - {b}. 

Suppose an element x E Xu was adjacent to an element y E Xv, where 

u # v. Then there exists a line M of S containing x and y. Then M meets 6 

trivially since if z E Mn6, then z is adjacent to u,so u, being adjacent to 

the two points z and x on M, is adjacent toy, contrary to the assumption 

that y E Xv' v # u. By the basic property of a prepolar space, since bis 

not adjacent to x or y, bis adjacent to a unique point m on M. This point 

m does not lie in any X ,w E L-{b}. We have just seen that m cannot lie in 
w 

6. So by (6.2) m lies in L - {b}. From the symmetry of u and v in the sup-

position at the beginning of this paragraph we may assume m # u. But then 

u is adjacent to the two points x and m on Mand so is adjacent toy, 

contrary to the assumption that y E Xv, once more. Thus the supposition at 

the beginning of this paragraph is false and so we may assume henceforward 

that if u # v, no element of Xu is adjacent to an element of Xv. 

If all of the Xu's were empty then every point of L would lie in the 

radical of S. If exactly one of the Xu' s, say Xv , were non-empty, then v 

would be an element of L - {b} lying in the radical of S. Thus we may assume 

that at least two of the Xu' s, say Xu and Xv , are non-empty. Select x E Xu , 

y E Xv and let M be a line passing through x and y. Then x E xunM implies 

MnL = {u} and M-{u} ~ Xu. Since y is not adjacent to any member of Xu, by 

the previous paragraph, the basic axiom for prepolar spaces implies y is 

adjacent to u. Again, this contradicts y E Xv' proving proposition 6.1. D 

Notice that the assumption of proposition 6.1 differs only very slight

ly from the state of affairs forced by the axioms of a prepolar space, for 

always, if Lis a line, the sets A(u) as u ranges over L, cover S. A glance 

at the points in the above proof at which Rad(S) is deduced to be non-empty 

shows that without loss of generality the conclusion of proposition 6.1 
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could have been sharpened to read "Rad(S) n (L-{b}) is non-empty". 

PROPOSITION 6.2. Lets be a prepolar spaae and let a,b be two non-adjaaent 

points of s. Then A*(a) = A(a) u{a} and A(a,b) = A(a) nA(b) (equipped with 

those lines of s lying entirely inside these sets) are also prepolar spaaes. 

Also 

Rad(A(a,b)) £ Rad(A*(a)). 

PROOF. The first statement is easily verified. If z is a point in Rad(A(a,b)), 

and y is any point of A(a) distinct from z, either y lies in A(a,b), z lies 

on some line through a and y, orb is not adjacent toy and some line M 

through a and b does not contain z. In the first two cases z is adjacent 

to y, patently. In the third case, there is a unique point m in Mn A(b) and 

since z is adjacent to both m and a (both z and m differ from a since a 

does not lie in A(a,b)), z is adjacent to all members of M, in particular, 

toy. Thus in all cases z is adjacent toy and so, from the general choice 

of y, we have z € Rad(A*(a)). D 

In general if a is not adjacent to b we write A(a,b) for A(a) n A(b). 

PROPOSITION 6.3. Ifs is a prepolar spaae and a and bare non-adjaaent 

points of s, then 

Rad(A(a,b)) £ Rad(S) • 

PROOF. Assume z € Rad(A(a,b)). By proposition 6.2, z is adjacent to every 

member of A(a)-{z}. It remains therefore only to show that z is adjacent to 

any point w which is not adjacent to a. Since z € A(a), there is at least 

one line L through z and a and, moreover, w is adjacent to a unique point 

u on L. If u = z, z is adjacent tow. Suppose u ~ z. Then bis not adjacent 

to u (since it is adjacent to z) and so z €A(u,b) £ A*(b) and z €Rad(A(a,b}}£ 

* £ Rad(A (b)) (by (6.2)) imply 

z € Rad(A(u,b)). 

But then by proposition 6.2 once more, 

z € Rad (A* (u) ) • 

Since w is an element of A(u) - {z}, this makes z adjacent tow also. Thus 

Z€Rad(S). 0 
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PROPOSITION 6.4. A non-degenerate prepolar space is linear. 

PROOF. Let S be a non-degenerate prepolar space and suppose by way of con

tradiction that Sis not linear. Then there exist two distinct lines L1 and 

L2 such that L1nL2 contains two points a and b. Since L1 f L2 , at least one 

of the Li's properly contains L1nL2 and so if S were the union of the A(u) 's, 

u ranging over L1nL2 , then by proposition 6.1 Rad(S) would be non-empty, 

contrary to the assumption that Sis non-degenerate. Thus we may assume 

that there exists a point c not adjacent to any member of L1nL2 • Then c is 

adjacent to a unique point xi on Li - (L1nL2), i=l,2. Since L1nL2 contains 

two points adjacent to both x 1 and x2 , x1 and x2 are adjacent and so lie on 

some line M. Since c is adjacent to two members of M, c is adjacent to 

every member of M; thus MS A(a,c)nA(b,c). We now have the configuration: 

a b 
C 

Choose u in A(a,c). We claim that either (i) u is adjacent to some member 

of M - {x1}, or else (ii) u = x2 and M = {x1,x2}. 

If u is not adjacent to x1 the claim is true. 

If u x2 , u is adjacent to some member of M - {x1,x2} or else 

M - {x1 ,x2 } is empty. In either case the claim above is true. 

Otherwise we may assume u to be distinct from x 1 and adjacent to both 

a and x 1 . Then u is adjacent to all members of L1 ,hence to at least two 

members of L1nL2 and hence adjacent to all members of L2 , including x2 on 

M - {x1}. Thus in all cases the claim is justified. 

If M = {x1,x2} then by the claim x2 is adjacent to every member of 

A(a,c) - {x2} so Rad(A(a,c)) contains x 1• Otherwise M contains three points, 

and the claim asserts that Mis a line in the prepolar space A(a,c) and 

every point of A(a,c) is adjacent to some member of M - {x1}. This is pre

cisely the hypothesis of proposition 6.1 and so we may conclude again, that 
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Rad(A(a,c)) is non-empty. Thus in either case Rad(A(a,c)) is non-empty and 

so by proposition 6.3, Rad(S) is non-empty, contrary to the assumption that 

Sis non-degenerate. D 

REMARK. If one wished to investigate the relation of non-linearity of S with 

Rad(S) in more detail, one may use the observation following the proof of 

proposition 6.1. One can then see that M, in the above proof lies entirely 

inside Rad (S) • 

7. HOW THEOREM C WORKS 

Throughout this section let S be a non-degenerate prepolar space. 

PROPOSITION7.1. Choose a point a Es and asswne band care two points in 

s - A*(a). Then A(a,b) and A(a,c) are isomorphic prepolar spaces • 

. PROOF. For each x E A(a,b) let Mx be the unique (by proposition 6.4) line 

t~rough x and a. Since c is not adjacent to a, A(c)nM = {x'}. We claim the 
X 

mapping x+x' induces an isomorphism as prepolar spaces A(a,b) +A(a,c). By 

proposition 6.4, the "lines" of a non-degenerate prepolar space are the 

unique graph-theoretic cliques containing an edge and having the "one-or-alr' 

adjacency property with points outside the cliques. Thus, since Sis non

degenerate implies both A(a,b) and A(a,c) non-degenerate by proposition 6.3, 

it suffices merely to show that the mapping x + x' is a bijection preserving 

the relation of collinearity. It is easily seen that if the roles of band 

c are reversed in the definition of x' , the inverse mapping x' + x is 

produced. So bijectivity is obvious. Suppose xis adjacent toy in A(a,b). 

Then every point on Mx is adjacent to every on My - {a} and so x' is adja

cent to.y', completing the proof. D 

PROPOSITION 7.2. Asswne the lines of s contain at least three points. If 

a,b,c,d are points of s such that (a,b) and (c,d) are non-adjacent pairs, 

then A(a,b) and A(c,d) are isomorphic prepolar spaces. 

If a is not adjacent to c, we have from proposition 7.1, 

A(a,b) 0<A{a,c) = A(c,a) "='A(c,d) 

Otherwise, there is a line L through a and c containing at least three points 
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and so, by proposition 6.1, there is a point f not in A(a)UA(c). Then 

A(a,b) ,:,,A(a,f) ,:,,A(c,f) ,:,,A(c,d) , 

each isomorphism arising from an application of proposition 7.1. 

One can see at this point that proposition 7.2 imposes a far-reaching 

uniformity across s. It is then not difficult to show 

PROPOSITION 7.3. If the lines of s aontain at least three points, ands has 

finite rank n ~ 2, then 

(i) A(a,b) is a non-degenerate prepolar spaae of rank n-1, and 

(ii) every maximal unrefinable tOuJer of subspaaes of s (beginning with the 

errrpty set) has the same length, n+l. 

One then proves 

PROPOSITION 7.4. If the lines of s aontain at least three points ands has 

finite rank, thens aontains two maximal subspaaes whiah are disjoint. 

Actually something stronger than this can be proved without using 

proposition 7.3 and the assumption that all lines contain at least three 

points (see Proposition 8 of [8]). 

Because of proposition 7.4, in proving that a non-degenerate prepolar 

space whose lines contain at least three elements is a polar space, it 

remains only to show that a maximal subspace M of S, together with the lines 

contained in it, form a projective space. We are assuming here that S has 

rank at least three. Then M contains a line as a proper subspace (proposi

tion 7.3). 

If rank S = 3, each line in Mis a maximal subspace of Mand in that 

case it is not too difficult to show that any two lines of M meet non

trivialiy. Since Sis linear, this means any two lines in M meet at a unique 

point, so M with its lines is a (not necessarily Desarguesian) projective 

space, and sos is a polar space. 

If rank S > 3, it suffices to show that Pasch's axiom holds for the 

Hnes in M. But if L1nL2 = {p} for two lines in M, it can be shown that a 

non-adjacent pair of points band c exist such that L1 and L2 are two lines 

lying in a subspace of the prepolar space A(b,c). Since A(b,c) is a non

degenerate prepolar space of rank~ 3 (by propositions 6.4 and 7.3), induc

tion on the rank shows that MnA(b,c) with its lines is a projective space. 
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Since all lines of M connecting points in L1uL2 lie in MnA(b,c), Pasch's 

axiom holds for L1 and L2 • From the general choice of L1 and L2, it follows 

that Mis a projective space. 

8. THE CASE OF THE GENERALIZED QUADRANGLES 

The notion of a generalized quadrangle was first introduced by TITS 

[30], and precisely corresponds with the notion of a non-degenerate prepolar 

space of rank 2. Thus a generalized quadrangle is a non-empty collection L 

of subsets of a set P such that p € P, L € L and p i. L imply the existence of 

a unique point f(p,L) on L such that {p,f(p,L)} is covered by a member of L, 
and any two members of L meet in at most one point, at least two of them 

being disjoint. We call the members of L lines, just as we have for all 

prepolar spaces. Note that f is a mapping from the set of non-incident pairs 

of P x L into P and observe that f is a surjection. 

THEOREM 8.1. (BENSON [3]). Let (P,L) be a generalized quamangle with P 

finite. AsBume 

(i) eaah point of P lieB on at least three lineB, and 

(ii) eaah line of L aontainB at least three points. 

Then there exiBt integers sand t Buah that every point lies on 1+t lineB 

and eaah line aontains 1+s pointB. 

If (ii) fails, each line has 2 points, so (i) alone implies each line 

contains the same number of points. Similarly (ii) alone implies each point 

lies on the same number of lines. That (i) or (ii) may fail independently 

is shown by the examples in figure 8.1. The reader may verify for himself 

that if (i) or (ii) fails the quadrangle is either a "grid" as in figure 

8.1(a) or the line-graph of a "grid", as in figure 8,l(b), If both (i) and 

(ii) fail, (P,L) is an ordinary quadrangle. We may therefore 

BB 
(a) (b) 

Figure 8.1. Generalized quadrangles in which hypothesis (i) or (ii) fails 
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assume for the remainder of this section that both (i) and (ii) hold, 

and (since this is the case of most relevance to finite groups and the 

casting of theorem A) that Pis a finite set. Then the integers sand 

t of BENSON'S theorem are defined. In that case, we shall say (P,L) is a 

generalized quadrangle of order (s,t). 

It is easy to see that if (P,L) is a generalized quadrangle of order 

(s,t) and if we interchange the nomenclature of "point" and "line", we ob

tain a generalized quadrangle (P',L') (with P' = L,L' = P and incidence 

matrix the transpose of that for (P,L)) of order (t,s) which we call the 

dual of (P,L). 

Before going further, I would like to recommend to the reader the beau

tiful and timely surveys on generalized quadrangles by J.A. THAS [28] and 

by STANLEY PAYNE [16]. (As far as I know, PAYNE's notes are of more recent 

vintage and exist so far only in the form of mimeographed notes. It would 

be nice to see them published soon.) 

The generalized quadrangles found among the polar spaces S(TT) and S(Q) 

are as follows: 

I. S(TT) when TT is the polarity on projective 3-dimensional space obtained 

from a non-degenerate alternating form. (This quadrangle is associated 

with the groups Sp(4,q) and has order (q,q).) 

II. S(Q) where Q is a non-degenerate quadratic form and Pis projective 

4-dimensional space. (This quadrangle is associated with the groups 

0(5,q) and has order (q,q).) 

III. S(Q) where Q is a non-degenerate quadratic form of Witt index 2 and P 

is 5-dimensional projective space. (This quadrangle is associated 

with the groups 0+(6,q) and has order (q,q2).) 

IV. S(rr) where TT is the polarity on projective 3-dimensional space ob

tained from a a-hermitian form over GF(q2 ) with a the field auto

morphism of order 2. (This quadrangle is associated with the groups 
2 2 U(4,q) and has order (q ,q).) 

V. S(TT) where TT is the polarity on projective 4-dimensional space ob

tained from a a-hermitian form over GF(q2 ) with a the field auto

morphism of order 2. (This quadrangle is associated with the groups 
2 2 3 U(S,q) and has order (q ,q ).) 

Still other generalizedquadranglesexist. TITS has constructed quad

rangles of orders (q,q) and (q,q2) which are generalizations of quadrangles 

of types II and III above. There are also generalizedquadrangles of order 



(q-1,q+l) when q is a primepower. A special subclass of these, when q is 

even, was first given by AHRENS & SZEKERES [1] and independently by HALL 

[13]. It is a theorem of BENSON [4] that types I and II are dual to each 

other. In addition, types III and IV are also dual to each other. When Q 
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is a non-degenerate quadratic form of Witt index 2 on a 4-dimensional vector 

space v, the associated totally singular point set S(Q) in P""PG(3,q) is a 

generalized quadrangle of type (q,1), that is (1) of theorem 8.1 does not 

hold here. 

Now in using theoremA in the context of finite groups, one may frequent

ly assume that the generalized quadrangles which may appear possess a fairly 

rich group of automorphisms. One then desires a theorem which may be used to 

characterize the generalized quadrangles. There are a number of theorems 

allowing one to characterize the quadrangles I through V listed above. Here 

is a sample: 

THEOREM 8.2. (SINGLETON [20], BENSON [4]). Suppose (P,L) is a finite 

generalized quadPangle such that for every non-collinear pair x,y of P, 

any point collinear with two of the set of points collinear with both x 

and y is in fact collinear with all l+t points which are collinear with 

both x and y. Then (P,L) is a generalized quadPangle of type I. 

Dualization of this result yields a characterization of quadrangles of 

type II. Similarly TALLINI [25] and THAS [28a] have given a characterization of 

type III which dualizes to a characterization of type IV. There presently seems to 

be no known characterization of the quadrangles of type Von the basis of 

intrinsic local geometric properties. 

However there is a recent marvelous theorem of BuEKENHOUT & LEFEVRE 

[7] that may prove useful in obtaining characterizations. 

THEOREM 8.3. (BuEKENHOUT & LEFEVRE). If the quadPangle (P,L) is finite and 
is embeddable in a projective space, then (P,L) ""s(1r) or S(Q) as polar 

spaces -i.e. (P,L) is one of the types I-V or has order (q,1). 

Finally, a recent theorem of TITS (in BuEKENHOUT [S, p.30]) shows that 

if a generalized quadrangle is exceedingly rich in automorphisms, then it is 

a quadrangle of "classical" type: 

THEOREM 8.4. (TITS). Let (P,L) be a finite generalized quadPangle, and 
asswne the following two properties: 
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(i) If A and B a:r>e two lines th:r>ough a point p and if b is any point 

on B distinat from p, then the subgroup of Aut(P,L) fixing A and B 

pointwise and stabilizing all lines through p, transitively permutes 

the lines passing th:r>ough b EB whiah a:r>e distinat from B. 

(ii) If a and b a:r>e two points lying on a line Land Mis a line th:r>ough b 

distinat from L, then the subgroup of Aut(P,L) fixing L pointwise and 

sirrrultaneously stabilizing all lines th:r>ough a and bis transitive on 

the points of M - {b}. 

Then either (P,L) or its dual is an S(~) or an S(Q). 

Note that conditions (i} and (ii) of this theorem are dual to one 

another. 

THEOREM 8.5. Let (P,L) be a generalized quad:r-angle of order (s,t). Then 

(i) IP I 
(iil ILi 

(l+s) (l+st); 

( l+t) ( l+st) ; 

(iii) eaah point is aollinea:r> with s+st points, and fails to be aollinea:r> 

with s 2 t points. 

A point x and all the points collinear with it is denoted St(x} and is 

called the star> at x (in the prepolar space terminology of section 6, this 

is just A*(x)). We denote by C(St(x)), the subgroup of those automorphisms 

of (P,L) which leave St(x) fixed pointwise. We next observe 

PROPOSITION 8.1. C(St(x)) aats semiregula:r>ly on the set of points P - St(x). 

The following seems approachable, 

CONJECTURE 8.1. Assume (P,L) is a finite generalized quad:r-angle of order 

(s,t), and, for eaah x E P, C(St(x}} has even order. Then (P,L) is type I, 

IV or v, with q a power of 2. 

Assume the hypothesis of the above conjecture, set G = Aut(P,L), let 

Gx be the subgroup of G fixing the point x, and write C(x) for C(St(x)). 

Then the following is easily proved: 

(i} G is transitive on unordered pairs of collinear points. In particular 

G is transitive on St(x) - {x} and the stabilizer in G of a line is 
X 

doubly transitive on the points in the line. 

(ii) Gx = NG(C(x)). C(x) is a 2-group, and is a trivial intersection group, 

that is it meets its G-conjugates which are distinct from itself 

trivially. 
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(iii) tis a power of 2, G induces a doubly transitive group (H,L) on 
X X 

the set of lines passing through x and (H,Lx) contains a normal 

subgroup (H0 ,Lx) which is SL(2,q), Sz(q) or U(3,q2) acting in its 
2 3 natural representation on l+t = l+q, l+q, or l+q letters, respec-

tively. 

(iv) If x and y are non-collinear points, there is a set C(x,y) of l+w 

mutually non-collinear points containing x and y with the property. 

that A(u)nA(v) = A(x)nA(y) for all u,v E C(x,y). (Here, A(x) is the 

set of points collinear with x.) The system L* = {C(u,v) I (u,v) 

a non-collinear pair in P} becomes in this way, a second system of 

lines for P, so that every pair of points in P either lies in a 

unique line from Lor a unique line from L* but not both. The two 

line sets are connected by the following interesting property: if 

LE L* and u E P and u is L-collinear with two points of L, then u 

is L-collinear with every point of L. 

(v) If x and y are not collinear, the subgroup <C(x),C(y)> stabilizes 

C(x,y) and induces on C(x,y) one of the permutation groups SL(2,q), 

Sz(q) or U(3,q2) acting do"ly transitively on the l+w points, 

with w = q, q2 or q3 , respectively. If w Ft then SL(2,q) is obtain

ed, t = q 3 and the subgroup H0 of (iii) is U(3,q3). 

It may be that the more general assumption that C(St(x)) contains an 

element of prime order p for each x in P, would also imply that (P,L) is 

type I, IV or V. In any event if the above conjecture could at least be 

proved, it would be useful in many instances of determining the 2-Sylow order 

of G = Aut(P,L). For example, if we assume that H = G and K = Stab(L), 
X 

where Lis a line containing x, then HnK is the stabilizer of the flag 

(x,L) and G is an amalgam of Hand K. A very pleasant pastime is this: One 

selects two transitive permutation groups whose one-point stabilizers are 

either isomorphic, or for which there is a subdirect product of each, which 

is not direct. These are the candidates for (H,L) and (K,L). If His 
X 

doubly primitive on the lines through x, then K0 = ker[K ➔ Sym(L) J must 

coincide with C(St(x)). Similarly, if K is doubly primitive on the points 

in L, H0 = ker[H ➔ Sym ( L ) J (where L is the set of lines through x) must 
X X 

also coincide with C(St(x)). The point is that if (s,t) is chosen so as not 

to coincide with cases I through V, the conjecture says C(St(x)) must have 

odd order and this means a 2-Sylow order of G is determined. Choices of H, 

HnK and K giving low values of sand tare easily constructed; samples are: 
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H HnK 

1a. E(16)Alt(5) Alt(5) 

lb. E(16)Sym(5) Sym(5) 

le. E(16)o10 0 10 
2a. Alt(6) 0 10 
2b. Sym(6) 

3. E(16)Sym(6) 

4. Alt(8) 

5. U(3,32) 

6. E(16)Alt(6) 

7. Alt(8) 

z5z4 
Sym(6) 

E(8)L(3,2) 

L(3,2) 

Alt(6) 

Sym(6) 

K 

Alt(6) 

Sym(6) 

PSL(2,5) 

PSL(2,5) 

PGL(2,5) 

(s,t) IPI 

(5,15) 456 

(5, 15) 456 

(5, 15) 456 

(5, 35) 1056 

(5,35) 1056 

Sym(7) (6, 15) 567 

E(82)L(3,2) (7,14) 1485 

E(8)L(3,2) (7,35) 1944 

Sym(7) (13,15) 2744 

E(16)Sym(6) (15,27) 6496 

2 times case la 

283.5, 19· lcl 

28325.11-lcl 

2 times case 2a 

28325·7213• lcl 
9 4 2 3 5.7.11- lcl 

29345•7•41•lcl 

2 10325• 73•1 c I 
211 i5-7211• lcl 

••• and so on. If the conjecture is true, lei= lc(St(x)) I is odd and the 

2-Sylow order of G is known. In addition, part of the 2-fusion pattern is 

already prescribed in the two subgroups Hand K, so one is presumably on 

his way to determining G. 

9. VARIATIONS ON A THEME; OPEN QUESTIONS 

A few open questions remain concerning prepolar spaces. 

(1) What is the exaat relation between lines whiah meet at two or more 

points (we call these "neighbor lines") and the radiaal of (P,L)? 

One may consider the equivalence relation R defined on P by xRy if and 

* * * * only if A (x) = A (y). Then one can show that A (x) .SA (y) implies either 

xRy or y.ERad(P). From this it follows that on the set P of equivalence 

classes under R, the structure of a prepolar space I can unambiguously be 

defined from L. The theorem is that (P,I) is non-degenerate [8, Proposition 

14]. Then from proposition 6.4, (P,I) is linear. This means that if two 

lines L1 and L2 meet at two points, then at least one of the two points 

lies in Rad(P). From this one sees that lines meeting at three points must 

lie in Rad(P). Do lines meeting at exactly two points necessarily lie in 

Rad(P) also? 

(2) Can the struatU'l'e of non-degenerate prepolar spaaes aontaining lines 

of aardinality 2 be desaribed? 
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It is clear that if (P,L) is such a prepolar space then it contains 

many lines of cardinality 2. To see this, let L {a,b} be a line containing 

just two points. Then we have a decomposition P L+l+Xa+~ into disjoint 

sets, where l = A(a)nA(b), Xa A(a)-l, ~ = A(b)-l. From non-degeneracy, 

both Xa and~ are non-empty. Then the lines through point a either lie 

entirely inside X u {a}, or l u {a}. Let M be a line through a lying in 
a 

Xa u{a}. Then any point pin~ is collinear with some point p' in M. Then 

if N is a line containing p and p' we see that Nnxa = {p'}, Nn~ {p} and 

Nn (lu{a,b}) is empty. Thus N = {p,p'}. There are thus l~I such lines 

meeting M. 

(3) All of the graphs of theorem A aorresponding to prepolar spaaes of rank 

at least three involve struatures assoaiated with the groups Sp(2n,q), 
£ 2 0(2n+l,q), o (2n,q), £=±1, and U(n,q ). These are the non-abelian 

simple seations of the finite Chevalley groups of types B , c , D and n n n 
the twisted types 2o and 2A. Does there exist a similar simple (and 

n n 
loaal) graph-theoretia hypothesis whiah aould be used to aharaaterize 

struatures assoaiated with other Chevalley and Steinberg groups? 

Those which come to mind are the groups of types A (the PSL(n,q) 's), 
3 2 2 2 n 
D4 , G2 , F4, E6 , E7 , E8 . Presumably F4 , G2 , B2 are of such low rank as 

to be below the level of such a theorem. What does one use as a replacement 

for S (,r) or S (Q) in these cases? One suspects that in the case of PSL (n,q) 

one would use the line-graph of PG(n-1,q), suggesting a hypothesis of the 

form: 

HYPOTHESIS H. If (x,y) is an edge in the graph G, there exists a alique 

c (x,y) aontaining l+q+l vertiaes suah that every vertex z E G-c (x,y) is 

adjaaent to O or l+q members of C(x,y). The sets A(z) nc(x,y) whiah are 

non:....empty as z ranges over G - c (x,y) define a projeative plane on c (x,y). 

Possibly one can weaken hypothesis H. If q = 1, the socalled "triangu

lar graphs" also have this property. But these correspond to the symmetric 

groups which may be thought of as what would be groups of type An if there 

were such a thing as a field containing one element. 

Some work has already begun [6] on prepolar-like spaces that might be 

characteristic for the Chevalley groups of type E6 . 

This point of view suggests still another question. 
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(4) Is there an analogue of theorem A that could be used to characterize 

the graph of non-singular points in a projective space with a non

degenerate unitary polarity or the graph of non-singular points with 

square (or non-square) values under a non-degenerate quadratic foY'171 Q? 

That such a theorem may be possible is indicated by the following 

result: 

THEOREM 9.1. Let G be a finite graph satisfying the following hypothesis: 

rrcotriangle property) Given any non-adjacent pair of vertices X and 

(9 _1)i~' there exists at least one third vertex z not adjacent to either 

1
x or y, such that any vertex in G - {x,y,z} is adjacent to one or three 

Lmembers of {x,y,z}. 

Then the graphs Gare deteY'l7lined up to isomorphism. 

The graphs include the graphs N(2n,2) of non-singular vectors with re

spect to a non-degenerate quadratic form in 2n-variables over GF(2). 

Suppose G is a graph with the cotriangle property (9.1) and G = x1 + 

+ x2 + ••• + xm is a partition of the vertices of G with each Xi non-empty 

and if i ,f j, every vertex of X. being adjacent to every vertex of X. • Then 
1 J 

as subgraphs, each X. has the cotriangle property. Clearly G is determined 
1 

up to isomorphism by the isomorphism types of the Xi. We say G is indecom-

posable if no non-trivial partition of this type exists. 

THEOREM 9.2. If G has property (9.1), the following are equivalent: 

(i) A(x)u{x} = A(y)u{y} implies x=y, for all x,yEG. 

(ii) The vertex z of (9.1) is uniquely deteY'l7lined by x and y. 

The relation A(x)u{x} A(y)u{y} is clearly an equivalence relation on 

the vertices of G and if G {c.} is the family of equivalence classes of G 
J 

with respect to this relation, and i ,f j, then either 

(a) every vertex of Ci is adjacent to every vertex of cj, or 

(b) no vertex of Ci is adjacent to any vertex of cj. 

We can then make a graph on G by the relation (a). Then if G is indecompos

able, so is G. If G has the cotriangle property, so does G, except now 

property (b) also holds. Finally G is determined up to isomorphism by the 

isomorphism type of G and the assignment of cardinalities lcil to the 

vertices i of G. 

Thus in proving theorem 9.1 we need only show 
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THEOREM 9.3. If G is a finite indecomposable graph with the cotriangle prop

erty (9.1) for which (b) of theorem 9.2 holds, then either 

(i) 

(ii) 

(iii) 

where 

G.,,. NC2n,2), 

G ""Sp(2n,2), 

G c.1 T* (n), 

N(2n,2) is the graph of non-singular vectors with respect to a non-

degenerate quad;r,atic fom in 2n variables over GF(2), Sp(2n,2) is the graph 

of non-zero vectors under the perpendicular relation of a non-degenerate 

symplectic fom over GF(2), and T*(n) is the complement of the triangular 

graph on n letters. 

The proof is merely a modification of a theorem of J.J. SEIDEL [17]. 

Because of property (b) we may write z = x+y unambiguously in the statement 

of the cotriangle property. (In SEIDEL'S situation, the graph is already 

embedded in a symplectic space with"+" being ordinary vector addition, 

hence associative in his proof; also case (ii) is not possible in his situ

.ation. ) SEIDEL' s inspiration was in noticing that if X a is the subgraph of 

vertices adjacent only to a in a cotriangle {a,b,c = a+b}, then X has the 
a 

triangle property (that is, the hypothesis of theorem A with the C(x,y)'s 

all having just 3 points). The structure of~= A(a)nA(b)nA(c) is a little 

more difficult to see, but is determined up to isomorphism by Xa. 

10. SOME GROUP-THEORETIC BACKGROUND AND SOME APPLICATIONS 

Historically speaking theorem A is the coming together of two indepen

dent lines of development: on the one side, the development of the theory 

of polar spaces beginning with Vl1:LDKAMP's important work [32]; on the other 

side, the need to characterize graphs which arose in certain group-theo

retic problems, eventually reaching the prepolar spaces. The comments in 

this section are confined to the group-theoretic side of the picture. 

In one sense the dim beginnings are noticeable in the graph extension 

theorem. A well-known problem that arises in the theory of permutation 

groups is that of constructing a transitive extension. By saying that (G,X) 

is a permutation group, we mean that we have an injection f: G-+Sym(X). If 

x and y are two elements of x, the ability to reach y from x via a permutation 

in f(G) is an equivalence relation on x, the equivalence classes being 

called G-orbits. We say G is transitive on x if G acts in one orbit on x. 
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Always, if Y is a subset of X, the permutations leaving Y fixed point-wise 

form a subgroup GY of G and by custom we write Gy for GY when Y = {y}. If G 

is transitive on X, all subgroups Gx, x € X, form one conjugacy class of sub

groups of G. We say G is ra.nk non X if G is transitive on X and Gx acts in 

n distinct orbits on X; a rank 2 group is called doubly tra.nsitive and is 

transitive on the set of ordered 2-sets from X. If (G,X) is doubly transi

tive, then G is called a tra.nsitive extension of (G ,x - {x}). The problem 
X 

is to reverse this process; find for which transitive groups (Gx' X - { x}) , 

the doubly transitive group (G,X) exists. 

As an example, there are 35 ways to partition 8 letters into two4-sets 

and Sym(8) is a rank 3 permutation group (H,X) on the set X of partitions. 

The subgroup Hx fixing a partition xis Sym(4)\z2 acting with orbits of 

lengths 1, 18 and 16, so H = Hx + HxtlHx + Hxt2Hx. We can adjoin a new 

letter a to X and define a permutation z on {a} u X, transposing a and x, 

such that zt1z and zt2z lie in the set G H+HzH. Then the set G is closed 

under composition of permutations and so G is a doubly transitive group on 

36 letters and is a transitive extension of H. As it turns out His also 

the full automorphism group of a graph which can be defined on X. The graph 

has valence 18 and is defined by the translates of the orbit of length 18 

for Hx. Moreover, z can be chosen to centralize the subgroup Hx and induces 

automorphisms of the subgraphs defined by the Hx-orbits and A and B of 

lengths 18 and 16 respectively. However if (x,y) € AB, then (x,y) is an 

edge if and only if (xz,yz) is not an edge. 

This was the prototype of the so-called "graph extension theorem" [22] 

which gave a sufficient condition (involving graph-theoretic concepts) that 

a group (H,X) have a transitive extension (G, {a} u X), namely 

HYPOTHESIS 10.1. x is a graph and H = Aut (X) is tra.nsitive on the vertices 

x. There exist automo:ephisms h 1 and h2 of the subgraphs r =A(b) and 

z: = x - ({b}uA(b)) such that h 1xh2 interchanges the set of adjacent pairs 

with the set of non-adjacent pairs in r x Z:. 

Transitive extensions which arise in this way include PSL(2,q), 

q - l(mod 4), U(3,q2), q odd, groups of Ree type, the symmetric groups, the 

two 2-transitive representations of Sp(2n,2) and two doubly transitive 

sporadic groups, HS and (.3). Any doubly transitive group whose one-point

stabilizer contains a strongly closed subgroup of index two arises by virtue 

of hypothesis 10.1 [12,26]. The problem of classifying the doubly transitive 
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groups which are transitive extensions coming from hypothesis 10.1 is still 

unsolved. 

However, if one of the two automorphisms h1 or h 2 of hypothesis 10.1 

can be taken to be the identity (say, by composing them with the restriction 

of an automorphism of X fixing b) then the graph Xis either a pentagon, or 

else has the "triangle property" -that is, the hypothesis of theorem A with 

C(x,y) assumed always to contain exactly three points. Regular graphs with 

this property were characterized in [23] (in fact SEIDEL proves a version 

of this result with the regularity of X relaxed [17]) before theorem A was 

ever proved. Because of this result the doubly transitive groups which 

arise from hypothesis 10.1 in this case must be PSL(2,5) on 6 letters, 

Sp(2n,2) on 2n-l(2n±1) letters or the semidirect product V(2n,2)Sp(2n,2) 

22n letters. We thus have (logically, if not actually historically) an 

application of theorem A to doubly transitive groups. 

on 

A more general way of looking at the above construction is obtained by 

considering a new combinatorial object, the 2-graph, first introduced by 

GRAHAM HIGMAN in order to study the Conway group (.3) as a doubly transi

tive group on 276 letters. A 2-graph (Q,6) is a set of letters Q and a 

family 6 of 3-sets from Q such that any 4-set of Q contains an even number 

of 3-sets belonging to 6 (the cases in which 6 contains all 3-sets or is 

empty, are regarded as trivial 2-graphs). A 2-graph is called regular if 

every pair of letters lies in the same number of sets in 6. The transitive 

extensions obtained from the graph extension theorem are in 1-1-correspon

dence with the class of doubly transitive 2-graphs. Let X be the graph in 

hypothesis 10. 1 and let a be the "new" point, and regard { a} u X as a graph with 

{a} as an isolated vertex and X as a subgraph. Then the 2-graph in question 

has {a} u X as its set of letters, and all 3-sets of {a} u X containing an 

odd number of edges as the family of 3-sets 6. Because of hypothesis 10.1, 

the transitive extension constructed is in the automorphism group of the 

2-graph ({a} ux,6). Because Gb=H=Aut(X), it is the full automorphism 

group. Those graphs G, for which the family 6 of 3-sets of vertices of G 
containing an odd number of edges defines a regular 2-graph (G,6) are char

acterized among all graphs by the fact that their (-1,0,1) adjacency 

matrices possess only two distinct eigenroots [17, Theorem 2.5]. If G is 

such a graph, and Y is a subgraph of G, we may switch with respect to Y; 

that is, obtain a new graph G' with Y and G-Y as subgraphs, by erasing all 

edges in Y x (G-Y) and declaring all' non-adjacent pairs of Y x (G-Y) in G to 

be edges of G'. Then the 3-sets of G• possessing an odd number of edges is 
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still~, so the same 2-graph is defined by G•. We may thus associate a 

2-graph with a switching class of graphs, and SEIDEL [19] has made this asso

ciation precise by showing that any two graphs which lead to the same 

2-graph are actually switching-equivalent. It is interesting to note that 

SEIDEL first introduces the switching concept into graph theory in [18], 

well before its relevance to 2-graphs became known. The mathematical muse 

seems mysteriously to bring things forth at the right time! 

I should mention that 2-graphs are interes~ing combinatorial objects 

to study in their own right. SEIDEL & GoETHALS [19] have shown that there is a unique 

regular 2-graph on 276 letters and in doing so have produced an elementary 

construction of this 2-graph from first principles. This gives us an 

elementary construction of Conway's group (.3) without the use of the Leech 

lattice, or even the existence of the larger Mathieu groups. Although there 

is an excellent development of 2-graphs in TAYLOR's thesis [27], I would 

recommend the reader to the more accessible and current survey of 2-graphs 

by SEIDEL [20]. 

Another application of theorem A stems originally from an 

earlier version [24] of the "triangle property" theorem [23] in which the 

vertices of the graph were actually involutions in a group, and edges were 

commuting pairs of involutions. As a corollary of that theorem (and 

GLAUBERMAN's z*-theorem [11]) one obtains the following non-simplicity 

criterion for a finite group. 

THEOREM 10.1. Let K be a non-empty union of alasses of involutions in a 

finite group G. Suppose that if t ands are aonv,ru,ting members of K, then 

(i) ts E K, and 

(ii) any element of K aonv,ru,tes with at least one involution in <t,s>. 

* Then either no two members of K aanv,ru,te and z (g) is non-trivial, or else 

G has a normal elementary abelian 2-group. In either case G aontains a non

trivial normal solvable subgroup. 

ALPERIN [2] generalized this theorem and gave a direct group-theoretic 

proof of it. 

THEOREM 10. 2. (ALPERIN) Let A be a fours group in G, and set K = (A#) G, and 

suppose CG (x) n A > 1 for all x E K. Then Ano2 (G) > 1. 

By using theorem A one can prove an "odd p" version of theorem 10.1, 

namely: 
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THEOREM 10.4. (SHULT [24a]). Let K be a union of alasses of ayalia groups 

of prime order pin G. Suppose that whenever x and Y are distinat members 

of K whiah aommute with one another, then 

(i) at least three z 'sin <X,Y> lie in K, and 
p 

(ii) CG (P) n <X, Y> n K is non-trivial for eaah P in K. 

Suppose, further, that at least two members of K aommute with one another. 

Then G aontains a non-trivial normal elementary p-group N, aentral in <K>. 

Does there exist a similar "odd p" version of ALPERIN's generalization 

of hypothesis 10.1? Such a theorem would have a hypothesis referring to a 

fixed subgroup A of type z x Z , with CG (X) nA > 1 for each X in K, the set 
p p 

of G-conjugates of Z 'sin A. Indeed, this suggests a variation on the 
p 

theorems of BRODKEY [9] and LAFFEY [14]: Suppose A is a subgroup of G of 

type 

show 

Z x z and suppose A meets all of its .G-conjugates non-trivially. Then 
p p 

O (G) is non-trivial. So far these generalizations remain to be proved. 
p 

These are meagre beginnings, but it is the author's belief that the 

.applications of theorem A (and similar theorems) to group-theoretic prob-

lems has just begun. 
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