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PREFACE 

This tract is an enlarged and improved version of tract 13 by the 

same author. It contains the expanded lecture notes of courses on asymptotic 

methods in applied analysis given for students in mathematical physics 

at the University of Amsterdam. In particular we consider the asymptotic 

behaviour of real and complex functions which are explicitly given by an 

integral expression. 

Asymptotics is an art that can be mastered only by studying a great 

number of special cases rather than using general theorems. The author 

therefore has attempted to illustrate the techniques of asymptotic analysis 

by a great variety of worked-out examples. 

Much attention is given to the asymptotic expansion of functions 

which can be expressed as· a Laplace integral or more generally as an inte­

gral to which the saddle point technique can be applied. A number of special 

functions such as Bessel functions and confluent hypergeometric functions 

are treated in this way. 

A few topics are included here which are not usually found in the 

text-books. We mention in particular the chapters on factorial series, the 

Euler transformation, the asymptotic behaviour of Cauchy integrals and 

asymptotics in the theory of probability. Also much original material is 

included. 

The text is aimed at students in analysis and in mathematical physics. 

The style may be reminescent of the lecture room. In general the systematic 

treatment anf the theorems are preceded or followed by examples and 

special cases. Some theorems could easily be generalized and conditions 

may be relaxed somewhat. However, for the sake of simplicity and clearness 

the theorems are sometimes stated in a simple and special form. Obvious 

generalizations are left to the reader. 

H.A.L. 





1. INTRODUCTION 

In asymptotics we consider the behaviour of a function f of a variable 

z when z tends to a specific value z0 • Following the conventions of current 

practice we take either z0 = 00 or z0 = O. However, both cases are entirely 

equivalent since z can be replaced by z-1• If the independent variable is 

real and runs through all positive real numbers to infinity,we denote it 

by w. If w is restricted to the natural numbers,we shall usually write n 

instead of w. It is convenient to take z0 = 0 for asymptotics with respect 

to a complex variable z. 

Sometimes f depends also on a further variable, say a parameter A, 

Then asymptotic properties may be formulated either for specific values of 

A or uniformly for some set A of A-values. 

The Landau sY111bols 

There are the following two symbols O and o introduced by Landau for de­

scribing order relations between asymptotic expressions. For w + 00 their 

meaning is explained as follows. 

( 1. 1) f(w) = O(g(w)) 

means that there exist constants c and w0 such that 

(1.2) if(w)I < cig(w)I for w > w0 • 

The order relation 

(1,3) f(w) = o(g(w)) 

is simply another way of saying that 

(1.4) f(w) / g(w) + 0 for w + 00 • 

The relation f = o(g) says that f is of order less than g. The relation 

f = O(g) says that f is of order less or equal than g. Thus f = o(g) im­

plies f = O(g). 

The order relations may hold uniformly in some set A if f and g depend on 

A, For (1.2) this means that the constant c is independent of A, 
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Sometimes the symbol ~'is used to express asymptotic equivalence between 

non-vanishing functions f and g. Then 

( 1.5) f(w) ~ g(w) 

means that 

( 1.6) lim f(w) / g(w) = 1. 

E:x:ampl,e 1.1 

a. Stirling's formula 

, n+1/2 -n r,::-,. n. ~ n e v2n. 

b. Wallis' formula 

c. The following asymptotic expressions of the same function give an in­

creasing amount of information. 

2 1/2 (n +n+1) = O(n), 
2 1/2 (n +n+1) ~ n, 

(n2+n+1) 112 = n + 0(1), 
2 1 /2 1 (n +n+1) = n + 2 + 0(1), 
2 1 /2 1 -1 (n +n+1) = n + 2 + O(n ). 

d. Euler's constant y = .5772 ••......• 

+l+l+ 1 
2 3 + n ~ log n, 

+l+l+ +l= log n + y + 0(1), 2 3 n 

+l+l+ +l= log n + y+O(n-1), 
2 3 n 

+l+l+ +l= log n + y + (2n)- 1 + o(n-1). 
2 3 n 

Definition 1.1 

A sequence of functions {~k(w)} is said to be an asymptotic sequence (AS) 

as w + 00 if for all k 
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( 1 . 7) 

Such an AS is formed for example by successive negative powers of w 

-1 -2 -3 
1,w ,w w 

A slightly more general AS is given by ¢k 

).1 < ).2 < ).3 < 

Definition 1. 2 

The function f is said to have an asymptotic expansion (AE) of order N with 

respect to the AS {¢k} if there exist constants¾ such that 

( 1.9) 

It is clear that an AE of order N is an AE for all lower orders. The 

constants¾ can be determined by means of 

( 1. 10) 

This shows that an AE of a given function is unique. On the other hand we 

shall soon see that more functions can have the same AE. 

In many cases it is possible to construct an infinite AE. Then we simply 

write 

(1.11) 

which means that (1.9) is true for all N. 

If with respect to a given AS a function g has an AE (1.11) with zero 

coefficient~it is said to be asymptotically zero (notation g ~ 0) with 

respect to that sequence. According to (1.10) this means that 

(1.12) g / ¢k ➔ 0 for all k, 

If f ~ L¾¢k and g ~ Lbk¢k." it follows easily from (1.10) that the 

linear combination af + Sg has the AE I(a¾+Sbk)¢k. If g is asymptotically 

zero, then f and f + g have the same AE. 
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Ezample 1.2 

The following statements hold for the AS {w-k}. 

a. (w+1)-1 ~ l (-1)k-1w-k. 
k=1 

b. I: (t+w)-1e-tdt ~ kf1 (-1)k-1(k-1)!w-k. 

c. The functions e-w, w-log 00 , w-w are asymptotically zero. 



2. ASYMPTOTIC POWER SERIES 

We consider the asymptotic behaviour of a function f for w + 00 with 

respect to the AS {w-k}. The resulting AE 

(2.1) ' -k f ~ l~w 

is called an asymptotic power series (APS). 
-1 We shall, however, change the notation a little bit by writing x = w and 

5 

using x (x > O) instead of w. If the remainder of then-th order APS is de­

fined as 

(2.2) f(x) -

then the full APS 

f(x) 

implies that not only 

(2.4) 

but that even better 

We mention the following few theorems the proofs of which depend on simple 

straightforward analysis. 

Theorem 2.1 

If f ~ }:akxk and g ~ }:bkxk,then fg has the APS which is obtained by the 

formal multiplication of the corresponding series. 

Theorem 2.2 

If f ~ }:~xk and aO + O,then f- 1 has the APS which is obtained by the cor­

responding formal procedure. 
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Theorem 2.3 

If f ~ I~xk,then 

(2.6) 

and 

(2.7) 

Theorem 2.4 

Ix ~ k+1 
f(t)dt ~ l k+1 x 

0 k=O 

Jx f(t) - e a 
Odt t kk --t---"- ~ l k X • 

0 k=1 

If f(x) has a continuous derivative and if f'(x) possesses an APS then the 

latter can be obtained by formal differentiation of the APS of f(x) 

(2.8) , k-1 
f' ~ l k8kx • 

k=1 

If f(x) is repeatedly differentiable and admits a convergent Taylor 

series 

then it is almost obvious that this is also the APS of f(x). 

However, it comes somewhat as a surprise that the same result also holds 

for a formal Taylor series which need not be convergent. 

In fact we have the following property. 

Theorem 2.5 

If f(x) is repeatedly differentiable in an interval O ~ x ~ ~then the for­

mal Taylor series represented by the right-hand side of (2.9) is the APS of 

f(x). 

(2.10) f(x) 

Proof 

The remainder of the finite Taylor expansion can be written as 
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If f belongs to some class cfl(o,a),then for N+1 ~ m we have the following 

estimate 

Ix N 
l~(x) I ~ c (x-t) dt 

0 

so that 

R (x} = O(xN+1). 
N 

From a given APS other asymptotic expansions can be derived in a 

variety of ways. A few simple ways are shown in the preceding theorems. A 

more interesting method is offered by Laplace transformation. If 

is the Laplace transform of f(x) and if f ~ l!\_xk, then formal transforma­

tion gives the following APS 

( ) , -k-1 
g w ~ l k! !\_W • 

k=O 

The full discussion will be postponed to a later chapter. Here we restrict 

ourselves to the following simple theorem. 

Theorem 2.6 

Let f(x) be continuous for O ~ x ~ a and have the APS /.1\_Xk. Then 

(2.11) as w-+- "'· 

Pr>oof 

N k 
We write f(x) = l l\.x + ~(x). The corresponding remainder of the trans­

k=O 
formed APS can be written as 
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N+1 
We have to show that w SN(w) I I N+1 

➔ O for all N. Since RN(x) < ex ,we have 

Further,it is easy to show that 

-N-1 f00 -wx kdx O W e X ➔ 

a 

for all k. 

Example 2.1 

a. The coefficients of the Taylor expansion of exp - 1/x are all zero. 

This means that the Taylor series converges but does not represent 

the function. However, it is true according to theorem 2.5 that the 

Taylor series is the right APS. Thus exp - 1/x is asymptotically zero 

asx++O. 

b. We consider the function 

foo e -t 
f(x) = 0 1+tx dt' 

A simple calculation shows 

series becomes L(-1)~!xk 

it is the APS of f(x). 

Example 2.2 

X ~ 0. 

that f(k)(O) = (-1)kk!k!. The formal Taylor 

which, however, diverges for all x f O. Yet 

Starting from the Taylor series and APS 

( )-1 , (- 1 )kxk 1+x = l 
k=O 

we obtain by using (2.10) for a= 00 

foo e-wx 
--dx ~ 

0 1+x L 
k=O 

From theorem 2.5 it is clear that a power series with a non-vanishing 

radius of convergence is the APS of its sum. However, the preceding examples 

show that an APS may diverge for all x f O. But the following theorem shows 

that also to a divergent power series a function can be associated for which 



this series is its APS. Of course this association is not unique since to 

this function an arbitrary asymptotically vanishing function may be added. 

Theorem 2.7 
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For any formal power series L a. xk there exists a function f(x) with this 
k=O K 

series as its APS. It is possible to find such a function which is infini-

tely differentiable in a given interval (O,a). 

Proof 

Take a= 1 and define 

(2.12) f(x) = I ~(1 
k=O 

- exp _tltl) k 
- l~I X ' 

where ¢(x) is some positive function of x. 

Since 1 - e-a ~ a for a ~-0,the terms of this series are dominated by 

xk¢(x) so that f(x) converges for O ~ x < 1. We have 

I f(x) -
N oo 

~ l l~Jxk exp - .t0Ll_ + ¢(x) l 
k=O l~I k=N+1 

k 
X • 

If ¢(x) = x- 1/ 2 the terms of the first series on the right-hand side are 

all t t . 11 Th d . . O(xN+l/2 ) so that the left-asymp o ica y zero. e secon series is 

hand side is certainly o(xN). Since this is true for all N,the series 

I~xk is the APS of f(x). 
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3. ANALYTIC FUNCTIONS 

The asymptotic properties of a complex function f of the complex 

variable z = x+:iy or z = r exp ie when z + O or z + 00 may depend on the 

phase e. Order relations such as f = O(g) may be uniformly valid in some 

sector a $ 8 $ B but may loose their validity outside this sector. 

Example J.l 

For z + 0 the asymptotic relation exp - 1/z ~ O with respect to any power 

series of z holds uniformly within any closed sector contained in the domain 

- ~TI< e <~TI.However, for purely imaginary z we have lexp - 1/zl = 1. 

Hence the relation above does not hold uniformly in the domain 

- ~TI< 8 <~TI.For ~TI s lei s TI things are even worse. 

As a rule we consider only asymptotic relations with respect to z + O. 

Then a suitable asymptotic sequenXe is formed by successive powers of z 

such as {zk} or more generally {z k} as in the real case. We repeat that an 

asymptotic expansion such as 

(3. 1) 

means that for each index N there exist a positive constant cN and a small 

number E such that 

( 3. 2) 

Of course the coefficients¾ and the constants cN may depend on the phase 

of z. If, however, for some sector as 8 s Bit is always possible to find 

a constant cN independent of 8,the expansion is called a uniform asymptotic 

power series (UAPS). 

From now on we consider only asymptotic expansions which are holo­

morphic in a fan-shaped region a< 8 < B, a< r < b. As a rule in applica­

tions we have either a= 0 orb= 00 but since by using the transformation 
-1 . . 

z + z asymptotics with respect to z = 00 may be reduced to that for z = O, 

it suffices to take a= O. As a rule an expansion like (3.1) holds uni­

formly in some sector with coefficients independent of 8. However, in dif­

ferent sectors the analytic function may possess different expansions,an 

effect which is known as the Stokes'phenomenon. 
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The situation is particularly simple for an analytic function which is ho­

lomorphic at z = O. 

Theorem 3.1 

If f(z) is holomorhic for \z\ s R then its Taylor series is a UAPS. 

Proof 

For \z\ < R we write 

N k N+1 

f f(d f(z) I z di',;. = ~z + --.-21Tl N+1 
k=O ( r,;-z) r,; 

\r,;\=R 

The remainder is in absolute value less than 

M\z\N+1 

N ' 
(R- I z I )R 

where Mis the maximum value of \f(r,;)\ on the circle \r,;\ = R. Thus for 

each N the relation (3.2) holds uniformly irrespectively the phase of z. 

If f(z) possesses an essential singularity at z = 0 the Stokes phe­

nomenon may be exhibited. 

Example 3.2 · 

For f( z) = ~ ( e z + e -z tanh z - 1 ) we have the following asymptotic ex­

pansions 

f( z) ~ cash z ~ 

f( z) ~ sinh z 

2k 

l ( ;k) ! 
k=O 

2k+1 I ~z;:.._~ 
k=O (2k+1) ! 

for Re z > O, 

for Re z < 0. 

The theorems of the preceding section also hold for the APS of analytic 

functions. In particular the theorems 2.1, 2.2 and 2.3 are valid with 

obvious modifications if the expansions are uniform in some sector. How­

ever, theorem 2.4 can be replaced by the following theorem. 

Theorem 3.2 

If f(z) is holomorphic in a< 6 < S, 0 < r <band if 
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uniformly in e, 

then 

uniformly in any smaller sector a< a 1 < e < s1 < s. 

Proof 

~ k N+1 I I We write f(z) = L. ~z + z g(z), where g(z) < c in the given sector. 
k=O 

~ k-1 N Since f'(z) = L. k~z + z {(N+1)g(z) + zg'(z)},it suffices to show 
k=1 

that zg'(z) is uniformly bounded in a smaller sector. 

However, this can easily be deduced from the representation 

where the path of integration is an Apollonius circle ls-zl = olsl where 

o is a sufficiently small positive number. 

A UAPS of an analytic function may not exist but,if it does exist,it 

is unique. On the other hand many analytic functions may have the same 

UAPS for some sector -a< e < a, where for simplicity the sector is chosen 

symmetric with respect to the positive real axis e = O. This result follows 

from the simple observation that the function exp (-z-Y), where y is a 

positive real number, vanishes asymptotically with respect to all powers 

of z in the sector lei < ~TI/y. Hence, for y < ~TI/a this function is uni­

formly asymptotically zero in the given sector. 

We shall now consider the interesting problem whether a given formal 

power series Iakzk can be the APS of some analytic function. If the series 

converges within some circle there is no difficulty since the power series 

is the Taylor series of the analytic function it represents and theorem 

4.1 can be applied. But, if the series diverges it is not immediately clear 

whether an analytic function can be constructed for which the given series 

is its APS. Yet the answer is still in the affirmative. We have even the 

following theorem. 
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Theorem 3.3 

Is I 1\zk a formal power series and Sa sector Jarg zl < y, lzl < R,then 
k=O 

there exists an analytic function holomorphic in S for which the given 

series is its UAPS in S. 

Proof 

We consider the function 

f(z) = 

with O <a< min (~~/y,1). 

Making use of the inequality 

which is proved below as a separate lemme,, it easily follows that f( z) 

converges for lzl < 1, Jarg zJ ~ y and is holomorphic. We shall now show 

that f(z) has the UAPS I akzk The remainder may be estimated as 
k=O 

lf(z) -

A 
~~exp 

1 
- -- + 

Axa 

Taking a< 1 we have for each N that z-N~(z) + 0 uniformly in 8. 

Lemma 

Proof 

For z = x, a positive real number, it is a well-known elementary property 

which follows from the observation that the function 1 - x - exp - x de­

creases monotonously. For complex z we write z = x+iy and consider the 
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function 

-x -2x 1 - 2e cosy+ e 2 2 
X y • 

1 2 Using the inequality 1 - cosy~ ~y ,we have 

f(x,y) = f(x,O) + 2e-x(1-cos y) - y2 ~ 

In some cases simpler methods are available for constructing an ana-

lytic function with a prescribed APS. 

diverges for all z and L~zk/k! has a 

Then we may exploit the properties of 

. ' k Such a case arises when l~z 

non-vanishing radius of convergence R. 

the analytic function which for 

lzl < R is defined by the latter series. 

Example 3. 3 

Starting from the divergent power series L (-1)kk!zk,we consider the 
k=O 

funct ~on F(z) -- 1 (-1)kzk (1 )- 1 F 1' t t' f ~ l = +z • orma in egra ion o 
k=O 

f(z) = J: e-tF(tz)dt, 

i.e. by interchanging summation and integration, gives the original formal 

power series. Since F(z) is holomorphic for all z with the exception of a 

pole at z = -1,the integral defines an analytic function which is holo­

morphic in the sector -n < arg z < n, explicitly 

J
oo -t 

f(z) = 0 1:tz dt. 

According to example 2.1 this function has the required APS for real z. The 

next chapter will show that this result can be extended to complex z. 
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4. INTEGRATION BY PARTS 

One of the simplest ways of finding the AE of a function defined by a 

definite integral is the method of integration by parts. However, the field 

of application is rather restricted. The method only works for definite 

integrals of a certain special kind. The idea will be made clear by 

treating a few particular examples. 

As a first example we consider the error function 

( 4. 1 ) 

We note that erf (-x) = - erf x and erf 00 = 1. By expanding the integrand 

in its power series and integrating term by term, we obtain the series 

(4.2) ~ Irr erf x 

which is convergent for all values of x. However, for large values of lxl 

the expansion ceases to be suitable for numerical calculation. 

For large and positive values of x it is better to consider the comple­

mentary error function 

2 
erfc x = Trr Joo -t2 

e dt. 
X 

The representation may be brought in the following form 

Applying integration by parts to the integral 

we find after one step 

f(x) 
_, 

= X 

and after n steps 
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(4.4) 

where 

R (x) 
n 

Joo 

-t( 2)-n-~ e t+x dt. 
0 

The remainder has the sign of (-1)n and is in absolute value less than 

( l) f"' -t -2n-1 _ (l) -2n-1 
2 e x dt - 2 k . n O n 

This result shows that the expansion (4.4) is an APS. It appears that in 

this particular case the AE has the pleasant property that the remainder 

after n terms is dominated by the (n+1)th term, i.e. the first omitted term. 

Thus we may write 

(4.6) 

The property ( 4. 6) makes the expansion ( 11. 4) extremely useful for numerical 

calculations although the formal power series 

diverges for all values of x. 

Thus we have found the APS 

1 2 
erfc x ~ 1r - 2e -x 

The analysis may easily be extended for complex values of x. However, 

the integral 

can be used only for larg zl < ~1T. Repeating the analysis carried out above, 

we arrive at the same expression for the remainder (4.5). However, in view 

of the complex value oft+ z2 we have a different estimate 

(4.8a) 



and 

(4.8b) !R (z) I :,; 0) lzl-2n-, I sin 201- 1 , for tl1T:,; larg zl < ~TI. 
n n 

The expansion is still suitable for the numerical calculation of erfc z 

provided z is not too close to the imaginary axis. 

The estimate (4.8) shows that the expansion 

(4.9) 
1 2 

erfc z ~ 1T - 2e -z 

is an APS for larg zl < ~1T and that it is a UAPS in any closed subsector. 

Next we turn our attention to the function 

(4.10) f(z) =I:::: dt, larg zl < TI. 

This function is related to the incomplete gamma function 

(4.11) ( ) foo -t a-1 r a,z = e t dt 
z 

and we may write 

(4.12) 

It is not difficult to find the following series expansion 

(4.13) - log z - y + l 
k=1 

17 

where y = - J00 

e-t log t dt is Euler's constant, which converges for all 

values of z. Rgain, the expansion ceases to be numerically useful for large 

values of I z I , 
Integration of (4.10) by parts gives 

f(z) -1 
= z J

oo -t 
e 
---2 dt, 

0 ( t+z) 

and after n steps 
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n 
(4.14) f(zl = I 

k=1 

where 

(4.15) Joo 
-t -n-1 

e (t+z) dt. 
0 

When z is real and positive the remainder has the sign of the firs.t omitted 

term. A simple estimate shows that the remainder is also dominated by this 

term. For complex values of z we have 

(4.16a) JR ( z) J n 
I l-n-1 z , for 

and 

(4.16b) 

These estimates show that 

(4.17) Joo -t 
_e_ dt 

0 t+z 
l (-1 )kk!z-k-1 

k=O 

is an APS for Jarg zJ < n and that it is a UAPS in any closed subsector. 

The AE (4.17) can be used for the numerical calculation of f(z),pro­

vided JzJ is not too small. If z is real and positive we write z = x and 

[x] = m. The accuracy with which f(x) can be obtained is determined by the 

behaviour of the remainder R (x). However, since R (x) is a rather com-
n . ~ -n-1 

plicated function of n we may as well take its estimate n!x . The latter 

function is concave with a minimum for n = m. Thus the best result is ob­

tained by stopping the expansion at them-th term. The sign of the error is 

that of the first omitted term. The error is in absolute value less than __ , . __ , 
m!x , which may be replaced by the slightly rougher estimate m!m In 

the following table values of 1010g (mm+ 1/m!) are given which give an 

impression of the number of correct decimals which can be obtained by this 

method. 



m 

2 

3 

4 
5 

6 

7 

8 

9 

10 

11 

12 

1 o1 ( ID+1 / I) og m m. 

o.6 
1 • 1 

1.6 

2. 1 

2.6 
3, 1 

3,5 

4.o 
4.4 
4.9 
5.3 

19 
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5. BERNOULLI NUMBERS AND POLYNOMIALS 

( 5. 1) 

The Bernoulli numbers Bm' m = 0,1,2, ... are defined by the expansion 

t --= 
00 Bk k 
l -k, t ' 

k=O " 
Jtl < 21r. 

All Bernoulli numbers with an odd index m ~ 3 are zero. This follows from 

the obvious fact that 

represents an even function oft. 

The first few non-zero Bernoulli numbers are 

BO = BB - - _!_ 
30 

B1 
1 

B10 = {6 - - 2 

B2 
1 

B12 
-22..L = 6 - - 2730 

B4 
1 

B14 = ¼ = - 30 

B6 
1 - ].§jj_ = 42 B16 - - 510 

The Bernoulli polynomials B (x), m = 0,1,2, •.. are defined by 
m 

text 00 Bk(x) k 
-t- = l -k-,- t ' ltl < 21T. 
e -1 k=O " 

The first few polynomials are 

1 
= X - 2 

2 1 B2(x) = X -x+6 

B3(x) = 3 3 2 
X -2x +2x 

4 2 1 B4(x) = X - 2x3 + X - 30 

B5(x} x5 - 2. x4 + 2. x3 1 = - 6 x. 2 3 

The following relations are simple consequences of the definitions (5.1) 



and ( 5. 2) 

(5.3) B (1-x) = (-1)~ (x), m m 

B (0) = B 
m m' 

B'(x)=mB 1(x),m.:e:1. 
m m-

The Bernoulli numbers and the Bernoulli polynomials often appear in 

asymptotic expansions. We mention the following expansions 

log r{w+x) ~ {w+x-~)log w - w +!log 2TI + 

+ I 
k=1 

k 1 Bk+1(x) -k 
(-1) - -=-,,.............,.. w 

k(k+1) 

valid for x constant and w + 00 , 

(5.7) log n! ~ (n+!)log n - n +!log 2TI + 

B2k -2k+1 
+ I ( l n k=l 2k 2k-1 

1 + ~ + ... + l - log n ~ y -
n 

1 Bk -k 
l kn 

k=1 

Proofs of these expansions are given later on in this section. 

21 

The asymptotic behaviour of the Bernoulli numbers can be derived from 

Cauchy's expression for the general coefficients of the power series ex­

pansion (5.1) 

B2n/ ( 2n) ! = 2~1· 1 2 dz ' n :e: 1 . 
" 'j' z n( e z - 1 ) 

The righthand side can be evaluated by talcing the residues at z = .!. 2kTii, 

k = 1,2,3, .... This gives 

(5.10) 

which can be approximated by the asymptotic relation 
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(5.11) B ~ 2(-1 )n-l ~ . 
2n (2n)2n 

The Bernoulli polynomials B (x) are closely related to the Euler 
m 

functions P (x) which are defined as periodic functions of period 1 
m 

and 

(5.12) P (x) = B (x)/m! for Os x < 1. 
m m 

From the properties of the Bernoulli polynomials it follows that P (x) is 
m 

continuous except form= 1. In particular 

{ P0(xl 
= 1 ' 

(5.13) 

P 1 (x) = X - [x] - 1 
2. 

Further we have 

(5.14) 

and 

(5.15) 

P~+1 (x) = P (x)' 
m 

p (b) d~f p (0) = B /m! form~ 1. 
m m m 

The saw tooth function P1(x) may be expanded in a Fourier series 

(5.16) 
sin 2knx 

kn 

The higher Euler functions can be obtained from this by integration. In 

view of (5.15) we find 

(5. 17a) 

(5.17b) 

Again by using (5.15) we obtain the relation (5.10) by a different road. 

The Euler functions appear in a well-known summation process usually 

named after Euler. In its simplest form we have the following formula 



(5. 18) f(1) + f(2) + ... + f(n) = I: f(x)dx + ~{f(n) + f(1)} + 

+ fn 
P ,(x)f' (x)dx, 

1 

where f(x) has a continuous derivative for x ~ 1. The proof of (5.18) is 

almost trivial if one starts from the integral expression on the right­

hand side 

I: (x - [x] - ~)f'(x)dx. 

Euler's summation formula (5.18) can be used for obtaining asymptotic ex­

pressions as will be shown in the following example. 

Example 5.1 

Taking f(x) -1 
= x we obtain from (5.18) the result 

For n ➔ 00 we have 

1 foo -2 y = 2 - 1 x P1(x)dx 

so that 

This relation enables us to derive the asymptotic expansion (5.8) simply 

by partial integration of the integral on the right-hand side. 

Using the properties (5.14) and (5.15) we have 

and after N-1 steps 

foo -2 ~ Bk -k Joo -N-1 
x P1(x)dx = - l kn + N! x PN(x)dx. 

n k=2 n 

It is not difficult to show that the remainder is O(n-N-l) by which the 
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asymptotic behaviour is verified. 

Example 5.2 

Taking f(x) = log x we obtain from (5.18) the result 

log n! = (n+~)log n - n + 1 + Jn x~ 1P1(x)dx. 
1 

For n + 00 we have according to Stirling's formula 

Combination of both results gives 

log n! = (n+})log n - n +} log 2TI - J
00 

x- 1P1(x)dx. 
n 

In a similar way as in the preceding example by partial integration of the 

integral the asymptotic expansion (5.7) can be derived. 

Example 5.3 

Taking f(x) = log (x+a-1), a> 0 we obtain as in the more special case 

a= 1 discussed before 

log r(n+a) = (n+a-})log n - n +} log 2TI - J
00 

(x+a-1)- 1P1(x)dx, 
n 

which can be developed into the asymptotic expan£ion (5.6). 
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6. LAPLACE INTEGRALS 

We consider functions f(z) of a complex variable z which are given by 

an integral of the form 

( 6. 1 ) 

Such an integral is called a Laplace integral and f(z) is called the 

Laplace tranform of F(t). As a rule there exists a constant a such that the 

Laplace integral converges for Re z >abut diverges for Re z <a.The 

constant a is called the abscissa of convergence and the region Re z > a 

the half-plane of convergence. 

The function f(z) is an analytic function holomorphic in the halfplane of 

convergence·. It may happen that a = - 00 • In that case f( z) is an entire 

function. 

Example 6.1 

a. F( t) -t 1 = e gives f(z) = (z+1)- with a= -1. 

b. F(t) = (1+t)- 1 gives the special function (4.10) discussed in section 

4. The Laplace representation (6.1) holds for Re z > 0 whereas the 

representation (4.10) holds in the wider region larg zl < TT, 

-t2 
c. F(t) = e gives with a= - 00 the entire function 

2 
f(s) = 1 ✓ z /4 ~z. 2 TT e erfc 

t2t-t2l-l for O ~ t < 2 

d. F( t) = 

for t ~ 2, 

gives with a = - 00 the entire function 

For most applications it suffices to suppose that F(t) is integrable 

and of exponential growth 

(6.2) for t + 00 , 

where a is a real constant. 



26 

Further we assume that fort+ 0 there is an asymptotic expansion of the 

kind 

(6.3) F(t) ~ 

However, in many applications for small values oft the integrand function 

is given by a convergent power series 

(6.4) 

In view of theorem 2.5 this expansion is also an APS of the kind (6.3). 

Formally the AE of f(z) for z + 00 is obtained from the AE (6.3) of 

F(t) by termwise integration. The resulting APS of f(z) holds for lzl + 00 

and larg zl < ~TI and is a UAPS in any smaller sector larg zl S ~TI - o. This 

important result rests upon a theorem known as Watson's lemma. However, 

before discussing this theorem we mention the following simple properties. 

Theor-em 6.1 

foo e-ztF(t)dt = O(e-a Re z), 
a 

a> O,for z + 00 uniformly in larg zl s ~TI - o. 

Proof 

Without loss of generality we may assume that the integral exists for 

z = o. Then we put G(t) = ft F(t)dt so that G(t) is uniformly bounded, say 
a 

by a constant M. Then we have 

lf00 

a-ztF(t)dtl = lz f00 

e-ztG(t)dtl S Me-a Re z lzl/Re z s 
a a 

For a= 0 the latter theorem may be improved somewhat. We have more 

generally 

Theorem 6.2 

(6.6) I: e-ztF(t)dt + 0 for lzl + 00 uniformly in larg zl s ~TI - o. 



Proof 

For any given E >Owe choose a such that 

According to the preceding theorem there is a number w such that 

ifm e-ztF(t)dtl < ~E for lzl > w 
a 

uniformly in the sector larg zl s_ ~n - o. 
Thus for any E there is a number w(E) such that 

for lzl > w unifornily in the given sector. 

Theorem 6.3 (Watson's lemma) 

The asymptotic relation 

(6.7) F(t) = o(tµ) fort+ O withµ> -1 implies 

(6.8) I: e-ztF(t)dt = o(z-µ- 1), for lzl + m uniformly in the sector 

larg zl s }n - o. 

Proof 

For any given E > 0 there is a number a such that IF(t)I ~ ~Etµ/µ! for 

t <a.Then we have 

According to (6.5) there is a number w such that 

ifm e-ztF(t)dtl s ~EX-µ- 1 for x > w. 
a 

Thus for any E there is a number w(E) such that 

27 
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II® -zt I -µ-1 
O e F ( t) dt :,; £X for x > w • 

But this implies the statement (6.8). 

Repeated use of Watson's lemma leads to the main theorem. 

Theorem 6.4 

The asymptotic power series 

F(t) ~ t-+ o, 

implies the uniform asymptotic power series 

(6.9) f(z) ~ I Z -+ 00 

' ' k=O 

uniformly in any sector jarg zj:,; ;11 - o. 

Ercamp le 6. 2 

According to example 6.1c we have 

I: e-zt-h2 dt = 
2 

l11e z erfc z. 

Formal intP.gration of the series obtained by expanding the integrand 

function exp - at2 gives the APS (4,9) derived earlier by partial inte­

gration. However, no expression for a remainder term is obtained here. 

Example 6.3 

Taking F(t) = (1+t)- 1 = l tk we obtain 
k=O 

I® e-zt( 1+t)-1dt ~ l (-1 )tk!z-k-1, 
0 k=O 

an AE already discussed in section 4 (cf. formula (4.17)). However, the 

result is obtained here only for larg zj < ;11 and again without explicit 

expression for the remainder. 

Example 6,4 

From example 6.1d we may derive an AE of the modified Bessel function 



I 0 (z). Using the Laplace representation 

Tie-zI0 (z) = 2-~ f2 e-ztt-~(1-~t)-~dt, 
0 

we expand the integrand function as 

2-~t-~(1-~t)-~ = ~ l (ki?k (~t)k-~. 
k=0 ' 

From (6.9) we obtain the AE 

O)k(k-~)! 

kIO k! (2z)k+:2 

which will be written in the standard form 

(6.10) 
z 

Io( z) ~ ,:::-2e l 
>';-'TIZ k=0 
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As is shown in the examples given above,the asymptotic expansion of 

(6.1) for z ➔ 00 is obtained in the half-plane larg zl <~TI.However, in 

some cases the domain of validity can be extended to a wider sector. This 

may happen by analytic continuation if the integrand function F(t) is ana­

lytic, e.g. by rotation of the line of integration. 

Example 6.5 

Reconsidering example 6.3 we rotate the line of integration through an 

angle ~TI. This gives 

by which f(z) is determined in the half-plane -TI< arg z < 0. The asymptotic 

expansion (4.17) is now obtained for this sector. In a similar way by ro­

tation through the angle -~TI the domain of validity is extended to the 

sector 0 < arg z < TI, ~hus the AE (4.17) appears to hold in the full sector 

larg zl < TI in accordance with the result obtained by integration by parts. 

However, the latter method is still preferable. 

The full power of the method of the Laplace integral is shown by its 

application to the gamma function. 



30 

Starting from the well-known expansion 

( 6. 11 ) d lJ.,(z+1) = dz log z! = 

we may without difficulty verify that 

(6.12) J 1 1-tz 
w(z+1) = - y + ~ dt, Re z > -1. 

0 

This is equivalent with 

with £ + 0. 

W(z+1) = - y - log£ - J1-£ 1~: dt + o(1) = 
0 

= - y - log£ - J00 
e~zt dt + o(1) , 

£ e -1 

On the other hand we have again for£+ O 

- y Joo -t 
= 

0 
e log t dt Joo -t -1 

=log£+ e t dt 
£ 

=log£+ log z + Ioo -zt -1 
£ e t dt + o( £). 

+ 0(£) = 

Combining these results we find the Laplace integral representation 

(6.13) ( ) Joo -zt ( 1 1 ) 
$ z+1 = log z + e t - -t- dt, Re z > 0. 

0 e -1 

The Laplace integral on the right-hand side of (6.13) can be expanded 

asymptotically by applying theorem 6.4. According to (5.1) we have 

so that 

or 

(6.14) 

~ Bk+1 k 
F(t) ~ - k;;O (k+1) ! t 

\' Bk+1 -k-1 
w(z+1) ~ log z - l k+ 1 z 

k=O 

1 w( z+1) ~ log z + - -2z 
\' B2k -2k 
l 2k z 

k=1 



This AE is obtained at first for Re z > O, but since it is possible to 

rotate the line of integration through angles.:!:_ ;TT,the domain of validity 

of (6.14) can be extended to the sector larg zl < TT, 

The result (6.14) can be generalized without difficulty by starting 

from 

(6.15) foo -zt et-e(1-a)t 
~(z+a) - ~(z) = e t- 1 dt. 

0 e 

In view of (5.2), (5.3) and (5.4) we have for !ti < 2TT 

and next 

( 6. 16) 

F(t) = 

~(z+a) - ~(z) ~ ), 
k=1 

Bk(a)-Bk 
(- 1 )k-1 -k 

--k-- z 

Formal integration of (6.14) yields the AE of log z!. However, it is 

better to start from the integrated version of (6.13) 

(6.17) 

where 

(6. 18) 

log z! = (z+;)log z - z + C + f00 

e-ztS(t)dt, 
0 

~ B2k t2k-2 
l (2k) ! 

k=1 
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For Re z + 00 the integral on the right-hand side of (6.17) is O(z- 1). Thus, 

in view of Stirling's formula,the constant of integration C equals 

; log 2TT. Formal substitution of the power series of S(t), convergent only 

for !ti < 2TT, gives the full AE already given by (5.7) for integer z. 

(6.19) log z! ~ (z+~)log z - z +; log 2TT + 

valid again for larg zl < TT. 

B2k 
l 2k(2k-1) 

k=1 

-2k+1 
z 

From (6.19) a generalization of the Stirling formula can be obtained 

by taking exponentials. We find 

z ! "' 
z+; -z 1 1 z e hTT exp (- - -- + ... ) 

12z 360z3 
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or 

(6.20) z+; -z z! ~ z e l2TI (1 
1 1 +--+---+ 

12z 288z2 
... ). 

The following example shows a related formula. 

Example 6. 6 

For b >awe have 

r(z+a) = B(z+a,b-a) = __ 1_ f1 tz+a-1( 1-t)b-a-1dt. 
r(z+b) r(b-a) r(b-a) 0 

In order to bring the integral into the form of a Laplace integral we 

perform the substitution t + exp-t. This gives 

with 

There remains as the only technical problem the expansion of F(t) into a 

power series. The first few terms are 

F(t) = tb-a-l - ~(a+b-l)tb-a + .... 

From theorem 6.4 we then find the AE 

(6.21) r(z+a) -b+a , ), ( 1 ) 
r(z+b) ~ z {1 - 2(b-a)(b+a-1 2 + o "'"1- }. 

This result derived only for b > a apparently also holds for a~ b. 



7, FACTORIAL SERIES 

We consider again the Laplace integral 

but we make he~e the restriction that F(t) is analytic and holomorphic in 

a domain which contains the positive real axis in its interior. This 

implies among others that for small values of ltl the integrand function 

may be defined by its Taylor series 

(7.2) 
00 

F(t) = l aktk. 
k=O 

33 

We have seen in the previous section that substitution of (7.2) into (7.1) 

followed by formal integration yields an APS 

(7,3) 
, -k-1 

f(z) ~ l k!~z . 
k=O 

However, in many cases the expansion (7.3) diverges and can be used for 

the num~rical evaluation of f(z) only for large values of lzl, 

Better results may be obtained when F(t) is expanded not as a Taylor series 

but with respect to a different set of functions {wk}. In particular we 

shall consider the case wk= (1-e-t)k. The philosophy behind this choice is 

as follows. The asymptotic behaviour of f(z) for z + 00 is determined by 
k that of F(t) fort+ O. The power set {t } and the set {wk(t)} are equiva-

lent fort+ 0 so that it is plausible to expect that by using the latter 
-t set again an AE of f(z) is obtained. However, the powers of 1 - e are 

better adapted to the analytic properties of F(t). This becomes apparent 

when one considers the conformal map 

(7.4) u = 1 -

The circle lul = 

-t 
e 

is mapped upon the curve 

(7,5) Re t = - log (2 cos Im t). 

The illustration below shows that the region lul < 1 corresponds to a region 

which contains the full positive real t-axis, a region of the kind where 



F(t) is assumed to be holomorphic. Thus the latter method takes advantage 

from a larger region of holomorphy. Therefore better results may be expected. 

fig. 7 .1 

The formal procedure is as follows. Assu.ming the expansion 

(7.6) F(t) = 

we obtain the result 

Since 

f 1 k z-1 
= u (1-u) du= B(z,k+1) = 

0 

k! = --,-----,.---~ 
z(z+1) .•. (z+k) ' 

this result can be written as 

(7.7) f(z) = 
I k!bk 

z ( z+ 1 ) .•. ( z+k) k=O 

This expansion is known as a factorial series. Series of the kind (7.7) are 

well-known in analysis. Their properties are studied extensively in Milne­

Thomson. The series (7.7) is closely related to the Dirichlet series 

(7.8) 



In fact they converge or diverge for the same values of z with the pos­

sible exception of the non-positive integers 0, -1, -2, 

The proof of this property rests upon the simple asymptotic relation 

k -z 
(z+k)! ~ k fork+ 00 , 
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which follows from (6.21) by specialization. Without proof we mention the 

following basic properties of a factorial series. 

Theorem 7.1 

If a factorial series converges for z = z0,then it converges for 

Re z > ~e z0 with the possible exception of non-positive integer values. 

Theorem 7.2 

If a factorial series converges for z = z0,then it converges absolutely 

for Re z > 1 + Re z0 with the possible exception of non-positive integer 

values. 

Theorem 7.3 

If a factorial series converges absolutely for z = z0,then it converges 

absolutely for Re z > Re z0 with the possible exception of non-positive 

integer values. 

Theorem 7.4 

If a factorial series converges for z = z0 ,then it converges uniformly in 

any sector larg(z-z0 ) I ~ ~rr-o with the possible exclusion of small circular 

neighbourhoods at the points O, -1, -2, .... 

Theorem 7.5 

The domain of convergence of a factorial series is a half-plane Re z > a 

with the exclusion of the points z = O, -1, -2, 

In practical cases the abscissa of convergence a may easily be de­

termined by using the asymptotic relation (7.9). 
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Example 7.1 

The factorial series 

00 

l k! 
k=O z(z+1) ..• (z+k) 

converges for Re z > 1. 

Example 7. 2 

We consider the Laplace integral 

( ) Joo -zt t )-1 
f z = 

0 
e ( e + 1 dt • 

The integrand function is analytic and has simple poles on the imaginary 

axis (2m+1)ni, m integer. Thus the power series expansion 

converges only for ltl < TI. From (5.1) we may obtain the explicit expres­

sion 

so that fork odd and large 11\_I ~ 2TI-k- 1. 

Substitution gives the APS 

which, however, diverges for all values of z. 

But, now performing the transformation (7.4),we have 

f(z) = f~ (1-u)z(2-u)- 1du. 

The integrand function (2-u)- 1 can be expanded according to (7.6) into the 

power series 

I 
k=O 

-k-1 k 
2 u , 
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which is uniformly convergent for all values of u within the interval of 

integration. Interchanging the order of integration and summation is fully 

legitimate and we obtain the factorial series 

f( z) = 
2-k-1k! 

l (z+1)(z+2) ... (z+k+1) k=O 

This series converges for all values of z with the trivial exception 

z = -1, -2, .... Moreover, as will be shown below, it is an asymptotic 

expansion. 

This example shows in an almost dramatic way how by a simple trick 

a divergent AE may be transformed into a convergent one. The transformation 

(7.4) applied to the Laplace integral replaces (7.1) by a representation 

of the kind 

Formal expansion of ¢(t) into a power series 

(7.11) ¢( t) = 

followed by formal integration gives the factorial series (7.7). 

If ¢(t) is analytic and holomorphic in the ~ircle !ti < R with R > 1,the 

interchanging of integration and summation is permitted and the result 

is a factorial series which converges for all z with the exception of non­

positive integers. 

The asymptotic sequence¢ (t) = tm, m = 0,1,2, ... is transformed by (7.10) 
m 

into the sequence 

(7.12) 1/J ( z) 
m 

m! = --,---,--"-----,-
z ( z + 1) ... (z+m) 

It is easy to convince oneself that the sequence (7.12) is an AS for 

lzl + 00 and that it can be used uniformly in any sector larg zl ~ rr-o. We 

may now state the analogon of Watson's lemma 6.3. 
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Theorem 7.6 

The asymptotic relation 

implies 

(7.14) J1 (1-t)z-1¢(t)dt = o(~ ) for z + 00 

0 m 

uniformly in any sector Jarg zJ s ~TT-o, 

Proof 

Follows closely the proof of theorem 6.3 and may be left to the reader as 

an exercise. 

This theorem like Watson's lemma guarantees the validity of the AE ob­

tained earlier by formal means. 

In many cases, however, ¢(t) is holomorphic in the unit circle or is at 

least differentiable a number of times in the closed interval (0,1). Then 

a direct proof of the asymptotic property of the formal factorial series may 

be obtained by integrating (7.10) by parts. After N steps we find 

(7.15) 

where 

(7.16) R __ (z) = 1 J1 (1-t)z+N¢(N+1)(t)dt. 
-• z(z+1) ••. (z+N) 0 

. . . (N+1 ) ( ) . . . It is clear that the continuity of¢ t implies the order relation 

~(z) = O(~N+1). 
Repeated use of theorem 7.6 gives the following analogon of theorem 

6.4. 

Theorem 7.7 

The asymptotic power series 

¢(t) t + 0 



implies the uniform asymptotic factorial series 

f(z) 
l k:bk 

k=O z(z+1) ... (z+k)' 
z ➔ 00 

uniformly in any sector larg zJ ~ ~TI-a. 

Example ?. 5 

In example 6. 3 (cf. also formula ( 4. 17)) we have found the APS 

f(z) = f00 

e-zt(1+t)-1dt ~ l (-1)k k:z-k-1. 
0 k=O 

This expansion diverges for all values of z but can be used for numerical 

purposes if Jzl is sufficiently large. However, this expansion can be 

transformed into a factorial series which may be much better suited for 

numerical calculations. We write 

f(z) J1 (1-t)z-l$(t)dt with 
0 

$(t) = (1-log(1-t))- 1 = l bktk. 
k=O 
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( -1 -2 It can be proved that bk= 0 k log k), k +co.Therefore the power series 

converges uniformly in the interval of integration. 

Hence the resulting factorial series (7.18) converges for Re z > O. 

The technical problem of determining the coefficients bk can easily be 

solved by noting that 

(1 + L L 
k=l k=O 

This gives the recurrent relation 

k-1 b. 

I ~, 
j=O -J 

with b0 = 1. 

The first few coefficients are 

bO = 1 ' bl = -1' b2 
1 

b3 
1 

= - - -2' 3 
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E:x:amp1,e '1.4 

Starting from 

foo 1 
1 -t -erfc fz' = ./ii' e t ~ dt 

z 

we obt.ain the Laplace integral representation 

n -z Pc f 00 · -zt -; erfc ~z = e v=- e (1+t) dt. 
1T 0 

Expansion of (1+t)-; into its Taylor series followed by formal integration 

would give the well-known AE obtained in example 6.1c and 6.2. This AE 

diverges for all values of z. But this representation may be transformed 

into 

with 

This function has a convergent Taylor series within the interval of in­

tegration as in the preceding example. Thus a convergent factorial series 

ma;y be expected. We easily find 

1 12 .2...3 
4>( t) = 1 - 2 t + 8 t - 48 t + •.• , 

so that 

(7, 19) 

1 1 .2. 
-z 2 4 8 

erfc R~ ~ (1 - z+1 + (z+1)(z+2) - (z+1)(z+2)(z+3) + ... ). 

This AE,convergent for Re z > O,may be compared to the divergent AE 

obtained in (4.9). 

The analysis leading to a factorial series of the kind (7.7) can be 

generalized somewhat,eventually resulting in a factorial series of the form 

(7.20) f(z) 
k!ck(a) 

= kIO z(z+a).,,(z+ka) ' 
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where a is an arbitrary complex constant. 

The general idea is that (7.20) always represents an asymptotic expansion 

for lzl + 00 ,but that for some values of a the series may converge and for 

other values of a may diverge. The effect of taking different values for a 

can be discussed by considering the representation (7.10). The convergence 

of the factorial series (7.7) resulting from the expansion (7.11) depends 

on the position of the singularities of ¢(t). If there is at least one 

singularity inside the unit circle,the factorial series certainly diverges. 

However, if (7.10) is written as 

1 A - 1 
f(z) = 1 f (1-t)a ¢(1 - (1-t) 1/a)dt, 

a 0 
(7.21) 

then formal expansion and integration of 

(7.22) ¢(1 - (1-t) 1/a) = l ck(a)(t/a)k 
k=O 

results in the generalized factorial series (7.20). A singularity s of ¢(t) 

corresponds to a singularity 1 - (1-s)a of ¢(1 - (1-t) 1/a). This trans­

formation 

(7.23) 

suggests that for suitable values of a the singularities of (7.22) are no 

longer inside the unit circle so that a convergent factorial series is ob­

tained. If e.g. sis a negative real number with -1 < s < O,then for a 

real and a log(1-s) > log z the singularity is taken to the outside of the 

unit circle, 

Complex values of a might be envisaged if (7.20) is used for the numerical 

computation of f(z) for complex z. Then calculations may be facilitated by 

taking arg a= arg z. 

Starting from the Laplace representation (7.1),the arbitrary constant 

may be introduced already at the beginning by writing (7.1) as 

f(z) = 1 J00 

e-tz/9p(t/a)dt 
a 0 

and then performing the transformation (7.4). 
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Example ?. 5 

As in the preceding example we have 

The singularities are at t = 1 and t = ea Thus for O ~a< log 2 we 

obtain a divergent expansion and for a> log 2 a convergent factorial 

series. The first few coefficients are 

1 ' 
1 1 3 

co = c1 = - 2' C = - Ti a + 8' 2 

1 2 +]. a -¾, C = -6a 3 8 

We conclude this section by discussing another special case of the 

method sketched at the beginning. Starting again from the Laplace integral 

(7,1),we now expand the integrand function F(t) in terms of 
k )-k-1 ~k = t {q+pt · ,where p and q are positive real numbers with p+q = 1. 

k The sets {t} and {~k(t)} are asymptotically equivalent fort+ O, there-

fore a new AE of f(z) for z + 00 may be expected. Assuming as in (7.6) an 

expansion 

(7.25) 
00 

F(t) = l bktk(q+pt)-k-1 
k=O 

we obtain the result 

(7.26) 

where the functions sk{w) are defined by 

(7.27) 

This result is closely related to a transformation of a divergent or 



slowly convergent series introduced by A. van Wijngaarden [21]. 

The functions sk(w) are studied from a numerical point of view.by 

N.M. Temme [18]. 

In fact, if to the series on the right-hand side of (7.3) the van Wijn­

gaarden transformation is applied the result (7.26) is obtained with 

p=q=~-

The right-hand side of (7.26) is an AE with respect to the set 

{sk(w)} with w = qz/p. Since asymptotically 

(7.28) -k sk(w) ~ k!w , -rr < arg w < rr, 

the sets {sk(w)} and {z-k} are asymptotically equivalent. 

On the other hand the right-hand side of (7.26) may turn out to be con­

vergent or perhaps rapidly convergent. 

In section 9 ( example 9. 4) we derive the following asymptotic formula for 

sk(w) ask+ 00 

(7.29) 
1 1 3 

sk(w) ~ rr 2k- 4w4 exp(}w - 2/kw). 

The reason of this remarkable behaviour is the same as in the case of a 

factorial series expansion. The powers of t(p+qt)- 1 are better adapted to 

the analytic properties of F(t) than the powers oft only. 

Again we consider the corresponding conformal map 

(7.30) 
t u =--

q+pt 

Circular regions lul < c correspond to circular regions in the t-plane 

bounded by Apollonius circles with respect tot= O and t = -q/p. In par-
. . I I -1 , ; ticular the circle u < p corresponds to the halfplane Re t > - 2q p. 

Example ?.6 

Again we take 

(rrz)~ez erfc /z = z J"" e-zt(1+t)-~dt. 
0 

The required expansion is 

43 
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or 

( 1+t)-~ = I bktk(g_+pt)-k-1 
k=O 

The radius of convergence is maximal for p = 1/3 and g_ = 2/3. This gives 

with 

The final result is 

(7.31) 
1 

( 1TZ) 2 

The series is an AE and is moreover convergent for all z with Jarg zJ < TI. 



8. THE EULER TRANSFORMATION 

Generally speaking an asymptotic expansion of a given function f(z) 

is not very suitable for the numerical calculation of f(z). In some spe­

cial cases only,the remainder of the finite expansion is kwnown to be com­

parable to the first neglected term. Sometimes the infinite expansion di­

verges for some or all values of z. 

However, in many common applications the usefulness of an asymptotic 

series exceeds one's expectations. Moreover, the numerical analyst has at 

his disposal a number of tricks that may greatly improve his numerical re­

sults. The Euler transformation is perhaps the most used trick, at least 

it is most widely well-known. By means of this transformation it is some­

times possible to turn a divergent series into a convergent one. 

Euler's transformation can be derived in the following elegant way. 

We consider a formal series 

and introduce a formal shift operator Sand the weighted mean operator M 

by means of 

M = p + qS with !Pl < 1 and q = 1 - p. 

Then we have formally 

This formal procedure suggests the Euler transformation of type E(q) 

or explicitly 

( 8. 1 ) 
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The numerical analyst who does not care for theory asserts that Lbk is a 

better series than Iak. Usually the process is carried out with p = q = ~ 
and if necessary carried out a number of times until a good series is ob­

tained. 

If,by way of illustration,the following alternating series 

1 _1+1 __ 41 + 
2 3 

is "eulerized", we obtain 

the convergence of which is much better than that of the original series. 

In order to get a better insight into the effect of an Euler trans­

formation we consider the generating functions 

(8.2) , k+1 , k+1 
a(z) = l~z , b(z) = lbkz 

We restrict our discussion preliminary to those series for which a(z) has 

a non-vanishing radius of convergence Ra. This enables us to handle a.i-

vergent series such as 1 - 2 + 3 - 4 + ... but a series like 

1 ! - 2! + 3! - 4! + ... falls outside this class. 

It is easily seen by comparing equal powers of z that the relation 

(8.1) is equivalent with 

(8.3) b(z) = a(.....9.L1 z ) . 
-pz 

The radius of convergence of a(w),where 

( 8.4) w=~ 
1-pz 

z = _y_ 
q+pw' 

is determined by the singularities w 

as 

R = inf Is I -a 

s of the holomorphic function a(w) 

Then the radius of convergence of b(z) is given by 



(8.6) 

The Euler method is most effective if ¾/Ra is as large as possible. 

Example 8.1. 

For the example given above we have the generating function a(z) = 

log(1+z). According to (8.3) we have b(z) = - log(1-;z) with a radius 

of convergence which is twice as large. More generally, if a(z) has its 

singularities at z = -1 and z = 00,then b(z) is singular for z = (p-q)-1 
-1 , and z = p • The ordinary Euler transformation E( 2 ) gives R = 1 and 

a 
¾ = 2. However, the transformation with p = 1/3, q = 2/3 gives even bet-

ter¾= 3. 

In an alternative way the Euler method may be discussed by conside­

ring the generating functions 

The relation (8.1) is easily seen to be equivalent with the functional 

equation 

(8.8) 

It clearly suffices to consider the coefficient of zk in the expansion of 

qa(qz)exp pz. 

From (8.8) we obtain the interesting result that the operators E(q) 

form a commutative semigroup with the property 
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We shall now extend the discussion of the Euler method to those series 

lak for which a(z) is holomorphic in a domain which contains the positive 

real axis. If 

( 8. 10) 

exists,the series is said to be Borel summable with A as its Borel sum. 
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From (8.7) and (8.8) it follows at once 

Theorem 8.1 

The Euler transformation E(q) with q real and positive does not change 

the Borel sum. 

Proof 

A summation method such as the Euler transformation which turns a conver­

gent series into a convergent series with the same sum is said to be 

regular. For summation methods of the type (8.10) regularity is defined in 

the same way. The following property is proved in Hardy [6,8.5] in a 

more general context. 

Theorem 8,2 

The Borel method (8.10) is regular. 

Proof 

We put fork= 0,1,2, ••. 

and 

If 

2 k 
-X( X X) 

= e 1+xY.'''"'kf 

l¾ = A and l ¾ = ~' then 
j=k 

I: e-ta(t)dt = l ~ I: e-ttkdt = L¾(1-~k) = 



Hence there remains to prove that 

-x, k 
lime l~x /k! = o, 
x--

but this is an elementary matter. 

Hardy gives necessary and sufficient conditions for the regularity of 

a wide class of summation methods. The regularity of the Euler transforma­

tion appears to be a simple corollary. 

It has been seen in the preceding chapter that many asymptotic ex­

pansions originate from Laplace integrals. Summation of the asymptotic se­

ries means in fact the evaluation of the Laplace integral for a particular 

value of the Laplace variable. Taking the expression (8.10) as a typical 

case,one is inclined to reason as follows. In view of the formal relation 

(8.11) 

the integral can be evaluated by summing the series either directly or af­

ter one or more Euler transformations. However, the proof of theorem 8.1 
clearly shows that one may save oneself the trouble of "eulerizing", since 

the same effect may be obtained in a much simpler way by performing an al­

most trivial transformation of the integrand. We write 

(8.12) 

and subject the new integrand function to a power series expansion 

(8.13) -1 -( 1-µ)x ( ) 
µ e ax 

The result of formally integrating the new series is the Euler transfor­
-1 mation with q = µ 

Example 8.1 

According to example 6.3 we have the AE 

I (-1 )kk!x-k-1 
k=O 

X + +co. 
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The AE diverges for all values of x but we have seen already in section 4 
that for large values of x accurate numerical results can be obtained by 

truncation at the right place. For x = 1 the series 

1 - 1! + 2! - 3! + 4! - 5! + ... 

seems to offer no hope. Yet the ordinary Euler process gives a "less diver­

gent" result 

Repeated application of the Euler transformation eventually leads to a 

usable series yielding the numerical value 0.596347. 

The Euler transformation may be circumvented by writing 

and applying power series expansion of the new integrand function. Instead 

of repeating the Euler transformation if the resulting series is not good 

enough,we merely have to choose a proper value of q. It can be expected 

that smaller values of q give better results but that it takes more trouble 

to get a final result. 



9. THE METHOD OF LAPLACE 

In this section we consider the asymptotic behaviour of functions 

f(w) of the type 

f(w) = J00 

F(t,w).:it, 
-00 
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where the integrand function has the shape of a hill tending to a peak or 

a needle as w + +00 • The basic idea can be illustrated by considering the 

asymptotic behaviour of the factorial function 

The integrand is a hill with its summit at t = w. It may be a good idea 

to shift this summit to the origin by performing the substitution 

t = w(1+u). This gives 

w! = e-www+1 J00 {e-u(1+u)}wdu. 
-1 

The new integrand represents again a hill but its summit is fixed at the 

origin. For large values of w the hill becomes a needle. In fact,near the 

origin we may write 

(9.4) 

Thus we have approximately 

w! ~ e-www+1 J® e-~u2wdu 
-1 

and with an almost equal precision 

w! -
-w w+1 

e w Joo 1 2 
-;:;u wd e u. 

-00 

Working out the integration we obtain Stirling's well-known approximation 

It is not difficult to make this analysis completely rigorous. We shall 
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therefore consider more generally the asymptotic behaviour of the integral 

for real w tending to infinity. Then we may state the following theorem. 

Theorem 9.1 

Let cp(t) be a concave function with its minimum at t = t O, let cp(t) be 

continuously differentiable in a neighbourhood of t O with 

then we have the following asymptotic relation 

(9.10) 

Pr>oof 

Witnout loss of generality we may take t O = O and cp(tO) = O. There exist 

positive constants c and o such that 

Then in view of theorem 6.1 we may write 

r -00 

The first term is 

With the help of the inequality 
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the second term can be majorized by 

2cw I: 2 3 3 exp - (~awt -cwt )t dt ::; 

2cw r: 1 2 3 exp(-(2a-oc)wt )t dt:::; 

where for sufficiently small o 

b = ~a - oc > O. 

Combining these results we obtain the relation (9.10). 

It will be obvious that the conditions of this theorem may be varied 

in a number of ways. The only thing that matters is that $(t) has an ab­

solute minimum at t O and that in a neighbourhood of t O this function is 

sufficiently smooth. If $(t) ~ $(tJ +£for [t-tOj ~ o with some positive 

£,we need only consider the a-neighbourhood of t O. If $(t) is differentia­

ble a number of time~ we have a= $(tO). Further the relative remainder 
' 1 

may admit a better estimate than the term with w- 2 • 

Example 9.1 

If $( t) = t 2(1+ltll, we have 

1 
_l+ f(w) = (!!:-)11 

(I) (I) 

Example 9. 2 

If $( t) = t2 /,+t2 
' 

we have 

1 

(1-i: ••• ) f(w) = (!!.) 2 
(I) 



Example 9. 3 

For the integral 

we have 

r taw( 1-t) Swdt 
0 

~(t) = -a log t - S log(1-t), 

which is concave with t 0 = a(a+S)-1, 

and further 

= .JL + 
t2 

0 

with a> O, S > 0 

The relation (9.10) gives at once the asymptotic behaviour 

Of course the given integral may easily be expressed in gamma functions 

so that the result obtained above can also be derived by using the Stirling 

approximation. However, use of (9.10) is simpler. 

Example 9.4 

The derivation of the asymptotic expression (7.29) from (7.27) illustrates 

the treatment of a more complicated case. We start from 

where 

~(t) = (k+1) log (t+1) - k log t + wt 

so that in the notation of (7.27) f(t) = sk(w)/w. 

We note that here w is a parameter and that k is the asymptotic variable. 

The integrand has its maximum at t = t 0 where t 0 is the positive root of 
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' k k+1 
¢ (t) = w - t + t+1 = o. 

We have 

Then we have 

A simple calculation gives 

and 

With the omission of the order terms we then obtain 

From this (7.29) follows at once. 

For the slightly more general integral representation 

( 9. 11) f(w) = J00 e-w¢(t)~(t)dt 
_oo 

similar results may be obtained. If ¢(t) has the properties stated in 

theorem 9.1 and if ~(t) is,say,continuously differentiable in a neighbour­

hood of t 0,the result (9.10) may be generaliaed as 

(9 .12) 

In some cases the following method may be recommanded. A new variable 

u is introduced by means of 
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(9.13) 

where u has the sign oft - t 0 • The transformation t + u is monotonous in 

some neighbourhood of t 0 . Since thi3 neighbourhood is decisive for the 

asymptotic behaviour of f(w),we do not care what happens elsewhere. Formal 

substitution of (9.13) in (9.11) gives the asymptotic relation 

(9.14) 
-w$(to) foo -awu2 

f(w) ~ e e x(u)du, 
-00 

x(u) = w(t)dt/du. 

The last integral may be considered as a variant of the Laplace integral 

to which it can be reduced by changing the variable of integration u into 
1 

~ u 2 • According to theorem 6.4 there remains to determine the power series 

expansion of x(u) in powers of u. 
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10. CALCULATION OF COEFFICIENTS 

We consider the asymptotic expansion of the integral 

( 10. 1 ) f(w) = f00 
e-w~(t)~(t)dt. 

-m 

We assume that ~(t) is concave with a zero minimum at t = O. Further it is 

assumed that ~(t) and ~(t) admit Taylor expansions convergent in a neigh­

bourhood oft= 0. 

Starting with the simple but representative case 

(10.2) ~(tl = h 2 

and the Taylor expansion 

(10.3) 

the asymptotic expansion of (10.1) can be written down at once as 

or 

( 1 o .4) 

We note that the coefficients of ~(t) with an odd index do not contribute 

to the expansion. 

If,more generally,~(t) is determined by the following Taylor series 

00 

~(t) = l ¾:tk, a2 > O, 
k=2 

we may perform the substitution 

(10.6) 2 
~u = ~(t) 

which for small t and u is equivalent to 
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We obtain 

(10.8) 

so that in view of (10.1), (10,3) and (10.4) there remains to determine the 

coefficients of the Taylor expansion of w(t)dt/du 

(10.9) 

E:camp te 10. 1 

We consider 

f(w) = f~ exp - w(t-log{1+t))dt 
-1 

According to (9,3) we have 

f(w) w -w-1 = e w w!. 

The Taylor series (10.5) is 

Kt) = .J.t2 _ .J.t3 + +t41 4 
2 3 - .... 

The substitution (10.6) becomes 

u = t - -h2 + b6 3 -
3 3 

We need, however, the inverse expansion 

t = u + 1,,2 1 3 3~ + 3611 + 

Differentiation gives 

This gives us already two terms of the asymptotic expansion of f(w) 
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It seems that the calculation of further coefficients becomes increasingly 

complicated. However, by differentiation of 

~u2 = t - log(1+t), 

we obtain 

or 

du t 
udt = 1+t 

tdt = ( 1+t)u. 
du 

Substitution of 

00 

k 
t = L ~u 

k=1 

leads to the recurrence relation 

k 

l jdJ.dk-J0 +1 = ~-1 
j=1 

together with d1 = 1. 

This gives d = 1 and 
2 3 

k-1 

k ~ 2 

(k+1)~ = ~-1 - l jdJ.~-J·+1 
j=2 

k ::?: 3, 

so that successive coefficients can be calculated in a simple way" 

We find 

d1 d2 
1 

d3 
1 

= = - = 
36 ' 3 

d4 = 
1 

d5 
1 etc. = 4320 270 

Since ck= (k+1)~+1,we obtain a further term in the asymptotic expansion 

of f(w) as 
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( 10.10) w! 
w+~ -w r,::--2 ~ 

w e vc11 

The coefficients ck of the Taylor expansion (10,9) can also be derived 

by using the well-known Lagrange-Bilrmann theorem which gives formulae for 

the coefficients of the expansion of a function in powers of some other 

function. The same result may be obtained with the help of the Cauchy for­

mula for the coefficient of the Taylor expansion of an analytic function. 

Starting from 

11/!(w)dw/dz d 
'j' k+1 z 

z 

with the complex version of (10.6) 

z= rnfwY, 

we have 

__ 1_ 1 1/J(w)(w/z)k+1 d 
ck - 211i 'j' k+ 1 w • 

w 

This means that ck equals the coefficient of wk in the expansion of 

ijJ(w) _w_ ( ~
k+1 

/2.p(w) 

in powers of w. 

We next present a quite different method which in some cases may be 

very successful. 

We write formally 

(10.11) 

1 
where u = tw 2 • Substitution in (10.1) gives at once the AE 

( 10.12) f(w) 

Example 10.2 

Taking the same integral as in the first example we have 



= ( ,t3 1 t4 ) = exp w 2 -4 + .•• 

This shows thet the coefficients pk(u) are polynomials of degree 3k, 

The first few coefficients are 

1 5 .1 7 1 9 
P3 = ?1 - W + 162u 

1 6 47 8 1 10 1 12 
P4 = - 6'1 + 480" - 72'1 + 1944 u 

1 4 1 6 
P2 = - I;'1 + 1811 

Substitution in (10.12) eventually leads to the result (10.10). 

The polynomials may be calculated by a recurrence relation which is 

obtained as follows. 

If we write 

we find by logarithmic differentiation of 

the differential equation 

~ I 2 (u+w )F = u F. 

Substitution of the power series on both sides leads to the relation 

k ~ 1. 
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In view of the obvious fact that pk(o) = 

the recurrence relation 

O fork~ 1,we find by integration 

k ~ 1. 
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The methods explained above for finding the coefficients of an APS 

are very effective. Still in special cases a more powerful method with 

less amount of labour may be available. 

For instance,the AE of w! can be obtained from the well-known AE of log w! 

simply by exponentiation according to 

00 00 

(10.13) }: k }: bkx 
k 

~x = exp 
k=O k=1 

where the coefficients bk are known. Formal differentiation 

00 00 00 

}: kakx 
k-1 }: k }: kbkxk-1 = ~x 

k=1 k=O k=1 

From this we obtain the following recurrence relation 

( 10.14) 

with a0 -= 1. 

Taking for bk the coefficients of (6.19) viz. 

Bk+1 
bk = k(k+1) ' 

we obtain 

(10.15) 

A simple calculation shows that 

Thus we finally obtain 

( 10.16) w+ 1 -w r;:­w! = w 2 e v2TI {1 

571 
2488320 

+ _1_ + _1_ - _1=3~9 __ 
12w 288w2 5184ow3 

gives 

k ;,: 1, 



11 • THE SADDLE POINT METHOD 

We consider the asymptotic behaviour of a function f(w) of the fol­

lowing kind 

( 11. 1) w + 00 

where cf>(z) and ip(z) are analytic functions of the complex variable z and 

where C is a certain path in the complex z-plane. As usual it is assumed 

that w is a real and positive variable which tends to plus infinity. 

The idea of the saddle point method is briefly to defbrm the path C 

in such a wa:y that the integral expression becomes equivalent to that of 

the real case (9.11). 
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However, before explaining the method in detail we recall a few well­

known facts from the theory of complex analytic functions. 

We write 

( 11.2) cf>(z) = h(x,y) + ik(x,y) Z = X + iy 

where hand k are the real and the imaginary part respectively. Then.we 

have the Cauchy-Riemann equations 

The functions h(x,y) and k(x,y) are so-called conjugate harmonic functions 

satisfying the potential equation 

Llh =Ilk= 0, 

If h(x,y) is given, then k(x,y) is determined up to an arbitrary additive 

constant', In terms of hydrodynamic potential flow the lines h = constant 

may be called potential lines and the lines k = constant stream lines. 

Each set is the set of orthogonal trajectories of the other set. 
I 

Of great importance are the points with cf> (z) = O. They correspond to 

the stagnation points of the hydrodynamic flow where the velocity becomes 

zero. In such a point we have 

ah= ah= ak = ak = o. 
ax ay ax ay 
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At a stagnation point the potential function h( x ,Y) and the stream function 

k(x,y) are stationary and may take a local maximum or minimum value on a 

line through this point. 

Next we consider the properties of the analytic function 

( 11.3) F(z) = exp - $(z). 

The absolute value of F(z) defines the modular landscape 

(11.4) IF(z)I = exp - h(x,y). 

The potential lines h(x,y) = constant are the level lines of the landscape. 

The stream lines k(x,y) = constant are the orthogonal trajectories of the 

level lines and may be called lines of steepest descent ( or ascent). 

Along such a line F(z) has a constant phase since 

( 11. 5) arg F(z) = - k(x,y). 

The stagnation points of $(z) are the saddles or passes of the modular 

landscape. The landscape determined by (11.4) cannot have local extrema 

since a harmonic function has no internal extrema in its domain. There­

fore the only stationary points of IF(z)I, the points with a horizontal 

tangent plane, are saddles. 

If F'(z0 ) = O but F"(z0 ) f o,we have an ordinary saddle. If also 

F"(z0 ) = O,we have a higher order saddle. If e.g. F'"(z0 ) f O,the saddle 

is sometimes called a monkey saddle (two legs and one tail). 

Example 11.1 

For $(z) = z2 the landscape !Fl= exp (y2-x2 ) has a saddle at x = y = 0. 
2 2 The level curves are hyperbolas x - y =constant.The steepest descent 

curves are hyperbolas xy =constant.The level curves through the saddle 

th t . h 1· T . 2 2 are es raig t ines x ~ y = O. hey separate the highland y > x from 

the lowland y2 < x2 • The steepest descent lines through the saddle are the 

lines x = 0 and y = o. The situation is sketched in fig. 11.1 
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Example 11.2 

jY 

I 

fie$. 11 • 1 

X 

For ~(z) = z3 the landscape !Fl = exp (-x3+3xy2 ) has a monkey saddle at 
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x = y = O. The level curves are third-order hyperbolas x(3y2-x2 ) = con­

stant. The level curves through the saddle are the straight lines x = O, 

y = .:!:. x tg30°. The steepest descent lines through the saddle are the lines 

Im z3 = O or y = O, y = .:!:. x tg60°. The situation is sketched in fig.11.2. 

y 

low I 

fig. 11 .2 
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After these preliminaries we consider now the asymptotic properties 

of (11.1). In order to simplify the discussion we shall neglect for the 

moment the function $(z) by taking w(z) = 1. Furthermore we assume that 

~(z) is of algebraic kind so that it is analytic throughout the z-plane 

and its only singularities are branch points and poles. For simplicity we 

take a path C that starts and ends with h(x,y) = 00 • Then C is deformed 

into a steepest descent line of exp - h(x,y). The new path passes through 

the valleys and reaches its highest positions at the saddles of $(z). 

Along the new path of integration all contributions of the integrand are 

in equal phase so that the asymptotic behaviour of (11.1) is essentially 

that of the real case (9.11). It is clear that for w + 00 the asymptotic 

behaviour of f(w) is determined only by the behaviour of $(z) in the 

neighbourhood of the saddles. If there are more saddles on this line of 

steepest descent each saddle makes its own contribution but we may take 

into consideration only those saddles for which h(x,y) takes on a maximum 

value. 

If $(z) is added to the picture,we may have a variety of complica­

tions. The deformation of C into the steepest descent path may involve 

the crossing of one or more poles or singularities of $(z), or even worse 

a saddle of$ may coincide with a singularity of$. 

Example 11.3 

We consider the integral 

There is a single saddle point at z = i. The steepest descent curves are 

x(y-1) =constant.The steepest descent line y = 1 passes through the 

valleys and goes through the saddle. 

The contour C(-00 , 00 ) may be shifted to the steepest descent line Im z = 1. 

If $(z) is sufficiently well-behaved,the integral expression can be written 

as 

-wt2 . e $(i+t)dt. 

The full asymptotic expansion of f(w) then follows easily from the expan­

sion of ~(i+t) in powers oft. The first term is 
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a single pole z0 in the strip Os Im z s 1,we have If, however, w(z) has 

to add the residue at 

bution 

( ) 1 . . the pole. If w z = -- + .•• this means a contri­
z-z0 

Depending on the position of z0 the one or the other term dominates. 

Example 11. 4 

The partial differential equation 

w > o, 

has the general solution 

f(x,y,w) = f c exp -w(x cosh w - iy sinh w) w(w)dw, 

where C starts at - 00 + ia and ends at 00 + ib. The saddle points are de­

termined by x sinh w = iy cosh w. Writing x + iy = r exp i9,we find 

sinh(w-i9) = 0. This gives a sequence of saddles w = i(S+n~) where n is 

an integer. The steepest descent lines are determined by sinh u sin(v-9) = 

constant where w = u +iv.We consider in particular the general solution 

for a= b = 0 with a sufficiently well-behaved function w(w). Then the in­

tegral converges in the halfplane x > O, i.e. for-~~< 9 <~~-The saddle 

which is nearest to C is w = i9. The steepest descent line through this 

saddle is the line v = 9. It is easy to see that C(v=O) may be shifted to 

the position v = 9 without violating the conditions at infinity for the 

convergence of the integral. Substitution of w = i9 + u gives 

( ) f00 -wr cosh u (· ) f x,y,w = e w i9+u du 
-co 

so that asymptotically 
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Example 11 • 5 

We consider the integral 

where C is the line Im z = a (a>O) with increasing Re z. 

The origin is an essential singularity. 

There are three saddles: 1, -~ .:!:. ~i/3. The steepest descent lines are 

determined by xy - y(x2+y2)-1 =constant.The lines which pass through 

the saddles z = 1 and z =k(= -~ + H✓3) are sketched in fig.11.3. 

y 

k 

fig. 11 .3 

They are respectively given by y = O, x(x2+y2 ) = 1 and by (xy+3). 

(x2+y2) = y. 

X 

Looking for the valley parts the ideal path of integration is found to be 

as sketched in fig.11.4 

y 

k 

X 

fig. 11 .4 

The height of the landscape !exp - w(z2+2/z)I at the saddles 1 and k is 

respectively exp - 3w and ex~. Therefore only the latter saddle has to 



be taken into account for obtaining the required asymptotic behaviour. 

The steepest descent direction at z = k is determined by 

2 2 2 z + 2/z = 3k + 3(z-k) + .... 

Thus the steepest descent direction at z = k for the valleys is horizontal. 

The effort spent in an accurate quantitative determination of the steepest 

descent line of fig.11.11 is almost of no use,since the only thing that 

matters is the local behaviour at the dominating saddle point at z = k. 

If one is interested only in the main term of the asymptotic expansion of 

f(w),it suffices to make the local transformation at z = k viz. 

z = k + t 

where tis real. This gives 

or finally 

( ) (3 ,3✓3) f w ~ exp 2 + i 2 w 

1 

2 
e-3wt dt 

~ 2 (l + .3✓3) f(w) ~ (3w) exp 2 i 2 w. 

The following general and systematic treatment is due to van der 

Waerden [19]. In this treatment it is easily possible to deal with more 

complicatedsituations such as the coincidence of a saddle point with a 

singularity. Van der Waerden's method will be presented here in a rather 

formal way. It is, however, not difficult to make all analytic steps com­

pletely rigoureus,merely by stating the necessary restrictive conditions 

at the beginnning. Again we consider the integral expression (11.1) for 

large positive values of w. For simplicity it is assumed that at both ends 

of C the real part of ~(z) tends to plus infinity. 

Van der Waerden's method consists of studying the complex transfor­

mation 

w = u + iv. 

We note that by this transformation the steepest descent lines and the 
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level curves of exp - w~(z) are transformed into the horizontal and verti­

cal coordinate lines of the (u,v)-plane. 

The transformation is singular at the saddles of ~(z). Any point where 

~•(z) = 0 gives rise to a branch point and a corresponding branch line 

in the complex w-plane. This holds of course for saddles of any order. 

By this map the path C is transformed into a contour C' which meanders 

between branch points and poles in thew-plane. 

We may now write 

(11.6) ) f -ww ( ) dz f(w = e ~{z w} ~d w. 
C' w 

A typical situation is sketched in fig.11.5. 

fig. 11.5 

Apart from the branch points and poles due to the factor dz/dw there may 

be similar singularities due to the factor ~{z(w)}. 

The idea of the saddle point method is to transform the contour C' in 

such a way that 

lexp - wwl = exp - wu 

becomes as small as possible on the contour. This means that C' should be 
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shifted to the right as far as possible. It is clear that the best form of 

the contour in this sense consists of loops surrounding the branch points 

and poles, coming from infinity in straight lines from the right and going 

back to infinity along the same lines straight to the right as shown in 

fig.11. 6 

E j, 

fig. 11 .6 

It is equally clear that only the branch point (or points) at the leftmost 

position contributes to the asymptotic behaviour of f(w). 

Let us assume for simplicity that we are left with a single branch 

point at w = O. If this is a branch point of the order two,we may perform 
1 

the local substitutions= w~. Then the integrand function 

( 11. 7) F(w) = w{z(w)}dz/dw 

has a pole at s = 0 of the first order and admits an expansion of the kind 

( 11. 8) F(w) = -1 + a0 + a 1s + a_1s ... 

This gives 

2r 
2 

ta_1+a0s+a1s2+ •.• )ds, f(w) = -ws e 
-"' 

so that 

( 11.9) 
~ a 

f( ,.,) ~ (1!.) (2 1 ) = w a_1+-;;;-+ ••.. 
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If w = O is a branch point of order three,we may use the local uniformi-
. · · 1 /3 · d . . f F( ) zing substitutions= w . With due regar to the interpretation o w 

at the upper and the lower side of the branch cut we have, again with the 

expansion (~1.8), 

f( w) = 3 f 
c" 

-ws 
e 

3 

where C" consists of two of the three rays in the complex s-plane 
2 

arg s = O, .±. ? . 
If the ray with arg s = O does not contribute,we find after a simple cal­

culation 

1 

(11.10) f(w) ~ -i 32 r(2/3) 
2/3 a_1 

w 

i 
+ 

1 

32 r(4/3) 
4/3 

w 
+ .... 

If w = 0 is a branch point of the order two and at the same time a pole 

of the first order,there are no special difficulties. Instead of (11.8) 
we have an expansion 

(11.11) F(w) 

The contribution of the first term to the asymptotic expansion becomes 

Example 11.6 

We consider anew the function f(w) of the previous example. We now perform 

the complex transformation 

2 
w = z + 2/z. 

This map has branch points in thew-plane at w = 3 and w = ¾ .±. ~✓3, 
Taking for the path of integration C the line Im z = ~,we obtain in the 

w-plane a contour C' as sketched in fig.11,7 together with the branch 

cuts. 



fig. 11. 7 

The asymptotic behaviour of f(w) is determined only by the branch 

· 3 3 · /3 · · f . t t 3 . point at - 2 - ? . The·contr1but1on o the branch po1n a w = 1s 

asymptotically negligible. Thus we have 

f(w) ~ f e-wwdz/dw dw, 
c" 

where C" is formed by the upper and lower sides of the branch cut at 
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w = - ¾ - ~/3. If the map z + w is combined with the local transformation 

we have, with the short-hand notation k = - i + ~ i /3 , 

Inversion gives 

Thus we obtain at last 

f(w) ~ 
2 

-3k w 
e fco 2 

e-ws 
-co 

2 
(..1.. + 2k ) 13 ? + ••• ds, 

which leads to the final result of the previous example. 



Example 11.7 

We consider the integral 

f(w) = Joo e-w(z2-2zi)(z2+1)-1dz. 
-00 

There is a complication due to the coincidence of the saddle z = i 

with a pole. 

According to the general theory we may perform at once the transformation 

z2 - 2zi = 1 + 2 
s • 

which, however, is nothing more than 

z = i + s. 

With this substitution f(w) becomes 

f(w) = e-w f e-ws2 {-2~ + _41 + •.• }ds 
C" 1S 

where C" is the real axis with an indentation below the poles= 0. 

We easily find 



12. THE ASYMPTOTIC BEHAVIOUR OF COEFFICIENTS OF A POWER SERIES 

Sometimes one is faced by the problem of considering the asymptotic 

behaviour of the coefficient an of a power series expansion 

(12.1) f( z) = }: 
n=O 

n a z 
n 

of an analytic function for n ➔ 00 • 

The obvious starting point is the Cauchy formula 

(12.2) 1 T -n-1 a - - z f( z )dz , n - 21Ti 
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If we make the complex transformation z = exp w,an expression is obtained 

to which the saddle point method may be applied. In many cases, however, 

a more direct - but essentially equivalent - method is available. Its 

principle is, briefly,to move the contour in (12.2) away from the origin 

as far as possible. The method works smoothly for functions of algebraic 

growth at infinity with a finite number of poles and branch points. Then 

the ideal contour consists of small circles around the poles and straight 

lines along branch cuts radiating away from the origin. The situation 
3 1 1 for f(z) = (z +1) 2 (z-1)- is sketched 1 by way of illustration. 

fig. 12.1 

However, if f(z) has an essential singularity at z = 00 the simple method 

illustrated in the following examples cannot be followed. An example of 

such a case will be considered in chapter 18 where a Hermite polynomial is 

defined as a coefficient of a certain power series. 
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Example 12.1 

1 
For f(z) = (1-z)- 2 we have the well-known expression 

a = 
n 

1. 3. • .• ( 2n-1 ) 
2.4.6 •.• 2n 

According to (12.2) we have 

a = -. z (1-z) dz. 1 f -n-1 · -~ 
n 2TTJ. C 

For C we take the upper and lower side of the branch cut at the positive 

real axis from 1 to 00 • Putting z = exp t,we obtain 

or 

where 

Applying theorem 6.4 we find without difficulty 

1 ~ (k-~) ! 
a ~ - l C 

n TT k=O k nk+2 ' 

where ck are the coefficients in the expansion of ~(t). Explicitly 

Example 12. 2 

The Legendre polynomials P (x) are the coefficients of the generating 
2 1 n 

function (1-2xz+z )- 2 • Then the Cauchy formula gives 

1 f -n-1 i0 - 1 -i0 - 1 
P (cos 0) = -2 . z (e -z) 2(e -z) 2dz. n TTl. 
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There are branch points at z =exp.:!:. i9. 

For the contribution from the branch cut at z = exp i9 we obtain 

Since the contribution from the second branch cut is conjugate complex,it 

suffices to take twice the real part. In this way we obtain at last 

valid for O < 9 < 11. 
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13. THE ASYMPTOTIC EXPANSION OF THE·GAMMA AND RELATED FUNCTIONS 

The AE of the factorial function z! has no simple structure. A related 

function with a simpler explicit AE is the digamma function or psi function 

(6.11) or 

(13,1) 1/1( z) = d log r( z) /dz • 

The simplicity of the AE of 1/l(z) is due to the fact that 1/l(z+1) - log z is 

the Laplace transform of a rather elementary function. According to (6.13) 

we have for Re z > O 

(13.2) Jco -zt{ 1 1 1/J(z+1) - log z = e ~ - --)dt. 
0 t et -1 

The AE of 1/J(z+1) as obtained in section 6 as formula (6.14) becomes 

( 13,3) 1 B2k -2k 
1/1( z+1) - log z ~ - - l 2k z 

2z k=1 
I arg z I < TT. 

We quote the related AE (6.16) 

(13.4) 
k 1 ~(a) - Bk -k 

1/l(z+a) - 1/J(z) ~ l (-1) - k z 
k=1 

Explicitly we have 

(13.5) 1 1 1 1 1/l(z+1) ~ log z + - - -- + -- - -- + 
2z 12z2 120z4 252z6 

. . . , 

and 

(13.6) 
2 3 2 

1/J(z+a) _ 1/l(z) ~ ~ _ ~ + 2a -3a +a 
z 2z2 6z3 

The AE of log z! is almost equally simple. According to (6.19) we 

have 

(13,7) B2k -2k+1 
log z! ~ (z+~) log z - z + ~log 2TT + l 2k( 2k-1) z 

k=1 

for larg zl < 1T. 



Explicitly 

(13.8) log z! ~ (z+~) log z - z + hog 2TT + - 1- - - 1-+-1-- -
12z 360z3 126oz5 

The AE of z! is obtained from this by taking the exponential 

(13.9) -z z+ir:::-2 Z ! ~ e Z -Y ;,TT l ~z-k 
k=O 

where 

a = 
3 

_Ll_2_ 
- 51840 , .... 

There is no simple explicit expression for these coefficients,neither is 

there a simple recurrence relation. However, in example 10.1 it is 

shown that 

( 13, 10) k = O, 1, ••• , 

where the coefficients~ are given by the power series 

(13.11) 

where 

( 3. 13) t - log ( 1+t) 
, 2 

= 2U 
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In some applications one needs the AE of functions such as (z+a)!/z! 

or z!/(z-a)!. The AE follows from (13.6) or (13,9) by elementary calcula­

tions. A more direct way is by using some integral representation of 

Euler's betafunction. In this way, cf. example 6.6, we may obtain the re­

sult 

( 13, 13) 

Similar results are 

( 13, 14) (z+a)! ~ a ,( 2 ) -1 1 ( 4 3 2 ) -2 z! z {1+2 a +a z ~ 3a +2a -3a -2a z + ••. } 
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( 13. 15) z ! a{ 1 ( 2 ) -1 1 ( 4 3 2 ) -2 } (z-a)! ~ z 1-2 a -a z + 24 3a -10a +9a -2a z + ..•. 

The incomplete gammafunction r(a,z) is defined by 

( 13. 16) r(a,z) = J00 e-tta-ldt 
z 

Re a> O. 

The AE for z + oo can easily be obtained from the corresponding Laplace 

representation 

( 13. 17) r(a,z) = zae-z J00 e-zt(1+t)a-1dt 
0 

by using theorem 6. 4. By rotating the line of integration the result can be 

extended to all arguments within (-,r,,r). The result is 

(13.18) a-1 -z ,;-r(a,z) ~ z e l 
k=O 

(a-1)(a-2) ... (a-k) 
k 

z 

The special case a= 0 has already been discussed in section 4 (formula 

4.17) and in section 7 (example 7,3),where the divergent APS has been 

transformed into a convergent factorial series. The same trick may be 

applied in the general case. The representation (13.17) can be brought in 

the following form 

( 13.19) 

with 

r(a,z) = a -z 
z e 

~(t) = {1-log(1-t)}a-1 = l bktk. 
k=O 

Then from theorem 7,7 we obtain at once 

(13.20) r(a,z) = a-1 -z 
z e 

The first few coefficients are 

, .... 



The factorial series converges for all z with Re z > O. At the same time 

it is an AE in the sector larg zl < ~. 
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Also the second method of section 7 leads to a relatively simple con­

vergent AE. Starting again from (13.17) we may write 

co ( a) 
( 1+t)a = l -,k (-t-)k 

k=O k. 1+t 

Substitution gives at ouce 

(13.21) r(a,z) a-1 -z = z e 
co (a) 
l k'k sk(z) 

k=O . 

where sk(z) is defined by (7.27). In view of the asymptotic behaviour 

(7.29) convergence is established outside the negative real axis. 
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14. THE ASYMPTOTIC EXPANSION OF BESSEL FUNCTIONS FOR A LARGE ARGUMENT 

The Bessel functions are defined as properly normalized solutions 

of Bessel's differential equation 

(14.1) d2f +ldf + (1 - ":)f= o. 
dz2 z dz z 

The standard solution is taken to be 

(14.2) J ( z) = 
\) 

00 k 
~ ( -1 ) ( 1 ) v+2k 
l k ! ( k+v ) ! 2 z 

k=O 

a power series expansion valid for all values of z. A second independent 

solution of ("I 4. 1) is J ( z) unless v is an integer. If n is a ( non-nega­
-v 

tive) integer, then 

( 14.3) 

However, Neumann's function,defined as 

(14.4) 
\)1f J ( z )-J ( z ) 

y ( z) = ----"=-------'"'---\) sin v1r 

cos 

is always independent of J (z). 
\) 

It turns out that for integer order J (z) is an entire function and that 
n 

Y (z) has a logarithmic singularity at z = O. 
n 

In particular 

(14.5) 
00 k 

( = ~ i.::.lL.( 1 2 )k 
JO z) k;;O k!k! i;z ' 

(14.6) 

where (cf. formula 6.11) 

~(k+1) = -y +1 + 

The standard pair J (z), Y (z) is adapted to their behaviour at the origin. 
\) \) 

However, it is not the simplest pair with respect to their asymptotic be-

haviour. Then the Hankel functions are preferable. 
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These are defined as 

H( 1)(z) = J (z) + iY (z) 
V V V 

H( 2 )(z) = J (z) - iY (z) 
V V V 

A similar situation occurs in the theory of the trigonometric functions, 

which are the solutions of the differential equation f" + f = O. The stan­

dard pair is cosz, sinz but with respect to the asymptotic behaviour we 

may better take the pair exp±. iz = cosz ±. i sinz. 

The modified Bessel functions are defined as solutions of the equation 

d2f 1 df 2 
(14.8) --+--- ( 1 + L)f = o, 

dz2 z dz 2 z 

which follows from (14.1) by changing z into iz. 

An obvious standard solution is 

00 

( 14.9) I ( z ) = l 1 0 z ) v+2k 
v k=O k!(k+v)! 

so that 

( 14.10) 

The second independent solution, however, is not derived from the Neumann 

function but from the Hankel function 

(14.11) 

It can be derived from (14.4) and (14.7) that 

( 14.12) 
I (z)-I (z) 

K (z) = h -v . v 
V sin VTT 

This shows that K (z) is real for real z and real v and further that 
V 

( 14.13 K (z) = K ( z) • 
-V V 
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Continuing the trigonometric analogy,we may compare the pair I (z), K (z) 
V V 

to cosh z and exp - z. In fact, one of the attractive properties of K (z) 
V 

is its exponentially vanishing behaviour at positive infinity. 

Before tackling the asymptotic behaviour of the various Bessel 

functions we consider a few typical cases. We take v = 0 and z = w real 

and positive. The asymptotic behaviour of J 0 (w) can be derived from an in­

tegral representation. The simplest is 

( 14.14) 1 J1T J 0 (w) = - cos(w 
1T 0 

sin t)dt. 

The integral may be written in a form which permits application of the 

saddle point technique 

Ji 1T. . e-w s1nh wdw. 
-11! 

The path may be supplemented by adding a piece Im w = -11, - 00 <Rew< O and 

a piece Im w = 11, - 00 <Rew< 0 as shown in figure 14.1. In view of the 

periodicity 211i of sinh w the net contribution is zero so that 

( 14.15) J ( ) = _1_ J -w sinh wd 
0 w 2 . e w , 

111 L 

fig. 14.1 

where Lis a contour equivalent to the one shown in figure 14.1. Writing 

w= u + iv the convergence of the integral at u ➔ -oo requires that 

cos V < o. This means that L starts at -oo in the t . 3 < V < 1 u = s rip-~ -21T 

and ends at u = - 00 in the strip 1 
< V < ~- The saddle points follow from 21T 

cosh w = o. This gives the two possibilities w + 1 • 
21Tl • The steepest 

descent path L through -;11i is determined by 

cosh u sin v = -1. 
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This path starts at - 00 - ni, passes through the saddle -~Tii in the direc­

tion aTI and ends at +00 - Oi as shown in fig. 14.2. 

The steepest descent path L+ through ~ni is determined by 

cosh u sin v = +1, 

and is the mirror image of the former path with respect to the real a.xis 

(see fig.14.2). 

fig. 14.2 

For the contribution of the lower path we make the substitution 

( 14.16) sinh w 2 = -i + 2s, 

so that L in the s-plane is transformed into the real axis. Locally at 

the saddle this means 

A simple calculation shows that 

iw 
e--w sinh wdw = e 

~ r -00 

-2ws 2 
e ds 

/1+is 2 

The AE now follows at once by expanding the integrand function 

( 14.17) I 
k=O k! 

2k 
s 
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The result is 

( 14. 18) 

The contribution of the upper path L+ gives the complex conjugate. Summing 

up we find 

( 14.19) Jo(w) ~ (_g_)~ l 
1TW k=O 

The asymptotic expansion of r0(w) can be obtained,as has been shown 

in example 6.4 (cf. formula 6.10),in a much simpler way. 

The starting point is the same integral representation (14.14),but now 

written as 

(14.20) 

We repeat the result 

( 14. 21) 

The asymptotic expansion of K0(w) can be obtained from a similar 

integral representation 

(14.22) 

Theorem 6.4 gives at once 

(14.23) 
1 

K ( ) (L) 2 e -w 'i' 
0 w ~ 2w l 

k=O 

-w 
e 

(-1)kU)k0)k 

k! (2wl 

It may come somewhat as a surprise that also the product r0(w)K0(w) 

admits a rather simple asymptotic expansion. Although its AE can be obtai­

ned from (14.21) and (14.23) by multiplication we may better use the inte­

gral representation 

( 14.24) 

1 
2t 

dt. 



Substituting the AE (14.21) in the integrand and applying theorem 6.4, 

we find without difficulty 

( 14.25) 

The asymptotic expansions of the Bessel functions in the general 

case can be obtained from the so-called Sommerfeld integral representa­

tions of the Hankel functions 

( 14. 26) =-+ f exp(-z sinh w+vw)dw, 
1Tl L. 

J 
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where for j = 1 and j = 2 the path of integration L. in the complex w-plane 
J 

is as given in fig.14,3 with 9 = arg z. 

3 
?+e 

1 
?+e 

1 
?+e 7 / · Z 

3 7 7 / -
?+e 

fig. 14.3 

In order to simplify the analysis we shall consider only Bessel functions 

with a real order v. It is, however, possible to extend the results to 

complex values of v since the Hankel functions are entire functions with 

respect to the complex variable v. The hatched regions in fig.14.3 indica­

te where the integrals converge with respect to Rew+ :t_ 00 • Writing 

w = u + iv,convergence requires Re z sinh w + 00 or 

eu cos(v+e) - e-u cos(v-9) + ~ 

Between the two Hankel functions there exists the following relation 

( 14.27) = iv,rH(1)( i,r) -e e z , 
V 

which is a simple consequence of the representation(14.26). Therefore we 

may restrict our discussion to the first Hankel function only. 
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Taking j = 1 and z = w exp ie, w > O in (14.26),we see that the in­

tegral representation is of the kind (11.1) with 

ie 
= e sinh w 

1 vw 
=-:- e 

7T1 

The only relevant saddle point is w = -~7Ti, The corresponding steepest 

descent path is given by 

(14.28) eu sin(v+0) + e-u sin(v-0) = -2 cos 0. 

By way of illustration this path is s~etched in fig.14.4 for the special 

case 0 = a7[. 

1 

~ 
rrr --- .... 

1 1 
-i+11 -rrr 

~ ~ 3 

4 
-rrr 

/ ' ..... ...._ ___ 
5 -rrr 

fig. 14.4 

The part of the steepest descent line which passes through the valleys is 

drawn in full. It is obvious that for this special case the contour 1 1 can 

be deformed into this steepest descent line through the saddle. It is not 

difficult to recognize this possibility for all values of 0 in the inter­

val ( -7T, 27T) • 

Following the technique used for the special case (14.15),we again 

perform the transformation w + s of (14.16),but with a minor alteration 

(14.29) sinh w = -i(1+2s2 ). A simple calculation shows that 

2 ,---,;, 2v 

H(1)( )-L '( 1 )f 2isz(s+i11+s-) d z - . exp 1 z- 2 V7T e ~ s 
V 7Tl v 1+s-

(14.30) 

where the path of integration is the straight line 



with t running from minus infinity to plus infinity. The AE now follows 

by using the power series expansion 

( 14.31) 

The Cauchy formul~ gives 
;--;;-2v 

__ 1_ f (s+l1+s~) d 
a.. - 2 . k+1 r-7Y s 

K 1Tl. s v1+s-

Partial integration gives the recurrence relation 

2 2 
k(k-1)¾ = {4v - (k-1) }¾_2 • 

Starting from a0 = we obtain 

(14.32) ( ) ' (4v2-12)(4·v2-32) (4 2 ( )2) 2k .a2k = •.. v - 2k-1 . 

The final result is 

(14.33) 

00 ( 4 2)( 4 2 . ,)2 2 , 1/ -v9/ -v ) .•. «k-~ -v} 
• l k 
k=O k!(2iz) 

valid for -1T < arg z < 21r. 
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The relation (14.27) gives the corresponding expansion of the second 

Hankel function 

, 
(14.34) 

2 ~ ·c , , l 
( ) -l. Z-2\/1T-41T ~ - e • 

1TZ 

00 ( 4 2)( 2 , 2 2 , 1/ -v9/4-v ) ... f(k-2) -v} 
· l k 
k=O k ! ( -2i z) 

valid for -21r < arg z < 1r. 
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The relations (14.7) next give the AE of J (z) and Y (z). For J (z) we 
V V V 

find 

(14.35) 

which holds in the strip -TI< arg z < TI. 

However, in the upper half of this strip, 1.e. for O < arg z < TI, the 

asymptotic behaviour of H( 1 )(z) is asymptotically negligible with res­

pect to that of H( 2 )(z) w~ereas at the lower half, i.e. for -TI< arg z < 0 
V 

the opposite is true. This means explicitly that 

1 
(2) 1 2 • ( 1 1 ) 

J (z) ~ 1H (z) ~ (-2-) e-1 Z-2VTI-qTI (1+ ... ), 
V 2 V TIZ 

for Im z > 0, 

and 

for Im z < O. 

The fact that the same function is represented by different asympto­

tic expressions in different regions of the complex plane,is a phenomenon 

which is often observed in asymptotics. Usually this is called Stokes' 

phenomenon due to Stokes who first drew attention to this singular beha­

viour which contradicts the continuation of analytic functions. The line 

Im z = 0 where both regions meet is usually called a Stokes line. 



15, AIRY FUNCTIONS 

The Airy functions are solutions of the so-called Airy equation 

(15.1) d2f - zf = O. 
dz 2 

1 

A straightfoTward calculation shows that by the transformation f ➔ z 2f, 

z + (jz) 2/3 the Airy equation passes into the modified Bessel equation 

(14.8) with v = .±1/3, Thus (15.1) has the independent solutions 

or 

The Airy functions 

(15.2) Ai(z) = 

(15,3) Bi( z) = 

Ai(z) and Bi(z) are 

le~} 
1T 3 

Kl(?3/2) 

3 

1 

{I 1Cfz3/2) ( ~) 2 
3 

3 

z! I 1 (?3/2) 

-3 

~ K (2 3/2) 
z 1 ~ . 

3 

defined as 

+ Ii?3/2)}. 

3 

91 

These definitions show that all properties of the Airy functions can be 

deduced from the theory of the Bessel functions. However, their occurrence 

in problems of mathematical physics and asymptotics justifies an indepen­

dent treatment. The definitions (15.2) and (15,3) tend to obscure the 

basic simple properties of the Airy functions. They are entire functions 

of z with a singular behaviour at infinity,which makes them interesting 

at a level just beyond the exponential and trigonometric function~ Equa­

tion (15.1) is one of the simplest equations in which a so-called turning 

point occurs. Both Ai(x) and Bi(x) for real x are exponential for x > O 

and oscillatory for x < 0 (see fig.15.1). 
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X 

fig. 15. 1 

Substitution of a power series expansion f = l akzk in (15.1) easily leads 

to the two independent possibilities 

z3 6 z9 
f1 

z + + = +-+ 
2.3.5.6 2.3.5.6.8.9 

... • 2.3 
( 15.4) 4 7 10 

f2 = z 
z z + z 

+ 3.4 + 3.4.6.7 3.4.6.7.9.10 
+ ... 

For the Airy functions they are combined as follows 

-2/3 -1/3 
(15.5) Ai(z) = 3 f 3 f 

(-1/3)! 1 (-2/3)! 2 • 

(15.6) Bi(z) 
3-1/6 31/6 

= + . f 
(-1/3)! (-2/3) ! 2 

The Airy functions arose in 1838 when Airy studied mathematical op­

tics. Originally,the first Airy function was for real x defined as the 

Airy integral 

(15.7) 1 f 00 1 3 Ai(x) =-; 0 cos(~ +xt)dt. 

This representation cannot be used for complex arguments. However, it is 

easily seen that the integral 
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(15.8) 1 J 1 3 2~i 1 exp(yv -zw)dw, 

where Lis a path as shown in figure 15.2, 

fig. 15. 2 

is a solution of (15.1). It is seen that L starts at infinity where 

Re w3 < O and ends at infinity in a different sector with the same condi­

tion. The path indicated as La clearly gives the integral representation 

of Ai( z). 

The asymptotic behaviour of the Airy function follows at once from 

that of the modified Bessel functions when we use the definitions (15.2) 

and (15,3). The results are as follows 

( 15.9) ( ) 1 -~ -¢ ( 2 3/2 .2... -3/2 Ai z ~ 2 ~ z exp - '? ) ( 1 - 48z + •• • ) , 

valid for larg z I < ~ , 

( 15.10) 

valid for larg zl < ½w. 



These results may be supplemented by 

(15.11) 

and 

(15.12) 

-; -il . ( 1r 2 3/2) Ai(-z) ~ 1r z sin 4 + ~ 

-~ -i (1T 2 3/2) Bi(-z) ~ 1r z cos 4 + ~ 

I arg z I < ~ , 

larg z I < ~ , 

It may be instructive to show how these asymptotic results can be derived 

in a more direct wa:y from the representation (15.8), If z = x real and 

positive,we write (15.8) as 

x~ J Ai(x) = -.-
21r1 L 

a 

The relevant saddle point is w = 1. The steepest descent path follows from 
1 3 Im (w-?) = 0 as a hyperbolic branch satisfying,with w = u + iv, 

Following the standard procedure,we perform the transformation 

2 
s 

with the local behaviour 

w - 1 
1 2 =s-6'8 + •••. 

This gives 

Ai(x) 
3/2 2 d 

X S W 
e ~s. 

k 
The technical problem of expanding dw/ds in a power series l ~s can be 

solved by using Cauchy's formula. Considering coefficients with an even 

index only, since coefficients with an odd index do not contribute to the 

expansion of Ai(x), we have 



where w describes a small circle around w = 1. The latter representation 

can be rewritten as 

( 1 )-k-i 1? clz 

2k+1 
z 
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where z describes a circle around the origin. The right-hand side represents 
· · f 2k . t . . ( 1 )-k-~ the coefficient o z in he power series expansion of 1+-rz • Thus 

we have 

(k+;)2k 

a2k = ik( 2k) ! 

Straightforward calculations eventually lead to the final result 

( 15. 13) 

where 

Ai(x) 
(-1l(k+~)2k 

k! ( 54f; )k 

Airy functions often occur in connection with first order nonlinear 

differential equations such as 

(15.14) df + f2 = dx x. 

Indeed, by putting f = g'/g this equation passes into Airy's equation 

(15.1). The general solution of (15.14) can then be written as 

(15.15) f(x) = Ai' (x)+cBi' (x) 
Ai(x)+cBi(x) 

It can be derived from (15.9) and (15.10) that for x + 00 

( 15.16) 
1 

f(x) ~ x 2 

On the other hand for c =Owe have 

' 
(15.17) Ai (x) ~ 1 --2,_ 

Ai(x) ~ -x - 4x + 5;2 + 
32x 

provided c # O. 
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The coefficients of the asymptotic series on the right-hand side should 

not be obtained from (15.13) and the similar expansion of Ai'(x), but 

directly from (15.14) by substituting the formal series 

( 15.18) 

The corresponding result for the Bi(x) function becomes 

( 15.19) 
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16, BESSEL FUNCTIONS OF LARGE ORDER AND LARG~ ARGUMENT 

In this section we shall consider what happens if in the Bessel func­

tion J (z) both v and z are large. For reasorsof simplicity it will be as­
v 

swned that both v and z are real and positive, Accordingly we shall write x 

instead of z. From (14.26) we may derive the following fundamental formula 

(16.1) J (x) = ~ J exp(-x sinh w+vw)dw, 
V 'll'l. L -

where the path of integration is as sketched in fig. 16.1. 

L 

fig. 16.1 

Saddle points follow from 

( 16.2) cosh w = v/x. 

This leads to the following three cases 

1 • V < X, 

We write v =wand x = w/cos a, with O <a< J,r, The sa4dle points are 

given by 

(16,3) w = .±. ia + 2in,r (n=0,.±.1, •• ,). 

2. V > X, 

We write v = w and x = w/cosh B with B > 0, The saddle points are given by 

( 16.4) w = .±. B + 2in,r (n=0,.±.1, •• ,). 



V = X. 

Writing v = x = w,we obtain a third order saddle point at w ~ 0 and fur­

ther a series of ordinary saddle points on the imaginary axis 

w = 0 (twice), w = 2inTI (n=0,±_1, ••• ). 

Starting with the first case v < x,we observe that the asymptotic be­

haviour is determined by both.saddle points w = ±:_ia, the contributions of 

which are complex conjugate. Thus it suffices to consider only the saddle 

point ia and to take twice the real part of its contribution afterwards. A 

local expansion at w = ia gives 

( 16.6) . I .( ) ,. ( . )2 sinh w cos a - w = i tga-a + 21 tga w-ia + •••. 

We shall restrict the discussion to the leading term of the asymptotic ex­

pansion. Then the contribution from the upper saddle point can be written 

down at once, without further substitutions, as 

- exp{-iw(tga-a)} 2:i f exp{-~iw tga(w-ia) 2}dw, 

where w follows the tangent line w = ia + t exp - ¢Tii at ia. Thus we obtain 

( 16.8) 

By taking twice the real part we obtain finally 

( 16.9) 
2 1 

J (w/cos a)~ (---) 2 cos{w(tga-a)-h}. W TIW tga 

The asymptotic approximation breaks down for a ➔ O, i.e.,when v/x ➔ 1. 

In fact this necessitates the separate discussion of a further case,when 

v and x are both large and approximately equal. We shall, however, take 

the second case next. 

The asymptotic behaviour for the second case requires an investiga­

tion at the two saddle points w = ±:. s. The appropriate contribution comes 

from w = -s. The local expansion is 

(16.10) 2 
sinh w/cosh S - w = (S-tanh S) - ~ tanh S(w+S) + •..• 



The leading term of the asymptotic expansion is therefore 

(16.11) 1 J 2 exp{-w(S-tanh S)} 21ri exp{~w tanh S(w+S) }dw, 

where w follows the vertical tangent line w = -B +it.The final result 

is 

( 16.12) 

Again this approximation breaks down for B + O, i.e. when v/x + 1. 
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The difficulties at the line v = x in the (v,x)-plane are e.n illustra­

tion of the Stokes'phenomenon. We shall now discuss the case v 11:1 x in more 

detail. 

Writing v =wand x = w + c,we have 

( 16, 13) 1 J -w(sinh w-w) J (w+c) = ~ e exp(-c sinh w)dw. 
w 1r1 L 

The asymptotic behaviour is now determined by the third-order saddle point 

at w = 0, Although it is not necessary to know the steepest descent path 

explicitly we give it here for sake of completeness. Its equation is 

( 16.14) cosh u sin v = v 

which is illustrated in fig. 16.2. 

--------------+--------------1[ 

----------.,,. ----.. - -- ---
-1[ 

fig. 16.2 
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By means of the complex transformation 

(16.15) 
. 1 3 sinh w - w = 6 s , 

the steepest descent path is automatically changed in the pair of lines 
2 arg s = .:t_ 3 11. 

The inverse of (16.15) is 

( 16.16) 

A simple calculation shows that 

00 

( 16.17) -c sinh w dw = , 
e ds l 

k=0 

with 

1 3 1 
C = c3 = - 6 C - 10 C 0 

c1 = - C 1 4 1 2 1 
C4 = 24 C + 8 C +-

280 
1 2 1 

C = ~ C 20 2 

Then we have 

( 16.18) 

2 . 1 3 

J (w+c) = - Im 1 f ooo exp ~l. e- ~s 
w 1T 

so that asymptotically 

k+1 

(16.19) J (w+c) ~...L; r(k+1) . 2k+2 (E.)_3_ 
w 311 l ck 3 sin~ w 

k=0 

The first few terms are 

(16.20) Jw(w+c) ~ 211113 (~) 1/3 {r(½)+cr(j) (~) 1/3+ ... }. 

I I 1/3 Again complications arise if c is large and of order w ,for then 

the asymptotic series looses its asymptotic character It is, however, not 

difficult to cover also this exceptional case. We shall write 



( 16.21) V = 2w, 1/3 x = 2w + yw , 

where y is either a positive or a negative constant. Performing the same 

transformation (16,15),we may bring (16.13) into the following form 

(16.22) J ( 2 + 1/3) _ _ 1_ -1/3ws -yw s F( )d f 3 1 /3 
2w w yw - 211i e s s' 

where 

( 16. 23) F(s) = exp{yw113(s-sinh w)}dw/ds, 

2 and wheres follows the two lines arg s = .:t. ?· 
As in ( 16. 17) we may expand F ( s) as 

( 16.24) 

with 

1 
Y2 = - 20 

We note that generally yk = O(wk/9 ). Then we have 

k+1 

(16.25) J2w(2w+yw1/3) ~ I Y w- 3 le (y), 
k=0 k K 

where the functions Lk(y) are defined as 

( 16. 26) 1 f k 1 3 Lk(y) = 211i s exp - (~ +ys)ds. 
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The net gain at each term of this asymptotic series is of the order w-2/ 9 , 

It follows from (15.8) that L0(y) is related to the Airy function. In 

fact, by changing s into-sit is easily seen that 

(16.27) 

and next 
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(16.28) 

Thus the dominating term of (16.25) gives 

( 16. 29) J ( .2 _ 1/3) = Ai(y) + O( -1) 
2w w yw 1 /3 w • 

lll 

By this asymptotic formula the transitional behaviour is exhibited in an 

explicit way. For y > 0 we have an exponential decline with respect toy. 

For y ~ 0 we have an oscillatory behaviour with respect toy. 

We end this section by discussing briefly a related AE which, however, 

is of a simpler kind. We consider I (x) for both a and v large, From 
V 

(14.10) and (16,1) we have the integral representation 

(16.30) I (x) - - 1- f exp(x cosh w+vw)dw, 
V - 27Ti 

where the path is that of fig,16,3, 

We write v = w and sinh a = v/x. 

The saddle points are determined by 

sinh w + sinh a= O, 

but it is easily seen that w = -a is the only relevant saddle, The steepest 

descent path follows from 

sinh u sin v + v sinh a= O 

-a 

fig, 16,3 
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as the curved path of fig. 16.3. The path v = O, however, goes uphill and 

cannot be used. 

The local behaviour at the saddle point 

x cash w + w = (x cash a- a)+ ~x cash a(w+a) 2 + 

suffices to obtain the dominant term of the AE. 

In fact, we have 

so that 

( 16.31) 

where 

1 Ji°' 2 I (x) ~ exp(x cash a-va) -- exp(~s x cash a)ds, 
V 2~i , 

-J."' 

I (x) ~ (2~x cash a)-~ exp(x cash a-va), 
V 

x cash a= /22 + x21 + /,2 + x2' a = ln _.v ____ .._v_ ...... 
X 
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17. CONFLUENT HYPERGEOMETRIC FUNCTIONS 

The function of Kummer M(a,c,z) is derived from the hypergeometric 

function F(a,b,c,z) in the following way 

(17,1) M(a,c,z) = lim F(a,b,c,z/b). 
b-+ro 

This limit process can be described as a confluence of two singularities, 

viz, band 00 , of the hypergeometric function F(a,b,c,z/b). Therefore 

M(a,c,z) is also called a confluent hypergeometric function. From the well­

known properties of the hypergeometric function it can be derived that 

Kummer's function has the power series expansion 

(17.2) M(a,c,z) = l 
k=O 

and that it satisfies the differential equation 

(17.3) df 
(c-z)dz - af = O, 

also called Kummer's differential equation. 

The expansion (17,2) converges for all values of a, c and z with 

C 'F 0,-1,-2 •. ,, • 

If c is not integer,a second independent solution of (17.3) is given by 
1-c ( ) · · z M a-c+1,2-c,z ,so that the general solution of Kummer's equation, a 

confluent hypergeometric function, can be represented by 

(17.4) 1-c ( ) A M(a,c,z) + Bz M a-c+1,2-c,z. 

If c is a positive integer,by a proper limit process a second independent 

solution can be derived in a similar way as for Bessel functions of integer 

order. 

The starting point for obtaining asymptotic expansions is a suitable 

integral representation, We may try to solve (17,3) by an integral of the 

kind 

(17.5) f(z) - f ezs ijJ(s)ds, 
- C 

where C is an open or closed contour. 
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Substitution gives 

( 17.6) 

where C is either a closed contour or a path such that sa(s-1)c-a exp zs 

vanishes at the endpoints. The simplest case is 

(17.7) r ( c) J
0
1 zt 1 1 M(a,c,z) = r(a)r(c-a) e ta- (1-t)c-a- dt, 

valid for Rec> Re a> 0 and all z. 

The domain of validity can be extended by analytic continuation with res­

pect to c and a. 

If the variable of integration tis replaced by 1 - t,we obtain the follow­

ing functional relation 

( 17 .8) M(a,c,z) = ez M(c-a,c,-z). 

The next case is 

M(a,c,z) 

+ 
r(c)r(a-c+1) _,_. J(l ) zs a-1 ( )c-a-1 = ) e s s-1 ds, r(a 21Tl. 0 

valid for Re a> O. 

The representations (17.7) and (17.9) are easy to prove. In both cases the 

right-hand side is a solution of (17.3) and represents an entire function 

of z. There remains to check the value M = 1 for z = O. 

Both representations can be used to obtain the AE of M(a,c,z) for 

z + 00 with either !arg zl < ;TI or larg -zl < ;TI,by applying theorem 6.4. 
It is sufficient to consider only larg zl < ;TI,since by (17.8) the AE is 

obtained for the other half-plane. If we take the more general representa-
. ( ) a-1 ( ) c-a-1 tion 17.9 ,we expands s-1 in powers of s - 1. By integrating 

the resulting series we obtain 

(17.10) 
f( C) Z 

M(a,c,z) ~ r(a) e 

valid for larg zt < ;TI. 

a-c z I 
k=O k! 

-k 
z 
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From (17,8) we obtain 

(17.11) ( ) ~ r(c) (-z)-a t M a,c,z ~ l 
f\c-a1 k=O 

valid for larg -zl < ~TI. 

-k 
z 

These expansionsare derived still with the restriction Re a> O. 

However, the domain of validity can be extended by using the difference 

relation 

(17,12) M(a-1,c,z) = M(a,c,z) - ~ M(a,c+1,z), 
C 

Thus (17,10) and (17.11) appear to hold for all values of a and c, with 

the possible exception of c = O, -1, -2, .... 

The general confluent hypergeometric function (17,4) has for 

jarg zj < ~TI the AE 

(17.13) f ~ (Ar(c) + B r(2-c) ) z 
r(a) r(a-c+1) e 

-k z 

For a certain combination of A and B this expansion vanishes. This suggests 

the existence of a solution of (17,3) with an asymptotic behaviour of lo­

wer order, 

Such a solution is given by the following integral representation, another 

example of ( 17. 5) , 

(17.14) ( ) 1 Joo -zt a-1 ( )c-a-1 U a,c,z = r(a) 0 e t 1+t dt, 

valid for Re a> 0 and Re z > O, 

or more generally 

(17.15) 

+ 
r(1-a) J(o) 

U(a,c,z) = 2Tii zs a-1( )c-a-1 e s 1-s ds, 

where for Re z > 0 the contour starts at 00 exp - iTI,encircles the origin 

in the positive direction and ends at 00 exp iTI, The region of validity can 

be extended by rotating the path of integration, 

In this way U(a,c,z) is defined by (17.15) for jarg zj < ½r· 
T AE f ( 7 1 ) . . . ( )c-a-1 . he o 1 . 5 is obtained by expanding 1-s in powers of s. The 

result is 
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(17.16) U(a,c,z) ~ z-a I 
k=O 

valid for larg zl < ½r· 
With U(a,c,z), also z1-c U(a-c+1,2-c,z) is a solution of (17.3). How­

ever, since both solutions have the same AE,they must be identical. There­

fore we have the relation 

(17.17) U(a,c,z) 1-c = z U(a-c+1,2-c,z). 

The secondary solution of (17.3) U(a,c,z) is of the form (17.13),with con­

stants A and B determined by the vanishing of (17.13) and by its behaviour 

at z = O. The explicit result is 

(17.18) ( ) = r ( 1-c) M( ) + r( c-1 ) 1-c ( ) U a,c,z r(a-c+1) a,c,z r(a) z M a-c+1,2-c,z. 

On the other hand,for U(a,c,z) a functional relation of the kind (17.8) 

does not hold. But 

+i7r 
ez U(c-a,c,e- z) 

is again a solution of Kummer's equation. Since this solution has a diffe­

rent asymptotic behaviour it is independent of U(a,c,z). This means that 

M( a, c, z) can be written as a linear combination of both functions.• Taking 

into account the known behaviour at z = O and at z = oo,we find 

) ( ) --1:1£..L. i '!fa ( ) r ( c) i 71" ( a-c) z ( -h ) 
(17.19 M a,c,z = r(c-a) e U a,c,z + r(a) e e U c-a,c,e z , 

valid for Im z > O,and a similar relation with i ➔ -i for Im z < O. 

Using (17.19) with the AE (17.16) we find a more detailed asymptotic ex­

pression which combines (17.10) and (17.11). 

A great number of special functions may be considered as special cases 

of the confluent hypergeometric functions, We list a few only: 

exponential function 

( 17 .20) M(a,a,z) z = e , 

incomplete gamma function 
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( 17 .21) U(1-a,1-a,z) z 
= e r(a,z), 

error functions 

( 17 .22) 

( 17 .23) 

( , . I 2) ✓11 M 2 ,3 2,-z = 2z erf z, 

2 
U(~.~.z2 ) = /11 ez erfc z, 

Bessel functions 

( 17. 24) M(v+L2v+1,2z) 

( 17 .25) U(v+~,2v+1,2z) 

Closely related to the confluent hypergeometric functions are the Whittaker 

functions,which are properly normalized solutions of Whittaker's differen­

tial equation 

( 17 .26) 

The definitions are 

( 17 .27) ( ) -~ z ;+m (, ) Wk z = e z U 2+m-k,1+2m,z, ,m 

and 

( 17 .28) ( ) -h ~+m (, ) Mk z = e z M 2+m-k,1+2m,z . ,m 

The functions M_ (z) and M (z) constitute a set of independent solutions --k,m -K,-m 
of (17.26). However, 

wk (z} = wk (z). ,m ,-m 

In fact, from (17.18) we obtain 

( 17 .27) 



109 

The asymptotic behaviour of the Whittaker functions follows immediately 

from that of the confluent hypergeometric functions, In particular we have 

(17.28) I 
j=O 

q-k+m). 0-k-m). ( )-j 
j! -z , 

valid for jarg zl < ½r, 

Integral representations of.the Whittaker functions can be derived 

from (17,9) and (17.15). However, we mention the following variant of 

(17,9),the proof of which is straightforward: 

( 17, 29) 

where the contour starts at infinity with Re zs < 0, encircles -1 and +1 

in the positive direction,and returns to infinity.A possible contour for 

the case Re z > O is sketched in fig. 17.1. 

------
-1 

fig. 17 .1 

Confluent hypergeometric functions occur in a great number of appli­

cations. We end this chapter by considering as a typical case a Sturm­

Liouville problem which occurs in the theory of viscous flow with a 

Poiseuille profile. The problem is to find the eigenfunctions and eigen­

values of 

( 17. 30) 1 d df 2 - - ( ~) + A ( 1-r ) f = 0 r dr dr 

where f is continuous at r = 0 and where f(1) = O. Obviously this problem 

has positive real eigenvalues only and we write A= 4w2 (w>O). 

A simple substitution shows that the eigenfunctions are given by 

(17.31) 
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It follows from (17,8) that also 

( 17. 32) wr2 ( 1 , 2) f = e M 2+2w, 1 ,-2wr , 

so that f is an even function of w. 

The eigenvalues are determined by 

(17.33) 

The discussion of this problem for large w requires asymptotic expansions 

of a similar kind as those in the preceding chapter. 

From ( 17. 29) and ( 17. 31 ) we obtain the integral representation 

( 17. 34) 
1 J( +1) 2 

- wr z f=--. e 
27Ti 

This is of the form ( 11. 1) with 

( 17 .35) ,1,( ) 2 + ;1. 1 z+1 
~ z = -r z • og z-1 

Writing r = sin a, 0 < a ~ ~ 1r, the saddle points are found from 

$' (z) 2 1 
0 = -sin a +--= ,_z2 

as z = ± i cotg a. 

The corresponding lines of steepest descent are given by 

( 17 36) • 2 l z+ 1 ( • ) . sin a Im z - 2 arg ~ = ± sin a cos a+a • 

They are sketched in fig. 17 . 2 • 

fig. 17 .2 



Since f is real,it suffices to take twice the real part of the contribu­

tion of the upper steepest descent path. There we make the substitution 

(17.37) ~(z) = -i(sin a cos a+a) + s 2• 

Locally at z = icotg a this means 

so that at the saddle point the steepest descent path makes an angle of 

lw with the imaginary axis. The contribution along this path is 

( 17. 39) 

A simple calculation shows that 

( 17. 4o) 
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Higher terms can be calculated in the usual way. However, restricting our­

selves to the leading term,we find eventually 

2 
f = e-r M(i-~w,1,2w sin2a) ~ 

1 

~ (ww sin a cos a)-~ cos(w(sin a cos a+a) - ¢w). 

As is to be expected,the AE breaks down at the endpoints. In order to 

discuss the eigenvalue equation (17,33) for large w,we consider anew 

(17,34) with r = 1. There is a third order saddle point at the origin. 

The lines of steepest descent are now given by 

(17.42) z+1 
Im z - ~ arg z-1 = .:!:. h. 

They are sketched in figure 17,3. 
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fig. 17 .3 

The combined path of integration consists of two lines in the second and 

third quadrant with the equation 

2 2 x = 2y cot 2y + 1 - y , 

where z = x + iy, and two segments on the positive real axis between O and 

1 on both sides of the·cut from - 00 to 1. We make the transformation 

( 17 .44) 1 1+z s3 - z + 2 log 1_2 = 

with arg s = 0 for z on s 1 and s2 ' 
2 

on 1 1 and arg s =? 
arg s = - b 

3 
on 12 . 

Again it suffices to consider the contributions of 1 1 and s1. This gives 

F t . f dz ( 1 2 )-~ . . . rom he expansion o ds -z in powers of s the AE off is found in a 

straightforward way. 

Writing 

( 17 .46) 

we obtain 



(17.47) 

The first few values of~ can be obtained from (17.46) by substituting 

the inverse expansion of z in powers of s, 

Z = 31 /3 s "' .1,3 + , 5~ ••.• 

This gives 

so that explicitly 

m = 
2 

..1. 
10 
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(17.48) 1 -4/3 Ow+ 3h + O(w ). 

For w + 00 the eigenvalues follow from sin (~w +½)~=Oas 

(17.49) 4 
w =2n+-

n 3 
n + oo • 

A numerical calculation of the lowest eigenvalues give 

' . . . . 

Surprisingly the asymptotic estimate (17.49) is already quite good for the 

lowest possible values of n: 
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18. HERMITE FUNCTIONS 

Although the Hermite functions may be considered as a special case 

of the confluent hypergeometric functions,they deserve a special treat­

ment. We consider here in particular the asymptotic behaviour of the Her­

mite polynomials He (x) for large values of x and n where xis real and 
n 

positive. 

The Hermite polynomials He (x) may be defined by the following gene­
n· 

rating function 

2 
0, tn 

(18.1) exp(-h +xt) = L He (x) ;r 
n=O n 

The first few polynomials are 

He 0(x) = He3(x) = x3 3x 

He 1 (x) He4(x) 
4 

6x2 + 3, = X = X 

He2(x) 2 
- 1 = X 

From the coefficient formula of a Taylor expansion there follows at once 

the explicit integral representation 

( 18.2) H ( ) n! I -h2+xz -n-1 
en x = 2,ri j e z dz. 

An explicit expression for general n can be derived from this by expanding 

the integrand in powers of x and integrating the resulting series. 

A straightforward calculation shows that 

(18.3) 

The Hermite polynomials defined by (18.1) have a number of interesting 

properties. They are orthogonal with respect to the weight function 

exp(-~x2) and they satisfy the differential equation 

( 18.4) 
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Further they satisfy the functional equation 

d 
dx He (x) = n He 1 (x). 

n n-

Sometimes the Hermite polynomials are introduced with respect to the weight 

function exp - x2• In order to avoid con:f'usion,this second type of Her­

mite polynomial is denoted by H (x). We then have n 

(18.6) H (x) = 2in He (x/2) , 
n n 

and in particular 

H0(x) = H3(x) = 8x3 - 12x 

H1 (x) = 2x H4(x) = 16x4 - 48x2 + 12. 

Hix) = 4x2 - 2 

The asymptotic behaviour of He (x) for x +~is trivial since it is 
n 

a polynomial of degree n. Of course 

(18.7) 

The behaviour of Hen(x) when only n is large is more interesting. 

Starting from (18.2) we make the preliminary substitution x + zln. 

Then (18.2) becomes 

(18.8) -n( 1 z2+log z) -1 ✓ e 2 z exp xz n dz , 

an integral representation well suited for the application of the saddle 

point technique. 

We find two saddle points z = + i giving conjugate complex contributions. 

At z = i we have 

The steepest descent curves through the saddle points which are given by 

(18.10) xy + arg z =.:!:.~Tr z=x+iy, 
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are sketched in fig. 18. 1 • 

fig. 18.1 

After the substitution 

2 + s , 

we obtain for the contribution of the path through z = i the expression 

where 

n! n-~n e(~-~ni)n 

2ni f= -ns2 + xzln -1 
-= e z dz, 

With due care of the term with lzi,this can be written as 

n! n-~n exp{(¼-¼ni)n+ix/n} J= -ns2 + xlns ( -1) 
2n { -= e ds +On } = 

= n! n-~n exp{(¼-¼ni)n+ixln+gx2} {1+0(n-~)}. 
2( nn)~ 

Thus,by taking twice the real part,we obtain at last 

I ~n + ax2 

Hen(x) ~ n.ie ~n + ~ cos (~nn-xn~). 
TI n 

(18.11) 

Next we turn to the more interesting case when both x and n are large. 

We shall write 
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(18.12) x = 2e ✓n, 

where e is a positive number. The expression (18,8) will now be written as 

(18.13) exp - n(Jz2-2ez+log z) dz 
z 

The saddle points follow from the quadratic equation 

( 18.14) z2 - 28z + 1 = o. 

Thus we may distinguish the following three cases 

1. 0<8<1. 

Writing e = cos a with O <a< iw we find two saddle points exp.:!:. ia on 

the unit circle. 

2. e > 1. 

Writing 8 = cosh a with a> 0 we find two saddle points exp.:!:. a on the 

real axis. 

3, 

In this case there is a transition region with, for 8 = 1, a third order 

saddle-point at z = 1. It will turn out that the transition region can be 

adequately described by putting 

(18.15) 
1 -1 /6 x = 2n 2 - yn , 

where y is a real constant. 

The three cases will be dealt with briefly. Details are left to the 

reader. 

1. e = cos a. 

The local behaviour at the upper saddle point is as follows 
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( 18.16) ~z2 - 2z cos a+ log z={(-~-cos2a) + 

. ( . ) } ( -2ia,1,. ia) 2 + i -sin a cos a + 1-e 1~-e + ..• 

Then for the leading term of the asymptotic expansion of He (20/n) we find 
n 

twice the real part of 

so that 

- n! -~n 2 n exp{(~+cos a)n - i ( a-sin a cos a)n} . 

1 Joo 2( -2ia) • 2Tii _
00 

exp{-ns 1-e }ds, 

2 
-~n (~+cos a)n 

He (20/n) ~ _n_!_n __ e ___ ~-- cos{(a-sin a cos a)n-~a-¢TI}, 
n (2Tin sin a)~ 

Using Stirling's approximation, this may be written in the slightly simpler 

form 

( 18.17) 
n~n (-~+cos2a)n 

He (20/n) '" __ e..c..... _____ cos{(a-sin a cos a)n-!a-¢TI}. 
n /sin a 

2. 8 = cosh 8, 

The complete steepest descent line through the saddle points is sketched 

in fig. 18.2 and given by the equation 

( 18.18) xy - 2y cosh 8 + arg z = O. 

fig. 18.2 



The asymptotic behaviour is determined by the saddle point exp - B only. 

We have locally 

( 18.19) 

Therefore the leading term is 

so that after elementary calculations 

(18.20) 

3. e = , -2/3 - nn . 
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Since the saddle point is situated at z = 1, it is advisable to change the 

variable z in (18.13) into 1 + z. Then (18.13) becomes 

( 18.21) 

1 /3 1 3 dz 
exp - ( yn z+ ?z + ••• ) ~ • 

Using (15.8) we find at last for the leading term of the required expansion 

(18.22) 
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19. ASYMPTOTIC BEHAVIOUR OF CAUCHY INTEGRALS 

We consider at first integrals of the type 

(19.1) g(w) = Joo ~t 
O t + w ' 

where f(t) belongs to a class such as L2(0, 00 ). If w is complex,g(w) is 

easily seen to be holomorphic with a possible branch cut at the negative 

real axis. However, for reasons of simplicity w is considered to be a po­

sitive real asymptotic variable. 

The relation (19.1) can be written as a repeated Laplace transform 

g(w) = LL f(t). 

According to theorem 6.4 the AE of g(w) for w ➔ 00 can be obtained from the 

AE of ~(s) = L f(t) for s ➔ O. 

Example 19.1 

a. By •iirect integration we find that f(t) = (t+1 )-1 gives 

g(w) = (w-1)-1 log w. 

b. Either by using (4.10),or by Laplace transformation we find for 

f(t) = exp - t the result 

g(w) = ew r(o,w). 

Example 19.2 

The following results can be derived from a table of Laplace transforms 

a. 

b. 

c. JooO (t2+2t)-~dt -- ( 2 )-~ ~) t + w ·· w -2w log(w-1+✓w--2w. 
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If the Laplace transform $(s) of f(t) is explicitly known,its AE at 

s = 0 may be written down without difficulty. If, however, this is not the 

case or if $(s) has a complicated structure,we may proceed as follows. 

Assuming that fort+ 00 f(t) admits the following APS 

( 19,3) f(t) ~ tµ I -k 
k=1 ~ t 0 < µ < 1 , 

we write 

Joo( -1+µ) J® ( -1 +µ -2+µ + 0 f-a1t dt - s O t f-a1t -a2t )dt + 

Joo( -st )( -1+µ -2+µ) + 0 e -1+st f-a 1t -a2t dt 

Eventually this leads to the AE 

( 19.4) 

where 

(19.5) 

From theorem 6.4 we then obtain the AE 

( 19.6) 

The caseµ= 0 needs a separate discussion. 

Assuming 
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(19,7) for t + co , 

we shall take the limitµ+ O in (19.4) and (19.6). We note that 

and 

where 

( 19.8) 

Then we find 

( 19.9) 

~ ~(s) ~ l 81:t(~(k)-log s) lk=N + 
k=1 

and next 

( 19, 10) 

Of course the AE (19,10) can be obtained at once from (19.6). However, the 

expansion (19.9) is given here for its own interest, 

More generally we may consider Cauchy integrals of the form 

(19.11) 

where Lis a path in the complex t-plane and f(t) satisfies a Holder con­

dition on L. 

By (19,11) a holomorphic function of z is defined in any connected region 

of the complex z-plane which does not contain L. 
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If z = 00 is a regular point of e(z),which is the case when L does not ex­

tend to infinity,the AE of e(z) for z + 00 is already given by its Taylor 

series 

( 19. 12) e(z) = I (-z)-k f tk-1 f(t)dt. 
k=1 L 

A more interesting case occurs when L coincides with the real axis or with 

the positive or negative axis. If Lis the negative real axis, (19,11) can 

be written in the form (19.1). Then e(z) is holomorphic for Jarg zl < TT, 

At the negative real a.xis e(z) makes a jump which,after a well-known formula 

of Plemelj,can be described by 

( 19. 13) e(x+iO) - e(x-io) = 2TTi f(x). 

If f(z) is an entire analytic function of z,the Cauchy integral may be 

written as 

( 19. 14) e(z) = f(z) log z + h(z), 

where also h(z) is an entire function. 

Example 19.3 

The previous examples give illustrations of (19.14). In particular we 

obtain from example 19.1 a 

Io (1-t)-1 1 
t _ z dt = (1-z)- log z. 

-00 

Returning to the representation (19,1) we note that the AE (19.6) and 

(19,10) can also be obtained in a direct way. The construction is here 

based upon the identity 

Starting from the assumption (19,3),we may write 
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g(w) J
oo tµ-1 Joo 

= a1 -=-----a.t+ t + (f-a tµ-l) ~ = 
0 w 0 1 t+w 

Repetition of this construction gives the AE (19.6). 

Example 19.4 

It may be instructive to see what becomes of (19.6) in the case of example 

19,2 a, where f(t) = r0(t) exp - t has the well-known AE 

I -k f( t) ~ (211t)- 2 I etk t ' 
k=0 

where 
O)kO )k 

Ct = 
2k k! k 

The AE of K0(w} should be obtained in this way but it will turn out even­

tually that all coefficients bk from (19.5) vanish. The reader may convince 

himself that this is true, 

Example 19.5 

For f(t) = exp tall coefficients ak vanish. However, (19,5) gives 

Here we obtain the well-known result 

g(w) ~ l (-1)k k! w-k-1 • 
k=0 
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20, THE METHOD OF THE STATIONARY PHASE 

The asymptotic behaviour of integrals of the type 

( 20.1) f(w) = fb eiw~(t) w(t) dt, 
a 

where ~(t) and w(t) are real functions of the real variable t,can some­

times be determined in a relatively simple way by a method due originally 

to Kelvin (1887). Kelvin states that the essential contributions to the 

asymptotic behaviour come from neighbourhoods of the so-called critical 

points, i.e. those points in a~ t ~ b where the phase ~(t) is stationary. 

In practice the method is used only in its simplest form for obtaining the 

leading term of the asymptotic expansion. If, however, more terms are nee­

ded,the saddle point method is to be preferred. 

Example 20.1 

The asymptotic behaviour of the integral 

depends on the behaviour of its integrand at the stationary point t = O. 

According to Kelvin we have the asymptotic relation 

Since the integrand is analytic in the complex t-plane,an adaption to the 

saddle point method is possible. If the line of integration is rotated 

around the origin over an angle l TI; we obtain the equivalent integral 

representation 

f(w) = e H TI 

The line of integration has now become a steepest descent path with a 

saddle point at z = O. Without difficulty we obtain the result 

ttiTI f7i' i -2 f(w) = e V ;(1- 2W +O(w )}. 
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The following simple example shows the difficulties which may occur 

when a saddle point method is not applicable, at least not in a direct 

way. 

Example 20. 2 

The asymptotic behaviour of the integral 

J 1 . 2 
f(w) = eiwt dt 

-1 

is very similar to that of the integral of the previous example. The lead­

ing terms of the asymptotic expansions, depending only on the stationary 

point t = 0, are identical. However, the next terms are different since 

also the endpoints of the interval of integration contribute to the expan­

sion. In fact we have 

= ( 
iwt 1 ,r it 1 

f(w) e t-2 dt = w-2 { 0 e t-2 dt -

r it 1 1 irr ,I}:+ 
1 r t-~ deit e t-2 dt} = e" iw-2 = w w w 

The first term is due to the stationary phase at t = 0. The remainder is 

entirely due to the endpoints at t = + 1. 

We shall now give a theory of the general Fourier type expression 

(20.1). For simplicity it will be assumed that ~(t) has a continuous second 

derivative. Then the interval (a,b) can be split in subintervals where 

~•(t) has a fixed sign. The critical points determined by ~•(t) = 0 can be 

taken as endpoints. In this way the analysis may be reduced to that of a 

few relatively simple cases. Before dealing with the general case we start 

with a few well-known theorems. 

TheoPem 20.1 (Riemann-Lebesgue) 

If ¢(t) is integrable in the finite interval (a,b), then 

(20.2) Jb . 
eiwt ¢(t)dt + 0 

a 
for w + + oo, 
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Theorem 20.2 (Diriahlet) 

If w(t) is integrable in the finite interval (0,b) and of bounded varia­

tion in a neighbourhood oft= 0,then 

(20.3) Jb . 
sin wt w(t)dt + ~~ w(+0) 

0 t 
for w + + oo, 

Both theorems are well-known properties in the theory of Fourier se­

ries and Fourier integrals. It is not difficult to extend the theorems 

for integrals with an infinite interval of integration. The result of 

theorem 20.1 can be proved if w(t) satisfies some smoothness condition. 

In this way we have the following almost obvious statement. 

Theorem 20.3 

If w(t) has an integrable derivative in the finite interval (a,b),then 

(20.4) 

The improvement obtained here is due to the possibility of inte­

gration by parts which is such an important tool in asymptotics. The fol­

lowing theorem,which is a generalization of that of Dirichlet,is of fun­

damental importance for the theory of the method of the stationary phase. 

Theorem 20. 4 

If w(t) is of bounded variation in the finite interval (0,b),then for 

w + + CX) 

(20.5) 

and 

(20.6) 

with - 1 < µ < 1, 

with 0 < µ < 1. 
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Proof 

We shall prove only the first statement. The proof of the second part is 

very similar. In the first place we note that for the special case of a 

constant¢ the theorem holds. Without loss of generality we may consider 

next the case of a positive increasing function with ¢(+0) = 0. Applying 

the second mean value theorem of integration, i.e. Bonnet's theorem, we 

have for some mean value a 

= wµ ¢(b) fb t-1+µ sin wt dt = 
a 

= ¢(b) fbw t-1+µ sin t dt ➔ 0 
aw. 

for w ➔"'. 

We make the final remark that Dirichlet's theorem 20.2 is obtained by let­

tingµ ➔ O. 

We may turn now to the discussion of the method of the stationary 

phase. We consider (20.1) where a is a critical point and b a finite ordi­

nary point. More specifically we require that 

(20.7) {
¢'(a)= O, 

q,"(a) > 0. 

¢'(t) > 0 for a < t :,; b, 

Since ¢(t) increases monoton0usly from ¢(a) to ¢(b),it is possible to 

make the invertible transformation 

(20.8) X = ¢(t) - ¢(a). 

Near the stationary endpoint, a, this is of the form 

(20.9) 2 2 x = i¢"(a)(t-a) + o{(t-a) }. 

Thus the inverse transformation is locally of the following kind 

t = a + 



Substitution of the new variable into (20.1) gives 

(20.10) 

where 

( 20. 11 ) dt 
1/11(x) = dx 1jl{t(x)}. 

For x + 0 we have 

( 20. 12) 

If the last theorem is applied to (20.10) we obtain the result 

( 20. 13) f( ) ~ ( 11 )~ iwcp(a) + ili11 ·'·(a). 
w 2wcp"(a) e o/ 

A similar result is obtained if cp(t) is a decreasing function such that 

cj)' (t) :;: 0 and cp"(a) < O. Both results are summarized in the following 

theorem. 

Theorem 20.5 

. 
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If (20.1) has a critical point only at the lower endpoint such that cp(t) 

has a continuous second derivative with cp"(a) # 0 and 1jJ(t) is of bounded 

variation in a neighbourhood of a, then there exists the following asymp­

totic behaviour. 

~ If cp( t) is increasing, then 

( 20. 14) ~ -iwcp(a) f( ) ( 11 )~ l11i ,,,( ) w e w + 2cp"(a) e o/ a . 

J2. If cp(t) is decreasing,then 

(20.15) W~ -iwcp( a) f( ) ( 11 ) ~ e-hi ,i,(a). 
e w + -2cj)"(a) o/ 

CoroUary 

If cp(t) is either increasing or decreasing.we have 
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(20.16) Jb cos {w¢(t)} ~(t)dt ~ (2w[¢~(a)[ )~ cos {w¢(a)+an} ~(a). 
a 

If ¢(t) is increasing,we have 

( 20. 17) Jb 
sin 

a 

It is not difficult to formulate still more general theorems. 

However, in practice it is often more appropriate to subject a concrete 

problem to a more direct treatment along the lines indicated above than 

to apply some general theorem. This will be illustrated in the following 

two examples. 

Example 20.3 

Consider the integral 

f(w) = J~ exp iw(-t+2v"f+t') ~(t)dt. 

The interval of integration contains the inner stationary point t 0. 

At this point we have the local expansion 

¢(t) = 2 - h 2 + •••• 

Thus we may apply the last theorem to the intervals (-1,0) and (0,1). In 

view of the local symmetry of ¢(t) at t = 0 we obtain equal contributions 

from both intervals so that totally 

Example 20.4 

Consider the integral 

f(w) = J: cos {w(t-sin t)}dt. 

In this case there is a stationary phase at t = O. Since, however, 

¢" ( 0) = O, we cannot apply theorem 20. 5. Again we make the transformation 

x = t - sin t, 
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Near the critical endpoint we have 

= l t3 - _1_ t5 + 
X 6 120 ••• ' 

and inversely 

Substitution gives 

so that by applying theorem 20.4 
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21. KELVIN'S SHIP-WAVE PATTERN 

When a ship travels on a water surface it carries with it a pattern 

of bow and stern waves. The first mathematical explanation was given al­

ready in 1891 by Lord Kelvin (Sir W. Thomson). He showed by using his prin­

ciple of stationary phase that the wave pattern caused by a moving pressure 

point was effectively confined within an angular region behind the distur­

bance of about 39°. 

We consider an infinitely deep sea - 00 < x, y < 00 , 0 < z < 00 where 

z = 0 represents the surface when at rest. The velocity of the flow is 

determined by the stream potential <l>(x,y,z,t) which satisfies the potential 

equation 

( 21. 1) 

A disturbance causes a (small) elevation I',;( x ,y, t) of the surface. We have 

accordingly the boundary condition 

(21.2) 2.1-liatz=O at - az . 

To this we have to add the equation of Bernoulli which gives a relation 

between <I>,~ and the applied pressure p(x,y,t). If for simplicity the 

density and the constant of gravity are taken as unity,we have 

( 21. 3) l! + ~ + p = 0 at z = O. at 

The simplest model is furnished by taking a momentary pressure at t = 0 

applied at the origin 

( 21 • 4) p = o(x,y) o(t). 

This problem can be brought into a simpler form by applying the Laplace 

transformation 

(21.5) i(x,y,z,s) -st e <!>(x,y,z,t)dt. 

Of course i satisfies also the potential equation. Using cylindrical coor­

dinates r, 8, z,we note that i depends only on rand z. The usual technique 
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of separating the variables may give i as a linear combination of solutions 

of the type J 0(Ar) exp - AZ. Thus we put 

( 21. 6) -( ) JooO e-AZ ( ) ( ) ~ r,z = f A,S Jo Ar dA. 

A simple calculation shows that the boundary conditions (21.2) and (21,3) 

lead to the following relation 

(21. 7) 

From this integral equation f(A,s) can easily be obtained, e.g. by inverse 

Hankel transformation. We find 

( 21. 8) 

Substitution of this expression into (21.6) followed by inverse Laplace 

transformation leads eventually to 

( 21. 9) 

The elevation then becomes for r > 0 

(21.10) ( ) 1 . Joo -AZ . ( / ) ( ) / ~ r,t = - 2~ lim e sin t A J 0 Ar A A dA, 
z-+-0 0 

We shall now construct an asymptotic approximation when both rand t 

are large. In this analysis only the leading terms of the asymptotic ex­

pansions will be written down. In the first place we use the asymptotic 

approximation 

(21.11) 

which is obtained from (14.19) by taking the leading term. 

Hence the product cos(t/A) J 0(Ar) in the integrand of (21.9) contains the 

oscillating factor 

cos( t/A) cos( Ar-h) , 
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which can be written as the sum of two pure cosine terms 

{cos(Ar+t✓A-~il + cos(Ar-t ✓A-a~)}/2. 

Thus the· integral (21,9) is the sum of two integrals which can be treated 

by the method of the stationary phase. The first integral has no stationary 
• • • • 1 2/ 2 . point but the second integral has the stationary point AO= 4t r • This 

means that only the second integral contributes to the leading term of the 

asymptotic expansion. Since 

2 3 
Ar - t/2: = - i--+ L(A-A , 2 + ... , 

'+r t2 o· 

we obtain by using (20.16) and (20.17) 

(21.12) 

and next 

(21.13) a~ I t3 . t2 
i;;{r,t) = at ~ - --4- sin 4r 

z=O 811r 12" 

We consider next the model of a point source (ship) moving with a 

constant velocity c along the x-axis. If now the coordinate system is mo­

ving with ~he ship such that it finds itself always at the origin, the 

disturbance at (x,y),where xis fixed with respect to the ship,is given by 

(21.14) 

if the stationary state is reached. Putting 

(21.15) x = - R cos 6, y = R sin 6 

where R is large,we obtain by integrating the asymptotic approximation 

(21.13) 



2-7/2 Joo 3 2 2 -2 
= - -- T (1-2ct cos e +ct) . 

'1T 0 

sin{¢Rt2(1-2ct cos e +c2t 2)-;}dt. 

The latter result can be treated again by the method of the stationary 

phase. There is a critical point for 

= o, 

i.e. for 

(21.16) 2 (ct) - 3(ct) cos e + 2 = o. 

f 2 1:2 · I · I 1 There are real roots only or cos e > 3 or equivalently sine < 3. 
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This means that only for the corresponding angular sector behind the ship 

the asymptotic behaviour is of the oscillatory type which is characteris­

tic for the occurrence of a critical point in the interval of integration. 

Outside this sector the asymptotic behaviour is of an entirely different 

kind the discussion of which goes beyond the scope of this treatment. 
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22. ASYMPTOTICS IN THE THEORY OF PROBABILITY 

In this section we give a few examples of the application of asympto­

tic expansions to the theory of pro'oabili ty. 

We consider a sequence of n independent identical events. A single event 

is either a success with the probability p or a failure with the probabil­

ity q = 1 - p. The probability f(n,k) of exactly k successes in a se­

quence of n events is given by the well-known binomial distribution 

( 22. 1) ( ) (n) k n-k f n,k = k p q • 

For n and k large this distribution tends to the normal distribution. 

This basic fact of the theory of probability will be derived here by means 

of the asymptotic techniques developed in the previous sections. It easily 
- 2 follows from (22.1) that the mean k and the variances are given by 

(22.2) 

and 

(22.3) 

n 
k = l k f(n,k) = np, 

k=O 

s2 = r (k-k) 2 f(n,k) = 
k=O 

npq. 

It is therefore reasonable to introduce the new variable 

(22.4) X = n-J (k-np) 

1 

and to consider the asymptotic behaviour of f(n,k) fork= np + n~x. 

Applying the Cauchy expression for the coefficient of zk in the expansion 

of (pz+q)n,we have 

(22.5) 1 1 (pz+g )n 
f(n,k) = 211i 'j' k+1 dz. 

z 

This is of the form 

(22.6) f( k) __ 1_ 1 n$(z) - In w(z) -1 
n, - 211i 'j' e z dz, 

with 



(22.7) ~(z) = log (pz+q) - p log z, w(z) = X log Z, 

The condition ~'(z) = 0 gives a single saddle point z = 1. In view of 

the local expansion 

(22.8) . . . , 

we may introduce the new variable 

(22.9) z = 1 + it. 

Then 

( 22. 10) 
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With reference to the discussion of the chapters 10 and 11,the expression 

(22.6) can be written as 

( 22, 11 ) 1 Joo 1 t 2 . trn f(n k) = - e- 2pq n - ix n F(t)dt, 
' 211 -oo 

where 

( 22. 12) 

Since 

( 22, 13) 

we perform the further substitution 

(22.14) pq tin = - ix + u/pq. 

Then we find 

( 22, 15) f(n,k) 

2 

exp( - ~ Joo = 2pg 
211 ✓n pq' -oo 

There remains the technical detail of the expansion of the integrand func­, 
tion F of (22.15) in powers of n- 2 • Of course only even powers of u have 
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to be taken into account. We may as well take the real part of F only. It 

can easily be derived from (22.7), (22.9) and (22.12) that 

(22.16) = (~ xu2 + (1-2p)x3-6pg x)n-~ ( -1) 
1 + 2pq 6 2 2 + 0 n • 

p q 

Then the required asymptotic expansion becomes 
2 

-x 

( 22. 17) 
exp 2pg 

f(n,k) = , 
( 21m pq) 2 

This shows clearly that for any fixed p and x the binomial distribution 

tends to the normal distribution. An inspection of the second term of the 

asymptotic expansion shows that the approximation by the leading term be­

comes bad if p or q is small or if !xi is large. In the case of a symme­

trical distribution, i.e. for p =~.the leading term is even correct 

within an order of O(n-1). 

Next we consider an application of a more general nature. Let x be a 

continuous stochastic variable with the probability distribution f(x} such 

that the probability of finding x in the interval (x0 ,x0+dx) is given by 

f(x0 )dx. The sum S of n independent copies of xis a stochastic variable 

with the distribution 

( 22. 18) g(x} = f(x} * f(x) * ... * f(x) , 

i.e. then-fold convolution of f(x). If G(s) and F(s) denote the (two-si­

ded) Laplace transforms of g(x) and f(x),we have 

( 22. 19) 

so that in virtue of the inversion formula 

(22.20) g(x) = -21. J exs Fn(s)ds, 
111. L 

where Lis a vertical path, usually the imaginary axis. The probability 

density of the mean x = S/n is then given by 

(22.21) f (i) = _.!L JL exp n{°is+log F}ds, n 211i 
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The determination of the asymptotic behaviour of f(x} as n ➔ 00 then pro­

ceeds in the usual way, e.g. by applying the saddle point technique. 

Exa.mpZe 22.1 

We consider the uniformly distributed stochastic variable x in the inter­

val (-1,1). The probability density is then given by f(x) =~having 

s-1 sinh s as its Laplace transform. Formula (22.21) becomes 

where 

f (x) - ..J'!_ f n¢(s)d n - 2ni e s, 
L 

¢ ( s) = x s + log sinh s 
s 

There appears to be a single real saddle point s 0 satisfying the transcen­

dental equation 

The local expansion at s 0 is 

1 2 ¢(s) = ¢(s0 ) + H-2 - ---}(s-s0 ) + •••• 
sinh2 s 0 so 

Thus for L we may take the vertical path s = s O + it ( - 00<t<00 ) which at 

s = s0 is tangent to the steepest descent line. If only the leading term 

of the asymptotic expansion is required,we have simply 

f (x) 
n 

or 
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CONVENTIONS, NOTATIONS, ABBREVIATIONS 

w a positive variable, generally large 

o a positive constant, generally small 

z a complex variable 

x a real variable 

n, N a natural number, generally large 

k an integer used as a summation index 

AS asymptotic sequence 

APS asymptotic power series 

AE asymptotic expansion 

UAE uniform asymptotic expansion 

UAPS uniform asymptotic power series 

DE differential equation 

(a)n = a(a+1)(a+2) ... (a+n-1) for n,;;;. 1, 



Airy equation 

Airy function 

Airy integral 

analytic function 

asymptotic equivalence 

asymptotic expansion 

asymptotic power series 

asymptotic sequence 

Bernoulli, equation of 

Bernoulli number 

Bernoulli polynomial 

Bessel function 

Bessel's differential equation 

binomial distribution 

Borel sum 

branch point 

Cauchy integral 

Cauchy-Riemann equation 

Cauchy's formula 

INDEX 

complementary error function 

confluent hypergeometric function 

critical point 

Dirichlet series 

Dirichlet, theorem of 

error function 

Euler function 

Euler's constant 

Euler's summation formula 

Euler transformation 
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91 
91 , 101 

92 

10,63,75 

2 

3 

5 
2 

132 

20 

20 

82, 91 , 97, 1 08 

82 

136 

47 

66,71 

120 

63 

60,75,94 

15,40,42 

104 

125 

34 

127 

15,108 

22 

2,17 

23 

45 
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factorial series 

formal power series 

gamma function 

generating function 

Hankel function 

Hardy 

harmonic function 

Hermite function 

Hermite polynomial 

hydrodynamic flow 

incomplete gamma function 

integration by parts 

Kelvin 

Kelvin's ship-wave pattern 

Kummer's differential equation 

Kummer's function 

Lagrange-Biirmann, theorem of 

Landau symbol 

Laplace integral 

Laplace, method of 

Laplace transform 

Legendre polynomial 

level line 

modified Bessel function 

monkey saddle 

Neumann's function 

normal distribution 

numerical methods 

order relations 

33,80 

9, 13 

21,29,78 
46,76 

82 

49 

63 
114 

114 

63 

17,80,107 

15,29 
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132 
104 
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60 

25,33 

51 
7 ,25, 120 

76 
64 

28,83,93,102 

64 

82 

136 

17,50 



Plemelj's formula 

Poisseuille profile 

pole 

potential equation 

potential line 

probability theory 

Riemann-Lebesgue, theorem of 

singularity 

saddle point method 

Sommerfeld integral representation 

stagnation point 

stationary phase, method of 

steepest ascent line 

steepest descent line 

Stirling's formula 

Stokes line 

Stokes'phenomenon 

stream function 

stream line 

Sturm-Liouville problem 

Taylor series 

transformation of series 

turning point 

uniform asymptotic power series 

viscous flow 

Waerden, van der 

Wallis' formula 

Watson's lemma 

Whittaker function 

Whittaker's differential equation 

van Wijngaarden transformation 

123 

109 
66 

63 

63 
136 

126 

41,46,66,75 

63 

87 

63 

125 
64 

64 

2,24 ,31 ,51 ,62, 118 

90 
10,90 

64 

63 

109 

6,33 

37-50 

91 

10 

109 

69 
2 

27 
108 

108 

43 





OTHER TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS 

A leaflet containing an order-form and abstracts of all publications men­
tioned below is available at the Mathematisch Centrum, Tweede Boerhaave­
straat 49, Amsterdam-1005, The Netherlands. Orders should be sent to the 
same address. 

MCT 1 T. VAN DER WALT, Fixed and almost fixed points, 1963. ISBN 90 6196 
002 9. 

MCT 2 A.R. BLOEMENA, Sampling from a graph, 1964. ISBN 90 6196 003 7. 

MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model 
and method, 1964. ISBN 90 6196 004 5. 

MCT 4 G. DE LEVE, Generalized Markovian decision processes, part II: Pro­
babilistic background, 1964. ISBN 90 6196 006 1. 

MCT 5 G. DE LEVE, H.C. TIJMS & P.J. WEEDA, Generalized Markovian decision 
processes, Applications, 1970. ISBN 90 6196 051 7. 

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 1. 

MCT 7 W.R. VAN ZWET, Convex transformations of random variables, 1964. 
ISBN 90 6196 007 X. 

MCT 8 J.A. ZONNEVELD, Automatic numerical integration, 1964. ISBN 90 6196 
008 8. 

MCT 9 P.C. BAAYEN, Universal moY'[)hisms, 1964. ISBN 90 6196 009 6. 

MCT 10 E.M. DE JAGER, Applications of distributions in mathematical physics, 
1964. ISBN 90 6196 010 X. 

MCT 11 A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964. ISBN 90 6196 
011 8. 

MCT 12 J.A.TH.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MOKKEN & A. VAN 
WIJNGAARDEN, Formal properties of newspaper Dutch, 1965. 
ISBN 90 6196 013 4. 

MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of print; replaced 
by MCT 54 and 67. 

MCT 14 H.A. LAUWERIER, Calculus of variations in mathematical physics, 1966. 
ISBN 90 6196 020 7. 

MCT 15 R. D::lORNBOS, Slippage tests, 1966. ISBN 90 6196 021 5. 

MCT 16 J.W. DE BAKKER, Formal definition of programming languages with an 
application to the definition of ALGOL 60, 1967. ISBN 90 6196 
022 3. 

MCT 17 R.P. VAN DE RIET, Formula manipulation in ALGOL 60, part 1, 1968. 
ISBN 90 6196 025 8. 

MCT 18 R.P. VANDERIET, Formula manipulation in ALGOL 60, part 2, 1968. 
ISBN 90 6196 038 X. 

MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968. 
ISBN 90 6196 026 6. 

MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial 
differential equations, 1968. ISBN 90 6196 027 4. 



MCT 21 E. WATTEL, The compactness operator in set theory and topology, 
1968. ISBN 90 6196 028 2. 

MCT 22 T.J. DEKKER, ALGOL 60 procedures in nUJT/erical algebra, part 1, 1968. 
ISBN 90 6196 029 0. 

MCT 23 T.J. DEKKER & W. HOFFMANN, ALGOL 60 procedures in nUJT/erical algebra, 
part 2, 1968. ISBN 90 6196 030 4. 

MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 90 6196 060 6. 

MCT 25 E.R. PAERL, Representations of the Lorentz group and projective 
geometry, 1969. ISBN 90 6196 039 8. 

MCT 26 EUROPEAN MEETING 1968, Selected statistical papers, part I, 1968. 
ISBN 90 6196 031 2. 

MCT 27 EUROPEAN MEETING 1968, Setected statistical papers, part II, 1969. 
ISBN 90 6196 040 1. 

MCT 28 J. OOSTERHOFF, Combination of one-sided statistical tests, 1969. 
ISBN 90 6196 041 X. 

MCT 29 J. VERHOEFF, Error detecting decimal codes, 1969. ISBN 90 6196 042 8. 

MCT 30 H. BRANDT CORSTIUS, Excercises in computational linguistics, 1970. 
ISBN 90 6196 052 5. 

MCT 31 W. M:>LENAAR, Approximations to the Poisson, binomial and hypergeo­
metric distribution functions, 1970. ISBN 90 6196 053 3. 

MCT 32 L. DE HAAN, On regular variation and its application to the weak 
convergence of sample extremes, 1970. ISBN 90 6196 054 1. 

MCT 33 F.W. STEUTEL, Preservation of infinite divisibility under mixing 
and related topics, 1970. ISBN 90 6196 061 4. 

MCT 34 I. JUHASZ, A. VERBEEK & N.S. KROONENBERG, Cardinal functions in 
topology, 1971. ISBN 90 6196 062 2. 

MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 90 6196 063 o. 
MCT 36 J. GRASMAN, On the birth of bounda,ry layers, 1971. ISBN 90 6196064 9. 

MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. OUIJVESTIJN, E.W. DIJKSTRA, 
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN 
ARETZ, W.L. VAN DER POEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES &. 

G, ZOUTENDIJK, MC-25 Informatica SymposiUlTI, 1971. 
ISBN 90 6196 065 7. 

MCT 38 W.A. VERLORJ;:N VAN THEMAAT, Automatic analysis of Dutch compound words, 
1971.'·:i:SBN 90 6196 073 8. 

MCT 39 H. BAVINCK, Jacobi series and approximation, 1972. ISBN 90 6196 074 6. 

MCT 40 H.C. TIJMS, Analysis of (s,S) inventory models, 1972. ISBN 90 6196 075 4. 

MCT 41 A. VERBEEK, Superextensions of topological spaces, 1972. ISBN 90 
6196 076 2. 

MCT 42 W. VERVAAT, Success epochs in Bernoulli trials (with applications in 
nUJT/ber theory}, 1972. ISBN 90 6196 077 o. 

MCT 43 F.H. RUYMGAART, Asymptotic theory of rank tests for independence, 
1973. ISBN 90 6196 081 9. 

MCT 44 H. BART, Meromorphic operator valued functions, 1973.,ISBN 9061960827. 



MCT 45 A.A. BALKEMA, Monotone transfoPl71ations and Zimit Za:ws, 1973. 
ISBN 90 6196 083 5. 

MCT 46 R.P. VAN DE RIET, ABC ALC'rOL, A portable language for forrrrula manipu­
lation systems, part 1: The language, 1973. ISBN 90 6196 084 3. 

MCT 4 7 R. P. VAN DE RIET, ABC ALGOL , A portab Ze language for f orrrru la manipu­
lation systems, part 2: The compiler, 1973. ISBN 906196 0851. 

MCT 48 F.E.J. KRUSEMAN ARETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, An ALGOL 
60 compiler in ALGOL 60, Text of the MC-compiler for the 
EL-XB, 1973. ISBN 90 6196 086 X. 

MCT 49 H. KOK, Connected orderabZe spaces, 1974. ISBN 90 6196 088 6. 

MCT 50 A. VAN WIJNGAARDEN, B.J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER, 
M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER 
(Eds), Revised report on the aZgorlthmic language AI,GOL 68, 
.1976. ISBN 90 6196. 089 4. 

MCT 51 A. HORDIJK, Dynamic programming and Markov potential theo1'7J, 1974. 
ISBN 90 6196 095 9. 

MCT 52 P.C. BAAYEN (ed.), TopoZogicaZ structures, 1974. ISBN 90 6196 096 7. 

MCT 53 M.J. FABER, MetrizabiZity in generalized ordered spaces, 1974. 
ISBN 90 6196 097 5. 

MCT 54 H.A. LAUWERIER, Asymptotic analysis, part 1, 1974. ISBN90 6196 098 3. 

MCT 55 M. HALL JR. & J .H. VAN LINT (Eds), Combinatorics, part 1: Theory 
of designs, finite geometry and coding theory, 1974. 
ISBN 90 6196 099 1. 

MCT 56 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 2: graph 
theory, foundations, partitions and combinatorial geometry, 
1974. ISBN 90 6196 1009. 

MCT 57 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 3: Combina­
torial group theory, 1974. ISBN 90 6196 101 7. 

MCT 58 W. ALBERS, Asymptotic expansions and the deficiency concept in sta­
tistics, 1975. ISBN 90 6196 102 5. 

MCT 59 J.L. MIJNHEER, Sample path properties of stable processes, 1975. 
ISBN 90 6196 107 6. 

MCT 60 F. GoBEL, Queueing models involving buffers, 1975. ISBN 90 6196 108 

* MCT 61 P. VAN EMDE BoAS, Abstract resource-bound classes, part 1. 
r5BN 90 6196 109 2. 

* MCT 62 P. VAN EMDE BoAS, Abstract resource-bound classes, part 2. 
ISBN 90 6196 110 6. 

MCT 63 J.W. DE BAKKER (ed.), Foundations of computer science, 1975. 
ISBN 90 6196 111 4. 

MCT 64 W.J. DE SCHIPPER, Symmetries closed categories, 1975. ISBN90 6196 
112 2. 

MCT 65 J. DE VRIES, TopoZogicaZ transfoPl71ation groups 1 A categorical ap­
proach, 1975. ISBN 90 6196 113 o. 

MCT 66 H.G.J. PIJLS, LocaZZy convex algebras in spectral theory and eigen­
function expansions. ISBN 90 6196 114 9. 

4. 



* MCT 67 H.A. LAUWERIER, Asymptotic analysis, pa?'t 2. 
ISBN 90 6196 119 X. 

MCT 68 P.P.N. DE GROEN, Singul<ll'Zy perturbed differential operators of 
second order. ISBN 90 6196 120 3. 

MCT 69 J.K. LENSTRA, Sequencing by enwnerative methods. 
ISBN 90 6196 125 4. 

MCT 70 W.P. DE lbEVER JR., Recursive program schemes: semantics and proof 
theory, 1976. ISBN 90 6196 127 o. 

MCT 71 J.A.E.E. VAN NUNEN, Contracting Ma?'kov decision processes, 1976. 
ISBN 90 6196 129 7. 

* MCT 72 J.K.M. JANSEN, Simple periodic and nonperiodia Lam~ functions and 
their applications in the theory of aoniaal, waveguides. 
ISBN 90 6196 130 0. 

* MCT 73 D.M.R. LEIVANT, Absoluteness of intuitionistia logia. 
ISBN 90 6196 122 x. 

-MCT 74 H.J.J. TE RIELE, A theoretical, and computational study of general­
ized aliquot sequences. ISBN 90 6196 131 9. 

* MCT 75 A.E. BROUWER, Treelike spaces and related connected topoZogiaaZ 
spaces. ISBN 90 6196 132 7. 

MCT 76 M. REM, Assoaions and the closure statement. ISBN 90 6196 135 1. 

* MCT 77 

'* MCT 78 E. de Jonge, A.C.M. van Rooij, Introduction to Riesz spaces, 1977. 
ISBN 90 6196 133 5 

MCT 79 M.C.A. VAN ZUIJLEN, F:rrrpiriaal, distributions and rankstatistias, 1977. 

ISBN 90 61~6 145 9. 

* MCT 80 P.W. HEMKER, A nwneriaaZ study of stiff two-point boundary problems, 

1977. ISBN 90 6196 146 7. 

MCT 81 K.R. APT & J.W. DE BAKKER (eds), Foundations of aorrrputer saienae II, 

part I, 1976. ISBN 90 6196 140 8. 

MCT 82 K.R. APT & J.W. DE BAKKER (eds), Foundations of aorrrputer saienae II, 

pa;t II, 1976. ISBN 90 6196 141 6. 

* MCT 83 L.S. VAN BENTEM JuTTING, Checking Landau 'e "GrundZagen" in the 

automath system, 1977. ISBN 90 6196 147 5. 

MCT 84 H.L.L. Busard, The translation of the elements of Euclid from the 
Arabia into Latin by Herma:nn of Carinthia books vii-:r:ii, 1977. 
ISBN 90 6196148 3 

An asterik before the number means "to appear". 


