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PREFACE

This tract is an enlarged and improved version of tract 13 by the
same author. It contains the expanded lecture notes of courses on asymptotic
methods in applied analysis given for students in mathematical physics
at the University of Amsterdam. In particular we consider the asymptotic
behaviour of real and complex functions which are explicitly given by an
integral expression.

Asymptotics is an art thatvcan be mastered only by studying a great
number of special cases rather than using general theorems. The author
therefore has attempted to illustrate the techniques of asymptotic analysis
by a great variety of worked-out examples.

Much attention is given to the asymptotic expansion of functions
which can be expressed as a Laplace integral or more generally as an inte-
gral towhich the saddle point technique can be applied. A number of special
functions such as Bessel functions and confluent hypergeometric functions
are treated in this way.

A few topics are included here which are not usually found in the
text-books. We mention in particular the chapters on factorial series, the
Euler transformation, the asymptotic behaviour of Cauchy integrals and
asymptotics in the theory of probability. Also much original material is
included.

The text is aimed at students in analysis and in mathematical physics.
The style may be reminescent of the lecture room. In general the systematic
treatment anf the theorems are preceded orhfollowed by examples and
special cases. Some theorems could easily be generalized and conditions
may be relaxed somewhat. However, for the sake of simplicity and clearness
the theorems are sometimes stated in a simple and special form. Obvious

generalizations are left to the reader.






1. INTRODUCTION

In asymptotics we consider the behaviour of a function f of a variable

z when z tends to a specific value z.. Following the conventions of current

0

practice we take either o = @ or zj = 0. However, both cases are entirely
1

equivalent since z can be replaced by z . If the independent variable is
real and runs through all positive real numbers to infinity,we denote it
by w. If w is restricted to the natural numbers,we shall usually write n

instead of w. It is convenient to take z. = 0 for asymptotics with respect

0
to a complex variable z.

Sometimes f depends also on a further variable, say a parameter A.
Then asymptotic properties may be formulated either for specific values of

A or uniformly for some set A of A-values.

The Landau symbols

There are the following two symbols O and o introduced by Landau for de-
scribing order relations between asymptotic expressions. For w - « their

meaning is explained as follows.
(1.1) flw) = 0(glw))

means that there exist constants c and wo such that

(1.2) |f(w)| < clglw)| for w > Wy
The order relation

(1.3) f(w) = o(g(w))

is simply another way of saying that

(1.4) f(w) / glw) >0 for w > o,

The relation £ = o(g) says that f is of order less than g. The relation
f = 0(g) says that £ is of order less or equal than g. Thus f = o(g) im-
plies £ = 0(g).

The order relations may hold uniformly in some set A if f and g depend on

A. For (1.2) this means that the constant c¢ is independent of A.



Sometimes the symbol ~ is used to express asymptotic equivalence between

non-vanishing functions f and g. Then
(1.5) £(w) ~ g(w)

means that

(1.6) lim f(w) / glw) = 1.

Example 1.1

a. Stirling's formula

n! ~ nn+1/2e—n /2.
b. Wallis' formula

5 1.3.5... (2n=1) /A
2.4.6... ©n nm °

—2n('2;1) -

c. The following asymptotic expressions of the same function give an in-

creasing amount of information.

2 1/2

(n“+n+1) = 0(n),
(r12+n+1)1/2 ~n,
(n240+1) /2 = 4 4 0(1),
(Pams1) /2 = n w v o),
(n2+n+1)1/2 =n +-% + O(n—1)
d. Euler's constant v = .57T2¢cessnes .
1 1 1
T+5+ 3 + + 2~ logmn,
1 1 1
1+§+-3'+ +H=logn+y+o(1),
1+ 1a 1y +1-10gn+y+o0)
stz t ety ,
A AU A logn + y + (2n)—1 + o(n_1).
2 3 n

Definition 1.1

A sequence of functions {¢k(w)} is said to be an asymptotic sequence (AS)
as w > « if for all k



(1.7) Ppp1 = 0(¢k) for w - .
Such an AS is formed for example by successive negative powers of w

(1.8) 1, w_1s w—2’ w—3,

-A

A slightly more general AS is given by ¢k = k with Ak > o and

)\1<)\2<)\3<...

Definition 1.2

The function f is said to have an asymptotic expansion (AE) of order N with

respect to the AS {¢k} if there exist constants a such that
N
(1.9) £ = k__Z_O 8, ¢ + o(dy).

It is clear that an AE of order N is an AE for all lower orders. The

constants &, can be determined by means of
k-}-:1
(1.10) a = lim (f - a.9.)/¢. .
k w>oo j=0 Jd k

This shows that an AE of a given function is unique. On the other hand we
shall soon see that more functions can have the same AE.
In many cases it is possible to construct an infinite AE. Then we simply

write

(1.11) f~Zak¢k

which means that (1.9) is true for all N.
If with respect to a given AS a function g has an AE (1.11) with zero
coefficients, it is said to be asymptotically zero (notation g ~ 0) with

respect to that sequence. According to (1.10) this means that
(1.12) g / ¢ > O for all k.
If £~ Eak¢k and g ~ ka¢E it follows easily from (1.10) that the

linear combination of + Bg has the AE Z(aak+8bk)¢k. If g is asymptotically
zero, then f and £ + g have the same AE.



Example 1.2

The following statements hold for the AS {m—k}.

.. ()™~ TR,
o k=1
-1 -t
b. JO (t+w)”'e""at ~ k; (=15 T 1) 107,

c.  The functions e ¥, o 18 Y w0 are asymptotically zero.



2. ASYMPTOTIC POWER SERIES

We consider the asymptotic behaviour of a function f for w > = with
respect to the AS {0}, The resulting AE

(2.1) £~ Ja o™

is called an asymptotic power series (APS).
We shall, however, change the notation a little bit by writing x = w_1 and
using x (x > 0) instead of w. If the remainder of the n-th order APS is de-

fined as

N k
(2.2) RN(x) = f(x) - ) 8 x
k=0

then the full APS
. 'k
(2.3) £f(x) ~ ) ax
k=0 ak
implies that not only

(2.4) Ry (x)= o(x"),

but that even better

(2.5) R (x) = oMy,

We mention the following few theorems the proofs of which depend on simple

straightforward analysis.
Theorem 2.1

If £ ~ Zakxk and g ~ kaxk,then fg has the APS which is obtained by the

formal multiplication of the corresponding series.
Theorem 2.2

If £~ zakxk and a0'+ 0, then £ has the APS which is obtained by the cor-

responding formal procedure.



Theorem 2.3

If £~ Zakxk, then

X
(2.6) J £(t)at ~ J %“Txk”,
0 k=0
and
x f(t) - e . &
(2.7) J ——t—o-dt ~ kak.
0 k=1

Theorem 2.4

If f(x) has a continuous derivative and if f'(x) possesses an APS then the
latter can be obtained by formal differentiation of the APS of f(x)

(2.8) '~ ) ka &,

" k=1 k
If f(x) is repeatedly differentiasble and admits a convergent Taylor

series

(2.9) £(x) = ki,f(k)m)xk, x| <R,

k=0

then it is almost obvious that this is also the APS of f(x).
However, it comes somewhat as a surprise that the same result also holds
for a formal Taylor series which need not be convergent.

In fact we have the following property.
Theorem 2.5

If f(x) is repeatedly differentiable in an interval 0 < x < g then the for-
mal Taylor series represented by the right-hand side of (2.9) is the APS of
f(x).

(2.10) £(x) ~ J ki,f(k)(o)xk.
k=0 &'

Proof

The remainder of the finite Taylor expansion can be written as



Ry(x) = -1\.[1—, Ix (=) ) (1) at.
0

If £ belongs to some class C(0,a),then for N+1 < m we have the following

estimate

so that
RN(x) = 0(xN+1).

From a given APS other asymptotic expansions can be derived in a
variety of ways. A few simple ways are shown in the preceding theorems. A

more interesting method is offered by Laplace transformation. If

g(w) =f e “Tr(x)ax
0

is the Laplace transform of f(x) and if f ~ Zaki% then formal transforma-

tion gives the following APS

(w) ~ k! a0 T,
gl\w kzo akw

The full discussion will be postponed to a later chapter. Here we restrict

ourselves to the following simple theorem.
Theorem 2.6

Let f£(x) be continuous for 0 < x < a and have the APS Xakxk. Then

— k-1
(2.11) J e e(x)ax ~ ) k! 8w as w > «,
0 k=0
Proof
N k
We write £(x) = ) a X + RN(x). The corresponding remainder of the trans-
k=0

- formed APS can be written as

& —-WX. N ® -wx_k
S (w) = J e RN(x)dx -] a I e x dx.
N k

0 k=0 a



. +
We have to show that wN+1SN(m) + 0 for all N. Since ]RN(X)! < cxN 1,we have
& _ux ® —-wx_ N+1 -N-2
|J e RN(x)dx| <ec J e x dx = 0w ).
0 0
Further it is easy to show that
w_N_1 J e_wxxkdx + 0
a .
for all k.
Example 2.1
a. The coefficients of the Taylor expansion of exp - 1/x are all zero.

This means that the Taylor series converges but does not represent
the function. However, it is true according to theorem 2.5 that the
Taylor series is the right APS. Thus exp - 1/x is asymptotically zero

as x > +0.

b. We consider the function

o -t
f(x) = J ;itx at, x >0.
0

(k)(O) = (—1)kk!k!. The formal Taylor

series becomes Z(—1)kk!xk which, however, diverges for all x ¥ 0. Yet
it is the APS of f(x).

A simple calculation shows that f

Example 2.2

Starting from the Taylor series and APS

e T NS
k=0

(1+4x

we obtain by using (2.10) for a =

I“’L“’X&CN ) (=1)%k!
0

1+x k=0 wk+1

From theorem 2.5 it is clear that a power series with a non-vanishing
radius of convergence is the APS of its sum. However, the preceding examples
show that an APS may diverge for all x # 0. But the following theorem shows

that also to a divergent power series a function can be associated for which



this series is its APS. Of course this association is not unique since to

this function an arbitrary asymptotically vanishing function may be added.
Theorem 2.7

For any formal power series z akxk there exists a function f(x) with this
kT e e aes
series as its APS. It is possible to find such a function which is infini-

tely differentiable in a given interval (0,a).
Proof

Take a = 1 and define
(2.12) £(x) = ) ak(1 - exp - iL}—('l)xk,
k=0 len|

where ¢(x) is some positive function of x.
Since 1 - e ® < a for a 2 0,the terms of this series are dominated by

xk¢(x) so that f(x) converges for 0 < x < 1. We have

N N ®
£(x) - P B exp - 224 00 kK,
| X kZo akx | < kZO Iaklx exp Iakl (1 k§N+1 X

If ¢(x) = /2

all asymptotically zero. The second series is O(x

the terms of the first series on the right-hand side are
M+1/2) 5o thet the left-
hand side is certainly o(xN). Since this is true for all N,the series
Zakxk is the APS of f(x).
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3. ANALYTIC FUNCTIONS

The asymptotic properties of a complex function f of the complex
variable z = x+iy or z = r exp i6 when z > 0 or z > ® may depend on the
phase 6. Order relations such as f = O(g) may be uniformly valid in some

sector a < 8 < B but may loose their validity outside this sector.
Example 3.1

For z > O the asymptotic relation exp - 1/z ~ O with respect to any power
series of z holds uniformly within any closed sector contained in the domain
- 31 < 0 < inm. However, for purely imaginary z we have |exp - 1/z| = 1.
Hence the relation above does not hold uniformly in the domain
-t <0 < %ﬂ. For %ﬂ < |9| < 7 things are even worse.

As a rule we consider only asymptotic relations with respect to z = 0.
Then a sultable asymptotic sequenﬁe is formed by successive powers of z
such as {z } or more generally {z } as in the real case. We repeat that an

asymptotic expansion such as
k
(3.1) £lz) ~ ) &,z
k=0

means that for each index N there exist a positive constant cy and a small

number € such that

|N+1

(3.2) |£(z) - Z a z | < ey |z for |z| < e.

k=0 k

Of course the coefficients a and the constants c_ may depend on the phase

of z. If, however, for some sector o < 6 < B it ig always possible to find
a constant n independent of 6,the expansion is called a uniform asymptotic
power series (UAPS).

From now on we consider only asymptotic expansions which are holo-
morphic in a fan-shaped region a < 6 < B, a < r < b. As a rule in applica-
tions we have either a = 0 or b = = but since by using the transformation
z > z'_1 asymptotics with respect to z = ® may be reduced to that for z = 0,
it suffices to take a = 0. As a rule an expansion like (3.1) holds uni-
formly in some sector with coefficients independent of 6. However, in dif-
ferent sectors the analytic function may possess different expansions,an

effect which is known as the Stokes'phenomenon.
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The situation is particularly simple for an analytic function which is ho-

lomorphic at z = 0.

Theorem 3.1

If f(z) is holomorhic for |z| < R then its Taylor series is a UAPS.
Proof

For |z| < R we write

N N+1
f(Z) = Z a, zk + Z : § (C_jg)_il?“"] dg.

lz|=r
The remainder is in absolute value less than
+
ufz|™
N 2
(R-]z])R
where M is the maximum value of |f(c)| on the circle Icl = R. Thus for
each N the relation (3.2) holds uniformly irrespectively the phase of z.
If f(z) possesses an essential singularity at z = 0 the Stokes phe-

nomenon may be exhibited.

Example 3.2
For £(z) = 3(e? + &% tanh z_1) we have the following asymptotic ex-
pansions
z2k
f(z) ~ cosh z ~ ) EIE for Re z > 0,
k=0 :
z2k+1
£(z) ~ sinh z ~ ) Tors7)T for Re z <oO.

k=0

The theorems of the preceding section also hold for the APS of analytic
functions. In particular the theorems 2.1, 2.2 and 2.3 are valid with
obvious modifications if the expansions are uniform in some sector. How-

ever, theorem 2.4 can be replaced by the following theorem.
Theorem 3.2

If f(z) is holomorphic in @ < 8 < B, 0 < r < b and if
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£(z) ~ ) akzk uniformly in 6,
k=0

then

£1(z) ~ xa 25!
‘ kZ1 ak

uniformly in any smaller sector o < o, < 6 < 81 < B.

1
Proof

N+1

N
We write f(z) = Z akzk + 2z g(z), where Ig(z)| < ¢ in the given sector.
k=0

-1, zN {(N+1)g(z) + zg'(z)}, it suffices to show

N k
Since f£'(z) = ) ka, z
k=1
that zg'(z) is uniformly bounded in a smaller sector,

However, this can easily be deduced from the representation

2g'(z) = 5o § &) g

2
211 (z-2)

where the path of integration is an Apollonius circle |g-z| = &|¢| where

§ is a sufficiently small positive number.

A UAPS of an analytic function may not exist but,if it does exist,it
is unique. On the other hand many analytic functions may have the same
UAPS for some sector -a < 6 < o, where for simplicity the sector is chosen
symmetric with respect to the positive real axis 6 = 0. This result follows
from the simple observation that the function exp (-z~'), where y is a
positive real number, vanishes asymptotically with respect to all powers
of z in the sector |8| < 3m/y. Hence, for y < im/a this function is uni-
formly asymptotically zero in the given sector.

We shall now consider the interesting problem whether a given formal
power series Zakzk can be the APS of some analytic function. If the series
converges within some circle there is no difficulty since the power series
is the Taylor series of the analytic function it represents and theorem
4.1 can be applied. But, if the series diverges it is not immediately clear
whether an analytic function can be constructed for which the given series
is its APS. Yet the answer is still in the affirmative. We have even the

following theorem.
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Theorem 3.3

Is 2 akzk a formal power series and S a sector ]arg zI < v, lz| < R,then
k=0
there exists an analytic function holomorphic in S for which the given

series is its UAPS in S.
Proof

We consider the function

s 1
f(z) = Z (1 - exp - —————g)akzk
k=0 |ak]z
with 0 < a < min (3m/y,1).

Making use of the inequality
[1 - e_zl < |z|, Re z > O,

which is proved below as a separate lemme,it easily follows that f(z)
converges for Iz| <1, |arg z! < v and is holomorphic. We shall now show

that £(z) has the UAPS ) akzk. The remainder may be estimated as
k=0

N k N 1 K
|£(z) - ] az| s § lalfex (-——=)z]" +
k=0 k=0 la.klx

|RN(z)|

+
o~
=

1

o

]
3

|

IA
=
[0]
Lo}
Le]
!
+
N
=
+
-
1
Q

where A = max | [.
’ k<N "

Taking o < 1 we have for each N that z_NRN(z) + 0 uniformly in 6.
Lemma

1 - e_z]

< |z| for Re z 2 0.
Proof

For z = x, a positive real number, it is a well-known elementary property
which follows from the observation that the function 1 - x - exp - x de-

creases monotonously. For complex z we write z = x+iy and consider the
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function

2x 2

flx,y) = |1 - e-z!2 - |z|2 =1-2%cosy+eF-x" - y2.

Using the inequality 1 - cos y < %yz,we have

£(x,y) = £(x,0) + 2¢ (1-cos y) - y2

IA

=X

< £(x,0) + (e -1)y2 < £(x,0)

IA
o

In some cases simpler methods are available for constructing an ana-
lytic function with a prescribed APS. Such a case arises when Zakzk
diverges for all z and Zakzk/k! has a non-vanishing radius of convergence R.
Then we may exploit the properties of the analytic function which for

|z] < R is defined by the latter series.
Example 3.3

Starting from the divergent power series (—1)kk!zk,we consider the
k k - k=0
function F(z) = Z (-1)"2" = (1+z)” . Formal integration of
k=0

f(z) = J e_tF(tz)dt,
0

i.e. by interchanging summation and integration, gives the original formal

power series. Since F(z) is holomorphic for all z with the exception of a

pole at z = -1,the integral defines an analytic function which is holo-

morphic in the sector -m < arg z < m, explicitly

©  —t

£(z) = f fitz at.
0

According to example 2.1 this function has the required APS for real z. The

next chapter will show that this result can be extended to complex z.
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L. INTEGRATION BY PARTS

One of the simplest ways of finding the AE of a function defined by a
definite integral is the method of integration by parts. However, the field
of application is rather restricted. The method only works for definite
integrals of a certain special kind. The idea will be made clear by
treating a few particular examples.

As a first example we consider the error function

X 2

(k.1) erf x = 5% [ e = dat.
0

We note that erf (-x) = - erf x and erf » = 1. By expanding the integrand

in its power series and integrating term by term, we obtain the series

Ll k _2k+1
(L.2) 1 /roerf x= z L0 5——7—
L Dk+1 k! °
k=0
which is convergent for all values of x. However, for large values of |x|
the expansion ceases to be suitable for numerical calculation.
For large and positive values of x it is better to consider the comple-

mentary error function
o 2
_ 2 -t
(L4.3) erfe x = -~ Jx e = at.

The representation may be brought in the following form

1.2 _1
27X I e t(t+x2) 24t.

0

erfex =
Applying integration by parts to the integral
0 1
£(x) = J e~ (t+x®) 2at,
0
we find after one step
flx) = x| -} J e~ F(ax?) "3 2at,
0

and after n steps
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. n
(b.h) £(x) = ) (_1)1{_1(%)1{-1 kT, R_(x),
=1
where
(15 R = 0P, [ e en®) e,
0

The remainder has the sign of (—1)n and is in absolute value less than

) k—2n—1'
n

ol

(3) J A
nJo

This result shows that the expansion (L4.4) is an APS. It appears that in
this particular case the AE has the pleasant property that the remainder
after n terms is dominated by the (n+1)th term, i.e. the first omitted term.
Thus we may write

—2n—1’ 0 <ac<1.

- _1)2¢2
(4.6) R (x) = a(-1)7(2) x
The property (L4.6) makes the expansion (4.4) extremely useful for numerical

calculations although the formal power series

(=1)(3), 2!
do 71

diverges for all values of x.
Thus we have found the APS

1 2

(L.7) erfex ~ 1 2e X z (—'I)k( ) x—2k-1

k

Nl=

The analysis may easily be extended for complex values of x. However,
the integral

00

1
e_t(t+z2)_2dt

f(z) = Jo

can be used only for farg z| < 3m. Repeating the analysis carried out above,
we arrive at the same expression for the remainder (4.5). However, in view

of the complex value of t + z2 we have a different estimate

(4.8a) |Rn(z)| < (%)n lzl—gn—1, for |arg z| < i,



and
(b.80) IR ()] s () (27" |sin 20]7", gor in < lave 2| < in.

The expansion is still suitable for the numerical calculation of erfc z
provided z is not too close to the imaginary axis.

The estimate (L4.8) shows that the expansion

. 1 2
(4.9) erfez ~ 1 %™t ] (-1)(3) 2
k=0

is an APS for |arg z| < im and that it is a UAPS in any closed subsector.

Next we turn our attention to the function

o -t
(4.10) £(z) = f % at, |arg z| < m.

This function is related to the incomplete gamma function
® a1

(4.11) I'(a,z) = J e 18 lat
z

and we may write

(4.12) £(z) = €°r(0,2).

It is not difficult to find the following series expansion

-z © (-1)k-1zk
(4.13) e f(z) =-1logz -y + z TR
k=1 :
where vy = - e—t log t dt is Euler's constant, which converges for all

17

values of z. Rgain, the expansion ceases to be numerically useful for large

values of |z|.

Integration of (4.10) by parts gives

and after n steps
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. n
bl 2(2) = ] DR R (2),
k=1
where
(.15) R (z) = (-1)"n! J e (t42) " Tat.
? 0

When z is real and positive the remainder has the sign of the first omitted
term. A simple estimate shows that the remainder is also dominated by this

term. For complex values of z we have

(4.16a) IRn(z)I < n! Iz|_n—1, for |arg z| < i,
and
(4.160p) IRn(;)| < n! Izl—n—1|sin el—n_1, for im < |arg z| < .

These estimates show that

o -
(4.17) f %;dt~ b1 7E
0 k=0

is an APS for Iarg z| < m and that it is a UAPS in any closed subsector.

The AE (L4.17) can be used for the numerical calculation of f(z), pro-
vided |z| is not too small. If z is real and positive we write z = x and
[x] = m. The accuracy with which f(x) can be obtained is determined by the
behaviour of the remainder Rn(x). However, since Rn(x) is a rather com-
plicated function of n we may as well take its estimate n!x_n—1. The latter
function is concave with a minimum for n = m. Thus the best result is ob-
tained by stopping the expansion at the m-th term. The sign of the error is
that of the first omitted term., The error is in absolute value less than
m!x—m-1,which may be replaced by the slightly rougher estimate ntm™® ", In
the following table values of 10log (mm+1/m!) are given which give an
impression of the number of correct decimals which can be obtained by this

method.



m 1Olog (mm”/m!)
2 0.6
3 1.1
L 1.6
5 2.1
6 2.6
7 3.1
8 3.5
9 4.0
10 L.y
1 .9
12 5.3

19
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5. BERNOULLI NUMBERS AND POLYNOMIALS

The Bernoulli numbers Bm, m=0,1,2,...

B
(5.1) _: = L gk

e’ -1 k=0 .

[t] < om.

o~18

are defined by the expansion

A1l Bernoulli numbers with an odd index m > 3 are zero. This follows from

the obvious fact that

t

Tt 3t = 3t cot h 3t
e -1

represents an even function of t.

The first few non-zero Bernoulli numbers are

B, =1 B, =

0 _ 8 ~ T30
By = - % Bio = é%
B, = % B2 = - 2730
B, -3 By =%
Bs =15 Big = -

The Bernoulli polynomials Bm(x), m= 0,1,2,...

xt © Bk(x)
k!

te
e -1 k=0

(5.2)

The first few polynomials are

Bo(x) =1

B(x) =x -3
By(x) =% - x + ¢

B3(x) =x3 - % x° + % X

B, (x) = o34 x? 3%
Bs(x) = x5 - g-xh + % x3 - % b

3617
510

5, [t] < am.

are defined by

The following relations are simple consequences of the definitions (5.1)



and (5.2)

(5.3) B (1-x) = (-1)"B_(x),
(5.4) B (0) = B,
(5.5) BI(x) = mB_(x), m 21

21

The Bernoulli numbers and the Bernoulli polynomials often appear in

asymptotic expansions. We mention the following expansions

(5.6) log I'(w+x) ~ (w+x-3)log w - w + 3 log 2m +
B .(x)
k-1 "k+1 -k
* kZ1 R e

valid for x constant and w - o,

(5.7) log n! ~ (n+3)log n - n + 3 log 2m +
+ z BQk n—2k+1
E]
o1 2k(2k-1)
B,
(5.8) 1T+ 3+ ...+ 1. logn~y- ) X 2k,
n k=1 k

Proofs of these expansions are given later on in this section.

The asymptotic behaviour of the Bernoulli numbers can be derived from

Cauchy's expression for the general coefficients of the power

pansion (5.1)

v = p__dz
(5.9) B2n/(2n)' T ooni § 2n Zz »nz 1.
7z (e"=1)

The righthand side can be evaluated by taking the residues at

k= 1,2,3,... . This gives

(5.10) B /(en)! = (=)™ Ta(em 2 | L
an " k§1 e

which can be approximated by the asymptotic relation

series ex-

A

+ 2kmi,
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(5.11) B, ~ 2(-1)*] (en)!_

2n (2ﬂ)2n

The Bernoulli polynomials Bm(x) are closely related to the Euler
functions Pm(x) which are defined as periodic functions of period 1

and
(5.12) Pm(x) = Bm(x)/m! for 0 < x < 1.

From the properties of the Bernoulli polynomials it follows that Pm(x) is

continuous except for m = 1. In particular

Po(x)

1,
(5.13)
P1(x) =x - [x] - 3.

Further we have

(5.14) P1;1+1(x) = Pm(X),
and
(5.15) P (b) def P (0) = B /m! for m # 1.

The saw tooth function P1(x) may be expanded in a Fourier series

© .
(5.16) P1(x) = _ z 51nk2kwx .
™
k=1
The higher Euler functions can be obtained from this by integration. In

view of (5.15) we find

-1 ° cos 2kmx
(5.17a) P (x) = 2(-1)""" ] S8 =XTX L, g,
2n k=1 (2km)>®
-1 s sin 2kmwx
(5.17b) P, .(x)=2(-1)" 228 XX m2 o,
2m+1 k=1 (2kn)2m+1

Again by using (5.15) we obtain the relation (5.10) by a different road.
The Euler functions appear in a well-known summation process usually

named after Euler. In its simplest form we have the following formula



n -
(5.18)  £(1) + £(2) + ... + £(n) = [ £(x)ax + 3e(n) + £(1)} +
1

n
+ j P1(x)f'(x)dx,
1

where f(x) has a continuous derivative for x > 1. The proof of (5.18) is
almost triviael if one starts from the integral expression on the right-

hand side
o .
J (x - [x] - 3)f£'(x)dx.
0

Euler's summation formula (5.18) can be used for obtaining asymptotic ex-

pressions as will be shown in the following example.
Example 5.1

Taking f(x) = x_1 we obtain from (5.18) the result

1+ 3+ ... 4+

1 1 o2
o= log n + (3 + EH) - J1 X P1(x)dx.

For n -+ «» we have
® -2
y=3- f X P1(x)dx
1
so that

14+ 3+ ...+ o

% - logn=vy+ <4 j x_2P1(x)dx.
n
This relation enables us to derive the asymptotic expansion (5.8) simply
by partial integration of the integral on the right-hand side.
Using the properties (5.14) and (5.15) we have

0 B o
I x-2P1(x)dx = -2 2 J x-3P
n n

5 (x)ax,

2n 2

end after N-1 steps

P
1 k

]
|
Il ~1=

00 00
J x%p_(x)ax nE oW j x_N-1PN(x)dx.
n n

k=2

It is not difficult to show that the remainder is O(n—N_1) by which the

23
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asymptotic behaviour is verified.
Example 5.2

Teking f(x) = log x we obtain from (5.18) the result

n

log n! = (n+3)logn -n+ 1 + J x;1P1(x)dx.
1

For n > « we have according to Stirling's formula
R
1 log 2m = 1 +f x P1(x)dx.
1
Combination of both results gives

(o]
log n! = (n+3)logn - n + 3} log 2n - J x_1P1(x)dx.
n
In a similar way as in the preceding example by partial integration of the
integral the asymptotic expansion (5.7) can be derived.

Example 5.3

Taking f(x) = log (x+a-1), a > O we obtain as in the more special case

a = 1 discussed before

(x)ax,

log I'(n+a) = (nta-3)log n - n + 3 log 2m - j (x+a—1)—1P1
n

which can be developed into the asymptotic expansion (5.6).
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6. LAPLACE INTEGRALS

We consider functions f(z) of a complex variable z which are given by

an integral of the form

o
(6.1) £(z) = J e % r(t)at.

0
Such an integral is called a Laplace integral and f(z) is called the
Laplace tranform of F(t). As a rule there exists a constant o such that the
Laplace integral converges for Re z > a but diverges for Re z < a. The
constant o is called the abscissa of convergence and the region Re z > a
the half-plane of convergence.

The function f(z) is an analytic function holomorphic in the halfplane of

convergence. It may happen that o = -». In that case £(z) is an entire
function.
Example 6.1
-t . -1 .
a. F(t) =e ~ gives f(z) = (z+1)  with o = -1.
b. F(t) = (1+t)_1 gives the special function (4.10) discussed in section

L. The Laplace representation (6.1) holds for Re z > O whereas the

representation (4.10) holds in the wider region |arg z| < m.

2
c. F(t) = e_t gives with a = -~ the entire function
2
£(s) = 3/ &* /4 erfc 3z.
o -1
(2t-t°)"% for 0 st <2
d. F(t) =
0 for t > 2,
gives with o = -» the entire function

f(z) = me” “I (z).

For most applications it suffices to suppose that F(t) is integrable

and of exponential growth

at)

(6.2) F(t) = 0(e for t > «,

where a is a real constant.
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Further we assume that for t + O there is an asymptotic expansion of the

kind
) X
(6.3) F(t) ~ t o, AL > =1,
oo x 0

However, in many applications for small values of t the integrand function

is given by a convergent power series
U k
(6.4) F(t) = t° ) a b, u > -1

In view of theorem 2.5 this expansion is also an APS of the kind (6.3).
Formally the AE of f(z) for z -+ » is obtained from the AE (6.3) of
F(t) by termwise integration. The resulting APS of f(z) holds for |z| > ®
and |arg z] < 3m and is a UAPS in any smaller sector |arg z| < im - §. This
important result rests upon a theorem known as Watson's lemma. However,

before discussing this theorem we mention the following simple properties.
Theorem 6.1

(6.5) f e % r(t)at = o(e™® F€ 27y,
a

a > 0,for z > » uniformly in |arg z| < ir - &.
Proof

Without loss of generality we may assume that the integral exists for
t

z = 0. Then we put G(t) = J F(t)dt so that G(t) is uniformly bounded, say
a

by a constant M. Then we have

z J e %a(t)at| < Me™® B€ 2 || /Re z <

a

J a_th(t)dt’
a

-a Re z
e

IA

M /sin 6.

For a = 0 the latter theorem may be improved somewhat. We have more

generally
Theorem 6.2

{=+]
(6.6) I e"%PF(t)at » 0 for |z| > « uniformly in |arg z| < im - 6.
0
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Proof

For any given € > 0 we choose a such that
a . a
IJ e F(t)at| < J |P(t)]at < Ze.
0 0
According to the preceding theorem there is a number w such that

|J e-ZtF(t)dt| < %e for |z] > w
a

uniformly in the sector |arg z| < im - 6.

Thus for any € there is a number w(e) such that
IJ e Zp(t)at| < e
0

for |z| > w uniformly in the given sector.
Theorem 6.3 (Watson's lemma)

The asymptotic relation

(6.7) F(t) = o(t") for t » 0 with u > -1 implies
- 1

(6.8) f e ?*F(t)at = o(z™"""), for |z| » = uniformly in the sector
0

|arg z| < im - 6.
Proof

For any given € > O there is a number a such that |F(t)]| < 3et"/u! for

t < a. Then we have
a a
|f e % (t)at| < e I XM/ at < Jex ™1,
0 0
According to (6.5) there is a number w such that

If e_ZtF(t)dtl 1ex ™ for x > w.
a

IA

Thus for any € there is a number w(e) such that
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00
IJ e_ZtF(t)dt| cex ! for x>
0

But this implies the statement (6.8).

Repeated use of Watson's lemma leads to the main theorem.
Theorem 6.4

The asymptotic power series
Ak
F(t) ~ ] at , t>0,
k=0
implies the uniform asymptotic power series

‘ k! ? 2
9 2z A a.kz Z

uniformly in any sector |arg z| < im - 8.

!

Example 6.2

According to example 6.1c we have
00 2 2
J e_Zt—gt at = /re® erfe z.
0

Formal integration of the series obtained by expanding the integrand
function exp - %tz gives the APS (L4.9) derived earlier by partial inte-

gration. However, no expression for a remainder term is obtained here.
Example 6.3

o
Taking F(t) = (1+t)7 = ] 5 we obtain
k=0

J e 2t (1+t) Tat ~ ) (-1)%k17F
0 k=0

an AE already discussed in section 4 (cf. formula (L4.17)). However, the
result is obtained here only for |arg z| < 37 and again without explicit

expression for the remainder.
Example 6.4

From example 6.1d we may derive an AE of the modified Bessel function
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Io(z). Using the Laplace representation
1 (2 1 1
Te zIo(z) =272 f P72 (1_1t) 2at,
0

we expand the integrand function as

1 1 1 1

-3 - - k k-

R I C O R
k=0 :

From (6.9) we obtain the AE

(2), (k-3)!
-z ~ k
e IO(Z) Koo k!(zz)k+§ s

which will be written in the standard form

2 (3). (%)
- k' 'k
(6.10) I,(2) f;m

e |arg z| < Im.
' k=0 k!(2z)

As is shown in the examples given above, the asymptotic expansion of
(6.1) for z - = is obtained in the half-plane |arg z| < im. However, in
some cases the domain of validity can be extended to a wider sector. This
may happen by analytic continuation if the integrand function F(t) is ana-

lytic, e.g. by rotation of the line of integration.
Example 6.5

Reconsidering example 6.3 we rotate the line of integration through an

angle 3im. This gives
00 . 1
f(z) = f e %% (1+iu)” 'au
0

by which f(z) is determined in the half-plane -m < arg z < O. The asymptotic
expansion (4.17) is now obtained for this sector. In a similar way by ro-
tation through the angle -3m the domain of validity is extended to the
sector 0 < arg z < m. Thus the AE (4.17) appears to hold in the full sector
|arg z| < 7 in accordance with the result obtained by integration by parts.
However, the latter method is still preferable.

The full power of the method of the Laplace integral is shown by its

application to the gamma function.
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Starting from the well-known expansion

1

(6.11) W) =Lrogat =-v+ | G-,

dz k=1

we may without difficulty verify that

1 1_tz
(6.12) P(z+1) = - v + I 3 dt, Re z > -1.
-t
0
This is equivalent with
1-€ tz
v(z+1) = - vy - log € - —— dt + o(1) =
0 1-t
o e-zt
=-vy-loge- J T at + o(1) ,
€ e -1

with € > 0.

On the other hand we have again for € > 0

t

00 00
-y = I et log t dt = log € + J e % lat + ofe) =
0

€

0
log € + log z + J 2"

€

1dt + o(e).

Combining these results we find the Laplace integral representation
e -

(6.13) V(z+1) = log z + f 2t (% - -—%J—*)d’c, Re z > O.
0 1

The Laplace integral on the right-hand side of (6.13) can be expanded
asymptotically by applying theorem 6.4. According to (5.1) we have

o B
k+1 k
F(t) ~= §J 7=+ t
=0 (k+1)!
so that
B
+1  —k-
Y(z+1) ~ log z - 7%;% Pl
or
1 Box ok
(6.1k4) Y(z+1) ~ log z + o z o Z

k=1
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This AE is obtained at first for Re z > O; but since it is possible to
rotate the line of integration through angles + 3m,the domain of validity
of (6.14) can be extended to the sector |arg z| < m.

The result (6.14) can be generalized without difficulty by starting
from

et_e(i-a)t

(6.15) . \U(Z"’a) - w(z) = [ e'Zt t__‘| dt.
0 e

In view of (5.2), (5.3) and (5.4) we have for |t]| < 2
o Bk(1)-Bk(1—a)

F(t) = )
k=1

k-1
k! o

and next
(6.16) zra) - p(z) ~ § (-0,
o k=1

Formal integration of (6.14) yields the AE of log z!. However, it is

better to start from the integrated version of (6.13)

(6.17) log z! = (z+3i)log z - z + C + J e_ZtB(t)dt,
0
where
1, 1 1 E Bow  oxeo
(6.18) B(t) =+ ( -—+3) = £
t et_1 t =1 (2k)!

For Re z + « the integral on the right-hand side of (6.17) is O(z~1). Thus ,
in view of Stirling's formula,the constant of integration C equals
3 log 2m. Formal substitution of the power series of B(t), convergent only

for It! < 21, gives the full AE already given by (5.7) for integer z.

B2k -2k+1

(6.19) log z! ~ (z+3)log z -~ z + 3 log 2m + Z1 h(oxo1) 2 ,

ki

valid again for |arg z| < .
From (6.19) a generalization of the Stirling formula can be obtained

by taking exponentials. We find

+3

e”? Vo exp (—— - £ ..)

2! ~ z°
' 12z
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or

)
(6.20) 2! ~ 22Y27E or (1 4 —— & — S+ ).

122 5gg,

The following example shows a related formula.
Example 6.6

For b > a we have

I(z+a) _ B(z+ta,b-a) _ 1 1 +a-1 Peg—1
r(§+2) - §(§_a)a = T(o-a) Jo £2787 1 (1-) "7 gt

In order to bring the integral into the form of a Laplace integral we

perform the substitution t + exp-t. This gives
® -zt
B(z+a,b-a) = f e “UF(t)dt
0
with
-t

F(t) = e—attb-a—1 (1—: )b-a-T.

There remains as the only technical problem the expansion of F(t) into a

power series. The first few terms are
F(t) = 2727 - J(asb-1)t2"2 4 ...
From theorem 6.4 we then find the AE

(6.21) %%f{%% ~ 2% {1 - J(b-a)(bra-1)} + O(-5)).
Z

This result derived only for b > a apparently also holds for a > b.
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T. FACTORIAL SERIES

We consider again the Laplace integral
(1.1) (z) = f e_ZtF(t)dt
0

but we make here the restriction that F(t) is analytic and holomorphic in
a domain which contains the positive real axis in its interior. This
implies among others that for small values of lt| the integrand function

may be defined by its Taylor series
v k
(7.2) F(t) = ) at.

We have seen in the previous section that substitution of (7.2) into (7.1)
followed by formal integration yields an APS

(7.3) £(z) ~ § klaz %1,
zZ kzo a.kz

However, in many cases the expansion (7.3) diverges and can be used for

the numerical evaluation of f(z) only for large values of |z|.

Better results may be obtained when F(t) is expanded not as a Taylor series
but with respect to a different set of functions {wk}. In particular we
shall consider the case wk = (1—e_t)k. The philosophy behind this choice is
as follows. The asymptotic behaviour of f(z) for z + « is determined by
that of F(t) for t - 0. The power set {t*} and the set {wk(t)} are eguiva-
lent for t + 0 so that it is plausible to expect that by using the latter
set again an AE of f(z) is obtained. However, the powers of 1 - et are
better adapted to the analytic properties of F(t). This becomes apparent

when one considers the conformal map

(7.4) u=1-¢e .
The circle lu, = 1 is mapped upon the curve
(7.5) Re t = - log (2 cos Im t).

The illustration below shows that the region |u| < 1 corresponds to a region

which contains the full positive real t-axis, a region of the kind where



3k

F(t) is assumed to be holomorphic. Thus the latter method takes advantage

from a larger region of holomorphy. Therefore better results may be expected.

S 5 A S ——

/?1 a7

fig. 7.1

The formal procedure is as follows. Assuming the expansion

(1.6) F(t) = J Bk(1-e't)k
k=0

S

we obtain the result
£(z) = ] b f e %t (1-e7")¥at,
k=0 0

Since

1
J uk(1-u)z—1du = B(z,k+1) =

f e ¥ (1= tat
0 0

k!
z(z+1)...(z+k) °

this result can be written as

i.i f(z
k=0 (

z+1)...(z+k) °
This expansion is known as a factorial series. Series of the kind (7.7) are
well-known in analysis. Their properties are studied extensively in Milne-

Thomson. The series (7.7) is closely related to the Dirichlet series

(7.8) J bk 2.
k=0 &
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In fact they converge or diverge for the same values of z with the pos-
sible exception of the non-positive integers 0, -1, -2, ... .
The proof of this property rests upon the simple asymptotic relation

k -z
TE:ETT ~ k for k »> =,

(7.9)
which follows from (6.21) by specialization. Without proof we mention the

following basic properties of a factorial series.

Theorem 7.1

If a factorial series converges for z = z_,then it converges for

O’
Re z > Re Z with the possible exception of non-positive integer values.

Theorem 7.2

If a factorial series converges for z = then it converges absolutely

z
o’
for Re z > 1 + Re Z with the possible exception of non-positive integer

values.
Theorem 7.3

If a factorial series converges absolutely for z = z, then it converges

0’

absolutely for Re z > Re z,. with the possible exception of non-positive

0
integer values.

Theorem 7.4

If a factorial series converges for z = zo,then it converges uniformly in
any sector |arg(z—zo)| < 37m-8 with the possible exclusion of small circular

neighbourhoods at the points 0, -1, =2, ... .
Theorem 7.5

The domain of convergence of a factorial series is a half-plane Re z > o

with the exclusion of the points z = 0, -1, -2, ... .

In practical cases the abscissa of convergence o may easily be de-

termined by using the asymptotic relation (7.9).
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Example 7.1

The factorial series

©

z k!
=0 z(z+1)...(z+k)

converges for Re z > 1.
Example 7.2

We consider the Laplace integral

{-+]

f(z) = J e—Zt(et+1)-1dt.
0

The integrand function is analytic and has simple poles on the imaginary

axis (2m+1)wi, m integer. Thus the power series expansion
t,=1_ % k
(e +1)— = z akt
k=0

converges only for ]t| < w. From (5.1) we may obtain the explicit expres-
sion

Bk+1

_ k+1
& T(x+1)! (2

-1),

so that for k odd and large Iakl ~on F T,
Substitution gives the APS
£(z) ~ Z k!akz_k-1,
k=0
which, however, diverges for all values of z.

But, now performing the transformation (7.4),we have
! b4 -1
f(z) = J (1-u)“(2-u)” 'du.
0

The integrand function (2—u)'_1 can be expanded according to (7.6) into the

power series



37
which is uniformly convergent for all values of u within the interval of
integration. Interchanging the order of integration and summation is fully

legitimate and we obtain the factorial series

©

27T
(z+1)(z+2)...(z+k+1)

f(z) =
k=0
This series converges for all values of z with the trivial exception
z = -1, -2, ... . Moreover, as will be shown below, it is an asymptotic

expansion.

This example shows in an almost dramatic way how by a simple trick
a divergent AE may be transformed into a convergent one. The transformation
(7.4) applied to the Laplace integral replaces (7.1) by a representation
of the kind

1
(7.10) £(z) =-f (1-6)*"o(t)at .

0
Formal expansion of ¢(t) into a power series
(7.11) o(t) = ). bt

followed by formal integration gives the féctorial series (7.7).

If ¢(t) is analytic and holomorphic in the cirele [t] < R with R > 1,the
interchanging of integration and summation is permitted and the result

is a factorial series which converges for all z with the exception of non-
positive integers.

The asymptotic sequence ¢m(t) =+t", m=0,1,2,... is transformed by (7.10)

into the sequence

(1.12) oy (e) = sy -

It is easy to convince oneself that the sequence (7.12) is an AS for
|z| > » and that it can be used uniformly in any sector |arg z| < m-8. We

may now state the analogon of Watson's lemma 6.3.
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Theorem 7.6

The asymptotic relation

(7.13) ¢(t) = o(t™) for t + 0

implies
1 ] _

(7.14) J (1-t)%""¢(t)at = o(y_ ) for z + =
0 m

uniformly in any sector |arg z| < im-S.
Proof

Follows closely the proof of theorem 6.3 and may be left to the reader as
an exercise.

This theorem like Watson's lemms guarantees the validity of the AE ob-
tained earlier by formal means. ‘
In many cases, however, ¢(t) is holomorphic in the unit circle or is at
least differentiable a number of times in the closed interval (0,1). Then
a direct proof of the asymptotic property of the formal factorial series may

be obtained by integrating (7.10) by parts. After N steps we find

N (k)
- ¢ '(0)
(7.15) £(z) = kZO z(z+1)...(z+k) + RN(Z)’

where

Z+N¢(N+1)(t)dt.

1
;
(7.16) Ry(z) = m[ (=)

0

(N+1)(

It is clear that the continuity of ¢ t) implies the order relation

RI\T(Z) = O(wNH)-

Repeated use of theorem T.6 gives the following analogon of theorem
6.k,
Theorem 7.7

The asymptotic power series

(7.17) o(t) ~ 3 bktk , t>0

k=0
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implies the uniform asymptotic factorial series

k!b.

k
(T18) - f2) ~ b S e 2

uniformly in any sector |arg z| < im-§.
Example 7.3

In exemple 6.3 (cf. also formula (L4.17)) we have found the APS

£(z) = f e %o (14) Nat ~ Tk k2 E,
0 k=0

This expansion diverges for all values of z but can be used for numerical
purposes if |z| is sufficiently large. However, this expansion can be

transformed into a factorial series which may be much better suited for

numerical calculations. We write

_ ! z-1 .
f(z) = J (1-t)" "¢(t)dt with
0

o) = (1-log(1-t)™" = | b, t*.

k=0

2

It can be proved that b, = O(k-1 log— ) k > ». Therefore the power series

k
converges uniformly in the interval of integration.

Hence the resulting factorial series (7.18) converges for Re z > 0.

The technical problem of determining the coefficients b, can easily be

k
solved by noting that

k

(1+ E +5/x) E bt = 1.
k=

1 k=0
This gives the recurrent relation

k-1 b.
Ef% ,» k21

J

o'
P

1}

1
e~ 1

0

it = 1.
with bo

The first few coefficients are
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Example 7.4

Starting from

© 1
erfe Vz' = 7%;[ e Sy 2t
zZ

we obtain the Laplace integral representation

fadi 1
erfc Yz = e z‘/%_‘J e_Zt(1+t)_§dt.
0

,
Expansion of (1+t)72 into its Taylor series followed by formal integration
would give the well-known AE obtained in example 6.1c and 6.2. This AE
diverges for all values of z. But this representation may be transformed

into
! z-1
12z 2e” erfc vz = J (1-t)"" '¢(t)at,
with
-3
6(t) = (1 - log (1-t))72.
This function has a convergent Taylor series within the interval of in-

tegration as in the preceding example. Thus a convergent factorial series

may be expected. We easily find

=11 1l.2_ 5.3
$(t) = 1 - Strgt -yt ¢t R
so that
=P B i
~& 2_
(7.19) erfe vz N (1 - ot (1) (232) ~ () 242V (273) + oed)

This AE,convergent for Re z > O,may be compared to the divergent AE
obtained in (k4.9).

The analysis leading to a factorial series of the kind (7.7) can be
generalized somewhat, eventually resulting in a factorial series of the form

k!ck(a)

z(z+a)...(z+ka) °

(7.20) £(z) = )
k=0
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where a is an arbitrary complex constant.i

The general idea is that (7.20) always represents an asymptotic expansion
for |z| + = but that for some values of a the series may converge and for
other values of a may diverge. The effect of taking different values for a
can be discussed by considering the representation (7.10). The convergence
of the factorial series (7.7) resulting from the expansion (7.11) depends
on the position of the singularities of ¢(t). If there is at least one
singularity inside the unit circle, the factorial series certainly diverges.

However, if (7.10) is written as

IS

1 -1 1/
J (1-t)* (1 = (1-t)""®)at,
0

(7.21) f(z) =

® |-

then formal expansion and integration of

(7.22) o1 - (1-6)"78) = T ¢ (a)(t/a)"

results in the generalized factorial series (7.20). A singularity s of ¢(t)

corresponds to a singularity 1 - (1-5)% of (1 - (1-t)1/a). This trans-
formation
(7.23) s> 1 - (1-8)®

suggests that for suitable values of a the singularities of (7.22) are no
longer inside the unit circle so that a convergent factorial series is ob-
tained. If e.g. s is a negative real number with -1 < s < 0,then for a
real and a log(1-s) > log z the singularity is taken to the outside of the
unit circle.
Complex values of a might be envisaged if (7.20) is used for the numerical
computation of f(z) for complex z. Then calculations may be facilitated by
teking arg a = arg z.

Starting from the Laplace representation (7.1),the arbitrary constant

may be introduced already at the beginning by writing (7.1) as

() #m) =1 [ o aa
0

and then performing the transformation (7.L4).
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Example 7.5
As in the preceding example we have

3 -3

4
1227 %% erfc vz

—_

o |

J e'tz/a(1 + t/a)—%dt =
0

1 Jact
J (1-t)2/8 "¢ (t)at with
0

I
® |

8(6) = (1 = a~" Log(1-6))"2.

The singularities are at t = 1 and t = 1 - e®. Thus for 0 < a < log 2 we
obtain a divergent expansion and for a > log 2 a convergent factorial

series. The first few coefficients are

1 1
6= Ts ¢y = -3 oyt %’
=_ 12,32
c3 =-3 a + 8 a 16>

We conclude this section by discussing another special case of the
method sketched at the beginning. Starting again from the Laplace integral
(7.1), we now expand ‘the integrand function F(t) in terms of
wk = tk(q+pt)7k-1,where p and q are positive real numbers with p+q = 1.
The sets {t*} and {¢k(t)} are asymptotically equivalent for t =+ 0, there-
fore a new AE of f(z) for z + « may be expected. Assuming as in (7.6) an

expansion
(7.25) F(t) = ) bktk(q+pt)_k_1 .
k=0

we obtain the result
v -k
(7.26) azf(z) = ) b p s (az/p),
k k
k=0

where the functions sk(w) are defined by
(7.27) s, (0) = o f Ut (14g)F Tay,

‘ 0

This result is closely related to a transformation of a divergent or



slowly convergent series introduced by A. fan Wijngaarden [21].

The functions sk(w) are studied from a numerical point of view by

N.M. Temme [18].

In fact, if to the series on the right-hand side of (7.3) the van Wijn-

gaarden transformation is applied the result (7.26) is obtained with
1

P=q=2z.
The right-hand side of (7.26) is an AE with respect to the set
{sk(w)} with w = qz/p. Since asymptotically

(7.28) sk(w) ~ k!w_k, -T < arg w < T,

the sets {sk(w)} and {2 %} are asymptotically equivalent.

On the other hand the right-hand side of (7.26) may turn out to be con-
vergent or perhaps rapidly convergent.

In section 9 (example 9.4) we derive the following asymptotic formula for

sk(w) as k +

1 1 3
(7.29) s, (w) ~ 7°k *o® exp(iuw - 2vkw).

The reason of this remarkable behaviour is the same as in the case of a
factorial series expansion. The powers of t(p+qt)-1 are better adapted to
the analytic properties of F(t) than the powers of t only.

Again we consider the corresponding conformal map

__t
at+pt *

(7.30) u

Circular regions |u| < ¢ correspond to circular regions in the t-plane
bounded by Apollonius circles with respect to t = 0 and t = -q/p. In par-
ticular the circle |u| < p—1 corresponds to the halfplane Re t > -3a/p.

Example 7.6

Again we take
3z " -3
(m2)%e” erfe vz = z f e “7(1+t) %at.
0

The required expansion is

43
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(#6)F = T b t5(qept) 5"

g+pt
k=0 *

or

ol
=

a(1-pu) (1-putqu) 2 = ) b u .

The radius of convergence is maximal for p = 1/3 and q = 2/3. This gives

o

%(1 —u2/9)_1/2= ) b, ur

k=0 ¥
with
b =2l 37
k 3 ‘2°k k!
The final result is
1, o (%)k
(7.31) (1z)? e erfe v2'= z — s, (2z).
Lo BT ek

The series is an AE and is moreover convergent for all z with |arg z| < =.
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8. THE EULER TRANSFORMATION

Generally speaking an asymptotic expansion of a given function f(z)
is not very suitable for the numerical calculation of f(z). In some spe-
cial cases only, the remainder of the finite expansion is kwnown to be com-
parable to the first neglected term. Sometimes the infinite expansion di-
verges for some or all values of z.

However, in many common applications the usefulness of an asymptotic
series exceeds one's expectations. Moreover, the numerical analyst has at
his disposal a number of tricks that may greatly improve his numerical re-
sults. The Euler transformation is perhaps the most used trick, at least
it is most widely well-known. By means of this transformation it is some-
times possible to turn a divergent series into a convergent one.

Euler's transformation can be derived in the following elegant way.

We consider a formal series

and introduce a formal shift operator S and the weighted mean operator M

by means of

S8y = By o

M

p + gS with |p| < 1and q =1 - p.
Then we have formally
a aa
=Vek, =0 _ Z0_
I = I87eg =75 = 7o - szkao'
This formal procedure suggests the Euler transformation of type E(q)

b, = qua

k

or explicitly

(8.1) b

w
1]
I} Mw

ky k-3 j+1
(j)p Ig9" e, .
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The numerical analyst who does not care.for theory asserts that Zbk is a
better series than Zak. Usually the process is carried out with p = q = 3
and if necessary carried out a number of times until a good series is ob-
tained.

If, by way of illustration, the following alternating series

+

=
+

1_
3

o=

is "eulerized", we obtain

1 1 1 1
-—_— + + + + ...
_1'2 2.2° 3.23 h.2h

the convergence of which is much better than that of the original series.
In order to get a better insight into the effect of an Euler trans-
formation we consider the generating functions

(8.2) a(z) = Zakzk+1 , b(z) = Zbkzk+1 .

We restrict our discussion preliminary to those series for which a(z) has
a non-vanishing radius of convergence Ra' This enables us to handle di-
vergent series such as 1 - 2 + 3 - 4 + ... but a series like
10 - 21 + 3! - 4! + .., falls outside this class.

It is easily seen by comparing equal powers of z that the relation

(8.1) is equivalent with

(8.3 b(z) = a3

The radius of convergence of a(w),where

= 92 = —¥_
(8.4) V=T 0 2T gepwe

is determined by the singularities w = s of the holomorphic function a(w)

as
(8.5) R = inf |s].

Then the radius of convergence of b(z) is given by
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(8.6) Rb = inf

q*ps

The Euler method is most effective if Rb/Ra is as large as possible.

Example 8.1.

For the example given above we have the generating function a(z) =
log(1+z). According to (8.3) we have b(z) = - log(1-3z) with a radius
of convergence which is twice as large. More generally, if a(z) has its
singularities at z = -1 and z = =, then b(z) is singular for z = (p—q)"1
and z = p—1. The ordinary Euler transformation E(3) gives R =1 and

Rb = 2. However, the transformation with p = 1/3, q = 2/3 gives even bet-

ter Rb = 3.

In an alternative way the Euler method may be discussed by conside-

ring the generating functions
(8.7) a(z) = zakzk/k! » B(z) = Zbkzk/k! .

The relation (8.1) is easily seen to be equivalent with the functional

equation
(8.8) e %8(z) = qe %a(qz).

It clearly suffices to consider the coefficient of zk in the expansion of
ao(qz)exp pz.
From (8.8) we obtain the interesting result that the operators E(q)

form a commutative semigroup with the property

(8.9) E(q1)E(q2) = E(qq,)-

' We shall now extend the discussion of the Euler method to those series
Zak for which o(z) is holomorphic in a domain which contains the positive

real axis. If

(8.10) A= J e—xa(x)dx
0

exists, the series is said to be Borel summable with A as its Borel sum.
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From (8.7) and (8.8) it follows at onceb

Theorem 8.1

The Euler transformation E(q) with q real and positive does not change

the Borel sum.

Proof

f” e ¥B(x)ax = q J“ e o (gx)dx = I” e Xa(x)dx.
0 0 0

A summation method such as the Euler transformation which turns a conver-
gent series into a convergent series with the same sum is said to be
regular. For summation methods of the type (8.10) regularity is defined in
the same way. The following property is proved in Hardy [6,8.5] in a

more general context.

Theorem 8.2

The Borel method (8.10) is regular.

Proof

We put for k = 0,1,2,...

1 ® -t .k -X x2 xk
¢k(x) = [X e tdt = e (1+X+§T+"'+ET)
and
¢k(x) = e_xxk/k!
If Ya, = Aand J = A, then
oA Lo o h,

X
J e ta(t)at = ) ;¥ Jx ~teKat = Zak(1_¢k) =
0 R0

A - Jaydy = A= KA L0, =

A= JAY, .
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Hence there remains to prove that
lim e_xZAkxk/k! =0,
X0

but this is an elementary matter.

Hardy gives necessary and sufficient conditions for the regularity of
a wide class of summation methods. The regularity of the Euler transforma-
tion appears to be a simple corollary.

It has been seen in the preceding chapter that many asymptotic ex-
pansions originate from Laplace integrals. Summation of the asymptotic se-
ries means in fact the evaluation of the Laplace integral for a particular
value of the Laplace variable. Taking the expression (8.10) as a typical

case,one is inclined to reason as follows. In view of the formal relation

00
(8.11) j e a(x)ax = Ja ,
0 T L8
the integral can be evaluated by summing the series either directly or af-
ter one or more Euler transformations. However, the proof of theorem 8.1
clearly shows that one may save oneself the trouble of "eulerizing", since
the same effect may be obtained in a much simpler way by performing an al-

most trivial transformation of the integrand. We write

-

(8.12) J eXo(x)dx = J e 1= (T=10% (1) yax

0 0

and subject the new integrand function to a power series expansion
b
-1 =(1-p)x k
(8.13) w10 () = 1),

The result of formally integrating the new series is the Euler transfor-

mation with q = u-1.

Example 8.1

According to example 6.3 we have the AE

I e-Xt(1+t)_1dt ~ 7 (-1)kk!x'k'1 , X > 4w,
0 k=0
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The AE diverges for all values of x but we have seen already in section U
that for large values of x accurate numerical results can be obtained by
truncation at the right place. For x = 1 the series

1 =1+ 2! =3 + 4! -5 + .,

seems to offer no hope. Yet the ordinary Euler process gives a "less diver-

gent" result

1 11,9 _ 1 265
2tO0*tg-grz gt

Repeated application of the Euler transformation eventually leads to a
usable series yielding the numerical value 0.5963LT.
The Euler transformation may be circumvented by writing
J e t1+t) Tat = I e L& 4
1+gx

0 0
and applying power series expansion of the new integrand function. Instead
of repeating the Euler transformation if the resulting series is not good
enough, we merely have to choose a proper value of q. It can be expected

that smaller values of q give better results but that it takes more trouble

to get a final result.
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9. THE METHOD OF LAPLACE

In this section we consider the asymptotic behaviour of functions
f(w) of the type

- 0
(9.1) flw) = [ F(t,w)dt,
00
where the integrand function has the shape of a hill tending to a peak or
a needle as w > +». The basic idea can be illustrated by considering the

asymptotic behaviour of the factorial function

00
(9.2) ! = [ e bttt
0
The integrand is a hill with its summit at t = w. It may be a good idea
to shift this summit to the origin by performing the substitution
t = w(1+u). This gives

{e™%(1+u) }¥au.

{9.3) 0! = e 9t [

-1

The new integrand represents again a hill but its summit is fixed at the
origin. For large values of w the hill becomes a needle. In fact, near the

origin we may write
(9.4) e Y(1+u) = exp {-u+ln(1+u)} = exp (-%u2+...).

Thus we have approximately

o 1 2

(9.5) 0! ~ e 9wt J e 2" Ygy
-1

and with an almost equal precision

(9.6) w! ~e

w+1 “ 3

- ~3u

W I e 2 wdu.
-—00

Working out the integration we obtain Stirling's well-known approximation
(9.7) w! ~ e %" 2ra.

It is not difficult to make this analysis completely rigorous. We shall
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therefore consider more generally the asymptotic behaviour of the integral

(9.8) £(w) = fm 00 (t) gy

-0

for real w tending to infinity. Then we may state the following theorem.

Theorem 9.1

Let ¢(t) be a concave function with its minimum at t = t., let ¢(t) be

0’
continuously differentiable in a neighbourhood of to with

(9.9) 8(t) = o(t5) + Bal-t)% + o((t-t.)7) ,

0

then we have the following asymptotic relation

(9:10) [ ey = @ 0] (a0,

-00

Proof

Without loss of generality we may take to = 0 and ¢(t0) = 0. There exist

positive constants ¢ and § such that
|¢(t)-%at2| < c|t|3 for [t] < s.

Then in view of theorem 6.1 we may write

© [
j e—w¢(t)dt = j e_m¢(t)dt +0(w") =
—-c0 -6

s 2 s 2 2
- [ emewt gy I e~taut™ (-ule(t)-28t") 1150 o 00,
8 -8

The first term is

® -%amt2 - om, 3 —o0
J e at + 0(w™ ) = (592 + 0w ).
o aw

With the help of the inequality

Iet—1| < ltleltl
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the second term can be majorized by

8
2cw I exp - (lawt®-cutd)t3at <
0

s 2.3
2cw I exp(-(3a-8c)wt“)t dt <
0

) 2 .
2cw J e 34t = 00,
0
where for sufficiently small §
b= 3a - §c > 0.

Combining these results we obtain the relation (9.10).
Tt will be obvious that the conditions of this theorem may be varied
in a number of ways. The only thing that matters is that ¢(t) has an ab-

solute minimum at to and that in a neighbourhood of to this function is

sufficiently smooth. If ¢(t) = ¢(t& + ¢ for [t—tol > § with some positive

€, we need only consider the S-neighbourhood of t.. If ¢(t) is differentia-

o

ble a number of times, we have a = ¢(t0). Further, the relative remainder
1

may admit a better estimate than the term with w 2.

Example 9.1
If o(t) = t2(1+|t]), we have
- (IyE _ 1
flw) = (w) St e
Example 9.2
If o(t) = t2 ¢1+t2 , we have

£(w) = (DF (13~
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Example 9.3

For the integral

1
I £20(1-t)P4%¢ with a > 0, B > 0
0
we have
¢(t) = -a log t - B log(1-t),
which is concave with ty = a(u+6)-1,
and further
3
n
- - o B _ (a+g)
a =4 (to) t2 + (1t )2 B .
0 0

The relation (9.10) gives at once the asymptotic behaviour

/2 aawBBw

w? (a+B)

(2ra8)? (arg)3 -

Of course the given integral may easily be expressed in gamma functions
so that the result obtained above can also be derived by using the Stirling

approximation. However, use of (9.10) is simpler.

Example 9.4

The derivation of the asymptotic expression (7.29) from (7.27) illustrates

the treatment of a more complicated case. We start from

f(k) = Im e_¢(t)dt .
0

where

(k+1) log (t+1) - k log t + wt

o(t)

so that in the notation of (7.27) f£(t) = sk(w)/m.
We note that here w is a parameter and that k is the asymptotic variable.

The integrand has its maximum at t = to where to is the positive root of
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We have

Then we have

-¢(to)

dt .

o —%¢"(t ) (t-t )2
f(k) ~e J e 0 0

A simple calculation gives
= ok + 1 k_ -1
¢(to) = 2/kw + 3 log i - 2w + o(k™2) ,

and

¢"(t0) = 2k—%w3/2 + O(k_1)

With the omission of the order terms we then obtain

-3/2)%

f(k) ~ (ﬂk%m exp —(2/i5+%1og§h%w).

From this (7.29) follows at once.

For the slightly more general integral representation

(9.11) £(w) = I e () (g )at
similar results may be obtained. If ¢(t) has the properties stated in
theorem 9.1 and if Y(t) is,say,continuously differentiable in a neighbour-

hood of t.,the result (9.10) may be generalized as

o’

0 1 o(t,) 1
(9.12) f e~0(t) it )ap = (E%)g o o W(t,)(140(w™2))

In some cases the following method may be recommanded. A new variable

u is introduced by means of
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(9.13) = 4(t) - o(t,)

where u has the sign of t - to. The transformation t » u is monotonous in

some neighbourhood of t_.. Since this neighbourhood is decisive for the

o
asymptotic behaviour of f(w),we do not care what happens elsewhere. Formal
substitution of (9.13) in (9.11) gives the asymptotic relation

2
-awu
e

(9.14) flw) ~ e

—ob(t) o
“o | x(w)au,

00 -

x(u) = y(t)at/du .

The last integral may be considered as a variant of the Laplace integral
to which it can be reduced by changing the variable of integration u into
+ u?. According to theorem 6.l there remains to determine the power series

expansion of x(u) in powers of u.
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10. CALCULATION OF COEFFICIENTS

We consider the asymptotic expansion of the integral

00
(10.1) £(w) = I e ()¢ )as.
We assume that ¢(t) is concave with a zero minimum at t = 0. Further it is
assumed that ¢(t) and y(t) admit Taylor expansions convergent in a neigh-
bourhood of t = 0. '
Starting with the simple but representative case

(10.2) o(t) = 32

and the Taylor expansion

(10.3) w(t) = ) bktk

k=0

the asymptotic expansion of (10.1) can be written down at once as

v ® Jutlx
flw) ~ b t7dat,
0~ 1 [_w e
or
(10.4)  £(w) ~ (BDE ] 135 L (2ke1) byuX

k=0

We note that the coefficients of ¥(t) with an odd index do not contribute
to the expansion.

Ifsmore generally,¢(t) is determined by the following Taylor series

(10.5) o(t) = E & >0

. = ak ] 32 >

k=2
we may perform the substitution
2

(10.6) 3u® = ¢(t)
which for small t and u is equivalent to

(10.7) u = t/2a, + 0(t2).
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We obtain

@ 2 dt
(10.8) flw) ~ J e—%wu b(t)zdu »

so that in view of (10.1), (10.3) and (10.4) there remains to determine the
coefficients of the Taylor expansion of P(t)dt/du

‘ it _ v k
(10.9) Ppe)sr =] cu .
du k=0 k

Example 10.1

We consider

flw) = f exp - w(t-log(1+t))dt .
-1

According to (9.3) we have
-w—1w!.

flw) = %

The Taylor series (10.5) is

.12 1,3, 1L

o(t) = 3t TR -
The substitution (10.6) becomes

_ 12 3

u-—‘t-g‘t +36 - ees

We need, however, the inverse expansion

_ 12 .13
t—u+§u +—~—1361 + ...
Differentiation gives
c. =1 c, = 2 c, = 2
0 ’ 1 3 2 12 > °°°

This gives us already two terms of the asymptotic expansion of f(u)

1
14 —— 4 ...

w!
—_ .

+3 =
wm N w o 12w
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It seems that the calculation of further coefficients becomes increasingly

complicated. However, by differentiation of

%uz =t - log(1+t),
we obtain
1 N
dt 1+t
or
5% = (1+t)u.

Substitution of

leads to the recurrence relation

K
521 9d5dy s = Ly ’ k¥2

together with d1 1.

. _1
This gives d2 =3 and

k=1
(kt1)ay = a4 - jZQ I95%-+1 > k23,

so that successive coefficients can be calculated in a simple way.
We find

1 1
23 » Y4335

dh=—_ , d. = 755 ete.

Since e = (k+1)dk+1,we obtain a further term in the asymptotic expansion
of f(w) as
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' ! 1 1 -3
(10.10) —%———“’ ~1 o+ —+ +0(w™>)
ww+ e 2 120 288&2

™

The coefficients ¢, of the Taylor expansion (10.9) can also be derived
by using the well-known Lagrange-Bilirmann theorem which gives formulae for
the coefficients of the expansion of a function in powers of some other
function. The same result may be obtained with the help of the Cauchy for-
mula for the coefficient of the Taylor expansion of an analytic function.

Starting from

o = § ¥(w)dw/dz dz

k 2ni k+1
z

with the complex version of (10.6)
z = vV 2¢(w) ,

we have

1 yﬂwzgw[z)k+1
c, = T § dw .

k 2ri k+1
w

This weans that C equals the coefficient of wk in the expansion of

() - k+1
vw) [ ——
<¢2¢(w)>

in powers of w.
We next present a quite different method which in some cases may be
very successful.

We write formally
1,2 %
(10.11)  y(e)e (B o 20Ty () K2
k=0 ¥

1
where u = tw?. Substitution in (10.1) gives at once the AE
k¥l (o g2
(10.12) flw) ~ J w 2 J e % p (u)au .
k
k=0 -0

Example 10.2

Taking the same integral as in the first example we have
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= exp - w(¢-3t%) =

N

exp w(%t3—%t +...) =

exp(%u3w—%—%uhm'1+...)

This shows thet the coefficients pk(u) are polynomials of degree 3k.

The first few coefficients are

= _15 1T 1.9
Po =1 L T
_ 13 _ 16, k47 8 1..10 112
P L - - T iy
_ 1Lk 16
Py = =@ g

Substitution in (10.12) eventually leads to the result (10.10).

The polynomials may be calculated by a recurrence relation which is
obtained as follows.
If we write

F(u) = J pk(u)w_k/21

k=0

we find by logarithmic differentiation of
2
F(u) = exp(-w¢p+iu“)

the differential equation

1
(vtw?)F = w’F.

Substitution of the power series on both sides leads to the relation

1 1

2
= 2
upk + pk+1 u pk, k 1.

In view of the obvious fact that pk(o) = 0 for k 2 1,we find by integration
the recurrence relation

" 2
B (80 = w8 + | (nPrg e, k>t
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The methods explained above for finding the coefficients of an APS
are very effective. Still in special cases a more powerful method with
less amount of labour may be available.

For instance, the AE of w! can be obtained from the well-known AE of log w!

simply by exponentiation according to

[} -}
(10.13) ) akxk = exp ) bkxk >
k=0 k=1
where the coefficients bk are known. Formal differentiation gives
pt k-1 _ ¢ kK ¢ k-1
) ka, X == ¥ g x ) kb, X -
k=1 k=0 k=1

From this we obtain the following recurrence relation

(10.1L4) (k+1)ak+1 f ba +2bya .+ 3b3ak_2 +...+kba , k21,
with a, = 1.
Taking for bk the coefficients of (6.19) viz.
T
k  k(k+1) °
we obtain
1 1
(10.15) (k+1)ak+1 + szak + gBhak_2 + .

A simple calculation shows that

_ _ 139
ap =1 83 T = 51840
W oL A B
1572 4 2488320
-1
8 = 288

Thus we finally obtain

. 1
(10.16) w! o= W™ o 1+ T%’ +— 5 - 139 - -
“ 288" 5180w

) A O(m_s)}.
24883200
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11. THE SADDLE POINT METHOD

We consider the asymptotic behaviour of a function f(w) of the fol-

lowing kind

(11.1) £(w) = f 2 e w >
C

where ¢(z) and ¢(z) are analytic functions of the complex variable z and

where C is a certain path in the complex z-plane. As usual it is assumed

that w is a real and positive variable which tends to plus infinity.

The idea of the saddle point method is briefly to deform the path C
in such a way that the integral expression becomes equivalent to that of
the real case (9.11).

However, before explaining the method in detail we recall a few well-
known facts from the theory of complex analytic functions.

We write
(11.2) ¢(z) = n(x,y) + ik(x,y) . z = x + iy

where h and k are the real and the imaginary part respectively. Then we
have the Cauchy-Riemann equations

3h _ 3k oh _ _ 3k

9x  dy ? oy x
The functions h(x,y) and k(x,y) are so-called conjugate harmonic functions

satisfying the potential equation

If h(x,y) is given, then k(x,y) is determined up tc an arbitrary additive
constant. In terms of hydrodynamic potential flow the lines h = constant
may be called potential lines and the lines k = constant stream lines.
Each set is the set of orthogonal trajectories of the other set.

Of great importance are the points with ¢'(z) = 0. They correspond to
the stagnation points of the hydrodynamic flow where the velocity becomes

zero. In such a point we have
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At a stagnationpoint the potential function h(x,y) and the stream function
k(x,y) are stationary and may take a local maximum or minimum value on a
line through this point.

Next we consider the properties of the analytic function
(11.3) F(z) = exp - ¢(z).
The absolute value of F{z) defines the modular landscape
(11.4) [F(z)| = exp - h(x,y).

The potential lines h(x,y) = constant are the level lines of the landscape.
The stream lines k(x,y) = constant are the orthogonal trajectories of the
level lines and may be called lines of steepest descent ( or ascent).

Along such a line F(z) has a constant phase since
(11.5) arg F(z) = - k(x,y).

The stagnation points of ¢(z) are the saddles or passes of the modular
landscape. The landscape determined by (11.4) cannot have local extrema
since a harmonic function has no internal extrema in its domain. There-
fore the only stationary points of |F(z)|, the points with a horizontal
tangent plane, are saddles.

If F'(zo) = 0 but F"(zo) # 0,we have an ordinary saddle. If also
F"(zo) = 0,we have a higher order saddle. If e.g. F"'(zo) $ 0, the saddle

is sometimes called a monkey saddle (two legs and one tail).

Example 11.1

For ¢(z) = z2 the landscape |F| = exp (y2—x2) has a saddle at x =y = 0.
The level curves are hyperbolas x2 -y = constant. The steepest descent
curves are hyperbolas xy = constant. The level curves through the saddle
are the straight lines x + y = 0. They separate the highland y2 > x2 from
the lowland y2 < xg. The steepest descent lines through the saddle are the

lines x = 0 and y = 0. The situation is sketched in fig. 11.1



65

IY
\l/
v ]high
low :

SRR Gk

o~

fi§. 11.1

Example 11.2

For ¢(z) = 2> the landscape |F| = exp (-x3+3xy2) has a monkey saddle at

x =y = 0. The level curves are third-order hyperbolas x(3y2—x2) = con-
stant. The level curves through the saddle are the straight lines x = 0,
y=+x tg30°. The steepest descent lines through the saddle are the lines
Im z3 =0Qory=0,y=+x tg60°. The situation is sketched in fig.11.2.

high
/ \

fig. 11.2
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After these preliminaries we consider now the asymptotic properties
of (11.1). In order to simplify the discussion we shall neglect for the
moment the function ¥(z) by taking ¥(z) = 1. Furthermore we assume that
¢(z) is of algebraic kind so that it is analytic throughout the z-plane
and its only singularities are branch points and poleé. For simplicity we
take a path C that starts and ends with h(x,y) = «. Then C is deformed
into a steepest descent line of exp - h(x,y). The new path passes through
the valleys and reaches its highest positions at the saddles of ¢(z).
Along the new path of integration all contributions of the integrand are
in equal phase so that the asymptotic behaviour of (11.1) is essentially
that of the real case (9.11). It is clear that for w + = the asymptotic
behaviour of f(w) is determined only by the behaviour of ¢(z) in the
neighbourhood of the saddles. If there are more saddles on this line of
steepest descent each saddle makes its own contribution but we may take
into consideration only those saddles for which h(x,y) takes on a maximum
value. '

If ¢(z) is added to the picture,we may have a variety of complica-
tions. The deformation of C into the steepest descent path may involve
the crossing of one or more poles or singularities of ¥(z), or even worse

a saddle of ¢ may coincide with a singularity of y.

Example 11.3

We consider the integral

00
2 .
e—m(z -2z1)

f(w) = I v(z)dz.

-
There is a single saddle point at z = i. The steepest descent curves are
x(y-1) = constant. The steepest descent line ¥y = 1 passes through the
valleys and goes through the saddle.

The contour C(-»,») may be shifted to the steepest descent line Im z = 1.
If Y(z) is sufficiently well-behaved, the integral expression can be written

as
- [° - t2
Plw) = e f e " y(i+t)at.

The full asymptotic expansion of f(w) then follows easily from the expan-

sion of Y(i+t) in powers of t. The first term is
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1 1
o) ~ 729(i)e 2.

If, however, ¥(z) has a single pole z. in the strip O < Im z < 1,we have

0
to add the residue at the pole. If Y(z) = zlz + ... this means a contri-
0

bution
2mi exp -w(22—2z i).
0 0

Depending on the position of z the one or the other term dominates.

Example 11.4

The partial differential equation
— +—F=-wf=0 . w > 0,
has the general solution
f(x,y,w) = J exp -w(x cosh w - iy sinh w) ¢(w)dw,
C

where C starts at - «» + ia and ends at ® + ib. The saddle points are de-
termined by x sinh w = iy cosh w. Writing x + iy = r exp i6,we find
sinh(w-i8) = 0. This gives a sequence of saddles w = i(6+nm) where n is

an integer. The steepest descent lines are determined by sinh u sin(v-8) =
constant where w = u + iv. We consider in particular the general solution
for a = b = 0 with a sufficiently well-behaved function ¢(w). Then the in-
tegral converges in the halfplane x > 0, i.e. for -im < 8 < iw. The saddle
which is nearest to C is w = i6. The steepest descent line through this
saddle is the line v = 0. It is easy to see that C(v=0) may be shifted to
the position v = 6 without violating the conditions at infinity for the

convergence of the integral. Substitution of w = i8 + u gives

00

f(x,y,w) = I evT cosh uw(i6+u)du
00

so that asymptotically

1

2
£(x,5,0) ~ (30) y(ie)e™",
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Example 11.5
We consider the integral

flw) = J exp -w(z2+2/z)dz,
[

where C is the line Im z = a (a>0) with increasing Re z.

The origin is an essential singularity.

There are three saddles : 1, -3 i 1i/3. The steepest descent lines are

determined by xy - y(x2+y2)—1 = constant. The lines which pass through

the saddles z = 1 and z =k(= -3 + 3iv3) are sketched in fig.11.3.

fig. 11.3
. . 2. 2 3
They are respectively given by y = 0, x(x“+y~) = 1 and by (xy+H/3).
2 2
(x"+y") = y.

Looking for the valley parts the ideal path of integration is found to be
as sketched in fig.11.h

k

I

fig. 11.h4

The height of the landscape |exp - w(22+2/z)| at the saddles 1 and k is
respectively exp - 3w and expgm. Therefore only the latter saddle has to
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be taken into account for obtaining the required asymptotic behaviour.
The steepest descent direction at z = k is determined by

22 + 2/z = 3k2 + 3(z—k)2 + ...

Thus the steepest descent direction at z = k for the valleys is horizontal.
The effort spent in an accurate quantitative determination of the steepest
descent line of fig.11.l is almost of no use,since the only thing that
matters is the local behaviour at the dominating saddle point at z = k.

If one is interested only in the main term of the asymptotic expansion of

f(w),it suffices to meke the local trensformation at z = k viz.
z=k+t

where t is real. This gives

2
e-3wt q

f(w) ~ exp (g'+ iégi)w J t

or finally

.
2
flw) ~ (%;) exp (% + iégi)w.

The following general and systematic treatment is due to van der
Waerden [19]. In this treatment it is easily possible to deal with more
complicated situations such as the coincidence of a saddle point with a
singularity. Van der Waerden's method will be presented here in a rather
formal way. It is, however, not difficult to make all analytic steps com-
pletely rigoureus,merely by stating the necessary restrictive conditions
at the beginnning. Again we consider the integral expression (11.1) for
large positive values of w. For simplicity it is assumed that at both ends
of C the real part of ¢(z) tends to plus infinity.

Van der Waerden's method consists of studying the complex transfor-

mation
w= ¢(z) R w=u+ iv.

We note that by this transformation the steepest descent lines and the
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level curves of exp - w¢(z) are transformed into the horizontal and verti-
cal codrdinate lines of the (u,v)-plane.

The transformation is singular at the saddles of ¢(z). Any point where
¢'(z) = 0 gives rise to a branch point and a corresponding branch line

in the complex w-plane. This holds of course for saddles of any order.

By this map the path C is transformed into a contour C' which meanders
between branch points and poles in the w-plane.

We may now write

(11.6) o) = va e ylz()) La,

A typical situation is sketched in fig.11.5.

fig. 11.5

Apart from the branch points and poles due to the factor dz/dw there may
be similar singularities due to the factor y{z(w)}.
The idea of the saddle point method is to transform the contour C' in

such a way that

eXp - ww| = exXp - wu

becomes as small as possible on the contour. This means that C' should be
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shifted to the right as far as possible. It is clear that the best form of
the contour in this sense consists of loops surrounding the branch points
and poles, coming from infinity in straight lines from the right and going

back to infinity along the same lines straight to the right as shown in
Fig.11.6

’
wiA

®
Yin

()
Yia

fig. 11.6

It is equally clear that only the branch point (or points) at the leftmost
position contributes to the asymptotic behaviour of f(w).
Let us assume for simplicity that we are left with a single branch

point at w = 0. If this is a branch point of the order two,we may perform
1

the local substitution s = w°. Then the integrand function
(11.7) F(w) = y{z(w)}dz/dw

has a pole at s = 0 of the first order and admits an expansion of the kind

(11.8) F(lw) = a s+ a +a.s+ ...
This gives

fw)

2
+a_s+a_ s +...)ds,

® "lA)S2
2 J o (a_ytagsta,

so that

4

T % a1
(11.9) flw) (;0 (ca , + -+ o)
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If w = 0 is a branch point of order three, we may use the local uniformi-

1/3. With due regard to the interpretation of F(w)

zing substitution s = w
at the upper and the lower side of the branch cut we have, again with the

expansion (11.8),

—w33 2 3
flw) = 3 e (a ,s+a_s"+a,s +...)ds,
on -1 0 1
where C" consists of two of the three rays in the complex s-plane
2
arg s = 0, + §ﬂ.
If the ray with arg s = 0 does not contribute,we find after a simple cal-

culation

+ ...

1 1
. =i 3% r(2/3) i 3% T(4/3)
(11.10) flw) a  + 5/3 2,

w2/3 -1

If w= 0 is a branch point of the order two and at the same time a pole
of the first order, there are no special difficulties. Instead of (11.8)

we have an expansion

-2 -1
s + a .s +a + ...

(11.11) F(w) = a_, 1 0

The contribution of the first term to the asymptotic expansion becomes

-1, _ .
I a_2w dw = —21wa_2.
Example 11.6

We consider anew the function f(w) of the previous example. We now perform

the complex transformation

w = 22 + 2/z.

This map has branch points in the w-plane at w = 3 and w =

njw

+ —%i/3.
Taking for the path of integration C the line Im z = },we obtain in the
w-plane a contour C' as sketched in fig.11.7 together with the branch

cuts.
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Cl

fig. 11.7

The asymptotic behaviour of f(w) is determined only by the branch
point at - % - gi/?. The -contribution of the branch point at w = 3 is
asymptotically negligible. Thus we have

flw) ~ J e "Vaz/aw dw,

C"
where C" is formed by the upper and lower sides of the branch cut at
W= - %-- %i/B. If the map z > w is combined with the local transformation
=_3_3; 2
w==-5- 51/3 + s
we have, with the short-hand notation k = - 3 + $iv3,
82 = - 3k2 + z2 + 2/z.

Inversion gives

2
z=k+§§+g—s2+...

Thus we obtain at last

(o) ~ =+ =—s + ...)ds ,

e—3k2m r’ e-m52 (] 2k
V3 9

-—C0

which leads to the final result of the previous example.
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Example 11.7

We consider the integral

z +1)-1dz.

o 2 .
£(w) = J e—w(z —2z1)( 2

There is a complication due to the coincidence of the saddle z = i
with a pole.
According to the general theory we may perform at once the transformation

22 -2zi =1+ 52,

which, however, is nothing more than

With this substitution f(w) becomes
2

1 1

{2is +yt ...}ds

flw) = ¥ I e s
c"
where C" is the real axis with an indentation below the pole s = 0.
We easily find
)
(

1
flw) ~e” %Tr+?:(£)é+...)-
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12. THE ASYMPTOTIC BEHAVIOUR OF COEFFICIENTS OF A POWER SERIES

Sometimes one is faced by the problem of considering the asymptotic

behaviour of the coefficient a of a power series expansion
(12.1) £f(z) = § az"
n
n=0

of an analytic function for n + «.

The obvious starting point is the Cauchy formula

(12.2) a = 2%% 2 e(2)az

If we make the complex transformation z = exp w,an expression is obtained
to which the saddle point method may be applied. In many cases, however,
a more direct - but essentially equivalent - method is available. Its
principle is,briefly;to.move the contour in (12.2) away from the origin
as far as possible. The method works smoothly for functions of algebraic
growth at infinity with a finite number of poles and branch points. Then
the ideal contour consists of small circles around the poles and straight
lines along branch cuts radiating away from the origin. The situation

for f(z) = (z3+1)% (z-1)-1 is sketched below by way of illustration.

fig. 12.1
However, if f(z) has an essential singularity at z = = the simple method
illustrated in the following examples cannot be followed. An example of
such a case will be considered in chapter 18 where a Hermite polynomial is

defined as a coefficient of a certain power series.
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Example 12.1
_1
For f(z) = (1-2) 2 we have the well-known expression

o = le3e ...(2nod
n 2.4.6...2n

According to (12.2) we have
n - 2m

-1
a 1 I z_n_1(1—z)-2dz.
C

For C we take the upper and lower side of the branch cut at the positive

real axis from 1 to . Putting z = exp t,we obtain

1 _ . 1
3L -3l (@ 1
a =8%—=-¢€ I e-nt(et— ) Edt,
n 271 0
or
et 1
8 =+ f e M2y (¢ )at,
n
0
where
t_, -3
-1
wt) = (=) .

t

Applying theorem 6.4 we find without difficulty

a -~ % 2 (k—%)! 1)

c
=0 k nk+§

where ¢, are the coefficients in the expansion of Y(t). Explicitly

1 1
a, ~ 7= (1 - B +oud)e
Example 12.2

The Legendre polynomials Pn(x) are the coefficients of the generating
1
function (1—2xz+z2) 2 Then the Cauchy formula gives

_ 1 -n-1, i6 \-3, -i6 -3
Pn(cos 9) = Py & z (e”"=2) °(e ~"-2) %dz.
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There are branch points at z = exp + i6.

For the contribution from the branch cut at z = exp i we obtain

1.
-316
o2

o 3 3 3 1
I e-n(t+le)(et—1) %(e-le—ele+t)—2dt =

™ Jo

1 1)z ad 1
= %(_21 sin ) 2o (n*2)io I e P72 0140(4) }at =
0

1 1) 1z
(ont sin o) 2= (m¥E)ibHEEm o0 -1yy

Since the contribution from the second branch cut is conjugate complex,it
suffices to take twice the real part. In this way we obtain at last

-3/2
(n 3/ )a

1
Pn(cos 8) = (3nm sin 8)72 cos{(n+3)e-in} + O

valid for 0 <6 < m.
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13. THE ASYMPTOTIC EXPANSION OF THE GAMMA AND RELATED FUNCTIONS

The AE of the factorial function z! has no simple structure. A related
function with a simpler explicit AE is the digamma function or psi funetion
(6.11) or

(13.1). ¢(Z) = 4 log r(z)/dz .
The simplicity of the AE of ¥(z) is due to the fact that Y(z+1) - log z is

the Laplace transform of a rather elementary function. According to (6.13)

we have for Re z > 0

(13.2) V(z+1) - log z = [ T )at.
0 t et-1

The AE of y(z+1) as obtained in section 6 as formula (6.14) becomes

B
(13.3) Wz+1) - logz ~ 2=~ ] 252, larg 3| <.
z 2k
k=1 °
We quote the related AE (6.16)
B (a) - B
k-1 "k -
(13.8)  y(z+a) = 9(z) ~ J (-1 E——E
k=1
Explicitly we have
(13.5) v(z+1) ~ log z + é%—- ! 5+ L T - 1 ZF e s
12z 120z 252z
and
2 3 2
(13.6)  w(zta) - y(z) ~2 - 252 2adate
2z 6z
The AE of log z! is almost equally simple. According to (6.19) we
have
1 B2k 2k+1
. o~ (et -2+ } ok,
(13.7) log z (z+3) log z - z + ilog 2 + kZ1 k(oK) 2 .

for |arg zl < w;
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Explicitly

1,1

(13.8) log z! ~ (z+1) log z - z + 3log 27 + . 3 5 -
360z~ 1260z

12z

The AE of z! is obtain<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>