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V 

This monograph contains the material presented in 1973 in the Colloquiun1. 

on Probability Theory organized jointly by the Mathematical Centre and the 

Institute for Applications o:f Mathematics of the University of Amsterdam. 

The central theme is the investigation of the existence of optimal 

policies or optimal strategies in various discrete time dynamic pro-
• gra.m:mJng problems. 

In section 2 some well-known theorems in Markov potential theory are 

generalized to collections o:f Markov chains. Most of the definitions and 

results in this section also play an important role in the sequel. 

In sections 3 and 4 a discrete time optimal 

vestigated. It is proved that the value :function 

control problem is in-
• • • 
1 s the m1n1m1Jm of the 

Cp - excessive functions that majorize the reward function. Further it is 

shown that a strategy is optimal if and only if it is thrifty and equal-
. .. J.Zl.ng .. 

Section 5 deals with a semi-Markov decision process having at least 

one state :for which the expected cost until the system enters this state 

is uni:forrnJy bounded over all policies. Using results from the foregoing 

sections, we obtain a rather general condition guaranteeing the existence 

o:f optimal policies with respect to the average return criterion. 

In section 6 some theorems on dynamjc programming problems with total 

return criterion are collected. 

Using resuJ.ts from section 6, we answer in section 7 some questions 

raised in connection with the notions introduced in section 2. The section 

is concluded with a theorem on the existence o:f optimal strategies for 

problems with a finite state space. 

In section 8 the notions communicating and recurrent system are in

troduced. Similar to the notions com:m,micating and recurrent class for one 

Markov chain, they play a basic role in Markov decision processes. 

It is proved in section 9 for 

problems that the optimal stopping 

optimal policy. 

• • • • a wide class of sequential decision 

time is exponentially bounded under the 



• 
VJ. 

In section 10 we investigate again the discrete time dynamic program-
. . .. . 

mJ.ng problem with the supremum of the expected return per unit time as op-

timality criterion. If the invariant probability measures depend continu

ously on the decision rule or if they form a tight collection and the sys

tem is recurrent then there exists a stationary optimal policy. 

A simultaneous Doeblincondition is investigated in section 11. 

In section 12 it is pointed out that this notion provides the connec

tion between conditions given in the literature and those of the sections 

10 and 11. 

In section 13 we collect several results announced in the foregoing 

sections. It is proved there that randomization does not increase the value 

function. Finally some theorems on the existence of weak and strong nea.rly 
• • • • optimal policies are given. 
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1. INTRODUCTION 

In this monograph we are mainly concerned with a dynamic system which 

at times t = O, 1, •.. is observed to be in one of a possible n1.1mher of 

states. Let E denote the countable space of all possible states. If at time 

t the system is observed in state i then a decision must be chosen from a 

given set P(i). The probability that the system moves to a new state j (the 

so-called transition probability) is a function only of the last observed 

state i and the subsequently taken decision. In order to avoid an over

b11rdened notation we shall identify the decision to be taken with the prob

ability measure on E that is induced by it. Thus for each i €Ethe set 

P be the set of all 

stochastic matrices P with p(i,.) e P(i) for each i EE. Hence P has the 

product property: with P1 and P
2 

the set P also contains all those P with 
. . . th p . for every 1 € E in the 1 row of either .th .th the i row of P

1
, or the 1 

row of P
2

• 

A policy R for controlling the system is a sequence of decision rules 

for the times t·= 0,1, ... , where the decision rule for time tis the in

struction at time t which prescribes the decision to be taken. This in

struction may depend on the history i.e. the states and decisions at times 

0,1, ••. ,t-1 and the state at time t. When the decision rule is independent 

of the past history except for the present state then it can be identified 

with a PEP. A memoryless or Markov policy Risa sequence P
0

,P
1

, •.• € P, 
where Pt denotes the decision rule at time t. Pt also gives the transition 

probabilities at time t. 

In this monograph there are only a few places where non-memoryless 

policies a.re used. We need them to show that the value function is Cp-super

ha:t·t1tonic ( see theorem 3. 1 ) . Theorem 13. 2 says that when P contains all 

ra.ndomj zations then the suprem11m over all memoryless policies equals the 

supremum over all policies. Hence in this case the value function may be 

defined as the supremum over the memoryless policies. 

Since the law of motion of the dynamic system can be described by a 

non-stationa,ry Markov chain when a memoryless policy is used, we prefer to 

w) 
We allow that 
''disappears'', 

with positive probability the system 
so p(i,j) ~ 0, i,j EE and p(i,E) := 

''breaks down'' or 
l p(i,j) s ,, i 

jeE 
EE. 
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introduce a decision process as a collection of non-stationary Markov 

chains (for a more general foundation of decision processes see 

[Hinderer]). A memoryless policy which takes at all times the same decision 
co 

rule i.e. P := (P,P, ... )> P €Pis called a stationary policy and induces 

a stationru·y Markov chain. 

One of the featt1res of this monograph is the generalization of well

known results for one Markov chain to a collection of Markov chains. We 

give some examples. In theorem 8.6 it is proved that the maximal average 

expected reward does not depend on the initial state given that the system 
• • • • • • 
is recurrent. This is a direct generalization of the well-known theorem 

that each excessive function on a recurrent chain is constant. 

The main assumption in theorem 5. 1 ( reJ.ation 5. 1. 1) is nothing else 

than a condition guaranteeing that all Markov chains are uniforrr1Jy positive 

recurrent. This condition is a direct generalization to a collection of 

Markov chains of a so-called Foster criterion or a Liapunov function crite

rion as it is called elsewhere (see subsection 2.7). 

Finally the simultaneous Doeblin condition (see section 11) is a 

straightfol'."W"ard extension to a collection of Markov chains of the well

knowr1 Doeblin condition. 

Nowadays potential theory for Markov chains is well developed. A 

systematic treatment of potential theory for dynamic systems would in our 

opinion be desirable. Although the second part of the title of this mono

graph suggests more, our contribution to potential theory for dynamic sys

tems consists only in the introduction of some useful terrninology and the 

derivation of some interesting results (sections 2 and 7). The reason is 

that we were mainly interested in dyna:mi c progra:rmning. It seems that many 

interesting questions were left untouched. 

When in state i decision p(i,.) is taken then an imro~diate cost de
' 

pending on i and p(i,.) is incurred*). Let cp(i) be the jmm.ediate cost 

row of matrix P) in state i and write . - . ( . ) ( . th when taking decision pi,. the i 
. . th ( . ) p . the vector with i component cp 1 • Note that if P,Q E with cp for 

p(i,.) = q( i,.) then 

The expectation of the cost at time n when starting in state i at time 

* ) . . . . . 
It is common to minimize when speaking of costs. We shall 
mize. The reason is that along with a cost structure also 
function shall be used (see section 3). 

• always maxi-
a reward 
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In some of the following sections it is 

is a cha.rge structure ( see definition 2. 12) • 

• assumed that the cost function 

In dynamic programming a 

weak.er assumption like ''all relevant expectations do not attain the value 

plus infinity'' could be used. 01..1r gain is a greater simplicity in the 

statements of the results. Also a nice implication is that the well-known 

theorem in optimal stopping remains valid: the value function is the mini

mum of the excessive functions that majorize the reward function. 

The basic reason for taking the state space a countable set was that 
. .. . . 

many of the problems which arise in general state spaces already appear in 

the coi.mtable state space. The countable state space does not have the 

''compactness'' properties of the finite state space and with the countable 

state space one avoids the ''measurabili ty'' questions of more general state 

spaces. As to the generalization of the results of this monograph, some can 

be generalized in a straightforward way, some results cannot be generalized 

and for the other results we do not know. 

In an important part of the literature on Markovian decision processes 

it is ass1.Jmed that for each state the set of available decisions in that 

state is a finite set. Usually randomized decisions i.e. convex combina

tions of the available decisions with a corresponding convex combination of 

the costs as the immediate cost, a.re allowed. We prefer to st a.rt with gen

eral sets of decisions P(i), i € E, which may contain all randomizations. 

As long as there are no constraints introduced the distinction between 
• • • • • • .. • ♦ 

randomJzed and non-randomized decisions is in our opinion not very im-

portant (cf. section 13). 

In several places we need a notion of convergence on P. A sequence 

*) Random variables are underlined. 
I q IP •• 
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p , 
n 

n = 1,2, .•. is convergent to 

j. In this case, we shall say that 

metric space (see section 13). 

P if limp (i,j) = p(i,j) for all i and 
n-+oo n 

lim P = P. P with this topology is a n n >CC 

The identification of the set of actions with the set of probability 

measures and several notations are adopted from [Bather]. 

The number of papers on dynamj,c prog1--a:mmi.ng is overwhelming. Only 

those books or papers referred to in this monograph, or those that proved 

important for the author's study of these topics are included in the 

bibliography. 

It is difficult to provide a readable and consequent notation for the 

topics studied. The list of notations may be helpful to overcome possible 

notational shortcomings. 



2. POTENTIALS AND EXCESSIVE FUNCTIONS 

The aim of this section is twofold. First to generalize some well

known theorems in Ma.rkov potential theory ( theorems 2. 9 and 2. 20 to 2. 23). 
. . . . . . . .. . 

The second intention of this section is to introduce notions which, in our 

5 

opinion, are basic in the study of discrete time dynamic programming prob

lems. Further we collect in this section definitions and results which play 
• • an important role throughout this monograph. 

Each function used in this monograph is assumed to be a finite and 

real valued :function. Moreover when writingJEP f(xn) or P0 r it is tacitly 

assumed that 

l pn(i,j) I :f(j) I < 00 for all i E E . 
• 
J 

2.1. DEFINITION. Funation w is a aharge with respeat to P if 

CIO 00 

I 
n=O 

lw(x )I = 
11 

2.2. DEFINITION. Funation f is a potential w.r.t. P if there exists a 

aharge w w.r.t. P suah that 

00 

f = I 
n=O 

n p w. 

So :function w is called a 

sum is then a potential. 

• '\'oo n 
cha.rge 1 f the sum l n=O P w 

2.3. DEFINITION. Fu.nation f is a 

is well-defined. This 

> -c - super 

C -

C - Bub 

hannonia funation w.r.t. P if :f = c + P:f. 

< -

2.4. DEFINITION. Function f is a c - exaessive function w. r. t;. P if 

(2.4.1) 

(2.4.2) 
(2.4.3) 

a aharge w.r.t. P 

P0 c ~ f 

C + Pf s; f'. 

So a c-superh&·111onic :function with c a charge satisfying relation (2.4.2) 
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is a c-excessive function. To see that c-excessive functions form an in

teresting class one should realize that when f is the value f'unction of a 

stopping problem for a Markov chain with matrix of transition probabilities 

p a.nd t'cost'' function c then relations (2.4.2) and (2.4.3) are fulfilled. 

This can be seen by noting that the left-hand side of (2.4.2) denotes the 
1treturr1'' in case we will never stop which is less than the value function. 

The left-hand side of (2.4.3) denotes the ''return'' if we wait one period 

and then continue in an optimal way. This may be a sub-optimal policy. 

2 .. 5. THEOREM. Function f is a potential w. r. t. P iff wp : = f-Pf is a 

charge ~.~.t. P and lim P0 r = o. 

PROOF. Suppose w is a charge such that 

the order of summation (w is a charge) 

00 

f-Pf = l n n+1 (P w-P w) = w. 
n=O 

'\'oo pn . . 
f = ln=O w. Then by 1ntercha.ng1ng 

it follows that 

Hence wp =wand consequently wp is a charge. By iterating the equality 

N times we find the equality 

• 

To show the converse, we note that '\'
00 

P0 w is a potential since w 
ln=O P P 

is a chuge. Moreover, it follows from (2.5.1) and lim Pnf = O that this 
n-+Q:) 

potential equals f. 0 

It can be seen from the above proof that a potential uniquely deter

mines its charge ( if f is a potential then f-Pf is its charge). 

*) For 

lim 
n· i--eo 

f , n=1,2, .... n 
f

0 
( i) = 0 for 

a sequence of functions, we write lim f = 0 if n 
all i € E. 
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2.6. THEOREM. If to c ~ O there exists a nonnegative c -supe-.rharmonia 

funation v w.r.t. P then c oo n 
s v. 

PROOF. The definition of a c-superharmonic function gives 

c + Pv ~ v . 

• 

By iterating this inequality N times we find 

c +Pc+ . . . + PN+1 < + V - V. 

Since v ~ 0 it follows then 

an~ consequently c is a charge. 0 

As an illustration of theorem 2.6 we shall prove that relation (2.7.1) 

is suf~icient for a Markov chain to be positive recurrent. In this way we 

recover the condition for positive rec1.1rrence as can be found in [Foster, 

theorem 2]. For a countable state space a condition similar to (2.7.1) can 

be found in [Kushner, theorem 8.6.5.7, p. 211]. There the condition is 

called a Liapunov function criterion. 

2.7. FOSTER CRITERION - LIAPUNOV FUNCTION CRITERION 

The Ma:rkov ahain with transition matrix Pis positive recurrent if 

there exists a state i 0 and a nonnegative solution y of the inequalities 

...., 
e + Py s y, 

...., 
tuhezae e is defined by e(i) = 1 for, all i and P is the aolwrm-r»estriation 
of P to E\{i0} i.e. 

...., 
p(i,j) := 

0 for j = io 

p(i,j) for j 
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PROOF. Let T denote the reentry time of { i 0}, i.e. T is the least n > 0 

if any with xn 

check that 

= i, and T = 00 if there 
0 

JP.[T 
l. 

"'n > nJ = P e(i). 

According to a well-known lemma 

00 

2 JP.[,. 
1 n=O 

> nJ. 

By (2.7.2) and (2.7.3) we have 

00 

I 
,..,n 
Pe(i). 

n=O 

• • is no such n. Then it is an easy 

The Markov chain is a positive recurrent class ([Chung, p. 31]) if 

• < 00 for all i e E. 

ro prove this it 

all components 

implies that e 

are finite). Now theorem 2.6 says that relation (2.7.1) 
,.._, 

is a charge w.r.t. P. D 

A Liapunov function criterion for the existence of an invariant prob

ability measure in the case of a Markov process with a metric state space 

is given in [Hordijk and Van GoethemJ. 

2.8. THEOREM. If there exists a c -euperharmonia function f w.r. t. P., for 

ca majora:nt of a aharge then 

a. . Pn . d (") h : = 11.m f ea:i,ets an _(IO :S h i < 00 for all i EE 
n .. + oo 

b. if h(i) > - 00 for all i €Ethen c is a aharge w.r.t. P 

c. '"f *) h . . i. h ~ O t en f' 1.-s c - exaess-ive z.v. r. t. P. 

*) 
We write x ~ y if x(i) ~ y(i) for all i and denote O for the vector with 
each component equal to 0. 
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PROOF. a. Let w be a charge such that w :s;; c. For wp := f-Pf it holds that 

(2.8.1) w + cp + Pf = f. 

By iterating this equality N times we find 

(2.8.2) 

• 
W 1S exists (and cannot be-~) 

and consequent1y also lim PNf(i) exists (and cannot be 
N> 

+oo), for each i EE. 

and it follows 

that the nonnegative function cp is a charge and so is wp. Let 

+ c = max(c,O) and c- = - min(c,O). 

Since w, wp are cha.rges and w :s;; c :s;; wp, we have 

00 00 

(2.8.3) I I n -p w < 00 

n=O n=O 

(2.8.4) l Pnc+ s 2 
n=O n=O 

Relations (2.8.3) and (2.8.4) 
c is a charge. 

c. By iterating the inequality c + Pf :s;; f we find 

• N 
I Pnc + PN+1f ~ f. 

n=O 

If lim Pnf ~ 0 then we have that 
n-+cio 

co 

l Pnc :s;; f. 
n=O 

Consequently c and f satisfy the relations (2.4.1), (2.4.2), (2.4.3) and 

f is a c - excessive function w.r.t. P. D 
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With c = O, the following theorem is similar to a theorem in classical 

potential theory due to M. Riesz (see [Helms, theorem 6.18]). 

2. 9. THEOREM. A c - excessive function w. r. t. P is the sum of a potential 

w.r.t. P with charge not less than c and a nonnegative haxmonia function 

w. :r .. t. p. 

PROOF .. Let wp := f-Pf for f a c -excessive function w.r.t. P. Then f is 

a wp-harmonic function and wp ~ c. Relation (2. 4.2) implies that 

I 
n=O n=N 

n pc. 

This yields that (theorem 2.8 shows the existence of the limit) 

~ From 

Since 

00 00 

f - I f.' + }: 
n=O n=O 

it follows by the domjnated convergence theorem that Ph= 

ly h is a harmonic function. 0 

hand consequent-

We note 

the StlID of a 

that the above representation of a c - excessive function as 

potential a.nd a harmonic function is unique. Indeed, if 

f = I:=o Pnw + h, with w a charge and h a ha.t·rnonic function. Then 

'CX) n 
Pf = ln= 1 P w + Ph = f-w. Hence w = f-Pf and the potential \'oo pn . 

ln=O w is 
uniquely determined by f. And so is h = f -

00 

ln=O 
n p w. 

• 

2.10. THEOREM. If c is a charge a:.nd f is a c-superharrnonio function w.r.t. 

P then the foll()li)ing assePtions are equivalent 

a. . Pn lim f ~ 0 
n·>OO 

b. . n -
lim P f = 0 
n )co 

c. -:f is a c - excessive fu:n.ation. 

PROOF. According to theorem 2.8 we have that condition • • • • a implies condition 
co n 

c. If L n=O P c ~ 

• 



00 00 

pn < -c )) + ~ I c Pn c -c ) ) + :; I n + p (-c) . 
n=O n=O 

Using that for arbi tra1·y function g it holds that + (-g) -= g we have 

-0 s f :$; I 
n=O 

n -p C • 

Since c is a cha,rge it follows then 

n>oo n>oo 

Hence c implies b. 

To conclude we note that 

hence condition b implies lim 
n ► co 

00 

k=O 

according 

Pnf = lim 
n-+oo 

(X) 

k -PC = Q. 
n ► 00 k=n 

to theorem 

Pnf+ ~ O. 

2.8 lim Pnf exists and 
n>co 

1 1 

2. 11. THEOREM. If f is a c - superharmonic function with c a aharge w. r. t. 

P then the following assertions are equivalent 

a. . Pn lim f = 0 
n>oo 

b. lim Pnl ff - 0 -
n+o:> 

c. f is a potential. 

PROOF. According to theorem 2.8 lim Pnf does exist and lim Pnf = 0 implies 
~ Il>oo n -that f is a c -excessive function. Theorem 2.10 then gives lim P f = O. 
+ n ),oo + 

Together with lim Pnf = lim Pn(f -f-) = 0 this implies that lim Pnf = O. 
n-►oo n➔ oo n > oo 

Consequently lim Pnlrl = lim Pn(f++f-) = 0 and so condition a implies con-
n)oo n>oo 

dition b. Since :f is also a ( f-P:f )-superhax·monic function and c :$; f-Pf it 

follows from theorem 2.8 that condition a implies that f-Pf is a charge. 

By theorem 2. 5 it then follows that f is a potential. As b implies a, we now 

have that a implies c. Also from theorem 2.5 we have that condition c im

plies condition a. D 

In the following 

Since each stationary 

• • • sections we want to study Markov decision processes. 

policy corresponds to a Markov process we will extend 

the notions charge, potential and excessivity to collections of Maxkov 

processes. 
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2. 12. DEFI!~ITION, When for each P element of a collection of Ma'Y'kov ma-

cost etruct-u..re cp is a cha.rge stru.ature if 

00 

-- I < 00 

n=O 

2$13. DEFINITION. Fop cp a cost structu:Pe we call fun.ction fa 

cp - super > -

cp - harmonic function if f 

ep - suh 

= cp + Pf for all PEP. 

< -

2.14 .. DEFINITION. Function f is a cp- excessive function if 

(2.14 .. 1) 

(2.14.2) 

(2.14.3) 

cp is a charge structure 

for all P. 

2.15. DEFINITION. Function f is a potential w.r.t. P if there exists a 

charge str-u.ctu:re cp such that 

0) 

f = ER l c ( x ) for a Z Z R • 
0 n 

n= 

At first sight this definition looks very restrictive. In section 7 

( theorem 7 .. 3) it is shown that there are natural examples of potentials 

w.r.t. P .. 

2 .. 16 .. THEOREM.. Function f is a potential w. r. t. P iff wp := f-Pf, P E P, 

defines a cha:.rge structure and lim ER f(x ) = o for each R. 
n n > oo 

PROOF. Suppose c is a charge structure such that f = E 2«-
p R ·n=O 

•' 1" ,,, - ' "' ' '' "' f:zJII! ii 4¥ 

c(x) 
n 

for all 

!11 the following sections ~p( i) wil~ denote the cost when choosing the 
action or decision p(i,.) in state 1. 



consequently (cf. theorem 2.5) cp = f-Pf. Hence wp = cp for all PEP 

therefore wp is a charge structure w.r.t. P. By definition we have 

wp +Pf= f for all PEP. By iterating this equality we find 

N 
(2.16.1) I 

n=O 
p 

n-1 
+ p 

0 

For arbitrary policy R = (P0 ,P1 , ... ) we conclude from (2.16.1) that 

(2.16.2) f = 
00 

I 
n=O 

lim 
n~ 

p O • • • p n-1 = JE 
R 

00 

I 
n=O 

w(x) iff 
' -r1 

o. □ 

and 

and 

2.17. THEOREM. If cp is a charge struc:tUPe cmd f is a cp - superhaprnonic 

function then the following assertions are equivalent 

a. lim JER f(x) > 0 for all R -·n n-+oo 
b. lim JER f-(x ) - 0 for all R --· n 

ll-r<X> 
• • • c. f 1.-S a cp - excess1.-ve fu:ncti,on. 

PROOF. Let wp := f-Pf-cp then wp ~ 0 and 

for all P. 

By iterating this equality we find 

N 
(2.17.1) I • • • 

n=O 

Since Cp is a charge structure and wp ~ 0 for all P the first term in re

lation (2.17.1) has a limit. This implies that for policy R = (P
0

,P 1, ... ) 

lim JER _.. lim P0 ... P 1 f exists. Hence we conclude 
n>~ n ➔~ n-
exists for all policies R. If moreover condition a is satisfied then we 

have 

00 C0 

(2.17.1) I 
n=O 

po ... pn-1 cps I 
n=O 

13 
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de:ri-

tion it follows that f is a cp - excessive function. 

all R. Rewriting this for 

00 

I 
n=N 

Similar to the proof of theorem 2.10 we conclude from this 

00 -. . . p 1 
n-

Since cp is a charge structure we have that the right-hand side of this in

equality tends to zero as N tends to infinity. From this it follows that 

condition bis satisfied. It is obvious that condition b implies condition 

a. D 

Theorems 2. 16 and 2. 17 a.re similar to theorems 2. 5 a.nd 2. 10. Also a 
• • theorem similar to theorem 2.11 can. be proved. 

The remaining theorems of this section for the case of a cost struc

ture identically zero and a collection P consisting of one Markov matrix 

(so in the case of a Markov process) are well-kno-wn in Markov potential 

theory (see [Blumenthal and Getoor], [Dynkin and Juschkewitsch], [Hunt]). 

2.18. THEOREM. If f is a potential w. :r1. t. P and -r is a Ma:r1kov time then 

for arbi t:Pary R 

()0 

(2.18 .. 1) with w := p f-Pf, Pe: P. 

PROOF .. For a.rbi tra. policy R = (P 
0

,P 
1 
~ ••• ) 

Since Tis a Markov time we have that 

we write R = {P ,P +1 , ••• ). 
n n n 

(2.18.2) • 
X =J, r 

p p 
n n+1 

T=n] = 

=JE. R [w(~)J. 
J, n 

Su1n1njng this' for k = O to «> and using theorem 2. 16, in particular relation 

(2.16.2), we find 



00 

(2.18.3) 

Now 

00 

c I w(x )J 
n n=T 

where equality (1) 

expectation w.r.t. 

[w(x +k)lx =j, T=n] = -r L 
f ( j ) . 

( 1 ) 
-- I 

n=O 

(2) 00 

-- I 
n=O 

( 3) 00 

-- I 
n=O 

00 

[x =J· -r=n] JE 
--c ' - R c I 

k=O 

00 

[x =J· --c , T=n] 

[x =j, T-n] f(j) = 
[ 

w(x k)lx =j, T=n] = [ + ( 

[w(x k)lx =j, T=n] = t+ C 

comes from taking the expectation of the conditional 

(x ,T), equality (2) follows from Fu.bini's theorem on 
[ 

15 

interchanging the order integration ( or summation), equality ( 3) is direct 

from relation (2.18.3). D 

From relation (2.18.1) it follows for f a potential w.r.t. P and 
* T ~ T Markov times that for arbitrary Rand charge structure cp 

(2.18.4) c(x) + 
n 

f( X ) ] 
L 

* T -1 

-E 
R 

* T -1 

c I 
n=O 

c(x) 
n 

= ]E 
R 

c I (w(x )-c(x ))]. 
n ' 'l'.l n=T 

For the case that f is cp - su:perha:rrnoni c we have w( x )-c ( x ) ~ 0. Sub-
11 · n 

sti tuting this in ( 2. 18. 4) we find that the second tex·rr1 on the left-hand 

side of (2.18.4) is less than the first tei·m. This important property will 

be proved for excessive functions in the next theorem. 

2. 19. • 

*) 
We call a Markov time T bounded when there exists an integer N such 
that T :s; N. 
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arbitrary function r 

(2.19.1) r=E 
R 

w(x) + r(x )], 
'!l •c· 

where wp = r-Pr for alZ PEP. 

PROOF. The proof is given by induction on the upper bound of the Markov 

times. Suppose (2.19.1) is valid for all policies Rand all Markov times 

T with T ~ N. Now let T $ N+1 and R = (P0 ,P1, •.. ) and R1 = (P1 ,P2 , ... ). We 

prove (2.19.1) for arbitrary state i. Since Tis a Markov time we have on 

the event~= 

is obvious for 

i whether T = 0 or T > O. When T = 0 then relation (2.19.1) ·-
starting state i. When T > 0 on,½= i, we define a new 

stochastic variable 

(2.19.2) 

It is easy to * check that T is a Markov time and * T $ N. By the induction 

• hypothesis we then have 

* "[' -1 
(2.19.3) c I 

n=O 

Now 

T -1 

c I 
n=O 

w(x) + 
n 

+ l Po ( i , j ) E . R 
j J, 1 

• 

* T -1 
[ l w(xn) 
n=O 

where the first equation follows from (2.19.2) with the Markov property, 

the second from (2.19.3) and the third from the definition of wp . 0 
0 

2.20. THEOREM. If r is a 

with T 5 T* then 
......... 

• cp - excess1.,ve * function and T, T are Markov times 



(2.20.1) 

for eaoh pol.icy R. 

PROOF. For any integer N let~= TAN 

bounded Markov times. Len1rr1a 2. 19 yields 

-=4J- 1 

c I 
n=O 

* T -1 

c I 
n=O 

c(x) + 
n 

* 

r( X *)] , 
L 

* and~= T AN. * Then~ and TN 

* T -1 ...:.w 
[ I 
n=O 

w(x) 
n 

where wp = r-Pr for all Pc: P. Rearranging this equation, writing, _1 
for r(x ) 

TR ( 

-=-N ~ 
on both sides we find 

T -1 
~ 

17 

are 

c(x) 
n 

(2.20.2) [ I c(x) 
n 

+ r(x ) 
~ 

* X( T ~N)] = 
n=O n=O 

* T' -1 
~ 

= E [ I 
R 

The limit as N + 00 of the first half of this equation is just the differ

ence of the first and second term of (2.20.1). Hence we have to prove that 

this limit is nonnegative. Since r is Cp - superharmonic we have that 

wp-cp ~ 0 for a11 Pc: P and this implies that the first term of the right

hand side of (2.20.2) has a nonnegative lim inf as N + 00 • According to 
. . * theorem 2.17 it follows with T ~ T that 

N400 N· ► 00 

Consequently both terms on the right-hand side have a nonnegative lim inf 

and the proof is. complete. 0 

We state a direct consequence of this theorem. 

2 .21. THEOREM. If r is 

(2.21.1) 

• a cp - excessi,ve function then for eaoh Markov time T 

T-1 
[ 

' n=O 
c(x) 

n 
+ r(x )] 

( 



18 

PROOF. Substitute T = 0 in (2.20.1) then 

* T -1 
r ~ E [ ' c(x ) + r(x * )] , 

R l n -'£' 
n=O 

* for each policy Rand Markov time t . Upon taking the supremu:m over all R 

the above inequality is relation (2.21.1). D 

2.22 .. THEOREM. 

time -r 

If r is function then for arbitrary Markov 

is al.so a 

c(x) 
n 

function. 

+ r(x )] 
-'{' 

PROOF. To prove that :f is a cp - excessive :function we have to check the 

relations (2.14.1), (2.14.2) and (2.14.3). The proof of (2.14.3), i.e. the 

proof that f is a cp - superharmonic function, is postponed to the proo:f of 

theorem 3.1. There a slightly more general result has to be proved. By 

definition Cp is a charge structure and hence relation (2.14.1) is satis-
* fied. To prove relation (2.14.2) substitute t = 00 in (2.20.1) then 

f~E 
R 

c(x) 
'O 

2.23 .. THEOREM. Let TA be the 

n ~ O if any with x E: A, and ,,, n 
cp - exc:essive f1.lnction then 

T:A,-1 

[ I 
n=O 

00 

for all R. D 

entry time of set A, i.e. Tis the least 

-r:A = co if thePe is no such n. If r * i-s a 

c(x) + r(x )] 
:r1 L --A 

is the minimum of the cp- excessive functions that majorize r on A. 

PROOF. According to theorem 2.22 f is a cp - excessive function. From the 

definition of -r::A it follows immediately that f = r on A. Suppose g is a 

cp - excessive function that majorizes r on A. Then for each policy R we 

have ER g(.~ r ) ~ ER r{ x ) . Since g is Cp - excessive it follows from 
-~-A " t:A 

theorem 2.21 that 



'T -1 --A 
c I 
n=O 

c(x) + 
n g(x )J ~ -· [ -A 

+ r(x )] = f. .... ( 

-A 

Hence f is the minim11m of the cp - excessive :functions that majorize r on 

A. 0 

19 
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3. ON THE VALUE FUNCTION OF AN OPTIMAL CONTROL PROBLEM 

In the sections 3 and 4 we deal with the optimal control problem: 

given a cost structure cp which is a charge structure and given a reward 

:runction r with ER (r(xt )! < 00 for all Rand~-' find a policy Rand stop

ping time T (T = oo with positive probability is admissible, with zero re-

ward) such that 

T-1 
ER [7: c(x) + r(x )] 

0 
n --r 

n= 

is maximized. In this section we investigate properties of the value func-

(3.0.1) v := sup E 
R R 

,T 

c(x) + r(x )]. 
· r1 " r 

We assume that-~< v(i) <+~and P}vl(i) < +00 for all i EE and all 

P e: P. In section 13 we give some conditions implying these assumptions 

( c :f. 1 e:mma 1 3 . 4 ) • 

As far as the author knows this general problem has not been studied 

previously. Related work can be found in [Bellman], [Blackwell ( 1967) J 

[Dubins and Savage], [Dynkin and Juschkewitsch], [Hinderer] and [Strauch]. 

The sections 3 and 4 extend the work of Dynkin and others on optimal stop

ping problems to allow for control of the transitions of the Markov process 

as well as its stopping time. They extend the work of Dubins and Savage 

and others on gambling models to allow for a cost structure along with a 

reward function. 

3. 1. THEOREM. The func:tion v is the minimum of the cp - exaessive funations 

that majorize r. 

PROOF. We first prove that v is a Cp - excessive function by verifying that 

the relations (2.14.1), (2.14.2) and (2.14.3) are satisfied. Relation 

(2.14.1) is true by definition. Relation (2.14.2) follows upon substituting 

T = co from ( 3.0. 1). To prove that v is a cp - superharmonic function we 

choose an s: > O .. Then there exist policies R. and stopping times T. , i € E, 
1 l 

such that 

E. 1,R. 
J. 

T. -1 
' 'l. 

c I 
n == 0 

c(x) 
n 

+ r(x )] ~ 
. t • 

1 

v(i) - e. 



Define 

1 + T. (i 1 ,i2 , ... ), 
11 

then Tis a Markov time. For Pan arbitrary element of P let R be the 

21 

policy that chooses decision rule Pat time O and uses policy 

1 when the state at time 1 is i. For a more formal definition 

R. f'rom time 
1 

of R let 

R. = (P. 0 ,P. 1, ... ), i EE, then the decision rule at time n+1 given the 
l. l. l 

history b = i 0 , x 1 = i 1 , .•• , x 1 = i 
1 

is P. • It is important to 
v n+ n+ i 1n 

realize that R is not a memoryless policy and as such rather unique in this 

monograph. Now by tpe definition of v, the Markov property and relation 

( 3 • 1 • 1 ) we have 

v(i) ~ E. R 
1, 

c(x) + 
n 

r(x )] = . [ 

I p(i,j)E. R 
j J, j 

T .-1 

n=O 

~ cp(i) + ~ p(i,j) v(j) - E, 

J 

c(x) 
n 

+ r(x )] 2: 
C • 
J 

since Ljp(i,j) ~ 1. Because e and P were arbitrarily chosen, this means 

that v is a Cp - superharmonic function. 

Substituting T = 0 in (3.0.1) gives v ~rand hence v majorizes r. 
. . ~ . .. . . 

To prove that v is the m1n1m1.1m of the cp- excessive functions that maJorize 

r we suppose that a certain function g is Cp - excessive and maj orizes r. 

Then according to theorem 2.21 and the fact that g ~ r 

c(x) + g(x )] ~ v. 0 n l 

We call a policy R together with a stopping time Ta strategy. In many 

cases an optimal strategy~ i.e. a strategy (R,L) such that 

be determined when the value :function v 

is known. So it is important to characterize the function v. We gave in the 

above theorem a characterization. Some more theorems which may be helpful 

in computing v will be given below . 

• 
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3.2 .. DEFINITION. Let T : :x. ➔ Tx be the operator defined by 

T:x. := r v sup 
p 

3.3. DEFINITION. The optimal aontrot problem is stable w.r.t. x if 

3.4. THEOREM. Suppose the problem is stahZe w.r.t. x. If v ~ x then vis 

the minimum of the cp - superharmonia fwtations that - . 
ma;} O"Fl-Ze X V r. 

, 

PROOF. Suppose g ~ :x. v r and is cp - superha:r'lllonic. Then g ~ Tg ~ Tx which 

implies by iterating these inequalities that g ~ TNx for all N. Thus 

g ~ v = lim TNx. Since v majorizes xv r if v ~ x this proves the theorem. D 
N-r00 

3.5. THEOREM. The value function vis a solution to Bellman's optimality 
• equati.on 

v = r v sup (cp+Pv). 
p 

REMARK. The above assertion can also be stated as: v is a fixed point of T .. 

PROOF. Since 

3.1) we have 

• • v 1s a Cp - excessive 

by relation (2.14.3) 

function and v majorizes r (see theorem 

that 

To prove the reverse inequality, note that given any s > o and any state i 

there exists a strategy (R, -r) with R = (P 
0

,P 
1

, ... ) such that 

.*) -
For 
max 

E. R 1, 

pt Iii'° 17>16 I ; ll 

T-1 
[L c(xn) + r(xc)J ~ v(i) - €. 

n=O 

vectors x and y the vector xv y resp. 
(x(i),y(i)) resp. min (x(i), y(i)). 

x A y has .th 
l component 



Since -r is a Ma.rkov time we have on the event ,.!o = i whether T = 0 or 

T > O. When -r = 0 then :from (3.5.3) r(i) ~ v(i)-E. When -r > 0 on~= i 

we define a new stochastic variable 

Then -r* is a Markov time and it follows from the Markov property and the 

definition of v when R1 := (P1,P2 , ..• ) that 

v(i)-e: ~ cp (i) 
0 

Hence we conclude that 

+ l Po(i,j) JE. R 
j J, 1 

+ ~ p
0
(i,j) v(j). 

J 

v(i) ~ r(i) v sup (cp+Pv)(i) + e: 
p 

T*-1 
[ I 
n=O 

c(x) + r(x *)] ~ __,....n c 

Since e: and i were a.rbi trarily chosen it :follows that 

v ~ r v sup (cp+Pv). 
p 

The relations (3.5.2) and (3.5.4) together prove the theorem. D 

The next 

cp+Pv, P e: P, 

theorem gives conditions 
• • 
1s actually attained. 

under which the supremum of 
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3. 6. THEOREM. Suppose P is compact and cp is upper sennaontinuous (i.e. 

cp(i) is an upper semicontinuous function of P for all i e: E). For, v to be 

a solution of the functionaZ equation 

(3.6.1) v = r v max (cp+Pv), 
p 

each of the following four conditions is sufficient 

a. cp + Pv is an upper semioontinuous function of P 

b. lim sup 
P+PO 

+ 
Pv for all P

0 
E P 
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c •. Except for at most a finite nwribe~ of states the function vis non-

d. lim Pe = E P and vis bounded from ahove or 
F+Po 

form"ly integrable w.r.t. P(i), where 

(3.6.2) p ( i) : = { p( i, . ) : p P}, • 
l € E • 

• 

+ 
V 

• A well-known theorem says that an upper semi-

continuous function attains its supremum over a compact set. Hence condi-

tion a implies the existence of a Q with cQ+Qv = w. The proof proceeds now 

by proving that the other three conditions imply the upper semicontinuity 

of Pv and hence of cp+Pv. 

There is also a vell-known theorem which says that the limit of a 

nonincreasing sequence of' upper semicontinuous functions is again upper

semicontinuous. For any state j is p(i,j) v(j) a continuous :function of P. 

Hence P(-v-) is upper semicontinuous. By ass1Jmption b then also Pv+ is upper 

semicontinuous and consequently so is Pv. 

It is easily seen that condition c implies condition b. According to 

a theorem due to [Scheffe] (see also lemma 4.11) 
• 

lim l p(i,j) 
• 

P+PO J 
• 

implies that the 
+ 

Hence v bounded 

condition b. D 

convergence of p(i,j) to p 0 (i,j) is uniformly in j EE. 

or u.niformJy integrable w.r.t. P., i EE, is suf'ficient 
l 

for 

3.7. DEFINITION. Funetion f has the property anne (asymptotic nonnegative 

expeetation) if 

lim inf ER f(,?Cn) ~ 0 fo~ alZ R. 
n ► oo 

We proved in theorem 2.17 that if f is a cp-superhro·monic function 

then for all R 

f(x ) 
n 
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• exists. Moreover, relation (3.7.1) is equivalent to the cp-excessivity of 
f. Thus we have the following theorem. 

3 .8 • THEOREM. Let f' be a cp - superharmonia function. The function f has the 

propePty anne if and only if f is a cp - e:caessive funation. 

3 • 9. THEOREM. The va Z.ue fu:nation v is the minimwn of the cp - superha1,noni a 

ations that ma.jorize rand have the property anne. The value function v 

is the rrrinimum of the solutions of Bellman's optimality equation that have 
the property a:nne. 

PROOF. Since v is according to theorem 3. 1 the minim11m of the cp - excessive 

functions that majorize r, the first assertion follows from theorem 3.8. 

Since a solution of (3.5.1) is a Cp - superha.1:·monic function that majorizes 

r, the class of solutions of the optimality equation is a subset of the 

Cp - superharmonic f'unctions that majorize r. Hence the second 

a consequence of the first assertion and theorem 3.5. 0 

• • assertion 1s 

It may be difficult to check whether a solution of the optimality 

equation has property anne. In the case one knows that v ;;: O it is perhaps 

easier to use the following consequence of theorem 3.9: vis the smallest 

nonnegative solution of the optimality equation. 

3.10. THEOREM. Suppose the p~oblem is stable w.r.t. x. If v $ x then vis 

the unique solution of the optimality equation that minorizes x and has the 

property an,ne. 

PROOF. Suppose g ~ x and Tg = g and g has property anne. We will show that 

g = v. Indeed, according to theorem 3.9 we have vs g. To prove the reverse 

inequality we use the fact that 

lim TNg then Tx $ Ty. Hence g --
N>00 

the stability w.r.t. x. □ 

• T l.S a monotone 

lim N 
< TX= v, -

N ► oo 

• if X operator, l.. e. 

the last equality is 

:S y 

from 

The discounted dynamic programming problem (see section 6) with bound

ed cost struct1ire is stable w. r .t. x for each bounded function x. Moreover, 

each bounded function has the property anne. This means that according to 

theorem 3.10 the value :function vis the only bounded solution of the op

timality equation. 
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It follows from a result of [Behal] that the negative dynamic program

ming problem (see section 6) is stable w.r.t. 0 when Pis compact and cp is 

continuous (i.e. cp(i) is a continuous function of P, for all i € E). In 

view of theorem 3.10 we then have that vis the only nonpositive solution 
' 

of the optimality equation with the property anne. 

3.11. THEOREM. Suppose the value fu:nation v is a bounded solution of 

(3.6.1). If each Pe: Pis absorbing (i.e. lim Pne = O for each PEP) then 
n >oo 

vis the unique bounded soZution to (3.6.1 ). 

PROOF. Suppose w is another bounded solution of (3.6.1), 

ed. Hence there exists a constant b with lv-wl ~be.Let 

then v-w is bound

v = r V 

and w = r v (cp +P2w). Since w is a solution of (3.6.1) we have 
2 

(3.11 .. 1) 

(cp +P 1w). Hence it follows 
1 

Similarly we have 

(3.11.2) 

From the fact that P has the product property it follows that there exists 

a matrix Q e: P such that 

(3.11.3) 

The relations (3.11.1), (3.11.2) and (3.11.3) together imply 

I v-w I s QI v-w I . 

Iterating this inequality and using lv-wl ~ be yields 

1 v-w I ~ QNbe for N = 1 , 2, . . . . 

We ass1.wed that Q is absorbing and hence 
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N 
Q be = O. 

Consequently v = and the theorem follows. 0 
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4. EXISTENCE OF OPTIMAL STRATEGIES 

In this section we investigate the existence of optimal strategies of 

the optimal control problem introduced in section 3. The notions 

''to conserve'', ''to equalize'' and ''thrif'ty'' are adapted :from [Dubins and 

Savage]. The relation with previous work is indicated in the introduction 

of section 3. 

As in section 3 we assume that Cp is a charge structure and 

ER lr(xl)! <~for all policies Rand all Markov times T. In this section 

we ass11me for the value function v that JER I v(x,c) I < 00 for each strategy 

(R,'T). In section 13 we give some conditions implying this assumption (cf. 

le11ana 1 3 • 4 ) . 

We shall systematically use the notation 

where vis the value function. 

To ma.ke certain that expectations and st1ms are well-defined when using 

wp as cost structure, we show that wp is a charge structure. Ac cording to 

the theorems 3.1 and 2.17 and relation 2.17.1 we have that 

(4.0.1) 

Since vis 

E 
R 

00 

I w(xn) s v. 
n=O 

cp - superharmoni c, it follows that wp = 

Hence ~ c; for all P € P, which implies 

co 00 

(4.0.2) l 
n=O 

v-Pv ~ 

Because v < 00 and cp • is a charge structure we obtain 

E 
R 

According to definition 2.12 

l 
n=O 

• wp is a charge structure. 

C ... p € p_ p.. -
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4.1. THEOREM. Suppose Q E Pis suah that 

(4 .. 1.1) 

when ii r := {i : r(i) = v(i)}. Let Q
00 

be the policy (Q,Q, ... ) and Tr 
the entry time of-set r. Eaah of the following two conditions is sufficient 

a.. vaZ.ue function v is a potential w. r. t. Q 

b. there exists a aonsta:nt c suah that .Ir, 5; cs JP Q a Zmos t su-re ly. •• 

PROOF. Let us first show that conditions a and b both imply 

Tr-1 

(4.1.2) V 

n=O 
w(x) 

Il 

As to condition b relation (4.1.2) is direct from lemma 2.19. I:f we assume 

a and take :for collection Pin theorem 2.18 the set {Q} then relation 

(4.1.2) follows from relation (2.18.1). 
• • • By the de:f1n1t1on o:f r we have 

EQ [r(x )J = JE("\ [v(x )]. 
er ~l er 

From relation (4.1.1) it follows that wQ(i) = cQ(i) 

Tf-1 

w(x )]. 
n O n 

n= 

Substituting the above equalities in (4.1.2) yields 

T -1 -r 
v =E [ l. c(x) 

Q . n 
n=O 

+ r(x )]. 
er 

00 

Thus strategy (Q ,~) is optimal. D 

as ii r. Hence 

In order to make a more thorough investigation of the existence of 

optimal strategies we introduce the :following notions. 

4.2. DEFINITION. 

R = (P
0

,P
1

, ••. ), 

1J)here E : == { j : 
m 

P conserves v if cp = v-Pv. Strategy (R,T), where 

conserves v if i EE implies cR (i) = v(i) - P v(i), 
m m m 

JP0 R [x =j, T>m] > 0 for some 1 E E}. 
;c, ., In 

When the policy maker (or gambler or manager) chooses decision rule 

Pat time O and proceeds optimally thereafter then the expectation of his 
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earnings is cp+Pv. It is clea,r that this can not be larger 

mum of the expected return, i.e. v (in mathematical terms v 

• than the maxi-
• is cp - super-

ha.J:·monic). When cp+Pv < v then the decision rule P cannot be a part of an 

optireal strategy. The decision maker made an irremediable mistake. 

Strategies not containing such mistakes are v conserving. 

4.3. DEFINITION. Strategy (R,T) is thrifty if (R,T) is v conserving and 

ER r ( ~ t ) = ER v ( x t ) • 

In a state where r(i) < v(i) it is suboptimal to choose the stopping 

decision, because stopping gives r(i) and one might expect to receive v(i). 

So a strategy for which the policy R does not make irremediable decisions 

and ~or which the stopping time T 

called thrifty. Intuitively it is 

. . .. . 
does not give irremediable losses is 

clear that an optimal strategy must 

have this property. As we shall show the following converse is true. If 

(R,T) is thrifty and Tis bounded then (R,t) is optimal. In the case of an 

unbounded stopping time T we also need that the amount we actually receive 

in the time period up to time N has limit v as N tends to in~inity. One 

might say that here the ''actually received'' and the ''promised'' ea,rnings 

equaJ.ize. This property can be formalized in the following way. 

4.4. DEFINITION. equalizing if limJER 
n--+-oo 

4.5. THEOREM. Strategy (R,-r) is thnfty if and only if 

T-1 

[v(x) x(T>n)J = o. 
11 

c(x) 
11 

+ r(x )] = JE --r R cl w(x) + v(x )J. 
n --r n=O 

PROOF. The value function v is cp - superha1"l!lonic and majorizes r. Hence 

wp = v-Pv ~ cp, PE P,a.nd v ~ r. These inequalities imply that relation 

(4.5.1) is equivalent to the following relations (4.5.2) and (4.5.3) to
gether 

T-1 
Cl 

n=O 
(w(x )-c(x ))J = 0 

n n 

[v(x) - r(x )] = O. 
( [ -

Relation (4.5.2) is equivalent to the assertion that (R,T) conserves v and 

the theorem is proved. D 



4.6. THEOREM. 

and equali2·ing. 

St~ategy (R,T) is optimal if and only thnfty 

PROOF. For N = 1,2, ..• let .:L.N denote TAN. Given any strategy R we have 

(4.6.1) 
T -1 

[ 
• 

n=O 
c(x) 

n + r( ?;,t ) ] = lim ER 
N+co 

T -1 
~ 

[ !. 
n=O 

c(x) 
' Il 

+ r(x) 
r 

We rewrite the right-hand side of this equality. Using relation (2.19.1) 

with :function v instead of r~ i.e. 

v=E 
R 

T -1 
~ 

[ I 
n=O 

and using the relation 

w(x) 
n + v(x )], 

'N 

we obtain for the second part of equality (4.6.1) 
T -1 
~ 

lim 
N ► oo 

{v - E 
R c I 

n=O 
(w(x )-c(x ))] + 

' 'Il n 

This limit equals 

(4.6.2) v-E 
R 

- limER [v(~) x(T>N)]. 
N •oo 

If (R,T) is thrifty then the second and third term of expression (4.6.2) 
are zero. If (R,T) is in addition equalizing then also the fourth term of 

(4.6.2) is zero and the expression equals v. Hence (R,T) is optimal. To 

prove the converse we note that according to the theorems 3.1 and 2.17 

limER [v(.~) x(T>N)l ~ -
N·~OO 
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fourt,h term in relation (4.6.2) is nonnegative. It is 

easjl' t,o verify tl1at tr1e second and third ter1n are also nonnegative. If 

( R,!.) i.s optimal tl1en the sum of the last three terms is zero and conse

ql..ter1tly t,l1ey are all three zero. Hence (R,r) is thrifty and equalizing. 0 

tJsir1g tr1t~ above t.heorem it is rather easy to deduce sufficient con

ditions for ( Qf!/J, .,~ .. r) as introduced in relation ( 4. 1. 1) to be an optimal 
Ji 

st~rategy. 'l:'hese are gi ver1 it1 the next two theorems. 

4.7. THEtlR::M. St:rateg-y (Q
00 ,1..r-) ,:s optimal if and 01'ily 

-
Q tht1 NBti~ction of Q to the eomplement of r, i.e. 

if i t r @id j ¢ r 
..... , 
q(i,j) := 

0 otheni.,ise. 

if lim 
N >oo 

o, with 

PRi)OF. From ( 4. 1 . 1 ) we see that Q conserves v 

conserves v. Since v = r on r it follows then 

00 

outside of r. Thus ( Q , Tr) 
co 

00 00 

Eience (Q ,.Lr) is optimal if and only if (Q ,Tr) is equalizing. 

that (Q ,Tr) is thrifty. 

From the definition of entry time Tr (tr is the least n ~ O if 

wi tr1 !.n e:: r, and Tr = 00 if no,ne) and relation ( 4. 7. 1) we have for ...... 

~N 
= Q. v. 

From tl-1is relat,ion the theorem is obvious. 0 

any 

,is c,ptimal 
Eaah of t}ze foll0u1·ing tzJo corzditions ensures that (Q00 ,Tr) 

"" . • tl21;?. value bounded and F. Q [Tr 00 J all • r/. 
a. junat·i 01-1 V 1,,8 < - 1 for l r -1, 

b. '1 .. funatior2 • bounded and • ahso-Pbing. tne Value V is Q 1,,S 

PROOF. According to theorem 4.7 it is sufficient to show that 

Since 1.1· is bo1L11ded it is sufficient to show that lim QN e = o. 

b~ Because Q is absorbing we have 

lim 
~1~ 

N 
Q e = 0. 

N+oo 

lim 
N )CO 

......,N 
Q V = 0. 



a. From 

the second part of condition a and JP. Q 
1, 

,...,N 
lim Q e = 
N )oo 
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1 if i € r, we find 

NJ}= o. □ 

In most cases it is difficult to deterrnine the value function. Some

times one can make a guess at the optimal strategy and one is able to com

pute the expected reward for that strategy. In such a case one can use the 

following theorem with f the expected return. If the conditions of the 

theorem are satisfied then the theorem guarantees that the guess was 

correct and one knows the optimal strategy and the value function. 

4. 9. THEOREM. Suppose f is a cp - superharmonia function that majorizes r 

and has property a:nne. Suppose Q e: P is such that 

cQ(i) + Qf(i) = f(i) if i ¢ r := {i : r(i) = f(i)} 

and lim QNf = O with Q the restriction of Q to the aorrrplement of r (see 
N-+oo oo 

4.7.1). Then f = v and (Q ,Tr) is an optimal strategy. 

PROOF. According to the theorems 3.8 and 3.1 we have that f ~ v. Similarly 

as in the proof of theorem 4.7 one can show that 

-r -1 -r 
(4.9 .. 1) r = JE [ I 

Q n~O 
c(x) + 

n 
r(x )]. 

4 [ 

-r 

Hence f ~ v, since vis not less than the expected return 

conclude that f = v and then it follows with (4.9.1) that 

timal. D 

00 

of ( Q , -r r). We 
co 

( Q , Tr ) i s op-

Throughout the sections 3 and 4 we assumed that Cp is a charge struc

ture andJER lr(xT)I < 00 for all Rand all T. These assumptions are super

fluous in the next theorem because they follow from the assumptions of the 

theorem. 
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4.10. THEOREM. Suppose P is compaat and cp is aontinuou.s. If thePe exists 

a funation y ~ I r I suoh that 

(4.10.1) 

(4.10.2) 

(4.10.3) 

lcpl +Py~ Y, 

lim PNy = 0 for aZZ P E: P and 
N")CO 

lim Py= P 0y for all P 0 E: P 
P+PO 

then cp is a charge structure and there is 

(4.1.1) whiah is optimal. 

00 

a strategy (Q ,Tr) as 

In the proof of this theorem we need the following result: if 

0 ~ x ~ y then (4.10.3) implies lim Px = P0x. In order to prove this we 

first state three l~roroas. ~PO 

4.11. LEMMA. If a (i) :2: O, i=1,2, •.• and n=1,2, ••• , lim a (i) = a (i), n n ~ 

i=1,2, .•• and lim \~ 1 a (i) = '~ 
1 

a (i) < oo then li= n Li= co 
n-+co 

lim l 
n ➔ OI) ie::B 

a (i) = 
n 

a (i) 
00 

uniformly for each subset B of the positive integers. 

PROOF. The assertion of this lemma is equivalent to 

(4.11 .. 1) lim 2 
n)eo i=1 

la (i)-a (i)) = O. n oo 

Suppose (4.11.1) is false. Then 

00, 

(4.11.2) c := lim sup L lan(i)-a
00

(i)I > O. 
n> 00 i=1 

Take N such that 

l 
i=N 

Since 

00 00 N-1 
lim I 
n> 00 i=N 

an(i) = lim [./. 
n ➔ oo 1.=1 

a (i) -
n l. 

i=1 

there exists an n0 such that for n ~ n
0 

a (i)J = 
n 

00 

I 
i=N 

a ( i), 
00 



00 

I 
i=N 

and 

N-1 
L 

i=1 

Hence, for n ~ n
0

, 

00 N-1 00 

I 
i=1 

I a ( i )-a ( i ) I + n oo E 
i=N 

This is in contradiction with (4.11.2). 0 

4.12. • If O ~ b (i) :S 
n 

a ( i), 
n 

• - r.. l-1,£::'., ••• and n=1,2, .•. ; 

a (i) := 
00 

and 

lim 
n-+oo 

a ( i ) a:nd b ( i ) n oo 
:= lim 

n ;oo 

b ( i); 
n 

co 00 

lim l 
n> 00 i=1 

a (i) = 
n I 

i=1 
a (i) < 00 

00 

then 

00 00 

lim l 
n-+= i= 1 

b (i) = 
n I 

i=1 
b ( i). 

(X) 

PROOF. Given any E > O, let N be 

it follows that there is an M such that~~ Na (i) s e: for n ~ M. Since 1~1= n 
0 :Sb (i) ~ a (i) we have then 

n n 

00 

(4.12.1) ), 
i=N 

b ( i) 
n 

:S e: :for n = M , M+ 1 , .. • • , 00 • 

l. n l.= 00 n)oo -
relation (4.12.1) implies that the 

lim:itpoints of 

Hence 

00 (X) 

lim ). 
n· ➔ 00 i=1 

b (i) = 
n I 

i=1 
b (i). 0 

00 

The :following lemma is for future reference stated slightly more 

general than we need here. 

35 
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4. 13.. LEMl\iA. 

then lim Pxp = P x . 
00 p 

P+P oo 
00 

PROOF. It is sufficient to prove that lim 4 pn(i,j) ~ (j) = 
n> 00 J n 

i and an arbitrary sequence 

P ➔ P. Now substitute b (j) := p (i,j) x_ (j) and a (j) := 
n c:o n n J:' n 

pn(i,j) Yp (j), 

j = 1 , 2 , . . . and n = 1 , 2 , . • . , IX) in 1 e1n111 a 4 • 1 2 . D n n 

The above lemma is a discrete analogue of theorem 1 in [Pratt]. 

PROOF OF THEOREM 4.10. From relation (4.10.1) we have that the nonnegative 

function y is I cpl - superha:t·1nonic. Hence by theorem 3.8 

E 
R 

co 

I 
n=O 

and so cp is a charge structure. Since also y ~ lrl, it follows by (2.21.1) 

't-1 
IV I [7: lc(x )j + Jr(x ){] ~ y. n --r n=O 

Now according to lemma 4.13 relation (4.10.3) implies lim Pv+ 

view of theorem 3.6 we then have that p+po 

v = r v max (cp+Pv). 
p 

Consequently strategy 

1 . QN, .. I . N 

00 

(Q ,Tr) as in (4.1.1) exists. Moreover from (4.10.2) 

im ·v ~ lim Q y = 
N ► 00 N-+oo 

0 and according to theorem 4.7.the strategy 
is optimal. D 

In section 5 we need the following corollary of theorem 4.10. 

4.14. COROLLARY. Suppose Pis aompaot and cp is aontinuous. If there 

exists a function y 2 0 such that re Zations ( 4. 1 O. 1 ) , ( 4. 1 o. 2) an.d ( 4. 1 o. 3) 

hold, then there exists a stationary poZicy Q~ suah that 

00 

(4.14.1) [). c(_x_)J = 
0 Ii n= 

00 

[ ). 
n=O 

c(x )]. 
n 



PROOF. In order to make it possible to apply theorem 4. 10 we i ntroduct~ a 

reward function r such that r : = sup ER 
R .. 

the cost structure is a charge structure. Given any 

- e. By theorem 

policy (R,T) we 

4. 10 

have 

37 

according to theorem 2.20 with v the value function of the optimal control 

problem 

> "11:;'1 - ..!DR 

T-1 
["7: 

n=O 

c(x) + 
11 

c(x) + 
·""TI 

v(x )] ~ 
"',,, L 

Hence, since Markov time T = co is allowed 

co 

v = sup ER [ l 
R . n=O 

c(x )]. . n 

e(x ). 
I p [ 

Moreover, since r =¢it follows that !.r =~and according to theorem 4.10 

Q
00 as in (4.1.1) satis~ies (4.14.1). D 
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5. SEMI-MARKOV DECISION PROCESSES WITH AVERAGE RETURN CRITERION 

In this section we are concerned with sequential decision processes 

for which the times between transitions are random. Earlier (in section 1) 

if at time t the system had been observed in state i and action p(i,.) had 

been chosen, the system transferred to a state j at time t+1 with prob

ability p(i,j). Now this transition takes place at random time t+T, where 

the random time T only depends on i,j 

the process. Let FF(. li,j) where Pis 

and P and not on the past history of 

P . -th ( . ) an element of with 1 row p 1,. , 

denote the distribution of the random time T. At time t+T again an action 

p(j,.) E P(j) has to be chosen, etc. 

When using a stationary policy this decision process is a semi-Markov 

process. 

th Let x, n=0,1, ... , denote the state after then transition. We write ·n 
th cp(i) for the expectation of the cost incurred between then and the 

( )th - . . t. t k ft th . . n+1 trans1t1on when x = i and the ac ion a en a er then transition 
n 

is the i th row of P. We obtain for the expected duration of this transition 

interval 

tp(i) =? p(i,j) 
J 

00 

It is assumed that for some positive constant a, 

• land all P 

(cf. [Ross (1970), condition 1, p. 157]). 

The optimality criterion we use in this section is the long-run 

average return per unit time. Actually we take 

N 

:ER I c( xr) 
n=O l 

(5.0.1) lim sup 
N • 

N-r00 
ER I t(x ) 

n n=O 
• 

This is the largest limit point as N + 00 of the expected cost over the 

first N + 1 transi tio11 intervals divided by the expected dura·tion of the 

first N + 1 transition intervals (see [Ross (1970), p. 1591 for a dis

cussion of this criterion). The question we are mainly concerned with in 
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this section is the question whether there exists an optimal policy. We 

give conditions that guarantee the existence of a stationary optimal policy. 

In our opinion these conditions are easy to verify. To illustrate this we 

solve a waiting line problem. 

5.1. THEOREM. Suppose Pis compaat, cp is continuous and p(i,E) = 1 far 

all i and P. If there is some state i 0 and a fun.ction y ~ o such that 

(5.1.1) 

(5.1.2) 

(5.1.3) 

,.._, 

I cpl+ tp 

lim ~y = 

,..._, 
+Py~ y, 

O for aZZ P e P and 
N>-oo 

lim 
P+PO 

,.._, ~ 

Py = P 
0

y for all 

where P denotes the aotumn-restriation of P to E\{i0} (see 2.7). Then there 

e:r:ists a stationary optimal policy. 

For the proof of this theorem we have to establish several results 

which are interesting on their own and will be given as le111rnas. In 5. 3 to 

5.7 the conditions of 5.1 are assumed to hold. 

5.2. LEMMA. If for P 

then 

N 
JE. p I 

< 00 

00 

I 
1 0' n=1 lim ____ N _____ exists n=O and equals -

00
-------- • 

t(x) 
n 

N-+<x> '\' 
E. p L 

1 0 :t n= 1 

PROOF. Let f ~ O. Since 

when visits to state i 0 at times 1,2, ..• k 

the ''last exit decomposition'' of state i 0 

"l 
n=O 

restricted expectation of 

are excluded; we find by 

(cf. [Chung. p. 46]) 

f(~+1) 

applying 

St1mmi ng over n = O to N and changing the order of summation gives 

(5.2.1) 

Since O ~ 

N 

I 
n=O 

k( . . ) < P io,io -

N 
-- I 

.-.. Ill 
p p 

k=O 

• 

1 we have,. converges or not, 

• 
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. N . . N k . . -1 

larity property of the Norlund-means 

( 5 .. 2. 1 ) that 

= O. As an application o:f the regu

·( see [Hardy, p. 64 J ) it :follows :from 

N 
pn+1 I r(i

0
) 

00 

n=O (5.2.2) lim I --N 
N-+<x> k( . . ) m=O 

I p 10,10 
k=O 

To complete the proof we write 

N N-1 
Pn+1 

N-1 
k ( . . ) JE. p I I c ( xn) I I. lcpl(i 0 ) I P io' 1 0 

l. 0, n=1 n=O k=O • -- • N N-1 N-1 
k ( . . ) Pn+1 

E. p ). t(x) I I tP(i 0 ) p 1 0' 1 0 1 0' n~1 Il k=O n=O 

Next we apply relation (5.2.2) once with f = lcpl and once with f = tp. D 

The above lemma is called a mean ergodic theorem. It says that the 

average expected absolute cost per unit tj_me when starting in state 

equals the expected absolute cost divided by the expected length o:f 

time until the first return to state zero. In most proofs o:f this lemma it 

is assumed that both expectations are finite. 

5. 3. LE.Mr:v1A. For each stationary po Zicy the corresponding Markov chain is 

ROOF. From tp ~ ae :for some a> 0 and (5.1.1) it follows that 

,,..., 
ae +Py$ y. 

* -1 nee for y := a y 

,..,, * * e + Py s y . 

ccording to 2.7, the Markov chain with matrix o:f transition probabil

s Pis a positive recurrent chain. D 
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5.4 .. LEMMA. For f ~ 0 

00 co 

(5.4.1) I 
""'W. p p 1. 

m=O m=O 

Moreover,cp and tp are aharge structures with respect to~= {P: PEP} • 

....., 

PROOF. By the definition of P we have 

00 00 

(5.4.2) I I 
m=O m=O J 

As p(i,E) 

hand side 

= 1 for all i EE, we can write 

...... m 
P e < 00 and hence this term equals 

for the second term on the right

to lemma 5.3 and 2.7 we have that 

f(i
0

). Herewith relation (5.4.1) 

is proved. 

SimiJ_ar to theorem 4.10 the second assertion follows directly from 

relation (5.1.1). D 

Define 
00 

I 
.....,n 

cp(i
0

) p 

n=O • 

(5.4.3) go ·- sup .- • 
00 p 
I 
~ 

tP(i0 ) p 

n=O 

Then in view of the lemmas 5.2 (by writing we have 

that g
0 

is the supremum of the long-run average return per unit time over 

the sta:tionary policies when the system starts in state i
0

• 

As in theorem 2.6 it follows from (5.1.1) that 

(5.4.4) 

Since tp 

0 ~ g ~ 
0 

' 

00 CX) 

~ y and I ~ y for all P. 
n=O n=O 

oo "'n 
2:': ae we have that l n=O P tp ~ ae. Consequently 

-1 <· ) . a y 1
0 

< 00 • Define 

00 

V ·-.- sup l. 
P n=O 

' 
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It is easy to verify that 

(5.4.6) 

From (5.4.4) it follows that 

), 
n=O 

( I g
0

1 +1 )y for all P. 

It is rather straightforward to verify that relations (5.1.2), (5.1.3) and 

(5.4.7) imply that the conditions of corollary 4.14 are satisfied. Together 

with (5.4.6) the corollary 4.14 implies the existence o:f a policy Q
00 

with 

(5.4.8) 

In view o:f (5.4.3) we now have that 
00 

Q is average-optimal in the class of 

stationary policies if we start in state i 0 . 

5.5. LE:MMA.. There exists a stationary poZicy Q
00 

such that Q
00 

is optimal 

with respect to the average return criterion in the class of all stationary 

policies. 

co 
PROOF. It follows directly from (5.4.8) and the definition of g0 that Q is 

optimal in the class of all stationary policies when the system sta.rts in 

state i
0

• Since for each PEP the state i 0 can be reached from each state 

we obtain that the associated Markov chain does not have disjoint closed 

sets. This implies, as is well-known, that the average expected return per 

unit time does not depend on the starting state from which the lemma fol

lows. D 

The rest of the proof' of theorem 5. 1 consists of' proving that the 
00 

policy Q is average-optimal in the class of all policies. The essential 

part is to show that the scalar g0 in combination with the function vis a 

solution of the optimality equati.on for the average return criterion vrhich 

satisfies an auxiliary condition. 
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* Since by relation (5.1.1) and the definition of Y 

it follows that x 1 s x0 . 

Now suppose x s x 1 n n-~ ~ 
= sup Px 5 sup Px 1 r n r n-

,.._, 

then Px ~ 
n 

= x. Thus 
n 

* s y for all PEP, 

~ for all PEP and hence 

by induction x, n=0,1, ... , is a 
n 

decreasing sequence of functions. Consequently x := lim x exists. It is 
n>oo n 

easy to see that O ~ x s y*, n=0,1, .... Using dominated convergence we 
n ~ find x ~ Px for all PEP. Thus 

~ x 2:: su:p Px. 
p 

Next we prove the reverse inequality. Let P be such that n 

~ 
~ p 

n 
-1 

x + n e. 
n 

~ ~ ,..., 
Now choose a converging subsequence of P , say 

n 
p + Po as 

pact by the assumptions of theorem 5.1). Since 
* . 4 0 s x ~ y, according to lemma .13, we have 

n 

~ 

Consequently 

,.._, ~ 
(5.7.3) 

Relation (5.7.3) implies 

X = 
-N lim P0 N->oo 

= o, 

nk 
~ * lim p n y --

k:+00 k 

k ➔ oo (P • 
lS com-

~ * Foy and 

by relation (5.1.2). By induction it is straightforward to establish that 

(use Iv! s y* and the inequality at the top of this page) 

""' ~ 
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t'<>r a.11 N ru1d all .R = (PO 21P 1, .... ) .. Bt1t ther1 assertion ( 5. 7. 2) follows .. 
. . . th ,t l t . d . · . '' . ( 5 "'.l ) Using again e as exist · ·ecompos1t.1on of state 1

0 
see lemma ·•G 

and recalling that v(i0 ) = 0, we find with (5.7.4) 

N 

l. 
n=O 

N 

I 
n=O 

As a second application of the regularity property of the Norlund-means it 

follows then 

which is relation (5.7.1) in a different notation. D 

PROOF OF THEOREM 5.1. From relation (5.6.1) we have 

Iterating this inequality we obtain 

N 

l 
n=O 

By rewriting this we find 

N 

l PO ••• Pn-1 
n=O 

N 

I PO ••• Pn-1 
n=O 

:s; g + 
0 

for all i EE. 

cp 

tp 

( i) 
n 

( i) 
n 

( i) 



Ir1 order to prove that the largest limit point as N ➔ 00 of the left

hand side does :riot increase g
0 

we show that the term between brackets has 
• 

limit zero. Indeed, since L.,.,,,..= 
0 

n- + 00 as N ➔ 00 the first term 
n 1 ter1dE; to zero. By lemma 5. 7 the second term converges to zero. Consequent Y 

g
0
e is an upper bound of the average expected return per unit time. More-

a'l1erage expect,~d return corresponding to policy Q actually equals g 0 e" The 

latter was already shown in lemma 5.5 .. D 

5.8. WAITING LINE MODEL WITH CONTROLLABLE INPUT 

Tl1e idea of ''reduction of queues through the use of price'' comes from 

[Leema11J. Here we shall restrict ourselves to show the applicability of our 

conditions (5.1.1), (5.1.2) and (5.1.3). A more detailed study of this type 

of control problems can be found in [Low]. 

Assume that the arrival process is a Poisson process with expected niJrn

ber of arrivals per unit time A where p denotes the service price. Thus 
p 

the input process can be controlled by the service price. It seems reason-

able to assu.1I1e that A decreases as p increases. Let us ass11me further that p -
the price p lies 'between the bounds a and b, i.e. a ~ p ~ b. Let F be the 

distribution of the service time s. The times at which a decision on the 

price has to be taken are the times a person completes service. The state 

at that time is the nun1ber of people the departing customer leaves behind. 

We assume that the service time is independent of p. 

The transition probabilities corresponding to price p equal 

(5 .. 8.1) p(i,j) = 

kj-i+i (p) for j 

where kr(p) denotes the probability of r people arriving during a service 
• • period, 1.e. 

(5.8.2) k (p) = 
r e 

0 

-As 
p 

(r!)- 1 dF(s). 

F"or fut,ure reference we st.ate that ( 5. 8. 2) implies 

r(r-1) ... (r-k+1) k (p) 
r 

k 
s ) 

I 
' ,, 
i 
' 
' 



wen it is a.ssu.ned that E k . . ( ) . s exists. Since k p, r=0,1, .•. , 1s a con-
r 

tinuous function or A 
p 

it :follows directly that Pis compact if>. is a 
p 

• • continuous function of p. 

The following assumptions are made: 

-1 
p 

A. is a continuous :function of p for a s p s b 9 p 

cp( i) is a continuous function of P for all i E: E. 

5 .. 9. OOUlfDED COSTS 

Suppose constant dis such that !cpl s de for all PE: P. In view of 

condition (5.1.1) we need a nonnegative function y such that 

{5.9 .. 1) 
-

I cpl + tp + Py s y 

-with P the colu1mi-restriction to E\ { i 0}. Since 

i E: E and lcpl s de it is sufficient to find a y with 

-e + Py y, 

because in that case * y := (d +E s)y will satisfy (5.9.1). 
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A tu.ntion y satisfying ( 5. 9. 2) with state O for i 0 
• 1s an upper bound 

• • of tra,nsi tions to the state zero (cf. 2.6 and 2.7). ot the expe,cted n1:rmber 

Bence y(i) is equal to 

point sero (i.e .. equal 

some constant times the n11ir1ber of steps to the 

to i) seems a good cand,idate. We try y(i) = i, then 

for service price p and i ~ 1 

I p(i,j}j == 
j~O 

--

00 

00 

I 

(p) j = 

k (p)(r+i-1) = 
r 

= i - {1 - A Es). p . 



From assumption (5.8.4) it follows that p(1 -

Hence 

(5.9.4) t p{i,j)pj < • for • 
~ 1 1 + P1 l -

j#O 

and y(O) y{i) • for • > • ot its ·- pi 1 .-• -

). E 
p 

s) ~ 1 for all p. 

1 satisfies (5.9.2). 

In order to verify the condition (5.1.2) we note that for T the busy 

period, i.e. the rett1.rn time to {O}, the inequality E. P [-r] ~ i E s holds. 
l. , 

Moreover, in view of (2.7.1'.) and Wald's equation 

00 

l Pae. 
n=O 

Hence 

Since the right-hand side tends to zero a,s n -+ 00 for each P E: P we find 

that alao condition (5.1.2) is true. 

~ To check that Py depends continuously on price pit is in view of 

( 5.9. 3) sufficient to • verify that A Es is a continuous :runction of p. 
p 

• • • Th1s 1s a direct consequence of assumption ( 5. 8. 5). We conclude that 

theorem ;. 1 can be applied .. 

Before we treat the case of unbounded costs we state a lenuna which 

does not depend on .arry previous assumption made in this section. 

5.10. If c ~ O and x ~ O are such that 

with HQ th.s 001,:urm-restriation to a oertain subset H., 

q ( i , j ) for j E H, 

.Q for j H, 

f Q,n c(i) s x(i) + J, 
n=O k=1 

• 



PROOF. From (5.10.1) it follows that 

N 
s X + l 

n=1 

n-1( ) Q Q- ·Q X -
H 

N 
Q HQx. 

x(j) if' j 

Hence 

N 

l Qn C :s;; X + 
.J 

N 

I Qn x* S X + 
co 

I 
n=O n=1 n=1 

This completes the proof' of the lemma. D 

• 

5.11. COSTS BOUNDED BY A LINEAR FUNCTION 

• 0 otherwise. 

Suppose for some constant d we have that lcp(i)I ~ di for all 
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i ~ {1$2, .•. } and all Pc P. It is now sufficient to find a function y ~ 0 

such that 

(5.11.1) i + I p(i,j) y(j) s y(i) for all i. 
j;&o 

We try y(i) = i(i+1), then for service price p and i ~ 1 

(5.11.2) I p(i,j) j(j+1> = 
j#O 

00 

r--0 

Since (r+i-1)(r+i) = r(r-1) + 2ir + i 2-i we find, when using (5.8.3), that 

the right-hand side equals A2 E s 2 + 2i A Es - 2i + i + i 2 • Rewriting 
p p 

this we find 

(5.11.3) i(i+1) - i{2(1 - A Es) -
p 

.-1 
J. 

According to asf=;urn:ption (5.8.4) we can f'ind an 

(5.11.4) 2(1 - ). JE 
p s) -

. -1 
1 

-1 p 

2 s }. 

• • integer 1
0 

• for 1 

such that 

• 
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Then 

i + l p(i,j) P j(j+1) ~ p i(i+1) for i ~ 
j;tO 

In order to find a :function which satisfies (5.11.1) for all i ~ 1 we 

apply lemma 5.10 with 

~ := i, Q := P, 

i.e. the column-restriction of P to E\{O} for Pan arbitrary element of P, 

where 

p i(i+1) for 
x( i) : = 

i ~ i , 
0 

m := max {i + I q(i,j) p j(j+1) : i=0,1, ... ,i
0
-1}. 

jEH 

It can be verified that 

c + HQx s x on E\{O}. 

Hence according to (5.10.3) 

00 00 

(5.11.6) I I ?(i,j) j s x(i) + Y, x( j). 
n=O • 

J n=1 

(5.9.4) 

inequality it follows from (5.11.6) that there is some constant p* such 

that 

Define 

(5.11.8) 

00 

l I i;?(i,j) j s p* i(i+1) for i ~ 1 . 
• n=O J 

y(i) := 
CX> 

sup I 
P n==O 

It follows from theorem 13.6 that the supremum in (5.11.8) equals the 

supremum over all policies. According to theorem 2.22 with T = 00 we then 
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have that y is superharmonic, i.e. 

,...,, 
i +}. p(i,j) y(j) ~ y(i) for all i and all P • 

• 
J 

Thus y is a function that satisfies (S.11.1). Moreover, since (5.11.7) was 

deduced for an arbitrary P we have by (5.11.7) 

(5.11.10) y(i) * ~ p i(i+1) for i ~ 1. 

To check condition (5.1.2) we note that 

00 

I Y. ?<i,j) j ~ ~i(i+1), 
n=O j 

• since the system must pass the states i,i-1, •.• ,1 
• 

• state 1. k = ~i(i+1). Hence for i ~ 1 and 

00 

y(i) 
• n=O J 

to reach state O from 

** some constant p 

Since the series on the right-hand side converges we have 

00 

t' "'n( . . ) ( . ) ** l p l. ,J y J ~ p L 
• • 
J k=n J 

and this tends to zero as n ➔ ®·Finally by (5.11.2), (5.11.3) and condi

tion (5.8.5) 

), p(i,j) j(j+1) 
• 
J 

is a continuo11s function of the price p. By lemma 4. 13 also 

...., 
I p(i,j) y(j} 
• 
J 

depends in a continuous way on p. Herewith the conditions (5.1.1), (5.1.2) 

and (5.1.3) are verified and theorem 5.1 can be applied. 

5.12. REMARKS 

As in section 5.11 it can be proved that for a quadratic cost function 

we can apply theorem 5.1 if the third moment of the service time exists. 

• 
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Thus E!s1 3 < 00 implies the existence of a stationary optimal policy with 

respect to the average return per unit time. In general it seems that in 

addition to the assumptions already made in this section the finiteness of 
( )th . . . .p t. 1 the \ k+1 absolute moment of' s implies the existence O.L an op ima 

stationary policy when the cost function is bounded by a polynomial of 

degree k. 

Condition ( 5. 1. 1) for bounded costs and tp = e, P E P, is equivalent to: 

There is some state i
0 

and a function O ~ y < ~ suah that for all PEP 

(5.12.1) e + Py s y, 

~ 

uYith P the aoZUJ11J1,-restriction to E\{i0}. 

In the case that P consists of one element, say P, this condition re

duces to the Foster or Liapunov function criterion of section 2. It t1.Jrns 

out that in waiting time models when the embedded Markov chain approach is 

used,the Foster criterion is very useful in proving ergodicity. In many 

cases however one needs a weaker condition than given by [Foster]. Such 

conditions can be found in several places in the literature: [Moustafa, 

theorem 2.I], [Crabill, theorem 1], [Pak.es, theorem 1 and theorem 2], 

[Cohen, ii, p. 25], [Kushner, theorem 7, p. 211]. The weakest form can al

ready be found in [Moustafa], in 011r notation: 

If for some e > O there exist a function y ~ O and a state 

and 

00 

l p(i,j) y(j) ~ y(i) - € for i 
j=O 

00 

l p(i,j) y(j) < 00 for is 
j=O 

• > l 
0 

then the irreduaible Markov ahain is positive recurrent. 

such that 

With the use of' [ Chung, theorem 3, p. 47] and our lemma 5. 1 O the above 

condition can be slightly weakened to: 

If for some E: > O and some finite set H there exists a fwiation y ~ o euah 
that 

• 



L p(i,j) y(j) s y(i) - E for all i, 
j(H 

then the irreducible Markov chain is positive rea1A.r1rent. 

"' Indeed by lemma. 5. 10 we have for P the col1Jmn-restriction to E\ { i 0} _ 

(cf. 2.7) 

00 00 

I I 
n=O J n=O 

Since His finite and ,oo Pil(i,j) 
L,n=O 

< 00 for each j (c~. [Chung, p. 47]) we 

have that the right-hand side of this inequality is 

pectation of the return time to {i
0

} is finite (cf. 
• • positive recurrent. 

• • finite. Hence the ex-

2.7) and the chain is 
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In lemm~ 5.3 we proved that condition (5.12.1) implies the Markov 

chain is positive recurrent for each PEP. Since state i 0 can be reached 

under each P we have (when we forget about transient states) that for each 

PEP the Markov chain consists of one positive recurrent class. The 

question then is whether the converse of the above a.ssertion is also true, 

i.e. if Pis compact and each P € P consists of one positive recurrent 

class then there exists a function y satisfying (5.12.1). [Fisher] showed 

by an ingenious proof that the answer is ''yes'' when in each state there is 

only a finite n1.1rnber of possible decisions. In general the a.nswer is ''no'' 

which is shown by the following counterexample. 

COUNTEREXAMPLE. 

E = {0,1,2, ... }; 

pk(n+1,n) = 1 fork E {1,2, •.. , 00 } and n E {0,1, •.. }; 

fork E {1,2, .•. }, 

-n 
2 for 1 ~ n ~ k, 

( ) -n } p O,n = 2 for all n E {1,2, .... 
c:o 
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The expectation of the return time to O under Pk (notation µk(O,O)) equals 

00 

, + I 
n=1 

• 

k 
, -n -k( 4k )-1 = 1 + l 2 n + 2 -k n. 

n=1 

Since the third term on the right-hand side goes to infinity ask ➔_00 

we have lim µk(O,O) # µ (o,o) which is the sum of the first two terms 
k ➔ oo oo 

• 

after the equality sign. Finally it is easily checked that lim Pk= P and 
k➔oo oo 

thus Pis compact. Since condition (5.12.1) should imply 

we find that such a function y does not exist. 

In verifying the conditions (5.1.1), (5.1.2) and (5.1.3) for the 

waiting line model it turned out that conditions (5.1.2) and (5.1.3) were 

relatively easily checked. Condition (5.1.1) seems to be the most important 

one. May the other two conditions be omitted in theorem 5.1? A counter

example of [Fisher and Ross] and the result of [Fisher] show that the 
• • answer 1s negative. 

Ergodic theorems have been known for a long time in probability theory. 

The use of an ergodic theorem to convert a Markov decision problem with 

average return criterion into one with total return criterion, the author 

learned from [Breiman]. In [Lippman] the same technique is used. The re

sults in this section are related to those of [Lippman]. There the state 

space is a Borel subset of a metric space. For the case of a countable 

state space our conditions are more general. 



In this section we return to the optimal control model of sections 3 

and 4. Again it is assurnP.d that cp is a charge structure. In this section 

we focus on strategies with stopping time T equal to infinity. So the de-
• 

cision-maker -is not allowed to stop the system. Hence the value function 

becomes 

00 

(6.0.1) v : = sup ]ER [ I 
R n=O 

c(x )]. 
n 

In order to make it possible to use results from the sections 3 and 4 we 
' 
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introduce a reward function r with r := v-e. Then v equals the value ~unc

tion of the optimal control problem with cost structure cp and rewa~d 

:function r (cf. the proof of 4.14). Moreover, the interesting stopping 

times will automatically be equal to infinity. The results of this section 

are direct consequences of theorems in the sections 3 and 4. 

As for the cases of discounted dynamic programming, positive dynamic 

progra;mmi ng and negative dynamic programming they are known ( see 

[Blackwell (1965)], [Blackwell (1967)], [Hinderer] and [Strauch]). The 

other results seem to be new. 

• • As a consequence of 3.1 and 2.17 we have that for all policies 

lim ER v(~) exists and, 
N >oo 

• • • • • moreover, this limit is nonnegative. 

6.1. 'l'HE:OREM. The value ficnatian vis a solution to Bellman's optimality 

equation 

v = sup ( cp+Pv). 
p 

(6.1.1) 

Moreover, if P is compact~ cp is upper semicontinuous a:nd 

. Pv+ 11.m sup 
P+P

0 

then v satisfies 

(6.1.2) 

·PROOF. Since v > r relation (6.1.1) follows immediately from (3.5.1). 

Relation (6.1.2) is an implication of theorem 3.6. 0 
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' 

Next we introduce some useful ter1tLinology. The above model will be 

called: 

discounted dynanria programming (d.d.p.) with disooicnt factor O <a< 1 if 

p(i>E) = a for aZl i a:nd all P; 
positive dynamic progra1mring (p. d. p.) if cp( i) 2: O for all i and P; 

negative dynamic programming (n.d.p.) if cp(i) ~ O for all i and P. 

6.2. THEOREM. 

stant b 

(6.2.1) 

In d.d.p. with bounded cost structure~ for some con-

if P is compact and cp is upper semicontinuous then the value function v is 

the unique bounded solution of ( 6. 1. 2) ·. 

PROOF. If a is the discountfactor then from (6.0.1) and (6.2.1) we have 

lvl s; be(1-a)-1, thus vis bounded. Since Pne = o.ne we have, moreover, that 

each P E P is absorbing and the assertion is an implication of theorem 3. 11 

and theorem 6.1. D 

We note that using a well-known result on contraction mappings the 

following generalization of theorem 6.2 can be proved. 

In d. d.p. with bounded cost structure the value function is the unique 

bounded solution of (6.1.1) (see [Denardo]). 

If for some Q € P it holds that cQ+Qv = v then we say that Q satisfies 

the optimality equation. We rema.rk that in view of'theorem 3.6 for n.d.p. with 

P compact and cp upper semicontinuous such a Q always exists. By the fol-
• CX) • -lowing theorem then Q is optimal. 

6.3. THEOREM. If Q satisfies the optimality equation then each of the 
00 

follCMing assumptions imply that policy Q is optimal: 

. N a. lim Q v ~ 0 
N-►oo 

b. d. d. p. with bounded cost structure 

c. value function vis nonpositive 

d. n. d.p. 



• 

PROOF. 

exists 

At the beginning of this section we noted that limE v(x) always 
n>oo R l'"l 

and, moreover, is nonnegative. Since Q satisfies the optimality 

equation it follows with v > r that Qin combination with stopping time 

T :=~satisfies relation (4.1.1). According to theorem 4.7 we have that 
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00 

policy Q00 is optimal if and only if lim QNv = O. Since lim QNv ~ 0 it fol-
N>oo N>oo 

lows that 

lim QNv ~ 0 
N-+oo 

00 

is a criterion for the optimality of Q. It is straightforward that assump-

tions a, c and d (in n.d.p. we have v ~ 0) imply relation (6.3.1). 
In the proof of theorem 6.2 we showed that in d.d.p. with bounded cost 

structure 
. QN lim v = 

N+<» 

the function vis bounded and each Pis absorbing. Hence 

0 which is stronger than relation (6.3.1). D 

As a consequence of the above theorem we have 

6. 4. THEOREM. In d. d. p. with bounded aost st"PUature there exists an 

optimal stationary poZiay if P is compact a:nd cp is upper serrricontinuoue. 

PROOF. By the theorems 6.2 and 6.1 the value function v satisfies 

v = max ( cp + Pv) . 
p 

Since P has the product property it follows now that there is a Q such that 

In [Hordijk a.nd Tijms (1972)] it is shown by means of a counterexample 

that the boundedness condition in the above theorem cannot be omitted. 

The following notation is introduced 

00 

I 
n=O 

6.5. THEOREM. PoZicy 

(definition 3. 7) and, moreover, satisfies 

(6.5.1) max 
p 
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00 

PROOF. Suppose Q 
• is 

it follows that vQ satisfies relation (6.5.1). Moreover, by the theorems 

3.1 and 3.8 the function vQ = v has the property anne. To prove the con

verse we note that ( 6. 5. 1 ) implies that v is a Cp - superha1:·moni c function. 
Q . 

cp - excessive. By the definition of the value function we have vQ s v. 

Hence according to theorem 3.1 we conclude that vQ = v and consequently 
ClO 

Q is optimal. 0 

6. 6. THEOREM.. In 

st;ationar'Y po Z. icy 

(6.5.1). 

d. d. p. with bounded cost; structure and in p. d. p. the 
00 

Q is optimal if and only if vQ satisfies relation 

PROOF. This assert.ion follows itmr3'ediately from theorem 6. 5 if we show that 

vQ he,s the property anne. Now in p.d.p. this is obvious. In order to show 

it for d.d.p. with bounded cost structur~, let lcp(i)j s b for all i and 

all P and some constant b, then 

l ( )t n( )-1 .. . ~. vQ xn i s a 1-a be vhen a is the discountfactor. Thus 

lim JE v (x ) = 0 and vQ has the property anne. 0 
R Q·n n+oo 

6. 7. ·rHEOREM. If for some function f urith the proper-ty anne and some 
(XI 

potiey Q t.ue have that 

and if in addition l.im Qnf s o!t 
n+oo 

then f = V = 
00 

vQ and Q is optimal. 

PROOF. Relation ( 6. 7. 1 ) implies that f' is ~p - superhax·monic. Since f has 

the property anne it follows by theorem 3. 8 that f is cp - excessive. Con

sequently, according to theorem 3. 1 we have v s f'. Iterating the equality 

cQ+Qf = f we obta:in 

N 

I 
n=O 

. . n With lim Q f s Owe find 
ntoo 
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<X) 

I :2:: f ~ v .. 
n=O 

00 

Hence f = v = vQ and Q is optimal. O 

• 



6o 

T. 01 POTEff'TIAI.S, ABSORBING POLICIES AND CHARGE STRUCTURES 

In section 2 we defined a potential w.r.t. P. By introducing this 

analogue of a well-known notion a nat11ral question is raised. If f is a 

potential w.r.t. P for each PE: P is it then true that :f is a potential 

v .. r.t. P? Only for a par.t.icula.r case we are able to answer this question 

(theorem 7. 1). Simila.r results for absorbing and transient policies are 

obtained in the theorems 7. 3 and 7. 4. Together with the two corollaries 

7.5 and 7.6 they generalize results o:f [Veinott (1969)]. 
In this section we a.ssum~ that P is compact. 

7. 1. THBOREM. If f is a potential with nonnegative ahar,ge w. r. t. P fo-.r 

saah P E: P then f is a potential w. r. t. P. 

PROOF .. Deti.ne "'p := f-Pf, Pe: P, then since wp is the charge of f w.r.t. P 

ve have that wp t!'. 0 for all P e P and f ~ 0. Iterating the equality 
. N 

WP . + PO ••• P N :f = f for all N, 
n . 

· .. · .. · R n- n :s f'. Consequently Wp is a charge 

structure and. so is -wp. Let us study the n.d.p. problem with cost struc

tt1.re -wp, then the value function is defined as 

00 

v : = sup E~ 2 -w( x ) . -R n 
R n=O 

Since t ~ 0 it holds that Pf is a lower semicontinuous function and hence 
00 

semi.continuous. According to section 6 there is a Q which is 

lo,r since f is a potential with cba.rge wQ w.r.t. Q we conclude that 

v == -t .. As a consequence of theorem 2.17 we obtain lim E v-(x...,.) = 
N ► OO R -N 

== limBR···. f(~.·) = O and by theorem, 2.16 f is a potential w.r.t. P. D 
• ► Q'a .. . ' .-,• t•~~. 
. ' -, ' 

If each stationary policy is absorbing then eaah policy is 
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PROOF. For each P € P we have that the function e is an excessive function 

w.r.t. 

w.r.t. 

P. Since in addition lim Pne = 0 it follows that e is 
n ► oo 

a potential 

P. Thus we can apply theorem 7.1 and find that e is a • potential 

w.r.t. P. By theorem 2.16 we obtain *.!:ER e(xn) = 0 for each policy R. D 

It is well-known that if a stationary Markov chain is absorbing then 

it is transient. We do not know whether this is also true for non-station-
• • a:ry policies. 

7.4. THEOREM. 

for azi P0 e P 

If eaah stationary polidy is absorabing and if lim Pe 

then each policy is transient. P+-PO 

= P e 
0 

PROOF. As in the first part of the proof of lemma 5-7 it can be shown that 

for each i e: E 

(7.4.1) limE. R e(x_.) = O, 
N+<x> J., -.N 

11nifo1:·mJ y in R. Hence for arbitrary state j there is an integer m such that 

(7.4.2) E. R e(x ) ~ a, J, In 

for some a< 1 and all policies R. 

Let (PO ,P 1 , ... ) be an arbi tra~r•y policy, then for wn : = 

n=0,1, .•. , we have 

m 

e-P e, 
n 

I = e - P ..• P + e for all n. n nm 
k=1 

From (7.4.2) and (7.4.3) we find 

(7.4.4) 
m 
I Pn+,···pn+k- 1 wn+k(j) ~ 1-a > 0 for all n. 

k=1 

• 

The probability that the system ''breaks down'' before time t+1 when at time 

t decision p(i,.) is taken in state i equals 1 - . p(i,j ). The probability 
J 

that the system is in state j at time n and ''breaks down'' between times 

n+1 and m is not larger than the probability that the system ''breaks down'' 

between times n+1 and m. Hence 
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m 

l Po···Pn+k-1 wn+k(i). 
k=1 

From (7.4.4) and (7.4.5) we obtain 

m 

n k=1 

Consequently 

(X) 

(7 .4.6) 

• 

denotes the probability that the system. 

''breaks down'' after time k, we :find f"rom (7.4.6) 

(X) 

I ()() .. 
n=O 

This proves the assertion. 0 

7.5. THEOREM. If E has a finite nwnbexa of states and if each statdonary 

poZic.y is transient then each poZicy is t'P(ll1.sient. 

PROOF. We use a well-known argurnent. If E is finite and P is transient then 

lim PN e = O and thus P is absorbing. The rest of the proof' follows from 
N )CO 

theorem 7. 4. 0 

As a direct consequence we state the following theorem. 

7 .6. 1.l'HE.OREM. If E has a finite number of states and if eaah stationary 

policy is transient then each bounded cost structure is a charge structure. 

Moreover., fox- each upper semicontinuous cost structure ther,e is a stationary 

optimal po 'l icy (strategy) • 

PROOF. According to theorem 7.5 we 
n- n 

from which the first assertion :follows. 
· n+1 

:-, 

' 
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• 
To prove the second statement we note that automatically the value function 

vis bounded and each Pis absorbing. Thus lim PNv = O and according to 
N-+<x> 

the theorems 6.1 and 6.3 there exists a stationary optimal policy 

(strategy) . D 
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8. REC y.y,.o ... CE FOR A DECISION PROCESS 

In this section we generalize the notion of recurrence for one Markov 

chain to a collection of' Markov chains. It seems to us that the extension 

of well-known theorems for one Markov chain to a collection of Markov 

chajns has important implications in the theory of Markov decision pro

cesses. 

• 

The tex·m comm1micating system stems from [.Bather]. His paper makes it 

clea.r that sjmilar to the minimal closed sets in a Markov chain the notion 

of co:rr1rn1micating system plays a basic role in Ma.rkov decision processes es

pecially when the average ret,.Jrn criterion is used. 

In [Hordijk ( 1972)] an ea.rlier version of several theorems of this 

section can be found. There the less striking r1a;me C-minima.l closed set 

instead of connn.unicating system was used. Theorem 8.6 for finite E was ob

tained independently in [ Bather J. 

8. 1. DEFINITION. For A c E let fp(i ,A) denote the probabi1-ity of reaohing 

subset A state i for the Markov chain with matnx of transition prob

abi"lities P. We take for aZZ PE P, fp(i,A) = 1 if i E A a:nd 1.urite :rp(i,i) 

for f P ( i, { i} ) . 

Subset Ac Eis called a communioating oZass w.r.t. P 

if 

and if 

the c 

for eaoh pair of states i, j E A there is a matrrix P E P and a 

non.negative integer n such that pn(i,j) > o. 

If state spaae E is a comnru.nica:ting olass iv. r. t. P then we speak of 

iaating system (E,P). 

State j is :recurrent w. r. t. P if for each i e E with :rp ( j, i) > o for 

soroo PEP, it hoids that sup f (i>j) = 1. 
p p 

If A is a aommunicating class w. r. t. P and if each IZ.ement of A is a 



~aurrent state w.r.t. P then we call A a recu.Prent class w.r.t. P. 

If state space Eis a recurrent class w.P.t. P then we speak of the 

:raecurren t sys t'em ( E ~ P) • 
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The following two theorems are generalizations to collections of 

Markov chains of the theorems I. 8. 5 and I. 8. 6 in [ Chung J. Note that an ex-

cessi ve :function • • 1.s a cp - excessive function with cp = O. 

8.2. THEOREM. a) If u is an excessive ju.nation w.r.t. P and if u(j) > o 
then 

(8.2.1) 

b) If 

(8.2.2) 

then 

(8.2.3) 

and 

(8.2.4) 

w(i) := sup fp(i,j) for all i € E. 
p 

w(i) = sup Pw(i) for i 
p 

w(j) ~ sup Pw(j). 
p 

• 
J 

Hence vie an excessive function w.r.t. P. 

PRQ,QF. a) De fine 

u*(i) := u(i)/u(j) for i EE; 

* * then clea.rly u is also an excessive f'unction w.r.t. P, moreover u (j) = 1. 

Now let us focus on the optimal control problem as introduced in section 3, 

·t - (·> .r-c· ·) *) wi h cost structure cp = O and r 1. = u i,J . 

*) . The Kronecker delta function is defined by 

0 :for i • 
J , 

o(i,j) := 
• • 1 :for 1. = J • 
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Then the value function of this problem equals 

v(i) = sup fR(i,j) for all i, 
R 

where fR(i,j) denotes the probability that state j is ever reached from 

state i when policy R is 1.1.sed (fR{i,i) = 1 for all i a.nd all R). According 

to theorem 3.1 we have that vis the least excessive function with v(j) ~ 1 

* and hence v ~ u. From this relation (8.2.1) follows. 

b) We again consider the above introduced optimal control problem. By 

theorem 13. 6 it follows 

of (8.2.2) equals the value function v. Since r(i) = O for i # j it follows 

by theorem 3.5 that relation (8.2.3) holds. Relation (8.2.4) follows from 

the fact that vis an excessive function. 0 

In the following two theorems it is assumed that (E, P) is a comm1mi

cating system. 

8 .. 3. THEOREM. a) If Eis a -recurrent system w.r.t. P, then every excessive 

funtion w.r.t. Pis a aonstant fun..ction. 

b) If E is a nonrecurrent system w. r. t. P., and contains more than one state 

then there exists a nonnegative., nonconstant., bounded function w satisfying 

the retations (8.2.3) and (8.2.4). 

PROOF. a) Suppose u is an excessive function, then u ~ o. If u 'I. O then 

there is some state j with u(j) > o. By (8.2.1) and the definition of re

currence we obtain 

u(i)/u(j) ~ sup fp(i,j) = 1 
p 

and hence u(i);;;: u(j) for all i. Consequently u{i) > O for all i, and by 

interchanging i and j we get u(i) = u(j) for all i. Hence u is a constant 

function. 

b) If Eis a nonrecurrent system then by definition there is a pair of 

states (i,j) such that 

(8.3.1) 
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Now we consider again the optimal control problem with cp = O and 

r( i) = o( i, j ) . As shown in the :r;roof of theorem 8. 2. b we then have that the 

value function v equals the function w defined in (8.2.2). In virtue of 

(8.3.1) then v(i) < v(j) = 1 and thus vis a nonconstant, bounded excessive 

:function. Moreover, as in the proof of theorem 8.2 the function v satisfies 

(8.2.3) and (8.2.4). 0 

As a consequence of theorem 8.3 we state the following theorem, which 

provides a criterion for recurrence w.r.t. P. It generalizes theorem 6 of 

CFosterJ. We note that the adjective bounded may be inserted in the crite-
• rion .. 

8.4. THEOREM.Eis a nonreaurrent system w.~.t. P if and onZy if there 

exists a nonconstcr:nt (bounded) exaessive function w.r.t. P. 

The next theorem is an application of theorem 8.3 to optimal control 

problems. 

8.5. THEOREM. If Eis a reaurrent system then for the optimal aontrol 

problem with cp = O and r ~ O the value function v is a aonstcr:nt funation 

with 

v(i) = sup r(j) for all i . 
• 
J 

PROOF. The value function is by theorem 3.1 the least excessive function 

that majorizes r. According to theorem 8.3 we conclude that vis a constant 

function. Consequently vis the least constant function that majorizes r 

and hence v(i) = sup r(j) for all i. 0 
• 
J 

The above theorem remains valid for cp nonnegative. However, when 

cp(i) > 0 for some i and P, it follows that v = 00 - . 

In Markov decision problems with average return criterion it is often 

desirable that the ''maximal'' average return does not depend on the starting 

state, i.e. the :function 

(8.5.1) 

• 

g( i) := sup 
R 

1 lim in:f -
N+1 

N ► 00 
c(x) 

n 

is a constant function. The next theorem provides a condition guaranteeing 

this. Although it is not uncommon to define the ''maximal'' average expected 
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ret1Jrn as in ( 8. 5. 1 ) one mj ght prefer to take the largest limit points, 

i.e. limes superior instead of limes inferior (cf. 5.0.1). Actually we are 

forced to take the lim inf in the next proof. 

' 8 .6. THe:oREM. If E is a re .... ., 

then gas defined in (8.5.1) 
nt system and if cp is bounded from below 

is a oonstant fu:nation. 

PROOF. Since Cp is bounded from below there is some constant c such that 

g* := g+ce is nonnegative. The proof proceeds now by showing that g is 

h -. Tb *· . . d *· super a1"ttlon1.c. en g is a superha1vrnon1.c function an hence g is ex-

cessive. According to theorem 8.3a then g* is a constant function and so is 
g. 

Given any e > 0 there is for each i £Ea policy R. such that 
l. 

a • , 

lim 1.nf N+1 N>00 

N 
E. R c(xn) ~ g(i)-e. 

n= J. 

For Pan arbitrary element of P let B be the policy that chooses decision 

r11J e P. at time O and uses policy R. from time 1 when the state at time 1 is 
l. 

i (as in theorem 3.1 we use here non-memoryless policies to show that g is 
superhaJ"Dlonic). 

We have for R and arbi tra.?7 i € E 

g(i) ~ 1 
lim inf N+ 1 N>co 

N 
l E. c(x ) = 

n=O 1,R n 

= lim inf 
N>oo 

From Fatou' s lemma 

g(i) ~ I p(i,j) 
• 
J 

p(i,j) 
• 
J 

[1 . - 1 
·im inf N+i 

N >oo 

~ I p(i,j) (g(j)-£) • 
• 
J 

N-1 
l ]E:. R 

m=O J, j 

c(x )] ~ 
m 

c(x )]}. 
m 

Since e; and P were arbitrarily chosen we conclude that g is superha1"Illoni c. 

□ 
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As a generalization of the notation introduced in definition 8.1 let 

:fR(i ,A) denote the probability that subset A is ever reached from state i 

1r1hen policy R is used (fR(i,A) = 1 for i EA and all R; we write fp(i,A) 

£or f poo( i ,A)) .. 

8.7 .. THEOREM. If p(i,E) = 1 for al"l i and P and if for some subset A 

inf sup fR(i,A) > O. 
i R 

~hen there exists a Q E P with 

fQ(i,A) = 1 for all i. 

PROOF. We consider the optimal control problem with cp = O and r = x(A), 

i.e. r(i) = 1 if i EA, r(i) = 0 otherwise. For the value function v we 

bave v(i) = sup fR(i,A) > 0 for all i. According to theorem 13.7 there is 
00 R t 

a policy Q and an entry time in some subset B c E, say TB' such that 

(8.7.1) vQ := lEQ [r(x )J ~ (1-e)v, 
CB 

for O < g < 1. Since r = 0 outside A and v(i) > 0 for all i it follows from 

(8.7.1) that B c A. Indeed, if i E B\A then vQ(i) = :IE. Q [r(x )] = 
1, LB 

=Ei,Q [r(.!.o)J = r(i) = 0 < (1-E) v(i). 
...., 

Suppose inf sup fR(i,A) =a> 0 then v(i) ~ a for all i. Let Q be the· 
i R 

column-restriction o:t· Q. to the complement of B (cf. 5. 10); then for arbi-
• C 

tra.ry i E: B 

Since 

:IE. Q [r(x ) J 
i, CB 

~ v( i) s 

-1 ( )-1 ~Q s; a 1-e: 

_, ( )-1 
= a 1-e: JE. Q 

1, 
[r(x ) 

(" -B 

= :IE. Q 
l, 

[r(x ) 
. t 
-B 

~ n)] +:IE. Q 
i' 

[r(x ) 
... t 
-B 
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and because the first term on the right-hand side tends 

n tends to infinity, we find that the second term tends 

tends to in:fi.nity. In virtue of" (8.7.2) we obtain 

Since q(j,E) = 1 for all j EE we have that 

to E. Q 
l. , 

to zero 

[r(x )] as 
'B 

as n 

tends to one as n tends to infinity. Hence 

fQ(i,A) = 1. Since by definition fQ(i,B) = 

proof. D 

fQ(i,B) = • • 1 and a fortiori 
• 1 for 1 E: B, this completes the 

The above theorem can be seen as a generalization of theorem 1 in 

[ Chung and Derrne.n]. 

In the sequel of this section it is ass11med that p(i,E) = 1 for a.11 

i e: E and all P e: P. 

The next theorem shows that recurrence w.r.t. Pis a class property. 

8.8. THEOREM. * * Let E be a comnruniaating aZass w. r. t. P. If fo-P some j E E 

inf* sup fR(i,j) > O 
iEE R 

* then E • -is a re nt class w.r.t. P. 

element 

class there exists a matrix P and a subset B = {j ,i1 ,i2 , ••• ,in ,i0} such 

that p(j ,i 1) p( i 1 ,i2 ) ... p(in ,i0 ) = a for some positive constant a. Since 

E* is a. c ·· · icating class we can apply theorem 8. 7 with E* for E and {j} 

* fQ(i,j} = 1 for all i e E. for A and we find a matrix Q with 

D . • * ,e:fine matrix Q as follows 

q( i ,j) for • I. B l. 

* (. . ) q ·· l.,J 
• 

p(i,j) f"or • B. l. € 



Then 

• • minimum 
iEB,.2.:;tO 

The first factor on the right-hand side equals 1 and the second factor is 

not less than a. Hence 

i~:f fQ*(i,i 0 ) ~ a. 
J. 

* * {Q } for the 
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Now we apply theorem 8.7 with 

collection of Markov matrices 

Hence the theorem follows. D 

E for E~ {i
0

} for A and with 

P and find that fQ*(i,i
0

) = 1 . * for all i e: E • 

The remaining theorems o:f this section are corolla.ries of the fore

going results. They assert the existence of optimal strategies under 
• • • vax1ous conditions. 

• 

8.9. THEOREM. If E is a recmrrent system then there exists a stationary 

optimal strategy for the optimal control problem uJith cp = o and r such 

that r(i) ~ r(i0 ) for some state i 0 € E and aZZ i e: E. 

PROOF. By the definition of recurrence and theorem 8.7 there exists a 
00 

ma.trix Q with :fQ ( i ,i0 ) = 1 for all i 

bination with the entry time of {i0} 

€ E. The stationary policy Q • in com-

provides a stationary optimal strate-

gy. □ 

8.10. THEOREM. If E has a finite number of states and is 

system then every optimal control problem with cp = O ha.s 

timaZ strategy. 

PROOF. When E is f'ini te and a comm,micating system then 

~;~ sup fR(i,j) > O. 
1,J R 

a communicating 
• a stat~onary op-

As a consequence o:f theorem 8.8 we have that Eis a recurrent system. Now 

we ca.n apply theorem 8. 9 and the assertion is proved. D 
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The following theorem can be found in [ Dubins and Savage, theorem 

3. 8. 5 , p. 56 ] .. 

8. 11 • THEOREM. If for some optimal control prob Z.em we have that cp = 0 and 

r = x(A) for a subset A and inf v(i) > O then there exists a stationary/ op-· 
• 

timal strategy. 
1 

PROOF. The value function of the optimal control problem with cp = 0 and 

r = x(A) equals 

v( i } = sup f' R ( i , A} for all i € E • 
R 

Since iijf v(i) > O it follows from theorem 8.7 that there exists a policy 
~ l ~ 

Q such that fQ(i,A) = 1 for all i e E. Hence policy Q in combination with 

the entry time of A is optimal. D 

The last theorem provides a sufficient condition in the case that the 

cost structure is not identically zero. 
-

8.12. 1rREOREM. For the optimal control problem with charge structure cp, 

relvard function r and bounded value function v let 

r := {i : r(i)=v(i)} 

and 

J 

If 

i~f SU f'p(i,r) > 0 
J. 

then there exists a stationary optimal po"licy. 

n 2: 

We note that the strategies 

0 and Tr the entry time of r 
(R,Tr) with R = (P0 ,P1, ... ), Pn 

axe thnftY strategies . 
• 

* € P for 



73 

* PROOF. It is easy to verify that P has the product property. By applying 

theorem 8.7 with p* we find a Q E = 1 for all i EE. In 

view of theorem 4.8.a we conclude that (Q ,Tr) is optimal. 0 
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9 • EXPONENTIAT1I,Y BOUNDED STOPPING TIMES 

A property that holds for most of the sequential decision problems is 

that the infim11m of the SSJtipling costs over the va.rious experiments is 

positive. This property, in combination with a boundedness condition on the 

loss function ( in 011r termj nology- the reward function) implies that the op

timal stopping time T ( or the ra,ndom n111rtber of observations) is exponen

tially bounded, i.e. there are positive constants a and b such that for 

stopping time T 

(9.0.1) P [T > nJ s a exp(-bn) f'or all n € {0,1, ... }. 

The •t sequential probability ratio test'' as introduced by [Wald] can be 

identified with the optimal strategy in an optimal control problem 

· (cf. [Lehmann, p. 104] ) • Thus the well-known property that the nlunber of 

observations in Wald's test is exponentially bounded follows also from the 

results in this section. In fact there is a wide class of problems for 

which the ass\unptions of this section are satisfied. They all have optima] 

stopping times with the nice property (9.0.1). A result related to theorem 

9.5 can be found in [Ross (1971), theorem 6.13, p. 136]. 

In this section we make the assumption 

(9 .. 0.2) c0 := infimum - cp(i) > o. 
iE:E,PE: P 

• If p{i,E) 1 for all E, then the above - J. e -
oo n 

ass11:rr:1ption implies that 
and • not a charge w.r.t. - _oo cp J.S - P. So in this section we do 

not ass11me that Cp • 
J.S a charge structure. 

• 00 

9.1. THH:r)REM. If a stati.onary strategy (Q ,-rA) with TA the entry time of 
A, is suah -that 

(9.1.1) E. Q 1, 

'[' -1 --A 
E I 
n=O 

and if in addition r is 

C above on A, then 

c ( ~n) + r ( x r ) J ~ r ( i ) for al Z. i 
-A 

bounded from below and JEQ [r(x ) J 
cA 

exponentialty bounded under policy 

is bounded from 
00 

Q . 



PROOF. Assumption (9.0.2) and relation (9.1.1) together imply 

-r:A-1 

I 
n=O 

[ r(x ) J 
I [ 

-A 
- r(i) for all i € Ac. 

The right-hand side is bounded from above on Ac; let constant c 1 be an 

upper bound. The lef't-hand side equals constant c
0 

multiplied by 

00 

nJ. 

By the Markov 

Fi,Q [-4 > n] 

inequality or alternatively directly from (9.1.3), 
• • • • is monotone non1ncreas1ng inn, we have that 

Let N be such that 

N •
u, .- < 1; 

then we obtain from the relations (9.1.2), (9.1.4) and (9.1.5) 

(9.1.6) 

• since 

Let Q denote the restriction of Q to Ac; then by rewriting the left-hand 

aide of (9.1 .6) we get 

-N 
Q e ~ ae. 

Because 

< ...... Q( k-1 )N 
- a e 

it is i1rutiediate from ( 9. 1 . 7) that ( recall that -r-A=O when ~EA) 

(9.1.8) -ii 
JP [ -r > nJ = Q e 

Q 

where [x] denotes the largest integer not exceeding x. 

75 
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Let a -1/N -1 
:= a and b := N 

-1 
log a ; then from (9.1.8) we have that 

JP Q [ T > n] :s; a exp ( - bn) • 0 

" 

The reward for stopping immediately in state i equals the right-hand 

side of relation ( 9. 1. 1 ) , wherea.s the left-hand side denotes the value of' 
00 

strategy (Q ,,-~). Thus each strategy which does at least as well as 

stopping irnrnedia.tely satisfies relation ( 9- 1. 1). 
00 

Section 4 suggests, that (Q ,1.r) is a good candidate f'or an optima] 

strategy, if Tr is the entry time of the stopping set 

(9.1.10) r = {i : r(i)=v(i}} 

and Q satisfies 

(9.1.11) cQ(i) + Qv(i) = v(i) for all • 
i e 

where v stands for the value function of the optimal control problem. In 
00 

partlcular this strategy (Q ,Tr) will satisfy relation (9.1.1) if it is 
• optimal. 

9 • 2. THEOREM. If the value funation v and JEQ [ r ( x r· ) J a.re bounded from 
-r 

above and r is bounde,d from below on r c then strategy (Q
00 

,Tr) is optimal 

and, moreover, the optimal stopping time Tr is exponentially bounded under 

the stationary optimal policy Q
00

• 

PROOF. As we argued above the 

can apply theorem 9. 1 is that 

only thing 

(Q
00

,,-r) is 

• we have to prove in order that we 

optimal. 

Denoting .!w := Tr AN, we have according to lemma 2.19 and the 

relations (9.1.10) and (9.1.11) 

.:rw-1 
(9.2.1) 
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Hence 

(9.2.2) 

T -1 T -1 ..:..r N 
]E I c(~n) - limEQ I c(x) -- -

Q n = 0 r.1 n=O N >oo 

= v - limJEQ Cv(x ) x(-rr~N)J -
N ➔ 00 ··er 

Since v = r on r the second term on the right-hand side equals E [r(x )]. 
Q r 

It is ass'l1tt1ed that this expectation is finite. Further it is ass1Jmed r 
that v is bounded from above on re and hence the third term. has a lim sup 

which is less than plus infinity. Consequently, because of cQ ~ O 

00 

I '"'·n Q 
n=O 

T -1 -r 
I 

n=O 
C ( X ) , 

n 

with Q as in 9-1~ is finite. With assumption (9~0.2) we then obtain 

11.·m r,Q--n O e = . 

S . • re ince vis bounded on then also 

In virtue of the relations (9.2.2) and (9.2.3) we then have 

T -1 -r 

n=O 
c(x) + v(x )] = v 

n er 

00 

Since v = r on r we find that (Q ,-rr) is optimal. D 

9.3. DEFINITION. Let vN denote the supremum over the expected vaiues of 

the strategies (R,.:0 with T ~ N, i.e. 

= s uprezmi:m JER 
R,T~N 

-r-1 
[ 

n=O 
c(x) 

11 
+ r(x )]. 

'( 

An important tool in computing the value function is the approximation 

of v by vN for N sufficiently large. This can only work if lim vN = v. 
N >00 
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9.4. DEFINITION. An optimal, control pfflblem is stable if 

lim vN = v. 
N )'CO 

In section 3 we defined stability w.r.t. x. 

It can be proved that (cf. [Ross (1971), p. 136]; for the definition 

of T see 3.2) 

From this relation it follows easily that a stable problem is at least 

stable w.r.t. all x such that 

sup (cp+Px) ~ x and x ~ r. 
p 

Verbally, the problem is stable for all x that are Cp - superha1·1nonic and 
• • m1nor1ze r. 

In [Starr] the rate of convergence of vN to v for a special problem is 

numerically analyzed. It is noticed that the convergence is quite rapid. 

The following theorem asserts that it is exponentially fast. 

9.5. THEOREM. Under the assumptions of theorem 9. 2 the optimal aontrol 

problem is stable. Moreover, vN tends exponentially fast to v as N -+ 00 • 

00 

PROOF. For (Q ,Tr) as in theorem 9.2 we have with~= Tr AN by definition 

of vN that 

• T -1 
~ 

[ I 
n=O 

c(x) + r(x )]. 
n r -N 

Using the fact that cp ~ 0 for all PEP and Tr~~ we find by rewriting 

the right-hand side of this inequality 

T -1 
-=i"' 

c I 
n=O 

c(x) + 
n 



Since the first term on the right-ha.nd side is by theorem 9. 2 equal to v 

and since by definition v ~ vN it is sufficient to prove that the second 

term on the right-hand side ha.s a nonpositive lim sup and the third term 
• • • has a nonnegative lim inf. 

Indeed in view of the Markov property the second te1·m equals 

[r(x )], 
"( -r 

with the samP, notation 

bounded from above and 

• in 

by the relations (9.1.8) and (9.1.9) QNe te~ds ex-
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ponentially fast to zero. Hence the positive paxt of (9.5.2) tends exponen

tially fast to zero. In a similar way it can be proved that the negative 
• 

part of the third te1·1r1 on the right-hand side o:f inequality (9.5.1) tends 

exponentially :fast to zero. Consequently vN tends to v as N +~and the 

rate of convergence is at least exponential. 0 

We note that in the case of a bounded reward function all boundedness 

conditions in the foregoing theorems are satisfied. This section is con

cluded with a theorem about the uniqueness of the value function v as so

lution of the optimality equation. 

9.6. THEOREM. If the nonnegative funation w satisfies 

{9.6.1) 

and 

(9.6.2) 

w = max (r,cQ +Q0w) for some Q0 € P 
0 

and if in addition the 

complement of r
0 

:= {i 

optimal. 

functions wand w-v are bounded from above on the 
00 

: r(i)=w(i)}, then w is equal to v and (Q0 ,Tr) is 
0 

PROOF. If cp is a charge structure then it follows :from the theorems 3.1 

and 3.8 that w ~ v. Since w ~ O this inequality is true in general. Indeed, 

proceeding in a simi J a.r way as in le·rnma 2. 19 one can :prove that for each 

policy Rand bounded Markov time -r 
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-r-1 
[7: 

n=O 
c(x_) + w(x )] s w • 

• ''Il " l 

Hence we have for arbitrary Markov time T with,½:= -r AN in view of w ~ r 

and w ~ o, that 

.!:ti-1 
c I 
n=O 

c(x) 
n 

+ r ( x ) X ( -r SN) ] S w • 
"( 

Letting N tend to infinity we find that w majorizes the expected value of 

an arbitrar-y strategy. Hence by definition of v we have vs 
rv 

quently r 0 c r = {i : r(i)=v(i)}. Let Q
0 

be the restriction 

then as in the proof of theorem 9.2 it can be shown that· 

n ► 00 

wand conse
c 

of" Q to r
0

; 

From vs w, 

follows that 

r C 
0 

s v and the relations (9.6.1) and (9.6.2) it 

(9.6 .. 4) 
,.., 

o s w-v s Q
0

(w-v). 

equals w. S 

optimal. 0 

By assumption w-v-;.is bounded on 

n ➔ oo 

v = 0 we have as in theorem 9.2 that 

and (9.6.4) v 



10. SUF'F'ICIENT CONDITIONS FOR THE EXISTENCE OF AN OPTIMAL POLICY 

WITH RESPECT TO THE AVERAGE RETURN CRITERION 
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In this section we investigate the existence of optimal policies with 

respect to the average return criterion. A policy will be called optimal if 
• • • it maximizes 

(10.0.1) lim in:f 1 
N+1 

N> 
c(x )]. 

n 

The limes inferior rather than the limes superior is chosen, in order to be 

able to prove relation ( 10.6.1). In section 12 we will show that under 

rather general conditions the two criteria lead to the same supremum. 

This section 11ses results from [Hordijk (1971)] and [Hordijk (1972)]. 

It is assumed in • • • this section that Cp is continuous and bounded, i.e. 

(10.0.2) lcp(i)I ~ b for all i € E and all P € P. 

Furthermore it is assumed that Pis compact and p(i,E) = 

and P c: P. In this section a probability meas1Jre p (.) on 

proper probability measu.re, i.e. p ( E) = 1 • 

• 1 for all i e: E 

Eis always a 

Let g denote the supremum over all policies of the average expected 

rett1:rn 

(10.0.3) g( i) := sup 
R 

. . 1 
E. R 

l., 

N 

c I 
n=O 

c(x )] for i € E. 
n 

In the following subsection we state several assumptions we need in 

the sequel. These ass1-1rrrptions will be discussed afterwards. 

IONS 

np ( i, j ) : = lim 
N ► c.o 

1 
N+1 

N 

I 
n=O 

is a (proper) probability measure~ i.e. np(i,E) = 1 for all i c E 

and all P E P. 
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B. The Cesaro-limit ,rp depends continuously on P, • 
1... e. 

1T = p 

(i.e. lim ,r p ( i, j ) 
P+P0 

= 1rp (i,j) for all i,j 
0 

EE and all P
0 

€ P). 

C. Fo-;r eaah i E E 

is a tight collection of probability mea.sures. 

D. The system (E,P) is recurrent. 

E. FoP each P e P the asaocnated MaPkov chain does not have disjoint 

alosed sets. 

F. The coZZeation of probabiZity measures 

is tight. 

• 

It is well-known that the Cesaro-limit in 10.1.A. always exists. How

ever, it may be that np(i,.) is not a probability measure. A Markov chain 

for which 1rp(i,E) = 1 for all i e Eis called non-dissipative 

(cf. [Chung]). So assiuaption A can be stated in the following fo1·rn: for 
each stationary policy the Markov chain is non-dissipative. 

It is not difficult to construct co1~1.ntere:,ca,tttples for which • 1rp is not 

a continuous f\1nction of P. The counterexample in 5. 12 provides one. 

A collection of probability measures A on a metric space is called 

tight if for each positive E there exists a compact set K such that 

P(K) ~ 1-E for all Pin A (cf. [Billingsley]). It is obvious that the state 

space E can be seen as a discrete topological space. Then each compact set 

has a finite number of elements. A theorem of Prohorov says that in a se

parable and complete metric space collection A is tight if and only if A 
is relatively compact, i.e. every sequence of elements of A contains a 

weakly convergent subsequence. In the case 10.1.C this implies that if 

P E P for all n € {1,2, ••. } then for each i € E there exists a probability n 



measure 1f(i,.) 
• • tive integers 

lim 
k-+«> 

such that for some subsequence ~, k=1 ,2, •.• , of the • pos1-

1f(i,j) for all j e: E. 

Although it follows :from the general theorem of Prohorov,. this is easily 

verified in our discrete state space. 
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It is also easy to check that ass11mptions A and B imply ass1Jmption C. 

Alternatively this follows from the well-known fact that a continuous ima.ge 

o:f a compact set is also a compact set. Hence for each i e Ethe collection 

in ass1.1rnption C is compact, so a :fortiori relatively compact and thus by 

Prohorov' s theorem tight, if ass1.1mptions A and B are satisfied. 

Under an additional ass11mption the converse is also true. By defini

tion we have that C implies A and, moreover, as a corollary of the follow

ing lemma we obtain that the assumptions C and E together imply ass11mption 

B. 

10.2. • If lim P = P and P
00 

has no disjoint closed sets·then under 
l'.1>00 n 00 

assumption c we have lim TIP =TIP. 
r1 ► 00 n 00 

PROOF. By assumption C there is for a fixed i EE a probability measure 

7T(i,.) such that for some sequence of 

(10.2.1) lim 
k too 

• • • the positive integers I\:' k= 1 ,2, ••• , 

e: E, 

where 1fk(i,j) is just another notation for TIP (i,j). It is well-known 

that ~ 

Letting k tend to infinity we find by lemma. 4. 13 that 

I n(i,~) p
00

(~,j.) = n(i,j) for all j EE. 
R. 

Hence n( i,.) is an invariant probability meas,2re with respect to P 00 • Since 

PQO has no disjoint closed sets the probability measure 7fp (i,.) is the only 
00 

invariant probability meas,.1re for P and consequently 
00 
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~(i,j) = ~p (i,j) for all j EE. 
00 

The assertion follows now by relation (10.2.1). D 

The above len1rna can be strengthened in the following sense. Let 

denote the n1unber of mi nirnaJ closed sets of Pk. If ~ < <:io for all 

extra 

°It 
• 

remaj ns true. So what one has to prevent is the creation of' an 

mjnimal closed set ask~®· Related results for finite Markov 

be :found in [Schweitzer]. 

• chaJ.ns can 

• 

Ass11mption F was introduced because the assumptions B and C are 

awkwaxd to check. We have the following connection between C and F. 

10.3. LEMMA. Assumption F impZies asswnption C and hence aZso asswnption A. 
,. 

PROOF. Choose any E > O. Let K be a finite set such that 

Hence 

p(i,K) ~ 1-e for all i € E and all PEP. 

p2 (i,K) = I p(i,j) p(j,K) ~ (1-e) p(i,E) ~ 1-e 
jEE 

for all i EE and all PEP. Clearly we then have 

pn(i,K) ~ 1-E for all i EE, all PEP and all n E {1,2, ••• }. 

Consequently 

N 
l 1 I pn(i,j) ~ 1-e for all N 

. K N 1 JE n= 

and since K is finite also the limit 

I ~p(i,j) ~ 1-E for all i EE and all Pe P. 
jEK 

This proves the assertion. D 

i 



We next give the main result ot' this section. Since the proof is 

rather long we divide it into subsections. 

10.4. THEOREM. Assumptions A and B or assumptions C and D imply the 

e:cietence of a stationary optimal poliay. 

Condition A will be assumed in all subsections. As to the other 

assumptions we will indicate where we need them. 

85 

1 O. 5 • .i..:.u· • Under the assumption C, there exist a and P with O < a < 1 

and P € P for n = 1 , 2 , • • • suah that 
n 

(10.5.1) lim an = 1, 
n >00 

P is a - disoounted optimal, 
n n 

(10.5.2) 

(10.5.3) 

V ·= • • 
n 

lim 
n-+«> 

p 
n 

00 

l 
k=O 

k 
a. 

n 

= P00 for some 

00 

I 
k=O 

n n n 

[c(~)J for eaah policy R 

(10.5.4) lim IT 
n 

= IT for some stochastic matrix IT 

with n(i,E) = 1 for all i € E and IT 
n 

lim (1-a) v = x for some vector x. 
n n 

n· ➔ OO 

PROOF. The proof proceeds by showing that each of the above relations can 

be obtained by choosing an appropriate subsequence. Suppose 

to theorem 6.4 there 

we have a 

sequence a with lim a = 1. According 
n n>oo n 00 

are matrices 

P, n=1,2, ••• , such that P is an a -discounted optimal policy. n n n 
Since Pis 

compact there is a subsequence of 

element of P. Now suppose a, P, 
n n 

P, n=1,2, ••. , which converges to an 
n 

n=1,2, ••• , satisfy the relations (10.5.1), 

( 10. 5 .2) and ( 10. 5. 3). We ass11mP.d that asst1mption C holds. Hence by the 

relative compactness there is a subsequence satisfying relation (10.5.4). 

As to relation (10.5.5) we note that by relation (10.0.2) we have 

( 1-a) I ak be~ be for all R. 
k=O 
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Hence the sequence (1-a) v is bounded and by the diagonal procedure we 
n n 

can choose a subsequence satisfying the relation (10.5.5). D 

10.6. • The aupremwn over the expected average return does not exceed 
' 

the vector x, i.e. gs x. 

PROOF. For R = (P
0

,P1 ,P2 , .•• ) an arbitrary policy it follows from an 

Abelian theorem or alternatively a Tauberian theorem that (for a proof see 

[Hordijk (1971)]) 

(10.6.1) 
N+oo 

slim inf 
at1 

N 

I 
n=O 

(1-a) 
00 

I for all i e: E. 
k=O 

By definition the right-hand side of this inequality does not exceed 

(1-a) v (i) when a= a. Hence the supremum over all policies of the 
n n n 

left-hand side term is not larger than x(i). 0 

10.7. LEMMA. 

PROOF. From 

For II 
QO 

V n 
--

co 

I 
k=O 

have TI x = x. 
00 

it is readily seen that 

(10.7.1) (1-a) v = (1-a) cp + (1-a) P a v. nn n nnnn n 

Letting n tend to infinity we find that the first term of (10.7.1) tends 

to x, the second tends to zero and the third term, since (1-a) v is n n 
bounded, tends to P

00
x. Hence P

00
x = x and by iterating this equality we 

1 N k = x for 

all N E { 1 ,2, •.. } and hence IT x = x. D . 
00 

10.8. LEMMA. For c 
00 

have Ile = IIx. 
co 

' 



PROOF. Using the well-known relation rr Pk= TI for all k € {1,2, ... } and p p 
by interchanging the order of s11mma.tion ( this is allowed since a.11 series 

are absolute convergent) we obtain 

By substituting a. 
n 

00 

I 
k=O 

for a we find 

(1-a) 

n (1-a) v = TI c, where c 
n n n nn n 

I 
k=O 

•- C .- . p 
n 

From the boundedness of (1-a )v and c and the fact that limn (i,E) = 
n n n n n 
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= ff(i,E) = 1 for all i €Ewe find in view of lemma 4.13 by letting n tend 

to infinity Ile = rrx. 0 
00 

10.9. 

optimal. 

Under the assumptione A and B the policy (P ,P , •.. ) is 
00 00 

PROOF. The ass1urrptions A and B together imply C. Hence 10.4 to 10.8 are 

valid. Since 

and hence by 

lim P = 
n ➔ oo n 
(10.5.4) 

P we have from the assumption 00, 

we obtain Il
00 

=TI.By using this 

from 10.7 and 10.8 that Il
00 

c00 = x. Since 

II 
00 

1 
= lim N+i 

N ➔ 00 

N 

I 
n=O 

c(x) ~ g, 
n 

B that lim II = II 
n--+-«> n co 

• • equality we obtain 

we have x = IT c s gs x, where the last inequality is from 10.6. Hence 
00 00 

II c = g and by the definition o:f g we have that P
00 

is a stationary op-
QO 00 00 

timal policy. 

10.10. • Und.er A and C we have IIII = TI. 
00 

PROOF. From n P = IT by letting n tend to in~inity we :find IlP00 = rr. By 
n n n 

iterating this equality we find nP! = TI for all k € {1,2, ••. } and hence 
1 tN TIPn = TI :for all NE {1,2, .•• }. By letting N tend to infinity we 

N+1 ln=O oo 

obtain ITil = Il. 0 
00 

10.11. • For i ~ E let D. be the support of n(i,.), 
J. 



D .. • {j : •(i,j) > O}, then D. 
1 1 

ff c fJqutlUJ g on D := u D •• 
- - . • J. 

l. 

is a oZ.osed set w.r.t. P and moNove::r (lQ .., ., 

PROOF. The first assertion is immediate from the fact that 1r{ i,.) ie for 

each i E: E an invariant probability measure w.r.t. P (cf. 10.10). From 
(10 

10.8 and 10.10 it follows that Il(x-II c ) = O. From n c :S g and g :s; x 
· 0000 OP 00 

(by 10.6} ve have x - fi
40

c0tl) ~ O. Hence x equals II 00c(l0 on each Di and con-

sequently we have that g eqtJal.s TI c on D. 0 o, eo 

It is a'Lsar from 10.9 that theorem 10.4 is tx-ue 

and B hotd. We now pitove the existence of a stati 
the. as Bump .·. • · · · ·O and D. 

if the assumptions A 

optimal po Zioy , Jt 

10.12. PROOF 0.F THE THEOREM. When D = E there is nothing left 

asswaption D we can apply theorem 8. 7 to assert that there is 

to prove. By 
CQ 

a policy Q 
,..., 

= 1 for all i e E. Define matrix P by 
00 

. q(i,j) for it D, 

Then the states of n° a.re all transient states for the Markov chain with 
...., 

matrix of transition probabilities P
00

• According to theorem 8.6 it follows 

f'rom assumption D that g is a constant function. From these facts together 
....., ,._, 

vi th 10. 11 we can 

optimal. D 

see that ~ cp = g. Hence the policy ( P 
00 

:,P 00 , ••• ) is 
co (iX) 

ively, under the a.ss1.m1ptions C a.nd D, 

the ass11mptions A and B or, alterna.t

if in addition the set D contains 
-'ll . . 
a..t.. pos1.t1.ve recurrent states w.r.t. P

00
, the policy (P

00
,P 

00
,.,..) is 

of discounted optimal 

optimal. 

Renee we obtained an opti:mal policy as limit 

policies. This can have nice consequences. For exa1n1,le if there are dis

counte·d optimal policies of ( s ,S) type in an inventory model with a certain 

coist structure, then there exists an ( s ,S) policy which is optimal with 

respect to the average ret11rn criterion if our theorem applies. 

The argument of 10.9 also· shOW'S 

th• as · , . ti.one C and E imp Z:ying the 

t L,..._ 1. '1 • • '1 • b . ""';:J •. ·~ 6t:icr, ~u,n, t po t,1.,.'1Y O tai.ne;{.;L 

that: If the aBSwrtptions A and B ( OJ' 

assumptions A and B) a~e satisfied 

diaaounted optimal polioies with dis-



oountfactor tending to one, is an optimal policy with respect to the 
• • average retu.i:an ar1,.ter-z,on. 

For arbitrary i e Ethe 

rent class w.r.t. P because 
00 -

set D. 
J. 

,r(i,.) 

contains at least one positive recur

is an invariant probability meas11re. 

Now let D be such a positive recurrent class. Then from 10.11 we have 
- ....., 

IT c = g on D. If one proceeds a~ in subsection 10.12 for D instead of D 
00 00 

one finds a stationary optimal policy which has no disjoint closed sets. 
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Consequently: If the assumptions C and.Dare satisfied then there exists a 

stati n• optimal policy for which the corresponding Markov chain has no 

disjoint closed sets. 

10.14. COROLLARY. Eaah of the following three ~ombinations of assumptions 

is also suffiaient for the existence of a stationary optimal poZiay: (C,E), 

(D,F)~ (E,F). 

PROOF. In view of the comments on the ass1.1mptions and le·,o,oas 10.2 and 10.3 

one easily can show that each of the above combinations 

sur11ptions (A ,B) and/or ( C ,D). Hence by theorem 10 .4 the 

• • 1mpl1.es the as-

assertion follows. □ 

10.15. AN INFINITE PERIOD STATIONARY INVENTORY MODEL WITH BACKLOGGING 

We conclude this section by showing that in this model our theorem can 

be applied. 

Let Z-t denote the level of inventory at time t and let ~ be the 

amo1.1nt ordered after observing Zt. Ass1)me that deli very of' the ordered 

units is instantaneous. Thus after the moment of ordering, the inventory 

level is Zt+~. Suppose the sequence of demands .9t, 
product during each of the periods is a sequence of 

tica1ly distributed random variables with 

co 

t=1,2, •.• , f'or the 

independent and iden-
1 

JP [d =j] = p. 
-=t J 

• for J = 0, 1 , ••• with I p. = 1. 
J j=O 

We allow negative inventory, i.e. backlogging of' demand, and consequently 

have a denumerable state space. 

The decision which has to be made at times t = 0,1, .•. is the amount 

to be ordered. Now let pk(i,j) denote the transition probability to in

ventory level j when i units are available and k units are ordered. Then 
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pk ( i, j ) = IP [ dema.nd equals i +k-j] = 

. k ~ J. p. k . for 1+ 
i+ -J 

--
0 otherwise. • 

In all practical cases there will be a 

finitely 1arge backlogging will not be 

finite storage capacity. Also an in

convenient and so it seems that the 

following condition is nat1Jral. The set K(i) of available ordering deci

sions in state i satisfies 

(10.15.1) K(i) = {k: as i+k ~ b} for all i € E for some integers a,b. 

This relation implies that the collection of probability measures 

(10.15.2) 

is tight, and hence assumption Fis satisfied. Indeed, given any€> O, let 

n be sue h that 

then 

a+n 
I p. ~ 1-e, 

j=O J 

b 

I 
• 
J=-n 

i+k+n 
I 

j=O 
p. ~ 1-s for all 

J 
i € E and all k € ~(i). 

If p. > O, j=0,1, ••. , then each stationary policy has no disjoint 
J 

closed sets and assurnption E is satisfied. It follows f'rom this argument 

that corollary 10.14 applies. 

A stationary rule which prescribes no ordering in state i when i ~ s 

and prescribes an order o:f S-i 11n its when i < s is called an ( s ,S) policy. 

It is easily seen that under an (s,S) policy the state space does not have 

disjoint closed sets. 

Under certain conditions on the cost function it can be proved that 

there exist optima.]. ( s ,S) policies with respect to the expected discounted 

retu,rn (see for instance [Johnson],(Tijms] and [Veinott (1966)]). According 

to theorem 10.4, under those conditions there also exists an optimal (s,S) 

policy with respect to the average return criterion. 



11. SIMULTANEOUS DOEBLINCONDITION 

In this section we introduce a condition which can be seen as an ex

tension of Doeblin's condition (cf. [Doob, p. 192]) to a collection of 

Markov chains. We call it the simultaneous Doeblincondition (sim D) • 
• 

It will be shown that the condition sim D implies assumption C of 

section 10 and, moreover, sim Din combination with the condition that 

(E,P) is a communicating system is sufficient for the existence of an op

timal policy with respect to the average return criterion. 

In the next section it will be pointed out that the condition sim D 

gives the connection between sufficient conditions for existence of' aver

age-optimal policies, which can be found in the literature and the condi

tions in section 10. 

Although we restrict ourselves also in this section to a countable 

state space E, we shall introduce the Doeblincondition and an equivalent 

one for a general measurable space (E,F). 
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CONDITION D (introduced in [DoeblinJ). There exist a finite measure~, a 

positive integer n and a positive real number€ suah that, for each A€ F, 
~(A) s E irrrpZies pn(x,A) s 1-E for all x. 

Actually Doeblin introduced this condition with¢ Lebesgue measure on 

a Borelset with finite measure in a finite dimensional Euclidean space. In 

[Doob] this is generalized to a finite measure on a measurable space. 

For Pa transition probability function, the formula 

Pf'(x) = l P(x,dy) f(y) defines a positive endomorphism on the Banach space 

B of'boundedmeasurable functions on (E,F) with lltll= sup lr(x)I (cf'. 
E 

[Neveu, p. 179]). 

CONDITION K-B (introduced in [Kryloff and Bogoliouboff]). There exis~ a 
• 

oompact endomorphism Q on the Banach space Band a positive integer n such 

that 11 Pn -Q l I < 1 • 
• 

I:f this condition is satisfied then Pis called quasi-compact. 

In [Yosida and Kakutani] it is proved that the Doeblincondition with 

the Lebesgue measure implies the condition K-B. Moreover, they showed 
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that for a quasi-compact transition probability function P the strong er

godic theorem holds. In [Neveu, p. 185] it is pointed out that the condi

tions D and K-B are equivalent. 

It is rather easy to verify 

lowing formulation if p(x,E) = 1 

exist a probability measure u on 

nwribers o < e < 1 and n > O suah 

r(xsF) ~ n for all X € E. 

• • that condition D can be given in the fol-

for all x e E (cf. [Neveu, p. 185] ): There 

(E,f), a positive integer n, and t:wo real 

that, for FE F, ~(F) ~ e implies 

When Eis a countable set with F the a-algebra of all subsets then 

this ca.n be simplified to: There exist a finite set 

n, and a positive real number c such that Pn(i,K) ~ 

• • • K, a pos~t~ve ~nteger 

c for all i EE. 

Now we ret1.1rn to our collection of Markov matrices P and introduce the 

:following condition. 

11.1. SIMULTANEOUS DOEBLINCONDITION (sim D). There exist a finite set K, 

a positive integer n, and a positive real number, c such tha.1:. pn(i ,K) ~ c 

for alZ i € E and a7..Z Pe: P. 

It is easy to see that ass12mption F (section 10) implies the condition 

sim D. For 011r discrete state space E it is possible to give a more precise 

assertion. 

11. 2. LEMMA. If p( i ,E) = 1 for all i E: E for a Markov matrix P then the 

aoZ.Zection {p(i,.) : i € E} ia tight if and only if P is (strongly) compact. 

PROOF. Ass11me that {p(i,.) : i € E} is tight. To prove that P is compact 

we have to show (by definition cf. [Neveu, p. 179]) that the unit ball of 

the Banach space B has a relatively compact image under the endomorphism P. 

Since in a metric space each sequentially compact set is compact, it is suf

ficient to show that given any sequence of functions with II f' ll s 1 for 
n 

n=1 ,2, .... , there exists a subsequence f such that Pf converges in noria 
nk nk 

as k -+ Cle., Indeed by the diagonal proced11re there is a subsequence f n such 
k 

that lim fnk(i) = f(i) for some function f and all i € E. Given any € > 0 
k )QO 

there are a finite set Kand an integer N such that 

(11.2.2) p(i,K) > 1-e for all i EE and max 
j e:K 

Ir (j)-f(j)j < e fork> N. 
nk 



Hence f'or k > N 

IL p(i,j) {r Cj)-r(j)ll 
j ~ 

I • 
J 

p( i ,j) I p(i,j) 
jEK 
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• 

+ I I 
jeK 

p(i,j) {r Cj)-:rCj)}I +II p(i,j) :r(j)-IpCi,j) :r<j>l, 
~ jeK j 

where each of the three terrras on the right-hand side of' this inequality is 

less thane for all i e Eby relation (11.2.2) and the fact that flrll s 1 

This proves that Pf converges in norm to Pf'. 
n 

To prove the converse let the sequence of' finite subsets K, n=1,2, ••• , n 
be such that 

For 

K n 

f {i) = 
n 

we have tbe.t 

1 for i E K 
n 

O for i K n 

and 
00 

u K n • E. 

lim Pf' (i) • lim p(i,K) a 1 f'or all i EE. 
n+oo n n-+-m n 

• 

Since Pis compact it follows that this convergence is uniform in i EE. 

Consequently, 

p(i,K ) ~ 1-e n 

• given any £ > 0 there exists a finite subset K with n 
for all i EE and hence the collection {p(i,.) : i EE} is 

tight. □ 

Tbe infinite period stationary inventory model with backlogging, as 

treated in section 10, satisfies ass1l111ption 

trivial Markov decision processes for which 

sim D with the triple (K,n,c) implies that 

in n steps with probability at lea.st c. 

F. Consequently there are non-

sim D holds. The condition 

the finite set K can be reached 
•• 



• 

For the waiting line model, as introduced in section 5, it is clear 

that to reach state n from state m for n < m takes as least m-n steps. 

Hence for this problem the condition sim Dis not satisfied. However it is 
• • 01.1r opinion that :for each honest Markovian decision problem there exist a 

• 

subset A and a stationary policy R such that when using policy R outside 

the set A the embedded Markovian decision problem on A satisfies the con

dition sim D. And moreover, when using policy R outside the set A then each 

(nearly-)optjma,J pol.icy remains (nea;rly-)optimal. 

In the remainder of this section we will investigate properties of 

condition 11.1. As in section 10 we assume that Pis compact and p(i,E) = 1 

for all i EE and all Pe: P. 

The following results are from [Hordijk (1972)] in which also an 

elementa.l"Y proof of the strong ergodic theorem for discrete spaces can be 

found. 

It is useful to have available the following notations and relations: 

(11.2.3) :=JPp [x e:B, x IA, 1Sm<nl~=i] n m v 
• 

00 

(11.2.4) 

For T the reentry time of subset A (i.e. Tis the least n > o, if any, 

with x e: A, and T =~if there is no such n) we find with JP. [T>n] = 
- n i ,P 

= 

the set A for the 
f . . · th . irst time at then step, we have the relation 

(11.2.6) 

11.3. THEOREM. The following four conditions are equivalent 

a. simultaneous Doeblincondition; 

b. there exist a finite set K, an integer N and a positive reaZ number 
c such that 

N 
l Kpn( i,K) ~ 

n=1 
c for all i € E and all Pe: P; 

J• 



c. there exist a finite set K and a real nwnber b suoh that 

~(i,K) s b for all i EE and ail Pe: P; 

d. given any c: > O there ex·ist a finite set K(e;) and an integer N( e:) 

suah that 

i e: E and all Pe: P. 

PROOF. AssumP. condition a is true for the triple (K,N,c). Then 

N 
(11.3.1) I 

n=1 
{x e: K } ] ~ ]P • p [ x__ e: K] ~ c • 

n i, --:N 

Hence the triple (K,N,c) satisfies condition b. 
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Next ass1Jme condition b is true :for the triple (K,N, c). From relation 
' 

(11.2.6) it then :follows: 

N+1(. ) KP i,E s 1-c for all i e: ~ and all P e: P. 

Since 

ntm(. E) _ \ n( .. ) p i, - L. KP i,J 
K je:Kc 

we obtain (cf. relation (9.1.8)) 

(11.3.2) 

for all i e: E, a11 PEP and all n € {1,2, ... }. Hence 

()0 

(11.3.3) ~(i,K) = 
n=1 

(N+1)c-1 :for all i e: E and all Pe: P. 

Consequently condition c is satisfied for (K,(N+l)c-1). 

Next ass11me condition c is true for (K, b). Given any o > 0 there is an 

integer M such that (recall that Kpn(i,E) is nonincreasing inn) 
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In viev of relation (11.2.6) then 

M 
(11.3.4) I for all i € E and all P € P • 

n=1 

In the beginning of section 10 we pointed out that as a consequence of the 

compactness of P the collection {p(i,.) : PEP} is tight for each i € E. 

Moreover, since for any 
k( . ) . . p 1,. is a continuous 

tight for all i E E and 

integer k and state i the probability measure 

function of P we have that {pk(i,.) : Pe P} is 

all k E {1,2, •.. }. Because the union o:f a :finite 

n1nnber of tight collections is aga.i.n a tight collection, it then follows 

that {pn(i,.) : i e K, 1 s n ~Mand PEP} is tight. Consequently there 

exists a finite set A such that 

pn(i,A) ~ 1-o for all i E K, all n with 1 ~ n ~ M and all P E P. 

Using the ''first entrance decomposition'' o:f the set K we find 

• 

M 
M+ 1 ( • ) M+ 1 ( • ) , 

P i , A = KP i , A + L. 
n=1 

\' n ( . . ) M+ 1-n ( . A) 
l KP i,J p J, . 

j EK 

According to the relations (11.3.4) and (11.3.5) the last term o:f this 

relation is at least (1-o) 2 • Hence given any e: > o, we choose o > O such 

that (1-o) 2 ~ 1-e:,then the condition dis satisfied with N(€) = M+1 and 

K(e:) = A .. 

It is evident that the condition d implies the condition a. D 

With the above theorem we can prove that assumption C of section 10 is 

implied by the condition sim D. We can even prove the following stronger 

result. 

11.4. THEOREM. The condition sim D implies that the aolZeation 

(1TP(i, .. ) : i € E, P e: P} is tight. 

?ROOF. Given any e: > O, there exist by theorem 11.3d a finite set Kand 

a integer N such that 

pN(i,K) ~ 1-s for all i EE and all P € P. 

dence (cf. the proof of lemma 10.3) for all n > N the sa.me relation holds. 



Consequently 

. 1 
= lim k 

k )aOO 

k 

l 
n=1 

for all i E: E and all P E: P. 0 

1-e:: 

The :following l~rcm1a is related to proposition 6. 1 or [Orey, p. 29]. 

11.5. 1~· • If for some subset A, some positive integer Nanda positive 

nwnber c it ho ids that 

N 
(11.5.1) ~ c for alZ i € E and all P € P, 

n=1 

then 

m 
c,1.5.2) I 

n=1 

unifo1,nty in i and P as m -+ 00 , and 

(11.5.3) 

is uniformly bound.ed in i and P. 
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PROOF. The proof proceeds simila.r to the proo:f of ''b implies c '' in theorem 

11.3. Indeed, simjlax to (11.3.2) we have that 

(11.5.4) 1-c for all i E: E and all P £ P. 

In view of (11.2.6) we then have 

m-1 
I 

)-1 
(,-c)[m(N+1 ] for all i € E and all PE: P. 

n=1 • 

From this the first assertion follows. 

Similar to (11.3.3) we obtain from (11.5.4) that 

00 

I. s (N+1)c-1 for all i € E and all P € P, 
n=1 

which proves the second assertion. 0 

• 
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• 
As a consequence of the next lemma we have that 1:f :for some Markov 

cha.in with matrix of transition probabilities P, some subset A can be 

reached from each state i then the Doeblincondition implies relation 

( 11. 5. 1) with P = {P} .. Hence the Markov chain is unifo1°rr,Jy <f>-recurrent ( in 
• 

the tex·111jnology of [Orey]) with cf> the counting measure if all the states 

are co1mnunicating. [Orey, proposition 6.1 (p. 26) and theorem 7 .1 (p. 30)] 

provides then a.nether proof of the strong ergodic theorem in this case. 

11.6 • .i..u.:. ·iz-. If some set A can be reached from each state i under each 

stationacy policy then the condition sim D implies the relation (11.5.1). 

PROOF. Assume that the condition sim D holds with triple (K~n,d). So 

(11.6.1) pn(i,K) ~ d for all i e E and all PEP. 

For i E E and P e: P we define 

It ca.n be seen that for each i EE, n(i,P) is an U!)per semicontinuous 

fltnction of P and hence attains its suprem111n over the com:pact set P. For 

i £ E let 

n(i) := max n(i,P). 
p 

Since the set A ~an be reached from each state i under each stationary 

policy we find n(i) < 00 f'or all i E E. Because the set K is :finite we ha.ve 

m := max n(i) < ~. 
ie:K 

The sum continuous function of P. Moreover, from the 

definition of m it follows that this s11m is positive for all i E K and a1.1 

P € P. For i e K define 

m 
e: ( i ) : = min l 

P k=1 

Then E(i} is positive for all i EK. Hence, so is 



:= min e:(i). 
ie:K 

Using relation ( 11 . 6. 1) we find for arbitrary state i E: E and a.rbi trary 

matrix Pe: P 

m 

I 
k=1 

Hence relation (11.5.1) is satisfied with N = n+m and c = d£. 0 

Using the foregoing lemmas we shall prove in the next theorem that 

the conditiG>n sim D guarantees any comrrrunicating system to be a recurrent 

system (cf. section 8). 

11.7. THEOREM. If the aondition sim Dis satisfied, then the system is 

raecru.rrent if and only if it is communicating. 
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PROOF. Since in general the property recurrent is stronger than comm1mi

cating we have only to prove that the latter implies the former. Assume the 

system is comrnunicating. Let i
0 

be an arbi tra,-r:·y state. Using only the as-
• • ,'l'n'nt • • si)tr,ption that the system is corrirnunicating, we shall prove that for some 

00 

stationa.1-y policy 

proof proceeds by 

Q state i
0 

c~ be reached from each state i e: E. The 

induction. Let E = {i
0
,i

1
,i

2
, .•• } and 

00 

be reached from states 

(called j-states) 

i 1 , ••. ,im under policy P. Hence 

(11.7.1) 

such that 

(11.7.2) 

J• for k = 1 , ••• ,m and 1 
kn 

ass11me that 

there are states 

o. 

Since the system is communicating the state i 0 can be reached from state 

im+ 1 under some policy P*. Now there are two possibilities: 

a. Going from state im+ 1 to state i 0 we reach state i 0 without passing 

any of the j-states or (11.7.1). In this case we can take matrix P € P 
** (recall that P has the product property (cf. p. 1)) such that P is equal 

** to Pin the j-states and is equal to P* in the other states. Then i 0 can be 

reached from states i
1

, ••• ,im+
1 

under policy P**" 
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. . . t . * b. Going from state 1.m+1 to state 1.0 we pass a J-sta e. Let J be the 

j-state which is passed first when going from im+ 1 to i • Because j* can be 
0 * 

1.1nder 

policy p
00 

we have that state i 0 can be reached from state im+l under the 
co • 

policy P** as introduced under a. 

This completes the proof that for some policy 

reached from each state i e: E. Applying the lemmas 

00 

Q state i
0 

can be 

11.5 and 11.6 for 

P = {Q} (so P is a collection consisting of one element) we obtain with 

A= {i } 
0 

I 
n=1 

n(. . ) . q 1,10 = 
io 

1 for all i € E with i 

Renee the state i 0 is recurrent. 0 

We conclude this section by collecting some other combinations of con

ditions which imply the assu:rnp'tions of theorem 10.4. 

11 .. 8. THEOREM. Ea.ch of the following two conditions implies the existenos 

of a stati · optimal, policy with i-espeot to the a:verage e:cpeated retu:t'tl 

the system is 001'l'lflrl,./,rtiaating and the condition sim D holds 

the assumption E of seation 1 O cznd the aondi -tion sim D ho Zd. 

PROOF.. The first assertion follows from the theorems 1 O. 4, 1 1 • 4 a-I1d 11 . 7. 

The second assertion is a consequence o:f le1m:rta 10.2 and the theorems 10.4 

and. 11.4. 0 

It is evident that for a finite state space the condition sim D is al-
• • 

~ satisfied. As a consequence of the first pa:t·t of the above theorem we 

obtain that for a finite state space it is sufficient for the existence of 

a statioria:r·y optimal policy that the system is co11mn .. 1nicating. This result 

was obtained independently in [B.ather]. 



101 

12. CONNECTION WITH THE WORK OF DERMAN~ ROSS, TAYLOR AND VEINOTT 

In this section we point out some of the relations between conditions 

introduced in [ De:r1nan ( 1966) J, [ Der1·,1an and VeinottJ, [ Taylor] and 

[Ross (1968)] and the assumptions made in section 10 .. In ot1r opinion the· 

condition sim D plays a basic role here. 

In the second part of the section another ass11mption which implies 

the existence of an average-optimal policy is given. The section concludes 

by answering a question raised in section 10. 

12.1. In the above given references it is ass1med that in each state there 

is only a finite nuroher of possible decisions. In our notation we then have 

P(i) := {p(i,.) : PEP} 

is a :finite set of probability measures for all i € E. It is now easily 

deduced that Pis compact and cp is continuous. 

Since all results from the literature to be cited in this section can 

be generalized to infinite sets P(i) such that Pis compact and Cp is con

tinuous we use these asst1mptions from the outset. 

12.2. In [Derman (1966}] it was proved that the following four conditions 

together imply the existence of a constant g and a bounded function v such 

that 

v = max ( cp-ge+Pv). 
p 

In the sequel of this section we shall call the pair (g,v) a (bounded) so

lution of the optimality equation. 

I . cp ie bounded; 

II. E is a positive recurrent class for each P e: P; 

III. for each P E P there exist a constant gp and bounded function vp such 

that vp = cp-gpe+Pvp; 

IV. 

all i e: E and all P € P. 
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It can also be fo11nd in [ Derman ( 1966) J that a bounded solution of the 

optimality equation implies the existence of a stationary optimal policy. 

Indeed, iterating the ineg_uali ty 

we obtain 

Hence 

C -ge+Pv S V, p 

1 
N+1 

• 

p E: p 

( cp -ge) + P
O 

••• P N v ~ v :for all P O ,P 1 , ••• ,P N e P. 
n 

1 s ge + -- (v -
N+1 

Consequently ge is an upper bound of the set of limi tpoints of the first 

term. Moreover, for 

1 
N 

nP lim I pn ·-.- N+l N >00 n=O 

we have by the condition II 

And hence if Q satisfies the _optima.li ty equation, • i.e. 

tben by multiplying with nQ we obtain 

From wbi ch it follows that 
00 

Q is optimal. 

12.3. From theorem 1 in (D,er1r1an and Veinott] it follows that conditions I 

and II together with the condition 

V. there 

steps 
exists some state i 0 such that the expected number Il\,(i,i

0
) of 

from state i to state i 0 under policy P
00 is uniforrnl..y bounded 

• 
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in i and P, 

imply the conditions III and IV. If in addition to condition II the return

time from state i 0 to state i 0 has a finite second moment (in [Kemeny, 

Snell and Knapp, p. 274] this is called strong ergodicity) then conversely 

the conditions III and IV for 

V. This can be shown by using 

• every bounded cost structure imply 

theorem 2 of [Derman and Veinott]. 

condition 

12.4. In [Taylor] the following condition is introduced (cf. [Taylor, 

lemma 3.2, p. 1684]). 
00 

VI. V (i) 
a 

- v (j) with v (i) := 
a a sup 

p I is unifoPrnly bounded in 
• • 
i ,J e: E and a € ( 0 , 1 ) • n=O 

As follows :from arguments in [Taylor] the condition VI 

tence of a bounded solution of the optimality equation 

(1968)]). Indeed, since (cf. theorem 6.1) 

• • • implies the ex1s-

(see also [Boss 

+ a.I p(i,j) V (j)] 
a 

for al.lie E, 

we obtain by subtracting v ( O) 
a 

V (i) - V (0) = a a 

• 
J 

• from both sides 

- (1-a) va(O) +a? p(i,j) (v
0
(j)-v

0
(o))J. 

J 

From I and VI we have that (1-a) v (O) and v (i) - v (0) are uniforinJy a a a 
bounded in a and i. The diagonal procedure then provides a sequence 

{ ex } with O < ex 
n n 

< 1, a -+ 1 
n 

• as n-+ ~ and a constant g together with a 

bounded function v such that 

Hence 

lim 
O·l oo 

(1-a) 
n 

v(i) = max 
p 

V (0) = 
Ct n 

g and lim v (i) -
(l. 

n· ► 00 n 
= v( i) . 

[cp(i) - g + ~ p(i,j) v(j)] for all i EE. 
J 

12.5. In [Ross (1968)] it is proved that the conditions I and V together 
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imply the condition VI. 

12.6. According to theorem 11.3 we have that condition V implies the con

dition sim D. Moreover, under the ass1J1t1_ption that state i
0 

can be reached 
00 . 

:from any state i under any policy P we have in view of the l~mm~s 11.6 

and 11.5 and relation (11.2.4) that the condition Vis equivalent to the 

condition sim D. From lerr11tf8. 1 0. 2 and theorem 11 • 4 it :f"ollows also that the 

cond.i tion V implies the contin,li ty of IIP as a function of' P. Thus theorem 

10.4 applies in this case also. However, it follows from the results of 

the sections 10 and 11 that the existence of a state which is always 

accessible (i.e. from each state under each stationa.ry policy) is an 11n

necesE1a.rily strong assurnption. It seems to us that in cases where some 

state i 0 is always accessible, the approach of section 5 is better. Theorem 

5. 1 a.llovs 11nbo11nded cost structures as well and for bounded cost stru.c -

tures one does not need to be s11re beforeha,nd that state i 0 is positive re

current. On the contrary, relation (5.1.1) can serve as a criterion for 

uniform positive rec11~rrency ( see subsection 5. 13). 

If sim D holds and state i 0 is always accessible then the assumptions 

of theorem 5.1 a.re satisfied for each bounded cost structure. Indeeds 

according to the len1mai:; 11 • 6 and 11 • 5 and relation ( 11 • 2. 4) we have :for some 

constant b
1 

and all P e P 

l 
n=O 

where P denotes 

Hence 

the col1.1mr1-restri ct ion of' P to E\ { i } (cf'. subsection 2 • 7) • 
0 

00 

y := sup l. '"'"'.Il P e 
P n=O 

is bounded and satisfies (cf. theor~ms 6. 1 and 13. 6) 

-(12.6.1) y = sup (e+Py). 

Consequently 

* y = (b
2

+1 )y 

(12.6.2) 

p 

for 

and t = p 

all i e: E and all P E P we have with 

for all P E: P. 



* Since y is bounded it is obvious that the relations (5.1 .2) and (5.1.3) 
a.re also satisfied. 

* The condition sim D implies (12.6.2) for some bounded function y. 

105 

When Cp is bounded away from zero (i.e. for some constant a I cp ( i) I ~ a > 0 

for all i EE and all PEP) then also the converse is true. In this case 
* (12.6.2) for bounded y implies the condition sim D. Indeed, then the 

function y defined in ( 12.6.1) is bounded and hence ~( i,i
0

) is unifor1nJy 

bounded in i and P, and according to theorem 11.3 the condition sim Dis 

valid. 

Using the following lemma we obtain in theorem 12.8 another condition 

implying the existence of a stationary optimal policy w.r.t. the average re

turn criterion. 

12. 7. LEMMA. If for some constant b I cp( i) I s b for al"l i e E and aZ.l 

P € P then 

V (i) - V (j) a a ~ -2b inf ~(i,j) for aZZ. a E 

R 
(0,1), 

where ~(i,j) denotes the expeated number of steps from state i to state j 

under poliay R. 

PROOF. This proof is related to the proof in [Ross (1968), theorem 1.4] 

(cf. [Ross (1970), theorem 6.19, p. 148]). According to definition 2.14 

* the :function va is cp- excessive w.r.t. P := {aP : P E P}. It follows then 

from theorem 2.21 that for any Markov time T and policy R we have 

T-1 

a 1, 'o n a l n= 

For T the entry time of {j} we can weaken this inequality to 

(12.7.2) V ( i) - V (j) a a ~ - b ER T - ( 1 - JER 

By Jensen's inequality ER 
]ER T 

a and also 1 - ax~ ( 1-a) x for x ~ 1 

and O <a< 1, thus 



106 

Because (1--a) )v (j)) s b we then find by substituting (12.7.3) in (12.7.2) 
. a 

the relation (12.7.1). D 

This leii1roa is used in theorem 12.8 to provide another condition im

plying the condition VI. 

12 .8. THEOREM. If cp is b ia.ed and. for son1e eons tan t a 

(12.8.1) inf ~(i,j) s a for aZZ i,j £ E, 
R 

• 

then there 

Btati · · 

s.~ists a bounded soZution of the optimality 

optimal policy. 

equation and hence a 

PROOF. It is evident from lei11rr1a 12. 7 that the ass1.11nptions of the theorem 

imply the condition VI. The rest of the proof proceeds as in 12. 4 and 

12.2. 0 

12.9. REMARK. If Eis a finite set and for some policy R state j can be 

reached from each state i E: E then ~(i ,j) < co for all i e E. Hence for 

a co1,,,1n,Jnicating system and f'ini te set E we have (cf'. the proof of theorem 

11. 7) 

max 
i,jt:E 

Consequently in this case theorem 12.8 applies. 

12.10. · •l.J.\..• It can be seen from the subsections 12.2 and 12.4 that 11nder 

the conditions I, 

tending to one , a 

II and VI we have for each sequence of' discountf'actors 

subsequence {a} 
n 

lim (1-a) v (i) = n ~ U) 00 n 
sup 

R 

for some Q e P and all i e E. Hence 

and does not depend on i. 

such that 

lim sup 
Ntoo 

1 JE. 
N+1 i,R 

lim (1-a) v (i) 
at1 a 

In the rest of this section we shall prove 

N 
[ I 

n=O 

exists for all i EE 



(12.10.1) sup 
R 

lim inf 
N-+<x> 

1 N 
N+ 1 ]E. R [ l c ( x ) J = 

i' n=O n 
lim 
at1 

( 1-a) V ( i) = 
(l 
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= sup 
R 

lim sup 
N-+oo 

c(x )J 
n 

for all i e: 
• • conditions. 

E (and lim (1-a) 
at1 

• We as s11me in the 

v (i) does not 
a 

sequel of this 

depend on i), under weak.er 

section that cp is bounded. 

12.11. L 

(12.11.1) 

then 

{12.11.2) 

If 

sup inf ~(i,j) < 00 for all 
ie:E R 

N 

• 
J e: E 

sup 
R 

lim sup 
N ► oo 

c I c(x )] ~ lim inf (1-a) v. 
n a+1 a n=O 

PROOF. Given an arbitrary state j we choose the sequence 

factors such that 

{a} 
n 

of discount-

(12.11.3) 

According to lern111a 12. 7 the difference v ( i) - v ( j ) is a. a bounded uniformly 

( ) • {,...,.*} in a.€ 0,1 • Consequently, there is a subsequence - o~ 
m 

{a} 
n 

such that 
• for some constant g and some function v 

(12.11.4) . * lim (1-a) v (j) = g 
m m m > oo • 

and 

(12.11.5) lim {v (i) - v (j)} = v(i) for all i € E, 
m m m>oo 

where v (i) = va*(i). 
m m 

In view of (12.11 .. 1) a.nd lemma 12.7 we find that vis bounded from 
-below. Hence for each Pe: P we have Pv < 00 and Pv can be defined as 

Pv+ -- Pv and is possibly,~. As in 12.4 we obtain that 

(12.11.6) • 
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(hence Pv < (JO}. This relation implies ( 12. 2. 1 ) a.nd hence ( recall 

bo11nded from below) for an arbitrary policy R it holds that 

(12.11.7) 
1 N 

lim sup N+1 ~ [ L 
N>llO n=O 

c(x )] ~ g. n 

• that V l.B 

The relations ( 12.11.3), ( 12.11 .. 4) and ( 12 .11. 7) together impl.y ( 12.11 .2) 

since state j and policy R were arbitrarily chosen. 0 

12.12. COROLLARY.. If (E,P) is a oommuniaating system and eaah P € P sa-tis

fies the Doeb linaondi tion then the .relation ( 12. 11 • 2 ) is true. 

PROOF. We shall show that relation ( 12. 11 .1) is satisfied. Given any state 
00 

j there is a stationary p•olicy Q such that j can be reached from each 
00 

state i e E under policy Q ( see the proof of theorem 11 • 7) • Since Q satis-

fies the Doeblincondi tion it follows from the le1t•tt1as 11 • 6 and 11 • 5 and the 

relation (11.2.4) with P = {Q} and A= {j} that sup D 
• 
i 

12.13. ·. ···J.:l ;Ul, • If (E,P) is a conmrunicating system and if the condition 

sim D holds then the ite'lation ( 12. 10. 1) is val.id. 

PROOF. It is straightforward from lemma, 12. 7 that 

li• (1-a) [v (i)-v (j)] = 0 for all i,j € E. 
at1 a a. 

Consequently the function x as introduced in theorem 10.4 is a consta,nt 

function. It follows from the proof of theorem 10.4, in particular the sub

sections 10. 10 and 10. 11 , that (cf. ( 1 O. 0. 3)) 

(12.13.1} l . . 1 
sup 1m inf -.-
R N ► ClO N+1 

N 
.. [ I 

·n=O 
c(x )J = x. n 

Bees.use we can sta.1:t in subsection 10.5 with an arbitrary sequence of dis

countfa:ctors tending to one, it follows from ( 12.13. 1) that lim ( 1-a) v a 
· · t d . . . . at 1 e.xis ·. s an . equal.a the left-hand side of ( 12. 13. 1 ) • In view of the relation 

(1·2.11.2} Ye obtain that the relation (12.10.1) is valid. O 



12.14. REMARK. Define for N = 0,1, •.. 

1 
N+1 

N 

~ [ I 
n=O 

c(x )]. 
n 
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In [Hordijk (1973)] it is proved that if for constants c and a
0 

for all i E: E and all a.
1 

,a.
2 

with a.
0 

< a.1 < cx
2 

< 

fied if (1-a.) v has a bounded derivative with 
a 

exists and, moreover, 

lim w 
n n-+-oo 

= lim 
a.t 1 

( 1-a.) V • a 

1, which is certainly satis-

respect to a, then • lim w 
n n >oo 
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13. RANDOMIZATION AND .....,Y OPTIMAL POLICIES 

• • In this section we will collect several results on various topics 

which were needed in the foregoing sections. 

We write E for the set of all stochastic matrices on state space E. 

Let the function don pairs (P1 ,P2 ) €Ebe defined by 

where for convenience ve have identified the state space E with the set or 
positive integers. It can be seen that this function d defines a metric on 

P a.nd, moreover, that P with this metric is a separable metric space. The 

weak convergence defined in section 1 is convergence with respect to this 

metric. 

• • As usual, we will call an element of the smallest a-algebra containing 

all open subsets of E, a Borel set. We assume that P is a Borel set. 

For notational convenience we introduce a set A of actions such that 
' 

there is a one-to-one correspondence between A and P. We use the set A to 

index P, i.e. P, 
a 

a€ A, is that P which is in correspondence with a. Then 

(A,F), with F the Borel subsets of A, is a meas11ra.ble space and p 
a 

• 
l.S a 

measu.rable mapping. 

We write M(A) for the set of all probability measures on (A,F). Define 

.... ,.,. 
p = {p: p(i,.) = 

.... 

p (i,.) 
A a 

d-µ. (a) , 
l. 

µ.(.) € M(A) for all i e E}. 
l. 

Verbally P(i} 
. ..... 

:= {p(i,.) : P € P} can be described as the set of all ran-

domizations of the decisions in state i. 

If P(i) is a compact set then using the metric induced by don P(i), 
.,,.. 

it can be seen that P( i) is a compact, separable metric space. P( i) • 
l.S a 

quotient space (cf. [Kelley, p. 97]) of the space of all probability 

measures on P( i), say M( P( i)). It follows from a theorem of Prohorov (cf. 

[Billingsley, p. 37]) that M( P( i)) is relatively compact. By definition, 
.... 

M(P(i)) is closed and thus compact. Hence P(i) is compact. Consequently, if 

P is compact then P(i) is compact for all i e: E 11 hence P(i) is compact :ror 

all i € E and according to a theorem of Tychonoff (cf. [Kelley, p. 143]) 

• 
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..... 
Pis compact with respeet to the metric d. 

In the introduction we have identified the decision to be taken with 

the probability measure on E that is induced by it. In practical 

there may be several decisions with the same probability meas1Jre 

problems 

but dif-
• 

f'erent costs. In order to fit our model we then have to choose an appropri

ate cost and to assign this cost to the probability meas1_1re. Since costs are 

maximized in 011r model, it is obvious that the supremum over the different 

costs is appropriate here. 

We proceed in a similar way when allowing randomizations. For each 
• 
i e E 

cp(i) on P. Then under reasonable regularity conditions for P
0 

E P (we 

write ca(i) resp. ca(i) for cp (i) resp. cp (i)) 

(13.0.1) 

and 

(13.0.2) 

a a 

cp (i) = sup { 
0 

C ( i) 
A a 

c (i) dµ(a) 
A a 

dµ(a) 

for allµ€ M(A) with p
0
(i,.) = p ( i , . ) dl-1 ( a ) • 

A a 

p ( i , . ) dµ ( a) } 
A a 

We shall investigate whether the value function of' an optimal control 

problem remains the same when allowing randomizations of decision ruJ es.· 

13.1. THEOREM. If 
00 

(13.1.1) w := sup E \' c-(x ) < 00 

R L 'll 
R n=O 

and f is a cp - exaessive function~ then f is also a 
,...,,, . cp - exaess1-ve function. 

PROOF. According to definition 2.14 we have to verify that 

..... ..... 
(1.3.1.2) P, is a charge structure w.r.t. P; 

CX) .... 
I :Sf for all e: P; 

n=O 
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.... 
(13.1.4) f f'or all PEP. 

For an a.rbitrary function g (with Pl gl < 00 for all P E P) and µ E: M(A) it 

holds that 
• 

c ( i) d-µ{ a) + 
A a 

I Pa< i, j) g ( j > 
A j 

dµ(a) ~ sup 
p 

(cp(i)+Pg(i)) 

f'or e.J.J i E: E. Hence with (13.0.1) we obtain 

( 13 .. 1.6) 
.... 

sup {cp+Pg) f'or all Pe P. 
p 

Relation (13.1.4) is a direct consequence of (13.1.6) and the fact that f 
• • 
1s Cp - superharmonic. 

By (13.1.1) and theorem 2.22 (with T=00 ) we have 
• that w J.S 

• • ba.rmonic, i.e. 

c; + Pw s w for all P E: P. 

Since cp for all P € P, 

c; + Pw s w for all P e: P. 

Hence from { 13. 1 . 5) with w instead of g we find 

-- .... 
cp + Pw s w for all P € P. 

Iterating this inequality we :rind for each positive integer N 

Conse.g_uently for each R = (P
O

, P 
1 

, ... ) 

co 

..... 
with P e P for all n n 

-cp - super-

.... 
e P • 

Now asa1lJne that relation ( 13. 1 . 2) does not ... 
vi th P € P for all n and some state n .. 

• 
1

0 
we 

hold. Then for some (P0 ,P1 , ..• ) 

have in view of (13.1.8) 



I 
n=O 

Choose N0 such that 

NO 

I 
n=O 

Define 

and 

..... 
~ 

N 
= sup { l 

n=O 

N 
= sup { l 

n=O 
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00 

= Qj = I 
n n=O 

.... 
P} . 

It can be shown by induction on N that ~+1 = sup (cp+P~) and 

{ 2 } p. - . 
~+ 1 = s~p (cp+P~) 

(13.1.6)pit :follows 

:for all NE 1, , .... Hence with x 0 = x 0 = 0 and using 

by induction on N that~=~ for all Ne {0,1, •.. }. 

In particular~ 
0 such that 

= ~ and consequently there are matrices Q
0

, ••• ,~ € P 
0 

Given any sequence~ +1,~ +2 , ••• E P we have by (13.1.1) 
0 0 

00 

I 
n=O 

This is in contradiction with the fact that f is 

Hence relation (13.1.2) is true . 
• Define 

and 

v = sup ER 
R 

00 

[ I 
n=O 

CX) 

R n=O 

c(x )] 
' 11 

lc(x )I .. 
n 

• 
a Cp - excessive 

Note that the assumptions of this lemma imply - 00 < v(i) < + 00 and 

function. 
• 
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M < v*(i) < t00 • According to the theorems 2.22 (with T= 00
) and 2.21 and 

the nonnegativity of lcpl we find 

* v s; v* for all n € { 0, 1 , 2, .... } 

and a.11 a
0
,a

1
, ... ,an € A. In order to prove the relation (13.1.3) it is 

according to theorem 2 .17 sufficient to show that for each sequence 

P
0

,P1 , •.. € f> 

(13.1.10) 

- -Since f is cp - excessive we have by (2.14.2) vs f and hence f ~ v . In-

stead of (13.1.10) we shall prove the stronger relation 

(13.1.11) 

- ..... ..... 
Choose an arbitra.ry sequence P0 ,P1 , .... ie: P. In the rest of this proof 
.... ..... .... 
R := (P0 ,P

1
, ••• ) is a fixed policy. For n = 0,1,2, .•• let --p be obt aj ned 

n 
from µ . , 
. Ill. 

• 
J. E E, 

(13.1.12) p (i~.) dµ .(a) for all i € E. 
A a. ni 

We introduce the probability product space {cf. [Neveu, proposition V.1.1, 

p. 162]) 

00 00 

(13.1.13) µ), 
t=O 

where (At, Ft), t = 0, 1 , •.. , are copies of (A,F) and the restriction of 

the probabilities 

These probabilities a.re given by 

••• 

with i 0 some fixed state in E. Next we define a sequence of measurable 
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:rnnctions on this product space by 

According to the theorems 2.22 (with T=oo) and 2.17 (cp is a charge struc-
* ) . 00 ture because-~< v < +~ we have lim g

0 
= O for all elements of ITt=O At. 

n > ::io 

Using a bounded convergence theorem on the product space we find with 
-V and ( 1 3 . 1 • 9 ) 

( 13. 1 • 1 4) lim g ( w ) dµ ( w ) = 0 • 
n n •00 oo 

Ilt=OAt 

The relation (13.1.14) in the usual notation is 

lim 
n ➔ oo 

This completes the proof. 0 

In section 3 we proved that the supremum of the expected return over 

all policies including the non-memoryless is a cp - excessive function 

(theorem 3. 1 ) . According to theorem 13. 1 the function v is also a 'cp - ex

cessive function when relation (13.1.1) is true. Consequently, including 
"' all policies de.:fined on P, i.e. all randomized policies, does not increase 

the value function when (13.1.1) is satisfied.*) 

The following theorem, which is adapted from [Derman and Strauch] and 

[Derinan ( 1970) J, makes it evident why we focussed attention on memoryless 
• • policies. 

13.2. THEOREM. Assume that P aontains all randomized decision rules (i.e. 

negat;ive r,eal nwriber,s a 1 , a2 , • • • with Li= 1 ai = 1 there exists for, eaah 

state i 0 EE a memo-pyless policy R
0 

such that 

co 

(13.2.1) [x =i,v eFl1&-i=io] = 
ll -n_ V I 

k=1 

• 
1 E E, aZZ F € F and all n {0,1,2, •.. }; ~ deno~es the decision 

at time n. 

Randomization becomes important when constraints are introduced. Cf. 
Neyman-Pearson lemma [Lehmann, p. 63] and [Derman (1970), chapter 7]. 

• 
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PROOF. For any nonnegative integer n and each state i €Ewe define a 

randomized decision by 

00 

(13.2.2) µ . (F) 
n1. 

:= { I 
k=1 

ak FR [ x =i v E'. FI x =i J} • 
k n '--n .:.:0 0 

00 

. { I 
k=1 

when the denomi.:nator is positive; otherwise let µ . (.) be an arbitrary 
ni ...... 

probability measure on (A'JF). For n E {O, 1, •.• } let P be the associated 
n 

decision rule, i.e. 

(13.2.3) p (i, .. ) = 
n 

dµ .(a) for all i. 
Ill. 

..... .... 
Define R0 as (P0 ,P1 , ••• ). 

• 

The proof of relation (13.2.1) proceeds by induction on n. For n = 0 

and i ;: i 0 both sides of eq1J.ality ( 13.2. 1) are equal to zero. If i = i 0 
then 

00 

l 
k=l 

AssumP. that relation ( 13.2. 1) holds for n = m, • i.e. 

(IQ 

{ 13.2.4) I 
k=1 

.... ...... 
µ .(F) P0 ... P 1(i 0 ,i). 

mi m-

We first prove that 

00 

• 

Since 

for all. k .E: { 1 ,2, ..• } we find (by conditioning on x, 
m 
~ and ( 13.2.4)) that 

th,e left-hand side of ( 1 3. 2. 5) equals 



117 

p (i,j) dµ .(a). 
A a mi 

Hence with (13.2.3) the relation (13.2.5) follows. 

According to relation (13.2.2) we have 

• CX) 

00 

I 
k=1 

In view of (13.2.5) the second part of this equality can be written as 

This equals 

[x 1=j,y 1cF(=ox =i 0]. □ 
--rYIJ n + --m+ 

We call a cost struct1.1.re cp concave if for each i € E and µ € M (A) it 

holds that 

(13.2.6) C (i) d~(a) with Po(i,.) = 
A a 

p ( i , . ) dµ (a) • 
A a 

13.3. COROLLARY. If cp is a concave aharage structure and P contains all 

randomized decision :r>u.Zes, then 

00 

(13.3.1) c I 
n=O 

I c(x ) I J < oo. n 

PROOF. Ass1Jme that the relation ( 13. 3. 1 ) does not hold. Then there is a 

* state i 0 and a sequence of policies~ such that 

00 

(.13.3.2) 

Next we apply theorem 

we obtain a policy R0 
that 

k 
> 2 • 

-k * 13.2 with 8k_ = 2 and Rk =~fork= 1,2, •.. and 

satisfying (13.2.1). In view of (13.2.6) it follows 

00 

lc(x )I ~ 
n I 

k=1 
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Hence with (13.3.2) we have 

I ]E lc(x )I = 00
• _0 i,R0 n 

n-
. 

This is in contradiction with the ass1mption that cp is a charge structure. □ 

A similar reasoning as in corollary 13.3 shows that the relation 
..... 

(13.1.1) is a necessary condition for Cp to be a charge structure w.r.t. P. 
Hence the relation ( 13. 1 • 1 ) is a necessa.1·y and sufficient condition for the 

Cp - excessive function f to be Cp - excessive. 

The results of this section are also true for the optimal control 

problem. In section 6 we treated the total return model by introducing an 

auxiliary function r. Here we show that the converse is also true. Each 

optimal control problem can be converted into a total return model by in

troducing an auxiliary states and defining p (s,s) = 1 and c (s) = O, 
a a 

a E: A. Sos is an absorbing state. Further we introduce a new action or 

decision,. which we identify with the stopping decision, i.e. p't(i,s) = 1 

and c T ( i) = r( i), i e: E. Then a stationary strategy for the optimal control 

model becomes a stationary policy for the total return model. 

charge 

. If P contains all randomized decision ru.Zes, cp is a concave 

st1."U.Clu2'e and sup JER I r(x ) I < 00 for aZZ poZiaies R, then 
T C 

(13.4.1) 

Moreover, for each policy R and each Markov time T it holds that 

(13.4.2) * V (x ) < (X)• 
I t 

·. · • There is an asytntnetry in the assurnptions of this le1nxna. As to the 

policies we assume that the expectations of' the absolute costs are finite 

for all policies, as to the Markov times we assume that the au.premum of the 

absolute reward over all Markov times is finite. To get rid of' this asym

metry one can use randomized Markov times. A ra.ndomi zed Markov time ( stop

ping time) is obtained if at each time t one perfo1·m~ an auxilia1-y random 

experiment dependin.g on ~,x1, ••• ,~ in order to decide whether to stop or 

not• If ER l r{:;
0

) I is finite for all randomized Markov times a then the 



supremum of ER lr(xc)I over all Markov times is finite and conversely. 

PROOF. Converting the optimal control problem into a total. return model, 

it is straightforward f"rom corolla.1·y 13. 3 and the above remark that the 

relation (13.4.1) is true. 
\ * . Now suppose l· p(i,j) v (J) 

J 
= 00 f"or some state i and matrix P. Then 

theorem 3.1, would have an infinite ab

relation (13.4.1). Hence 

the policy R, as in the proof' of' 

solute return, contradicting the 

(13.4.3} * Pv < 00 and w := p * * v - Pv ~ 0 f"or all PEP. 

With (13.4.3) it can be proved that for each bounded Markov time T (use 

induction on the upper bound of the Markov times and proceed as in le101na 

2. 19) 

(13.4.4) * V =E 
R 

T-1 
[2 

n=O 
* w(x) + v (x )] 

n L 
f"or all policies R. 

For arbitrary policy Rand Markov time~ we have from (13.4.4) and the 

second part of' (13.4.3) 

* [v (x ) 
bl I hi( 

* V < OJ. 0 
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This section is concluded with an investigation of nearly optimal 

policies. The results collected here are adapted from [Blackwell (1967)], 
[Blackwell (1970)] and [Ornstein]. They are stated for the total return 

model. Using conversion of' models it is obvious that analogue results hold 

for the optimal control problem. In the rest of this section we assume 

00 

R n=O 
lc(x )IJ < 00 

n 

(consequently cp is a cha.rge struct11:re). For notational convenience we 
• write 

00 

n=O 
[ l c(,?Cn)J, 

n=O 

:= vp=o and v := 
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13.5. DEFINITION. Policy R is €-optimal in state i if vR(i) ~ v(i) - £. 

If for any e: > 0 and any state i there is a stationary poZicy Q
00 

such that 

vQ(i) ~ v(i) - e:, then we say that there e:cist stationary weak nearly op

timal, potiaies. 
• 

Policy R is £-optimal if vR(i) ~ v(i) -e: for all, i e: E. If for any 

e: > o there is a stationa:ey policy Q which is e-optimaZ, then we say that 

there e:cist stationary strong nea.Ply optimal policies. 

13.6. THEOREM. Each of the following three oonditions is suffiaient fo:r

the existence of stationary weak ne~Zy opt.imal policies 

a. 

b. 

sup 
p 

sup 
p 

\'00 n 
ln=O p e < co 

"° n -
00 and cp is bo 

c. the oost structure is nonnegative. 

O fora all Pe P; 

d; 

PROOF. Ass11roe condition a is valid. According to theorem 6. 1 • • v satisfies 

BeJJman's optimality equation • 

Nov given ariy e: > 0 and any initial state i 0 choose Q such that 

(13.6.1) 

with 

(13.6.2) · o := 

(l0 

e:(sup I 
P n=O 

By iterating the inequality (13.6.1) we obtain 

(13.6.3) N+1 Q V 
N 
l Qne for all Ne {1,2, .•• }. 

n=O 

Because . n 
of lim sup Q vs O, (13.6.2) and (13.6.3) imply 

n )00 

00 

l Qnc (i ) 
n=O Q O 

Hence Q is e:-optima.3 in state 

- E:. 
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Assume condition bis true. Given any E > O and any initial state i
0 

let policy R be such that 

Let O < a.
0 

< 1 be such that 

00 

c L 
· n=O 

an c(x )] 
n 

for all a with a.
0 

s a~ 1. Let a 1 with O < a.
1 

< 1 be such that 

(13.6.4) ( 1-a 
1 

) sup 
p 

00 

L 
n=O 

Pn -( . ) e: n cp io < 2. 

Choose an ~ with max (a.
0
,a1 ) ~a< 1. We apply the first part of the 

theorem for the discounted dyna.mj c progra,1r1111ing problem with discountfactor 

~. Hence there exists a Q with 

00 00 

E. Q [ l 
1 o' n=O 

Beca1.1se of < 1 and n • = 1,2, ..• , we have with 

(13.6.4) 

00 00 

I ( n - n n - ( ) Q c - a Q c) ~ 1-a 
Q Q l n - e: 

nQ CQ < 2 • 
n=O n=O 

Consequently 

00 

00 

and Q is e:-optima,l in state i 0 . 

Ass11me condition c is satisfied. Given any e: > O and any initial state 
• 
1 0 let R be such that 

Let Ek, k = 1,2, •.. , be finite subsets of E with Ek c Ek+1 > k = 1,2, •.. , 
00 

and uk=i Ek= E. For;_ the exit time of Ek, k = 1,2, .•. , we have that 

lim ~=~.Hence 
k-+-ol 



122 

and consequently • Let us con-

0 
sider now the total return model with finite state space~. For this 

• 1s non-

negative condition bis satisfied. Hence there exists a Q such that 

V (i
0

) > 
Q,~ 

0 

V 
R,~ 

0 

Hence 

00 

and Q is £-optimal in state i 
O

• D 

As noted in the beginning of section 6 lim Pnv with P E: P always 
n) oo 

exists and this limit is nonnegative. Hence the condition 

:for all P E: P is not weaker than ass1.1ming that lim Pv = 0 
n> 

1 . Pnv 1.m sup 
n >oo 

for all Pe: P. 

• 

13.7. THEOREM. If cp ~ O fox- all PE: P then given any E > O there exists 
• a stat1,,onacy 

• (X) 

pol1.,ay Q such that 

• 
l. e E. 

If vis bounded then thex-e erist etati strong nearly optimal policies. 

PROOF. The second a.ssertion is an j rronediate consequence of the first one. 

Choose an€ with O < € < 1. Let the elements of Ebe indexed by the 

positive integers, • 
l.. e. E = {i

1
,i

2
, ••• }. To prove the first assertion we 

~ with k = 1,2, ..• , and matrices Pk e P with show the existence of sets 

k = 1,2, ••. such that fork= 1,2, ... , 

and for T ·n, 

p {i,.) = p (i,.) for all i E: E n E n m n m 

• • the exit time o~ E, 
n 
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(13.7.3) Vp (i ) ~ (1-E) v(i ) 
T n n n n' n 

with 

(13.7 .. 4) 
1 , 

e: = £ ( 2 + • • • + -) • n 2n 

Let us ass1Jme for the moment that the relations ( 13. 7. 2) and ( 13. 7. 3) are 

proved. Define Q as follows 

q ( i , . ) : = p ( i , . ) for n = 1 , 2 , • • • • 
n n n 

Then 

vQ(i ) ~ VQ (i ) = VP (i ) ~ (1-e:) v(i ) m ,T m ,-r m m m m m 
00 

for all m e { 1, 2, ••• } and consequently, Q satisfies relation ( 13. 7. 1). The 

proof of ( 13. 7. 2) and ( 13. 7. 3) proceeds by induction on n. Ass1Jme E
1

, •• ,E
0 

and P 1 , •• ,P
0 

are known and satisfy (13.7.2.) and (13.7.3). Define 

P n = { P : P ( i , . ) = pk ( i , . ) if i e ~ for k = 1 , 2 , .. • , n} , 
• 

let C be the set of policies with decision rules in P and take 
n n 

V n 
= sup 

REC 
n 

Under the assumption that 

V ~ (1-£ ) v, 
n n 

we shall show that relations similar to (13.7.2) 1 (13.7.3) and (13.7.5) 
can be established for n+1. 

According to theorem 13.6 there is a Pn+i E P
0 

such that 

(13.7.6) 

with 
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Define 

(13.7 .. 8) 

and 

B = {i : vp (i) 
n+1 

< ( 1-c ) V ( i ) } 
n 

Then En+ 1 a.nd P
0

+1 satisfy ( 13. 7 .3) for n+1 as will be proved. Indeed, by 

(13.7.6) we have that the expected return when starting in i +1 and using n. 
policy P n+ 1 l.intil entering B plus the expected return thereafter together 

exceed n n n of En+ 1 we have 

(13.7.10) + l F. P [x =j] 
jE:B 1 n+1' n+1 t,nt-1 

By the definition of E 
1 

we have 
n+ 

(13.7.11) vp (j) ~ (1-o) vn(j) for all j e E
0

+1 • 
n+1 

Since v is the value function corresponding to C it follows from the n n 
theoremfi 3.1 and 2.21 (note that cp is a charge structure since 

< CIC)) that for any policy R e C and any Ma.rkov time T 
R n- n n 

{13.7.12) V n V. + ]E_ V (x ) • 
R , 't n n r 

Substituting P 
1 n+ 

(13.7.13) 

and T in 
~r1+1 ( 1 3 . 7 . 12 ) gives 

+ I F. p 
jE:B 1 n+1' n+1 

[x =j] V ( j). 
en .. , n 

Substituting (1-o) vn(j) for vp (j) in the second term of (13.7.10), we 
· n+1 

find with (13.7.8) and (13.7.13) 



(13.7.14) I lP. [x =j] v (j) :S 
. 1 ,P 1 -"'C n 
JEB n+1 n+ n+1 

ov ( i 
1
). 

n n+ 
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Since vp 
n+1 

S V 
n 

a similar relation with v instead of v 
pn+1 n 

in the lef't-

hand side holds. Together with (13.7.10) this yields 

(13.7.15) ( 1-20) V ( i 
1 

) • 
n n+ 

• Since 

( 1-26 ) ( 1-e: ) 2:: ( 1-e: 
1 

) 
n n+ 

it follows with ( 13. 7. 5) that relation ( 13. 7. 3) is satis:ried for n+1. 

In the rema,inder of the proof we establish relation ( 13. 7. 5) for n+1 • 
• De:fine 

let C
0

+1 be the policies with decision rules in 

v 
1 

= sup 
n+ REC 

n+1 

By relation (13.7.11) we have that 

P 
1 

and take 
n+ 

To prove that a similar inequality also holds outside En+, we proceed as 

follows. Given any state i there exists in view of theorem 13.6 a policy 

P E P such that 
n 

Let R be the policy that chooses decisions a<?cording to P tlntil the entry of' 

En+, and uses decision rule P n+l thereafter. Then with o the entry time 

of E 
1 

we have 
n+ 

(13.7.18) VP (i) + ,o 
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Using the relations (13.7.11) and (13.7.17) we derive from (13.7.18) 

vR(i) 
J 

= vp(i) - ovn(i). 

Finally with (13.7.16) and (13.7.17) we obtain 

We conclude this section by proving that in 

gram:mi ng case the existence of' an optjma.l policy 

• • the positive 

im:pli es that 

dyriamj,c pro

some sta-

tionary policy is optimal. For the negative dynamic progra.mmi ng probJ_em 

this is a]most an immediate consequence of theorem 4.6. Indeed, when policy 

R is optimal then the decision rule for time O, i.e. P
0

, conserves v. Hence 
co 

P0 is thrifty; since v ~ 0 we have that each policy is equalizing. Conse-
00 

quently P
0 

is optima.l. 

13.8. THEOREM. If cp ~ 0 for all P E: P and there exists an optimal policy 

then there exists a etatio z optimal, poliay. 

PROOF. According to theorem 4.6 (in fact the analogue of theorem 4.6 f'or 

the total ret1.1rn model) there is also an optimal policy R such that each 

decision rule of R is v conserving. Hence without loss of generality we 

can ass11me that P consists of' v conserving matrices. According to theorem 

13.7 there exists a Q such that for some a> 0 

Hence 

00 

2: a v. 

. "n 11.m IC(, v 
O) 

< 1 1· - im a n >tn 
I 

k=O 
• 

Thus Q is also equalizing and in view of theorem 4.6 we have that 

optimal. D 

00 • Q l.S 
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LIST OF NOTATIONS 

x, y, f, g etc. 

x(i) 

e 

0 

XV y 

-
X 

X y 

X = y 

X < oo 

P, P(i) 

p( i ,j) 

p(i, .. ) 

p(i,A) 

l . 
J 

Px 

lim sup x 
n 

n ► 

00 p 
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real-valued functions (also called vectors) on the 

state space E 

.th t 
J. componen of vector x 

vector with all components equal to 1 

the real number zero and the vector with all 

components equal to zero 

vector with i th component ma.x (x(i)~y(i)) 

vector with i th component min (x(i)~y(i)) 

X V 0 

-(xAO) 

x(i) ~ y(i) for all i EE 

X S y and y ~ X 

x(i) < 00 for all i EE 

see page 1 

( . . )th 
J.~J entry of stochastic matrix P 

.th 
1 row-vector 

l· A p(i,j) 
J€" 

of P 

s11rr,rtiation over all j E'. E 

• vector with .th \ 
i component L· 

J 
p(i,j) x(j) 

••• p (R. ,j) 
n n 

. . th vector with 1 component 

+ I p(i,j) x(j)J 
• 
J 

vector "th .th 'Wl. l. 
• component lim sup 
ll )CO 

X (i) 
n 

p(i,j) ~ p
0
(i,j) for all i,j e E; see page 1 

stationa,·y policy (P,P, •.. ) 
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policy 

strategy 

• entry time 

• reentry time 

• cp-excessive, 

see page 1 

see page 21 

see page 18 

see page 8 

see the definitions in section 2. If cp = 0 for 

Cp-superhar:rr,onic, etc. all P e: P we write excessive, superha:t:·monic, etc. 

• • if' lim cp ( i ) = cp ( i ) f'or all i E E and all Poe p Cp l.S continuous 
P+PO 0 

• • • if' • cp(i) (i) all • e: E and Cp is upper semicontinuous lim sup < cp for J. -

fR(i,A) 

fp( i ,A) 

fp(i ,j) 

ER c(xil) 

E. R c(x ) 
l., n 

[ ... ] 
N 

L 
n=o 

X ( ••• ) 

f(x) 
l 

!4-PO 0 
• 

the complement of' subset Ac E 

see page 69 

see page 64 

see page 64 

for R = (P0 ,P1, ••. ) equal to the vector 

po···pn-1CP 

all PO e: 

-th n 
the i component of the vector ER c(xn), for 

R = (P
0

,P 1 , ••• ) equal to 

l .. , Po(i,R.1) P1(R.1 112) • • • Pn-1 (R.n-1 ' 1n) 
R. 1 , ••• ,1

0 

abbreviation for CX) [ ••• 1 

abbreviation for 

Markov time or stopping time, T equal to infinity 
• • • is admissible 

is equal to one on the event ( .•• ) and equal to 

zero otherwise 

is equal to :f(x) 
n 

for T = n, n e: {0,1~2, .•• } and 

equal to zero for T = 

equal to f'(X ) X( T<oo) 
[ 

• 

00 , equivalently :f(x) is 
C 

denotes for R = (P0 ,P1 , ..• ) the conditional ex
-r-1 

p 

pectation given .!a = i of · cp (~) under policy R 
k=O k 


