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PREFACE 

During the last ten years there has been a rapid growth of interest 

in the theory of Markovian Decision Processes. The interest in this sub­

ject was generated by R.A. HOWARD's book, Dynamic Programming and Markov 

Processes [5]. In this book the most simple Markov-programming models are 

treated. HOWARD's results have been generalized by W.S. JEWELL, G. DE LEVE 

and others IJ. , 6 , !] . 
The generalized techniques developed by DE LEVE in his thesis Gene­

ralized Markovian Decision Processes are also applicable to continuous 

time models and/or models with a non-denumerable state space. These 

techniques are not "ready-made" techniques and their final form depends 

heavily on the structure of the decision problem considered. The decision 

situations we will consider have an infinite planning horizon and the 

problem is to find a strategy which minimizes the expected average costs 

per unit of time. 

The only purpose of this book is to demonstrate how the generalized 

techniques can be applied in practice. This is done by means of a number 

of practical applications. For these applications the final form of the 

solving techniques turns out to be rather simple. 

An effort has been made to write the text in such a way that it can 

be :read independently of the above mentioned thesis. To accomplish this, 

the first chapter contains a survey of the generalized Markov-programming 

techniques we will use. Proofs about the efficiency of these methods and 

conditi.ons imposed on the models to set up the theory are omitted and can 

be found in [7] . Furthermore, it is demonstrated in chapter 1 that the 

iterationmethods of HOWARD and JEWELL follow from the generalized itera­

tionmethod. 

The solving techniques are of two types. An optimal strategy may be 

found by a direct approach (functional equations) or by an iterative 

approach. 

Five applications are given. In chapters 2 and 3 problems with a 

discrete state space are considered. In chapter 2 a has 

been solved in an iterative way. In chapter 3 we have determined in a 
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direct way the expected average costs per unit of time of (S,s)- and (Q,s)­

strategies for continuous time inventory models. Furthermore an iteration­

procedure has been indicated, which exploits the simple properties of an 

(S,s)-strategy. 

In chapters 4, 5 and 6 problems with a non-denumerable state space 

are considered. ln chapter 4 the continuous version of the automobile re­

placement problem of HOWARD ~, pp. 5~ has been treated. The problem 

has been solved iteratively. ln chapter 5 an insurance problem of a moto­

rist has been solved by a direct approach. ln chapter 6 another production­

problem has been solved in an iterative way. 

The problems treated can be read independently of each other. 



1 

1. Markovian decision processes. 

1.1. The general case. 

A physical system will be considered which is controlled by a 

decisionmaker. At each point of time the system is in some state. In the 

mathematical model a state of the system is represented by a point in a 

finite dimensional Cartesian space. The set of all possible states will be 

called the state space X. 

In case the decisionmaker does not intervene it is supposed that for 

each initial state the evolution of the system (called the natural process) 

can be described by a homogeneous strong Markov-process. The natural pro­

cess, however, is not the only source of changes in the state of the 

system. The decisiorunaker influences the natural process l:Jy interventions. 

We restrict ourselves to models with a finite number of interventions in 

each finite period of time. An intervention results in a random transition 

in the state of the system. A transition is assumed to take no time. We 

suppose that each intervention is defined by the probability distribution 

of the state into which the system is transferred by the intervention. We 

differentiate between decisions called null-decisions and decisions which 

are interventions. A so-called null-decision is made at each point of time 

the decisi.onmaker does not intervene. A null-decision "transfers" the 

system with probability one into its present state. The introduction of 

the concept of null-decision enables us to state that at each point of 

time a decision is made. It is assumed that the behaviour of the system in 

the time interval between two successive interventions is described by a 

natural process. The initial state of that process will be the state into 

which the system was transferred by the intervention at the beginning of 

the interval concerned. 

For each state x of the system we have a set D(x) of feasible 

decisions d. We consider only stationar;i strategies, i..e. strategies which 

base their decisions on the present state only and associate unambigiously 

with each state x a decision d £ D(x). Let Z be the class of the stationary 

strategies. The decision assigned by a strategy z E Z to state x will be 

denoted by z(x). 

The result of the natural process and a strategy z f Z is called a 
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decisionprocess. Under general conditions it can be shown that each 

decisionprocess is also a homogeneous strong Markov-process. 

ln our decisionproblems we suppose that we are dealing with costs 

only. The costfunctions have to satisfy some regularity conditions. The 

costs are not discounted. Our criterion for an optimal strategy will be 

the expected average costs per unit of time when the system is considered 

for an infinite period of time. 

Let Az be the set of all states at which strategy z i;;. Z dictates an 

intervention. It is supposed that the intersection 

(Ll) = n A 
z 

is not empty, Furthermore it is assumed that in the natural process with 

probability one the set A0 is reached from each initial state within a 

finite time. Observe that each strategy z.;. Z dictates an intervention at 

each state of A0 • 

Choose the non-empty sets 

such that in the natural process with probability one each of these sets 

is reached from each initial state within a finite time. For each i = 1,2 

there corresponds to every state x and decision de. D(x) two random walks 

¾ i and .!ct .• The walk¾ 1 (resp.¾ 2) has x as initial state and 
' , ]. ' , 

during this walk the system is subjected to the natural process. The walk 

.!o 1 (resp.¾ 2 ) ends as soon as the system assumes a state of A0 1 
' ' ' (resp. A0 2 ). The walk .!ct 1 (resp • .! ) has x as initial state too. But 

, , d,2 
now in state x decision dis made, by which the system is transferred 

(instantaneously!) into a random state and from that state on the system 

is subjected to the natural process. The walk .!d,l 

soon as the system assumes a state of A0 1 (resp. A0 
' ' 

• .!ct 2) ends as 
' • Let k0 (x) and 

k1 (x;d) be the expected costs incurred during ¾,l (resp . .!ct, The costs 

of the decision dare included in k1 (x;d). Let t 0 (x) and t 1 (x;d) be the 

expected duration of ¾, 2 (resp . .!d, 2). Define the (x;d)-functions 
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and 

(1 A) 
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The walks w and '!'..o, are identical if dis a null-decision, Hence 
-d,i 'k 

(1.5) k(x;d) == t(x;d) == 0 if d is a null-decision, xi;; X. 

It fol lows from theJr definition that k(x; d) and t (x; d) do not depend on 

any particular strategy, Hence we need only once and for all to determJne 

the functions k(x;d) and t(x;d), 

Suppose now that a strategy zG; Z is appli.ed and let x be the initial 

state of the system, Let ;x), n ~ 1} be the sequence of future 

interventionstates. It can be proved under rather general conditions that 

this sequence constitutes a homogeneous Markov-process in with discrete 

time parameter. Although the interventionstates of strategy z belong to 
$) (k) 

A , we take X as state space of this Markov-process. Let.p (A;z;x) be 
z 

the probability that belongs to a Borelset A, Under the Doeblin 

condition there is a q(A;z;x) for which 

lim ! 
n (k) 

(1.6) I p (A;z;x) = q(A;z;x), 
n➔oo n k==l 

The function q(A;z;x) defines for each XG X a stationary probab:i.li.ty 

distribution on X, which satisfies 

(1.7) q(A;z f (1) 
= p (A;z;y) q(dy;z;x) 

$) 

It is assumed that for each x€ X the Markov-process satisfies the 
Doeblin condition. For the meaning of this condition the concepts 
"ergodic sets, transient sets, cyclically moving subsets" the reader is 
referred to DOOB [2], We, however, prefer the name ergodic set" 
to the term "ergodic set", A decomposition of X in a finite number of 
simple ergodic sets and a transient set is not always uni.que, However 
it is supposed throughout that disjoint simple ergodic sets ,,,,, 
and a transient set F have been chosen in some definite way, 
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Furthermore 

(1.8) q(A;z 

if x1 and x2 belong to the same simple ergodic set. 

Let ~T(z;x) be the costs incurred during the period [o,T). Under weak 

conditions 

(1.9) lim ~T(z;x)/T 
'f➔oo 

exists with probability one for each initial state x~X. This limit re­

presents the average costs per unit of time and with probability one 

equals 

(1.10) k(I;z(I)) q(dI;z;x) / J t(I;z(I)) q(dI;z 
A 

z 

if the initial state x belongs to a simple ergodic set. For each state x 

belonging to a simple ergodic set E. we define 
J 

(1.11) g(z;x) = I 
A 

z 

k(I;z(I)) q(dI;z;x) / t 
z 

the function 

t(I;z(I)) q(dI;z;x). 

For the states x of the transient set F we define 

(1.12) g(z;x) = f A g(z 

z 

q(dy;z 

Observe, by (1.10) and (1.11}, that the average cost per unit of time 

assumes with probability one the value g(z;x) if the initial state x 

belongs to a simple ergodic set. Furthermore by (1.8) the function g(z;x) 

is constant on a simple ergodic set. If the initial state x belongs to the 

transient set F the average cost per unit of time is a random variable 

with expectation g(z;x). 

The criterionfunction g(z;x) may be determined without using the 

stationary distribution q(A;z;x). Consider the following functional 

equati.ons in the functions r(z ;x) and c(z ;x) 

( 1 .13) r(z;x) = Er(z for xe: X 
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and 

(1.14) c(z;x) = k(x;z(x)) - r(z;x) t(x;z(x)) + Ec(z;I1) for xE.X, 

where 11 is the first future interventionstate when xis the initial state. 

E stands for the expectationsymbol, hence 

(1.15) Er(z;I ) = J 
-1 A 

(1) 
r(z;I) p (dI;z;x). 

z 

Observe that by (1.5) equations (1.14) for x fit-A reduce to z 

(1.16) for x Et A • 
z 

It can be shown that the functional equations (1.13) and (1.14) have a 

solution and that for each solution (r(z;x),c(z;x)) we have 

(1.17) r(z;x) = g(z;x) for xf'. X. 

Furthermore it can be proved that by choosing in each simple ergodic set 

E. a state e. and by adding to (1.13) and (1.14) the conditions 
J J 

(1.18) c(z;e.) == O 
J 

for j = 1, •.. ,m 

the resulting system of functional equations has a unique solution. The 

function r(z;x) equals g(z;x); hence r(z;x) is the expected average costs 

per unit of time if xis the initial state.The function c(z;x) may be 

given a physical interpretation too. If the decisionproces has no cyclically 

moving subsets it can be shown_ that for states x1 and x2 in the same simple 

ergodic set c(z;x1 ) - c(z;x2) is equal to the decrease in total expected 

costs caused by starting in state x1 rather than in state x2 . 

By means of the functions r(z;x) and c(z;x) an iterationprocedure 

can be given, which yields a sequence of strategies {z(i), i ~ 1} for 

which, under certain conditions, the following interesting properties can 

be proved: 

(1.19) ( (i+ll ) r z ;x 
(i) 

< r(z ;x) for xe. X; 
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and 

(1 .20) 
(i) 

lim r(z ;x) = min r(z;x) forxE:X. 
i➔oo zez 

We shall now give an explanation of the iterationprocedure. Suppose that 

in the initial state x the decisionmaker chooses a feasible decision d 

and that he applies strategy zG. Z thereafter. For this mixed strategy cLz 

the expected average cost per unit of time is given by 

(1.21) def . 
r(d,z;x) = Er{z;~), 

where~ is the state into which the system is transferred by decision d 

in x, Obviously the decisionmaker chooses in state x a decision dGD(x) 

which minimizes r(d.z;x). We assume that such a decision exists, Let D (x) 
z 

be the set of r(d.z;x) minimizing decisions d; hence 

(1.22) min 

ct' .sD(x) 

r(d',z 

If D (x) contains more than one decision, we minimize 
z 

(1.23) c(d,z;x) d~f k(x;d) - r(d.z;x) t(x;d) + Ec(z 

with respect to d GD (x). We assume that the minimum is attained, We 
z 

associate now to state x a decision d€ D (x) which m.inimizes c(d.z ;x). We 
z 

adopt the convention t:l'1at we choose d ::::: z(x) if z(x) belongs to (x) and 

minimizes c(cLz If we have associated in this way with each state x a 

deci.sion d, we have constructed a strategy z1s Z. The followi.ng important 

result can be proved, 

(1.24) for X6 X, 

From the definitions (1.21) and (1.23) and from (1.5) it follows that 

both ford"' null-decision and d = z(x) 

(1.25) r(d.z = r(z;x) and c(d.z;x) = c(z;x) for xe X, 

Our convent:i.on and relation (1.25) have as a consequence that each inter-

vention of strategy z is an interventionstate of too, 
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Hence 

(1.26) A :::J A . 
z z 

l 

~ 11 1 h h . h" h ] . . *) ., t wi be c ear t at we need a mec anism w ic may cance. an intervention , 

We shall now give a cutting mechanism which reduces strategy to a 

strategy z 2e Z with A c A • Let strategy zs.Z and let strategy z 1 1e Z 
z2 - zl 

be obtained as described above. The mixed strategy (z1 )z dictates first 

an intervention in accordance with z1 and then interventions in accordance 

with z. For abbreviation let z = (z1 )z and 

(1.27) 

and 

(1.28) 

r(!;x) = r(z1 (x).z;x) = min r(d.z;x) 
. d~D(x) 

c(z;x) min c(d.z;x) 
d£Dz (x) 

Let A be a closed set of states satisfying 

(1.29) A0 S::_ A f: A 
zl 

for XGA 
zl 

Let the mixed strategy A,z interdicts any intervention up to (but not 

including) the moment that the system assumes a state of A for the first 

time .. From that time onwards the mixed strategy z is applied. 

Define 

(L30) 

and 

r(A.z;x) = Er(z for x l:i X 

c(A.z;x) = Ec(z for xG. X, 

where a is the first state in A taken on by the system if the mixed 

strategy A,z is applied and xis the initial state. Observe that the 

probability distribution of a depends only on the natural process, 

*) 

Such a mechanism is not needed if for each ze: Z, 
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Clearly 

(1.32) r(A.z;x) = r(z;x) and c(A.z;x) = c(z;x) 

Furthermore it will be obvious that r(.ILz;x) can be interpreted as the 

expected average cost per unit of time if the mixed strategy A,z is applied 

and xis the initial state of the system. The class X(z) of closed sets A 

is defined as follows. Each set A from :X:(z) satisfies (1.29) and has the 

property that for each state x€ A we have 
zl 

either 

(1.33) 

or 

(1.34) r(A,z;x) = r(z;x) and c(A.z;x);;;, c(z;x), 

Using (1.32) it follows that 

(1.35) 

It can be shown that the intersection of any finite number of sets from 

(z) belongs also to this class. Define AJ as the intersection of all sets 

of (z), hence 

{1.36) 

H '~ X(z) it can be shown that strategy z2 i; Z defined by 

(1.37) (x) 

"' {z1 (x) 
null-decision 

satisfies 

(1.38) 

From (1.35), (1 36) and (1.37} it follows that 

(1.39) C 

for x E. A_: 
z 

otherwise 

for xE.X. 



It can be shown that a strategy z£Z is optimal if it satisfies 

(1.40) 

(1.41) 

(1.42) 

min r(d.z;x) = r(z;x) 
deD (x) 

min c(d.z;x) = c(z;x) 
dc..Dz (x) 

A' - A • z - z 

for x,.;; X, 

for xG. X, 

9 

These formulas present us a direct approach for determining an optimal 

strategy. However in the most cases an optimal strategy will be determined 

by the following iterationprocedure: 

Prepatory part 

Determine the (x;d)-functions k(x;d) and t(x;d). 

lterati ve part 

(n-l)b . th 
Let z = z e the strategy obtained at the end of the (n-1) step of 

the iterationprocedure (start in step 1 of the iterationprocedure with an 
th 

arbitrary strategy of Z). Then step runs as follows: 

1) Determine the unique solution of the functional equations (1.13), 

(1.14) and (1.18) • 

2a)Determine the functions r(d.z;x) and c(d.z;x) by using the definitions 

(1.21) and (1.23). 

b)Determine for each state x£X the set D (x) of r(d.z;x) minimizing 
z 

decisions dG: D(x). 

c)Minimize for each xE: X the d-funxtion c(d.z ;x) with respect to d Iii'.: D (x). z 
d)Associate with each state x a solution of c). If z(x) is a solution of 

c), this decision will be associated with state x (this convention is 

made for reasons of convergence). 

As soon as operation d) has been performed a strategy z1E Z has been 

constructed. 
(n) 

3) Determine the set A2 (c.f.(1,36)). The strategy z £ Z is defined by 
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(1.43) { 

z 1 (x) 

= null-decision otherwise, 

th End of then step. 

(n) (n-1) . 
If z = z the iterationprocedure has converged to an optimal 

th 
strategy and it stops; otherwise the (n+l) step of the iterationprocedure 

starts with strat~gy z(n). 

a) Computations may be reduced considerably when it is realized that the 

criterionfunction r(z;x) is constant on a simple ergodic set, 

b) The structure of the functionalequations (1.13) and (1.14) implies that 

the amount of computation needed to solve the functionalequations is pri-

marily determined 

sets. By a proper 

(c.f, (1,18)) the 

by the structure of Az and the number of simple ergodic 

choice of the states e. for which we punt c(z;eJ = 0 
J J 

solving of the functional equations may be simplified 

considerably. In problems with a non-denumerable state space a successful 

use may be made of the states in Az with a probability concentration, 

c) The way in which the set A2 can be determined depends heavily on the 

structure of the decisionproblem considered. In the boundary points of 

this set it will sometimes be indifferent whether to intervene or not. 

This property may be useful to construct an optimal strategy. 

The wellknown iterationprocedure of HOWARD and JEWELL can be derived 

from our iterationprocedure, as will be shown in section 1.2, 
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1.2.The models of HOWARD and JEWELL as special cases of the general case. 

The so-called Markov-renewal programming model introduced by JEWELL 

[6] is briefly reviewed (the model of JEWELL is a direct generalisation 

of the models of HOWARD [5]). There is a finite imbedded Markov-chain 

whose states are points where the decisionmaker has to choose interven­

tions from finite sets. These states are called the distinguished states. 

At other points the process cannot be affected by the decisionmaker, Each 

distinguished state is occupied only for a moment during which an inter­

vention is taken. The processreturns then to limbo for a random time 

where it remains until the next distinguished state is reached. The inter­

vention taken determines the distribution of transit time through limbo, 

the distribution of costs incurred during this transit and the one-step 

transition probabilities for the next distinguished state. Getting 

specific; let {1,.,,,n} be the set of the distinguished states and let 
d 

D(i) be the finite set of feasible intervenUons for state L Let p .. be 
l.J 

the probability that the next observed state is j given the initial state 

i and intervention d.; D(i). Let F~ .(t) be the conditional distribution 
l.J 

function of the time the system remains in limbo given that the next 
d . 

transition is to state j. It is assumed that F .. (0) = O, for all i, j and 
l.J d 

d (this condition can be relaxed). The first moment of l\/t) will be 
d 

denoted by vij' Let 

d n 
d 

(1.44) \) . I \) < co for de D(i), i = 1, ... ,n. 
]_ 

j=l ij 

If for all :i. and d 

(1.45) 

we have the familiar discrete time case which is firstly treated by 

HOWARD If for an appropriate ,\~ > 0 
d :i. 

-A.t 
(1.46) j(t) - 1 - e 1 for all i,j,d and t > 0 
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and 

(1.47) for all i and d, 

we have a finite continous-time Markov decision process, which is also 

treated by HOWARD [s]. 
Returning to the general case it can be verified that JEWELL's model can 

be translated to our model. We shall omit details. By choosing 

(1.48) 

we shall need of the information concerned the costs and the transition 

times only the expected time to transition v: and the expected costs to 

transition q: given state i and intervention d. It can easily be verified 

that from our iterationprocedure the following policy iteration scheme 

can be derived. We describe the nth step. 

(n-1) . th 
a) Let z = z be the strategy obtained at the end of t~e (n-1) step. 

Determine first the unique simple ergodic sets, say E1 , •.. ,E , of the 

Markov-chain ((p~~i))). Choose in each set E. a state e., Ne:t deter-
iJ i i 

mine the unique solution of the following system of linear equations 

in ri(z) and ci(z): 

(1.49) 
n 

z(i) r. (z) == l pij r. (z) for 1 < i < n i J = = 
j==l 

(1.50) 
z(i) z(i) n 

z(i) 
C. (z) = qi - r 1 (z) V. + l pij C .(z) for 1 < i < n i i J = = j:::::1 

(1.51) for 1 ~ i ~ m. 

b) Determine for each i == l, ••. ,n the set D (i) of decisions which mini­
z 

mize 

n d 
l piJ. r.(z) 

j::::1 J 
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with respect to deD(i). Associate with state i a decision from D (i) 
z 

which minimizes 

(1.53) 

with respect to d € D (i). If z(i) is such a decision, choose then 

z(i) •. In this way we zobtain a strategy z (n) 

th 
End n step 

(n) 
If strategy z 

optimal strategy 

procedure starts 

= z then the iterationprocedure has 

and it stops; otherwise the (n+l) th 
. (n) 

with strategy z • It can be shown 

converged to an 

step of the iteration­

that this i tera_tion-

procedure converges in a finite number of steps to an optimal strategy, a 

complete proof is given by DENARDO and FOX [1]. 
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2 A discrete productionproblem. 

2.1 Introduction. 

In order to satisfy the demand for a single item a firm sets up non­

overlapping productionseries occasionaly. A productionserie of d units 

takes Td,;;;. O units of time and costs ¢(d), Td is fixed. After completion 

there is a fixed idle time Td,;;;. 0 during which no production can be start­

ed. When the idle time is passed the starting point of a new production 

can be chosen freely. Awaiting the sale the finished units are stocked. At 

most M units can be carried in inventory. For each unit carried in invent­

ory there are inventory costs c1 t which depend on the length of time t for 

which the unit remains in inventory. Customers arrive at the firm accord­

ing to a Poisson process with rate A, Independently of the arrival process 

each customer demands k units with probability pk, k,;;;. O. The demands of 

the customers are mutually independent and have a finite and positive 

expectation. When the demand of a customer exceeds the on hand inventory 

it is assumed that the overshoot is satisfied by an emergency purchase; 

costs c2 per unit. 

Using the expected average costs criterion for an infinite planning 

horizon the production manager looks for a strategy that leads to an 

optimal production schedule. 

The solution of this problem starts in section 2.2. In this section 

the probabilistic background for both this problem and the next problem 

is given. In section 2.3 the state space, the natural process and the 

feasible decisions are defined. The functions k(x;d) and t(x;d) are 

determined in section 2.4. Section 2.5 has been devoted to an iteration­

procedure for an optimal strategy. An numerical example can be found in 

section 2.6. Finally some generalizations are suggested in section 2,7. 
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2.2 Preliminaries. 

Suppose customers for a single product arrive at a firm according to 

a Poisson process {~(t), t ~ 0} with rate A. Independently of the arrival 

process each customer demands k units with probability pk, k ~ O. It is 

assumed that the demands of the customers are mutually independent random 

variabeles with a finite and positive expectation. 

Firstly we review three important properties of the Poisson process: 

(a) the number of arrivals in any time interval (t,t+h] has a Poisson 

distribution with mean Ah. Hence, 

(2.1) for n = 0,1, •••• 

(b) the interval from O up to the first arrival and thereafter the in­

tervals between two successive arrivals, are independently distributed 

and have an common exponential distribution with mean 1/A. 

(c) given an arbitrary but fixed point of time, the waiting time to the 

first future arrival has also an exponential distribution with mean 

1/A, irrespective of the "past". 

Define 

(2.2) y(0)::::: 0 

and fort> 0 

(2 .3) y(t) = number of units demanded in the interval (0,1]. 

Our assumptions imply (1) for any t,s ~ 0 the random variables y(t+s)-y(t) 

and y(s) are identically distributed (2) if O;;;, t 1 < t 2 ••• < tn (n ~ 3) 

the differences y(t2 ) - y(t1), .•. , y(tn) - y(tn_1) are mutually indepen­

dent. Let 

(2.4) a (t) ={P y(t) = n} 
n for n = 0,1, •.• , t ~ 0. 
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It is wellknown that the generating function of _y_(t) is given by [ 3] 

(2.5) 

and that 

(2.6) 

I 
n==O 

a (t) 
n 

-\t(l -

= e for 

I for t ~ 0. 
n==1 

The power-series expansion of the righthand member of (2.5) may enable us 

to write down an analytical expression for the probabilities a (t). These 
n 

probabilities can also be calculated in another way, From (2.5) it follows 

that with regard to the determination of the probabilities an(t) it can be 

equivalently stated that the customers arrive according to a Poisson 

process with rate A(1-p0 ) and that the demand per customer has {p (1-p0), 

i ~ 1} as probability distribution. Suppose for the moment that we are 

dealing with this demand process. Obviously we have that 

(2.7) 

and 

where 

n 
t) = I 

k==l 

n 
= I 

k=l 

P{k customers arrive in (O,t] and the cumulative 

demand of these customers is n} 

c (k) 
n for n ~ 1, 

c (k) == probability that the cumulative demand of k customers 
n 

is n. 

Needless to say that c (k) == 0 for n < k. Observe that fork fixed 
D 

{c (k), n ~- k} is the probability distribution of the sum of k independent 
D -

random variables, which have {p./(1-p0 ), i ~1} as common probabil:i.ty dis-
1 -

tribution. We have for c (k) the recursionformula n 
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n-k+l 
(2.10) c (k) 

n I 
i=l 

for n;:. k, k > 1, 

= (0) = 0 for n ~ O. 

Returning to the original demand process, let~ be the interval from 

0 up to the epoch on which the k th unit is demanded, mathematically 

(2.11) fork~ 1, 

and let 

(2.12) yk = number of units demanded in (o,~J for k ~ 1. 

For notational convenience we define 

(2.13) fork;;, 0. 

We shall now derive a recursion formula for E~. The waiting ti.me u from 

0 up to the arrival of the first customer has an exponential di.stribution 

with mean 1/:\. Under the condition that the first customer demands i units 

the random variable t has the same distribution as u + t By applying 
; -k-i 

the theorem of total expectation, 

(2.14) Ex = f E(~ I y = y) dP{.,y_ ~ x} ' 

it follows that 

k-1 
(2.15) E~ I P. + 1/;\ 

i=O 
J. 

for k ,;, l. 

Analogeously it can be shown that 

k-1 00 

(2.16) = I + I for k,;, 1. 
i=O i=l 

From (2.15) and (2.16) it follows that 

00 

(2.17) - \ I np F~t 
n=l n 4c 

for k ,~ 1. 

We see that the numbers Et can be computed successively. Needless to say 
-k 

that Et = k/;\ and 
-k = k if 

discrete renewal equations [3]. 

= 1. Observe that (2.15) and (2.16) are 
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The generating function T(s) of the numbers E_!k is given by 

co 

(2 .18) T(s) I E_!k 
k s for sl < 1, = s :::: 

k:::::1 \(1-s) (1- I Pn 
sn) 

n::::O 

In special cases an analytical expression for E.!k may be obtained from the 

power-series development of T(s) {e.g. if the demand of a customer has a 

geometric distribution). 

Define 

(2 19) (,1) p "' k 

and define for each fixed n ~ 2 

k 
I pk . (n-l)p. 

i:::::O -:i. 1 

for k = O, 1, .. , 

fork= 0,1, 

We can interprete pk(n) as the probabil:i.ty that the cumulative demand 

of n customers equals k. Define the renewal function 

(lL21) fork= 0 1, , .•. 

k 
We can interprete I 

j:::O 
u. as the expected number of customers before the 

J 

cumulative demand exceeds k. This interpretation may be justifi.ed as follows: 

Let~"" 1 if the cumulative demand of the first n customers is~ k, and 

let x == 0 otherwise. Then -n 

E( I 
n==l 

"' k 
= I 

j::::O 

k 
(n) == \' u l j. 

j=O 

From (2.20) and (2,21) it follows that 

equation 

(2.22} 
k 

"'Pk+ l uk-i Pi 
i=O 

satisfies the d:i.screte renewal 

fork 

The generating function U(s) of the numbers uk is given by 



00 

I pn 
n s 

00 

(2 .23) U(s) I k n=O 
:::: Uk s == 

1- I n 
k=O Pn s 

n==O 

for Isl < 1. 

We note that E.!k and Eyk can be expressed in the quantities uk. From 

(2.15) and (2.22) it follows easily that 

(2.24) 
l k-1 

E_!k == I (1 + l uj) 
j=O 

fork~l, 

as will be intuitively clear from the physical interpretation of the uk, 

Define for each fixed k ~ 1 the probabilities (c,f. (2.12)) 

(2.25) f (k) = P{vk == n} 
n -

for n = k, k+l, 

Using a standard probabilistic argument it follows that 

(2.26) f (k) == P{the demand of the first customer is n} + 
n 

00 k-1 

19 

+ I I 
n=l j==O 

P{the cumulative demand of the first n customers 
th is j and the demand of the (n+l) customer is 

n-j} = 
00 k-1 

:::: pk+ I I pn (j) p . ::: 

n==l j::::0 n-J 

k-1 
==pk+ I u. Pn-j 

j=O J 

Finally we define the l-function 

(2 .27) 

This definition implies that 

for X ~ 0 

for x < 0. 

for n ~ k. 

(2 28) El(t-_!k) == P{_!k ~ t} == P{y(t) ~ k} == 

k-1 
=1- I a.ct> 

j=O J 
for k ~ 1 , t ~ 0 . 
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Next we prove that 

k-1 
(2.29) L a. (t) Etk . 

j==O J - -J 
for k ~ 1, t ~ 0. 

Given an arbitrary but fL,ed po<. nt of time the waiting time to the arrival 

of the first future customer has the same distribution as the interval 

between two successive of customers, irrespective of the "past". 

Hence under the conditioa that the total demand in (0,t] is j units we 

have that the lefthand member of (2 .29) equals Et,. . , By applying now the 
-,--J 

theorem of total expectation (2.29) follows. 

Finally we note that from (2.29) and the identity 

E(!k-t) == E{(!_k-t) :J_!.k-t)} + E{(_!k-t) l(t-_!.l.l?} it follows that 

k-1 
(2.30) } = I 

j==O 

a. (t) 
J 

+ t for k ~ 1 , t ;;;,, 0 • 

2.3 The state space, the natural process and the feasible decisions. 

At each point of time the following information wlll be of interest: 

(a) the inventory 

(b) whether a production is running or not; if a production is running 

the productionsize and the time that the production is already running; 

if there is not a production running the time elapsed since the last 

production has been completed and the size of that production, 

We take as state space 

(2 ,31) 

U {(i,O,d,T) [ 0 ~ i ~ M, l ~ d ~ M, 0 < t < T 

The state i corresponds to the situation that the inventory is i and that 

a production can be started if desired, The state (i,d,t corresponds 

to the situation that the inventory is i and a production of d units is 

running since t units of time. 
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The state (i,0,d,T) corresponds to the situation that the inventory is i, 

no production can be started, T units of time are elapsed since the last 

production was completed and the size of that production is d. 

Next the natural process is described. The natural process can start 

in each of the state space X. Renee also in a state (i,d,t,O), i.e. a 

production is running. However in the natural process the decisionmaker 

does not intervene, thus in the natural process no production is started. 

If the natural process has i as initial state the system remains in state 

i until the first future customer arrives. By the demand b of that 

customer the system assumes state max(i-E,,0). If the natural process 

starts 

states 

* * in state (i,O,d,1 ), 0 ~ T ¾: Td the system runs next through the 

(max[i-_y(1-1 ;O],O,d,1), T < 1 < 'ct (recall that ~(t) is the total 

demand in a time interval of the length t). On the moment that the idle 

ti.me 'ti is passed the system assumes state max[i-.Y(Td-T ;O], If the 

* natural process starts in state (i ,d, ,O), 0 ~ t < Td the system runs 

[ * ] * next through the states (max i-~(t-t );O ,d,t,O), t < t < Td. On the 

moment that the producti.on is completed the system assumes state 

{max [i-_y(Td ;o] ,o ,d,O}, 

Finally the decisionmechanism is described, The decisionmaker can 

only intervence in the states 0,1,,,,,.M-1, ln the other states only 

null-decisions can be made. It is no restriction to assume that in state 

0 the decisionmaker has always to intervene. Put for abbreviation 

(2.32) 1 = {i I O ~ i ~ M} • 

A decision will be represented by the size of the production (d = 0 is the 

null-decision), We take the set of feasible decisions in state x equal to 

D(x) - { :: I : : : : M-i} 

{null-decision} 

(2.33) 

:for x = 0 

for X "' i ' l ;;;, i < M 

for x =.Mor x ~ I. 
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If in state i the intervention d;;., 1 is made the system is transferred 

instantaneously into state (i,d,O,O). By the null-decision made in state 

x the system is "transferred" into state x itself, 

For each strategy z from the class Z of stationary strategies we have 

that the set Az of interventionstates is finite because Az cI. Further­

more it will obvious that 

(2.34) A = n A :::: {O}, 
0 zo::Z z 

2.4 Determination of the functions k(x;d) and t(x;d). 

The set A0 consists of the state O only, so we choose 

(:.L35) 

Hence both the walks~ 1 and .!'.o 2 and the walks .!d 1 and .!ct 2 are iden-
----v, J ' ' 

tical. Put for abbreviation .!'.o = .!'.o,l = .!'.o, 2 and~= .!d,l = .!d, 2 • The 

function k(x;d) is the difference in expected costs incurred during .!ct and 

,!!o and the function t(x;d) represents the difference in expected duration 

of~ and .!'.o (c,f. (1.3) and (1.4)). To determine these functions we define 

qij(d) = probability that the inventory is j on the moment that 

the idle time associated with a production of d units 

started in state i has been passed 

for i == 0,,,. ,M-1; d £ D(i) and d;;., 1. 

For notational convenience we define for i,j = o, ... ,M 

if j :::: i 

ifj;/,i, 

Using the fact that the numbers of units demanded in disjoint periods of 

time are mutually independent it is easily seen that 
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i-1 00 

(2.38) qi/d) ::: I ak(Td)ai-k+d-j(,d) + I (Td)act-/'d) 
k=O k=i 

for j == 1,, .. ,i+d; d > 1, = O,,,, ,M-1 

and 

(2.39) 

where 

(2.40) 

qiO(d) -· 

a (t) == 0 
n 

Consider the walk 

i-1 

I 
k=O 

= 

00 00 

ak(Td) I ah (,d) + I ak(Td) I ah (rd) 
h==i-k+d k=i h=d 

for n < O, t,;,, O. 

having i as initial state. ]luring the walk the 

system is subjected to the natural process and the walk ends as soon as the 

system assumes state 0, It will be obvious that in the walk !'a only inven­

tory costs and stockout costs are incurred. The expectation of these costs 

are given by (c.f. (2.11), (2.12) and (2,13)): 

i 
(2.41) L E_!k + c2 E(v.-i) 

k=l -i 

for O < i < M, 

The expected duration of the walk .!-0 is equal to 

(2.42) for O < i ,_ !Ill, 

For the walk ~d having i as initial state we have that the intervention 

d,;,, l in state j_ transfers the system into state (i,d,O,O}, The costs of 

the intervention dare ¢(d). From state (i,d,0,0) on the behaviour of the 

system during the walk ~dis described by the natural process having 

(i,d,O,O} as initial state. The walk w ends as soon as the system assumes 
-d 

state O. To determine the expected stockout costs l.ncurred during the walk 

we consider three phases of the walk, namely the production time 

the idle time 'd and the remainder of the walk, 
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It is now easily seen that the expected stockout costs incurred during 

the walk ~dare given by (c,f, (2,3) (2,4) and (2.36)): 

(2 ,43) 

i-1 00 

+ c2{ I ak(Td) t (j-i+k-d) 
k=O j==i-k+d 

00 00 

+ L ak(Td) t (j-d) 
k=i j=d 

i+d 
+ c2 l q_ .(d) E(v _-j), 

j==l :i.J -J 

a. ( T d) } 
J 

a. ( -rd) + 
,1 

+ 

It is easily verified that the expected inventory costs incurred during 

the walk ~dare given by 

i i-1 i-k+d 00 d 
(2 .44) c1 { l E_!k + l ak (Td) l Et . + L ak (T d) L Et . } • 

k=l k=O j=i-k+l -J k=i j=l -J 

Hence the expected costs incurred during the walk ~dare given by 

(2 .45) for l ~ d ~ M-i, 0 ~ i < M. 

It is easily seen that the expected duration of !'.ct is equal to 

i+d 
(2 ,46) 

Hence 

(2 ,47) 

tl(i;d) = Td + 'd + l q .. (d) Et. 
j==l l.J -J 

k(i;d) 

co 00 

+ c2 { I CT--i+ I (j-d)a. ( 
J 

i-1 
+ I 

k::::O 

i+d 
+ I 

j=l 

k=i 

ak(Td) 

(d) 

J=d 

00 

I (j-i+k-d) 
j=i-k+d 

for l ~ d ~ M-i, 0 ~ i < M, 

ak (Td) + 

(Td) + 

for l < d < M-i, 0;;, i < M-1, 



and 
i+d 

(2.48) t(i ;d) :::: Td + T d + l q_ .(d) E!J. - E~ 
j::::1 l.J 

for 1 ~ d ~ M-i, 0 ~ i < M-1. 

Furthermore we have (c.f. (1.5)) 

(2.49) k(x;d) = t(x;d) = 0 if d is a null-decision, x€X. 

Finally we note that the infinite summations in (2.47) can be reduced to 

finite ones by using the identity (c.f. (2.6)). 

00 00 i-1 
(2.50) I (k-i) a (t) = At I np - i + I (i-k) ak(t). 

k=i k n=l n k=O 

2.5 Determination of an optimal strategy by an iterationprocedure. 

Define the one-step transition probabilities 
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(2. 51) p (z) = probability that y is the first future interventionstate 
xy 

taken on by the system when the initial state is x and 

strategy ze Z is applied. 

Needless to say that p (z) = O for yt:A. Recall that xy z 

(2.52) for each ze: Z. 

The functionalequations (1.13) and (1.14) become for our problem 

(c.f. (1.16)) 

(2.53) r(z;i) :::: I p .. (z) r(z;j) for i<e::Az' 
j € AZ l.J 

(2.54) c(z;i) = k(i;z(i)) - r(z;i) t(i;z(i)) + I P .. (z) c(z;j) 
jl!i A l.J 

z 

for ifi-A , z 

(2.55) r(z;x) = I P .(z) r(z;j) for x¢A, 
jE:.A XJ z 

z 
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and 

(2.56) c(z;x) = p .(z) c(z;j} 
XJ 

for x G.A • 
z 

Next we specify the functions r(d.z;x) and c(d.z;x) (c,f. (1.21) and 

(1.23)). We have (c,f, (1,25)) 

(2,57) r(d,z == :r(z ; c(d.z == c(z;x) if dis a null-decision, 

Only in the states i, O < i < M can be intervened. When in state i the 

intervention d ~ 1 is made the system is transferred into state (i,d,O,O). 

Hence for 1;;, d < M-i, 0;;:,, i < M we have that 

(2.58) r(d.z;i):::: :r(z;(i,d,O,O)) 

and 

(2.59) c(d.z;i) == k(i;d) - :r(d.z;i) t(i;d) + c(z;(i,d,O 

From the definitions (2,36) and (2.51) it will be obvious that 

(2 .60) p (z) 

(i,d,O,O) ,j 

Hence (use (2,55)) 

(2.61) 

:::: 

,..,, q .. (d) + 
l.J 

i+d 

(z) r(z; 

I qi . (d) r(z; 
j=O J 

for 1 ;;:,, d ;;, M-i, 0 ;;:,, i < M. 

In the same way it can be shown that for 1 ;;:,, d ;;_ M-i, 0 ;;, i < M 

i+d 
c(d,z;i) = k(i;d) - r{d.z;i) + I 

j==O 
(d) c(z; 
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From (2.37), (2.49) and (2.57) it follows that formulas (2.61) and (2.62) 

are also true ford= 0. 

Using the fact that in the states x ¢ I "" { i I O;;, i;;, Ml- only null-decis­

ions can be made (i.e. A CI for each z ~ Z) and using formulas (1.27) 
z 

up to and including (1.37) and formulas (2.53) up to and including (2.62) 

it can be easily seen that we can restrict ourselves to the states of I 

for solving the problem. From now on only the states o,, .. ,M are considered. 

In order to derive formulas for p .. (z), r(A.z;i) and c(A,z;i) we shall 
1J 

introduce probabilities which depend on the natural process only. Let S be 

a set of states such that 

(2 .63) 

Defi.ne 

(:L64) 

S C I and 0 ,s s. 

S .. (S) = probability that j is the first state in the set S taken 
l.J 

on by the system when the system starts in state i and 

is subjected to the natural process. 

Because state OE.: S we have that 

(2 .65) l S .. (S) ::::: 1. 
j €: s l.J 

The definition implies that S .. (S) "' 0 for j > i or j ¢ S. If i E:. S then 
l.J 

Sii (S)::::: 1. Observe that if p0 + p1 ::::: 1 (each customer demands at most one 

unit) S i/S) = l for the largest integer j E:. S which is smaller than or 

equal to i, Observe furthermore that in case the set S = {i I O,:;, i ~ s} 

for some integers the probability s1 .(S) equals (i-s) for it Sand 
.J 

1;;, j ,;';, s (c.f. (2,25)), However if the set S has not this simple form 

we have to determine Sij(S) in another way. The following recursionformula 

will be obvious 

(2.66) 
i-J-1 

+ I 
k==0 

From (2,65) it follows that 

i3 f • iO\S) == 1 - S .. (SL 
l.J 



28 

We are now in pos:i.tion to give formulas for p1 /z), r(A,z;i) and c(A.z;i). 

For the j E: Az, we have 

(2.68) 

for 1 ¢ A 
z 

for i..: 

For the functions r(.1Lz; i) and c(A .z; i) we have (recall that A has to 

(2.69) 

thus O e: A) 

r(A.l;i) - I BiJ_(A) r(!;j) and c(A.l;i) 
j 

- I /3 .. (A) c(z;j) 
j 1J 

We note that r(A.z;i) = r(z;i) and c(A.z;i) = c(z;i) if i ~ A. 

We shall now construct the set A! (c,f. (1.36)). Firstly we observe that 
.z 

the set contains only a f1:ni te number of states because C I. Hence 

the class X(z) consists of a finite number of sets. It can be shown that 

the intersection of any finite number of sets from X(z) belongs also to 

this class. Hence 

(2.70) A! E. X(z) . 
z 

In other words A! j_s the smallest subset of A which belongs to JC(z). This 
z z1 

property and the fact that in the natural process from a state i only 

states j < i are reached will be used to construct the set A!, The 
z 

construction will now be described. We begin with a set S which consists 

ihitially of the state O only. The set Smay be enlarged by the following 

procedure, Starting in state Owe go from state to state in A such that 
zl 

we have vis:l.ted each state j < i before we visit state L If at the visit 

in state i :it appears that we have (c,L (L33) and (L34)) 

either 

(2,71) r(S.z;i) > r(z;i) 

or 
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(2.72) r(S.z;i) = r(z;i) ; c(S.z;i) > c(z;i) 

then the set Sis enlarged with state 1, otherwise the set S remains 

unaltered (observe that if i is added to S that then r(S,z;i) = r(z;i) and 

c(S.z;i) = c(z;i)). When we have visited each state of A the finally 
* zl 

obtained set S = S equals A2 , because the above construction implies that 

* * S £ X(f) and that by removing any state from the set S the remaining set 

does not belong to the class JC (z). Hence S 

* which belongs to X(z), in other words S 

is the smallest subset of A 
zl 

We are now in position to specify the on pages 9 and 10 described 

iteration procedure for this problem. 

Prepatory part 

Compute the values of the functions k(i;d) and t(i;d) and the probabilities 

qij(d) by using (2.37), (2,38), (2.39), (2.47), (2.48) and (2.49). 

Iterative part 

(n-1) th 
Let z = z be the strategy obtained at the end of the (n-1) 

th 
step, Then step runs as follows, 

l; Determine first the unique simple ergodic sets, say E1 , ••• ,Em' of the 

Markov-chain ( (pi . (z))), i, j E: A • Choose in each set E1 a state e .• 
J z l. 

Next determine the unique solution of the following system of linear 

equations in r(z; i) and c(z; i), i £ A : 
z 

r(z;i) = l P .. (z) r(z;j) 
j E: A J.J 

z 

c(z;i) = k(i;z(i)) - r(z;i) t(i;z(i)) + 

c(z;e.) = O 
l 

p .. (z) c(z; j) 
1J 

for 1 < i,:;. m. 
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If these lineair equations are solved, determine next 

(z) c(z;j) 

for i ¢A , 
Z, 

2) Determine for each i = 0,1, •.. ,M-1 the set 

minimize 

(i) of decisions which 

(2. 75) 
i+d 

r(d.z;i) "' l q .. (d) r(z;j) 
j=O :.J 

with respect to d G- D(i). Associate with state i a decision d from 

D (i) which minimizes 
z 

(2.76) c(d,z;i) = k(i;d) - ·r(d.z;i) t(i;d) + 
i+d 

I (d) c(z;j) 
j=O 

with respect to d € i). If z(i) is such a decision, choose then 

z(i), In this way we obtain strategy z1 . 

3) Let the set S consists initially of the state O only, Starting in state 

0 go from state to state in Az such that each state j < i has been 

vi.sited before state i is visited, If at the visit in state i it appears 

that 

either 

(2.77) 

or 

(2,78) r(S.l;i) = r(l;i) and c(S.l;i) > c(l;i) 

then state i is added to the set S, otherwise the set S remains ,m­
al tered. When each state of A i.s visited the obtained set S equals 

() zl Ai. Define the strategy z 11 as follows 

(i) ={ 
null-decision 

(i) if i €. ' 

otherwise. 

th 
End n step_ 
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Notes 

a) We recall that r(z;i) = r(z;j) if the states i and j belong to the 

same simple ergodic set. If the Markov-chain ((p .. (z))), i,j e. A has only 
iJ z 

one simple ergodic set we have that the criterionfunction r(z;i) is 

constant, say r(z), on the set of all states. We have in that case 

(2.79) r(z;i) = r(d.z;i) = r(z) ford€ D(i), i = O,, .• ,M, 

Furthermore the iterationprocedure is then simplified considerably, 

because in step 2) we have only to minimize c(d.z;i) with respect to 

d £ D(i) and in step 3) we have only to compare c(S.z;i) and c(z;i). 

b) If 

(2.80) 'ct> 0 ford= 1, ..• ,M 

each Markov-chain ((p .. (z))), i,j e Az has only one simple ergodic set, 
iJ 

because state O can be reached from every other state. 

5,6 Numerical example 

Suppose the following numerical data are given 

(2.81) 
A= 1, pl= 1, c1 = 1, c2 = 10, M = 4, 

¢(d) = 4d, Td = 1, ,d = ½ ford= 1,, .. ,4. 

The values of the strategy-independent quantities k(i;d), t(i;d) and 

qij(d) are given in tabel 2.1. Before starting the iterationprocedure we 

note that the probabilities S .. (S) are easy to determine. Since p1 = 1 
iJ 

we have that Sij(S) = 1 for the largest integer j e: S which is~ i. Since 

-rd> 0 for all d notes a) and b) apply. In step 2) of the iterative part 

we have only to minimize c(d,z;i) with respect to d€ D(i) and in step 

3) we have only to compare the c(z;i) (observe that c(S,z;i) = c(z;j) 

for the largest integer j € S which is less than i), 
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i d qiO (d) qil (d) qi2 (d) qi3(d) qi4 (d) k(i ;d) 

0 1 ,393 .607 0 0 0 16,065 

2 ,090 .303 .607 0 0 21.163 

3 .014 ,,076 .303 .607 0 28.019 

4 .002 .012 .076 .303 .607 36.002 

1 0 1 0 0 0 0 0 

1 .282 ,495 .223 0 0 9.780 

2 ,062 .220 .495 .223 0 15.525 

3 .010 ,052 .220 .495 .223 22.795 

2 0 0 0 1 0 0 0 

1 ,142 .300 .335 ,223 0 8.225 

2 .030 .112 .300 .335 .223 15.766 

3 0 0 0 0 1 0 0 

1 ,054 .137 .251 .335 .223 8.852 

Tabel 2.1 

The quantities k(i;d), t(i;d) and qij(d). 

We start the iterationprocedure with strategy 

(2.82) 

st 

z = (z(O), z(l), z(2), z(3), z(4)) = (1,0,0,0,0). 

l step 

a) The solution of the system of lineair equations 

(2 .83) 

is given by 

(2. 84) 

c(z;O) = 16,065 - 2.107 r(z) + c(z;O) 

c(z;0) = 0 

r(z) = 7,60 c(z;O) = 0, 

t (i; d) 

2,107 

3,016 

4,002 

5.000 

0 

1,441 

2,379 

3,369 

0 

1,139 

2.109 

0 

1,036 



The values of the other c(z;i) are 

(2 .85) c(z;l) = c(z;2) = c(z;3) = c(z;4) = c(z;O) = O. 

b) The values of the test quantity 

(2.86) 
i+d 

c(d.z;i) = k(i;d) - r(z) t(i;d) + l q .. (d) c(z;j) 
_j=O lJ 

are given in tabel 2.2. 

i d c(d.z;i) 

0 1 0 

2 -1.76 

3 -2.40 

4 -2.00 

1 0 0 

1 -1,17 

2 -2 ... 56 

3 -2.81 

2 0 0 

1 -.43 

2 -.27 

3 0 0 

1 ,98 

Tabel 2.2 

The test quantity c(d.z;i). 
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Hence the minimalization of c(d.z;i) with respect to d € D(i) results 

in the strategy 

(2.87) 

In addition we find 

(2 ,88) c(z;O) = -2.40 c(z;l)::: -2.81 c(z;z)::: -.43, 
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c) Since c(z;0) 

state 2 does 

(2,89) 

and 

(2,90) 

> c(z;l) state 1 belongs to A!, Since c(z;l) ~ c(2;2} is, 
z 

not belong to the set Ai, Hence 

A' == {0,1} z 

(1) 
z :::: (3,3,0,0,0), 

End 1st 
step 

nd 
2 step 

(1) 
a) Let z be the strategy z = (3,3,0,0,0). The solution of the system 

of lineair equations 

(2.91) 

c(z = 28,019 - 4.002 r(z) + 0,014 c(z;0) + 0,986 c(z;l) 

c(z;l) = 22,795 - 3.369 r(z) + 0,010 c(z;0) + 0.990 c(z;l) 

c(z;l) = 0 

is given by 

r(z) = 6,76 ; c(z;0) = ,97 c(z;l):::: 0, 

The values of the other c(z;l) are 

(2,92) c(z;2) = c(z;3) = c(z;4) = c(z;l) = 0, 

b) The minimization of the test quantity c(d.z;i) with respect to d€D(i) 

results in the strategy 

(2.94} - (3,2,0,0,0), 

In addition we find 

(2. 95) c(z c(z;l) "' -.62, 

c) Since c(z;0) > c(z;l) state l belongs to 

(2.96) 

and 

A' = {0,1} z 

Hence 
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(2 .9'0 
(2) 

z = (3,2,0,0,0), 

nd 
End 2 step 

rd 
3 step 

a) Let strategy z be equal to z(2 ) The solution of the system of lineaire 

equations 

c(z;O) = 28.019 - 4,002 r(z) + 0.014 c(z;O) + 0.986 c(z;l) 

c(z;l) = 15.525 - 2.379 r(z) + 0.062 c(z;O) + 0.938 c(z;l) 

c(z;l} = O 

is given by 

r(z):::: 6.47 c(z;O) = 2.16 ; c(z;l) = 0, 

The other c(z;i), i -- 2,3,4 are equal to c{z;l) = O. 

b) The minimization of c(d,z;i) with respect to d € D(i) results in the 

strategy 

(2.100) z1 = (3,2,0,0,0). 

In addition we fj_nd that 

(2 .101) c(z;O) = 2.16 ; c(z;O) = O. 

c) Since c(z;O) > c{z;l) state 1 belongs to A2 '. Hence 

(2.102) 

and 

(2,103) 

rd 
End 3 step 

(3) 
z (3,2,0,0,0). 

. (3) (2) 
Since z = z the iterationprocedure has converged to the optimal 

strategy 

*· 
(2,104) z - (3,2,0,0,0). 
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5,7 Generalizations. 

1} In the problem considered we have assumed that the production times 

and idle times are fixed, Assume now that a productionserie of d units 

takes a random time !d and that the associated idle time is a random 

variable lct• which is independent of !ct• It is supposed that the random 

variables !ct and !ct are independent of the demand process, It is easily 

seen that this new problem can be solved analogeously, Let F d(t) and C\1(t) 

be the distributionfunctions of !ct and 3.d respectively, In order to obtain 

the appropriat,:i formulas for the new problem we have to replace both in 

the formulas for k(i;d) and t(i;d) and in the formulas for the probabili-

ties q .. (d) 
lJ 

(2.105) ak(Td) by r ak(t) Fd(dt) 

0 

(2 .106) r ak(T) Gct'dT) 

0 

(2,107) 

2) The single-item productionproblem considered can be generalized to the 

following mul tj_-i tern problem. Consider a firm which manufactures n differ­

ent items. The firm sets up occasionaly non-overlapping productionseries. 

A productionserie may consist of more than one item, A feasible product-

ionserie (d) = , •.• ,dn) (that means di ;;;. 0 units of itlem i are produced) 

takes units of time and costs ~((d)). After completion there is a 

random idle time l(d) during which no production can be started, When the 

idle time is passed the starting point of a new productionserie can be 

freely chosen. The times between demands for item i are generated by a 

Poisson process with :rate A., i == 1,, •• ,n. These n Poisson processes are 
]. 

assumed to be mutually independent. A random number of units are demanded 

each time a demand occurs. Excess demand is satisfied by an emergency 

purchase. Fo:r each item separately we have the same assumptions about the 

inventory and stockout costs as in the single-item problem considered, 
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This multi-item productionproblem can be solved in an analogous way 

as the single-item problem has been solved. However the state space becomes 

soon too large for numerical computations. 
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3. (S,s)-strategies for continuous time inventory models. 

3.1 Introduction. 

Consider an inventory model which can be described as follows. A 

Poisson proces with rate A generates the times between demands and the 

number of units demanded per demand is a discrete random variable with 

probability distribution {p., i > O}. The sizes of the demands are both 
l. = 

mutually independent and independent of the Poisson process. Each time 

a demand occurs the decision is made whether or not to place an order. 

The procurement lead time is a constant T > 0, The total cost of placing 

an order fork units is ¢(k). The costs of carrying a unit in inventory 

are directly proportional to the length of time for which the unit remains 

in inventory. The constant of proportionality is c1 • In section 3.2 it is 

assumed that each unit demanded which cannot be met from the on hand 

inventory is backordered. For each unit backordered there is a fixed cost 

c2 plus a variable cost c3 t which depends on the length of time t for 

which the backorder exists. The subsequent delivery discipline is 

"first-come-first-served" and each unit backordered is delivered subsequent­

ly on the moment that there is on hand inventory available. The operating 

doctrine for the system is based on the economic inventory, which is de­

fined as the inventory on hand plus on order minus backorders. The operat­

ing doctrine considered is an (S,s)-strategy (S > s ~ 0), i.e. if the 

inventory level falls to i, i,;;. son some demand, a quantity S-i is ordered, 

otherwise no order is placed. An explicit expression for the expected 

average costs per unit of time is obtained in section 3.2.3. In section 

3.2.4 the special case that units are demanded one at a time is considered. 

The (S,s)-strategy becomes then the familiar (Q,s)-strategy, i.e. if the 

economic inventory reaches the reorder levels a quantity Q = S-s is 

ordered. Inequalities satisfied by the optimal Q* ands* are given. 

In section 3.3 it is assumed that the units are demanded one at a time and 

that excess demand is lost. Furthermore it is stipulated that there is 

never more than a single outstanding order. 



39 

However the procurement lead time is taken random, The (Q,s)-strategy 

(Q,;;,, s) is considered, Le. if the on hand inventory assumes the levels, 

a quantity Q,;;,, sis ordered. An explicit expression for the average costs 

per uni of time is obtained in section 3.3. 

satisfied by the optimal Q* ands* are given. 

In addition inequalities 

We note that the probabilistic results derived in section 2.2 of 

chapter 2 are also needed in this _chapter. 

3.2 The (S,s)-strategy for the backorder case. 

3.2.1 Definition of the state space, the natural process and the feasible 

decisions. 

(3,1) 

Suppose Sands fixed, S > s,;;,, O. We take as state space 

X = {i Ii integer, i 5.-,s}. 

The state i corresponds to the situation that the economic inventory is i. 

We shall see in sections 3.2.2 and 3.2.3 that by a proper choice of the 

set ,l we can confine ourselves to this simple state space. 

The natural process is also very simple. If the natural process has :i as 

initial state the system remains in that state until the first future 

demand occurs, In case the size of that demand :is b the system is trans­

ferred into state i-b. 

Next the feasible decisions are defined. Each decision will be de­

fined by the economic inventory just after the decision. We take the set 

of feasible decisions in state i equal to 

for i ;;, s 
{3.2) D(i) 

for s < i 5.-, S. 

Hence in state i,;;, s the only feasible decision is to order a quantity 

S-i and in state i, s < i ~Sonly the null-decision can be made. If in 

state i;;, s the intervention d =Sis made the system is transferred into 

state S. The null-decision d -- i made in state i "transfers" the system 

into state i itself. By definition {3.2) the class Z of stationary stra-



tegios consists of the strategy z -- (S,s) only. Obviously (c.L (Ll)) 

3.2,2 Determination of the functions k(i;d) and t(i;d). 

We choose (c.f. (1,2)) 

(3.4) 

and 

i ,;;. sL 

The walk .!o 1 (resp . .!o 2 ) having i as initial state ends as soon as the 
' ' economic inventory assumes a value;;;,. 0 (resp.;;;. s) and during this walk 

the system is subjected to the natural process. In the initial state i 

of the walk .!ct,l • .!d, 2} decision dis made by wh:i.ch the system is 

transferred into stated. From that state on the behav:i.our of the system 

during the walk .!d 1 (resp . .!ct 2 ) is described by the natural process. 
' ' The walk .!ct 1 (resp. 2 ) ends as soon as the economic inventory assumes 

' ' a value~ 0 (resp.,;;;, s). The function k(i;d) is the difference in expected 

cos ts :i.ncurred during the walks .!ct 1 and .!o 1 • The function t ( i ; d) is the 
' ' difference in expected duration of the walks .!ct, 2 and .!o, 2 . In the states 

i, s < i ;;,_Sonly the null-decision can be made, hence for these states 

we have that k{i;i) = t(i;i) = 0. 

For each backorder it is known in advance the length of time the 

backorder remains on the books. We agree that the backorder costs associat­

ed wi t.h a unit backordered are incurred on the moment the backorder arises. 

Consider now the walks .!o 1 and Y!..s 1 having i,;;. s as initial state. Some 
' ' reflection shows that the fact the leadtime is constant, the choice of 

' 
1 and the assumptions made about the inventory costs and the backorder 

costs have as a consequence that in the two walks both the expected in-

ventory costs associated with the i units from the in:i.tial econom:i.c invent­

ory :i. and the expected backorder costs associated w:i.th these un:i.ts are the 

same. 
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Because state i ~ 0 belongs to A0 1 no costs are incurred during the walk 
• 

_!n 1 having i ~ 0 as initial state. The walk .!o 1 having i > 0 as initial 
-..., ' 
state ends in state i - y1 of AO,l (c.f. (2.12)). The expectation of the 

backorder costs incurred in the walk .!o 1 on the moment the system enters 
' A0 1 is thus equal to 

' 
(3.6) for i > O. 

On the moment the walk .!s 1 starts there are -min(i,O) backorders on the 
' books. These backorders will be filled by -min(i,O) units from the order 

of S-i units placed at the start of the walk ~S 1 • Consider now the other 
' S-i+min(i,O) = S-max(i,O) units from that order. For a unit belonging to 

this lot of units there are inventory (resp. backorder) costs incurred 

during the walk ~S 1 if and only if that unit is needed after (resp. before) 
' the delivery of the last order. The expectation of the inventory (resp. 

backorder) costs associated with the S-max(i,O) units considered is equal 

to (c.f. (2.11) and (2.27)) 

s 
I 

k=max(i ,O)+l 

resp. 

s 
(3,8) A E{(c2 + c3<•-!k))i(,-!k)}, 

k=max(i,0)+1 

Observe that (3.7) is equal to the difference in expected inventory costs 

incurred during the walks .!s 1 and .!o 1 • The 
' ' 

walk .!s 1 ends in state 
' S - y8 of A0 1 • The expected backorder 

' 
costs incurred on the moment the 

walk .!s 1 ends are thus equal to 
I 

We can now state that the difference in expected backorder costs incurred 

during .!s 1 and .!o 1 having i as initial state are given by 
' ' 

(3.10) { 
(3,8) + 

(3.8) + 

(3,9) - (3.6) 

(3.9) 

for i > 0 

for i ~ 0 
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The costs associated with the intervention Sat the start of the walk !!s 1 
' 

having i as initial state are equal to 

(3.11) 

SW111Darizing the foregoing we see that 

(3.12) k(i;S) = (3.11) + (3.7) + (3.10) 

Using (2.17), (2.28), (2.29) and (2.38) we find that 

(3.13) k(i;S) 

and 

(3.14) 

S k-1 
= ¢(S-i) + l {(c1+c3) l a.(t) Et, .. + 

k=i+l j=O J -A-J 

k-1 
+ c3 (t-E!k) + c2 (1 - l aj(t))} + 

j=O 

00 

+ (c2+c3,)(A l np (E!g-Et.) + S - i) 
n=l n -i 

k(i;S) = ¢(S-i) - ¢(S) + k(O,S) 

for i ~ s. 

for i ~ s. 

for i < o. 

Consider next the walks .!o 2 and !'.g 2 having i ~ s as initial state. 
' ' The duration of the walk .!o, 2 is zero because state iE.'!A0 , 2 The expected 

duration of the walk !!s 2 is equal to E!s-s' hence 
' 

(3.15) t(i;S) = Et -s-s for i ~ s. 

3.2.3. The average costs per unit of time for the (S,s)-strategy. 

The Markov-chain {I , n.?.. l} of future interventionstates has only one 
-n -

simple ergodic set, because state Scan be reached from every other state 

Hence the criterionfunction r(z;i) is constant, say r(s,S), on the set of 

all states. In other words the average costs per unit of time are with 

probability one equal to r(s,S) irrespective of the initial state of the 

system. The unknown r(s,S) satisfies the following system of linear 

equations in r(s,S) and c(z;i) (c.f. (1.13), (1.14) and (1.16}): 

(3.16) for i < s 
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(3 .17) for s < i ~ S, 

where ! 1 is the first future interventionstate assumed by the system when 

the initial state is i and strategy z = (S,s) is applied. Denote by l* the 

first future interventionstate given initial state S. The interventionstates 

are the states i, i ,:;;, s. In each interventionstate the same intervention 

d ::::: S is taken, by which the system is transferred i.nto state S. Hence the 

probability distribution of the first future interventionstate given the 

initial state i,;;, sis equal to the probability distribution of I*, 'This 

observation and the relations (3.16) and (3.17) imply that 

(3 .18) 

Hence 

r(s,S) -
Ek(_!_* ;S) 

Et(_!_* ;S) 

It only remains to determine the probability distribution of I*, This pro­

bability distribution can be found in section 2.2 of chapter 2. From 

definition (2.25) it follows that 

(3.20) for j ~ s. 

Hence (c.f. (3.15)} 

(3.21) 

Notes 

a) If we choose the set A0 2 equal to {i I i ~ O} we obtain for Et(l*;S) 
' the expression _l f 8 _/S-s)(E_!-S-E_!j). From (3.19) and (3,21) it follows 

J,;;,S that 

Et = -s-s 1 £8 .{S-s)(Et8.-EtJ, 
l - J -· -J 

j~s 
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as can also be verified by using the theorem of total expectation, 

b) If for some m we have p. = 0 for i > m and thus fs . (S-s) = 0 for 
l. -J 

j,;, S-m the summation in (3.21) is a finite one. Furthermore the summation 

can be reduced to a finite one, when the ordering costs satisfy 

(3.23) ¢(k) =ck+ Ko(k) fork,;,, O, 

where 6(k) = l fork> O and o(O) = 0, Because excess demand is backordered 

we may assume that c = O. The expected average costs per unit of time are 
co 

then only reduced with an amount c;\ l np (== c times the expected demand 
n=l •fl 

per unit of time) and this term does not depend on the strategy considered. 

If ¢(k) = K6(k) it follows from (3.13) and (3.14) that k(i;S) = k(j;S) for 

i,j ,;,O. In that case the summation j_n (3.21) can be reduced to a finite 

one. 

c) An iterationprocedure can be given which exploits the simple properties 

of an (S,s)-strategy and converges in most cases to such a strategy. We 

J,ha:u indicate briefly in which way an J.terationprocedur'e can be drawn up. 

Suppose a lower bound L,;,, 0 for the optimal sand an upper bound U for the 

optimal S are given, i.e. s ~ L and S ~ U. The state space is defined as 

follows, It consists of the points i, i integer and i,;, U and the points 

(i,S), i and S integers, i ,;, S and S == L+l,,,. ,U. Both the state i. and the 

state (i,S) correspond to the situation that the economic stock is i, Next 

the feasible decisions are defined. Both in state i and state (i,S) the 

null-decision (do not order) transfers the system into the present state 

itself, The intervention d > i in state i (order d-i units) transfers the 

system into state (d,d); for state i the intervention d,has to satisfy 

L+l ,;, d ~ U, The intervention d = S in state (i ,S), j_ < S (order S-i uni ts) 

transfers the system into state (S,S), The intervention d =Sis the only 

feasible intervention in state (i,S), The decisionmaker has always to inter-

vene in the states i ~ L and the states (i i ,;, L, The sets 1 and 
' 

,2 
are chosen equal to the set which consists of the states i ~ 0 and 

the states (i,S), i ,;,O S = L+l,,oo,U. For each strategy zez we have that 

the states {i,S), i ~ S and S f.ixed, constitute a simple ergodic set. By 

adding to (1.13) and (1.14) the conditions c(z;(S S)) ~ 0 for S = L+l, ••• ,U 
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(c.f. (1.18)) the resulting system of lineair equations becomes very simple. 

The unknowns r(z;x) and c(z;x) can be computed without solving any equation, 

they can be computed one by one. Since we have punt c(z;(S,S)) == O the ex­

pressions for the functions r(d.z;x) and c(d.z;x) become also very simple. 

The set A2 can be determined in the same way it is done in chapter 2 (since 

for each S the set {(i,S) I i ::_ S} constitutes a simple ergodic set and it 

can be shown that r(2;i) ~ r(2;j) for 

determination of A! only the function 

i < j , i , j E. A we need for the 
zl 

c(2;x), xe:A ). 
zl 

3.2.4. The (Q,s)-strategy for the backorder case. 

Assume that 

i.e. the units are demanded one at a time. The (S,s)-strategy is now called 

an (Q,s)-strategy, i.e. when the economic inventory becomes s (there is no 

overshoot of the reorder points!) an order of the size Q = S-s is placed. 

It is easily shown that an (Q,s)-strategy is optimal. We now have 

fork== 0,1, ••• 

k 
::::: -

\ 
fork== 0,1, ••• 

and 

f (S-s) == { l 
S-i O 

for i::::: s 

for i < s, 

From (3.13) ru:1.d (3.21) it is now easily derived that the expected average 

costs per unit of time for the (Q,s)-strategy are equal to 

(3.28) ~ k(s;s+Q) "' 
r(s,Q; "'t(s;s+Q) 

s±Q k 
Z: I 

k=s+l j::::0 
(k-j)a .(d + 

J 
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where 

(3.29) for k ~ O. 

The optimal Q* ands* satisfy the inequalities 

(3.30) 

We note that these inequalities can also be deduced from the relation 

r(s,Q) = k(s;s+Q)/t(s;s+Q)and the steps 2) and 3) from the on pages 9 and 

10 described iterationprocedure. 

Using wellknown properties of the Poisson probabilities we find after some 

calculations that the optimal Q* ands* satisfy 

(3.31) 

and 

where 

(3.33) v1 (s,Q) = Q(Q=l) [ AQcj)(Q-1) - A(Q-l)cj)(Q) + 

(c1+c3) 
+ {>i.c2s - 2 (s(s+l) - Q(Q-1))} P(s+Q,A,) + 

2 + {(c1+c3 )>i.,s - A ,c2 }{P(s+Q-1,A,) - P(s,>i.,)} + 

(A,)2 
- - 2- (c1+c3) {P(s+Q-2,AT) - P(s-1,>i.,)} + 

(cl +c3) 
+ { 2 · s(s+l) - >i.c2s} P(s+l,h)] 

and 
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A nW11.erical procedure for finding Q* ands* is as follows. Take an initial 

estimate for Q*, say Q1 (if ~(k) ==ck+ Ko(k), take Q1 = V2KA/c1), Then use 

Q1 in (3.32) to compute the integer s1 which satisfies (3.32). The s1 so 

obtained is used in (3.31) to compute Q2 • The Q2 is used to compute s 2 , etc. 

Continue until there is no change in Q ands. It is theoretical possible 

that we find a relative minimum Which is not the absolute minimum. ~e 

note that a similiar nW11.erical procedure can be deduced from the on pages 

9 and 10 described iterationmethod, 

The formula (3.28) can be found in a different but equivalent form in 

HADLEY and WHITIN [4, page 187] • In [4] the expected average costs per unit 

of time are determined by computing the steady state probabilities for the 

economic inventory and the on hand inventory. Using wellknown properties of 

the Poisson probabilities formula (3,28) can be rewrited to 

(3.35) 

where 

(3.36) 

and 

A Q+l A r{s,Q) = Q ~(Q) + c1 (2 + s - At)+ c2 Q (a(s) - a(s+Q)) + 

(cl+c3) 
Q (S(s) - S(s+Q)) , + 

OQ 

a(k) = l P(k,At) = AtP(k,At) - kP(k+l,At) 
j==k+l 

S(k) == 
oo (At)2 l (u-k-l)P(k,At) = - 2- P(k-1,At) + 

u==k+l 

- AtkP(k,At) + k(:+l) P(k+l,At) 

It is noted in [4, page 1saj that in problems of practical interest it is 
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usually a very good approximation to neglect the terms a(s-14;!) and B(s-14;!) 

in (3.35). These terms are important only if there is a significant prcibab­

ility that the lead time demand exceeds s-14;!. When a(s-14;!) and S(s-14;!) are 

neglected a considerable simplification of r(s,Q) occurs and simple in­

equalities satisfied by Q* ands* can be given [j, page 189 and 190], When 

qi(k) = ck + Ko(k) we have approximately for the optimal Q*, 

3,3 The (Q,s)-strategy (Q b s) for the lost sales case. 

Consider again a situation in which a Poisson process generates the 

times between demands, units are demanded one at a time and the mean rate 

of demand is A units per unit of time, Demands occurring when the system is 

out of stock are lost, The cost of each lost sale is a constant c2 • The 

costs of carrying a unit in inventory are directly proportional to the 

length of time for which the unit remains in inventory, The constant of 

proportionality is c1 , At each point of time an order can be placed, How­

ever it is stipulated that there is never more than a single order out­

staruUng. The total cost of placing an order for k units is <j)(k), The 

procurement lead time is a random variable T with finite expectation. Let 

F{T) be the distribution fuRction of the lead time, The operating doctrine 

for the system is a (Q,s)-strategy (Q ~ s), Le. if the on hand i.nventory 

reaches the reorder levels, a quantity Q ~sis ordered, 

The expected average costs per unit of time for the (Q,s)-strategy 

(Q ~ s) will now be derived by using Markov-programming, Suppose Q ands 

fixed, Q ~ s, 

We take as state space 

X = {i IO ,:;,i ~s-+Q}u{(i,t) IO ,:;,i .;,s, t ~O} 

The state i corresponds to the situation that the on hand inventory is i 

and no order is outstanding, The state (i,t) corresponds to the situation 

that the on hand inventory is i and since t units of time an order of Q 

units is outstanding, Next the natural process is described, The natural 
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process has i as initial state the system remains in state i until the 

first future demand occurs. By that demand the system is transferred into 

state max(i-1,0). If the natural process has (i, t 0) as ini ti.al state then 

the system runs next through the states (max[i-~(t-t0 );0] ,t), t > t 0 until 

the moment the outstanding order arrives. On that moment the system assumes 

state i* + Q, where!* is the on hand inventory just before the arrival of 

the order (~(t) is the cumulative demand in an interval of the length t). 

Each intervention will be :represented by the size of the order placed. 

In the states i, 0 ~ i,:;, s we take the intervention d ::::Q as the only feasi­

ble decision and for the other states the null-decision is the only feasible 

decision. Therefore the class Z of stationary strategies consists of the 

{Q,s)-strategy only. Obviously we have that (c,f, (1,1)) 

(3.40) 

For the determination of the k- and t-functions we choose 

(3,41) 

and 

A0 2 "' { i I o ;;, i ~ s } 

' 
Define 

(3,43) fork=0,1,'"'' 

Le, ak is the probability that the lead time demand is k, It is easily 

verified that (c.L (L3), (1,4) and (2,11)) 
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and 

t(s ;Q) = 

Using the fact that E,!k = k/A and 

(3.44) and (3,45), 

(3.46) 

and 

(3.47) 

k(s;Q) cj)(Q) 
cl 

:::: +-
A 

clQ 
+ (- + c2) 

A 

Q 1 
t(s;Q),, I+ X 

l kak = AE, we can simplify the formulas 
1 

<½ Q(Q+l) + s - llE_,!) + 

00 

I (k-s) 
k==s 

The Markov-chain {I , n _::_ 1} of future interventionstates associated -n -
with strategy z = (Q,s) has only one simple ergodic set, because states 

can be reached from every other state, We have even that states :i.s the 

only interventionstate assumed in the decision process cons:i.dered, because 

Q,;;;. sand the units are demanded one at a time. Hence the criterionfunction 

r(z;x) is constant, say r(s,Q), on the set of all states. If the initial 

state :i.s s, the first future interventionstate is s again, thus (c,L (1.14)) 

Hence 

{3.49) r(s 

c(z;s):::: k(s;Q) - r(s 

Q 1 
y+-x-

t(s;Q) + c(z;sL 

Define a cycle as the period of time between two successive orderings, 

lt can be easily verified that t(s is the expected length of a cycle 



ami that k(s ;Q) is the expectation of the costs incurred during a cycle, 

Hence we have the wellknown formula (c.f. (3,49)) 

r(s Q) = expected costs incurred during a cycle 
' expected length of a cycle 
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With the aid of relation (3,50) the expected average costs per unit of time 

are determined in [4, page 200] • 

The optimal Q* and s* have to satisfy the inequalities r(s*_:tl ,Q*) ;:;, 

. From these inequalities it follows 

(3,51) 

and 

From (3,51} and (3.52) the optimal Q* ands* can be iteratively computed. 

Finally we note that from (2.30) it easily follows that the expected length 

of time out of stock per cycle is 

s-1 "' 
,· (sXj) s 1 ,;-
l a . - I + ET "' -:;: l 

j:::O .J k=s 
(k-s) 

If the expected length of time out of stock per cycle is a very small 

fraction of the total length of the cycle, the probability distribution of 

the lead time demand can be approximated by the distributionfunctio:n H(x) 

with density h(x) and if qi{k) =ck-.- K6(k), the optimal Q* ands* satisfy 

approximately [i, page 169 and 200] 

(3.54) 

(3.55) 
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(3,.56) n(x) = J00
th(t)dt - xH(x). 

:11'. 

The equations (3.54) Wld (3,55) can be iteratively solved. 
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4. The automobile replacement problem. 

4.1 Introduction. 

This problem was used as an example by Howard in [5 J. Here the 

solution by our method will be discussed. The problem is to find the 

optimal replacement strategy for a particular type of car, which is replaced 

by a specimen of the same type. The lifetimes of the new cars are mutually 

independent random variables with common distribution function F(y). The 

following costfunctions of the age x are given: 

a) the price : p(x), 

b) the trade-in value : q(x), 

c) the operating costs per time unit : e(x). 

In section 4.2 the strategy-independent notions like the state space, 

the natural process, the set of feasible decisions and the set A0 are 

discussed. In the same section expressions for the functions k(x;d) and 

t(x;d) are derived. In sections 4.3 the iterative approach to the optimal 

strategy will be discussed. Finally in section 4.4 a numerical example 

will be given. 

4.2 The strategy-independent notions. 

The state of the system will be the age x of the car. Let L denote the 

age of the car at which the trade-in value equals its scrapvalue. Then for 

the state into which the system is transferred immediately after a break­

down also state L can be taken. The state space X will be defined as 

follows: 

(4.1) 

Du.ring the natural process with initial state x0 e:. X either the car 

breaks down somewhere in the interval x < x <Lat which a transition 
0- -

to state L takes place or all states in the interval x0 .:::_ x .:::_Lare 

successively taken on. As soon as state Lis taken on, the natural process 

remains in that state forever. 



54 

Decisions in this problem lead to deterministic transformations. Hence 

a decision may be denoted by the state into which the system is transformed 

by that decision. Further the decision to replace a car by a car of the 

same age is considered to be infeasible. The null-decision in state xis 

denoted by d = x. The set of feasible decisions in state xis denoted by 

D(x) and is given by 

(4.2) D(x) = { d I O .s._ d < L }. 

From the definitions of the problem it follows that each strategy 

will dictate an intervention in state L. Consequently the set A0 is given 

by: 

(4.3) 

In this problem we take: 

(4.4) 

and consequently we have: 

(4.5) 
2 

(4.6) 

To abbreviate the notation the walks corresponding to (4.5) and (4.6) are 

denoted respectively by !!o and !ct· The walk !o with initial state xis 

subjected to the natural process from state x on and ends in state L. 

Du.ring the walk with initial state x the system is transfoa'illed to state 

d by the decision d€ D(x). After this transformation the walk is sub­

jected to the natural process from stated on and ends in state L. 

Let G(y;x) denote the conditional probability that a car of age x has 

a breakdown before age y is reached. G(y;x) is obtained from the distri­

bution function of the lifetime of a new car in the fol lowing way : 



(4.7) G(y;x) = 

F(y) - F(x) 
1 - F(x) 

0 
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y > x, 

For the expected duration t 0 (x) of the walk !!a with initial state x, 

it follows: 

(4.8) 

{4.9) 

L 

t 0 (x) - I (y-x) G(dy;x) + (L-x)(l-G(L;x)) 

X 

for O < x < L, 

The expected costs k0 (x) incurred during the !o - walk consist of the 

expected operating costs until state Lis taken on and are given by: 

(4.10) 

{4.11) 

L 

k0 (x) I 
X 

k (L) = 0. 
0 

G(dy;x) 

y L 

I e(u)du + (1-G(L;x)) J e{u)du 

X X 

for 0 .:_ X .:_ L, 

Because the replacement does not take time we have for t 1 (x;d), the 

expected duration of the walk !ct with initial state x and d t- x: 

(4.12) 

'fhe expected costs 

for O,::.. x,::.. L 

and O < d < L. 

(x;d) of thew - walk with initial state x 
-d 

consist of the costs of replacement of a car of age x by a specimen of 

aged and the expected operating costs from stated on until the walk ends 

in state L. Hence we have ford f. x: 

(4,13) for o < x .::_. L. 

and O ,::_ d < L 
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For the functions k(x;d) and t(x;d) we obtain according to (L3) and 

(1.4) :respectively: 

(4.14) k(x;d) 

(4.15) 

for O .::_ x .::_ L, 0 < d < L and d f x. :For d 

are identical to zero. 

x (null-decision) both functions 

4.3 The iterative approach to the optimal strategy. 

The possibility of strategies which subdivide the state space into two 

or more disjoint simple ergodic sets is verified primarily. In spite of 

the initial state x and the applied strategy z, state L will be assumed 

with probability one in a finite time. Hence for each strategy z E::Z the 

associated Markov-process in A2 has only one simple ergodic set. So we 

may write for every strategy .z and feasible decision d: 

(4.16) r(d.z;x) = r(z;x) = r(z), 

The three steps of the iterative approach to the optimal strategy are 

given in chapter 1. The first step is to solve functional equations (1.14) 

and (1.18) for c(z;x). Thereafter the strategy is improved by means of 

step 2 and 3. The specific form the functional equati.ons (L14) and (1.18) 

take on in a particular problem depends strongly on the structure of the 

set of intervention states A2 for a given strategy z. The structure of 

is especially important in problems with a no11-dem.m1erable state space. 

In these problems the functional equation (1.14) does not in general take 

the form of a set of linear equations. To obtain more information about 

the structure of the strategies that emerge from the strategy-improvement 

steps 2 and 3, these steps are discussed primarily. Thereafter the 

functional equations (1.14) and (1.18) are specified for this problem. 

Suppose that the function c(z;x) i.s known for a given strategy z and 

that this strategy is going to be improved. By substitution of (4.14) and 
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(4.15) into (1.23), it follow: 

(4.17) 

+ c(z;d) for O < d < L, d ¢ x. 

Ford= x (null-decision in x) we have: 

(4.18) c(d.z;x) = c(z;x). 

Observe that the right member of (4.17) is a separable function of d and 

x. Denote the part which only depends on d by h(d). 

Let d1 be one of the values of d for which h(d) assumes an absolute 

minimum on the interval O .:_ d .::_L. Usually the absolute minimum will be 

unique, otherwise each of the corresponding d may be chosen. 

By comparing the numerical values of c(d1 .z;x) obtained from (4.17) 

ford= d1 and c(z;x) for each state x it is decided whether state xis 

an intervention state of strategyz1 or not. To be more specific we have: 

(4.19) 

and 

(4.20) 

Hence strategy z1 subdivides the state space into a finite number of 

intervals of intervention states alternated by intervals of non-inter­

vention states. In all intervention states the same decision~ is 

dictated. 

Next the cutting mechanism (step 3) is applied on the strategy z1 
obtained in step 2. Let A be a closed set of states satisfying: 

{4.21) 

Consider the natural proces with initial state x. Denote the state y €. A 

with the smallest number y > X by a. The first state a taken on in the 

set A by the natural process with initial state xe:..iU1A will be 
zl 
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either state a or state L. Hence we have: 

(4 22) c(A.l;x) = (1-G(a x)) c (l;a) + G(a;x) c (l;L) 

and in agreement with (1.32) we have : 

(4.23) c(A.l;x) = c(l;x) for xe:: A, 

It will be shown now how the intersection A' of the class of all sets A 

obeying the inequality 
I 

(4.24) c(A. I ;x) ::_ c(I ;x) 

is obtained, (cf(l.34)). 

By subtraction of c(l;L) from both sides of (4.22), substitution 

of (4.7) and denoting c(A.l;x) - c(l;L) and c(l;a) - c(l;L) respectively 

by c(A.l;x) and .a) we obtain: 

(4.25) .I; x) 
1-F(a) 
1-F(x) c ;a) 

By subtraction of c(l;L) from both sides of (4.24), substitution of (4.25) 

and multiplying the result with (1-F(x)),,. o the requirement (4.24) for 

X ~ A n A becomes : 
z1 

(4.26) (1-F(a)) ~(l;a) ~ (1-F(x)) c(l;x). 

Denote the important function (1-F(x)) c ;x) by f(x;I). Then (4.23) and 

(4.26) are equivalent to: 

(4.27) for x <!::'.: 

Clearly the behavior of the function f(x;i) on the set x ef. 

whether an arbitrary state u E:: is also contained in A' 2 . 

determines 

A given 
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state u4£ A does not belong to the set A'e if there exists a state al!:: A z1 z z1 

with a> u satisfying (4.27) for x = u. If a state a with this property 

cannot be found then u4!:': A' 2 • 

After application of the cutting mechanism the basic structure of 

the strategy z2 (c.f.(1.37)) is still the same as the strategy z1 . There 

will in the general case be a finite number of intervals in which the 

same decision is dictated, alternated by intervals in which null decisions 

are dictated. 

Consider a strategy z with this structure. Now the :functional equations 

(1.14) and (1.18) will be specified. Denote the decision dictated by z in 

each state x e. A by d and let a denote the state x £. A with the smallest 
z z z z 

number x > d . 
z 

The interval d < 
z-

simple ergodic set of states for 

x .::_az and state L constitute the unique 

strategy z. From the states in this 

simple ergodic set az and Lare the only intervention states. 

For state L we define: 

(4.28) c(z;L) == O. 

For the intervention states a and L we have respectively: 
z 

(4.29) c(z;a) = k(a ;d) - r(z) t(a ;d) + c(z;d) 
z z z z z z 

and 

(4.30) c(z;L) = k(L;d) - r(z) t(L;d) + c(z;d ), 
z z z 

For non-intervention states in the interval d < x < a it follows z- z 
(c.f.(1.16)): 

(4.31) c(z;x) = (1-G(a ;x)) c(z;a) + G(a ;x) c(z;L). 
z z z 

From (4.31) we obtain for x = d : 
z 

(4.32) c(z·d) = (1-G(a ·d )) c(z;a) + G(a ;d) c(z;L). 
' z z' z z z z 
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From the four linear eqm;.tions (4 .28), (4 .29), (4 .30) and (4 ,32) the 

unknowns c(z;d), c(z;a), c(z;L) and r(z) can be solved. For the other 
z z 

ergodic states c(z;x) is obtained from (4.31). 

For transient states x belonging to Az it follows: 

(4.33) c(z;x) :::: k(x;d) - r(z) t(x;dz) + c(z;d L 
~ z 

The values of c(z;x) for transient states x not in Az are obtained from 

relation (4.31) in which az has to be replaced by the intervention state 

y(:.Az with the smallest number y > x. 

The computations needed during one step of the iteration cycle are 

swnmarized as follows: 

1. Solve r(z) and c(z ;x) for x EX and the current strategy z by the rela­

tions (4.28) up to (4.33). 

2. Determine the decision d:::: ct1 for which the function h(d) being the 

part of c(d•z;x), which only depends on d, is minimized. The computa­

tion involved in this step consists of the search for the absolute 

minimum of h(d). 

3. Determine the set A by means of (4,19) and (4.20), The zeros of the 
zl 

function c(ct1 •z;x) - c(z;x) have to be obtained for this purpose. 

4. Determine the set A!. Let the set A! be given by the intervals 
.z z 

a.< x < b., j = l, 2, ... , n. Then a. and b. are obtained in the 
J- -J J J 

followi.ng way. Let the locations of the local minim,, of f (x ;z} on 

x ES A be g:i ven by xi, :i "' 1 , . , , , m with x1 < x2 < •. 
zl 

y 1 be equal to f(x1 ;z), i == 1, ... , m. Then aj = x.i 
j 

< x and let 
m 

where i "' i . is 
J 

the largest :tndex i such that Y:1. 
j 

est x such that f(x;I) z yij for 

and b. 1 is the small­
J-

then j = n and b11 =Land we are finished. 
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4.4 Numerical example 

For numerical illustration Howards data [5] were used. In his example 

the age of a car was discretised in quarters of a year. The maximum age 

considered was L = 10 years. Only decisions could be taken in the states 

x = i6, i = 0, ... , 40 with 6 = 0.25 year. 

The data are presented in table 4.1. -At each age x = i6, i = 0, •.. 

40 the price p(i6) and the trade-in value q(i6) are given, The expec­

ted operating costs in the interval i6 .::_ x < (i+l)6 are given by e(i6) and 

the probability that a breakdown does not occur during this interval is 

given by u(i6) in table 4.1. 

i p(i6) q(i6) e(i6) u(i6) i p(i6) q(i6) e(i6) u(i6) 

0 2000 1600 50 1.000 21 345 240 115 0,925 

l 1840 1460 53 0.999 22 330 225 118 0.919 

2 1680 1340 56 0,998 23 315 210 121 0.910 

3 1560 1230 59 0,997 24 300 200 125 0.900 

4 1300 1050 62 0.996 25 290 190 129 0,890 

5 1220 980 65 0.994 26 280 180 133 0,880 

6 1150 910 68 0.991 27 265 170 137 0,865 

7 1080 840 71 0,988 28 250 160 141 0,850 

8 900 710 75 0.985 29 240 150 145 0.820 

9 840 650 78 0,983 30 230 145 150 0.790 

10 780 600 81 0,980 31 220 140 155 0.760 

11 730 550 84 0,975 32 210 135 160 0,730 

12 600 480 87 0.970 33 200 130 167 0.660 

13 560 430 90 0.965 34 l.90 120 175 0.590 

14 520 390 93 0,960 35 180 115 182 0,510 

15 480 360 96 0.955 36 170 110 190 0,430 

16 440 330 100 0,950 37 160 105 205 0.300 

17 420 310 103 0.945 38 150 95 220 0.200 

18 400 290 106 0,940 39 140 87 235 0.100 

19 380 270 109 0,935 40 130 80 250 0 

20 360 255 113 0,930 

Table 4.1 Automobile replacement data. 
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The price p(i6) and the trade-in value q(i6) in table 4.1 are assumed 

to be the values of the functions p(x) and q(x) in the states x = 16, 

i = O, ... , 40. From the u(i6) in table 4.1 the distribution function of 

the age F(x) can be obtained by means of the recurrence relations: 

F(O) = 0 
(4.35) 

F(i6+6) = 1- (1- F(i6)fo(i6), i = 0, ... , 39, 

From the e(ili) the values of the function k0 (x) in the states x = ill, 

:i - 0, ... , 40 follow directly from the recurrence relations: 

(4 .36) 

and the values of the function t 0 (x) in these states from: 

t (406) ""0 
0 

(4.37) 

The function values in intermediate states were obtained by a third 

degree interpolation polynomial. 

In table 4.2 the results of the iteration are presented. The initial 

strategy z(O) dictates decision di"' 0 only in the state x = L. The stra­

tegy z(4 ) dictates to replace a car of age 6.444 years by a car of 3 

years old. The average costs per year are somewhat smaller than Howards 

results. The interval with null decisions 6.754 < x < 6.792 has no 

theoretical signifj_cance, but :i.s merely due to the numerical :i.naccuracy 

in the values of c(ct1 ,z;x) and c(z caused by interpolation. The :results 

were obtained by a computerprog:ram especially written for this problem, 
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z r(z) dl A 
z 

(0) 
691,19 0 10 z 

(0) 
zl 2.0 [ 4 .237 ;10] 

z(l) 623.83 3.0 [8,007 ;10] 

(1) 
zl 3.0 [o;0.483] [5.177;10] 

z(2) 604.29 3.0 [6. 792 ;10] 

(2) 
zl 3.0 [o ;0.564] [6 .179 ;6. 754] [ 6. 792 ;10] 

z(3) 603.76 3,0 [o;0.536] [6 .444 ;6. 754] [6. 792 ;10] 

(3) 
zl 3.0 [o;o.ao2] [6.444;6,754] [6.792;10] 

z(4) 603.76 3.0 [o;0.551] [6 .444 ;6. 754] [6. 792 ;10] 

Table 4.2 The numerical results of the iteration. 
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5. 'fhe motorist problem. 

5,1, Problemformulation, 

A motorist has decided to effect an accident insurance under the 

following conditions. The insurance runs for one year. The premium for the 

first year amounts EO. If no damages have been claimed during i successive 

years i = 1, 2 or 3 the premium is reduced to Ei, After four years of 

damagefree driving no further premium reduction is granted, so the premium 

remains E3 , The premium is due on the first day of the premium year, The 

own risk arnounts aO• 

The numbe,r of accidents is assumed to be Poisson-distributed with a 

mean of A per year. It is assumed that the damages caused by the accidents 

are mutually independent random variables, which have a collllllOJ/l distribution 

function F(s) with finite mean and variance. Furthermore the damages are 

assumed to be independent of the Poisson-process, which generates the 

accidents. 

The problem of the motorist will be to decide whether to claim a 

damage or not. The solution of the problem will be a strategy that speci­

fies his decisions in every possible situation. This strategy will be opti­

mal if it minimizes the expected average costs per year in the long run. 

In view of the premium reduction, it will be unprofitable to claim 

damages which are not much larger than aO• Once a damage is claimed, it 

will be profitable to claim all damages that exceed aO during the remain­

ing part of the year. Hence his decisions will also depend on the time of 

the year and the premium paid at the beginning of that year. So we dis­

tinguish between four types of year, for each premium one. 

Our task will be to determine for each premium year a function s(t) 

with the following property: If at t:i:me tan accident occurs w:ith damages 

and no damages have been claimed since the last payment of premium, thens 

*) It is no restriction to assume this is Januari 1. 



should be claimed ifs> s(t). The strategy is completely fixed by this 

function. The optimal strategy will be the function s(t) that minimizes 

the (expected) average costs per year in the long run. 
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The solution of this problem by our method will start with the appli­

cation of the strategy-independent notions in section 5.2. 1n this section 

the state space, the natural process, the feasible decisions, the set A0 
and the functions k(x;d) and t(x;d) will be determined. 1n section 5.3 the 

functional equations (1.13) and (1.14) are specified to the situation met 

in this problem, after which the optimal strategy is determined using the 

direct approach given by (1.40), (1,41) and (1.42). Finally in section 5.4 

some numerical results will be given. 

l'h2. The strategy-independent notions. 

1n order to define the state space in this problem the relevant in­

formation at each point of time is censidered. The following information 

will be of interest: 

(1) whether an eventual damage is covered or not; 

(2) whether an accident happens or not; 

(3) the amount of the last paid premium E1 , i = O, 1, 2, 3; 

(4) the date and time of the day considered; 

(5) the extend of the damage; 

(6) whether a damage has been claimed since the last payment of 

premium or not. 

In figure 5.1. the state space is presented. 

At the t-axis we distinguish: 

a) Four points: Ei, i = O, 1, 2, 3. In these states the corresponding 

premium has to be paid; damages are no longer covered by insurance. 

b) Four intervals of one year*> li < t < li + 1, i = 1, 2, 3, 4, The 

t-component of the state runs through li < t < 11 + 1 if and only if 

*> li = 11 12, 13, 14 if i = l, 2, 3 and 4 respectively. 
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the last premium paid was Ei-l' one or more damages have been claimed 

that year and coming damages are still covered by insurance. 

c) Four intervals of one year: 2i :':_ t < 2i + 1, i = 1, 2, 3, 4, The t­

component of the state runs through 2i < t < 2i + 1 if and only if the 

last premium paid was Ei-l' no damages have been claimed up tot 

since the last payment of premium and coming damages are still covered 

by insurance. 

s 

,._ _ _._ __ _.__.....J'----- ➔ 
21 22 23 24 25 t 

u 

Figure 5.1 The state space 

The s-variable is zero unless at least one damage has been claimed 

that year and moreover the coming damages are still covered by insurance. 

In that case the s-component denotes the extend of the last claim. 

The u-variable is zero unless at least one damage has been claimed 

that year and coming damages are still covered by insurance. In that case 

the u-component denotes the time elapsed since the first claim that year, 

Note that the s-component can only be different from zero if 

li < t < li + 1, i = 1, 2, 3, 4, Consequently the state space consists of: 

a) 4 points i = o, 1, 2, 3; 

b) a 3-dimensional subspace (t, s, u) with 11 < t < 15; 

c) a 1-dimensional interval 21 < t < 25, 

Next the natural proces is described, This process can start in each 

state of the state space. In accordance with the premium paid the system 
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run@ through one of the time intervals 21 ::_ t < 2i + 1 i = 1, 2, 3, 4, if 

no damage has been claimed that year. If no accident happens during the 

rest of the year the system is transferred to E1 • Since in the natural 

process no premiums are paid the system will stay there forever. However, 

if at time t' during the year an accident occurs the system is transferred 

to (t'-10,s' ,O) wheres' denotes the damage. Since during the natural 

process irrespective of their extends all da!llages are claimed the system 

will stay in the 3-dimensional part of the state space for the remaining 

part of the year. Then the u-component is increasing with time. The s­

component only changes if a second, third, etc. accident happens. At the 

end of the year the system is transferred to E0 where it stays forever. 

The two feasible decisions in the states E\ i == O, 1, 2, 3 are the 

null-decision and the decision involving the payment of the premium 

'.l'he respective trans:fo:rmations are E1 ·+ E. and E. + (2i+1,0,0), In states 
]. J. 

{t,s,O) an accident has just occured and the decisiorunaker can suppress 

the claim if he wants. In that case the respective transfermation is 

(t,s + (t+10). Note that a claim corresponds with a null-decision, 

This is :i.n accordance with the fact that :i.n the natural process all 

damages are claimed. In the states (t,s,u) with u > 0 only null-decisions 

are feasible, an accident occurs in a state with u > 0 the decision 

not to claim is of course a bad decision and is considered to be in­

feasi.ble for that reason. Also in the states t w:i.th 21 ::_ t < 25 only null­

dec:i.sions are feasible. In figure 5.2 states have been marked with two 

feasible decisions, 

s 

.~ 

I ~ 
--➔ 

E 15 21 22 23 24 25 t 
2 

u 

Figure 5.2 States with more than one feas:i.ble decision 
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From now on only strategies are considered which dictate payment of 

premium in the states Ei, i == ©, 1, 2, 3. By its defini.tion (1, 1) the set 

AO consists of the states in which each strategy dictates an intervention, 

In this problem the states Ei' i ""o, 1, 2, 3 and the states (t,s,u) with 

11 .::. t < 15, s < a 
- 0 

and u = 0 constitute the set because each strategy 

dictates the payment of premium and suppression of the claim if the 

damage does not exceed the own risk. ·So we have: 

(5.1) 

The non-empty subsets 1 and A0 2 of the set are chosen in such 
' ' a way that the most simple expressions for the functions k(x;d) and t(x;d) 

are obtained. Here we choose: 

and consequently for the associated stochastic walks it follows: 

(5,3) 

iu1.d 

To abbreviate the notation we write and respectively, 

Consider the !a-walk having (li+T,s,O) as initial state. During the 

walk :!o the system is subjected to the natural process, In the natural 

process each damage is claimed, The damages at time, is thus claimed 

and the costs min(s,a0) are incurred. For each damage which occurs in the 

natural process we have the expected costs 

00 

s F(ds) + I F(ds) 

The expected nWllber of accidents in a fraction 



equal to A(l-T). Hence the expected costs incurred during the walk .!o 
are given by: 

(5.6) 

The expected duration of the walk .!o is obviously: 

(5.7) 

Since decisions lead to deterministic transitions in this problem 

they will be denoted by the resulting states. 
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During the ~d-walk starting in x = (li+T,s,O) the claim is suppressed 

and the system is transformed to stated= 2i + T, After this transform­

ation the system is subjected to the natural process up to the end of the 

year, At that moment either state E0 is taken on if a second accident 

occurred or state Ei if no seonnd accident occurred. The expected 

duration t 1 (x;d) of the ~d-walk for x = (li+T,s,O) and d = 2i +Tis 

given by: 

(5.8) 

and the expected costs by: 

By (5,6) .•• (5.9) and referring to (1,3) and (1,4) the following 

relations are obtained for the functions k(x;d) and t(x;d) with 

x = (li+T,s,O) and d = 2i + T: 

(5.10) 

(5 .11) t(li+T,s,0;2i+T) = 0, 
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Finally the k- and t-functions for the states E. 1 , i = 1, 2, 3, 4 
1-

are determined. The .!o-walk having Ei-l as initial state ends immediately in 

that state because Ei-l ~ A001 = A0 , 2 • In the natural process no premiums 

are paid. Hence k0 (Ei_1) = t 0 (E1_1) = O. Next we consider the ~d-walk 

having Ei-l as initial state. The payment of premium in state Ei-l trans­

forms the system into state 2i. The ~d-walk is from state 2i on subjected 

to the natural process. At the end of the year the walk ends either in 

state E0 or state Ei. The expected duration of the ~d-walk is thus one 

year, The expected costs of the ~-walk consists of the premium Ei-l and 

the expected costs incurred during the year in the natural process. So 

we obtain 

(5.12) 

(5.13) 

5,3 Determination of the optimal strategy. 

It is easily verified that for all strategies z~Z the Markov-process 

in A has only one simple ergodic set. Consequently for every strategy z z 
and feasible decision d, we have; 

(5,14) r(d.z;x) = r(z;x) = r(z) for all x. 

Hence we need only to consider the functional equations concerning the 

function c(z;x). In order to obtain a unique solution, we put: 

(5,15) 

If an arbitrary strategy z dictates to claim in state x = (t,s,O) 

with 11 ~ t < 15 ands> a0 then the next intervention state is always E0 . 

So we have (c,f, (1,16)): 

(5.16) 
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If it is decided to suppress the claim in state x = (t,s,O) then d = t + 10 

and if future decisions are taken in accordance with strategy z the 

function c(d.z;x) is given by (c.f. (1.23)): 

(5.17) c((t+lO).z;t,s,O) = s - a0 + c(z;t+lO). 

From now on only the optimal strategy z* is considered. Let the 

boundary of Az* be given by the functions= s(t). For z* we have 

(c.f. (1.41)): 

(5.18) c(z*;x) = min c(d.z*;x). 
(!E:D(x) 

Forx = (t,s,O) with 11 .s_ t < 15 and a0 < s .s_ s(t) it will be profit­

able not to claim, sod= z*(x) = t + 10, From (5.15) and (5.18) it 

follows: 

(5.19) 

According to (5.17) c((t+lO).z*;t,sP) is a linear increasing function of 

s, Hence it will be indifferent on the boundary s(t) of Az* to claim or 

not to claim. Fors= s(t) we have consequently: 

(5.20) c((t+lO).z*;t,s(t) ,o) = c(z*;t,s(t) ,0) = 0 

and by (5.17) and (5.20) 

(5.21) c(z*;t,s(t),O) = s(t) - a0 + c(z*;t+lO) = 0, 

From (5.21) it follows: 

(5.22) 

and from (5.17) and (5.22) we obtain: 
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(5.23) c(z*;t,s,O) = s - s(t) for a 0 < s 2-_ s ( t ). 

Fors~ a0 by (5.10) and (5.11) we have (c.f. (1.14)): 

(5.24) c(z*;t,s,O) - c(z*;t+lO) = a0 - s(t). 

Furthermore holds for c(z*;E.), i - 1, 2, 3: 
]. 

(5.25) 

or by (5.22) and (5.25): 

lim 
tt2i+l 

c(z*;t), 

(5.26) c (z* ; E. ) = a -
]. 0 lim 

ttli+l 
s(t). 

Summarizing our results: 

0 for x &:: E0 U{ll < t < 15,s > s(t),u "'O} 

(5.27) lim s(t) 
ttli+l 

a - s(t) 
0 

s - s(t) 

for 

for 

for 

for 

U{ll 

3 
X e:. LJ E., 

i=l 1 

xe:::{11 < t < 

x.z:{11 < t < 

X £{21 < t < 

< t < 15,s > -

15,s :::._ a0 ,u 

15,a0 < s < 

2sL 

From functional equation (1.14) it follows for x ~ 

i = 1, 2, 3, 4: 

0,u > 

= O}' 

s ( t) 'u 

(5.28) c(z* ;2i.) - r(z*) t ;2i) + c(z* ;20. 

By substitution of (5.12) and (5,13) in (5,28) it follows: 

O}, 

= O}, 



(5.29) 

From (5.27) and (5.29) we obtain: 

(5,30) s(li) "' [ 

E0 + Ak(a.0) -

E1_1 + Ak(a0 ) - r(z*) + lim s(t) 
ttli 

Furthermore we have the relation: 

(5.31) lim s(t) = lim s(t), 
tt14 tt15 
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for i "' 1, 

for i "" 2, 3, 4, 

For x = (t,s,O) withs> a0 and t = li + T it follows (c.f. (1.14)): 

(5.32) c(z*;t,s,O) == 

k(t,s,O;t+lO) - r(z*) t(t,s,O;t+lO) + 

00 

+ I c{z*; Ae clT l + 

1i+1-t 

11+1-t -AT s(t+T 1 ) 

I Ae 1. 
dTl 

I -- c(z* t+T 1 ,y + + 

0 0 

li+l-t -AT "' 
+ I Ae 1 d1 1 I c(z*;E0 ) F(cly), 

0 s(t+r 

Substitution of (5,10), (5.11) and (5.27) in (5.32) leads to: 

dz*;t s 

- lim s(t)) + 
ttli+l 



74 

li+l-t 
-AT 

s(t+T 1 ) 

f 
1 d, 1 J (y-s(t+T ) dF(y) + + e 

0 ao 

li+l-t 
-A-+ r + f Ae l d, 1 (a -s(t+T ) dF(y). 

0 
0 0 

After substitution of s = s(t) and (5.29) the differentiation of (5.33) 

with 1·espect to t leads to: 

ds(t) --- :::: dt f 
s(t) 

By partial integration this functional equation can be written in the 

more simple fol'lll: 

(5,35) 
ds(t) 

dt 

sjt) 
- A (1-F(y)) dy. 

Except a translation along the t-axis the boundary s(t) is deter-

mined by (5.35), In other words the boundary of for i ~ 1, 2, 3, 4 

are in the t-direction translated parts of one curve satisfying (5,35). 

'rhe location of each part on this curve has to be determined from the 

relations {5.30) and (5.31). 

Suppose that r(z*) is known, then s(ll) is solved from (5,30), From 

the curve s:::: s(t) we find lim. s (t)' From (5.30} we obtain s(12}, 
tt12 

Similarly we compute lim s (t)' s(13), lim s(t), s(14) an.d lim s(t}, 
t+13 tt14 ttl5 

u r(z*) is not !mown its value is determined by relation (5.31), 

It should be noted that the functional equation (5.35) has an 

analytical solution in the case the damage per accident is exponentially 

distributed, We have then for F(s) = 1 - e-µs: 
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(5.36) ). 

The solution of (5.36) is given by: 

(5.37) 

where the i = 1, 2, 3, 4 are integration constants each corresponding 

to the time intervals li < t < li + 1, i = 1, 2, 3, 4, If the distribution 

of the damage is not exponential we have to solve (5.36) nwnerically in 

most cases, 

5 4 Some numerical results, 

The following numerical data are used: 

E0 "' L6 

1,4 

::::: 1,2 

ES::: Ll 

= 0.4. 

For these data and A= 2 accidents per year five distributions with 

the same expectation were investigated. The type of distribution, its 

expectation and coefficient of variation are given in the following table: 

Nwnber of 'l'ype of distribution Expectation Coefficient 
curve of variati.on 

1 exponential 1 1 

2 gamma 1 1/3 

3 log normal 1 l 

4 log normal 1 1/3 

5 log normal 1 3 

The densityfunctions are sketched in figure 5.3 



f(s) 

1,4 

1,0 

0,6 

0,2 

0 1,0 
E(s) 

2,0 

Figure 5.3. The five used damage distributions 

The corresponding optimal strategies are presented in figure 5.4. 

s 

From these results it can be deduced that for distributions with the same 

mean and variance the optimal strategy are nearly the same. Further, if 

the variance increases the boundary of Az* moves upwards. The results were 

obtained by a computer program especially written for this problem. 
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6. A production problem with a non-denumerable state space 

6.1 Introduction 

The production of a continuous product can be realised on a finite 

number of production levels li, i = 0, 1, ... , N with 10 = 0. The product 

is kept in stock. The storage capacity is limited to a quantity M. 

Orders arrive according to a Poisson-process with a mean of 1c per 

unit of time. The order size y_ is a non-negative random variable with a 

given distribution function F(y) with finite mean and variance. The order 

size is assumed to be independent of the arrival process. Orders are ful­

filled immediately by the avai.lable stock. If the size of an order ex­

ceeds the available stock then the supply is replenished by an emergency 

purchase. 

The production can be controlled by switching over to another product­

ion level. There is no lead time needed to perform a change of production 

level. The following costs are involved in the operation of this system: 

a) production costs cp(i) per unit of time for level 11 , i = O, 1, ... 

.. . , N with c (0); 0. 
p 

b) costs c (i,j) of switching over from level 
q . 

to level 

i, j "'0, ... , N. 

c) costs per unit of product of an emergency purchase. 

d) stockholding costs cs per unit of time per unit of product. 

The decision maker wants to find the production strategy, which minimizes 

the (expected) average costs per unit of time. 

In the following sections it will be demonstrated how the optimal 

strategy is obtained. In section 6.2 the strategy-independent notions such 

as the state space, the natural process, the set of feasible decisions in 

each state and the set A0 are defined. In the same section functional 

equations are derived for the strategy-independent functions k(x;d) and 

t(x;d). Section 6.3 will be devoted to the solution of the functional 

equations for r(z;x) and c(z;x). It will be demonstrated that the solution 

can be obtained by solving a set of N linear equations making use of a 

finite Markov-chain imbedded in the Markov-process in . In section 6 A 
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the computations which are involved in the method of section 6 .3 are 

considered in more detail. In section 6.5 it will be demonstrated how 

the cutting mechanism is applied in this problem. Finally in section 6 .6 

numerical results will be given. 

6.2 The strategy-independent notions 

The state of the system xis specified by two state variables, an 

integer i for the productionlevel and a real variables for the stocklevel. 

The stocklevel is restricted to the interval O :5.. s :5.. M, so that the state 

space is given by 

(6.1) 

The natural process with initial state (O,s) with O < s :5.. M implies 

the arrivals of orders and their supply. It also includes the first emer­

gency purchase, which is done as soon as the initial stocks is exhausted. 

After the first emergency purchase the natural process remains in state 

(0,0) forever. 

During the natural process with initial state (i,s), i > 0, the 

system continues to produce on the fixed productionlevel i. At each point 

of time when the available stock is exhausted by an order an emergency 

purchase is done. The natural process remains in state (i 

soon as this state is taken on. 

forever as 

A decision in this problem leads to a deterministic transformation. 

Hence a decision may be denoted by the state into which the corresponding 

transformation results. If a decision din the state (i,s) is given by 

(j,s') then it follows that the set of feasible decisions in (i,s) is 

given by: 

D(i,s) == {(j,s') J j == 0, 1, ... , N, s' = s}. 

The strategy which supplies the demand only by emergency purchases 

is not considered, which is no restriction if the problem makes sense. 

According to this agreement and the definition of the natural process 

each strategy z E.Z has to dictate both an intervention in state (0,0) as 

in the states (i , i :::: 1, . °', N. The intervention in the states (i,M), 



80 

i = 1, ... N results in a transformation to state (O,M). Hence the set 

A0 is given by (c.f. (1.1)): 

(6.3) 

In problems where no finite maximum stocklevel Mis specified, we 

assume its existence. This is no restriction if the numerical value of 

Mis chosen sufficiently large, so that the optimal strategy for the 

original problem is not excluded. 

In this problem tis not possible to simplify the computation of 

the functions k(x,d) and t(x;d) by the choice of the subsets AO,l and A012 

Hence we choose: 

(6.4) ::::: AO 2 
,1 ' 

and consequently. 

,l ,2 

,l ::::: !!'d,2 

To abbreviate the notation these walks are respectively denoted by and 

Let the duration of a _!!0 -walk with (i,s) as initial state be denoted 

by the random variable (s) and the expected duration by (s). The costs 

incurred during this walk are denoted by k.(s) and their expected value 
-1 

by (s), During the !a-walk the system is only subjected to the natural 

process. If the initial state is (Os), O < s < M then the walk ends in 

state (O,O) ~ A0 , If the initial state is is) i > O, 

the !a-walk ends in state (i,M). 

Next the derivation of the func ional equations for 

::_ s < M then 

(s) and (s) 

will be discussed briefly Consider primarily the case that = O. 

Let .2. denote the time interval elapsed between the start of the walk and 

the arrival of the first order, Let ;y: denote the size of the first order. 

f X exceeds the available stocks> 0 an emergency purchase is done to 

replenish the order and the walk ends thereafter, If ;y: does not exceed 

the available stock then the waik continues from state (O, and from 



then on the duration will be .!o(s-x_). For .!o(s), s > 0 it follows that: 

if I < s 

(6, 7) 

1 
Recalling that ET - A, the following functional equation in the expected 

duration t 0 {s) is obtained: 

for 0 < s < M, 

If state (O,O) is the initial state then the walk ends immediately and 

its expected duration is given by: 

(6 .9) 

The costs incurred during the time interval 1. are the stockholding 

costs which amount cs s 1. · If y exceeds the ava:i lab le stock s then the 

costs s-_;r) of the necessary emergency purchase have to be added and 

if I does not exceed 

For {s) follows: 

then the costs .!o(s-y) are incurred in addition, 

ifx_<s 

(6.10) 

For the expected costs k 0 (s) the following functional equation is 

obtained: 

HL11) = css + c J00 
(y-s)F(dy) + Is k (s-y) 

A r s O 0 
for O<s<M, 

If state (0,0) is the initial state then it follows: 

(6,12) 
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If in the initial state the system is producing on productionlevel i > O 

then the stocklevel :increases linearly between the arrivals of orders, If 

the ini tia 1 state is (i ,M) E. then the walk ends immediately so we have: 
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(6,13) t. (M) "' 0 for i - 1, • ~ ~ f N 
l. 

(6.14) k. (M) 
l. 

== 0 for i -~ .. 1, ~ " ~ J N. 

The duration t.(s) follows from: 
-1 

if T 

(6.15) 

l + t.(s + l,T - z) 
-1 1-

From (6,15) the following functional equation is obtained for the expected 

duration t.(s): 
l. 

(6.16) t.(s) "' 
l. 

Joo -AT f(M-s)/1. -AT 
Ae dT + 1 T Ae dT + 

(M-s)/1. 0 

+ t. (0) 
l 

l. 

F(dy) + 

f(M-s)/1. A Js+liT 
+ l Ae- TdT t. (s+l. T-y)F(dy) 

0 0 l l 

for O ~ s < M and l ~ i .':. N, 

By differenti.ation with respect to s this functionar equation can be 

written in the form: 

dt. (s) 
l. 

ds 
A :::: 1 t. (s) 
i l 

1 
1. 

l 

A 
t 1.(0)(1 - F(s)) + 

1. 
l. 

for O < s < M 

and 1 < i < N, 



In a similar way the following functional equation is obtained in ki(s): 

(6.18) 

J.. fs ki(s - y)F(dy) + 
1i 0 

AC foo 
- _..!: (y - s)F(dy) 

1i s 

A 
1 k.(0)(1 - F(s)) + 

i l 

for O .::._ s < M 

and l .::._ i .::_ N. 
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From the functional equations (6.8), (6.11), (6.17) and (6.18) 

together with the conditions (6,9), (6.12), (6.13) and (6.14) the expected 

duration and the expected costs associated with the .!o-walk with initial 

state ( i, s) E:. X are obtained. 

During the ~d-walk with (i,s) as initial state the decision 

(j,s) 115.D(i,s) is taken. After the transformation to state (j,s) the walk 

is subjected to the natural process with (j,s) as initial state. The 

transformation does not take time and its costs amount c (i,j). From the 
q 

relations (1,3) and (1.4) it follows: 

(6 .19) 

(6.20) 

for each state (i,s)<1oX and feasible decision (j,s)E.D(i,s) with j ;I, :L 

For i = j the functions k(i,s;j,s) and t(i,s;j,s) are identical to zero. 

6,3 The solution of the functional equations for c(z;x) 

For a given strategy z the functions r(z;x) and c(z;x) are obtained 

from the relations (1.13), (1.14), (1.16) and (1.18). Primarily the possi­

bility of two or more simple ergodic sets of states is investigated. If 

the distribution function F(y) is continuous almost everywhere and F(M) < l 

then two arbitrary states (i,s1) and (i,s2) on the same production level 

cannot belong to two disjunct simple ergodic sets. Some reflection shows 
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that this is also impossible for two arbitrary states 0 1 ,s1 ) and (i2 ,s2 ) 

without violating the definition of the problem. Hence it is allowed to 

put: 

(6.21) 

(6.22) 

r(z;x) = r(d•z;x) = r(z) 

D (x) = D(x) 
z 

for x E.X 

for x E.X. 

In th:i.s problem the optimal strategy is obtained by the iterative 

approach (c.f. chapter 1). The first step is to solve the functi.onal 

equations (1.14) and (1.18) for c(z;x). Thereafter the strategy is im­

proved by means of steps 2 and 3. The specific form the functional 

equations (1.14) and (1.18) take on in a particular problem depends 

strongly on the structure of the set Az. Especially the structure of Az 

is important in problems with a non-denumerable state space because then 

the functional equation (1.14) does not take in general the form of a set 

of linear equations. Because of this observation it is advantageous to 

consider primarily the structure of Az for the strategies that emerge 

from the strategy-improvement steps. 

Suppose that for a given strategy z, the function c(z;x) is obtained 

in a computationally useful form. This may be either in polynomial or in 

tabular form. In the latter case intermediate values can be obtained by 

interpolation. The next step in the iterative approach is then to find for 

each state (i,s) E.X the decision dG.D(i,s) minimizing c(d-z;i,sL For each 

interval of states (i,s) with fixed i and O < s < M there are N+l functions 

c(dk•z;i,s) each corresponding to one feasible decision dk = (k,s), 

k = 0, ... , N. These N+l functions will have a finite number of inter­

sections on the interval O < s < M. Let the locations of these intersec­

tions be denoted by the numbers r., j = 1, ... , m. -1 ordered in increasing 
J 1 

magnitude. Let r0 = 0 and r == M. For each interval between two neigh­
mi 

bouring intersections rj and rj+l one of the N+l functions c(dk•z;i,s) 

will minimize c(d•z;i,s) on the interval r. < s < r. 1 . An intersection 
J J+ 

located in (i,rj) will be called a separation state of z 1 if the decisions 

minimizing c(d•z;i,s) respectively on the adjacent intervals r. < s < rJ. J-1 
and :rj < s < rj+l are not equal. 



85 

Let the separation states be denoted by the numbers sik' i = O, ... , N 

and k = 0, ... , ni with < , siO == 0 ands. = M. Let the production 
1,ni 

level, to which the decision minimizing c(d•z;i,s) on the interval 

< s < 
,k-1 

noted by 

with respect to d € D(i, s) transforms the system, be de­

wi th i = 0, ,o,, N and k == 1, ... , ni. The strategy is 

completely specifi.ed by the numbers s 1k and jik' 'l'o a separation state 

sik which is not a boundary state of A one of the decisions (jik'sill? 
zl 

and (ji ,k+l' is assigned. The decision assi.gned to a separation state 

being also a boundary state of Az is uniquely determined and should be 

the one which is also an interven½ion, 

By step of the iterative approach the strategy z1 is reduced to 

strategy z2 , Some reflection shows that the basic structure of z2 is the 

same as strategy z 1 so we conclude that all strategies generated by the 

strategy-improvement steps have the structure discussed above. 

The method to solve c(z;x) from (1.14) is demonstrated on a strategy 

with only one interval for each production level in which null-decisions 

are dictated. The method used can be extended to the general structure in 

which there are two or more disjoint intervals with null-decisions on some 

production levels, For illustration a strategy with only one interval 

with null-decisions for each production level is presented in figure 6, 1. 

M M M 

T 
s 

1 
_______ Q ---------------- 0 

N-1 i ............,, N 

Figure 6.1 A strateg:<z 
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The set A is indicated in figure 6.1 by the shaded intervals. The 
z 

boundary states of A on production level i' 1 < i < N-1 are denoted by 
z 

a. and For i = 0 the only boundary state is ao and for i N the only 
l. 

boundary state is bN° The separation states SOj' j = 0, " ~ " 1 are only 

indicated on production level i = O. 

For l < i .::_ N-1 there are two disjoint intervals of intervention 

states (i,s) given by O .::_ s .::_ ai and bi.::_ s .::_ M. For i = 0 and i = N the 

only intervals of intervention states are O .::_ s .::_ a0 and bN .::_ s .::_ M 

respectively. From the definition of the problem it follows that if the 

system starts a walk in a non-intervention state then the first future 

intervention state will be located on the same production level. For 

1 < i < N-1 the state _!1 will be either state bi or a state (i in the 

interval O .::_ _g .::_ a1 . For i = 0 the state ..!1. will be located in the inter­

val O .::__g .::_ a0 and for i - N the state _:i:_1 will be identical to bN. Note 

that the intervention states (i ,s) with bi < s .::_ M and 1 < i < N are 

transient states. 

The boundary states bi, i = 1, ... , N play an important role in the 

method developed to solve the functional equation for c(z;x). The finite 

set constituted by these states is denoted by Bz. Note that 

Markov-chain in B is imbedded in the Markov-process in z 

. The 

In the following discussion walks of the system will be considered 

with initial state (i,s) and ending in the first future state in B taken 
thz 

on. Denote the first future state in Bz by b. Suppose that them state 

in the sequence of future intervention states .!.n' n"' 1, 2, ... of the 

Markov-process in Az is identical to b. Let the function ct(z;i s) denote 

the expectation of the sum of the contributions t(i,s;z(i,s}) in the 

initial state (i,s) and t(ln;z ) in the future intervention states 

• In mathematical terms its definition is given by: 

(6.23) ct(z;i,s) 
m-1 

.... t(i,s;z(i,s)) + Erl 
n=l 

t(I ;z(I }) }, 
-n -n 

where E denotes the expectation with respect to the joint probab:i.lity 

distribution of m and , n = 1, ... , m-1 given initial state (i,s) and 



decision z(i,s) dictated by strategy z in state (i,s). The function 

ck(z;i,s) is defined similarly by: 

(6.24) 
m-1 

ck(z;i,s) = k(i,s;z(i,s)) + E{-I 
n=l 

;z 

Consider now the functional equation (1.14) for x = (i,s) E.X: 

(6.25) c(z;i,s) = k(i,s;z(i,s)) - r(z)t(i,s;z(i,s)) + 

By repeated application of (6.25) it follows: 

(6.26) c(z;i,s) = ck(z;i,s) - r(z)ct(z;i,s) + 

+ Ec(z;}!) for (i,s)E.X, 
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where the expectation is taken with respect to the probability distribution 

of R given (i,s) and strategy z. For the states 

particularly: 

, i = 1, ... , N we have 

(6.27) c(z; = ck(z;b.) - r(z)ct(z;b.) + 
1 1 

+ Ec(z 

In accordance with (1.18) we define: 

(6.28) 

If ck(z; ) , ct (z; b.) and the transition probabilities of the Markov-
1 

chain in Bz are known in advance then the N+l mi.knowns, c(z,; for 

i = 1, ... , N and r(z}, can be solved uniquely from the N linear equa­

tions (6.27) and (6.28). 

For the remaining states c(z;i,s) can be obtained from (6,26) if the 

functions ck(z;i,s), ct(z;i,s) and the probability distribution of bare 

known for a given strategy z and each state (i ,s) E. X. Their computation 

will be considered in section 6,4. 

Summarizing the necessary steps to solve the functional equation 

(6.25) for a given strategy z: 
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1. Compute the functions ck(z;i,s), ct(z;i,s) and the probability distri­

bution of b for all (i ,s) E.:lL 

2. Obtain ck(z;b.), ct(z;b.) and the transition probabilities of the 
l 1 

Markov-chain in Bz from the results of step 1. 

3. Solve c(z;b.), i = 1, ... , N and r(z) from (6.27) and (6.28). 
1 

4, Compute c(z;i,s) from (6.26) for the remaining states. 

6 .4 §£me computatl.onal aspects 

In this section the computation of the functions ck(z;i,s), ct(z;i,s) 

and the probability distribution of !?_ for given (i ,s) e.X is discussed. 

Primarily the probability distribution of the first future inter­

venti.on state ,!1 taken on dur:i.ng a walk of the system with initial state 

(i, s) wi 11 be determined. The following probabilities are defined for 

(i's) ('Ii: 

(6.33) P(b ·z·i s):::: P{I = 
i' ' ' -1 

G(v;z; ,s) == P{I = (i .--1 

z;(i,s)} for 1 < i < N 

I z;(i,s)} 

for O < i < N-1 

and O < v < oo, 

In a similar way as done in section 6.2 for the functions {s) and 

(s), functional equations are derived for ;z;i,s) and G(v;.z;i,sL 

For a state (N,s) with O < s < bN, the first future intervention state 

will be bN with probability one, so we have: 

;z;N,s) ""1 

If state (i,s) ~ A is located on production level i ~ 0, then z 
is located in the interval O ~ s ~ a0 , For G(v;z;O,s) the follow:l.ng func-

tional equation can be derived for a0 < s ~ M 

G(v;z;O,s) = 

Js-a 
+ 0 O G(v;z;O,s-y) for O<v 

for v > 



Note that G(v;z;O,s) is in fact a function of two independent variables 

u = s - a0 and v. Both variables u and v do not depend on the stra'tegy, 

hence G(v;z;O,s) can be computed before the iterative part of the method 

is entered. 
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If (i,s) ~ A is located on production level i with 1.:::. i.:::. N-1 then 
z 

_!1 will be either state bi or 

following functional equation 

a. < s < b.: 
1 1 

a state (i,~) with O .::_ ~ .::_ ai. Then the 

follows for P(b. ;z;i,s), 1 < i _< N-1, 
1 -

(b.-s)/1. 

\e dT + -\T Io :i. i 

and for G(v;z;i,s) with 1 < i < N-1 -
(6.38a) G(v;z;i,s) "' 

(b.-s)/1. Io 1 1 -h{ \e F(s + l.T -
1 

(b.-s)/1. 

+ Io 1 1 

(6 .38b) 

and 

a. 
1 

a. < s < b.: 
J. 1 

v) F(s a.)}dT + - + l. T .. 
1 1 

G(v;z;i,s+l.T-y)F(dy) 
1. 

for O .::_ v < a1 

for a. < v < 00 

1. 

+ 

It will ~ow be shown that both probabilities ca!}. be expressed in 

functions, which are independent of the strategy and from which they can 

be obtained quite easily. This fact reduces considerably the amount of 

computation involved in the iterative solution of this problem, 

By differentiation of (6 .37) with respect to s it follows: 
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(6 39) 
dP:b.;:z.;i,s) 

l 

ds 

By integrat.on of (6.36) over ai < s < u and performing the obvious 

integration by parts, (6.39) can be written as follows: 

(6,40) 

1 P(b. ;:z.;i,u-y)(l-F(dy))dy, Ju-a. 

0 l 

Note that (6 AO) can only be solved relative to a mul tiplicati.ve cons tan! 

This constant is chosen in such a way that: 

(6.41) P(b. ;z;b.) ::: 1 
l l. 

for 1 < i .::_N-L 

Let Q.(w) be defined by the unique solution of the functional equation: 
1 

(6 42) Q (w) = 1 + ~l fw Q. (w-y)(l-F(y))dy for O _.::. w < 00 

i i O 1 

Then the soluti.on of (6,40) and (6.41) in terms of the function Q.(w) 
]. 

is as follows: 

(6.43} 

which can be verified by substitution of (6.43) in (6.~0}. 

Note that Qi (w) is independent of the strategy. If ai and bi are 

specified by the strategy then P(b. ;z;i,s) is easily obtained from (6.43). 
1 

It can be shown that the solution of (6.38) can be expressed in 

Q.(w). Then we obtain for G(v;z;i,s): 
l. 



(6,44a) G(v;z;i,s) = 

(6.44b) 

using the condition: 

(6.45) 

{F(b.-ai+v-w) - F(b1-a.-w)}Q.(w)dw 
1 1 1 

G(v;z;i b ) ::::: 0 
i 

for O < v < ai, 

for O < v < 00 

Let the function Hi(v;u) be defined by 

(6.46) H (v;u) = L fu {F(u+v-w) 
i li 0 

F(u-w) }Q. (w)dw 
1 

for O < v < 00 , O .:::._ u < and 1 < i .:::._ N-1, then (6.44) can be written: 

(6 ,47) G(v;z;i,s) = 

for a < v < oo 
i -
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Also the function Hi(u;v) is independent of the strategy and can be 

computed before the iterative part of the method is entered. The probabi­

lity G(v;z;i,s) can be easily obtained from (6.47) if the numerical 

values of ai and bi are specified by the strategy, 

The probability di.,tribution of b for a given state (i,s)€X if 

strategy z is applied will be denoted by· 

P(b.;z;i,s) == P{b == b. I z;i,s} 
J - J 
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Now the computation of the functions ck(z;i,s) and ct(z;i,s) and the 

probabilities P(b.;z;i,s) will be discussed. Note that the following 
J 

relations are true: 

(6.49) lim ct(z;i,s) "' 0 for i == 1, " ~ " } N 
stb. 

1 

(6.50) lim ck(z;i,s) == 0 for i = 1, ~ " " .\l N. 
stl.>i 

Because the computation of ct(z;i,s) is similar to the computation 

of ck(z;i,s), the discussion will be restricted to ck(z;i,s) and 

P(b.;z;i,s). 
J 

For states (N,s) with O .::._ s .::._ bN we have according to (6.50): 

(6. 51) ck(z;N,s) = O. 

For the probability P(b.;z;N,s) it follows for 0 
J 

l for j 

(6.52) ;z;N,s) :::: { 
0 for j 

!Tor intervention states (i ,s) w:.i.th O .::._ s < 

follows according to (6.24): 

.::.. s < b ; 
- N 

"" N 

-· 1, 
$ " • ~ N-1. 

and O < i .:;. N-1 it 

(6.53) ck(z;i,s) = k(i,s;j,s) + ck(z;j 

where (j,s) denotes the intervention dictated by z in state (i,s). Also 

we have for these states: 

(6.54) 

For non-intervention states (i s) with ai < s < b. we have either 
1 

= or ::::: ( i ,_g) with 0 < u < If "' there is no contribu-

tion to the expectation in (6.24), so it follows for ck(z;i,s}: 



(6.55) 

and for P(bj;z;i,s) we obtain for j I,. i 

(6.56) ;z ;i ,s) P(b.;z;i,a.-v)G(dv;z;j_,s) + 
J l. 

'The probability P(b1 ;z;:l.,s) follows straightforwardly from (6.39). 

The computation of ck(z;i,s) can be performed in the order 

i :::: N, N-1, 0 if for each state (i,s) with O .::._ s < the decision 

dictated by z is given by (j,s) with j > i, Primarily (6.53) is used to 

compute ck(z;N-1,s) for O .::._ s .::._ aN-l' 'l.'he right member of (fL53) is 

completely known because of (6.51). 'l.'he computation of ck(z;i,s) proceeds 

further using alternately (6.53) and (6.55} until finally ck(z;O,s) is 

obtained. If the decisions (j,s) in the states (i,s) with O < s <a., 
- - l. 

0 < i < N-1 do not involve the increase of the production level (j > i) 

then the production levels can be rearranged in such an order that the 

same procedure can be used. The computation of P(b ·z·i s) is performed j' ' 1 

in a similar way. 

The functions ck(z;:i,s), ct(z;i,s) and P(b.;z;i,s) were obtained by 
J 

means of numerical integration. Their function values were obtained .in 

states on a grid in the state space. For intermediate states the corres­

ponding functi.on values were obtained by interpolation. 
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6,5 The cutting mechanism 

Let the strategy z1 be obtal.ned in the way described on page 84 and 

let A be a closed set satisfying 

(6.57) 

If the system is subjected to a mixed strategy A.z with initial state (i,s), 

let (i ,x_) be the first state taken on in the set A. Note that (i ,x_) is 

located on the same production level as (i,s), hence the cutting mechanism 

has to be applied to each production level separately. This mechanism will 

be used in order to make "holes" j_n the set A • Such a hole wl.ll be an 
·\ 

open l.nterval and sl.nce j_n practice the functions c(z;j_,s) are piecewise 

continuous only a finite number of holes can be expected. Consequently the 

set is the i.ntersection of A with a finite number of complements of 
zl 

open intervals. These open intervals on a fixed production level will be 

denoted by (a.,b.) with b. 1 <a.< b., j = 1,2, .,. and b0 = O and are 
J J J- - J J 

successl.vely determined in this order. 

To facilitate their construction the mixed strategies 

are introduced, which are defined by 

(6.58) z.(i,s) 
,J 

[ 

null-decision 

z. 1 (i,s) 
J-

if a. < s < b. 
J J 

otherwise 

with z0 (i,s) = z(i,s), From this definition it follows that for each state 

, we have 

for k > j, 

Primarily the construction of the j th open interval will be considered 

for production level i = O. Let the probability distribution of (O,y), the 

first state taken on in the set I with I= {(O during the 

natural process with initial state (i,s)'jE-1, be denoted by G0 (v;I;s) and 

defined by 

(6,60) (v;I;s) = q-v ~ y ~ q I I;O,s}, 



The function c(I.z. 1 ;0,s) is then given by 
J-

(6.60) c(I.z_ 1 ;0,s) = 
J-

+ Jqc(z._1 ;0,q-v)G0 (ctv;I;s) + 
0 J 

Let q1 be the smallest number q satisfying 

(6.61) c(I,z. 1 ;0,s) < c(z. 1 ;0,s) 
J- J-

for q < s < q+o 

where 6 is some positive number. Obviously q 1 also satisfies 

(6.62) 
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where 11 = {(O,y) j O .:::._ y .:::_ ql}. Denoting c(zj-1;0,s) - c(zj_l;O,O) by 

c(2j_1 ;0,s) it follows from (6.60) and (6.62) that q1 can also be obtained 

from the relation 

(6.63) 

Let p1 < M be defined by the largest value of p satisfying 

-
(6.64) c(2j_1 ;o,q1-v)G0 (dv;I1 ;s) .:::_ c(zj_1 ;0,s) 

By means of (6.64) p1 can be determined. If two 

found satisfying (6.63) and (6.64) respectively 

numbers q1 and p1 can be 

then a.= q 1 and b. = 
J J 

Note that it follows from (6 .61) that a. > b. 1 , j = 
J - J-

2,3,.,, , If a pl 

satisfying (6.64) cannot be found then the last hole on productionlevel 

i "' 0 wi 11 be ( a . , I!] . 
J 

Next the construction of the j th hole on production level i > 0 will 

be considered. Consider closed sets I which are the complements of open 
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intervals (q,p) with bj-l .:s._ q < p .:s._ M obeying the inequality 

(6.65) c(I.2. 1 ;i,s) < c(I. 1 ;i,s) r - J-
for q < s < p. 

Let Pi(p;l;s) denote the probability that the first state (i,X) taken on 

in I is the state (i,p) or mathematically 

(6.66) P.(p;I;s) = P{(i,v) = (i,p) J I;i,s} 
l -

for q < s < p. Let G1(v;I;s) denote the probability defined by 

(6.67) G/v;I;s) "'P{(i,y) = (i,y), q-v .:s._ y .:s._ q J I;i,s}. 

These probabilities can be expressed in the functions Q. (w) and H1. (v ;u) in 
l. 

a similar way as P(b. ;z;i,s) and G(v;z;i,s). The results are 
l 

and 

(6.69) 

Q. (s-q) 
(p;I;s) = -"1--­

Qi(p-q) 

G.(v;I;s) = 
1 

for O < v < q 

for q < v < "'· 

By means of (6,68) and (6.69) an inequality equivalent to (6.65) will be 

derived, which is more attracti.ve from a computational point of view. For 

c(I.lj_1 ;i ,s) we have (cf, (1.31}}: 

(6.70) c(I.I_ 1 ;i,s) = 
J-

+ (p;I;s) c(I. 1 ;i,p) + Jq c(I. 1 ;i 
J- 0 J-

+ {1 -

G.(dv;I;s) 
1 



Using (6.68) and (6.69) relation (6.70) can be written 

(6.71) 

By subtraction of c(zj_1 ;i,O) from both sides of (6,71) and denoting 

c(I,z. 1 ;i,s) - c(z. 1 ;i,O) and c(I. 1 ;i,s) - c(z. 1 ;i,O) respectively by 
- J- _J- J- J-
c(I.2. 1 ;i,s) and c(2. 1 ;1,s) we obtain 

J- J-. 

c(LI. 1 ;i,s) -
J-

fq -
- c(l.;i,q-v) H.(dv;s-q) 

0 J 1 

The inequality (6.65) is equivalent to 

(6.73) c(z. 1 ;i,q-v) H.(dv;p-q)} 
.J- ]. 

- fq ~(2. 1 ;i,q-v) H.(dv;s-q) < c(z. 1 ;i,s). o r i - J-

Let the function f.(s,t;I. 1 ) be defined by 
]. J-

(6. 74) f.(s,t;z. 1) 
1 J-. 

Qic!-t) {~<•j-l;i,s) + I: c(lj_l;i,t-v) Hi(dv;s-t)} 

for b < t < s < M j-1 - . 
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For a fixed q let p1 be the largest value of p, q < p .::_ M, satisfying 

(6.75) 

or equivalently 

(6.76) f_(p,q;I. 1 ) < f_(s,q;I 
l. J- - l. 

for q < s < p. 

It will be clear from (6.76) that p1 coincides with the largest value of p 

for which the absolute minimum of fi(p,q;lj_1 ) on the interval q < p ::::_ M 

is assumed. In this way to each q a number p1 = p(q) can be assi.gned. Let 

the closed set I be the complement of an open interval q < s < p(q). Let 
q 

q 1 be the smallest number q satisfying 

(6.77) ;(I .I. 1 ;0,s) < ~(I. 1 ;0,s) 
q J- J-

for q < s < q+o 

where o is a positive number. If the functions in (6.77) are piecewise 

continuous then q 1 is the smallest value of q satisfying 

(6.78) lim ~(I .1. l ;O,s) < lim c(z. l ;O,s) 
s+q q r - s+q r 

From (6.72) it follows because Q(O) = 1 that the lefthand side of (6.78) 

is equal to 

(6,79) 

From (6.74) it follows, because Q(O) = 1 and H(v;O) 

have 

(6.80) 

Hence (6.78) is equivalent to 

(6.81) 

; i (dv;p -q )} 
1 

0 for all v, that we 
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Consequently aj and bj are equal to the numbers q1 and p(q1 ) both satis­

fying (6.81) with p(q1 ) being the largest number p for which (p ;zj_1 ) 

assumes its absolute minimum on q 1 < p ~ M. If no two numbers q1 and 

p 1 = p(q1 ) satisfying these two conditions cannot be found then (aj-l'bj_1 ) 

is the last hole on that production level. 

The physical interpretation of (6.81) is that it is indj_fferent in the 

states (i,a.) and (i,b.) j = 
J J 

1,2, ... to intervene or not to intervene 

according to strategy z. 1 J-
If for some fixed i > 0 the state (i,0)¢:A then 

zl 

fi(p;z) = ~<z;i,p). 

The inequality (6.75) becomes 

(6.82) (s;z) 

and will be the largest value of p for which the absolute minimum of 

(p;z) is attained on the interval O ~ p < M. 

6.6 Numerical results 

this section two numerical examples will be given of the iterative 

approach to the optimal strategy. The results were obtained by a computer 

program especially written for this problem. 

Example 1: 

The following numerical data are given: 

Production levels: l "'(10 , .•. , lN) = (0, 4, 6, 8). 

Production costs: C (0, 8, 12, 16). 
p 

Switching-over costs: 

0 5.5 'L5 9 

2 0 3 5.5 
C -q 

3.5 2 0 3 

4,5 3.5 2 0 



100 

Costs of emergency purchases: 

Stockholding costs: 

Maximum stocklevel: 

C 15, 
r 

C = 0.5. 
s 

M 30. 

Mean number of orders per time unit: A = 1. 

Order size distribution: exponential with expectation 4.17. 

The results of the iteration cycle are presented in the tables 6.1 

up to 6.9. The subsequent strategies are denoted by z(n), n = 0, 1, 2. 

The strategies z;n), n = 0, 1, ... are the strategies obtained by minimi­

zing (1.23) with .. z = z(n). The numbers , i = O, ... , 3, k = O, . ,. , ni 

denote the separation states on production level i with siO 0 and 

M. The production level assigned to interval sik-l < s < 

strategy is denoted by the integer jik' 

Table 6.1 

sOk jOk jlk 5 2k 

0 0 0 
3 3 

3 2 l 
0 1 

30 30 30 

(0) 
The initial strategy z 

8 0k jOk 5 1k jlk 5 2k 

0 0 0 
3 3 

3,81 2,80 2.32 
2 2 

4,83 4.16 7.51 
1 1 

24.95 30 29.51 
0 

30 30 

Table 6.2 Strategy 
(O) 

s3k j3k 

0 
3 3 

19 
2 2 

30 

j2k 5 3k j3k 

0 
3 3 

7.58 
2 1 

29.07 
1 0 

30 
0 

by the 



8 0k jOk 5 1k jlk 8 2k j2k 

0 0 0 
3 3 3 

3.81 2.80 2.25 
2 2 2 

4.83 3.77 16.82 
1 1 1 

13.61 30 29.50 
0 0 

30 30 

Table 6 3 
(1) (1) 

Strategy z , r(z ) = 21.362. 

5 0k jOk 5 1k 

0 0 
3 

5.99 4.62 
2 

8.'78 7,57 
1 

14.43 22.24 
0 

30 30 

(1) 
Table 6.4 Strategy z 1_. 

5 0k jOk 8 1k 

0 0 
3 

5.99 4.62 
2 

8,78 6.55 
1 

14.08 26.27 
0 

30 30 

jlk 5 2k j2k 

0 
3 3 

3.98 
2 2 

16.82 
1 1 

21,63 
0 0 

30 

jlk 8 2k j2k 

0 
3 3 

3.82 
2 2 

24.92 
1 0 

30 
0 

(2) (2) 
Table 6,5 Strategy z , r(z ) = 21.218, 
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5 3k j3k 

0 
3 

16.61 
1 

29.06 
0 

30 

5 3k j3k 

0 
3 

16.61 
1 

21.07 
0 

30 

8 3k j3k 

0 
3 

24.15 
0 

30 
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5 0k jOk 5 1k 

0 0 
3 

5,75 4.40 
2 

8.07 6.81 
1 

14.62 24.96 
0 

30 30 

(2) 
Table 6.6 Strategy z1_. 

3 0k jOk 3 1k 

0 0 
3 

5,75 4.40 
2 

8.07 6,80 
1 

14.56 25.62 
0 

30 30 

jlk 5 2k j2k 

0 
3 3 

3.82 
2 2 

14.87 
1 1 

22.93 
0 2 

23.99 
0 

30 

jlk 5 2k j2k 

0 
3 3 

3.78 
2 2 

18,44 
1 1 

22.93 
0 2 

24,62 
0 

30 

Tab le 6 • 7 _s_t_ra_t_e--'g=y_z_< _3 _) '--r_(_z_<_3_) )_==_2_1_._1_53. 

3 3k j3k 

0 
3 

14.14 
1 

21.97 
3 

23.38 
0 

30 

3 3k .i3k 

0 
3 

17,74 
1 

21.97 
3 

23.96 
0 

30 



Table 6.8 

Table 6,9 

SOk jOk slk 

0 0 
3 

6.05 4,63 
2 

8.35 7.01 
1 

14.56 25.32 
0 

30 30 

(3) 
Strategy z 1_. 

sOk jOk slk 

0 0 
3 

6.05 4.63 
2 

8,35 7.00 
1 

14.44 25.47 
0 

30 30 

jlk s2k j2k 

0 
3 3 

3,98 
2 2 

18.14 
1 1 

22.93 
0 2 

24.42 
0 

30 

jlk s2k j2k 

0 
3 3 

3.98 
2 2 

18.29 
1 1 

22.93 
0 2 

24.50 
0 

30 

(4) 
Strategy z 

(4) 
r(z ) = 21,152. 
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s3k j3k 

0 
3 

17.33 
1 

21.97 
3 

23.80 
0 

30 

s3k j3k 

0 
3 

17.54 
1 

21.97 
3 

23.86 
0 

30 

(4) (4) (4) . 
For the strategy z the numbers c(z ;O,O) - c(z ;i,s) for i = O, 1, 

2, 3 ands= 0(3)30, being the values of these states relative to the 

most unfavourable state (0,0) are presented in table 6.10. 
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N 0 1 2 3 

0 0.00 3.50 6.00 9.00 

3 17.88 21.38 23.88 26.88 

6 30.19 34.66 37.66 39.19 

9 41.02 46.52 48.04 47.91 

12 50 .41 55.91 55.56 54.42 

15 57,75 62.81 61.25 59. 71 

18 65.54 67.96 65,96 64.46 

21 72.25 72.13 70.13 68.63 

24 77,89 76.12 74,41 73.39 

27 82.44 80.44 78.94 77.94 

30 85.91 83.91 82,41 81.41 

Table 6.10 
(4) 

The relative values of some states for strategy z 

Example 2,: 

The following numerical data are given: 

Production levels: 

Production costs: 

1 = (10 , ., . , lN) = (O, 4, 5, 6, 7) . 

c = (0, 8, 10, 12, 14). 
p 

Switching-over costs: 

0 5.5 7.5 9 10 

2 0 3 5.5 7.5 

3.5 2 0 3 5.5 

4,5 3.5 2 0 3 

5.25 4,5 3.5 2 0 

C = 15. 
r Costs of emergency purchases: 

C """ 0.5. 
s 

Stock.holding costs: 

Maximum stocklevel: M = 30. 

Mean number of orders per unit time: A= 1. 

Order size distribution: gamma-distribution with 4 degrees of freedom and 

expectation 4.5. 



(n) 
The strategies z n = 0, 1, 2, 3 are presented in the tables 6,11 up 

to 6.14. 

sOk 

0 

4,5 

6.5 

8.5 

10.5 

30 

Table 6.11 

8 0k 

0 

5.50 

6.14 

7.50 

12.88 

30 

Table 6,12 

jOk slk jlk 5 2k 

0 0 
4 4 

3,5 2.5 
3 3 

5.5 4,5 
2 2 

7.5 19.5 
1 l 

20.5 30 
0 0 

30 

(O) 
The initial strategy z 

jOk slk 

0 
4 

3.97 
3 

4.50 
2 

6.05 
1 

25.18 
0 

30 

(1) 
Strategy z 

jlk 8 2k 

0 
4 

3.25 
3 

3.85 
2 

24.47 
1 

30 
0 

j2k s3k j3k 5 4k 
j 

0 0 
4 4 4 

1,5 17.5 
3 3 0 

18.5 30 
2 0 

30 
0 

j2k 5 3k j3k 8 4k j4k 

0 0 
4 4 4 

2.47 23.08 
3 3 0 

23.67 30 
2 0 

30 
0 

105 
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sOk 

0 

6.44 

7,64 

13.04 

30 

Table 6.13 

sok 

0 

6.26 

12.94 

30 

Table 6.14 

jOk slk jlk 5 2k 

0 0 
4 4 

4.65 3.67 
2 2 

6.05 3.94 
1 1 

24.26 19.44 
0 0 

30 20.77 

23.79 

30 

(2) 
Strategy z , r(z(2)) 

jOk slk 

0 
4 

4.81 
1 

6.05 
0 

24.15 

30 

(3) 
Strategy z 

jlk s2k 

0 
4 

3.94 
2 

19.02 
1 

21.43 
0 

23.65 

30 

j2k 5 3k j3k s4 

0 0 
4 4 4 

2.90 17.69 
3 3 1 

18.41 20.68 
2 1 4 

20.55 22.52 
1 3 0 

22,98 30 
2 0 

30 
0 

:::: 19.919. 

j2k s3k j3k s4k j4k 

0 0 
4 4 4 

3.15 17.46 
2 3 1 

18.18 20,68 
1 1 4 

20.55 22.38 
2 3 0 

22.84 30 
0 0 

30 

For the strategy z( 3) the numbers c(z(3);0,0) - c(z( 3) ;i,s) for i == O, 1, 

2, 3 ands= 0(3)30, being the values of these states relative to the 

most unfavourable state (O,O), are presented in table 6,15, 



~ 0 1 2 3 4 

0 

3 

6 

9 

12 

15 

18 

21 

24 

27 

30 

Table 6,15 

0.00 2.50 4.50 7.00 10.00 

22.25 24.76 26,76 29.76 32.26 

36.44 40.20 43.20 45,10 46.44 

48.10 53.60 54.71 55.12 55.08 

57.08 62,58 62.33 61.52 60.66 

64.71 68.81 67.43 65.96 64.82 

71 .53 73,15 71,19 69.65 68.65 

77,38 76.58 74.58 73.25 72.35 

82.23 80.24 78,73 77,73 76.98 

86.09 84,09 82.59 81.59 80.84 

88.94 86,94 85.44 84A4 83.69 

(3) 
The relative values of some states for strategy z 

107 
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