
On the Subject Reduction Property
for Algebraic Type Systems

G. Barthe1 and P-A. Mellies2

1 CWI, PO Box 94079, 1090GB Amsterdam, The Netherlands.
Email: gillesOcwi.nl

2 LFCS, University of Edinburgh, King's Buildings, Edinburgh EH9 3JZ, Scotland.
Email: paulmGdcs.ed.ac.uk

Abstract. Algebraic type sy1tems provide a general framework for the
study of the interaction between typed >.-calculi and typed rewriting sys
tems. A major problem in the development of a general theory for al
gebraic type systems is to prove that typing is preserved under reduction
{Subject Reduction lemma). In this paper, we propose a general technique
to prove Subject Reduction for a large class of algebraic type systems. The
idea is to consider for every (functional} algebraic type system a labelled
1ynta:r: for which Subject Reduction is easy to prove and then prove the
equivalence between the labelled and standard 1ynta:i;e.s whenever the la
belled system is strongly normalising. The equivalence can then be used
to recover confluence, strong normalisation and subject reduction for the
standard synta:i:.

1 Introduction

,\-calculus and term-rewriting are two fundamental computational paradigms.
When combined, they give rise to the class of algebraic-functional languages
[5, 13, 14, 20]. Recently, H. Geuvers and the first author have proposed a gen
eral framework for the classification and study of algebraic-functional languages:
algebraic type systems [11].

Subject Reduction, also known as Type Safeness, states that types are closed
under reduction. It is an important property of a type system: for instance it im
plies that correctness is preserved under evaluation and is needed in most strong
normalisation proofs. Unfortunately, it is unknown whether Subject Reduction
holds for an arbitrary algebraic type system. Indeed, the reduction relation of
algebraic type systems may not be confluent on pseudo-terms [13, 22] and as a
result standard techniques to prove Subject Reduction [6, 19] cannot be used.

The problem. Let ,\S be an algebraic type system. If I' I- M: A and M -+13R
N, then I' I- N : A.

In this paper, we propose a general technique for proving Subject Reduction for
a large class of algebraic type systems -and so provide a partial but useful answer
to the problem. The central idea is to consider a labelled syntax for which Subject
Reduction is easy to establish and then prove that, under suitable conditions,

35

both syntaxes are equivalent. Our work, complemented with a generic proof of
strong normalisation (8, 11, 25]3 , provides a clear and widely applicable meta
theory of algebraic type systems. A particular application of our work is a proof
of strong normalisation of the algebraic A-cube, see [8] for more detail. Another,
perhaps more important, application is to contribute to a better understanding
of the various presentations of type systems. Several presentations are used in
the literature, each of which serves a specific purpose. For example, the labelled
syntax we consider is best suited to give a semantics of type systems[2, 25, 27]
while the standard syntax is best suited for programming and proof-checking.
Our work establishes the equivalence between the two presentations for a large
class of systems.

Contents of the paper In Section 2, we introduce the standard and labelled syn
taxes of algebraic type systems. The Subject Reduction property for the labelled
syntax is proved in Section 3 and the equivalence between the labelled and stan
dard syntaxes is proved in Section 4. In Section 5, we consider an application of
our results. Finally, we conclude in Section 6.

Preliminaries The paper assumes some basic familiarity with pure type systems
-see for example [6, 19]- and term-rewriting -see for example [17, 23]. In order
to fix notation and terminology, we briefly recall some fundamental notions.
Throughout this subsection, we let X denote an arbitrary set and 'R.., S denote
binary relations over X. Elements of X are called objects.

'R...S denotes the composition of 'R.. and S. Moreover, we use the following
notation (below R stands for re:fle.xive, S for symmetric and T for transitive, C
for closure):

Notion
Notation

RC
'R..

TC
n+

RTC
'R.."'

Inverse
'R,t¥1'

Some of the relations will written as -+i, in which case we use an ARS (abstract
rewriting system) notation:

Usual notation
ARS notation

Definition 1 A relation 'R.. is

- locally confluent if 'R,Of> • 'R ~l'R.·

-~ '
-i

--...i

- confluent if the relations !?t and ='R. are equal.
- Church-Rosser on an object a if for every b, c such that b ('Rw)qp a 'R.."' c there

e:z:ists d such that b 'R.."' d ('R.."')t¥1' c.
- strongly normalising on an object a if there is no infinite sequence

ao'Ra1 'Ra2'R.. .••

3 The last two proofs a.re concerned with a different syntax but may be adapted to
that of this paper.

36

_ canonical on an object a if it is Church-Rosser and strongly normalising on
a.

Throughout the pa.per, we will make use of Newman's Lemma.

Lemma 2 (Newman's Lemma) If 'R is locally confluent and strongly nor
malising on a, then 'R, is Church-Rosser on a.

2 Algebraic type systems

2.1 Motivation and background

Algebraic-functional languages combine typed >.-calculi and typed term-rewriting
systems into an unified framework. These languages enhance traditional typed
>.-calculi with a mechanism to define algebraic functions via rewrite rules. One of
the simplest example of algebraic type system is obtained by extending the sim
ply typed >.-calculus with a type of natural numbers nat, the constants 0 : nat,
s : nat -+ nat, + : nat -+ nat -+ nat and the rewrite rules

0 +:z: -+:Z:

:c+O-+:z:

s:c + y-+ s(:c + y)
z + sy-+ s(:z: + y)

Algebraic-functional languages were originally designed as programming lan
guages and built upon non-dependent calculi such as simply typed >.-calculus,
second-order >.-calculus or higher-order >.-calculus [4, 3, 13, 14, 15, 20]. Recently,
variants of algebraic-functional languages built upon systems of dependent types
-typically the Extended Calculus of Constructions [24]- have been used for ef
ficient proof-checking (9, 12, 10, 16]. In this approach, the typed term-rewriting
system R is used in conjunction with a naming (or reflection) principle to decide
efficiently whether two inhabitants of a given type A (typically a model of R)
are related by the equality =A of A. Algebraic type systems with dependent
types were first introduced -independently of the above mentioned application
in [5, 18] for the systems of the algebraic >.-cube and later in their general form
in [11].

Remark In the above summary and throughout the paper, only first-order rewrit
ing is discussed. However, some more complex form of term-rewriting can be
considered. In fact, Jouannaud and Okada's original proposal for algebraic type
systems [20], later followed in [4, 3, 5, 11, 18], is based on higher-order rewrit
ing. Such a format allows for the definition of higher-order functions such as
maplist : (nat -+ nat) -+ list -+ list -where list is the type of lists of natural
numbers:

maplist(f, nil) -+ nil

maplist(f, cons(a, 1)) -+cons(! a, maplist(f, l))

37

The results of this paper apply to algebraic type systems with higher-order
rewriting, the restriction to first-order rewriting being solely motivated by read
ability.

2.2 Algebraic type systems

In this subsection, we define algebraic type systems. The approach we follow is
inspired from [5, 18] and is equivalent to that of [11].

Definition 3 A pre-specification is a 6-tuple >.S = (U, S, F, H, P, D) where

- U is a set of universes, S is a set of sorts and F is a set of function symbols;
- H ~ (U US) x U is a set of axioms s.t. 'Vr E S.3s EU. (r, s) EH.
- P ~ U x U x U is a set of rules;
- D : F --+ S* x S is a declaration function.

For the sake of hygiene, we assume that U, S, Fare pairwise disjoint. Throughout
the rest of this paper, we let V be a fixed set of variables and let <T, r, ... (resp.
f, g, .. •) range over sorts (resp. function symbols). Moreover we define the arity
ar(f) of a function symbol f E F to be the length of the first component of
D(f). K is then defined as the set of function symbols of arity O. To complete
the specification of an ATS, we introduce algebraic reduction.

Definition 4 Let >.S = (U, S, F, H, P, D) be a pre-specification.

- The set L of algebraic terms is given by the abstract syntax:

L = Vlf(L,. . ., L)

where in the last case the number of arguments applied to f is ar(f).
- The set of variables of a term t is denoted by var(t) and is defined as usual.
- Let l: V--+ S. The relation =e~ L x S is defined by the rules

l(x) = r
x =e r

t; :e r, (1 :::; i :Sn) if D(f) = ((ri rn), <r)
f(t1, .. ., tn) =e <T

- A rewrite rule is a pair (l, r) of algebraic terms s.t. If/:. V and var(l) ~ var(r)
and l, r :e r for some l : V--+ S and r E S.

- A rewrite system R is a set of rewrite rules.
- Every rewrite system R may be seen as an unsorted rewrite system and thus

induces a relation --+L(R) on L.
- Define the relation --+ LL(R) by a--+ LL(R) b if a --+ L(R) b and a, b :e r for some

l: V--+ S and r ES.

We can now define the notion of specification.

Definition 5 - An ATS specification is a pair consisting of a pre-specification
,\S = (U, S, F, H, P, D) and a rewrite system R. By abuse of notation, we
write >.S = (U, S, F, H, P, D, R).

38

_ Let PROPERTY l>e a property of relations (e.g. confluent or terminating). A
specification AS = (U, S, F, A, P, D, R) is A-PROPERTY if~ LL(R) is PROP

ERTY.
- A specification AS = (U, S, F, H, P, D, R) is functional if A and P are partial

maps.

For the remaining of the paper, we assume:

Assumption 6 ,\S = (U, S, F, H, P, D, R) is an ATS specification.

2.3 Standard syntax

The set T of pseudo-terms is defined by the abstract syntax:

T = VIUISITTIHV: T.Ti>· v : T.Tlf(T, .. . , T)

where in the last case, the number of arguments applied to f is ar(f). In other
words, we only consider fully applied algebraic terms.

In order to provide a uniform framework to specify and compare the systems
used in the literature, the rules for derivation, in Table 1, are parametrised by a
binary relation '/?, on pseudo-terms. For lack of space, only one deductive system
r is considered here. The definition below makes use of contexts, substitutions
and ,8-reduction. These are defined as usual.

Axiom

Function

Start

Weakening

Product

Application

1-'R. c: /I

r 1-'R. t1 : <11 .. • r 1-'R. t,. : <1 n

r 1-'R. f(t1,. . ., t,.): r
I' 1-'R. A: s

I', z : A 1-'R. z : A
r 1-'R. t : A r 1-'R. B : 8

I', z : B 1-'R. t : A
r 1-'R. A : 81 r, ill : A 1-'R. B : 82

I' 1-'R. II z : A.B : ss
r 1-'R. t : II z : A.B r 1-'R. u : A

I' 1-'R. tu: B[u/z]
Abt t. I',z: A 1-'R. t: B I' 1-'R. (II:t: A.B): 11 s rac ion _.;.-----=,...,..:...-..,.---:.::....l_..:.:.~:.:..=.t_;_;;_

r 1-'R. AZ: A.t: IIz: A.B

Conversion r 1-'R. u : A r h. B : 8

I' 1-'R. u: B

if (c, 8) EH

if DJ= ((<r1 ••. <r.,.), r)

ifz~I',zEV

if z ~ I' and t E S u U u V u K

if A1?.B

Table 1. 7?.-DEDUCTIVE SYSTEM FOR THE STANDARD SYNTAX

Definition 7 - M ~R N if there e:tists a contezt C[.], a rule (l, r) and a
substitution 0 s.t. M = C[O~ and N := C[9r].

39

- -+mi,. = -+fJ U -+R·

- f- f-!m.•• •

One of the main obstacles in developing the meta-theory of algebraic type sys
tems is the non-confluence of -+mill•

Fact 8 ([22, 13]) -+mi .. may not be confluent on pseudo-terms.

Proof The following example is taken from [13]. Consider the term-rewriting
system with one constant 0, one unary functions, a binary function minus and
the rules:

minus(s:i:, :i:) -+R sO

minus(:i:, :i:) -+R 0

Let P be the fixed point of s, i.e. P = (>.:i: : c.s(:c:i:))(A:i: : c.s(z:i:)). We have
P -+fJ sP. Therefore

M-+RO
M -+fJ minus(sP, P) -+ R 1

Hence -+mi,. does not have unique normal forms; a fortiori it is not confluent. •

As observed in [26], the failure of confluence is due to the non left-linearity of
the rules.

2.4 Labelled syntax

The labelled syntax differs from the standard one by having labelled abstractions
and labelled applications. The set Te of labelled pseudo-terms is defined by the
abstract syntax

where in the last case, the number of arguments applied to f is ar(f).
As for the standard syntax, we consider a class of deductive systems indexed

by a binary relation 'R, on (labelled) pseudo-terms. The rules for derivation are
given in Table 2.

Definition 9 A labelled pseudo-term M is legal w.r.t. f-1t if there is a conte:i:t
I' and a pseudo-term A such that I' f-1t M: A. A labelled pseudo-contezt I' is
legal w.r.t. f-7t if there two pseudo-terms M and A such that I' f-1t M : A.

In this paper two main deductive systems will be considered.

Definition 10 - Algebraic reduction -+ R is defined in the same way as for the
standard syntaz;

- Tight {3-reduction -+fJ, is defined as the compatible closure of

app.rr,.:A.B(An .. :A.B:i:.M,N)-+ M[Nf:v]

40

Axiom 1-n_ c : s
if(c,s)EH

r~~=~ r~~=~
r 1-n J(ti, ... , t,.) : r

Function if DJ= ((u1 ... u,.),r)

I' f-1i_ A: s
Start I', x : A f-n_ x : A

if x <f. I', x E V

Weakening
r t-n t : A r 1-;. B : s

I', x : B 1-n_ t : A
if x <f. I' and t E S u U U V U K

Product
r l-1i. A : s1 r, x : A 1-;. B : s2

I' 1-;_ IIx: A.B: s3

r 1-;. t : II x : A.B r f-1i_ u : A
Application I' 1-1i_ appmo:A.B(t,u): B[ujx]

. I',x:Al-T<_t:B I'f--R_(II:t:A.B):s
Abstraction I' 1-1<_ ;.ll:e:A.B :t.t : JI x : A.B

Conversion
r f-1<. u : A r 1-n. B : s

I' f-1i_ u: B
if A'R.B

Table 2. 'R..-DEDUCTIVE SYSTEM FOR THE LABELLED SYNTAX

- Loose (3-reduction -+131 is defined as the compatible closure of

appllz:A'.B' pm::A.B x.M, N)-+ M[N/a:]

- -+mi:i:t

- f-~

The notions of tight reduction and loose reductions are due to T. Altenkirch [2].
Tight ,B-reduction requires the abstraction and application labels to match. In
contrast, loose ,B-reduction does not impose any condition on labels.

Lemma 11 1. -+131 is locally confluent.
2. If >.S is A-confluent, then -+mizt is locally confluent.

Proof By induction on the structure of the terms. 11111

It is unclear whether tight ,B-reduction, which is not left-linear, is confluent.

2.5 Subject Reduction for the standard syntax

Before embarking on technicalities, let us analyze where the standard proof
of subject reduction breaks down. The problem arises when trying to prove
subject reduction for (3-reduction: as noticed in [5, 18], one cannot prove subject
reduction by induction on the length of the derivations. Indeed, the induction
step

I'f->.a::A'.b:IIx:A.B I'f-a:A

I' f- (>.a:: A'.b) a: B[a/x]

41

fails if one wants to prove I' I- b[a/:z:]: B[a/:z:]. If we follow the proof of subject
reduction for pure type systems [6, 19], the induction step should be completed
in four steps:

1. deduce from the generation lemma that I', :z: : A' I- b : B1 for some B' such
that II:z:: A.B !,.,.i:i:t G1 !mizt ... !mio:t C.,. !mizt II:z:: A'.B' (where the Gt's
are legal);

2. use confluence to derive A !mio:t A' and B !mizt B 1 ;

3. apply the conversion rule and substitution to get I' I- b[a/:z:]: B'[a/:z:];
4. apply the conversion rule once more to get I' I- b[a/:z:]: B[a/:z:].

However the induction step cannot be completed -at step 2- because of Fact
8. To circumvent this problem, we follow a different strategy to develop the
meta-theory of I- for functional, A-confluent ATSs. We proceed in three steps:

1. prove subject reduction of --+mizt for a class of deductive systems 1-!k;
2. prove strong normalisation of the labelled syntax using subject reduction;
3. deduce from functionality and strong normalisation

(a) the equivalence between labelled and unlabelled syntaxes
(b) confluence, strong normalisation and subject reduction for the standard

syntax.

The strategy was originally proposed by T. Altenkirch for the Calculus of Con
structions [2] and was later applied to Pure Type Systems in [25). In this paper,
we treat Steps 1 and 3 for Algebraic Type Systems thoroughly. Step 2 is treated
in (25) for Pure Type Systems and in [8] for Algebraic Type Systems.

3 The subject reduction property for the labelled syntax

Definition 12 S has the Subject Reduction Property w.r.t Q {Q-SR} if

I' 1-s t : A and tQu :=;.. I' 1-s u : A

In this section, we prove the Subject Reduction property w.r.t. --+mio:t for a large
class of R.-deductive systems.

The standard proof of subject reduction [6, 19) uses a frontier property: at
each derivation step,

I'1 I- t1 : Ai I'k I- tk : Ak
Lll-u:B

Ll and u can be constructed from the I'i's and the ti 's. Labelled systems do
not fulfill this property because of the Application rule (where B appears in
;x_II:t:A.B :z:.t). To recover this frontier property, we consider a variant 11-'R. of the
labelled syntax, where the Application rule is replaced by:

Application+
I' lf-'R. t: II:z:: A.B I' lf-'R. u: A I' If-"' II:z:: A.B: s

I' lf-'R appflz:A.B (t, u) : B[u/ :z:)

42

Proposition 17 will show that this modification has in general no consequence on
the set of derivable judgements. For now, we prove Subject Reduction for 11-'R.
Some preliminary closure results are needed.

Lemma 13 (Generation lemma) (Ge) if I' 11-'Yt c: E and c EU US, there
ezists s ES such that (c, s) EH and s 'R.."' E;

(G1) if I' 11-"R f(t1 1 ••• ,tn): E with D(f) = ((<11 1 ••• ,<Tn),T), then I' 11-n. ti: <Ti

for i = 1, ... , n and r 'R."' E;
(Gz) if I' 11-"R z: E, then there ezists B such that (z: B) EI' and B 'R."' E;
(Ga pp) any derivation of I' 11-?t appl1z:A.B (M, N) : E contains a derivation of

I' 11-?t M : Ifa : A.B and I' 11-'R. N : A and I' II-?? Ilz : A.B : s for some
universes. Moreover B[N/z]'R.."' E.

{ G 11) any derivation of the judgement I' lf-'R {Ifa : A.B) : E contains deriva
tions of I' ll-'1t A : s1 and I', z : A lf-'R B : s2 for some universes s1, s2.
Moreover there ezists s3 EU such that (s1, s2, sa) E P and s3'R,,"' E.

(G;i.) any derivation of I' 11-'R ;.,17z:A.B w.b : E contains a derivation of I', w :
A lf-'R b: B and I' 11-'R IIw : A.B: s for some universes. Moreover (IIx :
A.B)'R-"' E.

(Gr) any derivation of I', x : A I f-'R M : B contains a derivation of I' 11-n. A : s
for some universes.

Lemma 14 (Substitution lemma) Let I'i, x : A, I'2 be a contezt, let a, b, B
be pseudo-terms. If n is closed under substitution then

I'i, x : A, I'2 ll-'R. b: B} ::;.. I'i, I'2[a/x] lf-'R. b(a/:z:]: B[a/:i:]
I'1 lf-'R. a : A

Lemma 15 (Correctness of Types) {C) Suppose that n is closed under sub
stitution. If I' 11-'R. a : A and A ~ U, then I' 11-'R. A : s for some universe s.

Proof By induction on the structure of the derivation of I' 11-'R a : A. II
The next result gives three general conditions for Subject Reduction to hold. H 1
is needed to apply the above closure lemmas while H 2 and Ha a.re needed to
apply the induction hypothesis via a back-and-forth reasoning.

Theorem 16 (Subject Reduction Theorem) Let 'R be a relation such that

H 1 "R.. is closed under substitution,
Hz if Qi -.mizt Qz then Qi n Qz
Ha if Qi -.mizt Qz then P[Q2/w] n P[Qifw] where P is any labelled pseudo

term.

Assume I' 11-'R. M: A and M -.mizt M 1• Then I' 11-'R. M 1 : A.

Proof See Appendix.

Proposition 17 If "R.. is closed under substitution then for every judgement
(I',M,A):

I' f-!R M : A <=? I' 11-'R. M : A

43

Proof Both implications are proved by induction on the structure of derivations.
The implication (=>) is proved using Correctness of Types. •

Corollary 18 If 'R, verifies the hypotheses H 1 , H2 and H3, then it has the
-+mizt-SR property. In particular, 1-j and 1-: have the -+mizt-SR property.

4 Equivalence results

In this section, we establish under certain conditions an equivalence between

1. (a) labelled deductive systems;
2. (b) 1-: and I-.

Only the most important equivalence results are stated here. There are further,
more general, results which we omit for the lack of space.

4.1 A general equivalence result for labelled deductive systems

Throughout this subsection, Q, 'R and S denote binary relations on labelled
pseudo-terms.

Definition 19 - 'R !;;;; S if for all judgements (I', M, A),

I' I-~ M : A => I' 1-$ M : A

- 'R, ':::! s if 'R !;;;; s !;;;; 'R.
- 'R, < S if for all judgements (I', M, A),

(I' 1-$ M: A and I' 1-$ B: s and A'RB) => I' 1-$ M: B

- 'R, ~ s if 'R, < s < 'R.

Remark that <is not transitive. Working at an abstract level, we show that all
the labelled deductive systems satisfying certain properties are equivalent.

Proposition 20 'R, < S => 'R !;;;; S and 'R ~ S -<::> 'R ~ S.

Proof See Appendix. •
Proposition 21 Assume that S has the Q-SR property and is closed under
substitutions.

Q < S and 'R < S => Q · 'R, < S

'R, < S and Qop < S => 'R, · Qop < S
Q ... < s:::} s ~ Q"'. s. (Qop)"'

Proof See Appendix. •

44

Corollary 22 (Equivalence Lemma) Assume that S has the Q-SR property

and is closed under substitutions.

Proof See Appendix.

Theorem 23 (Equivalence theorem) Let n verify the hypotheses H1 1 H2
and H3. Then lmi:ot~ n. Moreover 'R <lmi:i:t :::} lmi:i:t::::'. 'R.

Proof See Appendix.

4.2 More labelled equivalences

In this subsection, we prove two further equivalence results for the labelled syn
tax. Both results will be used to prove the equivalence between the labelled and
unlabelled syntaxes.

The first result is concerned with showing that under suitable conditions,
l-17l. is equivalent to another, easier to use, deductive system.

Definition 24 Let 'R, be a binary relation. The relation T('R) is defined by

t T('R) u {::::::} (t 'R. u and t and u are legal w.r.t. l-17l.)

We have:

Lemma 25 If'R is closed under substitution and l-11l. has 'R-SR then b.:::::1T(7l).

Proof See Appendix. Ill

We write -+T(mi:i:t) for T(-+mi:i:t)·

Corollary 26 lT(miJl:t):::::lm.i:i:t ·

An interesting point about -+T(m.iJl:t) is that it is confluent when -+Tni:i:t is canon
ical on legal terms of 1-:.

The second result is concerned with an equivalence between 1-t and 1-j. We start
with a preliminary result:

Lemma 27 Assume -+T(m.i:i:t) is confluent. For every judgement I' 1-t M : A

and labelled pseudo-term M',

M -+.,,.izl M' :::} M ~ !,i.,t M'

Proof See Appendix.

Proposition 28 Assume -+T(mi:z>t) is confiuent. Then lTnizt'.:::'.l""i:z>I ·

Proof The direct inclusion lmi:i:t~lm.i:i:! follows from the inclusion lmizt ~ lmizl·
The reverse inclusion lmi:i:1!;;lmi:z:t follows from Equivalence Lemma: Remark
that we need Lemma 27 to show that f-t has the -+m.;.,1-SR property and that
Umi:tl) <-+ < lmizt • Ii

45

4.3 Equivalence between labelled and unlabelled syntaxes

In this section, we establish the main equivalence result between labelled and
unlabelled syntaxes. For the lack of space, we only consider the equivalence
between I- and 1-i.

There is an obvious translation from T. to T which erases labels:

Definition 29 (The translation) The map II ·II : T. -+ T is defined induc
tively as follows:

ll:z:ll=:z:
llsll = s,
11-rll= T,

lllT:z:: A.BI!= .lT:z:: llAll.llBJI,
llJ(tlt" 'I t,.)11 = f(Jlt1ll1 "'I lltnll)1
ll>.11"':A.B:c.Mll = >.:z:: IJAll.llMll,
Jlapp11"':A.B(M, N)JI = llMll llNll·

Erasure preserves typing.

Lemma 30 I' 1-i M: A ~ llI'll 1- llMll: llAIJ

Proof By an easy structural induction on the derivation of I' 1-; M : A. •

The fundamental fact about labels is that, under suitable conditions, every
derivable judgement can be labelled without losing derivability. Throughout this
subsection, we assume:

Assumption 31 >.S is a functional algebraic type system. Moreover -+mi"'t is
canonical on legal terms of 1-:.

We start with some preliminary results.

Proposition 32 (Unicity of types} Assume I' 1-i M: A and I' 1-: M : B.
Then A =T(mi.,t) B.

Proof By induction on the structure of the derivation of I' 1--i M : A. •

Corollary 33 Assume that I' 1-i M: A and Ll 1-i N: B. If I' =T(mi.,t) Ll and

M =T(mi.,t) N, then A =T(mi.,t) B.

Proof By confluence of-+T(mi.,t)1 there exists E and p such that r, Ll ""'*T(mid)
E and M, N ""'*T(mi.,t) P. By Subject Reduction, E 1-i P: A and E 1--i P: B.
By Unicity of Types, A =T(mi.,t) B. •

Next we define for each legal term its canonical form.

Definition 34 (canonical forms) Let M be legal. We define Mean as:

_ :z:can = :z:
_ 8can = 8

_ Tcan = T

46

_ (1Iz: A.B)can = 1I:z:: Acan.Bcan
- (f(t1, ... ,t,.))can =f(tian, ... ,t;an)
_ (>.liz:A.B :z:.M)can = _Al1z:Acan .Bnf :z:.Mcan

_ (appliz:A.B (M, N))can = applI:i::Anf.Bnf (Mean, Ncan)

where A nf denotes the normal form of A w. r. i -+mi:i:t ·

We remark that llMll = JIMcanll· One important property of .can is that it
identifies terms which have equal erasures.

Lemma 35 (Unicity of the canonical translation)

1. for every legal contezts I' and A, l\All = llI'll => Acan = rcan.
2. for every derivations I' 1-i M: C and A 1-: N: D,

(llI'll =II.All)/\ (\IMll = llNJI) =>Mean = Ncan

Proof See Appendix. II

In order to be able to prove the equivalence between I- and 1-f, it is necessary
to show that standard reductions may be lifted to labelled ones. The following
result is also useful to deduce subject reduction and strong normalisation from
labelled subject reduction and strong normalisation.

Lemma 36 Assume I' 1-: M : A.

1. If JIMll -+miz N then there ez~sts N' such that M -fizl N' and llN'll = N.
2. If llMll -!.;., N then there exists N' such that M -mizt N' and llN'JI = N.
9. ~mio: is confluent and strongly normalising on llMll·
4. If I' 1-t' N: B with !IMll lmiz llNI!, then M lmizt N.

Proof See Appendix. II

Collecting the previous results, we get:

Proposition 37 If I' I- M : A is derivable then there ezists a derivable judge
ment I', 1-: M. : A. such that I',, M, and A, are canonical and

llT.11 =I' and llM.11 =Mand llA,ll =A

Proof See Appendix. II

4.4 Aside: deductive systems with one-step conversion rule

Algebraic type systems are often defined with a deductive system using one
step conversion [5, 11, 18]. Unfortunately, it seems unclear how to prove Subject
Reduction or an equivalence result for those systems4 • Yet there is a slightly
bigger deductive system for which Subject Reduction holds.

4 For example, Subject Reduction for algebraic reduction cannot be proved by induc
tion on the structure of derivations. The proof breaks down in the application case
when the reduction takes place in the second argument of the application.

47

Definition 38 -+mizl is the smallest reduction relation on labelled pseudo-terms
such that for every M, N, N' E Te and :z: E FV(M), N -+mizt N' =>
M[N/:z:] -+mizl M[N'/:z:]. The relation lstep is defined as the symmetric clo
sure of mi:z:l.

We have

Corollary 39 lstep has the -+mizt-SR property and lstep ~ !mizt.

Proof The first part follows from Theorem 16; the second part from the first
and Theorem 23. •

5 Application

5.1 The main result

Under suitable conditions, subject reduction for I- can be deduced from subject
reduction of 1-i.

Proposition 40 Let >.S be a functional ATS. Assume -+mizt is canonical on
legal terms ofl-i. Then I- has the Subject Reduction property w.r.t. -+miz· More
over -+miz is canonical on legal terms of I-.

Proof Assume I' I- M : A. By Proposition 37, there exists a derivation r. 1-i
M. : A. with the expected translation property. By Lemma 36, there exists N.
such that M. -mizt N. with l!Nell =: N. By Subject Reduction, r. 1-i N.: A.
and by translation I' I- N : A. The second part of the proposition follows from
Lemma 36. •

5.2 The algebraic .X-cube

As a corollary of Proposition 40, we get strong normalisation of the algebraic
>.-cube.

Corollary 41 A-canonical systems of the algebraic >.-cube are strongly normal
ising.

Proof By Proposition 40, it is enough to prove strong normalisation of -+mfat
on legal terms of 1-i. See [8] for such a proof. •

5.3 Aside: labelled strong normalisation from standard strong
normalisation

It is important to know that the introduction of labels does not complicate the
strong normalisation proofs. This can be made precise by considering an exten
sion of algebraic type systems with the K-combinator [7]. We brie:O.y describe
the extension. At the level of pseudo-terms, a new clause is introduced in the
abstract syntax to define the pseudo-term K ti t2 for every pseudo-terms ti and

48

t 2 • Moreover, a new reduction relation -.1: is introduced; -.1: is defined as the
compatible closure of K :z: y - :z: {hence the name K-combinator) .. At the level
of the deductive system, one can define a K-deductive system I-K with the same
rules as I- and the extra rule

I'f-Ka:A I'l-Kb:B
I'f-KKab:A

and extending the conversion rule into

I'f-Ku:A I'l-KB:sifA!. B
I' I- u : B mu:k

Proposition 42 If f-.1: is strongly normalising w.r.t. -mi:z:k 1 then 1-f is strongly
normalising w.r.t. -mi:z:t·

Proof By defining a reduction-preserving and derivation-preserving translation
f·l from labelled pseudo-terms to pseudo-terms with the K-combinator. The
idea is that r.1 should be defined by

fapplT:.:A.B(M,N)l = K (!Ml INl) rn:z:: A.El
p,rr.::A.B:z:.bl = A:Z:: IAl-Kfbl IBl

The other cases are defined in the obvious way. It is easy to check that this
translation preserves reductions and derivations. 11

6 Conclusion

Proving the equivalence between the various formulations of algebraic or pure
type systems is a vital exercise. It contributes to a better understanding of
type systems and allows to derive results from one formalism to another. The
main technical contribution of this paper is a proof of subject reduction for
functional, A-confluent algebraic type systems which are strongly normalising for
the labelled syntax. Although we have been unable to prove Subject Reduction
for an arbitrary algebraic type system, our result is interesting because it is
based on a simple technique and applies to an important class of algebraic type
systems. Moreover, the technique in itself is interesting as it is very general and
may be used in other type-theoretic frameworks where the reduction relation is
not confluent on pseudo-terms. These include:

- pure and algebraic type systems with 71-reduction (19],
- pure type systems with congruence types [10];
- abstract data type systems [21].

As such, it constitutes the first general technique to prove subject reduction for
-unlabelled- type systems with a non-confluent reduction relation.

49

Acknowledgements

The two authors would like to thank H. Geuvers and R. Pollack for discussions
on (algebraic) type systems. We would also like to thank the anonymous referees
for suggesting many improvements to the paper.

References

1. S. Abramsky, D. Gabbay, and T. Maibaum, editors. Handbook of Logic in Com
puter Science. Oxford Science Publications, 1992.

2. T. Altenkirch. Constructions, inductive types and strong normalisation. PhD the
sis, Laboratory for the Foundations of Computer Science, University of Edinburgh,
1994.

3. F. Barbanera and M. Fernandez. Combining first and higher order rewrite systems
with type assignment systems. In M.Bezem and J.-F. Groote, editors, Proceed
ings of TLCA '93, volume 664 of Lecture Notes in Computer Science, pages 60-74.
Springer-Verlag, 1993.

4. F. Barbanera and M. Fernandez. Modularity of termination and confluence
in combinations of rewrite systems with .A.,. In A. Lingas, R. Karlsson, and
S. Karlsson, editors, Proceedings of ICALP'93, volume 700 of Lecture Notes in
Computer Science, pages 657-668. Springer-Verlag, 1993.

5. F. Barbanera, M. Fernandez, and H. Geuvers. Modularity of strong normalisation
and confluence in the algebraic .A-cube. In Proceeding& of LICS'94, pages 406-415.
IEEE Computer Society Press, 1994.

6. H. Barendregt. Lambda calculi with types. In Abramsky et al. [l], pages 117-309.
Volume 2.

7. G. Barthe. Extensions of pure type systems. In M. Dezani-Ciancaglini and
G. Plotkin, editors, Proceedings of TLCA '95, volume 902 of Lecture Notes in Com
puter Science, pages 16-31. Springer-Verlag, April 1995.

8. G. Barthe. On strong normalisation of algebraic type systems. In preparation,
1997.

9. G. Barthe and H. Elbers. Towards lean proof checking. In J. Calmet and
C. Limongelli, editors, Proceedings of DISC0'96, volume 1128 of Lecture Notes
in Computer Science, pages 61-62. Springer-Verlag, 1996.

10. G. Barthe and H. Geuvers. Congruence types. In H. Kleine Buening, editor, Pro
ceedings of CSL'95, volume 1092 of Lecture Notes in Computer Science, pages
36-51. Springer-Verlag, 1996.

11. G. Barthe and H. Geuvers. Modular properties of algebraic type systems. In
G. Dowek, J. Heering, K. Meinke, and B. Moller, editors, Proceedings of HOA '95,
volume 1074 of Lecture Notes in Computer Science, pages 37-56. Springer-Verlag,
1996.

12. G. Barthe, M. Ruys, and H. Barendregt. A two-level approach towards lean proof
checking. In S. Berardi and M. Coppo, editors, Proceedings of TYPES'95, volume
1158 of Lecture Notes in Computer Science, pages 16-35. Springer-Verlag, 1996.

13. V. Breazu-Tannen. Combining algebra and higher-order types. In Proceedings of
LICS'BB, pages 82-90. IEEE Computer Society Press, 1988.

14. V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic
strong normalisation. Theoretical Computer Science, 83:3-28, 1990.

50

15. V. Brea.zu-Ta.nnen a.nd J. Gallier. Polymorphic rewriting conserves algebraic con

fluence. Information and Computation, 114:1-29, 1994.

16. T. Coquand. Pattern matching in type theory. In B. Nordstrom, ed-

itor, Informal proceedings of LF'92, pa.ges 66-79, 1992. Available from

http://www.dcs.ed.ac. uk/lfcsinfo /research/ types-bra./ proc /index.html.

17. N. Dershowitz a.nd J-P. Joua.nna.ud. Rewrite systems. In J. va.n Leeuwen, ed
itor, Formal models and semantics. Handbook of Theoretical Computer Science,

volume B, pages 243-320. Elsevier, 1990.
18. M. Fernandez. Modeles de calcul multiparadigmes fondes sur la reecriture. PhD

thesis, Universite Paris-Sud Orsa.y, 1993.
19. H. Geuvers. Logics and type systems. PhD thesis, University of Nijmegen, 1993.

20. J .-P. Joua.nna.ud a.nd M. Okada.. Executable higher-order algebraic specification

languages. In Proceedings of LICS'91, pages 350-361. IEEE Computer Society
Press, 1991.

21. J .-P. Jouanna.ud and M. Okada.. Abstract data type systems. Theoretical Com

puter Science, 173(2):349-391, 28 February 1997.

22. J.W. Klop. Combinatory reduction aystem11. Number 127 in Mathematica.I Centre
Tracts. CWI, 1980.

23. J.W. Klop. Term-rewriting systems. In Abramsky et al. [1], pages 1-116. Volume
2.

24. Z. Luo. Computation and Rea8oning: A Type Theory for Computer Science. Num

ber 11 in International Series of Monographs on Computer Science. Oxford Uni
versity Press, 1994.

25. P-A. Mellies and B. Werner. A generic proof of strong normalisation for pure type
systems. Manuscript, 1996.

26. F. Miiller. Confluence of the lambda calculus with left-linear algebraic rewriting.
Information Processing Letters, 41:293-299, 1992.

27. Th. Streicher. Correctnes11 and Completeneu of a Categorical Semantics of the

Calculus of Condructions. PhD thesis, University of Passau, 1989. Appeared as
technical report MIP - 8913.

Appendix: proofs

Proof of Theorem 16 the proof proceeds along the same lines as in [6]. The
following two facts are proved by simultaneous induction on the structure of
derivations:

1. If I' II-~ M: C and M -+mio:t M', then I' II-~ M': C.
2. If I' II-~ M: C and I' -+mio:t I'', then I'' II-~ M: C.

We treat the cases where the last rule is an abstraction an application or a
function rule: '

- abstraction rule: assume M =),llo::A.Bx.t and C:: llx: A.B. 2 follows from

the induction hypothesis. As for 1, the interesting case is when the reduction
occurs in A or in B, i.e. M':: ;>..11o::A'.B:i:.t or M' = ;>..11o::A.B' x.t.

Subcase 1: M' = ;>..l1o::A'.Bx.t. In this case, we use the induction hypothesis

to conclude I', x: A' II-~ t: Band I' II-~ Ilx: A'.B: s. We may then

51

apply the abstraction rule to get I' 11-'R.)..liz:A'.Bx.t: IIx: A'.B. By H 3 ,

we may apply the conversion rule to get I' 11-'R.)..lTz:A' .B x.t : II x : A.B.
Subcase 2: M' =)..liz:A.B' x.t. By induction hypothesis, I' 11-'R II x : A.B' : s.

By Grr, I', x : A 11-'R B' : s1 for a universe s'. We apply the conversion
rule thanks to H 2 to deduce I', x : A 11-'R M : B'. By abstraction,
I' 11-'R. ;..Jiz:A.B' x.M : (!Ix : A.B'). We next apply the conversion rule
thanks to Ha to deduce I' 11-'R.)..IIz:A.B' x.M: (II x : A.B).

- application rule: assume M = app11"':A.B tu and C := B[u/x]. It is easy to
prove 2. As for 1, we treat four subca.ses:

Subcase 1: top reduction: M := appII:z::A.B()..11"''A.Bx.b, u) and M' = b[u/x].
By GA: I', x : A 11-?i b : B. By the Substitution Lemma, I' ll-7i b[u/x] :
B[u/x].

Subcase 2: inside u: M = app11"':A.B (t, u) and M' = app11"':A.B (t, u') with
u -+mizt u'. By induction hypothesis, I' 11-'R u' : A. By construction,
I' 11-'R. (IIx: A.B): s. By application+, I' ll-7i app11"':A.B(t,u'): B(u'/x].
By Gn: I', x: A ll-7i B: s' for some universe s'. By substitution lemma,
I' ll-7i B[u/x] : s' We apply a conversion rule thanks to H 3 to deduce
I' 11-'R. app11"':A.B(t, u'): B[u/x].

Subcase 3: inside B: just like Subcase 2 of the abstraction rule: if M =
app11"':A.B(t, u) and M' = app11"':A.B' (t, u) with B _.mizt B' then by
induction hypothesis on the premise I' ll-7i (IIx : A.B) : s we deduce
I' 11-'R. (II x : A.B') : s. By conversion thanks to H 2 we deduce I' ll-1i t :
(IIx: A.B'). By application+, I' 11-'R. app11"':A.B' (t, u): B'[u/x]. By G11 ,

I', x : A ll-1i B : s' for some universe s'. By substitution lemma, I' 11-'R.
B[u/x]: s'. By conversion and H 3 , I' 11-?t appfl:z::A.B' (t, u): B[u/x].

Subcase 4: inside A: simpler than the preceding case because A does not
appear in the type of appII:i::A.B (t, u).

-function rule: if M = f(ti, ... ,t,.) with D(f) = ((cr1, ... ,crn),r), then A=
r. The only interesting case here is when M is a redex, i.e. when M =
f (t 1, ... , t,.) is matched to a rewrite rule l __... r (of sort T) by some substitu
tion e. So let M := ez and M' :=er.

Fact 43 As.mme Mis an algebraic term of sort T. Assume FV(M) = {:z:1, ••• , :z:,.}
with :z:, E VO', for i = 1, ... , n. Then I' :: :z:1 : <71, •.. , :z:,. : u,. lf-'ll. M : r.

So we know L1 lf-'R l : T and L1 11-?t r : T for the canonical context L1 associated
to l. Moreover, r 11-?t ex. : Ti for every (xi : r;) E Ll. By substitution,
r 11-R M': r.

II

Proof of Proposition 20 the first statement is proved by structural induction
on the derivations of f-!k.. The direct implication of the second statement follows
immediately. As for the reverse implication of the second statement, suppose
that n::::: S; we shown< S. Assume

I' f-$ M : A I' f-$ B : s A'RB

52

implies thanks to S ~ 'R. that

r I-~ M : A r I-~ B : s A'R.B

By 'R.-conversion, I' I-~ M : B. By 'R :::= S: I' 1-s M : B. Henceforth 'R. < S
and symmetrically 'R ~ S. Remark that 'R. ~ S implies 'R :::= S with the first
statement. So we are done. •

Proof of Proposition 21 We prove the first statement. Suppose that

r 1-$ M: A r 1-$ B: s A(Q. 'R.)B

There exists a pseudo-term C such that AQC'R.B. We use that Sis dosed by
substitution: I' 1-s A : s' for some universe s' follows by Correctness of Types.
By Q-SR: I' f--$ C: s'. By Q < S: I' f--$ M: C. By 'R < S: I' f--s M: B.

The proof of the second statement is (nearly) dual. Suppose that:

r f--$ M : A r 1-8 B : s A('R.. Q"P)B

There is a pseudo-term C such that A'RCQop B. By Q-SR: I' 1-$ C : s. By
'R. < S: I' 1-$ M: C. By Qop < S: I' f--$ M: B. We are done.

The proof of the third statement: Note that S < S. Hence, we may apply
the first and second statement as many times as wished. By continuity of<:

Qw·S·(Qop)"'<S

We deduce from S ~ Qw · S · (Qop)w that S ~ Q"' · S · (Qop)"'. We are done with
the first statement of proposition 20. •

Proof of Corollary 22 the last statement is easy to prove with proposition
20. As for the first statement, we prove the following sequence of inequalities

We proceed in reverse order. § ::::: S is easy. It follows that §has the Q-SR
property and that Q <§.We apply Proposition 21 to get §:: Qw. §. (Qop)w.
The last inequality follows Qw . (Qop)w ~ Q"' • §. (Qop)"'. •

Proof of Theorem 23 we only prove the first part as the second part is easy.
Let Q be -mizt· It follows from H2 and Ha that Q ~ 'R. therefore Q < 'R.
On the other hand Theorem 16 shows that 'R has the Q-SR property. Hence we
can apply corollary 22 to get !mi:i:t~ 'R.. •

Proof of Lemma 25 the direction !T('R.)~!-R. is the consequence ofT('R.) C 'R.
The reverse direction is a nice application oflemma 20. To prove that 'R, <!T('R.)
suppose that I' f--lT(7t) M: A and I' f--lT('R.) B : sand Ah B. The following

properties induce A !T('R.) B:

1. the relation !7t is dosed under substitution, so A is legal w.r.t. f--1'1. by
Correctness of Types,

2. B is legal, A h B and f--1'1. has 'R.-SR.

53

Hence, the Conversion rule can be applied in f-1 in order to get I' f-1
T(x) T(x)

M: B. We conclude that h<lT(?l) and so l'll!;lT(R)" 111

Proof of Lemma 27 by induction on the length of the derivation. Note that we
only have to prove the result for M -+131 M' as -+R~-+mi:z:t· The only interesting
case is when the last rule is an application rule and the subject of the judgement
is a redex w.r.t. -+131 • So assume the last rule is

I' r:)/l:z::A.B x.t: {JI x : A' .B') I' f-i u: A 1

I' f-i appn:i::A .B (>,n:z::A.Bx.t, u): B'[u/x]

with M := appn:z::A'.B' (.\n:i::A.Bx.t, u) and M' = t[u/x]. To show that M --*mi:z:t
M'. We use the fa.et that lT(. t)'.::'.lmi:z:t. By generation on f-1 {which is

mi:z: T(m.iat)
equivalent to f-D, II x : A.B =T(mi:z:t) II x : A' .B'. By confluence of -+T(mi:i:t)'
there exists A" and B" such that A, A' -++mi:z:t A" and B, B' --*mi:z:t B". There
fore

n A ,, B" II A" B" M -++mi:i:t app :z:: · (.\ "'' · x.t, u) -+13, t[u/x]

and we are done. II

Proof of Lemma 35 by induction on the derivation of I' f-i M: C. We treat
the case where the last rule is an application, an abstraction or a weakening:

- application: assume the last step is

I' f-i t : II x : A.B I' f-~ u : A
I' f-i appil:z::A.B(t,u): B[u/x]

with M = appJI:z::A.B (t, u). 1 is easy to prove. As for 2, assume N =:::
appII:i::A'.B' (t', u'), llTll = llL1ll and llMll = llNll· We show Mean= Ncan,
I.e.

appII:z::Anf.Bnf (tcan, ucan) = appII:i::A'nf.B,nf (t'can, u'can)

By Gapp, L1 f-i t' : IIx : A'.B' and L1 f-i u' : A'. Note that llMll =
llNll =? (lltll = llt'll and !lull= llu'll). We can use the induction hypothesis
on the premises I' f-i t : II x : A.B and I' f-i u : A and deduce that
rcan = Llcan, tcan = t'can and ucan = u'can. By -+mi:z:t-SR, r lT(mi:i:t) L1

and t lT(mi:i:t) t'. By corollary 33 applied on

I' r-; t: (IIx: A.B) and L1 f-~ t': (IIx: A'.B')

we deduce (IIx : A.B) =T(mi:z:t) (IIx : A'.B'). By confluence, (IIx :
A.B) lT(mi:z:t) (lix : A'.B'). Hence A lmi:z:t A' and B lmi:z:t B'. By Cor

rectness of Types, I' f-i II x : A.B : s and L1 f-i II x : A' .B' : s' and hence

IIx : A.B and IIx : A'.B' are strongly normalising. So A"f := A'"f and
B"f = B'"f, and we are done.

- abstraction: assume the last step is

54

r, z : A 1-: t : B r 1-: !fa : A.B : 8

I' 1-i ,>.fl:i::A.B z.t : II z : A.B

with M::: >.l1z:A.B z.t. 1 is easy to prove. As for 2, assume N ::: >.D'z:A' .B' m.t',
llI'll = ll..c:1ll and llMll = llNll· To show Mean= Ncan' i.e.

By G.>., ..c:1, z: A' 1-i t': B'. Note that llMll::: llNll implies that llAll::: llA'll,
hence III', m : All = ll..c:1, :JJ : A'll· We can use the induction hypothesis on
I', z : A 1-i t : B and deduce tcan ::: t'can and A can ::: A'can.

We are left to show Bnf :: B10f. By corollary 33, B =T(mizt) B' · By con
fluence, B lT(mizt) B'. By Correctness of Types, either B is a sort or
I', m : A 1-: B : s0 • Similarly, either B' is a sort or ..c:1, m : A' 1-: B' : s1.

In all cases both B and B' are strongly normalising. Hence B"f = B 10f and
we are done.

- weakening: assume the last step is

r 1-: M : B r 1-: A : 8

I', m : A 1-; M : B

with M a variable or a sort or an universe. Assume Ll, :JJ : A' is a legal
context with III', m: All= ll..c:1, m: A'll· Then llI'll = ll..c:111 and llAll = llA'll·
Necessarily, L1 1-: A' : s' so we may apply the induction hypothesis on
I' 1-i A: s to conclude ..c:1can ::: rcan and A can ::: A'can. This proves 1. As
for 2, assume llNll = llMll· Then N = M because Ma variable or a sort or
an universe. So we are done.

•
Proof of Lemma 36

- first note that it is not true for an arbitrary M because algebraic rewrite
rules might not be left-linear. Indeed, consider the rewrite rule

f(z,z)-+ z

If A and A' have no common reduct, then the term

is in normal form while we have the reduction

The lemma is proved by structural induction on the derivation of I' 1-i M : A.
We treat the cases where the last rule of the derivation is (function) or
(application).

55

-function: then M = J(t1, ... ,tn)· The only interesting case is when llMll
itself is a redex, i.e. when there exists a rule l --+ r and a substitution 8
with domain FV (l) such that 8l =: f (1lt111, ... , 1ltn11) and Or = N. Take lo
linear with FV(l) n FV(lo) = 0 and p a renaming with domain FV(lo) (it
may rename two distinct variables with the same name) such that pl0 ::: l.
There exists a labelled substitution O' with domain FV(lo) such that
O'Io = M. We know that for every :c E FV(Zo), we have llB':cll = 8op(:c).
Hence for every :c, y E FV(l0), p:c = py => llO':cll = ll9'yll· By Lemma
35, it follows (O':c)can:: (O'y)can. Define a labelled substitution 811 with
domain FV(Zo) by 8":c:: (8':c)can. There exists a substitution 90 with
domain FV(l) such that 8"(:c):: 80 o p(:c) for every :c E FV(Z0). Define
N' =: 8or. Then M -+tmizl N'.
To show llN'll = N. Let :c E FV(l). There exists y such that py =:c. We
have

ll9o:i:ll = llBo(PY)ll = llO''Yll = 11(61y)can II= llB'yll = O(py) =Oz

Hence llBo:i:ll = O:c for every :c E FV(I) and we are done.
- application: let M =: app.IJz:C.D(t, u) and llMll = lltllllull --+miz N'. We

use the induction hypothesis if the reduction occurs in lltll or llull· When
llMll itself is a,B-redex then t = >.l1z:C'.D' a:.t' and N::: llt'll[lluli/z]. The
loose head reduction of M leads to N' :: t'[u/:c]. We are done with the
following equality:

llN'll = llt'[u/:c]ll = llt'll[llull/:c] = N

- it is proved by induction on the length of the reduction sequence llMll -!,1.,,

N. Assume llMll --+miz P. By 1. there exists P' such that M -!,,.,1 P' and
llP'll ::: P. By Lemma 27, M -!,,.,t P'. By Subject Reduction, P' is legal.
So we can apply the induction hypothesis on P'.

- the strong normalisation part is proved by induction on the length of the
longest --+mizt-reduction sequence starting from M. Assume that llMll -+mia:
N. By 2 there exists N' such that M -!,.,t N' and llN'll = N. By Subject
Reduction, N' is legal so we can apply the induction hypothesis. Hence -+miz
is strongly normalising on N = llN'll· The property is true for any N such
that llMll --+mio: N. Henceforth --+mio: is strongly normalising on llMll· As
for the Church-Rosser property, assume llMll-mia: N1 and llMll "'""*mio: N2.
Then there exist Nf and N~ such that M -mizt Nf and M "'""*mio:t N~
with llNf 11 = Ni and llN~ll ::: N2. By confluence of --+mio:t 1 there exists
a labelled pseudo-term P with Nf "'""*mio:t P and N~ "'""*mizt P. We can
translate Nl "'""*mio:t Pinto llNlll "'""*mio: llPll· It follows that N1 "'""*miz llPll
and N2 -mio: llPll.

- assume llMll !mio: llNll· Hence there exists Q such that llMll, llNll-mio: Q.
By 2, there exists Qi and Q2 such that M -mia:t Qi and M -mio:t Q2.
Moreover llQ1ll = llQ2ll = Q. Hence Q~an = Q~an = Q'. Thus we have
M, N -mio:t Q' i.e. M !mio:t N.

56
11111

Proof of Proposition 37 the proof proceeds by structural induction on the
derivation of I' I- M : A.

- conversion: suppose that I' I- M: Bis derived from I' I- M: A and I' I- B: s
with A lm.i:t B. It follows by induction that r. 1--; M. : A. and I'o 1--; Bo : s
with

llI'.11 :=I'::: llI'oll llM.11::: M !IA.II= A llBoll::: B

By lemma 35, r. =: I'0 • By Correctness of Types, r. I-~ A. : s' for a given
universe s'. The last statement of Lemma 36 deduces A lmi"'t B from r. ::: I'o

and llAll lmi:i: llBll· By conversion

I', I- M.: Bo

with the required translation (and canonicity) features:

llT.11 =I' and llM,.11 =Mand llBoll = N

- application: suppose that I' I- tu: B[u/x) is derived from I' I- t : (II x : A.B)
and I' I- u : A with application rule. By induction there exists two derivable
judgements

r. 1--: t. : {Jfa: A.B). and I'o I-~ Uo : Ao (1)

with the good translation properties. Define A., B. as (Ilx: A.B). ::: Ilx:
A, .B,; by G11 and Correctness of Types, r. 1--; A, : s' and I'0 1--: A 0 : s"

for some universes s', s". By lemma 35

I', := I'0 and A. ::: A0

because A0 is canonical. By (1) and an application rule it follows that:

r.1--: applI"':A •. B.(t,,uo): B,[uo/x]

By the Subject Reduction Property and conversion:

n 1--• IIo::Anf.snf() can
.1. • t app • • t., u0 : (B,[u0 /x])

We easily check the three equalities

nf nf
!IT.II::: I' and llapp11"''A• .B. (t.,u0)ll :=tu and ll(B,[u0 /x])canll::: B[u/x]

and the canonicity of r., apprr.,:A~f.B~f (t., u0) and (B.[u0 /x])can.
- abstraction: assume the last step is

r, x : A I- t : B r I- II x : A.B : s
I' I- .\x : A.t : II x : A.B

57

a.nd M = >.:z: : A.t. By induction hypothesis:

r., :z: : A. 1-: t, : B. I'0 1-: (JI;,; : A.B)0 : s (2)

for some canonical contexts r., I'0 • By Correctness of Types, r.,;,; : A, I-~
B, : s111 for some universe s'. Let A0 and B 0 be defined as (JI:z: : A.B)o =
JI:z:: Ao.Bo. By Grr:

for some universes s1 , s2. By lemma 35

r. :: I'0 A, :: Ao B. :: Bo

By abstraction and (2):

r. 1-: >.Hz:A •. B. :z:.t. : 11 z : A •. B.

By the Subject Reduction Property and a conversion rule:

rr • can nf r. 1-: A .. z.A. .B. :z:.t.: (Jiz: A,.B,)can

We easily check the three equalities

. can nf llI'ell:: I' llAnz.A. .B. :d,11:: J.:z:: A.t ll(Jiz: A,.B.)canll:: liz: A.B

and the respective canonicity properties.
- weakening: assume the last step is:

I' I-;,~~ B :t 1 : 8 if :z: (j. I' and t E SU U U V U K

By induction there exists I', 1-i t, : A, and I'0 1-i B 0 : s. By lemma 35 I'0 ::

r. and henceforth r., :z:: B 0 1-i t.: A. since z ft. I' a.nd t ES U U UV UK .

•

