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O. Introduction 

L may be described as follows: 

L 60 + arbitrary data structures 

+ operator definitions. 

o- 1 

It was ori · lly motivated by a desire to write forrra1Ja-rnanipulation 

systems in ALGOL 60, but it is also useful in other areas, where the objects 

are ~ -· cally changj ng data structures, as, for exar1.tple, in artificial 

intelligence. 

The ABC .. ~,L compiler is written in ........ L 60; ABC ,..., L pro- cu,. are 

corrpiled to ALGOL 60 and the run-time system for running the compiled 

program is written in "'l...1- L 60, so that the only necesf'axiy prerequisite for 

using ABC L is a good ~ --,L 60 system. All the ""' L 60 pron"'l"'II ·- which 

one needs are fully reproduced in the following chapters. 

The ABC ALGOL system was designed with emphasis on clarity of design (for 

educational and ''ethical'' pu·r-poses) and on portability ( an irrportant issue 

in the software-engineering :field) rather than on efficiency with respect to 

execution speed. 

by rewriting the 

0. 1. SUil!f¥3ry 

However, a considerable gain in efficiency can be obtained 

few procedures of the run-tirre system in ma.chine-code . 

• 

on forrnuJa manipulation in :-L.L.JU. L 60 [11] described a 
• 

system of .n..i.. L 60 proced1 Jl:"2S which can be used in an L 60 program to 

manipulate fo11r1u.lae • Moreover, it described an interpreter which reads and 

executes so-called f'ormula programs, i.e. sequences of statements, each one 

perf'or-rr-,i ng a certain fo1111ula-manipulation function. The formula-manipulation 

used in this early system was not provided with dynamic storage allocation 

In the second MC TRACT 

apparatus is applied 

Cauchy-problem, • i.e. 

[ 12] on this subject, the fo11nuJa- manipulation 

to the corrputation of functions defined by a 

a set of pa:r·tial differential equations together with 

initial conditions. In addition, 

arithrretic in ~ L 60. 

a small chapter is devoted to corrplex 

• 
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It is the pu:c-pose of this MC TRACT and o.f the following MC TAACT, in which 

the second pa:r,t is published, to derive techniques for rranipulating foraroul ae 

using dynamic storage allocation, together with an automatic garbage 

collector. 

Like its predecessor, ABC Lis 

60 procedures with which a user 

pro~ams. Due to the automatic sto 

can describe his for1rruJ a- 1rani pulation 

allocation, this system of' procedures 

is rather corrplicated and not easy to use. It therefore became necessa.r'Y to 

design a la:ngt.J.age, in which a user can program conveniently, and to b1.1i ld a 

corrpiler for t ...... care of all the comp le xi ties • The language, called ABC 

ALGOL (AOC is an acronym for the Dutch: ''Algebraische Bewer · en net behulp 

van de Conpute:r'') , is an extension of ....., L 60, the main addition being the 

introduction of a new type: fo11nuJ .. a. Data structures of this type are bina:riy 

trees. It is, n:oreover, possible to define the ordina1:-y operators ( +, - , x, 

etc.) for operands of type for1r10Ja. 

In ·. · , ·.· ter 1 the larigltage is introduced by rreans of detailed eJCa11:ples. 

In chapter 2 the ABC ru.. L lan.g-... a;.,...,, is described more precisely in the fo:rir11 

of BWF ruJ es, semantic :rt~D es and exa:rtples. 

Chapter 3 contains a system of ABC .n.u • L procedures as an aid to the user 

with as typical problem: the sirrplification of large expressions involving 

the +, - , x and / operators, together with rational nurrbers of arbitrarily 

long rragn]. tude .. 

Chapter 4 describes several strategies .for the run-tirre system, gradu.ally 

increasing in corrplexi ty and e .ffi ciency . It also contains the L 60 
procedures corrprising the run-tirre system·. · It is noteworthy that this 

system, being the kernel of the .ABC .l"l..l...J L system, needs only six pages. 

Connentary on the overall structure of the corr:piler is given in chapter 

5, while the rather voluminous ....,,. L 60 text of the compiler is given in 

chapter 6. Not only are the syntax-reading procedures interesting, the 

way semantic infor1nation is extracted .from the to-be-compiled program and 

manipulated with in an info:c1r18tion list is also noteworthy. 

The 7-th chapter contains worked-out exarrples derronstrating the subtleties 

of the compiling process. 

The standard MC-ALGOL procedures for input 

Mathematical Centre, together with restrictions 

EL-X8 computer, arc described in chapter 8. 

and output used at 

and peculiarities of 

the 

the 
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This tract is organized with several groups of readers in mind. First, the 

reader who wants to use an existing formula manipulation system only. He is 

advised to read the first half of chapter 1, chapter 2 and the first half of 

chapter 3. Second, the reader who wishes to program in ABC '-'-' L and to make 

full use of it. For him chapters 1, 2 and 3 suffice. Third, the r-eader who 

wants to become acquBjnted with ABC 

the whole tract has been written. 

L and its irr.plementation. For him 

Relating this work to existing systems, we make the f'ollowing remarks. Due' 

to lack of manpower, the size of the project necessarily had to be small. 

In addition., the principles of the irrplementation were of more conceit.t1 than 

the implerrentation itself'. Finally, to make the system rrore useful, a large 

a.rrount of standar·d (librar-y) fo!'ltlllla-manipulation procedures will have to be 

written. 

Other systems a:r"e no:r·rrally rather large (FORMA.C, ALP AK, S.A.C , MATI-IT AB, 

to rrention a few) while the host lan is not ~ 

PL/1, LISP or machine-code. This tract shows that s..L.. 

L 60 but ro ~.I. , 
L 60 is suited for 

manjpulating data structures as complex as binai--y trees as well as .for 

compiler-writing techniques. 

.from ..... , ,L 60 ( s-'--1. .LV.L.. 

section 2.8. 
., Forn1ula ALGOL, 

L with sorre other languages derived 
ALGOL W and .ru.. L 68) is given in 

For literature we refer to the proceedings of the second SIGSAM syrrposiurn 

[ 1] and the annotated bibliography prepared by J. Satffret [ 15a] • 

Chapters 0-5 are given in the first pa.1:t of the tract; chapters 6-8 and the 

list of references are given in the second part. 

0. 2 . Ac~owledgenents 

The work., described in this tract, had to be carTied out in spare rrorrents 

and would definitely not have been finished without the enthusiastic and 

rrost inspiring contributions of the following people: 

W .P. de Roever and G. ten Velden aided in the early stages of the design of' 

the system and the construction of the corrpiler. 

A. de Brt.ri n contributed considerably by desi · g the sirrplification system 

in chapter 3 and by rewriting de Roever' s rational nunber system into ABC 

L. 

• 
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R. Wiggers added complicated portions to the corrpiler and wrote the 

alternative sjn:plification procedures of section 3.6. 
rrhe author is, .furthermore, nost grate.ful to: 

John W. - III, for painfully scrutjnizing the text of this tract., 

Mrs. M. HOOD ....... :::r-Knieper, for typing the text of this tract, 

D. Grune., for the use of his ''tekstschaaf'' [ 4] for justifying the text of 

this tract, 

Mr. D. Zwarst , Mr. J. Suiker and Mr. J. Schippers, .for reproducing this 
tract 

and to the operators of the EL - X8 computer .for .,...., ·ng the programs. 

The investigations were caYTied out mainly while the author was err.ployed by 

the Mathematical Centre. The author is grateful to the board or the MC for 

providjng this opportunity. The tract was finished while the author was at 

the ''Vrije Universiteit'' in Amste \,.4' ....... , where he is presently working. His 
addr-css is: 

Vrije Universiteit 

afd. Infor11atica 

de Boelelaan 1105 

, The Netherlands 
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1. First_ aqqtiaintance witl:). the l_apg;u.a,a: 

In this chapter, we give a short overview with sore introductory ABC 

L programs, a rather sophisticated ABC n.l...lU L program for a non-trivial 

rrathema.tical problem, and a complete ABC L system corrprising operator 

definitions and representations of data structures. 

1.1. f?ir1 overview of the ~ang;t.1:§.~ 

In ABC ~ L one can write programs for manipulating with for111U)ae; the 

fo1,nulae being ma.thematical expressions involving operators, variables, 

nlIDilers, ftmctions., etc. Hencef'orth we shall use the term for11ula in this 

sense. Consider, as an exanple, the following piece of an ABC .t...l.. L pr0gt·-arn 

on the left-hand side of the page, together with the results shown on the 

right-hand side of the page. (The procedure ''nlcr'' prints a new line.) 

x:= av({x~); output(x); nlcr; 

y:= av({y~); output(y); nlcr; 

X 

y 

z:= av({z star~); output(z); nlcr; 

r:= x+y; output(f); nlcr; 

z star 

x+y 

output(llis off); 

output(rhs or f); 

nlcr; 

nlcr· , 
X 

f:= xx:y + x/y; output(f); nlcr; 

y 

xxy+x/y 

output(llis off); nlcr; xx.y 

output(rhs off); nlcr; x/y 

output(lhs of rhs of f); nlcr; x 

print(tyee off); nlcr; +4 

print ( type of lhs of f); nlcr; +5 

print(type of rhs off); nlcr; +6 

print(type of Jhs of rhs off); nlcr; +3 

f:= O; output(f); nlcr; 0 

f:= 1; output(f); nlcr; 1 

f:= 2; output(f); nlcr; 2 

f:= 1+2; output(f); nlcr; 3 

f ·-.-
f ·-.-
f ·-.-

1+x· , 
O+x· , 

output ( f') ; 

output(f); 

nlcr; 

nlcr; 

1xy + 0/x; output(f); nlcr; 

1+x 

X 

y 
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f:= (1+x) + (y+2); output(f); nlcr; 

f:= (2xx) x (4xy)/(xx2 x yx2. x 2); nlcr; 

output(f); nlcr; 

3+x+y 

YXY/(xxy) 

The above piece of program derronstrates quite clearly the basic operations 

and the data structures in ABC L. For exa11.ple, the :fo111ruJ a YXY + x/y is 

represented as a binary tree with operators in its nodes: 

+ 

X I 

X y X y 

while the last exa.rrple is, after some transfo:t1riations, represented as: 

I 

X X 

X y X y 

The above piece of progr-am is embedded in a complete ABC ~ L program 

contai · also operator definitions. 'Illese operator definitions have to be 

given by the ABC ALGOL progrart1ter, as they do not .form a pa:r·t of the ABC 

L system. The particular operator definitions, the representations for 

algebraic variables ( the procedure av) and nurrbers and a declaration o:f the 

output procedure are given, also by way of example, in section 1. 3. Quite a 

different set is defined in chapter 3 and it is likely that rr.ost ABC ,...,_ L 

prograxr11ers will not be satisfied with existing sets, so that other 

sets will be constructed. 1I1hi s shows that the ABC .n.l,.J L system does not 

provide operator definitions and representations but gives the rreans to make 

operator definitions and to construct data structures tailored to one's 

specific problem in a convenient way only. 
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To show that ABC~ L is an extension of .n..1...1'--

looking very sirniJ a.r to an ALGOL 60 program. 
L 60, we now give an exarrrple 

The exa.rrple is a procedure for 

coirputing the deter·rni nant of a matrix with fo1~JUJ ae as elements, such as: 

I X 

I 
I xxy 

I 
I z 

y 

xxz 

y 

z I 

I 
yxz l 

I 
X I 

The ABC L procedure is as follows: 

for,:nula procedure dete1,ninant(n,rnatrix); value n; integep n; , 

.formula a~rray matrix; 

begin _integer array pe11n,pe1:1rn1[1:n]; inte~r i; f'o:r,ru.la det; 

proced1..1re add next te:r·1r1(m.,p ,perm sign); value m.,perm sign; 

integer m,pe11n sign; integer array p; 
I z 

end 

i.f m = 1 then 

beE3✓ n 

end else 

integer i; .formula factor:= 1; perrn[n]:= p[1]; 
' 

for i:= 1 step 1 until n do 

factor:= factor x matrix[i,perrn(i]]; 
det:= det + perrn sign x factor 

bep;i n inte.ge_~ a-r>r§.Y q[ 1 :m-1]; integer 

for i:= 1 step 1 until m do 

p~gi n perrn(n - m+l]: = p[ i]; 

• • 

.for j := 1 s_tep 1 until i-1 do q(j J := p(j ]; 

.for j:= i+1 step 1 until m do q[j-1]:= p[j]; 

add next te1111(m-1.,q.,pe:r·1n sign x even(i-1)); 

cormrent The standard procedure even(n) 

becomes +1 if the integer n is even, 

otherwise -1; 

end end add next term; 

for i: = 1 s_tep 1 until n do per-rrtJ [ i]: = i; 
det: = 0; add next ter,n( n ,pe:r1n1, 1) ; determinant : = det 

• 
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llie determinant of' the exarrple above will be calculated by the following 

progr-am.: 

peg:ip. formula ~ray a[1:3,1:3]; formula x = av({x~), 

end 

y = av( <ty:1-) ,z = av( <tz*); 

a[ 1, 1] := x; 

a[2,1]:= }O(y; 

a[3,1]:= z; 

a[1,2]:= y; 
a[2,2]:= xxz; 
a[ 3,2] := Y; 

output ( dete11n:i nant ( 3, a) ) 

a[ 1,3]: = z; 

a[2,3]:= yxz; 
a[ 3, 3] := x; 

with the results: 

...... xx-xxyxzxy-yxxxyxx+yxyxzxz+zxxxyxy-zxxxzxz 

The above exaznple could have been written in....... L 60, except that the array 

would have to have elerrents of type real instead of' formu.J a and that the 

declaration ''for1r1U]a factor:= 1'' would have to have· been written as ''real 

factor; factor:= 1''. 

We now gi. ve an exarrple for which no sirrple ,...._ u\..JL 60 counterpart exists; 

it is the corrputation of a derivative, typical in the fornn1la-manipulation 

field. We asstuil:: that the formulae to be differentiated have as operators 

the +, x and / operators only and as . operands algebraic variables and 

numbers only. (As a-b can be written as a + · ( -1) x b we can easily 

circumvent the - operator). 

fox1nu J .a proc~~1_Jre der( f, x) ; value f, x; foriru 1 a f., x; 

begig_ integer t; t := _ty~ of f; 

end 

der:= if t = sum then der(lhs of f,x) + der(rhs of f,x) 
else if t = product then der(Ths o.f .f,x) x rhs off+ 

lhs off x der(rhs of' f,x) else 

i.f t = quotient then ( der( 1.hs of f ,x) x rhs of f -

lhs of .f x der(rhs of f ,x) )/(rhs of f' x rhs of' f) 

else if t = alg var then ( if f = x then 1 else O) 
else O 
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The integers alg var., sum, product 

procedures of section 1. 3, the values 
the output of the program in the be _._..· 

and quotient have., in the system of' 

3, 4, 5 and 6., respectively (see also 
• of this section) . 

Another typical fornruJa-manipu.lation procedure is a substitution procedure 

which substitutes the for,:nuJ a y for the algebraic variable x occ1Jx~·ing in a 
.f01"fID.J,] a f • 

.fo11nula Ero~edure_ subst(f,x.,y); value f,x.,y; for~~tla f,x,y; 

bef<i ri_ iJ?.teger t; t: = type of f; 
subst:= if t = sum then subst(lhs of f,x,y) + 

subst(rhs of f,x.,y) 

else if t = product then subst(lbs of f,x,y) x 

subst(rhs of f.,x,y) 

else if t = quotient then subst(lhs of f,x,y)/ 
subst(rhs of f,x,y) 

else if f = x then y else f 

end 

rrhe above procedures are now tested with the following program. 'Ihe results 

are shown again on the right-hand side of the page. 

output(der(x+y,x)); nlcr; 

output(der(xxy + xxx,x)); nlcr; 

output(der(xxx x x+x x y,x)); nlcr; 

output(der( (:xxxxx + xxy)/(x + xxx) ,x)); 

nlcr; f:= x+y; 

output(subst(f,x,y)); nlcr; 

output(subst(subst(f,x,y),y,1)); 

nlcr; f:= :xxx + xxy + yxy; nlcr; 

output(subst(f,x,x+y)); nlcr; 

1 

y+x+x 

(x+x)xx+xxx+y 
(((x+x)xx+xxx+y)x(x+xxx)-

( ,r +xxy)x(1+x+x))/ 

((x+xxx)x(x+xxx)) 

y+y 

2 

(x+y )x(x+y) +(x+y )xy+yxy · 

Extensive use of the procedures der and subst is made in the next section. 
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We again emphasize that the pieces of' ABC ...... L in this section have to be 

supplied with operator definitions, representations of' operands and output 

specifications in order to form conplete ABC ..... \c-4L programs. The test runs 

have been made using the apparatus or section 1. 3. One is of' course free 

to use the pro~................. of' section 1. 3, but one may also de fine one' s own 

appa:ratus, or use the procedures of chapter 3 for automatic simplification 

and rational number arithmetic. 

At the end o:f this short overview we that the ABC L conpiler 

translates an ABC ALGOL program into ... vL 60 text, which., conbined,..,....wi th a 

preceding standard set of ........ '''L 60 procedures and enclosed between beg;jn and 

end., f'orrns a complete ALGOL 60 program. Execution of the ABC ...... L program 

is accorrplished by execution of this derived .. ..._ ,,,...,L 60 prog;..-.am. 

1.2. Soluti~ ~f ~f:.fe,~ntial equations in, ABC ALGOL 

A simple exa1rple., but one which clearly demonstrates the need :for automatic 
for1rnuJ a-manipulation techniques, is the followj ng: 

Consider the dif'f'erential equation: 

(1.1) f(x,y,y') = o, y(O) = a, 

for the lll1known function y(x), where f is assurred to be analytic in its 

variables; i.e. differentiable a sufficient nunt)er of' times. Let b 

be a solution o.f f(O,a,b) = O and be given bef'orehand, we may then f'orrnally 

calculate the .first n coef'.ficients or the Taylor series expansion of' the 
function y(x) as .follows: 

n 
Let y(x) = 2 

i::O 

• 
l c.x 

l 

• 
n+l 

+ O(x ) , then 
1 dl"l'.T 

C. = I,, 
l l. d:xl 

Dif'ferentiating (1.1) with respect to x gives: 

ar + ____ 

ax ay ax ay' 
= 0 • 

Substituting x = o, y = a and dy/dx::: b, we f'ind: 

• 
X = 0 

b. 
• 



f (O,a,b)b)/f ,(o,a,b), y y 

where f' (O,a.,b) means a:r/ax a:rter substituting x = o, 
X 

y = a and Y' = b. 
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The general algorithm is now easy to understand: Introduce n 
. (i) , (i+1) 

f\rnctions f' (x,y ,Y , ••• ,Y ) , depending on i+3 independent variables 

' (i+i) . 0 1 f 11 x,y,y , ••• ,y ,i = , ••• ,n-., as o ows: 

(1.2) 

(i) , (i+1) _ f (x,y,y , ••• .,y ) -
Df"(i-1) 

Dx 
def' --

• 
l 

+ I 
j=O 

where a/at rreans par,tial dif"ferentation with respect to t. 

, ( i +1) By substituting x=O, y=O, y=c0 ., y =c1 , ..• ,y = (i+1)! 

equating :f(i) to zero, we obtain the following equa.tion: 

(1.3) = o. 

a.r<i-1) (j+1) 
a (j) y :t 

ay 

This equation is linear in ci+l; hence ci+i can be determined by calculating 

the constant ter-in by substituting ci+l = 0 and by calculating the linear 

tei,-ri by differentiating with respect to ci+l • 

We shall now give the description of the above algorithm in ABC 4-1.,.. L, in 

the .for,n of' a procedure ''Corrpute Taylor coefficients''. Auxiliary equipnent 

in the .for111 or procedures :for creating algebraic va.riables, in the :fo:r1n of' 

operator definitions and in the forrr~1 of declarations and j ni tia.l i zation of 

variables, will be given in section 1.3. 
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p~~eqyre Corrpute Taylor coefficients(f,x,y,ypr.,a,b,c,n); 

value f,x.,y.,ypr,a,b,n; forrmJJa f.,x,y,ypr.,a,b; intege,;r n; 

.fo11rrula §:!:r?Y c; 

begi:D intePf:~ i.,j; fo11rIUJa fi,fim1.,fs,z = av({z:f..); 

corrrrent z is a constant algebraic variable., which 

should be printed as the string ''z'' on output. z 

is used to replace the unknown c[i+1]; 

for,11UJ a array yprime[ O:n]; ,a:r~~ f'act[ O :n]; 

c[O]:= a; c[l]:= b; .yprirre(O]:= y; yprirr.e(1]:= ypr; 
...uT~:= f'; fact[O]:= fact[1]:= 1; 

~gi!} yprime [i+l]:= ar({y1*,i+1); 

end 

corment yprime[ i +1] is intro:iuced now as an 

algebraic variable., which., on output., is printed 

as ''y1[''followed by the nwrber representation o:f 

i+1, closed by'']''; 

fi: = der(fim1,x); 

corment der conputes the pa-~tial derivative o:f fj.m:1 

with respect to x; 

for j := 0 s~ep 1 1.ID.til i do 

fi: = .fi + der( fim1 .,yprin:e [ j ] ) x yprirre [ j + 1] ; 

connent this is the direct translation or (1.2); 
fact[i+l]:= (i+1) x fact[i]; 

fs:= subst(fi,x,O); c[i+1]:= z; 

corment subst rrakes the substitution x=O in fi; 

for j:= 0 step 1 until i+l do 
0 

fs:= subst(fs.,yprirre(j],fact[j] x c(j]); 

comnent in accordance with (1.3); 
c[i+1]:= -subst(fs,z,0)/der(fs,z); 

corrrnent let fs = p+qz, then fs=O rrEans 
z = -p/q; 
fim1:= fi 

end Corrpute Taylor coefficients; 

• 

' 

' 

• 

' 

-
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'Ihe direct translation of the mathematical description to a program shows 

the relatively sinple way ABC L can be used for fo:r,·nula-manipulation 

processes. 

The procedure ''Corrpute Taylor coe.ff'icients'' is con:pletely general as it does 

only assl.llYE that the dif.ferential equation is analytic. No ass11r1iptions. have 

been made otherwise on the for-in of the diffe~ntial equation. ,....In practice, 

this procedt1re must be ent>edded in an environment of ABC .... ~L proced1Jres 

for operator de ·~·tions, such as those given in section 1.3. For particular 

de ·V'\·tions or derivative (der) and substitution (subst) see section 1.1. A 

testpr-ogieiam for this procedure is the following: 

begin fo111rul a x = av( -ix~) ,Y = av( {y:f.) ,YP = av( ,iyp;f.), 

f' = yxy + ypxyp - 1; 

foimuJ a §!:rat c[ 0: 10]; inte~r i; 

Compute Taylor coefficients(f,x,y,yp,0,1,c,10); 

for i:= O step 1 until 10 do begjn nlcr; print(i); 

end 

+O 0 

+1 1 

+2 0 

+3 -1/6 
+4 0 

+5 1/120 

+6 O 

+7 -1/5040 

+8 0 

+9 1/362880 
+10 0 

output(c[i]) 

end 

results (the sin(x) ex.pansion): 
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In this section we inplement a pa1,ticular, very sirriple, system of ABC 

~ . L procedures for for,nuJ ae with only the opera.tors +, - , x and /, with 

algebraic var"'.iables and with numbers., integers as well as reals. In this 

system sorre sinple sinplifications are automatically perfor,ned conceI"ni ng 

nunbers and coobinations of products and quotients. For a system in which 

the full power o:f sirrpli.fication is built in together with rational nunbers 

of unrestricted length, we refer to J;C;;.4-,fter 3. 
A reader not interested in writing his own ABC .c--u... L system but only 

interested in the system of chapter 3. may skip this section. 

The ,.;...I, of' this section shall be gi. ven in the .form of' an ABC 

progi"Bm an:ply supplied with colTIIJEnt. As we need sometirres semicolons 
• in 

corment we have adopted the convention that in ABC L the symbol 9 • 

replaces the semicolon in comnent. Here follows the program: 

beej !:! co111ocnt 

The basic structures from which the data structures of type foimJ.la can be 

constructed are: 
1. The constant structure consisting of three pa-rts: a (small) positive 

integer: type and two integers: lhs and rhs. The size o.f Jhs is the size of 

an ordi ,l.o.J.vn X8 integer, i.e. abs ( lhs) < 2 i 26. 'Ihe size of rhs , however, is 

rrore restricted, we require: abs(rhs) < 2 T 17 -1. The structure is created 

by rreans of the expression: ''constant(type,lhs,rhs)''. 

2. The n:onadic structure consisting of three pa,:--t::,: a (small) positive 

integer: type, an integer: lhs and a reference to another data structure 

of type fo1,nuJa: rhs. The structure is created by means of the expression: 

''monadic(type,Ths,rhs)''. 'Ihe term '':rronadic'' is chosen, 

conta.ins one reference to another data structure. 

as this structure 

3. The cy:adic st~9t_ure consisting o.f three pax·ts: a (small) positive 

integer: type., and two references to other data structures of type 

fo1-.r11ul a: J hs and rhs The stru ture 1· t d b f th · ........ . . • c s crea e y means o e expression: 

''dyadi_~(type,Ths,rr1S)''. The term ''dyadic'' is chosen as this structure 

contains two references to other data structures. 
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4. The rowadic structure consisting of (n+1) parts: a (small) positive 

integer: type and n., n > O, 

rowadic structure. The structure 

integers, 

is created 

called 

by rreans 

the elerrents o.f the 

o.f the expression: 

''rowadic(type,i,n,el i)''., where for given i, O < i < n, 

element . E.g. i.f type = 10., n = 3 and the elements are 1, 

create this by: 

el i is the i-th 

7 and 8. we may 

rowadic(10,i,3,if i = 1 then 1 else i.f i = 2 then 7 else 8) 
One sees that the variable i plays the role of a Jensen variable. 

5. The polyadic structu,re consisting of (n+1) paJ:•ts: a (small) positive 

integ-er: type and n, n > O, references to other data structures of type 

for,nul a, called the elements of polyadic structure. The structlJre is created 

by rreans of the expression: ''polyadic(type.,i.,n.,el i)'' ,where for given i., O < 

i < n, el i is the i-th element. E.g. i.f type= 11, n = 4 and the elerr:ents 

u., x, y, z, we may create the struct1Jre by means of: 

po1,Yadic( 11,j .,4 .,i.f j = 1 then u else if j = 2 then x 

else if j = 3 then y else z) 

where we have now used another variable j as the Jensen variable. 

The te1·r11 ''polyadic'' is chosen as this structure contains many references 

to other data structures. 

f 

The small integer: type should be sma.ller than 31. 

Besides the above mentioned constructive eqt1jpment., we have descriptive 

equiprr:ent f'or asking how a data structure has been constructed. For this 

puJ7Pose we may use the expressions: 

''type of f'' delivering the type of the data structure f., 

''Jhs o:f f'' delivering the Jhs of the data structure :f, 

''rhs o:f f'' delivering the rr1s of the data struct1;re f, 

''length or f'' delivering the number o.f elements of the 

data structure r, 
''el i o:f :r' delivering the i-th element of the data struct11re f. 

' 

'Ihe constant structures can be used to store integers. For exaxrple, an 

integral number n can be represented by a constant struct1Jre as a result of 

executing: 

'' constant ( integral nurrber ,n., O )'', 

where the rhs .field is .filled with the nurrber O. 
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A real nurri::>er r is represented in the merrory of' the EL X8 by two consecutive 

words, called head and tail. The stan~ ...... procedures ''head of°' and ''taj 1 of°' 

decompose this real nllllJber into these words and deliver these words a.s two 

integers ''head" and ''tail''. Representing these two integers in a constant 

structure by rr:eans of: 

''constant(real number,head,tail)'', 

is not possible, although this seems to be very attractive, due to the 

restriction on the rhs field of a constant struct1Jre which may 

absolute vaJue 2 i 17 - 1. Therefore, a more corr.plex structure 

real number r: 

''oonadic(real nunber,head of (r), 

constant(O,tail of'(r) ,O) )''. 

• not exceed in 

is used for a 

The two zero' s rreanj ng that the respective parts do not contain inf'on·nation. 

It must be explicitly stated, however, that the ABC ...... L progra111tner is .free 

in his choice for representing real numbers in the sane way as he is free 

to choose a representation for algebraic variables or for expressions like 

a+bxc. The data structures suggest that a+bxc may be represented a.s a bi .LO..I. 

tree created through: 

''dyadic(sum,a,dyadic_(product ,b ,c) )'', 

but it is not necessacr•y. Only if a data structure has the f'orrn of' a string, 

is the representation very specific: the consecutive characters of' the 

string are packed, three in a word (with shifi factor 2 i 8 = 256) and the 

resulting ·• integers are grouped together to f'o1,n a rowadi c structure with 

type = 31. Note that this type value is excluded for the programner. Hence, 

the following piece of program: 

f:= ~12345678910 ab c def} 

will result, also counting the spaces, in a rowad.ic structure of' 8 integer 

elements, the first one being the interr1al representation of' the cha.racters 

''123'', the last one being the inter·nal representation of the two characters 

'' :£°'. And ( el 5 of' f) : 2 i 16-1 will give the inter•rial representation of' 

the character ''a''. 

The inter~.ial representation is the MC-resym value increased with one ( see 
(5]). 
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We begin with two procedures for introducing algebraic variables. 'Ihe first 

one is for a simple algebraic variable., the second one for a ''subscripted" 

algebraic variable y[i]. If output is needed for y[10], say, then this 
variable is output as ''y[ 10 ]''. ; 

fo1.1r1,~.J .. a procedure av( s) ; value s; .formula s; 

av:= rronadic(alg var ,o ,s); 

.for1ruJJa proced1Jre ar(s,i); value s,i; fonr1uJa s; inte~r i; 
ar:= rronadic(alg var.,i,s); 

comrrent From the above choice we see that we have to require that ar should 

be called only with i :I: O, and if it is called with i = O then it is no 

longer possible to discriminate the two cases. The actu..aJ parameter f'or s is 

assumed to be a string, so that ''z:= av(~z~)'' and yprirre[i]:= ar({ypr~,i)'' 

indeed lead to introduction or data structurco of type alg var, alg va.r 

bPi ng a small integ-er. Being familiar with type proced1J:res in L 60, we 

have no problem with the fact that av and ar are declared to be .foi,nuJ a 

pr-o~edures. The result or executing the procedure body should be a data 

structure or type .for1nlUJ a. Also the occurrence or s in the value list does 

not confuse us as we arc interested in a value, in the f'o11i1 of' a rawadic 

data structure being a string, and not in a name to which we want to a.ssig;n 

a data structure as value (as the pararreter c, being the na.rre of' a fo11ruJ a 

arTay., of Compute Taylor coe.fficients) . 

The next step is to introduce proced1Jres f'or introducing integral and real 

nurrbers. Here, however, we ar't'i ve at a difficulty. It would be very easy to 

declare the f'ollowing procedures: 

(Recall that we use the syrrbol ? for a semicolon occurTing in comment) 

ro:r11»JJ a procedure in ( i)? value i? integer i? 
• 

in:= if' i = 0 then zero else i.f i = 1 then one else 

if i = -1 then minone else 

constant ( inte gr-a.J number, i, 0)? 

f'o:r1r,1UJ a procedure 1·11 ( r)? value r? real r? 

b,eg:in i~teger h? h:= head of(r)? 

end 

rn:= i.f h = O then in(tail of(r)) else 

monadic(real nurnber,h,constant(O,tail of(r)),O)) 
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With. these procedures, however, we have to enclose each integer and each 

real number, 

respectively. 

the much more 
ridiculous as 

occurring in a fort1·1UJ a expression, in ''in( )'' and ''rn( )'', 

Thus we have to write: ''f:= in(1) + 1ir1(3.14) x Y!' instead of' 

sirrple expression: ''f: = 1 + 3 .14 x -::t'. 1I1hi s, of' course, is 

we have also a compiler which can very well see that 1 and 

3.14 are an integer and a real nurrber occurring in a formula expression. The 

problem is, however, that the conpiler should know that 1 and 3.14 have to 

be treated as i:f there stood in(1) and rn(3.14), so that there should be a 

means for letting the compiler know that this is the case. 'J:hj s neans 

is established by using as procedure identifier a very special one, so 

special that it can not be used :for other purposes. In fact, the identifier 

''constant +'' is used as procedure identifier instead o:f ,,in'' and the 

identifier ''constant '><' is used as procedure identifier instead of ''rn". 

Extra .,.,_.;; __...Ylrt as it may seem, we have the following correct ABC ~ 

procedure declarations.; 

:for1nula 2,roc~durc constant +(i); value i; integer i; 

constant +:= if i = O then zero else if i = 1 then one 
• 

else if i = -1 then minone 

else constant(integral nl...lIIlber,i,O); 

for-mu] a procedure constant x(r); value r; real r; 

begin in~e~r h; h:= head of(r); 

end· , , 

constant x:= if h = 0 then tail o:f(r) else 

n:onadic(real nunber,h,constant(O,tail of(r) ,O)) 

comrrent Observe that, i.f head of"(r) = O, the result is a data structure of" 

type integr~J number as the compiler automatically recognizes ''tail of"( r )'' 

to be an integral expression at a place where a for'I11ula expression is 

required. 

Observe also that with the above proced1_Jres only one data structure can be 

present representing O and only one data structure for representing 1 and 

only one for -1, the .formula variables re.fer-ring to these data structures 

being zero, one and mi.none. Tni tializing values to zero, one and mi.none 

should be done very care:fully as e.g. ''zero:= · O'' leads to a circular 

definition ( sorrething of' the style zero:= zero) . 
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Similar to procedures for treating nurrbers, we have to make procedures for 

treating a sum, a difference., a product and a quotient of two operands. 

Agaj n, proced1Jres of' the following fo:rlfn: 

f'o11nula procedure sm(a,b )? value a.,b? fo:riornula a,b? 

sm:= gyadic_(sum.,a,b)? 

:fo11r11ula procedur19 pt(a,b )? value a,b? fo1,nula a.,b? 

pt:= QYE!;~_q(product.,a,b)? 

would be useless., as a for1nula expression like ''x + 

be written as ''sm(x,pt(y ,z) )''. Therefore, proced1tres 

identifiers have to be declared: 

dyadic + f'or the + operator, 

dyadic - for the - operator, 

dyadic x for the x operator, 

dyadi9 / f'or the / operator, 

y x z'' should then 

with very special 

monadic + for the nnnadic + operator ( as in ''+x-y''), 

monadic - for the rronadic - operator ( as in ''-x+y'') . 

In fact, these procedures are operator definitions. It would have been 

possible also to introduce a special notation for them, say, ''operator 

+(a,b)''. The nethod of' using the already available apparatus for fo1·1rrula 

procedures together with very special identifiers tu·c7ned out to be arnazi 

ef'f'icient and simple, for the corrpi.ler writing as well as for lear1~j;ng the 

langLJ..age. Peculiar ·possible constructions are the result, such as: ''dy~dic 

+: = dyaqic( sum,a, b )'', which yields a dyadic data structure representing a+b. 

In the following procedures, we irnplerrent sane sirrple sinplifications as: 

O+a = a, 1xa = a., 2+3 = 5. 

The representation is such that no superfluous nurrbers occur. Therefore, the 

numbers occ1Jrring in ( 2+ 3) , or in ( 2+x) + ( 3+y) , or in 2x3, or in ( 2xx) x 

(3XY), or in (2/x) x (3/x) arc combined. The method is roughly as follows. 

If' e.g • ., the sum o:f two data structures, representing the forrnuJ ae a and b, 

has to be forn:ed., it is first checked whether a or b is zero, this not being 

the case it is checked whether a or b are nunbers, or whether they are of 

the form ''nurrber + fo:r1nula'' in which case nurr:bers are combined, this not 

being the case a dyadic structure is created to represent a + b. 

For the x operator and the / operator the sirrplifications with zero's and 

one' s are per:forrr.ed also together with the following transforirrations: 
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(x/y) X b --> (xxb)/y 

a x (u/v) --> (axu)/v 

{x/y)/b --> x/(yxb) 

a/(u/v) --> {axv)/u 

After these transformations have been applied., numbers are combined, so that 

(2xx) x (yx3) is stored as 6 x (xxy) and (4/x)/(2/y) as 2 x (y/x) • 

With respect to the - operator, we can be very short: a-b is represented as 

a + (-1) X b. 

A definition of the + operator might have been the following: 

fo1m1Ja pro~edure dyadic +(a,b)? value a,b? fo1·111Ul a a,b? 

~adic +:= if a = zero then b else if b = zero then a else 

if ''numbers can be combined" then 

oper on num(sum.,a.,b) else dyaclic(sum.,a,b)? 

• 

The process of combj .. ni ng nunt>ers is for all three operators ~·- st the same. 

In fact the two operands can be of' three forms: a number n., the sum 

(or product) of a nu1roer n and a non-nu1tber x., or a non-nunber x. There 

are therefore nine possibilities to be catered for. .And these have to be 

progt'8i,1red for the three operators., of which the / operator behaves slightly 

differently. The following procedure · does the whole job., f'or all operators. 
11he idea is to write a and b under all circumstances as n+x and m+y ( f'or 

a sum) and to deliver the result in the fo:r,r1 (n+m) + ( x+y) , where it may 

well be that some of the operands have the value zero so that the autorratic 

zero-si 1rplification takes care of' transfo11nations necessary to carry ( O+b) 

+ (a+O) over into b+a, in case that b is a number and a does not contain a 

nurr:ber cooponent. v.i. when it is evident that the result (n+m) + (x+y) is 

not rneaningfu]. the shorter dyadic(sum,a,b) is delivered. This is the case 
" 

when b does not contain a nurrber corrponent (nb = f'alse) and a is not of' the 

fo1·111 n+x (me = false) ( for nb and nx see the proced1;re below) . ; 



fo1,:r1ul a proc,ed~ corrb num(oper,a,b); value oper ,a,b; 
' 

end· , 

integer oper; for,rll1J a a, b; 

forrr~la n,m,x,y; Boolean nx,nb; J~teger ta,tb,oper2; 
real ra,rb; 

ta:= tYP.e o.f a; tb := ty;ee of b; nx:= nb:= ~alse; 

oper2:= if oper = quotient then product else oper; 

n:= m:= if oper = sum then zero else one; x:= a; y:= b; 

if ta = oper2 then 

begin i:f num(type or lhs of a) then 

begin nx:= true; n:= lhs of a; 
' 

x:= rhs of a 

end 

end else if num(ta) then begj~ x:= n; n:= a end; 
a 

if tb = oper2 then 

b~e;i !} if num( type of lbs of b) then 

begin nb := true; m:= lhs or b; 

y:= rhs of b 

end 

end else if num( tb) then pegi n nb: = true; 

y:= m; m:= b 

end; --
if nb then 

begi!! ra:= if ty;ee of n = integral nuniJer then lhs of n 

end; 
' 

rb ·-.-

. 

else corrpose(Ths of n, Ths of rhs of n); 

if ,ty;ee of m = integral nunber then 1hs o.f m 

else corr.pose(lhs of m, Jhs of rhs of m); 

ra:= i.f aper = sum then ra + rb else if aper = 
product then ra x rb else ra/rb; n:= ra 

comb num:= if-, (nx v nb) then 

cy~dic(oper,a,b) else 

if aper = sum then n + (x+y) else 

if aper= product then n x (xxy) else n x (x/y) 

fo:t.11ruJa procedure dyadic + (a.,b); value a,b; for,riula a,b; 
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' 

• 

• 
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dyadic +:= if a = zero then b else if b = zero then a 
' 

else comb num(sum,a,b); 

fo:r·1rn.1Ja Pr<?.~~dure dyadic - (a,b); value a.,b; foI"!rJuJa a,b; 

bf\gi!1 integer i; i:= -1; dyqdic -:= a+ixb end; 

fonnul.a procedure cyadic x (a,b); value a,b; fo1'Inula a,b; 

qyadic x:= if a = zero v b = zero then zero else 

if a= one then b else if b = one then a else 

if ~ype of a = quotient then ( lhs of axb) /rhs of a else 

if tyP,e of b = quotient then ( a x lhs of b) /ms of b 

else corrb num(product,a,b); 

fo11nuJa procedure dyadic / (a,b); value a,b; fornula a,b; 

~~die /:= if a = zero then zero else if b = zero then 

error(--1:zero denominator~) else if b = one then a else 

if type or a = quotient then lbs of a/(rhs of axb) else 

if type_ or b = quotient then ( a x rhs of b) / lhs of b 

else comb num(quotient,a,b); 

connent Besides the dyadic operators, we have the rronadic operators and the 

Boolean procedure num; 

fonrula £roced_ure ronadi.c +(a); value a; f'o1·r1ru.J½a a; 

rronadic +:= a; 

for1n1.Jla proced~ rronaclic -(a); value a; fo11r a a; 

rronadic -:= 0-a; 

Boolean proceq~ num( t); value t; :41,,tegE:r t ;. 

num: = t = integral number v t = real· nurrber; 

corment Next follows the procedure for defining the output 

The n1..urber of brackets arJr,eari ng in the output is rninim:i.l. 

operators are produced in constructions like: 

of a fo:r1nu.J a f'. 

l\loreover, • minus 



(-30 + ((((-1 X f) + ((-20 X g) + h)) + (7 X z)) + 

(((-1/k) + (-40/1)) + u))) 

which is output as: 

-30-f-20xg+h+7xz-1/k-40/l+u; 

proced~ output(g); value g; forrnuJa g; 

begi~ proce_dure op(f,env); value f,env; forrrruJ~ f; in~eger env; 

besjn corrment env denotes the operator of the environment, 

i.e. assuming that f" is an operand, env is the operator 

of which f' is an operand. As the values of swn., product 

and quotient are increa<,jng, it is not dif'ficult to see 

when brackets are necessa:r~: when the type of f' is smaller 

than env; 

integ_e~ t; t:= type off; 

if dyadic f' then 

begj n cormr:ent This is a third fo:rm in which we encounter 

a,yapic. Now it is a mnadic operator with f as operand 
• 

delivering the value true if f' is a dyadic data structure 

and the value false otherwise; 

if t < env then printtext({(*); 

if t = sum then 

begin first term:= true; get terms(£') end 
' 

else if t = product then 
• 

begin op(Jhs of f,t); printtext({x:f.-); 
' 

op(rhs of' f.,t) 

end else 

if t = quotient then 

be_e;i n op( lhs of f' ,product); printtext ( {/:}); 

op(rhs of' £',quotient) 

end; if t < env then printtext ( {) *) . 

end else 

if t = integral nurrber then 

befi?:!!: t: = lhs of' f; 

if t < 0 then 

b_egin if env * O then printtext(-4:(:f.-); printtext({-~) end; 

1- 23 

• 
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pr int num(abs(t)); 

if t < O ~ env * 0 then printtext({):J,.) 

end else 

i:r t = real nurrber then 

beg_!D real r,rO,AO,A1,A2,BO,B1,B2,a; i!lteger s,n; 
0 4-

r: = corrpose(Jhs of f,Ths of r.hs off); 

if r < 0 then 

pegl n if env =f O then print text ( -4: ( :J,.); printtext ( {-:J.) end; 

s:= sign(r); r:= rO:= abs(r); 

AO:= B1:= O; A1:= BO:= 1; 
for n: = 1 step 1 until 20 do 

~~gin a:= entier(rO + .5); rO:= rO 
' 

- a· , 
A2:= ax A1 + AO; B2:= ax B1 + BO; 

if abs( 1 - A2/(r X B2)) < 10-10 then goto RAT; 

rO:= 1/rO; AO:= A1; A1:= A2; BO:= Bl; Bl:= B2 

end; 

FWAT: n:= entier(ln(r) ~ .4343); 
r:= r x 10 T (11 - n); 
if r < 10 11 then begj:!2 n:= n - 1; r:= r x 10 end; 

• 

printtext(.,t.:J,.); pr int num(r); printtext(«t:10:J..); pr int num(n + 1); 

goto OUT; 
• 

RAT: pr int num(abs(A2)); B2:= abs(B2); 

if B2 ::f: 1 then b.es;n printtext({/:J..); pr int num(B2) 

our: ifs< o A env ::f: o then printtext({):J.) 

end else 

if t = alg var then 

!Jeejri irte~:i:~ i,l; 

proced~ pr char(w); value w; integer w; 

if w ::f: 0 then 

begin pr char(w: 256); prsym(w-w: 256x256-1) 
1: = length of rhs of f; 

end· 
I J 

end· 
ll , 

' 

for i:= 1 steE 1 until 1 do pr char(el i of rhs of f); 

if lbs of f > O then 

pegjn printtext({[:J,.); absfixt(2.,0,lhs off); printtext({]~) 
end end end op; 



Boolean first ter-rn; 

p_rocedure printplus; 

begin i.f • first ter,n then printtext (-i+*); 

.first term:= .false 

end; 
ii 

P.,roced:µre get terms ( .f); value .f; for111uJ ~ f; 
< 

begin cornrrent This procedures is called with as actual paraneter a 

sum. The terms of this sum have to be output preceded by the 

proper + or - operators, the first ter1n, however, should not be 

preceded by a+ operator; 

integer s,t; t:= type off; 

if t = sum then 

b~gin get ter'!ns(lhs of f); get te!"IIB(rhs of f) end 

else if t = product v t = quotient then 

begin if num( type of lhs of f) then 

b_egi n s: = sign( lhs of' lhs of .f); 

cornnent Note that the head of an XS real number 

contains the sign as does also the tail; 

i.f s = -1 then bes;i,.p printtext({-*); :first te1'll'1:= f'aJse end 

else print pltls; 

i.f lhs of .f = rninone At= product then op(rhs o.f f,sum) 

else begi9 op(s x Jhs o.f f ,t); 

i.f t = product then printtext ( {x:J.) else printtext ( {/~); 

op(ms or f.,t) 

end 

end else 

peg)~ print plus; op(f.,sum) end 

end else b~gin print plus; op(f,O) end 

end get terms; 

op(g,O) 

end output; 

p~cedure pr int n1..nn(n); value n; real n; 

if n < 10 then prsym(n) else 

besjn real m; m:= entier(n/10); 

pr int num(m); pr sym(n-mx10) 

end· 
I ' 

• 
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comrent The fina J. procedure to be declared is : ; 

fo1tt11UJ.a p~cedure e1-ror( string); string string; 

b~gi:p nlcr; printtext(s~ring) j exit; error:= 1 end;· 

connent All operators being defined and all procedtJres being decJarcd, it 

. mains to declare and initialize the constants:; 

inte~1., real nunt>er .,integral number ,alg var ,sum,product ,quotient; 
I bl 11 ~ 

• 

.fo:rnJUJa one= constant(2,1.,0).,zero = constant(2,0,0)., 
' 

minone = constartt(2,-1,0); 

real number:= 1; integral nunt>er:= 2; alg var:= 3; sum:= 4; 
product:= 5; quotient:= 6; 

b~.82.D conn:ent The pa:r:"'ticular pro~a,.T of sections 1.1 and 1.2 

should be placed here. For exanple, a calculation of 

sone Taylor coefficients, as described in section 1. 2, 

end· 
ti t I J 

end 

' 

may be programrr.ed as follows: 

procedt1re Conpute Taylor coefficients ( ... ) ? begin . • . end? 
• 
' 

fotun1Ja pr:ocedure der(f,x)? begin see section 1.1 end? 

fo11nuJa proced~ subst(f.,x.,y)? bAgin see section 1.1 end? 

b~g.i n fox1nu.J a x = av( .trl-) .,y = av( -4:y*) ,YP = av( {yp=t) ? 
' 

fonnuJ a arrey c[ 0: 10]? inteetr i? 

Conpute Taylor coefficients(yxy - ypxyp - 1,x,y ,YP .,O., 1.,c, 10)? 

for i:= 0 step 1 until 10 do 

bee;J.p nlcr? print(i)? output(c[i]) end 
end 

co1111Ent FinaJ ly, we cone to the last end of the program; 

' 
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2. Fo1,nal definition o:f ABC L 

Having introduced the language in the preceding chapter by ~ans of 

exa11ples., we now want a precise definition in this chapter. 

ABC ...... L is a pure extension of' ~ L 60,,..,r'\without the 

that we may re ·"yi • n from repeating the ""'-'·L 60 report. 

own concept, so 

The description 

given here consists of sorre BNF r1.JJes, some semantic descriptions and a few 

exa,nples. 'Ihe subdivision into sections is done in co1wrespondence with the 

subdivision of' chapters 5 and 6., so that it is easy to conpare the lan,.,., 

description of a certain syntactic variable with that part of the conpiler 

where this syntactic variable is treated. The description is top to bottom. 

In order to run the,....corrpiled pro,..,...,.....,,.,. Yn,,~, one has to add the run-tine system 

(section 4.8) of' Clo.L. L 60 procedures in front and two end's at the end. 

The result is a complete ..1..A,I L 60 progt~m which can be r~. The f'irst action 

of this progr»am is to read an integer, defjnjng the size of' the two arrays 

for storing fo1·rnuJae. Thus, on input tape an integer nust appear. For the EL 

- XB computer of the MC, this integer may be chosen equaJ to 15000 . 
• 

• 

2 . 1. Progrwn 

<program>::= <block>.i_l<compound staterr.ent>.i. 
• 

From this it f'ollows that ABC .,..,._ Lis not a pure i 2 extension or 
• 

as labels bef"ore the first block are not allowed, and a .i...must close the 

program. 

2.2. Block 

<block>: : = <block head> <corrpound tail> 

<block head>::= begjn <declaration with semicolon>I 

<block head> <declaration with semicolon> 

<declaration with semi.colon>::= <declaration>; 

<corrpound tail>::= <staterrent> end l<staterrent>;<conpound tail> 

1l'hj s is simila.r to the L 60 block. 



• 
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2. 3. Declaration 

<declaration>::= <for,rIUl a declaration> I <fot·rrIUJ a a:-rTay declaration> I 
<for1nuJ.a procedl..Jre declaration> !<procedure declaration> I 
<type declaration>!<~-~~ declaration>l<switch declaration> 

The first three declarations will be considered in this section; for the 

latter four we refer to the .... '"'L 60 report. 

2. 3.1. Fo:rmuJa declaration 

<f'o1m1JJ a declaration>::= fo1111UJ a <for·rrIUJ a list> 

<fo:r1nuJ.a list>: : = <.formula definition> I <.formula list> ,<fo11nula definition> 

<f'o1m..1l a definition>: : = <sirrple variable> <forrnL1l a initialization> 
• 

<:fo:r1rnJ1 a i ni tiaJ i zation>: : = <empty> I : = <f'or1nuJ a expression> I 
= <forrm1J a expression> 

<si.rrple variable>::= <identifier> 
• 

'Ihere a-re three different types of formula declarations: 

1. f'o1,1ruJa v1; In the block., a value of type forrrula may be assigned to v1 

and, after that, one may ask this value by placing v1 in an expression. 

2. f'o.r'!tllll a v2: = form expr; The role of v2 is the sarre as that of v1, except 

that., upon declaration v2 gets imrrediately an (injtial) value resulting from 

execution of the for1rruJ a expression ''for1n expr''. 

3. fo11r11.1J a v3 = .fo!·1n expr; The role of v3 is the same as that of v2, except 

that v3 may not be used for assignjng a value. It may be used only in 

an expression where it then denotes the value of the for,nula expression as 

calculated once upon decla,ration. Variables of this type will be called 

constant variables . 

In the following exarrple, the three different declarations are shown 

.functionally for the three variables aux, sum and x: 

begj:P fo:r,nula x = av( ~)cl.), sum:= 1.,aux; intemr i; 

for i: = 1 st~p 1 until 10 do 
• !=>~e;in aux:= sum x x; sum:= sum + aux x aux end 

end 



2- 29 

Declarations are executed from left to rigpt, so that '' .fo1111U.la x = av( <l:x:i-), 

f:= x+x'' is rreaningfl.D. The other order: ''forrrDJJa f:= x+x,x = av(~n)'' leads 
to an undefined situation and a run-time error will be the result. 

2. 3.2. forrrruJ a a1Tay_ declaration 

A forrnuJ a array decJ aration is defined as follows: 

<foI,riul a array declaration>: : = fo111IUJ a arrgy <a:t»ray list> 

For <aYTay list>, we ref'er to the L 60 report. 

Exa1rple: 

formuJ a §;rra.Y f'a1[ lb 1: ub 1] , ra2[ lb2: ub2, lb 3: ub 3]; 

One may assign values to the . elements and the a1Tay elements 1r19Y be 

used in fo1,nuJ.a expressions to denote their values. 

It is not possible to corrbine initialization and declaration as was the case 

for or'(ji na:r'Y f'o1•111UJ a variables. 

• 

For subscripted and f'or ordjna1:y variables of' type fo1,nuJa, run-tirre error 

nessages are given when they are used in expressions without having obtaj ned 

values beforehand. Run-tine error nessages are given also when constant 

variables ar-e used to assign values, either explicitly when they occur in 

the le~-hand side of an assigrurent statement (in which case a conpile-tine 

erTOr rressage is given) or implicitly when they are transf'erred as 

call-by-na.rre paraneters in procedure calls. 

2. 3. 3. Procedure decl,aration 

Procedt1rc declarations are alrrost the sane 

following aspects they dif'f'er: 

• as in L 60· , only in the 

specifiers one may use: fo11·nuJ a., f'onnula g.g:-r~ and 

fo1,r1U 1 a proced:i,i,re • 

2 • Let p be a fo1,,ia1 pc:;u. 

Boolean) p~_cedure, then 

specified also. 

ter specified as ( foinruJ a, real., 

the types of the possible pa.ra.treters 

,int~ger or 

of' p can be 

' 

3. One may use sone very special identifiers, oper'?-tor identifiers, 

declaring operators by rreans of fo1,1rul a procedures. 

4. The final action of a body of a forr,ruJ a procedure must be the assi 

to the procedure identifier. 

for 
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Syntactically, we may define the specification par·t in the following way: 

<specification pa~c·t>: : = <enpty> I <specification list>,; 

<specification list>::= <specification>l<specif'ication list>;<speci:rication> 

<specification>: : = <O ~".....,.~J.c;;.l..,L specification> l<fornal procedure specif'ication> 

\..U,,.I........ specification>::= <specifier> <identifier list> 

<Specifier>::= ~tr:ingl<type>l§:r~_l<type>_~·r.Tay I label I switch I 
procedure l<type> procedure I fut-.rtJlJ] al fo11nul a ?~T~ 

" 

<identifier list>::= <identifier> !<identifier list>,<identifier> 

<type>::= reallinte&:rlBooleanlboolean 

<fo1~1ria J procedure specification>: : = 

<foriinaJ procedure specifier> <fort1al procedure segrnant list> 

<fo1,na.J procedure specifier>: : = procedure I <type> procedure I 

fo1111UJ a procedure 

<fo1,ral procedure segrrent list>: : = <fo11na.l procedure segrrent> I 
<formal procedure segr,ent list>_,<f011ral procedt1rc segment> 

<fo1,-raJ. procedure seguent>:: = <identifier> <specification or p ::l-.1. ters> 

<specification of pararreters>: : = ( <type of pararreters list>) 

<type o.f pararr:eters list>: := <type of pararreters> I 
<type of p ,_ ters list>,<type of pararreters> 

<type of parameters>::= <enpty> !<specifier> I fox,m.l.la value 

The-effect-of specifying a fo:r-.rral pararreter of type fo2·111UJ a or of type 

forrnul a a~~ is that appropriate actions are taken when the pararreter 

occur-s in the body. 'Ihese actions depend on whether the p..ir;;;i.,,"T ter has been 

placed in the value list or not. 

If a fo1,rruJ a para:ITEter is placed in the value list, the value of the 

parameter is con:puted once and this value is used when the value 
actual 

of the 
formal pc;,,,u.,c;u,1 ter is needed in the procedure body. It is forbidden to assign 

a value to a .fo1·11ruJ a pararreter called by value. 

If a fonnuJ.a p ;;1...1, ;....i."'-.. ter is not placed in the value list., the value of: the 

act1.J.8.J P:ir<3II ter is con:puted each tirre it is needed in the procedure body. 

For such a pararreter, a formula variable can be the actual paraneter for 

which assignnent in the procedure body is possible. 



2- 31 

With respect to rrernory space used, we remark that a called-by-value foi-rnul a 

paraneter does not always cost much memory space for introduction of' a local 

fo1·rnu.la variable; on the contrary, very frequently creation of a local 

integer variable _< costing one word or menocy space, instead of three 

words for a forrnul a variable) is the only effect. It is for e.f'ficiency 

reasons that it is not allowed to assign a value to a fo11naJ p ter 
called-by-value. 

For a for·rra.l pararreter of type for1rnJl a array., we remark that, if' it occ1Jre 
i/ 

in the value list, it is wise to use the values of the .,.,,,. elerrents only, 

as assignrrent to the a ►rTay elements may lead to undefined results. One does 

not get an error rr.essage, however. If it does not occur in the value list, 

we have the usu.al situation where the values of the .....r.,.,........., elerrents may be 

used and where assignrrents to the a1"r .. ay elements are allowed. 

Concer1.1ing the fo11nal procedure specification., e.g. of·· the .for,n: 

''proce~ure proc(, ,str:ing~real,,a1:T_ey ,fo1~11t1J a,f'o11r1ul a value,,,)'' we remark 

that the actual pararreter should be a procedure with 10 pararreters, the 

type of' the .first two and last three may be anything, the type of the third 

should be a string, the type of the fo1~u·th should be a real, the type o.f the 

.fifth should be an array, the type of the sixth should be a called-by-nane 

rormul a and the type of' the seventh should be a called-by-value f'o1"'ffiUJ a. 

It is required that, if one has a f'orirral procedure p ~,..,. ter the actual 

procedu-c'2 having pararreters of type f'or1rruJ,Ja, the paraneters of this for-rnal 

procedure are specif'ied by reans of a foi,ra.J procedure specification. 

Althougp not required, it is advised to specify all 

this leads to shorter and faster ·ng object pro2raI 

2.3.3.2. Qperator ident,if'iers 

fo1irna.l parameters as 

(see section 4.6). 

'Ille procedure headings of' fo1111UJ a procedures, defining operators, should be 

of" a very specif'ic fonn, given below. 
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For the dyadic + operator: 

fo1,nt1Ja proce~~ gyadic + (a,b); (value a,b;) for11m11a a,b; 

For the dyadic - operator: 

fo.r:-rr11Ja pro,cedure_ dy~c - (a,b); (value a,b;) forwn1UJa a,b; 

For the dyadic x operator: 

formula proq_~d1;re gyadi_9 x (a,b); (value a,b;) forrnuJa a,b; , 

For the dyadic / operator: 

roxmil .a eroc~du~ _dyadic / (a., b) ; ( value a, b; ) foi1rruJ a a., b; 

For the • · . · c : operator: 

for-nuJ .. a proct:d~ dyadic : (a,b); (value a,b;) fo:r·1nuJa a.,b; 

For the dyadic i operator: 

fo11nula p~~d~ dyadic 1 (a,b); (value,a,b;) fvx•rtn.JJa a.,b; 

For the rronadic + operator: 

foimuJ a pro~edu;re ironadic + 

For the monaai c - operator: 

(a); (value a;) form1Ja a; 
• 

ror'!nµJ.a procedure rronadic - (a); (value a;) f'or,-nul.a a; , 

For the monadic integr•a.1 exponent operator: 

fo1,nuJ a procedtlre monadic T (a,n); ( valu..e a,n;) fo11rrruJ a a; integer n; 

For integral numbers in for,nul a expressions: 

fox,nuJ.a procedure constant + (n); ( value n;) int~Etr n; 

For real nurrbers in foiirlD...l)a expressions: 

:fo11ruJ.a PI:?~cedure constant x (r); (value r;) real r; , 

'Il1:e identifiers a, b, n and r may be replaced by others and all pa-rameters 

n:ay be put in the value list or not, indicated by ''(value a.,b; )''. 

The rreani.ng or the above operator definitions can be given only in 

cormection with for.rruJa expressions. 

Consider such an expression; if it is of the form: ''expr1 operator expr2''., 

then change it into: ''d:'fq~c. operator(expr1.,expr2)'' and do the same :for 
, 

expr1 and expr2. If it is of the .forrn: ''operator expr"'., chang}= it to: 

''monadic operator(expr)'' and do the sarr.e for expr. If it is an integer or a 

real:ir., then change it to ''constant + (ir)'' or ''constant x (ir)''. 

If the result of the chang-es is: ''dyadic i (exprl,in)''., where ''in'' is an 

integer consisting of digits., as ''2'' or ''31''., then change the result again 

into: ''monadic T (exprl,in)''. 
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The result is a polish for1n in which all operators are rerroved and changed 

into function designators. The identifiers of these function designators 

take on the fo1,n gyadic +., ••• ., constant x. The effect of executing 

the origina1 for1r1tJ.J.a expression is the effect of executing the virtual 

expression consisting of nested .function designators. Execution of the 

.function designators IIP.ans execution of the procedure bodies of the 

correspondjng forrrula procedure declarations after applying the pararreter 

substitution nechanism. 

It is worth while to describe here what the conpiler does. It changes the 

above operator identifiers into: S, D, P, Q, IQ., E, PL, MI, IE, IN and RN, 
so that we could think of the following for>.rr11JJ a proced11re declarations: 

for-rnuJa 2,rocedure S(a.,b); (value a,b;) fo:r,nuJa a,b; 
' 

• • • 

for'!nula procedure RN(r); (value r;) real r; 

Moreover, the corrpiler changes a for,1·ruJ a expression into polish prefix and 

changes the operators into S( , ) , ••• , RN( ) , taking due account of the 

priority r•ul es. 

Exarr:ple: x + y - (+a) x (-b)/c i 5 : 1024 i 3.14 is treated as: 
D(S(x,y),IQ(Q(P(PL(a),MI(b)).,IE(c,5)),E(IN(1024),RN(3.14)))) 

As a matter of fact, if' we had forbidden the progr,ainrrer to use operators, 

he would have been forced to use functions defined by formula procedure 

declarations. Now, the corrpiler is helpful and does the polish prefix 

translation. It is reasonable to ask the prograianer to define his operators 

by ITEans o.f sorre special operator identifiers. 

Note that integers and reals are not treated as such when they occur as an 

integra,J or real denotation only, i.e. with digits, point and little ten, 

but also when they occur in the fo1111 o.f a variable or function designator 

declared o.f integral or real type. From the above description it .follows 

that the compiler does not co:rri)ine integers or reals; i.e. ''1 + 2 + }t' is 

treated as ''S(S(IN(1).,IN(2)),x)''. This is fortunately the case: it may very 
• • • well be that the operator + has som very peculiar propert1.es. For exatrple, 

it is easy to define+ in such a way that (1+2) + 3 = 0 and 1 + (2+3) = 10. 
Due to sorre deeply lying reasons 

to declare operator identifiers 

declarations. 

(see section 4.5), 
within the body o.f 

it is not allowed 

forrru] a procedure 
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It does not need saying that operator identifiers may not occur in for'fr1ula 
• expressions. 

2 . 3 • 3. 3. f\ssiet ~;nt ,to fo.I~tlUJ a procedtlre ident,i,fie,;r 
• 

The fina,J action in a for"r1n.1Ja procedure body, when the body is left via the 

end and not via a jump to a label, should be the assi ui. nt to the procedure 

identifier. Run-time error rressages are gi.ven when after the assignation 

to the procedure identifier and before the end is reached sorrething is 

done involving creation of for,:nula values or calling or formula procedures. 

Run-time errors are given also when the procedure identifier has not 

obtained a value anyhow. This restriction does not hold for other type 

procedures. The reasons for this restriction are: efficiency of rremory space 

(without the restriction one would nearly always need extra local variables 

introduced by the corrpiler) , the fact that in other languages ( e . g. AWOL 

68) this restriction is also present and the fact that the prograrnmer can 

himself create very easily a local variable if' necessa·r•y at the cost of' 

memory space. 

2 • 4 • St aterrent 

We have the ordinary staterr:ents as in L 60 together with a formuJ a 

assignment statement. Moreover, function designators and procedure 

statements may have variables of formula type and formula expressions as 

actual parameters. 

A formula assignrrent statem=nt is defined as follows: 

<for~IUJ a_a.ssignrrent statement>::= <left pailt list> <forn·1ula expression> 

<left par·t list>: := <left par·t> l<lefi part list> <left part> 

<left par·t>: := <variable>:= !<procedure identifier>:= I 

<operator identifier>:= 

For variable and procedure identifier, we refer to the 

<operator identifier>::= swadic + lgya~c -lcy~~i~ xi dyadic 

qy_adic : l~adi_c i lrronadic +lrr.onadic -lmonadic 11 . ' 

constant +!constant x 

L 60 

/) 

report. 
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1Ibat a formula assi .......,._....,. nt staterrent is useful for assigning a for,rula value 

to a ro1·1nula variable or a forrrR1la procedure identifier (either in the fo1:1n 

of an ordina1,y identifier or as an operator identifier) is evident. 

With respect to for staterr.ents, we remark that the controlled variable may 

not be of fo1·rriuJa type. 

I\Jote that it is not allowed to assign a fo11r1UJ a value to the lhs., or 

the rhs., or the i-th el of a fo1mula variable. For a discussion or this 

restriction and another construction, 

described in section 2.6. 

2. 5. _Expression 

we refer to the replace mechanism 

There are several expressions: 

fo:r1·nu1.a expressions. 

Designational expressions are 

Boolean expressions are the 

arithrretic,. Boolean,. designationaJ. and 

defined exactly the sarre as in L 60. 
L 60 Boolean expressions with one extension: 

a Boolean prj mary may also have the fo:r·rn of a category enquiry., to be 

specified in a moment. 

Fo11ruJ a expressions and ari thrretic expressions are extensions of the 

60 arithrretic expressions. The extensions being: 

1. an arithmetic primary may also have the form of a fo111iuJ a enquiry, a 

length enquiry or a type enquiry., 

2 . a fo "'l'vi~ pri,..,..~ may also have the for,11 of a fo1,r1UJ a enquiry,. a fo111uJ a 

base or a string. 

hermore, ari thnetic primaries may occtJr in foi~iul a expressions and 

formula primaries may occur in arithrretic expressions. From this it follows 

that, syntactically, there does not exist any difference between a for1nuJ.a 

exprc:Jsion and an arithrretic expression. Being a for111ula expression or an 

arithmetic expression follows from the context only. 

The f"o1•riRJ~la bases and the enquiries are the elerrentar-.y tools for creating 

for1nuJl ae and for inspecting them. Syntactically they are defined as follows: 



<for11u].a primary>::= < L 60 prirrary>l<arithrretic primary>! 

<fon11UJ a variable>l<foi1nu.la enquiry> !<formula base> !<string> I 
( <form11 a expression>) I <fOI"'lnuJ a function desigriator> 

<ari thrretic primary>: : = <.-1..L.. ,.. ... ,,.... .... L 60 primary> I <fo:r,1nJl a pri ma:t-y> I 

<fonr1ula enquiry>l<type enquiry>l<length enquiry> 

<Boolean prirra.ry>: : = ~ L 60 Boolean primary> I <category enquj ry> 

<forn111J a base>::= constant(<type>,<int arith expr>.,<int arith expr>) I 
monadic(<type>,<int arith expr>.,<formu.la expression>)! 

dyadic( <type>,<fo:r~mJJ a expression>,<formula expression>) I 

P9¾7adi_c(<type>,<int id>,<length>,<formula expression>) I 
• 

rowadic(<type>,<int id>,<length>,<int arith expr>) 

<type>::= <int a.rith expr> 

<int arith expr>::= <arithmetic 

<int id>::= <identifier> 

<length>~ : = <int a:ri th expr> 

• expression> 

<fo:r11ltl] a enquiry>: : = <kind of enquiry> of <fornD.J.la name> 

<kind of enqui:r,y>: := lhs lrhs lel <arithrretic expression> 

<type enqtti ry>: : = type of <forrrLUl a_narr.e> 

<length enquiry>: : = _ler1gth of <forii:nula name> 

<fo:r,1,uJ a nan:e>: := <fo11rn.JJ a pri,.....w. > 

• 

<category enquiry>: : = constant <for·rrJUl a name> I rr:onadic <forYauJ a name> I 

9lad.:ic <for1truJa narre>lpolyaclic <forrrula narre>lrowadic <formula narre> 

There are sorre restrictions to the values of the integral arithrretic 

expressions occur:r:i ng above: 

1. The value of <type> should be non-negative and not exceed 30. 
2. The value of <int arith expr>, occurring as third p ,,..,. ..11, 

base, should, in absolute value, not exceed 2 117 - 2. 

In polyadic and rowadic bases, the identifier serves 

identifier; i.e. if this identifier is ''i'' and the actual 

is ''fi'', the base consists of a row of elerrents created as 

staten:ent were executed: 

for i:= length step -1 until 1 do calculate fi. 

ter in a constant 

as a ''Jensen'' 

fourth parameter 

if the following 
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Exanple: polyadi,c(10.,i,n,x1i/i) creates a structure., with type 10 

and category polyadic, consisting of the first n terms of the su111 

x 1 1/1 + xT2/2 + xT3/3 + ••• ; it is assunEd that x is an algebraic 

variable. 

Another example: rowadic( 11.,j ,m,digit(j]) creates a struct1Jre, with type 11 

and category rowadic., consisting of m integers: digit[ 1], ••• ., digit[m], 

wich may be., for exarriple., the integer decorrposition of a large integer with 

r spect to sorre base • 

The enquiries fo11i1 the counte.rpa1•t of the forrriuJ a bases. With them we can 

investigate the structure of a given formula value. Their relation to the 

:forn11J a bases is displayed in the following table. Assuming that f is being 

created by a statement of the fo1-rn: f: == constant ( t ,n,m)., the lhs of r., the 

ms off and the type of f deliver the integers n, m and t, respectively; 

when the Boolean priinacy constant f is used, it delivers the value true.,· 
• 

while m::>nadic f., ..• , rowadic f deliver the value raise. Note that category 

enqui -ries might also have been called ''predicates''. 

A sjmilar explanation applies for the other rows of the tables. 

Not always is each 

as aritnrretic pri 

The table contains , 

allowed or that one 

fort1IUJ a enquiry allowed to be used as fo111n.J.J a pritnaY'Y and 

, even if the object being enquired seemingly exists. 

there fore, 

is forbidden 

entries to indicate if both primaries are 

entries of the three coll111r1s lhs, 

two rows, the upper syrrbol refers 

leading to a I'Ul'.1-tiJTE eITor IIESsage. The 

rhs and el i, consist of two synbols at 

to the use of the enquiry as a fonr1LJJ a 

the use of the enquiry as an arithrretic prin,, • primar,y, the lower one to 

The symbol ? neans erroneous use, which ultimately will lead to a run-tinE 

• 

error. The symbol / reans : unusual, but allowed. ( see the discussion , 

below). The symbols n, m, a, b, fi, ni, t and 1 stand for quantities being 

introduced in the .first colUitn. The colurms ty2e and ~e~:i.g!,?h contain entries 

re.ferring to the use of the enquiry as an arithrretic primat~ only; other use 

is not possible. The last column denotes which category enquiry will deliver 

the value true. 
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f 

constant(t ,n,rn) 

n:onadic(t ,n.,b) 

gyadic(t ,a,b) 

P9ly_adic(t,i,l,fi) 

rowadic(t,i,l.,ni) 

lhs rhs el i tyt}!= leneth category 

? • 

n 

n 

a 

a 

I 
I 
I 
I 

? • 

m 

b 

b 

b 

b 

I 
I 
I 
I 

? 
• 

? • 

? • 

? • 

? • 

fi 

fi 
? 
• 

• m 

constant f 

t ? • 

roonadic f 

t ? • 

t 
poJ.yadic f 

t 1 

rowadic f 

t 1 
• • • • • 

From the table, it follows that one has to be careful in using enquiries in 

a for,-nula. expression; if the result of an enquiry is a number it may not 

directly be used in a fo1111111la expression. Instead, this number should be 

assigned to an integer variable and this integer variable may then be used 

in the fo1'InuJa expression. 

Exarrple: ''f:= constant(1,1024.,2048); f:= lhs off+ rhs of f'' leads to an 

error rressage, whereas: 

''f:= constant(l.,1024,2048); i:= lhs of f; r:= rhs of f; 

f:= i + r'' 

leads to the creation of a formula ''1024 + 2048'', provided i and r have been 

decl a1ed as integers. 

As has been stated already, an arithrrEtic primary may appear in a for1nula 

expression (except if it is a fo:r1nula enquiry delivering an integer). 'lhis 

is of course very useful as we no1·1na.J ly have that the data structures, which 

we call for,11t1l a values:, contain as terminal nodes integers ( real numbers 

have to be deconposed into integers) and the ABC ALGOL prog·rarnrrer has to be 

able to describe these integers by means of aritrnretic primaries. 
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'lhat fo1:'fluJ a primaries may appear in ari.thrretic or boolean expressions is 

not so obvious. For., what is the value of :f+g, if f and g are both foI,r11JJ a 

variables; their values are of quite another type: bina~r-y trees, so that 

adding f' and g is meanj ngless. There is, however, one application wt.ii ch 

makes the possibility to have foI,nuJa prina.ries in boolean expressions 

useful. Consider the statement: ''if f = g then ..• else •.• ''. If f and g 

both ref'er to the same object, i.e. are identically the sarre, occupying the 

sane rreroory locations, the value of ''f = g' is true; if this is not the case 

the value of ''f = g' is always false. 

In """"" st all reasonable forinuJ a manipulating systems one applies the 

one-and-zero sirrplifications. 'l'hj s irrplies that there is only one ''one'' and 

only one ''zero'' in the system. In such cases it is very neanjngful to test 

on ''f = one'' or ''f = zero'', instead of the much rrore elaborate testing on: 

''if f is a number and, if so, is the value of that nurrber equal to the vaJue 
of one''. 

It rrnJSt be stated explicitly that the test f = g does not invoke a corrplete 

investigation on the two tree structures, refers:t€d to by f and g, whether 

they are equivalent. 

Concer,~1ing the boxes containing /, we remark that polyadic and rowadic 

structures arc represented by rreans of dyadic and monadic structures. Ir f 
is a polyadic(rowadic) structure., then: 

leng~h off= lhs off 

el i of f = lhs of rhs of • • • rhs of f, 

where the r.hs o.f enquiry has to be perforrred i tines. If f is polyadi c, el i 

of f delivers the reference to a fo111ruJa, otherwise it is an integer. 

A fo11nJUJa prj11iary may also be a string. For 

''f: = -ithis is a string:f..'' leads to a :foI1rr1t1J a value referred to by f., 

may enquir-e in the following way: 

tlP,~ off results in 31 
rowadic f 

' 

length of f 

results in true 

results in 6 

exa.Irple: 

which we 
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f evidently tux,..J.S out to have becoIJE a rowadic struct1Jre consisting of 6 

ele1r.ents. These elen:ents are obtained by grouping the symbols of the string 

from le:rt to right in pieces of three syrrbols: r, 

integer r x 256 i 2 + t x 256 + s, where r., 

t, s and computing the 

t and s are the internal 

representation of the three symbols. 'l'hi s internal representation is the MC 

resym value increased by one (in order to be able to mark the absence of a 

symbol). If the number of syn:bols in the string is not a n1UJtiple of 3, one 

or two ''absent symbols'' are added in front of the real symbol. in the above 

case the 6 elements o:f fare given by: 

IR(thi),IR(s i),IR(s a),IR( st),IR(rin),IR(??g) 
where m conputes the integer and ? denotes an absent symbol. 

2.6. The proce~u_re replace 

As rrentioned already in section 2. 4, it is not possible to assign something 

to the lbs, rhs or i-th el of a fo11nula variable. This means that a tree 

struct11rc, once being the value of a for'.tllUJ a nane can, in principle, not 

be changed. In this section we shall see that, if one insists, the tree 

structure can be changed by rreans of an alm:Jst hidden and secret proced1J.rC 

''replace''. 

Why are we reluctant to give an ABC L progra.rrrrer elegant linguistic 
neans to change his tree. In other languages these are no11rial ly available. 

The reasons are five-fold: 

Firstly; if one allows no1-rria.1. changes of tree structures, cyclic structures 

will be created. With cyclic structures., however., it is absolutely necessary 

that the ABC ~ L prograrrur.er can set and test bits in his data.structure. 

For~ if e.g. an output routine mtlSt be written, how can one be sure that one 

does not run into infinite loops, otherwise than by marking those pru:'ts of 

the datastructure which have been treated already. 

Secondly; we wanted to provide a watertight system of auxi.liary procedures 

in chapter 3 f'or general use in for·1nula manipulation. It is., however., very 

hard., if' not irqpossible, to construct such procedures in which a user can 

change pa:r1ts of the value of a fo11r1ula variable. In chapter 3, the for1nulae 

are assumed to have a specific fox-rn; desastrous ef'fects would result 

from changing this form a little bit. Circular structurea would ruin the 
functioning of these procedures completely. 
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'Ihirdly; for efficiency reasons., called-by-value p~ ters are treated in 

a special way ( see chapter 4); i.e. a local integer is created and the 

reference to the value, calculated once, is assigned to this integer. A 

special marking bit is inspected to see whether it is necessa1~ to create 

a new narr.e for saving this value. Assignment in the procedure body is 

prohibited, either directly by the corrpiler, or later by the run-tine 

system. If assi ....... - nt to ,,Ths of rhs of el 5 of r' were allowed, it is 

difficult to use this marking-bit technique. 

Foux·thly; in common practice the following program piece: 

''f:= x; g:= f" + f"; f:= y; 

leads to: g = x + x and f = y . With assigrurent to the lhs o.f f, however, the 
outcome of: 

f; J hs of f: = z'' ''f:= X + Yj g:= .f + 

would not beg = (x + y) 

y) and f = z + y which is 

exa1rJple. 

+ (x + y) and f = z + y, but g = (z + y) + (z + 

contrary to what one might expect from the :first 

A fifth less sound 

to lhs of 

reason 

r was, 
for being hesitant with irrplerrenting 

that we could not well judge all 

the 

the 

consequences; al though, for the compiler, it would not have given rtILJ.Ch 

problems. 

Forbidding the change of a given data.structure at all would have been too 

restrictive; therefore., .for an ABC ....... L progranmer, 1mowing thoroug,nly 

the details of the system, there has been included a way out . This way is, 

however, not provided with any error checks. Following this wey, one has 

to be absolutely sure of what one does, as the system does not give any 

protection. 

The run-time system has been provided with a procedure ''replace'', which 

non-existent ABC L could have been declared by: 

''p~ce,d11,;re_ replace( f ,left ,g); value f ,left ,g; 

fortnuJ a f ,g; Boolean left; 

if left then l.hs of .f: = g else rhs of f: = g; '' 

• 
in 

If one wants to change the i-th el of f, this may be done by a staterrent of 

the form: 
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a:= f; for i:= i step -1 until 1 do a:= rhs off; 
" 

replace(a,true,g) 

In chapter 3, the :replace mechani srre is used in order to make the 

si rrplification process rrore efficient ( less inefficient) . 

2.7. Error rr.ess2ges ap(?. ~nd of._, c~!!P,i~ation 

The errors can be divided into the following classes : 

1. Syntactic errors with an erro:rnessage of the following f'o11nat: 

erro <ln> <errortext> <su1> <Su.2> 

where <111> is the line nunber of' the first synbol ( including lay-out) of 

the syntactic unit under consideration which directly caused the error; 

where <er:rortext> describes the type of error, e.g. ''nr of' param not 

O.K.'' or ''for list elenent of type foI:tJ:lILlJ ri' or ''id not declared in .fo1m 

exp~'; 

where <su1> is the syntactic unit under consideration; 

and where <su2> is the syntactic 1.mit already read but not yet treated. 

A syntactic uni.t is the smallest piece of text which can be read by 

sirrple low-level procedures. (finite state automata). 'Ihe basic syrrbols, the 

identifiers and the numbers are syntactic uni ts. 

When the errortext is ''synt unjt not OK", the above 

followed by: 

'>synt ur1jt should be: <su3>'' 

• error rressage 1s 

where <SU3> specifies the syntactic unit which the conpiler required, but 

which was not there. The reaction of the compiler is to treat the text as if 

the required syntactic unit had been jnserted. 

,...Th,....e corrpiler goes on to treat the text and produces a (hopefully) correct 
L 60 program. 



2- 43 

2. Se:rrnntic errors with an error rressage of the above fo11rat. The e1Tors 

are now due to overflow of tables, . e.g. ''inf list too small'' or ''too nu.ch 

identifiers''. The user is advised to corrpare chapter 8 for the restrictions 

inposed by the corrpiler. 'Ihe compiler stops translating. 

3. Run-time errors occ1rrTing during the :..,.. L 60 conpilation of the conpiled 

program, which are due to the fact that the ABC u.. L compiler does not 

check the ABC ~ L program thoroughly. E.g., Booleans arc not tested for 

declaration. 

4. Run-tine errors detected by the AFC 

rr.essage has the .following for~at: 

L run-tine sys tern. The e1"'l~or 

<errortext> 

linenurrber~ at previous entries: 

<11> <12> <13> <14> <15> <16> <17> <18> <19> <110>. 

where <errortext> describes the type of error, e.g. ''protection error'', 
or ''type in const not appropriate'', or ''index in el not appropriate''. 

<11>, ••• ,<110> give the line nwlbers of the first symbol of the 10 blocks 

executed rrost recently, <11> denoting the line nurrber of the last block. A 

procedure body courtts for a block. 

'Ihe further execution is discontinued. 

Run-time errors detected by the L 60 system resultjng • lll a 
discontinu_ation o.f the execution and an e1-ror rressage refe1Ti ng to the line 

of the ...... · L 60 program causing the error and an error number for which we 

re fer to the mantml o.f the u.. L 60 system [ 5] • 

6. Unforeseen other errors during the corrpilation due to a non-ideal 

corrpiler. These erro:r-s should be reported to the author. 

The compilation o.f an ABC ""'....,L progr-arn is finished by printing the time in 
• 

millihours (nh) needed for the co:rrpilation. 
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Being an extension of .n.l..i L 60, ABC 

derivations of ~ · L 60 such as SI . ._."-" 

L can best be corrpared with other 

[2], L W (17], ALGOL 68 [18] or 

FoI'lrlUJ.a L [ 15b] • 

The extensions of ABC .ALGOL with respect to ALGOL 60 are twofold: 

1. Creation, change and deletion of arbitrary data structures, 

2. 1he possibility to redefine the operators +, -, x, I etc. 

With respect to the second extension, the language may be compared with 

L 6 8, where the comm:,n operators and new operators can be de fined 

together with a priority. The priority does not need to be the srure for 

a gi. ven operator- defined in several blocks. The rrethod of de .fini tion, by 

means of an o ·,,... . ....._"11'1 routine declaration, resembles very much our rrethod of 

definition by means of a formula procedure declaration. We, however, have a 

fixed set of operators with fixed priority. 

With respect to dynamic data structures we take a record declaration in 

ALGOL W as exairple: 

''record node(strjng info,i,!ltege,r col; reference(node) lef't ,right)''. 

In ABC -.i.i"",· L we can not prescribe the forrra.t of a data structure by rreans or 
this form of declarations; we have to declare a fo:r,nula procedure: 

'' foz-rnu.J a. proc~-~ure node (info, col, left, right); 

formu.Ja info,left,right; integer col; 

node:= dyadic(1,info,monadic(2,col,dyacµc(3, 

if type of left =t= 1 then error else lef't, 

if twe of right =t= 1 then error else right) ) ) ; '' 

and each tine we need a new node we can call this procedure: ''new node:= 

node{~:xyz~,5,left node,right node)'', where ."new node'' has been declared of 
type fOl11ll.il a. 

In ..... L 68 one can ask for ''col 

· L thi.s is done, • as ID 

of node'' or for ''lef't of node''. In ABC 

by: ''col(node )'' and ''lef't (node)'', where 
''col'' and ''left'' are declared by: 

,, . t .......... (. ) ,J.P. e~r p~cedu:ry= col n ;value n; fonnul.a n; 

if tyPe of n; 1 then error else col:= lhs of _rh_s_of n; 

fo11rn.1J a proc~dure le.ft (n); value n; forrrula n; 

if type of n ; 1 then error else left:= lhs of ms of n·'' , 
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Note that • 
in ...... .... "" L W and ALGOL 68 the ''declaration'' of both the structtJre 

. 

and the ''field selectorl8'' is done irmediately with the declaration of the 

struct11re, whereas in ABC L this has to be done separately by 1neans 

or procedure declarations. On the other hand., the ABC ..... L n:ethod is rore 

flexible, ,,-,n in the sense that the value of one f'OI1'.tlIUJ.a variable may have 

several foz,riats., e.g., it may first be the short_:integer O., then the string 

~xyz~, then the dyadic structure {:xyz:J. + ~abc:}. This is acconplished by the 

following statements: ''f:= O; :f:= {:xyz:f.; f:= f + {abcf'. In .. -... L 68 this is 

also possible by n:eans or uniting, a corrplicated coercion process, however • 

. Corrparcd with S it is evident that ABC ~~L lacks the parallel 

process racility and interprocess equipnent. The elerrent and set concepts 

reseoole, however., the ABC ' - L data structures. 

Fo11r1Ul. a ...... ,,,..,,. has been designed primarily for fonnula manipulation. Compared 

with ABC ....... '-JL., we observe that in both lan~- ""j.._s dynamically changing data 

structures and operator definitions are possible; in For1r1ula L in a much 

more general ro1111., however. 

With respect to the inplerrentation we remark that the efficiency of ...... the 

run-time system really matters; not the efficiency of the corrpiler. 'lh:i s 

run-tine system consists of a set of 25 sirrple ALGOL 60 procedures:, 

occupying a few pag-es only. They -manipulate with one integer· axTay. To 

transcribe these procedures into machine-code is not a hard problem and the 

result will be a considerable increase of perfo1,-nance. It is planned to do 

this for the COC C ...... ....... computer. 

In not using dirty machine-code., but remaining at the high L 60 level 

f'or the run-titre system as well as for the conpiler, we have achieved a 

highly portable system (an irrportant concept in sof'tware engineering) and a 

very lucid system which may prove to be of educational value. 
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In this chapter., a con:plete system will be • given • for automatic 

s:i roplification of speciaJ.., but uently occurTing., fo1:1nt1l ae. 'Ille system is 

provided with a subsystem of ABC L procedures for automatically hand.Jing 

long rational numbers; i.e. quotients of long integers. Long integers are 

bounded in size by the total available storage capacity only and not by the 

word size. 
'Ihe system is a small one., which may be re µJ. v..,ed as the core o:f a bigger 

system., not described in this tract. 

Problems in fo:tirrruJa manipulation most uently involve si 1rplification of 

sirnple sums of sj rrple t~nrs; each teim being either a sJrrple factor or a 

product of sirrple factors; each sj 11-ple factor being a number., an algebraic 

variable or an integral power of an algebraic variable. Moreover., quotients 

occur; but 11l8ni pulations involving _quotients are noI1na lly ca¥rTied out as 

manipulations of the numerators and denominators being sirrple sums. 

In an earlier fo1111ula manipulation system [ 11 J, automatic cancelling of 

greatest corm:on divisors in quotients has been built in, with the effect 

that o · ;;.i.a.""'"' formula manipulation programs run very slowly while the gcd 

co:rrputations were meaningful in one percent of the cases only. 

G. ten Velden [ 16] constructed a system of sin:plification procedures 

enpha.sizing at the most optimal use of rrennry space at the cost of execution 

time. 

3 .1.. lhe representation of the fox-mulae 
a a :a a I ,I • ' I ■ I IF £ a 

The key idea of the system of this chapter is to represent the fo11mJ.Jae in 

their sirriplified form., in which they have the general for'!n: 

n l[i] 

f = l c[i] TI a[i.,j] 1 e[i,j]., 

i=1 j:1 
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where n > 1, c[iJ ~ O, except when n=1 and 1[1] = o, in which case c[1] may 
be O, where l[i] > O (l[i] = 0 rreans we deal with a number only) and where 
the a[i.,j]'s are algebraic variables and the e(i,j]'s are integers> 1 .. 

'Ihe orderil1g o:f the algebrai c variables in a ter1r1 is deterrr,i ned by some 
' . ' ~ 

priority nurrber pr(a[i,j]), which is a positive integer different for 
diff'erent algebraic variables. 
We adopt the notation: 

a[i,j.] <. a[k.,l] if' and only if pr(a[i.,j]) < pr(a[k,l]) 
and we say that a[i,j J · ''comes before'' a.[k,l]. 
The ordering in a term is such that: 

-~ 

a[i,j] <. a[i.,j + 1], 1 < j < l[i]. 

'Ihe ordering of' the terms is de :fined as follows: 
• 

• 

l[i] • . 
"' 

• 

Let t[i] T e[i,jJ - c[i] II a[ i ,j] -
j=1 

l[k] 
and t[k] = c[k] IT a[k,j] T e[k,j], 

j=1 

• 

then the f'ollowi ng algorithm deter,ni nes the ordering: 

for j := 1 step 1 until min(l[i] ,l[k]) do 

if a[i,j] <. a[k,j] then goto before else 
if'-, a[i,j] = a[k.,j] then got9 after else 

if e[i,j] > e[k,j] then goto before else ... 

if e[i,j] < e[k,j] then K9t~ after; 
if l[i] > l[k] then goto bef'ore else · .. 

if l[i] < l[k] then go~p after; 

• 

• 

equal: apax't .from numerical factors t[i] equals t[k]. 
before: t[i] comes before t[k] : t[i] <. t[k]. 
after: t[i] comes after t[k] : t[k] <. t[i]. 

• 

• 

• . . 

• 

' 



• 
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It does not need saying that the ordering of the terms t[i] of f is such 

that t [ i] < • t [ i +1 J , 1 < i < n. 

Hence, if' a single number occurs, it is the last teim. 

The above ordering will be called canonical order:iM. 

The system has to apply the simplification process for every operation of' 

the fo1111ulae, which is time-cons · ,..,._ The big advantage is , however, that 

the sj1,plification process itself can be made fast due to the fact that we 

can make full profit of the sjqilified fo1,n of the fo.t.1nL~.lae. 

The representation of &W fo11n11l a f is as follows: 

f' = po)yadic(s:i11ple sum,i,n, 
0 

dy?-clic( O ,c[i] ,~~die.( O, . 

. rowadic(O,j,l[i),pr(a[i,j])), 
rowadic(O,j,l[i],e[i,j])) 

) ) . 

In the above representation, l[n] may be· equal to zero, which obviously 

rr.eans that the last teI,11 is a nwnber. 

To get pr(a[i,j]), we sirrply have to ask for: 

el(j] of lhs of rhs of el i of f 

or, if one wants to go along all e[i,j ]' s consecutively, one may perfor1n the 

:following algorithm: 

p: = f'; if lenf'ith of f < i then got~ error; 

for k: = 1 ~tep 1 until i do p:= rhs of p; 

p:= ms of rhs of lbs of p; 

ii' lepfitl~ of p < j then so~.o error;· 

ror k: = 1 step 1 until j do 
. d 

begin p:= rhs of p;e[i,j] := Jhs of p end. 
; 
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A consequence of the fixed chosen .fo11riat is that a simple algebraj c variable 

or a single number needs a lot of storage space . Thi s is , however, no 

problem at all since the system is made for sittations in which there occur 

very ''big'' .fortnulae. Only initially, when the numbers and variables a 

treated occurTing in the expressions, this storage space is wasted. As soon 
as they are used, however, as building stones in the ''big'' fo11r1ul ae., they do 

not occupy any storage space due.to the automatic garbag-e collection. 

As one may have observed 8Jready., it is not the algebraic variable a[i,j] 

itself which is 1Jsed in the representation of the .forYnuJ a .f, but pr(a[ i ,j]) 

instead. 'Ihis is for efficiency reasons as the integer pr(a[ i,j]) is used 

very frequently, whereas the algebraic variable itsel.f is used only when 

output is needed. The output for a[i,j] is defined as a string and is 
the k-th element of' the inverted list ''stringstring'', k being equal to 
pr(a[i,j]). 

Concemi ng quotients we remark that it is possible . that a .fo11Jn.1J.a f is a 

quotient but then the numerator and denominator arc sirrple sums; therefore., 

transfo111riations are per.fonred which transfo11n a quotient of' quotients, a 

product of quotients and a sum of quotients into one quotient, of two sinple 

sums. The latter quotients are called sir1ple quotients. 

3.2. How to use the system 

After declaration of" the standard procedures (if they are not • yet put in 
the lib,....,...u.'1"71 of st ~ procedures) , one can write ABC L 

progTam, according to the .following conventions: 

1. Algebraic variables have to be introduced by neans of' the proced1Jre ''av'', 
• 

with as acttJ.aJ 

variable. 
pa·~meter a string being used for the output of the algebraic 

2. Output rnust be produced by a call of ''output'' with as actual pararreter 
• • 

the fo11i1ula tq be output • 

3. Use of the ordi arithmetic operators leads to 
. ·' 

automaticallY 
• 

sirr-plified fonnu.lae represented in a fo1~n described in section 3.1. 
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4. The system knows three types of nunt>ers: short integers, being integers 

in absolute value less than the nt.U'Ilber base ''radix'', long integers, with 

a magnitude not restricted by the word length, and rationa.1 numbers, being 

pairs of two conm:,n-di visor-free integers, of which the second one is 

greater than one. 

The representation is as follows : 

short integers: constant(short integer,s,O), 
long integer 1: rowadic(long integer.,i,n,d[i]), 

with 
' 

n 

1 = d[i] x radix i (i-1), 
i=1 

sigi(d[i]) = sign(l), except when d(i] 

equals O, and abs ( d[ i]) < radix 

rational nunber r: gyadic ( rat numb .,nurn, den) ., 

with num and den two corrmon-divisor-f'.ree long o:r short 

integers or which den is greater than one. 

The radix has been chosen equaJ. to 10 1 6, but this can easily be. changed. 

The only requirement for the radix is that the basic arithmetic of the 

machine can 1r1UJ tiply and add two integers, in absolute value less than the 

radix, correctly. For the EL X8 the floating-point arithrretic handles the 

rnuJtiplication and the addition of two integers coi~ctly if the result 

is less than 2 1 40; therefore radix equals approximately 2 1 20. It is 

errphasized that o...,; · integers for the EL X8 are bounded in size by 2 i 
26; it is, therefore, possible that an ordinary integer is treated by the 

system as a long integer. 

Occ1.1r"t'Cnce of an integer in an expression (e.g. -1234567) leads to the 

introduction of a si1nple sum consisting of one sirrple term being the product 

of this integer-and an enpty list of algebraic variables. (For the exarrple: 

poly:adic(sjmple sum,i,1:,<&:ad;ic(O, 

rowadi c ( long integer ,j ,2 ,if j = 1 then -234567 else -1), 

gyap.ic(O,rowadic(O,j,O,O),rowadic(O,j,O.,O)))).) 

Using the arithmetic operators +., -, x, I and i., the latter one with a 

(small) integer as exponent, one can operate with the nunbers without any 

troubles. As the ABC ALGOL compiler has no knowledge of long integers or 
rational nuni:>ers, it does not transfer: 

a= 123456 789101 112131 415161 718192/122232 425262 728293 



into a rational nl1rrber. 'lhi s should be done as f'ollows: 

r:= 1000 000; 

a:= ((((123456 x r+789101) x r+112131) x r+415161) x r+718192)/ 

((122232 x r+425262) x r+728293); 
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If the only use of' the system is to manipulate long ntmbers, the ovemead 

in the .t'onn o:r sj nple surns and en:pty lists may become awkward and too 

inefficient. It is then possible to operate directly on the numbers by neans 

or the procedure: 

f'ozmuJ.a proceq11re aper on nt1m( aper ,a.,b) 

where aper specifies the operation and a and b specify the operands. One is 

advised to consult section 3.4 for further details. 

' 
3. 3. 'Ihe ;er:ocedures o~ the sy_ste,m 

beVD 
integer sinple sum.,sirrple quotient,sum.,product,quotient, 

short integer,long integer,rat ntmb,radix,avcntr,i,j; 

formula zero1 = constant(O,O,O),onel = constant(0.,1,0)., 

rrrlnone1 = constant(0,-1,0), 

stringstring:= constant(O,O,O), 

durr1ey variable = dyadi_c( O,rowadic(O ,j ,o ,o) ,rowadj c( 0 ,j ,O,O)), 

zero = polyadic( 3,i, 1 !lgya¢,c( 0 ,zero1,dwr11y variable)), 

one = poJyadic(3,i,1 ~gyadi c(O ,onel,dun1tr& variable)); 

avcntr:= short integer:= O; long integer:= 1; rat numb:= 2; 

radix:= 1000 000; sirtple sum:= 3; sJrrple quotient:= 4; 

sum:= 5; product:= 6; quotient:= 1; 

begin 

fo1·1nuJ a procedure av(s); value s; for,nuJ.a s; 

pegin integer i,j; avcntr:= avcntr + 1; . 
• 

strj n,g,tri ng: = d,yadi~_( O, s .,stringstring); 

av:= polyadi c(sirrple sum,i,1.,dyadic(O,one1,dyadic(O, 

rowadic(O ,j ,1,avcntr), . 

rowadic(O,j,1,1)))) . 

end av; 
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for~rrula procedure find string(priority); value priority; 

;inte_ep,;c priority; 

begin integer i; fo11rruJ a ptr; ptr: = stringstrj ng; 

for i: = avcntr-1 s~ep -1 until priority do ptr: = rhs of ptr; 

find string:= lbs of ptr 

end find string; 

fo1:1nul a p~cep.~ constant+(n); value n; ~teger n; 

begip ~~teger i,j; 
constant+:= if n = O then zero else if n = 1 then one else 

p~~yap.i,Q.(si1rple sum,i, 1.,dyacq_c( 0, 

if abs(n) < radix then (if n = -1 then minone1 else 

constant(short integer, n, 0)) else 

rowadic(long inte~r,j.,2, 

if j = 1 then n - n : radix x radix 

else n : radix), 

durnnw vari.able)) 

end constant+; 

integer_ procedure comp terms(a,b); value a.,b; .for1r1U~la a,b; 
' 

co:rrment corrp terms delivers 1 if a <. b, O i.f a = b and 

-1 if b <. a, a and b re.fer toayaqi,c ( 0 ,rowadic( .•. ) ,rowadic ( ... ) ) ; 

.~gi l} for1riul a avptra ,avptrb, expptra, expptrb; 

inte&er aip.,akp,eip,ekp,la,lb,p,min; 

avptra:= lhs of a; avptrb:= lbs of b; 

expptra:= rhs of a; expptrb:= rhs of b; 

la:= length of avptra; lb:= lengtl~ of avptrb; 

min:= if la < lb then la else 

for p:= 1 p~eE 1 until min do 

lb· , 

begin avptra:= ms of avptra; avptrb:= rhs or avptrb; 

aip:= Jhs of avptra; akp:= lbs of avptrb; 
if" aip < akp then goto before else . 

if aip * a.kp then ,goto after else 

begin expptra:= rhs of expptra; expptrb:= rhs of expptro; 
eip:= lhs of expptra; ekp:= Jhs of expptrb; 
if eip > ekp then 5oto before else 

if" eip * ekp then got~ after 

:nd end; 
' 



if la > lb then S2_to before else if lb > la then goto after; 

equa.J : comp te1111S : = O; gpto out; 

be fore: carp terms : = 1; goto out; 

after: conp tei,rJS: = 
out: end corrp terms; 

-1· J 
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comrrent The next two procedul"'CS serve to put a list of foz,nu.l ae and a list 

of integers, in reversed order, in a polyadj c or rowadic structm'C; 

fo111ruJ a proc,e,5iux;= reverse f"or,nuJ a( f); fon1ul a f; 

~egl [l reverse .fo1fl1ula : = J hs of f; f : = rhs of f end; 

integer procedure reverse integer(:f); foz,rIUJ.a f; 
a a 1 • 

b~gi n reverse integer : = J hs of f; f : = rhs of f er,d; 
• 

• 

corrJTent The above procedures are applied as follows: 

pol.yadic( ••• ,i,n,rcverse fo1~ula(f)) 
or rowadic ( ••• ,i,n,reverse integer(f)). 

' 

Another auxi l.i-at'Y procedure is append, to reverse a list of the first n 

fo11rnJJae or integers given by g, into another list and append it to f; 

P;r<?,C.!=~1;rc append( f ,g,n,dy); value n,dy; fo1'11lt1J a f ,g; inte~r n; 

boolean dy; 

if n > 0 then 

begjn again: f:= if dy then d.yadjc(O,Jhs of g,f) else 

roonadi.c(O,lhs of g,f); 

if n > 1 then b~gin n:= n-1; g:= ms of g; ppto agajn end 
end append; 

.fo11nuJ a pr:oce~ured,ya,~i c+(a,b); vaJ ue a,b; fo111ruJ.a a,b; 

if a = zero then gyadic+:= b else if b = zero then dyadj.c+:= a else 
' 

if tyP9_ of a= sinple quotient then 

dyadic+:= i.f type of b = sirrple quotient then 

(Jhs of ax rhs of b + lhs of bx rhs of a)/ 

(rhs or a x rhs of b) else 

(lhs of a + b x ms of a)/rhs of a else 

if typ9 of b = sirrple quotient then 
ctiadic+:= (a x ms of b + lhs of b)/rhs of b else 
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begi p _µi~eSt?r lf ,la,lb, v; boolean nexta,nextb; 

forr11UJa ta,tb ,pa,pb ,f ,co; 
t-.h f lb 1 th f b next a·.= nextb ·. = true,· la:= le!?:f---?v o a; :=, eng o ; 

f:= zero; lf:= O; pa:= a; pb:= b; 
agajn: if la= O A ne:xta then 

beg:i"n if nextb then 
pefQn if lb; O then pb := rhs of pb end 

else lb := lb + 1; 

lf := lf + lb; append(f, pb, lb, true) 

end else 

if lb = O "' nextb then 

begin, if nexta then pa := rhs of pa else la := la + 1; 

lf := lf + la; append(f, pa, la, true) 

end else 

bein if nexta then 
• 

begjp la:= la - 1; pa:= rhs of pa; 

end; if nextb then 

ta:= 1.hs of pa; nexta: = false 

begjD:, lb:= lb - 1; pb:= rhs of pb; tb:= Jhs of pb; nextb:= false 

~nq,; v:= comp terrns(ms of ta., rris of tb); 

i.f v = 1 then b~EQ_f:l, f:= gyadic,(O,ta.,f); nexta:= true end else 

if v = -1 then ~gjp f:= gy~~c(O.,tb.,f); nextb:= true end else 

begi,n co : = oper on num( sum, Jhs of ta, J bs of tb); 

if co * zero1 then 

f : = gy~9-i_c.( 0, dy~dic( O, co, rhs of ta), f) 
. ' 

else lf := lf - 1; 

nexta: = nextb: = tI,ue 

en~; lf:= lf + 1; gQto a.gain 

end; 

<&adj c+:= find nunber(l.f ,Jhs of f ,reverse forrr1ula(f)) 

end i:::radic+· =:.L • ' , 

formul,,a p~cedure find number(k.,ft,ot); value k;integer k; 
fo1,n1;l A. ft , ot; 

begi !°1 ~t~ger i j fOI'!IIU,J a f; 

if k = 0 then bPgip. find number := zero; goto out end else 
if k = 1 then 

b,egin f := ft; if rhs of f = durrnw variable then 
b~ejn f:= lhs of f; 

• 

• 



i.f f = zero1 then find nUITDer: = zero else 

i.f f = one1 then find number:= one else 

find nurrber: = polyadi,c ( si n.rple 

dyadic( 0, f .,durrinJY variable)); 

goto out 

end ~nd; 

• surn,1,1, 

find ntutber:= polyadic(six1iple sum,i.,k,ot); 
' 

out: end find number; 
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co1r1rent In the above proced1.Jre, we profit from the fact that sinple sums ar 
canonically-ordered. In the sane way we define the :following procea,.1re :for 

an elementa:r•y· multiplication of' two te1111s a ard b; 

• 

foimula procedure elt rrult(a,b); value a,b; f'orz1iula a.,b; 

bep;,iri ,1/lt~g-e,r i.,j .,lf; int,e1Y4:~ @!:-r§Y l,vi.,ei[1:2]; 

boolean ar£§Y next[ 1: 2]; 

f'or~r1ula ef., vf; fo1·111ul a §1-l:ZN v ,e[ 1 :2]; 

v[1]:= rhs of a; v[2]:= rhs of b; 
for i:= 1,2 do 

begj n e[ i J : = rhs of v[ i J; v[ i]: = lhs of v[ i]; 

l[i]: = ler1g~p of v[i]; next[i] := true 

end; 
$ I I 

lf:= O; vf:= ef:= zero; 
again:ror i:= 1.,2 do 

if l[i] = 0 ~ next[i] then 

bepjn j : = 3 - i; if next[j J then 

pepj !1. if l[j] ; 0 then 

bee~in v[j] := rhs of v[j ]; e[j] : = rr,s of' e[j] end 
end else l[j] := l[j] + 1; 

lf : = lf + 1( j ] ; 

append(vf,v[j],l[j],.false); append(e:f,e(j],l(j].,false); 
goto out 

" 

end; 

.for i : = 1., 2 do if' next[i] then 

bec'i:in v[i]:= rhs o:f v[i]; e[i]:= rhs of e[i]; l[i]:= l[i] - 1; 

vi[i]:= lbs of v[i]; ei[i]:= Ths of e[i]; next[i]:= faJse 
' 

end; 
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if vi[1] < vi[2] then i:= 1 else if vi[l] > vi[2] then i:= 2 else 

p,egin i:= 1; ei[l]:= ei[1] + ei[2]; 

next[2] := true 

end; 
lf:= lf + 1; vf:= nonadic(O,vi[i],vf); ef:= monadic(O,ei[i],ef); 

next[i] := true; got9 again; 
I I 

out: elt mult:= ,Siladi,~(O,oper on num(product,lhs of' a,Ths of' b), 

if lf= O then durrmy variable else 

gyadi,c(O ,rowadic(O .,i.,lf ,reverse integer(vf))., 

rowadic(O,i.,lf,reverse integer(ef)))) 

end elt rruJ.t; 

forrm.1Ja procedure <t7adicx(a,b); value a,b; for,nula a,b; , 

if a= zero vb= zero then gyadi~x:= zero else 

if a = one then dyadi,cx:= b else · 

if b = one then dyadicx:= a else 

if tYE§; of a = si Jll)le quotient then 

gyad;i-,~x:= if type of b = s::iinple quotient then 

(Jhs of ax lhs of b)/(rhs of ax rhs of b) else 

(Jhs of ax b)/ms of a else 

if :tlpe of b = sj,1rple quotient then 

cyadicx:= (a x lhs of b)/rhs of b else 

bPgin co:rment 

The next algorithm describes the process to for,n the product of two sinple 

sums and to make one sjrrple sum of it in a highly efficient way. The key 

idea is again to use the fact that the terms of the si 1rple sums are ordered 

canonically. 

Let 

n m 

a= ta[i], b = I tb[j] 

i=l j:1 

n m 

and f =ax b = I I ta[i] x tb[j] 
i=1 j=l 
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We consider each teI·,r1 t = ta[i] x tb[j J as to have attached to it two 

numbers i and j , called the location of t. t is nember of one of the 

following three sets: . 

N: the set of all not treated terms, 

P: the set of all pa~r•tially treated terms., 

C: the set of all conpletely treated terms. 

The algorithm consists or rerrovaJ of all terms, 

N via P to· C in such a way that the terms are 
in a certain order, from 

consecutively put into C in 
their final canonicaJ. ordering. 

candidates for removal to C. 
P serves as a reservoir of te11r1S which a:re 

• 

Jnj_tially P consists of all terms with location (i,1).,i ... ,n, C is 
empty and N contains 

Until P is errpty, 

operations: the first 

this elerrent be(i,j), 

N to P. 

aJ.l other te1,ns . · • 

the algorithm repeatedly performs the following 

element of Pis moved .f'rom P to C. Let the location of' 

then, if j < m, the te1111 ta[i] x tb[j +1] is moved from 

The first element of' P, defined as.the eleIIEnt preceding all other elements 

of P in canonical ordering, has the interesting property that it not only 

precedes the other elements of P but also those o:f. N. We will show this by 

proving that the following property, called th~ predeces_sor prop~rtY,, holds: 

For every teI!l1_ t,. with location ·{p ,q), in N, · there. exists 

a teim sin P with location (p,k) such thats <.t. 

The terms is called the predecessor oft. • 

From t = ta[p) x tb[kJ ands = ta[p] x tb[q] it follows 

tb[k] <. tb[q]. Moreover., :rrom the predecessor property it 

that· k < q since 
' 

• • 

follows directly 

that the first ele:rrent. of P has the desi~d p_rop~rty·. 

The predecessor property holds initially. We., theref'ore, have to prove that 

• 

it is invariant during the course of the· algorithm.· 

Consider the first ter,n f with location . ( i ,j ) in P., 

and., if j < m, remove s = ta(i] x tb[j+1] from N to P. 

Remove it .from P to C 

'!bi s gives the sets 
' . 

Ass · that the predecessor, property holds for P and. N, we 
' . .. ' ' . .• 

P1.,C1 and N1. 

shall show that it holds for P1 and N1. Take an arbi t <;,.,I.A., te1,n t from N1. 
·•·•- . ·• ... ~ 

Let pt be the predecessor o:f t in P. If' pt is identical to· f we know that 

the location oft m1.1St be (i,k). 

<. t, since the value of k 1nuJst 

From f <. t, and f <. · s it now follows s 
•• • 

exceed, the value. of' j+1 (from s * t). Hence 
> • ' ., 

s is the predecessor of t in Pl. If pt is ~ot identical to f' the predecessor 
' 

of' t in P is still in P1. 'I'.hi s proves the invariance-. . 
> • e • 
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Prooi the predecessor property it follows that, when P is enpty, N is e:rrpty 

s.o that C con ·. · all terms. We remind that each tine a te1--rn is moved to C 

it precedes all terms which are not in C. 

C is inpletrented as a linear list. 'lhe orde -· of the list elem:nts is 

the reversed canonj. cal ordering~ P is i rrplemented as a linear list o.f terms 

Md locations. The location elements follow directly the elements o.f their 

oorrespanm ng tez,ns. The ordering of the te1arn elements is the canonical 

o.rdering. Observe that more than one location may follow a te1,n due to the 

pos.sibility that two t.e1,ns can be combined into one. '!he structure of' P is 

as follows: 

loc tenn lee loc ter,n loc 

'!he cells, pointing to ten11S., are dyadic structures and the cells, 

oontainjng the locations, are rronadic structures.; 

jptea!:~ i,.j ,,.n,.m,k,loc,ct; foiml) a a1.,b1,p ,c, t, tt ,.f ,g; 

n: = length of a; m: = ,le!Jg~ of b; 

if n > m then ~gi!} i:= n; n:= m; m:= i; a1:= b; bl:= a end 
_..;el ...... se __ · ·. begin al:= a· bl•= b en·d· - ,,11'-i... J • , 

' 

if n = 1 then 
• 

~k2.!! f:= lhs of ms of a1; g:= bl; c:= zero; k:= m; 

for j := 1 step 1 until m do 

begj!J: g:= rhs of g; c:= dy~dic(O,elt TfIU]t(.f.,lhs of' g) ,c) end 
and else 

.~Si:!!! fo11111la 2~ ta[ 1 :n], tb[ 1 :m]; 

t:= al; for i:= 1 ~~~p 1 until n do 

pesj,[! t:= rhs of T; ta[i]:= lhs oft e;nd; 

t: = bl; for j := 1 ,st~;e 1 until m do 

be&!! t:= ms oft; tb[j]:= lbs oft end; 
! I 

c:= p:= zero; k:= O; 

for i:= n steE -1 until 1 do 

p:= dyadi(?(O,elt mult(ta[i].,tb[1]), 

mnadj c{O,i x 1000 + 1,p)); 

for i:= i While p ; zero do 

~fi!:!!. if QYftdi C p then 
' 

• 



• 

begin t:= lhs of p; if Ths 
begin c:= dyadic(O,t,c); 

p:= rhs of p 

o.f t * zero1 then 
k:= k + 1 end; 

• 

e~9; 

loc:= Tos o.f p; i:= loc: 1000; j:= loc - ix 1000; 

if j < m then 

beg1n t:= elt I11UJt(ta[i].,tb[j+1]); tt:= rl:1s oft; 

f':= rhs of p; g:= P; 

f'or i:= i while f * zero do 

begin if dy,adi,c. f then 

pegip ct:= conp terms(rhs of lhs of f',tt); 

if ct = 0 then 

begjn replace(g,f'alse, 

dyadic(O,dyadi_c(O,oper on num(sum, 

lhs of t, J hs of J hs of' f) , tt ) , 

n:onadic(O,ix1000 + j+1.,ms off))); 
goto out 

end else 

if ct = -1 then goto repl 

end; 

g:= f; f:= rhs off 

end; 

repl:replace(g,.false,dyadic(O,t,nnnadic(O,ix1000 + j+1,f))) 
end· 

V , 

out: p:= rhs of p 

end end; 
I 

<&~~ex:= find number(k, lhs of c ,reverse .fo1,rJU] a( c)) 

end dyadicx; 

fo1111UJa E~~edure cyadic/(a,b); value a,b; fo111it1Ja a.,b; 

begin if type of b = sj [tple sum then 

bep;i .n if' l~,rgt~ of b = 1 then 

bPgi!) if rhs of el 1· of b = durr1ey variable then 

pegin integer i; 

dy_~dic/ := po.l~a¢.c_(sjnple sum.,i, 1.,gyadic(O, 

aper on num(quotient,one1,Jhs of el 1 of b), 

dlJDIJ:tY variable) ) X. a; . 

goto out 
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end end end; 

dyadic/:= if a= zero then zero else 

if ~ype of a= sinple quotient then 

(if type of b = ~jniple quotient then 
' 

(Jhs of ax rhs of b)/(rhs of ax lbs of b) else 

Jhs of a/(rhs of a x b)) else 

if type of b = :::ti1rple quotient then 

(a x rtis of b)/lhs of b 

else gyadic(sirr.ple quotient,a,b); 

out: 

end dyadic/; 

fortnula :er?cedurc monadic+(a); value a; fo11rula a; monadic+:= a; 

forttlUJ a proce,dure_ monadic-( a); value a; for'l11U1 a a; 

begin integer i; i: = -1; rronadic~: = i x a end; 

fo1,·nuJa i:>roc~dure ct,vad;i.c-(a,b); vaJue a,b; fo11rnJJa a,b; 

gyadic-:= a+ (-b); 

fo:r1n1ula p~ed~ rronadic1 (a,n); value a,n; 

formula a; ~t~ger n; 

monadic1:= int pow(a,n); 

for'1111..lJ a procedure qyadi c J ( a ,n) ; value 

bepjp if type of n = si11ple sum then 

pegin if ~eng~ll of n = 1 then 

a ,n; foxirrula a ,n; 
' 

';)e€£in if rhs of' el 1 of n = dun1ey variable then 

begjn if typ~ of' lhs of el 1 of n = short integer then 

bezjn ~adici := int pow(a,lhs of lhs of' el 1 of n); 
' 

goto out 

end end end enel;; 

error(<tn in exponentiation not of integral type:1,-); 

'lt: 

td dyasn-c 1; 

m1J]a prqcedU;re int pow(a,n); value a,n; for1rD1la a; i;nte~r n; 

1 = O then int pow:= one else if' n = 1 then int pow:= a else 



if n < 0 then int pow := one / int pow(a, -n) else 

if ty~ of a = sj11ple quotient then 

int pow:= int pow(lhs of a,n)/int pow(ms of a,n) else 

if a = zero then int pow:= zero else 

if,.....,lepg~h of a = 1 then 

bep:in int~ser i.,j ,l; :f011nuJ~ b = el.1 of a,c = rhs of rhs of b; 

1 := ~en.gth of c; 

int pow:= po.J yadic, ( sinple sum.,i, 1, dy,a9i, ~ ( 0., 

int pow nUin( lhs of b .,n) ., 

• 

end else 

if 1 = 0 then d1J1r1r.ty variable else 

dy,adic ( O ,lbs of rhs of b, 

rowadic(O.,j,l,el j of c x n)))) 

begin for1r1UJa b; b:= int pow(a,n : 2); 

int pow:= if n = n: 2 x 2 then bx b else ax bx b 

end int pow; 

.for1r1Ula proce~ure int pow num(a,n); va.lue a.,n; 

.fo:r'ftiula a; ~nteg§:r n; 

if n = 0 then int pow num:= one1 else 

if n = 1 then int pow num:= a else 

~g:i!1 fo1muJa b; b:= int pow num(a,n : 2); 

int pow num:= if n = n: 2 x 2 then 

oper on nurn(product ,b ,b) else 

oper on num(product.,a,oper on num(product,b,b)) • 

end int pow num; 

procedure output ( f); value f'; fo1,nuJ a f; 

if :f = zero then printtext(..t O :J..) else 

i.f :f = one then printtext(-4 1 ~) else 

if type off= sinple quotient then 

't:?,:e,sJ n printtext ( -cl ( ~) ; output ( lhs or f') ; 

printtext({) / (~); output(ms off); printtext({)~) 

end else 

beg:Ln inte~p 1.,11,i ,j ,k,m; 

fo11mJJ ~ coeff .,pointer1.,pointer2 ,pointer3; 

1: = length of f; 

for i:= 1 steE 1 until 1 do 
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beg;!} po··.· .inter1:= el i of f; 
,111 ( . I 

coeff:= lha of pointer1; 

pointer2:= rhs of rhs of pointer1; 

pointerl:= lhs of rhs of pointer1; 

11:= .+.~!1Pl½h of pointer1; 
if 11 = O then outputnumber( coeff) else 

~gjn if coeff = one1 then p:rinttext({ + *) _el_s_e 

if coeff = rrdnone1 then printtext({ - *) 

~8? !} outputnumber( coeff); print text ( {x:1-) 

for j := 1 step 1 until 11 do 

~:!J if j f 1 then printtext( {xt); 

else 

end; 
0 

pointer 3: = find string( el j of pointer1); 

k:= l~!::f:!::P of pointer3; 

for m:= 1 ~t~p 1 until k do 

p (el m of pointer3); 

m: = el j of pointer2; 

if m :t 1 then 

beg:ip printtext(-41~); prnum(m) end 

end 

end 

end 

end output; 

P· : ··., ~ prchar(w); value w; ipte~r w; 

if w * 0 then 

~f2:!l P . · • (w : 256); prsym(w - W : 256 X 256 - 1) end· 
I F ' 

Proqe9:~ pmum(n); value n; int,eger n; 

~f?-:!! if n > 9 then pmum(n : 10); 

prsym(n - n: 10 x 10) 
end; 

' 

in_~ger prqc ... .. eITOr(s); stpji:J5. s; 

~E2:!1 nlcr; print text ( s); if lene:th of constant ( o, o, o) = 
error:= 1 

end· 
,111 14 1oa,J 

1 then ; --
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cornrrent 'Ihe above system of procedtJres is corrplete but .for the procedures 

''aper· on num'' · and ''output num'', to be described in the next section. In 
• • 

section 3.6 we give an alter11ative for the sjnplification proced1Jres. 

3.4. ';[he rational-nt~~~r system 

The system knows two types of nuni:)ers: 

1. the rational number r represented as: 

dyadic(rat nU1nb,num,denom), 
• 

where num ·. and denom am integers representing the corrnnon-divisor-free 

nunerator and denorni nator ( > 1) , and 

2. the integer n either in the foz,n of a 

2.1. short integer represented as: 

constant(short integer,n,O) 

or as a 

2.2. long integer represented as: 

rowadic(long integer,i,l,d[i]), 
where d[i] is the i - th corrponent in: 

1 

n = d[i] x radix i (i-1). 

i=1 

It is assumed that abs(d[i]) < radix and sign(d[i]) = sign(n). 

The· procedures to be described are ordered from bottom to top. In order to 

understand their working we give the following top to bottom description. It 

should be enphasized that the theory is given in de Roever [ 13] and Knuth 

[7] . 
• aper on num(oper,a,b) transfers control to oper on n1.w11 • 

• oper on num1(oper,a.,b) corrputes the desired arithmetic .function by rreans 

of: rnsum, I1t'1prod, rinv, isum and iprod . 

• .r11sum and r-r·1prod conpute the sum and the product of two rationals., • using: 

isum, iprod, iqr, igcd and st rat • 

. rinv conputes the inverse of a rational number> using isign and invert. 
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and quotient of two long .iat.D> iprod and iqr coopute the sum, product 

integers, using: add, nult, iqrs., idif., isign, iabs, 

lint and get 'r"YI ..• 

signdi :f, len, sint , 

• • 
• igcd con:putes the grieatest conm:>n divisor of two long integers., using isum, 

iprod, iqr, igcds.,signdif, sint, lint, len and el • 

• igcds conputes the gcd of two short integers, using iqrs, sint, iabs and 

sigr.dj_f • 

• add and rwJt conpute the sum and the product of two long integer-a using the 

available basic integer arithmetic • 

.. iqrs oonputes the quotient and cor+esponding remainder of a long integer 

and. a short one, using invert., isign., sint., lint, get axiray and len • 

• id.if ...... · tes the difference of two long integers, using isum and invert . 

.. isign corrputes the sign of a long or short integer • 

.. iabs con:putes the absolute value of a long or short integer., using invert . 

• signdj f' conputes the sign of the difference of two long or short integers, 
ooing isign., len and el • 

• in'Vert eooputes the negative of a long or short integer, using sint , lint 
and get - · .. ·" 

• st rat, lint and sint store a rational , a long integer and a short integer, 
resp • 

• el(l,f) delivers the 1-th elenent of the long or short integer :f • 

• len{f) delivers the nunber of elements into which the long or short integer 

f has been deconposed with respect to the given base radix. Leading zero's 
are not taken into account • 

• get Sl'Tey(f ,i,low,up,ai) fills the elerrents ai of an integer array with the 

elenents of the 101"\g or short integer f in reverse order, using Jensen, s 
device .. 

Next, we have the following procedures for the output : 

• output.number prints a nunber, using isign and outputint • 

• outputint prints an integer, us:i .. ng pmUin and zeroos • 
• pm1,aa1 pr:i.nts a small integer . 

. t . t • zeroos prJ,n s lead1 ng zero s. 

· lly, we have the following PI'OCediJ1'Cn for inputtjng a long integer: lo 
int and li to be used. as follows: 
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The long integer a= 435512 642890 000000 010123 is introduced in the system 

by means of the statement: 

a:= lo int(4,li(li(li(li(0,435512),642890),0),10123)). 

The sign convention asks that all integers have the sarre sign. 'Ihere:fore, b 

= -a has to be introduced as follows : 

b:= lo int(4,li(li(li(li(0,-435512),-642890),0),-10123)). 

By writing a as : 

a:= (435512 X 1000000 + 642890) X 1000000 + 10123 

the result would not be a long integer but a simple sum consisting of one 

term bej_ng the product of the desired integer and an errpty list of algebraic 

variables. Hence, writing: ''a:= Jhs of el 1 of a'' would have the desired 

eff'ect. 

Observe that ''a:= 435512 642890 000000 010123'' would invoke a rt.m-tirre error 

caused by integer overflow. The run-time system tries to assign this long 

integer to an o · - ;...l..L ( srnaJ l) one. As has been said already, the conpiler 

does not do the transfer to long integers.; 

integer teller; 
' 

for1ra1J a procedure 

sint := if i = 

sint(i); value i; integer i; 

O then zero1 else 

if i = 1 then one1 else 

if i = -1 then rninone1 else 

constant(short integer, i, O); 

fo1·1nuJa proced,1Jre lint(i, length, ai); value length; integer i, length, aj; 

bepin boolean b; 
b := trµe; i :=length+ 1; 

f'or i : = i - 1 while i > 1 .... b do if ai = O then 

length := length - 1 else b := false; 

i := 1; 

lint : = if length > 1 then rowadic ( long integer, 

i, length, ai) else 

if length= 1 then sint(ai) else zero1 

end; 
Ii 

fo11nu] a procedure lo int (length, value); value · length; 
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int~~.r length, value; 

lo int:= lint(teller, length, value); 

in~gtt~ procedu:r:-e li ( lef't., right); value right; 

int~eP.,r left., right; 

if teller = 1 then li := right else 

bezjn teller:= teller - 1; li := left; teller:= teller+ 1 

~nd; 

in_:t~ger: :eroc~ure len(f); value f'; f'or,nu1 a f; 

len : = if constant f then 1 else le!Jgth of f; 

;µ-it~~r, Eroced~ el(l, f); value 1, f; forrnla f'; ,;integer l; 

el : = if constant f then 

(if 1 ~ 1 then O else lhs off) else 

(if 1 > 0 ~ 1 ~. lengtp off then 

el 1 off else O); 

;erocedure get 
NP 5! h ; (f, i, ow., up, ai); value f, low, up; 

formula f; int~B,€'.l~ i, low, up., ai; 

if-constant f then 

~gj p for i : = low step 1 until up do 

ai := if i = low then lbs of f else O 
end else 

begi9: formuJa pointer; integer 1, k; 

pointer : = :f; 1 : = le~t,:q of .f; 

k : = if up - low + 1 < 1 then up else 1 + low - 1; 
for i := low step 1 until k do 

begig pointer : = rJ:1s of pointer; ai : = lbs of pointer 
end; 
4 ·-

for i : = k + 1 step 1 until up do ai = O 
end· , 

formula proced~ iabs(a); value a; forrnuJa a; 

iabs := if isign(a) < 0 then invert(a) else a; 

int~_ger procep.~ isigp(a); value a; for111til.a a; 

isign := if constant a then sign(Jhs of a) 



• 

else sign(el leng½h of a of a); 

.for,rn.11 a Pz:-o.ce~U:f1!3 invert(a); value a; fo1,rnJla a; 

if,.....,co1'lstant a then invert := sint(-lhs o:r a) else 

b,e82r?- ~nte&=?r 1, i; 

1 : = ~~rigtl1 of a; 

be13::i !} inte9::r B!:r,a.Y b[ 1: 1]; 
get ...r ~~ (a, i, 1, l, b[i]); 

invert:= lint(i, 1, -b[i]) 

end 

integer proc~~ure sigpdi.f(a., b); val1~1.e a., b; formula a, b; 

b~gin intege~ la, lb; 

la : = len (a) ; lb : = len ( b) ; 

if' la > lb then signdi:f := isign(a) else 

if' la< lb then signdif := -isign(b) else 

bep;i!} aa: la := sign(el(lb, a) - el(lb, b)); 

if' la = O "' lb > 1 then 

be ·n. lb := lb - 1; goto aa end; 

signdif: = la 

end 

end; 

fo:r,r1uJ.a proc~dure is1.lln(a, b); value a, b; foi,rnila a, b; 

_bep:ip intePf:~ la, lb., k, i; 

la : = len(a); lb := len(b); 

k : = if la > lb then la + 1 else lb + 1; 

i.f k = 2 then • 

~e&i:;n k := Ths of a + lhs of b; 

isutn := if abs(k) < radix then sint(k) else 

Jint(i, 2,. if i = 1 then k - k _:. radj x x radix 
else k : radix) 

end else 

bep;in, integer 8"(T§l,Y p, q(1:k]; 
l J 

get·ar.ray(a, i., 1., k, p[i]); 

get array(b., i., 1, k, q[i]); 

add(p, q, k); 

• 
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iSlJ1n := lint(i, k., p[i]) 

end 

end; 

' 

' 

E~~u.re. add(a, b, k); value k; intege1 .. k; iptege,r a~'°TN a, b; 

b,egjp inten=r s., t, w., ca:rtry; 

for w : = a[ k] + b [ k] while w = O "' k > 1 do 
be . a[ k] : = 0; k : = k - 1 ~nd; 
I . -

s := sign(w); cax•r,y := O; 

for t := 1 ~~p 1 until k do 

begin w := a[t] + b[t] + ~array; 
if s x w < O then 

1?~82!1 a[t] := w + s x radix; car~:r-y := -s end else 
if abs(w) > radix then 

bes;i,n a[t] := w - s x radix; carr-y := s end else 
begj n a.[ t] : = Wj C8:r'.t'Y : = 0 end 

' 

if ca1ary ~ 0 then a{k + 1] := C8ITY 

end; 
a:: I :a 

fo11m.1Ja p~edure, idif(a., b); value a., b; fo11i1Ul.a a, b; 

idif := isurn(a, invert(b)); 

fol'!'tlilJa proced:1;,rc iprod(a, b); 

besj !1 int~ger la, lb, 1., i; 

la:= len(a); lb:= len(b); 
if l = 2 then 

p~gj.n real u; 

u : = J hs of a x J,hs of b; 

if abs ( u) > radix then 

value a, b; fo1'lr11~11 a a, b; 

• 

1 := la + lb; 

' 

begin 1 := entier(abs(u) / radix) x sigJ1(u); iprod := 

lint(i., 2, if i = 2 then 1 else u - 1 x radix) 
end else iprod := sint(u) 

end else 

begin i~teger, §t:,ray aa[1:la]., bb[1:lb]., cc[1:l]; 

get ........., (a, i, 1., la, aa[i]); get ~~(b, i, 1, lb., bb[i]); 
?TIU 1 t ( aa, la, bb , lb , cc, 1) ; 

iprod := lint(i, 1, cc[i]) 



end 

end· ' _, 
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ero,c~qu:re nlUJt(aa, la, bb., lb., cc., le); val:ue _la, lb, le; inte~r la, lb., 

le; int_~ ger §IT?Y a.a., bb, cc; 

begin inte~r ta, tb, tab, cari-y, btb; real u; 

f'or ta:= 1 ~~ep 1 until la do cc[ta] := O; 
for tb := 1 ~tep 1 until lb do 

' .,,. . . 

beg·i !1 carr»y : = 0; btb : = bb[ tb]; 

for ta : = 1 steE 1 until la do 

. . . . 

• 

begin tab:= ta+ tb - 1; u := btb x aa[ta] + cc[tab] + carr~; 
• 

carry:= entier(abs(u) / radix) x sigJ1(u); 
cc[ tab] : = u - · car.r-y x radix 

end; 

cc[tb + la] := ca:rry 

end 

end· 
II , 

' • 

' ' ' 

• 

• • • 

• 

' ' 

f'o111rula procedure iqrs(x, y, r); value x, y; fo111n1.Ja x, y, .r; 

if x = zero1 v y = zero1 v y = one1 v y = minonel then 

begin if y = zero1 then r : = x else r :•= zero:t; 
iqrs := if y = zero1 then zero1 else , 

if y = minone1 then invert(x) ,else x . 

end else 
• . . 

b~gin integer lx; 

lx := len(x); if lx = 1 then 
• • 

b~gi n in;~egep u, v, w; . 
a 

u := Jhs.of x; v ·:=·Jhs of y; w := u: v; 
' .. ,., ' .. , ' ... 

r := sint(u - w x v); iqrs := :5int(w) . 

end else 
• . .. 

" -~ '' ~ 

.. 

• • • beg,.,..,,n integers., y1., i, I?,; xx[ 1: lx] , IT[ O : lx] ; 
• 

real m; 
' . 

s := isign(x); , . 
' ' ' 

. . rr[O] := r:r[lx]. := O;. . .· • 
• 

get array(if s > O then x else invert(x), ~, 1, lx, 
' ' . . . 

y1 := Jhs of ,Y; s .:= ~ign(y~l). x s; y1, :.= a~s(y-1); 

for i := lx step -1 until 1 do 

~pjn m := ,rr[~J. ~ ~dix + .xx[_i]; 
• • 

xx[ i] : = n : = entier(m / y1); 
• • 

" 
' ' . . 

. ■ ~ • . • • • 

• • • • 
' 

' ' • 

• 

xx[i]); 

• 
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IT{i - 1] := m - (n x yl) 

end· .... - J 

r := sint(s x rr[ 0)); 

iqrs := lint(i, lx., s x xx[i]) 

end· 
I J 

fonwl a :e~:.~1~1;e iqr ( x, y, r) ; value x, y; for1nuJ a x, y, r; 

be . m~~.r: lx, ly., lq; 

1: 

lx := len(x) + 1j ly := len(y); lq := lx - ly; 

if x = zero1 v y = zerol v lx < ly then 

btt'f:2 !'! r : = x; iqr : = zerol; 

if y = zero1 then error(~y eq1A8ls zero in iqrl) 

end else 
• 

if ly = 1 t.hen iqr := iqrs(x, y, r) else 

b~gi r! iz:l~@:.1: s, i, j , yyly, lb; 
' 

roz,riuJa norm.factor., vradixminl, q, q1, heady., vyyly., d1.ur1riy, y1; 

int~ger B!Ta¥ xx[ 1: lx]., yy[ 1: J.y]., qq[ 1: lq]; 

s := isign(x) x isign(y); 
yyly := abs(el ly of y); 

norm.factor := sint(if yyly x (radix : (2 x yyly)) = radix : 2 

then radix : (2 x yyly) 
else radi_x : (2 x yyly) + 1); 

get a:rTay(iabs(iprod(x, normfactor)), i, 1, lx, xx[i]); 
y1 := iabs(iprod(y, normfactor)); 

get arr (y1., i, 1, ly, yy[iJ); 
v1~i. 1 := sint(radix - 1); yyly := yy[ly ]; 

heady := lint(i, 2, if i = 1 then yy[ly - 1] else yyly); 

vyy]:y :: sint(yyly); lb := ly + 1; 

:ror j : = lx step -1 until lb do 
' 

pef'2!1 q := if xx[j] > yyzy then vradi l"'l'T!" 1 else 
iqrs(lint(i, 2, xx{j - 2 + i])., vyyly, d1)11'1rty); 

if sig,ldi f(Jjnt(i, 3, xx[j - 3 + i])., iprod(q., heady)) = -1 then 

begj!2 q := isum(q., minonel); SQ~9 1 end; 

q1 := icJ.if(lint(i, lb, xx(j - lb+ i]), iprod(q, y1)); 
if isign(q1) = -1 then 

,t:>eejn: q := isum(q., minone1); ql := isum(q1, y1)end· · 
111 I •' 

get ax~,ay(q1, i, j - ly, j, xx[i])· 
. 1 



qq[j - ly] := Jhs of q 

end· 
I , • . • 

r := iqrs(lint(i, ly, s x xx[i]), normfactor, dumrey); 

iqr := lint(i, lq, s x qq[i]) 
end 

end· 
&; I , 

• 

fo111ula p:rocedure igcds ( x, y) ; value x, y; :fo111111 a x, y; 

bPf2!1 integer proced,µ,re gcd(a, b); value a, b; ipteger a, b; 

gcd := i.f b = O then abs(a) -else gcd(b, a - ((a : b) x b)); 

f'o11nul a r, x1, y1; 

xi:= iabs(x); y1 := iabs(y); 
if signdif(x1, y1) < 0 then 

• • 

beg1n r := x1; x1 := yl; y1 :=rend; 
iqrs(x1, y1, r); 

igcds : = sint(gcd(lhs of' y1, lhs of r)) 

end· 
1 _J 

• 

fox1r1U]a p;roced,11re igcd(x, y); value x, y; fo1,nt1Ja x, y; 

begi.9 fo1,ru]a u, v; int.e~r lu, lv; 

u := iabs(x); v := iabs(y); 

lu := len(u); lv := len(v); 
i.f lu = 1 v lv = 1 then igcd := igcds(u, v) else 

. . 

r?f .V n fo111n.1J a hulp, normfactor; 

loop: 

i~~ee#F sd, u1, u2, v1, v2, t, i, a, b, c, d, q; 
sd := signdif(u, v); 
if sd = O then 

t?.egip igcd := u; s;2t9 eindigcd end; 

if sd < 0 then 

bef2p hulp := u· 
Ii I , 

u := v; v := hulp; 

a:= lu; lu := lv; lv := a 
end; 

if' v = zero1 then igcd 

if lv = 1 then igcd := 

:=u else 
igcds(u, y) else 

b~pjp a:= d := 1; b := c := O; 

if lu - lv < 1 then 

' .. 

• 

b~g:)~ u1 := el(lu - 1, 

i.f lu - lv = 1 then 

u); u2 := el(lu, u); 
. ' . ' 

3- .. 71 
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5: 

~fQ!) v1 := el(lv, v); 

bezj,!} v1 := el(lv - 1, 

norm.factor:= sint( 

v2 := O end else 

v); v2 := el(lv, v) end· • J • 1 

if u2 x (radix : (2 x u2)) =radix: 2 then 

radix : (2 x u2) else 

( radix : ( 2 x u2) + 1) ) ; 

u2 := el(2, iprod(normfactor., lint( 

i, 2, if i = 1 then u1 else u2))); 

v2 := el(2, iprod(normfactor, lint( 

i, 2., if i = 1 then v1 else v2))); 

if v2 + c = 0 v v2 + d = O then SEtO 7; 

q : = ( u2 + a) : ( v2 + c); 

if q ~ (u2 + b) : (v2 + d) then go~o 7; 

t := a - (q x c); a:= c; c := t; t := b - (q x d); b := 

d := t; t := u2 - (q x v2); u2 := v2; v2 := t; go~~ 5 
end else 

if b = 0 v (lu - lv) > 1 then 

9esjr.: iqr(u, v, hulp); u := v; v := hulp end else 

t>e-s;i n hulp : = u; 

u := isum(iprod(sint(a), u), iprod(sint(b), v)); 

v := isum(iprod(sint(c), hulp), iprod(sint(d), v)) 

end; 
• • 

lu := len(u); lv := len(v); S2~9 loop 
end 

end_; -
eindigcd: 

end; 
b 

fo11ruJa proced~re rinv(a); value a; fo11nuJa a; 

~gj!} 1/,ltee,=r t; 
I 

t := ~~ of a; 

if t = short integer v t :: long integer then rinv := 

(if isign(a) > 0 then ~~9? 9.(rat nuni:)., one1, a) 

else ~adj c(rat nunt), minone1, invert(a))) 

else 

reg:i.n .fortntJ] a 1, r; 

1 := lhs of a; r := rhs of a; 
' 

rinv : = if 1 = one1 then r else 

d· J 



if 1 = minone1 then invert(r) else 
" 

if isign(l) > 0 then dyaqic(rat nurrb, r, 1) 

else dyad,ic(rat nuni), invert(r), invert(l)) 

end 
' • 

end; 

' 

:roxmuJa proced1.1r-c st rat(a, b); value a, b; fo1~m1Ja a, b; 

pegin integer ta., tb; 

ta:= type of a; tb := type of.b; 
if b = one1 then st rat := a else 

if b = minonel then st r-a.t. := invert(a) else 
• 

• 

if b = zero1 then 

b,ee,i n st rat : = zero1; nlcr; nlcr; 

printtext(-clb equals zero in st rat~); 

nlcr; nlcr 

end else 

if a = zerol then st rat := zerol el.se 

if (ta = short· integer v ta = long integer) .... 
• • 

(tb = short integer v tb = long integer) _t_he_-n_ 
st rat : = if isign(b) > 0 then dyadic (rat nurrb, a, b) 

else qyadic(rat nu1·rb, invert(a), invert(b)) 

else 

st rat : = error( -ctwrong p 

end; 
a 

ter in st rat~) 

' 
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f'o1,nula procedure oper on numl(oper, a, b); value oper, a, b; int~ger aper; 

fo1-rru,J a a, b; 

bes;i~. ~~~ger ta, tb; 

ta:= typ~ of a; tb := tyPe of b; • i 

• 

oper on nun1:l : = 
if ( ta = short integer v ta = long integ-er) .... 

(tb = short integer v tb = long integer) then 

(if oper = sum then isum(a, b) else 

if oper = product then iproo(a, .b) .else 
. ♦ I . . .. . ' . .. . ' '· . 

!Ylprod(a, rinv(b))) 

else 

if oper = 
' 
• 

sum then I,~1sum (a, b) e.lse 
' ' • ,~ .. t,-,,..,_ 

if aper = product then 11"1prod(a, b) else 
. . . ' 

., ,, ' 

• 



aper on num1(product, a, rinv(b)) 
--.A• f/!f.l ~ _, 
u 1ar .11 

:tonu1,a p · ,, ure 1lJ1sum(a, b); value a, b; fo111ula a, b; 

bee2:.!! inte~r ta, tb; 
· Ill r:--"- I Ill -&did I 

:fb1-n11Jl,a la, ra, 1, r, b 1; 

ta := 1/ · ·. of a; tb := ~ · of b; 
; 

if ta ; rat n1,1rb then 

!2,es;i,!:! la : = 1hs of b; ra : = rt·1s of b; b1 : = a 

end else 
~&:n la := lhs of a; ra := rhs of a; b1 := b end; 

if ta = rat nunb _., tb = rat nut1b then 

~Si:!! .;:..:;;,;;:.;;.;;;;;;;;;;;;.;;; gcd, lb, rb., hulp; 

lb := lllS of b; rb := rhs of b; 

gcd := igcd(ra, rb); 

if gcd * onel then 

begin rb : = iqr( rb, gcd, hulp); 

1 := isum(iprod(la, rb), iprod(lb, iqr(ra, gcd, hulp))); 

r := iprod(ra, rb); 

gcd := igcd(l, r); 

if god * one1 then 

f)6f;ip 1 := iqr(l., gcd, hulp); r := iqr(r, gcd, hulp) 

ena 
end else 

~!Q!J, 1 := isurn(iprod(la, rb), iprod(lb., ra)); 

r := iprod(ra, rb) 

end 

end else 

~fQ!l l := isum(la, iprod(ra, bl)); r := ra . 
end; ,. 

1,mt.m1 := st rat(l, r) 
end• 11,., •• , 

forua.il.a E~~<;lure x,wrod(a, b); value a, b; fo:r111Ula a., b; 
;~!·!(in, .~~eger ta, tb; 

fontill J a la, ra., 1, r, b 1, gcd, hulp; 

ta := t:ye; of a; tb := ~tpe of b; 

if ta * rat n1,11•b then 

' 



~,ep;in ra := rhs o:f b; la := Jhs of b; b1 := a 
end else 

begin ra := rhs of a; la:= Jhs of a; bl:= b en~; 
if ta = rat numb - tb = rat n1..mi> then 
begip fonnula lb, rb; 

lb := Jhs o:f b; rb of' b• J 

gcd := igcd(ra, lb); 

if gcd :t one1 then 

begi 'fl: ra : = iqr(ra, gcd, hulp); 
lb:= iqr(lb, gcd, hulp) 

end; 

gcd := igcd(rb, la); 

if gcd :I: one1 then 

begiri la := iqr(la, gcd, hulp); 
rb := iqr(rb, gcd, hulp) 

end· 
d 11 , 

1 := iprod(la, lb); r := iprod(ra, rb) 

end else 

b~gin gcd := igcd(ra, b1); 

if gcd :t one1 then 

begin ra := iqr(ra, gcd, hulp); 

b1 := iqr(b1, gcd, hulp) 
end; 

I 

1 := iprod(la, b1); r := ra 
end· 
JIP II , 

1,:iprotl : = st rat ( 1, r) 

end; 

' 

.foz,1n.1.J a proced1J~ aper on nurn( aper., a, b); value oper, a> 
' 

.fon1DJJ a a, b; 

if' aper = Sl.Dll then 

aper on num := (i:f a = zero1 then b else 

i:f b = zero1 then a else oper on nwn1(sutn, a., b)) 

else 

i.f aper = product then 

aper on n1..un := (i:f a = zerol 

i:f a = one1 then b else 
• 

i:f b = one1 then a else 

v b = zerol then zero1 else 
• 
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• 

• b; mtea::r oper; 



oper on numl(product, a, b)) 

else 

if b = zerol then 

~S!!! nlcr; nlcr; printtext ( {b = O in aper on n1~an:I-); 

oper on num ; = zerol; nlcr; nlcr 

end else 

oper on num := (if b = one1 then a else 

if a = zero1 then zero1 else 

if b = minonel then 

(if tYP§ o:f a = rat numb then st rat(invert(lhs of a), ms of' a) 

else invert (a)) else 

oper on numl (quotient., a, b) ) ; 

p ,, .. ·, ure outputint(n, sigp); value n, sign; foI,r1ul a. n; boolean sign; 

be,S~·!:! inte se;r 1, t , i; 

if ~~ of n = short integer then 

~gi.!} l : = lhs of n; 

i:f sign then 

~EQn if 1 < O then pr:inttext({ - ~) else 

printtext ( { + :f..) 

end; 

p.mum(abs(l)) 

end else 

~f2-D: inteSl?r atT~ rm[l:len(n)]; 
l := len(n); 

get ,....,., ·. ( n, i , 1, 1, nn[ i] ) ; 

if sigp then 

begin if nn[ l] < 0 then print text ( { - :f,.) 

else printtext(--t + :f..) 

end; 

for i := l step -1 until 1 do 

beg-f !?: t : = abs (nr1[ i]); 

if i; 1 then zeroos(t); 
pmurn(t) 

end 

end 

end· 
" J I I 

• 



pro,cedu;re zeroos(n); value n; int~&:1 .. n; 

begi n in~~St:C: j ; 

j := radix; 

space(l); 

for j := j : 10 while n < j j > 1 do prsym(O) 

end; 

pzroc~~u;re outputnumber(n); value n; fo111iu] a n; 

bef1ji !1 i:f t:y-pe of n = rat nU11lb ·then 

begin if isign(Jhs of n) < O then 

prjnttext(~ - (*) else printtext(~ + (*); 
output int ( J hs of' n, false); printtext ( ~ / *); 

outputint(rhs of' n, false); printtext(~)*) 
end else · 

outputint (n, true) 

end· 
I J 

connent 
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In this section we detronstrate the functioning of the sinplification system 

and rational nunber system with soim exaxrples. ; 

bes)!} f'onia1J a x, y, z., f, g; 
0 

real tjrool; 

procedure out ( f, s); value f'; fo111ruJ a f; string s; 
I 

bezjn inte&?r t; 

t : = tipc;:: of f; 

ca1•1,.fage(3); 

pI1 nttext ( s); print text (-cl: = *); nlcr; 

if t = short integer v t = long integer v t = rat nunb then 

outputnwtber(.f) else output(f); nlcr; 

pcinttext(-clused ti11e =*); absfixt( 3, 2, time - tin:e1); 

pr1nttext(~sec *); tirre1 := tine 

end· ; :1 
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corment This section can be divided in three pa:r,ts 

1. test of the rational nurrber system 
2. test of the for,rruJa system 
3. a rore sophisticated exar,ple. 

3.5.1. Test of the rational nurrber system 
Jr 7 I S II iJll$ II 

1. input, representation and output of numbers • ; 

tinel := tine; 
out(sint(O),~sint(O)::f.); 
out(zero1, --tzero1::f.); 
out(sint(-1), ~sint(-1)::f.); 
out(sint(l), --tsint(l)::f.); 
out(sint(2), ~sint(2)*); 
out(sint(-3), ~sint(-3)::f.); 
x := lo int(4, li(li(li(li(O, 435512), 642890), 0), 10123)); 
out(x, {x = lo int(4, li(li(li(li(O, 435512), 642890), 0), 10123))~); 
y := lo int(4, li(li(li(li(O, -435512), -642890), 0), -10124)); 
out(y, 

~y = lo int(4, li(li(li(li(O, -435512), -642890), 0), -10124))::f.); 
out(st rat(sint(2), sint(3)), {st rat(sint(2), sint(3))::f.); 
out(st rat(sint(-2), sint(3)), <tst rat(sint(-2), sint(3))::f.); 
out(st_rat(x, y), ~st rat(x, y)::f.); 

new page; 

connent 

2. int pow num and igcd.; 

x := sint(32); out(x, ~x = sint(32)*); 
y := sint(-20); out(y, ~Y = sint(-20)~); 
z := igcd(x., y); out(z, -c;z = igcd(x, y)::f.); 

out(oper on num(quotient, x, y), <toper on nurn(quotient, x., y):1-); 

x := int pow num(x, 9); out(x, 'iX = int pow num(x, 9)~); 

Y : = int pow num(y., 9); out(y, -iY = int pow num(y., 9 )~); 
out(int pow num(z, 9)., 'iint pow num(z, 9)*); 

out(igcd(x, y), ~igcd(x, y)::f.); 

out ( oper on nurn( quotient, x., y) , <toper on num( quotient, x, y) ~) ; 



new page; 

co:rment 

3. rational arithllEtic; 

, x := oper on nwn.(quotient ,one1., sint(2)); 

out(x, -ctx = oper on n1nn(quotient, one1., sint(2) ):I-); 

y := oper on nUJ11.(quotient., one1., sint(3)); 

out(y., -cty = oper on nuin(quotient., one1., sint(3) ):I-); 
z := oper on num(quotient, onel., sint(6)); 

out(z., {z = oper on nt.ll'.n(quotient, onel., sint(6) ):I-); 

out(oper on num(sum., aper on num(sum., x., y), z), 
~oper on nu.rn(sum, oper on num(sU1r1, x, y), z):1-); 

out(oper on num(surn., oper on num(sum., x., y), oper on num( 

product., minone1., z))., 

..toper on num(sum, · oper on num(sum., x., y), 

aper on num( product., rri i none 1., z) ) :I-); 

new page; 

conment 

3. 5. 2. T~s_t of tr,~. ,,,~0111iuJ a sistem 

· 1. handling of numbers in the fo11ruJa system; 

f' := 32; out(f, ..tf = 32~); g := -20; out(g, ..tg = -20:1-); 

out(f/g, {f/g:1-); 

f := f'19; out(f, ~f = f19:I-); g := g19; out(g, {g = gl9i); 
out(f/g., {f/g:1-); 

out(1/2 + 1/3 + 1/6, {1/2 + 1/3 + 1/6:1-); 

out( 1/2 + 1/3 - 1/6, ~1/2 + 1/3 - 1/6:1-); 

new pa.ge; 

• 

connent 

2. dzadic+., cy9:~cx, gyadic/., and n:cnadic T; 

out(av({abc 123 x+~)., {av(-clabc 123 x+~):1-); · 

x : = av( ~Jci.); y : = av( {y:1-) ; z : = av( ..ilz*); 

• 

• 

out ( 2xx., {2xx:I-) ; out ( x + x., -ctx+x:1-) ; out (y + x., ..ty+~) ; 
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out( (x+y)T5, -cl:(x+y)i5*); out( (x-y)T5, {(x-y)i5*); 

out ( x/y, {x/y*); 

f := -3Xz + 2xy + x; out(f, -elf = -3Xz + 2xy + x*); 

out(rTs, {fl5*); out(rl(-5), {fl(-5)*); 

out(f/f, {f/f::1,-); out(f/5, -tf/5i); out(5xf/5, {5xf/5*); 
out( (xT8 + yT8) x (xT4 + yT4) x (xT2 + yi2) x (x + y) x (x - y), . 

{(xT8 + yi8) x (xi4 + yi4) x (xl2 + yl2) x (x + y) x (x - y)*); 
new page; 

C ·. ·• t 

3.5. 3. A more s9phi.sticated exrurple 
0 

We introduce · the following system: 

y = X / (2 - 4 Xx), 

Z = (3 + 2 X y) / 5, 
a= 2 xx I 3, 
b = 3 xx/ 4, 
c = yl2 x (y - x) / xi2, 
d = z x (z - x) x (z - y) / 

(3 X Y X (y - X)), 

e = (20 XX X y - 10 XX - 10 X y + 6) / 

(120 x z x (z - x) x (z - y) x (1 - z)), 
p = e x (1 - z), 

and we will prove that 

f=axbxcxdxp 
equals 

(5 x xl2 - 2 xx) I (960 xx - 480).; 

Y := x / (2 - 4xx); out(y, {y = x / (2 - 4xx)i); 
z := (3 + 2xy) / 5; out(z, ~z = (3 + 2xy) / 5i); 
f := 2xx I 3; out(f, {a= 2xx / 3*); 
g := 3Xx / 4; out(g, {b = 3Xx / 4*); 
f : = f x g; out ( f, { f = a x b*) ; 

g := yi2 x (y - x) / xl2; out(g, {c = yl2 x (y - x) / x12*); 
f : = f x g; out ( f, -t f = f x c*); 

g := z x (z - x) x (z - y) / (3 x y x (y - x))· 
···• , 

out(g, {d = z x (z - x) x (z - y) / (3 x y x (y - x))*); 
f : = f X g; out ( f, {f = f X d*); 



g := (20 xx x y - 10 xx - 10 x y + 6)/ (120 x z x (z - x) x (z - y) x 
(1 - z)); 

out(g., ~e = (20 xx x y - 10 xx - 10 x y + 6) / 

(120 x z x (z - x) x (z - y) x (1 - z))*); 
g := g x (1 - z); out(g, ~P =ex (1 - z)~); 

f' : = f: X g_; out ( f, -4:f = f X p:1-); C8""i"Tiage ( 5); 

y := lbs of' f' x (960 xx - 480); 
out(y., -4:nurrerator off x (960 xx - 480)*); 

z := rhs o~ f x (5 x xi2 - 2 xx); . 
out(z, <ldenominator of f" x (5 x xi2 - 2 x x):J.); 

out (y - z., .itthe difference:1-) 

end 
end 
end 
• 

.L. 

'.I.b.i s program produced the following output : 

sint(O) = 

+ 0 

u..sed tirre = 

zero1 = 
+ 0 

used tine = 

sint(-1) = 

- 1 
ll_Sed tirre = 

sint(1) = 
+ 1 

used tjne == 

' 

.03 sec 

.04 sec 

.04 sec 

.04 sec 

• 
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sint(2) = 
+ 2 

used tine ::: 

sint(-3) = 
- 3 

used tine= 

.04 sec 

.04 sec 

x = lo int(4, li(li(li(li(O, 435512), 642890), O), 10123)) = 
+ 435512 642890 000000 010123 

used tin:e = .20 sec 

y = lo int(4, li(li(li(li(O, -435512), -642890), 0), -10124)) = 
• 

- 435512 642890 000000 010124 
used tine= .20 sec 

st rat(sint(2), sint(3)) = 
+ (2 I 3) 

used time = .08 sec 

st rat(sint(-2), sint(3)) = 
- (2 I 3) 

used tine = .08 sec 

st rat(x, y) = 
• 

- (435512 642890 000000 010123 / 435512 642890 000000 010124) 
used tnre::: 

X = sint(32) = 
+ 32 

used time= 

y = sint(-20) = 
- 20 

used tine = 

.37 sec 

.07 sec 

.05 sec 

• 



z = igcd(x., y) = 
+ 4 

used ti1re = .16 sec 

oper on num(quotient, x, y) = 

- (8 I 5) 

used ti1rc = . 32 sec 

x = int pow ntnn(x, 9) = 
+ 35 184372 088832 

used ti1rc = . 35 sec 

y = int pow num(y, 9) = 

- 512000 000000 

used tin = .27 sec 

int pow nurn(z, 9) = 
+ 262144 

used ti rne = . 18 sec 

igcd(x, y) = 
+ 262144 

used ti 11-.a = 2 • 45 sec 

oper on num(quotient, x, y) = 
- (134 217728 I 1 953125) 

used time = 2.81 sec 

• 

x = oper on num( quotient, one1., sint ( 2)) = 
+ (1 / 2) 

• 28 sec 

y = oper on num(quotient, onel, sint(3)) = 
+ (1 / 3) 

used tj tre = .25 sec 
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z = oper on num(quotient, one1, sint(6)) = 
+ {1 / 6) 

used ti?OO = .25 sec 

aper on num(sum, oper on num(stnn, x, y), z) =. 
+ 1 

• used tine= . 71 sec 

oper on num(surr1, oper on num(stnn, x; y), 

oper on num(product, rninone1, z)) = 
+ (2 I 3) 

used t . 
in:e = .93 sec 

Results of. 3. 5.2.~.t 

r = 32 = 
+ 32 

used tilm = 

g = -20 = 
- 20 

used tin:e = 

f/g = 
- (8 / 5) 

u · d· t. 4 ~ = -- , .LJ.-:l s:;; .. 

f = fi9 = 

.11 sec 

.25 sec 

.66 sec 

+ 35 184 372 088832 
used ti!IB = .41 sec 

g = gi9 = 
- 512000 000000 

used tjne = .33 sec 

f/g = 

- (134 217728 / 1 953125) 



used tjrre == 3.16 sec 

1/2 + 1/3 + 1/6 = 
1 

used time= 1.56 sec 

1/2 + 1/3 - 1/6 = 
+. (2 I 3) 

used tin:e = 1.96 sec 

Re,sults :Jf' 3.5.2.2 

av(~abc 123 x+i) = 
+ abc 123 x+ 

1Jsed ti 1re :: 

2xx = 
+ 2xx 

used tine= 

x+x = 
+ 2xx 

used ti1r:e = 

y+x = 
+ X + y 

used ti1re = 

(x+y)i5 = 

.21 sec 

.46 sec 

.24 sec 

.24 sec 

• 

+ xi5 + 5xxl4xy + 1oxxl3xyj2 + 10xxi2xyi3 + 5xxxyT4 + yT5 
used ti1re = 8. 76 sec 

cx...:.y)T5 = 
+ xl5 - 5xxi4xy + 10xxl3XYi2 - 1oxxl2xyl3 + 5x:xxyT4 - yT5 

used ti Ire = 5. 88 sec 

x/y = 
( + x) I ( + y) 
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used time = .16 sec 

f :: -3xz + 2>cy + X : 

+ X + 2xy - 3XZ 

used tiID9' = 1.04 sec 

rts = 
+ xT5 + 10XxT4xy - 15xxT4xz + 40XxT3XYT2 - 120xxl3XYxz + 90xxi3xzi2 + Boxx 

l2xyT3 - 360xxl2xyT2xz + 54axxl2xyxzT2 - 21oxxl2xzi3 + 80 14 - 48 ~·i3 

xz + 1080 · T2xzl2 - 1080x 13 + 405x:xxzi4 + 32xyi5 - 240xyi4xz + 720xy 
l:;xzT2 - 10 ·l2xzl3 + 81oxyxzi4 - 243Xz15 

• 

29.13 sec 

rl(-5) = 
( 1 ) / ( + x15 + 10XxT4xy - 15Xxl4xz + 40xx13XYi2 - 120xxi3xYxz + 90xx13Xz 
12 + ·. ·• .. 1~13 - 360xxT2><YT2xz + 540xxi2xyxzi2 - 270xxl2xzl3 + 80x:xxyi4 -
4 ·· ·. · .. ·l:)(z + 108 . · i2xzl2 - 1080xxxyxzi3 + 405x:xxzi4 + 32x.vT5 - 240xyi4x 
z + 72~T:sxzl2 - 1080xyi2xzl3 + 81oxyxzT4 - 243Xzl5) 

d t " uee ·. ime :: 29.38 sec 

f/f = 
( + X + 2xy - }xz) / ( + X + 2xy - 3xz) 
used time ~ . 36 sec 

f/5 ::r. 

+ (1 / 5}xx + (2 / 5)xy - (3 / 5)xz 

Sxt/5 • 
+x+2>(v-)(z 

i•~-~. t,$1·~ - 1 95· 
~ . · . .11.J)t• - ... • .· · . . sec 

+~~-yl~ . 

uaed ti• 2: 17.27 aec 

• 

--



Y = x / (2 - 4xx) = 
( + x) / ( - 4xx + 2) 

1 -lSed tirre = .77 sec 

z = ( 3 + 2xy) / 5 = 
- ( . - 2xx · + . ( 6 / 5) ) / ( - 4xx + 2) 

1,1sed tirre = 1. 82 sec 

a=2xx/3= 
+ (2 I 3)XX 

11sed time = 

b =3Xx/4= 
+ (3 / 4)xx 

11sed tirre = 

:f: ==axb= 

+ (1 I 2)xxi2 
11sed tiITE = 

. 88 sec 

.87 sec 

.71 sec 

c = yi2 x (y - x) / x12 = 

( + 4xx14 - xi3) / ( - 64xxT5 + 96xxi4 - 48xxl3 + 8xxi2) 
1 ~sed time = 6. 49 sec 

:f: -fxc= 

( + 2xx16 - (1 I 2)xx15) / ( - 64xx15 + 96xx14 - 48xxi3 + 8xxi2) 
11sed tirr.e = 1.16 sec 

d - z x (z - x) x (z - y) / ( 3 x y x (y - x)) = 
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( 1536xx17 + 5376xx16 - (203136 / 25)xx15 + (34368 / 5)xxi4 - (439104 / 1 
25 )xx13 + (135456 / 125)xx12 - (23328 / 125)xx + (1728 / 125)) / ( + 3072xx 
17 - 6912xxl6 + 6144xx15 - 2688xxl4 + 576xx13 - 48xxi2) 
llS€d tine = 31. 75 sec 

f -fxd= 
( 3072xx113 + 11520xxi12 - (473472 / 25)xx111 + (445248 / 25)xx110 - (1 3 
07808 / 125)xxl9 + (490464 / 125)xx18 - (114384 / 125)xx17 + (3024 / 25)xx1 
6 - (864 / 125)xx15) / ( - 196608xxl12 + 737280xxi11 - 1 204224xx110 + 1 11 



QQ 
':1- Qil.,J ,J 

e = (20 XX X y - 10 XX - 10 X Y + 6) / 
(120 x z x (z - x) x (z - y) x (1 - z)) = .A 

>) = e >t ( 1 - z:) = 

384xx14) 

(:16 Qij198~ / 5)xxl5 + 1 526784xxi4 - 483840xxi3 + (492288 I 5)xxi2 - (5836 
S / 5}xx + {3072 / 5)) / ( - 1 474560xx19 + 6 488064xxT8 - (63 700992 I 5)x 
xl7 • ( '66 28070'4 / 25)xxi6 - (54 355968 / 5)xxT5 + (674 390016 / 125)xxi4 

- (223 7'68:32 / 125)xxl3 + (47 821824 / 125)xxi2 - (5 971968 I 125)xx + ( 33 

1776 / 125)) 
uaed ti• .11; 19. 14 se,o 

( + 1509 9il9~40Xxl22 - 12155 09299,2xxl21 + 46053 457920xx120 - (2 726572 32 

6912 I 2'5)xx119 + (22 596922 534912 / 125)xx118 - (27 824800 923648 / 125)x 

xl11 + ( 131 7,0131 386'58 / 625)xx116 - (97 960723 218432 / 625)xxi15 + (2 

'.)16S60· 891~ / 25)xxll~ - (5 4740147 131648 / 125)xx113 + ( 413535 633408 / 
~?5)K:i:l12 - (3 102712 !155168 / 625}xxl11 + (730625 605632 / 625)xxT10 - (528 

'5 15~616 ,' 25)xxl9 + (3543 330816 / 125)xx18 - (331 849728 / 125)xx17 + (96 
813592 I 625)xxl6 - (2 654208 I 6,25)xxi5) / ( + 289910 292480xx121 - 2 362 

"f68 88:,112xxl20 + ( ~5 32:0226 4719:,6 I 5)xx119 - {543 389732 831232 / 25)xxi 

18 + ( iitti l\3673-; 1183)6 / 5)x,xl17 - (5687 1470989 508608 / 125 )xxT16 + ( 5454 

6195:,I 103296 I 125))0C115 - (q109 05,847'8 964736 / 125)xx114 + ( 492 224190 

t>871,fi8 I 2'5))(:X11; - 9 4281il3 111728xx112 + (lt,51 0,95573 823488 / 125)xx111 -

( 1,1 20,0:,2 78-996 / 12S)xxl10 + (32 7'4)6889 281536 / 125)xxi9 - ( 1 200600 

901116 I 25):t(Xl8 + (32639 680512 / 5)xxl7 - (77478 100992 / 125)xx16 + (458 
t, •11,,4 I 125)10:15 - ( 127 -019~ / 125)xx14) 

·~~ t,1- • 11'1 ·"' ~ 
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nurrerator of' f x (960 xx - 480) = 

+ 1 449551 462400xxi23 - 12 393665 003520xx122 + 50 045764 239360xxT21 - ( 
634 030185 775104 / 5)xxT20 + (5647 747843 620864 / 25)xx119 - (7511 858340 
· 691968 I 25.)xxi18 + ( 38648 089669 533696 / 125)xx117 - ( 31454 551471 03027 
2 I 125)xx116 + (20523 721710 108672 / 125)xxi15 - (2162 966277 390336 / 25 
)xxi14 + (922 502732 709888 / 25)xx113 - (1588 206311 571456 / 125)xx112 + 

(438 140511 977472 / 125)xx111 - (95 508801 257472 / 125)xx110 + (3 217193 
828352 / 25)xxi9 - (403874 906112 / 25)xx18 + (177888 559104 / 125)xx17 - ( 
9809 952768 I 125)xxi6 + (254 803968 / 125)xx15 
1J.sed tine = 29. 70 sec 

deno1rdnator of f x (5 x xi2 - 2 x x) = 

+ 1 449551 462400xxi23 - 12 393665 003520xxi22 + 50 045764 239360xxi21 - ( 
634 030185 775104 / 5)xxT20 + (5647 747843 620864 / 25)xx119 - (7511 858340 
691968 I 25)xxi18 + (38648 089669 533696 / 125)xxi17 - (31454 551471 03027 

2 I 125)xxT16 + (20523 721710 108672 / 125)xxi15 - (2162 966277 390336 / 25 
)xxi14 + (922 502732 709888 / 25)xxi13 - (1588 206311 571456 / 125)xxi12 + 

(438 140511 977472 / 125)xxT11 - (95 508801 257472 / 125)xxi10 + (3 217193 
828352 / 25)xxi9 - (403874 906112 / 25)xxi8 + (177888 559104 / 125)xxi7 - ( 
9809 952768 / 125)xxi6 + (254 803968 / 125)xx15 
tJ.Sed tinE = 30. 85 sec 

the diff'erence = 
0 

used tirre = 15.94 sec 



3- 90 

3- 6. An alte1nati ve si!!P,l~fica:tiop algori tp.rn 
t d 4 I 

Sirrpli.fication is nothing but a conplicated sorting technique. 

well-known that sorting of real nurrbers can be done very rapidly. 
' 

It • 15 

In this 

section we, therefore., investigate the process in which the te1irrs of" the 

manipulated sums are mapped in a one-to-one fashion on real nunbers. The 

real nunbers are sorted and via the inverse mapping the original ter,m are 

reconstructed. 
• 

We use only those real numbers r being integPal and satisfying O < r < 2 1 
40. 
The mapping is not a fixed one but depends on the occurrence of the 

algebraic variables and the par·ticular sinpli.fication to be perforrred. 

Let the algebraic variables that are involved be v[ p] , 1 < p < m. 

Let the maximal exponents with which ·v[p] can occur be em[p], then the 

napping is defined as follows: 

Let a terrr1 t be gi. ven as: 

m 

t = coef x TI v[p] l e[p].,O < e[p] < em[p], 

p=1 

then., the real number, called its code., is determined by: 

m 

c(t) = e[p] x 2 l vs[p-1], 

p=l 

p-1 

where vs[p] = l vs[q] + 1 + entier(ln(em[p])/ .69131 47180 56), 
q=1 

1 < p < m, and where vs[O] = o. 
The latter contribution to vs[p] is the number of bits to store the maximal 
exponent em[p]. 
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Given a sum of terms f, it is the task o:f the procedure ''avs and exps in 

list'' to indicate in the fo11ral a1wi~ var:f[1:40], whether the variable with 

index p occurs in f and, if this is the case, to make varf[p] = 1 and 

expf'(p] = the maxjmal exponent with which this variable occurs in f, and to 

rnake varf'[ p] = e:xpf'[ p] = 0 in the other case. 

Note that the index of an algebraic variable is used to identify the 

variable in a ter~r1. Thus el j of lhs of ms of el i of f is the index of' the 

algebraic va.r'iable a[i,j] in: 

n 

f = 
i=1 

l[i] 

coef'[ i] x TI 
, 

j=1 

• 

a[i,j] i e[i,j] 

and e[i,j] is given by el j o:f rhs of' rhs of el i of f. 

Not all the variables have to occur in a given sum f, it is, therefore, 

necessax-y to renurrber the variables. 'Illis is the task of ''avshifts'', which 
' 

also calculates the shift.factors vs[p]. This procedure uses the following 

global integer ai:Teys: 

.var[0:40]: originally indicating, by neans of var[p] that the variable with 

index p does or does not occur ( va.r[ p J = 1 or var[ p] = O) • A:rterwards, when 

the variable has got a new index q, var[q] = p . 

• var2[0:40]: for holdjng the new index var2[p] = q . 

. varshirt[ O :40]: deter1r1jning the shif'tfactor vs[p] . 

. e:xp[O: 40]: containing the maxjmal exponents em[p]. 

Conputing the code of the k-th ter-,-n of a sum f is the task of the real 

procedure ''make code ( f ,k)''. 

The inverse mapping is perforn:ed by the procedure ''rowav'', while the sorting 

process is ca1Tied out by ''sort''. 'The latter procedu-re is based on the 

''quicksort'' nEthod of" C. A. R. Hoare [ 6 J • 
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int,eger _§!r-r.§\Y var., var2 ,exp ,exp2., varshift[ 0: 40]; 

f'or1ru,,1l a ;eroced1:ll"8 av( s); value s; fo1-nrul a s; 

~~ef!2!1 int~,&!r i,j; avcntr:= avcntr + 1; 
if' avcntr > 40 then error( ~too much algebraic variables:f..); 

stringstring:= ~ad;i._c(O ,s .,stri11£,String); 

av:= polyadic(simple sum,i, 1,dyadi~(O,one1,ct;yadi_c(O., 

rowadic(O,j,1.,avcntr),rowadic(O,j,1,1)))) 

end av; 

f'o11ru.Jla p!'.'9cedure dyadic+(a,b); value a,b; f'o1"l'f111Ja a,b; 

if a = zero then cy:adic+:= b else if b = zero then 93adic+:= a 

else if' tYe? of a = simple quotient then 

~ad] c+: = if type of b = sirrple quotient then 

( lhs of a x rhs . of b + lhs of' b x ms of' a)/ 

(rhs of' a x rhs of' b) else 

(Ths of a + b x rhs of' a)/rhs of a else 

if t~ of b = sirrple quotient then 

gxad.ic+:= (a x rhs of b + lhs of b)/rhs of b else 
I 

begin ~teger la.,lb .,l,up; la:= length of a; 

lb:= length of b; l:= la+ lb; 

~eg:jn ai:~ay code[1:l]; integer i,j .,d; 

:fo11nuJ a a~ coef[ 1: 1]; 

avs and exps in list(a.,la., var.,exp); 

avs and exps in list(b,lb.,var2,exp2); 

:for i: = 1 step 1 until avcntr do 

if var2[i] = 1 then 

begip var[ i]: = 1; 

• 

if exp2[i] > exp[i] then exp[i]:= exp2[i] 

end; 

avshifts (up); 

for i: = 1 step 1 until la do 

~egin:. code[i] := make code(a.,i); 

coe:f[i]:= Jhs of el i of' a 
end; 

for i:= 1 s~eE 1 until lb do 

bep;i n code [ la+ i] : = make code ( b ., i ) ; 

• 



coef[la+i]:= lhs of el i of b 

!=nd; 
' 

sort(code,coef,l); 

dyadic+:= if 1 = 0 then zero else 

if 1 = 1 ~ code[1] = O then 

(if coef[1] = one1 then one else 

polyadic(simple sum.,i.,1.,eyadic(O,coef[l]., 

d1Jrr1rrw variable) ) ) else 

poL~~_dic ( simple sum,i ·, 1, d;y:~dic ( O., coe f[ i] , 

dyadi_c( O ,rowav( code[i] ,d,up), 

rowadic (0 ,j .,d.,exp[j])))) 
end end gyadic+; 

fonnuJa procedure dyadicx(a.,b); value a,b; formula a,b; 
' 

if a = zero v b = zero then dyadicx: = zero else 

if a= one then dyadic~:= b else if b = one then dyadicx:= a 
else if tyEe of a= simple quotient then 

0 

gyadic_x: = if :type of b = simple quotient then 

(lhs of ax lhs of b)/(rhs of a x rhs of b) else 

(Ths of ax b)/rhs of a else 

if type of b = sirrple quotient then 

-~adicx:= (ax lhs of b)/rhs of b else 

begjn intea-er la,lb ,l.,up.,i,d,j .,ind; 
' 

la:= leng~h of a; lb:= leng½h of b; l:= lax lb; 
• 

be gi p ~ code [ 1 : 1] ; f'or,i:JL1J a arr§Y coe f[ 1 : 1 J ; 
real codei; formula coe fi; 

avs and exps in list(a,la,var,exp); 

avs and exps in list(b,lb,var2,exp2); 

for i: = 1 ~tep_ 1 until avcntr do 

if var2[i] = 1 then 

per2n var[i]:= 1; exp[i]:= exp[i) + exp2[i] end; 

avshifts(up); 

for i:= 1 step 1 until la do 

begjn codei:= make code(a,i); coefi:= lhs of el i of a; 

ind:= (i-1) x lb; .for j := 1 step 1 until lb do 

bepjr code[ind+j]:= make code(b,j) + codei; 

coef[ind+j]:= oper on nwn(product, 

lhs of el j of b ,coe.fi); 
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corrment By ~ans of these two staterrents the actual 
lc 

multiplication has been performed; 

end end; 
a J 

sort(code,coef,l); 

.Cl3'8:mcx:= if l = 1 " code[ 1] = O then 
(if coef[ 1] = one1 then one else 

p~l;y:adi.~ ( sinple sum,i, 1, gya~c ( O, coe f[ 1] , 
dlllTlrey variable))) else 

poJ-ya~c(sirrple sum,i·,1,~adic(O,coef[i], 

gya,qic(O,rowav(code[i],d,up), 
rowadic(O,j,d,exp[j])))) 

end end cy~dicx; 

proce~ure avs and exps in list(f,lf,varf,expf); 
value lf; integer lf; fo1:n1tlJ a f; 

inte&:.~ arr:ey: var:f ,expf'; 

bep;i,n .fo:r11nuJ a refav .,refexp; 

integer i,k,var,exp; 

for i:= O step 1 until avcntr do 

varf[i] := expf[i] := O; 
for k: = 1 step 1 until lf do 

bee;J:Q refav:= lhs of ms of el k of f; 

re:rexp:= rhs of rhs of el k of f; 

for i:= length of refav step -1 until 1 do 
begin var:= el i of refav; 

exp:= el i of refexp; 

if..-varf[var] = O then 

p~gi!J varf[var]:= 1; expf[var]:= exp end else 
a 

if exp > expf[ var] then expf[ var]:= exp 

end 

end 

end avs and e:xps in list; 

pro~~dure, avshifts(up); , 

begj n _inte~r i, bi ts, varctr; 
I ; 

varctr:= bits:= var2[0]:= var~hirt[O]:= O; 

for i:= 1 step 1 until avcntr do 

if var[i] = 1 then 



pegir:: var2[i] := varctr:= varctr + 1; 

var[varctr]:= i; varshi:rt[varctr]:= bits:= 

bits+ 1 + entier(ln(exp[i]) / .691314718056); 
if bits> 40 then error(~too much bits needed~); 

end; 

up:= varctr 

end avshif'ts; 

real procedure make code(f,k); 

value k; _integer k; :fo1-rnula f; 

beg;i n for1nu.J a refav .,refexp; 

integer i; real code; code:= O; 

refav:= Jhs of rhs or el k of f; 

re.fexp:= rhs of rhs of el k o.f f; 

• 

for i: = length of' ref'av s_tep -1 until 1 do 

code:= code+ 2 i varshift[var2[el i of refav] -1] x 

el i of refexp; 
make code:= code 

end make code; 

fo.r,11111 a procedure rowav( c, ub, up); 

value c,up; integer up,ub; real c; 

begig integer i, varctr; real shift ,oldshift, tail; 
' 

varctr:= O; oldshi:rt:= 1; 

.for i:= 1 step 1 until up do 

if c =F O then 

begjn shif't:= 2 i varshi.rt[i]; 

• 

tail:= c - entier(c/shift) x shift; 

i:f tail * O then 

begjn varctr:= varctr + 1; 

c:= c - tail; exp2[varctr]:= var[i]; 

exp[ varctr]: = tail/oldshift 

end; 

oldshi.ft : = shi :rt 

end; 

rowav:= rowaclic(O,i,varctr,exp2[i]); 
ub: = va.rctr 

end rowav; 
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procedure sort(code,coef.,orde); 

real a:tT§' ....... code; integer orde; 
foI1nuJ a a _rTay coe f; 

b.~.VD: _integer i.,pivot,j .,ncode,ub; 

forn1LJJ a f; 

pro,c~d~ sor(l,r); value l.,r; 
L1: if l > r then else 

bef?_!l real h,y; irteger p,q.,s; 
y:= (code[l] + code[r])/2; 

12: for p:= p+1 While p < q do 

if code[p] > y then 

real max,s; 

inteS§r l,r; 

p:= 1-1; q:= r+1; 
• 

pegin for q:= q-1 while q > p do 

if code[q] < y then 

bAgig h:= code(p]; code[p]:= code[q]; code[q] := h; 
• 

f:= coef[p]; coef[p]:= coef[q]; coef[q]:= f; 
goto L2 

end; s:= p; goto L3 
= 

en,d; s:= q; 

L3: ifs= r+1 thens:= 

end sor; 

ub:= orde; sor(1,ub); 

s:= code[1]; ncode:= 1; 

• 

r· sor(l s-1)· l·- s· goto L1 J , , .- , 

for i: = 2 st~I:? 1 until ub do 

if abs(code[i] - s) <.1 then 

b~g:ig coef[ncode]:= aper on num(surn.,coef[ncode],coef[i]); 

if,...,..,coef[ncode] = zero1 then 

begin ncode:= ncode - 1; s:= - 1 end 

end else 

begjp ncode:= ncode + 1; s:= code[ncode]:= code[i]; 
coef[ncode]:= coef[i] 

end; 

orde:= ncode 

end sort; 

! 
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The above procedures have been used to rtm the sarr:e test program as the test 

program of section 3. 5. It is, of course, not meaningful to reproduce this 

test pro and the results as they are the same except for the corrputation 

ti tics used. We theref"ore s1J1nrriarize the computation times only. In 

general, there was a considerable difference in corrputation timas when the 

manipulations conce1·1r1ed much rr·ruJ.tiplications of" large sums of terms. In 

pa-,»tlcular, the method of this section tw>r1ed out to be two to three times 

rrore rapid in these cases • For sorre exan.tples we give a table o:f con:putation 

times: 

- 3XZ+2xy+x 
x/(2-4xx) 
y12x(y-x) /x12 

(x+y)l5 
( -3Xz+2xy+x) is 
exarr1)le 3. 5. 3-

• 

section 3.5 
1.04 

.77 
6.49 
8.76 

29.13 

386.47 

section 3.6 
1.19 

.75 
3.14 
2.83 

10.58 
285.09 

It should be noted that the procedures of section 3. 6 are by :far not 

opti Ina]. In pa:t"•ticuJ.ar, uent use has been made of the 

'Ihi s is an expensive operator however. Considerable gain can be 

eliininating this operator as has also been done in section 3. 5. 

el operator. 

obtained by 

In a f"orth-co · <,- report of A. de Bruin and R. Wiggers the two 

sirrplification methods will be conpared in more details. Moreover, a 

conparison will be 1·nade with the already rrentioned rrethod of G. ten Velden .. 

As a f:inal remark, note agai.n that the rrethod of this section is restricted 

to p1uble1ns with not too much variables and not too high exponents. 
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4. The translat~d pro.gr:am , 

In this chapter we treat the desired for,11 of the translated ABC 

progr?am, tog-ether with the ,'t"\'t"'l·ng system. 
L 

rrhe · · g system consists of a collection of~ L 60 procedures which 

gove111 the dynamic storage allocation processes. 

The translation of the ABC ALGOL progr-am and the -1...u.'"'"',,... • ng system are not so 

sj rnple that they can be treated i~diately in section 4. 1. Their treatrrent 

has to be preceded by a section on· a sinple but unrealistic translation., a 

section on the -.....: · c storage allocation system and a section on a .feasible 

but very (run-ti1re) inefficient system. 

Before entering into these sections, it is necessary to introduce some 

nomenclature. Moreover, we make son:e general observations conce111j ng storage 

space management. ..... · 

As we shall go into the details of the implerrentation, where addresses, 
• 

pointers 

terms: 

and references play an irrportant role., we define the .following 

A for1nul a value is a structured collection of ( at least one) boxes. Each 

for'Inu.Ja value has a reference. A fo111IDJa value and its reference are defined 

as follows : 

A si_1nple fo1111iuJ a value 

contain a reference; the 

reference of its box. 

is a box, 

reference 

cal.led its own box, which does not 

of this simple fo1'Ir1uJ a. value is the 

A formula value is either a sinple for'fm.lJa value, in which case its 

reference is the re.ference o.f that sirrple forrrula value, or there exists a 

box, cal.led its own box, containing at least one re.ference., in which case 

the fonnuJ a value is the collection o.f this box and the boxes o.f the .fo11r1UJ a 

values re.ferred to by the references contajned in that box; the reference of 

the .fo:r,nul a value is the reference of that box. 

We say that a re.ference refers to a fo1'!l'1ula value, if it is the reference of 

that for1Ill1J.a value. Each reference refers to one and only one fo1"!ntJJ a value. 

The definition o.f a formula value is done in terms of boxes; we there.fore 

have to def.ine boxes: 

A box contains three items: 



1. The first one is called its type, which is a (small) natlrraJ 

and which can be or five dirrerent categories: constant, rronadic, 
polyadic and rowadic. 
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number, 

dya.di c, 

2. The second one is called the lbs, which may either be an integral 
nurr:ber or a rererence. 

3. The third one is called the rhs, which may either be an integral 
nun.her or a ref'erence. 

herrnore, each box has one and only one ref'erence (which may be 

thought of as its address or the pointer pointing to it). 

Each f'o1iiriul a occurrj ng in ABC .n...L... L is represented by rreans of a for,11tJJ a 

vaJue; i.e. a structured collection of boxes. Sin:ple for1rJUlas., as algebraic 

variables or nurrbers, are represented as sirrple formula values; tree-like 

:foi:-inuJ 8.S are represented as fOI'IlD..J.la values. Example: the formula xxx + x, 
with x an algebrai.c variable, may be represented as follows:· 

1 

2 

3 

33 
rl 

r2 

0 

r1 

r1 

box 1 with ref'erence r1: 

box 2 with reference r2: 

box 3 with refer ce r3: 

'Ihe nurrbers 1, 2, 3 and 33 are codes chosen for ''algebraic variable'', 

''product'', ''sum'' and '')(', respectively. 

Durj .. ng the conputation, each fo:r1nu.J a variable, subscripted or not 

subscripted, can have several for·rnuJ as as value ( at different times) . fue 

space occupied by these different forn1ula.s, i.e.. the nurrber of boxes or 

their for1m.1J.a values, is not necessarily the same. Upon block-entry, when a 

fo1.,11ul a variable is introduced by rrea.ns of its declaration, it is thus not 

possible to :reserve the space needed for its rormuJa value. Neither is 

it possible to deteimine this space upon block-exit in order to make it 

available for other 1..1se. 

Looking nore closely at the relation between a fo11nula variable and its 

:ror,mJ.J a value, we observe that a fo1'ltllll a variable may very well have as 
• 

value the referer1ce of its for1ruJ a value. The anntmt of space for this 
• 

r f'erence is fixed; this space can thus be reserved on block-entry and 

released on block-exit. 
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4. 1. The ~ir~lest but,, ~alist~c transl.atiop, 
' 

Consider the following ABC ALGOL program: 

begir;L fonrn,11 a g; 

end 

begin for,rJUJ a f ,x; 
ld d 

end· , 

x:= av(~rl); f:= xxx + x; 

x:= f + fxx; g:= f 

• 

g:= g + 10 

Assurrdng the existence of an integer array C, we can represent a box with 

reference k by the three axTay elenents: C[k,1],C[k,2] and C[k,3]. The 

run-tinE system may now consist of: 

_inteSt:r p~_cedure STORE( type ,lhs ,rhs); 

value type ,lhs ,rJ:1s; integer type ,lhs ,rhs; 

!)€e:JP S'IDRE:= k:= k+1; C[k.,1] := type; 

C[k,2]:= Jhs; C[k,3]:= rhs 
• 

end· 
ru J 

integer procedure SUM(a,b); SUM:= S'IDRE(3,a,b); 

i~FeEJ:r ;e~cedure PR.OD(a,b); PROD:= STORE(2,a,b); 

int~~:r, p_rocedure AIJJ VAR( letter); 

AifJ.,.,., VAR:= S'IQRE(1,letter,O); 
inte~~ proced~ INT NUM(value); 

TN'£ NUM:= S'IORE(O,value,O); 

and the translation of the AOC Al.GOL program above can sj mply be: 

begi ry -~teger G; 

end 

,beg? n i_nteger F ,X; 

end· 
al I l J 

X:= ALG VAR(33); F:= SUM(PROD(X,X) ,X); 

X:= SUM(F,PROD(F,X)); G:= F 

G:= SUM(G, l'NT NUM( 10)) 
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He1:-c, and in the sequel we shall adopt the convention of using lower-case 

letters for identi.fiers in the ABC ...J...J\,,I L progr-am and upper-case letters 

:for the corresponding identifiers in the translated pro~..... . In the act1,1aJ 

translation, however., another rrechani sm is used so that an ABC , ,L 

prograrrnr:er may choose his identifiers without any restriction. 

Giving the integ;er 

the references r1, 

respectively. 

k the initial value O, we see that the values of 

r2 and r3 of the preceding section are 1., 2 and 3., 

A corrpiler for this translation ' 

could be vecy small: it has to change 
,,.,. ~ l '' . t ''. t ,,..,.,,...,....,, d +>: - l . . t . . 1 . .1.0l:1U1U a Ill o Ill ep;e1: an a .1.0I'll!Ll a expression in o its equ, va ent Polish 

prefix forn1. And indeed this is the rougp structure of the corrpiler of 
chapter 6. 

The reason that the simple translation scheme does not fulfill the needs is 

hidden in the size of the array C., which was, until now, tacitly assumed 

to be indefinitely large. In practice this size is bounded, and it is our 

task to provide the means for using the available space as well as possible. 

Re.ferr:ing to our exair:ple, we see that after the second block is conpleted, 

the :fonm.11 a value f'or :f will still be used in the surrounding block; _the 

f'inaJ fo1·rm.1J a value of x will, however, par··tly not be used any longer. This 
• 

means that two boxes are used for unreachable .for,nul a values. At any rrorrent 

we can divide the :fo1~nula values into two classes: the interesting and the 

non-interesting class. Members of the interesting class are those fonru.J a 

values the references o:f which are either the values of ''active'' forn1ula 

va1·iables or are contajned in the boxes of :formula values belonging to this 

interesting class. FoI-r·11U.la values not in the interesting class are rr:errbers 

of' the non-interesting class . 

It is necessa.:x'Y to provide the procedure STORE with the ~ans to be able 

to separate the two classes.. For the above case STORE has to know that the 

integers G., F and X have values being the references of for,nuJa variables; 

and it has to know the lif'etime of these integers. How this can be done., is 

the subject of the next section. 

4. 2 • The gypamic-stor9:ge allocat_i_9n ,system 
T I 
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. At an arbi tra:ri:y rroment, dur:j ng the computation process, the proced1~re STORE 

is called to allocate space ( a box), for a new fo:rmula value. Assume that 

there is no free space left. Now we may have two irrplerrentations: one in 

which there may be left space occupied by non-interesting f'orrru_la values and 

one in which the class of non-interesting for1nul a values is always empty. We 

will discuss the second inplementation later on. 

There are two nEthods to distinguish interesting and non-interesting :fo:r,:rntJl a 

variables: the external and the inten1al rrethod. 

The internal ITEthod consists of putting the inforn1a,tion about a f'o:r,IDJJ a 

variable being interesting or not inside its own box; which ITEans that STORE 

can si triply inspect all boxes in a straightforward manner·. 

In the external rethod we use a list of all references to fon11ula values 

being the values of ''active'' fort1n.1J a variables; STORE can separate the 

interesting from the non-interesting formula values in a recursive fashion. 

As far as S'IORE is concerned, the inter·rlal method is pre.ferable. Other 

operations a.re block-entry, assignation and block-exit. I.f we assign a 

fon1·0.JJa value f2 to a fonnula variable r, which originally had the f'o:r11nJl a 

value fl, then we have. to do somet · with the a · · stration in the boxes 

of .f1 and :f2. when we follow the internal rrethod. Indeed, f1 may have become 

non-interesting and .f2 surely remains or becomes interesting. How do we know 

that f1 really has become non-interesting in another wa:y than by inspecting 

all other interesting forrnula values and seeing whether they refer to f1 at 

the cost of much comput:i ng tine. There is a way: the in:foI»rt1ation does not 

only tell whether a fo:rirr1tJl a value is interesting but also how interesting 

it is. In particular, this infor1ration can be a counter, called reference 

counter, Which counts the nurrber of times the formula value is referenced. 

In our case, the reference counter of f1 has to be decreased by one and the 

ref'erence counter of f2 has to be increased by one. 

With the exterry,iaJ method, we only have to change the list of all references 
being the value of foi,mJJa variables; i.e. 

has to be replaced by a reference to f2. 

With respect to assignments, we a.l·ri ve at 

nethod has the follo · __, disadvantage: 

reference counter and, as sorre values may 

space has to be rrore than just a few bi ts . 

the reference to f1 in this list 

the conclusion that the inte:r11al 

each box needs space for the 

be referenced very often, this 
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Considering the block-entry, we observe that upon decJ arations ot: for'frul.a 

variables, the list of re.ferences of values of fo:r-,-rula variables has to 

be enlarged in the internal rrethod, whereas nothing has to be done in the 
inter,:1al rrethod. 

Finally, during block-exit the actions necessa:r-y in the exte1r-ial rrethod 

corrp11.se the shri · g of the list of references of values of fonm;J,a 

variables only, whereas the actions in the internal rrethod consist of 

decrea.si ng the ref'erence counters of the values of the fonrru,J a variables to 
be deleted. 

Concluding, we remark that the inte1·naJ nethod is advantageous only when 

STORE has to collect the non-interesting for"II1ula values ( called a ga:rbage 

collection) often. Thus in a case that 90 percent of the merrory is needed. 

However, in such a case we can better use the 10 percent space, needed .for 

re:ference cot.n1ters, for rrore boxes .. 
• 

The two rrethods do not exclude each other. It is also possible to have a 

mixed nethod: r:Ihe space for the reference counter is kept small; after 

its neximum has been reached and another reference has to be dealt with, 

a special bit is tu111ed on; the property ''being interest·-~' .for fo11nula 

values for which this bit is on, is dependent now on a list of references of 

values of for'I!1uJ a variables. 

The advantages a.:re that the nurrber o.f garbage collections can be kept to a 

mini1num while the space needed .for reference cotmters does not need to be 

exceedingly large; in fact sorre spare bits, which ,cc ... uently are available, 

can be used. The disadvantages are that we still need space, which in our 

case can not be fo1..md in spare bits and that it is rather complicated. 

More or less orthogonal to the inte:r:·1 !8 l -exter·r1al controversy, stands the 

question: relocation or no relocation, with which we mean the follo · • 

A~er STORE has determined which for,rruJA- values are interesting and which 

are not, it can proceed in two directions: the interesting for,nula values 

are relocated such that the free space .fonns a contiguous space, or the 

interesting for·1r1UJ a values are not relocated .but the non-contiguous free 

space is chained together to form a f:ree list (i.e. a linear chain of free 

boxes). 
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Someti.nes it is una.voidable to relocate; e.g. in a case where we also have a 

stack, gt'O • -~ upward and do .nr ...,.;i....,., in IreIIOcy, or in a case that the sinple 

fo1,nuJ a values are of different size. 

In our case, where we use a fixed-size Jjnear in which the fonm1la 

values need to be stored only, and where we a.re not forced to have sinple 

fon1ru]a values of different size, we choose the non-relocation version. 'lhe 

main nt is that in the 'relocation version the values o:f re:fer,ences 

after a ga1'bage collection. 'lhe e:ff'ect is that it is vecy d~rous 
' , 

to store such a value into an integer variable since the value of the 

reference can ............ while this integer variable remains unch d. In 

the foll ·..... sections, we will see that integer variables play an 

i,nportant role. For a detailed conparison between the ::relocation and the 
' 

non-relocation 11ethods we re:fer to [ 13] , in which conplete ....... L progcams 
• are given. 

• 

• 

We close this section by retu1'1jng to the be · .... V'\· . when we introduced a 

system in which non-interestj ng :fo11iul a values never occur. Thi s system 

can easily be inplenented as a non-relocation and inte1t.r.Lal system in which 

each box, whose reference counter has becone equal to zero, is j111tr.ediately 

cha,j ned to the free list . 

4.3. The external non-relocation nethod 

The procedure STORE should always have at its disposal the list of' 

re:ferences or :fot,truJ a values o:f fonnuJ.a variables. It is, o:f course, 

irrpossible that STORE can be made aware of a set or integer variables since 

these are 1mown to the ..... L 60 corrpiler system only. T.here:fore, we have to 

make an explicit list, o:f items re.ferring to forrm,1Ja vaJues. Each such item 

is called a nane. A nanE is a box and it has a re:ference, the reference of' 

the box. 'lbe box either contains no re:ference, in which case it contains 
' • - • .,,_, ~rr 

, or it contaJ,ns a reference to a fo1,ru.1Ja. value. 

A fo1m111 a variable f., declared as '':fo1·11n.1J a f'', has two counterpax»ts in the 
• 

translated program: the integ;er variable F, deqJared as ''in~ege;r- ~,, and a 

na11:e F' , created by a call of DE. Irrnediately after the declaration, the 

value or F is the reference to F' (i.e1t F points to F' ) and F' contains 

• 

• 
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After an assi nt ''.f: = expr'', translated into: ''ASSIGN(F ,EXPR)'', the value 

of F is still the reference to F' but the re:ference contajned in F' is the 

reference of the :for'fm.JJ a value defined by EXPR. 

On block-exit the integer variable F disappea:(')8 autorratically 

60 system and the narre F' disappears by a call or ERASE. 

specific, the .following program: 

beg;jn 

end 

fonnula f'; 

f:= expr 

is translated into: 

• 

begin integer F ,fun; fnn: = gnn; DE(F, v.i....u...,); 

ASSIGN(F,EXPR) 
; ......... l..rl.i,.,.,IE(fnn) 

end 
• 

In order to un.derstand this translation., it is necessa:t'Y to observe that the 
• 

list of' ....... names can be organized in a T,ast In First Out fashion; i.e. as a 

stack. 'l'hj s is a consequence of' the si:rrple scherre: 

upon block-entry create n narres 

upon block-e:xit delete then lastly created narres. 

We use a global integer gnn for counting the number of narres and, for each 

block, a local integer inn, which, as indicated above, gets the value of gnn 

at the monent just preceding the creation of the names. It is now easy to 

imagine what happens a:rter a call '.L.J.J. ...... E(f'nn)'': precisely gnn - fnn lastly 

created na.rres are erased and gnn gets the value of fun. 

Each block ma:y have an integer with the same identifier ''frm" since the 

scope of' this integer always includes the statement ''F:R.A.SE(.f.nn)'', as it is 

the last staterrent of' the block. 'Ihe problems, concerning a jwrp out of the 

block without passing the block-exit, will be dealt with in section 4.6. 



, 

For reasons of efficiency and elegancy, the list o:f narr.es is inpleirented in 

the sane a:rrrey c which is used for the for1nul a values. The ari·-ay element 
is used for 

storing either NULL or the reference to a fo;r,nula value. Again the procedure 

SIORE puts the three values: type, J hs and rhs in C and it performs a 

garbagp. collection if necessarty _, its precise declaration will be given in 

the next section. 
Now we give, for illustrative reasons only., the following procedur-cs in a 

non-definite fo1111. 

p~dure DE(f,E); value E; ~:t_e&::r f,E; 

p~g·i D last name:= STORE (narre list type ,E, last name); 

f:= last na ; gnn:= g;m + 1 

end; 
PI:)C69-ure. ASSIGN(f ,E); value f'; integer f .,E; 
begiD, C[f,2]:= E end; 

pro.cedµre ERASE(old gnn); value old grm; intewr old grin; 
' 

for old gnn:= old gnn while gJm > old grin do 

begin last nane: = C[last narrE ,3]; gnn:= gnn 1 end 

4. 3 .1. .'.11ranslating an Expression 
• 

'Ihe translation of an expression will now be considered. Take the expression 

''x x y + u x v'", in which x, y _, u and v are si ·t1ple f'ormula variables 
• 

:for Which the integer variables X, Y., U and V have been decla.red in 

the translated pr<)gram. As in section 4. 1 the translation has the f'o1111 

''S(P( ••• _, ••• ), S( .•• , •.. ) )''; but we still have to decide how the primaries 

x, y _, u and v shall be translated. In fact, this decision depends on the 

nature o:f the quantity which is being delivered by the procedure identifiers 

themselves. Th.e nature can be: 

1. a reference to a foi,nuJa value; 

2. a reference to a nane (which itself refers to a fo11.TJU~J a value). 

4. 3.1.1. 'Ihe ~.fe~nce_-_t,o-a-na:p-e approach 

If the procedt1re S has to deliver a reference to a nane which i tsel.f re:fers 
. , 

to the fo21lll1J a value, then its declaration has to be of" the fol"li1: 



integer procedure S(a,b); value a,b; inte~r a,b; 

b~gip ~nt~ger Snane; DE(Sna.rre,S'IORE(3,C[a,2],C[b,2])); 
S:= Snarne 

end· , 
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However., the translation of ''x x y + u + v'' into ''S(P(X,Y), S(U,V))'' 

then leads to the introduction of 3 different names, of which only one is 

needed to refer to the for1r1Ula value. It is obligatory to have, besides an 

automatism for creating names, an automatic erasure of narres, as is done in 
the following declaration: 

~teger proc_e_dure S(a,b); value a,b; intee1:r a,b; 

begin ~teger Snarne,fnn; Snarne:= STORE(3,C[a,2],C[b,2]); 

fun: = grm - 2; ERASE ( fun) ; DE ( Sname , ._..,., ;,uJ ); S:= Snarre 
end 

This procedure needs a little explanation: A.fter STORE is called for storjng 

the formula value., the last two created narres are erased and then a new name 

is created in which the reference to the for1rru.l a value is stored. During the 

creation of that new name, a ga-roage collection is in principle possible and 

this could destroy the newly created formula value (there is still no naroo 

ref"erTing to it) . First, we remark that we can explicitly inforrr1 S'IDRE about 

the existence of a special .fo:r1nula value which is interesting and, second., 

we observe that DE. is called irmediately after the erasure of two narr:es. 

In the next section we will see that space becoming free as a result of' 

erasing names can inmediately be retucrned to free space and this neans 

that a age collection can not occur. Of course, the second • line of 
the proced1.1re body could be made rrore simple as f'ollows: ''fnn: = gnn - 1; 

..._.E(fnn); S:= C[a.,2] := Snarre''., where we used the fact that the order of' 

execution of called-by-value po.ro.,., ters is the order in which they occur in 

the value pax·t. 

Coming back to the translation of the primaries x, y, u and v, we see that 

the translation can not be ''S(P(X,Y),P(U,V))'' since S, and also P, assume 

that ju..st prior to the evaluation of their actual parameters two new names 

have been created, which may be erased as soon as their values have been 

used. There fore , we need the procedure : 

integer pro,cedure EN(N); value N; inte&:r N; 

begi,n DE(N,C[N,2]); EN:= N end 



4- 108 

for creatj ng an Extra Narre; we now get the translation: 

''S(P(EN(X) ,EN(Y)) ,S(EN(U) ,EN(V)) )'' 

'Ihe whole should be put as actual p;;;I..L ter of the following procedure which 

erases the lastly created nane and delivers the reference to the fo:r,,DJ.la 

value: 

intege~ Eroced~ EXPR(actuaJ expr); value actuaJ expr; 

i!,lteger_ actual expr; 
begig ipt_egE:r fun; EXPR:= C[actua.l expr,2]; fnn:= gnn - 1; 

J:.il1 "\l..:>J:.a ( fnn) 

end 

The translation of ''f:= x x y + u + "T../' then takes the for1r1: 

''ASSIGN(F,EXPR(S(P(EN(X) ,EN(Y)) ,S(EN(U) ,EN(V)))) )'' 

Evaluating the above approach, we conclude that it is complicated and 

inefficient with respect to the nunber of nan:es used. 
It is conJ)licated since the creation and erasure of narr:es is being done in 

different procedure calls. It needs a good insight into the dynamics of the 

process to see that the system works correctly. 

It is inefficient as rray be seen already from the translation or the siniple 

exartple: ''f:= x + y'' into: ''ASSIGN(F ,EXPR(S(EN{X) ,EN(Y))) )'' in which three 

narres are created and erased although none was necessary to save a fo11nula 

value. 

4. 3.1. 2. 'Ihe,, .refere~ce-~o-a-value app_roach 

The procedure S delivers a reference to a forrw~la value. 'Ihis may be a saved 

or a possibly not saved one. By saved we mean: there does exist a name 

referring to this va.J ue. If S has to deliver the reference of a saved value, 

we are a.J.nost in the sarr.e position as in the preceding approach; there fore, 

we follow the second approach. S delivers a rererence of a not necesRarily 

saved value and we have the rollowing procedure declaration: 



integer procedure S(a,b); integer a,b; 

pegin inte~r. an,bn,fnn; ftm:= gnn; DE(an,a); bn:= b; 

S:= STORE(3,C[an,2],bn); 

E(fun) 

end 
' 
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The actuaJ para.n:eters of S should also deliver references to possibly 

non-saved formula values; there.fore, the for,nula value, to which a refers, 

has to be saved explicitly before,...,..the actual parameter b is evaluated, since 

this evalu2.tion could lead to a garbage collection. The primaries x, y, u 

and v should now be translated such that the references to their forriu.J a 
values are delivered and we thus have as translation of': ''f::: x x y + u + 

v'': 

''ASSIGN(F ,S(P( C[X,2] ,C[Y ,2]) ,S( C[U ,2] ,C[V ,2])) )'' • 

. 

Corr.paring this approach with the preceding one, we see that the creation and 

deletion of names is far less corr:plicated: there is a static correspondence 

between each DE and its ERASE counterpa-c·t. Also with respect to efficiency 

this approach is superior: for ''f:= x + 'Y'' it uses one name. 

it will be shown later on that it is even possible to make 

in which this ( s upe r.fluotJ.s) narre is not used. The latter 

modif'ication of the system which is now being described . 
• 

hermore, 

a safe system 

system is a 

• As an exarrple., we shall now give 

distributive laws and perfor1n the 

the procedures 

sirrple O and 
S and P which apply the 

1 sinpli.f:i.cations; in ABC 
L they have the following f0t1r1: 

fo1:i.i1rul a procedure dyadic + (a, b); value a., b; for,tru.J a a, b; 

dyadic +:= if a = zero then b else if b = zero then a else 

dyadic(3,a,b); 

fo1,1ruJa procedure dyadic x (a,b); value a,b; formula a,b; 

dyadic x:= if' a = zero v b = zero then zero else 
• 

if a= one then b else if' b = one then a else 

if type_ of a :: 3 then lhs of' a x b + rhs of a x b else 

ir type of b = 3 then a x lhs of b + a x rhs of b else 

• 
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g_yadi c ( 2 , a, b ) • 

Wu.le in · L 60 their form is given by: 

ir~~Fl?'r E~~edure S(A,B}; 1/}teger A,B; 

ooe;l:-!1 intef!::~ An,Bn,ftln; ftm: = gnn; DE(.An,A); 
"'.. S:= if C(An,2] = C[ -~ ,2] then C[Bn.,2] 

DE(l3n,B); 

else 

else 

end• 
; ',, I 111 t 

if C[Bn,2] = C[ · .. ,2] then C[An,2] 

Sl'ORE(3,C[An.,2],C[Bn,2]); 
( fnn) 

~~~e!t. proce~ P(A,B); integier A,B; 

bEt.f2:!1 wteger An.,Bn,fnn; fnn:= @1!1; DE(An,A); DE(Bn,B); 

P:= if C[.An,2] = C[ZER0,2) v C[Bn,2] = C[ZER0,2] then 

end. 

C[ZER0,2] else 

if C(An,2] = C(ONE,2] then C[Bn,2] else 

if C[Bn,2] = C[ONE,2] then C[An,2] else 

if C[C[An,2],1] = 3 then S(P(C[C[An,2).,2],C[Bn,2]), 

P(C[C[An.,2).,3],C[Bn.,2])) 

else 
if C[C[Bn,2],1] = 3 then S(P(C[An.,2],C[C[Bn,2],2]), 

P(C[An,2] ,C[ C[Bn,2] ,3])) 

else 

S'l"ORE(2,C[An,2],C[Bn,2]); 

ERASE(fun) 

Observe that it is necessary for P to introduce nanes for both A and B and 

not ~ for A. 'lhe reason is that the evaluation of ''lhs of a x b'' may 

involve a ga:-rbage collection so that b migpt be erased if there was no name 

saving the fo:t1roJ)a value of b. For S it would have been sufficient to cr-eate 
a.nanefora 

Du.e to the fact that no assigrui.ents take place to the pararreters a and b 

of the abo'Ve ,dures, we can give a nuch nore efficient (with respect to 
t~) version by means of the following procedure : 



4- 111 

proce_~ur:e DEVAL(F ,E); in_-~eger F ,E; 

begin DE(F.,E); F:= C[F,2] end 

• T.h.e e:ffect of DEVAL 

de:fined by E. It is 

another for1r1u.la value. 

lS that • 
a nane is created for saving a foi1riula value 

rreans of DEVAL, • i.e. 

not possible to give this created narre a reference to 

Assuming that ONE and ZERO have been introduced by 

that their values are references to for,11UJ a values 
instead of nanes > we may declare S and P as .follows: 

,integer procedure S (A ,B); integer A ,B; 

begi~ inte&:r Av,Bv,frm; fnn:= gnn; DEVAL(Av,A); DEVAL(Bv,B); 

S:= i.f Av= ZERO then Bv else 

end· 
II , 

if Bv = ZERO then Av else STORE(3,Av,Bv); 

ERASE(ftm) 

ipte&:r p~cedure P(A,B); tpteger A,B; 

begin integer Av,Bv,fnn; fnn:= .gnn; DEVAL(Av,A); DEVAL(Bv,B); 

P:= if Av= ZERO v Bv = ZERO then ZERO else 

end. 

if Av= O:NE then Bv else if Bv = ONE then Av else 

if C[Av,1] = 3 then S(P(C[Av,2],Bv),P(C[Av,3],Bv)) 

else 

if C[Bv,1] = 3 then S(P(Av,C[Bv,2]),P(Av,C[Bv,3])) 
else 

STORE( 2 ,Av ,Bv); 
ERASE(fnn) 

Let us close this section by showing that the translation of any ABC L 

expression, in which the only operators are + and x and in which the only 

p:r~maries are forrrrul a variables, leads to an ALGOL 60 expression which, 

when executed, has the property that garbage collections can not destroy 

pa·r·tially f'orrred results still being necessa1ry. We call this translation a 

sare translation. 
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Consider an arbitrax'Y product expression: ''expr1 x expr2'', translated into: 

''P(EXPR1,EXPR2)''. From the rrorrent P is called until the rr.orrent the value of 

P is conputed and delivered we shall follow the execution precisely. 

'' DF:vPL(Av ,A)» EXPR1 is evaluated and we assume that it is evaluated 

correctly. A_nane is created to which the for1rn.:i.J a value is assigned., so 

that, until ''E:RASF:(fhn)''., the value is safe. Through ''DB:VAL(Bv ,B)'' B:xPR2 is 

evaluated and the remarks rre.de for EXPR1 pertain also to EXPR2. Arter P has 

got a value the following possibilities a.re open: 

1. The value of EXPR1 (or EXPR2) is· the value of P. 

2. This is not so. 

After the execution of ''ERASE( fnn)'' the values of ExPR1 

longer safe. Only in the first case, however., we have to 

If ''expr1 x expr2'' is itself part of another expression, 

and EXPR2 arc no 

see what happens. 

then a naire will 

be introduced to save the value; if ''expr1 x expr2'' is the right-hand 

side of an assignrrent staterrent or appears as actual parameter, it is 
. 

the responsibility of the assignment statement mechanism or the paral'll:=ter 

rrechani sm to save the value (if necessa::r,y). 

We thus arrive at the conclusion that dtll'."'i ng the execution of the procedure 

body of P., including the evaluation of its actual parameters, the 

derived partial results remain safe until P has got its value. It is the 

responsibility of the rr.echanisrn that called P to save the formula value to 

which the value of P refers. 

In passing., we remark that during the execution of the translation of 

( x+y) x ( u+v), the. forr11Ul a values x + y and u + v are forrred but, after P is 

finished, they belong to the garbage. 

Similar argurr.ents may be applied to the execution of the procedure S. 

4. 3. 2. The .. ,t,rans,lation of P. . t.e~ of type ,for1nu,J a 
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A f'o::r,naJ parameter a of' a procedure p specif'ied of type foririula and called 

by value is translated in the sane way as the pararreters a and b of the 

preceding section: An integer Av is declared., the statenent ''DE:VAL(Av ,A)'' is 

executed and each occu1rr-ence of a in the procedure body is translated a.s_Av. 

It is not poss~ble to assien a val,ue to a par~t~~-1 ca;i~.ed by value. Thj s 

simple and natural restriction enables us to make the efficient translation 

with Av instead of' C[An.,2]. A fo:r1riaJ parameter b called by na.rre is treated 

analogou__sly as in ~ L 60. We now have to face the followj ng problems: b 

may occur at the left-hand side of an assigrurent staterrent, in which case 

the act11al pararreter should deliver a reference to a name, or b may occur in 

expressions only when the reference to a value is needed. 

On the other hand, the acttJ.al parameter rrey deliver a reference to a nail"E 

or the reference to a value, and this can not be investigated syntactically. 

Hence, it is necessary to build in such rreans that it dynamically can 

be seen whether a reference is a reference to a na.rre or to a value. An 

occurrence of b in an expression is, therefore, translated as ''V(B)'', where 

the procedure V is defined as :follows: 

integer p_rocedure V(N); value N; integer N; 

V:= i:f N is a ref'erence to a na.rre then C[N,2] else N. 

At the left-hand side of' an assignment statement, b is translated as B; in 

the procedure ASSIGN we check whether B is the reference to a narre, which it 

should be. 

'Ihe price for the :freedom, to use the actual called-by-narre p ter 

f'or na.rres as well as for values., is inefficiency in tirre as we have to 

distinguish at run-time between two categories of references. 



4- 114 

As we have seen already in section 4. 3. 1. 2, the heading or a :CoJ:,rIUJ a 

procedure is '-'J..lO.L....... into an integer procedure. If the last executed 

statement of the procedure body can syntactically be shown to be always the 

assignment to the procedure identi:fier the translation of' the assj gnrrent to 

the procedure identifier can be simple: ''p:= expr'' is translated into ''P:= 

EXPR''. If this cannot be shown syntactically, the translation has to be more 

conplex due to the fact that we want to be able to give error rressages in 

the case that the procedure identifier does not obtain a value, or in the 
• 

case that after the assignment statement to the procedure identifier and 
before the block-exit an action takes place which rr.ay invoke a ga1->bage 

collection. 

4.3.4. An exarrple 

With the aids discussed until now., we can easily translate the foll 

exarrple: 

forrmJJ a proc~ure der(f ,x); value f ,x; fo11r1Ul a f .,x; 

beg;i n in~eger t; t: = type of f; 

end 

into: 

der:= if f = x then one else 

if t = 3 then der(lhs of r,x) + der(rhs of f,x) 

else 

if t = 2 then der(lhs of f',x) x rhs off+ 

Jhs off' x der(rhs of f,x) 

else zero 

~nte~~ proced~ DER(F.,X); integer F,X; 
b~gjQ integer T,Fv,Xv.,fnn; fnn:= gnn; DEVAL(Fv.,F); DEV.AL(Xv,X); 

T:= C[Fv, 1]; 

end. 

DER:= if Fv = Xv then ONE else 

if T = 3 then S(DER(C[Fv.,2],Xv).,DER(C[Fv.,3],Xv)) else 
if' T = 2 then S(P(DER(C[Fv,2],Xv).,C[Fv,3])., 

else ZERO; 
ERASE(f'nn) 

P(C[Fv,2],DER(C[Fv,3],Xv))) 



I.et us carpute the nLnrher of names which are simtlJ taneously 

calculating the derivative of f; denote it by n(f). 
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• • in ex.1stence for 

When f is x or f is not a sum or a product then n( f) = 2. When f is a star1, 

a + b, then n(f) = rna.x(2 + n(a), 3 + n(b)). When f is a product, ax b., 

then we have in the sirrple case that P does not apply the distributive law: 
n(f) = max(2 + n(a), 4 + n(a)). For f = 1 + (x +(xx x +xx (x xx))), we 

thus have at a certain rroment 19 nanes in use. 'lhj s should be corrpared with 

the 6 foI1ruJa values which ultimately result from the cOOl)utation. 

The conclusion is that, for this exai1ple, we need 3 times more space for 

saving par"tially for1red results than we need for the Nna.J value. Kn ..i...i.. 

that the nurrber of names which is really needed for saving pa-r~tial results 

as x + x, another x + x and x x (x + x) is 3, we seriously have to tcy 

to remedy this situation. Also in another, less sophisticated, exaJ1ple, 

experiments showed that the nunber of sirrv7taneously existing nanes is 

approximately 6 times roore than the number which is really necessar-y. rrbe 

reason for this probibitive large amount of names is that the sane for,ruJa 

value is saved simultaneously several times in different calls of DER, Sand 
• 

P. 

4. 4. A ~re .. _clev~r and more efficient syst~m 

We tui~1 our attention again to the fo1t11B.J p~ ters of S and P, and we ask 

whether it is possible to create narres cond4tionally instead of always. 

It 1r1u.st, therefore, be possible to exchange infor·ma.tion about a for,rllil a 

value whether it is saved or possibly not saved. This info1mation must be 

ex :::=,,r, between several procedure calls and it is sirrply possible to put 

this inf'onnation in the value of the reference to the fo.rmu.J.a value. 

A first solution seems to be ;;u.·· ·ng a reference i.f it is the reference to a 

probably non-saved .for,nuJ a value. llie proced1..1re S may then take on the foI'Ill: 
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iptes..er procedtJF(= S(A,B); in,teger A.,B; 

b_egi,.n_ -~t~s;er Av.,Bv,fnn; ftm:= gnn; 

end. 

Av:= A; if Av< 0 then DEVAL(Av,Av); 

Bv: = B; if Bv < 0 then DEVAL(Bv ,Bv); 

S:= if Av= ZERO then Bv else Bv = 

else - S'IORE(3,Av,Bv); 

ERASE(fun) 

• 

T.he above fo11n is not suitable, however, due to the fact that S may get as 

value the value of Av when Bv = ZERO. The value of' Av refers to a fOilfl'R11 a 

value which is just recently being saved; i.e. the actu.a.J paraireter A was 

negative. 'Ihe corresponding nane, refer-ring to Av, is erased imrrediately 

af'ter S has got a value; hence., the value of' S indi~ates that S refers to a 

saved .formuJ a value while this is not necessarily the case. 
, 

One rerre ...... dy would be to investigate the value of S durjng the erastire of' the 

naJres. 'fhi s :rreans that all names., all for.rriul a values and sub f'oI'!llLlJ a values 

which are erased are conpa.red with the value of' S. If one is .found equaJ to 

the value of S., 

rnc:>reover, it is 

S is made negative. 1l'hi s is very tirre-consurriing a process; 

not watertight in the general case. Consider .for exarrple: 

f'oI,r11JJa proced]Jre p(a); value a; for,nula a; 

begin, • . . peg:1 n fo11nula b; • • • p: = if random < • 5 then 

Jhs of a else rhs of b; 

end; • • • 

end 

It would be necessa:t'Y to translate each block-exit such that it conparen the 

values of' a nunber oi' procedure identifiers with the values of the to be 

erased names and fo1imul a values . 
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Another solution would be to conpare the value of the procedure identifier 

with the values or still existing names and .for111ula values. This is rrore 

easy to corr.pile, of course, since this action need only be performed at 

the block-exit or the procedure body o.f the :fo:r-rnuJ a procedure involved. 

But again it is a tirre-consuinj ng process. Let us call this the corrparison 
method. 

A third solution, called the minus nethod,is by changing the assignment 
statement into: 

''S:= if Av = ZERO then -Bv else if Bv = ZERO then -Av 

else -STORE(3,Av ,Bv)''. 

This is, of' course, not an optimal solution, as may be seen in the exac1:ple: 

''bepj !1 

''bep:jn 
a J 

0) + 0 ••• end" translated into: :for~ntiJa f; .•. (f + 

integer_ F; DE(F, U.I...J.L.J); ••• S(S(C[F,2],ZERO),ZERO) .•. 
in which one super:fluous name is created for f. 

end'' , 

In order to make a comparison, we did some experiments with calculating the 

first 7 Taylorcoef':ficients with a pro~aTn•i~, simiJ_ar to the one in section 

1.2, in which nunbers are not combined automatically. The four methods are: 

1. the sj11ple method or section 4.3; no marking of references. 

2. the conparison method. 

3. the cor1t>arison method, in which the value o:f the procedure 

identif'ier is always made negative. 

4. the mint.:tsrrethod. 

The quantities measured arc: 

1. the corrputation tirre in rnillihours (rnh), excluding the tine necessaI'Y 

for pr•·iritjng the results (6 rrh); 

2. the max; .rmun nurrber of' names sirnuJ taneously in use, excluding 

the names f'or the declarations; 

3. the number o:f times STORE is called (to be corrpared with the 

nurr.ber of' values being created: 3069 in total); 

4. the nurnber of garbage collections. 

tine (in mh) 

number of' na111Cs 

rrethod1 

55 
82 

2 

56 

9 

3 

33 

13 

4 

31 
9 
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nun:ber of STORE calls 44450 
nutroor of garbage collections 4 

6700 

4 
13650 

4 
10770 

4 

On both frontiers: conputation time and storage space, the minus method is 

the f'avouri te one. 

Alas, such as the method stands now, it is not watertight • Consider the 

exanple: 
• 

b~g;:i:D for,tIUJ a f; 

fo1,11JJ a p_~~edure p ( g); value g; for'!lruJ a g; 

bepjr; f:= 20; ••• p: = g end; 

f:= 10; 
f:= p(f) 

end 
• 

we· observe that after execution of ''f: = 20'', the value o:f the integer G, as 

it is translated from g, refers to the old val.ue ''10'' of f" and the reference 

is marked safe; the fo11r1UJ a value 

there is no nan:e · :referTj ng to it, 

would be disastrous • 

''10'' is, however, far from safe; in fact 

so that a ef-4""- age collection during '' ••. '' 

'lhe reason for the trouble is that the status of" an a:roi trary 

value can very easily be changed from safe to non-safe, by si rrply assignj ng 

another value to the narr.e which refe1:TCd to it. For the corrpiler it is 

alrro,st inpossible to see whether an a:rbitra:r1y foI·1m;J a variable will change 

its value as this may be done in deeply hidden procedures. 

There is, on the other hand, a category of names which will never changP. 

their values: those na.rres which are introduced by means o:f DEVAL and wt1i ch, 

· · ly, serve only to save for,11ul a values. The statuses of" the latter 

fo1:,wJa values can ch...J.J....... only on block-exit: a well defined place and 

easily recot1:1ii zable by the coopiler. 
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Call a fo11r1ula variable f, declared as ''fo:r,1rul a f = expr'', and a fo1-rnaJ 

parameter, called-by-value and specified as fo11r1uJa, a fixed variable. The 

property of a .fixed variable then is that it obtains a value i1nrriediately 

after its creation which it holds t1r1til its death. If, upon creation of 

a fixed variable n, its value tu:rins out to be the value of another fixed 

variable :f2, it is not necessa1:-y to create a n~ since the lifetime of' f2 

is at least as Jarge as the lifetime of fl and, hence, the value of f1 is 

safe during the lifetime of f1, so that no name need be created to save it . 
• 

The proced11re DEVAL may now have the foI,·n: 

2roc~dure DEVAL(F,E); integer F,E; 

begip F: = E; • if -, is marked fixed(F) then 

peg:i n DE (F ,F); F: = C[ F ,2]; mark as f'ixed(F) end 

end, 

and the introduction of the fixed variable f with a value defined by expr 

is performed by: "'DEVAL(F,EXPR)''. After its introduction, f can occur as 

pri rnar:y- in an expression only. Its appearance elsewhere, at the left-hand 

side o:f an assicrn_n. nt or as an actual parameter of a for,raJ call-by-narre 

parameter appearing at the lef't-hand side of an assignnent, leads to an 

error-1ressage either at corrpileti:rre or at runtime. 

As pri rna7r"'Y in an expression we only need to consider the case that r appear-a 

as actual parameter of a procedure, as the operators are translated into 

f\mction designators. Take, therefore, ''p(f)'' as a procedure call to be 

translated. Let the foill'laJ p ter be a call-by-value p ..... ~an ter; ''.r' may 

then be translated into ''F', i.e. the reference to its fo1,r1ula value is 

delivered including the marking. T.he direct e:ffect is that, within the 

procedtlre body of p , no na.rre is introduced for the fo11oa J call-by-value 

pararrEter. During the lifetime of p, f exists; hence, during the execution 

of p we may consider the value of f to be safe since an assignnent to f is 

inpossible. 

Assume now that· the .fo1·nia.J p._._r~. ter of p is a call-by-name paraneter._,.._,In 

this c.ase., .f should be passed through to the place in p where the :fonraJ 

pararreter appears. Agai .. n '':r' should be translated as '~', i.e. including its 

rnarki:rtg., as this knowledge may be worth-while within the procedure body of 

p. 
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The other case which needs consideration is that the e:xpression is nothing 

but ''f"' itself, or that the expression is a conditional e:xpression in which 

a sinple expression consists of ''f'' only. What need be done now is dependent 

on the context in which the expression is placed. 

1. As the rigpt-hand side of the a.ssi '1n nt to a fo:rmula variable. 'Ihe 

action of ASSIGN is to peel off the ''fixed" marking and to put the reference 

of f without this marking into the nane of the for11n.1J ::i variable. 

2. As the right-hand side of the assi.e711~nt to a fo1arnaJ pararreter. 'Ibis case 

is precisely the sane as the first case. 

3. As the right-hand side of the assignnent to a procedure identi:fier. '!he 

discussion about this 

4. As an actuaJ P~ ~· 

a.J ready above. 

case will be postponed a little while. 
, 

ter of a procedure call. 'Ihis has been considered 

5. As the right-hand side in a forir11Ula dee] aration; e.g. · in: 

''fo1,1u] a g: = if random < • 5 then f else 3. 14, h = f"'. Now the expression 
• 

appears as second actual parameter of DE or DEVAL. In the DE case, a narre 

is introduced and the expression is treated analogously to case 1.; in the 

Lf:VAL case, the ''fixed'' markj ng is .finally being taken care of. 

Within an arithmetic or Boolean expression, we may also encounter the f'ixed 

variable ''f"', as e.g. in: ''if f = g then ••. ''. The rererence 

which now should being delivered has to be .free from the ''fixed'' 

marking, otherwise the test in the following exanple would f'ail: 

'~egi n foI,11u.l.a f = one, g: = one; if f :: g then . • . end''. 
• 

A special discussion is necessa1~ for the case ''p:= f°' or ''p:= if random 

< • 5 then f else ••• '', where p is the procedure identifier of a f 01,m.11 a 

procedtn""e. The value calculated by p, i.e. the reference to the f 0111rul a 

value produced within the proced11re body of p, is brought out of the 

procedure body of p and is still being used af'ter the execution of p is 

done. Tru.s reference has a lifetime which is surely longer than the lifet· 

of foI,nuJa variables declared in the body of p or of local variables., 
introduced for call -by-value parameters • 

Hence, if' f is a fixed variable, decla1 

''P:= if random< .5 then F else • • . '' would 

being the value of P, would be ed ''fixed'', 
block-exit of p. 

• • inside p., a translation into: 

be eITOneous: the rc:ference, 

even af'ter f is erased at the 



• 
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In the case that f" is declared inside p, or is 

of a procedure declared inside p, the ''.fixed'' 

o.f.f l;)efore P gets a value. It would be most 

marking always, but this would also exclude 

a .forr1a.J parameter of p or 

;..,L, . .._._· ng has to be peeled 

easy to peel off the ''fixed,, 

an e.fficient translation of 
constructions like: ''der: = • . • then one else zero'', where we assume that one 

and zero are globally defined fixed variables. 

Theref"ore, we peel the ''f'ixed'' 

only. lliis has, however, rore 

~ ........ · ng of'f when f is a local fixed variable 

consequences: we allow the transfer of the 
' ''.fixed'' marking only once; 

• 
narrely where it is syntactically clear that no 

danger exists; i.e. in a case ''p:= • • • .f'' as described above. We do not 

allow this trans.fer :from procedure to procedure or .from formal parameter 

called-by- narre to procedure. The reason for this is exemplified in the 

following: 

foi-rrruJ a proceduI:3 p(f); value f; for1nuJ a f; 
• 

begj n fo11'nu.J.a p1 = f'; 
• 

• 
procedure p2(g); fo1~1ula g; p:= g; 

if random< .5 then p:= pl else p2(f) 

end· 
' 

••• 

end 

In this exa11ple, p1 gets a value including the ''fixed'' ma.rki ng; so that 

this marking could be transf'erred to p, if no rreasures were taken. The 

same pertains to g, the actual par;;;.u,, ter of' which delivers the reference 

including the ''fixed" ...,.,'-"-,LY! ....._. g. 

We concentrate now a little bit rrore on the translation of ''p:= f'', where 

f is global to the procedure body of p, so that the ''f'ixed'' marking is 

transferred outside this body, to the place where the procedure pis called. 

At this place f exists already, otherwise f could not be global to the 

procedure body of p and exist within it, 'Iherefore, we could replace 

call o.f p by f itself' without changing the result of this call (apa:r·t 

this 

from 

side-e.frects by the 

on f itself as f' is 

body of p of course; these can have no effect, 

fixed). Maintai · -o the ''fixed" marking is, 

subject to the sarr:e condition as for f itself: 

however, 

therefore, 
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if the call of p is the sirrple expression in the right-hand side of an 

assil'.".l"ln.ul'l'1 nt to a foiilftIL~J a-proced.1.Z'C identifier q., then the ''fixed" marking is 

mainta.ined when p is global to q., otherwise it is rennved. 

Removing the m •-' ....... ,.,..rr, results in a specific translator action such as 

puttj ng ''abs ( ... )'' in the translated program. Taking into account that this 

removing is only necessa1-y for local procedures., and that it seldomly occurs 

that fo11r11.JJ a procedures are declared within for1nula procedures. We conclude 

that in the translated result we will norniaJ ly not find any such removals. 

Only in f'a-r fetched and very sophisticated programs they will be put ( See 

exa:trple 6. 1 of chapter 7) . 

The silly, but non-serious, restriction, 

the for1·nu1a procedures for the operators are 

procedure body., is a direct consequence of the 
. 

that the declarations of' 

forbidden within a fo:rmula 

considerations above. If the 

procedure identifier p, in the above exainple, were ''dyadic+''., say, then 

the translation of a sum a + b, occ1JCTing in the body of p should involve 

the renoving of the ''fixed'' marking. 'Ihi s gave some troubles within the 

conpiler, which could have been overcome for a price which was considered 

too high in view of the very inprobable construction. Therefore., a sinple 

restriction and a check on the appearance of such a decJaration within 

a procedure body has been built in. After all, de.fi · ...., an operator is 

di.fferent from definj ng a procedure. 

The above discussions do not only pertain to fixed variables but also to 
fo1,nuJa enquiries in which the kei·nel is a fixed variable, as e.g. ''Jhs of' 

r' or ''rhs of el 5 of el 7 of r'. The reference o.f a formula enquiry is 

marked fixed if its kernel is fixed. 

Discussing the 

possibilities: 
we remark that there are only two 

1. The reference of a fixed variable is positive while other references a1:

negative. 'I1his was the way the original marking., conce11~1ing the saved or not 
saved property, was performed. 

2. llie other wa:y around: the reference of a fixed variable is negative. 
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It d_oes seem that the second approach has some slight advantages: a) the 

o '-"-'-I. ax--y re.ferences do not have to be chan~d before they are put into 

the boxes; b) ''abs( .•. )'' is cheaper than ''-abs( ••. )''; c) a reference 

cor·-:t~spond j_ng to a fixed variable may be rrore exceptional. 

'Iherefore, a re.ference is marked ''.fixed" by ....s ·ng it negative. 

An act1J.al call-by-nane parameter p, rnay have four diffe nt values. 
a) a re .ference to a n.arre; · 

b) a re.ference to a fo11rn.1la value being the value of' a .fixed variable; 

c) a reference to a f'ormula value .for which it is not lmown whether it is 
the value o.f a fixed variable; 
d) u..&..LLJ; i.e. the ''value'' of a fo11r1UJ a variable which did not obtain a 

.formula value as value. 

The reference of" such a parameter p is defined by: 

ref:= if p < N then C[N-p,2] else abs(p). 

Here N is a negative number, in absolute value larger 

nt.nnber of possible references to forrrula values. 

4. 5. Forn1uJ a proceo1;:r-es 
I 

than • the max, -mui,1 

Until now we assumed that the assig11m=nt to a fo:rirnula-procedure identifier: 

''fp:= expr'' is translated-into ''FP:= EXPR''; i.e. a direct assignnent to 

the proced1..lre identifier ''F'P'' of the translated procedure.. 'Ihis sirrple 

translation scherre cannot be mainta_jned, however, due to two problems: 

1 .. At the moment the .fo1-rnula value has been created, the reference or which 

is assigned to FP., this value may be not saved_, so that a garbage collection 

1nay destroy it be.fore the value of FP is used in the expression where FP 

occux"l::Bd as a function designator. Exa1rple: 

''.fo:r1nuJa procedure fp; be~j!} fp:= x + y; f:= xx y e:i:id; 
I 

i.f translated into: 

''ipte r procedllrC FP; besjn FP:= S(X,Y); ASSIGN(F ,P(X,Y)) 

end'', 

then the execution of ''ASSIGN(F,P(X.,Y) )'' may destroy the value ''x + y'' .. 
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2. A formula procedure may not have got a value at all with the effect that 

its value is undefined, i.e. an arbitra:r,y value. In the complicated system 

we work with, where dynamically cha · datastructures are involved with 

references to narres to values of fixed variables and to other values, with 
. , 
three layers of languages: ABC ALGOL -> ALGOL 60 -> Il18chi nee ode, in such a 

system it would be very difficult to find the error in: 

''b~gi ,n for'fnul.a pro,cedure fp; if 1 < 0 then fp: = x + Y; 

f:= fp 
• 

end'', 
where ''1 < O'' should have been written as ''l < d" and where FP gets the 

value 52 which just happens to be the reference of the formuJ.a value x x y~ 

A simple and straightfo"'"" ....... :::.~...... solution of the problem is to 

require that the last statement of the procedure body is the 

procedure-identifier-assignrrent-staterrent (piass) in such a way that the 

compiler can check it . 

.Another, e)(l)ensi ve, solution is to introduce a local fox-rrn1.la variable lip 

and to treat the piass as if the procedure identifier were replaced by this 

_...._.·-~....n variable. The procedure identifier should then obtajn a value by 

rreans of ''FP:= T,B'P'' at the end of the body. With this solution we run into 

another problem: In the preceding section we carefully designed a system 

which introduced as few as narres possible. A lot of the profit would be 

lost due to the introduction of a name for lfp; observe, noreover, that 

it is inipossible to transfer the information, about the reference being the 

reference of a formula value of a fixed va-ciable or not, througti form1la 

procedures. The result would be that, e.g., the procedure ''der'' for 

differentation, would introduce a lot of names for ''saving'' one' s and 
zero's. 

The solution chosen is a rrodus between the two solutions above. Instead of a 
• 

fo:x'l'ruJ a variable, an integer, I ,b1P, is introduced as a locaJ. variable. Thi s 
integer gets the initial value ...,..........., irrmediate]y after its 
introduction; it is used in the le.ft-hand side of' the 
piass; while the end bf the procedure body • is translated as: 
''if LFP = NUIL then ERR( <tno assigprrent to proc ident::l--); FP: = LFP''. 
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1bjs solves the second problem in a cheap way; we really do not have to pay 

for the integer since it does not take up space for storing foI~lllla values 

and names. The :first problem is solved by requiring that the last action of 

the procedure body, in whj ch the creation of a for1r1ula value or a name is 

involved, is the piass. 'lhis makes constructions like: 

''f'or •.• do b~gin, •.. if i < O then begin fp:= expr; @to end 

end end'' 

possible. However, constructions like: 

''ip: = e:xpr; if i < 0 then fp: = expr2'' 

arc :forbidden (assuming that i can take on a negative value). The 

requirement is not very restrictive as the ABC 
• 

introduce himself, at the cost of' space, a 

req1Ji renent is, moreover, in the light of' 

natural one. 

n..sL progranner can always 

local foI--nJ.J_la variable • 'Ihe 

L 68 developments, a rather 

It is, o:f course, not sufficient to state the requirement, it is also 
• 

necessa:r-y to build in an automatic test. The translated progffim has 

therefore at its disposal a global Boolean variable ''protect'', getting the 

initial value false. Irnrrediately after the piass, protect is made equal to 

true; and at the end of' the procedure body, protect is ..w."""',..,., d to .false 

again. It is not hard to see that by building the error message: 

''if protect then ERR( ~protection errori); 

into the I,un-tine procedure STORE, and by inserting this e1'!~or message at 

the be · · g of the translated procedure body, the translation scherre is 

watertight. Indeed, if protect has the value true, we only have to be 

careful that it does not obtain the value false bef'ore the end o.f the 

procedure body is reached. It can, however, take on this value only by 

a fotmula procedure call. But this leads inmediately to an error message. 

Concluding, the translation of: 

''for1nula procedu1:ae fp; begin ••• f'p:= expr 
I 

' 'in:t;eger procedu1-e FP; 

bepjp. inte_ge,r r;FP; if' protect then ERR( 

~protection error in fonn proc~); 

• • • end'' can be: 

I,F'P:= ~ • ..1.1..1; ••• begjp LFP:= EXP; protect:= true end •.. 

; if' I,F'P = ,..,. then ERR(-ctno a.ssi..-rn ... n-, nt to proc ident:t) ; 

FP:= I,8'.P; protect:= false 

end''. 



4- 126 

'.lhi s looks rather awkward indeed, although it is necessa-cay in the general 

case. In a vecy uently occ1.1·crj ng special case, namely where the con:piler 

can see that the last action is the piass, the translation produced is 

sirrply: 

''integer pr;xedure FP; !)egip • • • FP: = EXPR • • . end''. 

exarrples the conpiler produces the simple translation: 

• 

b,ef2n • • • if • • • then !?,evn • • • fp:= expr end else 

if • • • then begi_n • • • fp:= expr end 

else begin ••• fp:= expr end 

end 

and beg:i.g • • • fp: = expr; ; end 
• • but it gives the ''protect-with-local-integer'' version in: 

be · ••. for i:= 1 do fp:= expr end 

and in 
b,egi .;Q • • • if O < 1 then fp: = e:xpr end 

See also the exa,tples of section 7. 5. 

Another solution would have been to provide the end of the procedure body 

with the label ''EOP'' and translate ''fp:= expr'' into ''bep~n I,F'P:= EXPR; gQto 

EOP end''. 11'hj s gives., however, problems with fo11nula procedtJres decla d 

within each other. 

Exarrlple: 

''fo1-rr11.1J a procedure fp1; 

pegi;9 fo11n1JJ a proce.~y;re fp2; _b_ee;j n . . . fpl: = fp2: = expr .•• 

end· 
I J 

f':= :fp2 

end'', which when translated into: 

''integer procedure FP1; 

begi C • • • in~eSl=:.c procedure FP2; 

bf gi l} . • • • pe_gi !2; I ,8'P1: = I .F11?2: = EXPR; gc;>to .EOPFP2 

end ••• 

; EOPFP2: ••. 
ASSIGN(F,FP2) 

;EOPFPl: ••• end'' 

end· , 
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leads to a non-watertigpt translation. In the ''protect'' method it is sinply 

possible to produce a translation in which ''protect:= fa]se'' is omitted 

at the end of the body of fp2. It n11st be said, however., that special 

admi ni strati on in the compiler is necessa:ty for this purpose. 

4 • 6 • J,µzrps leading out of a block 
I I I z 

Referring to section 4.3, we recall that the block-entcy - block-exit: 

''b~gi t?-, declarations; statenents end"' is translated into: 

''begin int_~E1tr ••• ., fhn; fhn:= gnn; DECLARATIONS; 

STATF:ME:Nrs; 

E(fun) 

end 

The global integer gnn counts the number of names currently in use. ERASE: 

destroys the names introduced in the block, i.e. the names introduced by the 
• 

declarations and those introduced by the statements. 

Noi1rally, the nwnber of nrures may tenporarily be enlarged during execution 

of a statement, ...... but after the execution., this number is again the san:e as 

it was befor-c. 'l'hi s is so since each block-entry has its block-exit cotmter 

part; thus each ''fun:= grin" has its ''E i::le( fhn)'' counter pa:r't. However., this 

is only statically the case. Dynamically we rray easily miss an ''ERASE( .fhn)''. 

Hence, the execution of' a statement may involve the introduction of extra 

names. The only wa:y this can occur is that a block is le:rt not via. the 

nOI1'nal block-exit. Thus a goto statement is executed, leading out of' the 

block to a statenents s in an outer block. Consider therefore: 

l:s; •••. ·; begin ••• goto 1 .•. end •.• '' 

At two places we can undertake the action to erase superfluous narres: 

1. '.Ihe .goto statement can be translated as: ''erase the superfluous _names; 

52to l''. 'I.he seriou_.5 problem is, however., how many super.fluous narres a:r€ 

to be erased; jl1st ''E:H.ASE( ftm)'' is not s\l,:fficient, as the jurrp nay be to an 

outer-outer block or the label 1 nay be a fo1-rnal parameter of a procedure, 

or 1 could be a switch as e.g. in: 

''k:s; bepj:9 switch sw:= k,l; • • • gqto sw[ 1 + random] .•• end'' 

2. ''l:s'' could be translated as: ''L: erase the super.fluous names; S''. 
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3'.l'he num:>er ~ gives the total nUirber of naires when L is reached. 'Ihe 

number of nasrea which are of interest only for the execution of s is the 

r fnn., plus the na1res which are introduced in the block head of the 

block of 8 • Call this nunt>er ''snn''. With ''the block of s'' we mean: the blo.ck 

which contains s but which does not 

We thus arrive at the follo .. 

• • contain a block also containing s. 
• construction: 

''begi.n declarations; staterrents end'' is translated into: 

·•~m:D: jntege1., ••• .,fnn,snn; fun:= gnn; DECLARATIONS; 

...-, enu 

C •nn • - O'f"'\. 'Y"\ • g, • - e::,-,.,, 

STA".r&:Mf!.NIS 

; E:RASE ( fun) 

• 

Now a. labelled statement: ''l: s'' is translated into: 

•'L: pegin ERASE(snn); S end'' 

Per definition, snn is the number of names accessible by the statements of 

the block; i.e. the name,s of enveloping (static and dynarr.d.c) blocks and the 

nmms of the block itself. 'Ihe function of '~i.r.~E(sm)'' is to erase names if 

there &re more than snn., so that after its execution., 

again mm .. Each statement could be provided with '"-' 

• the nurri:>er of names is 
E(snn)''. .An 1Jr1J abelled 

statermnt s., however, 
fi. -~ ..,.:!&-.,.....,.'I 'h,nthou·' ' ·t e . ~ r • ~a. ICU ff\~ ' . ' ' ' ' I . ll'I.. 

can only be reached after its textual predecessor is 

with a goto. Theref'ore, the ''ERASE(snn)'' in front of' 

its predecessor se1··ves s equa.1 ly well; an ''HRASE:( snn)'' in front of' s would 

thus be s1:rpernuous. Repeating the ar,,..., ''" ..... t, we see that labelled staterrents 
need this treatrrent ........., . 

Not always is the ''E:RASE;(snn)'' insertion necessary. If' the block does not 

have an imerblock., or if it has an innerblock but this innerblock does not 

goto staterrents., or if' it has an innerblock with gptos but this 

·. · · •· .. · :rblock does not contain declarations of for!rula variables , in these 

ease,s '"E'&SE(snn)'' may., in general, be left out. Not, however, if' there a:re 

prooedlll~o with label paraneters or, what is equally worse, with urJ.Specified 
rs and goto staterrents in their bodies. 

Al , _the .follo · · •·. analysis is a more syntactical analysis., and migpt, 

therat~, also be given in the part describing the corrpiler., we prefer 

to give it here due to its intimate connections with the subject of' this 
section· 

' . 

• 
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We want to deteI1r1ine the crite11.a to be used when deciding that there is no 

danger in omittjng the ' ......... i,...,.,E(srn)'', or in omitt:ing the declaration of' the 
integer snn and its initialization. 

First, we need sorre definitions: :for the remainder of this section, we 

consider a procedure body as a block with fictitious block-entry and 

block-exit. Moreover the initializations in a declaration as in ''.fo1,nuJa f 

= 3 .14 ,g: = 2. 7'' arc considered as pa·c·t of the statements; i.e. the above 

exarrq::>le is considered to be equivalent with '' fox,ra1J.a r .. , g; f: = 3. 14; g: = 2 • 7'' 
although it is not equjvalent. 

The own statements of a block b are those staterrents s, contained in b, for 

which b is the block; i. e • there is no other block contained in b contai ni.ng 

s. Note that the statements of a compound statenent are own statements o.f 
the block of the conpound staterrent. 

The envelope of a block b is the block e for which b is an own statenent. We 
write e = env(b). 

• 

An innerblock of a block b is a block i such that b = env(i). 

A block b has the got~p_poperty., goto(b), if at least one of its own 

staterrents is a goto staterrent, or it has an innerblock i with the 
goto-property • Or for·t'!Ja.J ly: 

goto(b) = one of its own staterrents is a goto statement 

v .3 i: (b = env(i) ..... goto(i)) 

A. block b has the fo1'!r1UJ a-property_, fo:rm(b), if fo1n1ula variables_a 

declared in the block (incl1iding local fo11nula nrures for fo11r,aJ foI,rula 

pararreters called by value). 

A block b has the label-property, label(b), if one of its otm staterents is 

labelled. 

A block b has the ,~ge~us-prype~y, dang(b), if: 

foi-rn(b) .... goto(b) v (3 i: (env(i) = b " dang(i))). 

A prc>gram has the property: dc:µ1ge,rous Erocedures, dang proc, if it contains 

a procedure declaration with an ur5pecified p~c;;a, ter or with a p - ter 

specified as label, and its procedtlre body p has the property: goto(p). 

It is now, easy to for1rulate the cri terium, with which we may decide that it 

can not be seen that ,'ERASE(snn)', is superfluous in the translation of the 

J abelled state:rrent: ''l :s'', where s is an own staterrent of the block b. '!he 

criterium is: 

(3 i: (b = env(i) .... dang(i))) v dang proc. 
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same reasoning can be done in the case that there are dangerou.s 

edures, in which case property snn2 is used. ' 

erf"ect 01 ... the analysis is that norinaJ ly one does not encounter ,,snn'' and 

SE(snn)'' in the translated program. 'lhi s is a nice result and we cannot 

st the tenptation to ref'er to the beau.tiful way this ana.lysis has been 

t into the compiler. (See section 6.3.3) 

'I.he basic structures 

elements with which f'o11rula values are btJj_lt up are boxes; each box 

isting of ~ e items: the type-category, the lefi-hand 

the right-hand side (rhs). 'Ihere are five basic structures 

structures or an a1bitra1-y fornula value can be built up. 

tifying the specific basic structure, is called the category, 

s a part of the type-category. The basic structures are : 

side (Jhs) 

with which 

'Ihe nurr:iber, 

cat, and 

onstant structures; cat = 0; the J hs and the rhs are integer: ( I lhs I < 2 

and lmsl < 2 i 17). 
onadi c struct1Jres; cat = 1; the Jhs is an integer ( I Jhs I < 2 l 26); the 

is a reference to a f'o1,,·u1a value. 

;y:a~c structu:reo; cat = 2; the Jhs and the rhs are references to f'orffllla 

es. 

polyadj.c str:49,tures; cat = 3; the lhs 

:rhs is a re .ference to a dyadic .fo:tnrul a 

is a non-negative integer n; 

value r1. 'Ihe Jhs of ri is 

ference to a fo:rmula value • 
v.i., the ms of r-i is , • • in case 1. < n., a 

rence to a dyadic .fo:c1rrula value ri + 1, for 1 < i < n. 

owadic strµcturcs; cat = 4; the lbs is a non-negative integer n; the rhs 

. re.ference to a monadic rorm1la value r1. The Jhs o:f ri is an integer ci 
• 

I .· < 2 i 26), the rhs of ri is, in case i < n, a reference to a nonadj c 

ula value ri + 1, f'or 1 < i < n. 

visuaJ 1y the structures have the forin: 
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nonadi c: (O 

dyadic: (O ) 

polyadic: (0 n ) 
• 

c: (0 n 0 0 ..__ ) 

'Ille box ite1rs: ~ contain an integer, =:.;;.I contain a reference, 

n contains the value of' n and D contains NULL. 

• 

There are no intexY1aJ reasons :for di:fferentiating polyadic and rowadi c 
' 

structures from the other structures since they are basically bt1i lt up from 

nona.di c and dyadic struct1Jrcs. In fact, S'IDRE does not even use the value 

of n, since, in the general case, this is not possible. The reason is that 

a gar collection might occur in the mjddle of building up a polyadic 

struct1..lre; then the part whj ch has been for,ned a.] ready should be saved and 

at that tine the value of n may not be appropriate. 

It is for extexm.l reasons that we have introduced the polyadic and rowadi c 

struct1..1res includj ng the dif.ference in the categories • 'Ihe reasons being to 

be able to safeguard the programner for errors, which othetwise could lead 

to t 1Jndi $COVerably conplicated situations • 

As a basic principle, the system is provided with the ma.xi.rrnJrn amotmt of 

erro:r-checld ng possible. '!he backlyi ng theocy is that: 

1. AOC ALGOL prograrrlS are corrplicated due to the complexities involved with 

· · ca.J Jy changing structures and due to the two lang1.1ages • involved: 
• 

· L and AlOOL 60; 

2. it is easy to throw out the testing, 1ruch easier, indeed, thar·1 to insert 
testing. 

In view o:f the second point, we remark that the conpiler can easily be 

changed such that procedure\ calls like TYPE, T,HS and RHS do not occur, but 

instead the direct operations on the array elenents are produced. 



4- 133 

Instead of usjng a two-dilrensional array, as has been s 

preceding section, we declare two arrays 

:for the boxes. C1[k] is used for the Jhs, 

type-category and the rhs : 

C1 and C2 to be used as the space 

while C2[k] has to store both the 

C2[k] = (cat x 32 + type) x 2 118 + rhs. 
'Ihi s j ,,iposes the restrictions: 

0 < type < 32 and O < rhs < 2 1 18; 

'!he vaJ ue of the rhs of a constant structure is defined by: 
• 

if EVE:N ( rhs) = 1 then rns : 2 else .:..rhs : 2. 

'Ihe list of names is organj zed by means of a dyadic structure : the integer 

variable ''last name'' has as value either J..l,U, in which case the list is 

empty, or the reference to the last ...... narre called name[gnn]. The l.hs of each 

narne[i] g,1 < i < gnn, is either ....... .&..LLI, or is the ref'erence to the .fo1n1ula 

value being saved; then the ms o:f name[i] contains a re:ference to a dyadic 

structure name[i-1]. '!he ms of name[ 1] contains ..... • 

Within STORE, only two handles are used to which are attached all the names 

and .fo1-rnuJa values to be saved during a garbage collection; these are ''last 

name'' and the reference to the box into which S ....., has just stored its 

three actual parameters. 'Ihe value of this reference is the value of the 

integer ''free cell'', which at the begi-- · of STORE points to the first 

f'ree box and at the end of STORE again points to the first free box. It is 

essential that STORE can always deliver its act1J.aJ pa-ca1·reters in a free box, 

otherwise the siix:ple statement ,,TRACE(:free cell)'' has to be ch;..&J. !"'-, ... d into a 

write-out of' TRACE for the triple: t., a and b. 

The list of :free cells is organj zed as follows: ''free cell'' points to the 

.first .free cell denoted by the index k while C1[k] points to the next; until 

a pointer eq1.lB.ling zero is found. 

The garbage collection process, perfoi,ned in STORE, makes heavy use of a 
• • procedure TRACE, which, for dyadic structures only, acts 1n a r-ecurs1ve 

f'ashion to trace the interesting, non-garbage, boxes • A dj,rect iteration 

thro1.1g1 the memory establishes the new list of free cells and undoes the 

cells fi'a11 the markings produced by the tracing. 
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It is enphasized that we nade use f'reely o:f space provided by the 

system for the recursive tracing. It would not be difricult to i1rrplement a 

nore sophisticated scheme in which the space o:f C1 and C2 is used only :for 

the tracing. For these techniques we refer to the li teraturc: Knuth[ 7] and 

Van der Mey[9]. 

Of particular interest is the 1rethod used for the procedures DE, DEVAL 

and ERASE. While experimenting with the old procedures or sections 4. 3 

and 4.4 we discovered that a call or ERASE was, very f'requently., :followed 

imrrediately by a call of DE or DEVAL so that space given free by ERASE was 

reclained instantaneously by DE or DEVAL for storing names. 'Ihe na,nc list 

~, not inmediately given back to free space but only after a while so 

that DE or DEVAL ~t a chance to reuse them, without the aid of STORE. 

The effect of this jrtiJlementation was a 15 percent increase in speed. As 
. 

• • 
only two names at most are used for this p1..u:pose, the cost m space J.S 

negligible. 

Concer,,j ng the other procedures of the r-un-tirre system~ it suffices to 1nake 

the following remarks: 

For each of the fo1!nul a enquiries: lhs of, ms of and el .•• of' there arc 

two r·un-tirr.e procedures: I HS, ... ~, RHS, 'Ihe ,,~, 

• version appears when the formJJ a enqui cy is situated in an arithmetic or 

Boolean expression in which case we are interested in integral values; the 

version without ''AR'' appears in a :roimula expression, or inside a :fo11iula 

enquiry on]y (e.g. ''rhs of"' in ''Jhs of rhs or f"'). Each version has its own 

error diagnostics. 

Observe that IHS, HHS and EL give e1Tor messages if the type is 

the result would be a constant. Consider the following exanple: 

f:= constant(S,123,321); h:= lhs or :r; 
g: = i.f random < • 5 then Jhs of f else rhs or r' , 
Where f ,g and h are variables o:f type for·,ralla. 

such that 
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'lhe procedures IHS and RHS give er»ror messages which are sorrewhat crude; let 

us investigate the alter·riatives. It is evident that to h and g :references to 

for,nula values must be assigned. There are thus two possibilities: either a 

new f'ormula value in created with as value 123 or 321 and the reference to 

this :fo1:·111uJ a value is· given as value to h and g, or the value of f itself' is 

given to hand g. The latter possibility gives problems as it is inpossib1e 

to see. later .on f:rom. the value of g which of the two choices has been made 

Jhs or ms. 1Ihe first possibility has the draw-back that values are created, 

not under the direct responsibility of the prograr11rer., . with types chosen 

rather arbitrari]y. For the above case the e:ff'ect would be the same as: 

''f':= constant(5,123.,321); h: = · constant(5,123,0); 
' 

g: = i:f random < • 5 then constant ( 5., 123., 0) else constant ( 5., 0., 321 )'' 

For standard procedures the draw-back would be vecy . serious as these 

procedu1-ies also have to cope with such unj_ntentiona] ly created :fo1,:r1t.1la 

values • 

.Anoth~r alte1·r1ati ve would be to give no error :rressage anyhow. 'ihi s is., 

however., contrary to the general prj.nciple to wa11~1 the prc,graJ'l"lllier each tine 

sorrethjng is unclear and probably due to a progr · error. 

'lhere b~jng no real alte1·ria.tives., we were fo~ced to make IHS., RHS and EL as 

they are., with the sorrewhat awkward consequence that sjrrple constructions 
like: 

''b,egjn fortnula l.,r; l:= Ths of' f; r:= ms or f; 
if 5&adic, f" then begi p • . • 1 . . . 1 . . . r • • • rend else 

if monadic f then bepj D • • • r . . . r • • . end else 

i:f constant f" then begin ... end 

••• 

end'' are in general not 

Rowadi c and polyadic structtires are built up by means of monadj c and dyadic 

structures., respectively. It is thus me.,,;,..-· O'" 1 to allow the use or the Jhs 

and ms operators also :for these struct1..1res. 'Ihe i-th elerrent can be reached 

by the following algorithm: 
' 

if i < r v i > 1.hs o.f f then goto no element; 

g: = rhs of' :f; 

for i:= i-1 while i > 0 dog:= rhs of' g; 

if' po] Y.8:d.i ~ f then g: = Ths of g else i: = lhs or g; 
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• 

The result is either that a jump is made to the label no element i.f the 

vaJue of i is not appropriate., or that the value is deliv..._. in g, i:C .f is 

a po]yadi c structu-re and in i, if .f is a rowarli c struct1.lT'C. 

It is re . that in the •'enquiry'' procedures as TYPE., TYPE CAT, IHS., 

. . . , ....... , it is not tested whether F has the value .&...I since this is 

done automatically by the [L 60 1-un-time system and it is very sjriple to 

reconstruct the e .... rror.,... message the line nl..U1lber. 
'!he procedure is used., together with its cooperating proced1JJ'C st, to 

store a string as a rowadic struct1.ire. with a type equal to 31. The working 

of these proc . • s is rather complicated. 'Ihe translation o.f the string 

''--l01234567~' is: ''STRING(st(66051,st(263430 ,st(1800,0))) ,3)''. 'Ihe global 

integer ''ici'', used as ''Jensen-variable'' in a call of. STORE ROW by STRING., 

obtains in ROW the values 3, 2 and 1, respective ]y. -

Eva] uation of the first act11aJ parameter of' STRING leads to execution. of' st, 
which, when di > 1, leads to evaluation of the second actual para1ncter of' st 

after a decrease of di. 'Ihe first actual p ter or SIB.I NG is peeled of'f' 

a · , · r of tines indicated by the value of di •. The first element stored by 

SCI'ORE Rav is, therefore, 1800, the second one is· 263430 and the third and 

last one is 66051. 

4.8. 1Ihe ryr:--tine system 

We now reproduce the run-tine system. 



• 

b_egjn comment Most sj11ple run-time system for efficient ABC ~ 

:intege_r max of memory .,:rree cell.,last name,gnn,snn.,N., .......... ., 

constant,monadic.,dyadic,polyadic,rowadic,t23.,t18,t17,linectr, 
. 

di .,kn ,prev last name .,gci ,max gnn,nr of names.,nr of values; 
Boolean protect; real tine1; 

int~~~r a~a;y linebuf'[ 1: 10]; 

proced1,.1rc~ERR(s); s,tring s; 

be g;i Q ✓... ; PR I N1ITE:XT( s ) ; 

ir linectr ~ O then 
• 

' 

begj;n integer i,ub.,line; ub:= linectr + 1; C ........ (2); . 

PRINITE:xT( {linenurnbers at previous entries: :f.); 

f'or i:= ljnectr step -1 until 1.,10 step -1 until ub do 

begjg line:= llnebuf[i]; 

if J.i ne =t.: -1 then absfixt ( 4., O ,J i.ne) else goto out 

end 

end; 

out : F:X: 1:111 

end ERR; 

procedure lnr( linenurrlber); inte@?r linenumber; 

begin. linectr:= linectr + 1; 

ir linectr = 11 then Jinectr:= 1· ., 
Jinebuf[linectr]:= line ..m r 

end lnr; 

- "' . 

l.r1:te.5er, p~~e~~~_: \.v.R(b., s); boolean b; 

bepjp. if b then ERR(s); ERROR:= 1 end; 

• strings; 
. ' . " 

• • 

• 

111ax of 1remory:= read; gci:= nr of names:= nr of values:= O; 

tinie1:= tin:e; last nane:= kn:= prev last nane:= O; _ 

gnn:= snn:= max gnn:= O; linectr:= O; 
ror di:= 1 s.tep 1 mtil 10 do linebuf[di] := -1; 

t23:= 2 T 23; t18:= 2 T 18; t17:= 2 T 17; N:= -2 T 16 + 1; 

constant:= O; 

rowadic:= 4; 
rronadic:= 1; dyadic:=.2; poJ.yadic:= 3; 

. 
. . 

J,,J,.JJ.,J: = O ; protect : = fal;s e; 
. .. ' . 
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b~gi!! ipte~r §:CTW C1,C2[ 1:1,ax of rrerrnry]; 

integer proced1.1~ S'IORE(t ,A,B); value t ,A,B; ~~eger t ,A,B; 

beg:jn integer k,i; k:= C1[ free cell]; 

comnent ''free cell'' points to the first free cell of' the 

free list. '!he list is never enpty when we enter STORE; 

C1[free cell]:= A; C2[free cell]:= t x t18 + B; 
S'IORE:= free cell; 

if protect then ERR(~protection error~); 

if t = 64 then nr of nanes := nr of names + 1 else 

nr of values:= nr of values + 1; 

if k = 0 then 

begin comnent A -,1,,L age collection is necessary now; 

proceq~ TRACE(F); value F; integer F; 

L: if F < O then else 

begin i:= C2[F]; if i > 0 then 

begin ipt~~p t; t:= i: t23; C2[F]:= -i - 1; 
I 

if t > polyadj c then t: = :roonadic; 

if t = Imnadic then 

begjri F:= i - i: t18 x t18; goto Lend else 

if t = dyadic then 
' 

~Sii,!'.1 t:= i; TRACE(C1(F]); F:= t - t : t18 X t18; 
get9 L 

end end end TRACE; 

TRACE ( free cell) ; TRACE( last nane); gci: = gci + 1; 

for i: = 1rax of. rrenory st,ep -1 until 1 do 

if C2(i] < 0 then C2[i]:= -C2[i] - 1 else 

begin C1[i]:= k; k:= i end; 

if k = O then ERR( .tno space lefti) 

end collection; 

free cell:= k 

end S'IORE; 

,int,eger procequre S'IORE CONST(t ,l,r); value t ,l,r; integer t ,l,r; 

b_~gj ri if t < O v t > 31 then ERR(-cltype in cons t not appropriate~); 

if abs(r) > t17 - 1 then EPR(,ims value in canst too large*); 

SWRE CONST:= STORE(t,l,(if r < 0 then t17 else 0) + abs(r)) 

• 



end SIDRE CONST; 

integer proced1.rre STORE JYDNADIC(t .,A,B); value t ,A.,B; intege~ t ,A.,B; 

b~gj !1: if t < 0 v t > 31 then ERR( {type in monadi c not appropriate:f.); 

STORE MONADIC:= S'IDRE ( t + 32 ,A, abs (B)) 

end SIDRE IDNADIC; 

integer proc~dure,, S'IDRE DYADIC(t,A,B); value t; integer t,A,B; 
•• a ;; 

begin integer A1,B1,fnn; fhn:= gnn; 

if' t < 0 v t > 31 then ERR({type in dyadic not appropriate:f.); 

DEVAL(A1,A); B1:= B; ::= (fim); 

S'IDRE DYADIC:= STORE(t + 64,abs(A1),abs(B1)) 

end S'IDRE DYADIC; 
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comrent It is not necessa~cy to test whether the references to be stored 
• 

are references to values and not references to names. The reason is that a 

f'orrrJlJ,la expression always delivers a re.ference to a value; 

ip.t~ge_r procequre STORE ROW(c.,t,i.,nr,Ai); value c.,t,nr; 
" 

integer c,t,i,nr,Ai; 
" 

begin integer row,fnn; fnn:= gnn; 
" 

if' t < O v t > 31 then ERR(..f=type not appropriate in row:f.); 

if' nr < O then ERR( --mr of elements is negative~); 

t : = t + c; DE (row, v.r.. ) ; 

:for i:= nr step -1 until 1 do 

ASSIGN (row, STORE ( 16 0 - c, if c = 96 then abs (Ai) else Ai., 

if' i = nr then O else V(row))); 

ASSIGN(row,STORE(t,nr,if nr = O then O else V(row))); 

STORE ROW:= V( row); ERASE ( f'nn) 

end STORE ROW; 

p;rocedurc DE ( f' .,E) ; value E; _ir,:te ger :f .,E; 

begi !1: E: = abs (E); if' lm > 1 then 

9ef£In Cl[prev last name]:= E; :f:= prev last na.ne; kn:= 1; end else 

if' 1m > 0 then 

begin Cl[last name]:= E; :f:= last name; kn:= O end else 

begi 11 prev last name:= last narre; 

last name:= f:= STORE(64,E,last name) 
end; gnn:= g,nn + 1; f:= N - f; i:f msx gnn < gnn tnen max grm:= gnn 
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end DE· 
. , 

l"'OC. ure DE:VAL(F ,E); value E; ,µit~g~ F ,E; 

begip F:= E; if E > 0 then 

bef.2:!2 F:= - E; if kn > 1 then 

~s;jp C1(prev last name]:= E; kn:= 1; end else 

if kn> o then 

be~n C1[1ast nane]:= E; kn:= O end else 
I 

b,t&i!l prev last name:= last name; 

last name:= STORE(64,E,last name) 

end; 
l<LI p 

•- J l gnn•- glT + 1; if max gnn < gnn then max gnn:= gnn 

end end I E;VAL; 

proc.~~- ERASE:(n); value n; integer n; 

begip gnn:= gnn - n - 1; if gnn > 0 then 

b~t2n .for gnn:=gnn - 1 while gnn > - kn do 

p,egi.!} C1[last name]:= :rree cell; free cell:= last name; 

last nane:= prev last name; i.f last name~ O then 

begj.,!! prev last name:= C2[1ast nane]; prev last name:= 

prev last nane - prev last name : t18 x t18 

end end; kn:= kn+ gnn + 2; 

if kn = 2 then C1(prev last name J : = O; C1[ last name] : = 0 
end; gnn:= n 

end ERASE· . , 

intep;e~ p~cedurE? ASSIGN(.f,E); value f,E; integer r,E; 
begjp if f > N then ERR(-classignn:ent to a value:f.); 

if E = -v... then ERR( ~undef ms in ass. stat:J..); 
ASSIGN:= C1[N - f]:= abs(E) 

end ASSIGN; 

integer proq_edure V( f); value f'; integer f; 
b,~gjn f:= V:= Cl[N - f]; 

if f = 
end V; 

then ERR(~val of unde.f var in expr*) 

intefer procedure VN ( f); value f; integer f; 
a : a 



begip. if f < N then f:= Cl[N - f]; 

if f = 
end VN; 

'-'.J...J.J..J then ERR(--ival of undef name var in expr:}); VN:= f 

int_~ge_r pro,cequre TYPE(F); value F; int~.s_e,r F; 

TYPE:= remainder(C2[abs(F)] : t18,32); 

;intee;er proceq..ure TYPE CAT(F); value F; integer F; 

TYPE CAT:= C2[abs(F)] : t23; 

i!1teger P,~C~~ure IENGTH(F); value F; integer F; 
pegj!} :ipteger t; t:= C2[abs(F)] : t23; 

' 

if t < polyadic then ERR( 1=type 

TENGTH:= C1[abs(F)] 
in length not appropriatei); 

• • 

end TENGTH; 

,4iteger proced1Jre IHS(F); value F; integer F; 

begjn if C2[abs(F)] : t23 = constant then ERR( 

-{type in lbs not appropriate~); I,HS:= sign(F) x C1[abs(F)] 

end IHS; 

integer pro~edure .....,(F); value F; int_ege~ F; 
' . 

~1~ »..I:= C1[abs(F)]; 

in:t.eger procedt-tre RHS(F); value F; integer F; 
b,eg:in i!1teg':_r r; r:= C2[abs(F) ]; 

if r: t23 = constant then ERR( 

~type in rhs not appropriate*); 

RHS:= sign(F) x (r - r: t18 x t18) 
end RHS; 

integer procedure w.'"'"'(F); value F; 
C I . l 

integer F;, 
' . 

' . 

begin in~,,~eer r; r:= C2[abs(F)]; • 

r: = r - r : t 18 x t 18; . ' 

»..I:= if r > t 17 then t17 - r else r 

end S· , 

, 

• 

i;n.tege_r pr:oc~d~ EL( i ,F); value i ,F; integer i ,F; 

,, 
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• 

beg:i!} in~_eger s; s:= sign(F); F:= abs(F); 

if C2[F] : t23 ~ polyadi.c then EPR(-itype in el not approp1'1.ate}); 

if i < 1 v i > C1[F] then ERR( iIDdex in el not appropriate*); 

for i:= i step -1 until 1 do 
bepjQ F:= C2[F]; F:= F - F: t18 x t18 end; 
' 

EL:= s x C1[F] 

end EL; 

ill:teger procedu~, 'AREL(i.,F); value i,F; integer i,F; 

~~l-2!1 .~.t~g_er t; F:= abs (F); t := C2(F] : t23; 
if t < polyadi c then ERR( itype in arel not appropriate*); 

if i < 1 v i > C1[F] then ERR( ~index in arcl not appropriatei-); 

for i:= i s~p, -1 until 1 do 

?egjn F:= C2[F]; F:= F - F: t18 x t18 ~nd; 

~: = Cl [ F] 

end ARFJ,,; 

_ipte~r proce~.~1:r~ 1-.,1.--1, -G(ST .,m); value m; in:t~~~ ST ,m; 
u.i. G:= SWRE ROW{128.,31,di,m,ST); 

.~te~r procequre st(head,tail); value head; intege,r head,tai 1; 

begjn di:= di - 1; st:= tail; di:= di + 1 end; 

2~ced1.l~ Zreplace(f .,lef't.,g); 

value f', left ,g; 

intege:r f,g; Boolean le.rt; 
' 

if left then C1[f]:= g else 

begin int~AAr t; t:= C2(f] : t18; 
C2[f]:= t X t18 + g 

end· ..,;,,_,,.,,,;.,J 

:for di:= max of nemory ~.tep -1 until 1 do 
!:>egi:D C2( di]:= O; Cl[ di]:= di + 1 end; 

C1[ma.x of rrerrory]:= O; free cell:= 1; .. 
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The compiled ABC L pro .,... ......... should be placed here f'ollowed by two end' s 

and an integer de · · ng the length of the arrays C1 and C2. 

• 
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The ABC ~r L compiler is, in all details, r-eproduced in chapter 6 as 

an "1J,,, ·'"'L 60 program. The description is a.rriply p:rovided with cor1ment , the 

identifiers are chosen as appropriately as possible (we hope) and the 

structure of the description itself, from top to bottom, should lend itselr 

no,st conveniently for e8J:3y reading and studying. 

As an aid, section 5. 3 contains the alphabetic listing of the identiriers 

and the places where they are called in the cornpiler. 

Albeit all these· nice features, we consider it necessary to make sane 

remarks on the cornpiJ ing process. 

the first ABC ALGOL con:piler, -\.,U,v-. • in 1969 , until the fj nal one, 

we :;a...ui. ~'----"" at · a two-pass clearly written conpiler using a top-to-bottom 

syntax-analyzing technique. 'Ihe feattires provided for in the f'inal version 

and not conta,i ned in the first version range from error-recovery and packing 

of syrrbols to static-scope checking and optimality analyses. 

'Ihere is a hierarchy of procedures for the reading process: the highest 

p:roced11re being ''envelope or block'' reading a complete program with heavy 

syntactical means. The lowest procedu:xie being the MC stanua. .... procedure 

RESYM reading one symbol input tape and delivering the inte1,rial 
representation or this syni:>ol. 

procedures. We may have e.g. 

where each procedure, except 

predecessor: 

In between we have a succession or other 

the follo · sequence of procedures, 

for the first one, has been called by its 

envelope or block., block or statement, statement., 

unconditionaJ staten:ent, envelope of block, block or 
statenent., declaration., procedure declaration., envelope 

of block, block or statement., stateITEnt, conditionaJ 

stateuent, staterrent, unconditional stateirent, assie,11oant 

statement, foii:tlDJ,Ja expression., sjnple ronnu]a expression, 
• 

PM ma t-y, RE, u.:.r. ~ synt uni t, NS, RESYM. 

This ca1Jin£ sequence is pertinent to the following exatrple: 

' 



''b.egir: real x; begjl'}: f'o:r-rnula 2rocedure_ p; bep;i[! if x < O then 

p:= 5. 4 +'' 

5.1.1. fue lexical scan 
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The last four procedures are designed for what migpt be called the 

lexical scan; inT"'\fact, the procedure RE reads one .so-called syntactical unit 

( s u), using ...... ~ synt unj t., while the first procedures are all desj gl"'!Cd for 

reading high syntactical structures. These syntactical structures are built 

up from su' s as buj ldi ng stones. In the precedj ng exa11ple the resp,ecti ve 
su' s are: 

begin synbol, real synbol., identifier, semicolon syrrbol, 
' 

begin symbol., for1nula symbol., procedure syrrbol.,identifier., 

semicolon syrrbol., begin syrrbol., if syni:)ol., identifier, 

smaller than symbol., integral number, then symbol, 

identifier., becorres symbol, real nurrber, plus syrrbol. 

'Ihe compiler is not interested in the value of a nurrber; it only wants to 

know whether it is a real or an integral number. Identifiers are of course 

objects of more interest; if they are read, two global variables: ''nr of 

ident'' and ''ptr to .first letgi t'' obtain as values the identification nurrber 

o:f the identifier and the entry in the text array where the identifier 

occurs., respectively. No automatic look-up in the name list is done; this 

should be asked for explicitly by a call of ''Search for identifier(n)',, 

Which, if' this procedure delivers the value true, gives in n the entry in 

the narre list where rrore info1'111Btion about 4he identifier is stored . 
• 

For a langi.1agt9 like · ABC .. ,..._T'T L it is vecy desirable. to look one su ahead. 

'Ihis makes constructions like: 

'L:'', ''L:='', ''L('' or ''L['' 

• 

• 
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easily recognizable. '.Iherefore, we have two global variables: ''synt tm:i t'', 
which designates the su under treatrrent now and ''next synt unj t''., which 

desig;:1ates the su to be treated next. 'lhj s is reflected in the procedure RE 

where we have the staten:ents: ''synt unit:= next synt 1Jnit; next synt lJni t:= 

READ synt unj .. t''. Besides the procedure for reading a su., we have a printing 

and punchj,ng procedure ''PR synt unit'' which prints and punches · the ·s ols 

of the su under treatment. Ivbreover, there is a procedure which combines 

both actions: ''PR and RE'' for printing and punching the su under treatment 

a new su. 
'lhe above-mentioned procedures are described in section 6. 6. 2. 

5. 1. 2. 'Ihe., syr,t,~ctical sc~s 
' 

The two-pass compiler is written as a single-pass compiler in that there 

exists only one procedure for each syntactical structure. Two Boolean 

and ''second scan'' serve as a switch. Except variables: ''first scan'' 

at the place where they 

first scan==-, second scan. 

change values , it 

'I.be rough structure 

is eve"'l'T{1 .n--.ere true that 

of the syntax-translating 

proced1Jres is the following: 

''procedure envelope of block; 

begin ~t.eg~r local integers; Boolean local Booleans; 

proce9-ur~ block or staterrent; ••• ; 

procedure declaration; ... ; 

P.ro~e9,µ_~, statement; .•• ; 

p~ceqtµ:'e expression; ••. ; 
• 

procedure block and rume list procedures; 

block or staterrent 

end'' 

• . . . , 

Each block, including the procedure-bcrly statement prorroted to become a 

block, is translated by means of a call of ''envelope of block'', which then 

calls the other syntax-translating procedures . The effect is that all 

the syntax-translating procedures have the same environment consisting of 

the locaJ. integers and the local Booleans. If an inner block has to be 

translated, a (recursive) call of 'envelope of block'' preserves the c11rrent 

local variables and introduces automatically a new set of local va,~iables. 

Finishing the inner block, we automatically get back 

variables. Between the first and the second scan 

variables are retained in the infoI!nation list. 

our original 

the values or 
local 

these 

• 



5 .1. 3. The inf'oJ:1riation list 

In the infor~nation list, the integer arTay. ''contents or', 
are stored :Crom bottom to top while identifiers, i.e. the 

• 

to bottom. 
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infoi,riation cells 

characters fanning 
the identifiers, are stored from top 

During the f'irst scan, identifiers, 
' . occurring in the text, are replaced by . . " . ~-·••. . 

1-Jn1 que nurrbers m order to reduce the size of the text array and to speed 

up the search-f'or-identifier- process. 'Ihe lexical scan delivers for each 
. 

identif'ier read two pieces of' infoiiriation: ''nr of ident'' identi.fyi ng the 

identif'ier and ''ptr to first letgit'' defining the place in the text 

where the identif'ier is put. 

For almost all identifiers., declared in the program, an infoi,nation cell 
• • 

(ic) is created containing the relevant infoilfnation about the identifier: 
• • 

''nr of ident'' f'or the identification., ''ptr · to first letgit'' denoting 

the place in the text array of the def'i ni ng occurrence, the type., other 

i n:fo11r1ation as nurrber of paraneters or dirension and space for link 

pointers • 
• 

• 

Ic' s aro, moreover, provided for block-begin' s and block-end's; firstly 
• 

in order to save inf'o1,nation pertinent to a block and secondly for the 

search-for-identifier-process where the block structure has to be taken into 

account with. For the latter purpose, the ic' s of identifiers declared in 

a block arc physically placed between the ic' s of the block-begin and the 

block-end. (See also section 5.2.3.5). 
There are three lists formed by identifier ic' s: 

. a list of' integers ( to which a f'orr111la procedure 

identif'ier may be attached); 

• a list o:r f'011nul a variables ( to which parameters 

may be attached); 

. a list of" f'ormuJ a array segments. 

Moreover, the begin- and end-ic' s a:r-e linked. 

'Ihe f'ollo · ,.,. exaxriple shows the structure of" the infor-r,a.tion cells, 

pa:r•ticular with respect to the several lists. 
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begip for1rula f1,f2; integer i1.,i2; real r1,r2; 

Boolean b1.,b2; 

end 

ro1!ntila Er:o:!edure fp(par1.,par2.,par3); value par2; 

for,rrula par1.,par2; real par3; 

b~gin in~~ger i1.,i2; fo1,nuJ a f1 ,f2; 

end• 
I J • 

fo1,m1]a !9~ fa1,fa2[ 1:2] ,fa3.,.fa4[ 1: 2,3: 4]; 

intege1~ i3 ,i4; fo1tnu] a f3 ,f4; 
• a I I - -

fo1muJa §!::!:a.Y fa5[1:2,1:2]; 

• • • 

12rocedJJ;re pr; 

berJn ip~eger i1,i2 ,i3; ... 

bef3dp fo11tnJJa g1.,g2; ••• end 
end; 

a 

• • • 

Now follows the in:ro1,riation list consisting of the ic' s in the order 

indicated by the order of' the ic' s in the following pictlJre from left to 
rigit and from top to bottom. 



pegi!} 

. 

end 

"" 
-• 

. 

• 

• 

:f1 

i1 

r1 
• 

fp 

bes1!'.± 

• . 

' 

end 
.. . 

. 

pr 

begin 
l 

end 
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f2 

1i2 

r2 

. par1 par2 par3 

- i1 ~ i2 

u f'1 f2 

~ I 

f'a1 f'a2 f'a3 fa4 

i3 i4 

I f'3 f'4 

• • 

f'a5 

. • 

. 

i1• i2 i3 
• 

. ~es;j !! g1 g2 

. ~ -. ' 
1 end 
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Note that dux-i.ng the second scan., the order of the list or :for,nuJ a 

identifiers is reversed in order to tr-eat the declarations appropriately. 

Identifiers of quantities other than of arithmetic· or formula type a.re 

considered by the compiler as non-interesting and no ic' s arc eated for 

them. 

By means of a call of ''SroRE into inf'o1111ation list'' and ''st'' an 

oonsistjng of the n items: item1, item2, •.• , item n, is created: 

''p:= SIDRE into infon,l8tion list(st(st( •• • st(O, 

item1), 

item2), 

••• 

item n) )''. 

To get back the i-th item we sinply have to ask :for the value of: · 

'' contents of[ p+i )''. 

'Ihe for,nat of the identifier ic' s is the :following: 

I I Arithmetic but I integer I fo11r11la-arTay I fo1:1·nu1a I procedure I 
I I non-integer I I se81Jlent I I I 
I I I I I I I 
I item1 I nr of ident I sane I sane I sarne I saroo ' I 
litem21ptr to first letgit I smoo I sam: I sane I sarre I 
litem3 I type I sa11e I same I same l same I 
Jiteml+ I I link I link I link I link I 
fitem51 I I dimension I lnr of pararnl 
litem6 I I I I I fo11r1 proc I 
f I I I I I I 

• 

• ic, 

Identifiers o:f fo1T1uJ a a1Tays not occurring as the first identifier in a 
foz,nu.J.a-Q.I. · segnent have ....... an ic not containing the link. 

mechanjsm 
of .fonni.l.l a proced11res • 

• 
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'Ihe begi:Q-ic contains 9 items., the first one., identifying the • 
J.C as a 

The end-ic contains 2 iterr:s, the begin-ic, being equal to -begin synbol. 

first one being eqtJ..aJ to -end syrrbol. 

no1:imaJ.ly positive., an easy distinction 

As the values of 'nr of ident'' arc 

between identifier ic's and begjn 

and end ic' s has been achieved. (See, however., 

identifiers in section 5.1.6). 

5. 1. 4. The r:eadins; ~,cha~i ,sm 

the discussion on operator 

During the first scan, the text is read :from input tape and., after sone 

more or less trivial changes ., put into the text a:-r'Tay. 'Ihe changes concerir-1: 
deletion of conment, chw,..,,...,., of' '')text: ('' into a corm1ia, replacerrent of word 

delimiters by one-syrrbol-codes and substitution of" identifiers by unique 

codes. 

During the second scan., the text is ........ st entirely read in a linear 

f'ashion. Sometimes, use is made of a back-track or a look-forward technique. 
For exa11ple in the case of ''a[ 1]: = b[ 1]: = c[ 1] + d[ 1]'', the '':='' 1 

af'ter ''b[ 1]'' is read before ''b[ 1]'' is treated as the lhs pa·,·t of an 

assiO'I"" nt statement. Use is made of three procedures: 

1. ''SAVE reading ptrs'', which puts all the reading pointers, as ''synt unit''., 

''next synt. unit''., ''ptr of text'' or ''line nUirber'' on a stack and stops the 

counting of l;>egi g' s, end' s and lines. 

2. ''SKIP text until'', which skips text until a Boolean condition, bejng 

its actua] parameter, is fulfilled, taking into account the brackets 

structure. Exa11ple: ''SKIP text until (synt unit = comrra symbol)'' leads, for 

the f'ollo · V'l("r text (part of an array declaration) : 
' 

' X[ ·1, 2 ] : p ( 1., 2 ., 3) X Y [ q ( 1, 2) ] ., 27] j • • • '', 

to the skipping o:f the text until: '', 27]; .•• '' .. 

3. ''RESET re · g ptrs''., Which resets the reading pointers to the values 

being placed on the stack by the first procedure. If the stack is empty, it 

reenables the counting of' begi9' s, end's and lines. 

For the multiple assi ............. ,..,. .. nt above, the C(JT}piler investigates the situation 

as follows ( section 6. 4. 4) : 
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treat J hs pa1"L of assi .... , nt state1rent; 

if synt 1Jni t = identifier then 

begj n if next synt unit = beconEs synbol 

if next synt unit = sub symbol then 

then goto L else 
I 

beg"i n SAVE reading ptrs; RE; RE; 

SKIP text until (synt unit = bus syrrbol); 

if next ........ synt unit = becomes synt>ol then 

be5ig RF~'3ET reading ptrs; goto L end else 

RE:.SE:T reading ptrs 

end end; 

treat 1½1s parrt of assi nt staterrent'' 

In a situation like: ''fonnula f ,g:= x+y x z; 
for1rrula a:rT~ fa[ 1:lhs. of h]'', 

it is necessa1,y to treat the expressions ''x+y x z'' ,''1''_ana ''lhs of' h'' not at 

the places where they occur in the text. In the in:fo11nation cells of" g and 

or fa, the pointers to their defining declarations in the text ........ put so 

that we can find back the text or the expressions • For this p1J~c1)ose we use 

the procedure ''SET reading ptrs on''. If the ic of g has the address ''a'', 
''SET reading ptrs on (contents of[ a+2] )'' 

has as effect that after two calls of RE., to skip ''g' and '':=''., the 
expression ''x+y x z'' can be read. 

The errors in an ABC ru. L program can be divided into e1-rors discoverable 

by the corrpiler (a.1.m:>st all syntactic errors) and errors becoming rna.nif'est 

d1n1ng the running of the translated prngr~m only. Besides these errors, 

there is an unknown category of non-detectable ei'l:ors which we will not 

discuss. Let us call a piece of text, which has the prete.ntion being an ABC 

L program, a Pretentious ABC .L., L Program (PAAP). We assume that a PAAP 
consists of syntactic units • 

• 
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only fatal errors are detected in readjng 

are the result of overflow or tables and 

a:rTays and lead to a discontinuation of the compile process. 'Ihe except)ons 

a17e trivial e1~rs as in: ''for conx,ient'' or ''constant i''. Note that there is 
an important syntactic uni.t: '' ~- own syrrbol''. 

If' a PAAP does not begin with a b~sJr~ this is cortected by putting a 

~~Bj[l in f'ront O.f it. Arter such a possible COITCction each PAAP has a 

blockstruct1Jre and its first syntactic unit is bPgjn. The end of the PAAP 

rnust explicitly be indicated by a special symbol .for wt1i ch we have taken 

serves for as ,._y rigtit string quotes as a~r-ic necessa1•y or as a semicolon; 
• noreover, it serves for as ~-.. end's that are missing. 

If' a PAAP has a blockstructure such that the syni)ol after the ...... ..&...I.,. end is 

not eq1..tal to ''i', the superfluous symbols are deleted. 'Ihe result is a PAAP 

of' which the blockstructurre obeys the laws o.f an ABC UJ..J program. 

One level deeper., we :find declarations and staterzents. For the tire bejng 

we will consider a canpound staterrent to be a block. Statements and 

declarations SJ'."9 separated by semicolon's. , 

Except for procedure decJ arations, declarations do not contain send colon' s. 

Statem:nts which are no blocks do not contain semicolon' s. A,... .. 

f'rom proced11re declarations and blocks we thus ax-rive at the follo · · 

et-ror-recovery sche~: let the corrpiler read a pretentious declaration. or 

a pretentious statement; there ar-e two possibilities: . either d1.1ring this 

process a senrl colon or an end is encountered, upon which as many symbols 

as are necessariy are virtually supplied to cort7ect the PAAP (missjng right 

brackets e.g.) , . or the semicolon or end is not encotmtered. In the latter 

case we may delete· all symbols possib]y present before the semicolon or end. 
1lhe first case needs sone more considerations • 

. Firstly., it is necessa:-c~ that the compiler does not bypass a semicolon or 

end without being awa:-r-e of' this. fact. To this end, a Boolean variable: ''no 
' 

sen·ii colon or begjn end allowed" is being used, which, when true, pr-obj bits 

actual re :;I.U,..L. (i.e. a call for RE does not result in any change of the 

reading pointers) if synt 1mj.t is eq1JaJ to a semicolon, a b~sjp. or an end. 

when its value is :false, the reading process continues a.lso for a 

serni colon, a bezjr! or an end. 'Ihere ar-e special procedures: ,, RE semicolon•, 

''RE begin'' and ''RE end'' for this p1.J:cpose. 
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Secondly, suppose that the c011piler requires a certain symbol to be p1"Csent 

in the PAAP, but it is not there. TI-lat symbol is then virtually (= not 

in the text .. -..I) inserted; · m::,reover, the reading process is halted :for 

exactlY one synt unit. 'Ibis means that the next call of' RE has no e :ff'ect on 

the value of the reading pointers, except that the switch, in the f'o11n of 

the Boolean variable ''de laY one RE'', is tt1x,..-1ed off. 

Exa11ple: '~a x (b+c[ (a+c[d x (e+f)] + c[g) ;'' is corrected into: 

''(ax (b+c[(a+c(d x (e+f)])] + c[g]));'' 

The interesting f'eatur-e of this schene is that it f'ixes quite a number of" 

ex-i~rs; while, on the other hand., the apparatus used in the conpiler is 

minjmaJ: sooe Jines of program in the reading nechanjsm and e:xplicit calls 

of the procedure ''CHECK'', every tine the corrpiler requires a certai.n s ol 
• 

to be present. 
Besides calls of ''CHECK'', we encounter calls of the procedure ''ERR'' within 

the syntax-analyzing proced1.~cs. These calls a1-e invoked 'When errors o:f nore 

senantic nat1.rre are encountered, such as: identifier not declared, too 

much ~-~---1. ters or type of actual p -cu ... ,.,. ter not in co1•respondence with type 

of formaJ ....... m ter. These errors can easily be repaired such· that the 

process may go on. 
• 

For procedure declarations., the situation is a little bit different: we have 

to be aware of some extra semicolons • 

A statenent., in the fort·r1 of a block, · can not give any troubles as 

the block structure itself is error free (which does not mean that the 

con:piler necessa1'ily has the sane opjnj on about the block structure as the 

prograi11ner); the block then automatically decomposes into declarations and 

staterrents, for which the above considerations hold. 

An error message has to include a line number. For the first scan., thi.s is 

no_ problem at all., except for the fact that one syntactic unit is 1-ead in 

advance. During the second scan, however, the situation is more conplicated 

due to actions in wtii ch the reading pointers are changed; in pa1,ticuJ_a1, when 

they are 

piece of text. 
by means of ,,SET reading ptrs on'' to point to an a1bit1vacy 

'Ihe line number of that piece of text has to be available. It 
• l.S of the info11ft'a.tion contained in ''ptr of first letgit''. 



Also e1rror rressages during execution of 

have to be provided with a line number. 

translated such that a call o.f ''TNR( ••• )'' 

is the J i ne n1Jrrber of the co1Teoponding 

the trans lated ABC ........ 

Each block-begin is, 
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L program 

there.fore, 

is inserted. The acttJ.aJ pararreter 

~egin. 'lhe procedure INR of" the 

running system has 

numbers of the last 

• a cyclic buffer, so that upon an erro~ssage the Jjne 

prj.nted. 10 activated blocks can be 

On the proper tennj nation of the conpilation of a PAAP, we can make the 

:following rernarks. Firstly it can be seen (with sane pains) that the 

compiler behaves neatly for a correct ABC L program. Secondly, we have 

described the way the corrpiler corTects the PAAP. The blockstructure is 

certainly cot-rect. 'Ihe for,n of the statements could be inco1-.rect. Asswjng 
• 

that the statement-ana,J yzing proced1J:rcn te111rl nate, it can simply be seen 

that the block procedtire ter1ni nates • If a statement procedure is called 

anyhow, the first synta.ctic unit 1riust fit and the next syntactic 1_mi t is 

1>ead. 'Ihe only possible danger is an infinite loop either on account o.f a 

''L: . . . goto L'' situation, which is not possible unl.ess we had an infinity 

of corr,na.' s, or on account of an infinite rec1Jr-slon. 

In the latter case no ...... :v,r r is present if each time a procedure is called 

at least one syntactic 1.mit is actu.aJ ly read. The danger occurs when virtuaJ. 

syntactic uni ts are created. 1lhi s is only possible in a ''CBe:cK'' 
sit1..iation where the syntactic unit is not what it should be. A 

situ..ation like: '' •.• ; ....... CHECK(... symbol); RE; proc; ••• '' with: 

''proc~~ure proc; pegin CHECK( ••• syrrbol); RE; ••• end'' does not occur, 
however. 

5 .1. 6. Identifiers · 

Identifiers are picked up from the text and, if not already present, placed 

in an alphabetically ordered bi ~ tree situated in the higtier part o:f the 

in:foi.,nation list. 'Ihe o "'""' · sation is as follo~s: 'Ihe cell containing the 

identifier consists of the follo · -c::: wo1'Cls: 
' 

' 

• a nuJrber of words contajrung the letters and digits, packed four 

in a word, of which the last word is negative; 

• a word contaj.ning a pointer to the tree 

:foll ~- ~, in alphabetical order, this identifier; 

• • 111 • • 

conta1n1ng identifiers 
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. a word contajning a pointer to the tree containing identifiers 

preceding, in alphabetical order, this identifier; 
. a word conta.ining the number which interrially rep:r-csents the 

identifier (m" of ident) . 
To .find the letters of an identifier with a given inte:rnal nt.mlber as code, a 

second srna.11 sized aXTay is 1J5ed containing the address of' the cell in the 

infor,nation list. rrhe letters in the text a1Tay are replaced by the interna.l 

code. Possible occu1Ting new line synbols arc ta.ken care of by jnserting 
• 

them afterwards.. Due to the way syrrbols are packed in the text a:rray, i.e. 

3 in one X8 word, the internal code of any synt,ol may not exceed 399. A 

consequence is that if rrore than 218 different identifiers occ1.u:-a, another 

strategy has to be followed for th~ replacerrent (There a ro ~ 1y 180 

different symbols to be coded, including the word delimiters) • 'Ihe 

identifier then occupies three syrrbols: s1, s2 and s3, the first one being 

equal to 399, the identifying number being equal to: s2 x 400 + s 3. 

The identifiers of st .... .,,.,. , p;roc_ed:ures are all placed, together with 

infor1r:iation on type, number of parameters and possible appearance in upper 

and lower case, in alphabetical order in a string. The search technique uses .. 
the alphabetical order. 

It is interesting to observe that the search technique f'or word delimiters 

uses a hash-code technique in view of' the fact that we wanted the word 

delimiters to be a stored in a special, non-alphabetical, order (Moreover,we 

wanted to apply three techniques: binaxwy tree, alphabetical order and hash 

code). 

'!he treatnent of operato,r iqentifiers, as ''dya~c+'' 
0 

The underlying principle 

as much as possible as ordi 

or ''constant-''., needs 
• 
J..S to har1dle them, 

identifiers. That 

some extra clarification. 

despite their appearance, 

reans that at a low level (RE) they have to be recognized, at the higher 

level they are oniy taken into account, if' the compiler is e:xplici tly aware 

of' them (e.g. af'ter ''f'oz,nuJ.a procedure'' or at the lbs of an assj gnrrent 

statenent). No:r,raJ.ly an operator identifier may not occur at a place where 

an ordinar-y identifier may occur. In order to prevent explicit testing upon 

the absence of an operator identifier, the following sirrple method is used. 

In nor,naJ cases each time an identifier occurs it is being printed by means 

of' ''PR and RE'' or ''PR synt unit''. Within these low-level procedures an error 
• • 

rressage 1.s given when an operator identifier has to be printed. ..,., time 
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the compiler is aware of an operator identifier which is to be printed, a 

special printing procedure ''PR operator'' is called. As the printed version 
of' the operator identifier is rather pec1Jlj ar (''S'' and ''MI'' for the exa!l)le 

above) , this special treatrrent had to be given anyhow. Now we have achiewd 

that we are not hindered in the no1:,ria 1 case with operator identi fiere. 

To let operator identifiers behave as nuch as possible u nonna.J. 

identifiers, the values of ''nr of ident'' and ''ptr to first letgit'• nave 
to be defined. 'Ihe latter one can point, as usuaJ, to the place in the 

text array where the forrnuJ a proced1J1-ie is defined. The first a1e is ™1re 

negative, equalling: 

''- ( synt uni. t x 1024 + next synt unit)'' 

assurnin.g that ''synt 1..Jr)i t'' denotes the inte1-11al representation of cons~t, 
rronadic, 9¥adi.c, rowadic or poJ.yadic and ''next synt unJ t'' the operator. All 

identifiers being identified by rreans of the value of 'nr of ide11t',, it 

follows that all operator identifiers are different from noI"'!na] identiriera ~ 

but we can 1me the nox1rnaJ apparatus to treat them; suoh u ''Searoh 

f'or identifier'' or ''procedtire declaration''. In the latt,er proioedure an 

exhaustive test is being performed for fm1nula procedure,a defini.ng operators 

with respect to nuxrber and type of the fo1,ral parameters. 

The translated identifiers should be such that a 

identifiers o:f the procedures and variables of the 

clash with exi,atina; 

·ng system and with 

standard identifiers is irrpossible, while, at the sane tin:e., the ABC · .. · 

progrann1i.::r should be as ._-:::=~ as possible in his choice. 'lheref'ont:, .. · 

identifier (except those of standard procedures) is translated by pu.tting 

infront of it either a ''Z'' or a ''Y''. '!he '-ry:t' is put if an extra looal 

variable is necessat'Y to be used simultaneously with the origina.l identi.tler 

( the local integer for a fo1111U)a procedure identifier or the local vax"-iable 

for a called-by-value fo1-rnul a paraneter) • '!he '''C' is used in the norms.]. c•• 

of' a direct translation. 

5.2. The q_O!!!Piler: from beg-in t~ enp. 
• 
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In this section the severaJ parts of the compiler will be discussed. 

The nunber 5.2.i of each sub section refers to the nurrber 6.i of" the 

corresponding section of the next chapter, where the L 60 text of" the 

corrpiler is given. As this text itself is arriply provided with comrrent, it 

suffices to make a few remarks only. 

5.2. 1. P~F!:9,uisites for translat,i_on_ PV?C~s,:3 

Local to the procedure ''enyelope of block'' are all the syntax- analyzing 

procedures - section 6. 2 to 6. 5, and the following variables , the rreani ng 

and usage of whj ch will now be described. 

The pararreter ''procedure body'' indicates, when equal to zero, that a block 

or a conpound statement has to be treated. 'Ihe latter case can occur 

only when the program itself is a corrpound statement. When not equaJ to 

zero, a procedure bOdY has to be treated and the jnfo11riation cell for 

the block-begin of this proced11re body has been created already (within 

the procedure ''procedure declaration''; see section 6. 3.4). 'Ihe value or 
''procedl..tre b .. ::;' defines the info1irnation cell of that block-begin. 

'Ihe integ-ers ''ptr to integer'', ''ptr to fo1'tln..ll ri' and ''ptr to ~ ....... see,rent'' 

a.re used to point to the last cells of linked lists o:f in:for'tnation cells :for 

identifiers • 'Ihe · ""'1 
• g process always has the following ro1,:r1: 

''initialization: ptr to something:= O; 

••• 

create a new something: 

ptr to something:= S'IORE into in:fo1,ration list(st( •.• st( .•. st(O, 

• • • ) J 

ptr to so1rething), 

... ) )'' .. 

'Ihe list or fo11nuJ a identifiers, e.g. , • 
is created by several calls of" 

''"" - 1 d 1 . '' .1. 01,nu a ec a.ration , one for each occu1Tence of the declarator ro11fD.J J a and 

by inter11al loops within ''fo1mul a declaration'', one for each identifier in 

a fox1r1UJ.a list (as in ''fo1,rnJJ a fl., f2, f3;''). It is the ta.sk o:f ''f'o1:,r1ula 

declaration'' to go on with extending the already existing list or f'o1111ul.a 
identifiers. 

'Il1.e integers ''nr 

declarations'' will be 

' 

of ~- segrnents'' and ''max 

discussed in section 5.2.3.2. 
dimension • 

J.n 

• 
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'Ille Boolean ''fon1DJJ a block'' indicates whether the block contaj .. ns 

declarations involving the creation ot: fo:r1ntJla names such that., upon 

execution, ...... the nurrber of narres changes. Its value determines whether the 

staterrent ''e:RASE ( f'nn)'' will appear at the end of the block and whether a 

j urrp out of the block ( see section 4. 6) is possib 1Y dangerous. 

'lhe Boolean ''dangerous inner block'' dete111rl nes whether the block contains an 
inner block, while the latter one contains itself a dangerous inner block or 

' 

a goto statenent and for1nuJ a declarations (see section 4.6). 
The Boolean ''snn necesso..i. ' determines whether in the declaration of integer 

variables, aJ so the variable ''srm'' should be decl..... followed by the 

staterent ''snn:= gprf' after the treatrrent of the declarations (section '4.6). 

The Booleans ''block contajns labels'' and ''b-lock contains gotos'' are 

self-clarifying. 

The Boolean ''proc id 

statement of the block 

ass stat'' is used to determine 

(except for sorre dumrr.tY statements 

whether the 

at the end) 

last 
• 1S an 

._ 

assignrnent staterr.ent, the lef't-hand part of which contajns the procedt3rc 

identifier ot: the .fo1·111uJ a procedure of which this block is the proced1..1re 

body. If such · is the case, several safety measures· can be skipped. 'Ille 

process is rather sj_rriple: before translating a staterrent the vax-:iable gets 

the value raise; only the procedure assi--~,. nt staterrent can change . this 

value and it does so when it encounters the procedure identifier. 

The Boolean ''interested in proc id" indicates whether the block is the 

proced11re body ot: a fo1mul a proced1Jre. 

'Ihe Boolean ''block'' determines whether we .. have. a block (or compo1.md 

statement) or a staterrent. 

• 

'Ihe only statement • of the procedure body of ''envelope of block'' is: '>t)lock 

or statement''. 

5.2.2. lation of a block 

The rough struct1.Jre is: translate the declarations . ( takj ng into account that 

each decJaration is followed by a serrdcolon) and translate the statements. 

5.2.3. Translation of a declaration 

• 
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Concemi ng the item type in the info11nation cell of an identifier we r-eiria-ric 

that it nor,1ia l ]y consists of two pa:r·ta : 

. the ty'Y"\pe part, tp, which defines the ''plain'' type 

e.g. tp = real syn:bol x 2 i 15, for a real 

tp = fo111uJ a syrrhol x 2 i 15, for a fo11nula 

tp = fo11rIUJ a symbol x 2 i 15 + a1Tay symbol x 2 T 5, 
.for a .f o:mn,l J a array 

' a 

. the node pax't, mp, which gives sorre more in.fo1,r.a.tion; 

e.g. it may be eq4BJ to: ''declared as value'' or ''declared as 

name'', ''specified as value'' or ''specified as 

'with local'' or ''without local''. 

'Ihese are all small (< 32) integers. 

'Ihe type item itself equ.aJs tp + mp. 

name'' , 

The procedtlre ''Deel are integers'' reverses the list o.f .fo1':ftn,,tla variables, 

such that the procedure ''Introduce names for fo11nuJ ae'' produces the eJq:>licit 
. 

declarations with ''DE"' and ''IJE:vAL'' in the rigpt order; i.e. in the order 

written down by the prograrrmer. With the effect that ''fo:r:,-,u1Ja x = --trl,.f:= 

x;'' is executed nicely. Note that the san:e decJaration in the other order 

would lead to a run-tine error message. TTin oroer to give that error message, 

''Zx'' and ''Zr' get the initial value ' .........,''. 'Ihe necessax~ code is produced 

by ''Introduce names .for for,-nu.lae''. 

5. 2. 3. 2. Translation o.f a f'o,;rr~l.~-a:rray dee) _ar8;tion 
• 

A fo1in1ula-ar-,:,ay decJ aration: ''f'o:rmula a1~ f'a[ 1: n]'', ly has to be 

translated into: ''integer a;r:;N. FA[ 1 :NJ'', followed by: 
''for i:= 1 step 1 until N do DE(FA[i], .,..........,,)''. 

However, the lower- and upper bo1.l!""~d expressions nay be evaluated o _ once. 

We., therefore, arrive at the introduction o.f a sur,z·•ounding block in whj_ch 

the expressions are evaluated. ' 

'Ihe following program is then translated coi~ctly: 
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b~g! n ~nt~ger pro,~edure n(f) j value f; fo1,111,lJ a f; 

bee1n f:= der(f,x) + der(f,y); n:= dee,xe(f) end; 

• • • 

beg:i.n fonnula arTey fa[ 1:n(g) ]; fol'I111.JJ a h; ••• end 
end 

the translation of the second block being: 

b~gi;r, .~~eger 1,u,i; l:= 1; u:= Zn(Zg); 

b.e . integer arrey Zfa[ l:u]; 

int.eger TT'Zh,.fnn; frm:= gnnj 

DE(Zh, V.L.. ) ; 

for i: = 1 s:t,ep 1 t.lrltil u do DE( Zfa[ i] , 
• 

• • • 

; ERASE(fnn) end 

end 

Consider now the above program in wtii ch the fou1"th line is replaced by: 

procedu_ry;, proc (par); value par; f'o11nula par; 

begj :n fo111nJl a axTay fa[ 1 :n(par)]; fox,nula h; • • • end 

The treatment . or ''par'' being perforrred together with the treatnent of 't.h'', 
troubles arise concerlr1ing the proper translation or ''n{par)''. In fact, the 

statement ''u:= Zn(Zpar)'' would be executed too early. It is for this reason 

that the. procedure ''o. """~'""ounds'' ....,,,.. "";;u- s the list of identifiers to be 

dee] ared and for whj ch nanEs should be introduced by means of DE or 

DEVAL. In fact the list is broken into two li.sts: the first one containi.ng 
' 

identifiers of for1tal paraneters specified as. fo1111U.J a -and called by value, 

the second one containj ng the rest of the identi.fiers., . i.e. the identifiers 

dee] arcd as fo1,rru.J a variables • 

Be.fore the arraybounds am conputed the identifiers of the first list are 
' 

treated, by declaring local variables and :introducing na.IlES by means of 

DEVAL. The or:i.gjnaJ list of identifiers is then cha~d such that it becomes 

the second list, which is treated when the declarations of the procedti:re 

body are treated. 
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If seve1,al 

and. ''up i C 

lower- and upper-bounds occur they are identified as ''low i c j'' 

j'', where i and j stand for natural nurrbers. To produce 
• 

the translation, use is made of the integers: ''tnax dirrension in array 

declarations'' and ''nr of arrray se@Tlents'', In the procedures ''a:rrraybour1ds'', 

'~clare foimula arrays'' and ''Introduce names for fo1·110J.la arTay elerrents'' a 

rather peculiar procect11re ''PRsrr' outputs a sequence of strings alterria.ted by 

numbers. 

In this section the apparatus 

block-end and for the closely 
• given. 

• 

for the treatment of the block-begjn, 

related Search- for-identi:r:ier process 

5 • 2. 3. 5. TJ;'~ns lation of c3; _proced1.µ-ac declc3Fat~on 
0 . 

the 
• 
18 

A note-worthy observation is that an inf'oi1ration cell for a virttlaJ. 

block-begin is created between the procedure identifier and the procedure 

~·• ters. In hehaJf of the procedure ''envelope of block'', called to 

translate the procedure body, this block-begj n info1,na.tion cell may contaj n 

p,ointers to a list of integers (consisting of' maximally one in:forrnation cell 

for the fm,rn.1J ~ procedure identifier) and to a list of f'or,rr,;J a variables 

( consisting of the info11nation cells for the formula pararr.eters called by 

value). 

Note that the type of the i-th paraJneter of a noz,naJ procedure may be :found 

in: contents of[ a+14 + ix6]., where a is the pointer to the info1·1iation 

cell of the procedure identifier; f'or a fori:tna.l procedure, 

fo11nal P'.lrQ.1,1 ter, this type is eq1.iaJ to: 

- 1 - contents of[ contents or[ a+4] - 1 + iX2] 

• i.e. occ as 

In fact, for each pararreter of a foI-roal procedure an inf'o:ritiation cell is 

created containing as info1:•1r:iation the type only, as a negative quantity. A 

more elegant nethod would have been to put the in.fonrJation on the types in 
the inf'orrta.tion cell of the procedure identifier; as this infor,na.tion cell 

is created already when the identifier appears as a parameter, while the 

types are jnspected in the specification part appearing later on, this 
rrethod is unper.fo1:"ttable • 
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We have to investigate if the negative values of the types overlap the 

negative values of other info11nation cells i.e. -begi.nsynbol J -ends :Tffl .,,....1 

and - (''a.die symbol'' x 1024 + ''operator synbol'') for operator identifiers. 

Either a negative value of a type eqt1a]s -lJ in which case there certainly 

is no overlap., or this value equals: 

- (synt unit x 2 T 15 + next synt unjt x 2 1 S+s), 

where s equals ''specified as name'' +1 (=3) or ''specified as value'' +1 (=2). 

'Ille values o:f ''synt 1mi t'' and ''next synt unit'' range . 64 ( + symbol) to 

399 • Thus , in this case the absolute value of the type is J arger than 2 1 
21., a value not reachable by the operator identifier whose largest ab,solute 

• 

value is smaller than 400 x 2 1 10 + 400. 
' . 

r the treatment of the specification ....... , it is checked whether the 

procedure has parameters of type label, of type switch or urtspecified. 

'J:hi s info11nation, together with the infur-rration on the presence of goto 

statements in the procedure body, serves to give the glob,al variable 

''dangerous procedures'' a value (see a]so section 4.6). 

In behalf of the procedure ''assignrrent statement'' a,nd in behalf of the test 

on the appearance of operator-identifier declarations, the global integer 

''in .fo1•1nul a procedure body'' gets as value the number of' .ro11mJl.a-procedure 

bodies declared within each other. 

The procedure ''staterrent'' is called when a possibly labelled statenent is to 

be translated. Depending on the environment, the translation. may or n:ay not 

be translated in more than one statenents. 'Ihi s is deteimi ned by the Boolean 

va::-ciable ''di visible''. 

For exanple, within: ''i:= i+1; l:stat; ••• '', l:stat may be translated into: 

''L::!:.tT"'\:1.UE(sm); STAT'', however, in ''do l:stat'', it 11iust be t.carJ.slated as ''do 
, 

begi !?: L:E ,..,~(snn); STAT end'', at least if '~RASE:(sm ),, is necessaray. 

5 • 2. 4 .1. Translation of an ~:5,i Pl!nent s.~at~~nt 

Only the assis,110nt statement to variables of type fo1,1uJa and to 

f'o:r11a-t1.a-procedure identifiers is of interest here• 

''f'1:= f2:= f'p1:= f3:= fp2:= f4:= expr'' is translated into: 

The statement: 



'~(begjn) FP1:= FP2:= FP3:= ASSIGN(F1,ASSIGN(F2.,ASSIGN(F3., 

ASSIGN(F4 ,EX.PR)))) (;protect:= true) (end)''. 

We assume that f1, f2, f3 and f4 are f'o.1·rr1tJ_l a variables (possibly 

subscripted) and that fp1.,fp2 and fp3 are fo1,-nuJ a-proced1;rc variables. Use 

is made of" a rrechani sm to link the infor11iation cells of fp1., fp2 and fp3 

together. '!he '';protect:= true'' is provided if, for at least one of' the 

fox1111;,Ja-pro,cedurc identifiers., it is true that the last staterrent of its 

procedure -..r is not the assignment statement to the procedu:r .. e identifier, 

which is investigated during the first scan by 1reans of' the va:ri.able ''proc 
• 

id ass stat''. 

'Ihe proced1Jre is aJ so helpful for the investigations mentioned in section 

4. 5. It has to be detected whether in a fo1:,1n..1_1a- procedure body an 

assiC:t'I" t to another formula-procedure identifier occurs., in which case the 

''protect:= false'' staterrent at the end of' this procedur-e b -......; may not be 

produced. Consider the following exarrple: 

1: 9~fQ11 ••• 

end 

.fo1'!m.1J a procedure fp 1; 
0 I 

2: b-egin ••• 

3: be · n • . • be_gi !1 • • • end •.. 

foinRJJa p~cedury: fp2; 

4: be . . •• 

end· 
' 

end· R I , ••• 

end· J 

••• 

• • • 

• 

• • • end· 
7 I J • •• 

'Ihe block-end of the fo1J?•th block may not consist of' ''protect:= false'', if 

the ''protect:= true'' is necessax•y :for ''fp1'' . rn.-..e way thi· s · 
.LLJ. is progairn:red 

shows the stre ..t-r.-. o:f the block-structured in:fo1,11ation list. 
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First, it is deter,ni ned how deep, with respect to ,'6'', the procedure ''fp1'' 

is decJ ared (in our case block depth = -4); next, three block-begin' s 

are inspected to see whether their blocks are procedure bodies of fo1,rtul a 

procedures, in which case a special notice is made that ''protect:= false'' 

may not be produced. 'Ihis notice is ma.de by using the 6-th item of' the 

in.fo1·1nation cell of the procedure identifier. Contents of[a+6] = O means: 

no protection needed.,' > 1 rr.eans: protection is needed, but if = 2 then 

'~protect:= false'' must be suppressed. See also the procedtJre ''Block exit'' of 
section 6.3.3. 

In order to enable the procedure ''sin:ple fo1,r1UJ.a expression'', i.e. the 

procedure ''pri.~";;u. '', to see whether a fo11nula-procedure identifier is used, 

declared in a block with a block depth deeper than the block depth of the 

:forn1ula-procedure identifier occurring at the le.ft-hand side, the global 

variable ''min block depth'' is bejng used together with the global variable 

''proc id ass stat''. 

5. 2 • 4. 2. fTanslation of a :erocedure statement 

The procedure has 

procedure is called 

a parameter ''Ifill necessci.!"",..' which determines if the 

as a function desigria.tor in a formula expression. 

5 . 2. 5. Translation o_f' ar ,exp.res_si_on 

• ''--P. ......,.,. 1 · '' and '' the The conpiler knows two types of expressions: .L011m.1 a expression . ·. · o ·· , •.(r 

expression''. The first one is investigated in all de~aj_ls; while the second 

one is scanned only to take into accotmt the bracket structure, to pick up 

.function desigr~1ators and to treat the identifiers. 

An inportant ''other expression'' is the Boolean expression: ''f = ft', where 

''f°' and '?g' both are f'orrm1J a variables • 

• 

' 
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At first sight, this seems meaningless; :for the translation: ''abs (V(F)) 

= abs (V( G) )'' says: are the references of' f and g the same. A useful 

application is the case· that '':f'' or ''g' is ''one'' or ''zero'', assuming that 

the system is nade such that only one ''one'' and only one ''zero'' are present. 

In that case equaJity of references means equaJity o.f values and then the 
' 

test ''f = one'' (Note, not f = 1) is nuch faster than: ''i.f constant f' then 

J.hs of f = r!'. In order to be able to use the test ''l hs of' f = one'', the 

procedure ARIHS gives, in the case that the type of f' is not constant or· 

monadic, no erTOr message but the (absolute) value of the reference instead. 

See also the discussion in section 2.5 on this subject. 

The treatment of identifiers in a formula expression can only be understood 

if section 4 ;4 is understood. 

In a formula-procedure-identif'ier-assi _...,... nt-statement: '':fp: = exp''., we have 

to be aware of a direct t:rans:fer of a value from a variable or a function 

designator to ''fp''. To this end ''proc id ass stat'' is used; it is made true 

i.f the above case occurs and it remains true until, by means of' a function 

designator or an operator (also a for,n of a function designator), the 

identifiers of the expression arc shielded away from ''f'p''. IJhat ''proc id ·ass 

stat'' may reobtai.n its old value can be seen from the exarriple: 

''f'p: = if f = one then a else if f = zero then b+c else d''. 

One might ask whether it would not have been easier to have ''proc id 

ass stat'' as parameter of ''fo11nuJ a procedure'' and thus of ''sirrple foi1r1ula 

procedure'', j_nstead of saving its value a number of times by means of local 

auxiliary Booleans ''piass''. The answer is that, originally, the compiler was 

not aware of special assi ..... i.;;.L t statements anyhow. 'Ihe above construction 

grew gradually. Its advantage was that calls for ''foI,rv.la expression'' did 

not have to be changed. 

Except for one remark on standard identifiers., we refer to the L text. 

'Ihe standard identifiers arc stored as a string. 'Ihe rreanjng of the + is: 

the identifier may occur in lower and in upper case, the meanj ng of' the last 

bracket is: ) real procedure, ] integer procedure., > non-type procedure. 

5.2.7. Initialization 



The initialization consists of several parts. 
Fj.rstly, the initial j zation at the very ben,r• before any ABC 
program is treated; this consists of the proc ''INI'l' l.AI.lZE a. , la•~ ·and 

the filling of the array ''ad.jc op'' for the adjc operators. 

Secondly, the initiaJi zation at the be • . · g of each ABC · .. 

this consists of the procedure ''INI'ri·ArJZE inf list pt.rs''. 

'(hj rdly, the initialization at each scan for each ABC · ·: progrmn; tbia 

consists of' the procedure ''INrrlAIJZE readj.,ng ptrs''. 

'Ihe whole process of how the several AFC ·• L programs are treated and haw 
• 

the state variables are set can best be st1.ldied by inspecting section 6 .. 6 .. 5 
o~ the main program. Note that the main loop is: 

fill adj c op; INI'l'I AI,IZE sy11bols; 

BEGIN: set state variables; INITl'AIJZE inf list ptrs; 

L: INITTAIJZE re ;I.\... ptrs; .•• 

begin:= 1; precedjng begin:= 4; 

envelope of' block(O); 

if first scan then 

begiQ ••• first scan:= f~se; goto L e!14; 

e;x 1 ·r 
and in E:X: r T a j 1Jnlp to EEGIN is ma.de. 
The sane EXIT is cal.led if the cOIYl)iler decides to discontinue t~ turttlilr 

conpilation through FATAL ERR. 

About the j ni tialization of the inf01,,ation list we want to 88Y 80119t , ' · . 

m::>re in the next section. 

5 . 2. 8. A E!Y,cequre. libr§!'Y 

Each conpiler system has 
., t· . the possibility of add1.rc and oe.e J,,ng pr0' ··. · ...... ·· .. . 

in a lib 

· · m · the file 
or deleting a £ew cards or a piece o.f · or by · · ·: · .( · · · ·· · .. 
all: 

contajning the rtU1-time system. 
Qtii te another story conce1-rJS the conpiler, mich 

ot"" •t 
. ·~··· ... ' ' ' ,. ' . '. .. ',. . "' 

. . 

proced1.1:res, in partic1.lJar of the prooe 1 
··· 
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Pax•tly, this has been inplenented by Bt.1.PP1Ying the compiler with a string of 

standard identifiers of the noninteresting procedures for input and output 

and similar procedures which are stan in the MC ,... L 60 system. 'Ihe 

inf'ortration provided can be minimal: the type of the procedure (real., 

integer or otherwise) and the ~ r of parameters (the parameters not being 

of type for111.1J.a., it is not necessa1"Y to lmow the type or the p ....r..... ters) • 

For general ABC · L proced1..n:-es, with all sorts of parameters and of any 

type, including even operator definitions, it is necessa:t'Y to have a special 

catalogue. '!his catalogue is organized as a part of the infor,r1ation list in 
' 

the .foll . way: 

Consider the following program: 

begjn 
' 

' 

end 

• • • proce~~Jre stanaa~ru procl 
' 

• • • P:r;:o~e;d~ st proc2 

• • • 

• . • procedt1re st 

the actual program: 

!)egjn ••• end 

procn 

• • ... , , 
• • •.. ,, 

... . . . , , 

r.Ihe actual program may be thought of as any ABC ALGOL program using the 

st · t;;LJ., procedures . 

Take the infor1nation list (includj ng the code table for the identifiers and 

the info111iation-list pointers) at the moment that the conpiler begins at the 

translation (during the first scan) of the actual progr-am. It contains all 

the infoI'rrlation needed for the translation of calls in the act,..ial program 

of the st 

not be ..... 

first beE9n. 

proced1 s . It is also corrplete, in the sense that it will 

d by the actual program, except for the info11riation cell of the 

The contents of the infon1iation list at this moment is called the catalogue. 

As -s.,. of the ini tia.J i zation of the compiling process for an arbi tra:r-y .ABC 

.AIOOL program, the ini'o1,nation list is filled with the catalogue. At the end 

of the first scan an infoi,nation cell for an extra end is added., in order 

to conplete the block structure of the infoi·rrration list. During the second 

scan the info1:,nation list then consists of the catalogue and the info1,ra.tion 

about the """"icular pro ._ ........ ~ under consideration. We thus cone at the 

conclusion that there r,ust at least be two dif"f"erent compilers: 
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1. The cat~logue C(?!IJ?i,ler, which has as input the ABC 

consisting of the headings of the stan'"--'• ·- procedures (each provided with a 

du11nr\}' procedt1re statement) and which delivers as output a string of n .. 

specifying the contents of the catalogue, incl1.ldi ng all the in.fo1-nlation-list 
• pointers. 

2. 'Ille no111ial ,,co11lpi_ler, which is provided with a string as produced by 

the catalogue compiler, which ini tj aJi z.es its info:r-mation list by means of 

inforrration contained in this string, which treats the first scan of the ABC 

L program to be corr.piled, wt.1i ch inserts an extra end-inforn1ation cell 

and which, f'inal}y, compiles the ABC ru.. L program in the second scan .. 

Both corrpilers do not differ rrIUch; the difference is the value of the 

boolean variable: ''no:r,nal corrpilation''. 

The corrpiler, as reproduced in chapter 6, is a nonraJ corrpiler; it can be 

changed into a catalogue con:piler by si rr.ply changing the statement: ''ho1,nal 

corrpilation := true'' into: ''nor:irnaJ coo:pilation:= false'', in section 6.6.5 

line 2977. 

The catalogue of this compiler has been produced by ireans of the foll ·. .. 
, 

program: 

begi~ procedure replace(f ,left ,g); value f ,left ,g; 
• 

f'or1rDJ.J.a f .,g; Boolean left;; 

end 
which resulted in the procedure ''catalogue s . ·. l''. 

5.3. Alphabetic listjng of Jppo~ant ide~t.ifiers 
a , 

In this section we give an :;u...etic listjng of all the identifiers 

which are inportant in the conpiler.. These identifiers have som global 

significance. Most identifiers are preceded by a nur1ber,""'"denot.ing the line 

where they are decJ.ared. 'Ihe exceptions are the MC standard procedures; they 

arc preceded by ,,_,,. 
• • 

In addition., either a list of numberS is given, 
the identifier occu·re, or ''++++'' is printed, jnd_jca.ting that the list 

denoting all lines winere 
WU 

uninteresti-r-~ long. 

A program of D. Grune and L. Meertens has been for listing the 

identifiers. 
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- ABSFIXT 2121 
2068 
1947 
2967 
2070 
1748 
2042 

2760 2854 2857 2867 2x2870 
2068 additional synt unit 
1947 adic op 

2070 adic sym 
1750 agajn 
2072 alf 

386 a1•1">ay bounds 
190 a-rray dee) aration 

1245 assi ~ nt statement 
29 block 
29 block contains gotos 
29 block contains labels 

68 
157 

1208 
29 
29 
29 

2542 2692 2776 
2432 2962 2963 2964 
2968 2969 2970 2971 
2432 2433 2x2754 2x2755 
1750 1758 
2052 2x2056 2072 2575 

190 

74 97 
665 701 
664 700 

106 
1204 
1090 

2965 
2972 

730 

2807 block depth 2x614 
1418 

386 
161 

1245 
61 

632 
632 

1264 
1441 
728 

1920 

1285 2x1286 
1846 1859 

1289 2x1294 
2807 2834 

728 Block exit 112 
60 block or statement 60 
- C -AGE 3004 

2906 catalogue symbol 2898 2901 
2770 CHECK ++++ 
670 Close block in infor-rnation list 

2810 code table 2274 2572 

1125 conditional staterrent 
2810 contents of 
2372 count nr of begins 

28 dangerous inner block 
2948 dangerous procedures 

149 declaration 
2805 declared as name 
2805 declared as value 

437 Declare .foi,.nula arrays 
249 Declare integers 

2372 delay one RE 

2072 delimiter array 
2069 deJjroiter array ptr 

2129 early end of program 
1740 elevator 

2890 
1103 1125 
++++ 
2372 

28 
667 

76 
++++ 
++++ 

2406 
666 

1060 
149 

85 
85 86 

2372 2X2395 
2642 2691 
2072 2106 
2069 2X2105 
2354 2355 
2113 2129 
1740 1741 
1914 

1566 enquiry 1566 1627 
1057 24 envelope of block 24 

2758 _ERR_ ++++ 
- EVEN 1059 

2767 FATAL ERR ++++ 
2030 fill al:f 2027 2030 

- FIXT 2854 
325 fo1·1nul a array declaration 
28 fo1·1rul a block 28 

225 .forarnuJ a decJ aration 
1533 for~nu.la expr-ession 

788 for!nu.J a proced1Jre 
1150 for statement 
2071 from delimiter ax-ray 

738 
153 
299 

1823 
788 

. 1105 
2071 

151 
94 

225 
1368 
1901 
801 

1130 
2104 

2906 

112 
2678 

2417 
1094 
1094 

437 
249 

2488 
2775 
2330 
2106 

1745 

1896 
1190 

325 
97 

1495 

804 
1150 
2108 

2908 

670 
2679 

2460 

2948 

408 
2496 

2354 

2810 

2487 

2978 

2517 

2328 2><2329 

1749 

1897 
2987 

270 

1533 

814 

2351 

1758 

311 

1540 

817 

2642 

2844 

2643 

2539 

2330 

1759 

663 

1810 

832 

2957 

2966 
2973 

756 

1295 

2870 

2551 

2335 

1906 

699 

1820 



2933 get bits ++++ 
789 Identifier in paramJ j st 

8 
. ,....,......, 1009 

2 O 7 in f'or11iuJ a procedt1:re body 
2835 

2827 INITIAI,IZE inf list ptrs 
26 37 INITIALIZE re . er pti:•s 

310 Initialize snn 92 
1949 INITIALIZE symbols 1949 

789 
1025 

834 

2827 
2637 

310 
2976 

790 

1051 

2979 
2981 

795 796 

1052 2x1061 

30 interested in proc id 30 
473 Introduce names for :ror'11'.1Ula 
277 Introduce names for forr1ulae 

78 89 
elements 

731 
91 

410 

739 
473 

90 277 
2363 is adi c symbol ++++ 
2366 is declarator ++++ 
2379 is digit ++++ 
2382 is enquiry ++++ 
2377 is lay out ++++ 
2375 is letter ++++ 
2385 is operator ++++ 
2369 is specifier ++++ 
2068 line nurr.ber 63 388 

2760 
2068 line number1 

2069 line number2 

2068 2152 
2484 2640 
2069 2x2120 
2469 2484 

27 max m mcnsion in array declarations 
631 646 

2804 max nr of' identifiers 
2803 max of inf list 
2807 min block depth 

- NEW PAGE 
- NLCR 

2272 2804 
2803 2830 
1273 1285 
2980 
2121 
2851 

2809 no:r-rra.J compilation 2809 

2759 
2857 
2829 

2372 no semicolon or begin end all 
2454 

26 nr of a:rTay se~nts 
2070 nr of begins 

26 2x334 
2070 2137 

2x2461 2x2488 
2095 NS . ++++ 

62 8 Open new block in ir1:furarration list 
1526 other expression ++++ 
2690 PR and RE ++++ 
2707 PR and RE b,egin 1191 

2068 

22:314 

2403 

2236 

2121 2x2126 
2494 2640 

27 351 
661 682 

2830 
2837 
1286 

2841 
1441 

2764 2772 
2866 2><2869 
2838 2977 
2372 2396 

2469 

2403 

2152 

353 

2887 
1859 

2774 

2'991 
2447 

400 631 645 
2404 2x2408 2409 
2,641 2x2645 2x2983 

62 628 
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875 

1288 

1248 

2483 

2434 

2318 

399 

2807 

2449 

66·0 
2410 
.. 0i5. .. a 

. . -·. 

2}50 

403 

2145} 

68:t 
2-18 

2701 PR and RE end 1201 
2695 PR and RE semicolon 108 

2707 
2701 
166 

1035 
1775 
1768 
3004 
2998 
28o9 

187 205 
1062 1198 
1778 2X1787 
1794 1795 

860 871 99T 

1762 PR for-rr1 expr 
1794 pri rna:r-y · 
2848 PR inf cells 
2873 print catalogue 
2809 print infor,rJation list 
2745 PR int num 

- print pos 
- PRINTYE:xT 

2718 PR nlcr 
715 procedure block entry 

1016 
1762 
1741 
2848 
2873 

++++ 
2759 
2715 
2958 
++++ 

89 

2761 
2726 

715 

2848 2977 

276,2 2763 
2759 2761 

21695 
1916 
1833 2x1893 1906 
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24 procedure body 

785 procedure declaration 
1411 procedure statement 

30 proc id ass stat 

2752 PR operator 
2779 PR sn 
2713 PR str:ing 
2721 PR sym 

- PRSYM 
2654 PR synt unit 
2803 ptr of inf list 

2067 ptr of text 

206 7 ptr of text 1 

2067 ptr of text2 

27 ptr to array segrr.ent 

24 
653 
152 

1209 
30 

1200 
·. 1534 

++++ 
++++ 
++++ 
++++ 
2122 
++++ 

2x25 
718 
158 

1411 
96 

1248 
1536 

2674 

611 2245 
2800 2x2801 
2886 2><2997 

' 

78 
733 
162 

1588 
110 

1250 
1538 

2675 

2252 
2803 

79 633 634 
734 739 1250 
785 

1844 
732 2X1133 2X1136 

1284 1440 2x1445 
1539 1770 1801 

2686 2722 

2789 2x2790 
2836 2840 

2728 

2791 
2851 

635 

1167 
1502 
1858 

2862 

2798 
2884 

2067 2x2075 2076 2078 2079 2x2124 2125 
2x2130 2141 2><2149 2><2155 2><2160 2X2165 2x2185 
2><2197 2233 2235 2280 2294 2318 2343 

2350 2402 2416 2x2424 2426 2427 2468 
2483 2493 2494 2X2495 2638 2x3001 
1653 2067 2402 2434 2468 2482 2638 
2660 
1653 
2468 

27 
440 

2067 
2483 

64 
442 

2233 
2638 

84 
475 

2280 
2660 

94 
630 

2293 2X2402 

328 
644 

333 
659 

2416 

412 
680 

757 
1260 ptr to first fo11nuJ a procedure identifier 1260 1263 1298 1299 

2803 ptr to first ident 
2070 ptr to first letgit 

26 ptr to foI111tJJ a 

787 ptr to fonnuJ,,a param 
26 ptr to integer 

786 ptr to integer param 
2804 ptr to narre list 

- PUSYM 
- PUIEXT 

2074 put in text arrray 

2394 RE 
2373 reBding allowed 
2146 .-u.; synt unit 

2457 RE begin 
2452 RE end 
2442 RE semicolon 
2478 RESEr reading ptrs 

- RESYM 

1338 1341 1353 
2254 2x2275 2803 
175 184 196 
866 2070 2235 

2641 
26 

388 
658 
787 
26 

634 
786 

2231 
2804 
2674 
2715 
2074 

2x2190 
2289 
++++ 
2096 
2146 
2217 
2358 

75 
730 
179 
69 

1351 
2108 

94 
389 
679 
819 
173 
642 
817 

2256 
2837 
2675 
2726 
2110 
2198 
2344 

2139 
2157 
2218 
2360 
2457 

756 
236 
93 

1384 
2109 

227 
395 

1029 
177 
657 
818 

2274 
2841 
2686 

2132 
2282 
2346 

2156 
2185 
2232 
2404 
2710 
2452 

356 
752 

1385 
2953 

2836 
229 

2294 

232 
411 

1030 
256 
678 

1054 
2276 
2856 
2722 

2133 
2283 
2352 

2373 
2196 
2293 
2416 

2457 
879 
893 

1487 

2852 
331 

2434 

256 
630 

1055 
2x407 

2277 
2885 
2728 

2135 
2284 
3002 

2952 
2200 
2312 
2429 

2704 

2884 
342 

2467 

269 
635 

411 

2278 
2887 

2136 
2285 

2980 
2205 
2347 

2442 2x2644 
1334 . 1335 
1493 1915 

811 
2482 

280 
643 

630 

2798 

2138 
2288 

• 

2207 
2355 

2698 
1337 
2478 



- RUNOUI' 
2459 SAVE reading ptrs 

607 Search for identifier 

2550 SEF:K 
2492 SET reading ptrs on 

3003 
68 

1381 
607 

1474 
104 
258 
722 

2724 SHOW ++++ 
1711 sj_1?ple :forrnuJ.a expression 
1586 simple other expression 
2516 SKIP text until 233 

1415 
2516 

28 snn necessary 28 
- SPACE 2761 

2806 specified as narre ++++ 
2805 specified as value ++++ 
2806 standard identi.fier ++++ 
2607 standard symbol ++++ 
1100 statement 97 
2927 store bits ++++ 
2788 S'IDRE into in:foi,:-,ia,tion list 

- S'l'.RlNG S_"""' L 1985 
2086 take f'rom text a:r~ u 1654 

2680 
2072 text aITay ++++ 
1984 text synbol ++++ 
1651 translate string 1651 
169 type decJaration 159 

2555 type o:f standard identifier 
1937 type symbol 1572 
1187 unconditional statement 
1932 underJ ini ng symbol 

1946 und symbol 

2144 ur1d symbol read 
2806 with local 
2807 without local 

• 

1932 
2161 
1946 
2007 
2675 
2144 
++++ 
++++ 

83 
1483 
609 

1488 
1194 
285 
744 

1538 
1529 

346 
1484 
2522 
272 

2762 

1100 

++++ 
2609 
1657 

1884 
169 

742 
1913 
619 

1592 
2445 
293 
891 

1541 
1531 

449 
1798 
2526 
311 

2763 

1135 

2908 
2086 

1436 1438 
1895 1937 
1106 1132 
1968 1970 
2166 2x2674 
1971 1973 
2012 2177 
2738 2740 

883 
2459 
1152 
1847 
2550 
295 

1343 

1576 
1586 

974 
1840 
2531 

2x4o6 
2764 

1166 

2092 

2555 
2020 
1187 
1998 
2740 
1974 
2181 

2164 2167 2x2168 

1273 

1265 

415 
2492 

1632 

1326 
1889 

411 
2775 

1191 

2125 

2601 
2383 

1331 

1419 

443 

1711 

1332 
1892 

667 

2661 

2112 2153 
2954 
1975 2x1976 
2182 2184 

2181 

5- 173 

1340 

1464 

477 

1382 
1905 

2·679 

2158 

1979 
2672 


