Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.O), by the Municipality of Amsterdam, by the University of Amsterdam, by the Free University at Amsterdam, and by industries.
R.P. VAN DE RIET

ABC ALGOL
A PORTABLE LANGUAGE FOR
FORMULA MANIPULATION SYSTEMS

PART 1 : THE LANGUAGE
AMS(MOS) subject classification scheme (1970): 68A15

ACM-Computing Reviews-categories: 4.22

first edition 1973
second edition 1976
Table of contents of Part 1

0. Introduction 1
0.1. Summary 1
0.2. Acknowledgements 3
1. First acquaintance with the language 5
1.1. An overview of the language 5
1.2. Solution of differential equations in ABC ALGOL 10
1.3. A first complete ABC ALGOL program 14
2. Formal definition of ABC ALGOL 27
2.1. Program 27
2.2. Block 27
2.3. Declaration 28
2.3.1. Formula declaration 28
2.3.2. Formula array declaration 29
2.3.3. Procedure declaration 29
2.3.3.1. The specification part 30
2.3.3.2. Operator identifiers 31
2.3.3.3. Assignment to formula procedure identifier 34
2.4. Statement 34
2.5. Expression 35
2.6. The procedure replace 40
2.7. Error messages and end of compilation 42
2.8. ABC ALGOL compared with other languages 43
3. Simplification and rational numbers 46
3.1. The representation of the formulae 46
3.2. How to use the system 49
3.3. The procedures of the system 51
3.4. The rational-number system 63
3.5. Some examples 77
3.5.1. Test of the rational-number system 78
3.5.2. Test of the formula system 79
3.5.3. A more sophisticated example 80
3.6. An alternative simplification algorithm 90
4. The translated program 98
4.1. The simplest but unrealistic translation 100
4.2. The dynamic-storage allocation system 101
Table of contents of Part 2

6. The ABC ALGOL compiler 1
 6.0. Preliminaries of translation process 1
 6.1. Prerequisites for translation process 1
 6.2. Translation of a block 2
 6.3. Translation of a declaration 4
 6.3.1. Translation of a formula declaration 6
 6.3.2. Translation of a formula-array declaration 9
 6.3.3. Opening and closing a block 14
 6.3.4. Translation of a (formula or types) procedure declaration 21
 6.4. Translation of a statement 29
 6.4.1. Translation of a conditional statement 30
 6.4.2. Translation of a for statement 31
 6.4.3. Translation of an unconditional statement 31
 6.4.4. Translation of an assignment statement 32
 6.4.5. Translation of a procedure statement 37
 6.5. Translation of an expression 40
 6.5.1. Translation of a simple other expression 42
 6.5.2. Translation of a simple formula expression 45
 6.6. Auxiliary equipment 51
 6.6.1. Declaration and initialization of symbols 51
 6.6.2. The text-reading equipment 55
 6.6.3. The printing equipment 70
 6.6.4. The information-cells equipment 74
 6.6.5. The main program 78
 7. Examples of compiled programs 81
 7.1. General structure and information list 81
 7.2. Block-entry, block-exit 87
 7.3. Formula array in a procedure body 91
 7.4. Translation of procedure parameters 93
 7.5. Protection mechanism for formula procedures 94
 7.6. Assignment to formula-procedure identifier 99
 7.7. Error detection and error recovery 101
 8. Machine dependencies 109
 8.1. Size of tables 109
8.2. The MC-ALGOL 60 standard procedures 110
8.3. Other machine-dependent features 111
9. References 115
0. Introduction

The language ABC ALGOL may be described as follows:

\[ABC \text{ ALGOL} = \text{ALGOL 60} + \text{arbitrary data structures} + \text{operator definitions.} \]

It was originally motivated by a desire to write formula-manipulation systems in ALGOL 60, but it is also useful in other areas, where the objects are dynamically changing data structures, as, for example, in artificial intelligence.

The ABC ALGOL compiler is written in ALGOL 60; ABC ALGOL programs are compiled to ALGOL 60 and the run-time system for running the compiled program is written in ALGOL 60, so that the only necessary prerequisite for using ABC ALGOL is a good ALGOL 60 system. All the ALGOL 60 programs which one needs are fully reproduced in the following chapters.

The ABC ALGOL system was designed with emphasis on clarity of design (for educational and "ethical" purposes) and on portability (an important issue in the software-engineering field) rather than on efficiency with respect to execution speed. However, a considerable gain in efficiency can be obtained by rewriting the few procedures of the run-time system in machine-code.

0.1. Summary

The first MC TRACT on formula manipulation in ALGOL 60 [11] described a system of ALGOL 60 procedures which can be used in an ALGOL 60 program to manipulate formulae. Moreover, it described an interpreter which reads and executes so-called formula programs, i.e. sequences of statements, each one performing a certain formula-manipulation function. The formula-manipulation used in this early system was not provided with dynamic storage allocation techniques.

In the second MC TRACT [12] on this subject, the formula-manipulation apparatus is applied to the computation of functions defined by a Cauchy-problem, i.e. a set of partial differential equations together with initial conditions. In addition, a small chapter is devoted to complex arithmetic in ALGOL 60.
It is the purpose of this MC TRACT and of the following MC TRACT, in which the second part is published, to derive techniques for manipulating formulae using dynamic storage allocation, together with an automatic garbage collector.

Like its predecessor, ABC ALGOL is an ALGOL 60 system consisting of ALGOL 60 procedures with which a user can describe his formula-manipulation programs. Due to the automatic storage allocation, this system of procedures is rather complicated and not easy to use. It therefore became necessary to design a language, in which a user can program conveniently, and to build a compiler for taking care of all the complexities. The language, called ABC ALGOL (ABC is an acronym for the Dutch: "Algebraische Bewerkingen met behulp van de Computer"), is an extension of ALGOL 60, the main addition being the introduction of a new type: formula. Data structures of this type are binary trees. It is, moreover, possible to define the ordinary operators (+, -, *, etc.) for operands of type formula.

In chapter 1 the language is introduced by means of detailed examples.
In chapter 2 the ABC ALGOL language is described more precisely in the form of BNF rules, semantic rules and examples.
Chapter 3 contains a system of ABC ALGOL procedures as an aid to the user with as typical problem: the simplification of large expressions involving the +, -, * and / operators, together with rational numbers of arbitrarily long magnitude.
Chapter 4 describes several strategies for the run-time system, gradually increasing in complexity and efficiency. It also contains the ALGOL 60 procedures comprising the run-time system. It is noteworthy that this system, being the kernel of the ABC ALGOL system, needs only six pages.
Commentary on the overall structure of the compiler is given in chapter 5, while the rather voluminous ALGOL 60 text of the compiler is given in chapter 6. Not only are the syntax-reading procedures interesting, the way semantic information is extracted from the to-be-compiled program and manipulated with in an information list is also noteworthy.
The 7-th chapter contains worked-out examples demonstrating the subtleties of the compiling process.
The standard MC-ALGOL procedures for input and output used at the Mathematical Centre, together with restrictions and peculiarities of the EL-X8 computer, are described in chapter 8.
This tract is organized with several groups of readers in mind. First, the reader who wants to use an existing formula manipulation system only. He is advised to read the first half of chapter 1, chapter 2 and the first half of chapter 3. Second, the reader who wishes to program in ABC ALGOL and to make full use of it. For him chapters 1, 2 and 3 suffice. Third, the reader who wants to become acquainted with ABC ALGOL and its implementation. For him the whole tract has been written.

Relating this work to existing systems, we make the following remarks. Due to lack of manpower, the size of the project necessarily had to be small. In addition, the principles of the implementation were of more concern than the implementation itself. Finally, to make the system more useful, a large amount of standard (library) formula-manipulation procedures will have to be written.

Other systems are normally rather large (FORMAC, ALPAK, SAC, MATHLAB, to mention a few) while the host language is not ALGOL 60 but FORTRAN, PL/1, LISP or machine-code. This tract shows that ALGOL 60 is suited for manipulating data structures as complex as binary trees as well as for compiler-writing techniques.

A comparison of the language ABC ALGOL with some other languages derived from ALGOL 60 (SIMULA, Formula ALGOL, ALGOL W and ALGOL 68) is given in section 2.8.

For literature we refer to the proceedings of the second SIGSAM symposium [1] and the annotated bibliography prepared by J. Sammet [15a].

Chapters 0-5 are given in the first part of the tract; chapters 6-8 and the list of references are given in the second part.

0.2. Acknowledgements

The work, described in this tract, had to be carried out in spare moments and would definitely not have been finished without the enthusiastic and most inspiring contributions of the following people:

W.P. de Roever and G. ten Velden aided in the early stages of the design of the system and the construction of the compiler.

A. de Bruin contributed considerably by designing the simplification system in chapter 3 and by rewriting de Roever's rational number system into ABC ALGOL.
R. Wiggers added complicated portions to the compiler and wrote the alternative simplification procedures of section 3.6.

The author is, furthermore, most grateful to:

John W. Carr III, for painfully scrutinizing the text of this tract,
Mrs. M. Homburg-Knieper, for typing the text of this tract,
D. Grune, for the use of his "tekstschema" [4] for justifying the text of this tract,
Mr. D. Zwarst, Mr. J. Suiker and Mr. J. Schippers, for reproducing this tract

and to the operators of the EL - XS computer for running the programs.

The investigations were carried out mainly while the author was employed by the Mathematical Centre. The author is grateful to the board of the MC for providing this opportunity. The tract was finished while the author was at the "Vrije Universiteit" in Amsterdam, where he is presently working. His address is:

Vrije Universiteit
afd. Informatica
de Boelelaan 1105
Amsterdam, The Netherlands
1. **First acquaintance with the language**

In this chapter, we give a short overview with some introductory ABC ALGOL programs, a rather sophisticated ABC ALGOL program for a non-trivial mathematical problem, and a complete ABC ALGOL system comprising operator definitions and representations of data structures.

1.1. **An overview of the language**

In ABC ALGOL one can write programs for manipulating with formulae; the formulae being mathematical expressions involving operators, variables, numbers, functions, etc. Henceforth we shall use the term formula in this sense. Consider, as an example, the following piece of an ABC ALGOL program on the left-hand side of the page, together with the results shown on the right-hand side of the page. (The procedure "nlcr" prints a new line.)

```plaintext
x:= av(4x+); output(x); nlcr;
y:= av(4y+); output(y); nlcr;
z:= av(4z+ star+); output(z); nlcr;
f:= x*y; output(f); nlcr;
    output(lhs of f); nlcr;
    output(rhs of f); nlcr;
    x
    x*y

f:= x*y + x/y; output(f); nlcr;
    output(lhs of f); nlcr;
    output(rhs of f); nlcr;
    x*y
    x/y

print(type of f); nlcr;
    +4
print(type of lhs of f); nlcr;
    +5
print(type of rhs of f); nlcr;
    +6

f:= 0; output(f); nlcr;
f:= 1; output(f); nlcr;
f:= 2; output(f); nlcr;
f:= 1+2; output(f); nlcr;
f:= 1*x; output(f); nlcr;
f:= 0+x; output(f); nlcr;
f:= 1*y + 0/x; output(f); nlcr;
```

x
y
z star
x*y
x*y+x/y
xx
x/y
+4
+5
+6
0
1
2
3
1*x
x
y
The above piece of program demonstrates quite clearly the basic operations and the data structures in ABC ALOGOL. For example, the formula \(x \times y + x/y \) is represented as a binary tree with operators in its nodes:

```
+  
/  
x  y
  
  x
  
  y
```

while the last example is, after some transformations, represented as:

```
/  
x
  
  x
  
  y
```

The above piece of program is embedded in a complete ABC ALOGOL program containing also operator definitions. These operator definitions have to be given by the ABC ALOGOL programmer, as they do not form a part of the ABC ALOGOL system. The particular operator definitions, the representations for algebraic variables (the procedure av) and numbers and a declaration of the output procedure are given, also by way of example, in section 1.3. Quite a different set is defined in chapter 3 and it is likely that most ABC ALOGOL programmers will not be satisfied with existing sets, so that other sets will be constructed. This shows that the ABC ALOGOL system does not provide operator definitions and representations but gives the means to make operator definitions and to construct data structures tailored to one's specific problem in a convenient way only.
To show that ABC ALGOL is an extension of ALGOL 60, we now give an example looking very similar to an ALGOL 60 program. The example is a procedure for computing the determinant of a matrix with formulae as elements, such as:

\[
\begin{vmatrix}
 x & y & z \\
 x & y & z \\
 x & y & z
\end{vmatrix}
\]

The ABC ALGOL procedure is as follows:

```algol
formula procedure determinant(n,matrix); value n; integer n;
formula array matrix;
begin integer array perm,perm1[1:n]; integer i; formula det;
procedure add next term(m,p,perm sign); value m,perm sign;
integer m,perm sign; integer array p;
if m = 1 then
begin integer i; formula factor:= 1; perm[n]:= p[1];
  for i:= 1 step 1 until n do
    factor:= factor × matrix[i,perm[i]];
  det:= det + perm sign × factor
end else
begin integer array q[1:m-1]; integer i,j;
  for i:= 1 step 1 until m do
    perm[n - m+1]:= p[i];
    for j:= 1 step 1 until i-1 do q[j]:= p[j];
    for j:= i+1 step 1 until m do q[j-1]:= p[j];
    add next term(m-1,q,perm sign × even(i-1));
    comment The standard procedure even(n)
    becomes +1 if the integer n is even,
    otherwise -1;
end end add next term;
for i:= 1 step 1 until n do perm1[i]:= i;
det:= 0; add next term(n,perm1,1); determinant:= det
end
```
The determinant of the example above will be calculated by the following program:

\[
\begin{align*}
\text{begin} & \quad \text{formula array} \ a[1:3,1:3]; \ \\
& \quad \text{formula} \ x = \text{av}(4x^4), \\
& \quad y = \text{av}(4y^4), z = \text{av}(4z^4); \\
& \quad a[1,1] := x; \quad a[1,2] := y; \quad a[1,3] := z; \\
& \quad a[2,1] := xx; \quad a[2,2] := xxz; \quad a[2,3] := yxz; \\
& \quad a[3,1] := z; \quad a[3,2] := y; \quad a[3,3] := x; \\
& \quad \text{output}(\text{determinant}(3,a)) \\
\text{end}
\end{align*}
\]

with the results:

\[
xxxxxx=xxxyxx-xyxxyx+yxyx+zyxxyx+xxxyxx-xxxyxx
\]

The above example could have been written in ALGOL 60, except that the array would have to have elements of type \textit{real} instead of \textit{formula} and that the declaration "\textit{formula factor:= 1}" would have to have been written as "\textit{real}

factor:= 1".

We now give an example for which no simple ALGOL 60 counterpart exists; it is the computation of a derivative, typical in the formula-manipulation field. We assume that the formulae to be differentiated have as operators the +, - and / operators only and as operands algebraic variables and numbers only. (As \(a-b\) can be written as \(a + (-1) \times b\) we can easily circumvent the - operator).

\[
\begin{align*}
\text{formula procedure} \ \text{der}(f,x); \ \text{value} \ f,x; \ \text{formula} \ f,x; \\
\text{begin} & \quad \text{integer} \ t; \quad t := \text{type of} \ f; \\
& \quad \text{der} := \begin{cases} \\
& \text{if} \ t = \text{sum} \ \text{then} \ \text{der}(\text{lhs of} \ f,x) + \text{der}(\text{rhs of} \ f,x) \\
& \text{else if} \ t = \text{product} \ \text{then} \ \text{der}(\text{lhs of} \ f,x) \times \text{rhs of} \ f + \\
& \quad \text{lhs of} \ f \times \text{der}(\text{rhs of} \ f,x) \text{ else} \\
& \quad \text{if} \ t = \text{quotient} \ \text{then} \ (\text{der}(\text{lhs of} \ f,x) \times \text{rhs of} \ f - \\
& \quad \text{lhs of} \ f \times \text{der}(\text{rhs of} \ f,x))/(\text{rhs of} \ f \times \text{rhs of} \ f) \\
& \quad \text{else if} \ t = \text{alg var} \ \text{then} \ \begin{cases} \\
& \text{if} \ f = \ x \ \text{then} \ 1 \ \text{else} \ 0 \\
& \end{cases} \\
& \text{else} \ 0 \\
& \end{cases}
\end{align*}
\]
The integers \texttt{alg var}, \texttt{sum}, \texttt{product} and \texttt{quotient} have, in the system of procedures of section 1.3, the values 3, 4, 5 and 6, respectively (see also the output of the program in the beginning of this section).

Another typical formula-manipulation procedure is a substitution procedure which substitutes the formula \(y \) for the algebraic variable \(x \) occurring in a formula \(f \).

\begin{verbatim}
formula procedure subst(f,x,y); value f,x,y; formula f,x,y;
begin integer t; t:= type of f;
 subst:= if t = sum then subst(lhs of f,x,y) + subst(rhs of f,x,y)
 else if t = product then subst(lhs of f,x,y) \times subst(rhs of f,x,y)
 else if t = quotient then subst(lhs of f,x,y)/ subst(rhs of f,x,y)
 else if f = x then y else f
end
\end{verbatim}

The above procedures are now tested with the following program. The results are shown again on the right-hand side of the page.

\begin{verbatim}
output(der(x*y,x)); nlcr; output(der(x*y + x*x,x)); nlcr;
output(der(x*x*x * x*x * y,x)); nlcr;
output(der((x*x*x + x*y)/(x + x*x),x)); nlcr; f:= x*y;
output(subst(f,x,y)); nlcr;
output(subst(subst(f,x,y),y,1)); nlcr; f:= x*x + x*y + y*x; nlcr;
output(subst(f,x,x+y)); nlcr;
\end{verbatim}

\begin{verbatim}
1 2
y+x*x
(y+x*x+x*x+y
((x+x)(x+x*y)(x+x*x)-(x+x*x+y)(x+x+x))
(y+x*x+y+y*x
\end{verbatim}

Extensive use of the procedures \texttt{der} and \texttt{subst} is made in the next section.
We again emphasize that the pieces of ABC ALGOL in this section have to be supplied with operator definitions, representations of operands and output specifications in order to form complete ABC ALGOL programs. The test runs have been made using the apparatus of section 1.3. One is of course free to use the programs of section 1.3, but one may also define one's own apparatus, or use the procedures of chapter 3 for automatic simplification and rational number arithmetic.

At the end of this short overview we remark that the ABC ALGOL compiler translates an ABC ALGOL program into ALGOL 60 text, which, combined with a preceding standard set of ALGOL 60 procedures and enclosed between begin and end, forms a complete ALGOL 60 program. Execution of the ABC ALGOL program is accomplished by execution of this derived ALGOL 60 program.

1.2. Solution of differential equations in ABC ALGOL

A simple example, but one which clearly demonstrates the need for automatic formula-manipulation techniques, is the following:

Consider the differential equation:

\[(1.1) \quad f(x, y, y') = 0, \quad y(0) = a,\]

for the unknown function \(y(x) \), where \(f \) is assumed to be analytic in its three variables; i.e. differentiable a sufficient number of times. Let \(b \) be a solution of \(f(0, a, b) = 0 \) and be given beforehand, we may then formally calculate the first \(n \) coefficients of the Taylor series expansion of the function \(y(x) \) as follows:

\[y(x) = \sum_{i=0}^{n} c_i x^i + O(x^{n+1}),\]

then \(c_i = \left. \frac{1}{i!} \frac{d^i y}{dx^i} \right|_{x=0} \).

From the initial conditions we know: \(c_0 = a, c_1 = b \).

Differentiating (1.1) with respect to \(x \) gives:

\[\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx} + \frac{\partial f}{\partial y'} \frac{d^2 y}{dx^2} = 0.\]

Substituting \(x = 0, y = a \) and \(dy/dx = b \), we find:
\[c_2 = -\frac{1}{2} (f_x(0,a,b) + f_y(0,a,b)b)/f_y(0,a,b), \]

where \(f_x(0,a,b) \) means \(\frac{\partial f}{\partial x} \) after substituting \(x = 0, y = a \) and \(y' = b \).

The general algorithm is now easy to understand: Introduce \(n \) functions \(f^{(i)}(x,y,y', \ldots, y^{(i+1)}) \), depending on \(i+3 \) independent variables \(x, y, y', \ldots, y^{(i+1)}, i = 0, \ldots, n-1 \), as follows:

\[f^{(0)}(x,y,y') = f(x,y,y'), \]

(1.2)

\[f^{(i)}(x,y,y', \ldots, y^{(i+1)}) = \frac{Df^{(i-1)}}{dx} \overset{\text{def}}{=} \frac{\partial f^{(i-1)}}{\partial x} + \sum_{j=0}^{i} \frac{\partial f^{(i-1)}}{\partial y^{(j)}} y^{(j+1)}, \]

where \(\partial f/\partial t \) means partial differentiation with respect to \(t \).

By substituting \(x=0, y=0, y'=c_0, y''=c_1, \ldots, y^{(i+1)} = (i+1)! c_{i+1} \) into \(f^{(1)} \) and equating \(f^{(1)} \) to zero, we obtain the following equation:

(1.3) \[f^{(1)}(0,0,c_0, c_1, \ldots, (i+1)! c_{i+1}) = 0. \]

This equation is linear in \(c_{i+1} \); hence \(c_{i+1} \) can be determined by calculating the constant term by substituting \(c_{i+1} = 0 \) and by calculating the linear term by differentiating with respect to \(c_{i+1} \).

We shall now give the description of the above algorithm in ABC ALGOL, in the form of a procedure "Compute Taylor coefficients". Auxiliary equipment in the form of procedures for creating algebraic variables, in the form of operator definitions and in the form of declarations and initialization of variables, will be given in section 1.3.
procedure Compute Taylor coefficients(f,x,y,ypr,a,b,c,n);
value f,x,y,ypr,a,b,n; formula f,x,y,ypr,a,b; integer n;
formula array c;
begin integer i,j; formula fi,fim1,fs,z = av(4z+);
 comment z is a constant algebraic variable, which
 should be printed as the string "z" on output. z
 is used to replace the unknown c[i+1];
 formula array yprime[0:n]; array fact[0:n];
 c[0]:= a; c[1]:= b; yprime[0]:= y; yprime[1]:= ypr;
 fim1:= f; fact[0]:= fact[1]:= 1;
 for i:= 1 step 1 until n-1 do
 begin yprime [i+1]:= ar(4yi++,i+1);
 comment yprime[i+1] is introduced now as an
 algebraic variable, which, on output, is printed
 as "yi["Followed by the number representation of
 i+1, closed by"]";
 fi:= der(fim1,x);
 comment der computes the partial derivative of fim
 with respect to x;
 for j:= 0 step 1 until i do
 fi:= fi + der(fim1,yprime[j]) * yprime[j+1];
 comment this is the direct translation of (1.2);
 fact[i+1]:= (i+1) * fact[1];
 fs:= subst(fi,x,0); c[i+1]:= z;
 comment subst makes the substitution x=0 in fi;
 for j:= 0 step 1 until i+1 do
 fs:= subst(fs,yprime[j],fact[j] * c[j]);
 comment in accordance with (1.3);
 c[i+1]:= subst(fs,z,0)/der(fs,z);
 comment let fs = p+gz, then fs=0 means
 z = -p/q;
 fim1:= fi
 end
 end Compute Taylor coefficients;
The direct translation of the mathematical description to a program shows the relatively simple way ABC ALGOL can be used for formula-manipulation processes.

The procedure "Compute Taylor coefficients" is completely general as it does only assume that the differential equation is analytic. No assumptions have been made otherwise on the form of the differential equation. In practice, this procedure must be embedded in an environment of ABC ALGOL procedures for operator definitions, such as those given in section 1.3. For particular definitions of derivative (der) and substitution (subst) see section 1.1. A test program for this procedure is the following:

```
begin  formula x = av(4x+4), y = av(4y+4), yp = av(4yp+4),
        f = yxy + ypxyp - 1;
        formula array c[0:10]; integer i;
        Compute Taylor coefficients(f, x, y, yp, 0, 1, c, 10);
        for i := 0 step 1 until 10 do begin nicer; print(i);
               output(c[i])
        end
end
```

with the following results (the sin(x) expansion):

```
+0   0
+1   1
+2   0
+3   -1/6
+4   0
+5   1/120
+6   0
+7   -1/5040
+8   0
+9   1/362880
+10  0
```
1.3. A first complete ABC ALGOL program

In this section we implement a particular, very simple, system of ABC ALGOL procedures for formulae with only the operators +, -, × and /, with algebraic variables and with numbers, integers as well as reals. In this system some simple simplifications are automatically performed concerning numbers and combinations of products and quotients. For a system in which the full power of simplification is built in together with rational numbers of unrestricted length, we refer to chapter 3.

A reader not interested in writing his own ABC ALGOL system but only interested in the system of chapter 3. may skip this section.

The remainder of this section shall be given in the form of an ABC ALGOL program simply supplied with comment. As we need sometimes semicolons in comment we have adopted the convention that in ABC ALGOL the symbol ; replaces the semicolon in comment. Here follows the program:

\begin{verbatim}
begin comment

The basic structures from which the data structures of type formula can be constructed are:

1. The constant structure consisting of three parts: a (small) positive integer: type and two integers: lhs and rhs. The size of lhs is the size of an ordinary X8 integer, i.e. abs(lhs) < 2 \uparrow 25. The size of rhs, however, is more restricted, we require: abs(rhs) < 2 \uparrow 17 -1. The structure is created by means of the expression: \texttt{"constant(type(lhs),rhs)"}.

2. The monadic structure consisting of three parts: a (small) positive integer: type, an integer: lhs and a reference to another data structure of type formula: rhs. The structure is created by means of the expression: \texttt{"monadic(type,lhs,rhs)"}. The term \texttt{"monadic"} is chosen as this structure contains one reference to another data structure.

3. The dyadic structure consisting of three parts: a (small) positive integer: type, and two references to other data structures of type formula: lhs and rhs. The structure is created by means of the expression: \texttt{"dyadic(type,lhs,rhs)"}. The term \texttt{"dyadic"} is chosen as this structure contains two references to other data structures.
\end{verbatim}
4. The **rowadic structure** consisting of (\(n+1\)) parts: a (small) positive integer: type and \(n\), \(n \geq 0\), integers, called the elements of the rowadic structure. The structure is created by means of the expression: "rowadic(type, i, n, el i)\(^{\text{1}}\), where for given \(i\), \(0 \leq i \leq n\), \(el i\) is the \(i\)-th element. E.g. if \(type = 10\), \(n = 3\) and the elements are 1, 7 and 8, we may create this by:

\[
\text{rowadic}(10, i, 3, if \ i = 1 \ \text{then} \ 1 \ \text{else} \ if \ i = 2 \ \text{then} \ 7 \ \text{else} \ 8)
\]

One sees that the variable \(i\) plays the role of a Jensen variable.

5. The **polyadic structure** consisting of (\(n+1\)) parts: a (small) positive integer: type and \(n\), \(n \geq 0\), references to other data structures of type formula, called the elements of polyadic structure. The structure is created by means of the expression: "polyadic(type, i, n, el i)\(^{\text{2}}\), where for given \(i\), \(0 \leq i \leq n\), \(el i\) is the \(i\)-th element. E.g. if \(type = 11\), \(n = 4\) and the elements \(u, x, y, z\), we may create the structure by means of:

\[
\text{polyadic}(11, j, 4, if \ j = 1 \ \text{then} \ u \ \text{else} \ if \ j = 2 \ \text{then} \ x \\
\text{else} \ if \ j = 3 \ \text{then} \ y \ \text{else} \ z)
\]

where we have now used another variable \(j\) as the Jensen variable.

The term "polyadic" is chosen as this structure contains many references to other data structures.

The small integer: type should be smaller than 31.

Besides the above mentioned constructive equipment, we have descriptive equipment for asking how a data structure has been constructed. For this purpose we may use the expressions:

- "**type of f**" delivering the type of the data structure \(f\),
- "**He of f**" delivering the lns of the data structure \(f\),
- "**Rhs of f**" delivering the rhs of the data structure \(f\),
- "**length of f**" delivering the number of elements of the data structure \(f\),
- "**el i of f**" delivering the \(i\)-th element of the data structure \(f\).

The constant structures can be used to store integers. For example, an integral number \(n\) can be represented by a constant structure as a result of executing:

"constant(integral number, n, 0)\(^{\text{3}}\),

where the rhs field is filled with the number 0.
A real number \(r \) is represented in the memory of the EL X8 by two consecutive words, called head and tail. The standard procedures "head of" and "tail of" decompose this real number into these words and deliver these words as two integers "head" and "tail". Representing these two integers in a constant structure by means of:

\[
\text{constant}(\text{real number, head, tail}),
\]

is not possible, although this seems to be very attractive, due to the restriction on the rhs field of a constant structure which may not exceed in absolute value \(2^{17} - 1 \). Therefore, a more complex structure is used for a real number \(r \):

\[
\text{nonadic}(\text{real number, head of } (r), \text{constant}(0, \text{tail of } (r), 0)).
\]

The two zero's mean that the respective parts do not contain information. It must be explicitly stated, however, that the ABC ALOGL programmer is free in his choice for representing real numbers in the same way as he is free to choose a representation for algebraic variables or for expressions like \(a + b x c \). The data structures suggest that \(a + b x c \) may be represented as a binary tree created through:

\[
\text{dyadic}(\text{sum, a, dyadic(product, b, c)}),
\]

but it is not necessary. Only if a data structure has the form of a string, is the representation very specific: the consecutive characters of the string are packed, three in a word (with shift factor \(2 \uparrow 8 = 256 \)) and the resulting integers are grouped together to form a rowadic structure with type \(= 31 \). Note that this type value is excluded for the programmer. Hence, the following piece of program:

\[
f := 412345678910 \ a \ b \ c \ d \ e \ f \text{+}
\]

will result, also counting the spaces, in a rowadic structure of 8 integer elements, the first one being the internal representation of the characters "123", the last one being the internal representation of the two characters "f". And \((\text{el 5 of } f) \div 2 \uparrow 16-1\) will give the internal representation of the character "g".

The internal representation is the MC-resym value increased with one (see [5]).
We begin with two procedures for introducing algebraic variables. The first one is for a simple algebraic variable, the second one for a "subscripted" algebraic variable $y[i]$. If output is needed for $y[10]$, say, then this variable is output as "$y[10]".

```algor
formula procedure av(s); value s; formula s;
av:= monadic(alg var,0,s);
formula procedure ar(s,i); value s,i; formula s; integer i;
ar:= monadic(alg var,i,s);
comment From the above choice we see that we have to require that ar should be called only with i # 0, and if it is called with i = 0 then it is no longer possible to discriminate the two cases. The actual parameter for s is assumed to be a string, so that "z:= av(4z+)" and yprime[i]:= ar(4yprime,i)"
indeed lead to introduction of data structures of type alg var, alg var
being a small integer. Being familiar with type procedures in ALGOL 60, we have no problem with the fact that av and ar are declared to be formula procedures. The result of executing the procedure body should be a data structure of type formula. Also the occurrence of s in the value list does not confuse us as we are interested in a value, in the form of a nonadic data structure being a string, and not in a name to which we want to assign a data structure as value (as the parameter c, being the name of a formula array, of Compute Taylor coefficients).

The next step is to introduce procedures for introducing integral and real numbers. Here, however, we arrive at a difficulty. It would be very easy to declare the following procedures:
(Recall that we use the symbol ? for a semicolon occurring in comment)
```
formula procedure in(i)? value i? integer i?
in:= if i = 0 then zero else if i = 1 then one else
 if i = -1 then minone else
 constant(integral number,i,0))?
formula procedure rn(r)? value r? real r?
begin integer h? r:= head of(r)?
rn:= if h = 0 then int(tail of(r) else
 monadic(real number,h,constant(0,tail of(r)),0))
end
With these procedures, however, we have to enclose each integer and each real number, occurring in a formula expression, in "in()" and "rn()", respectively. Thus we have to write: "f:= in(1) + rn(3.14) \times x" instead of the much more simple expression: "f:= 1 + 3.14 \times x". This, of course, is ridiculous as we have also a compiler which can very well see that 1 and 3.14 are an integer and a real number occurring in a formula expression. The problem is, however, that the compiler should know that 1 and 3.14 have to be treated as if there stood in(1) and rn(3.14), so that there should be a means for letting the compiler know that this is the case. This means is established by using as procedure identifier a very special one, so special that it can not be used for other purposes. In fact, the identifier "constant +" is used as procedure identifier instead of "in" and the identifier "constant \times" is used as procedure identifier instead of "rn".

Extraordinary as it may seem, we have the following correct ABC ALGOL procedure declarations:

```plaintext
formula procedure constant +(i); value i; integer i;
    constant + := if i = 0 then zero else if i = 1 then one
    else if i = -1 then minone
    else constant(integral number, i, 0);
formula procedure constant \times(r); value r; real r;
begin integer h; h := head of(r);
    constant \times := if h = 0 then tail of(r) else
        monadic(real number, h, constant(0, tail of(r), 0))
end;
```

comment Observe that, if head of(r) = 0, the result is a data structure of type integral number as the compiler automatically recognizes "tail of(r)" to be an integral expression at a place where a formula expression is required.

Observe also that with the above procedures only one data structure can be present representing 0 and only one data structure for representing 1 and only one for -1, the formula variables referring to these data structures being zero, one and minone. Initializing values to zero, one and minone should be done very carefully as e.g. "zero := 0" leads to a circular definition (something of the style zero := zero).
Similar to procedures for treating numbers, we have to make procedures for treating a sum, a difference, a product and a quotient of two operands. Again, procedures of the following form:

```
formula procedure sm(a,b)? value a,b? formula a,b?
sm := dyadic(sum,a,b)
```

```
formula procedure pt(a,b)? value a,b? formula a,b?
pt := dyadic(product,a,b)
```

would be useless, as a formula expression like "x + y × z" should then be written as "sm(x,pt(y,z))". Therefore, procedures with very special identifiers have to be declared:

```
dyadic + for the + operator,
dyadic - for the - operator,
dyadic × for the × operator,
dyadic / for the / operator,
monadic + for the monadic + operator (as in "+x-y"),
monadic - for the monadic - operator (as in "-x+y").
```

In fact, these procedures are operator definitions. It would have been possible also to introduce a special notation for them, say, "operator + (a,b)". The method of using the already available apparatus for formula procedures together with very special identifiers turned out to be amazingly efficient and simple, for the compiler writing as well as for learning the language. Peculiar possible constructions are the result, such as: "dyadic += dyadic(sum,a,b)", which yields a dyadic data structure representing a+b.

In the following procedures, we implement some simple simplifications as:

```
0×a = a, 1×a = a, 2×3 = 5.
```

The representation is such that no superfluous numbers occur. Therefore, the numbers occurring in (2×3), or in (2×x) + (3×y), or in 2×3, or in (2×x) × (3×y), or in (2/x) × (3/x) are combined. The method is roughly as follows. If e.g., the sum of two data structures, representing the formulae a and b, has to be formed, it is first checked whether a or b is zero, this not being the case it is checked whether a or b are numbers, or whether they are of the form "number + formula" in which case numbers are combined, this not being the case a dyadic structure is created to represent a + b.

For the × operator and the / operator the simplifications with zero's and one's are performed also together with the following transformations:
\[(x/y) \times b \rightarrow (x \times b)/y\]
\[a \times (u/v) \rightarrow (a \times u)/v\]
\[(x/y)/b \rightarrow x/(y \times b)\]
\[a/(u/v) \rightarrow (a \times v)/u\]

After these transformations have been applied, numbers are combined, so that \((2 \times x) \times (y \times 3)\) is stored as \(6 \times (xy)\) and \((4/x)/(2/y)\) as \(2 \times (y/x)\).

With respect to the - operator, we can be very short: \(a - b\) is represented as \(a + (-1) \times b\).

A definition of the + operator might have been the following:

```
formula procedure dyadic *(a,b)? value a,b? formula a,b?
dyadic + := if a = zero then b else if b = zero then a else
    if "numbers can be combined" then
        oper on num(sum, a,b) else dyadic(sum, a,b)?
```

The process of combining numbers is for all three operators almost the same. In fact the two operands can be of three forms: a number \(n\), the sum (or product) of a number \(n\) and a non-number \(x\), or a non-number \(x\). There are therefore nine possibilities to be catered for. And these have to be programmed for the three operators, of which the / operator behaves slightly differently. The following procedure does the whole job, for all operators. The idea is to write \(a\) and \(b\) under all circumstances as \(n+x\) and \(m+y\) (for a sum) and to deliver the result in the form \((n+m) + (x+y)\), where it may well be that some of the operands have the value zero so that the automatic zero-simplification takes care of transformations necessary to carry \((0+b) + (a+0)\) over into \(b+a\), in case that \(b\) is a number and \(a\) does not contain a number component. Only when it is evident that the result \((n+m) + (x+y)\) is not meaningful the shorter \(dyadic(sum,a,b)\) is delivered. This is the case when \(b\) does not contain a number component \((nb = false)\) and \(a\) is not of the form \(n+x\) \((nx = false)\) (for \(nb\) and \(nx\) see the procedure below).;
procedure comb(num, oper, a, b); value oper, a, b;
 integer oper; formula a, b;
begin
 formula n, m, x, y; Boolean nx, nb; integer ta, tb, oper2;
 real ra, rb;
 ta := type of a; tb := type of b; nx := nb := false;
 oper2 := if oper = quotient then product else oper;
 n := m := if oper = sum then zero else one; x := a; y := b;
 if ta = oper2 then
 begin
 if num(type of lhs of a) then
 begin
 nx := true; n := lhs of a;
 x := rhs of a
 end
 end
 else if num(ta) then begin x := n; n := a end;
 if tb = oper2 then
 begin
 if num(type of lhs of b) then
 begin
 nb := true; m := lhs of b;
 y := rhs of b
 end
 end
 else if num(tb) then begin nb := true;
 y := n; m := b
 end;
 if nb then
 begin
 ra := if type of n = integral number then lhs of n
 else compose(lhs of n, rhs of n);
 rb := if type of m = integral number then lhs of m
 else compose(lhs of m, rhs of m);
 ra := if oper = sum then ra + rb else if oper = product then ra * rb else ra / rb; n := ra
 end;
 comb num := if ¬ (nx v nb) then
dyadic(oper, a, b) else
 if oper = sum then n + (x * y) else
 if oper = product then n * (x * y) else n * (x / y)
end;

procedure dyadic + (a, b); value a, b; formula a, b;
dyadic := if a = zero then b else if b = zero then a else comb num(sum,a,b);

formula procedure dyadic -= (a,b); value a,b; formula a,b;
begin integer i; i:= -1; dyadic -= a$i*b end;

formula procedure dyadic * (a,b); value a,b; formula a,b;
dyadic *:= if a = zero \ b = zero then zero else if a = one then b else if b = one then a else if type of a = quotient then (lhs of a)/rhs of a else if type of b = quotient \ ~ num(type of a) then (a*lhs of b)/rhs of b else comb num(product,a,b);

formula procedure dyadic / (a,b); value a,b; formula a,b;
dyadic /:= if a = zero then zero else if b = zero then error(4zer0 denominator) else if b = one then a else if type of a = quotient then lhs of a/(rhs of a*b) else if type of b = quotient then (a \ lhs of b)/lhs of b else comb num(quotient,a,b);

comment Besides the dyadic operators, we have the monadic operators and the Boolean procedure num;

formula procedure monadic +(a); value a; formula a;
monadic += a;
formula procedure monadic -(a); value a; formula a;
monadic -= 0=a;
Boolean procedure num(t); value t; integer t;
num:= t = integral number \ t = real number;

comment Next follows the procedure for defining the output of a formula f;
The number of brackets appearing in the output is minimal. Moreover, minus operators are produced in constructions like:
\[-30 + \left(\left(\left(-1 \times f\right) + \left(\left(-20 \times g\right) + h\right)\right) + \left(7 \times z\right)\right) + \left(\left(-1/k\right) + \left(-40/l\right) + u\right)\]

which is output as:
\[-30-f-20g+h+7z-1/k-40/l+u\]

procedure output(g); value g; formula g;
begin procedure op(f,env); value f, env; formula f; integer env;
 begin comment env denotes the operator of the environment, i.e. assuming that f is an operand, env is the operator of which f is an operand. As the values of sum, product and quotient are increasing, it is not difficult to see when brackets are necessary: when the type of f is smaller than env;
 integer t; t := type of f;
 if dyadic f then
 begin comment This is a third form in which we encounter dyadic. Now it is a monadic operator with f as operand delivering the value true if f is a dyadic data structure and the value false otherwise;
 if t < env then printtext(4+);
 if t = sum then
 begin first term:= true; get terms(f) end
 else if t = product then
 begin op(lhs of f,t); printtext(4x+);
 op(rhs of f,t)
 end else
 if t = quotient then
 begin op(lhs of f,product); printtext(4/);
 op(rhs of f,quotient)
 end; if t < env then printtext(4+) end;
 end else
 if t = integral number then
 begin t := lhs of f;
 if t < 0 then
 begin if env ≠ 0 then printtext(4+); printtext(4-) end;
 end else
 printtext("every integer number is positive");
 end else
 printtext("every number has the same sign as its negation");
 end else
 printtext("every dyadic number is positive");
 end if
 end if dyadic f then
 end comment
end output;
pr int num(abs(t));
if t < 0 \land env \neq 0 then printtext(4+)
end else

if t = real number then
begin real r, r0, A0, A1, A2, B0, B1, B2, a; integer s, n;
r := compose(lhs of f, lhs of rhs of f);
if r < 0 then
begin if env \neq 0 then printtext(4+); printtext(4-) end;
s := sign(r); r := r0 := abs(r);
A0 := B1 := 0; A1 := B0 := 1;
for n := 1 step 1 until 20 do
begin a := entier(r0 + .5); r0 := r0 - a;
A2 := a \times A1 + A0; B2 := a \times B1 + B0;
if abs(1 - A2/(r \times B2)) < \epsilon \text{ goto RAT};
r0 := 1/r0; A0 := A1; A1 := A2; B0 := B1; B1 := B2
end;
FLOAT: n := entier(ln(r) \times .4343);
r := r \times 10 \uparrow (11 - n);
if r < 10 \text{ then begin } n := n - 1; r := r \times 10 \text{ end};
printtext(4+); pr int num(r); printtext(4+); pr int num(n + 1);
goto OUT;
RAT: pr int num(abs(A2)); B2 := abs(B2);
if B2 \neq 1 then begin printtext(4+); pr int num(B2) end;
OUT: if s < 0 \land env \neq 0 then printtext(4+)
end else

if t = alg var then
begin integer i, l;
procedure pr char(w); value w; integer w;
if w \neq 0 then
begin pr char(w \div 256); prsym(w \div 256 \times 256 - 1) end;
l := length of rhs of f;
for i := 1 step 1 until l do pr char(el i of rhs of f);
if lhs of f > 0 then
begin printtext(4+); absfixt(2, 0, lhs of f); printtext(4+)
end
end end end op;
Boolean first term;
procedure printplus;
begin if ¬ first term then printtext(4+);
 first term:= false
end;

procedure get terms(f); value f; formula f;
begin
comment This procedures is called with as actual parameter a sum. The terms of this sum
have to be output preceded by the proper + or - operators, the first term, however, should not be
preceded by a + operator;
integer s,t; t:= type of f;
if t = sum then
 begin get terms(lhs of f); get terms(rhs of f) end
else if t = product v t = quotient then
 begin if num(type of lhs of f) then
 begin s:= sign(lhs of lhs of f);
 comment Note that the head of an X8 real number contains the sign as does also the tail;
 if s = -1 then begin printtext(4-); first term:= false end
 else print plus;
 if lhs of f = minone ^ t = product then op(rhs of f,sum)
 else begin op(s x lhs of f,t);
 if t = product then printtext(4x) else printtext(4/);
 op(rhs of f,t)
 end
 end else
 begin print plus; op(f,sum) end
 end else begin print plus; op(f,0) end
end get terms;
 op(g,0)
end output;

procedure pr int num(n); value n; real n;
if n < 10 then prsym(n) else
begin real m; m:= entier(n/10);
 pr int num(m); pr sym(n-m*10)
end,
The final procedure to be declared is:

```
procedure error(string); string string;
begin nlor; printrtext(string); exit; error:= 1 end;
```

All operators being defined and all procedures being declared, it remains to declare and initialize the constants:

- `integer` real number, integral number, alg var, sum, product, quotient;
- `formula` one = constant(2,1,0), zero = constant(2,0,0),
 minone = constant(2,-1,0);
- real number := 1; integral number := 2; alg var := 3; sum := 4;
- product := 5; quotient := 6;

The particular programs of sections 1.1 and 1.2 should be placed here. For example, a calculation of some Taylor coefficients, as described in section 1.2, may be programmed as follows:

```
procedure Compute Taylor coefficients(...)? begin ... end?
formula procedure der(f, x)? begin see section 1.1 end?
formula procedure subst(f, x, y)? begin see section 1.1 end?
begin formula x = av(4*x), y = av(4*y), yp = av(4*yp)?
  formula array c[0:10]; integer i?
  Compute Taylor coefficients(yx - yp*yp - 1, x, yp, 0, 1, c, 10)?
  for i := 0 step 1 until 10 do
    begin nlor? print(i)? output(c[i]) end
end
```

Finally, we come to the last end of the program.
2. Formal definition of ABC ALGOL

Having introduced the language in the preceding chapter by means of examples, we now want a precise definition in this chapter.

ABC ALGOL is a pure extension of ALGOL 60, without the own concept, so that we may refrain from repeating the ALGOL 60 report. The description given here consists of some BNF rules, some semantic descriptions and a few examples. The subdivision into sections is done in correspondence with the subdivision of chapters 5 and 6, so that it is easy to compare the language description of a certain syntactic variable with that part of the compiler where this syntactic variable is treated. The description is top to bottom.

In order to run the compiled program, one has to add the run-time system (section 4.8) of ALGOL 60 procedures in front and two end's at the end. The result is a complete ALGOL 60 program which can be run. The first action of this program is to read an integer, defining the size of the two arrays for storing formulae. Thus, on input tape an integer must appear. For the EL-X8 computer of the NC, this integer may be chosen equal to 15000.

2.1. Program

<program>::= <block>1<compound statement>1

From this it follows that ABC ALGOL is not a pure extension of ALGOL 60 as labels before the first block are not allowed, and a 1 must close the program.

2.2. Block

<block>::= <block head> <compound tail>
<block head>::= begin <declaration with semicolon>1
 <block head> <declaration with semicolon>
<declaration with semicolon>::= <declaration>
<compound tail>::= <statement> end|<statement>1<compound tail>

This is similar to the ALGOL 60 block.
2.3. Declaration

<declaration>::= <formula declaration>|<formula array declaration>|<formula procedure declaration>|<procedure declaration>|<type declaration>|<array declaration>|<switch declaration>

The first three declarations will be considered in this section; for the latter four we refer to the ALGOL 60 report.

2.3.1. Formula declaration

<formula declaration>::= formula <formula list>
<formula list>::= <formula definition>|<formula list>,<formula definition>
<formula definition>::= <simple variable> <formula initialization>
<formula initialization>::= <empty>|:= <formula expression>|

<simple variable>::= <identifier>

There are three different types of formula declarations:
1. formula v1; In the block, a value of type formula may be assigned to v1 and, after that, one may ask this value by placing v1 in an expression.
2. formula v2:= form expr; The role of v2 is the same as that of v1, except that, upon declaration v2 gets immediately an (initial) value resulting from execution of the formula expression "form expr".
3. formula v3 = form expr; The role of v3 is the same as that of v2, except that v3 may not be used for assigning a value. It may be used only in an expression where it then denotes the value of the formula expression as calculated once upon declaration. Variables of this type will be called constant variables.

In the following example, the three different declarations are shown functionally for the three variables aux, sum and x:

```
begin formula x = av(4x*), sum:= 1,aux; integer i;
   for i:= 1 step 1 until 10 do
      begin aux:= sum x x; sum:= sum + aux x aux end
end
```
Declarations are executed from left to right, so that "\texttt{formula } x = \texttt{av}(4x)\texttt{), } f := x + x^2\texttt{" is meaningful. The other order: "\texttt{formula } f := x + x, x = \texttt{av}(4x)\texttt{" leads to an undefined situation and a run-time error will be the result.}\texttt{"

2.3.2. Formula array declaration

A formula array declaration is defined as follows:

\texttt{<formula array declaration>::= formula array <array list>}

For \texttt{<array list>}, we refer to the ALOOL 60 report.

Example:

\texttt{formula array fa1[1b1:ub1],fa2[1b2:ub2,1b3:ub3];}

One may assign values to the array elements and the array elements may be used in formula expressions to denote their values.

It is not possible to combine initialization and declaration as was the case for ordinary formula variables.

For subscripted and for ordinary variables of type formula, run-time error messages are given when they are used in expressions without having obtained values beforehand. Run-time error messages are given also when constant variables are used to assign values, either explicitly when they occur in the left-hand side of an assignment statement (in which case a compile-time error message is given) or implicitly when they are transferred as call-by-name parameters in procedure calls.

2.3.3. Procedure declaration

Procedure declarations are almost the same as in ALOOL 60; only in the following aspects they differ:

1. Besides the ordinary specifiers one may use: \texttt{formula}, \texttt{formula array} and \texttt{formula procedure}.

2. Let \texttt{p} be a formal parameter specified as \texttt{(formula, real, integer or Boolean procedure)}, then the types of the possible parameters of \texttt{p} can be specified also.

3. One may use some very special identifiers, \texttt{operator identifiers}, for declaring operators by means of formula procedures.

4. The final action of a body of a formula procedure must be the assignment to the procedure identifier.
2.3.3.1. The specification part

Syntactically, we may define the specification part in the following way:

<specification part>::= <empty>|<specification list>;
<specification list>::= <specification> |<specification list>;
<specification>::= <ordinary specification>|<formal procedure specification>
<ordinary specification>::= <specifier> <identifier list>
<specifier>::= string|<type>|array|<type>array|label|switch|
 procedure|<type> procedure formula|formula array
<identifier list>::= <identifier>|<identifier list>,<identifier>
<type>::= real|integer|Boolean|boolean
<formal procedure specification>::=
 <formal procedure specifier> <formal procedure segment list>
<formal procedure specifier>::= procedure|<type> procedure
 formula procedure
<formal procedure segment list>::= <formal procedure segment> |
 <formal procedure segment list>,<formal procedure segment>
<formal procedure segment>::= <identifier> <specification of parameters>
<specification of parameters>::= (<type of parameters list>)
<type of parameters list>::= <type of parameters> |
 <type of parameters list>,<type of parameters>
<type of parameters>::= <empty>|<specifier> |formula value

The effect of specifying a formal parameter of type formula or of type formula array is that appropriate actions are taken when the parameter occurs in the body. These actions depend on whether the parameter has been placed in the value list or not.

If a formula parameter is placed in the value list, the value of the actual parameter is computed once and this value is used when the value of the formal parameter is needed in the procedure body. It is forbidden to assign a value to a formula parameter called by value.

If a formula parameter is not placed in the value list, the value of the actual parameter is computed each time it is needed in the procedure body. For such a parameter, a formula variable can be the actual parameter for which assignment in the procedure body is possible.
With respect to memory space used, we remark that a called-by-value formula parameter does not always cost much memory space for introduction of a local formula variable; on the contrary, very frequently creation of a local integer variable (costing one word of memory space, instead of three words for a formula variable) is the only effect. It is for efficiency reasons that it is not allowed to assign a value to a formal parameter called-by-value.

For a formal parameter of type formula array, we remark that, if it occurs in the value list, it is wise to use the values of the array elements only, as assignment to the array elements may lead to undefined results. One does not get an error message, however. If it does not occur in the value list, we have the usual situation where the values of the array elements may be used and where assignments to the array elements are allowed.

Concerning the formal procedure specification, e.g. of the form: "procedure proc(,,string,real,formula,formula value,,,)", we remark that the actual parameter should be a procedure with 10 parameters, the type of the first two and last three may be anything, the type of the third should be a string, the type of the fourth should be a real, the type of the fifth should be an array, the type of the sixth should be a called-by-name formula and the type of the seventh should be a called-by-value formula.

It is required that, if one has a formal procedure parameter the actual procedure having parameters of type formula, the parameters of this formal procedure are specified by means of a formal procedure specification.

Although not required, it is advised to specify all formal parameters as this leads to shorter and faster running object programs (see section 4.6).

2.3.3.2. Operator identifiers

The procedure headings of formula procedures, defining operators, should be of a very specific form, given below.
For the dyadic + operator:
formula procedure dyadic + (a,b); (value a,b); formula a,b;
For the dyadic - operator:
formula procedure dyadic - (a,b); (value a,b); formula a,b;
For the dyadic × operator:
formula procedure dyadic × (a,b); (value a,b); formula a,b;
For the dyadic / operator:
formula procedure dyadic / (a,b); (value a,b); formula a,b;
For the dyadic ÷ operator:
formula procedure dyadic ÷ (a,b); (value a,b); formula a,b;
For the monadic ↑ operator:
formula procedure dyadic ↑ (a,b); (value a,b); formula a,b;
For the monadic + operator:
formula procedure monadic + (a); (value a); formula a;
For the monadic - operator:
formula procedure monadic - (a); (value a); formula a;
For the monadic integral exponent operator:
formula procedure monadic ↑ (a,n); (value a,n); formula a; integer n;
For integral numbers in formula expressions:
formula procedure constant + (n); (value n); integer n;
For real numbers in formula expressions:
formula procedure constant × (r); (value r); real r;

The identifiers a, b, n and r may be replaced by others and all parameters may be put in the value list or not, indicated by "(value a,b;)".
The meaning of the above operator definitions can be given only in connection with formula expressions.
Consider such an expression; if it is of the form: "expr1 operator expr2", then change it into: "dyadic operator(expr1,expr2)" and do the same for expr1 and expr2. If it is of the form: "operator expr", change it to: "monadic operator(expr)" and do the same for expr. If it is an integer or a real: then change it to "constant + (ir)" or "constant ÷ (ri)".
If the result of the changes is: "dyadic ↑ (expr1,in)", where "in" is an integer consisting of digits, as "2" or "31", then change the result again into: "monadic ↑ (expr1,in)".
The result is a polish form in which all operators are removed and changed into function designators. The identifiers of these function designators take on the form dyadic \(+\), ..., constant \(x\). The effect of executing the original formula expression is the effect of executing the virtual expression consisting of nested function designators. Execution of the function designators means execution of the procedure bodies of the corresponding formula procedure declarations after applying the parameter substitution mechanism.

It is worth while to describe here what the compiler does. It changes the above operator identifiers into: \(S\), \(D\), \(P\), \(Q\), \(IQ\), \(E\), \(PL\), \(MI\), \(IE\), \(IN\) and \(RN\), so that we could think of the following formula procedure declarations:

\[
\text{formula procedure } S(a,b); \ (\text{value } a,b;) \ \text{formula } a,b;
\]

\[
\text{formula procedure } RN(r); \ (\text{value } r;) \ \text{real } r;
\]

Moreover, the compiler changes a formula expression into polish prefix and changes the operators into \(S(\ ,\ ,\ ,\ ,\ ,\ ,\)\), ..., \(RN(\ ,\ ,\)\), taking due account of the priority rules.

Example: \(x + y - (+a) \times (-b)/c \uparrow 5 \downarrow 1024 \uparrow 3.14\) is treated as:

\[D(S(x,y),IQ(Q(F(PL(a),MI(b)),IE(c,5)),E(IN(1024),RN(3.14))))\]

As a matter of fact, if we had forbidden the programmer to use operators, he would have been forced to use functions defined by formula procedure declarations. Now, the compiler is helpful and does the polish prefix translation. It is reasonable to ask the programmer to define his operators by means of some special operator identifiers.

Note that integers and reals are not treated as such when they occur as an integral or real denotation only, i.e. with digits, point and little ten, but also when they occur in the form of a variable or function descriptor declared of integral or real type. From the above description it follows that the compiler does not combine integers or reals; i.e. \(1 + 2 + x\) is treated as \("S(S(IN(1),IN(2)),x)"\). This is fortunately the case: it may very well be that the operator \(+\) has some very peculiar properties. For example, it is easy to define \(+\) in such a way that \((1+2) + 3 = 0\) and \(1 + (2+3) = 10\). Due to some deeply lying reasons (see section 4.5), it is not allowed to declare operator identifiers within the body of formula procedure declarations.
It does not need saying that operator identifiers may not occur in formula expressions.

2.3.3.3. Assignment to formula procedure identifier

The final action in a formula procedure body, when the body is left via the end and not via a jump to a label, should be the assignment to the procedure identifier. Run-time error messages are given after the assignment to the procedure identifier and before the end is reached something is done involving creation of formula values or calling of formula procedures. Run-time errors are given also when the procedure identifier has not obtained a value anyhow. This restriction does not hold for other type procedures. The reasons for this restriction are: efficiency of memory space (without the restriction one would nearly always need extra local variables introduced by the compiler), the fact that in other languages (e.g. ALGOL 68) this restriction is also present and the fact that the programmer can himself create very easily a local variable if necessary at the cost of memory space.

2.4. Statement

We have the ordinary statements as in ALGOL 60 together with a formula assignment statement. Moreover, function designators and procedure statements may have variables of formula type and formula expressions as actual parameters.

A formula assignment statement is defined as follows:

<formula assignment statement>::= <left part list> <formula expression>
<left part list>::= <left part> |<left part list> <left part>
<left part>::= <variable>:= |<procedure identifier>:= |
<operator identifier>::=

dyadic + |dyadic - |dyadic x |dyadic /

dyadic := |dyadic T |monadic + |monadic - |monadic T |
constant + |constant x
That a formula assignment statement is useful for assigning a formula value to a formula variable or a formula procedure identifier (either in the form of an ordinary identifier or as an operator identifier) is evident.

With respect to for statements, we remark that the controlled variable may not be of formula type.

Note that it is not allowed to assign a formula value to the \texttt{lhs}, or the \texttt{rhs}, or the \texttt{i-th el} of a formula variable. For a discussion of this restriction and another construction, we refer to the replace mechanism described in section 2.6.

2.5. \textit{Expression}

There are several expressions: arithmetic, Boolean, designational and formula expressions.

Designational expressions are defined exactly the same as in ALGOL 60.

Boolean expressions are the ALGOL 60 Boolean expressions with one extension: a Boolean primary may also have the form of a category enquiry, to be specified in a moment.

Formula expressions and arithmetic expressions are extensions of the ALGOL 60 arithmetic expressions. The extensions being:

1. an arithmetic primary may also have the form of a formula enquiry, a length enquiry or a type enquiry,
2. a formula primary may also have the form of a formula enquiry, a formula base or a string.

Furthermore, arithmetic primaries may occur in formula expressions and formula primaries may occur in arithmetic expressions. From this it follows that, syntactically, there does not exist any difference between a formula expression and an arithmetic expression. Being a formula expression or an arithmetic expression follows from the context only.

The formula bases and the enquiries are the elementary tools for creating formulae and for inspecting them. Syntactically they are defined as follows:
There are some restrictions to the values of the integral arithmetic expressions occurring above:
1. The value of `<type>` should be non-negative and not exceed 30.
2. The value of `<int arith expr>`, occurring as third parameter in a `constant` base, should, in absolute value, not exceed $2^{17} - 2$.

In `polyadic` and `rowadic` bases, the identifier serves as a "Jensen" identifier; i.e. if this identifier is "i" and the actual fourth parameter is "ri", the base consists of a row of elements created as if the following statement were executed:

```plaintext
for i:= length step -1 until 1 do calculate ri.
```
Example: \texttt{polyadic(10,i,n,x\textasciitilde{i}/i)} creates a structure, with type 10 and category polyadic, consisting of the first \(n\) terms of the sum \(x \textasciitilde{1}/1 + x \textasciitilde{2}/2 + x \textasciitilde{3}/3 + \ldots\); it is assumed that \(x\) is an algebraic variable.

Another example: \texttt{rowadic(11,i,m,digit[j])} creates a structure, with type 11 and category rowadic, consisting of \(m\) integers: \texttt{digit[1]}, \ldots, \texttt{digit[m]}, which may be, for example, the integer decomposition of a large integer with respect to some base.

The enquiries form the counterpart of the formula bases. With them we can investigate the structure of a given formula value. Their relation to the formula bases is displayed in the following table. Assuming that \(f\) is being created by a statement of the form: \(f := \texttt{constant}(t,n,m)\), the \texttt{lhs} of \(f\), the \texttt{rhs} of \(f\) and the \texttt{type} of \(f\) deliver the integers \(n\), \(m\) and \(t\), respectively; when the Boolean primary \texttt{constant} \(f\) is used, it delivers the value \texttt{true}, while \texttt{monadic} \(f\), \ldots, \texttt{rowadic} \(f\) deliver the value \texttt{false}. Note that category enquiries might also have been called "predicates".

A similar explanation applies for the other rows of the tables.

Not always is each formula enquiry allowed to be used as formula primary and as arithmetic primary, even if the object being enquired seemingly exists. The table contains, therefore, entries \texttt{tc} indicate if both primaries are allowed or that one is forbidden leading to a run-time error message. The entries of the three columns \texttt{lhs}, \texttt{rhs} and \texttt{ei}, consist of two symbols at two rows, the upper symbol refers to the use of the enquiry as a formula primary, the lower one to the use of the enquiry as an arithmetic primary. The symbol \(?\) means erroneous use, which ultimately will lead to a run-time error. The symbol / means: unusual, but allowed. (see the discussion below). The symbols \(n\), \(m\), \(a\), \(b\), \(fl\), \(nl\), \(t\) and \(l\) stand for quantities being introduced in the first column. The columns \texttt{type} and \texttt{length} contain entries referring to the use of the enquiry as an arithmetic primary only; other use is not possible. The last column denotes which category enquiry will deliver the value \texttt{true}.
<table>
<thead>
<tr>
<th>f</th>
<th>lhs</th>
<th>rhs</th>
<th>el</th>
<th>i</th>
<th>length</th>
<th>category</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant(t,n,m)</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>t</td>
<td>?</td>
<td>constant f</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>m</td>
<td>?</td>
<td>t</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>monadic(t,n,b)</td>
<td>?</td>
<td>b</td>
<td>?</td>
<td>t</td>
<td>?</td>
<td>monadic f</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>b</td>
<td>?</td>
<td>t</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>dyadic(t,a,b)</td>
<td>a</td>
<td>b</td>
<td>?</td>
<td>t</td>
<td>?</td>
<td>dyadic f</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>?</td>
<td>t</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>polyadic(t,i,l,fl)</td>
<td>/</td>
<td>/</td>
<td>fl</td>
<td></td>
<td>t</td>
<td>polyadic f</td>
</tr>
<tr>
<td></td>
<td>/</td>
<td>/</td>
<td>fl</td>
<td>t</td>
<td>l</td>
<td></td>
</tr>
<tr>
<td>rowadic(t,i,l,ni)</td>
<td>/</td>
<td>/</td>
<td>?</td>
<td></td>
<td>t</td>
<td>rowadic f</td>
</tr>
<tr>
<td></td>
<td>/</td>
<td>/</td>
<td>ni</td>
<td>t</td>
<td>l</td>
<td></td>
</tr>
</tbody>
</table>

From the table, it follows that one has to be careful in using enquiries in a formula expression; if the result of an enquiry is a number it may not directly be used in a formula expression. Instead, this number should be assigned to an integer variable and this integer variable may then be used in the formula expression.

Example: "f := constant(1,1024,2048); f := lhs of f + rhs of f" leads to an error message, whereas:

"f := constant(1,1024,2048); i := lhs of f; r := rhs of f;
 f := i + r"

leads to the creation of a formula "1024 + 2048", provided i and r have been declared as integers.

As has been stated already, an arithmetic primary may appear in a formula expression (except if it is a formula enquiry delivering an integer). This is of course very useful as we normally have that the data structures, which we call formula values, contain as terminal nodes integers (real numbers have to be decomposed into integers) and the ABC ALGOL programmer has to be able to describe these integers by means of arithmetic primaries.
That formula primaries may appear in arithmetic or boolean expressions is not so obvious. For, what is the value of \(f \cdot g \), if \(f \) and \(g \) are both formula variables; their values are of quite another type: binary trees, so that adding \(f \) and \(g \) is meaningless. There is, however, one application which makes the possibility to have formula primaries in boolean expressions useful. Consider the statement: "if \(f = g \) then ... else ...". If \(f \) and \(g \) both refer to the same object, i.e. are identically the same, occupying the same memory locations, the value of "\(f = g \)" is true; if this is not the case the value of "\(f = g \)" is always false.

In almost all reasonable formula manipulating systems one applies the one-and-zero simplifications. This implies that there is only one "one" and only one "zero" in the system. In such cases it is very meaningful to test on "\(f = \text{one} \)" or "\(f = \text{zero} \)" instead of the much more elaborate testing on: "if \(f \) is a number and, if so, is the value of that number equal to the value of one".

It must be stated explicitly that the test \(f = g \) does not invoke a complete investigation on the two tree structures, referred to by \(f \) and \(g \), whether they are equivalent.

Concerning the boxes containing /, we remark that polyadic and rowadic structures are represented by means of dyadic and monadic structures. If \(f \) is a polyadic(rowadic) structure, then:

\[
\text{length of } f = \text{lhs of } f
\]

\[
\text{el } i \text{ of } f = \text{lhs of the of } \ldots \text{ rhs of } f,
\]

where the rhs of enquiry has to be performed \(i \) times. If \(f \) is polyadic, el \(i \) of \(f \) delivers the reference to a formula, otherwise it is an integer.

A formula primary may also be a string. For example:

"'f':= 4this is a string'" leads to a formula value referred to by \(f \), which we may enquire in the following way:

\[
\begin{align*}
\text{type of } f & \quad \text{results in 31} \\
\text{rowadic } f & \quad \text{results in true} \\
\text{length of } f & \quad \text{results in 6}
\end{align*}
\]
f evidently turns out to have become a rowadic structure consisting of 6 elements. These elements are obtained by grouping the symbols of the string from left to right in pieces of three symbols: r, t, s and computing the integer \(r \times 256 + t \times 256 + s \), where r, t and s are the internal representation of the three symbols. This internal representation is the NC reasym value increased by one (in order to be able to mark the absence of a symbol). If the number of symbols in the string is not a multiple of 3, one or two "absent symbols" are added in front of the real symbol. In the above case the 6 elements of \(f \) are given by:

\[
\text{IR(thi)}, \text{IR(s i)}, \text{IR(s a)}, \text{IR(st)}, \text{IR(rin)}, \text{IR(??g)}
\]

where IR computes the integer and ? denotes an absent symbol.

2.6. The procedure replace

As mentioned already in section 2.4, it is not possible to assign something to the \(\text{lhs}, \text{rhs} \) or \(i \)-th el of a formula variable. This means that a tree structure, once being the value of a formula name can, in principle, not be changed. In this section we shall see that, if one insists, the tree structure can be changed by means of an almost hidden and secret procedure "replace".

Why are we reluctant to give an ABC ALGOL programmer elegant linguistic means to change his tree. In other languages these are normally available. The reasons are five-fold:

Firstly; if one allows normal changes of tree structures, cyclic structures will be created. With cyclic structures, however, it is absolutely necessary that the ABC ALGOL program can set and test bits in his datastructure. For, if e.g. an output routine must be written, how can one be sure that one does not run into infinite loops, otherwise than by marking those parts of the datastructure which have been treated already.

Secondly; we wanted to provide a watertight system of auxiliary procedures in chapter 3 for general use in formula manipulation. It is, however, very hard, if not impossible, to construct such procedures in which a user can change parts of the value of a formula variable. In chapter 3, the formulae are assumed to have a specific form; disastrous effects would result from changing this form a little bit. Circular structures would ruin the functioning of these procedures completely.
Thirdly; for efficiency reasons, called-by-value parameters are treated in a special way (see chapter 4); i.e. a local integer is created and the reference to the value, calculated once, is assigned to this integer. A special marking bit is inspected to see whether it is necessary to create a new name for saving this value. Assignment in the procedure body is prohibited, either directly by the compiler, or later by the run-time system. If assignment to "\texttt{lhs of \texttt{rhs of \texttt{el 5 of \texttt{f}}}" were allowed, it is difficult to use this marking-bit technique.

Fourthly; in common practice the following program piece:

\begin{verbatim}
"f:= x; g:= f + f; f:= y;
leads to: g = x + x and f = y. With assignment to the \texttt{lhs of \texttt{f}}, however, the outcome of:
"f:= x + y; g:= f + f; \texttt{lhs of \texttt{f}}:= z"

would not be g = (x + y) + (x + y) and f = z + y, but g = (z + y) + (z + y) and f = z + y which is contrary to what one might expect from the first example.
\end{verbatim}

A fifth less sound reason for being hesitant with implementing the assignment to \texttt{lhs of \texttt{f}} was, that we could not well judge all the consequences; although, for the compiler, it would not have given much problems.

Forbidding the change of a given datastructure at all would have been too restrictive; therefore, for an ABC ALGOL programmer, knowing thoroughly the details of the system, there has been included a way out. This way is, however, not provided with any error checks. Following this way, one has to be absolutely sure of what one does, as the system does not give any protection.

The run-time system has been provided with a procedure "replace", which in non-existent ABC ALGOL could have been declared by:

\begin{verbatim}
 procedure replace(f,left,g); value f,left,g;
 formula f,g; Boolean left;
 if left then \texttt{lhs of \texttt{f}}:= g else \texttt{rhs of \texttt{f}}:= g;"
\end{verbatim}

If one wants to change the i-th \texttt{el of \texttt{f}}, this may be done by a statement of the form:
\[a := f; \text{ for } i := i \text{ step } -1 \text{ until } 1 \text{ do } a := \text{ rhs of } a; \]
\[\text{replace}(a, \text{true}, g) \]

In chapter 3, the replace mechanism is used in order to make the simplification process more efficient (less inefficient).

2.7. Error messages and end of compilation

The errors can be divided into the following classes:

1. Syntactic errors with an error message of the following format:

\[\text{<ln> <errortext> <su1> <su2>} \]

where \(<\text{ln}>\) is the line number of the first symbol (including layout) of
the syntactic unit under consideration which directly caused the error;

where \(<\text{errortext}>\) describes the type of error, e.g. "nr of param not
O.K." or "for list element of type formula" or "id not declared in form
expr";

where \(<\text{su1}>\) is the syntactic unit under consideration;

and where \(<\text{su2}>\) is the syntactic unit already read but not yet treated.

A syntactic unit is the smallest piece of text which can be read by
simple low-level procedures. (Finite state automata). The basic symbols, the
identifiers and the numbers are syntactic units.

When the errortext is "synt unit not OK", the above error message is
followed by:

"synt unit should be: <su3>"

where \(<\text{su3}>\) specifies the syntactic unit which the compiler required, but
which was not there. The reaction of the compiler is to treat the text as if
the required syntactic unit had been inserted.

The compiler goes on to treat the text and produces a (hopefully) correct
ALGOL 60 program.
2. Semantic errors with an error message of the above format. The errors are now due to overflow of tables, e.g. "inf list too small" or "too much identifiers". The user is advised to compare chapter 8 for the restrictions imposed by the compiler. The compiler stops translating.

3. Run-time errors occurring during the ALGOL 60 compilation of the compiled program, which are due to the fact that the ABC ALGOL compiler does not check the ABC ALGOL program thoroughly. E.g., Booleans are not tested for declaration.

4. Run-time errors detected by the ABC ALGOL run-time system. The error message has the following format:

 <errortext>
 linenumbers at previous entries:
 <11> <12> <13> <14> <15> <16> <17> <18> <19> <110>.

 where <errortext> describes the type of error, e.g. "protection error", or "type in const not appropriate", or "index in el not appropriate". <11>, ..., <110> give the line numbers of the first symbol of the 10 blocks executed most recently, <11> denoting the line number of the last block. A procedure body counts for a block.

 The further execution is discontinued.

5. Run-time errors detected by the ALGOL 60 system resulting in a discontinuation of the execution and an error message referring to the line of the ALGOL 60 program causing the error and an error number for which we refer to the manual of the ALGOL 60 system [5].

6. Unforeseen other errors during the compilation due to a non-ideal compiler. These errors should be reported to the author.

The compilation of an ABC ALGOL program is finished by printing the time in milliseconds (mh) needed for the compilation.

2.8. ABC ALGOL compared with other language
Being an extension of ALGOL 60, ABC ALGOL can best be compared with other derivations of ALGOL 60 such as SIMULA [2], ALGOL W [17], ALGOL 68 [18] or Formula ALGOL [15b].

The extensions of ABC ALGOL with respect to ALGOL 60 are twofold:
1. Creation, change and deletion of arbitrary data structures,
2. The possibility to redefine the operators -, -, x, / etc.

With respect to the second extension, the language may be compared with ALGOL 68, where the common operators and new operators can be defined together with a priority. The priority does not need to be the same for a given operator defined in several blocks. The method of definition, by means of an ordinary routine declaration, resembles very much our method of definition by means of a formula procedure declaration. We, however, have a fixed set of operators with fixed priority.

With respect to dynamic data structures we take a record declaration in ALGOL W as example:

"record node(string info, integer col; reference(node) left, right)".

In ABC ALGOL we can not prescribe the format of a data structure by means of this form of declarations; we have to declare a formula procedure:

"formula procedure node(info, col, left, right);
formula info, left, right, integer col;
node := dyadic(1, info, dyadic(2, col, dyadic(1,
 if type of left # 1 then error else left,
 if type of right # 1 then error else right)));"

and each time we need a new node we can call this procedure: "new node := node(4xyz, 5, left node, right node)" , where "new node" has been declared of type formula.

In ALGOL 68 one can ask for "col of node" or for "left of node". In ABC ALGOL this is done, as in ALGOL W, by: "col(node)" and "left(node)", where "col" and "left" are declared by:

"integer procedure col(n); value n; formula n;
if type of n # 1 then error else col := lhs of rhs of n;
formula procedure left(n); value n; formula n;
if type of n # 1 then error else left := lhs of rhs of n;"
Note that in ALGOL W and ALGOL 68 the "declaration" of both the structure and the "field selectors" is done immediately with the declaration of the structure, whereas in ABC ALGOL this has to be done separately by means of procedure declarations. On the other hand, the ABC ALGOL method is more flexible, in the sense that the value of one formula variable may have several formats, e.g., it may first be the short integer 0, then the string $\text{xyz}+$, then the dyadic structure $\text{xyz}+ \cdot \text{abc}+$. This is accomplished by the following statements:
$$f := 0; f := \text{xyz}+; f := f + \cdot \text{abc}+.$$
In ALGOL 68 this is also possible by means of unifying, a complicated coercion process, however.

Compared with SIMULA, it is evident that ABC ALGOL lacks the parallel process facility and interprocess equipment. The element and set concepts resemble, however, the ABC ALGOL data structures.

Formula ALGOL has been designed primarily for formula manipulation. Compared with ABC ALGOL, we observe that in both languages dynamically changing data structures and operator definitions are possible; in Formula ALGOL in a much more general form, however.

With respect to the implementation we remark that the efficiency of the run-time system really matters; not the efficiency of the compiler. This run-time system consists of a set of 25 simple ALGOL 60 procedures, occupying a few pages only. They manipulate with one integer array. To transcribe these procedures into machine-code is not a hard problem and the result will be a considerable increase of performance. It is planned to do this for the CDC CYBER computer.

In not using dirty machine-code, but remaining at the high ALGOL 60 level for the run-time system as well as for the compiler, we have achieved a highly portable system (an important concept in software engineering) and a very lucid system which may prove to be of educational value.
3. Simplification and rational numbers

In this chapter, a complete system will be given for automatic simplification of special, but frequently occurring, formulae. The system is provided with a subsystem of ABC ALGOL procedures for automatically handling long rational numbers; i.e. quotients of long integers. Long integers are bounded in size by the total available storage capacity only and not by the word size.

The system is a small one, which may be regarded as the core of a bigger system, not described in this tract.

Problems in formula manipulation most frequently involve simplification of simple sums of simple terms; each term being either a simple factor or a product of simple factors; each simple factor being a number, an algebraic variable or an integral power of an algebraic variable. Moreover, quotients occur; but manipulations involving quotients are normally carried out as manipulations of the numerators and denominators being simple sums. In an earlier formula manipulation system [11], automatic cancelling of greatest common divisors in quotients has been built in, with the effect that ordinary formula manipulation programs run very slowly while the gcd computations were meaningful in one percent of the cases only.

G. ten Velden [16] constructed a system of simplification procedures emphasizing at the most optimal use of memory space at the cost of execution time.

3.1. The representation of the formulae

The key idea of the system of this chapter is to represent the formulae in their simplified form, in which they have the general form:

\[f = \sum_{i=1}^{n} c[i] \prod_{j=1}^{l[i]} a[i,j]^\top e[i,j], \]
where \(n \geq 1 \), \(c[i] \neq 0 \), except when \(n=1 \) and \(l[1] = 0 \), in which case \(c[1] \) may be 0. Where \(l[i] \geq 0 \) (\(l[i] = 0 \) means we deal with a number only) and where the \(a[i,j] \)'s are algebraic variables and the \(e[i,j] \)'s are integers \(\geq 1 \).

The ordering of the algebraic variables in a term is determined by some priority number \(pr(a[i,j]) \), which is a positive integer different for different algebraic variables.

We adopt the notation:

\[
a[i,j] < a[k,l] \text{ if and only if } pr(a[i,j]) < pr(a[k,l])
\]

and we say that \(a[i,j] \) "comes before" \(a[k,l] \).

The ordering in a term is such that:

\[
a[i,j] < a[i,j+1], \quad 1 \leq j < l[1].
\]

The ordering of the terms is defined as follows:

Let

\[
t[i] = c[i] \prod_{j=1}^{l[i]} a[i,j] \uparrow e[i,j]
\]

and

\[
t[k] = c[k] \prod_{j=1}^{l[k]} a[k,j] \uparrow e[k,j],
\]

then the following algorithm determines the ordering:

\[
\text{for } j := 1 \text{ step 1 until } \min(l[i],l[k]) \text{ do}
\]

\[
\text{if } a[i,j] < a[k,j] \text{ then goto before else}
\]

\[
\text{if } a[i,j] = a[k,j] \text{ then goto after else}
\]

\[
\text{if } e[i,j] > e[k,j] \text{ then goto before else}
\]

\[
\text{if } e[i,j] < e[k,j] \text{ then goto after;}
\]

\[
\text{if } l[i] > l[k] \text{ then goto before else}
\]

\[
\text{if } l[i] < l[k] \text{ then goto after;}
\]

\[
equal: \text{ apart from numerical factors } t[i] \text{ equals } t[k].
\]

\[
\text{before: } t[i] \text{ comes before } t[k] : t[i] < t[k].
\]

\[
\text{after: } t[i] \text{ comes after } t[k] : t[k] < t[i].
\]
It does not need saying that the ordering of the terms \(t[i] \) of \(f \) is such that \(t[i] < t[i+1], 1 \leq i < n \). Hence, if a single number occurs, it is the last term. The above ordering will be called canonical ordering.

The system has to apply the simplification process for every operation of the formulae, which is time-consuming. The big advantage is, however, that the simplification process itself can be made fast due to the fact that we can make full profit of the simplified form of the formulae.

The representation of any formula \(f \) is as follows:

\[
f = \text{polyadic} \left(\text{simple sum}, i, n, \right.
\]
\[
\text{dyadic}(0, e[i], \text{dyadic}(0,
\text{rowadic}(0, i, l[1], \text{pr}(a[i, j])),
\text{rowadic}(0, i, l[1], e[i, j])))
\]

In the above representation, \(l[n] \) may be equal to zero, which obviously means that the last term is a number.

To get \(\text{pr}(a[i, j]) \), we simply have to ask for:

\(\text{el}[j] \) of \(\text{lhs of rhs of el i of f} \)

or, if one wants to go along all \(e[i, j] \)'s consecutively, one may perform the following algorithm:

\[
p := f; \text{ if length of } f < i \text{ then goto error;}
\text{ for } k := 1 \text{ step 1 until } i \text{ do } p := \text{rhs of } p;
\text{ if length of } p < j \text{ then goto error;}
\text{ for } k := 1 \text{ step 1 until } j \text{ do begin } p := \text{rhs of } p; e[i, j] := \text{lhs of } p \text{ end.}
\]
A consequence of the fixed chosen format is that a simple algebraic variable or a single number needs a lot of storage space. This is, however, no problem at all since the system is made for situations in which there occur very "big" formulae. Only initially, when the numbers and variables are treated occurring in the expressions, this storage space is wasted. As soon as they are used, however, as building stones in the "big" formulae, they do not occupy any storage space due to the automatic garbage collection.

As one may have observed already, it is not the algebraic variable \(a[i,j] \) itself which is used in the representation of the formula \(f \), but \(\text{pr}(a[i,j]) \) instead. This is for efficiency reasons as the integer \(\text{pr}(a[i,j]) \) is used very frequently, whereas the algebraic variable itself is used only when output is needed. The output for \(a[i,j] \) is defined as a string and is the \(k \)-th element of the inverted list "stringstring", \(k \) being equal to \(\text{pr}(a[i,j]) \).

Concerning quotients we remark that it is possible that a formula \(f \) is a quotient but then the numerator and denominator are simple sums; therefore, transformations are performed which transform a quotient of quotients, a product of quotients and a sum of quotients into one quotient, of two simple sums. The latter quotients are called simple quotients.

3.2. How to use the system

After declaration of the standard procedures (if they are not yet put in the library of standard procedures), one can write an ordinary ABC ALGOL program, according to the following conventions:

1. Algebraic variables have to be introduced by means of the procedure "av", with as actual parameter a string being used for the output of the algebraic variable.

2. Output must be produced by a call of "output" with as actual parameter the formula to be output.

3. Use of the ordinary arithmetic operators leads to automatically simplified formulae represented in a form described in section 3.1.
4. The system knows three types of numbers: short integers, being integers in absolute value less than the number base "radix", long integers, with a magnitude not restricted by the word length, and rational numbers, being pairs of two common-divisor-free integers, of which the second one is greater than one. The representation is as follows:

short integer s: constant(short integer, 0),
long integer l: rowadic(long integer, i, n, d[i]),
with
\[l = \sum_{i=1}^{n} d[i] \times \text{radix}^\uparrow (i-1), \]

\[\text{sign}(d[i]) = \text{sign}(l), \text{except when } d[i] \text{ equals 0, and } \text{abs}(d[i]) < \text{radix} \]
rational number r: dyadic(\text{rat numb}, \text{num}, \text{den}),
with num and den two common-divisor-free long or short integers of which den is greater than one.

The radix has been chosen equal to 10^6, but this can easily be changed. The only requirement for the radix is that the basic arithmetic of the machine can multiply and add two integers, in absolute value less than the radix, correctly. For the EL X8 the floating-point arithmetic handles the multiplication and the addition of two integers correctly if the result is less than 2^\uparrow 40; therefore, radix equals approximately 2^\uparrow 20. It is emphasized that ordinary integers for the EL X8 are bounded in size by 2^\uparrow 26; it is, therefore, possible that an ordinary integer is treated by the system as a long integer.

Occurrence of an integer in an expression (e.g., -1234567) leads to the introduction of a simple sum consisting of one simple term being the product of this integer and an empty list of algebraic variables. (For the example:

\[\text{polyadic(simple sum}, 1, 1, \text{dyadic}(0), \]
\[\text{rowadic(long integer}, 2, 2, \text{if } j = 1 \text{ then } -234567 \text{ else } 1), \]
\[\text{dyadic}(0, \text{rowadic}(0, 0, 0, 0, \text{rowadic}(0, 0, 0)))\] .)

Using the arithmetic operators*, -,-, /, and \^, the latter one with a (small) integer as exponent, one can operate with the numbers without any troubles. As the ABC ALGOL compiler has no knowledge of long integers or rational numbers, it does not transfer:

\[a = 123456.789101112131415161718192122232425262728293 \]
into a rational number. This should be done as follows:
\[
\begin{align*}
r &:= 1000 \, 000; \\
a &:= \left(\frac{((123456 \times r+789101) \times r+112131) \times r+415161) \times r+718192}{(122232 \times r+425262) \times r+728293} \right);
\end{align*}
\]
If the only use of the system is to manipulate long numbers, the overhead in the form of simple sums and empty lists may become awkward and too inefficient. It is then possible to operate directly on the numbers by means of the procedure:

\texttt{formula procedure oper on num(oper,a,b)}

where oper specifies the operation and \(a\) and \(b\) specify the operands. One is advised to consult section 3.4 for further details.

3.3. The procedures of the system

begin
integer simple sum, simple quotient, sum, product, quotient,
 short integer, long integer, rat num, radix, avcntr, i, j;
formula zero1 = constant(0,0,0), one1 = constant(0,1,0),
 minone1 = constant(0,-1,0),
 stringstring = constant(0,0,0),
 dummy variable = dyadic(0, rowadic(0,j,0,0), rowadic(0,j,0,0)),
 zero = polyadic(3,i,1,dyadic(0,zeri,dummy variable)),
 one = polyadic(3,i,1,dyadic(0,onei,dummy variable));

avcntr := short integer := 0; long integer := 1; rat numb := 2;
radix := 1000 000; simple sum := 3; simple quotient := 4;
sum := 5; product := 6; quotient := 7;

begin
formula procedure av(s); value s; formula s;
begin integer i, j; avcntr := avcntr + 1;
 stringstring := dyadic(0,s,stringstring);
 av := polyadic(simple sum,i,1,dyadic(0,onei,dyadic(0,
 rowadic(0,j,1,avcntr),
 rowadic(0,j,1,1))))
end av;
formula procedure find string(prioritiy); value priority;
 integer priority;
begin integer i; formula ptr; ptr:= stringstring;
 for i:= avartr-1 step -1 until priority do ptr:= rhs of ptr;
 find string:= lhs of ptr
end find string;

formula procedure constant+(n); value n; integer n;
begin integer i,j;
 constant+: = if n = 0 then zero else if n = 1 then one else
 polyadic(simple sum,i,1,dyadic(0,
 if abs(n) < radix then (if n = -1 then minone1 else
 constant(short integer, n, 0)) else
 rowadic(long integer,j,2,
 if j = 1 then n - n : radix x radix
 else n : radix),
 dummy variable))
end constant+;

integer procedure comp terms(a,b); value a,b; formula a,b;
comment comp terms delivers 1 if a <. b, 0 if a = b and
-1 if b <. a, a and b refer to dyadic(0, rowadic(...), rowadic(...));
begin formula avptr,avptrb,exptra,expptrb;
 integer aip,akp,eip,ekp,la,lb,p,min;
 avptr:= lhs of a; avptrb:= lhs of b;
 exptra:= rhs of a; expptrb:= rhs of b;
 la:= length of avptr; lb:= length of avptrb;
 min:= if la < lb then la else lb;
 for p:= 1 step 1 until min do
begin avptr:= rhs of avptr; avptrb:= rhs of avptrb;
 aip:= lhs of avptr; akp:= lhs of avptrb;
 if aip < akp then goto before else
 if aip = akp then goto after else
 begin exptra:= rhs of exptra; expptrb:= rhs of expptrb;
 eip:= lhs of exptra; ekp:= lhs of expptrb;
 if eip > ekp then goto before else
 if eip = ekp then goto after
end end;
if \(l_a > l_b \) then goto before else if \(l_b > l_a \) then goto after;

\[
\begin{align*}
\text{equal: } & \text{ comp terms} := 0; \text{ goto out; } \\
\text{before: } & \text{ comp terms} := 1; \text{ goto out; } \\
\text{after: } & \text{ comp terms} := -1; \\
\text{out: end comp terms; }
\end{align*}
\]

\textit{comment} The next two procedures serve to put a list of formulae and a list
of integers, in reversed order, in a polyadic or rowadic structure;

\textbf{formula procedure} reverse formula(f); formula f;
\begin{align*}
\text{begin } & \text{ reverse formula := lhs of } f; \ f := \text{ rhs of } f \text{ end;}
\end{align*}

\textbf{integer procedure} reverse integer(f); formula f;
\begin{align*}
\text{begin } & \text{ reverse integer := lhs of } f; \ f := \text{ rhs of } f \text{ end;}
\end{align*}

\textit{comment} The above procedures are applied as follows:
\begin{align*}
\text{polyadic}(...,i,n,\text{reverse formula}(f)) \\
\text{or } \text{rowadic }(...,i,n,\text{reverse integer}(f)).
\end{align*}
Another auxiliary procedure is append, to reverse a list of the first \(n \)
formulae or integers given by \(g \), into another list and append it to \(f \);

\textbf{procedure} append(f,g,n,dy); value n,dy; formula f,g; integer n;
\begin{align*}
\text{ boolean } & \text{ dy; } \\
\text{if } n > 0 & \text{ then } \\
\text{begin } & \text{ again: } f := \text{ if dy then dyadic}(0,\text{lhs of } g,f) \text{ else } \\
& \text{ monadic}(0,\text{lhs of } g,f); \\
& \text{if } n > 1 \text{ then begin } n := n-1; g := \text{ rhs of } g; \text{ goto again end } \\
\text{end append;}
\end{align*}

\textbf{formula procedure} dyadic*(a,b); value a,b; formula a,b;
\begin{align*}
\text{if } a = \text{ zero } & \text{ then dyadic* := b else if } b = \text{ zero } \text{ then dyadic* := a else } \\
\text{if type of } & a = \text{ simple quotient then } \\
dyadic* := & \text{ if type of } b = \text{ simple quotient then } \\
& \left(\text{lhs of } a \times \text{ rhs of } b + \text{lhs of } b \times \text{ rhs of } a \right) / \\
& \left(\text{rhs of } a \times \text{ rhs of } b \right) \text{ else } \\
& \left(\text{lhs of } a + b \times \text{ rhs of } a \right) / \text{ rhs of } a \text{ else } \\
\text{if type of } & b = \text{ simple quotient then } \\
dyadic* := & \left(a \times \text{ rhs of } b + \text{lhs of } b \right) / \text{ rhs of } b \text{ else }
\end{align*}
begin integer lf,la,lb,v; boolean nexta,nextb;
formula ta, tb, pa, pb, f, co;
la := length of a; lb := length of b; nexta := nextb := true;
f := zero; lf := 0; pa := a; pb := b;
again: if la = 0 ^ nexta then
begin if nextb then
begin if lb ≠ 0 then pb := rhs of pb end
else lb := lb + 1;
lf := lf + lb; append(f, pb, lb, true)
end else
if lb = 0 ^ nextb then
begin if nexta then pa := rhs of pa else la := la + 1;
lf := lf + la; append(f, pa, la, true)
end else
begin if nexta then
begin la := la - 1; pa := rhs of pa; ta := lhs of pa; nexta := false
end; if nextb then
begin lb := lb - 1; pb := rhs of pb; tb := lhs of pb; nextb := false
end; v := comp terms(rhs of ta, rhs of tb);
if v = 1 then begin f := dyadic(0, ta, f); nexta := true end else
if v = -1 then begin f := dyadic(0, tb, f); nextb := true end else
begin co := oper on num (sum, lhs of ta, lhs of tb);
if co ≠ zero then
f := dyadic(0, dyadic(0, co, rhs of ta), f)
else lf := lf - 1;
nexta := nextb := true
end; if lf + 1; goto again
end;
dyadic+ := find number(lf, lhs of f, reverse formula(f))
end dyadic+;

formula procedure find number(k, ft, ot); value k; integer k;
formula ft, ot;
begin integer i; formula f;
if k = 0 then begin find number := zero; goto out end else
if k = 1 then
begin f := ft; if rhs of f = dummy variable then
begin f := lhs of f;
end
out: goto again
if f = zero then find number:= zero
if f = one then find number:= one
find number:= polyadic(simple sum,i,1, dyadic(0,f,dummy variable));
goto out
end end;
find number:= polyadic(simple sum,i,k,ot);
out: end find number;

comment In the above procedure, we profit from the fact that simple sums are
canonically ordered. In the same way we define the following procedure for
an elementary multiplication of two terms a and b;

formula procedure elt mult(a,b); value a,b; formula a,b;
begin integer i,j,lf; integer array l,vi,ei[1:2];
 boolean array next[1:2];
 formula ef,vf; formula array v,e[1:2];
 v[1]:= rhs of a; v[2]:= rhs of b;
 for i:= 1,2 do
 begin e[i]:= rhs of v[i]; v[i]:= lhs of v[i];
 l[i]:= length of v[i]; next[i]:= true
 end;
 lf:= 0; vf:= ef:= zero;
again: for i:= 1,2 do
 if l[i] = 0 ^ next[i] then
 begin j := 3 - i; if next[j] then
 begin if l[j] = 0 then
 begin v[j]:= rhs of v[j]; e[j]:= rhs of e[j] end
 else l[j] := l[j] + 1;
 if := lf + l[j];
 append(vr,v[j],l[j],false); append(ef,e[j],l[j],false);
 goto out
 end;
 for i := 1, 2 do if next[i] then
 begin vi[1]:= rhs of vi[1]; e[i]:= rhs of e[i]; l[i]:= l[i] - 1;
 vi[1]:= lhs of vi[1]; ei[1]:= lhs of e[i]; next[i]:= false
 end;
begin
 \(i := 1; \)
 \(\text{next}[2] := \text{true} \)
end;
\(i := 1f + 1; \)
\(vf := \text{monadic}(0, vi[i], vf); \)
\(ef := \text{monadic}(0, ei[i], ef); \)
\(\text{next}[i] := \text{true}; \)
goto \text{again};
out: \(\text{elt mult} := \text{dyadic}(0, \text{oper on num(product, lhs of a, lrhs of b)}, \)
\(\text{if } 1f = 0 \text{ then dummy variable else} \)
\(\text{dyadic}(0, \text{rowadic}(0, i, 1f, \text{reverse integer(vf)}), \)
\(\text{rowadic}(0, i, 1f, \text{reverse integer(ef)})) \)
end \(\text{elt mult}; \)

\text{formula} \ \text{procedure dyadic}(a, b); \ \text{value} \ a, b; \ \text{formula} \ a, b;
\text{if} \ a = \text{zero} \ \text{v} \ b = \text{zero} \ \text{then} \ \text{dyadic} := \text{zero} \ \text{else}
\text{if} \ a = \text{one} \ \text{then} \ \text{dyadic} := b \ \text{else}
\text{if} \ b = \text{one} \ \text{then} \ \text{dyadic} := a \ \text{else}
\text{if} \ \text{type of} \ a = \text{simple quotient} \ \text{then}
\text{dyadic} := \text{if} \ \text{type of} \ b = \text{simple quotient} \ \text{then}
\text{(lhs of a} \times \text{lhs of b)}/\text{(rhs of a} \times \text{rhs of b)} \ \text{else}
\text{(lhs of a} \times b)}/\text{rhs of a} \ \text{else}
\text{if} \ \text{type of} \ b = \text{simple quotient} \ \text{then}
\text{dyadic} := (a \times \text{lhs of b})/\text{rhs of b} \ \text{else}
begin \text{comment} \end{equation}

The next algorithm describes the process to form the product of two simple sums and to make one simple sum of it in a highly efficient way. The key idea is again to use the fact that the terms of the simple sums are ordered canonically.
Let
\[
\begin{align*}
 n & \quad m \\
 a & = \sum_{i=1}^{n} ta[i], \quad b = \sum_{j=1}^{m} tb[j] \\
 n & \quad m \\
 f & = a \times b = \sum_{i=1}^{n} \sum_{j=1}^{m} ta[i] \times tb[j]
\end{align*}
\]
We consider each term \(t = ta[i] \times tb[j] \) as having attached to it two numbers \(i \) and \(j \), called the location of \(t \). \(t \) is member of one of the following three sets:

\[N: \text{the set of all not treated terms}, \]
\[P: \text{the set of all partially treated terms}, \]
\[C: \text{the set of all completely treated terms}. \]

The algorithm consists of removal of all terms, in a certain order, from \(N \) via \(P \) to \(C \) in such a way that the terms are consecutively put into \(C \) in their final canonical ordering. \(P \) serves as a reservoir of terms which are candidates for removal to \(C \).

Initially \(P \) consists of all terms with location \((i,1), i = 1, \ldots, n\), \(C \) is empty and \(N \) contains all other terms.

Until \(P \) is empty, the algorithm repeatedly performs the following operations: the first element of \(P \) is moved from \(P \) to \(C \). Let the location of this element be \((i,j)\), then, if \(j < m \), the term \(ta[i] \times tb[j+1] \) is moved from \(N \) to \(P \).

The first element of \(P \), defined as the element preceding all other elements of \(P \) in canonical ordering, has the interesting property that it not only precedes the other elements of \(P \) but also those of \(N \). We will show this by proving that the following property, called the **predecessor property**, holds:

For every term \(t \), with location \((p,q)\), in \(N \), there exists a term \(s \) in \(P \) with location \((p,k)\) such that \(s < t \).

The term \(s \) is called the predecessor of \(t \).

From \(t = ta[p] \times tb[k] \) and \(s = ta[p] \times tb[q] \) it follows that \(k < q \) since \(tb[k] < tb[q] \). Moreover, from the predecessor property it follows directly that the first element of \(P \) has the desired property.

The predecessor property holds initially. We, therefore, have to prove that it is invariant during the course of the algorithm.

Consider the first term \(f \) with location \((i,j)\) in \(P \). Remove it from \(P \) to \(C \) and, if \(j < m \), remove \(s = ta[i] \times tb[j+1] \) from \(N \) to \(P \). This gives the sets \(P_1, C_1 \) and \(N_1 \). Assuming that the predecessor property holds for \(P_1 \) and \(N_1 \), we shall show that it holds for \(P_1 \) and \(N_1 \). Take an arbitrary term \(t \) from \(N_1 \). Let \(pt \) be the predecessor of \(t \) in \(P_1 \). If \(pt \) is identical to \(f \) we know that the location of \(t \) must be \((i,k)\). From \(f < t \), and \(f < s \) it now follows \(s < t \), since the value of \(k \) must exceed the value of \(j+1 \) (from \(s < t \)). Hence \(s \) is the predecessor of \(t \) in \(P_1 \). If \(pt \) is not identical to \(f \) the predecessor of \(t \) in \(P_1 \) is still in \(P_1 \). This proves the invariance.
From the predecessor property it follows that, when \(P \) is empty, \(N \) is empty so that \(C \) contains all terms. We remind that each time a term is moved to \(C \) it precedes all terms which are not in \(C \).

\(C \) is implemented as a linear list. The ordering of the list elements is the reversed canonical ordering. \(P \) is implemented as a linear list of terms and locations. The location elements follow directly the elements of their corresponding terms. The ordering of the term elements is the canonical ordering. Observe that more than one location may follow a term due to the possibility that two terms can be combined into one. The structure of \(P \) is as follows:

\[
P = \text{term} \rightarrow \text{loc} \rightarrow \text{term} \rightarrow \text{loc} \rightarrow \text{term} \rightarrow \text{loc} \rightarrow \text{term} \rightarrow \text{loc} \rightarrow \text{term} \rightarrow \text{loc}
\]

The cells, pointing to terms, are dyadic structures and the cells, containing the locations, are monadic structures.

```
integer i,j,n,m,k,loc,ct; formula a1,b1,p,c,t,tt,f,g;
n:= length of a; m:= length of b;
if n > m then begin i:= n; n:= m; m:= i; a1:= b; b1:= a end
else begin a1:= a; b1:= b end;
if n = 1 then
begin f:= lhs of rhs of a1; g:= b1; c:= zero; k:= m;
for j:= 1 step 1 until m do
begin g:= rhs of g; c:= dyadic(0,elt mult(f,lhs of g),c) end
end
begin formula array ta[1:n],tb[1:m];
t:= a1; for i:= 1 step 1 until n do
begin t:= rhs of t; ta[i]:= lhs of t end;
t:= b1; for j:= 1 step 1 until m do
begin t:= rhs of t; tb[j]:= lhs of t end;
c:= p:= zero; k:= 0;
for i:= n step -1 until 1 do
p:= dyadic(0,elt mult(ta[i],tb[i]),
monadic(0,i x 1000 + 1,p));
for i:= i while p \# zero do
begin if dyadic p then
```
begin t := \text{lhs of } p; \text{if } \text{lhs of } t \neq \text{zero} \text{ then}

\text{begin } c := \text{dyadic}(0,t,c); k := k + 1 \text{ end; }
\text{p := rhs of } p
\text{end; }
\text{loc := lhs of } p; i := \text{loc} \div 1000; j := \text{loc} - i \times 1000;
\text{if } j < m \text{ then}
\text{begin } t := \text{elt mult}(\text{ta}[i], \text{tb}[j+1]); \text{tt := rhs of } t;
\text{f := rhs of } p; \text{g := p; }
\text{for } i := 1 \text{ while } f \neq \text{zero} \text{ do }
\text{begin if dyadic } f \text{ then}
\text{begin ct := comp terms(rhs of lhs of ?,tt); }
\text{if } ct = 0 \text{ then }
\text{begin replace(g,false, }
\text{dyadic}(0,\text{dyadic}(0,\text{oper on num(sum, }
\text{lhs of } t,\text{lhs of } \text{rhs of } f),\text{tt}),
\text{monadic}(0,\text{i} \times 1000 + j+1,\text{rhs of } f));
\text{goto out }
\text{end else }
\text{if } ct = -1 \text{ then goto repl }
\text{end; }
\text{g := f; f := rhs of } f
\text{end; }
\text{repl := replace(g,false,dyadic}(0,t,\text{monadic}(0,i \times 1000 + j+1,f))
\text{end; }
\text{out := rhs of } p
\text{end end; }
\text{dyadic := find number(k,lhs of c,reverse formula(c))}
\text{end dyadic; }

\text{formula procedure } \text{dyadic/(a,b);} \text{ value a,b;} \text{ formula a,b; }
\text{begin if type of } b = \text{simple sum then }
\text{begin if length of } b = 1 \text{ then }
\text{begin if rhs of el 1 of } b = \text{dummy variable then }
\text{begin integer } i;
\text{dyadic := polyadic(simple sum,i,1,dyadic}(0,
\text{oper on num(quotient,one1,lhs of el 1 of } b),
\text{dummy variable)}) \times a;
\text{goto out}
end end end;

dyadic/ := if a = zero then zero else
 if type of a = simple quotient then
 (lhs of a) / (rhs of a) / (rhs of b) else
 lhs of a / (rhs of a x b) else
 if type of b = simple quotient then
 (a x rhs of b) / (lhs of b)
 else dyadic(simple quotient, a, b);

out;
end dyadic/;

formula procedure monadic*(a); value a; formula a; monadic* := a;

formula procedure monadic-(a); value a; formula a;
begin integer i; i := -1; monadic- := i x a end;

formula procedure dyadic-(a, b); value a, b; formula a, b;
dyadic- := a + (-b);

formula procedure monadic\(\uparrow\)(a, n); value a, n;
formula a; integer n;
monadic\(\uparrow\) := int pow(a, n);

formula procedure dyadic\(\uparrow\)(a, n); value a, n; formula a, n;
begin if type of n = simple sum then
 begin if length of n = 1 then
 begin if rhs of el 1 of n = dummy variable then
 begin if type of lhs of el 1 of n = short integer then
 begin dyadic\(\uparrow\) := int pow(a, lhs of el 1 of n);
 goto out
 end
 end
 end
 error("in exponentiation not of integral type");
out;
end dyadic\(\uparrow\);

formula procedure int pow(a, n); value a, n; formula a; integer n;
if n = 0 then int pow := one else if n = 1 then int pow := a else
if \(n < 0 \) then int pow := one / int pow(a, -n) else
if type of a = simple quotient then
 \(\text{int pow} := \int \text{pow}(\text{lhs of } a, n) / \int \text{pow}(\text{rhs of } a, n) \) else
if a = zero then int pow := zero else
if length of a = 1 then
 begin
 integer 1, j, l; formula b = el 1 of a, c = rhs of rhs of b;
 l := length of c;
 int pow := \text{polyadic}(\text{simple sum}, i, 1, \text{dyadic}(0,
 \text{int pow num}(\text{lhs of } b, n),
 \text{if } l = 0 \text{ then } \text{dummy variable else}
 \text{dyadic}(0, \text{lhs of rhs of } b,
 \text{rowadic}(0, j, l, el j of c \times n))))
 end else
 begin
 formula b; b := int pow(a, n \div 2);
 int pow := \text{if } n = n \div 2 \times 2 \text{ then } b \times b \text{ else } a \times b \times b
 end int pow;

formula procedure int pow num(a, n); value a, n;
formula a; integer n;
if \(n = 0 \) then int pow num := one1 else
if \(n = 1 \) then int pow num := a else
 begin
 formula b; b := int pow num(a, n \div 2);
 int pow num := \text{if } n = n \div 2 \times 2 \text{ then}
 \text{oper on num(product}, b, b) \text{ else}
 \text{oper on num(product}, a, \text{oper on num(product}, b, b))
 end int pow num;

procedure output(f); value f; formula f;
if \(f = \text{zero} \) then printtext(4 0 #) else
if \(f = \text{one} \) then printtext(4 1 #) else
if type of f = simple quotient then
 begin
 printtext(4(4)); output(lhs of f);
 printtext(4) / (4); output(rhs of f); printtext(4)4
 end else
 begin
 integer l, l1, i, j, k, m;
 formula coeff, pointer1, pointer2, pointer3;
 l := length of f;
 for i := 1 step 1 until l do
begin pointer1 := el i of f;
 coeff := lhe of pointer1;
 pointer2 := rhs of rhs of pointer1;
 pointer1 := lhe of rhs of pointer1;
 l1 := length of pointer1;
 if l1 = 0 then outputnumber(coeff) else
 begin if coeff = one1 then printtext(4 + 4) else
 if coeff = minone1 then printtext(4 - 4) else
 begin outputnumber(coeff); printtext(4*4) end;
 for j := 1 step 1 until l1 do
 begin if j + 1 then printtext(4*4);
 pointer3 := find string(el j of pointer1);
 k := length of pointer3;
 for m := 1 step 1 until k do
 procchar(el m of pointer3);
 m := el j of pointer2;
 if m + 1 then
 printtext(4*4); prnum(m) end
 end
 end
 end
 end output;

procedure procchar(w); value w; integer w;
 if w ≠ 0 then
 begin procchar(w : 256); prsym(w - w : 256 × 256 - 1) end;

procedure prnum(n); value n; integer n;
 if n > 9 then prnum(n : 10);
 prsym(n - n : 10 × 10)
 end;

integer procedure error(s); string s;
 begin nilor; printtext(s); if length of constant(0,0,0) = 1 then ;
 error := 1
 end;
The above system of procedures is complete but for the procedures "oper on num" and "output num", to be described in the next section. In section 3.6 we give an alternative for the simplification procedures.

3.4. The rational-number system

The system knows two types of numbers:
1. the rational number r represented as:

 \[
 \text{dyadic}(\text{rat num}, \text{num}, \text{denom}),
 \]

 where \(\text{num}\) and \(\text{denom}\) are integers representing the common-divisor-free numerator and denominator \((> 1)\), and

2. the integer \(n\) either in the form of a

2.1. short integer represented as:

 \[
 \text{constant}(\text{short integer}, n, 0)
 \]

 or as a

2.2. long integer represented as:

 \[
 \text{rowadic}(\text{long integer}, i, 1, d[i]),
 \]

 where \(d[i]\) is the \(i\)-th component in:

 \[
 n = \sum_{i=1}^{1} d[i] \times \text{radix}^{i-1}.
 \]

It is assumed that abs($d[i]$) < radix and sign($d[i]$) = sign(n).

The procedures to be described are ordered from bottom to top. In order to understand their working we give the following top to bottom description. It should be emphasized that the theory is given in de Roever [13] and Knuth [7].

\[.\text{oper on num}(\text{oper}, a, b)\text{ transfers control to oper on num1.}\]

\[.\text{oper on num1}(\text{oper}, a, b)\text{ computes the desired arithmetic function by means of: } \text{rsum}, \text{rprod}, \text{rinv}, \text{isum} \text{ and } \text{iprod}.\]

\[.\text{rsum} \text{ and } \text{rprod} \text{ compute the sum and the product of two rationals, using: } \text{isum}, \text{iprod}, \text{iqr}, \text{igcd} \text{ and } \text{st rat}.\]

\[.\text{rinv} \text{ computes the inverse of a rational number, using } \text{isign} \text{ and } \text{invert}.\]
.isum, iprod and iqr compute the sum, product and quotient of two long integers, using: add, mult, iqrs, idif, isign, iabs, signdif, len, sint, lint and get array.
.igcd computes the greatest common divisor of two long integers, using isum, iprod, iqr, igods, signdif, sint, lint, len and el.
.igod2 computes the gcd of two short integers, using igrs, sint, iabs and signdif.
.add and mult compute the sum and the product of two long integers using the available basic integer arithmetic.
.iqrs computes the quotient and corresponding remainder of a long integer and a short one, using invert, isign, sint, lint, get array and len.
.idif computes the difference of two long integers, using isum and invert.
.isign computes the sign of a long or short integer.
.iabs computes the absolute value of a long or short integer, using invert.
.signdif computes the sign of the difference of two long or short integers, using isign, len and el.
.invert computes the negative of a long or short integer, using sint, lint and get array.
.at rat, lint and sint store a rational, a long integer and a short integer, resp.
.el(1,f) delivers the 1-th element of the long or short integer f.
.len(f) delivers the number of elements into which the long or short integer f has been decomposed with respect to the given base radix. Leading zero's are not taken into account.
.get array(f,i,low,up,ai) fills the elements ai of an integer array with the elements of the long or short integer f in reverse order, using Jansen's device.

Next, we have the following procedures for the output:
.outputnumber prints a number, using isign and outputint.
.outputint prints an integer, using prnum and zeroos.
.pnum prints a small integer.
.zeroos prints leading zero's.

Finally, we have the following procedures for inputting a long integer: l0 int and l1 to be used as follows:
The long integer \(a = 435512 \times 642890 \times 000000 \times 010123 \) is introduced in the system by means of the statement:
\[
a := \text{lo int}(4, \text{li}(\text{li}(\text{li}(0, 435512), 642890), 0), 10123))\]
The sign convention asks that all integers have the same sign. Therefore, \(b = -a \) has to be introduced as follows:
\[
b := \text{lo int}(4, \text{li}(\text{li}(\text{li}(0, -435512), -642890), 0), -10123))\]

By writing \(a \) as:
\[
a := ((435512 \times 1000000 + 642890) \times 1000000 + 10123\]
the result would not be a long integer but a simple sum consisting of one term being the product of the desired integer and an empty list of algebraic variables. Hence, writing: "a := lhe of ei 1 of a" would have the desired effect.
Observe that "a := 435512 \times 642890 \times 000000 \times 010123" would invoke a run-time error caused by integer overflow. The run-time system tries to assign this long integer to an ordinary (small) one. As has been said already, the compiler does not do the transfer to long integers.

```plaintext
integer teller;

formula procedure sint(i); value i; integer i;
sint := if i = 0 then zero1 else
  if i = 1 then one1 else
  if i = -1 then minone1 else
  constant(short integer, i, 0);

formula procedure lint(i, length, ai); value length; integer i, length, ai;
begin boolean b;
b := true; i := length + 1;
for i := i - 1 while i > 1 ^ b do if ai = 0 then
  length := length - 1 else b := false;
i := 1;
lint := if length > 1 then rowadic (long integer, i, length, ai) else
  if length = 1 then sint(ai) else zero1
end;

formula procedure lo int(length, value); value length;
```
integer length, value;
lo int := lint(teller, length, value);

integer procedure li(left, right); value right;
 integer left, right;
if teller = 1 then li := right else
begin teller := teller - 1; li := left; teller := teller + 1
end;

integer procedure len(f); value f; formula f;
len := if constant f then 1 else length of f;

integer procedure el(l, f); value l, f; formula f; integer l;
el := if constant f then
 (if l ≠ 1 then 0 else lhs of f) else
 (if l > 0 ^ l < length of f then
 el l of f else 0);

procedure get array(f, i, low, up, ai); value f, i, low, up;
 formula f; integer i, low, up, ai;
if constant f then
begin for i := low step 1 until up do
 ai := if i = low then lhs of f else 0
end else
begin formula pointer; integer l, k;
 pointer := f; l := length of f;
 k := if up - low + 1 < 1 then up else l + low - 1;
for i := low step 1 until k do
begin pointer := rhs of pointer; ai := lhs of pointer
end;
for i := k + 1 step 1 until up do ai := 0
end;

formula procedure iabs(a); value a; formula a;
iabs := if isign(a) < 0 then invert(a) else a;

integer procedure isign(a); value a; formula a;
isign := if constant a then sign(lhs of a)
else sign(el length of a of a);

formula procedure invert(a); value a; formula a;
if constant a then invert := sint(-lhs of a) else
begin integer l, i;
 l := length of a;
 begin integer array b[1:l];
 get array(a, i, 1, l, b[i]);
 invert := lint(i, 1, -b[i])
 end
end;

integer procedure signif(a, b); value a, b; formula a, b;
begin integer la, lb;
 la := len(a); lb := len(b);
 if la > lb then signif := isign(a) else
 if la < lb then signif := -isign(b) else
 begin aa: la := sign(el(lb, a) - el(lb, b));
 if la = 0 then
 begin lb := lb - 1; goto aa end;
 signif := la
 end
end;

formula procedure isum(a, b); value a, b; formula a, b;
begin integer la, lb, k, i;
 la := len(a); lb := len(b);
 k := if la > lb then la + 1 else lb + 1;
 if k = 2 then
 begin k := lhs of a + lhs of b;
 isum := if abs(k) < radix then sint(k) else
 lint(i, 2, if i = 1 then k - k i radix x radix
 else k i radix)
 end else
 begin integer array p, q[1:k];
 get array(a, i, 1, k, p[i]);
 get array(b, i, 1, k, q[i]);
 add(p, q, k);
isum := lint(i, k, p[i])
end

procedure add(a, b, k); value k; integer k; integer array a, b;
begin
integer s, t, w, carry;
for w := a[k] + b[k] while w = 0 ^ k > 1 do
begin
a[k] := 0; k := k - 1 end;
s := sign(w); carry := 0;
for t := 1 step 1 until k do
begin
w := a[t] + b[t] + carry;
if s * w < 0 then
begin
a[t] := w + s * radix; carry := -s end else
if abs(w) < radix then
begin
a[t] := w - s * radix; carry := s end else
begin
a[t] := w; carry := 0 end
end;
if carry # 0 then a[k + 1] := carry
end;

procedure idif(a, b); value a, b; formula a, b;
idif := isum(a, invert(b));

procedure iprod(a, b); value a, b; formula a, b;
begin
integer la, lb, l, i;
la := len(a); lb := len(b); l := la + lb;
if l = 2 then
begin
real u;
u := lhs of a * lhc of b;
if abs(u) > radix then
begin
l := enter(abs(u) / radix) * sign(u); iprod :=
lint(i, 2, if i = 2 then 1 else u - 1 * radix)
end else
iprod := sint(u)
end
end else
begin
integer array aa[1:la], bb[1:lb], cc[1:1];
get array(a, i, 1, la, aa[i]); get array(b, i, 1, lb, bb[i]);
mult(aa, la, bb, lb, cc, 1);
iprod := lint(i, 1, cc[i])
procedure mult(aa, la, bb, lb, cc, lo); value la, lb, lo; integer la, lb,
lo; integer array aa, bb, cc;
begint integer ta, tb, tab, carry, btb; real u;
for ta := 1 step 1 until la do cc[ta] := 0;
for tb := 1 step 1 until lb do
begin carry := 0; btb := bb[tb];
for ta := 1 step 1 until la do
begin tab := ta + tb - 1; u := btb * aa[ta] + cc[tab] + carry;
carry := entier(abs(u) / radix) * sign(u);
cc[tab] := u - carry * radix
end;
cc[tb + la] := carry
end;
end;

formula procedure igrs(x, y, r); value x, y; formula x, y, r;
if x = zero1 v y = zero1 v y = one1 v y = minone1 then
begin if y = zero1 then r := x else r := zero1;
igrs := if y = zero1 then zero1 else
if y = minone1 then invert(x) else x
end else
begin integer lx;
lx := len(x); if lx = 1 then
begin integer u, v, w;
u := lsh of x; v := lsh of y; w := u v;
r := sint(u - w x v); igrs := sint(w)
end else
begin integer s, yi, i, n; integer array xx[1:lx], rr[0:lx]; real m;
s := isign(x);
rr[0] := rr[lx] := 0;
get array(if s > 0 then x else invert(x), i, i, lx, xx[1]);
y1 := lsh of y; s := sign(y1) x s; y1 := abs(y1);
for i := lx step -1 until 1 do
begin m := rr[i] x radix + xx[i];
xx[i] := n := entier(m / y1);
\begin{verbatim}

rt[i - 1] := m - (n \times y1)
end;

r := sint(s \times rt[0]);
iqrs := lint(i, lx, s \times xx[i])
end

function procedure iqrs(x, y, r); value x, y; formula x, y, r;
begin integer lx, ly, lq;
lx := len(x) + 1; ly := len(y); lq := lx = ly;
if x = zero1 v y = zero1 v lx \leq ly then
begin r := x; iqr := zero1;
 if y = zero1 then error(4y equals zero in iqrs)
end else
if ly = 1 then iqr := iqrs(x, y, r) else
begin integer s, i, j, yyly, lb;
normfactor := \text{sqrt}((\text{radix} \times (2 \times iyly)) = \text{radix} \times 2
 then \text{radix} \times (2 \times iyly)
 else \text{radix} \times (2 \times iyly) + 1);
get array(labs(xprod(x, normfactor)), i, 1, lx, xx[i]);
y1 := labs(xprod(y, normfactor));
get array(y1, i, 1, ly, yy[i]);
vradixmin1 := sint(radix - 1); yyly := yy[ly];
heady := lint(i, 2, if i = 1 then yy[ly - 1] else yyly);
vyly := sint(yyly); lb := ly + 1;
for j := lx step -1 until lb do
begin q := if xx[j] \geq vyly then vradixmin1 else
 iqrs(lint(i, 2, xx[j - 2 + i]), vyly, dummy);
end
\end{verbatim}
qq[j - ly] := lhs of q
end;

r := iqrs(lint(i, ly, s * xx[i]), normfactor, dummy);
qr := lint(l, lq, s * qq[i])
end

end;

formula procedure igods(x, y); value x, y; formula x, y;
begin integer procedure god(a, b); value a, b; integer a, b;
god := if b = 0 then abs(a) else god(b, a - ((a ≤ b) * b));
formula r, x1, y1;
x1 := iabs(x); y1 := iabs(y);
if signif(x1, y1) < 0 then
begin r := x1; x1 := y1; y1 := r end;
iqrs(x1, y1, r);
igods := sint(god(lhs of y1, lhs of r))
end;

formula procedure igod(x, y); value x, y; formula x, y;
begin formula u, v; integer lu, lv;
u := iabs(x); v := iabs(y);
lu := len(u); lv := len(v);
if lu = 1 v lv = 1 then igod := igods(u, v) else
begin formula hulp, normfactor;
 integer su, u2, v1, v2, t, i, a, b, c, d, q;
su := signif(u, v);
 if su = 0 then
begin igod := u; goto eindigod end;
 if su < 0 then
begin hulp := u; u := v; v := hulp;
a := lu; lu := lv; lv := a
end;
loop: if v = zero1 then igod := u else
 if lv = 1 then igod := igods(u, v) else
begin a := d := 1; b := c := 0;
 if lu - lv < 1 then
begin u1 := el(lu - 1, u); u2 := el(lu, u);
 if lu - lv = 1 then

begin v1 := e1(lv, v); v2 := 0 end else
begin v1 := e1(lv - 1, v); v2 := e1(lv, v) end;
normfactor := sint(
 if u2 × (radix ÷ (2 × u2)) = radix ÷ 2 then
 radix ÷ (2 × u2) else
 (radix ÷ (2 × u2) + 1);)
 u2 := e1(2, iprod(normfactor, lirt(
 i, 2, if i = 1 then v1 else u2));)
 v2 := e1(2, iprod(normfactor, lirt(
 i, 2, if i = 1 then v1 else u2)));)

5: if v2 + c = 0 v v2 + d = 0 then goto 7;
q := (u2 + a) ÷ (v2 + c);
if q ≠ (u2 + b) ÷ (v2 + d) then goto 7;
t := a - (q × c); a := c; c := t;
t := b - (q × d); b := d;
d := t; t := u2 - (q × v2); u2 := v2; v2 := t; goto 5
end else

7: if b = 0 v (lu - lv) > 1 then
begin iqr(u, v, hulp); u := v; v := hulp end else
begin hulp := u;
 u := isum(iprod(sint(a), u), iprod(sint(b), v));
 v := isum(iprod(sint(c), hulp), iprod(sint(d), v))
end;
lu := len(u); lv := len(v); goto loop
end
end;
end;
end;
end;

formula procedure rinv(a); value a; formula s;
begin integer t;
t := type of a;
if t = short integer v t = long integer then rinv :=
 (if isign(a) > 0 then dyadic(rat numb, one1, a)
 else dyadic(rat numb, minone1, invert(a)))
else
begin formula l, r;
l := lhs of a; r := rhs of a;
rinv := if l = one1 then r else
if l = minone1 then invert(r) else
 if isign(l) > 0 then dyadic(rat numb, r, l)
 else dyadic(rat numb, invert(r), invert(l))
end
end;

formula procedure st rat(a, b); value a, b; formula a, b;
begin integer ta, tb;
 ta := type of a; tb := type of b;
 if b = one1 then st rat := a else
 if b = minone1 then st rat := invert(a) else
 if b = zero1 then
 begin st rat := zero1; nclr; nclr;
 printtext({b equals zero in st rat});
 nclr; nclr
 end else
 if a = zero1 then st rat := zero1 else
 if (ta = short integer v ta = long integer) ^
 (tb = short integer v tb = long integer) then
 st rat := if isign(b) > 0 then dyadic(rat numb, a, b)
 else dyadic(rat numb, invert(a), invert(b))
 else
 st rat := error({wrong parameter in st rat})
 end;
end;

formula procedure oper on num1(oper, a, b); value oper, a, b; integer oper;
begin integer ta, tb;
 ta := type of a; tb := type of b;
 oper on num1 :=
 if (ta = short integer v ta = long integer) ^
 (tb = short integer v tb = long integer) then
 (if oper = sum then isum(a, b) else
 if oper = product then iprod(a, b) else
 mprod(a, rinv(b)))
 else
 if oper = sum then msum(a, b) else
 if oper = product then mprod(a, b) else

oper on num1(product, a, rinv(b))
end;

formula procedure rmsum(a, b); value a, b; formula a, b;
begin integer ta, tb;
 formula la, ra, l, r, b1;
 ta := type of a; tb := type of b;
 if ta # rat numb then
 begin la := lhs of b; ra := rhs of b; b1 := a
 end else
 begin la := lhs of a; ra := rhs of a; b1 := b end;
 if ta = rat numb ^ tb = rat numb then
 begin formula god, lb, rb, hulp;
 lb := lhs of b; rb := rhs of b;
 god := igod(ra, rb);
 if god # one1 then
 begin rb := iqr(rb, god, hulp);
 l := isum(iprod(la, rb), iprod(lb, iqr(ra, god, hulp)));
 r := iprod(ra, rb);
 god := igod(l, r);
 if god # one1 then
 begin l := iqr(l, god, hulp); r := iqr(r, god, hulp)
 end
 end else
 begin l := isum(iprod(la, rb), iprod(lb, ra));
 r := iprod(ra, rb)
 end
 end else
 begin l := isum(la, iprod(ra, b1)); r := ra
 end;
 rmsum := st rat(l, r)
end;

formula procedure rmprod(a, b); value a, b; formula a, b;
begin integer ta, tb;
 formula la, ra, l, r, b1, god, hulp;
 ta := type of a; tb := type of b;
 if ta # rat numb then
begin ra := rhs of b; la := lhs of b; b1 := a
end else
begin ra := rhs of a; la := lhs of a; b1 := b end;
if ta = rat numb ^ tb = rat numb then
begin formula lb, rb;
 lb := lhs of b; rb := rhs of b;
 gcd := igcd(ra, lb);
 if gcd = one1 then
begin ra := iqr(ra, gcd, hulp);
 lb := iqr(lb, gcd, hulp)
end;
 gcd := igcd(rb, la);
 if gcd = one1 then
begin la := iqr(la, gcd, hulp);
 rb := iqr(rb, gcd, hulp)
end;
 l := iprod(la, lb); r := iprod(ra, rb)
end else
begin gcd := igcd(ra, b1);
 if gcd = one1 then
begin ra := iqr(ra, gcd, hulp);
 b1 := iqr(b1, gcd, hulp)
end;
 l := iprod(la, b1); r := ra
end;
mprod := st rat(l, r)
end;

formula procedure oper on num(oper, a, b); value oper, a, b; integer oper;
 formula a, b;
 if oper = sum then
oper on num := (if a = zero1 then b else
 if b = zero1 then a else oper on num(oper, sum, a, b))
else
if oper = product then
oper on num := (if a = zero1 v b = zero1 then zero1 else
 if a = one1 then b else
 if b = one1 then a else
oper on numd(product, a, b))
else
if b = zero1 then
begin nlcr; nlcr; printtext(\$b = 0 in oper on numd\$);
oper on num := zero1; nlcr; nlcr
end else
oper on num := (if b = one1 then a else
if a = zero1 then zero1 else
if b = minone1 then
(if type of a = rat numb then st rat(invert(lhs of a), rhs of a)
else invert(a)) else
oper on numd(quotient, a, b));

procedure outputint(n, sign); value n, sign; formula n; boolean sign;
begin integer l, t, i;
if type of n = short integer then
begin l := lhs of n;
if sign then
begin if l < 0 then printtext(\$ - \$) else
printtext(\$ + \$)
end;
prnum(abs(l))
end else
begin integer array rn[1:len(n)];
l := len(n);
get array(n, i, 1, 1, rn[i]);
if sign then
begin if rn[1] < 0 then printtext(\$ - \$)
else printtext(\$ + \$)
end;
for i := 1 step -1 until 1 do
begin t := abs(rn[i]);
if i # 1 then zeroos(t);
prnum(t)
end
end
end;
procedure zeroos(n); value n; integer n;
begin integer j;
 j := radix;
space(1);
 for j := j + 10 while n < j ^ j > 1 do prsym(0)
end;

procedure outputnumber(n); value n; formula n;
begin if type of n = rat numb then
 begin if isign(lhs of n) < 0 then
 printtext(4 - (4) else printtext(4 + (4);
 outputint(lhs of n, false); printtext(4 / 4);
 outputint(rhs of n, false); printtext(4/4)
 end else
 outputint(n, true)
end;

comment

3.5. Some examples

In this section we demonstrate the functioning of the simplification system
and rational number system with some examples.

begin formula x, y, z, f, s;
real time1;
procedure out(f, s); value f; formula f; string s;
begin integer t;
 t := type of f;
carriage(3);
 printtext(s); printtext(4 = 4); nclr;
 if t = short integer v t = long integer v t = rat numb then
 outputnumber(f) else output(f); nclr;
 printtext(4used time =4); absfix(3, 2, time - time1);
 printtext(4sec 4); time1 := time
end;
```
comment: This section can be divided in three parts
1. test of the rational number system
2. test of the formula system
3. a more sophisticated example.

3.5.1. Test of the rational number system

1. input, representation and output of numbers.

    time1 := time;
    out(sint(0), 4sint(0));
    out(zero1, 4zero1);
    out(sint(-1), 4sint(-1));
    out(sint(1), 4sint(1));
    out(sint(2), 4sint(2));
    out(sint(-3), 4sint(-3));
    x := lo int(4, li(li(li(0, 435512), 642890), 0), 10123));
    out(x, 4x = lo int(4, li(li(li(0, 435512), 642890), 0), 10123));
    y := lo int(4, li(li(li(0, -435512), -642890), 0), -10124));
    out(y,
        4y = lo int(4, li(li(li(0, -435512), -642890), 0), -10124));
    out(st rat(sint(2), sint(3)), 4st rat(sint(2), sint(3)));
    out(st rat(sint(-2), sint(3)), 4st rat(sint(-2), sint(3)));
    out(st rat(x, y), 4st rat(x, y));
    new page;

comment
2. int pow num and igod.

    x := sint(32); out(x, 4x = sint(32));
    y := sint(-20); out(y, 4y = sint(-20));
    z := igod(x, y); out(z, 4z = igod(x, y));
    out(op on num(quotient, x, y), 4op on num(quotient, x, y));
    x := int pow num(x, 9); out(x, 4x = int pow num(x, 9));
    y := int pow num(y, 9); out(y, 4y = int pow num(y, 9));
    out(int pow num(z, 9), 4int pow num(z, 9));
    out(igod(x, y), 4igod(x, y));
    out(op on num(quotient, x, y), 4op on num(quotient, x, y));
```
new page;

comment
3. rational arithmetic;

x := oper on num(quotient, one1, sint(2));
out(x, 4x = oper on num(quotient, one1, sint(2))$);
y := oper on num(quotient, one1, sint(3));
out(y, 4y = oper on num(quotient, one1, sint(3))$);

z := oper on num(quotient, one1, sint(6));
out(z, 4z = oper on num(quotient, one1, sint(6))$);
out(oper on num(sum, oper on num(sum, x, y, z)),
 4oper on num(sum, oper on num(sum, x, y, z))$);

out(oper on num(sum, oper on num(sum, x, y), oper on num(
 product, minone1, z)),
 4oper on num(sum, oper on num(sum, x, y),
 oper on num(product, minone1, z))$);
new page;

comment
3.5.2. Test of the formula system

1. handling of numbers in the formula system;

f := 32; out(f, 4f = 32$); g := -20; out(g, 4g = -20$);
out(f/5, 4f/g$);

f := f/5; out(f, 4f = f/6$); g := g/5; out(g, 4g = g/6$);
out(f/g, 4f/g$);

out(1/2 + 1/3 + 1/6, 41/2 + 1/3 + 1/6$);
out(1/2 + 1/3 - 1/6, 41/2 + 1/3 - 1/6$);
new page;

comment
2. dyadic+, dyadix, dyadic/, and monadic ↑;

out(av(4abc 123 x+)$); $av(4abc 123 x+)$;
x := av(4x$); y := av(4y$); z := av(4z$);
out(2xx, 42xx$); out(x + x, 4x+x$); out(y + x, 4y+x$);
out((x+y)\(T_5\), 4(x+y)\(T_5\)); out(((x-y)\(T_5\), 4(x-y)\(T_5\));
out((x/y), 4x/y);
\(f := -3zx + 2xy + x;\) out(f, 4f = -3zx + 2xy + x);
out(4T_5, 4T_5); out(f(-5), 4f(-5));
out(7f/f, 4f/5f); out(7f/5, 4f/5f); out(5xf/5y, 45xf/5y);
out((xT_8 + yT_8) \times (xT_2 + yT_2) \times (x + y) \times (x - y),
4(xT_8 + yT_8) \times (xT_2 + yT_2) \times (x + y) \times (x - y));
new page;

\textit{comment}

3.5.3. \textit{A more sophisticated example}.

We introduce the following system:
\[
y = x / (2 - 4 \times x),
z = (3 + 2 \times y) / 5,
a = 2 \times x / 3,
b = 3 \times x / 4,
c = yT_2 \times (y - x) / xT_2,
d = z \times (z - x) \times (z - y) / \]
\((3 \times y \times (y - x)),
e = (20 \times x \times y - 10 \times x - 10 \times y + 6) / \]
\((120 \times z \times (z - x) \times (z - y) \times (1 - z)),
p = e \times (1 - z),
\]
and we will prove that
\[
f = a \times b \times c \times d \times p
\]
equals
\[
(5 \times xT_2 - 2 \times x) / (960 \times x - 480).
\]

\[
y := x / (2 - 4xx); \text{out}(y, 4y = x / (2 - 4xx));
z := (3 + 2xy) / 5; \text{out}(z, 4z = (3 + 2xy) / 5);
\]
\[
f := 2xx / 3; \text{out}(f, 4f = 2xx / 3);
g := 3xx / 4; \text{out}(g, 4b = 3xx / 4);
\]
\[
f := f \times g; \text{out}(f, 4f = a \times b);
\]
\[
g := yT_2 \times (y - x) / xT_2; \text{out}(g, 4c = yT_2 \times (y - x) / xT_2); \]
\[
f := f \times g; \text{out}(f, 4f = f \times c);
\]
\[
g := z \times (z - x) \times (z - y) / (3 \times y \times (y - x));
\]
\[
\text{out}(g, 4d = z \times (z - x) \times (z - y) / (3 \times y \times (y - x)); \]
\[
f := f \times g; \text{out}(f, 4f = f \times d);
g := (20 \times x \times y - 10 \times x - 10 \times y + 6)/(120 \times z \times (z - x) \times (z - y) \times (1 - z));
out(g, 4e = (20 \times x \times y - 10 \times x - 10 \times y + 6) /
(120 \times z \times (z - x) \times (z - y) \times (1 - z)));
g := g \times (1 - z); out(g, 4p = e \times (1 - z));
f := f \times g; out(f, 4f = f \times p); carriage(5);
y := \text{lhe of } f \times (960 \times x - 480);
out(y, 4\text{numerator of } f \times (960 \times x - 480));
z := \text{rhe of } f \times (5 \times x \times 2 - 2 \times x);
out(z, 4\text{denominator of } f \times (5 \times x \times 2 - 2 \times x));
out(y - z, 4\text{the difference});

\text{end}
\text{end}
\text{end}
i

This program produced the following output:

Results of 3.5.1.1

sint(0) =
+ 0
used time = .03 sec

zero1 =
+ 0
used time = .04 sec

sint(-1) =
- 1
used time = .04 sec

sint(1) =
+ 1
used time = .04 sec
\[\text{sint}(2) = \]
\[+ 2 \]
\[\text{used time} = .04 \text{ sec} \]

\[\text{sint}(-3) = \]
\[- 3 \]
\[\text{used time} = .04 \text{ sec} \]

\[x = \text{lo int}(4, \text{li}(\text{li}(\text{li}(0, 435512), 642890), 0), 10123) = \]
\[+ 435512 \ 642890 \ 000000 \ 010123 \]
\[\text{used time} = .20 \text{ sec} \]

\[y = \text{lo int}(4, \text{li}(\text{li}(\text{li}(0, -435512), -642890), 0), -10124) = \]
\[- 435512 \ 642890 \ 000000 \ 010124 \]
\[\text{used time} = .20 \text{ sec} \]

\[\text{st rat(sint(2), sint(3))} = \]
\[+ (2 / 3) \]
\[\text{used time} = .08 \text{ sec} \]

\[\text{st rat(sint(-2), sint(3))} = \]
\[- (2 / 3) \]
\[\text{used time} = .08 \text{ sec} \]

\[\text{st rat(x, y)} = \]
\[- (435512 \ 642890 \ 000000 \ 010123 / 435512 \ 642890 \ 000000 \ 010124) \]
\[\text{used time} = .37 \text{ sec} \]

Results of 3.5.1.2

\[x = \text{sint(32)} = \]
\[+ 32 \]
\[\text{used time} = .07 \text{ sec} \]

\[y = \text{sint(-20)} = \]
\[- 20 \]
\[\text{used time} = .05 \text{ sec} \]
\[
\begin{align*}
z &= \text{igod}(x, y) = \\
&+ 4 \\
\text{used time} &= .16 \text{ sec} \\
\text{oper on num(quotient, } x, y) &= \\
&- (8 / 5) \\
\text{used time} &= .32 \text{ sec} \\
x &= \text{int pow num}(x, 9) = \\
&+ 35184372088832 \\
\text{used time} &= .35 \text{ sec} \\
y &= \text{int pow num}(y, 9) = \\
&- 512000000000 \\
\text{used time} &= .27 \text{ sec} \\
\text{int pow num}(z, 9) &= \\
&+ 262144 \\
\text{used time} &= .18 \text{ sec} \\
\text{igod}(x, y) &= \\
&+ 262144 \\
\text{used time} &= 2.45 \text{ sec} \\
\text{oper on num(quotient, } x, y) &= \\
&- (134217728 / 1953125) \\
\text{used time} &= 2.81 \text{ sec} \\
\text{Results of 3.5.1.2} \\
x &= \text{oper on num(quotient, one1, sint(2))} = \\
&+ (1 / 2) \\
\text{used time} &= .28 \text{ sec} \\
y &= \text{oper on num(quotient, one1, sint(3))} = \\
&+ (1 / 3) \\
\text{used time} &= .25 \text{ sec}
\end{align*}
\]
3- 84

\[z = \text{oper on num}(\text{quotient, one1, sint(6)}) = \]
\[+ \left(\frac{1}{6}\right) \]
\[\text{used time} = \quad .25 \text{ sec} \]

\[\text{oper on num}(\text{sum, oper on num}(\text{sum, x, y}), z) = .\]
\[+ 1 \]
\[\text{used time} = \quad .71 \text{ sec} \]

\[\text{oper on num}(\text{sum, oper on num}(\text{sum, x, y}), \]
\[\quad \text{oper on num}(\text{product, minone1, z}) = \]
\[+ \left(\frac{2}{3}\right) \]
\[\text{used time} = \quad .93 \text{ sec} \]

Results of 3.5.2.1

\[f = 32 = \]
\[+ 32 \]
\[\text{used time} = \quad .11 \text{ sec} \]

\[g = -20 - \]
\[- 20 \]
\[\text{used time} = \quad .25 \text{ sec} \]

\[f/g = \]
\[- \left(\frac{8}{5}\right) \]
\[\text{used time} = \quad .66 \text{ sec} \]

\[f = f^g = \]
\[+ 35 184372 088832 \]
\[\text{used time} = \quad .41 \text{ sec} \]

\[g = g^f = \]
\[- 512000 00000 \]
\[\text{used time} = \quad .33 \text{ sec} \]

\[f/g = \]
\[- \left(134 217728 / 1 953125\right) \]
\[\text{used time} = 3.16 \text{ sec} \]

\[\frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1 \]
\[\text{used time} = 1.56 \text{ sec} \]

\[\frac{1}{2} + \frac{1}{3} - \frac{1}{6} = + \left(\frac{2}{3}\right) \]
\[\text{used time} = 1.96 \text{ sec} \]

Results of 3.5.2.2

\[\text{av}(\{abc \ 123 \ x+y\}) = \]
\[+ \ abc \ 123 \ x+ \]
\[\text{used time} = .21 \text{ sec} \]

\[2xx = \]
\[+ \ 2xx \]
\[\text{used time} = .46 \text{ sec} \]

\[x*x = \]
\[+ \ 2xx \]
\[\text{used time} = .24 \text{ sec} \]

\[y+x = \]
\[+ \ x + y \]
\[\text{used time} = .24 \text{ sec} \]

\[(x+y)^T_5 = \]
\[+ \ xT_5 + 5xxT4xy + 10xxT3xyT2 + 10xxT2xyT3 + 5xxxyT4 + yT5 \]
\[\text{used time} = 8.76 \text{ sec} \]

\[(x-y)^T_5 = \]
\[+ \ xT_5 - 5xxT4xy + 10xxT3xyT2 - 10xxT2xyT3 + 5xxxyT4 - yT5 \]
\[\text{used time} = 5.88 \text{ sec} \]

\[x/y = (+ x) / (+ y) \]
\[f = -3xz + 2xy + x = \\
+ x + 2xy - 3xz \\
\text{used time} = \quad .16 \text{ sec} \]

\[f'75 = \\
+ x75 + 10xx74xy - 15xx74xz + 40xx73xy72 - 120xx73xyz72 + 90xx73xx72 + 80xx \\
72xy73 - 360xx72xy72xz + 540xx72xy72xz72 - 270xx72xx73 + 80xx7y74 - 480xx7y73 \\
xz + 1080xx7y72xx72 - 1080xx7y72xx73 + 405xx7y72xx74 + 32xy75 - 240xy74xz + 720xy \\
73xx72 - 1080xy72xx73 + 810xy72xx74 - 243xz75 \\
\text{used time} = \quad 29.13 \text{ sec} \]

\[f'(-5) = \\
\left(\frac{1}{(+ x75 + 10xx74xy - 15xx74xz + 40xx73xy72 - 120xx73xyz72 + 90xx73xx72 + 80xx \\
72xy73 - 360xx72xy72xz + 540xx72xy72xz72 - 270xx72xx73 + 80xx7y74 - 480xx7y73 \\
xz + 1080xx7y72xx72 - 1080xx7y72xx73 + 405xx7y72xx74 + 32xy75 - 240xy74xz + 720xy \\
73xx72 - 1080xy72xx73 + 810xy72xx74 - 243xz75) \right) \\
\text{used time} = \quad 29.38 \text{ sec} \]

\[f/f = \\
\left(+ x + 2xy - 3xz \right) / \left(+ x + 2xy - 3xz \right) \\
\text{used time} = \quad .36 \text{ sec} \]

\[f/5 = \\
+ (1 / 5)xx + (2 / 5)xy - (3 / 5)xz \\
\text{used time} = \quad 1.23 \text{ sec} \]

\[5xf/5 = \\
+ x + 2xy - 3xz \\
\text{used time} = \quad 1.95 \text{ sec} \]

\[(x18 + y18) \times (x14 + y14) \times (x12 + y12) \times (x + y) \times (x - y) = \\
+ x16 - y16 \\
\text{used time} = \quad 17.27 \text{ sec} \]

Results of 3.5.3
\[y = \frac{x}{(2 - 4xx)} = \]
\[\frac{(x + 1)}{(2 - 4xx + 2)} \]
\[\text{used time } = \quad 0.77 \text{ sec} \]

\[z = \frac{(3 + 2xy)}{5} = \]
\[\frac{(-2xx + (6/5))}{(-4xx + 2)} \]
\[\text{used time } = \quad 1.82 \text{ sec} \]

\[a = \frac{2xx}{3} = \]
\[+ \frac{(2/3)xx}{\text{used time } = \quad 0.88 \text{ sec}} \]

\[b = \frac{3xx}{4} = \]
\[+ \frac{(3/4)xx}{\text{used time } = \quad 0.87 \text{ sec}} \]

\[f = a \times b = \]
\[+ \frac{(1/2)xxT2}{\text{used time } = \quad 0.71 \text{ sec}} \]

\[c = \frac{yT2 \times (y - x)}{xT2} = \]
\[\frac{(+4xxT4 - xT3)}{(-64xxT5 + 96xxT4 - 48xxT3 + 8xxT2)} \]
\[\text{used time } = \quad 6.49 \text{ sec} \]

\[f = f \times c = \]
\[\frac{(2xx6 - (1/2)xxT5)}{(-64xxT5 + 96xxT4 - 48xxT3 + 8xxT2)} \]
\[\text{used time } = \quad 1.16 \text{ sec} \]

\[d = z \times (z - x) \times (z - y) / (3 \times y \times (y - x)) = \]
\[\frac{(-1536xxT7 + 5376xxT6 - (203136 / 25)xxT5 + (34368 / 5)xxT4 - (439104 / 125)xxT3 + (135456 / 125)xxT2 - (23328 / 125)xx + (1728 / 125))}{(+3072xxT7 - 6912xxT6 + 6144xxT5 - 2688xxT4 + 576xxT3 - 48xxT2)} \]
\[\text{used time } = \quad 31.75 \text{ sec} \]

\[f = f \times d = \]
\[\frac{(-3072xxT13 + 11520xxT12 - (473472 / 25)xxT11 + (445248 / 25)xxT10 - (1 \times 307808 / 125)xxT9 + (490464 / 125)xxT8 - (114384 / 125)xxT7 + (3024 / 25)xxT6 - (864 / 125)xxT5)}{(-196608xxT12 + 737280xxT11 - 1 \times 204224xxT10 + 1 \times 11} \]
\[e = (20 \times x \times y - 10 \times x - 10 \times y + 6) / (120 \times z \times (z - x) \times (z - y) \times (1 - z)) = - \]
\[+ 2836760xxT9 - 958464xxT7 + 1 \times 634304xxT6 - 1 \times 591296xxT5 + 967680xxT4 - 37 \times 6320xxT3 + 91392xxT2 - 12672xx + 768) / (+ 368640xxT8 - 1 \times 437696xxT7 + (12331008 / 5)xxT6 - (60 \times 742656 / 25) xxT5 + (37 \times 573632 / 25)xxT4 - (74 \times 663424 / 125)xxT3 + (18 \times 602496 / 125)xxT2 - (2 \times 654208 / 125)xx + (165888 / 125)) \]
\[\text{used time} = 15.79 \text{ sec} \]

\[p = e \times (1 - z) = \]
\[(- 4915200xxT9 + 2 \times 113536xxT8 - (20 \times 176896 / 5)xxT7 + (22 \times 450176 / 5)xxT6 - (16 \times 041984 / 5)xxT5 + 1 \times 526784xxT4 - 483840xxT3 + (492288 / 5)xxT2 - (58368 / 5)xx + (3072 / 5)) / (- 1 \times 474560xxT9 + 6 \times 488064xxT8 - (63 \times 700992 / 5)xxT7 + (366 \times 280704 / 25)xxT6 - (54 \times 355688 / 5)xxT5 + (674 \times 390016 / 125)xxT4 - (223 \times 736832 / 125)xxT3 + (47 \times 821824 / 125)xxT2 - (5 \times 971968 / 125)xx + (33 \times 1776 / 125)) \]
\[\text{used time} = 19.14 \text{ sec} \]

\[f = f' \times p = \]
\[(+ 1599 \times 949440xxT2 - 12155 \times 092992xxT1 + 46053 \times 457920xxT0 - (2 \times 726572) \times 32 \times 6912 / 25)xxT9 + (22 \times 598922 \times 534912 / 125)xxT8 - (27 \times 824800 \times 923648 / 125)xxT7 + (131 \times 730131 \times 386368 / 625)xxT6 - (97 \times 960723 \times 218432 / 625)xxT5 + (2 \times 316560 \times 893904 / 25)xxT4 - (5 \times 474047 \times 131648 / 125)xxT3 + (413535 \times 633408 / 25)xxT2 - (3 \times 102712 \times 455368 / 625)xxT1 + (730625 \times 605632 / 625)xxT0 - (528 \times 5 \times 194816 / 25)xxT9 + (3543 \times 330816 / 125)xxT8 - (331 \times 848728 / 125)xxT7 + (96 \times 878692 / 625)xxT6 - (2 \times 654228 / 625)xxT5 / (\times 2989910 \times 292480xxT2 - 2 \times 362 \times 768 \times 783712xxT12 + (45 \times 320226 \times 471936 / 5)xxT19 - (543 \times 389732 \times 831232 / 25)xxT18 + (182 \times 438735 \times 118336 / 5)xxT17 - (5687 \times 470989 \times 508608 / 125)xxT16 + (5454 \times 629538 \times 103296 / 125)xxT15 - (4109 \times 058478 \times 964736 / 125)xxT14 + (492 \times 224190 \times 087668 / 25)xxT13 - 9 \times 428143 \times 177728xxT12 + (451 \times 095573 \times 823488 / 125)xxT11 - (137 \times 203032 \times 784896 / 125)xxT10 + (32 \times 746889 \times 281536 / 125)xxT9 - (1 \times 206600 \times 907776 / 25)xxT8 + (32639 \times 680512 / 5)xxT7 - (74748 \times 100992 / 125)xxT6 + (458 \times 6 \times 471424 / 125)xxT5 - (127 \times 401984 / 125)xxT4) \]
\[\text{used time} = 177.43 \text{ sec} \]
numerator of $f \times (960 \times \pi - 480) =
+ 1 \times 449551 \times 462400 \times x \times 123 - 12 \times 393665 \times 003520 \times x \times 122 + 50 \times 045764 \times 239360 \times x \times 121 - (634 \times 030185 \times 775104 / 5) \times x \times 120 + (5647 \times 747843 \times 620864 / 25) \times x \times 119 - (7511 \times 858340 \times 691968 / 25) \times x \times 118 + (38648 \times 089669 \times 533969 / 125) \times x \times 117 - (31454 \times 551471 \times 03027 \times 2 / 125) \times x \times 116 + (20523 \times 721710 \times 108672 / 125) \times x \times 115 - (2162 \times 966277 \times 390336 / 25) \times x \times 114 + (922 \times 502732 \times 709888 / 25) \times x \times 113 - (1588 \times 206311 \times 571456 / 125) \times x \times 112 + (438 \times 140511 \times 977472 / 125) \times x \times 111 - (95 \times 508801 \times 257472 / 125) \times x \times 110 + (3 \times 217193 \times 828352 / 25) \times x \times 109 - (403874 \times 906112 / 25) \times x \times 108 + (177888 \times 59104 \times 125) \times x \times 107 - (9809 \times 952768 / 125) \times x \times 106 + (254 \times 809368 / 125) \times x \times 105
used time = 29.70 sec

denominator of $f \times (5 \times x \times 12 - 2 \times x) =
+ 1 \times 449551 \times 462400 \times x \times 123 - 12 \times 393665 \times 003520 \times x \times 122 + 50 \times 045764 \times 239360 \times x \times 121 - (634 \times 030185 \times 775104 / 5) \times x \times 120 + (5647 \times 747843 \times 620864 / 25) \times x \times 119 - (7511 \times 858340 \times 691968 / 25) \times x \times 118 + (38648 \times 089669 \times 533969 / 125) \times x \times 117 - (31454 \times 551471 \times 03027 \times 2 / 125) \times x \times 116 + (20523 \times 721710 \times 108672 / 125) \times x \times 115 - (2162 \times 966277 \times 390336 / 25) \times x \times 114 + (922 \times 502732 \times 709888 / 25) \times x \times 113 - (1588 \times 206311 \times 571456 / 125) \times x \times 112 + (438 \times 140511 \times 977472 / 125) \times x \times 111 - (95 \times 508801 \times 257472 / 125) \times x \times 110 + (3 \times 217193 \times 828352 / 25) \times x \times 109 - (403874 \times 906112 / 25) \times x \times 108 + (177888 \times 59104 \times 125) \times x \times 107 - (9809 \times 952768 / 125) \times x \times 106 + (254 \times 809368 / 125) \times x \times 105
used time = 30.85 sec

the difference =
0
used time = 15.94 sec
3.6. An alternative simplification algorithm

Simplification is nothing but a complicated sorting technique. It is well-known that sorting of real numbers can be done very rapidly. In this section we, therefore, investigate the process in which the terms of the manipulated sums are mapped in a one-to-one fashion on real numbers. The real numbers are sorted and via the inverse mapping the original terms are reconstructed.

We use only those real numbers \(r \) being integral and satisfying \(0 \leq r < 2 \uparrow 40 \).

The mapping is not a fixed one but depends on the occurrence of the algebraic variables and the particular simplification to be performed. Let the algebraic variables that are involved be \(v[p] \), \(1 \leq p \leq m \).

Let the maximal exponents with which \(v[p] \) can occur be \(e[p] \), then the mapping is defined as follows:

Let a term \(t \) be given as:

\[
t = \text{coef} \times \prod_{p=1}^{m} v[p] \uparrow e[p], 0 \leq e[p] \leq e[p],
\]

then, the real number, called its code, is determined by:

\[
c(t) = \prod_{p=1}^{m} e[p] \times 2 \uparrow v[p-1],
\]

\(p-1 \)

where \(v[p] = \prod_{q=1}^{p-1} v[q] + 1 + \text{entier(ln(em[p])}/.691314718056), \)

\(1 \leq p \leq m, \) and where \(v[0] = 0 \).

The latter contribution to \(v[p] \) is the number of bits to store the maximal exponent \(e[p] \).
Given a sum of terms \(f \), it is the task of the procedure "avs and exps in list" to indicate in the formal array \(\text{varf}[1:40] \), whether the variable with index \(p \) occurs in \(f \) and, if this is the case, to make \(\text{varf}[p] = 1 \) and \(\text{expf}[p] = \) the maximal exponent with which this variable occurs in \(f \), and to make \(\text{varf}[p] = \text{expf}[p] = 0 \) in the other case.

Note that the index of an algebraic variable is used to identify the variable in a term. Thus \(\text{el j of rhs of rhs of el i of f} \) is the index of the algebraic variable \(a[i,j] \) in:

\[
\begin{align*}
 n & \quad \text{l[i]} \\
 f & = \sum_{i=1}^{n} \text{coeff}[i] \times \prod_{j=1}^{\text{l[i]}} a[i,j] \times e[i,j]
\end{align*}
\]

and \(e[i,j] \) is given by \(\text{el j of rhs of rhs of el i of f} \).

Not all the variables have to occur in a given sum \(f \), it is, therefore, necessary to renumber the variables. This is the task of "avshifts", which also calculates the shiftfactors \(\text{va}[p] \). This procedure uses the following global integer arrays:

- \(\text{var[0:40]} \): originally indicating, by means of \(\text{var}[p] \) that the variable with index \(p \) does or does not occur (\(\text{var}[p] = 1 \) or \(\text{var}[p] = 0 \)). Afterwards, when the variable has got a new index \(q \), \(\text{var}[q] = p \).
- \(\text{var2[0:40]} \): for holding the new index \(\text{var2}[p] = q \).
- \(\text{varshift[0:40]} \): determining the shiftfactor \(\text{va}[p] \).
- \(\text{exp[0:40]} \): containing the maximal exponents \(\text{em}[p] \).

Computing the code of the \(k \)-th term of a sum \(f \) is the task of the real procedure "make code \((f,k)\)".

The inverse mapping is performed by the procedure "rowse", while the sorting process is carried out by "sort". The latter procedure is based on the "quicksort" method of C.A.R. Hoare [6].
integer array var,var2,exp,exp2,varshift[0:40];
formula procedure av(s); value s; formula s;
begin integer i,j; avcntr:= avcntr + 1;
if avcntr > 40 then error('too much algebraic variables');
stringstring:= dyadic(0,s,stringstring);
 av:= polyadic(simple sum,i,1,dyadic(0,one1,dyadic(0,
rowadic(0,j,1,avcntr),rowadic(0,j,1,1))));
end av;

formula procedure dyadic+(a,b); value a,b; formula a,b;
if a = zero then dyadic+: = b else if b = zero then dyadic+: = a
else if type of a = simple quotient then
 dyadic+: = if type of b = simple quotient then
 (lhs of a x rhs of b + lhs of b x rhs of a)/
 (rhs of a x rhs of b) else
 (lhs of a + b x rhs of a)/rhs of a else
if type of b = simple quotient then
 dyadic+: = (a x rhs of b + lhs of b)/rhs of b else
begin integer la,lb,1,up; la:= length of a;
lb:= length of b; l:= la + lb;
begin array code[1:1]; integer 1,1,d;
 formula array coef[1:1];
 avs and exps in list(a,la,var,exp);
 avs and exps in list(b,lb,var2,exp2);
for i:= 1 step 1 until avcntr do
if var2[i] = 1 then
begin var[i]:= 1;
 if exp2[i] > exp[i] then exp[i]:= exp2[i]
end;
avshifts(up);
for i:= 1 step 1 until la do
begin code[i]:= make code(a,i);
 coef[i]:= lhs of el i of a
end;
for i:= 1 step 1 until lb do
begin code[la+i]:= make code(b,i);
coeff[1a+i]:= lhs of el i of b
end;

sort(coeff,1);
dyadic:= if l = 0 then zero else
 if l = 1^ code[1] = 0 then
 (if coeff[1] = one1 then one else
 polyadic(simple sum,i,1,dyadic(0,coeff[1],
 dummy variable))) else
 polyadic(simple sum,i,1,dyadic(0,coeff[1],
 dyadic(0,rowav(coeff[i],d,up),
 rowav(0,j,d,exp[j])))
 end end dyadic;

formula procedure dyadic(a,b); value a,b; formula a,b;
if a = zero v b = zero then dyadic:= zero else
if a = one then dyadic:= b else if b = one then dyadic:= a
else if type of a = simple quotient then
 dyadic:= if type of b = simple quotient then
 (lhs of a x rhs of b)/(rhs of a x rhs of b) else
 (lhs of a x b)/rhs of a else
 if type of b = simple quotient then
 dyadic:= (a x lhs of b)/rhs of b else
begin integer la,lb,i,up,i,j,ind;
l:= length of a; lb:= length of b; 1:= la x lb;
begin array code[1:1]; formula array coeff[1:1];
real codei; formula coeffi;
avs and exps in list(a,la,vars,exp);
avs and exps in list(b,lb,vars,exp2);
for i:= 1 step 1 until avontr do
if var2[i] = 1 then
begin var[i]:= 1; exp[i]:= exp[i]+exp2[i] end;
avshift(up);
for i:= 1 step 1 until la do
begin codei:= make code(a,i); coeffi:= lhs of el i of a;
 ind:= (i-1) x lb; for j:= 1 step 1 until lb do
 begin code[ind+j]:= make code(b,j) + codei;
 coeff[ind+j]:= oper on num(product,
 lhs of el j of b,coeffi);
comment By means of these two statements the actual multiplication has been performed;
end end;
sort(code,coef,1);
dyadico:= if l = 1 ^ code[1] = 0 then
(if coef[1] = ones then one else
 polyadic(simple sum,i,1,dyadic(0,coef[1],
 dummy variable)) else
 polyadic(simple sum,i,1,dyadic(0,coef[1],
 dyadic(0,rowav(code[1],d,up),
 rowadica(0,j,d,exp[j])))
end end dyadico;

procedure avs and exps in list(f,lf,varf,expf);
value lf; integer lf; formula f;
integer array varf,expf;
begin formula refav,refexp;
 integer i,k,lf,exp;
for i:= 0 step 1 until avcntr do
varf[i]:= expf[i]:= 0;
for k:= 1 step 1 until lf do
begin refav:= lha of rhs of el k of f;
 refexp:= rhs of rhs of el k of f;
for i:= length of refav step -1 until 1 do
 begin var:= el i of refav;
 exp:= el i of refexp;
 if var[var] = 0 then
 begin varf[var]:= 1; expf[var]:= exp end else
 if exp > expf[var] then expf[var]:= exp
 end
end
end avs and exps in list;

procedure avshifts(up);
begin integer i,bits,varctr;
 varctr:= bits:= varf[0]:= varshift[0]:= 0;
for i:= 1 step 1 until avcntr do
 if var[1] = 1 then
begin var2[i]:= varctr:= varctr + 1;
 var[varctr]:= i; varshift[varctr]:= bits:=
 bits + 1 + entier(ln(exp[i]) / .6914718056);
 if bits > 40 then error('too much bits needed');
end;
up:= varctr
end avshifts;

real procedure make code(f,k);
value k; integer k; formula f;
begin formula refav,refexp;
 integer i; real code; code:= 0;
 refav:= lha of rhs of el k of f;
 refexp:= rhs of rhs of el k of f;
 for i:= length of refav step -1 until 1 do
 code:= code + 2 ↑ varshift[var2[el i of refav] -1] ×
 el i of refexp;
 make code:= code
end make code;

formula procedure rowav(c,ub,up);
value c,ub; integer up,ub; real c;
begin integer i,varctr; real shift,oldshift,all;
 varctr:= 0; oldshift:= 1;
 for i:= 1 step 1 until up do
 if c # 0 then
 begin shift:= 2 ↑ varshift[i];
 tail:= c - entier(c/shift) × shift;
 if tail # 0 then
 begin varctr:= varctr + 1;
 c:= c - tail; exp2[varctr]:= var[i];
 exp[varctr]:= tail/oldshift
 end;
 oldshift:= shift
 end;
 rowav:= rowadic(0,i,varctr,exp2[i]);
 ub:= varctr
end rowav;
procedure sort(code, coef, orde);
real array code; integer orde;
formula array coef;
begin integer i, pivot, i, ncode, ub; real max, s;
formula f;
procedure sort(1, r); value l, r; integer l, r;
L1: if l > r then else
begin real h, y; integer p, q, s; p := l-1; q := r+1;
y := (code[1] + code[r])/2;
L2: for p := p+1 while p < q do
if code[p] > y then
begin for q := q-1 while q > p do
if code[q] < y then
begin h := code[p]; code[p] := code[q]; code[q] := h;
goto L2
end; s := p; goto L3
end; s := q;
L3: if s = r+1 then s := r; sort(1, s-1); l := s; goto L1
end sort;
ub := orde; sort(1, ub);
s := code[1]; ncode := 1;
for 1 := 2 step 1 until ub do
if abs(code[1] - s) < .1 then
begin coef[ncode] := oper on num(sum, coef[ncode], coef[1]);
if coef[ncode] = zero1 then
begin ncode := ncode - 1; s := - 1 end
end else
begin ncode := ncode + 1; s := code[ncode] := code[1];
coef[ncode] := coef[1]
end;
orde := ncode
end sort;
The above procedures have been used to run the same test program as the test program of section 3.5. It is, of course, not meaningful to reproduce this test program and the results as they are the same except for the computation times used. We therefore summarize the computation times only. In general, there was a considerable difference in computation times when the manipulations concerned much multiplications of large sums of terms. In particular, the method of this section turned out to be two to three times more rapid in these cases. For some examples we give a table of computation times:

<table>
<thead>
<tr>
<th>Expression</th>
<th>section 3.5</th>
<th>section 3.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3x^2 + 2xy + x</td>
<td>1.04</td>
<td>1.19</td>
</tr>
<tr>
<td>x/((2^-10)x)</td>
<td>.77</td>
<td>.75</td>
</tr>
<tr>
<td>y\sqrt{x(y-x)/x^2}</td>
<td>6.49</td>
<td>3.14</td>
</tr>
<tr>
<td>(x+y)^15</td>
<td>8.76</td>
<td>2.83</td>
</tr>
<tr>
<td>(-3x^2 + 2xy + x)^15</td>
<td>29.13</td>
<td>10.58</td>
</tr>
<tr>
<td>example 3.5.3</td>
<td>386.47</td>
<td>285.09</td>
</tr>
</tbody>
</table>

It should be noted that the procedures of section 3.6 are by far not optimal. In particular, frequent use has been made of the ε1 operator. This is an expensive operator however. Considerable gain can be obtained by eliminating this operator as has also been done in section 3.5.

In a forthcoming report of A. de Bruin and R. Wiggers the two simplification methods will be compared in more details. Moreover, a comparison will be made with the already mentioned method of G. ten Velden.

As a final remark, note again that the method of this section is restricted to problems with not too much variables and not too high exponents.
4. The translated program

In this chapter we treat the desired form of the translated ABC ALOOL program, together with the running system.

The running system consists of a collection of ALOOL 60 procedures which govern the dynamic storage allocation processes.

The translation of the ABC ALOOL program and the running system are not so simple that they can be treated immediately in section 4.1. Their treatment has to be preceded by a section on a simple but unrealistic translation, a section on the dynamic storage allocation system and a section on a feasible but very (run-time) inefficient system.

Before entering into these sections, it is necessary to introduce some nomenclature. Moreover, we make some general observations concerning storage space management.

As we shall go into the details of the implementation, where addresses, pointers and references play an important role, we define the following terms:

A formula value is a structured collection of (at least one) boxes. Each formula value has a reference. A formula value and its reference are defined as follows:

A simple formula value is a box, called its own box, which does not contain a reference; the reference of this simple formula value is the reference of its box.

A formula value is either a simple formula value, in which case its reference is the reference of that simple formula value, or there exists a box, called its own box, containing at least one reference, in which case the formula value is the collection of this box and the boxes of the formula values referred to by the references contained in that box; the reference of the formula value is the reference of that box.

We say that a reference refers to a formula value, if it is the reference of that formula value. Each reference refers to one and only one formula value.

The definition of a formula value is done in terms of boxes; we therefore have to define boxes:

A box contains three items:
1. The first one is called its type, which is a (small) natural number, and which can be of five different categories: constant, monadic, dyadic, polyadic and rowadic.

2. The second one is called the lhs, which may either be an integral number or a reference.

3. The third one is called the rhs, which may either be an integral number or a reference.

Furthermore, each box has one and only one reference (which may be thought of as its address or the pointer pointing to it). Each formula occurring in ABC ALGOL is represented by means of a formula value; i.e. a structured collection of boxes. Simple formulas, as algebraic variables or numbers, are represented as simple formula values; tree-like formulas are represented as formula values. Example: the formula xxx + x, with x an algebraic variable, may be represented as follows:

box 1 with reference r1:	1 33 0
box 2 with reference r2:	2 r1 r1
box 3 with reference r3:	3 r2 r1

The numbers 1, 2, 3 and 33 are codes chosen for "algebraic variable", "product", "sum" and "x", respectively.

During the computation, each formula variable, subscripted or not subscripted, can have several formulas as value (at different times). The space occupied by these different formulas, i.e. the number of boxes of their formula values, is not necessarily the same. Upon block-entry, when a formula variable is introduced by means of its declaration, it is thus not possible to reserve the space needed for its formula value. Neither is it possible to determine this space upon block-exit in order to make it available for other use.

Looking more closely at the relation between a formula variable and its formula value, we observe that a formula variable may very well have as value the reference of its formula value. The amount of space for this reference is fixed; this space can thus be reserved on block-entry and released on block-exit.
4.1. The simplest but unrealistic translation

Consider the following ABC ALOGL program:

```plaintext
begin  formula g;
    begin  formula f; x;
        x := av(4*x); f := xxx + x;
        x := f + xxx; g := f
    end;
    g := g + 10
end
```

Assuming the existence of an integer array C, we can represent a box with reference k by the three array elements: C[k,1], C[k,2] and C[k,3]. The run-time system may now consist of:

```plaintext
integer procedure STORE(type, lhs, rhs);
    value type, lhs, rhs; integer type, lhs, rhs;
    begin  STORE := k := k+1; C[k,1] := type;
        C[k,2] := lhs; C[k,3] := rhs
    end;
integer procedure SUM(a, b);  SUM := STORE(3, a, b);
integer procedure PROD(a, b);  PROD := STORE(2, a, b);
integer procedure ALG VAR(letter);
    ALG VAR := STORE(1, letter, 0);
integer procedure INT NUM(value);
    INT NUM := STORE(0, value, 0);
```

and the translation of the ABC ALOGL program above can simply be:

```plaintext
begin  integer G;
    begin  integer F, X;
        X := ALG VAR(33); F := SUM(PROD(X,X), X);
        X := SUM(F, PROD(F, X)); G := F
    end;
    G := SUM(G, INT NUM(10))
end
```
Here, and in the sequel we shall adopt the convention of using lower-case letters for identifiers in the ABC ALGOL program and upper-case letters for the corresponding identifiers in the translated program. In the actual translation, however, another mechanism is used so that an ABC ALGOL programmer may choose his identifiers without any restriction.

Giving the integer k the initial value 0, we see that the values of the references r_1, r_2 and r_3 of the preceding section are 1, 2 and 3, respectively.

A compiler for this translation could be very small: it has to change "formula" into "integer" and a formula expression into its equivalent Polish prefix form. And indeed this is the rough structure of the compiler of chapter 6.

The reason that the simple translation scheme does not fulfill the needs is hidden in the size of the array C, which was, until now, tacitly assumed to be indefinitely large. In practice this size is bounded, and it is our task to provide the means for using the available space as well as possible. Referring to our example, we see that after the second block is completed, the formula value for f will still be used in the surrounding block; the final formula value of x will, however, partly not be used any longer. This means that two boxes are used for unreachable formula values. At any moment we can divide the formula values into two classes: the interesting and the non-interesting class. Members of the interesting class are those formula values the references of which are either the values of "active" formula variables or are contained in the boxes of formula values belonging to this interesting class. Formula values not in the interesting class are members of the non-interesting class.

It is necessary to provide the procedure STORE with the means to be able to separate the two classes. For the above case STORE has to know that the integers G, F and X have values being the references of formula variables; and it has to know the lifetime of these integers. How this can be done, is the subject of the next section.

4.2. The dynamic-storage allocation system
At an arbitrary moment, during the computation process, the procedure STORE is called to allocate space (a box), for a new formula value. Assume that there is no free space left. Now we may have two implementations: one in which there may be left space occupied by non-interesting formula values and one in which the class of non-interesting formula values is always empty. We will discuss the second implementation later on.

There are two methods to distinguish interesting and non-interesting formula variables: the external and the internal method.

The internal method consists of putting the information about a formula variable being interesting or not inside its own box; which means that STORE can simply inspect all boxes in a straightforward manner.

In the external method we use a list of all references to formula values being the values of "active" formula variables; STORE can separate the interesting from the non-interesting formula values in a recursive fashion.

As far as STORE is concerned, the internal method is preferable. Other operations are block-entry, assignation and block-exit. If we assign a formula value \(f_2 \) to a formula variable \(r \), which originally had the formula value \(f_1 \), then we have to do something with the administration in the boxes of \(f_1 \) and \(f_2 \) when we follow the internal method. Indeed, \(f_1 \) may have become non-interesting and \(f_2 \) surely remains or becomes interesting. How do we know that \(f_1 \) really has become non-interesting in another way than by inspecting all other interesting formula values and seeing whether they refer to \(f_1 \) at the cost of much computing time. There is a way: the information does not only tell whether a formula value is interesting but also how interesting it is. In particular, this information can be a counter, called reference counter, which counts the number of times the formula value is referenced.

In our case, the reference counter of \(f_1 \) has to be decreased by one and the reference counter of \(f_2 \) has to be increased by one.

With the external method, we only have to change the list of all references being the value of formula variables; i.e. the reference to \(f_1 \) in this list has to be replaced by a reference to \(f_2 \).

With respect to assignments, we arrive at the conclusion that the internal method has the following disadvantage: each box needs space for the reference counter and, as some values may be referenced very often, this space has to be more than just a few bits.
Considering the block-entry, we observe that upon declarations of formula variables, the list of references of values of formula variables has to be enlarged in the internal method, whereas nothing has to be done in the internal method. Finally, during block-exit the actions necessary in the external method comprise the shrinking of the list of references of values of formula variables only, whereas the actions in the internal method consist of decreasing the reference counters of the values of the formula variables to be deleted.

Concluding, we remark that the internal method is advantageous only when STORE has to collect the non-interesting formula values (called a garbage collection) often. Thus in a case that 90 percent of the memory is needed. However, in such a case we can better use the 10 percent space, needed for reference counters, for more boxes. The two methods do not exclude each other. It is also possible to have a mixed method: The space for the reference counter is kept small; after its maximum has been reached and another reference has to be dealt with, a special bit is turned on; the property "being interesting" for formula values for which this bit is on, is dependent now on a list of references of values of formula variables.

The advantages are that the number of garbage collections can be kept to a minimum while the space needed for reference counters does not need to be exceedingly large; in fact some spare bits, which frequently are available, can be used. The disadvantages are that we still need space, which in our case can not be found in spare bits and that it is rather complicated.

More or less orthogonal to the internal-external controversy, stands the question: relocation or no relocation, with which we mean the following. After STORE has determined which formula values are interesting and which are not, it can proceed in two directions: the interesting formula values are relocated such that the free space forms a contiguous space, or the interesting formula values are not relocated but the non-contiguous free space is chained together to form a free list (i.e. a linear chain of free boxes).
Sometimes it is unavoidable to relocate; e.g. in a case where we also have a stack, growing upward and downward in memory, or in a case that the simple formula values are of different size.

In our case, where we use a fixed-size linear array in which the formula values need to be stored only, and where we are not forced to have simple formula values of different size, we choose the non-relocation version. The main argument is that in the relocation version the values of references may change after a garbage collection. The effect is that it is very dangerous to store such a value into an integer variable since the value of the reference can change while this integer variable remains unchanged. In the following sections, we will see that integer variables play an important role. For a detailed comparison between the relocation and the non-relocation methods we refer to [13], in which complete ALGOL programs are given.

We close this section by returning to the beginning, when we introduced a system in which non-interesting formula values never occur. This system can easily be implemented as a non-relocation and internal system in which each box, whose reference counter has become equal to zero, is immediately chained to the free list.

4.3. The external non-relocation method

The procedure STORE should always have at its disposal the list of references of formula values of formula variables. It is, of course, impossible that STORE can be made aware of a set of integer variables since these are known to the ALGOL 60 compiler system only. Therefore, we have to make an explicit list, of items referring to formula values. Each such item is called a name. A name is a box and it has a reference, the reference of the box. The box either contains no reference, in which case it contains NULL, or it contains a reference to a formula value.

A formula variable \(f \), declared as "formula \(f \)" , has two counterparts in the translated program: the integer variable \(F \), declared as "integer \(F \)" , and a name \(F' \) , created by a call of DE. Immediately after the declaration, the value of \(F \) is the reference to \(F' \) (i.e. \(F \) points to \(F' \)) and \(F' \) contains NULL.
After an assignment "f:= expr", translated into: "ASSIGN(F,EXPR)", the value of F is still the reference to F but the reference contained in F is the reference of the formula value defined by EXPR.

On block-exit the integer variable F disappears automatically by the ALGOL 60 system and the name F disappears by a call of ERASE. To be more specific, the following program:

```
begin formula f;
  f:= expr
end
```

is translated into:

```
begin integer F,fnn; fnn:= grn; DE(F,NULL);
  ASSIGN(F,EXPR)
  ; ERASE(fnn)
end
```

In order to understand this translation, it is necessary to observe that the list of names can be organized in a Last In First Out fashion; i.e. as a stack. This is a consequence of the simple scheme:

- upon block-entry create n names
- upon block-exit delete the n lastly created names.

We use a global integer grn for counting the number of names and, for each block, a local integer fnn, which, as indicated above, gets the value of grn at the moment just preceding the creation of the names. It is now easy to imagine what happens after a call "ERASE(fnn)"; precisely grn - fnn lastly created names are erased and grn gets the value of fnn.

Each block may have an integer with the same identifier "fnn" since the scope of this integer always includes the statement "ERASE(fnn)", as it is the last statement of the block. The problem, concerning a jump out of the block without passing the block-exit, will be dealt with in section 4.6.
For reasons of efficiency and elegance, the list of names is implemented in the same array \(C \) which is used for the formula values. The array element \(C[k,3] \) serves for internal linking of the list, while \(C[k,2] \) is used for storing either NULL or the reference to a formula value. Again the procedure \(\text{STORE} \) puts the three values: type, lhs and rhs in \(C \) and it performs a garbage collection if necessary, its precise declaration will be given in the next section.

Now we give, for illustrative reasons only, the following procedures in a non-definite form.

```plaintext
procedure DE(f,E); value E; integer f,E;
begin  last name:= \text{STORE}(name list type,E,last name);
       f:= last name; grn:= grn + 1
end;
procedure ASSIGN(f,E); value f; integer f,E;
begin  C[f,2]:= E end;
procedure ERASE(old grn); value old grn; integer old grn;
begin  for old grn:= old grn while grn > old grn do
        begin  last name:= C[last name,3]; grn:= grn - 1 end
end;
```

4.3.1. Translating an Expression

The translation of an expression will now be considered. Take the expression
"\(x \times y + u \times v \)" , in which \(x, y, u \) and \(v \) are simple formula variables for which the integer variables \(X, Y, U \) and \(V \) have been declared in the translated program. As in section 4.1 the translation has the form "\(\text{S}(F(\ldots), S(\ldots)) \)"; but we still have to decide how the primaries \(x, y, u \) and \(v \) shall be translated. In fact, this decision depends on the nature of the quantity which is being delivered by the procedure identifiers themselves. The nature can be:
1. a reference to a formula value;
2. a reference to a name (which itself refers to a formula value).

4.3.1.1. The reference-to-a-name approach

If the procedure \(S \) has to deliver a reference to a name, which itself refers to the formula value, then its declaration has to be of the form:
integer procedure S(a,b); value a,b; integer a,b;
begin
 integer Sname; DE(Sname,STORE(3,C[a][2],C[b][2]));
 $\text{S} := \text{Sname}$
end;

However, the translation of "$x \times y + u \times v" into "$S(P(X,Y), S(U,V))" then leads to the introduction of 3 different names, of which only one is needed to refer to the formula value. It is obligatory to have, besides an automatism for creating names, an automatic erasure of names, as is done in the following declaration:

integer procedure S(a,b); value a,b; integer a,b;
begin
 integer Sname, fnn; Sname := STORE(3,C[a][2],C[b][2]);
 fnn := gnn - 2; ERASE(fnn); DE(Sname,Sname); S := Sname
end;

This procedure needs a little explanation: After STORE is called for storing the formula value, the last two created names are erased and then a new name is created in which the reference to the formula value is stored. During the creation of that new name, a garbage collection is in principle possible and this could destroy the newly created formula value (there is still no name referring to it). First, we remark that we can explicitly inform STORE about the existence of a special formula value which is interesting and, second, we observe that DE is called immediately after the erasure of two names.

In the next section we will see that space becoming free as a result of erasing names can immediately be returned to free space and this means that a garbage collection can not occur. Of course, the second line of the procedure body could be made more simple as follows: "$\text{fnn := gnn - 1; ERASE(fnn); S := C[a][2] := Sname}$", where we used the fact that the order of execution of called-by-value parameters is the order in which they occur in the value part.

Coming back to the translation of the primaries x, y, u and v, we see that the translation can not be "$S(P(X,Y), P(U,V))$" since S, and also P, assume that just prior to the evaluation of their actual parameters two new names have been created, which may be erased as soon as their values have been used. Therefore, we need the procedure:

integer procedure EN(N); value N; integer N;
begin
 DE(N,C[N][2]); EN := N end
for creating an Extra Name; we now get the translation:
"S(F(EN(X), EN(Y)), S(EN(U), EN(V)))"

The whole should be put as actual parameter of the following procedure which
erases the lastly created name and delivers the reference to the formula
value:

 integer procedure EXPR(actual expr); value actual expr;
 integer actual expr;
 begin integer fn; EXPR := C(actual expr, e); fn := gmn - 1;
 ERASE(fn);
 end

The translation of "f := x * y + u + v" then takes the form:

"ASSIGN(F,EXPR(S(F(EN(X), EN(Y))), S(EN(U), EN(V))))"

Evaluating the above approach, we conclude that it is complicated and
inefficient with respect to the number of names used.
It is complicated since the creation and erasure of names is being done
in different procedure calls. It needs a good insight into the dynamics of
the process to see that the system works correctly.
It is inefficient as may be seen already from the translation of the simple
element: "f := x * y" into: "ASSIGN(F,EXPR(S(EN(X), EN(Y))))" in which three
names are created and erased although none was necessary to save a formula
value.

4.3.1.2. The reference-to-a-value approach

The procedure S delivers a reference to a formula value. This may be a saved
or a possibly not saved one. By saved we mean: there does exist a name
referring to this value. If S has to deliver the reference of a saved value,
we are almost in the same position as in the preceding approach; therefore,
we follow the second approach. S delivers a reference of a not necessarily
saved value and we have the following procedure declaration:
integer procedure $S(a,b)$; integer a,b
begin integer an,bn,fun; $fun:=gmn; DE(an,a); bn:=b; S:=STORE(3,C[an,2],bn); ERASE(fun)
end

The actual parameters of S should also deliver references to possibly non-saved formula values; therefore, the formula value, to which a refers, has to be saved explicitly before the actual parameter b is evaluated, since this evaluation could lead to a garbage collection. The primaries x, y, u and v should now be translated such that the references to their formula values are delivered and we thus have as translation of: "$f:=x \times y + u + v$":

"ASSIGN(F,S(PC[X,2],C[Y,2]),S(C[U,2],C[V,2]))".

Comparing this approach with the preceding one, we see that the creation and deletion of names is far less complicated: there is a static correspondence between each DE and its $ERASE$ counterpart. Also with respect to efficiency this approach is superior: for "$f:=x + y$" it uses one name. Furthermore, it will be shown later on that it is ever possible to make a safe system in which this (superfluous) name is not used. The latter system is a modification of the system which is now being described.

As an example, we shall now give the procedures S and P which apply the distributive laws and perform the simple 0 and 1 simplifications; in ABC ALGOL they have the following form:

formula procedure dyadic + (a,b); value a,b; formula a,b;
dyadic + := if $a = \text{zero}$ then b else if $b = \text{zero}$ then a else dyadic(3,a,b);

formula procedure dyadic \times (a,b); value a,b; formula a,b;
dyadic \times := if $a = \text{zero}$ and $b = \text{zero}$ then zero else
if $a = \text{one}$ then b else if $b = \text{one}$ then a else
if type of $a = 3$ then lhs of $a \times b$ + rhs of $a \times b$ else
if type of $b = 3$ then $a \times$ lhs of $b + a \times$ rhs of b else
dyadic(2,a,b).

While in ALGOL 60 their form is given by:

```plaintext
integer procedure S(A,B); integer A,B;
begin  integer An,Bn,fnm; fnm:= gnm; DE(An,A); DE(Bn,B);
      S:= if C[An,2] = C[ZERO,2] then C[Bn,2] else
           if C[Bn,2] = C[ZERO,2] then C[An,2] else
              STORE(3,C[An,2],C[Bn,2]);
           ERASE(fnm);
end;

integer procedure P(A,B); integer A,B;
begin  integer An,Bn,fnm; fnm:= gnm; DE(An,A); DE(Bn,B);
           C[ZERO,2] else
           if C[An,2] = C[ONE,2] then C[Bn,2]; else
           if C[Bn,2] = C[ONE,2] then C[An,2]; else
           if C[C[An,2],1] = 3 then S(P(C[C[An,2],2],C[Bn,2]),
                          P(C[C[An,2],3],C[Bn,2]))
               else
           if C[C[Bn,2],1] = 3 then S(P(C[An,2],C[C[Bn,2],2]),
                          P(C[An,2],C[C[Bn,2],3]))
               else
              STORE(2,C[An,2],C[Bn,2]);
           ERASE(fnm);
end.
```

Observe that it is necessary for P to introduce names for both A and B and not only for A. The reason is that the evaluation of "the of a x b" may involve a garbage collection so that b might be erased if there was no name saving the formula value of b. For S it would have been sufficient to create a name for a only.

Due to the fact that no assignments take place to the parameters a and b of the above procedures, we can give a much more efficient (with respect to time) version by means of the following procedure:
procedure DEVAL(F,E); integer F,E;
begin DE(F,E); F := C[F,2] end

The effect of DEVAL is that a name is created for saving a formula value
defined by E. It is not possible to give this created name a reference to
another formula value. Assuming that ONE and ZERO have been introduced by
means of DEVAL, i.e. that their values are references to formula values
instead of names, we may declare S and P as follows:

integer procedure S(A,B); integer A,B;
begin integer Av,Bv,fn; fn := gnn; DEVAL(Av,A); DEVAL(Bv,B);
 S := if Av = ZERO then Bv else
 if Bv = ZERO then Av else STORE(3,Av,Bv);
 ERASE(fn)
end;

integer procedure P(A,B); integer A,B;
begin integer Av,Bv,fn; fn := gnn; DEVAL(Av,A); DEVAL(Bv,B);
 P := if Av = ZERO v Bv = ZERO then ZERO else
 if Av = ONE then Bv else if Bv = ONE then Av else
 if C[Av,1] = 3 then S(P(C[Av,2],Bv),P(C[Av,3],Bv))
 else
 if C[Bv,1] = 3 then S(P(Av,C[Bv,2]),P(Av,C[Bv,3]))
 else
 STORE(2,Av,Bv);
 ERASE(fn)
end.

Let us close this section by showing that the translation of any ABC ALOOL
expression, in which the only operators are + and x and in which the only
primaries are formula variables, leads to an ALOOL 60 expression which,
when executed, has the property that garbage collections can not destroy
partially formed results still being necessary. We call this translation a
safe translation.
Consider an arbitrary product expression: "\texttt{expr1 \times expr2}"; translated into: "\texttt{P(EXPR1,EXPR2)}". From the moment \(P \) is called until the moment the value of \(P \) is computed and delivered we shall follow the execution precisely.

Through "\texttt{DEVAL(Av_A)}" \(\texttt{EXPR1} \) is evaluated and we assume that it is evaluated correctly. A name is created to which the formula value is assigned, so that, until "\texttt{ERASE(fhn)}", the value is safe. Through "\texttt{DEVAL(Bv_B)}" \(\texttt{EXPR2} \) is evaluated and the remarks made for \(\texttt{EXPR1} \) pertain also to \(\texttt{EXPR2} \). After \(P \) has got a value the following possibilities are open:

1. The value of \(\texttt{EXPR1} \) (or \(\texttt{EXPR2} \)) is the value of \(P \).
2. This is not so.

After the execution of "\texttt{ERASE(fhn)}" the values of \(\texttt{EXPR1} \) and \(\texttt{EXPR2} \) are no longer safe. Only in the first case, however, we have to see what happens. If "\texttt{expr1 \times expr2}" is itself part of another expression, then a name will be introduced to save the value; if "\texttt{expr1 \times expr2}" is the right-hand side of an assignment statement or appears as actual parameter, it is the responsibility of the assignment statement mechanism or the parameter mechanism to save the value (if necessary).

We thus arrive at the conclusion that during the execution of the procedure body of \(P \), including the evaluation of its actual parameters, the derived partial results remain safe until \(P \) has got its value. It is the responsibility of the mechanism that called \(P \) to save the formula value to which the value of \(P \) refers.

In passing, we remark that during the execution of the translation of \((x+y) \times (u+v)\), the formula values \(x + y \) and \(u + v \) are formed but, after \(P \) is finished, they belong to the garbage. Similar arguments may be applied to the execution of the procedure \(S \).

4.3.2. The translation of parameters of type formula
A formal parameter \(a \) of a procedure \(p \) specified of type formula and called by value is translated in the same way as the parameters \(a \) and \(b \) of the preceding section: An integer \(Av \) is declared, the statement "DEVAL(\(Av,A \))" is executed and each occurrence of \(a \) in the procedure body is translated as \(Av \). It is not possible to assign a value to a parameter, called by value. This simple and natural restriction enables us to make the efficient translation with \(Av \) instead of \(C[An,2] \). A formal parameter \(b \) called by name is treated analogously as in ALGOL 60. We now have to face the following problems: \(b \) may occur at the left-hand side of an assignment statement, in which case the actual parameter should deliver a reference to a name, or \(b \) may occur in expressions only when the reference to a value is needed.

On the other hand, the actual parameter may deliver a reference to a name or the reference to a value, and this can not be investigated syntactically. Hence, it is necessary to build in such means that it dynamically can be seen whether a reference is a reference to a name or to a value. An occurrence of \(b \) in an expression is, therefore, translated as "\(V(B) \)", where the procedure \(V \) is defined as follows:

\[
\text{integer procedure} \quad V(N); \quad \text{value} \quad N; \quad \text{integer} \quad N;
\]
\[
V: = \text{if} \quad N \text{ is a reference to a name} \quad \text{then} \quad C[N,2] \quad \text{else} \quad N.
\]

At the left-hand side of an assignment statement, \(b \) is translated as \(B \); in the procedure ASSIGN we check whether \(B \) is the reference to a name, which it should be.

The price for the freedom, to use the actual called-by-name parameter for names as well as for values, is inefficiency in time as we have to distinguish at run-time between two categories of references.

4.3.3. The translation of a formula procedure
As we have seen already in section 4.3.1.2, the heading of a formula procedure is changed into an integer procedure. If the last executed statement of the procedure body can syntactically be shown to be always the assignment to the procedure identifier the translation of the assignment to the procedure identifier can be simple: "p := expr" is translated into "P := EXPR". If this cannot be shown syntactically, the translation has to be more complex due to the fact that we want to be able to give error messages in the case that the procedure identifier does not obtain a value, or in the case that after the assignment statement to the procedure identifier and before the block-exit an action takes place which may invoke a garbage collection.

4.3.4. An example

With the aids discussed until now, we can easily translate the following example:

\[
\text{formula procedure } \text{der}(f, x); \text{ value } f, x; \text{ formula } f, x; \\
\text{begin integer } t; \text{ t := type of } f; \\
\text{ der:= if } f = x \text{ then one else } \\
\text{ if } t = 3 \text{ then der(lhs of } f, x) + \text{ der(rhs of } f, x) \\
\text{ else } \\
\text{ if } t = 2 \text{ then der(lhs of } f, x) \times \text{ rhs of } f + \\
\text{ else zero } \\
\text{ end} \\
\text{ into:} \\
\text{integer procedure } \text{DER}(F,X); \text{ integer } F, X; \\
\text{begin integer } T,Fv,Xv,fun; \text{ fun:= } \text{gran; } \text{DEVAL(Fv,F); DEVAL(Xv,X); } \\
T:= C[Fv,1]; \\
\text{DER:= if } Fv = Xv \text{ then ONE else } \\
\text{ if } T = 3 \text{ then } S(\text{DER}(C[Fv,2],Xv),\text{DER}(C[Fv,3],Xv)) \text{ else } \\
\text{ if } T = 2 \text{ then } S(P(\text{DER}(C[Fv,2],Xv),C[Fv,3]), \\
P(C[Fv,2],\text{DER}(C[Fv,3],Xv))) \text{ else ZERO; } \\
\text{ERASE(fun) } \\
\text{end.}
\]
Let us compute the number of names which are simultaneously in existence for calculating the derivative of \(f \); denote it by \(n(f) \).

When \(f = x \) or \(f \) is not a sum or a product then \(n(f) = 2 \). When \(f \) is a sum, \(a + b \), then \(n(f) = \max(2 + n(a), 3 + n(b)) \). When \(f \) is a product, \(a \times b \), then we have in the simple case that \(P \) does not apply the distributive law: \(n(f) = \max(2 + n(a), 4 + n(a)) \). For \(f = 1 + (x + (x \times x + x \times (x \times x))) \), we thus have at a certain moment 19 names in use. This should be compared with the 6 boxes which ultimately result from the computation.

The conclusion is that, for this example, we need 3 times more space for saving partially formed results than we need for the final value. Knowing that the number of names which is really needed for saving partial results as \(x + x \), another \(x + x \) and \(x \times (x + x) \) is 3, we seriously have to try to remedy this situation. Also in another, less sophisticated, example, experiments showed that the number of simultaneously existing names is approximately 6 times more than the number which is really necessary. The reason for this prohibitive large amount of names is that the same formula value is saved simultaneously several times in different calls of DER, S and P.

4.4. A more clever and more efficient system

We turn out attention again to the formal parameters of S and P, and we ask whether it is possible to create names conditionally instead of always. It must, therefore, be possible to exchange information about a formula value whether it is saved or possibly not saved. This information must be exchanged between several procedure calls and it is simply possible to put this information in the value of the reference to the formula value.

A first solution seems to be marking a reference if it is the reference to a probably non-saved formula value. The procedure S may then take on the form:
integer procedure S(A,B); integer A,B;
begin integer Av,Bv,fn; fn:= gnn;
 Av:= A; if Av < 0 then DEVAL(Av,Av);
 Bv:= B; if Bv < 0 then DEVAL(Bv,Bv);
 S:= if Av = ZERO then Bv else Bv = ZERO then Av
 else - STORE(3,Av,Bv);
 ERASE(fn)
end.

The above form is not suitable, however, due to the fact that S may get as
value the value of Av when Bv = ZERO. The value of Av refers to a formula
value which is just recently being saved; i.e. the actual parameter A was
negative. The corresponding name, referring to Av, is erased immediately
after S has got a value; hence, the value of S indicates that S refers to a
saved formula value while this is not necessarily the case.
One remedy would be to investigate the value of S during the erasure of the
names. This means that all names, all formula values and sub formula values
which are erased are compared with the value of S. If one is found equal to
the value of S, S is made negative. This is very time-consuming a process;
moreover, it is not watertight in the general case. Consider for example:

formula procedure p(a); value a; formula a;
begin ... begin formula b; ... p:= if random < .5 then
 lhs of a else rhs of b;
end; ...
end

It would be necessary to translate each block-exit such that it compares the
values of a number of procedure identifiers with the values of the to be
erased names and formula values.
Another solution would be to compare the value of the procedure identifier with the values of still existing names and formula values. This is more easy to compile, of course, since this action need only be performed at the block-exit of the procedure body of the formula procedure involved. But again it is a time-consuming process. Let us call this the comparison method.

A third solution, called the minus method, is by changing the assignment statement into:

"S:= if Av = ZERO then -Bv else if Bv = ZERO then -Av else -STORE(3,Av,Bv)".

This is, of course, not an optimal solution, as may be seen in the example:

"begin formula f; ...(f + 0) + 0 ... end" translated into:
"begin integer F; DE(F,NULL); ... S(S(C[F,2],ZERO),ZERO) ... end",
in which one superfluous name is created for f.

In order to make a comparison, we did some experiments with calculating the first 7 Taylorcoefficients with a program, similar to the one in section 1.2, in which numbers are not combined automatically. The four methods are:

1. the simple method of section 4.3; no marking of references.
2. the comparison method.
3. the comparison method, in which the value of the procedure identifier is always made negative.
4. the minus method.

The quantities measured are:

1. the computation time in millihours (mh), excluding the time necessary for printing the results (6 mh);
2. the maximum number of names simultaneously in use, excluding the names for the declarations;
3. the number of times STORE is called (to be compared with the number of values being created: 3069 in total);
4. the number of garbage collections.

<table>
<thead>
<tr>
<th>method</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>time (in mh)</td>
<td>55</td>
<td>56</td>
<td>33</td>
</tr>
<tr>
<td>number of names</td>
<td>82</td>
<td>9</td>
<td>13</td>
</tr>
</tbody>
</table>
number of STORE calls 44450 6700 13650 10770
number of garbage collections 4 4 4 4

On both frontiers: computation time and storage space, the minus method is the favourite one.

Alas, such as the method stands now, it is not watertight. Consider the example:

begin formula f;
 formula procedure p(g); value g; formula g;
 begin f:= 20; ... p:= g end;
 f:= 10;
 f:= p(f)
end

We observe that after execution of "f:= 20", the value of the integer G, as it is translated from g, refers to the old value "10" of f and the reference is marked safe; the formula value "10" is, however, far from safe; in fact there is no name referring to it, so that a garbage collection during "..." would be disastrous.

The reason for the trouble is that the status of an arbitrary formula value can very easily be changed from safe to non-safe, by simply assigning another value to the name which referred to it. For the compiler it is almost impossible to see whether an arbitrary formula variable will change its value as this may be done in deeply hidden procedures.

There is, on the other hand, a category of names which will never change their values: those names which are introduced by means of DEVAL and which, anonymously, serve only to save formula values. The statuses of the latter formula values can change only on block-exit: a well defined place and easily recognizable by the compiler.
Call a formula variable \(f \), declared as "formula \(f = \text{expr} \)" , and a formal parameter, called-by-value and specified as formula, a fixed variable. The property of a fixed variable then is that it obtains a value immediately after its creation which it holds until its death. If, upon creation of a fixed variable \(f_1 \), its value turns out to be the value of another fixed variable \(f_2 \), it is not necessary to create a name since the lifetime of \(f_2 \) is at least as large as the lifetime of \(f_1 \) and, hence, the value of \(f_1 \) is safe during the lifetime of \(f_1 \), so that no name need be created to save it.

The procedure \(\text{DEVAL} \) may now have the form:

```plaintext
procedure \( \text{DEVAL}(F,E) \); \textbf{integer} F,E;
begin
 F:= E; \textbf{if} \( \sim \) is marked fixed(F) \textbf{then}
 begin
 DE(F,F); F:= C[F,2]; mark as fixed(F)
 end;
end,
```

and the introduction of the fixed variable \(f \) with a value defined by \(\text{expr} \) is performed by: "\(\text{DEVAL}(F,\text{EXPR}) \)". After its introduction, \(f \) can occur as primary in an expression only. Its appearance elsewhere, at the left-hand side of an assignment or as an actual parameter of a formal call-by-name parameter appearing at the left-hand side of an assignment, leads to an error-message either at compile-time or at runtime.

As primary in an expression we only need to consider the case that \(f \) appears as actual parameter of a procedure, as the operators are translated into function designators. Take, therefore, "\(p(f) \)" as a procedure call to be translated. Let the formal parameter be a call-by-value parameter; "\(f \)" may then be translated into "\(\text{F} \)" , i.e. the reference to its formula value is delivered including the marking. The direct effect is that, within the procedure body of \(p \), no name is introduced for the formal call-by-value parameter. During the lifetime of \(p \), \(f \) exists; hence, during the execution of \(p \) we may consider the value of \(f \) to be safe since an assignment to \(f \) is impossible.

Assume now that the formal parameter of \(p \) is a call-by-name parameter. In this case, \(f \) should be passed through to the place in \(p \) where the formal parameter appears. Again "\(f \)" should be translated as "\(\text{F} \)" , i.e. including its marking, as this knowledge may be worth-while within the procedure body of \(p \).
The other case which needs consideration is that the expression is nothing but "f" itself, or that the expression is a conditional expression in which a simple expression consists of "f" only. What need be done now is dependent on the context in which the expression is placed.

1. As the right-hand side of the assignment to a formula variable. The action of ASSIGN is to peel off the "fixed" marking and to put the reference of f without this marking into the name of the formula variable.

2. As the right-hand side of the assignment to a formal parameter. This case is precisely the same as the first case.

3. As the right-hand side of the assignment to a procedure identifier. The discussion about this case will be postponed a little while.

4. As an actual parameter of a procedure call. This has been considered already above.

5. As the right-hand side in a formula declaration; e.g. in: "formula g := if random < .5 then f else 3.14, n = f". Now the expression appears as second actual parameter of DE or DEVAL. In the DE case, a name is introduced and the expression is treated analogously to case 1; in the DEVAL case, the "fixed" marking is finally being taken care of.

Within an arithmetic or Boolean expression, we may also encounter the fixed variable "f", as e.g. in: "if f = g then ...". The reference which now should being delivered has to be free from the "fixed" marking, otherwise the test in the following example would fail: "begin formula f = one, g := one; if f = g then ... end".

A special discussion is necessary for the case "p := f" or "p := if random < .5 then f else ...", where p is the procedure identifier of a formula procedure. The value calculated by p, i.e. the reference to the formula value produced within the procedure body of p, is brought out of the procedure body of p and is still being used after the execution of p is done. This reference has a lifetime which is surely longer than the lifetime of formula variables declared in the body of p or of local variables, introduced for call-by-value parameters.

Hence, if f is a fixed variable, declared inside p, a translation into: "P := if random < .5 then F else ..." would be erroneous: the reference, being the value of F, would be marked "fixed", even after f is erased at the block-exit of p.
In the case that \(f \) is declared inside \(p \), or is a formal parameter of \(p \) or of a procedure declared inside \(p \), the "fixed" marking has to be peeled off before \(p \) gets a value. It would be most easy to peel off the "fixed" marking always, but this would also exclude an efficient translation of constructions like: "der:= ... then one else zero", where we assume that one and zero are globally defined fixed variables.

Therefore, we peel the "fixed" marking off when \(f \) is a local fixed variable only. This has, however, more consequences: we allow the transfer of the "fixed" marking only once; namely where it is syntactically clear that no danger exists; i.e. in a case "p:= ... f" as described above. We do not allow this transfer from procedure to procedure or from formal parameter called-by-name to procedure. The reason for this is exemplified in the following:

```plaintext
begin  formula procedure p(f); value f; formula f;
begin  formula p1 = f;
     procedure p2(g); formula g; p:= g;
     if random < .5 then p:= p1 else p2(f)
end;
...
end
```

In this example, \(p1 \) gets a value including the "fixed" marking, so that this marking could be transferred to \(p \), if no measures were taken. The same pertains to \(g \), the actual parameter of which delivers the reference including the "fixed" marking.

We concentrate now a little bit more on the translation of "p:= f", where \(f \) is global to the procedure body of \(p \), so that the "fixed" marking is transferred outside this body, to the place where the procedure \(p \) is called. At this place \(f \) exists already, otherwise \(f \) could not be global to the procedure body of \(p \) and exist within it. Therefore, we could replace this call of \(p \) by \(f \) itself without changing the result of this call (apart from side-effects by the body of \(p \) of course; these can have no effect, however, on \(f \) itself as \(f \) is fixed). Maintaining the "fixed" marking is, therefore, subject to the same condition as for \(f \) itself:
if the call of \textit{p} is the simple expression in the right-hand side of an assignment to a formula-procedure identifier \textit{q}, then the "fixed" marking is maintained when \textit{p} is global to \textit{q}, otherwise it is removed.

Removing the marking, results in a specific translator action such as putting "abs(....)" in the translated program. Taking into account that this removing is only necessary for local procedures, and that it seldomly occurs that formula procedures are declared within formula procedures. We conclude that in the translated result we will normally not find any such removals. Only in far-fetched and very sophisticated programs they will be put (See example 6.1 of chapter 7).

The silly, but non-serious, restriction, that the declarations of the formula procedures for the operators are forbidden within a formula procedure body, is a direct consequence of the considerations above. If the procedure identifier \textit{p}, in the above example, were "syadic", say, then the translation of a sum \textit{a}+\textit{b}, occurring in the body of \textit{p} should involve the removing of the "fixed" marking. This gave some troubles within the compiler, which could have been overcome for a price which was considered too high in view of the very improbable construction. Therefore, a simple restriction and a check on the appearance of such a declaration within a procedure body has been built in. After all, defining an operator is different from defining a procedure.

The above discussions do not only pertain to fixed variables but also to formula enquiries in which the \textit{kernel} is a fixed variable, as e.g. "the of \textit{f}" or "the of \textit{el} 5 of \textit{el} 7 of \textit{f}". The reference of a formula enquiry is marked fixed if its kernel is fixed.

Discussing the marking itself, we remark that there are only two possibilities:
1. The reference of a fixed variable is positive while other references are negative. This was the way the original marking, concerning the saved or not saved property, was performed.
2. The other way around: the reference of a fixed variable is negative.
It does seem that the second approach has some slight advantages: a) the ordinary references do not have to be changed before they are put into the boxes; b) "abs(...)" is cheaper than "-abs(...)"; c) a reference corresponding to a fixed variable may be more exceptional. Therefore, a reference is marked "fixed" by making it negative.

An actual call-by-name parameter p, may have four different values.

a) a reference to a name;

b) a reference to a formula value being the value of a fixed variable;

c) a reference to a formula value for which it is not known whether it is the value of a fixed variable;

d) NULL; i.e. the "value" of a formula variable which did not obtain a formula value as value.

The reference of such a parameter p is defined by:

$$\text{ref} := \begin{cases} \text{if} \; p < N \; \text{then} \; \text{C}[N-p,2] & \text{else abs}(p). \end{cases}$$

Here N is a negative number, in absolute value larger than the maximum number of possible references to formula values.

4.5. Formula procedures

Until now we assumed that the assignment to a formula-procedure identifier: "$p := \text{expr}$" is translated into "$p := \text{EXPR}$"; i.e. a direct assignment to the procedure identifier "p" of the translated procedure. This simple translation scheme cannot be maintained, however, due to two problems:

1. At the moment the formula value has been created, the reference of which is assigned to p, this value may be not saved, so that a garbage collection may destroy it before the value of p is used in the expression where p occurred as a function designator. Example:

"formula procedure p; begin $p := x + y$; $f := x \times y$ end;"

if translated into:

"integer procedure p; begin $p := S(X,Y);$ ASSIGN($p,P(X,Y))$ end",

then the execution of "ASSIGN($p,P(X,Y))" may destroy the value "$x + y$".
2. A formula procedure may not have got a value at all with the effect that
testable value is undefined, i.e. an arbitrary value. In the complicated system
we work with, where dynamically changing datastructures are involved with
references to names, to values of fixed variables and to other values, with
three layers of languages: ABC ALGOL -> ALGOL 60 -> machinecode, in such a
system it would be very difficult to find the error in:

\[
\text{begin formula procedure } fp; \text{ if } 1 < 0 \text{ then } fp := x + y;
\]
\[
fp := fp
\]
\[
\text{end},
\]
where "1 < 0" should have been written as "1 < d" and where FP gets the
value 52 which just happens to be the reference of the formula value "x × y".

A simple and straightforward solution of the problem is to
require that the last statement of the procedure body is the
procedure-identifier-assignment-statement (piass) in such a way that the
compiler can check it.

Another, expensive, solution is to introduce a local formula variable lfp
and to treat the piass as if the procedure identifier were replaced by this
ordinary variable. The procedure identifier should then obtain a value by
means of "PP := LFP" at the end of the body. With this solution we run into
another problem: In the preceding section we carefully designed a system
which introduced as few names as possible. A lot of the profit would be
lost due to the introduction of a name for lfp; observe, moreover, that it is impossible to transfer the information about the reference being the
reference of a formula value of a fixed variable or not, through formula
procedures. The result would be that, e.g., the procedure "der" for
differentiation, would introduce a lot of names for "saving" one's and
zero's.

The solution chosen is a modus between the two solutions above. Instead of a
formula variable, an integer, LFP, is introduced as a local variable. This
integer gets the initial value NULL immediately after its
introduction; it is used in the left-hand side of the
piass; while the end of the procedure body is translated as:

\[
\text{if LFP = NULL then ERR(4no assignment to proc ident$) ; FP := LFP$}.
\]
This solves the second problem in a cheap way; we really do not have to pay for the integer since it does not take up space for storing formula values and names. The first problem is solved by requiring that the last action of the procedure body, in which the creation of a formula value or a name is involved, is the piass. This makes constructions like:

"for ... do begin ... if i < 0 then begin fp:= expr; goto end end end" possible. However, constructions like:

"fp:= expr; if i < 0 then fp:= expr2"

are forbidden (assuming that i can take on a negative value). The requirement is not very restrictive as the ABC ALOGL programmer can always introduce himself, at the cost of space, a local formula variable. The requirement is, moreover, in the light of ALOGL 68 developments, a rather natural one.

It is, of course, not sufficient to state the requirement, it is also necessary to build in an automatic test. The translated program has therefore at its disposal a global Boolean variable "protect", getting the initial value false. Immediately after the piass, protect is made equal to true; and at the end of the procedure body, protect is changed to false again. It is not hard to see that by building the error message:

"if protect then ERR(\{protection error\});"

into the run-time procedure STORE, and by inserting this error message at the beginning of the translated procedure body, the translation scheme is watertight. Indeed, if protect has the value true, we only have to be careful that it does not obtain the value false before the end of the procedure body is reached. It can, however, take on this value only by a formula procedure call. But this leads immediately to an error message.

Concluding, the translation of:

"formula procedure fp; begin ... fp:= expr ... end" can be:

"integer procedure FP; begin
integer LFP; if protect then ERR(
\{protection error in form proc\});
LFP:= NULL; ... begin LFP:= EXP; protect:= true end ...
; if LFP = NULL then ERR(\{no assignment to proc ident\});
FP:= LFP; protect:= false
end".
This looks rather awkward indeed, although it is necessary in the general case. In a very frequently occurring special case, namely where the compiler can see that the last action is the pass, the translation produced is simply:

"integer procedure PP; begin ... PP:= EXPR ... end".

In the following examples the compiler produces the simple translation:

```
begin ... if ... then begin ... fp:= expr end else
  if ... then begin ... fp:= expr end
  else begin ... fp:= expr end
end
```

and

```
begin ... fp:= expr; end
```

but it gives the "protect-with-local-integer" version in:

```
begin ... for i:= 1 do fp:= expr end
```

and in

```
begin ... if 0 < 1 then fp:= expr end
```

See also the examples of section 7.5.

Another solution would have been to provide the end of the procedure body with the label "EOP" and translate "fp:= expr" into "begin LPF:= EXPR; goto EOP end". This gives, however, problems when formula procedures declared within each other.

Example:

```
"formula procedure fp1;
begin formula procedure fp2; begin ... fp1:= fp2:= expr ...
  end;
end",
```

which when translated into:

```
"integer procedure PP1;
begin ... integer procedure PP2;
  begin ... begin LPF1:= LPF2:= EXPR; goto EOPPP2
    end ...
  ; EOPPP2: ... end;
  ASSIGN(F,FP2)
; EOPPP1: ... end"
```
leads to a non-watertight translation. In the "protect" method it is simply possible to produce a translation in which "protect:= false" is omitted at the end of the body of fp2. It must be said, however, that special administration in the compiler is necessary for this purpose.

4.6. Jumps leading out of a block

Referring to section 4.3, we recall that the block-entry - block-exit: "begin declarations; statements end" is translated into:

"begin integer ...; fnn; fnn:= gnn; DECLARATIONS;
 STATEMENTS;
 ERASE(fnn)
end"

The global integer gnn counts the number of names currently in use. ERASE destroys the names introduced in the block, i.e. the names introduced by the declarations and those introduced by the statements. Normally, the number of names may temporarily be enlarged during execution of a statement, but after the execution, this number is again the same as it was before. This is so since each block-entry has its block-exit counterpart; thus each "fnn:= gnn" has its "ERASE(fnn)" counterpart. However, this is only statically the case. Dynamically we may easily miss an "ERASE(fnn)".

Hence, the execution of a statement may involve the introduction of extra names. The only way this can occur is that a block is left not via the normal block-exit. Thus a goto statement is executed, leading out of the block to a statement s in an outer block. Consider therefore:

1.s; ... ; begin ... goto l ... end ...

At two places we can undertake the action to erase superfluous names:

1. The goto statement can be translated as: "erase the superfluous names; goto l". The serious problem is, however, how many superfluous names are to be erased; just "ERASE(fnn)" is not sufficient, as the jump may be to an outer-outer block or the label l may be a formal parameter of a procedure, or l could be a switch as e.g. in:

"k:s; begin switch sw:= k,1; ... goto sw[1 + random] ... end"

2. "l:s" could be translated as: "L: erase the superfluous names; S".
The number \(n \) gives the total number of names when \(L \) is reached. The number of names which are of interest only for the execution of \(s \) is the number \(m \), plus the names which are introduced in the block head of the block of \(s \). Call this number "\(n \)". With "the block of \(s \)" we mean: the block which contains \(s \) but which does not contain a block also containing \(s \).

We thus arrive at the following construction:

```
begin declarations; statements end" is translated into:
begin integer ..., \( m \), \( n \); \( m := n \); DECLARATIONS;
\( n := \) \( m \);
STATEMENTS
\end
```

Now a labelled statement: "\(l : s \)" is translated into:

```
\( l : \) begin ERASE(\( n \)); S end
```

Per definition, \(n \) is the number of names accessible by the statements of the block; i.e. the names of enveloping (static and dynamic) blocks and the names of the block itself. The function of "ERASE(\(n \))" is to erase names if there are more than \(n \), so that after its execution, the number of names is again \(n \). Each statement could be provided with "ERASE(\(n \))". An unlabelled statement \(s \), however, can only be reached after its textual predecessor is finished without ending with a goto. Therefore, the "ERASE(\(n \))" in front of its predecessor serves \(s \) equally well; an "ERASE(\(n \))" in front of \(s \) would thus be superfluous. Repeating the argument, we see that labelled statements need this treatment only.

Not always is the "ERASE(\(n \))" insertion necessary. If the block does not have an innerblock, or if it has an innerblock but this innerblock does not contain goto statements, or if it has an innerblock with gotos but this innerblock does not contain declarations of formula variables, in these cases "ERASE(\(n \))" may, in general, be left out. Not, however, if there are procedures with label parameters or, what is equally worse, with unspecified parameters and goto statements in their bodies.

Although the following analysis is a more syntactical analysis, and might, therefore, also be given in the part describing the compiler, we prefer to give it here due to its intimate connections with the subject of this section.
We want to determine the criteria to be used when deciding that there is no danger in omitting the "ERASE(smn)" or in omitting the declaration of the integer smn and its initialization.

First, we need some definitions: For the remainder of this section, we consider a procedure body as a block with fictitious block-entry and block-exit. Moreover the initializations in a declaration as in "formula f = 3.14, g := 2.7" are considered as part of the statements; i.e. the above example is considered to be equivalent with "formula r, g; f := 3.14; g := 2.7" although it is not equivalent.

The own statements of a block b are those statements s, contained in b, for which b is the block; i.e. there is no other block contained in b containing s. Note that the statements of a compound statement are own statements of the block of the compound statement.

The envelope of a block b is the block e for which b is an own statement. We write e = env(b).

An innerblock of a block b is a block i such that b = env(i).

A block b has the goto-property, goto(b), if at least one of its own statements is a goto statement, or it has an innerblock i with the goto-property. Or formally:

\[\text{goto}(b) = \exists s \; (b \text{ is an own statement and } s \text{ is a goto statement}) \]

A block b has the formula-property, form(b), if formula variables are declared in the block (including local formula names for formal formula parameters called by value).

A block b has the label-property, label(b), if one of its own statements is labelled.

A block b has the dangerous-property, dang(b), if:

\[\text{form}(b) \land \text{goto}(b) \lor (\exists i:(\text{env}(i) = b \land \text{dang}(i))). \]

A program has the property: dangerous procedures, dang proc, if it contains a procedure declaration with an unspecified parameter or with a parameter specified as label, and its procedure body p has the property: goto(p).

It is now easy to formulate the criterion, with which we may decide that it can not be seen that "ERASE(smn)" is superfluous in the translation of the labelled statement: "1:s", where s is an own statement of the block b. The criterion is:

\[(\exists i:(b = \text{env}(i) \land \text{dang}(i))) \lor \text{dang proc}. \]
Stated positively, if there is no innerblock which is dangerous and if there are no dangerous procedures, then we may omit "ERASE(snn)". From the definition we see that an innerblock which is not dangerous has the property that it does not have itself dangerous innerblocks and that it does not have both the goto- and the formula property. Hence, if all the innerblocks are not dangerous then we may omit "ERASE(snn)" indeed, since the labelled statement can only be reached from other own statements of the block and statements of innerblocks.

It will now be investigated when it can not be seen that the introduction of snn is superfluous (so that the compiler will introduce it).

Firstly, we remark that if a block does not have the formula- property, it is not necessary to introduce snn, as the snn of the enclosing block may well serve for this purpose. In other words, with respect to formulas, the block is not really a block; it might be considered as a compound statement so that the own statements of this block may in fact be considered as own statements of its enclosing block.

Secondly, we remark that we can say that a block has the responsibility for introducing snn if it is necessary to insert "ERASE(snn)" in one of its own statements or if one of its innerblocks has this responsibility but does not introduce snn since it does not have the formula-property.

There are two cases to be considered: one case where we have dangerous procedures and one case where these are not present.

A block b has the snnni-property, snnni(b), if:

L(b) ^ (∃ i: (b = env(i) ^ dang(i))) v

∃ j: (b = env(j) ^ snnni(j) ^ ¬ form(j)),

A block b has the snnn2-property, snnn2(b), if:

L(b) ^ dang proc v ∃ j: (b = env(j) ^ snnn2(j) ^ ¬ form(j)).

If (snni(b) v snnn2(b)) ^ form(b), then snn will be introduced. If this is not the case, snn will not be introduced, since we can see that this would be superfluous. For, if ¬ form(b), it surely is superfluous; if form(b) ^ ¬ snnni(b), it follows that no labels are present for which "ERASE(snn)" is necessary and that all the innerblocks j have the property that either form(j), in which case "snn" would have been introduced in the innerblock if also snnni(j), or ¬ form(j) but then ¬ snnni(j).

It is not difficult to see now, by means of an inductive argument, that, indeed, "snn" would be introduced superfluous.
The same reasoning can be done in the case that there are dangerous procedures, in which case property srm2 is used.

The effect of the analysis is that normally one does not encounter "srm" and "ERASE(srm)" in the translated program. This is a nice result and we cannot resist the temptation to refer to the beautiful way this analysis has been built into the compiler. (See section 6.3.3)

4.7. The basic structures

The elements with which formula values are built up are boxes; each box consisting of three items: the type-category, the left-hand side (lhs) and the right-hand side (rhs). There are five basic structures with which the structures of an arbitrary formula value can be built up. The number, identifying the specific basic structure, is called the category, cat, and forms a part of the type-category. The basic structures are:

0. **Constant structures**: cat = 0; the lhs and the rhs are integer; (|lhs| < 2 ↑ 26 and |rhs| < 2 ↑ 17).
1. **Monadic structures**: cat = 1; the lhs is an integer (|lhs| < 2 ↑ 26); the rhs is a reference to a formula value.
2. **Dyadic structures**: cat = 2; the lhs and the rhs are references to formula values.
3. **Polyadic structures**: cat = 3; the lhs is a non-negative integer n; the rhs is a reference to a dyadic formula value ri. The lhs of ri is a reference to a formula value vi, the rhs of ri is, in case i < n, a reference to a dyadic formula value ri + 1, for 1 ≤ i ≤ n.
4. **Rowadic structures**: cat = 4; the lhs is a non-negative integer n; the rhs is a reference to a monadic formula value ri. The lhs of ri is an integer ci (|ci| < 2 ↑ 25), the rhs of ri is, in case i < n, a reference to a monadic formula value ri + 1, for 1 ≤ i ≤ n.

More visually the structures have the form:
There are no internal reasons for differentiating polyadic and rowadic structures from the other structures since they are basically built up from monadic and dyadic structures. In fact, STORE does not even use the value of n, since, in the general case, this is not possible. The reason is that a garbage collection might occur in the middle of building up a polyadic structure; then the part which has been formed already should be saved and at that time the value of n may not be appropriate.

It is for external reasons that we have introduced the polyadic and rowadic structures including the difference in the categories. The reasons being to be able to safeguard the programmer for errors, which otherwise could lead to almost undiscoverably complicated situations.

As a basic principle, the system is provided with the maximum amount of error-checking possible. The backlying theory is that:

1. ABC ALGOL programs are complicated due to the complexities involved with dynamically changing structures and due to the two languages involved: ABC ALGOL and ALGOL 60;
2. it is easy to throw out the testing, much easier, indeed, than to insert testing.

In view of the second point, we remark that the compiler can easily be changed such that procedure-calls like TYPE, LHS and RHS do not occur, but instead the direct operations on the array elements are produced.
Instead of using a two-dimensional array, as has been suggested in the preceding section, we declare two arrays C1 and C2 to be used as the space for the boxes. C1[k] is used for the lhs, while C2[k] has to store both the type-category and the rhs:

\[C2[k] = (\text{cat} \times 32 + \text{type}) \times 2 \uparrow 18 + \text{rhs}. \]

This imposes the restrictions:

0 ≤ type < 32 and 0 ≤ rhs < 2 \uparrow 18;

The value of the rhs of a constant structure is defined by:

\[\text{if EVEN}(\text{rhs}) = 1 \text{ then rhs ; 2 else -rhs ; 2}. \]

The list of names is organized by means of a dyadic structure: the integer variable "last name" has as value either NULL, in which case the list is empty, or the reference to the last name called name[grn]. The lhs of each name[i], 1 ≤ i ≤ grn, is either NULL, or is the reference to the formula value being saved; then the rhs of name[i] contains a reference to a dyadic structure name[i-1]. The rhs of name[1] contains NULL.

Within STORE, only two handles are used to which are attached all the names and formula values to be saved during a garbage collection; these are "last name" and the reference to the box into which STORE has just stored its three actual parameters. The value of this reference is the value of the integer "free cell", which at the beginning of STORE points to the first free box and at the end of STORE again points to the first free box. It is essential that STORE can always deliver its actual parameters in a free box, otherwise the simple statement "TRACE(free cell)" has to be changed into a write-out of TRACE for the triple: t, a and b.

The list of free cells is organized as follows: "free cell" points to the first free cell denoted by the index k while C1[k] points to the next; until a pointer equaling zero is found.

The garbage collection process, performed in STORE, makes heavy use of a procedure TRACE, which, for dyadic structures only, acts in a recursive fashion to trace the interesting, non-garbage, boxes. A direct iteration through the memory establishes the new list of free cells and undoes the cells from the markings produced by the tracing.
It is emphasized that we made use freely of space provided by the ALGOL 60 system for the recursive tracing. It would not be difficult to implement a more sophisticated scheme in which the space of C1 and C2 is used only for the tracing. For these techniques we refer to the literature: Knuth[7] and Van der Mey[9].

Of particular interest is the method used for the procedures DE, DEVAL and ERASE. While experimenting with the old procedures of sections 4.3 and 4.4 we discovered that a call of ERASE was, very frequently, followed immediately by a call of DE or DEVAL so that space given free by ERASE was reclaimed instantaneously by DE or DEVAL for storing names. The name list is, therefore, organized as a stack of which the top elements are, upon ERASE, not immediately given back to free space but only after a while so that DE or DEVAL get a chance to reuse them, without the aid of STORE. The effect of this implementation was a 15 percent increase in speed. As only two names at most are used for this purpose, the cost in space is negligible.

Concerning the other procedures of the run-time system, it suffices to make the following remarks:
For each of the formula enquiries: lhs of, rhs of and el ... of there are two run-time procedures: LHS, ARLHS, RHS, ARRHS, EL and AREL. The "AR" version appears when the formula enquiry is situated in an arithmetic or Boolean expression in which case we are interested in integral values; the version without "AR" appears in a formula expression, or inside a formula enquiry only (e.g. "rhs of" in "lhs of rhs of f"). Each version has its own error diagnostics.

Observe that LHS, RHS and EL give error messages if the type is such that the result would be a constant. Consider the following example:
f:= constant(5,123,321); h:= lhs of f;
g:= if random < .5 then lhs of f else rhs of f",
Where f, g and h are variables of type formula.
The procedures LHS and RHS give error messages which are somewhat crude; let us investigate the alternatives. It is evident that to h and g references to formula values must be assigned. There are thus two possibilities: either a new formula value is created with as value \(123\) or \(321\) and the reference to this formula value is given as value to \(h\) and \(g\), or the value of \(f\) itself is given to \(h\) and \(g\). The latter possibility gives problems as it is impossible to see later on from the value of \(g\) which of the two choices has been made \(\text{lhs}\) or \(\text{rhs}\). The first possibility has the draw-back that values are created, not under the direct responsibility of the programmer, with types chosen rather arbitrarily. For the above case the effect would be the same as:

\[
\begin{align*}
\text{\"f:= constant}(5,123,321); h:= constant}(5,123,0); \\
g:= \text{if random < .5 then constant}(5,123,0) \text{ else constant}(5,0,321)\" \\
\end{align*}
\]

For standard procedures the draw-back would be very serious as these procedures also have to cope with such unintentionally created formula values.

Another alternative would be to give no error message anyhow. This is, however, contrary to the general principle to warn the programmer each time something is unclear and probably due to a programming error.

There being no real alternatives, we were forced to make LHS, RHS and EL as they are, with the somewhat awkward consequence that simple constructions like:

\[
\begin{align*}
\text{\"begin } &\text{ formula } l,r; l:= \text{lhs of } f; r:= \text{rhs of } f; \\
&\text{ if dyadic } f \text{ then begin }\ldots l \ldots l \ldots r \ldots r \text{ end else} \\
&\text{ if monadic } f \text{ then begin }\ldots r \ldots r \ldots \text{ end else} \\
&\text{ if constant } f \text{ then begin }\ldots \text{ end} \\
\ldots \\
\text{end\"} \text{ are in general not admitted.}
\end{align*}
\]

Rowadic and polyadic structures are built up by means of monadic and dyadic structures, respectively. It is thus meaningful to allow the use of the LHS and RHS operators also for these structures. The \(i\)-th element can be reached by the following algorithm:

\[
\begin{align*}
\text{if } i < r \text{ then } &\text{lhs of } f \text{ then goto no element; } \\
g:= \text{rhs of } f; \\
\text{for } i:= i-1 \text{ while } i > 0 \text{ do } g:= \text{rhs of } g; \\
\text{if polyadic } f \text{ then } g:= \text{lhs of } g \text{ else } i:= \text{lhs of } g;
\end{align*}
\]
The result is either that a jump is made to the label "no element" if the value of i is not appropriate, or that the value is delivered in g, if f is a polyadic structure and in i, if f is a rowadic structure.

It is remarked that in the "enquiry" procedures as TYPE, TYPE CAT, LHS, ..., AREL, it is not tested whether F has the value NULL since this is done automatically by the ALOOL 60 run-time system and it is very-simple to reconstruct the error message from the line number.

The procedure STRING is used, together with its cooperating procedure st, to store a string as a rowadic structure with a type equal to 31. The working of these procedures is rather complicated. The translation of the string "4012345674" is: "STRING(st(66051, st(263430, st(1800, 0))), 3)". The global integer "ici", used as "Jensen-variable" in a call of STORE ROW by STRING, obtains in STORE ROW the values 3, 2 and 1, respectively.

Evaluation of the first actual parameter of STRING leads to execution of st, which, when di > 1, leads to evaluation of the second actual parameter of st after a decrease of di. The first actual parameter of STRING is peeled off a number of times indicated by the value of di. The first element stored by STORE ROW is, therefore, 1800, the second one is 263430 and the third and last one is 66051.

4.8. The run-time system

We now reproduce the run-time system.
begin comment Most simple run-time system for efficient ABC ALGOL;
 integer max of memory, free cell, last name, gcn, smn, N, NULL,
 constant, monadic, dyadic, polyadic, rowadic, t23, t18, t17, linectr,
 di, kn, prev last name, gcil, max gcil, nr of names, nr of values;
 Boolean protect; real time1;
 integer array linebuf[1:10];

procedure ERR(s); string s;
begin NLCR; PRINTTEXT(s);
 if linectr ≠ 0 then
 begin integer i, ub, line; ub := linectr + 1; CARRIAGE(2);
 PRINTTEXT(4
 for i := linectr step -1 until 1, 10 step -1 until ub do
 begin line := linebuf[i];
 if line ≠ -1 then absfixt(4, 0, line) else goto out
 end
 end;
 out: EXIT
end ERR;

procedure lnr(linenumber); integer linenumber;
begin linectr := linectr + 1;
 if linectr = 11 then linectr := 1;
 linebuf[linectr] := linenumber
end lnr;

integer procedure ERROR(b, s); boolean b; string s;
begin if b then ERR(s); ERROR := 1 end;

max of memory := read; gcn := nr of names := nr of values := 0;
 time1 := time; last name := kn := prev last name := 0;
 gcn := smn := max gcn := 0; linectr := 0;
 for di := 1 step 1 until 10 do linebuf[di] := -1;
 t23 := 2 ↑ 23; t18 := 2 ↑ 18; t17 := 2 ↑ 17; N := -2 ↑ 16 + 1;
 constant := 0; monadic := 1; dyadic := 2; polyadic := 3;
 rowadic := 4; NULL := 0; protect := false;

begin integer array C1,C2[1:max of memory];

integer procedure STORE(t,A,B); value t,A,B; integer t,A,B;
begin integer k,i; k:= C1[free cell];
 comment "Free cell" points to the first free cell of the
 free list. The list is never empty when we enter STORE;
 C1[free cell]:= A; C2[free cell]:= t × t18 + B;
 STORE:= free cell;
 if protect then ERR(4(protection error));
 if t = 64 then nr of names:= nr of names + 1 else
 nr of values:= nr of values + 1;

if k = 0 then
begin comment A garbage collection is necessary now;
 procedure TRACE(F); value F; integer F;
L: if F < 0 then else
begin integer i:= C2[F]; if i > 0 then
 begin integer t; t:= i ÷ t23; C2[F]:= -i - 1;
 if t > polyadic then t:= monadic;
 if t = monadic then
 begin F:= i ÷ t18 × t18; goto L end else
 if t = dyadic then
 begin t:= i; TRACE(C1[F]); F:= t - t × t18 × t18;
 goto L end end
 end end end TRACE;
TRACE(free cell); TRACE(last name); gci:= gci + 1;
for i:= max of memory step -1 until 1 do
if C2[i] < 0 then C2[i]:= -C2[i] - 1 else
begin C1[i]:= k; k:= i end;
if k = 0 then ERR(4(no space left))
end garbage collection;
free cell:= k
end STORE;

integer procedure STORE CONST(t,l,r); value t,l,r; integer t,l,r;
begin if t < 0 v t > 31 then ERR(4(type in const not appropriate));
if abs(r) ≥ t17 - 1 then ERR(4(type value in const too large));
STORE CONST:= STORE(t,l,(if r < 0 then t17 else 0) + abs(r))
end STORE CONST;

integer procedure STORE MONADIC(t,A,B); value t,A,B; integer t,A,B;
begin if t < 0 v t > 31 then ERR('type in monadic not appropriate');
STORE MONADIC:= STORE(t + 32,A,abs(B))
end STORE MONADIC;

integer procedure STORE DYADIC(t,A,B); value t; integer t,A,B;
begin integer A1,B1,fun; fun:= gnn;
 if t < 0 v t > 31 then ERR('type in dyadic not appropriate');
 DEVAL(A1,A); B1:= B; ERASE(fun);
 STORE DYADIC:= STORE(t + 64,abs(A1),abs(B1))
end STORE DYADIC;

comment It is not necessary to test whether the references to be stored
are references to values and not references to names. The reason is that a
formula expression always delivers a reference to a value;

integer procedure STORE ROW(c,t,i,nr,Ai); value c,t,nr;
 integer c,t,i,nr,Ai;
begin integer row,fun; fun:= gnn;
 if t < 0 v t > 31 then ERR('type not appropriate in row');
 if nr < 0 then ERR('nr of elements is negative');
 t:= t + c; DE(row,NULL);
 for i:= nr step -1 until 1 do
 ASSGN(row,STORE(160 - c,if c = 96 then abs(Ai) else Ai,
 if i = nr then 0 else V(row)));
 ASSGN(row,STORE(t,nr,if nr = 0 then 0 else V(row)));
 STORE ROW:= V(row); ERASE(fun)
end STORE ROW;

procedure DE(f,E); value E; integer f,E;
begin E:= abs(E); if kn > 1 then
 begin Ci[prev last name]:= E; f:= prev last name; kn:= 1; end else
 if kn > 0 then
 begin Ci[last name]:= E; f:= last name; kn:= 0 end else
 begin prev last name:= last name;
 last name:= f:= STORE(64,E,last name)
 end; gnn:= gnn + 1; f:= N - f; if max gnn < gnn then max gnn:= gnn
procedure DEVAL(F,E); value E; integer F,E;
begin F:= E; if E > 0 then
begin F:= - E; if kn > 1 then
 begin C1[prev last name]:= E; kn:= 1; end else
 if kn > 0 then
 begin C1[last name]:= E; kn:= 0 end else
 begin prev last name:= last name;
 last name:= STORE(64,E,last name)
 end;
 gnn:= gnn + 1; if max gnn < gnn then max gnn:= gnn
end end DEVAL;

procedure ERASE(n); value n; integer n;
begin gnn:= gnn - n - 1; if gnn > 0 then
begin for gnn=gnn - 1 while gnn > - kn do
 begin C1[last name]:= free cell; free cell:= last name;
 last name:= prev last name; if last name ≠ 0 then
 begin prev last name:= C2[last name]; prev last name:=
 prev last name - prev last name ∩ t18 ∩ t18
 end end; kn:= kn + gnn + 2;
 if kn = 2 then C1[prev last name]:= 0; C1[last name]:= 0
end; gnn:= n
end ERASE;

integer procedure ASSIGN(f,E); value f,E; integer f,E;
begin if f > N then ERR(assignment to a value);
 if E = NULL then ERR(undef rhs in ass stat);
 ASSIGN:= C1[N - f]:= abs(E)
end ASSIGN;

integer procedure V(f); value f; integer f;
begin f:= V:= C1[N - f];
 if f = NULL then ERR(val of undef var in expr)
end V;

integer procedure VN(f); value f; integer f;
begin if f < N then f := C1[N - f];
 if f = NULL then ERR("val of undefined name var in expr"); VN := f
end VN;

integer procedure TYPE(F); value F; integer F;
TYPE := remainder(C2[abs(F)] ÷ t18, 32);

integer procedure CAT(F); value F; integer F;
CAT := C2[abs(F)] ÷ t23;

integer procedure LENGTH(F); value F; integer F;
begin integer t; t := C2[abs(F)] ÷ t23;
 if t < polyadic then ERR("type in length not appropriate");
 LENGTH := C1[abs(F)]
end LENGTH;

integer procedure LHS(F); value F; integer F;
begin if C2[abs(F)] ÷ t23 = constant then ERR(
 "type in lhs not appropriate"); LHS := sign(F) × C1[abs(F)]
end LHS;

integer procedure ARLHS(F); value F; integer F;
ARLHS := C1[abs(F)];

integer procedure RHS(F); value F; integer F;
begin integer r; r := C2[abs(F)];
 if r ÷ t23 = constant then ERR(
 "type in rhs not appropriate");
 RHS := sign(F) × (r ÷ t18 × t18)
end RHS;

integer procedure ARRHS(F); value F; integer F;
begin integer r; r := C2[abs(F)];
 r := r ÷ t18 × t18;
 ARRHS := if r ≥ t17 then t17 - r else r
end ARRHS;

integer procedure EL(i,F); value i,F; integer i,F;
begin integer s; s:= sign(F); F:= abs(F);
 if C2[F] \div t23 \not\in polyadic then ERR("type in el not appropriate");
 if i < 1 v i > C1[F] then ERR("index in el not appropriate");
 for i:= i step -1 until 1 do
 begin F:= C2[F]; F:= F - F \div t18 \ast t18 end;
EL:= s \ast C1[F]
end EL;

integer procedure AREL(i,F); value i,F; integer i,F;
begin integer t; F:= abs(F); t:= C2[F] \div t23;
 if t < polyadic then ERR("type in arel not appropriate");
 if i < 1 v i > C1[F] then ERR("index in arel not appropriate");
 for i:= i step -1 until 1 do
 begin F:= C2[F]; F:= F - F \div t18 \ast t18 end;
AREL:= C1[F]
end AREL;

integer procedure STRING(ST,m); value m; integer ST,m;
STRING:= STORE ROW(128,31,di,m,ST);
integer procedure st(head,tail); value head; integer head,tail;
if di = 1 then st:= head else
begin di:= di - 1; st:= tail; di:= di + 1 end;

procedure Zreplace(f,left,g);
value f,left,g;
integer f,g; Boolean left;
if left then C1[f]:= g else
begin integer t; t:= C2[f] \div t18;
 C2[f]:= t \ast t18 + g
end;

for di:= max of memory step -1 until 1 do
begin C2[di]:= 0; C1[di]:= di + 1 end;
C1[max of memory]:= 0; free cell:= 1;
The compiled ABC ALGOL program should be placed here followed by two end's and an integer defining the length of the arrays C1 and C2.
5. The compiling process

The ABC ALGOL compiler is, in all details, reproduced in chapter 6 as an ALGOL 60 program. The description is amply provided with comment, the identifiers are chosen as appropriately as possible (we hope) and the structure of the description itself, from top to bottom, should lend itself most conveniently for easy reading and studying.

As an aid, section 5.3 contains the alphabetic listing of the identifiers and the places where they are called in the compiler.

Albeit all these nice features, we consider it necessary to make some remarks on the compiling process.

From the first ABC ALGOL compiler, running in 1969, until the final one, we aimed at a two-pass clearly written compiler using a top-to-bottom syntax-analyzing technique. The features provided for in the final version and not contained in the first version range from error-recovery and packing of symbols to static-scope checking and optimality analyses.

5.1. The overall strategy

There is a hierarchy of procedures for the reading process: the highest procedure being "envelope of block" reading a complete program with heavy syntactical means. The lowest procedure being the MC standard procedure RESYM reading one symbol from input tape and delivering the internal representation of this symbol. In between we have a succession of other procedures. We may have e.g. the following sequence of procedures, where each procedure, except for the first one, has been called by its predecessor:

- envelope of block, block or statement, statement,
- unconditional statement, envelope of block, block or statement, declaration, procedure declaration, envelope of block, block or statement, statement, conditional statement, statement, unconditional statement, assignment statement, formula expression, simple formula expression,
- primary, RS, READ synt unit, NS, RESYM.

This calling sequence is pertinent to the following example:
"begin real x; begin formula procedure p; begin if x < 0 then
 p := 5.4 ;"

5.1.1. The lexical scan

The last four procedures are designed for what might be called the
lexical scan; in fact, the procedure RE reads one so-called syntactical unit
(su), using READ synt unit, while the first procedures are all designed for
reading high syntactical structures. These syntactical structures are built
up from su's as building stones. In the preceding example the respective
su's are:

- begin symbol, real symbol, identifier, semicolon symbol,
- begin symbol, formula symbol, procedure symbol, identifier,
- semicolon symbol, begin symbol, if symbol, identifier,
- smaller than symbol, integral number, then symbol,
- identifier, becomes symbol, real number, plus symbol.

The compiler is not interested in the value of a number; it only wants to
know whether it is a real or an integral number. Identifiers are of course
objects of more interest; if they are read, two global variables: "hr of
ident" and "ptr to first legit" obtain as values the identification number
of the identifier and the entry in the text array where the identifier
occurs, respectively. No automatic look-up in the name list is done; this
should be asked for explicitly by a call of "Search for identifier(n)",
which, if this procedure delivers the value true, gives in n the entry in
the name list where more information about the identifier is stored.
For a language like ABC ALCOL it is very desirable to look one su ahead.
This makes constructions like:

"L:="", "L:=", "L(" or "L"
easily recognizable. Therefore, we have two global variables: "synt unit", which designates the su under treatment now and "next synt unit", which designates the su to be treated next. This is reflected in the procedure RE where we have the statements: "synt unit:= next synt unit; next synt unit:= READ synt unit". Besides the procedure for reading a su, we have a printing and punching procedure "PR synt unit" which prints and punches the symbols of the su under treatment. Moreover, there is a procedure which combines both actions: "PR and RE" for printing and punching the su under treatment and for reading a new su.

The above-mentioned procedures are described in section 6.6.2.

5.1.2. The syntactical scans

The two-pass compiler is written as a single-pass compiler in that there exists only one procedure for each syntactical structure. Two Boolean variables: "first scan" and "second scan" serve as a switch. Except at the place where they change values, it is everywhere true that first scan = ~ second scan. The rough structure of the syntax-translating procedures is the following:

"procedure envelope of block;
begin integer local integers; Boolean local Booleans;
 procedure block or statement; ...;
 procedure declaration; ...;
 procedure statement; ...;
 procedure expression; ...;
 procedure block and name list procedures; ...;
block or statement
end"

Each block, including the procedure-body statement promoted to become a block, is translated by means of a call of "envelope of block", which then calls the other syntax-translating procedures. The effect is that all the syntax-translating procedures have the same environment consisting of the local integers and the local Booleans. If an inner block has to be translated, a (recursive) call of "envelope of block" preserves the current local variables and introduces automatically a new set of local variables. Finishing the inner block, we automatically get back our original local variables. Between the first and the second scan the values of these variables are retained in the information list.
5.1.3. The information list

In the information list, the integer array "contents of", information cells are stored from bottom to top while identifiers, i.e. the characters forming the identifiers, are stored from top to bottom. During the first scan, identifiers, occurring in the text, are replaced by unique numbers in order to reduce the size of the text array and to speed up the search-for-identifier process. The lexical scan delivers for each identifier read two pieces of information: "nr of ident" identifying the identifier and "ptr to first letgit" defining the place in the text array where the identifier is put.

For almost all identifiers, declared in the program, an information cell (ic) is created containing the relevant information about the identifier: "nr of ident" for the identification, "ptr to first letgit" denoting the place in the text array of the defining occurrence, the type, other information as number of parameters or dimension and space for link pointers.

It's are, moreover, provided for block-begin's and block-end's; firstly in order to save information pertinent to a block and secondly for the search-for-identifier-process where the block structure has to be taken into account with. For the latter purpose, the ic's of identifiers declared in a block are physically placed between the ic's of the block-begin and the block-end. (See also section 5.2.3.5).

There are three lists formed by identifier ic's:
 . a list of integers (to which a formula procedure identifier may be attached);
 . a list of formula variables (to which parameters may be attached);
 . a list of formula array segments.

Moreover, the begin- and end-ic's are linked.

The following example shows the structure of the information cells, in particular with respect to the several lists.
begin \textbf{formula} \ f_1, f_2; \ \textbf{integer} \ i_1, i_2; \ \textbf{real} \ r_1, r_2;
\text{Boolean} \ b_1, b_2;
\text{formula} \ \textbf{procedure} \ f_p(p_1, p_2, p_3); \ \textbf{value} \ p_2;
\text{formula} \ p_1, p_2; \ \textbf{real} \ p_3;
\text{begin} \ \text{integer} \ i_1, i_2; \ \text{formula} \ f_1, f_2;
\text{formula} \ \textbf{array} \ f_{a1}, f_{a2[1:2]}, f_{a3}, f_{a4[1:2,3:4]};
\text{integer} \ i_3, i_4; \ \text{formula} \ f_3, f_4;
\text{formula} \ \textbf{array} \ f_{a5[1:2,1:2]};
\text{...}
\text{end;}
\text{procedure} \ pr;
\text{begin} \ \text{integer} \ i_1, i_2, i_3; \ ...
\text{begin} \ \text{formula} \ g_1, g_2; \ ... \ \text{end}
\text{end;}
\text{...}
\text{end}

Now follows the information list consisting of the ic's in the order indicated by the order of the ic's in the following picture from left to right and from top to bottom.
Note that during the second scan, the order of the list of formula identifiers is reversed in order to treat the declarations appropriately.

Identifiers of quantities other than of arithmetic or formula type are considered by the compiler as non-interesting and no ic’s are created for them.

By means of a call of "STORE into information list" and "st" an ic, consisting of the n items: item1, item2, ..., item n, is created:

"p:= STORE into information list(st(st(...s:0,
 item1),
 item2),
 ...
 item n))".

To get back the i-th item we simply have to ask for the value of:

"contents of[p+i]".

The format of the identifier ic’s is the following:

<table>
<thead>
<tr>
<th></th>
<th>Arithmetic but</th>
<th>integer</th>
<th>formula-array</th>
<th>formula</th>
<th>procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>non-integer</td>
<td></td>
<td>segment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

item1	nr of ident	same	same	same	same
item2	ptr to first letget	same	same	same	same
item3	type	same	same	same	same
item4		link	link	link	link
item5		dimension		nr of	param
item6					form proc

Identifiers of formula arrays not occurring as the first identifier in a formula-array segment have an ic not containing the link.

Item6 for procedures contains information relevant for the protect mechanism of formula procedures.
The begin-ic contains 9 items, the first one, identifying the ic as a begin-ic, being equal to -begin symbol. The end-ic contains 2 items, the first one being equal to -end symbol. As the values of "hr of indent" are normally positive, an easy distinction between identifier ic's and begin and end ic's has been achieved. (See, however, the discussion on operator identifiers in section 5.1.6).

5.1.4. The reading mechanism

During the first scan, the text is read from input tape and, after some more or less trivial changes, put into the text array. The changes concern: deletion of comment, change of "text: (" into a comma, replacement of word delimiters by one-symbol-codes and substitution of identifiers by unique codes.

During the second scan, the text is almost entirely read in a linear fashion. Sometimes, use is made of a back-track or a look-forward technique. For example in the case of "a[1]:= b[1]:= c[1] + d[1]", the ":=" symbol after "b[1]" is read before "b[1]" is treated as the lhs part of an assignment statement. Use is made of three procedures:

1. "SAVE reading ptrs", which puts all the reading pointers, as "synt unit", "next synt unit", "ptr of text" or "line number" on a stack and stops the counting of begin's, end's and lines.
2. "SKIP text until", which skips text until a Boolean condition, being its actual parameter, is fulfilled, taking into account the brackets structure. Example: "SKIP text until (synt unit = comma symbol)" leads, for the following text (part of an array declaration):

 "x[1,2]: p(1,2,3) × y[q(1,2),27]; ...",

to the skipping of the text until: ":",27]; ...".
3. "RESET reading ptrs", which resets the reading pointers to the values being placed on the stack by the first procedure. If the stack is empty, it reenables the counting of begin's, end's and lines.

For the multiple assignment above, the compiler investigates the situation as follows (section 6.4.4):
"L:
 treat lhs part of assignment statement;
 if synt unit = identifier then
 begin if next synt unit = becomes symbol then goto L else
 if next synt unit = sub symbol then
 begin SAVE reading ptrs, RE; RE;
 SKIP text until (synt unit = bus symbol);
 if next synt unit = becomes symbol then
 begin RESET reading ptrs; goto L end else
 RESET reading ptrs
 end end;
 treat rhs part of assignment statement"

In a situation like: "\textit{formula} f,g:= x*y \times z; \textit{formula array} fa[1:lhs of h]",

it is necessary to treat the expressions "x*y \times z", "1" and "lhs of h" not at
the places where they occur in the text. In the information cells of g and
of fa, the pointers to their defining declarations in the text are put so
that we can find back the text of the expressions. For this purpose we use
the procedure "SET reading ptrs on". If the ic of g has the address "a",
"SET reading ptrs on (contents of(a+2))"

has as effect that after two calls of RE, to skip "g" and ":=", the
expression "x*y \times z" can be read.

5.1.5. Error detection and error recovery

The errors in an ABC ALGOL program can be divided into errors discoverable
by the compiler (almost all syntactic errors) and errors becoming manifest
during the running of the translated program only. Besides these errors,
there is an unknown category of non-detectable errors which we will not
discuss. Let us call a piece of text, which has the pretension being an ABC
ALGOL program, a Pretentious ABC ALGOL Program (PAAP). We assume that a PAAP
consists of syntactic units.
Apart from some exceptions, only fatal errors are detected in reading syntactic units. Fatal errors are the result of overflow of tables and arrays and lead to a discontinuation of the compile process. The exceptions are trivial errors as in: "for comment" or "constant T". Note that there is an important syntactic unit: "unknown symbol".

If a PAAP does not begin with a begin, this is corrected by putting a begin in front of it. After such a possible correction each PAAP has a blockstructure and its first syntactic unit is begin. The end of the PAAP must explicitly be indicated by a special symbol for which we have taken ";". If this symbol is part of a string or of comment, it automatically serves for as many right string quotes as are necessary or as a semicolon; moreover, it serves for as many end's that are missing.

If a PAAP has a blockstructure such that the symbol after the final end is not equal to ";", the superfluous symbols are deleted. The result is a PAAP of which the blockstructure obeys the laws of an ABC ALGOL program.

One level deeper, we find declarations and statements. For the time being we will consider a compound statement to be a block. Statements and declarations are separated by semicolon's.

Except for procedure declarations, declarations do not contain semicolon's. Statements which are no blocks do not contain semicolon's. Apart from procedure declarations and blocks we thus arrive at the following error-recovery scheme: let the compiler read a pretentious declaration or a pretentious statement; there are two possibilities: either during this process a semicolon or an end is encountered, upon which as many symbols as are necessary are virtually supplied to correct the PAAP (missing right brackets e.g.), or the semicolon or end is not encountered. In the latter case we may delete all symbols possibly present before the semicolon or end.

The first case needs some more considerations.

Firstly, it is necessary that the compiler does not bypass a semicolon or end without being aware of this fact. To this end, a Boolean variable: "no semicolon or begin end allowed" is being used, which, when true, prohibits actual reading (i.e. a call for RE does not result in any change of the reading pointers) if synt unit is equal to a semicolon, a begin or an end. Only when its value is false, the reading process continues also for a semicolon, a begin or an end. There are special procedures: "RE semicolon", "RE begin" and "RE end" for this purpose.
Secondly, suppose that the compiler requires a certain symbol to be present in the PAAP, but it is not there. That symbol is then virtually (= not in the text array) inserted; moreover, the reading process is halted for exactly one synt unit. This means that the next call of RE has no effect on the value of the reading pointers, except that the switch, in the form of the Boolean variable "delay one RE", is turned off.

Example: "(a \times (b+c)((a+c(d \times (e+f)) + c[g])))" is corrected into:

"(a \times (b+c[([a+c[d \times (e+f)]) + c[g]]));"

The interesting feature of this scheme is that it fixes quite a number of errors; while, on the other hand, the apparatus used in the compiler is minimal: some lines of program in the reading mechanism and explicit calls of the procedure "CHECK", every time the compiler requires a certain symbol to be present.

Besides calls of "CHECK", we encounter calls of the procedure "ERR" within the syntax-analyzing procedures. These calls are invoked when errors of more semantic nature are encountered, such as: identifier not declared, too much parameters or type of actual parameter not in correspondence with type of formal parameter. These errors can easily be repaired such that the compiling process may go on.

For procedure declarations, the situation is a little bit different: we have to be aware of some extra semicolons.

A statement, in the form of a block, can not give any troubles as the block structure itself is error free (which does not mean that the compiler necessarily has the same opinion about the block structure as the programmer); the block then automatically decomposes into declarations and statements, for which the above considerations hold.

An error message has to include a line number. For the first scan, this is no problem at all, except for the fact that one syntactic unit is read in advance. During the second scan, however, the situation is more complicated due to actions in which the reading pointers are changed; in particular when they are changed by means of "SET reading ptrs on" to point to an arbitrary piece of text. The line number of that piece of text has to be available. It is part of the information contained in "ptr of first letgit".
Also error messages during execution of the translated ABC ALOOL program have to be provided with a line number. Each block-begin is, therefore, translated such that a call of "Inr(...)" is inserted. The actual parameter is the line number of the corresponding begin. The procedure Inr of the running system has a cyclic buffer, so that upon an error message the line numbers of the last 10 activated blocks can be printed.

On the proper termination of the compilation of a PAAP, we can make the following remarks. Firstly it can be seen (with some pains) that the compiler behaves neatly for a correct ABC ALOOL program. Secondly, we have described the way the compiler corrects the PAAP. The block structure is certainly correct. The form of the statements could be incorrect. Assuming that the statement-analyzing procedures terminate, it can simply be seen that the block procedure terminates. If a statement procedure is called anyhow, the first syntactic unit must fit and the next syntactic unit is read. The only possible danger is an infinite loop either on account of a "L: ... goto L" situation, which is not possible unless we had an infinity of comma's, or on account of an infinite recursion.

In the latter case no danger is present if each time a procedure is called at least one syntactic unit is actually read. The danger occurs when virtual syntactic units are created. This is only possible in a "CHECK" situation where the syntactic unit is not what it should be. A situation like: "...; CHECK(... symbol); RE; proc; ..." with: "procedure proc; begin CHECK(... symbol); RE; ... end" does not occur, however.

5.1.6. Identifiers

Identifiers are picked up from the text and, if not already present, placed in an alphabetically ordered binary tree situated in the higher part of the information list. The organisation is as follows: The cell containing the identifier consists of the following words:

. a number of words containing the letters and digits, packed four in a word, of which the last word is negative;
. a word containing a pointer to the tree containing identifiers following, in alphabetical order, this identifier;
a word containing a pointer to the tree containing identifiers preceding, in alphabetical order, this identifier;

a word containing the number which internally represents the identifier (nr of ident).

To find the letters of an identifier with a given internal number as code, a second small sized array is used containing the address of the cell in the information list. The letters in the text array are replaced by the internal code. Possible occurring new line symbols are taken care of by inserting them afterwards. Due to the way symbols are packed in the text array, i.e. 3 in one X8 word, the internal code of any symbol may not exceed 399. A consequence is that if more than 218 different identifiers occur, another strategy has to be followed for the replacement (There are roughly 180 different symbols to be coded, including the word delimiters). The identifier then occupies three symbols: s1, s2 and s3, the first one being equal to 399, the identifying number being equal to: s2 × 400 + s3.

The identifiers of standard procedures are all placed, together with information on type, number of parameters and possible appearance in upper and lower case, in alphabetical order in a string. The search technique uses the alphabetical order.

It is interesting to observe that the search technique for word delimiters uses a hash-code technique in view of the fact that we wanted the word delimiters to be stored in a special, non-alphabetical, order (Moreover, we wanted to apply three techniques: binary tree, alphabetical order and hash code).

The treatment of operator identifiers, as "dyadic-" or "constant-", needs some extra clarification. The underlying principle is to handle them, despite their appearance, as much as possible as ordinary identifiers. That means that at a low level (RE) they have to be recognized, at the higher level they are only taken into account, if the compiler is explicitly aware of them (e.g. after "formula procedure" or at the lhs of an assignment statement). Normally an operator identifier may not occur at a place where an ordinary identifier may occur. In order to prevent explicit testing upon the absence of an operator identifier, the following simple method is used. In normal cases each time an identifier occurs it is being printed by means of "PR and RE" or "PR synt unit". Within these low-level procedures an error message is given when an operator identifier has to be printed. Any time
the compiler is aware of an operator identifier which is to be printed, a special printing procedure "PR operator" is called. As the printed version of the operator identifier is rather peculiar ("S" and "MI" for the example above), this special treatment had to be given anyhow. Now we have achieved that we are not hindered in the normal case with operator identifiers.

To let operator identifiers behave as much as possible as normal identifiers, the values of "nr of ident" and "ptr to first letgt" have to be defined. The latter one can point, as usual, to the place in the text array where the formula procedure is defined. The first one is made negative, equalling:

\[-(\text{synt unit} \times 1024 + \text{next synt unit})\]

assuming that "synt unit" denotes the internal representation of constant, monadic, dyadic, rowadic or polyadic and "next synt unit" the operator. All identifiers being identified by means of the value of "nr of ident", it follows that all operator identifiers are different from normal identifiers, but we can use the normal apparatus to treat them; such as "Search for identifier" or "procedure declaration". In the latter procedure an exhaustive test is being performed for formula procedures defining operators with respect to number and type of the formal parameters.

The translated identifiers should be such that a clash with existing identifiers of the procedures and variables of the running system and with standard identifiers is impossible, while, at the same time, the ABC ALGOOL programmer should be as free as possible in his choice. Therefore, each identifier (except those of standard procedures) is translated by putting infront of it either a "Z" or a "Y". The "Y" is put if an extra local variable is necessary to be used simultaneously with the original identifier (the local integer for a formula procedure identifier or the local variable for a called-by-value formula parameter). The "Z" is used in the normal case of a direct translation.

5.2. The compiler from begin to end
In this section the several parts of the compiler will be discussed. The number 5.2.1 of each sub section refers to the number 6.1 of the corresponding section of the next chapter, where the ALGOL 60 text of the compiler is given. As this text itself is amply provided with comment, it suffices to make a few remarks only.

5.2.1. Prerequisites for translation process

Local to the procedure "envelope of block" are all the syntax-analyzing procedures from section 6.2 to 6.5, and the following variables, the meaning and usage of which will now be described.

The parameter "procedure body" indicates, when equal to zero, that a block or a compound statement has to be treated. The latter case can occur only when the program itself is a compound statement. When not equal to zero, a procedure body has to be treated and the information cell for the block-begin of this procedure body has been created already (within the procedure "procedure declaration"; see section 6.3.4). The value of "procedure body" defines the information cell of that block-begin.

The integers "ptr to integer", "ptr to formula" and "ptr to array segment" are used to point to the last cells of linked lists of information cells for identifiers. The linking process always has the following form:

"Initialization: ptr to something:= 0;
...
create a new something:
ptr to something:= STORE into information list(st(... st(... st(0,
...),
ptr to something),
...))".

The list of formula identifiers, e.g., is created by several calls of "formula declaration", one for each occurrence of the declarator formula and by internal loops within "formula declaration", one for each identifier in a formula list (as in "formula f_1, f_2, f_3;"). It is the task of "formula declaration" to go on with extending the already existing list of formula identifiers.

The integers "nr of array segments" and "max dimension in array declarations" will be discussed in section 5.2.3.2.
The Boolean "formula block" indicates whether the block contains declarations involving the creation of formula names such that, upon execution, the number of names changes. Its value determines whether the statement "ERASE(frn)" will appear at the end of the block and whether a jump out of the block (see section 4.6) is possibly dangerous.

The Boolean "dangerous inner block" determines whether the block contains an inner block, while the latter one contains itself a dangerous inner block or a goto statement and formula declarations (see section 4.6).

The Boolean "ann necessary" determines whether in the declaration of integer variables, also the variable "ann" should be declared followed by the statement "ann:= gna" after the treatment of the declarations (section 4.6). The Booleans "block contains labels" and "block contains gotos" are self-clarifying.

The Boolean "proc id ass stat" is used to determine whether the last statement of the block (except for some dummy statements at the end) is an assignment statement, the left-hand part of which contains the procedure identifier of the formula procedure of which this block is the procedure body. If such is the case, several safety measures can be skipped. The process is rather simple: before translating a statement the variable gets the value false; only the procedure assignment statement can change this value and it does so when it encounters the procedure identifier.

The Boolean "interested in proc id" indicates whether the block is the procedure body of a formula procedure.

The Boolean "block" determines whether we have a block (or compound statement) or a statement.

The only statement of the procedure body of "envelope of block" is: "block or statement".

5.2.2. Translation of a block

The rough structure is: translate the declarations (taking into account that each declaration is followed by a semicolon) and translate the statements.

5.2.3. Translation of a declaration
Concerning the item type in the information cell of an identifier we remark that it normally consists of two parts:

- the type part, tp, which defines the "plain" type
 e.g. \(tp = \text{real symbol} \times 2 \uparrow 15 \), for a \text{real} \\
 \(tp = \text{formula symbol} \times 2 \uparrow 15 \), for a \text{formula} \\
 \(tp = \text{formula symbol} \times 2 \uparrow 15 + \text{array symbol} \times 2 \uparrow 5 \), for a \text{formula array}

- the mode part, mp, which gives some more information;
 e.g. it may be equal to "declared as value" or "declared as name", "specified as value" or "specified as name", "with local" or "without local".
 These are all small (< 32) integers.

The type item itself equals \(tp + mp \).

5.2.3.1. Translation of a formula declaration

The procedure "Declare integers" reverses the list of formula variables, such that the procedure "Introduce names for formulae" produces the explicit declarations with "DE" and "DEVAL" in the right order; i.e. in the order written down by the programmer. With the effect that "\(\text{formula } x = 4x + f := x \)" is executed nicely. Note that the same declaration in the other order would lead to a run-time error message. In order to give that error message, "\(Zx \)" and "\(Zf \)" get the initial value "\(\text{NULL} \)". The necessary code is produced by "Introduce names for formulae".

5.2.3.2. Translation of a formula-array declaration

A formula-array declaration: "\(\text{formula array } fa[1:n] \)"", roughly has to be translated into: "\(\text{integer array } FA[1:N] \)", followed by: "\(\text{for } i:= 1 \text{ step } 1 \text{ until } N \text{ do } \text{DE}(FA[i], \text{NULL}) \)".
However, the lower- and upper-bound expressions may be evaluated only once. We, therefore, arrive at the introduction of a surrounding block in which the expressions are evaluated.

The following program is then translated correctly:
begin integer procedure n(f); value f; formula f;
 begin f:= der(f,x) + der(f,y); n:= degree(f) end;
 ...
 begin formula array fa[1:n(g)]; formula h; ... end
end
the translation of the second block being:

begin integer l,u,i; l:= 1; u:= Zn(Zg);
 begin integer array Zfa[1:u];
 integer Zh,frn; frn:= frn;
 DE(Zh,NUL);
 for i:= 1 step 1 until u do DE(Zfa[i],NUL);
 ...

; ERASE(frn) end

Consider now the above program in which the fourth line is replaced by:

procedure proc(par); value par; formula par;
 begin formula array fa[1:n(par)]; formula h; ... end

The treatment of "par" being performed together with the treatment of "h", troubles arise concerning the proper translation of "h(par)". In fact, the statement "u:= Zn(Zpar)" would be executed too early. It is for this reason that the procedure "arraybounds" changes the list of identifiers to be declared and for which names should be introduced by means of DE or DEVAL. In fact the list is broken into two lists: the first one containing identifiers of formal parameters specified as formula and called by value, the second one containing the rest of the identifiers, i.e. the identifiers declared as formula variables.

Before the arraybounds are computed the identifiers of the first list are treated, by declaring local variables and introducing names by means of DEVAL. The original list of identifiers is then changed such that it becomes the second list, which is treated when the declarations of the procedure body are treated.
If several lower- and upper-bounds occur they are identified as "low i c j" and "up i c j", where i and j stand for natural numbers. To produce the translation, use is made of the integers: "max dimension in array declarations" and "hr of array segments", In the procedures "arraybounds", "Declare formula arrays" and "Introduce names for formula array elements" a rather peculiar procedure "PRes" outputs a sequence of strings alternated by numbers.

5.2.3.3. Opening and closing a block

In this section the apparatus for the treatment of the block-begin, the block-end and for the closely related Search- for-identifier process is given.

5.2.3.5. Translation of a procedure declaration

A note-worthy observation is that an information cell for a virtual block-begin is created between the procedure identifier and the procedure parameters. In behalf of the procedure "envelope of block", called to translate the procedure body, this block-begin information cell may contain pointers to a list of integers (consisting of maximally one information cell for the formula procedure identifier) and to a list of formula variables (consisting of the information cells for the formula parameters called by value).

Note that the type of the i-th parameter of a normal procedure may be found in: contents of[a+14 + i*6], where a is the pointer to the information cell of the procedure identifier; for a formal procedure, i.e. occurring as formal parameter, this type is equal to:

\[-1 - \text{contents of contents of}[a+4] - i + i*2\]

In fact, for each parameter of a formal procedure an information cell is created containing as information the type only, as a negative quantity. A more elegant method would have been to put the information on the types in the information cell of the procedure identifier; as this information cell is created already when the identifier appears as a parameter, while the types are inspected in the specification part appearing later on, this method is unperformable.
We have to investigate if the negative values of the types overlap the negative values of other information cells i.e. \texttt{-beginsymbol}, \texttt{-endsymbol} and \texttt{-} ("adic symbol" $\times 1024$ + "operator symbol") for operator identifiers. Either a negative value of a type equals \texttt{-1}, in which case there certainly is no overlap, or this value equals:

\[-(\text{synt unit} \times 2 \uparrow 15 + \text{next synt unit} \times 2 \uparrow 5+s),\]

where \texttt{s} equals "specified as name" +1 (\texttt{=3}) or "specified as value" +1 (\texttt{=2}). The values of "synt unit" and "next synt unit" range from 64 (+ symbol) to 399. Thus, in this case the absolute value of the type is larger than $2 \uparrow 21$, a value not reachable by the operator identifier whose largest absolute value is smaller than $400 \times 2 \uparrow 10 + 400$.

After the treatment of the specification part, it is checked whether the procedure has parameters of type label, of type switch or unspecified. This information, together with the information on the presence of goto statements in the procedure body, serves to give the global variable "dangerous procedures" a value (see also section 4.6).

In behalf of the procedure "assignment statement" and in behalf of the test on the appearance of operator-identifier declarations, the global integer "in formula procedure body" gets as value the number of formula-procedure bodies declared within each other.

5.2.4. Translation of a statement

The procedure "statement" is called when a possibly labelled statement is to be translated. Depending on the environment, the translation may or may not be translated in more than one statements. This is determined by the Boolean variable "divisible".

For example, within: "i:= i+1; l:stat; \ldots.; l:stat may be translated into: "l:ERASE(srn); STAT", however, in "\texttt{do l:stat}" it must be translated as "\texttt{do begin l:ERASE(srn); STAT end}" at least if "ERASE(srn)" is necessary.

5.2.4.1. Translation of an assignment statement

Only the assignment statement to variables of type \texttt{formula} and to \texttt{formula-procedure} identifiers is of interest here. The statement: "f1:= f2:= fp1:= f3:= fp2:= f4:= expr" is translated into:
"(begin) FP1:= FP2:= FP3:= ASSIGN(F1,ASSIGN(F2,ASSIGN(F3,
ASSIGN(F4,EXPR)))) (protect:= true)(end)"

We assume that f1, f2, f3 and f4 are formula variables (possibly
subscripted) and that fp1, fp2 and fp3 are formula-procedure variables. Use
is made of a mechanism to link the information cells of fp1, fp2 and fp3
together. The "protect:= true" is provided if, for at least one of the
formula-procedure identifiers, it is true that the last statement of its
procedure body is not the assignment statement to the procedure identifier,
which is investigated during the first scan by means of the variable "proc
id ass stat".

The procedure is also helpful for the investigations mentioned in section
4.5. It has to be detected whether in a formula-procedure body an
assignment to another formula-procedure identifier occurs, in which case the
"protect:= false" statement at the end of this procedure body may not be
produced. Consider the following example:
1: begin ...
 formula procedure fp1;
2: begin ...
 3: begin ... begin ... end ...
 formula procedure fp2;
 4: begin ...
 5: begin ... 6: fp1:= ... end; ...
 end; ...
 end; ...
end ...

The block-end of the fourth block may not consist of "protect:= false", if
the "protect:= true" is necessary for "fp1". The way this is programmed
shows the strength of the block-structured information list.
First, it is determined how deep, with respect to "6", the procedure "fp1" is declared (in our case block depth = -4); next, three block-begin's are inspected to see whether their blocks are procedure bodies of formula procedures, in which case a special notice is made that "protect:= false" may not be produced. This notice is made by using the 6-th item of the information cell of the procedure identifier. Contents of[a+6] = 0 means: no protection needed, ≥ 1 means: protection is needed, but if = 2 then "protect:= false" must be suppressed. See also the procedure "Block exit" of section 6.3.3.

In order to enable the procedure "simple formula expression", i.e. the procedure "primary", to see whether a formula-procedure identifier is used, declared in a block with a block depth deeper than the block depth of the formula-procedure identifier occurring at the left-hand side, the global variable "min block depth" is being used together with the global variable "proc id ass stat".

5.2.4.2. Translation of a procedure statement

The procedure has a parameter "IRN necessary" which determines if the procedure is called as a function designator in a formula expression.

5.2.5. Translation of an expression

The compiler knows two types of expressions: "formula expression" and "other expression". The first one is investigated in all details; while the second one is scanned only to take into account the bracket structure, to pick up function designators and to treat the identifiers.

An important "other expression" is the Boolean expression: "f = g", where "f" and "g" both are formula variables.
At first sight, this seems meaningless; for the translation: "abs(V(F)) = abs(V(G))" says: are the references of f and g the same. A useful application is the case that "f" or "g" is "one" or "zero", assuming that the system is made such that only one "one" and only one "zero" are present. In that case equality of references means equality of values and then the test "f = one" (Note, not f = 1) is much faster than: "if constant f then line of f = r". In order to be able to use the test "line of f = one", the procedure ARMS gives, in the case that the type of f is not constant or monadic, no error message but the (absolute) value of the reference instead. See also the discussion in section 2.5 on this subject.

The treatment of identifiers in a formula expression can only be understood if section 4.4 is understood.
In a formula-procedure-identifier-assignment-statement: "p:= exp", we have to be aware of a direct transfer of a value from a variable or a function designator to "p". To this end "proc id ass stat" is used; it is made true if the above case occurs and it remains true until, by means of a function designator or an operator (also a form of a function designator), the identifiers of the expression are shielded away from "p". That "proc id ass stat" may recapture its old value can be seen from the example: "p:= if f = one then a else if f = zero then b+c else d". One might ask whether it would not have been easier to have "proc id ass stat" as parameter of "formula procedure" and thus of "simple formula procedure", instead of saving its value a number of times by means of local auxiliary Booleans "pias". The answer is that, originally, the compiler was not aware of special assignment statements anyhow. The above construction grew gradually. Its advantage was that calls for "formula expression" did not have to be changed.

5.2.6. The auxiliary equipment

Except for one remark on standard identifiers, we refer to the ALGOL text. The standard identifiers are stored as a string. The meaning of the + is: the identifier may occur in lower and in upper case, the meaning of the last bracket is:) real procedure,] integer procedure, > non-type procedure.

5.2.7. Initialization
The initialization consists of several parts.
Firstly, the initialization at the very beginning before any ABC ALGOL program is treated; this consists of the procedure "INITIALIZE symbols" and the filling of the array "adic op" for the adic operators.
Secondly, the initialization at the beginning of each ABC ALGOL program; this consists of the procedure "INITIALIZE inf list ptrs".
Thirdly, the initialization at each scan for each ABC ALGOL program; this consists of the procedure "INITIALIZE reading ptrs".

The whole process of how the several ABC ALGOL programs are treated and how the state variables are set can best be studied by inspecting section 6.6.5 of the main program. Note that the main loop is:

```
fill adic op; INITIALIZE symbols;
BEGIN: set state variables; INITIALIZE inf list ptrs;
 L: INITIALIZE reading ptrs; ...
      begin:= 1; preceding begin:= 4;
      envelope of block(0);
      if first scan then
      begin ... first scan:= false; g00 L end;
      EXIT
```

and in EXIT a jump to BEGIN is made.
The same EXIT is called if the compiler decides to discontinue the further compilation through FATAL ERR.

About the initialization of the information list we want to say something more in the next section.

5.2.8. A procedure library

Each compiler system has the possibility of adding and deleting procedures in a library of precompiled procedures. Adding or deleting precompiled procedures is, as far as the run-time system is concerned, no problem at all: the precompiled procedures just have to be added or deleted by adding or deleting a few cards or a piece of papertape or by changing the file containing the run-time system.

Quite another story concerns the compiler, which should be aware of standard procedures, in particular of the procedure headings of standard procedures.
Partly, this has been implemented by supplying the compiler with a string of standard identifiers of the noninteresting procedures for input and output and similar procedures which are standard in the MC ALGOL 60 system. The information provided can be minimal: the type of the procedure (real, integer or otherwise) and the number of parameters (the parameters not being of type formula, it is not necessary to know the type of the parameters).

For general ABC ALGOL procedures, with all sorts of parameters and of any type, including even operator definitions, it is necessary to have a special catalogue. This catalogue is organized as a part of the information list in the following way:

Consider the following program:

```
begin    ... procedure standard proc1 ...;
          ... procedure standard proc2 ...;
          ...
          ... procedure standard procn ...;
the actual program:
    begin    ... end
end
```

The actual program may be thought of as any ABC ALGOL program using the standard procedures.

Take the information list (including the code table for the identifiers and the information-list pointers) at the moment that the compiler begins at the translation (during the first scan) of the actual program. It contains all the information needed for the translation of calls in the actual program of the standard procedures. It is also complete, in the sense that it will not be changed by the actual program, except for the information cell of the first `begin'.

The contents of the information list at this moment is called the catalogue. As part of the initialization of the compiling process for an arbitrary ABC ALGOL program, the information list is filled with the catalogue. At the end of the first scan an information cell for an extra end is added, in order to complete the block structure of the information list. During the second scan the information list then consists of the catalogue and the information about the particular program under consideration. We thus come at the conclusion that there must at least be two different compilers:
1. The **catalogue compiler**, which has as input the ABC ALGOL program consisting of the headings of the standard procedures (each provided with a dummy procedure statement) and which delivers as output a string of numbers specifying the contents of the catalogue, including all the information-list pointers.

2. The **normal compiler**, which is provided with a string as produced by the catalogue compiler, which initializes its information list by means of information contained in this string, which treats the first scan of the ABC ALGOL program to be compiled, which inserts an extra end-information cell and which, finally, compiles the ABC ALGOL program in the second scan.

Both compilers do not differ much; the difference is the value of the boolean variable: "normal compilation".

The compiler, as reproduced in chapter 6, is a normal compiler; it can be changed into a catalogue compiler by simply changing the statement: "normal compilation := true" into: "normal compilation:= false", in section 6.6.5 line 2977.

The catalogue of this compiler has been produced by means of the following program:

```plaintext
begin  procedure replace(f,left,g); value f,left,g;
       formula f,g; Boolean left;;
end
```

which resulted in the procedure "catalogue symbol".

5.3. Alphabetic listing of important identifiers

In this section we give an alphabetic listing of all the identifiers which are important in the compiler. These identifiers have some global significance. Most identifiers are preceded by a number, denoting the line where they are declared. The exceptions are the MC standard procedures; they are preceded by "-".

In addition, either a list of numbers is given, denoting all lines where the identifier occurs, or "++++" is printed, indicating that the list was uninterestingly long.

A program of D. Grune and L. Meertens has been used for listing the identifiers.
2933	get bits	789	790	795	796	875	967
789	Identifier in paramlist						
1009	in formula procedure body	834	1051	1052	2 x 1061	1288	2807
2855	2827 INITIALIZE inf list ptrs 2827 2979						
2637	INITIALIZE reading ptrs 2637 2981						
310	Initialize sm 92 310						
1949	INITIALIZE symbols 1949 2976						
30	interested in proc id 30 78 89 731 739 1248						
473	Introduce names for formula array elements 91 473						
277	Introduce names for formulae 90 277 410						
2363	is adic symbol						
2366	is declarator						
2379	is digit						
2382	is enquiry						
2377	is letter						
2385	is operator						
2369	is specifier						
2068	line number 63 388 2068 2403 2469 2483 2640						
2068	line number1 2760 2065 2152 2234 2236 2403 2454 2646						
2069	line number2 2069 2 x 2060 2 x 2126 2152 2318 2350						
2469, 2484, 2484, 2494 2640							
27	max dimension in array declarations 27 351 353 399 403						
631	646 661 682						
2804	max nr of identifiers 2272 2804 2830						
2803	max of inf list 2803 2830 2837 2841 2887						
2807	min block depth 1273 1285 1286 1441 1859 2807 2834						
- NEW PAGE 2980							
- NLNR 2121 2759 2764 2772 2774 2775 2 x 2850							
2853	2857 2854 2 x 2869						
2809	normal compilation 2809 2829 2838 2977 2991						
2372	no semicolon or begin end allowed 2372 2396 2447 2449 2453						
2454							
26	nr of array segments 26 2 x 334 400 631 645 660 681						
2070	nr of begins 2070 2137 2404 2 x 2408 2409 2410 2418						
2 x 2461 2 x 2488 2641 2 x 2645 2 x 2983 2 x 2985							
2095 NS							
628	Open new block in information list 62 628						
1526	other expression						
2690	PR and RE						
2707	PR and RE begin 1191 2707						
2701	PR and RE end 1201 2701						
2695	PR and RE semicolon 108 106 108 705 860 871 997						
1016	1035 1062 1198 2695						
1762	PR form expr 1762 1775 1778 2 x 1787 1916						
1794	primary 1741 1768 1794 1795 1833 2 x 1893 1906						
2846	PR inf cells 2846 3004						
2873	print catalogue 2873 2998						
2809	print information list 2809 2848 2977						
2745 PR int num							
- print pos 2759 2761 2762 2763 2772							
- PRINTTEXT 2715 2726 2759 2761 2774 2850 2957							
2958							
2718	PR nlcr						
<p>| 715 procedure block entry 89 715 |</p>
<table>
<thead>
<tr>
<th>Procedure</th>
<th>Arguments</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 procedure body</td>
<td>24</td>
<td>2x25, 78, 79, 633, 634, 635</td>
</tr>
<tr>
<td>785 procedure declaration</td>
<td>785</td>
<td></td>
</tr>
<tr>
<td>1411 procedure statement</td>
<td>1411, 1588, 1844</td>
<td></td>
</tr>
<tr>
<td>30 proc id ass stat</td>
<td>30, 96, 110, 732, 2x1133, 2x1136, 1167</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>1248, 1250, 1284, 1440, 2x1445, 1502</td>
<td></td>
</tr>
<tr>
<td>1534</td>
<td>1536, 1538, 1539, 1770, 1801, 1858</td>
<td></td>
</tr>
<tr>
<td>2752 PR operator</td>
<td>2752</td>
<td></td>
</tr>
<tr>
<td>2779 PR an</td>
<td>2779</td>
<td></td>
</tr>
<tr>
<td>2713 PR string</td>
<td>2713</td>
<td></td>
</tr>
<tr>
<td>2721 PR sym</td>
<td>2721</td>
<td></td>
</tr>
<tr>
<td>2564 PR synt unit</td>
<td>2564</td>
<td></td>
</tr>
<tr>
<td>2803 ptr of inf list</td>
<td>2803</td>
<td></td>
</tr>
<tr>
<td>2067 ptr of text</td>
<td>2067</td>
<td></td>
</tr>
<tr>
<td>2067 ptr of text1</td>
<td>2067</td>
<td></td>
</tr>
<tr>
<td>2067 ptr of text2</td>
<td>2067</td>
<td></td>
</tr>
<tr>
<td>27 ptr to array segment</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>1260 ptr to first formula procedure identifier</td>
<td>1260</td>
<td></td>
</tr>
<tr>
<td>2803 ptr to first ident</td>
<td>2803</td>
<td></td>
</tr>
<tr>
<td>2070 ptr to first letglt</td>
<td>2070</td>
<td></td>
</tr>
<tr>
<td>26 ptr to formula</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>787 ptr to formula param</td>
<td>787</td>
<td></td>
</tr>
<tr>
<td>26 ptr to integer</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>786 ptr to integer param</td>
<td>786</td>
<td></td>
</tr>
<tr>
<td>2804 ptr to name list</td>
<td>2804</td>
<td></td>
</tr>
<tr>
<td>- FUSYM</td>
<td>- FUSYM</td>
<td></td>
</tr>
<tr>
<td>- FUTEVTX</td>
<td>- FUTEVTX</td>
<td></td>
</tr>
<tr>
<td>2074 ptr in text array</td>
<td>2074</td>
<td></td>
</tr>
<tr>
<td>2394 RE</td>
<td>2394</td>
<td></td>
</tr>
<tr>
<td>2373 reading allowed</td>
<td>2373</td>
<td></td>
</tr>
<tr>
<td>2146 READ synt unit</td>
<td>2146</td>
<td></td>
</tr>
<tr>
<td>2457 RE begin</td>
<td>2457</td>
<td></td>
</tr>
<tr>
<td>2452 RE end</td>
<td>2452</td>
<td></td>
</tr>
<tr>
<td>2442 RE semicolon</td>
<td>2442</td>
<td></td>
</tr>
<tr>
<td>2478 RESET reading ptrs</td>
<td>2478</td>
<td></td>
</tr>
<tr>
<td>- RESYM</td>
<td>- RESYM</td>
<td></td>
</tr>
<tr>
<td>2459</td>
<td>SAVE reading ptrs</td>
<td>68</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>----</td>
</tr>
<tr>
<td>1381</td>
<td>1483</td>
<td>1913</td>
</tr>
<tr>
<td>607</td>
<td>Search for identifier</td>
<td>609</td>
</tr>
<tr>
<td>1474</td>
<td>1488</td>
<td>1592</td>
</tr>
<tr>
<td>2550</td>
<td>SEEK</td>
<td>104</td>
</tr>
<tr>
<td>2492</td>
<td>SET reading ptrs on</td>
<td>258</td>
</tr>
<tr>
<td>722</td>
<td>744</td>
<td>891</td>
</tr>
<tr>
<td>2724</td>
<td>SHOW</td>
<td>++++</td>
</tr>
<tr>
<td>1711</td>
<td>simple formula expression</td>
<td>1538</td>
</tr>
<tr>
<td>1586</td>
<td>simple other expression</td>
<td>1529</td>
</tr>
<tr>
<td>2516</td>
<td>SKIP text until</td>
<td>233</td>
</tr>
<tr>
<td>1415</td>
<td>1484</td>
<td>1738</td>
</tr>
<tr>
<td>2516</td>
<td>2522</td>
<td>2526</td>
</tr>
<tr>
<td>28</td>
<td>^nn necessary</td>
<td>28</td>
</tr>
<tr>
<td>-</td>
<td>SPACE</td>
<td>2761</td>
</tr>
<tr>
<td>2806</td>
<td>specified as name</td>
<td>++++</td>
</tr>
<tr>
<td>2805</td>
<td>specified as value</td>
<td>++++</td>
</tr>
<tr>
<td>2806</td>
<td>standard identifier</td>
<td>++++</td>
</tr>
<tr>
<td>2607</td>
<td>standard symbol</td>
<td>++++</td>
</tr>
<tr>
<td>1100</td>
<td>statement</td>
<td>97</td>
</tr>
<tr>
<td>2927</td>
<td>store bits</td>
<td>++++</td>
</tr>
<tr>
<td>2788</td>
<td>STORE into information list</td>
<td>++++</td>
</tr>
<tr>
<td>-</td>
<td>STRING SYMBOL</td>
<td>1985</td>
</tr>
<tr>
<td>2086</td>
<td>take from text array</td>
<td>1654</td>
</tr>
<tr>
<td>2680</td>
<td>text array</td>
<td>++++</td>
</tr>
<tr>
<td>1984</td>
<td>text symbol</td>
<td>++++</td>
</tr>
<tr>
<td>1651</td>
<td>translate string</td>
<td>1651</td>
</tr>
<tr>
<td>169</td>
<td>type declaration</td>
<td>159</td>
</tr>
<tr>
<td>2555</td>
<td>type of standard identifier</td>
<td>1436</td>
</tr>
<tr>
<td>1937</td>
<td>type symbol</td>
<td>1572</td>
</tr>
<tr>
<td>1187</td>
<td>unconditional statement</td>
<td>1106</td>
</tr>
<tr>
<td>2161</td>
<td>2166</td>
<td>2×2674</td>
</tr>
<tr>
<td>2007</td>
<td>2012</td>
<td>2177</td>
</tr>
<tr>
<td>2675</td>
<td>2738</td>
<td>2750</td>
</tr>
<tr>
<td>2144</td>
<td>und symbol read</td>
<td>2144</td>
</tr>
<tr>
<td>2806</td>
<td>with local</td>
<td>++++</td>
</tr>
<tr>
<td>2807</td>
<td>without local</td>
<td>++++</td>
</tr>
</tbody>
</table>
OTHER TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

A leaflet containing an order-form and abstracts of all publications mentioned below is available at the Mathematisch Centrum, Tweede Boerhaavestraat 49, Amsterdam-1005, The Netherlands. Orders should be sent to the same address.

MCT 7 W.R. VAN ZWET, Convex transformations of random variables, 1964. ISBN 90 6196 007 X.
MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of print; replaced by MCT 54.

MCT 22 T.J. DEKKER, ALGOL 60 procedures in numerical algebra, part 1, 1968. ISBN 90 6196 029 0.

MCT 28 J. OOSTERHOFF, Combination of one-sided statistical tests, 1969. ISBN 90 6196 041 X.

MCT 42 W. VERVAAT, Success epochs in Bernoulli trials (with applications in number theory), 1972. ISBN 90 6196 077 0.

ISBN 90 6196 083 5.

MCT 53 M.J. Faber, Metrizability in generalized ordered spaces, 1974.
ISBN 90 6196 097 5.

MCT 56 M. Hall Jr. & J.H. van Lint (eds.), Combinatorics, part 2: Graph theory; foundations, partitions and combinatorial geometry, 1974. ISBN 90 6196 100 9.

* MCT 61 P. van Emde Boas, Abstract resource-bound classes, part 1.

MCT 65 J. De Vries, Topological transformation groups I A categorical approach, 1975. ISBN 90 6196 113 0.

* MCT 67 H.A. LAUSERIER, Asymptotic analysis, part 2.
 ISBN 90 6196 119 X.

* MCT 68 P.P.N. DE GROEN, Singular perturbed differential operators of
 second order. ISBN 90 6196 120 3.

* MCT 69 J.K. LENSTRA, Sequencing by enumerative methods.

MCT 70 W.P. DE ROEVER JR., Recursive program schemes: semantics and proof
 theory. ISBN 90 6196 127 0.

* MCT 71 J.A.E.E. VAN NRNEN, Contracting Markov decision processes.

* MCT 72 J.K.M. JANSEN, Simple periodic and nonperiodic lamé functions and
 their applications in the theory of conical waveguides.
 ISBN 90 6196 130 0.

* MCT 73 D.M.R. LEIVANT, Absoluteness of intuitionistic logic.
 ISBN 90 6196 122 x.

* MCT 74 H.J.J. TE RIELE, A theoretical and computational study of general-

An asterisk before the number means "to appear".