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Introduction

Probability theory studies convergence of distribution types rather
than distribution functions. Recall that two distribution functions F and G

are of the same type if there exist a > 0 and b € R such that

G(x) = F(ax + b) for all x € R.

The distributions of partial sums, averages and maxima of a sequence of
random variables tend to diverge to defective or degenerate distributions.
It is only by the use of norming constants that we obtain interesting limit
relations.

The basic result on the convergence of distribution types is due to
B.V. Gnedenko [1943] and A. Ya Khinchine [1938]. See chapter 1k4, p.152. It

states that the limit in type of a sequence of random variables or distri-

bution functions is unique. That is, if Fi1) is of the same type as Fée)
for n =1,2,... and if Fél) converges weakly to a non-degenerate distribu-
tion F(l) for i = 1,2, then F(1) is of the same type as F(z). (See theorem

14.1.)

In the following chapters we shall see that under quite general cir-
cumstances the following assertion holds.

If a sequence of random variables X converges in type to a limit
random variable u, i.e. if there exists a sequence of positive constants
an and a sequence of real constants bn such that unzn HEE anzn + bn conver-—
ges to u in distribution, and if the sequence Y, = f(En) with f non-decrea-
sing, converges in type to a limit random variable Vv, then up to an affine
transformation of the limit variables either v is distributed like exp u,
like log u or like some power of u.

In its full generality the assertion is obviously false. One need only
take En =x for all n and f(x) = arctg x for instance.

In the case that X is the sum of n i.i.d. random variables and
ox o= (En - n)/V/n converges in distribution to a random variable u with
a normal distribution, Resnick [1973] has shown that the only possible non-
degenerate limits in type for f(§n) with f non-decreasing are v = u and
v = exp u i.e. v is either normal or lognormal (up to an affine transforma-
tion of the variables u and z). This result seemed to be sufficiently sur-

prising to warrant closer attention.



In chapter 2 we shall see that the problem of determining the class of
possible pairs of limit types of the sequences (§n) and (f(§n)) reduces to
the following analytical question.

Suppose that f is a non-decreasing function on R and
a'f(a x +b ) + 1!
n ' n n n

converges on a set X ¢ R (where an,aﬁ > 0 and bn,bé € R). What further in-
formation is needed to conclude that the limit (on X) is one of the
functions ex, log x or xx?

The main part of the tract, chapters 3 - 13, treats this analytical
problem. To emphasize the probabilistic results, these have been listed as
theorems whereas the analytical theory is developed in propositions.

The variable x of our function f will often be subject to a probability
distribution. We find it convenient to adhere to the Dutch custom and under-
line the variable in that case.

The opening chapter contains the definitions and notations which are
needed in the ensuing chapters. To prevent the reader from falling asleep
they have been interspersed with a number of exercises. These take the place
of the usual "it is easy to see"-formulations. They contain additional back-
ground information and>may be bypassed by the reader. A more detailed
summary of the contents of the book is given in the last pages of chapter 1.

We now give an example of the probabilistic situation sketched above.

Observe that a random variable y with distribution function F is
distributed like f(§) where x is homogeneous on (0, 1) and f is the inverse

function of F. Let x . denote the kth order statistic from a sample of size

n from the homogeneoﬁz distribution on the interval (0, 1), and similarly
let Yok denote the kth order statistic from a sample of size n from the

distribution F. Then obviously Yok is distributed as f(§nk). It is known
that for n + © and k/n + p € (0, 1) the variables Xk
converges in type to the normal distribution. What can one

are asymptotically
normal, i.e. Xk
say about the asymptotic behaviour of the random variables Xnk7 (See Smirnov
[19491.)

We shall return to this example in the final chapter, which contains

some applications of the theory.



1 Notation and main theorems

Throughout this monograph we shall be concerned with the following

basic situation

(1.1) o x “*u in distribution
By v in distribution

M
y, = flx)) n=1,2,...

Here u, v, X and ¥, are real-valued random variables and oy and Bn are
positive affine transformations on the real line R, i.e. of the form
ox =ax + bn with a > 0 and bn € R. Further o + © means that
|1log anl + Ibnl + o, f is a fixed non-decreasing function defined on an open
interval in R and ¥ denotes equality of the corresponding distributions.
(Since we shall not distinguish between the right and the left continuous
version of a monotone function, the symbol ¥in (1.1) only makes sense if
X is a continuity point of f with probability 1. In the sequel, see defin-
itions 1.6 and 1.3, we shall extend the definition of ¥ to cover arbitrary
non-decreasing functions. M for monotone!)

It is our aim to give conditions under which the basic situation (1.1)
implies '

¥

(1.2) v = ¢(u) for some ¢ € @

where ® is a small set of functions. See definition 1.T.

EXERCISE 1.1 On the divergence of o . Suppose for the moment that the basic
situation (1.1) holds except that the sequence (an) does not diverge.

Assume moreover that f is a continuous, strictly increasing function on R
and that neither u nor v is constant. Then v ¥ Bf(a-1g) for a pair of
positive affine transformations o and B. (Hint. Let o be a limit point of

1

(an). For convenience assume 0., = . Then X T x= o” 'u and f(gk) + f(x) in

k
distribution. By Khinchine's theorem, mentioned in the introduction, v and
f(x) are of the same type.) We see that the condition o, >« cannot be

entirely dispensed with if we want to prove (1.2).



EXERCISE 1.2 Let Py P and o, >0 be convergent sequences of positive

affine transformations. Set o' = p o and B' = 0 B . Then
n nn n n'n

aﬁfn +u' = pu in distribution
Bﬂzn +v' =ov in distribution

and if v ¥ ¢(u), then v' ¥ G¢(p-1g'). Hence we may expect that together
with ¢ € @ also c7(t)p_1 € 9. Give similar arguments for expecting ¢ € ® to
imply ¢ € ® where ¢”(x) = —$(-x).

We now introduce some notation needed in presenting the main results.

DEFINITION 1.1 G is defined to be the group of positive affine transform-
ations Y on R, i.e. Yx = ax + b with a > 0 and b € R. The group G is not
commutative. For example 2(x + 1) # (2x) + 1. The identity element of G is
denoted by €. It is the identity map, €x = x for all x € R,

It is sometimes convenient to think of the elements of G as points in
the plane, where we associate with the positive affine transformation
Yx = ax + b the point (log &, b) € R2. This gives a one~to-one correspond-
ence between the elements of G and the points of the plane.

Suppose Ynx = a x + bn for n = 0,1,2,... Convergence Yn > Yo may be
described by any of the following equivalent statements

log & + log ay and bn e bo

a *+a.and b_ *+Db
n 0 n

Yo¥5 ¥ Yo¥i for two distinct reals x, and %,

0

Ynx -+ Yox for all x € R.

Multiplication and inversion are continuous operations, as is obvious

by writing out the formulas

YoY% = az(a1x + b1) + b,

YXx =ax + b =y implies x = a_1(y - D) = Y-1y.

Since, as we have seen above, convergence of a sequence in G is equi-

valent to convergence of the corresponding sequence of points in the plane,



we shall use the geometry of the plane to describe subsets of G. Thus a set

B c¢ G is bounded if the corresponding set
{(1og a, b) | Yx = ax + b, Y € B}

is a bounded subset in R2, and we write Y, T where YpX = 8 + bn if the
corresponding sequence in RZ diverges to infinity, i.e. if
|1log a.nl + lbnl -+ o,

EXERCISE 1.3 If o+« in G, then a;1 > o,

\
EXERCISE 1.4 For each 0 € G there exists a unique element a? € G such that

1]
a?,02 = a. More generally for each a e G there exists a unique continuous

function t » ut from R into G such that atas = at+s for all s and t in R

and a1 = o, (Hint. If a is a translation, ax = x + b, then the assertion is
easily verified, alx = X + bt is a solution and is the unique solution for

rational t. If & is not a translation, then we write ax = e(x - x.) + x

0 0
with ¢ # 0, and 0 is a multiplication with centre X Hence
abx = eCt(x - xo) +x. By choosing appropriate affine coordinates on R we
may even obtain that the centre of multiplication x. = 0, in which case

0
abx = eCtx.) The set {a® | t € R} is the one-parameter subgroup of G

generated by a.

DEFINITION 1.2 A = A(o) is a subset of G which depends on the sequence (an)

in (1.1) and is defined as follows:

0 € A if there exist sequences of positive integers kn + o gnd ln >

-1
such that uknal +> 0.

n
EXERCISE 1.5
1. Construct A for the sequences

60X =x+n o x=x+ n2

n n

- 2 =
anx = nx a2n+lx X +n +1 i=0,1.
o x = 2—1
n

/n

Hint. In one of the five cases A is the set of all translations.



2. Let (Gn) be a bounded sequence in G. Define

2
X=x+n

0t2n

_ 2
Oy qX = Gn(x + n“)

and determine A,
3. If 0, converges then A consists of the identity element.
4, A is a closed, symmetric (i.e. 0 € A implies o € A) subset of G and
€ € Ay conversely any closed, symmetric subset of G which contains € is
the A of an appropriate divergent sequence an' (Compare exercise 1.5.2

above. )

DEFINITION 1.3 M will denote the set of all curves {(x(t), y(t)) | t ¢ R}
in the plane, where

1. x(t) and y(t) are continuous non-decreasing functions of t,

2, x(t) +y(t) =t for all t € R.

By abuse of language we shall sometimes call elements of M non-decreas-
ing functions. )

Let g(x) be a non-decreasing function. (We shall always assume that a
monotone function has as its domain a non-empty connected subset of R.)
There exists a unique element g, € M which consists of the graph of g
augmented with a countable number of vertical line segments in the discont-
inuity points of g and if need be in the endpoints of the domain of
definition of g. For instance, the function g(x) = 6 on the subset {0} ¢ R
gives rise to the curve g = {(0, t) | t e R} e M,

Let h : R >R be a function with the graph H = {(x, h(x)) | x ¢ R}.
Let o, B € G. Then the function Bha—1 has obviously the graph
{(ox, By) | (x, y) € H}. In view of this we give a similar definition for

Bga-1 for g € M.
DEFINITION 1.4 For g € M we define
Bgo~' = {(ax, By) | (x, ¥) € &l.
EXERCISE 1.6 Call two curves h and g in M equivalent if h = Bga-1 for some

0, B e G. If g(x) is a constant non-decreasing function then the correspond-

ing element in M is equivalent to one of five inequivalent curves



— L~

(Hint. The domain of definition of g is a one point set, the real line, a

right half line, a left half line or a bounded non-degenerate interval.)

DEFINITION 1.5 M0 denotes the subset of M of all curves which correspond

to one of the non-decreasing functions g(x) with
g(x) = ¢ for all x in the domain of definition

where ¢ € R and the domain of definition is a non-empty connected subset of

R. (See exercise 1.6.)

EXERCISE 1.7 Suppose g € M satisfies g = Bg for B € G, B # €. Then g € MO'

(Hint. Else there exist continuity points X, and %, of g such that
g(x1) # g(xz). If g = Bg then B leaves the two points g(xi) invariant and

we conclude that B = €.)

Let A be a probability measure which lives on the graph H of a Borel
measurable function h : R * R, i.e. A is a probability measure on the Borel
sets of the x,y-plane and A(H) = 1. The coordinate functions x and y are
measurable real-valued functions on the probability space (R2, A) and hence
may be regarded as random variables which we denote by x and Y. Since A is
concentrated on the graph of h we have y = h(§) almost surely and hence in

particular y = h(x) in distribution.

DEFINITION 1.6 For g € M and random variables x and y we define the

relation
M
Y = &x)

to mean that there exists a probability measure A on g having the probability

distributions of x and y as marginals.

This definition coincides with the usual definition of equality in

distribution if the vertical line segments of g carry no positive probability



mass. In particular this is the case if g is the graph of a continuous
function, or if the probability distribution of x is continuous. The defin-
ition above has the advantage that the role of x and y is symmetric,

¥ ¥ g(x) if end only if x ¥ 3-1(2) where g°1 is the inverse of g obtained
by reflecting g in the diagonal. It has the disadvantage, that Y, ¥ g(x)
and Y5 ¥ g(x) need not imply Y ¥ Yo Indeed let g be the vertical axis and

x = 0 almost surely, then y ¥ g(x) holds for any random variable y.

DEFINITION 1.7 ¢ denotes the smallest subset of M which has the properties,
1. M0 cd
2. ® contains the elements in M correponding to the non-decreasing

functions

on R

n
]

y(x)

on R

"
o

y(x)

y(x) = log x on (0, =)

y(x) = -x—l on (0, =)

y(x) = *A on (0, =)

y(x) = xk on [0, »)
A

= ¢(-x)" on (-, 0)

y(x) = sign x on R

for each A > 0 and ¢ < 0,
3. ¢ € &, 0 € G implies ¢a-1 € &, ap € & and ¢* € & where ¢* is
defined by the condition (x, y) € ¢~ if and only if (-x, -y) € ¢.

Observe that ® is closed with respect to inversion (reflection in the
diagonal).

Condition 3. in the definition of ¢ states that the set & does not
depend on a particular choice of coordinates on the axes. (The seven curves
listed under 2. obviously do depend on the coordinates.) If we introduce
new coordinates x' and y' where either x' = 0x, y' = Ty with o, T € G, or
x' = -x, y' = -y, then ¢ also contains the curves obtained by substituting
x' and y' for x and y in the seven expressions under 2.

The reason for listing together this apparently disparate collection

of functions will become clear in proposition 1.1.



EXERCISE 1.8 Let @0 be the smallest subset of M which contains the curves
corresponding to the functions ¢(x) = x, ¢(x) = e* and d(x) = -e_x, and
which satisfies the condition that B¢a'1 € ¢0 whenever ¢ € @0 and 0, B € G.
1. QO c &,

2. Every element ¢ € QO corresponds to a function
o(x) = Bex(x)
with B € G and A € R, where el(x) is defined by

)\'1(e>‘x - 1) A=z0

eA(x)

=x A= 0.

3. @0 is homeomorphic to R3. (The representation ¢(x) = Bek(x) is unique
and B~ 8B, An -+ XA imply ¢n + ¢ weakly and vice versa.)
4k, Let o be the translation ox = x + 1. Let B ¢ G and g ¢ M. If g satisfies

t -t

B'go, =g forallt eR

then g is a horizontal line or g € @o. (Hint. Suppose (x ) € g. Then

0> Yo
also (atxo, Btyo) = (xo+t, Btyo) € g for all t ¢ R, i.e.

Lt
glxy + t) = By,.
Now substitute y, for x in the expression for B8%% in exercise 1.4.)

PROPOSITION 1.1 Suppose o, B € G and (a, B) # (€, €). Let g € M satisfy

-t

(1.3) B%&a~? = g for all t ¢ R,

then g € ¢. Conversely for every ¢ € & there exist o and B in G not both
equal to €, such that (1.3) holds.

PROQF The proof is elementary but rather cumbersome because of the many

particular instances which we have to consider.

It is useful to introduce the sets

(1.4) oo, B) = {g e M | (1.3)}.



Proposition 1.1 states that ¢ is the union of all ®(o, B) with (a, B) =
z (g, €).

To prove that & < u ®(a, B) with (a, B) # (g, €)
it suffices to check

oMy e ®(e, B) with B = €

2. each of the seven functions listed in the definition of @ lies in a
set ®(a, B), (in fact a¥x = ab% or aPx = x + bt and similarly for gY)
3. g € (o, B) implies vyg e ¥(a, vBy™ )
g € &, B) implies gY_1 € Q(YaY—1, B8)
g € ®(o, B) implies g* e 3(a”, B%), where g*(x) : = -g(=x),
and similarly for o” and B*. (Note that the equality (at)*(as)* = (at+s)*
implies that (at)* is the unique continuous one parameter subgroup generated

by o and hence (@®* = (o*)F. see exercise 1.1.)

To prove the first part of the theorem, i.e. ®(a, B) < ¢ if (o, B) =

z (g, €) we first observe that

®(e, B) < M, for B # € (see exercise 1.7)

®(a, B) < %, @ if a is a translation (see parts 1 and b4 of

exercise 1.8) or ¢ is constant

g e (0, B) implies g~ € ®(B, a).

Thus it suffices to check that ®(a, B) ¢ ¢ if o and B are non-trivial
multiplications. For convenience we assume that utx = atx and th = btx,
vhere a and b are positive constants not equal to 1. Observe that
(xg, yo) € g for g € ®(a, B) implies that g contains the whole curve
(a’x., btyo). For (xo, yo) # (0, 0) this curve is either one of the half

axes (if Xy = 0ory,= 0), or it is the graph of one of the functions

cxx on (0, @) with cA > 0

y(x)

y(x) c(-x)x on (-, 0) with el < 0

where A is uniquely determined by

t _ t _ At_ A
b7y, = y(a'xy) = ca” "xg.
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Hence b =-ax. Either g is this curve (if A < 0) or the curve has (0, 0) as

endpoint and g is the union of two such curves and the origin.

REMARK A very simple description of ¢ can be given as follows (see Ince
[1926], chapter 4). Let at, t € R, be a one-parameter subgroup of G. The

infinitesimal generator 6 is defined by

ottx— X

ax @ = 1lim T .

t>0
t t . . 2
The maps (x, y) » (o x, By) form a continuous transformation group on R“.

The corresponding infinitesimal transformation is
(x, y) » (x + dx, y + dy) = (x + ax dt, y + By dat).

The elements of &(a, B) are the non-decreasing invariant curves and satisfy

the differential equation
fy ax = ox ay .

EXAMPLE 1.1 Every ¢ € & does occur in the limit relation (1.2) for an
appropriate choice of O Bn and £ in (1.1).
First suppose 0, B € Gand o # €, Let £ = ¢ ¢ ®(a, B) and let A be an

arbitrary probability measure on f with marginals uand v ¥ ¢(u). Define X

and ¥, by
o"x, = u
ann =v.
Then
M . ng -n _
¥, = f(gn) since B fa f
A > ® since o # €,

Now if ¢ € ®(e, B) then ¢ is one of the constant functions (see exercise
1.7). These functions also lie in ®(a, €) except for the function ¢ = ¢ on
I where I is a bounded interval. That this functions also occurs as a limit

follows from example 1.l4 below on interchanging the x and y-axis.
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EXAMPLE 1.2 Counter example showing that the monotonicity of f is essential.
Let u be a random variable with a continuous probability density and
set X ¢ = Choose ox = n-1x, Bny = y and f(x) = cos x. Then 0, > ®
ax *u and ¥, = cos X converges in distribution to cos w, where w is
homogeneous on [0, T].
Obviously we could have used any periodic function instead of the

cosine and obtained a similar result.

EXAMPLE 1.3 On the divergence of (Sn).
The limit variables u and v will have distribution functions F(u) =

= pF1(u) + sz(u) and G(v) = pG1(v) + qG,(v) where p, ¢ > 0, p +q =1, and

F, 1is standard normal
F_ is degenerate in zero

and in g

. 1. m
G1 has point mass 3in -3

G, is the uniform distribution on (- g, g) .

One readily checks that u and v are marginals of a probability measure which

lives on ¢ € @ where

(Mix the wniform distribution on the vertical part with the two halves of
the normal distribution on each of the horizontal halflines in ¢.)

Choose f(x) = arctg x on R. Let A be the (unlque) probability measure
on £ € M such that the marginal X has a normal N(O, n ) distribution. The
distribution of n 1xn converges to the standard normal F1 and the distribut-
ion of the marginal ¥ converges to G1. Similarly, if kK denotes the probab-
ility measure on f whose marginal Y is uniformly distributed on (- 2, —)
then n 15 + 0. Setting B, = pln + QK , 0 x=n 1x and Bny = y we obtain the

announced result.

Example 1.3 above shows that o - ® need not imply Bn + o, In
proposition 7.5 we shall see that if Bn does not diverge to « then the basic

situation (1.1) implies that u ¥ ¢(v) where ¢ ¢ M,. For the sake of symmetry

o
we could add the condition Bn + © to0 the basic situation (1.1). We shall not
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do so since in applications the given situation will in general be
asymnetric. (For instance in the application mentioned in the introduction,

the sequence (o ) is known.)

EXAMPLE 1.4 On the definition of ¥ and the necessity of allowing vertical
line segments in the graphs of discontinuous functions.

In the example above we had v ¥ % sign u where u had positive mass q
in 0. The fact that Bn
limit function ¢0(x) =3 ! DM
and using the norming transformations 0 x=n x and Bny = (log n) 'y. Then

ana;1x -+ g sign x = ¢0(x) and it is possible to obtain any desired probab-

€ is not essential since we can obtain the same

EN

sign x starting with f(x) = arctg x.log(1 + |x|)

ility measure on ¢O € ® as the limit of an appropriate sequence of distrib-

1

utions on g, : = ana; . This construction will be developed in full gener-

ality in the next chapter.

We shall now give a summary of the contents of chapters 2 - 1k,

Chapter 2 contains a description of the topology of M. In this topology
M is a locally compact, metrizable space, and the sequence ana;1, with
o Bn and f as in (1.1), is relatively compact. We shall prove two theorems

on monotone functions of random variables.

1. Given two random variables, u and v, there exists a non-decreasing
function g € M such that v is distributed like g(u), i.e. v ¥ g(u).

2. Let the sequence u and the sequence !n ¥ gn(En) converge in
distribution to u and v ¥ g(u). Let A c g be the support of the measure A
on g with marginals u and v (see definition 1.6). Then the sequence g, con-

verges onto the set A (in the sense of definition 2.1).

We shall apply these two theorems to the sequence ana;1 in M,

The two theorems will enable us to reformulate the basic situation
(1.1) in purely analytical terms (2.1), as "ana;1 converges onto A".

In particular, if the distribution function of the limit random vari-
gble u in the basic situation (1.1) is strictly increasing on R, then (2.1)
iﬁplies that the sequence of non-decreasing functions ana;1 converges
weakly on R to a non-decreasing function h, and that the limit variables u
and v in the basic situation (1.1) satisfy v ¥ h(u). In chapter 3 it will

be shown that this function h satisfies a functional equation of the form



1k

Th = ho with T € G for every 0 € A. (This functional equation is a variant
of the wellknown functional equation h(x) = h(x + p) for periodic functions.)
Table 3.2 gives a complete classification of the possible limit functions
in terms of the set A. If the set A is sufficiently large, then any solution
h of the system of functional equations Th = ho, with 0 € A, is an element
of ¢, and even of &0, T). (See (1.4) for the definition of ¢(o, T)). This
implies that if A contains two elements which do not commute, then h is
constant or affine (either v is constant or v is of the same type as u).
If all elements of A are integral powers of a common element C € G, 0 # €,
then h is the composition of an element of ¢ and a function
k(x) = Ax + ¢ + T(x) where T is periodic modulo O (see table 3.1). Finally
if A = {e}, i.e. if the sequence (an) diverges fast, then every non-decreas-
ing function h is possible in the relation ¥ ¥ h(u) (for a suitably chosen
f ¢ M and sequence (Bn) in G). The proof of this statement occupies the
greater part of chapter 4. (We give an explicit comstruction of f for a
given sequence (an) with o+« and A = {€}, and given h ¢ M.)

We describe this case (the distribution function of u strictly increas-
ing on the whole real line) in some detail since it occurs in most applic-
ations. The theory in the first part of the book, chapters 3 - 6, is devel-

oped under the more general assumption that

(1.6) the distribution function of u is strictly increasing on an open

interval I and P{u e I} = 1.

Because of this condition there will be little need to distinguish between
non-decreasing functions and elements of M in these 4 chapters and we shall
use the classical theory of non-decreasing functions and weak convergence.
The basic situation (1.1) together with condition (1.6) implies weak con-
vergence of the sequence ana;1 on the interval I.

For a bounded interval I the system of functional equations Th = ho is
less easy to handle than in the case I = R which we considered above, and

we shall only prove theorem 3.1.

If € is a condensation point of A, then v ¥ ¢(u) for some ¢ € .

o

Note that for a bounded interval also the functions log x and —x_A can

occur in relation (1.2).
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In chapter 5 we define the domain of attraction of a function h € M
for a given sequence (an) in G as the set of all £ € M for which there

! + h., We give some examples for the

exists a sequence (Bn) such that ana;
case that h is the identity function. It will be shown that a continuously
differentiable function f, which satisfies the condition that lim f'(x)

exists and is positive, lies in the domain of attraction of |3¢]5e0
the identity function for every sequence (an) which diverges to <.

In chapter 6 we introduce the extra restrictions

-1

the sequence (an+1an ) is bounded,
A is a subset of a one-parameter subgroup G(y) = {Yt | t € R}
of G,

If ana;1 converges weakly tq a non-constant element ¢ ¢ ¢ on an open inter-
val I, and if I n oI is non-empty for every limit point o of the sequence

(o 1), then ana;1 converges weakly to ¢ on the half line (c, ©) or

o
n+1 ' n
(=», c) containing I (if y is a multiplication with centre c) or on the
whole real line (if Y is a translation). See proposition 6.1.

In this case we can embed the sequence (an) in a continuous function
o : [0, ®) + G such that o, = a(tn) where t >, t

for all s ¢ R

- tn is bounded, and

alt + s)a(t)™! + ¢S

for t »> =,
A similar statement holds for the sequence (Bn).

The results of chapter 6 should be seen as an introduction to the
second part of the book, chapters T - 13, where we replace the restriction
(1.6) on the random variable u by the restriction an+1a;1 -+ € on the

sequence (an).

1

The condition Oy a; + € allows us to replace the sequences (an) and

(Bn) by continuous fun;tions o and B from [0, ®) into G. In this second
half of the book we shall employ to the full the geometrical interpretation
of a non-decreasing function as a curve in the x,y-plane which we introduced
in definition 1.3.

In chapter T we introduce a compactification of G and we give a
complete analysis of the basic sutuation (1.1) under the condition that the

Sequence (Bn) does not diverge to infinity. (Compare example 1.3 and the
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remarks following this example.)

Now let us consider a limit point g of the sequence B fa_1 in M. Then
v ¥ g(u). This implies by the definition of ¥ that u and znarz marginals of
a probability measure A supported by a closed subset A ¢ g. In chapter 8 we
shall see that there exists an unbounded, connected, closed subset C c GxG,
the "guide set" of g for A, such that o < g for all (0, T) € C (see
proposition 8.1). This is the geometrical analogue of the functional
equation Th = ho which we derived in chapter 3. We shall discuss some simple
consequences of this inclusion in chapter 8.

It was the aim of these investigations to derive the implication
"(1.1) and an+1a;1 -+ ¢ implies (1.2)". We have not been able to prove this
implication, nor have we been able to construct a counter-example. A proof
of the implication under the extra condition that u should have an absolutely
continuous distribution function will be published elsewhere in a joint
paper with L. de Haan. In the present work we place an additional restrict-
ion on the sequence (an). 1

One rather striking consequence of the condition, O 1% & is that
the set A contains a one-parameter subgroup {Yt | t € R} of G, with y = €
(see proposition 7.2). We shall be particularly interested in the case that
A is equal to this one-parameter subgroup. It is then possible to introduce
a continuous function a : [0, ©) + G, such that o = u(tn) where t > * and

ti41 — t, 7 0, and which satisfies the relation (see proposition 9.7)

S

lim a(t + s) a(t)_1 = vy~ for all s € R.

100
This equation leads us to a theory of regular variation on separable,
metrizeble groups. (Recall that a function U from [0, ®) to (0, ®) is said
to vary regularly in the additive formulation if there exists & constant

P € R such that lim U(t + s) U(t)_1 = eP® for all s € R.) Many theorems in
0
the classical theory of regular variation remain valid in the more general

setting of separable metrizable topological groups as will be shown in
chapter 9.

If A is the one-parameter subgroup of the translations, (this is the
case if for instance ox = (x - n)/v/n, see exercise 1.5.1), and if A con-
tains three points no two of which lie on the same horizontal or vertical
line, then the inclusion 0-1AT c g for all (0, T) in the guide set C, which

was established in chapter 8, implies that g, after a simple normalization,



17

satisfies a functional equation
glx +8) - g(x) = Clglx + 1) - gx))

for positive constants 6 and C less than 1. It will be shown in chapter 10
that the solutions of this equation satisfy a pair of equations T8 = €95
for i = 1, 2. (See the corollary to proposition 10.3.) In particular if 6
is irrational, then g € ®. In this case g is uniquely determined by the two
functional equations T8 = 895, i =1, 2, and the condition that A c g.
This implies that g is the only limit point of the sequence ana;1, and
hence, that ana;1 + g in M. One can say even more in this case. Also the
norming function B(t) varies regularly. (Note the similarity with the
results of chapter 6.)

As an interesting corollary we obtain the corollary to proposition 10.L

Let f be a non-decreasing function on R and let Xgs X and X, be real

1

numbers such that x, < x, < x, and (x, - xo)/(x1 - X3) is irrational. If

0
f(x2 +t) - f(xo +t)

+¢ fort »o
f(x1 +t) - f(xO +t)

with ¢ > 1, then

£x, + t)

f(x1 + 1) - f(xo + t)

f(x + t)

> ¢(x) weakly for t -+
where ¢ € ¢0 (see exercise 1.8).

We are now able to derive the main result of this part of the book.

This is theorem 11.1 which states.

If in addition to the basic situation (1.1) it is given that

-1
O 4% €, and

(1.7 A is contained in a one-parameter subgroup {c* | t e R} in G,

then there exists an element ¢ ¢ ¢, such that
M .
v = ¢(u).

Moreover ¢ € M_ or ¢ € ¥(og, 1) for some T € G, where ®(0, T) is defined in

(1.4).

0



18

In chapter 12 we consider the domain of attraction of the identity
function, now for a given sequence (un) which satisfies an+1a; + € and
(1.7) with ox = x + 1,

In chapter 13, theorem 13.1, we show that (1.1), together with the
condition an+1a;1 -+ €, implies that either v v ¢(E) for some ¢ € & or
v Y h(u) where h € M is the graph of a homeomorphism of an open interval.

The final chapter gives some applications. As an example we mention
the wellknown fact that if u and v are each limit in type of a sequence of
maxima of i.i.d. random variables, i.e. u and v are each distributed accord-
ing to one of Gnedenko's limit laws in extreme value theory, then v ¥ $(u)

for some ¢ e 9.
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2 Monotone functions of random variables

In this chapter we take a closer look at the space M of non-decreasing
functions introduced in chapter 1 (definition 1.3) and we prove the follow-
ing two well known assertions.

Let u and v be random variables. Then there exists an element g € M
such that v ¥ g(u), i.e. there exists a probability measure A = A(u, Vv)
which lives on the curve g and which has marginals u and v. This probability
measure A is unique (though g in general is not). Moreover if u > uand
vy in distribution then the corresponding curves g, converge onto the
support A < g of the measure A = A(u, V), where convergence onto is defined

as follows.

DEFINITION 2.1 Let (sn) be a sequence in M and let A be a subset of an
element of M. Then g, converges onto A if for each point P € A there exists

a sequence P_ € g such that P_ =+ P.
n n n

The two theorems above allow us to dispense with the probabilistic
flavour of the basic situation (1.1) and to formulate it more simply in

purely analytical terms. Indeed on introducing the new variables

u o= un§n and zn HI ann the basic situation (1.1) may be formulated as
u *u in distribution
.y in distribution
M -1
Y = Baflo w)
Q > o,
n

Let A be the probability measure with marginals u and v and with support

AcgeM, ie. v ¥ g(u). Now apply the second theorem formulated above to

1

the curves g, = ana; and the sequences v * u and Y +> v. VWe find that

the basic situation (1.1) implies
(2.1) ana;1 converges onto A,

In order to prove that the limit random variables u and v of the basic
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situation (1.1) satisfy (1.2) it suffices to show that the analytic basic

situation, (2.1) together with o e, implies
(2.2) Acd

The investigation of conditions on A and on the sequence (an) which

ensure
(2.1) = (2.2)

is the subject matter of the thesis.

Since (2.1) is a statement about a sequence in M it seems proper to
give some attention to this space. We shall give a number of alternative
description of the set M and introduce a topology on this set. This exposit-
ion is not strictly essential for the remainder of the book and may be
regarded as background material. In particular chapters 3 - 6, where A is
the graph of a non-decreasing function defined on an open interval, may be
read in the context of the classical definition of non-decreasing functions
and weak convergence. However, for the proof of the two assertions of the

opening paragraph of this chapter the space M is the natural setting.
DEFINITION 2.2 For a = (81, a2) € R2 define
_ 2
a- = {(x, y) ¢R | x> a;, v <ayl}.

The set - is the open lower right quadrant with vertex a. For A c R2 we

define

A

n

c

©
7l

r

JA = U Ja. Observe that Ar is open

a€h

Similarly Ja :
and A- = A

THEOREM 2.1 Let x and y be real-valued random variables. There exists a

(=, a1) x(ae, ©) and

probability measure A such that

A lives on a curve g € M

A has marginals x and y.
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The measure A is uniquely determined by these two conditions.

PROOF Let F(x) = P{x < x} be the distribution function of x and let G(y)
be the distribution function of y.

1. Existence of A

Set

(2.3) H(x, y) : = min F(x), G(y).

2 and has marginals F(x) and G(y).

H is a probability distribution on R
Let A be the associated probability measure on RQ.

Set A = {(x, ¥y) | F(x) 2 G(y)}. Then, denoting closure by .,

AF'C Ac Ar

AAr = 0.

Similarly, setting B = {(x, y) | F(x) < G(y)}, ve find

Bepedh

)\JB = 0.

Since A UB = Rz, the measure A lives on 9A n 9B c 0A, the boundary of A.
2. Uniqueness of A

Let A satisfy the two conditions of the theorem. Then A(gr) = X(‘E) = 0.
Let H(x, y) be the distribution function of A. For (x, y) € g we have
A((x, y%_) = 0 and, hence, for (x, y) € g~ we have

G(y)

H(x’ y) = H(m’ Y)

H(x, y) < H(x, «) F(x).

This proves that (2.3) holds on g A similar argument shows that (2.3)
holds on '%. Since the union gq v Jg is dense in R2, the relation (2.3)

defines H.

COROLLARY 1 The measure A in theorem 2.1 has the distribution function
given by (2.3).
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COROLLARY 2 Suppose that the distribution function F of x is strictly
increasing on an open interval I, and that P{x ¢ I} = 1. Suppose y ¥ g(x)
with g € M, and let h € M. Then Y ¥ h(x) if and only if g|I = hlI where gII
denotes the restriction of the curve g to the vertical strip IxR in the

X,y-plane.

PROOF Let A be the support of the measure A defined in theorem 2.1. Then
Y ¥ h(x) if and only if h > A. The condition on the distribution of x
ensures that I is’ the interior of the projection of A on the x-axis. If h

agrees with g on I, then A ¢ hy if A ¢ h, then h agrees with g on I.
REMARK Fréchet [1951]has studied the distribution function H(x, y) defined
in (2.3) and shown that for F and G continuous and strictly increasing the

curve g is unique and is defined by F(x) = G(y).

EXAMPLE 2.1 Let u be homogeneous on (0, 1). Then x ¥ F—1(E) where F is the

distribution funection of X,

THEOREM 2.2 TLet x, ¥, . and ¥ be real-valued random variables such that

X, X in distribution
Yo7 ¥ in distribution
M . _
¥, = e,(x) withg €M forn=1,2,...

Y ¥ g(x) with g e M.

Let A be the support of the probability measure A on g with marginals x and

y. Then g converges onto A.

PROOF For n = 1,2,... let An be the probability measure on g, with mergin-
als X, end y . Let F (x) be the distribution function of X , Gn(y)of In»
and Hn(x, y) of An' Then by theorem 2.1, corollary 1,

Hn(x, y) = min (Fn(x), Gn(y)).

Since the right hand side converges, so does the left hand side (pointwise

on a dense subset). We obtain
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lim Hn(x, y) = min (F(x), G(y)).

The associated probability measure on R2 satisfies the two conditions of
theorem 2.1. Hence it is A by uniqueness.

In order to prove convergence of 8, onto A, take an arBitrary point
(x, ¥) € A. Let U be an open neighbourhood of (x, y). Then AU > 0. Now
An + X implies liminf XnU 2 AU for open sets U. Hence an >0 for n 2 ny,
i.e. e, intersects U for n 2 n,. Q.E.D.

If the limit distribution function F of x is strictly increasing on an
open interval I and if P{x € I} = 1, then the conditions of theorem 2.2
imply that the sequence of non-decreasing functions gn converges weakly to
g on I. In order to prove this we shall define a topology on M. With this
topology M becomes a locally compact, metrizable space. We shall also intro-
duce a compact space M*, which may be viewed as a two-point compactification
of M in the same way in which the closed interval [0, 1], which is homeo-
morphic to the extended real line [-®, «], may be considered to be the two-
point compactification of R.

Table 2.1 lists five representations of the same space M" and four
representations of M. The reader will observe that there are obvious
bijections between the different representations and that M may be regarded
as a subset of M*, the complement M \M consisting of two elements which are
the 0 and 1 of the Boolean algebra M*.

Before discussing the topology on these spaces we prove a well known

result on weak convergence of non-decreasing functions.

PROPOSITION 2.1 Let AT be non-decreasing functions on an open inter-
val I, Let C be the set of continuity points of gy on I and define the

function G on Ix{1,%,%,...,0} by
1
G(x, ﬁ) t=g (x) n=12,...,x€el
G(x, 0) : = gO(X) x e I.

Then weak convergence of to g, is equivalent to each of the following
€n 0

1. for each x in some dense set D c I there exists a sequence X, *x

such that gn(xn) -> go(x)
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2. g, converges pointwise to gy on some dense subset of I
3. gn(x) converges to go(x) for all x € C
L, gn converges uniformly to &g on compact subsets of C

5. G is continuous in each point of Cx{0}.

PROOF It suffices to prove that 1. implies 5. since 5. => L4, = 3, = 2, =>
=> 1, is obvious. Hence suppose c € C and € > 0. Choose x' and x" in the

dense set D such that x' < ¢ < x"

and go(x") - gy(x') < €. Choose §>0
such that x' + § < ¢ < x" - §. Let xﬁ and xg be the sequences mentioned in
1. converging to x' and x". Choose n, such that xﬁ <eg=68,c+8< x;,

\] - 1 " - n
Ign(xn) go(x )| < € and lgn(xn) go(x )| <€ for n = ny. Then

1 - " -
lgn(xn) so(c)l < 2¢ and Ign(xn) go(c)l < 2e. Hence for n 2 n; and

xe (e=-8,c+8)c [x;, xg] we have Ign(x) - go(c)l < 2e. Q.E.D.

The usual topologies (Lévy metric or Hausdorff metric on M*3, weak
star topology on M*1, weak convergence on M*2, M*3) make these sets into
compact metrizable spaces. The obvious bijections are homeomorphisms.

The set M will be regarded as a subset of this compact space. The
complement of M in M *consists of the minimal and maximal element of the
Boolean algebra M*. (Compare M*S with M3.) As a subspace of M* the space M

is a locally compact metrizable space.

DEFINITION 2.2 The symbol M will henceforth denote a topological space.
The underlying set is the set M1 of table 2.1, the topology is described

above.
EXERCISE 2.1 The set of increasing homeomorphisms of R is dense in M,

PROPOSITION 2.2 Let 8281s8pse e be elements of M with
g, = {(xn(t), yn(t)) | t € R} in the representation of definition 1.3 for

n = 0,1,2,... Then the following statements are equivalent

1. g, ~ & in M

2. X, > Xy weakly

0

3. for each P, € g, there exists a sequence P oeeg, which

0

converges to PO'
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TABLE 2.1

All probebility measures on [0, 1]
All £ : (0, 1) > [0, 1] non-decreasing and right-continuous

All curves (x, y) : [0, 1] =+ [0, 1]2 such that
x and y are continuous and non-decreasing
x(t) + y(t) =2t for t e [0, 1]

All £ : R > [-o, o] non-decreasing and right-continuous

All sets Ar with A c R2

A1l curves {(x(t), y(t)) ¢ R° | t e R} with
x and y continuous and non-decreasing
x(t) + y(t) =t for all t e R

All non-decreasing real-valued functions f defined on some non-empty
connected set S ¢ R where we identify two functions (f1, S1) and
(£, 8,y) if
the closures of S1 and of S
{r

2 are equal

1= f2} is dense in the common interior

All sets A, A < R2, with A non-empty and A- # 82

2

All sets OA, A < R™, with 0A_, the boundary of Ar, non-empty
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PROOF We first prove that 3. implies 2. Set P = (xn(tn), yn(tn)). Then
xn(tn) > xo(to) and yn(tn) > yo(to) imply 2t = xn(tn) + yn(tn) > 2t,. This
implies weak convergence of X (by the first criterium of proposition 2.1).
Similarly, using criterium 3, one proves that 2. implies 3,

Now given a fixed increasing homeomorphism of R onto (0, 1), say the
standard normal distribution function, there exists for each g, € M a unique
curve g; € M*3 in [0, 1] x [0, 1].

The corresponding conditions 1?, 2? and 3f for the sequence g: in M*3
are equivalent. (If we extend x; to R by setting x:(t) =0 for t < 0 and
x;(t) = 1 for t > 1, then proposition 2.1 applies to the extended functions
and on comparing conditions 3. and 4. of that proposition we see that point-
wise convergence of the sequence x; on [0, 1] is equivalent to uniform
convergence on [0, 1], i.e. to convergence in the Lévy metric. The equival-
ence of 2% and 3% is proved as above.)

Now 1% is equivalent to 1. by definition of the topology of M and 3?

equivalent to 3. is obvious.

REMARK If g, € M converges onto a non-empty set A, then the sequence (gn)
is relatively compact and the set of limit points is a closed subset of the

compact set M(A) = {g e M | A < g}.

PROOF The sequence (gn) has a limit point g* in M*. Obviously this limit
point is not the O or 1 of the Boolean algebra M*, since g, converges onto
A. Hence g* € M. Now observe that M(A) is a closed subset of M* which does

not contain the 0 or 1 of M.

PROPOSITION 2.3 Let hn be a function defined and non-decreasing on an open
interval In for n = 0,1,2,... Let &, € M contain the graph of hn' Let AO be

the closure of the graph of h. and let A1 be the closure of the restriction

0
of g, to I0 x R. Then the following are equivalent,

hn - h0 weakly on IO

g, converges onto AO

gnlconverges onto A1.

PROOF Suppose hn + h, weakly on I.. Let x € I. be a continuity point of hO’

0 0 0
then hn(x) > ho(x). Hence g, converges onto the set
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A= {(x, ho(x)) | x € I, continuity point of ho}.

0
Let g be limit point of the relatively compact sequence (gn) in M., (See the
remark preceeding this proposition.) Then g > A, hence g > A1. This proves
that g, converges onto A1.

Suppose g, converges onto Ao. Let I be an open interval such that
I cI,.. Then hn is defined on I for n 2 n,. By criterium 1 of proposition

0
2.1 the sequence hn converges weakly to hO on I.

LEMMA 2.1 Suppose g * g in Mand o +a, B, > B in G. Then Bngna;1 > Bga—1

in M,
PROOF Observe that X, X implies

ox =ax +Db + ax + b = ox,
n'n n“n n

1

. - -1
> >
Suppose P € h. There exist Pn € gn such that Pn P, Then BnPnan BPa .

-1 -1 -
Hence Bngnun + Bgo. by proposition 2.2 part 3.
PROPOSITION 2.4 & is a closed subset of M.

PROOF Suppose ¢n + g in M with ¢n € Q(qn, Bn), vhere Q(an, Bn) is defined
as in (1.4), and (an, Bn) # (g, €). Define the equivalence relation ™ on
(G x @)\{(e, €)} by (0, B) (at, 8Y) for t = 0. The quotient space is the
three dimensional real projective space, hence compact, and since

®(o, B) = ®(a', B') if (o, B) v (a', B'), the sequence (an, Bn) may be
chosen to be relatively compact in (G x G)\{(e, €)}. Let the subsequence
(ak, Bk) converge to (a, B) # (e, €) for k + «, Then for t € R for k + =,
by lemma 2.1,

b > 8

Bro0r” > 8%t

Since the left hand sides agree, the right hand sides agree. Hence
g € ¥(a, B) < o.



28

3 The equation Th = ho

In this chapter we study the basic situation (1.1) under the extra
condition that the support of the random variable u is the closure of an
open interval I in R and that P{g € I} = 1, i.e. every non-empty open sub-
interval of I contains positive mass and the endpoints of I carry no mass.

By theorem 2.1 there exists g ¢ M such that v ¥ g(u), i.e. u and v are
marginals of a probability measure A which lives on g. Let h be the right-
continuous, non-decreasing function on I whose graph is contained in g. By
the condition above on u the support A of the probability measure A contains
the graph of h. By theorem 2.2 the sequence anU;1 in M converges onto A,
and by proposition 2.3 this implies weak convergence to h on I of the cor-
responding sequence of non-decreasing functions.

Hence we may reformulate the basic situation (1.1) as

(3.1) an(a;1x) -+ h(x) weakly on I

o+ ®,
n
In order to prove (1.2) it suffices to show that h is the restriction
to I of a function ¢ € 9.
Now suppose 0 € A, i.e. there exist sequences kn -+ o and ln + ® guch
. that

kn 1 n
Setting

B 8—1 =: 1T, and

by ‘

g =8 £a~!

n n n

we may write

-1 -1

g = Blnfaln Tn 8,'n

n

or equivalently
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(3.2) angln(X) +b = gkn(onx)

where ay + bn P ETY.

1I. It is then possible to find

C such that h(x,) = h(xz), where C is the set of continuity

We assume h non-constant on I n O~
Xqs X, € C N o
points of h in I.

Substituting x. and X, in equation 3.2 and subtracting we find

1
an(s (x,) - sln(x1)) = gkn(cnxe) - gkn(cnx1)-
For n tending to infinity, this becomes
a(h(x,) - h(xy)) = h(ox,) - h(ox,).

In particular a *az 0 since h(x2) # h(x1). Similarly substituting X, in
(3.2) we find that bn converges to a real number b, and for all

xeCn "¢ we have

ah(x) + b = h(ox).

If we assume h to be right continuous, then this equality holds through-
out the interval I n 0-11. If a = 0, then h is constant = b on this interval.
Hence if we also assume that h is not constant on' I n 0I then a > 0, and
setting Ty = ay + b we obtain
(3.3) Th = ho,

i.e, for each x for which both the right and left hand side are defined,
equality holds.

Thus we have proved the following proposition.

PROPOSITION 3.1 Let f be a non-decreasing function, let o, and Bn be posit-

ive affine transformations such that o > and let h be a right-continuous,

non-decreasing function defined on the open interval I, such that
-1
an(an x)=> h(x) weakly on I.

Let 0 € A = A(a) be such that I n O0I is non-empty and that h is non-constant
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on I nolandonlIn 0_11. Then there exists T € G such that
Th(x) = h(ox) if x and 0x € I

and such that

=1

-1
otknocln > T,

+ 0 implies B, B
kn 1y

PROOF See above.

Observe that the condition about h being non-constant on I n oI and on

Ing

I is fulfilled in each of the following cases

1. I =R and v is non-constant

2, I = (c, @) and the probability distribution function G(v) of ¥ is
continuous in its upper endpoint sup {v | G(v) < 1}

3. the probability distribution of v is continuous.
This follows from the inequality
Ply = ?} 2 P{u e Jc}
vhere v u g(u), g € M, and g = c on the open interval Jc;

In the particular case that the support of u is the closure of an open
interval I and P{E € I} = 1, the problem of finding a functional relation
between the limit random variasbles u and vV leads us thus to the problem of
solving a set of functional equations of the form (3.3).

Although one could also derive the functional equation if u has a con-
tinuous distribution function F, it would only hold on the set X obtained
by deleting the closed intervals of constancy of F. In this generality the
equations are quite untractable.

The problem of giving necessary and sufficient conditions on A and I

such that the system of equations
Th = ho

(where T = T(0) € G is not known and O varies over A), implies that h is the
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restriction to I of some ¢ € ¢, is difficult. We shall limt ourselves to two

particular cases

1. I is unbounded

2. € is a condensation point of A,

First let us settle the question of determining all solutions h of
(3.3) for a fixed pair (o, T) of positive affine transformations.
Consider the simplest case in which both 0 and T are translations. The

functional equation (3.3) then has the form
(3.4) h(x + p) = q + h(x).

We are interested in finding all functions h defined on the given interval
I which satisfy (3.4). To avoid trivialities we shall assume p # O and
|I] > |pl. Note that

1. if h, end h, are solutions of (3.4), then h, - h, is periodic

2 2 1

modulo p,

1 . .
x on I is a solution.

2. the function h(x) = qp~
Thus every right-continuous non-decreasing solution of (3.4) has a

representation
(3.5) h(x) = Xx + ¢ + m(x)

where A = qp-1, T is periodic modulo p, bounded (since h is bounded over a
period) and upper semi-continuous (since h is), and c is chosen so that

max m(x) = 0.

DEFINITION 3.1 The upper envelope h of h with respect to equation (3.l) is

the function h(x) : = Ax + ¢ on I where A and c are defined by (3.5).

Note that the upper envelope in general depends on p and g in equation
(3.4). Note too that the set {h = h} is periodic modulo p and non-empty (it
is the set {m = 0}).

If h satisfies two equatiods
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(3.6) h(x +p;) =g +h(x) i=1,2

then we have two representations

L}
-
M
n

h(x) = Ei(x) + Wi(x) i

where Ei(x) = qip;1x + e (i=1, 2).

If I is sufficiently large, in fact if |I| > |p1| + |p2| then one can
prove that h1 = h2, hence T, = T, is periodic modulo p, and modulo p,. In
particular if p.l/p2 is irrational, then T is constant and h = hy =h, is an
affine function,

To prove that 31 = h2 we need three points, Xgs Xqs X5 € I such that

X

0 < X, < X, and

h1(xo) = h(xo)
hz(x1)"= h(x1)

h1(x2) = h(x2)

(or the same equations with the K1 and Eé interchanged). Existence follows
from the periodicity of the sets {H1 = h} and {Eé = h}. Since we know that

h is majorized by its upper envelope, the three equations above imply that
the affine function d(x) = 51(x) - Eé(x) has at least two zero's on I, hence
d vanishes indentically and h1 = h2.

Now consider equation (3.3) for general 0 and T. We choose the origin
of our x-axis and y-axis to be the centre of multiplication of the trans-
formation ¢ and of T (unless these are translations). Thus we may assume
that ox = x + p or ox = ePx and Ty =yt qor Ty = eiqy with ¢ > 0 or Ty = y.

Since (3.3) is equivalent to

we mey assume p to be positive. (If p = O then h is constant or the equation

is trivial.) By a suitable transformation of the form

h1(x) = log h(x)
n (E) = n(e)
or h1(E) = log h(eg)
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we may reduce all these cases to equation (3.4). This yields the non-

constant solutions of table 3.1.

DEFINITION 3.2 The upper envelope of h = Y(k) in table 3.1 with respect to
equation (3.3) is h = Y(k) where k is the upper envelope of k.

|
The upper envelope is the restriction to I of an element of 9(o, T) as

can be checked with some patience (see (1.4) for the definition of ®(c, T)).

LEMMA 3.1 Suppose ¢ € ¢ is defined on the open interval I1 and has a

strictly positive (finite) derivative in every point of I,. Then there exist
A, U € R such that

d d o u=2
i log = d(x) = T Wx - "

TABLE 3.1
ox Ty h(x)
X+ p y+q k(x) : = ¢ + Ax + m(x)
eqy ek(x)
e Yy —ek(x)
ePx y+aq k(log x) x>0
Yy-aq -k(log -x) x<0
k1(log x)
eqy c,e x>0 c,,ca20
1% 1 2
{ k2(log -x)
-c e x <0 4 + ¢y >0
e Yy _ek(1og x) x>0
e~y JK(1og -x) % <0

i >
y cy + ¢, sign x Co 0
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PROOF Set L = %; log %; . Then Lo¢ = Lo, L(¢a) = a.(Id)(a) if ox = ax + b

and IWP(x) = =(Lp)(=x) if Y(x) = =¢(-x). It suffices to check the formula

for the functions x, ex, log x and x%. And indeed Lx = 0, Le* = 1, L log x =
= _ l, I = &= 1‘
X

COROLLARY Suppose ¢1, ¢2 € ¢ are defined and differentiable on the open

interval I, and their derivatives are strictly positive on I.,. If ¢1 and ¢2

1 1
agree in four points of I, (counted with proper multiplicities), then they

coincide on I1.

PROOF The derivatives ¢{ and ¢é agree in three points, so too log ¢; and
. . . d d
| = — —
log ¢2. The functions L¢1 and L¢2 agree in two points (L = a log 3 as

above). Hence they coincide. (Either both vanish on I, or the algebraic

1
inverse is affine.)

PROPOSITION 3.2 Suppose h is non-decreasing non-constant on the open inter-
val I. Suppose (oi, Ti) z (e, €) and

(3.7) T;h = ho; for i =1, 2,
Let i1 and ﬁ2 be the upper envelopes of h with respect to equation (3.7).
Then E1 = Eé if one of the following conditions holds

a) I is unbounded
b) I is bounded and 01 and 02 lie in the neighbourhood of € defined by

lox - x| < l—'IIIfor all x € I.
15

PROOF We only prove b). The proof of a) is similar.

The upper envelope E& is the restriction to I of some ¢i € @(ci, Ti). Note

that ¢1 and ¢2 are not constant on the whole interval I since this would

imply that h is constant on I and this case is explicitly excluded.
Suppose one of the functions is constant on part of the interval, say

€ I and x, maximal. Then h = c on I

¢, =con Ip=1In (=, xo) with x, 0 0

(the periodic part vanishes on the left side of xo). If IIOI < %g ||, then
there exist X, and X, = 02x1 in IO such that h(xi) = ¢2(xi) for i =1, 2 and

¢2 =h=c on (x1, x2). Then ¢2 = ¢ on a maximal halfline (with endpoint

X3 € I) containing (x1, X In particular o, is a multiplication with

2)' 2



35

+
centre X3 If x5 € I0 then ¢2 = ¢ would hold on a left and a right neigh-

bourhood of x3 and hence ¢2 = ¢ would hold throughout I. This case, as we

have seen above is excluded. Hence x. 2 Xy By symmetry of argument X 2 X3

3 )
Therefore Xy = xg and we obtain either h = ey > ¢ on (xo, ©) n I (and ¢1 =
= ¢2 = h) or there exist functions k1 and k2 such that
: ki(log(x - xO))
(3.8) h(x) =c + e for x > x,
(see taﬁlQ 3.1). Set £ : = log(x - xo). Then k1(€) = k2(£) on & neighbour-
hood of -». The upper envelopes E1 and Ez coincide by the argument used in

treating the system (3.5). Hence ¢, = ¢2 on (xy, ®) n I by definition of
upper envelope of h.
If neither of the functions ¢i is constant on part of I or if

IIO| < 2. |I|, then there exists a subinterval I, of length 2 %III on which

15 1

both ¢1 and ¢2 have strictly positive continuous derivatives. Any subinter-
val of length = %EIII contains a zero of ¢i -h for i = 1, 2 and we may

< < . B . .
choose Xy <V, X, < Yo < X, in I1 such that ¢1 h vanishes in Xgs X5 X
and such that ¢2 - h vanishes in ¥, and Yo Since ¢i -h20fori=1,2,

2

the function ¢1 - ¢2 is non-pdsitive in Xys Xy and x, and non-negative in
¥, and Yy Hence it has at least four zeros (counted with their proper

multiplicities) on the closed interval [xo, x2]. By the corollary to lemma
3.1 this implies that ¢1 = ¢2 on I
then ¢1 = ¢2 on I1

endpoint %), € I. Then ¢; vanishes in x), or becomes infinite and hence so too

1° Now if ¢1 z ¢2 on the whole interval I,

n L where L is a maximal halfline containing I1 with

65 (or‘vice versa). On I \ L we again have a representation of h of the form
(3,8) and the argument used there may be repeated to prove that also on the

set I \ L the functions ¢1 and ¢2 coincide.

COROLLARY 1 If h is non-constant non-decreasing on the open interval I and
if

T h = ho
n n

holds for a sequence Gn »+ € with On # €, then h is the restriction to I of

a function ¢ € 9.

PROOF Either I is unbounded or I is bounded and o, satisfies condition b)

of proposition 3.2 for n 2 n.. In either case the upper envelope wn of h

o
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with respect to Gn and T does not depend on n for n 2 n, (by proposition
3.2). Let us denote this common upper envelope by ¥ (which is the restriction
to I of an element ¢ of &).

The set {Y = h} is periodic modulo Gn for n 2 n,, and Gn + € implies
that the set is dense in I. Since ¥ and h are both non-decreasing on I, they

coincide (in their continuity points) on I.

COROLLARY 2 Under the conditions of proposition 3.2, condition a) and b)

each imply that either h is the restriction to I of an element ¢ € @ gor that
there Sxist integers n, and n, and elements 0, T € G such that 0, =0 1,
T. =T * and Th = ho.

i
PROOF If h = E1 (= Kz) we are done since K1 is the restriction to I of an

element ¢ € . Hence assume h # 51. Then ¢ € @(Ui, Ti) for i = 1, 2 implies

either ¢ is affine or ¢(o1, T1) = @(02, T2) as one easily checks.
In the latter case
(3.9) g, = 0: s T = T? for some t # 0 .

and h = w(ki) (see table 3.1) where ki(x)

modulo p; for i = 1, 2, Since h, P, A and ¢ do not depend on i, we obtain

Ax +.c + ™ with ™ periodic

T, = T, is periodic modulo p, and p, = tp, (by (3.9)). If t is irrational

then this periodic part vanishes and h = h1. Else t = n2/n1 for integr%l n,
and n,, T %s periodic modulo p = p1/n1 = p2/n2 and Th = ho if we set O '
= 01 and T = T1.

In the former case H1 is affine, say E1 = YlI with Y € G. Then

(3.10) T,¥ = Yoy i=1, 2.

in the obvious way. If 9, is a

is a multiplication

Introduce the lower envelopes §1 and 22

translation, then h, and h, are parallel lines; if o

1 1
with centre c, then 21 and h

1
are each of the form co(x -c) + c1|x - cl| and

=h

1

intersect in x = ¢. Since h holds for the lower envelopes as well,

1 2

either 9, and 0, are both translations or both multiplications with the same

centre c. Together with (3.10) this implies (3.9) and the argument proceeds

as above.
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THEOREM 3.1 Suppose that in addition to the basic situation (1.1) it is
known that

1. the support of u is the closure of an open interval I and
Plu e I} =1

2. € is a condensation point of A,
then

v = ¢(E) for some ¢ ¢ O.

PROOF We may assume that the function h on I defined in (3.1) is not con-
stant. There exists an open neighbourhood U of € in G such that h is non-
constant on I n Y—1I and on I.n YI for each Y € U. For each 0 € A n U there

exists by proposition 3.1 a unique T € G such that
Th = ho.

From corollary 1 to protosition 3.2 above it follows that h is the restric-
tion of some element ¢ € ¥(o, T).
COROLLARY If in addition to condition 1 and 2 it is known that

3. v is non-constant

L. every neighbourhood of € in A contains elements o, and O, which do

1

not commute i.e. 0,0, # 0,0, then

v =Yyu for some Yy € G, and

-1

o, +a
% 1
and I n 01 is non-empty implies

-1 -1
BT~ yoy .
n ln

By

PROOF Since ¢ € @(01, T1) and ¢ € ¢(02, T2) and o, and o, do not commute,
¢ is affine, i.e. ¢ = y for some Y € G. Hence h is non-constant on I n OI
and on I n 0-11 whenever I n 0l is non-empty. By proposition 3.1 the sequence
B 811 converges to an element T € G and Th = ho. Setting h = y gives the

n
desired result.
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THEOREM 3.2 Suppose that in addition to the basic situation (1.1) it is
known that the support of u is R. Then there exists a unique element g e M
such that v ¥ g(u) and, unless v is degenerate, for each 0 € A there exists

a unique T € G such that

(3.11) 18 = go

(3.12) akna;; +0 implies Bkns;; > T,

PROOF Combine theorem 2.1, theorem 2.2 and proposition 3.1.

In the case that v is non-degenerate, i.e. g is non-constant, we can
give a complete classification of the possible situations which can occur
in the case that the support of u is R. To this end we introduce the closed
subgroup H of G generated by A = A(a). Observe that case 4 occurs if A con-
tains two elements which do not commute, else H is contained in a one para-
meter subgroup {ct | t € R} for some 0 # €. The classification is given in
table 3.2 on page 39.

PROOF of the classification in table 3.2,

Suppose o, € A = A(a). By proposition 3.1 there exists T, € A(B) such
that (3.11) and (3.12). By proposition 3.2 the upper and lower envelopes g
and g are independent of the choice of o,- By corollary 2 to this proposit-
ion éither g = g ¢ 0(01, Ti) for.a.ll pairs (q-, Ti) or there exist 0, T and
(1) T, = @) 4ng (3.11) nolds.

Hence if A contains two elements 9, and o, which do not commute then
g € @(01, 11) n @(02, 12) and by checking the different possibilities it is

integers n(i) such that o; = g

clear that g is an affine function Y and TY = YO. This proves Uu.
Else A c {o® | t € R} for some 0 # €. Since @(Gt, ) = ®(o, 1) for
t # 0, we may write o = oz(l) (if o, ® €) and

2 € ¥(o, Tz(i))

t(1)

for all i and hence T = T is independent of i (g = Tg with T # € implies

g € MO, see exercise 1.7). This proves 3, 2 and 1.
In chapter 4 we shall see that indeed any non-constant non-decreasing

function g is possible if A = {ec} whatever the sequence (o)
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39

TABLE 3.2

The possible relations v ¥ g(u), with g € M, between the limit variables
and v in the basic situation (1.1) under the condition that the support of
is R and that v is non-constant.

H is the closed subgroup of G generated by A, and kn > o,

H = {e} (degenerate case)

+ ¢ implies €

-1 -1 >
. aknaln BknB 1

b. g may be an arbitrary non-constant non-decreasing function on R.

B = {* | k integral} for some 0 # € (discrete case)

There exists T € G such that

a. o&{no{; + o

b. g satisfies the functional equation

. . -1 k
implies BknBln > T

Tg = go.

= {o° | t € R} for some o = ¢

There exists T € G such that

-1 t
a. aknaln +>0

b. g € ®(o, T).

implies B 811 > 10

Ky 1n

A contains two elements which do not commute

There exists Y € G such that
-1 . . -1 -1
a. o, =+ 0 implies B, B, = yoy
R Ky In

. E=Y.
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I Existence theorems

This chapter is devoted almost entirely to the construction (for given
sequence (an) in G and given g € M) of a sequence (Bn) in G and an increas-
ing homeomorphism f on R such that

(k.1) ana;1 + g in M.

We assume here that g lives on an open interval I (i.e. I is the interior
of the projection of g on the x-axis), which may be unbounded, and that oI
and I are disjoint for all 0 € A, 0 # €.

The proofs of proposition 4.1 and 4.3 are rather involved. In order to
ease the reading, the proofs have been cut up into several parts, A, B, ...,
most of which consist of a statement, followed by a proof of this statement.
Reading the statements A, B, ... should give the reader a bird's eye view
of the proof.

Before entering on the proof of theorem 4.1, or rather its analytic
counterpart, proposition 4.3, let us consider a simple particular case.

Let Y be a continuous, strictly increasing, bounded function on the

open interval I = (0, 1) and let 0450 be a sequence of translations,

paeee
ax =x-=-t.
n n
If a e, then Itnl + © and the sequence of tn's may be indexed anew
to be non-decreasing

<
cee St_,l StOSt.I S e

where the index now runs through an infinite set of consecutive integers.
We shall assume that the index set is the set of all integers and that

- >
typr = by 3 for all k.

Note that A consists of translations Ox = x + s where s is limit point
of the double sequence (t, -t ). If I n oI is empty for all 0 e A \ {e},

then 0 € A, Ox = x + s with s # 0, implies |s| 2 1. Hence

llmlnf(tk+1 - tk) 21,
Suppose first tk+1 - tk 2 1 for all k. Then the intervals
-1 . .

Jk 2= I= (tk, 1+ tk) are digjoint. We define f, on UJk by

(4.2) fo(x) i=c + Y(x - tk) for x € Jy
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where we choose the constants e such that fo may be extended to a continu-
ous strictly increasing function f on R, which is a homeomorphism since

lim f(x) = © = - 1lim f(x). On setting Bky =y -cg e obtain

X0 X+=00

ka(a;1x) = fo(tk + x) - e, = Y(x) for x e I.

Thus we have constructed for the given function Y and the given sequence

(uk) a sequence (Bk) and a function f such that
-1
B for > ¥ onI=(0, M.

In general we only know that liminf(tk+ - tk) 2 1. The intervals

1
(tk, 1+ tk) need not be disjoint. However, there exist subintervals

a1
- . . Y .
Ik < I such that Ik <+ I and such that the intervals Jk = uk Ik are dis-

joint. The construction of f then proceeds as above,

If instead of a continuous strictly increasing bounded function ¢ on I,
we want f to satisfy (L.1) where g ¢ M lives on I, then we first construct
Ik 4 I such that the intervals Jk : = a;1Ik are disjoint, and continuous
strictly increasing bounded functions wk : Ik + R such that wk + g, and

(4.3) sup Y, (x) >« , inf P (x) + =,
erk erk

As in (L4.2) we define f

0 og UJn by

fo(x) P=o ¢t wk(x - tk) for x € Jk’

extend f. to a homeomorphism f on R and observe that for Bky =y -c,_ We

0
obtain for x € I k| =2 m,

k

B F(0r ') = £(t, + %) - ¢ = Y (x) > g(x).

This together with (4.3) implies kad£1 + g in M.

This construction can also readily be adapted to the case that I is an
unbounded interval.

However, if we.do not restrict the o, to lie in a one parameter sub-
group of G, the construction becomes more involved. In the case sketched

above it was obvious that we could replace the sequence a£1I by a sequence
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Jk = a;1lk of disjoint intervals such that I, - I. In the general case we

k
need the following proposition.,

PROPOSITION 4.1 Let A be a set of bounded open intervals I, such that

I, n I,1
(L.4) ————— >0 forI, #I,and I, I, ¢ A.
1T, 1+ 11,1

(I.e. for any § > O there are only finitely many pairs (I1, 12) with I, =1,
for which the quotient above exceeds §.) Then for each interval I there
exists an open interval I* such that

*

(k4.5) I c1I
(4.6) IT*1/171 + 1

(4.7) 1If I: n I; is non empty then either I: c I; or I; c I:.

PROOF The proof consists of eight parts.

A. A is countable

Relation (4.4) implies that the set of pairs (I, J') with I # J' for
which |I n J'| > 0,is countable. On A we define the equivalence relation R
by

IRJ' if there exist I0 =1I,I

non-empty for i = 1,...,n.

19 n Ii is

.e,I_ =J" in A such that I.
n i-1

For each I € A the equivalence class R(I) is a countable subset of A.
If I and J' are not equivalent the open intervals UR(I) and UR(J') are dis-

joint. Hence there are only countably many equivalence classes.
B. We may assume that no two intervals in A have the same length.

We reduce each interval I to a subinterval I' such that [I'|/|I| + 1
and such that these new intervals all have different lengths. Relation
(4.4) holds for the set of intervals I' eand if (4.5) and (L4.6) hold for I'

instead of I, t?ey also hold for I.
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C. Set
(L.8) - p(I) = sup {IT n JI/I1T1 | 131 < I1I}.
Then p(I) + 0 by (b)),
D. We'may assume that p(I) < § for all I ¢ A.
Set I* = @ whenever p(I) = 1.

E. For each interval (1, r) = I € A define

=
!

= [1, 1 + pAl E=[r -pA, r]

o]
n

[1+ pA, 1 + 2pA] D =[r - 2pA, r - pA]

C=(1+2p\, r - 2p))

where A = |I| =r - 1 and p = p(I). C is called the core of the interval I.

Then the following assertion holds (for the proof see below under G and H).

For each interval I there exists x = x(I) in A = A(I) and y = y(I) in

E such that neither lies in the core C(J) of any interval J shorter than I.

F. Define X(I) = {x(J), y(J) | J ¢ A and |J| 2 |I|}. Because of the
assertion above the core C(I) is disjoint from X(I). Let I* ve the largest

open interval which contains C.and is disjoint from X. Then
cec1”c(x(I), y(I)) c I

which proves (L4.5) and (4.6).
If lI1l < |12| and u € I: n I;, then I: is the largest interval which
* is the largest interval which

2
contains u and is disjoint from X(Iz). Since X(IZ) c X(I1) we have I: c I;

contains u and is disjoint from X(I1) and I
which proves (L4.7). Note that we have even proved that
*
I I
(4.9) LI,

1Tl

G. For any x € R the set {|I| | x € I € A} is a discrete subset of (0, ®).
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Indeed, suppose I, I', I" e A, x e I n I' nI" and %A < A" <A <AL
Then either x + % or x - % lies in two of there intervals, say J, and J2.

1
We assume |J1l < IJ2|. Then by D.

17,0 3,0 > 1 A > p(3,). 1,1
which contradicts the definition of p(Jz).
H. Proof of assertion E
€ . Let x_ be the left endpoint of I

Suppose I We shall construct

0 0 0°
a point x € AO such that x ¢ C(I) whenever |I| < IIOI. If X, already has
this property we define x : = Xqe Else we choose 11 € N of maximal length
(see G) such that |I1l < |10l and x; € B, UC, uD,. Let x, be the right

endpoint of I1. Then

1) E1 S AO

2) if I € A and |I1| < 1] < IIOI then I, and C = C(I) are disjoint.

1

To prove 1) note that (xo, x1) € Iyn I

definition of Po+ Similarly if I e A is such that |11I < IIl < IIyl end I
meets C then by definition of p(I) we have I, € B U C U D and hence

hence Xy = X < Aopo by

1

1

X, €BUCUD contradicting the maximality of lI1!.
Now we recursively choose X and In such that

(4.10) Ay 2 E 24,2 Eg 2 ...

(4.11) if I e A and lIn+1I < |1l = IInl, then I ., and C = c(I)

are disjoint.

1

This construction either can be repeated indefinitely, or there exists
an integer n such that X ¢ C for any interval I for which |I| < lInl.

In the former case G and (L4.10) imply that IInI + 0. The sequence
(4.10) determines a unique point x € A.. Now suppose x € I € A, |I] < IIol.

0
There exists n = 0 such that

12,0 < IT < I 1.
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Then In this implies that
x ¢4 C,

The proof in the latter case is similar. Q.E.D.

is disjoint from C by (4.11) and since x e I+

+1 1

Note that the set A* = {I*} also satisfies (4.4) and that we may re-
»
place (4.6) by the stronger result

(4.9) 1T\ T¥1/1T1 < bp(T)
where p(I) is defined in (L4.8).

DEFINITION L.1 Suppose that A has the properties (L4.4) and (L4.7). An

I. If I is not maximal,

element I € A is maximal if I ¢ J € A implies J

then it has a successor I' € A, that is

IcI
I=1"

IcJdcI' with JelA implies J=1I or J=1I".
This follows readily from (4.4). The successor is unique because of (L4.T).

It is possible that each element I € A is contained in a maximal

element. Else there exists a sequence I

1’
i
cessor of In for n = 1,2,... If J1,J2,...

either UIn and UJn are disjoint or the symmetric difference of the sets
{11,12,...} and {J1,J2,..
that the one lies in the other, say I

12,... such that In+1 is the suc-

is another such sequence then

.} is finite. (Indeed I intersects J, implies
= >
X c Jm. Then I1 Jm for some 1 2 k

end hence I, ~=J forn = 1,2,...) Also lInI/IIn+1| S Pyq = p(In+1) + 0.

Hence UIn is unbounded. It follows hat A does not contain three mutually

disjoint successor sequences.

PROPOSITION 4.2 Let A* be a collection of bounded open intervals J* such
that

(4.7) if J: nax

i then J% < J4 e T,
s 18 non-empty en 1 5 OT 2 5

(4.12) p(3*) > 0, vhere
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(4.13) p(3*) = max {IT*1/15%| | % < J* ana T* # J°}.

Then each J° contains an open interval J such that A, the set of inter-
vals J, satisfies (L4.7), (4.12),

(4.14) 17\ J1/13%1 < 2p(3%)

and has the following property

(4.15) either each element J € A is contained in a maximal element,
»
or there exists a successor sequenck Jn = (an, bn) such that
(4.15a) uJ, =R
(L4.15b) a4 <& = 131 and by >+ 141

* . *
PROOF If A contains no successor sequence we are done (choose A : = A

and I : = I*). Else A* contains at most two disjoint successor sequences,
* * * * . -
say In = (cn, dn) and Jn. We define In = (cn, dn) as follows for n = 1,2,...

4

*
=4
* . * * * *
pt1 = Tnaq iF ey <e - 1T 1 end d ., >d + IT ]
* . * *
= (dn, dn+1) if Cheq 2 Cp - lInl.

= (c;+1, cn) else

and J_ similarly. Then (L4.7) remains valid and

*
In+1 \ In+1|

*
I, | k:

*
2|In|
*
n+1

*
< 2p(In+1).

Hence (4.14) holds. (We set J = J° for all other elements of A”.)
Now suppose In [ I; for n 2 n,. (This is the case if UI: is a half line,
*
say (a, @), for then the left endpoints of I: converge to a and |In| > o, )

bThen the intervals I_ ,I s+++ are disjoint and I_ is maximal for n 2 n,.
(If I 2o s * ¢ 1% implies 11| < I0%] < LIT*] £ ;
n c J, then In cJ =J since J < In implies In < |J ' or
large n. This contradicts p(In) + 0.) Let K1,K2,... be a successor sequence
in A. Then Kn is not maximal and hence K ¢ {11,I2,..., J1,J2,...} for
nzn

* * . c e s
Then Kn = Kn for n 2 n, and Kn, n n,, 1s a nev disjoint successor

2° 2
. * . .. .
sequence in A", This contradiction shows that A does not contain a successor
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sequence.
If In = I; infintely often, then UIn = UI: = R and the subsequence

. *
Ikn = (an, bn) for which Ikn = Ikn
(4.15b).

is a successor sequence which satisfies

THEOREM 4.1 Suppose ox + u in distribution where an is & sequence in G
which diverges to @, If A = {e} then for each random variable v there exists
an increasing homeomorphism f on R and a sequence of positive affine trans-

formations Bn such that an(gn) + v in distribution.

PROOF The theorem follows from proposition 4.3 below if we choose g such

that v ¥ g(u).

PROPOSITION 4.3 Suppose g € M lives on I. (That is, I is the largest open
interval on which g is finite.) Let o, be a sequence in G which diverges to
© such that I n OI is empty for each 0 € A, 0 # €, Then there exists an

increasing homeomorphism f on R and a sequence Bn in G such that
-1 .

(4.16) anan + g in M.

The set of such homeomorphisms f is dense in M.

PROOF The proof consists of seven parts. The actual construction of the
homeomorphism occurs in part F. We shall first construct a sequence of sub-
intervals In of I which converge to I (every point x € I lies in In for

n 2 n(x)) such that the associated sequence of intervals J, = a;1In has
property (L4.4) (they are "asymptotically disjoint"). This is done in B for

bounded I and in C for unbounded I.

A. Let us call a sequence Yo uniformly discrete if there exists a neigh-
bourhood U of € such that Yny;1 € U implies m = n. We show here that we may

assume o to be uniformly discrete.

Let U be a symmetric compact neighbourhood of € (i.e. Y € U implies
Y"1 € U) such that YI intersects I for all Y ¢ U. Suppose there exist sub-
sequences kn and ln such that a_1 € U for nv= 1,2,... Then aknai; + €,
(Indeed since U is compact it suffices to prove that € is the only limit
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point. Let O be a limit point. Then 0 € A and 0 € U, hence 0I n I non-empty,
implies 0 = €.)

Define the sequence Yo by

Y=

. -1 . ..
= <
Yo Yk 1? oYy € U with k < n minimal

]

. -1
o if ay ¢ U fork=1,...,n-1.

The argument above proves that aan1 + €. Hence (L4.16) is equivalent to
By +g inM
n 'n
and this remains true if we replace (Yn) by the subsequence of all distinct
terms. By construction this subsequence is uniformly discrete (with respect

to the compact neighbourhood U).

B. If I is bounded, then setting J = a;1I

) IJn.n Jml
(4.17) lim = T 7T C 0
n#m '“n m

as we prove below,
Suppose § € (0, %) and

|J.

K, n Jlnl 2 G(IJan + lJl ).

n

. _ -1 .
With Un = uknaln we obtaln
(4.18) I n cnII 2 8(|T] + IonII).

The set V of 0 € G which satisfy (4.18) is a compact neighbourhood of €.
Hence 0 has a limit point 0 which satisfies (4.18) and lies in A. This
means thet 0 = €. Since we assume an to be uniformly discrete, we must have

k =1 for n 2ny. This proves (4.17).

0

In the construction of f we shall need the relation
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lJn n Jml

Tm—l‘lln['*o for n # m.
n m

where I = I. This follows from (L4.17) for bounded intervals I. For unbounded
intervals we have to refine our construction of the sequence Jn. This we

shall do in part C.

C. If I is unbounded there exists a sequence of bounded open subintervals

I1 c I2 c ... such that I = UIn and such that

lim n(n, m) = 0

n#m
where
17,1+ 1T, »
n(n, m) : = IJn n Jm| m . Jn = OLn In'
n m
Indeed let I(1),I(2),... be an increasing sequence of open intervals

such that I = uI(n) and |I(n)| = n. Define

-1 -1
lan I(x) noa I(k)l|

n(n, m) ¢+ = ——— — . 211K |,
lan (k)| + Idm (k) |
Then B implies that for fixed k
1lim nk(n, m) = 0.
n#m
Choose n such that
nk(n, m) < 15- for max (n, m) 2 n,n#m.

k

We assume that the sequence Doshpseee is strictly increasing and define

2

I = I(k) for n <n < n e

n
Suppose m < n with n, <n < Byyqe Then
1T 121=2 1001
m k

and hence
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I+ la0'n |22 (lo” 1) + 12 10 1)
m m k n m

which implies that

n(n, m) < k.nk(n, m) < %.

1

D. There exists a collection A of open intervals Jn = a; I, such that
(4.19) I ¢l and I I

(4.20) J 0 J, non-empty implies J <J ~or J <J

(4.21) pn.|In| +0

where Py is defined by

(k.22) p, = max {17 1/13 | | JycJ andJ #J}, and

(4.23) either each J, € A is contained in a maximal element of A or we
have a successor sequence J(n) = (an, bn) in A such that

(4.23a) w(®) < g

(4.23p) 84 <8, - BAl RSN b+ 13(m)) n=1,2,...

n+1 n+1

Note that (4.21) is a stronger version of (4.12).

In parts B and C we have constructed a collection AO of intervals

0 -1.0

g =0 I, such that (4.19) holds and

n
0 0
I+ 1171
(4.24) lim IJg n Jﬁl —-%?—————f?— = 0.
n#m IJnI + IJmI

As in the proof of proposition 4.1 (part B) we may assume that the intervals
Jg have different lengths. Define pg = p(Jg) as in (4.8). Then (L4.24) implies

0 .0
pn.IIn| + 0
and hence certainly

0
(o + 0.
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For the subintervals J; c Jg constructed in proposition 4.1 we have by
(4.9) that

n n 0 0 ;0
(4.25) 5 . IInI < hpn.lInl +0

B!

n .
and hence IIg \ I;I -+ 0. The collection J; satisfies (4.19) up to (4.22).
Now apply proposition 4.2 to obtain the desired collection A of inter-

vals J . (Convergence in (4.19) follows from (4.14) and the analogous form
of inequality (L4.25).)

E. There exists a sequence of strictly increasing continuous functions wn

defined on T; such that

wn + g weaekly on I

(k4.26) sup Y (x) + o , inf P (x) + - o,
n n
xel xel
n n
(4.27) the increase of wnan over any subinterval J, € Jd,s m*mn, is

less then one half of the total increase of wnan over Jn.
F. The construction of f

Recall that we constructed f in the introduction to the chapter by
setting

where the Bn were chosen so as to ensure that f should be a homeomorphism,

Since the intervals Jn are no longer disjoint in the general situation, we

have to be more careful. We shall define f as the limit of a sequence fn.
There are two distinct cases to consider according to whether there

exists a successor sequence in A or not.

a., First assume that each interval in A is contained in a maximal interval

in A. We enumerate the intervals in A such that

Jn c Jm implies n 2 m,
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i.e. either Jn is maximal or it has a successor Jk with k < n,
Let fo be an arbitrary increasing homeomorphism of R. If the homeo-
morphisms f1""’fn-1 on R have been constructed, we define

fn_1(x) x ¢ Jn

3;1wn(dnx) X € 3;

fn(x) :

n

where Bn is the unique element of G such that fn is well defined in the end-
points of Jn. This is possible since fn—1 is strictly increasing. The
function fn is a homeomorphism on R.

b. Now assume not every interval J € A is contained in a maximal interval.
Then there exists a successor sequence Jn = (an, bn) € M\ which satisfies
(4.23a/b).

Define
h1(x) 1 = w1(a1x) on J,.
If h,y...5h have been defined, we define h_ on J by
1 m=-1 ) m m
hm(x) : = hm_1(x) X € Jm_1

B;d:m(amx) xeT \J__

where Bm is the unique element in G such that hm is well defined in the end-
points of Jm_1.
Clearly hn(x) = hm(x) on Jm for n > m and it follows that hn converges
to & strictly increasing continuous function h on R.
The function h need not be a homeomorphism since it may be bounded.
However, we have some freedom in defining the sequence wn’ which we shall
now use to ensure that h is a homeomorphism.

. . *
We alter wm into a continuous function wm such that

*

. . . . _
n+1%p+q 1S affine on the interval J¢ (a.m lJml, b+ |Jm|)
* .. . o '

wm+1am+1 coincides with wm+1am+1 outside Jm.

10y (4.23b) and |J&| = 3|Jm| and hence (4.26) holds and

Note that J' c J
m - mHl,
|”" + 0 by (L4L.21). This implies

'
BN NN,

m+1 m+1
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w; + g weakly on I.

*

. . * . \ . * " =
Finally since h . is :fflne on J) we find that h +1(Jm+1) > hm+1(Jm)
=(c -d, ¢ +24) if hm(Jm) = (c, ¢ + d). Hence h = 1lim h is a homeomorph-
ism.

In A\ {J1,J2,...} every interval is contained in a maximal interval

and hence we can use the construction of part a) starting with f. = h (which

0

may break off after a finite number of steps, if A \ {J1,J2,...} is finite).
We shall now prove that the countable collection of functions

h1,h2,...,f0,f1,... converges. It suffices to prove that fn converges.

Define the set
1
=N < =},
E=nU{Ten]| lal <}

The complement of E is dense in R. It contains the endpoints of all inter-
vals J € A.

If x ¢ E then the sequence fn(x) is constant for n 2 n(x). This proves
that fn converges on a dense set, that the limit f is strictly increasing
and that sup f(x) =.- inf f(x) = « since fn(x) = fo(x) in the endpoints of
maximal intervals of A \ {successor sequence}.

Condition (L4.27) ensures that f is continuous. (If J, > J, > J, > ...

1 2 3

then the increase of f over Jn+1 is less than one half of the increase of f

over Jn.)

Let £* be a given homeomorphism. We may ensure that f is close to f*
on a given bounded interval by altering a finite number of the functions wn‘
This shows that the set of such homeomorphisms f as constructed above is
dense in M.

G. Convergence of B o
n"n

Let x € I be a continuity point of g. Consider £n : = ana;1 on In’ By
construction of f we have Y = B_f o’
n nnn

which do not lie in an interval J € A having Jn as successor. Hence En(x) =

on I , Alsof=f for ally ¢ J
n n n

= ¢ (x) unless x € ad = (xﬁ, x)') say, vhere J € A has successor J . In that

"o _ = -1 ' ' = '
case x - x| = IJI.!InI.IJnl + 0. Hence x) ~+ x and En(xn) b (xp) >
+ g(x) by definition of the sequence wn' (set xé =xif x ¢ o J for some J

with successor Jn.) Thus wn + g weakly on I implies En + g weakly on I.
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Since En = wn in the endpoints of I condition (4.26) implies that
-1 . -1 .
anfan | = @ outside I and hence anan + g in M.

Here ends the proof of proposition 4.3.

One might conclude from theorem 4.1 and the theory of the previous
chapter that the set A contains complete information on the class of g e M
which can occur in the relation v ¥ g(u) for appropriately chosen f € M and
sequence (Bn) in G.

This is not the case. If 0X =X + n, then
A={oea | 0x = x + k with k integral}. The possible limit functions, by
table 3.1, are

k(x) = Ax + ¢ + m(x)

with T periodic modulo 1, and

+ ek(x)

h1(x) b

hy(x) = b - k()

For the sequence an above they are realized as limit of the sequence ana;1
with f =k or f = hi and Bn chosen appropriately. The example below shows
that there exist sequences (un) on the other hand, having the same set A,

such that the functions h, and h, are not possible as the limit of a

1 2
sequence ana;1 for any f € M and any sequence (Bn) in G.

EXAMPLE of a sequence (an) such that
(4.28) A={oeG | ox=x+k, k integral},

and for which there exist no f ¢ M and no sequence (Bn) in G such that
-1 . _ x
anan + ¢ with ¢(x) = e”.

Consider the set
{ank | x integral, Ik| < (n!)z, n=1,2,...}

where X = n!x - k. Observe that O + ® gnd that o_, -+ © implies n > %,

k nk

Now consider the quotient
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1
o o x =32t x+ By g,
n! n!
If a sequence of such quotients converges to 0 € G, and at the same time the
numerator and denominator diverge to ®, then ox = x + j for some integer j.
Hence (L4.28).

Suppose Bnkfa;; + ¢ weakly on R. Then

-1 -1
f(ankz) - f(ank1)¢¢(2) - o(1) B

1 = =e.
f(ank1) - f(anko) ¢(1) - ¢(0)

Hence for n 2 n0 and all k we have

2 +k 1+k
P - )

o) - o &)

> 2,

Let Xy < %4 be continuity points of f. Fix n 2 n, and add the nominators and

the denumerators for k = ko,k0+1,...,k1, where ki is the integral part of

n!x:.L for i = 0, 1. Then

2 +k 1+k
f[‘"—ﬁ’r—l]-f[——n'—o]

>
T+k T+ky
=) - =)

For n -+ » this fraction converges to

f(x1) - f(xo) .
f(x1) - f(xo)

Hence 1 2 2. Contradiction.
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5 Domains of attraction I

Up to now we have been primarily concerned with determining the possible
limit functions ¢ if it is given that the sequence anu;1 converges weakly on
an interval I. One can also ask the following question.

Given a function ¢ and an interval I, determine the class of non-decreasing
functions f such that ana;1 + ¢ weakly on I.
We do not propose to give a complete answer to this question. We shall
only meke some general remarks on the subject and give a number of examples.
Let us start with some examples. Let ¢ = € be the identity function on
R. Suppose f is a strictly increasing function on R which is affine on the
intervals (n2 -1, n2 + 1), for n = 1,2,... If we choose a_1x =x + n2, then
fa;1 is affine on (-1, 1) for n = 1,2,... and ana;1 +¢€ on (-1, 1) for a

1 1

suitably chosen sequence (Bn). If we choose a;1x =n" x + n2, then fa; is

affine on (-n, n) for n = 1,2,... and ana;1 + € on R for a suitably chosen

1

sequence (Bn). Similarly ana; + € for properly chosen sequences (an) and

(Bn) if f is affine on any sequence of non-empty open intervals

(xn - Gn’ X o+ Gn),.if f has a positive derivative in a sequence of points

X , or even if f has a positive derivative in only one point Xy On the other

hand also the step function f(x) = [x], the integral part of x, tends to €

with suitably chosen norming sequences (an) and (Bn), say O x = Bx = 2 'x.
In order to obtain interesting results, we reformulate the problem. For

a given non-decreasing function h on I and a given sequence (an) in G determ~-

ine all non-decreasing functions f and all sequences (Bn) in G such that

-1
(5.1) B fo  ~h weakly on I.

If f, h, I and (an) are known in relation (5.1), then finding the sequence
(Bn) for this given f is no problem. Indeed, suppose (fn) is a sequence of
non-decreasing functions and ann converges weakly to a non-constant limit h
on I. Let Xgs X
Then

;€ Ivbe fixed continuity points of h such that h(xo) < h(x1).

.0 - £.0x0) B £ (0 - B F () B0 - hx)

(5.2) =
(%) - fn(xo) ann(x1) - ann(xo) h(x1) - h(xo)

weakly on I. Hence instead of (Bn) we may use the norming sequence (Y_1B;)
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where

y - h(x.) y - £ (x.)
Yy i = ——— 9% By : = o 0 for n = 1,2,...
h(x1) - h(xo) fn(x1) - fn(xo)

By Khinchine's theorem on the convergence of types, see theorem 14.1, it

follows that Y-1B: is asymptotic to Bn.

DEFINITION 5.1 Suppose g € M and (an) is a sequence in G, Then f € M lies
in the domain of attraction of g for the sequence (an) and we write f ¢ D =

= D(g, @) if there exists a sequence (Bn) in G such that

-1
anan > g

With this notation we may formulate the main result of the previous
chapter, proposition 4.4, as follows. If g ¢ M and o, >« such that A = {e},

then D(g, o) is dense in the set of all increasing homeomorphisms of R on R.

We shall now give sufficient conditions for f to lie in the domain of
attraction of €, the identity on R, for various classes of sequences (un).

In the examples below we shall use the following notation,

f is a non-decreasing function defined on R

(0. ) is a sequence in G and a > (hence a;1 + )
o lx=ax+p , hence o_x = a”(x - b))

n n n n n n

D = D(g, a).
1. If a, >« and f(x) - x is bounded, then f € D.

PROOF

f(anx + bn) -b, ax+ cn(x)
= -+ X

a a,
n n

since cn(x) is bounded (in x and n).

2. If a 2 q >0 for all n and f(x) = x + o(1) for |x| - «, then f € D.
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PROOF Set d(x) : = f(x) - x. The function 4 is bounded, say |d(x)| <M for
all x, and for each € > 0 there exists L > O such that |d(x)| < € for
|x] 2 L. For x fixed we have

f(anx + bn) -b e d(anx + bn)

a a
n n

The right hand side tends to zero since a + [b_| + », (For sufficiently
large n either a 2 €—1M, or else Ibnl 2L + € M|x| and then Ianx + bnl 2
2 L.)

3. If a > 0 and f is differentiable, f' is positive and log f' is uni-

formly continuous, then f € D.

PROOF

f(anx + bn) - f(bn) ~ anxf'(En)

anf'(bn) anf'(bn)

where En lies between bn and bn + aﬁx. Since log f' is uniformly continuous,

for each € > 0 there exists 6 > 0 such that
)

£'(E)

€ -b | <8 implies |———
n n f,(bn)

- 1] <e.

For fixed x the condition Ign - bnl < § is satisfied for n = n_ since a, 0.

0
4, If log & is bounded, bn + o, and if f satisfies

f(x +t) = £(t)
£(1 + 1) - £(t)

(5.3)

+x for t + =,

then £ € D.

REMARK The condition (5.3) has been extensively studied in de Haan [1970,
¢

p. 31 and def. 1.4.1] in the multiplicative version. See also chapter 12

below.

PROOF The relation (5.3) is uniform on bounded x-intervals, the limit

function being continuous. Hence it implies
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f(anx + bn) - f(bn)
f(an + bn) - f(bn)

+ X as n > »,

5. If f is differentiable and the derivative f' is positive and continuous
and converges to a positive constant p as |x| - ©, then f € D(ge, a) for every

sequence (an) in G which diverges to =,

PROOF It suffices to prove that each subsequence of (an) contains a sub-
subsequence, say (o, ), such that kaa£1 + €. (See remark after proposition
2.2.) If there is a subsubsequence with ak -+ 0, then convergence follows
from example 3, above. Else there is a subsubsequence with 8 2 q >0 and
then we refine the argument used in the proof in example 2. above, as fol-
lows. Since £'(x) tends to p > 0 for |x| + =, the set {|f' - p| > €} is

bounded for each € > 0, and hence for s < t we have
t
[ £9(x)ax ~ p(t - s) for max (ltl, Is|) + o,
s
This implies that
f(akx +b) - f(bk)
Pay

6. The conditions in 5. above are sufficient but not necessary. Consider

> X.

f(x) = -x loglx| on (~l,-%) and extend this function to the whole real line
so as to satisfy the conditions of 5. for |x| > %. Then f € D(g, o) for

every sequence (an) in G for which o .

PROOF In view of 5. we need only consider the case that &, -+ 0, bn =+ 0. By
going over on subsubsequences we may assume that either bn ~ cay (in which
case we may even assume that bn = ca since o, is asymptotic to &n where

~ -1 -1

ox=a x- ¢) or that |bnan | =+ o,

Consider the quotient

) f(anx + bn) - f(bn)
f(&n + bn) - f(bn)

Qn(x) :

If ¢ = 0, then bn = 0 and Qn(x) ~+ x. Else consider

f(anx + bn) e ax + bn loglanx + bnl e
(b)) b, log Ibn |
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pS =X i =
(1+2)(1+0(1) = 1=2+0(1) ifb =ca,c 0

a.nx a.nx a.nx -1
= (1 +q)(1 + o(:b—r-l—)) -1 =:D'n— (1+0(1) if Iba |+,

Hence Qn(x), which is the quotient of two such terms converges to x.

T. Let f be a non-decreasing function defined on an open neighbourhood of
[0, 1]. Suppose that f has a strictly positive continuous derivative on

I =(0, 1) and that 4, = 1lim f'(x) and d1 = 1lim f'(x) exist and are posit-

0
ive. Define o0+ *1-0

A={oeG| ol o1},

. _ -1 )
For a € A, o, ? with o x = &, (x - bn) we define
BY = (anf'(bn))_ (y - f(bn)). Then for x € (0, 1) we have

f(a.nx + bn) - f(bn) f'(anEn +b,)

T =X 3 <> X
af (bn) f (bn)

B (a7 "x)

where En € I and f'(bn) is interpreted as the left or right hand derivative
ifb =1o0orb =0.
n n N
If £ is continuous in O and also the left hand derivative say d0 of £

exists in 0, then for the sequence o with o X = nx, ve find

- >
B £(o'x) = Hox) = £(0) ') - £0) {x for x>0
n n -1 * =1

n do dodo x for x <0,

Hence we have convergence for all x ¢ R for every sequence an € A with
o e if f is also differentiable in the endpoints of I.

If £ is not differentiable in O nor in 1, then we can choose (an) with
-1 .. _ . _ N
+1an + €, liminf bn = 0 and limsup bn = 1. In this case

o € A such that o
n n
anan x + x only for x ¢ [0, 1].
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6 Continuation theorems
a_1) is

+1'n
bounded. In a sense this is a much more stringent condition on the sequence

In this chapter we introduce the new condition that (an

(an) then any condition on A can be. (Even if A = G, the sequence (an) may

have very large gaps. Take for instance azn =Y, and a2n+1 = onYn with (cn)

dense in G. Then A = G whatever the sequence (Yn).)
Under certain circumstances this new condition on the sequence (an)
has the consequence that

L ¢ on T

-1 . . -
anan + ¢ on I implies anan
where I" is an unbounded interval.

The most simple case is where o, is a translation for each n, say
o.x = x+t with (tn+1 - tn) bounded. Then A is a set of translations. Set

sp ¢+ =inf {s >0 | 0 € A and ox = x + s}

and let I be an open interval of length |I| > Sy. We are then able to prove
the following. If

-1
anan + ¢ weakly on I

with ¢ € &, ¢ non-constant on I, then
-1
anan -+ ¢ weakly on R,

el . . n -1
A condition like (an+1an

to prove such a continuation theorem., That this condition is not sufficient

) is bounded" obviously is necessary in order

is shown in the last lines of example T. of the previous chapter (where
-1
O 41%, even converges to €).
Therefore we assume in this chapter that the sequence (an) in G satis-

fies the following three conditions.

(6.1) a >

-1. .
(6.2) (an+1un ) is bounded
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(6.3) A is contained in a one-parameter subgroup
6y) = {y° | ¢t e R}
with Y € G, and obviously Y # €.

This chapter may serve as an introduction to the second part of the
book, chapters 7 - 13. There we shall replace (6.2) by the stronger condit-
ion

(6.14) R

n+1"n

and obtain similar results, even though we drop the condition that ana;1

converges weakly on an open interval.

DEFINITION 6.1 Let I be an open interval and Y € G. The Y-invariant extens-
ion of I is the smallest open interval J with the properties

IcJd

YJd = J.’

REMARK This terminology is only used in this chapter. Clearly J exists and
J=1 if y=c¢
J
J

R if vy is a non-trivial translation

(=2, ¢c) or J=(c,® or J=R if vy is a multiplication

with centre c.

PROPOSITION 6.1 Suppose that

-1
anan +h weakly on I

where I is an open interval, h is defined and non-decreasing on I and as
usual f e Mand o , B € G. Assume moreover that in addition to (6.1), (6.2)

and (6.3) the following two conditions are satisfied,

1. h is non-constent on I n 0I and on I n 0-11 for each limit point O of
=1

the sequence (an+1un )

2. the function h extends to a function hy on I,, the Y-invariant extens-

ion of I, which for some T € G satisfies the functional equation
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for all Yt e A. Then

B fo. —+h

nf% 1 weakly on I

1°
PROOF We may assume I to be the maximal open interval on which ana;1 con-
verges to h1.
By taking a subsequence and re-indexing if need be, we may ensure that

all limit points of the sequence 0_ : = o o
n ntl n _t

0<cs<t<e, (or that they all have the form Yy ~ with 0 <c <t < c1),

c -c
where c1 is so small that h is non-constant on I n ¥y 1 and on I nYy 1.

(For an exact proof of this assertion we need proposition 9.7 which
states that the conditions (6.1), (6.2) and (6.3) are sufficient to construct

have the form yt with

a continuous function o : [0, ©) >~ G and a sequence tn + o guch that

o =oa(t ) for alln
n n

a(t + s)ot(*l;)_1 +Y(s) for t +» for all s ¢ R,

-S

where either Y(s) = Ys for all s or Y(s) =7y = for all s. We may as well

assume that the former is the case. Now set a : = limsup (tn+1 - tn). Then
Ya is a limit point of the sequence (ah+1u;1). Hence h is non-constant on
In YaI and on I n Y'aI. This implies that h is non-constant on I n YbI and
on In Y-bI for some b > a. Now construct the subsequence tﬂ = tkn as

follows. Set k, = 1. For given k1""’kn choose k ., >k , minimal, and so

1 1
that

' ' -
tn+1 2 tn +b a.

- t') <b. Set c, =D

. .. . \ . \
Obviously liminf (tn+1 - tn) 2 Db - a and limsup (tn+1 a 1

and ¢ = Db - a to obtain the desired result.)
_ -1 _ -1 _ -
Set L Bn+18n - anan and O, =0 .40, Bas above. The
sequence (Gn) need not converge. However, each subsequence contains a sub-

1

subsequence (kn) such that o, =~ Yt for some t € [c, c1]. For this particular

kn
subsubsequence we have



66

okn o~
gkn d h1 on I
(6.5) g +h, onlI
K+ 1
(6.6) B 4y = T, & o]
o+ K8k Tk

and since h1 is non-constant on I n Y-tI and on I n YtI we may use the
argument of the opening section of chapter 3 to conclude that Tkn g Tt for
some T € G. The relations (6.5) and (6.6) imply

-> T—th1yt =h, on Y-tI.

-1
L 1

Hence *hyonIv Y_tI (which is an interval since I n Y-tI is non-

empty). In particular g h1 onIu Y_cI. This holds for all suitable sub-
n

subsequences and hence for the whole sequence (gn). Since I is maximal we

have I > Y_CI. Similarly I > Y°I. This proves the proposition.

COROLLARY We use the notation of proposition 6.1. Suppose

1

anan + h weakly on I.

If (6.1), (6,3) and (6.4) (in stead of (6.2)) are satisfied, and h is non-
constant on I, then there exists T ¢ G and ¢ € ®(y, 1) (see (1.4) for defin-
ition) such that

-1
anan + ¢ weakly on I1.

PROOF By corollary 1 to proposition 3.2 the function h is the restriction
to I of a function ¢ € &(y, T). Hence condition 1 and 2 of proposition 6.1
are fulfilled with h1 = ¢,

EXAMPLE Let the function y : R - R satisfy

P(x) =0 Ix| >1

x + P(x) 1is non-decreasing.

Set
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f(x) =x+ ) Y(x - x)
n=1

where (xn) is a sequence of positive reals such that 5 < x ., -x <T.

Set ox = an =X - X Then for x € I = (=4, L) we have
-1, _
an(an x) = x + P(x).

The sequence ana;1 obviously converges on I. The sequence will only converge

on a substantially larger interval, say (=T, T) if X 41 = X, converges. The

+1
example shows that condition 2. in proposition 6.1 cannot be omitted alto-

gether.

DEFINITION 6.2 Let (an) and (Bn) be sequences in G. Then o~ Bn and we say
. . . . -1
that o is asymptotic to Bn if Bnan + €,

PROPOSITION 6.2 Suppose

-1
anan +h weakly on I.

Here f ¢ M, B € G, the sequence (0 ) in G satisfies (6.1), (6.2) and
k .
A e {y" | k integral}

for some Y € G, I is an open interval such that YI = I and h is non-constant

on I, and satisfies the equation
(6.7) th = hy

for some T ¢ G. Then there exist sequences (&n) and (E;) such that

~  ~e ~ e
0‘n+10"1:1 > Bn+16n M

~ e
anan +h weskly on I,

and there exists a function n(k) from the positive integers to the positive

integers such that

~

% ™ %a(x) B ~ Box)-
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PROOF There exists a bounded sequence of integers kn such that

k
n
Opt1 T Oyt

Then also for some T € G we have

Bn+1 - Tkan'

For I =R this follows from part 2 in table 3.2, If I = R, then (6.7)
implies that h is non-constant on each unbounded subinterval of I and we
obtain this asymptotic relation from proposition 3.1 and corollary 2 to
proposition 3.2.

By rearranging the sequence (un) we may assume that kn 2 0 for all n
(or k 20 for all n). (Use proposition 9.7 for an exact proof.)
For convenience we assume that kn is strictly positiYe. We form the sequence
and inserting the elements YJan, j = 1,...,kn-1,

(&n) by setting o, = 0o

1
+1°

1

between % and o We thus obtain the sequence

2 k1-1
Oy 5 Y0 s Y 0y e e Y Oy 505 Y0y eee

Similarly for the sequence (E;).
In order to prove convergence of Enfa;1 we have to use the boundedness
of the sequence (kn). First note that for each n there exist j(n) and 1(n)
such that
¥ =1 _ i(n) -1 _=j(n)
anan T B1(n)fal(n)Y
and (j(n)) is bounded. Hence it suffices to prove convergence for sub-

sequences with constant exponents j(n), and this is trivial,
PROPOSITION 6.3 Suppose

-1
anan + ¢ weakly on I.
where f € M, Bn € G, the sequence (an) satisfies (6.1), (6.2) and (6.3), I
is a non-empty open interval, YI = I and ¢ € ® is non-constant on I. Then
there exist T € G, continuous functions o and B from [0, ©) into G, and a

sequence tn -+ © such that
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a = a(tn) Bn = B(tn)
(6.8) a(t + S)Ot(t)—1 > y5 B(t + s)B(t)—1 +1° for t >
(6.9) B(t)fa(t)™' > h on I for t + w.

PROOF Existence of these functions o and B follows from proposition 9.7 as
in proposition 6.2.

The sequence (tn+1 - tn) is bounded by the remark after proposition
9.7. This implies convergence in (6.9) if we use that convergence in (6.8)

is uniform on bounded intervals by proposition 9.3.
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s -1
T Some consequences of the condition an+1an > €

A basic feature of the central limit law for sums of random variables
is that the contribution of each single random variable to the sum is asymp-
totically negligable. Although the distribution functions of the partial
sums diverge, the distributions of the nth and of the n+1st partial sums lie
close to one another as n tends to infinity. To be more explicit we consider
the special case where X is the sum of n elements of a sequence of independ-
ent identically distributed random variables with expectation U and variance

02 > 0, Let o be the usual norming transformation for the nth partial sum,

X - Un
ax = —
then ovn
-1
(7.1) O 0, *E
Indeed
o./nx + v.n - H(n + 1) u
an+1a;1x = = v n E T X - > X,
o./n ¥ 1 o./n ¥ 1

DEFINITION 7.1 The sequence (an) is asymptotic to (Yn), with 0, € G and

Y, € G, and we write
o~ Yy
ifay"1 > €.
n'n

Note that ~ is an equivalence relation and that (7.1) may be formulated as

o ~a.
! Congition (7.1) seems to be a quite natural one to make. One does not
in general use norming constants to tame a sequence of wildly diverging
distribution functions, but rather to keep control of a sequence of distrib-
ution functions which, though apparently well-behaved, exhibits a tendency
to drift away to a defective or degenerate distribution.

Note too that condition (7.1) depends on the order of the index set.
In chepters 2 - 5 the index set could have been an arbitrary countable set
and the positive integers were used only to conform with standard usage.

In exercise 1.2 we have seen that the sequence (an) may be replaced by
any sequence (aﬂ) which is asymptotic to the given sequence. This does not

alter convergence or the limit distributions in the basic situation (1.1).
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Nor does it alter the set A. Hence if (7.1) holds and ox *u in distrib-

ution, then also
(7.2) a(t)ft + u in distribution

where we define for t =n + 6, 0 <6 < 1, n=0,1,2,...
(7.3) a(n +0) : = (a

and X P =X,

In (7.2) the norming constants depend continuously on a parameter t
which varies over the non-negative reals. This allows us to employ the
theory of functions of a real variable to obtain interesting results. In the
chapters 9, 10 and 12 we shall see that in particular Karamata's theory of
regular variation is a very useful tool in certain situations (if A is a
one-parameter subgroup of G).

In this chapter we prove a number of loosely connected results, the
most important being proposition 7.1 which states that under the condition
(7.1) we may replace the sequences (an) and (Bn) in (2.1) by continuous

functions o and B from [0, «) into G where for t = n + 06, 0 <6 < 1, we

define

(7.3a) a(t) & = (o, ;1)ean
_ -1,6

(7.3Db) B(t) = = (B B )B .

Furthermore we shall prove in proposition 7.2 that if o > and
an+1a;1 -+ €, then the set A contains a one-parameter subgroup of G. (Compare
this with exercise 1.4.4.) In the ensuing chapters we shall be particularly
interested in the case that A is equal to a one-parameter subgroup of G.
Finally we introduce a compactification G* of G, which is homeomorphic
to the closed disk in the plane. With the aid of this compactification we
shall be able to give a simple analysis of the basic situation (1.1) or

(2.1) in the case that the sequence (Bn) does not diverge to .
PROPOSITION 7.1 Suppose

B o~ converges onto A
n o n
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+1u;1 + €. (We assume as usual o € G, Bn € G, f ¢ M and that A is a

closed subset of some element of M. We do not assume that OLn + ©,) Then

and O,
n

B(t)t‘a(t)-1 converges onto A

where o and B are the continuous functions from [0, ®) into G defined in
(7.32) and (7.3b).

PROOF Set g, : = B(t)fa(t)”". Then for 6 « [o, 1]
_ -1 -1_ .6 -8
€4 = B(n + 0)B ‘gooln+0) =1g0

- -1 - -1 s

where Tn = Bn+1Bn and Un = un+1an . Since gn+1 converges onto A and On *> €
we find that both &, and T,&, converge onto A. It suffices to prove that for
any sequence Gn e [0, 1] also Tnngn converges onto A,

Suppose P € A. Thgre exist Pn € gn such that Pn -+ P and Qn € gn such
that TnQn + P. Since Ty lies between y and Ty if 6 lies between O and 1 we
can find R_ which lies between P_ and Qn on g, such that TenR + P,

n n nn

This proves the proposition.

We shall now show, see proposition T.2, that the conditions o, > and
an+1 ~ an imply that the set A contains a one-parameter subgroup of G.
DEFINITION 7.2 For any unbounded set A ¢ G we define A(A) to be the set of
all 0 € G for which there exist divergent sequences (an) and (Bn) in A such
that 8o~ * o.

Let (an) be a sequence in G such that o,
fies that A = A(A) where

~ o =+ », One easily veri-
+1 n ¥

(7.4) A= {a(t) | t 20}

and o(t) is defined by (T7.3a).

In this case the set A is unbounded. Indeed Aa;1 intersects the circle
{yeG| yx =e®x + b and c2 +1° = r2} in a point o, = a(tn)a;1, since A is
connected and unbounded. The circle is compact. Hence the sequence (On) has

a limit point 0 on the circle which belongs to A,
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LEMMA 7.1 Let B be a closed connected subset of the plane and T a trans-—
lation such that B and 1B are disjoint. Then so are B and B for all

integers k = 0.

PROOF We may assume that B is a subset of the complex plane and that

Tz = z + 2mi. Let R > B be a region (i.e. an open connected subset of C)
such that R and TR are disjoint. It suffices to prove that the exponential
function w(z) : = e? is injective on R.

Suppose z,, z, € R, z, # 2z, and w(z1) = w(zz). Let  be a smooth

2 1 2
curve in R connecting z, and Z5- We may assume w to be injective on

r\ {22}. Then w(") is a simple closed curve in the image plane. Hence

dw .
2, = 2q = f dz = f v - 2kmi
r w(r)

with k {-1,0,1}. since z, # z, we have z_, - z, =% 2mi and hence R and TR

2 1 2
intersect. This contradiction proves the lemma.

REMARK The proof makes implicit use of Jordan's theorem that a simple
closed curve divides the plane into two disjoint regions. For a more topol-

ogical proof see Hopf [1936].

COROLLARY Let A be a closed connected subset of G and let B be an element
of G such that A and BA are disjoint. Then so are A and BkA for all integers
k # 0.

PROOF Choose 0. € G such that af # Bo and either o or B is a translation.
The map Bsut B s + it is a homeomorphism of G onto the complex plane. If B
is the image of A, then TkB is the image of BkA where T is the translation
z + 1 in the complex plane.

PROPOSITION 7.2 Suppose (an) is a sequence in G, a =+« and an+1a;1 > €.
Then A contains a one-parameter subgroup G(T) = {'rt I t € R} for some T ¢ G,
T # €. Moreover if A n U = G(T) n U for some neighbourhood U of €, then

A =G(T).

PROOF Define A = {a, | t 2 0} as in (7.4). We first prove

(7.5) Y ¢ A implies Yk ¢ A for all integers k.
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Suppose Y ¢ A. Then there exists a neighbourhood V of Y such that A n VA is
bounded. Choose T € R such that A, = {at | t 2T} and VA, are disjoint.
Clearly A(A1) = A, By the corollary to lemma T.1 the sets A, and BkA1 are
disjoint for all B € V and all integers k # 0. For k # 0 the set

Vk = {Bk I B € V} is a neighbourhood of Yk. Moreover A

and V., A, are dis-
" k1
joint. Hence Y ¢ A.

1

Suppose for a T # € we have A > G(T) and A n U = G(T) n U for some
neighbourhood U of €. If Y ¢ G(T), then Yyt = Y1/n € U \ G(T) for some
sufficiently large n. Since A n U = G(T) n U we have Y, ¢ A, and hence
Y = Y? ¢ A by (7.5). This proves the last part of the proposition.

It only remains to prove that A contains a one-parameter subgroup G(T)
for some T # €.

Set S={yeG | yx=ex+0, ¢® +1v° = 1} . For each Y # € there
exists t > 0 such that Yt = ? € S. Let (Yn) be a divergent sequence in A,
Let T be a limit point of Yo in S. We may assume that Y, > T We shall prove
that G(T) < A,

Suppose T, = T ¢ A for some s > 0. Then V

1
neighbourhood V

1 is disjoint from A for some

1 of T, We also know that Yin > T,

This implies that Y;/m € V1 for n sufficiently large where m is the integral
1 1/m

part of r; . By (7.5) we obtain Y,

for some sequence T, -+ 0.

€ A, This contradiction proves the

proposition.
We shall now consider the following situation,

g, > 8 in M
o,*0 in G
Tngno;1 converges onto A.
The reader may recall that a similar situation in the opening pages of
chapter 3, where A was the closure of the graph of a function h, defined
and non-decreasing on the open interval I, led us to the very useful funct-
ional equation ho = Th.
It will be convenient to introduce a compactification ¢* of G which is
homeomorphic to the closed disk in the plane.
The group G is isomorphic to a subgroup of the projective transform-

ations of the projective real line
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x* ax + b corresponds to (?) - (g ?)(?) = (ax1+ b).
The matrices (g ?) and (ag bﬁ) with p > 0 define the same projective trans-
formation., Hence we may choose the matrix T = g :) to satisfy

a2 + b2 + 02 =1 a >0 and c > 0.

The set of these matrices is homeomorphic to G. The closure of this set in

R3 is a closed quarter sphere. It is the set of all matrices (g 2) for which

a2 + b2 + c2 =1 a 2 0 and ¢ 2 0.

This compact set determines a compactification ¢* of G.
Let us consider sequences Tn which converge to an element on the bound-

ary (we assume a > 0 and ¢ > 0)
0 *1 . . x +oo
T, > (0 O) implies Tn(1) = ( 1)

0.p . . b'q b/c
T, > (0 c) implies Tn(1) > ( 1 )

ab . . x o -b
T, > (0 0) implies Tn(1) > (1) for x > —
-0 -b
> ( 1) for x < =
The corresponding limits in G* will be denoted by #o, ¢0 and °», Often
we shall also mention the centre of multiplication in the second and third
case. Observe that o, > and o > have very different meaning.

Note that each one-parameter subgroup
t
&)= {y | t ¢ R}

with Y # € can be extended with two boundary elements Ym and Ydm in G*, that
¢ is homeomorphic to the closed disk and that G* may also be realized as
the closure of G in the two point compactification M* of M introduced in
chapter 2. Then *0 is a horizontal line, *® is a vertical line and +~ and

-© are respectively the 1 and O of the Boolean algebra M*.
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DEFINITION T.3 By G* we denote the compactification of G introduced above.

Moreover

a_ - +° means o x + +o0 for all x € R
0_ -+ =% means unx + - for all x ¢ R
o -+ +0 (with centre c) means ax>c forall xeR

0 = *o (with centre c) means {anx +> 40 for x> c

0 x > -2 for x <c.
n
We now introduce some terminology which should spesk for itself.

DEFINITION 7.4 We say that h1 lies to the left of h2

(x1, y1) € hy, (x2, yg) € h2 implies X, S X5 Similarly for two connected

subsets I1 and 12 of R we say that I1 lies to the left of I2 if X, < X5

whenever x, € I, and x, € I,.. Thus, if Ii denotes the projection of hi on

1 2 2
the x-axis for i = 1, 2, then h1 lies to the left of h, if and only if I

lies to the left of I2.

Furthermore we shall say that h € M lives on the connected subset I if

where h1, h2 e M if

2 1

the closure of I contains the projection of h on the x-axis.

Finally {h = ¢} is shorthand for {x ¢ R | (x, ¢) € h}.
PROPOSITION T.3 Suppose g, &, and h lie in M, and T, € G. If

<>
&, 7 &

Tngn +h

then, with the notation of definition 7.3 and T.bL,

1. T, Te G implies 1Tg =h

2. T, > implies h 1lies to the left of g

3. T, implies g 1lies to the right of h

L, T, >0 (with centre ¢) implies g 1lives on f{h = c}
5. T, (with centre c¢) implies h 1lives on {g =cl.

PROOF The third implication follows from the second and the fifth from the

ol -1
fourth by writing hn = Tn gn.
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1. See lemma 2.1.
2. Suppose (xn, yn) € g, converges to (x, y) € g. Then T ¥, ~ . Suppose

(x'y, ¥') € h and x < x'. Then x < x' for n =2 n. and hence TV, < y' o+ 1

0

for n 2 n,. This contradicts TV =
4, For (x, y) € g there exists (xn, yn) € g, such that (xn, yn) > (x, ¥).

Then T¥, > c. Hence (x, ¢) € h,

DEFINITION 7.5 J denotes the interior of the smallest connected subset of
the x-axis which contains the projection of A and I is the interior of the

projection of g on the x-axis.

Usually A will be a closed subset of g, and g will be a limit point of
the sequence ana;1 in M. Recall from chapter 2 that M is a locally compact
metrizable space and that the sequence (ana;1) is relatively compact if
ana;1 converges onto a non-empty set A of the x,y-plane.

Note that A is constant on J if and only if A ¢ h for some h € MO'
PROPOSITION 7.4 Suppose g, g, € M, A c g, and O, cn’ T, € G. If

8n *> g

(7.6) o, >0

-1
o onverges onto A
Th&%y cOnvers

then, in the notation of definitions 7.3, 7.4 and 7.5,

1. T, > TeG implies A c Tgo—1 implies J < oI
2. T, implies J 1lies to the left of oI

3. T, implies J 1lies to the right of oI

L T, > 0 (with centre c¢) implies A=c¢ on OI
5. T, * e (with centre ¢) imples g=c on o3,

PROOF It suffices to prove the proposition for subsequences Tkgk0£1 which

converge to some element h in M. Now apply proposition 7.3 to gk0£1 > go !
-1

and .80, > h.
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COROLLARY If in addition to (7.6) it is given that

J n oI is non-empty
A is non-constant on Ol

g is non-constant on s

then the sequence (Tn) is bounded.

Proposition 7.3 has an interesting application in the particular case

that (gn) is a constant sequence. We formulate this as a separate proposition.

PROPOSITION 7.5 Suppose f e M, h € M, T, € G and Tnf -+ h. Let L be the pro-
jection of f on the x-axis. L is a connected subset of R with endpoints

l1 < l2 which may be infinite.

1. T, Te G implies h = Tf.

2. T, implies that h is the vertical line through 11. In
particular l1 is finite. '

3. T, T implies that h is the vertical through 12.

L, T, +0 (with centre c¢) implies that h ¢ M0 is the constant
function on L,

h(x) = ¢ x € L.
5. T, (with centre ¢) implies that h ¢ MO' Moreover h is the

constant function on {f = ¢} or h is a vertical line through one of the end-

points of {f = c¢}. In this case the corresponding endpoint has to be finite.
PROOF As for proposition T.3.

Note that this proposition gives a fairly complete analysis of the

basic situation
(7.7) ana;1 converges onto A
in the case that the sequences (an) and (Sn) do not both diverge to «.

Indeed for convenience assume Bn + o and o > o. (The case where o > is

obtained from this by reflecting f in the diagonal.) Then o ~ o and (7.7)
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implies

kau_1 converges onto A.

Thus if A contains three points (0, 0), (1, 1) and (p, q) with
0 <p, q <1, then every limit point h of the sequence kau'1 has to have
the form h(x) = q on (0, 1). If follows from the proposition above that for

f # h every limit point o of the sequence (an) satisfies

either a[0, 1] = {f = ¢} for some c € R (and then o >o implies
By * *© with centre e),
or a(0, 1) 1is the interior of the projection of f on the x-axis

(and then a > o implies Bk -+ ¢0 with centre q).
For the sake of completeness we formulate

THEOREM 7.1 If in addition to the basic situation (1.1) it is given that

Bn does not diverge to © then u ¥ ¢(yv) where ¢ € MO'
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8 The functional equation o < g

In this chapter we shall prove the proposition below and discuss some

of its consequences.

PROPOSITION 8.1 Suppose f € M and ¢ and B are continuous functions from
[0, ») into G such that a(t) = « for t + « and

(8.1) gt = B(t)f‘ot(‘c)-1 converges onto A for t -+

where A is a non-empty closed subset of some element of M. (See definition
2.1.) Let g € M be a limit point of g for t + «©, Then there exists an

unbounded closed connected subset C c G2, containing (€, €), such that
(8.2) ™o < g
for all (o, T) € C.
PROOF Consider for é 2 0 the set
D(s) = {(a(t)als)™", B(£IB(s)™') e G° | ¢ = o}.

This is a closed, connected, unbounded subset of G2 which contains the
element (g, €).

Any sequence rn + ® contains a subsequence sn -+ o such that the sequence
Dn : = D(sn) converges to a set D c G2. Indeed this holds for any sequence
of subsets of a separable metrizable space. See Whyburn [1942, theorem
1.7.11. By convergence Dn + D we mean that every point x € D is limit of a
sequence x € Dn and that D contains the limit points of any sequence
X € Dn'

We now show that every component of D is unbounded.

Suppose x € D, x = lim X, with x € Dn' Let B be an open ball in G2
containing x and let Kn be the component of X, in B n Dn where B denotes the
closure of B in G°. Then K contains a point of the boundary 9B of B. Also
K, the topological limsup of Kn’ i.e. the set of all limit points of all
sequences y € K , is a compact connected set (Whyburn [1942, 1.9.121),

contains x, contains a point of 0B and is contained in D. Hence the compo-
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nent of x in D contains points on the boundary of any ball B containing x.
(A slightly different proof can be given by observing that
Dé : = Ds U {»} is a connected closed subset of the one-point Hausdorff

2 u {*} of G2, which is homeomorphic to the sphere Sh. The

compactification G
set of connected closed subsets of a compact metric space is itself a
compact metric space (in the Hausdorff metric), see Montgomery and Zippin
[1955, chapter 1.10]. Hence a subsequence Dﬁ + D', The set D' is connected
and contains ®, hence every component of D' \ {®»} is unbounded. Now use the
fact that for compact spaces convergence in the Hausdorff metric is equival-
ent to the convergence defined above. See Whyburn [1942, corollary to
1.7.21.)

Note that gsn + g if we start with a sequence rn <+ @ guch that grn > g.

Let C be the component of (€, €) in D. Then for (0, T) € C there exist
tn =+ © such that

-1 _
a(tn)a(sn) =:0 >0
-1 _
B(tn)B(sn) =T T
and since
g, =T ol
tn ngsn n

the right hand side converging to ‘rgc-1 by lemma 2.1 and the left hand side
.converging onto A by (8.1) we obtain

A c 130'1
which proves (8.2).

DEFINITION 8.1 The set C of proposition 8.1 will be called a guide set
of g for A.

To give some indication of the far-reaching consequences of equation
(8.2), assume for a moment that ¢ end T are translations (instead of arbi-
trary positive affine transformations).

Relations (8.2) states that the set A can be moved continuously along

the curve g using only transformations 0-1 in the horizontal and transform-
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ations ! in the vertical direction. If we only allow translations ¢ and T,
then the set A is moved along the curve g as a rigid body. If A contains two
points, say (0, 0) and (p, q) with p and q positive, it will only be possible
to move A continuously along g if g is either affine with slope A = gp_ or
if g is the sum of such an affine function and a periodic function m(x) with

period p. We obtain for g the same representation
g(x) = Xx + ¢ + m(x)

which we obtained for the solutions of the functional equation g(x + p) =
= g(x) + q in chapter 3. Since we know that the guide set C is unbounded the
representation holds on one of the half lines (-», 0) or (0, ©)., Clearly g
will be affine on this half line if A is sufficiently large. For instance
this will be the case if A contains three points (0, 0), (p1, q1) and
(pe, q2) with 0 < Py < Pys 0 <qy <q,and p1/p2 irrational.

If we do not restrict 0 and T to be translations, the inclusion
T-1A0 c g for each pair (0, T) in the guide set C, may be formulated anal-
ytically in various ways. In order to avoid trivialities we assume that A

contains two points’(xi, yi) for i = 0, 1 such that x, < X, and Yo < ¥qe

0
Let (x2, ya) be a third point in A and let (0, T) € C be such that

1

1xi is a continuity point of g for i = 0, 1, 2. Then g(0—1xi) =T y; for

o
i=0, 1, 2, and hence

1 1

Vo= T Y9 _Y2-Y%
RATRR /)

807 'xy) - &0 'x) T

(8.3)

-1 -1 T -1 -1
g(o x1) - g(o xo) T ¥ =T ¥,

- * .
Thus for fixed (x*, y*) € A we are able to express g(o 1x ) in terms of

g(0'1x0) and g(0'1x1) as
- -1 -1 -
(8.4) go™'x*) = g(o X)) + c*(e(o x,) - g(o 1xo))
* *
where ¢ = (y - yo)/(y1 - yO)'
In particular we may choose coordinates such that (xo, yo) = (0, 0)
and (x1, y1) = (1, 1). Define

S = {(so, s1) = (0_10, 0_11) | (o, 1) e}

For (p, @) € A we have, with 0_1p = (1 - p)so + psy,
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(8.5) g((1 - p)sy +ps)) = (1 - a)e(sy) + aels,)

for all (so, s1) € S for which s and (1 - p)s0 + ps, are continuity

0’ %1
points of g. Observe that this is a generalized version of Cauchy's function-
al equation

g(s0 + s1) = g(so) + g(s1) Sg» Sq € R.

We may also write (8.2) as

(8.6) A c 1g0”!

for (g, T) € C. This brings us back to the original basic situation (2.1),

with g instead of f. The inclusion (8.6) evidently implies
(8.7) Tgo—1 converges onto A for (g, T) =+« in C.

PROPOSITION 8.2 Suppose (8.1) holds. Let C be a guide set of g for A. See
definition 8.1. If C contains a sequence (Gn, Tn) such that (cn) is bounded
and T, > % then &, has a limit point in M0 for t »> «, If C contains a
sequence (On, Tn) such that Gn + ® gnd (Tn) is bounded, then g, has a limit

point ¢, with ¢_1 e M, for t » o,

PROOF The first part follows from proposition 7.5 applies to f = g0‘1 with
0 a limit point of the sequence (on), and to appropriate subsequences (Tk)
and Gk + 0. Compare the text following proposition T.5. The second part
follows from this by symmetry.

Now let us return to (8.7) or (8.6). The set C G2 being unbounded,
the projection of C on one of the two factor spaces G will be unbounded. In
view of proposition 8.2 we shall assume that for any sequence (Gn, Tn) e C
the relation o, > implies T, and vice versa. Even so the set C need
not contain a continuous curve (o(t), T(t)), t = 0, such that o(t) > © for
t > ©, However it will contain a sequence (On, rn) such that 041~ Opo

1
T 41~ T, and Zn + ® (or equivalently T, °°).2
Indeed, G- is homeomorphic to R . Cover G~ by an increasing sequence of
open balls B . Let C! be the component of » in (C u {=}) \ B . Then C! ¥ {=}.

Choose x e C_: =C!\ {~}, and for each n let
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\

X, = X = X

no n**n1°" 2 ¥nk n+1
.. . -1
.= . . g .0 . €U
be a-flnlte sequence of points an (Ong’ TnJ) € Cn such that ni%nj-1 n®
annj-1 € Un for j = 1,...,k, where (Un) is a fixed neighbourhood base of E.

The concatenation of these finite sequences yields the desired sequence.
DEFINITION 8.2 For 0 € G, Ox = ax + b, define
x(g) : = log a.

Observe that X is a continuous homomorphism of G onto the additive

group of R.

PROPOSITION 8.3 Let o : [0, ®) + G be continuous and 0(t) =+ © for t + »,
Set A = {a(t) | t 2 0}. Let H be either one of the halfplanes
{oceG I (o) < 0} or {Xx = 0}. There exists a sequence tn + o guch that the

sequence of sets Aa(tn)_1 converges to a set A. < G, and such that the

0

component -of € in H n AO is unbounded.

PROOF The existence of AO

We shall prove the second statement for the halfplane H = {X < 0}.

is proved as in proposition 8.1.

Suppose there exists a sequence r * ® such that X(u(rn)) -+ o, Then
there exists a sequence s, * ® such that X(a(s)) < x(a(sn)) for 0 <s <s .
Set

A = {us)as ) | 0ss s )

Then € € An cH, An is connected and ot(O)oc(sn)-1 € Ah diverges to ®. By the
arguments of proposition 8.1 a subsequence of the sequence An converges to
a set in H every component of which is unbounded.

If X(a(t)) is bounded from above ‘there exists a sequence Sn + o such

that X(a(s)) < X(a(sn)) + % for s 2 s . Setting
_ -1
A = la(s)als)) | s = s}
we see that A < x < %}. Let C be the component of € in a limit point of

the sequence An. Then C is unbounded (again by the same arguments) and
c c{Xx < %} for all n. Hence C c H.
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DEFINITION 8.3 A is a closed subset of some element of M and J as in defin-
ition T.5 is the interior of the smallest connected subset of the x-axis

which contains the projection of A. We define

U:={peG| Jn pJis non-empty and A is non-constant on
pJ and on p-1J}.

PROPOSITION 8.4 Suppose On, T, € G, g, € M and let A be a closed subset of

some element of M, If

g, converges onto A

-1
T g0 A
ngn n converges onto

g =0
n
and if 0 € U, then (Tn) is bounded.

PROOF Suppose not. Choose a subsequence T, = ©, such that 8 -+ g € M. The

k
three conditions in the corollary to proposition 7.4 are satisfied, since

J c I, where I is the interior of the projection of g on the x-axis. Hence
(1) is bounded.
DEFINITION 8.4 For A c g € M we define the set £ < G° by
Q={, | v c gl
Note that  contains each guide set C of g for A.

PROPOSITION 8,5 Suppose (8.1) holds. Let s, > ® such that

> g in M
n

{a(t)acs )7 | ¢ 2 0} > A,

€s

Then 91, the projection on the first coordinate of the set f, see definition
8.4, and U, see definition 8.3, satisfy

(8.8) A n UQ1 c 91.
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PROOF Suppose tn + o gnd o, = cl.(tn)caf.(sn)-1 + 0 € A, Suppose 0 = pY with
p e U and (Y:16) € Q. Then with O, = Y, B(tn)B(ssn)_1 =:T = nné and
g, : = GgSnY we obtain
-1 -1
gtn = Tngs Un = 1Tngnpn

and we apply proposition 8.4 with Py and m instead of o, and T to obtain
that the sequence (ﬂn) and hence also the sequence (Tn) is bounded. Hence

A c Tg0_1 for every limit point T. This implies that O € 91.

COROLLARY If A is non-constant on J, then U is an open neighbourhood of €

and (8.8) implies that 91 contains the component of € in A.

DEFINITION 8.5 Let o and B be continuous functions from [0, ®) into G and
let a(t) > o for t + w, I' c G° is the set of all limit points in G° of

sequences
(8.9) (alt dacs )™, B(,)B(s)™") = (0, 7))
with s+ and t_ - o,

n n

Observe that ' is the two-dimensional analogue of A. The set I' too is
symmetric, i.e. (0, T) € T implies (0—1, T-1) e T, closed and unbounded.
Note also that if g = B(t)fo(t)”] converges onto A for t + ©, then T
is the union of all guide sets C of g for A for all 1limit points g of &
for t + o, Moreover if C is a guide set and (oi, Ti) € C for i =1, 2 then
-1 -1
(0201 > ToTy ) €T,
PROPOSITION 8.6 Let J, be an open interval. Suppose A contains the set
ch{c} and let (0, T) € I' be an element such that Jc n OJc is non-empty.

Then T is a multiplication with centre c.

PROOF Assume (0, T) = lim (on, Tn) where (on, Tn) is defined in (8.9).
Assume moreover that g + g and g
Sn_, tn

-1 . .
n = Tngsnon + h (with t, end s as in
(8.9)). Then A ¢ h = Tgo” ' and hence

Ao nAcrtgng
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1

which implies that Tg = g on Jc nao Jc and hence T is a multiplication with

centre c.

COROLLARY Suppose for convenience that ¢ = 0 and that JO c (0, ©) and
A> Q= (0, -1). If Iy 1 99, is non-empty and 00 > 0, then (0, T) € I' implies
that Ty = c.y with ¢ < 1.

PROOF T-1Qc = (0_10, T_1(—1)) € g. Since o0 < 0 ana g is non-decreasing
we have 1-1(-1) < -1,

In the remainder of this chapter we shall consider a number of specific
examples of sets A, Table 8.1 on page 89 lists the most simple non-trivial
cases. In chapter 13 we shall see that if A contains a horizontal or vertical

line segment, then (8.1) implies that A ¢ ¢ for some ¢ e .

DEFINITION 8.6 The set A is normal if A is closed and if, whenever A con-
tains two points on the same horizontal or vertical line, it contains the

connecting line segment.

Clearly if g, converges onto A, and A contains two points on the same
horizontal or vertical line, then g, converges onto A U L where L is the
horizontal or vertical line segment joining the two given points. (Any limit
point g of the sequence (gn) contains L.) Thus we may assume that A is
normal without loss of generality.

We shall now treat some of the 6 cases in table 8.1 in greater detail.
We assume that (8.1) holds, that g is a limit point in M of g, for t >,
and that C is a guide set of g for A.

Case 6a. The set A is the union of two horizontal intervals J1x{c1}

and J2x{02} (with c, #c,and J, and J,

Let C < G° be a guide set for A (see definition 8.1). Consider

disjoint open intervals).

Cg: =10, D ec | 1=c¢l

We shall prove that CO is open-and-closed in C and hence C, = C. This

0
implies that the projection of C on the second coordinate is bounded and

hence by proposition 8.2 the set g, has a limit point in & for t =+ « if g,
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converges onto A for t + o,

Suppose (00, €) € C0 and (0, T) ¢ C, with 0 = 0, Then (p, T) € T.
Hence if p is sufficiently close to € then Ji n in is non-empty for i = 1, 2
and by proposition 8.6 we find that T is a multiplication with centre c, and

with centre e, # ¢y Hence T = €.

Case 3a. Let J. be the interior of the projection of the horizontal

0
line segment in A on the x-axis and let J as usual denote the interior of

the smallest set containing the projection of A on the x-axis.
Let C be a guide set of g for A, and recall that C is connected.
Suppose (0, T) € C. Then T-1A0 c g. Hence g is constant on 0_1JO and

since A ¢ g and A is non-constant, this implies that 0-1J c J. Similarly

0

A c g implies that g is constant on J. and hence 0_1J > JO (if T-1AG c g

0
The set {p ¢ G | JO cpd & pJO c J} is compact for bounded open inter-

vals JO and J.

As in case 6a the projection of C on the first coordinate is bounded

and 8, has a limit point in ¢ for t + « by proposition 8.2,

Case 4b. We assume that A is a subset of the coordinate axes, to be
even more explicit we assume that A = ({O}X(y1, y2)) u ((x1, x2)x{0}) where

1 < X5e Let C be the guide set of g for A where g is

¥4 < Yo <0 eand 0 < x
a limit point of B(t)fo'.(t)"1 for t + ©, We assume that both coordinates of

C are unbounded.
Let CO be the set of all (0, T) € C such that both 0 and T are multi-

plications with centre 0. Then (g, €) € C.. Suppose (00, TO) € Co and

0
(g, T) € C. If (0, T) is sufficiently close to (00, TO), then the intervals

J, and 0051J0 intersect (with Iy = (x1, xz)), and by proposition 8.6 the

element TT51 and hence also T is a multiplication with centre 0. A similar
argument for the interval (y1, y2) proves that 0 is a multiplication with

centre 0. Hence C0 is both open and closed in C. Hence C, = C, we may write

0
(ox, Ty) = (esx, ety) for (0, T) € C and

o = ({O}X(e_ty1, e_tyz)) U ((e'sx1, e-sxz)x{O})

is contained in g for all (o, T) € C.

Now suppose (0, T) + ® in C such that s >+ © and t > «®, Then

g contains ({O}X(y1, 0l) v (lo, xg)x{O})
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TABLE 8.1
Examples of small normal sets A
1,
2 ~- or _ or | or 1
3 l—. or n"
bV or &

Sets which can be obtained from a given A by reflection in the diagonal
or by a change of sign on both axes are listed together.

Only two sets A in the list have the property that they are non-constant
on J, examples 3b and 6a.
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(since g is closed),
Tg0'—1 contains ({O}X(ety1, 0l1) v ([0, esx2)x{0})

and hence Tg0_1 converges to the constant function, ¢(x) = 0 on (0, «) for
(o, T) + >, (0, T) € C.

A similar argument holds in the other three cases s + © and t + -© or
§ > —© and t + o, In view of proposition 8.2 we thus obtain that - has a

limit point ¢ € ® for t + =,

PROPOSITION 8.7 Suppose f € M, o and B are continuous functions from [0, «)
into G, a(t) -+ ® for t + « and

g, = B('c)fot(t)_1 converges onto A for t - o

where A is a closed subset of an element of M. Suppose moreover A is normal
(see definition 8.6) and contains two non-degenerate line segments, which
do not lie on the same line, and are parallel to the axes.

Then A © ¢ for some ¢ € o.

PROOF A contains one of the sets 4a, 4b, 6a or 6b in table 8.1. Denote this
set by AO. (If A contains a set 5a (or 5b), it contains a set La (or kLb).)
Then g, converges onto Ao for t + «, Hence 8 has a limit point ¢ € ¢ for

t + o, (See the commentary on the cases 6a and Lb above.)

REMARK Obviously either ¢ € M0 or ¢_1 € MO' (These are the only elements

of ¢ which can possibly contain A.)
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9 Regular variation in topological groups

DEFINITION 9.1 Throughout this chapter H will denote a topological group

with a countable base.

The theory of regular variation which originated in two papers by
Karamata, [1930] and [1933], has recently played an increasingly important
role in probability theory. See Bingham, Seneta & Teugels [19Tk].

As an example consider the following situation

f(x + t) - b(t)
a(t)

(9.1) + h(x) weakly for t +

vhere f and h are non-decreasing functions on R, a(t) > 0 and b(t) € R are
norming functions. Note that this is a particular case of the basic situation
(2.1) with which we are concerned. In fact de Haan's work on this equation
[1970], and his enthusiastic presentation of the theory of regular variation
in a seminar in Amsterdam, initiated my own interest in this subject.

Equation (9.1) may be simplified by assuming either a(t) = 1 and hence
(9.2) f(x + t) = b(t) + h(x)

or b(t) = 0 and hence

(9.3) Hx+ ), px).

a(t)

Note that the limit relation (9.3) may be translated into (9.2) by taking
logarithms., Note too that we may choose b(t) : = f(c + t) for the norming
function in (9.2) if x = c is a continuity point of h. (Compare (5.2).)
Indeed (9.2) implies

(9.4) f(x + %) = f(c + t) > h(x) - h(e).

A simple transformation U = exp f log leads us to the most commonly used

definition for regular variation

(9.5) -g—éﬁ)- + h(y) for s + =,
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where in general U and h are assumed to be a measurable positive function
on (0, ») and convergence is pointwise. See de Haan [1970, theorem 1.1.1].

In de Haan [1970, section 1.4] it is shown that the possible limit
functions of (9.1) are the affine functions, i.e. the limit functions of
(9.2), and the exponential functions, i.e. the limit functions in (9.3), to
which a constant is added. In the latter case any function f which satisfies
(9.1) is of the form f(x) =c + fo(x) where f, satisfies (9.3). Thus to a
great extent the study of equation (9.1) reduces to the classical theory of
regular varisation.

Since, as we have seen above, we may replace the norming constant b(t)
in (9.2) by £f(t + c¢) to obtain (9.4), we may as well study the norming
constants instead of the function f. This point of view, applied to (9.1),
leads us to consider a theory of regular variation in the group G of positive
affine transformations on R. This theory is very similar to the theory of
regular variation in the additive group of the reals, based on relation
(9.2), and to the theory of regular variation in the multiplicative group
of the positive reals, based on relation (9.3).

It will be convenient to develop this theory of regular variation in
the slightly more general setting of a topological group H with a countable
base.

The countability condition ensures that the group H is a seperable
metrizable space, see Montgomery and Zippin [1955, section 1.22]. Although
we shall not make explicit use of this metric, it allows us to work with
sequences instead of filters. The theory of measure for separable metric
spaces is by now well-established, see for instance Parthasarathy [19671.

In particular we shall use the well known fact that every measurable function
f :R~+His A - a.e. equal to the pointwise limit of a sequence of continu~
ous functions (where A is Lebesgue-measure on R, and f is measurable with
respect to the Baire o-algebras on R and H). Indeed, this is true if A is

the standard normal probability distribution on R, since the simple functionms,
and hence the continuous functions from R to H are dense in the metric of
convergence in probability, and every sequence which converges in probability

contains an a.s. convergent subsequence.
PROPOSITION 9.1 For o : [0, ) - H let S be the set of all s ¢ R for which

(9.6) lim a(t + s)a(t)™ = : Y(s)

100
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exists., Then S is an additive subgroup of R and ¥ : S + H is a homomorphism.

PROOF Clearly O € S. Suppose s € S. Set T : = t + s and invert both sides
of (9.6). Then T + « and

alt - )™ > w(s)'1.

Hence -s € S and Y(-s) = w(s)-1. Similarly if s,, s, € S, then

12 72

o(t+s +52)0L(t)-1 = (a(t+s1+52)a(t+s1)—1)(u(t+s1)a(t)—1)

1
and for t - © (and hence t + s, ©) the right hand side converges to

¢(s2)w(s1). Hence s, + s, € S and ll)(s2 + s1) = W(se)W(s1).

2 1

COROLLARY If S contains a set of positive Lebesgue measure, then S = R.

PROOF This is the theorem of Steinhaus, see Hewitt and Stromberg [1965,
p. 1431, (It is a simple consequence of the fact that the set S - S contains

an open neighbourhood of 0.)

DEFINITION 9.2 Let y : R - H be a homomorphism. A function o : [0, ®) + H

varies like {y if

1. o is measurable (with respect to the Baire O-algebras)

2. for all s € R one has
alt + s)at)™! P(s) for t » =,

A function o : [0, ®) + G is said to vary like y, with Y € G, Y # €, if a is

measurable and for all s € R one has

S

a(t + s)a(t)_T + Yy~ for t + =,

We now give an example which will be used later in proposition 9.7.
EXAMPLE 9.1 Let ¥ : R > H be a continuous homomorphism, let (sn) be a

sequence of positive reals bounded away from zero and let (Yn) be a sequence

in H which is asymptotic to ¢(sn), i.e. ll)(sn)Y;1 + €, the identity in H.
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Define

to : =0 , t =85 +58 + ... + 8

a(t) : = IP(s)YnYn_1...Y1 for t = tn +5,0<s<s

n+1

Then o varies like VY.

PROOF Suppose x > 0. Set Y, = ¢ snw(sn). Then

-1

At + 0(6) ™ = PYYL 1e e (WY )

= w(u)Ym"‘Yn+2€n+1w(sn+1 -V

where t + x = tm +u<t t = tn +v<t and u and v are non-negative.

m+1? n+1
Hence x =u+s_+ ... + 8 - v. Since the s
m n+1 k
the number of factors in the last product above, m - n + 2, is bounded for
x fixed, From lemma 9.1 below it follows that for t > «, o(t + x)ot(t)-1 is

asymptotic to U)(u)ll)(sm)...lb(sn+2)lb(sn+1 -v) = P(x).

are bounded away from zero,

LEMMA 9.1 Let K be a compact subset of H and let n be a positive integer.
For any neighbourhood U of € in H, there exists a neighbourhood V of € such
that

a € K k=1,...50n

Bk € Vuk k= 1,000,450
implies

(9.7) B, - By Vo oen Qg

PROOF Standard. For fixed L PPRRRIC existence of V such that (9.7) holds,
follows from the continuity of product: H® > H. Now use the fact that K" is

a compact subset of H” and uniformize.

PROPOSITION 9.2 ILet § : R -+ H be a measurable homomorphism. Then ¢ is uni-

formly continuous on R.
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PROOF We use a simple adaptation of Banach's [1920] proof that the measur-
able solutions of Cauchy's functional equation f(x + y) = f(x) + f(y) are
continuous.

First observe that Lusin's theorem holds, there exists a compact set K
with positive Lebesgue measure, AK, such that the restriction of ¥ to K is
continuous. Indeed, y being measurable, is limit A-a.e. of a sequence of
continuous functions wn‘ See above. This sequence converges uniformly on a
compact set with positive Lebesgue measure by Egorov's theorem, proof as for
real-valued functions. )

Let U be a neighbourhood of € in H. There exists 6 > O such that
lj.v(y)l.p(x)"1 € U whenever x, y € K and |x = y| < § and also such that K - K
contains the interval (-8, 8). (See proof corollary to proposition 9.1.)
Hence for each s € (-8, §) there exists Xy € K such that also X, t s € K.
Then

YCx + W07 = Pls) = Ylxy + $(xy) ! € U
for all x € R. This proves the theorem.

Of fundamental importance in the theory of regular variation is the
following theorem which states that regular variation implies uniform con-
vergence on bounded intervals. The proof given here is a variant of that
given by van Aardenne-Ehrenfest; de Bruijn and Korevaar [1949] for the case

that H is the additive group of the reals.

PROPOSITION 9.3 If o varies like y, then P is continuous and

a(t + x)ot(t)_1 + Y(x) for t - «® uniformly on bounded intervals.

PROOF Set wn(x) : =oa(n + x)a(n)-1. Then wn -+ Y. The functions wn are
measurable by the definition of regular variation. Hence Y is measurable and
Y is continuous by proposition 9.2. »

We shall prove uniform convergence on [-1, 1].

Let V be a neighbourhood of € in H. Choose a symmetric neighbourhood U
of € such that

Uw(x)Uw(-x) cV for all x e [-1, 1].
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This is possible by lemma 9.1 since Y is continuous and hence
{Y(x) | Ixl < 1} is compact.
For t > 2 define

R(t) = {r e [-2, 2] | a(t)a(t + r)7Y(r) € U}.

R(t) is a measurable set for each t and AR(t) = 3 for t 2 to. (Indeed else
AR(tn) < 3 for some sequence t - «. However a(t)a(t + r)_1¢(r) + ¢ for all

r € R implies that [-2, 2] c liminf R(tn). This leads to the contradiction
4 = A[-2, 2] < A liminf R(tn) < liminf MR(t)) < 3.)

If £ 2ty + 1and |x] € 1 then there exists r € R(t) such that

r - x € R(t + x). (Indeed else R(t) and x + R(t + x) are disjoint. This

implies
6 < AMR(t) u (x + R(t + x)) < M[-2, 2] v [x-2, x+2]) < 5.)
Thus we obtain

alt+)a(t)™" = al(trx)altsr) ™ .a(trr)alt) ™

€ W(x-r).P(r)U c Vy(x).

PROPOSITION 9.4 If o varies like P and B(t) ~ a(t) for t - «, then B varies
like ¢.

PROOF B(t+s).B(t)™" = e(t+s)a(t+s).alt)™ e(t)™" + ¥(s).

PROPOSITION 9.5 If o and B vary like Y and o(n) ~ B(n), then a(t) ~ B(t)

for t + o,

PROOF Set t = n, + et where n, is an integer and 0 < 6, < 1, Then, because

t t
of uniform convergence on [0, 1)

t

B(t) ~ w(et)B(nt) ~ w(et)a(nt) ~a(t) as t + =,
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PROPOSITION 9.6 (Representation theorem). If o varies like { there exists

a sequence Y ¥(1) such that
(9.8) a(t) ~ 111(6)\(nwrn;1...\(1 with t =n + 6, 0 <6 < 1,

PROOF Define v, = o(n)a(n - 17" ana Y, = a(1). The right hand side of
(9.8) varies like Y (as was proved in the example earlier in this chapter).
Since (9.8) is an equality for integral values of t > 0O the result follows

from proposition 9.5.

In proposition T.2 it was shown that the set A contains a one-parameter
subgroup G(y) = {yt | t e R} with vy = €, if a, >« and an+1a;1 -+ ¢, In pro-
position 9.7 below we shall see that if A is equal to this one-parameter
subgroup G(Y) of G, then the sequence (an) can be embedded in a function O

from [0, ©) to G which varies like Y or like Y—1.

PROPOSITION 9.7 Suppose that

H is a locally compact topological group with a countable base,
(an) is a divergent sequence in H (i.e. any compact subset of H contains
only finitely many elements of the sequence), such that the sequence
-1y . .
(an+1an ) is relatively compact,
L is a subgroup of H which is isomorphic to the additive topological

group R.

If every limit point of the double sequence (anq;1) lies in L, then

there exist

an isomorphism ¢ : R + L,
a function o : [0, ©) + H which varies like VY,

a sequence X, -+ o such that an = a(xn) for n = 1,2,...

PROOF Let Y be an isomorphism R -+ L. (Then any other isomorphism wo neces-
sarily has the form wo(t) = Y(ct) for some ¢ # 0.) For t > O we define

L(t) : = {w(s) | Isl < t}.

-1

We may and do assume that Y is chosen so that all limit points of O 41%y
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lie in L(1).

If the points o of our sequence were to lie on L, then we could write
o = w(tn) with tn € R. Since we have in fact assumed that
limsup ltn+1 - tnl < 1 and that o, and hence t_ diverges, either e (or
t, > ~»), Then a(t) = P(t) (or al(t) = P(-t)) would be the desired function.
In the general case the construction of 0 is more complicated and it is

convenient to select first a subsequence n_ such that the corresponding

k
subsequence of (tn) is strictly increasing and such that the sequence of
successive differences is bounded away from zero.

The construction makes use of the fact that for any neighbourhood U of
€ and any compact set K ¢ H there exists an integer k such that

=1 . . -1 .

(9.9) o0 €K implies ao = € UL ifn, m2 k.
(Indeed else (for U open) the double sequence unu;1 restricted to K would
have a limit point in K \ UL.)

We shall now specify U, K and k.

Let U1 be a compact symmetric neighbourhood of € such that

2

Uynklec L(%). We choose a compact symmetric neighbourhood U of € in U, such

that
(9.10) Uy, Uy < Uy,

for all Y, € L(3), see lemma 9.1 above, and we define K : = U1L(3) and k
such that (9.9) holds and ‘
-1
(9.11) O % € UL(1) for n 2 k.
Consider subsets B = {B. | j ¢ J} < {a, 5.} indexed by a set J
j K%+

of consecutive integers (not necessarily non-negative), such that

By = %

1 . .
Bj € Ull)(cj)sj_.I for some c; € [2,351 where j-1, j € J.

The class of all such subsets B is ordered in a natural way, B c B' if
J < J' and 85 = Bj for all j € J. Let B be maximal, i.e. B < B' implies

B' = B. We prove
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(9.12) if n2k and o e UL(1)UL(2)B, then a e UL(2)B.
Indeed suppose

o = €1w(p)52w(q)Bj

€ U, Ipl <1, lal € 2. There exist €, € U, and €, € U such that

with 61, € 3

2 0

(9.13a) an831 eow(p +q) by (9.10)

(9.13b) “n631 egb(r) by (9.9).

If |r| < 2, then a = €3w(r)Bj € UL(2)B and (9.12) is proved. Hence suppose
r > 2, Now (9.13a,b) gives Y(p + q ~ r) -1

€, €
073
by definition of U,. This implies 2 < r < In particular j is not the

1 2°
maximal element of J since then B U {an} would be an extension of B and B

€ Uﬁ. Hence |p + @ = r| < %

is supposed to be maximal. Hence Bj+1 exists and we may consider

B RO .
an6j+1 — OLnBj w (Cj+1)€h with Eh e U

e¥(r - cj+1)eh by (9.13b)

esw(r - cj+1) with € € U, by (9.10)

e6w(s) with €g € U by (9.9).

- s| < %-hence Is| <2 and a € UL(2)B. For
r < =2 the proof is similar, and we obtain an6311 e UL(2).

In fact we have proved more than (9.12). If o € UL(1)UL(2)Bj and n 2 k,
then o lies in at least one of the three sets UL(2)Bj, UL(2)Bj+1

UL(2)Bj_1. For each n 2 k we now choose an integer j(n) € J such that

As above we find |r - cs

or

o € UL(Z)Bj(n) and |j(n + 1) = j(n)| T 1. This is possible since n 2 k and
o e UL(2)Bj imply that O 41 = (an+1a; Ja € UL(1)UL(2)Bj.

Since UL(2)Bj is compact for each j, it contains only finitely many
terms of the sequence (an) and hence j(n) + « or j(n) + -o, In the latter
case we replace Y by Y, where Y, (t) = Y(-t) in the foregoing. Then j(n) » .
Hence we may and do assume that J has the form J = {jo,j0+1,...} and we may
assume that jo = 0 by an appropriate choice of k.

Relation (9.9) implies that a relatively compact sequence of quotients

apa;1 is asymptotically equal to a sequence w(sn) where (sn) is bounded.
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We apply this to the sequence Bn6;11 and obtain Bn8;11 ~ W(sn) with
1 . 1 .
15 < s, < 4. (Since Isn - cnl < 2.) Hence the function

B(t) : = W(S)Bn for t =t +s,0<s<s .,
and with t =s, + ... + s, varies like y. (See example 9.1.)
We now define o(t).

Since the sequence Bj(n)a;1 is relatively compact we have as above

with lpnl <2l

J(n)

We may choose P, such that the numbers X, i =p, ¢+ tj(n) are positive,
distinct for distinct o, and equal for equal 0, . Then X ~ « and by (9.14)

we obtain, since B varies like YV,
(9'15) a(xn) HERS an ~ w(Pn)Bj(n) = w(Pn)B(tj(n)) ~ B(xn)-

Now let y1,y2,... be a non-decreasing rearrangement of the sequence

(xn) and define o : (0, ©) > H by
ay) + = w(Plaly,)  fory =y +p <y 4, PZO0.

a(y) = v(plaly, ) ~ ¥(p)B(y,) by (9.15)

~ B(p + yn) = B(y)

and since B varies like y so does a (by proposition 9.k4).
This proves the proposition.
REMARK 1 The sequence (xn+1 - xn) is bounded. (Indeed 1% < sy < 4 and
1
Ipnl < 25, see (9.14).)
REMARK 2 If H =G is the group of positive affine transformations on R,
we may choose the function o to be continuous.

PROOF Since o varies like Y and (y - yn) is bounded, we have

n+1

OL(ynH)OL(yn)_1 ~ w(yn+1 - yn)'
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We define
ay) : = (a(yn+1)a(yn)'1)ea(yn) for y =y +6(y,,, - V)
with 0 £ 6 < 1, Then

E(y)m(yn)"1 ~ (WY - yn))9 =¥y -y,)
and
aly) ~ Wy - yplaly,) ~ aly).

REMARK 3 In the statement of proposition 9.7 we need only assume that L is

the image of a continuous injective homomorphism wo : R+ H.

PROOF 1If wO(R) is closed, then wo is an isomorphism, see Pontrjagin [1957,
Satz 12]. Else the closure of wO(R) is compact, see Pontrjagin [1957, Par.
39, Hilfsatz 1]. Let W be a relatively compact open neighbourhood of the

closure of wO(R), and A a compact set containing €, such that o o len

n+1 n
for n 2 n,. Set K = AW, For each m 2 n, there exists m' such that
-1 -1 _ -1 N
o0 €K \ W. (Indeed o ' =€¢eKandoa > forn >« imlies that

1

. . -1 -
1)
there exists a least integer m' 2 m such that am'+1am 4 K. If am,am e W,

1

- -1 . . .
then Ot 4% € AW, Hence 01O € K \ W.) Since K \ W is compact, we find

A n (K \ W) is non-empty. This contradicts A c P(R) c W,

EXAMPLE 9.2 Let H be Hilbert space with the orthonormal base €585t

and define

o = ¥ X
Tok=1 9k

il o~

Then o diverges and A, the set of limit points of a - a is {0}, since

o -0 Lle,,...,e forn 2 m.
n m 1 m

EXAMPLE 9.3 Let H be the multiplicative group of complex numbers # 0, and
a(t) = tezﬁlt, t 2 0. Then o varies like Y, where Y(t) = ®™t ana A = 1.

EXAMPLE 9.4 Suppose o x = (x - n)/V/n. Then A is the one-parameter subgroup

of all translation. Set

ax = (x - £)/Vt for t 2 1,
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then,

-1x = %3 X - s
t+s b vt + s vt + s

and evidently at does not vary like a translation. However, a change of

variasble yields a function which does vary like a translation. We set

a(t)x = (x - t2)/t for t 2 1,

then
t )’

-1 _
a(t+s)a(t)x-t+s T ¥ s

+ x - 28,
For a more detailed analysis see de Haan [1970, section 2.5].

EXAMPLE 9.5 H is the group of complex affine transformations, Yz = az + b,
with a and b complex numbers and a # 0. Set

an =Wz + 1 with W, = exp (2mi/n).
Then
85 = Kz + v L+ v
n n n n
and since (Wn_1 e e L 0, we have B® = €.
n n n n n
Now define (Yn) by
2 . s .
Yo = By for n = k° + j with -k < j <k,

and set

ot(t)=yr(lszyn...y1 for t =n + 6 with 0 <6 < 1

where Bie)z = z,exp(2miB/k) + 6. Then o is continuous, varies like a trans-

lation, see example 9.1, but o(n) # « since a(kz) =¢ for k =1,2,...

LEMMA 9.2 Suppose Y € G, Yx =ax +band M> 1, Ifa 21 - (hM)-1 and

b2 %, then

0 <x <M implies Yx2x+71-

M<x implies Yyx 2 M,

PROOF Trivial.
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PROPOSITION 9.8 Suppose o : [0, ©) + G varies like Yy, where y € G, Y # €.
If (tn) and (sn) are sequences of positive numbers and (a(tn)a(sn)-1) is

bounded, then so is (t_ - s ).
n n

PROOF Suppose tn -5, T We prove that then a(tn)ot(sn)’1 + o, Because of
proposition 9.3 it suffices to prove this for integer sequences (tn) and

(s_).
n -1
Hence set an+1an = Yn' Then Yn > Y.

If Yx = ax + b, with a < 1, then Ynx

a x + bn and a, < q< 1 for
-1 .
2 = < -
n 2 n,. Hence a(tn)a(sn) x=cx+d with logec (tn sn)log q + 0(1) »

+ # and hence a(t_)a(s )_1
n n

+ o, Similarly if a > 1,
Now suppose Yx is a translation. For convenience assume Yx = x + 1.
. 1 -1
= > -
Then Y X = 8%+ bn with bn 25 for n 2 n, and a 1. Thus a(tn)a(sn) 020
for tn 2 s, 2 n, and lemma 9.2 yields that for any M > 1 we have

Ol(tn)OL(s:)_10 > M

ca .
ifs = max(sn; n,), t, 2n, + hM, t, -8, 2 UM where n, is chosen so that
a 21 = (M) for n 2 n_, Since n

] 2 1
that a(t )a(s )~ = o,
n n

2
is fixed and M arbitrary, this implies

COROLIARY If o : [0, ®) + G varies like Y, with Y € G, Y # €, then
A=y | t R}, and a(t) > © for t + =,

The group G can be represented by the matrix group (g ?) with a > Q

and b real. Hence one can talk about differentiable functions of R into G.

PROPOSITION 9.9 Let H be a locally compact matrix group and A a continuous

of H, such that A(t) +~ A  for

function from [0, ©) into the Lie algebra H 0

0
t +®, Let o : [0, ©») >~ H satisfy the differential equation

a = =

Ty a(t) = A(t)a(t) | a(0) = %>
and let Y : R > H satisfy

Lty = A Y(t) PO) = €

at o) o

Then Y is a homomorphism and o varies like VY.
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PROOF Let An : R + H, be a sequence of continuous functions such that

0

(9.16) A >4

0 uniformly on bounded intervals.

Let ot R ~+ H satisfy the differential equation

s} = -
it an(t) = An(t)an(t) an(o) = g,

Then (9.16) implies that o ¥ uniformly on bounded intervels. See
Dieudonné [1969, (10.7.2)], Pontrjagin [1958, Satz 58].
Consider o(p + t)ot(p)_1 = Bp(t). This function satisfies the differ-

ential equation
&g (4) = A(p + £)B_(%)
at Pp P D

and since A_(t) : = A(p + t) AO uniformly on bounded intervals of R for

p * @, we have Bp -+ | uniformly on bounded intervals for p =+ «,

PROPOSITION 9.10 Suppose 0 : [0, ®) - G varies like Y. Then there exists
B : [0, ©) > G such that

00

B is C
B(t) ~ a(t) for t + «
B(t) = (5 880 > L y(0) =B,  for t >

%{ B(t) > 0 for t * o,

PROOF For each continuous homomorphism Y there exists a probability measure

with density m(s) such that m(s) is Cw, vanishes for |s| 2 1 and satisfies

(9.17) [ ¥(-s)m(s)ds = €.

e

As o
0 1] and hence it is true for

Indeed this is obvious for Y(s) = (g ?) or [
all Y. Note that (9.17) implies that

(9.18) Yrxm=1y

where (P * m)(t) : = [ Y(t - s)m(s)ds.
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Since we are only interested in the behaviour of a(t) for t -+ « and
since a(t + ts)ct(t)'1 -+ Y(s) uniformly on bounded s-intervals for t -+ «, we
may as well assume that ¢ is locally integrable and that a(t) = € for t < 0.

Then B : = 0 * m is c” and is an element of G for all t. Moreover

B(t)a(t)”! = [ a(t - s)a(t) 'm(s)ds + € for t + @
since
a(t - s)Ot(t)-1 + Y(-s) uniformly for |s| <1

and hence B(t) ~ a(t) for t + =,
Also

B(t) %E [ a(s)m(t - s)ds = | a(s)m(t - s)ds =

[ a(t - s)m(s)ds

and
Btract)™! = [ at - s)act)”! m(s)ds

+ [ Y(-s)m(s)as = P(0)  for t + w

by differentiation of (9.18).

Hence
B(t) = B(£)B(t)™ + §(0) = B,
Similarly £ = o * m = BR + BB, and
B(t)B(t)™ > (0) = B2 for t »
which implies B(t) + 0 for t + o,

REMARK If above we define the density m so that f Y(s)m(s)ds = €, and

-1 ~1 .
Y : =0 *m, then y is C ,

a(t)Y_1(t) = [ a(t)a(t - §) 'm(s)ds » € for t +

a(t)g-g Yy ee) » JY(s)m(s)ds = g? w'1(0) for t =+ =,
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10 The functional equation h(x + p) - h(x) = C.(h(x + 1) - h(x))

This chapter treats the basic situation (1.1) under the conditions that
1

an+1a; + € and that A is the one-parameter subgroup of all translations.
In the previous chapter, proposition 9.7, we have seen that we may then embed
the sequence (an) in a continuous function o : [0, ®) + G which varies like
a translation. Equation (8.5) now takes the particularly simple form of a
difference equafion. Every limit point h in M of g = B(t)fa(t)-1 for t + o
has to satisfy the functional equation in the heading of this chapter (un-
less A ¢ ¢ for some ¢ € Mo).

The chapter falls apart in three sections. This is best illustrated
with the particular case that A contains three points (0, 0), (6, 6) and
(1, 1) with 0 < 6 < 1 and 6 irrational. We first prove, if A < h, then
the identity is the only solution of the associated difference equation
(10.1), in the second section we show that this implies that the identity
is the only limit point in M of g, for t >, and in the third section it is

shown that this impiies that also B(t) varies like a translation.

PROPOSITION 10.1 Let 6 be an irrational number and let h be a continuous

non-negative function on R which satisfies the functional equation
(10.1) B8(h(x + 1) - h(x)) = h(x + 6) - h(x).
Then h is constant.

PROOF The functional equation (10.1) states that the three points

(x, h(x)), (x + 6, n(x + 0)) and (x + 1, h(x + 1)) are collinear. From the
geometric picture it follows that we may assume that 6 € (0, 1). Let Lx be
the line segment in 8% with endpoints (x, h(x)) and (x + 1, h(x + 1)), let
S be the band

S:= U L
xeR ¥
swept out in the upper halfplane by moving the line segment Lx along the
graph, and let Y(x) : = inf{t | (x, t) € S} be the lower edge of this band.
It is not difficult to see that S is closed and that ¥ is continuous.

(For fixed y define h(y, x) to be continuous, linear on [y, y+1] and equal
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to h(x) outside this interval [y, y+1]. Then Y(x) = min h(y, x). Since
h(y, x) is continuous on Re and as a function in y, fir X5 fixed, h(y, xo)
is constant = h(xo) for y ¢ (xo-1, xo), the function ¥ is continuous.)

Now suppose y € R. The point (y, ¥(y)) lies on some line segment L.
It even lies in the interior of some line segment Lx' (If it is an endpoint,
then P(y) = h(y) and (y, Y(y)) is interior point of Ly_e.) Since L lies
above the graph of Y (by definition of y), the function Yy is concave.
(Indeed, suppose A is affine and W(xi) = A(xi) for i = 1, 2 and P(x) < A(x)
for some x € (x1, x2). Then P(x) - A(x) attains a negative minimum in

X, € (x4, x2). Choose x. minimal. Then obviously (xo, w(xo)) cannot be

0
interior point of a line segment which lies above or on the graph of V.

Hence we see that the equation w(xi) = A(xi) for i = 1, 2 implies Y(x) = A(x)
on (x1, x2), i.e. P is concave.) However, { is also non-negative. If follows
that § is constant.

Define E by
E={xeR | ¥(x) = h(x)}.

Suppose again y € R and (y, ¥(y)) is an interior point of the line segment
Lx' Since Y is constant, the whole line segment Lx lies in the graph 