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Introduction 

Probability theory studies convergence of distribution types rather 

than distribution functions, Recall that two distribution functions F and G 

are of the same type if there exist a> 0 and b € R such that 

G(x) = F(ax + b) for all x € R, 

The distributions of partial sums, averages and maxima of a sequence of 

random variables tend to diverge to defective or degenerate distributions, 

It is only by the use of norming constants that we obtain interesting limit 

relations, 

The basic result on the convergence of distribution types is due to 

B.V. Gnedenko [1943] and A. Ya Khinchine [1938], See chapter 14, p,152, It 

states that the limit in type of a sequence of random variables or distri­

bution functions is unique, That is, if F( 1) is of the same type as F( 2 ) 
n n 

f 1 2 d 'f F(i) . ' or n = , , .•• an i converges weakly to a non-degenerate distribu-
(') n (1) (2) 

tion Fi for i = 1,2, then F is of the same type as F • (See theorem 

14.1.) 

In the following chapters we shall see that under quite general cir­

cumstances the following assertion holds. 

If a sequence of randO!ll variables x converges in type to a limit 
-n 

randO!ll variable~• i.e. if there exists a sequence of positive constants 

an and a sequence of real constants bn such that an~n: = an~n + bn conver­

ges to u in distribution, and if the sequence ln = f(~n) with f non-decrea­

sing, converges in type to a limit randO!ll variable!• then up to an affine 

transformation of the limit variables either vis distributed like exp~• 

like log~ or like some power of~• 

take 

a X n-n 

In its full generality the assertion is obviously false, One need only 

~n = x for all n and f(x) = arctg x for instance. 

In the case that x is the sum of n i,i,d, random variables and 
-n 

: = (x - n)/./ii converges in distribution to a random variable u with 
-n -

a normal distribution, Resnick [1973] has shown that the only possible non-

degenerate limits in type for f(x ) with f non-decreasing are v = u and 
-n 

! =exp~ i.e.! is either normal or lognormal (up to an affine transforma-

tion of the variables~ and!). This result seemed to be sufficiently sur­

prising to warrant closer attention. 
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In chapter 2 we shall see that the problem of determining the class of 

possible pairs of limit types of the sequences (x) and {f(x )) reduces to -n -n 
the following analytical question. 

Suppose that f is a non-decreasing function on Rand 

converges 

formation 

functions 

a'f(a X + b) + b' n n n n 

on a set X c R (where 

is needed to conclude 
X log x x:>...? e , or 

an,a~ > 0 and bn,b~ € R). What further in­

that the limit (on X) is one of the 

The main part of the tract, chapters 3 - 13, treats this analytical 

problem. To emphasize the probabilistic results, these have been listed as 

theorems whereas the analytical theory is developed in propositions. 

The variable x of our function f will often be subject to a probability 

distribution. We find it convenient to adhere to the Dutch custom and under­

line the variable in that case. 

The opening chapter contains the definitions and notations which are 

needed in the ensuing chapters. To prevent the reader from falling asleep 

they have been interspersed with a number of exercises. These take the place 

of the usual "it is easy to see"-formulations. They contain additional back­

ground information and may be bypassed by the reader, A more detailed 

summary of the contents of the book is given in the last pages of chapter 1. 

We now give an example of the probabilistic situation sketched above. 

Observe that a random variable l with distribution function Fis 

distributed like f(~) where~ is homogeneous on (o, 1) and f is the inverse 

function of F. Let ~nk denote the kth order statistic from a sample of size 

n from the homogeneous distribution on the interval (o, 1), and similarly 

let lnk denote the kth order statistic from a sample of size n from the 

distribution F. Then obviously lnk is distributed as f(~nk). It is known 

that for n -+- 00 and k/n -+- p € ( O, 1) the variables ?:!:nk are asymptotically 

normal, i.e. ~nk converges in type to the normal distribution, What can one 

say about the asymptotic behaviour of the random variables y k? (See Smirnov 
-n 

We shall return to this example in the final chapter, which contains 

some applications of the theory. 



Notation and main theorems 

Throughout this monograph we shall be concerned with the following 

basic situation 

( 1. 1 ) ax + u in distribution 
n-n 

8 y + v in distribution 
n-n -

y M f(x) n = 1,2,,,, 
-n -n 

a. -+ oo. 
n 

Here u, v, x and y are real-valued random variables and a and 8 are 
- - -n -n n n 

positive affine transformations on the real line R, i.e. of the form 

ax= ax+ b with a n n n n 
> O and b ER. Further a + 00 means that 

n n 

3 

llog a I+ lb I+ 00 , f 
n n M 

is a fixed non-decreasing function defined on an open 

interval in Rand= denotes equality of the corresponding distributions, 

(Since we shall not distinguish between the right and the left continuous 

version of a monotone function, the symbol~ in (1,1) only makes sense if 

x is a continuity point off with probability 1, In the sequel, see defin­
-n 
itions 1,6 and 1.3, we shall extend the definition of~ to cover arbitrary 

non-decreasing functions, M for monotone!) 

It is our aim to give conditions under which the basic situation (1,1) 

implies 

( 1. 2) 

where~ is a small set of functions, See definition 1.7. 

EXERCISE 1.1 On the divergence of an. Suppose for the moment that the basic 

situation (1,1) holds except that the sequence (a) does not diverge. n 
Assume moreover that f is a continuous, strictly increasing function on R 

· M O ( -1 ) . and that neither~ nor! is constant, Then!= µfa ~ for a pair of 

positive affine transformations a and 8, (Hint. Let a be a limit point of 

(an). For convenience assume ak + a. Then ~ + ~ = a- 1~ and f(~) + f(!) in 

distribution, By Khinchine's theorem, mentioned in the introduction,~ and 

f(~) are of the same type.) We see that the condition an+ 00 cannot be 

entirely dispensed with if we want to prove (1.2). 
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EXERCISE 1.2 Let pn + p and crn + cr be convergent sequences of positive 

affine transformations, Set a~= pnan and a~= crnan. Then 

a~~n + ~• = ~ in distribution 

a~ln + !' = crv in distribution 

and if v ~ ,Cu), then v' ~ cr,(p- 1u•), Hence we may expect that together 

with,;~ al;o cr,p- 1 ; ~. Give similar arguments for expecting,€~ to 

imply,*€~ where ,*(x) = ➔C-x). 

We now introduce some notation needed in presenting the main results. 

DEFINITION 1,1 G is defined to be the group of positive affine transform­

ations yon R, i.e. yx =ax+ b with a> 0 and b € R, The group G is not 

commutative, For example 2(x + 1) ~ (2x) + 1, The identity element of G is 

denoted by£, It is the identity map, EX= x for all x € R, 

It is sometimes convenient to think of the elements of Gas points in 

the plane, where we associate with the positive affine transformation 

yx = ax + b the point· ( log a, b) € R2 • This gives a one-to-one correspond­

ence between the elements of G and the points of the plane, 

Suppose ynx = anx + bn for n = 0,1,2, ••• Convergence yn + Yo may be 

described by any of the following equivalent statements 

log an+ log a0 and bn + b0 

an + a0 and bn + b0 

ynxi + y0xi for two distinct reals x 1 and x2 

Ynx + y0x for all x € R. 

Multiplication and inversion are continuous operations, as is obvious. 

by writing out the formulas 

y2y1x = a2(a1x + b 1) + b2 

yx =ax+ b = y implies x = a-1{y - b) = y-1y. 

Since, as we have seen above, convergence of a sequence in G is equi­

valent to convergence of the corresponding sequence of points in the plane, 
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we shall use the geometry of the plane to describe subsets of G. Thus a set 

B c G is bounded if the corresponding set 

{( log a, b) yx =ax+ b, y € B} 

is a bounded subset in R2 , and we write yn + 00 where ynx = anx + bn if the 

corresponding sequence in R2 diverges to infinity, i.e. if 

llog a I+ lb I+ 00 • n n 

EXERCISE 1.3 + 00 

1 
EXERCISE 1.4 For each a€ G there exists a unique element a 2 € G such that , , 
a 2 ,a2 =a.More generally for each a€ G there exists a unique continuous 

function t 1+ at from R into G such that atas = at+s for alls and tin R 

and a 1 = a. (Hint. If a is a translation, ax= x + b, then the assertion is 

easily verified, atx = x + bt is a solution and is the unique solution for 

rational t. If a is not a translation, then we write ax= ec(x - x0 ) + x0 

with c ~ O, and a is a multiplication with centre xO. Hence 
t ct( ax= e x - x0 ) + x0 • By choosing appropriate affine coordinates on R we 

may even obtain that the centre of multiplication xO = O, in which case 

atx = ectx.) The set {at I t € R} is the one-parameter subgroup of G 

generated by a, 

DEFINITION 1.2 ~=~(a) is a subset of G which depends on the sequence (an) 

in (1,1) and is defined as follows: 

such 

o E ~ if there exist 
-1 that '7c a1 + o. 

n n 

EXERCISE 1 • 5 

sequences of positive integers kn+ 00 and ln + 00 

1, Construct~ for the sequences 

X - n =---
rn 

ax= x + n2 
n 

a 2n+ix = x + n2 + i i = o. 1. 

Hint. In one of the five cases~ is the set of all translations. 
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2. Let (cr) be a bounded sequence in G. Define 
n 

and determine t:.., 

3, If an converges then t:.. consists of the identity element, 

4. t:.. is a closed, symmetric (i.e. cr et:.. implies cr- 1 et:..) subset of G and 

Ee t:..; converse~ any closed, symmetric subset of G which contains Eis 

the t:.. of an appropriate divergent sequence a. (Compare exercise 1,5,2 
n 

above,) 

DEFINITION 1,3 M will denote the set of all curves {(x(t), y(t)) It e R} 

in the plane, where 

1, x(t) and y(t) are continuous non-decreasing functions oft, 

2. x(t) + y(t) = t for all t e R. 

By abuse of language we shall sometimes call elements of M non-decreas­

ing functions. 

Let g(x) be a non-decreasing function, (We shall always assume that a 

monotone function has as its domain a non-empty connected subset of R.) 

There exists a unique element g 1 e M which consists of the graph of g 

augmented with a countable number of vertical line segments in the discont­

inuity points of g and if need be in the endpoints of the domain of 

definition of g. For instance, the function g(x) = 6 on the subset {O} c R 

gives rise to the curve g 1 = {(O, t) I t e R} e M, 

Leth: R +R be a function with the graph H = {(x, h(x)) I x.e R}. 

Let a, a e G. Then the function aha- 1 has obvious~ the graph 

{(ax, ay) I (x, y) e H}. In view of this we give a similar definition for 
-1 aga for g EM, 

DEFINITION 1,4 Forge M we define 

aga- 1 = {(ax, ay) I (x, y) e g}. 

6 • • Cl -1 EXERCISE 1 • Call two curves h and g in M equivalent if h = µga for some 

a, a e G, If g(x) is a constant non-decreasing function then the correspond­

ing element in Mis equivalent to one of five inequivalent curves 
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(Hint. The domain of definition of g is a one point set, the real line, a 

right half line, a left half line or a bounded non-degenerate interval.) 

DEFINITION 1.5 M0 denotes the subset of M of all curves which correspond 

to one of the non-decreasing functions g(x) with 

g(x) = c for all x in the domain of definition 

7 

where c ER and the domain of definition is a non-empty connected subset of 

R. (See exercise 1.6.) 

EXERCISE 1.7 Suppose g EM satisfies g = Sg for SE G, S ~£.Then g E M0 • 

(Hint. Else there exist continuity points x1 and x2 of g such that 

g(x1) ~ g(x2). If g = Sg then S leaves the two points g(xi) invariant and 

we conclude that S ~ £.) 

Let A be a probability measure which lives on the graph Hof a Borel 

measurable function h: R + R, i.e. A is a probability measure on the Borel 

sets of the x,y-plane and A(H} = 1. The coordinate functions x and y are 

measurable real-valued functions on the probability space (R2 , A) and hence 

may be regarded as random variables which we denote by~ and l• Since A is 

concentrated on the graph of h we have l = h(x) almost surely and hence in 

particular l = h(~) in distribution. 

DEFINITION 1.6 For g EM and random variables x and l we define the 

relation 

to mean that there exists a probability measure A on g having the probability 

distributions of x and las marginals. 

This definition coincides with the usual definition of equality in 

distribution if the vertical line segments of g carry no positive probability 
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mass. In particular this is the case if g is the graph of a continuous 

function, or if the probability distribution of xis continuous. The defin­

ition above has the advantage that the role of~ and l is symmetric, 
M ( ) . • M -1( ) -1 . . . l = g ~ if and only if x = g y where g is the inverse of g obtained 

- - M 
by reflecting gin the diagonal. It has the disadvantage, that r1 = g(~) 

and r2 Mg(~) need not imply r 1 ~ r2 , Indeed let g be the vertical axis and 

~ = 0 almost surely, then l ~ g(~) holds for any random variable l• 

DEFINITION 1,7 ~ denotes the smallest subset of M which has the properties, 

1. M0 c ~ 

2. ~ contains the elements in M correponding to the non-decreasing 

functions 

y(x) = X on R 

y(x) = e X on R 

y(x) = log X on (o, oo) 

y(x) = -A (o, oo) -x on 

y(x) = A (0, oo) X on 

y(x) = A 
X on [O, oo) 

= c(-x)A on (-oo, o) 

y(x) = sign X on R 

for each A> O andc ~ o. 
3, ¢ E ~. a E G implies ~-1 E ~. a¢ E ~and¢* E ~where¢* is 

defined by the condition (x, y) E ¢* if and only if (-x, -y) E ¢. 

Observe that~ is closed with respect to inversion (reflection in the 

diagonal). 

Condition 3, in the definition of~ states that the set~ does not 

depend on a particular choice of coordinates on the axes. (The seven curves 

listed under 2, obviously do depend on the coordinates.) If we introduce 

new coordinates x' and y' where either x' = crx, y' = ,y with cr,, E G, or 

x' = -x, y' = -y, then~ also contains the curves obtained by substituting 

x' and y' for x and yin the seven expressions under 2. 

The reason for listing together this apparently disparate collection 

of functions will become clear in proposition 1.1. 
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EXERCISE 1.8 Let <I>0 be the smallest subset of M which contains the curves 

corresponding to the functions ¢(x} = x, ¢(x) = ex and ¢(x) = -e-x, and 

which satisfies the condition that 8¢a-1 € <I>0 whenever¢€ <I> 0 and a, 8 € G. 

1, (p0 C <P. 

2. Every element¢€ <I>0 corresponds to a function 

with 8 € G and A€ R, where eA(x) is defined by 

A ;0 O 

= X A= o. 

3. <1> 0 is homeomorphic to R3. (The representation ¢(x) = 8eA(x) is unique 

and 8 + 8, A + A imply¢ +¢weakly and vice versa,) n n n 
4. Let a be the translation ax= x + 1. Let 8 € G and g € M. If g satisfies 

then g is a horizontal line or g € <I>0 • (Hint. Suppose (x0 , y0 ) € g. Then 
t t t also (a x0 , 8 y0 ) = (x0+t, 8 y0 ) € g for all t € R, i.e. 

Now substitute y0 for x in the expression for 8tx in exercise 1.4.) 

PROPOSITION 1.1 Suppose a, 8 € G and (a, 8) ;t (£,£).Let g € M satisfy 

( 1.3) 

then g € <I>. Conversely for every¢€ <I> there exist a and 8 in G not both 

equal to£, such that (1.3) holds. 

PROOF The proof is elementary but rather cumbersome because of ~he many 

particular instances which we have to consider. 

It is useful to introduce the sets 

( 1. 4) <I>(a, 8) = {g € M I (1.3)}. 
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Proposition 1.1 states that tis the union of all t(a, a) with (a, a)~ 

~ (e:, e:). 

To prove that t Cu t(a, a> with (a, a)~ (e:, e:) 

it suffices to check 

1. Moc u t(e:, a> with a~ e: 

2. each of the seven functions listed in the definition oft lies in a 

set t(a, a), (in fact atx = atx or atx = x + bt and similarly for at) 
-1 

3, g € t(a, a) implies yg € t(a, yay ) 

g € t(a, a) implies gy- 1 € t(yay-1, a) 
* * * * g € t(a, a) implies g € t(a, a), where g (x) : = -g(-x), 

· · * a* (N 1 . ( t)*( s)* ( t+s)* and simlarly for a and~. ote that the equa ity a a = a 

implies that (at)* is the unique continuous one parameter subgroup generated 

by a* and hence (at)*= (a*)t. See exercise 1.4.) 

To prove the first part of the theorem, i.e. t(a, a) C ~ if (a, a)~ 

~ (e:, e:) we first observe that 

~(e:, a> 'c Mo for a~ e: (see exercise 1.7) 

~(a, a) c ~Oct if a is a translation (see parts 1 and 4 of 

exercise 1.8) or tis constant 

g € ~(a, a) implies g-1 € ~(a, a). 

Thus it suffices to check that ~(a, a) C ~ if a and a are non-trivial 

multiplications. For convenience we assume that atx = atx and atx = btx, 

where a and bare positive constants not equal to 1. Observe that 

(x~, y0 ) € g for g € ~(a, a) implies that g contains the whole curve 

(a x0 , bty0 ). For (x0 , y0 ) ~ (O, 0) this curve is either one of the half 

axes (if x0 = 0 or y0 = 0), or it is the graph of one of the functions 

y(x) A = ex on (o, ®l with cA > o 

y(x) = c(-x)A on (..co, 0) with cA < 0 

where A is uniquely determined by 
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" Hence b =a. Either g is this curve (if A< 0) or the curve has (0, 0) as 

endpoint and g is the union of two such curves and the origin. 

REMARK A very simple description of~ can be given as follows (see Ince 

[1926], chapter 4). Let at, t € R, be a one-parameter subgroup of G, The 

infinitesimal generator a is defined by 

. 
ax 

t 
= 1 . a X - X 

1.m t 
t-+O 

The maps (x, y) * (atx, aty) form a continuous transformation group on R2 • 

The corresponding infinitesimal transformation is 

(x, y) * (x + dx, y + dy) = (x + ax dt, y + Sy dt). 

The elements of ~(a, B) are the non-decreasing invariant curves and satisfy 

the differential equation 

Sy ax= 
. 
ax dy. 

EXAMPLE 1.1 Every~€~ does occur in the limit relation (1.2) for an 

appropriate choice of a• a and fin (1.1). 
n n 

First suppose a, B € G and a~ E. Let f =~€~(a, B) and let A be an 
M arbitrary probability measure on f with marginals~ and!=~(~). Define ~n 

and ln by 

anx = u -n 
any = v. -n 

Then 

M f( ) si"nce 0 nfN-n -- f ln = ~n I-' '"' 

Now if~€ ~(E, B) then~ is one of the constant functions (see exercise 

1.7). These functions also lie in ~(a, E) except for the function~= con 

I where I is a bounded interval. That this functions also occurs as a limit 

follows from example 1.4 below on interchanging the x and y-axis. 
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EXAMPLE 1,2 Counter example showing that the monotonicity off is essential. 

Let u be a random variable with a continuous probability density and 
- -1 

set x : =nu.Choose ax= n x, $ y = y and f(x) = cos x. Then an+ 00 , -n - n n 
ax + u and y = cos x converges in distribution to cos w_, where w is 

n-n - -n -n 
homogeneous on [O, n], 

Obviously we could have used any periodic function instead of the 

cosine and obtained a similar result, 

EXAMPLE 1,3 On the divergence of ($n), 

The limit variables~ and! will have distribution functions F(u) = 
= pF1{u) + qF2(u) and G(v) = pG1(v) + qG2(v) where p, q > O, p + q = 1, and 

F1 is standard normal 

F2 is degenerate in zero 

G1 has . 1 . n point mass 2 in - 2 and 
n in 2 

G2 is the uniform distribution n n 
on(. 2' 2> . 

One readily checks that~ and! are marginals of a probability measure which 

lives on~€~ where 

~(x) =-¥ sign x. 

(Mix the uniform distribution on the vertical part with the two halves of 

the normal distribution on each of the horizontal halflines in~.) 

Choose f(x) = arctg x on R, Let A be the (unique) probability measure 
n 

on f € M such that the marginal x has a normal N(O, n2) distribution. The -n 
distribution of n- 1x converges to the standard normal F1 and the distribut­

-n 
ion of the marginal y converges to G1• Similarly, if K denotes the probab­

-n 
ili ty measure on f whose marginal l is uniformly distributed on (- -¥, -¥> 

-1 . A -1 a • then n !. + O. Setting µn = p n + qK, anx = n x and ~ny = y we obtain the 

announced result, 

Example 1,3 above shows that an+ 00 need not imply en+ 00 • In 

proposition 7,5 we shall see that if$ does not diverge to 00 then the basic 
M n 

situation (1.1) implies that~=~(!) where~€ MO• For the sake of symmetry 

we could add the condition$ + 00 to the basic situation (1.1), We shall not 
n 
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do so since in applications the given situation will in general be 

asymmetric. (For instance in the application mentioned in the introduction, 

the sequence (a) is known.) 
n 

EXAMPLE 1.4 On the definition of~ and the necessity of allowing vertical 

line segments in the graphs of discontinuous functions. 
I t 1 d M7T . . . 

n he examp e above we ha ! = 2 sign~ where~ had positive mass q 

in O. The fact that$ =£is not essential since we can obtain the same n 
limit function $0(x) =-¥ sign x starting with f(x) = arctg x.log(1 + lxl) 

and using the norming transformations ax= n- 1x and$ y = (log n)-1y. Then 
n n 

$nfa~1x + i sign x = $0(x) and it is possible to obtain any desired probab-

ility measure on $0 E ~ as the limit of an appropriate sequence of distrib­

utions on g : = $ fa- 1, This construction will be developed in full gener-n n n 
ality in the next chapter, 

We shall now give a summary of the contents of chapters 2 - 14. 

Chapter 2 contains a description of the topology of M. In this topology 

Mis a locally compact, metrizable space, and the sequence $nfa~1, with 

an• Sn and fas in (1.1), is relatively compact. We shall prove two theorems 

on monotone functions of random variables. 

1. Given two random variables,~ and~• there exists a non-decreasing 

function g EM such that vis distributed like g(u), i.e. v ~ g(u). 

2. Let the sequence: and the sequence v ~-g (u) c~nverg~ in 
-n -n -n -n 

distribution to~ and!~ g(~). Let Ac g be the support of the measure A 

on g with marginals u and! (see definition 1.6). Then the sequence gn con­

verges onto the set A (in the sense of definition 2.1). 

-1 
We shall apply these two theorems to the sequence Snfan in M. 

The two theorems will enable us to reformulate the basic situation 

( 1.1) in purely analytical terms ( 2.1), as "$ fa- 1 converges onto A". 
n n 

In particular, if the distribution function of the limit random vari-

able u in the basic situation ( 1.1) is strictly increasing on R, then (2,1) 

implies that the sequence of non-decreasing functions$ fa-1 converges n n 
weakly on R to a non-decreasing function h, and that the limit variables~ 

and v in the basic situation (1.1) satisfy~~ h(~). In chapter 3 it will 

be shown that this function h satisfies a functional equation of the form 
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Th= hcr with T € G for every cr € A. (This functional equation is a variant 

of the well.known functional equation h(x) = h(x + p) for periodic functions.) 

Table 3.2 gives a complete classification of the possible limit functions 

in terms of the set A. If the set A is sufficiently large, then any solution 

h of the system of functional equations Th= hcr, with cr € A, is an element 

oft, and even of t(cr, T). (See (1.4) for the definition of ~(cr, T)}. This 

implies that if A contains two elements which do not commute, then his 

constant or affine (either! is constant or vis of the same type as~). 

If all elements of A are integral powers of a common element cr € G, cr ~ €, 

then his the composition of an element oft and a function 

k(x) =AX+ c + n(x) where n is periodic modulo cr (see table 3.1). Finally 

if A= {E}, i.e. if the sequence (a) diverges fast, then every non-decreas-
n 

ing function his possible in the relation!~ h(~) (for a suitably chosen 

f €Mand sequence($) in G). The proof of this statement occupies the 
n 

greater part of chapter 4. (We give an explicit construction off for a 

given sequence (a) with a +~and A={€}, and given h € M.) 
n n 

We describe this case ( the distribution function of u strictly increas-

ing on the whole real line) in some detail since it occurs in most applic­

ations. The theory in the first part of the book, chapters 3 - 6, is devel­

oped under the more general assumption that 

( 1.6) the distribution function of u is strictly increasing on an open 

interval I and P{u €I}= 1. 

Because of this condition there will be little need to distinguish between 

non-decreasing functions and elements of Min these 4 chapters and we shall 

use the cl~ssical theory of non-decreasing functions and weak convergence, 

The basic ~ituation (1.1) together with condition (1.6) implies weak con-
o -1 · vergence of the sequence ~nfan on the interval I. 

For a bounded interval I the system of functional equations Th= hcr is 

less easy to handle than in the case I= R which we considered above, and 

we shall only prove theorem 3.1. 

If€ is a condensation point of A, then!~~(~) for some~€ t. 

-A Note that for a bounded interval also the functions log x and -x can 

occur in relation (1.2). 



In chapter 5 we define the domain of attraction of a function h EM 

for a given sequence (a) in Gas the set of all f EM for which there 
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n 
exists a sequence (8) such that 8 fa- 1 + h. We give some examples for the n n n 
case that his the identity function. It will be shown that a continuously 

differentiable function f, which satisfies the condition that lim f'(x) 

exists and is positive, lies in the domain of attraction of lxi-.oo 

the identity function for every sequence (an) which diverges to 00 • 

In chapter 6 we introduce the extra restrictions 

_, 
the sequence (an+lan) is bounded, 

~ is a subset of a one-parameter subgroup G(y) = {yt It ER} 

of G, 

-1 If 8 fa converges weakly to a non-constant element~ E ~ on an open inter­n n 
val I, and if In crI is non-empty for every limit point cr of the sequence 

-1 -1 (a +la ), then 8 fa converges weakly to~ on the half line (c, 00 ) or n n n n 
(-"", c) containing I (if y is a multiplication with centre c) or on the 

whole real line (if y is a translation). See proposition 6.1. 

In this case we can embed the sequence (an) in a continuous function 

a: [O, 00 ) + G such that an= a(tn) where tn + 00 , tn+l - tn is bounded, and 

for alls ER 

fort+ 00 • 

A similar statement holds for the sequence (Sn). 

The results of chapter 6 should be seen as an introduction to the 

second part of the book, chapters 7 - 13, where we replace the restriction 

(1.6) on the random variable~ by the restriction an+la~1 +£on the 

-1 The condition an+lan +£allows us to replace the sequences (an) and 

(Sn) by continuous functions a and 8 from [O, 00 ) into G. In this second 

half of the book we shall employ to the full the geometrical interpretation 

of a non-decreasing function as a curve in the x,y-plane which we introduced 

in definition 1,3. 

In chapter 7 we introduce a compactification of G and we give a 

complete analysis of the basic sutuation (1.1) under the condition that the 

sequence (Sn) does not diverge to infinity. (Compare example 1.3 and the 
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remarks following this example.) 

Now let us consider a limit point g of the sequence S fa-1 in M. Then 
n n 

! ~ g(~). This implies by the definition of~ that u and v are marginals of 

a probability measure A supported by a closed subset Ac g. In chapter 8 we 

shall see that there exists an unbounded, connected, closed subset Cc GxG, 

the "guide set" of g for A, such that ,-1Acr c g for all (cr, ,) E C (see 

proposition 8.1). This is the geometrical analogue of the functional 

equation ,h = hO which we derived in chapter 3, We shall discuss some simple 

consequences of this inclusion in chapter 8. 

It was the aim of these investigations to derive the implication 

"(1.1) and an+la~1 + e: implies (1.2)". We have not been able to prove this 

implication, nor have we been able to construct a counter-example. A proof 

of the implication under the extra condition that u should have an absolutely 

continuous distribution function will be published elsewhere in a joint 

paper with L. de Haan. In the present work we place an additional restrict­

ion on the sequence (an). 

One rather striking consequence of the condition, a +la-1 + e:, is that 
t n n 

the set I::,. contains a one-parameter subgroup {y I t ER} of G, with y ~ e: 

(see proposition 7.2). We shall be particularly interested in the case that 

I::,. is equal to this one-parameter subgroup. It is then possible to introduce 

a continuous function a : [O, co) + G, such that a = 

tn+1 -
n 

tn + O, and which satisfies the relation (see 

lim a(t + s) a(t)-1 = ys for alls ER. 
t-+oo 

a(t ) where t + 00 and n n 
proposition 9.7) 

This equation leads us to a theory of regular variation on separable, 

metrizable groups. (Recall that a function U from [O, 00 ) to (0, 00 ) is said 

to vary regularly in the additive formulation if there exists a constant 

p ER such that lim U(t + s) U(t)- 1 = eps for alls ER.) Many theorems in 
t-+oo 

the classical theory of regular variation remain valid in the more general 

setting of separable metrizable topological groups as will be shown in 

chapter 9, 

If D. is the one-parameter subgroup of the translations, (this is the 

case if for instance ax= (x - n)/v'n, see exercise 1.5.1), and if A con-
n 

tains three points no two of which lie on the same horizontal or vertical 

line, then the inclusion cr- 1A, cg for all (cr, ,) in the guide set C, which 

was established in chapter 8, implies that g, after a simple normalization, 
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satisfies a functional equation 

g(x + a) - g(x) = C(g(x + 1) - g(x)) 

for positive constants e and C less than 1. It will be shown in chapter 10 

that the solutions of this equation satisfy a pair of equations ,.g = ga. 
]. ]. 

for i = 1, 2. (See the corollary to proposition 10,3,) In particular if e 
is irrational, then g €~.In this case g is uniquely determined by the two 

functional equations 'ig = gai, i = 1, 2, and the condition that Ac g. 

This implies that g is the only limit point of the sequence 13 fcX- 1, and 
n n 

hence, that 13 fa- 1 +gin M. One can say even more in this case. Also the 
n n 

norming function 13(t) varies regularly. (Note the similarity with the 

results of chapter 6.) 
As an interesting corollary we obtain the corollary to proposition 10.4 

Let f be a non-decreasing function on R and let x0 , x 1 and x2 be real 

numbers such that x0 < x1 < x2 and (x2 - x0 )/(x1 - x0 ) is irrational. Jf 

f(x2 + t) - f(xo + t) 

f(x1 + t) - f(x0 + t) 

with c > 1, then 

+ C for t + oo 

f(x + t) - f(x0 + t) 
---------- + <j>(x) weakly for t + oo 

f(x1 + t) - f(x0 + t) 

where <P € ~O (see exercise 1.8). 

We are now able to derive the main result of this part of the book, 

This is theorem 11,1 which states. 

( 1 , 7) 

If in addition to the basic situation (1,1) it is given that _, 
an+lan + e;, and 

tis contained in a one-parameter subgroup {crt It€ R} in G, 

then there exists an element <P €~.such that 

Moreover <PE M0 or <PE ~(cr, ,) for some TE G, where ~(cr, ,) is defined in 

(1.4). 
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In chapter 12 we consider the domain of attraction of the identity 

function, now for a given sequence (a) which satisfies a +1a-1 ➔ E and n n n 
(1.7) with Ox= x + 1. 

In chapter 13, theorem 13,1, we show that (1.1), together with the 
' . - 1 . l. t . M .i.( ) .i. t condition an+1an ➔ E, imp ies hat either!=~~ for some~€ or 

! ~ h(~) where h €Mis the graph of a homeomorphism of an open interval. 

The final chapter gives some applications. As an example we mention 

the wellknown fact that if~ and! are each limit in type of a sequence of 

maxima. of i.i.d. random variables, i.e. u and v are each distributed accord­

ing to one of Gnedenko's limit laws in extreme value theory, then!~ cp(~) 
for some cp € t. 
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2 Monotone functions of random variables 

In this chapter we take a closer look at the space M of non-decreasing 

functions introduced in chapter 1 (definition 1,3) and we prove the follow­

ing two well known assertions. 

Let u and v be random variables. Then there exists an element g EM 
- M -

such that~= g(~), i.e. there exists a probability measure A= A(~, y) 

which lives on the curve g and which has marginals~ and y. This probability 

measure A is unique (though gin general is not). Moreover if u ➔ u and -n 
~n ➔ v in distribution then the corresponding curves gn converge onto the 

support Ac g of the measure A= A(~,~), where convergence onto is defined 

as follows. 

DEFINITION 2.1 Let (g) be a sequence in Mand let A be a subset of an 
n 

element of M. Then gn converges onto A if for each point PE A there exists 

a sequence Pn E gn such that Pn ➔ P. 

The two theorems above allow us to dispense with the probabilistic 

flavour of the basic situation (1.1) and to formulate it more simply in 

purely analytical terms. Indeed on introducing the new variables 

u : =ax and v = $ y the basic situation (1.1) may be formulated as 
-n n-n -n n-n 

u ➔ u in distribution -n 
v ➔ v in distribution 
-n 

v ~ $ f(a- 1u) 
-n n n -n 

Let A be the probability measure with marginals u and v and with support 

Ac g EM, i.e. v ~ g(u). Now apply the second t~eorem-formulated above to 
- -1- . 

the curves~= Snfan and the sequences ~n ➔ u and ~n ➔ v. We find that 

the basic situation (1.1) implies 

( 2. 1 ) $ fa-1 converges onto A. n n 

In order to prove that the limit random variables u and v of the basic 
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situation (1.1) satisfy (1.2) it suffices to show that the analytic basic 

situation, (2.1) together with a + 00 , implies 
n 

(2.2) A C 4> 

The investigation of conditions on A and on the sequence (a) which 
n 

ensure 

(2.1) => (2.2) 

is the subject matter of the thesis. 

Since (2.1) is a statement about a sequence in M it seems proper to 

give some attention to this space. We shall give a number of alternative 

description of the set Mand introduce a topology on this set. This exposit­

ion is not strictly essential for the remainder of the book and may be 

regarded as background material. In particular chapters 3 - 6, where A is 

the graph of a non-decreasing function defined on an open interval, may be 

read in the context of the classical definition of non-decreasing functions 

and weak convergence. However, for the proof of the two assertions of the 

opening paragraph of.this chapter the space Mis the natural setting. 

DEFINITION 2.2 For a= (a 1, a2 ) E R2 define 

The set ar is the open lower right quadrant with vertex a. For Ac R2 we 

define 

Ar= u ar. 
aEA 

Similarly Ja : = (..oo, a 1) x(a2 , 00 ) and JA 

and Ar-= Ar,-· 
= u Ja. Observe that A1 is open 

aEA 

THEOREM 2.1 Let~ and l be real-valued random variables. There exists a 

probability measure A such that 

A lives on a curve g EM 

A has marginals x and l· 



The measure A is uniquely determined by these two conditions. 

PROOF Let F(x) = P{x s x} be the distribution function of! and let G(y) 

be the distribution function of l· 
1. Existence of A 

Set 

( 2. 3) H(x, y) = min F(x), G(y). 

His a probability distribution on 8 2 and has marginals F(x) and G(y). 

Let A be the associated probability measure on 8 2 

Set A= {(x, y) I F(x) ~ G(y)}. Then, denoting closure by 

½- = o. 

Similarly, setting B = {(x, y) I F(x) s G(y)}, we find 

Since Au B = a2 , the measure A lives on aA n aB c aA, the boundary of A. 

2. Uniqueness of A 

Let A satisfy the two conditions of the theorem. Then A(g1 ) = A(~g) = O. 

Let H(x, y) be t~e distribution function of A. For (x, y) E g we have 

A( (x, y)1 ) = 0 and, hence, for (x, y) E gr we have 

H(x, y) = H(oo, y) = G(y) 

H(x, y) S H(x, 00 ) = F(x). 

This proves that (2.3) holds on g1 . A similar argument shows that (2.3) 
holds on ~g. Since the union g7 u ~g is dense in 82, the relation (2,3) 
defines H. 

COROLLARY 1 The measure A in theorem 2.1 has the distribution function 

given by (2.3). 

21 
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COROLLARY 2 Suppose that the distribution function F of xis strictly 

increasing on an open interval I, and that P{x EI}= 1, ;uppose y ~ g(x) 

with g EM, and let h EM. Then l M h(~) if a~d only if glr = hl 1-where-glr 

denotes the restriction of the curve g to the vertical strip IxR in the 

x,y-plane, 

PROOF Let A be the support of the measure A defined in theorem 2.1. Then 

l M h(~) if and only if h ~A.The condition on the distribution of x 

ensures that I is' the interior of the projection of A on the x-axis. If h 

agrees with g on I, then A c h; if A c h, then h agrees with g on I. 

REMARK Frechet [1951]has studied the distribution function H(x, y) defined 

in (2,3) and shown that for F and G continuous and strictly increasing the 

curve g is unique and is defined by F(x) = G(y), 

EXAMP~ 2.1 Let u be homogeneous on (O, 1 ). Then x M F-l (u) where F is the 

distribution function of x. 

THEOREM 2,2 Let~• l• ~n and ln be real-valued random variables such that 

X + X 
-n -

in distribution 

in distribution 

with gn EM for n = 

with g EM, 

1,2, .. , 

Let A be the support of the probability measure A on g with marginals x and 

y. Then g converges onto A. 
- n 

PROOF For n = 1,2, •. , let A be the probability measure 
n 

als ~n and ln• Let Fn(x) be the distribution function of 

and Hn(x, y) of An. Then by theorem 2.1, corollary 1, 

H (x, y) = min (F (x), G (y)). 
n n n 

on g with margin­
n 

~n, Gn (y)of In, 

Since the right hand side converges, so does the left hand side (pointwise 

on a dense subset). We obtain 



lim H (x, y) = min (F(x), G(y)). 
n 

The associated probability measure on R2 satisfies the two conditions of 

theorem 2.1. Hence it is A by uniqueness. 

In order to prove convergence of gn onto A, take an arbitrary point 

(x, y) EA. Let Ube an open neighbourhood of (x, y). Then AU> O. Now 
' 

A + A implies liminf AU~ AU for open sets U. Hence AU> 0 for n ~ n0 , n n n 
i.e. gn intersects U for n ~ n0 • Q.E.D. 
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If the limit distribution function F of~ is strictly increasing on an 

open interval I and if P_{:z E I} = 1, then the conditions of theorem 2.2 

imply that the sequence of non-decreasing functions gn converges weakly to 

g on I. In order to prove this we shall define a topology on M. With this 

topology M becomes a locally compact, metrizable space. We shall also intro­

duce a compact space M*, which may be viewed as a two-point compactification 

of Min the same way in which the closed interval [O, 1], which is homeo­

morphic to the extended real line [-00 , 00], may be considered to be the two­

point compactification of R. 

Table 2.1 lists five representations of the same space M* and four 

representations of M. The reader will observe that there are obvious 

bijections between the different representations and that M may be regarded 

as a subset of M*, the complement M*\M consisting of two elements which are 

* the O and 1 of the Boolean algebra M. 

Before discussing the topology on these spaces we prove a well known 

result on weak convergence of non-decreasing functions. 

PROPOSITION 2.1 Let g0 ,g1, •.• be non-decreasing functions on an open inter­

val I. Let C be the set of continuity points of g0 on I and define the 
1 1 function G on Ix{1,2,3, ... ,o} by 

G( l) x, 
n 

n = 1 ,2,. . . , x E I 

G( x, 0) X € I. 

Then weak convergence of gn to g0 is equivalent to each of the following 

1. for each x in some dense set D c I there exists a sequence xn + x 

such that· ~(xn) + g0(x) 
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2. gn converges pointwise to g0 on some dense subset of I 

3, gn(x) converges to g0(x) for all x € C 

4. gn converges uniformly to g0 on compact subsets of C 

5. G is continuous in each point of Cx{O}. 

PROOF It suffices to prove that 1. implies 5, since 5. => 4. => 3, => 2. => 

=> 1. is obvious. Hence suppose c € C and e: > O. Choose x' and x" in the 

dense set D such that x' < c < x" and g0(x") - g0 (x') < e:. Choose cS > O 

such that x' + cS < c < x" - cS. Let x' and x" be the sequences mentioned in 
n n 

1. converging to x' and x". Choose n0 such that x~ < c - cS, c + cS < x~, 

lg (x') - g0(x')I < e: and lg (x") - g (x")I < e: for n ~ n0• Then n n n n 0 
lgn(x~) - g0(c)I < 2e: and lgn(x~) - g0(c)I < 2e:. Hence for n ~ n0 and 

x € (c - cS, c + cS) c [x~, x~J we have l~(x) - g0(c) I < 2e:. Q.E.D. 

The usual topologies (L~vy metric or Hausdorff metric on M*3, weak 

star topology on M*1, weak convergence on M*2, M*3) make these sets into 

compact metrizable spaces. The obvious bijections are homeomorphisms. 

The set M will be regarded as a subset of this compact space. The 

complement of Min M *consists of the minimal and maximal element of the 

Boolean algebra M*. (Compare M*5 with M3,) As a subspace of M* the space M 

is a locally compact metrizable space. 

DEFINITION 2.2 The symbol M will henceforth denote a topological space. 

The underlying set is the set M1 of table 2.1, the topology is described 

above. 

EXERCISE 2.1 The set of increasing homeomorphisms of R is dense in M. 

PROPOSITION 2. 2 Let g0 ,g1 ,g2 , ..• be elements ·of M with 

g = {(x (t), yn(t)) I t € R} in the representation of definition 1.3 for 
n n 

n = 0,1,2, •.• Then the following statements are equivalent 

1. gn + g0 in M 

2. xn + x0 weakly 

3. for each P0 € g0 tnere exists a sequence Pn € gn which 

converges to P0 , 



TABLE 2. 1 

M*1. All probability measures on [O, 1] 

2. All f (0, 1) ➔ [O, 1] non-decreasing and right-continuous 

3, All curves (x, y) : [O, 1] ➔ [O, 1J2 such that 

x and y are continuous and non-decreasing 

x{t) + y(t) = 2t fort E [O, 1] 

4. All f R ➔ [..co, 00 ] non-decreasing and right-continuous 

5, All sets Ar with Ac R2 

M1. All curves {(x{t), y(t)) E R2 I t ER} with 

x and y continuous and non-decreasing 

x{t) + y(t) = t for all t ER 
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2. All non-decreasing real-valued functions f defined on some non-empty 

connected set Sc R where we identify two functions (f1, s1) and 

(f2 , s2) if 

the closures of s 1 and of s2 are equal 

{f1 = f 2} is dense in the common interior 

3, All sets Ar, Ac R2, with A non-empty and Ar~ R2 

4. All sets aAr• Ac R2 , with aAr• the boundary of Ar, non-empty 
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PROOF We first prove that 3, implies 2, Set P = (x (t ), y (t )). Then n n n n n 
x (t) ➔ xo<to) and y (t) + Yo<to) imply 2t = x (t) + y (t) + 2to· This nn nn n nn nn 
implies weak convergence of x (by the first criterium of proposition 2.1). 

n 
Similarly, using criterium 3, one proves that 2. implies 3, 

Now given a fixed increasing homeomorphism of R onto (O, 1), say the 

standard normal distribution function, there exists for each gn €Ma unique 

curve g: € M*3 in [O, 1] ~ [O, 1]. 

The corresponding conditions 1~, 2~ 

are equivalent. (If we extend x* to R by 
n 

and 3~ for the sequence 

setting x*(t) = O fort 
n 

x*(t) = 1 fort> 1, then proposition n 2.1 applies to the extended functions 

and on comparing conditions 3. and 4. of that proposition we see that point-

wise convergence of the sequence x* on [O, 1] is equivalent to uniform 
n 

convergence on [O, 1], i.e. to convergence in the Levy metric, The equival-

ence of 2~ and 3~ is proved as above.) 

Now 1~ is equivalent to 1. by definition of the topology of Mand 3~ 

equivalent to 3. is obvious, 

REMARK If gn € M converges onto a non-empty set A, then the sequence(~) 

is relatively compact and the set of limit points is a closed subset of the 

compact set M(A) = {g €MI Ac g}, 

PROOF The sequence (g) has a limit point g* in M* Obviously this limit 
n * 

point is not the O or 1 of the Boolean algebra M, since gn converges onto 

A. Hence g* € M. Now observe that M(A) is a closed subset of M* which does 

not contain the O or 1 of M*, 

PROPOSITION 2,3 Leth be a function defined and non-decreasing on an open 
n 

interval In for n = 0,1,2, ••. Let gn € M contain the graph of hn, Let A0 be 

the closure of the graph of h0 and let A1 be the closure of the restriction 

of g0 to I 0 x R. Then the following are equivalent, 

h .... ho weakly on IO n 

gn converges onto AO 
I onto A1. gn converges 

PROOF Suppose hn ➔ ho weakly on I 0 . Let x € I 0 be a continuity point of h0 , 

then hn(x)-+- h0(x), Hence gn converges onto the set 



27 

A= {(x, h0(x)) Ix E I 0 continuity point of h0}. 

Let g be limit point of the relatively compact sequence(~) in M, (See the 

remark preceeding this proposition.) Then g ~ A, hence g ~ A1. This proves 

that gn converges onto A1 • 

Suppose~ converges onto A0• Let I be an open interval such that 

I c I 0 • Then hn is defined on I for n ~ n0 • By criterium 1 of proposition 

2.1 the sequence hn converges weakly to h0 on I. 

LEMMA 2. 1 S in M and 8 8 in G. Then 8 iz. a-1 + Sga- 1 uppose gn + g an + a, n + n--n n 
in M, 

PROOF Observe that x + x implies 
n 

Suppose PE h. There exist Pn E gn such that Pn + P. Then 8nPna~1 + 8Pa- 1• 

Hence 8ngna~1 + 8ga-1 by proposition 2.2 part 3. 

PROPOSITION 2.4 $ is a closed subset of M. 

PROOF Suppose~ +gin M with~ E $(a, 8 ), where $(a, 8) is defined n n nn · nn 
as in (1.4), and (a, 8) ~ (E, E). Define the equivalence relation~ on 

n n t t 
(G x G)\{(E, E)} by (a, 8) ~(a, 8) fort~ O. The quotient space is the 

three dimensional real projective space, hence compact, and since 

$(a, 8) = $(a', 8') if (a, 8) ~ (a', 8'), the sequence (a, 8) may be n n 
chosen to be relatively compact in (G x G)\{(E, E)}. Let the subsequence 

(~, Bk) converge to (a, 8) ~ (E, E) fork+ 00 • Then fort ER fork+ 00 , 

by lelDlllB. 2 • 1 , 

~k + g 

t -t t -t 
8k~k~ + 8 ga , 

Since the left hand sides agree, the right hand sides agree. Hence 

g € $( u, 8) c $. 
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~ The equation Th= hO 

In this chapter we study the basic situation (1.1) under the extra 

condition that the support of the random variable u is the closure of an 

open interval I in Rand that P{u €I}= 1, i.e. every non-empty open sub­

interval of I contains positive mass and the endpoints of I carry no mass. 
M 

By theorem 2.1 there exists g € M such that~= g(~), i.e.~ and! are 

marginals of a probability measure A which lives on g. Leth be the right-

continuous, non-decreasing function on I whose graph is contained 

the condition above on u the support A of the probability measure 
- Q -1 . 

the graph of h, By theorem 2.2 the sequence µnf'Cl.n in M converges 

and by proposition 2.3 this implies weak convergence to hon I of 

responding sequence of non-decreasing functions. 

Hence we may reformulate the basic situation (1.1) as 

( 3. 1) 

in g. By 

A contains 

onto A, 

the cor-

In order to prove (1.2) it suffices to show that his the restriction 

to I of a function~€~. 

Now suppose cr €~.i.e. there exist sequences kn+ 00 and ln + 00 such 

. that 

-1 
a.~a.ln = 0 n 

+ o. 

Setting 

f3 13-1 = 
kn ln 

T n' and 

gn = f3 fa,-1 
n n 

we may write 

-1 -1 
gl = f31n fa,1n = T gk 0 

n n n n 

or equivalently 
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(3.2) a g1 (x) + b 
n n n 

where any+ bn: = Tny. 

We assume h non-constant on In cr- 1I. It is then possible to find _, 
x1, x2 € C n cr C such that h(x1) ~ h(x2), where C is the set of continuity 

points of h in I. 

Substituting x1 and x2 in equation 3,2 and subtracting we find 

For n tending to infinity, this becomes 

In particular an+ a;,: 0 since h(x2 ) ~ h(x1). Similarly substituting x 1 in 

(3,2) we find that b converges to a real number b, and for all 
-1 n 

x € C n cr C we have 

ah(x) + b = h(crx). 

If we assume h to be right continuous, then this equality holds through­

out the interval In cr-1r. If a= O, then his constant= b on this interval, 

Hence if we also assume that his not constant on! n crI then a> O, and 

setting Ty= ay + b we obtain 

( 3, 3) Th= hcr, 

i.e. for each x for which both the right and left hand side are defined, 

equality holds. 

Thus we have proved the following proposition, 

PROPOSITION 3,1 Let f be a non-decreasing function, let a and 8 be posit-
n n 

ive affine transformations such that a + 00 and let h be a right-continuous, 
n 

non-decreasing function defined on the open interval I, such that 

_, 
8 f(a x)+ h(x) weakly on I. n n 

Let cr € 6 = 6(a) be such that In crI is non-empty and that h ls non-constant 
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on In aI and on In a-1I. Then there exists T € G such that 

,h(x) = h(ax) if x and ax€ I 

and such that 

PROOF See above. 

Observe that the condition about h being non-constant on In OI and on 

In a-1I is fulfilled in each of the following cases 

1. I= Rand vis non-constant 

2, I= (c, ~) and the probability distribution function G(v) of vis 

continuous in its upper endpoint sup {v I G(v) < 1} 

3, the probability distribution of vis continuous. 

This follows from the inequality 

M 
where!= g(~), g € M, and g =con the open interval Jc. 

In the particular case that the support of~ is the closure of an open 

interval I and P{~ €I}= 1, the problem of finding a functional relation 

between the limit random variables~ and! leads us thus to the problem of 

solving a set of functional equations of the form (3,3), 

Although one could also derive the functional equation if u has a con­

tinuous distribution function F, it would only hold on the set X obtained 

by deleting the closed intervals of constancy of F. In this generality the 

equations are quite untractable, 

The problem of giving necessary and sufficient conditions on 6 and I 

such that the system of equations 

Th= hO 

(where T =,(a)€ G is not known and a varies over 6), implies that his the 



31 

restriction to I of some~€~. is difficult. We shall limt ourselves to two 

particular cases 

1. I is unbounded 

2. Eis a condensation point of~. 

First let us settle the question of determining all solutions h of 

(3,3) for a fixed pair (cr, ,) of positive affine transformations. 

Consider the simplest case in which both o and Tare translations. The 

functional equation (3,3) then has the form 

(3.4) h(x + p) = q + h(x). 

We are interested in finding all functions h defined on the given interval 

I which satisfy (3,4). To avoid trivialities we shall assume p ~ 0 and 

II I > lpl. Note that 

1. if h 1 and h2 are solutions of (3.4), then h2 - h 1 is periodic 

modulo p, 

2, the function h(x) = qp- 1x on I is a solution. 

Thus every right-continuous non-decreasing solution of (3,4) has a 

representation 

( 3, 5) h(x) =Xx+ c + TI(x) 

where A= qp- 1 TI is periodic modulo p, bounded (since his bounded over a 

period) and upper semi-continuous (since his), and c is chosen so that 

max TI(x) = O. 

DEFINITION 3,1 The upper envelope h of h with respect to equation (3,4) is 

the function h(x) : =AX+ con I where A and care defined by (3,5). 

Note that the upper envelope in general depends on p and q in equation 

(3.4). Note too that the set {h = h} is periodic modulo p and non-empty (it 

is the set {TI= o}). 
If h satisfies two equatiotls 
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(3.6) i = 1, 2 

then we have two rep~esentations 

h(x) = h.(x) + n.(x) 
1 1 

i = 1, 2 

- -1 where hi(x) = qipi x + ci (i = 1, 2). 

If I is sufficiently large, in fact if III> lp1 I+ lp2 1 then one can 

prove that h 1 = h2 , hence n1 = n2 is periodic modulo p 1 and modulo p2 . In 

particular if p 1/p2 is irrational, then n is constant and h = h 1 = h2 is an 

affine function, 
1 

To prove that h 1 = h2 we need three points, x0 , x 1, x2 EI such that 

x0 < x 1 < x2 and 

h2 (x1) = h(x1) 

• 
h 1(x2 ) = h(x2 ) 

(or the same equations with the h1 and h2 interchanged). Existence follows 

from the periodicity of the sets {h1 = h} and {h2 = h}. Since we know that 

his majorized by its upper envelope, the three equations above imply that 

the affine function d(x) = h1(x) - h2 (x) has at least two zero's on I, hence 

d vanishes indentically and h1 = h2 . 

Now consider equation (3.3) for general o and T. We choose the origin 

of our x-axis and y-axis to be the centre of multiplication of the trans­

formation o and of T (unless these are translations). Thus we may assume 

that ox= x + p or ox= ePx and Ty= y ± q or Ty= e±4y with q > 0 or Ty= y. 

Since (3,3) is equivalent to 

we may assume p to be positive. (If p = 0 then his constant or the equation 

is trivial.) By a suitable transformation of the form 

h 1(x) = log h(x) 

h 1(~) = h(e~) 

or h1(~) = log h(e~) 



we may reduce all these cases to equation (3.4). This yields the non­

constant solutions of tab"ie 3. 1 • 
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DEFINITION 3.2 The upper envelope of h = ~(k) in table 3.1 with respect to 

equation (3.3) is h = ~(k) where k is the upper envelope of k. 

j 

The upper envelope is the restriction to I of an element of t(cr, T) as 

can be checked with some patience (see (1.4) for the definition of t(cr, ,)). 

LEMMA 3.1 Suppose~£ tis defined on the open interval I 1 and has a 

strictly positive (finite) derivative in every point of I 1• Then there exist 

)., µ £ B such that 

L log L ~(x) = µ - ). 
dx dx + ).(x - ).) • 

TABLE 3.1 

crx Ty h(x) 

X + p y + q k(x) : = c +AX+ 'lf(x) 

e4:, ek(x) 

e-4:, -e -k(x) 

ePx y + q k(log x) X > 0 

y - q -k(log -x) X < 0 

e4:, r ,:, (log x) 
X > 0 C 1 0 c2 <!: 0 

'k2(log -x) 
-c2e X < 0 c1 + c2 > O 

e-4:, -e 
k(log x) 

X > 0 

e-4:, ek( log -x) 
X < 0 

y c1 + c2 sign x c2 > 0 
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PROOF Set L = 1x log~. Then La¢=~. L(¢a) = a.(Lq>)(a) if ax= ax+ b 

and 11/J(x) = -(1¢)(-x) if $(x) = -¢(-x). It suffices to check the formula 

for the functions x, ex, log x and xa. And indeed Lx = O, Lex= 1, L log x = 

= - l Lxa = £....=....1. 
X' X 

COROLLARY Suppose ¢ 1 , ¢2 €Ware defined and differentiable on the open 

interval I 1 and their derivatives are strictly positive on I 1 • If ¢ 1 and ¢2 
agree in four points of I 1 (counted with proper multiplicities), then they 

coincide on I 1• 

PROOF The derivatives ¢1 and ¢2 agree in three points, so too log ¢1 and 

log ¢2. The functions 1¢1 and 14>2 agree in two points (L = 1x log~ as 

above). Hence they coincide. (Either both vanish on I 1 or the algebraic 

inverse is affine.) 

PROPOSITION 3.2 Suppose his non-decreasing non-constant on the open inter­

val I. Suppose (oi, Ti)~ (E, E) and 

T.h = hO. for i = 1, 2. 
l. l. 

Let h 1 and h2 be the upper envelopes of h with respect to equation (3.7). 

Then h 1 = h2 if one of the following conditions holds 

a) I is unbounded 

b) I is bounded and o 1 and o2 lie in the neighbourhood of E defined by 

lox - xi<_}_ III for all x EI. 
15 

PROOF We only prove b). The proof of a) 1.s similar. 

The upper envelope hi is the restriction to I of some ¢i E W(oi, Ti). Note 

that ¢ 1 and ¢2 are not constant on the whole interval I since this would 

imply that his constant on I and this case is explicitly excluded. 

Suppose one of the functions is constant on part of the interval, say 

¢ 1 =con I O =In (-00 , xO) with xO EI and xO maximal. Then h =con I O 
(the periodic part vanishes on the left side of xO). If IIO1 < ~5 III, then 

there exist x1 and x2 = cr2x 1 in I O such that h(xi) = ¢2(xi) for i = 1, 2 and 

~2 = h =con (x 1, x2 ). Then ~2 =con a maximal halfline (with endpoint 

x3 E I) containing (x1 , x2). In particular o2 is a multiplication with 
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• centre x3• If x3 E I 0 then ¢2 = c would hold on a left and a right neigh-

bourhood of x3 and hence ¢2 = c would hold throughout I. This case, as we 

have seen above is excluded. Hence x3 ~ x0 . By symmetry of argument x0 ~ x3. 

Therefore x0 = x3 and we obtain either h = c 1 >con (x0 , 00 ) n I (and ¢ 1 = 

= ¢2 = h) or there exist functions k 1 and k2 such that 

( 3.8) h(x) = C + e 
ki(log(x - x0 )) 

for x > x0 

. 
(see tabl1 3,1). Set~:= log(x - x0 ). Then k 1(s) = k2 (s) on a neighbour-

hood of -00. The upper envelopes k 1 and i 2 coincide by the argument used in 

treating the system (3,5). Hence ¢1 = ¢2 on (x0, 00 ) n I by definition of 

upper envelope of h. 

If neither of the functions¢. is constant on part of I or if 
2 . i . 1 

JI 0 i < 15 III, then there exists a subinterval I 1 of length~ 3JII on which 

both ¢ 1 and ¢2 have strictly positive continuous derivatives. Any subinter­

val of length~ ~5 JII contains a zero of ¢i - h for i = 1, 2 and we may 

choose x0 < y 1 < x 1 < y 2 < x2 in I 1 such that ¢1 - h vanishes in x0 , x1 , x2 

and such that ¢2 - h vanishes in y 1 and y2 • Since ¢i - h ~ 0 for i = 1, 2, 

the function ¢ 1 - ¢2 is non-positive in x0 , x 1 and x2 and non-negative in 

y 1 and y2 • Hence it has at least four zeros (counted with their proper 

multiplicities) on the closed interval [x0 , x2 J. By the corollary to lemma 

3.1 this implies that ¢1 = ¢2 on I 1• Now if ¢ 1 ~ ¢2 on the whole interval I, 

then ¢ 1 = ¢2 on I 1 n L where Lis a maximal halfline containing I 1 with 

endpoint x4 EI. Then ¢1 vanishes in x4 or becomes infinite and hence so too 

¢2 (or 1vice versa). On I\ L we again have a representation of h of the form 

(3,8) and the argument used there may be repeated to prove that also on the 

set I\ L the functions ¢1 and ¢2 coincide. 

COROLLARY 

if 

If his non-constant non-decreasing on the open interval I and 

Th= her 
n n 

holds for a sequence er + E with er ~ E, then his the restriction to I of 
n n 

a function¢ E ~-

PROOF Either I is unbounded or I is bounded and ern satisfies condition b) 

of proposition 3.2 for n ~ n0 • In either case the upper envelope ~n of h 
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with respect to cr and T does not depend on n for n ~ n0 (by proposition 
n n 

3,2). Let us denote this common upper envelope by$ (which is the restriction 

to I of an element~ oft). 

The set{$= h} is periodic modulo crn for n ~ n0 , and crn + E implies 

that the set is dense in I. Since$ and hare both nbn-decreasing on I, they 

coincide (in their continuity points) on I. 

COROLLARY 2 Under the conditions of proposition 3,2, condition a) and b) 

each imply that either his the restriction to I of an element~ et or that n, 
]. 

there fi~st integers n1 and n2 and elements cr, Te G such that cri = cr 

T, = T J. and Th= hO, 
]. 

PROOF If h = h1 = h2 ) we are done since h1 is the restriction to I of an 

element ~ e t. Hence assume h ~ ii 1. Then ~ e t(cri, Ti) for i = 1, 2 implies 

either~ is affine or t(cr 1, T1) = t(cr2 , T2) as one easily checks. 

In the latter case 

( 3,9) 

and h = $(k.) (see table 3,1) where k.(x) = AX +·c + n. with n. periodic 
]. ]. ]. ]. 

modulo pi for i = 1, 2. Since h, $, A and c do not depend on i, we obtain 

n1 = n2 is periodic modulo p 1 and p2 = tp 1 (by (3,9)). If tis irrational 

then this periodic part vanishes and h = h1• Elset= n2/n 1 for integr~l n1 
and n2 , n !~ periodic modulo p = p 1/n1 = p2/n2 and Th= hO if we set cr 1 = 

= cr, and T = T,. 

In the former case h1 is affine, SEcy' h 1 = YII with ye G. Then 

( 3, 10) i = 1, 2. 

Introduce the lower envelopes ~1 and ~2 in the obvious way. If cr 1 is a 

translation, then ~1 and ii1 are parallel lines; if cr 1 is a multiplication 

with centre c, then ~1 and h1 are each of the form c0(x - c) + c11x - cl and 

intersect in x = c. Since ~1 = ~2 holds for the lower envelopes as well, 

either cr 1 and cr2 are both translations or both multiplications with the same 

centre c. Together with (3.10) this implies (3.9) and the argument proceeds 

as above. 



THEOREM 3,1 Suppose that in addition to the basic situation (1.1) it is 

known that 

1. the support of~ is the closure of an open interval I and 

P{u 1c I}= 1 

2, Eis a condensation point of~. 

then 

v = ¢(~) for some¢€~. 
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PROOF We may assume that the function hon I defined in (3.1) is not con­

stant. There exists an open neighbourhood U of E in G such that his non­
-1 constant on In y I and on I,n yr for each y 1c u. For each cr 1c ~ n U there 

exists by proposition 3,1 a unique T € G such that 

Th= ho. 

From corollary 1 to profosition 3,2 above it follows that his the restric­

tion of some element¢~ ~(o, T). 

COROLLARY If in addition to condition 1 and 2 it is known that 

3, vis non-constant 

4. every neighbourhood of E in~ contains elements o 1 and o2 which do 

not commute i.e. o 1o2 ~ cr2o 1, then 

V = y~ for some y € G, and 

-1 
<\n a.1n _., o 

and I n crI is non-empty implies 

' PROOF Since¢€ ~(cr 1, T1) and¢€ ~(cr2 , T2 ) and cr 1 and o2 do not commute, 

¢ is affine, i.e.¢= y for some y € G. Hence his non-constant on In crI 

and on I n o- 1I whenever In oI is non-empty. By proposition 3.1 the sequence 
-1 8~81 converges to an element T € G and Th= hcr. Setting h = y gives the 

desir~d result. 
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THEOREM 3,2 Suppose that in addition to the basic situation (1,1) it is 

known that the support of u is R, Then there exists a unique element g € M 
M -

such that!= g(~) and, unless! is degenerate, for each cr € 6 there exists 

a unique T € G such that 

(3.11) Tg = gO 

(3.12) 

PROOF Combine theorem 2,1, theorem 2.2 and proposition 3.1. 

In the case that! is non-degenerate, i.e. g is non-constant, we can 

give a complete classification of the possible situations which can occur 

in the case that the support of u is R. To this end we introduce the closed 

subgroup Hof G generated by 6 = 6(a). Observe that case 4 occurs if 6 con­

tains two elements which do not commute, else His contained in a one para­

meter subg~oup {crt It€ R} for some cr ~£.The classification is given in 

table 3,2 on page 39, 

PROOF of the classification in table 3,2. 

Suppose cri E 6 = 6(a). By proposition 3,1 there exists 'i E 6(S) such 

that (3.11) and (3.12). By proposition 3,2 the upper and lower envelopes g 

and~ are independent of the choice of cri. By corollary 2 to this proposit­

ion either g = g E ~(cr., ,.) for all pairs (cr., ,.) or there exist cr,, and 

integers n(i) such tha~ cr.i= crn(i), ,. = ,n(iJ an~ (3.11) holds, 
i i 

Hence if 6 contains two elements cr 1 and cr2 which do not commute then 

g E ~(cr 1, , 1) n ~(cr2 , , 2 ) and by checking the different possibilities it is 

clear that g is an affine function y and TY= ycr. This proves 4. 
Else 6 c {crt I t € R} for some cr ~£.Since ~(crt, ,t) = ~(cr, T) for 

t ~ O, we may write cr = cr~(i) (if a. ~£)and 
i i 

f 11 ~ d h t(i) .. d d t f. ( = or a i an ence 'i =Tis in epen en o i g Tg with T ~£implies 

g € MO, see exercise 1.7). This proves 3, 2 and\, 

In chapter 4 we shall see that indeed any non-constant non-decreasing 

function g is possible if 6 ={£}whatever the sequence (an). 
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TABLE 3,2 

The possible relations y ~ g(~), with g € M, between the limit variables 

~ and yin the basic situation (1.1) under the condition that the support of 

u is R and that v is non-constant. 

His the closed subgroup of G generated by t, and k + 00 , 
n 

1. H = {E} (degenerate case) 

implies 

b. g may be an arbitrary non-constant non-decreasing function on R. 

2. H = {crk I k integral} for some cr ~ E (discrete case) 

There exist's T € G such that 

-1 k . a 0 -1 ~ ~k a. ex. ci. + a implies µ µ ~ , 
Kn ln kn ln 

b, g satisfies the functional equation 

Tg = gO, 

3, H = {at I t € R} for some a~ E 

There exists T € G such that 

-1 t implies -1 ,t a. C\ ci. + a !3k/ln 
➔ 

n 1n 
b, g € ~(O, T), 

4. t contains two elements which do not commute 

There exists y € G such that 

a. ~Cl.i: + a implies !3kn!3~ + ycry- 1 

b. g = y. 
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4 Existence theorems 

This chapter is devoted almost entirely to the construction (for given 

sequence (an) in G and given g EM) of a sequence (Sn) in G and an increas­

ing homeomorphism f on R such that 

( 4. 1) S fa - 1 + g in M. 
n n 

We assume here that g lives on an open interval I (i.e. I is the interior 

of the projection of g on the x-axis), which may be unbounded, and that crI 

and I are disjoint for all cr EA, cr ~ E. 

The proofs of proposition 4.1 and 4.3 are rather involved. In order to 

ease the reading, the proofs have been cut up into several parts, A, B, ••. , 

most of which consist of a statement, followed by a proof of this statement. 

Reading the statements A, B, •.• should give the reader a bird's eye view 

of the proof, 

Before entering on the proof of theorem 4.1, or rather its analytic 

counterpart, proposition 4.3, let us consider a simple particular case, 

Let~ be a continuous, strictly increasing, bounded function on the 

open interval I= (O, 1) and let a 1,a2 , ••• be a sequence of translations, 

a X = X - t , 
n n 

If a + 00 , then It I+ 00 and the sequence oft 's may be indexed anew n • n n 
to be non-decreasing 

where the index now runs through an infinite set of consecutive integers. 

We shall assume that the index set is the set of all integers and that 

tk+1 - tk >; for all k. 

Note that A consists of translations crx = x + s wheres is limit point 

of the double sequence (tk - tm). If In crI is empty for all cr EA\ {s}, 

then cr EA, crx = x + s withs~ O, implies Isl~ 1. Hence 

liminf(tk+ 1 - tk) ~ 1. 

Suppose first tk+1 - tk ~ 1 for all k. Then the intervals 

Jk: = a;1I = (tk, 1 + tk) are di~joint. We define f 0 on UJk by 

( 4.2) 
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where we choose the constants ck such that f0 may be extended to a continu­

ous strictly increasing function f on R, which is a homeomorphism since 

lim f(x) = ® = - lim f(x). On setting aky = y - ck we obtain 
x+co r+-"" 

Thus we have constructed for the given function$ and the given sequence 

(°it) a sequence (ak) and a function f such that 

In general we only know that liminf(tk+1 - tk) ~ 1. 

'\1I = (tk, 1 + tk) need not be disjoint. However, there 

~ c I such that~+ I and such that the intervals Jk: 

joint. The construction off then proceeds as above, 

The intervals 

exist subintervals 
-1 . =°it~ are dis-

If instead of a continuous strictly increasing bounded function$ on I, 

we want f to satisfy (4.1) where g € M lives on I, then we first construct 

Ik + I such that the inteX'V'als Jk: = '\1Ik are disjoint, and continuous 

strictly increasing·bounded functions wk: Ik + R such that $k + g, and 

( 4. 3) +® 

As in (4.2) we define f 0 on UJn by 

extend f 0 to a homeomorphism f on Rand observe that for aky = y - ck we 

obtain for x €I, lkl ~ m, 
m 

This together with (4.3) implies ~f°k1 +gin M. 
This construction can also readily be adapted to the case that I is an 

unbounded interval. 

However, if we-do not restrict the a to lie in a one parameter sub­
n 

group of G, the construction becomes more involved. In the case sketched 
. . _, 

above it was obvious that we could replace the sequence C\ I by a sequence 
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Jk = a;1rk of disjoint intervals such that Ik +I.In the general case we 

need the following proposition, 

PROPOSITION 4.1 Let A be a set of bounded open intervals I, such that 

(4.4) 
I I 1 n r2 I 

+ 0 
11 1 I + lr2 1 

(I.e. for any o > O there are only finitely many pairs (I 1, r 2 ) with r 1 ~ r 2 

for which the quotient above exceeds o,) Then for each interval I there 

exists an open interval r* such that 

r* c r 

( 4.6) 

( 4. 7) * * If r 1 n r 2 is non empty then either r; c r; or 

PROOF The proof consists of eight parts. 

A. A is countable 

Relation (4.4) implies that the set of pairs (I, J') with I~ J' for 

which II n J' I > O,is countable. On A we define the equivalence relation R 

by 

IRJ' if there exist r O = 

non-empty for i = 1, .•• ,n. 

= J' in A such that I. 1 n r. is 
l.- ]. 

For each I€ A the equivalence class R(I) is a countable subset of A. 

If I and J' are not equivalent the open intervals UR(I) and UR(J') are dis­

joint. Hence there are only countably many equivalence classes. 

B. We may assume that no two intervals in A have the same length. 

We reduce each interval I to a subinterval I' such that II' I/III+ 

and such that these new intervals all have different lengths. Relation 

(4.4) holds for the set of intervals I' and if (4.5) and (4.6) hold for I' 

instead of I, they also hold for I. 
' 
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C. Set 

( 4.8) · P ( I ) = sup { I I n J I / I I I I I J I < I I I }. 

Then p(I) ~ 0 by (4,4). 

D. We 4 may assume that p(I) < a for all I e A. 

Set I*=¢ whenever p(I) ~ a. 

E. For each interval (1, r) = I e A define 

A= [l, 1 + p}.] E = [r - PA, r] 

B = [l + PA, 1 + 2pA] D = [r - 2PA, r - PA] 

C = (1 + 2PA, r - 2pA) 

where A= III= r - 1 and p = p(I). C is called the core of the interval I. 

Then the following assertion holds (for the proof see below under G and H). 

For each interval I there exists x = x(I) in A= A(I) and y = y(I) in 

E such that neither lies in the core C(J) of any interval J shorter than I. 

F. Define X(I) = {x(J), y(J) I J € A and IJI ~ III}, Because of the 

assertion above the core C(I) is disjoint from X(I). Let I* be the largest 

open interval which contains C,and is disjoint from X. Then 

cc I* c (x(I), y(I)) c I 

which proves (4.5) and (4.6). 
* * * If II 1 1 < II2 1 and u e I 1 n I 2 , then I 1 is the largest interval which 

contains u and is disjoint from X(I 1 ) and I; is the largest interval which 

* * contains u and is disjoint from X(I2 ). Since X(I2) c X(I 1) we have I 1 c I 2 
which proves (4.7). Note that we have even proved that 

G, For any x € R the set {III I x €I€ A} is a discrete subset of (0, 00 ). 
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Indeed, suppose I, I', I" € A, x € I n I' n I" and ¾A < A11 < A1 < A, 

Then either x 
0
+ ¾ or x - i lies in two of there intervals, say J 1 and J 2 • 

We assume IJ 1 1 < IJ2 I, Then by D. 

which contradicts the definition of p(J2 ). 

H. Proof of assertion E 

Suppose r0 EA. Let x0 be the left endpoint of r0 . We shall construct 

a point x € A0 such that x ~ C(I) whenever III s II0 1. If x0 already has 

this property we define x: = x0 • Else we choose r 1 € A of maximal length 

(see G) such that II 1 I < lr0 I and x0 E B1 u c1 u D1 • Let x1 be the right 

endpoint of r 1 • Then 

1) E, c A , 0 
2) if I€ A and II 1 I< III s II0 1 then r 1 and C = C(I) are disjoint. 

To prove 1) note that (x0 , x 1) c r0 n r 1 , hence x 1 - x0 s >.0p0 by 

definition of p0 • Similarly if IE A is such that lr 1 I< JII s II0 1 and r 1 

meets C then by definition of p(I) we have r1 c Bu Cu D and hence 

x0 €Bu Cu D contradicting the maximality of lr 1 1. 

Now we recursively choose xn and In such that 

(4.10) 

(4.11) if I € A 
are disjoint. 

and 1In+1 I < II I $ II I, 
n 

then and C = C(I) 

This construction either can be repeated indefinitely, or there exists 

an integer n such that x ~ C for any interval I for which III< II I. n n 
In the former case G and (4.10) imply that II I+ 0. The sequence 

n 
(4.10) determines a unique point x E A0 • Now suppose x €I€ A, III< II0 1. 
There exists n ~ 0 such that 
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Then In+1 is disjoint from C by (4.11) and since x E In+1 this implies that 

X' C. 
The proof in the latter case is similar. Q.E.D. 

Note that the set A*= {I*} also satisfies (4.4) and that we may re-
• place (4.6) by the stronger result 

II\ I*I/III s 4p(I) 

where p(I) is defined in (4.8). 

~EFINITION 4.1 Suppose that A has the properties (4.4) and (4.7). An 

element IE A is maximal if I c J EA implies J =I.If I is not maximal, 

then it has a successor I' EA, that is 

IC I' 

I~ I' 

I c Jc I' with J EA implies J = I or J = I'. 

This follows readily from (4.4). The successor is unique because of (4.7). 

It is possible that each element IE A is contained in a maximal 

element. Else there exist~ a sequence I 1,I2 , ••• such that In+1 is the suc­

cessor of In for n = 1,2, ••• If J 1,J2 , ••. is another such sequence then 

either UI and UJ are disjoint or the symmetric difference of the sets 
n n 

{I1,I2, ••• } and {J1,J2 , ••• } is finite. (Indeed Ik intersects Jm implies 

that the one lies in the other, say Ik c Jm. Then I 1 = Jm for some 1 ~ k 

and hence I 1+n = Jm+n for n = 1,2, ••• ) Also 1Inl/1In+11 s Pn+1 = p(In+ 1) + O. 

Hence UI is unbounded. It follows hat A does not contain three mutually n 
disjoint successor sequences. 

PROPOSITION 4.2 Let A* be a collection of bounded open intervals J* such 

that 

(4.7) 

(4.12) 

l..f J*1 n J*2 · J* J* J* J* is non-empty then 1 c 2 or 2 c 2 

p(J*) + O, where 
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(4.13) 

Then each J* contains an open interval J such that A, the set of inter­

vals J, satisfies (4.7), (4.12), 

(4.14) 

and has the following property 

(4.15) either each element J € A is contained in a maximal element, .. 
or there exists a successor sequenc~ Jn = (an• bn) such that 

UJ = R n 
(4.15a) 

(4.15b) an+ 1 < an - IJnl and bn+l > bn + I.Jhl, 

PROOF If A* contains no successor sequence we are done (choose A:= A* 

and I:= r*). Else A* contains at most two disjoint successor sequences, 

say r* = (en*• d*) and J*, We define I = (c , n) as follows for n = 1,2, .•. n n n n n -n 

I1 = * 
I1 

In+1 
* if * Jr* I = In+1 cn+1 < C -n n 

(dn• * if * = dn+1) cn+1 ~ C n 
* = ( cn+1' en) else 

and J similarly. Then (4.7) remains valid and n 

* !In+1 \ In+1 1 

* Jin+1 I 

and * 
dn+1 1r:1 > d + n 

Jr* I n . 

Hence (4.14) holds. (We set J = J* for all other elements of A*.) 
* ( . Now suppose In~ In for n ~ nO. This is the 0 case if ur* is a half line, 

n * 
sa;y (a, 00 ), for then the left endpoints of r* converge 

n 
~en the intervals I ,I +l'''' are disjoint and I is 

* nO *nO . * *. . n 
(If I c J, then I c J = J since J c I implies II I n n n n 

to a and I I I + 00 • ) 
n 

maximal for n ~ nO• 
* 1 * ~ !J I < 4 1Inl for 

large n. This contra¥-cts p(In) + O.) Let K1,K2 , ... be a successor sequence 

in A. Then Kn is not maximal and hence Kn, {I 1,r2 , ••. , J 1,J2 , ... } for 

* * n ~ n2 . Then Kn= Kn for n ~ n2 and Kn' n ~ n2 , is a new disjoint successor 

sequence in A*. This contradiction shows that A does not contain a successor 
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If I n 
Ik =(a, 

n n 
( 4. 15b). 

= r: infintely often,*then Uin = ur: =Rand the subsequence 

bn) for which I¾= Ikn is a successor sequence which satisfies 

THEOREM 4.1 Suppose ax + u in distribution where a is a sequence in G n-n n 
which diverges to 00 • If 6 = {E} then for each random variable v there exists 

an increasing homeomorphism f on Rand a sequence of positive affine trans­

formations Sn such that 8 f(x) + v in distribution. n -n 

PROOF The theorem follows from proposition 4.3 below if we choose g such 
M that ;'.: = g(~). 

PROPOSITION 4,3 Suppose g € M lives on I. (That is, I is the largest open 

interval on which g is finite.) Let a be a sequence in G which diverges to 
n 

00 such that In crr is empty for each cr € 6, cr ~ E. Then there exists an 

increasing homeomorphism f on Rand a sequence 8 in G such that 
n 

(4.16) 8 fa- 1 .+ g in M. 
n n 

The set of such homeomorphisms f is dense in M. 

PROOF The proof consists of seven parts. The actual construction of the 

homeomorphism occurs in part F. We shall first construct a sequence of sub-

intervals I of I which converge to I (every point x € I 
n 

n ~ n(x)) such that the associated sequence of intervals J = n 

lies in I for 
-1 n 

a I has n n 
property ( 4. 4) ( they are "asymptotically disjoint"). This is done in B 

bounded I and in C for unbounded I. 

for 

A. Let us call a sequence y uniformly discrete if there exists a neigh­~, . . 
bourhood U of E such that ynym € U implies m = n. We show here that we may 

assume an to be uniformly discrete. 

Let Ube a symmetric compact neighbourhood of E (i.e. y € U implies 
-1 y € U) such that yr intersects I for ally€ U. Suppose there exist sub-

sequences kn and ln such that 

(Indeed since U is compact it 

-1 -1 ak a 7 € U for n = 1,2, ..• Then ak a1 + E, 
·'11 -n n n. . 

suffices to prove that Eis the only limit 
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point. Let a be a limit point. Then a£ A and a£ U, hence aI n I non-empty, 

implies a = e:. ) 

Define the sequence yn by 

Y1 = a, 

if 
_, 

£ u with k < n minimal Yn = yk anyk 

= Cl, if a Y-1 ( u fork= 1 , ••• ,1:1-1 • n n k 

The argument above proves that any;1 + e:. Hence (4.16) is equivalent to 

0 ..,._,-i in M ..,n ... 'n + g 

and this remains true if we replace (y) by the subsequence of all distinct 
n 

terms. By construction this subsequence is uniformly discrete (with respect 

to the compact neighbourhood U). 

B. 
. _, 

If I is bounded, then setting Jn = an I 

IJ . n J I 
( 4. 17) n m 

lim IJ I+ IJ I = 0 
n;i!m n m 

as we prove below. 

1 Suppose o £ (O, 2) and 

(4.18) II n a II~ o( III+ la II). 
n n 

The set V of a£ G which satisfy (4.18) is a compact neighbourhood of e:. 

Hence a has a limit point a which satisfies (4.18) and lies in A, This n 
means that a= e:. Since we assume a to be uniformly discrete, we must have 

n 
kn= ln for n ~ n0• This proves (4.17), 

In the construction off we shall need the relation 
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IJ n J I n m 
IJ I+ IJ I IInl ➔ 0 for n ~ m. 

n m 

where I ➔ I.This follows from (4.17) for bounded intervals I. For unbounded 
n 

intervals we have to refine our construction of the sequence Jn. This we 

shall do in part C. 

C. If I is unbounded there exists a sequence of bounded open subintervals 

r1 c r 2 c ••• such that I= urn and such that 

where 

lim n(n, m) = O 
n~m 

II I+ II I n m 
n(n, m) : = IJn n Jml IJ I + IJ I , 

n m 
J n 

-1 = a. I . n n 

Indeed let I(1),I(2), ... be an increasing sequence of open intervals 

such that I= uI(n) and II(n)I = n, Define 

ia.~ 1I(k) n a.;1 I(k) I 

la.- 1I(k) I + la.- 1I(k) I 
n m 

Then B implies that for fixed k 

lim nk(n, m) = o. 
n~m 

Choose~ such that 

• 21 I(k) I, 

for max (n, m) ~ nk, n ~ m. 

We assume that the sequence n 1,n2, ••• is strictly increasing and define 

Suppose m < n with nk ~ n < nk+,· Then 

and hence 
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which implies that 

D. -1 There exists a collection A of open intervals J = a I such that n n n 

( 4. 19) 

(4.20) 

( 4. 21) 

I c I and I + I 
n n 

J n J non-empty implies n m 

where p is defined by n 

or J c J m n 

( 4. 22) p = max { IJ I/ IJ I I J c J and J :it J } • and n m nm nm n 

(4.23) either each J e A is contained in a maximal element of A or we 

have a succes:or sequence J(n) = (a b) in A such that n• n 
(4.23a) 

(4.23b) 

u/n) = B 

b > b + 1/n) I 
• n+1 n 

Note that (4.21) is a stronger version of (4.12). 

n = 1,2, ••• 

In parts Band C we have constructed a collection AO of intervals 

Jo= a-1r0 such that (4.19) holds and n n n 

1r0 I + 1r0 I 
() • 0 On m 4.24 lim IJ n J I O · 0 = o. 

n:itm n m IJ I+ IJ I 
n m 

As in the proof of proposition 4.1 (part B) we may assume that the intervals 
0 0 0 Jn have different lengths. Define pn = p{Jn) as in (4.8). Then (4.24) implies 

and hence certainly 
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For the subintervals J* c JO constructed in proposition 4.1 we have by n n 
( 4.9) that 

( 4. 25) 
IJo \ J*I 

n n 

IJol 
n 

and hence IIO \ r*I + O. The collection J* satisfies (4.19) up to (4.22). n n n 
Now apply proposition 4.2 to obtain the desired collection A of inter-

vals J. (Convergence in (4.19) follows from (4.14) and the analogous form n 
of inequality (4.25),) 

E. There exists a sequence of strictly increasing continuous functions Wn 

defined on I such that n 

( 4. 26) 

(4.27) 

Wn + g weakly on I 

inf wn(x) + - oo, 

XE:! 
n 

the increase of w a over any subinterval J c J, m ~ n, is n n m n 
less then one half of the total increase of wnan over Jn. 

F. The construction off 

Recall that we constructed fin the introduction to the chapter by 

setting 

-1 f = 13 w a n n n 

where the 13 were chosen so as to ensure that f should be a homeomorphism. 
n 

Since the intervals J are no longer disjoint in the general situation, we n 
have to be more careful. We shall define fas the limit of a sequence fn, 

There are two distinct cases to consider according to whether there 

exists a successor sequence in A or not. 

a. First assume that each interval in A is contained in a maximal interval 

in A. We enumerate the intervals in A such that 
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i.e. either Jn is maximal or it has a successor Jk with k < n. 

Let f 0 be an arbitrary increasing homeomorphism of R. If the homeo­

morphisms f 1, ••• ,fn_1 on R have been constructed, we define 

X ~ J n 

where an is the unique element of G such that fn is well defined in the end­

points of Jn, This is possible since fn-i is strictly increasing. The 

function fn is a homeomorphism on R. 

b, Now assume not every interval J € A is contained in a maximal interval, 

Then there exists a successor sequence Jn = (an, bn) € A which satisfies 

(4.23a/b). 

Define 

If h1, ••• ,hm-i have been defined, we define hm on Jm by 

X € Jm-1 

X € J \ J 1 m m-

where am is the unique element in G such that hm is well defined in the end­

points of Jm_,. 

Clearly hn(x) = hm(x) on Jm for n > m and it follows that hn converges 

to a strictly increasing continuous function hon R. 

The function h need not be a homeomorphism since it may be bounded. 

However, we have some freedom in defining the sequence w, which we shall 
n 

now use to ensure that h is a homeomorphism. 

We alter Wm into a continuous function w: such that 

* Wm+iam+i is affine on the interval Ji:i = ( am - IJm I, bm + IJm I) 

* Wm+iam+i coincides with Wm+iam+i outside Ji:i, 

Note that J' c J +i by (4.23b) and IJ' I= 3IJ I and hence (4.26) holds and m m m m 
IJi:il, 1Im+1 1, IJm+il-1 + 0 by (4.21), This implies 
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* 
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Finally since hm+l is :ffine on J~ we 

= (c - d, c + 2d) if h (J) = (c, c + m m 

find that 

d), Hence 
h;+1(Jm+1) ~ h:+1(J~) = 
h = lim h* is a homeomorph­

m 
ism. 

In A\ {J1,J2 , •.. } every interval is contained in a maximal interval 

and hence we can use the construction of part a) starting with f 0 = h (which 

may break off after a finite number of steps, if A\ {J 1,J2 , ••• } is finite). 

We shall now prove that the countable collection of functions 

h 1,h2 , ••• ,f0,f1, ••• converges. It suffices to prove that fn converges. 

Define the set 

E = A u {J € A I I JI < l}. 
n n 

The complement of Eis dense in R. It contains the endpoints of all inter­

vals J e: A, 

If x 4 Ethen the sequence f (x) is constant for n ~ n(x). This proves 
n 

that f converges on a dense set, that the limit f is strictly increasing 
n 

and that sup f(x) = - inf f(x) = 00 since fn(x) = f 0(x) in the endpoints of 

maximal intervals of A\ {successor sequence}. 

Condition (4.27) ensures that f is continuous, (If J 1 ~ J 2 ~ J 3 ~ 

then the increase off over Jn+l is less than one half of the increase off 

JLent.)f* * 
be a given homeomorphism. We may ensure that f is close to f 

over 

on a given bounded interval by altering a finite number of the functions lj!n. 

This shows that the set of such homeomorphisms fas constructed above is 

dense in M. 

G. Convergence of S fa-1 
n n 

Let x e: I be a continuity point of g, Considers : = S fa- 1 on I. By _1 n n n £_ 

construction off we have lj!n = Snfnan on In, Also f = fn for ally e: Jn 

which do not lie in an interval J e: A having Jn as successor. Hence sn(x) = 

= 1jJ (x) unless x e: a J = (x' x") say, where J e: A has successor J • In that n n n• 1 n n 
casex"-x'= IJI.II I.IJ 1- -+O.Hencex'-+xands(x')=ljJ(xn')-+ n n n n m n n n 
-+ g(x) by definition of the sequence 1jJ. (Set x' = x if x 4 a J for some J n n n 
with successor J .) Thus 1jJ -+ g weakly on I implies sn-+ g weakly on I. n n 



Since~ = W in the endpoints of I condition (4.26) implies that _1n n n 1 ,a fa I+ OO outside I and hence a fa- +gin M. n n n n 
Here ends the proof of proposition 4.3. 

One might conclude from theorem 4.1 and the theory of the previous 

chapter that the set 6 contains complete information on the class of g € M 

which can occur in the relation!~ g(~) for appropriately chosen f €Mand 

sequence (Bn) in G, 

This is not the case. If anx = x + n, then 

6 = {cr €GI crx = x + k with k integral}. The possible limit functions, by 

table 3, 1, are 

k(x) =AX+ c + ~(x) 

with~ periodic modulo 1, and 

-k(x) 
- e • 

For the sequence a above they are realized as limit of the sequence a fan_, n n 
with f = k or f = h, and a chosen appropriately. The example below shows 

1 n 
that there exist sequences (a) on the other hand, having the same set 6, n 
such that the functions h 1 and h2 are not possible as the limit of a 

sequence B fa-1 for any f €Mand any sequence (B) in G, n n n 

EXAMPLE of a sequence (a ) such that n 

(4.28) 6 = {cr €GI crx = x + k, k integral}, 

and for which there exist no f € M and no sequence (Bn) in G such that 
a -1 • ( X ~nfan +$with $ x) = e. 

Consider the set 

{ank I k integral, lkl :s: (n!) 2 , n = 1,2, ... } 

where ankx: = n!x - k. Observe that ank + 00 and that ank + 00 implies n + 00 • 

Now consider the quotient 
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If a sequence of such quotients converges to a e G, and at the same time the 

numerator and denominator diverge to co, then ox = x + j for some integer j, 

Hence ( 4.28), 
-1 Suppose an1la.nk + <I> weakly on R. Then 

f(a.~2) - f(a.~~1) +<1>(2) - (j>(1) 

f(a.~1) - f(a.~O) (j>(1) - (j>(O) 

Hence for n ~ nO and all k we have 

f( ~) - f( 1 ; k) 
n! n. 

--------------- ~ 2. 
f( 1 ; k) - f( ~ ) 

n. . n. 

= e. 

Let xO < x1 be continuity pointa off, Fix n ~ nO and add the nominators and 

the denumerators fork= kO,kO+1, ••• ,k1, where ki is the integral part of 

n!xi for i = O, 1, Then 

For n +co this fraction converges to 

f(x1) - f(xO) 
-~---..a....= 1. 

Hence 1 ~ 2, Contradiction, 
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5 Domains of attraction I 

Up to now we have been primarily concerned with determining the possible 

limit functions~ if it is given that the sequence 8 ru-1 converges weakly on 
n n 

an interval I. One can also ask the following question. 

Given a function~ and an interval I, determine the class of non-decreasing 

functions f such that 8 fa- 1 +~weakly on I. 
n n 

We do not propose to give a complete answer to this question. We shall 

only make some general remarks on the subject and give a number of examples. 

Let us start with some examples. Let~= Ebe the identity function on 

R. Suppose f is a strictly increasing function on R which is affine on the 
2 2 -1 2 intervals (n - 1, n + 1), for n = 1,2, ••• If we choose a x = x + n, then 

-1 . . -1 n 
fa is affine on (-1, 1) for n = 1,2, ••. and 8 fa +Eon (-1, 1) for a 

n 1n n -1 2 1 
suitably chosen sequence($), If we choose a- x = n x + n, then fa~ is n 1 n 
affine on (-n, n) for n = 1,2, .•• and 8 fa- +Eon R for a suitably chosen 

n n 
sequence($). Similarly 8 fa- 1 + E for properly chosen sequences (an) and n n n 
(8) if f is affine on any sequence of non-empty open intervals 

n 
(x - o, x + o ), .if f has a positive derivative in a sequence of points n n n n 
xn, or even if f has a positive derivative in only one point xO. On the other 

hand also the step function f(x) = [x], the integral part of x, tends to E 

with suitably chosen norming sequences (a) and (8 ), say ax= 8 x = n-1x. n n n n 
In order to obtain interesting results, we reformulate the problem. For 

a given non-decreasing function hon I and a given sequence (a) in G determ­
n 

ine all non-decreasing functions f and all sequences (Sn) in G such that 

8 fa- 1 + h weakly on I. 
n n 

If f, h, I and (a) are known in relation (5,1), then finding the sequence 
n 

(Sn) for this given f is no problem. Indeed, suppose (fn) is a sequence of 

non-decreasing functions and 8 f converges weakly to a non-constant limit h 
n n 

on I. Let xO, x1 EI be fixed continuity points of h such that h(xO) < h(x1). 

Then 

fn(x) - fn(xo) 8nfn(x) - 8nfn(xo) h(x) - h(xO) 
(5,2) = + 

fn ( x1) - fn(xo) 8nfn(x1) - 8nfn(xo) h(x1) - h(¾) 

weakly on I. Hence instead of (8) we may use the norming sequence ( -18*) 
n y n 



59 

where 

yY 
y - h(x0 ) 

=------'--
y - fn (xo) 

=------'-- for n = 1,2, •.• 
h(x,) - h(x0 ) fn(x,) - fn(x0 ) 

By Khinchine's theorem on the convergence of types, see theorem 14, 1, it 
-la*. . a follows that y Pn is asymptotic to Pn• 

DEFINITION 5.1 Suppose g €Mand (a) is a sequence in G. Then f € M lies 
n 

in the domain of attraction of g for the sequence (a) and we write f € D = 
n 

= D(g, a) if there exists a sequence (f3) in G such that 
n 

f3 fa- 1 -+- g. 
n n 

With this notation we may formulate the main result of the previous 

chapter, proposition 4.4, as follows. If g €Mand a -+- oo such that~={£}, 
n 

then D(g, a) is dense in the set of all increasing homeomorphisms of Ron R. 

We shall now give sufficient conditions for f to lie in the domain of 

attraction of£, the identity on R, for various classes of sequences (an). 

In the examples below we shall use the following notation, 

f is a non-decreasing function defined on R 

(a) is a sequence in G and a -+- 00 (hence n n 

a~1x = anx + bn' hence anx = a~ 1(x - bn) 

D=D(E,a), 

1. If an-+- 00 and f(x) - xis bounded, then f € D. 

PROOF 

f(anx + bn) - b a X + cn(x) n n = -+- X 

a a n n 

since cn(x) is bounded (in x and n). 

2. If an~ q > 0 for all n and f(x) = x + o(1) for lxl-+- 00 , then f € D, 
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PROOF Set d(x) : = f(x} - x. The function dis bounded, say ld(x)I s M for 

all x, and for each£> 0 there exists L > 0 such that ld(x)I <£for 

lxl ~ L. For x fixed we have 

f(a x + b ) - b n n n d(a x + b ) _ x = __ n _____ n_ 

a 
n 

The right hand side tends to zero since a + lb I+®· (For sufficiently 
n Xj-

1 ar gen either a ~ £- 1M, or else lb I~ L + £- Mlxl and then lax+ b I~ n n n n 
~ L.) 

3, If a + 0 and f is differentiable, f' is positive and log f' is uni­n 
formly continuous, then f € D. 

PROOF 

f(a x + b) - f(b) a xf'(~) n n n n n 

a f'(b ) n n 

= 
a f 1 (b ) 
n n 

where~ lies between b and b +ax. Since log f' is uniformly continuous, n - n n n 
for each£> 0 there exists o >Osuch that 

I~ - b I< o implies n n 

f' (~ ) 
1--n- - 1 I < £. 

f 1 (b ) 
n 

For fixed x the condition I~ - b I< o is satisfied for n ~ n0 since a + O. n n n 

4. If log a is bounded, b +®,and if f satisfies 
n n 

(5•3) f(x + t) - f(t) + f t + ® 
f(1 + t) - f(t) x or • 

then f € D. 

REMARK The condition (5,3) has been extensively studied in de Haan [1970, 
C 

p. 31 and def. 1.4.1] in the multiplicative version. See also chapter 12 

below. 

PROOF The relation (5,3) is uniform on bounded x~intervals, the limit 

function being continuous. Hence it implies 
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f(a x + b) - f(b) n n n 
_f_,.(-a=-+-b----=):=-----_-f...,(,...b~) ➔ x as n ➔ co. 

n n n 

5, If f is differentiable and the derivative f' is positive and continuous 

and converges to a positive constant pas !xi ➔ 00 , then f € D(e:, a) for every 

sequence (a) in G which diverges to co, 
n 

PROOF It suffices to prove that each subsequence of (a) contains a sub-
n 

subsequence, say('\), such that Skfa;:1 ➔ e:. (See remark after proposition 

2.2.) If there is a subsubsequence with~ ➔ O, then convergence follows 

from example 3, above. Else there is a subsubsequence with~~ q > 0 and 

then we refine the argument used in the proof in example 2. above, as fol­

lows. Since f'(x) tends top> 0 for !xi ➔ co, the set {If' - pl> e:} is 

bounded for each e: > O, and hence for s < t we have 

t 
f f'(x)dx ~ p(t - s) for max ( It!, Isl) ➔ co, 

s 

This implies that 

6. 
f(x) 

f(~x + bk) - f(bk) 

p~ 

The conditions in 5, above 

= -x loglxl 1 1 on (3, 3) and 

➔ x. 

are sufficient but not necessary. 

extend this function to the whole 

Consider 

real line 
1 so as to satisfy the conditions of 5, for Ix! > 4· Then f € D(e:, a) for 

every sequence (an) in G for which an ➔ co. 

PROOF In view of 5. we need only consider 

going over on subsubsequences we may assume 

case we may even assume that bn 

~ = a- 1x - c) or that lb a- 1 I anx n n n 
Consider the quotient 

Q (x) 
n 

= ca n 
➔ co, 

since 

the case that an ➔ O, bn ➔ O. By 

that either b ~ ca (in which 
n n~ 

an is asymptotic to an where 

If c = O, then bn = 0 and Qn(x) ➔ x. Else consider 

ax+ b 
n n 

b n 

logia x + b I ___ n ___ n __ 1 = 

loglb I 
n 
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= ( 1 + .2£)( 1 + o( 1)) - 1 = .2£ + o( 1) if b = can, C a! 0 
C C n 

a X a X a X 

lb a- 1 I = ( 1 + bn )( 1 + o(b n ) ) n ( 1 + o( 1)) if + 00, =--b n n n n n 

Hence Q (x), which is the quotient of two such terms converges to x. n 

7. Let f be a non-decreasing function defined on an open neighbourhood of 

[O, 1]. Suppose that f has a strictly positive continuous derivative on 

I= (O, 1) and that d0 = lim f'(x) and d1 = lim f'(x) exist and are posit-
x+O+ x:+1-0 ive. Define 

A= {a€ GI aI ~ I}. 

f'(an~n + bn) 

f'(bn) 
+ X 

where~ € I and f'(b ) is interpreted as the left or right hand derivative 
n n 

if b = 1 orb = o. n n 
* If f is continuous in 0 and also the left hand derivative say do 

exists in o, then for the sequence a with ax= nx, we find n n 

-1 
f(O) + r for X > 0 

f3 f(a- 1x) = f(n x) -
n n -1 * -1 for X < o. n d0 dodo X 

Hence we have convergence for all x € R for every sequence an€ A with 

a + 00 if f is also differentiable in the endpoints of I. 
n 

off 

If f is not differentiable in O nor in 1, then we can choose (a) with 
-1 n 

a € A such that an+lan + E, liminf bn = O and limsup bn = 1, In this case 
n -1 

f3nfan x + x only for x € [O, 1]. 
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6 Continuation theorems 

In this chapter we introduce the new condition that (an+1a~1) is 

bounded. In a sense this is a much more stringent condition on the sequence 

(an) then any condition on~ can be. (Even if~= G, the sequence (an) may 

have very large gaps. Take for instance a2n = Yn and a2n+1 = anyn with (an) 

dense in G. Then~= G whatever the sequence (y ).) n 
Under certain circumstances this new condition on the sequence (an) 

has the consequence that 

S fa- 1 ➔ ~ on I implies 
n n 

on I* 

where I* is an unbounded interval. 

The most simple case is where an is a translation for each n, say 

anx = x + tn with (tn+1 - tn) bounded, Then~ is a set of translations. Set 

s O = inf {s > O I a€~ and ax= x + s} 

and let I be an open interval of length III> sO• We are then able to prove 

the following. If 

S fa- 1 ➔ ~ weakly on I 
n n 

with~€~.~ non-constant on I, then 

S fa- 1 ➔ ~ weakly on EL 
n n 

A condition like "(a a- 1) is bounded" obviously is necessary in order n+1 n 
to prove such a continuation theorem. That this condition is not sufficient 

is shown in the last lines of example 7, of the previous chapter (where 
-1 ) an+1an even converges to E. 

Therefore we assume in this chapter that the sequence (an) in G satis­

fies the following three conditions. 

( 6. 1) 

(6.2) 

a + oo 
n 

-1 
(an+1an) is bounded 
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(6,3) ~ is contained in a one-parameter subgroup 

G(y) = {yt It ER} 

with y E G, and obviously y ~ E. 

This chapter may serve as an introduction to the second part of the 

book, chapters 7 - 13, There we shall replace (6.2) by the stronger condit­

ion 

(6.4) 

and obtain similar results, even though we drop the condition that Snfa~ 1 

converges weakly on an open interval. 

DEFINITION 6.1 Let I be an open interval and y E G. They-invariant extens­

ion of I is the smallest open interval J with the properties 

I CJ 

yJ = J. 

REMARK This terminology is only used in this chapter. Clearly J exists and 

J = I if y = E 

J = R if y is a non-trivial translation 

J = (-00 , c) or J = (c, 00 ) or J = R if y is a multiplication 

with centre c. 

PROPOSITION 6.1 Suppose that 

S fa- 1 + h weakly on I 
n n 

where I is an open interval, his defined and non-decreasing on I and as 

usual f EM and an, Sn E G. Assume moreover that in addition to (6.1), (6.2) 
and (6.3) the following two conditions are satisfied, 

1. 

the 

2. 

-1 his non-constant on In or and on In cr I for each limit point cr of 
( -1 

sequence an+1an ), 

the function h extends to a function h 1 on I 1, the Y-invariant extens-

ion of I, which for some TE G satisfies the functional equation 



for all yt €~.Then 

PROOF We may assume I to be the maximal open interval on which 8 fa- 1 con­n n 
verges to h 1• 

By taking a subsequence and re-indexing if need be, we may ensure that 
-1 all limit points of the sequence cr : = a +1a have the t . form y with 

n n n -t 
0 < c ~ t ~ c 1 (or that they all have the form y with O < c ~ t ~ c 1), 

so small that his non-constant on In yc 1r and on In y-c 1r. where c 1 is 

(For an exact proof of this assertion we need proposition 9,7 which 

states that the conditions (6.1), (6.2) and (6.3) are sufficient to construct 

a continuous function a: [O, 00 ) ➔ G and a sequence t ➔ oo such that 
n 

a = a(t) for all n 
n n 

a(t + s)a(t)- 1 ➔ W(s) fort ➔ 00 for alls€ R, 

where either w(s) = ys for alls or w(s) = y-s for alls. We may as well 

assume that the former is the case. Now set a:= limsup (t +1 - t ). Then 
1 n n 

ya is a limit point of the sequence (an+ 1a~ ). Hence his non-constant on 

In ya! and on In y-aI. This implies that his non-constant on In ybI and 
-b on In y I for some b >a.Now construct the subsequence tn' = t as 

kn 
follows. Set k 1 = 1. For given k 1, .•. ,kn choose kn+ 1 > kn' minimal, and so 

that 

Obviously liminf (t~+ 1 - t~) ~ b - a and limsup 

and c = b - a to obtain the desired result.) 

Set T 
n 

- $ 8-1 : = $ fa- 1 and cr = - n+1 n • gn n n n 
sequence (cr) need not converge. However, each subsequence contains a sub-n 
subsequence (k) such that cr ➔ yt for some t € [c, c 1]. For this particular 

n kn 
subsubsequence we have 
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a -+ Yt 
~ 

gk -+ h1 on I 
n 

(6.5) g~+1 -+ h1 on I 

(6.6) -1 
~n+1 = Tk g¾crk 

n n 

and since h1 is non-constant on 

argument of the opening section 

some T € G. The relations (6.5) 

-t ( . 

-t In y I and on In ytI we may use the 

of chapter 3 to conclude that -r¾-+ -r 

and (6.6) imply 

-t on y I. 

t 

-t . is an interval since In y I is non-

for 

Hence g¾-+ h 1 on I u y I which 

empty). In particular gk -+ h 1 on 
n 

I u y-cI. This holds for all suitable sub-

subsequences and hence for the whole sequence (gn)' Since I is maximal we 

have I~ y-cI. Similarly I~ ycI. This proves the proposition. 

COROLLARY We use the notation of proposition 6.1. Suppose 

If (6.1), (6,3) and (6.4) (in stead of (6.2)) are satisfied, and his non­

constant on I, then there exists T € G and~€ ~(y, -r) (see (1.4) fqr defin­

ition) such that 

$ fa- 1 -+ ~ weakly on I 1• 
n n 

PROOF By corollary to proposition 3,2 the function his the restriction 

to I of a function~€ ~(y, -r). Hence condition 1 and 2 of proposition 6.1 

are fulfilled with h 1 = ~-

EXAMPLE Let the function W R-+ R satisfy 

w<x) = o lxl > 1 

X + W(x) is non-decreasing. 

Set 



00 

f(x) = x + l ~(x - xn) 
n=1 

where (xn) is a sequence of positive reals such that 5 ~ xn+l - xn ~ 7, 

Set ax= ex= x - x. Then for x €I= (-4, 4) we have 
n n n 
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Q -1 . . The sequence µnfan obviously converges on I. The sequence will only converge 

on a substantially larger interval, say (-7, 7) if xn+l - xn converges. The 

example shows that condition 2. in proposition 6.1 cannot be omitted alto­

gether. 

DEFINITION 6.2 Let (an) and (en) be sequences in G. Then an~ en and we say 

that an is asymptotic toe if e a- 1 + E, 
n n n 

PROPOSITION 6.2 Suppose 

Q -1 µnfan + h weakly on I. 

Here f € M, en€ G, the sequence (an) in G satisfies (6.1), (6.2) and 

~ c {yk I k integral} 

for some y € G, I is an open interval such that yI = I and his non-constant 

on I, and satisfies the equation 

(6.7) Th= hy 

for some L € G. Then there exist sequences (an) and (Sn) such that 

on I, 

and there exists a function n(k) from the positive integers to the positive 

integers such that 
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PROOF There exists a bounded sequence of integers kn such that 

k 
a, ~yna,, 

n+1 n 

Then also for some, E G we have 

For I= R this follows from part 2 in table 3,2, If I~ R, then (6.7) 

implies that his non-constant on each unbounded subinterval of I and we 

obtain this asymptotic relation from proposition 3,1 and corollary 2 to 

proposition 3,2, 

By rearranging the sequence (a,) we may assume that k ~ O for all n 
n n 

(or kn~ 0 for all n). (Use proposition 9,7 for an exact proof.) 

For convenience we assume that k is strictly positive. We form the sequence 
n . 

(an) by setting a. 1 = a.1 and inserting the elements yJa,n' j = 1, •.• ,kn-1' 

between a.n and a,n+ 1• We thus obtain the sequence 

Similarly for the sequence (Sn). 
~ ~-1 In order to prove convergence of Snfa,n we have to use the boundedness 

of the sequence (kn). First note that for each n there exist j(n) and l(n) 

such that 

a fa- 1 
n n 

and (j(n)) is bounded. Hence it suffices to prove convergence for sub­

sequences with constant exponents j(n), and this is trivial. 

PROPOSITION 6.3 Suppose 

S fa.- 1 + ¢ weakly on I. 
n n 

where f EM, Sn E G, the sequence (a,n) satisfies (6.1), (6.2) and (6,3), I 

is a non-empty open interval, yI = I and¢ E ~ is non-constant on I. Then 

there exist, E G, continuous functions a, and S from [O, 00 ) into G, and a 

sequence tn + 00 such that 



(6.8) 

(6.9) 

CL = CL( t ) n n 

CL(t + s)CL(t)- 1 + ys 

$(t)f'CL(t)- 1 + h on 

$ = $(t) n n 

$(t + s)$(t)-1 fort+ co 

I for t + 00 , 

PROOF Existence of these functions CL and$ follows from proposition 9,7 as 

in proposition 6,2. 

The sequence (tn+l - tn) is bounded by the remark after proposition 

9,7, This implies convergence in (6.9) if we use that convergence in (6.8) 
is uniform on bounded intervals by proposition 9,3, 
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7 
-1 

Some consequences of the condition an+lan ➔ E 

A basic feature of the central limit law for sums of random variables 

is that the contribution of each single random variable to the sum is asymp­

totically negligable. Although the distribution functions of the partial 

sums diverge, the distributions of the nth and of the n+1st partial sums lie 

close to one another as n tends to infinity. To be more explicit we consider 

the special case where x is the sum of n elements of a sequence of independ-
-n 

ent identically distributed random variables with expectationµ and variance 

cr2 > O, Let an be the usual norming transformation for the nth partial sum, 

then 

Indeed 

a X 
n 

X - µn 

crvn 

DEFINITION 7,1 The sequence (an) is asymptotic to (yn), with an E G and 

Yn € G, and we write 

. -1 
if anyn ➔ E. 

Note that 

~a. 
n 

is an equivalence relation and that (7.1) may be formulated as 

Condition (7,1) seems to be a quite natural one to make. One does not 

in general use norming constants to tame a sequence of wildly diverging 

distribution functions, but rather to keep control of a sequence of distrib­

ution functions which, though apparently well-behaved, exhibits a tendency 

to drift away to a defective or degenerate distribution. 

Note too that condition (7,1) depends on the order of the index set. 

In chapters 2 - 5 the index set could have been an arbitrary countable set 

and the positive integers were used only to conform with standard usage. 

In exercise 1.2 we have seen that the sequence (an) may be replaced by 

any sequence (a~) which is asymptotic to the given sequence, This does not 

alter convergence or the limit distributions in the basic situation (1.1). 



Nor does it alter the set~. Hence if (7.1) holds and ax +~in distrib­n-n 
ution, then also 

(7.2) a(t)~t + ~ in distribution 

where we define fort= n + 0, Os 0 < 1, n = 0,1,2, ... 

a(n + 0) 

and ~t : = ~n. 

-1 0 
= (a +la ) a n n n 

71 

In (7,2) the norming constants depend continuously on a parameter t 

which varies over the non-negative reals. This allows us to employ the 

theory of functions of a real variable to obtain interesting results. In the 

chapters 9, 10 and 12 we shall see that in particular Karamata's theory of 

regular variation is a very useful tool in certain situations (if~ is a 

one-parameter subgroup of G). 
In this chapter we prove a number of loosely connected results, the 

most important being proposition 7,1 which states that under the condition 

(7,1) we may replace the sequences (a) and (S) in (2.1) by continuous 
n n 

functions a and S from [O, 00 ) into G where fort= n + 0, 0 s 0 < 1, we 

define 

(7,3a) 

( 7, 3b) 

a(t) 

SCt) 

Furthermore we shall prove in proposition 7,2 that if a + 00 and 
1 n 

an+la~ + E, then the set~ contains a one-parameter subgroup of G. (Compare 

this with exercise 1. 4. 4.) In the ensuing chapters we shall be particularly 

interested in the case that~ is equal to a one-parameter subgroup of G, 

Finally we introduce a compactification G* of G, which is homeomorphic 

to the closed disk in the plane. With the aid of this compactification we 

shall be able to give a simple analysis of the basic situation (1.1) or 

(2.1) in the case that the sequence (S) does not diverge to 00 • 
n 

PROPOSITION 7,1 Suppose 

S fa- 1 converges onto A 
n n 
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-1 and an+ 1an + E, (We assume as usual an e: G, $n e: G, f e: Mand that A is a 

closed subset of some element of M. We do not assume that a + 00 .) Then n 

$(t)fa(t)-1 converges onto A 

where a and$ are the continuous functions from [O, 00 ) into G defined in 

(7,3a) and (7,3b). 

PROOF Set gt = $(t)fa(t)-1• Then for 8 e: [O, 1] 

where T = $ +1$- 1 and cr = a +la-1• Since g +l converges onto A and cr + E n nn n nn n n 
we find that both g and T g converge onto A. It suffices to prove that for 

n n n e 
any sequence 8 e: [O, 1] also T ng converges onto A. n n n 

Suppose Pe: A. There exist P e: g such that Pn + P and Qn e: gn such e n n 
that 'n~ + P. Since Ty lies between y and Ty if 8 lies between O and 1 we 

can find R which lies between P and Q on gn such that , 8nR + P. n n n n n 
This proves the proposition. 

We shall now show, see proposition 7,2, that the conditions an+ 00 and 

an+1 ~ an imply that the set~ contains a one-parameter subgroup of G. 

DEFINITION 7,2 For any unbounded set Ac G we define ~(A) to be the set of 

all cr e: G for which there exist divergent sequences (a) and($) in A such n n 
that$ a-1 + a. 

n n 

Let (an) be a sequence in G such that an+l ~an+ 00 • One easily veri­

fies that~= ~(A) where 

(7.4) A= {a(t) It~ o} 

and a(t) is defined by (7,3a). 

In this case the set~ is unbounded. Indeed Aa-1 
2 2 2 . . n 

{y e: G I yx = ecx + b and c + b = r } in a point cr 
n 

connected and unbounded. The circle is compact. Hence 

a limit point cr on the circle which belongs to~. 

intersects the circle 
- 1 . = a(tn)an, since A is 

the sequence (crn) has 



LEMMA 7,1 Let B be a closed connected subset of the plane and Ta trans­

lation such that Band TB are disjoint. Then so are Band T~ for all 

integers k ~ O. 

PROOF We may assume that Bis a subset of the complex plane and that 

Tz = z + 2ni. Let R ~ B be a region (i.e. an open connected subset oft) 

such that Rand TR are disjoint. It suffices to prove that the exponential 

function w(z) : = ez is injective on R. 

Suppose z1, z2 ER, z1 ~ z2 and w(z1) = w(z2). Let r be a smooth 

curve in R connecting z1 and z2• We may assume w to be injective on 

r \ {z2}. Then w(r) is a simple closed curve in the image plane. Hence 
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with k E {-1,0,1}. Since z2 ~ z1 we have z2 - z1 = + 2ni and hence Rand TR 

intersect. This contradiction proves the lemma. 

REMARK The proof makes implicit use of Jordan's theorem that a simple 

closed curve divides the plane into two disjoint regions. For a more topol­

ogical proof see Hopf [1936]. 

COROLLARY Let A be a closed connected subset of G and let a be an element 

of G such that A and aA are disjoint. Then so are A and akA for all integers 

k ~ O. 

PROOF Choose a E G such that aa ~ aa and either a or a is a translation. 

The map asat 1+ s + it is a homeomorphism of G onto the complex plane. If B 

is the image of A, then T~ is the image of akA where Tis the translation 

z + 1 in the complex plane. 

-1 PROPOSITION 7,2 Suppose (an) is a sequence in G, ~n +=and an+,an + E, 

Then~ contains a one-parameter subgroup G(T) = {T It ER} for some TE G, 

T ~ E. Moreover if~ n U = G(T) n U for some neighbourhood U of E, then 

~ = G(T), 

PROOF Define A= {at It~ O} as in (7.4). We first prove 

(7,5) y c ~ implies yk d ~ for all integers k. 
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Suppose y 4 6, Then there exists a neighbourhood V of y such that An VA is 

bounded, Choose T € R such that A1 = {at j t ~ T} and VA 1 are disjoint, 
k Clearly 6(A1) = 6, By the corollary to lemma 7,1 the sets A1 and S A1 are 

disjoint for all S €Vandall integers k ~ O. Fork~ 0 the set 

Vk = {Sk I S € V} is a neighbourhood off. Moreover A1 and VkA 1 are dis­

joint. Hence yk 4 6, 

Suppose for a T ~Ewe have 6 ~ G(T) and 6 n U = G(T) n U for some 

neighbourhood U of E. If y 4 G(,), then y 1 : = yl/n € U \ G(,) for some 

sufficiently large n. Since 6 n U = G(T) n U we have y 1 4 6, and hence 

y = y~ i 6 by (7,5), This proves the last part of the proposition. 

It only remains to prove that 6 contains a one-parameter subgroup G(,) 

for some T ~ E, 

Set s = {y € G I yx = C e X + b, 2 + b2 C = 1} • For each y ~ E there 

exists t > 0 such that yt = y € s. Let (yn) be a divergent sequence in 6, 

Let T be a limit point of yn in s. We may assume that yn + T. We shall prove 

that G(T) C 6, 

Suppose , 1 = ,s 4 6 for some s > 0. Then v1 is disjoint from 6 for some 
. rn 0 neighbourhood v1 of , 1• We also know that Yn + , 1 for some sequence rn + . 

Th . . 1· . 1 /m V . . . . t 1 is imp ies that yn · € 1 for n sufficiently large where mis the in egra 

part of r- 1 By (7,5) we obtain yl/m € 6. This contradiction proves the 
n n 

proposition. 

We shall now consider the following situation, 

gn + g in M 

on+ cr in G 
_, 

'ngncrn converges onto A. 

The reader may recall that a similar situation in the opening pages of 

chapter 3, where A was the closure of the graph of a function h, defined 

and non-decreasing on the open interval I, led us to the very useful funct­

ional equation hO = Th. 

It will be convenient to introduce a compactification a* of G which is 

homeomorphic to the closed disk in the plane, 

The group G is isomorphic to a subgroup of the projective transform­

ations of the projective real line 
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x *ax+ b corresponds to 

T · ( a b) ( ap bp) . t O d f. t . t. he matrices O 1 and O p wi hp> e ine he same proJec ive trans-

formation, Hence we may choose the 1D&trix T = (~~)to satisfy 

a > 0 and c > O. 

The set of these matrices is homeomorphic to G. The closure of this set in 

R3 is a closed quarter sphere. It is the set of all matrices(;~) for which 

a~ 0 and c ~ O. 

This compact set determines a compactification G* of G. 

Let us consider sequences Tn which converge to an element on the bound­

ary (we assume a> O and c > 0) 

T ➔ ( 0 ±1) implies T ( X) ➔ ( ±<>o) 
n 0 0 n 1 1 

T ➔ ( 0 b) implies T (X) ➔ ( b/c) 
n 0 C n 1 1 

T (a b) implies T ( X) ('"') for -b 
➔ ➔ X > -n 0 0 n 1 1 a 

➔ ( -"") for -b 
1 X < a• 

The corresponding limits in G* will be denoted by +oo - , •O and •00 , Often 

we shall also mention the centre of multiplication in the second and third 

case. Observe that a -+ 00 and a -+ +oo have very different meaning. n n 
Note that each one-parameter subgroup 

G(y)= {yt It€ R} 

with y ~ E can be extended with two boundary elements y00 and y-"" in G*, that 

G* is homeomorphic to the closed disk and that G* may also be realized as 

the closure of Gin the two point compactification M* of M introduced in 

chapter 2. Then •O is a horizontal line, •00 is a vertical line and +oo and 

-"" are respectively the 1 and O of the Boolean algebra M*. 
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DEFINITION 7,3 By G* we denote the compactification of G introduced above. 

Moreover 

Cl. -+- +oo means a.x-+-+oo for all X € R n n 

Cl. -+- -"" means Cl. X -+- ...co for all X € R n n 

Cl. -+- •O (with centre c) means Cl. X -+- C for all x € R n n 

Cl. -+- •CO (with centre c) means {a.nx-+- +co for X > C 
n 

Cl. X-+- ...co for X < c. n 

We now introduce some terminology which should speak for itself, 

DEFINITION 7,4 We say that h 1 lies to the left of h2 where h 1, h2 € M if 

(x1, y 1) € h 1, (x2 , y2 ) € h2 implies x1 ~ x2 . Similarly for two connected 

subsets I 1 and I 2 of R we say that I 1 lies to the left of I 2 if x1 ~ x2 
whenever x1 € I 1 and x2 € I 2 , Thus, if Ii denotes the projection of hi on 

the x-axis for i = 1, 2, then h 1 lies to the left of h2 if and only if I 1 
lies to the left of I 2 • 

Furthermore we shall say that h € M lives on the connected subset I if 

the closure of I contains the projection of hon the x-axis. 

Finally {h = c} is shorthand for {x €RI (x, c) € h}. 

PROPOSITION 7. 3 Suppose g, g and h lie in M, and T € G. If 
n n 

then, with the notation of definition 7,3 and 7,4, 

1. T -+- T € G implies Tg = h n 

2. T -+- +oo implies h lies to the left of g n 

3, T -+- ...co implies g lies to the right of h 
n 

4. T -+- •O (with centre c) implies g lives on {h = c} 
n 

5, T -+- •co (with centre c) implies h lives on {g = cL n 

PROOF The third implication follows from the second and the fifth from the 
-1 fourth by writing hn = Tn gn. 
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1. See lemma 2.1. 

2. Suppose (x, y) € g converges to (x, y) € g. Then Ty ➔ 00 • Suppose n n --n n n 
(x', y') €hand x < x'. Then xn < x' for n ~ nO and hence Tnyn < y' + 1 

for n ~ n1• This contradicts Tnyn + 00 • 

4. For (x, y) € g there exists (x, y) € g such that (x, y) ➔ (x, y). n n --n n n 
Then Tnyn ➔ c. Hence (x, c) € h, 

DEFINITION 7,5 J denotes the interior of the smallest connected subset of 

the x-axis which contains the projection of A and I is the interior of the 

projection of g on the x-axis. 

Usually A will be a closed subset of g, and g will be a limit point of 

the sequence f3 fa- 1 in M. Recall from chapter 2 that Mis a locally compact 
n n 

metrizable space and that the sequence (!3 fa- 1) is relatively compact if 
0 -1 n n 
µ fa converges onto a non-empty set A of the x,y-plane. 
n n 

Note that A is constant on J if and only if Ac h for some h € MO• 

PROPOSITION 7,4 Suppose g, g € M, Ac g, and cr, cr, Tn € G. If n n 

(7.6) a + a 
n 

-1 
Tn~crn converges onto A 

then, in the notation of definitions 7,3, 7,4 and 7,5, 

1. 

2. 

3, 

4. 

5, 

T ➔ T € G implies Ac Tgcr- 1 implies Jc crI 
n 

T ➔ +oo implies J lies to the left of crI 
n 

T ➔ -00 implies J lies to the right of crI 
n 

T ➔ •o (with centre c) implies A = C on crI 
n 

(with c) imples 
-1 

T ➔ •oo centre g = C on a J. 
n 

PROOF It suffices to prove the proposition for subsequences Tkgkcr; 1 which 

converge to some element h in M. Now apply proposition 7,3 to 6kcrk1 ➔ gcr- 1 
-1 

and Tk6kcrk ➔ h. 
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COROLLARY If in addition to (7,6) it is given that 

J n crI is non-empty 

A is non-constant on crI 

g is non-constant on cr-1J 

then the sequence (T) is bounded, 
n 

Proposition 7,3 has an interesting application in the particular case 

that (g) is a constant sequence. We formulate this as a separate proposition. 
n 

PROPOSITION 7,5 Suppose f € M, h € M, Tn € G and Tnf + h, Let L be the pro­

jection off on the x-e.xis. Lis a connected subset of B with endpoints 

1 1 s 12 which ms,y be infinite. 

1. Tn + T € G implies h, = Tf. 

2. T + -+co 
n 

implies that his the vertical line through 1 1• In 

particular 1 1 is finite. 

3. T + ..,/JO implies that h is the vertical through 12• n 

4. T + •O (with centre c) implies that h € MO is the constant n 
function on L, 

h(x) = C X € L. 

5, Tn + •00 (with centre c) implies that h € MO• Moreover his the 

constant function on {f = c} or his a vertical line through one of the end­

points of {f = c}. In this case the corresponding endpoint has to be finite. 

PROOF As for proposition 7,3. 

Note that this proposition gives a fairly complete analysis of the 

basic situation 

S fa- 1 converges onto A 
n n 

in the case that the sequences (a) and (S) do not both diverge to 00 • 
n n 

Indeed for convenience assume S + 00 and~ + a. (The case where a + 00 is n K n 
obtained from this by reflecting fin the diagonal.) Then °le~ a and (7,7) 
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implies 

-1 Skfa converges onto A. 

Thus if A contains three points (0, 0), (1, 1) and (p, q) with 

O < p, q < 1, then every limit point h of the sequence akro- 1 has to have 

the form h(x) = q on (0, 1). If follows from the proposition above that for 

f ~ h every limit point a of the sequence (an) satisfies 

either a[O, 1] = {f = c} for some c ER (and then ak + a implies 

Sk + •00 with centre c), 

or a(O, 1) is the interior of the projection off on the x-axis 

(and then ak + a implies Sk + •O with centre q). 

For the sake of completeness we formulate 

THEOREM 7,1 If in addition to the basic situation (1.1) it is given that 

Sn does not diverge to 00 then~~¢(~) where¢ E M0. 
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8 . . -1A The functional equation T cr cg 

In this chapter we shall prove the proposition below and discuss some 

of its consequences. 

PROPOSITION 8.1 Suppose f €Mand a and Sare continuous functions from 

[O, 00 ) into G such that a(t) ➔ oo fort ➔ oo and 

( 8. 1 ) -1 gt:= S(t)fa(t) converges onto A fort ➔ oo 

where A is a non-empty closed subset of some element of M. (See definition 

2.1.) Let g € M be a limit point of gt fort ➔ 00 • Then there exists an 

2 · · ) h t unbounded closed connected subset Cc G, containing(£,£, such ta 

(8.2) 

for all (cr, ,) € C. 

PROOF Consider for s ~ 0 the set 

t ~ o}. 

This is a closed, connected, unbounded subset of G2 which contains the 

element ( £, £). 

Any sequencer ➔ 00 contains a subsequences ➔ 00 such that the sequence n 2 n 
D = D(s) converges to a set D c G. Indeed this holds for any sequence 

n n 
of subsets of a separable metrizable space. See Whyburn [1942, theorem 

1.7.1]. By convergence Dn ➔ D we mean that every point x €Dis limit of a 

sequence xn € Dn and that D contains the limit points of any sequence 

X € D • 
n n 

We now show that every component of Dis unbounded. 
. . . 2 

Suppose x € D, x = lim xn with xn € Dn. Let B be an open ball in G 

containing x and let K be the component of x in B n D where B denotes the 
2 n n n 

closure of Bin G. Then Kn contains a point of the boundary aB of B. Also 

K, the topological limsup of Kn' i.e. the set of all limit points of all 

sequences yn € Kn' is a compact connected set (Whyburn [1942, 1.9.12]), 

contains x, contains a point of aB and is contained in D. Hence the compo-



nent of x in D contains points on the boundary of any ball B containing x. 

(A slightly different proof can be given by observing that 

D' : = D u {00 } is a connected closed subset of the one-point Hausdorff 
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s s 
compactification G2 u {00 } of G2 , which is homeomorphic to the sphere s4 The 

set of connected closed subsets of a compact metric space is itself a 

compact metric space (in the Hausdorff metric), see Montgomery and Zippin 

[1955, chapter 1.10]. Hence a subsequence D' + D'. The set D' is connected 
n 

and contains 00 , hence every component of D' \ {00 } is unbounded. Now use the 

fact that for compact spaces convergence in the Hausdorff metric is equival­

ent to the convergence defined above. See Whyburn [1942, corollary to 

1.7.2].) 

Note that g + g if we start with a sequencer + 00 such that g + g. 
sn n rn 

Let C be the component of (E, E) in D. Then for (a, T) EC there exist 

t + 00 such that n 

a(t )a(s )-1 = a +a n n n 

$(t )$(s )- 1 = T + T 
n n n 

and since 

-1 the right hand side converging to Tgcr by lemma 2,1 and the left hand side 

converging onto A by (8.1) we obtain 

-1 Ac Tgcr 

which proves (8.2). 

DEFINITION 8.1 The set C of proposition 8.1 will be called a guide set 

of g for A. 

To give some indication of the far-reaching consequences of equation 

(8.2), assume for a moment that cr and Tare translations (instead of arbi­

trary positive affine transformations). 

Relations (8.2) states that the set A can be moved continuously along 

the curve g using only transformations o-1 in the horizontal and transform-
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ations T-1 in the vertical direction. If we only allow translations cr and T, 

then the set A is moved along the curve gas a rigid body. If A contains two 

points, say (O, O) and (p, q) with p and q positive, it will only be possible 
-1 to move A continuously along g if g is either affine with slope A= qp or 

if g is the sum of such an affine function and a periodic function n(x) with 

period p. We obtain for g the same representation 

g(x) =AX+ c + n(x) 

which we obtained for the solutions of the functional equation g(x + p) = 

= g(x) + q in chapter 3. Since we know that the guide set C is unbounded the 

representation holds on one of the half lines (-"", O) or (O, 00 ), Clearly g 

will be affine on this half line if A is sufficiently large. For instance 

this will be the case if A contains three points (0, 0), (p 1, q1) and 

(p2 , 42) with O < p 1 < p2 , 0 < q1 < 42 and p1/p2 irrational. 

If we do not restrict a and T to be translations, the inclusion 

T - 1 Aa c g for each pair ( cr, T) in the guide set C ,. may be formulated anal­

ytically in various ways. In order to avoid trivialities we assume that A 

contains two points ·(x., y.) for i = o, 1 such that x0 l. l. 

Let (x2 , y2 ) be a third point in A and let (a,,) 

a- 1x. is a continuity point of g for i = O, 1, 2, Then 
l. 

i = O, 1, 2, and hence 

( 8.3) 

< x1 and Yo < y 1, 

€ C be such that 
-1 -1 g(a xi)= T yi for 

* * -1 * Thus for fixed (x, y) €Awe are able to express g(a x) in terms of 
-1 -1 g(a x0 ) and g(a x1) as 

-1 * -1 *( -1 -1 ) (8.4) g(a x) = g(a x0 ) + c g(a x1) - g(a x0 ) 

* * where c = (y - y0 )/(y1 - y0). 

In particular we may choose coordinates such that (x0, y0) = (0, 0) 

and (x1, y 1) = ( 1, 1). Define 

For (p, q) €Awe have, with a-1p = (1 - p)s0 + ps 1, 
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( 8. 5) 

for all (sO, s 1) ES for which s O, s 1 and (1 - p)sO + ps 1 are continuity 

points of g. Observe that this is a generalized version of Cauchy's function­

al equation 

( 8,6) 

We may also write (8.2) as 

-1 Ac -rgcr 

for (cr, -r) EC. This brings us back to the original basic situation (2,1), 

with g instead off. The inclusion (8.6) evidently implies 

( 8. 7) -1 -rgcr converges onto A for (cr, ,) + 00 in C. 

PROPOSITION 8.2 Suppose (8,1) holds. Let C be a guide set of g for A. See 

definition 8,1. If C contains a sequence (cr, -r) such that (crn) is bounded 
n n 

and 'n + 00 , then gt has a limit point in MO fort+ 00 • If C contains a 

sequence (cr, -r) such that cr + 00 and(,:) is bounded, then gt has a limit n n n n 
point~. with ~- 1 E MO, fort+ 00 , 

PROOF The first part follows from proposition 7,5 applies to f = gcr- 1 with 

cr a limit point of the sequence (crn), and to appropriate subsequences (-rk) 

and crk + cr. Compare the text following proposition 7,5, The second part 

follows from this by symmetry. 

Now let us return to (8,7) or (8.6). The set Cc G2 being unbounded, 

the projection of Con one of the two factor spaces G will be unbounded, In 

view of proposition 8,2 we shall assume that for any sequence (crn, 'n) EC 

the relation cr + 00 implies -r + oo and vice versa, Even so the set C need n n 
not contain a continuous curve (cr(t), -r(t)), t ~ O, such that cr(t) + 00 for 

t + 00 • However it will contain a sequence (crn, rn) such that crn+1 ~ crn' 

-r +1 ~ -r and cr + 00 (or equivalently -r + 00 ). 
n n 2n 4 n 2 

Indeed, G is homeomorphic to R. Cover G by an increasing sequence of 

open balls Bn, Let C~ be the component of 00 in (Cu {oo}) \ Bn. Then C~ i {00}. 

Choose xn EC = C' \ {00 } and for each n let 
n n ' 
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be a finite sequence of points x. = (cr ., , .) € C such that cr .cr-~ 1 € Un• 
1 nJ nJ nJ n nJ nJ-

T .,-. 1 € U for j = 1, ••• ,k, where (U) is a fixed neighbourhood base of E, 
nJ nJ- n n 

The concatenation of these finite sequences yields the desired sequence. 

DEFINITION 8.2 For cr € G, crx =ax+ b, define 

X(cr) = log a. 

Observe that Xis a continuous homomorphism of G onto the additive 

group of B, 

PROPOSITION 8.3 Let a: [O, 00 ) + G be continuous and a(t) + 00 fort+ 00 • 

Set A= {a(t) t ~ O}. Let H be either one of the halfplanes 

{cr €GI X(cr) s O} or {X ~ O}. There exists a sequence tn + 00 such that the 

sequence of sets .Aa(tn)-1 converges to a set AO c G, and such that the 

component of E in H n AO is unbounded. 

PROOF The existence of AO is proved as in proposition 8.1. 

We shall prove the second statement for the halfplane H = {x s O}. 

Suppose there exists a sequencer + 00 such that x(a(r )) + 00 , Then n n 
there exists a sequences + 00 such that x{a(s)) s x{a(s )) for Os s s sn. 

n n 
Set 

A = {a(s)a(s )-1 I Os s s s }. n n n 

Then E € A c H, A is connected and a(O)a(s )-1 € A diverges to 00 • By the n n n n 
arguments of proposition 8.1 a subsequence of the sequence An converges to 

a set in H every component of which is unbounded. 

If x{a(t)) is bounded from above ·there exists a sequence sn + 00 such 

that X{a(s)) s X{a(s )) + .!. for s ~ s , Setting n n n 

A = {a(s)a(s )-1 I s ~ s} n n n 

we see that A c {x s .!.}, Let C be the component of E in a limit point of n n 
the sequence A. Then C is unbounded {again by the same arguments) and 

1 n 
CC {x s n} for all n. Hence CC H. 



DEFINITION 8.3 A is a closed subset of some element of Mand Jasin defin­

ition 7.5 is the interior of the smallest connected subset of the x-axis 

which contains the projection of A. We define 

U = {p €GI J n pJ is non-empty and A is non-constant on 
-1 } pJ and on p J • 

PROPOSITION 8.4 Suppose crn, 'n € G, ~€Mand let A be a closed subset of 

some element of M. If 

gn converges onto A 

, g cr-1 converges onto A 
n n n 

and if cr € U, then(,) is bounded. 
n 

PROOF Suppose not. Choose a subsequence 'k + 00 , such that gk + g € M. The 

three conditions in .the corollary to proposition 7,4 are satisfied, since 

Jc I, where I is the interior of the projection of g on the x-axis. Hence 

(,k) is bounded. 

DEFINITION 8.4 For Ac g € M we define the set n c a2 by 

n = {(cr, ,) 

Note that n contains each guide set C of g for A. 

PROPOSITION 8, 5 Suppose (8.1) holds. Lets + 00 such that 
n 

gs + g in M 
n 

{a(t)a(s )-1 t ~ o} + A. 
n 

Then n1, the projection on the first coordinate of the set n, see definition 

8.4, and U, see definition 8.3, satisfy 

(8.8) A n un1 c n1• 
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-1 PROOF Suppose t + 00 and o : = a(t )a(s) + o EA. Suppose o = 
n n n n 1 

p € u and (y,10) € n. Then with on=: pny• S(tn)S(sn)- = 'n =: 

g : = og y- we obtain 
ll Sn 

-1 
= 1Tngnpn 

PY with 

7T o and 
n 

and we apply proposition 8,4 with p and 7T instead of o and, to obtain n n n n 
that the sequence (7Tn) and hence also the sequence (Tn) is bounded, Hence 

Ac ,go-1 for every limit point,. This implies that o E n1• 

COROLLARY If A is non-constant on J, then U is an open neighbourhood of£ 

and (8.8) implies that n1 contains the component of£ in A. 

DEFINITION 8.5 Let a and S be continuous functions from [O, 00 ) into G and 

let a(t) + oo fort+ 00 , r c G2 is the set of all limit points in G2 of 

sequences 

( 8 ,9) 

withs + oo and t + oo, 
n n 

Observe that r is the two-dimensional analogue of 6. The set r too is 
. . < > r . . < -1 -1) r symmetric, i.e. o, T E implies o , T E , closed and unbounded, 

-1 Note also that if gt= S(t)fa(t) converges onto A fort+ 00 , then r 

is the union of all guide sets C of g for A for all limit points g of gt 

fort+ 00 • Moreover if C is a guide set and (oi, 'i) EC for i = 1, 2 then 
( -1 -1) 
02°1 • '2'1 € r. 

PROPOSITION 8.6 Let Jc be an open interval. Suppose A contains the set 

Jcx{c} and let (o, ,) Er be an element such that Jc n oJc is non-empty. 

Then Tis a multiplication with centre c. 

PROOF Assume (o, T) = lim 

Assume moreover that g + 
Sn_, 

(8.9)). Then Ac h = TgO 

Aon Ac ,g n g 

(a,,) where (o, T) is defined in (8,9), n n n 1 n 
g and gt = T g o- + h (with t and sn as in 

n n sn n n 
and hence 
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which implies that ,g = g on J n a-1J and hence Tis a multiplication with 
C C 

centre c. 

COROLLARY Suppose for convenience that c = O and that J 0 c (0, ®) and 

A 3 Q = (O, -1). If J0 n aJ0 is non-empty and ao > o, then (a,,) er implies 

that Ty = c • y with c s 1 • 

PROOF ,-1Qer = (a-10, ,-1(-1)) E g. Since a-10 < 0 and g is non-decreasing 

we have ,-1(-1) s -1, 

In the remainder of this chapter we shall consider a number of specific 

examples of sets A. Table 8.1 on page 89 lists the most simple non-trivial 

cases. In chapter 13 we shall see that if A contains a horizontal or vertical 

line segment, then (8.1) implies that Ac~ for some~ e ~. 

DEFINITION 8.6 The set A is normal if A is closed and if, whenever A con­

tains two points on the same horizontal or vertical line, it contains the 

connecting line segment. 

Clearly if gn converges onto A, and A contains two points on the same 

horizontal or vertical line, then~ converges onto Au L where Lis the 

horizontal or vertical line segment joining the two given points. (Any limit 

point g of the sequence(~) contains L.) Thus we may assume that A is 

normal without loss of generality. 

We shall now treat some of the 6 cases in table 8.1 in greater detail. 

We assume that (8.1) holds, that g is a limit point in M of st fort~®, 

and that C is a guj.de set of g for A. 

Case 6a. The set A is the union of two horizontal intervals J 1x{c 1} 

and J 2x{c2} (with c 1 ~ c2 and J 1 and J 2 disjoint open intervals). 

Let Cc G2 be a guide set for A (see definition 8.1). Consider 

We shall prove that c0 is open-and-closed in C and hence c0 = C. This 

implies that the projection of Con the second coordinate is bounded and 

hence by proposition 8.2 the set gt has a limit point in~ fort~® if gt 
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converges onto A fort+ 00 , 

Suppose (o0 , E) € c0 and (o, ,) € c, with o = po0 . Then (p, ,) € r. 
Hence if pis sufficiently close to Ethen Jin pJi is non-empty for i = 1, 2 

and by proposition 8 •. 6 we find that , is a multiplication with centre c 1 and 

with centre c2 ~ c 1. Hence,= E. 

Case 3a, Let J 0 be the interior of the projection of the horizontal 

line segment in A on the x-axis and let J as usual denote the interior of 

the smallest set containing the projection of A on the x-axis. 

Let C be a guide set of g for A, and recall that C is connected. 
-1 1 Suppose (o, ,) € C. Then, Ao cg. Hence g is constant on o- J 0 and 

since Ac g and A is non-constant, this implies that o- 1J 0 c J. Similarly 
-1 -1 ) Ac g implies that g is constant on J 0 and hence o J ~ J 0 (if, Ao cg. 

The set {p € G I J 0 c pJ & pJ0 c J} is compact for bounded open inter­

vals J 0 and J. 

As in case 6a the projection of Con the first coordinate is bounded 

and gt has a limit point in~ fort+ 00 by proposition 8.2. 

Case 4b. We assume that A is a subset of the coordinate axes, to be 

even more explicit we assume that A= ({O}x(y1, y2 )) u ((x1, x2 )x{o}) where 

y 1 < y2 < 0 and O < x1 < x2 • Let C be the guide set of g for A where g is 

a limit point of $(t)fa(t)-1 fort+ 00 • We assume that both coordinates of 

Care unbounded. 

Let c0 be the set of all (o, ,) € C such that both o and, are multi­

plications with centre O. Then (E, E) € c0 • Suppose (o0 , , 0 ) € c0 and 

(o, ,) € C. If (cr, ,) is sufficiently close to (o0 , , 0 ), then the intervals 

J 0 and oo~ 1J 0 intersect (with J 0 = (x1, x2 )), and by proposition 8.6 the 

element ,,~1 and hence also, is a multiplication with centre 0. A similar 

argument for the interval (y 1, y2 ) proves that o is a multiplication with 

centre 0. Hence c0 is both open and closed in C. Hence c0 = C, we may write 

(ox, Ty)= (esx, ety) for (o, ,) € C and 

is contained in g for all (o, ,) € C. 

Now suppose (o, ,) + 00 in C such thats+ oo and t + 00 , Then 

g contains ({o}x(y 1, oJ) u ([O, x2 )x{o}) 
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TABLE 8.1 

Examples of small normal sets A 

. 
2 -. or -· or • I or I 

3 -. or 

4 - I or 

5 _J or r 

6 or , ' 
Sets which can be obtained from a given A by reflection in the diagonal 

or by a change of sign on both axes are listed together, 

Only two sets A in the list have the property that they are non-constant 

on J, examples 3b and 6a. 
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(since g is closed), 

and hence ,ga-1 converges to the constant function, ,<x) = 0 on (O, m) for 

(C1, T) +m, (C1, T) € C, 

A similar argument holds in the other three cases s-+ m and t-+-® or 

s-+-® and t-+ :too, In view of proposition 8.2 we thus obtain that gt has a 

limit point,.,; t fort -+m, 

PROPOSITION 8.7 Suppose f.,; M, a and a are continuous functions from [O, m) 

into G, a(t)-+ ®fort-+ m and 

g = S(t)fa(t)-1 converges onto A fort-+® t 

where A is a closed subset of an element of M. Suppose moreover A is normal 

(see definition 8.6) and contains two non-degenerate line segments, which 

do not lie on the same line, and are parallel to the axes. 

Then Ac, for some,.,; t. 

PROOF A contains one of the sets 4a, 4b, 6a or 6b in table 8.1. Denote this 

set by A0• (If A contains a set 5a (or 5b), it contains a set 4a (or 4b).) 

Then¾ converges onto A0 fort-+®· Hence gt has a limit point,.,; t for 

t-+ ®•(Seethe commentary on the cases 6a and 4b above.) 

. • ~ ~-1 ( REMARK Obviously either~.,; M0 or~ .,; M0• These are the only elements 

oft which can possibly contain A.) 



9 Regular variation in topological groups 

DEFINITION 9,1 Throughout this chapter H will denote a topological group 

with a countable base. 

The theory of regular variation which originated in two papers by 

Karamata, [1930] and [1933], has recently played an increasingly important 

role in probability theory. See Bingham, Seneta & Teugels [ 1974]. 
As an example consider the following situation 

(9.1) f(x + t) - b(t) + h( ) 
a(t) . X weakly fort+ oo 
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where f and hare non-decreasing functions on R, a(t) > 0 and b(t) €Rare 

norming functions. Note that this is a particular case of the basic situation 

(2.1) with which we are concerned. In fact de Haan's work on this equation 

[1970], and his enthusiastic presentation of the theory of regular variation 

in a seminar in Amsterdam, initiated my- own interest in this subject. 

Equation (9.1) may be simplified by assuming either a(t) = 1 and hence 

( 9.2) 

or b(t) -

(9,3) 

f(x + t) - b(t) + h(x) 

0 and hence 

f(x + t) + h(x). 
a(t) 

Note that the limit relation (9,3) may be translated into (9.2) by taking 

logarithms. Note too that we may choose b(t) : = f(c + t) for the norming 

function in (9.2) if x = c is a continuity point of h, (Compare (5.2).) 
Indeed (9,2) implies 

(9.4) f(x + t) - f(c + t) + h(x) - h(c). 

A simple transformation U = exp flog leads us to the most commonly used 

definition for regular variation 

(9,5) U(ys) + h( ) 
U(s) y for s + oo, 
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where in general U and hare assumed to be a measurable positive function 

on (O, ®) and convergence is pointwise. See de Haan [1970, theorem 1.1.1]. 

In de Haan [1970, section 1.4] it is shown that the possible limit 

functions of (9.1) are the affine functions, i.e. the limit functions of 

(9.2), and the exponential functions, i.e. the limit functions in (9,3), to 

which a constant is added. In the latter case any function f which satisfies 

(9.1) is of the form f(x) = c + f 0(x) where f 0 satisfies (9,3), Thus to a 

great extent the study of equation (9.1) reduces to the classical theory of 

regular variation. 

Since, as we have seen above, we may replace the norming constant b(t) 

in (9.2) by f(t + c) to obtain (9.4), we may as well study the norming 

constants instead of the function f. This point of view, applied to (9.1), 

leads us to consider a theory of regular variation in the group G of positive 

affine transformations on R. This theory is very similar to the theory of 

regular variation in the additive group of the reals, based on relation 

(9.2), and to the theory of regular variation in the multiplicative group 

of the positive reals, based on relation (9,3), 

It will be convenient to develop this theory of regular variation in 

the slightly more general setting of a topological group H with a countable 

base. 

The countability condition ensures that the group His a separable 

metrizable space, see Montgomery and Zippin [1955, section 1.22]. Although 

we shall not make explicit use of this metric, it allows us to work with 

sequences instead of filters. The theory of measure for separable metric 

spaces is by now well-established, see for instance Parthasarathy [1967], 

In particular we shall use the well known fact that every measurable function 

f: R +His A - a.e. equal to the pointwise limit of a sequence of continu­

ous functions (where A is Lebesgue-measure on R, and f is measurable with 

respect to the Baire a-algebras on Rand H), Indeed, this is true if A is 

the standard normal probability distribution on R, since the simple functions, 

and hence the continuous functions fromR to Hare dense in the metric of 

convergence in probability, and every sequence which converges in probability 

contains an a.s. convergent subsequence. 

PROPOSITION 9,1 For a [O, ®) + H let S be the set of alls€ R for which 

(9.6) lim a(t + s)a(t)-1 = ~(s) 
t-+co 



93 

exists. Then Sis an additive subgroup of Rand W S +His a homomorphism. 

PROOF Clearly O £ S. Supposes£ S, Set, 

of (9.6). Then,+ 00 and 

= t +sand invert both sides 

Hence -s £Sand W(-s) = w(s)- 1• Similarly if s 1, s2 £ S, then 

and fort+ 00 (and hence t + s 1 + 00 ) the right hand side converges to 

w(s2 )w(s 1). Hence s2 + s 1 £Sand w(s2 + s 1) = w(s2 }w(s 1). 

COROLLARY If S contains a set of positive Lebesgue measure, then S = R. 

PROOF This is the theorem of Steinhaus, see Hewitt and Stromberg [1965, 

p. 143]. (It is a simple consequence of the fact that the set S - S contains 

an open neighbourhoo.d of O. ) 

DEFINITION 9,2 Let W R + H be a homomorphism. A function a 

varies like W if 

1. a is measurable (with respect to the Baire a-algebras) 

2. for alls£ Rone has 

a(t + s)a(t)-1 + w(s) fort+ 00 • 

[O, oo) + H 

A function a: [O, oo) + G is said to vary like y, with y £ G, y ~£,if a is 

measurable and for alls£ Rone has 

a(t + s)a(t)-1 + y5 fort+ 00 • 

We now give an example which will be used later in proposition 9,7, 

EXAMPLE 9,1 Let W: R + H be a continuous homomorphism, let (sn) be a 

sequence of positive reals bounded away from zero and let (yn) be a sequence 

in H which is asymptotic to w(s ), i.e. w(s )y- 1 +£,the identity in H. n n n 
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Define 

t 0 : = 0 , tn: = sn + sn_1 + ••• + s 1 

a(t) : = ~(s)ynyn_ 1 ••• y 1 fort= tn + s, 0 s s < sn+i· 

Then a varies like W• 

where t + x = tm + u < tm+1, t = tn + v < tn+1 and u and v are non-negative. 

Hence x = u + sm + .,, + sn+1 - v, Since the sk are bounded away from zero, 

the number of factors in the last product above, m - n + 2, is bounded for 

x fixed, From lemma 9,1 below it follows that fort+~, a(t + x)a(t)-1 is 

asymptotic to w(u)w(sm) ••• w(sn+2>w<sn+1 - v) = w(x). 

LEMMA 9,1 Let K be a compact subset of Hand let n be a positive integer. 

For any neighbourhood U of E in H, there exists a neighbourhood V of E such 

that 

k = 1, ..• ,n 

k = 1, ... ,n 

implies 

PROOF Standard, For fixed a 1, ••• ,an existence of V such that (9,7) holds, 

follows from the continuity of product: Hn + H. Now use the fact that Kn is 

a compact subset of Hn and uniformize. 

PROPOSITION 9,2 Let w: R + H be a measurable homomorphism. Then w is uni­

formly continuous on R. 
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PROOF We use a simple adaptation of Banach's [1920] proof that the measur­

able solutions of Cauchy's functional equation f(x + y) = f(x) + f(y) are 

continuous. 

First observe that Lusin's theorem holds, there exists a compact set K 

with positive Lebesgue measure, AK, such that the restriction of W to K is 

continuous. Indeed, w being measurable, is limit A-a.e. of a sequence of 

continuous functions ~n' See above. This sequence converges uniformly on a 

compact set with positive Lebesgue measure by Egorov's theorem, proof as for 

real-valued functions. 

Let Ube a neighbourhood of£ in H. There exists o > 0 such that 
-1 I W(Y)W(x) EU whenever x, y EK and x - yl < o and also such that K - K 

contains the interval (-o, o). (See proof corollary to proposition 9,1,) 

Hence for each s E (-o, o) there exists x0 EK such that also x0 + s EK. 

Then 

for all x ER. This proves the theorem. 

Of fundamental importance in the theory of regular variation is the 

following theorem which states that regular variation implies uniform con­

vergence on bounded intervals. The proof given here is a variant of that 

given by van Aardenne-Ehrenfest, de Bruijn and Korevaar [1949] for the case 

that His the additive group of the reals, 

PROPOSITION 9,3 If a varies like W, then Wis continuous and 

a(t + x)a(t)- 1 + W(x) fort+ 00 uniformly on bounded intervals. 

PROOF Set w (x) : = a(n + x)a(n)- 1. Then W + W, The functions W are 
n n n 

measurable by the definition of regular variation, Hence Wis measurable and 

Wis continuous by proposition 9,2. 

We shall prove uniform convergence on [-1, 1]. 

Let V be a neighbourhood of£ in H, Choose a symmetric neighbourhood U 

of£ such that 

uw(x)Uw(-x) c V for all x E [-1, 1]. 
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This is possible by lemma 9.1 since Wis continuous and hence 

{w(x) I lxl s 1} is compact. 

Fort> 2 define 

R(t) = {r € [-2, 2] I a(t)a(t + r)-1w(r) € u}. 

R(t) is a measurable set for each t and AR(t) ~ 3 fort~ t 0 . (Indeed else 
-1 >.R(tn) < 3 for some sequence tn + 00 • However a(t)a(t + r) W(r) + E for all 

r ER implies that [-2, 2] c liminf R(t ). This leads to the contradiction n 

4 = A[-2, 2] s A liminf R(t) s liminf AR(t) s 3,) n n 

If t ~ t 0 + 1 and lxl s 1 then there exists r E R(t) such that 

r - x E R(t + x). (Indeed else R(t) and x + R(t + x) are disjoint. This 

implies 

6 s A(R(t) u (x + R(t + x)) s A([-2, 2] u [x-2, x+2]) s 5.) 

Thus we obtain 

PROPOSITION 9.4 If a varies like Wand S(t) ~ a(t) fort+ 00 , then S varies 

like W• 

PROPOSITION 9,5 If a and$ vary like Wand a(n) ~ $(n), then a(t) ~ $(t) 

for t + oo, 

PROOF Sett= nt + et where nt is an integer and Os et< 1. Then, because 

of uniform convergence on [O, 1) 



PROPOSITION 9.6 (Representation theorem). If a varies like W there exists 

a sequence yn + o/(1) such that 

a( t) ~ W(0 )y y 1 ... y 1 with t = n + 0, 0 ~ 0 < 1. 
n n-

-1 Define yn = a(n)a(n - 1) and y1 = a(1). The right hand side of 
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PROOF 

(9.8) 

Since 

varies like W (as was proved in the example earlier in this chapter). 

(9.8) is an equality for integral values oft> O the result follows 

from proposition 9,5, 

In proposition 7,2 

subgroup G(y) = {yt It 

it was shown that the set 6 contains a one-parameter 
} . . -1 

€ R with y ~ E, if an+ 00 and an+1an + E. In pro-

position 9,7 below we shall see that if 6 is equal to this one-parameter 

subgroup G(y) of G, then the sequence (a) can be embedded in a function a 
n 

from [O, 00 ) to G which varies like y or like y- 1 

PROPOSITION 9,7 Suppose that 

His a locally compact topological group with a countable base, 

(an) is a divergent sequence in H (i.e. any compact subset of H contains 

only finitely many elements of the sequence), such that the sequence 
-1 (an+1an) is relatively compact, 

Lis a subgroup of H which is isomorphic to the additive topological 

group R. 

If every limit point of the double sequence (a a-1) lies in L, then nm 
there exist 

an isomorphism w : JR + L, 

a function a: [O, 00 ) + H which varies like W, 

a sequence xn + 00 such that an= a(xn) for n = 1,2, .•. 

PROOF Let W be an isomorphism R + L. (Then any other isomorphism w0 neces­

sarily has the form Wo(t) = w(ct) for some c ~ o.) Fort> 0 we define 

L(t) : = {w(s) I Is I ~ t}. 

-1 
We may and do assume that Wis chosen so that all limit points of an+1an 



lie in L( 1). 

If the points an of our sequence were to lie on L, then we could write 

an= w(tn) with tn ER. Since we have in fact assumed that 

limsup It +1 - t I $ 1 and that a and hence t diverges, either t + 00 (or n n n n n 
tn + ...co), Then a(t) = w(t) (or a(t) = w(-t)) would be the desired function. 

In the general case the construction of a is more complicated and it is 

convenient to select first a subsequence nk such that the corresponding 

subsequence of (t) is strictly increasing and such that the sequence of n 
successive differences is bounded away from zero, 

The construction makes use of the fact that for any neighbourhood U of 

E and any compact set Kc H there exists an integer k such that 

a a- 1 EK implies nm a a- 1 E UL if n, m ~ k. 
nm 

(Indeed else (for U open) the double sequence a a- 1 restricted to K would 
nm 

have a limit point in K \ UL.) 

We shall now specify U, Kand k. 

Let u 1 be a compact symmetric neighbourhood of E such that 
2 1 u 1 n L c 1(2). We choose a compact sylllllletric neighbourhood U of E in u 1 such 

that 

(9. 10) 

for all y 1 E 1(3), see lemma 9,1 above, and we define K 

such that (9,9) holds and 

(9.11) for n ~ k. 

= u 1L(3) and k 

Consider subsets B = {Sj I j € J} c {ak,'\+l''''} indexed by a set J 

of consecutive integers (not necessarily non-negative), such that 

so='\ 
S- € uw(c.)S. 1 J J J-

1 for some cj E [2,~] where j-1, j E J. 

The class of all such subsets Bis ordered in a natural way, B c B' if 

Jc J' and S! =$.for all j E J, Let B be maximal, i.e. B c B' implies 
J J 

B' = B. We prove 



(9.12) if n ~ k and an€ UL(1)UL(2)B, then an€ UL(2)B. 

Indeed suppose 

(9.13a) 

(9,13b) 

a s:1 = EoW(p + q) 
n J 

a s:1 = E3W(r) 
n J 

by (9.10) 

by (9,9). 
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If lrl s 2, then a = E3w(r)8. € UL(2)B and (9.12) is proved. Hence suppose 
n J 1 2 1 

r > 2. Now (9,13a,b) gives W(p + q - r) = E; E3 € u1• Hence Ip+ q - rl S 2 
by definition of u1. This implies 2 <rs aj-. In particular j is not the 

maximal element of J since then Bu {a} would be an extension of Band B n 
is supposed to be maximal. Hence 8j+l exists and we may consider 

-1 -1 
= an8j W (cj+l)E4 

= E3W(r cj+1)£4 

= E5w(r cj+l) 

= E6W(s) 

with E4 € U 

by (9,13b) 

with E5 € U1 by (9,10) 

with E6 € U by (9,9), 

As above we find Ir - cj+l -

r < -2 the proof is similar, 

1 sl s 2 hence Isl s 2 
. a-1 

and a € UL(2)B. For n 
and we obtain aµ. 1 n J-

€ UL(2). 

In fact we have proved more than (9.12). If a € UL(1)UL(2)$. and n ~ k, 
n J 

then a lies in at least one of the three sets UL(2)8., UL(2)8.+ 1 or 
n J J 

UL(2)$. 1• For each n ~ k we now choose an integer j(n) € J such that 
J-

a € UL(2)$.( ) and lj(n + 1) - j(n)I s 1. This is possible since n ~ k and 
n J n 1 

a € UL(2)$. imply that a +l = (a +la- )a € UL(1)UL(2)$ .• n J n n n n J 
Since UL(2)8. is compact for each j, it contains only finitely many 

J 
terms of the sequence (a) and hence j(n) + 00 or j(n) + -oo, In the latter n 
case we replace W by W* where W*(t) = W(-t) in the foregoing. Then j(n) + 00 • 

Hence we may and do assume that J has the form J = {j0 ,j0+1, ••• } and we may 

assume that j 0 =Oby an appropriate choice of k. 

Relation (9.9) implies that a relatively compact sequence of quotients 

a a-1 is asymptotically equal to a sequence w(s) where (sn) is bounded, 
p q n 
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W . 0 0 - 1 bt . 0 0 - 1 '''( ) with e apply this to the sequence µnµn_ 1 and o ain µnµn_ 1 ~ o/ sn 

1-2
1 ~ s ~ 4. (Since Is - c I ~ -21 .) Hence the function n n n 

and with tn = s 1 + ••• + sn, varies like iµ. (See example 9,1.) 
We now define a(t). 

-1 Since the sequence a.( )a is relatively compact we have as above 
J n n 

(9. 14) 

We may choose pn such that the numbers xn: = pn + tj(n) are positive, 

distinct for distinct an and equal for equal an. Then xn + 00 and by (9.14) 
we obtain, since a varies like iµ, 

(9. 15) a(x) 
n = a ~ iµ(p )a.( ) = iµ(p )a(t.( )) ~ a(xn). n n J n n J n 

Now let y 1,y2 , ••• be a non-decreasing rearrangement of the sequence 

(xn) and define a: (O, 00 ) + H by 

a(y) : = iµ(p)a(y) 
n for y = yn + p < Yn+ 1 , p ~ O. 

Then 

by (9. 15) 

and since a varies like 1jJ so does a (by proposition 9,4). 
This proves the proposition, 

REMARK 1 The sequence (x +1 
1 n 

lpnl ~~, see (9.14).) 

REMARK 2 If H = G is the group of positive affine transformations on R, 

we may choose the function a to be continuous. 

PROOF Since a varies like 1jJ and (yn+ 1 - yn) is bounded, we have 
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We define 

a<y> for y = y + S(y +l - y) n n n 

with Os 6 s 1, Then 

and 

REMARK 3 In the statement of proposition 9,7 we need only assume that Lis 

the image of a continuous injective homomorphism w0 : R + H. 

PROOF If w0(R) is closed, then w0 is an isomorphism, see Pontrjagin [1957, 

Satz 12]. Else the closure of w0 (R) is compact, see Pontrjagin [1957, Par. 

39, Hilfsatz 1]. Let W be a relatively compact open neighbourhood of the 

closure of w0(R), and A a compact set containing E, such that an+la~ 1 EA 

for n ~ n0 , Set K = AW, For each m ~ n0 there exists m' such that 
-1 \ ( -1 -1 . . am,am EK W. Indeed a a =EEK and a a + oo for n + 00 implies that . m m n m _1 _1 

there exists a least integer m' ~ m such that a '+la ~ K. If a ,a E W, _1 1 m m m m 
then am'+lam E AW. Hence am 1a; EK\ W.) Since K \Wis compact, we find 

~ n (K \ W) is non-empty, This contradicts~ c W(R) c W. 

EXAMPLE 9,2 Let H be Hilbert space with the orthonormal base e 1,e2, ... 

and define 

Then an diverges and~. the set of limit points of an - am is {o}, since 

an - am L e 1, •.• ,em for n ~ m. 

EXAMPLE 9,3 Let H be the multiplicative group of complex numbers~ O, and 

a(t) = te2Tiit, t ~ O. Then a varies like W, where W(t) = e2nit and~= H. 

EXAMPLE 9,4 Suppose anx = (x - n)//ii.. Then~ is the one-parameter subgroup 

of all translation. Set 

for t ~ 1, 
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then, 

-1 If 
a. a. x=---x­
t+s t lt+s 

s 

lt+s 

and evidently a.t does not vary like a translation. However, a change of 

variable yields a function which does vary like a translation. We set 

for t ~ 1, 

then 
-1 t O.(t + S)O.(t) X = t+g X ct + sl - t 2 

t + S + X - 2s, 

For a more detailed analysis see de Haan [1970, section 2,5], 

EXAMPLE 9,5 His the group of complex affine transformations, yz = az + b, 

with a and b complex numbers and a~ O. Set 

Then 

with w = exp (2Tii/n). 
n 

and since (wn-l + wn-2 + ..• + 1)(w - 1) = wn - 1 = o, we have Sn=£, 
n n n n n 

Now define (yn) by 

for n = k2 + j with -k < j ~ k, 

and set 

fort= n + 0 with O ~ 0 < 1 

where a~9)z = z.exp(2Tii0/k) + 0. Then a. is continuous, varies like a trans­

lation, see example 9,1, but a.(n) f 00 since a.(k2 ) =£fork= 1,2, ..• 

4 -1 LEMMA 9,2 Suppose y E G, yx =ax+ band M > 1. If a~ 1 - ( M) and 

b ~ ~. then 

0 ~ x ~ M implies 

M ~ x implies 

PROOF Trivial. 

1 
YX ~ X + "J:i 

yx ~ M. 
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PROPOSITION 9.8 Suppose a: [O, 00 ) + G varies like y, where y E G, y ~ E. 

If (t ) and (s ) are sequences of positive numbers and (a(t )a(s )- 1) is n n n n 
bounded, then so is (t s ). 

n n 

PROOF Suppose tn - sn + 00 • We prove that then a(tn)a(sn)-1 + 00 • Because of 

proposition 9.3 it suffices to prove this for integer sequences (tn) and 

(s ). 
n 

-1 
Hence set an+ 1an = Yn· Then Yn + y. 

If yx =ax+ b, with a< 1, then y x = 
n 

n ~ n0 • Hence a(t )a(s )- 1x = c x + d with n n 1 n n 
+ ~oo and hence a(t )a(s )- + oo. Similarly 

n n 

ax+b n n 
log en :S: 

if a> 1. 

and an :s: q < for 

(t - s )log q + 0(1) + 
n n 

Now suppose yx is a translation. For convenience assume yx = x + 1. 

Then ynx = anx + bn with bn ~,½for n ~ n1 and an+ 1. Thus a(tn)a(sn)- 10 ~ 0 

for tn ~ sn ~ n 1 and lemma 9.2 yields that for any M > 1 we have 

ifs*= max(s , n1), t ~ n2 + 4M, tn - sn ~ 4M where n2 is chosen so that n n 1 n 
an~ 1 ~ (4M)- for n ~ n2 . Since n1 is fixed and M arbitrary, this implies 

that a(t )a(s )- 1 + oo. 
n n 

COROLLARY If a: [O, 00 ) + G varies like y, with y E G, y ~ E, then 

~ = {yt It ER}, and a(t) + 00 fort+ 00 • 

. . (ab) wi·th 0 The group G can be represented by the matrix group O 1 a> 

and b real. Hence one can talk about differentiable functions of R into G. 

PROPOSITION 9.9 Let H be a locally compact matrix group and A a continuous 

function from [O, 00 ) into the Lie algebra H0 of H, such that A(t) + A0 for 

t + 00 • Let a: [O, oo) + H satisfy the differential equation 

d 
dt a(t) = A(t)a(t) 

and let~ R + H satisfy 

~(O) = E. 

Then~ is a homomorphism and a varies like~-
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PROOF Let An: R + H0 be a sequence of continuous functions such that 

(9.16) An+ A0 uniformly on bounded intervals. 

Let an R + H satisfy the differential equation 

a (O) = E, 
n 

Then (9.16) implies that an+ W uniformly on bounded intervals. See 

Dieudonne [1969, (10,7,2)], Pontrjagin [1958, Satz 58]. 

Consider a(p + t)a(p)- 1 =: S (t). This function satisfies the differ­
p 

ential equation 

and since Ap(t) : = A(p + t) + A0 uniformly on bounded intervals of R for 

p + 00 , we have S + W uniformly on bounded intervals for p + 00 , 
p 

PROPOSITION 9,10 Suppose a: [O, 00 ) + G varies like W, Then there exists 

S: [O, 00 ) + G such that 

S is C00 

S(t) ~ a(t) fort+ 00 

B(t) = (~t S(t))S(t)- 1 + ~t W(O) = B0 fort+ 00 

d 
dt B(t) + 0 for t ·+- 00 • 

PROOF For each continuous homomorphism W there exists a probability measure 

with density m(s) such that m(s) is C00
, vanishes for Isl~ 1 and satisfies 

( 9. 17) I w<-s)m(s)ds = E. 

Indeed this is obvious for w(s) = (6 ~) or (~As ~] and hence it is true for 

all W• Note that (9.17) implies that 

( 9. 18) 

where <w * m)(t) : = I W(t - s)m(s)ds. 
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Since we are only interested in the behaviour of a(t) fort+ 00 and 

since a(t + s)a(t)-1 + w(s) uniformly on bounded s-intervals fort+ 00 , we 

may as well assume that a is locally integrable and that a(t) = E fort~ O. 
00 

Then e: =a* mis C and is an element of G for all t. Moreover 

_, I _, 
$(t)a(t) = a(t - s)a(t) m(s)ds + E 

since 

a(t - s)a(t)-1 + w(-s) uniformly for Isl ~ 

and hence $(t) ~ a(t) fort+ 00 • 

Also 

fort+ 00 

S(t) = ~t f a(s)m(t - s)ds = f a(s)i(t - s)ds = 

= J a(t - s)i(s)ds 

and 

Act)a(t)- 1 = f a(t - s)a(t)-1 i(s)ds 

+ I w<-s)i(s)ds = ~(O) 

by differentiation of (9.18), 
Hence 

Similarly S =a* m = B$ + B2e, and 

which implies B(t) + O fort+ 00 , 

fort+ oo 

fort+ oo 

REMARK If above we define the density m so that I w(s)m(s)ds = E, and 
_, _, 00 

y : = a * m, then y is C , 

fort+ 00 

( d _, I d _, 
a t)dt y (t) + w(s)m(s)ds = dt W (O) fort+ oo, 



106 

10 The functional equation h(x + p) - h(x) = c.(h(x + 1) - h(x)) 

This chapter treats the basic situation (1.1) under the conditions that 
-1 

an+1an + E and that tis the one-parameter subgroup of all translations. 

In the previous chapter, proposition 9,7, we have seen that we may then embed 

the sequence (a) in a continuous function a: [O, 00 ) + G which varies like 
n 

a translation. Equation (8.5) now takes the particularly simple form of a 

difference equation. Every limit point h in M of gt= S(t)fa(t)- 1 fort+ 00 

has to satisfy the functional equation in the heading of this chapter (un­

less Ac~ for some~€ M0 ). 

The chapter falls apart in three sections. This is best illustrated 

with the particular case that A contains three points (O, O), (0, 0) and 

(1, 1) with O < 0 < 1 and 0 irrational. We first prove, if Ac h, then 

the identity is the only solution of the associated difference equation 

(10.1), in the second section we show that this implies that the identity 

is the only limit point in M of gt fort+ 00 , and in the third section it is 

shown that this implies that also S(t) varies like a translation. 

PROPOSITION 10.1 Let 0 be an irrational number and let h be a continuous 

non-negative function on R which satisfies the functional equation 

(10.1) 0(h(x + 1) - h(x)) = h(x + 0) - h(x). 

Then his constant. 

PROOF The functional equation ( 10.1) states that the three points 

(x, h(x)), (x + 0, h(x + 0)) and (x + 1, h(x + 1)) are collinear. From the 

geometric picture it follows that we may assume that 0 € (0, 1). Let Lx be 

the line segment in R2 with endpoints (x, h(x)) and (x + 1, h(x + 1)), let 

S be the band 

S = U L 
X€R X 

swept out in the upper halfplane by moving the line segment Lx along the 

graph, and let ~(x) : = inf{t I (x, t) € S} be the lower edge of this band. 

It is not difficult to see that Sis closed and that~ is continuous. 

(For fixed y define h(y, x) to be continuous, linear on [y, y+1] and equal 
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to h(x) outside this interval [y, y+1]. Then W(x) = min h(y, x). Since 

h(y, x) is continuous on R2 and as a function in y, f~r x0 fixed, h(y, x0 ) 

is constant= h(x0 ) for yd (x0-1, x0), the function w is continuous.) 

Now suppose y € R. The point (y, w(y)) lies on some line segment Lx. 

It even lies in the interior of some line segment L. (If it is an endpoint, 
X 

then W(y) = h(y) and (y, W(y)) is interior point of L 0.) Since L lies 
y- X 

above the graph of w (by definition of w), the function w is concave. 

(Indeed, suppose A is affine and w(xi) = A(xi) for i = 1, 2 and w(x) < A(x) 

for some x € (x1, x2 ). Then w(x) - A(x) attains a negative minimum in 

x0 € (x1, x2 ). Choose x0 minimal, Then obviously (x0 , W(x0 )) cannot be 

interior point of a line segment which lies above or on the graph of W, 

Hence we see that the equation w(x.) = A(x.) for i = 1, 2 implies w(x) ~ A(x) 
l. l. 

on Cx1, x2 ), i.e. Wis concave.) However, Wis also non-negative. If follows 

that w is constant. 

Define Eby 

E = {x € R I w(x) = h(x)}. 

Suppose again y €Rand (y, w(y)) is an interior point of the line segment 

L. Since Wis constant, the whole line segment L lies in the graph of W, 
X X 

In particular x, x + e and x + 1 lie in E. In general if y = u + e € E, then 

also y - 0 and y + - 0 € E. 

We now use the fact that e is irrational to conclude that Eis dense 

in R, and hence E = R (hand W being continuous) and h = w is constant. 

REMARK If 0 is rational, say 0 - 1 • = pq with (p, q) = 1 then his periodic 

modulo q-l 

PROOF The proof is similar to the proof above except that we consider the 

restriction of h to some coset {a+ kq- 1 I k integral}. Note that now we do 

not need any continuity properties of h. 

Equation (10.1) is a simple case of the homogeneous linear difference 

equation with constant coefficients 

( 10.2) 
n 
l ckh(x + ek) = o 

k=O 

which has been investigated in the more general setting of a linear 
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difference-differential equation by Hilb [1918]. See also Bellman and Cooke 

[1963, p. 215] and Doetsch [1956, Kapitel 22] for further references. 

We mention a few simple properties of the solution of (10.2). For con­

venience we assume that O = 60 < 61 < ••• < 6n = 1 and c0c 1 ••. cn ~ 0. 

If h0 is an arbitrary function on [O, 1) then there exists a unique 

extension to a solution h of ( 10.2) on R. 

If a solution of (10.2) is continuous on [O, 1] it is continuous every­

where. 

The set of solutions of (10.2) is a linear space. It is closed for 

pointwise limits and for translations. This implies that for any locally 

integrable solution h, also h * w is a solution, where w is a continuous 

function with compact support. In particular any locally integrable solution 

may be approximated by C00 solutions. (If Wis C00
, then so is h * w.) 

If his bounded on [O, 1) then it is of finite exponential growth, i.e. 

there exist constants Mand C such that 

(10.3) for all X € R. 

Hence in this case (if his bounded on [O, 1) and measurable) we may define 

the Laplace transform 

00 

h(s) = f h(x)e-sxdx 
0 

and the integral converges absolutely for alls with Res> C by (10.3). On 

taking Laplace transforms of both sides of (10.2) we obtain 

n oo 

O = l ck f h(x + 6k)e-sxdx 
k=O 0 

= I ckesek j h(y)e-sydy 
~ ~ 

= A(s).h(s) - y(s) say. 

The Laplace transform has the simple form 

(10,4) h~(s) - ~ 
- A(s) 
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Where '(s) -- ~ sek · · 1 lyn · 1 1 ' · A L eke is an exponentia po Ollll.a a 1 of whose zeros lie 
k=O 

in some vertical strip x 1 ~Res~ x2 and which converges to c0 as Res+-"", 

By using contour integration and the well known inversion formula, with 

c 1 > C, where C is the constant in (10.3), see Widder [1946, p. 69], 

H(x) 
X 

= f h(t)dt 
0 

cili~ 
= lim - 1-. 1/ h(s) esxds 

t _, 2TTi "t s c 1-i 

we obtain a series development of Hof the form 

H(x) ~ L 8'.k.ezkx 
zk 

where zk runs through the zeros of z:>..(z) and 8kezkx is the residue of the 

integrand in~• 

The characteristic function A of the difference equation in the heading 

of this chapter is 

:>..(s) = Ces - esp+ 1 - C. 

The function:>.. has two real zeros, s 0 = 0 and s 1• This yields two non­

decreasing solutions h(x), viz. 

h(x) = 1 

We shall see, proposition 10.3, that for irrational p any non-decreasing 

solution of the difference equation is a linear combination of these two 

solutions. 

Let us now first consider the following variant of (10.1), 

(10,5) h(t) - h(at) _ h(bt) - h(t) 
1 - a - b - 1 

with O <a< <band h continuous and non-decreasing on (O, 00 ). The points 

(at, h(at)), (t, h(t)) and (bt, h(bt)) on the graph of hare collinear. As 

in the proof of proposition 10.1 we introduce line segments. Here the line 

segment L(t) has endpoints (at, h(at)) and (bt, h(bt)). Hence (t, h(t)) is 

an interior point of L(t). We define the band 
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S=UL(t). 
t>O 

As in the proof of proposition 10.1 it follows that the functions 

( 10.6a) 

( 10.6b) 

= min {y 

= max {y 

(x, y) E s} 

(x, y) E s} 

are well defined and continuous on (0, 00 ). Moreover Wis concave,¢ is con­

vex and 

~(t) s h(t) s ¢(t) on (O, 00 ). 

The proof that his affine (if log a/log bis irrational), is some­

what more involved than in the case of equation (10.1). The function Wis 

now only defined on the half line (O, 00 ). The main idea of the proof is as 

follows. 

The function h cannot fluctuate too much since it is monotone. For 

large values oft the function h will approach W (and¢) closely at rather 

regular intervals. If h(t) is close to w(t), then also both endpoints of 

L(t) will lie near the graph of W since the line segment L(t) does not inter­

sect the graph of w. Hence also h(at) and h(bt) lie near w(at) and W(bt). 

Similarly for h(a2t), h(abt), h(b2t) and more generally for h(amt), 

h(am-lbt), ••. ,h(bmt). For large values of m the fixed interval (a2t, b2t) 

contains a large number of points a¾1t with k and 1 non-negative integers 

and k + 1 s m. Moreover the distance between successive points in this inter­

val will be small (independently oft if we work with a logarithmic scale). 

This implies that his close to W throughout the interval (a2t, b2t), and 

hence so is¢. In particular we show that t- 1{¢(t) - w(t)) + 0 fort+ 00 • 

Since also ¢(t) - ~(t) + C fort+ O+, it follows that¢= Wis affine. 

PROPOSITION 10.2 Leth be a continuous non-decreasing function on (0, 00 ) 

which satisfies the functional equation 

(10,5) h(x) - h(ax) = 
1 - a 

h(bx) - h(x) 
b - 1 

with O <a< 1 <band log a/log b irrational. Then his affine. 
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PROOF We define L(x) as the line segment with endpoints (ax, h(ax)) and 

(bx, h(bx)), and S = u{L(x) Ix> o}. Then W, the lower edge of S, is con­

cave, and¢, the upper edge of S, is convex. See above, equation (10.6a). 

We define the constant c: = ba-1• Then c > 1. 

The proof consists of eight parts. Our main tool will be the implicat­

ion A. 

A. If h(x) ~ A(x) on (c-1u, cu) for some affine function A, then 

w(u) ~ A(u). (Similarly h :5 A on (c-1u, cu) implies ¢(u) :5 A(u).) 

Proof of A. Suppose (u, v) ES. Then (u, v) lies on a line segment L(w) both 

of whose endpoints lie on or above the graph of A. Hence v ~ A(u). Then also 

w(u) = inf {v I (u, v) E s} ~ A(u). 

B. The functions~ and¢ are non-decreasing. 

Indeed ~(x) = inf {h(y, x) I y > O} where for fixed y > 0 the function 

h(y, x) is the continuous non-decreasing function which is affine on 

(ay, by) and equal. to h(x) outside this interval. (Compare the proof of the 

continuity of win proposition 10.1.) Similarly¢ is non-decreasing as a 

limit of non-decreasing functions. 

C. W(O) = h{O) = ¢(0) is finite. 

The functions~ and¢ are non-decreasing by B hence the limits for x + O+ 

exist. The limits may equal - 00 • By definition we have 

W(O) :5 h(O) :5 ¢(0). 

Using part A with a constant affine function A(x) = c0 > h(O) and u suffici­

ently small we obtain h(x) :5 A(x) on (0, cu) and hence ¢(0) :5 ¢(u) :5 A(u) = 

=c0 , Similarly W(O) = h(O). Finally¢ convex implies ¢(0) > _oo, 

D. We may and shall assume that ~(O) = h(O) = ¢(0) = O. 

The solutions of (10,5) form a linear space which contains the constant 

functions. 
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We shall now consider halflines AX, with A positive, which intersect 

the band S, (See illustration.) 

t 
h(x) 

AX 

w(x) 

E. 2 Suppose w(x) <AX< µx < ¢(x) for some X > o. Thenµ< CA. 

Proof of E. Since Wis concave and¢ is convex, we have 

w(t) <At< µt < ¢(t) fort~ x. 

By part A with A(x) = AX or A(x) = µx we find that each interval (y 1, y2 ) 

with y2 ~ c2y 1 and y 1 ~ x contains points x1 and x2 with h(x1) < Ax 1 and 

h(x2 ) > µx2 • Now choose y 1 and y2 such that 

x s Y1 < Y2 

AY2 = µy 1 

h(y2) < AY2· 

2 _, 
By the argument above y2 < c y 1• Hence also µA 

F. Construction of the sequence (A). 
n 

Set A* : = inf {A~ 0 I AX intersects S}. Suppose there exists AO> A* such 

that A0x intersects S. We define the sequence An i A* inductively. Suppose 

A0 , •.. ,An have been defined. 

Let 1 1(x) be the affine function on [a, b] with the values 1 1(a) = Ana 

and 1 1(b) = A*b in the endpoints, and 12(x) the affine function on [a, b] 



with the values 12(a) = A*a and 12(b) = 

An+1 = min {11(1), 12 (1)}, 

a 

Ab in the endpoints. Define 
n 

b 
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Note that An+ 1 € (A*' An) and that h(u) < An+1u implies that the line 

segment L(u) lies below the halfline Anx (since it has to lie on or above 

the halfline A*x). In particular h(au) and h(bu) will lie below the halfline 
2 2 Ax· h(a u), h(abu), h(b u) below A 1x; etc, n' n-

G. Define r = 10A ~ 1 > 1 • There exists a positive integer q such that each 

interval (x, rx), which intersects the interval (1, c2 ), contains an element 

of the set A.:= {a¾k I 1, k ~ o, 1 + k ~ q}. 
. q 

Indeed since log a/log bis irrational and negative the set 

{l log a+ k log b I 1, k non-negative integers} is dense in Rand 

{a¾k I 1, k ~ O} is dense in (0, ~). 

H. Choose u >Osuch that h(u) < Aq+1u and ~(u) > A0u. Then h(x1) > A0x1 
2 for some x1 € (u, cu) by A, There exist two successive elements c1, c2 € Aq 

such that 

Then 

Contradiction. The assumption that there exists AO> A* which intersects S 

is untenable, Hence ~(x) = ~(x) = h(x) = A*x for all x > O, This proves the 

proposition. 
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REMARK If log a/log bis rational, say 

a = b 
-p~ 

with p and q positive integers, and (p, q) = 1, then we may write a= r-p 

and b = rq for some r > 1. If his a non-decreasing function on (O, 00 ) which 

satisfies (10,5) then his affine on each coset {rks I k integral} with 

s > 0. The proof is similar to the one given above. See remark above. 

PROPOSITION 10.3 Suppose the function his non-decreasing and non-constant 

on Rand satisfies the functional equation 

(10.7) h(x + p) - h(x) = C(h(x + 1) - h(x)) 

with p irrational and C € (0, 1). Then h € ~ 0, see exercise 1.8. That is, 

his differentiable and 

h'(x) AX = ae 

with a positive and A real. 

If C = p, then A= O. Else A is the non-zero solution of the character­

istic equation 

(10.8) 

PROOF Let~ be C00 with compact support. Then h 1 : = h *~is C00 and satis­

fies (10.7). It suffices to prove that h 1 has the desired properties. Hence 
00 

we shall assume h to be C. 

If p = C, then the derivative h 1 satisfies (10.7) and is non-negative. 

Apply proposition 10.1 with C = p = e to h' to obtain h' is constant. 

Suppose p ~ C, We may write (10,7) and (10.8) as 

h(x + q) - h(x) = c1(h(x) - h(x - p)) 

qA -pA S(A) : = e - 1 - C1(1 - e ) = 0 

-1 qA ~A where q = 1 - p and c1 = C - 1. Then s(O) = O and s 1 (A) = qe pC 1e 

Hences is convex and since s'(O) ~ 0 for p ~ C, and s(A) > 0 for IAI large, 



it follows that (10.8) determines A uniquely. 

Now define g by g(eAX) = Ah(x), Then 

( Aq AX) ( AX) C ( ( AX) ( -Ap AX)) g e e - g e = 1 g e - g e e 

00 

with g a non-decreasing, non-constant C function on (O, 00 ). Setting 

t = eAx, a= e-AP, b = eAq we obtain c1 = (b - 1)/(1 - a) and 

g(bt) - g(t) 
b - 1 

= g(t) - g(at) 
1 - a 
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Since log b/log a= -q/p is irrational if pis, the function g is affine by 

proposition 10.2, and 

-1 AX h(x) = A ae + b. 

COROLLARY Suppose x0 < x 1 < x2 and his a non-decreasing, non-constant 

function on R which satisfies the functional equation 

Then there exist positive affine transformations , 1 and , 2 such that 

T .h = hO'. 
l. l. 

PROOF We first prove that O < C < 1. Obviously the monotonicity of h implies 

O $ C $ 1. If C = o, then ~(x + x1) = h(x + x0 ) and his constant, If C = 1 

then h(x + x2 ) = h(x + x 1) and his constant. 

If pis irrational, then h E ~Oby proposition 10.3 and hence h satis­

fies 

for some T € G, T ~ E. See exercise 1,8. 

If pis rational, set 
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Then on each coset s + X the function h has the form 

C ;,e p 

C = p. 

(See remark following proposition 10.2.) Since A is uniquely detennined by 

C, and his non-decreasing we see that the constant b (respectively a0) is 

independent of the particular coset. Hence his an element of table 3.1, 

and solution of the equation 

Th= ha 

and 'i = ,n(i), ai = an(i) with n(1) and n(2) integral, (n(1), n(2)) = 1, 

and p = n(1)/n(2), 

PROPOSITION 10.4 Suppose that 

-1 S(t)fa(t) converges onto A, fort+ oo 

where f €Mand a and Sare continuous functions from [O, 00 ) into G, and 

-1 a(t + s)a(t) x + x + s for all x ands as t + 00 , 

Then one of the following holds, 

1) A is contained in one of the following constant functions in M0 
cp( x) = C for all X 

cp(x) = C for X > a 

cp(x) = C for X < a 

cp( x) = C for X = a (i.e. vertical line through (a, c)) 

for some a and c € R. (Note that we exclude the constant function on a 

bounded open interval.) 

2) There exists a differentiable function cp € I such that 

A C cp 

( 10.9) cp'(x) = aebx for some a> O, b € R, 
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In the second case there are two possibilities. If the projection of A 

on the x-axis is contained in a periodic set Z = {c + kd I k integral} with 

d maximal then 

-1 I a(t)fa(t) converges onto {{z, $(z)) Z E Z} fort+ oo 

else 
-1 a(t)fa(t) converges weakly onto$ fort +oo, 

PROOF The proof consists of seven parts. 

A, There is nothing to prove if 1) holds. Hence we shall assume that A is 

not contained in any of the elements$ mentioned under 1). In particular we 

assume that A contains at least three points and that A contains two points 

with distinct x- and distinct y-coordinates. Without loss of generality we 

lllll¥ assume these points to be (0, 0) and (1, 1). 

B. The proof depends on the results derived in chapter 8, We therefore 

commence by recalling some of the pertinent notations. 

g is a fixed limit point of the set gt fort+ 00 • Hence Ac g. 

J is the interior of the smallest connected subset of R which 

contains the projection of A on the x-axis, J ~ (0, 1) if we assume (O, O), 

(1,1)EA, 

~={at It ER}, with crx = x - 1. 

{ 2 I -1 } 0 = <Y1• Y2> E G Y2 Ay1 cg and 

n1 is the projection of non the first coordinate. 

U = {p E GI J n pJ non-empty and A non-constant on pJ and on 
p-1J}. 

C. Since a varies like a translation we have a(t) + 00 fort+ 00 • See 

proposition 9,8. 

D. Our main tool is the following result, If A is non-constant on crsJ for 

0 < Isl< c, for some c > O, then for each s ER there exists 's E G such 

that 
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Indeed, the condition on A implies that crs EU for O < Isl< c. By pro­

position 8.5 we have 

6 n un1 c n1 

since A 

for Isl 

t t+s = 6 if a varies like a translation. Hence if cr c n1 , then cr E n1 
< c. Since E = cr0 E n1, we have 6 c n1. 

E, Distinct points in A have distinct x- and distinct y-coordinates, 

1. If A contains two points P1 and P2 on the same vertical line 

{x = x0} then A also contains two points Q1 and Q2 with distinct y-coordin­

ates which do not lie on this vertical. It follows that A is non-constant 

on crsJ for O < Isl< c for some c > O. (Either x0 E crsJ or both Q1 and Q2 
lie above crsJ,) Hence by D for each s ER there exists, E G such that 

s -1. s . . . . -1p s -1p s 's ,.er cg, This implies that g contains the two curves 's 1cr and 's 2cr 

which lie strictly above each other! Contradiction, 

2. If A contains two points P1 and P2 on the same horizontal line, then 

it contains two points Q1 and Q2 with distinct x-coordinates which do not 

lie on this horizontal. Again A is non-constant on crsJ for O < isl< c for 

some c > 0 (since one of the points P0 or P1 and one of the points Q1 or Q2 
will lie above crsJ). By D, for each s ER there exists, E G such that 

1 s -1 s -1 s . s 
,; Acr cg. In particular 's P1cr and 's P2cr lie on g for alls, For each 

s these two points lie on the same horizontal, Besides they maintain a 

constant distance, say d > O, apart ass ranges over R, Hence g is constant 

over each interval of length d, Hence g is constant, and A is contained in 

a horizontal line. Contradiction. 

F. Let g be a limit point of gt fort ➔ 00 • Suppose x0 < x 1 < x2 , 

Yo< y 1 < y2 and (xi, yi) EA for i = O, 1, 2, By (8,3), for the right­

continuous version of g, 

with C = (y 1 - y0)/(y2 - y0 ). (Since A is non-constant on crsJ for 



O < Isl< c = min (p, 1-p) with p = (x1 - x0 )/(x2 - x0 ), there exists by 

part D for each s ER an element, E G such that ,- 1Acrs cg.) 
s s 

By the corollary to proposition 10.3 there exist 'i E G such that 

i = 1, 2. 

119 

If (x2 , y2 ) varies over A we obtain a system of such equations. By table 3,2 

this implies either g E ~ 0 , see exercise 1.8, if the closed subgroup gener­

ated by the cri is the group of all translations, or A1 c Z an4 glZ = ~IZ for 

some~ E ~0 , where A1 is the projection of A on the x-axis, and Z is a 

periodic set {c + kd I k integral} with d maximal. 

G. The set Zand the function~ E ~O which agrees with g on Z are com­

pletely determined by A and do not depend on the particular choice of the 

limit point gin F. This proves the last two statements in the proposition. 

REMARK Except for the last two statements, the proposition remains valid 

if we only assume that 

S(t)fa.(t)-1 converges onto A 

a,( t) -+ 00 

for t -+ 00 

fort-+ 00 

with f EM and a. and S continuous functions from [O, 00 ) into G, and if we 

assume that for some sequence sn-+ 00 the sequence of sets 

A = {a.(t)a.(s )-1 I t ~ o} 
n n 

converges to A= {crt It ER} where cr is a translation. (In the proposition 

we assume that A is the only limit point of the collection 

A(s) = {a.(t)a.(s)-1 It~ O} for s-+ 00 .) 

PROOF Part D of the proof remains valid, and hence so does the remainder. 

COROLLARY Let f be a non-decreasing function on [O, 00 ) and let x0 , x1 and 

x2 be real numbers such that x0 < x1 < x2 and (x2 - x0)/(x1 - x0 ) is 

irrational. If 
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f(½ + t) - f(x0 + t) 
--------,---,-"----,.. -+ C 
f(x1 + t) - f(xo + t) 

fort-+ 00 

with c > 1, then 

f(x + t) - f(xo + t) 
f(x1 + t) f(x + t)-+ $(x) weakly 

- 0 
for t -+ 00 

where$€ t 0 (see exercise 1.8). 

PROOF Choose S(t)y = (y - f(x0 + t))(f(x1 + t) - f(x0 + t))-1 and 

a(t)x = x - t. Then 

S(t)fa(t)-1 converges onto A 

where A= {(x0, o), (x1, 1), (½, c)}. Now apply proposition 10.4. 

Leaving aside for the moment. the case that A is conta.ined in a horizon­

tal or vertical line, there remain four distinct cases in the proposition 

above. We assume A to be normal, see definition 8.6. 

Either A contains a line segment, and then 

1. A contains a vertical line segment, or 

2. A contains a horizontal line segment, 

or A contains no line segment. Let A1 be the projection of A on the x-axis. 

There are two cases 

3. A1 is contained in a periodic set Z = {c + kd I k integral}, 

4. A1 is not contained in a periodic set. 

In case 4 we know from proposition 10.4 that S(t)fa(t)-1 -+ $ and hence 

by table 3.2, case 3, there exists y € G such that S(t + s)S(t)-1 -+ y8 for 

t-+ 00 for alls€ R. In the remaining propositions of this chapter we shall 
-1 consider the possible limit points of st= S(t)fa(t) fort-+ 00 and the 

behaviour of S(t) fort-+ 00 in the cases 1, 2 and 3 in greater detail. 



In the next propositions we make the following assumptions. 

f EM 

a and 6 are continuous functions from [O, 00 ) into G 

a(t) + co fpr t + 00 

gt= 6(t)fa(t)-1 converges onto A 

s + 00 such that 
n 

6(s )fa(s )- 1 + g € M n n 1 
An= {a(t)a(sn)- t ~ o} + A 

A~ T = {yt It ER} where yx = x - 1 

a(t )a(s )- 1 = cr + cr = ys 
n n n 

$(t )$(s )-l = T 
n n n 

fort+ co 

I is the interior of the projection of g on the x-axis 

J is the interior of the smallest connected subset containing the 

projection of A on the x-axis. 

We recall proposition 7,4, which we shall apply repeatedly with 

g • 
Sn 

Suppose that 

gn + g 

-1 
'n~crn converges onto A 

cr + cr 
n 

then, recall that crx = ysx = x - s, 
-1 'n + T € G implies Ac Tg<J and hence J + s c I 

T + ±oo implies J + s and I are disjoint n 
T + •o (with centre c) implies A = C on I - s n 
T + •co (with centre c) implies g = C on J + s. n 

PROPOSITION 10.5 If 

then g is the constant function, g(x) = 0 on (0, 00 ). 
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PROOF Let S be the set of discontinuity points of g, i.e. s ES if 

g n {x = s} contains at least two points. The set Sis countable. 

Suppose (T) has a limit point TE G, Then ,-1Ao cg, h n hence g as a 

discontinuity ins ands ES, 

Let x 1 $ x2 be the endpoints of {g = o}. Then clearly Os x 1 s 1 s x2 s 

$ 00 • Supposes E (0, x2 ) \ S. Then 'n + 00 • By proposition 7.4 we can only 

have 

T + •00 (with centre 0), and 
n 

g=O on(s,1+s). 

This implies that g = O on (O, x2 + 1), hence x2 = 00 and {g = o} = [O, 00 ). 

Suppose I= (x0 , 00 ) with x0 < 0. Chooses E (x0 , 0) \Sands> -1. By 

proposition 7,4 this is impossible. Hence I= (0, 00 ), 

COROLLARY If 00 > O, then T + •O (with centre 0), 
n 

if ao < o, then T ~ • 00 (with centre o). 
n 

PROOF The sequence S(t )fa(t )-1 converges onto g, the constant function, 
n n 

g(x) = 0 on (0, 00 ), since 

{a(t)a(t )-1 I t ~ 
n 

N ly ·t· 7.3 wi"th g ..... - 1 + =-1 d -l ow app proposi ion u ~~ an 'ngs on + g. 
sn n n 

PROPOSITION 10.6 If 

A= {(O, -1), (1, 0), (c, O)} with c > 1 

then there exists 8 E [O, 1] such that 

g = 0 on ( 8, oo) 

Ic(8-1,oo), 

PROOF Set J 0 = (1, c) and let I 0 be the interior of {g = o}. Supposes> O 

and J 0 + s intersects I 0 , then J 0 + s c I. (If (T) has a limit point TE G, 
-1 6 n then o J 0 c I 0 as in proposition 8 .. If 'n + 00 , then by proposition 7.4 
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only 'n ➔ • 00 (with centre 0) is possible, and then g = 0 on J 0 + s.) This 

proves that g = 0 on (1, 00 ). 

Set I 0 = (8, 00 ), Obviously Os 8 s 1. Supposes€ I such that 

1 < 8 - s < c. By proposition 7.4 the sequence (Tn) is bounded, Let T be a 

limit point. Then ,-1Ao cg, and since Tis a multiplication with centre O 

by proposition 8.6, we have e1 + s, 0) € g. This implies 8 $ 1 + s, contra­

dicting the choice of s. Hence I c e0 - 1, 00 ). 

COROLLARY Suppose I= ex0 , 00 ). 

If x0 < s < 8, then (Tn) is bounded, and every limit point of e,n) is 

a multiplicatiqn with centre O, 

ifs< x0 , then 'n ➔ •O (with centre o), 
ifs> 8 1 then L ➔ • 00 (with centre O). 

n 

PROOF Apply proposition 7.4, and, for the second part of the first state­

ment, proposition 8.6. 

We shall now consider the case that A1 is contained in a periodic set. 

Suppose 

Suppose ex1 - x0 )ex2 - x0 )-1 is rational. For convenience we assume that 

x0 = O, x1 and x2 are integral and ex1, x2 ) = 1. From part F of proposition 

10.4 above we know that there exists T € G, T ~ E, such that 

(10.10) Tg = gy. 

Let S denote the set of discontinuity points of g. The set Sis periodic 

modulo y. Ifs 4 S, then 

-1 As 
'ei) y Cg for i = 1, 2 

implies •e,) = '( 2). By proposition 7,4 the sequence (Tn) is bounded. Since 

each limit point 'ei) satisfies the inclusion above, the sequence converges 

to an element's€ G, and 

(10.11) -1A s 's y Cg, 
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Then Ac 'sgy-s = g 1 and also g 1 satisfies a functional equation ,•g1 = g1y. 

Moreover g 1 is continuous in 0, Hence we may as well assume that g is 

continuous in 0. 

Since g is continuous in m = x1, and 

we have 

,-lllpo~ = (x,, ,-mo)€ g 

P 1 = ( x,' y 1) € g 

In the three propositions below we shall see that the functional 

relation (10.10) for g induces an analogous functional relation for 's' 

where, for s 4 Sis defined by (10.11), and conversely. 
s 

In particular we shall see that the elements T5 commute, i.e. T8Tt = 

= TtT8 , and that Ts+i = T8T. Thus if a varies like Y, i.e. for alls ER 

a(t + s)a(t)-1 + ys fort+ 00 , then for the function$ we obtain that for 

integral k 

for t + oo, 

The guide set C of g for A, see definition 8.1, has the structure 

where his an element of M which satisfies 

hy = yh. 

This formulation reflects the symmetric role of the two axes. We can choose 

a new parameter such that$ varies like y and the function a satisfies for 

integral k 

fort+ 00 • 
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PROPOSITION 10,7 Let O € G be the translation Ox= x + 1. Suppose g €Mand 

T € G satisfy 

Tg = gcr, 

Let P1 , P2 € g where P2 = ,-kP1ok for some integer k. Then there exists 

h € M such that 

hO = Oh 

,-h(t)p_ 0 t € g 
l. 

This element his unique. 

for i = 1, 2 and all continuity points t of h. 

PROOF Suppose P1 = (x1 , y 1). The equation 

-h(t) 
T y 1 = g(x 1 - t) 

determines h(t) uniquely fort for which x1 - tis a continuity point of g. 

The right hand side depends continuously on t, hence so does the left hand 

side and so does h. Moreover 

-1 -h(t) __ -1 ( 
TT y 1 T gx1 -t) 

which implies h(t + 1) = h(t) + 1 if x1 +tis a continuity point of g. 

Hence hO = oh. 

By definition of h we have ,-h(t)P ot € g for all t. Hence also 
1 

PROPOSITION 10.8 Suppose h € M satisfies 

ho= Oh 

where o € G is the translation Ox= x + 1. Suppose moreover .that g € M, 

T € G, P € g satisfy 

for all continuity points t of h. 
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Then 

Tg = g<J. 

PROOF Let x be a continuity point of g. Then 

for some t € R. Also tis a continuity point of h, and 

(crx, -rg(x)) = (-r-r-h(t)Pcrtcr- 1) 

= (-r-h(t-1)Pcrt-1) € g. 

PROPOSITION 10.9 Suppose h € M satisfies 

(10.12) hcr = crh 

where cr € G is the translation crx = x + 1. Suppose moreover that g € M, 

T € G, P1, P2 € g and 

for i = 1,2 and all continuity points t of h. 

Then 

for some s €Rand 

PROOF We have 

-s2 s 1 
for some (c 1, c2 ) € h (since -r P1cr varies over gas (s 1, s2 ) varies over 

h). Hence whenever x2 - tis a continuity point of g 

-h(t) -c2 c1 t 
= L L P,a a 

-h(t+c1) t+c 1 
= T Pf 



This implies that 

In chapter 3 we have seen that then 

with 1r1 periodic modulo c 1• By ( 10.12) also 

h(t) = t + 1T(t) 

with 1T periodic modulo 1. Letting t +~we find c2 = c 1, Settings= c 1 

completes the proof, 
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11 Regular variation and limit laws 

In this chapter we shall prove the following theorem, 

THEOREM 11.1 Suppose that in addition to the basic situation (1,1) 

ax + u in distribution 
n-n -

anln + ~ in distribution 

y ~ f(x) n = 1,2, •.. -n -n 

a +"' n 

we are given that 

-1 
an+1an + E 

t. C {yt I t E IR} for some y E G, 

Then 

for some¢ E ~. Moreover there exists o E G such that one of the following 

holds 

(11.1) 

(11.2) 

for all t E R 

where I is the interior of the projection of¢ on the x-axis, 

The proof of this theorem occupies the greater part of this chapter. 

We shall need two lemmas, 

LEMMA 11.1 Let Ac g EM contain two points Pi= (xi, yi), i = 1,2, with 

0 < x1 and y 1 < y2 . For each t > 0 let Tt E G satisfy 

-1A t Tt /J C g 

where crx = e.x, where e = 2,718 .. , 



If g(O+) is finite, then 

-1 -+­
't •O (with centre g(O+)) fort-+- 00, 

. -1 ( ) lJ.m 't y. = g O+ 
t-- i 

for i = 1, 2. 

LEMMA 11,2 Suppose O < x1 < x2 and y 1 < y2 . For each y < y 1 there exist 

unique a> 0 and p > 0 such that 

for i = 1, 2, 

The exponent p = p(y) is a strictly increasing continuous function from 

( ...oo, y 1 ) into ( O, 00) • 

PROOF The set of linear equations 

log a+ p log xi= log (yi - y) 

has a unique solution (log a, p) and 

log(y2 - y) - log(y 1 - y) 
p = -------------- > o. log x2 - log x1 

i = 1, 2 

Y2 -y Y2 -Y1 
Moreover --- =_.a; ___ + 1 is strictly increasing and continuous from 

Y1-Y Y1 -y 

(-00 , y 1) into (0, 00 ). Hence so is p. 

PROOF of theorem 11,1 By theorem 2.1 there exists a unique probability 

measure A with support A contained in some element of M such that A has 
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• Q -1 . • marginals~ and~- By theorem 2.2 the sequenceµ fa in M converges onto"• 
. . . n n M 

(See definition 2,1.) Because of the definition of = we need only prove 

that Ac¢ for some¢€~ which satisfies one of the two relations (11.1}, 

(11.2). 

By proposition 9,7 the inclusion t c {yt I t € R} implies that there 

exists a continuous function a: [O, 00)-+- G which varies like yt (or like 

y-t) and a sequence t -+- 00 such that a = a(t ). By reordering the sequence 
n n n -1 e 

an we may suppose that the tn are non-decreasing and that a(t) = (an+1an) an 
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fort= t + S(t 1 - t) n n+ n with 8 E [O, 1). By proposition 7.1 there exists 

[O, 00 ) + G, defined by 13(t) = (13 +113-1)813 with t a continuous function a : n n n 
and 8 as above) such that 

gt:= 13(t)fa-1(t) converges onto A fort+ 00 • 

If y is a translation, then theorem 11.1 follows from proposition 10.4. 

If y is not a translation we may and do assume that yx = e.x (or yx = e-1 .x). 

This may be realized by an appropriate choice of the origin on the x-axis 

and if need be a transformation t' = At, with A> O, of the argument of the 

functions a and a. 
Th t t . . . . t e case y x = e .xis in many respects similar to the case y x = x + t 

which has been treated in the previous chapter. The main difference results 

from the fact that R contains three Y-invariant subsets 

{o} (0, oo) 

if y is a multiplication with centre O, and that there is a certain amount 

of independence between the three parts of the limit function on these sets. 

This is already visible in the sixth function in the list in the definition 

oft in chapter 1. 

From the analytical version of the inc.lusion T~ 1Ayt c g in chapter 8, 

see equation (8.3), 

where (xi, yi) for i = 0,1,2 lie in A and we assume½< O < x0 < x1 and 

Yo< y 1, it follows by varying t over R, that the value of g for any 

x = y-tx2 < O, with the exception of a countable set, may be determined from 

the values of g on the positive axis. 

The proof of the theorem is complicated by the fact that there is a 

host of particular cases which we have to consider separately. In general 

there are two courses open to us if we wish to decide whether A is contained 

in some element oft. 

1. A is so small that we can find an element~ Et which contains A. For 

instance A may consist of two points. In this case also every subset of A 

is contained in this element~- These cases will be called trivial cases. 
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2. A is so large, that convergence of gt onto A fort+ 00 implies that~ 

converges to an element¢€~ fort+ 00 , that gt has a limit point in~ for 

t + 00 or that every limit point g of gt fort+ 00 satisfies certain funct­

ional equations. Obviously if gt converges onto a set containing A for 

t + 00 , it will also have these same properties. 

We shall now specify the different cases which we shall consider in 

more detail. We shall assume that A is normal (see definition 8.6). ~1 will 

denote the subset of~ consisting of all elements¢€~ which satisfy one 

of the relations (11.1) or (11,2). 

Outline of the different cases in the proof of theorem 11.1 

I. Ac {x ~ o} or Ac {x so}, 

II. A contains points in both open half planes {x > O} and {x < o}. In view 

of the obvious symmetry, ( x, y) 1+ (-x, -y), we need only distinguish 

five cases. 

A An {x > O} contains three points, not all on the same horizontal or 

vertical line. 

B A contains two line segments, which do not both lie on the same hori­

zontal or vertical line. 

C An {x = O} is empty, and A is divided over the two half planes as 

follows. 

1 • ( 2 points, 2 points) 

2. (2 points, horizontal line segment) 

3, (2 points, vertical line segment). 

D An {x = O} consists of one point, and A is divided over the two open 

half planes as follows. 

1. (1 point, 2 points) 

2. (1 point, horizontal line segment) 

3, (1 point, vertical line segment). 

E An {x = o} contains two points. 
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We now turn to a detailed consideration of these cases. 

I. Ac {x ~ o} 

a AC {x > o} 

The proof that Ac$ for some$€ t 1 is similar to that given in pro­

position 10,4 in the previous chapter for the case that aCt) varies like a 

translation, and is omitted. 

b Ac {x ~ o} and An {x = o} is ~on-empty 

There exists a limit point g of gt fort+ 00 , This limit point g agrees 

with an element$€ t 1, at least on a set {akc I k integral and positive} 

with a and c positive and a< 1, If A contains a point on the y-axis, then 

{$Cake) I k integral} is bounded below, sey lim $Cake)= y0 , and we may 
k._ 

choose$€ t 1 to contain the vertical halfline {(O, y) I y s y0}. 

II. A contains points in both open half planes {x > O} and {x < O} 

A An {x > O} contains three points, not all on the the same horizontal 

or vertical line 

Let g be a limit point of~ fort + 00 , 

If A does not lie in an element$€ M0 , then by proposition 8.5, since 

U is an open neighbourhood of E, for alls€ R there exists T € G such that s 

-1A s 's y Cg 

and hence g is finite on the whole real line. 

This implies that Ac$€ M0 if An {x > O} contains a horizontal or 

vertical line segment. See propositions 10.5 and 10.6, 

If An {x > o} contains three points, no two of which lie on the same 

horizontal or vertical line, then either e(t) varies like T for some T € G, 

T ~ E, and ,-sAys cg for alls€ R, which implies g € t, or there exists 

h € M such that hO = Oh for some translation ox= x + p and 

for alls. 
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(See proposition 10,7) Then ,Pg= gyP (proposition 10.8) and if we choose 

p > 0 and minimal, then any two points of A in the same half plane are con­

gruent modulo yP (see proposition 10,9), This implies that glA1 = ¢1A1 
where A1 is the projection of A on the x-axis, and¢ E ~ satisfies 

,s¢y-s =¢for alls. 

B A contains two line segments 

By proposition 8.6 this implies that Ac¢ with¢ E M0 or ¢- 1 E M0 • 

Then¢ E ~ 1 unless¢ has the form ¢(x) = a sign(x - x0 ) for some a E G and 

x 0 ~ O. However, if we cannot choose x0 = O, then case A applies. 

C A has no points on the y-axis 

We may and do assume that A does not contain two line segments and that 

A contains no more than two points or one line segment in each of the half 

planes {x > o} and {x < o}. The possible distributions of these over the two 

half planes are, up to a trivial symmetry, 

1. (2 points, 2 points) 

2. (2 points, horizontal) 

3, (2 points, vertical). 

For 1. and 2. we use lemma 11.2 to construct a function which contains 

A and has the form 

y(x) = y0 + a 1xp X ~ 0 

= Yo - a21xlp X < 0 

with a 1 ~ O and a2 and p positive. 

For 3, we choose¢ E M0• 

D An {x = o} = {(O, O)} 

1. A contains four points P, P0 , P1 , P2 , with Pi= (xi, yi) such that 
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-1 -1 Let cr0x = x2x 1 .x, 'd' = y2y 1 .y and let g be a limit point of~ for 

t + 00 • We shall prove that g satisfies the functional equation 

Indeed, since A is not constant on J = (;, x2 ), there exists for each 

t ER an element 't E G such that 

-1 t 
't Ay Cg. 

-1 (See proposition 8.4) By lemma 11.1 we have 't + •O (with centre g(O+)) 
. * -1 t ( ( )) · A in G fort+ 00 • Hence 't Qy + o, g O+ fort+ 00 for every point Q E . 

In particular for Q = P we obtain g(O-) = g(O+), Hence g is continuous in 0 . 
. ( -t -1 ( )) For Q = P0 we obtain y O, 't g O = (0, 0) for all t. Hence 'to= O for 

all t, and there exists h EM such that 

in the sense that (s, t) Eh implies 

-tA s y y Cg, 

There is a one-one correspondence between the points (a,$) of the guide set 

C of A for g, the points (s, t) Eh and the points of gin the half plane 

{x > O} as follows 

(ys, yt) E C 

(s, t) E h 

-s 
(y x1, -t y y 1) € 

-s 
(y x2, -t y Y2) E 

g 

g. 

(Indeed (a,$) EC implies 
-1 -1 $ , 0 y2 ) E g, and hence 

$-1y 1) E g with (a,$) EC 



D2. Choose ~(x) = a sign x. 

D3. Choose~€ M0 • 

E A contains a vertical line segment on the y-axis 

Then Ac a sign x for suitable a. See table 8.1, case 3b. 
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12 Domains of attraction II 

Clearly it is of some interest to know which f EM can occur in the 

relation 

(12.1) S(t)fa(t)-1 converges onto A fort+ 00 

where a(t) varies like y for some y ~ E. 

If A is sufficiently large, then (12,1) implies 

fort+ 00 

with¢ E ~(y, T) and T ~ E. In this case S(t) varies like T, (See the last 

statement in proposition 10.4, and table 3,2.) 

For convenience we restrict ourselves to the case that a(t) varies like 

a translation and assume that 

(12.2) furt+ 00 

where¢ E ~O (see exercise 1.8 for notation). 

The class of these f has been investigated by de Haan [1970] in a 

slightly different setting for the case that 

(12,3) a(t)x = x - t for all x ER and t ~ O. 

He has shown, [1970, section 1.4], that if f and Sare measurable 

functions on [0, 00 ) and convergence in (12.2) is pointwise, then the follow­

ing holds. 

If ¢(x) = b + aeAX with b ER and a and A positive, then 

f(t) + 00 

f(t + x) + eAx 
f(t) 

fort+ 00 

fort+ 00 and all x. 

If ¢(x) = b - ae-Ax with b ER and a and A positive, then 



f(t) < lim f(t) = c < 00 

t--

C - f(t + x) 
C - f(t) 

-+ e -AX fort-+ oo and all x. 

If ~(x) = b + ax with b ER and a positive, then 

f( t + x) -+ 1 
f(t) fort-+ 00 and all x. 
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In the first two cases where~ is exponential the converse also holds 

(trivially), but if~ is affine, this is no longer so. For this case we 

introduce the sets E0 and n0 . See de Haan [1970, definition 1.1.1 and defin­

ition 1.4.1]. 

DEFINITION 12.1 E0 is the set of all measurable functions g 

which satisfy 

g(t) > 0 

g(t + x)/g(t)-+ 1 

fort> to 

for t -+ 00 • 

[O, 00 ) -+ R 

DEFINITION 12.2 n0 is the set of all measurable functions f [O, 00 ) -+ R 

which satisfy 

f(t + 1) - f(t) > 0 

_f.._( t,a__+--:;;Xa..)_-....;f:;..;(=--'t'-'-) -+ X 
f(t + 1) - f(t) 

fort> t 0 

fort-+ 00 for all x ER. 

Observe that E0 and n0 are convex cones. If g E E0 is strictly positive, 

then as a function into the multiplicative group of positive reals it varies 

like the trivial homomorphism 1. 

If~ is locally integrable on [O, 00 ) and ~(t)-+ 0 fort-+ 00 , then 
X 

g(x) = exp J ~(t)dt is an element of E0 . If g E E0 is locally integrable, 
0 X 

then f(x) = J g(t)dt is an element of n0 • 
0 

We now give a result of de Haan which gives some insight in the relation 

between n0 and E0 • We first need a preliminary result. 

PROPOSITION 12A (de Haan [1970, (1,3,8) and ( 1,3,9)]). Let f and g be 

locally integrable functions on [O, 00 ). Then the following two equalities 
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are equivalent 

f(x) = g(x) 

g(x) = f(x) 

00 

X 

+ f g(t)dt 
0 

-X X t 
- e J e f(t)dt 

0 

(= J e-s{f(x) - f(x - s))ds if we set f(s) = 0 on [-oo, 0)) 
0 

PROPOSITION 12B (de Haan [1970, theorem 1.4.1]). Let f and g be locally 

integrable functions on [O, 00 ) which satisfy one of the equivalent relations 

in proposition 12A. If f E n0 , then g E E0 . If g E E0 , then f E n0 • 

If instead of (12,3) one assumes that a varies like the translation 

x - 1, then (12.2) implies 

with f 1 and f 2 E n0 (de Haan, oral communication, see also proposition 12,7), 

In this chapter we shall give a more geometric treatment of these 

results. 

We shall see that there exists a very simple connection between elements 

of n0 and functions a(t) which vary like the translation x - 1, For any 

x0 ER the function f(t) = a(t)x0 is an element of n0 . 

The relation of asymptotic equality played an important role in the 

theory of regular variation in chapter 9, Recall that 

if a(t) varies like y and a(t) ~ a(t) fort+ 00 , then a(t) varies like 

y, see proposition 9,4, 

if a(t) varies like y, there exists a(t} with a(t) ~ a(t) fort+ 00 , 

such that a(t) is C00 and A(t) = a(t)!t a(t)- 1 + A fort+ 00 , see proposition 

9,10, 

if 8(t)fa(t)- 1 +¢and a(t) ~ a(t) and $(t) ~ 8(t), then S(t)fa(t)-1 + ¢ 

fort+ 00 • 

We shall see that for non-decreasing functions in n0 the asymptotic 

equality 

a(t) ~ a(t) fort+ oo 



corresponds to the relation 

g(t) - g(t) + 0 for t + t* - 0 

~ -1 where g and g are the inverse functions to the functions f(t) = a(t) x0 
- - -1 * and f(t) = a(t) x0 in rr0 , and t = lim f(x) ma:y be infinite. 

X-k>O 

We first prove a very general result. 
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PROPOSITION 12.1 Suppose f E: M and a and 13 are continuous functions from 

[O, oo) into g, such that 

13(t)fa(t)-1 converges onto A fort+ 00 

where A= {(O, O), (1, 1)}. Then there exist continuous functions a(t) and 

a(t) asymptotically equal to a(t) and f3(t) fort+ 00 such that 

$(t)fa(t)-1 contains A for all t ~ 0, 

PROOF By definition f = {(x(s), y(s)) I s e R} with x and y continuous and 

non-decreasing and x(s) + y(s) = s 

a(t) ~ a(t) = a and f3(t) ~ 13(t) . n n n 
P1 € f such that n 

for alls E: R. Choose tn + 00 such that 

= 13 fort st< t +1 and t + 00 • Choose n n n 

for i = O, 1. 

Choose an and an such that 

for i = O, 1 and all n. 

Then obviously a ~ a and $ ~ 13 • 
. n . n . n n 

Now P1 = (x(s1 ), y(s1 )) and if we define n n n 

for i = 1, 2 

fort= tn + 8(tn+1 - tn) and si = s! + 8(s!+1 - s!> with Os 8 < 1, then 

Pi(t) is continuous for i = 1, 2 and there exist unique continuous functions 

a(t) and $(t) such that 
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Moreover a(t) = a ~ a n n n+1 
have a(t) ~ a(t) which implies 

n 
This proves the proposition. 

Now suppose 

We may write this as 

for i = O, 1 and all t ~ O. 

and hence fort E [tn, tn+1) and t + 00 we 

a(t) ~ a(t) fort+ 00 • Similarly for S(t). 

for all t ~ 0. 

( 12. 4) {(a(t), b(t)) I t ~ o} cf 

-1 1 where a(t) = a(t) x0 and b(t) = S(t)- y0 • The functions a(t) and b(t) are 

continuous if a(t) and $(t} are. In particular if a(t) is strictly increas­

ing, then the inverse function is well defined, and we may formulate (12.4) 

as 

( 12, 5) f contains the graph of ba-1. 

If (12.4) holds and a(t) and S(t) vary like a0 and $0, then, setting 

Pt= {a(t + s), b(t + s)) for fixed s ER, 

and hence 

$(t)fa(t)-1 converges onto A fort+ 00 

where A is the curve {$~P0a~ J s ER}, which either is an element of~ or 

half an element of~ (see the proof of proposition 1,1). 

PROPOSITION 12.2 Suppose a [O, 00 ) + G varies like the translation x - 1, 

i.e. 

( 12 .6) fort+ 00 for alls. 

Set f(t) ( ) -1 . =at x0 with x0 fixed. Then f € IT0 . 
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PROOF The function f is measurable by definition 9,2. Also for s € R, 

( 12. 7) -1 a(t)f(t + s) = a(t)a(t + s) x0 + x0 + s fort+ 00 

hence a(t)f(t + 1) > a(t)f(t) and then f(t + 1) > f(t) fort> t 0 • Finally 

note that for alls€ R fort+ 00 , 

f(t + s) - f(t) _ a(t)f(t + s) - a(t)f(t) 
f(t + 1) - f(t) - a(t)f(t + 1) - a(t)f(t) 

COROLLARY f € n0 if f is measurable and S(t)f(t + x) + x for t + 00 for 

all x, for a function S(t). 

PROPOSITION 12,3 Suppose f € n0 and f(t + 1) > f(t) for all t ~ 0. Define 

a(t) € G by 

a(t)- 10 = f(t) 

a(t)- 11 = f(t + 1). 

Then a is measurable and satisfies (12.6). 

PROOF We have a(t)- 1x = (f(t + 1) - f(t))x + f(t) for x €Rand hence 

a(t)y = y - f(t) 
f(t + 1) - f(t) 

S · · )- 1 ( + s)-l 1 . . d ubstituting y = a(t + s O and y =at gives the desire result. 

COROLLARY If f € IT0 , the convergence 

f(t + x) - f(t) 
f(t + 1) - f(t) + X 

is uniform on bounded x-intervals. 

fort+ 00 

PROOF This follows from the analogous statement for the function a, proved 

in proposition 9,3. 

PROPOSITION 12.4 Suppose a(t) and S(t) vary like the translation x - 1. 

Define f(t) = a(t)- 1O and g(t) = S(t)-1O. Then a(t) ~ S(t) fort+ 00 if and 
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only if f and g are related as follows 

( 12.8) for every E > O there exists t 0 such that fort~ t 0 
g(t - E) < f(t) < g(t + E), 

PROOF Suppose (12.8) holds. We may write the inequalities above as 

The inequalities remain valid if we multiply on the left by B(t). This gives 

(12.9) 

The left hand side converges to -E, the right hand side to +E for t + 00 , 

Since E > 0 is arbitrary, we find 

for t + co, 

Similarly, multiplying on the left by B(t - 1), we have 

fort+ co 

this implies 

B<t - 1)a(t - 1)-11 + 1 fort+ 00 , 

Hence B(t) ~ a(t) fort+ 00 , 

Conversely if B(t) ~ a(t) fort+ 00 , then (12,9) holds for E > O for 

t ~ t 0 and hence (12.8), 

REMARK If f and g are non-decreasing we may express (12,8) simply ae 

fort+ t* 

where f- 1 is the inverse function to f, obtained by reflecting the graph of 

fin the diagonal, and similarly for g-1, and t* is the common upper bound 

off and g (which may be finite). Compare the relation of tail equivalence 

introduced in Resnick [1971]. 
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PROPOSITION 12,5 (von Mises [1936]) Let f be twice differentiable on [O, co) 

and f' strictly positive on [O, co), If f"(x)/f'(x) -+ O for x-+ 00 , then 

f E: n0 • 

PROOF Use the second remark after definition 12,2 with lj, = f"/f'. 

PROPOSITION 12.6 Suppose f E: n0 . There exists g E: n0 satisfying the con­

ditions of proposition 12,5 such that (12.8) holds. We may even choose g to 
00 

be C, 

PROOF Define a: [O, 00 )-+ Gas in proposition 12,3, By proposition 9,9 

there exists a: [O, 00 )-+ G such that a(t) ~ a(t) fort-+ 00 and a is C00
• 

This function a is defined in the remark to proposition 9,9 by 

00 

where mis a non-negative C -function with compact support, such that 

J m(s)ds = 1 and f sm(s)ds = o. 
Set g(x) : = f f(x - s)m(s)ds = a(x)- 10. Then 

g'(x) = f f(x - s)m'(s)ds 

g"(x) = J f(x - s)m"(s)ds 

and since J m'(s)ds = J m"(s)ds = J sm"(s)ds = O, and 

f(x) - f(x - s) = s + 0( 1) 
f(x) - f(x - 1) 

uniformly on bounded s-intervals, we have 

g' (x). (f(x) f(x 1) )-1 = I 
g"(x) .( f(x) f(x 1 ) ) - 1 = I 

which proves the proposition, 

Compare Balkema and de Haan [1972]. 

for x -+ 00 

(s + 0(1))m'(s)ds 

(s + 0(1))m"(s)ds 

-+ 1 

-+ 0 

Another more trivial characterization of n0 is the following. Let us 

call a sequence (xn) normal if 
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Obviously the sequence f(n) is normal if f € TIO• Conversely suppose (f(n)} 

is normal, f is affine on each interval (n, n+l) and f is continuous on 

[O, 00 ). It is not difficult to prove that this implies that f € nO, and even 

that for any g € nO there exists such a broken linear function f such that 

(12.8) holds. (Compare propositions 9,5 and 9.6.) 

DEFINITION 12.3 FO is the set of all f € M for which there exist continuous 

functions a and S from [O, 00 ) into G, which vary like the translation x - 1, 

such that S(t)fa(t)-l +€fort+ oo 

Clearly FO is the union of D(E, a) over all continuous functions a from 

[O, 00 ) into G, which vary like the translation x - 1. Here D(E, a) is the 

domain of attraction of£ with respect to the function a, see definition 5.1. 

Since D(E, a)= D(E, a) if a(t) ~ a(t) fort+ 00 (even if a(t)a(t)-l is 

an arbitrary bounded function!), we may assume a to be the C00 function of 

proposition 12.6. 

Suppose f € D(E, a), i.e. 

-1 and set a(t) = a(t) 0, Set b(t) = f(a(t)}. Then 

S(t)b(t + x) = S(t)f{a(t + x)- 1O) + x 

-1 since a(t)a(t + x) O + x, and hence b(t) € nO• 

In view of the remarks following proposition 12.1 we obtain the follow­

ing result. 

PROPOSITION 12.7 Suppose f € M. Then f € FO if and only if f contains the 

graph of a function ba- 1 with a, b € nO, a(t) strictly increasing (and hence 

b(t) non-decreasing}. We may choose a(t) to be C00 and to satisfy 

a 11 ( t) /a' ( t) + 0 for t + 0. 

An intuitive geometric characterization off E FO is as follows. 
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Since a(t)fa(t)-1 certainly converges onto the set L = {(8, 8) I Os 8 s 1}, 

one should be able to move this line segment L continuously in the plane, so 

that 

1. the endpoints of L move along f, 

2, fluctuations in length and slope of the transformed line segment 

a{t)- 1La(t) should vanish fort+~, and 

3. asymptotically the transformed line segment should fit the curve. 

We make this more explicit in the next proposition. 

PROPOSITION 12,8 Suppose f € M contains a sequence of points Pn = (xn• yn) 

such that 

1, the sequences (xn) and (yn) are normal, i.e. 

xn+1 > X n for n ~ no 
X - xn-1 n + 
xn+1 - X n 

and similarly for (yn) • 

2. f is asymptotically affine between Pn and Pn+1, i.e. 

-1 I antan converges onto the set {(8, 8) 0 s 8 s 1} 

where an and an are the unique elements of G such that for n ~ n0 

a P a-1 = (O, 0) n n n 

anPn+1a~1 = (1, 1), 

Then there exist continuous functions a and a from [O, ~> into G, which vary 

like the translation x - 1, such that a(n) = an, S(n) = an and 

S(t)fa(t)-1 +€fort+~. 

PROOF Normality of the sequence (x) implies 
n 
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Hence 

Cl X ➔ 0 
n n 

which shows that 

Cl (l- 1 X ➔ X - 1 
n n-1 

and hence in general 

The same argument applies to the sequence (Sn) and yields 

Now suppose t ER. Sett= k + 0 with k = [t] and Os 0 < 1. There 

exists a sequence of points~ E f such that 

by definition of convergence onto. Hence 

0 -1 0 0 -1($ -1) -1 
µn-kQncin-k = µn-kµn n~cin cincin-k 

-+ (0+k, 0+k) = (t, t). 

-1 This proves that S fa -+ £. 
n n 

Let a and S be continuous functions such that 

ci(n) = a , S(n) 
n 

ci(t)ci- 1 ~ S(t)S- 1 
n n 

for Os 0 < 1, t = n+0 ➔ 00 

where yx = x - 1, then S(t)fci(t)-1 ➔ £fort ➔ 00 (since ci(t)ci- 1 and S(t)S-1 
n n 

fort= n+0, 0 s 0 < 1, are bounded fort~ t 0 ) and ci(t) and S(t) vary like 

the translation x - 1. 

This proves the proposition. 
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This proposition has a surprising consequence. The set F0 contains all 

curves f € M which have a positive derivative in at least one point. 

We only give an outline of the proof. 

Suppose f = {(x(t), y(t)) It€ R} with x and y continuous non-decreas­

ing and x(t) + y(t) = 2t. Assume f'(O) = 1. This implies that for any 

c € (O, 1) the curve f is asymptotically affine between the points Qn and 

Qn+1• where Qn = (x(-cn), y(-cn)). This enables us to construct a sequence 

(P) inf with properties 1 and 2 of the proposition. (We let c tend to 1.) 
n 
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13 On an equivalence relation for distributions 

DEFINITION 13.1 H denotes the set of all curves g € M which do not contain 

a horizontal or vertical line segment. 

Each element of His the graph of a homeomorphism of an open interval 

onto an open interval. Conversely the graph of an increasing homeomorphism 

of an open interval onto an open interval lies in H if it is a closed subset 

of R2 . 

DEFINITION 13.2 Let u and~ be real-valued random variables. We write 

H 
~ ~ V 

if there exists an element h € H such that v ~ h(u). We shall also write 
H - -

F ~ G for the corresponding distribution functions. 

The relation [ is an equivalence relation on the set of all distribut­

ion functions on R. If F g G then the probability distributions have the 

same number of discontinuities. These discontinuities are distributed in the 

same order along Rand corresponding discontinuities have the same height. 

Also any non-degenerate interval of constancy of F, {x I F(x) = p}, with 

0 < p < 1, corresponds to a non-degenerate interval of constancy of G, 

{x I G(x) = p}, and vice versa. 

THEOREM 13.1 If in addition to the basic situation (1.1) it is given that 

an+la~ 1 ➔ £,then v g u or v ~~(~)for some~€ w. 

PROOF The theorem follows from the proposition below. 

PROPOSITION 13. 1 

verges onto A and 

two points on the 

~ € w. 

If in addition to the basic situation (2,1), $nfa~1 con­

a ➔ oo, it is given that a +la- 1 ➔ £,and if A contains n n n 
same horizontal or vertical line, then Ac~ for some 

PROOF We may replace the sequences (an) and (Sn) by continuous functions a 

and$ from [O, 00 ) into G, such that a(t) ➔ 00 fort+ 00 , See proposition 7,1. 



We may also assume that S(t) + 00 fort+ 00 since else Ac¢ with 

¢-1 E M0 ct by proposition 7,5, 
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Because of the symmetry of the conditions we may assume that the two 

points lie on the same vertical line and that A is normal, see definition 

8.6. In particular A contains the line segment joining the two points. We 

assume that the line segment is the segment {(O, y) I y 1 ~ y ~ y2} on the 

y-axis. 

If A contains another line segment, not on the same line, then Ac¢ 

for some¢ Et by proposition 8.6. If A contains a point in the half plane 

{x > o} and a point in the half plane {x < O}, then Ac¢ with ¢-1 E M0 , 

see case 3b of table 8.1 and the remarks on case 3a. 

Rene~ to be specific we assume that Ac {x ~ o}, that An {x > O} 

contains at least three points and that A contains no other line segments, 

then the one described above. (If An {x > O} consists of one or two points 

-1 Let g be a limit point of gt = Stfa.t for t + 00 and let C be a guide 

set of g for A. See definition 8.1. Define 

c0 = {(o, ,) E c I oo = o}. 

-1 Clearly(£,£) E c0 • Suppose (o0 , , 0 ) E c0 and (o, T) EC with ,,0 close 

to£, so that the open intervals (y 1, y2 ) and T,01(y 1, y2 ) intersect. Then 

oo~ 1o =Oby proposition 8.6 and hence oo = O and (o, T) E c0 . The set c0 
is both open and closed in C, it is non-empty, and C is connected. Hence 

c0 = C. 

The projection of Con the first coordinate is contained in the one­

parameter subgroup of multiplications with centre O. Since it is connected 

and unbounded, it has the form 

where y ~£is a multiplication with centre O. 

In the first part of chapter 8 we have seen that we may choose a 
-1 -1 

sequence (on' 'n) EC such that on+lon + £, 'n+,'n +£and 

-1 
'ngcrn converges onto A. 

(Indeed Ac T gcr- 1 for all n.) 
n n 
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Define cr(t) = yt. Then cr = cr(t) where t + 00 and t +1 - t + O, and n n n n n 

If we define T(t) similarly, then by proposition 7,1 

T(t)gcr(t)- 1 converges onto A 

and since cr varies like Y, theorem 11.1 yields Ac¢ for some¢ E ~. 



14 Applications 

This chapter consists of five sections. 

Khinchine's theorem 

2 Extreme value theory 

3 Limit distributions for giants 

4 Order statistics 

5 Random variables in a topological interval 
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The first two sections contain classical results. We present proofs in 

terms of the theory developed in this book. Acquaintance with the theory of 

the previous 13 chapters is not needed to understand these proofs. Rather 

these proofs should be seen as simple examples of the more general theory. 

The third and fourth sections give outlines of some further applications. 

The final section considers the following more philosophical question. If 

we agree that one cannot say that something is twice as useful or one unit 

more useful than something else, why does one express utility by real numbers, 

and what is the sense in using affine norming transformations for such vari­

ables as utility, intelligence, sensitivity? 
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14,1 Khinchine's theorem on the convergence of types 

THEOREM 14.1 (Khinchine [1938], Gnedenko [1943]). Suppose that 

ax + u in distribution 
n-n -

Bn~n + ! in distribution 

where x, u and v are real-valued random variables, and a and B positive 
-n - - n n 

affine transformations on R. If~ and! are non-constant, there exists a 

positive affine transformation yon R such that 

o a-1 
~n n + Y 

v = ~ in distribution. 

PROOF Let w be a random variable with the standard normal distribution (or 

more generally with a strictly increasing, continuous distribution function). 

We choose non-decreasing functions f, g and hon R such that n 

X t;1 f (w) 
-n n -

M '!! = g(!) 

M 
V = h(!)• 

This is possible by theorem 2.1. The conditions above imply 

anfn + g weakly 

Bf + h weakly, n n 

See theorem 2.2 and corollary 2 to this theorem. The theorem above now is 

an immediate consequence of the following proposition. 

PROPOSITION 14.1 Suppose 

anfn + g weakly 

Bnfn + h weakly 

with fn, g and h non-decreasing functions on R, and a and B positive affine 
n n 
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transformations on R, If g and hare non-constant, then there exists a posit­

ive affine transformation yon R such that 

h = yg, 

PROOF Let x1 and x2 be continuity points of both hand g such that 

g(x1) < g(x2) and h(x1) < h(x2). On setting ana~1x =: anx + bn' we have 

( 14. 1) a a f ( x) + b = $ f (x). nnn n nn 

Hence, substituting x1 and x2 and subtracting, 

We let n tend to®• Then an converges to a positive constant a, since 

g(x2) - g(x1) and h(x2 ) - h(x1) are positive, and 

On substituting x = x1 in (14.1) it follows that bn + b €Rand 

ag(x) + b = h(x). 

This proves the proposition if we set yx: =ax+ b, 

REMARK The reference to Khinchine [1938] is due to Mejzler [1965, page 206]. 

The second conclusion in the theorem is due to Khinchine, the first one to 

Gnedenko, 
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14.2 Extreme value theory 

For a random variable y let l denote the maximum of n independent - nn ¾, 

random variables ! 1, ••• ,ln• each distributed like l• Recall that three kinds 

of limit law are possible for the sequence rnn for n +®. The distribution 

functions of these limit laws are usually denoted by A, ~A and ~A' where A 

is a positive constant, and,,see Gnedenko [1943], 

-x 
A(x) = -e e 

-A 
~A(x) = -x 

X > 0 e 
A 

~A(x) = -lxl 
X < o. e 

We shall here give a new derivation of these limit laws. This derivation 

formed the source for the theory of the first part of the present work. It 

may serve as a concrete example of this theory. 

We first observe that if xis distributed according to the limit dis­

tribution A(x), then x is distributed like x + log n. -nn 

P{x s ~} = P{:1 s x, ... ' X s x} 
-nn -n 

= (P{: s x})n 

= (A(x))n = A(x - log n). 

Nov let l be an arbitrary random variable. There exists a non-decreas­

ing function f on R such that! is distributed like f(:>• The function f is 

uniquely determined in its continuity points by the random variable l• See 

theorem 2.1. Moreover the monotonicity off implies that y is distributed -nn 
like f(x ) , and hence like f(x + log n). 

-nn -

lnn = max (l1••··•ln) 

= max (f(:1), ••• ,f(:n>) 

= f (max <:1, ... ,:n>) 

= f(:nn) = f(: + log n) in distribution. 

Suppose there exist sequences of norming constants an> O and bn € R 

such that 
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(14,2) anlnn + bn + v in distribution. 

We set Sy= a y + b, and ax= x - log n. Then a and S are positive n n n n n n 
affine transformations on R, and we have the basic situation (1.1). 

ax = x in distribution 
n-nn 

snlnn + ! in distribution 

M 
lnn = f(~nn) 

CL -+ co. 
n 

Since A(x) is strictly increasing on the whole real line, we may apply 

table 3,2 with~ equal to the set of all translations, as one easily verif­

ies. However, it is more instructive to work through the example in greater 

detail. 

We write~~ h(~) with h non-decreasing on R. Then (14,2) becomes 

Snf(~ + log n) + h(x) in distribution. 

Since A(x), the distribution function of~• is strictly increasing on the 

whole real line, this implies 

( 14.3) Snf(x + log n) + h(x) weakly on R. 

See theorem 2.2 and proposition 2,3, 
1 Because log(n+1) - log n ~ n + O, we may as well consider the limit 

relation 

S(t)f(x + t) + h(x) weakly on R fort+ 00 • 

See exercise 1.2 or proposition 7,1. This step is not essential for the 

argument, but it simplifies notation. In order to avoid trivialities, we 

assume h to be non-constant. 

On comparing, for s € R, the two limit relations 

S(t)f(x + t) + h(x) for t + 00 

S(t + s)f(x - s + t + s) + h(x - s) for t + oo 
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we obtain by proposition 14.1 that there exists a positive affine transform­

ation T such that 
s 

fort + co 

T h(x) = h(x - s) 
s 

for x € B such that x and x - s are 

continuity points of h. The first of these two relations forms the basis 

for the theory of regular variation developed in chapter 9, the second, for 

fixed s € B, is a particular case of the functional equation Th= ha which 

is studied in chapter 3. It is not hard to see that in our case the only 

non-decreasing, non-constant functions h which satisfy such an equation for 

all s· € B, are 

h(;) = b + ax 

h(x) = b + aex/A 

-x/A h(x) = b - ae 

with A> O, a> 0 and b € B. (For instance note that TT = T +. This im-r s r s 
plies by exercise 1.4 and proposition 9,2 that T = Ts for some T € G and 

s 
alls€ B. Then h € ~(a, T) where a is a translation, and T ~€since his 

non-constant. Thus h € ~0 , see exercise 1.8.) 
Combining the results we obtain that vis distributed like h(~). We are 

only interested in limit types and may therefore assume a= 1 and b = O. 

This yields for the three cases of h above 

P{! s v} = P{~ s v} = A(v), 

P{v s v} = P{e6/A s v} = P{~ s Alog v} = ~A(v), 

P{v s v} = P{-e-•/A s v} = P{~ s - Aloglvl} = lA(v), 

V > 0, 

V < 0, 

and these are the only non-degenerate limit laws possible for a sequence 

<inn)· 
We shall now briefly consider limit laws for subsequerces <rkk) where 

k runs through an unbounded set K of positive integers. The limit types in 

this case have been obt~ined by Mejzler [1965], 
Instead of (14.3) we now only have convergence of a subsequence. We 

write this as 



( 14.4) Skf(x + log k) + h(x) weakly on R fork€ K, 

It is convenient to introduce the set ~O c (O, 00 ), where we define 

s € ~O if there exist sequences (k) and (k') in K such that k + 00 and n n n 

log k~ - log kn+ s. 

(Thus s € ~O if and only if a € ~ = A(<\), where ax = x + s, s > o.) 
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Now supposes€ ·~0 • Then there exist sequences (k) and (k') in K such n n 
that kn+ 00 and log k~ - log kn+ s, and 

S~ f(x + log kn) + h(x). 

S~f(x + log k~) + h(x). 

If his non-constant we obtain by a slight modification of the proof of 

proposition 14.1 

with 's € G, 's ~ €, 

We distinguish three cases. 

1. ~O is empty. In this case the subsequence <rkk)' k € K, is so thin that 

any limit is possible in (14.4) as one easily verifies. See also the first 

pages of chapter 4. 

2. Every s € ~O is an integral multiple of a fixed positive real number q 

and q is maximal, i.e. g.c.d, ~O = q > O. In this case h satisfies the 

functional equation ,h(x) = h(x + q) for some element,€ G, with,~€, 

Then his one of the functions 

h(x) = b + a(x + n(x)) 

h(x) = b + ae(x + n(x))/A 

h(x) = b - ae-(x + n(x))/A 
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with a> 0, A> 0, b €Rand TI periodic modulo q such that x + TI(x) is non­

decreasing. See table 3.1. 

3. The elements of ~O have no common divisor. In this case the periodic 

part TI is a constant function which may be taken to be zero, and we obtain 

the three Gnedenko limit classes. 

EXAMPLE Let r have a geometric distribution on the non-negative integers, 

n=o,1,2, ••. 

with p € (0, 1) fixed. We shall see that lk.k converges in type if we take 

K = {k1,k2 , ••• } with kn p-n. We first determine f non-decreasing on R 

such that 

Clearly f is a step function which only takes the values 0,1,2, ••.• The 

function f has jumps of height 1 in the points x1 < x2 < ••• ,and is constant 

in between. Moreover 

P{x > x} = P{f(x) ~ n} = pn. 
- n -

Hence we can determine the values of x from the equation 
n 

and since 

X + oo 

we have 

n + oo 

and therefore 

n + oo, 

Roughly speaking f is approximately equal to the integral part of x/A 

for large values of x, where A= -log p. More precisely 
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f(x + An) - n + [x/A] weak:cy 

where [y] denotes the integral part of y, (Indeed if xis a continuity point 

of the limit function, then x = kA + 6 with O < 6 < A and k integral. Then 

f(x +An)= f(6 + A(n + k)) = n + k for n ~ n0 since 111A - xm + 0 for m+ 00.) 

Thus if K is the set {k1,k2 , ... } with kn~ p-n, and if !3itY = y - n for 

k = kn' then 

and hence 

where vis distributed like [~/A], 
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14,3 Limit distributions for giants 

Given a random variable x with distribution function F(x) and tail 

distribution R(x) = 1 - F(x) we may restrict this random variable x by con­

sidering only a fraction, e-t say, of the total population. In par;icular 

we shall consider the fraction of large values of x. This new random variable 

we denote by ~t· It has tail distribution 

This situation occurs in practice if we study extreme weather conditions, 

for instance heat waves or storms. A slightly different problem has been 

studied by Balkema and de Haan in [1972']. 

We shall now determine the possible limit types fort+ 00 • 

Obviously if~ has an exponential distribution, say P{x > x} = R(x) = 
-x . = e , then ~t = x +tin distrib~tion for all t > O. Hence the exponenti.al 

distribution is a limit distribution fort+ 00 • 

Let l be an arbitrary random variable. Set l = f(~) with f non-decreas­

ing on (0, 00 ). Then lt = f(~t) = f(~ + t) in distribution. (Since the funct­

ion f is non-decreasing, it maps the maximal e-t-fraction of the x-population 

onto the maximal e-t_fraction of they-population.) 

Suppose lt can be normed to converge to a non-degenerate limit random 

variable v fort+ oo, i.e. there exists a function 8: [O, 00 ) + G such that 

8(t)rt + v in distribution fort+ 00 • 

Then v = h(~) for some h non-decreasing and non-constant on (O, 00 ), and 

8(t)f(x + t) + h(x) weakly on (0, 00 ). 

Fors€ R, compare the two limit relations 

8(t)f(x + t) + h(x) X > 0 

8(t + s)f(x + t) + h(x - s) X - S > 0, 

By the arguments of proposition 14.1 we have an element T € G such that s 



S(t + s)S(t)-1 + T 
s 
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f'or t + 00 

f'or x > O, x - s > O, 

whenever his non-constant on ( Isl, 00 ). As in section 2 we find that T 5 = T 8 

f'or some T € G, and hence that his the restriction of'~ to (0, 00 ) f'or some 

~. € <Po. 

with 

have 

Thus his one of' the f'ollowing f'unctions 

h(x) = b + ax 

h(x) = b + aex/>.. 

h(x) = b - ae-x/A 

A > o, a > 0 and b € R. For b = 0 and a = 1 the limit distribution tails 

one of' the f'orms 

P{y > v} = P{x > v} = -v 
V > 0 e 

P{v > v} = P{e~/A > v} = P{x > Alog v} = -A 
V > V 

P{v > v} = P{-e-~/A > v} = P{~ > -Aloglvl} = Iv!>.. -1 < V < o. 

As in section 2 we can also develop the theory f'or sequences tn + 00 • 

We obtain similar results, except that there is one new possible degeneration 

(due to the f'act that the support of' the exponential distribution has a 

f'inite endpoint). If' ~O is the set of' positive limit points of' the double 

sequence Ct - t ), and if' inf ~O = q > O, then any non-decreasing function n m 
h which is constant on (q, 00 ) may occur in the limit. 
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14,4 Order statistics 

In the introduction to this book we considered the random variables 

!nk and lnk' These were defined as the kth order statistic fran a sample of 

size n _from respectively the homogeneous distribution on (O, 1) and the 

distribution F(y). 

It is well known that 

Suppose n + 00 , k + 00 such that o < 1 < 1-o, where o is a positive constant. n 
Set 

y X = .!....=..J! n C1 
. I 2 withµ= kn, C1 = µ(1 - µ) 

n 

then for the standardized variables :!:nk = Yn!nk 

u n-k 
P{:!:nk s u} = en J ( µ + C1s )k-1 ( 1 - µ - crs) ds 

-µ/cr 
u 

·+ ~) 
k-1 

-~) 
n-k 

= CI I (, ( 1 ds n -µ/cr µ 1 - µ 

and since 

1/J( s) = µlog(1 + ~) + (1 - µ)log(1 - _J!L_) µ 1 - µ 

for crs + O, 

and 1/J is a concave function, the integrand converges boundedly toe -s212 

and hence the distribution of y xnk converges to the standard normal distrib­n-
ution. 

As noted in the introduction, ynk = f(x k), where f €Mis the inverse 
- -n 

to the distribution function F0 of l· 
If F has a strictly positive continuous derivative on (x1, x2), then f 

has a strictly positive continuous derivative on 

(p1, p2) = (F(x1 + O), F(x2 - O)), Suppose n + 00 , k + 00 such that for some 

o > 0 
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Then ink is asymptotically normal, Compare the last example in chapter 5, 

We shall now consider the particular case that k/n + p € (O, 1), in 

more detail, It will ease notation to use the norming transformation 

Cl X = v'ii( X - .!.) 
n n 

in which case an~nk converges to the normal random variable with mean zero 

and variance p( 1 - p). 

If F(x0 ) = p and if F', the derivative, is positive and continuous in 

then ynk is asymptotically normal N(F- 1(!.), p{ 1 - p)). Indeed 
- n ~ vnF'(x0 ) 

13 f(a- 1x) = ln(f(~ :+ .!.) - f(~)) / f'(p) + x. 
n n rn n n 

Now assume that there exists a sequence of positive affine transform­

ations a such that a V k +Vin distribution. n n"-n -
Observe that the convergence k/n + p does not determine the set~. 

( 14. 5) 

where we define tn by 

k(n) = p.n + t v'ii, n 

and hence t = o(v'ii) for n +®. n 
Suppose tn + t, i.e. 

k(n) = p.n + tv'n + o(v'ii), 

then every element cr €~has the form 

crx = c(x + t) - t 

and hence~ is the one-parameter subgroup of all multiplications with centre 

-t. In this case!= 13$(~) where a€ G, u is normal N(O, p(1-p)) and$ is 

one of the two functions 
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tj>(x) = sign (x + t), or 

tj>(x) " = c 1(x + t) X + t ~ 0 

" = -c2 ix+tl X + t < 0 

with A and c 1 + c2 positive, and c 1 and c2 non-negative. 

These limit distributions have been derived by Smirnov [1949], Compar­

ison with our standard list in the definition of¢ shows that only the 

function tj>(x) = ex is missing. (The function tj> has to be defined on the 

whole real line, since u is normal, and tj>(x) =xis obtained for 

c 1 = c2 = >- = 1, t = o.) 
In order to obtain the limit tj>(x) = ex, the set~ should consist of 

translations. Hence, in view of (14.5) we must have 

( 14.6) !!! -+ c > 1 implies 
n I rm t - tm I -+ "'. 

In n 

This is the case if tn ~ nq with q E (0, i), Then m/n-+ c > 1 implies 

t /t -+ cq and 
m n 

rm t - t = ( rm - tm) t 
In n m In tn n 

.... CX) 

since t .... CX) and rm - tm .... C 1 /2 - cq 
n In tn 

> 0. 

We obtain the following result. 

THEOREM 14.2 Let y k be the kth order statistic from a sample of size n 
-n 

drawn from a distribution F(y). Suppose that 

1, n-+ "'• k = k(n)-+ 00 and_o > 0 so that 

a) o < k(n)/n < 1-o for all n ~ n0 
b) k(n+1) - k(n) = o(vn) for n-+ oo, 

2. there exist a > O and b ER so that n n 
anlnk(n) + bn-+ v in distribution, y non-constant. 

Then 

v = tj>(~) in distribution 

where u has the standard normal distribution and tj> E ¢ is one of the 

functions 



cj)(x) = b + ax 

cj)(x) = b + a sign (x - xo) 

cj)(x) = b + ae h 

cj)(x) = b -AX 
- ae 

cj)(x) = b + a 1(x - x0 ) :>.. X ~ XO 
:>.. =b - a2(x0 - x) X < XO 

with:>.., a and a 1 + a2 positive, a 1 and a2 non-negative and x0 and b real 

constants. 

PROOF Condition 1 impliesµ +l - µ = o(l//n), o2+l ~ o2 and 
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n 1 n n n 
(µ +l - µ )/o + 0, Hence y +lY- + E. It follows that Eis a condensation n n n n n 
point of~, see proposition 7,2. Hence, if Snlnk +~in distribution, then 

v ~¢(~)with cp E ~, by theorem 3,1. 

Smirnov [1949] has shown that the first two and the last function cp in 

our list do indeed occur. Since we can choose k(n) to satisfy 

k(n)/n + p E (0, 1) 

k(n + 1) - k(n) = o(v'n) 

k(n) = p.n + t In 
n 

t ~ n 1 /3 
n 

for n + 00 

for n + 00 

in which case~ is the one-parameter subgroup of the translations, also the 

third and fourth function cp in the list above occur. 
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14.5 Random variables in a topological interval 

The reader will have noticed that the applications in the preceeding 

four sections hardly make use of the theory beyond chapter 3, Moreover the 

theory is applied in very straight-forward cases. The limit variable has a 

continuous distribution function, strictly increasing on the whole real line, 

or the norming transformations a are translations. 

The reason for developing the theory in greater generality is partly 

due to personal curiosity. The question "in how far does the basic situation 

(1.1) imply the functional relation (1.2)?" seems to be a sensible one to 

ask. Since the formulation is simple, one might expect a simple answer. 

There is a second, more practical reason for doing research in this 

subject. 

The random variable reflects with a high degree of precision the vari­

ability or uncertainty of the corresponding quantity in real life. The 

correspondence itself exhibits a certain amount of arbitrariness. Even if 

we consider variables like length, time, temperature in the exact sciences, 

the values of the corresponding random variables depend on the scale which 

is used. There is obviously a difference in the values of the random variable 

if we measure temperature in degrees Celsius or in degrees Fahrenheit. A 

change of units corresponds to an affine or linear transformation of the 

associated numerical random variable. Hence the significance of the concept 

of distribution type. The type reflects the behaviour of the physical 

quantity and is independent on the units employed in measuring the quantity. 

(A second reason for introducing the concept of type, viz. that it allows 

us to formulate asymptotic results, has already been mentioned in the intro­

duction to this book.) 

As soon as we go beyond such simple random variables as length or time, 

the situation is more involved. To describe the random variable "size" in a 

population of potatoes say, we could use the variable x = diameter. The 

variable x3 = volume gives as good a description. And also the variables 

x-3 = num~er per cube metre, or log~ (for reasons of symmetry) are valid 

as numerical descriptions of the physical quantity "size" in our population. 

Note that except in trivial cases, the corresponding four distribution 

functions are all of different type. 

The situation becomes even more awkward if we leave the physical sciences 

and wish to measure quantities like utility, intelligence, eye sight, retent­

ion of knowledge, sensitivity to heat, or any other of the many one dimens-
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ional variables which one encounters in physiology, psychology, economics 

or the social sciences. In these cases any strictly increasing continuous 

function of the random variable is as good a description as any other. (Any 

two such numerical descriptions are equivalent in the sense of the equival­

ence relation g introduced in chapter 13.) 

These random variables may be said to take their values in the oriented 

topological interval T (homeomorphic to a non-empty open interval of R). 

A numerical description of the variable then is a strictly increasing, con­

tinuous, real-valued function on T. 

Now suppose we are given a sequence of random variables with values in 

T. (Since we shall only be interested in the limit behaviour of the sequence 

of associated probability distributions on T, we may as well assume that we 

are given a sequence of probability measures on T.) Let (x) be a numerical -n 
description of this sequence of random variables on T, and let <in) be an-

other numerical description of the same sequence. Then y = f(x) for some 
-n -n 

strictly increasing, continuous function f. 

If both these sequences converge in type, to respectively u and v, 

then, under certain conditions C, we have the relation~~ ¢(~)-with¢ E ~­

Hence in this case the limit, if it exists, is unique (up to a transform­

ation¢ E ~). Moreover there is only a fairly small class of numerical 

descriptions x: T + R, such that the sequence (x) converges in type. 
-n 

Roughly speaking we can say that to certain (divergent) sequences of 

probability measures on T we can associate a "limit" probability measure on 

R, which is unique up to a transformation¢ E ~-

We conclude by giving four possible lines of further investigation in 

this subject. 

Develop a theory of T-valued random variables. Since we have abandoned 

the algebraic structure of R in the definition of T, we cannot add T-valued 

random variables, nor can we define their expectation. However the maximum 

as well as the kth order statistic from a sample of size n of independent 

T-valued random variables is again a well defined T-valued random variable, 

So too is the restriction of a T-valued random variable to the e-t-sub­

interval of large values, see section 3 of this chapter. 

2 One would like to have the conditions C, under which (1.1) implies 

(1,2), phrased in terms of the sequence of T-valued random variables, (By 

Khinchine's theorem we may replace the condition a + 00 by the condition n 
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that the sequence of probability distributions on T should not contain any 

subsequence which converges to a non-degenerate probability distribution on 

T. See exercise 1.1.) Also a simple formulation of the condition an+i ~ an 

and a description of regular variation of the norming constants in terms of 

probability distributions would be welcome. 

3 There seems to be a certain incongruity in using affine norming trans-

formations ax= ax+ b if x describes a random variable on T. Since T has - . 
no algebraic structure, the transformation :1+ a~ can have no physical 

significance. There are practical reasons for using these transformations 

to norm the random variables. G is a finitely dimensional group of continu­

ous strictly increasing transformations on R. Are there any other useful 

norming transformations? 

4 Let (x) be an arbitrary sequence of real-valued random variables. -n 
Suppose the sequence contains no subsequence which converges in distribution 

to a non-constant random variable, Problem: Give conditions which ensure 

that there exists a non-decreasing function f such that f(x) converges in -n 
type. 
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