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Preface to the second edition,

This volume reports on the results obtained in the study of the
probabilistic foundation of the Markovian decision processes. The
first printing of this book was defaced by a rather large number of
printing errors and obscurities. Since a complete revision was out of
question the text has been improved by adding a list of addenda and
errata and a list of symbols at the end of the book.

The author is very grateful to Mr. A. Hordijk, who read the first
printing, suggested improvements, made a list of symbols and posed
questions which are still difficult to answer. Some of his comments

are included in the list of addenda and errata.

Amsterdam, 1969 dL






CHAPTER 1

The fundamental stochastic process

1. General properties

In this chapter we shall consider a class of stochastic processes

with a common state space X*.

The state space X* with points x is an M-dimensional Borel set.
Since X is also the parameter set of the class of stochastic proces-
ses considered, we denote the latter by {Si ;X EX“}Q

The stochastic processes S; are defined by means of the following
tools:

1) the state space X" with points x;

2) a space Q" with points w ;

3) a family of w-functions {x:(m); te BLw)}, defined on Q%, such
that for each t € [0,») the w-function x:(w) maps 2 into X%;

4} the o-field G* of M-dimensional Borel sets in X“;

5) the smallest o-field H')6 with respect to which the w-functions
{xt(w); te [0,2)} are measurable.

6) the function P*[K;xﬂ of sets K EH* and points x eX%, satisfying
the properties:
a) for each x¢ X*, the set function P*[K;x] assigns a probability

measure to the sets KEH*;

b} for each KE:H%, the x~function P*[k;x] is measurable with res-

pect to G".

o
A stochastic process SX is defined by a family of stochastic variables

{E:-x ; te DO,w)}, the grobability distributions of which are given by
3
o
¥ 3
€ = A ;
Prob {Et;xo A} P [ t;A’xé] , (1.1}

where At is defined by

A

def
hyp SR CIENORYS: (1.2



and A€ G%.
For each x the set function P*[K;x] represents a probability
P L3
measure P¥ defined on H . Consequently, for each x€X we have a

triple {Q*,H¥,P*} . Such a triple is called a probability space. The

W
stochastic processes Sx are defined by means of probability spaces

with identical Q™ and H*, but with different probability measures P*.

The points x e X and me:Q* are called the states and the real-
izations of the stochastic processes respectively. The space Q* is
called the sample space, while the functions x:(w) are named sample

functions. Finally, the points te [0,) represent points of time.

Usually in the theory of stochastic processes the o-field H“ is
completed with all subsets of sets of probability measure O. In this
section, however, we consider various probability measures P*[K;xj;
one for each xeX . So,if we want an "x-free' extension of H , we need

to be more selective in completing the 0-field H“.

Let Ai be an w-set with the following properties:
1} for each weK:, the t-function x:(m) is continuous from the right;
2} in each bounded time interval in [b,w) and for each w eﬁj, the

t-function x?(w) has only a finite number of discontinuities,

Assumption 1

For each x¢€ X&, a set Kxe H* can be found such that
a) \ e K ;
o X
b) P*[Kx;g] = 0,
The o-field F% is the smallest o~field of w-sets that contains H*
and includes all subsets of AZ.

The domain of definition of the set function P*[K;x] is from now

e
on regarded as extended to F . This extension is unique (cf.[{] p.90).

Lemma 1.1

For each K efﬁﬁ the x-function P%[k;¥] is measurable with respect



If KeH*, the x~-function P*[K;X] is measurable with respect to
¢ (cf. tool 6 of S:). Further, if KCA:, we have P*[K;x] = 0 for all
XE€E X*.

Let J be the class of w-sets Ke F* for which the assertion is
true,

We have now proved that
e
a) JDH ;
b) Ked if Kcl\:.
The following points can easily be verified:

c) Ked if KeJ;

d) ,U K €J if K. eJ and if K < K, (j=1,2,...).
J=1 j J J J+1

These properties of J imply that J is a o-field, which contains
H* and includes all subsets of A: ([2} p.599) . Hence, J=F .
Now we are in a position to prove the following lemma:

Lemma 1.2.1

If I is any open time interval and if B is a closed set in X*,

then for
def hed
= w w) e
Mg w|V, . x @ eB} (1.3)
we have w
MI;B eF . (1.4)
Proof :
Let {tj;j=1,2,...} be the set of all rational numbers in [b,w).
Obviously, we have
n =1
tj €1 AtJ,;B MI;B .5

and thus
e e
Aontjn”/\j, DANN M o (1.6}



The left hand sides of (1.5) and (1.6) belong to F*. We now prove
the converse of (1.6).
For each te I a monotone decreasing subsequence {sm;m=1,2,...}

of {tj;j=1,2,...} can be found such that

lim s =t , (1.7)
m- «@
Hence, if w EAO N t(z:l At.;B’ we find (B is closed)
J J
% e
x,(w) = 1lim x_(w) €B, (1.8)
t Sm¥ t Sp

This result can be obtained for each t €¢I and therefore

1)
ey © 3 e
K, 0 t_QI /\t';Bc. Aon MI;B. 1.9
J J
From (1.6} and (1.9} it follows that
= _ % e
K0 MI;B—AOr\tQII\t.;BEF. (1.10)
J J
. R N E-3
Since F includes all subsets of Ao we have
¥
M eF . (1.4)

This terminates the proof.

Let i1 and 12 be the left and the right boundary point of an open

interval I respectively., If B is a closed set in X*, we have

= a) 3%

v M{i JuI;B Ay ;B MI;BEF ; (1.11)
1 1

e.3

2) MIU{i };B MI;Bn Ai ;BEF ; (1.12)
2 2
3} M - %

) {i;WIvu{i};B Ail;BnMI;BnAiz;BEF . (1.13)

1) The identity (1.10) implies the separability of the stochastic processes
% 2%
{Sx;x €X } with respect to the class of all closed sets (cf.[?] p.51}.



So we have proved the following lemma:

Lemma 1.2
If B is a closed set in X and if I is any interval in [D,m),

then "

MI;BE F, (1.14)

Lemma 1.3

If B is a closed set in X*, there exists a sequence of open sets

{Bn; n=1,2,...} and a sequence of closed sets {Bi ; n=1,2,...} satis~
fying
e L
DB _®B DB =B (1.15)
(=~ o i
2) N B =0 B =8B. (1.16)
n=1l n n=l n
Proof :
Let Bn and B: be defined by
def 1
B = {xlaxlsB, Ix—x1|<;} (1.17)
and
s def ) 1
Bl = (x|3, eB; |x-x| g7} (1.18)
1
respectively.

The assertion will now be obvious.

Lemma 1.4.1

If B is any open set in X and if I is any interval in [0,=),

for def 3
AI;B = {w|3t€1 ¥, (W) € B} (1.19)
we have A sF# (1.20)
I;B ‘ :
Proof :
By lemma 1.2 = x
AI,B = MI;ﬁ e ¥, (1.21)

Lemma 1.4.2

If B is any closed set in X% and I is a bounded closed interval



[11,12] in [0,%), then

A EF ., (1.22)

Proof :

We consider the sequence T = {tj; j=1,2,...} consisting of
a) the points i1 and iz;

b) the rational points in I.

if
mc?;n AI;B , (1.23)

then
I, oq X @eB. (1.24)

Since the t-function x:(m) is continuous from the right, the following

statements are true:

£ 3 He R d
Vkat 3 V [t t+ r2n] xt(w)sB & xs(w)eBk (1.25)

3 V 31: eTVse[:t t+ ] (“’)EB &X(w)ch

(1.26)
Hence, (1.23) implies
U 1
we Ay nknlmln t.eTAt,;Bn M[t‘;t,+—];B*. (1.27)
J J’n j’3 m k
Thus,
= n u U 1
Ko O Ap, et [N A nol ter Mo ;s ™ Mre oo+ 27580 .
J J n J a3 m k
(1.28)

We shall now prove the converse of (1.28).

If (1.27) is true, then

mk;

1
{m, ;k=1 2,,. }H{tkn' =1,2,...,n=1,2,.. }v:se[t +—Ek 1:[

ko3
thn(w) € Bn & Xs(w) € Bk. (1.29)



For each k we consider the sequence of points {tkn;n=1’2""}‘
If n>n , we find

% 3

X (w)eB ¢ B, (1.30)
t n n
kn o [o)

Since I is closed and bounded, the points of accumulation
{tﬁ ; a=1,2,...) of {tkn;n=l’2’°"} belong to I, If (1.27) is true,
one of the following cases will arise:

a) At least one of the points {tﬁ; e=1,2,...} , say tl is a point

k’
¥
of continuity of the t-function xt(w);

b} All points {ts; a=1,2,...} are points of discontinuity of the

t-function x:(m).

In case a) it follows from (1.30) that for the point w considered

we find w © w
xqe B =5, (1.31)
t n =1 n
k o o
Hence,
we A n AT, (1.32)
I;B o

In case b}, because of assumption 1, the number of accumulation points
must be finite (w € Kt).

[
Iif s is defined by

k

s = 1% 4 ;%; ; k=1,2,... , (1.33)
then, since —ajff— > 0, for each a an integer n, can be found such
that 2k 1

si € [?kn ’tkn + —;;:i] . (1.34)

a o 2

Consequently,

x:a @eB; k=1,2,... (1.35)

k

if té denotes the superior of {ti; 0=1,2,...} and if we consider the

sequence {t&;k:l,Z,..,}, then we can easily verify that this sequence
runs through a finite number of points in I (points of discontinuity

He
of xt(w)). So a subsequence of {t';k=1,2,...}, say {t h=1,2,...},

K(h)’



exists that satisfies

1 — L. ] 1 LTS P
tk(h) = t' = lim inf {tk,k-1,2,,,.}. (1.36)
Now let sk be defined by
. 1
Sk= tk+‘2m—k ; k=1,2,... (1.37)
Since k(h);lland thus B:(h)C-B:, it follows from (1.35) that
x: (w) EB: ; h=1,2,3,... . (1.38)
k(h)
Further, we can easily verify that 1lim s + t' and thus for each
hoe k(h)
h (we B9
o o
Kpi () = lim X7 (@) €B) . (1.39)
h e k(h) o
Consequently,
(=]
% ¥
X, (W) eh(ll B, = B. (1.40)
o
Hence,
A e
we I;Bn Ao . (1,41}

We have now proved that both case a) and case b) lead to (1L.41},

This implies that the converse of (1.28) is also true.

Thus, o o -
VR =AU N U
D R A - R At.;BnM[t.,t,+ l:];B*
d J’n i’ md Tk
€ F'. (1.42)
and therefore »*
AI-B eEF . (1.43)

This ends the proof.

The following lemma can easily be proved (cf. (L.11}, (1.12) and
(1.13)):

Lemma 1.4.3

IfI is any interval in [0,) and if B is a closed set, then

Ao L €EF (1.44)



Lemmas 1.2, 1.4.1 and 1.4.3 imply:

Lemma 1.4
If I is any interval in [O,w) and if B is either closed or open,
then A _eF (1.45)

and M = A

I;B I;E e F . (1.46)

If C is a closed set in X* and if w is a realization of a stoch~
astic process S::, let t(w;C) be the moment that the system is for the
L.
first time in C. If the initial state of the stochastic process Sx be-
longs to C, then t(w;C) = O.

This point of time can also be defined by

inf {t]x*(w) €C}, if % (w) € C for some finite t.

1.47
«, otherwise. 1.47)
Let the w-set EI'C be defined by
’
g def {w]t(w;C) e I}, (1.48)

“1;C
where I is an interval in [O,w).
Lemma 1.5.1
For any interval I in [___O,w) and for each closed set C we have
E.3

= F . 1.49
I;C€ (1.49)

3
(Thus, t(w;C) is measurable with respect to F .)
Proof:
Let us consider a closed interval I = Ell,iz:l. It can easily be

verified that for this choice of I the w-set 7\—:1'\ = is given by

I;C
—— — w
N = = —
M Ee AonMEO,il);CnA[il,iz];CEF' (1.50)
k3
Hence, = EF ,



io

The proofs for other types of intervals are obvious. This ends
the proof.

3%
Let us introduce the w~functions x (w;C), defined by

L3
X Ly (W), if t(w;C) < w,

x%(m;C) det I: t(w;0 (1.51)
x:(m), if t(w;C) = =,

Note that by this definition the state at the end of the period
ED,t(w;C)J is given by X (w;C) if t{w;C) <o,
Lid
The function x*(w;C) is defined for each wef,

Let the w-set AB'C be defined by

def *
A € .
.o = {wlx (w;C) € B} . (1.52)

Lemma 1.5.2

k-3
For each BeG and for each closed set C we have

AB;C e F . (1.53}

k23
{Thus, x (w;C) is an w~function which is measurable with respect to

)
Proof :
Let for a fixed m the w-function x?g)(ﬁl be defined by (k=1,2,...)
*(w), if weh UE
& et [ Bl 1t wel U Zry o) ;e
(m) B ¥* . = e
%5_(m)’ if weZ o l&)-cn Ao . (1.54)
m m’ ?
2 2 2
That is o
x, (@ = ) x (w) X (W) (1.55)
(m} (m);k ) :
k=0 —_—
™
2
where s
wiet [0 weho U S0, e 50
Xm) ;0" = (1.56)

O, otherwise

and for k=1,2,...



3 = w
1, if weZ k-1 K s Ao
def m 0w iC
= 2 2 1.587
X(m);k(w) ( )]
0, otherwise o

Obviously, the w-functions (w);k=0,1,...} are measurable with

h X(m) ;x
respect to F .
Consequently, the w-functions x?a)(w) are measurable with respect to
¥
It can easily be verified that for m + » the sequence of w-functions
{x?ﬁ)(w);m=1,2,..,} converges everywhere to an w-function, let us say
x?m)(w). From this it iéllows that the w-function x?;)(w) is measur-
able with respect to F ,

Since for w eﬁ? the t~function x:(w) is continuous from the right,

we find for these points

x?m)(w) = x(w;0). (1.58)
k3
Consequently, if BeG ,
TR O_ * : T *
AB;CF\AO— {wlx(m)(m)eB}ﬂAo e F . (1.59)
Thus,
A Fr (1.60)
B;C ¢ ' .

This ends the proof.

Let us assume that the set C has been chosen in such a way that

¥
for each x €X we have
3%
= ; =1, .
P [ [o,m);c’xj (1.61)

Since each combination of a measurable w-function and the probability
space {Q%;F*;P*} generates a stochastic variable, the w-functions
t{(w;C} and x*(w;C) lead us to the stochastic variables t and x°

—C;x —C;x
The probability distributions of these variables are given by

def s
Probi{t, eI} = P [..I;C,x] (1.62)
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and def

o 3¢
Prob{xg., B} P EAB;C’X:] (1.63)

respectively.

The stochastic variable EC;x represents the length of the time
period preceding the moment at which the system first is in C, while
§3;X denotes the state at the end of this period if (1.61)} is true.
Summarizing:
Lemma 1.5

If assumption 1 and condition (1.61) are satisfied, the probabil-

ity distribution of the length of the period preceding the moment

EC;x w
at which the system first is in C and that of the state zc;x at that
point of time are defined. They are given by (1.62) and (1.63) respect~
ively.

Let B be a closed set in X* and let us define a family of w-

functions {x:(w;B); t E[O,w)} by

* .
» def Xt (w;By+t (@) 1 t(W;B) <@
xt(w;B) = w (1.64)
xt(w), if t(w;B) = o,
Lemma 1.6

k3
The w-functions {xt(w;B); te ED,w)} are measurable with respect

to F%°
Proof:
Let us consider the w-functions x, (w), for k=1,2,..., de~
(m);t
fined by
* . * ey
xt(m), if wal\o U ”[O,oo);B
# def
Xmy ;¢ = * — (1.65)
! X (W), if welh* n = .
k [¢] k-1 k
iy Ca 3B
2 2 2
Then
<0
o W= ) x (wx (w) (1.66)
o N - 9 B
(m); k=0 & ¢+ K
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where

x (wy “€F [ - (1.67)
C, if wel® N E

and for k=1,2,...

t

1, if we A* n
Xk(w) = ° m
2 (1.68)

O, otherwise.

The remainder of the proof is identical with that of lemma 1.5.2 and
is therefore omitted.
This ends the proof.

"

It follows from (1.64) that for each w € o

L3
1} the t-function xt(w;B) is continuous from the right;
L]
2} in each finite time interval in [p,w) the t-~function xt(w;B)

has only a finite number of discontinuities.

If B and C are closed sets, let us introduce the w-functions

t(w2;B;C) and x*(w;B;C), defined by

~ inf {tlx:(w;B) eC}, if x:(w;B) e C for some

finite ¢
t(w;B;C) dgf inite
o, otherwise (1.69)
and *
Xt(w;B;C)(W;B)’ if t(w;B;C) < =

x*(w;B;C) def (1.70)

x:(w;B), if t(w;B;C) = ®
respectively.

Lemma 1.7

If B and C are closed sets in X*, the w-functions t(w;B;C) and
¥
% (w;B;C}, defined by (1.69} and (1.70), are measurable with respect

) k3
to F



14

Proof:
k3
The function xt(m;B) has the same properties as the function
¥
xt(w). Therefore, lemma 1.7 is a direct consequence of lemmas 1.,5.1

and 1.5.2,

If C is a closed set in X*, a sequence of open sets {En;n=1,2,..c}

can be found such that (cf. lemma 1.3)

B2B ,2.....2¢C (1.,71)
and (; .
n=1 Bn = C, (1,72}
Consequently, the sequence of Closed sets {Bn;n=1,2,.°.} satisfies
Bnc Bn+1c.,.,, < C (1.73)
and .
U =_
o1 Bn cC. (1.74)

If C is a closed set in X and if w is a realization of a stochastic
process S:, let t(w;Bﬂ) be the moment that the system enters into C
for the first time.

If the initial state of the stochastic process S: belongs to E,

then we obviously have

t(w; [C]) = t(w;0). (1.75)

If the initial state is an element of C, then t{(w;C) = O but the first
entry in C does not occur before a state of C has been assumed,

Let us consider the sequence {1:n(uu);rx:1,2,;M}F defined by

def . .
tn(w) = t(w,Bn) + t(m,Bm,C).s {(1.76)

Obviously, the w-functions tn(w) are measurable with respect to F%@
The function tn(w) represents the time needed for being first in Bn

and then in C. Consequently, by (1.73)

twi[C]) 2t (. (1.77)
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Since

O;tn(w);tn (w), (1.78)

-1
we can derine an w-function tm(m) by
1lim tn(w), if tn(w) <o for some n.

t (W) = [nw (1.79)
o, otherwise.

L.
It can easily be verified that tw(w) is measurable with respect to F .
It follows from the definition of t(w;[C]) that for each ¢ >0 and
for some t ¢ [O,t(w;[cj) + &) we have

x:(w) €C. (1.80)
Thus for some t e[o,t(u;rc])+ §) and a sufficient large n

5&
x, (wWye B . (1.81)
t n

Hence, for each § >0 and a sufficient large n
¢
t(w; [C]) = t(w;B ) + t(w;B ;C) +§ . (1.82)

Thus, by (1.77) and (1.,82)

tiw; [CD = t (w). (1.83)

So we have proved the following lemma:

Lemma 1.8.1

E23
The w~function t(w; [C]) is measurable with respect to F .

¥
Let us introduce the w-function x (w;[C]), defined by

3 . . -
': Xt(w;[C])(w)’ if t(w,[C]) <

X (w; [€]) %E° (1.84)

#* 1 - -

xo(w), if t(w,[C]) = o,
Note, that by this definition the state at the end of the period
[C, t(w; [C])] is given by x"(w; [C]) unless t(w;[C]) = =.

k.3
We shall now demonstrate that the w-function x (w;[C]) is measur-

able with respect to F*. To this end we introduce the sequence of w~
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functions {xﬁg)(w);n=1,2,...}, where
¥ W) = x(W x(w;B ;0 + (1- X (W) x(w 1.85)
x(n) w) = X x (w; . + w xo(w (1.

with
1, if t(w;[C]) <w and w € Kg .
x(w) =

. . b3
0, if t(w;[C]) = wor if we A . (1.86)

It can easily be verified that the w-functions {x:(w);nzl,z,a.,} are

%
measurable with respect to F .

Since
t(w;[c]) = 1im (t(w;B ) + t(w;B ;) ) , (1.82)
N> o n n
we find for w eA*
° o €D = % (W 1.87
x(w,C)~x(n)w, (1.87)
L3

This implies that for all w the sequences {x (wy;n=1,2,...}

(n)
converge to a limit, say x:(w).
The w-function x:(w) is measurable with respect to F%s

Obviously, we have for w € T

x (W [€]) = xow). (1.88)

So we have proved the following lemma:

Lemma 1.8.2

e . e
The w~function x (w;Bﬂ) is measurable with respect to F .

. _ = A .
Let us introduce the w-sets I;Bﬂ and B;Ba, defined by

def

2L €]

{w|t@;[c]) € 1} (1.89)

and
def

R
A = W M
B; [c] {v]x" (w; [€]) € B} (1.90)
respectively.
We now assume that the closed set C is chosen in such a way that

for each x



17

E3

P [:EEO,“’);[C];X:] =1, (1.91)

The w-functions t(w;[C]) and x(w;[C]) together with the probability

¥ L3 e
spaces {Q ;F ;P } generate the stochastic variablesnEBﬂ.x and
H

B
E[b]'x; the corresponding probability distributions are given by
?

- def % .
Prob {treq ., € I} =7 P [_I;[C],x:l (1.92)
and
Prob {_{EC] . € B def px [AB'[CJ 3% (1.93)

respectively.

The stochastic variable_zﬁﬂ;x represents*the length of the time
period preceding the first entry in C, while E{Fﬂ§x denotes the state
at the end of that period if (1.91) is true.

Summarizing:

Lemma 1.8

If assumption 1 and condition (1.86) are satisfied, the probabil-
ity distribution of the length E[C -x of the period preceding the first
entry in C and that of the state x cl :x at that point of time are de-

)

fined. They are given by (1.92) and (1.93) respectively.

We now consider the w-functions x:(w;Bﬂ), defined by

2% . i -
» def xt(w;[C])+t(“’)’ if t(w;[C]) <w.
x; (w; [€]) gt . (1.94)
x (W, if tlw;[c]) = =

Repeating the arguments made in the proof of lemma 1.6 we can prove:

Lemma 1.9

The w-functions {x:'(m;ﬁﬂ);t E[O,w)}are measurable with respect
to F .

Our future discussions are based on the following assumption:
Assumption 2
L3
If x (t) is any mapping of the time axis [p,w) into the state

%
space X , one and only one point w can be found such that



18

x‘t‘(m) = x(t). (1.95)

We introduce the following notation:

i def *
xt(w,to) = xt+t0(w). {(1.96)

Lemma 1.10
e e
For each we { and toe Ehm), one and only one point wlesz can
be found such that for t 20

¥ *®»
xt(wl) = xt(w,to). (1.97)

Proof :
% k3
If we write x (t) = xt(w;to) the assertion follows at once from

assumption 2.
The point transformation, defined by (1.97), will be denoted by

w = T (w) - (1-98)

The point transformation (1,98} also introduces a transformation
of w-sets.

The mlwset Kl will be called the to—image of X if

K, = {w |w =T, (W, weK}. (1.99)

We write:
K. =T, (K). (1.100)

-1
Conversely, we can define a set transformation XK = Tt (Kl) by
o

-1 def
Tto(Kl) = {wfw = Tto(w), weK}. (1.101)

2%
IfK €F

1 , let us introduce the class

*  def -1 %
F =
£ {Tto(Kl)[KleF } . (1.102)
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Lemma 1,11

-1
The set transformation X = Tt (Kl) generatzss an isomorphism of
.3 R
F with ¥, . °
T
o

Proof:

¥

We first prove that Ft is a o-field. This can easily be done

by verifying the following groperties:

) Q% L3
a € Ft
)
b) if Twoyerr
if K = Tt (K1 € ¢ then
) o
- L3 -] -3 e L3
= - = - € H
K 9} Tt (Kl) Tt ¢y Kl) Ft H
) o o
i i €F,  (i=1,2
¢c) if Ki = Tt (Ki;l) Ft (i=1,2,...), we zlso have
o °
L] (] 1 1 (-]
- [ | £
}J k, = U 1, (K ) =T (ﬁj Kiq) € Fp
i=1 i=1 o o i=1 o

H
Consequently, F is a O0O-field.

t
o
Since
-1 -1
T, (T (®)) = oo =T (W; weT "(K)} =
o o o o
= {wllwl € K} =K, (1.103)
. -1 3
the set transformation K = Tt (Kl) generates an isomorphism of F
. i o
with Ft .
o

This proves the lemma completely.

Lemma 1.12
¥ ¥ +
The o~field Ft satisfies Ft < F .
o o
Proof :
Let J be the class of sets K belonging to both F and Ft . Ob~-
o

viously, J is a 0 -field.

Let Jl be the class of sets Kle F satisfying Tzl(Klb € J,
o
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The following properties of J, can easily be verified:

1
a) If K. €J,, then T.0(K.) = T.'(K.) €J. Thus, K €J,;
19 t % t V1 . v By F Yy
o (=] c (-]
-1, -1
o) 1 K ed , then T (Y k0 = iL='}1 T, (KD ed.
o [e]
Thus, U K €J

i=1 i 01

Hence, J, is a 0O-field.

1
% -1 * -1
c A €
c) If K1 o’ then Tto(Kl) C,Ao and thus Tto(Kl) J.
Consequently, K1 EJl;
d) 1f K, = A ith B€ G, then T.L(K ) = A €J. Th
1 - g M o then By W87 = Aeg gt 9 RS
o o
A €
t;B J1'
Hence, J1 is a O -field that contains the sets At'B and the subsets
3 Fes 3¢ 7
of AZ, Thus, Jl = F . Consequently, J = Ft < F ,
o

This ends the proof.

Lemma 1,13
ka3 3
For each wefl and for each closed set C€G one and cnly one point

L3
w1€ 2 can be found such that

L3 £ 3
xt(wl) = xt(w;Bﬂ); t20. (1.104)

Proof :
> ¥
If we write x (t) = xt(w;Bﬂ), the assertion follows at once from
assumption 2.

The point transformation, defined by (1.104) will be denoted by
wl = TL-C:I (w). (1.105)

This point transformation also introduces a trnasformation of w-sets

s
in €. The w,-set K, will be called the [C]-image of K if

K]_ = {wllml = T[c](m), W e K} ° (1.106)



21
Lemma 1.14

If Q"Ec] is defined by

*  def W,
Q = T 2, 1.107
f] - TR @-20m
then
Q* — T (¥} -
[c] © “,=;[c]” To;c -
Proof :

(1.108)

If we have either t(w;Bﬂ) = 0 or t(w;Bﬂ) = w by (1.94) and
(1.104) we find w

= T[C] (w) =
€

w, Consequently, t(w1;Bﬂ) = t(w;[gﬂ)°
Hence, ml (0,“);Bﬂ'

|

If 0 <t(w;[C]) <=, then t(wl,C) = 0, Therefore, w € E
So we have proved that

1 To;C

Tra (09 e
[c]

(i

0,=);[c] Y Z0ic

(1.109)
We shall now demonstrate that the converse of (1.109) is alsc true.
Ifw' e

E(O,w);Bﬂ’ then

w' = T[C] (w') (1.110)
and thus "
w' € T[ (9 ). (1.111)
c]
If w' € :o;cg if w satisfies
tw";[c)) >0 (1.112)
and if w'"' is given by
ki 1" AA
xt(w Y, if t<t(w ;Eﬂ)
e
x (0 = [ * (1.113
xt—t(m";[C])(w ). if t2tw; e
then

w' = T[:C] (w"'), (13114)
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€ ~0;C’ we also have

Summarizing, if w

w' € T[](Sl)

(1.,115)
:(0 @) ; I:C] 0;c’ we find
and thus
% i
Q)Y o> = (V) 1,117
[Cj( ) (0,50) ; [C] ( )
The relations (1.109) and (1.117) imply
[](Q ) o=
This ends the proof

©,=;[c] Y Eo.c (1.118)
de

{w]w = TEc](m);

w e K1 }
F*[C] def

Conversely, we can define a set transformation K = T[Cj (K } by
| =
Let us consider the following classes

%

bl

[

{1.119)
def

L3 %
{x f\Q[]IK1€F } (1.120)
[C] ®) | K e v(¢ly, (1.121)
Repeating the arguments made in the proofs of lemmas 1.11 and 1.12 we
find:
Lemma 1,15
€] witn &

[]

Lemma 1.16

The set transformation K = ’1[0] (K } generates an isomorphism of
defined by

The o~field FEC] satisfies F[

Cid
CJCF

In future we shall use the point transformations wy

=l

Tk
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(w) (1.122)

€

and j -1
Tra(w = Trea(Tea(w); j=2,3,... . (1.123)
€] €] [

The point transformation w = Td (w) introduces a transformation of

]

w~sets,
We write K = T _(K) (1.124)
1 [
if j
K = (wl |m1 =T9 _(w), we K}, (1.125)

(€]

We obviously have

1
T (K} =T (K). {1.126)
€] €]
Conversely, we can define a set transformation K = TE; (Kl) by
-3 -1 -j+1 .
T (Kl) =T (T (Kl)); J=1,2,... (1.127)
[c] €] [c]
with o
T[:CJ (Kl) = Kl. {1.128)

By means of lemmas 1.15 and 1.16 we can easily verify:

Lemma 1 .17
] i ¥
If KeF , then TJ[C] K)eF . O (1.129)
It K € F, then T ° (k) € F. (1.130)

[€]
Consider a closed set C in X*, satisfying the following assump-
tion:

e
For each j 21 and for each x€X we have

*rpIdth g %] =
PT [T "¢ ‘[o,w);[c])’x] =1, (1.131)

]

Let us define the w-function tj(w;ﬁﬂ) by

t h = t(T‘j;l(w) ;e (1.132)

[€]
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By lemma 1.17 the w-function tj(w;Bﬂ) is measurable with respect to

Fr,

. t th
By (1.131) the length of the period between the(.]—l)S and the j

entry in C is almost surely defined and equal to tj(w;Bﬂ).

Let us define the w-function xz(m;[Q]) by

< wi[dD) = x * W e (1.133)

[c]

By lemma 1,17 the w-function xj(w;Bﬂ) is measurable with respect to

2%
F .

t
By (1.131) the state at the j h entry in C is almost surely defined
and equal to xj(w;Bﬂ).

Summarizing:
Lemma 1.18

The w-functions t, (w; [C]) and xS ;€] (i=1,2,...), defined by
(1.,132) and (1.333) respectlvely, are measurable with respect to Fr .

The w-functions t _ (w; Bﬂ) and x (w Dﬂ) together with the pro-
bability spaces {Q i F P } generate the stochastic variables
&
t ., and x .; the correspondin robability distributions
2[c] %5 5 20c] x5 50 p g P y
are given by
def

Prob {E[c] LRSI [T[C] (g, [C]) i (1.134)
and
2% def J+1
Prob {-}-{—[C];x;j €B} = P [T By, EC] . (1.135)
The stochastic variable tBﬂ j represents almost surely the

t
1ength of the period between the (j- 1) st and the j h entry in C, while

x . denotes the state at the jth entry.
=[] sx;

So we have proved the following lemma:

Lemma 1.18
If the assumptions 1 and 2 and the condition (1,131} are satis-

fied, the probability distributions of the lengths E{Eﬂ‘x" of the
s 3
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periods between successive entries in C and those of the entry states

L3
X . are defined. They are given b 1.134) and (1.135).
‘Bﬂ9x53 y g y (

2. Random losses

The considerations in this section do not longer start from the
assumption that almost all t-functions x:(w) are continuous from the
right. On the other hand we still assume that almost all t-functions
x:(w) have only a finite number of discontinuities in a finite inter-
val., Moreover, the assertions, stated in lemmas 1.5 ff, are supposed
to be true. In chapter 2 of this part we shall show that im a special
case these lemmas can be proved without the continuity assumption.

A stochastic process S: is also called a random*yalk in X*, Let
us assume that losses are incurred during walks in X . We distinguish
the following types of losses:

a) The "first type'" loss is defined by means of a closed set A and
a bounded real vaiyed function Ydisc(x)’ w:?ch is measurable
with respect to G . If the initiai state xo(w) of the random
walk belongs to A, a 1355 Ydisc(xo(w)) is incurreg at the start,
Moreover, each entry xj(un[}]) in A costs Ydisc(xj(M;EQ)),
In our future discussions we shall make use of a constant Yd’
%
that satisfies for each xeX

)| = Yy < (1.136)

Tdisc
b} The "second type' loss is defined by means of a bounded con~

tinuous function Y (x). The "second type' loss incurred

cont
during the period [sl,sz) is then given by the Riemann integral
s
’ (W 1.137)
. Ycont(xt(“’ Jdt. .
1
In our future discussions we shall make use of a constant Yo that

e
satisfies for each xeX
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& 2y, <= (1.138)

Iy o

cont
In this section we consider random losses, which will be incur-

red in the periods [o,to), [0,t(w;B)] and [0,tw;[C])).

Let the w-functions {%n(w;[A]); n=1,2,...} be defined by

n
~ def
t, (A =7 ] £ (w; [a]. (1.139)
j=1
Note that set A has been used in the definition of the "first type"
loss.
We now assume that the closed set A satisfies for each x

lim P [z, ;[A];n;x:] = 0, (1.140)
o

n-+e

where
- def .
“t_;[A]n SERCHERCHIV PR RIS
o]

Let n(w;to;Dﬂ) be the number of entries in A during the period
[o.t).

According to this definition

nwit_;[A]) = n, 1£ £ ;[a]) < tO;En+1(w;[A]),
(1.141)

Obviously, the following lemma is true:

Lemma 1.20

. Lo
The w-function n(w;to;BQ) is measurable with respect to ¥ .

We now start our discussion with the losses of the first type.

A real valued W-function k.. (w;t ) is defined by
disc o

n(u;t_;[A]D
e [A])), if weE d n(u;t_;[ah

e Y (x_ (w; A , if wez .7 and n(w; 3 <o o

j=1 ‘disc " j n(w;to;[A]) C;A [o]

ki3
Ydisc(xj(w;Dq)), if

3¢
Y., (x (wy) +
kdisc(w’to) = disc o j=1
w EEO;A and n(m;to;Dg)<w. (1.142)
0, otherwise.



Lemma 1,21

. P
The w-function kdisc(w;to) is measurable with respect to F .

Proof :
Since
. e
al Ydisc(X) is Borel measurable with respect to G |

* 3¢
b) xj(w;EA]) are measurable with respect to F (j=1,2,...),
we find that both (i=1,2,...)
% [A 2% w
w (w-
Gey@;[A]D) and v, o G @))

Yo
§=1 disc

Rad
are measurable with respect to F .

Let us introduce the w-functions Xo(w) and Xi(w;to), defined

by
L, if weE |
X (w) det [ ;A (1.143)
0, otherwise
and
dor [ if E@[AD <t <t w;[A])
Xi(w;to) = (1.144)
0, otherwise
respectively.
It can easily be verified that the w-functions
n ¥ i L3
{'2 X; (Wit ) [Xo(w) Y gige Ko (W) + E Ydisc(xj(w;[A]))];
i=1 Jj=1
im=1,2,...} (1.145)
are measurable with respect to F*.
Since the sequence (1.145) converges everywhere to kdisc(w;to),

%
this w-function is measurable with respect to F .

This ends the proof.

By (1.140) and (1.142) kdisc(w;to) represents almost surely the

"first type' loss incurred in the period [p,to).

We now consider a closed set B, satisfying
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. % - o
n-l:l:: ? [‘B;[A];n’x:l =0, (1.146)
where
= def ~
*B;[A]im T {w Itn(w;[A]) < t(w;B)} . (1.147)

Let n(w;B;[A]) be the number of entries in A during the period
[0, t(w;B)].
According to this definition

n(w;B;[A]) = n, if T (u;[A]) St(w;B) <t (w;[A]). (1.148)
The proof of the following lemma is obvious.

Lemma 1,22

3
The w-function n(w;B; [A]) is measurable with respect to F .

A real valued w-function k c(w;B) is defined by

dis
_ n(w;B; [A])
Ydisc(xj(w3[A])), if w € EO;K and

=1
n(w;B;[A]) < ®,

(w;B; [A])

n
k.. (w;B) = »*
disc J.Z' Y isc(xj(w;[A])) + Y

* P
1 d c(xo(w))’ i

dis

w e EO;A and n(w;B; E\]) < o,

L—0, otherwise. (1.149)

The following lemma can easily be proved (cf. lemma 1.,21):

Lemma 1.23

¥
The w-function k c(((m;B) is measurable with respect to F .

di
By (1.146) and (1.,149) kdisc(w;B) represents almost surely the "first

1

type'" loss incurred in the period E),t(m;B)] .
Next we consider a closed set C, satisfying

lim P*[-E[C]; [A];n;xj =0, (1.150)

n e

where
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- def , =
[c]; [A]sn £ o], W5 D < twi [ ). (1.151)

Let n{w; [C]; E\]) be the number of entries in A during the period
[0, tCw; [€].

According to this definition

n(w; [c]; A = n, if %n(w; [AD < t(w; [P ;@n 1 (wi A . @.152)

+
The proof of the following lemma is obvious.

Lemma 1.24
Cd
The w-function n(w; [C] ; [A]) is measurable with respect to F .

A real valued w-function kdisc(m; [C]) is now defined by

n(w; [€]; [A]

o1 Ydisc(x:(m; [A])), if n(w;[C]; [:A]) < o and
def w € EO;K.
kdisc(w; [C]) s n(w; [C] ’ EA;L) .
51 Yaise (@ A1)+ vy (@), it
n(w; [C];[A]) <= and we EO;A‘
0, otherwise. (1,153)

The following lemma can easily be proved (cf. lemma 1.21):

Lemma 1.25

The w-function kdisc(w;[c:]) is measurable with respect to F*.
By (1.150) and (1.153) kdisc(m;[C]) represents almost surely the ''first
type" loss incurred in the period [0,t(w;[C])).

e
Let us introduce the w-function X, (w), defined by
k3 s
lim x l(w), if we A,
nre .o o
n

P
x, Wy 7= x:(w), if wel\: ) (1.154)

Lemma 1,26

The w~functions {x:*(w) ;t € [:O,G)} are measurable with respect to

¥
F .
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L Eid
The t-functions {xt (W;w € Q } are continuous from the right
and have almost surely in each finite interval only a finite number

of discontinuities.

Proof:
e
Consider the sequence of w-functions {xn_t(w); n=1,2,...}, de~
b
fined by
X 1(w), if we W:.
<l —
£ (wy 9eE R (1.155)
n;t

x“(w), if we AY,
o o

e
The w-functions xn't(w) are measurable with respect to F'. It can
?

e
easily be verified that the sequence converges everywhere to Xy (w).

Consequently, the w-function x:*(m) is measurable with respect to F*a
Since x:(w) has only a finite number of discontinuities in a finite
interval, the second part of the assertion is obvious.

This ends the proof,

Lemma 1,27

The w~functions Y (x*™(w)) are measurable with respect to Fr.

cont  t

The t-functions Ycont(xt

have almost surely only a finite number of discontinuities in a finite

(w)) are continuous from the right and

interval.

Proof *
Since Ycont(x) is a continuous function, the assertions are im-

mediate.

Lemma 1,28
The Riemann integral

s .
k w;s) B v wat (1.156)
cont o cont "t
exists for each s < = and represents an w-function which is measurable

with respect to e,

Proof :

By lemma 1,27 we obviously have
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n
; G W) dt = lim % (x (W)E sy <
- — @
Yeont Ft ¥ mo Yeont st wlis SY, °
(0] n+e 27 j=1 e
o

(1.157)

L3
Consequently, kcont(w;s) exists and is measurable with respect to F .

This ends the proof.

The w~-function kcont(w;to) represents almost surely the "second

type' costs incurred in the period [p,to).

Next we introduce the w-functions k (w;B) and k (w;Bﬂ),
cont cont

defined by

k (w;B) det

k(w;t(w;B)), if t(w;B) < =
cont [

0, otherwise (1.158)

and

k(w;t(w; [C€])), if t(w;[C]) < =

def
koons (s [ % [
0, otherwise (1.159)

respectively,

Lemma 1.29
The w-functions k (w;B) and k (w;Bﬂ) are measurable with
cont cont

L
respect to F .

Proof:
Let us introduce the w-functions {wn(w); n=1,2,...} , defined

for each j by . i1 .
k(u; ), if L= <ty <L,
def n n n
Wn(w) = .
0, otherwise (1.160)
Obviously, the w-functions {wn(w); n=1,2,...} are measurable with
3
respect to F .
The sequence {wn(w); n=1,2,...} converges everywhere to the w-function
k (w;B). Consequently, the w-function k (w;B) is measurable with
cont > cont
respect to F

The proof for kcont(M;Bﬂ) goes along the same lines and is therefore
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omitted.

This ends the proof.

If the sets B and C satisfy for each x

P [E[O,m);B;x] =1 (1.161)
and

P "

P ['[o,m); [C];x] =1 (1.162)

the w-function kcont(w;B) represents almost surely the "second type'"
loss incurred in the period E),t(w;B)], while with regard to the
period EO,t(w;Bﬂ)) this loss almost surely is given by kcont(m;Dﬂ).

Under (1.140), (1.146), (1.150), (1.161) and (1.162) the total costs
incurred in the period Eo,to), EO,t(w;Bi] and [Q,t(w;ﬂﬂ)) are almost
surely given by

def

k(w;to) = kdisc(m;to) + kcont(w;to)’ (1.163)
def
k(w;B) = kdisc(w,B) + kcont(w,B) (1.164)
and
xw; [ %% (w;[C]) + k____ (u;[C] (1.165)
’ disc '’ cont '’ )

respectively.

Remark that

a) [kt )| st v, + Gt ;[A]) v (1.166)
b) |k(w;B) | < t(w;B) Yo n(w;B; [A]) Yy (1.167)
c)]k(m;Bﬂ)l ;t(m;ﬂﬂ) Yo * n(m;Bﬂ;[?g)Yd . (1.168)

Obviously, we have:

Lemma 1,30
The w-functions k(w;to), k(w;B) and k(w;Dﬂ) are measurable with

ka3
respect to F .

The w-functions k(w;to), k(w;B), k(w;Dﬂ), n(w;to;Dg),
n(w;B;Dﬂ) and n(w;Bﬂ ;Dﬂ) together with the probability spaces

L3 2 Ll N .
{Q ;F ;P } generate the stochastic variables Eto;x’EB;x’EEQ];x?
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Bto;x’EB;x and 3[?];x; the corresponding probability distributions

are given by

def _ 3¢
Prob {_lgto;xel} =" P [KI;to;x] , (1.169)
def *
Prob {ky €I} P [x, B,x] (1.170)
def _ =
Prob {E[CJ-xE” =" p [_KI_[C];x:] , (1.171)
- def P X
Prob {Eto;x = PN ,x , (1.172)
Prob {n, =n} 9T p* [N -x] (1.173)
—B;x - n;B’ : :
and £ *
Prob {5‘-[0'_]-){ = n} % [, . ] ix] (1.174)
where
def
xl;to = {mlk(w;to)SI} , (1.175)
def
K.p = (@|k(uB)er}, (1.176)
def
K] - telxs[eDd e, (1.177)
def
N, {0 | n(u; t i [AD = n}, (1.178)
o
def
I |n(w;B; [A]) = n} , (1.179)
N 9w | nu; [€]; [A]D) = n} (1.180)
n; [C] - » 3 - 3 °

and I is any interval in (-,+w},
So we have proved:

Lemma 1,31
Under (1.140), (1.146), (1.150), (1.161) and (1.162) the probabil=-

t ;x°=B;x

ity distributions of the random losses k sk and k[ J incurred
in the periods [0 t ) [O,tB ] and [0 tl:C] ) respectively as well as

those of the number of entries n and n in A during the
-t ;x ~B;x -—DS 3K

same periods are defined. They are given by (1.169) through (1.174),
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Finally, let us define the w-~functions nj(w;tO;Dﬂ),
n,(w; [C]; A, & (wit) and k (w;[€]) by

nj(m;to;[A]) = n(T(j_l)to(w);to;EAj) (1.181)
nj(w;[C];[A]) = n(T‘Enj(w);[C];[Aj) (1.182)
c
kj(w;to) = k(T(j—l)to(w);to) (1.183)
and
k(w3 [€h = k() . (1.184)

[c]

By means of lemmas 1.11 and 1.17 we can easily verify that the w-
functions n (w; t Eﬂ), n (w; Bﬂ Dﬂ) kj(m;to) and kj(w;ﬁﬂ) are

measurable w1th respect to F .

We now assume that for each j >1 and for each x we have

Lim P [T(u Dt (sto;[A];n);x] =0 (1.185)
[l P FT[C] i ] = O (1.186)
and
p* [1 [351(”[9 o 70 =2 (1.187)
The w-functions n, (w;t o; [A]) and n,(w; [C];[A]) represent the num-
ber of entries in A durmg the periods [_(J -1)t_,jt ) and Ft (m <P,

tj(w.[ﬁj)) respectively.

By (1.185) the costs incurred in the period [(j-l)to,jto) are almost

surely given by kj(w;to). By (1.186) and (1.187} the costs incurred

between the (j~1)°° and the j' entry in C are almost surely given by

kJ.((u;[C]).

The w-functions ng Wit ;[a]), n; w; [€];[A], k (w;t ) and
k,(w,Dﬂ) together w1th the probablllty spaces {Q F P } generate
the stochastic variables n ., kK . and k N

=t 5x;3’=[C];x;3'=t_;%;3 =[c];=;3°

corresponding probability distributions are given by



35

Prob {n, y oet p* ['r'(l_l)t ., )x]  (1.188)
o! 3 ’ o
Prob {n = n} 9° p* [T"j+1 o );x] (1.189)
=[€]5%33 ) [c] “mslel”’ ‘
def _» r, -1 .
Prob {k . ., eI} "= p (j-l)to(KI;to)’xj (1.190)

and

€]

Let the stochastic variables{iﬁﬂ_x.n ; n=1,2,...} be defined by
3 ?

n
Temoo= L tra.o.. o d=l,2,...  (1.192)
[C] yX;n J=1—[C] 3 X3 J
The stochastic variables n . and n represent the number of

toi%; [c]5x;3
entries in A during the periods [(j—l)to,jto) and

LiBQ‘X;J—l"iﬁﬂ;x;j) respectively.

The stochastic variables k . and k . represent almost
=t ;%3] [€]5x;3

surely the costs incurred in fheoperiods [(j—l)to,jto) and
t . t ) respectively.
L—Bﬂ;x;J-l“—Bﬂ;x;J P y

So we have proved the following lemma:

Lemma 1,32
Under (1.185), (1.186) and (1.187) the probability distributions

of and_EEa' ., are defined; they are given

XS

n o0 K .
7 —t %33 =[C] sx;37=t %55
by (1.188) through (1.191).

3, Stationary strong Markov processes

Let us consider the w-functions ﬁr(w;to) and ﬁ:(w;[p]) defined by

¥
(wy, if t <t
[o]

def B’
x’t‘(m;t) = [* (1.193)
° x, (wy, if t >t
t =0
o
and

3¢
x (W), if t<t(w;[C])
def [t (1.194)

X (w;[C]), if t2tw;[C]
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We can easily prove the following lemma:

Lemma 1.33

¥ ~
If C is a closed set in X , the w-functions xt(w;to) and

~Pe e
xt(w;[C]) are measurable with respect to F .

The
the

The
the

The
the

The
the

Let

Let

for

We now introduce the following notation:

A
class of w-sets H is the smallest o-field with respect to which

o
w~functions {xt(w;%o);t EB),«»)} are measurable,

[c

A

class of w-sets H is the smallest O-field with respect to which
A

w-functions {xt(m;E]

C]);t €[0,=)} are measurable,

L3
class of w-sets Ht is the smallest O-field with respect to which

%
w-functions {xt(w;go) ;t € [O,m)} are measurable,

class of w-sets H*([J is the smallest 0-field with respect to which

w-functions {x:(w; C]) ;t € [0,=)} are measurable.

L3 ¥
Fl be a o~field of w-sets in @ that satisfies
%
Flc F . (1.195)

~ kL
y(w) be a measurable (F ) and integrable w-function satisfying

3%
some K €F: and for each A EFl

P (kN rx] = JP*[dw;x] y(w). (1.196)
A

ks
Then the conditional probability of K relative to F , denoted by

P [K;x | F:J , (1.197)

is defined as any w-function y(w) which is almost surely equal to

§(w),

By the Radon-Nicodym theorem ([_1],p.132) a family of such w~functions

exists of which

3
a) each one is measurable with respect to F_;

b) each two are identical except for an w-set of probability meas-

ure O,
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Note that the expression (1.197) is an w-function which is meas-

¥

urable with respect to Fl“
The w-function P* [K;x | F:] is called a regular conditional pro-

bability measure, if

3% 3 2
1) for each wefl! the set function P [K;XIF]_J is a probability
L3
measure defined on F ;
2) for each K € F* the w-function P*[K;xlF;] is measurable with
respect to F:
% 3 3%
In this book the probability space {Q ;F ;P } will be called

strongly Markovian if and only if

ka3 L3
1) for each to € [:O,w), for each K¢ Ht and for each x€X we
o
have
ki3 A ol ¥
P [ksx|f, J=P [Tt () 5%, (wy]; (1.198)
o o )

k.3 L3
2) for each x€X , for each closed set C in X satisfying

g
P E’[o,m);[c];x] =1, (1.199)

3%
for each K EH[:C] we have

P EK;x | l?EC]]= P’ [T[-C] (x> ;x%(m; €] )] .

(1,200)

36 ¥ 3
If {Q ;F ;P } is a strongly Markovian probability space, the basic

3 " "n
stochastic process SX is called a stationary strong Markov process .

In [1:] on p.577 and in [5:] on p.91 condition (1.200) is replaced

by a more stringent one.
The equations (1.198) and (1.200) are equivalent to
e Laa k3
PUK 0N x] = J P* [awsx] P [T, ®)5x, ]  @.201)
A o o

1
and

il

B H %
P [Kzﬂ Ay ;] I/\ P [dw;x] P* [T[c](Kz);X (w; [€]],

2 (1.202)
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h A eH ,K cH , A efir- and K eHy
where 1 € t 2 M € t 2 g € [C] an 2 € [C] B
[e] o

Let the class of w-sets f: be the smallest o-field of w-sets

A
containing Ht and including al? subsets of A:.
o
A
Let the class of w-sets FWF& be the smallest o~field of w-wets
containing ﬁ??] and including all subsets of A:.

The following lemma can easily be proved:

Lemma 1,34
If the probability space is strongly Markovian, then for each
L3
x eX ,t0 € B),w) and closed set C satisfying (1.199), we have
¥ A E Eo3
PU [k x| F J= PO[T, (KD x ()] (1.203)
o o o
and

P [K2;xlﬁﬁﬂ]= P*FTBﬂ(Kz);x*(w;Bﬂ)], (1.,204)

2% ¥*
where Kl € Ft and K2 eF [:C] .
o

Let y, (wl) and y(w) be two w-functions, satisfying

o
a) O<y, (wl) 1 (1.205)
o
b) y(w) = Ve (Tt (). (1.206)
o o

Lemma 1.35
1) If y(w) is measurable with respect to F: , then Vi (wl) is
measurable with respect to F*. © °
2) If Y (ml) is measurable with respect to F%, then y(w) is
measugable with respect to F: .

-~ P
3) If A eFt , if y(w) is measuraBle with respect to Ft and if
> *o* ©
{Q ;F ;P } is strongly Markovian, then

¥ 2% 3 3
JAP [aw;x] yw) = fAP [dw;xﬂ IQE [dwl;xto(w)] yto(wl).

(1.207)
Proof

We first consider the cases 1) and 2). If Mr and M; are defined
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M det {w]y(w <r}

and
, def
My = {w] to(wl);r}

respectively, then we can easily verify that

LI
M' = Tto(M )
and
- .
Mr = Tt mM').
o

The assertions are now a simple consequence of lemma 1,11.

We consider the third case.

Let the sets M and M/ be defined by

k;m k;m
k-1
M, . def (4 | —= <y (w) <-—}
;m
2"
and
1 dgf k.-'l_ < elaliy
Mk,m = mll m =Yt (w1)< J
2 o 2
respectively.
We can easily verify that
M ;m = Tt (Mk;m)
o
and
Mk;m = (Mk,m)'
o
Thus,
M' EF

Moreover, by lemma 1.34
m

JP* [dw;x] y(w) = lim 2 k-1 P EA"M
A

n-=o k=1 2

zm

= lim ) == J P [duw;x] P [M ix |F

m>e yoy oM

e

(1.208)

(1.209)

(1.210)

(1.,211)

(1.212)

(1.213)

(1.214)

(1.215)

(1.216)
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lim %m kol J P [dw;x] P [ 5x (0]
= i % ; =
m+o k=i 2" A ' k;m to

m

2
f P [dw;x] { 1im  § kol op* [MI:: % (]} =
A o

i}

me+eo k=1 27 t

b3 Rad e
f P [dw;x] f P [aw 5x, @]y, ). (1.217)
A Q* o o
This ends the proof.
Finally, let y[C] (wl) and y(w) be two w-functions, satisfying

a) Oéy[C] (wl);l ; (1,218)

b) y(w) = y[C](T[c] (W), (1.219)

Using similar arguments as in the proof of lemma 1.35, we can prove:
Lemma 1.36

1) If y(w) is measurable with respect to FEC], then y[C](wl) is meas-

k.3
urable with respect to F .

2) If y[C] (w) is measurable with respect to F*, then y(w) is measurable

with respect to FEC] .

3) If A e F , if y(w) is measurable with respect to FEC] and if

{Q ;F ;P }is strongly Markovian, then

p* duw;x | y(w) = P dw;x | JP* d ;x*(w;[C) y (w, ).
| » Lawin] JA[JQ*[% D v gy

(1.220)

4, Stationary Markov processes and random losses

In this section our discussions are based on the following as-

sumption:

Assumption 3

¥
For each xe€X we have

3
P [AO;X;X] =1, (1.221)
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If w represents a realization of the basic stochastic process,
let kT(w) denote the costs incurred during the period Ep,T).
We shall show that, under conditions to be mentioned below, the
limit kT(w)
lim T
T o

(1.222)

almost surely exists.

L3
Let us define the random variables {it 'X‘j; j=1,2,...} by

o’ ’
" * (1.223)
X L= X . .
_to;X;J _Jto;x
If the functions {pi (B;x); j=1,2,...} are defined by
o
j ¥
p) (B;x) def p Ca, ix], (1.224)
t jt ;B
o o
then
* J
Prob {x .€B} = py (B;x). (1.225)
—to;X;J to

L 3 ~ e
Let us assume that for each j 21, x€X , Ae Ft and K € Ft the Mar-

kov property ° °
ol e Sid L3
P [Anx;;;]: L\p [dw;x] P [Tto(K);xl(w;to)] (1.226)
is true.
L3
This property implies for each j, x and B €G
J 1 j-1 .
p, (B;x) = p, (dx ;x)p, ~(B;x ); j=1,2,... . (1.227)
t t 1 t 1
o ¥ o o

Since the functions pi (B;x) are
*0 L3
a) for each BEG and for each j 21 measurable with respect to G ,

%
b) for each x€ X and for each j 21 a probability measure defined
%
on G |

¥
the relations (1.227) imply that the sequence of states (Et 'X'j;
3 s
j=1,2,...} constitutes a stationary Markov process with a dgscrete

time parameter (cf. [2] p.190 ff). So we have proved:’
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Lemma 1,37

Under (1.226) the sequence of states {§:‘;x;j; j=1,2,...} con-
stitutes a stationary Markov process with a discrete time parameter.

Let us make the following assumption:
There is a finite valued measure Q(C) of sets C € G™ with Q(X*) G, an
integer k21 and a positive N, such that for each x:€X*(cf. 2] . ».
192)

Ph (C;x) $1-nif QO £ n. (1.228)
o

This assumption is called the ''Doeblin condition'. The following lemma

can be proved (cf. [2] , p.214):

Lemma 1,38
Under (1.226) and (1.228) the function Py (C;x), given by
o

(C;x) def lim %

p% (C;x), (1.229)
o n-ec J

1 o

Py

=]

k3
defines for each x€X a stationary absolute probability distribution.

For the meaning of the concepts: 'ergodic sets', "cyclically
moving subsets'" etc., the reader is referred to [2] . In this book,
however, we prefer the name "simple ergodic set' to the term "ergodic

"

set . The latter can be mixed up with the set of all ergodic states.
In Eﬂ on p,207 ff, the following lemma is proved:

Lemma 1,39

If the initial state x belongs to a simple ergodic set Ei and if
the number of cyclically moving subse;g'gg E. is ci’ then, under
{1.226) and (1.228), the sequences {pt N (C;x); n=1,2,...}
(j=1,2,...ci) converge for n + « expongntially fast and uniformly in C

mci+j
and x to a limit, denoted by pt (C;x).
o
We now introduce an (M+l)-dimensional Cartesian space, which is

%
the product space of X and the line I' = (~ow,+w),

Let us consider the w-functions yj(m;to), given by
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£

de .
yj(w;to) = (xj(w;to), nj(w;togﬂﬂ));3=1,2,,ee,

(1.230}

As we know the w-function nj(w;to; Eq )} represents the number of en-
tries in A during the period [(j-l)to,jto).

W E:3
The w=-functions yj(w;to) map & into the product space ¥ xT[,

Lemma 1,40
The ® ~-functions (yj(w;to); j=1,2,...} are measurable with res-

B
pect to F .

Proof :
Let L be a linear Borel field of sets in I' ., If Uls G* and if

U2 €L we have for each j

{w |yj(w;t0)£ Uy xU,} =
{1.231)
= {mixj(w;to)s Ul} n {wlnj(m;to;E{])s Uz} .

Let Jk be the class of (M+l)~dimensional Borel sets U, satisfying

{o]y Wit )euleF. (1.232)
k' o © ©

So, Jk contains all (M+l)~-dimensional intervals, In addition, we have

a) if UeJ , then ﬁeJk;
i

o i .
by if U €Jd (i=1,2,...), then 121 vt eg,.

«w

Consequently, J, is a 0=-field that includes the (M+l}-dimensional

k
intervals.

Hence, J, is the class of (M+l)~-dimensional Borel sets,

k
This ends the proof.

If U is an (M+l)-dimensional Borel set, let the w-set O be

k;U
defined by
def

0 = oy wit) e ud . (1.233)

k;U

Obviously,
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0 (1.234)

ET
;0 T 1) 0

We now define the set functions {'pi (Ujx); k=1,2,...} by

o
1 def _#*
'pto(U;x) = P B)l;U;x] . {1.235)
k def k-1 1
Py (u;x) %€ [ s Py (dxl;x) 'pt (U;xl); k=2,3,...
[o] X o o

(1.236)

By means of (1.226) we can easily verify that

* e
" [0, .yl = [ ¥ [dw;x] P* E°1;U‘x:-=1 st )] =

k-1 * 3%
wj . Py (dx; ;x) P [pl;U’xk~1(w’to)] =
X o
(1.237)
k-1 , 1 .k
_J w Py (dxl,x) Py (U,xl) = 'p; (U;x).
X [} o o
if a€l and if y = (x,a), let "pt (U;y) be defined by
o
w k def k
P, (U;y) € 'pt (U;x). (1.238)
o) o
¥
We can easily verify, that for Ule G we have
LAl k k k
xT. = ! x [ = -
p, (U 3y p, (U 3% p, (U, 5x).
o o o
(1.239)
Consequently, (1,237} can be rewritten as follows:
L k " k"‘l 7" 1
p, (U;y) = [x* P, (dyy;y) p Uiy ).
¢ ° (1.240)

It can easily be proved that
a) for a given (M+l)-dimensional Borel set U the y~functions
"pf (U;y) are measurable with respect to the class of all
to

(M+1)~dimensional Borel sets;
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b) for a given y the set function "pi (U;y) is a probability
o
measure defined on the class of all (M+l)-dimensional Borel

sets.

We now consider the stochastic variables {lf k=1,2,...},

;x;k;
generated by the w-functions {yk(w;to); k=1,2,..Joand the probability

e M
spaces {Q ;F ;P }.

Lo
Obvicusly, for each k21 and x€X
%  k )
Prob Ezto;x;kEIa =P [ok;U,x] = ptO(U,x)c (1,241)

Tne relations (1.241), (1.238) and (1.240) imply the following lemma:

Lemma 1.41
Under (1.226) the sequence of stochastic variables

{zt ey ik k=1,2,...} constitutes a stationary Markov process with a
s ?

disgrete time parameter,

* k=1,2,...} . If

to;x;k’ =1,2,...) '3

belongs to a simple ergodic set Ei and if ci is the number of cyclic~

Let us return to the Markov process {x

ally moving sets of E_, then,according toc lemma 1.39,the limits for

nc, +j
n -+ of the sequences {pt 17 (W;x); n=1,2,...} converge to

cuci+J o X ¥*
Py (U;x) exponentially fast and uniformly in U € G and x¢€ Ei'
® 1t follows from (1.239) and (1.240) that
nci+j
1lim "pt w;y) =
n- o Is)
nci+j—1 1
= lim i % Py (dxl;x) Py (U;xl) =
n-+ow X o o
oc +j=1
e T a0 et i)
ix* t 1’ to 1
(1.242)
Consequently, the iimit exists,
1 mci+j .
Now let P (U,y) be defined by
o . .
“ ©C.+J ) def . . nc, +j
P (U;y) =7 1lim P, W;y. (1.243)

[o] n-+® (o]
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By means of (1.,240) we can easily verify that

coci+j mci+j-1 1

p, ~ (Uy) = J » Py (dy;5y) "pp Wiy ). (1.244)

[o) X o o

Lemma 1,42 .

Lemma 1.42 ne, +J
Under (1.226) and (1.228) the sequences {"pt (U;y); n=1,2,...}

L3
converge uniformly in y EEi xI' and UeG (j=1,2,..?,ci).

Proof ¢

Let the x-set Bgr be given by

U -
-l P [ SO P (1.245)
hr h t = h
2 ) 2
It follows from (1.242), (1.240) and (1.245) that
c.+j Zh c.+j-1
[=+] Lo - .
1" 1 i U "'h
|"p w;yy - ¥ E=p * B _;x)|z2
to re1 2h to hr
o (1.246)
and nci+j Zh r nci+j—1 U h
1" . - —_— . < -
l Py U 121 P w2
B (1.247)
Consequently,
mci+j nci+j
I"p, = Wy - "p, T Wy £
o o
zh wc, +j=-1 nc, +j-1
< X i U - i U,
< Z = |, (B 5¥) - by (B, 9| +
r=1 2 o o
L™ (1.248)

For each n >0 we can find an integer h0 such that forll;ho we have

- nc, +j-1
2 h+l < % . Since the sequences P, . (Bgr;x); n=1,2,.,.}
converge uniformly in Bgr and X, an integgr Nij can be found such that

for n>N, |
2 ®C, +j=1 nc, +j-1

) I VT 0 - b @ o] s
h to hr’ to hr’ =

°

s

(1.249)
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Thus; for each n >0 an integer Nii can be found such that uniformly

o

in U and x we have forxa;Ni.
oC, +j ne, +j

" 1 "
P, Ux) ~ "pg

(e} (o]

W;x)| < n. (1.250)

This ends the proof,

Lemma 1.43

If (1.226) and (1.228) hold, there is a finite valued measure
Q%(U) of (M+l)~dimensional Borel sets U with Q*(X* xID > 0, satisfying
for each n >0, each simple ergodic set Ei’ each y eEi x ['y each j and

some k, ., < = .
ij ki.ci+g *
"ot T Wiy 2 @FW +on . (1.251)

(o]

Proof :

. %
Suppose that the stochastic process {Et -x-k;
s 3

simple ergodic sets Eis For each pair (i,j) $he set functions

k=1,2,...} has m

w =CiH]
{ P, Uiyd; vy €E; x T} are identical,
o

We now define Q*(U) by
c .
m i wC, +]j
%* def " i
QW T )] e Wiy, (1.252)
. . i
i=1 j=1 o)
where yi is some point of Eix I'.

The assertion is an immediate consequence of lemma 1.42,

This ends the proof.

The following lemma can be proved (cf. [2] , p.207):

Lemma 1 .44

k23
If the stochastic process {Et k=1,2,...} has m simple er-—

;X;k;
godic sets Ei and if (1.226) and O(1.228) hold, then for some p« 1

m
= o U N < N n, £
1 pto(i=1 Ei,x) const. p ; n=L,2,...

(1.253}
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Now we shall prove that the stochastic process {Xt 'x-k; k=1,2,...}
0’ 3

satisfies the Doeblin conditicn.

Lemma 1.45
If (1.226) and (1.228) hold, there is a finite valued measure
Q*(U) of (M+l)-dimensional Borel sets U, with Q*(x* x[) >0, an integer

3%
k 21 and an n' >0 such that for each yeX x T

w k . k.3
Py (Usy) 21 - n', if Q (U £ n'. (1.254)

[
Proof:

Let the stochastic process {§: k=1,2,...}have m simple er-

T
godic sets Ei and let Q*(U) be giveg by

- m c; mci+j
Cw = § 1 et wiy, (1.255)
. ) i
i=l  j=1 o
where y, is some point of E, x r,

Let k, and kz be two integers, such that for some positive n< $:
e

a) for each x

kl CB
- . < ne R
1-p (UE 50 < n; (1.256)
%)
b) k2 = max kij(ci+1) (cf, lemma 1,43}, (1.257)

1,]

Obviously, by (1.251), (1.256) and (1.257) we have for each Borel set

U and y

" k1+k2(U- ) < kl(dx ;%) T k2(U'x J +n Q*(U) + 2n
P, v) S|, Py (@x5x) 'p T (Usxg 3 .

(o] U o o
i=1Ei (1.258)

A

24
For sets U, with Q (U) < 4-n, we find by means of (1.258)
. K1TEy

Py
o

U;y) <d+n = 1-G-n. (1.259)

&
Consequently, the triple (Q ,k,n'}, given by
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% m ci mci+j
QW =} [ "p, w;y), (1.260)

k =k, +k (1.261)

and n' = % - n, (1.262)

satisfies,

This ends the proof.

We now introduce for each x the assumption:

‘f f . *[c . 9
n=1 % pto(dxl’X) : ‘mto:[A];n’xljm (1.263)
If x is the initial state of the stochastic process
(=, ;x;k;k=1’2""}’ the expected number of entries ;t ., in A during

a period of length to in the steady state is given by °

- A ¥

le [x* pto(dxl;x)J P [ Nj;to;xlj =

[+ 2] A % ~ -

.J-E_-l fx* pto(dxl’X)J{P E“to;[A] ;J"le *

-F [Eto;[A];j+l;x1]} =

@ . . .
i J'Z.l fx* pto(dxl,X) ? Euto;[A] ;j'xlj( ’
(1.264)

Let a function f(y) be real valued and measurable with respect

to the class of all (M+l)-dimensional Borel sets and let the w=-set FI
be defined by
F. def {wlf(y(w;to)) € 1} . (1.265)

The following lemma can be proved (cf. Eﬂ, pP.220)
Lemma 1 .46
If (1.226) and (1.228) hold and if for each initial state x
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+ o
” :
L{* pto(dxl;x) I [£] P7[F %] < = (1.266)

- 0

then for almost all w the limit

r
lim = ) £y, Cwit ) (1.267)
r o J o
T -o j=1
exists and is equal to
+o0
>
f w Py (dxl;x) [- P [Fdf;xlj (1.268)
X o ®

if x belongs to a simple ergodic set of the stochastic process

L
(Z‘-to;x;j; 312, 0

It follows from (1.230) that nj(w;to;[?]) is a measurable func-
tion of yj(w;to). By lemma 1.46 and (1,264) we find:

Lemma 1,47
Under (1.226), (1,228) and (1.263), for almost all w the limit

Ir
1im 2 7 n(w;t A (1.269)
r J o~
r -+ j=1
exists and is equal to
1 -
p, (dx ;x)P [E. r;..i%, ] (1.270)
jo dxt Tt t ti[A] 55771

if x belongs to a simple ergodic set of the stochastic process

{ ; J=1,2,...1}.

X*
—to 3%

We now consider the sequence of w-functions {kj(w;to);j=1,2,...}.
If (1.185) holds, the w-function kj(w;to) represents the losses in-

curred in the period [(J—l)to,Jto).
Obviously, we have

+
6 P
. k - < < @,
f* py (ax,5%) I x| P [de;t %] Sty + By ix Td
X o ] o o

(1.271)
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Using similar arguments as above, we can prove the following lem-

Lemma 1,48

Under (1.226), (1.228) and (1,.263), for almost all w the limit

r
lim = ) k. w;t) (1.272)
| S 3 o
Ir be J:l
exists and is equal to
He
I % Py (dxl;x)f kpo [ Kk t %, ] (1.273)
X o - o

if x belongs to a simple ergodic set of the stochastic process

3 J3=1,2,.0..).

%
° 3Jd

As we know the (w,T)-function kT(w) represents the losses incur-

red in the period [p,T)p We now prove:

Lemma 1.49

Under (1.226), (1.228) and (1.263), for almost all w the limit

k, (w)
T (1.274)

lim
T+

exists and is equal to

1 teo %
= f % Py (dxl;x)f kp [ de;t ;xlj (1.275)
o "X o o

-0

if x belongs to a simple ergodic set of the stochastic process

—tOSX;J

3 J3=1,2,...}.

Proof:

It follows from lemma 1.47 that almost surely

nr(w;to; [A])

lim 0. (1.276)
< oo Ir
Let the numbers n(T;to) be given by @
=k
n(T;t ) = |— . (1.277)
[o] t



52

Obviously, we have almost surely

n(T;t )
=1 kJ(w;to)_tdyc-nn(T;to)u(w;to;[;A])Yd

-

(n(T;to) + 1) t,
n(T;t )
kj(w;to)+t6Yc+nn(T;t )+1(w;to;Bq)qd
kT(w) J:l o

<
=

<
T =z
n(T’to) to (1.278)

and thus

nn(T;to)+1(m;to;Bq)'Yd

1 n(T;t )k it e tdvc )
- 3 ? . .
n(T,to) jo1 J o n(T,to) n(T,to) .
1 -
to(1 * n(T;t ))
o
k, (w)
< T <
= T -
n(T;t } t -y nMTn)+ﬁwﬂoﬂM)%
1 o kK (W:t ) + o C + o
. n(T;to) o1 J o n(T;to) n(T;to)
t
© (1.279)

If T » « , then the assertion is an immediate consequence oi lemma

1.48 and the relations (1.276) and (1.279),

This ends the proof,

We shall now show that under certain conditions the limit
kT(w)

T

(1.274)

lim
Tow

can also be expressed in a different form,

To this end we consider the random variabies {EEbJ'X'J; j=1.2,.
3 H

agaiu.
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If the functions {p‘j[C] (B;x); j=1,2,...} are defined by
p[C] (B x) d=f P [T J+1(AB [C]);X] (1.280)

[

and if for j=1,2,...

j+i . _
P [T[] 20, ; [C]),x] =1, (1.281)
then
Prob {{Ec];x;j €B} = pJ[C] (B;x) . (1.282)
Let us assume that for each j 21, xex*, Ae I;.EC] and K¢ FEC] the

Markov property

P [ Ank;x] = I P [du;x] P [T[](K) %, *wst R
(1.283)
is true,

Since

T (A )] =179 ), (1.284)
" O o) = T it
it follows from (1.280) and (1.283) that for j=2,3,...

P Bx) = f

x)p (B X, ). (1L.285)
[C] [c]

g

Since the function p[:| (B;x) is

a) for each B EG and for each j > 1 measurable with respect to G*
H
b} for each x €¢X and for each j 21 a probability measure defined

e
on G ,

the equations (1,285) imply that the sequence of states
e
{E[C] . ..3 J=1,2,...} constitutes a stationary Markov process with a

discrete time parameter,

Lemma 1,50
Under (1.283), the sequence of states {x[C] x; , j=1,2,...} con~-

stitutes a stationary Markov process with a dlscrete time parameter,
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Let us make the following assumption:
There is a finite valued measure Q(B) of sets B eG* with Q(X*) >0, an
integer k 21 and a positive n, such that for each xc}{* (cf, [2], P
192)
pEﬂ(B;x);l-n , if Q(BY <N, (1.286)
The following lemma can be proved (cf. Eﬂ s, p.214):

Lemma 1,51
Under (1.283) and (1.286) the function p[C] (B;x}, given by

yder 1 5
p[C](B,x) £ 1im = 21 p[.CJ(B,x), (1.287)

n-—+oo

3%
defines for each x €X a stationary absolute probability distribution.

We now introduce an (M+l)-dimensional Cartesian space, which is
%
the product space of X and the line T = [O,w).

Let us consider the w-functions yJ,(w; [C] ), given by

y 5w [c]y %f (x:(w;[C]), tj(w;[C])); i=1,2,...
(1.288)
If for each x
* e =3+l
P T (= )sx| =1, (1.289)
: €] ©s[d ]

the w-function tj (w;[C]) represents the length of the period between
th
the (;i-l)sjc and the j  entry in C.

The w-functions yk(w; [C_]) (k=1,2,...) together with the probabil-
Lad kel ks
ity spaces {Q ;F ;P } generate the stochastic variables
{l[c] 'x'k; k=1,2,...} . Using similar arguments as above, we can prove
3 3

the following lemma!
Lemma 1,52
Under (1.,283), (1.286) and (1.289) the stochastic process

{yﬁﬂ;x;k; k=1,2,...}
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a) is a stationary Markov process with a discrete time parameter;

b) satisfies the Doeblin condition.

Let us assume that for each x EX“
o
0 < (ax ;%) | P [Z ix,] < = (1.290)
£ pﬂﬂ 1’ o Tat; [c]* ™ : ’

The following lemma can be proved (cf. lemma 1.48):

Lemma 1,53
Under (1.283), (1.286) and (1.290) for almost all w the limit

I
1m = t (w;[C]) (1.291)
I+ e j=1 J

exists and is equal to

@«
L3
p (dx., :x) tp g, 1K (1.292)
L{* [c] 1 L dt; [C] 1]

if x1 belongs to a simple ergodic set.
Lemma 1,54

We now consider the w-functions {nj(w;[b];ﬂq); j=1,2,...}, The
w-function n,(w;[C];[h]) represents the number of entries in A during
the period [€j_1(w;Bﬂ), %j(w;Bﬂ)).

Next we assume that

L=+
He
) proylax, ;x) P [Ero e 5x ]< o, (1,293)
j=1 Jx* [c] ™ E[C]’[A]ﬂ 1}
If x is the initial state of the stochastic process
tEEijEX;J; J=1,2,...}, the expected number of entries H[C];x in A be-
tween two successive entries in C in the steady state is then given by

o

i L e P ¥ gl -

e P a9 @ Lo 10
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- P [E[C];[Aj;j+l;xl 1y =

= z L{% P[C] (dxl;x) P [E[C];E\];j;xlj < o,

J=1
(1,294)
We can prove the following lemma (cf. lemma 1,47):
Lemma 1.55
Under (1.,283), (1.286) and (1.293) for almost 2ll ® the limit
T
. 1
lim o} n(w; [€]; (A] (1.295)
T e j=1
exists and is equal to
’2‘ %
P (dx, ;x) P Era. X (1.296)
g=1 fx* [c] [ (cl; [a] 557 1]

if x belongs to a simple ergodic set of the stochastic process

{x* s 3=h,2,...) .
—Bﬂ;x;1

o

We now consider the sequence of w-functions {kj(m;Bﬂ); J=l,2,..01.
If (1.290) and (1.293) hold, the w-function kjﬁu;Dﬂ) represents the
losses incurred in the period [Ej_lﬂn;ﬂﬂ), %j(m;Bﬂ)),

Obviously, we have

L{“ Plc] (dxl;X)f

o -
R | » [de;[c];xlj =

© - .
= e Ixsp[c](dxl;x) Jo P [:dt;[cj;xlj *

+ EEC] o Yy € we(1.207)

?
The following lemma can be proved (cf, lemma 1.48):

Lemma 1.56
Under (1.283}, (1.286}, (1.290) and (1.293) for almost all w the

limit
1
¥

1 a1

k(w3 ch (1.298)
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exists and is equal to

+eo
. W
Ix* pBﬂ(dxlgx)J-w kP [de3Bﬂ;le {1.299)

if x belongs to a simple ergodic set of the stochastic process

(x| c: 3=1,2,...)
=[c]sx;3

Finally, we prove:

Lemma 1,57
Under (1.283), (1.286), (1.290) and (1.293}, for almost all w the

limit
kT(w)

lim (1.300)

T > e T
exists and is equal to

“+oo i
Jx* P[c] (dxl;x)[“m kP [de;[C];xlj
{1.3013}

Jor PRy @ | T L pegn]

if % belongs to a simple ergodic set of the stochastic process

3 .
{')E[C] ;x;j; 3=1,2,...}.

Proof

It follows from lemmas 1.53 and 1.55 that almost surely

t (W ch
lim e = (1.302)
I o r
and nr(w; [C:I ; [A])
lim = 0, {1,303}
r o r

Let n{(T;w) be the number of entries in C during the periocd [O,T)e

Obviously, we have almost surely
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n(T;w)
351 ke 03 [ED 8, gy g @5 €DV ny oy g @3 [65 [y
<
n(T;w)+1 -
t. (w; [ch
=1
k_(w)
2 5 s
n(T;w)
J_El s [E+e, gy g @I om0 @[] A
<
n(Tiw)
t. (w;[C|)
j=1 »itd (1.304)
and thus
1 pme w; [d)- bacr;wy e DY ny oy, @5 [ [y
n(T;w) jo1 7 n(T;w) n(T;w)
n (T wl t oo, (w; [C]3
i z t (w;[C]) + n(T;w)+1
n{T;w) j=1 J n(T;w)
k_{w}
2oEee s
i nz(T;w)k (w; [c] tn(T;uu)+1(W;(:C])'YC + nn(T;tn)+1(u“[C-J;[A-])‘Yd
n(T;w) o1 i’ * n(T;w) n(T;w)
1 n(T;w)
naw Lo 5D
= (1.305)

A

If T+ o, then the assertion is an immediate consequence of the lem=-

mas 1,56 and 1.53 and the relations (1.302) and (1.303).

This ends the proof,



CHAPTER 2

The decision process

1. The basic probability space

In this section we consider a family of stochastic processes
{Sz; x €X} . For the definition of these stochastic processes the
reader is referred to chapter 1 (s =0, M=N).1)

Let Ao be an wo—set with the following properties:
o - . o .
1} For each w € Ao’ the t-function xt(ufﬁis continuous from the right;
2} In each bounded time interval in [@,m) and for each wo £ Ko’ the t-

o
function xt(wob has only a finite number of discontinuities.

Assumption 1
For each x €X, a set Kx EHO can be found such that
a) A oK ;
o x

b) p°[xx;x] = 0.

Assumption 2
If x(t) is any mapping of the time axis [b,w) into the state space

X, one and only one point w® can be found such that

x:(w°)= x{(t), (2.1)

These assumptions imply that the probability spaces {QO;FO;PO} have the
properties of {Q*;ﬁ*;ﬁ*}, These properties have been considered in

chapter 1 of this part.

1)} It is convenient to index the points w and to suppress the index O in
X% and G°; =0 means read O where we wrote % in chapter 1.
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Moreover, we assume the foilowing:

Assumption 3
For each x €¢X we have (cf. p.1)

p° [

o;x;x:]= 1. (2.2)

This assumption implies that the initial state of the stochastic pro-
cess S: is x with probability 1.
In part I a strategy z is given by means of a function z(B;x) of
sets Be€G and points x €X with the following properties!?
1) For each x€ X the set function z(B;x) is a probability measure
defined on G;
2) For each B eG the x~function z(B;x) is measurable with respect
to G;
3) A closed set Az can be found such that (cf.p.9)

a) z(Az;x) = O and thus z(Kz;x) =1 if x eAz;

b) zdxkx)= 1 if x EK; and if the set {x} only contains the

¢} for each x €¢X we have single point% x,

o - . —
P |::Co,ﬂ-’);;s\z"‘] =1 2.3)

and © °
[ tP [:dt;A %] < o, (2.4)
0O 2

The application of a strategy z involves extra ftransitions. As soon as

a state of Az, say x is assumed, an instantaneous transition will

1)
happen with transition probabilities z(B;xl).

in order to be able to describe the resulting random walk in X,
the extra transitions have to be incorporated in the original stochas~—

tic process S:. To this end we assume that, if the transition in ques-

tion leads to a state x the process goes on like a ng-process.

2)
Note that by point 3a) of z(B;x) the state §2 almost surely belongs to

A .
Z

Let us now consider the set functions

{p’(B;x;z); j=0,1,...}, (2.5)
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defined by (cf.p.10)

def
po(B;x;z) et p° [AB'A ;x] , (2.6)
"z
o .
pl(B.x.z) def Ix z(dy;x)P [AB;AZ’y] , if x:eAz
) o
fA p (dI,;x;2) I z(dy;1,)P [AB;A iy] s
zZ X _z
if xeh .
z
(2.7)
and
k def k-1 1
p (B;x;z) g J p (dIk;x;z)p (B;Ik;z); k=2,3,...
A, (2.8)
2)

recursively.

The following lemma can easily be proved:

Lemma 2.1
The functions {pk(B;x;z); k=0,1,...} satisfy:
1)} For each x €X the set function pk(B;x;z) is a probability

measure defined on G with

pk(AZ;x;z) =1; (2.9)

2} For each set B e¢G, the x-function pk(B;x;z) is measurable with

respect to G.

k
It follows from the construction of the set function p (B;x;z),
that it represents the probability distribution of the initial point

I, ©of the (x+1)°" added transition,

k
We now consider a sequence of spaces {Q ; k=1,2,...} . These
spaces are isomorphic with o°. Consequently, there exist 1-1 point

transformations
k h

W= Tkh(w }; k,h=1,2,.., (in (2,10

h
from § onto Qk satisfying:

2) States in Az are denoted by I,I . etc.

180"
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k 'k
a) w = Tkk(w }, k=0,1,...; (2.11)
B) o = T (T, (w)); k,h,j=0,1 (2.12)
- kh hj ’ 3N J=0 4,000 o °

These point transformations induce set transformations, denoted
by

K = Tkh(Kh); K,h=0,1, ... (2.13)

and defined by

T (Kh) def {wk‘wk =T (mh); W eKh}

Xh Xh (2.14)

The set transformation (2.13) has the following properties:

k
a) K = Tkk(K), k=0,1,...; (2.15)

k Gvy ie ok j
b) K = Tkh(Thj(K )), if X = TkJ(K )]

k,h,j=0,1,2,... ° (2.16)

Let the class Fk of sets Kk be defined by

K
P 9eT ok - T K5 KO ) . (2.17)

k
Obviously, the class F is isomorphic with FO. Consequently, the fol-
lowing lemma is true:
Lemma 2,2

The class Fk is a o-field of wk-sets.

In order to simplify the notation, from now on we drop the space-
k
index k in the notation of the sets K . Corresponding sets in different

spaces will be denoted by the same symbol.

Next we introduce the wk—functions {xt(mk); te B),m)}, defined by
k, k o) k
xt(w ) = xt(Tok(w ¥); k=0,1,... . (2.18)

If BEG and if At-B is defined by

’
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dgf {wo |x0

t(wO)E:B} , (2.19)

At;B

: o
€
tben At'B F and thus

’

Teo by, = (W [ X e B} ¢ F¥. (2.20)

So we have proved:

Lemma 2.3
k . k, k .
The w -~functions {xt(m ) I E[b,m)} are measurable with respect

to Fk (k=1,2,...J).
Finally, we introduce the set functions {Pk [K;x;z] ;k=1,2,...1}1 ,
k
defined on F by

Pk [K;x;z] dgf

def k-1 o
= [A p (dIk;x;z) Jx Z(dy;Ik)P [k;y] . (2.21)

z
The proof of the following lemma is left to the reader!

Lemma 2.4
k
For each x and k the set function P [K;x;;] is a probability
- k
measure. For each set K the x-function P [K;x;z] is measurable with

respect to G.

The w-functions {xi(wk);ts DD,m)} together with the probability space

{Qk;Fk;Pk} generate the stochastic process Sz (k=0,1,...).

The initial state of this process is not x (cf. assumption 3), but

obeys the probability distribution

q(B;x;z) = p* [AO;B;x;z] =

k-1
= p (dI ;x;z)z(B;I ). (2.22)
k k
A
z
It can easily be verified that the set function q(B;x;z)} repre-

sents the probability distribution of the state into which the system
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is transferred by the kth added transition. Note that apart from the
initial distribution the process Si does not depend on the strategy
applied.

By (2.18) and (2.21) the set Ao € Fk and has the following pro-

perties:

1) For each mk ETO, the t-function x:(wk) is continucus from the
right;

2) In each bounded time interval in B),m) and for each u# €T£,
the t-function x:(mk) has only a finite number of discontin-
uities;

3) For each x €X, we have

Pk [Ao;x;z] = 0, (2.23)

If x(t) is any mapping of the time axis gb,m) into the state space
¥, then it follows from assumption 2 and (2.18) that one and only one

point wk can be found such that

x}:(wk) = x(t). (2.24)

So we have proved the following lemma:

-

Lemma 2.5
k
The stochastic processes Sx (k=1,2,...) satisfy the assumptions 1
e
and 2 of the SX process (% =k; M=N) and have initial probability dis-

tributions.

Up to now the probability spaces {Qk;Fk;Pk} have been considered
separately. In the remainder of this section, however, we shall con-
struct one single probability space {Q;F;P} which is in fact the Car-
tesian product of the probability spaces {nk;Fk;Pk} .

Let @ be the product space of the spaces Qk (k=0,1,...} and let H
be the smallest O-field of sets K that contains the cylinder sets

K= Ko XKl oo = 31; Ki’ (2.25)

where
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a)&sﬁ,umL“g
b} only a finite number of w'-sets Ki are different from Ql.

1
The points of {l are denoted by w= (wo,w y++3. We now consider the

point transformation

= w
w T(k)( Y, (2.26)
defined by
wl =W a0, (2.27)

The definition of the point transformation T (w} implies:

(k)
Lemma 2.6

For each wefl one and only one point w, € ) can be found such that

w, = T(k)(m). (2.28)
By means of the point transformation (2.26) we can define a set trans-—
formation 'K = T(k)(K)’ given by
def
{wl | w = T(k)(w), weXK} .
(2.29)

T ®

Next we consider a set transformation of sets K e H, denoted by

"

= 9
K=Thy w0, k-1 (2.30)
and defined by
def o kel TT
= o o Q
T e, okl ® = T 0 (= lom T g 2,

(2.31

where {wJ} is the point set in o containing the single point w?,
We now prove the following lemma:

Lemma 2.7

For each we ) the set transformation T k_l(K) induces a

(k); ... w
g-homomorphism of H onto H,
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Proof:
If X is a product set of the type

r
K = J.Uo K x IT a3, (2.32)

with X, eF’ and r 2k, then

< 1T @d, iz wJexj; j <kel
T =
(k);wo...wk'l(x) .
g, if EIJ. uwl ek, (2.33)

Consequently, T(k);uP...uF‘l(K) eH,

From the definition of T wk—l(x) it follows that

(k) ;uwO.. k-1
. ! o
w ET(k);uP..,wk'l(K) implies (w°,...,w ,wl) € K and conversely.
Hence,
T(k);wo...wk"l(K) = T(k);wo...wk"l(x) (2.34)
and
[+ . G i
U x4 -
T(k);wo...mk'l(izl K i=1 T(k);wo...wk’l(K ). (2.35)

Let J be the class of w-sets K €¢eH which satisfy

T(k);wo...wk‘l(x) €H,

Then, by (2.33) the class J contains the product sets (2.32). Because

of (2.34) and (2.35) J is a o-field and therefore, J = H,

Let J, be the class of w, -sets "K, defined by

J dgf

1, "_
1 {("K|"k =T

wk—l(K); KeH} .
(2.36}

(k};uC..

We have just proved that ch H.

On the other hand, if "K €H, then

k-1
1" o TT 11
K = T(k);wo‘ k-1(i=o Q, x Ky (2.37)
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and thus

Hence,

J, = H. (2.38)

This proves the lemma completely.

k -
It K _€F', let us introduce the w-functions pk(xk;w"...mk L,
defined by (cf.p.10)
K o  k-1- def k-1, k-1
P [Kk;w T f z(dy ;x° (w0 T;A))) p° [Kk;y]
X (2.39)

The following lemma can easily be proved:

Lemma 2.8
o
o
. . k o k-1
with respect to H. For each wthe set function P [Kk;w e ] is a

For each Kk eFk the w-function Pk [K .wk_IJ is measurable

<y . k
probability measure, defined on F ,

Next we prove:

Lemma 2,9
if Kk eFk, we have
Pk [Kk;x;z] =
1 -1
IQO p° [dwo;xjfﬂl P [dwl;woj - Jgk P~ [Kk;wo...wk 1

k=1,2,... . (2.40)

Proof:
This lemma is proved by induction.

If k=1, then according to (2.6}, (2.21) and (2.39) we find

I—’1 [Kl;x;z]

o] O
IA p (di,;x;z) Ix z(dy ;1,)P [Kl;y] =

f . ?° [aw’;x] P [Kl;wo:] . (2.41)
Q

Thus, the assertion is true for k=1,

Let us now assume that the assertion is also true for k=n-1 and let
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Mj-m be defined by

3

def n-1 , j-1 . n=1 n-1 (o) 3
Mj;m = {w | o <JX z(dy;x  (w A 0P [Kn,yj‘:w-ﬂ} =
2
_ n-1 ;| j-1 n .0 -1 J
= {w ]? < P [Kn,w ceew ] :-z-a } . (2.42)

According to (2.21)

p" [Kn;x;z:] = I pn-l(dln;x;z) JX z(dy;In)Po [Kn;y] =

A
z

) L)n-l R I 2ay;x" (WA 0P [k 5y] =

X
2m
. i n-1
"o, j-E-:]. 23_m ¢ l:MJ';m;X;Z:]=
2m

o oas J Or. O n-1 . © n-2
= lim Z m JQO P Ehu,x] cee I n-1 | [Mj;m’w ..,9 j

maew j=1 2 Q
2m
_ o o, . J n-1 ) n- _
= [QO P [dw ;x]] .‘,{ml_’lg jzl ~——-2m P [Mj;m’w ew 2]} =
-1 -1 -2
= JQO p° [dmo;x:l LG-l P! [dmn ;00w 7o

N R ST s BN CIPE)

Hence the assertion is alsc true for k=n.

This ends the proof.
We now consider the cylinder set K € H, given by
o
k= [l K (2.44)

with
i
a) Ki EF ;

b) only a finite number of w -sets Ki different from ﬂl,

For each cylinder set K of the type (2.44) we can define

1) a number My by
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m dgfinf{i

< V. K. = @}, (2.45)

J 2i+1l T §

m
2) functious IK(mO...w K) by My

m
(o] K .
i € I
o Mk der [1r if (0w )E LK.
IK(N o8 0l ) =
- 0, otherwise. (2.46)

Now we are in a position to define a set function P [K;x;zj on the
class of all sets of the type (2.44).
Let P [K;x;z] be defined by

P [K;x;z] =

m m m, -1
= J p° [:dwo;xjf ) pt [awl;e®] ... J P Flaw®.u® . 0 X 7.
o° Q 0 K
o mK
»IK(w S TN (2.47)

It can easily be verified that the right hand side of (2.47) exists.

Lemma 2.10
a) The domain of definition of the set function P [K;x;z] , can be
extended to H. For each x €X the set function P [K;x;z:]is a pro-
bability measure defined on H, For each Ke F the x~-function

P [K;x;z] is measurable with respect tec G.

b) If K e and it Kx(: is given by

k-l . il .
C J . 3
= Q
Kk j:lo ka xj:k+1 Q7 (2.48)
then
pX [Kk;x;z] = P [Kﬁ;x;z] . (2.49)

Proof:
Point a) has been proved by I. Tulcea (cf. [}j p.137).

We now consider point b). The proof runs as follows (ef, (2.40)):

< -
14 [K IKZ =
K’ A
= [ p° rdwo;%] - B~ [du&;u?.g.ukalj 1 (woe,ﬁwk} =
Jo o & kK o
G & k
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I3

-1
= J o p° [dwo;x] . I X p* [Kk;wo...wk 1=
Q Q
= p* [Kk;x;z] . (2.50)

So we have obtained a probability space {Q;H;P} with {@ ;F ;P"} as
factor probability spaces.

. .
Since " is the k" component of w, the «*~functions {x:(wk);t e [0,=)}
can also be defined on ., We define the w-functions {x:(uﬂ;t E[p,w)}

by
x5 (w) def x (W), (2.51)

It follows from (2.50) and (2.51), that the stochastic processes

{Sz;k=0,1,...} can alsc be defined by means of the w-functions
{xt(w);t E[b,w)} and the probability spaces {Q;H;P}

In the final part of this section we shall discuss some proper-

ties of the probability measure P [K;x;z] B

Lemma 2,11

If XeH, the w-function

I b —
Ix 2 lay;x (“”Az))P [T(J);wo,..mj"l(x)’y’z] P3=l,2,..

(2.52)
is measurable with respect to H.
Proof:
Let K be the product set
[}
K = ;E% Kj’ (2.53)
h
i K. e F,
with Kh

Then, we have

j-1
z{dy;x (w;A )P [T .\ . O j—l(K);Y;i] =
IX z (J);w’...w

Jj-1 . i
fx z(dy;x (w;AZ))P [QEE Kh;y;z] , if w EZKi;

i=0,...,j-1.

0, otherwise. (2.54)



Hence,

Jj-1 -
L{ zldx;x” —(w;h, )P [T(J’) ;m°...(»~7"1(K);1’{;‘""-—J =
Jj-1 - R
= X{(w) JX z(dx;x (w;AZ))P [;EE Ki;x;zJ R (2.55)

where i
def 1, if w aKi for i=0,1,...,j-1
X(wy "=

O, otherwise. (2.56}

Thus, if K is of the form (2.53), the w~function (2.52)} is measurable
with respect to H.

Let J be the class of w-sets KeH which satisfy the assertion. So
J includes the product sets (2.53). It can easily be verified that J
also contains:

a) the complements of J-sets;

b} the limit of any monotone sequence of J-sets.
Consequently, J=H.

This ends the proof.

Lemma 2,12

If KeH, we have for each xc¥ and j 21

P [K;x;z] = I P [dw ;x;@] J z(dy;xj-l(w;Az))'
Q X

® . i1 (K) vy o
P [Ty, a1 ®iviz]
- _ : e (-
N JQ ? [dw,x,é] P [T(J);wo...mel(K)'Xo(w}’Z] ‘
(2.57}
Proof:
Let us consider the cylinder set KeH, given by
]
= 2.58
X v i=0 Ki ( )
with
i
a) Ki eF

b} only a finite number of sets Ki different from 91,
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If mK is defined by

def . , _ h
m = inf {i |Vh . i Kh =Q} (2.59)

and if X{(w) is defined by

1, if mlexi; i=0,1,...,j-1
X(w) = [

0, otherwise (2.60)

then for each j we have

P [K;x;z] =

= [ ° P [dw X] I‘P;-]-ll [:dw.j"'l;wo..'wj"ZJ o X(W}
Q
° f z(dxl,xJ 1( -1 A, }Jy - P [.rr K xl,zj =
X

[ P [dux;z ] f z(ax ;x0T ))
Q X

P [T(J);mo_”w;i—l(K):xl;z:] . (2.61)

From (2.61} we deduce that the product sets K satisfy the assertion,
By using similar arguments as in the proof of lemma 2.11 we can com-

plete the proof of this lemma.

We now consider the w-set Mo’ defined by

w J=1 co
4t U T m g
o j=0 i=0 2" x A o Xi=jel ¥ (2.62)

Obviously, we have for each x€X
o
P[M ;x;z| = O, (2.63)

By completing the measure, the domain of definition of P [K;x;z]
is from now on extended to the ¢g-~field F, the smallest og-field in-

cluding H and containing all subsets of Mo'
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The proof of the following lemma is left to the reader (cf. lemma

1.1):

Lemma 2.13
For each set K e F, the x-function P [K;x;é] is measurable with

respect to G.

2. The probabilistic foundation of the decision process

In section 1 we have stipulafed that the application of a strate-~
gy involves extra transitions. We assumed that an instantaneous trans-
ition with transition probabilities z(B;xl) occurs if a state, say X5
of a closed set AZ is reached. If such a transition leads to a state

o
X then the process goes on like a Sx ~process. The resulting random

2"
walk is called the decision process an% is denoted by SX‘Z if x is the

initial state.

Since the initial distribution of thé Si-process represents the
probability distribution of the state into which the system is trans-
ferred by the kth added transition (cf. p.60}, the stochastic pro-
cess Si can be used for the description cof that part of the decision
process which will take place between the kth and the (k+1)St added
transition., Hereafter this part is called the (k+1)St stretch of the

decision process.

In such a presentation the points wke Qk determine realizations
of the (k+1)St stretch. Hence the points w e determine realizations
of the whole decision process.

In this section we shall demonstrate that decision processes can

also be defined by means of probability spaces {Q;F;P}

Obviously, the successive states.in AZ, reached by the system, can
for almost all w be represented by {xJ(w;AZ); j=0,1,...}. The lengths
{tj(m;Az); j=0,1,...} of the time intervals between the added trans-
itions are defined and measurable with respect to Fj (cf. lemmas 1.5.1
and 1.5.2 with » =j).

The sequence of w-functions {xj(w;Az); j=0,1,...} together with a

probability space {Q;F;P} generate a sequence of stochastic variables,
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dencted by {£J+1; j=0,1,...1}.
We already know that the applied strategy z effects an extra
transition in the random states (Ej; J=1,2,...}.

Obviously, we have for j=1,2,... (cf. (2.6}, (2.7) and (2,8))

€ = e .= I, =
Prob {1, €B l1, =1, I1g=1,)
o 1 .
= | 2Qy;10P [4,, 5y] = p (Bji;2) (2.64)
% J iy J
and
Prob {£j+1 €B} = pJ EAB'A ix3z) = p? (B;x;2) (2.65)
"z
with
) . 1
pJ(B;x;z) = [ pJ 1(dI,;x;z)p (B;I ;z). (2.66)
A J J

Z

The following theorem is an immediate consequence of lemma 2.1 and the

equations (2.64) through (2.66) (cf, [2] p.190 ff.):

Theorem 1
The stochastic variables {lk; k=1,2,...} constitute a stationary

Markov process with a discrete time parameter.

This stochastic process is called the decision process on Az'

Henceforth our considerations are based on the following assump-

tion:

Assumption 4
‘There is a finite valued measure Q(U} of sets UeG with Q(X) > 0,
an integer k21 and a positive n, such that for each IeA, (ef. [27] ,
p. 192)
pk(U;I;z);l-n , if QUY <n . (2.67)
#

We can now prove (cf, Dﬂ , p.214):

Lemma 2,14

Under (2.67), the function p(U;Ilgz), given by

n
def . 1 j
p(U;Il;z} =n1—3£ = }: pJ(U;Il;zB, (2.68)
. J:l
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defines for each I_ ¢ Az a stationary absolute probability distribution,

1
The sequence of w-functions {tJ(w;Az); j=0,1,...} together with
the probability space {Q;F;P} also generate a sequence of stochastic

variables. These stochastic variables are denoted by {Ej; j=0,1,2,...}.

Using similar arguments as in the proof of lemma 1.47 we can

prove:

Lemma 2,15
Under (2.4) and (2.67) the limit

1 r .
lim = ) tJ(w;A) (2.69)
r .~ V4
T oo J:J.

exists for almost all w and is equal to

p(di;I, ;z) J z(dy;I) J tp° [E . ;y:](2.70)
fA 1 X o) dt’Az

z

if the initial state I1 belongs to a simple ergodic set of the stochas-

tic process {lk; k=1,2,...} .
Lemma 2.16
Under the assumptions 1,3 and 4 and by property Ba) of the func-~

tion z(B;x), we have for each I1 EAZ

[
f p(dI;I_;z) J z(dx;I) J tp [E . ;{] > 0.
A 1 X 0 d—t’Az

“ (2.71)

Proof:

Obviously, we have by assumption 3 for each x
o o
P |E ; =P = nA H . 2.72
L EO,IE) ;AZ’XJ > L 0,5 A, 0;% x] ( )

Let us consider the limit
L]

q O = . —_ O = .
iim P [_[0,_}_1_) ;Az,x:l = P [nol “[:0,%) ;Azﬂ Ao«x’x] .

n->e ’

(2.73)

If x CZ;, by the definition of Ao we find
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= © A < A, .
n=1 EO,}n-) ;Az o;x o (2.74)

Hence, if x sAZ,

or.
lim P = ;] =0 (2.75)
n->o [ [:Or%) ;Az ]
and thus
1im p°[E %] = 1. (2.76)
n-+o E‘lﬁ,“') ;Az
Therefore, if x CK;,
tp® [ = ;%] > 0. (2.77)
o dt;AZ

The assertion now is an immediate consequence of property Sa) of the
function z(B;x).

This ends the proof.

Now we are in a position to prove the following theorem:

Theorem 2
Under the assumptions 1,3 and 4 and by property 3a) of the func-
tion z(B;x), the limit

1 i
lim = Yot (w;A ) (2.78)

exists and is positive for almost all w. In particular, if the initial

state Il belongs to a simple ergodic set of the stochastic process

{Ek; k=1,2,...}, the limit (2.78) is almost surely equal to
o]
14 O s
I p(dI;Il;z) f z{dx;I) J tP [;dt'A ;x] .
AZ X 0 "z
(2,79)
Proof:
If the initial state I, is an ergodic state, then the assertion is

1
an immediate consequence of lemmas 2.15 and 2.16,
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If the initial state is a transient state then for almost all w
the system will stay outside all simple ergodic sets only a finite
number of times in its transitions (cf. Bﬂ , P.207). Consequently,
for almost all w an integer n(w) can be found such that for n > n(w)
the states xn(w;Az) are ergodic. Hence, for almost all w

1§ L

lim = ) tJ(wA) =
r 2o .]=1 z
= I p(dI;I;2) [ z (dx;1I) j p° [E4.4 %] >0,
A b ¢ o "z
Z
(2.80)

n(w)

whers: i stands for x

(w;A ).
2

This completes the proof.

k
t;1
t e[0,%)} for k=0,1,..., defined by

Let us now consider the w-functions {u (w);t E[b,m)} and {ut.z(w);
t

o o def o
ut;l(w) = ut;z(w) = xt(w), (2.81)
k-1, s e N .
K def U, ) 300 5t GwiA))
u (w) = s k>0
t;1 Kk
xt—fk(w;Az)(w)’ if t >tk(u;Az)
(2.82)
and
uk-l(m), if t<t (w;A )
t;2 k z
k , def
Ug,p @) = K - P k>0
3 - ) o > 0.
Xt—tk(m;A )(w , if t==tk(m3AZ)
(2.83)
h
where st k-1 S
t . e .
NI (wih ). (2.84)

J=0

Note that the ¢-—-functions uk_l(w} and uk (w}) only differ if

. t; £;2
t=t WA (G=1,2,...,0).
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Lemma 2,17
The w-functions {u L @W5k=1,2,,..5 te [0,)} are measurable

with respect to H.

Proof:
This lemma will be proved by induction, It follows from (2.81}),

that the assertion is true for k=0.

Let us assume the assertion to be true for k=n-i and let us ron-
sider the sequence of w-functions {u" _ (w); m=1,2,...}, defined for

- m;t
k=l,...,2 by

< (wy, if =10t 2T (WA )<.5£
(k-1)t n z
n def e e ? 2 2
um‘t(w) = 2
' n-1 -
3 - >
ut;l(w), if tn(w’Az)’“t . (2.85)
Let the w-functions {Xk(w);k=0,...,2m} be defined by

1, if £ (A2t or W' A
f 3 ) me
Xo(m) dg [ n Z ]
0, otherwise , {(2.86)
and
1, if (—k'—;ﬁ < En(w;AZ) < }% and w” € L%
Xk(w) [ 2 2
0, otherwise . (2.87)

where wn is the nth component of w ,
It can easily be verified that the w-functions {Xk(w);k=0,,".,2m}

are measurable with respect to H.

Consequently, the w-functions n

2
n n-1 n
LW o= x (W o+ Y (wx
t o] t;1 kel k -

(k—l)t(“’); m=1,2,..,

2" (2.88)

are measurable with respect to H.

It can easily be verified that for each wthe sequence {uz’t(w);
m=1,2,,...} converges to a limit, which is by consequence measurable
with respect to H. Since for w € TT Sﬂ XAO X TT QJ this limit is

equal to u (w) the latter is measurable w1th respect to H.
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By a similar reasoning, we can prove:

Lemma 2.18
The w-functions {u:_z(w);k=0,1,...;t € E),M)} are measurable with

s
respect to H.

For each fixed k the w-functions {uiél(w);t € E),m)} together with
b
the probability space {Q;F;P} generate a stochastic process

{uk

Ui tef[0,@) . (2.89)

Let the stochastic variables {ij; j=1,2,...} be defined by
. jil
t, = t, . (2.90)
I k=0 ¥
The stochastic process (2.89) describes the state of the system in X
if after the kth extra transition no more extra transitions are added
and if at {Ej; j=1,2,e..,k} only the initial point of the correspond-
ing extra transition is recorded.
k .
Similarly, we find that for each k the w-functions {ut,zkw);t€ EL“O}
5
together with the probability space {Q;F;P} generate a stochastic pro-
cess
k .
; tel|o,®¥} . 2.91
{E t;x;2’ [7 ( )]
The stochastic processes (2.89) and (2.91) are identical with the ox-
ception of the random points of time {Ej;j=l,2,a..,k} . In (2.91) the
state after the effectuation of the extra transition is presented at

-~

t..
~-J

In order to evade difficulties in determining the state at Ej we
introduce the product space X' of two N-dimensional Cartesian spaces
Xl and Xz. The o-fields of all 2N-dimensional Borelsets in X' is deno-

ted by G', while the corresponding o-fields in X, and X_ are called G

1 2 1
and G2 respectively. Note that the spaces X, X1 and X2 are isomorphic.
Next let for each k and t € [0,») the w-functions uipl(m} and

;1

k . .
ut;z(w) map £ intc Xl and X2 respectively.
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From now on states are represented by points x' €X',

If x' eA xX
z

]

the x,~component of the "state" x' determines the

2’ 1

initial point of the extra transition, while the x_-component describes

2
the state just after the effectuation of the transition.

if x' EKZ x X then the x, and the x_~components of x' are equal.

2’ 1 2
Obviously, the w-functions {u:(m);k=0,1,...;t£ [0,=)} , defined

by
ui(w) def (u:_l(w);ut,z(w)), (2.92)

map Q into X'.
The proofs of the following lemmas are obvious,

Lemma 2.19
k .
The w-functions {ut(w);kzo,l,...;t e[p,w)} are measurable with

respect to F.

Lemma 2.20
The w-functions {ui(w);kzo,l,.,.;t e[b,w)} have the following pro-
perties:
a) For each w Eﬁo the t-function u:;z(w) is continuous from the
right;
b} For each w eﬁo the t-function u:(u) has only a finite number of

discontinuities in each finite time interval.

We now consider the w-functions xt‘l(w) and xt‘z(w) for k=1,2,...,
defined by
def k-1 -
xt;l(w) = “t;1(w)' if tqgtk(w,Az) and
lim t (WA ) = @ . (2.93)
h—)m h z
def k-1 ~
= w i < N
Xt;z(w) ut;Z( ), if t tk(w,Az) and
lim t (w;A ) = o (2,94)
hs o h z

o . . -~
1(w) = xt;z(w) = xt(w), if lim t

(w;A ) < o,
h+uo z

(2.95)

Xt; h
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Note that the w-functions xt'l(w) and xt,z(w) only differ at the
b ’

points of time {%k(w;Ay); k=1,2,...} .
The following lemmas can easily be verified:

Lemma 2,21
The w-functions {xt_l(w);t € [0,)} and {xt'z(w);t € [0.«)} are
3 ’

measurable with respect to H.

Lemma 2,22
The w-functions {x (w);t e [0,9)} , defined by

def

xt(w) =" ( (w),xt;z(w)), (2.96)

xt;1

map  into X’ and are measurable with respect to F.

Lemma 2.23
The w-functions {xt(w);t eEO,w)} have the following properties:

a) For each w cﬁo the t-function x '2(w) is continuous from the

t;
right;
b) For each w eﬁo the t-function xt(w) has only 2 finite number of

discontinuities in each finite time interval.

The w~functions {xt(w);te Bhw)} together with a probability space

{Q;F;P} generate a stochastic process

{x ot e [0,0)} (2.97)

t;
in X',
Since

a) by theorem 2 we have almost surely

lin t (wA) =@ ; (2.98)
h+o - “

b) the stochastic processes {uk s te Eo,w)} and {uk ;tE [O,co)}
~t;x;1 —t;x;2 g
describe the evolution in the state of the system if only k

extra transitions are added,

it follows from {(2.93}, (2.24) and (2.95) that the stochastic process

{Et_x;t e[b,m)} describes the whole decision process in X',
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€8 x - t d i
If Et;x . X2’ the X component of the state Et;x etermines

the initial point of the extra transition, while the xz—component des-
cribes the state just after the effectuation of this transition. The

. E_X .
two components are equal if zt;x AZ X2

Note that by virtue of assumption 3 the x,-component of the ini-

1
tial state EO'X is equal to x with probability 1.
]
If xeA , then the x_-component of theinitiai state x also is
Z 2 —0;X

equal to x with probability 1.

The x2—component of Eo;x obeys the probability distribution
z(B;x) if x EAZ. Consequently, for XEZAZ the decision process has an
initial distribution,

So we have proved:

Lemma 2,24
Under assumptions 1,3 and 4, the decision process in X' can be de-

fined by means of a stochastic process.

3. Properties of the decision process

In this section we shall show that, notwithstanding the decision
process does not satisfy assumption 1 (cf. chapter 1 of this part}, the
assertions stated in lemmas 1.5.1 through 1.9 can still be proved.

As we noted at the end of section 2 the decision process
{Et;x;t e[b,m)} has an initial probability distribution if xls Az' In
the coming discussion we shall demonstrate that decision processes with
given initial x'~states can also be defined.

For that purpose we have to define set functions
{p [K;x';zj ;'€ X' }. Properties of these set functions are investi-

gated at the end of this section.

Let us start with introducing the y-functions {vt(m);t c[O,w)} s

defined by

v, @ %, @)

€52 w)). (2.99)

;xt;z

The assertion stated in the following lemma can easily be proved.
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Lemma 2.25
The w-functions {vt(w);t e[b,m)} have the following properties:
a) For each t ¢ [0,©) the w-function vt(w) is measurable with
respect to F;
b) For each w Eﬁo the t-function v#(w) is continuous from.the
right;
¢) For each wiiﬁo the t-function vt(w) has only a finite number

of discontinuities in each finite interval.

Next we consider the w~-functions {xj(w;Azx Xz);j=1,2,...} , de-
fined by

def

- .
X, (iA, X)) (x9 (w;AZ),xi(w)). (2.100)

We easily verify:
Lemma 2,26
The w-functions (xJ.(d);Az XXZ);j=1’2"°'} are measurable with

respect to F,

it follows from (2.99) and (2.100) that

. xJ,(w;Az XXZ), if t = tj(w;AZ)
Xt(“’) =

vt(w), if t # tj(m;AZ);jzl,z,... . (2.101)

If C is a closed set in X', the w-function t(w;C) represents the
moment that the system is for the first, time in C.

In other words (cf. (1.47))

e det [ inf {t[xt(m) €C} , if x (w) e C for some
», otherwise. finite t (2.102)

Tf 't(w;C) and "t(w;C) are defined by

T.(wiA ), if x (w;A xX)eC (k=1,...j-1)
"t (w;C) dgf J z k Z 2
and x.(w;Azx XZ) £C

=, otherwise (2.103)
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and
) def int {t|vt(m) eCc}l , if vt(w) € C for some
t(w;C) "= -
. finite t
®,  otherwise
(2.104)
respectively, then we obviously have
tW;C) = min("t(w;C), "t(w;C)). (2.105)

Since the w-functions %j(m;Az) and xk(w;Azx X2) are measurable with
respect to F, it follows from (2.103) that the w-~function 't(w;C) is
measurable with respect to F. Moreover, lemmas 2.25 and 1.5.1 imply
that the w-function "t(w;C) is measurable with respect to F. (MO=A:!)

Consequently, we find:

Lemma 2.27.1
If C is a closed set in X', then the w-function t(w;C), defined

by (2.102), is measurable with respect to F,

We now consider the w=-function x(w;C), defined by (cf. (1.51}))

x (W), if t(w;C) < =
X (@:C) dgf [ t(w;C)

xo(w), if t(w;C) = o, (2,106}

By (2.103) and (2.104)

JA X,), if t. A t{w;C) = t. sA ®
x(w;C) = [:xi(w 2 Xy 1E Ty (iR,) < E(iC) = T (i )<
v{w;Cy, if t(w;C) = "t(w;C) , (2.107)
where
Vi . ((D), if "t(w;C) < @
xo(w), if "t(w;C) = @, (2.108)

Using similar arguments as in the proof of lemma 1.5.2 we can prove
that the w-function v(w;C) is measurable with respect to F.

Cbviously, we have!

Lemma 2,27 .2
If C is a closed set in X', then the w-function x(y;C), defined

by (2.106), is measurable with respect to F,
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If B is a 2N~dimensional Borelsest, if C is a 2N-dimensional

closed set and if I is an interval in [0,=), the w-sets At

;B;z’
:I;C;z and AB;C;z are defined by
def
= £ .
A gz {w|x, (WeB}, (2.109)
~ def | _
IR RO R I (2.110)
and
def
= . £ 2.
dpicip = 0 lx(u;0)eB) (2.111)
respectively.

We now assume the set C to be chosen in such 2 way that for each

x1 EXl we have

[§31

P =1, (2.112)

[0,);C;z 1 2

Since each combination of a measurable w-function and the proba-
bility space {Q;F;P} generates a stochastic variable, the w-functions
t(w;C) and x(w;C) lead us to the stochastic variables IC;x and §C;x .
The probability distributions of these stochastic variables are given

by

def — e
Prob {_t_C;xle:I} = PE..I;C;Z,AI,Z_] (2.113)
and
def -
= FHL 3 2.114
Prob {EC;XI € B} PI:AB;C;Z, l,qj (2.1143
respectively.
The stochastic variable EC % represents thez length of the time

period preceding the moment at which the system first is in C, while

2oy denotes ‘the state at the end of this period 3f (2.112) is true,
3 1 .

Summarizing:
Lemma 2.27

If the assumptions 1,2,3 and 4 and condition (2,112} are satis-
fied, the probability distribution of the length EC;x of the period
preceding the moment at which the system first is in C and that of
the state §C'x at that péint of time are defined. They are given by
{2,113} and 22%114) respectively.
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Let B be a closed set in X' and let us define a family of w-

functions {xt(w;B);t e [0,%)} by

x R (w), if t(w;B) < =
x, (;B) def [ t(w;B)+t

xt(w), if t(w;B) = . (2.115)

Lemma 2,28
The w-functions {xt(w;B);te [p,m)} are measurable with respect

to F.

Proof.,
We first consider the w~functions {vt(w;B);te,Ep,m)}, defined by
v i (w), if t(w;B) < «
vt(w;B) dgf [ t(w;B)+t
xt(m), if t(w;B) = «, (2.116)

E3
It follows from lemma 2.25 and 1.6 (A0 = Mo) that the p-function
vt(m;B) is measurable with respect to F.

We obviously have

vt(m;B), if t(w;B) = » or if for each k

x, (0;B) = _ t(w;B) + t # fk(w;éz)
xk(w;Az XXZ)’ if t{w;B) + t = tk(w;AZ)>
t . 2,117
> tk_l(w,AZ). ( )]

We now define the w-functions {Xk(w);kzo,l,...} by

1, if t(w;B)= = or if for each k
def

X (w) "= . t .
° t(w;BY+t #£ tk(w,AZ)
0, otherwise (2.118)
and . " -
X, (wy 9ef [1, B + = Gwia )ty ) Wik)
k =
0, otherwise, : (2.119)

Next we consider the sequence

n
(X, (W) v, (w;B) + k§1 X, (W) x, (w;A_x X,)in=1,2,...}.
N (2.120)
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Since the w-functions Xk(m), vt(m;B) and xk(ijZ xXz) are measurable
with respect to F, all elements of (2.120) are measurable.
Consequently, the limit xt(w;B) of this sequence is measurable with
respect to F.

This ends the proof.

If B and C are closed sets, let us introduce the w-functions t{(w;B;C}

and x(w;B;C), defined by

ger [ inf {tlxt(w;B)E ¢}, if xt(m;B) e C for some
t(w;B;C) = .
L. =" ,otherwise finite t
s (2.121)
and
ey def [ Foupio) (VB AL HOBO <
o xo(w;B), if t(w;B;C) = w {(2.122)

respectively.

Lemma 2.29

If B and C are closed sets in X', the w~functions t(w;B;C} and
x{w;B;C), defined by (2.121} and (2.122), are measurable with respect
to F.

Proot: |
The t-function xt(w;B) has the same properties as the function
xt(w), Therefore, lemma 2.29 is a direct consequence of lemmas 2.27.1
and 2.27.2,
This ends the proof.

If Cis a closed set in X' and if w is a realization of a stoch~-
astic process Sz;x’ let t(w;Bﬂ) be the moment that the system enters
into C for the first time.

Repeating the arguments used in the proof of lemma 1.8.1, we can
prove the following lemma:

Lemma 2.30.1°

The w-function t(w;[@]) is 'measurable with respect to F.
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Let us introduce the w-function x(w; [C]), defined by

x . (w), if t(w;[C]) < wv
s [ % [ @il
x (W), if t@;[C]) == - (2.123)

Note that by this definition the state at the end of the period
[O,t(w;[c:])] is given by x(w; [C]) unless t(w;[C]) = =.

Lemma 2.30.2
The w-function x(w; [C]) is measurable with respect to F.
Proof:

We first consider the function v(w; [C]), defined by

v, . (), if t(;[c]) <=
vew; [c]) € [ tw; [C])
x (W, if t;[c]) == - (2.124)

By using similar arguments as in the proof of lemma 1.82 we can prove
that the w-function v(w;[C]) is measurable with respect to F.

Obviously, we have

v(m;[C]), if tw; [C]) £t (w;A ) for each k
x(w;[C]) = [ k z

x (WA xX)), if tw;[C] =t (w;A)>
t ; 2.125
> tk_l(w,Az), ( )
The proof is immediate.
Let us introduce the w-sets :I; [C];z and AB; [C];z’ defined by
- def .
Li[c)iz - {w|tw; [€]) e 1} (2.126)
and dot
e
AB;[C];z = {w|x(w; [€]) € B} (2.127)

respectively.

We now assume the closed set C to be chosen in such a way that for

each xl € X1
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P EEEO m).[C]-Z;Xl;Zj = 1. (2.128)

The w-functions t(w;[C]) and x(w;[C]) together with the probability
space {§;F;P} generate the stochastic variables_E[C]_X and
»
iﬂﬂ'x ; the corresponding probability distributions arelgiven by
?
1

def - e
Prob {E[C];xlel} < P[:I;[C];z’xl’Z] (2.129)

and
def

Prob {il:c];xl eB} = p [AB;[CJ ;Z;xl;z] (2.130)
respectively.

The stochastic variable t represents the length of the time
=[c]

1

period preceding the first entry in C, while E[Fﬂ'x denotes the state
at the end of that period if (2.128) is true. 1

Summarizing:

Lemma 2,30
If the assumptions 1,2,3 and 4 and condition (2.128) are satis-

fied, the probability distribution of the lengtﬁ t of the period

Eﬂ;x

preceding the first entry in C and that of the state E[p]'x at that
?

peint of time are defined. They are given by (2.129) and (2%130) res-

pectively.

We now consider the w~functions

{x4 (w; [C:J; t €[0,=)} , defined by

% w; [t i i [E]) <o

xthﬂ, if t(w;Bﬂ) = oo

(2,131

Txt(w;Bﬂ) dgf [

Repeating the arguments used in the proof of lemma 2.28, we can prove:

Lemma 2,31
The w~functions {xt(m;Bﬂ);t E[p,m)} are measurable with respect

to F,
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We shall now demonstrate that decision processes with a given
initial x'~state can also be defined. To this end we introduce the
o-field ﬁo’ the smallest o-field of w-sets with respect to which the

w-function xo(w) is measurable,

Lemma 2,32
A conditional probability measure P [K;xl;z Iﬁ;} can be defined

on F,
Proof:
We first consider a set K of the following type!
K=K x'K (2.132)

with K_ eF® and 'KeF,

We can easily verify that the w-function u(K;w), defined by

o def [ P [K;xo;z(w);z] , if Xo;l(w) = xo;z(w)e A,
; =
c K. . 4
P [Ko;xo;l(w);é] P [ K,xo;z(w),z] , otherwise
c 3) (2.133)
with K- = K x Q,
o o ~
is measurable with respect to H0
Since for Ble G1 and Bze G2 (cf. lemma 2.12)
a) P [K N Ao;B <B ;z;xl;z] =
1 2
=P|KNnA n oA (X 2 |+
E o;Blx Bz;z o;Az XXZ;Z’ 1 ]
A N A _ iw . .
+ P[kn 0iB, * B,z O;AZKX2;z’x1’Z] ; (2.134)

o . 2 .

3) Really, F is a o-field of sets in Q= II) 27 and not in ' 0= ]1; o,

But,since the spaces ! and ' are isomorphic, isomorphic G—ffglds,
denoted with the same symbol, do not cause confusion,
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bl PEKn AO;leBz;Z s AO;AZxXZ;z;Xl;Z] =
=P[Kﬂ/\. _;x;z]:
o,(BlnAZ)XBZ,z 1
° .
= IAP [dw;xl;z] JB z(dxz;x (m;Az)) P[Tl;wo(K);xz;z] =
o;(Azr\ Bl)x Xz;z 2
= JA PEiw;xl;z] JB z(dxz;xl) P [Tl;wo(}();xz;z] =
o;(Azf\ Bl)x Xz;z 2
= JA P [dw;xl;z:] i L z(dxy;x; ) P [Ksxy52] =
o;(Azﬂ Bl),xxz;z o 2
(¢4 1. o -
= P EAO;(AZnBl)x X,z N Ko,xl,z] L; z(dxz,xl) P[: K,xz,zj =

2

= P [dw;xl;z] P [_Kg;xo;l(w);z] PE'K;xo;z(w);z] ;

Ao; (Azn Bl) x By;z (2.135)
IR [K n Ao;Bl X Bziz n AO;KZ X Xz;z;xl;Z :I ¥
:J P [dw;xl;z] P EK;xo;z(w);z] s
Ao; (Kzn B)) x B,z (2.136)
we find
P [K M Ao;B « Bz;z;xl;z] =

P [dw;xl;z] p [:Kﬁ;xo;l(w);z] P [:'K;xo;z(m);z:] +

o; (Azn Bl) x Bz;z

-

f P [dw;xl;z] P [K;xo_z(u\);z] = [ P l___dw;xl;z] wlX;w),
'Ao;(KZnBl) X B?;z Ao;B1 x Bzgz
(2.137)
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The class of all finite unions of disjunct proguct sets le Bz; with
B1 EGl and 82 SGZ, is a field of x'-sets. If ;ﬁl Blix BZi is such a
union, then we obviously have
P EK n A a T ;z] =
05321 Byg ¥ Bpyiz’ L
n
= z J P [dw;xl;;] W(K;w) =
i=1 Ao-B xB_.;2
"1 2i’"
= J P Edm;xl;#] MK, w).
A n
. B -
o,igh Blix 2i,z (2.138)

Now 1let JK be the class of sets BeG' with the following property:

P [K N Ao;B;z;xl;z] = [A P [dw;xl;z] u(K;w),
0;B;z (2.139)

By (2.138) the class JK includes the field of all finite unions of dis-
junct product sets. Moreover, we can easily prove that JK contains all
limits of monotone sequences of JK-sets. Consequently, J, includes the

K
o-field G'. Hence JK = G',

Since the o-field ﬁo consists of sets of the form Ao-B-z with BeG',
’ 3
we have now proved that
P [K N A;xl;z] = J P [dm;xl;%] W(K; w) (2.140)
A .

if X satisfies (2.132) and A eﬁo.

The set function p(K;w) is for each w a product probability
measure, defined on the class of all product sets of the type (2.132}),
and therefore the domain of definition can be extended to H and F

uniguely.

Henceforth the set function u(X;w) is defined on F,
Now let J be the class of w-sets Ke F with the following proper-

ties:
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a) the w~function u(K;w) is measurable with respect to H ;

b) for each A eﬁo

P [K N A; 1%y 52 _-_I = J P [dw;xl;z:] w(K;w). (2.141)
A

It can easily be verified that

a) Q eJ;
b) if K€J, then K€ J;

c) ifKiEJandifKCK

(-~
- U €
C K e (i=1,2,...), then i1 Ki J.

Consequently, J is a O-field..
According to (2.140) the class J includes product sets. Thus, J DH.
k-1

It follows from (2.133) that K = :]IT Q‘] xA TI( 1 satisfies
for each w e
w(K;w) = 0, (2.,142)

Therefore, for each we Q (cf. (2.62))

W50 = 0. (2.143)

This implies that all subsets of Mo belong to J. Hence, J = F.
Finally, let us define P [:K;x1 iz | Hoj by

P [K;xl;z |Ho] = u(K;w, (2.144)
The proof is complete.
The following properties of P [K;xl;z | ﬁo] can easily be proved
and are stated for later reference:
1) for each weQ and KEF
P [K;xl;z |Ho] =P [K;xo;z(w);z:] , if xo;l(w) = xo_z(w)e AZ;

3

(2.145)
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2) for each w € Q and x'eX'

[ ] 1, if xo(w) = (xl,xz)
P LA, %z | B ] = [
O’{xl} X{XZ}’Z 1 ° 0, if x (w) £ (x,,x,)
o 1°72
(2.146)
where the product set {xl} x {xz} is the point set containing

the single point x' = (xl,xz).

Let us define a family of probability measures {P[K;x';z] x"eX'} ,

with F as domain of definition, by

PEK;x' ;z] def P EK;xl;z l ﬁo] ; (2.147)

where w satisfies xlo(w) = x' = (xl,xz).

The decision process (zt'x"z;t e[0,»)} with initial state x' is
» ’

now defined by means of the w-functions {xt(w);t € EO,N)} and the pro-

bability space {Q;F;P} , where P is given by (2.147).

Let HZ be the smallest 0-field of w-sets with respect to which
the w-functions {xt(w);t € [:O,w)} are measurable.

Presently, we need the following result:

Lemma 2,33
If KEHZ, then
P[K;xo;z(w);z] , if Xo;l(w) = xo_z(w)eAz

P [K;x JZ I H ] = ’
1 o ; . :
P [T(l);wo(l(),xo;z(u?'),z] , if xo;l(w) EAZ.

(2.,148)

Proof:

Let us first consider a set K, given by

K= A (2.149)

3

t;le Bz;z

with Bl € Gl and B2 £G2.

Obviously, we have
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0;A X At;’B B ;z’ if t>0
A n oA = 12
t;Bl>¢B2;z o;AzxXZ;z
A x A, s if t=0
o;Azn Bl O,BZXXZ,Z

(2.150)
where 'A and 'A are
t,leBz,z - o,Bzxxz,z
a) sets in 'Q = jl——]; ol
b} isomorphic with At;B <B,;z and Ao;B T respectively.
1 2 2 2
Thus, if t >0,
u(A LW = uA L, A w4
t,Bl *Bz,z t,Bisz,z o,Azxxz,z
+ uh LA W) =
t,BIXBz,z o,"Aszxz,z
= u(h  xA_ LWy e u(A LRI Lwd.
o,Az t,Bl XBz,z t,BIXBz,z o,szXZ,z
(2.151)
By (2.133) and (2.145) we find, if t >0,
U(A . . ;h)) =
t,B1 KBZ,Z
A . Y . i B
Pl:'t;B x B ;Z,xo;z(m),zj » 1f Xo;l(w) EAz
1 2
c
P [AO;A ,xo;l(w),z:] PD\t;B x B ;z’xo;z (w),zj ’
Z 1 2
if xo;l(w)EAZ (2.152)
and conseguently,
. - “A . .
u(At;Bj ”Bz;z’m p[ o8, xBZ;Z,xo;z(m),z] : (2.153)

However, if t=0, we find by (2.150)



u(A wy = u(h A HY B
t;Bl KBZ;‘ ’ oA o;Bl x Bz;z
+ ulh = A w) o=
,Az o,le Bz,z
'EQ swy o+ (A N A sw),
AN Bl 0B xxz;z’ o,Az o;le Bz;z
(2.154)

By (2.133) and (2.145)

U(A w) =

0;B, x Bz;z’

i

A . . . e T
P l: 0;B, x B ;z’xo;z(“’)’z] , if xo;l(m) AZ
= i 2
¢
) o A . .
PE/\O;AZn Bl;xo;l(w).z] p[ 0iB, xz;z,xo;z(u),z.] .

if xc;l(m)s:AZ {(2.155)

and consequently,

P D\o;Bl y Bz;z;xo;z(w);z:] , if xo;l(w)sAz
. = i £ B O
u(Ao;Bl sz;z'm) 0, 1 xo;l(w) EBTL Az
P l:Ao;Bg xxz;z;xo;z(w);zj :

if xo_l(w) € Bln Az. (2.156)

From (2.153) and (2.156) it follows that for any t

P EA‘:;B,‘ sz;Z;xo;l(m);z:], if xo;l(w)sAz
w{A W) = *
t;B, xB,;2°
1 2

3

pL T(l);wo(At;B % B ;z.);Xo-.,‘a(m);z:I :
L T2

if x (wyeh . (2.157)
o1 z

Hence, the w-sets of the type (2.149) satisfy the assertion.
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Let J be the class of sets K with the following properties:
a) JcH_;
z
b) the sets K satisfy (2.148).

The following points can easily be verified:

a) A €J;
t;B1 xBZ;z

b) if Ke€J, then K €J;

o
. . . ]
c) if Ki €J and if Kic:](i+ v (i=1,2,...), then io1 KiE J.

1

Consequently, J is a 0-field that includes the sets At-B « B
?

1% Pgi®

Hence, J = H_.
z

Lemma 2.34

If KeH, we have for each x'e X' and j>1

P Eﬁ;x';z]

I P [dw;x';é] I z(dy;xjul(w;AZ)) .
Q X

I'QP Lavix's2] LTy o, gm0 ixdwse]
(2.158})

Proof:

The proof of this lemma is similar to that of lemma 2.12,

We now make the following assumption!
Assumption &

The basic probability space {0°;F°;p°} is strongly Markovian,

In the final part of this section we shall prove two additional
properties of the set function P [K;x';z] . In virtue of these proper-
ties the decision process is a stationary strong Markov process, as we

shall see in section 4.

Let us consider the w-functions {ﬁt(w;to);t a[@,m)}, defined by
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j <
. def xt(w), if tst)
xt(w;to) =
x, (wy, if t>¢ . (2.159)
to o

The following lemma can easily be proved!

Lemma 2.35
The w-functions {ﬁt(w;to);t E[@,W)} are measurable with respect

to F.

Let the class of w-sets ﬁto be the smgllest O-field with respect
to which the w-functions {ﬁt(w;to);t € E),m)} are measurable.
Note that Ht also represents the smailest O-field with respect
to which the wnfugctions {xt(w);t ;to} are measurable.
1

Next we consider the w-sets {Z 'z;j=1’2""} and
1

2 Jst
{Ej;t;z;jzo,l,...} , defined by
st 98 el A ) = b L (uiA) £ tat Kk
J) ) .] (2.160)
2 def - - )
- = . < .
T3tz {wltj(m’Az) Cretyy Al (2.161)
with © (w;A ) = O.
o z
Obviously, we have
=t € H; i=1,2, (2.162)
Jitz
Lemma 2,36
If A cﬁt , the w-sets
o
A2 (2.163)
o;t ;2
o
and
-2
jop (AN E s J= eae .164
T(j);up..‘wJ'l( j;to;z)’J 1,2, (2.164)
are cylinder sets of the respective forms
o - TT' h
n = Y Q
(A (topw);Az, * h=1 (2.165)
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and hat

i n = h
ManzE o, W . = 166
( "‘8,»>;Az) Xpey 3320, (2.166)
where A‘j e 7. (cf. p.38 with % =0) and tj = t ~1 (w:h ).
: tg . o ° ot A
Proof:

Obviously, we have

{w l it(w;to) € B}

A i <
[ tpz 1T EEE,

¢ pege T ETE (2.167)
o" b

We first consider the case

A= A . (2.168)
t;B1 XBz;z

It can easily be verified that for tito, we find

@
_2 = T od
= = (A ) N = . ) X.~ 0
o,to,z t,Bln B2 (to’ ),Az j=1

(2.169)

a) A
t;Bl sz;z n

Hence for t <t the set A satisfies the assertion;
=0 t;l?-1 X B2;z

2
T : i1 (A N 7
(3);w®. .. .wi"t t;B) X B,z it iz

(83}

b} ) =

2 _
- T(J) WO, , ,wJ-l(At;Bl % Bz;z)n T(J) ;WO . .wJ"l(“j;to;z) =

@

; $ . — or if t=t (w;A ) and
if t<tj(w,AZ) and we At;Bl).;BZ;Z jleify
weh —

t;le Xz;z

(-]
: T o t
) . x QY if t<t. (w:;A ) and
\to"tj(u);Az),W) A, j=1 ; j Tz

=
[§3]

weEAR
= @ t’Bl

sz;Z
-~ (A N

i Jo; I
® Y if t=t (w;A )} and
03B, 7 ’ iz

'(to-%j(w;Az),m);Az j=1
weh

t;leXZ;z

8!
2

(<]
- ) 3
L (A . = " ) ox TI; Q
t—tj(w;!‘~z),B1n B (to-tj(w;Az),"") = ?
if t 2t >t (WA ).
o J @ (2.170)
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Since the w-function Ej(m;Az) only depends on the components

o j=1

(w,,..,w” 7), it follows from (2.170) that sets of the type (2.168)

with t ;to satisfy the assertion.
Now let J be the class of w-sets A with the following properties:

a) Aell ;
o
b) the w-sets A satisfy the assertion.

The following points can easily be verified:

a) A €J if t<t ;
t;leBZ;z ~ =g’
b) if K€J, then K €J;

¢) if K, €J and if K. €K, .... (i=1,2,...) then U K zJ.
i i i+ i=l "1

1®

Consequently, J is a O~field that includes the sets A with
N i:;B1 ® B2 3%

t St . Hence J=H

o to

This ends the proof.

Lemma 2,37
it Aep‘t’ and if BEG', then, under the assumptions 1 through 5,

for each s € [b,co) and X € Xl we have

o o o, 0
f p° [dw ;xlj f z(du;x (w ;Az)) P[T(lb;mo(,‘s+t B;z);u;z]

AnE X, 1’
(tl,“’) A,
O o] o [o]
=f »° [dw ,xlj p [AS;B;Z,xtl(w )iz ). (2.171)

Anz .
(tl,w) A

Proof:
Let us consider the functions Ve (wi) and y(wo)g defined by (cf.
1
(1.205) and (1.206))

o, def o, O
yti(wl) = Jx z{du;x (wl’Az)) P[T(l);wg(ﬂs;B;z)’U;zj
2 (2.172}
and (¢f. (1.98))
v’ =y, (T, W, (2.173)

1 1
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By lemmas 1.35 and 2,12

»° [dwO;X£] y () =

Ah:
(tl.“) ;Az

=JA ._Po [dwogxl:lj p° [dm:;xz (wo)j Ve (w(;) =
NnE o 1 1
(t1,°°) ;AZ Q

o o o (s}
-_-.[A "P [dw ,xlj P [:AS;B;z'xt (w ),z] . (2.174)
n = ) ;A 1
(ti’ » F
[ . o o . .
If w €= and if w, = T, (w )}, then we can easily verify that
(t, ,=);A 1 t
1 z 1
x* WA ) = x%w;a ). (2.175)
4 17z

Since for woe and w® = T, (w°) holds

(tl,'nv);Az 1 t1
tw®Aa ) = ta ) + ¢ (2.176)
"z 12 1’ ’
we find
o= . .17
T(l);mg(,\s;Bg‘z) T(l);mo(As+tl;B;z) (2.177)
Consequently, by (2,172), (2.173), (2.175) and (2.177),
o o, o
ylw )} = .[x z{du;x (w ,Az) P ET(l);wO(As+tl;B;z)’
2 -~
;u;z_] . {2,178)

Hence, by (2,174} and (2.178)

o I o, o
MFP [dm ;xlj J;{ z(du;x" (w ;Az))
(tl‘,w) A, 2

PE T(l) ;wO( As+t1 ;B;z) iz ]:

o o o , 0
I _P tdw ,xlj P [As;B;z’xt (w ),z]@ (2.179)
Az 1
(t,,=);A
1 z
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This ends the proof.

Lemma 2.38
If Ae ﬁt': , under the assumptions 1 through 5, for each s¢ EO,"”),
o
x €X' and Beg G' we have

PE An As+to;B;z;x' 1 j:

= j P[dw;x';zj P[. As;B;z;xto(m);zj" (2.180)
Q .
Proof:

It can easily be verified that for each x'e X' and t0> 0 we have

(cf. (2.76}, (2.160) and (2.161})

[ U 2 v U -2 ix';z 1= 1. (2.181)

o0 ©0
- U -1 n U .2 =
P0G e5e ;2 320 Tyt 52’ Meat Bz iz ]
2 ,
=P [Aﬁ “o;t iz s+t ;Bjz' ’z]+

z {du ;x‘jnl (w ;Az)) .

+
~
I &2
[y
Sy
2
e~}
[ p]
[ =R
3
#
1y
S,

%

e [T _wj—l(An 51 fA Yiuzz |,

(J3);wo.. jit iz s+t Bz

(2.182)

We first consider the term P[AN Ei-t .
¥ ¥
hand side of (2.182).

A eyt .
S N S+'i:o;B;z’,x ;%] of the right
By lemmas 2.36 and 2.37 we find
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P [AI\E(Z)_ A A ix'iz] =

t ;z s+t ;B;z
’ o’ o) 1]

) x nLy Qh)n A x! ;z] =

o -
P E((A n = s+to;B;z

(topm) ;AZ

p° [dwo;xl] J z(du;xo(wo;Az)) B
O _ X
A n=(t ;o) jA 2

() z . _
. P [T(1);w°(As+to;B;z)’u‘i] =

I

Po[d"’o;xl:] P [:As;l?»;z;x:;> (“’o);z] =
o

O .
AoNEe w)a
o zZ

=I 2 P [:du;x ;z] P [As;B;z;xt ;z(m);z:]. (2,183)
ANz o
o;t ;z
o
Since for =2 hold (w) = (wWeA , we find b ans
wes .y ., ho sxto;lw -xto;zmez, e fi y me

of (2.145) and (2%147)

P [AS;B;Z;xto;z(w);z] =P D\S;B;Z;xt (w);z].

°© (2.184)
Hence, by (2.183) and (2.184)
P[/\ 1‘\52 a A 'x""z] = P [ch‘x“z:] .
o;t ;z s+t ;B;z’" '’ T
o o .2
AAn -
o;t ;z
o
- P D‘s;s;z”‘t w);z] . (2.185)
o
Next we consider the term
j P [dm;x';zjj z(du;xJ—l(w;Az)) .
Q Xz
. p [T 1thaz? Al )iusz ]
(3);w°. . .0i 1 Jit ;z s+t ;Bjz Lt
(2.186)

of the right hand side of (2.182).
By means of lemmas 2.34 and 2.36 the expression (2.186) can be

rewritten in
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J P [dm;x';z] J z(du;xj_l(w;A }) -
Q X, z

BJ . p° [d»:;u] Ix Z(dv;xo(w:;Az)) P ET Y

A .
3 (1);wg( s+tg;B;z
A6 2

2ty
(to’ )’AZ ;v;zﬂ . (2.187)

By means of lemma 2.37, we find for (2.187)

I P [dm;x' ;z:] J z(du;x‘j—l(m;AZ)) .
Q Xz '

»

B G - o Dy, w05 -

Ma= .
. (td;=) ;A
o z
=J P [dw;x';zj P[ AS;B;Z;xt ;2(m);zj . (2.188)
A -2 o
LA
Jit iz

Since, by (2.145) and (2.147},

P [As;B;z;xto;z(w);z] =P [:I\S;B;Z;xto(m);zj (2.189)

for each we Ez. , (2.186) becomes
Jit_sz
o
[ 2 P [:du;x';zj P D\S;B;Z;xt (w);z] . {2.190)
Ans ot s o
Js O,Z
Thus,

et N R
IQP [dm,x ,z] I z{(du;x (m,AZ))

= I P [aw;x';z] P EAs-B‘z;Xt w);z ). (2.191)
2 b b

Q
A=
J;to;z
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We now consider the term

J P [du;x';z] j z(du;xj_l(w;A }) e

Q X “
2

1

mj-l(/"" E n A

« P |T
[ J,to;z s+t0;B;z

(j);we...
ju;z] . (2.192)

: ; -1
Since for each weZ] .
Jit iz

we have %J.(w;AZ) = to’ (2.192) becomes
o

P dm;x';z] P [(T );xg(wj);z] .

(j);wo--.mi'l(AS+to;B;z
A":J;to;z (2.193)

According to assumption 2 to each we Q corresponds one and only one

point w = (“:’“]i"")e Q , given by

o S b S .
xelog) = X e . (wa) (2.194)
o Jj-1 Z
and .
xlt((wl) = xl;” 1(m); k=1,2,... . (2.195)
We obviously have
1 J
X (W) = x(w) (2.196)
and
(A _ A . .
T(.j);mo...mJ—l( s+t ;B;Z) T(l);wo( s+t '“t.(w;A );B;Z)
o 1 o 5 2
(2.197)
Thus, if %j(m;Az) =t
. S P N
P [T(‘]');mo...m~]—j“(l\s+to;B;z)’xo(m )iz ]‘
= S A S
=F [T(l);mg(As;B;z)’xo(wl)»Z] . (2.198)

By (2.147) and (2.148)

PR
® [T(.j);wo,..wj-l(As.}.to;B;z) ,xo(w ),Z] =
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. l 1 - - ® - -
=P l:F'[‘(l);m]‘?(l\s;B;z)’xo(ml)’zzI - Pl: As;B;z"xo(ml)’zj-

p[ AS;B;z;xto(w);zja (2.199)

Consequently, the expression (2.193) turns out to be equal to

[ ) P Edm;?(';z:] P EAs;B;z;xto(“’)f;zl (2.200)

hey=,
J;to;z

Hence, by (2.192}, (2.193) and (2.200)

I PEdw;x';z] J z(du;x‘jnl(w;Az))°
Q . X

2
.p [r 1(ha =t A );
(§);we. .. wi"1 j;t ;z s+t Bz’
o "o
,u;z] =
=[ P[dw;xv;zj P[AS‘B'z;xt (m);z] . (2.201)
1 ? 3 o

Ansl_t .
\], O,Z

Finally, it follows from (2.188), (2.191) and (2.201) that

Pl:l\(‘i As+to;B;z;x';Z:] =I , P [_dw;x';zj P D\S;B;Z;Xto(m);zj +’

‘ An :o;to;z
2 o .
+ z z J P [dw;x';g,] P EAs-B-v;xt (w);z] =
i=1 j=1 7, .4 T e
TJit sz
= L\P [ow;x';z] P I:I\S;B;Z;xto(m);z]@ (2.202)

This ends the proof.

Let C be a closed set in X', satisfying for each x'e¢ X’

Lo gl St @
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We now introduce the functions {ﬁt(m;[czl Y;te [O,m)} , defined by

% ;[ % w1t e vli[e))
t x@;[cy, if t2 tw;[c). (2.204)

The following lemma can easily be proved!

Lemma 2,39
The w~functions {;t(w;[C]);te [o,w)} are measurable with respect

to F,

Let the class of w-sets ﬁiJ be the smallest o-field with respect

to which the w-functions {it(m; C]);t € [0,‘”)} are measurable.

If C is a closed set in X', let the xlfset ¢ be defined by

~ def .
c "= {x I(xl,xl)ec} . (2.208)

The proof of the following lemma is left to the reader.

Lemma 2,40
If CeG', then éeclﬂ
; - =1 ‘i
Let us consider the w-sets {'j-[C] ;Z,J—l,z,...} and

{Ei'fc:]'z;‘jzo’l""} , defined by

-1 def ~
i =" {w]t(u;{c]) = t. (w;A );
3 lc] = leco;[eD = tjwa,
t wia ) # t(w;[c]), k) (2.206)
and 9 def R } R
RHC . toltjwa) <tw;[ch < by, wia))
(2.207)
with to(w;Az) = 0,
Obviously, we have
i .
= € H; i=1,2 2.208
is[€] ;= ¢ )

Finally, the wo—set = defined by

Crg et
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= b myih 9t (19t ) > t[d))  (2.209)
(€] "= o F

will be used in the coming discussion.

Clearly, (cf.p.38 )

z Foa . (2.210)
cgmt B -
"—'
Lemma 2,41
If Ag ﬁ[C] , the w-sets

_2
An:o;[c:];z (2.111)

and

2 .
T(j);wo...wj-l(A s} Ej;[q];z);3=1,2,... {(2.112)

are cylinder sets of the respective forms

I ® h
A mn = yx . Q (2.213)
(t[ =} A h=1
é] 3 »
and
(AJ [ Loyx T Qh;jzl,z,... s (2.214}

where /\‘:i £ f"o[é] .
Proof:

The proof of this lemma is similar to that of lemma 2.36.

. — A Y
Let us introduce the w-set s;B;[C] - defined by (cf.(2.131})

def
Yoi;[d2 = lulx s lc]ye 8} . (2.215)

Lemma 2,42
1£ Ae F° and if Be€ G', then, under the assumptions 1 through 5

and (2.,203), for each s¢ [O,w) and x, € X, we have

1 1
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° % ;x° H [T -
f ﬂ = P [m ’xlj I z(dU)x (w,AZ)) P [Tl;wo(AS;B;[C] ;z),u,z] =

X
(tﬁﬂ’m);Az 2
=J P°La’x ] P [AS;B;z;x°(w°; €h;z] . (2.216)

Anz
(t[e] s®) ;Az

Proof:

The proof of this lemma is similar to that of lemma 2.37,

Lemma 2.43
If Ae ﬁ[d] , under the assumptions 1 through 5 and (2.203}, for

each s € [0,®), x'¢€¢ X' and Be G' we have

P[/\ s As;B;[Cj ;Z;x';z] =
=J P [dojx';z) P[0 xee;l)y;z] .« (2.o217)
A s;B;z

Proof:

The proof is similar to that of lemma 2,38,

4, A new foundation of the decision process

In this section we shall give a formulation of the decision pro-
cess which is similar to that of the fundamental stochastic process in
chapter 1. Next we shall show that these two stochastic processes have
nearly equal properties.

Let the class HZ be the smallest o-field of w~sets with respect to
which the w-functions {xt(m);te [0,”)} are measurable,

We now introduce the w-set Mo-z’ the smallest set with the follow-
?

ing properties:
1} for each we Mo;z’ the t-function xt;z(w) is continuous from the
right;
2} in each bounded time interval in EO,“) and for eachlﬂiﬁ;'z the

¥
t-function xt(w) has only a finite number of discontinuities.
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Since M e M we have for each x
0;2 [+)

1

P Eﬂo;z;xl;é] = 0. (2.218)

Let the class Fz be the smallest o-~field of w-sets with the following
properties:
1) FZIDHZ;
2) F_ contains all subsets of M ;
z 0;2
3) the w-functions t(w;C), t(w;[é]), x{w;C) and x(w;[(ﬂ) are
measurable with respect to FZ if C is any closed set in X'.
We now consider
1) a space 0% with points mz;
2) a family of w”~functions {xi(mz);te [0,“)},defined on Qz, such
that
. z . z, z z
a) for each te ED,w) the w ~function xt(w )} maps Q7 into X';
b) if x'(t) is any mapping of the time axis into the state space

X', one and only one point mz can be found such that
x5 W) = x' (1) te [0). (2.219)

Consequently, a 1-1 correspondence exists between realizations of the
s . z
decision process and points w” ¢ 2.
L3 L3
Similar to the w-functions t(w;c),t(w;[C]), x (w;C) and x (w;[C])
in chapter 1 of this part, we can define w?~functions tz(wz;C),
%, Z Z, Z zZ, 6 Z 4
t {w ;Bﬂ), x {(w ;C) and x (W ;Bﬂ). )
Since each point wef corresponds to one and only one realization
x"(t);te Eo,m)} of the decision process, (2.219) also defines a point

transformation

W = T (w) (2.220)

from  onto Qz,
If o = T (u), then

4} In order to save confusion the w¥-functions t(wz;C) and t(wz;[C]) have
been indexed.
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x, W) = %L (T W), (2.221)
tW;0) = (T W);0), (2.222)
tlw; [ = ¥ (T ;[ (2.223)
x(w;€) = x*(T,(0);0), (2.224)
and L w;[d = (1 w;[d). (2.225)

z
Let Ao be the smallest wz—set with the following properties:

1) for each wze'Ki, the t-function xz_z(wz) is continuous from
the right; ’

2) in each bounded time interval in [b,w) and for each w”e Kz
the t-function xi(wz) has only a finite number of discontinu-
ities.

z z -2 -z z z
i - A H H A A
Next we define the w -sets ;B “1;C° I;Bﬂ' B;C’ B;Bﬂ and

2
As;B;ﬂﬂby

z def , 2z, 2,62

At;B = {w I xt(w e B}, (2.226)

Ei.c def 2 %00 e 1), (2.227)

=2 et (L% 1P W[ e 1) (2.228)

_I; [C:] ] ] . -

z def Z z, Z

A = {w'| x" (v ;C) e B} (2.229)

B;C

w2 def (2 %% [ e B (2.230)

B; [C] ’ '
and z def z,. z,2 r-

As;B;[C] =5 o | x (o ;[cheB) . (2.231)

Obviocusly, if we define the set transformations

K=T (X)) (2,232}

and
K, = TZ(K) (2.333)

by
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-1 def z Z

T (K = {w|w® = T,W); w €K} (2.234)
and def z z

T,(K) = o | w® = T,@;w € K} (2.235)
respectively,
then 2

K, = TZ(MO;Z), (2.236)

Mo =T T (2.237)

o;z 'z “o’'. :

AZ =T oA ) (2.238)

t;B~ 'z t;B;z”’ ‘

A =t % ) (2.239)

t;B;z = "z  t;B°’ '

z -—

AS;B;[C] = Tz(As;B;[C] ;z) (2.240)
and -1z

AS;B;[C] . TZ (As;B;[c])' (2.241)

Let the class Hz be the smallest o-field of wzmsets with respect
to which the w”-functions {xi(w);te [b,w)} are measurable,

We now introduce Fz, the smallest o-~field with the following pro-
perties:

1) FPo H°;

Z . z
2) F~ contains all subsets of Ao;
z, 2
3) the w=-functions tz(wz;C), tz(wz;[é]), xz(wZ;C) and x (w ;[Q])

z
are measurable with respect to F if C is any closed set in X',

The following lemma can easily be proved:

Lemma 2.44
-1
The set transformation K = Tz (Kl) generates an isomorphism of FZ

with F_.
z

Now we are in a position to define probability measures on Fz.

These set functions,

Z
" [x %] 5 xe %), (2.242)
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are defined on F~ by

P* [k, %] def p [T;I(Kl);xl;z] i (2.243)

Hence, the w”~functions {xi(wz);te [O,w)) and the probabiiity space
(QZ;FZ;PZE-;xé]} provide us with an alternative description of the

decision process in X'.

Decision processes, defined in this way, are denoted by

z z
S = (x_.
xl t,x1

;te[0,«} . (2.244)

We already know that, if a decision process is described by means of a
set function P [K;xl;i] , the xz—component of the initial state obeys
an initial distribution. In section 3 we found a set function

P [K;x';i] that describes the decision process in case the initial xz-
state has also been given.

If on F the set functions
{p” [x,5x7 5 x'ex’) (2.245)

are defined by
Z = def -1 oo
PU [k 5xT U= e [T k)5 xe] (2.246)

then the w -functions (xz(mz);te [Q,w)) together with the probability
space {QZ;FZ;PZ[e;xﬂ'} generate the decision process with initial
state x'.

Decision processes, defined in this way, are dencted by

z z .
S = {x, it [0,=)} . (2.247)
Finally, let us compare the fundamental stochastic processes

P B
{Sx;x €X } , described in chapter 1, with the decision processes
{s® ix'e X'},

x

It follows from lemma 2.23 and (2.221) that the decision processes

z
{Sx.;x'e X'} do not satisfy assumption 1 completely. (Cf. chapter 1,
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p.2 ,w=z and M=2N). 5)

In the points {zj(wZ;Az);j=1,2,.s.} almost all t-functions
{xiﬁuz);wz e 2% are not continuous from the right. Therefore the
proofs of lemmas 1.1 through 1.9 do not apply to decision processes.
However, in this chapter (lemma 2.22 ff.) we have demonstrated that
the assertions stated in lemmas 1.1 through 1.9 remain true for these
processes,

By the choice of o* the decision processes (Si,;x'e X'} satisfy
assumption 2. (Cf. chapter 1,p.17 , %=z and M=2N). According to (2.146),
(2.147), (2.238) and (2.246) assumption 3 (cf. chapter 1,p.40 , s=z) is
also fulfilled. This implies that the results obtained in chapter 1 of

this part also apply to decision processes.

5., Stationary strong Markovian decision processes

In this section we shall show, that if the basic probability
space {QO;FO;PO) is strongly Markovian the decision processes
{Si,;x'e X'} are stationary strong Markov processes.

It follows from lemma 2.38, (2.226) and (2.246) that for each
pair of non-negative values (to,s), BeG', x"€¥' and A cﬁi (cf.

chapter 1,p.37 , %=z} ©

P El\i +s;B;xj = I p” [dwz;x'_] p” D\z;B;xi (wz)] .
o A o
(2.248)

Lemma 2.45.1
1f hefl” ,t € [0 «),x'€e X' and BeG' then, under the assumptions
t o ’

z
1 through 5, We have for each KE:Ht (cf. chapter 1, p. 37, w#=z)
o)

Z

P [Kf\l\;x':] =I p” [dwz;x':] P° ETt (K);xt
) A o

w* .
(o]

(2,249)

5) *=0 means: read O where we wrote '
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Proof:
Let J be the class of wz—sets K with the following properties!
z
a) KE:Ht ;

o
b} the sets K satisfy (2.249).

Obviously, by (2.248)

z
. {
Ato+s;B€ J; >0, (2.250)

We can easily verify that

a) QZC J;
b) if Ked, then K€ J; -

) if K€ J (i=1,2,...) and if K,C K, ..., then U

€
i 1 i=1 Ki J.

. z
Consequently, J is a o-field that contains the sets /\t N

Hence, J=ﬁi . ©
o
This ends the proof.

s:B with s2 O.

If follows from lemma 2.43, (2.231) and (2.246) that for each
S E [p,w), BeG', x'¢ X', Ae ﬁEﬁa (cf, chapter 1 p. 36, #=2) and closed
C .

set C in X', satisfying
PZ | -% .xvl =1 2.251)
. [01 :)!IC] ! ’ ( )

we have
Z

zZ -
P [AS;B;[C]n hix] -

= J p* [ﬁmZ;XZJ PZ'[A:_B;XZ(wZ;[Q]’] .
A ¥

(2.252)

Lemma 2.45.2

1f /\eﬁzc , x' €X', Be & and C is a closed set in X', then,
under the assumptions 1 througﬁ 5 and (2.251), we have for KEZHZE'(ﬂ
(cf. chapter 1,p.36, w=z)
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' L1
p- [K;x':] =J P [ckuz;x'] P’ [TECJ (K);xz(mz;[C] )] .
A
(2.253)

Proof:

The proof is similar to that of lenima 2.45.1.

Lemma 2.45
Under the assumptions 1 through 5,
1) for each toe EO,@), K eHzto and x' e X' the conditional probabil-~
ity measure PZ EK;x' |ﬁ:] can be defined by

[¢]

p® EK;x' lﬁi] = p° [Tt (K);xi (wz)j ; ' (2.254)
o o o

2) for each x'€ X', closed set € in X', satisfying
z - _Z i
- . = . 2.255
L EO,m);[C]’xj L, ( )

Ke HECJ ; the conditional probability measure pZE}(;x' | ﬁz[cjj ean

be defined by

p® EK;X'[ ﬁEC]] = p~ [:T[C] (K);xz(wz;[C] )j.,(2,256)

Proof:

The assertions are immediate consequences of (2.249) and (2.253).

Finally, lemma 2.45 implies (cf. chapter 1 p.37 }:

Theorem 3
Under the assumptions 1 through 5, the decision processes

{Sz, ;x" ¢ X'} are stationary strong Markov processes.
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ERRATA AND ADDENDA
(Part II)

page line
Kl
2 14 The largest 'x-free extension of H is the intersection
ki
of all O-algebras obtained by completing H with respect

W
to the measures P [.;x].

e
2 16 for AO be an w-set

read A:'be the smallest w-set

2 19 for finite number of discontinuities.

read finite number of jump discontinuities.

3 Lemmas 1.2.1, 1.2, 1.3, 1.4.1, 1.4.2, 1.4.3, 1.4 and 1.5.1
together are equivalent to the following statement:
the moment that the system is for the first time in C is
a F*;measurable function if C is an open or closed subset
of X*.
If C is open it follows that

[tw;c) < t]nfg = [x:() € C]AT\:

r rational
r <t

thus t(w;C) (for the definition see page 9) is
ﬁ*;measurable.

If C is closed, define a sequence of w~functions
{tk(m)}:=l on K; as follows: tl(m) is the moment of first
contact with C {cf. [1] page 580 and [6] page 105),
tk+1(w) is the moment of first contact after tk(w) with C.

The limit of these f*—measurable functions is the restrict-

e 36
ion of t(w;C) to AO thus t(w;C) is F -measurable.

7 4 for the points of accumulation {ti; a:l,z,,..} of ...
read the points of accumulation of

7 7 for At least one of the points {ti; a=1,2,...},
say ... read At least one of these points, say

7 9 for All points {t;; a=1,2,...} are ...

read A1l the accumulation points are
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page line
7 17 add From now on the accumulation points are denoted

by {t;; a=1,2,...}.

10 It is easy to see that if Qe is restricted to K:} the
corresponding stochastic process is right-continuous.
A right-continuous process is strongly measurable,
for strongly measurable processes it is known that

X, )(w) is measurable if T(w) is measurable. (Cf.

T{Ww
[6] page 98 and [1] page 579.)

Each of the lemmas 1.5.2, 1.6, second part of 1.7,
1.8.2 and 1.9 is a direct consequence of this state-

ment. As example we prove lemma 1.6.

t(w;B) + t if t(w;B) <
T (w) dgf.

t if t(w;B) = o,

3 it
It follows that T(w) is (F r\Ao)“measurable and

consequently x
e T e

on AO' This implies that xtO»;B) is F -measurable on
i

Q

= x.(;B) is (F aly)
(w)(w) = x (0; s (F n o) “measurable

kL kL e
A g g .
i0 25 for w € O\J [O,W);C read W € AOLJ [0,@);0

13 7 for xk(w) read X(m);k«D)
P
14,15 For an w with xt(m) €C if t2 t,

e
xt(w) € Bn if t > t, for some n,

0
it follows that t_(w) = to. However we should expect
t(w;[C]) ©, We define
k. B —
t;[c]) = int {tlx @) e c and @t,<t) (x, @) ¢ O}.
i

The following additions are necessary in the proof

of lemma 1.8.1.
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page line
page line
14 27 for t(u;i[c]) £t (w)
read for w € K:.t(w;[c]) < tn(w).
15 8 for It follows ... read If t(w;[c]) <=
it follows ...
15 14 for t(w;[c]) = t(w;B) + t(w;B ;0) + ¢
read t(w;[c]) > t(w;B) + t(w;B ;0) - 6.
15 16 for t(w;[c]) = t_(w
read for v € K:'t(w;[c]) = t_(uw).
16 9 for Since ... read Since for w € K: cee
i6 12 for x%(m;[c]) = x* (w)
— (n) ",
read x (w;[C]) = lim Xy () -
n>®°
17 2 for t(w;[c]) and x(u;[c]

read t(m;Bﬂ) and x%(w;ﬁﬂ).

17 14 for condition (1.86) ... read condition (1.91) ... .
20 22 for trnasformation ... read transformation ...
21 18 for t(w";[c]) > 0 ... read 0 < t(u";[c]) < = and
tw";C) < tw";[c].
0O
23 1 for Tr(w) =T (w) ... read Tra{w) = w
= "e] [c] = "[c] ’

Thalw) = Tradw) ... .
fe] ) = ") @ i}
23 18 omit If K € F , then T%b](K) EF .

He
24 7) for x.(w;[C]) read x (w;[C]).
24 10 J J
25 7 for finite number of discontinuities ...

read finite number of jump discontinuities ...
31 8 for k{(w;t(w;B)) read kcont(w;t(w;B))°
31 12 for k(w;t(w;Bﬂ)) read kcont(m;t(w;&ﬂ))-

31 22 for k(w;%) read kcont(w;%)'

3 5  for P*[T'[gi’l(kl_ Bk ix]

read P*ITIgil(KI_&j);x].
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35 11 for k . ... read k
== el ix;s =228 2[c]x;3
He
36 16 for Let $(w) be a measurable (F ) and
3
read Let §(w) be a measurable (Fl) and ...
el H
36 17 for for some K € F1 ... read for some K e F .
e A
36 19 for relative te F , ... read relative to Fl,
37 If we compare the definitions of a stationary strong

Markov process given on this page with those given in
[1] and [6], we will find:
i) Assumption 3 (1.221) has to been added to the
defining relations of a (regular) Markov process.
ii) For (1.198) we find in [1]:
e il

for each t, 2 0, for each K € H and for each x ¢ X
M - e F ¥ P
P ETth; xlﬁt l=p [k;xt ()] P [.;x] almost sure.

- 0* 0 -
From Tt H = Ht and Tt ® Tt K =K it follows that

o 0 o 0
the two relations are equivalent.

-1
iii) It is not true that T s T K = K for each
. [c] ° “[c]
K € H ., Consequently (1.200) is not equivalent to:
had ks
for each X € H and x € X
Yo =] A
P [T[C]K; x|H[C]l = P%[K;i*(w;[c])] ?*[.;xl almost sure.
However this relation must be used on page 53.
iv) g*(w;[c]) is not ﬁ?&l-measurable and therefore (1.200)
is not correct. k*(m;[c]) is measurable on
(= Hf qNnE ). If trict 9 to
g g . we restric
i CROR G e S B CEO T
= = t(w;[C )} < w], definitions like (1.84) and
[0,=);[c]
(1.94) are superfluous because:
e
for each K ¢ H and each x ¢ X* (3.1)
3¢ =] Ao 3 ke
P |Tr1K; z|H =P |K:x (w;|C g Pl.x|)
[[c] | [c]] (k5% (w;[c]] ¢ [0,);[c]” [.x]

almost sure
is equivalent to

for each t > 0 and each B ¢ G*

ke ¥ = ~¥e 3 e e
P [[Xt(w;[CJ)+t(w) € B];x]H[C]] =P [[xt(w) £ BJ;xt(w;[C])(w)]
(5[0 w).[q],P*{.;x]) almost sure.
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v} According to [1] t(w;[c]) must be a Markov time.
t(w;[C]) is a Markov time if:
a) for each t > O

x:-(w; [C])+t(w) is measurable;
b) for each t > 0

[t; e < t] ¢ ﬁ:
As a consequence of assumption 1 every t(w; [C])
fulfils a).
However b) is not true for every t(uw; [C]).
If it is assumed that t(w; [C]) also fulfils b) and
(Q*, H*) is restricted to (7\;9,!!*('\7\';) , it can be proved
that ﬁ’fc]r\T\;: B(x: s <t feh. b
The conclusion is that if for t(w; [C]) b} is true (3.1)
is equivalent with the strong Markov property for t(w; [C:[)
as defined in [1]
vi) The requirement that (3.1) is also true for a t(uw; [C])
not satisfying b) will strongly restrict the class of

admissible Markov processes. For an example the reader is

1 1
referred to [5] page 118. Defining C = {5’ -]5, 7 } Y
U {0, i, 2, } t(m;[c]) will equal the function T(w}

defined there. On the measurable subspace

(T n [0 < tw;[eD], B n (g altw;e) < tw;[ch]n
t(w;[_C]) will satisfy b). Consequently, if

P*[[t(w;a) < t(m;[C] )] ;x] =1 for each x € X (3.2)
then (3.1) is equivalent with the strong Markov property
for t{w; [C]) as defined in [1] .

There are several conditions implying (3.2}, e.g. (1.185}.
vii) Summarizing a stationary strong Markov process might

be defined as a stochastic process with the properties:

Ll
1 For the definition of Bx, s < tlu; [c])) see [1] page 580.
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1) it is a stationary Markov process according to Eﬂ
2) for each t(w;Bﬂ) satisfying (1.1998), (3.2) and a)

the strong Markov property as defined in [1] is

fulfilled.

38 22 for A e F ... read A e E* oo

- %o to
39 33 for 1im ... read 1lim ...

n+eo m-oo
40 14 for A e %Bﬂ ... read A e Fﬁﬂ eon
W
40 16 for JA P dw;x] IQ* P*[dwl;x (w;[c] )]'y[C] ().
: *®
read JA P*[dm;x] IT o P*[dml;x (w;[c] )]y[c] (wy).
[c]
40 22 for P[Ay _;x] =1 read P*[AO.{X};X] =1,
b

where {x} denotes the set consisting of x only.
41 13 for that for each j > 1, x € X, ...

read that for each x ¢ X*,
41 15 for J P [dw;x] p*['r (K) 53, (w3t o]

0
read J P*[dw;xi P*IT (K) x (w)]
A

42 5 for with Q(X) 0, ... read with Q(X) > O,

43 i define: x.(m;t Y =%, (W j=1, 2,3,
—_— ¢ jt
From the definition of y (w t ) j=1,2, 3, ... it follows
that © is restricted to }2& (Wit [A]) < ”]

43 4 add In order to avoid needless repetitions in the

e
argumentation we use the product space X € T with

I 2 (»»,+°) instead of I = {0,1,...}.
S

€
44 1 for O ;U F(k-l)to

KU € F(k-l)to read O

e
44 3 for P [0;Usx] read P [o, .yl

44 5 for (1.226) ... read (1.226) if we take (k—1)t0 for tO
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44 7
44 14
46 2
46 15
47 3
49 18
50 4)
50 13
50 i8
50 21
51 6
51 23
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k-1 3¢
or J o Py (dx %) P [01 Xy l(w,to)]
X 0
k-1
read f w Oy (@x %) P [01 U’xl]
X (4]
11} -1 n 1
for pk (dy.;y) "p (Usy,).
e e t 1 1
X 0
1 k‘l 1
read j e 'pt (dy, ;¥) "p U3y,
X xT (4]
o, +j-1 1
for J " (dy,;y) "p, (WU;y,).
X* tO 1 to 1
oc, +j-1 1
readJ' " (ay,;y) "p, (Usy).
X*QF to 1 tO 1
h
2 e 4+j-1 nc, +j-1
for ) _Elpt * (Bgr;y) - Py (Bgr§y)l'~-
r=1 2 C (o]
h
2 we +j-1 ne,+j-1
i U i U
read Z —|p (B, ;x) - p (B, ;x| ... .
— = zh t0 hr tO hr
ooci-i'J nci+j
for ]" & (U;x) - "pt (U;x)| <n
4] 0
mci+j ne, +j
read |"p, U;y) - 'p ;| <n.
4]
for F, def. {wif(y(w;to)) e 1}
def.
read FI = {w'f(yl(w;to)) e 1}.

for is equal to ...

read is almost surely equal to .

for represents the losses read represents almost

surely the losses ...

g = {w,kl(m;to) € I}.

define KI-
)

for is equal to ...

T |~ T
n(T;tO) = [Ej . read n(T;tO) = Eﬂj-

read is almost surely equal to .

fo

=
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52 15
54 12
55 4
55 9
55 19
56 7
56 12
56 i5
57 i

57

i0
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omit again.
for 53-7 to 53-15

read Assume that for t(w;[é]) the following strong

Markov property is true.
e Pl kL
For each x € X , for each A € F and each k € F

P*[AATE:;]K;X] -], P [dw;x] P*EK;x:(m;[C] )] . (1.283)
Then it follows that for j 2 2

p*[T'[g]Jrl R i %]

Lf‘“ P [au;a] P*[njf;f @[] % @sleD]

= If p%c] (dxl;x)pf;]l(B;xl). (1.285)

d .
p[_'c] (B;x)

e
From the definition of T it follows that Q 1is restricted

to (\ [t.;[ch < =] = {w]1im n(T;0) = =}
J:]_ J o0

(cf. page 57 line 20).
P
From (1.281) it follows that for each x € X

ﬁ*[{wllim n(T;w) = ;x| = 1.
)

remark EI;Bﬂ = {mltl(w;ﬂﬂ) e 1}.
for is equal to ... read is almost surely equal to ... .
for {5[g] gy 300% 0
> .
read {E[C];x;j;3=1’2""}'
for is equal to ... read is almost surely equal to .

for If (1.290) and (1.293) hold, the w-function
kj(w;[b]) represents ... read If (1.186) and (1.187}

hold, the w-function kj(w;[b]) almost surely represents ...
define KI;[C] = {w|k1(w;[C]) e 1}.

for is equal to ... read is almost surely equal to ...
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58 9
59 7
59 10
64 9
60 3
60 4
61 24
62 9
63 18
65 18
87 i8
68 8
69 16
69 21

for of the
read of the

read Let AO

A
for Let 0

for finite

read finite
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lemmas 1.56 and 1.53
lemmas 1.53, 1.54 and 1.56

be an wo—set

be the smallest wo—set

number of discontinuities

numbers of jump discontinuities.

for (cf. p.1l)} read (cf. p.40).

0 4]

A ; = A ; =

for P [O;x,x] 1 read P [O;{x}’x] 1,
where {x} denotes the set containing the single
point x.

k h .
for w = Tkh(w Y; k,h=1,2,... (in (2.10))
read wk = Tkh(wh); k,h=0,1,2,... (2.10).
for a) Kk = Tkk(K), k=0,%,...;
read a) K = Tkk(Kk), k=0,1,...;.

for the sto

read the sto

chastic process Si (k=0,1,...)
chastic process Si (k=1,2,...).

0 k-1 ®

for T ®nfw} x oox {un ] x izk 2,
read T . (K n{ 0} x x| k—l} x ; )

(k) Nqw e w ) .

i=k

for J Pk[Kk;wo oo wk_l] read Pk[Kk;mo...wk_l].

k

Q

n-1 0 n-

for J P [Mj;m’w oo o) 2] =

Qn—l

read P21 [u.
read 3im

for Ke F ...

for Pk[Kk;x

0 n-
wl, w7 =,

3

read Ke H ...

;ﬂ read Pk[Kk;x;ﬂ .
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k.—
70 1 for J Pk[Kk; wo s W 1] .
Qk
k -
read P [Kk; mo con wk 1] cos
72 omit from page 72 line 1 and line 2.
72 11 for J z{dx, ; xJ_l(mJ_l;A ) ) IR
—_— 1 -4
X
-1
read J z(dx, ; 3 (w;A_ ))
e z
X
72 19 for P[Mo-x-z] =0 read P[M ;x;z] = O.
ALY sy Teaa g%
74 7 for pJ(B;x;z)
0 J
read p (dx_;x;z) p (B;x, ;2).
e 1 1
A
z
75 10 for is egual to ... read is almost surely equal to
- 0,
75 11 let :I;AZ be {v]tw ,Az) e I}.
75 g% for Ao;x;x] read AO;{X};X].,
76 ¥

78 9-25 for k read h.

79 24 for O-fields ... read O-field ...
80 2 for finite number of discontinuities
read finite number of jump discontinuities
81 1
86 20 for if t(w;B) + t = t,  (w;A ) >
27 — k z

read if « > t(w;B) + t

v

~ 0 k=1
= tk(w ;AZ)

v

- _ .
t @A) k2 2.
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86 31
88 16
88 18
102 6
102 13
105 7
107 24
109 24
111 11
114 20
115 12
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for {xo(w) v, (w;B) +

n
read {(1 - ) xk(w))vt(w;B)
k=1

+

for v(w;[c]), if tw;[c]) # t (w;A)
read v(m;[C]), if t(m;[C]) = or if
t(m;[C]) # Ek(w;Az)

for xk(m;AZ X Xz), if t(m;[C]) = tk(w;Az)
read xk(m;AZ x Xz), if o > t(w;[C]) =

X 20 k=
= tk(w;Az) .
> g (wik)
for j Pldu;x";z] P[AS;B;Z;Xt (w) ;2]
Q 4]
read J P[dw;x';z] p[As;B;z;Xt (w);ZJ.
S IA 0
(<] «©
1 2
for (U Eip g D L} Ej-t -z)
j=1 Jitg’ j=0 Y7o’
“ 1 2
read (U z.., .,V U Ejit sz
j= J’ 0’ j=0 ? O’

for to each w €  corresponds

: z . <
read to each w, satisfying tj~1(w’Az) S to,

corresponds
for H; read F;

for finite number of discontinuities.

read finite number of jump discontinuities.

z % z[, 2z
A ogpe !t ]
for P [ t +s:B'% ] read P [At +s:B n Nx ].
0 0
~AZ Z
for J = Ht read J = Ht

0 0
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115 23  for K ¢ HZ[C] read K € H”,

116 1 for P*[k;x'] =J Pz[dwz;x']Pz[T[C](K) x“w®; €] -
A

read PZ[TEé]K nhx'] = J Pz[dwz;x']Pz[K;xz(mz;Bﬂ)].
—_— A .

116 9 to 116 13 cf. Errata and addenda for page 37.
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