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PREFACE 

In recent years a la.rge number of papers dealing with the singula.r 

pert11rbation method has been published. However, only some of these publi

cations refer to the foundation of this method. 

In this tract a class of well-known one-dimensional singular pertur

bation problems is treated in relation with a paper of Eckhaus [5] on the 

fowidations of the method of matched asymptotic expansions. 

It is f'11rther demonstrated that certain principles underlying the one

dimensional singular perturbation method can be extended in such a way that 

they serve as a basis for the two-dimensional ca.se. The main reason for 

studying the basic principles of the two-dimensional method is to give an 

analytical description of' the so-called ''birth of' a bounda.,,--y layer'', a 

ter"Ifiinology introduced by Eckhaus [ 6]. It is a well-known. fact that in cer

tain boundary layer problems the usual asycnptotic solution is singular at 

the extremities of the bormda~ry layer, one may say that boundary layers 

originate in such points. This idea is reflected in the title of this 

tract. 

In the investigation of this type of problems several topics of mathe

matics are involved such as non-uniforrn convergence, singular perturbations 

and the ma.xim1.1m principle. In order to obtain an adequate description of 

the structure of boundary layers much attention has to be given to the re-
• • • • lationship between these topics. As a result of this approach a complete 

• • • • • • insight into certain types of boundary layer problems is achieved. 

I a.m grateful to the Boa.rd o:f Directors of the ''Stichting Mathematisch 

Centr1.1rn'' for giving me the opportunity to carry out the investigations 

presented in this monograph and 

''Mathematical Centre Tracts''. 
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tude. 

Finally, I acknowledge Mrs. S. Hillebrand and Miss Ode Jong for the 

typing of the manuscript and Messrs D. Zwarst, J. Suiker and J. Schipper 

for the printing and the binding. 
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CHAPTER I INTRODUCTION 

Solutions of singular perturbation problems are often obtained by 

means or heuristic methods, such as coordinate stretching and matching. In 

order to gain nnderstanding in the fundamental aspects of these methods it 

is instructive to study the asymptotic behavio1.Jr of explicitly given singu

la.r frmctions q,(x,y;e:) which converge non-1mifor1t1ly in a closed domain G of 

the x,y-plane when e: tends to zero. 

Eckhaus [5] demonstrated the usef'ulness of such an approach for functions 

of one variable and a small pa.rameter. It is to be expected that a great 

deal of the results obtained by Eckhaus also hold for functions of two 

variables and a small param~ter. However, it appears that some new aspects 

arise which are specific for two-dimensional theory. A part of this mono

graph is dedicated to these matters. 

The references [14] and [4] can be considered as introductory studies 

in the field of matched asymptotic expansions in two variables. The first 

paper, which was written by the author, deals with the asymptotic behavio1Jr 

of the exact solution of an elliptic problem. It exhibits the phenomenon of 

the birth of a pa.rabolic boundary layer. In the second paper Eckhaus stud

ies an elliptic problem which is related to ordinary bounda.1-y layers. This 
• paper contains 

the birth of an 

a n1Jmber of suggestions for the further investigation of 
.. .. 

ordinary bounda:r·y layer. 

We shalJ utilise these informations for the study of implicitly de

fined singul a.r functions ( singular pert:1Jrbation problems). Hereby we re

strict our investigation to those functions~, which satisfy_ linear, ordi

nary or elliptic, second order differential equations of the type 

( 1 • 1 ) 
• 

where L2 is a second order and L1 a first order differential operator. 

Ft1rthermore, h is a given function and e: a .small positive pa.re.meter. The 

case where L
1 

and L2 are ordinary differential operators provides the star

ting point of 01.ir investigations. 
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In two-dimensional singular perturbation problems, which are known 

from literat,.Jre, the exact solution converges non-unifonn)y in the neigh

bourhood of a curve which may either be contained in the definition domain 

G or be a part of the bounda.1-y. These situations are related to free and 

ordinary bounda.:c~ layers, respectively. For such problems a coordinate sys

tem (p,e) is introduced in which p is no1·1oal to the c1Jrve and e varies 

along the curve. 

In the present analysis a for1r1al approxjmation of the solution of' 

these problems will be constructed in five distinct steps, as follovs: 

1 • The coordinate p is stretched by introducing a transforcr,ation of the 

type 

( 1. 2) 

2. 

a 
p = te:, ct > o, 

(p ,e) = (o,e) at the curve. By transfor1ning equation ( 1.1) into an 

equation depending on~, 0 and e:, and by letting e: tend to zero we 

operators for different values of ct: 

lim 
e:-+O 

where y is chosen such that the coefficients of 

The general solutions,of 

(a)'" Y L $ =lime: h. 0 Cl 
e:-+0 

are 0(1) • 
1.ll E. 

are constructed. The functions$ are said to be formal limit func
a 

tions. 

3. The matching principle yields relations, which must exist between the 

integration constants of diff'erent for111al limit f'1lllctions. 

4. The bo11nda:t"Y conditions are satisfied. The f'Ol'Jilal l:i mi t functions are 

then uniquely dete1·,,,ined. 

5. A forro.al uniformly valid approximation is composed of' the formal limit 

functions. 
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Finally, it must be established that this fortnal approximation does 

indeed approximate the exact solution with a certain degree of acc11racy. In 

our approach such a proof is based on the maximum principle for differen~ 

tial equations (see Protter and Weinberger [30]). 

When an approximation, obtained in this manner, exhibits a singu]a.rity 

at an isolated point of the curve, it is obvious that stretching must be 

applied to both coordinates p and e. Thus 

( 1. 3) Cl 
p = ~e;, • a, 8 > O, 

(p,6) = (0,0) at the sing1J)ar point. In order to achieve a foi·znal uni:fo1·1nly 
• 

valid approx:ima.tion the same five steps must be passed through. 

011r main objective is to solve the elliptic singular perturbation 

problem of the f'Wlction ~(x,y;e;) satisfying (1.1) in a bounded strictly 
• • • convex domain G with given bounda.:ry values. 

This problem has been the subject of a J a.rge n11m'ber of' papers. In 

chronological order we mention Wasow [34], Levinson [21], Visik and 

Lyusternik [34], Eckhaus and De Jager [7], Mauss [24] and [28], Roberts 

[ 31 J , Frankema. [ 11 J and De Groen [ 17 J • 

In the present monograph two aspects can be distinguished: the study 

of non-uniform convergence of' explicitly given :functions, and, in addition, 

the method of' constructing for1nal approxima.tions o:f implicitly defined 

f11n.ctions. These tvo aspects are, to a certain degree, complementary. · · · 

Therefore, the forr·ner can never be t1sed to prove the validity of the lat

ter. However, the study of non-uni:forro]y converging :functions reveals some 

essential features o:f singuJar perturbation problems, which enables us to 

understand the bounda-1-y layer mechanism. 

Some definitions and properties of asytuptotic approximations are reviewed 

in chapter 2. In this manner we indicate which concepts of pert11r'bation 

theory are used in the sequel. 

In chapter 3, a s11n:1cnary is given of the paper of' Eckhaus [ 5] which deals 

with the foundation of' matched asyrn;ptotic expansions in one variable. Only 

those subjects are treated which a.re important in the present study. In 
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section 3. 7, the author considers a two-dimensional bounda1·y J.ayer struc

ture, which can be interpreted in terms of Eckhaus' analysis. 

Chapter 4 is devoted to a class of solution methods of well-kn0wn si ar 

perturbation problems. Some seemingly arbitrax·y procedures in these methods 
• • are interpreted as natural results from theory discussed in chapter 3. 

Moreover, the validity of the approx5ma.ting solutions is proved by means of 

the maxim1Jm principle. 

In chapter 5, new results are obtained concerning non-uniform convergence 

of :runctions of two variables and a small paramP,ter. The use of the method 

is demonstrated for so-called parabolic bounda1-y layers. 

In chapter 6, an analysis of the elliptic problem, mentioned above, is . 
. 

made~· Besides a complete explanation a,nd description of the singular behav-

iour of the solution, which results in a clear picture of the birth of an 

ordinary bo1.1ndary layer, we also give the proof of validity o:f a 1JnifoJ:•trt 

approxi.ma.tion. Moreover, a physical application of the elliptic problem is 

discussed. 
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CHAPTER II DEFINITIONS AND PROPERTIES OF ASYMPTOTIC APPROXIMATIONS 
' 

In the following chapters we will express the order of magnitude of a 

function ~(s;E) (s=x or s=(x,y), O<e<<1) by means of functions which depend 

only on e:. For this p11rpose we introduce so-called order functions. 

Let o(e:) be a real, positive, continuous function of the real variable e: on 

an interval O < e: < e: 0 , and let lim o(e:) exist, then every function having 
e:➔Q 

these properties is said to be an order function. When a comparison between 

two order functions is made, the following notations are used: 

( 2. 1 a) 
• 

( 2. 1b) 

(2.1c) 

• is bounded for£+ O, 

if 8 < 
1 as 

i~ lim o1/o2 = O. 
e:+O 

~so,, 

The signs= <,<<indicate the asvm·ptotic ordering between two samples as' as as .1-: 

of the set of order functions. The relationship between two order f11nctions 

given by such a sign does not imply a sa.me relation with the usual equality 

and inequality signs. It is emphasized that the set of order frmctions is 

only partially ordered in this ma.nner • 

• functions 
.. 

From the set of order functions 

o 1 and o2 a.re called a.syinptotically equal. 

infinite denumerable subsets can be chosen 
• • f'orrn, ng a f11nction sequence o with the property n 

~ << 0 n+1 as n = o, 1, 2, . • . • 

For any such sequence the following ler,11na holds. 

Le1:0ma. 2. 1 Let on ( e:) be a sequence or order functions with the property 
C: 

<< 0, as n 

then order functions 

n = O, 1, 2, .•• , 

• 

exist such that 
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J:, * u << 6 
as n 

for all n. 

Any order function o*(e) having this property will be called asympto-
• 

tically equivalent to zero with respect to the sequence o (e:). Lemma 2.1 is n 
closely related to the Du.Bois-Reymond theorem [5] • 

• 

Definition 2.1 cf>(s;e:) is O(o(e:)) in D, if there exist constants 
' 

such that M( e:) 

lim M(e:)/o(e:) 
e:-+Q 

D 
~ O, if this limit exists. 

Remark This definition differs from the one Landau used: if$= O(o (E)) 
e 

o e ( e:) ~-~ o ( e:} , then according to Landau 1 s de:fini ti on we may s ey that 
• 

cp = O(o(e:)). However, from definition 2.1 it follows that in this case 

cp ~ O(o(e:)) • 

...;.D...;.re..;;..f .... i_n_i...;.t..;;;..i ..... o..,.;n......,;;;2-· .;;..2 Two functions <J> ( s ; e: ) and q> 
0 

( s ; e: ) are 

lent in D, 

= O(o
1

(e:)) 

if cf>(s;e:) = 0(6
0

(e:)), <J>
0

(s;e:) = o(o
0

(e:)), 

and o 
1 

( E ). ) ~ O O ( E ) • . 

In such a case we write cp ;,= 4> 0 . 

asymptotically eq11i va

cf>( s ;e:) - <Po(s;e:) = 

With the aid of these definitions we are able to describe the wa;y to 

obtain an asymptotic expansion of a function ~(s;e:). When cf,(s;e:) = O(o0(e}), 
. " we construct an approximation o~ type 

' 

(At this stage we do not study the manner in which such an approximation 

is obtained.) Let 

• 

• 

then the construction of a higher order approximation is. achieved., if we 

find a function 4> 1 ( s ; £) that sat is fies 

• 



(2.2) 

If this construction of higher order approximations is continued indefi

nitely, we obtain the asymptotic series 

q,(s;e:) = 

where R(s;e) = 
as 

00 

m=O 

alls ED and o*(e) is asymptotically 

to zero with respect to the sequence a (e) (see n Le1nr11a 2 • 1 ) • 

equivalent 

The following lemma of' [5] establishes the asymptotic equivalence of 

cp(s;e·)· and the approximation <1>
0

(s ;e:). 

Le1r11c1a. 2. 2 Let <P ( s; e:) and <1> 0 ( s; e:) be continuous :functions in D :for · 

O < e: < e: 0 , and let both :f'unctions be of order 0(1). Then cp(s;e:) and 

<J, 0 (s;e:) are asy,nptotically equivalent if, and only if, the limit 

lim l<P(s;e:) - <1> 0 (s;e:)I = o 
e:-+O 

holds rmif'o1·r,1Jy in D. 

When the limit lim q,(s;e:) = w0 (s) converges llDiforrnly in D, it is 
e:-+O 

7 

easily deduced :from lemma 2.2 that an order function o1(e:) exists such that 

for alls ED, 

or 

Functions q,(s;e) which have the property that the limjt 

in D are called reg11J ar. If' the 

lim q,{s;e:) exists 
e:+O 

• • limit converges 

non-imifor1n]y in D the :functions cp(s;e:) are called sin ar. For the higher 

order tenns ( see ( 2. 2) ) we have to reconsider this problem, because 

lim ( 4>-<J>0o0) / o 1 may converge uni..forrnly or non-,1ni:fo -.J independently of' 
E-+0 

the course of' the foregoing ter:rn. 
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In the sequel, we only study the case where ~(s;E) is a singular function 

for which the non-uniformity occurs near isolated points in a closed inter

val of the x-axis, ifs= x. Fors= (x~y) we may have non-uniform conver- · 

gence near both curves and isolated points in a closed domain of the x,y-
, 

plane. 



9 

CHAPTER III NON-UNIFORM CONVERGENCE OF FUNCTIONS OF ONE VARI.ABLE 

3.1 SOME ASPECTS OF NON-UNIFORM CONVERGENCE 

It is ass11med that <P(x;e:) is a continuous function of x and the para-
• • meter e: in the domain G 

e: 
* O<x<R, O<e:<e:} and that w(x) is a contin-

uous function in G = {x: 

(3.1) lim [~(x;E) - w(x)J = 0 
e:-+0 

Moreover, the limit 

converges non-uniformly in G, and unifo~ in G - GA, where 

GA = tx: O<x<A} and A is an arbitra1·y positive constant. Thus, for any n11m

ber q > O, a number e: 0 (q) exists such that l~(x;e:) - w(x)I < q, if 

0 < e: < e:o(q) and A< x < R. 

As a consequence of the non-unifo:rr,1 convergence the upper bolJnd of e: 

also depends on the choice of A. This dependence is such that 

lim e0(q,A) = o. 
A-+O 

Of all possible functions e: 0 (q,x) we chose those (defined for O < x <Rand 

0 < q < q0 ) which satisfy the following conditions: 

b. 

c. 

d. 

e. 

• • • 
is continuous in q and x, 

e:0{q,x) is monotonic increasing • in q and x, 

lim e: 0 (q,x) = o, 
q-+O 

lim e:0 (q,x) = o, 
x+O 

For any A> 0 values xk within O < xk < A exist such that 

l,(~;e:) - w(~)f > q fore:= £
0
(q,x) + a, where a> 0 is 

small. 

. .. 
arbitrarily 
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The .runctions e: 0(q,x) satisfying these conditions are particula.rly 

adapted to describe the behaviour of the non-uniformly converging limit 

(3.1), as we shall verify in the following three points. 

1 • l~{x,£) - w(x)] < q, if O < £ < p(q,A)~ where p(q,A) 

• • • Thus the convergence is indeed l.lllifono for O <A< x 

• = IDl n 
A<x<R 

< R. -

2. We shov that the limit is non-1Jniform for O < x < R by assu1t1i ng the 

opposite. In that case for any q (O<~q0 ) a number µ(q) would exist 

such that for O < e: < µ(q) and O < x < R relation l<t>(x;e:) - w(x) I < q 

would hold. However, for x sufficiently small ve would have 

µ(q) > e:0 (q,x), which contradicts condition e. 

The existence of functions e:0 (q,x) is easily established by • as s1.1m1 ng 

the opposite. This would lead to uniform convergence for O < x < R. 

Moreover, we can prove that a:ny two functions of this set e:
0

(q,x) tend 

to zero in the ~aroe way: 

lim ----- ~ 0 and lim----- ~ 0 
q-+O x-+-0 

Finally, a ler,1,,1a is proved that will be of great value in the :follow

ing section. 

Le111rva 3. 1 Let e:0 (q,x) be a function with the properties a, ••• , e, then 

e:
0
(x) 

x-+O e:o q,x . 
there q. 

Proof Let r(x) be a monotonic increasing function with lim r(x) = O. For 
x+O 

0 < ~ < q1 < q0, two possibilities are distinguished: 

1. 

2. 

lim 
x+O 

e:o ( 42 ,x} 

e:o(q1,x) 
iC o, 

= o, 
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3.2 

It appea.rs that the domain of uniform convergence of the limit ( 3. 1) 

can be extended in such a way that the origin also is included. Using the 

properties of non-uniform convergence, as given in the preceding sections 

we will investigate the bounds of the extended domain of convergence. The 

ter1n ''1.lui.foi:·c,1 convergence'' is considered here from another point of view 

than the classical definition. A forin-ulation is obtained which turns out to 

be appropriate to 011r case. The following definition will be used: 

• • • Definition 3. 1 Let P be a doma,in of the s, e::-space ( e:> 0) , containing e: 
interval S of the s-space fore:= O. Then we say that the limjt 

lim [~(s;e:) - w(s)J = 0 
e ► O 

is uni:fo1·cn in Pe:, if for all values s = s 1 contained in S 

lim [~(s;e:) - w(s)J = 0 
e::-+O 
s-+s 

1 

independently of the choice of the path in P • 
e: 

• 

With the aid of lemm1=t 2. 1 the extension theorems 3.1 and 3.2 a.re 

proved (see [5]). 

Theorem 3.1 Let ~(x;e:) be a continuous function in 
• 

G = {x,e:: O<x<R, e: and let the limit 

lim [~(x;e:) - w(x)J = 0 
e:-+O 

an 

hold uniformly on the interval O < A <_x < R for any value of A and R being 

fixed. Then there exist fun_ctions e: = e:0 (x), positive, continuous and mono

tonic increasing with lim e:
0

(x) = o, such that the limit 
e:-+-0 

lim [$(x;e:) - w(x)J = O 
e-+O 
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is 11nif'or1oly valid in P e: = {x,e:: O<x<R, 

Theorem J.2 Let ~(x;£) be a continuous function in 
. * G = {x,e:: O<x<R, O<e:<e: }, and let the limit 

e: 

lim [~(x;e:) - w(x)J = 0 
e:-+0 

hold uniformly on the interval O < A <_x < B < R f'or any A, B and R being 

:fixed. T~~D there exist f'unctions e: = e:
0
(x), as def'ined in theorem 3.1, and 

moreover, functions e: = e:0(x), positive, continuous and monotonic decreas

ing with iim e:0 (x) = O, such that the ljmit 
x-*R 

lim [~(x;e:) - w(x)J = 0 
e:-+O 

is 11ni:f"orrc1ly valid in 

infinity.) 

3.3 LIMIT FUNCTIONS 

P = {x,e:: O<x<R, 
e: (R may tend to 

The non-unifo ~r converging function ,(x;e:), def'ined in section 3.1, 
• 

will be studied more precisely. Using theorem 3.1 we obtajn an extended do-

main of' uniform convergence Pe:= {x,e::_O<x<R, O<e:<e:
0

(x)}. An inverse func

tion of' e: = e:0 (x) exists, because e: = e:0 (x) is_contiriuous and monotonic in

creasing._Clearly, this inverse :function, say o
0

(e:), is an order runction 

with lim o0(e:) = O. 
e-+O 

It is also possible to introduce an inverse f'unction of e: = e:
0

(q,x). Let 

0 be 

ties 
• 

, . 
0 

• • 
an order function, 

2~ 
E+O 0 

o < q < qo, 

3. 
(q,) (q2) 

00 < 00 , 0 < 42 < q1 < q • as 0 
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• 

Because of the relationship existing between the functions £
0

(q,x) and 

£ 0 (x), the following asymptotic inequality is valid: 

<< tS << 1. 
as O as 
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This relation implies that the set of functions 0
0

(£) is bounded by the set 

of 

When a given function belongs to a set of asy·ariptotical.ly equal order 

:functions tS(E), other samples of this set are easily constructed by multi

plying this function by a constant. Therefore, within the domain of unifo1·ro 

convepgence we may consider a family of paths given by 

(3.2) X = ~o(e:), 

so that the limit 

lim [~(x;E) - w(x)J = 0 
g+Q 

holds along any such path, if 
0 as as 

a path (3.2) is equivalent to the following manipulations of substituting 

(3.2) into (3.3) and letting e: + O, while~ is kept fixed. We shall use f"or 

such an operation the notation 

( 3. 4) lim [~(x;s) - w(x)J = O. 
~ 

' 

The path (3.2) was chosen in the extended domain of convergence of the 

limit (3.4). On the other hand when the procedure (3.4) is applied to a 

path 

X = ~ O (E) 
V V 

without a restriction 

the singular frmction 
0 as v' 

$(x;e) is obtained 

a generalization of the li1oit of 
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(3.6) lim 
~v 

= o. 

Definition 3. 2 We say that for a transforr,1ation ( 3. 5) the limit of the 

singular function ~(x;E) exists, if there exists a non-trivial function 

w (~) and an order function o*(e) such that (3.6) is satisfied on some 
V V V 

interval of'~. 
V 

Exaµi·pl:~ .. ,;3: 1 We consider the sing,1J ar function 
2 2 ~(x;£) = (x +2x+2£) + (x+x) exp(-x/e) and construct its generalized limits 

according to (3.6). We notice that w(x) = x2+2x and that for the paths 

X = 

the limit functions are 

, 

-~ 
,ti = (2t +2)+t e ", 
'Y '\) \) \) 

'1J = 2 
\) ' 

* 6 = €: , 
\) 

• 

€: , 

3.4 LOCAL ASYMPTOTIC APPROXIMATIONS 

0 < v < 1, 

'\) = 1, 

\) > ,. 

A J_imi.t function 11J ( t ) can in a certain way be considered as a local 
\) '\) 

asymptotic approximation of the singu.J ar :function q,{x;e). 

As su111i ng that the limit 

(3.7) = o, 

holds 1mif'or,c1Jy on the interval O < A < ~ 
\) - \) 

• trar1.ly chosen, we obta~n by application of' 

X = ~ 0 (e), 
V V 

< B < co with A 
\) \) 

le111rna 2 • 2 

and B 
\) 

a.rbi-
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Hence 

cp(x;e:) = 
\) \) 

for Ao < x <Bo. When theorem 3.2 (R~) is vv- - \)\) 
ded domain of convergence is obtained. Let x = 

applied 

~ 0 (e:) 
1J 1J 

to (3.7),_an exten

= ~ o (t)o (e) (also 
µ \) \) 

in o = o /o) be a path 
µ " \) 

<< 1 exists such that 
as 

<J>(x;e:) = 

for ~o· < x < Bo , 0 <A< B < 00 • 
µ - - µ 

3.5 THH: MATCHING PRINCIPLE 

in this domain, then an order :function 

With respect to the set of order :functions 
0 

section 3.3 two 

ca,ses will be distinguished. The set may consist of' asymptotically equal 

order :functions or it may consist of order functions with the property 

(3.8) 

is a set of asymptotically equal order 

0 
set of order functions satisfying (3.8). 

In the present analysis we study the 
0 

consist of asymptotically equal order functions. 

The matching principle is contained in the following theorem (for 

proof and details see [ 5]). It is 11sed to deter,nine unknown constants in 

local approxima.tions of' a function <J>(x;e:) in cases where such a :function is 

implicitly defined by differential equations ( see exa1rrple 3. 2} • 

Theorem 3.3 Let 

= o, 
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and 

(3.10) = o, 

where x = ~ o ( e) = ~ o ( e: ) • 
"1 v, "2 v2 

Then an order function i( 1, 2 )(e) << 1 exists such that :for 
0 v as 

( 3. 11 ') 

as o as 
"1 

0 

lj rra 

E;µ 0 

0 \)1 
"' (•= l:!, E; 

V 
1 

0 
\) 1 µ 

0 0 "2 ) lim "' ( µ --
"2 0\), µ 

tµ 0 2 µ 

Both limits must exists a.nd be non-trivial. 

~µ ) , 

_Example 3.2 The function $(x;e) has the following properties: 

1 • 

2. 

3. 

where 

• 

lim 
e:+Q 

lim 
~, 

"',(t,) --

[~(x;£) - w(x)] = O, w(x) = sin 2x 
2 

1+x 
:for x > O, 

and 

j_ ) * - 11J,<t1 
o, 

= o, 

--

V e: , 

o, 

c,t,e 
1/~, 

+ C and 
0 

• 

X = 
V 

' e: , \) 

X = ~,e:, 

* o, - e:. -

0 < v < 1, 

Applying theorem 3.3 to two l:i_mj t functions 1P and 'V \) ' "1 2 
0 < • 

\) 1 < "2 < 1, we obtain C - C - c, so for all 0 < \) < 1 - -
"1 "2 

we have 



Cv = C. Matching 

i<1,2) << 0 << 

w(x) and~ , where v0 is chosen such that the condition 
"o 

1 of theorem 3.3 is satisfied, yields C = 2. Finally, as v0 as 

matching w1 and w 
V 1 

of the set O < v1 < 1, where .. 
v 1 1S chosen such that 

<< 
as 

<< 
1 v 1 as 1 is satisfied, leads to the result 

3.6 UNIFORMLY VALID .ASYMPTOTIC .APPROXIMATIONS 

We will apply the results just obtained for the construction of an 
• 

asy1aptotic approxirna.tion of a singular function which holds uniforxnJ.y in 

the definition domain of this function. It is assumed that the function 

~(x;E), defined in G = {x;e: O<x<R, O<E<E*}, is continuous in x and E. 
€ 

To begin with we deterrr1ine the function w(x) satisfying 

(3.12) lim [~(x;E) - w(x)J 
(" 

= 0 X = t 0 , \) \), 
o ( q) << cS < 1 • 

O as v as 
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According to 

satisfies 

definition 3. 2 a limj,t :function $ ( ~ ) 
\) \) 

can be introduced that 

(3.13) lim 

~" 
. = 0, X = ~ 0 , 0 < 1. 

v v v as 

C)bviousl.y, the lirni t functions 1J) ( ~ ) corresponding to the paths x 
" \) 

O as vas obtajned from the :function w(x), because 

converges uni:fo1•,n]y along these paths, so 

(3.14) o
0
(q) << o < 1. 
· as v as 

Continuing with (3.13) a limit function $ 1(~ 1) is defined by 

lim L ~ w (t) = O, ~* , 1 ~, u, as 0 

= ~ 0 
\) \) 

(3.12) 

Furtherrnore, we apply theorem 3. 3 so that for an appropriately chosen order 

function we find the relation 
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= lim 
~· 

µ 

<< o < o 
as lJ as v 1 

<< 1. 
as 

If o is sufficiently close to o1 \) 1 

take the path x = ~ o (e), 6 (E) = 
l.l l.l µ 

in order of magnitude it is allowed to 

6 ( E), and ( 3. 15) then transforrns into 
\) 1 

(3.16) 

• • Combination of ( 3. 14) and (3. 16) yields the relation 

5* 0 w(~ 0 ) 
\) 1 \) 1 \) 1 

( 3. 17') lim 1 w,( ~\) ) lJ,v (~v ) lim - -- -
o* o, * 

~\) 
1 1 1 ~" c5 

\) 1 "1 1 1 

Applying theorem 3.3 to the limit f'\wction w1(t 1), we obtain 

lim L - $ (t) = 0, 
o* 1 1 

~v 1 -

X = t O , 
V V 

Once more a limit function is introduced, 

• • Sim, iar to (3. 17) we have the relation 

o* 0 

1 as v as 

* 0 

• 

o, "2 "2 
(3.18) • 2 

VJ2( t\) ) = lJ,V ( (V ) 
• 

VJ 1 ( t\) ) l1m lim • --
5* 02 * o, 

'v 2 2 2 ~'\) 0 2 
2 '\)2 2 "2 

02 << o << o • 
as v2 as 1 

, 

Continuation of the procedure leads to a denumerable sequence of limit 

functions w
0

(~n). This sequence ends with the construction of a ljmit func

tion t1J (~) of which the corresponding limit. m m 

(3.19) = 0 
0 . 

m 



holds uniformly :for~ > O and O < m-
* e: < e: • 
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Finally, 

introduced, which is a composition of the foregoing limit functions: 

w(x) -
m 

+ I -
m-1 
I ---)o* . 

n=1 n n=1 

In [5] it is shown that ~0 (x;e::) approxjma.tes the :function q,(x;e::) -uni-

fo:z·1,,Jy on the interval O < x < R. It means that for O < x
1 

< R the J.jmj t 

(3.21) lim [ cp(x; e:) 
e::-+O 
x-+x

1 

is valid along all paths contained in the doma.in 

= {x,e::: O<x<R, O<e::<e::0 (x)} and ending at (x,e::) p 
e:: 

= (x
1
,o). 

From letrttna. 2. 2 we deduce that because of" the uni:fo1·m convergence of (3.21), 

there exists an order function o(r)(e::) such that 
1 

as 1 as 

W - • (r)( ) e introduce a function <1> 0 x;e::, 

and proceed in the same way as for q>(x;e::) in order to construct an • a.pprox1-

Let • • which 1s 

,,niforrnly valid for O < x < R, then we obtaj n the expression 

+ • 

This procedure can be continued indefinitel.y. 

Remark When in (3.19) m = 1·, the resul.ts of' this section provide a justi

fication of the matching procedure frequently applied in boundary layer 

problems .. For m = 2, 3, .... this study represents a j11stification of" the 

so-called multiple bounda1·y layer theory. 
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Exa:mp;J.~ 3. 3 We 

G = {x, E: O<x, 
E 

.. 
analyse the behav101Jr of the function q>(x;e), defined in 

* O<e:<e: }, 

2 x/ £. -2x/ e2 - ( x+ 1 ) / e: 
4> (x; e:) = ( x +xe:-1 ) + ( 2+x/ e:) e- + e + e • 

The reader will observe that every substitution of the for1n x = ~ o { E) 
\) \J 

yields ,(x;E) = o*(t) = o*(E) = 1. 
as v as as 

Generally, limjt functions satisfying (3.13) will be cal.led equiva~ 
* * * lent, if' there exists an order function cS ( e:) such that o = o for a.l.l v as 

transformations of type x = ~ o (E). In such a case the representation of 
\) V 

the matching principle and the construction of a composite expansion can be 
• 

simplified, as we will see in the present ex.alrcple. 

We observe that 

lim [~{x;E) - w(x)J = O, 
e:+O 

and that the limit 

has as corresponding limjt functions 

1 + 
-2~ 

2 
e 

w(x) 

X = 

Formulae ( 3. 18) and ( 3. 21) tra.nsforrr, into 

( 3. 22) 

2 = X -1 for x > O, 

\) 
t; E , 

\) 

(O<v<1), 

(v=1), 

(1<v<2), 

(v=2), 

(v>2). 



m m-1 
( 3. 23) 

n=1 n n=1 
i/J ( o). n 

For this example (3.23) becomes 

3.7 A SPECIAL CASE OF NON-UNIFORM CONVERGENCE OF FUNCTIONS OF TWO VARIA

BLES 

21 

We assume that the function $(x,y;€), defined in 

* G = {x,y,£: Q<x<R, -R_::y<R, O<e<e: }, is continuous in x, y and e:, and that e: 
w(x,y), defined in G = {x,y: O<x<R, -R~<R} is continuous in x and y. More-

over, it is as s11med that 

(3.24) lim [~(x,y;e:) - w(x,y)] = 0 
e-+Q 

converges non-11ni forcnl y in G and uni forrttly in G - G .A, where 
• 

GA= {x,y: Q<x<A, -R~<R} and A is an arbitrary posit1ve number. 

Lets be a vector with components x and y, s = (x,y), then (3.24) changes 

into 

lim [~(s;e) - w(s)J = O. 
e:-+O 

In a simjlar manner as in section 3.1 we define functions e:0 (q,s) 

satisfying the conditions 

a. l~(s;e:) - w(s)I < q for O < e < e: 0 (q,s) and O < x < R, -R < y < R, 

b. 

c. 

d. 

e. 

• • • is continuous in q, x, and y, 

is monotonic increasing in q and x, 

lim £ 0 (q,s) = o and lim e:0 (q,s) = o, 
q-+O s+(o,y

1
) 

let x = x(A), y = y(A) be an arbitrary path 

(x(O),y(O)) = (o,y1) is approached, and let 

-R < Y1 < R, 

along which a point 
-x be monotonic non-de-
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* creasing for o < A < ). • Then for an arbi tra1·y small A
0 

> O values Ak 

exist with O < Ak < AO such that !~(s().k),e:) - w(s(Ak))I > q for 

e: = e: 0 (q,s(A.k)) + o, where a is a positive arbitrarily small n1Jmber. 

Lemma 3.2 Let e: 0 (q,s) be a 

exist functions e
0

(x) such 

function with properties a, •.• , e, then there 

that 

e:o(s) 
= 0, -R < y < R, 

- 1 

inde~endently of the path chosen in the domain O < x < R, -R < y < R. 

Proof For O < 42 < q 1 < q0 we may have that 

or 

lim 
s-+( O,y 1 ) 

€o( 42' 8 ) 

= o, 

It appears that the :function e:
0

(s) = r 1 (s)e
0
(r2 (s),s) satisfies the condi

tion of the lea11na. The flJnctions r 1(s) and r 2 (s) are positive and continu

ous, r 2 (s) < q 0 for alls, 

and 

lim r 1 ( s) = 0 
s-+( o ,y 1) 

lim r 2 (s) = 0 
s-+(O,y2) 

for y 
1 

E r 1 

Theorem 3.4 Let q>(s;e:) be a continuous function, defined in 

* ' 

G = {s,e:: 
e: O<x<R, -R_sv:<R, O<e:<e: } and let the lirni t 

lim [~(s;E) - w(s)J = 0 
e:-+O 

hold unifo2·1ol.y in G - GA, where GA = {x,y: O<x<A, -R~<R} and A is an a.rbi-



23 

trary positive number. Then there exist functions c = c
0

(s),_positive, con

tinuous in x and y, monotonic increasing in x with lim E 0(s) = O, such 

that the limit s+( O,y 1) 

(3.25) lim [$(s;c) - w(s)J = 0 
e:-+O 

is uniformly valid in p 
E 

Proof_ The main lines of the proof' of theorem 3. 1 a.re followed. The func;.... 

ions e: 0 (s) are deteI1oined with the aid of lemiaa 3.2. We consider an a.rbi-

tra1--y path in the domain PE, which ends in a point (s,£) = (s 1 ,o), where 

s 1 = (x1 ,y 1), 0 < x 1 < R, -R < y 
1 

< R. On such a path a sequence of points 

a limit of type lim £ = 0 and 
' 

(£ ,s 1+o) is defined which has m m m;+oo m 

limo = (o,o). 
m 

• Moreover, there exists a sequence 4n with lim = O. For 
ttl > 00 

• any n a domain n n 
e0 (s) < e0 (~,s). 

= {x,y: 
n--+-<x> 

O<x~
0

(y), -R,:::y<R} exists in which 

I 
I 
I 
I 
I 

---+---- ...... -- -- I --- -

E 

.... 
' 

I - -..._ : ................ 
I ' 

I 
I 
I 
I 

', I 
.... .J 
- I" ..,- ' 

--- I ', 
.- ... I ' I ...._ 

.,. I I ', 
,., ..... I I ' 

, ~, I "-.. 
.,. I ' '-

' / I ' I 
x' I ', I ' 

.. .,,," ',... I ', I ', 
.,,. .,,, ', t -.. ' I ' 

,---- ....... I ', I ' X 
----------- -------~------ ' ----------- -~---___:: - ' ', ..... ... 

' ' .... 

-R 

:rig. 3. 1 
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Let r = {x,y: n 
x=g (y)} be the bounda:r-y of n , then we define the numbers 

n n 

• = roJ n 
r 

n 

E on 
• = min 

r 
n 

* - * The number m is chosen such that E < £ form> m. For these values of 
n m- on - n 

m we may have the following 

or 

, 

E < E 
m - On -

ifs,+ CJ E r2 , m n 

+ a 
m 

n .. 
n 

In both cases is sm < e: 0 (4n,s 1+crm) 

3.1 of uniform convergence. 

* form> m, which agrees with definition n 

We assume that x = 

and that x = o0(y,e:) is the 

functions belong to sets of 
• ties: 

a. 

b. 

lim 
e:-+O 

= o, 

is the inverse function of E = e: 0 (q,x,y) 

inverse function of e: = e:
0

(x,y). These inverse 

order flJnctions having the following proper-

lim 
t::+O 

c. (q) ( ) o
0 

y,E << 0 (y,e:) 
as 0 

for all o < q < q 0 .. 

-R <i y < R, 0 as 0o(y,e:) ~s 1 

for all O < q < q0 . 

Let the function~ (~,y) satisfy the ljmit 
\) 

lim 

~v 
' . 

X = E; 0 (y,e.:), 
\l V 

c5 < 
v as 1 • 
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Definition 3.3 The limit of the singular function ~(x,y;e:) as given in 

this section exists, if there exists a non-trivial function $v{'v'y) and an 

* order :function o (e:), such that (3.26) holds for some~. 
V V 

Using the method of constructing a uniformly valid approximation of 

~(s;e:), as applied in the preceding sections, we obtain 

now have terms of 

• • a ~a.me composition of terms as 

n Y,£ n 

in ( 3. 20), 

and '1Jn ( 0 
V n 

V 

except that 

In most applied ma.thema.tical problems the order functions o (y, e:) and n 

we 

o (y,£) are independent of y. An exception in this respect is contained in 
n 

V 

Mahony [22], who introduced a, transforma.tion of the type 

xk.(y) = ove: + O(x), which is an indication for the direction of the 

greatest rate of change in the bounda.:ry layer portion of the approximation. 

~.¥.!Ele 3.4 We observe that for the function 

the limit 

(3.27) 

. -x 
exp( 4 2 ) 

(y +y +e:)e: 

lim [~(x,y;e:) - w(x,y)] = O, 
e:-+-0 

+ 1 + x2 

w(x,y) = 1 + 2 
X , 

holds uniform]y in the greater part of the dome.in O < x < R, -R < y < R. 

However, for x = 0 we have ~(O,y;e:) = 2 + y 2 , so the function ~(x,y;e:) will 

change suddenly near x = 0 for sma.ll values of £ ( ( 3. 27) converges non-uni

fortr1J y near x = 0) • 

Applying the extension theorem we obtain a uniforro convergence of (3.27) 

for o < 1, 
v v - - 0 as v as 

the limit function w1(~ 1,y) is introduced by 



2 · -f; 1 
so t,hat ,,1 (t 1 ,y) • { 1+y { 1+( 1)} exp( ? ) + 1 .. 

t y'+1 
;I'he li■it (3.28) holds uniformly for t 1 > 0. Finally, the uniformly valid 

approximation appears to !1ave the foxm 

-t 1 
exp( 2 ) , 

y +1 

X 
2 . 

( y +E:) e: 
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TER IV APPROXIMATIONS OF IMPLICITLY DEFINED FUNCTIONS 

4. 1 INTRODUCTORY RE s 

In chapter 3 we have analyzed the behaviour of a singular :function and 

have obtained results concerning the foundations of the matching principle 

and the construction o:r composite approximations. These results have been 

derived for explicitly given functions. However, the purpose of the match

ing principle is to use it for implicitly defined :functions in order to 

determine 1Jnknown constants and to construct uniformly valid expansions. 

Nevertheless, from the preceding chapters we have obtained a complete in-
' 

sight into the structure of singular functions. 

011r aim is to apply this knowledge in singula.r pert1.1rbation theory, 

we shall consider both ordinary a.nd elliptic differential equations with a 

small parameter contained in the highest derivatives. Here a new aspect 

arises, namely that we have to prove the uniform validity of' the composite 

approximation of an implicitly defined function. This leads to the necessi

ty of providing an estimate of the accuracy of' the approximation. By mea.n.s 

of' the maxim11m principle some theorems concerning this type of estimates 

are proved. Erdelyi [9] and O'Malley [23] also give such theorems for the 

case of ordinary differential equations. Their proofs are based on the 

method of successive approximations. It will appear that by our approach 

the accuracy of more complicated linear problems can also be deterr,1ined 

( see chapter 6) . 

In this chapter we compare the fo1·1nal singular pert11rbation procedure 

with the results obtajned for the exact solution which we are supposed to 

be explicitly given (chapter 3). We will show that for certain classes of 

differential equations the solution of the limjt equation equals the limit 

of' the exact solution as e:-+ O (theorems 4.4, 4.7 a:md 4.10). 

4.2 THE INITIAL VALUE PROBI,EM FOR AN ORDINARY SECOND ORDER DIFFERENTIAL 

EQUATION 

We consider the function $(x;e:), defined on the interval O < x < 1, 

satisfying the differential equation 
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( 4. 1) 0 < e: << 1, 

where 12 and L1 denote the linear differential operators 

The coefficients a0, a 1, b0 , b 1 and hare three times continuously differ

entiable. Furtherrnore, we assume that e:a0 (x) + b 0 (x) < 0 and b 
1 
(x) > 0 on 

the complete interval. The function ~(x,e:) has the initial values 

( 4. 2a) 

. 

(4.2b) 4>' (O;e) = q( e:) -1 
= q_,e: 

• 

• 

This problem can be solved with the usual singular perturbation method 

as we shall see later. However, an asymptotic solution obtained that way 

only holds for,oally. In order to prove the consistency of this asyrriptotic 

solution (with the exact solution) we have to use other concepts. It 

appears that the ma.ximllDl principle provides a sta.rting-point for such a 

proof. 

We fo1·1r,ulate the maximt1m principle for the above mentioned problem as 

follows: 

If L V(x;e) > O for a < x < b and V(x;e) takes a ma.xim,1m value M (>O) at 
€ 

x = x1 (a<x1<b), then V(x;e:) = M. When e:a0(x) + b0 (x) t O, Mis zero • 
• 

For several applications of the maximum principle the reader is referred to 

[30]. In the following le1mua the functions lJ,(x;e:), so-called barrier-f'unc-
• • tions, are introduced. 

Lemma 4. 1 Let the twice to x continuo11sly differentiable fiJnctions ~ ( x; e:) 

anq ~(x;e:) satisfy within O < x < 1 the relation IL ~I < L w with L as in e: - e: e: 
(4.1), and let l~(O;e)I < w(O;e:), I~ (O;e)f < w (O;e:), then 

X - X 

lt(x;e:)I < w(x;e) within O < x < 1. 



Proof Considering the function V(x;e) = $(x;£) - t(x;e) we notice that 

V(O;e) > O, V (O;e) > O, and L V > 0 for O < x < 1. 
X £ 

First we will prove that 

(4.3) 0 < X < 1. 
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Taking an a.rbitra:r-y point x 0 (O<x0<1) we observe that according to the maxi

mum principle the function V(x;£) cannot have a positive maximum on the 

open interval O < x < x 0 • So the ma.xim1.1m must occur at either x = O or at 

x = x0 • Since Vx(0;£) > 0 we conclude that the maximum ca.n only occur at 

x = x0 • Thus V(x0;£) > V(O;e) > O for any o < x0 < 1. Simjlarly it is pro-
• 

ved that for the function W(x;e) = w(x;c) + ~(x;e) the following relation 

holds 

(4.4) W(x;e) = ~(x;e) + ~(x;e) > o, 0 < X < 1. 

Inequalities (4.3) and (4.4) complete the proof of lemma 4.1. 

The barrier-function $(x;e) gives a bound for the absolute values of 

~(x;e) on the interval O < x < 1. 

The procedure of estimating the remainder term of an approximation of 

~(x;e) satisfying (4.1) and (4.2) consists of the construction of an appro

priate barrier-function, which is achieved in the following theorem. 

Theorem 4.1 Let Z(x;e), defined on the interval O < x < 1, satisfy the 

differential equation 

with L 
e: 

as in (4.1), and have 

If I Z(O;e:) I 
µ 

< m£ 1 , jz (O;e)I 
X 

the initial values Z(O;e:) and Z (O;E). 
µ X 

< me:µ 2 and lh(x;e)I < me 3 t'or O < x < 1, 

then a real n11mber K independent of x 

= min(µ 1 ,u2 ,µ
3
}, O I Z(x;e:) I < 

Ct Kme: , a 

and e: exists such that 

< X < 1. 

Proof Lets be a number that satisfies the inequalities s > 1, 

ea1(x) 
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is a barrier-function for Z (x; e:) • It t,~l~rns out that 

~ (O;e:) = 2ms2e:a > mcµ2 and 
X 4 2 CL 

Le:w(x;e:) > (4s e:+2/3s -s)me 
tion of le,nma 4. 1 leads to the estimate 

Applica-

I z ( X ; e: ) I < Kme: a. • 

This theorem can be interpreted in the following way: 

if Z(O;e:) = O(e:µ 1)~ Z (O;e:) = O(e:µ 2) and L Z(x;e:) = O(e:µ 3 ) on the interval 
X • E 

0 < 

Let~ (x;e:) represent an approximation of a function $(x;e:). Then substi
app 

tution of ~(x;e:) = ~ (x;e:) + Z(x;e:) in (4.1) leads to the inhomogeneous 
app 

equation L Z(x;e;) = -L $ + h(x). Further, est5ma,tion of' the right-hand 
£ E app 

side of' this equation and the initial values of Z(x;e:) yields the neces-

sary inf'onuation to apply theorem 4. 1. 

Now we pey attention to the construction of an approximation of ~(x;e:) 

satisfying ( 4. 1) and ( 4. 2) • As we have mentioned before, the singula,r per

t1Jrbation method is usually applied to solve such problems. We will give an 

outline of the method and a proof of the validity of the approximation 

which is obtained in this way. Let 

(4.5) 

where u0(x) satisfies the reduced equation of (4.1) 

-
X 

' 

exp{- ------ d..x. 
0 b 1 {x) 

We observe that u0(x) generally does not satisfy both initial conditions, 

so approximation (4.5) cannot be valid near x = O. The local coordinate~ 

is introduced 

(4.6) 

Substitution of (4.6} in L leads to the operator expansion 
€ 
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(4.7) 

M2 is a f'irst order dif:ferential operator containing the truncated ter1r1s of' 

the operator expansion. We suppose that :for O < x < Ke with Kan arbitrari-• 

ly large positive number independent of' E another approximation will hold 

(4.8) + Z (x;e), 
V 

where v0 (~) and v1 (~) satisfy the equations 

and have the initial values 

v1 (o) = o, 

= q-1' 

For v0 {~) we have 

(4.10) 
-q 

1 

a simiJar expression holds f'or v
1
(~). 

Through the matching condition 

lim v0 (~) = lim u0 (x) 
~ >oo x-+-0 

= o. 
~=O 

X = 

the value of' c0 is determined: c0 = p0 + q_ 1 /b 1 ( 0). For the f'ollowing theo

rem it is assumed that s0 (~) and s 1 (~) represent the non-exponential te:t"llls 
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solution is demonstrated. 

Theorem 4. 3 

satisfy the 

values 

Let the function $(x;e), defined on the interval O < x < 1, 

differential equation L <t>(x;E) = h(x) and have the initial e: 

-1 
$ (O;e:) = q(e:) = q ,e: • 

X -

p ~ 0 
0 

It is then possible to approximate the function $(x;e:) by 

where z0(x;e:) = O(e:) for O < x < 1. 

Proof' 

(4.11) 

z
0 

(x; e:) is a unifor1,1J y bounded function, because o:f the boundedness of <p, 

u0, v0-s0 and v1-s 1• Substitution of (4.11) in (4.1) yields 
' 

(4.12) 
• 

From the boundedness of K0(x;e:) it follows that Le:ZO = O(e:) f'or O < x < 1. 

O(e:). Applying 

0 < X < 1. 

The foregoing analysis leads to the solution of the singular perturba

tion of the initial value problem, as established in the literature. This 
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method contains some more or less arbitrarily chosen steps such as the way 

of introducing the boundary layer coordinate~= x/E and the matching pro

cedure. 

Our task is to show the deeper meaning of these seemingly arbitrary 

steps. Inspired by the results·, which we obtained :f"or explicitly given 

functions, we cam~ to the following procedure of constructing a formal ap

proxima.t ion. 

a. All degenerations of the 

sideration. Substitution 

the equation into 

differential operator L are taken into con
e: 

of x = ~ o (e:) into L ¢(x;e:) = h(x) changes 
\) \) £ 

(4.13) L ¢ e: 
-1 e:o 
\) 

a
1

(~ o) 
V \) 

+ e:a
0

(~ o )<P + 
\) \) 

Both 

that 

+ 

sides o:f' 
- * limo L 

e:-+O 
\) £ 

+ b 0 (~ 6 )~ = h(~ o ). 
V \) \) V 

(4.13) are multiplied by an order function o*(e:) such 

• the first or second order with coe:f"ficients of order 0(1) • 
• 

b. A f"or1nal ljmit function is defined as follows. 

Definition 4. 1 We s ey that for transf"orrnation x = ~ o ( e:) a for1nal limit 
\) V 

. ( t ) function ,,, 
'r' \) \) exists, if' there exists a non-trivial solution of 

(4.14) 

• 

on some interval of~. 
\) 

lim 
e:-+Q 

* o (e:)h(~ o ) 
V V V 

In this way the for:roal limit function is deterrriined with the exception 

of the integration constants. 

c. For two paths sufficiently close to each other the corresponding for

mal limit :f'unctions have to match. Let x = ~ o and x = ~ Ao A 
V V V+u v+u 

(o A<< o ). Then the order function o << 1 exists such that the 
V+u as V V as 
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following relation holds 

* 0 Q 

(4.15) lim 
\) 

* 
f;ll 0 \) 

µ 

if 6 << 0 A/6 < 1. 
" as \J+L.\ v as 

lim --
sµ 

* 0 
v+l\ 

0 

Wv+ll(o 
µ 

f::µ) , 
a* \J+/j 

µ 

X = ~ 0 (e:), 0 << 0 << 6 
v' v+ll µ ' µ µ as as 

* * * At this stage the order functions 6 o and o are unknown. Condi-
v' v+l\ µ 

tion (4.15) yields relations that must exist between the integration 

constants of the formal limit functions and between the order :func-

. * * tions o and o A. 
V V+u 

d. One of the formal limit functions satisfies the initial conditions, 

(4.16) 

~ =O 
b 

= q_,. 

By these 
. ~* tions u 

V 

conditions the formal limit functions 

are determined uniquely. 

~(')and the order f'unc
v \) 

Let x = ~ o (e:) be a path 
\) \) 

the forn18.l. limit function w(x) 

X 

(4.17) exp{-
0 

in the domain O < x < 1. For o v as 
-- 1 we have 

satisfying L1w(x) = h(x), 

dx} • • dx • 

For o << 1 the reader is referred to table I where we summarize the re-
v as 

sults of a, b, c and d for the initial value problem. 

e. Finally a formal unif'or1nly valid asy1nptotic approximation is composed 

of the formal limit functions: 

(4.18) 
m - * 

1J) (x/ o ) o -
n=O n n n 

m-1 

n=O 

This composition of terms is suggested by the results we obtained :for 

explicitly given functions (see formula (3.20)). 

{~ ;n=O,m} denotes the smallest subset of limit functions from which 
n 



... . 

0 
\) 

o = 1 
Oas 

e:<<o <<1 as v1 as 

0 = E 1as 

0 <<o 
v2as 1 

• 
! 

0 * 
\) 

1 

0 
v, 

0 
1 

-1 2 
E O 

\)2 

D1 + E1 =Po~ 0. 

I 

a 

L(v) 
0 

d 
b 1 (x) dx tb

0 
{x) 

d 

\) 1 

d2 d 

d, 1 1 

• 

d2 

d~2 
\)2 

G = G, 
"2 

Table I 

b 

lp\) 

w
0
=w(x) 

1J, =C 
V 1 V 1 

I I 

-b 1 (o),
1 v, 1=D1e +E 1 

I ' 

lp\) =G +F 
\) ~\) 

"2 2 2 2 

I I 

--·-------------------

* F = O, o = 
\)2 "2 

* 0 0 . 
G "2 

• 

C 

• ma.tch1ng 
relations 

* * a =o 
0 v, C =C 

0 v, 

* * o =o 
v 1 C 

C =C 
v, 

* * cS =o 
\) 1 1 

C =E 
v, 1 

o*=o* 
1 "2 

D 1 +E1 =F,1 

0 * . * F *) =o =F, 
v2 F v2 

I G =O 
\)2 

• 

* 0 
\) 

1 

1 

1 

1 

• 

d 

integration 
constants 

C0=E 1 

C =E 
\) 1 1 

D1=-q_ 1 /b 1 ( 0) 

E1=p0+q_ 1/b 1(o) 

F =D +E 
"2 1 1 

G =O 
"2 

• • However, this 1s excluded, because 

' 

I 
I 

w 
V, 

• 
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all the other limit functions can be derived (by substitution of the 

proper local coordinates and by letting£ tend to zero). 

The order function o ( £) deter·rr,ines the corresponding paths 
n 

x = ~ o (s). The set{-$ , n=O,m-1} denotes the set of matching 
n n vn+ 1 

terms. 

For the initial value problem ism= 1. 
Comparing the method of solution we followed and the usual singular 

perturbation solution we observe that both methods are for1nal and that the 

methods differ as far as it concerns the description of the types of formal 

limit functions that can arise. By application of theorem 4.1 we showed 

that in the case of the usual method the f'or·rnal composite solution indeed 

approxim.ates the exact solution ( theorem 4. 3) • 

In the following theorem it is demonstrated that the adjective ''formal'' 

could be omited in an earlier stage: every fonnal limit function arising in 

step b. appears to be identical to a limit function of the exact solution. 

Theorem 4.4 For the function ~(x;E) satisfying the initial value problem 

( 4. 1), ( 4. 2ab), the formal lj mi .. t functions ¢ ( ~ ) , defined in b, c and d, 
\) \) 

are identical to the ljmit functions w (~) defined by 
V V 

• lim = o. 
~\) 

Proof From theorem 4. 3 it follows that 

(4.19) 

• • • 1s given in 

Applying the definition of ljmjt functions we obtain 

= o, 

It t1lrns out that '' 1v ( ~v) = ,,, ( t" ) 
't' 'f' V 1;, V 

• 

for all o < 
v a.s 1 • 

(4.18). 

X = t O • 
\) \) 
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As a direct consequence of this theorem we may conclude that the 

matching conditions for the formal limit functions are well-posed (step c), 

because these relations also hold for the limit functions of the exact so

lution, as proved in theorem 3.3. A saroP. arg11ment applies to the construc

tion of' the for.trial composite function (4. 17). 

In applied mathematical problems we frequently meet the supposition 

that the solution of the limit equation equals the limit of the exact solu

tion. In this section we have proved by means of rigorous analysis that 

this supposition is correct for the initial value problem (4.1), (4.2). 

4.3 THE BOUNDARY VALUE PROBLEM FOR AN ORDINARY SECOND ORDER DIFFERENTIAL 

EQUATION 

An analysis of the mathematical foundations of the singular perturba

tion method for the boundary value problem will show a great resemblance to 

the initial value problem of section 4.2. Again we study the :function 

$(x;E), defined on the interval O < x < 1, satisfying the differential 

equation 

(4.20) 0 < e: << 1, 

1.1nder the saro~ consi tions as in ( 4. 1 ) • However, b 
1 

( x) mey now be either 

positive or negative on the interval. For b 1(x) > 0 we expect a boundat·y 

layer near x = 0 and for b 1 (x) < 0 one near x = 1 (see lermna. 4 .. 3). For the 

function ${x;E) we have the following boundary values 

(4.21a) 

(4.21b) 

First, the maximum principle is applied f'or the 

lem. Besides the possibility of' proving the validity 

• 

boundary value prob~ 
-

of the asymptotic 

solution, we are also able to determine the location of the boundary leyer 

with this principle (lemma 4.3). 

• 
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Lemma 4.2 Let the twice continuously differentiable ~unctions 1(x;~) and 

¢(x;e:) satisfy 

with 

Then 

IL <i>\ < -L lJJ 
€. - e: 

• • • L being given in e: 
(4.1), and 

,~(O;e:)I < tJ,(O;e:), 1~(1;e:)I < tJ,(1;e:). 

within O < x < 1. 

Proof The function V(x;e:) - -~(x;e:) + ~(x;e:) satisfies the differential 

inequality L V > O, so in accordance with the maximum principle V(x;e:) does 
e: 

not have a positive maxim1Jm on the interval O < x < 1. For this reason and 

because V(O;e:) < O, V(1;e:) <Owe conclude that V(x;e:) < 0 on the interval 

O < x < 1. Similarly we show that the function W(x;e:) = -w(x;e:) - ~(x;e:) is 

non-positive on O < x < 1. On the interval O < x < 1 both 

-w(x;e:) + ~(x;e:) < 0 and -tp(x;e:) - ~(x;e:) < 0 hold, so that 

lt(x;e:)j < ¢(x;e:). 

Lemrna 4.3 For the function cp(x;e:) satisfying (4.20), (4.21ab) a number M 

independent of e: exist such that 

and 

Proof We only deal with the case where b 1(x) > o. Let us 

~(x) = M(1-x) as a barrier-function of q>*(x;e:) = ~(x;e:) -

consider 
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If we choose M, such that 

then 

* IL <1> I < -L tp. e: £ - e: 

All conditions of le,,,,,,a. 4.2 are satisfied, so that 

This le111,,1e. carries the consequence that the derivative to x of tj>(x;e:) 

has to be bounded with respect to e: near x = 0 for b 
1 

( x) < 0 and nea,r x = 1 

for b 1 (x) > 0. Therefore, the boundary layer is to be expected at the oppo

site boundary. In the sequel it is ass1Jmed that b 1 (x) > O. 

Theorem 4.5 Let Z(x;e:), defined on the interval O < x < 1, satisfy the 

differential equation 

L Z = h(x;e:) 
e:: 

with L as in (4.1), and have given boundary values Z(O;e:), Z(1;e:). If 
e: 

I Z{O;e:) I < me:u 1 , lz( 1 ;e:) I < me:µ 2 and lh(x;e:) I < me:µ 3 on the interval 

0 < x < 1 , then a real n11rnber K independent of m and e: exists such that 

I z ( X; e: ) I < Kme: 0., 0 < X < 1. 

Proo:f Let s be a n11moer that satisfies the inequalities 

e:a 1(x) + b 1(x) > 1/s, e:a0 (x) + b 0 (x) > -2s ands> 1, then tp(x;e:) 

is a barrier-function for Z(x;e:), w(O;e:) = me:0 > me:µ 1 , 

a SX = me: e 



4o 

"1
1 

( 1 ;e:) = me:a.es 

me:cx > IL 4>1 :for 

> me:~2 and -L"' > -(s2£+1/s.s-2s)mEaesx 
e: 

2 ) a > (-s £-1+2s me: > 

E 
O < e: < 2 ( s-1 ) / s 2 • Application of 1e101na 4.2 completes the 

proof of theorem 4. 5 • 

The singula,r perttJrbation solution of the bounda.ry value problem 

(4 .. 20) ,. (4.21) is as follows. 

We suppose that for ~(x;e:) an approximation exists of type 

(4.22) 

where u0 (x} satisfies the differential equation 

The function u0 (x) can only satisfy one bounda1~ condition, we expect that 

it is at x = 1 , because of' the boundedness of" the derivative of ~ ( see lem

ma 4. 3). Thus u0 (x) takes the :fortt1 

U (x) = q -
0 0 

1 
exp{-

X 

h(x)-a_b0{x) 
dx} ___ -u __ 

b
1 
(x) 

dx. 

Ft1rther:, we introduce the local tran!=)formation x = E::e: and assume that in 

the domain O < x < K£ with K an arbitra.rily la.rge positive n1.1mber indepen

dent of e:, there exists a.n approximation of the type 

(4.23) 

, 

where v0 and v1 satisfy the equations (see section 4.2} 

(4.24) 

and have the bormda1-y values 

(4.25) 

Moreover, the following matching condition holds 
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(4.26) U O ( 0 ) = l im VO ( ~ ) • · 
f; ) co 

It is easily established that 

satisfies all conditions. 

The proofs of' the :following two theorems are simila.r to the proof's of, 

respectively, theorems 4.3 and 4.4 and will, therefore, be omited. 

Theorems 4.6 Let the :function $(x;e:), defined on the interval O < x < 1, 

satisfy the diff'erential equation 

L <J>(x;e:) = h(x) e: 

anti. have the boundary values 

Then it is possible to approxima.te the f'unction <t>(x; e:) by 

where Z O ( x; e:) = 0 ( e:) uni f oz·tnly for O < x < 1 • 

The construction of a f'ormal a.symptoti~ approximation consists of the 

same five steps as the method we used for the initial value problem. Only 

ford. another condition arises 

d'. The :for1oal limit function w(x) of ( 4. 17) bas to satisfy 



·1. i .; t function ~ ( tb} exists vi th . .. __,. b . 

In table I co.luan d. changes into 

C • 0 

• C , 
0 

F • p G = O. 
v ·a' v 
2 2 

h{~), 

b
1 
(x) 

dx} 

• 

{1 + exp(- dx)}, 

It appears that also for this class of problems the solution of the 
. . t· _., ,l:i.m t equa 10n equif/U.s the limit of the exact solution as we will see in the 

following theorem. 

!.bt9,r.~,,4_~.I. For the function $(x;E) satisfying the bot1ndary value problem 

(4.20). (4 .. 21ab), the forznal limit function$ (E:: ), defined in b, c and d', 
- · V V 

are identical to the limit functions tJ, (~) defined by 
V V 

= o. 

Remarks 

1.. When p0 = O, there arise non-equivalent limit f11nctions. See example 

3,, 3 and remark. at table I • 

2. When the coefficient b 1 (x) of L vanishes at x = O it appea,rs that the e: . 
thickness of the bo11nda.ry layer depends on the behaviour of b 1 { x) at 

x • O. For exauiple, if b 1 (x) = x, the bom1da1·7 layer will have a 

thickness of 0( h}. 
3.. An example of a differential equation corresponding to a multiple 

boun.da1·-y layer (m>1 in (4.18)) is given in [6]. 
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4.4 THE ELLIPTIC PROBLEM 

• 

In this section we 
lo 

summarize the results of Eckhaus and De Jager 

on this subject. The method of solutio11 is closely related to the one that 

solves the bormda.1·y value problem for ordina:r·y differential equations. Our 
• 

contribution consists of a theorem which shows that in this case the for

mal ljmit :functions are also equivalent to the limit functions of the exact 
• • solution. 

We study the differential equation 

• 

(4.28) 0 < e: << 1, 

valid in a .. strictly convex bounded domain G. L 1 and L2 denote the differen

tial operators 

L - a 
1 = - -d-X 

a2 
+ c(x,y) 2 

'oy 

a 
+ d(x,y) ax + 

At the boundary r of G the function cf> has the values 

(4.29) 

.. 

t(x,y;e:) = p
0
(x,y;e). 

r 

+ :f(x,y), 

We assurr1e that the coefficients a(x,y), b(x,y), ..• , h(x,y) are continuous

ly differentiable up to the third order. Moreover, we suppose that 

a(x,y}_ > 0 and g(x,y) - ef'(x,y) > O i~ G and that the differential operator 

L2 is elliptic in G. 

The characteristics 

neighbo,,.rhood of a point 

of the operator L 1 axe the lines y=constant. In a 
' . . . 

where such a cha.racter1.st1c is tangent to the 
• 

bounda:ty an approximation o:f the t1sual sipgular pertt1rbation type is not 

valid. Therefore, the following theorem will appear to be very appropriate 

in the applications. The proof is given in [ 7] • 
• 
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Theorem 4. 8 Let the .nmction Z(x,y;E), defined in the domain G, satisfy 

the differential. equation 

have prescribed val.ues at the bounda:r-y r, at which there are two unique 

points A(x1 ,Y 1} and B(½,Y 2) where the ordinates take on max:ima,l and mini

ma,] values, respectively. Further, it is assii,ued that Z(x,y;E) is 11nd.for10Jy 

bo11nded in G for sufficiently small values of E. 

ar

bitrarily ~maJ1 neighbo11rhoods V(A) and V(B) of A and B, where h(x,y;e:) is 
• 

sing1.1lar, and if mjn(µ 1 ,µ 2} < 1, then there exists a real n111rlber K indepen-

dent of m a,nd e:, such that 



IZ(x,y;e;) I 

in G -· v (A) - · ·v ( B) • 

Cl < Ke; , 
• 

An approximation of ~(x,y;e;) is constructed with the singuJar pertur

bation method in the following m_anner. 

Let r 1 be the part o:f the bounda2-y at the le:rt-hand side of A and B, and r r 
the pa,1:-t at the right-hand side. r 1 is represented by the function 

x = Y 1 (y) and r r by x = Yr (y) • We suppose that outside a neighbo11rhood of 

r an approximation exists o:f the ty:pe r 

where 

X X 

(4.30) exp{- g(p,y)dp} 
yl(y) p 

Further~ we introduce the coordinate system (p,e), p varies along the inner 

no:r·rual of' a point of r ( p=O on r ) and e varies along r ( e (A}=o). 
r r r 

Substitution of these variables in the operator L yields the differential 
e: 

operator 

. a2 
S = e:{a(p,8) 2 

E dp 

a 

02 
+y{p,9) 2 

ae 

a +v(p,e)ae +g(p,8)}. 

The thickness of the bormdary layer near 

as in the sections. It appears 

a 
+z;(p,9)c)p 

r r is deterrni ned in the same way 
.. . 

that a bounda1·y layer contribution 
. .. 

ar1.ses 1.n 

preceding 

the local coordinates ~,a, where 

(4.31) 



Substitution of (4.31) 
• in S leads to the operator expansion 

£ 

M, = o.1 
2 a2 

The operator M2 contains the t1·11vcated tez·rns of the operator expansion. We 

suppose that the following approximation is valid for O < P < p 0 , 

o < e < e(B) with p0 sufficiently small (but independent of£) 

1. the differential equation M0V0 = O, 

2.. the bo11nda?-y condition 

3. the matching condition 

A solution that f'l1l.fils these three conditions has the fo:r111 

VO ( t , 8 ) . = { Po ( x ,Y) - U O ( x ,Y) } r exp 
r r 

r 

, 

We multiply this bounda1"Y leyer te1·m with a smoothing factor K( p/p
0

) which 



the interval 

1 • for O < p < 1/3p, 
0 

2. K(p/p 0 ) is sufficiently many times differentiable and monotonic 

decreasing for 1/3p
0 

< p < 2/3p
0

, 

3. 

In this manner one has obtained a function 

which holds in the complete doma.in G. 

• 

In the following theorem it is demonstrated that an approximation of 

the solution can be made which is composed of the te:r·t1ls u
0 

and V
O

• 

Theore~ 4~9 Let the function ~(x,y;E), defined in the strictly converse 

domain G, satisfy the differential equation 

and have the bo11nda,ry values 

at r. Then it is possible to approximate the function ~(x,y;E) by 

Proof See [7]. 

47 
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F11rther, a study will be ma.de of.' the various types of.' fo1·n1a,l limit 

:functions a.rising in the elliptic problem. 

In five steps we come to the construction of a formal asymptotic ap

proximation, which is uniforir,Jy valid in G .,_ V(-A) - V(B): 

a. 

b. 

All degenerations of S are taken into consideration. We substitute 
e: 

p = ~ o ( e:) in S q, = h ( p, e) • F1Jrther, both sides of this 
'VV e: -* 

multiplied by an order function o (e:) 
V 

such that lim 
e:-+Q 

the coefficients of the ljmit operator axe of' order 

We introduce the formal limit function 1'> (t ,e). 
V \) 

* o S 
V e: 

0 ( 1) • 

equation are 
= S(v) where 0 , 

Definition 4.2 We say that for tra.nsforrnation x = t o ( e:) a forrnal limit 
V V 

function w (t ,e) exists, if there exists a non-trivial solution of 
\) \) 

= h (t ,e), 
V V 

on some interval oft 
'\) 

for O < X < 8 < e{B)-A, where A is an arbitrarily 

smaJ 1 positive n11mher. 
• 

c. The matching condition can be described as follows: 

d. 

There exists an order function o << 1 such that 
v as 

if o << cS 
v as v+~ 

0 << ,. 
y as 

= lim 
tµ 

0 , 
\) 

The formal limi,t run_ction w(p,8) satisfying L11w = h(p,8) is required 

to have the values w(x,y) = p0(x,y) for y = y1 (x). A for1nal limit 

f\mction $b(~b,e) exists with the values 



for Y = Y (x). r 

e. The f'or,1,al uniformly valid asymptotic approximation has the for1n 

• 

m 
<Po<p,e;e) = I 

n=O 

m-1 
* - * w (p/o ,e)o - ~ (p/o ,a)o . 

n n n n=O "n+1 n "n+1 

This composition of' tet·111s is suggested by the results we derived for 

explicitly given functions depending on one variable (see also 4.2e) . 

For the elliptic problem we have m = 1 • We rema.rk that this forrnal ap-

proximation holds unifor1oly with the exception of neighbo1.1rhoods of A 

and B. 

Theorem 4.10 For the function <P(x,y;e) satisfying the bounnary value prob

lem (4.28), (4.29) the forma.J_ limjt :functions deterroi.ned by b, c and d, are 

identical to the limit functions~(~ ,e) defined by 
V V 

lim 
~'\) 

* V v' 0 
\) 

= o, 

Proof S5miJar to the proof o:f theorem 4.7. 

p = t O .. 
\) \) 

In this chapter we have shown that :for three classes of problems the 

different steps in the construction of a fo?·1,1al approximation are correct. 

We have obtained this result by imposing those conditions upon the for111al 

limit f11nctions which were proved to be valid for the limit functions of 

the exact solution (see chapter 3). Theorems 4.4, 4.7 and 4.10 prove that 

these two types of limit functions are identical. From this identity it 

follows that the maxching conditions of step c and the method of composing 

a solution as in step e a.re indeed correct. 

RPma.rk If' in the elliptic problem a part of the bo1.1ndary r coincides with 

a characteristic of L1 (a line y=constant), then along this part of' the 

bounda1~- a so-called parabolic boundary layer o:f thickness O(~) arises. 

This problem is dealt with in sections 5.6 and 5.7. 
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ERV NON-UNIFORM CO -r.n--.GENCE OF FUNCTIONS OF TWO VARIABLES 

5 • 1 INTRODUCTORY 

In the preceding chapter exarnples were given of singular perturbation 

problems having a,s essential f'eature ''the stretching of' one coordinate''• 

Theorems 4. 4, 4. 7 and 4. 1 O of this chapter for1r1 a linkage between at one 

side the foundations of matched asymptotic expansions (chapter 3) and at 

the other side the examples just mentioned. 

However, the theory of chapter 3 is not complete, because not all as

pects of linear singular perturbations are covered by this theory. In sec

tion 4.4 an approximation of the solution of a linea,r elliptic sin ..... ar 

perturbation problem was given, which is valid in the dome.in o:f definition 

of the fi1nction with the exception of the neighbourhoods of two points A 

a,nd B. In these points the characteristics o:f L1 ( the lines y=constant) are 

tangent to the bounda.-r·y o:f the doma:in. In chapter 6, a method will be de

veloped which produces an approximation that also is valid near these sin

gular points. 

As an introduction we investigate in the first part of this chapter 

the behavio11r of explicitly given f'unctions converging non-imi:fo:r"It,Jy near 

an isolated point of the x,.y-plane. The material of' this chapter preceding 

theorem 5.3 resembles the theory of chapter 2 very much. In the rema.ining 

:part some problems arise which a.re specific f'or the two-dimensional case. 

We solve them by introducing the supplementary matching theorem 5.4, which 

enables us to treat two-dimensional sin e.r pert11rbation :problerus .. 

In section 5-5 a unifo .u.. valid asymptotic approx5rna.tion of a :f\Jnc

tion cj>(x,y; E) is composed of the limit f'1Jnctions. The :r,,nction cf> may con

verge non-unifor,,,Jy n~ar a c11rve as well as near an isolated point o:f the 

cloma;.n G of' the x,y-pJane. Here our efforts are concentrated at a unif'or[n 

description of' the various config11rations of l:imi t :f't1nctions, which depend 

on the type of functions $(x,y;e;). 



5. 2 EXTENSION THEO .....u 

Let ~(x,y;e:), defined in G = {x,y,e:: 
e: 

w(x,y), defined in G = {x,y: O<x<R, 02Y.<R, 

functions, and let the limit 

( 5. 1) lim [~(x,y;e:) - w(x,y)] = 0 
e:-+Q 

O<x<R, 02Y<R, 

(x,y)~(o,o)}, 

* O<e:<e: } , and 

be continuot1s 
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converge non-unifo1·10Jy in G and uniformly in G - GA, where 

GA= {x,y: O<x<A, 05]f<A} for any O <A, A < R. Then it can be demon---x y X y 
strated that there exist functions e: 0 (q,s) withs= (x,y) having the fol-

lowing properties: 

a. for O < e: < e: 0 ( q, s ) and s E G. 

b. e: 0 (q,s) is continuous in q, x and y. 

c. e:0 (q,s) is monotonic increasing in q, x and y. 

d. lim e: O ( q, s ) = 0, lim e: O ( q, s ) = 0 • 
q~o s~(o,o) 

e. Let x = x(A), y = y(A) be an a.rbitrary path along which the origin is 

approached, (x(O),y(O)) = (O,O), and let x,y be monotonic, non-de-
* creasing for O < A < A • Then for an arbitra.rily small AO > 0 values 

e: = e: 0 {q,s(Ak)) + cr, where cr is positive and arbitrarily small. 

The functions e: 0 (q,s) give a complete description of the non-11niform be

havio11r of q, ( s; e:). 

Further, we can show that there exist positive, continuous functions 

£ 0 (s), monotonic increasing in x and y, having the property 

·~o ( s) 
0 for O < q < qo· 

The proof's of the following theorems are omitted, because they are similar 

to the proof of theorem 3.4. 
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Theorem 5.1 Let $(s;e) be a continuous function, defined in 

and let the limit 

lim [~(s;E) - w(s)J = 0 
E-+0 

hold unifo1•,11Jy in 

the domain G , 
€ 

GA= {x,y: O<x<A, O~<A} and (A ,A) is chosen arbitrarily. Then there 
X _ y X y 

exist f1Jnctions e: = e0(s), :positive, continuous and monotonic increasing in 

x and y, with lim e:0(s) = O, such that the limit 
s-+(0,0) 

lim [~(s;e:) - w(s)J = 0 
e:-+O 

is uniforniJy valid in G for O < e: < e:0( s). 

Theor~ 5.2 Let $(s;e:) be a continuous function, defined in 

and let the limit 

lim [~(s;e:) - w(s)J = 0 
e-+Q 

• 
in 

the domain G, 
E 

and GB= {x,y: B <x<R, B <y<R} (A and B arbitrarily chosen). Then there 
X - y 

exist functions£= e0(s), as defined in theorem 5.1, and, moreover, func-

tions E ~ e:0(s), continuous and monotonic decreasing in x and y with 

lim e:0(s) = o, such that the limit 
s-+(R,R) · 

lim [~(s;e:) - w(s)J = 0 
' 

is 1Jnifor111Jy valid in G for 

(R may tend to infinity.) 

5.3 LIMIT FUNCTIONS 

• def'ined 

In order to study the non-11nifor111 behaviour of the functions <f> ( s ,Y; e:) 

in the forgoing section all paths~ along which the origin ca.n be 

approached in G , are considered. For that p11ryose the order functions e: 



o ( e:) , o ( E) are introduced so that a.n a.rbi trary path always has the x,v y,v 
forrr1 

X = t O (e:), \) x, \) y =no (e:). 
V y,v 

Let w (~ ,n") be a function satisfying the limit 
'\1 \) V 

(5.3) 

where (5.2) is substituted in ~(x,y;e:). 

Def'ini tion 5. 1 

trans f' orrna.t ion 

* 

The limjt of' the singular :function ~(x,y;e:) exists for a 

(5.2), if' a non-trivial function$ (~v,n) and an order 
\) \) 

function ov(s) exist, such that (5.3) holds f'or some values oft and Tl. 
V V 

w'V is called a ljmit function. 
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-1 ( _, . 
Let e: = o p) and E =o (q) be the inverse x,v y,v function of :p = 0 (E) x,v 

and q = o (e:), then (5.2) leads to the relation 
y,v 

Using this relation we construct the pair of order :functions 

such that 

y= 

satisfy e: = e:0(q,s) of the 

From extension theorem 5.1 
foregoing sections. 

it follows that the 

lim [~(x,y;e:) - w{x,y)J = 0 
e:+0 

holds uni f orrnJ y along a path ( 5 • 2) , if 
o(q) << 
y, O a.s 

0 < 
y, v as 

1 • 

• 

0 ( q) << 
x,O as 

• • 11m1t 

0 x, \) < 1, 
as 

{o(q) 
x,O' 

& (q)} 
y,O 
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Exa,mp~e, ,,2• .. ~ We consider the function 

cp(x,y;£) = 
1+3x 

2 , 
X +y+2E 

and observe that the limit 

lim 
E+O 

converges non-1Jnifor1nJy near (x,y) = ( 0,0). Introduction of the so-called 

local coordinates ~ and n by the transfor1,1a.tion 

a,8 > 0 

leads to different limit functions $(~,n) satisfying the limit 

lim 
e:+0 

p(x,y;e:) 

~*(E) 
= o. 

Table II 

ti,(~,n) 6*(e:) 

1/~2 -2a 
E 

1/n e: -B 

1/(~2+n) -2a e: 

1/(~2+n+2) -1 e: 

1/(~2+2) -1 e: 

1/(.n+2) -1 
E 

1/2 -1 e: 

a,B 

0<2a<S<1 

0<8<2a<1 

0<2a=S<1 

2a=B=1 

2a=1<8 

8=1<2a 

1<a,B 
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5.4 THE MATCHING PRINCIPLE 

In this section the matching principle for limjt functions or two lo

cal variables will be formulated. It will appear that in the two-dimension

al case the attention must be focused at matching of special ( '' signifi

cant'') limjt functions in order to give the matching principle a practical 

purpose. 

= {~ n: B <~ <00 

V' V x, \J \I , 

from l~mma. 2.2 that 

so 

( 5. 5a) 

B <n <00
} (A and B a.rbitrarily chosen), it y,v V 

' 
y 

0 
y,v 

x,v y,v 

) --as \J as 

'\) \) 

fol-

in that domain. Application of theorem 5.2 (R~) to ljmit (5.3) extends the 

domain of validity of (5.5a). Let x = ~ o , y =no be a path in this 
µ x,µ µ y,µ( ) 

extended domain of convergence, then an order function or << 1 exist such 
v,µ as 

that 

(5.5b) 

A B ' µ' µ 

A µ' µ - µ x,µ - µ y,µ 

µ µ x,µ µ y,µ µ 

O<n }, µ 

arbitrarily chosen). 

Before forn1ulating the two-dimensional matching principle we mention 

some important consequences of the preceding theory. Let :for an arbitra;ry 

path 

y = n o 
v y,v 
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the limit 

{ E;v, n": O< t;v, 

the path 

O<n} and - \) 

be situated in the extended domain of rmiforrr1 convergence of (5.6), and 

have the corresponding ljmit 

4> = o. 

Then according to the extension theorem the following limit is valid 

lim 
* 

~v+/i, nv+/i - o" 

8 
.Y..,~+Ll 

0 , 
x, \) 

= o. 

Notice that • 1s non-zero, see (5.8). 
·e-+-0 

Examination of the relation (5.9) reveals the following two interesting 
points: 

, . the asy1iiptotic behaviour of the ljmjt fucntion 
. ~*I~* ~* by the ratio u u for e: -+ O. Only for u 

\) v+a \) 
bo1.1nded non-zero value. 

w (~ ,n) is governed 
V ~ \> 

= o A w tends to a as v+u \) 

2. substitution of (5.8) in (5.9) yields the relation 

* 0 0 
X v+./i 

0 
lim \) 

1/Jv ( ~v+ll 
Y., v+/i) .... :I I n -, -* 0 v+~ 0 

~v+ll'nv+!i 0 
v+/i 

x, \) y,v 

which implies that for any order function i* << 1 an order function 
v as 

• A* * * .A.* * * 
v as " as v v+ as v as v+Ll v as 

v as x~v x,v as v as y,v+ y,v as 
expresses the continuous dependence of the set of order functions o* 

\) 

upon the sets ' 

of order functions {o , o }. 
x,v y,v 
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Ass11cnptio~ 5,.,1 All sets of bounding order functions 

of' asymptotically equal order :functions, 

--as 

Theorem 5. 3 Let • 

(5.10} = o, 

and 

(5.11) = o, 

<S(q)} consist 
y,v 

* q • 

where in (5.10) X = ~ O , y = 
"1 x,v, 

and in (5.11) x = 

y= 

.... 
For approximately chosen order f't1nctions o << 1, 

X,\l as 

o-1 (i (e))), a set of paths 
y,v y,v 

y = n o (e) 
l.1 Y,l.1 

exists ~or which the relation 

• lim 

~µ'nl!. 

(5.12) 
• 

lim 
~µ,nµ 

-holds,. if' 0 << 
x, v as 

o* 
0 cS \) 1 

$ ( x,J:l tµ, l l l:!, nl-1) 
* cS \) 0 

0 1 x,v, y, \) 1 µ 

* 0 0 0 
"2 tJ, ( x,µ 

~µ' 
YaH n ) 

0 
0 * \) 0 µ 

2 x,v2 y,v2 
µ 

0 
..... 

0 < 
x, \) 

< 1, o << as y,v as y, v as 

--

1 • 

-. 
o << 1 y,v as 

57 
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Proof Application of theorem 5. 1 yields the uni:fo1·.tn]y converging limit 

( 5 .• 13) = o, 

along the path X = t o c , y - n" 0 0 , where - y,v
1 

y,v
1 v

1 
x,v

1 
x,v

1 1 
0 (q) << 0 < 1 , o< q) << 0 < 1 • Moreover, it :follows :from theorem 
x,v, as x,v, as y, \), as y, ", as 

= 0 

• along the path X = ~ 0 / ox \) , converges unifornil y 
"2 x,v2 , 2 ' 

0( q) o< q) y - n o I 0 where << 0 < 1 , << 0 < 1 • - ' "2 Y,"2 Y, "2 x,v2 as x,v2 as Y,"2 as y, "2 as 

.... 
The pair o:f order :f'rmctions 

..... 
{o (e:), 

x, \) 
0 (e:)} 
y,v 

is req11i red to satisfy two 
. -cond.i t ions • 

The first condition is that ~ a,nd 6 must be of a.n order o:f magr1i tude x,v y,v 
su:f:ficiently close to O ( 1) so that ( 5. 13) and ( 5. 14) can have a cominon path 

:for their lin1i ts. The second condition will be established later. 

Let X = ~ 0 x,µ, y = n o be such a common path. This means that 
l.l µ y,µ 

0 - 0 0 - 0 I 0 0 - 0 0 - 0 I c5 a.nd - - , - - , x,µ x,v, x, ", x, "2 x,v2 y,µ y,v, y,v, y,v2 y,v2 
I 

that ( 5. 13) and ( 5. 14) can be tra.nsfor111ed into 
, 

(5.15) = o, 

(5.16) = 0. 

Thus <t>(x,y;£) is locally approximated by two limit f\1nctions (see the be

ginning of this section) 

• 

i , , , 
i 

, [ 

I 
, , I 
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* 0 

* \)1 ( ) 
n 6 )o - + o(o r 

µ y,v, µ o* v,,µ 
µ 

o* 
(5.18) 

\)2 µ x,v2 µ y,v2 µ o* v2,µ 
µ 

When the pair of order functions 
...... 

{o , 
x,v 

..... 
0 } 
y,µ 

• 
1s chosen such that 

o* * 0 
\) 1 

lim o ( r) o, lim o(r) \)2 - o, - --v,µ * v2,µ * e:+O 0 e:+O 0 µ µ 

( 5 • 17) and ( 5. 1 8) turn out to be equivalent to 

* * 
- = 0 

o o .__ µ µ 

and 

* 0 

lim .L \)2 
-

5* o* ~µ, nµ µ µ 

= 0, 

( see letr1ma 2. 2) • Relation ( 5. 12) follows straight away from these limj ts .. 

Finally, we remark that matching of~ v, and is also possible, if 

o << o and o << o . In such a case ve have to study non-uni-x, v 1 as x,v2 y,v2 as y,v 1 
f'ox·1n convergence near (R,O) and (O,R). Evidently, the fact that a simila.r 

result can be obtained is quite trivial. 

The reader will have observed that so far the theory of this chapter 

exposed a great resemblance with the theory of' non-uniform convergence in 

one variable. One would expect no di f:ficul ties in continuing the analogy. 

However, in this section we will encounter some new aspects. By giving 

three exa,toples of functions with a different asymptotic behaviour we show 

one of the problems we deal with .. It concet·ns the eventual f'reedom to se-
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lect a path inside the common domain of convergence of two limits. It ap

pears that for matching pui·poses only a restricted set of paths has to be 

considered. 

Definition 2·2 A limit function ~v is contained in a lirni t function 1" , if n 

Defi~~tio~ 5.3 A limit function ~a(~a,na) is 

contained in no other limit function. 

2 
= _1 !Y'X 

2 • 
x+y +e: 

Taking the limit e: + 0 along a path 

X = ro (_, x' 

yields the limit fnnctions 

y =no, 
y 

Table III 

... -
tp{~,n) 0 --

X as 
== 

a (1+n+~2 )/(~+n2 ) 1 

b 1/(~+n2) 02 
y 

C 1/(~+n2+1) e 

called significant, if 1'> a 

o ,o < 1, 
x y as 

0 --y as 

1 

/e<<o <<1 
as yas 

1£ 
.. 

d 1 /e· e<<cS <<1 0 <<{a 
as xas yas X 

e 1/n2 o <<o2 li<<o <<1 
xas y as ya.a 

• 
1S 

• 



IE 

1 

-lno y 

a 

d 

C 

b 

I 
I 
I 

I 
I 
I 
I 

I 

I 
I 

I 
I 
I 
I 
I 
I -----------

e 

-lno 
X 

.,__------+-------+-------0 
X 

1 
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It is interesting to verify the validity of matching theorem 5.3 for the 

limjt functions a and c. The paths corresponding with b, d and e lie in the 

domain of' convergence of' both the limit of a and the limi.t of c. Notice 

that it is su:rficient to verify the matching condition for the paths of b, 

because the limit functions of d end e are contained in the limit function 

of' b. The values of the order functions are brought in a diagram, see fig-

1Jre 5. 1 .. 

~ample 5.3 Just to show that a function with a different behaviour is 

treated in a same manner we mention the function 

~(x,y;e) = y ln(x+e) + x + E 
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a 

b 

C 

d 

e 

-e:/lne: 

1 

.p(~,n) 

nlnt+~ 

-11+~ 

-n+t+1 

~ 

-n 

o -lno y y 

a 

Table IV 

0 --
X as 

1 

E<<o <<1 
as xas 

e: 

e:<<o <<1 
as xas 

-o /ino <<cS 
x xas y 

d 

I 
I 
I 
I 
I 
I 

, ___ 
c --y as 

1 

-o /lno 
X X 

-e:/lne: • 

o <<-o /lno yas x x 

-E/lne:<<o <<1 
as yas 

---- -----
C 

b C 

-inc 
X 

----------------- 0 
1 IE x 

f'ig. 5.2 



Exampl~ 2 •,½ In this example no special set of limit f'unctions exists in 

the common domain of convergence . 
• 

cp(x,y;e:) = (x+2) + e 

• 

tP(~,n) 

a t;+2 

b 2 

C 2+exp{-(~+n)} 

o -1no 
y y 

le: b 

a 
1 

Table V 

0 --
X as 

1 

e:<<o <<1 
as xas 

e 

I 
I 
I 
I 
I 

0 --y as 

1 

or e:<<o <<1 
as yas 

e: 

cL- ~---------

-lno -----------+------- X 

1 e: 
0 

X 
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The first two e~amples have an analogous configuxation of limjt :func

tions. We distinguish 

1. two significant limit functions tP, tP of which the corresponding a C 

limits have a common domain of uniform convergence. 
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2. a set of identical limit functions~ , which 
"b 

and~. The set of paths x =, o , y = 

in "band lim 
vb -+a 

o = o , lim o 
s,vb s,a ~ s,vb 

vb c 

two sets of identical ljmj.t functions tp \) , 
d 

are contained in both 

• • is cont1nuo,1s 

which are contained in 

The configLiration of limit functions of the last exa.mple can be con-

sidered as 
• 

interprete 

• a special case 

such a special 

of the above configtlration. In the sequel we will 

configuration, as being composed of the three 

types of limit functions mentioned above. 

The existence of such a configuration is ascribed to the following 

property of ljmit functions. Let the asymptotic behavio1Jr of a limit func

tion $h(~h,nh) be 

ror O < ~h << 1 and nh/f(th) = 0(1) with respect to ~h' where the function 

r(~) is required to have the properties of an order function, If the path 

x = ~ 6 ho , y =no ho lies in the domain of convergence of the v x, x,v _v y, y,v 

limit of $h, and if 6 (£) = f{o (E)), then y,v x,v 

or in ter1ns of definition 5. 2: 1'J 
\) 

A same type of argument holds :for 

.. . . 
is contained in 

~ >> ,. 

Returning to 0\1r exemr>les we consider the set of limit f11n<:tions 11• If' 'V , 

b 
o:f which the paths x = ~ o , y = 

"b x,vb 
are chosen such that 

where f follows from 



From the foregoing we deduce that generally the limit functions satisfy 

as far as the corresponding· paths lie in the domain of convergence of the 
• 

litnj t of 11, and that .,, a, 

for O < t << 1 and n /f(~) = 0(1) with respect to,. a a a a 
Likewise we have that 

fort >> 1 
C 

Thus, lJ,b is 

and n /f(~) = 0(1) with respect to~. 
C C C 

contained in both w and~. a C 

Notice that all limjt functions of the common domain of convergence are 

In theorem 5.4 these properties will be proved for the general case. 

We then consider the significant ljmit functions wa((a,na) and ~b(~b'¾) 

satisfying 

(5.23) = o, 

and 

= o, 

where in (5.23) x =, o , y =no , and in (5.24) a x,a a y~a 

y= n cS , o = o o , c = c5 o ( o << c y,c x,c x,a x,b y,c y,a y,b x,b as 

x===~o , 
C X,C 

1, o b << 1). y, as 

' 
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Theorem 5.4 Let for a pair of order functions 

ponding limit function wv satisfy 

o } the corres-

lJ,a(tv lim 
~ , n b 
vb "b 

(5.25) 

where o b << o 
x, as x, vb 

<< ,, 
as 

b 

6 0 
x,vb y,vb 

0 ) n 0 
, 

"b x,a y,a 

o << o << 
y, b as y, vb as 

y,vb 

* 0 
a 

"l/Jv (~v ,nv ) - -- -
* 0 b b b 
vb 

, 

1 and 

Then for any path x = ~vox,v' Y = 
gence of (5.23) and (5.24) 

n o in the com,r1on dome.in of conver-
V y, 'J 

* * 0 0 0 cS 0 0 
lim wa(t\) 

,~,v _Y,") a lim 1.J, C ( ~V 
,,x z" Y, V) ·c 

nv - nv , - , 
() 0 * 0 0 * 

~\), T}\) 0 tv,nv 0 x,a y,a x,c y,c 
V \) 

• 

Remark The theorem is_also valid, when 

anrl when o b = 1 or o b = 1 • 

o = o o , x,a x,c x,b o = o o , 
y,c y,a y,b 

x, as y, as 
• 

Proof The proof of this theorem is considered to be completed, when it is 

demonstrated that all lj mj t functions in the cor111r1on domain of convergence 
.. . 

are contained in 1P • 
vb 

Let x = ~ o , y = ~ o be an a.rbitra1·y path (not belonging to the 
"d x,vd "a y,vd 

set of paths o , o ) in the co1r11non domain of convergence of' ( 5. 23) 
x,vb y,vb 

and (5.25). Moreover, let the following ljmit exist 

(5.26) = o. 

for n /f(~) = 0(1), O < ~ << 1, a a a in which 



( ~ ) is derived from 
a 
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easily deduced, that other paths satisfying (5.27) generate a same 

runction w (~ ,n ) = wd(~ ,n ), as far as these paths lie in the 
vd vd "d vd vd 

of convergence of (5.23). 

ng with the limit function v, a same a.rg1>roent ca.n be applied. This 
C 

results in an equality of all limit functions, of' which the order 

ons are situated at one side of the set of' order functions 

, cS }, as it is shown in figure 5.4. For the other side we have 
y,vb . 

,n\)) = we(~\) ,n\) ). 
e e e e 

-lno y 

• 

I 

( 

a --- f 
-- I --- e -- / -- - .... 

-lno 
X 
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Application of theorem 5.3 for two limit functions 

tions (1) and (2): 
* cS 0 0 

"'\) ( ~µ 

x,µd y,µd vb 
lim n 0 ) --0 

, 
o* v d E;µ ,nµ ( 1) b d x, \) Y, vb b µd d d 

* 0 0 6 

lim VJ" c,µ 

x,µd y,µd vd 
n cS ) --0 , 

* lld ; ,nµ 0 (2) d d x,vd y,vd 
µd d µd 

--• 

( 3) 

and $ yields 
vd 

rela-

From relations (2) and ( 3) it follows that the paths x = 

y = n o and x = ~ o , y = n c may coicide, still 
µd y,µd "d x,vd "d Y,"d 

remains vaJ.id. This leads to the limit 
• 

Q 0 o* 

( 5. 28) lim 
X,\)d Y, '\J d "b ' ljJ ( ~\) 0 , n . ) --

\) 
"d 0 * 

tv , n" b d x,vb y,vb 0 
v d d d 

Likewise it is shown that • • . . VJ 
\) 

e 
is contained in W . 

vb 

14> (~ ,n ). 
"a vd "d 

Theorems. 5. 3 and 5. 4 a.re of great value in singt1J ar perturbation cote• 

putations. By these theorems the verification of the validity of the match

ing principle is simplified. It is no longer necessary t·o take limit ( 5. 12) 

for all paths in the common domain of convergence. It will be sufficient to 

take one path (5.25). Another consequence is that for implicitly defined 

:functions 11nknown constants are completely determined by relations of the 

type (5.25), as we will see in chapter 6. 
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5.5 LOCAL AND UNIFORM ASYMPTOTIC APPROXIMATIONS 

We now come to the construction of an approximation. Non-uniform con

vergence in both one and two variables will be studied. We distinguish 

three types of domains • • • • • in which a l1m1.t may converge non-un1forn1Jy: 

G1 = {x,y: O<x<R, O<y<R} 

G2 = {x,y: O<x<R, O<y<R} 

G3 = {x,y: O<x<R, O_::y<R, (x,y) ~ (O,O)}. 

Moreover, the following sequence of open domains {G. A} 
1, 

G. A 
1, 1 

G. A J. , n 

The limjt 

~ .•. ~ G. A ~ ... , 
J., n 

= G. - G. + S. , 
J. l. i ,A n 

lim 
n )oo 

s. . = ~. 
1,A n 

lim (~(x,y;E) - w(x,y)J = 0 
£ >O 

n 

• 

is introduced: 

converges non-1.1nifor1nJy in 

definition 5. 1 we obtain a 

G. and uni :fo1·1r1] y in G. 
l. l. 

- G. A 
J. , 

• for any n. Using 

(5.31) 

limit function$ that 
\) 

= o, 

Y = n o v y,v' 
o < 1, x,v as 

n 
satisfies 

0 < ,. 
y,v as 

Application of theorem 5.1 yields bounds for the paths (5.31) a.long which 

( 5. 29) converges unifo1·1nly: 

• 
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(5.32) r(q) << ~ < 1 
I.) I.) , 

x,o,v
1 

as x,v as 
r(q) << ~ < 1 
\J u , y,o,v 1 as y,v as 

_, ) -1 ( ) y = (E) satisfy o (x = o y and 
x,o,v, y,o,v, x,v y,v 

0 
unifor111Jy along these 

paths, the corresponding limit functions ca.n also be derived from w(x,y} 

(5.33) w( ~,,aY:/ 
.... o* ( e:) 

" 
• It is ass11mP.d that the set of order functions 

finite number of order functions 

(5.35) · = o, 

(5.36) x= y= 0 
x, 1k as 

--

are significant ljmit functions. 

0 
y, 1k 

Let the set of order :f11nctions { o 
O 

, 
x, '"1k 

o } satisfy 
y,O,v1k 

(5.37) fO 1 1 k ( 0 0 . ( e: ) ) ' 
' x, '"1k 

where the function f 01 , ik is detet·mined by the relation 

• contains a 

The corresponding paths of {o 
O 

, 
x, 'V 1k 

o O } have to lie in the extended 
Y, '"lk 

domain of 11nj_forrr, convergence of both (5.30) and (5.35). The corresponding 
ljmit functions are one and the sam~ function ~O . Application of theo-

,v1k 
rems 5.3 and 5.4 yields 



0 
x,o,v 1k 

, no 0x, 1k '" 1k 
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--

• 

From practical point of view it woul.d be convenient to choose an or

dered n11mbering of the significant limit functions. Considering 

y :r
0 1k(x) as an order :f1.11,ction we decide that :for O < x << 1 ., 

if and only if k > l. 

As we made the assumption (in the :foregoing section) that every set of 

X y 
eq_ual order functions for all q, the extended domains of convergence of 

( ) . * * ( * ) h. 5. 35 will overl.ap for k = k and k = k +1 1 <k <k1-1 • The mate 1.ng con-

dition in the f'ortr, of theorems 5. 3 and 5. 4 leads to the relation 

6 0 * x, 1, µk y, 1, µk 6 1k 
• 0 ) 

-6iiUR 

1.im n 
0 

, 
o* 1,µk 

~, , n, x, 1k y, 1k 
1,µk 

,µk ,llk 

lim 
~ n 1 'µk' 1 ,µk 

+ k = k+1, 



. '; 

' . . 
' • . 'r 

<--

' . ' 
• 

. ! 
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where the path 

(5.39) 

• • 
lies in the common domain of convergence. The order functions satisfy 

o ( e) 
y,1,llk 

where the function g 1k follows from the relation 

It can be shown that the order :functions of (5.39) belong to the set of 

bounding order functions x,o,v, y,o,v, of the 

extension theorems to (5.35) yields the set of bounding order functions 

Let there be k2 order J>lln.ctions 
• 

} 
x,1,vkl y,1,vkl · 

(~{o 1 ,~ 1 },m=1, ••. ,k1) of which the limit functions, say x, m y, m 

~21 (~21 ,n21), 1 = 1, ••• , k2 , are significant. 

For two limit functions w1k, ~21 a matching relation can be derived, if 

their ljmj ts have a comtnon domain of convergence: 

0 
x, 1,vkl 

0 , 
x, 1k 

0 
Y, 1,vkl 

0 ) 
y, 1k 

--

0 
x, 1,vkl 

0 * Y, 1,vkl 021 lim lJ,21 ( ~ 1 '"kl 0 ) n,,"kl -, -0 * x,21 y,21 0 
1 'vkl 



where f 1k, 2 l is determined by the relation 

0 / y,2l 

In this way some superfluous relations may be introduced. 

When of two sets of limit function 111

1 
,,, the paths of two 

o/ '"k 1 , ..,, 1 '" 
a a 

sa1t1ples coincide, one set is deleted, see exarriple 5. 6. 
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The construction of significant limit functions is proceeded until for 

, 
x,n,vk y,n,vk 

n = k n 
do not 

correspond to a new significant limit function. 

The index n of lJ)nk denotes a sort of boundar·y layer level. The func

tion w is a limit function at level zero and could alse be written as 1J)01 • 

For any path 

Y = n o v x,v' 
c < 1, o < 1 x,v as y,v as 

a significant limit function,,, exists such that the limit function$ o/nk v 
corresponding with ( 5. 40) is contained in ljJnk. When the path ( 5. 4o) lies in 

the domain o:f convergence o:f more than one limjt defining a significant 

lirnjt :function, it is arra.nged that 1'>nk at the lowest level n is assigned 

to that path. If there remains more than one significant limit function, 

the one with the order function o or o k tending to zero in the slow-x,nk y,n 
est manner is chosen. 
Let ,,. 

i;,n k be such a significant limit function. According to (5.5ab) this 
a a 

limit function ~an be 

(5.41) 

considered as a local approximation of 

0 

0 
x, \) 

x,.n k a a 

* 0n k a a 
+ v n k ). 

a a 



'. :, . ' ,,, 
.. ' ' 
. ·:.'; 

,, 
--J ... , 

'; ,. 
' -i'. 
-_: :f 

Having in mind the construction of 8,I'l approximation, uni:fo1·mly valid 

in G. » we distinguish four types of lirnjt functions 
J.. 

a. ~nk (k=1,2, ••• ,k
0

, n=0,1, ••• ,nt), on level n there are kn significant 

limit functions. 

b. w (n=0,1, •.. ,nt-1}, between level n and n+1 a set of equal ljmit 
n,vkl 

c. 

d. 

f"unctions exist which are contained in both wnk and wn+i· The other 

limit functions defined in the corrrrnon domain of convergence are con-

tained in tJ, • 
n,vkl 

lJ., ( n= 0 , 1 , • • • , nt , 
n,~ 

k=1,2, ••• ,k -1) these n 
sets of equal limjt func~ 

tions are contained in both lJJnk and 'Pnk.+' they have the samP. proper

ties as the limit functions of b. 

$ , tJ, a (n=1,2, •.• ,nt-1) th~ sets of paths of these limit func-
n,akl n,µkl 

tions a.re bounded by the paths of a, b and c. The differences between 

1" 
n,akl 

a.nd 

-lno y 

---

are shown in :fig1Jre 5. 5. 

-----

fig. 5. 5 

-lno 
X 



E,xample _5 • 5 

We introduce the transformation 

(5.42) X = a,S > O, 

and determjne the limit functions belonging to the sets mentioned above. 

The diagram with the values of the order functions is simplified for this 

special case (5.42) (see figure 5.6). 

Table VI 

a,S tJ) a., 8 1jl 

§;+~2 2 
n+n - -- :. nv: 

75 
' 

a a.=8=0 
tµ 01 + 2a.=j3=2 \µ 13 1 + g - 2 2 n+t;2+1 s+n n+~ 

b Q<a.=213<2 tJJ ~ +1 h a=2, 1 < (:3<2 ip - ~ + 1 -- -o, v 11 2 1,µ, ~+1 
~+n 

• -

O<a.= B<2 w = 2 • 1<a.<2,t3=2 ~ 1 + n 
C J. -- n+1 o,v,2 1,µ2 

d 0<2a.=-B<2 tJJ = n • O<a<2,a.<2S<2a. tJJ = 2 1 + J 
* ~2 O,v 13 O,a.11 n+ 

e a=28=2 w,, - ~ + 1 k 6<2a<28,0<6<1 1.jJ = 2 - . 2 O,a.12 s+n +1 
• 

f a.=8=2 w,2 - ~ + n - E;+1 n+1 

• 
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EYarople 5.6 

B 

2 

1 

d 

a 

• g 1 --------: 

h 
• 
J 

e 

1 2 

fig. 5. 6 

cf> ( x ,Y; e: ) = ( xy+ 1 ) { exp ( -xy / e: ) + exp ( -xy / e: 2 ) + 1 } • 

Here we may have two configurations (a and a are chosen as in (5.43)): 

s 
2 

1 

fig. 5, •• 7 

2 

1 

1 2 a 



Theorem 5.5 The explicitly given function $(x,y;e) is approximated uni-
• fo111i) y in G. by 

J. 

-
n -1 t 

k 
n 

k=1 

n=O k=1 1=1 

-
n k -1 t n 

n=1 k=1 

n -1 
t 

k 
n 

+ l I 

+ 

n=1 

n -1 t 

n=1 

k=1 

k -1 
n 

E 
k=1 

k -1 
n+1 
I V 

1=1 

1=1 

* w k(x/o k' y/o nk)onk.(£) + n x,n Y, 

* y/o )o (e) + 
y,n,µk n,llk 

as far as the subscripted limit functions exist. 

Proof According to definition 3.1 we need to prove that 

(5.45) lim [~(x,y;e) - ~0 (x,y;e)] = O, 
(x,y;£)+(x1,y1,o) 

+ 

0 < x1 < R, 0 < y 1 < R, 

independently of the path chosen in the domain 

G = {x,y,e: O<x<R, 
£ 

* 02Y:<R, O<e<e: } • 

Firstly, the asymptotic behavio1Jr of the significant l:imit functions is 

analyzed. Three cases are considered. 

77 
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1. In lJ,nk the coordinates o:f a transfoi-mation corresponding with a sig

nificant limit function on a higher boundary layer level are substi

tuted. Let this limit function of a higher level be connected to the 

limit functions W e 
nk 

a. 

(lfJ exists) 
n,vkl 

b. if' k ;it: ke * 

k 
n+1 

1=1 

(lJ, does not exist) 
n,vkl 

0 

.••• We may have 

-

* l --, 
n,l-11 

l --

k -1 
n+1 

l=1 

k-1 for 

k for 

k > ke 

k < ke. 

2. In lJ,nk the coordinates of' a transformation corresponding with a sig

nificant limit function tP on a sam~ bounda.ry layer level are aubsti
nm 

tuted, then lfJnk behaves as in (5.45), l = k-1 form< k and l = k for 

m > k. 

3. In lJ,nk the coordinates of a transfo1·111a.tion corresponding with a sig

nificant :function on a lower boundary la;yer level are substituted 

k n-1 

1=1 
-

k -1 
n-1 

l=1 

Secondly, the as""J a1ptotic behavio11r of the limit function 

• 

lJ) 
n,µk 

• is analyzed. 

1 • When the coordinates of a transfor1t1a.tion at a higher bounda.t·y layer 

level are substituted 

(5.47a) 

2. For a tra.nsforrnation at a lower boundary layer level it becomes 



These results enable us to prove the validity of (5.43). 
Let 

(5.48) X = ~O , 
X 

• 

Y = no , y o < 1, 6 < 1 x as y as 

79 

be an a,rbi trary path in the domain G . This path lies in the domain of' con
£ 

vergence o:f one or more lim.jts. One of" these limits def'ines a significant 

limit function $n k in the way it is prescr~bed in (5.41). The asymptotic 
a a 

fo1·rnulae :for l/>nk and lJJ 
1:1, µk 

• remain. the same when instead of the coordinates 

~n k, 
a a 

• 
the coordinates~, 

\) 
n are substituted, so that 

\) 

n -1 
a 

I 
n=O 

• 

k 
n 

k=1 

nt 

k 
m * 

lp cS 
k=1 nk. nk 

1/>n k 0 
a 

k 
n 

* -
n k 

a 

--

+ 

-

n -1 k a n 

n=O . k=1 

n -1 k -1 a n 

n=O k=1 

if' k.icke or 

( k+ 1 ) .ic ( k+ 1 ) e 

n -1 
a 

n=O 

* 

k n 
I 

k=1 

• 

l -1 
n+1 

I 
l=1 

k 
n-1 

$n k 0 --n k 
k=1 a a a a 

n -1 t 

+ 

I 
n=n +1 

a 
k=1 n=n 

a 
k=1 l=1 

lJJ o* 
n,vkl. n,vkl 

n -1 k -1 t n l n+1 
* 

+ 

- I 
n=n k=1 

a 

l 
1=1 

lJJ O 8 , 
0 a' 6kl n, kl 

' 
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(5.49e) 

n -1 
a 

n=O 

nt 

l 

k -1 
n 

k=1 

if k=ke and 
e (k+1 )=(k+1). 

k -1 
n 
l " 0 * 

n=n +1 k=1 n,µk n,µk 
a 

--

--

n -1 
a 

n=O 

k -1 
n 

I 
k=1 

if k=ke and 

(k+1 )=(k+1) e 

n -1 k 1 -1 
t n n+1 

n=n k=1 1=1 
a 

* 
tp B O B ' n, kl n, kl 

* lJ, 0 • 
n,akl n,akl 

Thus (5.43) tt1rns out to be true, if 

lim 
t,n 

~.\,XJZi.~) -

a a 

0 
X 

x,n k a a 

0 

y,n k a a 

n) = o. 

This limit is valid, because the path {5.48) lies in the extended domain of 

uniform, convergence of it. 

+ z+3e:, ( e 
1+xe: 

x sin Y:lne: -z+xlne: 

+ e 

The asy1nptotic behaviour of such a function is completely revealed, when 

those limjt functions~ satisfying 

lim ___ ..._ = O, 
E:,n o (e:) 

x = ~o y = no x' Y 

o < ,, o < ,, 
xas yas 

are dete1·1nj ned, which belong to the fo11r types mentioned before (fig. 5. 8) . 

The unifo · valid approximation has the form 



• 

This example only serves to explain the method developed in the 

sections. The function $ 0 (x,y;e:) could be derived from ~{x,y;e:) 

:preceding 
• in an 

• easier way. 

Table VII 

$(~,n) 0 ( e:) 0 ( e:) 
X y 

-I=== = = . 2 
0 ::::: 0 = 1 a ljJ O 1 =n +2n+n~lnn 1 xas yas 

2 
-e:/lne:<<o <<1 0 = 1 b lµ =n +2n 

O,v 11 as xas yas 

C ljJ =2n+~n -1/lne:<<o <<1 o = exp(-1/o 
0,'-',2 as xas yas x 

d $ 11 =n2+2n+nex:p(-~sinn) • o = -e:/lne: 0 = 1 xas yas 
• 

e w,2 =2n+~n+(n+3)exp(-~n) o = -1/lne: 0 = £ xas yas 

81 

) 

f 1J) 
1,µ, 

=2n+nex:p(-tn) -e:/lne:<<o <<-1/lne: as xas o = -e:/(o lne:) yas x 

g 1J) =3n+3 -e:/lne:<<o <<-1/lne: cS = £ • 

1,v11 as xas yas 

h q}21 =2n+(n+3){1+exp(-~-n)} o = -e/lne: 0 = e: xas yas 

• w =2n -e:/o lne<<o <<-1/lno · e:<<o <<1 l. 
0, a.1 1- y asxas y• as yas 

• • 

• 
• 
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c 
y 

E 

~ 

-lno y 

e 

C 

• 
l 

g h 

d ~-------1------+~-------ino 

1 

a 

-1 
lne 

b 

rs 
-e: 

lne: 

0 
X 

5.6 APPLICATION TO AN EXPLICITLY GIVEN FUNCTION 

X 

In order to show the advantages of' the theory developed in the preced

ing sections an application is given. The examples previously given were 

more or less prefabricated. This application, however, forms a more signif

icant contribution to the theory of' singular pert1Jrbations. The computa

tions arising in this application have been given in [14]. 

We consider the problem of approxima,ting asytnptotically the :function 

U(x,y;e) satisfying the differential equation 

(5.50) LU= e: 

• • and the boundary conditions 

(5.51a) U{x,o) = k.x 

au - ---- = o, ay X > 0, y > 0, 0 < € << 1, 
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(5.51b) U(O,y) = ~(y), 

Our purpose is to expand the exact solution of (5.50), (5.51) in order 

to understand the mechanism of its boundary layers. 

In section 5.7 an approach from singular perturbation point of view will be 

given. Here we study the exact solution, as obtained by means o:f Green's 

theorem 

U(x,y;e:) = _, 
00 

0 

2 2 
~ +(p-y) )-K ( 

2e: 0 

where K
0

(z) denotes a modi:fied Bessel :function. 

Introduction of' a tra.ns£orr1,ation o:f type 

(5.52) 

yields for 

a. a = 8 = O, 

b. 0 < a < 1 /2, S = 0, 

( 5. 53b) 

c. O <a= B < 1 

(5.53c) 

d. a= 1/2, B = O, 

2 

B 
Y = ne:, 

e {5.53d) 
1r t..l 12n 

e. 1/2 <a< 1, B = 2a-1, 

a,S > O 

~2 
~(n - - 2 )dt, 

2t 

2 2 
X +(ply) ·) 

2e: 
dp+kx, 



' ' ' ., '. . 
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(5.53e) 

f. a= 1~ B = 1, 

(X) 

1T 
0 

00 

::: t'(O) 2 

1T ~/ffn 
e 

-J.t2 
2 

g. S <a< 1/2(6+1), 0 <a< 1 

1 

C e 

g 

0 d 

0 b 1/2 

fig. 5.9 

• 

1 

• 

f 

) - K ( 
0 

2 2 
~ +(p+n) ) 

2 

a. 

The approximation, which holds uni:forrnly for x > 0, y > O, is 

dp + k~, 

- 1'>o v (x,y) - lPo v (x,y) - "'1 (x/h.,y} + 
' 11 ' 12 ,µ, 
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5.7 THE BIRTH OF THE P .,,..,QLIC BOUNDARY-LAYER 
• 

• In the sin ar pert11rbation 

tions of the differential operator 

type 

solution of (5.50), (5.51) the degenera

L are considered f'or transf'01•1j1ations of 
e: 

(5.55) a 
X = ~e;, 

B 
Y = ne:, 

In fig11.re 5. 10 aJ.l degenerations of L 
e: 

are sliowtl: 

lim 
e:-+0 

B 

1 

0 

* o 
0

(e:)L 
a,µ e:: 

0 

a i--

an 

f 

C 

a2 

an2 

a a -
an2 an 

• 

b 

1/2 1 

a2 a2 
e + 

a~2 an2 

a2 a2 a 
d + -

a~2 an2 an • 

- g 

• 

Ct 

• 



• 
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Further, forrr1al limit functions, satisfying 

= o, 

• are introduced . 

In chapter 4 the usual sin ..... ar perturbation method was demonstrated, 

before the term ''forrtia.l limit ftmction'' was used. However, for the present 

problem such a solution is not available in literature. 

In a first approach the general solutions of the local equations are 

determined. 

a. 

b. 

c. 

d. V 1, 1 

e. 

g. 

= Fa. 8 (p,q) 
b' b 

--
(l , 

C 

0 < (l 
a 

< 1/2(8 -1), 
a 

exp 
2 - f::-T'\) 

-i--
4(n-p 

• 

0 < B < 1, 
a 

+ p ,<~), a , 0 < a < 1, 
- C 

C 

• 

-- y-g exp. 
2e: 

2 2 
K ( (~-p) +(n-g) ) 

0 2 ' e: 

ln( 
2 2 ( t-;e)_ ,,+( n-g) ) 
2e: , 

+ PN Q <,>, 
"f'µf 

1/2(S -1) 
g 

and 8g < a , 
g 

< a , g 

1 < B • 
g 

< ,, 

• 
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The :functions V a are Green's f'unctions, which are used to detel'tnine solua, 
tions that satisfy the boundary conditions. 

Because of the matching conditions the following relations hold 

C 

---
a 

Moreover, i/)
0 

S is contained in w1, 1 and $a 8 in lJJ 1 .. 1 • 
e' e g' g ' 

Taking account of the boundary conditions we obtain expressions for the 

formal J..jmit functions which a.re identical. to (5.53). 

Finally it is proved that 

• 

where Z(x,y;E) = O(E) f'or x > O, y > 0 and $0 (x,y;E) is given in (5.54). 
Substitution of (5.57) in (5.50) yields 

(5.58) 
a2 

L Z = -E -- $ 01 (x,y) + 
E dX2 

• 

The sin,..,..""-'-ar ternls in the right-hand side of ( 5. 56) cancel out, so 

(5.59) 

for x > O, y > O. 

Moreover, from (5.51) and {5.54) it follows that 

(5.60) Z(x,O) = Z(O,y) = O. 

In a theorem Eckhaus and De Jager [7] pose that 'Wlder conditions (5.59), 
(5.60) Z(x,y) = O(e) uniform]y for x > O, y > O. 

Since in forr11ula ( 5. 54) 
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uni:foririly, the approxjma.tion can be simplified: 

+ O(e:) 

uni fo1·n,l.y f'or x > O ~ y > O. 

Remark For an approx:imation with a higher degree of acc11racy the reader is 

referred to [14]. 

• 



R VI THE...,.,.BIRTH OF A BOUNDARY LAYER IN A LINEAR ELLIPTIC SING 

PER'l'URBATION PROBLEM 

6. 1 PRELIMINARY 

89 

In this chapter the elliptic problem :for1nulated in section 4.4 will be 

submitted to a more detailed analysis. By means of the two-dimensional co

ordinate stretching technique the bormda:ry layer structure near the singu

lar points A and B (see figure 4.1) is revealed. Moreover~ higher order ap

proximations of.' the solution are constructed. Until so fa,r we only employed 

ljmit functions as local approximations of the solution. We now introduce 

asyinptotic series as local approximations. 

Definition 6. 1 The function 
(mt) 

4>t (~t,nt;e:) is an approximation up to 

( 6. 1) X = y = o < 1, o < 1 
x, t as y, t as 

( 6. 1 a) 

+ •.. + 

(6.2a) ~(x,y; ~) = 0 

t 

n-1 (k) 

(6.2b) k=O 
------~,-------- - Tn(~t,nt) = o, 
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If o t << 1 or o << 1 this 
as y, t as 

approximation is called a ''local'' approxima-
x, 

tion .. 

Definition 6 .. 2 
(m ) 

Definition 6 .. 3 

V V 1 V 

(m ) 
A local approximation 

if 

(m ) 
~ V (t 

V U 

(m ) 
{~ V (t 

V U 

0 x,u 
0 , 
x,v 

(m ) 
An approximation t v is 

V 

not contained in any other 

is contained in 

1 

u 

n-1 

k=1 

n = 1, 2, .•• , m. u 

called significant, if 

local approximation. 

u 

1 

We consider the function t(x,y;£) satisfying a differential equation 

of the elliptic type, i.e. 

(6.3) 

in G, where L1 and L2 denote the differential operators 

and 

a2 
a(x,y) 2 ax 

a2 
+ c(x,y) 2 ay 

a + f(x,y), 

We as s11me that the operator L2 is elliptic, a( x ,Y) > 0 and . 

--

g(x,y) - £f(x,y) > 0 in G, and that the coefficients a(x,y), ••• , h(x,y) 

are continuously differentiable up to order 2m + 3 (m~o,1,2, ... ) in G. 

Moreover, it is ass1.1med that G is a bounded strictly convex domain with a 

smooth boundary r which has the property that its paxam~tric representation 



with the arc length as para.meter is continuously differentiable up to 

2m + 6. At the boundary ~(x,y;€) satisfies the condition 

(6.4) = w(x,y), 

r 
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where w(x,y) is continuously differentiable up to order 2m + 3 for all 

points at r. Without loss of generality it may be assumed that the position 

of the domain G with rega.rd to the x ,y-coordinate system is as follows: Let 

A and B be the points of the bounda,ry r, where the characteristics of L1 
(the lines y=consta.nt) are tangent tor. We assume that A is on the posi-· 

tive y-axis see figure 6.1. In this chapter we deal with the case of first 

order tangency in both A and B. In section 6.4 the case of higher order 

tangency is studied. 

The part of' the boundary rat the left-hand side of' A and Bis called r1 
and the part at the right-hand sider. r 

/ 
/ ,, 

/ 
; 

y 

A 
-~--:----r- -~ r( 8) 

/ 
,I 

/ 

I 

,, 
; 

,/ 

---- ~ ---
B 

:ris. 6. 1 

In order to apply the method developed in the preceding chapter we 

introduce the p,0-coordinate system 

x = (r(e)-p)sin e, y = (r(e)-p)cos s, 



wh'=re O < p < r( e) and O < 6. < SB. 

Substitution of (6.5) in (6.3) yields the differential equation 

(6.6) 

(r(e)-p) 2 ae2 
, 2r ' ( e ) E _ _ q_ -
(r{8)-p)2 r(e)-p 

+ 

+ r' (e)_p __ 

(r(e)-p) 2 
r'(e)g 

r(e)-p 
+ t . -g ., + _d_c_o_s_6-_e_s_in_8 

(r(8)-p) 2 r(e)-p 

+ r'' ( e )p =: r.' { e) g 

(r(6)-p)2 
_ ...,.p_+_r-.lr( ..... e,.:...) J.,{, d_c_o_s_, e_-_e_~_i_n_e ___ ) + ( d 

5 
in e+e cos 6 ) 

r(e)-p 

_ cose a r' a)cose . 
s, = - ;ce)-p -a-e + r 0---p- - sine 

a 
ap + g , 

2 
2 

. _ 2 
p = a cos e - b sine cose + C sine, 

q = (a-c)sin28 + 2b cos20, 

t = sine cose 2 + C COS 8. 

Here the coeff'icients a, ... ,hare functions of' panda. 

Substitution of' 

(6.7) e - lJ - ne:, 

into the operator Le: leads to the operator expansion 

(6.8) + 2yN 
E 2 + ••• + 

the terrns of' the forn1a,l local ,app~9xima~,i.on 

my;;-N £ • 
m 

ae + 

a 
- + f', ap 
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are determined by an iteration process, which follows from an equalization 

of coefficients of terms vith equal powers in e in the equation 

Moreover, the te11ns of a formaJ local approx:i ma,tion are required to 

satisfy a matching condition. Contrary to the 15mit functions no matching 

theorem exists for the local approximations. This problem is still un

solved. 

For the forrr1al local approximation we propose the following type of match

ing condition. 
• 

Ass11ming that there exist two significant :f"o1·1nal local approximations 

an.d 

_(m) 
<I> u 
u 

cp(x,y;e) = 

(m) 
-. V 
<I> 
.v 

_(m) 

+ ••• + 0 

+ ••• + V 0 
m 

V 

u m ' , u 

V m ' , V 

of which the corresponding limits have a common domain of convergence, we 

take a path 

'u = ~w0x,w 
- n o nv - v y,v 

yields 

x =to , y = ~ o · in this domain. Substitution of 
w x,w w y,w 

/ o = o o and = o o . 
• 

/ cS into the series and development of its coefficients 
y,v 



• • • • • • • • • • • + • • . + 

+ . .. • + 

' + • " • , 

and 

+ • • • + 

• • • • • • • • • • • + • . • + 

+ • . • + 

+ • • • • 

Equalization of the coefficients of equal order functions o:f both series 

leads to the matching condition. When such a coefficient contains a ter·,,,. 

o:f Z or Z , of co11rse, no matching inforrna.tion is produced by such an 
m m 

U V 

equalization. In section 6.2 we will see how this matching condition works 

out for this very problem. Besides the boundary conditions o:f section 4.4d 

other bo1.1nda1-y conditions a.rise, which we will also meet in section 6. 2. 

The reader will certainly have observed the links with the preceding theo

ry. The first term of a local approximation represents the limjt !'unction, 

and the f'irst tex"lll of a fonnal local approximation is identical to the 

f'or-1,1al. limit :f11nctions. 

011r objective is to construct the significant for1,it:t. l approx:i ma.tions 

o:f ~(x,y;e) (see section 6.2). In figure 6.2 we show some degenerations o:f 

Le for a transformation of type ( 6. 7) as :far as is im.port:an"t f'or the pres

ent :problem. 
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µ 

a 0 a2 2b0 a2 a2 1 a 
1 -,- r(o) 2 

'---------- ---·---·--------' 

r---------·--------, 

a 1 a 
a~ - r( oJ -a-n' 

1/3 -t-
a 1 a 
a~ - r(o) -an 

sin - r( 8 )" 

b 
0 ~a-------------------4-----v 

O 2/3 1 

2 + sin - · ~(e) · 
a~ 

----·-·----·-----------1--------



. 
• . . . . 

.. 

In ternis of limit functions we expect a struct1ire as shown in :figtire 6. 3. 

µ 

1 

1/3 

11, 
1,µ, 

w,, 
::::::_.. ________ +-___ ___,; 

" 
2/3 1 

The significant :for1oal approximations a.re: 

a. "= o, lJ = o, • the outer expansion, 

b. " = 1, = o, the ordina.1:y bo,mdary layer ex.pan!Sion, 

• 

c. v = 2/3, µ = 1/3, the interrnP.diate bo11nda.1·y layer expansion, 

d. \) = 1, µ = 1, the interior bo,mdat·y layer expansion. 

In section 6. 3 these expansions are composed to .a formal unifor111Jy valid 

approximation. With the ma.ximum principle it is proved that such a forrna.l 

approximation is 1Jni.for1n]y valid with a certain degree of' accuracy. 

6.2 LOCALLY VALID EXPANSIONS 

a • 

It is supposed that there exists an expansion 



' 

l 
' I 
' 
i 

I , 

(6.10) - (m) 
$ = 

m 

u n=O 

of which the coefficients U satisfy the differential equations n 

n = 1, 2, ••• , m. 

Along r l the bound,a-~<·y conditions are 

= 1',,(x,y) and U = O, n 
rl 

n = 1, 2, 3, .•• , m. 
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This iterative system is solved in an elementaYy way. It is easily verified 

that the functions 

(6.11a) 

( 6. 11b) 

" 

U (x,y) = n 

-1 X 

-

{h(p,y) + g(p,y) 

X 

exp[-

X 

exp[- g(p,y) dp] 
p 

X 

p 

n = 1, 2, ••. , m, 

satisfy both the equations and the boundary conditions. In (6.11) the fol

lowing f'unctions were introduced: 

x = r(e) sine= y = r(e) cose = 

and 

k 1 ( 8) 
.y 

, , 



b. Ordi:q~:.Y 1:?.<?1.Jnd~!'Y layer e ansio~ 

Substitution of (6.7) with v = 1, µ = 0 in the coef~icients a, ••• , h 

yields the expansions 

(6.12a) 

• • • • • • • • • • • • + • • • + • • • 
• 

( 6. 12h) 

Using these expansions we obtain for the operator L 
e: 

e:L 
e: 

+ ••• + 

An ordinary boundary layer expansion 

(6.13) 

• + sine -

is introduced such that V ( E;, 8) satisfy the eq11a,tions n 

n 

• • , 

m+ 

cos e , 'F.' ( a ) 
r(e) 

(6.14} M V = - M. V • , 
0 n . 1 1 n-1 

1= 
n = 1. 2, m ., ... , . 

• 

Moreover, the functions V satisfy at r the bounda.1-y conditions n r -

(6.15) n = 1, 2, ••• , m, 

where 

• 

The solution can be written as 



(6.16) 

k(S) = sine - _c 9 s ~ r ' ( 6 ) . 
'r( e) -
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where 

into 

A (~,e) and B (~,6) 
n n denote polynomials in~- Conditions (6.15) change 

+ B (o,e) = o, n 

n = 1, 2, ••. , m . 

• 

When in the outer expansion (6.10) the local coordinates corresponding to 

v = 1, µ = 0 are substituted and the expansion is reordered, it trans:for111s 
• into 

·-(m) (0) (1) 2 (2) 
~ = u (~,a)+ eu (~,a)+ Eu (~,e) + ... , u 

where 

u, 
r r 

The matching condition takes the form 

n 
o, 

Thus, it turns out that 

c. 
I 

• layer expansion 

We consider the case v = 2/3, µ = 1/3. 

a, ••• ,hare expanded in Taylor series. 

r 
r 

, . . . . . . . . . . 

n = 0, 1 , 2, •.• , m. 

Again the coefficients 



·, 

100 

(6.17a) 
1/3 2/3 m+1/3 --

• • • . . . . . . . . . . . . . . , • • • • • • • • 

( 6. 17h) 

• 

L is expa,nded as follows 
e: 

--

1/3T 
€ 1 

+ ( 1-

+ ••• + m+1/~ 
€ 3m+1' 

1 
- r(O) 

• 
Supposing the existence of an intermediate bounda17 -layer expansion 

(6.18) i(m) = 
y n=O 

n , , 

we obtain the equations 

n 
(6.19) 

i=1 
T.Y . + h 1(t,n), i n-i n- n = 1 , 2, ••• , 3m. 

In addition the fmictions Yn(t,n) have to satisfy conditions such that 

they are 1.1niquely dete1·1r1j,ned. On the one hand the interrriediate boundary 

layer expansion has to ma,tch the outer and the ordina,ry bo1,1nda,1"Y layer ex

pansion, on the other hand it has to satisfy the bo1Jnda1-y condition 

~(e: 113n) for~= O and n ~ O. 

In the outer expa.nsion ( 6. 10) the local coordinates corresponding to 

v = 2/3, µ = 1 /3 a.re substituted a,nd the expansion is reordered. This 

yields 

(6.20) -(m) 
t u 

(2/3) 
(~,n) + •••• 

The outer ex;pa.nsion ma.tcbes the interrnediate boimdary layer expansion, 

provided that for t/n2 = 0(1) and lnl >> 1, 

(6.21) 
• 

!:t-----~---~---- ' ·-·- -··-' ·- ·- -· . 

I 

I 
i 

I 
I 

l 
I 
' 

! 
i 

I 
j 

I 
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For this case the limit~= cn2 , n ~ 00 corresponds to the direction of the 

line, which connects a and c, see figures 6.2, 6.3 and 6.4. The terms 

U t,n consist of contributions of all terms u0 , u1, ••• , Um of .10 

+ ••• + 
m 

According to the matching principle for Yn(~,n) a same • expansion must hol.d 

(2) (m) 
+ Y (~,n) + ••• + Y (~,n), n n 

where 

(6.22) -- = O(nn-3k), k = 0, 1, 2, ••• , m, 

n = O, 1, 2, . . . , 3m. 

A sa.n1e proced11re is applied to obtain a matching fonnula for the ordi

nary bounda.?"Y layer expansion ( 6. 13) and the intermediate boundary layer 

expansion. The local coordinates corresponding to v = 2/3, µ = 1/3 are sub

stituted in expansion (6.13). Reordering of this expansion yields 

-(m) 
t;v 

• Let the series 

--

Y (~,n) = n n ' 

+ ••• + 

express the asymptotic behaviour of Yn(~,n) for ~n = 0(1), n >> 1. Then the 

matching condition becomes 
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(6.23) = o(nn-3k), k o 1 2 = , , , ••• , m, 

n = O, 1, 2, . . . , 3m. 

the bound

ary with a.n acc11racy 0( e:m). When a Teylor expansion of this given f'unction 

is ma.de, the bounda.1-:y condition takes the f'or·r·o 

n 
n/n, n • • 

For n = 0,1 explicite solutions are available. 

(6.24) 

and 

(6.25) 
. 

Y1(~,n) = R((,n){w'[oJ + r(o)n} - nr(o)n, n = h0 + g0w[oJ, 

where 

R(~,n) = -exp(-1/2atn-1/12f3n3 ) • 

00 

Ai' (x) 
O Ai(x) 

2 
A . ( ) ynxw 

1. x-JtUu/; e dx, 

_ co Ai'(~) 
- O Ai(x) 

.( 2) ynxw Ai x-rntu ~ e dx, 

_ 

00 

Ai' wx) . ynx -
O J. wx 

co • ( 2 l Ai 'w X , 

0 Ai(w2x) 
Ai(w2x-mw2e;)eynxdx. 

Ai(z) represents the Airy f'unction with argument z and Ai'(z) derivative, 



w = exp(2/31ri), 

w2 = exp(-2/3ni), B = r{O)a2 , 

R(~,n) satisfies the homogeneous equation o:r (2.15) and has the boundary 

values R(O,n) = n (see appendix A). 
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The reader will notice that the ma.tching conditions 

fies, we verify the :rirst two ter1ns 

• • are indeed satis-

(see appendix B). 

1 

0 

• 

{w'[O] + r(o)n} - nr(o)n, 

0 

--

2 ~/n =0(1) 

lnl ,cc 

2/3 

fig. 6.4 
- , I Ml; 

' 

+ 2n{~•[oJ + r(o)n}. 

~n=o(1), n,+co 

\) 

1 
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d. I1fteri9r boup.d~-y lazer e;:e~sion 

In this case the values v = 1, µ = 1 are substituted in (6.7). The 

coefficients a, ... ,hare expanded as follows. 

( 6.23a) 

• • • . . . . . . . . . . . . . . . . . , 
• 

(6.23h) 

The differential operator L becomes in expanded for.tn 
e: 

82 2b
0 

It is supposed that an expansion exists of the type 

(6.24) ~(m) 
w 

so that W
0

(t.n) satisfy the equations 

(6.25) KW = -O n 

and the bo11nd.a1·y conditions 

n 
n 

n 

n 

i=1 

t n., 

K.W . + hn_1(~,n), 
i n-1 

For n = 0,1 we obtain the solutions 

- nr(o)n, 

n = 1, 2, •.• , m, 

l 
j 

I 

I 
l • , 

I 

l 
'I 

I 
' 

j 

j 
1 , 

I 
' 

I 
j 

] 



' i 
' 
' 

' ' 

1 

I 
\ 

1 

-- ku 
1T 

+oo 

-oo 

2 2 
r = u +(v-p) , 

:>t = (-b +i 
1,2 0 

e 1 r(O) 

K 1 (kr) 
--- dp, 

r 

K 1 ( z) denotes a modif'ied Bessel .function with argi1ment z. The :function 

f' 1 (z) has to be bo1.mded and continuous with f'1 (o) = 0 and 

f'1(o) = (Q+w'[O])r(O). A function that satisf'ies these conditions is 
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Finally, we study the matching conditions for the interior bounaa.ry

layer expansion and the intern1ediate boundary-layer expansion. In ( 6. 24) 

the local coordinates corresponding to v = 2/3, µ = 1/3 are introduced, so 

that 

Let 

= w<o) + 
0 

+ 

e:1/3{w(1/3) 
1 + ••• 

+ ••• + • • • • 

• • • 

2 constitute an asymptotic expansion of" Yn(~,n) :for n/~ = 0(1), 0 < ~ << 1. 
It appears that the matching condition is satisf'ied, if' 

-- (n/3) 
n +3k 

= o( ~ o ) ' 
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= 1 

n = 2 
0 

n = 3 0 

We remark that indeed 

see appendix C. 

if 

if 

if 

n = .... , 

n = 1, 4, 7, . . . , 

n = 3, 6, 9, .... 

2 
= (n + ---r-- (w'[OJ+nr(O)) - nOr(O), 

6.3 UNIFORMLY VALID EXPANSIONS 

In this section an expansion for the solution is constructed, which 
• 1n G. 

First, a forr,,al t1nifor1n is composed of the significant forrnal 

mat ions. For that pu.rpose, the results of' the matching method are 

to reorder the local expansions in such a way that expansions with 

coefficients can be obtained. 

.. 
approxi-

util.ized 

a.r 

Next, it is proved that the :first three terrn$ of the forrr1al composite 

expansion approxjmate the solution i(x,y; e) with an acc1.1.racy 0( e:). 

Until so far we only studied formal local approxjmations which hol.d in 

a neighbo1.Jrhood of A. We also have to investigate the fo1·rual local approxi

ma.tions holding in a neighbourhood of B, since we have the intention to 

construct a for,,1a.l 1;nifor10Jy valid approximation. With a • • • similar analysis 

it ca,n be shown, that the ~e;me types of local. expansions arise near B. In 

the sequel, the expression 

-(m) 
t = y 

3m 
y n/3 

ne: 
n=O 

represents an intermediate bounda:r·y-layer expansion near A and B: 

y 
n 

• i.e. 

! 
! 
' 

: 
' 

f' 
I 

: 
' 
' i 

I 
' ' ' 
i 

I 
' 

I 

1 

! 
j 



where Y(A) (~,11) has the forrr:a of (6.18). The f\mction 
n 

x = (r(8)-p) sin 8 + ~, 

y = (r(8)-p) cos a, 
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has a s a.:m.e fox·,,, 

Similar asst11nptions have been made for the interior bounda:r') layer expan

sion and 

The 

for the matching terrr1s. 

ordinary boundary layer functions V (p/e,8) are·exponentially in
n 

creasing in the le:f"t part of the doma.i n G. In order to express these bo11nd-

ary layer terzns as f'ianctions defined in the whol.e dome.in G we multiply them 

by an infinitely differentiable smoothing factor K(p/p 0 ), which is defined 

in G as follows • 

Outside a neighbourhood of r it equals • • zero, inside a neighbourhood of r r 
• • • we distinguish three cases 

a. 

b. 

c. 

< 0 _ e:1/3 
B 

where K(p/p 0 ) = 1, 

where K(p/p 0 ) is monotonic decreasing 

from one to zero, 

where K(p/p 0 ) = O. 

Thus in the sequel the following expression for the ordinary boundaJ"Y layer 

function is used 

Before contiD1,1jng our analysis we sununa.rize the results o-.f the prece

ding section. 

a. We have obtained an approxjmation of the solution, which holds outside 
• 

neighbourhoods of the points A and B: 

• 



0 
" ' 
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m 
(6.26) 

n=O 

small neighbourhoods of A and B. 

b. Near the points A and B we obtained formal local approximations, which 

we called interroediate and interior bo1i1ndary layer expansions. 

c. By means of' :matching methods conditions were derived :ror the ter,a1s of' 

the expansions mentioned in a. and b. 

In figt1re 6. 5a ve show in a suggestive pict11re the domains correspon

ding with the various expansions. The lines separating these domains are 

deternii ned by the thickness ( in order of' megni tude of e:) of the bo1Jnda:r-y 

layers ( see fig1.1re 6. 5b) . The values of v ~ l.l of' fig1.1re 6. 5b correspond with 

the values from forrr1ula ( 6. 7) • 

A µ 
III + ;· II 

III -... .... 
' \ 

\ 
\ 

I \ 1 
I 

y I 
I • 

I 
X II 

I 
I 

I 
/ 

/ 
1/ / 

/ 
/ 

' / I ' " / _.,,,,. 
' ' 

B 2/3 1 " 
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Step by step a f'orrria.l asymptotic uniforir, approximation is composed. 

ob

tained with the matching method are put forwards in the series 

(6.27) 

Using (6.22) 
• havi.01.1r 

+ •••• 

and (6.23) we deduce that Y has the f'ollowing asymptotic ben 

• • • • 

Considering these relations we introduce an expansion, which is identical 

to (6.27) in domain I and to (6.18) in domain II. 

(6.28) 

(u -U(1/3)_U(2/3)+V _y(1/3) + 
€ 1 ·1 1 1 1 

• • • • 

Finally, we axe able to construct an expansion, which is identical to 

(6.28) in I and II and to the interior boundary layer expansion (6.24) in 

III. 
• 

(6.29) 

+ •••• 
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Expansion (6.29) has all properties desired for the function ~(x,y;E) such 

as exponential decay near the bo11ndruy r r and an ''Airy function'' behavio11r 

nea,r A and B, which for,ris a linkage between the interior solution expressed 

in modified Bessel functions and the solution outside neighbo11rhoods of A 

and B. 

However, until so far we did not prove that a 

(6.29) approxjmates the function t(x,y;E) with 

finite n11mber of" te:x·rns 

of • some acc,1racy in e:. We 

will prove that 

(6.30) 

1 1 1 3 0 0 1 + z, 

where Z(x,y;e:) = 0( e) 1.mifor,,,Jy in G. 

For this p11:r-pose a theorem of Eckhaus and De Jager [7] is reproduced, which 

forrns an application of the maxim11m principle. 

Theorem 6.1 Let 4>(x,y;e) be the solution of the boundary value problem 

L ~ = h (x,y;e:) 
E E 

valid in a bo1Jnded domain G with 

= 1¥ (x,y;e) 
r E 

along the bolllldary r of' G. If 

• in G, 

and 

then at most 

a> O, 

B > o, 



Substitution o:f" (6.30) in (6.3) yields 

(6.31) 

moreover it :f"ollows :f"rom (6.30) that 

Z = O(e:). 
r 

The right-hand side of' ( 6. 31) contains singi1J a.r tey•ias, but it will be 

proved that all these singularities cancel out. 
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The :f"ollowing properties o:f" the local expansion tertrts will be used in 

order to prove that 

L (Z) = O(E) 
e: 

• 

• • uniforir,Jy in G. 

• a. The expressions 

are bounded in G, so that a number M independent of e exists such that 

max{ I K 1 I , I K2 I ,. I K3 I } < M. 

b. In appendix D we prove that 
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+ h P + p 

--

. 

+ Sing{M1 V 1} + z, 

where 

z = 

Z = O elsewhere in G. 

Sing{S(x,y;e:)} denotes 

nf-a.r A {and B). 

• the sin 

E 
1/3 

(N arbitra.1-y large) 

_a.r terc,1::, of a development of: S(x,y;e) 

The contribution_to the right-hand side o:f (6.31) comes from the regu

lar parts of' L 2u
0

, M2v
0

, M1v1 and f'rom K
1

, K2 and K3• Thus we find that 

L Z = 0 ( e: ) in G. 
E: 

Applying the theorem mentioned above we may conclude that Z(x,y;e) = O(e:) 

1.1niforrr1Jy in G. We rema.rk that a same acc11racy is obtained when the ter1t1 of 

O(e:) is ·omited in (6.30). 

It is e111phasized that an estimate of the remainder terrn of a tr,mcated for

ma.l 1:1niform expa.n8ion can only be ma.de with the maxim11m principle, if' the 

last tenrt of the tr11n cated expansion is of' order O ( e; m) , m = 1 , 2, • • • • In 

this last ter:rn the contribution from the interior bounda:r-y-leyer expan!=lion 

ean be omjtted. 
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6. 4 HIGHER ORDER TANGENCY 

It appears that the order of t.angency in the points A and B deter,ni nee 

the composition of' the unif"o1:·1n1y valid approximation. Therefore, we study 

this t.a,ngency in det a,j l 

In a neighbourhood of A the coordinates of' the bo11nda, .. ,"Y. 

x = r(e)sin e, 

are expanded for small e 

• x = r(o)e + 

y = r(O) 

y = r(e)cos 8 

_ r(0)) 83 + 
3! . . . , 

- + r(0)) 84 
4! 

03 + 

+ • • • • 

In the preceding sections we considered the case r(O) > r 2 (o) which 

agrees with the relation 

x = r(O) 2 

between the coordinates of the bo11ndary near A ( see also Visik anti 

Lyusternik (34]). 

From now on we also consider the case where the tangency of the char

acteristic of L 1 to the bo11nda1·y in A is of' higher order. Let 

y = r(O) 

end k{n) 
2 

= k(n) = = k(n) = 
3 ••• 2n-1 

order 2n - 1. This leads to the 

of the bounda1'.Y· near A 

k(n)e5 
5 

following relation between the coordinates 
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x = r(O) 

1 

) 2n (r(O)-y 

An analogous arg11ment holds for the tangency in B. 

In comparing the local expansions for different orders of tangency we 

see one important change, i.e. the intermediate boundary layer. 

Firstly, the inte1·111ediate boundary layer a.rises f'or other values of " and 

( see forrnula ( 6. 7) ) , a,nd secondly, the local equation ( and therefore also 

the local expansion) is different. Thus, the intermediate boundary layer is 

determined by the order of tangency. 

Let (v ,µ) be the point in the v,µ-plane that corresponds to the inn n 
tert11ediate bo1mda.1y layer equation in case of ( 2n-1 ) th order of' tangency. 

Then the differential operator EPnL is expanded as follows 
£ 

= T(n) 
- 0 2 

+ ••• , 

1 
- r(O) 

We take 1 - 2" + µ = o, so that the first are of n n 
the same order of magnitude in e. 

operator 

computed 

The terin 

-

X(n) = 
0 -

1J -\) 

2n-1 
n 

µn 
- sin(ne ) 

(2n-1 )µ 
n e 

0(1), if'µ - v + (2n-1)µ = O. Since 
n n n 

the condition 1 - 2v + µ = O also 
n n exists, we obtain for v , µ the values n n 

V - 2n 
n - 4n-1 ' 

11 - 1 ... ---n 4n-1 • 
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A diagra.m as :figure 6. 2 can be made. When these diagrams are brought in one 

figure (:fig. 6.6), we observe that 

a. lim 
n-+oo 

b. in order to match the intermediate boundary layer and the outer expa.n

sion we nee o introduce limits of the type ~/n = 0(1 , n 4 ~, 

c. in order to match the interttiediate bo11nnary layer and the ordina:ry 

bormdary layer expansion we have to introduce ljrni.ts of the type 
2n-1 

~n = 0(1), n 4 oo. 

1 -+-

I 

1/2 

• 

' I 
I 

:fig. 6. 6 

1 

• 

In the point ( v, 1.1) = ( 1 /2, 0) the inte1·roediate bounda.17 layer equation 

degenerates to a parabolic equation 

It is easily deduced that this parabolic equation for:rns a local representa

tion o:f a parabolic boundary layer equation, which is obtained from ( 6. 3) 

by stretching they-coordinate, y = r O - ;PE , and letting£ tend to 
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zero ( see f'igure 6. 7) • 

--

\ 

' \ 
' ' , ___ _ 

.;-; 

y 

• 

Y = h(x,r(O)). 
p 

r(O) 

\ 
\ 
I 
I 
I 
I 

__ ----11-----------+-----~1---1------ X 

3 2 e: 

- ' .,, ' 
I ' _,.,. .,., .......... _ 

I 
I 

e: 
I 

I 
I 

I 

Ret11rning to finite n we suppose that an intermediate bounda.:cs;y· layer 
• • expan8ion exists of the type 

Re11,ar\: Exactly, as in the case of :first order tangency a particul,a.r solu

tion of' the homogeneous intenrtediate botmda;,·;y layer equation is available. 

For exa1r,.ple for n = 2 we have 
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With the aid o:r this particular solution we can detex·,nine 

it satisfies all conditions. 

such that 

Let the order of' tangency in A be 2nA - 1 a.nd in B 2nB - 1. Following 

section 6.3 the remainder te1~ Z(x,y;£) of 

+ z . 

• can be estimated. 

The proof that Z = 0 ( e::) unif'orrnl y in G is similar to the proof given in 

section 6.3. 

The f'ol1owing statement is a direct consequence of the foregoing. 

If the order of tangency in A is (2nA-1) and in B (2nB-1), then 

. ( 1 
min 4n -1' 

1 

) 

unifo1"JUJ y in G. Frankena [ 11 J estimated the remainder term 

o( e:: ) • 

6.5 A MAGNETOHYDRODYN.A:MICAL PROBLEM 

The mathematical problem we dealt with in this chapter is concerned 

with parallel :flow of' conducting :fluid along an insulating pipe of circula.r 

cross-section perpendula.r to which a nnifortti magnetic :field B0 is applied. 

The system satisfies the modified Navier-Stokes equation and the induction 
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equation (see Gold [13]). This problem is reduced to that of' solving the 

equations 

-1, 

- = o, 
ay2 ctX 

with the boundary values 

v = b = 0 on r = 1. 

The variables v a.nd b denote the velocity of' flow and the induced magnetic 

field, both in a direction normal to the x,y-pla.ne. The constant M repre

sents the Hartmann n1.1mber 

where p and v a.re the density and the viscosity of the fluid and o is its 

electrical conductivity. 

y 

1 

_, 1 

-1 • 

fig ... 6. 8 
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Because of the syicanetry with respect to the x-axis, it is sufficient 

to solve the problem 

( 6. 32a) 

(6.32b) 

Mat= -1 ax 

= 0 on r = 1, 

• 

b(x,y) = -b(-x,y) = 1/2[~(x,y) - ~(-x,y)]. 

An exact solution of this problem is available 

(6.33) t(r,e) = r sine 
M 

X = r sin8, 

(-2r + exp sine) 
M 

00 

n=O 
k n 

y = r cosa, 

k = 1 n if' n = o, k = 2 n if n ;ae O. 

• sin ne, 

For J a,rge values of M expression ( 6. 33) is computationally useless, 

since the series converges slowly. A first attempt to describe the asy,,c_p

totic behaviour of (6.33) was made oy Shercliff [32]. Roberts [31] gave an 

approximation f'or large M, which agrees in great lines with our analysis 

(see sections 6.1 - 6.2). 
The differences are noted in the following three points 

1. In [31] it is not evident that the approximation of (6.32) is still 
• s1.n ...... ar in ( 0, 1) and ( 0 ,-1). It t1Jrns out that another botmda1y lqer 

exists ( the interior boundary layer) . We m11st admj t, however, that 

this does not change the value of the net flux of fl11j d down the pipe 

o:r the interior 
. ( -4) bo11ndaJ-y layer to the next :flux is of order O M • 

2. The matching conditions, that we derived, di:ff'er :from the ones used by 
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Roberts. It is worth mentioning that 011r approach has reduced the n11m., 

ber of necessaJ•y computations. Conditions ( 41 ) and ( 42) of [ 31] are 

replaced by one condition (B.1). 

3. By estimating the remai.nder term, we have shO\vn that the first te1·r,,s 

of the forxaal as:ymptotic solution indeed approximate ~ ( r,, 8) • 
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APPENDIX 

.APPENDIX A 

The problem, studied in this appendix, is :rorrnulated as follows. 

A function R(~,n) satisfies the differential equation 

(A. 1) 1 aR 
- r( o) an = o, 

and has the bounda.ry values 

R(O,n) = n. 

Moreover~ the matching conditions have an effect on the problem. The fol

lowing asymptotic behaviour is a consequence of it, 

-- -

and 

R(~,n) = -n + 2n 
r(o)-r2(o) 

e:xp{-tn c r(O) } 
0 

for ~/n2 = 0(1), Inf>> 1~ 

for n >> 1 • 
• 

The solution of this problem has been given by Roberts (31]. In great 

lines it is as follows. 

Introduction of a new dependent va.riable ~( ~, n), 

(A. 2) 3 ~(~,n) = exp(+1/2a~n+1/128n) R(t,n), 

B = r(O)a2 , 

leads to the equation 

(A. 3) 
1 aw ----- r(o) an' 

and the boundary condition 

• 
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(A. 4) ~(O,n) = n exp(1/12Sn3). 

We note that 

(A. Sa) 

(A.Sb) 

(A.Sc) 

w = exp(2/3~i), w2 = ex:p(-2/3ni), 

are solutions of (A. 3), where Ai ( z) denotes the Airy function and :p an ar

bi tra.ry constant. 

Two of the three solutions (A.5) can be chosen independently. By consider

ing these three solution together some special properties of" Airy ri,or:tions 

can be used. 

Roberts [31] introduces the solution 

(A.6) --

()C) • 

Al.' X 

O Ai(x 

2 
Ai ( x-muJ~ ) e ynxw dx, 

. ( 2 ) ynxw · Ai x-:mw ~ e dx, 

co 
Ai' wx) 

O Ai wx 

Ai' (w,2x) 

0 Ai(w2x) 
.. ( 2 2 ) vnx Ai w x-mw ~ e dx. 

From the theory of Airy functions it is known that :for al.l x 

/ y,, 
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and consequently 

(A. 8) 

Thus 

(A.9) R(O,n) -2 3 = -m exp(-1/12Sn) 
0 

In [31] it is shown that indeed 

R(O,n) = n. 

Moreover, the conditions for the asyrnptotic behaviour are satisf'ied, as we 

will see in appendix B. 

APPENDIX B 

We prove that 

(B. 1) R(t,n) = - for ;/n2 = 0(1), lnl >> 1. 

After a changing of integration variables R( ~, n) takes the forr11 

(B. 2) -2 R(t,n) = --m 

R = w 
A 

= {I.) 
2 

0:, • ' Ai mti) +x 

0 Ai(rnw;+x 

00 • ( 2 ) 
Ai' ,,:row ~+~ 

O Ai(mw2~+x) 

Ai' rnCt> +wx 
Ai(row~+wx 

0 

2 
Ai(x)eynw xd.x~ 

Ai{x)eynooxdx, 

Ai(wx)eynxa.x. 
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For n > 0 the greatest contribution comes from RC and ~· Taking these 

ter1,1s together and making use of the asymptotic property 

we obtain 

Ai I 
Ai p 

r -1 
I=::$ - Yp + O(p ) 

0 

With (A. T) this fo?"ltt is reduced to 

(B.3) 
0 

for Ip I >> 1, 

Application o:f' the saddle-point method leads to asy,11ptotic :f'orrrrula (B. 1). 

For n < 0 RA and~ dominate and behave like (B.3). 

For the proof that 

R(t,n) = -n + 2n tn = 0(1), n >> 1, 

the reader is referred to [31]. 

APPENDIX C 

In this appendix it is shown, that 

tor n/t2 • 0(1) and O < t << 1. 

The integrands of (A.6) are expanded to E; 

t = (l) 
A 

(IQ 

Q 1 X 

• 

2 
} YTlXW + ••• e dx, 



2 
-w 

1 2 2 Ai ''(x) 
+ 2 m we Ai{x) 

ynxw + ••• }e dx, 

1 2 2 2 Ai tt (J.)X) 
2mwf; Aiwx + 

ynx 
••• }e dx, 
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t = -w 
D 

} ynx ----- + ••• e dx. 
0 

Let these developments to~ be represented by 

4' = 
A 

~(1) 
A 

+ ~(2) 
A 

+ ~(3) + 
A 

. . . , 

. . . . . . . . . . .. ~ 

t = 
D 

then for sma.J l ~ 

+ t(3) + 
D 

(2) (3) 
+ R (~,n) + R (~,n) + •••• 

Using (A.8) ann (A.9) we obtaju 

~(2) 
A 

+ 4t(2) 
B 

The function P(x) -- -

2 
{ 2 ynxw ynxw}dx -we -we , 

0 

«> . {Ai I WX } 2 

Ai wx +--~.---
Ai(w2x) 

ynxdx e • 

oo- {Ai' ( s)} 2 
ds is introduced, so that 



126 

00 • ' 2 
sAi(s)ds = - Ai'' ( s ) ds = Ai ' ( z ) 

z z z 

for an integration paths= R(cr) < 11'. 

cp(2) + 
A 

4> (2) 
B 

· 2 ynxw 
= m~[{-w e 

2 nxw 00 

It is easily verified that 

A B 2 

Pa:t·tial integration yields 

-

2 ynxw}dx - w e , 

2 00 

+ wP(w x)}J + 
0 

· 2 2 ynx {P{wx)w + P(w x)w}e dx. 
0 

0 

00 

x{-w2Ai'(wx) - wAi'(w2x)}eynxdx. 
0 

0 

2 
xAi'(x){eynx+eynxw+eynxw }dx. 

~ 2 
. Ai(x) {e ynx+eynxw+e ynxw } ax + o(~3). 

~O 

Applying the samP, manipulation as to (A.9) yields 

2 3 
0 c + O(E; ). 

0 

Finally we mention that 
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APPENDIX D 

In this appendix we prove that 

+ h P + p 
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:for n = 4 , 5 , 6 , • . . . 

arbi tra.J'Y 

large. Sing{S(x,y;e:)} denotes the singular terms of a development of 

S{x,y;e:) near A (and B), see section 6.3. 

Before we prove this relation, some differential operators are intro

and s2 of duced. Let ( C;tQ) and 0 

(6.6) are expanded as follows 

where 

- 1 
= - r(O) 1) e ae , R11 = - 2r(O~ c)p 

+ g , 
0 
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-- --

r
2

(o) 

- ·2r( 0) ( 1 

-2b 
0 

r(O) 

e2 + - .. e } 
r(o) 2 

apae 

a + 
ae 

a2 
2 , 

ap 
2 a

0
r 2 (o) 

+ { (------- -
r(o) 2 

2 
8 + C p} 

p 

Let ~ = C/8 ( C.tO a,nd p=~e:) and e = O( e: 113), then the ordinai"'Y boundary 

1ayer operators Mi i = O, 1, ••• are expanded as follows 

• • . . . . . . ... , 

where 

a 
2b

0
( 1 



_ 2b0 
= - r(O} - g , 

0 

a0r 2 (o) a0+r(O)d0 a 

r2( o) a 
- 2r(o) ~e -a-~ - g1 8' 

p 10 = -

, 
+ 2r(O) 

1 
r(O} 

82 a _ 
36 

+ 

s, -_a - r(o)2 ae • 
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It is readily established that between these operators expa.nsions and 

the interroediate boundary layer operators T. the :following relations exist: 
l. 

(D. 1a) 

(D. 1b) = 2/3( + ) = T 1 - e R 11 e:R21 -

(D.1c} 

Since s 1u
0 

= h(p,e), we have :for p and e sufficiently small the rela-

tion 

+ h P + 
p 

--

• • • • 

Equal.ization o:f terrns o:f a sa;me order o:f magnitude yields 
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= h 
0 

= h 8 
1 

---------------------------+ 

(D.2) 

(D. 3b) 

00 01 02 0 
+ (P +P ) 2/ (2/3) 

00 01 e: 0 

Forrr1ulae ( D. 1 ) , ( D. 2) and ( D. 3) are. utilized in order to show that 

(D.4) 

-0 0 1 -

+ P 2::v< 3/3) + 
2QE 0 

• 



+ (P +P ) 2/'3,;(2/3) 
10 11 e: 1 

where 

:for 1/3p 0 < p 

Z = 0 elsewhere in G. 

+ p EV( 3/3) 
10 1 

e 1/3 
- £ , B 
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+ z, 

The right-hand side of (D.4) cancels the singular terr11s o:f L2u0 , ~v0 and 

M1 V 
1

• 
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