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SUMMARY 

Recently, numerous methods have been proposed for using a computer 

for the classification of objects. If all methods give substantially the 

same classification, there is the theoretical problem of explaining this. If 

they give different classifications, there is the practical problem of 

deciding which of these, if any, gives a "good" classification. If a "good" 

classification means that it should be "meaningful" or that it should 

"explain as much as possible", the problem is caused by the difficulty of 

bridgeing with mathematical reasoning the gap between criteria of this form 

and an algorithm suitable for execution by computer. 

When attempting to solve a large system of equations, the problem of 

classification arises in such a way that the criterion for a good classifi

cation can be formulated precisely. It is also naturally expressed in terms 

of the "complexity" of a system if this is interpreted to be the totality 

of interactions within it. This suggests that the phenomenon of complexity 

1s worthy of being studied in its own right and that it provides a concep

tual foundation for classification. 

In chapter 1 we propose a mathematical definition of complexity based 

on a definition of interaction in terms of the theory of information. In 

chapter 2 we discuss the analysis of qualitative data. Pairwise interac

tions between entities to be classified may be used to define a distance 

function without, however, supposing that the qualitative data themselves 

constitute a metric space. This allows a model of classification to be for

mulated 1n terms of information and to discuss its relation to clustering. 

In chapter 3 data are discussed that describe objects that can be re

presented by points inn-dimensional inner-product space, and the covari

ance matrix of the set of points is studied. The several criteria, according 

to which the principal components approximation of multivariate statistics 

is optimal, are related to data compression. In connection with this a 

maximum-entropy characterization of the multivariate normal distribution 1s 

given. With the aid of this characterization, we propose a measure of the 

complexity of a covariance matrix, and we study how particular coordinate 

systems give special representations of complexity. The condition number of 

the covariance matrix, a quantity which is important in numerical computa-



tion, is related to its complexity. Finally, an iterative method for 

solving a system of linear equations, of which the matrix of coefficients 

is the covariance matrix, is treated. It is shown that, if the variables 

have a strong clustering in the sense of information theory, the solution 

by means of the iterative method is expedited if the variables are classi

fied according to this clustering. 
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1. A QUANTITATIVE ANALYSIS OF COMPLEXITY 

1.1. INTRODUCTION 

Early computer applications have been concerned mainly with theoreti

cally well-understood subjects like numerical analysis, administrative data 

processing, or linear programming. More recently, computer programs have 

been constructed for a great variety of problems in which the theoretical 

basis is less firm or even non-existent. In the following paragraphs some 

of these problems will be described very briefly to give the reader, who is 

not acquainted with them, an idea of the background of this tract. 

A bottleneck in the practical use of a computer is the preparation of 

input data in a form readable by machine. The laborious conversion of hand 

or typewritten material to punched cards or magnetic tape would not be 

necessary if there were a machine for optically reading conventionally 

written characters. One of the possible designs for such a machine provides 

for the formation of a suitably enlarged image of a character on a two

dimensional array of devices sensitive to light, each of which generates 

a voltage·corresponding to a shade of grey. The problem is that different 

occurrences of the same character generate, in general, different sets of 

voltages and, yet, must be recognized by the machine as being sufficiently 

similar without, however, confusing sets of voltages arising from different 

characters. 

Written characters are but one example of a pattern; the more general 

problem of pattern recognition is to find basic techniques that may be 

applied to the recognition of such diverse patterns as electric signals 

from a microphone exposed to human speech, microscopic images of chromo

somes, photographs of events in a bubble chamber, and so on. Most workers 

in these areas are trained in physics or in electrical engineering. A sur

vey covering much work in this field is found in [39] and in [59]. A uni

fied presentation of the store of ideas relevant in this, and also 1n a 

wider, context may be found in [63]. 

Quite a different "culture" is numerical taxonomy, so called after the 

most influential publication in this field (Sokal and Sneath [57]). Theim

pression of a complete lack of communication between numerical taxonomists 
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and the technologists mentioned above is strengthened by the fact that none 

of the papers in a recent symposium on numerical taxonomy l 15] contains a 

reference to, for instance, any of the articles by S. Watanabe that ap

peared from 1960 onwards containing much material relevant to and, appar

ently, unknown in numerical taxonomy. Most of this material may now be 

found in [63]. 

Sokal and Sneath were concerned with classification in a biological 

context; they understood classification to mean "the ordering of organisms 

into groups (or sets) on the basis of their relationships, ... " and taxon

omy to mean the theoretical study of classification. In numerical taxonomy 

the relationship considered is that of similarity and its distinguishing 

method is the numerical evaluation of similarity. The outstanding aims of 

numerical taxonomy are repeatability and objectivity of the resulting clas

sification; the lack of these they consider the most important failure of 

the "natural system". 

Older than, but closely related to, numerical taxonomy is the use of 

systematic methods by plant ecologists to characterize different vegetation 

units. The so-called Franco-Swiss school following J. Braun-Blanquet recog

nizes vegetation units on the basis of their floristic composition. Accord

ing to the typical method employed by this school, the basic data are col

lected in the following way. Throughout a fairly large geographical region 

small representative sampling areas are selected. For each of these areas 

each occurrence of a species belonging to a certain category (often, that 

of the vascular plants) is noted. It is then required to recognize certain 

sets of sampling areas as belonging to a particular vegetation unit. The 

original form of the method stressed the characterization of vegetation 

units according to the occurrence of "faithful" species. Although this 

method has received much adverse criticism, we expect that its spirit 

can be preserved in a more acceptable formulation by means of such infor

mation-theoretic concepts as are discussed in the present tract. For a 

recent survey of methods in plant ecology, together with a particular 

application, the reader is referred to Segal L52]. 

We shall proceed on the assumption that it is fruitful to search for 

principles that are equally relevant to endeavours such as pattern recog

nition, numerical taxonomy, and plant ecology. In each of these the problem 



is that of classification, which attempts to group a set of objects into 

different classes such that objects of the same class are, in general, 

similar to each other and those in different classes are not. 
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There is an important difference between the problem of automatic 

classification as encountered in character recognition on the one hand and 

as encountered in biology on the other hand. In the first case, the crite

rion, according to which a method is to be judged, has an obvious property: 

it is to be a decreasing function of the cost of a machine that implements 

the method and of the average incidence of its misclassifications. Only the 

precise specification of this function presents a problem. In biology the 

requirement seems to be that the resulting classification be as "meaning

ful" as possible, or should "explain" as much as possible. It is much more 

difficult to compare any two out of the numerous methods proposed with res

pect to such a criterion. The difference may be summarized by saying that 

in character recognition one's aim is to save money and in biology one's 

aim should be to advance science. 

It is a very unsatisfactory state of affairs in automatic classifica

tion in biology that there are numerous methods that demand consideration 

(for a survey of some methods studied by plant ecologists, see [33] and 

l34]) and that, in a particular situation, there is little on which to base 

a choice. It seems that the absence of a clearly definable criterion for a 

successful classification, which is clearly related to its purpose, is at 

the root of the difficulty. 

The use of a numerical criterion does not by itself, as has been sug

gested, represent an advance over traditional methods if this criterion is 

not related to the puPpose of the classification. The situation in numeri

cal taxonomy may be illustrated by the following analogy, Imagine a situa

tion where the different technologies would have evolved with a relative 

speed much different from the one actually observed, such that there would 

have been a computer technology as we at present have, but that engineering 

mechanics would still be at the medieval level. Then bridges would still 

be built, but on an appropriately smaller scale, and with little under

standing of the mechanical principles involved. In such a situation, it may 

well be imagined that computer programs would be used to try different ways 

of putting stones or wooden beams together to form a bridge (just as numer-
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ical taxonomists now use computer programs to construct classifications) 

and that a numerical criterion would be used to compare different designs. 

Although this is reminiscent of the present situation in the automatic 

construction of classifications, it seems hard to push the analogy so far 

as to imagine that the numerical criterion used in bridge-design would have 

no clear connection with the purpose of the bridge; it is rather obvious 

that various designs would be compared by means of a numerical criterion 

which is a function of the weight the bridge can carry. This is obvious 

only insofar as the purpose of the bridge is obvious and is used as the 

guiding principle in its design. 

Perhaps, something may be learned by studying some other situations 

where the criterion for the success of the classification is clear. One 

such situation is where a set of numerical variables have to satisfy a num

ber of conditions, each of which is expressed as an equation in which one 

or more variables occur. In other words, it is required to solve a set of 

simultaneous equations. The fact that two variables occur in the same equa

tion means that they interact: if one is changed the equation will, in 

general, no longer be satisfied unless the other undergoes a compensating 

change. In this context classification means that strongly interacting 

variables should be in the same class and variables in different classes 

should interact at most weakly. The success of a classification is unambi

guously defined if the equations may be solved in such a way that the clas

sification is taken advantage of. 

Consider, as an example of such a method, a simple classification with 

only two classes v1 and v2 of variables. Suppose that the equations are 

also partitioned into disjoint classes E1 and E2 . Solve the set E1 for 

variables in v1 assuming those in v2 to be fixed at the value previously 

obtained (or, if no such values are available, at an arbitrary value). Then, 

keeping the variables v1 fixed at the values just found, solve E2 for vari

ables v2 . Repeat this iteration until successive partial solutions have not 

changed. In this situation a good classification would be one where v1, v2 , 

E1, and E2 are chosen in such a way that the variables of v1 occur at most 

weakly in the equations of E2 , and vice versa. In this situation the better 

of two classifications would be the one requiring fewer iterations. 
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As a last example where a classification problem arises, consider the 

situation where a designer has to construct a form which is determined by a 

large number of variables, which have to satisfy a large number of condi

tions. The form might be the lay-out of a human settlement (Alexander l 1]) 

determined by about a hundred variables which have to satisfy a number of 

conditions of the same order of magnitude. In general, there may not exist 

a form which satisfies all conditions to the required extent, and the de

signer aims at maximizing a goodness-of-fit criterion with respect to all 

conditions simultaneously. The designer cannot pay attention to all vari

ables at once; suppose he finds an iterative design process by first con

centrating on some sub~et v1 of the variables and a suitable subset E1 of 

the conditions, finding a provisional form that maximizes goodness-of-fit 

locally, and then proceeding with other subsets v2 and E2 . Interaction 

between two variables occurs when both are involved in the same condition. 

If, initially, the condition is satisfied and one of the variables is 

changed, the condition is, in general, no longer satisfied unless the other 

variable is subjected to a compensating change. 

Thus, if there is interaction between v1 and v2 , the designer may have 

to start anew, because, when concentrating on v2 , he has made changes that 

necessitate compensating changes in V 1 , and vice versa. If there is not 

too much interaction between v1 and v2 , the successive approximations 

become more satisfactory. Thus we see that here, too, success of the method 

depends on good classification. Alexander [1] was concerned with architec

tural and industrial design; Brams [11,12] recognized that Alexander's 

method may be used for classification in another context. 

In the last two examples the criterion of successful classification is 

quite clear: it is the number of iterations required to attain a satisfac

tory solution (or form). As we said, it seems to us that the use of mathe

matical methods cannot be attempted if the criterion is of the form "most 

meaningful" or "explaining as much as possible". It does not seem to be 

possible to bridge with mathematical reasoning the gap between criteria of 

this form and the operation of an algorithm suitable for execution by com

puter, Therefore, we propose to study in its most general aspect the ite

rative solution of systems of equations. What makes the system difficult to 

solve, or as it may also be said, what makes the system complex, is inter-
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action of variables. In the above examples, if the two sets of variables do 

not interact, one iteration suffices. Now, what can one do if a problem is 

too complex? One can try to apply the strategy of "divide, and rule"; in 

this situation it means to find out whether the complex system is, perhaps, 

composed in a sirrrpZe way of aorrrpZex subsystems. Each of these subsystems 

presents a smaller problem, and it may be attacked in the same way. Such a 

decomposition of a complex system into a simple system of complex subsys

tems seems to us a classification of which the success may be tested in an 

unambiguous way. 

By studying the phenomenon of complexity in its own right, we shed 

light on the problem of classification in this context. Because complexity 

also occurs in a wider context, we expect that a better understanding of 

complexity will contribute to a conceptual foundation of classification in 

biology. To do this, criteria of the form: "most meaningful" or "explaining 

as much as possible" would have to be expressed in terms of complexity and 

operations, mathematically defined in terms of complexity, can then be ex

pressed unambiguously in terms of an algorithm that can be executed by 

computer. In this tract, only a small part of this program is carried out: 

a mathem~tical definition of complexity is attempted; subsequently, it is 

shown that the classification of qualitative data and of quantitative data 

may be expressed in terms of complexity; in the case of quantitative data, 

the corresponding concept of complexity in a covariance matrix turns out to 

be of mathematical interest; finally, the solution of a certain type of 

system of equations is treated along the lines sketched in this introduc

tion. 

1.2. INTERACTIONS AS ADDTTIVE CONTRIBUTIONS TO COMPLEXITY 

We intend to make precise the concept of aompZexity and the investiga

tions to be described in the sequel are motivated by the desire to see 

whether entropy is as useful for the measurement of complexity as it has 

proved to be (in the mathematical theory of communication) for the measure

ment of the possible information content of a signal. A definition of com

plexity which is simple and not yet precise enough to motivate a mathema

tically defined measure, is: 
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Complexity is the way in which a whole is different from the composition of 

its parts. 

Let us supplement this by postulating that the complexity of the whole 

is more than the sum of the complexities of the parts if it is different 

from their composition and, if not different, equal to it. In the first 

case, we say that there is interaction between the parts and that the 

amount of interaction equals the difference between the complexity of the 

whole and the sum of the complexities of the parts. Therefore, if we can 

find a suitable measure for these interactions, we shall regard them as 

additive contributions to .complexity; that is, for every partition of the 

whole, its complexity should equal the sum of the interactions between the 

parts plus the sum of the complexities of the parts considered by them

selves. 

Let us call the whole a system and its parts subsystems. Suppose, for 

instance, that a system S has been partitioned into subsystems s1 and s2 , 

which are sub-partitioned into s11 , s 12 and s21 , s22 , s23 , respectively, 

and so on. We shall restrict ourselves to those domains of investigation 

where there is some stage where the partitioning can be carried no further; 

the corresponding subsystems are called the components v1 , .. ,Vn, which are 

considered to be the elements of the set S. 

v1 components 

subsystems 

system 

figure 1.1 

A decomposition of the system S 

This may be pictured as in figure 1.1, where the number of partitions 

between Vi and Smay depend on i. Let us write C for the complexity of a 

subsystem and R for the interaction between subsystems. We can express 
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the above in a formula as follows.: 

C(S) = R(s,,s2) + C(S1) + C(S2) = 
= R(s 1,s2 ) + R(s 11 ,s12 ) + R(s21 ,s22 ,s23 ) + 

+ c(s 11 ) + c(s12 ) + c(s21 ) + c(s22 ) + c(s23 ) 

C(S) - c(v,) - ... - C(Vn) = 

= R(s 1,s2 ) + R(s 11 ,s12 ) + R(s21 ,s22 ,s23 ) + 

This last expression gives the difference between the complexity at 

the level of Sand the sum of the complexities at the level of the V's in 

terms of the interactions at the partitions needed to obtain the decompo

sition of S into v 1, ... ,Vn. Within a certain domain of investigation it may 

well be the case that the decomposition of subsystems can only be done a 

finite number of times. When a certain system is studied, this number de

pends, in general, on the means with which decomposition is carried out. 

For instance, 'in the study of matter, the level at which subsystems appear 

as atomic components depends on the maximum energy of the disturbances 

taken into account. We shall take for granted that, in our case, v 1, .•. ,Vn 

cannot be decomposed any further. Accordingly, we shall take 

C(V 1) + ... + C(Vn) as the zero level of complexity and this yields an ex

pression for the complexity of S which is a sum of interactions only. 

To define, as we have done, complexity as the sum of the complexities 

of the parts plus the interaction between them is like defining an onion as 

a smaller onion with a skin around it. After taking away the skin, it turns 

out that the smaller onion also has a skin around it. When we continue to 

separate onion from skin, we end up with all skin and no onion. In the same 

way, when we try to separate complexity from interaction, we keep on find

ing interactions and the complexity itself is elusive. Unlike the example 

of the onion, the decomposition process may not have an end. Atoms of 

matter turned out to be composed of elementary particles, and these, in 

turn, proved to be composite. 

Now that complexity has been interpreted as a sum of interactions, we 
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only have to express interaction in a mathematical definition, which we 

shall find in information theory. Inevitably, perhaps, the result is much 

more restricted in applicability than the intuitively understood concept of 

complexity. Such is also the case with, for instance, "force". When we say 

"By the sheer force of his personality, ••. " something at once richer and 

more vague is denoted than the product of mass and acceleration, which is 

the meaning of "force" in physics. "Complexity" will have undergone an 

equally great and, we hope, an equally useful change by the end of this 

chapter. 

Of course, the considerations in this section are only of interest if 

it is possible to give a mathematical definition of a system to which the 

above description is applicable. Such a definition is given in 1.4, where 

it is also shown that it allows an amount of interaction to be defined 

which has the properties discussed above. In chapter 2 such a system is 

used as a mathematical model for qualitative data. 

1.3. ELEMENTS OF THE QUANTITATIVE STUDY OF INFORMATION 

1.3,1. INFORMATION AND ENTROPY 

In the previous section we argued that complexity can be reduced to a 

sum of interactions. We should, therefore, find a measure of interaction 

applicable to subsystems. Information theory provides such a measure which 

is applicable between subsystems of a very general nature. It derives from 

information theory (Shannon [53]), where entropy was introduced as a mea

sure of uncertainty. In this section we present the elements of information 

theory in such a way that the relation between information and uncertainty 

is emphasized. 

Let there be random variables x and y with outcomes x , ... ,x and 
1 m 

y 1, .•• ,yn, respectively, and with the joint probability distribution 

Pr(x=x. and y=y.) = r .. > O. Let the marginal distributions be 
i J iJ 

for i = 1, ... ,m and 

for j = 1, .•. ,n. 
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We shall first consider the case where n = 2 and we shall study t•he 

situation where only the outcome of x can be observed. In such a situation 

one may be interested in the information contained in an outcome of x about 

the corresponding unknown outcome of y. Let the conditional probability 

Pr(x=xily=y1 ) = pi and Pr(x=xily=y2 ) = qi' i = 1, ••. ,m. Suppose that the 

outcome of xis known to be x. and that p. is much greater that q .• Then 
l l l 

one would consider the outcome y 1 of y more likely than without this know-

ledge: one can say that the outcome of x contains information about the 

corresponding outcome of y. This can be made more precise with the aid of 

the formula for conditional probability: 

Pr ( x=x. I y=y . ) == 
l J 

= Pr(x=x. and y=y.)/Pr(y=y.) 
l J J 

Pr (y=y. I x=x. )Pr(x=x. ) /Pr (y=y.) 
J l l J 

for j = 1 ,2, where Pr(x=x.) = s. and Pr(y=y.) = t. are the marginal proba-
i l J J 

bilities. Hence, 

Pr(y=y 1 lx=xi) 
--,---'-r---"'--,-:: 
Pr(y==y2 1x=xi) 

Pr(y=y 1 ) Pr(x=xily=y 1 ) 

Pr(y=y2 ) Pr(x=xily=y2 ) 

Good [20] introduced the quantities: 

O ( y=y 1 I x==x i ) = 

= Pr(y==y 1 lx=xi)/Pr(y=y2 1x=xi) and 

to represent, respectively, the odds of y = y 1 given x = xi and the initial 

odds of y = y 1 • Their quotient he called the factor in favour of y == y 1 in 

virtue of the observation x = x .. This gives rise to the discrimination in-
i 

formation (Kullback [31]) contained in the observation x = x. for the dis
i 

crimination between y = y and y = y · 1 2. 

p. Pr(x=xily=y 1 ) 
ln q: = ln Pr(x=xily=y2 ) = ln(O(y=y 1 lx=xi)) - ln(O(y=y 1 )). 
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The mean of this expression under condition y = y 1 is called the 

discrimination information of the distribution p = (p 1 , •• ,pm) against the 

distribution q = (q1 ,.,.,4m): 

( 1. 1 ) 
m 

I(p;q) = I 
i=1 

p . ln ( p . / q . ) . 
1 1 1 

The less the distributions differ, the less information an outcome of x 

contains about an outcome of y. In fact, the discrimination information 

satisfies Gibbs' inequality: 

m 
1. 2) I(p;q) I 

i=l 
p. ln(q. /p.) 

l l 1 

m 
> - I 

i=l 
p. (q./p.-1) = o, 

l l l 

which holds in virtue of the fact that, for a> O, ln(a) :::._ a-1 with equal

ity if and only if a= 1. This shows that Gibbs' inequality is an equality 

if and only if the distributions are the same: p. = q. for i = 1, ... ,m. 
l l 

Thus, the discrimination information may be interpreted as a measure of the 

difference between the two distributions. 

In his mathematical theory of communication, Shannon [53] introduced 

the notion of uncertainty in the outcome of a discrete random variable, He 

sought to express it as a function Hof the probability distribution 

(p 1 , ••• ,pm) of the random variable, which he required to have the following 

properties: 

( 1.3) 

( 1. 4) 

( 1. 5) 

His continuous in the pi. 

If p. = 1/m for i = 1 , ••• ,m, then H should be a monotonic in-
1 

creasing function of m. 

H(p 1 , •. ,pm)= H(p , ... ,p 2 ,a) + aH(p 1/a,p /a), for all 
1 m- m- m 

permutations of the p. 'sand where a= p + p. 
1 m-1 m 

Shannon showed that such a function H must have the form 

H = -K I:= 1 pi ln(pi), where K is a positive constant. We shall suppose the 

units to be chosen such that K = 1. 
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Now, we can express the information contained in an outcome of x about 

the corresponding outcome of y as the difference between H( t 1, t 2 ), the 

prior uncertainty of y, and the average posterior uncertainty. Under the 

condition that x = x., the posterior uncertainty 1s 
1 

H(Pr(y=y 1 jx=x. ),Pr(y=y2 jx=x. )) = H(r. 1/s. ,r. 2 /s. ). 1 1 1 1 1 1 

Because Pr(x=x.) = s., we have for the average posterior uncertainty: 
1 1 

m 
z: s. H(r. /s- ,r.is.) = 

i=1 1 1 1 1 1 

m 
- - z: (ri1 ln(r. ,Js.) + r. 2 ln(r. 2/s. )) ::: 

i=1 1 1 1 1 1 

( 1. 6) m 

L (s. ln(s.) - p. t 1 ln(p1.t 1) - q. t 2 ln(q1.t2 )) = 
i=1 1 1 1 1 

We use Jensen's inequality to show that the second term cannot be neg~ 

ative, which implies that the average posterior uncertainty is not greater 

than the prior uncertainty. Let f be a concave function of one real argu

ment. Let a 1, •.. ,an be non-negative and let w1 , ••• ,wn also be non-negative 

and have unit sum. Then Jensen's inequality states that (see, for instance, 

Hardy, Littlewood, and P6lya [24], theorem 86): 

f(w 1a 1+ ... +wnan) .::_ w,r(a1 ) + . , . + wnf(anL 

If we put f(x) = -x ln(x) for x > 0 and f(O) = O, we have 

m 

z: (f(t 1pi+t2qil - t 1f(pil 
i= 1 

t2f(q.)) > o. 
1 -

We have O < t 1 < 1 because all r .. were assumed to be positive. Then 
lJ 

we can have equality only if p. = q. for i = 1, ..• ,n. In that case, the 
1 1 

average posterior uncertainty equals the prior uncertainty and the dis-

crimination information of the p. against the q. vanishes. Therefore, we 
1 1 

say that there is no information contained in an outcome of x about the 
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corresponding outcome of y. Also, if p. = q. for i = 1, ... ,n then r .. = 
1 1 1J 

= s.t., which means that x and y are statistically independent. 
1 J 

Suppose now that p and q are not the same distribution. For which 

prior probabilities t 1 and t 2 = 1-t 1 is the difference (in terms of infor

mation) between p and q greatest? That is, what can one say about the maxi

mum of H(t 1p+t2q) - t 1H(p) - t 2H(q) if t 1 is allowed to vary between O and 

1? To see what happens, let us consider the first and second derivatives. 

m 
- - l (1 + ln(t 1p.+t2q.))(p.-q.) - H(p) + H(q) = 

i=1 · i 1 1 1 

m 
= l (p.ln(p.) - p.ln(t 1p.+t2q.) - q.ln(q.) + q.ln(t 1p.+t2q. )) = 

i=1 1 1 l l l l 1 1 1 1 

For O < t < 1 the second derivative is negative, which implies that 
1 

a maximum of H(t 1p+t2q) - t 1H(p) - t 2H(q) is unique and it occurs for that 

value of t 1 for which (1,7) vanishes. It is the value for which t 1p + t 2q 

is as much different (in terms of discrimination information) from pas it 

is from q. 

The relation between discrimination information and uncertainty is 

illustrated in the following situation. Let (x1 , ••• ,xm) be the outcomes of 

a random variable x and Pr(x=x.) = p., j = 1, ••. ,m with p 1 + ••• + p = 1. 
J J m 

Suppose that the outcome of x cannot be observed with certainty; that is, 

if the outcome is x., the 
1 

probability is r .. that x. is observed, 
lJ J 

r 1 . + ... + r . = 1 for j 
J mJ 

= 1, ••. ,m. In the special case where there is no 

uncertainty in the observation, we have r .. 
ll 

= 1, and therefore also 

( 1.8) r 1 .p1 + ... + r .p = p., 
J mJID J 

for j == 1 , ... ,m. 



14 

We shall consider a more general situation, where we do not necessar

ily haver .. = 1, but where condition (1.8) still holds. If the outcome is 
ll 

x., the posterior uncertainty is -l~ 1 r .. ln(r .. ). This occurs with prob-
1 J= lJ lJ 

ability p.; hence, the average posterior uncertainty is 
l 

- r .. ln(r .. ) . 
lJ lJ 

If the outcome is xi, then we are interested in the discrimination in

formation between the distributions (ri 1 , ••• ,rim) and (p 1, ... ,pm) which is 

l~ 1 r .. ln(r .. /p.); hence, the average discrimination information is 
J= 1J lJ J 

m m 
l p. l r .. ln(r .. /p.) = 

i=1 l j=1 lJ lJ J 

m m m m 
= - l ln(p.) l r .. p. + l p. l r .. ln( r .. ) :::: 

j=1 J i=1 lJ l i=1 1 j=1 lJ lJ 

m m m 

l - PJ· ln(p.) - l Pi l 
j=1 J i=l j=1 

r .. ln(r .. ). (by condition (8)) 
lJ lJ 

Thus, we have shown that the average discrimination information in the ex

periment is the prior uncertainty minus the average posterior uncertainty. 

1.3.2. INTERACTION AS A MEASURE OF DEPENDENCE 

Suppose that a random variable x has outcomes (x 1 , ••• ,xm) and that a 

random variable y has outcomes (y 1 , .•• ,yn) and that x and y have joint 

probability distribution 

r .. = Pr(x=x. and y=y.), 
lJ l J 

i = 1, ... ,m, j = 1, ... ,n. 

Let the marginal distributions be p1. = '~ 1 r .. for i = 1, .•• ,m and lJ= lJ ,m . 
q. = l· 1 r .. for J = 1, ..• ,n. 

J i= 1J 
Consider the discrimination information between the jointly distri-

buted variables, denoted by x,y and the variables distributed according to 

the product of the marginal distributions, denoted by xx y: 



( L 9) 
m n 

I(x,y;xxy) = l l 
i= 1 j= 1 
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r . ln ( r . . / ( p . q . ) ) . 
lJ lJ l J 

According to the previously given interpretation of discrimination in

formation, this is the mean information in favour of the joint distribution 

against the hypothesis of independence According to Gibbs' inequality 

(1,2), I is zero in case r .. = p.q. for all i and j, which implies statis-
lJ l J 

tical independence, and is positive otherwise. This quantity may therefore 

be called the informational measure of dependence between x and y as im

plied by their joint distribution. It will often be called the interaction 

R in the joint distribution, or between the random variables distributed 

according to it: 

R(x,y) = I(x,y;xxy) .::_ 0. 

We may express this in entropies as follows: 

(1.10) R(x,y) = H(x) + H(y) - H(x,y) .::_ 0, 

If R attains its minimum, then H(x,y) = H(x) + H(y); R can therefore 

also be regarded as the amount by which the information in x,y is short of 

its maximum, hence, we shall also call R the redundancy in x,y because it 

is the information contained in x and y separately that J.s redundant. 

Shannon [53] calls R(x,y)/H(x,y) redundancy; we shall refer to this quo

tient as the relative redundancy. 

If we have k random variables x 1, ... •~ we have analogously to (1.10): 

(1.11) 

For instance, we find for the interaction between x 1 and the joint dis

tribution x2 , ... ,~: 
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· To obtain more insight into the interaction between random variables, 

we shall study not only the entropy of a marginal distribution, like H(x) 

in (1.10), but also of a conditional distribution. For the entropy of x 

under condition that y = y. we have: 
J 

H(xly=y.) 
J 

m 

I 
i=1 

(r .. /q.) ln(r .. /q.) 
iJ J iJ J 

m 
= ln(q.) - (1/q.) 

J J I 
i=1 

r .. ln(r .. ). 
iJ iJ 

If we average this expression over the outcomes y. of y, we obtain 
J 

H(xly), which is called the conditional entropy of x given y: 

n n m 
H(xly) = I q. ln{q.) - I I r .. ln(r .. ) 

J J iJ iJ 
( 1. 12) j=1 j=1 i=1 

= H(x,y) - H(y). 

Thus we find 

( 1. 13) 

H(x,y) = H{y) + H(xly) and, similarly 

= H(x) + H{ylx); hence, 

R(x,y) = H(x) - H(xly) = H{y) - H(ylx). 

These results were obtained by Shannon [53], who used them in his 

model for the transmission of information through a noisy channel In this 

model, the input is represented as a random variable y and the output as a 

random variable x. The mean information transmitted between a pair of out

comes of y and xis then R(x,y) = H{y) - H{ylx) which is the information 

contained in y (the input) minus the uncertainty in y given x. This last 

quantity, the equivocation, is zero if x and y are identically distributed, 

which means no noise in the channel, and positive otherwise. R(x,y) can 

be interpreted as the information about y contained in x. Indeed, in our 

intrr,ductory example, we found that ( see ( 1 6)) H(y) = H( t 1 , t 2 ) and 

H(ylx) = H(t 1,t2 ) - H(t 1p+t2q) + t 1H(p) + t 2H(q) and, hence, 

R(x,y) = H(t 1p+t2q) - t 1H(p) - t 2H{q). 
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We saw that H(x,y) - H(y) is the entropy of the conditional distribu

tion averaged over the outcomes of y. This is the reason for writing H(x!y) 

for H(x,y) - H(y). Intuitively, it is apparent that H(xly) .::_ H(x!y,z); the 

intuition being that the uncertainty of x cannot be increased by the know

ledge of another random variable z, however irrelevant it may be. Let 

p(x,y,z) denote the joint probability of x, y, and z; p(x,y) the marginal 

distribution lz p(x,y,z); p(zlx,y) the conditional distribution 

p(x,y,z)/p(x,y); and so on for the other variables. 

THEOREM 1.2 

(Khinchin [29]; the shorter proof given here is similar to 

Gallager [ l 7 J ) . 

H(xly) - H(xly,z) vanishes if p(x!y) = p(xly,z) for all values of (x,y,z) 

such that p(y,z) > 0, and is positive otherwise. 

PROOF 

H(x!y) 

= H(x) 

H(xJy,z) = 

H(x!y,z) - (H(x) - H(x!y)) = 

= H(x) + H(y,z) - H(x,y,z) - (H(x) + H(y) - H(x,y)) = 

I p(x,y,z) ln(p(x,y,z)/(p(x)p(y,z))) + 
x,y,z 

L p(x,y) ln(p(x,y)/(p(x)p(y))) = 
x,y 

I p(x,y,z) ln(p(xly,z)/p(x!y)) = 
x,y,z 

L p(y,z) L p(xly,z) ln(p(xly)/p(xly,z)), 
y,z X 

where summation is understood to involve only those (x,y,z) for which 

p(y,z) > O. According to Gibbs' inequality (1.2), the inner sum vanishes 

only if p(xly) = p(xJy,z) for all values of x, and is negative otherwise. 

This concludes the proof. 
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1.3,3. DISTANCE IN TERMS OF INTERACTION 

In the previous section we saw that the interaction R between the 

discrete random variables x and y vanishes if they are statistically in

dependent. It will be useful to have a function of two random variables 

that vanishes, for instance, when these random variables are the same and 

that does not, in general, vanish when they are statistically independent. 

We shall see that there is a function that has these properties. 

Consider a function f that is defined for pairs of arbitrary entities 

X, Y, and Z that has the following properties: 

( 1. 14) f(X,Y) .::_ 0 with equality if X = Y, 

(1.15) f(X,Y) = f(Y ,X), 

( 1. 16) f(X,Y) + f(Y,Z) .::_ f(X,Z). 

Such a function has the most important properties that a distance function 

should have, more precisely, such a function f is known as a pseudometria. 

It would be called a metric if it would also have the property that 

f(X,Y) = 0 implies X = Y. 

LEMMA 1. 1 

If x and y are random variables as introduced in the beginning of 

1. 3.2, then 

(1.17) D(x,y) = H(x,y) - R(x,y) 

is a pseudometric. 

PROOF. By (1.4), (1.10), and (1.12) we have 

(1.18) 

D(x,y) = 2H(x,y) - H(x) - H(y), 

= H(ylx) + H(xly), and 

m n 
== I 

i=1 
p. H(ylx=x.) + l q. H(xly=y.). 

i i j=1 J J 



The entropy of a discrete probability distribution is non-negative 

and vanishes only if one of the probabilities is 1. Therefore, D vanishes 

only if, for each outcome x. of x with positive probability, there is one 
1 
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outcome of y that has positive probability, and vice versa. In such a case 

x and y are said to be functionally dependent and we can conclude that 

D(x,y) vanishes if and only if x and y ar.e functionally dependent discrete 

random variables. Any discrete random variable is functionally dependent 

upon itself and, therefore D satisfies (1.14). It is trivial to verify 

that D also satisfies (1.15). 

To show that D also satisfies the triangle inequality (1.16), suppose 

that x, y, and z are discrete random variables for which a simultaneous 

distribution function exists. 

D(x,y) + D(y,z) - D(x,z) = 

= 2H(x,y) - H(x) H(y) + 2H(y,z) - H(y) + 

H(z) - 2H(x,z) + H(x) + H(z) = 

= 2(H(x,y) + H(y,z) H(x,z) - H(y)) > 

~ 2(H(x,y) + H(y,z) - H(x,y,z) - H(y)) = by (1.5) 

by theorem 1.2. 

This completes the proof of Lemma 1.1. 

If we replace the entropies in (1.18) by entropies conditional on a 

third variable, say z, we obtain an expression that may be called the con

ditional distance D(x,ylz). This may be shown not to exceed the corres

ponding unconditional distance: 

D(x,y) - D(x,ylz) = 

= 2H(x,y) - H(x) - H(y) - 2H(x,ylz) + H(xlz) + H(ylz) = 

= 2R((x,y),z) - R(x,z) - R(y,z). 
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R((x,y),z) - R(x,z) = 

= H(x,y) + H(z) - H(x,y,z) - H(x) - H(z) + H(x,z) = 

= H(zlx) - H(zlx,y) .:_ O, by theorem 1 . 2. 

In a similar fashion we may verify that 

R((x,y),z) - R(y,z) .:_ 0, whence our result 

D(x,y) .:_ D(x,yjz). 

This completes the proof of Lemma 1.1. 

Note that D(x,y) ~ H(x,y); this suggests a normed distanced to be 

defined as 

d(x,y) = D(x,y)/H(x,y) if H(x,y) > O 
( 1. 19) 

= 0 if H(x,y) = 0. 

THEOREM 1. 3 

dis a pseudometric. 

PROOF. It is readily verified from the definition that dis non-negative 

and that it is symmetrical in its arguments. We also have d(x,x) = O if 

H(x) = O, by the definition, if H(x) > 0 because D(x,x) = 0. 

We shall now show that d satisfies the triangle inequality (1.16) for 

any simultaneously distributed discrete random variables x, y, and z. If, 

for any two pairs from (x,y,z), the joint entropy vanishes, x, y, and z are 

pairwise functionally dependent and the triangle inequality is trivially 

satisfied. In the case where only H(x,z) = O, (1.16) is also trivially 

satisfied. Suppose that the joint entropy vanishes for another pair, say 

(x,y}. In that case we have H(x) = H(y) = 0, H(x,z) = H(y,z) = H(z), and 

d(x,y) = O, d(y,z) = 1, d(x,z) = 1. 

Therefore, we only have to consider the case where H(x,y) > O, 

H(y,z) > O, and H(x,z) > 0 are simultaneously satisfied. We shall dis

tinguish the following possibilities: 



A: H(x,z) is a greatest among H(x,y), H(y,z), H(x,z). 

B: H(x,z) is neither the greatest nor the smallest among H(x,y), H(y,z), 

H(x,z). 

C: H(x,z) is a smallest among H{x,y), H(y,z), H(x,z) and H(y) ::_ H(x,z). 

D: H(y) > H(x,z). 

A: d(x,y) + d(y,z) - d(x,z) > 

~ (2H(x,y) - H(x) - H(y) + 2H(y,z) + 
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- H(y) - H(z) ~ 2H(x,z) + H(x) + H(z))/H(x,z) = 

= (D(x,y) + D(y,z) - D(x,z))/H(x,z) ~ O, by Lemma 1. 1. 

B: Suppose that, in addition to the condition already mentioned, 

H(x.,y) ~ H(x,z) ~ H(y,z). 

C: 

d(x,y) + d(y,z) - d(x,z) > 

~ (2H(x,y) - H(x) - H(y) + 2H(y,z) + 

H(y) - H(z))/H(x,y) - 2 + (H(x) + H(z))/H(x,y) = 

= 2(H(x,y) + H(y,z) - H(y))/H(x,y) - 2 = 

= 2(H(y,z) H(y))/H(x,y) ~ O. 

The assumption that H(y,z) ~ H(x,z) ~ H(x,y) gives a completely ana

logous derivation. 

d(x,y) + d(y,z) - d(x,z) ~ 

> 2 - (H(x} + H(y))/H(x,z) + 

+ 2 - (H(y) + H(z))/H(x,z) + 

2 + (H(x) + H(z))/H(x,z) = 

= 2(H(x,z) - H(y))/H(x,z) > O. 
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D: Suppose that, in addition to the condition already mentioned, 

H(x,y} ~ H(y,z), 

d(x,y) + d\y,z) - d(x,z) ~ 

> 2 - (H(x) + H(y))/H{y,z) + 

+ 2 - (H(y) + H(z))/H(y,z)+ 

- 2 + (H(x) + H(z))/H(y) = 

= (2H(y,z) - H(x) - H(z))/H(y,z)+ 

- (2H(y) - H(x) - H(z))/H(y) + 

+ 2(H(y,z) - H(y))/H(y,z) = 

= (H(x) + H(z))/H(y) + 

- (H(x) + H(z))/H(y,z) + 

+ 2(H(y,z) - H(y))/H(y,z) ~ O. 

The assumption that H(x,y) ~ H(y,z) gives a completely analogous deri

vation. 

This completes the proof of theorem 1"3. 

Jardine and Sibson [28] used the fact that dis a distance function. 

For a proof they referred to Rajski [45], but this is a mistake: Rajski, 

although, as far as we know, the first to state the fact, apparently 

thought a proof too tedious to write down. 

1.4. COMPLEXITY IN TERMS OF ENTROPY 

We shall discuss partitions in a finite set Tso far as to be able to 

show that everything derived for random variables with a finite set of 

outcomes can also be interpreted in terms of partitions. Suppose an equi

valence relation is defined among the elements of T. It is well-known (see, 

for instance, [36], p. 21) that such a relation corresponds to a partition 
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in T, which is a set (we shall call it X) of mutually disjoint subsets of T 

(we shall call them x1, .•. ,Xm, the classes of the partition) whose union is 

T. The correspondence is that the equivalence relation between two elements 

of T holds if and only if they are in the same class of the partition. Let 

Xi contain ni elements and let n = n 1 + • . • + nm, which is• then, the number 

of elements in T. We shall call p(X.) = n./n the relative frequency of X. 
J. ·J. l 

in T. 

Suppose we have two partitions in T, say X = (X 1 , ••• ,Xm) and 

Y = (Y 1 , ••• ,Yk). We shall define another partition in T which is called 

their joint partition (X,Y): Two elements t. and t. of Tare in the same 
J. J 

class of the joint partition if and only if they are in the same class of 

X and also in~tne same class of Y. In this way, each pair (X. ,Y.) of a 
J. J 

class from X and a class from Y defines a class in (X,Y), which we denote 

by (X,Y) ..• 
J.J 

We shall also use the product partition Xx Y, which is a partition in 

the set T x T, the set of all ordered pairs of elements of T. Two elements 

(t. ,t.) and 
J. J 

if and only 

(t!,t!) of T x Tare, by definition, in 
J. J 

it t. and t! are in the same class of X 
J. J. 

the same class of Y. In this way, each pair (X. ,Y.) 
J. J 

the same class of Xx Y 

and t. and t! are in 
J J 

of a class of X and a 

class of Y defines a class of the partition Xx Y, which we denote (XxY) ..• 
J.J 

This class has n.n. elements and the total number of elements of T x Tis 
2 J. J 

n; therefore, we find for the relative frequency of (XxY) .. in T x T: 
J.J 

p((XxY) .. ) = n.n./n2 = p(X.)p{Y.). 
J.J 1 J J. J 

It is often possible to say that each element from a set 1s of one of 

a certain number m of different kinds. If being the same kind is an equi

valence relation, this defines a partition in the set; each class of the 

partition corresponding to a kind. Then we can say that a certain amount of 

variety exists in the set. Suppose an amount Hof variety were to have the 

following three properties: 

a) His a continuous function of the relative frequencies of the classes, 

and of these only. 

b) In case each of the relative frequencies equals 1/m, H sould be a mono

tonic increasing function of m. 
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c) H(p , •.. ,p ) = H(p 1, •.. ,p 2 ,a) + aH(p 1/a,p /a), where a= p 1 + p 1 m m- m- m m- m 
and where p 1, ... ,pm are the relative frequencies of the classes. This 

should hold for all permutations of the p's. 

These are the same properties that Shannon required the uncertainty of 

a random variable to have. We think that these are also properties that one 

would reasonably expect an amount of variety to have. The meaning of prop

erty c) in terms of variety is the following. Suppose that we have a par

tition X' in T such that x1 = X1, ... ,X~_2 = Xm_2 ,X~_ 1 = Xm_ 1uXm. 

We could say that in X' the kinds indexed by m-1 and m have become in

distinguishable, and we would expect the amount of variety to have de

creased. According to property c) this is indeed the case; in effect, it 

says that the difference is the amount of variety in X 1ux under the par-
m- m 

tition (X 1,x ) multiplied by the relative frequency of X 1ux in T. 
m- m m- m 

It seems reasonable to require an amount of variety to have these 

three properties, and we shall do so in the sequel. Then, as Shannon showed, 

the amount Hof variety must have the form -K \~ 1 p. ln(p. ), the entropy li= i i 

of the set of relative frequencies. Again, we shall take the unit of en-

tropy such that K = 1. Ashby ([5], Chapter 7) considers an amount of vari

ety equal to ln(m), which corresponds to our definition in the case 

n1/n = ... = nm/n = 1/m. 

To every partition X = (X 1, ... ,Xm) of a set T there corresponds a 

random variable x with outcomes x 1,~.&,xm and with probabilities Pr(xi) = 

= n./n, the relative frequency of X. in T. If we have another random vari-
i i 

able y corresponding in the same way to a partition Y = (Y 1, ... ,Yk), the 

joint partition (X,Y) corresponds to a joint distribution of x and y. In 

the same way, the product partition corresponds to a random variable hav:ng 

as outcomes pairs (x.,y.), i = 1, ... ,m, j = 1, ... ,k such that Pr(x.,y.) = 
i J i J 

Pr(x. )Pr(y.). In this way, all results of information theory described in 
l J 

section 1.3 may be interpreted in terms of partitions of a finite set. 

We may interpret the results as applying to certain weight distribu

tions; the weights may be interpreted as either relative frequencies of the 

clas es of a partition or as probabilities of a random variable. In partic

ular, the entropy function is defined on a set of weights. If the weights 

are interpreted as probabilities, entropy is an amount of uncertainty. If 



the weights are interpreted as the relative frequencies of a partition, 

entropy is an amount of variety. 
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Let us now take up the definition of a system where we left it at the 

end of 1.2. There we argued that the total amount of complexity equals the 

sum of the interactions corresponding to decompositions necessary to de

compose the system into its set of components. We now specify the nature of 

the components v1, .•• ,Vn of the kind of system that we shall consider to be 

some partitions x1, .•. ,Xn of a set T of arbitrary objects. The system Sis 

then defined to be the joint partition of x1, ••• ,Xn and the composition of 

the components to be their product .partition. We assume that the inter

actions between the parts of the system are a function only of the relative 

frequencies of the partitions involved. Then, with respect to interactions 

and complexity, the system may be regarded as a set S = (V1, ..• ,Vn) of 

weight distributions, which are the marginal distributions of a given joint 

distribution. We are free to associate the relative frequencies of a parti

tion with this joint distribution, or a set random variables.· 

We defined complexity to be "the way in which a whole is different 

from the composition of its parts". Henceforth, we shall consider the 

system to be different from the composition of its components if the joint 

distribution is not the same as the product of the marginal distributions. 

Apart from the way in which, we are also interested in the amount ~y which 

the system is different from the composition of its components, and this 

would be the amount C(S) of complexity in the system S; this amount we 

define to be the discrimination information of the joint distribut:i..on 

against the product of marginal distributions. According to (1.2), this 

quantity can only vanish if the distributions are identical and is positive 

otherwise. According to (1.10) we have 

C(S) = H(V1) + ••• + H(Vn) H(S) = 

= f H(Vi) - H(S 1) +? H(Vj) - H(S2 ) + 
1 J 

+ H(S 1) + H(S2 ) - H(S) = 

= c(s1) + c(s2) + R(s 1,s2), 

where l means summation over all V.€S and l means summation over all VJ.€S2 • 
i 1 1 j 
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The set (X 1, ... ,Xn) of partitions of a finite set T corresponds to 

what is known in statistics as an n-dimensional contingency table. Each 

class of a partition X. corresponds to a category in the contingency table, 
l 

In chapter 2 we are especially interested in a situation (the "object-

predicate table") where n is large (say, 100) and where, for each of these 

partitions, the number of classes is small (typically, two), In the resul

ting 2100 contingency table al.most all cells are empty because the number 

of elements in Tis in the same order of magnitude as n. 

C(S) is, apart from a constant factor, the log likelihood-ratio appli

cable when testing the hypothesis of independence between all coordinates 

in the contingency table. The study of contingency tables from the point 

of view of information theory originated with McGill and Garner [35,18] and 

was continued by Kullback [31]. Although there are difficulties involved in 

testing of hypotheses in a table as described above (for difficulties 

arisin~ in a two-dimensional table, see [37]), we think that such analyses 

of C(S) as discussed in 2.2.1 and in 2.2.2 are relevant to descriptive 

statistics. 
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2. ANALYSIS OF QUALITATIVE DATA 

2,1, A "STRUCTURE" AS DEFINED IN QUALITATIVE DATA 

In the literature of numerical taxonomy a distinction is usually made 

between qualitative and quantitative data. The latter may be regarded as 

values of continuous variables. We shall assume quantitative data to be 

real numbers with such an interpretation that the usual operations of 

addition and multiplication make sense. An object described by a set of 

such quantities may then be regarded as a point in linear vector space if 

it is assumed, in addition, that the postulates for such a space make sense. 

For instance, if objects x and y are represented by points in linear vector 

space, any linear combination of these points must represent a possible 

object. 

These assumptions are rather restrictive and are often not justified 

for the sort of objects that biologists, sociologists, or planners are 

interested in. The criticism regarding the use of mathematical methods in 

these fields is sometimes based on the implicit assumption that objects are 

represented by ·sets of quantities as described above. In planning, the 

criticism takes the form that "values" are of overriding importance in 

human affairs and that mathematical methods necessarily "quantify" these, 

which is inadmissable. This criticism is partially answered by Negroponte 

who described the situation as follows: "The handling of qualitative in

formation is too often presumed unsuitable for the constitution of machines. 

Or it is granted feasibility only through abortive techniques of quantifi

cation. 11 [40, p. 62]. 

In the literature on numerical taxonomy an exact description of 

"qualitative data" is lacking, although it is generally agreed that they 

do not satisfy the above criteria for quantitative data; in particular, 

they are assumed to be values of a discrete variable. But it is often not 

stated whether these values are supposed to be ordered and, if so, what are 

the algebraic properties of the ordering. For instance, in the context of 

plant ecology, "qualitative" data indicate presences or absences of species 

of plants. These may be regarded as rounded-off quantities, but this cannot 

be said of the qualitative data considered in sociology or planning. 
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Before methods for the treatment of qualitative data are considered, 

we shall assume that they are values of a variable having only a finite set 

of possible values; we shall not assume any ordering between these values 

and we shall not assume that any operations are de.fined between values, 

irrespective of whether they are from the same variable. This means that 

all that can be said of a variable taking ~n object as argument is that it 

corresponds to a partition in the set of objects. This is the reason for 

our considering the components of the system (see 1.4) to be partitions in 

set T of arbitrary objects. Of this method Ashby [6] writes: "As its con

cepts are initially quite free from any implication of either continuity, 

or of order, or of metric,·or of linearity (though in no way excluding 

them) the method can be applied to the facts of biology without the facts 

having to be distorted for merely mathematical reasons." In the literature 

two interpretations of qualitative data (which are different from the one 

described above), namely as truth values or as rounded-off quantities, are 

encountered. We shall discuss them briefly. 

Qualitative data are often represented in the form of a rectangular 

array of zeroes. and ones. One interpretation is the following. Each row of 

the array corresponds to an object and each column to a predicate. The J-th 

entry of the i-th row of the array shows whether the i-th object 0. does i 
(when it is one), or does not (when it is zero) , possess the j-th predicate 

p.; that is, the entry is the truth value of the proposition "P.(O. )". 
J J i 

In [62] an array of zeroes and ones denoting truth values is intro-

duced under the name "object-predicate" table. In order to obtain a set of 

"most significant" predicates the following procedure is carried out. Ini

tially, the entries are identified with the real numbers denoted by the 

same symbols "zero" or "one". Subsequently, the columns are imbedded in a 

vector space over the real numbers and the matrix of inner products between 

pairs of columns is formed. Those predicates whose representative points 

have smallest distance to a subspace spanned by k first eigenvectors of the 

matrix are considered to be most significant. Considering that truth values 

are the original meaning of the entries of the object-predicate table, the 

validity of this procedure is at least not obvious; for some applications 

a justification may well exist, but, then, it should be given explicitly. 
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In some applications where object-predicate tables arise such a justi

fication is possible because the entries may not only be interpreted as 

truth values, but also as real numbers rounded off in the extreme. For in

stance, in plant ecology an object may be a sampling area and a predicate 

then corresponds to the presence of a particular species of plant in that 

area. Often, if less than a certain percentage of the area is covered by 

plants of this species, its presence is considered negligible and a zero is 

entered. In such a case the entries zero or one may be regarded as rounded

off real numbers. But then we are dealing with quantitative data where the 

method of principal components is applicable (see 3,2). In such a case, 

rounding off is a (possib.iy) necessary evil and it should only be done 

where computational advantage outweighs loss of information. It is not to 

be expected that rounding off to two values always turns out to be optimal. 

Moreover, truth values do not seem to be particularly suited for the 

representation of qualitative data. Suppose objects are animals and there 

are predicates like "smooth", "hairy", "prickly", and "meat-eating". Of 

each of these one can separately determine the truth value, but then the 

special relationship between the first three is lost. It seems better to 

consider a variable "texture of skin" that can take as values "smooth", 

"hairy", or "prickly". We shall not use "predicate" in the sense of the 

predicate calculus of logic, but we shall use it to denote a variable 

taking an object as argument and having a finite number of values. We do 

not assume that an ordering, partial or complete, exists among these values; 

also, we do not assume any operation to be defined on them. Therefore, we 

can only say that each predicate corresponds to a partition in the, sup

posedly finite, set of objects. For convenience, we shall exhibit object

predicate tables where the predicates assume only two values. In order to 

emphasize that the entries are arbitrary marks, we write them as nought 

( "O") or cross ( "X"). 

In 1.4 we defined the components v1, ... ,Vn of a system as partitions 

x1, ... ,Xn in a finite set T. This system is an object-predicate table if 

the predicates are the partitions x1, ... ,Xn and T the set of objects. Two 

objects are in the same class of the partition X., i = 1, ... ,n, if the i-th 
1 

predicate assumes the same value for them. Thus, an object-predicate table 

defines a set of partitions in the objects and this we define to be a 
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structure in the set of objects. In chapter 3 we shall consider the case 

where objects may be represented as points in an n-dimensional vector space 

with an inner product and we shall see how a set of objects induces a 

structure in this space in an analogous fashion. 

2.2. DECOMPOSITIONS OF COMPLEXITY 

2.2.1. HIERARCHICAL DECOMPOSITION OF COMPLEXITY IN AN OBJECT-PREDICATE 

TABLE 

We believe that the identification of an object-predicate table with 

a system is of practical importance. When viewed as a system of interacting 

components it is possible to express the purpose of a method of analysis in 

terms of complexity. When viewed as an array of marks identifying the 

values of the predicates it is easy to compute the joint partition in the 

set of 0bjects of any set of predicates and then to compute the interaction 

between sets of predicates, which is a contribution to complexity. 

It is imp~rtant that the computation of interaction be not restricted 

t~ pair~ or predicates, because otherwise complicated patterns of inter

action. that are not restricted to pair-wise effects, would be beyond anal

ysis, Of course, the computational effort required is greatly reduced when 

most of the interaction is accounted for by pair-wise effects and it is 

important to be able to detect this. 

To a diagram as in figure 1.1 there corresponds a hierarchical decom

position of the total amount C(S) of complexity. Hierarchical, because each 

proper subset of components has only one other subset (or the entire set) 

as its immediate predecessor; a decomposition, because at each split a part 

of the remaining amount of complexity is converted into an interaction. The 

effect of the complete decomposition is that C(S) is found to be equal to a 

sum of interactions. 

Such a decomposition scheme may be constructed in many different ways. 

Which of these is to be preferred depends on the purpose of the analysis. 

One purpose could be to find a "natural" subdivision into subsystems, that 

is, a division such that between subsystems there is little interaction 

compared to the amounts of complexity within. This means that as much in-
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teraction as possible should correspond to splits high in the decomposition 

scheme. We hope that a system, whose complexity is beyond us, is composed 

in a simpte way of comptex subsystems. Applying such a decomposition corre

sponds to the well-known tactic: divide, and rule. Such a system may also 

be called "near-decomposable" or it may be said to have a "clustering" 

structure. To find such a structure, if p~esent, or else to show that none 

exists, entails considerable computational difficulties. 

The quest for near-decomposable structure seems relevant to the pur

pose of "general systems theory" [9], This theory abstracts from properties 

peculiar to physical, biological, or social systems in order to find prop

erties applicable to all o~ them. However, little attention is paid by 

von Bertalanffy [9] to the significance of near-decomposability. On the 

other hand, Simon [55] studies hierarchic structure in a variety of systems. 

He argues that the very mechanism of evolution of complex systems, whether 

natural or artificial, makes for a near-decomposable structure (the parable 

of Tempus and Hora). 

Another purpose may be to give as succinct as possible a summary of 

interactions present in the system. A decomposition scheme useful to this 

purpose would have strong interactions associated with splits low in the 

scheme; the summary is obtained by disregarding all interactions above a 

certain leveL Williams and Lambert [68] introduced "association analysis"• 

which was intended for use with qua~titative data rounded off to two values: 

"presence" and "absence". 

Their work is remarkable because the method is applicable to qualita

tive data. They used "association" instead of interaction, which is, per

haps, unfortunate, because most people think of it as something like posi

tive correlation. They included the positive as well as the negative, in 

short, what we call interaction. They did not give a numerical definition 

of interaction, but used instead a numerical criterion for deciding which 

subdivision to effect. This criterion involves computing tail probabilities 

for testing independence in large numbers of 2x2 contingency tables. Un

fortunately, these are about the only contingency tables (see, for instance, 

[37], p. 317) where the asymptoti~ally-approximating chi-squared distribu

tion gives poor results; so either prohibitively laborious exact calcula

tions are called for, or else corrections must be applied. Without any 
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corrections, a mathematical analysis of the properties of this criterion 

seems rather formidable; with them, it seems hopeless. 

2.2.2. DECOMPOSITION OF COMPLEXITY ACCORDING TO ORDER OF INTERACTION 

In section 2.2.1 we described a way of writing complexity as a sum of 

terms, each of which is the interaction between two sets of components. 

Here, we shall first define the amount<\_ of interaction of order kin the 

system, which involves all sets of components of size k. The complexity 

turns out to be the sum of such a.mounts of interaction where k runs through 

2, ... ,n. We shall prove that the<\_ are monotone non-decreasing with in

creasing k. 

Let the components of the system be a set (x1, ..• ,xn) of jointly dis

tributed random variables. We define the average entropy of order k as: 

where the summation is over all subsets (y 1, ... ,yk) of (x 1 , •.. ,xn). The 

average interaction in subsets of size k is defined as: 

where summation is over all subsets (y1 , •• ,yk) of (x 1, ... ,xn). Each 

element, say y., i = 1, ... ,n, occurs at most once in a subset. There are 
n-1 : . • 

(k_ 1) subsets in which it occurs; therefore 

~ = -ii + (n)-1 (n-1) ( H(x1) + ... + H(x )) = k k k-1 n 

= -i\ + (k/n) (H(x 1) + ... + H(x )) = 
n 

= kH, i\· 
We define 

<\_ = Rk Rk-1 
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and :find 

we find :for the complexity in (x1, ... ,xn) 

= nii1 ii = n 

n 
= I (ii, + f\_, - i\) = 

k=2 

= d2 + d3 + ... + d n 

THEOREM 2. 1 • 

:for k = 2, ••• ,n. 

PROOF. We shall :first show that~ equals the average o:f 

' (2. 1) 

over all subsets (y 1 , ••• ,yk) o:f (x1, .•• ,xn). I:f, instead o:f averaging over 

subsets, we average over ordered k-tuples y 1 , ••• ,yk, we obtain the same 

result because each subset is repeated an equal number o:f times. We shall 
I• 

write n" 1 :for n(n-1) (n-i+1) and we shall use 

I 
y 1 ' ... ,Yi 

(2.2) 

which holds :for n > i > k > 1. For the average of (2.1) we find 
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Because of (2.1) and (2.2) we also have 

which allows us to write 

<\+1 - <\ = 

L 
y 1 '' '' ,Yk+1 

According to theorem 1.2 every term in the sum in non-negative, which con

cludes the proof. 

The quantities<\ were introduced by Watanabe. He showed [60] that 

dn = 0 implies that x 1, ... ,xn are statistically independent. Ashby [7] con

siders differences of Rk of any order, but does not derive inequalities for 

them. 

From the definition of\ we may conclude that the faster the sequence 

R2 , .•• ,Rn increases, the greater is that part of the total amount of com

plexity that cannot be accounted for by interactions in small subsets. Al

though we have no absolute criterion that says when to consider the increase 

fast, theorem 2.1 implies that this increase must be at least linear. The 

computation of the sequence R2 , ••• ,Rn allows us to compare, at least, two 

systems in this respect. This requires the computation of H1, .•• ,Hn. The 

first and the last of these are easy to obtain; the calculation of H2 and 

H 1, H3 and H 2 , .•• require rapidly increasing numbers of subsets. We 
n- n-

should therefore revert to estimates from random samples of subsets, which 

need not be small if a high-speed computer is used. 
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2,3, CLASSIFICATION AND CLUSTERING 

2,3,1, REMARKS ABOUT A MEASURE OF CLUSTERING 

In order to be able to find a clustering structure one must, in the 

first place, be able to detect it; that is, there will have to be agreement 

as to which of two alternative decomposition schemes shows the more marked 

clustering structure. In that case, the problem of finding the optimum de

composition with respect to clustering may be formulated mathematically. 

The merit of this is but slight if, as in the present case, the solution of 

the problem presents great computational difficulties because the number of 

possible decomposition schemes increases so fast with the number of com

ponents. Yet, such a formulation seems to be not altogether superfluous. 

Several publications (10, 13, 33, 34, 57] have stressed the need for a 

mathematical approach to the problem of clustering and classification and 

have provided algorithms suitable for execution by computer. However, no 

mention is made of a criterion according to which the decomposition ob

tained can be compared to other decompositions. Thus, although elaborate 

computations are made, the problem is not stated for which the outcome is 

intended to be a solution; neither is it stated for which problem the out

come is meant to be an approximate solution. 

We shall give some considerations relevant to a measure of clustering 

which allows different decomposition schemes to be compared with respect to 

degree of clustering. Such a scheme, partially shown in figure 1.1, may be 

regarded as the mathematically defined object called a tree. A tree con

sists of a set of nodes and a binary relation, called successor, among 

them. Each node, except one, the root, is the successor of exactly one node. 

The number of successors of a node is called the degreed of that node. 

With each node there is associated a real number q called the flow of that 

node. The flow of the root is 1; the successors of a node with flow q and 

degreed have flow q/d. With each node there is associated an integer r 

called the rank. The rank of the root is zero; the successors of a node 

have a rank which is greater by 1. Let T be the set of nodes that have no 

successor (the tel'11linal nodes). Let I be the set of the remaining nodes 

(the internal nodes). 
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In the decomposition scheme each node corresponds to a subsystem. The 

successors of a node are disjoint sets of components and their union is 

this node. To each node i that has at least two successors there corres

ponds a real number R. equal to the interaction between its successors. The 
J. 

decomposition scheme showing a high degree of clustering has little inter-

action between subsystems compared to amounts of complexity within. Even

tually, all complexity is converted to interaction and in the ideal decom

position scheme, therefore, the stronger interactions should be associated 

with the higher ranks. This suggests a weighted average of the interactions 

as a measure of clustering. Suppose f is some increasing function of the 

non-negative integers, then the decomposition scheme for which 

(2.3) m = l f(r.) R. 
ie:I 1 1 

is greater is considered to show stronger clustering, subject to the con

straint discussed below. 

We cannot maximize mover all decomposition schemes without constraint: 

m may also be increased by a peculiar structure of the tree, which we shall 

call "lopsidedness". 

figure 2,1. A lopsided tree and a balanced tree 

In figure 2.1 two trees are shown. A node is represented by a small 

circle. A successor of a node is drawn above it and connected to it with a 

line. The tree on the left we consider more "lopsided" than the one of the 

right, which is more "balanc.ed". In a lopsided tree, we can have the situ

ation that mis large, not because of a marked clustering, but because of 

nodes of a rank higher than any in a more balanced tree. A function that 
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indicates the degree of clustering would have to be not only an increasing 

function of m, but also a decreasing function of the lopsidedness of the 

tree. 

As it happens, there is a real-valued function defined on trees that 

plays an important role in the theory of information and that may well be 

interpreted as a measure of balance. We take as criterion for a balanced 

tree the equality of the terminal flows; an obvious way to characterize it 

is to observe that the entropy of the set of terminal flows is maximal, Let 

us therefore define 

(2.4) h - - l q. ln q .. 
i€T i i 

Let us briefly indicate the role of this quantity in the theory of 

communication, which is the capacity of a discrete noiseless channel. To 

simplify the explanation, suppose that the tree is such that all non
-r. 

terminal nodes have the same degreed, Then q. = d 1 and h = ln(d) l q.r., 
1 i€T 1 1 

a multiple of the average rank of the terminal nodes. The following 

brief remark should make it plausible that this is also the capacity of a 

discrete noiseless channel. 

Consider an information source which emits symbols. Each symbol is 

encoded into a sequence of code symbols of which there are d, each of the 

same length. An encoding is represented as a terminal node in the tree. 

Optimum transmission of information is obtained if the probabilities of the 

source equal the flows of the corresponding terminal nodes. Then, the in

formation contained in a unit length of encoded message is on the average, 

apart from a constant factor, equal to h. This is discussed as "coding for 

the discrete noiseless channel" in textbooks on information theory, such as 

[4]. For a monograph devoted to the informational study of trees, see [44]. 

We conclude that a measure of clustering should be an increasing func

tion both of min (2.3) and of h in (2.4). To specify the function further 

one would have to take into account what purpose the result is to serve; in 

the absence of such considerations the measure of clustering should be 

chosen such that the amount of computation needed to find the optimum de

composition scheme is minimum. 
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2,3,2. CLUSTERING AND THE EXTRACTION OF RELEVANT PREDICATES 

The definition of a relevant subset of the set of predicates in an 

object-predicate table may be illustrated by a guessing game: one person 

takes an object in mind and has to answer another person who tries to 

identify the object with as few as possible questions of the form: "Which 

value does predicate p. have for this object?". The answers to questions 
1 

concerning a subset of the predicates define a partition in the set of ob-

jects. The information contained in answers to these questions is the en

tropy of the corresponding partition. 

For instance, if all predicates have two values, the set of n predi

cates defines a partition of 2n cells and the maximum entropy of such a 

partition is ln(2n). When the actual entropy is less, there is redundancy 

in the set of predicates. When we realize that there exists an object

predicate table with n predicates and 2n objects where every cell of the 

partition contains exactly one object and which, therefore, does not con

tain any redundancy, it is apparent that in tables with moderately large 

(between, say, 10 and 1000) and roughly equal numbers of objects and pre

dicates enormous amounts of redundancy are usual. 

Lance and Williams [32] have used information-theoretic considerations 

in classification. They used the "information statistic" I = H(p 1 )+ ••. +H(pn) 

to express the amount of information contained in the set of predicates. 

Actually, this amount equals the entropy H(p 1 , ••• ,pn) of the joint parti

tion which is equal to I only if there is no interaction whatever between 

predicates. In this case, all interactions vanish and there is no cluster

ing at all. Apparently, they were not concerned with classification in the 

sense described above. Moreover, it is difficult to understand in what 

sense their "classification" is to be interpreted. A hint is given in a 

later paper [33]: 

"The agglomerative strategies .•. can themselves be subdivided by 

clustering strategies we imply those that optimize some property of a 

group of elements; by hierarchical strategies those that optimize the route 

by which groi;tps are obtained". 

The term "agglomerative" refers to an algorithm that generates a dia

gram as in figure 1.1 by starting with individual components and succes-
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sively merging subsets. "Optimizing the route" seems to imply that with 

each route a certain number is associated, but no such number is defined 

and, as we saw in the previous section, it may not be easy to find an ob

viously satisfactory number. Also, in deciding which two subsets to merge, 

a measure of similarity between them is taken into account. Four of these 

are described (one is based on the information statistic mentioned above) 

and again, in the absence of a precisely defined optimal classification, 

there is little on which to base the choice of measure. Because Lance and 

Williams consider most of the combinations between one of the five strat

egies and between one of the four measures of similarity admissable, and 

because they can give only hints about which to use in a particular situa

tion, the resulting classification has little to justify it, apart from the 

possible fact that the user likes it. 

In our introduction 1.1 we argued that the problem of classification 

is unnecessarily complicated if, as is usually the case, the purpose of 

the classification cannot be expressed in terms of some simple criterion. 

It is preferable to study classification in a situation where such a simple 

criterion can be found and we gave two examples where useful classification 

is defined in terms of interaction between mutually disjoint sets of en

tities. 

When we have qualitative data in the form of an object-predicate table, 

the interacting en~ities are the predicates and the classification problem 

is the same as that of finding "near-decomposable" or clustering structure. 

As explained in 2.2.1, this means that a decomposition scheme is wanted 

where as much as possible of the total a.mount of interaction is associated 

with internal nodes of high rank in the corresponding tree. However, it is 

out of the question to try all possible trees to find the best classifica

tion. 

Watanabe [63, p.427] has proposed an economical method to find a 

clustering structure that proceeds in two steps. In the first step, a small 

subset of the predicates is found that gives almost as much information as 

the set of all predicates. Watanabe does this by means of the covariance 

matrix of the object-predicate table. As we explained in 2.1, this is not 

valid in the general case of qualitative data, nor is it, probably, meant 

to be, We shall define such a subset in terms of optimal data compression 
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and we shall discuss the accompanying computational difficulties. When such 

a subset is found, each of its elements is regarded as the representative 

of a different class. Each of the remaining elements is assigned to that 

class of which the representative has greatest interaction with it. We 

shall see that, if a good classification is present, this method does not 

always find it. 

Considerations about the information content of a set of predicates 

suggest the problem: For a given k .s_ n (and k .:_ 1), find a subset 

(q1 , •.• ,qk) of the predicates (p1 , ••• ,pn) such that the entropy I\ of their 

joint partition is close to H. Such a subset we shall call a relevant sub-
n 

set; a set of k predicates such that no other set of the same size has a 

larger joint entropy we shall call a maximal subset. We are interested in 

finding such a subset with k small compared ton; in that case we can 

neglect the predicates not in the relevant subset and yet incur only a 

small information loss (equal to Hn - I\_). This operation may be called 

data compression; the corresponding operation for quantitative data is dis

cussed in 3.2. Consider the following inequalities: 

(by (1.10) and (1,5)) 

(2.6) 
(by (1.10)) 

For data compression to be interesting, k must be small. If we take k 

as small as possible, namely k = 1, we rarely get a sufficiently informa

tive subset. So we look for some constraint on k that prevents it from 

becoming too small. The inequalities (2,5) and (2.6) imply no ordering 

between the expressions in their middles. A natural way of preventing k 

from becoming too small seems to be to require that 

(2.7) 

The maximal subset is optimal if it satisfies (2.7) and if it is the 

smallest that does so. Optimal data compression for qualitative data is the 
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replacement of a set of all predicates by an optimal subset. 

In our problem Watanabe's method for the extraction of relevant pre

dicates is not applicable. One must look for something else; an obvious try 

seems to be the following: 

Suppose again that (p 1, ••• ,p ) is the set of predicates. Let S., j=o, ••• ,k 
n J 

be a sequence of successive approximations to a maximal subset of size k. 

Take for s0 the empty set and let S. 1 be a subset of S., which is formed 
J- J 

by adding to S. 1 = (q1, •.. ,q. 1) the q. such that H(q1, ••• ,q.) + 
J- J- J J 

- H(q1, .•• ,qj_ 1) is maximum. 

The reason for considering this procedure is that, by adding at each 

step the predicate that gives the greatest increase in entropy, one might 

end up with a maximal subset. That this is not necessarily the case is 

shown by the object-predicate table in table 2.1. 

predicates 
+ 

objects+ 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

X X X X X X X X X O O O O O O O O 0 

2 X X X O O O O O O X X X X X O O O 0 

3 X X X X O O O O O O O O X X X X X X 

table 2,1: An awkward object-predicate table 

0 X 00 ox XO xx 

P1 9 9 P1,P2 4 5 6 3 

P2 10 8 P2,P3 5 5 3 5 

P3 8 10 P3,P1 3 5 6 4 

table 2.2: Showing the number of times a given configuration 

occurs in table 2.1 

Suppose we require a maximal subset of 2 predicates. Table 2.2 shows 

that H(p 1) > H(p2 ) = H(p3 ) and that H(p 1,p2 ) = H(p 1,p3 ) < H(p2 ,p3). This 

implies that, if we follow the above procedure, the subsets (p 1) and 

(p 1,p2 ) (or (p 1,p3 )) would have been obtained. Yet (p2 ,p3 ) is the maximal 

subset of size 2. Although it may well be possible to construct examples 
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in which the procedure gives the desired result, it is, apparently, not 

always the case. 

Finding a maximal subset of predicates may be compared with the pro

blem of the "travelling salesman" in which there is given a set of n cities, 

for each pair of which the mutual distance is given. The problem is to con

struct an itinerary that includes all cities and that has a minimum total 

length. One of the first things that a student of this problem discovers is 

that the required itinerary is not necessarily obtained by travelling at 

each stage to the closest city not already visited, which would be analo

gous to the above procedure. Much attention has been paid to this problem. 

The methods proposed are either not optimal or else require an amount of 

computing time that increases so fast with n that they are impracticable 

even on fast computers for n in the order of, say, a few hundred. 

The second step in Watanabe's method seems to be based on the premiss 

that, for any p, there must be some single q. from among a relevant subset 
J 

(q1, ... ,qk) such that R(p,qj) is large compared to others. It is true that, 

if Hn - I\ is small compared to Hn' R(p,(q1 , ... ,qk)) must be large, but it 

is not necessarily the case that this is due to a single R(p,q. ), 
J 

j = 1, ... ,k, being large. 

(2.8) 
> H(p) + R. - H. - -K n 

If Hn - 1\_ is small, then the inequality implies that any predicate p 

cannot have an interaction with (q1 , ... ,qk) much less than its own entropy. 

objects ➔ 

2 3 4 5 6 7 8 

predicates 0 0 0 0 X X X X 

+ 2 0 0 X X 0 0 X X 

3 0 X 0 X 0 X 0 X 

4 0 X X 0 0 X X 0 

table 2.3: An awkward object-predicate table 



There is already a simple example where the assumption, on which the 

second step is based, is not justified. The object-predicate table in 

table 2. 3 shows that, although the interaction between p4 and a maximal 

subset (p 1 ,p2 ,p3 ) is large, this is not due to any· pairwise interaction 

between p4 and pj, j = 1,2,3, Let us try to find a clustering among the 

predicates p 1 , ••• ,p4 , that is, it is required to partition them into sub-

sets c1 and c2 , such that R(C 1 ,c2 ) is as small as possible. The total num

ber of predicates is so small here that we shall allow subsets of size 1 

and 3 as well as 2 and 2. According to Watanabe's method, one first finds 

a relevant subset of predicates and, subsequently, assigns any remaining 

predicate to the 

00 

ox 

XO 

xx 

P1 ,p2 

2 

2 

2 

2 

000 

OOX 

oxo 

oxx 

XOO 

xox 

xxo 

XXX 

relevant predicate 

P1 ,P3 P2,P3 

2 2 

2 2 

2 2 

2 2 

with which it has greatest interaction. 

P1 ,P4 

00 2 

ox 2 

XO 2 

xx 2 

P2•P4 

2 

0 

0 

2 

0 

2 

2 

0 

2 

2 

2 

2 

P3,P4 

2 

2 

2 

2 

table 2.4: Showing the number of times a given configuration 

occurs 1n table 2.3. 

For (p 1 ,p2 ,p3 ) to be a relevant subset H(p 1 ,p2 ,p 3,p4 ) - H(p 1,p2 ,p3 ) 

has to be small. With tables 2.3 and 2.4 one may verify that it even van

ishes, so (p1,p2 ,p3 ) certainly is a relevant subset. An application of 
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Watanabe's method would imply 3 clusters containing, respectively, p1, p2 , 

and p3 • Which of R(pi,p4), i = 1,2,3, is largest would decide to which of 

these classes p4 belongs. However, each of these vanishes, which makes the 

clusterings ( (p1 ,P4 ) ,p2 ,p3 ), (p 1 • {p2 ,p4 ) ,p3 ), and {p 1 ,p2 , {p3 ,P4 )) look 

equally good. 

When we consider such pairs as can be selected from (p 1,p2 ,p3 ), we 

find that (see table 2.4) R{{p1,p2 ),p4) = O, R((p 1,p3 ),p4 ) = O, and 

R((p2 ,p3 ),p4 ) = H(p4), the maximum amount. Thus we see that, although there 

is no singZe one relevant predicate that interacts strongly with p4 , there 

is a pair, namely {p2 ,p3). This suggests that (c1,c2 ), with c 1 = (p1), 

c2 = (p2 ,p3 ,p4) is a clusteringD Indeed, for these choices of c1 a.nd c2 we 

have H(c1) + H(C2 ) - H(c 1,c2 ) = O and equal to ln(2) for all other choices 

of c1 and c2 • 

To recapitulate, (2.8) implies that, if (q1, .•• ,qk) is a relevant sub

set, then, for any p, R((q1, ••• ,qk),p) is close to H(p). Whether such is 

also the case when we replace {q1, ... ,qk) by a proper subset C, or even a C 

consisting of just one element, such that R(C,p) is large, depends on the 

data and such a supposition cannot be relied on in a generally applicable 

clustering method. Therefore, if we were to use a relevant subset Ck= 

= {q1, •.• ,qk) as a starting point for clustering, the work remaining after 

finding it is still enormous: to find a good home for some remaining pre

dicate, not only single elements of Ck would have to be considered, but 

also pairs, triples, etc. The conclusion is that, if a feasible method can 

be found for finding relevant subsets (and the example of-table 2.1 shows 

that this is at least a non-trivial problem), it is not ne_cessarily a good 

starting point for finding a clustering. 

2.3,3, CLASSIFICATION AND CLUSTERING IN METRIC SPACE 

A classification (not necessarily "good" or meaningful) means a parti

tion of a set of entities into mutually disjoint classes whose union is 

this set. A subset of the entities, one from each class, is called a set of 

paradigms. Suppose each of the remaining entities is assigned to the same 

class as the paradigm most similar to it. Then a classification, in general 

different from the initial one, is obtained. If we get the same, the set of 
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paradigms is said to be representative for the classification, and if every 

set of paradigms is representative, the classification is said to be per

fect. 

Notice that the above concepts are based entirely on similarities be

tween pairs of entities. If interaction is interpreted as similarity, good 

classification means strong clustering. However, interaction is not only 

defined between pairs, but also between sets of arbitrary size. To assume 

that the total amount of interaction in a set is mainly due to pairwise in

teractions is a simplification that is justifiable only in special cases. 

With few exceptions, work in automatic classification has taken for granted 

the validity of this assumption and many methods use as their basic mate

rial a matrix of dissimilarities between the entities to be classified. 

Even then, such a fundamental distinction, as introduced above, is not made. 

In this subsection, we shall give some of its properties in a suitable 

model. 

We think that a suitable model is obtained by regarding the entities 

to be classified as a finite set of points in a metric space. This model is 

more general than the one of a linear vector space with inner product which 

is used for most pattern-recognition research [39, 51, 59]. The vector

space model is appropriate for perceptron-like data, that is, data which 

are, even if they are outputs of threshold devices, basically quantities, 

although rounded-off in the extreme. 

It seems to us that a measure of dissimilarity should have the follow

ing properties. It should be symmetrical in its arguments. Furthermore, a 

measure of dissimilarity of an entity with respect to itself should be zero 

and this should be less than with respect to any other entity. These two 

properties correspond to (1.15) and (1.14) in the definition of a distance 

function. Finally, for any triple of entities x, y, and z, an essential 

property of dissimilarity seems to be that, if xis rather similar toy and 

y is rather similar to z, then x and z cannot be very dissimilar. A simple 

way to ensure that a measure of dissimilarity has this property is to 

demand that it also satisfies the triangle inequality (7.16) and then it 

would be a distance function. If a measure of dissimilarity fails to satis

fy the triangle inequality, then it must be shown in some other way that it 

has this property. 
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In the object-predicate table the informational distance introduced in 

(1.19) ma.~es the set of predicates a metric space (if predicates effecting 

the same partition are considered identical). Rogers and Tanimoto [49] use 

the truth-functional interpretation of an object-predicate table in which 

there are only two different sorts of marks; s .. is the number of objects 
l.J 

that have predicate p. and predicate p. divided by the number of objects 
l J 

that have predicate p. or predicate p .. They use -log2 (s .. ) as coefficient 
;!. J l.J 

of dissimilarity between p. and p .. They are aware that the triangle in-
1. J 

equality may fail and they make a virtue out of necessity by stating that a 

coefficient of dissimilarity should not have the intuitively formulated 

property that leads us to accept the triangle inequality (1.16). Many other 

coefficients are ~sed [34, 57] that are not metric. In the truth-functional 

interpretation of the object-predicate table, the metric of Restle [48] is 

applicable. 

Let s1, ... ,Sk be the classes of a partition in a given subset Sofa 

metric space where the distance function is called d. A set elements 

(s 1,0~~,sk) is a skeZeton of the partition if siESi for i = 1,~~~ ,k. Given 

such a skeleton, we define another partition of k classes by assigning each 

si of the skeleton to a different class and by assigning an arbitrary s, 

not already assigned, to a class that contains ans. closest to it. In case 
l 

there is more than one such s., decide by choosing, say, the s with smallest 
l 

i. Thus, each skeleton of a partition defines a function mapping this par-

tition on a, generally different, partition. If this partition is not dif

ferent, we say that the skeleton is a clustering skeleton. 

One can say that the existence of a clustering skeleton is the analogon 

in metric space of the condition of linear separability in inner-product 

space. Suppose that Sis a subset of inner-product space, then S. and S. 
1 J 

are linearly separable if there exists a 

L(x) < 0 for xES. and L(x) > O for XES .. 
- l - J 

is a metric in inner-product space. L(x) 

linear form L(x) such that 
1· 

The function d(x,y) = (x-y,x-y) 2 

= d2(x,s.) - d2 (x,s.) is a linear 
]. J 

form in x and is non-negative for xES. and non-positive for xES .• Therefore, 
J l. 

are linearly separable if they have a clustering skeleton. On the S. and S. 
]. J 

other hand, if S. 
1 

tering skeleton. 

and S. are linearly separable, they need not have a clus
J 
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A partition is said to be a cZuetel'ing if it has at least one cluster

ing skeleton. Therefore, if (s1 , ••• ,Sk) is a clustering and if (s 1 , ••• ,sk) 

is a clustering skeleton 

d(s.,z) = 
J 

min 
i=l , ... ,k 

d(s. ,z) if zeS. and 
1 J 

zeS. if d(s.,z) = min d(s. ,z) 
J J i=1, ... ,k 1 

and if j is the smallest for which this holds. Let the diameter D of a 

finite set be defined as the greatest distance between two of its elements: 

== max max 
xeS. yeS. 

J J 

d(x,y), j = 1, ... ,k. 

Let the radius R of a finite set of points be defined as: 

R(S.) 
J 

= min max 
xeS. yeS. 

J J 

d(x,y), j = 1, ... ,k. 

An x for which the minimum occurs is called a centre of the set of 

points S .. The terms "diameter", "radius", and "centre" are justified by 
J 

the following theorem. 

THEOREM 2,2 

For any finite set of points in metric space we have 

D < 2R. 

PROOF. Let u and v be points such that D = d(u,v}. Let x be a centre of the 

set, then 

R ~max(d(x,u),d(x,v)) ~ ~d(x,u) + ~d(x,v) ~ !d(u,v) = ~D. 

The inequality is sharp in the sense that there is a metric space and 

a set in it for which equality holds. For instance, take as metric space 

the real numbers with the distance function d(x,y) = lx-yj. Take as set of 

points (0, 1,2). 
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A partition is said to be a stable olustering if every skeleton is a 

clustering skeleton. Examples of stable clusterings are the partition con-

sisting of only one non-empty class and the partition where no class has 

more than one element. The separation T between two sets J.S defined as: 

T(S. ,S.) = min min d(x,y}. 
]. J X€S. yES. 

]. J 

The concepts introduced up till now serve to characterize stable clustering. 

THEOREM 2,3 

A sufficient condition for a clustering to be stable is 

(2.9) T(S.,S.) > max(D(S.),D(S.)), 
]. J ]. J 

for all i and J • 

A necessary condition for a clustering to be stable is 

( 2. 10) T(S. ,S.) > max(R(S.) ,R(S.)), 
]. J - ]. J 

for all i and j . 

PROOF. To establish the sufficiency of (2.9), suppose that it holds. For 

any y€S., let XES, be such that it minimizes d(x,y). Then 
J ]. 

d(s.,y) > d(x,y) > T(S. ,S.) > D(S.) > d(y,s.). This means that y is correct-
i - - J.J J- J 

ly classified whatever si and sj we choose. The partition (S 1, ... ,Sk) must 

therefore be a stable clustering. 

To establish the necessity of (2.10), suppose that it does not hold. 

Then for some i and j and for some xES. and for some yES. we have: 
]. J 

d(x,y) < R(s.). Let zES, maximize d(y,z); then d(y,z) > R(S.) > d(x,y). If 
J J - J 

we choose x = s. and z = s., y is misclassified. There exists at least one 
]. J 

skeleton which is not a clustering skeleton: the partition (s1, ... ,Sk) is 

not stable. 



3. ANALYSIS OF QUANTITATIVE DATA 

3.1. A "STRUCTURE" IN INNER-PRODUCT SPACE 

In this chapter we shall study the case where each object may be re

presented by a point in an n-dimensional linear vector space I with an 

inner product ("inner-product space"). We first have to propose how a 

"structure" in such a space is to be defined, and, preferably, such a def

inition should be closely analogous to the one for a structure in a set of 

objects as defined by an object-predicate table (section 2.1). 

We have associated a predicate with a test to be performed on an 

object; the case where an object is represented by a point in vector space 

is reminiscent of the theory of observations in quantum physics, The fol

lowing outline of it is due to Weyl [65]. By a vectors in I, quantum 

physics represents the wave state of the physical system under investiga

tion. We suppose this vector to be normalized such that it has unit length, 

A grating G = (I 1, ... ,I) is a splitting of the total vector space into 

mutually orthogonal subspaces I 1, ... ,Ir. The index j is called the oharao

ter of I .. If the system is in the wave states, then its probability of 
J 

having character j equals 

where I.sis the orthogonal projection of son 
J 

I. and I II.sl \ its Euclidean 
J J 

norm. Pythagoras' theorem, and the fact that I = I 1 + ... + Ir' ensure that 

these probabilities add up to 1. 

We can now make an obvious translation of the quantum-physical situa-

tion into ours. The state of the physical system corresponds to our object, 

a grating to a partition, a character to the value of a predicate, and the 

set of probabilities (w1, ... ,wr) to the set of weights of the partition. 

However, we are not concerned with a. single objects, but with a set 

of objects, or the set of vectors representing them. It will be easiest to 

interpret this set as a special case of a random vector x. The connection 

will be explained below, after we have first introduced some notation for 

random vectors. 
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Let the mean of a random vector x exist and let it be denoted by E(x) 

and suppose the origin is chosen such that E(x) = O, the null vector. The 

covariance matrix of xis defined to be E(xx') = V(x) (which we suppose to 

exist and to be non-singular; the prime ' is used to denote transposition 

for vectors as well as for matrices; a vector without a prime we suppose to 

be a column vector). The eigenvalues of V (which are real and positive) are 

denoted by A1(V) _:::.. A2 (V).:. ... .:. An(V). A choice of corresponding normal

ized eigenvectors (which are orthogonal in the case of distinct eigenvalues 

and which are so chosen for a multiple eigenvalue) is denoted by 

p1(V),p2(V), ... ,pn(V). Note that eigenvectors and eigenvalues are regarded 

as functions of the corresponding matrix. Sometimes, the argument will be 

omitted; in that case it is V. We suppose x has been multiplied by the 

scalar such that tr(V), the trace of V (which is defined as the sum of the 

eigenvalues), equals 1 . 

We may think of x as being associated with an n-dimensional probabili

ty distribution function, and in particular (following Okamoto [41]) with 

a set of N.:::.. n vectors s 1, ... ,sN, each of which has a positive weight fi' 

r 1 + •.. + fN:::: 1. Such a weight may be taken to be proportional to the 

number of times the corresponding object has been observed. If we define 

a random vector x by Pr(x=s.) = f., i = 1, ... ,N, then we have 
l l 

wheres. is a column of the nxN matrix Sand f. a diagonal element of the 
l l 

NxN diagonal matrix F. 

We shall show how to assign a set of weights to every grating in I if 

a covariance matrix V of a random vector xis given. Let us choose a set 

of orthonormal coordinate vectors (e 1, ... ,en) in such a way that each Ij is 

spanned by a sequence of successive coordinate vectors ej 1, ... ,ej 2 . 

Let us now suppose that Vis the representation with respect to this 

coordinate system. The diagonal element vii of Vis the variance of the 

orthogonal projection of x one., E( I II.xi 12 ) == vJ· J. + ... + vJ· J. == w., 
l J 1 1 2 2 J 

and., because tr(V) = v 11 + + vnn = 1, w1 + •.• + wr :::: 1. In this way, 

a set of objects defines a set of weights for every grating (I 1, ... ,Ir) in 

L 
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When considering qualitative data, we had a set of objects and, for 

every predicate, a partition in it. A partition in T, which is a set of 

mutually disjoint subsets whose union is T, is analogous to a grating in I, 

which is a set of mutually orthogonal subspaces whose linear sum is I. For 

any two partitions, the joint partition (see 1,4) is defined and it is a 

partition again. The analogous definition of a joint grating of two grat

ings (I 1, ... ,I ) and (J 1, ..• ,J ) would be a set consisting of the operators 
r s 

IkJm' k = 1, ..• ,rand m = 1, ... ,s. However, only in a special case these 

operators are orthogonal projections, even though Ik and Jm are. Only then 

the joint grating is defined and we have IkJm = Jmik (see, for instance, 

[23]). In quantum physics a measurement on a system in wave states is re

presented by an orthogonal projection of the vector corresponding to son 

the subspace corresponding to the measurement. The special case where two 

measurements are said to be compatible corresponds to cummutativity of the. 

corresponding projection operators. In that case we may define the joint 

grating of any number of compatible observations, which we regard as a 

str,uoture in inner-produat space; this is analogous to our notion of a 

structure in a set of objects. 

3,2. OPTIMAL DATA COMPRESSION. 

3,2.1. DATA COMPRESSION AND PATTERN CLASSIFICATION 

One of the possible approaches to pattern classification proceeds in 

three principal steps. Let a "retina" denote an array of n sensitive ele

ments. The retina is exposed to a pattern and the resulting (real-valued) 

measurements constitute a point inn-dimensional vector space. Subsequent

ly, the "sensory cortex" transforms this into a point ink-dimensional vec

tor space (k < n) in such a way that enough information relevant to the 

next step is retained. Data compression is regarded as the activity of the 

sensory cortex. Finally, in the "motor cortex" a decision mechanism assigns 

the k-dimensional vector to one of the classes. This set-up is reminiscent 

of Rosenblatt's [50] "three-layer, series-coupled perceptron". 
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3,2.2. OPTIMAL APPROXIMATION TO A RANDOM VECTOR 

From now on we need to discuss only a random vector x, which is re

garded as the output of the retina. The sensory cortex transforms it to a 

k-dimensional random vector in such a way that information relevant to 

classification is preserved as much as possible. Two restrictions are im

posed: the transformation is to be a perpendicular projection on a k-dimen

sional subspace and information relevant to classification is to be ex

tracted only from the covariance matrix V(x). We interpret the problem of 

optimal data compression as the problem of optimal approximation to a 

random vector by one of given, lower dimension. We suppose x to be centered 

and normed such that E(x) = O and tr(V(x)) = 1. 

In statistics an equivalent problem has been studied by Pearson [43], 

Since Hotelling's work [25] on it, the method of approximating a random 

vector by its perpendicular projection onto a subspace spanned by a set of 

k first eigenvectors of the covariance matrix has become widely known as 

the "method of principal components". The optimality criteria used by 

Pearson and Hotelling are different, and Rao [46] has introduced yet 

another one; all three lead to the same approximation. Okamoto and Kanazawa 

[41,42] investigated the relation between these criteria. In the latter 

paper a theorem is presented that indicates a whole class of criteria that 

lead to the same approximation and of which the earlier are special cases. 

In pattern recognition, the same problem of approximation to a random 

vector has been encountered, but different names were used: "feature selec

tion" or "data compression". Possibly as a result of this, the problem was 

solved anew (Watanabe [61 ,64], Tou and Heydorn [58]). One of the results of 

Tou and Heydorn is a direct consequence of the properties of the principal 

components approximation. Watanabe uses a criterion that leads to the same 

approximation but is more powerful in the sense that it simultaneously 

characterizes all solutions fork= 1, •.• ,n. 

3,2,3. WATANABE'S CRITERION 

Let Ube a square matrix whose columns are an orthonormal set 

u1, .•. ,un• that is, U'U = I, the identity matrix. Then we have: 



Here,the scalar random variables u1x, ... ,u~x are the components of x with 

respect to the basis u 1, ... ,un. Because of the invariance of the trace 

under a similarity transformation, we have: 

tr(V(U'x)) = tr(U'V(x)U) = tr(V(x)) = 1 

This implies that whatever orthonormal base we choose, the variances of 

the components add up to one. 
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Watanabe [61] chose as approximation to x its perpendicular projection 

onto a subspace spanned by k vectors of the basis. He selected the most 

"significant" k vectors, where significance of a basis vector was inter

preted to be the variance of the corresponding component (a component with 

small variance gives little information about the difference between vari

ous occurrences of x, which is what we are interested in). Therefore, the 

subspace to be chosen is spanned by the basis vectors corresponding to the 

components that have the largest variances. The total amount of variance 

collected in this way is greater the more unequal the sum of variances is 

partitioned over the variances. 

We must define precisely the conditions under which a set of nonnega

tive numbers p1 , ••• ,Pn (which constitute the vector p) subdivides its sum 

more equally than does a set of nonnegative numbers , 1 , ••• ,An (which con

stitute the vector\). The condition is 

for j = 1 , • , • ,n-1 

where the indices are such that p 1 .:.. p2 .:.. ••• .:.. pn and A 1 .:.. A2 .:.. ••• .:. ;\n. 

Hardy, Littlewood, and Polya [24] said that under this condition;\ 

majorizes p. They proved (as theorem 108) the following theorem. 

THEOREM 3, 1 

Each of the conditions 

1) ;\ majorzes p 
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2) there is an nxn matrix R with nonnegative elements whose row and column 

sums equal 1 such that p = RA 

is necessary and sufficient for 

( 3. 1) 

to hold for all real convex functions~- For the purposes of this tract it 

is adequate to define a function convex in a certain range if its second 

derivative exists and is positive. If this range contains the interval 

[A ,A 1], equality in (3,1) for some~ implies p. = A, for i = 1, ••• ,n. 
n l. i 

Watanabe's result may be summarized as follows. A random vector is 

approximated by its perpendicular projection onto the subspace spanned by 

those basis vectors u 1, •••• ~ for which the corresponding components have 

largest variances p1, ••. ,pk. The approximation is considered optimal for 

k = 1, ••• ,n if the basis is chosen such that the entropy 

H(p) = -p 1 ln(p 1) - •.• - pn ln(pn) is minimal. 

THEOREM 3,2 (Watanabe [61]) 

The minimum is attained if and only if u 1 = p 1, •.• ,un = pn, where 

p1 • .•• ,Pn are orthonormal eigenvectors of V(x). 

PROOF. Let P be an orthonormal matrix of which the columns p1, ••• ,pn are 

eigenvectors of V(x). Then V(x) =PDP', where Dis the diagonal matrix with 

elements A1, ... ,An, Let Ube an arbitrary orthonormal nxn matrix. 

V(U'x) = E(U'xx'U) = U'V(x)U = 

= U'PDP'U = QDQ', 

where Q = U'P. If p1, ••• ,pn are the diagonal elements of V(U'x) (and, 

hence, the variances of the components of U'x; without loss of generality 

we may suppose them to be ordered such that p 1 ~ p2 ~ ... ~ pn), then 

for i = 1 , ... ,n. 

2 Let R be the nxn matrix whose (i,j)-th element equals q ... Then the 
l.J 

row sums and the column sums of R equal 1. Hence, by Theorem 3,1, A major-
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izes p, and H(p) is minimum if and (because (d2/a.x2 ) x ln(x) = 1/x for 

x > 0) only if p1 = A1 , ••• ,pn = An· This implies that u 1 = p 1 , ••• ,un = Pn• 

which concludes the proof. 

Watanabe's criterion simultaneously characterizes the solution of the 

approximation problem fork= 1, •.• ,n, but it is rather an indirect crite

rion. A more direct derivation is obtained as follows. A random vector x 

is approximated by its perpendicular projection on a subspace of dimension 

k. Its difference with the approximation is the error vector, which is its 

perpendicular projection on the orthogonal complement, which is of dimen

sion n-k. If the error vector is minimal, in a suitable sense, the approx

imation is optimal, in the corresponding sense. We shall compare different 

error vectors by means of a real-valued function of their covariance ma

trices. In order that these be independent of the coordinate system, such 

functions may only depend on the eigenvalues of the covariance matrix. The 

following theorem explains why different functions of .the covariance matrix 

of the error vector result in the same optimal approximation: it shows that 

all eigenvalues of the error covariance matrix are minimized for a certain 

choice of subspace. This means that all functions of the eigenvalues that 

are monotone in each argument are minimized for this choice. Okamoto and 

Kanazawa [41,42] have used this method to show optimality for a larger 

class of approximations: initially, they do not suppose the projection to 

be perpendicular; the optimum approximation turns out to be a perpendicular 

projection. Although the result embodied in the following theorem is less 

general than theirs, we think it worthwhile to give a proof which shows it 

to be a simple consequence of the well-known Courant-Fischer max-min the

orem. 

THEOREM 3,3 

Let Ube an nxk matrix whose columns are orthonormal. In order to 

maximize each of the eigenvalues of U'VU, U must be chosen such that its 

columns are a basis of the subspace spanned by a set of k first eigenvec

tors of V. The maximum values are A1(V), ... ,Ak(V). 

In order to minimize each of the eigenvalues of U'VU, U must be 

chosen such that its columns are a basis of the subspace spanned by a set 



of k last eigenvectors of V. The minimum values are An-k+ 1(V), ••• ,An(V). 

PROOF. We shall only prove the first part because the proof of the second 

part is completely analogous. Let R be a kxk orthonormal matrix such that 

R'U'VUR is diagonal with diagonal elements in non-increasing order of mag

nitude. Then L(U'VU) is the j-th diagonal element (j = 1, ... ,k). Let W be 
J 

the kxj matrix consisting of the first j columns of UR. Then A,(U'VU) is 
J 

the smallest eigenvalue of W'VW, which is the minimum value of x'W'VWx = 

= {Wx)'V(Wx), where x varies over the j-dimensional vectors of length 1. 

According to the "max-min principle" C23] • L (U'VU) < A. (V). Therefore, 
J - J 

each of the eigenvalues is maximized by choosing U such that its columns 

are a set of k first eigenvectors of V. This completes the proof. 

3,2.4. SOME CRITERIA SATISFIED BY THE PRINCIPAL COMPONENTS APPROXIMATION 

Pearson [43] considered a set of N .::_n points inn-space and sought a 

k-dimensional subspace that gives closest fit to this set, that is, a 

k-dimensional subspace such that the sum of squares of each of the per

pendicularly-projecting lines from each of the points onto this subspace 

is a minimum. He concluded that the subspace sought is the one spanned by 

a set of first k eigenvectors of the covariance matrix of the set of points. 

Again, Tou and Heydorn [58] derived this result in the one of their ap

proaches to feature selection that they called "estimation optimality". 

This result is a consequence of theorem 3.3 if Vis taken to be the 

covariance matrix of the set of points. Then the sum of the squares of the 

perpendicularly-projecting lines from each of the points onto a k-dimen

sional subspace is tr(U'VU), where the columns of U span the orthogonal 

complement of this subspace. Each of the eigenvalues is minimal if the 

columns U are a basis for the subspace spanned by a set of n-k last eigen

values and, therefore, also their sum. 

Hotelling [25] considered the problem of approximating a random vector 

with covariance matrix V by its perpendicular projection onto the subspace 

spanned by an orthonormal set u 1, ..• •~• which are the columns of an nxk 

matrix U. Then the perpendicular projection is U'x and the problem was to 

choose U in such a way that the determinant of its covariance matrix U'VU 
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is maximal. If each of the eigenvalues of U'VU is maximal, so also is its 

determinant, which is their product. Therefore, the solution is given by 

theorem 3,3. 

This is closely related to a result about the entropy of a normal 

distribution derived by Tau and Heydorn l58J. Let y be a normally-distri

buted k-dimensional random vector. Its density is given by: 

It may be verified that the entropy 

00 00 

H(y) = I 
y,=-co 

f 
y =-00 

k 

If xis normally distributed, any perpendicular projection y = U'x is 

also normally distributed. The problem of choosing U such that H(U'x) is 

maximal reduces to maximizing IV(U'x)I = IU'V(x)Ui and, hence, to maxi

mizing each of the eigenvalues of U'V(x)U. 

Suppose that U k = (u 1, ... ,u k) and we shall consider the perpen-
n- n-

dicular projection of x onto the subspace spanned by the columns of U k n-
as the error vector. Its covariance matrix is V(U' kx) = U' k V(x) U k' 

n- n- n-
The criterion which we consider now is the entropy Hof the error vector, 

where H(f) = J -f(z) ln(f(z)) dz, where f is the probability density 

of U1 kx and integration is over the subspace spanned by the columns of 
n-

u k' The problem is to choose U k such that the entropy of the error 
n- n-

vector U' kx is minimal. However, the entropy depends on the probability 
n-

density function f. Good [21 ,22] argued that in many situations it makes 

sense to estimate probabilities in such a way that entropy is maximized 

under known constraints. He advocated the principle of "minimaxing entropy11 : 

maximize entropy to find a probability distribution and, when planning an 

experiment, which is analogous to our choice of U k' minimize the maximum 
n-

entropy. The minimax characterization of principal components to be given 

below is reminiscent of this. In our case, the constraint is that the dis

tribution must have the same covariance matrix as the given error vector. 



The maximization problem for the entropy was solved by Shannon, who stated 

[53] the following result. 

THEOREM 3.4 

Of all density functions having a given covariance matrix, the normal 

density with that covariance matrix has maximal entropy. 

Using (3,2), we arrive at the following characterization of the prin

cipal components solution: 

min max H(f(U' kx)) = n-

where maximization is over all distributions having the given covariance 

matrix and minimization is over nx(n-k) matrices U k" The maximum occurs n-
for the normal distribution and the minimum occurs for U = 

n-k 
= (pk+l'"'' ,pn)' a set of n-k last eigenvectors of V. 

3.2.5, A MAXIMUM-ENTROPY CHARACTERIZATION OF THE NORMAL DISTRIBUTION 

Theorem 3.4 is not quite satisfactory because the entropy of an 

n-di.mensional normal distribution with covariance matrix V turns out to be: 

H = ~n ln(2n) + ~ ln( lvl) + ~n. 

Apparently, not all covariances v .. are necessary to specify the 
l.J 

entropy, because this is already done by IVI and Shannon's condition can be 

relaxed to stating this determinant. But then there is no unique distri

bution for which the maximum of entropy is achieved. In this section we are 

concerned with a less stringent constraint that leads to a uniquely deter

mined maximizing distribution. 

THEOREM 3,5 

Let W be a positive definite real symmetric matrix of order n. Of all 

density functions f with zero average, of which the covariance matrix V 



satisfies 

(3,3) 

(3,4) 

tr(VW) ~ n, 

has maximal entropy, which is 

(3,5) H(f) = in ln(2n) - ~ ln(lwl) + ~n. 

Furthermore, any distribution satisfying (3,3) and not identical to (3.4) 

has an entropy less than (3,5). 
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PROOF. Besides the entPopy H(f) = J -f(x) ln(f(x)) dx of the density func

tion f, we shall also consider its enePgy U(f) = f ~f(x) x'Wx dx. We first 

determine the density f that maximizes H under the constraints f f(x)dx = 1 

and U(f) = in, This is equivalent to the maximization without constraints 

of: 

H + A(}n-U) + µ(J f(x) dx - 1), 

where A andµ are Lagrange multipliers. 

H + A(~n-U) + µ(f f(x) dx - 1) = 

= f f(x) ln(1/f(x)) dx - f f(x) ;A x'Wx dx + 

+ f µf(x) dx + ~nA - µ = 

= f f(x) ln((exp(µ) exp(-~A x'Wx))/f(x)) dx + ~An - µ ~ 

~ f f(x) ((exp(µ) exp(-~A x'Wx))/f(x) - 1) dx + ~An - µ = 

= exp(µ) f exp(-~A x'Wx) dx - 1 + !An - µ, 

The maximum occurs if and only if in each point x we have 

f(x) = exp(µ) exp(-~A x'Wx). 

The choice A= 1, µ = ~ ln( lwl) - ~n ln(2n) satisfies the constraints. Then 
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we have 

(3.6) 
1 1 

f(x) = Jwl 2 (2n)- 2n exp(-; x'Wx) and 

(3.7) 

This derivation can be applied directly to the distribution of the 

velocity components of a molecule of an ideal gas to yield Maxwell's dis

tribution. In that case W would be the identity matrix, but the full gener

ality of W may well be useful to find the distribution in cases where the 

quadratic form for the energy is more complicated. 

Note that U(f) = f f(x) ;x•wx dx = ~tr(VW), so that we found a maximum 

for the entropy under the condition that tr(VW) = n. The same maximum would 

be found under the condition tr(VW) .::._ n, for suppose for the moment that 

inequality holds. The inequality between the geometric and the arithmetic 

mean implies that 

(3.8) lvwj 1 /n .::._ tr(VW)/n 

so, in that case, we would have jvJ < jwj- 1• But the maximization could be 

carried out with w1 = v- 1 and we would find an entropy 

Therefore, any distribution, whether normal or not, for which Jvj < jw- 1 I, 
has an entropy smaller than (3,7). 

The maximizing distribution must therefore have jvj .::._ IWl- 1. Inequal

ity is impossible because of (3,8). The only remaining case we have to in

vestigate is that of a distribution different from (3.6) but with Jvl = 

-- lwl- 1 and also normal, achieves the same maximum entropy. Then we have: 

1 = !vi lwl = jvw\ = jvwj l/n 5- tr(VW)/n = 1, 

where the last equality is the constraint. We must therefore have equality 

in (3.8), which implies V = w- 1. This proves that (3.6) uniquely maximizes 

H. 
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3,3, THE COMPLEXITY OF A COVARIANCE MATRIX 

Let x , ••• ,x be jointly distributed random variables. In 1.3.2. we 
1 n 

introduced the interaction R(x1, ... ,xn) = H(x1) + ••• + H(xn) -

- H(x1,, •• ,xn) between them and this is also the sum of all interactions 

in a system with x 1, ••• ,xn as components, which we defined to be the com

plexity of that system. Complexity in its proper sense is defined in terms 

of entropies associated with a random vector. However, a covariance matrix 

does not uniquely determine the random vector for which this matrix is the 

covariance matrix. In order to be able to define the complexity of a co

variance matrix V, we shall consider the normally distributed vector of 

which Vis the covariance matrix because it has maximum entropy (see 

theorems 3,4 and 3.5). Then we find for the total amount of interaction 

n 
= L (~ ln(2n) + ~ ln(v .. ) + ~) + 

i=1 J.l 

- }n ln(2n) - ~ lnlVI - ~n = 

n 
= ~ I 

i=1 
ln(v .. )-~ 

11 

n 

I 
i=1 

ln(>...), 
l 

by (3. 5). 

This cannot be used as an amount of complexity in the matrix because 

it depends on the coordinates. However, the maximum of this over all co

ordinate systems is only dependent on V and it may reasonably be inter

preted as the complexity of V. To find the maximum of R(x1, ... ,xn) we must 

find the orthogonal transformation of V that maximizes ln(v 11 )+ .•• +ln(vnn). 

Orthogonal transformations leave v 11 + ••• + vnn invariant and, as we 

assume, equal to 1. Under this condition, the inequality between the geo

metric and the arithmetic mean of v 11 , ..• ,vnn implies that the maximum is 

attained for v 11 = .•• = v = 1/n. If there is an orthogonal transforma-
nn · 

tion of V such that all diagonal elements are equal, we would find for the 

complexity: 
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n n 
c, = 1 I ln ( 1 /n) 1 I ln( >.. ) = 2 - 2 

i=1 i=1 l 

n 
= 1 I ln(n>..). -2 

i=l l 

In 3.4.2. we shall show that such a transformation indeed exists. 

Note that the complexity thus defined vanishes if >- 1 = = "n = 1/n 

and is positive otherwise: it may be regarded as a measure of the unequal

ity among eigenvalues. In a neighbourhood of the point >- 1 = ..• = "n = 1/n 

the following series expansion converges: 

n 
c, = 1 I ln(n,\.) = -2 

i=1 l 

n 
(n,\.-1) 2/2 + O(n,\.-1) 3 ) = l I ( ( n,\ . -1 ) + -2 

i=1 l l l 

(3.9) n 
n2,\~ 3 1 I (2n,\. == -ij - 2 + 2n,\. + 1 + 0 ( n,\. -1 ) ) 

i=1 l l l l 

n2 n 
1/n2 ) 

n 
- - 4 I (,\~ - + o ( I ( n,\. - 1 l 3 l 

i=1 l i=1 l 

The property of-~\~ 1 ln(n,\.) to vanish for ,\ 1 = ... = ,\ = 1/n and 
l1= l n 

to be positive otherwise is shared by all functions of the form 

C¢ = l~=l (¢(,\i) - ¢(1/n)) where¢ is, like -ln, a convex function (see 

theorem 3.1). For the complexity of a covariance matrix we choose a func

tion of this form which is convenient to use in inner-product space: 

(3. 10) 
n 

C = (1/n) l 
i=1 

2 2 (,\. - 1/n ). 
l 

This is defined for any covariance matrix, irrespective of whether 
2 2 \n 2 

(3.9) converges. Because I lvl I = I:=, lj=l vij = li=l "i' the square of 

the Euclidean norm of V, is invariant under orthogonal transformation, we 

have 
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C = ( 1 /n) 1 lvl 12 - 1/n2 == 

(3.11) n n n 
( 1 /n) I 2 1/n2 ) + (2/n) I I 2 

= (v .. - v ... 
i=l ll i=1 j=i+1 lJ 

This formula for C is convenient because no transformation of Vis 

needed to compute it. Moreover, (3.10) coincides, apart from the constant 

factor, with the first two terms of the series expansion (3.9) which is the 

information-theoretic complexity of the random vector "naturally" (by 

Shannon's theorem 3.4) related to V. The factor 1/n is included because it 

makes C into the usual expression for the variance of a discrete random 

variable assuming the values A1 , ... ,An each with probability 1/n. The first 

term in (3.11) is the variance of the variances v .. of the components. 
ll 

3.4. REPRESENTATIONS OF COMPLEXITY 

3.4.1. CHANGE OF REPRESENTATION BY PLANE ROTATION 

In section 3,2 we saw that the success of data compression depends on 

the "unequality" of the eigenvalues. Suppose one wants to approximate an 

n-dimensional random vector by its perpendicular projection on a k-dimen

sional subspace in such a way that the sum of the variances of the k com

ponents is at least ka. It is a consequence of Watanabe's theorem 3.2 that 

this is only possible if A1 + ... + Ak > ka. For much data compression to 

be possible, ka must be close to unity for a small k; hence, it is neces

sary that the eigenvalues be very unequal. The complexity C is important 

because it indicates whether such is the case. The information-theoretic 

notion of redundancy of a set of variables implies that the whole set can 

be closely approximated by a small subset, and this is just what a high 

value of C implies. 

The expression (3.11) shows that both unequality among variances and 

the existence of non-zero covariances contribute to C. When Vis in diag

onal form, the sum-of-covariances term of C vanishes and the variance-of

variances term is maximal. Therefore, in the diagonal form there is a 

maximum amount of unequality among diagonal elements if unequality is 

measured by the sum of squares. Watanabe (theorem 3.2) showed that this is 
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also the case if unequality is measured by l~ 1 -v .. ln(v .. ), the entropy. 
1= 11 11 

In fact, his proof can be used to show that this holds for any measure of 

unequality of the form l~=l -$(vii), where$ is convex. 

This suggests that a change of coordinate axes in general transforms 

some variance of variances into covariances or vice versa, leaving the sum 

equal. That this mechanism may be traced quite precisely is shown as fol

lows. The fact that C vanishes when all eigenvalues are equal and is posi

tive otherwise is not the only reason for regarding it as a measure of un

equality. Equality is relation between pairs of numbers and therefore we 

prefer to write C as the sum of measures of unequality between pairs of 

eigenvalues: n 
C = ( 1 /n) l () .. ~ - 1/n2 ) = 

i=1 l 

(1/n2 ) 
n n 2 = l l (;1,.-L) 

i=1 j=i+1 l J 

and, similarly, (3.11) may be written as 

(3.12) 
n n 
l l 

i=1 j=i+1 
( ( v. . - v .. ) 2 + 2nv~ . ) . 

11 JJ lJ 

Here, we see that any pair (x. ,x.) of components can give two contri-
1 J 

butions to the complexity in V: a contribution due to the unequality be-

tween their variances and one due to a non-zero covariance between them. 

The complexity of V can, apparently, be split up into contributions due to 

pairs of components. 

The relation between the two contributions can be described more 

precisely by showing that, for any pair of components x. and x., a new set 
l J 

of coordinate axes may be found with respect to which only x. and x. are 
l J 

changed; change in their variances being compensated by a change in the co-

variance between them. The new set of coordinate axes is the same as the 

old except for the i-th and the j-th, which are rotated in the same plane 

through an angle$. The resulting covariance matrix is U = P'VP where P 

is the nxn matrix equal to the identity matrix except for the elements 

p .. == p .. = cos($), 
( 3, 13) 11 JJ 

p .. = -p .. = sin($), 
Jl lJ 
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Rotations of this kind are called plane rotations and they are the 

elementary steps by which Jacobi's method for finding the eigenvalues of a 

symmetric real matrix proceeds. Theorem 3.6 may be obtained from the rele

vant formulas in [67], or directly as follows. 

THEOREM 3.6 

For i = 1, ..• ,n and j = 1 0 ••• ,n we have 

2 2 2 v .. + 2v .. + v .. 
J.l. l.J JJ 

2 = u .. 
l.l. 

+ 2u~. + u~ .. 
l.J JJ 

PROOF. Let W = VP; then U = P'W. The columns of Ware equal to those of V 

except for the i-th and j-th columns. The rows of W have the same Euclidean 

norm as those of V because Pis orthogonal. Therefore: 

(3.14) for k = 1, ... ,n. 

Similarly, we find: 

(3.15) 
2 + u~ 2 + 2 fork 1, ... ,n. uik = Wik wjk = 

Jk 

From (3.14): 

2 2 2 + V~. w .. + w .. = v .. 
l.l. l.J. l.l. l.J 

2 + w~. 2 2 w .. = v .. + v .. 
Jl. JJ Jl. JJ 

+ 

2 
+ w~. + 2 2 2 + v~. + V~. 

2 w .. w .. + w .. = v .. + v ... 
l.l. l.J Jl. JJ l.l. l.J Jl. JJ 

Similarly, from (3. 15): 

2 + w~. + w~. + w~. 2 + u~. + u~. + u~ .. w .. = u .. 
l.l. Jl. J.J JJ l.l. l.J Jl. JJ 

Using the fact that V and U are symmetric, we obtain 

(3.16) 2 2 2 v .. + 2v .. + v .. 
l.l J.J JJ 

= U~" + 2u~. + U~., 
l.l. l.J JJ 

which completes the proof. 
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Note that vkk = 1\:k fork# i, and k ~ j, and l~= 1 vkk = l~= 1 '\k = 1. 

This implies that u .. + u .. = v .. + v .. , and suppose it is equal to 2µ. 
ll JJ ll JJ 

From ( 3 . 1 6 ) : 

2 
+ v~. 2µ 2 2v~. 2 

+ u~. 2µ 2 2 v .. - + = u .. - + 2u .. ll JJ lJ ll JJ lJ 
(3.17) 

Hv .. -v .. )2 + 2v~. = Hu .. -u .. )2 + 2u~. 
ll JJ lJ ll JJ lJ 

On each side, the first term is a contribution to the variance-of

variances term in (3.12) and the second term is a contribution to the 

square-of-covariances term. The expression (3.17) shows that under a plane 

rotation the sum of the contributions is invariant. 

3.4.2. A VARIATIONALLY EQUILIBRATED FORM OF A COVARIANCE MATRIX 

We saw that the complexity of a covariance matrix has two additive 

components; one arising from the unequality of diagonal elements and the 

other from the sum of the squares of the covariances. In the diagonal form 

of a matrix all complexity is represented as unequality. In fact, one well

known method for diagonalizing a matrix (known as Jacobi's; see, for in

stance, [67]) uses successive plane rotations chosen such that u .. = 0 in 
lJ 

(3.16). 

In 3,3, where we justified Casa measure of the complexity in V, we 

supposed the existence of a matrix orthogonally equivalent to V where all 

complexity is present in the form of covariances and, therefore, all diag

onal elements are equal; because these are the variances of the components 

of a random vector that has Vas its covariance matrix, we shall call this 

a variationally equilibrated covariance matrix. We can say that such a form 

is a "most undiagonal" form of V. 

THEOREM 3.7 

A covariance matrix Vis orthogonally equivalent to a variationally 

equilibrated matrix. 
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PROOF. Let 

(1/n2 ) 
n n 2 

C 1 ( Q) = I I (m .. -m .. ) 
i=1 j=i+1 11. JJ 

and 
n n 2 

C2(Q) = ( 1 /n) I I 2m .. , 
i=1 j=i+1 lJ 

where m .. , i = 1, ... ,n, j = 1, ••. ,n, are the elements of M = Q'VQ for some 
lJ 

orthonormal matrix Q. Then, according to (3.12), we have C = 

Apparently, c1(Q) .::_ O; we shall show that zero is also the greatest lower 

bound. Consider the following algorithm: 

Take some~> 0 and repeat as often as possible the following step: 

Find an i and a j such that (m .. -m .. )2 > dk and subject M to a plane rota-
11 JJ 

tion such that m .. becomes equal tom .. , which is always possible. Call the 
11 JJ 

resulting matrix M again. 

The algorithm consists of a finite number of such steps, because at 

each of these c1 decreases at least by ~/n2 . The finite product of the 

corresponding plane rotations is an orthonormal matrix which we call~

After the execution of the algorithm, c1 .::._ n(n-1) <\c/(2n2 ). Because this 

holds for all~> O, the greatest lower bound of c1 is O. 

It now remains to be shown that there exists an orthonormal matrix Q 

such that c1(Q) = O. Take any sequence d 1 ,d2 , ... of positive numbers that 

has Oas limit. Execute the algorithm for each. Consider the element p~~) 
lJ 

of the i-th row and j-th column in the matrix 

k 

II Qi' 
i=1 

k = 1 ,2, .. , 

(1) (2) 
It may be verified that p .. ,p .. , ... 1s a Cauchy sequence and that 

lJ lJ 
its limit is the corresponding element of a matrix Q such that c1(Q) = O. 

This completes the proof. 

3,4.3, A RECURSIVELY DOUBLY SYMMETRIC FORM OF A COVARIANCE MATRIX 

Theorem 3,7 showed the existence of a variationally equilibrated form 

of a covariance matrix by describing a, generally infinite, sequence of 

matrices of which it is the limit. Here we shall be concerned with a 
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special form of the matrix, which may be described as "recursively doubly 

symmetric" and which is also variati: nally equilibrated if n, the order of 

the matrix, is a power of 2 The algorithm that ~omputes this form uses 

only a finite number of steps. We do not know whether there is an alg rithm 

that yields a v-ariationally equilibrated form after a finite number of 

steps for arbitrary order of the matrix. 

Let the covariance matrix be called V, with elements v .. , i,j = 
lJ 

= , ••• ,n. The set of elements (v 11 , ..• ,vnn) is called the diagonal the 

set of elements ( v 1 , v2 1 , ... , v 1 ) is called the counter diagonal A 
n ,n- n 

matrix is said to be of doubly diagonal form if non-zero elements only 

occur in the diagonal or in the counter diagonal. A matrix is said to be 

doubly symmetric if it is symmetric with respect to the diagonal and also 

with respect to the counter diagonal. 

LEMMA 3. 1 

A covariance matrix Vis orthogonally equivalent to a doubly diagonal 

doubly symmetric matrix. 

PROOF. Because any covariance matrix is orthogonally equivalent to a diag

onal matrix, it suffi- es to show that a da.agonal matrix is orthogonally 

equivalent to a doubly diagonal doubly- symmetric matrix It is easy to see, 

that, if Pis the matrix satisfying condition (3.13) and j = n + 1 - i and 

if Vis doubly diagonal, U = P'VP is also doubly diagonal. A diagonal 

matrix is doubly diagonal, by definition. The angle~ which occurs in the 

conditions (3.13) may be chosen such that for the elements of U, uii = 

= u . . , i = 1, ... ,n, which implies double symmetry in a doubly n+1-1,n+1-1 
diagonal matrix. 

Transposit~on of a matrix M with elements m .. , i,j = 1, ... ,n, means 
lJ 

the reflection of M with respect to the diagonal. The result is denoted by 

M'; we have m .. = m!. The fact that a matrix is symmetric may be expressed 
lJ Jl 

as M = M'. We shall call aounterposition the reflection of M with respect 

* to the counter diagonal. The result is denoted by M; we have m .. = 
* 1J 

m +1 . +l .• The fact that a matrix is doubly symmetric may be expressed n -J,n -1 

as M* = M, M = M'. As may be verified, the following lemma is implied by 



these definitions. 

LEMMA 3.2 

*' '* * * * M = M and (M1M2 ) = M2M for arbitrary square matrices M, M1, and 

Suppose that the order n of Vis even; let m = n/2. Let v11 be its 

leading principal submatrix of order m. We say that V 1s recursively doubly 

symmetria if it is either of order 1 or else if it 1s of even order, and 

doubly symmetric, and such that v11 is recursively doubly symmetric. 

THEOREM .8 

A covariance matrix V of order n = 2k (where k is a non-negative in

teger) is orthogonally equivalent to a recursively doubly symmetric matrix. 

PROOF. By Lemma 3, 1 we may, without loss of generality, suppose V to be 

doubly symmetric. Let us proceed by induction on k. Fork= 0 the theorem 

is trivially true. Suppose it is true for k-1, then this implies that v11 
is orthogonally equivalent to a recursively doubly symmetric matrix; speci

fically, suppose this matrix to be Q~ 1 V 1 ,1 Q11 , where Q11 is orthonormal, 

Then 

is also orthonormal, as we verify by evaluating 

(
Q
0

11Q11 
Q'Q = 

* * f ' * Here, Q11 Q11 = (Q11 Q11 ) = I, the identity matrix of order n/2. Therefore, 

Vis orthogonally equivalent to 

Q'VQ = 
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which is doubly symmetric because Vis. By the induction hypothesis, 

* * *' * Q11 v 11 Q11 and Q11 v 11 Q11 = (Q; 1v 11 Q11 ) are recursively doubly symmetric; 

hence, by definition, Vis. This concludes the proof. 

* If Vis doubly symmetric, tr(v22 ) = tr(v 11 ) = tr(v 11 ) = ~ tr(V). 

Therefore, if Vis recursively doubly symmetric, all its main diagonal ele

ments are equal. Thus, in the special case where n is a power of 2, one of 

the variationally equilibrated forms of the matrix is a recursively doubly 

symmetric form. If the order of Vis not a power of 2, it is easy to see 

that it is also orthogonally equivalent to a recursively doubly symmetric 

matrix (if we would choose m, the order of v 11 , such that 2m + 1 = n in 

the case n is odd). This fact, which may be of interest in itself, does not 

concern us here, because in that case the doubly symmetric form is not 

necessarily variationally equilibrated. 

3,5, COMPLEXITY AND CONDITION NUMBER 

For a covariance matrix V the condition numbeP k = A1/An, In numerical 

computation this is an important quantity because it measures the relative 

precision with which V defines the solution of the vector equation Vx = b. 

If k is large (then Vis called iii-conditioned), small relative errors in 

the elements of V can lead to large relative errors in the solution x. For 

a systematic treatment including general matrices the reader is referred to 

[27], 

The condition number of Vis related to its complexity: if the com

plexity is large, A1 must be large and An must be small and, therefore, V 

is ill-conditioned. The converse is not true. Suppose, for instance, that 

A1 = ••• =A 1 and A very close to zero. Then Vis ill-conditioned, while n- n 
the complexity is only slightly more than its minimum value. In this case, 

small relative errors in the elements of V may cause large changes in x, 

but these lie approximately in a one-dimensional subspace; the projection 

of the solution on the eigenspace of A1, ... ,An-l is very precisely deter

mined by V. 

Thus we see that V may be ill-conditioned with respect to the entire 

space, but well-conditioned with respect to a suitably chosen (n-1)

dimensional subspace. This is not possible if complexity is close to 1. 



Apparently, high complexity is a more serious condition than a large k by 

itself implies. This property may make complexity a useful concept in nu

merical computation. 
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We shall now address ourselves to the task of giving a more precise 

relation between complexity and condition number. To this end, we shall 

derive a lower bound for A1 and an upper bound for An, This gives a lower 

bound for the condition number in terms of complexity. By the same method 

we shall find an upper bound for A1 and, for covariance matrices with very 

small complexity, a positive lower bound for A . These provide an upper 
n 

bound for the condition number in terms of complexity. 

THEOREM 3,9 

Let V be a covariance matrix of order n with tr(V) = 1 and complexity 

C. Leth be the integer such that h < 1/(nC+1/n) < h + 1, a0 the larger 
2 2 root of nC + 1/n = ha + (1-ha) , and 81 the smaller root of nC + 1/n = 

== (1 - (n-1)8) 2 + (n-1) 82 , Then we have fork, the condition number of V: 

If nC < 1/(n-1) - 1/n, then k .::_ a 1/a0 , where a 1 and a0 are, respectively, 

the larger and smaller roots of nC + 1/n = a2 + (1-a) 2/(n-1). 

PROOF. To find the lower bound for A1 we shall determine the maximum value 

f ,2 + ,2 s t o ~1 ... + ~n· uppose tha 

(3. 18) A1 = a > 1/n. 

We also have 

(3. 19) Al > A > > A > 0 
- 2 - n 

and 

(3.20) A1 + A2 + ... + A ::: 1. n 

Let m be the integer such that m < 1/a < m + 1. The case m == n is easy 

to dispose of: A2 2 . 
assume the value 1/n. Therefore, + ... + A can only 

1 n 
suppose that n > m and put p, ::: ... = Pm "' a,pm+1 == 1 - ma, and, if 
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n > m + 1, pm+2 = ... = Pn = 0. 

It may be verified that for all \ 1 , ••• ,\n that satisfy (3. 18, 19 and 

20) p 1 + ... + Pj .::_ \ 1 + + Aj for j = 1, ... ,n with equality for j = n. 

According to theorem 3,1 

> \ 2 + + \ 2 = 11 V 11 2 == nC + 1 / n. 1 ·" n 

Apparently, for 1/(m+l) <a.::_ 1/m, the maximum value of j lvl 12 is 

ma2 + (1-ma) 2 • For these values of a, I lvl 12 is monotone increasing; 

l!vll 2 = 1/(m+1) for a= 1/(m+1) and 1Jv!l 2 = 1/m for a= 1/m. Thus, if we 

consider a certain value of I !vi 12 as given and if his the integer such 

that h < 1/I Iv! 12 < h + 1, we find that \ 1 .::_ a0 , where a0 is the larger 

root of 

2 2 nC + 1/n = ha + (1-ha) . 

To find the upper bound for \ 1 , we shall determine the minimum value 

of\~+ ... + \; under conditions (3.18, 19, and 20). Suppose that p 1 == a, 

P2 = = pn = (1-a)/(n-1) for 1/n .::_a.::._ 1, and n > 1. It may be verified 

that for \ 1 , ... ,An that satisfy (3.18, 19 and 20) p 1 + ... + pj .::_ 

< \ + ... + \. for j = 1, ..• ,n and with equality for j = n. According to 
- 1 J 
theorem 3.1 

2 2 
P7 + •.. + pn 

2 2 
a + (1-a) /(n-1) .::_ 

< \2 + ... + /\2 = I !vi 12 = nC + 1/n. 
1 n 

This implies that, for a given I lvl 12 , \ 1 .::_ a 1 , where a 1 is the larger root 

of 

In a similar way we derive bounds for/\ . Suppose that 
n 

(3.21) \ == 13 < 1/n. 
n 



We also have 

(3.22) > >. > 0 
- n -

and 

(3.23) "1 + ·•• + "n = 1 • 

Under these conditions we shall find the maximum value of 

+>-!to derive an upper bound for "n· Put p1 = 1 - (n-1)S, 

= pn = fL For all A1 ,. ~. ,An that satisfy (3 .. 21', 22, and 23) 

+ p. > >. + + >.. for j = 1, ..• ,n with equality for j = n. 
J - 1 J 

According to theorem 3,1 

,.2 ,.2 > 1+ ... + n = 11 VI I 2 = nC + 1 /n. 

This implies that, for a given I lvl 12 , "n 2. a1, where a1 is the smaller 

root of 

2 2 nC + 1/n = (1 - (n-1)S) + (n-1)S • 
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For the condition number k we now have k = >. 1/>.n ~ a0/a 1• It may be 

possible to derive a higher lower bound fork using only I lvl 12 and the 

fact that tr(V) = 1. It is not possible to improve the bounds a0 and a1 
because, for each, we have indicated a class of matrices, namely those that 

have p1, ••• ,pn as eigenvalues, for which these are attained. These classes 

are, in general, not the same; this leaves room for improving k ~ a0/a1. 

To obtain the lower bound for>. we find the minimum value of 
n 

(3.21, 22, and 23). Suppose that 2 2 .. >. + •.. + >. under the conditions 
1 n 

p = 
1 

= •·• = Pn-l = (1-S)/(n-1), pn = S. For all >. 1, ... ,>.n that satisfy (3.21, 

22, and 23) p1 + ••• + pj 2, >. 1 + 

j = n. According to theorem 3,1 

... + >.. for j = 1, .•• ,n with equality for 
J 

P~ + .•• + P! = (1-S) 2/(n-1) + a2 2, 

< >.~ + ... + >-! = I lvl 12 = nC + 1/n. 
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This implies that, for a given I IVI 12 , An.:_ s0 , where s0 is the smaller 

root of 

2 2 nC + 1/n = (1-S) /(n-1) + S • 

Only for I !vi 12 < 1/(n-1) do we have that s0 > O; otherwise the 

trivial lower bound O is at least as good. Thus, we find for the condition 

number k = A1/An .:::_ a 1/s0 if I !vi 12 < 1/(n-1). 

3,6. INTERACTION AND COMPUTATIONAL COMPLEXITY 

3.6.1. INTRODUCTION 

As far as we are aware, the only subject where a concept named "com

plexity" is being studied quantitatively, is the theory of automata. Here, 

the complexity of a sequence of symbols is defined to be the time required 

by a (suitably restricted) universal automaton to recognize that sequence 

(see, for instance, the relevant chapter in [3]). This definition of com

plexity as the difficulty of a computation seems to have little to do with 

ours, which is a difference of entropies. However, Kolmogorov [30] has 

proposed a basis for information theory in which the entropy of a sequence 

is defined to be its computational difficulty. The present section provides 

another, more indirect, link between complexity in terms of entropy and 

complexity in terms of length of computation. 

Suppose we have a system of which the components are equations and 

where a measure of interaction is defined between disjoint sets of equa

tions. Then, if the system is partitioned into two subsets, the interaction 

between these is, according to our definition in chapter 1, a contribution 

to the complexity of the system. We shall show that, for a particular type 

of system of equations, the interaction is related to the time required to 

compute the solution of the system, if a certain method of solution is 

used. 

The particular type of system of equations and the particular method 

of solving it will be described below. We shall first sketch the result. 

Let each equation be associated with an unknown. The method of solution 

consists of the iteration of the following step. First, the equations in 
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one subset are used to obtain values for the variables associated with it; 

in parallel, the same is done for the other subset, In general, the approx

imation obtained by concatenating the solutions for the subsystems does not 

satisfy the whole system and, in that case, the step is repeated. For 

certain types of system, the successive approximations obtained by this 

method are guaranteed to converge to the solution. The lower the "rate of 

convergence", the more steps have to be done to obtain a result of suffi

cient accuracy and the greater is the computational complexity, We shall 

obtain an inequality that provides a lower bound for the rate of convergence 

in terms of interaction. In other words, we shall show that the better 

classification exists among the equations, the faster convergence must be, 

if the partitioning into subsystems is made according to the classification. 

Let the system of equations be the linear equations contained in 

Ax = b 

where A is a positive definite symmetric real matrix with elements a .. and 
lJ 

where band x are the known and unknown vectors respectively. A, b, and x 

are of order n. Let us consider the two subspaces R1 and R2 spanned by the 

first 1 and the last m (1 .::_ m, 1 + m = n) axes of the coordinate system 

with respect to which the equation has the representation (3.24). The cor

responding partition of (3.24) is 

The interaction between the first 1 and the last m scalar equations +hen 

depends on the elements of A12 and A21 . 

According to Jacobi's method for block iteration (see, for instance, 

[16]), an initial approximation )O) to xis chosen and a sequence 
(1) (2) 

x ,x , ... of successive approximations is constructed by solving 1n 

parallel 

( i) (i- ·, 
A11 x, = b1 - A12 x2 

I 

(3.25) 

A22 
(i) 

x2 = b2 - A21 
( i-1) 

x1 . 
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If the iteration converges, it converges faster the smaller the abso

lute values of the elements of A12 and A21 are. If all elements in A12 are 

zero, the iteration has converged when the second_cycle is completed- In 

the sequel we show how it is possible to borrow a definition of interaction 

from information theory and to find a relation between such an amount of 

interaction and the speed of convergence in Jacobi's method for block 

iteration. 

Let A be the covariance matrix of a random vector z, Then, in case z 

is normally distributed, the interaction (see 1.13 and 3, ) between the 

sets of components (z 1, ••• ,z1 ) and (zl+l'''' ,zn) is: 

(3.26) 

A well-known theorem (Beckenbach and Bellman [8]) states that 

I A I/ ( I A11 I ' I A22 I ) 2- 1. 

' 
Their proof may also be used to show that equality obtains only if all 

elements of A12 = A21 vanish. We shall use the interaction Ras the defi

nition for our intuitively introduced concept of interaction. This implies 

that the less interaction there is, the closer the left hand side approaches 

1. It is the purpose of the next two sections to find a relation between 

the speed of convergence of Jacobi's iteration and the interaction as 

defined above. 

3,6,2. INTERACTION AND THE PERFORMANCE OF JACOBI'S ITERATION ACCORDING TO 

THE USUAL DEFINITION 

The equations (3.25), that may be solved in parallel, may also be 

written as a single vector equation: 

(3.27) 
( i ) ( ) x = D-l b + (I-D- A) x i-l, i = 1,2, ... , 

where D == (;11 : 22 ) and I is the identity matrix of order n. The 

solution to (3.27) must satisfy: 



-1 ( -1 ) x = D b + I-D Ax. 

Hence, we must have for the error vector e(i) = X 
( i ) 

x: 

(3.28) 

Suppose we want to approximate the eigenvector corresponding to the 
_1 

largest ( in absolute value) eigenvalue p 1 of ( I-D ·A), then the iteration 

(3.28) would correspond to the "power method" for finding successive ap

proximations e(i) to this eigenvector. If p1 is of unit geometric multi

plicity, we have 

(3.29) lim 
i--

lle(i)ll!lle(i-l)II = 
' 

The iteration diverges for IP 1 I > 1, which cannot be the case for A 

symmetric and positive definite (see [16,19]). The iteration (3.27) con

verges faster the smaller IP 1 1 is. We shall now derive an upper bound for 

IP 1 I in terms of the interaction (3.26). 

The eigenvalues of (I-D- 1A) are, by definition, the values of p for 

which there is a non-zero vector y that satisfies 

-1 
(I-D A)y = PY, or D(1-p)y = Ay. 

This equation has a solution for non-zero y only if: 

pA11 A12 
2 

pA12 
-1 

P A11 

IA - (1-p)DI = = p = 

A2i pA22 A21 pA22 

(3.30) 
2 

A12 
m-1 

P A11 
= p = o. 

A21 A22 

Because we supposed that 1 < m, we find that this equation has m-1 

roots equal to zero and the remaining 21 roots occur in pairs of opposite 

sign: ±p 1,±P2 , ... ,±p1 , where IP 1 I .:.. IP 2 1 > ••• .:.. IP1 1. These last roots 

must be such that there is a non-zero y = y 1 + y2 (y 1cR 1, y2ER2 ) which 
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satisfies: 

and 

2 
p A11Y1 + A12Y2 = 0 

-1 
A12A22A21y1 + A12Y2 = O 

which implies 

and 

IA~~A,2A;~A2, I = 
1 
II 

j=1 

2 
p .• 

J 

Hence we have 

but also 

1 
= II 

j=1 

This leads to the result (see [19]): 

1 
IAl/(IA11 I-IA22 1) = _II 

J=1 

2 ( 1-p.) 
J 

= 

By means of the inequality between the geometric and the arithmetic mean we 

find: 
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1/1 l ( ,-ll 111 > 1 - (IAl/(IA11l•IA22I)) = 1 - n 
j=1 J 

l 2 (3, 31) > 1 - I (1-p.)/l = 
J=1 J 

l 2 2 
= I p./1 ::_p,;1. 

j=1 J 

The left-hand side is related to the interaction (3.26) and it pro-

vides an upper bound for jp1 I, which determines the asymptotic speed of 

convergence for Jacobi's iteration. The smaller the amount of interaction, 

the closer jAl/(jA11 j. jA22 I) to 1, the smaller the upper bound for IP 11, 
and the faster the convergence is. 

In statistics, p1 is well-known as a measure of the relatedness 

between the two groups of random variables (z 1, ... ,z1 ) and (z1+ 1, ..• ,zn). 

There, Hotelling [26] posed and solved the problem of finding a linear com

bination (constrained to unit variance) of each group in such a way that 

their ordinary correlation coefficient has maximum absolute value. It turns 

out that this correlation, called the first canonical correlation, equals 

3.6.3. INTERACTION AND THE PERFORMANCE OF JACOBI'S ITERATION ACCORDING TO 

ANOTHER DEFINITION 

The asymptotic speed of convergence IP 11 (see (3.29)) is not a satis~ 

factory measure for the performance of the iteration because the number of 

iterations after which the actual rate of convergence approaches the asymp

totic rate depends on the initial error vector e(O) and on IP2 l!IP 1 I, In 

this section we shall first give a measure for the efficacy that does not 

have these drawbacks by considering the amount .tiI of informa·tion about the 

unknoum solution yielded by a ayale of the iteration. Finally, we shall 

establish a lower bound for lI in terms of R. 

The performance index of an algorithm should not depend on the value 

of the initial error vector if it works for many different values. But the 

algorithm may well converge faster for one value than for another. In his 

pioneering work in cybernetics, Wiener [66] was faced with a similar 
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dilemma. His problem was to design a filter that would optimally separate 

a message from noise. The difficulty was that one filter would be better 

for one message and another filter for another m~ssage. 'The solution 

adopted by Wiener was to consider not this or that particular message, but 

a set of possible messages, each with the probability with which it would 

occur in the environment in which the filter would have to operate, in 

short, an ensemble of messages. 

Similarly, we shall consider the performance of Jacobi's iteration 

with respect to an ensemble of initial error vectors, that is, we shall 

assume that there exists an n-dimensional probability density function f 0 
for e(O); the iteration (3.28) defines the successive density functions f. 

f ( i) · d . t f f . t . 1 1.f o e , 1. = 1,2, .... The assume ex1.s ence o O 1.s no a serious oss o 

generality, because the resulting performance index turns out to be in

dependent of f 0 ; the assumption merely allows us to express the performance 

of the algorithm as the gain in information per cycle of the iteration, 

which is the uncertainty in e(i- 1 ) minus the uncertainty in e(i)_ Intu

itively, it is clear that the more a density function is concentrated in a 

small region of n-space, the less uncertainty there is in the vector dis

tributed according to this density function. Therefore, a monotone in

creasing function of the generalized variance \s. \ (the determinant of the 

covariance matrix S. off.) of e(i) seems an app~opriate measure for the 
( i) l 1. 

uncertainty in e . 

Note that I - D- 1A is of rank at most 21; we shall suppose that it 

al 21 T ( 3 28) . . f . 1 ( i ) . . b. 1 · equ s . hen, • 1mpl1es that, or 1 .::_ , e 1s, with proba 1. 1ty 

one, in a 21-dimensional subspace. Let us now change to a basis such that 

its first 21 vectors span the range of I - D- 1A. In the sequel, we shall 

suppose that i > 1 and we shall replace I, D, A, and S. by submatrices ob-
1 

tained from the first 21 rows and columns of the accordingly transformed 

matrices, that is, by that part that acts only within the range of I - D- 1A. 

A convergent iteration causes the entire probability mass to be suc

cessively more concentrated 1n an arbitrarily small neighbourhood of the 

origin. The speed with which this happens is reflected in the ratio 

\s. \!\S. 1 \, which is smaller than one in the case of convergence. We shall 
l 1- · 

use ln\s. \ as the measure of uncertainty in e(i), so that the gain in in-
1 
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formation is expressed as a difference: 

AI. = lnls. 11 - lnls.!. 
1 1- 1 

With the definition of the covariance matrix S. of e(i) and (3.28) we find 
1 

(E denotes the mean): 

s. 
1 

s. 
1 

AI. 
1 

AI 

= 

= 

= 

= 

(I-D- 1A) s. (I-D- 1A)' 
1-1 

1s. , I 
-2lnlI-D-1AI ln( 1t1 ) = 

1 

-2ln(p~ 
2 ... Pl). 

2 2 
= -2ln(p 1 ... pl) 

This index for the performance of Jacobi's iteration is independent of 

i, independent of the initial error vector, and it is applicable from the 

first iteration onwards. Furthermore, it has the advantage that it may be 

interpreted to be the amount of information about the error vector (and, as 

the initial approximation x(O) is known, also about the solution x) gained 

in any one cycle of the iteration. Also, we find that the less interaction 

there is according to the definition (3.26), the greater AI. For 
2 j = 1, ••• ,1 we have p. < 1; hence 
J -

1 1 

j~1 p~ < 1 - j~1 (1-p~) = 1 - IAl/{IA,,IIA22i) 
(3. 32) 

3,6.4. CONCLUDING REMARK 

We have derived a relationship between the amount of computation re

quired to solve (3.24) and a contribution to complexity, namely, the inter

action. Such a relationship may be useful in a theory for the amount of 

computational effort if we average the amount of interaction over all co

ordinate systems (or, equivalently, over all orthogonally equivalent forms 
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of A), because the a.mount of computing time may depend very much on the 

coordinate system: if it consists of eigenvectors, A is diagonal and the 

time required is proportional ton. 

But, as we showed in 3,3, complexity is not only contributed to by 

elements not on the diagonal, but also by unequality among diagonal ele

ments. It may happen that a matrix with much redundancy is diagonal; how

ever, we are not interested in such an exception, but in the average over 

the set of all orthogonally equivalent forms of such a matrix. 

It may well be possible to find a measure of such a set that increases 

with complexity. For instance, the set of matrices orthogonally equivalent 

to the identity matrix contains only this matrix. The measure of this set 

would be zero and the identity matrix is the only matrix for which the 

complexity vanishes. Averaged over the set of orthogonally equivalent 

forms, a matrix with much complexity would give much interaction and ac

cording to (3,31 and 32), this suggests more computational effort. Thus we 

hope to have reinforced the intuitively plausible relation between complex

ity and computational effort in solving a certain type of system of linear 

equations. 
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