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definition of the cardinal functions defined in chapter 1 for a topological
space X, with topology o(X)

weight w(X) = w.min {|L|: & is an open basis for X }
m-weight m(X) = wemin {| &|: & is an open m-basis for X }
uniform weight u(X) = w.min {|U|: Uis a basis for a uniformity compatible
density a(X) = wemin {|S| : §=x1} with o(X) }
cellularity c(X) = wesup { U_’: U c o(X), N is disjoint }

cp(X)= wesup {|U|: Lc o, (X),U is disjoint }
spread s%X) = w.sup {|D| : D c X; D is discrete }
Lindel8f degree L(X) = w.min {o : each open cover has a subcover of card.a }
height h(X) = wesup { Ml : McX, Mis right-separated }
width z(X) = wesup {|M| : M c X, M is left-separated }
depth k(X) = wesup {|U]|: Wis a strongly decreasing chain }
character x(X) = sup{min{|U,|: U ,is a nbd basis at p} : peX }
pseudo-character y(X) = sup{min{|U,|: Uc o(X), "I, ={p}} : peX }
tightness 3(X) = sup{min{ o : peAcX s( IBcA psﬁ»\IBT=a )} : peX }

partial ordering of the cardinal functions established in chapter 2 for XeT,;
here for a cardinal function ¢, her.¢ = sup{¢(Y):YcX}, so for ¢e{w,u,s,h,z,x,
V,9} her.¢=¢
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Let X be infinite.Then we have as speciale cases
for X metrizable (i.e. u(X)=w, ¢f.2.72,2.13,2.78,2.87) :

L
]

k<w
3 = X

c=4d-=

1r=s=h=z$|Xl£w"u
u = w

for X dyadic (cf.4.9,4.8) :

dsvy
C=

X:n:w:h
k = w

A

|Xx] <expw andw < exps

for X linearly ordered, if j= number of points with an immediate successor
(cf.2.8,2.10) :

L<sh=s=csd=z=mn<w=d+j < |[X| <expec
either d=c¢ or d=ct
v=xsec

For an infinite compact Hausdorff space X the partial ordering of the
results of chapter 2 simplifies as follows :

expexp s

I. Juh@sz Cardinal fﬁnctions in topology. Mathematical Center Tract, 3bL.
Mathematisch Centrum, Amsterdam, 1971.
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PREFACE

General topology can be considered as a natural outgrowth of set
theory; the simple set theoretic nature of its fundamental notions makes
it an appropriate area for the application of set. theoretic methods. On
the other hand, many set theoretic problems have their roots in topology
and this makes the interaction between the two disciplines even more
profound. The closeness of their relationship is perhaps most apparent in
the work done by the Moscow school of topology in the early twenties.

The last decade has witnessed a very rapid development of set theoret-
ic methods and ideas, the main sources of which were, in our opinion, the
following: 1) the independence results of P. Cohen and his followers;

2) the results on "large" cardinals of A. Tarski's school, and 3) the
achievements of P. ErdSs, R. Rado, A. Hajnal, and others in combinatorial
set theory (e.g., partition calculus). Not surprisingly, this has stirred
up a renewed interest in thé set theoretic aspects of general topology.

A number of old problems were settled and many new ones were raised.

The aim of this tract is to present a variety of questions of this
kind by centering them around the unifying concept of cardinal functions.

Since a considerable part of the means employed in our investigations
are relatively recent and not easily accessible in the literature, we
have found it both convenient and timely to include an appendix entirely
devoted to the detailed explanation of these methods and ideas of combina-
torial set theory.

This tract was written during the second half of 1969, while the
author was a guest of the Department of Pure Mathematics of the Mathema-
tical Centre in Amsterdam. The appendix is based on a series of talks given
by the author during the same period at the Mathematical Centre under the
title "Combinatorial Set Theory". '

At this point I wish to express my gratitude toward the Mathematical
Centre for their kind hospitality which gave me the opportunity to write
this tract, as well as for publishing it. I am particularly grateful to
Professors J. de Groot and P.C. Baayen for initiating my invitation and

supporting this project.
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Special thanks are also due to Albert Verbeek, who took on the
difficult task of actually writing the text of the appendix, and did most
of the work necessary to turn the crude manuscript into print. I would
also like to thank Nelly Kroonenberg, who added A6 to the appendix.

Finally, I am greatly indebted to my friend and collegue A. Hajnal,

whose help was essential in acquiring the methods used in this tract.

Budapest, December, 1970.° Istvan Juh@sz.
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0.2.

0.3.

0.bL.

0. Notation and preliminaries

For the set theoretical notations used here we refer the reader to
the appendix ( p. T2ff).

For a topological space X we denote by o(X) the set of all open sub-
sets of X. We use the notation ~ to indicate closure and Int for

interior.

A c X is called a Gy . set iff there is an Ul co(x) with |2 <uw
b

13
and A =r»ﬂZ The complements of G

§,E sets are called Fo,g’

We put

(X) ={AcX: Ais a G set}.

% 8,8

Thus e.g. OO(X) is the set of all G.'s in X.

$

A space S is called right (or left) separated iff there is a well-

ordering < of S such that every initial (or final) segment of S
under < is open. It is easy to see that X has a right (or left)
separated subspace of cardinality o iff it contains a by inclusion

increasingly (or decreasingly) well-ordered sequence {G.: & < o} of

E:

open sets in X.



0.5.

0.6.

0.7.

0.8.

(ef. [11]) The following assertions can be verified easily:

(i) If s is right separated by < which well-orders S in type o, o
regular, then S-has an open covering Ul such that every subcover
of VUl is of cardinality o.

(ii) If s is left separated by < which well-orders S in type o, o

regular, then every dense subset of S is of cardinality a.

A subset D ¢ X is called discrete iff every p € D has a neighbourhood
Up in X such that D nUP = {p}. We denote by D(o) the discrete space
on o = the set of ordinals smaller than o (see appendix).

A sequence {pg:f'; < A} of points of X is called free (cf. [3] iff
{pgti < n} and {pg:n < & < A} have disjoint closures for every n < A.
Obviously, every free sequence is discrete.

A, by inclusion, decreasing sequence {ngi <X} co(X)is called a

strongly decreasing chain iff & < n < A implies

If {GE:E < A} is as above and
Py € Ge\Gyy, (for g < A),
then, obviously, {pE:E < A} is a free sequence.

If Fc X, & ¢ o(X) is called a neighbourhood basis for F iff
FcGe ol(X) imply the existence of a B & £ with F ¢ B <G.

We put

x(F,X) = min{|f»|: £* is a neighbourhood basis for F}.

_If p € X, we write x(p,X) instead of x({p},X).

If X is a T1 space, F c X, we introduce the following definition

Y(F,X) = min{wg: F 6' Og(‘X)}°



0.9.

0.13.

0.1k,

Here too we write ¥(p,X) instead of ¥({p},x).-
It is well-known and easy to prove (cf. [1]) that if X is a compact

T2 space and Fc X is closed, then
¥(F,X) = x(F,X).

If pe X, we define

3(p,X) = minfa:pe E>3Bc A with pe B and |B| < a}.

. X is called a-Lindeldf iff every open covering of X has a subcover of

cardinality < a.

It can easily be shown that a compact T2 space X is hereditary wg=
LindelSf (i.e. every subspace of X is wE—Lindelb'f) iff every closed
subset of X is a G5,E set, or equivalently, every open set is an

FO‘,E set.

. X is called oa-separable iff it has a dense subset of cordinality < a.

. X is said to have the.a-Baire property iff it is not the union of a

nowhere dense sets.

We say that o is a caliber for X iff for every ‘o/?c a(X) with ng = a
there is a O C{%With ]@&'I = o and rﬁ’}a,' + g,

The topological product of the spaces Ri’ ie I will be denoted by
R = X{Ri:ie I}. If I is finite (say I = {1,...,k}) we also write

R = R1 X .. % Rk'

The projection onto the i factor is denoted by mo. If Jec I, Ty

denotes the projection onto the partial product X{Ri:i e J}.

Open subsets of the product which have the form

n;: (U)n ..o n;; (v) (e o®; )

are called elementary open sets.

Similarly, a set is an elementary Gd £ set iff it is the intersection
2




of £ w, elementary open sets.

€

0.15. X t%P Y (or X S Y) means that there is a (closed) subspace of Y

which is homeomorphic to X.

0.16. We use Y to denote the class of all topological spaces. Similarly,
O’i denotes the class of all Ti spaces. We have U’i g 'J:] if
02i<j<5. We denote by ‘)’p the class of all completely regular
spaces which are not necessarily TO. Then ‘3’3% = 'TO n9.

p
B denotes the class of all compact T2 spaces.

0.17. Let (L,<) be a linearly ordered set. We denote by (a,b), [a,b),
(a,b] and [a,b:l respectively the open, half open and closed intervals
of L. The order topology for L is the one for which the open inter-
vals form a basis.

We denote by T the Dedekind completion of L (including the degenerate

cuts # and L as first and last element):
D={AcL: A=U{{be L: b<a}: aec A} and Ac o(L)},

T being (linearly) ordered by inclusion. L is embedded in T by map-
ping ae Lonto {be L: b < ale L. Then L € ® and as can easily be
seen, the subspace topology of L in I coincides with the original
order topology. (This is in general false for subspaces of ordered
spaces!)

£ denotes the class of all linearly ordered spaces.

0.18. A space X is called dispersed iff every subspace S C X has isolated
points. We denote by 9D the class of all dispersed spaces.

0.19. A T3 space X is called cocompact (cf. [9], [33]) iff there is an open
basis ¥ for X such that if ¥ c £ , and ¥ has the finite intersection
property, then n{F : FeF } # ¢.(Note that the defiin [9] is not
equivalent!) )

0.20. A T2 space X is called strongly Hausdorff iff from every infinite

subset A C X we can choose a sequence {pn:n < w} such that the P,

have pairwise disjoint neighbourhoods in X. We denote by H the class



of all strongly Hausdorff spaces. It can be shown (ef. [12]) that
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1. Cardinal functions

As we have mentioned above, the aim of this work is to present a systematic
study of certain cardinality problems arising in the theory of topological
spaces. To achieve this, we shall introduce the notion of a cardinal
function by means of which most of the questions we are concerned with can
be given a more or less unified treatment.

A function ¢ defined on a class € of topological spaces is called a

cardinal function if it assigns to each member X € € a (usually infinite)

cardinal number ¢(X).

Now we shall list the cardinal functions to be examined in what follows:

1.1. Weight

w(X) = min'{ [#] : ¥’ is an open basis (or:open subbasis) for X}.
1.2, m-weight

n(X) = min’{ [P]:® is a m-basis of X},

where® is a m-basis for X iff

P o(X\P} and (VU e o(xNPHNEY P, ¥ < ).



1.3.

1.5.

1.6.

1.7.

1.8.

1.9.

1.12.

Uniform weight

¥
u(X) = min (|W]: Wis a (sub)base for a uniform structure compatible

with o(X)}.

Here, of course, X e 3} is assumed.

Density
> -
a(x) = min {|s]: sc x, § = x}.

Cellularity

>
c(X) = sup {kw: C%C G(X),f%fdisjoint},
and analogously

cg(X) = sup)?|f1|:fnfc GE(X)gfﬂzdisjoint}.

Spread

kS ‘ .
s(X) = sup {|D|: Dc X, D diserete as a subspacel.

Height

> . -
h(x) = sup {|M|: M tgé X, M is right-separated}.
Width

* -
z(X) = sup {|2]: 2 t%P X, Z is left-separated}.

Depth
k(X) = sup*lkﬁ|:f% is a strongly decreasing chain in X}.

. Lindel8f degree

L(X) = min*xa : X is a-Lindeldf}.

. Character

x(X) = sup{x(p,X) : pe X}.

Pseudo-character

¥(X) = sup{y(p,X) : pe X}.



1.13. Tightness
3(X) = supld(p,X) : pe X}

here, X € 3} is assumed.

Remark .

In the above definitions

min {.} = w.min{.}

and

sup*{.} = w.supf{.}.

If ¢ is one of the functions X, ¥ or 3, then ¢(X) = 1 & X is dis-
crete. In every other possible case, however, each occuring function

is infinite.



2.2..

2. Interrelations between cardinal functions

Trivial inequalities.
a)  k(X) < c(X) < a(x) < m(X) < w(x)
D) w(X) < exp|X|; a(x) < ||

e)  e(X) < s(X) < min{h(X),2(X)} < h(X).z(X) < min{|X],w(X)}
moreover

e(X) < cE(X) <e (X)), if £ <

a) Y(X) < min{|X|,x(X)}
3(X) < min{x(X), sup{d(¥):¥ < X}} < |X|
x(X) < w(X) < x(X).[|x| and x(X) < u(x)
m(X) < d(X).x(X)

If Xe ‘J’O, then |Xl < exp w(X). Indeed, assume that ¥ is a basis for
X, [#| < w(X). Then x, ye X, x ¥ y imply

{Be®: xe B} $ {Bed : ye B},

since X 1is TO’ hence there is a 1-1 map of X into P ).
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2.3.

Remark
A.V. Arhengel'ski¥ [2] proved that for a rather large class of
spaces X, which includes metric and éech-complete spaces,

w(X) < |X| nolds.

If Xe 3'3, S c X is dense in X and Py€ S, then
(i)  w(x)

(ii) m(s)

(0% < e alx)

A

m(X)

(ii1) X(pg8) = X(pg%).

Proof ,

For A c X and Dtc P(X) write A = Int(A) and O = {A : A e DI}. The set
A is called regular open if A = A. Three observations are crucial:
2= X; the family R(X) of regular open sets forms a basis for X;

and if A is regular open then A = Ens. Hence, if |S] = a(X),

w(X) < [R(X)| < |P(8)| = exp a(X).
Next it is easy to chéck that if Olis a m-basis or a neighbourhood of Py
basis in the subspace S, then Ul is a m-basis or a neighbourhood basis
of P, in X. Hence (ii) and (iii) hold.

Now assume that Ul is a m-basis of X and || = n(X). Define a function
¢ : R(X) » P(O) such that

¢(A) is a maximal, disjoint subfamily of Uln P(A4).

Since ¢(A) is a disjoint open family [¢(A)| < <(X), and thus there are

_at most W(X)C(X) such subfamilies in UL Next, ¢ is 1-1: if A,B R (X)

and A # B, then A\B or B\A is nonempty and hence ¢(A) % ¢(B). This
shows that

w(x) < R(X)| = |Tnage ol < 1(x)°F),

Finally w(X) < w(X) (trivially), w(X) < exp d(X) (see above) and
c(x) < a(X) (trivially). This implies

“(X)C(X) < (2d(X))c(X) = exp d(X).
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2.4, For each Xe 'T'g

[X| < exp exp>d(X).

Proof

Let SC X be dense, [S| < d(X). For x,€ X we put

0

© =1cns: x,©® Ge a(X)}c o(8).
*o
Now x + y > 6x # 6 , since X is Hausdorff, hence ® is a 1-1 map of X

into P (0(S)), which proves our assertion.

Corollary

If Xe J,, then

29

w(X) < exp exp'exp ax).

This is immediate from 2.2 and 2.4. As is shown in [6L] this in-
equality is best possible, namely for any infinite o there is X ef?é

such that d(X) = a and w(X) = expexpexp a.

2.5. (cf. [10]) 1f X e,, we have
[x| < exp n(x).

Proof (Cf. the Remark on p. 25).
Assume |X| > exp o. By transfinite induction we define sets

, as follows. Let us put
n<g

X
(so,...,e ..)

n’’

X=Xy X1y
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2.6.

where X(e) are propef closed subsets of X.

If the sets X(e ) have been defined for all £ < p, we

put ERRRELMEEED n<e

X =) x
(en)n<p Q’ (

)

€ b
n’n<g

if p is a limit ordinal, and if p = ¢ + 1, we put
X
(

Ineo (500 Y EE 1)

€
n’'n<o
where the sets on the right-hand side are proper closed subsets of

the left-hand side, if the latter has at least two points.

Now there must be a sequence (en)n<a+ such that IX( ) | > 2 for
. . <
every & < d+, since otherwise nn<g
x| < [{(e) e <atae = ovid < ) 2|E| = 2%
- n’n<g n -

E<a
would hold. Hence we have a decreasing sequence of closed sets of

+ . . . .
length o , which, by 0.4, implies h(X) i.“+' This completes the proof.

For every X eV
(i)  n(x)

(ii) =(X)

min{a: X is hereditary o-Lindeldf}

sup{L(8):S c X}

sup{d(8):SC X} = minf{a: X is hereditary a-separable}.

” . . . + .
Ad (i). We saw in 0.5 (i) that if |S| = o , which is a regular

. . . + . .
cardinal, and S 1s right separated in type a then S is not B-Linde-
18f for any B < a. This obviously implies h(X) < a, if X is heredi-
tary o-Lindeldf. Conversely, if X is not hereditary a-Lindeldf, then
we can find a@g}m:(x), |@3| > a such that for% cfﬂ, [f%o| < a we

have

(+) u{%b $u f%.
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Let ¥= {G,: £ < 83, where B = 6} . I the points x, and their neigh-
bourhoods Gg(p)e have been defined for p < v < B, then
H, = U{Gg(p): p < v} #\)f%'by (+), hence we can choose a point

c i i G e 9. Obviously, {x :p < B}
xvC:L)ﬁﬁf\ H and its neighbourhood £(v) ﬁ% usly, {x :p

is right-separated, hence h(X) > B > a.

Ad (ii). Since every left-separated space S whose order-type is a
(regular) cardinal a+, has density ot (see 0.5 (ii)), we have

z(X) < sup{d(8): s < X}. On the other hand, if d(S) = a, we can
easily define a monotone increasing sequence of closed sets in S of
length o, using an obvious transfinite induction. This completes the

proof.

Remark.
2.5 and 2.6 (i) obviously imply that e.g., every hereditary LindelSf
T,-space has at most_zw points. And 2.1.d+2.6.(ii) imply 3(X) < z(X).

Problem.

It is known to be consistent with the usual axioms of set theory that
there exist hereditarily separable normal spaces (even topological

groups) of cardinality expexp w (cf. 62 ). It is not known, however,

- whether X €3 and z(X) = o imply |X| < 2% or not.

(ef. [13]) If X E'Té, a(x) < exp s(X).

Proof

Suppose we have d(X) > exp a. Then, by 2.6 (ii) there is a left-
separated subspace S © X such that |S| = (exp a)t. Using 2.5 we ob-
tain a right-separated subspace T < S, |T[ > a. Now T is both right
and left-separated, and we claim this implies the existence of a

Dc Twith |D| = |T| > a such that D is discrete.

Indeed let <1 and<<2 be two wellorderings of T which separate T right
and left respectively. Let us define a partition of [T]2 (def of
[T]2: p.100) into two classes'I and II as follows:

{x,y} e I iff < end <, coincide on {x,y};

{x,y} € II iff-<1 and—<2 are opposite on {x,y}.
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2.8.

Now, if Hc T is infinite, [H]2 c II cannot hold, otherwise we would
have an infinite decreasing sequence in the sense of <, or 42, which
is absurd, since both are well-orderings. Thus, by Erdds ' theorem
AL.T we obtain a D < T, |D| = |T|, such that [DI° c I. This, however,
means that.‘c1 and-<é'coincide on the set D, and this joint well-

ordering both right and left separates D, hence D is obviously discrete.
(ef. [12], [25] or [32]) 1f X e £, then we have

(1) a(x) < ex)™.

(ii) If X contains a discrete subspace of power o, it also contains

a pairwise disjoint intervals.

(iii) h(X) = c(X).
(iv) a(x) = z(x)."
Proof

Ad (i). Assume X eL and d(X) 3_a+. We want to show that X contains

o pairwise disjoint intervals. This will evidently imply (i).

Now let -~ be.&n arbitrary well-ordering of X. A point p € X is called
normal, if p is the <-smallest element of some neighbourhood Up of p.

We put
N ={pe X: p is normall}.

First we show that N is dense in X. Indeed, if G € o(X) and P is the

~-smallest element of G, then P, is obviously normal. Thus we have

x| > a(x) > o,

For each p € N let Ip denote the union of all open intervals contain-
ing p as their first element by <. Now, if p, p'e N, p < p' then
either I_n I_, =@, or Ip,c: Ip, which follows immediately from the
maximality of the Ip. '

Now, if there are o pairwise disjoint IP, we are done. If not, let

us put

Ny = {p e N: Ip is not contained in any other Ip,};
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since p, p'e NO

Similarly, by transfinite induction, we define

>In I, = $, we have |NO| < o,

1)

added in proof. Moreover it is easy to prove ¥(X) = x(X) < c(X), as

was observed by Nelly Kroonenberg.

=
1}

{pe Hy: Ip is not contained in other Ip,for p'e Hg}’

where H. = N\U{Nn:n < &}. Then, again, lNgI < o, hence
|U{1\IE:E < a}| < a. This implies H, $ 4.

Let p'€ H_ . This means that for each & < a there is a p,e N, such
a £ £

that Ip' c Ip , hence {I_ :£ < al is a decreasing chain. For each
€ g

£ < o we ca.nchoosea.nxge VI .

We put K = {XE:E < a} and

gl = {xE:xg—< p£+1}’ K = {xg:xg>— pg_”},

where < denotes the original ordering of X. The convexity of the Ip

implies that xg —< x‘n holds, if xge Kl, n > & and xg > X, if
Xge K;, n> g,
Now we have ]Kl| = a or IKII = a, In the first case we have an

increasingly well-ordered, in the second a decreasingly well-ordered
subset of type & of X, which immediately gives us 6 disjoint intervals.

This proves (i).

Remark
A Suslin continuum, whose existence is consistent with the usual
axioms of set theory, (cf., [181 or [34]) yields us a compact ordered
space X, for which

e(X) = w and a(X) = Wy
Ad (ii) Let X e, D c X distrete, a = |D| > w. For each pe D we
can choose an interval IP = (ap,bp) such that Ip n D= {p}. If D
contains o isolated points of X, we are done. If not, we can assume

that no point p of D is isolated in X, hence either (ap,p) £ ¢ or
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(p,b_) # @. Thus we have a points in D for which either the intervals

(ap,p) or the intervals (p,bp) are pairwise disjoint and non-empty.

Ad (iii) Since c(X) < h(X) is trivial, we have only to show that

h(X) < e(X) = a, i.e., by 2.6 (i) that X is hereditary a-Lindeldf.
Since c(X) = c(X) (cf. 0.17) and the order topology of X coincides
with its subspace topology in i, and finally X e, it suffices to
prove the hereditary o-Lindel8fness of a compact X e)f with c(X) = a.
So in what follows we assume that X is compact.

By 0.10, X is hereditary a-Lindeldf (with o = wg) iff every open
subset G € ¢(X) is an FO,E set. It is well known that every Ge o(X)
is the disjoint union of open intervals in X, whose number, by

c(X) = a, is at most a. Thus it suffices to show that every (a,b)c X
is an Fo,g set.

Now if a has no immediate successor and b has no immediate predecessor
then we can choose decreasingly and increasingly well-ordered
sequences {an:n < vy, <alc (a,b) and {bv:“ < Yy, <alc (a,b),

respectively, such that they converge to a and b. (Ya,Y < o follows

b
from c¢(X) = q.) Then

(a,b) =U{|:an,b\]: (nv)e v, x v }s

hence (a,b) is the union of < o closed intervals, and thus is an
F set.
G,& .
It is obvious how to modify the above construction in the cases where

a has an immediate successor or b has an immediate predecessor.

~Ad (iv) Suppose d(X) = o. We want to show (cf. 2.6 (ii)) that for

every S c X, d(8) < a.
Let A be a dense subset of X with |A| = a. We put Ag = {(x,y):

X, y € A and (x,y) n S # ¢}, furthermore if (x,y) e Ay we choose a
point Ply,y) € (x,y) n S, and put

A, = {p( : (x,y) € AS}.

X,Y)

*
Obviously, |AS[ < a. Since c¢(X) < d4(X) = a, by (iii), X is hereditary
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a-Lindeldf. Therefore if I, is the set of all isolated points of S,

S

. _a* . . .
then |IS| < a. We claim that DS = AS v IS 1s dense in S. Since

|DS| < o, this will complete the proof.

It is enough to show that if a, be X, (a,b) n S § ¢§ then

(a,b) n S n Dgq $# ¢. If (a,b) n S contains an isolated point of S,
then we are done.

If not, then |(a,b) n 8| > w, hence we can choose five points
Xys +ees X5 © (a,b) n 8 such that x, < x. if i < j. Then

X, € (x1 ,x3) $ ¢ and x) e (x3,x5) % @. Hence there are Y0 ¥y € A

2

such that y, e (x1,x ) and v, e (x3,x5). Consequently X3 € (y1,y2)r\

3
n S % ¢, and therefore (y1,y2) e AS.
Now, obviously, Py y.) € (y1,y2) n 8 c (a,b) n S, hence

Dy 0 (a,b)n S # ¢,1wh§ch was to be shown. This completes the proof.

Remark

We do not know whether d(X) < (s(x))* holds for a larger class of
spaces than %, say for ‘3'3(!), independently of GCH, of course.
(ef. 2.7.)

(ef. [13]) For each X e U, we have
[X| < exp exp s(X).

Proof (see p.100 for the definition of [X]r).

Assume |X| > exp exp o and let < be a well-ordering of X. Since
Xe 3‘2,
bourhoods U(x,y) and V(x,y) of x and y respectively, such that
U(x,y) n V(x,y) = 4.

. Now we define a partition of [X]?’ as follows:

for each pair {x,y} e [X]E with x < y we can choose neigh-

If {x,y,z} e [X]3, X < y < z then we put

{x,y,2} I( i

(e. = 0,1)
61,82) , .
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according to the following rules:

e, =0, if xe Uly,z);
e, =1, if x ¢ U(y,z);
=0, if 2z ¢ V(x,y);

=1, if z & V(x,y).

. + ;
By AL,5 there is a subset H C X, |E| = o” such that for a fixed

pair (n1,n2) (ni=0,1) we have [H]3 < I( . Suppose now y & H and

nysny)
y has both an immediate predecessor and an immediate successor in H

by <, say x and z respectively, i.e. x < ¥y < z. We shall show that
Hn Uly,z) s Vix,y) = {y},

hence y is isolated in H. Since H obviously contains ot such points
¥, this yields a discrete subspace D of H and hence X, of cardinality
ot ana proves our proposition.

Assume now that pe H n V(x,y) n U(y,z) and p % y. Since p # x and

P # Z are obvious,’we have either p < x or z < p. In the first case

p € U(y,z), hence the triple {p,y,z} gives us n, = 0. This, in turn
implies p e U(x,y), looking at the triple {p,x,y}¢€ Di]B, and thus

P ¢ V(x,y), which is a contradiction. A similar contradiction arises

if p > z is assumed. This completes the proof.

Problem

 Can one exp be omitted in 2.9 if X efB? (cf. [62]).

2.10.

For X ¢ we have
|x| < exp ().

Proof

This follows immediately from 2.5 and 2.8 (iii). A direct proof goes
as follows:
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Let < be an arbitrary well-ordering of X, while < is the ordering
which defines the topology of X. We put for any {x,y} € [i]z

3

{x,yl e Is resp. {x,y} € Iop

according to whether <orders {x,y} in the same, or in the opposite

way as < does.

Now, if |X| > 2%, by Ab.h we have a H ¢ X, |H| = o* such that

I}ﬂe c IS or [ﬁ]g(: Iop' Thus in the first case H is increasingly
well-ordered and in the second case decreasingly well-ordered by its
original ordering <. In either case, X contains ot pairwise disjoint

. + .
intervals, hence c(X) > o . This completes the proof.

If X e,%, for each £ we have
CE(X) j_exp(wg.c(X)).

Proof
First we show that, in any regular space Y, each H € og(Y) contains
a closed H' € OE(Y),IWhere H' + §if H# ¢. Indeed let pe He og(Y).
Then H = N {Hp:p < wg}, where Hp¢3 o(Y) for each p < g« Now because
Y is regular, for any fixed ¢ < w, we can define by induction

(n) (0)

open sets Hp such that Hp = Hp and for O < n < w we have

(n)

(n) . -(n) (n-1)
p e Hj ch C H, c H (Hp e o(Y)).
Let us put
H' = N {Hpn):p < ng n < wl= r\{Hén):p < ng n < wl.

This shows that pec H' € OE(Y) and H' is closed, which was to be
shown. .

Thus, to prove our proposition, it is enough to show that X does not
contain more than exp(wg.c(X)) pairwise disjoint closed GG,E sets.

Assume, on the contrary, that'®l is such a disjoint sub-family of
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UE(X) and o > exp(mg.c(x)). Since X is compact, for each Ae ® we

have Y(A,X) = x(A,X) < w_ (cf. 0.8), so we can choose a basis of

£
neighbourhoods
& = {G(p)'p < w.}
A A T £

of each Ac ¥ Now, the normality of X implies that for
a,a)e 002 we can choose p_, 0, < vy such that

1 2
(e,) (p,)
¢, "'ne % =9
1 2
This induces a partition of l—?ﬂz into |wE x wgl = wg classes as
follows
> ) (e))  (py) y
ALATE T < G n G = 0.
172 (01,02) A, A,

Since B > exp (wg.c(X)), by Ab.4 we have a subsystem {, c®land a
fixed pair (P ,P,) € W, X W such that | > wge(X) 2 c(X), and for
a1l {c,,c,}e K 2

Gc1 "G =1
5 (5,
Now, if we put Gc = GC g} GC for each C ¢ X, the family of open

sets G, : C e} is obviously disjoint. This, however, is a contra-

diction, because |K| > c(X).

Remark

A completely regular space X is called a G .. space, if X is an

§Z
arbitrary union of GG sets in some compactification cX (w.r.t. cX).

Thus, e.g., Arhangel'skii p-spaces mentioned in 2.2 are G.. spaces.

8%
It is an easy corollary of 2.11 that CE(X) < exp(mg.c(X)) holds true

for arbitrary G .. spaces as well.

8%

2.12. (ef. [20]) For X e U, we have

w(X) < u(X).e(X).
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Proof
Let us first note that if X is a pseudometrisable space (i.e. u(X) = w),

then we have

w(X) = e(X).

Indeed, this follows immediately from R.H. Bing's pseudometrisation
theorem, namely the existence of a o-disjoint base.

Now, if X e ¥, thefe is a fa.milyf?y of pseudometrics with [?| = u(X)
which generates the topology of X. For eachG e P let X6 denote the
pseudometric space on X determined i)y@ .

If u(X) = |P| > w(X), we are done. If not, i.e. [P| < w(X), then

w(X) = Gé? W(Xé) = sup {w(Xg):6¢ 9}
and therefore for each a < w(X) we have a 60 € ® such that

W(X6 ) = c(X6 ) > o.

0 0

This, however shows

w(X) = és::lg c(Xé) = c(X).

2.13. Xe “3'3 implies

1
2

u(x) < w(x).

Proof
Evidently, Y € X implies u(Y) < u(X) and this shows that it suffices

to prove u(X) < w(X) for compact spaces, because every Y& ‘3’3 has a

1
compactification of the same weight as Y. :
Now, if X €D and®” is a base,for the topology of X with M| < w(X),
then, as can easily be checked, all finite coverings of X with

members of & yield a basis for the unique uniformity of X. The number

of these finite coverings, however, is equal to [{#| < w(X), hence



u(X) < w(X) does hold.

This shows that for Xe TY3 < can be replaced by = in 2.12

Nl

. For each X e 9 we have
n(x) = |x].

Proof
It is well-known that every dispersed space X can be written as a

disjoint union of the form
X = u{L.:E < pol, (Lé + ¢)

where for each EO <p, LE is the set of all isolated points of the

closed subspace 0

X, = U{LE:EOf_E < pl.

%

Thus we have |L£| jﬁs(X) < nh(X) for all £ < p. On the other hand,
choosing a point P e LE from each level Lg, the resulting set
H= {pE:E < p} is obviousyy right separated, hence |H| = |p| < h(X)

holds as well. This however, shows that

x| = I ol < lel-n(® =nx),
E<p
hence
[x] = n(x).

(ef. [131) Suppose X € 3}. Then
|| < exp(¥(X).s(X)).

Proof

It is enough to show that Y(X) < o and |X| > exp o imply the
existence of a discrete subspace of X of cardinality a+. To show
this, let <be a linear ordering of X and choose for each p € X a

sequence of its neighbourhoods
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N(P = {Vg(p): & < o}

such that n Mp = {p}. Now, for £,n < a let us put

L(g,m = Upsali p =g and 0 ¢ V(p) and p & ¥, (a)).

obviously we have
2 = . .
x]© = \J{I(E,n)- (g,n) e a xa},

i.e., a partition of [X:I2. By Ab.L  there is a subset Dc X, |D| = ot
such that

bl% e 1z 5

holds for a fixed pair (£,n). Now it is obvious from our construction

that
Dn (VE (p) n Vs (p)) = {p}

holds for each pe D, i.e., p is isolated in D and thus D is discrete.

This completes the proof.

(cf. [13] or [21]) Assume X € ¥, AcX, |a| > 2%, furthermore
X(p,X) < a for each p e A. Then

c(X) > a.

The proof of 2.15 can be applied after having made the following

" changes:

For p e A W_ is a basis of neighbourhoods in X and we form a parti-
tion of [A]E by putting

T(g,n) = (psad: p < and Vi(p) n ¥, (o) = ¢}

Corollary

If Xe ’9’2 then
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] < exp(x(X).c(x)).

2.17. For every X e 8’2

¥(X) < h(X)

holds.

Proof

Since X € ‘sz, for each p ¢ X we can choose a system‘\,\fl’) of closed
neighbourhoods of p such that n W/ = {p}. We can assume that M/ is
of minimal cardinality among such systems, say |f\,€)I = OLP. Then, of
course, o > ¥(p,X).

Now fix p ¢ X. We define members Vg of 'vfp and points Xg by trans-
finite induction as follows:

Let Ve '\A@) and x
n < & the Vne ’Wi) and point X have already been defined. Then,

e X\ VO arbitrary. Suppose & < otp and for every
because of the minimality of otp,

n<g Vn i {p}y

i \ and
hence there is an x; € [ |V {p} aVee ’\/(p such that x, ¢ Ve
since n ‘Wi) = {pl.
Now let us put Fg = nQE Vn for & < otp. Then, obviously, Xg e Fn\ F

and Fn s} FE’ if n < &, hence {FE:E < Otp} is a monotone decreasing

g

sequence of closed sets in X. This implies
h(X) > OLP > ¥(p,X)

for all p e X, hence h(X) > ¥(X).

Problem !

For what spaces does
2(X) » y(X)

hold?
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Remark

Since s(X) < h(X) always holds, from 2.17 and 2.15, we immediately

obtain another proof of 2.5.

(cf. 6.4) If X is connected, then

k(x) < x(x)]*.

Proof

In fact, we shall prove that if

f>3= {G 1€ < wl

is a strongly decreasing chain in X, then
+
u < a , wvhere a = x(X).

+ +
Assume, on the contrary, that u > o and put 636 = {ngg < o }. Then
n fvb 2 G+ + g, Since €ab is strongly decreasing, we have

H= 0t =0n{G:€ < oy,

hence H is a non empty ¢losed proper subset. Since X is connected, H
cannot be open, therefore we can choose a boundary point Pg c H. We

claim that x(po,X) i.“+’ which is a contradiction.

Indeed, if {Un:n < a} were a basis of neighbourhoods of P,» then for
each £ < a+ we could choose an ng < o such that

Py € Un c G

£ g

. + . . .
hold. Now, since a 1s regular, there is a cofinal subsequence

{GE v < a'} or {%0 and an n < o such that
v
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2.19.

holds for each v < ot. This implies
+ +
p.e U=c N{G_ :v <al} = n{G:f<al=H,
0 n £, g

which is in contradiction to the assumption that Py is a boundary

point of H. This completes the proof.

Remark

J. Gerlits [61] has shown that for Kowalski's "hedgehog space" X

. + . .
with w, needles we have k(X) = w, = x(X) , while X is of course a

1
connected metrizable space.

1

For every X we have
k(X) < L(X).3(X).

Proof ,
(ef. [3]) Let us put L(X).3(X) = a@. We shall prove a somewhat
stronger result; namely that every free sequence in X is of length
< ot (cf. 0.6). We shall need this stronger result in the proof of
2.21.

Assume, on the contrary, that
s = {Pg:£ <o

is a free sequence in X. Since X is a-Lindeldf, there is a point

Xy € X such that for each neighbourhood U of x. we have

0

U SI = a+.

Indeed, assume that each x € X has a neighbourhood UX such that

lUx n S| < o. We can choose a subcovering

ﬂ(X)c(X) < (2d(x))C(X) = exp a(X).
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a7

‘\?LC{UX:X e X}
for which | < a. Then, however,
S=v {Ux n S: UXG‘UL},

hence |8| <} {[UX nsl: Uxe'l%} < a.0 = a would hold, which is a

contradiction.

Now, since X, © § and 3(X) < a, there is a subset Ac S, |A] < a
- . + . . . +

such that X € A. Since o 1s regular, there is an ordinal EO <o

such that A ¢ §; = {pE:E < EO}, hence

xoe Ac SO.
But, S is free, hence §Oﬁ ISAY SO = @. Therefore UO = X\V8\ SO is a
neighbourhood of Xy» for which Uon s c SO’ hence

Uu.n S <0t<a+.
o, 08l <

This, however, contradicts our choice of Xy and thus finishes the

proof.

For X e 3‘2 we have

x| < a(x)XX)

Proot

Let 8 c X be dense in X, |S| = d(X) and put x(X) = a. For each x € X
we choose an open neighborhoodbasis UZX of cardinality a. For each
Ue ULx we take p(U) € U n S. Put N, = {p(U): U eUCx}. Hence
Nxe@a(s), if, for a set A, @a(A) is defined as (pu(A) = {BcA:(B|<a}.

Consider the function

f: x+——> {UnN_: Ue U}
- X x

'
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2.21.

which carries X into 41x(07a(8)). Because X € ’Ue we find that
{x} = n{(U n Nx)' : Ue UC ). Thus the function f is 1-1, implying
that

X] < 12, (P (D] = (8™)* = [s|* .

For each X e 3)2 we have
| x| < exp (L(X).x(X)).

This is a beautiful and quite recent result of A.V. Arhangel'skil,
[3], which settled an almost fifty year old conjecture of P.S.
Aleksandrov namely that every first countable compactum is of
cardinality 5_2w.

First we need two lemmas:

Lemma a)

Assume X G‘Ué, a > w, [XI > exp o, furthermore if A C X, |A| < a then

(1) |A| < exp a
and

(ii) $(A,X) < exp a
hold. Then there is a free sequence
{pgzg <aflcx

of length o’ in X.

Proof
We shall construct a ramification system in the sense of [3@], lemma

1, by defining sets R and points p for certain
’ o5+ o] sesog]

PRI
sequences of ordinals, where pn < 2“ and £ < o .

First we put R, = X and Py € RO arbitrary; here O stands for the

0
+
empty sequence. Suppose now that § < a and for all n < & the sets
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R and points have been defined for each
[ogs--wa0,] 4 BOIREE P o]

[bo,...,pA] € Sn+1’ where Sv denotes the set of sequences of type v

of ordinals < 2¢,

Let us now choose a sequence s € Sg and put

Ré=ﬂ{R :n+ 1 <¢E}

s|n+1
where s|n+1 denotes the initial segment of s of type n+1. Now we dis-
tinguish two cases, a) and b):

a) ]Rél §_2a. In this case we put R s p] = Ré for all p < 2a; here
>
[ﬁ,p] denotes the sequence [po,...,éj of type &+1 obtained by aug-
menting s by p. The points p[S p] can be chosen arbitrarily.
2

. + . .. .
b) |Ré| > 2%, since £ < o', applying (ii) and putting

(s)

NEEIE 2%,

; - o(s) . (s) o
{psln+1.n + 1< €&} =0G"" we can write X\ G = VU {F

where the Fés)'s are (not necessarily distinct) closed subsets of X.

Next we put

- (s)
R[s,p] =RIOF,

for each p < 2% and choose any element of R[s QJ as P[s é]if R[é Q]*ﬂ.
b 3 b
Otherwise p[b ] can be chosen arbitrarily.
2

By transfinite induction on v we can easily show that
X=U{R': ses }vu L){G(s): se s}
s v v

+ . .
holds for each v < o . Next we claim that there exists a sequence

t e Sa+ such that

(¢

|R 2

Lol

holds for each v < a+. Indeed, let us put

. 1
5, =1{se s |R] <2%
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and
S = U{Sv: v < a+}, S = U{§;: v <a'},
Then |S| < |s| < ) 2!\)l j_a+. 2% = 2%, hence we have, by (i) and

+
v<a

the choice of S

IU{G(S): sestu UR: s e 83 < 2% 2%+ 2% . 2% = 2%,

Now if Xg is an arbitrary point in the complement of the above set we

can find a sequence t e S,+ such that

1
xo € Rt v

+ . . .
holds for each v < o ., Indeed, 1f t 1s a maximal sequence such that

xo e R%Iv holds for each Vv < length of t, then the length of t must
+

be @ . Because of the choice of x., however, we have t]\)e Sv\ §V,

O,
hence |Ré|v| > 2“ for each v < a+.

Let us now put t = [po,...,pg,...] and

Pg = Pylesr p[po,...,pgj
+ . +

for all £ < a . Then for arbitrary £ < a we have

{pn: n < gl= G(tlg)
and

{pn: £<n< ofre {pn: E<nc< o1 e Fétlg),

g
which shows that {Pg: £E<a’} is a free sequence, because
o(t18) 4 plele) _
P

@, by definition. This completes the proof.

Lemma b)

Assume X is an a-Lindeldf T, space, Ac X is closed and |A| 5_2“,

moreover Y(p,X) 5_2a holds for each p € A. Then
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¥(a,x) < 2°

holds too.

Proof
Let us choose for each p € A a system of open neighbourhoods of p,
say ’UP, such that n‘U; = {p} and |’U‘Pl i2a. Now, if x, is an
arbitrary point of X \ A then for each p € A there is a VP [S) Up such
that x & VP. Since {Vp: p € A} is a covering of A and X (and A) are
a-Lindeldf, there is a subcovering/u/x c {Vp: p € A} such that

ML | < o. But x. & UL > A, which P shows that
X - 0 X
0 0
QN0 _ A0
P(a,X) < [Hu:w € oa U, and Ul < a}] < (29) =27,

since |P\é)A oU‘P| < 2%.2% = 2%,

Proof of 2.21

Let us put o = L(X).x(X) and suppose that [X[ > exp o. Then, by 2.20
and lemma b) respectively, conditions (i) and (ii) of lemma a) are
satisfied. Thus, applying the latter we obtain a free sequence of
length a+ in X. But by the proof of 2.19, the length of any free
sequence in X is < L(X).3(X) < L(X),x(X) = a, which is a contradiction.

This completes the proof.

We would like to emphasize the following

Corollary

If X is a first countable, LindelSf T, space, then |X| < exp w.

2

Remark
It is interesting to compare this corollary with the following result
of 8. Mréwka ([29], Theorem 2):

There exists a first countable compact T, space of cardinality a iff

1
D(oc)ccl D(w)%, i.e., a belongs to the class of cardinals M, defined by
Mréwke in [28] . It is known e.g., that for each non-measurable B we

have 28 ¢ M (see [22] or [28] for more details).



32

2.22. (ef. [47]) Assume X € D and (¥(p,X)=) x(p,X) > a for each p € X.
Then |X| > exp a.

Proof
Let J\) denote the set of all 0-1 sequences of type v. By transfinite
induction on v we shall define a mapping V: J = \,\Ja J, o(X) as follows:
We put V(@) = X. Assume that v < o and for all & < v, j& JE
V(j) ¢ o(X) have already been defined in such a way that

(a) TFor each £ < v the system {V(j|n): n < &} has the finite inter-

section property.

(b) If £ is of the formn + 1, i€ J and j = [i,e] (e € {0,1}),

then V(j) c V(i).

Let j € J,. If v is limit, we put 1 = j and V(j) = X. If v =& + 1 we

have j = [i,e] for some i € JE' Notice that in either case
gi) - N{v(in):n<el =n{V({GEM): n<el 4

by (a) and (b) and the compactness of X. Also H(l) + {p} for any
p € X, since otherwise we would have ¥(p,X) < |&| < a. Thus we can

)

open neighbourhoods V_ of P, such that VE c V(i) and VO 0 -\71 =0

choose two different points P, (e = 0,1) such that P € H(‘] and two

Then we put
v([i,e]) = v_ (e =0,1).

Thus V(j) is defined for each j & J.

It follows immediately from the construction that for any j e J
O {V(j|n): n < length of j} % ¢
and if j, j'e Joz and j ¥ j' then

N VEMme M) v )} = 6.

n<a n<a
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However, IJa, = exp @, and this immediately implies 'X| Z_IJQI >

exp o.

Remark

If in 2.22 instead of X e B it is only required that X has a compact-

ification cX with X € GE(CX) and w, < o, then according to the

€

proof of 2.11 there is a closed, hence compact, subset Z c X which

is also a G, ,-set in cX. It is easy to see that x(p,Z) 2 o is valid

8, ¢
for all p € Z, hence |X| 2 |Z]| 2 exp o by 2.22.

Corollary
If x(p,X) = o for each point p of a compact T

|X| = exp o by 2.21.

> space X, then

2.23. If X is a first countable compact T, space then either

2
|X| < wor |X| = exp w.

Proof

Assume IX| > w and let A be the set of all condensation points of
X, i.e.,

PeAe |U| >0
i) 1

for each neighbourhood U_ of p. Obviously, A is closed in X and we

assert that A is also dense in itself. In fact, let p e A and U be

an arbitrary neighbourhood of p. We can choose neighbourhoods

VO 2V
: = . i \ = :

fa) {Vn n < w} {p}. Now, since V0 {p} L){Vn\ Vn+

12 eV 2. (n < w) of p such that U o Vb and

TEER I w} and
|V0\ {p}] > wys there is an ny < w such that !Vﬁ \ Vn +1
0 0
Hence if q is a complete accumulation point of Vn \ Vn +1° then
0 0

l 2 Wy

ae A, qg%pand

This shows that (U\{p}) 0N A + @, hence A is dense in itself. Thus

x(p,A) = w holds for each p € A and by the corollary of 2.22 we have
|A| = exp w, hence, by 2.21
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|X| = exp w.

2.24. Suppose X is locally compact T, and IX| < exp a. Then

2

S = {p: x(p,X) < a}

is dense in X.

Proof )
Assume that G € 0(X) and Gn S = @. Then x(q,X) = x(q,G) > o for
each q € G, and henceour Remark made at the end of 2.22 gives us

|G| > exp a > IX], which is impossible. This completes the proof.

2.25, Let Xe Y, x(X) = @ and d(X) > @. Then there is a subspace Sc X
such that

Is| = da(s) = o and c(8) < o(X).

Proof
Let us first choose for each p € X a basis of neighbourhoods
{Vg(P): £ < a} and then put

a member of V_(&) 0 Vq(n), if
£(p,q3 &,n) = V()0 v () + ¢;

not defined otherwise.
If Hc X is arbitrary, we define
[ { o 2
H' = {£(p,q3E,n): {p,a} e [H]“ A (£,n) € a x a}.

Furthermore, we set

7(0) - H, g(n) - (H(n’”)" and c1(m) = via™®). 4 < W),
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Obviously, |H| < o implies |c1(H)| < .

Now we define sets A, C X for & < ot

£

, by transfinite induction as
follows:
Let AO = (J; assume the sets AE have already been defined for each

£ < v, where v < ot and IAgI < a. Let us put

Bv = Cl(U{Agzi < v}).
According to our above remark, lel < a, hence B cannot be dense in

X. Therefore we can choose a point p, € X \Es. Then we put

A, = {pv} U B.
Obviously, |Av| < o, hence the induction can be carried out for all
v <o,

Let us put S = U{A: v < a*}. Then, if R ¢ 8, |R| = o, there

is & v < o' such that R C B, hence p, ¢ B, O R implies that R can-
not be dense in S. Thus, indeed, d(s) = |s| = o™,

c(8) < e(X) follows immediately from our construction, because

P, 9 € S and Vg(p) n Vn(q) { ¢ imply f(p,q3;E,n) € S, and thus any
disjoint family of sets of the form {Vg(p)(\ S} with pe TC S can
be "extended" to the disjoint family {Vg(p)}.

Let Xe T and S ¢ X. Then
a(s) = a(s).a(s).

Proof
Let Z be a dense subset of S with !Zl =4

(
can choose a subset HP<: S with prI < 3(8

S). Then for each P € Z we
) such that

H_.
rpe D

We claim that
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2.27

D= vl{H: pez}
p
is a dense subset of S.
Indeed, let x € S and V be an arbitrary open neighbourhood of x. Then
vn § + @, hence there is a pe VO Z as well. Then V is a neighbour-
hood of p too, hence

Van+¢,i.e.VnD4=¢

which was to be shown. Since

ol <1 e ]: pe 2} < [2].5(8) = a(8).2(5),

2.26 is proved.

Corollary
If every closed subset of a first countable space X is separable,
then X is hereditarily separable.

For X € Z;l we have
2

w(X) = u(X) . L(X).

Proof. From 2.13 u(X) < w(X) and the trivial relation L(X) < w(X) we
find w(X) < u(X).L(X). Next, let L be a basis for a uniformity,
defined by open coverings, on X compatible with the topology, such
that |UE| = u(X). I.e. (cf. [171):L is a family of open coverings,
such that UUl is a basis for the topology and.each two covers from
Ul have a common star-refinement in UC. For each cover O0 e WL we
choose a subcover OC ¢ OC of cardinality L(X). Now it is easy to

check that U{OC *IOE e} is a basis for o(X).
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3. The sup = max problem

The functions c,s,h,z,k have the common feature of having been defined as
the supremum of cardinalities of certain families of sets. (Sometimes these
sets are referred to as "defining sets" of the corresponding cardinal
function.) It is natural to ask under what conditions this supremum is
actually a maximum, i.e., when does a defining family of maximal cardinal-
ity exist. This is what we briefly call the sup = max problem.

Obviously, if the value of one of our functions is a non-limit cardinal,
the supremum must be a maximum. The interesting cases are therefore those

in which the function values are limit cardinals.

3.1. (ef. [7], 6.5) Assume X € T and c(X) = A is singular, cf (A) =
= o < A. Then there is a disjoint family o co(X), with |ﬂﬁ = ).

Proof
Let us call an open set G € o(X) normal if for each non-empty H c G,

H € ¢(X) we have

c(H) = c(G).
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We claim that for each non-empty G € o(X) there is a non-empty normal
open set GO such that Go C G. (in other words, the normal open sets
constitute a T-basis for X.) Assume that this is not true. Then we
can find G' € o(X)\{#} &' c G, such that c(G') % ¢(G), hence

c(G1) < ¢(G). Now (}1 cannot be normal, therefore we have a

G26 o(xX)\ {¢g}, G2c G1 such that c(Gg) < c(G1) < ¢(G). Continuing
this procedure for each n < w we would obtain an infinite decreasing
sequence of cardinals, which is impossible. This shows that the nor-
mal open sets indeed form a m-basis of X.

Now let ¥ be a maximal disjoint family of normal open sets. From the
above assertion it follows immediately that v T = ¥ is dense in X.
If I’N = A, we are done. Thus we can assume that |‘m =B < A.

Next we claim that
sup{c(G): Ge T} = A (%)

holds. Indeed, if B < § < A, § is a regular cardinal, then there
exists a disjoint fa.milyUZC o(X) with |fg| = §. Now, since N is dense
in X, for each HEW NonHE$ @, hence there is a GHe’(}’L such that
HO GH+ @. Since § > B is regular, thereare a subfa.mily‘% of 03,
and an H) €T such that !%I =8 and Ge® > Gn H % ¢. This

8§, and thus () is proved.

cf(\) there is a He YU such that c(H) = A, since

implies c(HO)

IV

Now, if B < o

otherwise (*) could not hold. Let us write A = ) ap , where oy < A,
£<a

Then H (and X too) contains o disjoint open subsets {HE: £ < a} such

that (A=)c(H,.) > o

g 3
for X if B > o and there is no He ¥l with c(H) = A.

» because H is normal. By (%) this is also true

Therefore, if we take a disjoint fa.mily’Q& of open sets in Hg’ such
that !%| = %ps then@a/= v {%: £ < a} yields us a disjoint family

of open sets of maximal cardinality A.

Remark
We shall see (example 6.5) that for inaccessible A's 3.1 no longer

holds.
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(ef. [14]) Suppose A is singular strong limit, X € 8"2, [X] > A. Then
X contains a discrete subspace D of power A.

Our proof will be similar to that of 2.9, however, instead of the
ER-Lemma A4.5 we shall use the C-Lemma A5.L.

Let < be an arbitrary well-ordering of X, and for {x,y} e [X]2 with
X~ ¥y we choose neighbourhoods U(x,y) and V(x,y) of x and y respec-
tively, such that U(x,y) n V(x,y) = 8.

Then we define a partition of [X:|3 by putting {x,y,zl € I(e )
(x <y < z) according to the following rules: 12

e, =0, if xe Uly,z);
e, =1, if x ¢ U(y,z);

e, =0, if ze V(x,y);

e, =1, if z ¢ V(x,y)

Applying the C-Lemma A5.} we find an Hc X, |H| = X and a

partition of H:
H= U{Hg: g < cf(A) = al}

such that conditions (i), (ii) and (iii) of the C-Lemma hold (p.126).
Suppose that £ < a and y € Hg’ moreover that y has an immediate
~<-predecessor X, and an immediate —<-successor z in Hg' We shall show
that ¥y is isolated in the subspace H. Since the set of all such y's
is obviously of power A, this will prove 3.2.

In fact we claim that
N = V(x,y) n Uly,z) n H= {y}

Evidently, x, z ¢ N. Now, if p € H and p < x, then p e V(x,y) implies
p ¢ U(x,y), hence {p,x,y} e I(1 ) by the definition of our parti-
2
2
tion. According to (iii), however, we also have {p,y,z} € I(

1,&2)’

and thus p ¢ U(y,z) » N. Similarly we can show that if z < g, then
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3.3.

q ¢ N, which completes our proof.

Corollary

Assume ¢ is one of the functions s, h, z, X € Ué and ¢(X) = X is a
singular strong limit cardinal. Then ¢(X) is actually a maximum.
X| > ¢(X) = A and 3.2.

This follows immediately from

Remark

It is easy to see that if A is a weakly compact (inaccesible)

‘cardinal, then 3.2 and its Corollary hold for this A; in fact, the

proof given in 1.9 can be applied, using the fact that X ~> (X)E holds
(cf A6.4). Thus e.g., if GCH holds then the sup = max problem has
a positive solution for s, h and z on Sé, unless A is a not weakly
compact inaccessible cardinal. We shall show that this exception is

in fact essential (cf. Example 6.6).

(cf. [12]) Suppose Xe ., ¢(X) = A, where ¢ is one of the functions
s, h, z and c¢f(A) = w. Then the answer to the sup = max problem is

positive.

Proof
We shall first establish the following

Lemma,
Assume R e ¥, |R| = o > B > w. Then either R contains a discrete

subset of power a, or |SB| < o, where
Sg = {xe R: 3 U, neighbourhood of x such that IUX] < B}.

Indeed, if |SB| = o and for each x € SB we put F(x) = Uxf\ SB’ then
F is a set mapping on SB such that |F(x)| < 8 < o holds for each

X e SB' Therefore we can apply Hajnal's theorem A3.5, and obtain

a subset D c SB with |D| = o such that F(x) 0 D = {x} holds for each
x € D. This, however, impli?s Ux¢1 D = {x} for each x € D, hence D
is a discrete subspace of R.

Now we return to the proof of 3.3.
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Since ef(A) = w, we can write

where k < k' » a; < a,, and each a, is regular.

k k' k
Since ¢(X) = A > a,, for each k < w there exists a "defining set"

k,
for ¢, say Dy, such that |Dk[ = o, . Let us put
X'=wvu {Dk: k < wl}.
Then |X'l = X, and using the Lemma for each B = a, < A we obtain

k
that either X' contains a discrete subset of power A (which is

certainly a defining set for ¢) or we can assume that for each O
only less than A points in X' have neighbourhoods in X' of power

< OLk.

We shall then define a sequence of points in X' as follows:

Let X, be an arbitrary point of X' such that each neighbourhood of

x, in X' has cardinality > a.. Now, if k > 0 and {XO""’Xk—1} have

agready been defined, we chogse as x, an arbitrary point of

X'\ {XO""’xk-1} such that each neighbourhood of x, in X' is of
cardinality z o . By our assumption the induction can be carried out
for all k < w.

Now since X (and X') belong toM, we can select a subsequence

{xk : i < w} of the above sequence for which there are open neigh-
i
R R .
bourhoods U, of xki in X' such that Ui a Uj g ir i+ 3.

By our construction we have

LA
1

for each i < w. Also, U; €X' =V {Dk: k < w} imply

U, = u{Uin D, : k <1w}"

k.:
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Since o is regular, we immediately see that there exists a k < w
i

such that IDE 4] Uil > a . In other words, each Ui contains a

k.

i

defining set Si for ¢ such that |Si| 2 &) . Now these Si's are
i

contained in pairwise disjoint open subsets of X', hence
S=v{s,: i< w}
i
is a defining set for ¢ in X' and consequently in X too. But

Is| = } o =2
i<w %

which completes the proof.

Remark

We do not know whether ¥ can be replaced by Ué in 3.3, or whether
the condition e¢f(A) = w could be weakened(without using GCH, of
course). Both of thesé problems seem to be rather difficult.

J. Roitman [65] has shown that if w < cf(A) < A and A < exp(cf(Ar)),

then for A the answer to the sup = max problem is negative within

\7; for any of the functions h,z,s.
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4. Cardinal functions on products

The aim of this section is to investigate the following basic
problem:

Assume ¢ is a cardinal function and
R = X{Ri: ie I} (%)

how can we evaluate ¢(R) in terms of the values d)(Ri) (ie I) and
the cardinality of the index set I?

In order to exclude some trivial difficulties we assume that no Ri
in (s) is indiscrete, hence it contains two points p;» q; such that
p; ¢ {qi}. If we denote by F the two element T, space, in which one
of the points is closed and the other is not, then our convention

obviously implies (with |I| = a > )

(6] [+
<

F°' ¢ R or D(2)

top top

R, (se)

depending on whether |{i: q; € {pi}}l = o or not.
We shall show in 6.7 and 6.8 that the following relations hold for
F* and D(2)%:
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a) If ¢ is one of the functions w, s, h, z, x then
o(F%) = ¢(D(2)%) = o3

b) If ¢ is 7, or u,or ¥,or 9, then ¢(D(2)%) = a;

e) a(p(2)*) = log a.

For a product of the form (%), where ¢ is defined for each R, (ie 1),

we put
¢I(R) = sup{¢(Ri): ie I}.

(i) For every cardinal function we have defined,
¢(R) 2 ¢I(R)-

(ii) 1f ¢ e {w,m,s,h,z,x} and |I| = ¢ > w, we have

¢(R)

v

|I| = 0.
(iii) If I is infinite and all the Ri's are T, then
v(R) > |1].

(iv) If all the R;'s are completely regular and 1] > w, then

u(R) > |1].

Proof

Ad (i) For the functions c, Cpsr T, k and L (i) holds because each

Ri is the image of R under the open and continuous mapping

i.e. the projection  of R onto the factor R;. For the others (1) is

true because R. C R holds for each i € I.
top
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If ¢ #£ 7 then (ii), (iii) and (iv) immediately follow from 4.1 a)

and b), respectively, because ¢ is monotone with respect to subspaces.
To prove (ii) for m, however, we have to proceed differently. Since
Ri is not indiscrete, we can choose a non-empty, proper open subset

Gi c Ri for each i ¢ I. Let

and 9 a m-basis for R with |P| = m(R). It follows from our assumption
that the intersection of infinitely many 5i's has an empty
interior. Therefore, each P& ® can only be contained in a finite

number of the sets 5i. This implies |I| < [9].w, hence |I] < m(R).

(i) 1f ¢ e {w,m,x}, then

o(R) = [1]. 6,(R);

(ii) If all the R;'s are T,, we have
¥(®) = [1]. vp(®).

Proof

Suppose that }5‘1 (i e I) is a Dbase for R; such that !fyj’_| = W(Ri). It
is obvious that the system {s?of all (open) sets of the form
nZl(B1) o ...n “E;(Bk)’ where Bje b‘i.’ constitute a base for R.

Obviously, |8 < |I]|. WI(R), hence

w(R) < |1I|. w.(R).

N
The opposite inequality follows from 4.2 (i) and 4.2 (ii).

It is easy to see that if the isgi_’s above are chosen as m-basis for
R., then the resulting$# is a m-basis for R, and this implies our
proposition as above.

Finally, if f € R and f»”i is a ﬂeighbourhood basis (or separating

system) for f. © R;, then §#is a neighbourhood basis (or separating
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b4,

system) for f in R, and from this (i) for x (or (ii) for y) follows

immediately.

(ef. 6.9) If ¢ = h or ¢ = z then we have

A

Iz]. ¢7(R) < ¢(R) < |I]. exp ¢,(R).

Proof

The inequality on the left is an immediate consequence of 4.2 (i)
and (ii). The proof of the other inequality is completely analogous
for h and z, therefore we shall only prove it for ¢ = h.

First we consider the case in which
1] < n(R).

Let us put hI(R) = o and (exp a)+ = B. Suppose that h(R) > B. Then
we can choose a right separated sequence S = {fE: £ < B} ¢ R. Thus

for each & < B we have an elementary open set U_. C R for which

g

B>n>5+fnl+:ug.

Now we form a partition of [612 as follows:
Ir {g,nt e [B]z, £ <nweput for i€ I

{esnl e I e mi(f)) ¢ ni(UE).
Since fn ¢ Ug for n > & and UE is elementary, 'L){Ii: ie Il = [ﬁ]z,
hence we obtain a partition of [8]2, indeed.
Now B > exp a and ]Il < o imply, using the ER-Lemma AL.L4 | that
there is an H ¢ B and an iO € I such that

_ o+ 2
|H| = o" and ﬁﬂ (o} Iio.

It follows from the definition of I. that {w. (f,.): £ € H} ¢ R. is
10 10 g 10
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. : . + .
a right-separated subspace of R; of cardinality |H| = o". This, how-

.. o L. 0
ever, 1s 1n contradiction to

Ry ) < By(R) < o,

and proves 4.4 for h, under the condition |I| i_hI(R). In particular,

we have
B(R) < exp(ny(R)),

provided that I is finite.
Suppose now that |I| > hI(R) and

n(R) > |1]. exp(ny(R)) = a.
So we have a right-separated sequence S = {f,: £ < ot} in R with
suitable elementary neighbourhoods {UE: g < a+}, as above.

+

For each & < o we put

Ip = {ie I: 7 (Up) ¥ R.}.
Then each Ig is a finite subset of I, but ]II <a < o’ and therefore
I has only o finite subsets, consequently there is an A C ot with
|a] = 0¥ and a finite subset T of I such that

~

Ee A~ IE = TI.

Now it is obvious that

8, = {ﬂf(fg): £e A}

is a right-separated subspace of
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because for each £€ A
fe UEf—» "f(f) € w-I'(UE).
Thus we have

n(R) > of > exp(nz(R)),

which is in contradiction to what we showed in the first part of our
proof. This completes the verification of L4.4 for h.

It should be obvious to the reader that, by straightforward modi-
fications, the above proof can be transformed into a proof of L.k

for z.

Remark

Examples 6.9 and 6.10 show that 4.4 cannot be improved by decreasing
exp(¢I(R)). Recently A. Hajnal and I. Juhfsz have shown by a different
method that 4.4 also holds for ¢ = s (see reference [63]).

(ct. [6], [16] or [30])
(i) a(R) < log |I]. a;(R);

(ii) If moreover each Ri contains two disjoint non-empty open sub-

sets, then
a(R) = log |I]. da;(R).

Proof

First we show that for a > w
a(p()™® %) < a

holds. For this we write

D(a)**P * = X{Dg(a): £ < exp al,



k9

where D,.(a) = D(a) for each £ < exp a. Then we choose a T, space X,

2
say X = D(2)%, such that |X| = exp o and w(X) = a; we write X in the
form X = {Pg: £ < exp a} and choose an open basis & {Bp: p < a}
for X. For any ordered pair (r,s) of finite sequences of ordinals

where

Pps cees P <0, MNys ey N <0

and the sets B, ..., Bp are pairwise disjoint, we define a point
J

f(r,s) € D(a)exP ® as follows:
n1: if Pge Bp1;
.n.g(f(rss)) -
nj: if pg € Bpj;
0, if p, ¢ Bp1 O eee v Bpj.

Let S be the set of all such points f(r,s) in D(a)exP ®. We claim

that S is dense in D(a)®*P %, Since |S| = o, this will imply
a(p(a)*P %) < q.

Let G be an elementary open set in D(a)%*P % of the form

6 = T mp (A) (6 < e < £y < exp ).
(a)ex'_p o

These sets form a basis for D , hence it suffices to show

SN G #% ¢ for each such G. Since X is T,, the points Pp s woes P e X
1 J

have pairwise disjoint neighbourhoods, and thus we can select pair-

wise disjoint members of ﬁ% say Bp s eees Bp such that
1 J

B see .
pg e 0. ? > nge Bp

1 1 J

Now, if we put r = (p1,...,pj), s = (ﬁ1,...,ﬁ-), we have f(r,s)

; € a,
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(r,s)

which follows immediately from the definitions of f and G.

Hence we have G 0 S # @, and S is dense in D(a)®™® %,

Now let us put a = log|I|.dI(R). Then d(Ri) < a, for each i€ I,
hence we can choose a dense subset Sic: Ri with lSi| < a. Obviously,
S = X{Si: i € I} is dense in R.

Now let g; be an arbitrary mapping of D(o) onto Si' Then g; is
continuous, because D(a) is discrete, hence the product map

)I

g = xlg;: i€ I}: D(a)” » 5

is also continuous and surjective. Since log |I| < «, we have

|I| < exp &, and therefore

a(s) < am()’) < a((a)®*®® %) < a.

Since S is dense in R, we have
d(R) 2 d(s) £ o,

which proves 4.5 (i).

(0)
i
(R), hence to prove 4.5 (ii), it

Now suppose that each Ri contains two disjoint open sets U and

U§1). By 4.2 (i) we have d(R) > d;
suffices to show a(R) > log |I|. Suppose this is not true and S is
a dense subset of R with |S| < log II| .

Now let r = (i1,...,i.) be a sequence of pairwise different indices

d
and s = (81,.-.,€j) an arbitrary sequence of O's and 1's, with the

same length as r. Then

(e.)
A P (L WAL CRC D
i i lj 1j
(r,s)

(r (r,S).

is open in R, hence there is a point p ’S)e S, with p € G

Let us consider now the space

= X{Di(2): ie I, Di(2) = D(2)}.
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Every pair (r,s) of the above kind determines an elementary open set
in D(2)I, namely
0Ts8) 17l (fe })m oo a mT! (Hel)),
1 1 i. J
1 J
and conversely, each elementary open set can be obtained in this way.
Furthermore, to every p € S we assign a point P of D(2)I,defined as

follows:

0, if "i(P) e U(O)

i 5
™. 5 =
; () ‘ )
1, if 7.(p) ¢ U
. N . . I . (r,s) .
We claim that S = {p: p ¢ S} is dense in D(2)". Indeed, if 0 is
. I ~(r,s) (r,s)
an elementary open set in D(2)”, then p e 0 , because

p(r,S) s)

e G(r,s)’ hence § n O(r’ 4 ¢. However,this implies

am(2)) < I8] < [s| < 108 1],
which is in contradiction to 4.1 ¢). Thus 4.5 (ii) is proved.
(cf. [15] or [24])

cI(R) < c(R) = exp (cI(R)).

Proof

The left-hand inequality was proved in 4.2 (i). To show the other
inequality, we first consider the case in which I is finite,

I(R) = a, '

Suppose c(R) > exp o and &)= {Gg: £ < (exp @)*) is a disjoint family

I= {i1”"’in}’ We put c

of elementary open sets in R.

Let us define

G =T, (GE)’ for k=1, ..., n
k |
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and
I = {{g,n}: £ < n < (exp o)t and Gék) n ng) = ¢}.

Since ® is disjoint, every pair {£,n} with £ < n < (exp a)+ belongs

2
. e + .
to some Ik, 1.e. we have a partition of (exp a) into n classes.

Hence, by the ER-Lemma AL.L , there is a set A c (exp o)t with
|A| > o and a k < n such that
2
(A c 1.
This implies that {Gék): £ € A} is a disjoint family of open sets in

Ri , hence
k

c(Rik) 2 [al > a2 e (R) 2 c(Rik),

which is a contradiction.

Now let I be arbitrary and suppose that
c(R) > exp (cI(R)) = B.

Thus we have a disjoint family {ng g < S+} of elementary open sets

in R. Let us put

I, = {ieI:m(c,) R (5 < 8.

By A2.2  the system {I,.: & < 8%} contains a subsystem {I_.: £ € B},

£
where B C B+ and |B| = B, which is quasi-disjoint. Thus, if

f=n {Ig: £ e B},
for £, n € B we have .

GO G = B s nf(GE) n "f(Gn) = g.
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This means that {ﬂf(GE): £ € B} would be a disjoint system of open
sets in wf(R) = X{Ri: i € I}, which is impossible by what we have

proved above. Thus 4.6 is proved.

Remark
In the second part of this proof we have shown that if c(R) > B then
there is a finite subset Iyc I such that

C(X{Ri: ie 10}) > B.

CE,I(R) < CE(R) < exp(mg.cg’I(R)).

The proof is very similar to that of 4.6. The left-hand inequality
was shown in 4.2 (i). We put wE'CE,I(R) =a, B = (exp Ot)+
To prove the rest, we first consider the case where |I| < wg. If
CE(R) > (exp a)" = 8 held and {Hp: p < B} were a disjoint family of

elementary G sets in R, then using the partition [8]2 = U{Ii:ie I},

8,¢
where

Ii = {{91’92}: Tri(Hp ) o ni(Hp ) = @},

by the ER-Lemma AL.L we would get ot disjoint GG,E-sets in one of
the factor spaces Ri’ a contradiction.

Now, if I is arbitrary and {Hp: p < B} is as above, furthermore

Ip ={ie I: ni(Hp) #Ri} (p < B), we have B > exp a = (exp a)wg,
hence by A2.2 there is a Bc B vith |B| > exp o such that

{Ip: p € B} is quasi-disjoint. This, however, implies that for
T=n {Ip: p € B} the projections nT(Hp)', p € B are pairwise dis-
joint, which is in contradiction to the first part of our proof,

~
since |I| < w, < a.

g

Recall 0.13, that o is a caliber for X iff for everyO’(].c o(X) with

|OZ] = o there is aO&C% with IO}I = o and nOJ, $ g,
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(cf. B1]) Suppose @ > w, a is regular. Then, if o is a caliber for

each R;, so is o for R. Hence ¢(R) < sup(d(R,):i e I}.

Proof

First we consider the case where I is finite, e.g. I = {1,...,n}.
Suppose now {GE: £ < a} is a family of non-empty elementary open sets
in R, i.e.

GE = X{Géi); i=1, ..., n} (¢ < a),

)

there is an A1 C o with |A1| = a such that

where Gél
for R

is a (non-empty) open subset of R;. Since o is a caliber

13

f){Gé1): Ee A1} 9.

Then, using the fact that a is a caliber for R2, we get a set of

ordinals A,C A, such that IA2] = o and

(2),

ofe": eeay} s

continuing this procedure we finally obtain a set

A c An_1c ... C A, C o such that lAnl = o and
o (eli), tenrltto
[ n
for each 1 = 1, ..., n. Thus we have
01{G,: «EeAn}+¢,

which proves that o is a caliber for R.

Now suppose that |I| B > w, and {GE: £ < a} is a family of elemen-

tary open sets in R. As usual, we put

I, ={ier ni(Gg) R} (<)
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By A2.2 there is an AC o with |A| = a such that {I.: £ €A} is
quasi-disjoint. If it is even disjoint, i.e. 0 {Ig: £ e Al = ¢, then
n {GE: £Ee A} # ?‘, hence we are done. If, however,

n{IE: £ €A} =1 # @, then projecting our family onto the finite
partial product X[’Ri: ieD yields us the desired result.

(ef. [17], VII. 19 or [6bl]). Suppose
f:R=X{Ri: ie 1} » X

is a continuous mép of the product space R onto the T, space X.

2
Moreover, let a=max{dI(R), ¥(X)}. Then there is a set J c I with
|7] < o and a map g: Ry = X(R;: i € J} > X such that £ =g o 7}
(i.e. f depends on not more than o coordinates).

Proof
Let p be an arbitrary point of R, f(p) = y. Then y¥(y,X) < o, hence
f_1(y) is a GG,n set in R, if a = O Let H_ be an elementary G6,n
set in R such that pe HPC f-1(y). We put J, = {ie I: ni(Ho) $ Ri}.
Clearly |Jo| < o, Then we proceed by induction. First however, we
choose a fixed point oie R, for each i e I, and introduce the
following notation:

if q is a point of a subproduct X{Ri: ie 'f}, where I © I, then qo

is the point of R specified as follows:
m.(a), if ie T,
0y _
Tfi(q ) = .
0. , if i€ I\I.

Suppose that the sets J. with IJk| < o have already been defined for

k
k <n < w. Then |\ Jkl < o, hence, by 4.5 (i)
k<n

d(X(R;: ie \Y J3) < e
k<n

Let Sn be a dense subset of the above partial product; ISnl < o. Then



for each g€ Sn we can choose an elementary G set Hq in R such

§,n
that

e RS £ (2(0)).

Then we set J2 = {i & I: m.(H ) # R.} and
n i‘Tq i
= aq,
g = ulil ges ).

Obviously, |Jn| < a.a = a, hence the induction can be carried out

for each n < w. Finally, we define
J=V{J :nc< w},

and claim that J indeed satisfies our requirements.
For this we have to show that ﬂJ(p) = WJ(r) implies f(p) = f(r) for
all p, r € R, or equivalently that f(p) = f(P) for all p € R, where

B =m0

If g€ Sn for a certain n < w, we put

0)

[ (- 1.
a nJ(q and Sn {q': q e Sn}.

It is clear then that S' = u{Sé: n < w} is dense in WJ(R). Hence
there is a Moore-Smith sequence {qéz t e T} over a directed index
set T such that q% > HJ(p), hence q% + p. Also, if we define g by

ni(q'), ifie J;

ni(p) ,if ie I\J,

then we must have at >p (teT).

For any t € T we have
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{ie I: m(q,) ='ni(q2)} 23= U I,

n<w

hence, by our construction, f(&t) = f(q_(g). Thus we have f((_lt) > f(p)
and f(qg) + £(P) and consequently f(p) = £(P), since f is continuous

and X is Hausdorff.

Remark

The significance of 4.9 lies in the possibility of giving an upper
bound for the number of factors in a product of certain spaces, when
we originally only know the mere existence of such a product. As an

example we mention the following.

Corollary
(cf. [8]) If X is a dyadic compact space then w(X) = x(X) (= w(X)).

Proof

By definition, there is a continuous mapping f: D(2)B + X for a
certain B. If x(X) = o, then by 4.9 f only depends on < a coordinates,
i.e. we can assume B < o. Now W(D(Z)B) =B (cf. 4.3 (i)), hence,

w(X) < B, since, as is well-known, continuous functions do not in-
crease the weight in the class of compact T2 spaces. Hence

w(X) < B <a, i.e. w(X) = x(X).
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5.1.

5.2.

5. Martin's axiom

The following assertion (M) which we call Martin's axiom, is proved

to be consistent with the usual axioms of set-theory (cf. [26] or
[3u]):
(M) If® is a complete Boolean algebra satisfying the countable

chain condition (shortly c.c.c.) and A_C® is a subset ofd for

g

with a_ = sup A,, then there is an ultrafilter Won ®

1 3 g’
which preserves all these sups in the following sense:
If age‘\){;then Agn‘lﬂ/ % @, i.e. there is an a € AE with a e W.

We shall show that (M) implies exp w > Wy s i.e. it contradicts CH.

each & < w

On the other hand, (M) has several interesting consequences, which
in the author's opinion, make it worthwile to have as an alternative

to CH.

The following assertion (R) is equivalent to (M):

(R) If X is a compact T, space with the Suslin property (i.e.

c¢(X) = w), then X has the w,-Baire property.

1
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Proof

(M) >~ (R). Let {SE: € < u,
X. We shall show that U{S;: £ < w,} $ x.

For this we consider the complete Boolean algebra‘® of all regular

} be a family of nowhere dense subsets of

open subsets of X. Since X has the Suslin property,® satisfies the
c.c.c.

For each & < w, we put

Since SE is nowhere dense, it follows easily that U-A:E is dense in

X, hence
sup by = Int(VA,) = x.

Now let W be an ultrafilter on® which preserves all the sup .Aag. Then
X €W, hence J(«En% % ¢ for each £ < wy. Let Gge \»4/.50 W, Then
{GE: g < w1}c W is centered, since, as is known, finite meets in B

are ordinary intersections. Since X is compact, this implies
Q{GE: g < w1} $4.

Let pe N {EE: £ < w1}. Then, by definition, p € S¢ for each & < w
hence p € X \U{SE: g < w1}. This proves (M) - (R).

1°

(R) » (M) Letd be an arbitrary complete Boolean algebra with c.c.c.
We denote by X the Stone space of B, which we identify with the set

of all clopen subsets of X. Obviously, X must have the Suslin

property.

Let .7(% (g < m1) be arbitrary subsets of B and GE = sup Jog. Then
S, =G \ud
g 13 2

is nowhere dense (and closed) in X, hence using (R) we obtain the
existence of a p € X such that p € S for all £ < wy. Let Ut be
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defined as follows
Ge MeGe 3 andp € 6.

Obviously, V1 is an ultrafilter on B . Moreover, if G, e V1, then

pe%wg=m%,MMemwehan%eAgﬁmpeA,mdmw
AE e WM. This completes the proof.
Remark

(R) implies that every open subset H of a compact T, space with the

2

Suslin property also has the w,-Baire property.

1
Indeed we can apply (R) to H and remark that H\H is nowhere dense
in H.

Corollary

(M) ~ exp w > w1.
Indeed, the closed interval [0,1] is the union of exp w singletons,

which are all nowhere dense.

Consider the following assertion

(K) If X is an arbitrary topological space which the Suslin

property, and ff} < a(X), |ﬁ7] =0, then there is a ﬁjvc fj/with
|f{j'| = w, such that 02' is centered.

Claim: (M) > (K) (ef. [23])

Proof

Suppose 1’7}= {GE: g < w1}, where every GE. is a regular open subset

of X, This does not result in any loss of generality, because, as can

easily be shown, for arbitrary open sets G(1),...,G(n),

= @ + Int G(1)

(1) (n)

G N ...n G N veo Int G(n) =g,

and therefore the GE could be replaced by Int E;.

As is known, the set B of all regular open subsets of X constitutes

a complete Boolean algebra under suitebly defined operations.
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Obviously,® satisfies the c.c.c., because X has the Suslin property.
= { H > = B
Let us now put ‘AE G n > £} and Hy = sup ch

< w, and an He® such

Since D satisfies the c.c.c. there is an e 1

that no < g < w1 > H£ = H.
We can apply (M) to the families ./DE (no < g < w1) and the Boolean
algebra@H obtained by "restricting" every member of @ to H. Thus

there is an ultrafilter %oniBH such that
'\HmJOg+¢ifn0<£<w1.

In other words, there are cofinally many members of ﬁjin%, and this

obviously implies

|€}»O'Ub| = w,.

Hence we can choose‘@a'. =‘€‘X0‘1}‘h, because the finite meets in3B (or

’(bH) are ordinary intersections, and thus %' is centered.

If (K) holds and X is an arbitrary cocompact space with the Suslin
property, then w, is a caliber for X.

Proof

Let *’J‘?{ c o(x), |‘E%[ =u, and £’ be an open base for X such thatFc fw
and ¥ centered imply n {F: FeF } 4+ g. For each Ge®f we can choose
a BGG%"such that EGC G. Then {BG: GG”J} has a centered subfamily
{BG: Ge‘&}'}, where |0&'| = u,. Then however

g*n0 {]-SG: Ge 0&’} c 0O {G: Geﬁ}'}, hence g, is a caliber for X.

Corollary
Assume (K) and suppose @X= {GE: £ < u)1} is a decreasing family of

open subsets of a cocompact space X with the Suslin property. Then
O {G: £ <wyl 4.
Indeed, iff VSJ'CUJ«, |fﬁ!| = w,, then r\‘ﬁ:'{' = "\“U} but, by 5.4, there is

2 8f © ¥ with t(»Xl = 0, such thatn@y + 9.
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5.6.

Suppose (K). Then every product of spaces with the Suslin property
also has the Suslin property.

Proof

According to our Remark made after the proof of L.6, it suffices to
show that any finite product of spaces with the Suslin property has
the Suslin property, and this can be reduced trivially to the case

of two factors. So assume X = X, X X2, where X, and X, have the

1 1 2
Suslin property, letﬂ?be a set of elementary open subsets of X, and
. y . U - _
|03| = w,. Using (K), we can choose a subfamily @}'CW with |\’5} | = w,
such that ﬁ1@%') is centered, and then applying (K) again, we have a
" c ] > Al = s

e ¥ with |‘Oj| w, for which m,
obvious that any two members on%" intersect, hence'@jcannot be

") is centered. Now it is

disjoint. This completes the proof.

If X is a first countable cocompact space with the Suslin property

and every closed subspace of X is cocompact, then X is separable,
provided (K) holds.

Proof
First we show that d(X) = w, is impossible. Indeed, suppose d(X) =
and let S = {pg: g < w1} be a dense subset of X. We put

= . < = <
FE {pn.n g} and G X\FE (& w1).
Then {GE: £ < w1} is obviously a decreasing family and each Ge is
non-empty, because FE $ X since X is not separable. Hence,

H=0N {GE: £ < w1} $ ¢, by the Corollary of 5.4. On the other hand
Hn S =@, hence Int H = . Let pe H be arbitrary, and {Vn: n < w}

a neighbourhood basis for p. Since p € Hg for each £ < w_, we can

1
pick an n(€) < w such that Vn(

£) C GE' Thus there is an n0 < w and
an a < w,, !al = m1 such that
n(g) = n_ for all £€ a.

0

Then, however, Vn cn {GE: g€ea}l =0 {ng g < w1} = H, in contra-
0
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diction to Int H = @#. Consequently, d(X) = w, is indeed impossible.

Suppose now d(X) > W, is arbitrary. By 2.25,1there is an S ¢ X with
Is| = a(s) = w, and c(8) < e(X) = w. Then § is a cocompact space,
which is first countable and has the Suslinproperty, because S has
it. Moreover, d(S) < da(8) = w

by 2.26, this would imply

1> but d(S) = w cannot hold, because,

a(s) < d(g).9(8) = w,

which is in contradiction to d(8) = w,.
Consequently, S is a first countable cocompact space with the Suslin
property and d(S) = w,, however this is impossible by the first part

of our proof. Thus 5.6 is proved.

Corollary (cf. [23])
If (K), then every perfectly normal compact T, space X is heredi-

tarily separable.

Proof
By the Corollary of 2.26, it suffices to show that every closed sub-
space of X is separable. However, it is well-known that X is heredi-
tarily Lindeldf, and therefore also hereditarily "Suslin", and thus

5.6 can be applied to every closed subspace of X.

Remark

As is shown by Example 6.10, first countability is insufficient to

imply the hereditary separability of a compact T,-space X with the

Suslin property, although if (M) holds, it implies the separability
of X by 5.6. '
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6. Examples

Let us denote by ¥ (o) the set of all non-principal ultrafilters on

a and define
X=av¥(a);

we provide X with a T topology as follows:

o
every member of o is isolated in X, while if ue ¥ (o), then a basis
of neighbourhoods for u is given by the sets of the form

{u} v A, where A€ u.

s(X) = exp exp a, since

|
=
o}

[}

Then, as is easily seen, X 63'2, |x| =

[}
Q

¥ (o) is discrete in X, however, d(X)

Let R be the real line with the topology generated by the sets of
form G \A, where G is open in the usual topology and |A| < w. Then
RS‘J’2 since this topology is finer than the usual and every count-
able subset of R is closed. Therefore a(R) > w,.

We show that d(R) = w,. Indeed, let us denote by Q the set of all
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intervals with rational endpoints. For each I € Q we choose a subset

B.C I such that iBIl =

T Then obviously

1
S=v {BI: I € Q}

is a dense subset of R and |S| = w,. By 2.6 (ii), this immediately
implies

z(R) > w,.
It is easy to verify, on the other hand, that R is hereditary Linde-
18f, hence (ef. 2.6 (i))

h(R) = s(R) = w.

Tt is also obvious that ¥(R) = w, but 3(R) = W,
Let R be an arbitrary space and < a well-ordering of R. We define
two spaces Rl and R" on the same underling set R as follows:
A basis for R- (RY) consists of all sets of the form Gi(G;), where
G is open in R, x ¢ G and Gi ={y € G: y=X x} (G:={yeG: x=<yl}).
Since z € G—l n G; (zeG*ng?) implies (GnH)l c Gl n Gl ((aoH)%ec"ncY),
X vy Xy z X ¥ z Xy
both are indeed bases of some spaces whose topologies are obviously

finer than that of R, hence in particular T2 if R is so.

Proposition

(i) h(Rl) = |R| and z(Rl) = z(R)
(ii) z(8") = IR| and n(R%) = n(R).
Proof

(i) h(Rl) = |R| is trivial as < right separates rL. To show z(Rl) =
= z(R), let S c R" be left separated by a well-ordering <, say. By
theorem AL.T7, just like in the proof of theorem 2.7, there is a sub-
set T € S with |T| = |S| such that the two well-orderings < and . <{

coincide on T.
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6.h,

6.5.

6.6.

But then T is obviously also left separated in the original space R,
hence |T| = |S| < z(R), which was to be shown.

The proof of (ii) is completely analogous.

Thus as we can have T, -spaces R with |R| = exp h(R), we then have
z(R%) = exp(h(R")), and as we can have ones with |R| = exp exp z(X),

then we have h(rl) = exp exp z(Rl).

Let [0,1) denote the half open interval of reals and let
X = w, X [0,1)

with the topology induced by its lexicographic ordering. Then X ed,
and obviously X is connected. X is sometimes called the "long-line".
It is easy to see that X(X) = w, but k(X) = w, which shows that

2.18 cannot in general be improved.

(ef. [51)
Let A > w be an arbitrary inaccessible cardinal. For each a < A we

define Q, as the one-point compactification of D(a), and put

Q= X{Qa: o < A},

Then @ € B and, obviously, c(R) = A. However, Q does not contain A
pairwise disjoint open seis, since X is a caliber for every Qa(a <)
and A is regular, hence, by 4.8, X is also a caliber for Q.

This shows that in 3.1 the condition of A's singularity cannot be

dropped.

R. Jensen [19] has shown that if G3del's axiom of constructability
holds (V = L), then for every non-weakly compact inaccessible cardi-
nal A there is an X € &, such that_ |X| = X but X does not contain A
pairwise disjoint intervals. Thus, since V = L > GCH, s(X) = A by
2.9, because A is strong limit. However, X cannot contain a discrete
subspace of power A, as follows from 2.8 (ii) and the choice of X.

This justifies our remark made after the proof of 3.2.
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Let F = {0,1} with the T topology in which O is isolated but 1 is

0
not.

Looking at the elementary open sets in Fa, it is obvious that

w(F*) < o. On the other hand, if we define v € F* for £ < a by

0, if n = ¢
™ (pE) =

1 otherwise,

then {p€: £ < a} is a discrete subspace of . Consequently

It is easy to see .that for the point qOE) F* with

7 (q%)

n =0 for all n < a,

x(qO,Fa) = a, hence x(Fa) = a, too.

If D(2) is the two-element discrete space, then similarly as in 6.7

we can show
s(D(2)%) = z(D(2)%) = n(d(2)%) = x(d(2)*) = y(d(2)*) = w(D(2)") = a.
From this and 4.2 (ii) we obtain

H(D(Z)a) = a.

Finally, since p(2)% is regular, by 2.3 (i) we have a(o(2)%) > log a.
This, together with 4.5 (i) yields us

a(n(2)%) = 1og a.
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6.9.

Let R be the set of real numbers with the "Sorgenfrey" topology, i.e.

the one determined by all half open intervals [k,Y) as a base for the

open sets. It is well-known, and easy to show that

da(R)

[}
=
=Y

n
N

—~
2¢)
-

L}

]
—
=
=

[}

>
2¢)

[}

<
=)

1]
=
—~
2]
[

1}
€

but

w(R) exp w.
Also, R x R contains a closed discrete subset of power exp w, hence

s(R x R) = L(R x R) = exp w.

This shows that 4.4 cannot be improved.

> ¥, o o
. Let T =1 x {0,1}, where I = [0,1] and I is provided with the

lexicographic ordering and the order topology determined by it. In
other words, every point of I is "split" into two. This space is

known as Urysohn's space. Obviously I*e ® and

AT = (I = n(I) = 2(r) = s(I) = w.

Let J = (0,1) and J' =J x {1} C T be considered as a subspace of
I*. It is easy to see that J' is homeomorphic to the space R of 6.9.

Therefore
(I x T = exp w,

> >
though I x I € ‘B3 and

el

X(ITxTH =all xIT7) = w.

This justifies our remark at the end of 5.6.
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(cf. 2.3). If X is a completely regular space, then X can be embedded
as a closed subset of a completely regular space Y such that Y\X

1s discrete and a(y) = log w(X).

w(X)

(X). Choose p € [0,1] ,

x [O,1]W(X) be a dense subset of power

Proof; Embed X in the Tychonoff cube [O,T]w
and let A® c [0,1]W(X>
log w(X) (cf. 4.5). Also A = A*\[O,TJW(X) x {p} is dense in
£0,177%) & 10,1%%). yow

Y=Xx {p} uA

satisfies our requirements, if we refine the subspace topology of Y

by making all {a}, a € A open.






APPENDIX :

COMBINATORIAL SET THEORY

BY

A. VERBEEK (AO - A5)

N.S. KROONENBERG (A6)



T2

appendix 0

AO. Notation , conventions and prerequisites

A0.0 Sets, ordinals and cardinals

A,B,C,...AlLAY,. .

[A]

Or

‘E, n’ e’ u! E""’;'! Cn""

Bach ordinal is the set
of its predecessors

Some consequences are

stand for

ordinary sets in naive set
theory, or e.g. the Zermelo-
Fraenkel set theory with the
axiom of choice, but without
CH or GCH.

families of sets

the power set of A

the empty set

the family of r-element
subsets of A

the class of all ordinals

ordinals ("variables")

g = {n|n < g}
n<g&enekg,

min Or = § = notation 0

successor of n = n u {n}

g\n = [n,&) = {z|n < ¢ < g}
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(For A c Or) sup A U A (is an ordinall)
accordingly sup @ @ = min Or
c+n the ordinal which is the (ordinal) sum
of ¢ and n
T + 1, or more precisely L +1 successor of ¢ = ¢ v {z}
Card the class of all cardinals = initial
ordinals
|a], |z The cardinality of A, resp. L.
n,i,k,l,r finite cardinals (= members of w)
OsBsYsSaeeesd'y G seeeshsnns infinite cardinals, or, if explicitly

1

stated, arbitrary (finite of infinite)
cardinals.
The increasing sequence of infinite cardinals is denoted by wc, ¢z € Or:
Wy = Wy Wiy Why Wosenns Wpsees ’
The finite cardinals = the finite ordinals are the natural numbers:

0=¢, 1={g}, 2, 3,...

o+B, a.B, 2“, Z o, [_] o are cardinals defined as usual. (Note that
n<g "N on<g

at+p = |u46|, and o+B

o+B &> a<B. If a is an initial ordinal, then a+1
may either mean: the cardinal sum, i.e. o+1 = o, or, more frequently, the
ordinal successor of a : o+l = a+1 = o U {a}. It should be clear from the
context in which sense + is meant).

(For A c Card c Or) sup A \U A (as before; note that

A c Card =\UA e Card)

o tEe cardinal successor of a = wg,
o= Wi .

a = we is a limit cardinal £ is a limit ordina

o = wE is a successor cardinal £ is a successor
ordinal (or equivalently
JpeCard, a = g*)

CH = continuum hypothesis w, = 2w°

GCH = general CH Y o 2% = a+

expo = exp1a 2% = |Tp(a)|

exply exp(exp(n'1)a)
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loga min{g|2® > o}
Y1oga min{g|y? > a}
Vo' (used in A2.3 only) win{g|8" > a}
Y(o) (used in AL.3 only) min{6|aB > ol
Some consequences are exp(loga) > a
log(expa) < o

A0.1

Ylog(ota) S_G.Yloga

WVa)' = aof

Va0 = Vs

GCH =™y = cf (see A0.1.11)

Simple rules for cardinal arithmetic, such as (oLB)Y = aB'Y,

[P (a)] = 2%, a < B=yy ¥ §_YB etc. are assumed to be well known.
The fundamental theorem of cardinal arithmetic is Yo .a.0 = o, which
has such well known consequences as a+B = 0.8 = max{a,B},

o = (2% = 2%, of = (a+8)8. Familiarity with the principles

of transfinite induction is presupposed.

Proof of a.a = a. Define a wellordering on Or x Or as follows:

First let AC = {(n,g)[max{n,a} = ¢} for all ¢ € Or, and wellorder
each A_ as follows: (£,0) < (Z,1) < ... (2,8) < .u. < (g,z) < (0,z) <
< (1,z) < oo (E,z) < ... for all £<¢ (ordertype AC=; + 14 ¢). Then,
for (n,g) € A, (n'38') € A, T $ ¢' we put (n,g) < (n',g') iff
r<zg'. .
This gives a wellordering and hence a function ¢ : Or x Or - Or.
Clearly for all a |¢(@,0)| = |o|, | |. Suppose that for some

o ¢(a,0) > a. Then for some (Z,n) ¢(z,n) = a and max{z,n} Sger 0 < 0.
Clearly ¢(6+1,0) > o and hence |e+1|2 = |e|2 >a >0 > |6|. Now let

o, = 0. Repeating this procedure we find a decreesing sequence

a>a, >ad, > ... of cardinals, contradicting the wellordering of

1
Card.

2

Cofinality.

Let (X,<) be a fixed linearly ordered set. Then a set A is called
cofinal in Xif Ac X and Vxe X Jae A x < a.



5
appendix O

The cofinality of X, cf X, is defined by
cf X = min{|A] | A c X is cofinal in X}

Examples. If X has a largest element, X5 then {x1} is cofinal in X.

So (X has a largest element)t=vef X = 1 4= cf X < w.

Furthermore: c¢f R = w, cf w, = w (Since 1lim w =\ e = ww), and
new new

cf m1 = w

1
Some properties of cf are:
A0.1.1, If Zc Y c X and Y is cofinal in X and Z in Y, then Z is cofinal
in X.

A0.1.2. Each linearly ordered set (X,<) has a cofinal well-ordered subset A.

Proof. Define ¢ : Or -~ X by transfinite induction so that
¢(n)[ > ¢(g) for all ¢ < n if {¢(z)|z<n} is not cofinal in X,

= ¢(0) otherwise.
Then either A = {$(0)} or A = {¢(n)|¢(n) * ¢(0)} is as required.

A0.1.3. Every ordinal ¢ = {n|n<z} has a cofinal subset of order type < |¢].

Proof. Let f : |c[ + ¢ be any bijection. Define ¢ as above, taking
care also that ¢(n) > f(n) be satisfied, if {¢(6)|6<n} is not
cofinal with z.

A0.1.4, For each linearly ordered set (X,<)

cf X = min{c|X has a cofinal subset of order type {r} € Card,

Proof. < is frivially satisfied. Let A ¢ X be cofinal, of minimal
cardinality. By 2 we can find A' ¢ A such that A' is cofinal

in A (and in X by 1) and A' is well ordered. Bj 3 we can find

A'' c A' such that A'' is cofinal in A (and in X by 1, hence order
type A'' > cf(X)), andorder type A'' < |A| = ¢f X. Thus order type
A'' = cf X. By the definition of cf X, cf X € Card.
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A0.1.5.

£0.1.6.

AO0.1.7.

A0.1.8.

For each linearly ordered set (X,<)

cfef X = cf X

Proof is easy from 1 and L.

For each limit £ € Or

cf(wg) =cf &

Proof. Lim
0 * (wn)n<£

=\J{wn!n<5} = g

+

. +
For each successor £ € Or cf w, = w,, L.e. \fa ef(a ) = a

12 £

Proof. Suppose A < o satisfies |A| < o. Then for each £ € A
<+
£ <o, and hence,|£| < a and so also |sup Al = |uA| < a.0 = Q.

+ . . . +
Thus sup A < o , and A is not cofinal in a .

A cardinal o is called regular if a =cf a
singular if a > cf a
strong limit if VB8 < o 28 < o

weakly inaccessible if o is regular limit

strongly inaccessible if o is regular

. strong limit.

Notice that it follows from 5 that each cofinality (cf X, cf o)

is a regular cardinal. For T we may now read: each successor
cardinal is regular, or equivalently: each singular cardinal is a
limit. As to the existence of regular limit (= weakly inaccessible)

cardinals, see A6.1.

For two cardinals a,B with B < a the following conditions are
equivalent:
a) ecfa=8<a
b) B is the minimal cardina; that there exists a sequence of ordinals
(¢ ) cq with Vn<g 1z <a
and sup{cn|n<3} =0
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¢) B is the minimal cardinal such that there exists a sequence of

cardinals (an) with

n<g

‘Vn <n'<§$B a <a , <0
. n n

each an is regular (e.g. a successor cardinal)

lim an = sup o = z o =aq
n<g n<g 1 n<g "
d) B is the minimal cardinal such that a = z an for some set of
n<g

cardinals {an|n<8} with o, <o for all n < B

Proof. (a)&>(b) by definition. (c¢)=>(d) and (d) =>(b) hold
trivially. As to (b)=r(c), define a by transfinite induction
onn e.g. by

o = i |\){un,|n'<n} U L){;n'|n'<n}[+ .

(Check that o < a for each n < B).

For every cardinal o the following conditions are equivalent:
(a) a is regular .

(b) each cofinal subset of o has order type o.

(¢) a= ] o for some set {o_|n<B} ¢ Card implies:
n<g "
B>aor dn <8 o =oa.
For every cardinal o qu 5

Proof. Suppose f: a - aCf ¢ is any mapping, cf o = B and

(ocn)n<B is a strictly increasing sequence converging to a. We
will define a g € oSt (i e, g: cf a > a) in such a way that

g ¥ £f(n) for all n < B, showing that the mapping f cannot be onto.
Note that both g and f(n) are functions B » a. Moreover for each
ces {(£(m))(z) | n<a§} has cardinality Lo <o Thus we may
define g(z) € o \ {(f(n))(c)[n<ag} arbitrarily

for all ¢ < B. This yields g(z) # (£(n))(z), and hence g % f£(n)
for all n < o, and for all ¢ < B. Since {aC|C<B} is cofinal in a,
we obtain g # f(n) for all n < a.



78

appendix 0
10a cf(2%) > a
b cf(aCfa) >

AO0.1.11.

A0.1.12.

A0.2

cf2® a,\a o
< (27)" = 27 contradicting

Proof of (a). If cf 2% < &, then (2%)
9. Similarly for b.

Under G CH o if B < ecfa
as =4 2% = 4% if cfa<B<a
B + .
2" =g if a<B

Proof. Assuming G C H, y < a 2 = y+ < a. Now if B < cf a then for
each f: B ~ o sup{f(n)|n<B} < a. Hence

of = |(ele: prad] < T [ee|e: pred] < T le]® <

g<a g<a
<y o2lel oy olEl Bl g gy
E<a E<a
If cf o < B < a then by 9: 2% = of i_aCfa i_aa 5_(2a)a = 2%,
If o < B then 2Biasi(23)5123.
On G C H.

Let R be theclass of regular cardinalsand¢ : R+ Card be any "well-
defined" function that satisfies (Va,8 e®): a < B =2 ¢(a) < ¢(B)
and cf(¢(a)) > a.

. + +
(We may e.g. define ¢ by ¢(a) = o , or ¢(a) = o ++, or ¢(w0) = ¢(w_)

1

= %zand ¢(a) = ot otherwise).

W. Easton, [37], has shown that there is a modei of ZF + choice

in which ¢(a) = 2% for each o € ® , provided there exists a model
of ZF + choice. For ¢(a) = o this yields e.g. the consistence of
G ¢ H with ZF . Note also that, in some models, 2% = 2P

may hold for some cardinals a,B,o # B.

Sometimes an ordinal p is considered as topological space, by taking
the order topology, for which {(n,£1|n<g<p} u {[0,nl|n<p} is a base.
A class A c Or is called closed if Wp € Or A n p is closed in p.
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A1 Regressive functions

A1.1 Let M be a set of ordinals. A function f: M + Or is called regressive
if
Y& en\io} o(g) < €

and ¢(0) =0 if 0 eM.

A1,2 THEOREM [ALEKSANDROV-URYSOHN [1]1].

If £: o0y >0 is regressive, thena £y < lf_1(£0)l = o,

1

Proof. Put £0)(x) = x, £ (x) = £ (#() (%)) ana

A = {Eew1 | f(n (g) = 0}. Since for each £ € w

N the sequence

1
() gy = £lm+1)()

(f(n)(i))n c is non-increasing, we must have f

and hence = 0 for some n € w, and thus § eAn.

Thus \J An =Wy, hence some An must have the cardinality w,.
new

Since If(O)Anl = w, and If(n)An| = 1we can find a k < n such that

155 | = w put | o(F*T (k+1)
n 1 n

such that |f‘1(g)] =

)An| <w Now we can choose a £ & f

1"
1°
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A1.3 It is easy to see that A1.2 can be generalized as follows:

Let £ : a > o be regressive.

(i) If o is regular then :3§,< a If_1(£)f = a.

(ii) If o is singular then VB < a :HE < a |f_1(5) | > 8.

Proof. The proof of (i) is an immediate generalization of the proof

of A1.2. obtained by replacing everywhere w, by o.

1
The proof of (ii) follows from (i) if we notice that B' is regular

and f | B+ : B+ > B+ is regressive.

EXAMPLE. The following example shows that (ii) cannot be sharpened.

Let o be singular, and (B,) a strictly increasing sequence such

£’ g<cfa
that 1lim BE = a0, BO = 0 and 81 = cfa. Define f: a > o as follows:
£(n) =18, if B <n < B, E<cfo
£ if Bg =n s & < cfa

Notice also that for no £ eais f-1(£) cofinal in a.

Al.4 If p is a limit ordinal and M c p an arbitrary cofinal subset of p, then
a function ¢ : M+ p is called definitely diverging if

VE<p:3neM %ﬂéM\n ¢o(n') > g .

This means that the function values of ¢ eventually exceed any

ordinal £ < p, what we also denote by 1lim ¢(n) = p.
neM
If A and B are sets of ordinals and ¢ : A > B is any function, then

let ¢ : A> B be defined by
9(&) = min{¢(n) | n e A\&}
Notice that ¢ is - always increasing and satisfies ¢ < ¢, moreover

lim ¢(n) = p<= sup ¢(n) = p.
nel nel
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lemma If cfp > w. and A and B are two closed cofinal subsets of p,

0
then A N B is cofinal, and in particular A n B + @. (Cf. A0.2)

Proof. If n_q < p, then define two sequences (Cn)n cw in A, and
(n) in B as follows:
n‘new
If Lgs +++s Ly» M are defined for ne w or n = -1, then
let Coeq = min(A \nn)

If Ny oo Ngs «++5 M s Cn are defined for n € w, then

n-1

let n, = min(B \Cn)

< = U =
< vee o Put n, n,
new

Notice that n_; < gy < ng < «vv & <M

n
=U§>n

n— =1
new

n

. Because of cfp > w we have nm < p, and since A

and B are closed nwe A A B.

A subset M of a limit ordinal p is stationary in p if M nC + @ for

each closed cofinal subset C of p.

Note that, if cfp > w then by the above lemma any set containing a
closed cofinal subset of p is stationary in p. However a stationary
subset of p need not contain a closed cofinal subset of p (let

p=uw, and M = {n£w2 | cfn = w}). But we have

2

THEOREM (W. Neumer [531). If cf(p) > w and M < p is cofinal with p,

then M is stationary iff Y ¢ : M > p (¢ is definitely diverging) =

(¢ is not regressive).

Proof. Sufficiency. Let M not be stationary. Then there is a closed
cofinal subset C of p which is disjoint from M. Define ¢ : M »> p as
follows

¢(u) = sup pnc neM.
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Note that sup@ = 0, and that ¢(n) € C for each p € M since C is
closed. It is easily seen that ¢ is regressive, increasing and de-
finitely diverging.

Necessity. Assume that M is a stationary subset of p and ¢: M > p
is definitely diverging and regressive.
As follows from Al.4 we may assume that ¢ is also increasing (replace

¢ oy ¢).

Define a sequence (nE)E in p as follows: Ny = 0. If nE is defined and
< p, then let
(i) Nepq = min{neM | ¢(n) > ng}

(Notice that ¢(n) > ng for some n < p).

If go is a limitordinal, and n,_ is defined for all & < go and more-

g

over U

ng < p, then let
E<Ey “0 .

(ii) n, = U n_ |
EO E<E g

This procedure stops &t a (limit) ordinal £ for which \U n_ = p. Clearly
<,

{nE | £ < EO} is a closed cofinal subset of p, and hence also

{nE | £ < Ey and £ is a limit} is closed and cofinal in p.

Because M is stationary, this set meets M, i.e. for some limit

£, < & 5162 M. Since (”g)ge;go is (strictly) increasing and

¢ is increasing we find that

n
Vi <g, ¢(n ) i¢(”g1) .
Moreover it follows from (i) that

Ve < g, n

If we combine these two inequalities we obtain

- U
n, = n. <é¢(n. )
£, E<E, g 3

'

This contradicts the fact that ¢ is regressive.
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Remark. If cfp = w, theh clearly M is stationary iff M contains
a.tailofp,i.e.]€<p p\NEcM.
Moreover for any cofinal M < p there is a regressive definitely

diverging ¢ : M > p. For if p = sup{pi]i € w} and p; < for all

Pi+1
i ew, then we may define

o(n) = max{p, | o, < u}

APPLICATIONS IN TOPOLOGY.

THEOREM [MYCIELSKI [521] .
+

D(o¥) can be embedded as a closed subset in (D(a))®

Proof. Let R = X{D(&) | a < & < o'}, Since  for these & lg] = a,
and D(£) = {n | n < £} with the discrete topology, R is homeomorphic to
R~ (D(ot))a+. Note that R is the set of all regressive functions from
a+\ a to a+. Now a+\a is stationary in a+ and o is regular. For

each ¢ a+\ o we choose one fC € R with the following properties:

(1) Yeed\z  f(o)=¢

(ii) fc|(;\a): t\ o~ ais 1-1.

We claim that D = {flj | @ << o'} has no accumula-

tion point in R. Let g &R, then g is regressive and hence not definite-
ly diverging (A1.5),i.e. EE < o such that {n ea*\ alg(n) < €} is
cofinal in a+, i,e. has ot elements, because ot is regular. Then since
lg| < a+, there is a £' < £ such that |g_1(£')| =, (cf. A1.3(1)).

Choose two elements £y 52 eat \ a such that g(51) = g 52) = g'. Then

{feRr I f(g-l) = f(gz) = &'} is an elementary open set in R which

,» of D, since f_, is the only element

E!

of D which assumes the value &' more than once.

13
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A1.7 THEOREM. The ordered topological space w, = {g|g < w,} is not

A1.8

baracompact.
Proof. Let & be any open refinement of the cover consisting of all

1° We will show that some n € w, even meets un-
countably many members of & . Hence & camnot be locally finite (not

initial segments of w

even point-finite, or point-gountable). For each n € w,, choose one

1

element O ¢ O containing n. Define f: w, > w, in such a way that

£(n) < n and (£(n), n] < 0, foralln e w: \ {(1)}. By A1.2 Jg < W,
such that f_1(£) is uncountable, i.e. f—1(5) is not bounded. Then
£41 is contained in (g,ﬁ] c On for each n € f-1(g). Since each On

is bounded this means that £}1 is contained in uncountably many
members of €.

(The lemma that each paracompact (or: metacompact) countably compact

space is compact, yields another proof of A1.T).

The product {n | n §_w1} x{n|nc< w1} is not normal.

Proof. We will show that the diagonal A = {(n,n) | n € w } and the
right side R = {(w,,n) | n e w,} do not have disjoint open neigh-

- w, in such

bourhoods. Suppose U is any open nbd of A. Define f: w 1

1

a way that
f(n) < n neuw, \ {0}
and {n} x (£(n), n] cU new,
By A1.2 there exists a £ € wy swch | 7 Q<CL.'.
that f_1(£) is uncountable. Then ' !
wy e £7(€) and %) N fbue
< A Y
~ ~
11) € {n} x cU e ‘
(mﬁ ) n (E’Tﬂ v ” ("L,) ,
Hence (w1,£¥1) e U, \// .’
proving that U n R $# ¢ for each neigh- 4 k) R
bourhood U of A. '
(20) 1 e l2)
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A2. Quasidisjoint families

- A2.1 If (C is a large family of finite sets then does there exist a big

disjoint subfamily of OT ? Not necessarily,
0 1 E

OC = {{-2,-3}} v {{ -1,&}|& < a}.
Note that (10T = ¢.

-2
This situation suggests the following definition:

A femily @ is quasidisjoint if {A\ N | A e C } is disjoint.
A quasidisjoint family is called trivial if it contains only 2 sets

(or even less).

Remarks (1) The following conditions are equivalent:

(1) X is a quasidisjoint family
(ii) d2 VA,Be X A+ B=AnB=32
(iii) VA,B e @ A+B=AnB=/NX

(iv) each three-element subset of (¥ is quasidisjoint.
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A2.2

(2) It follows easily from the Teichmiiller-Tukey lemma (or e.g. the

equivalent Zorn-lemma) that any family of sets contains maximal quasi-

disjoint and maximal disjoint subfamilies.
Let (¥ be a "large" family, |OC| = o, of sets of "small" cardinality,
Vaeot |A] < B. In this paragraph we will give estimations (lower

bounds) for the supremum of the cardinality of quasidisjoint subfamilies
of OC, in terms of o and B. Moreover we will give conditions under
which the supremum is actually reached, (i.e. sup = max). It can be
shown by means of examples that the results obtained are the best pos-
sible.

At first, in A2.2, we deal with the case B = w (i.e. & is a family
of finite sets). This case has applications, e.g. in the theorems on
the cellularity number (Suslin property) and caliber (Sanin property)
of topological products, cf 4.6, 4.7 and 4.8 (p. 52-55).

Secondly, in A2.3, we deal with the general case. The results are
obtained independently from A2.2, but because the proofs and the
examples are much more complicated, we have included A2.2 in order to

supply relatively short proofs for the applications mentioned above.

lemms. Let n be a fixed integer. If (U is a family of n-element sets,
and |(C| = a is regular, then AYec & such that Ye is quasidisjoint
and || = [OC| = @.

Proof. The proof will be given by induction on n. For n = 1 (U is
disjoint and we may take jo = OC .

Let the lemma be true if we replace n by any smaller integer. Let
a 0 be a maximal disjoint subfamily of OC and sﬁppose B = |OCO| < o.

Since each A € (U meets at least one member of OC_., and o is regular

0’
:-]Aon?:O l{AeOC[AnAO+¢}|=0L

Since AO is finite

Exer [{Ae®@| x e A} =a
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Consider {A \ {x} | x € A € (}. By the induction hypothesis this
family has a quasidisjoint subfamily X,’,,1 of cardinality a. Then
Yo={Bu{x}|Be X}

is a quasidisjoint subfamily of OC of cardinality a.

THEOREM. [56] Let OF be any uncountabie family of finite sets. Then

sup (13| % < O A X, is quasidisjoint} =l<C|
If, moreover, |CC| is regular, then Jdec (T
3% is quesidisjoint and |Ye| = |(7].

Proof. Let us first assume that IOCI = o is regular. Then dn € w
such that OC has a subfamily of o sets of exactly n elements. Application
of the above lemma yields a quasidisjoint subfamily of OC of power a.
If |0C| = o is singular and B < o then 8* < o and g* is regular.
Hence as we just proved, there is a quasidisjoint subfamily of (T of

+ .
power B . This proves our theorem.

EXAMPLES

a. {{1,2,3,...n} | n € w} is a countable family of finite sets whose
only quasidisjoint subfamilies are trivial (i.e. contain two sets).

b. If o is singular and IOCI = o then (U need not contain quasidisjoint

subfamilies of power a. Let (ag) be a strictly increasing

g<cfa
sequence, converging to o, and 2 = 0.

0,1 (1,1) (1,2)] (@, (@ #1,0)(n, 1) age,, 1) (a,1)

ko >

LAY ) ®s e ove

0) X

2 (050)

o E (a0 Te fogers
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For £ < cfa put OZE = {{(aE,O), (n, 1)1 | a0, << ag_H}, and let
& = U{O(':E | £ < cfa}. It is easily seen that the OCE are the
maximal quasidisjoint-but-not-disjoint subfamilies of OT , and
ICZE| =0 <o If on the other hand % < (U is disjoint, then
|§Q n (Zﬁl < 1 for each & < cfo, and hence |I@,l < cfo < a.

A2.3 THEOREM.(L401, [L491, [60]) LetOC be a family of sets such that |OC|=a and
Yael |A| £ 8, then
(i)  sup{ || [Ye ¢ & and Yo quasidisjoint} Z\S/?=

=  min{y | YB > o},
def

(ii) Moreover, if\B/? is regular, then there exists a quasidisjoint

th c OC such that |:a[ Z\B/-&\.

Before we prove of the theorem, we present some examples and simple

lemma's. Note that the case o < 2P is trivial.

Example, [L0]
For any B,y let (C be the family of all (graphs of) functions B ~ y.
Let % < (T be a quasidisjoint subfamily,Y

and 7 = N (T, By Z' we denote the projection A
of Z onto B. If Z' = B, then de= {Z}, / \
If 2! # B, then let n € B \ Z'. For any
two £,g € % (n,fn) ¢ Z' = £ n g, hence
£(n) ‘f‘ g(n). This implies that
%] < [{£(n)]f € T} < y. Hence OC
satisfies:

|(ZI=YBandVAeCZ |a] =8

and -

Ve @ gis quasidisjoint =>| Y, | < v. Zl=r 7 8

L ]

This implies that part(i) of the Theorem cannot be improved.
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Remark.

It is not hard to show that for each a,B8 for which\B/E‘ is singular
there exists a family (O satisfying

|| =« and VAe OC |A] =8  and

Vi < @ L is quasidisjoint =>le <\} o

For details see |:60:] . This proves that part (ii) of the theorem cannot

be improved either.

lemma. For any two infinite cardinals o,y and finite or infinite B the

following relations hold:

(a) \B/E\+ 2 =>I3+<_2B N
) v <=yt N

(@) VA= H*

Proof (a) If\Wa # 2 then 2 N If\sfo?126 , then a f_(\‘s/—o?)B <
_<_28'B = 26, and hence 2 =\B/_\.

(v) If & iys then o < (%)B f_YB'B = YB and hence \B/Tf_y.

B

(e) If 6 < (YB)+, then § < y and hence P iys < (YB)+. So

s <WvB)*.

Proof of the theorem.
1r 2P > a then\e/a‘= 2 and (i) and (ii) are trivially satisfied. So
let us a.ssume\B/Tx‘% 2, i.e. (lemma (a)):

gt < 2P <

The proof is devided into two parts. In (A) we prove (i) and (ii) for the
case that \B/?is regular. This part is a slight generalization of the
proof in [L9]. In (B) we prove that (i) also holds if \B/?is singular.
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A, \B/ o is regular.
Assume

(a) V¥c® Xis quasidisjoint =| | N
. . .o . +
We will define subfamilies OZC of OC for each T < B so that

(v) CIC=U{(ZE|E<B+}

(¢) Vg<g® oz | <&

S
Because of the regularity of\B/E\and vy 8" <\%‘: () and (e¢) imply
|X| = o < \Bﬂx_\. This contradiction shows that (a) does not hold, which
proves (i) and (ii).
The definition of the families 052; is by transfinite induction. Let
OCO be a maximal disjoint subfamily of OC, If g < 8" ana O(,n has
been defined for all n < ¢, then put

AC=U{UOCn|n<c}.

For each subset K of A;’ satisfying |K| < B, we define OCC K by

3

={ae@\ UV O | anaA =K

OCC’K {A e OO\ e %, | c }

If there exist A, A' € OCC K? satisfying A n A' = K , then let
9

x Z K pe a maximal quasidisjoint subfamily of %C K such that

H k]
d Na™ =k
(a) .

=

If such A, A' € OCC g do not exist, then let (ZC K be any arbitrary
b k]

-maximal quasidisjoint subfamily of (X - In either case

o

>

(e) OC;,K=¢‘:}OC;,K=¢ .
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Finally let

%
@, = U{OCC’K | X &, and |x| < B}

Let us verify (b) and (e).
To verify (b), suppose that for some A ¢ (OC A 45 OZ, for each
£ < B'. We will show that such an A meets each Ag, \ A Vi< gt
This implies |A| > B+, a contradiction.
Let £ < 8T and K = A n AC . We distinguish between two cases: (f)
and (g).
(£) Suppose HA'eCZ'; (An A"\ K # ¢.
Then ¢ #(A n A")\ K =(A n A")\ (A n A ) <A n(A 1\ AC),
(g) Suppose VA' e OZZ A nA' cK. Since A € OCC < (e) implies

that OcC X $d. So (d) holds. Hence OC
contradicting the maxlmallty of OC

.K u {A} is quasidisjoint,

’

This proves (b).

In order to prove (c), note first that |OZ| < \'§ (by (a)), and recall
Bt < 28 <= o\l et ¢ < 8t and assume that

IOCUI <% for all n < ¢ .
Then also IU(xnl & for n < z.
Thus |A|< Z|UOC <\B/;‘ .
n<g

The set |A | has |A |B subsets K such that |K| < B. Since
IACI <\9 a , lemgla (b) implies |AC|B <\%1.
By (a) we have for each K c A_ such that k| < 8 IOCZKI N/
3
_ Because of the regularity of \%_\we deduce

@, <l locy | <Va .
K

This proves (c), and completes the proof of part A.
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B. \B/u—‘ is singular.

Each singular cardinal is limit. Let y <\B/<;; by our lemma (b)

YB <\B/;‘ and hence (y8)+ <\B/c: Let O™ be a subfamily of OC such
that |Oc™| = (&),

Since (YB)+ is a successor and thus regular, part A yields the

existence of a quasidisjoint Ye c OC° c (T satisfying

D N L M (lemna (c))

This proves B.
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A3 Set nia.ppin_gs and free sets

A3.1 Let R be the topological space of real numbers and F: R - P R a set-
valued mapping with the property that for each x e R F(x) is finite
and does not contain x. A subset M c R is called free if
Mn U{F(x) | x e M} = @.

P. Turan asked whether there exist infinite free subsets for each F.
This was solved by L&zér who showed that there always exist free
subsets of continuous power. Indeed for each x € R we may choose an
open interval Ix with rational endpoints such that x € Ix c R\F(x). v
Since there are only countably many open intervals with rational
endpoints (and cf 2 > w, see AO.1) there exists an interval (a,b)

such that the set

M={xeR | I, = (a,b)}

has continuous power. It is easily seen that M is free.
We can generalize this in two ways: at first there still exist
free subsets of continuous power if we replace "F(x) is finite and

"x ¢ F(x)" by the weaker condition"x ¢ F(x)".

'
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A3.2

Secondly we may ask for free sets of mappings F: X - &DX with
VxeX x &F(x) and F(x) finite,vhere X is an arbitrary set. It is
easily seen that free subsets of power |X| also exist if |X| = 2°%,

o is arbitrary. One can prove this by replacing R by the generalized
Cantor set {0,1}% of weight a.

This suggests the following more general definitions and problems.

DEFINITIONS

Amap F: X > PX is a set mapping if Vx € X x ¢ F(x).

A subset M c X is free (under the set mapping F) if Vx,y € M

x ¢ F(y) and y § F(x).

We will investigate conditions on set mappings F: X — (X which

guarantee the existence of free subsets M ¢ X of power ]MI = |X] .
Remarks.

(1) If F: X > PX is a set mapping then it is easily seen that M c X

is free iff

Mn U{F(x) | xeM =¢

(2) From the Teichmiiller-Tukey lemma it follows that for any set map-
ping F:X > (PX and free subset M c X there is a maximal free
subset M such that M « M* < X,

(3) For each X there exists a set mapping F: X - Px satisfying:

Vx e X |F(x)| < |x]| = o,
and Y e x M is free = |M| < 1

In particular, under assumption of the C H, there exists a set mapping

F: R > PR such that: Yxe X [F(x)| <w

and YM cR Mis free =|M| <1

Proof. Well-order X: X = {X«E l £ < a} and put F(xg) = {xn | n < g}
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A3.3 In 1936 S. Ruziewicz [55] asked:
Does "IXi =qa > B and F: X > PX is a set mapping such that Vx e X
|F(x)| < B" imply: "AM c X |M| = o and M is free"?

Partial positive solutions were given by Lézdr (E&S_—J , for a
regular), Sierpifski ([57], for § = w), G. Fodor ([L3], for cf(a) > B
P. Erdde ([38] for all o > B, but assuming GCH).Finally A. Hajnal,

E;la s pfoved in 1960 that the answer is always yes, without using
G.C.H. We will prove Hajnal's result in two steps, at first for the
case B < cfo (A3.4) and then, in the general case (A3.5).

A3.4 THEOREM LAZAR [L§].

If %] = a» B < cfo _and F: X > B X satisfies
Yx € X x ¢ F(x)
Vx e X [F(x)] < 8

then AMc X - [M =0 and M is free.

Proof. Assume V¥ M c X M is free 3 |M| < a. Let SO be a maximal

free subset of X, ISOI < o (see remark (2)). If for some v < B and

all n < v we defined Sn satisfying

Is | <«
n
S_ is a maximal free subset of X \ J S
n g<n &
then let S be a maximal free subset of X \ \J S . Put
Y n<v. n
* _ U .
s = v<B Sy 3
then
>
|s7] < a , because B < cf(a).
Let g =80 UlF(x) | x e 8
then [s™ < |8¥] + 8|87 <o

Hence Sm+ X .
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A3.5

I .
Choose y € X \ S . Then Yv < g
Sv U {y} is not free, by the maximality of S\).

I.e. either Hxv €8s y € F(xv)

v
(which is impossible because y ¢ s
or va € S\) x € F(y).

Thus F(y) meets each member of the disjoint family {Sv | v < B}, hence

[F(y)| > 8 . This contradiction proves the theorem.

MAIN THEOREM (HAJNAL [L4])

If |X| = o and B < a, and F: X + [PX satisfies

VxeX b4 * F(x)
VxeX lF(x)l < B
then M < X M| = a and M is free.

Proof. Because of A3.4 we may assume that o is singular and

+ . . .
y = cfa < B < a. Let (a£)£<y be a strictly monotone increasing

sequence of regular cardinals (e.g. successors), converging to o

and all greater then g%, Let (A7) be a sequence of disjoint sets

<
whose union is X, satisfying |A§|E=Y0LE for £ < y.
We construct a new sequence (AE)€<Y by transfinite induction in such
a way that
(i) Veg<n<y AECAD and U{Ag[5<y}=x
(ii) VE <y lAgl = aE
(iii) Ve < yVx e AE F(x) c AE

Assume that n < y and the AE are defined for all £ < n.

At first we define a sequence (A") by
n’new
0 *
A=A U A <
0= A U{ . | £ <n}

+1
A:]l =A]]':]l o U{r(x) | XéA;l} for n € w.
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Then put A = U A", Now (i) and (iii) are trivially satisfied;

new n°
to see (ii) note that |A:-| =a is regular and

U, [ e<nt | < ] [a]< ] ap<a.
€ T g<n € g<n © n
By A3.l4 there exists a free (under FlAn) subset B]r1 c An satisfying

an| = ]An! = @ for each n < v.

Next we define sets Cn c Bn for all n < y, satisfying

1 < C = |B =
(iv) Vn<y | nl | n! a
(v) VE<yan_E x € Cy F(x)ncg=¢.
If the CE are defined for all & < n, where n < y, then put
Y
Hy = gan G
Th H < <
en I nl < Z “g %
&<n
and also |V F(x)] <B.] a <a =]B] .
ern £<n g n n

= U ¢
Let C_ Bn\ern F(x).
Notice that (iv) and (v) are fulfilled. Yet there still may be (many)
x € C such that for some § < n F(x) n Ce $# ¢ . To avoid this
we define another sequence of sets (DE)£<Y

and a partition of every DE
. + . .. . .
into B disjoint sets: D = {DE o | o < 87} satisfying

H

(vi) Ve<y D, c¢C
(vii) VE <y Vo < 8 1D£,p

(viii) Ve <y dp, < 8" ¥xeD

£
|'=Ip | = o
g Vn <& Vo p€<o<8+:>

F(x) n Dn(p) = g.

Construction of (D_),. , and (D

g E<y Esp

Assume that for some n < y and all £ < n, p < B+ DE and DE 0 have
2

)p<B+,E<Y-

been defined, satisfying (vi)-(viii).
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Fix

D, BBl /Rl B

B
/
L\
. /

(&<n) .
DR o P Pd) - -
D BBl R -

<o) etipy T

For each x € Cn’ |F(x)| < 8 and thus Jp(x) < 8" Y eo>p(x) g<n
F(x) n DE o= @. Since |Cn| = is regular and greater then B+,
s

. +
there is a pn < B such that

D = {xecC | p(x)= pn}
def

has an elements. Let {Dn o | p < B+} be any partition of Dn in B+
9

disjoint sets of power |Dn| =a > B+. Check that (vi)-(viii) are

satisfied.

Now (pE)E<Y is a sequence of ordinals smaller then B+. Since y < B+
and g¥ is regular, Jp < 8" such that Py < o for all € < v.

Put

M= \){DE’B' | €<y} .
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Then |M| = ] [D,=| = )] o, =o by (vii). If x e M, say x € D
E<y Esp <y 13

then F(x) n Dn 5= @ for all n > & by (vi) and (v). Moreover
L]

€50

F(x) n Dn 5= @ for all n < £ by (viii). This proves that

Mo UF(x) | xe M =¢

i.e. M is free.

Application.
Hajnal's theorem is used to prove a lemma of 3.3 (p.k0):
Suppose X € }f, ¢(X) = A where ¢ is one of the functions s,h,z and

ef A = w. Then the answer for the sup = max problem is positive.
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Al Partition calculus. Ramifications

AL.1 Definitions

For every set S and each natural number r

B =x|xcsA|x| =r}

A partition of Bﬂz‘: Eﬂr = 2?4 Ig is called an r-partition of S.

In general we do not require that the classes of the partition are
disjoint.

If A ¢ 8 is such that for some £ < y (a1 c 1 , then we say that the set
A is homogeneous (for the partition {Iil g < vy}

The symbol

r
) o > (8%

is to be read "o arrows B., & < y, r'" and stands for the following

g

statement:
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If
r
2 s| =a ana [§]F= U1
(2 sl B - Y1,
then
(3) Jaes <y |al=p ena [A7 c1,.
If 8E = B for all £ < y then we may also write
r
o > .
(®)F
If y is finite we may replace (1) by
r
o > (BO"°f’ BY'1)
The negation of (1) is expressed by
r
ot (Bl
We put the following restrictions to the use of (1):
a is infinite
r is finite, but r > 0
Y is either finite or infinite, but y < a
Bg is either finite or infinite but r < BE < o for each
E <y

Only in example 4° below we do not assume this restriction and

mention what results follow.

AL .2 Examples

1°a 1-partition of a set S is just a partition (or covering) of this

set (if we identify x € S with {x}). This yields e.s.

1

cfa = min{y | ot (a);}.
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2° For r = 2 Ei]e can be considered as the complete graph which

has S as its set of vertices. Then a 2-partition of S is a par-
tition of the set of edges. One of the earliest results in par-

tition calculus is theorem AL.10
oY + (w1,w1)2

due to W. Sierpinski [58]. This result can be rephrased as follows:

There exists a partition {10121} of the edges of a complete graph

with 2% vertices into two parts so that any set of vertices is

countable if it generates a complete graph with all edges belonging

to Io or to I1.

Monotony and symmetry in (1).

Suppose (1) holds. What is the effect if we change one of the

Oy BE’ Y, T or permute the BE?

(a) If a' > a then‘also a' > (B€)§<Y

Proof of (a).
Let [s'| = a', [?,]r = EEJ I,.. Choose S c 8' such that
Is| = o, then [§]7 2 (10 [8]7). By (3) acscs de <y

|a] = 8, and [A:erIE n[§]F e

2 g

\
(v) If Bg

Proof of (b).

Let |S| =a, [8]F = U

i_BE for all £ < y then also o - (Bé)€<y

IE.By(3) Jacs Je< vy

E<y
_ r
|A] = B end [A]" < I,
Choose A' c A satisfying |A'| = é, then also

(07« [ <1,
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c) If y' < then also o -
(c) Tt y' <y (8) ey
Proof of c.
Let |8| =a, [817F = U I..PutI, =¢ fory' <& <7v.
E<y! 3 g
We can generalize (c) as follows:
. r

ty! 1=1 .
(a) If £: y' > v is any map then also o -+ (Bf(g))F,<y'
(e) If r' < r and BE; is infinite for each £ € y then also

r' .
a > .

(Be)rey

Proof. As r is finite it suffices to consider the case r' = r-1.
Let |S| = o and [S] =12 £<y _IE. Well-order S in order type o,

and define the r-partition (Iz) gey OF 5 bY

(i) IZ-= {Xe [S]r | X\ {max X} € Ig} .
Ir (1) holds, 34 c’s and Jg <y
(ii) |a| =8, and [A]F < fg
Since BE is infinite we may assume that A has no largest member. Now
we claim that
w*" I,.

For let {xo,...,xr_e} € [A]r_1. Choose x € A such that X ,...,x , < X,
then {xo,...,xr_e,x} € [.A;Ir c I;' by (ii) and because
x = max {x,... ,xr_z,x} we obtain from (i) that

{x

LEREE
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If in (ii), Bg were finite and a € A were the largest member of A,

then we might have concluded

[a\ {a}1™ ' c I,.

Let us define B _2(r-r') =48 if B_ is infinite

g g €
B -r+r' 1if B_ is finite
2 g
Thus we obtain:
(f) If »' < r then

o > (B lrr )L

(g) Substitution rule. If (i) and By ™ (B_.,)

T
yreTe<y! and

f:oy+y' > y3' \ {0} is any bijection then

. r
@ > (Be(e) ayay

The easy proof is left to the reader.

4° The degenerate cases and restrictions on Bg,r and y, and a.

Let us consider the statement
)I'

(1) o - (Bg E<y

without any restrictions on r, B, or y. Let S be a set satisfying

€
‘Is| = o, and let (IE)E<Y be an r-partition of S.
(a) If :350 <y Bg = 0 or even BE < r then (i) is trivially satis-
. 0 0
fied.

For take any B, -element subset A c S then |A|T =¢ c IE
Y 0
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(b) Let C = {¢ | 8, = r}. Then
. r . . 2.y, r
(i) o > (BE,')B<Y is equivalent to (ii)ia > (BE)EEY\C .
Necessity, i =>ii, follows from example 3d.
Sufficiency. Assume (ii) and |S| = o, [S]¥ = £y I, end
(iii)Ve <y Vacs |a] =BE:>[1\:|r4:Ig
In particular N e C VAcS |a] = SE =r > [4]7 = {a} ¢ Ig'

This yields VA ¢ [S]T A ¢ Ui, | € e ¢}, Thus
r. U
EB" = gane e -

By (ii) & € y\C HA c 8. |a] = BE A [A]re IE’ contradicting

(iii).

(e) If3€o<Y oL<BE and VE < v 0<r_<_BE, then (i) is not
0
satisfied. Consider the trivial r-partition (IZ)£<Y , all whose

elements are empty except I, , I. = [5]F.
8 %
(d) If r = 0 then (i) is trivially satisfied since [§]% = [s]o = {¢}

(e) For r = 1 see example 1°.

(f) For the case of infinite r we mention it is proved in [L2]
that every such analogue of (i) is false : for any o: o+ (&,0)* .
Other generalizations by considering partitions of the family of all
finite subsets of S are possible (ef [L2], and [39] § 17).
(g) If o < y and r < B_ for all £ < y, then (i) does not hold. For
¥,

let (I

( E)E<Y
consists of one r-element subset of S.

13

be a r-partition of S such that each I'; is empty or
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(h) The case of finite a belongs to finite combinatories;
for this we refer to [39] § 16.

(i) Note that it does not make any difference in the meaning of (1) of
ALk.1 whether or not we require the r-partition {IE f £ <y} in (2)
of Ab.1. to be disjoint.

Al .3 Survey of the theorems and applications.

We will prove the following positive theorems.

a (= Ab.Y) (29" > (a2

b (= Ak.5) (expTo)* » (aH)I"
c (= AL.6) w > (w);

a (=m0  a- (a,0)?

e (= Ak.8) (29" » ((2%)*,0h2

The following negative results have in general much simpler proofs

then the above theoréms.

£ (= Ab.9) @)+ (3)
g (= AL.10) 2% (w1,w1)2
2 h (aF at)?
h (= Ab.11) 2% (o ,r+1)T  if r > 3
i (= Ak.12) a + (a,r+1)¥  if r > 3 'and o is singular

Remarks. 1. More relations and many references can be found in [39 ],
[417] and [511].
2. Consider a = Abk.4, This result is best possible in
the following sense: the statement
2
B> (B')gn

‘ + . . .
is true for g = (247, g' = a and B" = a, and if either B is
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diminished or B' or B" is increased then B - (B')E" is not any more
a theorem in ZF+Choice.

. + .
At first (2%) 4+ (a )2 by f or g. Secondly under the assumption of GCH
++ o+ o
a = (27)
be increased. Finally if B" = o and G.C.H. is assumed then f yields

ot (3)2+ and hence a++++ (a+)2+.
a

++ ++ ) .
and o 4+ (a )2 again by f or g, showing that B' can not

3. Relations of the simple form
o> (B,y)"

(ef.d,e,g,h,i) are studied e.g. in [41]. We mention the following
results (p.437 formulae 26-28):

If y(a) = min{y | o' > a} then ot > (¢(a),u+)2

but | U ()t )2
and so o ((p(e)) a2 .
If we assume G.C.H. then ¢ = cf and aw(a) = aCfa = 2% = a+.

This implies ot » (cfa,a+)2
but ot ((cfu)+,a+)2.

4. Cardinals A for which A + (A,A)¥ are "big" (weakly compact).

We will deal with these cardinals in A6.

Applications..

Of the results Ak.4 - AL.12 only Ab.L, AL.S and AL.T7 are applied in this

tract. They are used in the proofs of:

2.7 (p.13) IfXe ’t’2 then a(X) < exp s(X). (Ak.T7)
2.9 (p.17) If X e T, then |X| < expexp s(X). (ak.5)
2.10 (p.18) If X € && then [XI < exp c(X). (AL L)
2.11 (p.19) IfX e @ then V& cg(X) < exp(wg.c(X)). "
2.15 (p.22) If X e T then |X| < exp(¥(X).s(X)). "

2.16 + CORO If X € T, then |x] < exp(x(X).c(X)). "
4.4 (p.46) If ¢ =hor ¢ = z, R = X{Ri: ie I} and "
' ¢R = sup{¢(Ri): i € I} then
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|z].67(R) < ¢(R) < |1]. exp ¢ (R).
k.6 (p.51) cI(R) < c(R) g_exp(cI(R)). (Ak. L)

L7 (p.53) (R) < ¢ (R) < exp(c, [(R)). !

e,1 £,1

Also in proving Arhangelskii's theorem 2.21 (p.28), we
use the ramification method, which was developed in close relation

to the partition calculus.

Al .4 THEOREM [ERDOS-RADO]

Proof. Let |H| = (2*)* ana |HI2 = gg I,. We will show the existence
o

€

of a subset T of H, and a vo < @ such that

IT| = 0" ana [T2%c 1

v
0

Let RO = H,

x, € RO (arbitrary)

+ v

(for v<a') s, =a = {s:v>a} = {(EO’°'°’£n"°')n<v |\/n<v £n<u}.

For s € 5 we write: v = length(s). For s € 8, and ¢ < a let [s,z]

denote the sequence of S whose initial segment of length v is s,

and whose last element i:+;. For n < v sln denotes the initial segment
of s of length n (or: the restriction of the function s: v > a to n);
s(n) denotes the (n+1)th element of s (the function value of s on n).
Suppose we have an ordinal v §_a+ and for each n < v and each s' € Sn
we have already defined a set Rs' and a point Xy € Rs' u {xo}. Then
we define Rs for each s € Sv and if Rs # @ we choose X, € RS arbitrary,

otherwise we put Xs = xO:

1° Case. If v is a limit ordinal we put

= N
Rs = n<v Bs|n
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2° Case. If v is a successor and s = [s',£], then we put

R, = {y e Rs,l{xs,,y} € Ig}

. . +
This defines R and x_ for each ssU{Svlv <a }.
We may assume that the partition {IE | € < a} is disjoint (ef (i) on

p.102). By induction on v it is now easy to prove that both

(lv) if s,t € Sv’ s # t then Rs n Rt =¢

(i) URg | s € sy} = X\Ix, | length t < v}

hold for all v §_a+. The simple proof of (iv) as well as the cases v=0 and
v is a successor of (iiv) are left to the reader. So suppose v < ot

is 1limit and (ii ) holds for all u < v. If t € Su’ U < v then, by
(iiu+1), xt¢U{Rs | s e SH+1}' By the definition of R, for each
seS R c Rs|u+1’ so xtzizU{RS | s e Sv}’ proving one inclusion.
Now suppose y € X\{xt 1 length t < v}. By our induction hypothesis

the set

S(y) ={s | length s < v and y e Rs}

meets each Su for p < v. By (iu) S(y) contains precisely one element
of S , say s . If u<yu'<vtheny eR c R hence

u’ Y (U) U U y s(ul) S(U')I]J’
s(u')|p € Sy, i.e. s(u')|u = s(u). This means that S(y) consists of
all theinitial segments of a sequence s: v + o. By definition of

R, = ﬂ{Rslu | w < v} we have y € R, vhich proves (llv)'

Clearly, the family

R, 1
partition of RS\\{XS}

| £ <o} is a

for each s.

For y e RS\\{xs} we have

vy € R[s’E]<==:{xs,y} € IE'
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Ak.5

From (iia+) it follows that U{Rsls e Sa+} # P because
+ +
|{xt|length t <o} i_Z{ISv[ v <a'} <ata® = 2% < |H|. So we know
that R # @ for some s € S,+. Now consider H' = {xsln [n < o}, since
.. +
R, # 0 we have xshqe RS|n and by (11n) all xs]n’ for n < a are
different.

+
< n, <o we have x hence

For n, > Sl”ge RS|T12C RS[n1+1’

{xs]n1’x n,)

lel
s|n, s(n,

i.e. the class of the partition to which {xs[n X | } belongs is
1 2
. This gives a partition of a into o classes -

s
determined only by n,

. . + . . +
the point inverses of s: a =+ a -, and by the regularity of o we can

find an A < ot of power o and a v < o such that s(A) = {v}, and hence
' e,
where H" = € A},
{Xsln ln }

The following theorem and proof are straightforward generalizations
of 4.4. As they do not depend on 4.4t we could have skipped this
"simple" case. We included 4.4 because the proof of 4.5 is more ob-
scured by technical and notational difficulties, and moreover 4.4 has
especially many applications.

The proof of 4.5 may also bzcome more lucid by comparing it to the
proof of 4.6, Ramsey's thecrem. This last proof can be seen as an

application of the proof of 4.5 to finite partitions.

THEOREM [ERDUS-RADO ]

(exp(r)oc)+ > (a+)§+1

Proof. The proof will be carried out by induction on r. For r = 1

; + . . .
4.5 equals 4.4, For r = 0 4.5 reads ot - (o );, which is equivalent
to "each successor cardinal is regular" (c.f. A4.2.1° pl101). Note

that the proof of 4.4 (r = 1) also uses ot > (a+); , in the final part.
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- + . .. .
Let r > 1 and (exp” 1a)+ + (a )Z (induction hypothesis).

Assume |H| = (exp(r)a)+ and [HI*T! = gﬁ Ig (the IE are disjoint).
a
Put
R¢ = RO =H
Xy = %X € Ry (arbitrary)

+

(for v j_(exp(r_1)a) :) 5, is the set of all sequences s of length v

such that for p < v s(u) is a function: [u]r_1 + a. Formally:

s = X a([u]r_1)
v u<v

N

Notice that |8 | < a'”! and s(i) = ¢ if i < r-1, for all s € S . For

s € Sv and n < v,again,sln denotes the initial segment of s of length
n.

. +
Suppose we have an ordinal v < a and for each n < v and each s'e Sn

we have already defined a set Rs' and a point Xy € Rs' U {xo}. Then
we define RS for each s € 5,» and if Rs # @ we choose xg € Ry

arbitrarily, otherwise we put xg = x4

1° Ccase. If v is limit we put

= N
Rs n<v Rs|n

2° Case. If v is a successor, v = u+1 then we define

=1
Ry = {yeR ) \xg b [ Ving,eoon, o} e uI™™

} eI )}

o X

({xsl

.o X
g’ s|n,_os sy s(u){ngseeesn, o}

For v=yu+1=1,...,r-2 this yields [u]r—1 =@ and 8 = 8y = {¢#} and
R, =Ry =Hif s € S . This defines R, and x_ for each seU{s [v<
<(exp(r-1)a)*3,

As in 4.4 we will prove by induction on v that both

(lv) if s,t € Sv s #t then R, N R = [}

(iiv) U{Rsls € Sv} = X‘\{xtlledgth t < v} hold for all v 5_(exp(r_1)u)+.
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. »* -1
As to (iv) consider Mo = min{u|s(u) # t(n). So for some n e [po]r .

* > *
= .. . =R d
n {'ﬂo" 9rlr_2} s S(Uo)n # t(UO)T\ Now RS'UO ’C|u0 an
R cR c {yeR |
s s[u0+1 s|uo
{x seeesX »X v el w } =
s|n, s|n._o""slug s(ug)n det®
R, <R c {yeR |
t T Tt |ugt s]uo
{x seeesX »X v} eI * } = B
slno slnr_2 sluo t(uo)n def

Now, since {I
(iv)'
In order to prove (iiv)’ first notice that (ii_ ) - and also

0
(ii1),...,(iir_2) - are obvious. Next, assume that, for some v, (ii)

IE < a} is disjoint, we have Rs n Rt cAnB=§, proving

g

v
holds and s € Sv' Then for each y € Rs \ {xs} we have a function

f: [v]r-1 -+ o defined by

f(no,...,nr_e)l: ;c:{xslno,...,xsl‘nr_z,xs,y} € IC.
Clearly then y € R[s £ This proves that
E]
-1
([v1™™)
RO\ {x )} < U{R[s’f] | £fea }.

The other inclusion, >, is obvious, hence we obtain (iiv+1)'

Finally let v be limit, and (iiu) be true for p < v. If t € Su

where u < v then, by (ii and the definition of Rs:

u+1)

X ¢ U{Rs|seS +13 = U{R |seSv} > U{Rs|seSv} .

1 s|u+1

If, on the other hand, y ¢ X\{xt|length t < v} then consider again:

S(y) = {s|1length s < v and y € Rs}'
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As in L.L, because of (iiu) and (iu), S(y) contains precisely one
element of Su, for each y < v. Again if u < p' < v and t ¢ Su,

t t!
implies that S(y) consists of all the initial segments of a sequence
s e8,. By Rs = {R

t' € Su" and y e R_ n R, then t = t'|u because of (iu). And this

|u < v} we have y ¢ RS, which proves (iiv).

s|u
For short let us put B = (exp(r"1)u)+. From (iie) it follows that
\J{RslseSB} # @, i.e. Ry # 0 for some s € SS’ because

[{xt|length t < B}|

A

syl v < ot < Tl v <oy ¢

(r-1)
f_B.a(eXP a) exp o < |7] .
Again consider H' = {xs n|n < B}, and notice that all xsln are
different because RS # ¢ and (iin) hold. For Ng < +ee My < B we have:
X n € RSIn c Rsln 4 {yeRsln |{xs|n ""’XSln ’XSIN ¥ o€
r r r-1 r-1 0 r-2 r-1
eI }
s(n,_y)ngseevsn, 5}

This implies that the index & < o for which

cesX

{Xs|no,. sln £

only depends on the "first" r Ng2esesM._q}

g =s(n,_ Hnyseeeomn, )

This gives us a r-=partition of B into o classes as follows: the point
inverses of the map [81° > a defined by {no,...,nr_1}k+
S(nr_1) {nog---,nr_z} (no <y <...nr_1) are the classes of the par-
tition. By our induction hypothesis there is a v < o and an A c 8

. . + .
satisfying |A| =o and [A]" 5 {v}. Thus H"'

|[H''| = o ana a1 c L

= def{xs|n|neA} satisfies
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Al .6 THEOREM [RAMSEY [541]
r
w > (w)n

Proof. Cf. the previous proof and A.6.6. We will prove Ramsey's
theorem by induction on r. For r = 1 it is triviel: a partition of an
infinite set into finitely many classes contains at least one infinite

class. Suppose the theorem is true for some r € w,

H is an infinite set, and

n
[H]r+1 = U
1=

1 I, , with I; n I, = § for i # j.

Put R, =H
x. € R, arbitrary.

Now we migth proceed Jjust as in the prévious proof: However we only
have successor-steps, which makes a more Straightforward approach
possible. We will first define a sequence of sets R1,R2,... and a

sequence of points i1,x . and a sequence of functions f1,f2,...

oot
satisfying

(1k) Rk is infinite

(iik) X1 € R © Rk\{xk} :

(331) £t Clxaeeex 377> (1,000m)

. . r-1
(1vk) Ry = {yeRk|\/{y1,...,yr_1} € [{x1,...,xk_1}]

(Y 0eees_oX ¥} € I (o }
1 r-1% £ e,y

Suppose R,,... R, have been defined satisfying (i) - (iv). Define an

k
equivalence relation ~ on Rk‘\{xk} by

Y Vb € D Ty, )

and {Y1,--.,Yr_1,xk,,y'} belong to the same Ii'
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As Rk is infinite and v has only finitely many equivalence classes,
there is one class which is infinite. Thus there exists a
. r-1
L [{x1,...,xk_1}] + {1,...,k} such that

' r-1
GV ey, g e Hapeax 3070 Uy sy, axav) e

e I })}

By ey
is infinite. Let this set be Rk+1 and choose X4 € Rk+1 arbitrarily.

Having defined xk,Rkiand fk for all k € w, consider H = {x1,x }.

p3Xgrene
+1 .
For each x' = {xk(1)""’xk(r+1)} e [HTF T vith X e I; and

k(1) < ... < k(r+1) the i only depends on k(1),...,k(r), because

(Ve(r)) 288 (e(rag) € Re(ra) © Fi(r)er) 102

=t e (1) R ()

As in the previous proof, this induces a r-partition of H into n classes:

the point inverses of the map [u1* - {1,...,n} defined by

{J{l{(.]),...,xk(r)} - fk(r)"“l{)ﬁ{(’l)’...’}ﬁ((r—‘l)} (fOr k(1) <ees< k(r) ).

By our induction hypothesis there exist H' ¢ H and i € {1,...,n} such

that [H']r—1h+ {i} for this map, and H' is infinite. Now clearly

[H']r+1 c 1.
i

proving Ramsey's theorem for r+1.

AL.T7 THEOREM (ERDUS ecf. [361).
2
a > (o,w)° .

Proof. We prove this first for regular a.

Let Is| = a, [8]2 =J.u J1 and suppose [A]2 c JO::>|A] < g. Let A

0
be a maximal subset of S such that_[AO]2 cdJd

0

0 (the existence of A

follows from the Teichmiiller-Tukey lemma). For each X € AO we put

8, = {y e 8\, | {x,5} € J,}. From the maximality of A, it follows

0
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that S\ A, = U{Sx|x € AO}. Since lAO| <a= iS\AO| and o is regular,

dx e A |S. | = a. Let A, be a maximal subset of S_ such that
0 0 X, 1 X,

[A1]2 < Jy- Continuing by induction we obtain the sequences (An)n,
(xn)n’ (an)n satisfying:
(i) A is a maximal subset of S with [A ]2 <7
n X n 0
n-1
(ii) x €A is such that ISX | = a, where s, ={yes, \‘An!
n n n-1
I{Xn,y} € J1]'-
This induction breakes down only if An = ¢ for some n. But then
(s 12 ¢ J. and then |s | =0 >w., If A # ¢ for each n then
X 1 X, - n
n-1 n-1
{xk,xn} € J, for each k < n < w, because .
X € an_1 c Sxk c {y]{xk,y} € J,}. Hence [{xn| ne owtl c Jq
Now we will prove o - (a,w)2 for singular a. Let y = cf(a) < a = ) o
E<y

such that (ef. p.77).

(1) Ve<y Ve <&y < A <Ia£ < q and'uE is regular.

Let |S| =a and (812 =1, uI,.If xe S, AcSandie (0,1} then let

0 1
6;(x) =ty < 8| teyd e 13
and C.(A) = U C.(x) ={ye S|3 x € A {x,y} € 1.} .
1 xeA 1 1
If
(ii) VEcs B =a=(Tx e |c(x)nH =a)

then we define inductively sets Hn and points x, € H for all n € w,

as follows: Hy = 8, x; € Hj such that |CT(XO) n HO| =oa. If K, x;

defined for i < n then we let H = C,(x ) nH , and x_ € H such
n 1 " n-1 n-1 n n

that IC2(xn) n Hnl = a. This is possible because of (ii). It is easily
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seen that [{xn] newtl®c I,-
So let (ii) be false, i.e.

(iii) JHc s |H =a A (VxeH |C1(x)nH| <a) .
Assume also:

(iv) for no infinite subset A of S [A]2 c I1.
Let B be a cardinal (e.g. some ag) satisfying

(v) Y < B < o and B is regular .

Let W ¢ H be a subset of cardinality B. For each n < y we let
Wo=ixe W [01(x) n H| <o b

Because of (iii) and (i): U{Wn] n<vyl=w.
Because of (v) : 3An <y ]Wn| = ]W] =B
By the definition of W : [C (W ) n H| =

n

lufc,(x) n H| x e wn}| <o, B <a.

Consider [W ]2 = ([w ]2 nI.)u/(Llw ]2 niI
n n 0 n

B > (B,w)z. Hence, because of (iv):

1). Since B is regular,

(vi) AN wnlw'l =g AWl c I,
Clearly this W' also satisfies

(vii) ]c1(w') n H| <le W) H| < a
n

Using this procedure we can define by transfinite induction sets

Mg’ g < y satisfying

(a) | = o

(b) M. 17 c 1

(e) ]01(M€) nH <'a
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(a) |U{Mn U (C1(Mn) nH)| n<g}<a (as follows from
(a) A (e))
(e) M, < BENUIM v (C (M) n H)| n < g}

AL.8

At first we choose W c H arbitrary, such that |W| = 8 = ay, and let
M, = W'. Notice that (a)-(e) hold. If we have defined Mg for some
fixed EO < vy and all & < EO’ such that (a)-(e) hold, then because of
(d) and EO <y =cfo, H\U{Mn u (01(Mn) nH)| n< EO} has o elements.

Let W be any subset of this set such that [WI =B = o0, and put

£o
ME = W'. Again (a)-(e) hold.
0
Now let M = U{ME] £ < vy}. By (a), (e) and (i) IMI = o. We claim that
‘e 2
(viii) [MI© < IO .

Let {x,y} € M1°. 1f X,y € Mg for some & < y then by (b) {x,y} € Iy
If x € ME’ ¥y € Mn and £ < n < y, then because of (e) y * C1(Mn), i.e.

{x,y} ¢ I1,, and thus {x,y} € I . This completes the proof.

0

The following theorem is a strengthening of Erdds' previous theorem

for cardinals of the form (2u)+.

THEOREM
(2a)+ N ((2u)+’a+)2 .

Proof. Let |H| = (2*)* ana [H1® = I v I,, and assume

0

(i) Vacu ()% c 1) = [a] <2 .

We will show

(ii) Jar e B AP 1 oA far] =

We will define a ramification of H, rather similar to the first part

of the proof of Ahk.k. Let
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8, = {s: v 2% for v §_a+,
Ry = H,
(iii) A  © R, be a maximal subset such that [AS]2 < I,

+ . . .
(for each s ¢ U{Sv| Vv < a } for which R, is defined).
If v is an ordinal such that RS has already been defined for all s of

length < v, then we define Rs for s € Sv as follows:

1° Case. If v is a limit, s € Sv then we let

2° Case. If v 1s a successor, and s € Sv—1’ then we define R[S nl for

2
all n < 2a at once. By (i)'IAS| 5_2“. Hence we may well-order
AS: AS = {p£| £ < Bs}, for some BS §_2a. For each x € RS\AS we can
choose a & < BS < 2% such that {x,pg} € I1 (because of the maximality
of A: (iii)). Define a function o+ RS\As » 2% in such a way that
{x,p¢s(x)} € I1 for all x € Rs\‘As’ and let

(iv) Rrg ng = 85 (1) = (e R\ AJo () =n}  for n < 2%,

We claim that for some s ESa*

0

(v) IR | # 0.
0

Proof of (v).

. +
Notice that [U{As|length s<al <} . ) |AS| < 1 N ) 2% =
V<o, seSV . V<o seSV

= 7 .e%Y.e* =2% < |u|.

Hence we may choose y € H‘\U{As[length s <a'}. Put

S(y) = {s ¢ USva € RS} .
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Using the Zorn-lemma, one can prove the existence of a sequence

sy € S(y) which is not the initial segment of any other sequence of

) +
S(y). We will show that length sq = . If length s, < a+, then
Y € R \.As by definition of y. Hence, by (iv), {y,p¢ (y)} €I,
0 0 50
ie.t ye R[so’¢s (y)1° This implies [so,¢so(y)] e s(y), contra-
dicting the maximglity of Sq°
This proves (v).

as follows:

12

+ .
For each § < o we define x, € AS

3 ol

X, =

g7 Ps (e+1) € s

ole

Now A' = {x£]£ < a+} satisfies [A']2 c I1, as follows easily from (iv).

This chapter is concluded by some examples of partitions, which prove

the negative theorems Ak.9-4.12.

AL .9 THEOREM[GODEL]

Proof. Let A = {f: a >~ {0,1}}, and define Ig for £ < o as follows:
IE is the set of {f,g} € [A]2 such that § is the first ordinal for
which f(£) # g(g). Clearly [A]2 = g Ig’ and for any three functions

o
f,g,h e A {f,g} € I, and {f,h} € IE implies g(&) = h(g), and so
{g,h} ¢ Tp-

€

Ak, 10 THEOREM (a) SIERPINSKI [58 ]
2Y 4= (w1,w1)2

(b) KUREPA [L47 1
2% 4 (a+,a+)2
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Proof of (a). Let < be any well-ordering of the set of real numbers R.

Put

I {{x,y} € (R1® | x <y and x < y}

0

I1 = {{x,y} € [R]2 | x <ybut y<x}.

Clearly [R1® = I, Y I,. Suppose A c R and [a1® < I, or (1% < I,. Then

A is a subset of R well-ordered by < or >, and hence A is countable.

For suppose A is uncountable and well-ordered by <. Let A*-be the initial
segment of A that is order isomorphic to w1, and r = sup A*;

(reR u {+»}), Choose (rn)new in R, converging to r from below. Now for

Ll .
each new A n (==,r ) is countable, but A = U A" n (-=,r ) is not.
n new n
For the proof of (b) we need two well-known lemma's from the theory
of completely ordered sets.

Definition. An ordered set A is complete or completely ordered if it

has one (and hence all) of the following equivalent properties:

(a) each subset A' of A has an inf which belongs to A (we put
inf @ = sup A € A). .

(b) each subset A' of A has an inf and a sup which belong to A.

(c) A, equipped with the order topology, is compact.

LEMMA A. If Ag is a completely ordered set for each £ < v, then
A= x{A, | £ < v} is complete with respect to the lexicographic order

(i.e. (a€)€<v < (bg)g<v iff (“£)£<v # (Bg)g<v and o < BE for the

first £ for which o # Bg).

Proof. We use induction on v, and so may assume that X{A £ <v'}

e |
is complete for all v' < v. Suppose A' c A. Put

' = s
Al = {(aE)E<V' | (ag)£<v € A'} for all v' < v, and a(v') = inf LA

Suppose v is a successor. If a(v-1) = (aE)E<v—1 for some (ag)€<v € A,
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then consider A" = {(ag)g<v €A | (ag)€<v_1 = a(v-1)}. The points of

this set are ordered according to their last coordinate, a,_1» since
the other coordinates are equal. So this set has an inf in A, and

since all other (aE) € A'\A" are bigger then all elements of A",

E<v

this is also the inf of A'. If a(v-1) = (a£)£<v-1 is not a member of

. . Voo . 2 _ ..
A!_,» then clearly inf AE (a£)€<v if a,_, = sup A. Let v be a limit
ordinal. Notice that if v" < v' < v and a(v") = <ag)£<v" and
a(v') = (aé)€<v then ag = aé for all & < v". So there exist 2 € AE
such that a(v') = (a5)5<v' for all v' < v. It is easy to check that

. Voo

now inf A (a£)£<v.

LEMMA B. If A = {f|f: a > {0,1}} has the lexicographic order <, and

A' is a subset of A, which is wellordered by <, then |A'| < a.

+ . :
Proof. Suppose A' = {gn [ n <a } is a subset of A whose wellordering
by indices coincides with the lexicographic order on A. Let f = sup A',
which exists because of lemms A. Clearly f is a limit in the order <.
Put £ = min{g < a | Vne (£,0] £(n) = 0}. So £, = o if f is not
constant zero on a tail, else EO < o. Because f is limit, EO must be

a limit too. For if Eg =&, * 1, then clearly f(£1) = 1 and if £ is

defined by
f(g) if g <¢
> -
£ (zg) =40 ifg=¢,
1 if ¢ 3_g0 = 51 + 1

then f*—immediately precedes f.

Now define a sequence (fg)£<£ of length EO < ain A as follows:
. 0 -
if £ < a

f(z) if g <¢

fg(c) =

0 else .
It is easy to see that fE f-fg' < f for all & < g' < EO’ and that the
fE converge monotonously to f. So if Aé ={ge A" |gcx< fg} for & < EO
then '

A' = U Al 1
£<t, g and |Ag| <a for all g < Eos
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and hence

el <] lal <Jasa
£ €

This contradiction proves lemma B.
Proof of AlL.10(b). 2% + (u+,a+)2
Let < be the lexigraphic order on A = {f|f: a ~ {0,1}} and < any

wellordering. Consider the following partition of [A]Z.

o

{{f,g} | f,geA AT < gAf<g}

I

;= Ufeg) | fgeb A f<gng<s)

Lemma B tells us that any A' ¢ A for which [A'] < IO satisfies

+ . . .
|A'] < a <o . Since (A,<) and (A,>) are order-isomorphic, the same
holds for I,. This shows that |A] = 2% f+ (a¥ya™)2.

Ab.11 THEOREM [39 1 2% 4> (o ,r+1)" if r > 3.

Proof. As in the previous proof, let < be the lexicographic order on
A= {f|f: a » {0,1}}.Let A be well-ordered: A = {fg | &€ < 2%}. Define
an r-partition {IO’I1} of A by

- r
I, = (e, 5ot e [A] | € <& < ... €, ,end
0 r-1
f. < f_ and £, < f_}
£ g, £, £,
_ T
IO = [A] \11 .
Assume that A' = {fE ""’fE } is an (r+1)-element subset of A such
0 r
T
that [A']" < I EO <E, <. Er' Then
{f, ,...,F } € I, and hence f_. < f
%o b ! 2 &
and {f_, ,e.0,f, Y eI and hence f, < f
£, £, 1, £, &
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which is a contradiction.

Assume A' © A is such that |A'| = a+, [a'1¥ n I1 = @, If 350,51 e A’
such that EO < £1 and fgo < f€1, then Y e A & > £1 =3 f£1 < fg'
So the well-ordering of A" ='{fE e A ] 51 < E < a+} coincides with
the lexicographic order, and by lemma B of Ak.12 |A"| < . This
contradiction shows that ‘Vgo,g1 €A g g = f£1 < fgo. So the
reversed lexicographic order > on A" coincides with the wellordering
by indices. Again lemma B of A4.12 gives us [A'| < a, contradictory

to the assumption.

AL .12 THEOREM. If o is singular and r > 3, then
a 4+ (a,r+1)r.

Proof. Let y = cfa < a = [SI and S = U{SE | £ < v}, SE n Sg' = ¢ and
|SE| < a for all £ < £' < y. Put

I

Xelsl' | Buv <y |Xn sl =r-1ena[xns]| =1

I

r
0 [s1"\ I,

If AcSand |A] =athen [A]" n I, # 0 and if A c S and [A] = r+1,
then [AT" n IO # ¢ as is easily seen.
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A5 Partition calculus. Canonicéal sequences

In this section ) will be a singular strong limit cardinal (i.e.
Ya<a 2%<A and A is singular). We will study r-partitions of \. Let us
notice first that for each o AEQ exp(n)a is a singular strong limit
cardinal, whilst under G.C.H. every singular cardinal is strong
limit. The results obtainable from the preceding chapter for A are

(by Ak.5 and Ak.2 3°)
(i) Vr e w Ya < a x> (a)z

if A is a strong limit cardinal. Because of cf A = min{a|r A1} <A
o

we have

Vr € w v lf*_(X):f(x)

A cardinal u, for which u - (u)z, a <y, is called weakly compact

(ef. A6.4) . We will obtain better results than (i) after introducting

the following notion:

If |S| = A is a singular strong limit, cf A = y and C is an r-partition

of S into disjoint sets, then a sequence of sets (SU)U<Y is called
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A5.3

canonical with respect to € if

(i) the Su, U < vy are disjoint

(ii) (|SU|)M<Y is a strictly increasing sequence of cardinals con-

verging to A

(iii) if X, Y e [ Y s 1¥ are such that
u<y “u

Vp<y IX n SIJ[ = |Y n Sul
then

diIce® XecC and YecC.
Notice that (iii) implies e.g.:

(iv) Yu<y 3!IC € € [Su]r < C.

LEMMA. If {~£ | £ < 8} is a family of equivalence relations on a set

S, such that each ~, induces at most o equivalence classes in S, then

£

the equivalence relation ~ defined by
X~y iff VE<B XNgy
induces at most aB equivalence classes.

Remark. This is the sharpest possible estimation: Consider
s=df = {f | £:8 > o} and define ~E for £ < B by

f~g iff f£(g) = g(g).
Proof. For each & < B let {AE I n < al be the family of equivalence

classes of NE’ if necessary supplemented by empty sets. It is easily

‘ seen that for each f: B8 > o the set

g

n{Af(g

) |.g < g}
(is empty, or) consists of ~-equivalent elements, whilst

- € .
S—u{n{Af()|€<B}lf.B o}

£
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because for each x € S we can define a f: B > a such that

€
X € Af(E)’ E < B-

A5.4 MATN THEOREM. (The Canonization-lemma [391)

For every set 5 of power A (singular strong limit) and each disjoint

r-partition € of S such that |€J = a < A there exists a canonical

system with respect to€.

Proof. At first we let (r1,...,rs) be a fixed partition of r, i.e.

r1+ cee T =T For 0 <k < s we define: (SU)P<Y

canonical with respect to € iff

is (Tqs.e.yrg k)~

(i) the Su, U < Y are disjoint

(ii) (fsul)u<Y is a strictly increasing sequence converging to A.
(iii) (r1,...,rs,k): If X, Y e [J;# Squ are such that for some
l-‘1<...lls
Xns, = Yns, fori=1, ..., k
i i
and
Ixnsu|=lynsu‘|=rifori=1, . S
i i

then 3'Ce® XeC and Y eC.

Now we use the following lemma, which will be proved later:

Lemma A. If (Suz<Y is a (r1,...,rs,k)—canonical system for some
fﬁﬁ(mvuﬁyw,11kiatMnﬁh%arﬁMwwt$p

u<y
which is (r1,...,rs,k—1)-canonical.

If lemma A is assumed then the proof of the main theorem goes

as follows:

Any sequence (Su)u<v which satisfies (i) and (ii) is (r1,...,rs,s)—
canonical for every partition (r1,..,rs) of r. Any refinement of an
(r1,...,rs,k)-canonical system which satisfies (ii), is again
(r1,...,rs,k)-canonical. Thus if we apply lemma A a finite number

of times (less than r.2(r2)) we can obtain a sequence (S;)u< which is

(ry5...,r_,0)-canonical for all partitions (r,,...,r.) of r simulta-
1 s 1 s
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neously. It is easy to see that this system is canonical with respect

to €.

Proof of lemma A.

For each £ < yand r'< r we choose a fixed rlelement subset Sg(r') of
SE'
Assume that for some u < y and all & < u the Sé have been defined al

ready. Let f: u > Y be such that Sf < Sf(g)‘ Define f(u) such that

£(u) > mm{ﬂé)l £ < u} and
(1) ' lsf(].l)l z_expr(B)

for some B < X which will be chosen suitably:
B = |Su| exp(a.y.) {IS%I | €< ul).

r
Now we define an equivalence relation ~ on [Sf(u)] K for each

X0
roteery
X € [U{S% | & < u}] and each ¢:{k+1,...8} + vy satisgying
f(u) < ¢(k+1) < ... ¢(s) <y as follows. If y, y' € [s ] k, then

£(u)

~ |l 2
Yoy Y Af

Ice XuyYwUL s¢(k+1)(rk+1) U ... s¢(s)(rs) € C and

XUuUY us )u ... S¢<S)(rs) € C.

¢(k+1)(rk+1

T
Each equivalence relation ~x o splits [Sf(u)] K into at most IC] = a
b

classes, and the number of equivalence relations ~ is at most

X,9
e=Jspl [e<wr.y<n

. Thus the coarsest partition which refines all these equivalence classes
consists of not more than o < 2% < ) classes (45.3). Put
B=(2%) . Is |, (c£. 1).

Because by Ak.5 (exp'B) - (B+)g we can find a subset SL cs
that

£(u) such

syl = 8" > |s| and
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(2) all elements of [8'1" are equivalent under all ~x.0°
k]

This completes the definition of the sequence (S&)U<Y. Next we prove
that it is (r1,.
Conditions (i) and (ii) (see A5.4 p.127) are clearly fullfilled.

Let X, Y e L{S] | & < v}1" and for some £, < ... &

..,rs;k-1)—canonical.

S

Xnsg!l=Yn3s! for & = 51

2 : seeesby

|X n Sé‘|.= [t ns! | = r, fori=1,...,s
i

€.

1
and Xecel.

Then

X = (XS8! Ju...(XnS} ) u (XnS! ) u (XnS! )u...(XnS!
51 Ek_1 Ek Ek+1 Es

)

) ecC,

and by the (r1,...,rs,k)—canonicity of (S

gle<y’

(XnS! )u...(XnS! ) u (XnS! ) us
ET Ek—1 gk

Then by definition of’Sé (ef (2)):
k

f(E )(rk+1)U...Sf(gs)(rS) € Cn

k+1

(XnS! Ju...(XnS! ) u (YnSé ) u sf(g Ju...

(r ) ecC.
&y ot k K+1 s

)T r)VeeSe(e )

Again because (s£)£<u is (r1,...,rs,k)-canonlcal:

Y = (XnSé )U...(XnSé ) u (YnSé ) u (YnSé )u...(YnSé ) € C.
1 k-1 k k+1 s

This completes the proof of lemma A.

As a corollary to the main theorem we have

THEOREM. If A is a singular, strong limit and cf A. = y, then

2 .
A > (A,B1,...,Bv,...)v<u iff

o -
Y > (Yss1s"'a6\)3"')\’)<u .

Remark. Notice that for r-partitions with r > 3 we have a +> (a,r+1)r
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for singular and for successor o by AL.11 and AL.12. So there exists

no non-trivial generalization of A5.5 for r > 3.

Proof. Sufficiency. Notice that a < y < A and Yv < o B, < Y. Let

{1, | v < alve any disjoint 2-partition of A. By the main theorem there
is a sequence (Su)u< in S which is canonical with respect to

{1, | v < a}. Assume that Isul >y for all ¥ < Y and that for any H < S

and v € [1,a)

(i) (2 c I = |H| <8 <y < |s |
v v — 't

By A4.2 (iv) this implies

2
[Su] c Io for each u < y.

Choose one point pu € Su for each 1 < y and let
s' = {pu | w <y}

Because of (i) and vy »> (Y,B1,...,BV,...)§ there exists a S" < S' such
that

[s"1° c I, and |s"| = v.

Consider X = U{Su | P, € S"}. This X has power A, and satisfies
2
[X]° < Iy
Necessity.
If y » (Y,B1,...,Bv,...) then 38, I, Vv < a such that |s| = y and
[s°7 = u{I) | v <o} and VA < s.
(ii) (Al c1

0 = IAI <y

(iii) [a1® < I, = |a| < B, for v e [1,a).
Let us order S in type Y: S = {sE | € < y}. Let (Su)u<Y be a sequence
of disjoint sets of increasing cardinality converging to A. We define

a 2-partition'{I$ | v < a} on U{Su | w< vy} vy
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. * _
(iv) I, = {{x,y} | Ju x e Su Ay e Su} u
ul{{x,y} | Ju, u’<y(u<u' A xeSu A yeSu, A {su,su,} € I&}

*
(v) I, = {{xy} | 3u, u'<yfucu’ A xS A yeS A {s s} e ).

vella).

Notice that the sequence (SU)U<Y is canonical with respect to

{I: | v < al.

Let X ¢ U{Su | < v} be homogeneous for {I: | v <al.

If X n Su| > 1 for any W < y then [x1° < I+ Now if |X| = A then
A= def{su eS| Xn Su # @} has at least y elements and by (iv)
[A]2 c IO’ contradictory to (ii). Thus |T| < A.

If |X "Sul < 1 for all y < y and [x1° < I, for some v < o then
A= def{su €S| Xn Su # ¢} satisfies [A]? c I, because of (v).
Now (iii) implies |A| = |X]| < B,

Thus A /- (AsBaeeesBanes) oy

Application.
A5.4 is used to prove 3.2 (p.39):

If X is a Hausdorff space and |X| = A is singular strong limit then
X contains a discrete subspace of power A.
See also 6.6 and the remark at the end of 3.2.
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A6 Large cardinals

A6.1 A cardinal o is a strong limit cardinal if VB < a 2B < a. A regular

limit cardinal is called weakly inacceessible. A regular strong limit

cardinal is called (strongly) inaccessible.

Notice that under GCH each limit is strong limit, hence weakly inacces-
sible and strongly inaccessible are equivalent in this case. Moreover
if we have a model of ZF + choice + GCH in which a (smallest) inacces-
sible cardinal o exists, tinen it can easily be checked that the sets

of cardinality < o also constitute a model of ZF + choice + GCH, in
which, however, no inaccessible cardinals exist.

So it is consistent (with %F, or with ZF + choice + GCH) to assume

that no inaccessible cardirals exist. However it is not (yet) proved
that it is consistent to assume the existence of inaccessible cardinals.
-Yet this will not prevent us from studying these "large" cardinals.

A cardinal A is measurable if there exists a non trivial <i-additive
measure p: P(S) > {0,1} on a (any) set S of cardinal A, i.e.:

(1) u is

a function ¥(8) » {0,1}
(ii) Ypes u{pl=0
(iii) u(s) =1
(iv) If {Xg | £ <a}c P(S) with o < A is a disjoint family, then

u(g;é Xg) = gZu u(Xg)-
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It is easily verified ﬁhat the sets of measure 1 form an ultrafilter
on S which is closed under <A intersections. Conversely, each free
ultrafilter on S which is closed under <) intersections defines a
measure with properties (i), (ii), (iii) and (iv).

We first prove theorems about measurable cardinals:

THEOREM [ 29 ] Each measurable cardinal is strongly inaccessible.

Proof. Suppose |S| = A, u: ©(S) » {0,1} fulfills (i) - (iv),

A= Z Ag and cf A < A. S is union of <A subsets of power <A. By
E<cfA
(ii) and (iv), each of these subsets has measure 0. By (iv), their

union S has measure 0, contradicting (iii). Hence X is regular.
Suppose @ < A < 2%, We may suppose S < {f | £: a » {0,1}}, that is:
S consists of sequences O's and 1's of length o.

For each £ < o define ig e {0,1} such that u{f e S | £(¢) = i
Let f, be defined by fO(E) = iE for all £ < a.

Now u(8) = 1 < u({f,}) + Y ulfes | £(g) = igd =0+ L 0=o0.
g<a £<o
Contradiction with (iii). Hence A is strong limit.

E} = 1.

A cardinal A is called o-measurable if there exist S, u with [8| = A
and p: P (8) » {0,1} satisfying (i), (ii) and (iii) from the definition

of measurable and (iv)': p is o-additive (o = w, instead of a < A).

0
Obviously, w is measurable, but not o-measurable.

THEOREM [591]

The first o-measurable cardinal is measurable; i.e. the first

¢ -measurable cardinal equals the first uncountable measurable cardinal.

_Proof. Suppose A is the first o-measurable cardinal, |S| = A,

pu:@(s) » {0,1} fulfills (i), (ii), (iii), (iv)' but not (iv). Then
there is a smallest p < A and a disjoint family {Sg: £ < p} such that
Ve <p: u(SE) = 0 and “(SEL SE) =1 (observe that one of each two
disjoint subsets of S must have measure 0).

Define n': @ ({£:£<p}) + {0,1} as follows:

u'(x) =i iff “(£E§ sg) =i,
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A6.L

A6.5

Trivially (i) = (iii) and (iv)' are fulfilled by u', i.e. u' is

o-measurable, contradicting the minimality of A.

Remark. A is o-measurable and A < X' implies A' is o-measurable. Thus
if AO denotes the first uncountable measurable cardinal then

(X is o-measurable) &= A > A.

A cardinal A is weakly compact if Yr < w Ya < A: A=+ (A) . It can

r
5 a
be shown that this is equivalent to A > (A,A)° .

In 3.2 (p.40) the relation A - (X)S for weakly compact A is used to
show that each T2—space of & weakly compact power has a discrete sub-
space of the same power.

Without proof we mention the following topological characterization of

weakly compact cardinals (see [50]):

THEOREM. )\ is weakly compact <ythe product of A spaces which are

A-compact and of weight < A is again A-compact.

Here A-compactness means that every open covering has a subcover of
power less than A.

Ramsey's theorem says that w is weakly compact. It is not provable
that there exist uncountable weakly compact cardinals, as is implied

by the following theorem:

THEOREM. Each weakly compact cardinal A is strongly inacessible.

Proof. Since cf A = min{a: A+ (l)1}; A must be regular. Furthermore,
suppose that Jala < A i_2a]. Then 2% A (u+)§ [A4.10] implies X+*(A)§.

Hence A must be strong limit.

Strong inaccessibility is much weaker than weak compactness (this we

will not prove). Moreover we have:

THEOREM. Every measurable cardinal ) is weakly compact.

Proof. By induction on r. For r = 1, the regularity of A gives us

x> (x); if o < A. So suppose A - (A)i if o < A and let
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15| =2, (a7 = (I, | v <a} and u: &%H) + {0,1} be a <A-additive
. . H . .
measure. We define Rn c and xn € Rn\Rn+1 inductively so that

0 0 0

and RC’ x, have been defined and u(RC) =1, for £ < n.

If n is limit, put R = n{RC | ¢ < n} and x € R be arbitrary.
eq) e <k =1-0 =1

If n is a successor, then define an equivalence relation ~, o Rn by:

u(Rn) =1, for n< A, Let R, = H and x. € R_ arbitrary. Assume n < A

Because | is n-additive u(Rn) = u(RO) - Z{u(RC\R

X «h y 1ff

V{n.seeesn }e [n {x seeesX »x} and {x_ ,...,x »y}
0 r-1 o N q "o Ny

belong to the same I_., & < 0.

E’
By lemma A5.3 ~n has at most a,nl 5.2a4n| < XA equivalence classes.

Thus exactly one of these has measure one. Teke this to be Rn+1, and

choose xn+1 € Rn+1 arb;trarlly.

Having defined R, and X for all n < A, take H' = {xr| | n< Al
According to the construction there is a ¢: [AJF > o such that if

Ny <N, < oo N < Athen {x_ ,...5x } eI Since
0 1 r gy n, 9{ngseeesn _43-

A > (A)g JA c A and v < o such that |A] = A and ¢[AT¥ = {v}. Then

r+1 _
[{xrl | ne A}l I

A6.6 Corollary RAMSEY = AL.6

A6.T

w > (w)z for ry, n < w.

Proof. w is measurable, for we can extend {{n | n < m} m < w} to a

non-trivial ultrafilter. The corresponding measure is <w-additive.

Definition

Let *: Card + Card be such that o < o (e.g.: +, exp) .

P N . .
A 1s _-inaccessible if

(i) A is regular

(ii) a<A=a" <2
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(e.g.: strongly inaccessible = exp-inaccessible, weakly inaccessible =

+ . .
-inaccessible).

A6.T THEOREM. If A is measurable and *: Card > Card is such that o < o

then A is not the first *-inaccessible cardinal.

Proof. Let C = {o | o < A} = {all cardinals <A}. Since A is weakly
inaccessible, C and A are order isomorphic.

If we choose a measure u on C with (i) - (iv), then we can define the
following equivalence relation ~u on {f | £: C~>C}: £ ~u 8 iff

u({o € C: fo = ga}) = 1. The equivalence class of a function f is
denoted by ?, the equivalence class of the constant function which
assumes the value o everywhere, by o.

C= def{? | £: ¢ > C}. Sometimes we write C for {a | o e C}.

Define f— g if u({a | fo < go}) = 1. This definition is independent
of the choice of f and g and determines a linear ordering on C (which
on C coincides with the natural ordering), as is easily checked by
using the fact that {x = C | u(x) = 1} is an ultrafilter.

In fact, =€ defines a well-ordering on E-, for suppose T, > :f‘2> ... for

some sequence in C. Then Vn < w: u({a | fn(cx) > fnﬂ(cx)}) = 1. The
o-additivity of p implies that u({a | Vn < w: fn(u) > fn+1(a)}) = 1,
Hence Jo Vn < w: fn(a) > fn+1(a). But this contradicts the well-
ordering of C.

Moreover, the <A-additivity of p gives us that C is an initial segment

of 6, for suppose T < EO for some f: C » C and oy < A. Then
w(fo | £(a) <ag}) = §  u({a | £(a) = 8}) = 1. Hence Jg < a:
B<a
0

u({o | f(a) = B}) = 1. Also, C # E, because for the identity map
EC =13ide C\C. Hence C\C # ¢ and has a least element. We may even
change u so as to meke id = min(C\C). For let f = min(C\C). Define
u': ®(c) » {0,1} by u'(x)

that p' is a measure to the reader and we only show that i = min(E\C)

[}

u(f—1(X)) for x ¢ C. We leave the proof

relative to u'. Suppose g is such that u'({a|go < a}) = 1. By the

definition of u',
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u'({o | go < a}) = u({B | gfB < £8}) = 1, hence gf< T relative to u.
By the choice of f this means that EE = ag for some e, € C. Now
(o | go = do}) = ({8 | efB = uo) = 1, hence g € C relative to u'.
From now on we assume that id = min(C\C).

Define A = {o € C | o is regular} and A= {o € C | o is singular}.
Then exactly one of Ar and ﬁs has measure 1.

Assume that A is the first -inaccessible cardinal. We shall prove
that u(Ar) # 1 and u(AS) # 1, which is a contradiction.

Assume that u(Ar) = 1.

Define g: C > C as follows:

gla)

0 if o is singular

g(a) = B for some B < a 5_6* if o is regular. Such a B exists since a

. * . . * R .
1s not =-inaccessible; and B < X because A 1s -inaccessible.

Then g < id, so 98 < A: u({a | B < a 5_8*}) =1=yu({o | o 5_8*}).
Thus we have a set of<power <\ with measure 1. Contradiction.

Now we assume u(As) =1,

Define g(o) = cf(a), @ < A; then g~ id hence B < A:

u({o | ef(a) = B}) =-1. Put H = {0 | cf(a) = B}.

For each o € H we choose a strictly increasing sequence (¢(u,£))g<B
of cardinals, converging to a.

Define hg(u) = ¢(a,g) for a € Hy £ < B

hg(a) =0 for o ¢ H, £ < B.

mm3{<ﬁ;MMiB%jC:%~n§'mrmmB€<ME<&
M ~< h.,<h < .

oreover, & L= £ ;:=$BE BC

It is easily seen that sup hg = sup Bg but sup BE.< A and this is

E<B E<B E<B

impossible since (hE)E<B converges pointwise to id on the set H for

which p(H) = 1. Since the assumption that p(A_) = 1 is also contra-

%

dictory, we conclude that X is not the first -inaccessible cardinal.

A6.8 COROLLARY. If the measurable cardinal A is *—inaccessible, then

l{o € A | o is "-inaccessible}| = .
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+

Proof. Let o, < A. Define 60 = ay for B < ag, BO = 8" for B 2 %g.
Then theorem A6.T7, applied to O, yields that the first *-inaccessible

> oy is smaller than A. Using this result, one can easily show by
transfinite induction that for all & < A the Eth *_inaccessible

cardinal is also less than A, which proves the corollary.

A6.9 Definition.
o is hyper inaccessible of rank 1 if o is inaccessible and there exist
o inaccessibles smaller than a.

o is hyper inaccessible of rank n if for all ¢ < n, o is inaccessible

of rank ¢ and there exist o inaccessibles of rank ¢ smaller than a.

We can define hyperinaccessible cardinals also as fixed points of
(1)
3
define hyperinaccessible cardinals of rank 1 as the ordinals § such
that £ = \)(1).

& . : (z+1) th

For successor ordinals n = z+1, let vg be the & hyperinacces-

certain sequences. Let v be the Eth inaccessible cardinal. Then

sible of rank ;, and define the hyperinaccessibles of rank 7 + 1 as
the ordinals & such that & = véc+1). For limit ordinals n, define the
hyperinaccessibles of.rank n as the ordinals which are hyper-
inaccessible of rank £ for all g < n.

In a similar way as in the corollary we can show:

A6.10 The first measursble cardinal A is preceded by A hyperinaccessible
cardinals of rank n for n < A.

If one is still not impressed by the enormous size of the first
measurable cardinal, one may define Xg as the first hyperinaccessible
cardinal of rank & and prove that the first measurable cardinal is
larger than the first fixed point of this sequence. Many other results
‘of this type are provable (see e.g. [46]).

The existence of an uncountable measurable cardinal has important
implications in axiomatic set theory. We only mention that it is
inconsistent with GSdel's axiom of constructibility and even implies
the existence of a non-construétible subset of w. However, neither
GCH nor its negation can be deduced from the existence of a measurable
cardinal.
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