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PREFACE 

General topology can be considered as a nat1.1ral outgrowth of set 

theory; the simple set theoretic nature of its frmdamental notions makes 

it an appropriate area for the application of set theoretic methods. On 

the other hand, many set theoretic problems have their roots in topology 

and this makes the interaction between the two disciplines even more 

. profound. The closeness of their relationship is perhaps most apparent 

the work done by the Moscow school of topology in the early twenties. 

• 
in 

The last decade has witnessed a very rapid development of set theoret

ic methods and ideas, the main sources of which were, in our opinion, the 

following: 1) the independence results of P. Cohen and his followers; 

2) the results on ''large'' cardinals of A. Tarski 's school, and 3) the 

achievements of P. Erdos, R. Rado, A. Hajnal, and others in combinatorial 

set theory (e.g., pa.rti tion calcultis). Not s1J:rprisingly, this has stirred 

up a renewed interest in the set theoretic aspects of general topology. 

A number of old problems were settled and many new ones were raised. 

The aim of this tract is to present a variety of questions of this 

kind by centering them around the unifying concept of cardinal functions. 

Since a considerable part of the means employed in our investigations 

are relatively recent and not easily accessible in the literature, we 

have fo11no. it both convenient and timely to include an appendix entirely 

devoted to the detailed explanation of these methods and ideas of combina

torial set theory. 

This tract was written during the second half of 1969, while the 

author was a guest of the Department of Pure Math~rnatics of the Mathema

tical Centre in .Amsterdam. The appendix is based on a series of talks given 

by the author during the same period at the Mathematical Centre under the 

title ''Combinatorial Set Theory''. 

At this point I wish to express my gratitude toward the Mathematical 

Centre for their kind hospitality which gave me the opportunity to write 

this tract, as well as for publishing it. I a.m pa.rticularly grateful to 

Professors J. de Groot and P.C. Baayen for initiating my invitation and 

supporting this project. 
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Special. thanJcs are also due to Albert Verbeek, who took on the 

difficult task of actita.Jly writing the text of the appendix, and did most 

of" the work necessary to t1J1'11 the crude manuBcript into print. I would 

also like to thank Nelly Kroonenberg, who added A6 to the append.ix. 

Final.ly, I am greatly indebted to my :friend and colleg11e A. Hajnal, 

whose help -was essential in acquiring the methods 11sed in this tract . 

Budapest, December, 1970. , ., 
Istvan Juhasz. 
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0.1. For the set theoretical notations used here we refer the reader to 

the appendix ( p. 72:ff). 

1 

0.2. For a topological space X we denote by cr(X) the set of all open sub-
-sets of' X. We 11se the notation to indicate clos11re and Int :for 

.. . 
interior. 

ACX 

and A 

We put 

is called a Go,f; set iff' there • is an 

sets a.:r 

set}. 

Tl111s e.g. a0 (X) is the set of all GO' s in X. 

c a(X) with I 
called F r:• 

a'"" 

o.4. A space S is called r;gbt (or lef't) s~parated iff there is a wel..l

ordering < of' S such that every initial (or final) see,oent of S 

11nder < is open. It is easy to see that X has a right ( or left) 

separated subspace o:f cardinality a if'f it cont.ai ns a by incl1Js ion 

increa,singly (or decreasingly) well-ordered seqtience {Gt: ~ < a} of 

open sets in X. 



2 

0.5. {cf. (11]) The following assertions can be verified easily: 

(i) If Sis right separated by< which well-orders Sin type a, a 

regular, then S has an open covering Vl such that every subcover 

of 1/t is of cardineJ.i ty a. 

(ii) If S is left separated by < which well-orders S in type a, a 

regular, then every dense subset of S is of cardinaJ i ty a. 

-o.6. A subset D c Xis ca.Jled discrete iff every p '=- D has a neighbourhood 

U in X s11cll that D nu • {p}. We denote by D{a) the discrete space p p 

0.7. 

on a • the set of ordjnals smaller than a (see appendix). 

A sequence {pt :t < A} of' points of X is called free {cf. (3] iff 

{pt !t < n} end {pE; : n < E; < A} have disjoint clos 1Jres for every n < A. 

Obviously» every free sequence is discrete. 

A, by incl.usion, decreasing sequence {G~ :t < A } c o(X) is called a 

stronsJ.v decre!l,Sing chain iff E; < n < A implies 
II Is 7 --•~ I I I U - I 

-G C Gl' • n ~ 

( for t < A), 

then, obviously, {pt :t < A} is a :free sequence. 

It F C X, .:t,,- c a(X) is 

J' C G .~ o(X) imply the 

Ve put 

called a nej gbbo1Jrho,od basis for F iff 
-- I I 11 I I llf Ii 

ex:i stence of a B e:. ~ with F c B c. G. 

is a neighbourhood basis for F}. 

If p •&. I, we write x(p,I) instead of x( {p} ,x). 

0.8. If I is a ·Rf 1 space. :Pc X, we introduce the fol.J.owing definition 
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3 

Here too we write ~(p,X} instead of tJ,({p},x). 

It is well-known and easy to prove (cf. 1 ) that if Xis a compact 
• T2 space and F c Xis closed, then 

lJ,(F,X) = X(F,X). 

0.9. If' p E: X, we define 

a(p,X) = min{a.:p e A + 3B c A with p £. B and IBI < a.} • 

0.10. Xis called a-Lindelof iff every open covering of X has a subcover of' 

cardinality< a.. 

It can easily be shown that a compact T2 space Xis hereditary w~

Lindelof (i.e. every subspace 

subset of Xis a G0 ,~ set, or equivalently, every open set is an 

F z:- set. a,~ 

0.11. Xis called a~sep~able iff it has a dense subset of cardinality< a. 

0.12. Xis said to have the a-Baire property iff it is not the union of a 

nowhere dense sets. 

0.13. We say that a is a caliber for x· iff' for every·~ 

there is a 'c with ILJ' J = et. and n~Q,.i• + ¢. 

C a(X) with I = a 

0. 14. The topological product o:f the spaces R. , i e I will be denoted by 
1 

R = X{R. :i 8 I}. If I is :finite (say I = { 1, ••• ,k}) we al.so write 
1 

R = R, X ••• X • 

The projection onto the i th 

denotes the projection onto 

:factor is denoted by ,r. • I:f J c I, 
1 

' 

the pa.rtial product X{R. :i € J}. 
1 

Open subsets o:f the product which have the for10 

-1 } 
,r. (u, " ... n 

]. 1 
ir:-1 (u ) 

1 n 
n 

a (R. ) ) 
1 

s 

n 
J 

are called -~~.~menta.:r::y open ~ets. 

Simi J arly, a set is an elementa".-y set iff' it is the intersection 
1 l • 



Or < Cti) •lementary o~n sets. 
WW ( ~ r-

o. 15. X c y (or X ~ Y) means that there is a (closed) subspace of Y 
top CJ. 

vhich is homeomorphic to X. 

o. 16. We use 3' to denote the class of all topological spaces. Similarly, 

O .:?rs, i < j !. 5. We denote by o/ P the class of all completely regular 

spaces which are not necessarily TO . Then ~ 3 ~ = 'JO " ~P • 

43 denotes the c1ass of all compact T2 spaces. 

O. 11. Let (L,<) be a linearly ordered set. We denote by (a,b), a,b), 

(a,b anti a,b respectively the open, half open anii closed interv·a].s 

ot L. The order to~l?Q" for Lis the one for which the open inter-
•m I I _ I 

vals fora a basis. 

We denote by L th-e pede.~ind ,C,2fti'ple~ion of L (including the degenerate 

cuts - and L as first and last ele111,ent) : 
• 

L • {Ac L: A. = U{ {b e L: b < a}: a€ A} anrl A€. o(L)}, 

L being (linearly) ordered by incl1J.sion. L is embedded in L by map-
- ,._, 

ping a e: L onto {be L: b < a} e L. Then L € cf> and as can easily be 
rv 

seen. the subspace topology of L in L coincides with the original 

order topology. (This is in general false for subspaces of' ordered 

spt\Ces!) 

'!denotes tbe class of all linearly ordered spaces. 

O. 16. A space I is called. di,R!rsed ift' every 
, I , UI I I 

subspace S c X has isolated 
• 

points·. Ve denote by S?t the class of al.l 
. . dispersed spaces. 

0.19. A ! 3 space X is called e:9~2!m!-£.t (cf. · 9 , [33]) itt there is an open 

'b&ais ti' for I such that if~ c 1' > and " has the f'ini te intersection 

p:roperty:t then n {P : Per } + '1'f. (lfote that the def~ in [9] is not 
eQ,W. Va.lent ! ) 

0.20. A T2 spASCe I is ca],l.ed. .~trongJ,: Ha11.s,dor~f' itt from every in:fini te 

.s.abeet Ac X we can choose a sequence· {p :n < CJJ} such that the p n · n 
haw· pair,,·ise disjoint neighbot1rhoods in X. We denote by'1t the class 



5 

of all strongl.y Hs.11sdorff spaces. It can be shown (cf. [ 12] ) that 



• 

6 

• • 1 • Cardinal f11nct1ons 

As we have mentioned above, the aim of this work is to present a systematic 

study of certain cardinality problems arising in the theory of topological 

spaces. To achieve this, we shall introduce the notion of a ~ardinal 

function by means of' which most of the questions we are concerned with can 

be given a more or less 11nified treatment. 

A f\1n.ction <I> defined on a class e of topological spaces is called a 

cardinal. f\1nction if it assigns to each member X e e a { 1Jsua.J J y infinite) 

cardinal n11mber <I> ( X) • 

Now we shall list the cardinal functions to be examined in what follows: 

1 .1. Weight 

w(X) =min*{ltt'l:~is an open basis (or:open subbasis) for X}. 

1 • 2. ,r-wej ght 

' ,r(X) = min*{ 11? I : ~ is a -rr-basis of X}, 

where~ is a 1r-ba.sis for X iff 

~ c a(X)\{¢} and (\/ U E cr(X)\{¢} )(jV E , V c U). 
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1 • 3. Up.ifor10 weight 

u(X) = min*{l1.Jtl: 'Utis a (sub)base for a uniform structure compatible 

with o(X)}. 

Here, of course, 

1. 4. De:q.si ty 

)( I I d(X) = min { S: 

1.5. qellularity 

c ( X) = sup*{ ~,, I : 

and analogously 

1. 6. Spr~~d 

Xe:, y 
p 

• 
is assumed. 

Sc X, S = X}. 

c o(x), disjoint}, 

s(X) = sup'~<{ lnl: D c X, D discrete as a sub~pace}. 

1. 7. Hei t 

h(X) = sup)({ IMI: M c X, M is right-separated}. 
top 

1.8. Width 

z(X) = sup*{lzl: z 

1. 9. Depth 
I C 

C X 
top ' 

Z is left-separated}. 

• 

is a strongly decreasing chain in X}. 

1.10. L~~del~f degree 

L(X) = min M {a : X is a-Linde·lof}. 

1.11. Character 

x(X) = sup{x(p,X) : p e X}. 

1.12. Pseudo-character 

tp(X) = sup{llJ(p,X) : p € X}. 
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1 • 13. Ti,A:btness 
tttl? I lilil Fi¼ obi _ 

here, X e; Y, is assur,zted. 

Remark 
' . . . In tbe above def1n1t1ons 

If ♦ is one of' the f\mctions x, + or a, then q,(X) = 1 • • X is dis

crete. In every other po.ssi ble case, however, each occuring :f\1nction 
· .. r· · t is in 1n1 e. 

" 



2. Interrelations between cardinal functions 

2.1. Trivial inequalities. 

a) k(X) < c(X) < d(X) < 1r{X) < w(X) 

b) w{X) < explXI; d(X) < lxl 

c) c(X} < s(X) < min{h(X) ,z(X)} < h(X) .z(X) .":. mi.n{ Jxl ,w(X)} 

mor.eover 

c{X) < ct(X} < cn(X), if' t < n 

d} tP ( X) < min { I X I , X ( X) } 

a(x) < min{x(x), sup{d(Y) :Y c X}} < !xi 
x{X) < w(X) < x(X).lxl and x(X) < u(X) 

1r{X) < d(X).x(X) 

2.2. r:r Xe ~ 0 , then lxl < exp w(X). Indeeds assu1r1e that tJI is a basis for 

X, < v{X). Then x, y €i X, x + y imply 

{B.e£,I: xe B} + {Be.i!,P: ye B}, 

since X is T0 , hence there is a 1-1 map of" X into [j:) ~). 

9 
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Remark 

A. V. Arhangel' ski!'. 2 proved that for a rather la.rge cJ.ass of 
\I 

spaces X, which includes metric anti Cech-complete spaces~ 

w(X} < lxl holds. 

2.3. If xe ~
3

, Sc Xis dense in X and p0 e:. S, then 

{i) w(X) < eXJf) d(X) 

2.4 .. 

(ii) v(S) = w(X} 

(iii) x(p0 ,s) = x(p0 ,x). 

f 

Let U b,e open in the subspace S, U = Int U, where Int and - are taken 

in X. Now, if x e Ge a(x) and Ve a(x) such that x e:. V c ii c G, 
• then, obviously, 

. / 
f -

xeVcVnScVcG, 

,.., 
which shows that the sets of the :forta U, U e a{S) constitute a base 

for X, but I a(S) l < exp Isl, hence (i). 

The above reasoning also yields that if is is a •-basis of S and 'UL, is 

a basi.s of neighbo11rboods of p 0 in S, then 

are a ,r-b.asis for X and a basis of neighbourhoods of p 0 
respectively-, hence (ii) and (iii). 

I xi < exp exp d(X). 

Pr·oof 

Let 8 c X be dense, f Sl < d(X). For x0 e X we put 

• 1.n X, 



• 
• 1 1 

= {G n S 

Now since X is Hausdorf':f, hence G is a 1-1 map of X 

into 9) (o(s)), which • proves 011r assertion. 

Coro~la1·.y 

If' X e ~ 2 , then 

w(X) < exp exp exp d(X). 

This is immediate from 2.2. and 2.4. In connection with this the 

:following problem arises: 

Problern 

Does X e r:f2 imply 

w(X) < exp exp d(X)? 

Exa.rnple 6.1. shows that this is the best possible inequaJ.ity we can 

expect • 

. 5. (cf'. 10 ) If X e 1"2 , we have 

I X I < exp h ( X) • 

Proof (Cf' the Remark at p. 25). 
Asst1,oe f xf > exp ex. By transfinite induction we de:fine sets 

X( ) , as follows. Let us put 
£0,···,£n,··· n<~ 

X= 

where X(e:) are proper closed subsets 

If the sets X( ) have e:o , ••• , e: , • • • l: n n<~ put 

of' X. 

been defined :for all~< p, we 
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if pis a limit ordinal, and if P = o + 1, we put 

where the sets on the right-band side are proper closed subsets of 

the lef't-hand side, if the latter bas 

Now there 

every E; < 

:rn11st be a sequence ( e:n) n<~+ 
+ . . a, since otherwise 

+ a A E 

• at least two points. 

such that 
n n<~ 

n t<a+ 

> 2 for 

would hold. Hence we have a decreasing sequence of closed sets of 

length a+, which, by o.4, implies h(X) > ex+. This completes the proof. 

2.6. For every X e1" 

(i) h(X) = sup{L(S):S c X} = min{a: Xis heredita.J·y a-Lindelof} 

(ii) z(X) = sup{d(S) :Sc X} = rnin{a: X is heredita:t:-y a-se:para.bl.e}. 

Ad (i). We sav in 0.5 (i) that if Isl =a.+, which is 
•• • card,. nal., and S is + right separated in type a. then S 

1of for any 8 < a. This obviously implies h(X) < a., 

a reg,.11 ar 

is not 6-Linde

if X is heredi-

tax·-y a-Lindelof. Conversely, if' X is not hereditro-y a-Lindel.of, then 

we can find a c a(X), · > a such that for ....,,
0 

c , I < a we 

have 

(+) • 

Let .· ·• = {Ge-: t < S}, where S = I I - If the points x and their neigh-, p 

bourhoods G ~ ( P ) € have been defined for p < v < B :t then 

Hv = u{G~(p}: P < v} + v · ··. by ( +), hence we can choose a point 

is right-separated, hence h(X) >a> a. 

• Obviously, {x :p < 6} 
p 



• 

Ad (ii). Since every left-separated space S whose order-type is a 

(reg11l ar) ca.rdina.J.. a+, has density a+ ( see o. 5 (ii)), we have 

z(X) < sup{d(S): Sc X}. On the other hand, if d(S) = a, we can 

easily define a monotone increasing sequence of closed sets in S of 

length a, using an obvious transfinite induction. This completes the 

proof. 

Remark. 

2.5 and 2.6 (i) obvio11sly imply that e.g., every heredita:r•y· Lindelof 

Problem. · 

points? The answer is not known, even for compact T
2
-spaces. 
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2. 7. ( c:f. [ 13] d(X) < exp s(X). 

• 

Proof 

Suppose we have d(X) > exp a. Then, by 2.6 (ii) there is a le:rt

separated subspace Sc X such that Isl= (exp a)+. Using 2.5 we ob

ta.i n a right-separated subspace T c S, IT I > a. Now T is both right 

and le:ft-separated, and we claim this implies the existence of a 

D c T with IDI = ITI > a such that Dis discrete. 

Indeed let ~ 1 a..11d --<
2 

be two wellorderings of T which separate T right 

and left respectively. Let 11s define a partition o:f [TJ2 (def of 
2 . 

[T] : p.100) into two classes I and II as follows: 

{x,y} € I if:f ~, and~2 coincide on {x,y}; 

{x,y} € II iff --c:
1 

a.nd....c::2 are opposite on {x,y}. 

Now, if H c T is infinite, [HJ2 
c II ca.nnot hold, otherwise we would 

have an infinite decreasing sequence in the sense of -<. 1 or -<2 , which 

• • •• is absurd, since both are well-orderings. Thus, by Erdos ' theorem 

A4.7 we obtain a D c T, IDI = ITI, such that [DJ2 c I. This, however, 

means that...c:::: 1 and-<2 coincide on the set D, and this joint well

ordering both right and left separates D, hence D is obviously discrete. 
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(i) d(X) 
+ 

< c(X) • 

(ii) If X contains a discrete subspace of power a, it also contains 

a pairwise disjoint intervals. 

{iii) h(X) = c(X). 

(iv) 

Proof 
. ' ' 

Ad (i). Ass1,1me Xe 'L and d(X) > 
+ 

(l • We want to show that X contains 

a pai1·wise disjoint inter"8l s. ·rhi s will evidently imply ( i). 

:low l.et ~ be .. an e.rbitra.2,y well-ordering of X. A point p e X is called 

nor11la-l , if p is the <--smallest element of' some neighbourhood 

We put 

ff = { p e X: p is nor:ntaJ } • 

U of p. p 

Firs:t ve show thrat I i·s dense in X. Indeed, if G e o(X) and Po is the 

-c\'-su.l] est element of G then p is obviously nor,rial. Thus we have 
.· 4 , . 0 

I I Ii > d( I) > a+. 

For ea.ch p E:. I let I denote the t1nion of all open intervals contai.np . 
ing p as their first element by .t... Now, if p, p' e N, p-<:.. p' then 

lows j,r,1rnediately from the 

ma.xi.mality of the I • p 
!low, it there are a pairwise disjoint I , we are done. If not, let 

p 

other I,}; p 

it is easy to prove tP(X) = x(X) < c(X), a,s 

··enberg. 



is not contained in other 

where H~ = N \ U{Nn:n < ~}. Then, again, hence 

Let p' € Ha. This means that for each ~ < a there is a p ~ e N ~ such 

that I , c I , hence { I : t < a} is a decreasing chain. For each 
p p~ p~ 

~ < a we can choose an x( 6. I \ I . 
p~ P~+1 

We put K = {x(:~ < a} and 

where-< denotes the 

implies that x~ -< xn 

original ordering 

holds, if x~ e 

of X. The convexity o:f the 

, n > ~ and x~ >- X , if n 

Now we have l~I = a or lrl = a. In the first case we have an 

I p 
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increasingly well-ordered, in the second a decreasingly well-ordered 

subset of type a of X, which jmmediately gives us a disjoint intervals. 

This proves (i). 

Remarlr 

A Suslin continuum, whose existence is consistent with the usual 

axioms of set theory, (cf. [18J or [34]) yields us a compact ordered 
space X, :for which 

c(X) =wand d(X) = w1 • 

Ad {ii) Let X €~, D c X discrete, a= lnl > w. For each p € D we 

can choose an interval I = (a ,b) such that I n D = {p}. If D p p p p 
contains a isolated points of X, we are done. I:f not, we ca.n ass11,,1e 

that no point p o:f Dis isolated in X, hence either (a ,p) +~or 
p 

(a ,p) or the intervals (p,b) are pairwise disjoint and non-empty. 
p p . 

Ad (iii) Since c(X) < h(X) is trivial, we have only to show that 

h(X) < c(X) = a, i.e., by 2.6 (i) that Xis heredita1"Y a-Lindelof. 
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Since c(X) = c(X) (cf. 0.17) and the order topology of X coincides 

vi th its subspace topology in X, and finally X € ~, it suffices to 

in what follows we ass1.une that X is compact. 

(with a= 

is the disjoint union of open intervals in X, whose n1.1mber, by 

a. So 

c(X) = a,. is at most a. Thu.s it suffices to show that every (a,b) c X 

is an r set .. a,t 
low if' a has no i1m,tiedia.te successor and b has no :i.1r11nediate predecessor 

then we can choose decreasingly and increasingly well-ordered 

sequences {a :n < y < 
n a. -

reapeeti vely, such that they converge to a and b.. (-ya, Yb < a follows 

c(X) = a.) Then 

hence (a,b) is the union of' < a closed intervals, a11d thus is an 

P set. a,t 
It ia obvious how to modify the above construction in the cases where 

a bu an i-..edis.te successor or b has an ir;i1•ttediate predecessor. 

M (iv) Suppose d(X) = a.. We want to show (cf. 2.6 (ii)) that for 

e"fltry SC I, d(8) < a. 
- tare.-

. { (x,y): 

Xi. 1 ~ A and (x,y) n 8 + ~}, f'u,,rther1~r1.0re if ( x,y) e A we choose a 

x,:y 

_ a.(x) = a, by (iii), X is heredita17 

set of al.l isolated points of S, 
tile, •. · · · · : < · · .. · * 
' _. ·, ' . - 8 ·. _< ...... ,.· .. ,··. . . . 

• • 
in S. Since 

'3 then 



• 

(a,b) n S " n8 + 0. If (a,b) " S contains an isolated point of' S, 

then we are done. 

If' not, then I (a,b) f"\ sl > w, hence we ca.n choose five points 

y
2

s A 

Now, obviously, p( ) e (y 1 ,Y 2 ) n S c (a, b) n S, hence 
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y 1 'y2 
D8 n (a,b) n S + ¢, which was to be shown. This completes the proof. 

Remark 

We do not + know whether d(X) < (s(X)) holds :for a larger class o:f 

spaces than 'cl, sey for <12 ( ! ) , independently of GCH, of' course. 

( c:f. 2. 7.) 

( c:f. 

lxl < exp exp s(X). 

Proof' (see p.100 for the definition of [X]r). 

Ass11me lxl > exp exp a and let< be a well-ordering of X. Since 

X e~2 , for each pair {x,y} 

bourhoods U(x,y) and V(x,y) 

U(x,y)" V(x,y) = 0. 

2 . h . € X wit x < y we can choose ne1gh-

Now we define 

If {x,y ,z} '2. 

of' x and y respectively, such that 

a partition of 3 as follows: 
3 X , x < y < z then we put 

according to the :following rules: 

£ 1 = 0, if x 8 U(y,z); 

£ 1 = 1, if x f U(y,z); 

e:2 = O, if' z E:. V(x,y); 

£ 2 = 1, if z f: V(x,y). 
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By A4.5 there is a subset H c X, IHI = a+ such that for a fixed 

ann 
1 2 1 n1 ,n2 

y has both an irrcrnediate predecessor and an i,,,rnediate successor in H 

by <, say x and z respectively, i . e. x < y < z. We shall show that 

• 

H n U(y, z) n V(x,y) = {y}, 

hence y is isolated in H. Since H obviously contains a+ such points 

y, this yields a discrete subspace D of' Hand hence X, of cardina1ity 
+ .. . 

a and proves our proposition. 

Ass11me now that p e. H n V{x,y) n U(y,z) and p + y. Since p + x and 

p + z a.re obvious, we have either p < x or z < p. In the first case 

p e U{y,z), hence the triple {p,y,z} gives us n1 = O. This, in t1 rn 

implies p € U(x,y), looking at the triple {p ,x ,Y} e aj 3 , and thus 

p ~ V(x,y), which is a contradiction. A similar contradiction arises 

if p > z is ass1uned. This completes the proof. 

Problem 

r.a.n one exp be omitted in 2.9? The answer is not known, even if' we 

restrict X from u-1
2 

to~. 

• 

2.10. For xe,'£, we have 

lxl < exp c(X). 

This follows i,·nirnediately f'rom 2.5 and 2.8 (iii). A direct proof' goes 

as follows: 

Let< b,e a,n arbitrary well-ordering of' X, while < is the 

which defines the topology of X. We put for any. {x,y} ~ 

{x,y} G I resp. 
s {x,y} € I , 

op 

• ordering 
2 

according to whether -<orders {x,y} in the ~amP., or in the opposite 

vay as < do,es. 



• 

Now, if lxl > 2 a , by A4 • 4 we have a H C X, IHI + = a such that 
--, 2 

H CI • Thus in the first case His increasingly op 
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well-ordered a .. nd in the second case decreasingly well-ordered by its 

original ordering<. In either case, X contains a+ pairwise disjoint 

intervals, hence c(X) > a+. This completes the proof'. 

2. 11. If' X G- i, for each ~ we have 

Proof' 

First we show that, in any regi1] a.r space Y, each H 8 cr~(Y) contains 

a closed H' s H' Indeed let p e He;. a t(Y). 

Then H = H ~ cr(Y) for each p 
Y is regular , for any fixed P < w ~ we can define 

P < w~. Now because 

by induction 

p p p and for O < n < w we have 

C H(n-1 ) c H 
p p p 

a{Y)). 

Let us put 

• 

H' = n < w~ An < w} = 

This shows that p €, H' e:. a~(Y) and H' is closed, which was to be 

shown. 

Thus, to prove our proposition, it is enough to show that X does not 

contain more than ex:p(w~.c(X)} pairwise disjoint closed Go,( sets. 

Ass11,ne, on the contra.:,·y, that 't'l is such a disjoint sub-:fa.:mi ly of' 

have 1J,(A,X) 

neighbourhoods 

-- < w } 
~ 

a basis of' 

of each A e, ~ Now, the normality of X implies that for 
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This induces a partition of 

follows 

P 2 < w~ such that 

Since · > exp (w;.c(X)), by A4.4 we have a subsystem l c'€9Land a 

(i5'2) 
G = 0. 
c2 

(p,) {p2) 
low, if we put Ge = Ge () Ge for each a G. (, , the f'amj ly of' open 

sets {Ge : C e (,} is obviously disjoint. This, however, is a contra

diction, because 1(,1 > c(X). 

Remark 

A coapletely regular space X is called a G0I: space, if' X is an 

arbitra17 ,mion of 00 sets in some compactification .ex (w.r.t. ex). 

Th11s, e.g. , Arhangel' skii p-spaces mentioned in 2. 2 are GO t spaces. 

It is a.n easy coroll a:ry of 2. 1 1 that 

tor arbi tr&l''Y GOE spaces as well. 

2.12. (ef'. 20 ) For X € ~ we have . . ~p 

w(I) < u(X} .. c(X). 

Proof 

Let us first note that if X is a pseildometrisable space ( i . e. u( X) = ui) , 

then we have 

v(X) • c(X}. 



• 

2. 13. 

Indeed, this follows i ediately from R.H. Bing's pseudometrisation 

theorem, namely the existence of a a-disjoint base • 
• 
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Now» if XE.~, there is a family~ of pseudometrics with JPI = u(X) 
p . 

which generates the topology of X. ~or each 6 e; §) let X6 denote the · 
• • 

pseudometric space on X deterrtiined by 6 . 
If' u(X) = 191 > w(X), we are done. If not, i.e. IP I < w(X), then 

t 

and therefore f'or each a < w(X) we have a 60 € ~ such that 

> a.. 
0 0 

This, however shows 

u(X) < w(X). 

Proof' 

Evidently, Y c X implies u(Y) < u(X) and this shows that it suffices 

has a 

compactif'ication of the same weight as Y. 

Now, if' X €'B and-l, is a base for the topology o'f X with lt,'I < w(X), 

then, as can easily be checked, all finite coverings of X with 

members oft,,; yield a basis for the unique liniforrnjty of X. The n111r1ber 

of' these finite coverings, however, is equal to ""'' < w(X), hence 

u(X) < w(X) does hold. 

This < can be replaced by = io 2 .. 12 

2. 14. For each X € ~ we have 

h(x) = !xi. 
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Proof 
It is well-known that every dispersed space X can be written as a 

disjoint 11ni.on of the form 

X= 

where for each E:0 < P, 

closed subspace 

LE: is the set of al.l isolated points of the 
0 

choosing a point Pt€ LE: from each level L~, the resulting set 

holds as well. This however, shows that 

hence 

lxl = h(X). 

2.15. (cf'. 13 ) Suppose X e lt1• Then 

}xi < exp(lf,(X).s(X)). 

Proof 

It is eno11gh to show that 'P(X) < a and I xi > exp a j rnply the 

existence of a discrete subspace of X of cardinality a+. To show 

this, I.et -< be a linear ordering of X a.nd choose for each p e X a 

se,quenee of its neighbourhoods 



obvio11sly we have 

x]2 = 

i.e., a partition of 

such that 

I(--) ~,n 

-' 

2 • By A4. 4 there is a subset D c X, Inf 
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+ = a. 

holds for a f'ixed pair (~,n). Now it is obvious f'rom our construction 

that 

bolds :ror each p e D, i.e., p is isolated in D and thus D is discrete. 

This completes the proof. 

2. 16. (cf'. or 

x(p,X) < a for each p e A. Then 

• • 

c(X) > a. 

The proo:r of 2.15 can be applied after having made the following 

changes: 

For p e A n,..f is a basis of' neighbourhoods in X and we form a. :partip 
tion of ~A by putting 

Coroll~ey 

If X s ,-,2 then 

I X I < exp ( x ( X) • c ( X) ) • 



• 
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2.17. For every Xe ~2 

lJ,(X) < h(X) 

holds. 

Proof 

Since X € tr2 , for each p e. X we 

neighbourhoods of p such that n 

can choose 

f'v...f_ = {p}. 
p 

of" m:in.ima.J cardinality among such systems, 

co11rse, ci > tl,(p,X). 
p 

a system A.,,./1 of' closed 
p 

We can ass11rr1e that • 
1S 

say lrw--1 =a. Then, p p 
of 

Now fix p ~ X. We define members V~ of~ and points x~ by trans-

finite induction as follows: 

Let V
O 

e and x
0 

e. X \ VO arbitrary. Suppose t < ap and for every 

n < ~ the V s '\,.I"_ and point x have already been defined. Then, n p n 
because of the minimality of a , p 

nv :>{} 
n<~ n :f: P' 

hence there is a.n 
• since 

ann Fn ~ Ft, if n <~,hence {F~:~ 

sequence of closed sets in X. This 

h(X) > a > $(p,X) 
p 

for all p e X, hence h(X) > ll>(X). 

Problem 

For what spaces does 

z(X) > tlJ(X) 

hold? 

cip. Then, obviously, x~ € F n \ F ~ 

<a} is a monotone decreasing p 
implies 



• 

• 
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is not known to the author 

space, satisfies the above 

whether eveey T2 space, or even compact 
• • inequality. 

Remark 

Since s(X) < h(X) alwey-s holds, from 2.17 and 2.15, we i ediately 

obtain another proof of 2.5. 

2.18. (cf'. 6.4) If Xis connected, then 

k(X) < (X) +. 

Proof 

In fact, we shall prove that if' 

is a strongly decreasing chain in X, then 

+ µ<a, where a= x{X). 

" 

AssuroP., on the contrary, 

n ~ G + f ~- Since 
a 

H = r, 

+ + that µ > a a.nd put = { G : ~ < a } • 
0 ~ 

is strongly decreasing, we have 

Then 

hence His a non empty closed proper subset. Since Xis connected, H 

cannot be open, therefore we can choose a boundary point p0 € H. We 

Indeed, if' {U :n < a} were a basis of neighbo1Jrhoods of p0 , then :for 
+ n 

each t < a we could choose an n~ < a such that 

hold. Now, since 
+ 

{Gt :v < a } of' 

" 

+ 
a is reg11J ar, there is a cofinal subsequence 

-a.nd art n < a such that 
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holds for each v < a+. This implies 

which is in contradiction to the ass1.1mption that Po 
point of H. This completes the proof • 

Problem 

Let X be paracompact and connected. Is it true that 

k(X) < x(X) "l 

• is a boimdai-y 

2.19. For every X we have 

k(X) < L(X).a(x). 

Proof 

(cf. 3_ ) Let 11s put L(X). a (X) = a.. We shal 1 prove a somewhat 

stronger result, namely that every free sequence in Xis of length 
+ 

< a (cf. o.6). We shall need this stronger resu1t in the proof of 

2.21. 

Ass11mP., on the contra,-y, that 

s == 

is a free sequence in X. Since Xis a-Lindelof, there is 

x0 €, X such that for each neighbourhood U of x0 we have 
• 

• a point 

Indeed, assiune that each x e X has a neighbourhood Ux such that 

f ux n SI ~ a. We can choose a s_ubcovering 



• 

• 

"'1.t C {U :x e X} 
X 

for which l'ILI < a. Then, however, 
• 

hence Isl < { lu n sl: U e 'IJL} < a.a = a would hold, which is a 
X X 

• • contradiction • 

Now, since x0 Q Sand a(x) < a, there is a subset Ac S, IAJ < a 
- . + such that x 0 s A. Since a • 

1s re ar, 

such that Ac s0 ={pt:~< t 0 }, hence 

But, S is free, hence s0 n S \ s0 = 0. Therefore u
0 

= X \ S \ s0 
neighbo11rhood of' x

0
, for which u

0 
n S c s

0
, hence 

+ < a. < a . 

• 
l.S a 

This, however, contradicts our choice of' x 0 , and thus :finishes the 

proo:f. 
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2.20. For Xe ~ 2 we have 

Proof 

Let Sc X be dense in X, Isl = d(X) and put x(X) =a.For each x e: X 

we choose an open neighborhood.basis vi o:f cardinality a. For each 
X 

U E: U.. we take p(U) E: U n S. Put N = {p(U): U e: Lt } • Hence 
X X X 

N E<fJ (S), if', :for a set A, o' (A) is defined as oJ (A)= {Bc:A:(Bl<a}. x a a a 
Consider the :function 

f: x ---1 _..... {U n N : u E \J(., } 
X X 



• 
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which carries X into d) ( P ( S) ) • Because X E 
2 

we f'ind that. 
a a 

{x} = {(U n N )- : U E UG }. Tht1s the function f is 1-1, implying 
X X 

that 

• 

2.21. For 

I X I < exp (. L( X) • x ( X) ) • 

This is a beautif'ul. and quite recent result of A.V. Arhangel'skii, 

3~, which settled an aJmost :fi:fty year old conjecture of P.S . 

.Alekse.nd.rov namely that every :first cormtable compactu1r1 is of 

cardinality< 2w. 

First we need two leicrmas : 

Le1mr1a. a) 

Ass,1me X e'J'2 , a > w, lxl > exp a, :f11rther1nore i:f Ac X, IAI < a then 

{ i ) I A I < exp a 
' 

and 

(ii) $(A,X) < exp a 

• hold. Then there is a free sequence 

+ of length a 

Proof'. 

• in X. 

We shall construct a rarnj fication system in the sense of .... 3 , le1r1rna 

1 , by defining sets R and points p :for certain 
Po,··-,P~ Po,···,Pt 

. 2a + sequences of ordina.l~where pn < and~< a. 

First we put R0 = X and p 0 6 R0 arbitrary; here O stands :for the 
+ empty sequence. Suppose now that~< a and for all n <~the sets 



R 
o'···,Pn 

and points p 
Pa,···,Pn 
Sv denotes 

have been defined for each 

Po ' • • • 'P n e s n+ 1 ' 
of ordinals< 2a. 

where the set of sequences of type v 

Let us now choose 

R' = n 
s 

a sequence s e SE; and put 

where sln+1 denotes the initial segment of s of type n+1. Now we dis

tinguish two cases, a) and b): 

a) IR'I < 2°. In this case we put R - = R' for all p < 2°; here s s,p s 
, denotes the sequence P0 , ••• ,p~ of type ~+1 obtained by aug-

s,p 

b) IR'I > 2°. Since t < a+, applying (ii) and putting 
6 

+ 1 < E;} = 
p 

where the 

Next we put 

are {not necessa.rily distinct) closed subsets of X. 

• R-s, -

f h 2a db or eac p < an c oose any element of R s,p -
s,p a.rbi trarily. 

By transfinite induction on v we can • easily show that 

X = U{R': s e:. S} u U{G(s): s s S} 
s \) \) 

holds for each v < 

t € S
0
+ such that 

+ a • Next we claim that there exists a sequence 

holds for each v < 
+ a . Indeed, let us put 

S = { s e S : IR' I < 2°} \) \) s .. 
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• 

and 

S = U{S : 
'\) 

Then Isl < Isl < 

• N the choice of S 

+ ,v 

"<a}, S = 

+ v<a. 

+ "<a}. 

have, by (i) and 

Now if x0 is an arbi tra1".Y point in the complement of the above set we 

can find a sequence t e S
0
+ such that 

holds for each v < 
+ a. • Indeed, if' tis a maximal sequence such that 

x0 £ Rtlv holds for each v < 
+ be a. Because of the choice 

a 
2 for each" 

Let us now put 

length oft, then the length oft must 

o:f XO , however, we have t I \) e s" \ s" , 
+ < a . 

and 

• 

r + Th .. r + for all~< a. en for arbitrary';,< a we have 

and 
+ n < a } 

' 

which shows that {pt: ~ 

t 
LPmma b) 

,., p t 

t 
+ <a} is a f'ree sequence, because 

definition. This completes the proof. 

moreover $(p,X) < 2° holds f'or each p s A. Then 
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holds too. 

Proof 

Let us choose for each pe A a system of open neighboi1rhoods of p, 

say '\1 P • such that n'\Y' = {p} and l'lY I < 2a. Now, if x0 is an 
p p 

arbitrary point of' X \ A then for each p e A there is a V e l1' such p p 
that x0 ~ V. Since {V: p e A} is a covering of A and X (and A) a.re p p 
a-Lindelof, there is a subcovering A.L c { V : p 6 A} such that 

. X p 

XO . XO 

1P(A,X) < I {U,: U, C and 

• since 

Proof of 2.21 

Let us put a= L{X).x(X) and suppose that lxl > exp a. Then, by 2.20 

and ler,1,na b) respectively, conditions (i) and (ii) of ler111ns. a) are 

satisfied. Thus, applying the latter we obtain a free sequence of 
+ . length a in X. But by the proof of 2.19, the length of any free 

sequence in Xis< L(X).a(x) < L(X).x(X) = a, which is a contradiction. 

This completes the proof. 

We would like to emphasize the following 

Corollary 

If X is a first co11ntable, Lindelof' T2 space, then I XI < exp w. 

Remark 

It is interesting to compare this 

of' S. Mrowka ( [29..-J , Theorem 2) : 

carol] a:,•y with the following result 

There exists a first countable compact T1 space of cardinality a iff 

D(a)c1. D(w) 0
, i.e., a belongs to the class of cardinals M, defined by 

Mr6wka in 2_. It is known e.g., that for each non-measurable a we 

have 28 s M ( see _2 or [28J f'or more details) • 

• 
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2 .22. (cf. 4 ) Asst1me X e '!:> and (l/>(p,X)=) x(p,X) ~ a for each p <ii X. 

Then lxl > exp a. 

Proof 
Let J denote the set of all 0-1 sequences of type v. By transfinite 

V 

induction on v we shall define a mapping V: J = ~a Jv ~ o(X) as follows: 

We put V( {6) = X. Ass11me that v < a and :for all ~ < ", j €, J ( 

V{j) ca, a(X) have already been defined in such a way that 

(a) For each t < " the system {V(j In): n < t} has the finite inter

section property. 

(b) I:f ( is of the forro n + 1 , 

then V { j ) C V ( i ) . 

i € J and j = 
n 

• 
1, e: - (e: € {0,1}), 

• 

Let j e Jv. I:f vis limjt, we put i = j and V{j) = X. If v = + 1 we 

have j = -i,e:_ for some i e J~. Notice that in either ease 

by (a) and (b) and the compactness of X. Also for any 

p 6 X, since ~therwise we wou1d have l/J(p,X) < l~I <a.Thus we can 

choose and two 
e: - e:_ 

open neighbo11rhoods VE of p e: such that V €: c V( i} and VO n V 1 = 0 
Then we put 

Thus V{j) is defined for each j e:, J. 

It f°o11ows jn11raediately from the construction that for any j €. J 

n {V( j In) : n < length of j} + {6 

and if j, j' € J anii. j 
a 

• 

+ j' then 

n {V(j In)} r.. {V(j' In)} = ~-
n<a n<a 
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2.23. 

However, I J a I = exp a, and this i1runediately implies IX I > I J a I > 

exp a. 

Remark 
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It is obvious that 2. 22 remains valid and the same proo:f goes thro,lgh 

if it is only req1Jired that X has a compactif'ication cX such that 

X € crt(cX), provided that a= 

CorolJ"ary 

If x(p,X) 

IX I = exp 

-- a for each point p of a compact T2 space X, then 

by 2.21. 

If Xis a first countable compact T2 space then either 

lxl < w or lxl = exp w. 

Proof' 

Ass11me IX I > u> and let A be the set of' all condensation points of 

X, i.e., 

P s A, > lu I > w 
p - 1 

for each neighbot1rhood U of' p. Obviously, A is closed in X and ve 
p 

assert that A is also dense in itself. In fact, let p E, A and Ube 

an arbitrary neighbourhood of p. We can choose neighbourhoods 

VO :> V 1 ::> • • • ~ V n :=> • • • ( n < w) of p such that U :> VO and 

n {Vn:n < w} = {p}. Now, since v0 \ {p} = u {V
0 

\ Vn+i: n < w} and 

I v0 \ {p} I > w 1 , there is an n 0 < w such that IV , V + .1 I > w 1 • no no 
Hence if q is a complete accumulation point of then 

q e A, q + p and 

q € V C V
0 

CU. 
no 

This shows that ( U \ { p} ) (') A + ~ , hence A is • • dense in itself. Thus 

x(p,A) = w holds for each p 6 A and by the corolJaJ--y of 2.22 we have 

IAI = exp w, hence, by 2.21 
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2.24. 

txl = exp w. 

se Xis locally compact 

s = {p: x(p,X) < a} 

is dense in X • 

Proof 

AsstJme that G ~ a(X) and Go S = 0. Then x(q,X) = x(q,G) > a for 

~a,ch q e G, a,nd hence our Remark ma.de at the end of 2. 22 gives us 

lal > exp a > I xJ, which is impossible. This completes the proof • 
• 

2.25. Let XS~, x(X) = a and d(X) > a. Then there is a subspace Sc X 

such that 

Isl= a(s) + = a and C ( s) ~= C ( X) • 

Proof 

Let us first choose for each p e X a basis of neighbo11rb.oods 

{Vt(p): ~<a} and then put 

f(p,q; ~,n) = 

a member of V (~) n V (n), if 
p q 

V (t) 41 V (n) + ~; p q 

not defined otherwise. 

If H c X is er'bi tra.17, we define 

e1°111ore, we set 
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Obviously, IHI < a implies lc1(H)I < a. 
+ Now we define sets At c X for~< a, by transfinite induction as 

follows: 

Let A0 = 0; assume the sets A~ have already been defined for each 

E; < v, _a.Let us put 

According to our above remark» IBvl < a, hence 

X. Therefore we can choose a point Pv e. X \ B". 

• 
Bv cannot be dense in 

Then we put 

A = {p} u B 
V V v• 

Obviously, IAvl < a, hence the induction can be carried out for all 

" < 
+ 

CL • 

Let us 
• 1s a v can-

not be dense in S. Thus, indeed, d(S) = Isl = a+. 

c(S) < c(X) follows imxnediately from our construction, because 

and thus any 

disjoint family of sets of the forrn {VE;(p) n s} with p € Tc S can 

be ''extended'' to the disjoint f'amily {v ~(p)}. 

2.26. Let Xe~ and S c X. Then 

a(s) < d(S) .a(s). 

Proof' 

Let Z be a dense subset of S with lzl = d(S). Then for each p € Z we 

can choose a subset H c S with I H I < a ( S) such that 
p p 

p e H • p 

We claim that 
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D • U {H : p e Z} p 

is a dense subset of S. 
Indeed, let x es and V be an arhitra1ay open neighbourhood of x. Then 

V n S + 0, hence there is a p e V n Z as well. Then V is a neighbour-

hood of p too, hence 

Vn + 0, i.e. V n D + 0 

• vhich was to be shown. Since 

I nl < {IHI: pe Z} < lzl.a(s) = d(S}.a(s), 
p 

2.26 is proved. 

Coroll!!'l.. 

If evei.·y closed subset of a first co11ntable space X is separable, 

then Xis hereditarily separable. 

2.27 For X E: 3 j we have 

w(X) = u(X) • L(X). 

Proof. From 2.13 u(X) < w(X) and the trivial relation L(X) < w(X) we 

:rind w(X) < u(X). L(X). Next, let U: b-e a ba,si.s for a unif'or1oi ty, 

defined by open coverings, on X compatible with the topology, such 
• 

that fl/GI= u(X). I.e. (cf'. [17]):lt is a :famjly of' open coverings, 

such that U ut is a basis :for the topology and each two covers from 

Lt have a co1r1rnon star-refinement in lX. For each cover al E: Ll: we 

choose a subcover ~ c Ol of card.inali ty L(X). Now it is easy to 

check that U {.OC *I~ E: lt} is a basis for a( X) • 
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3. The s:u,p 7 ID:ax problem 

• 

The :functions c, s ,h, z ,k have the co1nrr1on :feat11re o:f having been defined as 

the supremum of cardinalities of certain ~amjlies o:f sets. (Sometimes these 

sets are referred to as ''.de:fining s.e.t,s." o:f the corresponding cardinal 

:function.) It is natural to ask under what conditions this supremum is 

actually a maximum, i.e., when does a defining :family of maxjmaJ. cardinal

ity exist. This is what we briefly call the sup= max problem. 

Obviously, if the value of one of our :f1.1nctions is a non-lirni t cardinal, 

the suprem.11m must be a maximurn. The interesting cases are therefore those 

in which the function values are limit cardinals. 

3.1. (c:f. ,.._7_, 6.5) Assume X€~and c(X) = A is singular, c:f_(A} = 

= a < ). • Then there is a disjoint family c a(X), with I = A• 

Proof 

Let us call an open set Ge o(X) normal if :for each non-empty H c G, 

H e cr(X) we have 

c(H) = c(G). 



38 

We claim that for ea.ch non-~pty G e a(X) there is a non-empty no1 .. 

open set G0 such that G0 c G. ( in other words, the no1·1ua.l open sets 

constitute a Tr-basis for X.) Assume that this is not true. Then we 

can :find G 1 € a(X) '\ {f6} G 1 
C G, such that c(G 1 ) + c(G), hence 

c ( G 1 ) < c ( G) • Now G 
1 cannot be norrr,al, therefore we have a 

this procedure for each n < w we would obtain an infinite decreasing 

sequence of cardinals, which is impossible. This shows that the nor

mal open sets indeed for·111 a Tr-basis of X. 

Bow let tl, be a maxima] disjoint fami.ly of norrna.J. open sets. From the 

above assertion it follows jnrtnediately that v )t = N is dense in X. 

If n\J = A, we are done. Thus we can a,ss,1me that · 

Berl ve claim that 

sup{c(G): GE:. 1L} = 

= 8 < A. 

bolds. Indeed, if e < o < l, o is a regular ca..rdinal, then there 

exists a disjoint famjly • C a(X) with ·I = o. Now, since N is dense 

R O GB + lf. Since o > 8 is reg,,J a.r, there a.re a subfamily of 

This 

i x1ttplies c ( B.0 ) > ~, and thus ( *) is proved. 

Bow, if' 6 < a = ef'{).) there is a HG 1v such that c(H) = A, since 

0 1therwise {*) could not hold. Let us write A = . at , where at < l. 
(<a 

t < a} such 

also true 

tor i if B :> a ao'1 there is no HS tL with c(H) = A. 

that = v · ·· : t < a } 

of i ·. ~ sets of' :maximal ~ardj_ne.li ty A. • 

·.··· ......... :rk. 

open sets in Ht, such 

11s a disjoint family 

We shall, see (exa111ple 6. 5) that :f"or inaccessible l's 3. 1 no longer 

hol..:1;- . 
. . . ~ -
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3. 2. (cf. 14 ) Suppose A is singula,r strong ljmit, X € tr2 , I xi > A. Then 

X contains a discrete subspace D of power A. 

Our proof will be similar to that of 2.9, however, instead of the 

ER-Le1r1rna. A4. 5 we shall use the C-Lernt11a A5. 4. 

· { } 2 wi·th Let -< be an arbitrary well-ordering of X, and for x ,Y e 
X-< y we choose neighbourhoods U(x,y) and V(x,y) of x and y respec

tively, such that U(x,y) n V(x,y) = ~-

1' 2 
(x-< y < z) according to the f'ollowing rules: 

E1 = o, if x e U(y,z); 

E1 - 1, if Xi U(y,z); 

E2 = O, if' z e V(x,y); 

E 2 = 1, if z $ V{x,y) 

Applying the C-Lemrna A5.4 

partition of H: 

we find an H c X, I HI = A and a 

such that conditions (i), (ii) and (iii) of the C-Le1nn1a hold (p.126). 

Suppose that~< a and ye H~, moreover that y has an immediate 

-<-predecessor x, and an immediate < successor z in H~. We shall show 

that y is isolated in 

is obviously of power 

In fact we claim that 

the subspace 
• • A, this will 

N = V { x ,Y ) n U ( y, z ) n H = { y} 

H. Since the set of all such y's 

prove 3.2. 

Evidently~ x, z $ N. Now, if p 6 Hand p < x, then p e V(x,y) implies 

definition of' our parti-

tion. According to (iii), however, we also 

and thus p ~ U(y ,z) => N. Simi.larly we can show that if z -< q, then 
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q 4 N, which completes our proof'. 

Corollfil:Y 

is a 

singular strong l:imi t cardinal. Then cp( X) is actually a maximtJm .. 
' 

This follows in,1nediately :from Jxl > <J,(X) = A and 3.2. 

Remark 

It is easy 'to see that if A is a weakly compact {inaccesible) 

·cardinal, then 3.2 and its Corollary hold for this A; in fact, the 

(cf A6.4). Thus e.g., if GCH holds then the sup= max problem has 

a positive solution for s, h and z on !f' 2 , 11nless A is a not weak] y 

compact inaccessible cardinal. We shall show that this exception is 

in fact essential (cf. Example 6.6). 

3.3. (cf •. 12]) Suppose Xe "rt,, ¢,(X) = A, where cp is one of' the functions 

s, h, z and cf(A) = w. Then the answer to the sup = max problem is 

positive. 

Proof 

We shall first establish the following 

Lenmaa 

Ass1;m,e R ~ 11, lRI = a > B > oo. Then either R contains a discrete 

subset of power a, or 

So = {x s R: 3 U neighbourhood of' x such that lu I < a}. 
P X , X 

' 

F is a set mapping on s8 such that I F(x) I < B < a holds for each 

x e s6• Therefore we can apply Hajnal's theorem A3.5, and obtain 

x € D. This, however, jmplies Ux n D = {x} for each x e D, hence D 

is a discrete subspace of R. 

Bow we return to the proof of 3.3. 
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Since cf(A) = • w, we can write 

• 

--

where k < k' ak < a.k, and each °le is regular. 

Since <f> (X) = > a.k, for each k < w there exists a ''defining set'' 

for~, say Dk, such that lnkl = ak. Let us put 

Then A, and using the Lernrr,a 

that either X' contains a discrete subset of power A (which is 

certainly a defining set for~) or we can assume that :for each a.k 

only less than A points in X' have neighbo11rhoods in X' o:f power 

< ak. 

We shall then define_a sequence of points in X' as follows: 

Let x
0 

be a.n arbitral'."Y. point of X' such that each neighbourhood of 

x 0 in X' has cardinality> a.0 • Now, if k > o and-{x0 , ••• ,~_1} have 

al.ready been defined, we choose as ~ an a.rbitra1·y point of 

X' \ {x0 , • •. '~- 1} such that each neighbo11rhood of ~ in X' is of 

cardinality> ak. By our assumption the induction can be carried out 

for all k < w. 

Now since 

{~-: i < 
l. 

X (and X') belong to1-t, we can select a subsequence 

w} of the above sequence for which there are open neigh-

bourhoods 

• 

u. 
l. 

of ¾. in X' such that 
l. 

By our construction we have 

lo. I > a 
i - k. 

l. 

for each i < w. Also, U. C X' 
1 

u. " 1 
u. = 0 if 

J 

k < w} imply 

i + j. 
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• 

Since ak. 
1 

such that 

• • is reg,u ar, we i . -ediately see that there exists a k < 

In- n u.l > ak. In other words, each U. contains a k 1 . 1 
l. 

defining set s. for~ such that ls.I > ak. Now these s.'s are 
1 1 · l. 

1 

contained in pairwise disjoint open subsets of X', hence 

s = \) {s.: i < w} 
1 

is a defining set for, in X' ann consequently in X too. But 

Is I = 

• which completes the proof. 

Remark 

We do not know vhetheril,can be replaced by V-2 in 3.3, or whether 

the condition cf(A) = w could be ~akenea(witbout 11sing GCH, of 

course). Both of these problems seem to be rather difficult. 

• 

• 
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4. Cardinal :functions on pro~~cts 

4.1. The aim of this section is to investigate the following basic 

problem: 

Ass11me 4> is a cardinal :fimction and 

R = X{R.: i € I}; 
l. 

hov can ve evaluate 4>(R) in te:r·1ris of' the values 

the cardinality of the index set I? 

q,(R.) (i £ I) 
l. 

, 

and 

In order to exclude some trivial difficulties we ass1JmP, that no R. 
1 

in ( ,<) is indiscrete, hence it contains two points p. , q. such that 
l. l. 

43 

P· $ {q.}. If we denote by F the two element T0 space, in which one 
l. l. 

of the points is closed and the other is not, then our convention 

obviously implies (with III= a> w) 

Fa C R 
top 

or D(2)a. c 
top 

R, 

depending ~n whether 

We sha.l.l show in 6.7 
Fa and D(2)a: 

l{i: q. e {p.}ll 
l. l. 

and 6.8 that the 

= a or not. 

following relations hold for 
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a} If ♦ is one of the functions v, s, h, z, X then 

♦ (Fa)= ♦ (D(2)a) • a; 

c) d(D{2)a) = log a. 

For a. product of the fo1•t11 ( *) , where f is defined :for each 

we put 

• 

R. ( i e I), 
l. 

4. 2. ( i) For every cardinal f11n~tion we have defined, 

(iii) If I is infinite and all the R. 's 
l. 

are T1 then 

• 

(iv) If alJ the Ri's are completely re ar and III> w, then 

u(R) > I I I . 
• 

Proof 

1r , k and L ( i) holds beca,1s e each 

Ri is the jmage of R under the open and continuous tttapping'. 

,r.: R + R .. , 
l. l. 

i.e. the projection. of' R onto the factor R .• 
1 

true becaltse R. C R bolds :for each i e I. 
1 top 

For the others {i) is 
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If , + 1T then (ii), (iii) and (iv) i ediately f'ollow from 4.1 a) 

11s11..d b), respectively, because cp is monotone with respect to subspaces. 

To prove (ii) f'or ,r, however, we have to proceed dif'ferently. Since 

Ri is not indiscrete, we can choose a non-empty, proper open subset 

G i c Ri f'or each i e, I . Let 

N _, 

G. = 1r. (G.) 
J. l. J. 

t •-~11d 9 a n-basis for R with l!P I = n(R). It follows • from our ass1.11npt1.on 
"" that the intersection of infinitely many G.'s has an empty 

]. 

:i..:n terior. Therefore, each P e fi:> can only be contaj ned in a finite 

n.11mber of' the sets G. . This implies I I I < !j) I . w, hence I I I < n (R). 1. 

(i) If cp e {w,1r,x}, then 

{ ii) If' all the Ri 's are T 1 , we have 

Proof 

S11ppose that~ (i € I) is a base for R. such that I~ I = w(R.). It 
J. J. 1. ]. 

is obvious that the system Yof' all (open) sets of' the f'orrn 
. 1 ) - 1 ., _Al 

Tr.. (B 1 n ••• n n. (R ) , where B. e ~ , constitute a base f'or R. 
:i... 1 1 k -k J 1 j 

Obviously, It,,! < I I I . w1 (R), hence 

'1 '~t, e opposite inequality follows from 4. 2 ( i) and 4. 2 (ii). 

It is easy to see that if' the ~ 's above are chosen as n-basis for 
. l. 

R - , then the resultingY is a n-basis for R, and this implies Ol>r 
:L 

• • propos1. ti.on 

Finally, if 

system) f'or 

as above. 

f e R and t,,'. is a neighbot1rhood basis ( or separating 
J. 

f'. e R., then is a neighbourhood basis (or separating 
1 l. 
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system) for f' in R, and f:t•o~ this {i) for x (or (ii) for~) fo11ows 

immediately. 

4.4. (cf. 6.9) If,= h or cf>= z then we have 

Proof 

The inequality on the l.eft is an i ediate consequence of 4.2 ( i) 

and (ii) • The proof of the other inequality is compl.etel.y anal.ogous 

:f'or hand z, therefore we shall only prove it f'or cf>= h. 

First we consider the case in which 

+ Let us put h1 (R) = a and (exp a) = S. Suppose that h(R) >a.Then 

we can choose a right separated sequence S = {ft: t < B} C R. Thus 

for each t < 8 we have an eleruenta.12,.y· open set Ut c R f'or which 

a > n 

Now we f'orm 

If' {t,n} e 
a partition of' 

2 8 , E: < n we put 

2 as foll.owe: 

for i 6 I 

{ t, n} e I. , • 
i i n i 

Since for n 

hence we obtain a partition of 2 , indeed. 

u{I.: i e 
l. 

Now 8 > exp a and I I I < a j mply, 11sing the ER-Le1,111a 

there is an H c a and an i 0 e I such that 

A4.4 

0 

I}== 

, that 

It fol.1.ows from th•e definition of I. that 
l. 

t ~ H} C R. 
1. 

0 0 

2 

• 
l..S 
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• a right-separated subspace of of cardinality IHI + = a . • This, how-

ever, is in contradiction to 

h ( R . ) < hI ( R) < a , 
10 

a.nd proves 4. 4 

we have 

provided that I is finite. 

• 

and 

= a . 

So we have a right-separated sequence S = 

suitable element.a.ry neighbourhoods {u~: ~ 
+ For each~< a we put 

Then each I~ 

I has only ex 

I Al = a+ a,nd 

R.}. 
1 

is a finite subset of I, but lrl < 

finite subsets, consequently there 
...., 

a finite subset I of I such that 

• 

Now it is obvious that 

is a right-separated subspace of 

R = x {R.: i e r}, 
i 

< ex+} in R with 

as above. 

+ a< a and therefore 
. + . h 1.s an Ac a wit 
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because for each t e A 

Thus have 

which is in contradiction to what we showed in the first part of 011r 

proof. This completes the verification of 4. 4 for h. 

It should be obvious to the reader that, by straightforward modi

f'i•cations, the above proof can be transforroP.d into a proof of 4. 4 
for z .. 

ReDl8rk 

E:xe;n1t1l es 6. 9 and 6. 10 show that 4. 4 cannot be improved by decreasing 

exp( ♦I(R}). Recently A. HajP.al and I. Juhasz have shown by a different 

method that 4. 4 also holds for <P = s • 

4.5. (cf. · 6 , 16] or [30]) 

( i ) d( R) < log I I I . d
1 

( R) ; 

(ii) If moreover each Ri contains two disjoint non-empty open sub

sets, then 

r 
First we show that for a > w 

exp a d(D(a) ·· ·· ) < a 
;;,1'c 

holds. For this we write 

D(a)e.xp a = X{D (a): t . t < exp a}, 



where Dt(a) = D(a) for each~< exp a. Then we choose 

say X = D(2) 0
, such that lxl = exp a and w{X) = a; we 

form X = {p~: ~<exp a} and choose an open basis 1.,,,~ 

for X. For any ordered pair (r,s) o:f finite sequences 

where 

r = 

P .. < a, 
J 
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a T2 space x~ 
write X in the 

{B : p < a} 
p 

of ordinals 

and the sets B , ••• , B are pairwise disjoint, we define a point 
P1 p. 

r s e a J 

- - - - - - - ~ 

n., 
J 

0 , ••• V BP .• 
J 

that Sis dense in D(a)exp a_ Since Isl= a, this will imply 

d(D(a)exp a)< a. 

Lt G b l t - t 1·n D(N)exp a of the form e e an e emen a1·y open se "-" 

1 

These sets forjr1 a basis for D(a)exp a, hence it suffices to show 

S r, G + 0 :for each such 

have pairwise disjoint neighbo11rhoods, and tb,1s we can select pair-

wise disjoint BP , 
1 J 

• • •, Pr € B • ~. p. 
J J 

Now, i:f we put r (
""' AJ ) h f(r,s) ~ G = n1 , ••• ~nj , we ave ir;.,. , 

X 
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• 

. . . ~ ~<r,s) 
which follows immediately from the definitions OJ. J. and G. 

Hence we have Go S + 0, and Sis dense in D(a)exp a. 

_ a, for • each 1 e I, 

S = x{s.: i e I} is dense in R. 
]. 

s.c 
1 

a. Obviously• 

Now let g. be an arbitra17 mapping of D(a) onto s .• Then g. is 
1 l. 1 

continuous, because D(a) is discrete, hence the product map 

g = X{g.: i S 
l 

I I}: D(a.) -+ S 

is also continuous and surjective. Since log lrl ~ a., we have 

II(< exp a, a.nd therefore 

Since S is dense in R, we have 

d(R) .~. d(S) < a 
' 

vhich proves 4.5 (i). 
Now suppose that each R. contains 

(1) 1 1 
Ui • By 4.2 (i) we have d(R) > dI(R), hence to prove 4.5 (ii), it 
suffices to show d(R) > log I I I . Suppose this is not true and S is 

a dense subset of R with IS I < log I I I .. 

same length as r. Then 

_, 
n ••. n 11'. 

1. 
J 

- . is open in R, hence there is a point 

Let us consider now the space 

( e: • ) 
(U. J ) 

J. • 
J 

I 
D(2) = X{D. (2): i e I; D. (2) = D(2)}. 

J. 1 

different indices 
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Every pair (r ,s) of the above kind deter,r1i nes an elementary open set 

in D( 2) I, Ila.rnely 

. . . (') 

and conversely, each elementary open set can be obtained in this way. 

Further1nore, to every p € S we assign a point p of D(2) 1, defined as 

follows: 

o, if 

-rr.(p) = 
1 

1, if 

..,, 
hence Sn 

~ ( 0) 
7r. (p) ~ u. . 

1 1 

• • • However,this implies 

which is in contradiction to 4.1 c). Thus 4.5 (ii) is proved. 

4. 6. (cf. 15] or [24] ) 

Proof 

The left-hand inequality was proved in 4.2 (i). To show the other 

inequality, we first consider the case in which I is finite, 

• 
l.S 

Suppose c(R) > exp a and = {G~: ~<(exp a) } is a disjoint family 

of elementary open sets in R. 

Let us define 

1 , ••• , n 

• 
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and 

I = {{;,n}: f; < Tl < 
k 

+ (exp a) and 

Since~ is disjoint, every pair { ~ ,11} with ~ < n < (exp a)+ belongs 

+ 2 
· · · ( exp a) into n 

Hence, by the ER-Lemrna A4 • 4 > there is a set A c ( exp a)+ with 

· I A I > a and a k < n such that 

This jmplies that 

R. , hence 
J.k 

which is a contradiction. 

is a disjoint famjly of open sets in 

Now let I be arbitrary and suppose that 

Thus we have a disjoint family 

in R. Let us put 

+ {Gt: ~ < B } of elementary open sets 

B}, By A2.2 

where B c 
the system { I 

a+ and IBI - 8 , which is quasi-disjoint. ThllS, if 

,.., 
I = n {It: t e B.} , . 

for , , n e B we have 
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This means that {n1(G~): ~ € B} would be a disjoint system of open 
N 

sets in ~1(R) = X{Ri: i e I}, which is impossible by what we have 

proved above. Thus 4.6 is proved. 

Remarlt 

In the second part of this proof we have shown that if c(R) > 8 then 

there is a f'inite subset r0 c I such that 

The proof' is very similar to that of 4.6. The left-hand inequality 
+ was shown in 4.2 (i). We put a, 8 = (exp a) • 

To prove the rest, we If' 
+ c~(R) > (exp a) = e held and {H: p < 8} were a disjoint family of 

~ p 2 
elementary 

where 

Ii.= {{p 1 ,p 2 }: TI-(H ) n n.(Hp ) = ¢}, 
1 p1 1 2 • 

by the ER-Lemma A4.4 + we would get a disjoint G0 ,E;-sets in one of 
.. . the factor spaces Ri, a contradiction. 

Now, if' I is arbitrary and {H : p < 8} is as above, f111•the1·1nore 
p 

I = {i 8 I: n-(H) + R.} (p < 8), we have S > exp a= (exp a)w~, 
p l. p l. 

hence by A2.2 there is a B c 8 with IBI > exp a such that 

{I: p € B} is quasi-disjoint. This, however, implies that for 
,.., p 
I = n {I : p € B} the projections ~~(H ), p e B are pairwise dis-

P i P 
joint, which is=in contradiction to the first part of' ot1r proof', 

Recall 0.13, that a is a caliber for X iff for every Ca( X) with 

with I = a and n =f= ¢. 
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4.8. 

• 

• 

(cf. 

each 

w-11 ) Suppose a> w, a is regular. Then, if a is a 

R. , so is a for R. Hence c ( R ) < sup ( d ( R. ) : i € I } • 
1 i 

Proof 

caliber for 

First we consider the case where I is finite, e.g. I= {1, ... ,n}. 

Suppose now {G~: ~<a} is a family of non-empty elementary open sets 

in R, i.e. 

G -~ -

for R1 , there 

i = 1, ••• , n} 

a (non-empty) open subset of' Ri. Since a. is a caliber 

is an A1 c = a. such that 

Then, using the fact that a. is a caliber for R2 , we get a set of 

ordinals A2 C A1 such that I A2 I = a. and 

continujng this procedure we finally obtain a set 

a.nd = Ct 

for each i = 1, n. Thus we have 

which proves that a is a caliber for R. 

(3 - ~<a} is a family of' elemen-
tary open sets in R. As usual, we put • 

I~ = {i e I: • 
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By A2.2 there is 

quasi-disjoint. If it is even disjoint, i.e. n {IE;: ~ e:. A}= r/J, then 

0, hence we are done. If, however, 

n {I : E; e A} = 
E; 

,, , 
I + r/J , then projecting our fami. ly onto the finite 

partial product X{R. : i e I_.} yields us the desired result. 
l. 

4.9. (cf. [17], VII. 19 or [6bJ). Suppose 

f: R = X{R. : i e I} -+ X 
l. 

is a continuous map of' the product space R onto the T2 space X. 

Moreover, let a-1r1A.x{ d
1 

( R) , 1J,, ( X)} • Then there is a set J c I with 

(i.e. f depends on not more than a coordinates). 

Proof' 

that f=goTT 
J 

Let p be an arbitra?·y point of R, :f(p) = y. Then ${y,X) < a, hence 

an elementary G0 ,n 1 n p . ,n 
= { 1 €, I : 1r • ( H

0
) =f: R . } • 

l. 1 

proceed by induction. First however, we 

choose a fixed point O. €. R. for each i e I, and introduce the 
1. 1. 

following notation: 

if q is a point of' a subproduct x{R.: i e 
1 

is the point of R specified as follows: 

0 1T.(q ) = 
l. 

1T.(q), 
l. 

N 

if' i ~ I, 

o. 
l. 

. .. """ , if 1 € I \ I. 

"" ,-.I I}, where Io I, then 0 
q 

Suppose that the sets Jk 

k < n < w. Then I U J k I 
k<n 

with IJkl < a have already been defined for 

< a, hence, by 4.5 (i) 

d(X{Ri: i e U Jk}) < a.. 
k<n 

Let S be a dense subset of the above partial product; Is I <a.Then 
n n 
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• 

for each q e 

that 

S we n can choose an elementary G0 ,n set H4 

Then we set Jq = {i e I: ~-(H) + R.} n 1 q 1 
a.nd 

s }. n 

in R such 

Obviously, 

f'or each n 

I J I n 
< w. 

<a.a= a, hence the induction can be carried out 

Finally, we define 

J = v {J : n < w}, 
n 

and claim that J indeed satisfies our requirements. 

For this we have to show that ~J(p) = nJ(r) jmplies f'(p) = f'(r) f'or 

all p, r €: R, or eq11ivalently that f'(p) = f(p) for all p e R, where 

If q e 8
0 

for a certain n < w, we put 

S' = {q': q e S } • 
n n 

It is clear then that S' = v {S~: n < w} is dense in nJ(R). Hence 

there is a Moore-Smith sequence {4-t :_ t € T} over a directed index 

set T such that~+ 1TJ(p), hence~+ p. Also, if' we define q by 

,r.(q) = 
1 

then we must have -

'JT .. (q' ), if i e J; 
l. 

1r. ( p) , i:f i e I , J, 
1 

~-+ p (t € T). 

For any t s T we have 

• 
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and 

and Xis Hausdorff. 

Remark 

The significance of 4.9 lies in the possibility of giving an upper 

bound for the number of factors in a product of certain spaces, when 

we originally only know the mere existence of' such a product. As an 

exa.rnple we mention the following. 

Corol.~an: 

(cf. 8-) If Xis a dyadic compact space then w(X) = x(X) (= ~(X)). 

Proof 

By definition~ there is a continuous mapping f: D(2) 8 ~ X for a 

certain S. If x(X) = a, then by 4.9 f only depends on< a coordinates, 

i.e. we can assume 8 <a.Now w(D(2) 6) = S (cf. 4.3 (i)), hence, 

w(X) < S, since, as is well-known,continuous functions do not in

crease the weight in the class of compact T2 spaces. Hence 

w(X) < S < a, i.e. w(X) = x(X). 
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5. Martin's axiom 

5. 1. The f"ollowing assertion (M) which we call Martin's axiom, is proved 

to be consistent with the usual axioms of" set-theory (cf. 6 or 

. 3 ) : 

(M) If'~ is a complete Boolean algebra satisfying the countable 

chain condition ( shortly c. c • c. ) and A~ c ~ is a subset of' 't> for 

which preserves all these sups in the following sense: 

We shall show that (M) implies exp w > w1, i.e. it contradicts CH. 

On the other hand, (M) has several interesting consequences~ which 

in the author' s opinion, make it worthwile to have as an a.l ternati ve 

to CH. 

5.2. The following assertion (R) is equivalent to (M): 

(R) If Xis a compact T2 space with the Suslin property (i.e. 

c(X) = w), then X has the w1-Baire property. 



Proo:f ' 

(M)-+ (R). Let {S~: ~ < w1} be a family o:f nowhere dense subsets of 

X. We 

For this we consider the complete Boolean algebra~ of' all regular 

open subsets o:f X. Since X has the Suslin property,~ satisfies the 

c.c.c. 

For each~< w1 we put 

Since S~ is nowhere dense, it :follows easily that u .A,t; 

X, hence 

Now let 1\9{,be an ultrafilter on':o 

each 

. -1.s dense 1n 

{ G~: ~ < w 1} c '\NJ is centered, since, as is known, :finite meets in ':B 

are ordinary intersections. Since Xis compact, this implies 

< w } 
1 
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Let p € n {G~: ~ < w1}. Then, by de:fini tion, for each ~ < w
1

, 

hence p S X \ u {S~: ~ < w1}. This proves (M) -+ (R). 

(R) -+ (M) Let'?J be an arbitra:r·y complete Boolean algebra with c.c.c. 

We denote by X the Stone space o:f:J3, which we identify with the set 

o:f all clopen subsets of X. Obviously, X must have the Suslin 

property. 

subsets of~ and G~ = 

is nowhere dense (and closed) in X, hence using (R) we obtain the 

existence of ape X such that p $ S for all~< w 1 • Let 1J(,be 
• 
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defined as follows 

Ge 1'1..~G €.. B and p e:.. G. 

Obviously, Vi is an ultrafilter on~ • Moreover, if a, E

R~rnark 

there is a.n 

the proof. 

, then 

and th,1s 

(R) implies that ever-y open subset H of a compact T2 space with the 

Suslin property also has the w1-Baire property. 

Indeed we can apply (R) to H end reIDark that H\H is nowhere dense 

in H. 

qo;roll!z::l 

(M) + exp w > w1• 

Indeed, the closed interval. [O, 1] is the 11nion of exp w singletons, 

which are all nowhere dense. 

5.3. Consider the following assertion 

(K) If Xis en arbitrary topol.ogical space which the S1.Jslin 

property, and c. cr(X), I I = ul 1, then there is a ' c 

l · ' I = ul 1 such that ' is centered. 

Clajm: (M) + (K) (cf. [23]) 

Proof 

Suppose 

with 

of X. This does not resuJ.t in any loss of generality, beca1.1se, a.s ea.n 
• easily be shown, open sets 

(n) 
••• () Int G = 0, 

and therefore the G~ could be replaced by Int G~ • 

.As is known, the set B of all re ar open subsets of X constitutes 

a complete Boolean algebra under s11i tably defined operations • 
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Obviously,~ satisfies the c.c.c., because X has the Suslin property. 

Let us now put = {Gn: n >~}and H~ =sup.A(. 

Since~ satisfies the c. c. c. there is an n0 < w 1 and an H €":B such 

that n0 < '< w1 ➔ H~ = H. 

and the Boolean 

algebra~H obtained by ''restricting'' every member o:f,S to H. Thus 

there is an ultra:filter~on~ H such that 

In other words, there are cofinally many members of 

obviously implies 

in<lJl,, and this 

Hence we can choose ' -- o "U-1.i, because the f'ini te meets in 1, ( or 

~H) are ordinary • • intersections, and thus ' is centered. 

5.4. If (K) holds and Xis an arbitrary cocompact space with the Suslin 

property, then w1 is a caliber for X. 

Proof' 

Let c cr (X), I I = w 1 and 'I.Y'be an open base :for X such that :F c 

and~ centered imply n {F: Fe F } + jij. For each G € we can choose 

a BGe such that BG c G. Then {BG: Ge } has a centered subfamily 

{BG: G€ '}, where I 'I = w1 • Then however 

¢ f n {BG: Ge '} en {G: Ge '}, hence 001 is a caliber for X. 

Caroll~~~ 

Ass11me (K) and suppose 

open subsets o:f a cocompact space X with the 

Indeed, if:f , I I = w1 , then A ' = () 

a 'c with ' I = w 1 such that n ' + 0. 

decreasing famjly of 

Suslin property. Then 

but, by 5.4, there is 
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5.5. Suppose {K). Then every product of spaces with the Suslin property 

also has the Suslin property. 

Proof 

According to 01,r Remark made after the proof of 4. 6, it suffices to 

show that any finite product of spaces with the Suslin property has 

the Suslin property, and this can be reduced trivially to the case 

of two factors. So asslime X = x1 x x2 , where x1 and x2 have the 

Suslin property, let be a set of elementa17 open subsets of X, and 

I ·. = ol 1 .. Using (K), we can choose a subfamily 'c with 

such that n1( ) is centered, and then applying (K) again, we haves 

'' c ' with I '( = w1 for which n2 '') is centered. Now it is 

obvious that any two members of '' intersect, hence cannot be 

disjoint. This completes the proof. 

5.6. If Xis a first countable cocompact space with the Suslin property 

and every closed subspace · of X is cocompact, then X is separable• 
provided (K) holds. 

Proof 

First we show that 

and let S = {pt: t 
d(X) = w1 is impossible. Indeed, suppose d(X) = 

< w1} be a dense subset of X. We put 

Then {G~: t < w1} is obviously a decreasing family and each G~ is 

H n S = 0, hence Int H = rt,. Let p e;; H be arbitrary, and {V : n < w} 
n 

a neighbourhood basis for p. Since p € H~ for each ~ < w1, we can 

an a c::: w1 , Jal = w1 such that 

Then, however, Vn c n {G~: {. e a} 
0 

Thus there is a.n n0 < w and 

= H, in contra-
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diction to Int H =¢.Consequently, d(X) = w1 is indeed impossible. 

Suppose now d(X) > w1 is arbitrax-y. By 2.25, there is an Sc X with 

Isl = d(S) = w1 and c(S) < c(X) = w. Then Sis a cocompact space~ 

which is first countable and has the Suslinproperty, because S has 

it. Moreover, d(S) < d(S) = w1 , but d(S) = w cannot hold, because, 

by 2.26, this would imply 

d(S) < d(S).a(§) = w, 

which is in contradiction to d(S) = w1. 
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Consequently, Sis a first countable cocompact space with the Suslin 

property and d(S) = w1 , however this is impossible by the first part 

of 01.1r proof". Thus 5 .6 is proved. 

Corolla1·y: ( cf. ) 

If (K), then every per:f'ectly n01°iiJal compact T2 space X is heredi

taxily separable. 

Proof" 

By the Corollary of 2.26, it suffices to show that every closed sub

space of Xis separable. However, it is well-kno'W!l that Xis heredi

tarily Lindelof, and therefore also hereditarily ''Suslin'', and thus 

5.6 can be applied to every closed subspace of X. 

Remark 

As is shown by Example 6.10, first countability is insufficient to 

imply the hereditary separability of a compact T2-space X with the 

Suslin property, although if (M) holds> it implies the separability 

of X by 5.6. 



64 

6. Exampl_e_~ 
" 

• 

6.1. Let us denote by~(a) the set of all non-principal. ul.tra:filters on 

a and define 

X = av :f (a); 

a r2 . topology as follows: 

• 

we provide X with 

every member of a 

of neighbo11rhoods 

is isolated in X, while if u e .f' (a) , • then a basis 

for u is given by the sets of the fonn 

{u} v A, where A e u. 

• Then, as is easily seen, X €tr"2 , lxl = w(X) = s(X) 

~(a) is discrete in X, however, d(X) = a. 

= exp exp a, s1nce 

6.2.. Let R be the real line with the topology generated by the sets of 

:form G \A, where G is open in the usual topology and IA.I < w. Then 

RS 1J' 2 since this topology is finer the-n the usual and every co11nt

able subset of R is closed. Therefore d(R) > 001• 

We show that d{R) == w1• Indeed, let 1Js denote by Q the set of all 



intervals with rational endpoints. For each I€ Q we choose a subset 

BI C I such that IB I = I 

S = v { BI : I € Q} 

w
1

• Then obviously 

is a dense subset of Rand Isl= w1• By 2.6 (ii), this immediately 

implies 

It is easy to verify, on the other hand, that R is hereditary Linde

lof', hence (cf'. 2.6 (i)) 

h(R) = s(R) = w. 

It is also obvious that l/i(R) = w, but a(R) = w1. 

6. 3. (cf'. ) Let R be again the set of' reals and < an a.rbi trary well-

ordering of R. We define a topology Ton Ras follows: 

A basis W for T consists of all sets of the fo1·rn G , where G is open 
X 

in the usual topology, x e G and G = {y € G: y < x}. 
X 

implies ( G 0 H) c G n H , t,,, is indeed a basis 
Z X y 

• Since z € G n H 
X y 

for a topology on R, which is obviously finer than the usual one, 

hence (R,T)€ -;:r- 2 • 

Obviously,-< right separates (R,T), hence h(R,T) = 2w. We claim, 

however, that z(R) = w, i.e. R is heredita:r·y separable. We shall 

prove this by transfinite induction on the order type tp(M) of sub-

sets Mc R, with respect to the well-ordering~. 

• 

Suppose t < tp(R) and for each Mc R with tp(M) < ( we have already 

shown that (M,T(M) is separable. Now, if ( = n + 1 and tp(N) = (, 

then N is obtained by adding one point to a set of type n <~,hence 

by the induction r~1 r othesis N is separable. 

So we may a.ss1.1me that E; is a limit ordinal. 

cases: 

. . - . Here we distinguish two 
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I. cf( f;) = w. 

Then, if tp(N) = ~, N can be written as a countable union of sets 0£ 

smaller order type, hence, 1.1s ing the induction hypothesis , N is 

separable. 

II. cf(f;) > w. 

Then we first choose a D c N with IDI = w such that Dis dense in N 
> 

in its usual topology. This can be done, since R is hereditary sepa-

rable in its usual topology. 

Now, since ID( < cf(~), there is a p €.. N such that x o<. p £or all 

x e D. Then - denoting by N the initial segment of N dete1·r11jned by 
p 

p - D c N and tp (N ) < ~, hence there is a D' c N , ID' I = w such 
p p p 

that D' is dense in N in the new topology. Now put 
p 

S=DuD'. 

We claim that Sis dense in (N,nlN). Indeed, if G e.. 
X 

then either x--<.p, whence 

x >- p, a.nd then G n N + r/J 

This completes the proof. 

G ri N = G n N , hence G C"\ 
X X p X 

hence G n D +~,hence G n 
X 

, G n N =f ¢,. 
X 

D' +¢,or 
D + ¢ . 

6.4. Let (0,1) denote the half open interval of reals and let 

X = w, x [O, 1) 

with the topology induced by its lexicographic ordering. Then Xe.~ :. 

a,nd obviously X is connected. X is sometimes called the ''.l,ong-;Lip,~''. 

It is easy to see that x(X) = w, but k(X) = w1, which shows that 

2. 18 cannot in general be improved. 

( c:r. [5 ]) 

Let X > w be an a.:rbitra.ry inaccessible cardinal. For each a < 1 we 

define e>.a. as the one-point compactification of D(a), and put 

n = X{O: a< A}. a • 

• 



Then n e 'd3 and, obviously, c ( n) = A • However, ri does not contain A 

pairwise disjoint open sets, since A is a caliber ~or every n
0

(a < A) 

and A is regular, hence, by 4.8, A is also a caliber for n. 

This shows that in 3.1 the condition of' A's singularity cannot be 

dropped. 

6.6. R. Jensen has shown that if Godel's axiom of' constructability 

holds (V = L), then for every non-weakly compact inaccessible cardi

nal A there is an X e. ~ such that IX I = A but X does not contain A 

pairwise disjoint intervals. Thus, since V = L ~ GCH, s(X) - A by 

2.9, because A is strong ljmit. However, X cannot contain a discrete 

subspace of power A, as follows from 2.8 (ii) and the choice of X. 

This justifies our rema.rk made a:fter the proof of 3.2. 

6.7. Let F = {0,1} with the T0 topology in which O is isolated but 1 is 

not. 

Looking at 

w(F0
) < a. 

the elementary open sets in Fa, 

On the other hand, if' we define 

o, i:r n = ~ 

1 otherwise, 

• • • 1.t is obvious that 
a 

p~ € F f'or ~ < a by 

then < a} is a discrete subspace Ct of F. Consequently 

W(Fa) = h(Fa) = ( N) ( N) z F~ = s F~ = a. 

It is easy to see that for the point qo € Fa. with 

= O for all n < a, 

6 • B. If' D( 2) is the two-element discrete space, then si1,1i l.e,rly as in 6. 7 
we can show 
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• 

From this and 4.2 (ii) we obtain 

Finally, since D(2) 0 is regular, by 2.3 {i) we have d(D(2)a) > log a. 

This, together with 4.5 (i) yields us 

d(D(2) 0
) = log a • 

Let R be the set o:f real n1.nnbers with the ''Sorgenfrey'' :toP.oloSl,, i.e. 
• 

the one deterroi ned by all half open intervals ._x,y) as a base :Car the 

open sets. It is well-known, and easy to show that 

d(R) = h(R) = z(R) = s(R) = x(R) = ~(R) = L(R) = w, 

but 

w(R) = exp w. 

Also, Rx R contains a closed discrete subset o:f power exp w, hence 

s(R x R) = L(R x R) = exp w. 

This shows that 4.4 cannot be improved. 

-:;.10. Let r* = I x {O, 1}, where I = [o, 1] a.nd r* is provided with the 

lexicographic ordering and the order topology deterxai ned by it. In 

other words, every point o:f I is ''split'' into two. 

known as Vrrs9;h.n ' .. s ,.space_. Obviously r* e ~ and 

• • This space is 

L ( ) ' { 1 } C Iw et J = 0,1 and J = J x be considered as a subspace of 
* I . It is easy to see that J' is homeomorphic to the space R of' 6.9. 

Therefore 

* s(I x exp w, 

I 
' 

• 

! 
i 
' i 
' ' ' 

' 
' 



..... }If 

though I x I € ~ a,nd 

This justifies 011r remark a.t the end of 5.6. 

6.11 (cf. 2.3). If Xis a completely regular space, then X can be embedded 

as a closed subset of a completely regular space Y such that Y\X 

is discrete and 

Proof.. Embed 

* 

d( Y) = log w( X) • 

y =XX {p} u A 

satisfies 011r requi rem.ents, if we refine the subspace topology of Y 

by ma,k ing all { a} , a E: A open .. 

• 
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AO. Notation 2 conve~ti,~~.~ and_ pr~,;regu~si tes 

AO • 0 Sets , ordina,+p, and, cardinals 

A,B, C, ••• A' ,A' , ••• 
a 

Or 

t, n, e, µ, ~, ••• ,,,, t , ... 
n 

Each ordinal is the set 

of its predecessors 

Some consequences are 

• 

stand f'or 

• 

ordinary sets in naive set 

theory, or e.g. the Zerrr:,elo

Fraenkel set theory with the 

axiom of' choice, but vi thout 

CH or GCH. 

families of' sets 

the power set of A 

the e1npty set 

the f'a.mily of r-elemeut 

subsets of A 

the class of all ordinals 

ordinals ( ''variables'' ) 

= {nln < t;} 

n < ~ < , ""'> n €. ~ , 

Or=¢= 0 notation 
• m1n 

successor of n =nu {n} 



(For Ac Or) sup A 

accordingly sup¢ 

r; + n 

• 
, + 1, or more precise1y r;; + 1 

Card 
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VA (is an ordinal!) 

¢=min Or 

the ordinal which is the (ordinal) sum 

of r;; and n 

successor of,=~ u {r;;} 

the class of all cardinals= initial 

ordinals 

The cardinality of A, resp. t• 
finite cardinals(= members of w) 

infinite cardinals, or, if explicitl.y 

stated, arbitrary (finite of infinite) 

cardinals. 

The increasing sequence of infinite cardinals is denoted by w,,; e: Or: 
r;; 

w0 = w, w1 , w2 , w
3

, ••• , w,, ••. 

The finite cardinals = the finite ordinals are the natural n11mbers: 

0 = 0, 1 = {0}, 2, 3, ... 

a a+B, a. S, 2 , a , 
n 

a 
n 

are cardinals defined as 11.s11a,1. (Note that 
n<z; 

a+a = I a+S I ' a.nd a+S = a+B ~~ > a<B. If a is an initial ordinal, then a+ 1 

may either mean: the cardinal s 11m > 
• i.e • a+1 = a, or, more frequently, the 

ordinal successor of a • : a+ 1 = a+ 1 = a u {a} • It should be clear from the. 

context in which sense+ is meant). 

(For A c Card c Or) sup A 

+ 
a 

a = is a limit cardinal. 

is a successor cardinal 

CH= continuum hypothesis 

GCH = general CH 
1 expa = exp a 

e a 

U A (as before; note that 

A c Card ~UA e: Card) 

the cardinal successor of a= 
+ 

a = w~+1 
~ is a ljmit 

-
ordinal 

t is a successor 

ordinal (or 

38E:Card, a 
2Wo 

2a = 

equivalently 

= a+> 

+ 
a 

2a = 1? (a) I 
exp(exp(n-1)a) 



• 
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loga. 

y loga. 

Ya (used in A2.3 only) 

1'J( a) ( llSed in A4. 3 only) 

Some consequences a.re 

min{sf26 > a} 

ro:i n { 8 I y B > a} 

mi n { B I 8 Y > a } 

min{Blo.8 > a} 

exp(loga) > a 

log(expa) < a 

Y1og(a0 ) < &.Yloga 
9111~ II 

(Y a)Y = a"Y 

(Y,a Y) = 

GCH =::) 1J, = cf ( see AO • 1 • 11 ) 

arithmetic, such as (o.8 )Y = a 8 •Y, Simple ruJes for cardinal 

I ti) (a)! = 2a, a< B⇒\Jy ya < y 8 etc. a.re assumed to be well k.now·n. 

The fundamental theorem of' cardinal arithmetic is Va • . a. a. = a., which 

has such well known consequences as a+S = a.B = max{a,S}, 

a 0 = (20.)a = 2°, a 8 = (a+s) 8 • Famjliarity with the principles 

of transfinite induction is presupposed. 

Proof of a.a= a. Define a wellordering on Or x Or as follows: 

E: 0 r, and vellorder First --

< ( 1 , r; ) < • • • ( ~, , ) < • • • f'or 

r; < 1;'. 

• • • < ••• 

(ordertype A,=t + 1 ~,).Then~ 

ve put (n,;) < (n',;') iff 

This gives a wellordering and hence a frmction 4>: Or x Or ➔ Or. 

Clearly for all a I q,(a ,O) I = (a I. (o: I . Suppose that for some 

a ~(o:,O} > o:. Then for some (~,n) ~(~,n) = a and max{~,n} =def 0 < a. 

Clearly ~(8+1,0) > a and hence le+11 2 = fef 2 >a> a> lel. Now let 

a 1 = e. Repeating this procedure 

a> a 1 > a2 > ••• 

Card. 

A0.1 Cofinality. 

.. of ('ardinals, 

we find a decree.sing sequence· 

contradicting the wellorde~ing of 

Let {X,<) be a fixed linearly ordered set. Then a set A is called 

cofinal in X if A c X and Y x e X 3 a E: A x < a. 



• 

The 90,~i.nal.i ty 

c :f X = min { I A I 
o:f x, c:f X, is def'ined by 

I Ac Xis cofinal in X} 
• 
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E;icaxnples. If X has a largest element., x 1., then {x1} is co:final in X. 

So (X has a largest element)(~ )cf' X = 1 «~ 7 cf" X < w. 

Furthe:r·11tore: cf [R = w, cf ww = w (Since lim wn = U w = w ) , and 
n w 

Il€W 

Some properties of c:f axe: 

A0.1.1. If Z c Y c X and Y is cofinal in X and Zin Y, then Z is cof'inal 

in X. 

AO. 1 • 2. E~ch; l~nearl.y order~d set { X, <) has a, co final,,. well-or~7red, Sl:lb~~t ~-· 

Proof. Define cp : Or -+ X by transf'ini te induction so that 

4>(n) > cp(i;) :for all,< n if' {cp{r;)f~<n} is not cofinal in X, 

= cp(o) otherwise. 

Then either A = { ~ ( 0 ) } or A = { ¢ ( n ) I ¢ ( n ) f cp ( O ) } is as req 11 i red. 

A0.1.3. Every ordinal. l; = {n (n<r;} has a cof"ina1 subset of' order type < Ir; j. 

Proof. Let f': ltl-+, be any bijection. Define cp as above, taking 

care also that <f, ( n) > f'( n) be satisfied, if. { cf> ( e) j e<n} is not 

cof'inal with i;. 

A0.1.4. For each linearly ordered set (X,<) 

cf X = mj n { X has a cofinal subs et or order type { c} e. QarR:; 11 

Proof. < is trivially satisfied. Let Ac X be cof'inal, of' minj1nal 

cardinality. By 2 we can find A' c A such that A' is cofinal 

in A (and in X by 1) and A' is vell:- ordered. By 3 we can find 

• 

A'' c A' such that A'' is cof'inal in A (and in X by 1, hence order 

type A' ' > cf ( X) ) , and order type A' ' < I A I = cf X. Th1.1s order type 

A''= er X. By the definition of cf X., cf XE Card. 
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AO. 1. 5. For each linearly ordered set (X,<) 

cfcf X = cf' X 

Proof is easy f'rom 1 and 4. 

A0.1.6. For each limit~ E Or 

• A0.1.7. For each successor~€ Or cf w = 
E; 

w~,1..e. 
+ cf(a,) 

Proof. Suppose Ac CL 
+ 

satisfies IA I < 

~ < a 
+ a,nti hence I t I and so also < a , 

Thus sup A < 
+ and A • cofinal CL , 1.5 not 

A cardinal a. is called regular_ 

sine,;ula~ 

-~trong limit 

CL. Then for each 

I sup Al luAI - < -
• + in a • 

l.• f a.= cf a. 

if a > cf' a. 

if 'la < a. 

+ = Cl 

~ E 

a.a 

A 

- a,. -

< a 

w~~ly _i,P;_ac9ess~ble if a. is regular limit 

strongly i~accessible if a is regular 

strong limit. 

Notice that it follows from 5 that each cofinality (cf x. cf a) 
• • is a regular cardinal. For 7 we may now read: each successor 

cardinal is regular, or eq1.1j valently: each singular c-a.rdinal. is a 

limit. As to the existence of regular limit {= weakly inaccessible) 

cardinals, see A6.1. 

A0.1.8. For two cardinals a,e with S <a.the following conditions are 
• eqwvalent: 

a) cf a = e < a. 

b) Bis the mjnimal 

and 

cardinal 

V n < a 
that there exists a sequence of ordinals 

r < a .,Tl 

sup{?; In< B} = a 
n 

' 
' 
i 
' 
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c) 8 is the minimal cardinal such that there exists a sequence of 

cardinals (a) with 
n n<S 

n < n' < a < a < a 
n n' 

each a is regular (e.g. a successor cardinal) 
n 

lim a 
n<a n 

= sup or. 
n<S n 

-- a 
n 

= a 

d) Bis the minimal cardinal such that a= a for some set of 
n<S n 

for all n < s. 

Proof. (a) #-(b) by definition. (c) ~ (d) and (d) >(b) hold 

trivially. As to (b) ~ (c), define or. by transfinite induction 
n 

on n e.g. by 

a 
n 

-- I U{a , ln'<n} 
n 

(Check that a < a :for each n < a). 
n 

For every cardinal a the following cond.i tions are eq11i valent: 

(a) a is regular. 

(b) each cofinal subset 

(c) a = 

B > 

n<S 
a 
n 

for some 

a or ] n < B 

of a has order type a. 

set { ct In< B} c Ca.rd implies: 
n 

a 
n 

A0.1.10. For every cardinal a 
cf' a 

Cl > Cl 

cf a Proof. Suppose f: a ➔ a is any ma~ping, cf a= 8 and 

sequence converging to a. We 

will define a g € acfa {i.e. g: cf a+ a) in such a way that 

g + f(n) :for all n < B, showing that the mapping f cBJJnot be onto. 

Note that both g and f(n) are functions a+ a. Moreover for each 

?; € B { ( f( n ) ) ( r;) I n<a } ha,s ca.rdinali ty < a < a. Thus we may 
l; r; 

define g( r;) € a \ { ( f( n)) ( r;) I n<a } arbitrarily 
r; 

for all r; < B. This yields g(r;) + (f'(n))(~), and hence g + :f(n) 
for all n < a~, and for all~< 8. 

we obtaj_n g + :f( n) for all n < a. 

Since {a jr;<S} is co~inal in a, 
~ 
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10a 

AO. 1 • 11 • 

b 

P ( ) a ( 2a )a 2a di. • roof of a • If cf 2 < a, then 2 < = contra ct1.ng 

9. Sj_mi larly for b. 

Under G CH "a i:f B < cf a 

as 2a + . f cf a< < - - Cl l. a - -
28 - B+ if' a < f3 -

Proof. Asstuning G CH, y < a 2Y = y+ <a.Now if 13 < cf a then for 

each f: B + a sup{f(n)ln<S} <a.Hence 

~<a 

< 

If c:f a< 8 < a then by 

If a< f3 then 28 <a.a< 

< a.a.2 a = a 
t<a 

9: 2a =a+< acfa < aa. < (2a)a = 2a. 

c2a)a < 2a. 

A0.1.12. On G CH. 

A0.2 

Let 1R be the class of regular cardinals and cp : R + Card be a.ny ''well-

de:fined '' function that satisfies (\/ a,S E ~): a < 6 ~ <f,(a) < 4,(B) 

and cf(~(a)) > a. 

or , 

W. Easton, [31], has shown that there is a model. of ZF + choice 

in which cp(a) = 2° for each a E: ·1t, , provided there exists a model 
+ of ZF +choice.For cp(a) = a this yields e.g. the consistence of 

G C H with ZF • Note also that, in some models, 2a = 26 

. may ho1d for some c a.rdinals a, 8 , a + 6 • 

Sometimes an ordinal p is considered a,s t_opologi,c,al spac~_., by taking 

the order topology, for which {(n,~Jln<t<p} u {[O,nJln<p} is a base. 

A class A c Or is called closed if V p E: Or A n p is closed in p. 
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A 1. 1 Let M be a set of' ordinals. A :fimction f': M -+ Or is called !.es;r,~ssive, 

if' 

and 4>(0) = 0 if' 0 €. M. 

A 1 • 2 THE!OREM [AT.EKSANDROV -URYSOHN [ 1 ] J • 

If' f': w1 -+ regressive, then_ t 0 < w1 

Proof. 

An = {t G. w1 I 

is non-increasing, we m1.1st have 
n e:. w 

and hence = 0 f'or some n E..-w,. and th11s ~ €- A • n 
Th1.1s u An = w1 , hence 

n e.. w1 

some A must have 
n 

= OJ 
1 

sequence 

the ca.rdinali ty w 1 • 

n 1 n . 
1 we can f'ind a k < n such that 

n 1 n < w, .. Now we can choose n 
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A1 .. 3 It is easy to see that A1.2 can be generalized as follows: 

Let f : a -+ _?, be re1r,:essi ve. 

( i ) If' a is re ar then < a -1 
f = a. 

(ii) If a is • 
SJ. ar then \/ 8 < or. > e. 

Proof.. The proof of' ( i) is a.n i:n1,r,ediate generalization of the proof 

of A 1 • 2. obtained by replacing everywhere w1 by a. 

The proof' of (ii) follows from (i) if we notice that a+ is regular 

and f' i B+: e+-+ B+ is regressive. 

following exa.111ple shows that (ii) cannot be sharpened. ···.··· ··. · LE. The 

Let o be si .· ..... 

that lim 8 = 

a strictly increasing sequence such 

t 
a.~ e

0 
= 0 and s

1 
= cfa. Define f: o. + a as follovs: 

:r( n) = if' t < eta 

if , ~ < cfo 

llotice also that f'or no t € a is cofi.nal in a. 

A 1. q It D is a limi.t ordinal. and M c. p an a.rbi trax·y cofinal subset of P, then 

a tunction ♦ : M -+ p is called definitely dive_rging if 

Vt < P 

This aean.s that the f11nction valiles of <fJ eventuaJJy exceed a.r17 

ordina,l, t < p,, what we also denote by lim q,(n) = P• 
n€M 

· a.nd A. •• A -+ B is an:y function, then.· 
.It A en4 B are sets or ordinals -- ,, 

l,et ,t : A + B be defined by 

:lotice that t ia 
always increa,sin.g and satisfies 1 < t, m.oreover ·• · ·••····•····.··• ..... · 

,, '. ' . . . 

•
. ( n ) Ill n :;,;;,,::::: ), .. ~ffi ~ pq ' 

. . 
sup 
n&.A 

• • V • • 

;-,;'-/,',.·,',:, :-; ,;\:",:f-,,.. 
' ' ' • ' ' t 

. . .. ··. . •. • .• . ' ''. )i' ~i½~;: 
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A 1. 5 lE-!•txrtU:L If cfp > w
0 

and A and B a.re two closed cofinal subsets of P, 

then A~ Bis cofinal, and in particular A~ B + ~- (Cf. A0.2) 

A 1.5 

Proof. If 

(nn) n E:. w 

n_ 1 < p, then define 

in Bas :follows: 

If i;O, ••• , z;n, n are defined n 

two sequences 

for n E- w or n 

let z;n+1 = min(A \ n ) n 

let 

Notice that n_ 1 < ~0 < • • • z; < n < ••• 
n - n 

= u z;n > n_ 1 • Because of cfp > w we have 
llG-W 

and B a.re closed n e. A r-1 B. 
w 

in A, and 
e:..w 

= -1, then 

• Put n 
w 

--
ne.w 

n = n 

n < p, and since A 
w 

A subset M of' a l.imi t ordinal p is s_ta~_ion!z~'.Y: _in p if M " C + v1 for 

each closed cofinal subset C of p • 

Note that, if' cfp > w then by the above lerrwa any set containing a 

closed cofinal subset of pis stationary in p. However a stationa.:ry 

subset of p need not contain a closed cofinal subset of p (let 

p = w and M = {n e...w2 I cfn = w}). But we have -2 

THE:OREM (,vl,- ~e11me_~. _[_5_3]) .. __ I_f c,f,( e,.). ?, w ,¥.~ ¥, c_ ,e i,s, ,co_:(in~l with pt 

then M is stationa1·y iff V cp : M ~ p ( <f> is definitely diverging) ·, :> 

(¢ is not regressive). 

Proof. Suf'ficiency. Let M not be stationary. Then there is a closed 

cofinal subset C of p which is disjoint fiom M. Define t: M +pas 

follows 

4>(µ) =supµ n C µ e.. M • 
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Note that sup¢ = O, and that 4> ( µ) E C for each lJ e M since C is 

closed. It is easily 

finitely diverging. 

• • • • seen that¢ is regressive, increasing and de-

Necessity. Ass1.1me that M is a stationary subset of P and 4>: M -+ P 

is definitely diverging and regressive. 

As follows from A 1. 4 we may assume that is also increasing ( replace 
• 

tf, by _t). 

Define a sequence 

< P, then let 

• in pas follows: n0 = O. If n is defined ann 
F; 

(i) n = min{n e MI q,(n) 
~+1 

(Notice that 

If t 
0 

• 
J.S a 

q,(n) > n~ for some n < 

limitord.ina.l, and nt is 

p) • 

defined for all~< ~O and more-

over U n < p , then let 

(ii) 

• 

This procedure stops at a (limit) ordinal 

Because M is stationary, this set 

t<~o 
subset of' P, and hence also 

closed and cofinal in p. 

meets M9 i.e. for some lj rui t 

= p. Clearly 

nt E2 M. Since ( nt) ~ G-t is (strictly) increasing and 
1 0 

<I> is increasing we find that 

1 

Moreover it f' ollows from ( i) that 

• 

If we combine these two inequalities we obtain 

• 

· This contradicts the fact that • • is regress.1 ve. 

• 
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Reinark. If' cf'p = w, then clearly M is stationary i:ff M contains 

a tail of' p, i.e. 

Moreover for any cof'ina.l M .. . 
c. p there 1.s a regress1 ve 

di verging 4> : M -+ p • For if' p = sup{ p • I i £ w} and p . 
l l 

i e.. w, then we may define 

' . 

= max{p. I p. < µ} 
]. ]. • 

APPLICATIONS I~ TOPOLOGY. 

A 1.6 THE:OREM [MYCIELSKI [52]] • 

+ 
D(a+) ~an be embedded as a closed subset in (D(a.))a 

definitely 

< p. 1 f'or 
1+ all 

Proof'. Let R = X{D(~) J a.<,< a+}. Since for these~ ltl = a, 

and D(~) = {n I n <~}with the discrete topology, R is homeomorphic to 
a+ 

R rv (D(a)) • Note that R is the set of all regressive :functions from 
+\ + + . + + a a to a . Now a a is stationar:,y in a and a is reg11J ar. For 

each r; €. a+\ a we choose one f E:.. R with the following properties : z; 

(i) = z; 

(ii) :f I ( z; \ a) : z; \ a -+ a is 1- 1 • 
l; 

We claim that D = {f I a< 
z; 

+ 
a} has no acc11mula-

tion point in R. Let g es.R, then g is regressive an~ hence not definite-

ly di verging (A 1. 5) ,,i.e. + . +\ I ---'~<a such that {n e.a a g(n) <~}is 
..p• al . + . coiin 1.n a, i.e. has + +. - Th . a elements, because a 1.s reg11J ar. en since 

(ti < a+, there is a~• <~such that lg-,(~•))= a+. (Cf. A1.3(i)). 
+ Chaos e two elements ~ 1 , ~2 E.. a \ a such that g( ~ 1 ) = g{ ~

2
) = t • . Then 

· { f' €.-R I f'( t 1 ) - f'( t 2 ) = ('} is an elementary open set in R which 

contains at most one element, f~,, of D, since ft' 
of D which assumes the value~• more than once. 

• 1s the only element 
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A1.7 THEOREM. The ordered topological space w1 =·{~I~< w1} is not 

:para.~ompact. 

Proof. Let d be an.y open refinement of the cover consisting of all 

initial segments of w1 • We will show that some n E w1 even meets 1Jn

cot1ntably many members of & • Hence 0' cannot be locally finite (not 

even point-finite, or point-countable). For 

element On€ (1 containing n. Define f: w1 

each n E w1 , choose one 

+ w1 in such a way that 

f(n) < n and (f(n), c O for all n 
n 

- 1 ( ) . .. such that f · ~ is 11nco11ntable, 1.e. f- 1(~) is not bounded. Then 

• • 1s bounded this 

inembers of eJ. 

C Q 

mea.ns that ~.f.1 

-1 ( ) .. for each n E f t. Since each 0 
n 

is contained in 11nco11ntably 

( The lernr1:1a. that each para.compact (or: metacom.pact) co11ntably compact 

space is compact, yields another proof of A 1. 7). 

A1.8 The product {n In< w1} x {n I n < w } 
1 

• 1s not normal. 

Proof. We will show that the diagonal ti= {(n,n) I n € w} and the 

right side R =,{(w1 ,n) In E w1 } do not have disjoint open neigh

bourhoods. Suppose U is any open nbd of ti. Define f: w1 -+ w
1 

in such 

a wa;y that 

f'(n) < n 

and 

By A1.2 there exists at E w1 such 

th t f - 1 ( l:') • a __ .,.,_~- 1.s 11n~o11ntable. Then 

(n~ti1) E {n} x (~, cu 

Hence (w 1 ,ti1) € U, 

proving that Un R + ~ for each neigh

bo11rbood U of /:J.. 

• , 

I 

/ 

• 
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· A2. 1 I:f CG is a. 1 arge ~ami 1y .of finite sets then does there exist a big 

disjoint subf'ami 1y of OC ? Not necessarily. 

0 1 
-3 

-2 

•••• 

-1 

OC =- { {-2 ,-3}} v· { { - 1 , t} I ~ < a} • 

Note that noc. = ~-

This situation suggests the following definition: 

A :family et::. is guasidis.joint if {A \ n c.X I A € a::. } is disjoint. 

A quasidisjoint f'ami ly is cal.led trivial if it contains only 2 sets 

(or even less). 

Rernarks (1) The following conditions are equjvalent: 

( i) 0::. is a q11a,s i di.sj oint f'amj ly 

(ii) d Z V A,B € 0C A T B . ~ A n B = Z 

(iii) YA,Bc Ct; A+B AnB= n<X 
(iv) each three-element subset of' X. is qua~idisjoint. 



• 

86 

appendix 2 

(2) It :follows easily from the Teichmul.ler-Tukey le a (or e.g. the 

eq11ivalent Zorn-lexoioa) that ¥Rl' f~~1,,1i ly o,f ~.~,t~. c~;ntain~. ;,;n.ax;i_maJ. guasi

disjoin~ and ma.ximal dis_j,9int _su~farn_j l~_es. 

Let <X be a ''large'' family, 1oz: I = a.:, of sets of' ''sma.Jl'' cardinality, 

VA E: 0C I Al < B. In this paragraph we will give estimations ( lower 

bounds)for the supremt1m of' the cardinality of g_uasidisjoint subfa1,,ilies 

of OC, in terms of a. and 8. Moreover we will give conditions 11nrl.er 

which the suprem.mt1 is actually reached, (i.e. sup = ma.x). It can be 

shown by means of exa,f'riples that the results obtained are the best pos-

sible. • 

At first, in A2. 2, we deal with the case f3 = w ( i .. e. X" is a f'a,11ii ly 

of finite sets). This case has applications, e.g. in the theorems on 
V 

the cellulari ty n1miber ( Sus lin property) and ca.li ber ( Sanin property) 

of topological products, cf 4.6, 4.7 and 4.8 (p. 52-55). 

Secondly, in A2.3, we deal with the general case. The results are 

obtained independently from A2. 2, but because the proofs and the 

exa,111ples are much more complicated:, we have included A2.2 in order to 

su~ply relatively short proofs for the applications mentioned above. 

A2. 2 le:rn111a .. Let n be a :fixed integer. If O:; is a family of n-elernent sets, 

a.nd (CC:I = a is regular, then J~c CC.. such that Xe is quasidisjoint 

and I 4 f = I OC I = a. 

Proof. The proof will be given by induction on n. For n = 1 

disjoint and we mey take 'ta. = Ct: • 
Let the lerrrrna be tr1Je if we replace n by any smaller integer. Let 

<X- 0 be a ma.x:irnal disjoint subfaJ11j ly of 0::. a.nd suppose B = IOC: l < a. 
0 

Since each A e: ct::, meets at least one member of ~ 0 , and a is reg1.1J a.r 

Since A is finite 
0 

I {A e: CX I x € A} I = a 

= a 

• 



• 
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Consider {A\ {x} f x €A€ OC.}. By the induction hypothesis this 

family has a quasidisjoint subfamily 4 1 of' cardinality a. Then 

is a quasidisjoint sub:fa,mi ly of' er,, of" cardinality a. 

{ c Cl:, A 

If' • 1s re 

• 
1S 

ar 

ua.sidis · oint} = IX l 
then .3 ~ c a:: 

Proof'. Let 11s first ass11me that I XI = a is reg,11 ar. Then .:J n € w 

such that lr:: has a subfamily of' ex sets of" exactly n elements. Application 

of' the above 1em1t1a yields a q1Jasidisjoint subf'a;mi ly of a:; of' power a. 

If' 1~1 . . + +. 
Vv = a 1s singular and B < a then B < a and 8 is re 

Hence a,s we j11st proved, there is a quasid.isjoint subfa,mi ly of' Ct':, of' 
+ . power 8 . This proves our theorem. 

• 

E 

a.· { { 1 ,2,3, ••. n} I n E: w} is a co11ntable f'a,roi ly of :finite sets whose 

only qiiasidis joint subfamilies are trivial (i.e. conta.i n two sets) • 

b. If' a is sin ..... ar and I a.I = a then OC: need not contain q11asidisjoint 

sub:families of' power a. Let be a strictly increasing 

sequence, converging to a, and a 0 = 0. 

(0~1) (1,1) (1,2) 

•••••• 



• 
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maxjmal quasidisjoint-but-not-disjoint subfarnilies of Cl::, , a.nd 

disjoint, then 

cfa < a. 

A2. 3 THE:OREM.( C4o], (49], (60]) Let~ be a family o:f sets such that CX:: 

VA € ~ A ~ s 
(i) su· ~ _.. .......... __ _ 

= mi.n{y Ira> a}. 
de:f 

• 

a and 

(ii) Moreover 2 if a. is reg11J ar, then. th.ere exi~ts a 91l.8.si~sj o.;~t 

k c Ct: such that ~ , 8 
--

Before we prove o:f the theorem, we present some examples a.nd simple 

lemma's. Note that the case a< 28 is trivial. 

0 

For an;y S, y let ~ be the ~ami ly o:f all ( graphs of') f'im~tions 8 + y. 

Let ~ c CZ be a qil8si..disjoint sub:fami ly, Y 

and Z = n <X". By Z' we denote the projection 

of Z onto 8. If Z' = (3, then ~= {Z}. 

If Z' + a, then let n € 8 \ Z'. For any 
two f,g e: ~ (n,fn) i Z' = :f n g, hence 

f'(n) + g(n). Tnjs implies that 

I < I { f ( n ) I f e: ~} I < y • Hence a; 
• • satisfies: 

and 

t_ is q11a.sidisj oint : =>I k I < Y. Z'=n Z a 

z 

This implies that parL(i) of the Theorem cannot be improved • 

g 



• 

• 
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It is not hard to show that for each a,8 for which 8 a is singu]ar 

there exists a f'and:cy satisfying 

I cr;f = a and VA E 0C I Al = 8 and 

V ~ c Cl:: ~ is quasidisjoint >I~ < a 

For details see • This proves that part (ii) of the theorem cannot 

be improved either. 

lerrirnd.. For any two infinite c- ardinals a ,Y and :finite or infi:ni te S the 

following relations hold: 

(a) 

(b) 

(c) 

y < 

+ s 2 = -> 13 < 2 < a 

a 

Proof (a) If a a+ 2 then 2 < a a. 

< 2 8 · 8 = 28 , and hence 2 

• 

(c) If' o < (y 8 )+, then 
0 < f3{y8)+. 

B B B 8 + < y a.nd hence o < y < ( y ) • So 

Proof' of' the theorem. 

If 28 
> a then 8 a= 2 and (i) and (ii) are triviaJJy satisfied. So 

let 11s ass1Jme 8 a + 2, i.e. ( lerr11na (a)) : 

The proof' is,........devided into two parts. In (A) we prove ( i) and (ii) f'or the 

case that 8 a is regular. This part is a slight generalization of the 

proof in ~9]. In (B) we prove that (i) also holds if 8 a is sing11Ja.r • 
• 

• 



• 
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A. a a is regular. 

We will define 

(b) 

(c) 
• 

lex: I < 
l; 

of 0-C for each z; < 8+ so that 

Beca11se of the regularity of a. a. a.nd by B + < f3 a., (b) and ( c) imply 

(cx;I =a< 8 a. This contradiction shows that (a) does not hold, which 

proves {i) and (ii}. 

transfinite induction. Let 

been defined for all n < z; , then put 

A = 
t 

< r;} • 

For each subset K of A , satisfying I KI < B, 
l; 

(X = {A e <X\ V Ol I A n A = K} • 
1;,K n<,;; n t, r; 

If' there exist A, A' E OC K' satisfying A 
* ............ ~.IJ,I-..., ......... l;, 

n A'= K, then let 

of OC K such that 
l; , 

(d) 

If such A,. A' e 
, l;, 

be any a,rbi trary 

ma.ximal 

(e) 

quasidisjoint subfamily of (L . In either case 
z; ,K 



Finally let 

Let llS verify (b) a,nd ( C) • 

I K c C(; and I K I < 8 } 
l; 
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To verify (b), suppose that for some A € CG A 4 <X, f'or each 
+ l;; + 

This implies fAI > B+, a contradiction. 

Lett< a+ and K =An A • We distinguish between two cases: (f) 
l; 

and (g). 

( :r) 
l;, 

Then~ +(An A')\ K =(A 
. 

(g) An A' c K. Since A 

l;, * t, 
contradicting the maximality of (X K. 

t, 
This proves (b) • 

\ Ar;) • 

€ QC. , (e) implies 
,; ,K 

{A} is q11asidisj oint, 

In order to prove (c)~ note 

a+< 2 8 < a a= cf Ba. 
first that IOC I < a (by (a)), and recall 

0 
let z; < 8 + and ass iunP. that 

for all n < ,;; • 

Then also for n < r;;. 

Thus 
n<z; 

The set < a. Since 

a , 
l; 

By (a) we have for each K c A such that IKI < a 
l; 

Because of the re 

I <X I < z; 
K 

This proves (c), and completes the proof of' part A. 
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B B., .. ., a is singular. 

Each singular cardinal is limit. Let y < B a, by 011r lemma {b) 

y8 
< 

8 
a and hence { r 8 ) + < 

8 a. Let CX, * be a sub:Pamj ly of OC such 

that I oc. ,t-1 = < r 8)+. 

Since (y8 )+ is a successor and thus regular, part A yields the 

existence of a quasidisjoint c a:* c OC satisfying 

( le a ( c)) 

This proves B. 
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.. 
A3. 1 Let ti be the topological space of real n11rubers and F: R ~ ~ R a set-

val.ued ma.pping with the property that for each x E IR F(x) is finite 

and does not cont.ain x. A subset Mc R is called free if 

M n U { F ( x) I x e:: M·} = {11. 

P. Turan asked whether there exist infinite free subsets for each F. 

This was solved by Lazlr who showed that there always exist f"ree 

subsets of continuous power. Indeed for each x € ~ 

open interval I with rational endpoints such that 
X 

Since there are only co12ntably many open intervals 

we may choose an 

x e I c IR\F( x). 
X 

• • with rational. 

endpoints (and cf 2'° > w, see A0.1) there exists an interval (a»b) 

such that the set 
. 

M = {x c !R I I = (a,b)} 
X 

has continuous power. It is easily seen that Mis free. 

We can generalize this in two ways: at first there still exjst 

free subsets of continuo11s power if we replace ''F(x) is finite and 

''x, F(x}'' by the weaker condition ''x tJ F(x) ''. 

• 
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• 

Secondly we may ask for free sets of mappings F: X -+ rfJ X with 

V x € X x ... F(x) avd F(x) :finite,where Xis an arbitra1-:, set. It is 

easily seen that free subsets of power Ix) also exist if lxl = 2a, 

a is arbitrary. One can prove this by replacing~ by the generalized 

Cantor set {0,1}0 of weight a. 

This suggests the following more general definitions and prob1ems. 

A3.2 DEFINITIONS 

A map F: X ➔ 5) X is a set m~,J2Pina if \Jx E: X x f F(x). 

A subset M c X is free ( under the set mapping F) if V x,y E: M 

x f F(y) and y f F(x), 

We will investigate conditions on set mappings F: X > r:P X which 

g1Ja.rantee the existence of free subsets M c X of power I Ml = I xi . 

Rerne.rks. 

( 1) If F: X ➔ tPx is a set mapping then it is easily seen that M c X 

is free iff 

M n l) {F (x) I x E M} = r/J 

( 2) From the Teichmuller-Tuk.ey 1~1·,,xr1a it follows that for any set 11,ap

ping F:X -+ lPX and free subset M c X there is a ma.ximal free 

subset M* such that M c M* c X. 

(3) For each X there exists a set mapping F: X-+ \YX satisfying: 

a.nd 

Vx EX 

VM C X 

IF(x) I < !xi = a, 

M is free ;, I MI < 1 

In particulars under ass1J1rtption o:r the C' R, there exists a set r«1a.pping 

F: R + PR such that: Yx e X IF(x) I < w 

and 

Proof. Well-order X: 

VM c IR M is free ⇒IMI < 1 

; < a} and put F(x ) 
~ 

= {x I n < t} n 



A3. 3 In 1936 S .. Ruziewicz [ 55] asked: 
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Does '' IX I = ex > 13 and F: X -+ JJx is a set mapping such that V x E X 

IF(x) I < 8'' imply: ''3M c X !Ml = a and Mis free''? 

Pa.:rtia1 positive solutions were given by Lazar ( 8_,, f'or a 

reguJ ar), Sierpirtski { 57-' , for a = w), G. Fodor { ._ 3 , for cf( Ci.) 
• 

P. Erdoe ( [38] :for all a > S, but ass11ming GCH).Finally A. Hajnal, 

L.44:....1 » proved in 1960 that the answer is alweys yes, without using 

G.C.H. We will prove Hajnal's result in two steps, at first for the 

case B < cfa (A3.4) and then, in the general case (A3.5) . 

..;;.I..;;f'_~x;;;.i..__=__,;a;:..:,~-...::8;;__< __ c::.::f::..;a:::..._.~a~n~.!:d;__:,F..::....=:X:_:-+_.J:l?~X~s~a~t~i;!:s~f:.=i::.::e:.:::..s 

Vx c: X X F --
_Y~x___,E.__,;;X ___ --r.,.;F_ x < f3 

then 3M c X 
I I 11111 I 11J =. a,, and M is free. 

Proof". Ass11rue V M c X M is :free =9' I Ml < a. Let s0 be a maximal. 

free subset of X, 1s0 J < a (see remark (2)). If for some v < a and 

all n < v we defined S satisfying 
n 

Is I < a 
n 

s • a 1oaJCimaJ :free subset of" X \ u st l.S 
n ~<n 

then let s be a maxi.mal f'ree subset of X \ u s • Put 
V n<v n 

)( u s = s . 
v<f3 V, 

' 

then 

I S *f < a. , be ca11s e B < c:f ( a) • 

Let s :,it:,i« = s* u U{F(x) I X E: s*} 

then I s MJ( l < I s*I + s Is)( I < a. 

Hence s)')( + X • 
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I( Ii( 
Choose ye X \ S . Then 

S u {y} is not :free, by the maximality of S • 
V V 

I • e • either 3 x E S " \) 
y € F(x) 

V 

(which is impossible because y f Sx~) 

or 3x e S 
V V 

X € F(y). 
'V 

Thus F(y) meets each member of the disjoint family {S I " < S}, hence 
" 

IF(y)( > 8 . This contradiction proves the theorem. 

A3 • 5 MAIN 1'8 &:OREM ( .a..&. AL 

If I xi = a a.nd B < a, and F: X -+ t?x satisfies 

then ]Mc X 

Vx e X 

Vx e X 

x ~ F(x) 

IF(x}I < B 

IMI = a and Mis free. 

Proof. Beca1Jse of A3.4 we may assume that a is singular and 
+ y = cfa < 8 < be a strictly monotone increasing 

sequence of re ar cardinals (e.g. successors), converging to a 
+ * 

a new sequence 

a way that 

(i) \/t < n < y 

(ii) Vr, < y 

(iii) \:/t < 

of disjoint sets 

induction in such 

= X 

-
Asstnne that n < y and the A~ are defined :for a.11 ~ < n. 

U {F(x} I x € f'or n € w • 

• 
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Then put A 
n 

to see (ii) 
= U An. Now (i) and (iii) are trivially satisfied; 

nE:w n 
note that IA*I = a is regu1ar ann n n 

, < nl I < 
~<n E;<n 

< a • 
n • 

By A3.4 there exists a free (under FIA) subset B 
n n 

CA 
n 

satisfying 
• 

= a for each n < y. 
n 

Next we define sets C c B for all n < y, satisfying 
n n 

(iv) 'efn < y 

(v) 

C I= IB I= (l n n 
F(x) n C = ¢. 

~ 

If the C~ are defined for all E; < n, where n < y, then put 

Then 

and also 

Let C 
n 

H - U C 

< a < a 
t<n t n 

I UH F(x) I 
XE: 

n 
< B • a = IB I . n n 

• 

Notice 

= B '-._ VH F(x). 
n xE: n 

that (iv) and (v) are fulfilled. Yet there sti1l ma.¥ be (many) 

X € C 

( vi) 

(vii) 

(viii) 

Vt; < y 
+ 

Vf, < y VP < a 

< y 

Construction of 

,P 

ot cc~ 

~p 

,P p 

been defined~ satisfying (vi)-(viii). 

--

• To avoid this 

p < 
E; 

of every D 
~ 

F(x) n D (p) = ¢. 
n 

and Dr have 
~,P 
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w 

For each x e: C , IF(x) I < S and thus ]p{x) < B+ 
n 

,P n 
. o+ ther·e is a p < P 

n such that 

D = {x e C I p(x) = p } 
n def n n 

.I , 

p>p(x) 

has a elements. Let {D I p < S+} be any partition of D in 8+ 
n n,P n 

disjoint sets of power ID f = a > B+. Check that (vi)-(viii) are n n 
satisfied. 

+ y - + 
and a is regular, ] p < B such that 

Put 

+ smaJler then e. Since 

p~ < p for all t < y. 

+ y < s 



f;<y ,,p 

then F(x) n D -= ~ n,p 

--

by ( vi ) and { v) • Moreover 

F{x) n D -=~for all n <~by (viii). This proves that n,P 

M n U {F(x) I x e M} = ~ 

i . e. M is free • 

A3.6 Application. 

hajnal's theorem is used to prove a lemma of 3.3 (p.40): 

Suppose XE ~ ~(X) = A where~ is one of the functions s,h,z and 

cf A = w. Then the answer for the sup = m.a,x problem is positive. 

99 
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A4. 1 Definitions 

A4 Partition calculus. Ramifications 

For every set S and ea.ch natural nu111ber r 

s] r = {X I X c s A IX I = r} 

A partition of r .. 
• 

r -- ~<y 
is called an r-partition of S. 

•• It 

In general ve do not require that the classes of the partition are 

disjoint. 

If Ac Sis such 

A is homogeneoiJs 

The symbol 

that for some~< y [A]r c I, then we say that the set 
t 

( 1 ) CL -+ 

is to be read ''a a:rrows 

statement: 

• 

• • • 

' 



• 

• 

• 

• 

I:f 

(2) IS I = a and 
• 

then 

( 3) __,~ < y 
• 

I:f 8~ = S for all~< y then we may also write 

• 

I:f y is finite we may replace (1) by 

The negation of' (1) is expressed by 

We put the fo.llowing restrictions to the use of ( 1): 

• Ct is infinite 
• 

r is finite, but r > 0 

y is either finite or in:finite, but y < a 

is either finite or infinite but 
• 

• 

r 
C 

• 
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• 

• 

• 

• 

< a for each 

< y 

Only· in example 4° below we do 

mention what results follow. 

not assume this restriction and 

A4 • 2 E:xa qiple.~ 

1·
0 

A 1-pa.rtition of a set S is just a partition ( or covering) of this 
• • 

set (i·f we id~ntify x € S with {x}). This yields e.g • 

c.fa = min{y 
• 

• 
• 

• 

• 

• 
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2° For r = 2 : 2 can be considered as the complete graph which 

has Sas its set of vertices. Then a 2-partition of Sis a par

tition of the set of edges. One of the earliest results in par

tition calculus is theorem A4.10 

due to W. Sierpinski BB]. This result can be rephrased a,s follows: 

'I.'J?.e:r~ exists_ a ,partition {I0 ,:i;_ 1} of the edges of' a c~!!!Plete a:Eh 

wi~p, 2~ :ve:r:tice,p into two parts so ~ha~. ,,a:p.y set ,9,f vertice_s i~ 

c~rmtabl~ if _it gener,ates a complete graph with al~ egp;es b~~9ng_!ng 

to r0 or to I 1 • 

Suppose (1) holds. What is the effect if we change one of the 

a, 6~, y, r or permute the S~? 

( a) If a' > a 

Proof of (a.). 

Let I s , I = a. , , 

Isl= a., then 

Proof of (b). 

Let (sl = a, 

Choose A' c A 

S r 

Choose Sc S' such that 

S r) • By ( 3) 3A c S c S ' 

r I 
_, C t 

• By ( 3) 3A c s ] ~ < y 

r c I 
E; 

C I 
~ 



(c) If y' < y then also a 

Proof of' c. 

We can generalize 

r,. Put I~ 

:follows: 

= 0 for y' < ~ < y. 

(d) If f: y' ➔ y is any 1-1 map then also a 

is infinite for each~ e y then also 

Ct. ➔ 
r' 

• 
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Proof. As r is finite it 

Let fsl = a and [s_r- 1 = 

suffices to consider the case r' = r-1. 

s<y I~. Well-order Sin order type a, 

and define the 

(i} 

If ( 1 ) holds, 3A c S and :3" E; < y 

(ii) and 

Since SE; is infinite we may assume that A has no largest wember. Now 

we claim that 

C I . 
E; 

r r-1 For let {x0 , ••• ,xr_2 } € i}¼._ • Choose x € A such that 
r ~ ) then {x0 , ••• ,xr_2 ,x} t:: c I~ by (ii and beca.11se 

,_ 
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If in £ A were the largest member of A, 

then we might have concluded 

Let 11s def'i ne a .:.(r-r') = 
t 

if is infinite 

Tb11s we obtain: 

(f') If' r' < r then 

r' ( B .:.( r-r' ) ) 
~ t<y 

(g) Substitution r,.iJ.e. I:f ( i) and 

:f: y+y' -+ y+y' \ {O} is any bijection then 

• 
The easy proof is left to the reader. 

4o The de t genera e cases and restrictions on and y, and a.. 
fA I Z J II I I U 7 

Let us consider the statement 

(i) 

without any restrictions on r~ 

I S I = a, and let be an 

Bt or y. Let S be a set satisfying 

r-par·ti ti on of' S • 

f'ied. 

For take 

= 0 or even < r then (i) is trivially satis-

subset Ac S then !Air= 



= r}. Then 

is equ,i.valent to (ii): a -+ • 

Necessity, i ==> ii~ follows from exa1nple 3d. 

Suf'ficiency. Ass11roP. (ii) and IS I = a, S r = and 

(iii)\/E, < y YA Cs 

In particular \,Jr, e C YA c S 

This yields \/ A E: 
r 

A 

= lJ I 
f,Ey\C f, 

r 

- riA r = r -> ~;..a = 

• 
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By (ii) 

(iii). 

A__,rc IE;, contradicting 

( c} If ---i r,0 < y a < B and VE; < y 
~o 

0 < r < 6 , 
f, 

ther.i (i) is not. 

satisfied. Consider the trivial r-pa:rtition (I~ t f,<y 
, all whose 

elements are empty except If, 
0 

, - r If; - S-' • 
0 

(d) If r = 0 then (i) is trivially satisfied since 

(e) For r = 0 
1 see exatttpl.e 1 • 

r = 

(f) For the case of' infinite r we mention it is proved in 

that every such analogue of' (i} is false : for any a: a f-+ ( ,. ) w 
c.u ,w • 

Other generalizations by considering partitions of the fa:ndly of a.11 

f'ini te subsets of' S are possibl.e ( cf [!i2], and 39 § 17). 

then (i) does not hold. For 

that each *. 
If, 1.s t1opty or 

consists of' oner-element subset of S. 
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(h) The case of finite a belongs to finite combinatorics; 

for this we refer to 39 § 16. 

(i) Note that it does not make any dif"ference in the meaning of (1) of 

A4. 1 whether or not we req11ire 

of A4.1. to be disjoint. 

A4. 3 S;i.1ryey of' the theore!"s and ,~ppl.~ca>;i,.i.~ns. 

~ < y} in 

We wil.l prove the following positive theorems. 

a(= A4.4) 

b (= A4.5) 

c ( = A4 .6) 

d (= A4.7) 

e (= A4.8) 

w-+ {w)r 
n 

2 a-+ (a,w) 

(2et)+-+ ((2a)+,a+)2 

The following negative results have in general much simpler proofs 

then the above theorems. 

• f' (= A4.9) 

g ( = A4. 10) 

h ( = A4. 11) 

i ( = A4. 12) 

~--- . 

(2Ct) f+- (3)2 
a 

2w++ 

20.f+ 

a -1-+ 

(w
1

,w
1

) 2 

( + +)2 a ,a 

(a+ ,r+1 )r 

(a ,r+1 )r 

- -

if r > 3 

if' r > 3 and et is singuJar. __________________ " ___________ _ 

Rema.rks.. 1 • More re1ations and many references can be found in [39 ] , 

[4 1 ] and [51 J • 

2. Consider a = A4.4. This result is best possible in 

the following sense: the statement 

• is true :for s + + = ( 2a) , s ' = a and f3 '' = a, and if either Bis 



diminished or 8' or S'' is increased then 6 ➔ 

a theorem in ZF+Choice. 
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• 1s not any more 

At :first (2a.)++ (o.+) 2 by :for g. Secondly under the ass1J111ption of' GCH 
++ a+ ++ a ++ 2 . . 

a = (2) and a I ► (a. ) again by for g, showing that B' can not 
a 

be increased. Finally 
,v ++ ...L_.,,_ ( 3 ) 2 
\Ao .-r and hence a+ 

i:f S'' = a+ and G.C.H. is asstiroed then :r yields 
++..t_.__ ( +)2 

a r-r a +· 
a 

3. Relations of' the simple :for1n 

(c:f.d,e,g,h,i) are studied e.g. in [41]. We mention the following 

results (p.437 for1r1ulae 26-28): 

If' ~{a)= min{y I ay > a} then a.+~ (~(~),a+) 2 

but 

and so 

If' we ass1,1me 

This implies 

but 

a++ (c.:fa.~a.+)2 

a.+++ ((cf'a)+,a.+) 2 • 

+ + + 2 a+ ( (tJ.,(a.)) ,a ) . 

+ = Ct • 

4. Cardinals A for which A-+ (A,A)r are ''big'' (weakly compact). 

We will deal with these cardinals in A6. 

Applications. 
a • z at 

Of' the results A4.4 - A4.12 only A4.4, A4.5 and A4.7 are applied in this 

tract. They are used in the proofs of: 

2.7 (:p.13) 

2.9 (p.17) 

2.10 (p.18) 

2.11 (p.19) 

2.15 (p.22) 

2. 16 + CORO 

4.4 (p.46) 

If' Xe t; then d(X) < exp s(X). 

If' Xe i--2 then lxf < expexp s(X). 

If' Xe I>- then xf < exp c(X). 

If' X € fJ then V, 
If' X € ~ then lxf < exp(~(X).s(X)). 

If XE T2 then lxl < exp{x(X).c(X)). 

If~= h or~= z, R = X{R.: i EI} and 
l. 

~IR= sup{~(Ri): i EI} then 

(A4. 7) 

(A4. 5) 

(A4. 4) 

'' 
'' 
'' 

'' 
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4 • 6 ( p . 5 1 ) c I ( R ) < c ( R ) < exp ( c I ( R ) ) • 

4.7 (p.53) 

( A4. 4) 
,, 

Also in proving Arhangelskii's theorem 2.21 (p.28), we 

use the ra.ndfication method, which was developed in close relation 
.. . 

to the partition calculus. 

A4.4 THEOREM [ERDOS-RADO] 

Proof'. Let 

of a subset T of' H, and 

Let 

• 

~<ex 

av < a such that 
0 

and [TJ 2 
C I 

\) 0 
• 

XO € Ro ( arbi tr8.l'Y) 

+ (for v<a) --

We will show the existence 

n n v 
JV n<v ~ <a}. 

n 

Fors e Sv we vrite: v = length(s). Fors e Sv and~< a let [s,,J 

denote the sequence of' Sv+i whose initial segment of' length vis s, 

and whose last element is,. For n < v sin denotes the initial segment 

of' s of' length n (or: the restriction of' the functions: v + a ton); 

s(n) denotes the (n+1)th element of' s (the function value of s on n). 
. + Suppose we have an ordinal v < a and for each n < v and each s' € S . n 

we have already defined a set Rs, and a point xs, e Rs, u { x0 } • Then 

we define R 
s :for each s e S and if' R ; 0 we choose x E R arbi traJ"Y, \) s s s 

otherwise we put X = X : 
s 0 

• 

• 

0 

1 Case. If' vis a limit ordinal we put 

ill 
~'), 

' , i 

: l 
! 

' j 

\ 
' 

' ' ! 
l 
' 
' 

I 
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o. 
2 Case. Irv is a successor ands= [s' ,~] 5 then we put 

• 

R 
s 

This defines R and x for each seU{S Iv< a+}. s s \) 
< a} is disjoint (cf (i) on 

p.102). By induction on v it is now easy to prove that both 

(i) 
\) 

(ii ) 
\) 

if" s,t E: s , s 
\) 

s € s } 
\) 

t then R n R = ¢ s t 

= X"-{xt I length t < ~} 

hold for all v < a+. The simple proor of (i ) as well as the cases v-O and 
\) 

vis a successor of (iiv) are left to the reader. So + suppose v < o. 

ljmjt and (ii) holds for allµ< v. If t ES, µ µ µ < v then, by 

definition of' R
5

, for each • 

S E 
s sµ s v · 

Now suppose y € X "-{ xt I length t < v}. By 01.1r in<i:uction· hypothesis 

the set 

S(y) = {s I lengths< v and y E R } 
s 

meets each Sµ forµ< v. By (iµ) S(y) contains precisely one element 

µ s µ s µ µ 
s(µ')Iµ e S , i.e. s(µ'}Iµ = s(µ). This means that S(y) consists of 

y 
all the initial s.egments of a sequence s: v 4- a. By def'ini tion of' 

R
5 5 

µ E R
5

, which proves { iiv). 

.iJ ·~ 
{~.':it 

Rs ')(s~?.· ~ii--~ 

Clearly,the 

< a} is a 

pa.rti tion of' R "{x } s s 
for each s. 

For ye R "'{x} we have s s 
ye R[s,~J< :~{xs,y} E If;. 
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From (ii +) it follows that U {R Is e S +l :/: r/J beca.1lse 
a. + - s +a_+ a a 

that R
5 

; r/J for some s e. Sa.+. Now consider H' 5 n 

I HI . So we know 

I n < a+} • Since 
+ 

s sn sn n sn 
n<a are 

different. 
+ a we have x I s. R I c s n2 s n2 

hence 

{x I ,x I } c I ( ) , s n1 s n2 s n1 

• 
• 
l.. e. the class of the partition to which 

s n1 s ~ . 

-
the point inverses of s: a+ -+ a. -, and by the regularity of a+ we can 

find an Ac a+ of power a+ and av< a. such that s(A) = {\>}, and hence 

[H'' ]2 C I 
\) , 

In €.A}. 

The following theorem and proof a.re straightforward generalizations 

of 4.4. As they do not depend on 4.4 we could have skipped this 

''simple'' case. We included 4.4 because the proof of 4.5 is more ob

scured by technical and notational d.if'ficulties, and moreover 4. 4 has 

especially many applications. 

The proof of 4. S ~ also become more lucid by comparing it to the 

proof of 4.6, Ramsey's theorem. This la.st proof can be seen a,s an 

application of the proof of 4. 5 to finite partitions. 

A4 • 5 THEOREM ( .&,;,I,&. s ] 

Proof• The proof will be ca,rried out by induction on r. For r 1 

4.5 eq11a.ls 4.4. For r = 0 4.5 reads a+-+ (a+) 1 
:t which is eq11i.valent 

a 
to ''each successor cardinal is regular'' (c.f. A4.2.1° p101). Note 
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1$ 
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such that :for l.1 < v s{µ) is a function: 

sequences s o:f length" 
r-1 

[ l.1 J -+ a. Forrr1a.lly: 

s 
\) 

Notice that IS I 
V 

µ<v 

s € s 
\) 

and n < v,again,sln 

n. 

• 

= ~ i:f 

denotes the 

i < r-1 , :for all s e· 

initial segment of s 

S. For 
'\) 

o:f length 

Suppose ve have + an ordinal v ~ a and :for each n < v e.n.d each s '€ S n 
ve have already defined a set R ' s 

s,nd a point x , e: R , u {x0 }. Then 
s s 

we define R 
s 

:f'or each s € 

otherwise we 

s , 
V 

and if R 
s 

~~we choose x e: R 
3 S 

arbi traril.y, put XS:: xQ: 

0 
1 Case. I:f vis limjt we put 

R 
s 

• 
• 

0 

2 Case. I:f vis a successor, v = µ+1 then we define 

R = R = H ifs€ S. This defines R and x for each sEU{S Iv< s O v · s s v 
<(exp(r-1)a)+}. 

As in 4.4 we will prove by induction on v that both 

( i ) if' s , t € 
\) 

( ii ) U{R ls € \) s 

s-:/: t then R s 
n R = r/J t 

= X" {xt I length t 

and 
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•• r-1 µ = rnin{µls(µ) ~ t(µ). So for some n € [µ
0

] , 
0 ~ .• , 

o s µo o 

I '"'"} = de 

• 

Now, since is disjoint, we have Rs n Rt c A n B = 0, proving 

(i ). 
" In order to prove 

(ii 1), •.. ,(iir_2 ) - are obvio1Js. Next, assume that, for some v, 

holds ands e S. Then for each ye 
\) 

[ Jr-1 . 
f': v + a defined by 

R \ {x } 
s s 

we have a f11nction 

Clearly then ye R[s,f]. This proves that 

The other inclusion, :::, , is obvio11s > hence we obtain ( ii 
1

) • 
v+ 

whereµ definition or R : 
s 

(ii) 

If, on the other hand, ye X\{xtllength t < v} then consider again: 

S(y) = {sllength s < v and ye 

• 

R }. 
s 

V 
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As in 4.4, because of (ii ) and (i }, S(y) contains precisely one 
µ µ 

elen~nt of S, for eachµ< v. Again ifµ<µ'< v and t ES, 

implies that S(y) consists of all the initial segments of a sequence 

0, i.e. because 

{Is I l V < S} < 
\) 

( ( r-1} ) 
< 0 exp a _ 

~•Cl. -

s n 
Again consider H' 

different beca11se R ~ 0 and (ii) hold. For n0 < 
s n 

all XI s n 
• • . n < r 

are 

S we have: 

s nr s n s n 1 s n 1 s n0 s n 2 s n 1 r r- r- r- r-

This implies that the index~< a for which 

only depends on the ''first'' r 

= s ( n 1 ) { n0 
, • • • , n 1 } • r- r-

This gives us a r-partition of 8 into a classes as follows: the point 

inverses of the 

s(nr_ 1) {n0 ~---~nr_2 } (n0 < n1 < ••• nr_ 1) are the classes of the par

tition. By our induction hypothesis there is av< a and an Ac B 

satisfying I Aj =a+ and CA]-r -+ {v}. Th11s H'' = satisfies 

I I + r+ 1 
H' ' = a and [H' ' ] c I\) 
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A4.6 THEOREM [RAMSEY [54]] 

Proof'. Cf. the previous proof and A.6.6. We will prove Ba,m!=,ey's 

theorem by induction on r. For r = 1 it is trivial: a partition of an 

infinite set into finitely rna.ny classes contains at least one in:rini te 

class. Suppose the theorem is true for some r € w, 

Put 

His an infinite set, and 

n 
u 

i=1 
I. , with I. n I. 

l. 1 J 

XO € Ro arbitra,:cy. 

• 

= ¢ for i • 
J • 

Now we migth proceed just as in the previous proof. However we only 

have successor-steps, which makes a more straightforward ap:proach 

possible. We will first define a sequence of sets R
1

,R
2

, ••. and a 

sequence of points x 1 ,x
2

, ••• and a sequence of functions f
1
,f

2
, ••• 

satisfying 

(iik) 

(iiik) 

(ivk) 

Suppose R1 , ••• , have been defined satisfying ( i) - (iv). Define an 

equivalence relation ,.., on , {~} by 

y-y' 

and belong to the sa.me I .. 
1. 
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As Rk is inf'ini te and 1v has only finitely ma.n.y eq11i valence classes 1 

there is one class which is infinite. Thus there .. exists a 
[{ r-1 :rk+ 1 : x 1 , • • • ,:xic_ 1}] + { 1 , ••• ,k} such that 

is infinite. Let this set be +land choose ¾:+ 1 e: +1 arbitrarily. 

Having defined ~,u and fk for all k € w, consider H = {x1,x
2

,x
3

, .•. }. 
IE r+1 .. M-

For each x = {~(l)t•••,~(r+1)} € [H] with x € Ii and 
k(1) < ••• < k(r+1) the i only depends on k(1), ••• ,k(r), because 

As in the previous proof', this induces a r-pa.?·ti tion of H into n classes: 

the point inverses of' the.map (H]r + {1, ••• ,n} defined by 

By our induction ... ,,,, 

that [H' ]r-1 • ► {i} 

otbesis there exist H' c H anq i e: {1, ••• ,n} such 
• 

for this map, and H' is infinite. Now clearly 

proving Fams~y's theorem for r+1. 

A4.7 THEOREM (ERDOS cf'. (36]). 

2 a + (a,w) • 

Proof. We prove this first for r~sulN A· 
2 2 

Let sl = a, [SJ = J 0 u J 1 and suppose [AJ c J 0 . ::=:~(Al < a• Let A0 

follows f'rom the TeichmuJJer-Tuk.ey lemma). For each x € A0 we put 

Sx = {y E: S\A
0 

I {x.y} € J 1}. From the ma,x:irnaJ i ty of A0 it :follows 
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a. is regular, 

such that 

(A ) , 
n n 

(x ) , (S ) satisfying: 
n n x n 

(i) 

(ii) 

n 

A is a maximal subset 
n of' S with 

x € A is such that 
n n Is I 

X n 

X n-1 

- rv - \,Ao , where s = {y € s '\ A I . 
X X 1 ll 

n n-

This induction break.es do-wn onl.y if A =~for some n. But then 
n 2 

[Sx J c J 1 and then 
n-1 

Is I = 
X 
n-1 

a> w. If A i 0 for each n then 
n 

{~,xn} E J 1 for each k < n < w, because 

x e: S c; S c {yl{~,y} E J
1
}. Hence 

n xn-1 ~ 
Now we will prove a -+ (a.,w) 2 :for singular a.. Let y = cf(a.) < a. = 

such that (cf. p.77) . 
• 

(i) y < a , < a < a 
r; ~ 

• • 
and a~ is regular. 

Let Is( = a -..... 
• 

u 1 1. If x € S, Ac Sandi€ {0,1} then l.et 

C. ( X) = {y € s I { X ,Y} € I. } 
1 1 

and c.(A) = U c.(x) = {y € sf3x e: A {x,y} c I.} • 
1 X€A 1 1 

If 

(ii) 

then we define inductively sets H and points x € H f'or all n e: w ~ 
n n n 

defined for i < n then we let H = c1(x 1) n H , and x € H such 
n n- n-1 n n 

that lc2(xn) n Hn =a.This is possible because of (ii). It is easily 



So let (ii) be false, i.e. 

(iii) 

Ass11me also: 

(iv) f'or no inf'ini te subset A of S 

Let B be a cardinal (e.g. some a~) satisfying 

(v) 
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Let W c H be a subset of' cardinal.ity B. For each n < y we let 

<a}. 
n 

Because of' (iii) and (i): U{W In< y} = W. 
n 

Because of' (v) : 3 n < y 

2 n n 
B + (B,w) • Hence, because of (iv): 

(vi) 3 W' 

Clea.rly this W' also satisfies 

(vii) < a 

s. 

a •S < a. 
- n 

is regular, 

Using this proced11re we can def'ine by transfinite induction sets 

M~, ~ < y satisfying 

(a) 

(b) 

(c) < a 
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(d) 

(e) 

IU{M u (c 1(M) n H)I n <~}<a n n 
(as :follows from 

(a) A (c)) 

At first we choose W c H arbitrary, such that jw = 8 = a 0 , and let 

M0 = W'. Notice that (a)-(e) hold. If we have de:fined M~ for some 

fixed t 0 < y and all ( < t 0 , such that (a)-(e) hold, then because of 

(d) a.nd f;
0 

Let W be any 

Mt = W'. Again (a)-{e) hold. 
0 

0 

Now let M = By (a), (e) and {i) (Ml =a.We claim that 

(viii) 

Let {x,y} € [MJ2 . If x,y € 

• i.e. 

The following theorem is a strengthening of Erdos' previous theorem 

for cardinals of the foI·rn ( 20. ) +. 

A4.8 THEOREM 

• 

Proof. Let r 1 , and ass11rne 

(i) 

We will show 

(ii) 3 A' c H [A• J2 c 

We will define a :ra:mi fication of H, rather simil"ar to the first part 

of the proof of A4.4. Let 



(iii) A CR 
s s 

:for v < 
+ a , 

(for each s E U{S I v < a+} :for which R is defined). 
V S . 
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I:f vis an ordinal such that R has already been defined 
s 

for alls of 

length < v, then • we define R 
0 

1 Case. If vis a limit, s 

R 
s 

--

s 
for s € S as follows: 

\) 

€ S then we let 
V 

v- s,n 
all n < 2° at once. By (i) IA J < 2a. Hence we may well-order 

s 
A : _ we can 

of A : (iii)). Define a function 4> : R '\ A -+ 2° in such a way that 
s s s s 

• 

{x,p<p (x)} € I 1 for all x € R
8 

\ A
8

, and let 
s 

(iv) R = ♦- 1 (n) = {x ER \A I ♦ (x) = n·} [s,n] s s s s 

(v) 

Proof of' ( v) • 

Notice that I U{A I length s < a+.} I < 
s v<a+ 

= .(2a)v.2a = 2a < 

v<a+ 

Hence we may choose y c 

S(y) = {s 

H \ U {A I length s < a+} • Put 
s 

€ us IY € R} • \) s 

' 

a 
for n < 2. 

S€S 
\) 
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Using the Zorn-ler,x,,,a, one can prove the existence of a sequence 

s
0 

€ S(y) which is not the initial segment of any other sequence of 
+ + 

S(y). We vill show that length s 0 =a. If length s 0 <a, then 

y E: 
so so s a 

[s0 ,$ (y)J e S(y), contra-
so 

.. . .. 0 • 
dieting the max1maJ1ty of s 0 • 

This proves { v). 

Now A'= r
1

, as follows easily from (iv). 

This chapter is concluded by some exarr,ples of partitions, which prove 

the negative theorems A4.9-4.12. 

A4.9 THEOREM[GODEL] 

as follows: 
. } 2 I~ 1s the set of {:f ,g E: [A] such that ~ is the first ordinal for 

three functions 
t<a 

f,g,h E: A 

A4 • 10 THEOREM (a) SIERPINSKI [ 58 ] 

(b) [ 47 J 
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Proof of (a). Let -< be any well-ordering of the set of real n11mbers R. 

Put 

x < y and x-< y} 

x < y but y-< x} • 

Clearly 
2 2 

A is a subset of R well-ordered by < or >, and hence A is countable. 
>< 

For suppose A is tmcountable and well-ordered by<. Let A be the.initial 
+'-

segment o:r ~ that is order isomorphic to w 1, and r = sup A , 

(r~R u {+~}). Choose (r) in R, converging tor from below. Now :for 
· n ne:w 

each nEoo A ¥.a n ( 00 , r ) is countable, but A* = U A ¥fr- n (-00 ,r ) is not. 
n IlEW n 

For the ~roof of (b) we need two well-known lemm~•s from the theory 

of completely ordered sets. 

Definition. An ordered set A is complete 

has one (and hence all) of the following 

or 9~mpletely O!dered if it 

equivalent 

(a) each subset A' of A has an inf which belongs to 

inf ~ = sup A E A) • 

properties: 

A (we put 

(b) each subset A' of A has an inf and a sup which belong to A. 

(c) A, equipped with the order topology, is compact. 

A. If A~ is a completely ordered set for each~< v, then 

A= with 

first 

Proof. We use induction on v , and so ma.y as s1Jme that 

is complete for all v' < v. Suppose A' c A. Put 

A'} for all v' < v, and 

Suppose vis a successor. :for 

order 

X{A I t < \)'} 
~ 

a ( v ' ) = inf A' , • 
\) 
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this set are ordered according to their last 

the other coordinates are equal. So this set 

= a(v-1)}. The points of 
• • coordinate, a 1 , since 

v-
has an inf in A, and 

not a member of 

ordinal. Notice that if v'' < v' < v and a(v'') = (a~)~<v'' and 

then 

such that a(v') = (a~)~<v' for all v' < v. It is easy to check 

now inf A'= (a~)~<v· 

e: AF; 

that 

B. If A= {flf': a+ {0,1}} has the lexicographic order<, and 

A' is a subset of A, which is wellordered by <, then I A' I < a. 

Proof. Suppose A'= {g I n < a+} is a subset of A whose wellordering 
n 

by indices coincides with the lexicographic order on A. Let f = sup A', 

which exists because of lemma A. Clearly f' is a limit in the order <. 

constant zero on a tail, else ~O < a,. Because f is lim.j.t, ~O must be 

a limit too. For 1·:r ~ -¼o -
defined by 

f ( ') 

0 

1 , then clea.rly 

if 

if = ~, 
1 if~> t 0 = ~, + 1 

then f~ i:rm:nediately precedes f. 

Now define a sequence 

if~< a 
o:f length • in A as follows: 

It is easy to see tha.t 

f( ') 

0 

if l; < ~ 

else. 

f~ <ft'< f for all~< t' 
f~ converge 

then 
monotonously to f. So if A'= {g € A' 

t 

< ~O, and that 

g < f~} for~ 

and :for all~< ~0 , 

the 

< ~o 



and hence 

This contradiction proves le111tna B. 

Proo:f of A4. ),,,9 { b,) • 
+ + 2 (a ,a. ) . 

• 

a. = a. 

123 

appendix 4 

Let< be the lexigraphic order on A= {flf: a. ➔ {0,1}} and< any 
2 wellordering. Consider the following partition of [A] . 

r 0 = {{f,g} I f,geA Ar< g A f-< g} 

r 1 = {{f,g} I f,g€A A :r < g Ag< :r} 

Le1maa B tells us that any A' c A for which [A' J c r
0 

satisfies 

IA' I <a< a+. Since (A,<) and ·(A,>) are order-isomorphic, the 

holds f'or 

A4.11 THEOREM [39 J 2a. -+- ( + )r. a ,r+1 if r > 3. 

same 

Proof. As in the previous proof, let< be the lexicographic order on 

A= {f(f: 

an r-pa.rtition {I0 ,r 1} of A by 

I = 
1 

{{ f f } e [A]r I ~ , ... , ; ••• ~ 1 and 
r-0 r-1 

Assume that A' = {f; , ... ,f~} 
0 r 

that ; 0 < ; 1 < ..• 

{r~ , ... ,r~ } € r 1 
0 r-1 

and {r~ , •.. ,f'E; } € r, 
1 r 

:f < 
~o 

and f E; } 
1 

is an (r+1)-element subset of A such 

~ . Then r 

and hence fl:' < fl:' 
~2 '::>1 

and hence fr < :f; 
~, 2 
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which is a contradiction. 
Ass1.1me A' c A is such that 

such that 

So the well-ordering of A'' = < ~ < a+} coincides with 

the lexicographic order, and by lemma B of A4.12 IA"f <a.This 

contradiction shows that - the 

reversed lexicographic order > on A'' coincides with the wellordering 

by indices. Again lennna B of A4. 12 gives us I A' I < a, contradictory 

to the ass1;mption. 

A4.12 THEOREM. If a is singu]a.r and r > 3, then 

Proof. Let y = cfa <a= Isl and S = = ~ and 

a for all~<~' < y. Put 

3 µ ,v < y )x n s I= r-1 and Ix n SI= 1} µ V 

If Ac Sand (Al and if A c S and A = r+1, 



• 

125 

appendix 5 

A5 ~a1-tition ,c;:a1cu11.1s,. Ca.nonical · seguences 

A5.1 In this section A will be a sin ..... ar strong l:irnit ca.rdinaJ. (i.e. 

Va.<A 2a<A and A is singular). We will study r-:parti tions of A. Let 11s 

nEw a sin ax strong limit 

cardinal, whilst under G.C.H. every sin ar cardinal is strong 

limit. The results obtajnable from the preceding chapter for A are 
0 

(by A4.5 and A4.2 3) 

(i) 'vr € w Va < 

if is a strong ljmit cardinal. Because of cf A= mjn{~IA 

we have 

Vr e: w 

A cardinal lJ:, :for which µ -+ (µ )r, a < 1,1, is cal.led weakly compact 
0. 

< X 

(cf. A6.4) • We will obtain better results than (i) after introducting 

the following notion: 

A5.2 If' Isl= A is a sin ..... a.r strong l.imit, cf' A = y and C is an r-partition 

of S into disjoint sets 1 then a sequence of sets 
• 

• 

( S ) is called 
µ µ<y 

• 

• 
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canonical with respect toe if 

the S, µ < y are disjoint 
µ (i) 

(ii) 
• is a strictly increasing sequence of cardinals con-

verging to>.. 

(iii) if X, Y e: [ U S Jr are such that 
µ<y µ 

Ix n s I= IY n s I µ µ 

then 

3! C e e, X e C and Y e: C. 

Notice that (iii) implies e.g. : 

(iv) Vµ<y 3!C e: t 

; < S} is a famjly set 

S, such that each-~ induces at most a equivalence classes in S, then 

the eq11i va.J ence relation - defined by 

X - y iff Vt< B 

induces at most a.8 equivalence cla,sses. 

Remark. This is the sharpest possible estimation: Consider 

for ~ < B by 

Provf. For each a} be the fa.mi ly of 

classes of "'~, if necessaJ".Y' supplemented by 

seen that for each f: 6 -+ a the set 

empty sets. 

{is empty. or) consists of --equivaJent elements~ whilst 

s = I~< B} I f: B-+ a} 

equivalence 

It is easily 



• 

because :for each x € S we can define a f: 8 + a such that 
~ 

XE A:f(t)' ~ < s . 
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A5. 4 MAIN THEOREM. ( The Canonization-leroma [ 39 J) 

For every set S of' power A 

r-:p9:_t·tition e, o:f S such th~~ 

( si~g!1J ~r strong _limit) .and each d~s,joint 

1-e,,.I =~<A there exists a canonical 
j $ 

system with respect t9. 'e,. 

Proo:r. At first we let (r 1 , ... ,rs) be a fixed partition of r, i.e. 

r
1
+ ••• r

8 
= r. For O < k < s we define: (Sµ)µ<y is (r1, ... ,r5 ,k)-

ca.nonical with respect to if'f 

(i) the Sµ, µ < Y are disjoint 

(ii) 

(iii) 

is a strictly increasing sequence converging to A. 

(r
1

, ••• ,r ,k): I:f X, Y E [ U< S Jr ar~ such that for some s µ y µ 

and 

X n S µ. 
1 

--

µ 1 < • • • l-1s 

Y n s 
µ .. 

]_ 

Ix n s I = IY n s l = 
µ. µ -

1 ]_ 

for i = 1, •.• , k 

r. for 
1 

• 
1 = 1 , ••• , s 

then 3!C E ~ X E C and y Ee. 
Now we use the :following lemma, which will be proved later: 

• 
J.S a Lemma some 

which is (r1 , ••. ,r
5

,k-1)-canonical. 

If 1e11n,1a A is ass11med then the proof of' the main theorem goes 
• 

as :follows: 
' 

sequence (S) which satisfies (i) and (ii) is (r 1, ••• ~r ,s)-
µ µ<y 5 

canonical. for every partition (r 1 , •. 1 r
8

) of r. Any refinement of an 

(r 1 , ••• ,rs,k)-canonical system which satisfies (ii), is again 

(r1 , ••. ,rs,k)-canonical. Thus i:r we apply le1r1111a A a finite nt1rnber 

of times {less than r.2(r2 )) wecan obtain a sequence (s1 ) which is µ µ<y 

(r 1 , .... ,rs ,o}-canonical for all pa.rti tions (r1 , ..• ,r 
5

) o:f r simulta.-
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neo11sly. It is easy to see that this system is canonical with respect 

tot-. 

Proof of' le1runa A. 

For each ~ < yand r 1 < r we choose 

s~. 
As s1m1e that :for some µ < y and all t.: < µ the 

ready. Let f: µ ~ y be such that Sk c Sf(t)· 

f(µ) > sup{f(~) I t < u} and 

( 1) 

• 

Define :f ( µ) such that 

for some f3 < A which will be chosen suitably: 

8 = 
µ ~ ~ r 

r 1+. • .rk 1 
-+ y satis ing 

f( µ) < tt, ( k+ 1 ) < ••• cp ( s ) < y as follows. If' y, y' e [s ] k ~ th.en :r ( lJ) . 

Y ...... X,cl> Y' i:f' 

3!C Ee X u Y u 

r • 

Each most 

e: = 

Th\1s the coarsest partition which r.efines aJ J these equj valence 
-

• £ a£ consists of not :more than a < 2 < A classes (A5.3). Put 

B = (2ae:) • IS I , (cf'. 1 ) • 
µ + 

that 

and 

can find a subset S' 
1J 

CL 

c1.asses 
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This completes the definition of the sequence (S') . Next we prove 
µ µ<y 

that it is (r1 , ••• ,r
5

,k-1)-canonical. 

Conditions (i) and (ii) (see A5.4 p.127) are clearly fullfilled. 

Let x, y € 

X n S' = Y n S' 
~ ' 

Ix n s• I = ~. 
l. 

and X E. C e C. 

Then 

and for some 

]. 

= r. 
l. 

f'or i = 1 , ••• , s 

1 k-1 k k+1 s 

1 k-1 k k+1 s 

Then by definition of Si 
k 

(cf (2)): 

k+1 s 

1 k-1 
u (YnSi ) u 

k k+1 · s 
€ C. 

This completes the proof of lemma A. 

As a corol.la,1-y to the main theorem we have 

A5 • 5 THEOREM • 

• 

• 

EC. 

€ C • 

• 

Rema.rk. Notice that for r-pa.rti tions with r > 3 we have a i-+ (a. ,r+1 )r 
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for singu]a.r and for successor a by A4.11 and A4.12. So there exists 

no non-trivial generalization of A5. 5 for r > 3. 

Proof. Sufficiency. Notice that a< y < A and Yv < a 8v < y. Let 

{Iv I v < a}be any disjoint 2-pax·tition of A. By the main theorem there 

is a sequence (S) < in S which is canonical with respect to 
ll µ y 

anyHCS 
• 

and v c: [ 1 , a ) 

(i) < s < Y < Is 1-
" - µ 

By A4.2 (iv) this implies 

:for eachµ< y. 

Choose one point :p E S for each µ < y and let µ µ 

Because of ( i) and y 

that 

2 
(y,8 1, ••• ,S , ••• ) there exists a S'' c S' such 

" (l 

IS'' I = y. 

Consider X = U{S I p E S''}. This X has power A, and satisfies 
2 µ µ 

[xJ c r
0

• 

Necessity. 

If y • (y,e,, •.• ,e\), ••• ) then 3S, I" v < a such that Isl = y and 

[S2 ] = u{I Iv< a} and VA c S. 
'\) 

(ii) 

(iii) 

Let 11s 

< a 
" 

for v e [1,a). 

µ µ y 
of disjoint sets of increasing f'!ardinality converging to ). • We define 

a 2-pa~tition' {r* Iv< a} on u{S Iµ< y} by 
" µ 

• 



• 

(iv) X € S A y € S } U 
ll µ 

u{{x,y} I 3µ, µ'<y µ<µ' A XE:S A yE:S • µ µ 
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A {s ,s , } E: I } 
µ µ 

( v) * I = {{x,y} I 3µ, µ'<y µ<µ' A xcS "yE:S , A {s ,s , } E: I)}. 
\) µ µ µ µ V 

v E: [ 1 ,a) • 

Notice that the seq1ience (S ) < is canonical. with respect to µ µ y 
{r* I " < a}. 

\) 

Let X c u{S Iµ< y} be homogeneous for {r* Iv< a}. 
µ 2 \) 

c r
0

• Now if (xi= A then 

A = d f{s E S I X n S =:/- ¢} has at least y elements and by (iv) 
2 e µ µ 

[A] c r
0

, contradictory to (ii). Thus ITI < X. 

If jx n S I< 1 for allµ< y and [X]2 
c I for some v < a then µ \) 

satisfies e µ µ V 

Now (iii) implies (Al= 1x1 < a\). 

A5. 6 A:ep;J..i,ca~~~n. 

A5. 4 is used to prove 3.2 (p. 39): 

If Xis a Hausdorf"f space and IX)= A is singular strong limit then 
• 

X conta,ins a discrete subspace of' power A. 

See also 6 • 6 and the remark at the end of 3. 2 . 
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A6 Large c~rdi_nals 

ar 

limjt cardinal is called weakly inaccessib~e. A regular strong li,nit 

cardinal is called (~:1t,,;r,9ngAr) inaccessible. 

Notice that under GCH each lj mi t is strong limit , hence weakly inacces

sible and strongly inaccessible are equivalent in this case. Moreover 

if we have a model of ZF + choice + GCH in which a (smallest) inacces

sible cardinal. a exists, then it ca,n easily be checked that the sets 

of cardinality < a also constitute a model of ZF + choice + GCH:, in 

which, however, no inaccessible cardinals exist. 

So it is consistent {with ZF, or with ZF + choice + GCH) to assume 

that no inaccessible cardinals exist. However it is not (yet) proved 

that it is consistent to assume the existence of inaccessible ca.rdina1s. 

Yet this will not prevent us from studying these ''large'' cardinals. 

A cardinal ). is meas11rable i:f there exists a non trivial <.:\-additive 

measureµ: P(s) +· {0,1} on a (any) set S of cardinal>.., i.e.: 

(i) 

(ii) 
(iii) 

(iv) 

• 

µ is a function ~(S) ~ {0,1} 

't/p e S µ{p} = o 
µ(S) = 1 

with a < A is a disjoint :fa.rni ly, then 
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It is easily veri:ried that the sets of measure 1 forrtt an ultra:filter 

on S which is closed under <A intersections. Conversely, each :free 

ultrafilter on S which is closed under <A intersections defines a 

measure with properties (i), (ii), (iii) and (iv). 

We first prove theorems about measilrable cardinals: 

A6.2 THEOREM: [ 59 J Each measurable cardinal is strongly inaccessible. 
Q lff er 4 I 

Proof. Suppose Isl= A,µ: 'f)(S) ~ {0,1} fulfills (i) - (iv), 

A= ........... A.Sis union of <A subsets of power <A. By 
~<cfA 

(ii) and (iv), each of these subsets has measure O. By (iv), their 

union S has meas1.1re O, contradicting (iii). 

Suppose a< < 2a. We may suppose Sc {:r I 
Hence A is regular. 

f: a+ {0,1}}, that 

S consists of sequences O's and 1's of length a. 

Let :r0 be defined by :r0 (~) = it for all~< a. 

• 
l.S: 

Now µ(S) = 1 < µ({:r
0

}) + µ{f e S = 0 + 0 = O. 
~<a ,<a 

Contradiction with (iii). Hence A is strong limit. 

A6.3 A cardinal A is called a-measurable if there exist S, µ with Isl= A 

and µ:.Q)(s) + {0,1} satisfying (i), (ii) and (iii) from the definition 

of measurable and (iv)': µ is a-additive (a. = w instead of a < A). 
0 

Obviously, w is meast1rable, but not o-measurable. 

THEOREM: [59] 

The first a-measurable cardinal is measurable; i.e. the first 

o -measurable cardinal equals the first uncountable meas11rable ca.rdinal. 

Proof. Suppose A is the :first a-measurable ca.rdinal, IS I = A~ 

µ: \Y ( S) -+ { 0, 1} fulfills ( i), (ii) , (iii), (iv)' but not (iv). Then 

there is a srr·,a.1 lest p < X and a disjoint :fa.mi ly {SE;: ~ < p} such that 

= 1 (observe that one of each two 

disjoint subsets of S must have meas11re O). 

Define µ' : ~ ( { ~: ,<p}) ➔ { 0, 1} as follows: 

µ ' ( X) = i i ff 

• 
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• 

A6.4 

Trivially (i) - (iii) and {iv)' are fulfilled byµ', µ' is 

a-measurable, contradicting the minimality of A • 

Remark. A is a-measurable a.nd >.. < >..' implies A' is o-meas11rable. Thus 

A ca.rdinal A is w~ak+Y. c~mpact if Vr < 

be shown that this is eqt1_j valent to A -+ 

In 3. 2 ( :p • 4a ) f'or weakly compact A is usAd to 

show that each T
2
-space of a weakly compact power has a discrete sub

s pace of the s a-m~ power. 

Without :proof we mention the following topological characterization of 

weakly compact cardinals (see [50]): 

THEOREM. }.. is weakly compa~~ < >,:the product o~ A s;p~_c,ep, which are_ 

~:-c~pi12act. and of' w~ight ~, }.. ~.~- ~ga~;n ).~coi:nEa.ct. 

Here A-compactness means that every open covering has a subcover of 

power less than>... 

Ramsey's theorem says that w is weakly compact. It is not provable 

that there exist uncountable weakly compact ca.rdinals, as is implied 

by the following theorem: 

THEOREM. Eac~ .. ,-~ea~J.y c9mpact c~;rQ.i,:g.~ ). is s~ro_p.gly inaces!3ible. 

Proof". Since 

suppose that 

Hence A must be strong limjt. 

Strong inaccessibility is much weaker than weak compactness (this we 

will not prove). Moreover we have: 

A6. 5 THEOREM. E:v,-ez:y_ measurable cardi~al A i.~ w~akl:( . comp~ct. 

Proof. By induction on r. For r = 1, the regularity of A 

(A)~ i~ a< A and let 

• gives u.s 



I HI == A, LH]r+ 1 = u{I I v < a.} and µ: 
\) 
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(H) ➔ {0,1} be a <A-additive 

measure. We de:fine Rn c H and xn E: Rn\Rn+, inductively so that 

and R , z; 
r:r n is 

n < A 

x have been defined and < n. z; 
limit, put R = n{R I , < n} and x e:; R be arbitrary. 

n ~ n n 
Because µ is n-additive µ(R ) = µ{R

0
) - I:{µ(R \R 1 ) I~ < n} = 1-0 = 1. 

n t t+ 
I:r n is a successor, then def"ine an equivalence relation ""n on Rn by: 

X •• _.n Y iff 

and 

belong to the same It,~< a. 

n 
Thus exactly one of these has measure one. Take this to be Rn+ 1, and 

choose x 1 £ R 1 arbitrarily. 
n+ n+ 

According to the construction there is a,: [A]r ~ a such that if 

n0 < n 1 < ••• n < A then {x ~···,x } EI { } Since 
r no nr 'no,··•,nr-1 • 

A+ (A)r Ac A and v < a such that IAI = A and ,CA]r = {v}. Then 
a 

[ { x I n E: A}] r+ 1 c I • 
n " 

A6. 6 .Coroll!;!:!X EY = A4.6 

Proof. OJ is mea.sura.ble, for we can extend { {n I n < m} m. < w} to a. 

non-trivial ul.trafilter. The corresponding meas,ire is <w-additive. 

A6. 7 De:rini tion 

* * + Let : Card+ Card be such that a< Q (e.g.: , exp). 

A is 

(i) 

(ii) 

* . . . -1na.ccess1.ble if 

is regu,Jar 

* et < A :::::::::::: > a < A 

• 
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(e.g.: strongly inaccessible= exp-inaccessible, weakly inaccessible= 
+ . .. ) -inaccessible. 

A6. 7 THEOREM. I:f 1'. is measurable and *: Ca.rd -+ Card is such that o. < a* 
' 

then A is not the first *-inaccessible cardinal. 

Proof. Let C = {a I a< A}= {all cardinals <A}. Since A is weakly 

inaccessible, C and A a.re order isomorphic. 

If we choose a measureµ on C with (i) - (iv), 

following equivalence relation - on {f I f: C 
µ 

µ ( {a E C: fa = ga}) = 1. The eqt1j valence class 

then we can define the 

-+ C} : f - g i ff 
lJ 

of a f'miction f is 

denoted by :f, the eq11i valence class_of the constant :f11nction which 

assumes the value a eve?11-where, by a • 

C = def{f' l_r: C + C}. Sometimes we write C :for {a Io.€ C}. 

Define f-< g if l,l({a I fa< go})= 1. This definition is independent 

of the choice off and g and determines a linear ordering on C (which 

on C coincides with the natural ordering), as is ea.si..ly checked by 

u.sing the fact that {x c C I µ{x) = 1} is an ultrafilter. 

In fact:1 < defines a well-ordering on C, for suppose f'
1 

>- f 2 > ... for 

some sequence in C. Then Vn < w: µ({a I f' (a)> f 1(a)}) = 1. The 
n n+ 

a-additivity of ll implies that µ{{a I Vn < w: f
0

(a) > fn+
1
(a)}) = 1. 

Hence .3a Vn < w: f (a) > f' 1 (a). But this contradicts the well-n n+ 
ordering of' C. 

Moreover, the <A-additivity ofµ gives us that C is an initial seginent 

of C~ f'or suppose f < a
0 

for some f: C + C and a
0 

< A. Then 

S<a
0 

µ({a I f(a) = 8}) = 1. Hence a
0

: 

µ( {a I f(a)_= S}) = 1._ Also, C f C, because f'or the identity map 

idc = id E C\C. Hence C\C , r/J and has a least element._We mey even 

change µ so as to make id= mj_n(C\C). For let f' = mjn(C\C). Define 

µ':lf>(C)-+ {0,1} by µ'(x) = µ(f- 1(x)) for x c C. We leave the proof 

that µ' is a. measure to the re.ad.er and we only show that id = mj n( C\C) 

relative toµ•. Suppose g is such that µ'({a(ga. <a})= 1. By the 

def'ini tion of µ', 
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µ'({a. I go.< a})= µ({SI gf8 < fS}) = 1, hence gf-< f relative toµ. 

for some a.0 € C. Now 

hence g € C rel.ati ve to lJ. ' • 

From now on we assume that id= min(C\C). 

Define A ={a€ C I a is regular} and A 
r s = {a € C I a is singular}. 

Then exactly one 

Assiune that A is 

of' Ar and A
8 

has measure 1. 

the first *-inaccessible cardinal.. We shall prove 

that v(A) # 1 and µ(A) i 1, which is a contradiction. r s 
Ass,1me that µ (A ) = 1. 

r 
Define g: C C as follows: 

g{a) = 0 if a is singuJar 

g(a) = B for some f3 < a < s* i:f a is regular. Such a S exists since a 

is not *-inaccessible; and s* < "' beca11se is *-inaccessible. 

Then g -< id, so ] S < A. : \.l ( { a I S < a < 8 * } ) = 1 = µ ( { a I a < f3 * } ) . 
Thus we have a set of power <A with measure 1. Contradiction. 

Now we assume µ(A)= 1. 
s 

Define g(a) = cf(a), a < >..; then g-< id hence .Js < )..: 

µ({a I cf(a) = f3}) = 1. Put H = {a I cf(a) = f3}. 

For each a € H we choose a strictly increasing seq11ence (~ (a.,t)) t< e 
of ca.rdinals, con verging to a. 

Define = ¢(a,t) for a EH, 

-

Moreover, ~ -< 1; . ~ h~-< hr; · }8~ < ez;. 

It is easily seen that sup ht = sup St but sup S~ < A end this is 
~<$ t<S E;<S 

impossible since (ht)t<S converges pointwise to id on the set H ror 

which µ(H) = 1. Since the ass1.1rrrption that µ(A ) = 1 is also contra-
• dictory, we conclude that A is not t e rirs -inaccessi e cardinal. 

A6.8 COROLLARY. I:f the meas 11rable ca,rdinal A is 
1 & fl I 

I {CJ € A I a is *-inaccessible} = A. 
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. o + f O ao Proof. Let a
0 

<A.Define B = a.0 orµ< a 0 , µ 
* = B :for f3 > a 0 • 

Then theorem A6.7, applied to 0
, yields that the 

* . . first -inaccessible 

> a 
0 

is smaller than A. Using this result, one can ea,sily show by 
th * . . 

induction that for all t < A the~ -inaccessible transfinite 

cardinal is also less than ).. , which proves the corollary• 

A6.9 Definition. 

a is h~per in~c,9~ss~ble of rank 1 if a is inaccessible and there exist 
l I 

a inaccessibles smaller than a. 

a is 4y per inac,cessi ble o'f( rank l) if :for all r; < n, a is inaccessible 

of rank r; a.nd there exist a inaccessibles of rank sma,ller than a. 

We can define hyperinaccessible cardinals also as fixed points of 

. ~ 1 th · · cardinal. Then 

define hyperinaccessible ca,rdinals of rank 1 as the ordinals ~ such 

For successor n 

sible of rank t, and define the hyperinaccessibles of rank r; + 1 as 
• 

the ordinals t such tµat, = ~ the 

hyperinaccessibles of rank n as the ordinals which are hyper-
• • inaccessible of rank, for all t < n. 
In a similar way as in the corollary we can show: 

A6. 10 The first measurable cardinal A is preceded by A hyperina.ccessible 

ca.rdinals of rank n for n < A. 

• 

If one is still not impressed by the enor1no1Js size o:f the :first 

measurable cardinal, one mey- define x~ as the first hyperinaccessible 

cardinal of rank ; and prove that the first measurable cardinal is 

larger than the first fixed point of this sequence. Many other results 

of this type a.re :provable (see e.g. [46]) . 
• 

The existence of an uncou:r:1table meas11rable ca.rdinal ha.s important 

implications in a,xj omatic set theory. We only mention that it is 

• 

inconsistent with Godel's axiom of constructibility and even implies · 

the existence of a non-constructible subset of w. However, neither 

GCH nor its negation can be deduced :from the existence of a measurable 

cardinal. 
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{=pseudo-character) 7(thms 2.15, 

2.17,4.2,4.3,4.9) 
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(=weight) 6(thms 2.1,2.2,2.3,2.12,2.13, 
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z ( =width) see at w 



' w .. e 1 gh t 
' 11'-we 1 gh t, 

uni. form wei.ght 
density 

• ce llular1 ty 

spread 
Lindel8f degree 
height 
width 
depth 
character 
pseudo-cha.racter 
tight,nesa 

'\ . ,.,,..11 .... 
w(X; = (J.

1 
.. xr~n ; t..,, i: ~ ~s an open 

n ( X) = w .r:r..in t i !,.. I : "'-l" ls an o:pen 
basis for X } 
!!-basis for X } 

u(X) = w.min { I Ll l: L! is a basis 
~ ;. 

d ( X ) • w • min { I S I . : S = X } 
for a u.ni formi ty compatible 

c ( X ) = w. sup { » U I : U. c t1 ( X ) , L;_ is .. 1 i s j o i n t } 
c (X)= w.sup u. c 

with ,cr ( X) } 

s X) = w.sup { ID! : D c. x; D is discrete } 
L( X) = w .. min { a : each open cover has a s ubcover of card. o. } 
h(X) = w .. sup { iM : M c X, M is right-separated } 
z(X) = w.sup {!M : Mc X, Mis left-separated} 
k(X) = w.sup { Vl ·: Ll is a strongly decreasing chain } 
x{X) = sup{min{ I ui> : u,.is a nbd basis at p} : p~X } 
\P ( X) = sup {min { I UIP f : ~ c o ( X) ~ t"'IU" : { p} } : EX } 
a(X) = sup{min{ a : pt:AcX +( 3BcA pEB ... jB =a )} : pEX } 

partial ordering of the oardinal functions established 
here for a oardinai function $,- her., = sup{q,(Y) :YcX}., 
~!, a} her .. q,=<P 
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BO 
chapter 2 for Xt Ti_; 
for ♦E{w,u,s,h,z,x, 
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........,. 
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expexp d 
2.2 
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u. 
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exp IX! 

1. 5 I 
2 ,,.1 

1 exp ( 't'+ s) 
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" •• ,._ 1s 1 •, 

"· •. ' 

-
~, 4'" '- ., ,.,. • .✓ ,,, 

·"2.] 
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C 
.19 
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~xpexp s 

I moreover : 
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iXl 

exp$ 

z h 

2.17 

L+c 

r.C = her.k. 

X is pa.rs.comps.ct ~ L:Sc 
X locs.lly compact• w=x {0 .. 8) 
X dispersed• IXl•h (2.14) 
t<n • csc~scn and X is G0 l: • 

~ ctsexp(wt.c) (2.11) 



Let X be infinite. Then we have as speaiale aases 
for X metrizahZe (i.e. u(X)=w, af. 2. 72, 2. 73, 2. 78, 2. 2?) : 

foxa X dyadic 

k ~ w = 1 = c =a= n = s = h = z $ lxl s ww 
a=x=,J,=u = w 

{cf.4.9,4.8) : 

d$tµ= x= 
C = L = k 

1T = w a 11 $ ! XI s exp w 
= w 

and w ~ exp s 

for X ZinearZ.y ordered, if j= num.?er of points with an immediate su.aoossor 
(cf.2.B,.2.10): 

L :s;; h = s = c s d = z = 1r s w=d+ j :s;; I XI $ exp c + 
either d = c (i.e. ''general'' Suslin hypothesis) or d = c 
ti> = X s C 

~or an infinite aompact Hausdorff spaae X the par'tial ordering of the 
resuZ.t;s of ahapter 2 simp'lifies as fo7..l-0«>8 : 

' 
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