
page line 

VI 12 
) 

19 
) 

26 

VII 15 

ERRATA AND ADDENDA 

(Part I) 

for the steady state probability distribution 

corresponding ... read the steady state probabil

ity distribution of (3) corresponding • • • • 

for E{ I k ( v; [ A ] ) I I x} < oo 
z 

read E{ I k(v;[Az]) I Ix} < 00 • 

VII 26 for the steady state probability distribution 
) 

VIII 14 corresponding ... read the steady state probabil-

4 

5 

5 

6 

7 

8 

8 

8 

13 

13 

14 

17 

19 

11 

21 

6 

8 

29 

1 

11 

26 

28 

3 

5 

12 

1 

1 

) 

) 

ity distribution of (1) corresponding .... 

* * for by the definition of n a point wl e:: n • • • 

* read by the definition of Q one and only one 

* point wl e: Q • • • • 

* * for xt(w) read xt(wl). 

for the probability measure ... read a probabil-

ity measure ..•. 

add which depends on the past 
w·t' 

Pa ' . 

for notations read notations 1. 

for Thus, if A is ... read Note that, if A is 

add (cf. point 2) on p. 3). 

for is given by the probability measure ... 

read 

add 

for 

read 

is given by a probability measure 

which depends on the 

A in a • • • If x ' e: A we • • • 

A 
y 

• in a ... If x' A we 
y 

. . .. . 

* for Property 6 read Property 6 . 

• • • • 

for to compare strategies ... read to compare 

strategies at t 
0 

.. . . . 



page line 

19 

20 

27 

28 

31 

31 
• 

34 

35 

36 

36 

7 

7 

24 

9 

1 

28 

5 

22 

7 

9 

for 

for be optimal ..• read 

• 0 • • 

be optimal from t 
0 

onwards • • • • 

for {s ·x' £ X} z ·x' , 
7 

read {S ,;x' £ X'}. 
z·x 

' 
for We can easily verify that .•• read For an 

appropriate decomposition of x' into simple ergodic 

sets and a set of transient states of the process 

(2.4) (cf. [2], p. 210) we can verify that .•.. 

for r(z;x1 ) def 
E { k ( u ; t ) I x

1 
} --

def 1 0 
read r(z;x1 ) t E{k(u;t

0
)jx1 }. --

0 • 

• 

add where 
J . 

P[c] (B;x' ;z) denotes the 

transition probability distributions 

for 

read 

for 

for 

read 

for 

read 

--

--
Xl 

... 
P[c] (du;x1 ;z)k(u;(C]) 

P[c] (du;x1 ;z)t(u;[C]) 
Xl 

into A ••• read into A 
y • • • • 

--

--

--

--

P[c] (du;x1 ;z)k(u;[C]) 
Xl 

• 

P[ C] ( du ; x 1 ; z) t ( u ; [ C] ) 
Xl . 

.... 
P[c] (du;x1 ;z)t(u;[C]) • 

Xl 

• 

. th 
order J 

of (2.17). 

• 

• 



page line 

36 21 

37 7 

40 5 

40 7 

40 8 

41 6 

41 22 

42 19 

add where k(x
1

;[C]) = z ( dx 
9 

; x
1 

) k ( x ' ; ( C] ) , 
X ..., 

2 

for k (x
1

; [ cJ) • • • t (x
1

; [cl) 

read k (x
1

; [ C]) • • • t (x
1

; [ C]) • 

for t(x;z) > 0 read t (x; [ c]) > o. 

for In chapter 2 of part II, (3.77) • • • 

read In chapter 2 of part II, (2.77) • • • • 

for t(x;z) = ••• read 

2) 
n for P[ C] (M. ;x ;z) l. . n . 

J 

read 2) 
n-1 

P[cj (Mi;n;x;z) 

.... 

--

--

t (x; [ A ] } 
z 

1 

1 • 

-- . . . . 

add If B = X, (2.55) represents the differences 

in expected 

s 
z·x J 

for 

read 

X and S 

1 

z 

c. 
1 

Ci j=1 
c. 

1 
c. 

l. 

1 

j=l 

costs between the decision processes 

with respect to 

n 

j=1 

• 

the S -time intervals 
z·x 

' 
n=l, 2, ..• } . 

• 

• 



page line 

48 

48 

49 

53 

63 

14 

16 

15 

14 
) 

18 

20 

add If xis the initial state, let kT·x represent , 
the random costs to inc·.ir in a period of length T. 

,.. 
If B = X, the following relation can be verified 

,.,, • 

c(z;x;C') = EkT - Tr(z;x) + ·x 
' 

where ~Tis the state at time T. 

By (2.92), we then have 

I EkT ; x - Tr ( z ; x) < 2 K • 

In other words, the difference in expected costs 

s z·x , 
X 

and S 
z 

• 
l. s between the decision processes 

unifotinly bounded in x on the 

time intervals. 

class of all finite 
• 

add where 1
1 

• the first future entry state l.S 

for if X e: A 
z 

read if X E A • z 

for read 

* 
m-1 if X £ A 

' zb m --
if • A m , X • 

zb 

add r( (z
2

)z ;x) < r(Az • ;x) = r(z' ;x) with 

c(Az' ;x) < c(z' ;x) or 
== • 

• in 
.... 
c. 



MATHEMATICAL CENTRE TRACTS 

3 

PART I 

MODEL AND METHOD 

BY 

G.DE LEVE 

MATHEMATISCH CENTRUM AMSTERDAM 

1964 



INTRODUCTION 

I 

CONTENTS 

PART I 

CHAPTER 1 THE MATHEMATICAL MODEL 

1. State, evolution and natural process 

2. Decisions and losses 

3. Strategies and decision processes 

CHAPTER 2 A CRITERION FOR OPTIMALITY 

1. Introduction 

2. The criterion function 

3. Two important choices of the sets C and B 

4. An additional property of the decision process 

5. The x-functions r(z;x) and c(z;x) 

CHAPTER 3 OPTIMAL STRATEGIES 

1. Introduction and definitions 

2. The basic problems and theorems 

III 

1 

1 

9 

14 

25 

25 

27 

36 

38 

48 

52 

52 

60 

3. Optimal strategies and the strategy improvement routines 76 

CHAPTER 4 A NEW METHOD AND SOME RELATED TECHNIQUES 

1. Introduction 

2. Summary of the new method 

3. Dynamic programming 

4. Howards policy improvement methods 

87 

87 

87 

96 

99 



Acknowledgement 

The author is greatly indebted to Prof.dr. J. Hemelrijk and 
Prof.ctr. J.Th. Runnenburg for their criticism and encouragement. 



III 

I NTROI>UCTI ON 

The purpose of' this book is t.o intrt"Jduce a new approacl1 to an 

extensive class of decision problems. Of the problems we have in mind, 

a large number refer to inventories, p2:·oductions a11d replacements .. It 

appears that problems of this type can be fo1·mulated as stochastic 00
-

§~age deci~~ .. ?n. l?r~blems,. 

In CHAPTER 1 of PART I common cl1aracteris tics of' a number of 

decision-situations are investigated .. The insigl1t gained into the 

structure of decision mecl1anisms is used for attributing basic pro

perties to a common 111a thematical model .. In each situation we have a 

physical system of which the state can be represented by a point of 

an N-dimensional Cartesian space X. The space Xis called the state 

space. 

Moreover, we observe that there is a random change in the state of 

the system. In case no decisions are made, this evolution is called 

the natural process. In the mathematical model natural processes are 

defined by means of stationary strong Markov processes in X. In ad

dition to this it is assumed that almost all sample functions of the 

natural process are continuous from the right in the time variable t 

and have in each finite time interval only a finite number of dis

continuities. For the definitions of these concepts the reade1· is re

ferred to chapter 1 in part II. 

Oviously, reflections on losses and gains play a prominent part in 

the detennination of a decision. It is no restriction to assume that 

only losses occur. In general two types of losses are distinguished. 

First, losses of which the extent changes continuously in the course 

of time (e.g. interest) and secondly, losses which have in- and de

crements at discrete points of time (e.g. sales and costs of repair). 

These costs are defined in such a way that for each time interval 

they are completely fixed by the walk of the system (cf. section 2 

in chapter 1 of part II). It will be clear that the decisionmaker, 

who is in charge, wants to prevent, or at least wants to make impro-
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bable, the most expensive excursions through the state space. 

By analysing physical decision situations we discover that decisions 

effect transitions in the state of the system. Moreover, it appears 

that in many situations decisions result in a random transition in 

the state of the system. For that reason decisions are defined,by 

means of probability distributions on the states into which the sys

tem may be transferred at the moment of the decision. It is convenient 

to assume that at each point of time a decision is made. In this stu

dy, however, we make a distinction between interventions and null

decisions. By a null-decision the system is ''transferred11 with pro

bability 1 in its present state. Both intervention and null-decision 

are represented by a point d of a so called decision space D. 

It follows from the nature of many a decision problem that in some 

states certain decisions are not feasible. Consequently, to each 

state x ex a set of feasible decisions D(x) is assigned. 

The solution of the decision problem is given in the fo1·1n of a stra

tegy. Such a strategy dictates at each point of time a feasible de

cision on the basis of tl1e available information. 

Obviously, because of the extra transitions, the natural process is 

no longer appropriate to describe the behaviour of the system if a 

strategy is applied. We restrict ourselves to strategies which have 

the property that the evolution in the state of the system can still 

be described by means of a stochastic process. In case the dictated 

decisions also depend on states assumed in the past, these processes 

in general are not Markovian. 

In order to find out which strategy is the best one, we need a cri

terion. In lemma 1.2 of chapter 1 in part I we prove that, if the 

criterion has a number of specified properties, if certain additional 

conditions are imposed on the class of strategies to be considered, 

and if an optimal strategy exists, then there is at least one optimal 

strategy, which assigns to each state x in X one and only one feas

ible decision din D. In case these conditions are fulfilled it is no 

restriction to consider only strategies z which map the state space X 

into the decision space D. Such strategies are represented by func-
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tions d = z(x) and constitute the class z. Since we have only inter

ventions and null-decisions the strategies z e: Z divide the state space 

X into two disjunct sets, one denoted by A, comprising states in 
z 

which always interventions are made, the other consisting of the 

states in which always null-decisions are dictated. 

In chapter 2 of part II, under rather weak conditions, we prove that, 

if a strategy z £Z is applied, the evolution in the state of the sys

tem can still be described by means of a stationary strong Markov pro

cess (theorem 3). This stochastic process is called the decision pro

cess and is defined for each initial state x. 

In chapter 2 of part II, theorem 2, we demonstrate that almost surely 

a finite number of interventions are made in a finite time interval. 

That is the reason why decision problems of this type can be formul-
. 

ated like stochastic ~-stage decision problems. 

In chapter 2 of part II, theorem 1, we prove that the sequence of in-
1) 

tervention states, denoted by 

' 
(1) 

constitutes a stationary Markov process with a discrete time parame

ter. 

We now come to the explicit form of our criterion for optimality. If 

w represents a realization of the decision process, let kT(w;z) de

note the total loss incurred during the period [O,T). In CHAPTER 2 of 

PART I, under certain conditions, it is proved that for almost all 

realizations w the limit 

lim 
T ➔ oo 

(2) 

exists. Note that this limit represents the mean costs per unit of 

time. In order to show that (2) can be expressed in a usable form we 

introduce the sequence of random states 

{ xt . ; j=O, 1 , • • • } ·x. J 
0, ' 

(3) 

1) Throughout this study random variables are underlined. 

' 
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which represents the states of the system at the times 

{jt ;j=0,1, .•• } if xis the initial state. 
0 

Let us assume that this sequence constitutes a stationary Markov pro-

cess wt1ich satisfies the Doeblin condition ( [2], p.192). We furtl1er 

assun1e that with respect to the steady state probability distribution 

of (3) we have 

E { I k (u; t ) I I x } < 00 , 
0 

(4) 

where k(u ;t ) denotes the expected costs for the interval [o, t ) if 11 
O 0 

is the initial state. Tl1en 1 by using known ergodic theorems, it is 

proved that for all ergodic initial states x we have almost surely 

lim 
T ➔ oo 

kT ( u.;; z) 

T 
-- 1 

t 
0 

E{k(u;t )Ix}, 
- 0 

(5) 

where u obeys the steady state probapility distribution corresponding 

to x (cf. theorem 4 in chapter 2 of part II). If the initial state x 

is transient, then (2) almost surely depends on the first ergodic 

state assumed. Consequently, if xis transient, the mean costs per 

unit of time is as yet a random variable. On the set of all ergodic 

states x an x-function r(z;x) is defined by 

r(z;x) 
def 1 -- t 

0 

E { k (u; t >I x } , 
0 

(6) 

where u obeys the steady state probability distribution corresponding 

to x. Note that the x-function r(z;x) is constant on the states of a 
. l d. t 2 ) simp e ergo ic se and represents the mean costs per unit of time 

with probability 1. The domain of definition of the x-function r(z;x) 

is extended to the transient states and thus to X as a whole by ta

king 

def { I r(z;x) = E r(z;u) x}, (7) 

where u obeys the steady state probability distribution corresponding 

to x. 

2) We prefer the na,me simple ergodic set to ergodic set, because the latter 
can be mixed up with the set of all ergodic states. 
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Note that, by (4), (5) and (6), the x-function r(z;x), representing 

the expected mean costs per unit of time, has now been defined for 

all initial states x. Obviously, the z-function r(z;x) is a good cri

terion for optimality. 

In chapter 2 of part I it is also shown that there are two more ways 

to define the criterion function r(z;x). The third one will be discus

sed now. To this end we consider the sequence (1) of intervention 

states in A. Let us suppose that the Markov process (1) satisfies z 
the Doeblin condition ( [ 2] , p .. 192). Let k(v; [A ) represent the ex-

pected value of the costs incurred between two successive interven

tions if the intervention state of the first one is v. Next let 

t(v;[A ]} represent the expected duration of the time interval be-
z 

tween these interventions. 

We now assume for each initial state x 

(8) 

and 
(9) 

where v obeys the steady state probability distribution of (1) cor

responding to x. 

It is proved that, if xis an ergodic state of (1), we have 

E{ k ( v ; [ A ] ) I x} 
z 

r(z;x) = (10) 

E { t ( v ; [ A ] ) I x} 
z 

where v obeys the steady state probability distribution of (1) cor-
..... 

responding to x (cf. theorem 5 

Obviously, we have for all x 

in chapter 2 of part I with C = 

r(z ;x) = E {r(z ;v)I x } , 

A}. 
z 

(11) 

where v obeys the steady state probability distribution corresponding 

to x. 

It can easily be verified 

are determined by 

that the functions k(u;[A ]) and t(u; [A]) z z 



a) the decision d = z(u); 

b) the natural process; 

c) the set A. 
z 

VIII 

In chapter 2 we introduce (x;d)-functions k(x;d) and t(x;d), which 

are detennined by 

a) the decision d; 

b) the natural process; 

c) the non-empty intersection 

• 

A 
0 

= n 
z e: z A • 

z 

Note that the (x;d)-functions k(x;d) and t(x;d) do not refer to any 

particular strategy z. In section 3 of chapter 2 (part I) we prove 

that for ergodic initial states x of (1) the x-function r(z;x) can 

also be defined by 

r(z;x) 
E{k(v;z(v)) x} 

=--
E{t(v;z(v)) x (12) 

where v obeys the steady state probability distribution corresponding 

to x. The domain of definition is extended to X by means of (11). This 

result implies that, if we want to compare different strategies by 

means of the criterion function r(z;x) we have to determine 

a) the (x;d)-functions k(x;d) and t(x;d) once for all; 

b) the steady state probability distributions of the processes 

(1) £or each of strategies individually. 

The introduction of the (x;d)-functions k(x;d) and t(x;d) thus leads 

to a consi.derable simplification. 

We have already stated that the expected mean costs per unit of time 

r(z;x) is constant on a simple ergodic set of the decision process in 

X. In this chapter we also show that the effect of the initial state 

on the total expected loss is limited to a finite amount if only 

states of one simple ergodic set of the decision process in X are con

sidered. 

An x-function c(z;x) is introduced which,in a sense, evaluates the 

initial state with respect to the total expected loss. The x-functions 

r(z;x) and c(z;x) satisfy the functional equations 



and 

r(z;x) = 
A 

z 

IX 

(dI;x;z)r(z;I) 

c(z;x) = k(x;z(x)) - r(z;x)t(x;z(x)) + 

+ 
A 

z 

1 
PA (dI;x;z)c(z;I), 

z 

(13) 

(14) 

1 
where pA (B;x;z) represents the probability distribution of the first 

future i~tervention state if xis the initial state. 

In order to be able to describe an important property of the optimal 

strategy we need a number of concepts which are defined now. 

* Let the mixed strategy (z )z mean that all but the first intervention 

* are made in accordance with strategy z; the first one conforms to z. 

* * Let the functions r((z )z;x) and c((z )z;x) be defined by 

* r((z )z;x) 
def -- (15) 

and 
* c((z )z;x) 

def --

* = E{k(I1 ;z (1 1 )) 

(16) 

t h b 1 Z f Z f by 
3) 

Le t e su c ass o be de ined 
z 

* z z 
def -- r((z )z;x) = inf r((z)z;x)}. 

z E: z 
(17) 

In CHAPTER 3 of PART I we prove that if a strategy 

all x EX 
c(z ;x) = 

0 

it is an optimal strategy. 

• min 
z e:: z 

z 
0 

c((z)z ;x), 
0 

z satisfies for 
0 

(18) 

Let the mixed strategy d.z mean that after the effectuation of de

cision din the initial state decisions are made in accordance with 

strategy z. We define x-functions r(d.z;x) and c(d.z;x) by 

3) Vx e:: X means: for all x € X we have • • • • • 

3 x E X means: there exists at least one x € X such that .. . .. • .. 

• 
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r(d.z;x) 
def -- E{r(z;y) jd} (19) 

and 
(d X) d~f k(x:d) - r(d.z:x)t(x,·d) + C .z; , , 

+ E{c(z;y) jd} • (20) 

where y obeys the probability distribution corresponding to d. 

The subset D (x) of D(x) in Dis defined by 
z 

D (x) 
z 

def -- = min r(d'z;x)} • 
d'£ D(x) 

(21) 

Let the mixed strategy A.z interdict any intervention up to the mo

ment that the system assumes a state in A for the first time. From 

that time onwards decisions are made in accordance with z. 

The x-functions r(A.z;x) and c(A.z;x) are defined by 

(22) 

and 

c(A.z;x) 
def -- E {c (z; y) Ix ;A} 

' 
(23) 

where y obeys the probability distribution of the first state in A 

assumed. 

We further consider the class K of all closed sets A satisfying: 
z 

l) A -:JA 
0 

-- {) A • 
z e: z z' 

(24) 

2) A= { xlr(A.z,·x) < r(z:x)} U {xjr(A.z,·x) = r(z·x) ·c(A z·x) < , , , . , 

Finally, we introduce the set 

~ c(z;x)} • 

A' , defined by z 

A' = z A. 

In chapter 3 of part I we also prove that, if a strategy 

for all x 

c(z ;x) = 
0 

min 
d c D (x) 

z 
0 

c(d.z ;x) 
0 

z 
0 

(25) 

(26) 

satisfies 

(27) 



and 
A' 

z 
0 

= A 

XI 
• 

z ' 
(28) 

0 

it is an optimal strategy. 

In addition to this we consider two iteration procedures which may 

lead to an optimal strategy. The first one, called strategy improve

ment routine I, has reference to (18), while the second one, the stra

tegy improvement routine II, may solve (27) and (28) in an iterative 

way. It is proved that, under certain conditions, these procedures are 

effective. 

CHAPTER 4 in PART I contains a summary of the new method. 

Moreover, this method is compared with some known methods in this 

field. In section 3 the Dynamic Programming approach of RICHARD BELL

MAN is discussed, while section 4 is devoted to RONALD A. HOWARD's 

techniques. 

The new method is not a ''ready-made'' technique. I ts final f 01·rn depends 

heavily on the structure of the decision problem concerned. In PART III 

of M.C. TRACT No 3 we shall show that in several decision situations 

this approach leads to rather simple techniques. 

The purpose of PART II is to show that there are no objections of pro

babilistic nature. We demonstrate that probability spaces can be con

structed which cover all the requirements. Moreover, the strong Mar

kov property of the decision process is proved in that part. 

Both BEL ( 3 , p.317 ff.) and HOWARD [4] have considered 

decision processes which are markovian. These processes pass under 

the name of MARKOVIAN DECISION PROCESSES. The state spaces concerned 

consist of a finite number of states, while in addition to this al

most all sample functions of the decision process are step functions. 

In this study, however, more general state spaces and decision pro

cesses are treated. Therefore, this book comes out under the title of 

GENERALIZED MARKOVIAN DECISION PROCESSES. 



CHAPTER 1 

The mathematical model 

1. State, evolution and natural process 

In physical decision problems the choice of a decision depends on 

the state of the physical system concerned. In a replacement problem 

e.g. the system may be a machine, while in an inventory problem the 

system is the inventory or the inventory and the quantities on order. 

The corresponding mathematical concepts will also be called ''state'' 

and '' ft system; they will have the following property: 
1) 

Prope~~y 1 

In a mathematical model the state of the system is dete1111ined by 

M real-valued variables; thus by a point of an M-dimensional Cartesian 

space (M <co). 

The set of all possible states x will be called the state space 

* X. We consider physical systems which change their states if the time 

passes. 

In the model this corresponds to a walk of the system through the 

state space. If the variable t runs through the time axis T, 

T = [o,oo) , 

* each walk in the state space can be identified with a function x=x (t). 

Often an evolution in the state of the system can be described by 

a st?chastic pr~~ess. Such a stochastic process is defined by means of 
,M. * 1) the state space X with the O-field G of the M-dimensional Borel 

sets. 

1) Throughout this book the properties imposed on the model will be 
11 It f indicated by Property , ollowed by a number. 

• 
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* 2) a space Q of points w. The points ware called realizations, 

* * while the space Q is named the sample space. The space Q is 

chosen in such a way that a 1-1 correspondence exists between 

points w £ o*and elements x=x*(t) of the collection of all walks 
* 2) in X. 

3) a famtly of * Each w-function xt(w) 

* * 0 into the space X. These functions maps are ·called sample 

functions and are defined as follows: 

* If the walk x=x (t) corresponds to w (cf. point 2), the t-func-

* tion xt(~) satisfies 

t E [O,eo). (1.1) 

* 4) the smallest a-field H of w-sets with respect to which the w-

* * functions xt(w) are measurable. Consequently, if A E G and if 

t E K), 00) , then 

* H . (1 .2) 

5) a proba~ili ty_ mea~ure p*[A] of sets 

* * * The triple {O ;H ;P } is called a P!obability se~c~. 

The stochastic process is defined as the family of random varia

bles 

Prob * {x EA 
-t 

• 

* A e: G • (1.3) 

of the system, the left hand side of (1.3) denotes the probability 

that at time t the system will be in a state of A. Such a stochastic 

process is also called a random walk 

l * 
* in X. 

If A is any closed set in X and if we consider the walk repre-
* sented by the point w E 0, let t(w;A) be the moment that the system 

is for the first time in A and let t(w; ~) be the time of the first 

entry into A. 

• 

2) In this chapter only walks of infinite length are considered. 

• 
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• * If the initial state x (w) does not belong to A, we obviously 
0 

have 

• (1.4) 

Next let us introduce the states x*(w;A) and x*(w;[A]), defined 

by 

if t(w;A) < 00 

* x tw;A) 
def --

* 
(1.5) 

X (W) 
0 

• 

' 
if t(w;A) = 00 

* t (w; [A]) X J) (w) • if < 00 

t(w; ' * def 
('w; [A]) (1.6) X --

* • 
if t ( w; [A]) X ( w) • - 00 -' 0 

In this chapter we shall consider different families of probabil

ity measures. In each family {p*[J\. ;x]; x c x*} we find for each ini

tial state x of the random walk one probability measure. This probabil

ity measure has the following properties: 

1) If thew-set A . 
t·B l.S 

' 

A 
t·B 

' 

defined by 

and if xis the initial state of the random walk, then 

p* A ; x] = 1 , 

where {x} denotes the set consisting of x only. 

(1.7) 

(1. 8) 

2) The domain of definition of P* [A;x] can be extended to a cr-field 

F* with respect to which thew-functions t(w;A), t(w;[A]); x*(w;A) 
* and x (w; A) are measurable. 

3) If thew-set= is defined by 
I ·A , 

--- I ;A 
def -- { w It (w ;A) £ I } 

and if 

* p 

* then almost·surely x (w;A)EA. 

= 1 ' 

(1. 9) 

(1 .10) 

• 
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4) If the w-set is defined by 

(1 .11) 

and if 
1, (1 .12) 

then almost surely x *(w; [A]) E: A. 

The following three situations will be of importance for our dis

cussion: 

* I) The initial part of the walk x (t) up to and including t 
0 

• 
1S de-

fined as * X = X (t); (1 .13) 

Suppose we want to describe the rest of this walk from t onwards. 
* 0 * 

Then,if w £ S1 corresponds to the whole walk, by the definition of ~2 a 

* point w
1 

£ n can be found such that 

* X ( w): 
t+t . 

te:: [o,oo). (1 .14) 

0 

The relation (1.14) represents a mapping of * * 11 on n . This mapping will 

be denoted by 
w = Tt (w). 

1 0 

(1 .15) 

* II) If A is a closed set in X and if tA is the moment that the sys-

tem is for the first time in A, let the initial part of the walk up to 

and including t < 
A 

00 be defined as 

* X = X ( t); (1 .16) 
• 

Suppose we want to describe the rest of this walk from tA onwards. 

Then, if wcorresponds to the whole walk, by the definition of n* a 
* point w E O can be found such that 

1 

* * xt (w1) = xt+t (w ;A) (w); t e: [o,co). 

If tA = 00
, we define w1 by 

w1 = w. 

The relations (1.17) and (1.18) represent a mapping of 

mapping will be denoted by 

• 

(1 .17) 

(1 .18) 

(1.19) 

• 
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III) If A is a closed set in X * and 

entry into A, let the initial part of 

t [A] <c» be defined as 

* X = X (t); 

if t [A] is the time 

the walk up to and 

of first 

including 

(1. 20) 

Suppose we want to describe the rest of this walk from t[A] onw~rds. 

Then, if Wcorresponds to the whole walk~ by the definition of O a 

* point w E '2 can be found such that 
1 

* 
xt+t ( w; [A]) (w) ; t ( [0,010) .. 

Cl0 we define , 

The relations (1.21) and (1.22) represent a mapping of 

This mapping will be denoted by 

Convention 

(1.21) 

(1.22) 

* n on • 

(1.23) 

If the remaining part 
3

) of a walk has to be described in this 

study, it is tacitly assumed that 

a) the time axis has been shifted in such a way that its origin 

coincides with the new starting point; 

b) in accordance with the situation concerned one of the relevant 

point transfor111ations (1.15), (1.19) and (1.23) has been exe

cuted. 

* * Since each complete walk x = x (t) in X can be identified with 

* a point w £ n, we can state that 

3) If t ( w;A) = 00 or if t( w; [A]) = 00 , by (1.18) and (1.22) the corresponding 
'' remaining parts•• are the whole walk . 

• 
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* 1) in the first situation the initial part of the walk x = x (t), 

, can also be represented by means of the point 

* ( ~ t ) E r2 XT, where T = [ 0, m) ; 
0 

* 2) in the second situation the initial part of the walk x = X (t), 

with t £ [o, tA J , can also be represented by means of the point 

* ( w , t ( w; A) ) E n xT; 

* 3) in the third situation the initial part of the walk x = x (t), 

with t E O, t [A J , can 

(w, t(w; [A])) E o*xT .. 

also be represented by means of the point 

Since different realizations w may have a common initial part, 

the representation of that initial 

( w, t ( w; A) ) and ( w, t ( w; [ A J ) ) i s not 

part by 

unique. 

points like (w,t ), 
0 

If the whole random walk has been defined by means of the proba

* * * bility space {Q ;F ;P }, if the initial part of that random walk is 

given and if the remaining part can be defined, then this part can be 
* * __ , -J'4 

described by means of a probability space{~ ;H ;P }, where P is an 

appropriate probability measure defined on H*. The use of n* and H* 

for this description is a consequence of the convention. 

We further introduce the te1·111s past, present and future in the 

following sense: 

a) The· past 
W·t' Pa , of the system at t' is given by 

t £ [o J t I J • (1. 24} 

• 

Thus the 
W•tt 

past Pa ' -------=---- * is a realized walk in X up to and including 

t' . 

b) The W•t' 
present Pr' of the system at t' is given by 

Thus the 

poin~ of 

w·t' present Pr' 
* X .. 

11 I 

is the state of the system at t'; 
• n 

(1. 25) 

• i.e. a 
" 

c) The future 

measure 

w·t• Fu 1 of the system at t' is given by the probability 
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A E * H. (1 .26) 

Thus the future 
* defined on H. 

w·t' Fu' of the ~ystem is a_ proba~ility ~easure 

Note that: 
• 

1) both present and future are dete1111ined by the corresponding 

past; 

2) different pasts may generate identical presents and identical 

futures. 

In this chapter the time t' is either a fixed time 
* t(W;A) or t(w; A), where A is a closed set in X. 

t or given by 
0 

If the initial part of the random walk is unknown, the future 

P * A I Paw; t' is an·w-function. In chapter 1 of part II this w func-

tion will be called a conditional probability measure. 
* * A family of stochastic processes {s ;x £ X } , one for each ini-
x 

tial state, is called a stationary Markov process if the corresponding 

probability measures {p*[ A ;x]; 

1) the x-function p*[ A;x] is 

* x e: X } have the fol lowing properties: 

* for each A e: F measurable with res-

* pect to G • , 
w·t , 0 

2) for each t 
0 

and for each past Pa 

* p 
w;t 

[A ;x I Pa °] = 
* w;t 

P [ A ; Pr o] • 

' 

we have 

(1. 27) 

It is called, in this book, a stationary strong Markov process if, in 

addition to 1) and 2): 

* * 3) for each closed set A in X , satisfying for each x E X 

and. for each past 

* p ;x Pa 

00 

' 

* p 

--

[0 'oo) ; U\] ; X = 1 , 

we have 

* I\ EH , 

t k P 
w; t (w; A 

we a e r 
) 

=X •) 

* X e: X • 

(1. 28) 

(1. 29) 
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Physical systems will be considered, which change their states 

even if no decisions are made. 

If no decisions are made, the evolution in the state of the sys-

tem is called a ~atur~l proce~s. 

In a natural process the state of the system can at each point of 

time be uniquely represented by a point x of an N-dimensional Carte-

sian space. 

~rope_rty 2 (natural process) 

1) In the mathematical model a natural process is defined by 

means of a stochastic process. 

Notations: 
* * * * 0 

M = N, X = X n - 0 G - G X (t) - X (t), - o' - o' -o' 

* 0 * * X (w) - Xt ( Ul) , H - H and F - F - - - • t 0 0 

In this study we consider a family of natural processes; i.e. one 

for each initial state of the system. If x = x 0
(o) is the initial 

0 

state of the system, the probability measure corresponding to the na-

tural process concerned is denoted by P [ A ;x ] . The natural process 
0 0 

is defined by means of the 

bability space 
• . 0 

{Q ·H ·P A ·x (ojl} 
o' o' o ' ~ 

A e: H 
0 

• 

Property 2 (natural process) 
0 

2) Almost all walks xt ( w) are continuous from the right in t. 

In each finite time interval almost all t-functions x 0 (w) have only a 
t 

finite number of discontinuities. 

This property enables us 

the set-function P [A ;x] from 
0 

to extend the domain of definition of 

if A is a closed 
. 

set in X, 
0 

H 
0 

the 

to F. (Cf. Part II, chapter 1). Thus, 
0 

w-functions t(w;A), t (w; [A ) , x (w ;A) 

and x(w;[A]) are measurable with respect to F . 
0 
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Pro~erty f (natural process) 

3) In the mathematical model the natural processes are defined 

by means of stationary strong Markov processes. 

2. Decisions and losses 

The natural process, however, is not the only source of changes 

in the state of the system. For instance, if in a replacement problem 

at some point of time the decisionmaker decides to replace an old ma

chine by a new one, such a decision certainly affects the state of the 

system. If the initial states of a new machine are not always identi

cal, then the decision to buy anyone of a set of new machines will be 

represented in the mathematical model by a random transition in X • 
0 

Property 3 (decisions) 

1) In the mathematical model a decision dis a random transition 

in X. This transition is defined by the probability distribution 
0 

Pd • 
J A£G 

0 

of the state into which the system will be transferred at the moment 

of the decision. 

So decisions are defined independently of the state at the moment 

of decision. They only refer to the state into which the system is 

transferred. A transition is assumed to take no time. Consequently,the 

system will be in two states at the moment of a decision. 

It is convenient to assume that at each point of time a decision 

is made, but that only some of these decisions lead to an intervention 

in the natural process. In this study we shall make a distinction be

tween ''interventions'' on the one hand and ''null-decisions'' on the other 

hand. In the latter case the system is transferred with probability 1 

into its present state. 

Decisions (probability distributions in 

by points d of a so called decision space D. 

X ) 
0 

will be represented 
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Pr.op,er,ty 3 (decisions) 

2) In the mathematical model a decision can be represented by a 

point d of a K-dimensional Cartesian space D with the following pro-

perties: 

0, p
2

> O, p
1

+p
2 

= 1 and if the probability distributions 

and Pd
2

[A correspond to the points d1 and d2 respective-
. 

ly, then the point d = p1 d1 + p2d2 corresponds to the probabil-
2 

• 

ity distribution (decision) p.Pd. A . 
i=l 1 1 

b) If the sequence of points { d. ; i=l, 2, ••• } converges to a point d 
1 

and if this sequence of points corresponds to the sequence of 

probability distributions {Pd.[~; i=l,2, ••• } , then for each 
l. 

A e: G we have 
0 

• 

lim 
1 -+ 00 

Pd.[A 
l. 

(1.30) 

Because decisions are concerned with the states into which the 

system is transferred, it follows from the physical structure of many 

decision problems that in some states certain decisions are not feas

ible. The decisionmaker may be restricted in his choice of a decision. 

Property 3 (decisions) 

3) Whether a decision is feasible or not, depends only on the 

state of the system at the moment of the decision. 

4) For each x EX the set of feasible decisions denoted by D(x) 
0 

is a bounded, closed and convex set in D. 4) 

5) In each state xe: X , the ''null decision'' is feasible. 
0 

A realization of an intervention, i.e. a random drawing from the 

probability distribution Pd[A] , will be called an intervention-trans

ition. 

' 

4) Randomisations of feasible decisions are also feasible. 
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In the mathematical model we have now stipulated what happens at 

the moment of a decision and how the behaviour of the system can be 

described by a natural process. We have still to state how the beha

viour of the system is to be represented when interventions take place. 

To this end we introduce the following property: 
' 

Property 4 

In the mathematical model the behaviour of the system in each 

time interval between two interventions is described by a natural pro

cess. The initial state of that process will be the state into which 

the system is transferred by the intervention at the beginning of the 

interval concerned. 

As we have stated already, the state of the system at the moments 

of intervention is not uniquely defined 

a product space X' of two spaces x1 and 

we have 

in X. Therefore we introduce 
0 

x
2

, both congruent to X
0

• So 

The points of X' are represented by x' = (x1 ,x2 ). The space X' 

2N-dimensional Cartesian space; thus M = 2N. 

(1. 31) 

• 1S a 

At each point of time the x1 -component fixes the state of the 

system before the decision is made, while the x 2 -component describes 

the state at the same moment but now after the intervention-transition 

has been effected. 

If only one decision is made at a time and if the space X' is 

used instead of X for representing the state of the system, then this 
0 

/ 

state is again defined unambiguously at each point of time. At the mo-

ments of a null-decision we have x1 = x 2 • 

Let a space n of points w be chosen in such a way that a 1-1 cor

respondence exists between points w £ n and the elements x' = x (t) of 

the collection of all walks in X'. Let {xt(w); t €[0,~)} be a family 

of w-functions defined on n. 
. " 
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These functions are defined as follows: If the walk x' = x(t) 

corresponds to w, the t-function xt(oo) satisfies 

t £ [o, co) • (1.32) 

Henceforth the x
1

- and the x2- component of the function xt(w) 

wi 11 be denoted by xt ;l (w) and xt ;2 (w) respectively. 

The natural process can also be defined in the space X' instead 

of X . If the 
0 

system is subjected to a natural process in X', at each 

point of time we have x1 = x2 . 

For the time being we shall consider the product-state space 

Notations 2: 

* X (W) 
t 

M = 2N, 

= X (w) = 
t 

* X = 

* * 

X' 
' 

H = H and F = F. 

* n = n ' * G == G' , 

Let us suppose that, even if interventions are made, the beha

viour of the system can still be described by a stochastic process. 

Then there must be a probability space {O;H;P} • 

For the state space X' we now give, in addition to the above 
• 

definitions, special definitions of past, present and future as fol

lows: 
(.u•t' 

a') Th t P ' e pas a1 
of the system at t' is given by 

xl = xt;l (w) 

x2 == xt;2(w) 

• 
J 

• , 

t 

t 

[o, t '] 

[o' t I) • 
(1.33) 

Thus the past a realized walk in X' up tot' and 

including the x1-state at t'. 

b') The present 
w • t' Pr , 

1 of the system at t' is given by 

(1.34) 
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Thus the present 

i.e. a point of 

W·t' 
Pr1_' __ i_·_s_t_h_e_x_1 -state of the system at t'; 

C') 

Xl. 

w. t' 
The future Fu1 ' 

bability measure 

of the system at t' is given by the pro-

• 

' 
l\£H (1 .. 35) 

Thus the future 

defined on H. 

W·t' 
Fu1._' ___ o_f __ t_h..;.e_s....:y:::.__s_t....;e_m_:__1.::.· s=--=a=-.:p!:.::.r-=0-=b::..::a:..;b::.1=-· -=1-=i:...t:.:Y~:.:.:m:.:e:.:a:.:s:..:u::.:::.r..=.e 

From t 1 onwards the remaining part of the random walk in X' is 

defined by means of the probability space {n ;H; P } . Note that the new 

initial x2-state may have an initial probability distribution. This 

probability distribution corresponds to the decision to be made at t'. 

The most important features of physical decision problems are 

losses and gains. It will be no restriction to suppose that only loss

es occur. Gains are negative losses. Generally in decision problems 

three }ypes of losse~ occur. 

First, losses which increase or decrease continuously in the 

course of time; e.g. (loss of) intere$t or consumption of fuel. 

Secondly, losses which increase or decrease at discrete points of 

time; e.g. owing to sales or repairs. 

Finally, losses which are effected by decisions. 

Let us consider how these losses are to be defined in the mathe

matical model. This is done by means of three functions. 

The first kind of costs can be represented by an x 1-function 

Y t(x'). It represents the losses of the first type that would be suf
con 
fered if the system were in the state x' during one unit of time. The 

x'function Y t(x') is called the ''loss density function''. 
con 

The x'-function Y (x ') fixes the losses of the second type in-
d . 

1SC 

curred in x', if in that state the system enters a given closed set A. 
y 

Each time the system enters A , y 
The function Y . (x ' ) is cal 1 ed 

disc 

losses of this type will be suffered. 
' 

the ''discrete loss function''. 

• 
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The third function is the (d,x')-function 

sents the costs incurred if the decision d made 

Y (d·x') · 
dee ' ' 

in x1 leads 

it repre

to a 

transition into x
2

. The function Ydec(d;x') is called the ''decision 

f t
. ,, 

cost unc ion. 

Prope,rty 5 (costs) 
i I 

1) The loss density function 

continuous in x' £ X'; 

2) The discrete loss function 

and measurable with respect 

Y t(x') is bounded, real valued and 
con 

Yd. (x') is bounded, real valued isc 
to the a -field G' • The set A is a y 

closed set in X'. For each initial state x' in the natural pro

cess almost surely there will be a finite number of entries into 
.. -

A in a finite time interval. If x'c A1 we have -y . ( x ' ) =0 · 
dl.SC , • 

3) The decision cost function Yd (d;x') is a bounded, real-valued ec 
function of (d,x'). Moreover, for each x' t X' it is a continuous 

function of d. For each d t D the x '-function Y (d·x') 
dee ' 

-is meas-

urable with respect to G'. For null-decisions we have 

Y (d·,x') = O. 
dee 

This property implies the following statement: 

Statement no 1 

In each time interval the losses incurred are completely fixed by 

a) the walk made by the system in that time interval. 

b) the interventions made by the decision maker in that period. 

The losses are independent of the position of the time interval on the 

time axis. 

3. Strategies and decision processes 

The solution of the stochastic 00 -stage decision problem is given 

in the fo1·1n of a strategy. Such a strategy di eta tes at each point of 

time a feasible decision. 

If a strategy is applied, the evolution in the state of the sys

tem can still be described by a walk in X~ Thus the past of the system 
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can be defined at each point of time. 

The past does not necessarily include all infor1nation about the 

decisions made. It does, however, infoI'ln us about the realization of 

the past interveni;ions, because at those moments x
1 

x
2

. Thus the 

past describes everything which has really happened to the system. It 

is therefore reasonable to restrict 

which the decisions are based on the 

ourselves to 
w· t 

past Pa1 ' 

the strategies of 

only. 

Consequently, each strategy z to be considered maps the space 

n x Tinto the decision space D. 

After introducing some properties of the strategies to be con

sidered, we shall show tl1at there is sense in restricting ourselves to 
w·t 

strategies dictating decisio11s based on the present P1'1 ' only. The 

reader who is willing to accept this statement without comment, may 

pass over these considerations and can take up the discussion again 

just after tl1e proof of lemma 1.2. 

~ 5) 
Property 6 (strategies) 

1) Whether or not it has been applied before, a strategy z at any 
• 

point of time t dictates a 
• 

w·t Pa1 ' only. Notation: d = 

feasible decision d dependent on the past 
w·t 

z ( Pa
1 

' ) • 

If decisions are made in accordance with a given strategy, very 

often the evolution in the state of the system can still be described 

by means of a random walk. 

If w, w'tn, let the point transformation 

w = T_ ( w') 
w • t 

be defined by (cf. (1.32)) 

xt ( w) = xt ( w) ; 

xt(w) = xt-t (w'); 
0 

' 0 

t E 

t E 

• in 

[o, t ) 
0 

• (1.36) 
[ t 00) 

o' 

realization of the random walk from t onwards (cf. convention), then 
0 

5) This property will be reformulated at the end of this chapter. 
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(w') represents the complete walk. 

that 
• 

w' = T t ( w) ( cf • (1 .15) ) • 
0 

Notation 3: 

The remaining part of the random walk to be considered starts at 

t and can be identified with the point w'. Th~ 
0 

db P w;to Th ti t 

past at t is given 
0 

by (w,t
0

) and is denote y a 1 • e me 
0 

is not always a fixed 

point of time. 

Hence, if z is the strategy applied during the whole walk and if 

then after t (convention!) the 
0 

strategy z"!"':' given by w·t 
' 0 

def --
T_ t (w');t+t 

z(Pa w; o o), 
1 

(1. 37) 

will evidently. be used. 

If strategy z is applied, if x1 _is the initial x1 -state of the 

system and if the evolution in the state of the system can be des

cribed by a random walk, the appropriate probability measure is deno

ted by P _A ; z ; x1 , 

"ID· t 
If Pa ' 0 is the past at 

1 
t and if the remaining past of the 

0 

random walk starting at t can 
0 

be described by a stochastic process, 

the corresponding probability measure is denoted by 

Note that the future 

ly, we introduce the 

C w·t 
P A . Z ·x I Pa ' 0 

' ' 1 1 • 

also depends_on the strategy 
w·t notation Fu1 'O(z). 

applied. Consequent-

Let us consider a class Z0 of strategies z satisfying: 

* Property 6 (strategies) 

2) If a strategy z £ Z0 is applied, for each initial x1 -state x1 
the evolution in the state of the system can be described by means of 

a random walk. The corresponding probability measure will be denoted 

by P A· z ·x .... ' ' 1- • 
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·operty 6 

3) If 

have 

z e: z 
o' for each w, for each t and hence for each 

0 

Pa w; to 
1 

a) z £ Z 
m·t o 

' 0 

C I w· t 
b) P A· z · :R Pa ' o , ' 1 1 .... exists and satisfies (cf. notation 3) 

-
' ' 1 1 '--' ·t w, 0 

-

w' ·O 
= p~A;z __ t ;Pr1 '] . 

w, 0 

4) If z EZ 
o' for each t and for each w the strategy 

,f. (1.15)) 

an element of Z. 
0 

:fined by 

so belongs to Z . 
0 

ifined by 

. so belongs to z . 
0 

W·t 
zt (Pa1 ' ) 

def T t ( w); 0 
z (Pa

1 
) 

z ' 0 

--

the strategy 

1 
z = T ·t (z2 ), 

zl' o 

def --

e: Z , the 
0 

def --

strategy 

if te:[o,t > 
0 

if t E [t ,<X>) 
0 

(1 .38) 

• 
zt' given 

(1.39) 

(1.40) 

(1. 41) 
t <X>) 
o' 

by 
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• 

Point 3b) implies for 

Fu t.u;t(z) = 
1 
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6) 
(1. 42) 

The str~tegy z = t'" .(z) can be described in words by saying 
. z 1 ;t0 2 _ . 

that z
1 

is applied before t
0 

and z 2 from t
0 

onwards. 

2 The strategy z = T ·t (z2 ) can be described in words by saying 
zl, o 

that z
1 

is applied before t
0

and z 2 from t
0 

onwards neglecting the walk 

made before t. 
0 b 

If z EZ is the strategy applied, then by point 3 of property 
0 

from t 
0 

onwards the evolution in the state of the system can be des-

cribed by a random walk in X'. The corresponding probability measure 

is given by 0 w·t 
P A • z · Pr • 07 • 

' w·t ' 1 J , 0 

Now we shall prove the following lemma: 

Lemma 1.1 
w·t 

For each strategy z £ Z and for each past Pa1 ' with 
. w ·t 0 

decision d=z(Pa1 ') can be deduced from the set function 
• 

• 

Proof. 

point 3 of property the set function 

t > t , the 
- 0 

If z E Z , by 
0-w·t 

P A· z. • Pr ' o 1 w·t ' 1 
is defined for each w' and t. 

J 0 

If the function 
w·t w' ·t-t _. the initial x 2-probability 

distribu~ion of the random walks that start at t. This initial pro-

bability distribution represents the decision to be made at t. Hence 

from t onwards for 
0 

P rA • z · Pr w ; to 
lJ ' 1il· t , 1 -' 

' 0 

each given 
w·t Pa1 ' 0 the probability measure 

reproduces the strategy z (and z ) . 
w·t 

' 0 

This ends the proof. 

6) This means that the past minus the present influences the future only 
through the strategy applied. 
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ment 

Suppose we want to compare strategies. 

1 and lemma 1.1, it is reasonable that 

Then, because of state

we restrict_ourselves to 

criterion functions which depend only on the future • given 

by [J w·t J P A·z ·Pr 'o , w·t ' 1 . 
J 0 

In connection with this we introduce the following property: 

Property 7* (criterion function)?) 

w·t 1) The _c_r_i_t_e_r_i_o_n_f_u_n_c_t_i_·o_n c(Fu1 ' (z)) is a function of probabil-

ity measures, defined on H. The.domain of definition is a class K of 

probability measures . 
• 

2) If during the first part of a random walk a strategy z
1 

£ Z
0 

has been applied, if for tl1c remai ni11g part tl1a t s ta1·ts at t two stra
o 

tegies z 2 and z 2 are under consideration and if 

(1.43) 

2 
where z - T ·t (z2 ) and z' = then at t strategy z is to 

0 zl, o 
be preferred. 

* Property 6 (strategies) 

7) If z e: Z , for each 
0 

Definitions: 
..... 

1) If z c Z , 
0 

the class 
.... 

fying for each w and t < t 

zl, o 

wand for each t we have 
0 

z 
0 

e: K. 

- ,.., z·t 
' exists of strategies ZEZ 

0 

(1.44) 

satis-

(1. 45) 

2) A strategy z 
0 

is called optimal from t onwards if, for 
0 

t~ t , 
0 

w·t 
= min z ·t c(Fu1 ' (z)). 

Z E: zo O 
1 

(1.46) 

7) This property will be dropped later. 
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z is called optimal, if it is optimal from t=O 
0 

• J.S 

called optimal if there exists a strategy z which is optimal from 
0 

onwards and which satisfies 

d = (1. 47) 

t 
0 

Since more than one strategy may be optimal, at t there may exist a 
. 0 

number of optimal decisions. 

* Property 7 (criterion function) 

3) A strategy 

timal decision, is 

Lemma 1.2 

z s Z that dictates at each point of time an op
o 

itself optimal. 

If the strategy 

timal (cf. (1.39)). 

Z E 
0 

z 
0 

is optimal, the strategy z 0 t is also op-

Proof. 

* Let z be defined by 
0 

* 2 
z = T t (z ), 

0 Z • 0 
o' o 

where t is a fixed point (cf. (1.41)). 
0 

(1. 48) 

It follows from (1.48), {1.37), {1.41) and notation 3 that 

* z = z o_ o 
w;t 

0 

• (1. 49) 

• 

Consequently, by (1.42), (1.48) and point 6 of * property 6 we find 

if t > t . 
0 

w·t * C(fu ' (z )) = 
1 . 0 

--

w' · t-t 
c(Fu1 , O(z)) = min z~·t 

Z E Z o, 
0 

w·t 
c(Fu1 ' (z)), 

(1. 50) 

• 

--
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* Thus from t onwards the strategy z dictates optimal decisions. It 
0 O 

follows from (1.48) that the strategy z~ 
0 

also dictates optimal de-

cisions before t. 
0 

* Hence, z 
0 

is an optimal strategy. In particular, 

the decision to be dictated at t is optimal. This 
0 

decision will also 

be dictated by the strategy z 0 t. 

the strategy z 0 t always dictates 

timal. 

This ends the proof. 

Because (1.50) is true for each 

optimal decisions. Hence z 0 t is 

t ' 0 

op-

If a strategy z 0 t is applied, then the decisions to be made de
w·t 

pend only on the present Pr1 ' . We emphasize that the proof of lemma 

1.2 is based among other things on the rather complex conditions for-
b) * * mulated in point 3 of property 6 and on point 3 of property 7. 

The latter seems acceptable and agrees 

optimality. At first sight point 3b of 

with our practical notion of 

* property 6 seems to be a con-

sequence of the strong Markov property of the natural process on the 

one hand and of property 4 on the other hand. However, this does not 
b * seem to be true; possibly condition 3 of property 6 might be broken 

down into a number of less complex conditions, but for two reasons we 

have not tried to do so. First the practical i~plications of the con

dition are clear enough from its present for111ulation. Secondly, after 

* introducing a refo1,nulation of property 6, we shall be able to prove 

this condition for a smaller class of strategies (theorem 3). 

Because of the lemma just proved, it is reasonable to restrict 

ourselves to the class Z of strategies z with the following property: 

Property 6 (strategies) 

1) Each strategy z e: Z maps the state space x
1 

into the decision 

space D. 

This relation between x1 -states and decisions will be denoted by 

Consequently, strategies z E Z divide the state space x
1 

into two 

disjunct sets, one denoted by A and comprising states in 
z 

which always 
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interventions are made, the other consisting of the states in which 

always null-decisions are made. The set 

set. 

A z 
is called the intervention 

2) The x
1
-function d = z (x1 ) is measurable with respect to G1 • 

3) The :x'-function y (z(x );x') is measurable with respect to 
dee 1 

G' .. 

• 

4) For each strategy z £ Z the intervention set A z 
is a closed set. 

5) The intersection A 
0 

of all sets A (z £ Z) is not empty and 
z 

satisfies for x
1 

t x
1 

0 

tP 
0 

= 1 and 

(1.52) 

By point 1 of property 6 the strategies z £ z map the state space 

~into the decision space D. We have stipulated that decisions shall 

correspond to probability distributions in the space x
2

. So we can 

state that each strategy z corresponds to a family of transition pro

babilities 

which .. ford= 19 (X) 
• L.t l ' are given by 

where G2 is the a-field of Borelsets in X 
2· 

6) If strategy z E Z, then 

a) for each x1 t A we have 
z 

b) for each B c G 
2 

respect to G . 1· 

the 

• , B e: G
2 

(1. 53) 

is measurable with 
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If one of the strategies z £ Z is applied, the system is said to 

be subjected to a decision process. 

By lemma 2.24 of part II the decision process can be defined by 

a stochastic process. Each decision process effects a walk of the 

system through the state space X' = x1 x x2 . If • 
Z l.S the strategy ap-

plied and if x' is the initial state, then the decision process is 

denoted by S ,. z·x 
' In part II, ch.2-4, we prove that the domain of definition of 

P_A;x1 ;z] can be extended to a a-field F, with respect to which the 

-functions t(w;A), t(w; [A]), x(w;A) and x(w; ) are measurable. 

From now on we shall use the probability space {Q;F;P}. 

Let us consider the sequence of stochastic x1-states 

{I.; j=l,2, ••. } at the moments of intervention. Since the 
-J 

closed set in x1 , it follows 

and (1.52) that these states 

from point 2 of property 2, 

almost surely belong to A • z 

In theorem 1 of chapter 2 in Part II we prove 

Theorem 1 

set A is a 
z 

property 4 

If a strategy z e: Z is applied, the sequence of states 

{I.; j=l,2, ... } at the moments of intervention can be described by a 
-J 

stationary Markov process 

Property 6 (strategies) 

7) For each strategy 

time parameter satisfies 

in A with a discrete time parameter. 
z 

z EZ the Markov process in A 
z 

the Doeblin condition (cf.[ 2 

with discrete 

, p .. 192). 

Point 7 of property 6 implies that the stationary Markov process 

in A has for each initial state a stationary absolute probability 
z 

distribution (cf. 2 , p.192 ff.). 

In theorem 2 of chapter 2 in part II we prove 

Theorem 2. 

If a strategy z e:. Z is applied, then in each finite time interval 

almost surely only a finite number of interventions will be made. 
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We also prove in that chapter 
• 

Theorem 3 

If a strategy z t Z is applied, the decision process in X' can be 

described by means of a stationary strong Markov process. 

From theorem 3 we can deduce 

p = p 
(JJ. t 

A·z·Pr ' 0 
' J 1 

If z E Z, then we can easily verify that 
• 

Hence, if z e: Z, it follows from (1. 54) that 

• 

w·t p A • z · x I Pa J 07 = 
' ' 1 1 J 

OJ. t 
P [A · z · Pr ' 07 • , tD'. t , 1 "J 

J 0 

Thus, the strategies z E Z satisfy point 3b of 

(1. 54) 

(1 .. 55) 

* property 6 • 



CHAPTER 2 

A criterion for optimality 

1. Introduction 

• 

In this chapter we shall construct a criterion function for stra

tegies. 

If z £Z is the strategy applied and if in the initial x 1-state 

the decision transition has not been effected, then the x 2 -component 

obeys the initial distribution z(B;x1 ). Decision processes with such 

an initial distribution are denoted by {S ;x1 £ x 1 } . They are de-
z ;x1 

fined by means of stationary strong Markov processes in X' with initial 

probability distributions (cf. theorem 3). 

If only the x 1 -states of the decision 

the random walk in x1 
process is called the 

also is a stationary 

process S 
z;x1 

strong Markov 

. X in --1· 

are recorded, 
• 

process. This 

In chapter 1 we 

decision process S 
z;x1 

have detertnined the way in which losses enter the 

model. Obviously, the choice of a strategy depends on these losses in 

one way or another. 

If z EZ is the strategy applied and if w denotes a realization of 

the decision process s 

the period [o, T) . 
z·x' , 1 

let kT(w;z) be the costs incurred during 

Using certain additional properties of the mathematical model, we 

shall prove that for almost all w £ n 

lim 

exists. 

kT(w;z) 

T 

Moreover, if the set E in x1 is a simple 

x1 and if w1 ,w2 £ n decision process • 
in 

x l ( w.) £ E; i=l, 2, o· 1 , 

ergodic 

satisfy 

(2 .1) 

1) 
set of the 

1) Simple ergodic sets can not be 
x

0 
•
1 

(1-'.1) is the x
1

-component of 
divided into more than one ergodic set; 
X (w). 

0 , 
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I 

then almost surely 

lim 
T -+ CX) 

--

26 

• 

Consequently, an x1-function r(z;x1 ) can be defined on the set Y of 

z, 1 
in x1 such that, if w satisfies 

for almost all w E f2. 

set 

the 

Note that the x1-function 

of S 
z;x1 

whole 

in x1 . The domain 

space x 1 by 

def --

lim 
T -+oo 

r(z;x1 ) is constant on a 

of definition of r(z;x1 ) 

(2 .. 2) 

• 

simple ergodic 

is extended to 

(2.3) 

where the random state y is the first ergodic state in Y taken on in 

the decision process S in x1 . 
z;x1 

Roughly speaking, the x1- function r(z;x1 ) represents for almost all 

realizations the mean costs per unit of time if the initial x
1
-state 

is ergodic. In case that the initial x 1 -state is not ergodic the mean 

costs depend on the first ergodic state assumed, and, therefore, they 

are random. 

Hence, by (2.3), the function r(z;x1 ) determines the expected 

mean costs per unit of time for all initial x1-states. 

Obviously, the z-function r(z;x1 ) is a good criterion for optimal

ity. It will be demonstrated that the function r(z;x1 ) can also be ex

pressed in a more usable forrra. 

If C is a closed set in X' of the form 

it can be proved that. under b d . o vious con itions, the sequence of x
1

-

components of the successive entry states in C constitutes a stationary 

Markov process with a discrete time parameter. This process is called 

2) An ergodic state is a state of a simple ergodic set . 

• 
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the Markov process in [c]. 
Although almost all entry states belong to C, the state space of 

,.. 
the Markov process in is not C but x1 . Thus the first and higher 

order transition probabilities.are defined for each initial x 1-state. 

If the Markov process in [c] satisfies the Doeblin condition (cf. 

[2], p.192), then for each initial x1-state x1 a stationary absolute 

x C 1 

random x1-state obeying the steady state probability distribution 

In section 4 we shall prove that on the class of all finite time 

intervals the difference in expected costs between the decision process
x 

es s 
z;x1 

This result implies that the effect of the initial state on the 

expected loss is limited to a finite amount if only states of one sim

ple ergodic set in x1 are considered. 
' 

Finally, an x
1
-function c(z;x

1
) is introduced which in a sense 

enables us to value the initial state with respect to the total expect

ed. loss. 

The x
1
-functions c(z;x

1
) and r(z;x

1
) which jointly satisfy a pair 

of functional equations, are used in an iteration procedure for obtain

ing optimal strategies (chapter 3). 

2. The criterion function 

We first consider the decision processes {S , ;x' e: X } • For the z·x , 
time being the state of the system in X' is only recorded at the points 

of time {jt ;j=O,l, .•. } . They are represented by the stochastic varia
o 

bles 

(2.4) 

where x' stands for the initial state x'. Since the decision pro-
-t ;x' ;O 

cess S 0
, is a stationary Markov process, the sequence (2.4) consti

z;x 
tues a stationary Markov process with a discrete time parameter (cf. 

part II, chapter 1, lemma 1.37). The first and higher order transition 



probabilities are denoted by 

We now assume: 
~ 

Assumption 1 
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• 

{pJ (B;x';z);j=l,2, ... } 
t 

0 

• 

Th M k S { X ' • J·-o 1 } with x' e.: X' satisfy e ar ov process e -t , . , - , , · · · ·x . J 
QI ) 

the Doeblin condition (cf. [2] , p.192). 

Consequently, for each x' £ X' there exists a stationary absolute 

Probability distribution p (B,·x' :z) that satisfies (cf. [2], p.214) t , 
0 

pt (B;x' ;z) 
0 

= lim 
n -+- oo 

1 
n 

n 
(2.5) 

j=1 

We can easily verify that, if x' is an ergodic state of the Sz;x'

process, it is also an ergodic state of the process (2.4) and converse 

ly. 

Next let the x'-set A be given by 

A = A Y u (A z x x2 ) • (2.6) 

With respect to the decision processes 

Property 6 (strategies) 

{S ;xf t: X'} we assume: 
z;x' 

• 

8) If z £ Z, a finite number of entries in A almost surely occur in a 

finite time interval. 

According to lemma 1.31 in chapter 1 of part II: 

a) the random losses, incurred during [o,t ), can be represented by 
0 

a stochastic variable k' , with mean k'(x' ·t) · 
-t ·x ' o ' o' 

b) the number of entries into A during [o,t) can be represented by 
0 

a stochastic variable n' 
-t ·x' o' 

with mean n' (x' ; t ) . 
0 

* Assumption 2 

For each initial state x 1 e: X' we have 

E {n'(y;t )Ix'}<~, 
0 

(2.7) 

where X obeys the stationary absolute probability distribution of the 

Markov process (2.4). 

i 

l 
' ' 
' ' 
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The following theorem is an immediate consequence of lenuna 1.49 

in chapter 1 of part II. 

Theorem 4.1 

* * Under the assumptions 1 and 2 , for almost all realizations w of 

the decision process s 

exists and is 

z·x' , the limit 

lim 
T -+ Q0 

1 
t 

0 

(2 .1) 

(2. 8) 

if the initial state x' is an ergodic state of the process (2.4) and 

if y obeys the corresponding stationary absolute probability distri

bution. 

Let the x1 -components of {2.4) be denoted by 

{ X t . . . ; j =0 , 1 , . . . } 
o'xl,J 

• .(2. 9) 

If only the x
1

-components of (2.4) are recorded at {jt
0

;j=O,l, .... } 
• 

and if the x
2

-component of the initial state obeys the probability 

distribution z(B;x1 ), then the sequence (2.9} also constitutes a sta

tionary Markov process with a discrete time parameter (in x1 ). The 

first and higher order transition probabilities of this process are 

then given by 

The 
I 

• 

--
x

2 
o 

j=l, 2, •.• , 

stationary absolute p~obability distributiort 
' 

this discrete time process in x1 satisfies 

z ( d.x2 ; xl) pt (B x x2 ; x' ; z) , 
0 

(2 .10) 

of 

(2.11) 
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def -- (2 .12) 

where x' = (x1 ,x2). 

Obviously, if x1 is an ergodic state of the stochastic process 

(2.9), the state x' = (x1 ,x2) is an ergodic state of the process (2.4) 

with probability 1. 
• 

Provided that the initial state x' belongs to one given simple 

ergodic state with probabilit~ 1, it follows from (2.8) that theorem 

4.1 remains true if x' has an initial probability distribution. We now 

consider the decision process 

an initial distribution if x1 
Since 

S • As we know z ;x
1 

•· this process has such 

1 
t 

0 

-- 1 
t 

0 

is ergodic. 

pt (dy;x' ;z)k'(y;t
0

) = 
X' o 

pt (du;x1 ;z)k(u;t
0
), 

0 

the following theorem has been proved: 

Theorem 4 

* * 

(2 .13) 

Under the assumptions 1 and 2 for almost all realizations w of 

the decision process 

exists and is 

if the initial 

the limit 

lim 
T-+c:io 

1 
t 

0 

(2 .1) 

(2 .14) 

ergodic state of the process (2.9) and 

if u obeys the corresponding stationary absolute probability distribu

tion. 

On the set Y of all ergodic states of the process (2.9), the 
t 

criterion function° r(z;x1 ) is now defined by 

. 
, 

' , 
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def -- • (2.15) 

The domain of definition of the x -function r(z·x) 1 , 1 is extended to x1 
by taking 

def -- , (2.16) 

where u obeys the stationary absolute probability distribution of the 

process (2.9). 

Let us return to the decision processes {S ,;x' tX'} • 
z·x , 

A similar result can be obtained by means of a closed set C 

X' satisfying: 

Assumption 1 

The length of the period preceding the first entry into C is 

finite with probability 1. 

• 
in 

If x' is the initial state of the decision process S , , the z·x , 
length of the period preceding the first entry into C is represented 

by a stochastic variable t'[c];x' (cf. lemma 2.30 in chapter 2 of part 

II) .. The expected duration of this period is denoted by t' (x'; [c]). 
Since the decision process is a stationary strong Markov process, the 

sequence of entry states 

, . ; j =0 , 1 , . . . } 
· x . J , , 

(2 .. 17) 

in C constitutes a stationary Markov process with a discrete time pa

rameter (cf. lemma 1.50 in chapter 1 of part II). 

We further impose: 

Assumption 2 

The Markov processes {x' 

the Doeblin condition (cf. [2 

with x' £ X' satisfy 
· x . J , ' 

, p .. 192). 

Consequently, for each x' ~X' there exists a stationary absolute 

probability 

P[c] (B;x' ;z) = lim 
n -+ CX) 

that satisfies (cf.[2 ,p.214) 

1 
n 

(2 .18) 
n j=l 
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~,s .. ~u~p~i o~ ~ 

During the period -
with probability 1. 

According to lemma 1.31 in chapter 1 of part II! 

a) incurred during be represented 

b) 

As~ume_tion ~-

For each initial state x' £ X' 

and 
o < E{ t ' (y ; [ c] > I x '} < a,, 

where l obeys the corresponding stationary absolute probability dis

tribution of the Markov process (2.17). 

The following theorem follows at once from lemma 1.57 in chapter 1 

of part II. 

Theorem 5 .. 1 

Under the assumptions 1,2,3 and 4 for 

of the decision process s , the limit 
z;x 

exists and is 

kT(w;z) 
lim 

T 

E'{k' (y; [ C ) I X f} 

E{ t' (x_; C ) x'} 

• 

almost all realizations w 

(2.1) 

(2 .19) 

if the initial state x' is an ergodic state of the process (2 .. 17) and 

if Z obeys the corresponding stationary absolute probability distribu
tion. 
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• 

We now consider a closed set C of the fo1~1 

The x1-components of the entry states in Care denoted by 

. ; j =0 , 1 , . • • } • 
;xl;J 

(2 .20) 

(2.21) 

If only the x1-components of (2.17) are recorded at the successive 

entry states in C and if the x 2 -component of the initialstate obeys 

the probability distribution z(B;x1 ), then the sequence (2.21) also 

constitutes a stationary Markov process with a discrete time parame-
..... 

ter. This process is called the Markov process in [CJ. The first and 

higher order transition probabilities of this process are then given 

by 
• 

where x' = (x
1 

, x 2 ) and B e: G1 . 

The stationary absolute probability 

the Markov process in [c] satisfies 

P[c] (B;x1 ;z) = 

2 

where x' = (x
1 

,x2 ) and B £ G1 . 

(2. 22) 

(2. 23) 

Next we define the x
1

-functions k(x1 ;[C) and t(x1 ;[c) by 

def -- (2 .24) 

and 
def -- (2. 25) 

where x' = (x1 ,x2 ). 

Obviously, if x 1 is an ergodic state of the stochastic process 

(2.21), x'= (x1 ,x2 ) is an ergodic state of the process (2.17) with pro

bability 1. Provided that the initial state x' belongs to one given 

simple ergodic set with probability 1, it follows £ram (2.19) that 
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theorem 5.1 remains true if x' has an initial probability distribution. 

We now consider the decision process S . Since for each ergo-
z;x1 

die 

--

-- (2.26) 

1 
the following theorem has been proved: 

Theorem 5 

Under the assumptions 1,2,3 and 4 for almost all -realizations wof 
. 

the decision process S the limit 
z;x1 

exists and is 
E{ k (u; [c] ) I xl} 

E{ t (u; [c] ) I xl} 

(2 .. 1) 

(2 .27) 

if the initial state x
1 

is an ergodic state of the process (2.21) and 

if u obeys the corresponding stationary absolute probability distribu

tion. 

On the set Y[c] of all ergodic states of the process (2.21), the 

criterion function r(z;x
1

) can also be defined by 

def --
E{k(u;[c )jx1} 

E{ t ( u ; [cJ ) I x
1

} 
(2.28) 

where ~ obeys the stationary absolute probability distribution· corre

sponding to x
1

. 

The domain 

to x 1 by taking 

of definition of the x1 -function 

def I r(z·,x1 ) E {r( ) } = z;u x 1 , 

is extended 

(2 .29) 
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where u obeys the stationary absolute probability distribution cor-

"" responding to x 1 of tl1e Markov process in • 

Finally, we shall give a third expression for the function 

r(z;x1 ). 

To this end we consider the 
• 

natural processes {S ;x
1 

e: x
1

} . 
o;x1 As we know the natural processes can also be described by means of 

the state space X'. In that case we always have x
1 

= x
2

. 

Let B be a closed set in X' satisfying: 

Assumption 5 (natural process) 

The length of the period, preceding the moment at which the sys

tem first assumes a state of B, is finite with probability 1. 

By lemma 1.5 in part II,this moment can be represented by a sto-

chastic variable t
0 

x' is the initial state. -B·x' , 

Assumption 6 (natural process) 

During the period 

with probability 1. 

a finite number of entries in A 
y 

occur 

Note that during a natural process no decision costs are incurred 

(cf. point 8 of property 6). 

According to lemma 1.31 in chapter 1 of part II: 

a) the random losses incurred during [o,t~·x') can be represented 

, 
b) be repre-

0 ' 0 
sented by a stochastic variable nB·x' with mean n (x

1
;B). 

' 
Assumption 7 (natural process) 

For each initial state x' of the natural process 

·O 
n (x1 ; B) < 00 

and 
0 

t (x
1

; B) < 00 • 

0 
From assumption 7 it fol lows that k (x1 ; B) < 00 for each x

1 
t: x

1
. 

We now return to the decision processes {S ;x
1 

e:: x
1

} and con
z; x1 
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sider the x
1
-functions k(x1 ;z) and t(x1 ;z), defined by 

def [ = k(x
1

; C) + 
1 o 0 

k (x
1

;B) 

(2.30) 
and 

0 
- t (x1 ;B) 

(2.31) 

respectively. 

Obviously, we have for each x1 e: x1 

P[c] (du ;x1; z)k (u; z) = ) (2.32) 

and 
• 

(2.33) 

The following theorem is an immediate consequence of (2.28), (2.32) 

and (2.33). 

Theorem 6 

Under the assumptions 1 through 7, the criterion function r(z;x1 ) 

can be defined by 

E{k(u;z)lx1 } 

E{ t ( u ; z) I x
1

} 
(2.34) 

on the set of all ergodic states of the Markov process in [c]. 

3. Two important choices of the sets C and B 

1. Sometimes it is possible to choose the set C in such a way that 

the entry states in C always have the same x1-component, 

that case the criterion function r(z;x1 ) becomes 

k(x1 ; [c] > 

t(x
1

; [c]) 
• 

..... 
say x 1 . In 

(2. 35) 

' 
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2. In most cases, however, we choose 

C = A XX ' z 2 

B = Ao x x2, 

(2. 36) 

where 

Since 

A . def n 
1s defined by A = A (cf.(1.52)). 

0 o z e:Z z 
the decision process between two entries into Az x x2 can be des-

cribed by means of a natural process, it follows from the definitions 

of 

and 

) = 
2 

0 

that (2.36) implies! 

yd. (x ') 
l.SC 

0 
+ k (x

2
;A )} 

+ z 

(2.37) 

(2. 38) 

0 
= k (x2;Az)- ydisc(x2,x2)). where 

Since A c A , by (2. 30) , (2. 31) , 
0 Z 

(2.37) and (2.38), 

k(x ;z) = 
1 

--

t(x ;z) = 
1 

+ 

+ yd. (x') + 
l.SC 

(2.39) 

0 0 (du;x1 ;A )t (u;A )-t (x1 ;A) = 
Z O 0 

(2. 40) 

We now introduce the (x1 ;d)-functions k(x1 ;d) and t(x1 ;d), defined by 

(cf. p.88) 

k(x
1 

;d) --
x2 

and 

t (x1 ; d) --
x2 

respectively. 

pd 

Pd 

[ax 

[ctx 

{ y (x' ; d) + 
dee 

0 0 
yd. (x ' ) + k (x2 ; A ) } - k (x1 ; A ) isc + o o 

(2. 41) 

(2 .42) 
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Clearly, if dis a null decision 

Moreover, if x1 £ A z, 

k(x
1

;d) = 0 

t(x1 ;d) = O. 

k(x1 ;z(x1 )) = k(x1 ;z) 

t(x
1

;z(x
1
)) = t(x

1
;z). 

(2.43) 

(2.45) 

(2.46) 

If , then by 

(2.34), (2.45) and (2.46) the criterion function r(z;x1 ) is also given 

by 

(2.47) 

• Xl 

Note that the (x
1

;ct)-functions k(x
1

;d) and t(x1 ;d) depend only on 

a) the structure of the natural process 

b) the stopping set A 
0 

and not on a particular strategy z. 

Thus, if we have to compare different strategies z, the (x1 ;d)-func

tions k(x1 ;d) and t(x1 ;ct) used in {2.47) can be determined once for all. 

In order to dete1·111ine the criterion function r(z ;x
1
), we then only need 

to know the stationary absolute probability distributions of the Mar-

kov process in [A . This stochastic process has a discrete time para-

meter. This justifies the introduction of the rather complex functions 

k(x1 ;z) and t(x1 ;z). 

By point 6a) of property 6 the Markov process 

kov process i n A z (cf. theorem 1) are identical. 

4. An additional property of the decision process 

• 
l.Il and the Mar-

' 

..... 
Let us return to the sets C and B, given by C = C x x

2 
and 

A h A 

B = B x x2 , with B and C unspecified. 

It follows from (2.47) that the criterion function is a function 
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of z and the x 1 -component of the initial state only. Therefore we 

state: 

Statement 2 

If the x1 -functions k(x1 ;z) ·and t(x1 ;z) are known, then to find 

out the optimal strategy only the x
1 
-states of tl1e system need to be 

considered. 

For that reason our future discussions will refer to the state 

space x1 only .. • 

Notation 4: 

111 order to simplify the notation we write X (x £ X) instead of x
1 

and G instead of G1 . 

Let S denote the decision process with initial state x and let z·x , 
S X 

z 
• 

denote the decision process which starts in a random state obeying 

the steady state probability distribution 

In theorem 5 we have proved that, if the state x belongs to a 

simple ergodic set, then for the decision processes S and S x the z·x z > 

mean costs per unit of time over an infinite period are equal. 

In this section we shall prove a result which will enable us to 

state the following: 

''If a st rate g)1 z e: Z i s a pp 1 i e d the 

between the decision processes S 
z·x 

' 
a11d 

difference in expected costs 

S xis uniformly bounded in x 
z 

on the class of all finite time intervals''. 

Let us consider the Markov process in [OJ and let us introduce 

the following notations: 

Notation 5: 
' 

1) The 
..... 

entry states in C will be denoted by { I . ; j =1 , 2 , • .. • } . 
J 

2) If z is the strategy applied and if xis the initial state, 

then 

n 
P (B· x · z) [cJ , , 

def -- Prob { I e: B Ix ; z} 
-n· 

; n=l , 2, ••• ; 

Let us refor1r1ula te assumptions 2 through 7. 

BcG. (2.48) 
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Assumption 2' 

The Markov process in [c] satisfies the Doeblin condition .. 

Assumption 3' 

For each z E Z the x-functions t(x;z) and k(x;z) are bounded. 

Moreover, we have for each x t(x;z) > O. 

If C =A, by point 7 of property 6 assumption 2' is satisfied. 
z 

In chapter 2 of part II, (3 .. 77) and ff .. , we prove for each x e: X 

t(x;z) = z (dx ;x) 
X 

In order to satisfy assumption 

introduce the following property: 

Property 5 (costs) 

> o. 

.,.. 
3' completely for C = A 

z 

(2. 49) 

we shall 

4) For d £ D (x) the (x; d)-functions k (x; d) and t (x; d) , defined by 

(2.41) and (2.42), are bounded. 

If z E Z is applied, there exists a decomposition of C into s dis-

junct simple ergodic sets 

states O £ G. 

E. e: 
1 

G (i=l ,2, .. . ,s) and one set of transient 

The ith simple ergodic set E. can 
l. 

ly moving subsets M .. e: G ( j=l , 2, ..• ,c. ) 
1J l. 

be subdidived into c. 
l. 

(cf. [ 2 J , p. 206 ff.) . 

We shall now prove that from assumption 2' it follows tl1at 

a) the number of disjunct simple ergodic sets is finite; 

b) for each simple ergodic set the number of cyclically moving 

subsets is finite. 

Using Doob's notation, if s=m then for each e:> O a simple ergodic 

set Ek can be found such that (cf. 2] , p .. 192) 

2) x E Ek ; n=l , 2 , ... 

(2. 50) 

(2.51) 

' 

i 
; 

I 
I 
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This contradicts the Doeblin condition and thus s<~. 

Using Doob 1 s notation again, if c.=~ 
1 

then for each e: > 0 and for 

each n > 0 
O"' 

an integer n >n , a cyclically moving subset 
0 

found such that (cf. [2 ,p.192) 

1) q>(M. ) < £ . 
l. ·n 7W I ' ' 

2) 
n 

1· - XE: M. 1 - , • C l.; n 1 • 
' 

This co11tradicts the Doeblin condition and thus c. <oo. 
1 

M. 
1·n 

' 
can be 

(2.52) 

(2.53) 

Since there are only a finite number of simple ergodic sets it 

follows from assumption 3 1 that the x-function r(z;x) is bounded. 

Let tlS now introduce the x-functio11 v(x;z) defined by 

def 
v(x;z) = k(x;z) - r(z;x)t(x;z). (2.54) 

By assumption 3' the x-function v(x;z) is bounded. For later refer-
• 

ence we state 

Lemma 2.1 

If z £ Z, the x-functions r(z;x) and v(x;z) are bounded. 

In the remainder of this section we shall prove that, for n-+ 00 , 

the sequences 

n • 

{ v(x;z) + pJ (dl;x;z)v(I;z); n=l,2, •.. (2.55) 
j=l [cJ 

oscillate between finite bounds. 
.... 

To this end we introduce an x-set Ct which is a union of cyclic-

ally moving subsets; i.e. one for each simple ergodic set of the Mar

kov process in [f]. 
If the initial 

.... 
state I

1
e C is a state of a simple ergodic set E. 

1 
A, 

and if m(I
1

) is the number of entries to be made before a state of C' 
...... 

will be taken on, let cn(z;I1 ;C') be defined by 
nc.+m(I

1
) 

1 . 
~ def J 

c (z·I ·C') = v(I 1 ;z) + .... P n ' 1' ,...... j=l C C 
( dl ; I l ; z) v ( I ; z) .. 

(2.56) 

• 
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Lemma 2.2 

If I is an ergodic state, the sequences 
1 

{ c (z · I · C') · n=l , 2, . . • } n , 1, ' 
(2.57) 

.-
converge uniformly in I 1 to a limit denoted by c (z; 1

1
; C') • 

Proof: 

It can be proved that (cf. 2 , p.208 ff.) for B£ G the sequen

ces 
nci+j 

n=l, 2, •.. } ; j=l , 2 , ••• , c. 
]. 

(2. 58) 

converge, exponentially fast, and uniformly in Band 1
1 

to a probabil-
. . coCi +j 

ity distribution p A (B;I1 ;z). 

The stationary absolute probability distribution of the Markov 

process in 

p.192 ff.) 

= lim 
1 
n 

n 

j=l 

From (2.59) we deduce for I
1

t E
1 

(B;I ;z) = lim 
1 

= lim 1 

= lim 1 

c. 
1 --

nc. 
1 

l 
j=l 

n-1 
l 

k=O 

(lim 

n -+- co 

1 

• 
J 

c. 
1 

j=l 

n-1 

r 

1 n . 
n l PJ ... 

j=l 

kc.+j 
1 

p c. 
j=l n -+- Q) n 

k::::O 1 

(2.59) 

--

c. 
1 ccc 

1 • 
(B;I1 ;z))= 

c. 
1 

J (2.60) 

Consequently, by the definitions of r(z ;x) and v(x;z) we have for 

Il £ Ei 



c. 
l. 

2 
j=l 

Now let 

ooc_+j 
l. 

a) ~ d_~ f I ( ) I o su:e 1v I;z 
I e: C 

• 

b) A 
JJ; \) 

def --

43 

= c .. 
1 

• 
' 

,.._ 

C 
p 

(2.61) 

{2.62) 

(2.63) 

'V V 
; JJ =-2 • • • + 2 ; v =1 , 2 , • • • 

and let us consider the integral 

and the sum 

Obviously, 

• nc.+J 
l. p _ (A ;I

1
;z). 

C lJj'V 

Let the x-set B be defined by 
µ;v 

B 
def --

µ; \) 

(2.64) 

(2.65) 

nci+j a 
p - (A ;I1 ;z) < 

C \Ji 'V 2" 

(2.66) 

} • (2.67) 

From (2.63), (2.65) and (2.67) it follows that 

2\) . 
+ a nc.+J 

lJ =-2v 2 v C 

\) -
+2 a nc. +j 

--
H ,,;v 

l-F ~2 V 2 1--" 

• 
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= - a + 
+2

\) . 
nC.+J 

1 

\) pc~ (B 1 ;Il;z). 
V 2 µ+ ;v µ=-2 

(2. 68) 

The relations (2.66) and (2.68) imply that the corresponding elements 

of the sequences 

{ 
nc.+j 

1 
.... P[c (dl;I1 ;z)v(I;z); n=l,2, ... } 
C 

and 
nc.+j 

l. 

differ a at the most .. 
2 \) 

- a ; n=l , 2 , •.. } 

(2.69) 

(2. 70) 

Because the sequences (2.58) converge exponentially fast and uni
cxci +J 

for each j a triple 

(N · p· K) with p < 1 and K <co such that fo•r n> N o' , o 

nci+j 
Pc (B;Il;z) 

This implies 

+ 2 \1 
a 

V \1 
µ=-2 2 

* where K = 2 a K. 

+2 \) 
< a 

\) 2 \) µ=-2 

\) 
µ::::-2 

a 
\) 

2 

• 

coc.+j 
l. 

(2.71) 

(2.72) 

Consequently,the sequences (2.70) converge exponentially fast and uni-

formly in 11 to 

ex>C.+j 
1 

p (B l. ,;I1 ;z) 
[c] µ+ ; V 

Obviously ,(2. 73) differs from 
00C.+j 

- o j j =1 , 2 , ... , C. • 
l. 

J. 
A p [c (dI; Il ;z)v(I ;z) 
C 

(2. 73) 

(2. 74) 



• 

at the most 
2\) 

• 

Now we have for each j 
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nc.+j 
l. --

< 
.....0 

00c.+j 
1 

p... (B l ;I1 ;z) c u+ ;v + 0 

+ 

+ 

• eoc.+J 
1 

p·.... (B l ;I
1

;z) -
C lJ+ ; v 

\) u=-2 

• nc.+J 
1 

p - (B l ;I1 ;z) c u+ ;v 

+ 0 

* n + K p -- v-1 
2 

*n + K p • 

' 
V=l, 2, .... • (2 .. 75) 

Consequently, for each j there exists a triple 

* 
* (N ,P,K) with p < 1 

0 

and K <00 such that for n > N 
w 0 

Thus the sequences 
nc.+j 

{ p 1 
. ( d I ; I l ; z) v ( I ; z) ; n=l , 2 , . . . } 

C C -

converge exponentially fast and uniformly in I
1 

to 

.... 
C 

ooc.+j 
l. 

Obviously, by (2.61) the sequences 
c. 

l. 

{ 
j :::::1 

converge exponentially fast and unifor,nly in I 1 to 

*D 
< K p • -

(2.76) 

(2. 77) 

(2. 7 8) 

(2. 79) 

+ 
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= 0 . 

Now we are able to prove that the sequences (2.58) 
... 

formly in r1 to an 11-function c(z;I1 ;C'). 

Let us consider the limit 

lim 
n~ N c. +m ( I 1 ) +1 

0 l. 

which is equal to 

n 
lim l 

n -+QI) h=N 
0 

c. 
1 

j=l 

(2. 80) 

• converge uni-

(2 .81) 

(2.82) 

Since the sequences (2.79) converge exponentially fast and uniformly 

to zero we can find a triple (N ;P ;ec) with p < 1 and K < 00 such 
0 

that for h > N 
- 0 

I i 

j=l 

and hence, uni fo.t·tnly in I 1 , 

n 
lim J 

n -+ 00 h=N 
0 

c. 
1 

j=l 
.... 
C 

By (2.58) and (2.62) unifoi:,nly r
1 

e: E1 we have 

< 00 • 
0 

(2. 83) 

N 
KP O 

• (2. 84) 
1- p 

(2. 85) 

Hence, by 
s 

(2.84) and (2.85) the sequences (2.57) converge uniformly in 
.... 

11 E .UlE. 
1.= 1 

to c(z;I1;C '). This function satisfies 

I c (z · I · c ' ) I < ' 11 =-

where c = max c .. 
i 1. 

(N +l)c6 
0 

N 
KP o 

+ 1-p 
< 00 

' 
(2. 86) 

(2. 87) 
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This ends the proof. 

Finally, we consider the case that 11 is a transient state. 

It can be proved (cf. [2 J ,p.207) that for some p < 1 

00 N 
< const 

p 
1-p , 

where O is the set of transient states. 

Consequently, 

I 
j=N 

00 

I 
j=N 

< 
m:111 

N 
(dI;I

1
;z) v(I;z)I! const __ p_,_ 

1-p 

and thus a positive value k' < 00 can be found such that 

00 

I v(I1 ;z) + ( dl ; I 1 ; z) V ( I ; z) I €~ K ' < 00 • 

(2. 88) 

(2.89) 

(2. 90) 

It can easily be verified that the probability distribution of 
.... 

the first ergodic state reached in C can be defined. Let us denote this 

-So far the function c(z;I1 ;c') has only been defined for ergodic states 

11 . The domain of definition will now be extended to X by taking 

• .... 
c(z;x;C') = v(x;z) + 

j=l 0 

E ,... 

By means of (2.86) and (2.90) we can easily find a positive 

such that for each x e: X 

I c(z;x;C') I< K II < co 
• 

For later reference we state: 

(2.91) 

t I 
K <oo 

(2. 92) 
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Lemma 2.3 ,.., 

The domain of definition of the x-function c(z;x;C'), defined on 

the set of all ergodic states as the limit of (2.58) can be extended 

to X by means of (2.91). 
.... 

Note that for each choice of C' we find an x-function c(z;x;C'). 

Obviously, for n~~ , the sequences 

n • 

{ v(x ;z) + p J ( dI ; x ; z) v ( I ; z) ; n=l , 2 , • • • } (2.55) 
... 

j=l C 

oscillate between the bounds 

..... 
c(z;x;C') + (c+l) o (2 .. 93) 

So we have proved the following lemma: 

Lemma 2.4 

If a strategy z E Z is applieq, for n -+ 00 the sequences 

n • 

v(x;z) + pJ (dl;x;z)v(I;z); n=l, 2, ... ... 
j=l C [cJ 

oscillate unifon11ly in x between finite bounds. 

From (2.90) we deduce 

c(z;x;C') = v(x;z) + E{ c(z;I
1

;C') x;z} • 

·s. The x-functions r(z;x) and c(z;x) 

..... 
In chapter 3 we shall only consider the case 

By point 6a) of property 6 the Markov process 

C == A 
z 

in A 

Markov process in A (cf. theorem 1) are identical. z 
From now on the intervention states are denoted by 

By point 6a) of property 6 the intervention states 

z 

(2.55) 

(2.94) 

-and B = A • 
0 

and the 

I . (j=l , 2, •.• ) . 
J 
{ I . ; j ==2 , • • • } 

J 
are almost surely entry states in [A z • If the initial state xe: A , z 
then the first intervention state I 1 is x itself and thus is no entry 

state. On the other hand, if x e: A , I is an entry state. z -1 
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It follows from (2.94) that, if 

we have 

.,.., 
C = A z 
B = 
A 

C'= 

(2. 95) 

z z I c(z;x;A) = k(x;z(x)) - r(z;x)t(x;z(x)) + E{c(z;I;A) x;z}, 

(2.96) 

where I is the first intervention state after the state x. (Thus, if 

x e: Az, l=I 1 • Otherwise: I=I 2 .) 

Since for null decisions we have 

we find 

--

z 
c(z;x;A) = 

k(x;d) = 0 

t(x;d) = 0 

if xe: . .\. 
z 

Further, we have for I
1 

£ A
2 

(cf. (2 .33)) 

r(z;I) = 
1 

--

Notation 6: 

A 
z 

A z 

1 
p 

--
A z 

A z 

(2.97) 

(2. 98) 

(2. 99) 

(2 .100) 

A • z 

If z is the strategy applied, and if xis the initial state,then 

n def * I p (B;x;z) = Prob { I e: B x;z}; n=l,2, ••. ; 
A Ii 

* where I --"t"ln 

z 
stands for the 

th 
n future intervention state. 

B e: G, (2 .101) 



Consequently, we have for I 1 e Az 

r(z;I) = 
1 A 

z 

+ 
A z 

50 

(2 .102) 

(2 .103) 

It fol lows from (2 .102) and (2 .103) that the set of functional equa-

tions 

• 

A 
z 

+ 
A z z 

(2 .102) 

(2 .104) 

has at least as many solutions as different choices of Az exist. 

Let us consider the functional equations (2 .102) and (2 .104) more 

carefully. 

Suppose that the Markov process in A has m simple ergodic sets 
z 

E1 (i==l,2, .•. ,m). If oi (i=l,2, ... ) are arbitrary real numbers, let 

* the x-function c (z;x) be defined by (cf. (2.90)) 

* c (z;x) 
def --

z 
c(z;x;A )+ o1 ; 

00 
• 

\"' PJ v(x;z) + l 
j==l 0 

if X E E. 
1 

(dl;x;z)v(I;z) + 

XEA z • (2 .105) 

-w- We can now easily verify that the I
1 
-functions r(z ;I

1
) and 

c (z ;11 ) a·1s0 constitute a solution of the set of functional equations 

(2 .102) a.nd (2 .104). 

In chapter 3 an x-function c(z;x) will be considered that satis

fies (2.104). This function needs not to be one of the functions 
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c(z;x;Az). The functions c(z;x;Az) have already proved their useful

ness in proving the existence of a solution of the set of functional 

equations (2.102) and (2.104). 

• 

• 



CHAPTER 3 

Optimal strategies 

1. Introduction and definitions 

In this chapter we only consider the case 
,,.. 

C = A z 
.... 
B = A 

0 
• 

(3.1) 

(3.2) 

Let the x-function c(z;x) be one of the functions which satisfy 

the equation 

with 

• 

c(z;x) = k(x;z(x))-r(z;x)t(x;z(x)) + 

r(z;x) = 

+ 

A z 

A z 

1 PA (dI;x;z)c(z;I) 
z 

1 
PA (dI;x;z)r(z;I). 

z 

(3.3) 

(3.4) 

We shall discuss t~ree decision problems. The solutions of these 
• 

problems enable us to for1r1ulate properties of the optimal strategy. 

Next we shall construct an iteration procedure that yields a se-
• 

quence of strategies {z
1 ;i=l,2, ... } satisfying for each x 

• • 

r(z1 ;x) > r (zJ ;x); j > i. = 
(3.5) 

Under conditions (properties of the mathematical model) to be 

stated below we prove for each x EX 

• 

lim 
l. r(z ;x) = inf r(z;x). (3.6) 

• 1 ➔ 00 z£Z 

Let us first introduce some tools needed for the description of the 

three decision problems mentioned above . 
• 
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Tool a) The extended class 

and points 1,2,3,4 

... 
Z ::> Z of 

and 6b) 

all strategies z satisfying 

of property 6. 

A:, A 
Z 0 

Tool b) The mixed strategies of 
.... 

with z e: Z, 

tegy z' 

.... a C a 
zb e:: Z and Z c £ Z. Such a mixed strategy di eta tes successively 

1) n interventions in accordance with z • 
a' 

2) rn interventions in accordance ' with zb; 

3) 00 interventions in accordance with z • 
C 

-I=. z 
C 

or if n > 0 and if z J zb, the mixed stra-a . 
.,.. 

does not belong to Z. Note that, conversely, 

each strategy z e: Z 

case n=O; i.e. the 

r (z' ; x) and c (z ' ; x) 

is a mixed strategy (n=m=O). Let us consider the 

strategy 

by 1) 

m 
z' = (zb) zc. We then define the functions 

r (z' ; x) 

def --

c(z';x) 

def 
m 

--

def --

--m m c m 

b = E { r (z ; y ) Ix; zb} , 
C --m 

m- ·+1 

j=l 
. -j -j b C J J 

+ 
b b 

zb(dy ;I )c(z ;y) = 
m m c m 

X 

m 

- . -j ' b -j b c -J J J 
J=l 

b 
+ E { c (z ; y ) I x; zb} , 

C m 

(3.7) 

(3 .8) 

where is the state into which the system is transferred by the 

decision zb(.!m) .. 

1) The states 
b 

Xin (i=l,2, ... ) belong to X. 
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Next we consider the case niO and define the .functions r(z' ;x) 

and c(z' ;x) by 

r(z' ;x) 
n. m def 

= r((z) (zb) z ;x) = a C 

def m a l = E { r ( (zb) z ; y ) x; z } , 
c --n· a 

(3. 9) 

c(z';x) = 
n m 

c((z ) (zb) z ;x) a C 

def --

def --
n . 1 . n- + 

. 1 J a J a 
J= 

+ 
m a 

E {c ( (zb) z ;y ) x; z } , 
c ---n a 

)mz ;I.) t(I .;z (l .))l 
C -J J a J 

l x·z }+ , a 
(3 .10) 

where is the state into which the system is transferred by the de-

cision z (I). a -n 

Tool c) The mixed strategies 

strategy of the for1r1 

strategy dz' dictates 

of the forr11 dz' , where 
n m 

(z ) (zb) z (cf. tool a C 

z' is a mixed 

b)). The mixed 

1) the decision din the initial state and after that 

2) decisions in accordance with z'. 

We now define for d e: D(x) 

r(dz' ;x) 
def -- (3.11) 

c(dz' ;x) 
def -- k(x;d) - r(dz' ;x)t(x;d) + Pd ( dy) c ( z ' ; y) • 

X (3 .12) 

Tool d) The mixed strategies of the form Az', where zt is a mixed 

strategy of the fo1·111 (z )n (z )mz and A is a closed set in X. 
a b c 

The mixed strategy Az' interdicts any intervention up to the 

moment that for the first time a state of A is taken on by the 

system. From that time onwards decisions are made in accord

ance wi th z ' . 
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We now define 

def 1 
r(Az' ;x) = PA (dy ;x)r(z' ;y) 

A 
(3.13) 

def l · 
c(Az 1 ;x) = pA (dy ;x)c(z' ;y), 

A 
(3.14) 

1 
where pA(B;x) denotes the probability distribution of the first state 

of A which is taken on if xis the initial state. Note that the pro-
1 

bability distribution pA(B;x) depends only on the natural process. 

Notation 7: 

If z' is a mixed strategy 

given by 

n m 
(z ) (zb) z and if n > 0, then A , is a C Z 

A I z 
def -- A 

z 
a 

• (3.15) 

Toole) Minimizing subset of A,. If z 1 is a mixed strategy 

• 

z 
of all closed sets A 

a C Z 

satisfying 

1) 

2) A = { x I r (Az' ; x) < r (z ' ; x) } u {x Ir (Az' ; x) = r (z ' ; x) ; 

C (Az ' ; X) !: C ( z ' ; x) } • 

Obviously, we have X and A , e: K , • z z 

(3.16) 

The minimizing subset of A, is now defined by the inter
z 

section At of all sets A£ K , • z' z 
Thus, 

A' = (1 A. 
z 1 Ae:Kz' 

(3 .17) 

Property 2 (natural process) 

4) I:f A is a closed set in X, a finite nt1mher of entries into A 

• occur with probability 1 in a finite time interval . 

Lemma 3 .1 

If the x-sets A
1 

and A2 are closed and contain the set A
0

,then 

for each bounded measurable x-function q(x) 

' 
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--

+ ••. 

A 

+ .••• , 

where 

def 
if k = even 

--
A2 ; if k = odd 

Proof: 

A 

1 

(3 .18) 

• (3 .19) 

Point 4 of property 2) and point 5 of property 6) imply 

1 
PA n A (B;x) 

1 2 

+ . . - . . . 
=u ,, 

(3 .20) 

Consequently, 

(3 .21) 
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Obviously, the right hand sides of (3.18) and (3.21} are equal. 

Lemma 3.2 

If A1 ,A2 £ Kz 1 , then 

Proof: 

+ 

+ 

+ ..... - • 

By the definition of the class K, we find that 
z 

1 
a) pA (dx

1
;x)r(z';x

1
)<r(z';x); xeA1 

A1 1 

(3.22) 

(3 .. 23) 

• , (3.24) 

b) the remaining ter·111s of the right hand side of (3 .23) are 

smaller than or equal to zero. 

Hence, for x £ A
1 

{' 2 1 
(3.25) 

The proof of (3 .25) for x E A
2 

is similar and is therefore om.i tted. 

Thus, for x £ A
1 

f\ A
2 

(3 .25) is true. 

Now let us consider the case that x £ A1 " A2 and 

1 
PA A (dxl;x)r(z' ;xl) 

-fl 2 

= r(z';x). (3.26) 

By (3.23) and (3.26) we find that 



58 

a) r(z';x) (3 .27) 

b) the remaining terms of the right hand side of (3.23) are 

equal to zero. 

Consequently, almost surely (cf. 3.23) 

1 
k - even -

r (z' ;xk) 
1 -- 1 k odd (3. 28) -- • 

2 

If xk E A
1 

(k=even) or if xk E A2 (k=odd), then since A1 e:: K
2

, and 

A
2 

£ Kz , , we have almost surely 

1 
p A ( dy ; X) r ( z t ; y) = r ( z ' ; X) ; 

A1 1 

1 
PA (dy ;x) c(z' ;y) !, c(z';x)} ; 

A1 1 
k = even 

1 
PA (dy;x)r(z' ;y) = r(z' ;x); 

A
2 

2 

1 
p A ( dy ; X) C ( Z 1 

; y) !: C ( Z ' j X) } ; k = 0 d d . 
A

2 
2 

By subs ti tu ting q (x) = c (z' ;x) in (3 .18) we find for x £ A1 

+ 

If (3.26) is 

•••• 

true, by (3. 29) and (3. 30) we find for x e: A 
1 

(3. 29) 

(3 .30) 

(3 .31) 
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1 
PA nA (dxl ;x) c(z' ;x ) < 

I 2 l 

(3.32) 

If x e: A2 and if x satisfies (3 .26), then the proof of (3. 32) is 

similar. 

or 

and 

Thus , 1.· f e:. A () A x 1 2 , we have either 

1 
PA nA (dx1 ;x)r(z' ;xl) < r(z t ;x) 

A
1

A A
2 

I 2 

1 
PA nA (dxl ;x)r(z, ;xl) 

1 2 
=r(z' ;x) 

Hence, A 1 f\ A 2 e:: Kz,. ' 

This ends the proof. 

Note that lemma 3. 2 does not imply A' 
1 

c K , . 
z z 

Tool f) If z e: Z, the minimizing subset D (x) _______ ....;;:;;.._ ____ z--

(3.33) 

(3.34) 

(3.35) 

of D(x) is defined by 

D (x) 
z 

def -- {ct!de:D(x); r(dz;x) = min r(d'z;x)}. 

Lemma 3.3 

If z E Z, the minimizing subset 

Proof: 

D (x) 
z 

d' e: D(x) 
(3.36) 

is a closed non empty set. 

From lemma 2.1 and point 
b 

2 of property 3, it follows that the 

d-function r(dz;x) is bounded and continuous ind. Since the set D(x) 
• 

is closed, the assertion is obvious. 

Tool g) If z e: z, the A-compressed strategy of [A] z of z is defined by 
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z (x), if XE A 
def z --

null decisions, if x e: A . 

Tool h) If z e: Z and if x e: X, the minimizing subset 

defined by 

Z (x) 
z 

Z (x) 
z 

def -- {z * I *..... * z e:Z;r((z )z;x) = inf r( (z)z ;x)} • .... 
ZEZ 

2. The basic problems and theorems 

In this section we consider three decision problems. 

First problem 

(3. 37) 

..... 
of Z is 

(3. 38) 

To minimize the ct-function c(dz;x) for each x subject to the 

constraint d e: D (x). 
z 

By lemma 3.3 the set 

perty 3 and by the points 

D (x) is a closed set. By point 2b of proz 
3) and 4) of property 5 it follows from the 

definitions that the d-functions k(x;d) and t(x;d) are bounded and 

continuous ind, Now it can easily be verified (cf.(2.94),(2.105), (3.12)) 

that the ct-function c(dz;x) is also bounded and continuous ind. This 

implies that for each x 

that minimizes c(dz;x). 

at least one decision de: D (x) can be found 
z 

Such a decision is called a.minimizing deci-
• s1on. 

The solution of the first problem is not necessarily unique. 

Therefore, we introduce the following property: 

Property 6 (strategies) 

9) If z e: Z, a selection procedure exists such that 

a) to each x one and only one minimizing decision 

signed; 

d z·x 
' 

is as-

b) if for some x the decision d=z(x) is a minimizing decision, 

then d 
z·x J 

= z(x); 

c) the strategy z1 , defined by 

(3 .39) 
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..... 
belongs to z. 

Lemma 3 .4 

If z £ Z and if for some x the null decision is a minimizing de

cision, then the decision z(x) is also a minimizing decision. 

Proof: 

If dis a null decision, then 

r(dz;x) = r(z;x) = r(z(x)z;x) 

c(dz;x) = c(z;x) = c(z(x)z;x). 

The assertion follows now at once. 

Lemma 3.4 and point 9b) of property 6 imply 

• 

Lemma 3 .5 

(3 .40) 

(3.41) 

(3 .. 42) 

If z
1 

is the solution of the first problem, then for each x we 

have either 

(3.43) 

or 
(3.44) 

and 
(3. 45) 

Proof: 

Let the set B be defined by 

B 

(3 .46) 

If follows from the definition of the strategy z 1 that 

B;;,A ::> A • (3.47) 
z

1 
z 
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r(z;x) = (dy;x)r(z;y) 

1 
p (dy;x)r((z1)z;y) = 

A . 
zl 

If x t Band if r(z;x) = r((z1)z;x), then 

c(z;x) = (dy;x)c(z;y) > 
== 

-Consequently, if x t B, we have either 

01" 

and 

r(z;x) = r((z1 )z;x) 

c(z;x) ~ c((z1 )z;x). 

(3 .48) 

(3 .49) 

(3. 50) 

(3. 51) 

(3.52) 

It follows from (3.46), (3.50), (3.51) and (3.52) that B = 0. 

This ends the proof. 

Second problem 

To detennine for the strategy z' 

Prop,ert): 6 (strategies) 

10) If z £ Z, if z1 is the solution of the first problem with z and 

if z' - (z )z then (cf. tool e) - 1 J 

def --

Lemma 3.6 

A' 
z' 

z €: z. 
1 

(3. 53) 

If z1 is the solution of the first problem with z and if the sets 

A1 and A2 belong to Kz' (z'=(z1 )z) then we have either 

i=l,2 (3.54) 
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r (A . z ' ·, x) · 
1 ' 

c (A. z 1 :x) · 1 , , 

i=l,2 

i=l,2 

Proof: 

Let us first consider the case i=l. 

If x £ A
1 

, then 

r(A1z' ;x) = r(z' ;x) 

c(A
1
z' ;x) = c(z 1 ;x) • 

(3. 55) 

(3.56) 

(3 .. 57) 

(3.58) 

The_assertion is a direct consequence of A1 f'\ A2 E Kz, (lemma 3 .2). If 

x £ A
1

, the assertion follows at once from (3 .25) and (3 .32) .. 

The proof for i=2 is similar and is therefore omitted. 

This ends the proof. 

Property 6 (strategies) 

11) If z £ Z, if z
1 

is the solution of the first problem with z and 

if z' = (z1 )z, then 

A 1 £ K • 
z' z' 

Lemma 3. 7 

If z
1 

is the solution of the first problem with z, if 

solution of the second problem with z'=(z1)z and if Ae:Kz' 

have either 

or 

and 

Proof: 

r( (z
2

) z; x) ~ r(Az' ;x) < r(z' ;x) 

r((z
2
)z ;x) = r(Az' ;x) = r(z' ;x) 

c({z
2
)z ;x) ~ c(Az' ;x) ! c(z' ;x) • 

Since for each A£ K , we have 
z 

z' =Xz' 

(3 .. 59) 

z is the 
2 

then we 

(3 .60) 

(3.61) 

(3 .. 62) 

(3 .. 63) 
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Az' = Afl Xz' (3 .. 64) 

( ) A ' z 1 = A ' () Az ' = A ' n A A Xz ' z2 Z : Z I Z t Z I 

(3.65) 

the ctssertion follows at once from lemma 3 .6. 

This ends the proof. 

l.iemma 3. 8 

If z is the solution of the first problem with z and if z is 
1 2 

the solution of the second problem with z'=(z1)z, then we have either 

or 

and 

Proof : 

r((z
2
)z;x) = r(z;x) 

c((z
2
)z;x) !. c(z;x). 

(3.66) 

(3.67) 

(3. 68) 

The assertion follows at once from lemmas (3.5) and (3.7). 

Lemma 3.9 

If z
1 

is the solution of the first problem with z and if z 2 is 

the solution of the second problem with z'=(z1)z, then for each x we 

have 
(3.69) 

Proof: 

It follows from (3.66) and (3.67) that for all x we have 

Consequently, (cf.(3.7)) for all x 

k 
r((z2 ) z;x) = E{r((z2 )z;yk_

1
) lx;z

2
} < 

(3. 70) 

(3.71) 

where yk 
1 

is the state into which the system is transferred by the 
th -

(k-1) intervention according to z 2 • Hence, for all x and k :=: 1 
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(3.72) 

First we shall prove that, if for some x 1 £ Az we have 

k=l, 2, ... (3.73) 

we also have 

(3. 74) 

and 

(3. 75) 

where I obeys the stationary absolute probability distribution of 
00 

the Markov process in A corresponding to x 1 • 
z2 

Let us suppose that (3.73) holds, then 

-- z
2

(dy;x
1
)r(z;y). 

x., 
(3. 76) 

It follows from (3.72) ahd (3.76) that with respect to the pro

bability distribution z 2 (x1 ) we have almost surely 

k-1 
r((z) z;y) = r(z;y) ; 

2 
k=2,3, ...• (3.77) 

By (3.67) and (3.68) we find with respect to the probability dis

tribution z 2 (x1 ) almost surely 

(3. 78) 

and thus 

(3.79) 

By (3.73) we have for k=2 

(3 .80) 

and thus 
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By adding (3.79) and (3.81) we find (cf. (3.10)) 

Consequentl;,~, (3.74) is true. 

Further it follows from (3.73) that (cf. lemma 2.1) 

- lim -
n-+eo 

--

lim 
1 

n 

I n 
j=l 

--

n • 1 
I -n 

j=l A 
pi (dI;x1 ;z2 )r((z2 )z;I) = 

z2 
z2 

PA (dl;x1 ;z)r((z2}z;I) 

z2 

which gives us (3.75). 

(3.81) 

(3.82) 

(3.83) 

Let us now return to (3.72). Obviously we have for all x 

1 
lim -

n 
(3.84) 

For ea.ch integer j ~ 1 and for al 1 x we have 

--

--

1 im .!. 
n • 

1 r((z
2

) z;x) = lim 

lim 
n-+ 00 

n 
i =1 n ~ 0C) 

1 
n 

I -n 
i=l A 

z2 

• 

PA (dI;x;z2)r((z2)Jz;I) = 
z 

2 

--

• 

E {r((z
2
}Jz;I

00
) fx;z

2
} , 

(3.85) 

where Im now obeys the stationary absolute probability distribution 

in Az corresponding to x. 
2 
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From (3_72), (3.84) and (3.85) we can easily deduce for all x 

(3.86) 

By taking j=k and j=l in (3.85) for all x 

(3. 87) 

By (3.72) and (3.87) with respect to the probability distribution of 

I almost surely 
00 

(3. 88) 

Since (3.73) implies (3.74) and (3.75) we obtain from (3.88) almost 

surely 

c( (z
2
)z; le,) 

= E{r((z2 )z;I:)IIC,;z2 } , 

(3. 89) 

(3. 90) 

where I' obeys the stationary absolute probability distribution of 
00 

the Markov process in A 
z2 

with initial state I . The expected value 

of r((z2 )z;I~) is then a function of I 
00 

and if we substitute the ran-

dom state I in this function the random variable in the right hand 
00 

side of (3.90) is obtained. 

If the original initial state of the Markov process in A is an 
z2 

ergodic state, then I' has the same distribution as I for almost all 
--0000 00 

I 
00 

and thus we have almost surely 

(3.91) 

Now it follows from (3.89) that for all x almost surely 

(3.92) 
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wht:ire !_2 
ion st,1te 

obeys the probability distribution of the second intervent

if I is the initial (intervention) state. 
,10 

If the original initial state x of the Markov process in A is z 
(3 92) b l ts r l (cf.(3.91)) 

2 
an ergodic state, then .~ ecomes a mos u e y 

(3. 93) 

It can easily be verified that for x ergodic 

E I { EI ' { C ( ( z 2) z ; .!.2) I .!.QO ; z 2 } I X ; z 2 } = 
i;- -··2 

f co 

(3. 94) 

Consequently, by taking expectations in (3.93) we find for x ergodic 

(3. 95) 

By (2.46), (2.47), (2.49) and (3.53) we have 

(3.96) 

and thus for x ergodic 

<E{r((z )z·I )lx·z} 
== 2 'oo '2 • 

(3. 97) 

Now let x be an arbitrary state. Then the state I will neverthe-
00 

less almost surely be ergodic. Hence, by (3.97) with respect to the 

stationary absolute probability distribution of the Markov process in 

A with initial state x we find almost surely 
z2 

(3. 98) 
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where I' obeys the 
co 

the Markov process 

stationary absolute probability distribution of 

in A with initial state I • 
z2 ~ 

By taking expectations in (3.98) we obtain 

r(z2 ;x) = E{r(z ·I )'x·z} < 
2 '-·00 I ' 2 -

(3.99) 

thus (3.97) also holds for non-ergodic states x. Hence by (3.86) and 

(3.99) for all x 

(3.100) 

This ends the proof. 

As a third problem we consider the following: 

Third problem 

To minimize the z~-function c((z~)z;x) for each x subject to the 

* constraint z e: Zz (x). 

After introducing an additional property of the mathematical 

model we shall demonstrate that the solution of the second problem 

also solves the third problem. 

Property 6 (strategies) ... 
12) There exists a strategy z

3 
£ z, which is for each x a solution 

of the third problem. 

Lemma 3.9 

the solution of the second problem with z' = (z1 )z, then z 2 is for 

each x also a solution of the third problem. 

Proof: 

decision z
3

{x) is an intervention, then we have 
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r((z3 )z;x) = r((z1 )z;x) = r((z2 )z;x) 

c((z3 )z;x) = c((z1 )z;x) = c((z2 )z;x). 

If z 3 (x) is a null decision we have either 

r((z3 )z;x) < r((z1 )z;x) 
or 

and 

r((z3 )z;x) = r((z1 )z;x) 

c((z3 )z;x) ~c((z1 )z;x). 

If (3.103) is true, then by (3.101) 

(3 .101) 

(3 .102) 

(3 .103) 

(3 .104) 

(3.105) 

-- (dy;x)r(z' ;y). (3.106) 

If 
1 

PA (dy;x)r(z';y), 

A z3 (3.107) 
z3 

then by (3.102), (3.104) and (3.105) 

-- (dy;x)c(z';y). (3.108) 

Consequently, if , then we have either 

r(z' ;x) > (3.109) 

or 

r(z' ;x) = ( dy; x) r (z' ; y) (3.110) 

and c(z' ·x) > , = ( dy; x) c (z ' ; y) • (3.111) 
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Hence, we have either (cf. lemma 3.7) 

or 

and 

Thus 

A 
z3 

(dy;x)r(z' ;y) 

1 
PA (dy;x)r(z' ;y) = 

z3 

r((z3 )z;x) = r((z2 )z;x) 

This ends the proof. 

(3.112) 

(3 .113) 

(3.114} 

(3.115) 

(3.116) 

Since only one solution of the second problem exists the converse 

of lemma 3.9 is not true in general. 

Theorem 8 

Proof: 

Since 

or 

and 

is a solution of the third problem with z=z 
0 

for each x 

r(z ;x) = 
0 

min r(z;x). 
zcZ 

z 
3

=z we find for each z e: Z and x £ X either 
0 • 0 J . 

r( (z)z ;x) > r(z ;x) 
0 0 

r((z)z ;x) = r(z ;x) 
0 0 

c((z)z ;x) > c(z ;x). 
0 -= 0 

By (3 .118) and (3 .119) we have 

and if 

(3.117) 

(3 .118) 

(3 .119) 

(3 .120) 
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k I r((z) z
0

;x) = E{r(z
0

;yk) x;z} ~ 

k+l 
< E{r((z)z ;}' >lx;z} = r((z) z ;x), 
• o 'k o (3.121) 

where yk is the 
> a;.. 

state into which the system is transferred by the k th 

int.ervt1ntion. Thus 

k 
r(z ;x) < r((z)z ;x) < r((z) z ;x), 

0 - 0 = 0 
(3 .. 122) 

n 
r(z ;x) < lim 

0 -

1 

Il-+ m 

= lim 

n k=l 

1 n 
n I 

k=l A 
z 

k 
pA (dI;x;z)r((z)z

0
;I) = 

z 

= E{r((z)z ;I ) lx;z} , 
0 0Q 

(3.123) 

where I obeys the stationary absolute probability distribution of 
--co 

the Markov process in A corresponding to x. z 
First we shall prove that, if for some x1 £ Az we have 

k=l, 2, • • • , 

we also have 

and 
2 

r((z) z ;x1 ) = E{r((z)z ;I ) lx1 ;z} , 
0 0 -o:i 

(3 .124) 

(3 .125) 

(3.126) 

where I obeys the stationary absolute probability distribution of 
00 

the Markov process in A z corresponding 

then Let us suppose that (3.124) holds, 

k-1 
z(dy;x1 )r((z) z

0
;y) = 

X 
z(dy;x1 )r(z ;y). 

X o 
(3 .127) 

It follows from (3.122) and (3.127) that with respect to the pro

bability distribution z(x1 ) we have almost surely 

k-1 
r((z) z ;y) = r(z ·y) · 

0 ..... 0 , ..... ' k=2, 3, . . . . (3 .128) 
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Since z 0 ; 3 = z 0 it follows from (3.128) with k=2 that almost surely 

and thus 

By (3.124) we have for k=2 

2 
r ( (z) z ; x ) = 

0 1 

and thus 

By adding (3.130) and (3.132) we find (cf. 3.10) 

Consequently, (3.125) is true. 

Further it follows from (3.124) that (cf. lemma 2.2) 

= lirn 
n-+-00 

1 
n 

n 

j=l 

lim 
ll-+, CD 

1 
n 

--

--

(3.129) 

(3 .. 130) 

(3.131) 

(3.132) 

(3.133) 

-- pA (dI;x1 ;z)r((z)z
0

;1) 
A z 

= E { r ( (z) z ; I ) I x1 ; z} , 
0 -oo 

z 

which gives us (3.126). 

Let us return to (3.120). Obviously we have for all x 

lim 
n +co 

1 
n 

n 

i=l 

i r((z) z :x) > r((z)z ;x). 
o' =- o 

For each integer j ~ 1 and for all x we have 

(3.134) 

(3.135) 
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n --+- oo 

= lim 
n --+- 00 

--

1 
n 

n 
i=l 

1 n 
I 

n i=l 
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• 

r((z) 1 z ;x) = lim 
0 

n-+oo-

1 
n 

n 
i=l 

--

= E {r((z)jz ;I )!x;z}, 
0 -oo 

(3.136) 

where I now obeys the stationary absolute probability distribution in 
Q0 

A corresponding to x. z 
By taking j=k and j=l for all x 

E{r((z)kz ;I) jx;z} = E {r((z)z ;I )jx;z} • 
0 00 0 co 

(3 .. 137) 

By (3.122) and (3.137) with respect to the probability distribu

tion of I almost surely 
co 

k r((z) z,;I) == r((z)z ;I). 
0 -= 0 co 

(3 .138) 

Since (3.124) implies (3.125), we obtain from (3.138) almost sure-

ly 
2 

c((z) z ;I ) > c((z)z ;I ) 
0 -()() 0 -oo 

(3 .139) 

(3 .140) 
0 -oo O -oo 

where I ' obeys 
-00 

the stationary absolute probability distribution of the 

Markov process in A, z with initial state I . The expected value of 
co 

r ( (z) z ; I') is then a function of I 
00 

and if we substitute the random 
0-ClO 

state I in this function the random variable in the right hand side 

of (3.140) is obtained. 

If the original initial state x of the Markov process in A is an 
z 

ergodic state. then I' has the same distribution as I for almost all 
-oo -oo 

I EA and thus we have almost surely 
QO z 

2 
r ( (z) z ; I ) = E {r ( (z) z ; I ') I I ; z} = 

O 00 O -ac -00 

= E{r((z)z ;I )jx;z} . 
0 -00 

(3.141) 
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Now it follows from (3.139) that for all x almost surely 

where I ' 
-2 

2 
c ( (z) z ; I ) 

Q -CO 

(3 .142) 

obeys the probability distribution of the second intervention 
• 

state in A if I is theinitial (intervention) state. 
Z 00 

If the original initial state x of the Markov process in A 
z 

• 1s an 

ergodic state, then (3.142) becomes almost surely (cf. (3.141)) 

+ E{c((z)z ;I
2
')1I ;z}>c((z)z ;I). 

0 00 = 0 co 
(3.143) 

It can be easily verified that for x ergodic 

--

-- E
1 

{c((z)z ;I )lx;z} . 
0 00 

(3 .144) 
00 

• 

Consequently, by taking expectations in (3.143) we find for x ergodic 

or 

- E{r((z)z ;I ) lx;z} . E{t(Iw;z(I
00
)) !x;z} > 0 

0 00 

r(z;x) = 
E{k(I~;z(!~))!x;z} 

E{t(I
00

;z(I
00
))!x;z} 

> E{r((z)z ;I )jx;z} . 
0 00 

> 

(3.145) 

(3.146) 

Now let x be an arbitrary state. Then the state 1
00 

will neverthe

less almost surely be ergodic. Hence, by (3.146l'with respect to the 

absolute stationary probability distribution of the Markov process in 

A with initial state x we find almost surely 
z 
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(3.147) 

where I' obeys the stationary absolute probability distribution of the 
--

Markov process in Az with initial state Im. 

By taking expectations in (3.147) we obtain 

r(z;x) = E{r(z;I~)!x;z} ! 

I x;z} = 
-- -oo 

E{r((z)z ;I ) lx;z}. 
0 -00 

(3 .148) 

Thus (3.146) also holds for non-ergodic states x. It follows from 

(3.123) and (3.148) that for all x 

r(z ·x) < E{r((z)z ;I ) lx;z} < r(z;x). 
o' =- o --ao -

(3.149) 

This ends the proof. 

By lemma 3 .. 9 and theorem 8 we also have: 

Theorem 9 

If zO;l 

solution 

is the 

of the 

solution of the first problem with z , if z is 
0 0;2 

the second problem with z~ = (z0 ; 1 )z
0 

and if z 0 ; 2=z
0

, 

then for each x 

r(z ;x) = 
0 

min r(z;x). 
z ( z 

3. 2_E_ti.~~l, strategie_s and the strate~y ~mpro~ement routines 

(3 .150) 

The most plausible definition of an optimal strategy is the fol

lowing: 

A strategy z is called optimal if it minimizes for each x the 
0 

z-function r(z;x). In other words: 

r(z 1,x) = 
o• 

min 
z £ z 

r(z;x). 

By theorem 8 a strategy z' is optimal if it satisfies 
0 

(3 .151) 
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• min 
z £ Z , (x) 

z 
0 

c((z)z';x). 
0 

By theorem 9 a strategy z'
1 

is optimal if it satisfies 
0 

and 

c(z'' ;x) = 
0 

A ',, 
z 

0 

• min 
d £ D (x) 

z 

--

0 

A '' • z 
0 

c ( (d)z'' ;x) 
0 

(3.152) 

(3.153) 

(3.154) 

Note 

does 

t I 

that z
0 

also satisfies (3.152) and (3.151), while in general 

not satisfy (3.153) and (3.154). 

z' 
0 

Without more detailed info1·1nation about the mathematical model we 

cannot prove the existence and the uniqueness of the solution of the 

above equations. 

If an optimal strategy z can be obtained neither from (3.151), 
0 

nor from (3.152) and nor from (3.153) and (3.154), for practical pur-

poses an iteration procedure is required, that yields a sequence of 
• 

strategies {z1 ;i=l,2, ... } such that for each x 

lim 
n 

r(z ;x) = inf r(z;x). (3 .. 155) 

z £ z 

The functional equation (3.152) suggests the following iteration 

procedure. This iteration procedure, called the strategy improvement 
o i-1 

method I, starts with an arbitrary strategy z £Z. If z is the stra-
. th th 

tegy obtained at the end of the (1.-l) cycle, the i cy•cle runs as 

follows: 

First step 

with 

Determine 
i-1 

Z=Z • 

Second step 

a solution of the functional equations (3.3) and (3.4) 

i-1 
Solve the third problem with z=z and dete1111ine a strategy 

i-1 
z3 = z3 • 
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i i-1 
_'I.:_'h_;e:..........:s=-t.,;,__r_a_t...;..e..:::g~y_z __ i_s__::g:...i_v_e_n_b ___ y_z 3 • 

End of the 
. th 
1. cycle. 

The equations (3.153) and (3.154) suggest the following iteration 

procedure. This iteration procedure, called the strategy fmprovement 
o i-1 

method II, starts with an arbitrary strategy z £: Z. If z is the 
th . th 

strategy obtained at the end of the (i-1) cycle the 1 cycle runs 

as follows: 

First step 

Determine 
i-1 

a solution of the functional equations (3.3) and {3.4) 

with Z=Z • 

Second step 

Solve the first problem with 
i-1 

z=z and detennine the strategy 

z = 
1 • 

Third step 

Dete1·11tine the x-functions 
i-1 i-1 

r((z
1 

)z ;x) and 
i-1 i-1 

c( (z
1 

)z ;x). 

Fourth step 

Solve the second problem with 
i-1 

strategy z2=z2 . 

i i-1 
_Th_e_s_t_r_a_t_e .... g=y:;.._z __ i_s---=g_i_v_e_n_b....:y::..-z 2 • 

End of the i th 
cycle. 

, ( i-1) i-1 z = z z 
1 

and dete1~ine the 

Note that the strategy improvement method II is a special case o~ 

strategy improvement method I. In the second routine the third problem 

is solved in a prescribed way. 

In order to prove the effectiveness of these iteration routines 

we introduce the following property: 

Property 6 (strategies) 

13) There is at least one initial strategy z O e: Z and an integer M 
0 

such that for each z e: Z, for each x and for each i > M we have 
0 
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• • 
1 1 

r( (z)z ;x) ~ r(z ;x). (3.156) 

If for all z E Z the decision process has only one simple ergodic 

set,point 13) of property 6 is always satisfied with the equality sign . 
• 

In that case the x-function r(z1 ;x) is a constant. This holds for every 
0 z E. z. 

Theorem 10 

If z E Z is an arbitrary strategy and if z 0 obeys point 13) of 

property 6, the strategy 

a sequence of strategies 

improvement method starting 
0 from z generates 

• 

{z1 ;i=l,2, ... } , satisfying for each x 

r(z ;x) ~ lim 
n r(z ;x). (3.157) 

n-+00 

Proof : 

If i > M , by point 13) of property 6 we have for each x 
0 

• • 
1 l 

r((z)z ;x)>r(z ;x). 
:a 

• 

Consequently, for all x and k ~ 2 

k i r((z) z ;x) = E{r((z)z
1

;yk_1 )lx;z} ~ 

• 

~ E{r(z
1 ;yk_1 )lx;z} 

k-1 i 
= r((z) z ;x), 

(3 .158) 

(3.159) 

where yk-l is the state into which the system is transferred owing to 

the (k-l) th intervention according to z . 
• 

Hence, for all x and k > 1 

k i i i 
r((z) z ;x) ~r((z)z ;x) ~r(z ;x) .. (3.160) 

Consequently , 

lim 
1 

n k i 
r( (z) z ;x) = 

n k=l 

. i 
== E{r((z)z1 ;I

00
) lx;z} ~ r(z ;x), (3.161) 

where I obeys the stationary absolute probability distribution in 
CIC 

A z 
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with initial state x. 

First we shall prove that, if for some x 1 tAz 

k=l,2', ... , (3 .. 162) 

we also have 

(3 .163) 

and 
• 

E { r ( ( z) z 1 
; I c») I x 1 ; z } , (3.164) 

where I obeys the stationary absolute probability distribution of the 
11 -

Markov process in Az corresponding to x1 . 

Let us suppose that (3.162) holds, then 

X 

k-1 i 
z(dy;x

1
)r((z) z ;y) = (3.165) 

It follows from (3.160) and (3.165) that with respect to the pro

bability distribution z(x1 ) we have almost surely 

k-1 i 
r((z) z ;y) = 

and thus almost surely z £ Z . (y). 
l. 

z 

• 
l. 

r(z ;x); k=2, 3, .•. (3.166) 

It follows from the solution of the third problem that we have 

almost surely (z1+1=z1) 
3 

i i+l i c((z)z ;y) ~c((z )z ;y) (3 .167) 

and thus 

By point 13 of property 6 we have for all x 

• 
1 

= r(z ;x) (3 .169) 
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and thus by (3.162) and (3.169) 

(3.170) 

So we find 

i+l i - r((z)(z )z ;x
1
)t(x1 ;z(x

1
)). 

By adding (3.168) and (3.171) we find 

Consequently, (3.163) is true. 

Further it follows from (3.162) that 

2 i 1 
n • • 

I r ( (z) z ; x
1

) - lim - n 
j=l n-+ cc 

1 
n • • 

PJ (dI;x1 ;z)r((z)z 
1 

;I) - lim -- -n 
j=l A 

A 
n -+oo z z 

--

which gives us (3.164). 

Let us return to (3.160). Obviously we have for all x 

lim 
n-+ oo 

1 
n 

I 
n h=l 

h i i 
r ( (z) z ; x) ~ r ( (z) z ; x) • 

For each integer j ! 1 and for all x we have 

• 

1 lim · -
n 

n-+ a, n h=l 

= lim 
n--+ co 

1 n 

n h=l 

h i r((z) z ;x) 

A 
z 

= lim 1 
n-+m n 

n 
I 

h=l 

• • • • 

= PA (dl;x;z)r((z)Jz1 ;I) = E{r((z)Jz 1 ;I~)lx;z}, 
A z z 

(3.171) 

(3.172) 

--

(3.173) 

(3.174) 

(3.175) 
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where 1 now obeys the stationary absolute probability distribution 
-oo 

in A corresponding to x. 
z 

By taking j=k and j=l for all x 

(3.176) 

By (3.160) and (3.176) with respect to the probability distri

bution of I almost surely 

ly 

-00 

k i 
r ( (z) z ; I ) = 

-00 

(3.177) 

Since (3.162) implies (3.163) we obtain from (3.177) almost sure-

2 i i+l i 
c((z) z ;I }>c((z)(z )z ;I) 

-oo - -,co 
2 . . 

r({z} z 1 ;I) = E{r((z)z1 ;I')II ;z}, 
-oo -co -00 

(3.178) 

(3 .179) 

where I' obeys the stationary absolute probability distribution of 
-a:, 

the Markov process in A z 
with initial state I 

00 
. The expected value 

of r{(z)zi;I') is then a function of I and if we substitute the ran-
.. Q) 00 

dom state I in this function the random variable in the right hand 
co 

side of (3.179) is obtained. If the original initial state of the Mar-

kov process in A is an ergodic state, then I' has z -~ 
tion as I for almost all I £ A and thus we have 

-oo 00 Z 

2 i 
r ( (z) z ;I ) = 

QC) 

• 

E { r ( (z) z 
1 

; I~) I .I 0); z} = 
• 

= E{r((z)z
1 ;!

00
)lx;z} • 

the same distribu

almost surely 
' 

(3 .180) 

Now it follows from (3.178) that for all x almost surely 

(3 .181) 

where I 2 obeys the probability distribution of the second intervention 

state in Az if 1
00 

is the initial (intervention) state. 

If the original initial state x of the Markov process in A is an 
z 

ergodic state then (3.181) becomes almost surely (cf. (3.180» 
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• 

k(I
00

; z(.~_
00
))-E{r((z)z1 ;I

00
)I x;z}t(I

00
; z(Ia,)) 

(3 .. 182) 

By taking expectations in (3.182) we find for x ergodic 

or 

E{k(I ;z(I ))lx;z} + 
-00 -00 

• 

- E{r((z)z
1 ;I

00
)jx;z} E{t(I ;z(I ))lx;z} 

-oo -00 
> = 

i+l i i ! E{c((z)(z )z ;I )-c((z)z ;I ) jx;z} 
-00 -00 

• 

r(z;x) = 
E{k(I

00
;z(I~))!x;z} 

E{t(I
00

;z(Im))lx;z} 
~ E{r((z)z1

;£e)lx;z} + 

i+l i i I E{c((z)(z )z ;I~)-c((z)z ;I~) x;z} 
+ • 

(3 .183) 

(3 .184) 

Now let x be an arbitrary state. Then the state I
00 

will neverthe

less almost surely be ergodic. Hence, by (3.184) with respect to the 

stationary absolute probability distribution of the Markov process in 

A with initial state x we find almost surely z 
• 

r(z;I
00

) > E{r((z)z
1 

;I~) I Ico;z} + 

+ 

i+l i i I E{c((z)(z )z ;I~)-c((z)z ;I~) ,Ico;z} 
(3 .185) 

E{t(I~;z(I~))II
00

;z} 

where I' obeys the 
Ill co 

stationary absolute probability distribution of 

the Markov process in A with initial state I . 
Z 00 

By taking expectations in (3.185) we find 

+ E IX; z 

• 

= E{r((z)z1 ;1
00

) lx;z} + 
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• 

+ E 

E { C ( ( z) ( z i + 1 ) z i ; .!_~) - C ( ( z) z J. ; I ~) I I 00 ; z } ___________________ I x ;z 

E{t(I';z(I'))II ;z} 
-oo -00 • 00 

By (3.161) and (3.186) we have for any x' and i>M 
_, 0 

and thus 

• 

r{z;x') ~ r(z 1 ;x') + 
• 

E{c((z)(z1+
1 )zi;I~)-c((z)z

1
;1~)jI

00
;z} 

+ E 

r(z;x') 

l -
~{ +n-1 

0 

l 
n i=M 

0 

E 

E { t ( I : ; z ( I : ) ) / _!
00 

; z } 

1 
> -..,. n 

i=l\f 
0 

• 

1·(z
1

;x') + 

i+l i i E { c ( ( z ) ( z ) z ; I , ) - c ( ( z ) z ; .I 1 
) 

-oo 00 

1\1 +n-1 
• l o 

r (z; x') > - ' -= n L 
l. 

r(z ;x•) + 
i=M 

0 

I x;z 

I ; z} 
00 

.. (3 .186) 

(3 .187) 

I X' ; z • 

(3.188) 

M +n-1 
l o 

+ - I 
E{c((z)(zi)zi-l;I')-c((z)zi;I')I I ;z} 

-ex> -oo 00 

n i=M +l 
0 

E 

M +n M +n-1 

1 
0 0 

E{c( (z) (z )z ; I' )-c( (z)z 
-oo 

M 
o·I') 

'-oo 

I X t ; z 

I I ; z} 

+ 

+ - E n 
00 I XI ; z . 

(3.189) 

• 

If the x-functions 

satisfying : 

]. 
{c{z ;x); i=l,2, ... } are any set of functions 

• 
1 

r(z ;x) = 1 
PA 

A . i 
l. z 

z 

i i 
(dI;x;z )r(z ;I) 

i i i i c(z ;x) = k(x;z (x)}-r(z ;x)t(x;z (x)) + 

+ 

A • 
1 z 

1 i i 
PA (dI;x;z )c(z ;I), 

• 
1 z 

(3 .190) 

(3.191) 
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if k. (i=l,2, ••• ) are arbitrary constants and if the x-functions 
1 
• 

c'(z1 ;x) are defined by 

i def i c'(z ;x) = c(z ;x) 

• 

+ k.' 
1 

(3 .192) 

then-the set of x-functions 

(3.190) and (3.191). 

l. 
{c'(z ;x); i=l,2, ••. } also satisfies 

• • 
1 1 Using the functions c'(z ;x) instead of c(z ;x), the strategies 

·i+l i 
z (i > 0) are still solutions of the third problem with z . 

W lit 

Consequently, 

1 
r(z;x') > 

- n 

1 
n 

M +n-1 
0 

i=M +l 
0 

E 

M +n-1 
0 

i=M 
0 

• 
1 r(z ;x') + 

E{c'((z)(zi)zi-l;I 1 )-c'((z)zi;I')f I ;z} 
-00 -00 -oo 

E{t(I~;z(I~)) jI
00

;z} 

M +n M +n-1 M 

1 E 
n 

E{c'((z)(z 0 )z O ;I')-c'((z)z 0 ;I') 
00 .... 

+ 

jx';z + 

l X' ; z • 

(3.193) 

Now let the constants k. 
1 

{i=M , ... ,M +n-1) be chosen 
O 0 

way that 
i i-1 ~ i 

• 1n such a 

E ----------------------- X' ; z = O; 

This implies 

E 

= E 

E{t(I~;z(I~))!I
00

;z} 

; i=M +1, ••• ,M +n-1 .. (3.194) 
0 0 

k -k . . 1 1 l.-

E{t(I'·z(I'))II ;z} -co' -a:, -00 

I X f ; z --

E{c((z)(zi)zi-l;I~)-c((z)zi;I~)jI~;z} 
I x' ;z 

· i =M + 1 , •.• , M +n-1 • 
' 0 0 

• , 

(3.195) 
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If we choose~ = 0, then the remaining constants 
0 

k. (i=M +1, ... ,M +n-1) are unambiguously dete1111ined by (3 .195) . 
l O 0 

Hence,by this choice of the constants k. the relation (3.193) 
1 

becomes M +n-1 
0 • 1 

r(z;x') ~ 
n i=M 

0 

1 
r(z ;x') + 

1 
+ - E 

n 

M +n M +n-1 
E{c'((z)(z O )z 0 

Finally, if n + ~, 

;I')-c'((z)z 
0C 

• 

r(z·x')> lim , .. 

we find 
M +n-1 

1 0 

n I 
1 

r(z ;x') = lim 

This ends the proof • 

• 

i=M 
0 

n-+ oo 

M 
0 ·I')II ·z} '-oo -oo' 

I . 

. I x ' ; z • ( 3 . 196) 

n 
r(z ;x'). (3 .197) 



CHAPTER 4 

A new method and some related techniques 

1. Introduction 

The results obtained in the preceding chapters furnish us with a 

new method for solving stochastic ~-stage decision problems. Two 

fo1wulations of this method will be described in section 2. 

In some books the theory dealing with problems of this type is 

considered as a part of dynamic programming. In this book, however, 

the te1111 dynamic programming is reserved for techniques treated by 

RICHARD BELLMAN in his book ''Dynamic Programming'' [3] . In section 3 

of this chapter we shall give a brief description of a dynamic pro

gramming approach to the problems considered in this book. 

Two decision problems of this type have been solved by RONALD 

A. HOWARD [4] . In section 4 we shall show that his first policy im

provement technique fol lows from the second fo1·1r1u la tion of the new 

method. With respect to his second problem, however, our method leads 

to a technique different from his. 

2. Summary of the new method 

In this section we shall outline the new method for solving 

stochastic~ -stage decision problems. We do not pretend that this 

method never fails. But, if the mathematical model has the properties 

mentioned in chapter 1,2 and 3, the method will be effective. These 

properties are sufficient, but not always necessary. 

Now we merely stipulate the properties as stated below. 

The state of the system can be represented by a point of a so-called 

state space. The state space, denoted by X, consists of points of an 

M-dimensional Cartesian space. The decisions can be represented by 

points d of a decision space D. We differentiate between decisions 

called null~decisions and decisions called interventions. 
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An intervention corresponds to a random transition in the state of 
r r f 11 the system. A null-decision trans ers the system with probability 1 in-

to its present state. Decisions are defined by the probability dis

tributions of the state into which the system is transferred. 

For each state x of the system we have a set D(x) of feasible 

decisions din D. 

A class of stationary Markov processes in Xis defined; 
• i.e. one 

for each initial state. This class of processes is called the natural 

process. In each particular problem a class Z of strategies z with 

corresponding intervention sets A in X is given. Each strategy z E: Z z 
dictates interventions in states of A and null-decisions elsewhere z 
(d=z(x)). The stopping set A is defined by 

0 

A 
0 

def -- n A 
z e: z z • (4.1) 

To each state x and decision d £ D(x) two random walks, denoted by 
0 

w 
d o 

and w ,can be assigned. During the random walk w the system is sub-

jected to the natural process having x as initial state. The walk ends 

as soon as the system 
d start of the walk w 

takes on a state of the stopping set A • At the 
0 

- the system is transferred into a random state y 

with the probability distribution of d. 

After this transition the system is subjected to the natural process 

having y as initial state and will end the 

it assuroes a state of the stopping set A. 
0 

d random walk w as soon as 

The (x;d)-function k(x;d) represents the difference in expected 
d o 

losses incurred during w and w. The costs of the decision dare 

included in k(x;d). 

The (x;d)-function t(x;d) represents the difference in expected 

k(x;d) = 0 

t (x; d) = 0 • 

If z is the strategy applied and if xis the current 

probability distribution of the first future intervention 

(4.2) 

(4.3) 

state, the 

state 1
1 

is 
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1 
denoted by pA (A;x;z). 

and 

z 
Further we consider the functional equations 

r(z;x) = 
A 

z 

1 
PA (dI;x;z) r(z;I) 

z 

c(z;x) = k(x;z(x)) - r(z;x)t(x;z(x)) + 

1 
PA (dl;x;z) 

z 
+ 

A 
c(z ;I) .. 

z 

(= k(x;z(x)) - r(z;x) t(x;z(x)) + E{c(z;I1 ) lx,z}) 

(4.4) 

(4.5) 

In the sequel the x-functions r(z;x) and c(z;x) denote some 

solution of the equations (4.4) and (4.5). 

We now introduce mixed strategies of the following types: 

a) The mixed strategy of 

dicta ting 

1) first an intervention in 

z 
a 

and zb e: Z, 

accordance with z ; 
a 

2) then interventions in accordance with zb. 

If z T the x-functions r(z' ;x) and c(z' ;x) are defined by 

(4.6) 

and 

c(z' ;x) 
def --

(4.7) 

where y is the state into which the system is transferred by the de

cision za (I1 ) • 

b) The mixed strategy of the fo1·111 ~.•z with z e:Z, dictating 

1) the decision din the initial state and 

2) then decisions in accordance with z. 

We define r(d•z;x) and c(d•z;x) by 
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r(d•z;x) 
def -- E{r(z;y) Id} 

c(d•z;x) d~f k(x;d) - r(d•z;x) t(x;d) + 

+ E{c(z;y) jct} , 

(4. 8) 

(4. 9) 

where now~ obeys the probability distribution corresponding to d. 

c) The mixed strategy of the form Az' , where z ' is a mixed s tra te

gy of the for111 (za)zb and A is a closed set in X. 

This strategy interdicts any intervention up to (but not in

cluding) the moment that for the first time a state of A is 

taken on by the system. 

From that time onwards decisions are made in accordance with z'. 

The x-functions r(Az' ;x) and c(Az' ;x) are defined by 

r(Az' ;x) 
def -- E { r ( z ' ;_x) I x ; A } (4 .10) 

and 
def 

c (Az ' ; x) = E { c ( z ' ;_x) I x ; A } , ( 4 .11) 

where y obeys the probability distribution of the first state of A -
taken on if xis the initial state. Note that this probability dis

tribution depends only on the natural process. 

If z' is a mixed strategy (za)zb, the set A , is defined by 
z 

A 
z 

a 
( 4 .12) 

Further we consider the class K, of all intervention sets A 
z 

satisfying: 
-
A = { x I r (Az ' ; x) < r ( z ' ; x) } u 

{xjr(Az';x) = r(z' ;x);c(Az' ;x) ~ c(z' ;x)} • 

(4 .13) 

Obviously, we have A , e: K • 
z z' 

Next we consider minimizing subsets of the following types: 

a) If z E Z, the minimizing subset Dz (x) of D(x) is defined by 

D (x) z 
def -- { d J d e: D (x) ; r(d•z;x) = min r ( d' •Z; x) } • ( 4 .14) 

d' E D(x) 
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b) The minimizing subset 

of all sets A e: K , • 

A' , of A , z--z is defined by the intersection 

z 
Thus 

A, = 
z' (4.15) 

z 

c) If z e: Z and if x EX, the minimizing subset 

fined by 

Z (x) of Z is de-
z 

Z (x) 
z 

def * I ~ * = {z z £ Z; r ( (z ) z ; x) = inf r((z)z;x}} .(4.16) 
-Z E Z 

d) If z e: Z, the minimizing 

z z 

subset Z z 

def --

of Z is defined by 

If z e:Z, the A-compressed strategy A z of z is defined by 

z (x) , if x e: A. 

(4.17) 

null-decisions, if x e: A. (4 .18) 

A strategy z e: Z is called optimal if it satisfies for each x 
0 

r(z ;x) = min r(z;x). 
0 zeZ 

• 

We now consider the following problem: 

''To dete:r·n1ine an optimal strategy z of z''. 
0 

(4 .19) 

Several approaches are possible for solving this problem. The 

seemingly more simple approaches are in general only practicable in 

the most simple cases, butlead to impracticable problems in more com

plicated cases. Therefore a number of alternative approaches is des

cribed, of increasing complexity but also applicable to cases of in

creasing difficulty. 

First formulation 

I. Preparatory part 

Deten11ine the (x;d)-functions k(x;d) and t(x;d) .. 

II .Dete1111ination of the optimal strategy 

• 
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A. pi~~ct_!ppro!c~ 
a) Dete1·mine a strategy z that satisfies for each x 

0 

r(z ;x) = 
0 

• min 
z £ z 

z e: z 

r(z;x). 

that satisfies for each x b) Dete11nine a strategy 
0 Z 

0 

c(z ;x) = min 
o ze:Z 

z 
0 

c((z)z ;x), 
0 

(4.19) 

(4.20) 

where c(z ;x) satisfies (4.4) and (4.5), while c((z)z ;x) and 
0 0 

z are given by (4.7) and (4.17) respectively. 
z 

0 

B. Iterative approach 

If z O 
£ Z is an arbitrary 

strategy obtained at the 

runs as follows: 

initial strategy and if zi-l is the 
. st th 

end of the (1-l) cycle, the i cycle 

a) function-deteI1r1ina tion operation 

Dete1·n1ine a solution of the fW1ctional equations (cf. (4 .4) and 

(4.5)) 

i-1 
r(z ;x) = 

and 

A . 1 1-
z 

1 i-1 
PA (dI;x;z ) 

i-1 

i-1 
r (z ; I) 

z 

i-1 i-1 i-1 i-1 
c(z ;x) == k(x;z (x)) - r(z ;x) t(x;z (x)) + 

+ 
i-1 

A 
z 

1 i-1 i-1 
PA (dl;x;z )c(z ;I). 

i-1 
z 

b) strategy improvement routine 

l) Deter111ine the minimizing subset Z . 
1 

of Z. 
1-

z 

(4.21) 

(4.22) 

2) i-1 Minimize uniformly in x the z-function c( (z)z ;x) subject 

to the constraint z E: Z • Select one of the solutions. 
i-1 

z . 
The selected strategy is denoted by z 1 • 

E d f th . th 
n o e 1 cycle. 
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The second part of the new method can also be f or1nula ted in a more 

speci:fied way; the complete formulation then becomes as :follows: 

Second f91~ulation 

I. Preparatory part 

Dete1mine the (x;d)-functions k(x;d) and t(x;d). 

II.Deter1nination of the optimal strategy 

A. Direct approach 

Deter·11tine a strategy z that satisfies for each x z (x) c D (x), 
0 0 Z 

and 

c(z ;x) = 
0 

min 
dED (x) 

z 
0 

A' z 
0 

c(d•z ;x) 
0 

= A z , 
0 

0 

(4. 23) 

(4 .24) 

where c(z ;x) satisfies (4.4) and (4.5), while c(d•z ;x), D (x) 
O O Z 

and A' 
z 

0 

0 
are given by (4.9), (4.14) and (4.15) respectively. 

B. Iterative approach 
' 

• 

If z 0 
£ Z is an arbitrary d ·1 i-l . th initial strategy an i z is e stra

runs tegy obtained at the end 

as follows: 

st th 
of the (i-1) cycle, the i cycle 

a) function-determination operation 

Dete.r·111ine a solution of the functional equations 

i-1 
r(z ;x) = 

1 i-1 i-1 
p A ( dI ; x; z ) r ( z ; I) 

i-1 
z 

and 

i 1 i-1 i-1 i-1 c(z - ;x) = k(x;z (x)) - r(z ;x) t(x;z (x)) 

+ 
1 

PA 
A i-1 

z 
i-1 

z 

i-1 
(dl ;x; z ) 

i-1 
c(z ;I) .. 

(4.25) 

(4.26) 
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b) strategy improvement routine 

1) Dete11nine for each x the minimizing subset D i-l(x). 
z 

2) Minimize the d-function c(d.z;x) for each x subject to the 

constraint d ED. 1 (x). Select for each x one of the mini-
1-

mizing decision~. The selected decision, d i-l , is chosen 
z ·x 

zi-l(x) if z 1 - 1 (x) is a minimizing de~ision. The 
i-1 

equal to 

strategy z1 is defined by 

def -- d . 1 1.- " (4.27) 
z ·x 

' 
• 

3) Dete1·1nine for the strategy z' = 

subset A' , of A , • The strategy 
z z 

strategy of z
1
i-l_ 

End of the i th cycle. 

. ~ . -m1n1m1.z1ng 
• • 

z 1 is the A' ,-compressed 
z 

Finally, some remarks about the usefulness of this method. 

z 
future intervention state in A and let the strategies z cz have the z 
following properties: 

Property A 

1) The functional equations (4.4) and (4.5) have at least one 
• solution; 

2) The Markov process in A z has stationary absolute probability 

distributions given by 

PA (B;x;z) = lim 
Z · ll-+oo 

1 n 
L 

n k=l 

k 
PA (B;x;z); 

z 
( 4. 28) 

3) The function r(z;x) is bounded and the expected values of 

c(z;I 00 ) with respect to the stationary absolute probability 

distributions pA (B;x;z) exist. 
z 

It follows from (4.4) that 

1 n k 
r(z;x) = n }: PA (dI;x;z) r(z;I). (4.29) 

k=l A z 
z 
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r(z;x) = 

--
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3) and (4.28) 

lim 
n-+ oo 

A 
z 

1 n 

n k=l A 
z 

k 
PA (dI ;x;z) 

z 

PA (dI;x;z) r(z;I). 
z 

r(z;I) = 

(4. 30) 

Consequently, r(z;x) is constant on simple ergodic sets in A. If x 
z 

is an ergodic state,it follows from (4.5) and (4.30) that 

+ E { 
A 

z 

E{k(I ;z(I )) 
<lO 00 

c(z;I)fx;z} , (4.31) 

where I 
, 00 

has the absolute stationary probability distribution cor-

responding to x. 

We can easily verify that 

By (4.31) and (4.32) 

A z 

c(z;I)jx;z} . 

E{k(I ;z(I )) - r(z;x) t(I ;z(I )) lx;z} = 0 
~ ~ ~ 00 

and thus if xis a state of a simple ergodic set 

E{k(I ;z(I ))lx;z} 
CO 00 

r(z;x) = ----------- • 

By (4.30) and (4.34) we find for an arbitrary x 

r(z;x) 
E { k (I:; Z ( I :> ) I I OO; Z } 

= E {---------- I x;z} , 
E {t (I:;z (I:)) II(X);z} 

(4.32) 

(4.33) 

(4 .. 34) 

(4 .35) 

where I has the absolute stationary probability distribution in A z -ClO 

corresponding to x and z. The distribution of I' 
-m 

is obtained as fol-

lows: let I~ have the absolute stationary distribution in Az cor-

. I for I then I'' becomes I ' . responding to I~ and z; substituting-~ ~ -~ -~ 
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Rei>ea ting the arguments rr1ade in the proof of theorem 8 in chapter 3 

we can demonstrate that, if z satisfies either (4.20) or (4.23) and 
0 

(4.24), we have for each x 

r(z ;x) = 
0 

min 
z e: z 

r(z;x). 

In addition to property A we also introduce: 

P~operty .... B 
• 

( 4. 36) 

l 
1) The strategies z (i=l,2, ..• ), yielded by one of the iteration 

procedures, belong to Z; 

2) The minimizing subsets A' 
( i-1) 

. l £ K . l . l ( i =l , 2 , . . • ) ; 
1- 1- 1-

3) 

z
1 

z (z )z 
1 

An integer M can be found such that for each z e:. Z, for each 
0 

x EX and for each i > M we have 
... 0 

• • 
1 

r( (z)z ;x) ~ 
l. r(z ;x). (4 .37) 

Repeating the arguments made in the proof of theorem 10 in chap

ter 3 we can demonstrate that 

• 

lim 
l 

r (z ; x) = inf r(z;x). 
ze:Z 

( 4. 3 8) 

By means of properties A and B, however, we cannot prove that the z

function r(z;x) is a good criterion for optimality (cf. section 2 of 

chapter 2). Unlike the properties of the mathematical model introduced 

in chapters 1,2 and 3, the properties A and B do not provide us with a 

deeper understanding of the structure of the decision process. But for 

practical purposes this need not always be necessary. 

3. Dynamic programming 

Many stochastic co-stage decision problems can be solved by means 

of dynamic programming. According to BELLMAN ( [3] , p. 81) the corre

sponding decision processes have the following features in common: 

a) In each case we have a physical system characterized at any 

stage by a small set of parameters, the state variables; 
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b) At each stage of either process we have a choice of a number of 
1) 

decisions; 

c) The effect of a decision is a transfo1·1nation of the state varia

bles; 

d) The past history of the system is of no importance in dete:r111in

ing future actions; 

e) The purpose of the process is to maximize some function of the 

state variables. 

BEL considers an infinite sequence of stages. The state of the 
th 

system at the k stage is denoted by Ik. At every stage a decision 

is taken. The properties mentioned above imply that at each stage the 

decisionmaker can make as if the process starts at this stage in its 

actual state. 

The set of feasible decisions corresponding to the state I is 

indicated by D(I). If at a stage the state is I and if the decision 

is d, then a loss k(I;d) will be incurred. 

The solution of the stochastic o:, -stage dynamic programming pro-

blem is giv.en by a policy. Quoting BEL (cf. [3 , p.82): ''A policy 

is any rule for making decisions which yields an allowable sequence 

of decisions; and an optimal policy is a policy which maximizes a pre

assigned function of the final state variables.'' 

In this formulation one of the state variables is the total gain. 

The method is based on the following principle (cf. [3] ,p.83): 

Principle of optimality 

An optimal policy has the property that whatever the initial state 

and initial decision are, the remaining decisions must constitute an 

optimal policy with regard to the state resulting from the first de-
• • 

Cl.SJ.On. 

In BELLMAN's dynamic programming approach of ~-stage problems 

losses 

pected 

to the 

are discounted. Therefore, if a policy z is 
th 

value of the loss to be incurred at then 
th t . . b k sage is given y 

1) Including the null-decision. 

applied, the ex

stage with regard 
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an-k E{k(I ;z(I ))IIk;z} ; n=k,k+l, •.. , 
-n n 

where the discount factor a satisfies O < a <1 
th 

cision to be made at then stage. 

and z (I ) is 
n 

(4.39) 

the de-

If a policy z is applied, let the total expected loss to be in-

curred since the k th decision and discounted with regard to the k
th 

stage be given by f(z;Ik). Hence, for each I 1 and for each z to be 

considered we find 

f(z;I
1

) = k(I
1

;z(I
1

)) + aE{f(z;I 2 ) II1 ;z(I1 ) }. 

( 4. 40) 

Now it follows from the principle of optimality that the optimal 

policy z satisfies for each I 1 0 

The optimal policy 

the functional equation 

(4 .41) 

z can be dete1·1nined from the solution of 
0 

( 4. 41) • 

A detailed discussion of the existence and the uniqueness of 

the solution can be found in • 

One of the iteration procedures which may yield the optimal 

policy is closely related to the strategy improvement routines con

sidered in section 2. This iteration procedure will now be described. 

Determination of the optimal policy (BELLMAN). Iterative approach 

If z 0 e: Z is an arbitrary initial strategy and if zi-l is the 

strategy obtained at the end of the (i-l)
st 

cycle, the i
th 

cycle 

runs as follows: 

a) function-deterinination operation 

Deter1nine the solution of the functional equation 

i-1 i-1 
a. E { f (z ; I 2 ) I I 1 ; z ( I 1 ) } . 

(4.42) 

• 



b) policy improvement routine 

Minimize the ct-function 

i-1 

99 

(4.43) 

for each 

find for each I 1 at least one decision d.From these decisions we 

select an arbitrary one with this restriction: if for a partic-

ular state 11 we have 

i-1 

(4.44) 
i-1 

then the decision z (I1 ) must be selected. The selected de-
• 

cisions constitute a policy z 1
• 

End of the i th cycle. 

Under certain conditions, the effectiveness of this iteration proce

dure can be proved (cf. [3] ) . 

4. HOWARD' s pol icy improvement methods 

In JR.A. HOWARD considers two different types of stochastic 

oo-s tage decision problems. Using HOWARD' s ten11inology, we shal 1 fo1"n1-

ula te these problems and the corresponding solutions. Then, we shall 

show that with respect to these problems methods for solution can 

also be derived from the strategy improvement routines of section 2 .. 

HOWARD's first problem 

Let us consider a system that can be in N different states. 

These states are numbered from 1 to N. At equidistant points of time 

e (0=1,2, ... ) decisions can be made. For each state a finite number 

* o:f £easible decisions are given. Thus, the decisions d, which are 

* feasible in at least one state, can also be numbered (d = l, ... ,M). 

* I:f the system at a is in the state j and if at that time decision d 

is made, then 
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a) a loss 
d* 

q. 
J 

will be incurred; 

b) 8+1 system will be • at t.e 1n the state h with probability 
d* 

( 1 
d~ 

1) • pjh pjh --
h=l 

If to each state of the system one and only one feasible decision 

has been assigned, this relation between states and decisions is 

called a poli,cy .. 

It is assumed that, if decisions are made in accordance with a policy, 

the behaviour of the system can be described by means of a Markov 

chain without cyclically moving subsets .. 

If j is the initial state of the system and if a given policy is 

applied, 

a) 

b) 

we 

the 

g. ; 
J 

then 

drop the index 

expected loss 

d* ct* d* . and l.Il pjh q. • 
J 

J 
per stage in the steady state • denoted by 1S 

c) the expected loss to be incurred in the first n stages is de-

noted by vj(n) (v.(1) = q.); 
J J 

d) the value v. is defined by 
J 

def 1 . 
V . = l.m 

J 
(v . (n)-ng.) . 

J J 
(4.45) 

A policy is called optimal, if it minimizes for each initial 

state j the expected loss g. in the steady state. 
J 

The problem is how to deterrnine an optimal policy. 

HOWARD proves in [4] that an optimal policy can be found by 

means of the following iteration procedure (cf. [4] p.64): 

Determination of the optimal policy (HOWARD I). Iterative approach 

If z 0 is an arbitrary 

obtained at the end of the 

lows: 

initial 

(i-l)st 

a) value-determination operation 

policy and 

cycle, the 

Use pjh and qj for a given policy 

of equations 

i-1 
z 

i-1 
if z is the policy 
.th f 
1 cycle runs as ol-

to solve the double set 
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and 

v.+g 
J j 

g. = 
J 

N 

h=l 

= q. + 
J 
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j=l, 2, ••• , N (4.46) 

N 

j=l, 2, •.• ,N (4.47) 
h=l 

for all v. and g., by setting the value of one v 1·n h · 1 J J j eac s1mp e 
ergodic set zero. 

b) policy improvement routine 

• 

1) Dete1·11tine for each j the set * D. of 
J 

decisions ct* which mini-
• mize 

• 

2) Minimize 

N 

h=l 

d* 
q. + 

J 

N 

h=l 

* * for each j subject to the constraint d £ D .. 
J * 

(4.48) 

(4.49) 

For each j this yields at least one decision d. From these 

decisions we select an arbitrary one with this restriction: 

if for a particular state j the decision dictated by the 

given policy belongs to n* 
j 

and if in addition to this we 

have 
v.+g. 

J J 

* . ( d = min qj + 
d* ED~ 

(4.50) 

J 

then this decision is chosen. The selected decisions, one 

for each state, constitute a new policy. In the next cycle 
• 

this policy will be the given policy z 1
• 

End of the cycle. 

It can be proved that an optimal policy will be found after_a finite 

number of iterations. For proofs the reader is referred to 4J. 

HOWARD's second problem 

Again a system that can be in N different states (l, •.• ,N) is 

considered. Suppose that the decision maker can influence the evolu-
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tion in the state of the system by means of M different actions. 

* If the system is at tin the state j and if the action d is 

undertaken, then 

a) for each unit of time the system is in the state j 

will be incurred; 

b) for a transition from state j into state ha loss 

incurred; 

a loss 

c) at t+ .O.t 
* 

the system will 

o(tit2 ) (h;tj). 

be in state h with probability 
d 

a. 6t + 
jh 

d* 
r .. 
JJ 

be 

If to ea~h state of the system one and only one action has been as

signed, the relation between states and actions is called a policy. 

It is assumed that, if actions are carried out in accordance with a 

policy, the behaviour of the system can be described by means of a 

Markov process with a continuous time parameter. 

If j is the initial state of the system and if a given policy is 

applied, then 

a) we drop the index 
* d* d* 

d in ajh' rjj and 

b) the expected loss per unit of time in 

noted by g.; 
J 

c) the expected loss for the period 

d) the value v. is now defined by 
J 

(0, t) 

d* 
rjh; 

the steady state is de-

is denoted by v.(t); 
J 

def 1 . 
V = 1m 

j t-+cio 
(v.(t)-tg.). 

J J 
(4 .51) 

A policy is called oEtima!, if it minimizes for each initial 

state j the expected loss g. per unit of time in the steady state. 
J 

The problem is how to deten'nine the optimal policy. 

Let us try to solve this problem along the same lines as above. 

To this end we split up the time axis into periods of length ~t. 

If at the beginning of the interval (t', t '+ l:\t] the system is in the 

state j and if during that interval the decision maker will carry out 

* the action d, then 
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a) we say that he makes the decision d* at t'· * , 
b) the corresponding 

Notation 

We 

and 

d* ct* 
q . = (r .. + 

J JJ 

8: 
,.. 

now 

d* 
a .. 

JJ 

..... d* 
q. 

J 

d* 
define a .. 

def --

def --

JJ 

-
hij 

d* 
r .. 

JJ 

respectively .. 

lo d . . 2) ss q. 1s given by 

2 

• 

* 
and 

.... d 
q. by 

J 

a* 
ajh 

• j=l,2, .... ,N , 

j=l, 2, .... ,N 

(4.53) 

(4.54) 

If a given policy is applied, the following relation is obvious 

(cf. (4.46)): 

and thus by (4.53) 
• 

0 = I a jh Lltgh - I 
h~j h~j 

N 

1 --
h=l 

• 

Consequently, N 

h=l 

Further we have (cf. (4.47)) 

V. - (q.-g.} tit + -
J J J 

and thus by (4.53) 

gj -

a.h b.t)g. + 
J J 

ajh b.tg. + o(6t2 ) 
J 

2 
o(l).t ) , 

--

ajh gh 6t + 
2 

0 (bot ) .. 

= o. 

1 ajh 6t vh + (1- I iljh 
h~j hij 

(4.55) 

(4.56) 

(4.57) 

l\t) V . 
J 

(4.58) 
2 

+ o(~t ), 

N .... 
I (4.59) q. - ajh vh. -

J h=l 

2) The summation 

the exception 

means that h runs through the numbers 1, •.• ,N with 

of j. 
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• 

In the first step of the policy improvement routine correspond

ing to HOWARD's first problem we had to determine for each j the set 

D~ of decisions ct* which minimize 
J 

N 

l • 
(4 .48) 

h=l 

This corresponds to seeking out the decisions d* which minimize 

or 
N 

{ l 
h=l 

and thus 
N 

h=l 

* d 
a.h)g.} 

J J 

o(lit). 

(4.60) 

(4 .61) 

(4.62) 

In the second step of the policy improvement routine corresponding to 

HOWARD's first problem we had to minimize for each j 

subject to the 

* d 
q. + 

J 

N 

1 
h=l 

* * constraint d e: D .• 
J 

This corresponds to minimizing, with respect to 

or 

* .... d 
q, ~t + 

J 

* ..... d 
q. 6t + 

J 

N 

I 
h=l 

V. + 
J 

* 
d Li ) a.ht v. + J . J 

* * d c D., 
J 

and thus the minimization of (4.63) is equivalent with that of 

N 
' o (nt) . 

h=l 

(4 .,49) 

(4.63) 

(4.64) 

(4.65) 

Obviously, the following iteration procedure yields an optimal strate

gy (cf. [4], p.108): 
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DeteI·1nina tion of the optimal policy (HOWARD II). Iterative approach 

If z 0 is an arbitrary 

obtained at the end of the 

lows: 

initial 

(i-l)st 

policy and 

cycle, the 

l.
.f i-1 z is the policy 
. th 
1 cycle runs as fol-

a) value-dete11nination operation 
... 

Use a.hand q. for a given policy to solve the double set of equa-
J J 

tions (cf. (4.57) and (4.59)) 

N 

I ajh gh - 0 • j=l,2, •.. ,N (4 .. 66) - ' 
h=l 

and 
N 

..... 
g. - q_ + ajh vh • j =1, 2, ••• , N (4 .. 67) - ' J J h=l 

for all v. and g . , by setting the value of one v. 
J 

in each simple 
J J 

ergodic set to zero. 

b) policy improveme~t r9utine 

* * 1) Determine for each j the set D. of actions d which minimize 

N 

I 
h=l 

2) Minimize N 

+ L 
h=l 

J 

( 4 .. 68) 

(4 .. 69) 

for each j subject to the constraint * * d c D ... For each j this 
J 

yields at * least one action d. From these actions we select an 

arbitrary one with this restriction: if for a particular state 

j the action dictated by the given policy belongs to 

in addition to this we have 

v_+g. 
J J 

• = min 
a* e: D~ 

J 

* 
( .... d 
q. + 

J 

N 

L 
h=l 

* D. and if 
J 

(4 .. 70) 

this action is chosen. The selected actions, one for each state, 
-

constitute a new policy z 1 
.. In the next cycle this policy will 

be the given policy. 
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End of the cycle. 

It can be proved that an optimal policy will be found after a finite 

number of iterations. For proofs the reader is referred to [4] . 

We shall now demonstrate that HOWARD's first technique can also 

be derived from the second routine of section 2. To this end we intro

duce a new state variable e. If at HOWARD's equidistant points of time 

e a (''HOWARD-'') decision still has to be made, then e=O. In all other 

cases e denotes the last (' 1HOWARD-' 1
) decision made (e=l, ••• ,M). 

In our model the state space X consists of points x=(j,e) of a 

twodimensional lattice. 

Because in our model decisions are defined by means of the pro

bability distributions of the state into which the system is transfer

red, it follows from the construction of X that in our model a ' 1
HOWARD 1

'

decision d*made in j can be denoted by (j,d*). The (decision-) pro

bability distribution is now concentrated in the state (j,d*). In our 
• 

model the decision space D consists of points d = (j,d*) of a two 
. 3) 

dimensional lattice. 

We now stipulate that 

a) the sets D(j,e) of feasible decisions d only consist of null

decisions if eiO; 

b) the strategies z to be considered dictate interventions if e=O. 

Hence, for all z e: Z the intervention sets A consist of the states 
z 

{ (j ,O); j=l, ••• ,N}. Thus, for all z £ Z 

A = A • 
Z 0 

(4. 71) 

Using HOWARD's notations, 
1 

by z, we easily verify that pA 

but with the applied strategy indicated 

(B;x;z), k(x;d) and t(x;d) (cf. section 

2) are given by 
z 

(4.72) 

3)"'Tfiis decision space does not satisfy points 2a and 4 of pi~operty 3 in 
chapter 1. With respect to these proper ti es an .rvt x N-dimensional Car
tesian space is needed. In that space the end points of the MN unit 

* vectors correspond to the decisions (j,d ). 
• 
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(4. 73) 

and 
(4.74) 

It follows from (4.4), (4.5), (4.46) and (4.47) that the functions 

r(z;x) and c(z;x) (cf. section 2) satisfy the equations 

and 

N 
r(z;(j,O)) = g.(z) = p.h(z)gh(z) 

J h=l J 

C (z; (j, 0)) = V. (z) 
J 

= q . ( z )-q . ( z) + 
J J 

N 

I 
h=l 

(4.75) 

pjh(z)vh(z). 

(4.76) 

Further it follows from (4.8), (4.9), (4.72), (4.73) and (4.74) that 

the functions r(d•z;x) and c(d•z;x) satisfy the equations 

and 

N 
r((j,d""1z;(j,O)) = L 

h::::l 

* c{(j,d )z;(j,O)) 
d* 

= q. -
J 

(4. 77) 

N N 

h=l h=l 

(4.78) 

The second foi,nulation of the new method (p.93) provides us with the 

following iteration procedure: 

I) Preparatory part 

Determine the (x;d)-functions 

k(x;d) and t(x;d). 

These functions are given by (cf.(4.73) and (4.74)) 

* k((j,e);(j,d )) = 

and 

t ( (j, e) ; (j, d~) = 

0 

d 
q. 

J 

0 

1 

* 
· if eiO J 

(4.79) 

· if e=O , 

· if e;60 
' (4. 80) 

· if e=O. 
' 

• 
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II) Dete1111ina tion of the optimal s t,~a tegy 
• li s 

B. Iterative approach 

If z O e: Z is an arbitrary initial 

the strategy obtained at the end 

i
th cycle runs as follows: 

a) function-detennination operation 

i-1 strategy and if z is 

of the (i-1) 5t cycle, the 

Detexmine a solution of 
4) 

(4.75) and (4.76)) 

the functional equations (cf. 

N 
i-1 

g. (z ) = 
J h=l 

(4.81) 

and 
i-1 

V . (z ) 
i-1 i-1· 

= q.(z )-g.(z ) + 
N 

I i-1 i-1 
pjh(z )yh(z ). J J J h=l 

(4.82) 

b) strategy-improvement routine 
.... 

1) Determine for each x=(j,e) the minimizing subset 

of decisions 
z 

which minimize (cf. 

(4. 77)) 
N 

I (4.83) 
h=l 

2) Minimize the (j,d*)-function (cf. (4.78)) 

-
N 

I 
h::::l 

N 

L 
h=l 

d* 
pjh vh(z) (4.84) 

for each j subject to the constraint (j, d*) e: D . 
1 

(j, e). 
1-z 

Since (4.83) is constant for (j,d*)e: D i-l(j,e) we may 
z 

replace (4.84) by • 

d* 
q. + 

J 

Select for each 

If i-1(. ) . 
Z J,e 1S 

N 

(4.85) 
h=l 

(j,e) one of the minimizing decisions. 

a minimizing decision, then the selected 

4) g.(z) and v.(z) are '1
j-functions'' defined on (1,2, ... ,N). J J 

• 

• • 
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3) 
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decision d i-l is chosen equal 
i-1 

to z (j, e) • 
z ; (j, e) 

i-1 
The strategy z 1 is defined by 

i-1 . 
z

1 
(j, e) 

Determine for the strategy 

subset A' 1 of A . 1 • Z 1-
zl 

def -- d . 1 i-
z ; (j, e) 

i-1 i-1 
z' = (z

1 
) z 

• (4 .. 86) 

the minimizing 

Since the class K, only consists of the set A (cf.(4.71)) 
Z 0 

we find 

A', =A. 1 =A. 
Z J.- 0 

(4. 87) 
z 

Consequently, 
• 

1 
z 

i-1 
::: z 

1 • (4. 88) 

Comparing this routine with that of HOWARD for the first problem we 

easily verify that the two techniques are identical. 

We now return to Howard's second problem. First we remark that at 

each point of time an action is going on. 

Without restricting the generality we now add to the description of 

the problem the following two points: 

1) After each alteration in the j-state of the system the de

cision maker decides whether the running action will be con

tinued or not; 

* 2) If j is the actual state of the system, if d is the running 
. ct* 

action and if h j ajh=O, then the decision maker decides 

after each unit of time whether the running action will be 

continued or not. 

In order to incorporate these points in the mathematical model we in-· 

troduce an additional state-variable e. 

* Thee-component of the state is equal to d 

a) if with 
ct* 

h j ajh 

* respect to the present action d and state j we have 

= O and if in addition to this the length of the period 



110 

elapsed since the last decision (cf. points 1 and 2) is less 

than one unit of time; 
* . b) if with respect to the present action d and state J we have 

d~ 
E a > O and if in addition to this the present action has 

hij jh 
been started or continued after the last alteration in the j-

state of the system. 

Thee-component of the state is equal to 0 

c) if with respect to the present action d* and state j we have 
d* 

h .. a.h = 0 and if in addition to this the length of the period 
J J 

elapsed since the last decision (cf. points 1 and 2) is larger 

than or equal to one unit of time; 

b) if no decision has been made since the last alteration 

state of the system (cf. point 1). 

• 
in the 

In our model (cf. section 2) the state space X consists of points 

x=(j,e) of a two-dimensional lattice. 

Since in our model decisions dare defined by means of probability 

distributions of the state into which the system is transferred, it 

follows from the construction of X that a (''Howard''-) action d* un

dertaken in j can be denoted by (j,d*). In our model the decision 

space D consists of a two-dimensional lattice. 

We now stipulate that 

a) the sets D(j,e) of feasible decisions only concist of null

decisions if eiO; 

b) the strategies z to be considered dictate only interventions 

if e=O (cf. points 1 and 2). 

By a) and b} all intervention sets 

x E {(j,O);j=l, ... ,N}. 

Thus for all z E: Z 

A 
z 

A = A • 
Z 0 

consist of the states 

(4. 89) 

Using HOWARD's notation but with the applied strategy indicated by z, 

we easily verify that (cf. section 2) satisfies 
z 
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ajk(z)(h 
-1 

ajh(z) • ajh (z)) , if >0 J h • 

J 

- 1, if ajh(z) - 0 and if k=j. - -h • 

J z 
o, if I: ajh(z) - 0 and if kij., hij -

(4.90) 

It follows from the for1r1ulation of Howard's second problem that the 
• 

length of the period between two successive alterations in the j-state 

of the system obeys the negative exponential distribution. If j is the 

initial (''HOWARD''-) state and if ct* is the action to carry out, 
* th t f th· d. t ·b t· · · b E d 

then 

ajh 
the expected 

* 
duration of the walk d 

w (cf. section 2) is equal to -
E d -1 

(h;zfj ajh) " 

If the initial state of the walk w
0 is given by (j,O), then by 

(4.89) the expected duration of this walk is equal to zero (cf.section 

2). Therefore, we find (cf. section 2) 

d* -1 d* 
> o. ajh) ' if h j ajh 

t ( (j, 0) ; (j, d~) - (4.91) -
ct* 

1, if r o. ajh -
hij -

* Obviously, we have t((j,e);(j,d )) = 0 if e~O. Hence, the function 
• 

t(x;d) has been deter111ined. 

Next we consider the function k(x;d). By {4.89) the expected loss 

to 
d 

incur during w0 is zero if e=O. With regard to the walk w 
* * * * 

pected loss is given by 
d 

and otherwise by r ... 
JJ 

d d d d -1 

Therefore, we find (cf. section 2) 

k( (j ,O); (j ,d~) = 

• 

ct* 
r .. , if 
JJ 

d* 
r .. ) (h~ . 

JJ ;i=J 

th.- ex
d > 0 

ajh 

(4. 92) 
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* Obviously, we have k((j,e);(j,d )) = 0 if e~O. This dete:i111ines the 

function k(x;d). 

It follows from (4.4), (4.5), (4.90), (4.91) and {4.92) that the 

functions r(z;x) and c(z;x) satisfy 

r(z; (j ,0)) = 

and 

C (z; (j, 0)) = 

respectively. 

r(z;(j,O)), if 

o. 
(4.93) 

a.h(z){r.h(z)+c(z;(h,O))}+r .. (z) - r(z;(j,O)) • 
J J JJ 

-1 
• (h j a jh (z)) , if 

rjj - r(z;(j,O)) + c(z;(j,O)), if h j ajh(z) = O. 

(4.94) 

From (4.53) and (4.93) we obtain 

N 
(4.95) 

h=l 

while by means of (4.54) the equation (4.94) becomes 
• 

• 

..... 
r(z;(j,O)) = q.(z) + 

J 

N 

l 
h=l 

ajh(z)c(z;(h,O)). 

(4.96) 

It follows 'from (4.8) and (4.9) that the functions r(d•z;x) and 

c(d.z;x) satisfy 

and 

c ( ( j , ct*) z ; ( j , 0) ) = 

* * * d 
uij ajh r(z;(h,O)) (h~j ajh) , if E 

hij a > O. 
jl1 

ct* 
r .. -r (z; (j, 0)) , 

- JJ 

ct* 

if h 

(4. 97) 

ct* 
r .. -r(z; (j ,O) )] • 

JJ * 
'"" d -1 

( I., ) if 
• hij ajh ' 

ct* 
I: aJ.h >0. 

hij 

( 4. 98) 
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It follows from (4.57) and (4.59) on the one hand and from (4.95) and 

(4.96) on the other hand that the functions r(z;(j,O)) and c(z;(j,O)) 

can also be represented by g.(z) and v.(z) respectively. 
J J 

So we write 

and 
c(z; (j,O)) = V . (z) • 

J 

(4.99) 

(4 .100) 

In order to simplify the notations let us introduce the notations 

* r((j,d )z;(j,O)) 

and 
* c((j,d )z;(j,O)) 

d* 
= g. (z) 

J 

ct* 
= V . (z). 

J 

(4.101) 

(4 .102) 

By (4.99) through (4.102) the equations (4.95) through (4.98) become 

and 

* d 
g. (z) --

J 

a* 
V. (z) = 

J 

N 
= o, 

h=l 

g. (z) = q . (z) + 
J J 

d* 
ajh 

g. (z) , 
J 

* r..-..d 
Lq .- + 

J 

* 

gh(z) 

if E 
hij 

d () i'f '- r .. -g . z , 
JJ J 

(h~j 

* d 
ajh --

(4.103) 

(4.104) 

* * d -1 d 
>0. ajh) ' if h • ajh J 

(4 .105) 

o. 

(4 .106) 

The method, discussed in section 2, provides us with the following 

iteration procedure: 

I. Preparatory part 

Determine the (x;d)-functions k(x;d) and t(x;d). 

These functions are given by (4.92) and (4.91) respective-

ly. 
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* t((j,e);(j,d )) = 

and 

*· k((j,e);(j,d )) = 
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O, if eiO .. 

* 
J J * 

d 
1, if e=O and if h~j ajh = O. 

(4.107) 

o, if eio. 
ct* ct* 

(h j ajh rjh + 

* d 
- I' .. , if e=O and 

JJ 

d* d* -1 
)( ) if e=O r . . h~J· aJ.h , J .) 

and if 

.f E 1 . hij 

* l: d 

d 
a j h:::: O .. ( 4 • 108) 

II. Determination of the optimal strategy 

B. Iterative approach 

If z 0 e: Z is an arbitrary initial strategy and if' zi-l is the 

strategy obtained at the end of the (i-1)
5t 

cycle, the i
th 

cycle runs as follows: 

a) function dete1·rnina tion operation 

Dete11nine a solution of the functional equations (cf. 

(4 .. 103) and (4.104)) 

N 

I (4.109) 
h=l 

and 
i-1 

g. (z ) = 
J 

.... i-1 
q. (z ) + 

J 

N 

1 
h=l 

(4 .110) 

• 

b) strategy improvement routine 

1) Determine for each (j,O) the minimizing subset 

D i-l (j,O) of decisions d=(j,d*) which minimize (cf. 
z 

(4.105)) 

* ' 
d ( i-1) g. z = 

J 
i-1 

g. (z ) , if 
J 

if 

(4 .. 111) 
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2) Minimize for each (j,O) the function 

* d 
V. (z) = 

J 

• 

d* 
r .. -g.(z), 
JJ J 

if 
(i.112) 

subject to the constraint de: D . 
1 

(j ,0). Select for each 
l.-

(j, e) one of the minimizing de~isions. The selected decision 

d . 1 1- . 
. 1 t i-1 (. ) . f i-1 (. ) i . . 1s equa oz J,e 1 z J,e s a minimiz-

z ;(J,e) 
ing decision. 

The strategy 
i-1 

zl is defined by 

i-1 
z

1 
(j, e) 

def -- d . 1 • i-
z ;(j,e) 

3) Determine for the strategy 
i-1 i-1 

z' = (z
1 

) z 

ing subset A' 
z' 

Since the class 

we find 

Consequently, 

of A i-1. 
zl 

K, only consists 
z 

of the set A 
0 

A' 
z' =A. 1 =A. 

1.- 0 
z 

• 
1 

z 

End of the i
th 

cycle. 

(4 .113) 

the minimiz-

( cf • ( 4 • 89) ) 

(4.114) 

(4.115) 

By comparing the object functions (4.111) and (4.112) with 

(4.68) and (4.69) we can easily verify that this routine is closely 

related to that of HOWARD for the second problem. They lead to the 

same minimum of the expected costs per unit of time in the steady 

state. Each optimum solution of the one is an optimum solution of the 

other and vice versa. 
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