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PREFACE 

A book is written for its readers, as the rumour goes. During the wri

ting the author begins to form an image of these unknown people. They 

are supposed to know everything which the author is not willi.ng to 

explain. In the underlying case it means that they know what a group 

is and that they know about computers and parity checks. On the other 

hand,they are not supposed to know much about group theory so that se

veral elementary concepts have to be explained. Chapter O contains a, 

philosophically tinted, discussion, aimed at clarifying the mental 

attitude of the author towards the coding problems. It is thought to 

be understandable to almost everyone. Chapter 1, on the contrary, is 

more specialistic and gives some upper bounds for the size of error 

detecting codes. It it the most unfinished part, but as such it re

flects the state of art, since very often the limits are the last to 

be known to science. 

The reader who is only eager to know what codes are available to him, 

can safely skip chapter 1. For him chapter 2 offers a survey of what 

is available. For his convenience the new codes, which are constructed 

in the chapters 3, 4, and 5, are also reviewed. The mathematical level 

of this chapter is, in view of the supposed level of his mathematical 

erudition, kept as elementary as possible. Even if the group concept 

is occasionally mentioned, it is only meant for those who can appreci

ate it, whereas the others can ignore it without losing the thread of 

the argumentation. The application eager reader will probably stop 

here, since the next chapters deal primarily with the methodology of 

finding codes with prescrJ. bed properties. That is why in these chapters 

the mathematical level is higher in the sense that more complicated 

notations and arguments are used. In chapter 3 the possibilities for 

codes based on the addition modulo 10 are screened, whereas i.n chapter 

4 the analogous problem for codes based on the dihedral group of the 

order 10, is solved. Finally, chapter 5 deals with the so-called bi

quinary codes, culminating i.n a new and quite remarkable one. 

For insiders, it may be pointed out that chapters 4 and 5 give pure 

decimal codes which detect all transcription errors and all trans

positions of adjacent symbols. This refutes the non-existence "proof" 



occurring in the literature. The author believes that the codes ex

plained in chapter 4 provide the first practical application of the 

dihedral group. This would illustrate the old saying that all beauti

ful mathematics will find an application, sooner or later. 

For the sake of completeness, the bibliography also refers to relevant 

literature not mentioned in the text. 

The author wishes to express his gratitude to the Delft University of 

Technology and the Mathematical Centre at Amsterdam, for putting their 

computer facilities at his disposal, and to the Amsterdam Municipal 

Clearing Office and the Netherlands Postal- Check and Giro Service, 

for confiding him in their error statistics and for their stimulation. 

His thanks also go to Mr. A. Benard and Dr. A.D. Colenbrander for 

allowing him to disclose their codes. He is also much indebted to the 

professors Dr.Ir. A. van Wijngaarden and Dr. w. Peremans, who care

fully read the manuscript, for their many valuable suggestion~. 

It is impossible to mention everybody who has stimulated or helped the 

prepration of this book, but an exception will be made for the staff 

of the Mathematical Centre, who has to be compl.li.11ented f<ilr the record 

speed with which the book was reproduced. 
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Chapter 0. Introduction. 

0.0. Coding, codes and notation. 

A general word like code, is one of the hard working words, in the sense 

of Humpty Dumpty. Originally code referred to a law, written or not. In 

cryptology the word code is used in contradistinction to a cipher. By 

a code a system of substitution is meant in which many words, phrases 

or syllables are replaced by code words or code numbers. The word cipher 

refers to a system in which the individual letters are worked upon. 

The commercial codes of the late twenties were used to cut down the 

costs of cablegrams. The military codes have secrecy as main purpose. 

Nowadays codes are widely used in the theory and practice of switching 

circuits, culminating in the design and use of computers. 

In this monograph coding is understood to be a mapping of an arbitrary 

set into a set of mathematical entities. The first set is often a set 

of tangible objects, persons or concepts, whereas the second set mostly 

consists of symbols or strings of symbols. The structural formulae of 

organ:i.c chemistry form an example of the application of other mathematical 

entities than strings of symbols. 

It is quite essential that the mapping is one to one, since the basic 

idea is, to use the abstract entities as names for the elements of the 

first set. In practical cases the main difficulty lies in the definition 

of the mapping. One can hardly attach the abstract entities to the objects 

or persons, be it that only the persons might object. This is, of course, 

the denotation problem, wh:i.ch is solved, more or less, by the use of tokens. 

Tokens are physical rf~presenta tions of symbols. For every symbol, there 

is a whole class of different tokens, which are commonly understood to 

stand for the same symbol. Examples are all types of "three's" in all 

kinds of colours, print, written or spoken, including the less generally 

agreed upon way to represent a "3" in a computer. The borderlines of these 

classes are sometimes dangerously vague. The choice of most tokens, which 

was made historically, would nowadays be called a very poor job of system 

design, as everyone involved in character recognition will concede. But 

:it is too late for a change, all trials to :introduce a new alphabet will 

be utopic. The world will have to live with the old one. Returning to 
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the definition of the mapping, it will be clear that one can attach to 

objects one or more tokens, as a label. These tokens represent the sym

bols on which the object has been mapped by the coding. Branding cattle 

may be one form and engraving a serial number in guns or engines is 

another way of explicit labeling. The labeling may have a dual purpose, 

since it may be done in order to make identical objects different. On 

the other hand, the branding of the cattle may be done to establish 

the ownership. Anyhow such an effective, but crude way to define a coding 

is impossible if the "objects" to be coded are concepts. For people 

the method may theoretically be feasible, but is hardly advisable, 

especially if these people are customers. The customary procedure is 

then to make some list, in which series of tokens, representing the 

code, are linked with a verbal description of the coded objects. Such 

a list is called a code book or catalogue. Actually the situation is 

rather tricky, since it might be said, that such a description itself 

is ( a notation for} a code. Hence the question would remain how to 

define the latter code. Since a verbal description seldom really charac

terizes the object, it may be questioned whether such a description is 

a code. This does not make the situation any better. In fact, the descript

ions use as a rule, all kinds of contexts, written or not, to help define 

the objects. Often it is supposed to be clear that the object is one 

of a known (how?) class. This type of problems is of course inherent 

to all (succesful) communication. Strictly speaking, communication is 

essentially impossible, but it sometimes works. It is merely a matter 

of success and efficiency how far one has to go with refining the des

criptions. Parenthetically it may be remarked that the characterization 

of persons by fingerprints or sets of measures, may be very practical, 

but theoretically the system is never foolproof, and that not alone 

because of the fingerless people. There is a <iliff-!i.cul ty for every s©lution. 

Summarizing the one to one mapping of an arbitrary set into a set of 

mathematical entities is called coding. The second set is then called 

a code. Notation is a physical representation of the second set by 

means of tokens. These tokens fall apart into classes of equivalent 

ones, each representing the same mathematical symbol. The equivalence 
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is based on a common understanding and is as such a potential source of 

confusion. To help to avoid or at least detect this confusion is the aim 

of the following chapters. 

An important point is that the common understanding of the tokens is 

some kind of social phenomena. It is as such amenable to a study, which 

will of course be of a statistical nature. It is conceivable to measure 

the degree of intersubjectivity by controlled experiments. One could let 

may people write a "3" and one could then measure how often, other or 

the same, people recognize it correctly. It might turn out that a "3" is 

a better token than say a "5". It is rather difficult, if not impossible, 

to get unbiased information on this recognition problem. The known error 

statistics on codes show a certain onesidedness (see 36) in the sense 

that, e.g., a "q" can be easily mistaken for a "g", but seldom a "g" 

becomes a . This may very well be due to the relative frequend.es 

of use of the various tokens. 

0.1 The application of decimal codes. 

The use of the decimals is rooted in tradition. Unlike the binary codes, 

there is no intrinsic reason for its use. It is just because people are 

used to it, that the decimal system is so important. It is therefore not 

surprising, that the decimal codes are mostly handled, at least partly 

by human beings. The same holds in a way for alphabetic codes. For 

mnemotechnic reasons, it was believed in the past, that codes :for human 

use, should be of the-alphabetic or alpha-numeric type. Car licence 

numbers and telephone numbers in various countries are relics of this 

belief. In the present time where the human use and the machine handling 

gets mostly combined, the decimal codes are getting more popular. An 

other reason may be that recent studies indicate that the alphabetic 

characters are more error prone than the decimals (see 36). 

As said before, the code words are intended to be used as names for the 

things for which they stand. A name is needed if a reference is to be 

made to something. Such a reference w:i.11 be called a mutation. As a rule, 

the mutations are part of a process, say an administrative one. For the 

process the code words serve as input. The primary reason for the use 

of a code, rather than the natural language, is the efficiency. The fact 

that a code is unambiguous, is not a good argument, since that effect 
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could also be obtained by properly extending the natural names or descript

ions, so that here again the efficiency is the basic motive In data 

processing systems it is customary that the various inputs are unrelated 

and come from many origins. Thus the mutations converge into the system. 

The coding is often done in the periphery, by the users or customers and 

is therefore largely outside the control of the system. As a consequence 

the system has to cope with the errors made. 'l'he redundant codes, which 

will be dealt with in the next section, serve as a defense of the system 

against these errors. To be sure, some of the errors are caused by human 

operators incorporated in the system, for the preparation of the machine 

readable records. This operation is of course under the systems responsa

bility, and error prevention should be practiced anyhow. The redundant 

coding is in fact a burden for this preparatory operation which causes 

some authors to reject redundant coding altogether (see 6). But there 

is a tendency to push the preparation of the machine readable record back 

to the user. Optical readers, dials and on-line input stations are some 

of the means to that end. This self service eliminates the bottleneck 

of the punching and the like and as a rule deminishes the waiting time 

since batch forming may be avoided. This greatly widens the applicability 

range of the modern data processing systems. It also will, in the 

opinion of the author, make the use of redundant codes more urgent. In 

terms of the information theory it can be said, that a large number of 

channels converge into the system. The letters of the alphabet used 

in each channel, are the words of the code. The alphabets tend to be 

very large and the rate by which the letters are generated per channel 

will be very low. The channels are not noiseless. The noise is mostly 

caused by human factors. Mathematically, the noise is defined by the 

transition probabilities p(x,y), where p(x,y) is the chance that the 

code word xis received by the system as y. The nature of this noise 

will be the subject of section 0.4. 

0.2. Redundant codes. 

A code is called redundant as soon as the mapping of the coded set 

does not cover the code. This redundancy can be more or less accidental, 

because the code happens to have more words than necessary for the set 
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to be coded. In most applications, this will be the case, since popu

lations, customers, inventories etc. do not tend to come in powers of 

10, like the decimal codes do. The redundancy can also occur intention

ally and sometimes temporarily, when the code is chosen purposely too 

large for a growing stock or population. Though the control of this 

natural redundancy is worthwhile, the main topic of the following 

chapters will be that of the artificial redundancy. The latter form of 

redundancy is obtained by admitting only a subset of the code for use. 

Strictly speaking only the admitted subset itself is the code. The 

words outside this subset are sometimes called improper or forbidden 

code words. 'l'hi.s terminology has the same inconsistency, not at all 

unusual in mathematics, wh:i.ch adorns expressions like the burnt down 

house. 

The code is some sort of intermediary between the real thing and the 

denotation. It is therefore typical that the mathematical properties 

of the code are sometimes desirable for the sake of the coded objects 

and sometimes for the sake of the notation. Hierarchical codes, like 

the U.D.C. are examples of the first kind. The teletype code exarnplifies 

the second kind. It is a 5 dimensional binary code since the teletype 

uses 5 channels. The physical representation, with the 2 states, hole 

or no hole, is of course a notation. 

As will be seen later on in the section on errors, it is advantageous 

to introduce a topology or metric in the code, just to be able to 

describe the errors which result from the deficiencies of the notation. 

These errors prov.ide the cr.iteria for the selection of the subset which 

is to form the redundant code. Apart from their use in the struggle 

against errors the codes are of interest as a mathematical object of 

study. 

'I'he rtidundancy can be measured as fol lows. Let U be the set of potential 

code words and let C be the selected subset containing the proper code 

words. The fraction 1-!C[/lul .is a measure for the redundancy. The 

parity check would thus yield a code with a redundancy of 50%. Dy taking 

the base 2 logarithm the redundancy is measured i.n bits. The parity 

check has of course a redundancy of :l. bit. If the code words consist 

of m-ary d.igits, then the base m logarithm gives the redundancy in 
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in m-ary digits. 

0.3. The detection of errors by redundant codes. 

As stressed before, the main objective of coding is the increase of 

efficiency in handling the coded data. This holds for human processes 

as well as for automatic processes. Especially for the latter type 

it is important that the codes lend themselves for standardized nota

tions. This is merely another aspect of the efficiency, but it shows 

again that the codes are not made for the peculiarities of the coded 

objects alone. In this machine age, people sometimes havs to adapt 

themselves to the machine. The reason is, may be, that the machines 

do such a tremendous amount of data handling, that the pay-off from 

the efficiency in the machine part is more important. 1nis may very 

well change when the cost per operation goes further down. 

The drawback of the increased efficiency is that errors tend to be 

more dangerous an error in a natural name, does not always produce 

another name, but a number is always changed into another number. One 

might also say that the numbers are all alike or that the names satisfy 

certain syntactical or even semantic rules. As not all le·. ter combi

nations are used as names, it may be said that the names are highly 

redundant. In fact the set of names forms a, perhaps ill defined, 

redundant code. As soon as there is redundancy in a code there is 

a chance that an erroneous code word does not correspond with an 

object. Let A be a set of coded objects and let C be a selected subset 

of the set U of code words. Let c be a mapping of A in C, hence for 

all af:A it holds that c(a)eC and c(A)1:C. If x:::c(a) with a£A, and 

if an error changes x into y, then there are three possibilities 

i) y E c(A); ii) y ¢. c(A) and y€. C and iii) y ¢ C. 

In the first case the error is fatal in the sense that a false muta

tion may be made. In practice it will be often possible to detect the 

error from the context, written or not, like in the case that Granny 

was drafted for the commandoes. As a matter of fact that is how one 

knows about the errors anyhow, for as a rule there is a feed-back 

into the system from complaining customers or victims. Sometimes 

however the complaints are too late to undo the fatal consequences. 
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This first case is obviously very undesirable. 

The second case is less harmful, since it cannot result into a wrong 

mutation. The code wordy simply does not correspond to an object. It 

may cause some nuisance, since as a rule it will be detected during the 

processing. This may be by a mailman look:i.ng for a non-existent house. 

The automatic detection of these unused code words is under certain 

conditions possible. A simple example is a code of which it is known 

that only the first n words are used. It is of course necessary that 

the code words are ordered, say lexicographically. In the Dutch 

population registration number a more sophisticated method has been 

applied. 

The th:i.rd case is the most important one from a theoretical point of 

view. The error may in that case be detected without any knowledge of 

the use of the code. Especially if C is defined by an algorithm, it is 

possible to detect the error automatically. It should be noted that 

the second class of errors can always be converted :i.nto the third class 

by the application of a table look-up procedure. The art of making 

error detecting codes consists of two things; the first one is to select 

the set C in such a way that the most likely errors always belong to 

the third class and the second one is to define such a set C by means 

of a simple criterion, which lends itself to an easy technical imple

mentation. '!'he latter requirement is a matter of economy and as soon 

as the table Look-up procedure is feasible, the requirement looses its 

importance. In general it is true that, when the memories get cheaper, 

algorithms can be (economically) replaced by table look-up. AH these 

technical considerations are very much dependent on the state of techno

logy. When the computers get better at parallel processing, the algo

rithm might again be more economic. 

There is a tendency nowadays to adapt the machine to the human being, 

rather than the other way around. High level programming languages are 

also evidence of that tendency. When the computers are learning the 

natural language, the coding problems will be change, but not disappear. 

To be in vogue, the question of optimal error detecting codes should 

be considered. It would have to be a code, which detects more errors 

than any other code with the same redundancy. This property would 
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clearly be dependent on the frequency of use of the various code words 

and of the distribution of the errors. The optimalization problem is 

not very meaningful, for even if the costs of detected and undetected 

errors were known, they are bound to change in the course of time. More

over, the distribution of the errors is usually unknown at the moment 

that the code has to be chosen. Furthermore, these statistical qualities 

may be expected to change during the existence of the system. Finally, 

though pure mathematically speaking there is no problem at all, since 

there is "only" a finite number of possibilities, from a practical point 

of view the problem is probably just as practical as the differential 

equations governing the universe. A situation like this provides for 

the mathematician a rich hunting ground for nice problems (see chapters 

3 and 4). 

0.4. The efficiency of a code. 

The efficiency of a code depends on the frequency with which the code 

words occur. Let p denote this frequency distribution. It is well known 

from information theory, that it is always possible to encode a source 

with entropy -I p(x)lg(p(x)), so that the average length of the code 
x,e:C 

words is equal to the entropy. Unfortunately, this theorem is rather 

sterile incaseswhere the coding lies outside the control of the system. 

It is all right in simple cases like the following one. Let a code consist 

of 4 words with mutation frequencies of 1/2; 1/4; 1/8 and 1/8 respectively. 
-1 -1 -1 -1 -1 -1 -1 -1 

The entropy is in that case -(2 lg2 +4 lg4 +8 lg8 +8 lg8 )=7/4. 

Encoding the words with 0, 10, 110 and 111 respectively, gives exactly 

the average of 175 bit per 100 mutations. If, however,the frequencies 

are not so civilized, then the proof of the theorem hinges on the trick of 

making pairs. The pairs of words form a larger set, within a "more 

uniform" statistical distribution of use. E.g., let A,B,C, and D be 4 

words with a mutation frequency of 60%; 30%; 5% and 5% respectively. 

The above mentioned code would score an average of 1.5 bit per mutation 

whereas the entropy is roughly 1.4. Coding the pairs as follows gives 

an average of 1.43 bit per word. 



AA::::O 

AB:::100 

BA.::101 

BB::::1100 

AC:::11011 

(',A::11110 

AD:11111 

DA::11100 

9 

BC::110101 

CB::::111010 

BD:::111011 

DB::::1101000 

CC::::110100110 

CD::::110100111 

DC::::110100100 

DD:110100101 

Now in data processing systems in which the code words are generated 

independently at various locations, before they are channeled into the 

system, only the first approximation seems to be possible. This is not 

quite true, since one could do the pairing at the various sources, but 

it would require a code book of all the pairs. Now just imagine a bank 

publishing the book of the code numbers of all the pairs of account 

holders, not to speak of the letter headings of the customers. 

The codes mentioned above are intended for use in a binary channel, 

where all the words are linked together and thus have to be separable 

afterwards. If there is a natural separation between the different 

words, it is possible to obtain a bigger gain in efficiency. Consider 

the second example again. Now the first approximation may be taken as 

A+0; B+l; C+00; D-+01. It would give an average of 1.1 bit per mu

tation. The second approximation, given below, would requi.re only 0.8 

bit as an average. 

AA--,.o 

Af3 ➔ 1 

BA.+ 00 

BB ➔ 01 

AC-► 10 

CB-+ 11 

AD+ 000 

DA-+ 001 

BC+ 010 

CB+ 011 

BD+ 100 

DB+ 1.01 

cc+ 110 

CD+111 

DC+ 0000 

DD+ 0001 

It should be noted that even in the case of a uniform distribution, this 

type of coding would give a gain in efficiency. 

All these considerations are probably of little practical value, since 

the distribution of use will only become available after the code has 

been used for some time. The cost of recoding will mostly outweigh the 

possible gains. In practice the distribution can be extremely skew, like 

in bank:l.ng operations where often less than 1% of the accounts draw more 

than 50% of the mutations. 'The short code numbers are however often more 

correlated with the old clients rather than with the mutation getters. 

In population register systems the distribution will probably be closer 

to uniform. 
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0.5 The error statistics. 

The double distribution f(x,y) contains a host of information, which is 

usually not available. This is certainly so during the design stage of 

the system. Later on, when the system is operating, that information will 

become available. It is then still useful in the struggle against the 

errors. Suppose that in the administrative system of a bank, a certain 

error probability f(a,b) gets high, then this may be an indication of 

a systematic error, which lies possibly outside the system. It might be 

a misprint in somebodies account number, as indicated on his bills. 

These kinds of errors are only of local interest. In general however 

one will be interested in deducing principles, like the law that most 

errors are in one digit only. The knowledge of the double distribution 

is therefore more qualitative than quantitative. But, the vaguer the 

knowledge the broader the applicability. 

The error samples,as found in existing systems, will be biassed if the 

distribution of the mutations is not uniform, i.e., virtually always. 

The following error types have been observed both in the literature on 

the subject (see 2, 26, 28) and from samples put available to the author 

by the courtesy of the Dutch Postal Clearing House and the Clearing House 

of the Amsterdam Municipality. 

1) The single errors, also called transcription errors: These errors 

affect only one digit of the code word. It is by far the largest class 

of errors in all known cases. Its frequency ranges from 60 to 95%. 

Little is known about the distribution within this class. Both clearing 

house samples suggest that the right hand side of the code word is more 

vulnerable for errors. This might be caused by the fact that the numbers 

are written and punched from the left to the right, so that the right 

most digits have to be memorized longer in the short term memory of the 

.writing or punching being. The number systems in which this was observed 

are of the non-fixed length type. This implies that the last position 

is never void contrary to the other positions. The transition probabili

ties of the decimals are indeed depending on the decimals, but there 

are few very low ones. (See the tables at of the next section). 

W. Ulrich (49) introduced the concept of the restricted single error, 
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which is a single error with the restriction that the difference between 

the correct and the incorrect digit is one unit. This concept gives rise 

to elegant generalizations of known binary codes. It. is conceivable that 

certain technical implementations of calculators, like the ones using 

pulse trains to represent the digits, lead to this error type. But 

there is no evidence in the error statistics that this type is of special 

interest. 

2) The double errors. These errors affect two digits. The frequency 

ranges from 10 to 20%. The vast majority concerns adjacent digits, i.e., 

digits with adjacent positions. This is of course an indication that 

the two errors are not :independent. The double errors are subdivided 

into: 

2.1) The transpositions.Most of the adjacent double errors are of the 

form ab-ba. This error type is called a transposition. It will always 

be understood that the digits are adjacent if in the following chapters 

the term transposition is used. 

The transpositions are a notorious error type of a typical human nature. 

The qualities of an error-detecting code are often judged accord:i.ng to 

its detecting capac:i.ty in this very class of errors, assuming of course 

that the single errors are detected anyhow. Mathematically, it turned 

out that the decimal codes were especially difficult in this respect. 

Some authors thought that they proved that decimal codes detecting all 

single errors as well as all transpositions, were non-existent.(see 46, 39). 

These "proofs" came fortunately after that the present author had con

structed such a code. (see 51). 

There are several minor classes of double errors, which are important 

since codes detecting all single errors and all transpositions may be 

completely immune fo:r these classes. Their frequency is small, say 

0.5 to 1.5% of all errors. 

These classes are: 

2.2) The twin errors. These are adjacent errors of the type aa➔bb. 'I'hey 

can easily be explained, fo:r in case one "a" is misread as a "b", the 

other one is likely to be rnj_sread too. Also if one is ]!l!Unching blindly, 

:i.t is log:i.cal that, if a finger is on the wrong key for the first "a", 

tha then the second one will be treated or rather mistreated in the 
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same way. 

2.3) The jump transpositions. A jump transposition is the interchange 

of 2 digits, jumping over a third one, like abc➔cba. It could also be 

called a reversion, since the order of the 3 digits gets reyersed. Its 

psychological explanation can perhaps be sought in an auditive echo. 

2.4) The phonetic errors. The above mentioned clearing-house error 

samples reveal that in the adjacent double errors, the errors of the 

type ab -+ca or vice versa, occur much more than chance predicts. Among 

these the errors with b=O and c=1 are again much more numerous than 

expected. These errors are called phonetic. They might be explained by 

the phonetic resemblance when the pairs aO and 1a are pronounced. This 

is of course dependent on the language, but it holds in English, Dutch 

and German. This explanation is strenthened by the fact that the errors 

12 •+20 and vice versa are indeed much less frequent. It would be inte

resting to know how this is in the French speaking countries. It is also 

an open question whether an oral communication link is needed or whether 

punch typists with an auditive memory can be responsible for this error 

type. 

2.5) The jump twin errors. These errors are of the form aba-;,,cbc. Their 

frequency is, as is to be expected, lower than that of the twin errors, 

say 50%. Their explanation may be the same. The frequency of more remote 

twin errors, like a .. a ➔•c .. c is very much lower. This is also the case with 

the interchange of digits over more than 1 digit. 

3) The third class consists of omitting or adding a digit to the code 

word. The frequency lies somewhere between the 10 and 20%. The vast 

majority consists of the omission of one digit, where the last position 

again seems to be the most vulnerable one. It is also striking that the 

0 is the decimal which is most easily dropped. However, since there seems 

to be a tendency to allocate "beautiful" numbers, ending with one or more 

zero's, to important customers, like tax collectors, there definitely is 

a bias :i.f the statistics are drawn from banking and clearing systems. It 

is also remarkable and equally dubious, that the forgotten digits often 

were members of a sequence of identical ones. It is an illustration of 

the ancient theorem that beauty is dangerous. 

4) The random errors. The :fourth catagory of errors is called random, 

since it consists of those errors for which there is apparently no re

lation between the correct number and the erroneous one. It is also 
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believed that all numbers are equally susceptible for this error type. 

The random errors are both pleasant and nasty. They are pleasant, be

cause all redundancy helps to detect them. They are nasty, since it is 

impossible to design a code which would do any better than any other 

code. There is also a very important assumption made, hidden in the word 

"apparently". For there may very well be no relation between the code 

numbers as such, but there can be a hidden semantic relation. E.g., both 

numbers can belong to the same person, one being his account number and 

the other his telephone number. It also can happen that the two numbers 

are adjacent in some code book. It is difficult to trace that kind of 

errors down without employing a full time detective. All this would not 

be so seriot.s as long as these "semantic" errors behave like random 

errors, but there is every reason to believe that this sort of error will 

prove to be immune for all detection systems. If somebody is copying the 

wrong number correctly, he will do so too if the number is one of an 

error detecting code. These immune errors may turn out to be one of the 

criteria for how far one has to go in the imporvement of the detection 

capacity of a code. Suppose that a certain system has to cope with 

100 errors a day, 50 of which being immune. Now one might be interested 

to cut this down to 55 undetected errors, the same 50 immune ones included 

at the cost of one more check digit. However to cut this down to 50,5 at 

double cost might be unattractive. The immune errors form some kind of 

basic noise level. 

The total frequency of the random errors varies considerably, depending 

on the nature of the system. if the code numbers are more or less used 

publicly this class might be much bigger than for those systems where 

the numbers are more privately used, like passport numbers etc .. For the 

clearing house systems 5 to 15% has been measured. The percentage of the 

immune errors, though more i.mportan t, is unknown. 

5) Finally, there remains the traditional class called miscellaneous. It 

contains collector items like; aba+ bab; abed+ cdab; aaaa ➔ bbbb. All are 

rare and mostly di.fficult to detect for 1.00%. Occasionally some defy 

detection, so that in studies of the undetected errors of a certain code, 

these rare errors might seem significant. 
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0.6. ~ sample of errors. 

The main sample of errors, available to the author, concerns errors made 

in a non-fixed length code. The total size of the sample is 22733 pairs 

(consisting of a good code word and an erroneous one). The sample is 

divided according to the length of both numbers, as follows: 

Both numbers 7 digits 8 

" !I 6 12112 

" 5 3333 

4 1774 

" " 3 139 

" 2. " 25 

Unequal length 5342 

There were 2343 cases of one forgotten digit. 

The analysis of the largest group will be given here as an illustration. 

The distribution according to the number of places on which the words 

of each pair differ is: 

1 place 9574 or 78.9% 

2 places 1870 or 15.6% 

3 places 169 or 1.4% 

4 places ll.8 or 1.0% 

3 places 219 or 1.8% 

4 places 162 or 1.3% 
12112 

A further analysis of the single errors reveals that the rightmost 

digit is affected most frequently. The distribution according to the 

position of the error, counting from the right, is: 

position 1 2854 

position 2 2296 

position 3 l.270 

position 4 929 

position 5 1503 

position 6 722 
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The following matrix gives the transition frequencies of the ten deci-

mals. The 125 in row 4 and column 6 means that 125 times a u4u became 

a HG"~ 

0 j 1 2 3 4 5 6 7 8 9 
----- ----- - -··. ~ ---

0 0 l.27 27 42 19 47 286 4 234 329 lll.5 
·~ r-----· ~--

1 163 0 124 30 105 47 54 70 l1 15 619 
1-------- ----- ··- --··· --------~ ____ , ______ -- - ---

2 56 127 0 380 61 74 32 101 24 32 887 
------

3 95 50 340 0 49 357 53 48 181 63 1236 

4 60 161 132 64 0 134 125 175 33 189 1073 
>----· -~·-·-- --1- ·--

5 57 62 84 431 111 0 185 19 91 30 1070 
---

6 210 77 39 51 1.04 169 0 61 180 43 934 
---·~· ~--~--- -·· -- -· - ·------- ---

7 13 95 93 I 27 164 46 55 0 20 167 680 
·-·-

8 210 29 68 I 221 44 119 167 20 0 73 951 

9 292 21 53 62 154 82 61 184 100 0 1009 
--- . ----

1156 749 960 1308 811 1075 1018 682 874 941 9574 
---.. ·----

It would be hi.ghly interesting to know which properties of this matrix, 

are independent of the system from which the errors are drawn. 

The restricted single errors total 2923, which is higher than the expect-

ed 2/9-th of 9574. The digit n3u seems to be the black sheep of the de-

cimals. 

The double errors have also been subjected to a further analysis. From 

a technical (and probably also from a psychological) point of view it 

is interesting to know whether the double errors tend to come in bursts. 

The following distributions according to the distance of the errors in 

the words, has been found. 

Distance 1 (adjacent positions) 1595 

2 (x.x, ,jump errors) 177 

3 (x .. x) 71 

4 (x ... x) 18 

5 (x .... x) 9 
1870 

This statistic strongly suggests that the errors are depfmdent. The 1595 

burst errors are subdivided into: 



Transpositions 

Twin errors 

Phonetic errors 

Rest 

1237 

67 

59 

232 

1595. 
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The 177 jump errors are divided into: 

Jump transpositions 99 

Jump twin errors 35 

Rest 43 

177. 

The distribution of the phonetic errors according 

the code word is as follows: "i {~)C-\t,f 
to their position in 

'The absence of the phonetic errors on the odd positions may be explained by 

the habit of quoting the words in pairs of decimals. The distribution 

of the errors lx +xO and xO +lx, 

over xis: 

It is typical that 8 has such a low frequency, because in the Dutch 

language 80 is "tachtig" but 18 is "achttien" in contradistinction 

with the English and German which are consistent with "eighty" and 

"eight.teen" and "achtzig" and "achtzehn" respectively. 

The multiple errors are mostly errors of the random type and as such 

they defy analysis. 

0.7. Detection versus prevention. 

No matter how good the error detecting capacity of a check system is, 

one will still be interested in minimizing the number of errors. The 

available measures, which belong mainly to the realm of human engineering 

fall outside the scope of this monograph. There is however also a mathe

matical approach to the problem of error prevention. This approach is 

based on the non-uniformity of the distribution of the errors over the 

code words. By selecting a code C in such a way that the overall error 

chance is minimal, a certain error prevention is achieved. The more 
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error prone code words are excluded. In the Dutch population register 

system those code words, having equal decimal digits on adjacent po

sitions, are avoided, since these code words are considered to be more 

error prone than the other ones. 

The available statistics are however still insufficient to tackle this 

problem effectively. 

Another virtually unknown factor is the increase of the error chance 

because of the added check digit. It :i.s obvious that a high redundancy 

may very well successfully lower the percentage of the undetected 

errors, but it will also lower the percentage of correct code words. 

The detection becomes, if the redundancy increases, in a certain sense, 

less effective. The reason is, that how longer the code word is, the 

less information the detection of an error provides. So will it be a 

small surprise to learn that a certain book contains an error. 

The ultimate goal of detection is of course a correction. This can 

often only be done by feedback towards the source of the error. In 

systems with a decentralized input and a parallel processing, it is a 

customary procedure to reject the erroneous inputs, so that the rest 

can be processed. If this rest is not the bulk of the workload, or if 

the system is processing serially, it becomes desirable to have an 

on-line correction. The problem arises to construct codes with the 

property that such a correction, which can never be infallible, is 

at least most likely. 

O 8. Error correcting codes. 

An error correcting code is a redundant code C, along w:ith a decision 

scheme which associates with certain inproper code words a proper one, 

which is called the corrected code word. This association can in prin

ciple be done ~uite arbitrarily, but it is natural to do it in such a 

way that each code word is imbedded in a set of words which can be ob

tained by making an error, of a certain type, in said code word. If 

the code is such that these sets are mutually disjoint, then an error 

of that type can be corrected by the convention that if a word of such 

a set is rece:i.ved then the only proper code word of that set :i.s taken 

as the corrected word. One could also say that in such a case the 

coding is not unique, since to each object a whole set of code words is 
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allocated. The code, though no longer unique, has still to be unam

biguous and this is so as soon as the associated sets are mutually 

disjoint. Hence to each x ~ C there be},:uigs a set A(x) , with the pro-

perty that from xi y it follows that A(x)n = 0. Let V be the 

union of all A(x), thus V :=\J A(x). If V::U then the code is said to 
x .. c 

be perfect or close packed. In V there is an equivalence defined by 

the classes A (x) and each word of Vis equivalent with just one word 

of C. This defined a mapping cp of Von C. The correction procedure 

corrects each word w of V into cp(w). If a word outsiide Vis received 

then the error is detected, but cannot be corrected. This cannot occur 

if V=U, i.e. if the code is close packed. The term perfect is less 

appropriate, since it is in a way not the code which is perfect but 

the correcting scheme because it corrects every error. This property 

may be desirable for the applicat:i.ons in the serial processes, but not 

for the systems with parallel processing where the correction is only 

needed to secure that the bulk of the input can be processed. In order 

to appreciate this point it should be noted that an error correcting code 

only guarantees the correction of a certain type of errors. In real 

life however also errors o:f other types are bound to occur A perfect 

correcting scheme will "correct" these errors by introducing an error 

o:f the protected type. It may therefore be a good policy to choose V 

deliberately so small that certain errors will never be "corrected". 

The code of the Dutch population register system is a single er or 

correct:i.ng code which does not "correct" the transpositions. 

The type o:f random errors is the stumbling block, s:i.nce a random 

error is never guaranteed to fall outside V. In fact a random error 

correcting code C has only one code word, since A(x)dJ for all x. This 

trivial code is always perfect. 

0. 9. Disjoint codes. 

Let C again be a redundant code in a space U, It is often possib e to 

find one or more codes C' with the same detect:i.ng capabilities as C, but 

disjoint with C. As will be seen later on, decimal codes defined by a 

check equation will split up the space U into 10 mutually disjunct 

codes (, or in general k,if one is working modulo k). In sec rion O 7 

it was pointed out that, though these codes are equivalent detection-
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wise, they may be different as to the overall error chance. There is 

another way in which these disjoint codes may be useful for the appli

cations. Suppose that two operating systems, perhaps sharing many 

customers, need an error protection for their codes. By adding a chec.k 

digit to the existing code words much of the cost of recoding can be 

avoided. If these systems draw the check digit from disjoint codes they 

have the additional advantage that each valid number of one system 

is invalid for the other system. This might eliminate a source of seeming

ly random errors. 

Another application might be a group of branch offices of a large bank 

with a central administration. If disjoint codes are used for the 

clients of the various branch offices, then one would have a protected 

code without using more digits. The traditional solution would use the, 

first digit to designate the branch office without giving any error 

detection possibility within the local administration. It is an ele

gant way of setting the redundancy at work. In cases with more than 10 

subsystems a higher modulus check might be useful (see section 2.3). 

0.10. Better error detection by random use of a code. 

In section 0.3 it was argued that the natural redundancy, which is 

usually present since the codes are seldom used to full capacity, may 

lead to error detection during the processing. It would be an advan

tage if this detection could be done during the input stage. This can 

be achieved by a controled use of the code. It is not uncommon to use 

only the :first interval, under lexicographical ordering, of the code. 

Suppose that some system with 600000 customers uses a code with 7-digit 

decimal code words. Using only the first 600000 numbers guarantees that 

an error which yields a higher number is detected at the input if the 

proper measures a.re taken. The protection procured in this way is how

ever primarily aimed at the first (least vulnerable) decimal. Much 

better in this respect is the pseudo random use of the code, which can 

be accomplished in the following manner. With the aid of a reversible 
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deciphering one can shuffle the code words and by using the first 

( in example above, 600000) numbers, the used part of the code is 

(pseudo) randomly distributed over the code. Now a code word received 

at the systems input can be reshuffled and if it does not belong to the 

first 600000 an error is detected. In the code of the Dutch population 

register system this feature is incorporated. The reversable deciphering 

is done with a feedback shiftregister, working in the field of the com

plex ternary numbers, i.e. the complex numbers of the form a+bi with 

a,be{0,1,2} 
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CHAPTER 1. Bounds for redundant codes. 

1.0 Definitions. 

In this chapter some concepts are introduced to facilitate the dis

cussion of redundant codes. 

An error type is essentially e mapping of a set of (potential) code 

words into the class of its subsets. To each a i.;: U there corresponds 

a set E(a) £ U of all those words which can be derived from a by an 

error of the given type. The set E(a) may be empty. In the case of 

the random errors each a.;: U is mapped on the set U-a. A code C is 

called E-proof if E(a) n C:::::O for all a is: C. An E-proof code C admi tts 

a correcting scheme for the error-type E if E(a)r,E(b) =0 for all 

a,b E. C, with a -;l, b. It is then called an error correcting code. If 

moreover U E(a):::U-C then the correcting code is called perfect or 
a,.C 

close-packed. An E-proof code C is called ma:idmal if there does not 

exist an E-proof code C' which properly contains C. If such is the case 

it follows that E(b)nC;fO for each b¢C. Schauffler (43) calls such a code 

closed (abgeschlossen) with respect to E. 

An E-proof code C is called optimal if there does not exist an E·-proof 

in U, with more words than C. An optimal code is necessarily 

maximal. A code C is said to be p% E-proof if 

p/100 = l IC nE(a) 
aeC 

The redundancy of a code C in an m-ary space U is defined as 

\uJ;lcl> digits or lg2(ju]/jcj) bits. 

An error-type E is called symmetric if from a e E(b) it follows that 

b 6: E (a) . Most of the error-types mentioned in the in troduct:i.on are 

symmetric. The type of the forgotten digits is an exception. 

For symmetric error-types a metric can be defined. The distance between 

a and bis the minimal number of errors (of the given type) which have 

to be made in a, in order to get b. It is called the E-distance and deno

ted by dE(a,b). The subscript E will often be dropped. More formally: 

d(a,a)=O and d(a,b)=k if there exists a chain a 1 , ... ,ak with a 0 =a 

and such that e: E )_; k > i 2::, O and if there does not exist 

a shorter chain with that property. If no chain exists at all the 
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distance is per definition infinite. 

The E-distance is properly called a distance since: 

d(a,b) .::_ 0 and 

i) The reflexive law dE(a,a)=O; 

ii) the symmetric law dE(a,b)=dE(b,a) and 

iii) the triangle inequality dE(a,b)+dE(b,c) .::_dE(a,c) 

are fulfilled. 

i) is obvious, ii) follows directly from the symmetry of the error

type E and iii) follows from the fact that the concatenation of the 

chains from a to band from b to c forms a, not necessarily minimal 

chain from a to c. The definition of distance is a straightforward 

generalization of the Hamming distance for the single bit errors in 

binary codes. 

If all distances are finite the space U is called connected with 

respect to E. Otherwise U falls apart into connected components. The 

diameter of a connected space U is max dE(a,b). For the random 
a, bE: U 

errors the diameter of every space is 1. For the single errors the 

diameter is equal to the dimension of U. 

The greatest possible diameter is lul- l since that is the length of 

the longest chain in U. The following examples show that this diameter 

is possible. Suppose that the code words of U are listed somehow in 

a codebook. Let the type of error be that of taking the list item 

directly preceding or following the correct one (restricted look-up 

errors). Another example is that U consists of a set of consecutive 

integers with respect to the errors of one unit in the arithmetical 

sense. The E-distance of two different words a and b, of an E-proof 

code C, is at least 2. If it were less, then bE.E(a), but for an 

E-proof code E(a) n C:::O holds. If C admi tts a correcting scheme the 

E-distance between any two words is at least 3, for otherwise there 

would exist a word c such that d(a,c)=d(c,b) and hence c EE(a)n E(b). 

A code C is said to have a minimum distance k when min dE(a,b):::k. 
a,b E:C, 
#b 

In view of the definition of distance it will be clear that a code 
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with minimum distance 2e+l will admitt a correcting sGheme fore errors 

of the type E. It also will detect 2e or less errors . 

.ln E-ball of radius k and center a is the set of all words x satisfying 

dE(a,x).::._k. It is denoted by SE(a,k) The difference between a ball 

with radius 1 and the error sets E(a) is clearly that the latter does 

not contain a; hence S {a,1)::E(a)V {a}. 
E 

Let (a) be the set of those words obtainable from a by making i mis-

stakes of the type E, but which cannot be obtained by making fewer than 

i errors. Thus E0 (a)::::a and (a):=E(a) and Ei(a)=S (a,i )-8 (a i-1) E E ' ' 
for i> 0. 

Conversely, 
e 

V 
i:=:O 

i ,t E (a) for e> O. From the defi.ni tion ~ 

follows immegiately that (a)nEj(a)=O for i;.fj and therefore 

JsE(a,e) J "' 1!0 J (a) j . 

An error-type is called uniform if ) I "'/E(b) I for all a,b<S: U. 

Single errors are of the uniform type, whereas the transpositions are 

non-uniform (E(13)= {31} and E(22)=0). An error-typ<-) is strongly uniform 

if /Ei(a) / a::/:il(b) I for all i_::O and all a,bE U. 

1.1 Some upper bounds for minimum distance codes. 

From the definition of an error correcting code it follows that 

S l)n S(b,1)::::0 :for all a,beC with a;.fb. An immediate consequence is 

the relation: 

I U I l S(a,1) I . 
a.EC 

Therefore: 

theorem 1.1.0 The r(cidundancy of a minimum distance 3 code is at least 

lg ( L !s(a,1)///c/)digits. 
m a€ C 

This bound is a generalization of the sphere packing bound, as it is 

known in the literature on the binary codes with respect to the single 

bit errors. For uniform error-types the bound is simplified into 

ls <a, ) I . 
The obvious generalization is the 

theorem 1. 1. 1 The of a minimum distance 2e+1. code is at 

least lgm( L / S(a,e)/1/cj) dig:i.ts. 
a e: C 

Proof: Let a and b be two words of a minimum di.stance 2e+l codec, then 

S(a,e) f\ S(b,e)=O, for otherwise there would exist a word c Eu with the 



24 

property d(a,c) .::._e and d(b,c) .::._e. From the triangle inequality it then 

would follow that d(a, b) .::._2e, which contradicts the minimum distance 

property of C. The disjunctness of the spheres and the relation 

a \.J. C S(a,e) :=: U give l I S(a,e) I < I U I . After division by I cl 
a EC 

and by taking them-logarithm of both sides of this relation the 

theorem is found. These theorems are especially helpful for proving 

the nonexistence of certain codes. 

The Hamming codes are examples of perfect minimum distance 3 binary 

codes. These codes enable the correction of single errors. Perfect-

ness of codes is a mathematical nicety, which has from a practical 

point of view the disadvantage that all other errors are "corrected" 

by introducing another error The point is of course that the non

perfect codes have a higher redundancy. Perfect binary codes for correct

ing more than 1 single error are collector items. (45). 

Finding an optimal error correcting code is a matter of packing as many 

balls S(a,e) as possible in the space U. For a strongly uniform error

type a close-packed code is necessarily optimal. For a non-uniform 

error-type it is conceivable that a perfect code is not optimal since 

the latter might have many small balls whereas the perfect one possibly 

covers U with a few large balls. For the even minimum distance codes 

it is not simply a matter of packing balls since these may now overlap 

each other. The question is how this overlapping can be done effectively. 

Consider two points a and b of a minimum distance 2e code C in the 

space U. Suppose that d(a,b):::::2e, then S(a,e-l)n S(b,e-1)::::0 and 

Ee(a) nEe(b);/fO. The space U is split up into 3 types of points Le. 

i) The points of the balls with center in C and rad:i.us e-1, 

i:i.) The points contained in the sets Ee (a) with a e: C ., 

iii)The other points. 

Denote these mutually exclusive sets by u1 ,u2 and 

Then U :::: V S(a e -1) and u2,,, V Ee(a). 
1 aEC '' ae:C 

The following relations hold: 

respectively. 

"' l I S(a,e-1) I' j u2 I .'.:... l 
ace aE:C 

and j U I > 0. 
3 -

Now define c(a,e) as the maximal number of points such that 
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2e for c(a,e)> i> j,:'._O- It will be called the 

covering index of a. Since each xe u2 can be in at most c(x,e) sets 

(a) the relation l c(x,e),:'._ l I (a) I holds. Let = max c(x,e), 
xe U 

then I u2 I .c 
e 

> I 
XE. U2 

c(x,e) ,:'... l 
a G. C 

I I I U I ,lu I \' IEe(a)/. Combining this Consequently u-u 1 u 2+ 3 .ce~ 2 .ce,:'... l 
ae: C 

relation with /u-u1I =Jul - l I S(a,e-1)1 gives 
ae: C 

lul/jcl,:'... I {jS(a,e-l)J +jEa(a)l/ce} /JCI. 
a e: C 

In this way a lower bound for the redundancy has been found. For 

strongly uniform error-types this bound is simplified into 
e 

js(a,e-l)l+JE (a)I /c0 where a is ehosen arbitrarily in C. 

The result is formulated as: 

theorem 1.1.2 The redundancy oil' a minimum distance 2e code is at least 

lg { r {jS(a,e-l)j +JEe(a)l/c }/lei} digits. 
m ae:C e 

For strongly uniform error-types this bound is simplified into 

(a) J/c ), with aE.C. 
e 

1.2 Single errors. 

Let the type of the single errors be denoted by E1 . Let n be the 

dimension of the space U of m-ary words. The set 1\ (a) consists of 

all words which differ from a on only one position. There are m-1 

possibilities per position and thus I (a) J ::::n(m-1) and I 
Two words a and b of an E1-proof code differ therefore on at least 

i (m-1) . 

two places and that is why such a code is sometimes called bidifferent. 

Theorem 1. 2.0 The redundancy of a bi.different code in an rn·-ary space 

U is at least 1 digit. 

Proof: Suppose lg ( I ul I/ c/ ) < 1, then 
m n-1 

dimension of U. Since there are m 

n-1 I cJ > / UI /m==m , where n is the 

different words with n-1 positions, 

it follows that C contains at least two words say a and b, which a.re 

identical on the first n-1 positions. Hence be. (a) and consequently 

C is not 

Theorem 1.2.l There do exist bidifferent m-ary codes with a redun

dancy o:f 1 digit. 
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Proof: Let Ube the space of all m-ary words with n positions. One may 

assume that the symbols of the words stand for the residue classes 

modulo m. If this were not the case one can first make a 1-1-correspondonce 

between the symbols and these resi.ctge classes. Now let a 1 a 2 ... an be a 

word of U and consider the sum s= l a .. There are m values possible 

for sand thus the words of U are ~Iiid:d into m classes according to 

that value. These classes all have the same number of elements. Th:is 

is so since them different words which are equal on say the first 

n-1 positions clearly are in different classes. From this it follows 

that each of these classes is a code with 1 digit redundancy. Moreover 

since words differing from each other on only one place cannot have the 

same digit sum modulo m, each one of these codes is bidifferent. In view 

of the preceding theorem they are also optimal. 

Just for curiosities sake two examples of maximal bidifferent codes with 

a higher redundancy will be given. 

000, 101, 202, 303, 404, 555, 656, 757, 858, 959, 

011, 112, 213, 314, 410, 566, 667, 768, 869, 965, 

022, 123, 224, 320, 421, 577, 678, 779, 875, 976, 

033, 134, 230, 331, 432, 588, 689, 785, 886, 987, 

044, 140, 241, 342, 443, 599, 695, 796, 897, 998; 

This is 50 word 3-digi.t decimal maximal bidifferent code. A similar one 

with 52 words is given in the next example. 

000, 101, 202, 303, 404, 505, 666, 767, 868, 969, 

011, 112, 213, 314, 415, 510, 677, 778, 879, 976, 

022, 123, 224, 325, 420, 521, 688, 789, 886, 987, 

033, 134, 235, 330, 431, 532, 699, 796, 897, 998, 

044, 145, 240, 341, 442, 543, 

055, 150, 251, 352, 453, 554; 

The construction of an optimal bi.different code is equivalent with a 

generalization of the problem of the rooks, well-known from recreational 

mathematics. (see 27, p. 240). It is the problem of how to place m rooks 

on an m-th order chessboard so that no rook can capture any other one in 

a single move. The generalization uses an-dimensional board with genera

lized rooks, say hyperrooks. The equivalence is obvious since the set U 
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of all m-ary words can be taken as an n-dimensional m-th order chessboard. 

A hyperrook placed on a field a covers exactly the fields of the set 

E1 (a). A bidifferent code is therefore a set of fi.elds where hyperrooks 

can be placed such that they cannot take each other in one move. The 

code is maximal if there is no uncovered field left in U. The optimal 
n-1 

codes, having m words are the solutions of the rook problem. For n::2 

all maximal solutions are optimal, but the examples mentioned above show 

that such is no longer the case for n >2. Other error-types correspond 

in this terminology wi. th fancy chessman, having esoteric ways of moving. 

Theorem 1.2.0 can also be derived from theorem 1.1.2. The covering 

index c(a,1) is obviously n for every a, since this is the maximal 

number of points differing from a on one place and from each other on 

two places. Thus as !E1 (a) I== n ) holds it fol1ows that the minimum 

redundancy is (m-1)/n)=l digits. 

Theorem 1.2.2 The redundincy of an-digit minimum distance 2e+1 m-ary 

code is at least lg ( l (m-1 /) digits. 
m i=eO 

The proof follows at once from 

for I Ei (a)!. 

theorem 1.1.1 by substituting (~)(m-1 
:t 

This bound is known in the binary case from Hamming (17). Let the size 

of an n-digit m-ary code with minimum distanced with respect to the 

single errors be denoted by A(m,n,d). 

Hamming proves in the same paper that A(2,n,2e)=A(2,n-1,2e-1). His 

reasoning is simple: Suppose a minimum distance 2e code with n bits 

is given. By chopping off one bit a n-1 bit code is formed. Obviously 

this code has at least a minimum distance 2e-1 since the chopped-off 

bit contributed at most one unit to the distance. 'I'hus A(2,n-1,2e-1) 

2:,. A(2,n,2e). Conversely when minimum distance 2e-1 code with n-1 

bit is given, an-th bit can be added such that the number of ones in 

each code word becomes even (parity check). The words which were at 

a distance 2e-1 from each other are now necessarily different on the 

n-th position, as 2e-l is odd. For the pairs which had already 

a great~,r distance the n-th bit is irrelevant, so that a minimum 

distf,nce 2e code with n bits is derived. Hence A(2,n,2e) :::_A(2,n-1,2e-1) 

and therefore A(2,n,2e)=A(2,n-l,2e-1). Only the first part o:f this 

reasoning is valid for the higher number bases and thus: 
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Theorem 1.2.3 A(m,n-1,2e-1) .:._A(m,n,2e) form .:._2· 

A counter example will show that the converse of the theorem above is 

not true. Consl.der a 4-digj_t minimum distance 3 ternary code. Substitu

tion in 1.2.2 gives A(3,4,3) .::_34/(1+4(3-1))=9. The 9 word code: 

0000, 0111, 0222, 1021, 1102, 1210, 2012, 2120, 2201 is therefore opti

mal. 

This code j_s in fact a Graeco-Latin square of order 3. 

0 1 2 

0 00 11 22 

1 21 02 10 

2 12 20 01 

A 5-digit minimum distance 4 ternary code would, if it had 9 words, be 

the same as 3 Latin squares of order 3, such that each pair forms a 

Graeco-Latin square of the same order. But it is well-known that this 

is impossible (see Ryser 42 p.80). 

With the aid of theorem 1.1.2 an upper bound for A(m,n,2e) can be 

derived which is better than the combj_nation of the theorems 1.2.2 and 

1.2.3, if efn and not worse if e In. 
e-1 

Theorem 1. 2 .4 A(m,n, 2e) .::_ mn /( I 
i=O 

n i n a . (.)(m-1) +( )(m-1) /entier(n/e)). 
i e 

Proof: The ma:id.mal number of words differing from a certain word a 

one places and from each other on at least 2e places is clearly equal 
i 

to entier(n/e) . The theorem now follows by substitution of E1 (a) and ce 

That this bound is an improvement can be seen by comparison. 
e-1 . \ n i n a 

l (. )(m-1) +( )(m-1) /entier(n/e) > m. 
i==O i e -

e-1 . 
l t~1 )(m-1/ 

i:::::0 1 

e-1 . 
n e . L n-1 n 1 or ( )(m-1) /entier(n/e)> (m( 1 )-(.))(m-1) 
e - i 

i=O 

e-1 . e-1 
I<n~l)(m-1)1+1 - I (~=f)(m-1)j_=(:=i)(m-1)e. 

i::::O :t ia:: 0 

Finally (n)/(n-1
1 )::::n/e> entier(n/e) which is obviously true and the 

e e- -
equality sign therefore only holds if ejn. 
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In connection with A(2,n,2e)=:A(2,n-1,2e-1) an interesting c0rollary 
n n 

follows. For, A(2,n,2e+1)=:A(2,n+1,2e+2)~ 2 / l (i) where the equality 

sign only holds if e+l ln+l, hence i::O 

Corollary :A close-packed minimum distance 2e+1 binary code is only 

possible if e+ljn+l. 

This corollary easily sh0ws the non-existence of a 90 bit minimum 
-- 90 9o 12 5 I 90 . distance 5 code. Though 1+( 1 )+( 2 )=2 and (2 ) ( 3 ) are both valid 

( the first condition is Hamming's sphere packing condition whereas 

the second comes from theorem 1 of Shapiro and Slotnick (45)), 

2+1190+1 does not hold. 
· 5 2 

The upper bound for A(3,5,4) becomes 3 /(1+5x2+10x2 /2)= 243/31 7.9. 

The true value for A(3,5,4) is 6 as is shown by the example: 00000, 

01111, 11202, 12120, 20221, 22012. That this code is optimal can be 

seen as follows: Suppose that 3 words had the same symbol on the same 

position, say a O on the first position. Then these words have to differ 

on all other positions. Since permutations of the symbols per position 

do not change the distance between the words, those 3 words may be 

taken as 00000, 01111, 02222. These words form however a maximal code, 

for each 5-digit word has to have at least 2 equal symbols on the last 

4 places and therefore cannot differ on 4 places with those 3 words. 

Consequently each symbol can occur at most twice on each position, 

which is so in the example. Hence 6 is the maximal number of code 

words. The same reasoning shows: 

Theorem 1.2.5 m(m-1).:., A(m,m+2,m+l). 

For m=4 this gives 12 .:.,A(4,6,5), but this bound can be sharpened by 

remarking that, form >3 an optimal code cannot have 2(m-l) words 

which share on a certain position m-1 symbols of one kind, say a O 

and m-1 symbols of another kind, say a 1. As the first m-1 words one 

may again take 

m-1 

0 

0 

0 

-0 

1 

m-2 

and as the second m-1 words one may take: 

0 

1 

m-2 



m-1 

1 

1 

1 

30 

m+2 

In each of the words, starting with a "1", them-th symbol (i.e."m-1") 

has to occur at least twice, as there are m+l places left and as the 

symbols from Oto m-2 may occur only once in each of those words. But 

them-th symbol itself may occur only once on each position in the 

words having already a "1" in common. Thus there are 2(m-1) positions 

required and 2(m-1)> m+l form> 3. Thus: 
2 

theorem 1.2.6 (m-1)+(m-l)(m-2)=(m-1) .::_A(m,m+2,m+l) for m>3. That this 

bound is sharp, at least for m=41 is shown by the example: 

Thus A( 4, 6, 5):::9. 

000000 

0 1 1 1 1 1 

0 2 2 2 2 2 

1 3 3 2 1 0 

1 2 0 3 3 1 

2 3 0 1 2 3 

2 1 3 3 0 2 

3 3 1 0 3 2 

3 0 2 3 1 3 

Form >4 a better upper bound is given in: 

Theorem 1.2.7 If d ~n(m-1)/m then md/(md-n(m-1))> A(m,n,d). 

Proof: Let an n-digit m-ary code with minimum distanced have k words, 

Any pair of words has on at most n-d places the same digits. Call an 

occurrence of equal digits on a same position a match. Since the 

number of word pairs is (:) there are at most (n-d)(:) matches in 

the code. Now let k .. be the number of code words which have the 
J.J 

i-th digit on the j-th position. The number of matches on the j-th 
m k .. 

position is then l ( J.J). Now the minimum of this sum is reached 
i=l 2 m 2 

if all k .. are equal, for it is well-known that min( l x.) with X.> O 
J.J i::::1 1 J.-



and 

m 
L ( 

i::::1 

m 
I 

i:::::1. 
k .. 

l.,l) 
2 
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;::k is reached .for x.==k/m. Thus 
]. 

m 2 2 2 2 
= l (k .. -k .. )/2 .2,m(k /m )/2-k/2 :=: (k /m-k)/2. 

i:::::l 1.J l.J 

So that the total number of matches is at least 
2 

n(k /m-k)/2 and thus 

/2 has to hold. Division by k/2 gives 

(n-d) (k-1) >n(k/m-l)=n(k-m)/m. After shuffling terms md.:.,k(md-(m-l)n) 

the theorem is proved. 

Corollary:m(m+l)/2.::_A(m,m+2,m+l}. For m>5 this bound is better than the one 

of theorem 1.2.6. It is not known to the author whether A(5,7,6)==15 is true. 

In the binary case the bound of theorem 1.2.7 is known as the Plotkin 

bound (see 38). This bound is also known to be true if mis a prime 

power (see 37). 

1.3. Check di~its. 

Adding a check digit to the code words is perhaps the best known method 

for introducing redundancy A check digit is a digit which is determined 

by the other digits. The latter are free to take any value and are for 

that reason called information digits. Let M(m,11) be the set of all 

m-ary code words with n digits. If a code word of M(m,n) is extended by 

a check digit then it becomes a member of M(m,n+l). Thus 

a subset C of such extended eode words and lcl:::::IM(m,n)j n+l)l/m. 

The redundancy of C is 1 digit. The introduction of a check digit is an 

(:lrderly way to define a subset with a redundary of 1 digit. If the check 

digit can be expressed as a function which admitts a simple computation, 

it may also be a concise way of doing it. Moreover it is often possible 

to derive the detecting properties from the properties of the function. 

It is in general not true that every code with 1 digit redundancy can 

be considered as a code with a check digit. Examples are the 3 bit binary 

code {000,001,101,111} and the 2 digit ternary codes {10,21,20} or 

{00,01, . That for instance the third bit in the first code cannot 

be a check bit follows from the observation that in the first two words 

the first two bi ts are equal and therefore cannot give different clleck 

bits. For bidifferentcodes however the converse is in fact true. 
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Theorem 1.3.0 In a bidifferent code with 1 digit redundancy each digit 

can be considered as check digit. 

Proof: The i-th digit can be considered as a check digit if all words 

are different on the other n-1 positions. This is obviously so because 

of the bi.difference of the code. 

There are various ways to define a check digit or what amounts to the same, 

to define a function on a :finite set. The most general one is the method 

of the table look-up. The arguments of the function are simply listed and 

the proper function-value is entered behind each argument. The method 

though general is not attractive for applications, the very simple ones 

excluded. It is in cases o:f any interest virtually impossible to con

struct a code with precribed properties. Moreover it is only possible 

by means of a large memory to have automatic detection of errors. It is 

therefore natural to apply check digits defined by some sort of a formula, 

or an algor:i thm. A simple example is the par:i ty check in the binary case. 

The check bit is chosen in such a way that the number of l's :in the code 

words (check bit included) is even. The parity check :is well-known and 

finds wide application in the computer design. Binary codes however 

are not popular for use by human beings. It is mentioned here only as 

an :illustration. It may be interesting to note that the complement of 

the parity check is a disjoint code, called the impar:i.ty check. The space 

U of the n-bi t code words :i.s divided into two equal parts, i.e. the 

words with an even number of l's (the par:i.ty check code) and the words 

with an odd number of l's (the imparity check code). The codes are 

essentially the same since the inversion of one b:i.t (i.e. interchanging 

1 and 0) makes the codes identical. The parity check can easily be ge-

neral:i.zed :for an arbitrary number base m. Let be the symbol on the 

:i-th position of an (n-1)...d:i.gi t 
n 

m-ary 

found such that l 
i:,c,O 

the straight modulo 

a..:::O (mod m) or 
]. 

m check. It was 

code word. Ann-th digit can then be 
n-1 

a "' -1., 'rh:i.s check :i.s called 
n i:;:,O 

used in the proof of theorem 1.2.1. 

For m:::2 it is the parity check. The detecting properties of this check 

will be discussed in ch.2. At present it only serves as an example for 

the generation of a check digit by means of a formula. In that light 

it is important to note that the check digit can be found recursively 

as follows: Take and for :i > O, then is the check 
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digit. If the digits of a word are fed into a cyclic m-counter one after 

the other, the counter will end in the initial state after that the check 

digit has been entered. The state of the circuits is in each stage giving 

the value of the check digit no matter how many digits are fed into it. 

This is a very desirable property for the technical implementation of 

check digit verifiers. The example of the cyclic m-counter is simple 

in the sense that its reaction is independent of the positions of the 

various digits. The drawback is of course that the code is of no high 

quality. Later on codes will be introduced with crooked and position 

dependent "m-counters". Under a crooked m-counter is understood a 

(sequential) circuit with m states si and m possible inputs ai;O::_i ::_m-1 

such that two conditions are fulfilled i.e.: i) Any input acting upon 

the circuit in different states has to bring the circuit into a different 

state. ii) From any state, different inputs have to bring the circuit 

into different states. 

Let a. bring the circuit from the states. into the states and let 
i J k 

this be denoted by sk=sj*ai. The state transition matrix lij defined 

by 1 .. =k is a Latin square. This is so because by i) no row contains 
1J 

an element twice and by ii) the same holds for the columns. Hence in 

each row and in each column every symbol (state) occurs just once. 

The equation sk=sj *xis therefore uniquely solvable. Representing the 

states and the inputs by the same set of m symbols gives an algebraic 

structure which is known as a quasi group (see 16 p.7). A quasi group 

is a set Qin which a binary operation xis defined such that the 

equations axx=b and xxa =bare both uniquely solvable for x if a,beQ. 

Relatively little is known about Latin squares or quasi groups.Of 

importance is the known (see 14). Theorem 1.3.1 A qua~i ,group 

in which the associative law ax(bxc)(a.xb)xc holds is a group. As a 

matter of f®ct this may be taken as the definition of a group, in which 

case it is of course no theorem. It is possible to define a crooked 

m check by means of a quasi group (Q,x) as follows: 

i) Choose two elements c0 and en arbitrarily in Q. 

ii) Define ci for O < <n-1 recursively with ci+l=cix ai+l' where ai 

is the i-th digit of an(n-1}digit code word with symbols from Q. 

iii) The solution of cn=cn_1 x xis the check digit an. The check 
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equation of such a crooked m check would be ( ... ((c xa )xa )x ... )xa =:c . 
0 1 2 n n 

Theorem 1.3.2 Every crooked m check is E1-proof. 

Proof: Let ... an be a word of the code satisfying 

( ... ((c0 xa1 )x ... )xai)x ... ) =c
0 

and let the i-th digit, after making 

a single error, be '. If this erroneous word also belonged to the code 

then( ... ({c0 xa )x ... )xa'.)x ... )xa =C would hold and hence 
1 1 n n 

(. .. (c. 1 xa. )x ... )xa :::(. .. (c. 1 xa: )x ... )xa . By cancel Ung all unaffect-
1- 1 n 1- 1 n 

ed a's on the right of ai. and a'., it would follow that c. 1 xa.=c. 1xa'. 
]. 1- ]. ].- ]. 

and after cancelling ci-l from the left that a 1a=a{, contrary to the 

hypothesis that a single error was made. 

Since the vast majority of the real life errors is affecting only single 

digits, codes which are not are of little interest for the appli-

cations. The codes published until now are mostly of the crooked sum 

type, or at least can be viewed as such. In fact the straight sum 

check is also a special case, based on the cyclic group. For the 

decimal codes, which are after all the subject of this monograph, it is 

of interest to know how many Latin squares exist. This number seems 
27 

to be unknown up to now, but it is at least 6x10 . 

It is hardly surprising that not all these possibilities have been 

tested on their detecting merits, especially so since most of the 

codes are very hard to analyse. Only two of the quasi. groups of order 

10 are associative, and thus admi.tt, as will be seen later on, a fairly 

easy study. 

The next stage of complexity is that the way of counting is not only 

crooked but also dependent on the position of the digit which is fed 

into the circuit. Let n quasi groups be given, all based on the same 

set Q but with different operations xi for O ,:;_i <n. The recipe for 

making a check digit is the same as above except that the recurrence 

is now defined by: 
i 

for O < i < n-1 and the check digit 

by the equation x 11 _ 1an. These codes are also as 

can be seen by the same arguments m; used for the proof of theorem 

1.3.2. The number of possible decimal codes becomes now hopefully o:r 

distressingly hi.gh. Hopefully because the chance that a des:i.rable one 

exists is gone up, but distressing because the chance that such a one 

can be found gets down. 1he latter is even more so since the job of 
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testing each case gets harder too. If a periodic sequence of quasi 

groups is taken the procedure is less complicated and hence more 

manageable. Most of the new codes of chapter 3 fall into this cate

gory. Let this period be two, then the recurrence becomes: 

c2i+l=c2ix0a 2i+l; c2i+2=c2i+lx 1a 2i+2 or by taking xwo steps at the 

time c 2i+2=(c2ix 0a 2i+l)x 1a 2i+2 . The latter relations can b~ considered 

as a ternary operation, which written in the functional notation, 

looks like c 2i+2=g(c2i,a2i+l'a2i+2). The ternary function g is equi

valent with a Latin cube of a special type, namely one constructed 

with the aid of two Latin squares. The code would work just as well if 

it were made with a more general Latin cube. That these exist is shown 

in the next theorem. 

Theorem 1.3.2 There exists a Latin cube not based on two Latin squares. 

Proof: Consider the 4x4x4 Latin cube with the following four layers 

0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0 

2 0 3 1 0 1 2 3 3 2 1 0 1 3 0 2 

1 3 0 2 3 2 1 0 0 1 2 3 2 0 3 1 

3 2 1 0 2 3 0 1 1 0 3 2 0 1 2 3. 

If this cube g(i,j,k) were based on the Latin squares p(i,j) and 

q(i,j) then g(i,j,k)=p(i,q(j,k)) would hold. Now if g(i,j',k')= 

g(i,j,k) it follows that q(j',k')=q(j,k) and hence that g(i',j',k')= 

g(i',j,k) are true. In the,-example however g(l,0,1)=0=g(1,1,0) but 

g(0,0,1)=1 and g(0,1,0)=2. Since g(O,O,O)=g(l,0,1}=0 and g(0,1,0)=2 

but g(l,1,1)=1 it follows that g(i,j,k)=p(j,q(i,k)) does not hold 

either. Nor does g(i,j,k)=p(k,q(i,j)) because g(l,O,l)=g(0,1,1)=0 

and g(l,0,0)=1 but g(0,1,0)=2. 

A Latin cube like the one mentioned above will be called irreducible. 

Codes based on irreducible Latin cubes have not yet come to the 

attention of the author. In general an n-digit E1-proof code can be 

considered as a Latin hypercube with n dimensions. Ann dimensional 

Latin hypercube is said to be product of two Latin hypercubes if 

g(i1 , .. ~in)=p(i1 , ... .,ik ,q(ik+l' ... ,in)). If such is the case the 

hypercube g is called reducible. The coordinates do not have to occur 
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in the same sequence on both sides of the equation. The factors of a 

reducible hypercube may be reducible too. Thus an-dimensional hyper-

cube may be the product of n-1 Latin squares. If such is the case it 

will be called completely reducible. All but one of the known codes 

which will be presented in the next chapter are completely reducible 

Latin hypercubes. As such they all admitt a simple graphical respresent

ation which consists of a "staircase" of Latin squares as shown on page 37. 

The check digit belonging to the code word a 1a 2 . is found as follows: 

First select the top entry a 1 then take a 2 in the column headed by a 1 . 

After that a3 is searched in the same row as a 2 but in the next squarei 

is found in the same column as a but in the square below and so 
3 

on Finally the check di.git is found at the righthand side of the last 

square in the same row as a 6 . In the example the check digit of 671465 

is found to be 1. The idea of the Latin staircase is probable very old. 

It can be found already in the papers of W. Friedman the renown American 

cryptanalyst (13). The method is good for field use and for instructional 

purposes. 

1.4. Check equations. 

In general it is advantageous not to use the functional. relation between 

the check digit and the information digits in its explicit form 

an=f(a1 , ... ,an_1 ), but to use an implicit form g(a1 , ... ,an)=constant 

instead. Because of theorem 1.3.0 the two forms are equivalent for E1 -

proof codes with one digit redundancy. For codes with a higher redun

dancy however the check equation is more general. The popular modulo 

11 check for decimal codes is an example. This check will be discussed 

at length in chapter 2. Here it is sufficient to note that this code 

in its most common form 
n 

is defined as the set C of all words satisfying 

the equation l (-1) 
i::d. 

=0 (mod 11). Now a , or any other 
n n-1 

always solvable from the equation, since -(-1t l (-1) 
i=l 

, is not 

may have 

the value 10, so that no decimal digit an can satisfy the equation. 

The problem might be solved by narrowing down the range of the function 

f ), in other words by taking a function for which only 

"proper" values for the arguments are allowed. 
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0 1 2 3 4 5 ID 1 8 9 

0 4 5 1 2 3 6 7 8 9 0 1 2 3 4 5 6 7 8 9 

1 8 9 0 6 7 2 3 4 5 4 7 8 9 0 6 5 1 2 3 

2 7 8 9 0 6 3 4 5 1 5 6 7 8 9 0 1 2 3 4 

3 6 7 8 9 0 4 5 1 2 1 0 6 7 8 9 2 3 4 5 

4 0 6 7 8 9 5 1 2 3 2 9 0 6 7 8 3 4 5 1 

5 9 0 6 7 8 1 2 3 4 3 8 9 0 6 7 4 5 1 2 

6 3 4 5 1 2 :f 8 9 0 6 s t 2 3 4 7 8 9 0 
-

7 2 3 4 5 1 8 9 0 6 7 4 5 1 2 3 8 9 0 6 
,-

8 1 2 3 4 5 9 0 6 7 8 3 4 5 1 2 9 0 6 7 

9 5 1 2 3 4 0 6 7 8 9 2 3 4 5 1 0 6 7 8 

0 4 5 1 2 3 6 7 8 9 0 1 2 3 4 5 6 7 8 9 

1 8 9 0 6 7 2 3 4 5 4 7 8 9 0 6 5 1 2 3 

2 7 8 9 0 6 3 4 5 1 5 6 7 8 9 0 1 2 3 4 

3 6 7 8 9 0 4 5 1 2 1 0 6 7 8 9 2 3 4 5 

4 0 6 7 8 9 5 1 2 3 2 9 0 6 7 8 3 4 5 1 

5 9 0 6 7 8 1 2 3 4 3 8 9 0 6 7 4 5 1 2 

6 3@5 1 2 7 8 9 0 '6' 5 1 2 3 4 7 8 9 0 

7 2 3 4 5 1 8 9 0 6 7 4 5 1 2 3 8 9 0 6 

8 1 2 3 4 5 9 0 6 7 8 3 4 5 1 2 9 0 6 7 
-

9 5 1 2 3 4 0 6 7 8 9 2 3 4 5 1 0 6 7 8 

0 4 5 1 2 3 6 7 8 9 8 

1 8 9 0 6 7 2 3 4 5 2 

2 7 8 9 0 6 3 4 5 1 3 - . --
3 6 7 8 9 0 4 5 1 2 4 

4 0 6 7 8 9 5 1 2 3 5 

~ 9 0 6 7 8 1 2 3 4 '.1) 
··--

6 3 4 5 1 2 7 8 9 0 9 

7 2 3 4 5 1 8 9 0 6 0 

8 1 2 3 4 5 9 0 6 7 6 

9 5 1 2 3 4 0 6 7 8 7 
---- -- L--
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Another advantage of the check equation is that it often admitts an 

easier analysis of the various detecti.ng properties 3 since the check 

digit no longer plays a special role. Also from a technical point of 

view it is as a rule better to have a check procedure which is uniform 

for all digits. For general codes which are irreducible Latin hyper

cubes the difference would vanish. It then is only a different way 

of looki.ng at the same thing. 

1.5. A curious 3 digit decimal code. 

It is remarkable that up to now no pure decimal codes, with a redun

dancy of one digit are known, which detect all single errors, all 

transpositions and all twin errors. It will be hard to prove that 

such codes cannot exist, since the proof would have to depend on 

special properties of the number 10, as for other number bases there 

do exist codes with said properties. An example will be given·of a 

3-digit decimal code which detects not only the error-types mentioned 

above, but also the jump transpositions and the jump twin errors, 

as well as the phonetic errors. This example shows that the non

existence would only be valid for codes with more than 3 digits. 

The three digit code is equivalent with a Latin square, (i.e. single 

error-proof), with certain special properties. Denote the elements 

of the square by a. . . The detection of the transpositions requires 
l.J 

that: 1) a .. ,fa .. , for i;fj and 2) if a .. =k then a~k;tfj, The twin 
l.J Jl. l.J ~ 

error detection requires that: 3) a .. ;fa .. , for i;fj and that 4) if 
l.l. JJ 

then for k;fj. Finally the detection of the jump transpo-

s:i.tions requires that: 5) if a .. =k then a, .ii, for 
l.J {J 

whereas for 

the detection of the jump twin errors it is necessary that: 6) if 

then akj;ifk, fork#. 

4) is equivalent with the condition that each row has, as a permutation 

of the column entries, at most one fixed point. Since each column 

contains all 10 decimals, every entry is fixed in some row and 

never in two rows. Hence each row permutation has to have exactly 

one fixed point. The same conclusion holds for the column permutations 

with regard to 6). The condition 3) requires that the main diagonal 
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of the square is a permutation of the decimal digits. By putting aii=i 

all three conditions are fulfilled. This takes care of the main dia

gonal. The remaining 90 places outside the main diagonal can be divi

ded into 30 triplets satisfying aij=k, ajk=i, aki=j with i~j, j~k and 

k~i. All triplets, considered as unordered triplets, should be different. 

The conditions 1),2) and 5) are fulfilled if the triplets can be 

arranged in 30 blocks, each containing 3 decimals and each decimal 

occuring in 9 blocks. Moreover each pair has to occur only once as an 

ordered pair. The design on the next page fulfils the requirements. 

Each of the 30 blocks has to be oriented to define the ordered pairs. 

There are 16 ways to assign the orientation, since the blocks (rows) 

fall apart into four orientation independent classes, namely {0:3} ; 

{4:21} ; {22,24,26,28} ; {23,25,27,29} . The orientation can per class 

be inverted, independent of the other classes. An inversion of all 

classes results in a reflexion of the entire square, with respect to 

the main diagonal. Hence 8 different solutions are obtained in this 

way. The resulting square, corresponding with the orientation given 

to the right of the blockdesign, is written out below. The code does 

not detect all phonetic errors, but by interchanging 1 and 4, it does. 

The square obtained after carrying out this exchange is given next 

to the original one. From a practical point of view the code is per

haps not recommendable since none of the triple transcription errors 

aaa ➔bbb is detected. A further disadvantage is that none of the cyclic 

errors abc ➔ bca is detected. This error-type might very well be expected 

for the small 3-digit code words. 
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The block design: The resulting square: 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 

00 1 1 1 0 0 0 0 0 0 0 + 0 0 5 3 4 2 6 7 8 9 

01 1 1 0 1 0 0 0 0 0 0 - 1 0 1 7 8 5 0 3 4 6 

02 1 0 1 1 0 0 0 0 0 0 + 2 4 9 2 0 3 8 5 1 7 

03 0 1 1 1 0 0 0 0 0 0 - 3 2 6 4 3 0 7 8 9 1 

04 1 0 0 0 1 1 0 0 0 0 + 4 3 7 0 2 4 1 9 6 5 

05 1 0 0 0 0 1 1 0 0 0 + 5 1 4 6 9 8 5 0 3 2 

06 1 0 0 0 0 0 1 1 0 0 + 6 5 8 9 1 7 2 6 0 3 

07 1 0 0 0 0 0 0 1 1 0 + 7 6 2 8 5 1 9 4 7 0 

08 1 0 0 0 0 0 0 0 1 1 + 8 7 3 5 6 9 4 1 2 8 

09 1 0 0 0 1 0 0 0 0 1 - 9 8 0 1 7 6 3 2 5 4 

10 0 1 0 0 1 0 0 1 0 0 + 

11 0 1 0 0 0 1 0 0 1 0 -
The interchanged square: 

12 0 1 0 0 0 0 1 0 0 1 + 0 1 2 3 4 5 6 7 8 

13 0 1 0 0 1 1 0 0 0 0 - 0 0 2 3 1 5 6 7 8 9 

14 0 1 0 0 0 0 1 1 0 0 - 1 3 1 0 2 7 4 9 6 i 

15 0 1 0 0 0 0 0 0 1 1 - 2 1 3 2 0 9 8 5 4 7 

16 0 0 1 0 1 0 0 1 0 0 - 3 2 0 1 3 6 7 8 9 4 

17 0 0 1 0 0 1 0 0 1 0 + 4 9 5 7 8 4 0 3 1 6 

18 0 0 1 0 0 0 1 0 0 1 - 5 4 8 6 9 1 5 0 3 2 

19 0 0 1 0 0 1 1 0 0 0 - 6 5 7 9 4 8 2 6 0 3 

20 0 0 1 0 0 0 0 1 1 0 - 7 6 4 8 5 2 9 1 7 0 

21 0 0 1 0 1 0 0 0 0 1 + 8 7 9 5 6 3 1 4 2 8 

22 0 0 0 1 1 0 1 0 0 0 + 9 8 6 4 7 0 3 2 5 1 

23 0 0 0 1 0 1 0 1 0 0 + 

24 0 0 0 1 0 0 1 0 1 0 + 

25 0 0 0 1 0 0 0 1 0 1 + 

26 0 0 0 1 1 0 0 0 1 0 -

27 0 0 0 1 0 1 0 0 0 1 -

28 0 0 0 0 1 0 1 0 1 0 -

29 0 0 0 0 0 1 0 1 0 1 -

This vulnerability for new error types is again an example of the 

designers dilemma, that the design constructed by virtue of some 
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regularity, is weak because of that very regularity. The irregular 

designs however, though often more numerous, are as a rule harder 

to find Moreover the verification of the properties usually is also 

more difficult For curiosities sake, an irregular code which has the 

same virtues as the regular one above, will be given Though none 

of the triple transcription errors are detected by this code, it turns 

out that 82.8% of the cyclic errors is detected, which makes the irre

gular code superi.or to the regular one. 

The irregular sc:i~iare: 

0 1 2 3 4 5 6 7 8 9 

0 0 9 8 1 2 6 4 5 7 3 

1 2 1 3 5 9 0 7 8 4 6 

2 5 4 2 8 3 9 1 0 6 7 

3 7 0 9 3 6 1 5 4 2 8 

4 8 6 0 7 4 3 9 2 5 1 

5 3 8 6 4 7 5 0 1 9 2 

6 9 2 7 0 8 4 6 3 1 5 

7 6 5 4 9 1 2 8 7 3 0 

8 1 3 5 6 0 7 2 9 8 4 

9 4 7 1 2 5 8 3 6 0 9 

To extend such a 3-digit code to a 4-digit one is a tremendous task. 

It would be equivalent with the construction of a Latin cube satisfying 

a number of asymmetry conditions. 

1.6. Single error correcting decimal codes. 

According to the upper bound given in theorem 1.2.2 with e:::1, the 

maximum number of code words in a minimum distance 3 m-ary code with 

n digits, is: mn/(l+(m-1) xn). This means that for n=1 the upper bound 

is 1, giving the notorious, perfect 1-word code. For n=m+1 a perfect 

code with 2 check digits and m-1 information digits seems possible, 
2 

as l+(m-1) x(m+l)=m. It is well-known (see 37) that these codes 

exist if mis the power of a prime. It is not known (at least not to 

the author) whether these codes exist for other m. Some light throws 

the next theorem: 
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Theorem 1.6.0. If a minimal distance 3 m-ary code with m+1 digits and 
m-1 

m words exists, then there exists a Graeco - La tin square of the 

m-th order. 

Proof: Consider the subset of the code words ending with m-3 fixed 
2 

digits, say zero's on the last m-3 places. This is a set of m words 

which differ from each other on at least 3 places of the first 4. 

From this it follws that on the first 2 places all m2 combinations 

occur exactly once. Let these digits be denoted by i and j and let 

the digit 0n the third and the fourth place be a .. and b .. respecti-
iJ 1J 

vely. The :matrices and bij are the orthogonal Latin squares re-

quired to prove the theorem. 

Ten years ago it would have been conjectured that this theorem dis

proved the existence of such a perfect code for :m=lO, but now only the 

case m=6 can be discarded. For the existence of 10x10 Graeco-Latin 

squares see Ryser (42) chapter 7. Such a Graeco-Latin square forms 

a 4 digit minimum distance 3 decimal code with 100 words. Even the 

existance o:f a 5 digit minimum distance 3 decimal code with 1000 

words is unknown. The existence of the perfect code with mm-l 

words is an interesting combinatorial problem. Its place among the 

other problems like the existence of finite projective planes is 

not yet clear. Consider the statements: 

A:m is a power of a prime number. 

B:There exists a :field with m elements. 

C:There exists a finite project:i.ve geometry with m+l points on each 

line. 

D:There exist m-1 mutually orthogonal m x m Latin squares. 

E:There exists a pair of orthogonal Latin squares, i.e. a Graeco

Latin square, of them-th order. 
m-1 

F:'I'here exists a (perfect) minimum distance 3 m-ary code with m 

words of m+l digits. 

The following implications are known:(see diagram on the next page) 

A-+B; B-+C; c+D; D+E; and F+E; D+C; B+A; and B+F. The author 

could not prove c-+ F nor n+ F. For m=6 E has been disproved and 
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hence F and all others. For m=10® A and Bare not true, Eis true and 

C,D and Fare open. 

For practical applications a double modulo 11 check with error 

correcting capacity is available, with all the disadvantages of the 

modulo 11 method. 
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Chapter 2. Survey of old and new error detecting decimal codes 

2,0 Introduction 

ln this chapter some known decimal error detecting codes will be 

described. Also a few new ones, designed by the author, are included. 

The codes are compared on the basis of certain conditions, set forth 

in sect:i.on 2, 1. ln judging the codes it should be borne in mind that 

at the time that these codes were designed these requirements were 

often not known. Or more precisely that the designers were not aware 

that those criteria were of importance. 'l'wo examples will suffice 

to make this point clear. The I.B.M. code of section 2.3.0 was 

designed to detect the single errors as well as the transpositions. 

The code does detect the single errors for 100%, but the transpositions 

for only 98%, since the transposition of O and 9 escapes detection. In 

some applications therefore the code words in which a O and a 9 occur 

on adjacent positions, are omitted (see 33). A more serious flaw 

however is that this code does not detect the jump transposi ti.ons 

at all, a flaw which could have been overcome relatively easy. A 

second example is the biquinary code of section 2.3.l This code 

was designed with the same objective as the I.B.M. code, as a matter 

of fact the purpose was to do better on the transpositions. The code 

was a success in the sense that the detection rate of the transpositions 

is 100%, but it was sheer luck that the jump transpositions did not 

escape detection entirely. That the new codes of the section 2,3 are 

doing better, is therefore partly due to the fact that they are 

taylored for the requirements set forth in secti.on 2 .1. More convinc

ing are therefore the tests on the set of 12112 real life errors 

drawn from the daily operations of a cleari.ng i.nstitute. All these 

errors are made :in code numbers wi. th 6 decimals. The errors of 

forgotten decimals have been eliminated beforehand. 

2.1 The requirements for decimal codes 

It has already been stressed before that the requirements for a good 

code cannot be set absolutely. They depend on the type of equipment 
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used and also on (the knowledge of) the error habits of the human 

beings involved. The methods explained in the chapters 3, 4 and 5 

are however also applicable to many other requirements than the ones 

which follow: 

1) The single errors are considered to be most important. The weight of 

800 points is given to these errors. 

2) Next come the transpositions (of adjacent digits) with a weight of 

100 points. 

3) The twin errors, aa➔bb, get 10 points, just as 

4) the jump transpositions, abc-·►cba. 

5) The separated twin errors, aba➔cbc, is a less important class 

getting 5 points.These errors will be called jump twin errors. 

6) The phonetic errors, 13·>30 and the like, also get 5 points. These 

errors may be for some languages of little importance, but this is 

only an opinion, since no corroborative evidence is available. 

In the next section the detection rates are often given without a proof, 

since these will be given, except for the trivial cases, in the chapters 

3, 4 and 5. The mathematical formulation of the requirements is also 

postponed, since such a formulation is dependent on the method employed. 

All but one of the E1-proof codes of the next section are of the complete

ly reducible type. As such they form a set of words satisfying the 

recursion ci "' ci-l '\-l ai, where c0 and en are fixed decimals, ai are 

the digits of the word and where the decimals form a quasi group with 

respect to each of the operators xi. A burst of two errors on the 

positions i and i + l is detected if and only if 

(ci_lxi_lai)xiai+l ~ (ci_lxi_1a;)xia;+l no matter what value ci-l has. 

This inequality cannot be true for all possible bursts, for if ai, ai+l 

and a1 are given, there always exists an ai+l such that the equality 

holds. That the requirements for detecting at the same time all trans

positions, all twin errors and all jump transpositions are not per se 

too heavy, is shown by the example in section 1.5. 

:For decimal codes based on a group, with an operation denoted by+, 

a general form of the operators xi may be defined by axib ~a+ fi(b). 

lf t 1 (x) ""x for all x and for all i then the code is a straight check. 
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lf fi is an automorphism of the group then the code is called a weighted 

check. This is reasonable because the automorphisms satisfy the relation: 

f(x + y) = f(x) + f(y) and therefore behave like a weight. The weights 

are, just like the automorphisms, linear operators and they are therefore 

often written as a multiplier;f(x)=fx. 

The permutations form also a group, the symmetric group. In the symmetric 

group the automorphisms form a subgroup. The product of two permutations 

f and g is defined as the permutation which brings x into the element 

f(g(x)), it is denoted by fg. Hence fg(x) ~ f(g(x)) holds (see 55). If 

fi = ff1_1 for a fixed permutation f the code is called progressive. 

Progressive codes are periodic. If the period is 2 then the code is 

called alternating. In an alternating code the operations a+b and a+f(b) 

are applied alternatively. A weighted alternating code however may also 

be considered as a straight code in which the same operation is used. 

throughout. This operation is defined by axb == f(a)+b .. The same remark 

holds for all weighted progressive codes, with the same definition for 

the single operator. This construction is merely a version of the algo

rithm of Horner. It is an illustration of the fact that some of the 

properties defined above do not exclude each other, and are thus not 

suitable for a classification. 

The di.scussions above are valid for all groups of order 10. It is wel 1-

known from the theory of groups that there are 2 groups of order 10 

available (see Hall, 16, p. 52) i.e. the cyclic group o.f order 10 and the 

dihedral group of order 10. The first one is the group of the rotations 

of a regular 10-gon, denoted by c10 . Its operation is also the addition 

modulo 10 or what is the same, the addition in a cyclic 10-counter. The 

cyclic groups are abelian, that is the commutative law axb = bXa holds. 

The second group is the dihedral group, that is the group of the trans

formations of the pentagon. This group contains not only the rotations, 

but also the reflexions. It is denoted by n5 . 'rhe group is not commu

tative, for rotating the pentagon over say 72 degrees and then reflecting 

it, is not the same as first reflecting it and then rotating it over 72 

degrees. The idea of applying groups is, that the condition for the 

error detection is simplified by virtue of the associative law. As will 
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be seen in chapter 3, the use of the cyclic group gives a still greater 

simplification 

Much of the effort, spent on the construction of decimal codes centers 

on the detection of the transposition errors. This typica. human type 

of error has been bothering the cryptologists for a long time, it is 

mentioned by Friedman as a psychological lapsus calami as early as 1932 

(see 13). Since the straight modulo 10 check obviously is insensitive 

for transpositions and in view of the fact that the altermating sum, 

modulo an odd number, met the requirement, one naturally tried to do 

something like that for the decimal codes too. The I B.M. code of 

2.3.0 seems to be the first trial in that direction Unfortunately 

the detection appeared not to be flawless and when some authors proved, 

that no decimal E1-proof code with one redundant decimal could be 

transposition-proof, the codes based on the eleven check became very 

popular. Even nowadays many people still believe that one has to use 

modulo 11 checks for the detection of the transpositions. Actually 

the non-existence proof mentioned above is only valid for codes based 

on the cyclic group c10 , with generalized weights which are :ndependent 

of the words itself. The codes of 2.3.4 on page 56 are examples of codes 

designed for detecting transpositions which are unfortunately no longer 

E1-proof. 

The biquinary codes of chapter 5 designed by the present author are 

however both - and transposition-proof. The first one has many faces. 

It is an alternating code in the sense that it can be defined by apply

ing two quasi groups alternatively. It has also an interpretation as a 

biquinary code and as a code based on addition modulo 10 with weights 

and checkvalue (c) depending on the value of the digits Last but not n 
least the code can be interpreted as a code based on the dihedral group 

with generalized weights and as such it would fall under 2.3.2 The 

generalized biquinary code however loses this interpretation (see 

chapter 5). The merit of the generalized biquinary code is that it does 

much better in the detection of the twin errors and the jump transposi-

tions. Finally the application of the dihedral group turns out to 

give scores of E1- and transposition-proof codes. Some of these do 
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even better than all other decimal codes mentioned above (see chapter 4). 

Up to now no decimal code, scoring 100% in all the categories, has come 

to the attention of the author. He was also unable to prove that such a 

code does not exist. Such a proof would have to depend on properties of 

the number 10 since for other number bases codes like that do exist. 

Moreover in section 1.5 an example of a 3-digit decimal code scoring 

100% in all fl categories, has been given. The performance of the modulo 

11 check is difficult to compare with that of the pure decimal codes 

since their redundancy is higher. For that reason alone these codes 

detect 1% more in the realm of the random errors. A 6-digit decimal 

code satisfy:i.ng a modulo 11 check equation has at most 90910 words 

whereas a pure decimal code will have 100000 words. Decimal codes 

applied in situations where a modulo 11 check could also be used, have 

therefore a hidden redundancy, which is not taken into account in the 

performance comparison tables. The main disadvantage of the eleven 

checks is that the lexicographical ordering, according to the inform

ation digits, of the code shows gaps, in contrad'stinction to a pure 

decimal code. This may be a d:sadvantage for the efficiency of the 

file-handling and storage, but when it comes to appli.cation in an 

existing system it implies a recoding of about 10% of the code words. 

'rhe resulting inconvenience for customers and the potential danger 

for more errors makes the application of the modulo 11 check in those 

cases very unattractive. In some applications this difficulty O over

come by giving no check digit in those cases where the 10-th symbol 

would be required. The blank is then playing the role of the 10-th 

symbol. The drawback is that the code will no longer have a fixed 

length. In other applications the O has to play the double role of 

the O and the 10-th symbol. However the remedy is worse than the 

disease, as the code stops being E1-proof. 

2.2 A classification of decimal codes 

The decimal codes, discussed in this chapter, may be classified as 

follows: 
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1) The non-E1-proof codes. 

1.1) Codes modulo k, with 10 > k. 

1.2) Codes modulo 10, using weights divisable by 2 or 5. 

1.3) The Bull type codes, using the sum of 2 alternating sums, each 

with a different modulus smaller than 10. 

1.4) Various modulo 11 checks, in which the "o" and the "10" are 

identified. 

2) The E1-proof codes with 1 decimal redundancy. All but one of the 

codes, mentioned here, are of the completely reducible type and as 

such they can be defined by the Latin sta:i.rc.ase method. In the text 

however other definit:i.ons, admitting an easier analysis, will be 

employed. 

2.1) Codes based on the addition modulo 10, i.e. the cyclic group c10 . 

2.1.1) The straight sum check. 

2.1.2) The alternating sum check. 

2.1.3) The weighted sum checks. 

2 .1.4) Sum checks with generalized weights. 

2.2) Biquinary codes. 

2 .2 .1) Alternating biquina:ry codes. 

2.2.2) Generalized biquina:ry codes. 

2.3) Codes based on the multiplication in the dihedral group of the 

pentagon, i.e. n5 . 

3) The 

2 .3 .1.) Straight product check. 

2.3.2} "Weighted" product checks. 

2.3.3) Periodic product checks with generalized weights. 

2 .3 .4} Non-periodic product checks with general:i.zed weights. 

codes with a higher redundancy than one decimal. 

3.l) Checks based on the addition modulo k, with k > 10. 

3.1.1) Various modulo 11 checks. 

3.1.2) Checks modulo k, with k > 11. 
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2.3 Description of the various error detecting decimal codes 

2.3.0 Checks modulo 10 

The straightforward generalization of the parity check is the straight 

modulo lO·check. This code consists of all words satisfying 

a 1 + a 2 + ... + an == c (mod 10). Al though the code detects all single 

errors (see 1.2), the obvious disadvantage is that no transpositions 

are detected. The twin errors, aa->-bb, are caught for 88.9%, since 

2a = 2b (mod 10) if a= b + 5 (mod 10). It is a poor consolation that 

the phonetic errors are detected for 100%. 

A considerable improvement gives the alternating check modulo 10. The 

check equation for the alternating check is: a 1 - a2 + a 3 - ... - c 

(mod 10). This check detects 8 out of the 9 transpositions, since 

a 1 - a 2 = a2 - a 1 (mod 10) only holds if 2a1 == 2a2 (mod 10) or 

equivalently a 1 = a 2 + 5 (mod 10). The jump transpositions still remain 

undetected. A major drawback is that the twin errors now escape detect

ion completely, since a - a== b - b for all a and b. The difficulty is 

clearly that 10 contains a factor 2 and in fact for an odd modulus 

this type of check would detect all transpositions. The alternating 

check of the form a1 + 2a2 + a 3 + 2a4 + c (mod 10) does detect 

all transpositions, but is unattractive since it is not E1 -proof, as 

an error of 5 units, on the even positions, does not change the sum 

modulo 10. The root of the trouble is that the function: 2:x (mod 10) 

has always an even value. 

The I.B.M. code is an intelligent trial to improve this situation, by 

{ 2x if 2x < 10 . 
defining a permutation f by: f(x) .== 2x_ 9 if 2x 2:. 10 (the carry 1.s 

added to the product 2x (mod 10)), hence 
01234567891 

f = {0246813579 J. The sai.d I. B .M code consists of all words satisfying: 

+ f(an_ 3 ) + ... = c (mod 10). This code was a big 

stride forward, but it did not detect the transpositions completely, 

as the transposition of O and 9 goes by unnoticed, giving a detection 

rate of 97.8%. Because of its alternating character none of the jump 

transpositions is detected. As will be shown in chapter 3, it is not 

accidental that 1 out of the 45 possible transpositions remains un

detected by codes using fixed permutations in combination with the 
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addition modulo 10. 

It is however possible to do better with respect to the jump transpo

sitions, by using sequences of (generalized) weights with a higher 

period than 2. It is well-lmown from number theory that the powers of 

an arbitrary number modulo n, form a periodic sequence. The number 
2 

9 (= -1 (mod 10)) has for instance the period 2 modulo 10, as 9 = 81 

and 81 = 1 (mod 10). The period of 3 modulo 10 is 4, as can be easily 

verified. The code defined by: I: 3ia = a + 3a2 + 9a3 + 7a4 + a + i 1 5 " .. 

"'c (mod 10) besides being E1-proof, detects 8 out of the 9 transpositions 

since 3ia_ + 3i+la 3ia + 3i+la_ (mod 10) "f 2a 2a (mod 10) 
1 i+l i+l 1 1 i = i+l ' 

The jump transpositions are also detected for 88.9% since 
i i+2 i i+2 

3 ai + 3 ai+2 = 3 ai+2 + 3 ai (mod 10) leads to Bai 8ai+2 

(mod 10). Also the twin errors are detected for 88.9% as 

3ia + 3i+la = 3ib + 3i+lb (mod 10) is equivalent with 4a = 4b (mod 10). 

But unfortunately now the jump twin errors give trouble, as 

31a + 3i+2 a == 3 (1+9}a"" 0 (mod 10) for all a. 

It is of course not necessary that the weights form a geometric progression 

modulo 10 and one sometimes sees a weighted code, defined by 

a 1 + 3a2 + 7a3 + a 4 + 3a5 + ... = c (mod 10) . This code, which is of 

period 3, is equally good on the single errors and the transpositions, 

but does better on the ,jump twin errors than the former one did. Of 

the jump twin errors it detects 88.9% on 2 out of the 3 positions and 

0% on the third, giving a nett result of 59.3%. The drawback is that 

the same rate now holds for the twin errors, instead of the 88.9%. 

Since l, 3, 7, 9 are the only proper weights which are admissable in 

view of the complete detection of the single errors and since virtually 

all possible combinations are tried it is reasonable to turn the 

attention to codes with generalized weights. An obvious improvement 

of the I B .M. code is to make its period higher by using powers of th~i 

permutation f for the successive weights. This generalization gives a 
2 3 

code defined by: an + f(a 1 ) + f (a 2 ) + f (a 3 ) + ... = c (mod 10). n- n- n-
The code which is obviously E1-proof, still has a detection rate of 

97.8% for the transpositions. The detection of the jump transpositions 
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depends on how often fi(a) + fi+2 (b) = fi(b) + fi+2 (a) (mod 10) holds 
i i 

for a~ b. Put A= f (a) and B = f (b), then the condition becomes: 

A+ f(B) = B + f(A) (mod 10) or A - f(A) = B - f(B). The function 

X - f(X) has the values 0-0, 1-4, 2-8, 3-3, 4-7, 5-2, 6-6, 7-1, 8-5 

and 9-9 or modulo 10: 0, 7, 4, O, 7, 3, O, 6, 3, O, so that 8 out of 

the 45 combinations a, b fulfill the equation and hence 82.2% of the 

jump transpositions will be detected. In a similar way the detection 

rate of the twin errors is found to be 93.3% and for the jump twin 

errors 95.6%. The phonetic errors have a detection rate of 89.6%. 

In chapter 3 it will be shown that the permutation g defined by 

{0123456789} g(x) = f(x) + 6, or g = 6802479135 has the same rate of detection 

for the single errors, the transpositions and the twin errors as f 

has. On the other error types the code defined by: E gi(a .) = c n-1 
(mod 10) is better than the one defined with f. It detects the jump 

transpositions and the jump twin errors both for 95.6% and the 

phonetic errors for 90.3%. An oculist from the Leiden University, 

Dr. A.D. Colenbrander, who needed an error detecting code for a 

hostpital administration was not satisfied with the codes known to 

him and designed an interesting and remarkably good one as follows: 

The 10 non-zero residue classes modulo 11 form a group under multipli

cation. In particular multiplication by 2 modulo 11 gives a permutation 

of these 10 classes. Coding the class 10 by O and the classes 

1, 2, ... , 9 by 1, 2, ... , 9 thus gives a permutation of the decimals 

{0123456789} . . i f = 9246801357 . The code is defined by E f (g(ai)) = O (mod 10), 

where g is an arbitrary permutation. In particular g can be chosen 

so that the code becomes E h(i + ai) = 0 (mod 10), where i + ai is 

to be taken modulo 10 too. The latter code detects 100% of the single 

errors, 97.8% of the transpositions, 93.3% of the twin errors, 95.6% 

of the jump transpositions and jump twin errors and 100% of the 

phonetic errors. His way of making a permutation resembling multi

plication by 2 is apparently more fortunate than the one of the I.B.M. 

code. His code is a close analogue of the "best" modulo 11 code defined 
i 

by E 2 ai = c (mod 11) . It is also meritorious that he uses the 

permutation fin a "geometric" progression. It is rather unsatisfactory 
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to try haphazardly some permutations and moreover it is by no means 

necessary to limit the generalized weights to the powers of one single 

permutation. In chapter 3 an exhaustive search for the most favourable 

combination of permutations has therefore been carried through. It 

turned out that theoretically the code defined by: L ) = c (mod 10) 

where the f. 's are given in section 3.5, is one of the best. This check 
1 

is shown to detect 97.8% of the transpositions and of the twin errors, 

and 95.6% of the jump transpositions and the jump twin errors, whereas 

the phonetic errors are detected for 97.9%. So far the story of the 

codes modulo 10. 

2.3.1 Biquin§:ry codes 

The first pure decimal code which is both - and transposition-proof, 

is perhaps less powerful than the best codes described in the previous 

section, but it is interesting for other reasons. Its weakness lies :i.n 

the rather poor detection rate for the twin errors and the jump trans

positions, namely 55.5% and 66.7% respectively. The code is described 

at length :i.n chapter 5 and it will suffice here to mention that the 

phonetic errors are detected for 100% and the jump twin errors for only 

66.7%. The version by Benard, which is also described in chapter 5, has 

the same properties except for the twin error detection which is only 

27.8%. The generalization, which is of a later date (see 5.3), scores 

also 100% for the single errors, the transpos:i. tions and the phonet:i.c 

errors. A detection rate of 88.9% holds for the twin errors, and the 

jump transpositions, whereas the jump twin errors are detected for 

66.7%. One of the merits of these biquinary codes is that they lend 

themselves to a relatively simple technical implementation. 

2.3.2 The dihedral codes 

In chapter 4 codes of a quite different nature are described. Instead of 

add:i.tion modulo 10 the multi.plication in the di.hedral group , of the 

order 10, is employed. This group :i.s non-abelian, since axb .. " bxa does 

not always hold true. It follows therefore that the straight product 

code defined by: X X X ""C in , does not miss all trans-
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positions. In fact 2 out of the 3 transposi ti.ans are detected. The same 

fraction of the twin errors, the jump transpositions and the jump twin 

errors s detected. The alternating product check, defined by: 
1 -1 

a1 x a2 x a3 x a4 x •.. = c in n5 is,in this group,no improvement, 

since now 5 out of the 9 transpositions and all the twin errors escape 

detection. Checks using an analogon of the weights are also far from 

satisfactory, but there are many combinations of generalized weights 

which do yield excellent results. It is shown in chapter 4 that 100% 

detection of the transpositions can be achieved in combination with 

95.6% of detect:i.on for the twin errors and 94.2% for the jump trans

positions and twin errors. There exists a progressive code of the form: 
2 3 f(a1 ) x f (a2 ) x f (a3) x ... == c in n5 which has the qualities mentioned 

above and which scores 95.3% in the phonetic errors, with 
{0123456789} f = 1576283094 . There also exist many non-progressive codes of the 

form: f 1 (a1 ) x (a2 ) x f 3 (a3 ) x •.. "" c in n5 , which are even phonetic 

error-proof. In 4.5 it is described how the permutations fi can be 

constructed. 

Comparing the codes of chapter 3 and chapter 4 is not quite as simple 

as the analysis given above suggests. A code, missing 1. out of the 45 

transpositions does not necessarily miss 1/45-th of the transposj_tions, 

as the assumption that the transpositions are uniformly distributed is 

very unlikely. Much more about this distribution should be known in order 

to be able to construct better codes, which capitalize upon this fact. 

2.3.3 Codes modulo k, with k > 10 

The best known higher modulus codes are the ones modulo 11. The dis

advantages of the modulo 11 codes in general has been discussed in the 

section 2.1. Here only the detecting qualities will be subjected to 

analysis. Not to be recommended is the straight modulo 11 check, defined 

by l: c {mod 11), because it misses all transpositions. The alternating 
i 

checks modulo 11, like l: (-1) ai = c (mod 11) and a1 + 2a2 + a3 + 2a4 + ... 

== c (mod 11), though better, cannot be recommended either because they still 

miss all ,jump transpositions. There are however scores of possibilities 

for good weighted codes modulo 11. All the non-zero we1.ghts are admissable 
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with respect to the detection of the single errors. Transposing the 

digits of the i-th and the j-th position is detected, provided that 

w. i w. (mod 11), where wk is the weight of the digit on the k-th 
]. J 

position. The twin errors on the same positions are detected if 

w. + w. i O (mod 11). The main interest is of course to find sequences 
]. J 

of weights fulfilling the 2 requirements for j = i + 1 and j i + 2 

at least. The arithmetic progression modulo 11: 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10, 1, 2, etc. (the O has to be skipped) is often appUed. A flaw 

of this choice is that the 5 and the 6 are on adjacent posi.tions, so 

that not all twin errors are detected. Another slight disadvantage 

is that not all phonetic errors are detected, since ix= i + (i+l)x 

(mod 11) holds for x = -i (mod 11) and hence only for i = 1 all 

phonetic errors are detected and otherwise 7 out of the 8. The geometric 

progression modulo 11 of the powers of 2 is better. Not only is this 

code twin error-proof, but it does as by miracle detect all phonetic 
. i i+l i i+l errors, since 2 •x + 2 •O = 2 •1 + 2 ·•x (mod 11) holds only if 

x = 2x + 1 (mod 11) or x "'10 (mod 11), which is impossible since 

9 > X > 0. 

Not so lucky is the progressive code with wi since = + 

(mod 11) holds, if x = 5 holds. Beckley (see 2) denounces both the 

arithmetic and the geometric progression- and he recomments a progression

free set of weights. His argument is that the progressive weights are 

vulnerable for the type of error, like 2560004➔2056004-+2005604·+2000564, 

called shift errors. For each choice of progression there are certain 

combinations which can be shifted freely, that is these combinations 

are such that all the shifts are not detected. For the Beckley choice 

of weights there are combinations of digits which are not detected in 

case of a single shift, but which are in fact detected in case a double 

shift occurs. On the other hand there are also pairs of digits which 

are detected in case of a single shift and not detected for the double 

shift. It is questionable whether it has an influence on the average 

number of undetected errors, unless one presupposes a higher frequency 

of use of the vulnerable combinations. The weights given by him do not 

quite meet the specifications since the combinations 13; 26; 39; 41; 
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54; 67; 82; 95 are all immune for both the stngle and the double shift 

on the positions 9 and 8, as can be verified easily. His weights are 

9, 10, 7, 8, 4, 6, 3, 5, 2, 1 and 1ox3 + 7x9 = 7x3 +- 8x9 = 8X3 + 4X9 

(mod 11). 

Codes using a modulus higher than 11 are possible in cases where a 

higher redundancy is admissable. If one has to protect a 7 digit code, 
6 

of which only 5"10 words are needed, then it is perhaps advisable to 

employ an 8 digit code, satisfying a check equation modulo 19. By doing 

so it becomes possible to detect random errors for about 95% automatical

ly at the input, instead of during the processing. 

2.3.4 Codes which are not E1-proof 

There may be cases where the application of a modulus below 10 is 

attractive, even though these codes cannot be J<:1 -proof. The case of a 

check equation modulo 2 is of interest, since it gives rise to a code 

detecting all restricted single errors (i.e. single errors of 1 unit, 

like 6-+7 or 4-+3). The code may be useful for "small" sets, say less 

than 500 j_ terns, occurring on questionaires. In general it is a good 

policy to use the natural redundancy for error detection. If one has to 

code 1400 items one would need 4 decj_mal digits anyhow. By using codes 

with check equation modulo 7, one gets a certain protection without 

extending the length of the code words. As soon as one adds a check 

digit, it is of course inefficient to use a check modulo 7. Only one 

case came to the attention of the present author. The code in question 

is defined by all the words with the property that the decimal value 

is divisable by 7. Hence 1li:: 10i-1a_ for all code words a2al 1 

and since 10 = 3 (mod 7) the weights w. satisfy wi (mod 7). 1 

Single errors are not detected if a. = ai' (mod 7), that is if a. 
1 1 

equal 0, 1 or 2 and a'. equals 7, 8 or 9 respectively. Assumi.ng an 
1 

uni.form di.stribution thi.s gives a detection rate of 1/15. The codes 

modulo 9 will yield (under the same assumption) a much better rate, 

namely l/45, since only the error from Oto 9 will remain unnoticed. 

According to the error samples mentioned in the introduction this does 
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not hold true since the combined frequencies of 0➔7; 1➔8 and 2-+9 are 

much lower than the frequency of the transcription error 0➔9. It goes 

without saying that the frequencies of the converse errors have also 

to be taken :i.nto account. Only for completeness sake some of the codes 

modulo 9 will be included in the comparative code charts. Up to now 

no codes using another group than the cyclic one seem to have been 

applied. It is doubtful whether much improvement can be achieved in 

that way. I:f reliable frequency tables were known, then i. t would 

certainly be possible to improve the single error detection rate 

considearbly. This could be done by recoding the digits so that O and 

9 are represented by 2 symbols with a lower transition frequency. 

Also for completeness sake and perhaps as a warning some non-E1 -proof 

codes will be discussed. 

First of all one sometimes sees codes modulo 10, which use degenerated 

weights like 2, 4, 6, 8 or even 5. The even weights donot detect errors 

:U.ke -a+5, so that 1 out of the 9 single errors on that position 

escapes. Positions o:n which the weight 5 is used admit single errors 

for which the parity is unchanged, so that 4 out of the 9 single 

errors slip through. Most notorious are the codes defined by 
i 

i: ia1 "'c (mod 10); i: 2 ai = c (mod 10) and the codes with the weights 

121212 or 1234678. Still another type of codes which cannot be recommend

ed are the double modulus alternating codes (see 11) called Bull codes 

for short, These codes were originally introduced as and transposition-

proof codes. They are defined as follows: Let p and q be 2 integers satis-

fying 11 > p+q > p, q > 2 and let c = l: (-1) 
p 

(mod and 

= i:: (-1) (mod q), with p > c > 0 and q > c > 0. From the 
p q -

assumptions it follows that 9 ~ p-l+q-1 > c +c ?.. 0 holds, so that 
- p q 

c + c can be used as a check digit. The underlying idea probably 
p q 

was that as soon asp or q was odd, the transpositions will be detected 

by one of the two equati.ons. The combinations 3,5; 4,5; 3,7; 4,7 and 5,6 

are recommended (see 11) and also 3,8 can be tried. A further analysis 

shows however that the claims are not justified. In another patent, codes 

are proposed in which not the sum, but the number + is used as 

check symbol, which is of course no longer decimal. The application of 

a check symbol with that many values opens the possibilities for codes 
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far superior, so that this variant cannot be recommended either. 

Finally the codes modulo 11 with a decimal check symbol with the O in 

the double role of 10 and O, are included primarily as a warning, since 

this twist destroys all the good qualities which the modulo 11 codes 

may have. 

2.4 Results of a test on life errors 

Several codes have been tried on the sample of 12112 errors in 6 digit 

words. This sample is too small to give significant results for the 

better coo,.;, This is especially so since there are a few pairs which 

occur with a multiplicity of about 20 and even one pair (903559+145379) 

with a multiplicity of 89. A second test has therefore been performed on 

the non-single errors after removal of all duplicates. This smaller 

example consists of 1665 double errors and 471 multiple errors. Only 

E1-proof codes are tested on these 2136 errors. The numbers of undetected 

errors per check system are listed in the second table below. In the same 

table the mathematical expectations per 1000 errors are given for the 

various error-types like the transpositions, the twin errors, the jump 

transpositions and twin errors and the phonetic errors and finally 

the random errors. These expectations are based on the assumption that 

the various possible transpositions etc. are equally likely, which is 

certainly not the case in the present sample. The last two columns of the 

same table give the percentage of the undetected errors with respect to 

the non-single errors and with respect to all errors as calculated from 

the mathematical expectations. The check systems are listed in descend

ing order of the number of undetected errors from the sample. 
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Table of test results on the 12112 pairs of 6-digits words. 

Number of not detected 
Check system single double multiple total 

errors errors errors 
l:a =c(mod 9) 621 1391 84 2096 

(mod 11) with 10=0 308 1395 88 1791 
=c(rnod 10) 1650 52 70 1772 

l:a. (mod 10) 0 1397 73 1470 
l:a\•c(mod 11) 0 1386 80 1466 
l: ~1 a.=c( mod 10) 1124 227 76 1427 
Bull lype 4 ,5 955 331 72 1358 
Bull type 4,7 698 323 61 1082 
Weighted 121212 modulo 10 671 157 145 973 
Weighted 121212 modulo 9 621 169 182 972 
Bull type 3, 7 558 318 76 952 
Lo(-l)ia.=c(mod 9) 621 250 56 927 

]. 
424 394 96 914 Bup type 3,5 

l:2 a.=c(mod 9) 621 115 81 817 
Altei"'nating dihedral code 0 762 54 816 
Weighted 212121 modulo 1.0 503 142 81 726 
Bull type 5,6 317 264 59 640 
Lo(-1) 1 a =c(mod 11) with 10"'0 254 238 66 558 
Strai.ghl dihedral code 0 454 59 513 
Weighted 12121.2 mod.11; 10=0 186 178 88 452 
Bull type 3 ,8 85 278 72 435 
Lo(-1) 1 a.=c(mod 10) 0 347 63 410 
Weighted 313131 modulo 10 0 265 135 400 
We:j.gh ted 137137 modulo 10 0 236 156 392 
l:31 a. ""C(mod 7) 142 146 82 370 
E3ia\,c(mod 10) 0 200 147 347 
r,3~a~=c(mod 11), with 10=0 192 81 60 333 
E2 1 a1=c(mod 11), with 10=0 185 74 64 323 
l:ia.~c(mod 11), with 10=0 175 94 52 321 
f,(-I)ia.=c(mod 11) 0 217 56 273 
Weightea dihedral code 0 223 50 273 
Biquinary code, Benard version 0 112 134 246 
Progressive dihedral code 0 54 174 228 
IBM code 0 167 52 219 
Weighted 212121 modulo 11 0 141 69 210 
Weighted 313131 modulo 11 0 140 43 183 
First biquinary code 0 138 45 183 
Generalized IBM code 0 113 44 157 
Generalized biquinary code 0 79 68 147 
Ef.(a.)=c(mod 10) 0 65 60 125 
Mo~ified generalized IBM code 0 69 48 117 
l:f1 (a.)=c(mod 10) (Colenbrander) 0 78 34 112 
Best dihedral code 0 56 50 106 
Z31a.=c(mod 11) 0 44 55 99 
1: ia it::c (mod 11) 0 57 40 97 
Weibted 463521 mod .11 (Beckley) 0 52 

··-· 
42 94 

l:2 1 a. ::::c(mod 11) o/ 0 
l 

38 55 93 
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Test on sample of measured theoretical estimates 
2136 non-single frequencies of undetected errors 
errors 

Ul 
r-, Ul 

Ul 0 = Ul ... "" i r-, r-, 0 r-, 0 0 
0 .. ..... Ul I 0 .... .. Ill .... .. rn r-, Ill Ill ti, en 

rn .. .... 0 = ., = ,., bl)..-< bl) I-< 
>, Ill Ill rn .. <II = .... <.) Ill t\l bl) 11, 0 

" ..... 0 r-, ,., 0 "' . ... .... = .... r-, 
Q) 0, 0, Q) ........ ... rn +.> Ul 8 = .... Ul = .. ~ ... .... ..... rn .... " Q) r-, ll> Ul S-. © Q) 

() .c .... t\l = = 0.·'"' 0, •· i:: 0 .., tl I 0 () 
© 5 .... .... oS . ... § ~ § t 0 !-, i:: .. = r-, ,,.,. ,.... 
-§ i 0 .. .. .i:: r-, oS ll> 0 !-, © .... .., ... ... ... .,.., 0, .,.., © 0, © .. C. S:: Ill 0, t\l 

i:a1=c(mod 10) 1235 67 1302 1000 111 1000 111 0 100 59.3% 11.87% 

i:a1=c(mod 11) 1228 69 :297 1000 0 1000 0 0 91 58.2% 11.64% 

Alternating 691 52 743 556 1000 267 267 0 100 38.3% 7.66% 
dihedral code 

Straight dihedral 390 47 437 333 333 333 33'? 0 100 24.3% 4 86% 
i 

l:(-1) a 1=c(mod 10) 311 53 364 111 1000 1000 111 0 100 19.3% 3 87% 

Weighted 313131 244 44 288 111 111 1000 111 0 100 14.9% 2 98% 
modulo 10 

Weighted dihedral 206 49 255 111 111 267 26"' 250 100 12.2% 2 .45% 
i 

l:(-1) a 1=c(mod 11) 198 52 250 0 1000 1000 0 125 91 13.5% 2.70% 

Weighted 137137 192 49 241 111 407 111 40i 0 100 12.7% 2.53% 
modulo 10 

i 
l:3 ai=c(mod 10) 174 49 223 111 111 111 1000 0 100 12 7% 2 53% 

IBM code 151 50 201 22 67 1000 111 125 100 10.5% 2 11% 

Weighted 212121 134 66 200 0 0 1000 0 63 91 8.3% 1 67% 
modulo 11 

Weighted 313131 129 41 170 0 0 1000 0 125 91 8.5% 1.70% 
modulo 11 

First biquinary 126 43 169 0 444 333 333 0 100 8.2% 1.64% 

Biquinary (Benard) 107 40 147 0 728 333 333 0 100 9.6% 1.93% 

Generalized IBM 90 43 133 22 67 178 67 104 100 6.3% 1.20% 

Generalized bi- 70 59 129 0 111 111 333 0 100 5.4% 1.09% 
quinary code 

l:f1 (a1)=c(mod 10) 55 55 110 22 22 44 44 27 100 §.3% 1 02% 

Progressive dihe- 51 53 104 0 44 59 59 47 100 4.3% 0 86% 
dral code 

i 
Ef (a1 )=c(mod 10) 70 33 103 22 67 44 44 0 100 5.3% 1 05% 
(Colenbrander) 

Genera ii zed IBM 62 37 99 22 67 44 44 97 100 5 5% 1 10% 
modified 

i l:3 a 1 =c(mod 11) 44 49 93 0 0 0 0 125 91 3.5% 0.70% 

l:iai=c(mod 1.L) 57 35 92 0 200 0 0 125 91 4.5% 0.90% 

Weighted 463521 49 42 91 0 0 0 250 125 91 4.1% 0.82% 
(Beckley) 

Best dihedral 45 41 86 0 44 59 59 0 100 4.2% 0.83% 
:i 

l:2 a1 =c(mod 11) 35 38 73 0 0 0 0 0 91 3 2% 0.64% 
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2.5 Conclusions 

The general impression is that the tests give a good confirmation of the 

theory. There are a few discrepancies which show that the asswnption of 

the uniform error distribution is invalid. One would for instance expect 

that the check equation L 2ia_ = c (mod 9) would be superior to 
i l. 

Z 3 ai = c (mod 7). The first check does not detect the single errors 

0-+9 and 9->0, whereas the second one does not detect 0->-7; 1·->-8; 2➔9 and 

7->0; 8->-1; 9->2, but the. latter six together have a much lower frequency 

than the first two. The check equation Z 2if(a.) == c (mod 9), where f 
. l. 

i.s a permutation such that f(O) = 0 and f(7) = 9, would yield a much 

better result on the single errors (17 instead of 621) than Z 2iai = c 

(mod 9). It is however dangerous to build a code on the assumption 

that the transcription errors 0➔7 and 7->-0 are per se rare. The danger 

may be illustrated by the typical high frequency of the transcription 

errors 7+9 and 9➔7, which probably arises from the phonetic resemblance 

of "zeven" and "negen" which is Dutch for 7 and 9. The obvious conclusion 

is that only the E1-proof codes are of practical value. 

Though the material is not sufficient for the ultimate choice of the 

code it is clear that only the lower half of the second table 

contains the serious candidates. It is also clear that the modulo 11 

codes are by no means the only answer to the detection problem. If there 

are reasons for avoiding the modulo 11 codes, then there are certainly 

competative pure decimal codes available to the system designer. This 

is especi.ally so since the modulo 11 codes look better because they 

profit from the hidden redundancy which they require (see section 2.1). 
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Chapter 3. Codes based on the cyclic group of order 10. 

3.0 Some definitions. 

Let D be a set with 10 elements and let+ be a binary operation 

defined on that set such that (D,+) is a group. Consider all ordered 
n 

n-tuples of elements from D, in other words the set D. Let fi for 

1 .:_ i ,:_ n, be n functions with value and s.rgument both in D. Hence for 
D 

x e: D also fi (x) e: D, which is denoted by fie: D Let furthermore c be 

an arbitrarily chosen element of D and let a code C be defined as the 

subset of Dn 
n 

consisting of then-tuples a1a 2 .. an which satisfy: 
n 

l f. (a. )=c, hence C= { a a ... a 
i:::l J. J. 1 2 n 

J L f. (a. )=c } . The purpose of this 
i=l l. i 

chapter is to find the functions f. which yield the "best' codes. 
l. 

A function which maps D onto Dis called a permutation. Since Dis 

finite it is equivalent to define the permutations as one to one 

functions, or as reversabl, functions. The set of all permutations 

of D is denoted by S, hence S €. DD. More formally S is defined by: 
D 

S= { f ~ e:D , { f(x)J x~ D} =D} . 

If f, ge S then the function h defined by h(x)=g(f(x)) also belongs to S. 

The permutation his called the product of the permutations f and g 

and is denoted by gf. The set Sis a group with respect to that product. 

It is called the symmetric group. The identity element will be denoted 

by e, hence e(x)=x for all x e: D. The group is not abelian as can be 

seen from the example : 
0 1 2 3 4 5 6 7 8 9 X 

f(x) 1 0 2 3 4 5 6 7 8 9 

g(x) 0 2 1 3 4 5 6 7 8 9 

fg(x) 1 2 0 3 4 5 6 7 8 9 

gf(x) 2 0 1 3 4 5 6 7 8 9 

-1 -1 -1 
The inverse of permutation f is denoted by f and hence ff =f f=e. 

Theorem 3. 0 If fi E'. S for a ·.1 i , then the code C is E1 -proof. 

Proof: Two words differing only on the j-th position cannot both be

long to C, since otherwise 



j-1 n 
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j-1 

I 
i:::1 

f_ (a. )+f .(a'.)+ 
1 ]. J J 

n 

I 
i=j+l 

f. (a.) 
l. 1 

would hold. By cancelling equal terms from the left and the right, 

f.(a_)=f.(a'_) would follow, so that from f €: S the· contradiction 
J J J J i 

a=•' can be derived. 
j_ i. 

The converse of this theorem i.s not true since a code C may be 

E1-proof while not all the functi.ons fi belong to S. Counter example: 

Let the functions f 1 ,f2 and f 3 be defined by the table: 

X 0 1 2 3 4 5 6 7 8 9 

f 1 (x) 2 4 6 0 1 1 1 1 l l 

f 2 (x) 4 6 0 2 l 1 1 1 1 1 

f/xl 6 0 2 4 1 1 1 1 1 l 

The words a 1a 2a 3 satisfying f 1 (a1 )+f2 (a2 )+f3 (a3 )=0 obvi.ously cannot 

contain any digit "higher" than 3 and therefore the code is E1-proof 

since from f_(a_)=f.(a_') it follows again that a_=a.', for a.,a.' .::..3. 
11 11 ll. :11 

In the rest of this chapter it will be assumed that all f. 's are 
1 

permutations. It will also be assumed in this chapter that the group 

(D, +) :i.s abelian. It is well-known from the theory of groups that this 

group has to be the cyclic group of order 10. It is also well-known 

that the additive group modulo 10 is cyclic. Those readers not fa

miliar w:i.th group theory may therefore interpret the operation+ as 

addition modulo 10. In agreement with this interpretation the ele

ments of D will be denoted by the decimals, or D= {O,l,2,3,4,5,6,7,8,9} 

3.1. Formulation of the requirements. 

The condition that a code C as defined above is transposition-proof is 

that f.(a.)+f. 1 (a. 1 )iff.(a. 1 )+f. 1 (a.) for all a.,a. 1 with a_.if ai+l· 
1 1 1+ 1+. 1 :i.+ 1+ l. 1 1+ -1 1 

Now define x and y by x=f.(a.) and y=f.(a. 1),then a.= f. (x) and 
_ 1 1 1 1+ -1 1 1 -1 

a. =f. 1 (y) and the condition becomes x+f. 1 f. (y);fy+f.+ 3f. (x), or since 
1+1 1. l 1+ 1 1. - 1 

the addition is abelian, x-f. 1f~ (x)-/:.y-f. 1r.-1 (y) follows. The con-
i+ ]. :i.+ ]. 

dition has to hold for all x and y wi.th x-/:. y. In other words the 

function g defined by g(x) = x -
-1 

f. 1 f. (x) has to be a permutation. 
1+ ]. 

-1 
Loosely said x - f. 1 f. (x) 

i+. ]. 
has to be a permutation or more formally 
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-1 
{x-f. 1 (x)lxeD }= D. In an analogous way it can be deduced that the 

1+. -1 
twin errors are detected if x+f. 1f. (x) is a permutation. 

1+ J. 

Jump transposition detection requires that 

(a.)+f. 1 (a. 1 )+f. 2 (a. 2 )rtf.(a. 2 )+f. 1 (a. 1 )+f, 2 (a_). 
l. 1+ 1+ 1+ 1+ 1 1+ 1+ 1+ 1+ l. 

Setting x=f.(a_) and (a. 2 ) and cancelling the 
1 l. J.+ 

middle terms gives 

-l -1 
x+f. 2 f. ·(y);afy+f. 2 f. (x) so that 

1+ J. i+ 1 

-1 
now x-fi+Zfi (x) has to be a permu-

tation. Again in an analogous way the condition for the detection of the 

jump twin errors can be reduced to the requirement that 

has to be a permutation. 

Finally the phonetic errors are detected if 

(x) 

f.(a)+f. 1 (0)#.(l)+f. 1 (a) holds for a;/0,1. This inequality is how-
1 1+ 1 i+ 

ever also valid for O and 1, so that, after setting x=f.(a), it follows 
-1 J. 

that x-f. 1 f. (x)f.f. (1)-f. 1 (0) has to be true for all xE D. 
1+ 1 1 1+ 

In the list below the conditions are sulll!llarized. 

Transpositions 
-1 

{x-f. f. (x) xE:D} 
1+1 J. 

= D 

Twin errors 
-1 

{x+fi+l (x)jxE:.D} = D 

Jump transpositions 
-1 

{x-f. 2 f. (x)lx£D} = D 
i+ 1 

Jump twin errors 
-1 

{x+fi+Zfi (x)Jxe D} D 

Phonetic errors f.(1)-f. 1 (0)¢" {x-f. 1 1 1+ 1+ 

3.2. Analysis of the conditions. 

The five requirements are not compatible since the first one contradicts 
-1 

the last one. Suppose that {x-fi+lfi (x) I XE m = D, then it follows, 

as f.(1)-f. 1 (0)£ D, that the last condition is not fulfilled. 
1 i+ 

Fortunately or rather unfortunately no one of the first four conditions 

can be satisfied because of the next theorem, so that it becomes theore

tically possible to satisfy the fifth one. 

Theorem 3.2.0 There does not exist a permutation f of the 2k residue 

classes 0,1, ... ,2k-1 such that the function g defined by 

is also a permutation. 

Proof; Consider l (f(x)+x)= Lf(x)+ Ix=2 }:x=2k(2k-1)=0(mod 2k), 

but i.f f(x)+x were a permutation then l (f(x)+x)= Ix=k mod 2k) would 

hold. 
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As a corollary it follows that, if in {f(x)+xlx=0, .•. ,2k-1} just one 

element is missing, say i, then i+k (mod 2k) has to appear twice. 
-1 -1 

By applying this theorem on the permutations+ fi+lfi and +fi+2fi 

with k=5 it follows that the first four conditions are impossible. This 

is the result referred to in 2.1, which led to the belief that no pure 

decimal check could yield anE1- and transposition-proof code. 

The question remains of how close the ideal can be approximated by using 

addition modulo 10. Tne next best to being a permutation is that. the set 

{ x-f(x) I x E: D} lacks only one element. The expression "f(x)-x is nearly 

a permutation" will be used in the sequel if such is the case. 

The I.B.M. code of 2.3 is an example: 

X 0 1 2 3 4 5 6 7 8 9 

f(x) 0 2 4 6 8 1 3 5 7 9 

x-f(x) 0 9 8 7 6 4 3 2 1 0 

Note that the digit 5 is missing and that the O occurs twice. 

The set of permutations f such that x-f(x) is nearly a permutation is 

denoted by P. The subset of P consisting of those permutations f for 

which x+f(x) is also nearly a permutation will be denoted by Q, hence 

Q.=,P,!:S, 

If gi £ Q and if fi+l"'gifi fornl .:_i <n and if f 1 is arbitrarily chosen in 

S, then the code defined by l f. (a. )==c is "as good as possible" in detecting 
]. ]. 

the transpositions and the tM'.A errors. The converse is also true. 

In view of the large number of permutations ( Isl ==3628800::::10!) a 

computer program has been written to find the sets P and Q. Simply 

generating all permutations and rejecting the ones for which x-f(x) is not 

nearly a permutation, is not only inefficient but also unimaginative. It 

is much nicer to generate the permutations lexicographically and to test 

while each permutation is built up. Building each permutation by first 

choosing f(O), then f(l) etc. is a multiple stage decision process and the 

idea of dynamic programming can be applied. If for instance f(O),f(l) and 

f(2) are chosen so that O-f(O)=l-f(1)==2-f(2), then all 7! further codes 

may be skipped. This would also be the case, according to the corollary 
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of theorem 3.2.0, if O-f(0)=1-f(1)=2-f(2)+5. As will be seen below, a 

further saving, by at least a factor 150, is gained through a study of 

the structure of the sets P and Q. There are four transformations which 

leave both P and Q invariant, and which define equivalence relations 

in these sets. 

3.3. Detection-rate preserving transformations. 

The permutations defined by h (x)=x+a, with x,aE: D, form a repre
a 

sentation of (D,+) i.n the symmetric group S since h h (x))=h (x+b)= 
' a b a 

x+b+a=x+a+b=h (x). The set H defi.ned by H .. {h J a E. D} is a subgroup of S 
a+b a 

isomorphic with (D,+). 

If f E. P (or Q), then the double cosets HfH(={h fh I a, be: D}) belong to P 
a b 

(or Q), since x'+ h fh (x') = y'+ h fh (y'),with x'=x+b and y'=y+b, follows 
- a b - a b 

immediately from x~f(x) = y~f(y). Hence the transformations f+haf' with 

a e: D, leave both P and Q invariant. The sets Hf(= {hf I h e.H} ) obviously 

contain 10 different permutations, among which there is just one which 

The search may therefore be limited to the sets P0 and Q0 defined by 

Po= ff If.;: P, f(O)=O} and Q0 = { f I f E Q, f(O)=O} . Clearly I P0 1 = I Pl /10 

and [Q0 j = [QI /10. By setting f(O)=O there are 9! possibi.lities left 

and the search is cut down by a factor 10. 

The transformations Ga defined by Gaf=h_f(a/ha leave P0 and Q0 in

variant, since {h_f(a/ha I a e: D} c HfH and si.nca Gaf(O)=f(a+O)-f(a)=O. 

That the sets {G f I a E.D}, for fE. P , contain 10 permutations each is 
a O 

true, but not trivial. It hinges on the circumstance that x-f(x) is 

nearly a permutation for all fe.P0 . For such a func ion there are two 

elements dl and d 2 such that ct1 -f(ct1 )=d2-f(d2 ). Let these elements be 

called the duplicators. The duplicators of G 
a 
(f) are d -a and -a, 

1 
since -a+a)-f(a)-(d1-a)=f(ct1 ) 

=f(d2 )-d2+a-f(a)=f(d2-a+a)-f(a)-(d2-a). If ct1 -d2i5 then the ten values 

of a , give 10 different permutations, as they have different dupli-

cators, But if d1 -d2=5 then it is conceivable that f(x)=f(x+5)-f(5) 

since the functions on both sides of the equation have the same dupli

cators. However i.f this were the case, then f(5)= (5+5)-f(5)=- (5), or 

2f(fj)=0. But since f'(O)=O, it follows that f(5)=5 so O and 5 are both 
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fixed points of f and hence duplicators. Substituting 1 for x gives 

f(l)=f(1+5)-5 or f(1)-1 7 f(6)-6, which makes 1 and 6 also duplicators 

and consequently x-f(x) is not nearly a permutation Now that it has 

been established that each set has to have 10 members the problem remains 

to select appropriate representatives in order to facilitate the search. 

The effect of the transformati.on is that the duplicators are both 

shifted modulo 10. Their cyclic distance is therefore an invariant. Let 

POi (resp Q0 i) be.the subset of P0 (resp Q0 ) consisting of the permutations 

f such that .o and i are the duplicators of x-f(x). Now each permutation 

:f€ P0 -P05 has just one equivalent permutation in one of the classes 

P01 ,P02 ,P03 ,P04 . The permutations of P05 will have two equivalent permu

tations in P05 . 4 i:t is therefore only necessary to find the sets P0 i,for i<6, 

and IP0 I "" 10 l IP0 . I +5 jP0 .. J . It is much easier to search 
. l l. 0 

for the permutl'i:ions of POi' since not only two values are fixed, but also 

because the test is simpler now, as no more duplications in x=f(x) are 

allowed. Moreover according to the corollary o:f theorem 3.2.0 f(x);,fx+5 

has to hold. 

The search can further be limited by yet another transformation-type, 

which leaves each (and invariant. This transformation is based 

on the automorphisms of the cyclic group c10 . An automorphism is a 

permutation 6 of the elements of the group satisfying : o (a+b)"' o (a)+ o (b). 

The automorphisms :form a subgroup of the symmetric group. In the case 

of it is a cyclic group with 4 elements. The formula above suggests 

a multiplication and indeed multiplication modulo 10, by a factor re

latively prime with 10, does the trick. These factors are 1,3,7,9. It 

should be noted that if (a,10);,ll then ax (mod 10) is not even nearly 

a permutation of x. The automorphisms are generated by 3 (or 7), since 

and The order of an element a is defined 
k 

as the lowest positive integer k, such that I a=O. It is well-known 

from the theory o:f that the :i=l in-groups automorph1srns leave the order 

variant. The group has 4 elements of the order 10 Le. 3,9,7,1 

and 4 elements of the order 5, i.e. 2,4,6,8. O is the only element 

of the order land 5 has the order 2. Hence 15(0)=0 and 8(5)=5 for 

each automorphism /; .To each automorphism o there corresponds a trans

form F0 defined by F0 (f)= ofo -l, it is known as the transform of 
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0 1 2 3 4 5 6 7 8 9 
is given by a table f= { . . . . . . . . . . } 

10111213141516171819 

then F 6 (f) is obtained by applying o to all the symbols of both entries 

of the table. (see 8). 
-1 

Suppose that f€.POi and thatoi=j and let g::F O (f), then j)=of6 (oi)= 

6 f(i)= 6 (i)=.j and g(O)= of cS -l(O)cc 8 f(O)= o (0)=0. Moreover, since x-f(x) 

is nearly a permutation, it f0llows that x-g(x) is so too, by remarking 
-1 -1 -1 -1 

that( x-g(x)} = {66 (x)- cS f o (x)} do( o (x)-f(/i (x)))} "'6 {y-f(y}} 

Hence g e; P Oj. Now it is possib; e to project P 04 on P 02 and P 03 on P 01 by 

the transforms F 3 and F 7' The class P 05 however l.s left invariant and 

though this third transformation induces an equivalence in P05 it is 

hard to capitalize upon this fact. It is also tempting to try to split P0 i 

further by using the transformation g(x)=-f(-x), which projects P0 i on 

P0 _i and to go back to P0 i by the transformation of the second type 

h(x)=g(x-i)-g(-i). The resulting transformation is h(x)=i-f(i-x). This 

transformation does not necessarily lead to a different permutation, 

as can be seen in the first table below for i=l. In P the transform F 
05 9 

has also its invariants. An example is given in the second table below. 

Note that x+f(x) is also nearly a permutation in this second example. 

X 0 1 2 3 4 15 6 7 8 9 X 0 l 2 3 4 5 6 7 8 

f(x) 0 1 3 5 7 9 2 4 6 8 f(x) 0 2 6 1 7 5 3 9 4 

x-f(x) 0 0 9 8 7 6 4 3 2 1 x-f(x) 0 9 6 2 7 0 3 8 4 

1-x 1 0 9 8 7 6 5 4 3 2 -x 0 9 8 7 6 5 4 3 2 

f(l-x) 1 0 8 6 4 2 9 7 5 3 f(-x) 0 8 4 9 3 5 7 1 6 

1-f(l-x) 0 1 3 5 I 7 9 2 4 6 8 -f(-x) 0 2 6 1 7 5 3 9 4 

x+f(x) 0 2 5 8 1 4 8 1 4 7 x+f(x) 0 3 8 4 1 0 9 6 2 

It may be worthwhile to note that there is yet a fourth transformation I, 
-1 

which leaves P (and Q) invariant It is defined by I(f)ccf . The in-

9 

8 

1 

1 

2 

8 

7 

variance follows by substituting f-1 (y) for x in the relation I{ x- (x) }j =9, 

for {f(y)-y] will have the same number of elemerts. Since moreover the 

inverse of a permutation f has the same fixed po nts as f, also POi 

(and Q0 i) is left invariant. It can happen that ;(f)=f, as is shown by 

the example on page 69. 
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X -~f : 2 3 4 5 6 7 8 9 
-·-- -~--· ·-

f(x) 3 2 7 9 8 4 6 5 
-·----"" ---·-- --- ·----·- - . 

x-f(x) 0 0 9 1 7 6 8 3 2 4 
-1 

f (x) 0 1 3 2 7 9 8 4 6 5 
--~-- ---- .. -- . -

x+f(x) 0 2 5 5 1 4 4 1 4 4 

Even though some of the transformations mentioned in this section are 

not used to relieve the search, they still are helpful for checking 

the output. 

The result of this section is that it is only necessary to find the 

sets P01 , P02 and P05 (or Q01 , Q02 , Q05 ). The set P (or Q) can be 

found afterwards by applying certain transformations on these sets. 

The following equalities hold: JP I =200( IP 01 J + IP 02 I )+50 IP os I and 

JQ I =200< JQOl J + jQ02 \ )+ 50 1 Q05 J 

3.4. The search program. 

In the program the permutations are built by means of a multiple decision 

process. In 8 stages the process is ready, since f(O)=O and f(i)=i 

has to hold if f ~Poi. The available function values are stored as a 

chain in an array called chain (-1:9). Ea.ch time that a digit j is 

allocated to some f(i) the chain is shortcircuited by the assignment 

chain (k):=chain (j). k is supposed to be the previous value which 

was possible, for O the dummy value -1 is taken as the previous 

one. So chain(-1) refers to the first digit which is still available, 

chain(chain(-1)) to the second one and so on. 

The crucial part of the program is the test for the feasibility of 

an allocation. In a boolean array called difference (0:9) the 

occurrence of a difference i-f(i) is memorized by making difference 

(i-f(i)) true as some value has been allocated to f(i). The fields 

difference (0) and difference (5) are initialized by true, since 0 

and 5 are not allowed as a difference i-f(i). In order to see whether 

j is possible as value for f(i) the program simply tests whether 

difference (i-j) is false er not. 

In the array f(0:9) the allocated value is stored and in the array 

choice (0:9) the value previous to the one allocated is memorized. 



70 

The latter array is necessary to be able to revoke a decision, if the 

process comes to a stop at a higher level. After revoking a decision the 

feasibility of the next possible value is tested. If there is no next 

value available, the decision at the previous stage. has to be revoked, 

and so on.The process also stops temporarily when a permutation satisfy

ing the conditions has been found. It is then counted in the array 

count (1:5) and it can be tested whether the permutation also belongs 

to Q, if so, a print-out is requested. After that, the process is started 

again by revoking the last decision. 

The flowchart of the program is given on page 71, for the benefit of 

those readers who prefer this less clear but more general description 

over the precise list of instructions. The latter is given all the 

same to make the details available. 

The structure of the program, as given in the flowchart is quite general. 

If for instance the test is skipped, the program will generate all 

permutations in lexicographical order. If however f(i)~i is used as 

test condition, the non-concurrent permutations are generated. The 

same flowchart can be used for more complicated probl ms, like the 

pentomino-fitting-puzzles (see 15). 

In chapter 5 it will be used again. 
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declare and 
initiate the 
variables 

take first 
position 

take next 
free digit 

test 

is this digit 
admitted on the 
present position? 

... 

record 
and 
count 

cancel 

cancel the 
former choice 

miss 

are there more 
digits possible 
on this position 

print 
the number 
of solutions 

no 

es 



'begin' 

'be~in' 

'begin' 

'end'; 

start; 

test: 

allocate: 

'begin' 

'end'; 

discard: 

cancel: 

miss: 

'begin' 

'end'; 

'begin' 

'begin' 

'end'; 

'end'; 

ready: 

'end'; 

'end' 
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'inte~r• d,j,k,x,y; 

'integer' 'array' f,choice(0:9),chain(-1:9), 

count(l :5); 

'boolean' 'array' difference(0:9); 

'for' j:=1,2,5 'do' 

'for' x:=0 'step' 1 'until' 9 'do' 

chain(x):=x+l; difference(x):='false' 

count(j):=0; f(j):=j; 

difference (O):=difference(5):='true'; 

x:=chain(-1):='if' j 'equal' 1 'then' 2 'else' 1; 

'if' j 'greater' 1 'then' chain(j-1):=j+l; 

k:=-1; 

y:=chain(k);d:=x-y; 'if' d 'less' 0 'then' d:=d+lO; 

'if' difference(d) 'then' 'go to' miss; 

f(x):=y; chain(k):=chain(y); choice(x):=k; 

difference(d):='true'; 'if' x 'less' 9 'then' 

x:=x+l;'if' x 'equal' j 'then' x:=x+l; 

'go to' start 

count(j):=count(j)+l; 

x:=9; 

k:=choice(x); y:=f(x); chain(k):=y; d:=x-y; 

'if' d 'less' 0 'then' d:=d+lO;difference(d):='false'; 

'if' chain(y) 'less' 10 'then' 

k:=y;'go to' test 

'if' x 'greater' i 'then' 

x:=x-1; 'if' x 'equal' j 'then' 

'if' j 'equal' 1 'then''go to' ready; x:=x-1 

'go to' cancel 

nlcr(l); write("the number of permutations in pO"); 

type(j); write(" is"); type(count(j)); 

d:=50W(4W(count(l)+count(2))+count(5)); 

wri te(''the total number of permutations in p is"); 

type(d) 
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As a result of the program it turns out that IP01 j = IP02 1 = 104 

and that jp05 i = 96. Hence IPI =200(104+104)+50x96=46400. 

Furthermore IQ01 I =2; jQ02 I =8 and IQ05 J =16, so that 

IQJ=200(2+8)+50xl6=2800. 

Since Q is not empty it is natural to disregard the rest of P, at least 

temporarily. 

The permutations of Q01 are: 

X 0 1 2 3 4 5 6 7 8 9 
-

ql(x) 0 1 4 6 3 9 2 8 5 7 

q2(x) 0 1 6 4 2 8 3 9 7 5 

The transformation f(x)➔l-f(l-x) leaves both permutations invariant, 
-1 

but the transformation f(x)-1>f (x) interchanges them. 

The permutations of Q02 are: 

X 0 1 2 3 4 5 6 7 8 9 

q/x) 0 4 2 5 8 1 3 6 9 7 

q4(x) 0 4 2 9 3 6 8 1 5 7 

q5(x) 0 5 2 6 1 3 7 9 4 8 

q6(x) 0 5 2 9 6 3 7 4 1 8 

q7(x) 0 7 2 4 1 8 5 9 6 3 

q8(x) 0 7 2 4 8 3 5 9 1 6 

CJ.g(x) 0 8 2 5 3 6 9 1 4 7 

qlO(x) 0 8 2 5 7 1 4 6 9 3 

In Q02 the transformation f(x)➔2-f(2-x) interchanges ci.3 and q9 ; q4 
and q10 ; ci.5 and q8 ; q6 and q7 , whereas the pairs q3 and q5 ; q 4 and 

q7 ; q6 and q10 ; q8 and q9 are each others inverse. 
-1 

In Q05 the transformations f(x)-f(x+5)+5, I(f)=f and F3 (f(x))=3f(7x), · 

F9(f(x))=-f(-x) and F7(f(x))=7f(3x) are of interest. 

Q05 has 16 permutations, which are tabulated on the next page. 

The transformation f(x)➔f(x+5)+5 interchanges the pairs: (q11 ,q26 ); 

(q12'q25);(q13'q18);(q14'q16);(q15'q22);(q17'q20);(q19'q24);(q21'q23). 

The group of transformations F i with 1 ~i < 4, splits Q05 into 6 

classes i.e. 4 classes with 2 3e1ements and 2 classes with each 4 

elements. In each class the elements are interchanged cyclicly. 
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X 0 1 2 3 4 5 6 7 8 9 

qll (x) 0 2 4 9 7 5 3 1 6 8 

q12(x) 0 2 6 1 7 5 3 9 4 8 

q13(x) 0 2 6 9 3 5 8 4 1 7 

q14(x) 0 2 9 6 3 5 8 1 4 7 

q15(x) 0 3 1 6 8 5 2 4 9 7 

q16(x) 0 3 6 9 2 5 7 4 1 8 

ql 7(x) 0 3 9 4 8 5 2 6 1 7 

q18(x) 0 3 9 6 2 5 7 1 4 8 

q19(x) 0 7 1 4 8 5 3 9 6 2 

q20(x) 0 7 1 6 2 5 8 4 9 3 

q21(x) 0 7 4 1 8 5 3 6 9 2 

q22(x) 0 7 9 4 2 5 8 6 1 3 

q23(x) 0 8 1 4 7 '5 2 9 6 3 

q24(x) 0 8 4 1 7 5 2 6 9 3 

q25(:x) 0 8 4 9 3 5 7 1 6 2 

--
q26(:x) 0 8 6 1 3 5 7 9 4 2 
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The classes are: (qll'q15);(q12'q20);(ql7'q25);(q22'q26);(q19'q23'q21' 

q24);(q13'q16'ql8'ql4). 

The transformation I splits Q05 into 4 classes of 2 members each which 

are each others inverse. The pairs are: (q11 ,q20);(q12 , );(q13 ,q23 ); 

(q14'q19);(q16'q24);(q17'q26);(q18'q21);(q22'q25). 

Q05 is generated by means of the transformations mentioned above from 

the permutati.ons q 11 and q13 . 

Define Q05 by Q05 "' { q11,q12'ql3'q15'ql6'q19'q2l'q23}. 

The set Q05 is chosen in such a way that the transformation f(x)➔f(x+5)+5 

has no equivalent permutations in Qo5· Therefore, if Q'=Qolu Q02UQ!'J3 V 

V Q04 V Q05 it fol lows that the set Q' together with the 100 trans

formations f(x)+f(x+a)+b generate the set Q. In the next section it 

will be seen that this concise description of the set Q, as a by-

product of the hunt for shortcuts in the search, is a great asset in 

itself. Now that the(first) search is over it is still useful to try 

to get the set Qin a tighter grip by means of the transformation 

group F .. This group splits the set Q02vQ04 into classes of 4 elements 
3l. 

each. The set {q3 , q 4 , q5 , q 7} denoted by Q~2 has a representative from 

each class. The set Q01VQ03U Q~5 however is split into classes with 2 

elements each, if Q;5 ={q11 ,q13 ,q20,q23 } then Q01u Q~5 has a repre

sentative of each class, so that Q is known as soon as Q"=Q U Q' U Q" 
01 02 05 

is known. By using the inverse of the permutations a still greater 

reduction can be achieved, in fact Q is generated by the set 

3.5. The detection of the jump errors. 

The condition for the detection of the jump transpositions was that 

the function x-f. 2f. 1 (x) is nearly a permutation. In the foregoing 
:i.+ l. 

section it was shown that the code detects the transpositions and the 

twin errors optimally if g. =f. 1 f~1 e. Q. It is therefore advisable to 
l. :i.+ l. -1 

apply permutation f uch that g =f f ~ Q and that the consecutive s is i i+l i 
's satisfy the cond:i.t:i.on:that x-g. 1g.(x) is nearly a permutation, 

:i.+. l. 

or that at least the equality x-g. 1 g. (x)=y-g_ 1 g. (y) is valid for 
1+ l. :i.+ l. 

the minimum number of pairs x,y. If the first is the case the permu-
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tations gi+l and gi are said to be matching. A chain of permutations 

giEQ is wanted such that the adjacent g's form matching pairs. An 

obvious strategy for finding such chains is to take a g1 e.Q at random 

and to search for a g2 eQ matching with g1 , and so on. This is, especi

ally if the matching pairs are scarce, very inefficient. It is better 

to make a catalogue of the matching pairs first and to build the chai.ns 

with the aid of that catalogue afterwards. The matching pairs have to be 

selected out of the 7840000 pairs from QxQ. It seems worthwhile to 

investigate whether the representation of Q by means of the set Q' and 

the transformations f(x)➔.f(x+a)+b yields a saving in labour. Let 

f,f'e Q, then for some g and g' with g,g'e. Q';f(x)=g(x+a)+b and 

f'(x)=g'(x+~)+b' hold. The pair f,f' matches if x-g(g'(x+a')+b'+a)-b 

is nearly a permutation, which is equivalent with the requirement 

that y-g(g'(y)+c) with b'+a=c, is nearly a permutation. s~ if g(x+c) 

and g'(x) match, with g,g'E: Q' and ce:D, then g(x+a)+b and g'(x+a')+b', 

with b'+a=c, also match. This remark reduces the number of pairs, which 

have to be tested, by a factor 1000. 

A further reduction is obtained with the aid of the transformation F3 , 

since it may be assumed that the second member of the pair lies in Q". If 

the second member lies outside Q" then the transformation F3 will bring 

it into Q" and from 

x-g(g'(x)+c)=7•3x-7•3g(7(3g'(7•3x)+3c)=7(y-F3g(F3g'(y)+3c)) it follows 

that F3g,F3g• match if g,g' do. Hence only the 2800 triplets g,g',c 

with ge.Q'; g'e:. Q" and ce:D have to be tested. A simple program gives 

as sad result that no matching pairs exist. This is in agreement with 

the fact that up to now no code was known (at least to the author) 

which had the property to detect both the transpositions and the jump 

transpositions nearly optimal. In trying to prove that these codes do 

not exist the following example was found: 



Ti 

X 0 1 2 3 4 5 6 7 8 9 

f'(x) 0 9 6 4 1 5 8 3 7 2 

f(x) 0 7 3 6 1 5 4 9 2 8 

ff'(:x) 0 8 4 1 7 5 2 6 9 3 
1-------··-- -----

x-f' (x) 0 2 6 9 3 0 8 4 1 7 

x-f(x) 0 4 9 7 3 0 2 8 6 1 
-----• " - -~----- --·-·- -~--:-. .. - - -- - --•c - -

x-ff' (x) 0 3 8 2 7 0 4 1 9 6 

x+f' (x) 0 0 8 7 5 0 4 0 5 1 
-·--·-·-·- ,------ -- - -- - 1---- -~- ___ ,_ 

x+f(x) 0 8 5 9 5 0 0 6 0 7 

x+ff' (x) 0 9 6 4 1 0 8 3 7 2 

Both permutations leave 7 (j_.e. <!)+(~)) twin errors undetected, but the 

jump twin errors are detected nearly optimal. 

There are two possible approaches now: 

i) Admitt also permutations which do not optimalize the detection of i!he 

twin errors or; 

ii)suboptimalize the detection of the jump transpositions. By means of a 

simple computer program it appears that the permutations of P01 ,P02 and 

P05 are divided with respect to their twin error detection capacity 

according to the following table: 

undetected twin errors 1 2 3 4 5 6 7 8 9 10 15 

number of permutations 26 0 40 62 54 22 48 16 4 26 4 

Following the first suggestion would thus imply the loss of two more 

twin errors, as the second class is empty. The second suggestion should 

therefore be preferred, if it means the loss of only one more jump 

transposition. Such is indeed the case as will be seen in the sequel. 

Again the search may U.mi.ted to the triplets g,g',c, with gE:.Q';g'e. Q" 

and c.: D. A pair g, g' is said to be nearly matching if x-gg' (x)=y-gg' 

holds for only two pairs x,y. 

16 

2 

By a modified program all the triplets are now tested to see whether 

there are nearly matching pairs. For the approved triplets it is counted 

how many pairs x,y satisfy '(x)+c '(y)+c). It turns out that 

32 pairs are the topscorers, each leaving two jump transpositions and 
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two jump twin errors undetected. Eight permutations are involved in these 

32 pairs. These permutations fall apart into two families. The members of 

one family are the inverse of those of the other family. Within each 

family any two can form a nearly matching pair with.an appropriate 

value for c. The permutations of one of the families are denoted by 

h1 ,h2 ,h3 ,h4 and hi(x+a)+b nearly matches h/x+a')+b' provided that 

b'+a=c .. , where c .. is listed below. 
l.J J.J 

X 0 1 2 3 4 5 6 7 8 9 c .. 1 2 3 4 
l.J 

h1 (x) 0 4 2 5 8 1 3 6 9 7 1 3 5 0 6 

h 2 (x) 0 8 2 5 3 6 9 1 4 7 2 5 7 2 8 

h3 (x) 0 2 9 6 4 1 8 5 7 3 3 2 4 9 5 

h/x) 0 8 5 2 4 1 7 9 6 3 4 8 0 5 1 

It is easy now to produce chains of any length, consisting of nearly 

matching permutations. As a matter of fact h. :x+c .. ) provides an infi-
1 l.J. 

nite chain with equal links, resulting in a (periodic) progressive code. 

Codes based on these chains detect 97.8% of the transpositions, 97.8% 

of the twin errors, 95.6% of the jump transpositions and 95.6% of the 

jump twin errors, The problem of selecting chains which detect the 

phonetic errors optimally is dealt with in the next section. 

3.6. The detection of the phonetic errors. 

A phonetic error on the positions i and i+l is detected if 
-1 

x-f. 1 f. (x)#.(1)-f. 1 (0) for xe: D, or 
I.+ l. 1 l.+ 

The righthand s:i.de is a fixed value, which has to correspond with the 

missing value of the set {x-g. (x) Ix£ D} . The Colenbrander codes 
J. . 

(see secti.on 2.3) defined by lfl.(g(a.))=0 (mod 10), with 
l. 

f= {0123456789} and where g is an arbitrary permutation, admitt an 
9246801357 

elegant solution. 

In {x-f(x) I x £ D}the value O is missing and by choosing g so that 
. . . i+l i . 

f(g(O))=g(l) 1.t J.S achieved that x+f (g(0))1f (g(l))+f(x) LS 
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equivalent with x;,ff(x), which is valid for all x since the zero was 
0123456789 . . 

missing. The choice g= { 9736124850}, wluch is the one used in thcci tests 

of section 2.4, is a proper one. The general case is more difficult. 

For the functions hi given in the preceding section, this missing 

value is 5, and for h. (x+a)+b it is 5-a-b. Suppose that a chain 
]. 

g1 ,g2 , ... ,gk with the property that the code based on the g's in the 

usual manner, detects all phonetic errors. Suppose furthermore that the 

g's are selected from {h1 ,h2 ,h3 ,h4} and that the selected h/s are 

suitably transformed as set forth in the section above. The question 

arises as to the conditions for prolongation of the chain. Let fk(O)=q 

and fk(l)=p and let gk be a transform of hs. If the next link of the 

chain is a transform of h, then it has to be h (x+c ). The missing 
t t ts 

value of { x-h (x+c ) Ix E: D} is 5-c and hence the condi ti.on for 
t ts ts 

detecting the phonetic errors is p-h (q+c )=5-c . This implies 
t ts ts 

that for each t only certain triplets for p,q,s, with p,qc D and 

sE.{1,2,:3,4} , admitt the prolongation of the chain by the permutation 

ht(:x:+c ). After the prolongation a new triple h (p+c ), h (q+c ), t 
ts t ts t ts 

arises, which does or does not admitt further extension of the chain. 

For each choice oft ands there are 10 pairs p,q which satisfy the 

condition p-h (q+c )=5-c . Hence there are altogether 160 triplets, 
t ts ts 

namely 5-c +h (q+c ) q s which are suitable for chain extension. 
ts t ts ' ' 

The resulting triplets after the extension are h (5+h (q+c )),h (q+c ), 
t t ts t ts 

t, w:i th q E D and s, t €. { 1, 2, 3, 4} In terms of the theory of graphs 

the problem is to find, possibly circuits, but at least the maximal 

paths in the directed graph defined by the coupling of the triplets. 

The triplets itself are the points of the graph. Let these points be 

denoted by Ti with O < i < 399. The edges of the graph are the 160 

ordered pairs (T.,T.), The vertex T. is called the initial vertex and 
]. J ]. 

T. is called the terminal vertex of the edge. An edge (T., T .) with a 
J ]. J 

terminal vertex, which is not the initial vertex of any other edge, 

is called a twig. 

Obviously a twig cannot be part of a circuit and removi.ng the twigs 

from the graph will not eliminate any circuits. The length of the 

maximal paths however will be deminished by one. The following proce

dure is applied in order to find the maximal paths: 
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i) Find the twigs of the graph. This can be done efficiently by 

having the list of the edges ordered according to the initial vertex. 

ii) Remove the twigs from the edge-list and put them on the first 

pruning-list. 

iii) Repeat the pruning until there are no more twigs left. If' the 

graph is pruned away after n prunings then the length of the longest 

chains L· also n, otherwise there has to be a ci.rcui t The longest chain 

can be reconstructed from the pruning-lists, starting from the back. 

In the pxesent case :it turns out that there are 64 chai 1 cS having the 

maximal length of 6. These chains are intertwined in a manner shown in 

the drawing below. 
r-------------·----

I 
I 
I 
I 

I I 

I 
I / 
I; 
I\ 

I \ 
I 

\ 

\ 

I 

I 

I 
I 

I 

' ' ' L ---·-··---------- --- - - - - ----f----- - - - - - - - - --• ~•+ - -• - mo - -• -- --~ 

Unfortunately there does not exist a circuit, but it s possible to 

connect the chains, be it with the introduction of one nonphonetic

error-proof link. These improper links are shown in the drawing by he 

dotted lines. 'fhe starting points 058 and 174 are obt inable by taking 

for the initial permutation the permutations h0 (x+3) and (x+8) 

respectively. The fi.rst one happens to be the same a the one required 

for making an improper link. A natural choice for an i,,f:ini te sequence 

of g's is therefore: h 0 (x+3),h2 (x+2),h3 (x+5) h 2 (x+5),h1 (x+2) h0 (x+5),where 

these ei:: permutattc::ns have to be repeated in this order The re-

sulting permutations fi become: f 0 (x)=h0 (x+3), f 1 (x)=h ( 0 (x+3)+2), 

(h2 (h0 (x+3)+2)+5) and so on. In the table on he next page 

the various permutations are given. 
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X 0 1 2 3 4 5 6 7 8 9 X 0 1 2 3 4 5 6 7 8 9 
--~--

h0 (x+3) 5 8 1 3 6 9 7 0 4 2 f 0 (x) 5 8 1 3 6 9 7 0 4 2 

h2 (x+2) 9 6 4 1 8 5 7 3 0 2 f 1 (x) 5 0 6 1 7 2 3 9 8 4 
--- ---

h3(x+5) 1 7 9 3 0 8 5 2 4 ~-4(~~ 0 1 _8 7 5 9 6 4 2 3 
-- --

h2 (x+5) 1 8 5 7 3 0 2 9 6 4 f 3 (x) 1 8 6 9 0 4 2 3 5 7 

h1 (x+2) 2 5 3 6 9 1 4 7 0 8 
··-~+--

f 4 (x) 5 0 4 8 2 9 3 6 1 7 

h0 (x+5) 1 3 6 9 7 0 4 2 5 8 f 5(x) 0 l. 7 5 6 8 9 4 3 2 
--

h0 (x+3) 5 8 1 3 6 9 7 0 4 2 f 6 (x) 5 8 0 9 7 4 2 6 3 1 

h2 (x+2) 9 6 4 1 8 5 7 3 0 2 f 7(x) 5 0 9 2 3 8 4 7 1 6 

h3 (x+5) 1 7 9 6 3 0 8 5 2 4 f 8 (x) 0 1 4 9 6 2 3 5 7 8 

h2 (x+5) 1 8 5 7 3 0 2 9 6 4 f 9 (x) l 8 3 4 2 5 7 0 9 6 
·--· 

This code detects 97.8% of the transpositions and the twin errors, 95.6% 

of the jump transpositions and the jump twin errors and about 97.9% of the 

phonetic errors. The latter percentage will be slightly better for short 

codes, since one out of the six positions will miss one of the eight pos

sible phonetic errors. 

The period of the code above is 90, since after 15 repetitions the per

mutations will be reproduced. This follows from the fact that the cycle 

representations of f 5 is (0)(1)(27469)(583) and hence the order of 

is 15. The same method of search might be applied to the permutations, 

which give rise to codes detecting only 42 of the 45 twin errors per 

position. '!'his is not elaborated here, s:i.nce the next chapters contain 

codes which are superior anyhow. It should be emphasized however that 

the considerations of the chapters 3,4,5 are based on the assumption 

that the various errors are uniformly distributed. If e.g. a certain 

transposition ab➔ba is rare, it would be an obvious advantage to adapt 

a check equation in such a way that the "missed transposition" will 

be such a rare one. More, reliable statistics from different sources 

will be needed before it is justified to follow such a strategy. 
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Chapter 4. Codes based on the dihedral group of order 10 

4.0 Some definitions 

In this chapter the idea of applying the dihedral group of order 10 

will be pursued. 

The cyclic group of order 10 and the dihedral group are the only 

groups of order 10. The latter one is generated by two elements c 
and e:, with the generating relations o5 == o0 , e: 2 = c O; cc :::: di-l. 

The group i.s denoted by D5 , since it is a transformation group of the 

pentagon. Theo stands for the rotations over 72 degrees, whereas 

thee: stands for the transformation which turns the plane of the 

pentagon upside down, The generating relations will be self evident 

in this interpretation. The elements of the group represent the 
j symmetries of the pentagon, i.e. o , with 1 < < 4 are the rotation 

symmetries and ojc with O < j ~ 4 are the reflexions with respect 

to the 5 axes. The elements can be coded arbitrarily with the 10 

decimal digits. In this chapter is chosen for the coding. 

and oj (+j+s, for 0 < j < 4. - -
The dihedral group is non-abelian, as can be seen from the third 

generating relation. For this reason the operation will be written 

as a multj.plication. The multiplication :i.s denoted by the sign "x", 

but this sign is often omitted when the generating elements are 

multiplied, as in oj E• 

In the table on the next page the result of the multiplication is 

given. This table, sometimes called Cayley table, can be taken as 

an alternative definition of the group (D,x). 

Here, as in chapter 3, D stands for the set {l,2,3,4,5,6,7 .8,9,0}. 

Note that the digit O denotes the multiplicative unit of n5 

The group D5 has as a subgroup ({0,1,2,3,4} ,x) which is a cyclic 

group of the fifth order, c5 . Also c{ 0 ,5} ,x) is a cycUc subgroup (C2). 



83 

The Cayley table of D5 . 

X 0 1 2 3 4 5 6 7 8 9 

0 0 1 2 3 4 5 6 7 8 9 

1 1 2 3 4 0 6 7 8 9 5 

2 2 3 4 0 1 7 8 9 5 6 

3 3 4 0 1 2 8 9 5 6 7 

4 4 0 1· 2 3 9 5 6 7 8 

5 5 9 8 7 6 0 4 3 2 1 

6 6 5 9 8 7 1 0 4 3 2 

7 7 6 5 9 8 2 1 0 4 3 

8 8 7 6 5 9 3 2 1 0 4 

9 9 8 7 6 5 4 3 2 1 0 

The unit, 0, has the order 1 and the elements 1, 2, 3, 4 have the 

order 5, since oi = i for 1 ~ i ~ 4 and (oi) 5 = o5 i = o0 . The 5 elements 

5, 6, 7, 8, 9 are all of the order 2 since oj€Oj€ = ojo-j€2 = 0°€0 = o0 . 

This was to be expected from the geometrical interpretation of the group, 

since reflexions are of the second order. 

The automorphisms of a group leave the order of the elements invariant. 

Moreover an automorphism is determined as soon its effect on the gene

rators is known. For the first generator o, which is of the fifth order, 

there are 4 possible images. For the second generator£, which is of the 

second order, there are 5 images feasable. The total number of auto

morphisms is 20, since all these combinations are admitted. The 10 
-1 

inner automorphisms ra defined by ra(x) = axxxa form a subgroup of 

the group of all automorphisms. The automorphism group of D5 will in 

this chapter be denoted by A. A is generated by two elements p and cr, 
5 0 4 0 2 

with the relations p = p ; cr = cr ; op= pa. 

The cycle representation of p and o are respectively: 

(0)(1)(2)(3)(4)(56789) and (0)(1243)(5)(6798). 

The powers of o form a subgroup of the order 4. 

The elements of A are permutations of D and hence ACS. The permutations 

of A are listed in the table below. 
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0 1 2 3 4 5 6 7 8 9 

0 1 2 3 4 5 6 7 8 9 OU 

0 1 2 3 4 6 7 8 9 
1 

5 p 

0 1 2 3 4 7 8 9 5 6 
2 

p 

0 1 2 3 4 8 9 5 6 7 
;j 

p 

0 1 2 3 4 9 5 6 7 8 
4 

p 

0 4 3 2 1 5 9 8 7 6 
2 

0 

0 4 3 2 1 6 5 9 8 7 
2 

po 

0 4 3 2 1 7 6 5 9 8 
2 2 

0 0 

0 4 3 2 1 8 7 6 5 9 
3 2 

0 0 

0 4 3 2 1 9 8 7 6 5 
4 2 

p 0 

0 2 4 1 3 5 7 9 h 8 0 

0 2 4 1 3 6 8 5 7 9 po 

0 2 4 1 3 7 9 6 8 5 
2 

P a 

0 2 4 1 3 8 5 7 9 6 
3 

p 0 

0 2 4 1 3 9 6 8 5 7 
4 

P a 

0 3 1 4 2 5 8 6 9 7 
3 

(J 

0 3 1 4 2 6 9 7 5 8 
3 

pa 

0 3 1 4 2 7 5 8 6 9 
2 3 

p 0 

0 3 1 4 2 8 6 9 7 5 
3 3 

p (J 

0 3 1 4 2 9 7 5 8 6 
4 3 

p 0 

The first 10 permutations form the subgroup of the inner automorphisms. 

4.1 Formulation of the requirements 

Analogous to the method of chapter 3, the codes based on D5 are 

defined as the set of all code words from Dn satisfying 

c0xf1 (a1)xf2 (a2)x ... xfn(an) == en for fixed c0 ,cnE.D and fi~S 

It was shown in 3.0 that such a code detects all singl errors. From 

this point on the parallel with chapter 3 is broken in the sense that 

the results are different. The treatment as a whole is analogous and 

in fact, it is possible to formulate some of the proofs in such a way, 

that they are valid for both the cyclic and the dihedral group. For 

didactical reasons it was thought better to make both chapters self-
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contained. Especially for those readers not familiar with group 

theory, the third chapter would seem to be unnecessarily compl:i.cated. 

The condition for the detection of the transpositions is 

c0 xf1 (a1)x ... xf.(a.)xf. 1 (a. 1 )x ... i c0x ... xf.(a. 1 )xf. 1 (a.)x ... , 
1 1 1+ 1+ 1 1+ 1+ 1 

for a 1 i ai+l' 

The common factors on both sides can be cancelled by multiplication 

from the left or from the right by the inverse of those factors, but 

in the resulting inequality: f.(a.)xf. 1 (a. 1 );,f f.(a. 1hf. 1 (a.) 
1 1 1+ 1+ 1 1+ 1+ 1 

the factors containing ai and the ones containing 

separated. Substitution of x for f.(a.) and y for 
-1 -1 1 1 

xxf. 1 f. (y)iyxf. 1 f. (x) forallx,y£Dwithx;/4 
1+ 1 1+ 1 

ai+l cannot be 

f.(a. 1) gives: 
1 l.+ 

y. 

The condition for the detection of the twin errors will become after 
-1 -1 

the same reasoning: xxfi+lfi (x);ify><fi+lfi (y) for all x,y1::.. D with 

x it y. In the latter condition the x and they are separated. 

The condition for the jump transpositions becomes 

fi(ai)xfi+l(a1+1)xfi+2 (a1+2) t f 1 (a1+2)xfi+l(ai+l)xfi+2 (ai) or after 

the substitutions f 1 (a.~.x; f. 1 (a. 1 )+y; f 1 (a. 2 )~z 
-1 1 -1 1+ 1+ 1+ 

xxyxfi+2fi (z) t zxyxfi+2fi (x) for all x,y,z£ D with x ;& z. In the 

same way the condition for the detection of the Jump twin errors 
-1 -1 

will become: xxyxf. 2 f 1 (x) t zxyxf. 2£. (z) for all x,y,z <ED with x ;& z. 
1+ 1+ 1 

Both conditions for the jump errors are exacting, since they have to 

hold :f.or all y. It will be seen in section 4 .5 that these exacting 

functional relations not only ask much, but also give much (see also 11). 

The phonetic errors are detected if f.(x)xfi 1 (0) ..f f.(l)xf. 1 (x) for 
l ~ 1 1+ 

all x it 0,1 with x£ D. S.ince for 1 and O the inequality is valid any-

how the provision x ;£ 0,1 may be dropped. 

The permutations fi occurring in the check equation may be defined 

recursively by fi+l = g1fi, with f 1 £ S. 

The pennutations gi are used in the summary of the conditions. 

1) Transpositions xxg.(y) i,, yxg.(x} for x,ye:D with x it y. 
1 ]. 

2) Twin errors xxgi (x) ;/; yxgi (y) for x,y £. D with x ;& y. 

3) Jump transpositions xxyxgi+lg.(z) I,, zxyxg. 1g.(x) for x,y,ze:D with 
l 1+ 1 
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4) Jump twin errors xxyxgi+lgi(x) ;I, zxyxgi+lgi(z} for x,y,z GD with 

X-/, Z. 

5) Phonetic errors xxf. 1 (0) ;I, 
J.+ 

(l)xg.(x) for x£D. 
l. 

4 .2 The analysis of the conditl.ons. 

The fl.fth and the fl.rst condition are no longer contradJctory as they 

were in the cyclic case. 

The proof of the impossibility of the first four conditions l.s not 

applicable, since D5 is not abelian. In fact, and this is the advantage 

of the dihedral group, there do exist permutations which satisfy the 

first condition (see 4.4). The twin error detection requires that 

xxg(x) is a permutation for some permutation g. Although the variables 

are separated in the twin error condition, the non-existence proof of 

3.2 is not applicable, since IT n g(x) does not always hold in 
xE:D x.aD 

. Unfortunately this does not l.mply that there exist permutations 

satisfying the requirement. 

Theorem 4.2.0. There does not exist a permutation f, such that xxf(x) 

is also a permutation. 

Proof: Let the digits 0, 1, 2, 3, 4 be called low and the remaining 

digits high, lo and hl. for short. Suppose that f(x) is k times low 

for low x. Thus k times: f(lo) ::::: lo and hence 5-k times: f(lo} == hi 

and f (hi.) "' lo, and thus k times f (hi) = h:i.. The low digits form a 

subgroup of n5 with a factor group of order 2, which means that 

loxlo = hixhi == lo and loxhi = hixlo =hi.From this it follows that 

xxf(x) is 2k times lo and 10-2k times hi. If xxf(x) were a permutation 

then 5 low and 5 high digits had to occur, but 2k::::: 5 is not true. 

Hence xxf(x) can at best be nearly a permutation. The following 

example shows that this is indeed possl.ble. 

X 0 l 2 3 4 5 6 7 8 9 

f(x) 0 2 4 6 7 5 9 8 3 1 

xxf(x) 0 3 1 9 6 0 2 4 5 8 
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This particular f does not satisfy the first condition, since 

Oxf(5) = 5xf(O) = 5. This is not accidental, since it can be shown 

that no permutation f exists, such that xxf(x) is nearly a permutation 

and such that it also satisfies the condition that xxf(y) -f yxf(x) 

for all x -f y. The proof which is very cumbersome, distinguishing several 

cases, is left out. The fact will be established by the computer search 

anyhow, which in itself is also a proof,distinguishing all cases. 

It is also possible to give an upper bound for the detection rate of 

the jump errors. There are 450 combinations for x,y,z.::.D with x < z. 

Let gi+lgi be denoted by h for short. The conditions then become 

xxyxh(z) -f zxyxh(x) and xxyxh(x) i zxyxh(z). As in the proof of 

theorem 4.2.0, the pairs (x,h(k)) can be put into four classes denoted. 

by Aij, with i, j Et{ 0 ,1} . The i and the j can be taken as the exponent 

of c of x and h(x) respectively. So i.f x = cikci and h(x) = o\j then 

(x,h(x))'=-Aij" Obviously IA00 I + IA01 1 + IA 101 +!Alli= 10 and 

IAool + IA01I = IA1ol + IA11I = IAool + IA1ol = IA01I + IA11I = 5. 

Two different classes Aij and Akl are called complementary if 

i+j = k+l (mod 2). Three cases are considered separately. 

i) (x,h(x)) and (z,h(z)) belong to different non-complementary classes. 

Both inequalities are then trivially fulfilled, since the number of 

c 'sis different on both sides of the sign, no matter what value y has. 

ii) (x,h(x)) and (z,h(z)) belong to the same class, say A ... Suppose 

that x = oa,/; z = occ\ y = obck; h(x) oa'cj; h(z) = :~•cj express 

the representations of the vari.ous elements as products of the 

generators of D5 . The conditions become after substitution. 

-"a i-"b k-"c' j _1 -"c i_rb k-"a' j d -"a i,b k-"a' j _1 -"c i 5 h k,c' j whi·ch 
u E u E \) E F u C u C u E an u C u C u C F l) C ( C u C 

can be converted, using the 
i i+k . . 

a+(-1) b+(-1) c' 1+J+k i 
0 C 

0a+(-l)ib+(-l)i+ka'ci+j+k-/., 

generating relations of D5 , into 

( ,i ( l)i+k I •.• 
oc+ -1, b+ - a cJ.+J+k and 

i i+k 
Oc+(-1) b+(-1) c' i+j+k 

E 

. i+j+k 
After cancelling c it follows that: 

a+(-1) 1b+(-l)i+kc, i c+(-1) 1b+(-1) 1+ka' (mod 5) and 

a+(-l)ib+(-l)i+ka, i c+(-l)ib+(-l)i+kc' (mod 5). 
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These inequalities are independent of band they can be reduced to: 
i+k I i+k a-c-/: (-1) (a'-c') and a-c ~ (-1) (c'-a'). For 5 out of the 10 

. i+k values for y it holds that (-1) = 1, and for the other 5 values 

(-l)i+k -l. The 2 conditions are split up into a-c-/: a'-·c' (mod 5) 

and a-c -(a'-c') (mod 5) for the first condition and a-c = c'-a' 

(mod 5) and a-c = -(c'-a') (mod 5) for the second one. The 2 pairs of 

inequalities are apparently equivalent. From x-/: zit follows in 

this case that a-/: c (mod 5) and hence a-c = a'-c' (mod 5) and 

a-c = -(a'-c') (mod 5) cannot both hold at the same time. Thus if one 

of the two holds, then the original inequalities are both vali.d for 

5 of the 10 values for y and otherwise for all 10 values. 

iii) (x,h(x)) and (z,h(z)) belong to complementary classes, say Aij 

and A. . 1 . respectively. Since either i or 1-i is equal to O and 
'"1.-1, -J 

since the conditions are symmetric with respect to x and z, it may 

be assumed that i = O holds. Suppose that x == oa; y = obe:k; z"' ocE; 
a' · c' 1- · 

h(x) = o i:: 3 ; h(z) = o E J holds. Substitution 

gives OaObEk0c'£l-j-/: OCEOb£k0a' and o8 obi::koa' 

in the conditions 
-/, 0c£ 0b£k0c' 

which becomes after setting the generating relation at work 

0a+b+(-l)kc,El-j+k-/, 0c-b+(-1)k+la,£1+k+j and 

c/l+b+(-l)ka' £j+k ;,/'. 0c-b+(-l}k+lc '£1+k+1-j 

Since the exponents of £ is the same modulo 2 on both si.des of both 

:l.nequali ties it is necessary that the exponents of 8 are different 

modulo 5. That is a+b+(-l)kc' -/: c-b-(-l)ka, (mod 5) and 
k a+b+ '-/: c-b-(-1) c' (mod 5). After sorting the terms both 

equations can be put in the form 2b i c-a-(-l)k(c'+a') (mod 5). Hence, 

for each of the two values fork, there is just one of the 5 values 

for b such that the inequality is false. 

The following table gives a survey of the number of undetected jump 

errors. 
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Aoo AOl AlO All 

Aoo 0 or 5 0 0 2 

AOl 0 0 or 5 2 0 

AlO 0 2 0 or 5 0 

All 2 0 0 0 or 5 

The best permutations would be those which score always a O in the 

main diagonal. The number of triplets x,y,z, with z > x, wh:i.ch fall 

in the complementary classes is ct2+(5-d} 2 , with d = JA00 !. Hence out 

of the 450 cases 2(ct2+(5-d) 2) are bound to remain undetected. The 

function d2+( is at least 13 so that at most 424 of the 450 

possible jump errors are detected. This would be a detection rate 

of 94.2%. Jt will be seen in 4.5 that there exist permutations which 

achieve this reault. 

As to the phonetic errors it is sufficient to remark that the detecting 

condition does not contradict the one for the transpositions, so that 

a 100% detection seems feasible. Section 4.6 is devoted to the construct

tion of codes which reach that score. 

4.3 Detection rate preserving transformations 

Let Ube the set of all permutations f, satisfying xxf ;ii yxf(x) 

for all x ,y 6'D with x ~ y and let V be the subset of U consisting of 

the permutations f, such that xxf(x) == yx 

(unordered) pairs x,y with x ~ y. 

is valid for 2 or less 

As in·the cyclic case there are several transformations (of S} which 

leave U and V invariant, but the situation is more complicated, since 

D5 is non-abelj_an and since the concept of duplicators cannot be used. 

From the fact that D5 is a group it follows that multiplication from 

the right (or the left) by a fixed element a, permutes the elenents 

of D. Let the resulting permutations be denoted by and respect-

ively. Hence ra(x) = xxa and == axx. 'l'he permutations la with 

a IS D form a subgroup of the symmetric group S, called the left regular 

representation of n5 . This subgroup is isomorphic with , since from 
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1 lb(x); 1 (bxx) = ax(bxx) = (axb)xx = 1 b(x) it follows that 
a a P 

lalb = laxb and since la i lb for a i b. The 10 different permutations 

ra' with a E.D, form also a subgroup of S, called the· right regular 

representation of n5 . This group is also isomorphic with D5 , since 

from rarb(x) = ra(xxb) = xxbxa = rbxa(x), it follows that rarb = rbxa' 

so that the order of multiplication is reversed. The transformations 

R : f+r f leave U and V invariant, since from xxf(y) :::: zxf(u) it 
a a 

follows that xxf(y)xa = xxr f(y) = zxr f(u) = zxf(u)xa. Hence if 
a a 

f<EU,V then also rafE.U,V. The induced equivalence classes all have 

10 different elements and in each class a representative, which has 

0 as a fixed point, can be selected. The permutation r f is 
f(O)-l 

equivalent with f and has Oas a fixed point. Let u0 and v0 be defined 

by U0 = {fif(O) = 0, f.sU} and v0 "' {f[f(O) = O, fE.V}. Evidently 

[u0 [ = lu[/10 and [v0 1 = [v[/10 hold. The search for permutations 

satisfying the conditions for the detection of the transpositions and 

the twin errors may be limited by setting f(O) = 0. 

The transformation f➔laf does not leave U invariant, as the follow-

].. ·ng t l h Th t. f . b f (0123456789) coun erexamp es ows. e permuta 10n given Y = 0432178956 

belongs to U, as will be seen later on. 15f however does not belong 

to U since 5x15f(8) = 5x5xf(8) = 5 and 8xl5f(5) = 8x5xf(5) = 3x7 = 5. 

The transformation L: f+fl leaves both U and V invariant. This follows 
a a 

at once by substituting axx; axy etc. in xxf(y) i zxf{u) which gives 

ax(xxfla (y)) i ax(zxfla (u)). Since fla (0) = f(a) it is clear that u0 

is not invariant for all 

The transformations¾ and La are permutable since 

= = = LaRb(f) holds. 

It is possible to construct a transformation Ta such that Ta(U0 ) = u0 . 

Define T by T (f) =LR 1 (f) and let T (f) = g, then 
a a a f(a) - a 

-1 
g(O} = f(axO)xf(a) = 0. Moreover if Tbg 

-1 -1 
and h(x) = g(bxx)xg(b) = f(axbxx)xf(a) 

-1 
= h then g(x) = f(axx)xf(a) 

-l -1 
x(f(axb)xf(a) ) ~ 

-1 = f(axbxx)xf(axb) and hence h = Taxb· Thus = Taxb is valid. 

f(x) provided Furthermore T0 (f) = f, since f(x) = f(Oxx)xf(O) 

that f(O) = 0 holds. The transformations T , with a GD, working on 
a 
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form therefore a group. The equivalence classes induced do however 

not always contain 10 permutations, as the following example will 
k -k . ·+ct · 

show. Define f by f(li) = 6 and f(oJd = liJ E:, with d /c. O, then 

f(x) = f(5xx)xf(5)-l for X=lik ; f(E:xok)xf(E:)-l = f(6-kE:)x(6dE:)-l = 
-k d d -1 -k k j j. -1 

0 o E:(O E:) = o = f(o )and for X=O E: :(E:XO E)Xf(E) = 
- . d '+d j 

- f(6 J)x6 E: = 6J E: = f(6 s). 

The relation ,;:xf(y) ;:;myxf(x) is proved by treating the three cases 

x and y both low or both high and x and y in d:i.fferent classes, 

separately. 

i) o1 xf(6j) = oi-j whereas 6jxf(o1) = oj-i, but i-j /,. 0 since X /,. y. 

ii) CiEXf(ojE) = 1/soj+dE = oi-j-d, but ojsxf(c/£) = OjEOi+dE = 

= 0J-i-d, and again i-j ~ 0. 

iii) oixf(ojE) - oioj+dE = oi+j+dE and ojsxf(oi) = OjEO-i = oi+jE. 

Thus f se. U holds, but the detection of the twin errors is bad, since 

~ixf(Ri) j ( j ) -d 0 ( (5') 4 u ,, = 0 and 6 cxf o E = o . Hence 2 Le. 2 2 ,. of the 5 

possible twin errors escape detectJon. This code will be met again 

in the next chapter. Clearly f ~ v0 holds and it will be seen in 4.4 

that in v0 the equivalence classes do contain 10 elements each. 

Meanwhile it is not clear how this transformation can be used in the 

search for u0 . The third transformation group is of a different 

nature. lt is a subgroup of the automorphism group of S, consisting 

of the inner automorphisms derived from the elements of A, which 

is, as automorphism group of D5 , a subgroup of S. The fact, which 

will be proved below, that the transforms by elements of A, leave U 

and V invariant means that A is contained in the normalizer of U and 

V. The transformations are denoted by F 6 , with s £A, and defined by 

F (f) = sfs-l for f .s S. The transformations form a group isomorphic 

w:th A, since F5 Ft(f) - Fs(tft-1 J = stft-ls-l = (st)f(st)-l = Fst(f) 

and since F ~ F for s * t. 
8 t 

From xxf(y} i yxf(x) it follows that s(xxf(y)) * s(yxf(x)) and ass 
-1 

inequali. ty becomes after subs ti tu ting s x' :is an automorphism, the 
-1 

for x ands y' for y: 
-1 -1 

x'xsf(s y') ~ y'xsf(s x'). Hence F (f) EU . s 

if f ,sU. The same kind of reasoning proves that F (f) E. V if f E-V. 
s 
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Since the automorphisms leave O fixed, it follows that the transforma

tions Fs leave u0 and v0 invarj_ant as well. 

The j_nduced equj_valence classes do not necessarj_ly have 20 elements 
-1 

each. It can happen that sfs = f, or what j_s the same, that sf= fs. 

All the automorphisms except those belonging to the subgroup c5 , have 

just one fixed point different from O, say s(a) =a.Therefore, j_f 

sf= fs then sf(a) = fs(a) = f(a) and hence f(a) = a. But then 

axf(O) =a= Oxf(a) holds, and thus f ~ u0 . The permutations permutable 

with the subgroup c5 are of the form p if', where f' i.s a permutation 

which leaves each one of the high digits fixed, as can be readily 

verified (see 8). In fact the example given above is of this very form. 

These permutations give a poor detection of the twin errors. 

The latter property follows from the proof of theorem 4.2.0, since 

pif'(lo)1:::clo and /·f 1 (hi) = ht, so that xxf(x):::: lo for all x. The 
i 

detection rate ts therefore at most 40/45 and pf' does not belong to V. 

For the search for u0 only a subgroup of A is useful, namely con-

sisting of the automorphisms oj, with O .::, j .::, 3. With this group a 

factor 4 can be gained. Let u0 i and v0 i be defined by u0 i == 

== {fjfEU0 , f(5) = t} and v0 i == {fjfG:V0 , f(5) == i}. Now the search 

may be limited to say the classe~ u03 and u08 for, if f(5) E{l,2,3,4} 

then j can be chosen such that 0Jf0-J(5) = 3 and if f(5) e:.{6,7,8,9} 

then for some j: 0jf0-j(5) = 8. Note that f(5) /, 5 if fE.U. 

4.4 The search program 

The same program as in the preceding chapter can be used, except for a 

few changes. First of all the group operation has to be adapted to the 

dihedral group. Secondly the test has to be changed. The program is 

used twice i.e. once for u03 , in which f(5) == 3 and the other time for 

u08 with f(5) = 8. The result of the 90 seconds search is that 

lu03 ! = 404 and lu08 J = 447, so that juj = 34040. There are no permuta

tions in U for which xxf(x) is nearly a permutation. Furthermore 

= 72 and lv08 j = 78 which makes Iv! = 6000. It turns out that 

the transformations divide V into 600 classes and that the transform-

attons F8 with s GA and Ra with a.:;;;D give a further subdivision of these 
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classes. In V three permutations h 1 , h2 and h3 can be chosen such 

that each feV can be written as LaRbFshi with a,b6D; sEA and 

i G.{1,2,3). The three permutations h. are given in the table below. 
l. 

X 0 1 2 3 4 5 6 7 8 9 

h1 (x) 0 6 4 2 7 8 1 3 9 5 

h2 (x) 0 5 8 2 6 3 7 9 4 1 

h 3 (x) 0 7 9 6 1 8 4 2 3 5 

The importance of this canonical representation will become clear 

in the next sections. 

4.5 The detection of the jump errors 

The requirement for the optimal detection of the jump transpos.i ti.ans 

and the jump twin errors is the same, as was shown in section 2 of this 

chapter. Let g and g' be two permutations of V, not necessar:i.ly 

different. It will be said that g matches g' if xxyxgg'(x) i zxyxgg'(z) 

holds for 424 out of the 450 triplets x,y,z with x,y,zC:D and z > x. 

For a "good" code a chain of matching g. 'sis needed in order to 
l. 

construct the fi 's recursively with fi+l == gi f 1 and f 1 E-: S . ,Just as 

in chapter 3 i.t is advisable to make a catalogue of the matching 

pairs as a preparation for the construction of the chai.ns. 

In vi.ew of the large number of possible pairs (36000000), other reason 

could be mentioned as well, it is worthwile to exploit the equivalence 

transformations of section 4.3. As a matter of fact it will turn out 

that a factor 20000 can be gained on the number of tests to be per

formed. To avoid unnecessarily complicated formulae the proof will 

be given in several steps. 

The transformations La, Rb and Fs with a, b €.D and s 6 A satisfy the 

following relations: O} LaLb = Lbxa' 1} RaRb = RbXa; 2) F5 Ft = F5 t; 

3) LaRb =:: RbLa; 4) FsRb = Rs(b)F8 ; 5) FsLa = Ls(a)Fs. 

The first four relations have been proved i.n 4.3. The remaining two 
-1 

follow directly from the definitions, for Fsl\(f) = s(rbf)s and 
-1 -1 -1 

for each .x E'.D, srbfs (x) = s(fs (x)xb) = sfs (x)xs(b) and hence 
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-1 -1 
4) is proved. Also FL (f) = s(fl )s and for each x~D sfl s (x) = 

_1 ~la a a 
= sf(axs (x)) = sfs (s(a)xx) and relation 5 follows at once. 

Denote the number of solutions of xxyxgg'(x) = zxyxgg'(z) with z > x 

and x,y,z.eD, by N(g,g'). The next step is to prove the relations: 

6) N(g,g') = N(Rbg,g'); 7) N(g,g') = N(g,Lag'); 8) N(g,Fsg') = 

= N(F 1g,g'); 9) N(L g,g') = N(F 1g,R g') where r is the inner 
- a - a s r _1 

automorphism defined by r(x) = axxxa 

Consider the equation xxyxgg'(x) = zxyxgg'(z) and multiply both sides 

from the right by b to prove the relation 6. Substitution of axx' for 

x and axz' for z followed by multiplication from the left of both sides 
-1 -1 -1 

by a gives relation 7. Now consider xxyxgsg's (x) = zxyxgsg's (z) 

and apply the automorphism s-l on both sides and substitute s(y') for y, 

s(x') for x and s(z') for z and relation 8 results. The awkward factor 

yin the middle proved to be helpful in this situation, since y may be 

replaced by s(y). Finally the equation xxyxg(axg'(x)) = zxyxg(axg'(z)) 
-1 -1 

can be altered into xxyxaxa xg(ax(g'(x)xa)xa )xa = 
-1 -1 -1 = zxyxaxa xg(ax(g'(z)xa)xa )xa or xxyxaxr gr(g'(x)xa) = 
-1 

= zxyxaxr gr(g'(z)xa) which gives relation 9 after substituting 
-1 

y'xa for the helpful y. By means of the relations above it is easy to 

prove that N(La¾Fsfi,LcRdFtf .) = N(F -l -l fi,R -l fj). 
J t r s t (dxa) 

The Lc and the Rb can be removed by 7, 3 and 6, giving 

N(L RbF fi,L RdFtf .) = N(L Ff. ,RdFtf .). Application of 9 gives a s c J a s i J 
N(LaFsfi,RdFtfj) = N(F _1Fsfi,RaRdFtfj). The Ft can be moved over R 

r 
by 1 and 4 and after that, 8 gives N(F 1F f. ,R RdF f .) = 

r- s i a t J 

= N(F _1F _1Fsfi,R _1 f .). Finally application of 2 gives the 
t r t (dxa) J 

desired equality. 

Consequently it is only necessary to test the 1800 pairs Fshi' Rahj 

with s <S A, a ti. D and i , j !IS { 1 , 2 , 3} . 

If one matching pair has been found for certain s', a', i, j then all 
-1 -1 -1 

20000 pairs L RbF h., L RdFth. with t r s = s', t (dxa) =a', with -f S 1 C J 
r(x) = axxxa , for x eD, will match. The result of the test program 

is that 10 pairs of the form F8 ,hi , Ra,hj match. Let the pa,.rs be 
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1 

2 

3 

4 

95 

denoted by the quartet (s' ,i,j,a). The 10 pairs are (p 2 ,3,l,8); 
22 4, . 2 23 , 

(pa ,3,1,2); (p ,2,2,4); (p,3,2,5); (p a,3,2,7); (pa ,3,2,5); 

(p 3a 3 ,1,2,6); (p 4a 3 ,l,2,l); (p 3 ,3,3,l); (p 2 ,2,3,6}. 

The diagram on the next page pictures the matching relations . .It is 

now a simple matter to construct codes which give an optimal detection 

for the transpositions (100%), the twin errors (95.5%), the jump 

transpositions (94.2%) and the jump twin errors (94.2%). A chain of 

permutations gi can be made by following the arrows :i.n the diagram 

and performing the operations as indicated along the lines. 

Let LaRbFshi match LcRdFthj according to the quartet (s' ,i,j,a'), then 

dxa::::: t(a') ands== rts', with r(x) "'axxxa-1 . By selecting d so that 
0 

d = t(a'), it follows that a:::: 0 and r:::: p and hences"" ts'. 

With the following scheme a chain can be forged easily: 

i j quartet t t(a') - d ts' = s gk 

2 3 (p,3,2,5) 
0 po(5) 5 

0 
R5h2 p _,, p p "' p 

3 (p 
3 

, 3, 3, 1) p (1) 
3 4 

3 p = 1 pp = p R1F h3 ' p 

2 (p 
2 

, 2, 3, 6) 
4 p 4(6) 2 4 

R5Fe 4h3 3 p - 5 p p -- p 

2 1 (p 
3 3 

,1,2,6) p(6) 7 
3 3 4 3 

(J p "' pp (J , .. p a R7Fph2 etc. 

Of special interest are the loops by h2 and h 3 , since they offer the 

possibility to form progressive codes 
-1 -1 

FL R h 2 be self-matching ifs r' s 

which have all gi 's equal. So can 
4 

p and bxa = 4, where r' is 
s a b -1 

defined by r'(x) = s(a)xxxs(a } . Hence 
-1 -1 

s r' s(x) = 
-1 -1 -1 

= s (s(a )xs(x)xs(a) = a xxxa and it follows that a= 3 and b 

so that FsL3R1h2 is self matching for all s. Now L3 R1 h2 = 

0123456789 0123456789 
= L3R1(0582637941) = L3(1973546802) = 

0123456789 , . 
(3519702468) = (03986215)(47}' 

The loop by h 3 gives rise to the self matching permutations FtL1h 3 , 

where L1h3 = (~!!1~~~;::) = (07319854)(26). The resulting progressive 

codes have all a period 8. None of these codes is phonetic error-proof, 

but by choosing s = p 2 the permutation (01589427) (36) is obtained which 

provides a code with a detection rate of 95,3% for the phonetic errors. 
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4.6 The detection of the phonetic errors 

The purpose of this section is to construct chains of matching permuta

tions, in the sense of section 4.5, with the property that the phonetic 

errors are detected too. The permutations fi occurring in the check 

equation IT fi(ai) = en' which defines the code, are given recursively 

by fk+l = gkfk with f 1 arbitrarily chosen in S. The permutation gk+l 

has to match gk fork> 1, but g1 can be taken arbitrarily in U. The 

detecting condition fk(x)xfk+l(O) i fk(l)xfk+l(x) may be written as 

xxgkfk(O) ~ fk(l)xgk(x) for x~D. 

By putting p = fk(l) and q = fk(O) the condition becomes xxgk(q) i 

~ pxgk(x) for xli!t'D. The set of pairs p,q such that the above condition 

is fulfilled, will be called the initial set of gk. The new values for 

p and q which are offered to gk+l' are gk(p) and gk(q) (or fk+l(p), 
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fk+l(q)). These pairs are said to form the terminal set of gk. The 

initial sets of h1 , h2 and h3 as defined at the end of section 4. 4, 

can easily be found by checking the condition. Let the initial set 

of hi. be denoted by X. , then the sets X. turn out to be: x 1 = { 01, 04 
i i . 

06,07,12,13,14,19,21,27,28,38,39,43,45,51,56,63,67,68,72,73,75,78,80, 

87,90,91,92,94}; x 2 = {01,03,09,17,ls,20,25,28,32,38,43,46,49,56,57, 

59,62,65,67,71,72,78,84,86,87,89,90,91,92,93,94} and x 3 = {02,04,08, 

10,16,17,19,21,23,24,28,35,37,42,47,51,53,58,62,64,69,70,72,75,79, 

81,82,91,93,95,96}. Thus /x1 / ~ 30, /x2 / = /x3 / = 31 holds. If 

gk = LcRdFthj, then the initial set of gk can be derived from the 
-1 

initial set of h .. The checking condition for gk is xxthJ.t (cxq')xd .i 
-1 J -1 -1 -1 

;ii p'xth.t (cxx)xd which is equivalent with t (cxx)xt th.t (cxq');,; 
J J 

;,; t-1 (cxp')xt-1 th_t-1 (cxx), which after substitution of x' for 
-1 J -1 -1 

t (cxx) becomes: x' xh. (t (cxq ')) ;,; t (exp') xh. (x'). Thus the pair 
-1 -1 .J J 

t (exp'), t (cxq') has to belong to Xj and hence for some pair p,q 

from X., p"' t-1 (cxp') and q"" t-1 (cxq') has to hold. The latter 
J -1 -1 

equations are equivalent with p' "' c xt(p) and q' "' c xt(q) and the 

initial set of gk is c-1xt(Xj). The terminal set of gk is formed by 
-1 -1 

the pairs th.t (cxp')xd, th.t (cxq')xd, or th.(p)xd, th.(q)xd. The 
J J J J 

terminal set of gk is therefore th.(X.)xd. 
J J 

Now if F h. matches R h. then gk l matches gk if gk+l = LaRbFshi with 
-1 u 1 -1 ~lJ +. 

t (dxa) = e and t r s "'u, where r is again the inner automorphism 
-1 

defined by r(x) = axxxa . The phonetic errors are detected by this 

new link if(thJ.(p)xd, th.(q)xd)~a-1xs(X.) as is derived above. This 
J i 

relation implies that for certain (p" ,q") 6. X. it has to hold that 
-1 II -1 II J. 

th.(p)xd"' a xs(p) and th.(q)xd = a xs(q) are true. Substitution 
J . J -1 " -1. . . . 

of rtu for s gives th.(p)xd:::: a x(axtu(p )xa ) and the similar 
J -1 

equation for q. Substitution of e fort (dxa) gives, since 
-1 II -1 

d == t(e)xa ; h.(p) = u(p )xe and similarly for q the equation 
J 

h.(q) "'u(q 11 )xe 1 . These conditions are only dependent on u and e, 
J 

which depend only on the linking mode which is employed, to get from 

j to i, (see diagram of section 4.5). The condi.tions may be viewed 

as a directed graph K. The points of K are the triplets (i ,h. (p) ,h. (q)), 
-1 -1 i 1 

with i "' 1, 2, 3 and (p,q)eXi, Now (j ,u(p)xe ,u(q)xe ) is connected 
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with (j_,h.(p),h.(q)) HF h. matches Rh. and if (p,q)E.X1 .. The 10 
1 l Ul. eJ 

matching modes thus give rise to 308 directed edges. A phonetic error-

proof code has to be based on a chain of permutations gk, which has to 

correspond with a path in the graph K. The construction is therefore 

brought back to the problem of finding paths , preferable circuits, in 

the directed graph K. The circuits are interesting since they give 

infinite, though periodic, codes. The circuits, if they exist, can 

be found by the method described in 3.5. The twigs of K can be 

pruned off and after 10 prunings, as it turns out, a twig-free 

directed graph with 35 edges is left over. 

This proves that a circuit has to be present. Among these 35 edges 

there may be edges which have an initial vertex which is not the 

terminal vertex of any other edge. Edges like this may be called 

roots of the directed graph. The roots can be removed by the same 

procedure, be it that the direction of the edges has to be reversed. 

After cutting off all the roots, there remains a graph with 18 edges 

and 16 vertices. A picture is given on page 99. The graph has a 

rich structure, since there are three basic circuits, A, Band C, 

such that tours can be organized, such that A, Band Care visited 

in an arbitrary order, with any multiplicity. The tours are thus 

in a one to one correspondence with the free semi group generated 

by A, Band C. The circuits Band C have each three edges, whereas 

A has 14 edges. Most attractive, because of their simplicity, are 

the codes based on one of these smaller circuits only. As an example 

one of these codes will be constructed. It is made of the matching 

pairs (F 2h 2 ,R6h 3 ); (F 2 2h 3 ,R2h 1 ); (F 3 3h 1 ,R6h 2 ). The vertices 
P p O P 0 

of Care (2,9,5); (l,6,2); (3,3,7). The pairs of the initial sets 

of h 1 , h 2 and 

(7,1); (8,1). 

which correspond with the vertices are: (1,3); 

Let these pairs be denoted by (pi,qi) and let the matching pairs be 

denoted by (Fs
1

h 2 ,R6h 3 ); (Fs
2

h 3 ,R2h 1 ); (Fs
3

h 1 ,R6h 2 ). The construction 

of the g-chain may begin by taking an arbitrary permutation from U 

as g1 . If this permutation in the canonical representation is 
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312 254 374 280 

237 386 

A 

134 146 

358 279 

246 337 295 

B C 

162 
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L RdF h., then the permutation f 1 has to be chosen so that 
c -lt J -1 

(1) 

= c xt(p.) and f 1 (0) = c xt(q.), the other values off may be 
J J 

that N(F chosen arbitrarily. For the matching pairs it holds 
s1 

= 26 and by the rules 6 and 4 of section 4.5, it follows that 

analogous way the other matching relations may be transformed. Putting 

N(F ' h') 
s 1 ' 3 

g2 = F, h3'; 
s2. 

the desired properties is found. With the aid of the relation 8 of 

section 4.5 it can be easily shown that N(gk+l'gk) = 26. In the table 

below the first 13 permutations fk are given. 

X 0 1 2 3 4 5 6 7 8 9 

f 1 (x) 3 1 2 0 4 5 6 7 8 9 

f 2 (x) 4 9 l 2 5 6 3 0 7 8 

£3 (:x:) 4 8 5 0 9 7 2 6 3 l 

f 4 (x) 1 2 6 9 4 5 7 8 3 0 

f 5 (x) 3 5 0 l 2 8 9 6 7 4 

f 6 (x) 3 8 9 4 7 2 6 1 5 0 

f 7 (x) 2 4 8 6 9 0 7 1 3 5 

f 1.(x) 1 7 9 5 0 3 8 6 4 2 

fA(x) 1 8 2 9 5 0 4 7 6 3 

f 10 (x) 4 3 2 6 8 7 0 1 5 9 

£11 (x) 2 6 9 8 5 4 1 3 0 7 

f12(x) 2 8 6 3 4 1 0 9 7 5 

£13 (x) 3 1 2 0 4 5 6 7 8 9 

This particular code has a period of 12. 

In general a code can be constructed as follows: First select a route 

in the linking-graph K. Second take in accordance with the route 

selected. Then f 1 is free in S, provided that £1 (1) and (O) are 
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suitable for g1 and the selected route. If the second g is in the 

canonical representatton LaRbFshi and if the matching pair given by 

the route selection is Fuhi ,Rehj then dxa = t(e) ands = rtu has to 

hold. Hence only b can be chosen freely. The same holds for each of 

the following permutations gk. For each prechosen route in K there 

are B! possible choices for f 1 , 2000 for g1 and 10 for each following 

gk. Note that the pruned-off links may be used at the ends of the chain. 

All these codes detect all single errors, all transposittons and all 

phonetic errors. Of the twin errors 95.5% is detected and of the 

jump transpositions and jump twin errors 94.2% is detected. In all 

classes the detection is optimal for codes deftned by a check equation 

IT 
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Chapter 5. The bi-quinary codes. 

5.0. Introduction. 

Historically this chapte,· should have preceded the foregoing one. In it, 

a code is explained, which was the first, pure decimal, one to detect all 

single errors and all transpositions. Like the I .!3.1\L code .ment:toned in 

2 .3,, it was designed without regard for the ju.mp errors or the twin 

errors. It was sheer luck that the first one did detect more than 50% 

for these types. In 5.3. a generalization is given which scores nearly 

90% in said classes. It is very reroarkable that the first bi~quinary 

code is, at the same time, a code based on the dihedral group, whereas 

the generalization is not interpret@ble as such. As A matter of fact, 

the present author tried in 1955 to design a transposition-proof code 

based on the dihedral group, but without succe,L Instead the bi-quimuy 

code of 5.1 wss found. 

Though the bi-qui.nary code met the requirements, set st that ti.roe, it 

was considered to be of mainly theoretical interest, since the com

plexity of the check equations did not encou:rmge the design of a 

verifier. :For a switching circuit, which performs the chec!d.ng, see 51. 

The circuit is incorporated in a larger switching systero used in the 

library of the University of Technology st Delft (see 52). 

Later on, A. Benard gave sn interpretation of the code based cm the 

addition modulo 10. The weights used in the check equation are de

pendent on the value of the code word itself. It is therefore a non·· 

linear code and for that reason the non-e:u:istence proof of 3.2 does not 

apply. The generalization of the code admi tis an imalogous inter·· 

pretation. 

5.L The first bi-quirnuy code. 

The set {0,1,2,3,4,5,6,7,8,9} is mapped on the Cartesian product of the 

sets {O,l,2,3,4} and {0,1} . The f:l.ve element set will be denoted 

by V and the set with two elements by W. The set of the ten decimals 

is called D. Each decimal digit z i.s thus mapped on a ps:!.r (v,w) w:i.th 

v,,;:V and w,rr.:W. The mapping is quite arb:!.trary, but i.t may be advantageous 

to use a natural way, like v=z (mod 5) and w=~ (mod 2). In this chapter 

the digits 1,2,3,4,5 wiU be called low and the other ones high. This 
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is done in accordance with the conventional telephone switching techniques, 

in which the O is represented by 10 pulses and the other digits by the 

number of pulses indicated by that digit. So, low means less than 6 

pulses and high means more than 5 pulses. If a is mapped on (x,y), then 

it is convenient to have a notation for this relation. Therefore two 

functions, denoted by v and w, are introduced. The functions map D onto 

V and W respectively by the definition v(a)=x and w(a)=y. Throughout 

this chapter only mappings are used such that {x Jw(x)=O} is a complete 

set of representatives modulo 5. In this section w(x)=O holds for the 

low digits and w(x)=l for the high ones. The sets V and W can be made 

into groups by defining an addition. For V this addition is the addition 

modulo 5 and for Wit is the addition modulo 2. Hence (V,+)=C5 and 

(W,+)=C2 , since both groups are cyclic. As usual in mathematics, it is 

not thought necessary to employ different signs for the various 

additions. For untrained readers and computers this is sometimes con

fusing. Let a1a 2 ... an be a word of Dn and let tj be defined by the 

recursion t. 1=t.+w(a. 1 )(mod 2) and t 0=0, hence t.E:W. The first 
J+ J J+ J 

bi-quinary code C consists of those code words satisfying: t =0 in c2 t 1 t 3 n 
and (-1) (v(a1 )-v(a2 )-2w(a1))+(-1) (v(a3)-v(a4 )-2w(a3 ))+ ... =0 in c5 . 

The terms w(a.) occuring in the latter equation, which are O or 1 in W, 
1 

have to be interpreted as O and 1 in V. Strictly speaking a mapping~ 

had to be introduced which maps W into V, such that ~(0)=0 and p(l)=l. 

In the formula, }(w(ai)) should then have been used, instead of w(ai). 

The following lemmata can be proved: 

5.1.1 The code C is E1-proof. 

5.1.2 I cl=10n-l, i.e. the code can be considered as a code with (n-1) 

information digits and 1 ch~ck digit. 

5.1.3 The code C is transposition-proof. 

5.1.4 The code C is phonetic error-proof. 

re 5.1.1 The change of any digit ai may imply a change of w(ai), in 

which case the first check equation ceases to be valid. Otherwise the 

quinary value v(a.) has to change, but this will violate the second 
1 

equation, since all the values w(a.) and t. are unaffected by the change. 
1 J 

re 5.1.2 For each of the lOn-l choices of a., with i>2, it is possible 
1 -

to find one and only one digit a1 , so that both equations are valid. 
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n 
Through the first equation, I w(a_ )=0, the value of w(a 1 ) is fixed. 

i=l 1 
After that, all the functions tj have a known value too and hence v(a 1 ) 

can be solved from the second equation. The pair v(a1 ),w(a1 ) fixes the 

digit a 1 . 

re 5.1.3 The formal proof of this lemma is labourious since many different. 

cases are considered. It will be left outhere,since the property will 

be proved later on. It is of interest however to explain the clue of the 

strange second check equation, which contains two parts, namely: 

I::t_v(ai) and -2L::!:_w(a2 j-l). The first part is a weighted sum modulo 5, 

with weights dependent on thew-values of the digits The second part 

is solely dependent on these w-values; it will be called the binary 

function of the second check equation. 

Now the detection of the transpositions in all the bi-quj_nary codes of 

this chapter, is based on the following principles: 

The first equation, as a straight sum modulo 2, will never detect a 

transposition. Let a and b be the transposed digits, then: 

1) If w(a)=w(b),and therefore v(a)-v(b)~O, then the first part of 

the second equation, (1 +v(a. )), will change value. The binary function l_ i 

can of course not change. 

2) If w(a)~w(b), and therefore v(a)-v(b) may take all 5 values of V, 

then the binary function changes value. The first part of the second 

equation remains constant in this case. This is necessary, since if 

it were allowed to change, then for one of the 5 values of v(a)-v(b) 

the change of the binary function would be compensated. 

It is left to the reader to check that the present equations satisfy 

these principles. 

It will be clear from the considerations above, that for the binary 

function many other possi.bili ties exist, since the only requirement 

is that it changes value if two adjacent digits with different 

W-value are interchanged. 

re 5.1.4 Since w(O)=l and w(l)=O holds, the phonetic error lx--->xO, will 

spoil the first equation. Also for this argument ·.t is good to take 0 

as a high digit. 

It will turn out in the course of this chapter, that the twin error 

detection rate is 5/9 and the jump error detection ra e will appear 
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to be 2/3. 

5.2. A recursive definition of the first bi-quinary code. 

It is possible to define the same code recursively. Let be chosen 

so that w(c0 )=0 and v(c0 )=0, (hence c0 =5 in the convention of this 

chapter). De.fine c 2k+l and c 2k by: w(c~khw(c2k-J )+w(a2k); 

w(c2k-1) 
w(c2k+l)=w(c2k)+w(a 2k+l) and v(c2k)=v(c2k_1 )-(-1) v(a2k); 

w(c2k+l) 
v(c2k+l)=v(c2k)+(-l) (v(a2k+l>-2w(a2k+l)). 

The code C cons.its of those words,for which cn-=c0 holds. From these 

recursive formulae, which are immediately clear from the equations 

of the preceding section, it follows that a Latin staircase is possible 

(see chapter I). 

The following two Latin squares are appU.ed alternatively: 

5 1 2 3 4 0 6 7 8 9 5 l 2 3 4 0 6 7 8 9 
--··-- ··-t---·--- '----~· --- -·-- ···-· 
5 5 1 2 3 4 7 6 0 9 8 5 5 4 3 2 1 0 9 8 7 6 

1 1 2 3 4 5 8 7 6 0 9 1 1 5 4 3 2 6 0 9 8 7 

2 2 3 4 5 1 9 8 7 6 0 2 2 1 5 4 3 7 6 0 9 8 

3 3 4 5 1 2 0 9 8 7 6 3 3 2 1 5 4 8 7 6 0 9 

4 4 5 1 2 3 6 0 9 8 7 4 4 3 2 1 5 9 8 7 6 0 

0 0 9 8 7 6 3 4 5 1 2 0 0 6 7 8 9 5 1 2 3 4 
- ' 

6 6 0 9 8 7 4 5 1 2 3 6 6 7 8 9 0 1 2 3 4 5 

7 7 6 0 9 8 5 1 2 3 4 7 7 8 9 0 6 2 3 4 5 1 

8 8 7 6 0 9 1 2 3 4 5 8 8 9 0 6 7 3 4 5 1 2 

9 9 8 7 6 0 2 3 4 5 1 9 9 0 6 7 8 4 5 l 2 3 

The entries of the two tables are written in a somewhat unusual order 

to show the similarity with the multiplication table of the dihedral group. 

In fact, after interchanging O and 5 both in the entries and in the body 

of the table,two tables are obtained, which are column permutations of 

the Cayley table of D on page 83. Let the dihedral group after the in-
5 

terchange of O and 5, be denoted by o;, hence in D~ 5"'o 0 ; 0=E and 

J=oj; J+5cco , for J=l,2,3,4. The recurring relations become: 
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c =c xf (a ) and c 2k=c 2k_1xf2 (a 2k) in o5•, where using the conven-
2k+l 2k 1 2k+l 

i i j 2-j i -1 j _-j 
tions of chapter 4, fl Cs )=6 ;fl Ccs d=6 E and f2(o )=6 ;f2(6 d=o E> 

-1 i -i -1 j j+2 -1 i -i 
Thus gl =fl f2 (6 )=o ; gl =fl f2 Cs d=6 E and g2=f2f1 (c5 )=o ; 

-1 j j+3 
g2=f1 f 2 (o E)=o E 

Hence both g1 and g2 are permutations of the type given in the example 

of section 4.3,which gives ri~e to a transposition-proof code. The code 

can thus also be defined by n h (a )=5 in n5•, with h2 1=f1 and h2k=f2 . 
k=l k k k+ 

From this interpretation of the code it follows immediately that the 

detection rate of the twin errors is 5/9, seep. 91 The jump error 

detection rate is also easily found by the method of 4.2. In order to 

apply this method the d~stribuUon of the pairs (x,g1g2 (x)) and (x,g2g1 (x)) 

over the classes Aij' should be known. Now g1 and g2 are e,ach others 

inverse, so that all the pairs fall in A00 and A11 , that is 5 in each 

class. Moreover, the difference of the exponent of o in x and g1g2 (x) 

is always 0. Hence there are 20 pairs of x,z which cause 5 undetected 

jump errors each. To the complementary classes belong 25 pairs x,z 

each giving 2 undetected jump errors, so that only 300 of the 450 possible 

jump errors will be detected. 

It is the tragedy of codes like the one above, that even though the error

type with the low detection rate, has a small frequency, it may occur 

that :in the set of undetected errors, the given type :is dom:inant. The 

result :is that the code looks very bad, giving the impression that a 

major class of errors has been overlooked. 

By taking another mapping of Don VxW, A.Benard gave an elegant inter

pretation of the same code. 

Let the mapp:ing be defined by v(x)=x(rnod 5) and w(xhx(rnod 2) .Let 

a 1a 2 ... an be a code word. Now Benard remarks that the odd digits sepa

rate the even digits in, possibly empty, runs. The runs, including the 

empty ones can be numbered from the left to the right A run with an 

even serial number, will be called an even run. Let the odd digits of 

the code word be numbered from the left to the right and let o(j) denote 

the j-th odd digit. Let furthermore the even dig:i.ts of the code word 

also be numbered from the left to the right and let e(j) denote the 

j-th even digtt. Now put l (-l)jo(j)=S 0 and l (-l)je(j)=Se, and let the 
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number of even digits, occurring in even runs, be denoted by K. The code C 

is defined as the set of code words satisfying: S -S =2K (mod 10). This 
d e 

code is ess~1tially the same as the one defined in 5.1. The check equation 

S -S =2K taken modulo 2 is the same as the first equation of 5.1 and 
o e 

taken modulo 5 the equation becomes: IC-l)jv(o(j))- I<-l)jv(e(j))=2K (mod 5). 

Now let a_ be the j-th odd digit, then a.=o(j) and t_ccj (mod 2). 
1 1 1 

If i=2i'-1 than J=t 2 i'-l (mod 2) and if i=2i' then j=t2i,=t2 i,-l+w(ai)= 

t 2 i,_1+1(mod 2). 

Hence for the odd digits the coefficient of v(a_) is the same in the 
1 

modulo 5 equation of both interpretations. On the other hand, if ai i.s 

the j-th even digit, then a.=e(j) and J=i-t. (mod 2). Hence for i=2i'-1 
1 1 

it holds that J= l+t2i, _1 (mod 2) and for i=2i' it follows that 

J=t2 . ,=t2 ., 1+w(a_ )=t2 ., 1 (mod 2). Hence also for the even digits the 
1 1 - 1 1 -

coefficients of v(a_) are the same in both modulo 5 equations. Only the 
1 

binary function of the Benard equation is dif:ferent, but 2K does have 

the property that it changes value if two adjacent digits with different 

parity are interchanged. It follows that the code defined in the Benard 

fashion has the same detection rate for the transpositions and the 

phonetic errors. This can also very easily be proved directly, using the 

principles of page 104,For interchanging adjacent digits with the same 

parity, is detected since either S or S but not 2K changes value. Inter-
o e 

changing digits with different parity only changes 2K, since the even and the 

odd digits retain their serial number, but one of the even digits comes 

:in a run of a different parity. For the proof that the single errors 

are detected, it is sufficient to observe that the number of odd digits 

:i.n a valid code word is always even. A parity changing single error 

disturbs this rule and a non-parity-changing error is detected by 

S or S , since all the coefficients are unaffected by the error. 
o e 

The binary function, 2K, in the Benard variant is a less fortunate choice, 

since the twin errors are only detected if even twins from an even run 

are changed into odd twins. This gives a twin error detection rate of 

about (25/45)/2=27.8%. The jump error detection is independent of the 

binary function.It should be noted that parity may be read as W-value, 

5.3 Generalization of the bi-quinary code. 

The purpose of generalizing a formula is often to create the possibility 
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of selecting another specialization, which has more desirable properties 

than the original formula. In other words after creating more freedom 

of choice the selection of a better code becomes feasable. It is a 

delicate question what a proper generalization is in this respect. The 

Latin staircase method with arbitrary Latin squares, for instance, is 

certainly a generalization, but it is of little help because there 

is no easy way to test the merits of the resulting code combined with 

an overwhelming number of possibil:i.ties. A generalization should preserve 

some basic idea. Finding and formulating the basic idea of a method 

is essential for finding a generalization. The clue of the present code 

is thought to be the bi-quinary representation of the decimals in com

bination with the peculiar structure of the second check equation. The 

success hinges on the fact that a quinary transposition-proof code is 

possible. A weighted qui.nary code, defined by Z:ukak"'o (mod 5), is 

transposition-proof if the adjacent weights are different. These weights 

may depend on the binary components of the digits. The binary worn 

w(a1 )w(a2 ) ... w(an) will be called the binary key of the decimal code 

word a 1a 2 .... The binary key should be parity checked and therefore 

it detects always the single errors which change the binary key, Those 

single errors which leave the binary key invariant are to be detected 

by the quinary check equation l~.v(a.)=B (mod 5), where Bis the key 
]. ]. 

dependent binary function. This impU.es that none of the coefficients 

ui may vanish. The principles of the transposition detection were 

(see page 104): that the left hand side of the qui nary equa ti.on remained 

invariant if the binary key changed and was changed if the binary key 

remained invariant. The latter property is fulfilled as soon as the 

adjacent weights are different. The invariance under key changing 

transpositions is a much more severe requirement for the key dependent 

weights ui. Let b 1 and b 2 be two keys, which are equal on all places 

but the first two and let b1 start with 01 and with 10, then 

(b1 ) (b2 ) for i > 2 has to hold. Furthermore u 1 (b1 )=u 2 (b2 ) and 

u 1 (b2 )=u2 (b1 ) are also necessary conditions. For each key b, it has 

to hold that 

(i+l)-th position. 

(b), if b has equal bits on the i-th and the 

The obvious improvement strived for is a better detection of the twin 

errors and the jump transpositions. A cumbersome analysis reveals that 
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100% detection cannot be achieved in either category by this method. The 

optimal result can be explained best by reconsidering the first bi-quinary 

code. The coefficients occurring in the second check equation are exclu

sively +1 or -1, so that an alternating quinary check is employed. It is 

however well-known that equations like I2ia_=O (mod 5), yield much better 
l. 

codes for pure quinary code words. It is therefore obvious to try to ex-

ploit this circumstance. A decimal code can be defined as follows: 

Define, using the same notation as in 5.2, T0 and T by T = I2jo(j) and e o 
T = L2je(j) and let B be a binary function, which is modulo 5 sensitive 

e 
for the transposition of digits with unequal parity (or W-value). The 

code C is defined as the set of words satisfying: Iw(a.)=0 (mod 2) and 
l. 

T +T =B (mod 5). If w is defined by w(x)=x (mod 2) then the two equations 
o e 

may be combined into one by setting T '= L7jo(j), giving T '+T =B' (mod 10), 
o o e 

where B'=B if Bis even and B'=B+5 if Bis odd. The equation modulo 5, 

just as the second equation of the first bi-quinary code, has the pro

perty that the interchange of adjacent digits, with different parity, 

does not change the left hand side, since there is no change in the 

serial number of the odd or even digits. The binary function B however 

will change. On the other hand, if two digits with the same parity are 

interchanged, then the function B will not change, whereas one of the 

sums T0 or Te will. Hence e·ach transposition will disturb the second check 

equation. The advantage of the generalization is that the non-parity

~hanging twin errors are always detected. This follows at once from: 

2ja+2j+la=2j(3a)~2j(3a')=2ja'+2j+la' and a-a'~5. The parity-changing twin 

errors disturb a lot in the equation, since all odd and all even digits, 

which follow the error, get an other serial number. Also the function B 

may change value. For each a there are five possible values for a', which 

are all different modulo 5, hence for each a there is just one a' which 

compensates whatever changes occurred through the parity change. There are 

never two values for a' which do so, since otherwise the single error 

which interchanges these two a''s would not be detected. So 5 of the 45 

twin errors per position, are undetected, giving a rate of 8/9 

For the jump errors there are several cases to be considered. 

i) The interchanged digits and the digit in between, all have the same 

parity. This type is detected, since 2ja+2j+2bt2jb+2j+2a is equivalent 

with 2j(3a)i2j(3b) and since a-biO. 
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ii) The interchanged digits have the same parity, which is different 

from the parity of the middle one. These errors are detected since 

2ja+2j+lbi2jb+2j+la holds, as aib. 

iii) The interchanged errors have a different parity. Now 5 out of the 

25 possible combinations are undetected, since for each a there are 5 

different values for b possible. Only one of these values will leave the 

second equation true. The nett result is that the jump transposition 

detection rate is 8/9. The jump twin errors are more slippery. Suppose 

that aba becomes cbc somewhere in the code word. Consider three cases. 

i) w(a)=w(b)=w(c). Then the error is not detected because 
. . 2 . 

2Ja+2J+ a=2J(5a)=0 (mod 5), 
j j+l j 

ii) w(a)=w(c)iw(b). This error is detected because 2 a+2 a=2 (3a)i 
. . . 1 

2J(3c)=2Jc+2J+ c and since aic (mod 5). 

iii) w(a)iw(c). Then again 1 of the 5 possible values of c gives a 

valid check equation. 

Hence 15 of the 45 errors will be undetected, thus yielding a detection 

rate of 2/3. This latter rate is not easily improved upon. 

The choice of the function Bis less important in this generalized 

code, but for some technical implementations a skrewed choice may be 

of influence. To make this clear an example is sketched. Let e. be 
J 

the number of even digits preceding the j-th digit of a code word and 

let o. be the number of odd digits preceding the j-th one. Hence 
J o. e. 

e .+o .=j-1. Now B= L (2 J_2 J) may be taken and the second check 
J J w(a -~==l 

J o e 
equation may be written as (l) 12 ja.+ (l) 02 ja.=B (mod 5). Let 

w aj = J w aj == J 

v and w again be defined by w(x)=O for xE::{l,2,3,4,5} and else w(x)=l, 

and v(x)=x (mod 5). Suppose that the digits are fed into a verifier, 

as pulse trains according to the convention that the digit xis repre

sented by a train with x pulses, with the understanding that the O is 

counted for 10. Without going into the details, it may be pointed out 

that the high digits are recognized only after the 6-th pulse is 

received. It can be so arranged that the pulses of each train are 

treated in the beginning according to the "even mode" and only after 

receiving 6 pulses the treatment is changed into the "odd mode". The 
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result is that the even (that is low) digits are counted correctly, 

but that the high digits gave 6 pulses in the wrong mode, whereas -6 

pulses are treated correctly. This difference modulo 5 is precisely 

needed for the binary function B. The peculiar form of the function 

used in 5.1 also comes from technical considerations. 

Though this generalized bi-quinary code improves upon the one of 5.1, 

it is still of a lower standard than the codes of chapter 4. Mathemati

cally it has a very interesting property, which alone would be a suffi

cient reason, or excuse, for mentioning it. It is the only code so far 

which is not of the Latin staircase type. In other words, there is no 

recursive definition like c. 1=~.(c.). 
:i.+ l. l. 

The recursi.on can be given with the aid of an auxiliary binary quantity 

s1 . From a technical point of view this means that an extra memory is 

needed. 



112 

1. Beckley, D .. F. 

Check digit verification. 

Data Processing, 1966, p. 194-201 

2. Beckley, D.F. 

An optimum system with 'modulus 11'. 

The Computer Bulletin, 1967, p. 213-215 

3. Bell telephone manufacturing company 

Rekeninrichting voor het berekenen van een aantal cijfers die 

tezamen een getal vo:rmen. 

Nederlands octrooi, No. 92399, 1959 

4. Bell telephone manufacturing company 

Rekeninrichting voor het berekenen van een lineaire cijferfunctie 

van een aantal cijfers die tezamen een getal vormen. 

Nederlands octrooi, No. 92330, 1959 

5. Berlekamp, E.R. 

Algebraic Coding Theory. 

Mc Graw-Hill Book Company, 1968. 

6. Bijleveld, W.J. 

Fouten voorkomen of controle cijfers? 

Informatie, 1967, vol. 9/11, p. 239-242 

7. Bourland, D. 

Non-decision theory. 

Datamation, 1964, p. 52-53 

8. Carmichael, R.D. 

Introduction to the theory of groups of finite order. 

Reprint Dover Publications Inc. 1956 

9. Chien, R.T. 

Correction coding apparatus for dec:l.mal-like codes. 

IBM Technical Disclosure Bulletin, 1965, vol.7, p. 781-784 



113 

10. Compagnie des machines Bull 

Inrichting voor het bepalen van een controlesymbool behorende bij 

een decimaal getal. 

Nederlands octrooi, No. 81419, 1956 

11. Corput, J.G. van der 

A remarkable family. 

Euclides, 1941, vol. 18, p. 50-78 

12. Eberlein, G. 

Die automatische Nummerprufung. 

Handbuch der machinellen Datenverarbeitung, 1965, vol. 1/4/3 

13 . .Friedman, W. and Mendelsohn, C.J. 

Notes on codewords. 

Am. Math. Monthly, 1932, vol. 39, p. 394-409 

14. Garrison, G.N. 

Quasi Groups. 

Annals of Mathematics, 1940, vol. 41(3) July, p. 474-487 

15. Golomb, S.W. 

Polyominoes. 

C. Scribner's Sons, New York, 1965 

16. Hall, jr, M. 

The theory of groups. 

The Macmillan Company, New York, 1959 

17. Hamming, R.W. 

Error detecting and error correcting codes. 

The Bell System Technical Journal, 1950, vol. 26, p. 147-160 

18. Herger, !-!. 

Das Anker-zahlenpriifgerat F 1300. 

1966, p. 1-27 

19. Huffman, D.A. 

A method for the construction of minimum-redundancy codes. 

Proceedings of the I.R.E. sept. 1952 p. 1098-1101 



114 

20. I.B.M. 

Ponsinrichting. 

Nederlands octrooi, No. 93551, 1960 

21. l.B.M Form 71 204 

Nummerprufung fur Kartenlocher IBM 24 und 26. (Ubersetzung und 

Bearbeitung der Broschure Self-checking number device for 

IBM 24-26 card punches. Form No. 22-6022-2, 1963) 

22. I.B.M. Form 79 953 

Prufziffernverfahren, Belegverarbeitung Praxis Nr 3. 

Matt, G. und Jiilicher, W. 1964 

23. International Standard Electric Corp. 

Rechenanordnung zur Berechnung einer Priifziffer aus einer 

Dezimalzahl. 

DA.S 1 187 831 42m-14 vom 25-2-1965 (14.9.1961) 

24. Joshi, D.D. 

A note on upper bounds for minimum distance codes. 

Information and control, 1958, vol. 1, p. 289-295. 

25. Kahn, D. 

26. 

The Codebreakers. 

The story of secret writing. 

The Macmillan Company, New York, 1967 

Kontrolle mit Hilfe von Kontrollziffern. 

BUrotechn. Sammlung, September 1956 

27. Kraitchik, M. 

Mathematical recreations. 

second edi. tion, 

Dover Publications Inc. 1953 

28, Lauter, F. 

Der Wert und die Notwendigkeit der automatischen Nummercontrole 

in Datenverarbeitungsanlagen, 

Rat. Buro, 1964, vol. 5, p. 281-283. 



115 

29. Lee, C.Y. 

Some properties of Nonbinary Error-Correcting Codes. 

IRE Transactions on Information Theory, 1958, vol. 4, p. 77-82 

30. McRae, T.W. 

Self-checking number codes, an aid to accurate accounting 

reports. 

The Accountant, 1964, vol.50, p. 611-614 

31. Moll, W. de 

Beschouwing omtrent het gebruik van controle-cijfers. 

Informatie, 1962, Nr; 19, p. 8-9 

32. Nasvytis, A. 

Die Gesetzmiiszigkei ten kombina torischer Techn:i.k. 

Springer Verlag, Berlin Gottingen Heidelberg, 1953 

33. Nederlandse Spoorwegen 

De nieuwe kemnerken op goederenwagens. 

1965 

34. Oberman, R.M.M. 

A method of reversible cyphering of administrative numbers. 

Proc. Symposium on automation of population register systems, 

Jerusalem, 1967, p. 455-462 

35. Ore, 0. 

Theory of graphs. 

American Mathematical Society 

Colloquium Publications, 1962, vol. 38 

36. Owsowitz, S. and Sweetland, A. 

Factors affecting coding errors. 

Memorandum, 1965, RM-4346-PR 

The Rand Corporation , Santa Monica, California. 

37. Peterson, W.W. 

Error-correcting codes. 

The M.I.T. Press and John Wiley and sons Inc. 1961 



116 

38. Plotkin, M. 

Binary codes with specified minimum distance. 

IRE Transactions on information theory, sept. 1960, p. 445-450 

39. Renelt, G. en Schroder, J. 

Beveiliging van informatie bij invoer en transmissie met behulp 

van een of twee controletekens. 

Philips Technisch Tijdschrift, 1965, vol. 26, p. 323-331. 

40. Richards, D.L. 

The incidence errors in dialling. 

Teleteknik ,1963, p. 53-58. 

41 . Rothert , G. 

Influence of dials and push-button sets on errors, including the 

time required for the trasnmission of numbers. 

Teleteknik, 1963, p. 59-66 

42 . Ryser, H.J. 

Combinatorial Mathematics. 

The Carus Mathematical Monographs 14. 

Wiley and sons, 1963 

43. Schauffler, R. 

Uber die Bildung von Codewortern. 

Archiv der Electrischen Ubertragung, 1956, vol. 10, p. 303-314. 

44. Selmer, E.S. 

Registration numbers in Norway; 

Some applied number theory and psychology. 

Informatie, 1967, vol. 9, p. 167-170 

45. Shapiro, H.S. and Slotnick, D.L. 

On the mathematical theory of Error-correcting codes. 

I.B.M. Journal of Research and Development, jan. 1959, vol. 3 No. 1, 

p. 25-34 



117 

46. Sisson, R._L. 

An improved dqcimal redundancy check. 

Communications of the association for Computing Machinery, 1958, 

vol. 1, p. 10-12. 

47. Steeneck, R. 

Error Detection, Correction and Control. 

Western Union Technical Review, 1962, vol. 16/3, p. 134-139 

48. Tunis, C.J 

A decimal error correcting technique. 

IBM Technical Disclosure Bulletin, 1963, vol. 5, p. 42-43 

49. Ulrich, W. 

Non-binary error correcting codes. 

Bell System Technical Journal, 1957, vol. 36/6, p. 1341-1388 

50. Verhoeff, J. 

Trends in Library Building 

Libri 1965: vol.15: no.l: pp. 56-61 

51. Verhoeff, J. 

Inrichting voor het controleren van een symboolgroep, waaraan 

een controlegetal is toegevoegd respectievelijk voor het bepalen 

van dit controlesymbool. 

Nederlands octrooi aanvrage 6400631, 1964 

52. Verhoeff, J. 

The Delft Circulation System. 

Libri, 1966, vol. 16, p. 1-9 

53. Verhoeff, J. 

Fout-ontdekkende en corrigerende codes. 

Kantoor en efficiency, 1966, nr. 47, p. 1976-1980 

54. Verhoeff, J. 

Error detecting and correcting codes for the decimal nwnbersystem. 

Proc. Symposium on automation of population register systems, 

Jerusalem, 1967, p. 447-454 



118 

55. Zassenhaus, H. 

Lehrbuch der Gruppentheorie. 

English translation: The theory of groups. 

Chelsea Publishing Company, New York, 1949 


