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Chapter 0. Introduction.

0.0. Coding, codes and notation.

A general word like code, is one of the hard working words, 1n the sense
of Humpty Dumpty. Originally code referred to a law, written or not. In
cryptology the word code is used in contradistinction to a cipher. By

a code a system of substitution is meant in which many words, phrases

or syllables are replaced by code words or code numbers. The word cipher
refers to a system in which the individual letters are worked upon.

The commercial codes of the late twenties were used to cut down the

costs of cablegrams. The military'codés have secrecy as main purpose.
Nowadays codes are widely used in the theory and practice of switching
circuits, culminating in the design and use of computers.

In this monograph coding is understood to be a mapping of an arbitrary

set into a set of mathematical entities. The first set is often a set

of tangible objects, persons or concepts, whereas the second set mostly
consists of symbols or strings of symbols. The structural formulae of
organic chemistry form an example of the application of other mathematical
entities than strings of symbols.

It is quite essential that the mapping is one to one, since the basic

idea is, to use the abstract entities as names for the elements of the
first set. In practical cases the main difficulty lies in the definition
of the mapping. One can hardly attach the abstract entities to the objec ts
or persons, be it that only the persons might object. This is, of course,
the denotation problem, which is solved, more or less, by the use of tokens.
Tokens are physical representations of symbols. For every symbol, there

is a whole class of different tokens, which are commonly understood to
stand for the same symbol. Examples are all types of '"'three's'" in all
kinds of colours, print, written or spoken, including the less generally
agreed upon way to represent a ''3" in a computer. The borderlines of these
classes are sometimes dangerously vague. The choice of most tokens, which
was made historically, would nowadays be called a very poor job of system
design, as everyone involved in character recognition will concede. But

it is too late for a change, all trials to introduce a new alphabet will

be utopic. The world will have to live with the old one. Returning to



the definition of the mapping, it will be clear that one can attach to
objects one or more tokens, as a label. These tokens represent the sym-
bols on which the object has been mapped by the coding. Branding cattle
may be one form and engraving a serial number in guns or engines 1is
another way of explicit labeling. The labeling may have a dual purpose,
since it may be done in order to make identical objects different. On

the other hand, the branding of the cattle may be done to establish

the ovmership. Anyhow such an effective, but crude way to define a coding
is impossible if the ''objects'" to be coded are concepts. For people

the method may theoretically be feasible, but is hardly advisable,
especially if these people are customers. The customary procedure is

then to make some list, in which series of tokens, representing the

code, are linked with a verbal description of the coded objects. Such

a list is called a code book or catalogue. Actually the situation is
rather tricky, since it might be said, that such a description itself

is ( a notation for) a code. Hence the question would remain how to
define the latter code. Since a verbal description seldom really charac-
terizes the object, it may be questioned whether such a description is

a code. This does not make the situation any better. In fact, the descript-
ions use as a rule, all kinds of contexts, written or not, to help define
the objects. Often it is supposed to be clear that the object is one

of a known (how?) class. This type of problems is of course inherent

to all (succesful) communication. Strictly speaking, communication is
essentially impossible, but it sometimes works. It is merely a matter

of success and efficiency how far one has to go with refining the des-
criptions. Parenthetically it may be remarked that the characterization
of persons by fingerprints or sets of measures, may be very practical,
but theoretically the system is never foolproof, and that not alone
because of the fingerless people. There is a difficulty for every solution.
Summarizing the one to one mapping of an arbitrary set into a set of
mathematical entities is called coding. The second set is then called

a code. Notation is a physical representation of the second set by

means of tokens. These tokens fall apart into classes of equivalent

ones, each representing the same mathematical symbol. The equivalence
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is based on a common understanding and is as such a potential source of
confusion. To help to avoid or at least detect this confusion is the aim
of the following chapters.

An important point is that the common understanding of the tokens is
some kind of social phenomena. It is as such amenable to a study, which
will of course be of a statistical nature. It is conceivable to measure
the degree of intersubjectivity by controlled experiments. One could let
may people write a ""3" and one could then measure how often, other or
the same, people recognize it correctly. It might turn out that a "3" is
a better token than say a '"5". It is rather difficult, if not impossible,
to get unbiased information on this recognition problem. The known error
statistics on codes show a certain onesidedness (see 36) in the sense

LA )

that, e.g., a 'q can be easily mistaken for a ''g', but seldom a ''g"

" . n

becomes a 'q . This may very well be due to the relative frequencies

of use of the various tokens.

0.1 The application of decimal codes.

The use of the decimals is rooted in tradition. Unlike the binary codes,
there is no intrinsic reason for its use. It is just because people are
used to it, that the decimal system is so important. It is therefore not
surprising, that the decimal codes are mostly handled, at least partly
by human beings. The same holds in a way for alphabetic codes. For
mnemotechnic reasons, it was believed in the past, that codes for human
use, should be of the alphabetic or alpha—-numeric type. Car licence
numbers and telephone numbers in various countries are relics of this
belief. 1In the present time where the human use and the machine handling
gets mostly combined, the decimal codes are getting more popular. An
other reason may be that recent studies indicate that the alphabetic
characters are more error prone than the decimals (see 36).

As said before, the code words are intended to be used as names for the
things for which they stand. A name is needed if a reference is to be
made to something. Such a reference will be called a mutation. As a rule,
the mutations are part of a process, say an administrative one. For the
process the code words serve as input. The primary reason for the use

of a code, rather than the natural language, is the efficiency. The fact

that a code is unambiguous, is not a good argument, since that effect



could also be obtained by properly extending the natural names or descript-
ions, so that here again the efficiency is the basic motive. In data
processing systems it is customary that the various inputs are unrelated
and come from many origins. Thus the mutations converge into the system.
The coding is often done in the periphery, by the users or customers and
ls therefore largely outside the control of the system. As a consequence
the system has to cope with the errors made. The redundant codes, which
will be dealt with in the next section, serve as a defense of the system
against these errors. To be sure, some of the errors are caused by human
operators incorporated in the system, for the preparation of the machine
readable records. This operation is of course under the systems responsa-
bility, and error prevention should be practiced anyhow. The redundant
coding is in fact a burden for this preparatory operation which causes
some authors to reject redundant coding altogether (see 6). But there

is a tendency to push the preparation of the machine readable record back
to the user. Optical readers, dials and on-line input stations are some
of the means to that end. This self service eliminates the bottleneck

of the punching and the like and as a rule deminishes the waiting time

since batch forming may be avoided. This greatly widens the applicability

range of the modern data processing systems. It also will, in the
opinion of the author, make the use of redundant codes more urgent. In
terms of the information theory it can be said, that a large number of
channels converge into the system. The letters of the alphabet used

in each channel, are the words of the code. The alphabets tend to be
very large and the rate by which the letters are generated per channel
will be very low. The channels are not noiseless. The noise is mostly
caused by human factors. Mathematically, the noise is defined by the
transition probabilities p(x,y), where p(x,y) is the chance that the

code word x is received by the system as y. The nature of this noise

will be the subject of section 0.4.

0.2. Redundant codes.

A code is called redundant as soon as the mapping of the coded set

does not cover the code. This redundancy can be more or less accidental,

because the code happens to have more words than necessary for the set



to be coded. In most applications, this will be the case, since popu-
lations, customers, inventories etc. do not tend to come in powers of
10, like the decimal codes do. The redundancy can also occur intention-
ally and sometimes temporarily, when the code is chosen purposely too
large for a growing stock or population. Though the control of this
natural redundancy is worthwhile, the main topic of the following
chapters will be that of the artificial redundancy. The latter form of
redundancy is obtained by admitting only a subset of the code for use.
Strictly speaking only the admitted subset itself is the code. The
words outside this subset are sometimes called improper or forbidden
code words. This terminology has the same inconsistency, not at all
unusual in mathematics, which adorns expressions like the burnt down
house.

The code is some sort of intermediary between the real thing and the
denotation. It is therefore typical that the mathematical properties

of the code are sometimes desirable for the sake of the coded objects
and sometimes for the sake of the notation. Hierarchical codes, like
the U.D.C. are examples of the first kind. The teletype code examplifies
the second kind. It is a 5 dimensional binary code since the teletype
uses 5 channels. The physical representation, with the 2 states, hole
or no hole, is of course a notation.

As will be seen later on in the section on errors, it is advantageous
to introduce a topology or metric in the code, Jjust to be able to
describe the errors which result from the deficiencies of the notation.
These errors provide the criteria for the selection of the subset which
is to form the redundant code. Apart from their use in the struggle
against errors the codes are of interest as a mathematical object of
study.

The redundancy can be measured as follows. Let U be the set of potential
code words and let C be the selected subset containing the proper code
words. The fraction 1~|Cl/‘Ul is a measure for the redundancy. The
parity check would thus yield a code with a redundancy of 50%. By taking
the base 2 logarithm the redundancy is measured in bits. The parity
check has of course a redundancy of 1 bit. If the code words consist

of m-ary digits, then the base m logarithm gives the redundancy in



in m-ary digits.

0.3. The detection of errors by redundant codes.

As stressed before, the main objective of coding is the increase of
efficiency in handling the coded data. This holds for human processes
as well as for automatic processes. Ekspecially for the latter type

it is important that the codes lend themselves for standardized nota-
tions. This is merely another aspect of the efficiency, but it shows
again that the codes are not made for the peculiarities of the coded
objects alone. In this machine age, people sometimes have to adapt
themselves to the machine. The reason is, may be, that the machines
do such a tremendous amount of data handling, that the pay-off from
the efficiency in the machine part is more important. This may very -
well change when the cost per operation goes further down.

The drawback of the increased efficiency is that errors tend to be
more dangerous : an error in a natural name, does not always produce
another name, but a number is always changed into another number. One
might also say that the numbers are all alike or that the names satisfy
certain syntactical or even semantic rules. As not all letter combi-
nations are used as names, it may be said that the names are highly
redundant. In fact the set of names forms a, perhaps ill defined,
redundant code. As soon as there is redundancy in a code there is

a chance that an erroneous code word does not correspond with an
object. Let A be a set of coded objects and let C be a selected subset
of the set U of code words. let ¢ be a mapping of A in C, hence for
all aeA it hol%ds that c(a) e C and c(A)€ C. If x=c(a) with a€A, and

if an error changes x into y, then there are three possibilities:
i) yec(A); 1i) y ¢ c(A) and y€C and iii) y ¢ C.

In the first case the error is fatal in the sense that a false muta-
tion may be made. In practice it will be often possible to detect the
error from the context, written or not, like in the case that Granny
was drafted for the commandoes. As a matter of fact that is how one
knows about the errors anyhow, for as a rule there is a feed-back
into the system from complaining customers or victims. Sometimes

however the complaints are too late to undo the fatal consequences.



This first case is obviously very undesirable.

The second case 1is less harmful, since it cannot result into a wrong
mutation. The code word y simply does not correspond to an object. It
may cause some nuisance, since as a rule it will be detected during the
processing. This may be by a mailman looking for a non-existent house.
The automatic detection of these unused code words is under certain
conditions possible. A simple example is a code of which it is known
that only the first n words are used. It is of course necessary that
the code words are ordered, say lexicographically. In the Dutch
population registration number a more sophisticated method has been
applied.

The third case is the most important one from a theoretical point of
view. The error may in that case be detected without any knowledge of
the use of the code. Especially if C is defined by an algorithm, it is
possible to detect the error automatically. It should be noted that
the second class of errors can always be converted into the third class
by the application of a table look—-up procedure. The art of making
error detecting codes consists of two things; the first one is to select
the set C in such a way that the most likely errors always belong to
the third class and the second one is to define such a set C by means
of a simple criterion, which lends itself to an easy technical imple-
mentation. The latter requirement is a matter of economy and as soon
as the table look-up procedure is feasible,the requirement looses its
importance. In general it is true that, when the memories get cheaper,
algorithms can be (economically) replaced by table look-up. All these
technical considerations are very much dependent on the state of techno-
1ogy. When the computers get better at parallel processing, the algo-
rithm might again be more economic.

There is a tendency nowadays to adapt the machine to the human being,
rather than the other way around. High level programming languages are
also evidence of that tendency. When the computers are learning the
natural language, the coding problems will be change, but not disappear.
To be in vogue, the question of optimal error detecting codes should

be considered. It would have to be a code, which detects more errors

than any other code with the same redundancy. This property would



clearly be dependent on the frequency of use of the various code words
and of the distribution of the errors. The optimalization problem is

not very meaningful, for even if the costs of detected and undetected
errors were known, they are bound to change in the course of time. More-
over, the distribution of the errors is usually unknown at the moment
that the code has to be chosen. Furthermore, these statistical qualities
may be expected to change during the existence of the system. Finally,
though pure mathematically speaking there is no problem at all, since
there is '"only" a finite number of possibilities, from a practical point
of view the problem is probably Jjust as practical as the differential
equations governing the universe. A situation like this provides for

the mathematician a rich hunting ground for nice problems (see chapters
3 and 4).

0.4. The efficiency of a code.

The efficiency of a code depends on the frequency with which the code

words occur. lLet p denote this frequency distribution. It is well known

from information theory, that it is always possible to encode a source

with entropy -Z p(x)1lg(p(x)), so that the average length of the code
xel

words is equal to the entropy. Unfortunately, this theorem is rather

sterile in cases where the coding lies outside the control of the system.
It is all right in simple cases like the following one. let a code consist
of 4 words with mutation frequencies of 1/2; 1/4; 1/8 and 1/8 respectively.
The entropy is in that case --(2"11g2”1+4'11g4“1+8“1138“1+8“11g8-1)m7/4.
Encoding the words with 0, 10, 110 and 111 respectively, gives exactly

the average of 175 bit per 100 mutations. If, however,the frequencies

are not so civilized, then the proof of the theorem hinges on the trick of
making pairs. The pairs of words form a larger set, within a '"more
uniform'" statistical distribution of use. E.g., let A,B,C, and D be 4
words with a mutation frequency of 60%; 30%; 5% and 5% respectively.

The above mentioned code would score an average of 1.5 bit per mutation
whereas the entropy is roughly 1.4. Coding the pairs as follows gives

an average of 1.43 bit per word.



AA=0 AC=11011 BC=110101 CC=110100110
AB=100 CA=11110 CB=111010 CD=110100111
BA=101 AD=11111 BD=111011 DC=110100100
BB=1100 DA=11100 DB=1101000 DD=110100101

Now in data processing systems in which the code words are generated
independently at various locations,; before they are channeled into the
system, only the first approximation seems to be possible. This is not
quite true, since one could do the pairing at the various sources, but
it would require a code book of all the pairs. Now Jjust imagine a bank
publishing the book of the code numbers of all the pairs of account
holders, not to speak of the letter headings of the customers.

The codes mentioned above are intended for use in a binary channel,
where all the words are linked together and thus have to be separable
afterwards. If there is a natural separation between the different
words, it is pbssible to obtain a bigger gain in efficiency. Consider
the second example again. Now the first approximation may be taken as
A->0; B>1; C500; D>01l. It would give an average of 1.1 bit per mu-
tation. The second approximation, given below, would require only 0.8

bit as an average.

AA > O AC~10 BC » 010 CC-»> 110
AB~*1 CB—+11 CB- 011 CDh- 111
BA -+ 00 AD -+ 000 BD- 100 DC -+ 0000
BB » O1 DA » 001 DB~ 101 DD+ 0001

It should be noted that even in the case of a uniform distribution, this

type of coding would give a gain in efficiency.

All these considerations are probably of little practical value, since
the distribution of use will only become available after the code has
been used for some time. The cost of recoding will mostly outweigh the

possible gains. In practice the distribution can be extremely skew, like

in banking operations where often less than 1% of the accounts draw more

than 50% of the mutations. The short code numbers are however often more

correlated with the old clients rather than with the mutation getters.
In population register systems the distribution will probably be closer

to uniform.
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0.5 The error statistics.

The double distribution f(x,y) contains a host of information, which is
usually not available. This is certainly so during the design stage of
the system. Later on, when the system is operating, that information will
become available. It is then still useful in the struggle against the
errors. Suppose that in the administrative system of a bank, a certain
error probability f(a,b) gets high, then this may be an indication of

4 systematic error, which lies possibly outside the system. It might be
a misprint in somebodies account number, as indicated on his bills.
These kinds of errors are only of local interest. In general however
one will be interested in deducing principles, like the law that most
errors are in one digit only. The knowledge of the double distribution
is therefore more qualitative than quantitative. But , the vaguer the
knowledge the broader the applicability.

The error samples,as found in existing systems, will be biassed if the
distribution of the mutations is not uniform, i1.e., virtually always.
The following error types have been observed both in the literature on

the subject (see 2, 26, 28) and from samples put available to the author
by the courtesy of the Dutch Postal Clearing House and the Clearing House
of the Amsterdam Municipality.

1) The single errors, also called transcription errors: These errors
affect only one digit of the code word. It is by far the largest class
of errors in all known cases. Its frequency ranges from 60 to 95%.
Little is known about the distribution within this class. Both clearing
house samples suggest that the right hand side of the code word is more
vulnerable for errors. This might be caused by the fact that the numbers
are written and punched from the left to the right, so that the right
most digits have to be memorized longer in the short term memory of the
.writing or punching being. The number systems in which this was observed
are of the non-fixed length type. This implies that the last position
is never void contrary to the other positions. The transition probabili-
ties of the decimals are indeed depending on the decimals, but there

are few very low ones. (See the tables at of the next section).

W. Ulrich (49) introduced the concept of the restricted single error,
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which is a single error with the restriction that the difference between
the correct and the incorrect digit is one unit. This concept gives rise
to elegant generalizations of known binary codes. It is conceivable that
certain technical implementations of calculators, like the ones using
pulse trains to represent the digits, lead to this error type. But

there is no evidence in the error statistics that this type is of special

interest.

2) The double errors. These errors affect two digits. The frequency

ranges from 10 to 20%. The vast majority concerns adjacent digits, i.e.,
digits with adjacent positions. This is of course an indication that

the two errors are not independent. The double errors are subdivided
into:

2.1) The transpositions.Most of the adjacent double errors are of the
form ab-sba. This error type is called a transposition. It willialways
be understood that the digits are adjacent if in the following chapters
the term transposition is used.

The transpositions are a notorious error type of a typical human nature.
The qualities of an error-detecting code are often judged according to
its detecting capacity in this very class of errors, assuming of course
that the single errors are detected anyhow. Mathematically, it turned
out that the decimal codes were especially difficult in this respect.
Some authors thought that they proved that decimal codes detecting all
single errors as well as all transpositions, were non-existent. (see 46, 39).
These ''proofs' came fortunately after that the present author had con-
structed such a code. (see 51).

There are several minor classes of double errors, which are important
since codes detecting all single errors and all transpositions may be
completely immune for these classes. Their frequency is small, say

0.5 to 1.5% of all errors.

These classes are:

2.2) The twin errors. These are adjacent errors of the type aa-»bb. They

L} I 4

can easily be explained, for in case one "a'" is misread as a '"b', the
other one is likely to be misread too. Also if one is punching blindly,
it is logical that, if a finger is on the wrong key for the first "a'

>

that then the second one will be treated or rather mistreated in the
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same way.

2.3) The jump transpositions. A jump transposition is the interchange
of 2 digits, jumping over a third one, like abc-®cba. It could also be

called a reversion, since the order of the 3 digits gets reversed. Its
psychological explanation can perhaps be sought in an auditive echo.
2.4) The phonetic errors. The above mentioned clearing-house error
samples reveal that in the adjacent double errors, the errors of the
type ab +ca or vice versa, occur much more than chance predicts. Among
these the errors with b=0 and c=1 are again much more numerous than
expected. These errors are called phonetic. They might be explained by
the phonetic resemblance when the pairs a0 and la are pronounced. This
is of course dependent on the languagé, but it holds in English, Dutch
and German. This explanation is strenthened by the fact that the errors
| 12 -20 and vice versa are indeed much less frequent. It would be inte-
resting to know how this is in the French speaking countries. It is also
an open question whether an oral communication link is needed or whether
punch typists with an auditive memory can be responsible for this error
type.

2.5) The jump twin errors. These errors are of the form aba—»cbc. Their
frequency is, as is to be expected, lower than that of the twin errors,
say 50%. Their explanation may be the same. The frequency of more remote
twin errors, like a..a->c..c is very much lower. This is also the case with
the interchange of digits over more than 1 digit.

3) The third class consists of omitting or adding a digit to the code
word. The frequency lies somewhere between the 10 and 20%. The vast

ma jority consists of the omission of one digit, where the last position
again seems to be the most vulnerable one. It is also striking that the
O is the decimal which is most easily dropped. However, since there seems
to be a tendency to allocate "beautiful" numbers, ending with one or more
zero's, to important customers, like tax collectors, there definitely is
a bias if the statistics are drawn from banking and clearing systems. It
is also remarkable and equally dubious, that the forgotten digits often
were memdpers of a sequence of identical ones. It is an illustration of
the ancient theorem that beauty is dangerous.

4) The random errors. The fourth catagory of errors is called random,

since it consists of those errors for which there is apparently no re-

lation between the correct number and the erroneous one. It is also
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relieved that all numbers are equally susceptible for this error type.
The random errors are both pleasant and nasty. They are pleasant, be-
cause all redundancy helps to detect them. They are nasty, since it is
impossible to design a code which would do any better than any other
code. There is also a very important assumption made, hidden in the word
"apparently’. For there may very well be no relation between the code
numbers as such, but there can be a hidden semantic relation. E.g., both
numbers can belong to the same person, one being his account number and
the other his telephone number. It also can happen that the two numbers
are adjacent in some code book. It is difficult to trace that kind of
errors down without employing a full time detective. All this would not
be so serious as long as these ''semantic' errors behave like random
errors, but there is every reason to believe that this sort of error will
prove to be immune for all detection systems. If somebody is copying the
wrong number correctly, he will do so too if the number is one of an
error detecting code. These immune errors may turn out to be one of the
criteria for how far one has to go in the imporvement of the detection
capacity of a code. Suppose that a certain system has to cope with

100 errors a day, 50 of which being immune. Now one might be interested
to cut this down to 55 undetected errors, the same 50 immune ones included
at the cost of one more check digit. However to cut this down to 50.5 at
double cost might be unattractive. The immune errors form some kind of
basic noise level.

The total frequency of the random errors varies considerably, depending
on the nature of the system. if the code numbers are more or less used
publicly this class might be much bigger than for those systems where

the numbers are more privately used, like passport numbers etc.. For the
clearing house systems 5 to 15% has been measured. The percentage of the
immune errors, though more important, is unknown.

5) Finally, there remains the traditional class called miscellaneous. It
contains collector items like; aba- bab; abcd- cdab; aaaa- bbbb. All are
rare and mostly difficult to detect for 100%. Occasionally some defy
detection, so that in studies of the undetected errors of a certain code,

these rare errors might seem significant.
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The following matrix gives the transition frequencies of the ten deci-

mals. The 125 in row 4 and column 6 means that 125 times a '""4" became

a "!6'! .

-

M| K
b | el
w! O

el | b |

ol Ol v 0| o
3 3] W
Ol W] ® N

—
13 | 95 680
292 — 62 15 ¢ | 100 1009
1156 1308 1018 682 | 9574 |

It would be highly interesting to know which properties, of this matrix,

are independent of the system from which the errors are drawn.

The restricted single errors total 2923, which is higher than the expect-
ed 2/9-th of 9574. The digit '"'3" seems to be the black sheep of the de-
cimals. |

The double errors have also been subjected to a further analysis. From

a technical (and probably also from a psychological) point of view it

is interesting to know whether the double errors tend to come in bursts.

The following distributions according to the distance of the errors in

the words, has been found.
Distance 1 (adjacent positions) 1595

' 2 (x.x, jump errors) 177
" 3 (x..x) 71
" 4 (x...x) 18
" 5 (x....x) 9

1870

This statistic strongly suggests that the errors are dependent. The 1595

burst errors are subdivided into:
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Transpositions 1237
Twin errors 67
Phonetic errors 09
Rest 232

1595.

The 177 jump errors are divided into:

Jump transpositions 99
Jump twin errors 35
Rest 43

177.

The distribution of the phonetic errors according to their position in

the code word is as follows: ’ﬁz%‘g";"g’i .

The absence of the phonetic errors on the odd positions may be explained by

the habit of quoting the words in pairs of decimals. The distribution

of the errors 1lx »>x0 and x0 -»1lx,

over x is: 2| 3 _ S 7 ({8 9
S| 3112 ] 10 9 4 7 1113

It is typical that 8 has such a low frequency, because in the Dutch

language 80 is '"'tachtig' but 18 is '"achttien”" in contradistinction

with the English and German which are consistent with "eighty" and

"eightteen" and "'achtzig' and '‘achtzehn' respectively.

The multiple errors are mostly errors of the random type and as such

they defy analysis.
0.17. Detection versus Erevention.

No matter how good the error detecting capacity of a check system is,

one will still be interested in minimizing the number of errors. The
avalilable measures, which belong mainly to the realm of human engineering
fall outside the scope of this monograph. There is however also a mathe-
matical approach to the problem of error prevention. This approach is
based on the non-uniformity of the distribution of the errors over the
code words. By selecting a code C in such a way that the overall error

chance is minimal, a certain error prevention is achieved. The more
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error prone code words are excluded. In the Dutch population register
system those code words, having equal decimal digits on adjacent po-
sitions, are avoided, since these code words are considered to be more

error prone than the other ones.

The available statistics are however still insufficient to tackle this
problem effectively.

Another virtually unknown factor is the increase of the error chance
because of the added check digit. It is obvious that a high redundancy
may very well successfully lower the percentage of the undetected
errors, but it will also lower the percentage of correct code words.
The detection becomes, 1if the redundancy increases, in a certain sense,
less effective. The reason is, that how longer the code word is, the
less information the detection of an error provides. So will it be a
small surprise to learn that a certain book contains an error.

The ultimate goal of detection is of course a correction. This can
often only be done by feedback towards the source of the error. In
systems with a decentralized input and a parallel processing, it is a
customary procedure to reject the erroneous inputs, so that the rest
can be processed. If this rest is not the bulk of the workload, or if
the system 1is processing serially, it becomes desirable to have an
on-line correction. The problem arises to construct codes with the
property that such a correction, which can never be infallible, is

at least most likely.

0.8. Error correcting codes.

An error correcting code is a redundant code C, along with a decision
scheme which associates with certain inproper code words a proper one,
which is called the corrected code word. This association can in prin-
ciple be done @uite arbitrarily, but it is natural to do it in such a
way that each code word is imbedded in a set of words which can be ob-
tained by making an error, of a certain type, in said code word. If
the code is such that these sets are mutually disjoint, then an error
of that type can be corrected by the convention that if a word of such
a set is received then the only proper code word of that set is taken
as the corrected word. One could also say that in such a case the

coding is not unique, since to each object a whole set of code words is
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allocated. The code, though no longer unique, has still to be unam-
biguous and this is so as soon as the associated sets are mutually
digjoint. Hence to each xe¢ C there belongs a set A(x) , with the pro-
perty that from x £ y it follows that A(x)nA(y) = 0. Let V be the
union of all A(x), thus V -...-XK‘JCA(x). If V=U then the code is said to

be perfect or close packed. In V there is an equivalence defined by
the classes A (x) and each word of V is equivalent with just one word
of C. This defined a mapping ® of V on C. The correction procedure
corrects each word w of V into ¢(w). If a word outaide V is received
then the error is detected, but cannot be corrected. This cannot occur
if V=U, i.e. if the code is close packed. The term perfect is less
appropriate, since it is in a way not the code which is perfect but
the correcting scheme because it corrects every error. This property
may be desirable for the applications in the serial processes, but not
for the systems with parallel processing where the correction is only
needed to secure that the bulk of the input can be processed. In order
to appreciate this point it should be noted that an error correcting code
only guarantees the correction of a certain type of errors. In real
life however also errors of other types are bound to occur. A perfect
correcting scheme will "correct' these errors by introducing an error
of the protected type. It may therefore be a good policy to choose V
deliberately so small that certain errors will never be ''corrected".
The code of the Dutch population register system is a single error
correcting code which does not ''correct" the transpositions.

The type of random errors is the stumbling block, since a random

error is never guaranteed to fall outside V. In fact a random error

correcting code C has only one code word, since A(x)=U for all x. This

trivial code is always perfect.

0. 9. Diszjoint codes.

Jet C again be a redundant code in a space U, It is often possible to
find one or more codes C' with the same detecting capabilities as C, but
disjoint with C. As will be seen later on, decimal codes defined by a
check equation will split up the space U into 10 mutually disjunct

codes (, or in general k,if one is working modulo k). In se‘ction 0.7

it was pointed out that, though these codes are equivalent detection-
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wise, they may be different as to the overall error chance. There 1is
another way in which these disjoint codes may be useful for the appli-
cations. Suppose that two operating systems, perhaps sharing many
customers, need an error protection for their codes. By adding a check
digit to the existing code words much of the cost of recoding can be
avoided. If these systems draw the check digit from disjoint codes they
have the additional advantage that each valid number of one system

is invalid for the other system. This might eliminate a source of seeming-
ly random errors.

Another application might be a group of branch offices of a large bank
with a central administration. If disjoint codes are used for the
clients of the various branch offices, then one would have a protected
code without using more digits. The traditional solution would use the-
first digit to designate the branch office without giving any error
detection possibility within the local administration. It is an ele-
gant way of setting the redundancy at work. In cases with more than 10

subsystems a higher modulus check might be useful (see section 2.3).
0.10. Better error detection by random use of code.

In section 0.3 it was argued that the natural redundancy, which is
usually present since the codes are seldom used to full capacity, may
lead to error detection during the processing. It would be an advan-
tage if this detection could be done during the input stage. This can
be achieved by a controled use of the code. It is not uncommon to use
only the first interval, under lexicographical ordering, of the code.
Suppose that some system with 600000 customers uses a code with 7-digit
decimal code words. Using only the first 600000 numbers guarantees that
an error which yields a higher number is detected at the input if the
pProper measures are taken. The protection procured in this way 1is how-
ever primarily aimed at the first (least vulnerable) decimal. Much
better in this respect is the pseudo random use of the code, which can

be accomplished in the following manner. With the aid of a reversible
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deciphering one can shuffle the code words and by using the first

( in example above, 600000) numbers, the used part of the code is
(pseudo) randomly distributed over the code. Now a code word received

at the systems input can be reshuffled and if it does not belong to the
first 600000 an error is detected. In the code of the Dutch population
register system this feature is incorporated. The reversable deciphering
s done with a feedback shiftregister, working in the field of the com-

Plex ternary numbers, i.e. the complex numbers of the form a+bi with
a,be {0,1,2} .
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CHAPTER 1. Bounds for redundant codes.

1.0 Definitions.

In this chapter some concepts are introduced to facilitate the dis-

cussion of redundant codes.

An error type is essentially a mapping of a set of (potential) code
words into the class of its subsets. To each ae¢ U there corresponds
a set E(a) ¢U of all those words which can be derived from a by an
error of the given type. The set E(a) may be empty. In the case of
the random errors each ae€ U is mapped on the set U-a. A code C is
called E-proof if E(a)n C=0 for all aeC. An E-proof code C admitts
a correcting scheme for the error-type E if E(a)n E(b) =0 for all
a,b € C, with a #b. It is then called an error correcting code. If
moreover a\ej c E(a)=U-C then the correcting code is called perfect or
close~packed. An E-proof code C is called maximal if there does not
exist an E-proof code C' which properly contains C. If such is the case
it follows that E(b) nC#0 for each b¢C. Schauffler (43) calls such a code
closed (abgeschlossen) with respect to E.
An E-proof code C is called optimal if there does not exist an E-proof
code in U, with more words than C. An optimal code is necessarily
maximal. A code C is said to be p% E-proof if
p/100 = E l c nE(a)l/ Z ’E(a)’

aeC a €C
The redundancy of a code C in an m-ary space U is defined as
lgm(lUl/lCI) digits or 1g2(’U]/1C1) bits.
An error-type E is called symmetric if from a € E(b) it follows that
beE(a). Most of the error-types mentioned in the introduction are
symmetric. The type of the forgotten digits is an exception.
For symmetric error-types a metric can be defined. The distance between
a and b is the minimal number of errors (of the given type) which have
to be made in a, in order to get b. It is called the E-distance and deno-
ted by dE(a,b). The subscript E will often be dropped. More formally:

d(a,a)=0 and d(a,b)=k if there exists a chain a .,a& with ao*-—-a

o’al’” k

and akmb such that ai+1€ E(ai);k> i>0 and if there does not exist

a shorter chain with that property. If no chain exists at all the
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distance is per definition infinite.

The E-distance is properly called a distance since:
d(a,b) > O and

i) The reflexive law dE(a,a)w;
ii) the symmetric law dE(a,b)de(b,a) and

iii) the triangle inequality dE(a,b)*dE(b,C) _?__dE(a,C)

are fulfilled.

i) is obvious, ii) follows directly from the symmetry of the error-

type E and iii) follows from the fact that the concatenation of the

chains from a to b and from b to c forms a , not necessarily minimal
chain from a to ¢. The definition of distance is a straightforward

generalization of the Hamming distance for the single bit errors in
binary codes.

If all distances are finite the space U is called connected with

respect to E. Otherwise U falls apart into connected components. The

diameter of a connected space U is max dE(a,b). For the random
a,be U
errors the diameter of every space is 1. For the single errors the

diameter is equal to the dimension of U.

The greatest possible diameter is !U[- 1l since that is the length of
the longest chain in U. The following examples show that this diameter

is possible. Suppose that the code words of U are listed somehow in
a codebook. lLet the type of error be that of taking the list item
directly preceding or following the correct one (restricted look-up
errors). Another example is that U consists of a set of consecutive

integers with respect to the errors of one unit in the arithmetical

sense. The E-~distance of two different words a and b, of an E-proof

code C, is at least 2. If it were less, then be E(a), but for an

E-proof code E(a) nC=0 holds. If C admitts a correcting scheme the

E-distance between any two words is at least 3, for otherwise there

would exist a word ¢ such that d(a,c)=d(c,b) and hence c €E(a)n E(b).

A code C is said to have a minimum distance k when min
a,b¢€cC,
a#b

In view of the definition of distance it will be clear that a code

dE(&, b)=k.
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with minimum distance 2e+l will admitt a correcting scheme for e errors
of the type E. It also will detect 2e or less errors.

An E-ball of radius k and center a is the set of all words x satisfying
dE(a,x):ik. It is denoted by SE(a,k), The difference between a ball
with radius 1 and the error sets E(a) is clearly that the latter does
not contain a; hence SE(a,l)mE(a)\f{a} .

let Ei(a) be the set of those words obtainable from a by making i mis-
stakes of the type E, but which cannot be obtained by making fewer than
i errors. Thus Eo(a)=a and El(a)eE(a) and Ei(a)usE(a,i )-SE(a,i“I),

for i> 0. o -

Conversely, SE(a,e)m: ;ib*Ei(a) for e:;o. From the definition it
follows immegiately that El(a)r\EJ(a)nO for i#j and therefore

'SE(a,e)l = z I Ei(a)| .
i=0
An error-type is called uniform if |E(a)| =|E(b) | for all a,b€ U.

Single errors are of the uniform type, whereas the transpositions are

non-uniform (E(13)={31 and E(22)=0). An error-type is strongly uniform
i |

if !Ei(a) | =|E"(b) | for all i> O and all a,be U.

1.1 Some upper bounds for minimum distance codes.

From the definition of an error correcting code it follows that
S(a,1)n S(b,1)=0 for all a,beC with a#b. An immediate consequence is

the relation:

aeC
Therefore: |

theorem 1.1.0 The redundancy of a minimum distance 3 code is at least

1g ( ) |s(,1)|/ |c|) digits.
m
a€C
This bound is a generalization of the sphere packing bound, as it is

known in the literature on the binary codes with respect to the single
bit errors. For uniform error-types the bound is simplified into
. S(a, 1 .
1g_|S(a,1)
The obvious generalization is the

theorem 1.1.1 The redundancy of a minimum distance 2e+1 code is at

least lgh( Z 'S(a,e)l/,C]) digits.
ae(C

Proof: Let a and b be two words of a minimum distance 2e+1 code C, then

S(a,e)n S(b,e)=0, for otherwise there would exist a word ce U with the
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Property d(a,c) <e and d(b,c) <e. From the triangle inequality it then
would follow that d(a,b) <2e, which contradicts the minimum distance

property of C. The disjunctness of the spheres and the relation

Y. Sa,e)cUgive | |S(a,e) | < |U|. After division by |C|
aeC -

and by taking the m-logarithm of both sides of this relation the

- theorem is found. These theorems are especially helpful for proving

the nonexistence of certain codes.

The Hamming codes are examples of perfect minimum distance 3 binary
codes. These codes enable the correction of single errors. Perfect-
ness of codes is a mathematical nicety, which has from a practical
point of view the disadvantage that all other errors are ''corrected"

by introducing another error. The point is of course that the non-
perfect codes have a higher redundancy. Perfect binary codes for correct-—
ing more than 1 single error are collector items. (45).

Finding an optimal error correcting code is a matter of packing as many
balls S(a,e) as possible in the space U. For a strongly uniform error-
type a close-packed code is necessarily optimal. For a non-uniform
error~-type it is conceivable that a perfect code is not optimal since
the latter might have many small balls whereas the perfect one possibly
covers U with a few large balls. For the even minimum distance codes

it is not simply a matter of packing balls since these may now overlap
each other. The question is how this overlapping can be done effectively.
Consider two points a and b of a minimum distance 2e code C in the
space U. Suppose that d(a,b)=2e, then S(a,e-1)n S(b,e-1)=0 and

Ee(a) nEe(b);éo. The space U is split up into 3 types of points i.e.

1) The points of the balls with center in C and radius e-1,

ii) The points contained in the sets Ee(a) with a€e(C,

iii)The other points.

Denote these mutually exclusive sets by U,,U_ and U_ respectively.

1’ 2 3
e
Then Ulm a\ejC S(a,e,-1) and U2== a\éc E (a).
The following relations holad:
e
|Uu)l = 1| Sta,e-1) |, |U,| < J |E(a)]| and|U,| >O.

aeC aeC

Now define c(a,e) as the maximal number of points a i such that
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d(a,a.)=e and d(a, ,aj)> 2¢ for c(a,e)> i> j>o. It will be called the
1 i - —

covering index of a. Since each x&:U2 can be in at most c(x,e) sets
E°(a) the relation z c(x,e) > z | EC (a) | holds. Let c, = max c(x,e),
iné aeC x€ U
thenl U | .C_ > Z c(x,e) > }: | Ee(a) ! .
2 © x€ U a€ C
2

Consequently YU-UllcemlU2+U3l.ce> Uzl.cei_z 'Ee(a)!. Combining this
.a€ C

relation with |U~Ullm|Ul~ z IS(a,ewl)! gives

ae€ C

]U{/]C[z' Z {{S(a,e-l)[ +!Eé(a)]/ce} /]Cl.
aeC
In this way a lower bound for the redundancy has been found. For

strongly uniform error-types this bound is simplified into
e

[S(a,e-l)l+|E (a)! /t:.e where a is chosen arbitrarily in C.

The result is formulated as:

theorem 1.1.2 The redundancy of a minimum distance 2e cade is at least

1g, { ) {|S(a,e-1)| +|E (a)|/c_ }/|C|} digits.
aecC
For strongly uniform error-types this bound is simplified into

lgm( 'S(a,e-—l)l + ]Ee(a) ,/ce), with ae€C.

1.2 Single errors.

Let the type of the single errors be denoted by El' Jet n be the

dimension of the space U of m-ary words. The set El (a) consists of

all words which differ from a on only one position. There are m-1
possibilities per position and thus ]El(a) ] =n(m-1) and (Ei(a), m(ril)(m--l)i.
Two words a and b of an El-proof code differ therefore on at least

two places and that is why such a code is sometimes called bidifferent.

Theorem 1.2.0 The redundancy of a bidifferent code in an m-ary space

U is at least 1 digit.

Proof: Suppose 1g_(|U|/[c|) <1, then |C|> | U] /m=m""!, where n is the
dimension of U. Since there are mn“]' different words with n-1 positions,

it follows that C contains at least two words say a and b, which are

identical on the first n-1 positions. Hence b€ E (a) and consequently

1

C is not Elwproof‘

Theorem 1.2.1 There do exist bidifferent m-ary codes with a redun-
dancy of 1 digit.
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Proof: Let U be the space of all m—-ary words with n positions. One may

assume that the symbols of the words stand for the residue classes
modulo m. If this were not the case one can first make a l-l1-correspondence
Now let a_a a be a

13503
word of U and consider the sum s= z a.. There are m values possible

between the symbols and these residge classes.

for s and thus the words of U are éfvided into m classes according to

that value. These classes all have the same number of elements. This

is so since the m different words which are equal on say the first

n~-1l positions cilearly are in different classes. From this it follows
that each of these classes is a code with 1 digit redundancy. Moreover
since words differing from each other on only one place cannot have the
same digit sum modulo m, each one of these codes is bidifferent. In view
of the preceding theorem they are also optimal.

Just for curiosities sake two examples of maximal bidifferent codes with

a higher redundancy will be given.

000, 101, 202, 303, 404, 555, 656, 757, 858, 959,
o011, 112, 213, 314, 410, 566, 667, 768, 869, 965,
022, 123, 224, 320, 421, 577, 678, 779, 875, 976,
033, 134, 230, 331, 432, 588, 689, 785, 886, 987,
044, 140, 241, 342, 443, 599, 695, 796, 897, 998;

This is 50 word 3-digit decimal maximal bidifferent code. A similar one

with 52 words is given in the next example.

000,
0l1,
022,
033,
044,
055,

101,
112,
123,
134,
145,
150,

202,
213,
224,
235,
240,
251,

303,
314,
325,
330,
341,
352,

404,
415,
420,
431,
442,
453,

5035,
510,
521,
532,
543,
5564;

666,
677,
688,
699,

767,
778,
789,
796,

868,
879,
886,
897,

969,
976,
987,
998,

The construction of an optimal bidifferent code is equivalent with a

generalization of the problem of the rooks, well-known from recreational

(see 27, p. 240).

on an m-th order chessboard so that no rook can capture any other one in

mathematics. It is the problem of how to place m rooks

a single move. The generalization uses a n-dimensional board with genera-

lized rooks, say hyperrooks. The equivalence is obvious since the set U
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of all m-ary words can be taken as an n~dimensional m—th order chessboard.
A hyperrook placed on a field a covers exactly the fields of the set
El(a). A bidifferent code is therefore a set of fields where hyperrooks
can be placed such that they cannot take each other in one move. The
code is maximal if there is no uncovered field left in U. The optimal
codes, having mn“]' words are the solutions of the rook problem. For n=2
all maximal solutions are optimal, but the examples mentioned above show
that such is no longer the case for n >2. Other error—types correspond
in this terminology with fancy chessman, having esoteric ways of moving.
Theorem 1.2.0 can also be derived from theorem 1.1.2. The covering
index c(a,l) is obviously n for every a, since this is the maximal
number of points differing from a on one place and from each other on
two places. Thus as !El (a) |= n(m-1) holds it follows that the minimum
redundancy is lgm(1+n(m-1)/n)m1 digits.

Theorem 1.2.2 The redundgncy of a n-digit minimum distance 2e+l1 m-ary
code is at least lgm( Z (:) (m-l)i) digits.

The proof follows at onézofrom theorem 1.1.1 by substituting (2) (m—-l)i
forlEi(a)L
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