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Chapter 0. Introduction. 

O. O.. Coding. ,codes and notation .. 

A general word like code, is one of the hard working words, in the sense 

of Humpty Dumpty. Originally code referred to a law, written or not. In 

cryptology the word code is used in contradistinction to a cipher. By 

a code a system of substitution is meant in which many words, phrases 

or syllables are replaced by code words or code numbers .. The word cipher 

refers to a system in which the individual letters are worked upon. 

The co ercial codes of the late twenties were used to cut down the 
• 

costs of cablegrams. 'llle military codes have secrecy as main purpose. 

Nowadays codes are widely used in the theory and practice of switching 

circuits, culminating in the design and use of computers. 

In this monograph coding is understood to be a mapping of an arbitrary 

set into a set of mathematical entities. The first set is often a set 

of tangible objects, persons or concepts, whereas the second set mostly 

consists of symbols or strings of symbols. The structural formulae of 

organic chemistry form an example of the application of other mathematical 

entities than strings of symbols. 

It is quite essential that the mapping is one to one, since the basic 

idea is, to use the abstract entities as names for the elements of the 

first set. In practical cases the main difficulty lies in the definition 

of the mapping. One can hardly attach the abstract entities to the objects 

or persons, be it that only the persons might object. This is, of course, 

the denotation problem, which is solved, more or less, by the use of tokens. 

Tokens are physical representations of symbols. For every symbol, there 

is a whole class of different tokens, which are commonly understood to 

stand for the same symbol. Examples are all types of ''three's'' in all 

kinds of colours, print, written or spoken, including the less generally 

agreed upon way to represent a ''3'' in a computer. The borderlines of these 

classes are sometimes dangerously vague. The choice of most t'okens, which 

was made historically, would nowadays be called a very poor job of system 

design, as everyone involved in character recognition will concede. But 

it is too late for a change, all trials to introduce a new alphabet will 

be utopic. The world will have to live with the old one. Returning to 
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the definition of the mapping, it will be clear that one can attach to 

objects one or more tokens, as a label. These tokens represent the sym

bols on which the object has been mapped by the coding. Branding cattle 

may be one form and engraving a serial n,1mber in guns or engines is 

another way of explicit labeling. The labeling may have a dual purpose, 

since it may be done in order to make identical objects different. On 

the other hand, the branding of the cattle may be done to establish 
• 

the ow11ership. Anyhow such an effective, but crude way to define a coding 

is impossible if the ''objects'' to be coded are concepts. For people 

the method may theoretically be feasible, but is hardly advisable, 
' 

especially if these people are customers. The customary procedure is 

then to make some list, in which series of tokens, representing the 

code, are linked with a verbal description of the coded objects. Such 

a list is called a code book or catalogue. Actually the situation is 

rather tricky, since it might be said, that such a description itself 

is ( a notation for) a code. Hence the question would remain how to 

define the latter co,de. Since a verbal description seldom really charac

terizes the obj,ect, it may be questioned whether such a description is 

a code. This does not make the situation any better. In fact, the descript

ions use as a rule, all kinds of contexts, written or not, to help define 

the objects. Often it is supposed to be clear that the object is one 

of a knowx1 (how?) class. This type of problems is of course inherent 

to all (succesful) con,111unication. Strictly speaking, co unication is 

essentially impossible, but it sometimes works. It is merely a matter 

of success and efficiency how far one has to go with refining the des

criptions. Parenthetically it may be remarked that the characterization 

of persons by fingerprints or sets of measures, may be very practical, 

but theoretically the system is never foolproof, and that not alone 

because of the fingerless people. There is a difficulty for every SQlution. 

Su111111arizing the one to one mapping of an arbitrary set into a set of 

mathematical entities is called coding. The second set is then called 

a code. Notation is a physical representation of the second set by 

means of tokens. These tokens fall apart into classes of equivalent 

ones. each representing the same mathematical symbol. The equivalence 
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is based on a common understanding and is as such a potential source of 

confusion. To help to avoid or at least detect this confusion is the aim 

of the following chapters. 

An important point is that the common understanding of the tokens is 

some kind of social phenomena. It is as such amenable to a study, which 

will of course be of a statistical nature. It is conceivable to measure 

the degree of intersubjectivity by controlled experiments. One could let 

may people write a ''3'' and one could then measure how often, other or 

the same, people recognize it correctly. It might turn out that a ''3'' is 

a better token than say a ''5''. It is rather difficult, if not impossible, 

to get unbiased information on this recognition problem. The known error 

statistics on codes show a certain onesidedness (see 36) in the sense 

that, e.g., a ''q'' can be easily mistaken for a ''g'', but seldom a ''g'' 

becomes a ''q''. 'lb.is may very well be due to the relative frequencies 

of use of the various tokens. 

0.1 Tp,e
11 
appli.cation of d~,cimal ~ofies. 

nie use of the decimals is rooted in tradition. Unlike the binary codes, 

there is no intrinsic reason for its use. It is just because people are 

used to it, that the decimal system is so important. It is therefore not 

surprising, that the decimal codes are mostly handled, at least partly 

by bt1man beings. The same holds in a way for alphabetic codes. For 

mnemotechnic reasons, it was believed in the past, that codes for human 

use, should be of the alphabetic or alpha-numeric type. Car licence 

numbers and telephone numbers in various countries are relics of this 

belief.. In the present time where the ht1ma.n use and the machine handling 

gets mostly combined, the decimal codes are getting more popular. An 

other reason may be that recent studies indicate that the alphabetic 

characters are more error prone than the decimals (see 36) • 

.As said before, the code words are intended to be used as names for the 

things for which they stand. A name is needed if a reference is to be 

made to something. Such a reference will be called a mutation. As a rule, 

the mutations are part of a process, say an administrative one. For the 

process the code words serve as input. The primary reason for the use 

of a code, rather than the natural language,,_is the efficiency. The fact 

that a code is unambiguous, is not a good a1.·g,Jment, since that effect 
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could also be obtained by properly extending the natural names or descript

ions. so that here again the efficiency is the basic motive. In data 

processing systems it is customary that the various inputs are unrelated 

and come from many origins. Thus the mutations converge into the system. 

The coding is often done in the periphery, by the users or customers and 

is therefore largely outside the control of the system. As a consequence 

the system has to cope with the errors made. The redundant codes, which 

will be dealt with in the next section, serve as a defense of the system 

against these errors. To be sure, some of the errors are caused by l'l11man 

operators incorporated in the system, for the preparation of the machine 

readable records. This operation is of course under the systems responsa

bility, and error prevention should be practiced anyhow. The redundant 

coding is in fact a burden for this preparatory operation which causes 

some authors to reject redundant coding altogether (see 6). But there 

is a tendency to push the preparation of the machine readable record back 

to the user. Optical readers, dials and on-line input stations are some 

of the means to that end. This self service eliminates the bottleneck. 
• 

of the punching and the like and as a rule deminishes the waiting time 

since batch forming may be avoided. This greatly widens the applicability 

range of the modern data processing systems. It also will, in the 

opinion of the author, make the use of redundant codes more urgent. In 

terms of the information theory it can be said, that a large number of 

channels converge into the system. The letters of the alphabet used 

in each channel, are the words of the code. The alphabets tend to be 

very large and the rate by which the letters are generated per channel 

will be very low. The channels are not noiseless. The noise is mostly 

caused by human factors. Mathematically, the noise is defined by the 

transition probabilities p(x,y)~ where p(x,y) is the chance that the 

code word xis received by the system as y. The nature of this noise 

will be the subject of section 0.4. 

Q .. 2,. Re~undant codes. 

A code is called redundant as soon as the mapping of the coded set 

does not cover the code. This redundancy can be more or less accidental, 

because the code happens to have more words than necessary for the set 
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to be coded. In most applications, this will be the case, since popu

lations, customers, inventories etc. do not tend to come in powers of 

10, like the decimal codes do. 'lhe redundancy can also occur intention

ally and sometimes temporarily, when the code is chosen purposely too 

large for a growing stock or population. Though the control of this 

natural redundancy is worthwhile. the main topic of the following 

chapters will be that of the artificial redundancy. The latter form of 

redundancy is obtained by admitting only a subset of the code for use. 

Strictly speaking only the admitted subset itself is the code. The 

words outside this subset are sometimes called improper or forbidden 

code words. Tilis terminology has the. same inconsistency, not at all 

unusual in mathematics, which adorns expressions like the burnt down 

house. 

The code is some sort of intermediary between the real thing and the 

denotation. It is therefore typical that the mathematical properties 

of the code are sometimes desirable for the sake of the coded objects 

and sometimes for the sake of the notation. Hierarchical codes, like 

the U.D.C. are examples of the first kind. The teletype code examplifies 

the second kind. It is a 5 dimensional binary code since the teletype 

uses 5 channels. The physical representation, with the 2 states, hole 

or no hole, is of course a notation. 

As will be seen later on in the section on errors, it is advantageous 

to introduce a topology or metric in the code, just to be able to 

describe the errors which result from the deficiencies of the notation. 

These errors provide the criteria for the selection of the subset which 

is to form the redundant code. Apart from their use in the struggle 

against errors the codes are of interest as a mathematical object of 

study. 

The redundancy can be measured as follows. Let Ube the set of potential 

code words and let C be the selected subset containing the proper code 

words. The fraction 1-fcl/lul is a measure for the redundancy. The 

parity check would thus yield a code with a redundancy of 50%. By taking 

the base 2 logarithm the redundancy is measured in bits. The parity 

check has of course a redundancy of 1 bit. If the code words consist 

of m-ary digits. then the base m logarithm gives the redundancy in 
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in m-ary digits. 

As stressed before, the main objective of coding is the increase of 

efficiency in handling the coded data. This holds for h11ms;i.n processes 

as well as for automatic processes. Especially for the latter type 

it is important that the codes lend themselves for standardized nota

tions. This is merely another aspect of the efficiency, but it shows 

again that the codes are not made for the peculiarities of the coded 

objects alone. In this machine age, people sometimes have to adapt 

themselves to the machine. The reason is, may be, that the machines 
• 

do such a tremendous amount of data handling, that the pay-off from 

the efficiency in the machine part is more important. This may very ,~ 

well change when the cost per operation goes further down. 

The drawback of the increased efficiency is that errors tend to be 

more dangerous: an error in a natural name, does not always produce 

another name, but a number is always changed into another number. One 

might also say that the numbers are all alike or that the names satisfy 

certain syntactical or even semantic rules. As not all letter combi

nations are used as names, it may be said that the names are highly 

redundant. In fact the set of names form~ a, perhaps ill defined., 

redundant code. As soon as there is redundancy in a code there is 

a chance that an erroneous code word does not correspond with an 
• 

object. Let A be a set of coded objects and let C be a selected subset 

of the set U of code words. Let c be a mapping of A in C, hence for 

all acA it holds that c(a) e C and c(A) f: C .. If x=c(a) with a€ A, and 
• 

if an error changes x into y, then there are three possibilities: 

i) YE c(A); ii) y ;. c(A) and yE. C and iii) y ¢, C. 

In the first case the error is fatal in the sense that a false muta

tion may be made. In practice it will be often possible to detect the 
• 

error from the context, written or not, like in the case that Granny 

was drafted for the co111111andoes. As a matter of fact that is how one 

knows about the errors anyhow. for as a rule there is a feed-back 

into the system from complaining customers or victims. Sometimes 

however the complaints are too late to undo the fatal consequences . 

• 
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This first case is obviously very undesirable. 

n-ie second case is less harmful, since it cannot result into a wrong 

mutation. The code wordy simply does not correspond to an object. It 

may cause some nuisance, since as a rule it will be detected during the 

processing. This may be by a mailman looking for a non-existent house. 

The automatic detection of these unused code words is under certain 

conditions possible. A simple example is a code of which it is known 

that only the first n words are used. It is of course necessary that 

the code words are ordered, say lexicographically. In the Dutch 

population registration n11mber a more sophisticated method has been 

applied. 

The third case is the most important one from a theoretical point of 

view. The error may in that case be detected without any knowledge of 

the use of the code. Especially if C is defined by an algorithm, it is 
• 

possible to detect the error automatically. It should be noted that 

the second class of errors can always be converted into the third class 

by the application of a table look-up procedure. The art of making 

error detecting codes consists of two things; the first one is to select 

the set C in such a way that the most likely errors always belong to 

the third class and the second one is to define such a set C by means 

o1 a simple criterion, which lends itself to an easy technical imple

mentation. The latter requirement is a matter of economy and as soon 

as the table 100~-up procedure is feasible,the ~equirement looses its 

~mportance. In general it is true that, when the memories get cheaper, 

algorithms can be (economically) replaced by table look-up. All these 

technical considerations are very much dependent on the state of techno-

1ogy. When the computers get better at parallel processing, the algo

rithm might again be more economic. 

There is a tendency nowadays to adapt the machine to the human being, 

rather than the other way around. High level programming languages are 

also evidence of that tendency. When the computers are learning the 

natural language, the coding problems will be change, but not disappear. 

To be in vogue, the question of optimal error detecting codes should 

be considered. It would have to be a code, which detects more errors 

than any other code with the same redundancy. 'Ibis property would 
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clearly be dependent on the frequency of use of the various code words 

and of the distribution of the errors. The optimalization problem is 

not very meaningful, for even if the costs of detected and undetected 

errors were known, they are bound to change in the course of time. More

over, the distribution of the errors is usually unknown at the moment 

that the code has to be chosen. Furthermore, these statistical qualities 

may be expected to change during the existence of the system .. Finally, 

though p11re mathematically speaking there is no problem at all, since 

there is ''only'' a finite n1Jmber of possibilities, from a practical point 

of view the problem is probably just as practical as the differential 
• 

equations governing the universe. A situation like this provides for 

the mathematician a rich hunting ground for nice problems (see chapters 

3 and 4). 

0. 4. The effi ci,~ncy ?f a ~~de. 

The efficiency of a code depends on the frequency with which the code 

words occ,,r. Let p denote this frequency distribution. It is well knowt1 

from information theory, that it is always possible to encode a source 

with entropy - p(x)lg(p(x)), so that the average length of the code 
xcC 

words is equal to the entropy. Unfortunately, this theorem is rather 

sterile in cases where the coding lies outside the control of the system. 

It is all right in simple cases like the following one .. Let a code consist 

of 4 words with mutation frequencies of 1/2; 1/4; 1/8 and 1/8 respectively. 
-1 -1 -1 -1 -1 -1 -1 -1 

The entropy is in that case -(2 lg2 +4 lg4 +8 lg8 +8 lg8 )=7/4. 

Encoding the words with O, 10, 110 and 111 respectively, gives exactly 

the average of 175 bit per 100 mutations. If, however,the frequencies 

are not so civilized, then the proof of the theorem hinges on the trick of 

making pairs. The pairs of words form a larger set, within a ''more 

uniform'' statistical distribution of use. E.g., let A,B,C, and D be 4 

words with a mutation frequency of 60,,; 30%; 5% and 5% respectively. 

The above mentioned code would score an average of 1.5 bit per mutation 

whereas the entropy is roughly 1.4. Coding the pairs as follows gives 

an average of 1.43 bit per word. 



AA=O 

AB=l.00 

BA.=101 

BB=llOO 

AC=l1011 

CA.=11110 

AD=11111 

DA.::::11100 

9 

BC::;110101 

CB=l.11010 

BD=l.11011 

DB=1101000 

CC=110100110 

CD=110100111 

DC=110100100 

DD=110100101 

Now in data processing systems in which the code words are generated 

independently at various locations, before they are channeled into the 

system, only the first approximation seems to be possible. This is not 

quite true, since one could do the pairing at the various sources, but 

it would require a code book of all the pairs. Now just imagine a bank 

publishing the book of the code numbers of all the pairs of account 

holders, not to speak of the letter headings of the customers. 

'Ihe codes mentioned above are intended for use in a binary channel, 

where all the words are linked together and thus have to be separable 

afterwards. If there is a nat11ral separation between the different 

words, it is possible to obtain a bigger gain in efficiency. Consider 

the second example again. Now the first approximation may be taken as 

A-+O; B-+1; C-+00; D-+01. It would give an average o:f 1.1 bit per mu

tation. The second approximation, given below, would require only 0.8 

bit as an average. 

AA-+O 

AB-+1 

BA.-+ 00 

BB-+ 01 

AC-+ 10 

CB-+ 11 

AD-+ 000 

DA-+ 001 

BC-+ 010 

CB-+ 011 

BD-+ 100 

DB-+ 101 

CC ➔ 110 

CD-+ 111 

DC-+ 

DD-+ 0001 

It should be noted that even in the case of a unifor·••• distribution, this 

type of coding would give a gain in efficiency. 

All these considerations are probably of little practical value, since 

the distribution of use will only beco- available after the code has 

been used for some time. The cost of recoding will mostly outweigh the 

possible gains. In practice the distribution can be extre•••oly skew, like 

in banking operations where often less than 1% of the accounts draw more 

than 50% of the mutations. The short code n111nbers are however often more 

correlated with the old clients rather than with the mutation getters. 

In population register systems the distribution will probably be closer 

to uniform. 
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0.5 The error statistics. 

The double distribution f(x,y) contains a host of information, which is 

usually not available. This is certainly so during the design stage of 

the system. Later on, when the system is operating, that information will 

become available. It is then still useful in the struggle against the 

errors. Suppose that in the administrative system of a bank, a certain 

error probability f(a.,b) gets high, then this may be an indication of 

a systematic error, which lies possibly outside the system. It might be 

a misprint in somebodies account number, as indicated on his bills. 

These kinds of errors are only of local interest. In general hvwever 

one will be interested in deducing principles, like the law that most 

errors are in one digit only. The knowledge of the double distribution 

is therefore more qualitative than quantitative. But, the vaguer the 

knowledge the broader the applicability. 

The error samples#as found in existing systems, will be biassed if the 

distribution of the mutations is not uniform, i.e., virtually always. 

The following error types have been observed both in the li terat11re on 

the subject (see 2, 26, 28) and from samples put available to the author 

by the courtesy of the Dutch Postal Clearing House and the Clearing House 

of the Amsterdam Municipality. 

1) The single errors, also called transcription errors: These errors 

af£ect only one digit of the code word. It is by far the largest class 

of errors in all known cases4 Its frequency ranges from 60 to 95%. 

Little is known about the distribution within this class. Both clearing 

house samples suggest that the right hand side of the code word is more 

vuinerable for errors. This might be caused by the fact that the numbers 

are written and punched from the left to the right, so that the right 

most digits have to be memorized longer in the short term memory of the 
' 

.writing or punching being. The number systems in which this was observed 

are of the non-fixed length type. This implies that the last position 

is never void contrary to the other positions. The transition probabili

ties of the decimals are indeed depending on the decimals, but there 

are few very low ones. (See the tables at of the next section). 

W. Ulrich (49) introduced the concept of the restricted single error, 
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which is a single error with the restriction that the difference between 

the correct and the incorrect digit is one unit. This concept gives rise 

to elegant generalizations of known binary codes. It is conceivable that 

certain technical implementations of calculators, like the ones using 

pulse trains to represent the digits, lead to this error type. But 

there is no evidence in the error statistics that this type is of special 

interest. 

2) The double errors. These errors affect two digits. The frequency 

ranges from 10 to 20%. The vast majority concerns adjacent digits, i.e., 

digits with adjacent positions. This is of course an indication that 
• 

the two errors are not independent. The double errors are subdivided 

into: 

2.1) The ~ranspositions.Most of the adjacent double errors are of the 

form ab .... ba. This error type is called a transposition. It will always 

be understood that the digits are adjacent if in the following chapters 

the term transposition is used. 

The transpositions are a notorious error type of a typical human nature. 

The qualities of an error-detecting code are often judged according to 

its detecting capacity in this very class of errors, assuming of course 

that the single errors are detected anyhow. Mathematically, it turned 

out that the decimal codes were especially difficult in this respect. 

Some authors thought that they proved that decimal codes detecting all 

single errors as well as all transpositions, were non-existent.(see 46, 39). 

These ''proofs'' came £ortunately after that the present author had con

structed such a code. (see 51). 

There are several minor classes of double errors, which are important 

since codes detecting all single errors and all transpositions may be 

completely i11,111une for these classes. Their frequency is small, say 

0.5 to 1.5% of all errors. 

These classes are: 

2.2) The twin errors. These are adjacent errors of the type aa➔bb. They 

can easily be explained, for in case one ''a'' is misread as a ''b'', the 

other one is likely to be misread too. Also if one is p.1nching blindly. 

it is logical that, if a finger is on the wrong key for the first ''a'',, 

that then the second one will be treated or rather mistreated in the 
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same way. 

2. 3) ~ej11mp transposi~ior,s. A jump transposition is the interchange 
' 

of 2 digits, jumping over a third one, like abc➔cba. It could also be 

called a reversion, since the order of the 3 digits gets reyersed. Its 

psychological explanation can perhaps be sought in an auditive echo. 

2. 4) ~,~,, phone.tic error!3. The above mentioned clearing-house error 

samples reveal that in the adjacent double errors, the errors of the 

type ab +ca or vice versa, occur much more than chance predicts. Among 

these the errors with b=O and c=l are again much more n1Jmerous than 
• 

expected. 'Ihese errors are called phonetic. They might be explained by 

the phonetic resemblance when the pairs aO and la are pronounced. This 
• 

is of course dependent on the language, but it holds in English, Dutch 

and German. This explanation is strenthened by the fact that the errors 

12 ~20 and vice versa are indeed much less frequent. It would be inte

resting to know how this is in the French speaking countries. It is also 

an open question whether an oral co,uc,,unication link is needed or whether 

punch typists with an auditive memory can be responsible for this error 

type. 

2.5) !h~ J~mp twin ~rrors. These errors are of the form aba ,cbc. Their 

frequency is, as is to be expected, lower than that of the twin errors, 

say 50%. Their explanation may be the same. The frequency of more remote 

twin errors, like a .. a + c .. c is very much lower. This is al so the case with 

the interchange of digits over more than 1 digit. 

3) The third class r■,nsists of omitting or adding a digit to the code 

word. The frequency lies somewhere between the 10 and 20%. The vast 

majority consists of the omission of one digit, where the last position 

again seems to be the most vulnerable one. It is also striking that the 

0 is the decimal which is most easily dropped. However_ since there seems 

to be a tendency to allocate ''beautiful'' n1J111bers, ending with one or more 

zero's, to important customers, like tax collectors, there definitely is 

a bias if the statistics are drawn from banking and clearing systems. It 

is also remarkable and equally dubious, that the forgotten digits often 

were members of a sequence of identical ones. It is an illustration of 

the ancient theorem that beauty is dangerous. 

4) The random errors. The fourth catagory of errors is called random, 

since it consists of those errors for which there is apparently no re

lation between the correct number and the erroneous one. It is also 
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believed that all numbers are equally susceptible for this error type. 

The random errors are both pleasant and nasty. They are pleasant, be

cause all redundancy helps to detect them. They are nasty, since it is 

impossible to design a code which would do any better than any other 

code. There is also ·a very important assumption made, hidden in the word 

''apparently''. For there may very well be no relation between the code 

numbers as such, but there can be a hidden semantic relation. E.g.~ both 

numbers can belong to the same person, one being his account number and 

the other his telephone number. It also can happen that the two numbers 

are adjacent in some code book. It is difficult to trace that kind of 

errors down without employing a full time detective. All this would not 

be so serious as long as these ''semantic'' errors behave like random 

errors, but there is every reason to believe that this sort of error will 

prove to be i une for all detection systems. If somebody is copying the 

wrong number correctly, he will do so too if the number is one of an 

error detecting code. These i une errors may turn out to be one of the 

criteria for how far one has to go in the imporvement of the detection 

capacity of a code. Suppose that a certain system has to cope with 

100 errors a day, 50 of which being immune. Now one might be interested 

to cut this duw11 to 55 undetected errors, the same 50 i une ones included 

at the cost of one more check digit. However to cut this down to 50.5 at 

double cost might be unattractive. The i une errors form some kind of 

basic noise level. 

'lbe total frequency of the random errors varies considerably, depending 

on the nature of the system. if the code numbers are more or less used 

publicly this class might be much bigger than for those systems where 

the numbers are more privately used, like passport n11mbers etc ... For the 

clearing house systems 5 to 15% has been measured .. The percentage of the 

1,,,,nune errors, though more important, is unknown. 

5) Finally, there remains the traditional class called miscellaneous. It 

contains collector items like; aba-+ bab; abed-+ cdab; aaaa-+ bbbb. All are 

rare and mostly difficult to detect for 100%. Occasional1y some defy 

detection, so that in studies of the undetected errors 0£ a certain code 

these rare errors might seem significant. 

, 
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The main sample of errors, available to the author, concerns errors made 

in a non-fixed len.gth oode.. 1be total size of the sample is 22733 pairs 

(consisting of a good code word and an erroneous one). The sample is 

divided according to the length of both n1.1mbers, as follows: 

Both nuabers 7 digits 
tt 6 

5 

3 

2 .. 

•al length 

ti/I 

8 

12112 

3333 

1774 

139 

25 

5342 

There were 2343 caaea of one forgotten digit. 

'Ibe analysis of the largest group will be given here as an illustration. 

'I'h.e distribution aooordin.g to the n1.1mber of places on which the words 

of each pair differ is: 

1 place 9574 or 78.~ 

2 plaoe•s 1870 or 15 .. 61, 

3 places 169 or 1.4i 

places 118 or 1. OJ, 

3 places 219 or 1.81 

4 places 162 or 1.31 
12112 

A further analysis of the single errors reveals that the rightmost 

digit is affeot.e,d JBOst frequently. The distribution according to the 

pcsition of the error, counting from the right., is: 

position 1 : 2854 

position 2: 2296 

position 3: 1270 

position 4: 929 

position 5 : 1503 

position 6: 722 

9574 
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The following matrix gives the transition frequencies of the ten deci

mals. 1he 125 in row 4 and col11mn 6 means that 125 times a ''4'' became 

a ''6 ''. 

0 1 2 3 4 5 6 7 8 9 
-••T -- . ·- ' -· --... - -""""" 

...... ____ 
' . 

'~ ·- "· • --·---
0 0 127 27 42 19 47 286 4 234 329 1115 .. ...... 
1 163 0 124 30 105 47 54 70 11 15 619 

... 
2 56 127 0 380 61 74 32 101 24 32 887 

3 95 50 340 0 49 357 53 48 181 63 1236 

4 60 161 132 64 0 134 125 175 33 189 1073 
-

5 57 62 84 431 111 
' 
0 185 19 91 30 1070 

6 210 77 39 51 104 169 0 61 180 43 934 
·-•~ - - . ·-- . " 

.. _,, 

7 13 95 93 27 164 46 55 0 20 167 680 

8 210 29 68 221 44 119 167 20 0 73 951 

9 292 21 53 62 154 82 61 184 100 0 1009 

1156 749 960 1308 811 1075 1018 682 874 941 9574 

It would be highly interesting to know which properties~ of this matrix, 

are independent of the system from which the errors are drawn. 

The restricted single errors total 2923, which is higher than the expect

ed 2/9-th of 9574. The digit ''3'' seems to be the black sheep of the de

cimals. 

The double errors have also been subjected to a further analysis. From 

a technical (and probably also from a psychological) point of view it 

is interesting to know whether the double errors tend to come in bursts. 

The following distributions according to the distance 0£ the errors in 

the words, has been found. 

Distance 1 (adjacent positions) 1595 
,, 

'' 
'' 

'' 

2 (x.x, j\1mp errors) 

3 (x .. x) 

4 (x ... x) 

5 (x •.. . x) 

177 

71 

18 

9 
1870 

•• 

This statistic strongly suggests that the errors are dependent. The 1595 

burst errors are subdivided into: 



Transpositions 

Twin errors 

Phonetic errors 

Rest 

1237 

67 

59 

232 

1595. 
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The 177 j11mp errors are divided into: 

J11mp transpositions 99 

J11mp twin errors 35 

Rest 43 

177. 

• 

• 

The distribution of the phonetic errors according to their position in 

the code word is as follows: • 

The absence of the phonetic errors on the odd positions may be explained by 

the habit of quoting the words in pairs of decimals. The distribution 

of the errors lx +xO and xO ~1x, 

over xis: X 2 3 4 5 6 7 
--+----+----+--

3 12 10 9 4 7 
8 9 
1 13 

• 

It is typical that 8 has such a low frequency, because in the Dutch 

language 80 is ''tachtig'' but 18 is ''achttien'' in contradistinction 

with the English and German which are consistent with ''eighty'' and 

''eightteen'' and ''achtzig'' and ''achtzehn'' respectively. 
• 

The multiple errors are mostly errors of the random type and as such 

they defy analysis. 

O. 7. Detect~~p versus preventi,~n. 

No matter how good the error detecting capacity of a check system is, 

one will still be interested in minimizing the Jltimber of errors. The 

available measures, which belong mainly to the realm of h11man engineering 

fall outside the scope of this monograph. There is however also a mathe

matical approach to the problem of error prevention. This approach is 

based on the non-uniformity of the distribution of the errors over the 

code words. By selecting a code C in such a way that the overall error 

chance is minimal, a certain error prevention is achieved. The more 

• 
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error prone code words are excluded. In the Dutch population register 

system those code words, having equal decimal digits on adjacent po

sitions, are avoided, since these code words are considered to be more 

error p1one than the other ones. 

The available statistics are however still insufficient to tackle this 

problem effectively. 

Another virtually unknown factor is the increase of the error chance 

because of the added check digit. It is obvious that a high redundancy 

may very well successfully lower the percentage of the undetected 

errors, but it will also lower the percentage of correct code words. 

The detection becomes, if the redundancy increases, in a certain sense, 

less effective. The reason 1s,that how longer the code word is, the 

less infor111a tion the detection of an error provides. So wi 11 1 t be a 

small surprise to learn that a certain book contains an error. 

The ultimate goal of detection is of course a correction. This can 

often only be done by feedback towards the source of the error. In 

systems with a decentralized input and a parallel processing, it is a 

customary procedure to reject the erroneous inputs, so that the rest 

can be processed. If this rest is not the bulk of the workload, or if 

the system is processing serially, it becomes desirable to have an 

on-line correction. The problem arises to construct codes with the 

property that such a correction, which can never be infallible, is 

at least most likely. 

0.8. ~rror c9~recting codes. 

An error correcting code is a redundant code C, along with a decision 

scheme which associates with certain inproper code words a proper one, 

which is called the corrected code word. This association can in prin

ciple be done •uite arbitrarily, but it is natural to do it in such a 

way that each code word is imbedded in a set of words which can be ob

tained by making an error, of a certain type, in said code word. If 

the code is such that these sets are mutually disjoint, then an error 

of that type can be corrected by the convention that if a word of such 

a set is received then the only proper code word of that set is taken 

as the corrected word. One could also say that in such a case the 

coding is not unique, since to each object a whole set of code words is 
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allocated. The code, though no longer unique, has still to be unam

biguous and this is so as soon as the associated sets are mutually 

disjoint. Hence to each x c C there bel-ongs a set A(x) , with the pro

perty that from x ~ y it follows that A(x)l""\A(y) = 0. Let V be the 

union of all A(x), thus V =V A(x). If V=U then the code is said to 
xcC 

be perfect or close packed. In V there is an equivalence defined by 

the classes A (x) and each word of Vis equivalent with just one word 

of C. This defined a mapping t of Von C. The correction procedure 

corrects each word w of V into ~(w). If a word outside Vis received 
' 

then the error is detected, but cannot be corrected. This cannot occur 

if V=U, i.e. if the code is close packed. The term perfect is less 

apprepriate, since it is in a way not the code which is perfect but 

the correcting scheme because it corrects every error. This property 

may be desirable for the applications in the serial processes, but not 

for the systems with parallel processing where the correction is only 

needed to secure that the bulk of the input can be processed. In order 

to appreciate this point it should be noted that an error correcting code 

only guarantees the correction of a certain type of errors. In real 

life however also errors of other types are bound to occur. A perfect 

correcting scheme will ''correct'' these errors by introducing an error 
• 

of the protected type. It may therefore be a good policy to choose V 

deliberately so small that certain errors will never be ''corrected''. 

The code of the Dutch population register system is a single error 

correcting code which does not ''correct'' the transpositions. 
• 

The type of random errors is the st11mbling block., since a random 

.er~or is never guaranteed to fall outside V. In fact a random error 

correcting code Chas only one code word, since A(:x)-U for all :x. This 

trivial code is always perfect. 

0. 9. Disjoin~ codes. 

Let C again be a redundant code in a space U., It is often possible to 

find one or more codes C' with the same detecting capabilities as c. but 

disjoint with C. As will be seen later on, decimal codes defined by a 

,check equation will split up the space U into 10 mutually disjunct 

codes(, or in general k,if one is working modulo k). In section 0.7 

it was pointed out that_ though these codes are equivalent detection-
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wise, they may be different as to the overall error chance. There is 

another way in which these disjoint codes may be useful for the appli

cations. Suppose that two operating systems, perhaps sharing many 

customers, need an error protection for their oodes. By adding a check 

digit to the existing code words much of the cost of recoding can be 

avoided. If these systems draw the check digit from disjoint codes they 

have the additional advantage that each valid number of one system 

is invalid for the other system. This might eliminate a source of seeming

ly random errors. 

Another application might be a group of branch offices of a large bank 

with a central administration. If disjoint codes are used for the 

clients of the various branch offices, then one would have a protected 

code without using more digits. The traditional solution would use the, 

first digit to designate the branch office without giving any error 

detection possibility within the local administration. It is an ele

gant way of setting the redundancy at work. In cases with more than 10 

subsystems a higher modulus check might be useful (see section 2.3). 

0.10. ~tter error detection by ra~~om use 9f, a code,. 

In section 0.3 it was argued that the natural redundancy, which is 

usually present since the codes are seldom used to full capacity, may 

lead to error detection during the processing. It would be an advan

tage if this detection could be done during the input stage. This can 

be achieved by a controled use of the code. It is not uncommon to use 

only the first interval, under lexicographical ordering, of the code. 

Suppose that some system with 6 customers uses a code with 7-digit 

decimal code words. Using only the first 6 numbers guarantees that 

an error which yields a higher number is detected at the input if the 

proper measures are taken. The protection procured in this way is how

ever primarily aimed at the first (least vulnerable) decimal. Much 

better in this respect is the pseudo random use of the code, which can 

be accomplished in the following manner. With the aid of a reversible 
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deciphering one can shuffle the code words and by using the first 

( in example above, 6 ) numbers, the used part of the code is 

(pseudo) randomly distributed over the code. Now a code word received 

at the systems input can be reshuffled and if it does not belong to the 

first 6 an error is detected. In the code of the Dutch population 

register system this feature is incorporated. The reversable deciphering 

is done with a feedback shiftregister, working in the field of the com

plex ternary numbers, i . e. the complex n11mbers of the form a +bi with 

a,b E: {0,1,2} . 

• 
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CHAPTER 1. Bounds for redundant codes. 

1.0 Definitions. 

In this chapter some concepts are introduced to facilitate the dis

cussion of redundant codes. 

An error type is essentially a mapping of a set of (potential) code 

words into the class of its subsets. To each a £ U there corresponds 

a set E(a) ~ U of all those words which can be derived from a by an 

error of the given type. The set E(a) may be empty. In the case of 

the random errors each a E: U is mapped on the set U-a. A code C is 

called E-proof if E(a) I\ C=O for all a€ C. An E-proof code C admi tts 

a correcting scheme for the error-type E if E(a)nE(b) =O for all 

a,b EC, with a~ b. It is then called an error correcting code. If 

moreover correcting code is called perfect or 
8E 

close-packed. An E-proof code C is called maximal if there does not 

exist an E-proof code C' which properly contains C. If such is the case 

it follows that E(b)r,C;iik) for each blC. Schau:ffler (43) calls such a code 

closed (abgeschlossen) with respect to E. 

An E-proof code C is called optimal if there does not exist an E-proof 
• 

code in U,· with more words than C. An optimal code is necessarily ,, 

maximal. A code C is said to be p% E-proo:f if 

p/100 = I C fl E (a) I I E (a) I . 
ae:C a EC 

'lb.a redundancy of a code C in an m-ary space U is defined as 

lgm( U / C) digits or lg2 ( U / C) bits. 

An error-type E is called sy111•1letric if from a< E(b) it follows that 

b c: E(a). Most of the error-types mentioned in the introduction are 

syr,,roetric. 'lb.a type of the forgotten digits is an exception. 

For sy,cnetric error-types a metric can be defined. The distance between 

a and bis the minimal number of errors (o:f the given type) which have 

to be made in a_ in order to get b. It is called the E-distance and deno

ted by (a,b). The subscript E will often be dropped. More formally: 

d(a,a)=O and d(a,b)~k if there exists a chain a 0 ,a1 , ... ,ak with a
0

~a 

and ak =b such that ai+l E: E(a1 ); k > i ~ 0 and if there does not exist 

a shorter chain with that property. If no chain exists at all the 
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• 

distance is per definition infinite. 

The E-distance is properly called a distance since: 

d(a, b) > O and 

i) The reflezive law ~(a,a)::O; 
• 

ii) the sy1ometric law "'E(a,b)==dE(b,a) and 

iii) the triangle inequality ~(a,b)+dE(b,c) >~(a,c) 

are fulfilled. 
• 

i) is obvious, ii) follows directly from the sy111metry of the error

type E and iii) follows from the fact that the concatenation of the 
• 

chains from a to band from b to c forms a, not necessarily minimal 

chain from a to c. The definition of distance is a straightforward 

generalization of the Hamrotng distance for the single bit errors in 

binary codes. • 

If all distances are finite the space U is called connected with 

respect to E. Otherwise U falls apart into connected components. The 

diameter of a connected space U is max ~{a,b). For the random 
a.,b£ U 

errors the diameter of every space is 1. For the single errors the 

diameter is equal to the dimension of U. 

The greatest possible diameter is lul- 1 since that is the length of 

the longest chain in U. The following examples show that this diameter 

is possible. Suppose that the code words of U are listed somehow in 

a codebook·. Let the type of error be that of taking the list item 

directly preceding or following the correct one (restricted look-up 

errors). Another example is that U consists of a set of consecutive 

integers with respect to the errors of one unit in the arithmetical 

sense. The E-distance of two different words a and b, of an E-proof 

code C, is at least 2. If it were less, then b E. E(a), but for an 

E-proof code E(a) n C=O holds. If C admi tts a correcting scheme the 

E-distance betweon any two words is at least 3, for otherwise there 

would exist a word c such that d(a,c)=d(c,b) and hence c EE(a)n E(b). 

A code C is said to have a minim11m distance k when • min 
a,b€.C, 
a~b 

In view of the definition of distance it will be clear that a code 
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with minimum distance 2e+l will admitt a correcting saheme fore errors 

of the type E. It also will detect 2e or less errors . 
• 

.An E-ball of radius k and center a is the set of all words x satisfying 

~(a,x)< k. It is denoted by SE(a,k). The difference between a ball 

with radius 1 and the error sets E(a) is clearly that the latter does 

not contain a; hence 

Let E1 (a) be the set of those words obtainable from a by making 1 mis-

stakes of 

i errors. 

the type E, but which cannot be obtained by making fewer than 
0 1 . 

Thus E (a)=a and E (a)=E(a) and )-s (a i-1) E , • 

for i> 0. 

Conversely, S (a,e)= 
E 

e i .. 

1
¼ _E (a) ~ore> 0. From the definition it 

i•••••iediately that E
1 (a)nEJ(a)~o for i~j and therefore 

e . 
E1 (a) . -- ' 

i=O 
An error-type is called unifor1n if IE(a) I = IE(b) I for all. a, be U. 

Single errors are of the uniform type, whereas the transpositions are 
' 

non-uniform (E(13)={3l} and E(22)=0). An error-type is strongly uniform 

if IEi(a) I = IE1 (b) I for all i > 0 and all a, bE. U. 

1 .1 Some upe,er bo1:111ds for minim11m distance cod~,~. 

From the definition of an error correcting code it follows that 

S(a,l)n S(b,l)=O for all a,b £ C with a,'b. An i ediate consequence is 

the relation: 

I U I > I S(a,1) I . 
• 

asC 
'lberefore: 

theorem 1.1.0 The redundancy of a minimum distance 3 code is at least 

lg ( I S(a,1) I/ fcl) digits. 
m a€ C 

This bound is a generalization of the sphere packing bound, as it is 

known in the literature on the binary codes with respect to the single 

bit errors. For unifox·m error-types the bound is simplified into 

1g 
ID 

The 

S(a,1) • 

obvious generalization is the 

theorem 1.1.1 The redundancy of a minim,im distance 2e+1 code is at 

least lgm( S(a,e) /cl) digits. 
a c. C 

Proof: Let a and b be two words of a minimum distance 2e+l codec, then 

S{a,e)AS(b,e)=O, for otherwise there would exist a word ceU with the 
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property d(a,c) <e and d(b,c) <e. From the triangle inequality it then 
. . 

would follow that d(a,b) <2e, which contradicts the minimum distance 

property of C. The disjunctness of the spheres and the relation 

I S(a,e) I < I U I . After division by cf 

and by taking the 
a EC 

m-logarithm of both sides of this relation the 

theorem is found. These theorems are especially helpful for proving 

the nonexistence of certain codes. 

The Hammi.ng codes are examples of perfect minimum distance 3 binary 

codes. These codes enable the correction of single errors. Perfect

ness of codes ls a mathematical nicety, which has from a practical 
• 

point of view the disadvantage that all other errors are ''corrected'' 

by introducing another error. The point is of course that the non

per1ect codes have a higher redundancy. Perfect binary codes for correct

ing more than 1 single error are collector items. (45). 

Finding an optimal error correcting code is a matter of packing as many 

balls S(a,e) as possible in the space U. For a strongly uniform error

type a close-packed code is necessarily optimal. For a non-uniform 

error-type it is conceivable that a perfect code is not optimal since 

the latter might have many small balls whereas the perfect one possibly 

covers U with a few large balls. For the even minimum distance codes 

it is not simply a matter of packing balls since these may now overlap 

each other. The question is how this overlapping can be done effectively. 

Consider two points a and b of a minim11m distance 2e code C in the 

space U. Suppose that d(a,b)=2e, then S(a,e-l)n S(b,e-1)=0 and 
e e 

E (a) nE (b),'O. The space U is split up into 3 types of points i.e. 

~) The points of the balls with center in C and radius 

:ii) The points contained in the sets Ee (a) with a e C, 

iii)The other points. 

e-1 , 

Denote these mutually exclusive sets 

and u
2
= 

The following relations hold: 

V 
a E. C 

= . I s ( a , e-1 ) I , I u 2 I < 
&EC aeC 

by u1 ,u2 and u3 respectively. 

Ee (a). 

and I u3 I > O. 

Now define c(a,e) as the maximal n1.1mber of points ai such that 
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covering index of a. ~Since each xa u
2 

can be in at most c(x,e) sets 

E8 (a) the relation c(x,e)> f E
8

(a) I holds. Let ce = max c(x,e), 

then I u2 I .c 
e 

> 

x 4 U 
2 

c(x,e) > 

X4£ U 

aE C 

Consequently u-u1 c
8

= U2+U3 .ce> U2 
.c > E

8
(a) . Combining this 

relation with U-U = U - S(a,e-1) 
1 ac C 

~ )uJ/ICI> {(S(a.e-1)1 +jE (a)l/ce} 
a E:. C 

e-ac C 
gives 

In this way a lower bound for the redundancy has been found. For 

strongly uniform error-types this bound is simplified into 
' 

is chosen arbitrarily in C. 

The result is formulated as: 

theorem 1.1.2 The redundancy o~ a minimum distance 2e code is at least 
. . e . 

lg { · { f S (a, e-1 ) I + f E (a) ( / c } / I Cf } di g1 ts . 
m C e aE 

For strongly uniform error-types this bound is simplified into 

lg ( js(a,e-1)1 + IEe(a) j/c ), with aE.C. 
m e 

1.2 Si~Jle errors. 

Let the type of the single errors be denoted by E1 . Let n be the 

dimension of the space U of m-ary words. The set E
1

(a) consists of 

all words which differ from a on only one position. There are m-1 

Two words a and b of an E1 -proof code differ therefore on at least 

two places and that is why such a code is sometimes called bidifferent. 

Theorem 1.2.0 The redundancy of a bidifferent code in an m-ary space 

U is at least 1 digit. 

Proof: Suppose lg <lul/lcl) <l, 
m 

dimension of U. Since there are 

then 
n-1 

m 

n-1 
1e1 , where n is the 

different words with n-1 positions, 

it follows that C contains at least two words say a and b, which are 

identical on the first n-1 positions. Hence b£E
1

(a) and consequently 

C is not E
1

-proof. 

Theorem 1.2.1 There do exist bidifferent m-ary codes with a redun

dancy of 1 digit. 
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Proof: Let Ube the space of all m-ary words with n positions. One may 

ass,1me that the symbols of the words stand for the residue classes 

modulo m. If this were not the case one can first make a 1-1-correspondence 

between the symbols and these residue classes. Now let a1 a ... a be a 
n 2 n 

word of U and consider the s1im s= a1 . There are m values possible 

for sand thus the words of U are arvided into m classes according to 

that value. These classes all have the same n11mber of elements. This 

is so since them different words which are equal on say the first 

n-1 positions clearly are in different classes. From this it follows 

that each of these classes is a code with 1 digit redundancy. Moreover 
• 

since words differing from each other on only one place cannot have the 

same digit sum modulo m, each one of these codes is bidifferent. In view 

of the preceding theorem they are also optimal. 

Just for curiosities sake two e:,r-amples of maximal bidifferent codes with 

a higher redundancy will be given. 

000, 101, 202, 303, 404, 555, 656, 757, 858, 959, 

011, 112, 213, 314, 410, 566, 667, 768, 869., 965, 

022, 123, 224, 320, 421, 577, 678, 779, 875., 976., 
033, 134, 230, 331, 432, 588, 689, 785, 886, 987, 

044, 140, 241, 342, 443, 599, 695, 796, 897, 998; 

This is 50 word 3-digit decimal maximal bidifferent code. A similar one 

with 52 words is given in the next example. 

000, 101, 202, 303, 404, 505, 666, 767, 868, 969, 

011, 112, 213, 314, 415, 510, 677, 778, 879, 976, 

022, 123, 224, 325, 420, 521, 688, 789, 886, 987, 

033, 134, 235, 330, 431, 532, 699, 796, 897, 998, 

044, 145, 240, 341, 442, 543, 

055, 150, 251, 352, 453, 554; 

The construction of an optimal bidifferent code is equivalent with a 

generalization of the problem of the rooks, well-known from recreational 

mathematics. (see 27, p. 240). It is the problem of how to place m rooks 

on an m-th order chessboard so that no rook can capture any other one in 

a single move. The generalization uses an-dimensional board with genera

lized rooks, say hyperrooks. The equivalence is obvious since the set U 
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of all m-ary words can be taken as an n-dimensional m-th order chessboard. 

A hyperrook placed on a field a covers exactly the fields of the set 

E1 (a). A bidifferent code is therefore a set of fields Where hyperrooks 

can be placed such that they cannot take each other in one move. The 

code is maximal if there is no uncovered field left in U. The optimal 
n-1 codes, having m words are the solutions of the rook problem. For n=2 

all maximal solutions are optimal, but the examples mentioned above show 

that such is no longer the case for n >2. Other error-types correspond 

in this terminology with fancy chessman, having esoteric ways of moving. 

Theorem 1.2.0 can also be derived from theorem 1.1.2. The covering 

index c(a,1) is obviously n for every a, since this is the maximal 

number of points differing from a on one place and from each other on 

two places. Thus as IE1 (a) I= n(m-1) holds it follows that the minimum 

redundancy is lg (l+n(m-1)/n)=l digits. 
m 

Theorem 1.2.2 The redundancy of an-digit minimum distance 2e+1 m-ary 
e n i 

code is at least lg ( ( 1 )(m-1)) digits. 
m i=O · 

The proof follows 
i 

for E (a). 

f h 1 1 1 b i (n)(m-1)1 at once rom t eorem .. by su st tuting i 

This bound is known in the binary case from Ha ing (17). Let the size 

of an n-digit m-ary code with minimum distanced with respect to the 

single errors be denoted by A(m,n,d). 

Han1111ing proves in the same paper that A ( 2, n, 2e) ::A. ( 2, n-1, 2e-l) . His 

reasoning is simple: Suppose a minimum distance 2e code with n bits 

is given. By chopping off one bit a n-1 bit code is formed. Obviously 

this code has at least a minimum distance 2e-1 since the chopped-off 

bit contributed at most one unit to the distance. Thus A(2,n-1.2e-1) 

> A{2,n,2e). Conversely when a mini11111m distance 2e-1 code with n-1 

bit is given, a n-th bit can be added such that the n11mber of ones in 

each code word becomes even (parity check). The words which were at 

a distance 2e-1 from each other are now necessarily different on the 

n-th position, as 2e-1 is odd. For the pairs which had already 

a greater distance the n-th bit is irrelevant, so that a miniJll,.im 

distance 2e code with n bits is derived. Hence A(2,n,2e) >A(2,n-1,2e-1) 

and therefore A(2,n,2e)=A(2,n-l,2e-1). Only the first part of this 

reasoning is valid for the higher number bases and thus: 

• 
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Theorem 1.2.3 A(m,n-1,2e-1) >A(m,n,2e) form >2. 

A counter example will show that the converse of the theorem above ~s 

not true. Consider a 4-digit minimum distance 3 ternary code. Substitu

tion in 1.2.2 gives A(3,4,3) <3
4 /(1+4(3-1))=9. The 9 word code: 

, 0111, 0222, 1021, 1102, 1210, 2012, 2120, 2201 is therefore opti

mal. 

This code is in fact a Graeco-Latin square of order 3. 

0 1 2 

0 00 11 22 .. 
• 

1 21 02 10 

2 12 20 01 

A 5--<:ligit minimum distance 4 ternary code would, if it had 9 words, be 

the same as 3 Latin squares of order 3, such that each pair forms a 

Graeco-Latin square of the same order. But it is well-known that this 

is impossible (see Ryser 42 p.80). 

With the aid of theorem 1.1.2 an upper bound for A(m,n,2e) can be 

derived which is better than the combination of the theorems 1.2.2 and 

1.2.3, if eJn and not worse if eln-

n Theorem 1 . 2 . 4 A (m, n, 2e) < m / ( 
e-1 

. i=O • 

Proof: The maximal number of words differing from a certain word a 

one places and from each other on at least 2e places is clearly equal 
i 

to entier(n/e). The theorem now follows by substitution of E1 (a) and c
8

• 

That this bound is an improvement can be 

e-l n i n e 
(.)(m-1) +( )(m-1) /entier(n/e) > m. 

._,,. 1 e 
1=u 

n e 
or ( )(m-1) /entier(n/e)> 

e 

seen by comparison. 
e-1 

(n~l) (m-l) i 
i=O 1 

n n-1 
Finally (

8
)/(e-l) ,,,.,n/e> entier(n/e) which is obviously true and the 

equality sign therefore only holds if eln, 
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In connection with A(2,n,2e):::A.(2,n-1,2e-1) an interesting corollary 
n n follows. For, A(2,n,2e+1)=A(2,n+1,2e+2)< 2 / (

1
) where the equality 

11 1 i=O sign only holds if e+ n+, hence 

Corollary :A close-packed minimum distance 2e+1 binary code is only 

possible if e+l(n+l. 

This corollary easily sh•ws the non-existence of a 90 bit minimum 
- -- 9o 9o 12 5 I 90 . distance 5 code. Though 1+( 1 )+( 2 )=2 and (

2
) ( 

3
) are both valid 

( the first condition is H~mming's sphere packing condition whereas 

the second comes from theorem 1 of Shapiro and Slotnick (45)), 

2+1 

The 

9o+1 does not hold. 
· 5 2 

upper bound for A(3,5,4) becomes 3 /(1+5x2+10x2 /2)= 243/31 

The true value for A(3,5,4) is 6 as is shown by the example: 

7. 9 .. 

I 

01111, 11202, 12120, 20221, 22012. That this code is optimal can be 

seen as follows: Suppose that 3 words had the same symbol on the same 

position, say a O on the first position. Then these words have to differ 

on all other positions. Since per1nuta tions of the symbols per position 
• 

do not change the distance between the words, those 3 words may be 

taken as , 01111, 02222. These words form however a maximal code, 

for each 5-digit word has to have at least 2 equal symbols on the last 

4 places and therefore cannot differ on 4 places with those 3 words. 

Consequently each symbol can occur at most twice on each position, 

which is so in the example. Hence 6 is the maximal n,,1mber of code 

words. The same reasoning shows: 

Theorem 1.2.5 m(m-1)> A(m,m+2,m+1). 

For m=4 this gives 12 >A(4,6,5), but this bound can be sharpened by 

remarking that, form >3 an optimal code cannot have 2(m-l) words 

which share on a certain position m-1 symbols of one kind, say a 0 

and m-1 symbols of another kind, say a 1. As the first m-1 words one 

may again take 

m-1 

0 

0 

• 

0 

0 

1 

• 

m-2 

• • • 

• • 

• • • 

• • • 

and as the second m-1 words one may take: 

0 

1 

• 

m-2 



m-1 

1 

1 

• 

1 

• 

.. 

• 

• 

30 

.. 

• 

• 

• 

m+2 

• • • 

• • • 

• • • 

• 

• • • 

In each of the words, starting with a ''l'', the m-th symbol (i.e. ''m-1 '') 

has to occur at least twice, as there are m+l places left and as the 
• 

• 
symbols from Oto m-2 may occur only once in each of those words. But 

them-th symbol itself may occur only once on each position in the 

words having already a ''l '' in common. Thus there are 2 (m-1) positions 

required and 2(m-1)> m+l form> 3. Thus; 
2 

theorem 1.2 .6 (m-l)+(m-1) (m-2)=(m-1) ~A(m, m+2, m+l) for m > 3. That this 

bound is sharp, at least for m=4Jis shown by the example: 

• 

• 

Thus A(4,6,5)=9. 

000000 

0 1 1 1 1 1 

0 2 2 2 2 2 

1 3 3 2 1 0 

l 2 0 3 3 1 

2 3 0 1 2 3 

2 1 3 3 0 2 

331032 

3 0 2 3 1 3 

Form >4 a better upper bound is given in: 

Theorem 1.2.7 If d >n(m-1)/m then md/(md-n(m-1))> A(m,n,d). 
' 

Proof: Let an n-digit m-ary code with minimum distanced have k words ■ 

Any pair of words has on at most n-d places the same digits. Call an 

occurrence of equal digits on a same position a match. Since the 

number of word 
k k pairs is (
2

) there are at most (n-d)(
2

) matches in 

the code. Now let kij be the number of code words which have the 

i-th dig1 t on the j-th position. The n11mber of matches on the j-th 

position is then 
m ki. 

( . J). N h f ow t e minimum o 
1=1 2 

i:f all are equal, for it is well-knowr1 that 

this s1.1m is 

m 2 
min( xi) 

i=l 

reached 



m 

and x =k is reached 
i 

for 

m 

i=l 
l.J J -
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x.=k/m. 
l. 

Thus 

= (k2/m-k)/2. 

So that the total number of matches is at least n(k2/m-k)/2 and thus 

k/2 gives 

(n-d) (k-1) >n(k/m-l)=n(k-m)/m. After shuffling te21ns md>k(md-(m-l)n) 

the theorem is proved. 

Corollary:m(m+l)/2>A(m,m+2,m+l). For m>5 this bound is better than the one 

of theorem 1.2.6. It is not known to the author whether A(5,7,6)=15 is true. 

In the binary case the bound of theorem 1.2.7 is known as the Plotkin 

bound (see 38). This bound is also k.now11 to be true 1:f m is a prime 

power (see 37). 

Adding a check digit to the code words is perhaps the best knowri method 

for introducing redundancy. A check digit is a digit which is determined 
• 

by the other digits. The latter are free to take any value and are for 

that reason called infor111ation digits. Let M(m,n) be the set of all 

m-ary code words with n digits. If a code word of M(m,n) is extended by 

a check digit then it becomes a member of M(m,n+l). Thus M(m,n+l) contains 

a subset C of such extended code words and IC I =I M(m,n) I :: 111n=M(m.,n+l) I /m. 

The redundancy of C is 1 digit. The introduction of a check digit is an 

erderly way to define a subset with a redundary of 1 digit. If the check 

digit can be expressed as a function which admitts a simp1e computation, 

it may also be a concise way of doing it. Moreover it is often possible 

to derive the detecting properties from the properties of the function. 

It is in general not true that every code with 1 digit redundancy can 

be considered as a code with a check digit. Examples are the 3 bit binary 

code {000,001,101,111} and the 2 digit ternary codes {10,21,20} or 

{00,01,11} . That for instance the third bit in the first code cannot 

be a check bit follows from the observation that in the first two words 

the first two bits are equal and therefore cannot give di£ferent check 

bits. For bidifferentcodes however the converse is in fact true . 
• 
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Theorem 1.3.0 In a bidifferent code with 1 digit redundancy each digit 

can be considered as check digit. 

Proof: The i-th digit can be considered as a check digit if all words 

are different on the other n-1 positions. This is obviously so because 
' of the bidifference of the code. 

There are various ways to define a check digit or what amounts to the same, 

to define a function on a finite set. The most general one is the method 

of the table look-up. The arg,.iments of the function are simply listed and 

the proper function-value is entered behind each argument. The method 

though general is not attractive for applications, the very simple ones 

excluded. It is in cases of any interest virtually impossible to con

struct a code with precribed properties. Moreover it is only possible 

by means of a large memory to have automatic detection of errors. It is 

therefore natural to apply check digits defined by some sort of a formula, 

or an algorithm. A simple example is the parity check in the binary case. 

The check bit is chosen in such a way that the nt1mber of 1 's in the code 

words (check bit included) is even. The parity check is well-known and 

finds wide application in the computer design. Binary codes however 

are not popular for use by h11man beings. It is mentioned here only as 

an illustration. It may be interesting to note that the complement of 

the parity check is a disjoint code, called the imparity check. The space 

U of then-bit code words is divided into two equal parts, i.e. the 

words with an even number of l's (the parity check code) and the words 

with an odd p11mber of 1 's ( the impari ty check code) . The codes are 

essentially the sama since the inversion of one bit (i.e. interchanging 

1 and 0) makes the codes identical. The parity check can easily be ge-

neralized for an arbitrary n11mber base m. Let ai be the symbol on the 

1-th position of an Cn-V-digi t m-ary 
n 

£ound such that a1=0 (mod m) or 

the straight mod~fg m check. It was 

code word .. Ann-th digit can then be n-1. 
a= - a1 . This check is called 

n i::::O 
used ifi the proo£ of theorem 1.2.1. 

For m=2 it is the parity check. The detecting properties of this check 

will be discussed in ch.2. At present it only serves as an example for 

the generation of a check digit by means of a formula. In that light 

it is important to note that the check digit can be found recursively 

as follows: Take c0=0 and ci =ci_1-a1 for i > o, then c 1 is the check 
n-
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digit. If the digits of a word are fed into a cyclic m-counter one after 

the other, the counter will end in the initial state after that the check 

digit has been entered. The state of the circuits is in each stage giving 

the value of the check digit no matter how many digits are fed into it . 
• 

This is a very desirable property for the technical implementation of 
• 

check digit verifiers. The example of the cyclic m-counter is simple 

in the sense that its reaction is independent of the positions of the 

various digits. The drawback is of course that the code is of no high 
• • 

quality. Later on codes will be introduced with crooked and position 

dependent ''m-counters''. Under a crooked m-counter is understood a 

(sequential) circuit with m states si and m possible inputs ai;O <i <m-1 

such that two conditions are fulfilled i.e.: i) Any input acting upon 

the circuit in different states has to bring the circuit into a different 

state. ii) From any state, different inputs have to bring the circuit 

into different states. 

Let a. bring the circuit from the states. into the state sk and let 
1 J 

this be denoted by sk=sjai. The state transition matrix lij defined 

by 1
1
j-k is a Latin square. This is so because by i) no row contains 

an element twice and by ii) the same holds for the columns. Hence in 

each row and in each column every symbol (state) occurs just once. 

The equation sk =s j -M-x 

states and the inputs 

is therefore uniquely solvable. Representing the 

by 

structure which is known 

the same set of m symbols gives an algebraic 

as a quasi group (see 16 p.7). A quasi group 

is a set Q in which a binary operation >< is defined such that the 

equations axx=b and xxa =bare both uniquely solvable for x if a,beQ. 

Relatively little is known about Latin squares or quasi groups.Of 

importance is the knowt1 (see 14). Theorem 1. 3 .1 A qua!li .ci:oup -
in which the associative law ax(bxc)(a.xb)xc holds is a group. As a 

matter of fact this may be taken as the definition of a group, in which 

case it is of course no theorem .. It is possible to define a crooked 

m check by means of a quasi group (Q,x) as follows: 

i) Choose two elements c0 and en arbitrarily in Q. 

is the i-th digit of an(n-l}digit code word with symbols from Q. 

iii) The solution of c =c 1 x xis the check digit a . The check n n- n 
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equation of such a crooked m check would be ( .•. ( (c0 xa1 ) xa
2

) x ••• ) xan =en. 

Theore■ 1.3.2 Every crooked m check is E1-proof. 

Proof: Let a1a . , . a be a word of the code satisfying 
2 n . 

(, .. ( (c x.a.1 ) M ••• ) xa1 ) x ... ) xa =c and let the i-th digit, after making 
0 n n 

a single error, be a'. If this erroneous word also belonged to the code 
i 

then ( ... ((c0 xa
1

)x .•. )xa;)x ... )xan=en would hold and hence 

( ... (c1_1xa1)x ... )xa
0

=( ... (c1_1xa~)x ... )xan. By cancelling all unaffect

ed a's on the right of a1 and ai, it v.t0uld follow that ci_1xai~c
1

_
1
xat 

and after oa.ncelling o1_1 from the left that ai -ai, contrary to the 

hypothesis that a single error was made. 

Since the vast majority of the real life errors is affecting only single 

digits, oodes which are not E1 -proof ar~ of little interest for the appli

cations. 'l'he codes published until now are mostly of the crooked sum 

type, or at least can be viewed as such. In fact the straight sum 

check is also a special case, b,as.od on the cyclic group. For the 

deci.m<al codes, which are after all the subject of this monograph, it is 

of intexest to know how many Latin 

to be unknown up to now, but it is 

squares exist. This 
27 

at least 6xl0 . 

number seems 

It is har,dly surprising that not all these possibilities have been 

tested on their detecting merits, especially so since most of the 

codes are very hard to analyse. Only two of the quasi groups of order 

10 are associative, and thus admitt, as will be seen later on, a fairly 

&asy study. 

The next stage of complexity is that the way of counting is not only 

crooked but also dependent on the position of the digit which 1s fed 

into the circuit. lat n quasi groups be given, all based on the same 

s,et Q but with di:f:ferent operations xi for O <i <n. The recipe for 

making a check. digit is the same as above except that the recurrence 

is now defined by: oi+l =c1 x 1 ai+l for O < i < n-1 and the check digit 

•n· by the equation o ==c 1 x 1a . These co,des are also E
1

-proof as n n- n-· n 
can be seen by the same argl1ments n used for the proof of theorem 

1~3.2. The number of possible decimal co,des becomes now hopefully or 

dist1essingly high. Hopefully because the chance that a desirable one 

exists is gone up, but distressing because the chance that such a one 

can be found gets down. The latter is even more so since the job of 
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testing each case gets harder too. If a periodic sequence of quasi 

groups is taken the procedure is less complicated and hence more 

manageable. Most of the new codes of chapter 3 fall into this cate

gory. Let this period be two, then the rec11rrence becomes: 

c2i+l=c2ix0a 2i+l; c 2i+2=c2i+lx1 a 2i+2 or by taking two steps at the 

time c 2i+2=(c21x0a 2i+l)x 1a 21+2 . The latter relations can be considered 

as a ternary operation, which written in the functional notation, 

looks like c 2i+2=g(c2i,a21+1 ,a2i+2 ). The ternary function g is equi

valent with a Latin cube of a $pecial type, namely one constructed 

with the aid of two Latin squares. The code would work just as·well if 

it were made with a more general Latin cube. That these exist is shoWl 

in the next theorem. 

'Iheorem 1.3.2 There exists a Latin cube not based on two Latin squares. 

Proof: Consider the 4X4X4 Latin cube with the following four layers 

0 l 2 3 1 0 3 2 2 3 0 l 3 2 1 0 

2 0 3 1 0 1 2 3 3 2 1 0 1 3 0 2 

1 3 0 2 3 2 l 0 0 1 2 3 2 0 3 1 

3 2 1 0 2 3 0 l 1 0 3 2 0 1 2 3. 

If this cube g(i,j,k) were based on the Latin squares p(i,j) and 

q(i,j) then g(i,j,k)=p(i,q(j,k)) would hold. Now if g(i,j',k')= 

g(i,j,k) it follows that q(j',k')-q(j,k) and hence that g(i',j',k')= 

g(i', j, k) are true. In the1· example however g(l, O, 1 )=<>=g(l, 1, O) but 

g(0,0,1)=1 and g(0,1,0)=2. Since g(O,O,O)=g(l,0,1)=0 and g(0,1,0)=2 

but g(1,1,1)=1 it follows that g(i,j,k)=p{j,q(i,k)) does not hold 

either. Nor does g(i,j,k)=p(k,q(i,j)) because g(1,0,l)=g(0,1,1)=0 

and g(l,0,0)=1 but g(0,1,0)=2. 

A Latin cube like the one mentioned above will be called irreducible .. 

Codes based on irreducible Latin cubes have not yet come to the 

attention of the author. In general an n-digit E1-proof code can be 

considered as a Latin hypercube with n dimensions. Ann dimensional 

Latin hypercube is said to be product of two Latin hypercubes if 
' 

g(i1 ,. -~1n)=p(i1 , • .. _,ik ,q(ik+i•· .. ,in)). If such is the case the 

hypercube g is called reducible. The coordina-tes do not have to occur 
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in the same sequence on both sides of the equation. The factors of a 

reducible hypercube may be reducible too. Thus an-dimensional hyper-

cube may be the product of n-1 Latin squares. If such is the case it 

will be called completely reducible. All but one of the known codes 

which will be presented in the next chapter are completely reducible 

Latin hypercubes. As such they all admitt a simple graphical respresent

ation which consists of a ''staircase'' o:f Latin squares as shown on page 37. 

The check digit belonging to the code word a1a 2 ... a 6 
is :found as follows: 

First sel.ect the top entry a
1 

then take a
2 

in the coJu mn headed by a
1

• 

After that a 3 is searched in the same row as a 2 but in the next square, 

a
4 

is found in the same column as a
3 

but in the square below and so 

on Finally the check digit is found at the righthand side of the last 

square in the s.ame row as a 6 • In the example the check digit of 671465 

is found to be 1. The idea of the Latin staircase is probable very old. 

It can be found already in the papers of W. Friedman the renow11 American 

cryptanalyst (13). The method is good for field use and :for instructional 

purposes. 

1.4. Check equations. 

In general it is advantageous not to use the functional relation between 

the check digit and the information digits in its explicit form 

a =f(a1 , ... ,a 1 ), but to use an implicit form g(a1 , ... ,a )=constant 
n n- n 

instead. Because of theorem 1.3.0 the two forms are equivalent :for E1 -

proof codes with one digit redundancy .. For codes with a higher redun

dancy however the check equation is more general. The popular modulo 

11 check for decimal codes is an example. This check will be discussed 

at length in chapter 2. Here it is sufficient to note that this code 

in its most common form is defined as the set C of all words satis:fying 
n i 

the equation. (-1) ai=O (mod 11). Now a J 
i~ n 

or any other ai, is not 
n-1 

always solvable from the equation, since 
n i -(-1) (-1) a may have 

i=l i 
the value 10, so that no decimal digit a can satisfy the equation. 

n 
The problem might be solved by narrowing down the range of the function 

f(a
1

, ... ,an_1 ), in other words by taking a function for which only 

''proper'' values .for the arguments are alloweJ. 



37 

0 1 2 3 4 5 7 8 9 

0 4 5 1 2 3 6 7 8 9 0 1 2 3 4 5 6 7 8 9 

1 8 9 0 6 7 2 3 4 5 4 7 8 9 0 6 5 1 2 3 

2 7 8 9 0 6 3 4 5 1 5 6 7 8 9 0 1 2 3 4 

3 6 7 8 9 0 4 5 1 2 1 0 6 7 8 9 2 3 4 5 

4 0 6 7 8 9 5 1 2 3 2 9 0 6 7 8 3 4 5 1 

5 9 0 6 7 8 1 2 3 4 3 8 9 0 6 7 4 5 1 2 

6 3 4 5 1 2 7 8 9 0 6 5 2 3 4 7 8 9 0 

7 2 3 4 5 l 8 9 0 6 7 4 5 1 2 3 8 9 O· 6 

8 1 2 3 4 5 9 0 6 7 8 3 4 5 1 2 9 0 6 7 

9 5 1 2 3 4 0 6 7 8 9 2 3 4 5 1 0 6 7 8 

• 0 4 5 1 2 3 6 7 8 9 0 1 2 3 4 5 6 7 8 9 

1 8 9 0 6 7 2 3 4 5 4 7 8 9 0 6 5 1 2 3 

2 7 8 9 0 6 3 4 5 1 5 6 7 8 9 0 1 2 3 4 

3 6 7 8 9 0 4 5 1 2 1 0 6 7 8 9 2 3 4 5 

4 0 6 7 8 9 5 1 2 3 2 9 0 6 7 8 3 4 5 1 

5 9 0 6 7 8 1 2 3 4 3 8 9 0 6 7 4 5 1 2 

6 3· 5 1 2 7 8 9 0 6 5 1 2 3 4 7 8 9 0 

7 2 3 4 5 1 8 9 0 6 7 4 5 1 2 3 8 9 0 6 

8 1 2 3 4 5 9 0 6 7 8 3 4 5 1 2 9 0 6 7 

9 5 1 2 3 4 0 6 7 8 9 2 3 4 5 1 0 6 7 8 .. 
0 4 5 1 2 3 6 7 8 9 8 

1 8 9 0 6 7 2 3 4 5 2 
• 
2 7 8 9 0 6 3 4 5 1 3 

3 6 7 8 9 0 4 5 1 2 4 

4 0 6 7 8 9 5 1 2 3 5 

®19 0 6 7 8 1 2 3 4 l 

6 3 4 5 1 2 7 8 9 0 9 

7 2 3 4 5 1 8 9 0 6 0 

8 1 2 3 4 5 9 0 6 7 6 
' 

9 5 1 2 3 4 0 6 7 8 7 
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Another advantage of the check equation is that it often admitts an 

easier analysis of the various detecting propertiesJsince the check 

digit no longer plays a special role. Also from a technical point of 

view it is as a rule better to have a check procedure which is uniform 

for all digits. For general codes which are irreducible Latin hyper

cubes the difference would vanish. It then is only a different way 

of looking at the same thing. 

1 . 5. ~ <?':!:iou,s, ,3_ digit deci~~ .. l code. 

It is remarkable that up to now no pure decimal codes, with a redun

dancy of one digit are known, which detect all single errors, all 

transpositions and al1 twin errors. It will be hard to prove that 

such codes cannot exist, since the proof would have to depend on 

special properties of the n1J1nber 10, as for other number bases there 

do exist codes with said properties. An example will be given'of a 

3-digit decimal code which detects not only the error-types mentioned 

above, but also the jump transpositions and the jump twin errors, 

as well as the phonetic errors. This example shows that the non

existence would only be valid for codes with more than 3 digits. 

The three digit code is equivalent with a Latin square, (i.e. single 

error-proof), with certain special properties. Denote the elements 

of the square by aij. The detection of the transpositions requires 

that: 1) aij~aji' for i~j and 2) if aij=k then a 1k~j. The twin 

error detection requires that : 3) a ... !:a .. , for il=j and that 4) if 
11. JJ 

aij=j then a1k~k for k~j. Finally the detection of the jump transpo-

sitions requires that: 5) if a 1 j=k then a,tjpi, for i~k, whereas for 

the detection of the j111np twin errors it 1.s necessary that: 6) if 

a 1j=1 then akj~k, for k~i. 

4) is equivalent with the condition that each row has, as a permutation 

of the column entries, at most one fixed point. Since each column 

contains all 10 decima1s, every entry is fixed in some row and 

never in two rows. Hence each row permutation has to have exactly 

one fixed point. The same conclusion holds for the column permutations 

with regard to 6). The condition 3) requires that the main diagonal 
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of the square is a permutation of the decimal digits. By putting a 1i=i 

all three conditions are fulfilled. This takes care of the main dia

gonal. The remaining 90 places outside the main diagonal can be divi-

k~i. All triplets, considered as unordered triplets, should be different. 

The conditions 1),2) and 5) are fulfilled if the triplets can be 

arranged in 30 blocks, each containing 3 decimals and each decimal 

occuring in 9 blocks. Moreover each pair has to occur only once as an 
• 

ordered pair. The design on the next page fulfils the requirements. 

Eacho~ the 30 blocks has to be oriented to define the ordered pairs. 

There are 16 ways to assign the orientation, since the blocks (rows) 

fall apart into four orientation independent classes, namely {0:3} ; 

{4:21} ;· {22,24,26,28} ; {23,25,27,29}. The orientation can per class 

be inverted, independent of the other classes. An inversion of all 

classes results in a reflexion of the entire square, with respect to 

the main diagonal. Hence 8 different solutions are obtained in this 

way. The resulting square, corresponding with the orientation given 

to the right of the blockdesign, is written out below. The code does 

not detect all phonetic errors, but by interchanging 1 and 4, it does. 

The square obtained after carrying out this exchange is given next 

to the original one. From a practical point of view the code is per

haps not recommendable since none of the triple transcription errors 
• 

aaa ~bbb is detected. A £urther disadvantage is that none 0£ the cyclic 

errors abc~bca is detected. This error-type might very well be expected 

for the small 3-digit code words. 
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The block design: The resulting square: 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 
, 

,A .. 
00 1 1 1 0 0 0 0 0 0 0 + 0 0 5 3 4 2 6 7 8 9 1 

01 1 1 0 1 0 0 0 0 0 0 - 1 0 1 7 8 5 0 3 4 6 2 

02 1 0 1 1 0 0 0 0 0 0 + 2 4 9 2 0 3 8 5 1 7 6 

03 0 1 1 1 0 0 0 0 0 0 - 3 2 6 4 3 0 7 8 9 1 5 

04 1 0 0 0 1 1 0 0 0 0 + 4 3 7 0 2 4 1 9 6 5 8 ... 
05 1 0 0 0 0 1 1 0 0 0 + 5 1 4 6 9 8 5 0 3 2 7 

... 
06 1 0 0 0 0 0 1 1 0 0 + 6 5 8 9 1 7 2 6 0 3 4 

07 1 0 0 0 0 0 0 1 1 0 + 7 6 2 8 5 l 9 4 7 0 3 ... 
08 1 0 0 0 0 0 0 0 1 1 + 8 7 3 5 6 9 4 1 2 8 0 ... .. 
09 1 0 0 0 1 0 0 0 0 1 - 9 8 0 1 7 6 3 2 5 4 9 

10 0 l 0 0 1 0 0 1 0 0 + 
11 0 1 0 0 0 1 0 0 1 0 - The interchanged square: 

12 0 1 0 0 0 0 1 0 0 1 + 0 1 2 3 4 5 6 7 8 9 

13 0 1 0 0 1 1 0 0 0 0 - 0 0 2 3 1 5 6 7 8 9 4 .. ... 
14 0 1 0 0 0 0 1 1 0 0 - 1 3 1 0 2 7 4 9 6 5 8 

15 0 1 0 0 0 0 0 0 1 1 - 2 1 3 2 0 9 8 5 4 7 6 

16 0 0 1 0 1 0 0 1 0 0 - 3 2 0 1 3 6 7 8 9 4 5 

17 0 0 1 0 0 1 0 0 1 0 + 4 9 5 7 8 4 0 3 1 6 2 

18 0 0 1 0 0 0 1 0 0 1 - 5 4 8 6 9 1 5 0 3 2 7 
• 

19 0 0 1 0 0 1 1 0 0 0 - 6 5 7 9 4 8 2 6 0 3 1 

20 0 0 1 0 0 0 0 1 1 0 - 7 6 4 8 5 2 9 1 7 0 3 

21 0 0 1 0 1 0 0 0 0 1 + 8 7 9 5 6 3 1 4 2 8 0 

22 0 0 0 1 1 0 1 0 0 0 + 9 8 6 4 7 0 3 2 5 l 9 

23 0 0 0 1 0 1 0 1 0 0 + 
• 

24 0 0 0 1 0 0 1 0 1 0 + 
25 0 0 0 1 0 0 0 1 0 1 + 

... .. 
26 0 0 0 1 1 0 0 0 1 0 -
27 0 0 0 1 0 1 0 0 0 1 -
28 0 0 0 a 1 0 1 0 1 0 -
29 0 0 0 a a 1 0 1 0 1 -

This vulnerability for new error types is again an example of the 

designers dilemma, that the design constructed by virtue of some 
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regularity, is weak because of that very regularity. The irregular 

designs however, though often more numerous, are as a rule harder 

to find. Moreover the verification of the properties usually is also 

more difficult. For curiosities sake, an irregular code wh~ch has the 

same virtues as the regular one above, will be given. Though none 

of the triple transcription errors are detected by this code, it turns 

out that 82.8% of the cyclic errors is detected, which makes the irre

gular code superior to the regular one. 

The irregular square: 

0 1 2 3 4 5 6 7 8 9 • 

0 0 9 8 l 2 6 4 5 7 3 

1 2 1 3 5 9 0 7 8 4 6 

2 5 4 2 8 3 9 1 0 6 7 .. 
3 7 0 9 3 6 1 5 4 2 8 

4 8 6 0 7 4 3 9 2 5 1 

5 3 8 6 4 7 5 0 l 9 2 

6 9 2 7 0 8 4 6 3 1 5 

7 6 5 4 9 1 2 8 7 3 0 

8 1 3 5 6 0 7 2 9 8 4 

9 4 7 l 2 5 8 3 6 0 9 

• 

To extend such a 3-digit code to a 4-digit one is a tremendous task. 

It-would be equivalent with the construction of a Latin cube satis£ying 

a 1n1mber of asy,,uoetry conditions. 

1.6. ~~n le error correc~ing <!,ecimal code,s. 

According to the upper bound given in theorem 1.2.2 with e=l, the 
• 

maxim11m n11mber of code words id• a minim11m distance 3 m-ary code with 

n digits, is: mn/(l+(m-1) xn). This means that for n=l the upper bound 

is 1, giving the notorious, perfect 1-word code. For n-m+l a perfect 

code with 2 check 

as l+(m-1) x(m+l) 

digits and m-1 information digits seems possible, 
2 

1n • It is well-known (see 37) that these codes 

exist if mis the power of a prime. It is not known (at least not to 

the author) whether these codes exist for other m. Some light throws 

the next theorem: 
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Theorem 1.6.0. If a minimal distance 3 m-ary code with m+l digits and 
m-1 

m words exists, then there exists a Graeco-Latin square of the 

m-th order. 

Proof: Consider the subset of the code words ending with m-3 fixed 
2 digits, say zero's on the last m-3 places. This is a set of m words 

which differ from each other on at least 3 places of the first 4. 

From this it follws that on the first 2 places all m2 combinations 

occ1Jr exactly once. Let these digits be denoted by i and j and let 

the digit ~n the third and the 

vely. The matrices aij and b . 
iJ 

fourth place be aij and bij respecti

are the orthogonal Latin squares re-

quired to prove the theorem. 

Ten years ago it would have been conjectured that this theorem dis

proved the existence of such a perfect code for m=l.O, but now only the 

case m=6 can be discarded. For the existence of 10x10 Graeco-Latin 

squares see Ryser (42) chapter 7. Such a Graeco-Latin square forms 

a 4 digit minimum distance 3 decimal code with 100 words. Even the 

existance of a 5 digit mini111•1m distance 3 decimal code with 1000 
m-1 words is unknown. The existence of the perfect code with m 

words isaninteresting combinatorial problem. Its place among the 

other problems like the existence of finite projective planes is 

not yet clear. Consider the statements: 

A :m. is a power of a prime n11mber. 

B:There exists a field with m elements. 

• 

C:There exists a finite projective geometry with m+1 points on each 

line. 

D: There exist m-1 mutually orthogonal m x m La tin squares. 

E:There exists a pair of orthogonal Latin squares, i.e. a Graeco

La tin sq11a re, of the m-th order • 

F:There exists a (perfect) minimum distance 3 m-ary code with 

words of m+l digits. 

m-1 
m 

The following implications are known: (see diagram on the next page) 

A.-+ B; B-+ C; C-+ D; D-+ E; and F-+ E; D-+ C; B-+ A.; and B-+ F. The author 

could not prove c-+ F nor n-+ F. For m=6 E has been disproved and 
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hence F and all others. For m=l01 A and Bare not true, Eis true and 

C,D and Fare open. 

C~D 'C • _A~ •B 

~E+-F 

For practical applications a double modulo 11 check with error 

correcting capacity is available, with all the disadvantages of the 

modulo 11 method . 

• 

, 
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Chapter 2. Survey of old and new error detecting decimal codes 
A 

• 

2.0 Introduction 

In this chapter some known decimal error detecting codes will be 

described. Also a few new ones, designed by the author, are included. 

The codes are compared on the basis of certain conditions, set forth 

in section 2.1. In judging the codes it should be borne in mind that 

at the time that these codes were designed these requirements were 

often not known. Or more precisely that the designers were not aware 
• 

that those criteria were of importance. Two examples will suffice 

to make this point clear. The I .B.M. code of section 2 .3 .o was 

designed to detect the single errors as well as the transpositions. 

The code does detect the single errors for 100%, but the transpositions 

for only 98%, since the transposition of O and 9 escapes detection. In 

some applications therefore the code words in which a O and a 9 occur 

on adjacent positions, are omitted {see 33). A more serious flaw 

however is that this code does not detect the j11mp transpositions 

at all, a flaw which could have been overcome relatively easy. A 

second example is the biquinary code of section 2.3.1 This code 

was designed with the same objective as the I.B.M. code, as a matter 

0£ fact the purpose was to do better on the transpositions. The code 

was a success in the sense that the detection rate of the transpositions 

is 100%, but it was sheer luck that the j11mp transpositions did not 

escape detection entirely. That the new codes of the section 2.3 are 

doing better, is therefore partly due to the fact that they are 

taylored for the requirements set forth in section 2.1. More convinc

ing are therefore the tests on the set of 12112 real life errors 

drawn from the daily operations of a clearing institute. All these 

errors are made in code n11mbers with 6 decimals. The errors of 

forgotten decimals have been eliminated beforehand. 

2 .1 ~p.e. reguirem.~nts for dec_i~al codes 

It has already been stressed before that the requirements for a good 

code cannot be set absolutely. They depend on the type of equipment 
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used and also on (the knowledge of) the error habits of the human 

beings involved. The methods explained in the chapters 3, 4 and 5 

are however also applicable to many other requirements than the ones 

which follow: 

1) The single errors are considered to be most important. The weight of 

800 points is given to these errors. 

2) Next come the transpositions (of adjacent digits) with a weight of 

100 points. 

3) The twin errors, aa+bb, get 10 points, just as 

4) the jump transpositions, abc➔cba. 

5) The separated twin errors, aba➔cbc, is a less important class 

getting 5 points.These errors will be called jump twin errors. 

6) The phonetic errors, 13+30 and the like, also get 5 points. These 

errors may be for some languages of little importance, but this is 

only an opinion, since no corroborative evidence is available. 

In the next section the detection rates are often given without a proof, 

since these will be given, except for the trivial cases, in the chapters 

3, 4 and 5. The mathematical for111ulation of the requirements is also 
' 

postponed, since such a fonnulation is dependent on the method employed. 

All but one of the E1-proof codes of the next section are of the complete

ly reducible type. As such they fo1,11 a set of words satis:fying the 

recursion ci = c1 _1~1 _1ai, where c0 and en are fixed decimals, ai are 

the digits of the word and where the decimals fo1m a quasi group with 

respect to each of the operators x1 • A burst of two errors on the 

positions i and i + 1 is detected 1:f and only if 

(ci_1x1 _1 a 1 )x1ai+l ;/:. {ci_1 x.1_1 a~)x1a~+l no matter what value c1_1 has. 

This inequality cannot be true for all possible bursts, for i:f a1 , ai+l 

and a1 are given, there always exists an ai+l such that the equality 

holds. That the requirements for detecting at the same time all trans

positions, all twin errors and all j11mp transpositions are not per se 

too heavy, is shown by the example in section 1.5. 

For decimal codes based on a group, with an operation denoted by+, 

a general for1n of the operators xi may be defined by ax i b = a + f i (b) . 

If f
1

(x) = x for all x and for all i then the code is a straight check. 
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If f 1 is an automorphism of the group then the code is called a weighted 

check. This is reasonable because the automorphisms satisfy the relation: 

f(x + y) = f(x) + f(y) and therefore behave like a weight. The weights 

are, just like the automorphisms, linear operators and they are therefore 

often written as a multiplier;f(x)=fx. 

The pern1utations fo2m also a group, the symmetric group. In the s11nmetric 

group the automorphisms foim a subgroup. The product of two pe.11nutations 

f and g 1s defined as the pe1·1n'1tation which brings x into the element 

f(g(x)), it is denoted by fg. Hence fg{x) = f(g(x)) holds (see 55). If 

f 1 = ff1_1 for a fixed permutation f the code is called progressive. 

Progressive codes are periodic. If the period is 2 then the code is 

called alternating. In an alternating code the operations a+b and a+f(b) 

are applied alternatively. A weighted alte1nating code however may also 

be considered as a straight code in which the same operation is used. 

throughout. This operation is defined by axb = f(a)+b .. The same remark 

holds for all weighted progressive codes, with the same definition for 

the single operator. This construction is merely a version of the algo

rithm of Horner. It is an illustration of the fact that some of the 

properties defined above do not exclude each other, and are thus not 

suitable for a classification. 

The discussions above are valid for all groups of order 10. It is well

known from the theory of groups that there are 2 groups of order 10 
• 

available (see Hall, 16, p. 52) i.e. the cyclic group of order 10 and the 

dihedral group of order 10. The first one is the group of the rotations 

of a regular 10-gon, denoted by c10 . Its operation is also the addition 

modulo 10 or what is the same, the addition in a cyclic 10-counter. The 

cyclic groups are abelian, that is the commutative law axb = bXa holds . 
• 

The second group is the dihedral group, that is the group of the trans

formations of the pentagon. This group contains not only the rotations, 

but also the reflexions. It is denoted by n5 . The group is not commu

tative, for rotating the pentagon over say 72 degrees and then reflecting 

it, is not the same as first reflecting it and then rotating it over 72 
• 

degrees. The idea of applying groups is, that the condition for the 

error detection is simplified by virtue of the associative law. As will 
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be seen in chapter 3, the use of the cyclic group gives a still greater 

simplification. 

Much of the effort, spent on the construction of decimal codes, centers 

on the detection of the transposition errors. This typical human type 

of error has been bothering the cryptologists for a long time, it is 

mentioned by Friedman as a psychological lapsus calami as early as 1932 

(see 13). Since the straight modulo 10 check obviously is insensitive 

for transpositions and in view of the fact that the alt.er1nating sum, 

modulo an odd t111mber, met the requirement, one naturally tried to do 

s01nething like that for the decimal codes too. The I .B .M. code of 

2.3.0 seem~ to be the first trial in that direction. Unfortunately 

the detection appeared not to be flawless and when some authors proved, 

that no decimal E1 -proof code with one redundant decimal could be 

transposition-proof, the codes based on the eleven check became very 

popular. Even nowadays many people still believe that one has to use 

modulo 11 checks for the detection of the transpositions. Actually 

the non-existence proof mentioned above is only valid for codes based 

on the cyclic group c10 , with generalized weights which are independent 

of the words itself. The codes of 2.3.4 on page 56 are examples of codes 

designed for detecting transpositions which are unfortunately no longer 

E1-proof. 

The biquinary codes of chapter 5 designed by the present author are 

however both E1 - and transposition-proof. The first one has many faces. 

It is an alternating code in the sense that it can be defined by apply

ing two quasi groups alte1·11.atively. It has also an interpretation as a 

biquinary code and as a code based on addition modulo 10 with weights 

and checkvalue (c) depending on the value of the digits. Last but not n 
least the code can be interpreted as a code based on the dihedral group 

with generalized weights and as such it would fall under 2.3.2 The 

generalized biquinary code however loses this interpretation (see 

chapter 5). The merit of the generalized biquinary code is that it does 

much better in the detection of the twin errors and the j111np transposi

tions. Finally the application of the dihedral group n
5 

turns out to 

give scores of E1 - and transposition-proof codes. Some of these do 

• 
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even better than all other decimal codes mentioned above (see chapter 4). 

Up to now no decimal code, scoring 100% in all the categories, has come 

to the attention of the author. He was also unable to prove that such a 

code does not exist. Such a proof would have to depend on properties of 

the number 10 since for other number bases codes like that do exist. 

Moreover in section 1.5 an example of a 3-digit decimal code scoring 

100% in all 6 categories, has been given. The performance of the modulo 

11 check is difficult to compare with that of the pure decimal codes 

since their redundancy is higher. For that reason alone these codes 
• 

detect 1% more in the realm of the random errors. A 6-digit decimal 

code satisfying a modulo 11 check equation has at most 90910 words 

whereas a pure decimal code will have 100000 words. Decimal codes 

applied in situations where a modulo 11 check could also be used, have 

therefore a hidden redundancy, which is not taken into account in the 

perfoxmance comparison tables. The main disadvantage of the eleven 

checks is that the lexicographical ordering, according to the inform

ation digits, of the code shows gaps, in contradistinction to a pure 

decimal code. This may be a disadvantage for the efficiency of the 

file-handling and storage, but when it c01nes to application in an 

existing system it implies a recoding of about 10% of the code words. 

The resulting inconvenience for customers and the potential danger 

for more errors makes the application of the modulo 11 check in those 

cases very unattractive. In some applications this difficulty is over

come by giving no check digit in those cases where the 10-th symbol 

would be required. The blank is then playing the role of the 10-th 

symbol. The drawback is that the code will no longer have a fixed 

length. In other applications the O has to play the double role of 

the O and the 10-th symbol. However the Femedy is worse than the 

disease, as the code stops being E1-proof. 

2.2 A classification of decimal codes 

The decimal codes, discussed in this chapter, may be classified as 

follows: 
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1) The non-E1 -proof codes. 

1.1) Codes modulo k, with 10 > k. 

1.2) Codes modulo 10, using weights divisable by 2 or 5. 

1.3) The Bull type codes, using the sum of 2 alternating sums, each 

with a different modulus smaller than 10. 

1.4) Various modulo 11 checks, in which the ''o '' and the ''10'' are 

identified. 

2) The E1-proof codes with 1 decimal redundancy. All but one of the 

codes, mentioned here, are of the canpletely reducible type and as 

such they can be defined by the Latin staircase method. In the text 

however other definitions, admitting an easier analysis, will be 

employed. 

2.1) Codes based on the addition modulo 10, i.e. the cyclic group c10 . 

2 .. 1 .1) The straight ~11m check. 

2 .1. 2) The al ter11ating s11m check. 

2 .1 . 3) The weighted stun checks. 

2.1.4) Sum checks with generalized weights. 

2.2) Biquinary codes. 

2.2.1) Alternating biquinary codes. 

2.2.2) Generalized biquinary codes. · 

2.3) Codes based on the multiplication in the dihedral group of the 

pentagon, i.e. D5 . 

2.3.1) Straight product check. 

2.3.2) 't t' . Weighted product checks. 

2.3.3) Periodic product checks with generalized weights. 

2.3.4) Non-periodic product checks with generalized weights. 

3) 1be E1-proof codes with a higher redundancy than one decimal. 

3.1) Checks based on the addition modulo k, with k > 10. 

3.1.1) Various modulo 11 checks. 

3.1.2) Checks modulo k, with k > 11. 
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2. 3 Descr,iet io~ c;>f the variou~ error detE:c~ing dec~mal codes 

2.3.0 Checks modulo 10 

The straightforward generalization of the parity check is the straight 

modulo lO·check. This code consists of all words satisfying 

a1 + a2 + ... +an= c (mod 10). Although the code detects all single 

errors (see 1.2), the obvious disadvantage is that no transpositions 

are detected. The twin errors, aa~bb, are caught for 88.9%, since 

2a = 2b (mod 10) if a= b + 5 (mod 10). It is a poor consolation that 

the phonetic errors are detected for 100%. 

A considerable improvement gives the alternating check modulo 10. The 

check equation for the alternating check is: a1 - a2 + a 3 - ... = c 

(mod 10). This check detects 8 out of the 9 transpositions, since 

a1 - a 2 = a2 - a1 (mod 10) only holds if 2a1 = 2a2 (mod 10) or 

equivalently a1 = a2 + 5 (mod 10). The jump transpositions still remain 

undetected. A major drawback is that the twin errors now escape detect

ion completely, since a - a= b - b for all a and b. The difficulty is 

clearly that 10 contains a factor 2 and in fact for an odd modulus 

this type of check would detect all transpositions. The alternating 

check of the fot,n a1 + 2a2 + a 3 + 2a4 + -. . . - c (mod 10) does detect 

all transpositions, but is unattractive since it is not E1-proof, as 

an error of 5 uni ts, on the even positions, does not change the s1Jm 

modulo 10. The root of the trouble is that the function: 2x (mod 10) 

has always an even value. 

The I.B.M. code is an intelligent trial to 
2x 

added to the product 2x (mod 10)), hence 

improve 
if 2x < 
if 2x > 

this situation, by 
10 
10 (the carry is 

01234567891 f = 0246813579 • The said I.B.M code consists of all words satisfying: 

a + f(a 1 ) + a 2 + f(a 3 ) + ... = c (mod 10). This code was a big n n- n- n-
stride forward, but it did not detect the transpositions completely, 

as the transposition of O and 9 goes by unnoticed, giving a detection 

rate of 97.8%. Because of its alternating character none of the jump 

transpositions is detected. As will be shown in chapter 3, it is not 

accidental that 1 out of the 45 possible transpositions remains un

detected by codes using fixed pexmutations in combination with the 
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addition modulo 10. 

It is however possible to do better with respect to the jump transpo

sitions, by using sequences of (generalized) weights with a higher 

period than 2. It is well-known from number theory that the powers of 

an arbitrary number modulo n, fo11n a periodic sequence. The number 
2 9 (= -1 (mod 10)) has for instance the period 2 modulo 10, as 9 = 81 

and 81 = 1 (mod 10). The period of 3 modulo 10 is 4, as can be easily 
i 

verified. The code defined by: L 3 ai = a 1 + 

= c (mod 10) besides being E1-proof, detects 

3a2 + 9a3 + 7a4 + a 5 + ... = 

8 out of the 9 transpositions 

3 1 3 1+1 _ 3 1 3 i+l ( d 
since a 1 + ai+l - ai+l + a 1 mo 10) if 2a = i 
The jtJmp transpositions are also detected for 88. 9% since 

2a. 1 (mod 10). 
J.+ 

3 i 31+2 31 31+2 ( 10) 8 a 1 + a 1 +2 = ai+2 + ai mod leads to ai = 8ai+2 
(mod 10). Also the twin errors are detected for 88.9% as 

3 1a + 3i+la = 31b + 3i+lb (mod 10) is equivalent with 4a = 4b (mod 10). 

But unfortunately now the jump twin errors give trouble, as 

3 1a + 31+2 a = 3 (1+9)a = 0 (mod 10) for all a. 

It is of course not necessary that the weights fox,n a geometric progression 

modulo 10 and one sometimes sees a weighted code, defined by 

a 1 + 3a2 + 7a3 + a 4 + 3a5 + ... = c (mod 10). This code, which is of 

period 3, is equally good on the single errors and the transpositions, 

but does better on the jump twin errors than the f 01·mer one did. Of 

the jump twin errors it detects 88.9% on 2 out of the 3 positions and 
' 

0% on the third, giving a nett result of 59.3%. The drawback is that 

the sam~ rate now holds for the twin errors, instead of the 88.9%. 

Since 1, 3, 7, 9 are the only proper weights which are admissable in 

view of the caoplete detection of the single errors and since virtually 

all possible combinations are tried it is reasonable to turn the 

attention to codes with generalized weights. An obvious i•provement 

of the I.B.M. code is to make its period higher by using powers of the 

pennutation f for the 

code defined by: a + n 

successive weights. This generalization gives a 
2 3 

f(a 1 ) + f (a 2 ) + f (a 3 ) + ... = c (mod 10). n- n- n-
The code which is obviously E1-proof, still has a detection rate of 

97.8% for the transpositions. The detection of the jump transpositions 
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fi+2 (b) = f 1 (b) + fi+2 (a) (mod 10) holds 
i 

B = f (b), then the condition becomes: 

or A - f(A) = B - f(B). The function 

X - f(X) has the values 0-0, 1-4, 2-8, 3-3, 4-7, 5-2, 6-6, 7-1, 8-5 

and 9-9 or modulo 10: 0, 7, 4, 0, 7, 3, O, 6, 3, O, so that 8 out of 

the 45 combinations a, b fulfill the equation and hence 82.2% of the 

j11mp transpositions will be detected. In a similar way the detection 

rate of the twin errors is found to be 93. 3% and for the j11mp twin 

errors 95.6%. The phonetic errors have a detection rate of 89.6%. 

In chapter 3 it will be shown that the p~1mutation g defined by 

g(x) = £(x) + 61 or g = 0123456789 

for the single errors, the transpositions and the twin errors as f 
1 

has. On the other error types the code defined by: t g (an-i) = c 

(mod 10) is better than the one defined with f. It detects the j11mp 

transpositions and the j11mp twin errors both for 95 .6% and the 

phonetic errors for 90.3%. An oculist from the Leiden University, 

Dr. A.D. Colenbrander, who needed an error detecting code for a 
• 

hostpital administration was not satisfied with the codes known to 

him and designed an interesting and remarkably good one as follows: 

The 10 non-zero residue classes modulo 11 fo1m a group under multipli

cation. In particular multiplication by 2 modulo 11 gives a pe~nutation 

of these 10 classes. Coding the class 10 by O and the classes 

1, 2, ... , 9 by 1, 2, ... , 9 thus gives a pei••••Utation of the decimals 
0123456789 i f = 9246801357 }. 'lbe code is defined by t f (g(a1 )) - O (mod 10), 

where g is an arbitrary pe211autation. In particular g can be chosen 

so that the code becomes E h(i + ai) = 0 (mod 10), where i + a1 is 

to be taken modulo 10 too. The latter code detects 100% of the single 

errors, 97.8% of the transpositions, 93.3% of the twin errors, 95.6% 

of the jump transpositions and j11mp twin errors and 100% of the 

phonetic errors. His way of making a per111utation resembling multi

plication by 2 is apparently more fortunate than the one of the I.B.M. 

code. His code is a close analogue of the ''best'' modulo 11 code defined 

,, ti 
pe1-mutation fin a geometric progression. It is rather unsatisfactory 
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to try haphazardly some pe1111utations and moreover it is by no means 

necessary to limit the generalized weights to the powers of one single 

pennutation. In chapter 3 an exhaustive search for the most favourable 

combination of pe1·mutations has therefore been carried through. It 

turned out that theoretically the code defined by: t fi (a1) = c (mod 10) 

where the f
1

's are given in section 3.5, is one of the best. This check 

is shown to detect 97.8% of the transpositions and of the twin errors, 

and 95. 6% of the j11mp transpositions and the j1_.1mp twin errors , whereas 

the phonetic errors are detected for 97.9%. So far the story of the 

codes modulo 10. 
• 

2 .3 .1 B~quin,~!:Y codes 

The first pure decimal code which is both E1 - and transposition-proof, 

is perhaps less powerful than the best codes described in the previous 

section, but it is interesting for other reasons. Its weakness lies in 

the rather poor detection rate for the twin errors and the jlJmp trans

positions, namely 55.5% and 66.7% respectively. The code is described 

at length in chapter 5 and it will suffice here to mention that the 

phonetic errors are detected for 100% and the jump twin errors for only 

66.7%. 'lbe version by Benard, which is also described in chapter 5, has 

the same properties except for the twin error detection which is only 

27.8%. The generalization, which is of a later date (see 5.3), scores 

also 100% for the single errors, the transpositions and the phonetic 

errors. A detection rate of 88.9% holds for the twin errors, and the 

j 11mp transpositions , whereas the j•1mp twin errors are detected for 
• 

66.7%. One of the merits of these biquinary codes is that they lend 

themselves to a relatively simple technical implementati~n. 

2.3.2 The dihedral codes 

In chapter 4 codes of a quite different nature are described. Instead of 

addition modulo 10 the multiplication in the dihedral group o5 , of the 

order 10, is employed. This group is non-abelian, since axb = bXa does 

not always hold true. It follows therefore that the straight product 

code defined by: a
1 

x a2 x ••• x an == c in D5 , does not miss all trans-
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positions. In fact 2 out of the 3 transpositions are detected. The same 

fraction of the twin errors, the j11mp transpositions and the jump twin 

errors is detected. The alternating product check, defined by: 
-1 -1 

a1 x a2 x a3 x a4 x •.. = c in n5 ;s,in this group,no improvement, 

since now 5 out of the 9 transpositions and all the twin errors escape 
• 

detection. Checks using an analogon of the weights are also far from 

satisfactory, but there are many combinations of generalized weights 
• 

• 

which do yield excellent results. It is shown in chapter 4 that 100~ 

detection of the transpositions can be achieved in combination with 

95.6% of detection for the twin errors and 94.2% for the jump trans-

positions and twin errors. There exists a progressive code of the for:rn : 

which has the qualities mentioned 

above and which scores 95.3% in the phonetic errors, with 
f = 0123456789 

fox,n; f 1 (a1) x f 2 (a
2

) x t 3 (a
3

) x •.. = c in n
5

, which are even phonetic 

error-proof. In 4.5 it is described how the peim~tations fi can be 

constructed. 

Comparing the codes of chapter 3 and chapter 4 is not quite as simple 

as the analysis given above suggests. A code, missing 1 out of the 45 

transpositions does not necessarily miss 1/45-th of the transpositions, 

as the as~umption that the transpositions are unifonnly distributed is 

very unlikely. Much more about this distribution should be known in order 

to be able to construct better codes, which capitalize upon this fact. 

2.3.3 Codes modul(? k, with k > 10 
l 4 I 

The best known higher modulus codes are the ones modulo 11. The dis

advantages of the modulo 11 codes in general has been discussed in the 

section 2.1. Here only the detecting qualities will be subjected to 

analysis. Not to be recommended is the straight modulo 11 check, defined 

by t a1 = c (mod 11), because it misses all transpositions. The alternating 
' i 

checks modulo 11, like E (-1) a1 = c (mod 11) and a1 + 2a2 + a3 + 2a4 + •.. = · 

= c (mod 11), though better, cannot be reca•imended either because they still 

miss all jump transpositions. There are however scores of possibilities 

for good weighted codes modulo 11. All the non-zero weights are admissable 
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with respect to the detection of the single errors. Transposing the 

digits of the i-th and the j-th position is detected, provided that 

w1 i wj (mod 11), where wk is the weight of the digit on the k-th 

position. The twin errors on the same positions are detected if 

w. + w. ~ 0 (mod 11). The main interest is of course to find sequences 
l. J 

of weights fulfilling the 2 requirements for j = i + 1 and j = i + 2 

at least. The arithmetic progression modulo 11: 1, 2, 3, 4, 5, 6, 7, 8, 
• • 

9, 10, 1, 2, etc. (the O has to be skipped) is often applied. A flaw 

of this choice is that the 5 and the 6 are on adjacent positions, so 

that not all twin errors are detected. Another slight disadvantage 

is that not all phonetic errors are detected, since ix= i + (i+l)x 

(mod 11) holds for x = -i (mod 11) and hence only for i = 1 all 

phonetic errors are detected and otherwise 7 out of the 8. The geometric 

progression modulo 11 of the powers of 2 is better. Not only is this 

code twin error proof, but it does 
i i+l errors, since 2 •x + 2 •O = 

as by miracle 
i+l + 2 •x (mod 

detect all phonetic 

11) holds only if 

x = 2x + 1 (mod 11) or x = 10 (mod 11), which is impossible since 

9 > X > 0. 

Not so lucky is the progressive 

(mod 11) holds, if x = 5 holds. 

code with w1 
Beckley (see 

= 3
1 

since 31x = 31 + 

2) denounces both the 

31+1 
X 

arithmetic and the geometric progression- and he recomments a progression

free set of weights. His argument is that the progressive weights are 

vulnerable for the type of error, like 2560004+2056004+2005604~2000564, 

called shift errors. For each choice of progression there are certain 

combinations which can be shifted freely, that is these combinations 

are such that all the shifts are not detected. For the Beckley choice 

of weights there are combinations of digits which are not detected in 

case of a single shift, but which are in fact detected in case a double 

shift occurs. On the other hand there are also pairs of digits which 

are detected in case of a single shift and not detected for the double 

shift. It is questionable whether it has an influence on the average 

number of undetected errors, unless one presupposes a higher frequency 

of use of the vulnerable combinations. The weights given by him do not 

quite meet the specifications since the combinations 13; 26; 39; 41; 
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. 54; 67; 82; 95 are all i une for both the single and the double shift 

on the positions 9 and 8, as can be verified easily. His weights are 

9, 10, 7, 8, 4, 6, 3, 5, 2, 1 and 1ox3 + 7x9 = 7x3 + sxg = 8X3 + 4x9 

(mod 11) . 

Codes using a modulus higher than 11 are possible in cases where a 
• 

higher redundancy is admissable. If one has to protect a 7 digit code, 
6 

of which only 5•10 words are needed, then it is perhaps advisable to 
• • 

employ an 8 digit code, satisfying a check equation modulo 19. By doing 

so it becODles possible to detect random errors for about 95% automatical

ly at the input, instead of during the processing. 

2.3.4 Codes which are not E1 -proof • 

There may be cases where the application of a modulus below 10 is 

attractive, even though these codes cannot be E1-proof. The case of a 

check equation modulo 2 is of interest, since it gives rise to a code 

detecting all restricted single errors (i.e. single errors of 1 unit, 

like 6+7 or 4+3). The code may be useful for II It small sets, say less 

than 500 items, occurring on questionaires. In general it is a good 

policy to use the natural redundancy for error detection. If one has to 

code 1400 items one would need 4 decimal digits anyhow. By using codes 

with check equation modulo 7, one gets a certain protection without 

extending the length of the code words. As soon as one adds a check 

digit, it is of course inefficient to use a check modulo 7. Only one 

case came to the attention of the present author. The code in question 

is defined by all the words with the property that the decimal value 

is divisable by 7. Hence for all code words an ... a 2a1 
and since 10 = 3 (mod 7) the weights 

. Single errors are not detected if a 1 = a~ (mod 7), that is if a 1 
equal O, 1 or 2 and a~ equals 7, 8 or 9 respectively. Assuming an 

unifo1·111 distribution this gives a detection rate of 1/15. The codes 

modulo 9 will yield (under the same ass11mption) a much better rate, 

namely 1/45, since only the error from Oto 9 will remain unnoticed. 

According to the error samples mentioned in the introduction this does 

• 
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not hold true since the combined frequencies of o-+7; 1~s and 2~9 are 

much lower than the frequency of the transcription error 0~9. It goes 

without saying that the frequencies of the converse .errors have also 

to be taken into account. Only for completeness sake some of the codes 

modulo 9 will be included in the comparative code charts. Up to now 

no codes using another group than the cyclic one seem to have been 

applied. It is doubtful whether much improvlll;,J.Uent can be achieved in 
• 

• 

that way. If reliable frequency tables were known, then it would 

• 

certainly be possible to improve the single error detection rate 

considearbly. This could be done by recoding the digits so that O and 

9 are represented by 2 symbols with a lower transition frequency. 

Also for completeness sake and perhaps as a wa%ning sane non-E1-proof 

codes will be discussed. 

First of all one sometimes sees codes modulo 10, which use degenerated 

weights like 2, 4, 6, 8 or even 5. The even weights donot detect errors 

like a-.a.+5, so that 1 out of the 9 single errors on that position 

escapes. Positions on which the weight 5 is used admit single errors 

for which the parity is unchanged, so that 4 out of the 9 single 

errors slip through. Most notorious are the codes defined by 
i t iai = c (mod 10); E 2 ai = c (mod 10) and the codes with the weights 

121212 or 1234678. Still another type of codes which cannot be rec end-
• 

ed are the double modulus alternating codes (see 11) called Bull codes 

for short. These codes were originally introduced as E -1 
and transposition-

proof codes. They are defined as follows: Let p and q be 2 integers satis

fying 11 > p+q > p, q > 2 and let c = I: ·(-l)ia. {mod p) and p 1 

(mod q) , with p > c > 0 and q > c > 0. From the p q 
assumptions it follows that 9 > p-l+q-1 > c +c > 0 holds, so that 

p q 
,1nderlying idea probably C + C 

p q 
can be used as a check digit. The 

was that as soon asp or q was odd, the transpositions will be detected 

by one of the two equations. The combinations 3,5; 4,5; 3,7; 4,7 and 5,6 

are recomm~nded (see 11) and also 3,8 can be tried. A further analysis 

shows however that the claims are not justified. In another patent, codes 

are proposed in which not the s,1m, but the 

check symbol, which is of course no longer 

nll•nber c + pc is used as 
p q 

decimal. The application of 

a check symbol with that many values opens the possibilities for oodes 
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far superior, so that this variant cannot be recommended either. 

Finally the codes modulo 11 with a decimal check symbol with the O in 

the double role of 10 and O, are included primarily as a warning, since 

this twist destroys all the good qualities which the modulo 11 codes 

may have. 

2.4 Results of a test on life errors 
• 

Several codes have been tried on the sample of 12112 errors in 6 digit 

words. This sample is too small to give significant results for the 

better coci, ;:; . This is especially so since there are a few pairs which 

occur with a multiplicity of about 20 and even one pair (90355~145379) 

with a multiplicity of 89. A second test has therefore been perfo1·111ed on 

the non-single errors after removal of all duplicates. This smaller 

example consists of 1665 double errors and 471 multiple errors. Only 

E1 -proof codes are tested on these 2136 errors. The n11mbers of undetected 

errors per check system are listed in the second table below. In the ~a•~e 

table the mathematical expectations per 1000 errors are given for the 

various error types like the transpositions, the twin errors, the j111np 

transpositions and twin errors and the phonetic errors and finally 

the random errors. 'lbese expectations are based on the assumption that 

the various possible transpositions etc. are equally likely, which is 

certainly not the case in the present sample. The last two columns of' the 

same table give the percentage of the undetected errors with respect to 

the non-single errors and with respect to all errors as calculated £rom 
• 

the mathematical expectations. The check systems are listed in descend

ing order of the n11mber of undetected errors from the sar••p le. 



59 

Table of test results on the 12112 pairs of 6-digits words. 

Number of not detected 
Check system ' 

single double multiple total 
errors errors errors 

Ea.=c(mod 9) 621 1391 84 2096 
10=0 308 1395 88 1791 ' 

Eia
1 

=c(mod 10) 1650 52 70 1772 
Ea1=c(mod 10) 0 1397 73 1470 
Ea =c(mod 11) 0 1386 80 1466 
E ~ 1a =c( mod 10) 1124 227 76 1427 
Bull ype 4 ,5 955 331 72 1358 
Bull type 4,7 698 323 61 1082 
Weighted 121212 modulo 10 671 157 145 973 
Weighted 121212 modulo 9 621. 169 182 972 
Bull type 3,7 558 318 76 952 
E(-1) 1 a =c(mod 9) 621 250 56 927 

i 424 394 96 914 Bu 1 type 3,5 
E2 a 1 =c(mod 9) 621 115 81 817 

0 762 54 816 Alternating dihedral code 
Weighted 212121 modulo 10 503 142 81 726 
Bull ype 5 ,6 317 264 59 640 

10=0 254 238 66 558 
Straigh dihedral code 0 454 59 513 
Weighted 121212 mod.11; 10=0 186 178 88 452 
Bull ype 3 ,8 85 278 72 435 
E(-1) a.=c(mod 10) 0 347 63 410 
Weightea 313131 modulo 10 0 265 135 400 
Weighted 137137 modulo 10 0 236 156 392 

142 146 82 370 
0 200 147 347 

with 10=0 192 81 60 333 
E2 a 1 =c(mod 11), with 10=0 185 74 64 323 
Eia =c(mod 11), with 10=0 175 94 52 321 
E(- ) 1a =c(mod 11) 

... 
0 217 56 273 

Weighte dihedral code 0 223 50 273 .. 
Biquinary code, Benard version 0 112 134 246 
Progressive dihedral code 4 174 228 
IBM code 0 167 52 219 
Weighted 212121 modulo 11 0 141 69 210 
Weighted 313131 modulo 11 0 140 43 183 
First biquinary code 0 138 45 183 
Generalized IBM code 0 113 44 157 
Generalized biquinary code 0 79 68 147 
Ef (a )=c(mod 10) 0 65 60 125 
Mo if½ed generalized IBM code 0 69 48 117 

0 78 34 112 
Best ihedral code 0 56 50 106 

0 44 55 99 
Eiai=c(mod 11) 0 57 40 97 

mod.11 (Beckley) Weighted 463521 0 52 42 94 
t21 a =c(mod 11) 0 38 55 93 

1 
' 
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Test on sample of measured theoretical estimates 
2136 non-single frequencies of undetected errors 
errors 

m 
J.t m 

00 0 c:: Ol CM CM 

m M S.. 0 • S.. 0 0 0 S.. ..... m I 0 +,) M Q) +,) M Ul J.ot Q) Q) (1) 00 CQ J.i ..... 0 s:l Cll s:l J.ot bl) ~ bl) J.t >. Q) Q) CQ . J.ot as s:l of'◄ CJ Q) as bl> aS 0 CQ r-4 0 J.i J.t 0 ii': •l"t ..µ A ..µ J.ot Q) ~ p,. Q) ..µ ..... ..µ m .µ Ul e A.,... fll A So4 ~ ,-4 ..... ,... Ul +,) J.i (1) f.t Q) I'll S.. Q) Q) CJ ,.Q .µ as ~ s:: p,. of'◄ 

f~ 
A 0 -0 CJ I 0 (,) (I) g r-4 .µ .,,.. ! ~ g t = S.. A H S..~ .c: i 0 S... ~ Cd (1) 0 S... Q) ~ (.) 'tS .µ +,) .µ ·r-:, 0. ., ) G> 0. Q) S.. 0. = Q) 0. as 

l:a1=c(mod 10) · 1235 67 1302 1000 111 1000 111 0 100 59.3% 11.87% 

I:a1 =c (mod 11) 1228 69 1297 1000 0 1000 0 0 91 58.2% 11.64% 

Alternating 691 52 743 556 1000 267 267 0 100 38.3% 7.66% 
dihedral code 

Straight dihedral 390 47 437 333 333 333 333 0 100 24.3% 4.86% 
i 

1000 111 19.3% 3.87% I:(-1) a 1=c(mod 10) 311 53 364 111 1000 0 100 

Weighted 313131 244 44 288 111 111 1000 111 0 100 14.9% 2.98% 
modulo 10 

Weighted dihedral 206 49 255 111 111 267 267 250 100 12.2% 2.45% 
i 

I:(-1) a 1=c(mod 11) 198 52 250 0 1000 1000 0 125 91 13.5% 2.70% 

Weighted 137137 192 49 241 111 407 111 407 0 100 12.7% 2.53% 
modulo 10 

i 
I:3 a 1 =c(mod 10) 174 49 223 111 111 111 1000 0 100 12.7% 2.53% 

IBM code 151 50 201 22 67 1000 111 125 100 10.5% 2 .11% 

Weighted 212121 134 66 200 0 0 1000 0 63 91 8.3% 1.67% 
modulo 11 

Weighted 313131 129 41 170 0 0 1000 0 125 91 8.5% 1.70% 
modulo 11 

First biquinary 126 43 169 0 444 333 333 0 100 8.2% 1.64% 
Biquinary (Benard) 107 40 147 0 728 333 333. 0 100 9.6% 1.93% 
Generalized IBM 90 43 133 22 67 178 67 104 100 6.3% 1 .20CJ, 

Generalized bi- 70 59 129 0 111 
quinary code 

111 333 0 100 5.4% l.09CJ, 

tf1 (a1 )=c(mod 10) 55 55 110 22 22 44 44 27 100 5.3% 1.02% 
Progressive dihe- 51 53 104 0 44 59 59 47 100 4.3% 0.86$ 
dral code 

i tf (a1 )=c(mod 10) 70 33 103 22 67 44 44 0 100 5.3% 1.05% 
(Colenbrander) 

Generalized IBM 62 37 99 22 67 44 44 97 100 5.5% l. lOCJ, 
modified • 

1 
f.3 a 1 =c(mod 11) 44 49 93 0 0 0 0 125 91 3.5% 0.70CX, 
I:ia1 =c (mod 11) 57 35 92 0 200 0 0 125 91 4 .5% 0.90% 
Weighted 463521 • 49 42 91 0 0 0 250 125 91 4.1% 0.82% (Beckley) 

Best dihedral 45 41 86 0 44 59 59 0 100 4 .2% 0.83% 1 
11) E2 a 1=c(mod 35 38 73 0 0 0 0 0 91 3.2% 0.64% 
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2.5 Conclusions 

The general impression is that the tests give a good conf i11nation of the 

theory. There are a few discrepancies which show that the asst11nption of 

the unifo1m error distribution is invalid. One would for instance expect 
i . check equation r 2 a. = c (mod 9) would be superior to 

l. 
that the 

1 
I: 3 ai = c (mod 7). The first check does not detect the single errors 

0-+9 and 9-+o, whereas the second one does not detect 0-+7; 1~s; 24'9 and 

7.-+(); 8+1; 9~, but the .. latter six together have a much lower frequency 
• 

than the first two. The check where f 

is a pe1mutation such that f(O) = 0 and f(7) = 9, would yield a much 
1 

better result on the single errors (17 instead of 621) than r 2 a. - c 
1 

(mod 9). It is however dangerous to build a code on the assumption 

that the transcription errors o-+7 and 1~0 are per se rare. The danger 

may be illustrated by the typical high frequency of the transcription 

errors 7-+9 and 9-+7, which probably arises from the phonetic resemblance 

of 
ti tt 
zeven and ,, '' negen which is Dutch for 7 and 9. The obvious conclusion 

is that only the E1-proof codes are of practical value. 

Though the material is not sufficient for the ultimate choice of the 

''best'' d it i 1 h t h co e, s c ear ta only t e lower half of the second table 

contains the serious candidates. It is also clear that the modulo 11 

codes are by no means the only answer to the detection problera1.. If there 

are reasons for avoiding the modulo 11 codes, then there are certainly 

competative pure decimal codes available to the system designer. This 

is especially so since the modulo 11 codes look better because they 

profit from the hidden redundancy which they require (see section 2.1). 



62 

Chapter 3. c.~des ~ased ~~, ~he cyclic p:rouE of order 10. 

3.0. Some definitions. 

Let D be a set with 10 elements and let+ be a binary operation 

defined on that set such that (D,+) is a group. Consider all ordered 
n 

n-tuples of elements from D, in other words the set D. Let fi for 

1 < i < n, be n functions with 

x ED also f. (x) e: D, which is 
1. 

value and a1-g,,1men t 
D 

denoted by f i € D • 

both in D. Hence for 

Let furthermore c be 

C be defined as the an arbitrarily chosen element of D and let a code 
n subset of D consisting of then-tuples a 1a 2 ... an which satisfy: 

n 
hence C= { a

1
a

2 
••• an I f (a. )=c } .. The purpose of this 

. 1 i 1 1= 

chapter is to find the functions fi which yield the ''best'' codes. 

A function which maps D onto Dis called a permutation. Since Dis 

finite it is equivalent to define the permutations as one to one 

functions, or as reversable functions. The set of all permutations 
D 

of D is denoted by S, hence S E:. D • More formally S is defined by: 

If f, g~ S then the function h defined by h(x)=g(f(x)) also belongs to S. 

The permutation his called the product of the permutations f and g 

and is denoted by gf. The set Sis a group with respect to that product. 

It is called the sy111metric group. The identity element will be denoted 

by e, hence e(x)=x for all xc D. The group is not abelian as can be 

seen from the example • • 0 1 2 3 X 

f(x) 1 0 2 3 

g(x) 0 2 1 3 

fg(x) 1 2 0 3 

gf(x) 2 0 1 3 

The inverse of permutation f is denoted 

4 5 6 7 

4 5 6 7 
+ 

4 5 6 7 

4 5 6 7 

4 5 6 7 

by f-l and 

.. 

8 9 .. 
8 9 

8 9 

8 9 

8 9 

-1 -1 
hence ff =f f=e. 

Theorem 3.0 If f 1 E:. S for all i , then the code C is E
1
-proof. 

Proof: Two words differing only on the j-th position cannot both be

long to C, since otherwise 
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f.(a.)+fj(a.)+ 

. 1 1 1 J 
1= 

n 
fi(ai)= 

i=j+l 
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j-1 

i=l 
f

1 
(a. )+f . (a'.)+ 

l. J J 

n 
f. (a. ) 

i=j+l 1 
1. 

would hold. By cancelling equal terms from the left and the right, 

f. (a . )=f. (a'.) would fol low, so that from f
1
. € S the· contradiction 

J J J J 
a1=a~ can be derived. 

The converse of this theorem is not true since a code C may be 
• 

E1-proof while not all the functions fi belong to S. Counter example: 

Let the func~ions f 1 ,f2 and f 3 be defined by the table: . 

X 0 1 2· 3 4 5 6 7 8 9 

f (x) 2 4 6 0 1 1 1 1 1 1 

f (x) 4 6 0 2 1 1 1 1 1 1 

f
3

(x) 6 0 2 4 1 1 1 1 1 1 

The words a1a 2a 3 satisfying f 1 (a1 )+f2 (a2 )+f
3

(a3 )=0 obviously cannot 

contain any digit ''higher'' than 3 and therefore the code is E1 -proof 

since from f (a )=f (a') it follows again that a =a', for a ,a' <a. 
ii ii ii ii 

In the rest of this chapter it will be ass11med that all f. 's are 
1 

permutations. It will also be assumed in this chapter that the group 

(D,+) is abelian. It is well-known from the theory of groups that this 
• 

group has to be the cyclic group of order 10. It is also well-known 

that the additive group modulo 10 is cyclic. Those readers not fa

miliar with group theory may therefore interpret the operation+ as 

addition modulo 10. In agreement with this interpretation the ele-

ments of D will be denoted by the decimals, or D= {0,1,2,3,4,5,6,7,8,9} • 

3.1. Formula~ion of the reg~~rements. 

The condition that a code C as defined above is transposition-p~oof is 

that f (a )+f 
1

(a 
1

)~f (a 
1

)+f
1 1

(a.) for all a 1 ,ai+l with a.~ a. 1 . 
i i i+ i+ i i+ + 1 -i 1 1+ 

Now define x and y by x=f (ai) and y=f1 (ai+l),then a 1 = f 1 {x) and 
-1 i -1 -1 

a. i=fi (y) and the condition becomes x+fi+lfi (y)~y+fi+lfi (x), or since 
l.+ -1 -1 

the addition is abelian, x-fi+lfi (x)~y-fi+lfi (y) follows. The con-

dition has to hold for all x and y with x ~ y. In other words the 

function g defined by g(x) = 
-1 

Loosely said x - fi+lfi (x) 

-1 
x - fi+lfi (x) has to be a permutation. 

has to be a permutation or more formally 

• 



64 

-1 { x-f. 
1

f. (x) I xcD }= D. In an analogous way it can be deduced that the 
1+ l. -1 

twin errors are detected if x+fi+lfi (x) is a permutation. 

Jump transposition detection requires that 

f 1 (a.)+f. 1 (a. 1 )+f. 2(a. 2)~f.(a. 2 )+fi 1 (a. 1 )+f 1 2 (a_). 
1 1.+ 1+ 1.+ J.+ 1 1+ + 1+ 1.+ l. 

Setting x=f.(a.) and y=f.(a. 2 ) and.cancelling the middle terms gives 
1 l. 1 1+ 

-1 -1 
x+f. 2 f. (y)~y+f. 2f. (x) so that 

i+ 1 1.+ l. 

-1 
now x-fi+2fi (x) has to be a permu-

tation. Again in an analogous way the condition for the detection of the 
-1 

jump twin err.ors can be reduced to the requirement that x+fi+2fi (x) 

has to be a permutation. 

Finally the phonetic errors are detected if 

f 1 (a)+f1+1 (0)~fi(l)+f1+1 {a) holds for a#O,l. This inequality is how

ever also valid for O and 1, so that, after setting x=f1 (a), it follows 
-1 

that x-:fi+l f i (x)~fi (1 )-fi+l (0) has to be true for all x £ D. 

In the list below the conditions are s11mrnsa.rized. 

Transpositions 

Twin errors 

Jump transpositions 

J,,,,,p twin errors 

Phonetic errors 

= D 
l.+ l. 

-1 
{ x+fi+l fi (x) Ix t::,D} = D 

-1 
{ x-fi+2fi (x) Ix E: D} = D 

-1 
{ x+fi+2f 1 (x) Ix e: D} = D 

-1 
1 1.+ + l. 

3.2. Analysis of the conditions. 

XE: D} • 

The five requirements are not compatible since the first one contradicts 
-1 

the last one. Suppose that {x-fi+lfi (x) x£ D} == D, then it follows, 

as f 1 (1)-f1+1 (0)€ D, that the last condition is not fulfilled. 

Fortunately or rather unfortunately no one of the first four conditions 

can be satisfied because of the next theorem, so that it becomes theore

tically possible to satisfy the fifth one. 

Theorem 3 .. 2.0 There does not exist a per111i..1tation f of the 2k residue 

classes 0,1, .•• ,2k-l such that the function g defined by g(x)=f(x)+x 

is also a permutation. 

Proof: Consider (f(x)+x)= f(x)+ x=2 x=2k(2k-1)=0(mod 2k), 

but if f(x)+x were a permutation then (f(x)+x)= x=k(mod 2k) would 

hold. 
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As a corollary it follows that, if in {f(x)+xlx=0, •.. ,2k-1} just one 

element is missing, say i, then i+k (mod 2k) has to appear twice. 
-1 -1 

By applying this theorem on the permutations+ fi+lfi and +fi+2 fi 

with k=5 it follows that the first four conditions are impossible. This 

is the result referred to in 2.1, which led to the belief that no pure 

decimal check could yield a
0

E1 - and transposition-proof code. 

The question remains:of -how close the ideal can be approximated by using 
• 

addition modulo 10. The next best to being a permutation is that. the set 
• 

{ x-f(x) I x £ D} lacks only one element. The expression ••f (x)-x is nearly 

a pe1"Dlutation'' will be used in the sequel if such is the case .. 

The I.B.M. code of 2.3 is an example: 

X 0 1 2 3 4 5 6 7 8 9 

f(x) 0 2 4 6 8 1· 3 5 7 9 
• 

x-f(x) 0 9 8 7 6 4 3 2 1 0 

Note that the digit 5 is missing and that the O occurs twice. 

The set of permutations f such that x-f(x) is nearly a permutation is 

denoted by P. 'The subset of P consisting of those permutations f for 

which x+f(x) is also nearly a permutation will be denoted by Q, hence 

QC p c:.S. 

If g
1

e:Q and if f. 1=g.f. for 1 <i <n and if f 1 is arbitrarily chosen in 
1.+ 1 1. n 

S, then the code defined by f. (a. )=c is ''as good as possib1e'' in detecting 
. 1 ]. 1. 

the transpositions and the tirn errors. The converse is also true. 

In view of the large number of permutations ( Isl =3628800=10!) a 

computer program has been writ ten to find the sets P and Q.. Simply 

generating all permutations and rejecting the ones for which x-f(x) is not 

nearly a pe1·111utation, is not only inefficient but also unimaginative. It 

is much nicer to generate the permutations lexicographically and to test 

while each perm1.1tation is built up. Building each permutation by first 

choosing f(O), then f(l) etc. is a multiple stage decision process and the 

idea of dynamic progra ing can be applied. If for instance f(O). f(l) and 

f(2) are chosen so that O-f(0)=1-f(1)=2-f(2), then all 7! further codes 

may be skipped. This would also be the case, according to the corollary 
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of theorem 3.2.0, if O-f(0)=1-f(1)=2-f(2)+5. As will be seen below, a 

further saving, by at least a factor 150, is gained through a study of 

the structure of the sets P and Q. Th~re are four transformations which 

leave both P and Q invariant, and which define equiyalence relations 

in these sets. 

3.3. Detection-rate preserving transformations. 

The permutations h defined by h (x)=x+a, with 
a a x, a£ D, form a repre-

sentation of (D,+) in the symmetric group S, since h (h (x))=h (x+b)= 
a b a 

x+b+a=x+a+b=h b(x). The 
a+ set H defined by H={h I ae D} is a subgroup of S 

a 
isomorphic with (D,+). 

I f f £ P (or Q) , then the double cosets HfH(={h fh I a, b E: D}) 
a b 

belong to P 

(or Q), since x'+ h fh (x') = y'+ h fhb(y'),with x'=x+b and y'=y+b, follows a b - a 
immediately from x+f(x) = y+f(y). Hence the transformations f ➔ h f, with 

a 
a£ D, leave both P and Q invariant. The sets Hf(= {hf I h e.H} ) obviously 

contain 10 different permutations, among which there is just one which 

has Oas a fixed point; i.e. h-f(O)f, as h-f(O)f(O)=f(O)-f(O)=O. 

The search may therefore be limited to the sets P
0 

and Q
0 

defined by 

P = {f If E:. P, f(O)=O} and 
0 

and jQ0 j = IQf /10. By setting f(O)=O there are 9! possibilities left 

and the search is cut down by a factor 10. 

The transformations Ga defined by G
8
f=h-f(a)fh

8 
leave P0 and Q

0 
in

variant, since {h_f(a)fh
8 

I a E: D} c. HfH and since Gaf(O)=f(a+O)-f(a)=O. 

That the sets { Ga f I a e.D}, for f E:. P 0 , contain 10 permutations each is 

true, but not trivial. It hinges on the circ,1mstance that x-f (x) is 

nearly a permutation for all f E.P
0

. For such a function there are two 

elements d1 and d2 such that d1-f(d1 )=d2-f(d
2
). Let these elements be 

called the duplicators. The duplicators of G
8

(f) are d
1
-a and d

2
-a, 

since f(d1-a+a)-f(a)-(d1-a)=f(d1 )-d
1
+a-f(a)= 

=f(d2)-d2+a-£(a)=f(d2-a+a)-f(a)-(d2-a). If d
1
-d

2
#5 then the ten values 

of a, give 10 different permutations, as they have different dupli

cators. But if d1-d2=5 then it is conceivable that f(x)=f(x+5)-f(5) 

since the functions on both sides of the equation have the same dupli

cators. However if this were the case, then f(5)=f(5+5)-f(5)=-f(5), or 

2f(5)=0. But since f(O)=O, it follows that f(5)=5, so O and 5 are both 
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fixed points off and hence duplicators. Substituting 1 for x gives 

f(l)=f(1+5)-5 or f(l)-l=f(6)-6, which makes 1 and 6 also duplicators 

and consequently x-f(x) is not nearly a permutation. Now that it has 

been established that each set has to have 10 members the problem remains 
• 

to select appropriate representatives in order to facilitate the search. 

The ef£ect of the transformation G· is that the duplicators are both 
a 

shifted modulo 10. Their cyclic distance 1s therefore an invariant. Let 

POi (resp Q
01

) be.the subset of P
0

(resp Q
0

) consisting of the permutations 

f such that O and i are the duplicators of x-f(x). Now each permutation 
• 

f€ P
0

-P
05 

has just one equivalent permutation in one of the classes 

P
01

,P
02

,P
03

,P
04

. The permutations of P
05 

will have two equivalent permu

tations in P
05

.
4
It is therefore only necessary to find the sets P01 ,for i<6, 

and IP
0 

I = 10 IP . I +5 IP 05 1 • It is much easier to search 
i-1 01 

for the permutations of P
01

, since not only two values are fixed, but also 

because the test is simpler now, as no more duplications in x-f(x) are 

allowed. Moreover according to the corollary of theorem 3.2.0 f(x)~x+5 

has to hold. 

The search can further be limited by yet another transformation-type, 

which leaves each Poi (and Q
0
Jinvariant. This transformation is based 

on the automorphisms of the cyclic group c10 . An automorphism is a 

permutation o of the elements of the group satisfying : o(a+b)= o(a)+ o(b). 

The automorphisms form a subgroup of the sy,,,metric group. In the case 

of c10 it is a cyclic group with 4 elements. The form~la above suggests 

a multiplication and indeed multiplication modulo 10, by a factor re

latively prime with 10, does the trick. These factors are 1,3,7,9. It 

should be noted that if (a,10)~1 then ax (mod 10) is not even nearly 

• a permitation of x. The automorphisms are generated by 3 (or 7), since 
0 1 3 2 1=3, 3=3, 7=3 and 9=3. The order of an element a is defined 

k 
as the lowest positive integer k, such that 

from the theory of groups that the .i=l automorphisms 

a=O. It is well-known 

leave the order in-

variant. The group c10 has 4 elements of the order 10 i.e. 3,9,7,1 

and 4 elements of the order 5, i.e. 2,4,6,8. O is the only element 

of the order 1 and 5 has the order 2. Hence o(O)=O and o(5)=5 for 

each automorphism o .To each automorphism 

form -1 
defined by F

0
(f)= ·ofo , it is 

there corresponds a trans

known as the trans£orm of 



f by . If f is given by a 

68 

0 1 2 3 4 5 6 7 8 9 
tab 1 e f = { . . . . . . i i . i } 

1 0
1

1
1

2
1

3
1

4
1

5 6 71 8 9 

then F O (f) is obtained by applying o to all the symbols of both entries 

of the table. (see 8). • 

o f(i)= 6 (i)=j and g(O)= of o -l(O)= o f(O)= o (0)=0. Moreover, since x-f(x) 

is nearly a permutation, it follows that x-g(x) is so too, by remarking 

that{ x-g(x)} = { o o -l (x)- o f o -l (x)} ={ o ( o-l (x)-f ( o -l (x)))} =O {y-f (y)} . 
• 

Hence g £ P Oj. Now it is possible to project P 
04 

on P 
02 

and P 
03 

on P 
01 

by 

the transforms F3 and F7 . The class P05 however is left invariant and 

though this third transformation induces an equivalence in P
05 

it is 

hard to capitalize upon this fact. It is also tempting to try to split P
0

i 

further by using the transformation g(x)=-f(-x), which projects POi on 

P0 . and to go back to P. by the transformation of the second type 
-i 01 

h(x)=g(x-i)-g(-i). The resulting transformation is h(x)=i-f(i-x). This 

transformation does not necessarily .lead to a different permutation, 

as can be seen in the first table below for i=l. In P
05 

the transform F
9 

has also its invariants. An example is given in the second table below. 

Note that x+f(x) is also nearly a permutation in this second example. 

X 0 1 2 3 4 5 6 7 8 9 

f(x) 0 1 3 5 7 9 2 4 6 8 

x-f(x) 0 0 9 8 7 6 4 3 2 1 

1-x 1 0 9 8 7 6 5 4 3 2 

f(l-x) 1 0 8 6 4 2 9 7 5 3 

1-f(l-x) 0 1 3 5 17 9 2 4 6 8 

x+f(x) 0 2 5 8 1 4 8 1 4 7 

X 0 1 2 3 4 5 6 7 8 

f(x) 0 2 6 1 7 5 3 9 4 

x-f(x) 0 9 6 2 7 0 3 8 4 

-x 0 9 8 7 6 5 4 3 2 

f{-x) 0 8 4 9 3 5 7 1 6 

-f(-x) 0 2 6 1 7 5 3 9 4 

x+f(x) 0 3 8 4 1 0 9 6 2 

is yet a fourth transformation I, 
-1 

defined by I(f)=f • The in-

9 

8 

1 

1 

2 

8 

7 

It may be worthwhile to note that there 

which leaves P (and Q) invariant. It is 

·variance follows by substituting f-1 (y) for x in the relation I{ x-f(x)}I =9, 
' 

for {f(y)-y} will have the same number of elements. Since moreover the 

inverse of a permutation f has the same fixed points as f, also P
01 

(and Q01 ) is left invariant. It can happen that I(f)=f, as is shown by 

the example on page 69. 

• 
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X 0 1 2 3 4 5 6 7 8 9 
• ... --

f(x) 0 1 3 2 7 9 8 4 6 5 
-

x-f(x) 0 0 9 1 7 6 8 3 2 4 

f-1 (x) 0 1 3 2 7 9 8 4 6 5 
-· . 

x+f(x) 0 2 5 5 1 4 4 1 4 4 

Even though some of the transformations mentioned in this section are 
• 

not used to relieve the search, they still are helpful for checking 
• 

the output. • 

The result of this section is that it is only necessary to find the 

sets P01 , P02 and P05 (or Q
01

, Q
02

, Q
05

). The set P (or Q) can be 

found afterwards by applying certain transfot·mations on these sets. 

The folloWing equalities hold: IPI =200( IP01 I+ fP02 1 )+50 IPosl and 

=200( 

3.4. The s,ea~ch program. 

In the program the permutations are built by means of a multiple decision 

process. In 8 stages the process is ready, since f(O)=O and f(i)=i 

has to hold if f £ P
0

i .. The available function values are stored as a 

chain in an array called chain (-1:9). Each time that a digit j is 

allocated to some f(i) the chain is shortcircuited by the assignment 

chain (k):=chain (j). k is supposed to be the previous value which 

was possible, for O the durn•uy value -1 is taken as the previous 

one. So chain(-1) refers to the first digit which is still available, 

chain(chain(-1)) to the second one and so on. 

The crucial part 0£ the program is the test for the feasibility of 

an allocation. In a boolean array called difference (0:9) the 

occurrence of a difference i-f(i) is memorized by making difference 

(i-f(i)) true as some value has been allocated to f(i). The fields 

difference (0) and difference (5} are initialized by true, since 0 

and 5 are not allowed as a difference i-f(i). In order to see whether 

j is possible as value for f(i) the program simply tests whether 

difference (i-j) is false er not. 

In the array f(0:9) the allocated value is stored and in the array 

choice (0:9) the value previous to the one allocated is memorized. 
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The latter array is necessary to be able to revoke a decision, if the 

process comes to a stop at a higher level. After revoking a decision the 

feasibility of the next possible value is tested. If there is no next 

value available, the decision at the previous stage. has to be revoked, 

and so on.The process also stops temporarily when a permutation satisfy

ing the conditions has been found. It is then counted in the array 

count (1:5) and it can be tested whether the permutation also belongs 

to Q, if so, a print-out is requested. After that, the process is started 
• • 

again by revoking the last decision. 

The flowchart of the program is given on page 71, for the benefit of 

those readers who prefer this less clear but more general description 

over the precise list of instructions. The latter is given all the 

same to make the details available. 

The structure of the program, as given in the flowchart is quite general. 

If for instance the test is skipped, the program will generate all 

permutations in lexicographical order. If however f(i)~i is used as 

test condition, the non-concurrent permutations are generated. The 
• 

same flowchart can be used for more complicated problems, like the 

pentomino-fitting-puzzles (see 15). 

In chapter 5 it will be used again . 

• 
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declare and 
initiate the 
variables 

• 

take first 
position ____ _. 

r 
take next 
free digit 

---
test ., 

is this digit 
admitted on the 
present position? 

record 
and 
count 

cancel 

cancel the 
former choice 

miss 

are there more 
digits possible 
on this osition 

print 
the number 
of solutions 

no 

ves 



'begin' 

'be~in' 

'begin' 

'end' · , 

start; 

test: 

allocate: 

'begin' 

'end'; 

discara: 

cancel: 

miss: 

'begin' 

'end' · , 

' 

'begin' 

'begin' 

•end'; 

'end'; 

ready: 

'end•; 

'end' 
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'integer' d,j,k,x,y; 

'integer' 'array' f,choice(0:9),chain(-1:9), 

count ( l : 5 ) ; 

'boolean' 'array' difference(0:9); 
• 

'for' j:=1,2,5 'do' 

'for' x:=0 'step' 1 'until' 9 'do' 

chain(x):=x+l; difference(x):='false' 

count{j):=0; f{j):=j; 
• difference (o):=difference(5):='true'; 

x:=chain(-1):='if' j 'equal' 1 'then' 2 'else' 1; 

'if' j 'greater' 1 'then' chain(j-1):=j+l; 

k ·--1· • - J 

y:=chain(k);d:=x-y; 'if' d 'less' 0 'then' d:=d+lO; 

'if' difference(d) 'then' 'go to' miss; 

f(x):=y; chain(k):=chain(y); choice(x):=k; 

difference(d):='true'; 'if' x 'less' 9 'then' 

x:=x+l;'if' x 'equal' j 'then' x:=x+l; 

'go to' start 

count(j):=count(j)+l; 

X ·-9 • . - ' 
k:=choice(x); y:=f(x); chain(k):=y; d:=x-y; 

• 

'if' d 'less' 0 'then' d:=d+lO;difference(d):='false'; 

'if' chain(y) 'less' 10 'then' 

k:=y;'go to' test 

'if' x 'greater' i 'then' 

x:~x-1; 'if' x 'equal' j 'then' 

'if' j 'equal' 1 'then''go to' ready; x:=x-1 
• 

'go to' cancel 

nlcr(l); wri te(''the nt1mber of permutations in pO''); 

type(j); wt·ite('' is ''); type(count(j}); 

d:=50M(4W(count(l)+count(2))+count(5)); 

wri te(''the total number of' permutations in p is''); 

type(d) 
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As a result of the program it turns 104 

and that IP05 1 = 96. Hence IPI =200(104+104)+50x96=46400. 

IQl=2ooc2+s>+sox16=2soo. 
• 

Since Q is not empty it is natural to disregard the rest of P, at least 

temporarily. 

The permutations of Q01 are: 

X 0 1 2 3 4 5 6 7 8 9 
• • 

The 

but 

- , ... . .. 

ql{x) 0 1 4 6 3 9 2 8 5 7 

q2(x) 0 1 6 4 2 8 3 9 7 5 .. 
transformation f(x)➔l-f(l-x) leaves both permutations 

-1 
the transformation f(x)-,,f (x) interchanges them. 

The permutations of Q
02 

are: 

X 0 1 2 3 4 5 6 7 8 9 
.. 

q3(x) 0 4 2 5 8 1 3 6 9 7 

q4(x) 0 4 2 9 3 6 8 1 5 7 

q5(x) 0 5 2 6 1 3 7 9 4 8 

q6(x) 0 5 2 9 6 3 7 4 1 8 

q7(x) 0 7 2 4 1 8 5 9 6 3 

qa(x) 0 7 2 4 8 3 5 9 1 6 

qg(x) 0 8 2 5 3 6 9 1 4 7 

qlO(x) 0 8 2 5 7 1 4 6 9 3 

invariant, 

In Q02 the transformation f(x)➔2-f(2-x) interchanges q
3 

and q
9

; q
4 

and q10; q 5 and q 8 ; q6 and q 7 , whereas the pairs q
3 

and q
5

; q
4 

and 

q 7 ; q 6 and q
10

; q
8 

and q
9 

are each others inverse. 
-1 In Q05 the transfor111ations f(x) •f(x+5)+5, I(f)=f and F

3
(f(x))=3f(7x)., · 

F 9 (f(x))=-f(-x) and F
7

(f(x))=7f(3x) are of interest. 

Q05 has 16 permutations, which are tabulated on the next page. 

The transformation f(x)➔f(x+5)+5 interchanges the pairs: (q11 ,q
26

); 

(q12'q25);(q13'ql8);(q14'q16);(q15'q22);(q17'q20);(q19'q24);(q21'q23). 
The group of 

classes i.e. 4 classes with 2 elements and 2 classes with each 4 

elements. In each class the elements are interchanged cyclicly. 
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X 0 1 2 3 4 5 6 7 8 9 

qll(x) 0 2 4 9 7 5 3 1 6 8 
• 

q12{x) 0 2 6 1 7 5 3 9 4 8 
, 

q13(x) 0 2 6 9 3 5 8 4 1 7 

q14(x) 0 2 9 6 3 5 8 1 4 7 

q15·(x) 0 3 1 6 8 5 2 4 9 7 
.. 

q16(x) 0 3 6 9 2 5 7 4 1 8 

ql 7(x) 0 3 9 4 8 5 2 6 1 7 

ql8(x) 0 3 9 6 2 5 7 1 4 8 

q19(x) 0 7 1 4 8 5 3 9 6 2 

q20(x) 0 7 1 6 2 5 8 4 9 3 

.. 
~21(x) 0 7 4 1 8 5 3 6 9 2 

q22(x) 0 7 9 4 2 5 8 6 1 3 
' 

q23(x) 0 8 1 
I 

4 7 15 2 9 6 3 

q24(x) 0 8 4 1 7 5 2 6 9 3 

q25(x) 0 8 4 9 3 5 7 1 6 2 

·-
q26(x) 0 8 6 1 3 5 7 9 4 2 
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The classes are: (qll '415); (q12, q20); (41 7, q25) ; (422, q26) ; (ql 9' q23, 421, 

q24);(q13' 4 16' 418' 4 14). 

The transformation I splits Q into 4 classes of 2 members each which 
05 . 

are each others inverse. The pairs are: (q11 ,420);(q12,q15);(q13'423); 

(q14' 4 19);(q16' 4 24);(q17' 426);(ql8' 4 21>;(q22• 4 2s>· 

Q05 is generated by means of the transformations mentioned above from 

the permutations q
11 

and q
13

. 

Define Q~5 .by Q~5 = { q11• 412' 4 13i,q15' 416' 4 19' 4 21' 4 23}. 
• 

The 

has 

set Q' is chosen in such a way that the transformation f(x)➔f(x+5)+5 
05 

no equivalent permutations in Q~
5

. Therefore, if Q'=Q
01

UQ
02

UQ
63

V 

V Q04 U Q~5 it follows that the set Q' together with the 100 trans

formations f(x)~f(x+a)+b generate the set Q. In the next section it 

will be seen that this concise description of the set Q, as a by

product of the hunt for shortcuts in the search, is a great asset in 

itself. Now that the(first) search is over it is still useful to try 

to get the set Qin a 

group F . • This group 
3l.. 

tighter grip by means of the transf'ormation 

splits the set Q02vQ
04 

into classes of 4 elements 

each. The set {q3 , q 4 , 45 , q 7} denoted by Q~
2 

has a representative from 

each class. The set Q01VQ03UQ~5 however is split into classes with 2 

elements each, if Q~5 ={q11 ,q13 ,q20,4
23

} then Q
01

u Q~
5 

has a repre-

sentative 

is known. By using the inverse of the permutations a still greater 

reduction can be achieved, in fact Q is generated by the set 

{ 41 ' q3 ' q 4' ql 1 ' ql 3 } . 

3. 5. The ~etection of t~e j11mp erro,,i::-s .. 

The condition .for the 

-the function x-f. 
2

f 
l.+ i 

detection of the j11mp transpositions was that 
1 

(x) is nearly a permutation. In the foregoing 

section it was shown that the code detects the transpositions and the 

l. + 1 -1 
apply permutations f 1 such that g1=fi+lfi £ Q and that the consecutive 

g. 's satisf'y the condition:that x-g. 1 g.(x) is nearly a permutation, 
l. 1+ l. 

or that at least the equality x-g. 1 gi(x)=y-g_ 
1

g (y) is valid £or 
1+ 1+ i 

the minimum number of pairs x,y. If the first is the case the permu-
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tations gi+l and g 1 are said to be matching. A chain of permutations 

gi£Q is wanted such that the adjacent g's form matching pairs. An 

obvious strategy £or finding such chains is to take a g1 E: Q at random 

and to search for a g
2

e. Q matching with g
1

, and so on. This is, especi-
• 

ally if the matching pairs are scarce, very inefficient. It is better 

to make a catalogue of the matching·pairs first and to build the chains 

with the aid of that catalogue afterwards. The matching pairs have to be 

selected out of the 784 pairs from QxQ. It seems worthwhile to 

investigate whether the representation of Q by means of the set Q' and 

the transformations f(x)➔.f(x+a)+b yields a saving in labour. Let 

f,f'« Q, then for some g and g' with g,g'c Q 1 ;f(x)=g(x+a)+b and 

f'(x)=g•(x+d)+b' hold. The pair f,f' matches if x-g(g•(x+a')+b'+a)-b 

is nearly a permutation, which is equivalent with the requirement 

that y-g(g'(y)+c) with b'+a=c, is nearly a permutation. So if g(x+c) 

and g'(x) match. with g,g'c Q' and 0€D, then g(x+a)+b and g'(x+a')+b', 

with b'+a=c, also match. This remark reduces the number of pairs, which 
• 

have to be tested. by a factor 1000. 

A further reduction is obtained with the aid of the transformation F3 , 

since it may be assumed that the second member of the pair lies in Q". If 

the second member lies outside Q'' then the transformation F 3 will bring 

it into Q'' and :from 

x-g(g'(x)+c)=7•3x-7•3g(7(3g'(7•3x)+3c}=7(y-F3 g(F3g•(y)+3c)) it follows 

that F
3
g,F

3
g• match if g,g' do. Hence only the 2800 triplets g,g',c 

with ge.Q'; g'E:. Q'' and cc.D have to be tested. A simple program gives 

as sad result that no matching pairs exist. This is in agreement with 

the fact ~hat up to now no code was known (at least to the author) 

which had the property to detect both the transpositions and the jump 

transpositions nearly optimal. In trying to prove that these codes do 
' 

not exist the fo1lowing example was found: 

• 
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X 0 1 2 3 4 5 6 7 8 9 

f' (x) 0 9 6 4 1 5 8 3 7 2 

f(x) 0 7 3 6 1 5 4 9 2 8 
• 

ff'(x) 0 8 4 1 7 5 2 6 9 3 

x-f • (x) 0 2 6 9 3 0 8 4 1 7 

x-f(x) 0 4 9 7 3 0 2 8 6 1 
- -· - .. 

x-ff' (x) 0 3 8 2 7 0 4 1 9 6 

x+f' (x) 0 0 8 7 5 0 4 0 5 1 • 

- - . ,. 

x+f(x) 0 8 5 9 5 0 0 6 0 7 

x+ff' (x) 0 9 6 4 1 0 8 3 7 2 

undetected, but the 

jtimp twin errors are detected nearly optimal. 

There are two possible approaches now: 

i) Admi tt also pe1·mllta tions which do not optimalize the detection of -che 

twin errors or; 

ii )suboptimalize the detection of the j1,1mp transpositions. By means of a 

simple computer program it appears that the permutations of P01 ,P02 and 

P
05 

are divided with respect to their twin error detection capacity 

according to the following table: 

undetected twin errors 1 2 3 4 5 6 7 8 9 10 15 16 

Pumber of permutations 26 0 40 62 54 22 48 16 4 26 4 2 
• 

Following the first suggestion would thus imply the loss of two more 

twin errors, as the second class is empty. The second suggestion should 

there:fore be preferred, if it means the loss of only one more j11mp 

transposition. Such is indeed the case as will be seen in the sequel. 

Again the search may limited to the triplets g,g',c, with gcQ';g'e.Q'' 

and c£0. A pair g,g' is said to be nearly matching if x-gg'(x)=y-gg'(y) 

holds for only two pairs x,y. 

By a modified program all the triplets are now tested to see whether 

there are nearly matching pairs. For the approved triplets it is counted 

how many pairs x,y satisfy x+g(g'(x)+c)=y+g(g•(y)+c). It turns out that 

32 pairs are the topscorers, each leaving two j11mp transpositions and 
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two jump twin errors undetected. Eight permutations are involved in these 

32 pairs. These permutations fall apart into two families. The members of 

one family are the inverse of those of the other family. Within each 
• 

family any two can form a nearly matching pair with an appropriate 

value for c. The permutations of one of the families are denoted by 

h.(x+a)+b nearly matches 
l. 

h . (x+a' )+b' 
J 

provided that 

b '+a=c .. , 
l.J 

X 

h
1

(x) 

h
2

(x) 

h
3

(x) 

h
4

(x) 

where 

• 

0 1 

0 4 

0 8 

0 2 

0 8 

2 

2 

2 

9 

5 

cij is listed below. 

3 4 5 6 7 8 

5 8 1 3 6 9 

5 3 6 9 1 4 

6 4 1 8 5 7 

2 4 1 7 9 6 

• 

9 C •• 1 2 3 4 
l.J .. 

7 1 3 5 0 6 

7 2 5 7 2 8 

3 3 2 4 9 5 

3 4 8 0 5 1 

It is easy now to produce chains of any length, consisting of nearly 

matching permutations. As a matter of fact h.(x+c. 1 ) provides 
1 ]. 

an infi-

nite chain with equal links, resulting in a (periodic) progressive code • 
• 

Codes based on these chains detect 97.8% of the transpositions, 97.8% 

of the twin errors, 95.6% of the jump transpositions and 95.6% of the 

j1Jmp twin errors, The problem of selecting chains which detect the 

phonetic errors optimally is dealt with in the next section. 

3 .. 6. ~~ detec~ion of ~he ph~net_ic error~. 

A phonetic error on the positions i and i+l is detected if 
-1 

x-fi+lfi (x)~f1 (1)-f1+1 (0) for x£ D, or 

x-g1 (x)~f1 (1)-gi(fi(O)) with fi+l=gifi. 

The righthand side is a fixed value, which has to correspond with the 
' 

missing value of the set {x-g.(x) Ix£ D} . The Colenbrander codes 
1 i 

(see section 2.3) defined by f (g(a1 ))=0 (mod 10), with 

0123456789 
f= { 9246801357} and where g is an arbitrary permutation, admitt an 

elegant solution. 

In {x-f(x) I x £. D}the value O is missing and by choosing g so that 

f(g(O))=g(l) it is achieved that x+fi+l(g(O)),f1
(g(l))+f(x) is 



79 

equivalent with x~f(x), which is valid for all x since the zero was 
. . Th h . { 0123456789 h. h . m1ss1.ng. e c 01.ce g= 973612485 , w 1.c 1.s the one used in the tests 

of section 2.4, is a proper one. The general case is more difficult. 

For the functions h. given in the preceding section, this missing 
1 

value is 5, and for h.(x+a)+b it is 5-a-b. Suppose that a chain 
1 

g1 ,g2 , .... ,gk with the property that the code based on the g's in the 

usual manner, detects all phonetic errors. Suppose furthermore that the 

g's are sel~cted from {h1 ,h2 ,h
3

.,h
4

} and that the selected hi•~ are 

suitably transformed as set forth in the section above. The question 

arises as to the conditions for prolongation of the chain. Let fk(O)==q 

and fk{l)=p and let gk be a transform of hs. If the next link of the 

chain is a transform of ht, then it has to be h (x+c ). The missing 
t ts 

detecting the phonetic errors is p-ht(q+ct )=5-c . This implies s ts 
that for each t only certain triplets for p,q,s, with p,qc D and 

s£{1,2,3,4} , ad.mitt the prolongation of the chain by the permutation 

ht(x+ct ). After the prolongation a new triple ht(p+c ), h (q+c ), t 
s ts t ts 

arises, which does or does not ad.mitt further extension of the chain. 

For each choice oft ands there are 10 pairs p,q which satisfy the 

condition p-h (q+ct )=5-c . Hence there are altogether 160 triplets, 
t s ts 

namely 5-cts+ht(q+ct
5
), q, s which a're suitable for chain extension. 

The resulting triplets after the extension are ht(5+ht(q+cts)),ht(q+cts), 

t, with q e D and s, t E. { 1, J, 3, 4} • In terms of the theory of graphs 

the problem is to find, possibly circuits, but at least the maximal 

paths in the directed graph defined by the coupling of the triplets. 

The triplets itse1f are the points of the graph. Let these points be 

denoted by T1 with O < i ~399. The edges of the graph are the 160 

ordered pairs (T.,Tj). The vertex T. is called the initial vertex and 
1 1 

Tj is called the terminal vertex of the edge. An edge (Ti,Tj) with a 

terminal vertex, which is not the initial vertex of any other edge, 

is called a twig. 

Obviously a twig cannot be part of a circuit and removing the twigs 

from the graph will not eliminate any circuits. The length of the 

maximal paths however will be deminished by one. The following proce

dure is applied in order to find the maximal paths: 
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i) Find the tWigs of the graph. This can be done efficiently by 

having the list of the edges ordered according to the initial vertex. 

ii) Remove the tWigs from the edge-list and put them on the first 

pruning-list. 
• 

iii) Repeat the pruning until there are no more twigs left. If the 

graph is pruned away after n prunings then the length of the longest 

chains is also n, otherwise there has to be a circuit. The longest chain 

can be reconstructed from the pruning-lists, starting ~rom the back . 
' • 

In the present case it turns out that there are 64 chains having the 

maximal length of 6. These chains are intertwined in a manner shown in 

the drawing below. 
r ------------- ---------- - -
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Unfortunately there does not exist a circuit, but it is possible to 

connect the chains, be it with the introduction of one non-phonetic

error-proof link. These improper links are shown in the drawing by the 

dotted lines. The starting points 058 and 174 are obtainable by taking 

for the initial permutation f
0 

the permutations h
0

(x+3) and h
1

(x+8) 

respectively. The first one happens to be the same as the one required 

for making an improper link. A natural choice for an infinite sequence 

of g's is therefore: h 0 (x+3),h2 (x+2},h
3

(x+5),h
2

(x+5),h
1

(x+2),h
0

(x+5),where 

these six permutations have to be repeated in this order. The re-

, sulting permutations f 1 become: f 0 (x)=h
0

(x+3), f
1

(x)=h
2

(h
0

(x+3)+2), 

t 2 {x)=h3 (h2 (h0 (x+3)+2)+5) and so on. In the table on the next page 

the various permutations are given. 
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X 0 1 2 3 4 5 6 7 8 9 X 0 1 2 3 4 5 6 7 8 9 

h
0

(x+3) 5 8 1 3 6 9 7 0 4 2 f
0

(x) 5 8 1 3 6 9 7 0 4 2 

h
2

(x+2) 
.. 

9 6 4 1 8 5 7 3 0 2 f 1 (x) 5 0 6 1 7 2 3 9 8 4 

h
3

(x+5) 1 7 9 6 3 0 8 5 2 4 f
2

(x) 0 1 .8 7 5 9 6 4 2 3 
·-··-·--·- ·"- - -, ' -- . ' . . . - • • 

h
2

(x+5) 1 8 5 7 3 0 2 9 6 4 f
3
(x) 1 8 6 9 0 4 2 3 5 7 

h 1 (x+2) 2 5 3 6 9 1 4 7 0 8 f
4

(x) 5 0 4 8 2 9 3 6 1 7 

b
0

(x+5) 1 3 6 9 7 0 4 2 5 8 f
5

(x) 0 1 7 5 6 8 9 4 3 2 

h0 (x+3) 5 8 1 3 6 9 7 0 4 2 f
6

(x) 5 8 0 9 7 4 2 6 3 1 
• 

h
2 

x+2) 9 6 4 1 8 5 7 3 0 2 f
7
(x) 5 0 9 2 3 8 4 7 1 6 

h3 .x+5) 1 7 9 6 3 0 8 5 2 4 f
8
(x) 0 1 4 9 6 2 3 5 7 8 

h
2 

,x+S. 1 8 5 7 3 0 2 9 6 4 f
9
(x) 1 8 3 4 2 5 7 0 9 6 

This code detects 97.8% of the transpositions and the twin errors, 95.6% 

of the j11mp transpositions and the jump twin errors and about 97. 9% of the 

phonetic errors. The latter percentage will be sl~ghtly better for short 

codes, since one out of the six positions will miss one of the eight pos

sible phonetic errors. 

The period of the code above is 90, since after 15 repetitions the per

mutations will be reproduced. This follows from the fact that the cycle 

representations of :f
5 

is (0)(1)(27469)(583) and hence the order of t
5 

is 15. The same method o:f search might be applied to the permutations, 

which give rise to codes detecting only 42 of the 45 twin errors per 

position. This is not elaborated here, since the next chapters contain 

codes which are superior anyhow. It should be emphasized however that 

the considerations of the chapters 3,4,5 are based on the assumption 

that the various errors are uniformly distributed. If e.g. a certain 

transposition ab➔ba is rare, it would be an obvious advantage to adapt 

a check equation in such a way that the ''missed transposition'' will 

be such a rare one. More, reliable statistics from different sources 

will be needed before it is justified to follow such a strategy. 
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Chapter 4. Codes based on t~e di~edral gr9up ~~ or~e~ 10 

4.0 Some definitions • 

In this chapter the idea of applying the dihedral group of order 10 

will be pursued. 

The cyclic group of order 10 and the dihedral group are the only 

groups of ord~r 10. The latter one is generated by two elements~ 
5 0 2 0 -1 

and£, with the generating relations o = 6 ; £ = £ ; OE= EO • 

The group is denoted by n
5

, since 1 t is a transfor111ation group of the 

pentagon. Theo stands for the rotations over 72 degrees, whereas 

the£ stands for the transfonnation which turns the plane of the 

pentagon upside down. The generating relations will be self evident 

elements of the group represent the in this interpretation. The 

sy11unetries of the pentagon, 

sy,.,,,,etries and oj e: with O < 

j i.e. o , with 1 < j < 4 are the rotation 

j < 4 are the reflexions with respect 

to the 5 axes. The elements can be coded arbitrarily with the 10 

decimal digits. In this chapter is chosen for the coding: oj➔j 
and oje:~j+5, for O < j < 4. 

The dihedral group is non-abelian, as can be seen from the third 
• 

' 

generating relation. For this reason the operation will be written 
. , ,, 

as a multiplication. The multiplication is denoted by the sign x, 

but this sign is often omitted when the generating elements are 

multiplied, as in oj£· 

In the table on the next page the result of the multiplication is 

given. This table, sanetimes called Cayley table, can be taken as 

an alternative definition of the group (D,x). 

Here, as in chapter 3, D stands for the set 1,2,3,4,5,6,7,8,9,0}. 

Note that the digit O denotes the multiplicative unit of n5 . 

The group D5 has as a subgroup ( 0,1,2,3,4},x) which is a cyclic 

group of the fifth order, c5 . Also ( 0,5},x) is a cyclic subgroup (C2). 
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The Cayley table of n
5

. 

X 0 1 2 3 4 5 6 7 8 9 
• 

0 0 1 2 3 4 5 6 7 8 9 
• 

1 1 2 3 4 0 6 7 8 9 5 

2 2 3 4 0 1 7 8 9 5 6 

3 3 4 0 ]. 2 8 9 5 6 7 

4 4 0 1· 2 3 9 5 6 7 8 

5 5 9 8 7 6 0 4 3 2 1 
• 

6 6 5 9 8 7 1 0 4 3 2 

1 6 
• 

7 5 9 8 2 1 0 4 3 

8 8 7 6 5 9 3 2 1 0 4 

9 9 8 7 6 5 4 3 2 1 0 

The unit, O, has the order 1 and the elements l, 2, 

order 5, since oi = i for 1 < i < 4 and (oi) 5 = 051 

5, 6, 7, 8, 9 are all of the order 2 since ojeoje = 

3, 4 have 
0 

= o • The 
ojo-je2 = 

• 

the 

5 elements 

'50£0 = oo. 
This was to be expected from the geometrical interpretation of the group, 

since reflexions are of the second order. 

The automorphisms of a group leave the order of the elements invariant. 

Moreover an automorphism is determined as soon its effect on the gene

rators is known. For the first generator o, which is of the fifth order, 

there are 4 possible images. For the second generator E, which is of the 

second order, there are 5 images feasable. The total number of auto

morphisms is 20, since all these combinations are admitted. The 10 
-1 

jnner automorphisms r defined by r (x) = axxxa foim a subgroup of 
a a 

the group of all automorphisms. The automorphism group of D5 will in 

this 

with 

chapter be denoted 
5 the relations p = 

by A. A 
0 4 

P ; a 

is generated by two elements p and o, 
0 2 = a ; op= po. 

The cycle representation of p and o are respectively: 

(0)(1)(2)(3)(4)(56789) and (0)(1243)(5)(6798). 

The powers of o f 01,n a subgroup of the order 4. 

The elements of A are pe1°mlltations of D and hence AC S. The per1nutations 

of A are listed in the table below. 
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0 1 2 3 4 5 6 7 8 9 

0 1 2 3 4 5 6 7 8 9 ) 

9 
1 

0 1 2 • 3 4 6 7 8 5 p 
• 

0 1 2 3 4 7 8 9 5 .6 
2 

p 

0 1 2 3 4 8 9 5 6 7 p 

0 1 2 3 4 9 5 6 7 8 p 

0 4 3 2 1 5 9 8 7 6 
2 

a • .. 
2 

1 6 5 9 8 7 0 4 3 2 pa 

0 4 3 2 1 7 6 5 9 8 
2 2 

P a 
• 3 2 

0 4 3 2 1 8 7 6 5 9 ) a 

0 4 3 2 1 9 
4 2 

8 7 6 5 o a 

0 2 4 l 3 5 7 9 6 8 a 

0 2 4 l 3 6 8 5 7 9 pa 

0 2 4 1 3 7 
2 

9 6 8 5 P a 
3 

0 2 4 1 3 8 5 7 9 6 P a 

0 2 4 1 3 9 6 8 5 
4 

7 P a 

0 3 1 4 2 5 8 6 9 7 
3 

a 
3 

0 3 1 4 2 6 9 7 5 8 pa .. 
0 3 1 4 2 7 5 8 6 9 P a 

0 3 1 4 2 8 6 9 7 5 
3 3 

P a 

0 3 1 4 2 9 7 5 8 6 
3 

P cr 

The first 10 pennutations form the subgroup of the inner automorphisms. 

4.1 ~?rmulati~n of the r~guirements 

Analogous to the method of chapter 3, the codes based on n5 are 

defined as the set of all code words from Dn satisfying 

c0xf1 (a1)xf2 (a2)x ... xfn(an) = en for fixed c 0 ,cne.D and fi fi.S. 

It was shown in 3.0 that such a code detects all single errors. From 

this point on the parallel with chapter 3 is broken in the sense that 

the results are different. The treatment as a whole 1s analogous and 

in fact, it is possible to formulate some of the proofs in such a way, 

that they are valid for both the cyclic and the dihedral group. For 

didactical reasons it was thought better to make both chapters self-

• 
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contained. Especially for those readers not familiar with group 

theory, the third chapter would seem to be unnecessarily complicated. 

The condition for the detection of the transpositions is 

c0xt1 (a1 )x ... xf1 (a1 )xf1+1 (a1+1 )x .. -~ c 0 x ... xf1 (a1 1 )xf (a )x + i+l i ... ' 

for a 1 ~ ai+l· 

The c0111mon factors on both sides can be cancelled by multiplication 

from the lef~ or from the right by the inverse of those factors, but 
• 

in the resulting inequality: f 1 (a1)xf1+1 (ai+l)~ f 1 (a1+1 )xf1+1 (a1) 

the factors containing a 1 and the ones containing ai+l cannot be 

separated. Substitution of x for fi(a1 ) and y for f 1 (ai+l) gives: 
-1 -1 

xxfi+l f 1 (y);6yxfi+l t 1 (x) for all x,y £ D with x ~ y. 

The condition for the detection of the twin errors will becom~ after 
-1 -1 

the same reasoning: xxfi+1 f 1 (x)~yxfi+lfi (y) for all x,yED with 

x • y. In the latter condition the x and they are separated. 

The condition for the j11mp transpositions becomes 

f 1 (a1 )xfi+1 (ai+l)xfi+2 (a1+2 ) ~ f 1 (ai+2 )xf1+1 (a1+1 )xfi+2 (a1) or after 

the substitutions fi(ai>+x; f 1+1 (a1+1 >~y; fi(a1+2 )+z 
-1 -1 

xxyx fi+2 f 1 (z) ,/:. zxyx f 1+2 :fi (x) for all x ,Y ,z c. D with x - z. In the 

sarne way the 

will become: 

condition for the detection of the j1Jmp twin errors 
-1 -1 

xxyxf1+2 f 1 (x) ./; zxyx f 1+2 fi (z) for all x,y ,z E: D with x 

Both conditions for the jump errors are exacting, since they have to 

hold for ally. It will be seen in section 4.5 that these exacting 

functional relations not only ask much, but also give much (see also 11). 

The phonetic errors are detected if f 1 (x)xfi+l(O) - f 1 (1)xfi+l(x) for 

al 1 x -/: 0, 1 with x <. D. Since for 1 and O the inequality is valid any-

how the provision x-/: 0,1 may be dropped. 

The pe1·111utations t 1 occurring in the check equation may be defined 

recursively by fi+l = gi fi, with f 1 E. S . 
• The pe1·111utations g1 are used in the su11,11,ary of the conditions. 

1) Transpositions xxgi(y) -I: yxg1 (x) for x,y£D with x - y. 

2) Twin errors xxgi(x) ,,J. yxg1 (y) for x,yc:.D with x-/: y. 

3) ,T1Jmp transpositions xxyxgi+lgi(z) i= zxyxgi+lgi(x) for x,y,zcD with 

X I:, Z. 
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4) J11mp twin errors xxyxgi+l g1 (x) -1', zxyxgi+l g1 (z) for x ,y ,z 6D with 

X ~ z. 
• 

5) Phonetic errors xxf i+l (O) ~ f 1 (1) xg1 (x) for x .e.D. 

4.2 'rile a~alysis of, the ?Onditions. 

The fifth and the first condition are no longer contradictory as they 

were in the cyclic case. • 

The proof of the impossibility of the first four conditions is not 

applicable, since n5 is not ,abelian. In fact, and this is the advantage 

of the dihedral group, there do exist permutations which satisfy the 

first condition (see 4.4). The twin error detection requires that 

xxg(x) is a permutation for some pe1011.1tation g. Al though the variables 

are separated in the twin error condition, the non-existence proof of 

3.2 is not applicable, since Il x = IT g(x) does not always hold in 
xeD XtiD 

D
5

• Unfortunately this does not imply that there exist pe1mutations 

satisfying the requirement • 
• 

Theorem 4 .2 .0. There does not exist a pe111,u.tation f, such that xx f(x) 

is also a pt:1mutation. 

Proof: Let the digits O, 1, 2, 3, 4 be called low and the remaining 

digits high, lo and hi for short. Suppose that f(x) is k times low 

for low x. Thus k times: f(lo) = lo and hence 5-k times: f(lo) = hi 

and :f(hi) = lo, and thus k times f(hi) =hi.The low digits form a 

subgroup of n5 with a factor group of order 2, which means that 

loxlo = hixhi = lo and loxhi = hixlo =hi.From. this it follows that 

xxf(x) is 2k times lo and 10-2k times hi. If xxf(x) were a pe1·11lutation 

then 5 low and 5 high digits had to occur, but 2k = 5 is not true. 

Hence xxf(x) can at best be nearly a pe1mutation. The following 

example shows that this is indeed possible. 

X 0 1 2 3 4 5 6 7 8 9 

f(x) 0 2 4 6 7 5 9 8 3 1 .. 
xxf(x) 0 3 1 9 6 0 2 4 5 8 
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This particular f does not satisfy the first condition, • since 

Oxf(S) = 5xf(O) = 5. This is not accidental, since it can be shown 
• 

that no pe11notation f exists, such that xxf(x) is nearly a pe:r·111utation 

and such that it also satisfies the condition that xxf(y) i yxf(x) 

for all x ~ y. The proof which is very c11mbersome, distinguishing several 

cases, is left out. The fact will be established by the computer search 

anyhow, which in its elf is also a proof, distinguishing all cases·. 

It is also possible to give an upper bound for the detection rate of 

the jtimp errors. There are 450 combinations for x,y,z 41ED with x < z. 

Let gi+lgi be denoted by h for short. The conditions then become 

xxyxh(z) ~ zxyxh(x) and xxyxh(x) ~ zxyxh(z). As in the proof of 

theorem 4.2.0, the pairs (x,h(~)) can be put into four classes denoted. 

j can be taken as the exponent 

of £ of x and h(x) respectively. So if x = oke:i and h(x) = 0 1e:j then 

10 and 

= IA01I + IA11I = 5. 

Two different classes A1 j and Akl are called complementary if 

i+j = k+l (mod 2). Three cases are considered separately. 

i) (x,h(x)) and (z,h(z)) belong to different non-complementary classes. 

Both inequalities are then trivially fulfilled, since the Dl1mber of 

E's is different on both sides of the sign, no matter what value y has. 

ii) (x,h(x)) and 
a i 

that x = o e: ; z 

(z,h(z)) belong to the same class, say 
c i bk a' j 

A1 .. Suppose 
~· j = o £ ; y = o e: ; h(x) = o e: ; h(z) = o € express 

the representations of the various elements as products of the 

generators of D. The conditions become after substitution: 

can be converted, using the 
i+k 

generating relations of D5 , into 
i i+k, 

c+(-1) b+(-1) a i+j+k d o £ an 
1 i+k 

~a+(-1) b+(-1) a'e:i+j+k ¢ 1 i+k c+(-1) b+(-1) c' i+j+k 
0 e: . 

After cancelling 
·+·+k 

£
1 J it follows that: 

a+(-1) 1b+(-l)i+kc' 

a+(-1) 1b+(-l)i+ka' 

c+(-1) 1b+(-1) 1+ka' (mod 5) and 

i i+k, c+(-1) b+(-1) c (mod 5). 

which 
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These inequalities are independent of band they can be reduced to: 
' 

a-c ~ (-l)i+k(a'-c') and a-c J (-l)i+k(c'-a'). For 5 out of the 10 
i+k . 

values for y it holds that (-1) = 1, and for the other 5 values 

(-l)i+k = -1. The 2 conditions are split up into a-c ~ a'-c' (mod 5) 

and a-c = -(a'-c') (mod 5) for the first condition and a-c = c'-a' 

(mod 5) and a-c = -(c'-a') (mod 5) for the second one. The 2 pairs of 

inequalities •are apparently equivalent. From x ~zit follows in 

this case that a~ c (mod 5) and hence a-c = a'-c' (mod 5) and 

a-c = -(a'-c') (mod 5) cannot both hold at the same time. Thus if one 

of the two holds, then the original inequalities are both valid for 

5 of the 10 values for y and otherwise for all 10 values. 

iii) (x,h(x)) and (z,h(z)) belong to complementary classes, say A
1

j 

and A.i.-i,l-j respectively. Since either i or 1-i is equal to O and 

since the conditions are symmetric with respect to x and z, it may 
a bk ~c be ass11med that 1 = 0 holds. Suppose that x = o ; y = o e: ; z = u £; 

h(x) = oa'Ej; h(z) = oc'e:l-j holds. Substitution in the conditions 

gives Oa0b£koc'e:l-j ~ OCEObEkoa'e:j and oaobe:koa'e:j ~ OCEObEkoc'£l-j 

which becomes after setting the generating relation at work 
k k+l 

0a+b+(-1) c'
8
1-j+k ~ ~c-b+(-1) a'£1+k+j and 

k k+l 
6a+b+(-1) a'e:j+k ,,I: 0c-b+(-1) c'

8
1+k+l-j. 

Since the exponents of£ is the same modulo 2 on both sides of both 

inequalities it is necessary that the exponents of o are different 

modulo 5. That is a+b+(-l)kc' ~ c-b-(-l)ka' (mod 5) and 

a+b+(-l)ka' ,,I: c-b-(-l)kc' (mod 5). After sorting the tex,ns both 

equations can be put in the for10 2b ,,I: c-a-(-l)k(c '+a') (mod 5). Hence, 

for each of the two values fork, there is just one of the 5 values 

for b such that the inequality is false. 

The following table gives a survey of the number of undetected jtimp 

errors. 
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Aoo AOl AlO All 

Aoo 0 or 5 0 0 2 
• .. 

AOl 0 0 or 5 2 0 

AlO 0 2 0 or 5 0 

All 2 0 0 0 or 5 

The best permutations would be those which score always a O in· the 
• 

main diagonal. The number of triplets x,y,z, with z > x, which fall 

2 2 of the 450 cases 2(d +(5-d)) are bound to remain undetected. The 

function d2+(5-d) 2 is at least 13 so that at most 424 of the 450 

possible jump errors are detected. This would be a detection rate 

of 94.2%. It will be seen in 4.5 that there exist permutations which 

achieve this reault. 

As to the phonetic errors it is sufficient to remark that the detecting 

condition does not contradict the one for the transpositions, so that 

a 100% detection seems feasible. Section 4.6 is devoted to the construct

tion of codes which reach that score. 

4 .3 Detec,:!=ion rate preserving transfo:r·111at,~,on~ 

Let Ube the set of all pe11nutations f, satisfying xxf(y) .I. yxf(x) 

for all x,y'=D with x -;6 y and let V be the subset of U consisting of 
• 

the pe11uutations f, such that xxf(x) = yxf(y) is valid for 2 or less 

(unordered) pairs x,y with x -;6 y. 

As in the cyclic case there are several transfo1·111ations (of S) which 

leave U and V invariant, but the situation is more canplicated, since 

D
5 

is non-abelian and since the concept of duplicators cannot be used. 

From the fact 

(or 

that n
5 

is a group it follows that multiplication from 

the left) by a fixed element a, pennutes the ela11ents the right 

of D. Let the resulting permutations be denoted by r and l respect-a a e 

ively. Hence r (x) = xxa and 1 (x) = axx. The pe1-mutations 1 with a a a 
a E.D fo1-m a subgroup of the sy,umetric group S, called the left regular 

representation of n5 . This subgroup is isomorphic with D5 , since from 
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1 lb(x) = 1 (bxx) = ax(bxx) = (axb)xx = 1 b(x) it follows that a a ax 
1 lb = 1 b and since l I: lb for a ~ b. The 10 different pe1·1n11tations a ax a 

r , with a E. D, fo11n also a subgroup of S, called the· right regular a 
representation of n5 . This group is also isoniorphic with n

5
, since 

from r 8 rb(x) = r
8

(xxb) = xxbxa = rbxa(x), it follows that rarb = rbXa' 

so that the order of multiplication is reversed. The transfol"mations 

R: f-+'r f leaveUandVinvariant, since fromxxf(y) =zxf(u) it. a a . 
follows that xxf(y)xa = xxr f(y) = zxr f(u) = zxf(u)xa. Hence if a a 
f EU, V then also r f E. U, V. The induced equivalence classes all have 

a 
10 different eleinents and in each class a representative, which has 

0 as a fixed point, can be selected. The pel'mutation r _
1

f is 
f(O) 

equivalent with f and has Oas a fixed point. Let u
0 

and v
0 

be defined 

--
for pennutations 

satisfying the conditions for the detection of the transpositions and 

the twin errors may be limited by setting f(O) = 0. 

The transformation f~l f does 
a 

ing counterexample shows. The 

not leave U invariant, as the follow-

(0123456789) pennutation f given by f = 0432178956 
belongs to U, as will be seen later on. 15 f however does not belong 

to U since 5x15f(8) = 5x5xf(8) = 5 and 8xl
5
f(5) = 8x5xf(5) = 3x7 = 5. 

,The transfoi:·mation L : f+fl leaves both U and V invariant. This follows a a 
at once by substituting axx; axy etc. in xxf(y) - zxf(u) which gives 

ax(xxfla(y)) ~ ax(zxfla(u)). Since fla(O) ~ f(a) it is clear that u
0 

is not invariant for all L. 
a 

The transformations~ and La are permutable since ~La(f) = ¾(fla) = 

= rbfl8 = La(rbf) = LaRb(f) holds. 

-It is possible to construct a transfo1·mation Ta such that Ta (U
0

) = u
0

. 

Define T by T (f) =LR 1 (f) and let Ta(f) = g, then 

-1 g(O) = f(axO)xf(a) = 0. Moreover if Tbg = h then g(x) = f(axx)xf(a) 

and h(x) = g(bxx)xg(b)-l = f(axbxx)xf(a)-1 x(f(axb)xf(a)-l)-l = 

= T bis valid. ax b_f ax 
Furthe2·111ore T0 (f) = f, since f(x) = f(Oxx)xf(O) = f(x) provided 

that f(O) = 0 holds. The transformations Ta, with a ~D, working on u
0

, 
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fo11n therefore a group. The equivalence classes induced do however 

not always contain 10 permutations, as the following example will 

show. Define f by f(ok) = o-k and f(ojE) = oj+dE, with d ~ o, then 

f(x) = f(5xx)xf(5)-l for X=ok; f(EXOk)xf(E)-l = f(6-k£)x(Od£)-l = 

= 0-kOdE(OdE)-l = 0-k = f(ok)and for X=Oj£ :(EXOjE)xf(E)-l = 

= f(o-j)xodE = oj+dE = f(ojE). 

The relation x;xf(y) ,i:myxf(x) is proved by treating the three cases 

x and y both low or both high and x and yin different classes, 

separately. 
i j 1-j j i J·-1 

i) O xf(o) = o whereas o xf(o) = o , but 1-j ~ 0 since x ~ y. 
ii) o1 £xf(Oj£) = o1 £oj+d£ = oi-j-d, but Oj£Xf(oiE) = Oj£0i+d£ = 

j-i-d = o , and again 1-j ~ 0. 

iii) oixf(ojE) = c1 oj+de: = oi+j+dE and Oj£X:f(c1 ) = Oj£0-i = oi+j£. 

Thus f E. U holds, 

o1 xf(cSi) = 0 and 

but the detection 

oj£xf(oj£> = o-d. 

of the twin errors is bad, since 
5 Hence 20 (i.e. 2(
2
)) of the 45 

possible twin errors escape detection. This code will be met again 

in the next chapter. Clearly f, v0 holds and it will be seen in 4.4 

that in v0 the equivalence classes do contain 10 elements each. 

Meanwhile it is not clear how this transformation can be used in the 

search for u0 . The third transformation group is of a different 

nature. It is a subgroup of the automorphism group of S, consisting 

of the inner autoinorphisms derived from the elements of A, which 

is, as automorphism group of n5 , a subgroup of S. 'Ibe fact, which 

will be proved below, that the transfo.r·rns by elements o:f A, leave U 

and V invariant means that A is contained in the normalizer of U and 

V. The transformations are denoted by F, 
s 

with s £A, and defined by 
-1 F (f) = sfs 

s 
for f ~ S. The transfot1i1ations fo:r1n a group isomorphic 

s s Fst(f) 

and since F
8 
~ Ft for s ~ t. 

From xxf(y) ~ yxf(x) it follows that s(xxf(y)) ~ s(yxf(x)) and ass 
-1 

the inequality becomes after substituting s x' is an 

for x 

automorphism, 
-1 

ands y' for 
-1 -1 

y: x'xsf(s y') ~ y'xsf(s x'). Hence F (f) EU 
s 

if f ~U. The same kind of reasoning proves that F (f) EV if f E:.V. 
s 

• 
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Since the automorphisms leave O fixed, it fol lows that the transfo1·,11a.

tions F
5 

leave u0 and v0 invariant as well. 
• 

The induced equivalence classes do not necessarily have 20 elements 
-1 

each. It can happen that sfs = f, or what is the same, that sf= fs. 

All the automorphisms except those belonging to the subgroup c5 , have 

just one fixed point different from O, say s(a) =a.Therefore, if 

sf= fs then sf(a) = fs(a) = f(a) and hence f(a) =a.But then · 

axf(O) = a = Oxf(a) holds, and thus f tit u0 . The pe.11uutations pe11n1.1table 
i with the subgroup c5 are of the fo1·m p f', where f' is a permutation 

which leaves each one of the high digits fixed, as can be readily 

verified (see 8). In fact the example given above is of this very form. 

These permutations give a poor detection of the twin errors. 

The latter property~follows from the proof of theorem 4.2.0, since 
' 

i 1· 
p f' (lo)= 1o and p f' (hi) = hi, so that xxf(x) = lo for all x. The 

detection rate is therefore at most 40/45 and pif, does not belong to V. 

For the search for u0 only a subgroup of A is useful, namely c
4 

con

sisting of the automorphisms oj, with O < j < 3. With this group a 

factor 4 can be gained. Let u01 and v0 i be defined by u01 = 

-- search 

may be limited to say the classes u
0 

then j can be chosen such that ojfo- (5) = 3 and if f(5) E:.{6,7,8,9} 

then for some j: ajfo-j(5) = 8. Note that f(5) 1'-. 5 if fE.U. 

4.4 The search program 
0 

The same program as in the preceding chapter can be used, except for a 

few changes. First of all the group operation has to be adapted to the 

dihedral group. Secondly the test bas to be cha.nged. The program is 

used twice i.e. once for u03 , in which f(5) = 3 and the other time for 

u08 with f (5) = 8. The result of the 

= 404 and 

tions in U for which xxf(x) is nearly 

lv03 [ = 72 and = 78 which makes 

90 seconds search is that 

I U I = 34040. There are no pe1mu ta-

a pe1·111utation. 

lvl = 6000. It 

Furthermore 

turns out that 

the transfo1·mations T divide V into 600 classes and that the transfo1111-
a 

ations F with s &:A and R with ac.:D give a further subdivision of these 
s a 
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classes. In V three pe1~nutations 

that each f e V can be written as 

h 1 , h 2 and h 3 can be chosen such 

L R_ F h. with a, b ED; s c A and a· .b s 1. 
• 

i ES 1,2, 3} . The three per1nutations h. 
]. 

are given in the table below. 

X 0 1 2 3 4 5 6 7 8 9 

h1 (x) 0 6 4 2 7 8 1 3 9 5 

h
2

(x) 0 5 8 2 6 3 7 9 4 1 
• 

h
3

(x) 0 7 9 6 1 8 4 2 3 5 

The importance of this canonical representation will become clear 

in the next sections. 

4. 5 The detection of the j11me err~rs 
at 

The requirement for the optimal detection of the jump transpositions 

and the j\1mp twin errors is the same, as was shown in section 2 of this 

chapter. Let g and g' be two pe1mutations of V, not necessarily 

different. It will be said that g matches g' if xxyxgg'(x) ~ zxyxgg'(z) 

holds for 424 out of the 450 triplets x,y,z with x,y,z€D and z > x. 

,, '' ' For a good code a chain of matching gi sis needed in order to 

construct the f 1 's recursively with fi+1 = g 1 f i and f 1 €. S . Just as 

in chapter 3 it is advisable to make a catalogue of the matching 

pairs as a preparation for the construction of the chains. 

In view of the large number of possible pairs (36000000), other reason 

could be mentioned as well, it is worthwile to exploit the equivalence 

transformations 0£ section 4.3. As a matter of fact it will turn out 

that a factor 20000 can be gained on the number of tests to be per

fo1·1ned. To avoid unnecessarily complicated formulae the proof will 

be given in several steps. 

The transfoi·mations L , 
a 

following relations: O) 

and F 
s 

with a, b E.D and s E. A satisfy the 

L L = · 1) R R. = · 2) F F = F · a-b a' a-·b a' s t st' 
3) LR. = RbL; 4) FR. = R (b)F; 5) FL = L ( )F. a-b a s--b s s s a s a s 
The first four relations have been proved in 4.3. The remaining two 

-1 
follow directly from the definitions, for FsRb(f) = s(rbf)s and 

-1 -1 -1 
for each x e.D, srbfs (x) = s(fs (x)xb) = sfs (x)xs(b) and hence 
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4) is proved. Also FL (f) = s(fl )s-1 and for each xL.D 
-1 ~1 a a 

-1 
sfl s (x) = 

a 
= sf(axs (x)) = sfs (s(a)xx) and relation 5 follows at once. 

Denote the number of solutions of xxyxgg'(x) = zxyxgg'(z) with z > x 

and x ,y ,z ED, by N(g ,g'). The next step is to prove the relations: 

6) N(g,g') = N(Rbg,g'}; 7) N(g,g') = N(g,L g'); 8) N(g,F g') = 
a s 

= N(F 1g,g'); 9) N(L g,g') = N(F 1 g,R g') where r is the inner 
- a - a s r _1 

automorphism defined by r(x) = axxxa . • 

Consider the equation xxyxgg'(x) = zxyxgg'(z) and multiply both sides 

from the right by b to prove the relation 6. Substitution of axx' for 

x and axz' for z followed by multiplication from the left of both sides 
-1 -1 -1 

by a gives relation 7. Now consider xxyxgsg's (x) = zxyxgsg's (z) 
-1 

and apply the automorphisms on both sides and substitute s(y') for y, 

s(x') for x and s(z') for z and relation 8 results. The awkward factor 

yin the middle proved to be helpful in this situation, since y may be 

replaced by s(y). Finally the equation xxyxg(axg'(x)) = zxyxg(axg'(z)) 
-1 -1 

can be altered into xxyxaxa xg(ax(g'(x)xa)xa )xa = 
-1 -1 -1 

= zxyxaxa xg(ax(g'(z)xa)xa )xa or xxyxaxr gr(g'(x)xa) = 
-1 = zxyxaxr gr(g'(z)xa) which gives relation 9 after substituting 

-1 
y'xa for the helpful y. By means of the relations above it is easy to 

prove that N(La¾F8 f 1 ,LcRdFtfj) = N(F -l -l f 1 ,R -l fj). 
t r s t (dxa) 

The Lc and the Rb can be removed by 7, 3 and 6, giving 

N(LaRbFsfi,LcRdFtfj) = N(LaF
8

f 1 ,RdFtfj). Application of 9 gives 

N(LaF
8

f 1 ,RdFtfj) = N(F _1F
8

f 1 ,RaRdFtfj). The Ft can be moved over R 
r 

by 1 and 4 and after that, 8 gives N(F _1F
5
fi,RaRdFtfj) = 

r 
= N(F _1F _1 F

8
fi,R _1 fj). Finally application of 2 gives the 

t r t (dxa) 
desired equality. 

Consequently it is only necessary to test the 1800 pairs F hi, Rh. 
s a J 

with s a A , a 6 D and i , j G 1 , 2 , 3} • 

If one matching pair has been found 

is that 10 pairs of the form F
8
,h1 , 

j then all for certain s ' , a' , i , 

t-lr-1 s = s', t-1 (dxa) = a', with 

R ,h. 
a J 

program 

match. Let the pairs be 
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1 

2 

3 

4 

95 

denoted by the quartet (s' ,i,j,a). The 10 pairs are (p
2 ,3,l,8); 

22 4 2 23 
(po ,3,1,2); (p ,2,2,4); (p,3,2,5); (p o,3,2,7); (pa ,3,2,5); 

33 43 3 2 . 
(Po ,1,2,6); (pa ,1,2,1); (p ,3,3,1); (p ,2,3,6). 

The diagram on the next page pictures the matching relations. It is 

now a simple matter to construct codes which give an optimal detection 

for the transpositions (100%), the twin errors (95.5%), the jump 

transpositions (94 .2%) and the j11mp twin errors (94 .2%). A chain of 
• 

pe11nutations gi can be made by following the arrows in the diagram 

and perfo1·ming the operations as indicated along the lines. 

(s' ,i,j,a'), then 

dxa = t(a') ands= rts', with r(x) = axxxa . By selecting d so that 
0 d = t(a'), it follows that a= 0 and r =p and hences= ts'. 

With the following scheme a chain can be forged easily: 

i • quartet t t(a') d ts' J - - s gk - -

2 3 {p,3,2,5) 
0 po(s) 5 

0 
R5h2 p - p p - p - -

+ 

3 
3 

P(l) 
3 4 

3 (p ,3,3,1) p - 1 pp - p RlFp h3 - -

2 
2 4 p 4(6) 2 4 

3 {p , 2, 3, 6) p - 5 p p - p R5Fe4h3 - -
3 3 

p(6) 
3 3 4 3 

2 1 (p o ,1,2,6) p - 7 pp CJ - P cr R7Fp h2 - - etc. 

0£ special interest are the loops by h 2 and h 3 , since they offer the 

possibility to fonn progressive codes which have all gi's equal. So can 
-1 -1 4 FL Rbh

2 
be self-matching ifs r' s = p and bxa = 4, where r' is 

s a -1 -1 -1 
defined by r'(x) = s(a)xxxs(a ). Hences r' s(x) = 

-1 -1 -1 s (s(a )xs(x)xs(a) = a xxxa and it follows that a= 3 and b = l, 

so that F
8

L3R1h2 is self matching for 

0123456789 0123456789 
- L31\<0582637941) = L3(1973546802) = 

alls. Now L3 R1h 2 = 

0123456789 
(3519702468) = (03986215)(47). 

The loop by b 3 gives rise to the self matching p~1·mutations FtL1h 3 , 
0123456789 where L

1
h

3 
= (

7961042358
) = (07319854)(26). The resulting progressive 

codes have all a period 8. None of these codes is phonetic error-proof, 

but by choosing s = p 2 the pennutation (01589427) (36) is obtained which 

provides a code with a detection rate of 95,3% for the phonetic errors. 
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2 
x6 

3 • 2 x8 p P cr p x6 

h1 (x) 

xl 43 
x2 p CJ p 0 

• • 

h2 (x) p h3 (x) 
• 

x5 . 

2 
p 0 

x7 2 
p 0 

4 r+I 3 x4 xl p p 

4. 6 The detection of the_ P,!1onetic err,or_~ 

The purpose of this section is to construct chains of matching permuta

tions, in the sense of section 4.5, with the property that the phonetic 

errors are detected too. The per1r1utations fi occurring in the check 

equation Il f 1 (ai) = en' which defines the code, are given recursively 

by fk+l = gkfk with f 1 arbitrarily chosen in S. The permutation gk+l 

has to match gk fork> 1, but g1 can be taken arbitrarily in U. The 

detecting condition fk(x)xfk+l(O) ~ fk(l)xfk+l(x) may be written as 

xxgkfk(O) ~ fk(l}xgk(x) for x E:D. 

By putting p = fk(l) and q = fk(O) the condition becomes xxgk(q) ~ 

~ pxgk(x) for x.:D. The set of pairs p,q such that the above condition 

is fulfilled, will be called the initial set of gk. The new values for 

p and q which are offered to gk+l' are gk(p) and gk(q) (or fk+l (p), 
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fk+l (q)). These pairs are said to fo11n the terminal set of gk. Tile 

initial sets of h
1

, h
2 

and h
3 

as defined at the end of section 4. 4., 

can easily be found by checking the condition. Let tlie initial set 

of h
1 

be denoted by Xi, then the sets Xi turn out to be: x 1 = 01,04 

06,07,12,13,14,19,21,27,28,38,39,43,45,51,56,63,67,68,72,73,75,78,80, 

87,90,91,92,94}; x
2 

= 01,03,09,17,1s,20,25,28,32,38,43,46,49,s6,57, 

59,62,65,67,7~,72,78,84,86,87,89,90,91,92,93,94} and x3 - 02,04,.08, 

10,16,17,19,21,23,24,28,35,37,42,47,51,53,58,62,64,69,70,72,75,79, 

81,82,91,93,95,~6}. Thus lx1 1 = 30; lx2 1 = jx3 1 = 31 holds. If 

-1 -1 -1 -1 
- p'xthjt (cxx)xd which is equivalent with t (cxx)xt thjt (cxq') ~ 

-1 -1 -1 ~ t (cxp')xt thjt (cxx), which after substitution of x' for 
-1 -1 -1 

t (cxx) becomes: x'xhj(t (cxq')) ~ t (cxp')xhj(x'). Thus the pair 
-1 -1 t (exp'), t (cxq') has to belong to Xj and hence for some pair p,q 

-1 -1 
from Xj, p = t (exp') and q = t (cxq') has to hold. The latter 

-1 -1 
equations are equivalent with p' = c xt(p) and q' = c xt(q) and the 

-1 
initial set of gk is c xt(Xj). The te1minal 

-1 -1 
the pairs thjt (cxp')xd, thjt (cxq')xd, or 

te1minal set of gk is therefore thj(Xj)xd. 

set of gk 

thj(p)xd, 

is formed by 

th . (q)xd. 
J 

The 

Now if F hi matches R hj then gk l matches gk if gk+l = LaRbFshi with 
-1 u -1 !1 + 

t (dxa) = e and t r s = u, where r is again the inner automorphism 
-1 

defined by r(x) = axxxa • The phonetic errors are detected by this 
-1 

new link if(thj(p)xd, thj(q)xd)•a xs(X1 ) as is derived above. 'lb.is 

relation implies that for certain (p'' ,q'') E:. Xi it has to hold that 
-1 ,, -1 ., 

thj(p)xd = a xs(p) and thj(q)xd = a xs(q) are true. Substitution 
-1 ,, -1 

of rtu for s gives thj(p)xd = a x(axtu(p )xa ) and the similar 
-1 

equation for q. Substitution of e fort (dxa) gives, since 

-1 '' -1 similarly for q the equation 

) 
tt 1 hj(q = u(q )xe . These conditions are only dependent on u and e, 

which depend only on the linking mode which is employed, to get from 

j to i, (see diagram of section 4 .5). The conditions may be viewed 

as a directed graph K. The points of Kare the triplets (i,h1 (p),h1 (q)), 
-1 -1 

with 1 = 1, 2, 3 and {p,q)E.X1 • Now (j ,u(p)xe ,u(q)xe ) is connected 



98 

with (i,h.(p),h.(q)) if F hi matches 
l. l U 

matching modes thus give rise to 308 

R h . and if ( p , q) E. x
1 

. The 1 o e J 
directed edges. A phonetic error-

• 

proof code has to be based on a chain of pennutations gk, which has to 

correspond with a path in the graph K. The construction is therefore 

brought back to the problem of finding paths , preferable circuits, in 

the directed graph K. The circuits are interesting since they give 

infinite, though periodic, codes. The circuits, if they exist, can 

be found by the method described in 3.5. The twigs of K can be 

pruned off and after 10 prunings, as it turns out, a twig-free 

directed graph with 35 edges is left over. 

This proves that a circuit has to be present. Among these 35 edges 

there may be edges which have an initial vertex which is not the 

te1minal vertex of any other edge. Edges like this may be called 

roots of the directed graph. The roots can be removed by the same 

procedure, be it that the direction of the edges has to be reversed. 

After cutting off all the roots, there remains a graph with 18 edges 
' 

and 16 vertices. A picture is given on page 99. The graph has a 

rich structure, since there are three basic circuits, A, Band C, 

such that tours can be organized, such that A, Band Care visited 

in an arbitrary order, with any multiplicity. The tours are thus 

in a one to one correspondence with the free semi group generated 

by A, Band C. The circuits Band C have each three edges, whereas 

A has 14 edges. Most attractive, because of their simplicity, are 

the codes based on one of these smaller circuits only. As an example 

one of these codes will be constructed. It 1s made of the matching 

pairs (F 2h2 ,R6h 3); (F 2 2h 3 ,R2h1 ); (F 3 3h1 ,a6h
2
). The vertices 

p p a p a 
of Care (2,9,5); (1,6,2); (3,3,7). The pairs of the initial sets 

of h 1 , h2 and h3 which correspond with the vertices are: (1,3); 

(7,1); (8,1). 

Let these pairs be denoted by (p1 ,qi) and let the matching pairs be 

of the g-chain may begin by taking an arbitrary pe1·m1Jtation from U 

as g1 . If this pe1u1Jtation in the canonical representation is 
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312 254 374 280 

• 

237 386 

A 

134 · 146 

358 279 

345 246 337 295 

B C 

103 162 
• 
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L R F h., then the pet,aiutation f 1 has to be chosen so that f
1 

(1) = 
c ~lt J -1 

= c xt(p.) and f (0) = c xt(q.), the other values off may be 
J 1 J 

chosen arbitrarily. For the matching pairs it holds· that 

= 26 and by the rules 6 and 4 of section 4.5, it follows that 

analogous way the other matching relations may be transfo:n•1~d. Putting 

R2h 1 = h{; R6h 2 

= N(F h' h ') = s 3' 1 
2 

g -F h'·g 4 - s s s 1• 
2 1 3 

it follows that 26 = N(F h'·h') = 
s 2' 3 

1 
g = F h' · 2 s 3' 

2 
and so on, a chain with 

the desired properties is found. With the aid of the relation 8 of 

section 4.5 it can be easily shown that N(gk+l'gk) = 26. In the table 

below the first 13 permutations fk are given. 

X 0 1 2 3 4 5 6 7 8 9 

f 1 (x) 3 1 2 0 4 5 6 7 8 9 

f 2 (x) 
.. 

4 9 1 2 5 6 3 0 7 8 .. 
f 3 (x) 4 8 5 0 9 7 2 6 3 1 .. 
f 4 (x) 1 2 6 9 4 5 7 8 3 0 

f 5 (x) 3 5 0 1 2 8 9 6 7 4 

f 6 (x) 3 8 9 4 7 2 6 1 5 0 

f 7 (x) 2 4 8 6 9 0 7 1 3 5 

f (x) 1 7 9 5 0 3 8 6 4 2 
' 

f (x) 1 8 2 9 5 0 4 7 6 3 
' 

f1o<x> 4 3 2 6 8 7 0 1 5 9 

fll(x) 2 6 9 8 5 4 1 3 0 7 

f 1 (x) 2 8 6 3 4 1 0 9 7 5 

fl3(x) 3 1 2 0 4 5 6 7 8 9 

This particular code has a period of 12. 

In general a code can be constructed as follows: First select a route 

in the linking-graph K. Second take g1 in accordance with the route 

selected, say g1 = LcRdFthj, where the j is fixed by the route 

selected. Then f 1 is free.in S, provided that f
1

(1) and t
1

(0) are 

--
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suitable for g
1 

and the selected route. If the second g is in the 

canonical representation LaRbF
9

h 1 and if the matching pair given by 
• 

the route selection is Fuhi,Rehj then dxa = t(e) ands= rtu has to 

hold. Hence only b can be chosen freely. The same holds for each of 

the following permutations gk. For each prechosen route in K there 

are 8! possible choices for f 1 ; 2000 for g1 and 10 for each following 

gk. Note that the pruned-off links may be used at the ends of the chain. 

All these codes detect all single errors, all transpositions and all 

phonetic errors. Of the twin errors 95.5% is detected and of the 

jump transpositions and jump twin errors 94.2% is detected. In all 

classes the detection is optimal for codes defined by a check equation 

Il f 1 (a
1

) = c in the dihedral group n5 • 

• 
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Chapter 5. The bi-gu,i~a .. ry, c~<!es. 

5.0. Introduction. 

Historically this chapter should have preceded the foregoing one. In it, 

a code is explained, which was the first, pure decimal,. one to detect all 

single errors and all transpositions. Like the I.B.M. code mentioned in 

it was designed without regard for the jump errors or the twin 

errors. It was sheer luck that the first one did detect more than 50% 

for these types. In 5.3. a generalization is given which scores nearly 
• 

90% in said classes. It is very remarkable that the first bi-quinary 

code is, at the same time, a code based on the dihedral group, whereas 

the generalization is not interpretable as such. As a matter of fact, 

the present author tried in 1955 to design a transposition-proof code 

based on the.dihedral group, but without succes. Instead the bi-quinary 

code of 5.1 was found. 

Though the bi-quinary code met the requirements, set at that time, it 

was considered to be of mainly theoretical interest, since the com

plexity of the check equations did not encourage the design of a 

verifier. For a switching circuit, which performs the checking,see 51. 

The circuit is incorporated in a larger switching system used in the 

library of the University of Technology at Delft (see 52). 

Later on, A. Benard gave an interpretation of the code based on the 

addition modulo 10. The weights used in the check equation are de

pendent on the value of the code word itself. It is therefore a non

linear code and for that reason the non-existence proof of 3.2 does not 

apply. The generalization of the code admitts an analogous inter

pretation. 

5 .1. The firS!t bi-quina,ry ~.ode. 

The set {0,1,2,3,4,5,6,7,8,9} is mapped on the Cartesian product of the 

sets {0,1,2,3,4} and {0,1}. The five element set will be denoted 

by V and the set with two elements by W. The set of the ten decimals 

is called D. Each decimal digit xis thus mapped on a pair (v,w) with 

v c V and w E: W. The mapping is quite arbitrary, but it may be advantageous 

to use a natural way, like v=x (mod 5) and w=x (mod 2). In this chapter 

the digits 1,2,3,4,5 will be called low and the other ones high. This 
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is done in accordance with the conventional telephone switching techniques, 

in which the O is represented by 10 pulses and the other digits by the 

number of pulses indicated by that digit. So, low means less than 6 

pulses and high means more than 5 pulses. If a is mapped on (x,y), then 

it is convenient to have a notation for this relation. Therefore two 

functions, denoted by v and w, are introduced. The functions map D onto 

V and W respectively by the definition v(a)=x and w(a)=y. Throughout 

this chapter only mappings are used such that {x lw(x)=O} is a complete 
• 

set of representatives modulo 5. In this section w(x)=O holds for the 

low digits and w(x)=l for the high ones. The sets V and W can be made 

into groups by defining an addition. For V this addition is the addition 

modulo 5 and for Wit is the addition modulo 2. Hence (V,+)=C5 and 

(W,+)=C
2

, since both groups are cyclic. As usual in mathematics, it is 

not thought necessary to employ different signs for the various 

additions. For untrained readers and computers this is sometimes con-
n 

fusing. Let a
1

a
2 

. .. an be a word of D and let tj be defined by the 

recursion t. 
1
=t .+w(a. 

1
) (mod 2) and t

0
=0, hence tjE::: W. The first 

J+ J J+ . 
bi-quinary code C consists of those code words satisfying: t =0 in c2 t 1 t 3 n 
and (-1) (v(a

1
)-v(a

2
)-2w(a

1
))+(-1) (v(a

3
)-v(a4 )-2w(a3 ))+ •.. =0 in c5 . 

The terms w(ai) occuring in the latter equation. which are O or 1 in w. 
have to be interpreted as O and 1 in V. Strictly speaking a mapping~ 

had to be introduced which maps W into V, such that (0)=0 and ~(1)=1. 

In the formula, (w(ai)) should then have been used, instead of w(ai). 

The following lemmata can be proved: 

5.1.1 The code C is E1-proof. 

5.1.2 C =10n-l, i.e. the code can be considered as a code with (n-1) 

information digits and 1 check digit. 

5.1.3 The code C is transposition-proof. 
' 

5.1.4 The code C is phonetic error-proof. 

re 5.1.1 The change of any digit a 1 may imply 

which case the first check equation ceases to 

a change of w(a.), in 
1 

be valid. Otherwise the 

quinary value v(ai) has to change, but this will violate the second 

equation, since all the values 

re 5.1.2 For each of the lOn-l 

w(a
1

) and tj are unaffected by the change. 

choices of a., with i>2, it is possible 
1 

to find one and only one digit a 1 , so that both equations are valid. 
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n 
Through the first equation, w(a.)=0, the value of w(a 1 ) is fixed. 

. 1 l. 1-
After that, all the functions- tj have a known value too and hence v(a

1
) 

can be solved from the seconq equation. The pair v(a 1 ),w(a1 ) fixes the 
• 

digit a 1 . 

re 5.1.3 The formal proof of this lemma is labourious since many different 

cases are considered. It will be left outhere,since the property will 

be proved later on. It is of interest however to explain the clue of the 
• 

strange second check equation, which contains two parts, namely= 

+v ( ai) and -2 +w(a2 j-l) . The first part is aweigh ted s11m modulo 5, 

with weights dependent on thew-values of the digits. The second part 

is solely dependent on these w-values; it will be called the binary 

function of the second check equation. 

Now the detection of the transpositions in all the bi-quinary codes of 

this chapter, is based on the following principles: 

The first equation, as a straight sum modulo 2, will never detect a 

transposition. Let a and b be the transposed digits, then: 

1) If w(a)=w(b),and therefore v(a)-v(b)~O, then the first part of 

the second equation, ( +v(ai)), wi11· change value. The binary function 

can of course not change. 
• 

2) If w(a)~w(b), and therefore v(a)-v(b) may take all 5 values of V, 

then the binary function changes value. The first part of the second 

equation remains constant in this case. This is necessary, since if 

it were allowed to change, then for one of the 5 values of v(a)-v(b) 

the change of the binary function would be compensated. 

It is left to the reader to check that the present equations satisfy 

these principles. 

It will be clear from the considerations above, that for the binary 

function many other possibilities exist, since the only requirement 

is that it changes value if two adjacent digits with different 

W-value are interchanged. 

re 5.1.4 Since w(O)=l and w(l)=O holds, the phonetic error 1Jf-,x0, will 

spoil the first equation. Alao for this argument it is good to take 0 

as a high digit. 

It will turn out in the course of this chapter, that the twin error 

detection rate is 5/9 and the jump error detection rate will appear 
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to be 2/3. 

It is possible to define the same code recursively. Let c
0 

be chosen 

so that w(c0 )=0 and v(c0 )=0, (hence c
0

=5 in the convention of this 

w(c2k-1) 
w(c2k+l)=w(c2k)+w(a2k+l) and v(c2k)=v(c2k-1)-(-1) v(a2k); 

w(c2k 1> 

The code C consits of those words,for which cn=cO holds. From these 

recursive formulae, which are irr,,1aediately clear from the equations 

of the preceding section, it follows that a Latin staircase is possible 

{see chapter 1) . 
• 

The following two Latin squares are applied alternatively: 

5 1 2 3 4 0 6 7 8 9 • 5 1 2 3 4 0 6 7 8 9 

5 5 1 2 3 4 7 6 0 9 8 5 5 4 3 2 1 0 9 8 7 6 

1 1 2 3 4 5 8 7 6 0 9 1 1 5 4 3 2 6 0 9 8 7 

2 2 3 4 5 1 9 8 7 6 0 2 2 1 5 4 3 7 6 0 9 8 

3 3 4 5 1 2 0 9 8 7 6 3 3 2 1 5 4 8 7 6 0 9 

4 4 5 1 2 3 6 0 9 8 7 4 4 3 2 1 5 9 8 7 6 . 0 
• 

0 0 9 8 7 6 3 4 5 1 2 0 0 6 7 8 9 5 1 2 3 4 

6 0 9 8 7 4 5 1 2 3 6 6 7 8 9 0 1 2 3 4 5 

7 7 6 0 9 8 5 1 2 3 4 7 7 8 9 0 6 2 3 4 5 1 

8 8 7 6 0 9 1 2 3 4 5 8 8 9 0 6· 7 3 4 5 1 2 

9 9 8 ·1 6 0 2 3 4 5 1 9 9 0 6 7 8 4 5 1 2 3 

The entries of the two tables are wrltten in a somewhat unusual order 

to show the similarity with the multiplication table of the dihedral group 

In fact, after interchanging O and 5 both in the entries and in the body 

of the table, two tables are obtained, which are col,1mn permutations of 

the Cayley table of n5 on page 83. Let the dihedral group after the in-

. 5 
J=oj; j+5=oJ£, for j=l,2,3,4. The recurring relations become: 

and 
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c -c xf (a ) and c =c Xf (a2 ) in o5•, where using the conven-
2k+l- 2k 1 2k+l 2k 2k-l 2 k 

i i j 2- j i -i j - j 
tions of chapter 4, f 1 (o )=o ;f1 (o g)=o £ and f 2 (o )=o ;f2 Co e)=o €• 

-1 i -i -1 j j+2 -1 i -i 
Thus g1:f1

f
2 

(o )=o ;g
1
:f1f

2 
(o g)=o £ and g2~f2 f 1 Co )=0 ; 

-1 j j+3 
g2=f1t 2 Co E)=o e . 

Hence both g
1 

and g
2 

are permutations of the type given in the example 

of section 4.3,which gives rise to a transposition-proof code. The code 
n 

can thus also_be defined by rr hk(ak)=5 inn;, with h 2k+l=f1 and.h2k=f2 . 
k=l ' 

From this interpretation of the code it follows immediately that the 

detection rate of the twin errors is 5/9, see p. 91. The j11mp error 

detection rate is also easily found by the method of 4.2. In order to 

apply this method the d~stribution of the pairs (x,g1g2 (x)) and (x,g2g1 (x)) 

over the 

inverse, 

classes Aij' should be k1nwn. Now g1 and g
2 

are each 

so that all the pairs fall in A00 and A11 , that is 5 

others 

in each 

class. Moreover, the difference of the exponent of 6 in x and g 1g 2 (x) 
... , 

is always 0. Hence there are 20 pairs of x,z which cause 5 undetected 

j11mp errors each. To the complementary classes belong 25 pairs x, z 

each giving 2 undetected j11mp errors, so that only 300 of the 450 possible 

jump errors will be detected. 

It is the tragedy of codes like the one above, that even though the error

type with the low detection rate, has a small frequency, it may occur 

that in the set of undetected errors, the given type is dominant. The· 

result is that the code looks very bad, giving the impression that a 

major class of errors has been overlooked. 

By taking another mapping of Don VxW, A.Benard gave an elegant inter

pretation of the same code. 

Let the mapping be defined by v(x)=x(mod 5) and w{x):ax(mod 2).Let 

a 1a 2 ... an be a code word. Now Benard remarks that the odd digits sepa-

rate the even digits in, possibly empty, runs. The runs, including the . 

empty ones can be n11mbered from the left to the right. A run with an 

even serial number, will be called an even run. Let the odd digits of 

the code word be n11mbered from the left to the right and let o(j) denote 

the j-th odd digit. Let furthermore the even digits of the code word 

also be numbered from the 

j-th even digit. Now put 

left to the right 

(-l)jo(j)=S and 
0 

and let e(j) denote the 

(-l)je(j)=S, and let the 
e 
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number of even digits, occurring in even runs, be denoted 

is defined as the set of code words satisfying: S -S =2K 
d e 

by K. The 

(mod 10). 

code C 

This 

code is esse11tially the same as the one defined in 5 .1. The check equation 

S -S =2K taken modulo 2 is the same as the first equation of 5.1 and 
o e . · · 

taken modulo 5 the equation becomes: (-l)Jv(o(j))- (-l)Jv(e(j))=2K(mod 5). 

Now let a. be the j-th odd digit, then a.=o(j) and t.=j (mod 2). 
1 1 1 

If i=2i'-1 then j=t
2
i'-l (mod 2) and if i=2i' then j=t2i,=t21 ,_1+w(a1 )= 

t 21 , _
1 

+1 (mod 2). 

Hence for the ·odd 

modu1o 5 equation 

• 

digits the coefficient of v(a.) is the same in the 
1 

• 
of both interpretations. On the other hand, if a. 1S 

1 

the j-th even digit, then a.=e(j) and j=i-t.(mod 2). Hence for 
1 1 

i=2i'-1 

it holds that j= 1+t
21

,_1 (mod 2) and for i=2i' it follows that 

j=t
21

,=t
21

,_
1

+w(a
1
)=t

2
i,-l(mod 2). Hence also for the even digits the 

coe·f:ficients of v (a. ) are the same in both modulo 5 equations. Only the 
1 

binary function of the Benard equation is different, but 2K does have 

the property that it changes value if two adjacent digits with different 

parity are interchanged. It follows that the code defined in the Benard 

fashion has the same detection rate for the transpositions and the 

phonetic errors. This can also very easily be proved directly, using the 

principles of page 104.For interchanging adjacent digits with the same 

parity, is detected since either S or S but not 2K changes value. Inter-
o e 

changing digits with different parity only changes 2K, since the even and the 

odd digits retain their serial n11mber, but one of the even digits comes 

in a run of a different parity. For the proof that the single errors 

are detected, it is sufficient to observe that the number of odd digits 

in a valid code word is always even. A parity changing single error 

disturbs this rule and a non-parity-changing error is detected by 

S or S, since all the coefficients are unaffected by the error. 
o e 

The binary function, 2K, in the Benard variant is a less £ortunate choice, 

since the twin errors are only detected if even twins from an even run 

are changed into odd twins. This gives a twin error detection rate of 

about (25/45)/2=27.8%. The jump error detection is independent of the 

binary function.It should be noted that parity may be read as W-value, 

5.3 Generalization of the ~i~quinar~ code. 

The purpose of generalizing a formula is often to create the possibility 
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of selecting another specialization, which has more desirable properties 

than the original formula. In other words after creating more freedom 

of choice the selection of a better code becomes feasable. It is a 

delicate question what a proper generalization is ~n this respect. The 

Latin staircase method with arbitrary Latin squares, for instance, is 

certainly a generalization, but it is of little help because there 

is no easy way to test the merits of the resulting code combined with 

an overwhelming n,imber of possibilities. A generalization should preserve 
• 

some basic idea. Finding and formulating the basic idea of a method 

is essential for finding a generalization. The clue of the present code 

is thought to be the bi-quinary representation of the decimals in com

bination with the peculiar structure of the second check equation. The 

success hinges on the fact that a quinary transposition-proof code is 

possible. A weighted quina~y code, defined by ukak=o (mod 5), is 

transposition-proof if the adjacent weights are different. These weights 

may depend on the binary components of the digits. The binary word 

w(a1 )w(a2 ) ... w(an) will be called the binary key of the decimal code 

word a 1 a 2 ... an. The binary key should be parity checked and therefore 

it detects always the single errors which change the binary key. Those 

single errors which leave the binary key invariant are to be detected 

by the quinary check equation u.v(a.)=B (mod 5), where Bis the key 
l. ]. 

dependent binary function. This implies that none of the coefficients 

u. may vanish. The principles of the transposition detection were 
]. 

(see page104): that the left hand side of the quinary equation remained 

invariant if the binary key changed and was changed if the binary key 

remained invariant. The latter property is fulfilled as soon as the 

adjacent weights are different. The invariance under key changing 

transpositions is a much more severe requirement tor the key dependent 

weights ui. Let b1 and b
2 

be two keys, which are equal on all places 

but the first two and let b1 start with 01 and b
2 

with 10, then 

ui (b1 )=u1 (b2) for i > 2 has to hold. Furthei:·more u
1 

(b
1 

)=u
2 

(b
2

) and 

u 1 (b2 )=u2 (b1 ) are also necessary conditions .. For each key b, it has 

to hold that u.(b)~u. 1 (b), if b has equal bits on the 1-th and the ]. 1+ 
(i+l)-th position. 

The obvious improvement strived for is a better detection of the twin 

errors and the jump transpositions. A cumbersome analysis reveals that 



• 

109 

100% detection cannot be achieved in either category by this method. The 

optimal result can be explained best by reconsidering the first bi-quinary 

code,, The coefficients occurring in the second check equation are exclu-

quinary check is employed. It is 
• • 

sively +1 or -1, so that an alternating 

however well-known that equations like 2ia.=0 (mod 5), yield much better 
i 

codes for pure quinary code words. It is therefore obvious to try to ex

ploit this circumstance,, A decimal code can be defined as follows: 

Define, using the same notation as in 5.2, T and T by T = 
. o e o and 

T = 
e 

for 

2Je(j) ahd let B be a binary function, which is modulo 5 sensitive 

the transposition of digits with unequal parity (or W-value). The 

code C is defined as the set of words satisfying: w(a.)=0 (mod 2) and 
1 

T +T =B (mod 5). If w is o e defined by w(x)=x (mod 2)th&n the two equations 
• 

may be combined into one by setting T '= 7Jo(j), giving T '+T =B' (mod 
o . o e 

where B'=B if Bis even and B'=B+5 if Bis odd. The equation modulo 5, 

just as the second equation of the first bi-quinary code, has the pro

perty that the interchange of adjacent digits, with different parity, 

does not change the left hand side, since there is no change in the 
' serial number of the odd or even digits. The binary function B however 

will change. On the other hand, if two digits with the same parity are 

interchanged, then the function B will not change, whereas one of the 

10), 

s11ms T or T will. Hence each transposition will disturb the second check o e 
equation. The advantage of the generalization is that the non-parity-

changing twin errors are always detected. This follows at once from: -
2ja+2j+la=2j(3a)~2j(3a')=2ja'+2j+la' and a-a•~s. The parity-changing twin 

errors disturb a lot in the equation, since all odd and all even digits, 

which follow the error, get an other serial number. Also the function B 

may change value. For each a there are five possible values for a', which 

are all different modulo 5, hence for each a there is just one a' which 

compensates whatever changes occurred through the parity change. There are 

never two values for a' which do so, since othe~wise the single error 

which interchanges these two a''s would not be detected. So 5 of the 45 

twin errors per position, are undetected, giving a rate of 8/9 . 
. 

For the jump errors there are several cases to be considered. 

i) The interchanged digits and 

parity. This type is detected, 
• • 

the digit in between, all 

since 2ja+2j+2b~2jb+2j+2a 

with 2J(3a)~2J(3b) and since a-b~O. 

have the same 

is equivalent 



110 

ii) The interchanged digits have the same parity, which is different 

from the parity of the middle one. These errors are detected since 
j j+l j j+l 

2 a+2 b~2 b+2 a holds, as a~b. 

iii) The interchanged errors have a different parity. Now 5 out of the 

25 possible combinations are undetected, since for each a there are 5 

different values for b possible. Only one of these values will leave the 

second eq11ation true. The nett result is that the jump transposition 

detection rate is 8/9. The jump twin errors are more slippery. Suppose 
• 

• 

that aba becomes cbc somewhere in the code word. Consider three cases. 

i) w(a)=w(b)=w(c). Then the error is not detected because 

2ja+2j+2a=2j(5a)=0 (mod 5). 

ii) w(a)=w(c)iw(b). This error is detected 
. . . 1 

2J(3c)=2Jc+2J+ c and since a~c (mod 5). 

iii) w(a)~w(c). Then again 1 of the 5 possible values of c gives a 

valid check equation. 

Hence 15 of the 45 errors will be undetected, thus yielding a detection 

rate of 2/3. This latter rate is not easily improved upon. 

The choice of the function Bis less important in this generalized 

code, but for some technical implementations a skrewed choice may be 

of influence. To make this clear an example is sketched. Let e. be 
J 

the n1.1mber of even digits preceding the j-th digit of a code word and 

let o. be the 
J 

e.+o.=j-1. 
J J 

number of odd digits preceding the j-th one. Hence 

w a. -
J 

O· e. 

equation may be written as (mod 5). Let 

v and w again be defined by w(x)=O for xtll!:{1,2,3,4,5} and else w(x)=l, 

and v(x)=x (mod 5). Suppose that the digits are fed into a verifier, 

as pulse trains according to the convention that the digit xis repre

sented by a train with x pulses, with the understanding that the O is 

counted for 10. Without going into the details, it may be pointed out 

that the high digits are recognized only after the 6-th pulse is 

received. It can be so arranged that the pulses of each train are 

treated in the beginning according to the ''even mode'' and only after 

receiving 6 pulses the treatment is changed into the ''odd mode''. The 
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result is that the even (that is low) digits are counted correctly, 

but that the high digits gave 6 pulses in the wrong mode, whereas a.-6 
J 

pulses are treated correctly. This difference modulo 5 is precisely 

needed for the binary function B. The peculiar form of the function 
• 

used in 5.1 also comes from technical considerations. 

Though this generalized bi-quinary code improves upon the one of 5.1, 

it is still of a lower standard than the codes of chapter 4. Mathemati

cally it has a very interesting property, which alone would be a suffi

cient reason·, or excuse, for mentioning it. It is the only code· so far 

which is not of the Latin 

recursive definition like 

staircase type. 

Ci 1=q.(c.). + 1 1 

In other words, there is no 

The recursion can be given with the aid of an auxiliary binary quantity 

£1 . From a technical point of view this means that an extra memory is 

needed. 

• 
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