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PREFACE 

This volume of the series "Mathematical Centre Tracts is published 

on the occasion of the European Meeting 1968 on Statistics, Econometrics 

and Management Science in Amsterdam. With permission of the Organizing 

Committee of this Meeting, the Statistical Department of the Mathematical 

Centre has invited some authors of papers on Statistics and Probability 

Theory to publish their work in the form of this Tract. This second 

volume contains five papers, on rather varying subjects. Just as in the 

first volume (Selected Statistical Papers 1, M.C. Tract 26), the papers 

appear in an almost random order, determined by the date of arrival of 

the manuscript. 
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This survey paper neither claims to be exhaustive nor attempts to 

be impartial. Because of my personal tastes it is heavily biased toward 

minimax theory, and several important lines of thought will only be 

mentioned, but not adequately discussed. In particular, I shall concent

rate almost exclusively on the simplest, best known and most important 

case: that of estimating one single location parameter. 

1. HISTORICAL REMARKS, OR: THE DOGMA OF NORMALITY 

The dogma that measurement errors should be distributed according 

to the normal law is still widespread among users of the method of 

least squares; I hope that the following historical remarks wi.ll help 

to clarify some of the issues. I am much indebted to CH. EISENHART for 

drawing my attention to two crucial 19th century references. 
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The theory of estimation originated with problems where almost 

all of the statistical variability of the data is due to measurement 

errors. This situation should be clearly distinguished from the opposite 

case where the data show a large internal variability and where good 

reasons can be advanced for the use of the sample mean, or of the 

sample median, as estimates for the corresponding population parameters. 

But in our case, statistical variability is just a nuisance to get rid 

of, and one is mainly interested in finding that combination of the 

observations whi.ch lies on the average nearest to the true value 

It is illuminating to witness how the normal, or Gaussian, 

distributi.on was introduced by GAUSS himzelf. I quote GAUSS (1821): 

"Der Verfasser gegenwl:!rt:i.ger Abhandlung, welcher im ,Tahr 1797 diese 

Aufgabe nach den Grunds!Hzen der Wahrscheinl.ichkei tsrechnung zuerst 

untersuchte, fand bald, dass die Ausmittelung der wahrscheinlichsten 

Werthe der unbekannten Grl::lsse unm6glich sei, wenn nicht die Function, 

die die Wahrscheinlichkeit der Fehler darstellt, bekannt 1st. In so 

fern sie dies aber nicht 1st, bleibt nichts Uhrig, als hypothetisch 

eine solche Function anzunehmen. Es schien ihm das natUrl:i.chste, zuerst 

den umgekehrten Weg einzuschlagen und die Function zu suchen, die zum 

Grunde gelegt werden muss, wenn oine allgemein als gut anerkannte Hegol. 

fur den oinfachston all er F!Hle hervorgehen soll, die nemU.ch, dass das 

arithmetische Mittel aus mehreren :t'Ur eine und diesel.be Grtlsse durch 

Beobachtungen von gleicher ZuverHissigkei t gefundenen Werthen als der 

wahrscheinlichste betrachtet werden mUsse. Es ergab sich daraus, class 

die Wahrscheinlichkeit eines Fehlers x, einer Exponenti.algrosse von 

der Form e-hhxx proportional angenommen werden m1Jsse, und dass dann 

gerade diejenige Methode, auf die er schon e:i.rd.ge Jahre zuvor durch 

andere Betrachtungen gekonunen war, allgemein nothwendig werde. Diese 

Methode, welche er nachher besonders seit 1801 bei allerlei astronomische 

Rechnungen fast t!:!gU.ch anzuwenden Gelegenhei t ha tte, und auf welche 

auch LEGENDRE inzwtschen gekommen war, is jetzt unter dem Na.men Methode 

der kleinsten Quadrate :i.m allgemei.nen Gebrauch." 

Note that GAUSS here introduces the normal distribution to suit 

the sample t i.s amusing to observe the use of the arithmetic 
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mean became almost sacred over the years -- I believe mostly because 

one misunderstood the GAUSS-MARKOV theorem ("the best linear unb·iased 

estimate of the expected value is the sample mean") and the Central 

Limit theorem ("the sum of many small independent elementary errors is 

approximately normal") in conjunction with the theorem that for 

independent identically distributed normal observations the sample mean 

is indeed best in almost every conceivable sense. I have italicized 

the crucial words in the above paraphrases of the theorems; for instance, 

there is no reason, except mathematical convenience, to impose linearity 

or unbiasedness, and one might argue from sad experience that the model 

should also allow for a few gross elementary errors occurring with low 

probability. 

Moreover, one can hardly claim that the sample mean was universally 

accepted, as Gauss did. There is a charming contemporary paper 

(ANONYMOUS 1821), which first states that good reasons can be advanced 

for the use of the sample mean in the case of inherent statistical 

variability of the data, as opposed to mere measurement errors, but 

which then continues: "Cependant, dans ce cas meme, la methode vulgaire 

n'a pas ete generalement suivi ni pratiquee sans quelques restrictions. 

11 est, par exemple, certaines provinces de France ou, pour determiner 

le revenu moyen d'une propriete territoriale, il est d'usage de 

considerer ce revenu durant vingt annees consecutives, d'en distra:i.re 

le revenu le plus fort et le plus faible, et de prendre ensuite le dix

huitieme de la somme des autres." 

The unknown author then continues to remark that a considerable 

arbitrariness is involved here: why shouldn't one exclude the two greatest 

and the two smallest observations? But nevertheless he does not believe 

that all observations should enter with the same weight into the determin

ation of the mean. 

BESSEL (1838, p. 67) states that he never rejected an observation 

for internal reasons, i.e. because it deviated too much from the majority 

of the observations, and that he gave them all the same weight. He remarks: 

"Wir haben geglaubt, nur durch die feste Beobachtung dies.er Regel, Willkilr 

a.us unseren Resultaten entfernen zu ktlnnen." 
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It seems to me that this kind of discussion borders on an irrational 

dogmatism; a more rational action would have been to look at actual error 

distributions in large samples obtained under controlled conditions, to 

check whether they were compatible with a normal distribution and, if 

not to develop a more appropriate theory of estimation. 

Actually, BESSEL himself (1818, p.19f. · had made :such a comparison. 

He notes that all three of his test samples show a slightly higher 

frequency of large errors than the normal distribution would predict, 

but he minimizes this discrepancy and fail.es to recognize ts significance 

(the sample mean is a poor estimate of location for longer-tailed 

distributions). 

Much later, NEWCOMB (1886) notes "In practice, large errors are 

more frequent than this equation (the normal law) would indicate them 

to be". He suggests that the square exponent of the normal density 

function should be replaced by less rapidly increasing function. "The 

management of such an exponent might, howevf>r, prove inconvenient, and 

I shall adopt a law of error founded on the very probable hypothesis 

that we are dealing with a mixture of observations having various 

measures of precision." Thus, he adopts an error distribution with 

density 

{ e + 
p 

+ .J! e 
(J 

m 

} 
and proposes to use the Bayes estimate for a uniform prior distribution. 

Roughly, this amounts to giving lesser weights to more extreme observ

at:l.ons. 

There was essentially no progress beyond NEWCOMB in the subsequent 

60 years, even though situation had been quite clearly recogni.zed 

by eminent statisticians like STUDEN'r {:£927) and JEFFREYS '1932 

But it seems that nobody had realized how bad the classical 

estimates could be in slightly non-normal situations and how much 

security and accuracy could be gained by some quite simple alternative 

procedures, the French custom, quoted above, of deleting ex•"reme 
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observations. The procedures of NEWCOMB and of JEFFREYS were excessively 

laborious; according to the latter "each approximation took about 6 

hours' work, using a Marchant calculating machine and the tables of 

Milne-Thomson and Comrie" (l.c. p. 85). 

The turning point came after World War II, when TUKEY and the 

Statistical Research Group at Princeton began to propagandize the 

problem, to emphasize the shortcomings of the classical estimates and 

perhaps most important of all -- to establish properties of several 

really practicable alternatives to them. Much of the material was 

disseminated in unpublished reports of the Statistical Research Group, 

which are almost inaccessible now. A survey paper was later published 

by TUKEY (1960); compare also TUKEY (1962). As a latecomer and outsider 

I have difficulties in properly assigning the merits for different 

important innovations, and I will therefore refrain from sketching 

the history of this period. 

2, WHAT IS ROBUST ES'I'IMATION? 

Let me begin with a remark on terminology, namely on the notions 

"distribution-free" or "nonparametric" estimators. Personally, I think 

this terminology is ill-conceived and should be abandoned. It makes 

some sense to speak of distribution-free or nonparametric tests (meaning 

tests which are invariant under arbitrary order preserving homeomorphisms 

of the real line),because their performance does not depend on the true 

underlying distribution under the null hypothesis, and they keep their 

validity outside of a single real parameter family of distributions. 

Still, the power of such tests depends heavily on the underlying 

distributions, and since the performance of estimates is intimately 

connected with the power of certain tests, there are no really distribut

ion-free estimates and confidence sets -- even though the probability 

that the interval (X(k)' X(n-k+l)) covers the true median does not 

depend on the underlying distribution, the average length of this interval 

does. Moreover, it is definitely awkward to talk of a nonparametric 

estimate of a location parameter. Indeed, it seems that "distribution-
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free" and "nonparametric" are now gradually being superseded by "robust" 

in estimation contexts. 

Through the work of TUKEY and others, one had recognized by 1960 

that 

(i) one never has a very accurate knowledge of the true underlying 

distribution; 

(ii) the performance of some of the classical estimators is very 

unstable under small changes of the underlying distribution; 

(iii) some alternative estimators like the o:-trimmed mean (i.e. 

one removes a fixed small fraction a of extreme observations on either 

side and computes the mean of the rest) lose very little efficiency 

relative to the sample mean for an exactly normal law, but show a much 

better and. more stable (more "robust") performance for other error 

distributions F. 

The question now arises how to choose in a rational fashion between 

different robust estimates This means that one has to make precise the 

goals one wants to achieve. I cannot report that unanimity has been 

reached, even if one restricts attention to what TUKEY and McLAUGHLIN 

(1963) call "robustness of efficiency". 

To be specific, consider the problem of estimating a location 

parameter 0 from n independent observations x1 , , .. , Xn' each distributed 
x-0 

according to P(Xi < x) = F(0 ) where F is not exactly known. 

In the course of a discussion at the IMS-Meeting in Washington, D.C., 

December 1967, at least four distinct goals for robust estimators have 

emerged. 

According to the first, a robust estimator should possess 

(1) a high absolute efficiency for atl suitably smooth shapes F. 

While there is hardly any doubt that goal (1) can be achieved 

asymptotically for large sample sizes, the currently available evidence 

points to a very slow convergence, much too slow that the estimates 

would be useable for moderate sample sizes (cf. TAKEUCHI (1967), H./(JEK 

and SIW (1967) p. 264ff.) Thus one relaxes the requirements to one 

of the following: 

PJH 6 
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(2) a high efficiency relative to the sample mean (and some other 

estimates), and this for all F (cf. BICKEL (1965)); 

(3) a high absolute efficiency over a strategically selected finite 

set {Fi} of shapes (e.g. the normal, logistic, double-exponential, 

Cauchy and rectangular shapes), cf. BIRNBAUM and LASKA (1965), MIKf 

(1967), YHAP (1967), CROW and SIDDIQUI (1967); 

(4) a small asymptotic variance over some neighborh.ood of one 

shape, in particular the normal one. 

Personally, I favor approach (4). The rationale behind it is that 

we usually have quite a good idea of the approximate shape of the true 

distribution, so that it should suffice to consider the neighborhood 

of only one shape. On the other hand, we need a rather "full" set, to 

exclude estimates which are unstable under small changes of the under

lying distribution. The following sections will be heavily biased 

toward this approach. 

3. 'l'HREE METHODS FOR CONSTRUCTING ESTIMATES 

As before, let x1 , ... , Xn be independent random variables with 
X-0 

distribution P(X. < x) = F(--). We shall assume that Fis symmetric, 
i cr 

having a density f = F', and that the scale parameter cr 1 is known. 

At the cost of some complications these assumptions could be relaxed, 

but the basic ideas can be presented more clearly this way. We shall 

not bother about regularity conditions. 

(i) Maximum likelihood type estimators. 

Let p be~ real valued symmetric function of a real parameter, 

with derivat;ve f = p'. Define a statistic 

X) either by 
n 

(3.1) p(X. - T ) :::: 
l. n 

p(X.-t) 
]. 

or by 
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I 
i<n 

Under quite general conditions Tn is a consistent estimator of 0, 

and n½(T -0) is asymptotically normal with asymptotic mean O and 
n 

asymptotic variance 

If we insert 

(3.3) (x) '(x)/f (x) 
0 

for '!1(x), then is the maximum likelihood estimator of 0 for the true 

underlying distribution and will under suitable regularity conditions 

be asymptotically efficient for F "' F0 • (HUBER (1964), (1967)). 

put 

(3.4) 

(ii) Linear combinations of order statistics. 

T 
n 

< ... < 

1 \' h(_!_) 
n i~ n+l 

be the ordered sample; 

) ' 

where h is some function satisfying J1 h(t) dt = 1. 
0 

Under quite general (but not yet entirely :regularity 

conditions n¼(Tn-0) is asymptotically normal with asymptotic mean o 

and asymptotic variance 

o~(F) U(t) 2 
1 

dt) 2 = dt - cf U(t) 
I 

0 0 

where U is an indefin:L te integral of 

h(t) 
-1 

f(F (t)) 
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If we choose 

h ( t) 
1 

I(F ) 
0 

11 

-1 
'!1'(F'(t)) 

0 0 ' 

where '!1' is the derivative of (3.3) and I(F) = f'¥ (x) 2 F (dx) is ISHEH's 
0 0 0 0 

information, then T is asymptotically efficient for F . (.JUNG (1955); 
n o 

the best results to date are those of CHERNOFF, GASTWIRTH and ,JOHNS ( 196 7) ; 

compare also BICKEL (1967).) 

(iii) Estimates derived from rank tests. 

Consider a 2-sample rank test for shift: let Y1 , ... , and 

z1 , ... , be two independent samples with distributions F(x) and F(x - t:.) 

respectively. Form the combined sample of size N = 2n and take as test 

statistic for testing t:. = 0 against t:. > 0 

W(Y1 , ... ,Y ;Z , .•. ,z) 
n 1 n 

where Vi= 1 if the ith smallest entry in the combined sample is a Y, and 

V. = 0 otherwise; assume for simplicity J(t) = -J(l-t). 
l 

One can derive estimates of location from such tests: 

determine T (X1 , ... ,X) such that 
n n 

0. 

The asymptotic behavior of T can be determined from the asymptotic 
n ! 

power of the rank test; it turns out that n (T -B) is asymptotically 
n 

normal with asymptotic mean O and asymptotic variance 

d 2 <f-;;;(J(F(x))) f(x) dx) 

The rank test is asymptotically most powerful for if 

PJI! 9 



12 

and then the estimate T is asymptotically efficient foe F . (CHERNOFF 
n · o 

and SAVAGE (1958), HODGES and LEHMANN (1963), HA..JEK ;nd srn(K (1967)). 

4. ASY:VIPTOTICALLY ROBUST ESTIMATES 

Let C be a c'onvex compact set of distribution functions F. The 

problem is to find a sequence Tn of estimators of location which have 

a small asymptotic variance over the whols of C; more pTecisely, the 

maximum over C of the asymptotic variance should be least possible. We 

shall restrict attention to symmetric distributions. 

Let F0 be the d:istr:i.bution in C having the smallest FISHER information 

I(F) = f(f'/f) 2 f ctx; there is one and only one such F0 , and in many 

interesting cases F0 can be determined explicitly through variational 

methods (cf. HUBER (1964)). 

Thus, for any sequence Tn' the asymptotic variance of n~(Tn-0) under 

F will at best be l/I(F ); our goal is to find a T such that the 
o o n 

asymptotic variance does not exceed 1/I (Fe) for any F €. C. 

In particular, this sequence Tn must be asymptotically efficient .for 

F 0 , and we shall there.fore have a closer look at the es ti.ma tors constructed 

in the preceding section. 
2 

Consider fL·st the behavior of a1,(F) under infinitesimal variations 

of F, where the star stands .for either M, Lor R. 

Let F "" (1-y)F + yF1 with F ( C O _::___ y < 1, then F e. c because of 
y o 1 y 

convexity. :Explicit computations yield that 

d I(F) 
dY Y 

0 for Y = 0, 

Thus, one can expect that all three estimators will have good robustness 

properties at least in an immediate neighborhood of F . In case (i.) one 
2 ° 2 

can show that 1/aM(F) is a convex function of F, hence a~/F, has not only 

a local, but also a global maximum at F0 , and the sequence of maximum 

likelihood estimates for F O solves the problem. 

PJH 10 
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In the cases (ii) and (iii) I do not know whether the maximum of 
2 2 

oL(F) and oR(F) at F0 is a global one, with one exception to be mentioned 

below. 

To give a specific example, assume that C is the set of all 

distributions of the form F = (1-£)~ + EH, where O < £ < 1 is a fixed 

number, w is the standard normal distribution, and H varies over the 

set of all symmetric probability distributions. Then, the least favorable 

F has the density 
0 

(4.1) 
1- - p (x) 

f (x) = e o 
0 

where 

(4.2) 
for Ix I < k 

for !xi > k, 

with k depending on£. Thus, 

(4.3) 
'I' (x) :::: X 

0 

:::: k.sign(x) 

for Ix! < k 

for Ix I > k. 

The maximum likelihood estimate for this F was treated in HUBER 
0 

(1964). The best linear combination of order statistics for F is the 
0 

a-trimmed mean, with a= F (-k), and in this case one can show that 
2 0 

°r,(F) has a global maximum at F0 • Hence, also the trilllllled mean is a 

solution of our problem. (The close connection between HUBER's estimate 

and the trimmed mean was recognized by BICKEL (1965}, p.850: for any 

symmetric F, they have the same asymptotic behavior, if a and k determine 

each other uniquely through a= F(-k).) The estimate corresponding to 

(iii) does not seem to allow a simple description and has not been 

investigated so far. 

The fact that~• is discontinuous sometimes causes trouble, and 
0 

one might prefer to smooth '1'0 near~ k, even though the estimates then 

lose their asymptotic minimax property. Note in this connection that the 

PJH 11 
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4' 0 (x)= (1-e-x)/(l+e-x) corresponding to the logis ic distribu ion F0 (x) 
-x 

= 1/(l+e ) h0llaves much like a smooth version of (4.3) and if we take 

approach (iii) with the logistic in place of F0 , we ot)tain the HOIJGES-

LEHMANN est.imate the median of the pairwise means ~(X.+X). This 
l J 

perhaps explains in a heuristi way the empiri.cal fact Uiat the trimmed 

mean, the HODGES·-LEIJMANN and the HUBER estimate have very similar perform

ances over a rather wide range of distributions. 

But it should also be pointed out that our intuition about robust 

estimates is very unreliable. For instance, I had once falsely believed 

(l-HTBER (1964), p. 75) that my es-ti.mate would be asymptotically equivalent 

to Winsorizing (= replacing the r leftmost and the r right.most observ

ations by X(r) and X(n-r+l) respectively, and then taking the mean of 

the thus modified sample). Another example: GREGERSON (1961) proposed 
-lx2 

an estimate of the type (3.1), with p(x) = -e 2 • This estimate gives 

small weights to all observations whose residuals exceed 1: 

increasing an extreme observation slightly decreases the value of the 

estimate'. While this is not necessarily objectionable, it wi.11 come as 

a surprise to many people. 

5. CRITICISMS AND COMPLEMENTS 

1. First, there is the usual objection against any asymptotic theory 

in statistics: one never knows whether it is applicable for any given 

finite sample size. Direct calculations are not very manageable except 

for rather small sample sizes (TUKEY and McLAUGHLIN (1963), ANSCOMBE 

and BARRON (1966), CROW and SIDDIQUI (1967), GASTWIRTH and COHEN (1968)); 

in addition, several Monte Carlo studies have been reported (LEONE, 

JAYACHANDRAN and EISENSTAT (1967), DIXON and TUKEY (1968)). While such 

studies mathematically do not prove anything about the applicability of 

the asymptotic theory, they furnish convtncing evidence that it is 

applicable for sample sizes 20 and larger, i.e. confidence levels between 

1% and 5% derived from the asymptotic theory then seem to be sufficiently 

reliA.ble. 

The evidence to date indicates that there i.s an analogue to STUDENT's 

P,Jl[ 12 
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t, with the robust estimate of location in the numerator, and which 

can be closely approximated by at-distribution with the appropriate 

number of degrees of freedom (m-1, where mis the number of observations 

left intact by trimming or Winsorizing, and similarly for HUBER's 

estimate), but the exact form of the denominator giving the best results 

is somewhat in doubt. 

2. One might question the wisdom of restricting the attention to 

symmetric shapes. It is difficult to avoid some restriction of this kind 

in an asymptotic theory; the reason for this is that unknown small 

asymmetries in the distribution F introduce unknown small biases into 

the estimates. For very large sample sizes these biases would take 

precedence over the random errors in the estimates, and the unique 

minimax estimate would thus be the sample median (HUBER (1964), p.83). 

However, i.f these biases should ever take preeedence, the practieing 

statistician would presumably conclude that the sample size is un

reasonably large. Thus, this problem ean only be settled through a genuine 

finite sample theory (see section 7 below). 

3. One might also question the appropriateness of a minimax theory, 

especially of an asymptotic one, since minimax methods generally a:re 

too pessimistic. I think there are two answers: first, it seems that 

sample sizes reasonable for a given amount of not neeessa:rily symmetric 

contamination will not allow to determine the nature of this contamJ.nation, 

except in rather extreme cases (cf. HUBER (1964), p.82ff.). Second, one 

might check some of these extreme cases. 

ROMANOWSKI and GREEN (1965) have collected some quite :impressive empirical 

error distributions, and it turns out that their largest sample (n ~ 8688) 

behaves very much like the least favorable F for the 2%-contaminated 
0 

normal distribution {it lies between the slightly different curves for 

the least favorable for location (4.1) and the least favorable one 

for scale (9.1)). In this case, a very good estimate for location would 

be the 5%-trimmed mean; for their smaller samples the conclusions are 

less definitive, but also these suggest trimming rates between 1% and 10%. 

4. The question of computing these estimates. The trimmed and the 

PJH 13 



16 

Winsorized mean are probably easiest to compute; they need about 

O{n log n) operations for large samples, most of them spent for ordering 

the sample. Some limited evidence from Monte Carlo computations indicates 

that HUBER's proposal 2 (HUBER (1964), p.96ff. -- this is a variant of 

the maximum likelihood estimate (4.3) which simultaneously estimates 

scale) can be implemented using about the same number of operations. 

Despite all shortcuts proposed so far, the HODGES-LEHMANN estimate 
2 

uses O(n) operations. 

5. Some Monte Carlo exper.lments of a student of rn.ine (LOCHER (1966)) 

suggested some disturbing conjectures. He worked with NEWCOMB's model 

(1.1), taking m = 2, a 1 = 1, = 3, 1, O < < 0.1 and sample 

sizes 5, 10 and 20. He compared sample mean, trimmed mean and "proposal 

2". It turned out that for sample size 5 there is almost no difference 

in performance (variance) for these three estimates. 

This raised the question whether the asymptotic optimality theory 

is at all relevant for small sample sizes, i.e. whether the small sample 

mini.max estimates do bear any resemblance to the asymptotic ones. 

Fortunately, this question could be settled in the affirmative (cf. 

section 7 below). 

6, An interesting and quite different mi.nimax problem in robust 

estimation has been solved by DOKSUM (1966). 

P.Jl! 
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G. THE NFYMAN-PEARSON LEMMA FOR CAPACITIES 

According to the NEYMAN-PEARSON Lemma, the most powerful tests 

of a simple hypothesis P0 against a simple alternative P1 are given by 

likelihood ratio tests: form h(X) nn p 1 (X. )/p (X_) and reject 
'" i=l i. o 1 

P if h(~) > c (p. is a density of P ). 
0 J .J 

What happens if the P. are only approximately known? Clearly, 
J 

likelihood ratio tests may fail to be robust: a single factor 

p 1 (X.)/p (X.) equal (or almost equal) to O or 00 might completely change 
l. 0 l. 

h(~). 

If for instance the uncertainty is formalized in terms of total 

variation, i.e. if we replace P. by the composite hypothesis 
J 

~-.. = {QI I IQ - P. JI < :-. }, then it turns out that there is a least 
J J --

favorable pair Qj E j l), such that the maximin tests of any level 

between'\' and Ii coincide with the likelihood ratio tests of the same 
0 1 

level between Q0 and Q1 . The likelihood ratio 

Pl (x) 
min ( c", max ( c' , P (x) ) ) , c' < c", 

0 

is a censored version of p 1 (x)/p0 (x) (HUBER (1965)). 

The existence of such a least favorable pair (Q0 ,Q1 ) is indeed 

quite general; it is essentially equivalent to the fact that each ,,: 

is the set of all probability measures majorized by some 2-alternat ng 

capacity (STRASSEN oral communication; for a somewhat weaker result see 

STRASSEN (1964)), 

PJII 15 



18 

7. FINITE SAMPLE MINIMAX ESTIMATES 

The generalization of the NEYMAN-PEARSON Lemma just mentioned can 

be used to construct a finite sample minimax theory for robust estimators. 

Assume that the measurement errors b.. = X.-0 are independent random 
]. ]. 

variables whose distribution functions F. lie anywhere within 6 of the 
]. 

standard normal cumulative¢: 

(7.1) sup JFi(x) - ¢(x)j < 6. 
X 

(The method works for several different neighborhoods; note that the 

Fi need not be symmetric.) 

Let a> O be a fixed number: the accuracy of any estimate 

T = T(X1 , ... ,Xn) of 0 shall be assessed by the least a for which one 

can guarantee 

P{T < 0 - a}< a 

P{T > e +a}< a 

for all e and for all distributions satisfying (7.1) -- the smaller a, 

the better the estimate. 

The corresponding minimax solution T0 can be described explicitly 

as follows. Let f (x) be defined by (4.3), where k depends on 6 and a 
0 

(but not on the sample size n) through the relation 

Let T~ and T- be the smallest and the largest solution T of 

1 (X . .,, T) :::: 0 
0 ]. 

respectively. Then put T0 = TY#. or T0 = --?'X at random with equal probability 

(HUBER (1968)). 

The idea behind this result is very simple: one first constructs a 

maximin test (with level a and power 1-a) between 0-a and 0+a according 

PJH 16 



19 

to the method of the preceding section, then one derives an estimate from 

this test in the manner of HODGES and LEHMANN (1963). 

Note that this estimate is formally identical with an asymptotically 

robust estimate for symmetric contamination, mentioned in section 4. 

8. SOME ROBUST ESTIMATES NOT FTTTING IN OUR FRAMEWORK 

1. The so-called "quick and dirty" methods are estimates based on 

a few selected order statistics. One recent proposal (GASTWIRTH (1966)) 

for instance takes the 33½, 50, and 66~ percentiles with weights 0.3, 

0.4, and 0.3 respectively. Apart from being robust, they tend to have 

quite a high efficiency with respect to the best possible estimate (this 

one has efficiency approximately 80% or better, simultaneously for the 

Cauchy, double-exponential, logistic and normal distribution). Compare 

also CROW and SIDDIQUI (1967). 

2. The HODGES-LEHMANN estimate lthe median of the pairwise means 

½(X.+X.)) uses a disproportionate amount of computing time, namely 
l J 

O(n2 ), if the sample is large. BICKEL and HODGES (1967) have investigated 

a simplified version, namely the median of the pairwise means 

Here the computing time goes only with O(n log n), most of it spent for 

ordering the sample. This estimate has a very good performance, as it 

seems, but its asymptotic distribution is not normal (it can be repre

sented as the distribution of the time which Brownian motion spends 

above some curve). 

9. OTHER ESTIMATION PROBLEMS 

1 The scale parameter problem can be reduced to that of a location 

parameter by taking logarithms. However, some difficulties arise since 

the resulting distributions then tend to be asymmetric, and i is not quite 

clear what one is estimating, if the underlying distribution is only 
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approximately knov1n. But, since one has taken logarithms, this 

uncertainty only acts as an arbitrary additive constant, and it still 

makes sense to minimize the maximum of the asymptotic variance over 

some neighborhood of some model distribution. Also here the asymptotical

ly efficient estimates for the least favorable distributi.ons F0 seem to 

have good robustness -- and probably minimax -- properties. 

For example, in the £-contaminated normal case, the least favorable 

F0 has density 

2 
f (x) 

1- e: -½x 
for Ix I V'Ji e < q 

0 

(9.1) 2 
1-e: ½ 2 (q ) 

e - q (-~-e for lxl ·~; Ix > q 

where e: and q are related through 

- 2 ¢ (-q). 

The corresponding maximum l:i.kel:i.hood esU.mate was treated in HUBER 
2 

(1964); another asymptotically efficient estimate of o for the 

distribution F' (~) is the a-trimmed variance, suitably scaled, where 
0 CJ 

Ct = F' ( -q) . 
0 

2. The higher dimensional location parameter problem can be treated 

in very much the same way as the one-dimensional problem, if one assumes 

that the error distribution is spherically symmetrical. In particular, 

one can determine a lea.st favorable F just as in the one·-dimensional 
0 

case; it is some~1at surprising that -log f (x) fails to be convex 
0 

even in the simplest contaminated normal case. The maximum likelihood 

approach works well, compare GENTLEMAN (1.965), HUBER (1967), 

The higher dimensional analogue to trimming has been called 

"peeling" by TUKEY; it consists of deleting the extreme points of the 

convex hull of the observations, and to repeat this operation a fixed 

number of k times. Nothing is known about the behavior of such a 

procedure; one can surmise :from RENYI and SULANKE (1963, 1964) that 
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it must be a very tricky problem. 

A multivariate version of the HODGES-LEHMANN estimate has been 

considered by BICKEL (1964). 

3. Almost nothing is known about robust estimation in the general 

case, where there is neither translation nor scale invariance. It is a 

fair guess that a modified maximum likelihood estimate should have good 

robustness properties: put 

where f(x,0) is the probabiHty density of the assumed family of 

distributions, and define an estimator of 0 by 

I '11 
i<n 

'T ) n 
0 . 

The most serious difficulty with this kind of problem is that one does 

not quite know what one is estimating. Perhaps one should define the 

parameter to be estimated in terms of the estimator. 

Among the classical procedures, the method of moments is obviously 

non-robust, whereas minimum chi.-square methods presumably have good 

robustness properties. Some investigations of such problems would 

certainly be desirable. 

4. Regression and analysis of variance problems. 

Consider the general linear regression problem 

m 

I 
j:=l. 

c .. 0. + b. + /':,_, 
l.J J l. l. 

1 < i :5... n, 

where the X. are observed, the 0. are to be estimated, the and 
l. J 

are known coefficients, and the are independent random errors whose 

distribution function F is only approximately knmvn, 

The classical least squares method is to mi.nimiZ'.B 

I - z 
i j 

C 
i 
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which generalizes at once to minimizing 

l 
i 

C 
i 

with p as in (4.2). It is not too difficult to develop an asymptotic 
0 

theory for these estimates if one assumes that m stays fixed while n 

tends to infinity, but severe difficulties arise in the more realistic 

case, where both m and n become large comparably fast. 

The other two estimators considered in s,1ction 3, (ii) and (iii), 

do not seem to generalize easily. LEHMANN and his students have attacked 

several regression and analysis of variance problems with the aid of 

rank tests (LEHMANN (1963a, b), plus a large number of papers by dif

ferent authors in subsequent volumes of Ann. Math. Statist.), but it 

seems that each of these problems requires an individual treatment. 

To illustrate the basic idea, consider a simple regression problem 

(ADICHIE (1967)): 

"' 0: B 

where o: and 8 are to be est:i.mated Every test of the hypothesis S = 0 

furnishes some estimate of S: apply the test to the pseudo-observations 

and adjust the value of' Bin such a way that the test is 

least able to reject the hypothesis In many cases the asymptotic 

power of the tests then ean be used in a more or less straight-forward 

way to compute the asymptotic variances and covariances, and hence the 

asymptotic efficiencies, of these estimates 

ZUrich, 4 June 1968 
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LIMIT THEOREMS FOR STOCHASTIC PROCESSES OCCURRING IN STUDIES OF 

THE LIGHT-SENSITIVITY OF THE HUMAN EYE 

by J.Th. Runnenburg (Netherlands) 

University of Amsterdam 

l. INTRODUCTION 

Light quanta arrive at times a!1 , a! 2 , , •• , with O < ! 1 < ! 2 < 

and a a positive constant, according to a renewalprocess at a given 

spot on the retina of one of the eyes of an observer. Hence we assume 

that the differences 

for n (with t 
-o 

O) 

are identically distributed positive random variables with a common 

distribution -function A(y). We shall restrict our considerations to 

those A( y) with finite first moment for which 

(L2) limy -p A(y) ~ c 
y+O 

for some positive constants p and c. Upon his arrival at the retina the 
th 

n light quantum starts a lifetime of duration :;:n (after which it is 

regarded as dead), where the :;:n are identically distributed positive 

random variables with a common distribution function B(s) with finite first and 
th 

p moment. The random variables ;y1 , :::1 , ;r2 , ~2 , ••• are mutually 

independent. 

Our observer has been waiting in the dark for this particular 

sequence of light quanta to reach his eye and it is his task to record 

whether and if so how many times he notices light in the time interval 

(0, t], It is assumed that he does notice light each time that the 

number of living light quanta on the retina of his eye jumps from less 

thank to at least k, where k is a natural number and at least 2. 

We are interested in the distribution of n (t), the number of 
-a 
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times the observer notices light in (O, t]. This distribution can at 

best be obtained numerically for exponentially distributed ln ands 
-n 

(cf, ten Hoopen en Reuver [19651 ), However, if we consider n (t) 
-<.t a 

for a suitable choice of ta as a function of a, we may hope for limiting 

theorems for a ➔ 00 • This work generalizes and provides an alternative 

approach to Ikeda [1965'1. An earlier version of the results in this 

paper was obtained jointly with Meyer and is contained in his thesis, 

cf. Meyer [1967]. 

2. NEW LIGHT VERSUS LIGHT 

In this section we consider the number of times our observer notices 

light under the restrict.ion that exactly ncx light quanta reach the retina 

of his eye, where na is a natural number for each positive a with 

(2,1) lim 
a➔oo 

-p (k-1) 
n a = l. 

(1 

We shall see that in the limit light is observed only on those 

occasions where k 1 consecutively arriving light quanta survive the 

arrival of the next quantum_ If we write 

(2,2) 

(2,3) 

where 

Aa = {light quanta j-k+l, j-k+2, ••• , j are simultaneously alive}, 
j 
we have for each positive a and each j with k < j < n0 

00 00 

P{ s > 
-j-k+l 

> a Y.} = 
-J 

0 0 00 

ck-1 0 -p(k-l)J 

a 
d A (tk-l) , o 

a(y_ k 3+.,.+y.),.,. 
-J- + -J 

J {1-B(t1+,.,+\:-l)},,.{1-B(tk_l)} d A0 (\L .. 

0 



29 

(2.4) NP c-l A(~-1 t_) f · 1 ~ ~ or :i. -· , 
]. 

Because of our assuniption (L2) we have 

(2,5) 

and the product measure with respect to which we integrate in the 

last integral of (2,3) tends to a l:i.mit (which is also a measure) as 

a tends to infinity. If we now take 

00 "" 

(p) = J.,. I { 1-·B( 

0 0 

it is easy to v~rify that (p) is finite, if we use the fact that 

(2.7) 

00 

J {1-B(s)} dsp < 00 • 

0 

A g·eneralization of the proof that a sequence of characteristic functions 

converges to a characteristic function if the corresponding distribution 

funct ons converge to a distribution function shows that 

(2.8) li.m cl (k-l) P(A ~ ) ::: 

(2.9) 

a-+oo 

We have now proved that 

li.m 
a-+<io 

P(A~) 
J 

J 

or that the expectation of the number of times a light quantum reaches 

the retina of our observer's eye at a time that the last k - 1 quanta 

arriving before him are still alive (out of a total of arrivals) 

tends to a finite positive limit as a tends to infinity, 

In Ikeda [1965] the integral Ik-l (l) is evaluated. One first 

introduces the substitution u1 = 

leading to a (k-1)-fold integral 

< < oo with {1-B(u1 )} ... { 

tl+ ••• + tk-1' ••• ' uk-1 = tk-1' 

over the region O :S. uk-l :::_ uk_2 :S. 
)} as integrand, If now we 
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integrate over the set of all (u 1 , u 2 , ... , uk_1 ) with nonnegative 

components, we obtain (k--l); times Ik-l (1) and the new integral is 

the product of k - 1 factors each of which equals~::, Hence 

(2.10) I 1 (l) k-

cBs)k-l 

(k-t); 

We use the following notations 

(2.11) 
a 

B. 
J 

{at least k-1 lig!1t quanta are alive at the arrival of 

quantum j} 

and 

(2.12) 

Clearly Ba is the event that Zight is noticed by the observer at the 
.th J 

J arrival. In contrast we shall say that Aa is the event that new 
.th Aa. 

J 
Ba Zight occurs at the J arrivaL Because C 

' 
we have 

J ,l 

(2.13) 

We first prove a relation between light and new light. 

'fheorem 2. 1 

lim P {exactly i of the Ba 
k a--rro 

lim P {exactly 
a-+«> 

i of the Ao. 
k 

Ba occur} 
n 

a 

A a occur} for i = 0,1,2, ••• 
n 

a 

In the next section we shall compute the second limit for each i and 

hence this theorem is a major s ep in our consideratl.ons as it reduces the 

complexity of the calculation of the first limit to the comparatively 

easy computation of the second limit, In this section we assrune that 

the second li.mi t exists for ea.ch L 
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Cl Cl Cl 
Proof: i.t is clear that exactly i of the Ak , Ak+l , .•• , A 

a a a % 
occur 

if and only if either exactly i of the ~ , ~+l ,. . . . , A and 

none of the c: , c:+l , ,. , , Cna occur or alternatively e:lctly i 
a a. a a a a 

of the Ak , ~+l , ••• , An and at least one of the Ck , Ck+l , ••• , 

occur. Also exactly i of thi Ba , l/. , B a occur if and only k k+l ' ••• n 
Cl Cl ()I.Ct 

either exactly i of the Ak, Ak+l , ••• A11 and none of the 

a occur or al ternati.vely exlctly i of the 

and at least one of the ca c0 ••• , ca 
k ' k+l ' no. 

occur. But then 

(2.14) IP{exactly 
; Ct Cl 
~ of the~, ~+l A a occur}- P{exactly i , "<?"' , n 

of the Ba 
k 

a 
Bk+l ' • •. ' B a n 

Cl 

occur} I < a 

< p {at least one of the c:, 
It is thus sufficient to prove 

(2.15) lim P {at least one of the C~ 
a > 

C occurst 
na 

This again is a consequence of U.m 
Cl-1""' 

P(C~) 
J 

or 

(2.16) 

Now 

(2.17) 

where 

(2.18) 

< ••• < P(C a) (these inequalities hold trivially for the 
n a 

depend on j), we need only prove lim na P(C ) P(A~) does n8t 
J 

P(B~) - P {at least k-1 of n; 
.J 

for i 

Of.-1""' na 

D~ 1 occur} , 
J-

lt ,t H 

.,, '~j-1' :l1, l2• 
'W: 

••• , lj-l) is just another notation 

.rm 5 

0 



for(s. 1 ,s 
-J- -J-2' 

(2.19) 

= j l1 j I1 j I=l f 
1 2 k-1 o 

ct A. (y, ) = 
Jk-1 '1k-1 
"' 00 

32 

"' 

0 

I.,. I {1-B~a(y1+~ .. +yk_1 ))} .. {1-B(ayk-l)} d U(y1 L"" d U(yk_1 ) = 

}-1 Cl-~(k-l)J f {1-B(t1+H.+tk_1 )} . .,{l-B(tk-l)} d ~(\Lu d tP(tk_1 ), 

0 0 

where we have used an obvious extension of the notation, 

(2.20) 

(2.21) 

and 

(2.22) 

A_(y) == P{y +. ,+y. < y} 
J -1 - J -

U(y) A (y) 
a 

_,:,. p -1 -1 
tJ ( t ) ,a (l C U (a t ) . 

for j = 1,2, •• , 

Here again the product measure with respect to which we integrate 

in the last integral tends to a limit as a tends to infinity. Because 

of (L2) there exists a y > 0 with 
0 

(2,23) for O .:::_ y < y 0 

By induction we can then prove 
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(2.24) 
(2c r (p+l) l )j 

A. ( y) < for O < y < y 0 and j 
J f(jp+l) 

But then we easily show 

(2.25) lim d1 ( t) 
(J.->-00 

From (2.19) we now conclude 

(2,26) lim 
(l->-00 

p(if_) 
J 

and our proof is complete. 

Our observer can only notice light (at least k light quanta 

simultaneously alive) or the absence of light (less thank light quanta 

simultaneously alive), Hence we have to decide whether the occurrence 
a B(l 

of exactly i of the Bk, k+l, , Ba leads the observer to register 
nq 

exactly i light sensations from the na l1ght quanta. It turns out that 

in the limit the simplest possible situation occurs, There are then with 

probability 1 never k light quanta simultaneously alive from one arrival 

to the next, so every B~ that occurs is registered separately, This 
J 

statement is an easy consequence of the following theorem, 

Theorem 2,2 

ll.·m P {at least one of the Ba" Ba Ba n l' 
k' 1 . k+l' k+l k+2 

a+oo 
B a fl B a occurs} = 0 • 

' na -1 na 

Proof: we proceed as in the proof of theorem 2,1, Here P(if (\ if 1 ) < 
k k+ -

P(Ba "Ba ) "P(Ba Ba) f 11 t f th .':_ k+l, 1 · k+ 2 .':,. • • • .::. n n . o ows a once rom e 

definition of these probabilities i.n°terms if the ;i::1 , §!1 , ;r:2 , :.:: 2 , '"' , 

So we need only prove 

(2,27) lim n P(B a 1 /1 B a ) 
a n - n 

0, 

a->-00 a a 

Wi.th the '!i1 and D a notation from the last proof we have for k + 1 < j < n 
i a 
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(2.28) 
Ct Ct 

= P { at 
Jf 

P(Bj-l /\ Bj) least k-1 of s > 
-1 

lf 
(l 

l1• 
lf Jf ]f s > (l <:1:1+i2), ... ~2 

lf ]f lf Jlf Jlf 
s > (l <i1+· •• +ij-1) and at least k-1 of 

~2 
> Ct l2• -j-1 

lf J!i lf 

::!3 > a<i2+l3)• ... ' 
.... ]f ]I! 

occur} 
~j-1 > a.<l2+ ••• +ij-1) = 

=P{~7~a 
:,e JI! :,e Jf 1f > 

l1 and at least k-1 of 22 > a(11+X2), ... s 
' -j-1 

lf Jf 
occur} a<i1+ •• ,+ij-1) + 

+ P{2~ 
lf lf lf lf .... 

> Ct ~'.i and at least k-2 of ~2 > a.(l1+i2), ... !!j-1 
> • 

lf lf 
a. ( y 1 + •• '+y · 1) and 

- -J-

:,e M 
at least k-1 of ~2 > a. i 2 , 

X s > • -j-1 

occur}= 

= P {at least k-1 of D~, D~, . . ' 

We already know that 

(2.29) limn 
a. 

k-1 { } c Ik-l (p) lim P !!i > et i 1 
a,+b> 

o, 

so we must now consider 

(2.30) { Ct Ct 
pat least k-1 of n2 , D3 , 

< 

• fl, • ' 
D~ 1 occur} < 
J-
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00 00 

k- 1 -µ ( i{-1) J 
- C a 

0 

{1-B(t )}d Ah1 ) d ult ) ... d ult ). 
k-1 2 k-1 

As both integrals have the same limit for a, ➔ 00 , our proof is complete, 

3. CALCULATION OF LIMITS FOR NEW LIGHT FROM na LIGHT QUANTA 

We need a generalization of a theorem from Watson [1954] for 

I-dependent stationary sequences of events. His proof is 

a. E a Assume that for each a> 0 a sequence E1 , 2 , 

generalized. 

, E a of 
Illa 

stati.oriary I-dependent events is given with mo: ➔ 00 as a -+ 00 • The sequence 

is stationary for a fixed a,> 0 if for each j-tuple i 1 , i 2 , •.. , ij 

with 1 < 11 < 12 < ••• < i. < m (with arbitrary natural j) 
J - a 

(3,1) 

for all integers h with 1 - i 1 < h < m 
- a 

i .. The sequence is I-dependent 
J 

for a fixed a> 0 if for each 2j-tuple il, hl.' 12, h2' ... , i j, h. 
J 

with 1 < i < i 1 + hl < i < i + h < 
- 1 2 2 2 

arbitrary natural j ~ 2), the smallest 

< i. < i. + h. < m (with 
J J J - a, 

algebra ' 'F ./""- 'f-
s 1' 2' ... • j 

containing respectively A. , A. 1 , ••• , A. h ; 
1 1 1 1+ 1 1+ 1 

••• ; A. , A. +l' , •• 
1. 1. . 

Ai +h are independent 
j j J J 

1, 13 - i 2 - h 2 > 1 1 ••• ,. iJ. - i - h. l > 1, Clearly 
j-1 J-

O-dependent is just another way of saying independent, 

Theorem 3,1 

Cl Cl 
If E1 , E2 , 

dependent events 

, Ea is for each a> 0 a sequence of stationary 1-
m 

witham .-,. 00 for a, ➔ 00 1 
'), 

JTH 9 
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m 

Cl 
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+ 0 

for a nonnegative constant a and 

(3.3) 

then 

(3.4) p~ = P{exactly i of 
J. 

satisfies 

i -a 
(3.5) lim p~ a e 

= --.-,-
]. l.. 

(l-l-00 

Proof: consider 

(3,6) s 0. 1 = r l< <i <, •• <i <m 
- 1 2 r- o. 

the Ea E'l • ... • E a occur} 
1 2 m 

a. 

for i o, 1, 2, ... 

P(E_o.f'I E.o.l'\, E_a). . () 

11 l.2 J. 
r 

It is well-known (cf, Feller [1957], page 100) that 

m 

(3.7) 
a. 

(-l)r-i a l P. == 
J. 

r=i 

and 

m 

(3.8) f <!) p~ , 
i=r 

while for j = o, 1, 2, (and say i+2j+1 < m ) 
- a 

i+2j+l 
(-l)r-i ('.) lj, i+2j 

(-1{-i Sa (3,9) l p~ ~ l r 
< (i) 

r=i 
J. r- J. 

r==i 
r 

If it is known that 

r 

(3.10) 
a-i-oo 

,JTR 10 
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a 
then(3.5) follovs from the inequalities (3.9), We have s0 = 1 by definition. 

The number ma(j,r) of r-tuples i 1 , i 2 , .. , ir with 

1 < 11 < 1 2 c ... <ir ~ ma and exactly j of the r-1 differences 

1 2 -1 1 , i 3-1 2 , .•• , ir-ir-l less than 1+1 is cr;l) times the number of 

this kind of r-tuples with moreover 

1 2 -1 1 ~ 1, 13 -1 2 ~ 1, ••• , ij+l-ij < land hence (with 

r 1 = 1 2 -1 1 , ... , rj=ij+l-ij) 

r-1 
l l 

= ( . ) l I J r 1=1 r 2=1 

=(r~l) 
l l 

I I J r =1 r 2ccl 
1 

It is now clear that 

l 

I 
r =1 ·1 

1 

I 
r.=1 

J 

l 

I 1 
r =l 1 < 11< i . 2< •• ,c i < m 

j - J+ r- a 

i. 2-i > l+l+r1+H .+r. 
J+ 1- J 

i. 3-i. ,? 1+1, . .. ,i -i ~~_l+l 
J+ J+,..... r r-..,.... 

l<s <s < -:-:<s ~~m---=-r 1:... ... r . - < r-Fffi 
- 1 2 r-J- a J 

l 

I (m -r - ... -r.-(r-j-1)1) 
a 1 r-j J 

r. =1 
J 

m r-j 

1 

(3.12) r-1 I.j m (j,r) = ( . ) 
a .J 

_a__ {1 + 0(...2:.)} for a ➔ 00 and j 
(r-j) ! m 

0,1,2, ..• 
Ct 

r-l • 

We split the summation in (3.6) with respect to the number 

j(i1 ,1 2 """'ir)' where j(i1 ,i 2 , ... ,ir) = j if exactly j of the differences 

1 2-i1 , 1 3-1 2 , .,, , ir-ir-l are less than l+L We have from {3.2) and 

(3.3) 

,iTR 11 
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r 

i(;-;-a.) + 
a 

1 
(---) 

r-J 
m 

Cl 

0 (~,\) for .iCi 1 ,t 2 '"H' ir: 
11 

and 1 ::_ j :__ r-L 

Adding the contributions for different values of j to Sa we find 
r' 

(3,14) 
a 

s 
r 

r 
~ + o (1) for a + ooand r 
r! 

Our proof is now complete. 

If we return to the sequence Aa, A a , A a from section 2, 
k k+l' na 

we can show that the conditions of Theorem 3,1 are satisfied. 

Theorem 3.2 

1 . P{. e,,actly · f" tr A:i. A a 1m .~ 1 o 1e _le, k+l' 
Ct-rGO 

for i 0, 1, 2, •• , with 

(3,15) lJ 
k-1 

c I l (p L k-

a 
Proof: for each a > 0 the sequence E 

1' 
and m ·- 11 -k+l is stationary and (k-2)-a Cl 

a 
E 

2' 

A a occur} 
11 

a 

a ... E , 
l°a 

- ll i 
e 1!, 

1. 

a 
with E 

j 
dependent, The theorem 

Aa 
j+k-1 

is 

trivial for k=2, so from now on we assume k > 2 in this proof. We 

know from (2.9) with lJ as in (3 15) 

(3.16) 

Furthermore for .2 < j < k-1 we find with the by now well-known technique 

(3,17) 

P( Ea Ii Ea) 
- 1 J 

.JTH 12 
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s > a(v. ,+, •• +yk+· 1_), s. 1 > a(y_ 2+, •• +yk. 1),, •• 
-j ~J+ - J- -J+ -J+ - +J--

"" "" 
= J , ,. J {1-B(a(y2+ ... +yk) )}"", {1-B(a(y/,. ,+yk))} {1-B(a(yj+l+. ,0 

• , ~t-y1 . 01 L }, . , {1-B(aY . 1 )} d A(y2 ) d A(y3 ) •• d A(yk . 1 ) 
-.+J- K+J-- +J-

00 00 

J { 1-B ( t + ••• +t ) } •. , { l - B ( tk . •) } d Aa ( t 2 ) , , , 
2 k +J-i 

a 
dA(tk. 1 ) 

+J-

Hence 

0 0 

. -p(k+j-2) 
=.O(a ) 

Our proof is now complete, 

for a -+ 00 

o (-2:.) for a -+ "' 
m 

a 

Watson's theorem was generalized in Newell [1964] in a different 

direction from ours, Slightly restricting the generality of the last 

reference, we have the followng theorem 

Theorem 3.3 

a a 
If E1 , E2 , ••• Ea is for each a> 0 a sequence of stationary 1-dependent 

events with m -+ 
a 

(3.19) 

ll1a 
for a ➔ oo, 

for a nonnegative constant a and 

(3.20) 

then 

(3, 21) 

1 
O(--) for a -+ 

Ill 
a 

lim P {none of the the E~ 
a➔oo 

E a occurs} 
ma 

-a 
e 

We shall prove a more detailed ver ion of this theorem (although tt is 

not needed at present), which is also a generalization of Theorem 3,L 

,JTR 13 
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Theorem 3.4. 

, Ea is for each a> O a sequence of stationary 
ma. 

I-dependent events with ma + 00 for a + 00 and 

(3.22) 

for a+ 00 for each j-tuple i 1 ,i 2 , ..• ,ij with 

1 ~ 1 1 < 12 < < ij ~ 1+1 and 1 < j c 1+1 

with nonnegative constants a.Ci -1 1 ,:i. 3 -12 , .. ,,i .. -i. 1 ), then 
J 2 J J-

(3.23) { l. a a a j P exactly of the E E E occur 
1' 2''"' ID 

satisfies for i = 0,1,2, 

b 
0 

(3,24) P. 
d~f 

liru Pa e ((~ -:-;--
l l. 1. 'dw 

a➔ro 

where (with a 0 = O and a = a ( )) 
1 1 

(3.25) 

and 

(3.26) a. 
J 

Proof: 

< i < l!l 
j - a 

a 

i 1+1 
w.i) I b exp 

J=l 
j 

W=O 

for h 

for j 

(b +b 2+ .•. +b 1). 
1 l+ 

and 1 .'.:. j < m , as in those cases which were not yet considered we 
- Cl 

always have i .-1 1 > 1 and hence 
J 



(3.27) 

1 
= o(-) for a+ oo 

m 
C! 

We can thus define 

(3.28) a.(i 2-i1 ,.,.,i.-i. 1 ) 
J J J-

We first compute 

(3.29) s 
r 

a 
lim S , 
a+oo r 

a 
where S is given by (3,6). 

r 

41 

0 if j > l+l or i -i > 1, 
j 1 

Consider a fixed sequence of indices i 1 ,i2 , ••• , ir with 

1 .:.:_ i 1 < i 2 < • , • < ir .::_ m ci" 

Write it down from left to right in increasing order, Place partitions 

in the r-1 spaces between i 1 and i 2 , i 2 and i 3 , ,,, , ir-l and ir 

according to the rule: put in a partition between ih-l and ih if 

ih - ih-l > 1, do not put in a partition otherwise. Do this for eaeh 

h E: {2,3,.,,, r}. If at least one partition is needed, we call the 

indices to the left of the first partition (counting partitions from the 

left), as well as those between two successive partitions and those to 

the right of the last partition, a group of indices; i.f no partition is 

needed, we call all indices together a group of indices, Each such group 

contains at least one and at most r indices, Let the chosen sequence 

i 1 , i 2 , ... , ir contain I\ groups with one index, s2 groups with 

S groups with r indices, '.!'hen 
r 

(3.30) 

If (j 1,j 2 , .. .,jh) is a group with h > 1 indices, the differences 

j 2-j1 , j 3-j2 , ,,, , jh-jh-l have definite values, Let Bh(11 , 12 , , .. ,lh-l) 

be the nl!lllber of groups (j 1 ,j2 ,.,,,jh) contained in i 1 , i 2 , .. , , ir 

with h indices and j 2-j1 "" 11 , j 3-j2 = 12 , , .. , jh-jh-l = lh-l' Then 

JTR 15 
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1 

l ehol,12, ... ,lh-l) for h 

lh-1=1 

We first compute the contr.ibution to ef1 from those sequences of 
r 

indices that have the same group characterist.ics from left to right 

as i 1 , j_ 2 , , .. , \." Thus the value for 8 1 , 13 2 (1), 8 2 (2), ,,, , 13 2 0), 

8 3 ( 1, 1) , 13 3 ( 1, 2) , • , , S 3 ( 1, l) , 13 4 ( 1, 1, 1) , • , , , S r ( 1, l , , , , , 1 ) is the 

same for these sequences and the j th group from the left contains in each 

of these sequences the same number o.f indices wl.th the same successive 

differences in the same order, As there are 6 1 + 6 2 + •, · +Sr groups, 

there are 

(3.32) 

B1+S 2+,, ,+Br 

met 

Tif-➔~ 
1 2 r 

different sequences of this kind (the exact answer is a binomial coef

ficient as in (3 0 11)). Each sequence of this kind contributes 

Sl+B2+, .. +sr 
r:1 

a. 

) :for a.-+ 00 

The total contribution from this kind of sequence follows from multiplying 

(3.32) by (3,33L Next we allow the groups with the same number of indices 

to change places, obl:i.ging us to multiply further by a :factor 

s : 
l' 

B (1 1 1 1 •• ,,l)! .•• B (1,1, ••• ,1)! 
r r 

JTR 16 
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to obtain the total contribution under the new :restriction. Now we 

allow the group characteristics to vary without changing B , i3 , .,. ,S 
1 2 r 

or the number of indices in each group as they occur from left to right. 

By now the total contribution to Sa is 
r 

+ o(l) for a+ oo. 

Next we allow the groups with different numbers of :indices to change 

places. Now we have to multiply by 

(3.36) 
Ci\+B2+ , .+Br): 

s1:s2: .. sr: 

+ 

Finally we add all cont:dbutions for different values of S1 , 

We obtain (with (3.26) extended to arbitrary j) 

s . 

(3.37) 
81~0,82~o, .•. ,sr~o 

S1+2S2+ ••• +rf\=r 

As = 0 for r > 1+1, we finally obtain 

(3.38) s 
:r 

(3.39) 

s1~o,B~~o, .•• ,s1+1~o 
S1+2S2+ ••• +(1+1)81+1=r 

we find for the generating function 

"" 

r 

+ o (l) for 

for 

JTH 17 



for all finite values of z 

(3.40) S (z) 
l+l 

exp L 
j=l 

44 

From the inaquall.ties (3.9) follows easily, that lim P0 ex.i.sts with 
.i. 

(3.41) 

But then for 

(3.42) P(w) 

'P 
i 

all finite 

co 
def I P. 

1 
i=O 

values of w 

00 i 
i .I :: s w 

1.=0 

If now (with a 0 0 by defini Uon) 

(3.43) b. ::.::; 
1 

1+1 
\ (-l)j-i ch a. 
l :i. J 

then for all finite values of w 

(3,44) 

and 

(3,45) 

1+1 
}: a_(w-l)j 

j~O J 

p w) 

for i 

b 
J 

a-+oo 

0,1,2, 

i 
(-1) S(w-1 , 

1+1 , 

We have now shown that (3.24) holds. The relation b0 =-(b1+b2+,,,+bl+l) 

follows from ( 3. 4 4) by taking w = L 

Because P(l S(O) 1 the P. form a probability distribution, 
J. 

say of a random variable i This distribution is n .. w shown to be 

in.finitely divisible, Consider E; r~:~ for an integer j > 2. 

LJ J 
Then by what we have already proved, the limit of 

(3. 46) P a { a ··· P exactly i of E1 , E2 , 
i j 

, • • , E a occur} c~1 
JTR 18 



for O! -► oo exists, If we take 

(3.47) P. (w) 
J 

45 

then P. (w) is again the generating function of a probability 
J 

distribution and also 

(3.48) 

because (3,22) 

P(w) =- {P.(w)} 
J 

1+1 b 

(w) ' _h exp l 
h=O J 

m 
now applies with m replaced by j ( .. ;:_] , But then 
. a J 
J and~ is infinitely divisible. From Feller [1957] 

page 271, we then conclude that b1 , b 2 , , .. , bl+l are nonnegative, 

This last result is not trivial, because there exist probability 

distrib• .. tions with generating function exp L c. wj with two or more 
J 

negative (cf, Levy [1937]). Our proof isjn2w complete, 

4. LIGHT SENSATIONS IN A FIXED TIME-INTERVAL 

Now that we know what happens when a fixed number na of light quanta 

reaches the retina of our observer's eye, it is not hard to extend the 

results to what happens in a fixed time-interval (o, t ] with a a 
conveniently chosen ta for o: -► 00 

The expected number of arrivals in 

is given by 

(4.1) l n P{a(_yl+,.,+in).:. \x < a(il+.,.+fn+l)} = l P{a(;y:l+,.. 
=1 =l 

t 
U(~) 

CJ( 

If this expectation is to be close ton and as i.s known from renewal 
a 

theory 

(4.2) U(t) 
t - + o(t) :for t -~ 00 , ~\ 

t ] a 

JTR 19 
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it is convenient to assume 

(4.3) 

(4.4) 

and 

(4.5) 

lim 
a+oo 

t 
a 

-p(k-1 )-1 
a 

For any c with Cl< c < 1 we have 

t 
lim P {y + •• ,+y < a 
a➔oo -l - [(1-c)n J - a 

a 

t 
a 

a 

::::: 

0 

by the weak law of large numbers for identically distri.buted independent 

random variables with first moment. 

If we write again !n for i 1 + i 2 + •• , + ln as we did in section 1, 

we note that 

(4.6) p {at least i light sensations in (CJ, \J} 

P { at least i light sensations in (o,\J 
-1 
\t = and t > Ci. 

-[ (l+t )n ] 
a 

+ 

+ P {at least i light sensations in (O, \J and t 
-[ (l+c )n J 

1 <a-t}< 
- Cl 

a 

< P{at least i light sensations in (O,t ]}+ 
-[ (l+t )n } 

Cl 
-1 } < Cl t 

- C( 

But then we know from the theory developed in sections 2 and 3 and (4.5) 

(4. 7) lirnsup P { at least i light sensations in (O, t ] } < 
a 

a + "' 

< lim p {at least i light sensations in (O,t ]} 
a·+<» -[O+c)n] 

00 _(l+c)µ{(l+c) lj 
. a 

I e for j_ 0,1,2, 
j ! ' .. 

.i=i 

sm 20 
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with O < e: < 1, e: otherwise .arbitrary and µ 
k-1 

C Ik-1 (p) 

(4.8) 

To find a lower bound we note that 

P {at least i light sensations 1.n (O,t J} 
a. 

{ -1 
P at least i light sensations in (O, t ] and t < a t } 

a [ ( 1-e: )n .]- a 
a. 

+ 

+ p {at least i light sensations in (0, t ] 
(X 

> 
-1 

Cl t } > 
Cl 

{ at least (O, ! ] > p i light sensations in and < 

[ (1-dn ] 0-dn ] -
a Cl 

-1 
Cl 

> p {at least i light sensations in (O,t P{ >Q'. 

-[ (1-e: 

With (4.4) we conclude 

(4,9) liminf P {at least i light sensations in (O,t]} > 
Cl 

P{at least i light sensations in (O,! 

"' I 
[ (1-e: 

e 
)µ { (1-E)µ} i 

for i 
j=i 

and arbitrary e: with O < £ < 1, 

(1-e 

Combining our results we have proved the following theorem. 

Theorem 4,1. 

lim P {exactly i light sensations in 
()t-+O> 

for i - 0,1,2, n• withµ as in (3.15). 

-µ i 
t ] } a e 

It is not hard to extend this result to a finite number of non

overlapping intervals. 

21 

t }> 
Cl -



48 

LITERATURE 

Feller [1957], An Introduction to Probability Theory and its Applications, 

Volume 1, Wiley (second edition), 

ten Hoopen en Reuver 5], On a waiting time problem in physiology, 

Stat Neerl. 19 (1965) 27-34, 

Ikeda [1965], On Bownan-Ve1den-Yamamoto's asymptotic evaluation Jormula 

for the probability of visual response in a certain experimental 

research in quantum-biophysics of vision, Ann. Inst, StaL Math. 

17 (1965) 295-310, 

Levy [1937], Sur les exponentielles de polynomes et sur 1 'ari Hunetique 

des produits de lois de Poisson, Annales Ecole Normale 

(1937) 231-292, 

Meyer [1067], Some Poisson·"·type limi theorems for sequences o:f dependent 

rare events, with applications Institute of Statistics Mimoo 

Series No. 529, Univ. of North Carolina, 

Newell [1964], Asymptotic extremes for m-dependent random variables 

Ann. Math, Stat. (1964) 1322-1325, 

Watson [1954], Extreme values in samples from m-dependent stationary 

stochastic processes, Ann. Math, Stat. 25 (1954) 798-800. 

JTR 22 



SOME RECENT DEVELOPMENTS IN RELIABILITY TifEORY 

by Richard E. Barlow (USA) 

University of California, Berkeley 

1. MODELS FOR LIFE DISTRIBUTIONS 

Reliability theory is largely concerned with questions about 

coherent structures, Le, structures which can be represented as 

combinations of various series and parallel networks (allowing the 

possibility of component replication). Various attempts have been made 

to delimit the class of life distributions of interest for such 

structures. Extreme value theory provides an answer, in part, to the 

question: Given a coherent structure with a finite number of components 

and some procedure to increase the number of components without bounds, 

what are the possible limiting distributions for the structure lifetime 

for given component lifetime distributions? A series structure has a 

lifetime corre,pond1ng to the minimum of its component lifetimes and 

the limiting procedure adds one component at a time to the structure, 

The only possible relevant limiting distributions for this case are 

the Weibull and double exponential distributions [12], I:f we add 

k-out-of n st uctures to the structures o:f :interest we obtain the normal 

and lognormal distributions and distributions of the form 

k(x) 0 for x < 0 

1 

f (k - 1)! 
e :for x > O, a> O 

0 

1 
X 

(x) 
(k - 1); 

ef e _ro < X < oa 

0 

REB 
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[s], [21]. Results for more general models have been obtained by Harris 

[14]. 
There is a vast literature concerned with the estimation of 

parameters for distributions in these classes. For a recent comprehensive 

survey of results for the Weibull distribution, see Mann [ 18], 

We might call the preceding approach "the li.mi ting distribution 

approach." A more reeent approach to delimit the class of Ufe 

distributions of interest has been to start with the exponential 

distribution and to ask the question: What is the sma Uest faml ly of 

life distributions containing the exponential distribution whieh is closed 

under the formation of coherent structures and limits in distribution? 

This question was recently answered by Birnbaum, Esary and Marshall[ 5] 
The elass of distributions in question is precisely the class with 

inereasing failure rate on the average (IFRA distributions), Le., 
t 
f r(x)dx/t is nondecreasing in t ;::_ 0 where r( t) is the failure rate 
0 

function. Researeh on estimation procedures for IFRA distributions 

and tests of hypotheses concerning such distributions is still underway 

A great deal of attention has been focused on models for life 

distributions based on properties of the failure rate function. For 

example, we could consider the class of distributions having failure 

rate r(t) for which r(t)/t~(t) is increasing (or convex increasing) for 

specified l/i(t) > O. If w(t) is constant, we have the class of IFR (for 

increasing failure rate) dis tri.butions. The case of more general t/! ( t) 

has been investigated by Saunders [26) in connection with models for 

fatigue failure. 

Some multivariate models have been proposed to describe the joi.nt 

lifetimes of components i.n a coherent structure, The multivariate 

exponential distr:ibution studied by Marshall and Olkin [19], [20] 

generalizes the univariate exponentlal distrlbuti.on in a natural way, 

Harris [15} has proposed a class of multi variate distributions with 

IFR marginals which satisfy addiU.onal reasonable restrictions, 

Esary, Proschan and Walkup [11] study a new concept of post ti ve 

fl.EB 2 
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dependency describing the joint lifetimes of components in a coherent 

structure, They say that random variables 

if 

are associated 

for all nondecreasing functions f and g where!= ( ,T2 , ... , Tn). 

Random variables jointly distributed according to the multivariate 

exponential distribution, for example, are associated. This concept is 

partly motivated by the idea that working components tend to reinforce 

the contribution of each other to system performance. Stated in another 

way, a failed component may, j_f anything, stress the remaining working 

components so as to cause them to perform poorly. Also, components subject 

to a common environment tend to be associated. They obtain lower bounds 

on system reliability in terms of component marginal reliabilities when 

components have associated lifetimes, Lehmann [17] considers related 

ideas of positive dependency for the bivariate case and examines tests 

of independence versus positive dependency, 

2. TESTS OF HYPO'rHESES 

Considerable attention has been focused on the problem of testing 

the validity of the IFBA and IFR models [1], [37 
usually posed is that of testing 

F exponential 

versus 

F H'RA (or IFR), 

[ 24] . The problem 

(1) 

-"x If G(x) = 1 - e for x.::.. O and"> 0, then G /xis non-

decreasing in x .::._ 0 if and only if Fis IFRA, This observation suggests 

that we consider the following partial ordering on the space of life 

Sf -1 ( )/ ( distributions; namely, F1 : F2 ~ F2 F1 x x is nondecreasing :i.n x > ), 

REB 3 
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Note that F1 < F < G suggests that a test for (1) should have greater 
* 2 * 

power at 1\ than at F2 no matter what significance level we choose for our 

test. Marshall, Walkup and Wets [22] have characterized the class of 

differentiable test statistics which produce tests having monotone power 

with respect to .;;_ ordering. 'l'hese are just the tests based on functions 

h(x1 ,x2 , . .. , xn) having the properties: 

(a) his homogeneous; 

(b) X . 
n-:i. 

3 h(x1 •• ,xn) 

3x 
n-j_ 

> 0 for j 

and all O :::_ x 1 :::_ x 2 :::_ ... :::_ xn 

exponentiality if h(X1 ,X 2 

The test associated with h would reject 

, X) > c ~1ere c is some suitable critical 
n -

< Xn are order statistics from F For example, 

n 

2, 
1 

n 
where X 2, X_/n is such a function. 

1 :t 

T(X.) 
:t 

Let n(u) equal the number of items exposed to risk at time u and 
X 

J.i.. n(u)du, Tests based on 
0 

h(X , , .. , X ) 
1. n 

fl T(X )/T(X ) 
.i.. i n 

(2) 

for ll _ > 0 are unbiased and have monotone power with respect to ::; ordering. 
:t - ~ 

These tests reject exponentiality in favor of IFRA for large values of 

h(X1 ,x,., , , . , X ) , This statistic has a natural analogue for the case of 
2 n 

incomplete data [2] , The corresponding test remains unbiased but we can 

no longer prove that it has monotone power with respect to.;;_ ordering, 

Tests based on (2) have been extensively studied by Bickel and 

Doksum [3] , They call such tests studentized linear spacings tests and 

consider the foll.owing "pencils' of alternative densi ti.es to the exponent.ial: 
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(Linear Failure Rate) 

e { o+e)} (1 + e )x exp -x (Weibull) 

(Gamma) 

For each density x .:_ O, e .'.'.. O, and the null hypothesis is obtained for 

8 = 0, The asymptotically best studentized linear spacings test against 
(1) . 

f 0 corresponds to we:1.ghts t,i 1 (i = 1,2, ... , n-1), This statistic 

is also called the total t1'.me on test statistic. The asymptotic Pitman 

efficiency of this test compared to the asymptotically most powerful 

test for this reduced problem is only¼. However, there is a great deal 

of evidence supporting the "robustness" of this test. The asymptotically 

best studentized linear spacings test for f~ 3 ) --the Weibull density-

seems to be a robust competitor to the total time on test statistic. They 

also consider the corresponding asymptotically best linear rank tests 

whi.ch are asymptotically equivalent to the best 1 inear spacings tests. 

However, the Monte Carlo power of the asymptotically best linear spaci.ngs 

tests is much superior for small sample sizes. 

The Monte Carlo power of the total time on test statistic is 

computed in[~ against the likelihood ratio test for truncated 

exponentiality versus IFR distributions. Again, the total time on test 

statistic seems to be decidedly superior. 

In [28] van Soest studied an omnibus Cramer-Von Mises-Smirnov type 

of statistic. The statistic is 

,. 2 
{ F (x) - F(x)} dF(x) 

n 

l/12n + ) _ 2j ~ 1}2 

REB 5 
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where F is the empirical distribution and Fis the maximum likelihood 
n 

estimate of Funder H0 • The null hypothesis is rejected for large values 

of Cn • He computes the Monte Carlo power of this test and compares it 

with a two sided test based on the total time on test statisti.c .. The 

power curves below compare this test with the one sided test based on the 

total time on test statistic (2). 

Doksum [10] has recently investigated the two sample problem for 

IFRA dj_stributions. Let x1 ,x2 , .e•, Xn and Y1 ,Y2 , H•, Yn be two 

independent random samples from populations with cont:i.nuous IFRA 

distributions F(.) and FC/6) , respecti.vely, and let s 1 , . <O , sn 

denote the ranks of the Y's in the combined sample. For testing 

H0 : le.< 1 versus 1-11 : !I> 1 , it is shown that the error probabilities 

o.f each monotone rank test qi are bounded by the error probabilities for 

exponential alternatives, i ,e,, i.f G(t) = 1 -- exp(-t) , t > O, then 

for 6 < 1 , and 

P[accept H 
0 

for A > 1 . 

The Savage test whj_ch rejects for small values o.f 

J (s.) where J (k) 
0 l 0 

N 
I i 

,j=N+l-k J 
(N m+n) 

is locally minimax for IFRA scale alternatives within the class of' rank 

tests. For the two sample problem with indifference region, Le,, 

H0 : !\ < 1 versus 1-11 : 6 ~ A1 > 1 , the Lehmann test which re,jects f'or 

small values of 

N lo+ u, - 1) 

I - 1 

j,.,l ""1 s ·-] J 
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wheres'. is the number of Y's greater than or equal to- the (N+l-j}th 
J 

order statistic in the combined sample, is minimax at 6 = 61 within the 

class of rank tests for IFRA scale alternatives, 

In an earlier paper [9], Doksum considers the asymptotic efficiency 

of the best test for exponential models relative to the Savage, SN, 

test. For the exponential distribution, the uniformly most powerful level 
~ 

'a test $N of H0 : ~ = 1 against H1 : 6 > 1 rejects when 

T 
-1 

m 
m 
}: 

i=l 

-1 
X./n 

J. 

n 
l Y. > F2 2 (a) 

i=l J. m, n 

where F2 2 (a) is obtained from the tables of the F distribution with 
m, n ... 

2m an,I 2n degrees of freedom. Doksum considers the modified test 4> 

so as to have an asymptotic level a test when the distribution is IFRA 

and not exponential, The test$ rejects H for large values of 
0 

where 

and 

(;) = N I X. + l y. - (µ) 
2 -1 ( n 2 n 2 ) A 2 

1 1 1 1 

The efficiency ~f the Savage test with respect to$ goes from 1 to oo as 

the shape parameter, b, of the Weibull distribu'Cion, G(t) 

goes from 1 to 00 (or from 1 to 0). He also treats the case of censored 

sampling. 
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3. ESTIMATION PROCEDURES 

The failure rate function is perhaps the most useful characterization 

of a life distribution. Parametric and nonparametric methods for estimating 

the failure rate are discussed in detail by Grenander [13). He also 

characterizes the maximum Likelihood estimate (MLE) of the failure rate 

function under the IFR assumption. The MLE can be easily computed even 

for very incomplete data (withdrawals may be allowed for example), If a 

total of n items are exposed to risk, failures are observed at times 

< z 
k 

(k < n) 

and n(u) is the number of items exposed to risk at time u, then the MLE 

estimate for the failure rate, r(t), can be expressed as a step function, 

where 

0 < t < 

< t < 

t > 

and 

(Z.) 
t - s 

r Max Min z n ]. 
s.'.:._i r-, f +1 

j:s n(u)du 

z. 
J 

Marshall and Proschan proved that (t) is strongly consistent in 

the complete sample case. Since the life distribution is determined by 

the failure rate, we can also determine the MLE for the life distribution 

under the IPR assumption. Monte Carlo investigations, however, indicate 

that it is badly biased in the tatls. For samples of size 100 or so, 

the empirical distribution appears to be a better estimate of the li:fe 

distribution in the tails. 
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has characterized the limiting distribution of r (t) 
n 

assuming r(t increasing and r'(t) > 0. He shows that 

+ H(x) 

where H(x) is a distribution whose densj_ty is determined implicitly as 

a solution to the heat equation. This result enables us to make 

asymptotic efficiency comparisons with other nonparametric estimators 

of the failure rate. 

Parzen [23] and Weiss and Wolfowitz [3o] investigate window 

estimators of the densi.ty f(t) , i.e., 

f ( t) 
n 

where N is the number of 

(t t If - £ 
' + £ 

n n 
then Weiss and Wolfowi tz 

N/2n£ 
n 

observations 
-e1. 

= 11 and we 

show that Ct. = 

out of a sample of size n in 

assume only that f' ( t) exists, 

1/3 provides an asymptotically 

efficient estimate in a certain sense. A natural nonparametric estimate 

of the hazard rate is then 

r ( t) 
n 

f ( t) 
n 

Watson and Leadbetter [ 29 J show that 

where <l>(x) is the N(0,1) distribution. Following Hodges and Lehmann [~, 

we define the asymptotic efficiency of; (t) relative tor (t) as 
n n 
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n 

where a satisfies 
0 
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[, (t)r2 (t)l213 
0 2 

_ [ 2f(t) j o 

-rf(ol[ 1 ] 2 

L2J [1 - F(t) 

inf d[<!> (x) ,H(x/o )] -· 
(J 

ct[<!>(x),H(x/cr )] 
0 

and 

l<!>(x) - H(x)I 

-1/3 
In this computation, we have let E 11 = n for the window estimator 

It S{Jems clear from ( :3) that the MLE estimator wi 11 do best when r' ( t) ""0 

and the window estimator will be better when r'(t) is very large, or 

ln other words, when the failure rate is increasing very rapldly, 

Since;. (t) is not necessarily increaslng, a more acceptable 
n 

competitor to 

r ( 
n 

(t) under the IFR assumption would be 

Max Min 
s< i w>i 

which is nondecreasing in < 

midpoints of intervals over whj_ch window estimator is constant) 

The results of Brunk [7] show that r (t) will inheri.t the consistency 
n 

property of t) and will improve on (t) in a least squares sense, 

Similar nonparametric MLE estimates :for U-shaped failure rate 

functions have been considered by Bray, Crawford and Proschan [~ 

is a very useful genera] smoothing technique behind all of these 

estimates. Brunk [7] has observed that Z_) j_s the 'isotonic 
J. 

There 
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... 
r (Z.) 

n l. 
1/ 
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n(u)du 

with respect to a suitable measure, namely, 

J
zi+l 

z. 
l 

n(u)du 

in this case. The isotonic regression r (Z.) has a useful least squares 
n i 

property namely, 

n-1 

n-1 

I 
i=l 

r; (Z.) - r(z) 2 µ{i} Ln 1 i'J 

holds for every increasing function r ). 

To illustrate another use of the isotonic regression, consider the 

following estimation problem, Suppose that items are inspected at random 

times and that failure is observed only through inspection, Our failure 

data, on each item which fails, consists of intervals (t.,t. 1 ) where 
1 :i.+ 

it is only known that the item survived to time and failed sometime 

in the interval ( ,ti+l) • Harri.s, Meier and Tukey [1eJ study the MLE 

estimate of the failure rate under these conditions. The approach is non

parametric in that it is assumed only that the failure rate is constant 

(but unknown) over specified time intervals, The fact that the authors 

seek rates rather than probabilities for intervals produces certain 

differences in their treatment of observations extending over parts of 

intervals as compared to the "actuarial" treatment. The isotonic 

regression technique can be applied to the Harris, Meier, Tukey estimate, 
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for example, if we assume that the failure rate first decreases and 

then increases. 

Let pi denote the Harris-Meier-Tukey MLE of the fa:i.lure rate in 

interval i . Let (0,1) denote the first interval; (1,2) the second 

interval, etc. Suppose the MLE looks as follows: 

0 

p 
1 

I 

2 3 4 5 

'l'o obtain an es ti.mate, say p, which decreases and then increases 

and which is closest top in a least squares sense, proceed as follows: 

rnd 

(1) Choose in turn, = 0,1,2, • , • , n for possible change 

points of the failure rate, 

(2) Suppose i "" 0 , Then 
0 

V 

I n -
Min j l J 

V + 1 - 1 

R.EB 12 
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V 

I pj 
Min Max ~j_=_u __ _ 

V + 1 - U V>i U<i 

(3) If O < i < n, then 
0 

(3a) 

and 

(3b) r. 
1 

Max 
i -l>v>i 

0 

V 

I 5. 
j=U J 

Min 
V + 1 - U v>i i <u<i 

Max 

0- -

for 1 < i < 

for i < i < n , 
o-

- l 

( 4) For each choice :i. , compute 

(5) 

0 

Take as your esti.mate that P. . corresponding to the change 
1,10 

point which minirni.zes the sum of squares. 

~ 

It can be shown that the estimate P .. so obtained is closest to 
i' l.o 

the Harris-Meier-'I'ukey estimate P. in the sense that it minimizes the 
1 

sum of squared errors relative to all competing estimates whi.ch first 

decrease and then increase. 
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FINITE AND ASYMPTOTIC OPTIMALITY OF RANK TESTS 

by H. Wit ting (W. Germany) 

University of MUnster (Westf.) 

It is well known, that there are two main kinds of nonparametric tests: 

rank tests and permutation tests. Although similar or even stronger 

statements can be made for permutation tests, to-day I will restrict 

myself to rank tests. 

Rank tests originally were introduced by more or less intuitive reasoning; 

later on the question was raised, in what respect these procedures can be 

justified by mathematical reasoning; i.e whether these rank tests can 

be derived in a certain sense as optimal procedures. There are two main 

directions of doing this, originated by Hoeffding [3] and Hajek [1] , 
respectively. 

Hoeffding [3] derived the general most powerful rank test against a 

certain alternative and pointed out how to simplify the problem by 

regarding alternatives in the neighbourhood of the hypotheses; in 

particular he indicated how to come to the Fisher-Yates test. Later 

on Terry and Lehmann among others characterized the most important rank 

tests like Wilcoxon test, Spearman test, Wilcoxon's matched pairs signed 

rank test and so on in this way as "locally most powerful''' against an 

appropriate class of alternatives. Here "locally most powerful" means, 

that these tests maximize the slope of the power functi.on at the 

hypothesis, differentiated along an appropriate one-parametri.c subclass 

of alternatives. More precisely, it was proved that these well known 

rank tests are optimal among the cZass aU rank tests, 

Whereas the just described approach to optimality :is based on a fixed, 

finite sample size Hajek [1] - using LeCam 's [4] concept of contiguity -

discussed asymptotic properties and proved, that the above mentioned 

rank tests are asyrrrptoticaZ ort1:maZ among the aZass of' au tests 

(of the same asymptotic level) against an appropriate class of 
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alternatives, which is shown to be strongly related to that class of 

alternatives, against which the rank test is "locally most powerful". 

To-·day I will make some remarks concerning these both directions of 

research and the relations between them. Because of scarcity of time 

let me concentrate to some special questions which in my opinion have 

up to now not been discussed in a satisfactory manner or at least 

known enough. In this connection I should mention the nam,s of my 

co-workers G.Nolle and K.Behnen, who did research in this fleld and to 

whom I am also obliged for a couple of stimulat:i.ng discussions during 

the preparation of this paper. 

To avold the introduction of an appropriate, sufficiently general 

terminology and framework, let me restrict myself to a special case: 

The well known comparison o:f two independent samples. A complete and 

unified treatment of optimali.ty of rank tests including for instance 

this two sample problem, the matched pairs problem (tests of symmetry) 

and the tests of independence (rank correlation) you will find in a 

forthcoming book [7 J of Mr, Nolle and mine, 

Let us use the following terminology: 

y): 

Z 1 : = (Z 
J 

sample of k+m observations 

corresponding treatment 

I, corresponding treatment 

II), 

ordered pooled sample 

corresponding random variables. 

i.e. , y , ... Y 
1 Ill 

independent r v, 's with 

continuous distribution 

functions F and G, respectively 
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e (F,G) 

(r,s): 

s) 

H F ·> G 

K 

,J 

r-s, 
i 

parameter of the common 

distribution of the r.v. 's. 

common distribution of the r.v. 's 

under 0 = (F,G) 

sample of ranks of 

with respect 

to the pooled sample 

corresponding r.v. 's 

rank tests, Le. tests which 

depend only on ranks 

hypothesis to be tested at 

significance level a 

alternative. Here F :':: G means, 

that the r.v. 's are 

stochastically larger than the 

r.v. 's Y. 1 i.e. that treatment I 
J 

is better than treatment II 

boundary of the hypotheses Hand K 

K1 is a given subclass of K, against 

which the test is locally optimal; 

then K1 is the subclass of K1 , 

against which the test is shown 

to be optimal 

possible expressions for Wilcoxon's 

test statistic 

for all integers n 1,2, ... 
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As is well known optimality for finite sample sizes is proved in two 

steps. The first step justifies mathematically the replacement of 

observations by their ranks. This can be done by means of a reduction 

by invariance. The argument is as follows: Let T be an arbitrary 

continuous strictly increasing transformation of m1 to m1 . Since 

the observations x., y. are as 'informative" as the observations Tx_, 
i J i 

,yj we restrict ourselves to tests, which are invariant against such 

transformations. As is discussed in the book of Lehmann [5] the class 

of all these invariant tests is exactly the class of the above defined 

rank tests. 

The second step characterizes the Wilcoxon test or Fisher-Yates test 

among the class of all rank tests of the same level a; for this the rank 

test of level a is determined which is optimal against a specific 
~ 

alternative 06 (ffi. K, where K, :l.s an one-parametric subclass of 
1 l. 

di tributions wn , O < 6 < i\_, dominated by we0 , which may or may not 
/\ 

depend on some nuisance parameters. Then the best level C! rank test 
¾-

against the alternative w8 , 0 < 6 < 61 , is a soluti<;m t/J 6 of 
/'.i 

(1) Ee t/; = a 
0 

(2) E 
86 

t/; sup 

Here the first condition is equivalent to E8t/J = a V8 € J, because the 

distribution of the rank statistic (R,S) under each 8 £ J is the 

discrete uniform distribution over the (k+m)'. possible values of (r,s). 

The distribution of (R,S) under 06 "" (Fl', ,F'0 ) e K1 is given by l-!oeffding's 

formula 

E 

1 
= (k+m)! u~ (r,s) 

w 
0 
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density of X. under 
l 

Therefore, according to the Neyman-Pearson Lemma the critical region of 

* the best rank test ~LI is 

(4) 

i.e. consists of those [a(k+m):] points which have the largest value of 

the test statistic 1TLl(r,s). (In case that these [a(k+m)!] points are not 

uniquely determined, we have to randomize appropriately for (r,s) = c (LI).) 

It is well known in the literature (cf, for instance, Hajek [2]) that for 

certain "natural" levels of significance, namely(kfm)! (j=O,l, ... ,(k+m)!, 

but not necessarily all of them), and under some regularity conditions (which 

ensure among others the exchangeability of differentiation with respect to 

* LI and integration with respect to x) this test ~LI is independent of 

LI for 0 < ll < ll 
1 

and is identical with the usually used most 

powerful test with the critical region 

a 
(r,s)ILI (5) TI(r,s) > C 1T(r,s) = ~ 1T LI = 0 

namely the Wilcoxon test and the Fisher-Yates test for translation 

alternatives with F0 corresponding to the logistic distribution and the 

normal distribution, respectively, and the Wilcoxon test for nonparametr:i.c 

alternatives, 

* On the other hand, the following simple example shows that U,J ll and ~ are 

not necessar:i.ly identical for other suitable levels of significance, 
* although¢{\ is independent of LI for O < ll < ll 1 , 

Example: Let K1 be a class of nonparametric alternatives 

(P[\,F') EK, P[\ : = (1-ll) F+!\F2 , LI E. (0,1) and let k=m=2, n:d,+m:c:4, 

Then (r,s) = 
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2 
- 1) + /'., (4 

r (r +1) r +r 
1 2 -? 1 2 

(n+l) (n+2) M n+l 
+1) 

r +r 
;(r s)=2(~ -1) (Wilcoxon test statistic) 

' n+l 

Because of sufficiency, the ordering of (r1 , ) and of ) is 
11 4 

irrelevant, i.e. there are only (k) =( 2 )=6 essentially different 

points (r,s), characterized already by the ordered ranks r and r 

of rl and r2, respectively. 

(r[1J•r[2]) TT/'., (r, S) 

----· - -- --" - -

(l, 2) 
4 

I'., 
1 /'.,2 l - + 5 5 

(1,:D 
2 1 /:,2 l - - !:, + 
5 15 

(1,4) 
1 /'.,2 1 - ~--· 
3 

(2,3) 1 
1 

+ ·-·-
15 

(2,4) 
2 

I'., 
1 62 l + --~~ -

5 5 

4 
/1, + 

1 
(3,4) 1 + 

5 5 

From this table you can see the following: Whereas 

(r ~ ]' r [2 ]) are strictly ord~red by TT 6 (r, s) for 0 

the 

< /1, 

TT(r,s) 

+ 

+ 

4 

5 

2 
5 

0 

0 

2 
5 

4 --~--
5 

6 pairs 

.::.. 1, this 

true for the test statistic TT (r,s), because ,s) does not 

is not 

distinguish between the rank tuples (1,4) and 2,3). This implies that 

for 1/3 < a < 2/3 the Wilcoxon test is not locally uniformly most 

powerful. 

Hence, for an arbitrary level of significance, there are two questions: 

) When does exist a 

6, O < 6 < 

l., > 0, such that 
l 

is i.ndependent of 
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* 2) Which is the relation between ~6 , 0 < 6 < 6 1 , and W? 

Under the condition, that ~6 (r,s) can be expanded into a powerseries 

about 6:0 and differentiation and integration are exchangeable (this 

condition is somewhat stronger than the condition in the literature), 

Dr. Nijlle gave a quite simple proof of the fact, that for every level of 

* significance there exists a number 61 > 0, such that w6 is independent 

of 6, O < 6 < 61 . This means, that under these stronger conditions 

* * W : = w6 , O < 6 < 61 , is locally uniformly most powerful against K1 , 

i.e. uniformly most powerful against an appropriate subclass K1 ~ K1 . 

Moreover, he could prove that the region of randomization is enlarged, 

* when the uniformly most powerful test W is replaced by the usually 

used "locally most powerful" test ~. In other words, if the test W 

* decides uniquely, then does the test W . Of course, this proof shows 
~ * also that Wand W are identical for the above mentioned "natural" levels a. 

The imposed stronger conditions can be proved to be valid for those 

classes K1 which are used in connection with the Wilcoxon test and the 

Fisher-Yates test, i.e. for translation alternatives of normal and 

logistic distributions as well as for nonparametric alternatives used 

in the above example. 

As indicated at the beginning of this paper asymptotically a stronger 

statement concerning optimality can be proved than in the case of a 

fixed sample size, namely the optimality among the class of all tests 

and not only among the class of all rank tests. This implies, that the 

"loss of information" by using ranks instead of the original observations 

is asymptotically negligible. 

The fact, that asymptotically stronger statements can be proved, is 

familiar to statisticians, for instance in connection with comparing 

two means based on independent normally distributed r.v. 's with the 

same variance. In case that o2=cr! is known, for testing H:a .'.:.. b against 

K:a > b there exists an uniformly most powerful test, namely the Gauss test 
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with the test statistic 

'r;;;: x-·y 
V ~m 0 

0 

But in applications usually the value of o 2 is not known. Therefore, 

instead of Gauss's test usually Student's t-test is used with the test 

statistic 

l 
k+m-2 

whi.ch does not depend on the assumption 

Since s 2 is "less informative" than 0 2 
2 

c I - 2 \" 
(x.-x)+L 

l 

-· 2 
(y -y) ) 

J 

2 2 
of a known value CJ =CJ 

0 

Student's t-test is not as good 

as the Gausstest in case that o is known, But if k and m tend to infinity, 

2 ( the sample variances converges in probability or even almost surely) 

to the population variance CJ2 ; therefore, it can be expected that 

asymptotically Student's t-test is as good as the Gauss test, .,.. 
For making this precise, let us define two sequences of tests¢ , ¢ of 

n n 
the same level of significance to be asymptotically equivalent if 

*· Ee (¢ 
n 

n 
- ¢ l + 0 holds for all (or an appropriate class of) n· sequences 

{ 0 } CK with 8 
n 

the t-test ¢ 
n 

n 

.,_ 
+ 8 E. J. Th:is :is fulfilled for the Gauss test ¢ 

for all sequences 8 
2 = (a ,b , CJ) EK with 8 

n n n o n 

and 

i.e. with a - b + O, a > b which can easily be verified. Here it 
n n n n' * 

should be mentioned, that Een (<Pn-¢n) + 0 imposes the strongest condition 

(Le is most informative)for sequences en with a -b "'Tl#~+ o ( ~) 
n n k+m Vk+m ' 

for which the power tends to B, a< B < l, 

Hence the situation is as follows. for 
2 

fixed o 
2 

cr we have a 
0 

uniformly most powerful test, namely the Gauss 

* test ¢ 
n,cr 0 

which depends on 

is asymptotically equivalent 

2 
(J • 

0 
On the other hand, the t-test q, , which 

n 
(in the indicated sense) to the Gauss test 

* 2 ¢ for each CJ , is applicable for the larger class of hypotheses with 
n, cro 2 o 

an arbitrary o > 0. 
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Exactly the same situation holds concerning rank tests compared with 

the best test, i.e. the best test depends on the specific simple 

alternative, whereas the rank test, which is asymptotically equivalent 

to the best test, does not depend on the specific alternative within 

a certain subclass of alternatives. For proving this, two things will 

be needed: 

1) Appropriate tools for proving asymptotic statements of the indicated 

kind. These are developed by LeCam [4] and Hajek [1] with the help of 

their theory of contiguity. 

2) Definition of the corresponding hypotheses of the asymptotic testing 

problem and of asymptotically uniformly most powerful tests. These 

, concepts were introduced by Neyman [6]. 

For introducing contiguity, let us remind that the basic problem of 

testing theory is that of testing two simple hypotheses. Therefore, let 

us assume that for each n ~ IN we have two simple hypotheses 

H 
n 

u 
n 

K 
n 

V 
n 

where un and vn are probability measures on the sample space ()((n)' ;(;,(n)), 

for instance the distributions of n=k+m independent random variables 

x1 , .. ·•\:• Y1 , ... ,Ym with distributions, characterized by parameters 6~ e Hand 

6 e K, respectively, i.e. 
n 

Then the sequence {v } is said to be contiguous to the sequence {u }, if 
n n 

(6) u (B ) ➔ 0 
n n 

implies V (B ) ➔ 0 
n n 

for any sequence {Bn} with Bn E:. ~n) Vn e. IN. It is a trivial but 

important consequence of this property, that any sequence of r.v. 's Zn, 

which converges to O in u -probability, converges to O in v -probability, 
n n 

HW 9 



too, i.e. 

76 

Zn ~ 0 implies Zn 
n 

V 
n 

0 

Here ~ ___ _, 0 is defined by u ( I Z / > E ) ➔ O VE > O for n -+ 00 

n u n n 

Conversely,nthis last property implies (6). 

In most of the important applications of contiguity, a property is 

fulfilled, which is somewhat stronger than contiguity. In order to 

explain this, let us introduce the test statistic of the Neyman-Pearson 

test for testing II :u against K :v , i.e. 
n n n n 

(7) L : 
n 

p > 0 
n 

0 

Here pn and qn are densities of un and vn with respect to a dominating 

measure. In case that x1 , ... ,Xk,Y1 , . .. ,Ym are independent r.v. 's, 

Ln (X(k)'y(m)) is a product, i.e. 

log Ln:=log Ln (X(k)'y(m))is a sum of independent random variables. This 

implies, according to the central limit theorem, that very often the 
2 

limiting distribution of log L is normal with mean -:lie /2 and variance 
2 n 2 

:;ie: • In other words, very often there exists a ;t .:. 0, such that 

(8) l 
u 

n 

As is proved by LeCam, this property (8) entails 

1) contiguity and therefore: 

(9) z-o n u 
n 

implies Z -----¾ 0 
n V 

n 

2) l~g L0 i.s under v n asymptotically normal with the same variance 

~ as under un, but with mean +--i2'12, i.e. 

2 2 
(log L ) ➔ al(+ :l. /2,~ ) 

n 
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To see the importance of property (8), let us assume a€> O 

and that there exists a statistic 

(11) s 
n 

log L +?£ /2 
n 

u 
n 

According to contiguity, (9) implies 

(12) 

log L +?£/2 
n 

n 

, such that 

0 

Since and therefore (log i /2)/'JJZ is the test statistic of the 

Neyman-Pearson test for Hn against Kn:vn' this means, that is 

asymptotically as good for testing against Kn as the best test 

statistic is. On the other hand, S does not as much depend on the two 
n 

simple hypotheses Hn:un and Kn:vn as Ln actually does. Therefore it is 

often the case, for instance if Sn :i.s the standardized test statistic rr 

of the Wilcoxon or Fisher-Yates test, that Sn is independent of and 

v within an appropriate class of distributions, i.e. is asymptotical-
n 

ly optimal for an appropriate class of such sequences. 

According to the basic properties of convergence in distribution, (8), 

(10), (11) and (12) imply 

(13) 
(S ) ➔ ?fC(0,1), 

n 
n 

(S ) ➔ Zit 
n 1) ' 

i.e. is not only an asymptotically optimal test statistic but also an 

asymptotically normally distributed r,v,. Therefore critical value and 

power along the sequences can asymptotically easily be determined, 

For making the kind of asymptotic optimality of rank tests we 

have to formulate the hypotheses of the asymptotic testing problem. To 

this end let me remind you of the above indicated finite optimality of 

rank tests in the two sample problem, There we started (in the second 
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step) with rank tests and determined (by Hoeffd1ng's formula that one 

which was "locally most powerful" against the class of translation alter

natives (F6 ,F) with F6 (z)=F(z-6) and a specific distribution function 

For against the class of nonparametric alternatives (F6 ,F) with 
2 

F6 (z)=(l-A)F(z)+AF (z) and an arbitrary continuous distribution function 

F . For proving asymptotic opU.maU.ty we now start with the class of all 

tests and determine for each n E lN the best test for the two simple 

hypotheses 0 =(F,F) and,for instance,a translation alternative, say 
0 

) with 

FA (z)ccF(z-A 
in 

n 

' ;;:::: 
+o (\/~~·) 

km 

If un and denote the common distribution of x1 , ... , ,Y1 ,., .,Ym 

under (F,F) and (F6 , FA ), respectively, and if L is the above 
ln 2n n 

defined Neyman-Pearsor, i:est statistic, then under certain regularity 

conditions (like differentiability of the corresponding densities) 

i (log L ) ➔ 
n 

2 2 2 2 
(-ii£ /2, di:.) with 2e: = ll ,J(F) 

holds, where J(F) is Fisher's information with respect to the under

lying one-parametric class of alternatives. Moreover, you can prove 

that under these regularity conditions there always exists a rank 

statistic S with 
n 

---- 0 

for instance the standardization of 11 But 

Le. its distribution is independent of 0= 

is a rank statistic, 

G) <S ,J. In other words 

though we started with the class of all tests, we can prove asymptotic 

optimality of a rank test, 

To make these things precise, we have to define the concept of an 
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asymptotically uniformly most powerful test. Given asymptotic 

"' .,._ { composite hypotheses, i.e. sets Hand K of sequences u and / v } , 
' n 

respectively, with and v as defined above. 
11 

A sequence {¢11 } of tests ¢ 11 is called an asymptotically uniformly 

most powerful test of level a for H against K, if 

lim sup 
11 + co 

< a 

and if for all sequences{¢ } with this property, it holds that 
n 

lim inf(Ev -E ¢ ) > 0 
V 11 

n->-oo 11 n 

Then the main result is, as indicated above, that a rank test¢ is 
11 

asymptotically uniformly most powerful against the sequences { 

constructed above, raising from that class of alternatives, against 

which the rank test¢ is "locally most powerful" for a fixed finite 
n 

sample size n. 

Unfortunately, it is impossible for me to go into details and to indicate 

how we could simplify the proofs, which were originally given by Hajek 

[1]. But I should mention that Mr. Behnen could extend these results to 

nonparametric alternatives and rank correlation tests and that, based 

on some work of Mr. Behnen and Mr.Nolle it is possible to give a unified 

theory of asymptotic optimality including the two sample rank tests, the 

tests of symmetry and the rank correlation tests, which you will find in 

the above mentioned book of Mr. Nolle and mine [1] . 

At the end, I would like to mention that there is an i.ntimate connection 

of this result with the concept of Pitman efficiency. In particular, the 

indicated methods of contiguity enabled Hajek [1] to give a simple and 

very elegant proof of the interesting fact, that the Pitman efficiency 

of a rank test , which is asymptotically un.iformly most powerful 

against alternatives (Ft,1n,Fti2n)' compared with the best (parametric) 
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.... 
test <j,nti of (F,if) against (F61n,Fll 2n) equals one, if this comparison 

is done under (F[\ 10 ,Fll 2n). For tho special case of the Fisher-Yates 

test and normal translation alternatives this was proved earlier by 

Chernoff and Savage. 

Moreover Hajek [1] could easily du:ive the Pitman efficiency 

e (¢ :¢ jv)ofa ranktest ¢ with respect to the rank test <j,n for the 
p n n n n 

underlying sequence {v}, where v is the distribution of 
n n 

x1 ,. , .. , Xk, Y1 , ... , Ym under (1"[1 , Fl\ 2 ) . Let ¢ and ¢ be derived as 
ln n n n 

asymptotically optimal against the alternatives (Ft, 1n,.l'fl 20 ) and 

(F[1 1 ,Fl\ 2 ) respectively. Then it holds 
n n 

(14) e (cp 
P n 

¢ I V )cc P 2 
n n 

where P is the correlation-coefficlent between the test statistlcs S 
n 

and S of¢ and ¢ , respectively, under (F, F). Since S and S are 
n n n n n 

rank statistics, pis the correlation-coefficient under (i,F), too. 

is the distribution of x1 , .. . ,Xk,Y1 , .. . ,Yrn under 

Pitman-efficiency of <j, with respect to~ under 
n n 

Therefore, if vn 

<r\lln' F 62n)' the 
- ' 2 . vn 1~ p , too, i.e. 

(15) 
2 

p 

For instance, the Pltman-efficiency of the Wilcoxon test with respect 

to the Fisher-Yates test for underlying normal translation alternatives 

ls 3/TT :=0,955 and the same holds for the Pitman efficiency of the Fisher

Yates test with respect to the Wilcoxon test for underlying logistic 

translation alternatives. 
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ON THE IMPORTANCE OF COMPONENTS IN A SYSTEM 

by Z.W. Birnbaum (USA) 

University of Washington 

1. INTRODUCTION: DEFINITIONS AND NOTATIONS 

1.1 In a system whose performance depends on the performance of its 

components, some of these components may play a more important part than 

others. For example, in the system indicated in Figure 1, component c1 

would seem intuitively more important than 

figure l 

In the following we propose a quanti ta ti.ve definition of this notion of 

importance, and discuss some properties and applications of this concepL 

1.2 We assume that every device, whether it is a single component or a 

system consisting of components, can be in one and only one of two states: 

it functions or it fails. 

When a system consists of components c 1 ,c2 , .•. cn' we ascribe to each 

of them a binary indicator variable 

when functions 

when fails, 

Each n-tuple of O's or l's 

X 

This research was supported by the Office of Naval Research, 
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is cal led a vector of component states or in short a state vector. It 

can assume any one of the 2° values represented by the vertices of the 

unit cube inn-dimensional space: 

(0,0, •.. ,0), (1,0, ... ,0), (1,1,0, ... ,0), ... (1,1, ... ,1). 

We shall use the following notations: 

!. < JI. when X, < Yi for i=l, ... , n 
l 

X I when X Yi for i=l, ... ,n 
i 

X ;$. I when X < y and X ,i. X -

Q = co,o, ... ,o), 1 = (1,1, •.. ,11. 

We ascribe to the system a binary :indicator variable 

{ 
1 when the system functions 

u 

0 when the system fails. 

When the design of a system is known, then the state vector x determines 

the state of the system so that 

where¢ is a function with values o or 1, called the structure function 

of the system. 

A structure function ¢ is called coherent [1] when it fulfills the 

conditions: ¢(Q) = O, ¢(~),:::. ¢{z) for!_ .'.:.X, and¢{!)= 1, We shall 

consider only coherent structure functions, One verifies immediately that 

(L2.1) ¢(!) 

where 

(L2.2) 

x.[¢(1.,x) - ¢(0.,x)J + qi(O.,x) 
J J- J-· J-

"'" x.6.(x) + µ,(x), j = 1,2,,..,n 
J J - J -

6. (x) 
J -
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\l.(x) = (ji(O.,x), 
J - J -

(1.2.3) 

and o.(x) 
J -

as well as µ_(x) do not depend on the state x. of component c .. 
J - J J 

1.3 If the state of c. is determined by chance, so that the value 
J 

actually assumed by x is a binary random variable X. with the probability 
j J 

distribution 

1} 

(1.3,1) 

then pj :i.s called the 1'eZiability of cj' In the following we shall assume 

that x1 ,x2 , ... ,xn are totally independent. Then-tuple of component 

reliabilities determ:i.nes a point 

J ' n 

For a given structure function 4'(_!), the values of component 

reliabilities (p1 ,,,, ,P ) = p determine the probability that the system 
11 -

w:i.11 function 

(1.3,3) 

This function h (p), defined on J, is the reliability function for qi, ,p - n 
There are situations when only the design of a system is known, Le. 

tp(_!) is given, but no information is available about the component 

reliabilities, We shall consider the relative importance of various 

components in such situations, and shall call it atructUPal import;an.ce, 

In other instances, both the structure function <j, and the component 

reliabilities E are !mown, The concept o:f importance which will be 

introduced for such situations will be referred to as reliability importance, 
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A third, more complicated way of considering the importance of 

components will be briefly mentioned in Section 6. 

2. STRUCTURAL IMPORTANCE 

2.1 A component c. is relevant for structure cp at the state vector 
J 

(vertex of unit cube) x when 

(2.Ll) 8. (x) 
J -

cj,(1 .,x) - ¢(0.,x) = 1; 
J - J -

c. is relevant at x for the functioning of cp when 
J 

(2. L 2) ( 1-X . ) 0 . ( X) 1 
J J -

and c. is relevant at~ for the failure of¢ when 
J 

x. o.(x) L 
J J -

Clearly, if c. is relevant at x then it is either relevant for functioning 
J 

or for failure, depending on whether the vertex x has its coordinate x. 
J 

equal to O or to 1. 

We define the structu:ral inrportance of c . for the funetioning 
J 

of cj, as 

(2.L4) (1-x .)o .(x) 
J J -

'where the sum is extended over all 2° vertices of the unit cube (state 

vectors), and similarly the structural importance of c j for failure of 

¢ as 

(2,1.5) x.6.(x) 
J J -

F:i.nally, the structural -inrporta:nce of c j for ¢ is defined as 
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(2.1.6) I_(¢)= I _(¢,O) + I _(¢,1) = 2-n 
J J J 

6 _ (x). 
J -

One verifies that if is relevant at x for the functioning of¢ 

then c. is relevant at (1 .,x) for failure and if c_ is relevant at~ 
J .) - .) -

for failure of¢ then it is relevant at (O.,x) for functioning . 
.) -

Therefore, from (2.1,4),(2.1.5),(2.1,6) 

t2. 1. 7) I .(¢,1) :::: 
J 

I .(¢,0) 
.) 

1 
2 I/¢)' 

follows 

and there is no purpose in distinguishing between structural importance 

for functioning and for failure. We shall see, however, that for 

reliability importance a similar distinction is meaningful. 

2.2 Examples 

2.2,1 k-out-of-n structures. 

A structure <Ji(_!) with n components is called "k-out-of-n" when it 

functions whenever at least k of its components function. One verifies 

that for such ¢ 

(2.2.1.1) I_(¢) 
J 

2-n. 2( n-1) J. = 1 2 
k-1 • • ' ..• n. 

All components have the same structural importance, and this importance 

is greatest fork= fr if n is even, and fork= [%J and k = [%] + 1 if 

n is odd. The importance of every component is smallest in the case of 

n components in series (n-out-of-n structure) and of n components in 

parallel (1-out-of-n structure) when 

.2.2 k components in series, in series with n-k in parallel. 

Let 

This structure may be represented by the diagram in F'igure 2. 
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k+l 

k+2 

k 

C 

One computes figur~ 2 

n 

(2.2.2.2) 6. ~, [1- n (1 )] 
t=k+l 

k n 

(2.2.2.3) 6. 
J n (1-:i't) 

t=k+l 
t~.i 

hence 

(2.2.2.4) I . ( ¢) 
J 

2.2-n(2n-k_l) 2(2 

(2.2.2.5) I . ( ¢) 
J 

2.2-n 

-k -n 
We see that , ... ,ck have each importance 2(2 -2 ), much greater 

-n 
than the importance 2.2 of each of ck+l'"""'cn' which agrees with what 

one would intuitively expect. 

3. RELIABILITY IMPORTANCE 

3.l From (1.2.1) and (1.3.4) one obtains immediately for the reliability 

function the expression 

for every j=l,2, •.• ,n, and from (3.1.1) and (1.2.1) follows 
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(3.L2) 

One also proves by straightforward algebra [2) the identity 

(3.L3) cov [x.,cp(x)] = p.(1-p.) E[li.(X)], j=l,2, •.. ,n. 
J - J J J -

3. 2 We define the reliabihty impo.ra1;ance of c. for the functioning 
J 

of ¢ as 

(3.2.1) R.(¢,l;p) = P {¢(X) = 1 / X. = 1; p} - P{¢(_X) = 1; p} 
J - - J - ---

and,similarly, the reUabfl,,ity irrrportanae of c. for failure of¢ as 
J 

(3.2.2) R.(¢,O;p) = P{¢(X) = 0 / X.=0; p} - P{¢(X) O; E} 
J - - J - - -

and the reliability impor•tanae of c. for ¢ as . J 

(3.2,3) R.(q,;p) = R_(<J,,l;p) + R.(¢,O;p). 
J - J - J -

The followi.ng i.dentities will be frequently used: 

R. ( c/>, 1 ;p) 
J -

3h(p) 

(1-pj) ilp _- = E [(1-X} 
J 

3h(E) 

(3. 2. 5) R/ ¢,0;!?) pj ~ = E [xj 6/~)] 

3h(£) 

(3.2,6) R.(q,;p) = ~ = E[li/~)]. 
J - j 

Proof: using (3.1.3) 

Ii. (X)] 
J -

= (1-p. )E [o. (X)] 
J J -
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and from (3.2.1) and (1.3.3) one obtains (3.2.4). A similar argument 

yields (3.2.5), and (3.2.6) follows by adding (3.2.4) and (3,2.5). 

3,3 If nothing is known about the reliabilities of the components and, 

for lack of better knowledge, it is assumed that all vertices x are 
-n 

equally probable i.e. each has probability 2 , then (3.2.4), (3.2.5), 

and (3.2.6) reduce to (2.1.4), (2.1.5) and (2.1.6), the corresponding 

structural importances. 

3.4. Examples 

3.4.1 k-out-of-n structures. 

For a k-out-of-n structure we have o .(x) = cp O .,x) - cp (O.,x) = 1 
J- J- J-

if and only if exactly k-1 of the n-1 components different from c. 
J 

function, Therefore, 

(3.4.1 1) 

where the sum is extended over all permutations (j1 ,j2 , ••. ,jn-l) of the 

subscripts (1, 2,.,., j-1, j+l, •.• , n). 

3.4.2 k components in series, in series with n-k in parallel. 

For the structure function (2.2.2.1) one computes 

(3.4 2.1) 
k 

R .(</>,p) == n p 
J - r 

r==l 

k n 
pr [1- n (1-pt)], if j==l, 2, ... ,k, 

1 
1-p. 

J 

t==k+l 

if j=k+l,.,.,n, 
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and corresponding expressions are immediately obtained for R(¢ ,1,£) and 

R(q,, O,_E). 

3.4.3 In the examples above, only the reliability importance defined 

by (3.2.3) has been computed. Expressions (3.2.1) and (3.2.2) can be 

useful when a cost function is given which ascribes different cost to 

the failure and to the functioning of a structure. 

4.. STRUCTURES WITH MODULES 

4.1. In designing multi-component systems one often proceeds step-by

step, first constructing a system of fewer components and then replacing 

some of these components by sub-systems, known as modules, each 

consisting of several components. Some properties of coherent S:§lstems 

constructed of coherent modules have been studied in [3]. For our present 

purpose we shall use the following definitions: 

Let 

and 

(4.l.2) 

be two coherent structures. We shall say that the structure 

was obtained by replacing component x 1 in¢(~) by the module i)!(_l). 
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4.2 From (4.1.3) one obtains 

o (x;y1 , ... ,y ,x2 , ..• ,x) 
yl m n 

From the so obtained identity 

(4.2.1) 

and from (3.2,6) follows 

(4,2.2) 

This "chain-rule" property (which could also hav~h~E.jn obtained by the 

chain rule for differentiation using E[oj(.:!!.)] =~)makes it possible 
J t· to compute the importance of each component of a module~ for the en ire 

system x, and to repeat this step-by-step as modules are substituted for 

components, The computation of R (x,l;y1 ,, .,y ,x2 , ..• ,x) and of 
yl m n 

R (x,O;y1 , ..• ,y ,x2 , .•• ,x) is then a simple matter, according to 
Y1 m n 

(3.2,4) and (3.2.5). 

5. AN APPLICATION 

If components with known reliabilities (p1 , •.• ,p) = p are 
n -

available, and the known structure~(.:!) has the reliability h(£) = 

E[~(!);pJ, then the problem may arise to decide on which components 

additional research and development should be done to improve their 

reliabilities, so that the greatest gain is achieved in system reliability. 
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Let us assume that improving the reliability of c. from 
J 

top_+ 6 
J j 

can be achieved at cost A.(p.).6., for j=l, ... ,n. In practical situations 
J J J 

Aj(pj) will be an increasing function, such that AJ_(O) = 0, Aj(p) 
p ··► 1 

The total cost of improving all components will be 

(5.1) 

and the 

(5.2) 

n 
C(e_, ~) - I \ (p j) I':,, 

j' 
j=l 

gain in system reliabiU.ty 

hlp_ + ~ - hq/.E> 

C(_E, .f'i! 

per unit of cost 

We shall look for the direction of steepest ascent of this gain, in the 

following sense: 

Let 

(5.3) A. 
J 

with 
n 

2 
(5.4) I c,, L 

j=l 
j 

We wish to determine the vector of direction cosines <a 1 , ... ,a., ... ,a ) a 
J n 

so that, for all A. small, (5.2) is maximized. Since (5.2) now is 
J 

h<j) (_p_+~d- h<j) (_e) 
d 
dt h(_:e_+2:_t) I t:=0 

fl n 
t I t ➔ 0 )a. 

J 

our problem is to maximize 

11 

I 
Jd 

R.(<j),p)a. 
J - J 

n 

I 
j=l 
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under the restriction (5.4). It can be shown that, except for degenerate 

cases, the maximum is attained by selecting that component for which 

ting the importance-to-cost ratio is maximum, and 

6. CONCLUDING REMARKS 

We have considered situations where only the structure function of 

¢(!_) of the system was known, and situations where al so the rel iabi.l. i ties 

E. = ,p2 , ..• ,, of the components were known and for each of these 

situations we proposed a quantitative definition of importance of components. 

A third possibility should be considered, when the coherent structure¢ 

is known and each component has a life length , with a known 

probability distribution Fi(t) P{T1 :::_ t}. Under these assumptions 

the system has a life length [4] T, with a probability distribution 

P{T -~-- t} = F(t) which depends on q, and on al the F.('l') i=,1,2>< .. ,n. 
1. 

Again, intuitively some of the components are more important than others 

for the life distribution F(t), and their importance depends on their 

location wi th .. n the structure a.s well as on all the life distributions. 

To our knowledge, a study of the problem arising in this context has not 

even been initiated. 

The author wishes to express his appreciation to Dr. J.D, Esary for 

ma.ny helpful discussions. 
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