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PREFACE 

This volume of the series "Mathematical Centre Tracts" is published 

on the occasion of the European Meeting 1968 on Statistics, Econometrics 

and Management Science in Amsterdam. With permission of the Organizing 

Committee of this Meeting, the Statistical Department of the Mathematical 

Centre has invited some authors of papers on Statistics aqd Probability 

Theory to publish their work in the form of this Tract. This first 

volume contains eight papers. The authors come from seven countries 

and their subjects vary from renewal processes to slippage tests. The 

papers appear in an almost random order, determined mainly by the date 

of arrival of the manuscript. It is hoped that a second volume of the 

same kind will be publishe·d shortly after the Meeting. 
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POISSON PROCESSES AS RENEWAL PROCESSES 

INVARIANT UNDER TRANSLATIONS 

by Murali Rao and Hans Wedel (Sweden) 

University of Goteborg 

INTRODUCTION: Thedeen has proved [3] that a renewal process whose 

renewals are "stationary under translation" is necessarily Poisson. 

In search for some sort of generalization of this interesting result 

we arrived at a very simple proof which we present. 

Let {x : n = ± 1, ± 2, ••. } be a sequence of random variables such that 
n 

a.s. 

i) 

ii) 

iii) 

{(Y0 ,Y1), Yn n i 0, 1} is a set of independent random variables, 

{Y : n i O, 1} are independent, identically distributed positive 
n 1 

random variables with P [Yn .::._ y] = F(y), F(O) = 0 and E [Yn] = iii < 00 • 

E [!-JO)] = m J.1 I where II I denotes the Lebesgue measure of I, 

and N(I) = number of X 6.I. Then iii) is equivalent to 
n 

P(Yi > u) = r (1 - F(t))dt for i = O, l; see [1, p. 354]. 
u 

Let {~: n = ± 1, ± 2, •.• } be a sequence of random variables which is 

independent of the sequence {x }. We shall assume that for all n,m n i m 
n 

(~ .~) have the same joint distribution G and that the support group of n m 
G, i.e. the group generated by the support of G, has an element of the 

form (O,d) with d > O; if ~n and ~mare independent and have a nondegenerate 

distribution then this is certainly true. 

Put Z = X + ~ , n = ± 1, + 2, ••• and N(I) = number of Z EI. n n n n 

Theorem 1. 

Let X, ~ , Z be as above. If E[N(I) N(J)] = E[N(I) N(J)] for all I, J 
n n n 
{ } -my 

then Xn is Poisson, i.e. F(y) = 1 - e • R&W 1 



Proof. Put <HI,J} = E[NO) N(J)] - E[NOf'\J)] = ~ P[Xncl, Xmc.J]. 

Using independence of It } and {x} we get nm 

E[NO) N(J)] - E[NOAJ}] = JJ q,(~ - u,_J - v)dG(u,v). 

The condition E[NO)] =mlII implies E[N(I)] =mJII. Thus E[N(I) N(J)J -

- E[NO f'IJ)] = E[N(I) N(J)] - E[N(I f\J)]: q, = q, * G. 

A simple consequence of the renewal theorem is that for any finite 

intervals I, J, E[N(I + h) N(J + k)] is a bounded function of (h,k). 

The Choquet-Deny theorem [2, p, 152] applies and we deduce that every 

point of support of G is a period for q,• The set of periods for q, is 

a group and this group contains the element (O,d) and hence (O,kd) 

where k is any positive integer (indeed any integer). Thus for all 

I, J and all positive integers k,q,(I,J) = q,(I, J + kd). Take 

I = (O,x], J = (O,x] with x < kd. Then I() (I + kd) = 0, 

Also q,(I, I+ kd) = L P [x 1:. I, x E. I + kd] = 
n~m n m 

I P [x t I, X G.I + kd] = 
n m 

l l p 6c G. I' X EI + kd] 
n=l m>n n m 

= m t H(I + kd - u)du where H(x) = 

mx = 

I 
k=l 

m,n.::_1 

H(I + kd - u) d(F """F(n-l)..,.)(u) = 
0 

Similar calculations give q,(I,I) = 2m ( H(x - u)du = 2m [ H(u)du, 
0 

Thus 2 ( H(u)du = ( H(I + kd - u)du = [ [H(x + kd - u) -
0 

- H(kd -· u) ]du = fo [H(kd + u) - H(kd - u) ]du. 

This equality for all x < kd implies 2H(u) = H(kd + u) - H(kd - u); 

u < kd. 

R&W 2 
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It is possible to show that the only solution of this functional 

equation is H(x) = Ax. However we take a short cut. 

Suppose d0 is any positive number such that F(d0) > O and F(d0-) = o. 
n* 

Then F has an atom at nd0 and thus H has a mass at every positive 

integral multiple of d0 , but H(u) = O for u < d0 . Choose k so that 

kd > d0 • For u < d0 , H(u) = 0 and the functional equation for H shows 

that H(kd - u) = H(kd + u); u < d0 • This is absurd since every interval 

of length larger than d0 , has a multiple of d0 and H has a mass at such 

a point. Thus F certainly cannot be arithmetic. Ask ➔ 00 the renewal 

theorem shows that 2H(u) = 2um. This is equivalent to F being 

exponential, Q.E.D. 

Theorem 2. 

If the support group of G is dense in the plane, condition iii) can be 

removed and a sufficient condition for the preceding theorem is 

E li,o> NCJ> - NO (\J>] = E[No> N<J> - NO AJ>]. 

Proof. With the same notation as above the Choquet-Deny theorem shows 

that <1>(I,J) = >-III !JI, thus 

>.hx = E[N[-h,O) N(O,x]] = L P [x e. [-h,O) ,x e:(o,x]] = 
n~ n m 

= l fx fh P [x € [-h,O), X €.(O,x] I y0 = u, y1 = v]dK(u,v) = 
n<l O O n m 
m>l 

= u] l P [x ~(o,x] IY1 
m>l m 

= v]dK(u,v) 

U(x - v) U(h - u) dK(u,v) 

00 

'i' n* where U(I) = l F (I) and K is the joint distribution of y0 and y1 • 
h=O 

R&W 3 
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Since the left.' side is a product measure this implies that dK is a 

product measure: 

Say dK(u) • dK(v) = dK(u,v). 

Further ,\x = J: U(x - u) dK(v) • ! J: U(h - v) dK(v). 

1 Jh Put x = 1, we see h 
O 

U(h - v) dK(v) =µwhere µ is a constant. This 

implies (K * U)(x) = µx, i.e. E[N(I)] = µJIJ. 

Put K * U = V and I= J = (O,x] then ~(I,I) 
2 = ,\x , ~(I,I) = 

= l P[x e:I, x €.I]= 2V * H = µ 2 Jxo H(t)dt, thus we have H(x) = =µ,\. 
nk n m 

I.e. Fis exponential. Q.E.D. 

Acknowledgement: It was H. Bergstrom who pointed out that our conditions 

are sufficient. We are grateful to him and P. Jagers for valuable dis­

cussions. 
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SOME ANALYTICAL ASPECTS OF ESTIMATION THEORY 

by A.M. Kagan (USSR) 

Mathematical Institute of the Academy of Sciences, 

Leningrad 

In the paper the close connection between certain problems of the sta­

tistical theory of estimation and analytical problems of the characte­

rization of distributions is demonstrated. 

More precisely let (x1 , ••. , xn) be a repeated sample from the population 

with distribution function (d.f.) F(x;e), where 0 is a parameter. Suppose 

that g(x1 , ... , xn) is an admissible or optimal (in a certain sense) 

estimator of the parametric function y(0). What are the conditions im­

posed on F(x;e) by admissibility or optimality of more or less simple 

estimators q(x1 , ... , x) - that is the question we discuss in the paper. 
" n 

We mention also a number of related results concerning sufficiency of 

statistics and Fisher's information. 

Recently certain results have been obtained for the exponential families 

and for the families with group parameters - location and scale. We 

shall restrict ourselves with the families depending on the scale para­

meter because the principal results for the exponential families and 

for the families with the location parameter were reported in Linnik's 

paper [1] at the previous European Meeting of Statisticians (London, 

1966). 

Everywhere the quadratic loss function will be used; it means that the 

quality of an estimator g(x1 , ... , xn) of y(e) is measured by 
2 

E0 (g - y(0)) The agreement automatically defines the conceptions of 

admissibility and optimality. 

1. ESTIMATION OF POLYNOMIALS OF SCALE PARAMETER. 

Let (x 1 , ..• , xn) be a repeated sample from the population with d. f. 

F{E.) depending on the scale parameter CT ~(0, 00 ). Everywhere in the paper 
CT 

F(x) is supposed to be concentrated on (0, 00 ): Assume that 



then 

r XdF(X) 

0 

-l­
a X 

1 

a 
1 

< 00 
J 

8 

< 00. , 

will be an unbiased estimator of a with finite variance. It is easily 

to see that apart from the trivial case of degenerate F(x) the best 
0-

estimator of a of the form ax; (we shall denote it c x) which has a bias, 
-1- n 

is better than a 1 x, i.e. it satisfies the condition 

That is why it is natural to clear up the conditions of admissibility 
-1-

of a 1 x among all unbiased estimators of a and the conditions of 
0-

admissibility of cnx among all estimators of a. 

The next theorems were proved in [2]; there F(x) was a priori supposed 

to satisfy the condition 

1, 2, .... (1) 

Theorem 1,1. Let F(x) satisfy the condition (1). Then the necessary and 
-!-

sufficient condition for a 1 x to be admissible among unbiased estimators 

of a e(0,00 ) for two sample sizes n = n1 , n = n2 , n2 > n1 ..:'... 3, is that 

F(x) is either a degenerate d.f. or a d.f. of the gamma-distribution. 

Theorem 1,2. Let F(x) satisfy the condition (1). The necessary and 
0-

sufficient condition for cnx to be admissible among all estimators of 

cre(0, 00 ), for two sample sizes n = n1 , n = n2 , n2 > n1 2:_ 3, is that 

F(x) is either a degenerate d,f. or a d.f. of the gamma-distribution. 

It should be noticed that using analytical results obtained recently 

by C.G. Khatri and C.R. Rao[~ one can avoid the condition (1). 

We shall now outline briefly the scheme of the proof of Theorems 1,1 

and 1.2. Sufficiency is proved in the following manner. The case of 

AMK 2 
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degenerate F(x) is trivial. If F(x) is a function of the gamma-distri­

bution then x will be a complete sufficient statistic for the family 
X X 

F( 0
1 ) ••• F( 0 n). Hence according to the Rao-Blackwell-Kolmogorov 

-1-
theorem it follows that in this case n1 Xis for all n not only ad-

missible but the best unbiased estimator of crE-(0, 00). The proof of 

the admissibility of c°x in this case is also based on sufficiency of 
n 

x and on the Cramer-Rao inequality (cf, [4}). Necessity of the conditions 

of Theorems 1.1 and 1,2 is proved almost in the same manner. We shall 

restrict ourselves to Theorem 1,2. 

Let us consider the estimator Sn(x1 , .•• , 

0- E1 (c~jy) 

Sn= cnx El((c~)21Y>' 

X ) = 
n 

x2 X 

where y = (- J ... ' --E). It can be proved that 
xl xl 

E (S 2 0-
- cr) < E (c X - cr) 

cr n - cr n 
2 

s J n 

and the equality sign in (3) holds - simultaneously for all cr €.(0, 00 ) -

if and only if 

with probability 1, 

Analytically the condition (4) is convenient enough. Denoting 

we can rewrite the condition (4) as 

(2) 

(3) 

(4) 

(5) 

AMK 3 
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Multiplying both sides of (5) by exp(t2 (s 2 - s 1 ) + ••. + tn(sn - s 1)) 

and taking the expectations of both sides we obtain the following 

functional equation for the Laplace transform 

n n n n n 
B {P(l - L t.) II P(t.) + P(- L t.) l [P(l+t ) II P(t.)]} 

n l. l. l. k=2 k l. 
i=2 i=2 i=2 

n n n 
= P(2 - L t.) II P(t.) + P(- I t.) 

i=2 1 i=2 l. i=2 l. 

n n n 
+ 2{P(l - I 

i=2 
t.) 

l. 
I [P(l + tk) II 

k=2 i=2 
iiifk 

n n 

n 

I [P(2+tk) 
k=2 

P(t.) + 
l. 

n 

i=2 
ilk 

n 
II P(t.)] 

i=2 1 

i~k 

+ P(- I t.) L [P(l + t.) P(l + tk) II P(t.)]}, 
l. l. l. 

i=2 j>k_:::_2 i=2 
iiifj 
iiifk 

where B = constant and Re t. = O. n i 

+ 

From (6) the desired result follows after certain analytic transforma­

tions. 

Note that if F'(x) = f(x) exists then the estimator (2) takes the form 

obtained originally by E. Pitman [s] : 

(6) 

A development of the method used in ~] allowed to obtain the following 

theorem ( see [6]) : 
AMK 4 
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Theorem 1,3, Suppose that F(x) satisfies the condition (1). The 
- -k 

necessary and sufficient condition for a polynomiala(x) = ac:f + ... 

... + ak, a 0 i O, of degree k .::_ 1 to be optimal for all o e(0,00 ) among 

unbiased estimators of rrk(o) = E0 q(x) fork sample sizes n = m, m+l, ... 

.•. , m+k-1, m .::_ 3, is that F(x) is either a degenerate d.f. or a d.f. 

of the gamma-distribution. 

The proof of Theorem 1.3 appears to be equivalent to solving the follow­

ing equation for P(z): 

k n 
I 

j=O 
[PU-Lt_) 

2 1 

(7) 

n n 
= b P(- I t.) TI P(t.), n 

n 
2 

l 
2 

l 
m, m+l, ... , m+k-1, 

b = const,, Re t. = o. 
n 1 

2. SUFFICIENCY AND PARTIAL SUFFICIENCY 

Under different conditions on F(x) there was proved in the papers [7,8,9] 

that sufficiency of the statistic x for the family 

( 8) 

is equivalent to the fact that F(x) is a d.f. of the gamma-distribution. 

It appears [9] that the independence of cr of the conditional expectation 

E (Q Ix) for a separate polynomial Q of general form imposes strong 
cr 

conditions upon F(x). In particular the following theorem holds. 

Theorem 2.1. If 1°. I: x2dF(x) < 00 , 2°. then-th convolution rn(X) is 

absolutely continuous, 3°. E 0 (~ Ix) is independent of cr, then F(X) is a 

d,f. of the gamma-distribution. 

Now we are going to generalize the conception of sufficiency (cf. ~o]). 
Assume that for some integer k .::_ 1 

AMK 5 
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f x2k d}tX) < oo 

0 
(9) 

Under this condition the set of all polynomials Q(x1 , ... , xn) of degree 

~ k forms a Hilbert space if one defines the scalar product of elements 

(10) 

We shall denote this space by ~ 2) and its subspace formed by all poly-
- -k 

nomials q(x) = a0x + ... + ak of the sample mean x will be denoted by 

1'k, 

The 

for 

subspace 'Jk is said to be L~2)-sufficient for the family (8) if 
(2) 

any Q eLk there exists an element qE:.'Jk independent of o 6(0, 00 ) 

such that 

where E0 (· 17'k) denotes the projection into '.T'k when the scalar product 

in L~2) is defined by the formula (10) with given o, 

Theorem 2.2 (cf, [9]). The necessary and sufficient condition for 7'k 

to be L~2)-sufficient for the family (8) is that either F(x) is a 

degenerate d,f. or the first 2k moments of F(x) coincide with the 

corresponding moments of the gamma-distribution. 

From Theorem 2,2 it follows that if the first 2k moments of F(x) 

coincide with the corresponding moments of the gamma-distribution then 

any polynomial Q '=-~2 ) \ 'Tk will be inadmissible among unbiased estima­

tors of E0Q, 

3, EXTREMAL ROLE OF THE GAMMA-DISTRIBUTION IN INFORMATIONAL SENSE 

Suppose that F(X) has the density f(X), The integral 

J (o) 
f = I . 

I 1 X ]2 a log - f(-) 
0 0 1 X 
aa a f<a>ax (11) 

AMK 6 
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is well known as Fisher information for the family of densities 
1 X 

o Ha>• 
Suppose that the following conditions are satsfied. 

1. f(x) is continuously differentiable, 

2. r x 2 f(X}dX 
0 

< 00 

' 

3. lim Xf(X) 
x-+o 

2 = 0, lim X f(X) = 0. 
x~ 

Theorem 3.1 (see [11]). Within the class of densities with given 

moments a 1 , a 2 satisfying the conditions 1-3, min 'Jf(o) is attained -
f 

simultaneously for all o 6(0, 00 ) - by the gamma-distribution, 

The comparison of the results of this paper with the results of [10, 

12,13] shows that for problems concerning the scale parameter the 

gamma-distribution plays the same role as the normal law does for 

problems concerning the location parameter. 
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THE BEHAVIOR OF SOME TESTS .FOR ORDERED ALTERNATIVES UNDER 

INTERIOR SLIPPAGE 

by Hans K. Ury (U.S.A) 

San Francisco Medical Center, University of California 

and California State Department of Public Health 

O. INTRODUCTION AND SUMMARY 

For testing the standard null hypothesis against ordered alternatives 

in a one-way analysis of variance with k samples, Bartholomew [1], [3] 

proposed some test statistics for the case of underlying normal distri­

butions, and Chacko gave the corresponding nonparametric test in [s]. 
In this note it is shown that under "interior slippage" (i.e., when 

one population other than the first or kth is larger or smaller than 

the others), the probability that these tests will reject the null 

hypothesis simultaneously in favor of both the alternatives of upward 

and downward ordering goes to 1 in the limit, as the sample sizes grow 

sufficiently large, regardless of the significance level. 

Since a nonparametric test against trend by Terpstra [13] and Jonckheere 

[10] is shown to behave somewhat more "normally" under interior slippage, 

it is suggested that this test might well be preferable at least for 

small k, particularly fork= 3. 

1. NOTATION AND THE TESTS 

Since the underlying models for the tests of (a) Bartholomew, (b) Chacko, 

and (c) Terpstra are different, they will be given separately. 

(a) Here we have k independent normal random variables, x1 , ..• , Xk with 

unknown means µ1 , .•. , µk and a common but unknown variance o2 . Let xij 

(i = 1, •.. , k; j = 1, ... , n.) be independent observations on the k 
th 1 th 

variables, with x .. the j observation from the i variable. Let 
1J 

X. 
1 

n. 
1 2 l x . ./n. and si 

j=l 1J 1 

n. 
1 - 2 l (xij - xi) /ni denote the sample mean and 

j=l 
HKU 1 
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variance for the i th variable. The null hypothesis H0 : µ1 = ... µk 

is tested against either the alternative of upward ordering, 

H1 : µ1 2, ... 2, µk or against that of downward ordering, H2 : µ1 .::_ ... .::_ µk' 

with at least one inequality strong in each case and with cr 2 unspecified 

for all three hypotheses. Denote by 

(1) x [ ] = (n x +n 1x 1+ ... +n x )/(n +n 1+ ... +n ) 
t,s . t t t+ t+ s s t t+ s 

the pooled sample mean of xt, xt+l' ..• , xs, wheres and tare positive 

integers with 1 2, t < s 2, k. 

The MLE's (maximum likelihood estimates) of the µ'sunder H0 are 

P1 = ... =Pk= x[l,k]. Under H1 or H2 the MLE's are obtained by pooling 

successive sample means which violate the restriction specified by the 

alternative, continuing this procedure until no violations exist among 

the remaining pooled or unpooled means. If there are m distinct estimates 

obtained by pooling, 

and the last t ••• J m 

respectively, 

means, t. > 0, 
J 

the 

! 
j=l 

first 

t. = 
J 

t 1 means, the next t 2 means, 

k, and if we set , 0 = 0, 

••• , m) (2) T tl + t2 + ... + t. (i = 1, 2, 
i ]. 

T = k, 
m 

then 

(3) A 

µT_+l = µT.+2 = (i=O, 1, ... , m-1). 
]. ]. 

Denote them distinct estimates by x (j = 1, ... , m), where x 
t. t. 

J J 
- x [ J Let the sum of the sample sizes pooled into x be 
- T . l+l, T . . t. 

J- J J 
denoted by N . [ It follows from 

t. 
J 

Brunk [s}, [Ei] and van Eeden [9] 

these MLE's are unique and can be formally represented as 

that 

µ. = max 
1 1<r<s 

for H2l-
min x [ ] for the case of H1 , and as O . = min max x [r, s] 

i2,s2,k r,s 1 l<r<i i<s<k 

Finally, let p k stand for the probability of obtaining exactly m dis­
m, 

tinct estimates out of a possible k. Under H0 , and for equal sample sizes, 

Chacko [7] and Miles [11] showed that 

HKU 2 
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(4) 

where \s:\ is the coefficient of zm in z(z+l) ... (z+k-1) (i.e., is 

the modulus of a Stirling's number of the First Kind). They also 

showed that (4) holds not only for x1 , ... , Xk normally distributed, 

but whenever their joint distribution is a symmetric function of them. 

Bartholomew's likelihood ratio test at significance level CL [3] calls 

for rejection of H0 when T! .:._ c1 , where the test statistic 

(5) 
k A - 2 2 m 

[- - ]2 2 Tl = iil ni[µi-x[l,k]] /so = I Nt. xt _-x[l,k] /so, k j=l J J 

2 
with s 0 

k 

I 
i=l 

ni rxi 
- ]2 

k 

- x [1 ,k] + I 
i=l 

2 
nisi, and where Cl is determined 

by 

(6) 

Here 

tion 

k 

CL = m!2 Pm,k P[S [(m-1)/2, (N-m)/2] .:._Cl]' 

S[<m-l)/2 ,(N-m)/2] is a random variable havingkthe Beta distribu­

with parameters (m-1)/2 and (N-m)/2, and N = l n. = l Nt . 
i=l 1 j=l j 

(a') When a2 is known, the test statistic is 

~ r. - ]2 2 ~ r:-::- - 12 2 
l niLµi-x[l,k] /a = l Nt_Lxt_-x[l,k] /a, 

i=l j=l J J 
(7) 

ad H is reJ·ected at level if T2 > C with C determined by n O CL k - 2' 2 

(8) 

where 2 
x is a random variable having the Chi square distribution with ·m-1 

m-1 degrees of freedom. 

1 
(a") The computation of the p k imposes limitations on the use of Tk 

2 m, 
and Tk. For unequal sample sizes, these probabilities have been deter-

mined only fork= 3, 4, and 5 ~]. For equal ni, they were tabulated 
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for k .::_ 12 in [11], and tables of the Stirling Numbers of the First 

Kind can of course be used fork< 50. Barton and Mallows [4] give 

some approximatiorswhich should prove useful fork quite large. But 

in the general case of unequal samples (or for moderately large k) 

one could use a conditional test, suggested by Tukey and mentioned in 

[2], which does not require a knowledge of the pm,k" To apply this 

test, one simply c9mputes the test statistic as in (5) or (7) and 

determines significance by referring to the percentage points of 

x2 
1 , respectively, where m0 is the observed 

mo-
le 

value of m. The corresponding test statistics will be denoted Tk and 

T2c 
k . 

(b) Since (4) holds only for symmetrically dependent random variables, 

Chacko's rank test [s] calls for equal sample sizes. Thus, let k inde­

pendent random samples be drawn from populations with unknown conti­

nuous (to avoid ties) cumulative distributions F. (i = 1, ... , k) 
1. 

respectively. We now have H0 : F1 = ... = Fk; H1 : F1 .:'... ... .:'... Fk; 

H2 : F1 .::_ ... .::_ Fk with at least one inequality strong in each case. 

Chacko's test procedure consists of replacing each xijby its rank 

R .. in the overall sample and, letting R. = (1/n) t R .. , formally 
1.J i _j=l l.J 

operating on the Rias one previously did on the xi, pooling when 

necessary, to obtain a final distinct set of m quantities 

Let N nk. Then the test statistic is 

(9) T3 = 12n I t [ R _ N+l] 2 

k N(N+l) j=l j tj 2 

As shown in [s], H0 is for large n rejected at level approximately a 

if T; .:_C2 , where c2 is determined by (8). 

(b') For unequal sample sizes one could again use a conditional test 

analogous to those mentioned in (a"). This test will be denoted T;c. 

(c) The underlying model for Terpstra's [t.3] or Jonckheere's [to] test 

is 
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where a and Sare unknown constants and where the£ have a common ij 
continuous cdf F. H0 , H1 and H2 now correspond to S = O, S .:'._ O and 

S .::_ O, respectively. The test statistic will be stated as follows: 

T4 
k-1 k 

(10) = I I h ij' k 
i=l j=i+l 

n. n. 

where hij ! r h. 
r=l s=l 

ir,js 

and •1r,js = { 

1 if xir < x. 
JS 

-1 if x. > X. (i < j) .• 
ir JS 

It follows from [13] or [10] that T: is under H0 asymptotically normally 

distributed with zero mean and variance 

k 

n2 = !_ {N(N+1)(2N+l) -
18 

k 

I 
i=l 

n.(n.+1)(2n.+1)}, 
1 1 1 

where N = }: n .. Therefore if all n. are large, H0 is rejected at level 
i=l 1 i 

approximately a in favor of H1 if T: .:'._ tan, and in favor of H2 if 
4 Tk < -t D, where t is the 100(1-a)%-point of a standard normal distri-

- a a 
bution. 

2. BEHAVIOR OF THE TESTS UNDER INTERIOR SLIPPAGE 

We define interior slippage as follows for model (a): µl = .•• = µm-l = 
= µm+l = •·· = µk = µ; µm =µ+A, with A~ O. The result for Bartholomew's 

test will be shown in detail for the case of known cr 2 

THEOREM 1. Under interior slippage, when testing H0 against either H1 
2 

or H2 , lim P[Tk 2:_ c2] = 1 as N-+- co with ni/N 2:_ a> o for i = 1, .•• , k. 

PROOF. It suffices to show that lim P [ T! < co] = O as N -+- co with 

ni/N >a> O. Let us assume the slippage is upward, i.e. A> o. 
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(The case 6 < 0 is similar.) 

(i) Testing H0 against H1 : To begin with, the probability of complete 

amalgamation, m = 1, is zero in the limit. This follows immediately 

from Theorem 1 of [s], which states that a necessary (and sufficient) 

condition for complete pooling is 

(11) for j 1, ... , k-1. 

By the consistency of xi as estimator of µ i we have lim P[xU.,m-l] < 

< x[1 k]J = 1. Therefore there will be, with limiting probability 1, 

a con~ribution to T! from at least the first sample mean. (We can 

ignore the contribution from x[m,k] ,) 

Again from the consistency of xi and of x[l,k] we know that for any 

El> 0 there exists an N1 such that for N ~ N1 , 

(12) 

and for any E2 > O there exists an N2 such that for N ~ N2 , 

(13) 

(14) P[lx1 - x[l,k] I < t:,a - El - E2] .::. El + E2' 

~ 2 2 2] and therefore lim PLTk > n1 (6a - El - E2 ) /o = 1. Since 6, a, E1 , E2 , 

and o2 are constant, this proves the theorem for (i). 

(ii) Testing H0 against H2 : An analogous proof holds in this case. The 

necessary (and sufficient) condition for complete amalgamation is now 

(15) 

and we now have lim 

lim P rT2 > n ( tia -L·k k 

xLl,j] < x[l,k] for j = 1, ... ,k-1, 

P[x[l,mJ >/[1,k]] = l. 
El - E2) /o] = 1, which 

We eventually obtain 

proves it for (ii). 

COROLLARY 1. Under interior slippage, when testing H0 against either 

H1 or H2 , lim P[T! ~c1 ] = 1 as N + 00 with ni/N ~a> 0 for i = 1, ... ,k. 
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The proof is similar to that of Theorem 1. One shows that 

lim P[T! < a/g] = O, where g = 1::, 2;a2 . 

COROLLARY 2. Under interior slippage, when testing H0 against either 

H1 or H2 , lim P[T~c ~ cj] = 1 for j = 1, 2 as N + 00 with ni/N >a> 0, 

i=l, ... ,k. 

For model (b), interior slippage means F1 (x) = ... = F 1 (x) = F 1 (x) 
. m- m+ 

= ... = Fk(x) = F(x), Fm(x) = F(x+6), 6 > O (for upward slippage). The 

equivalent result for Chacko's test follows. 

THEOREM 2. Under interior slippage, when testing H0 against H1 or H2 , 

lim P [T! ~ c2J 1 as N + oo 

PROOF. Because of the equal sample sizes, the mth population will be 

entitled to a mean rank of [(N+l)/2] (1+/::,) and the others, to mean ranks 

of [(N+l)/2] [1 - /::,/(k-1)] in an overall sample of N, for some O < I::, < 1. 

For testing H0 against H1 , a proof similar to that of Theorem 1 establishes 

that for any€> O there exists an N0 such that for N ~ N0 , 

(16) P[la1 - N;1 j < N;1 k~1 - €] 2- €, 

and hence-

or, in effect, lim P[T! >ctn]= 1 for some constant d > O. This proves 

Theorem 2 for the case of H0 against H1 . The proof for the case H0 

against H2 is similar. 

COROLLARY 1. Under interior slippage, when testing H0 against H1 or H2 , 

lim P [T!c ~ c2] = 1 as N + oo, 

For model (c), interior slippage can be defined by x .. = a + € .. , 
l.J l.J 

i = 1, ... , m-1, m+l, ... , k, and xmj =a+ I::,+ €ij' with I::,> O for 

upward slippage. 

It is easiest here to consider the expected value of the test statistic, 
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m-1 

< I 
i=l 

n -
i 

k 

I 
i=m+l 

n.). 
]. 

In particular, for the case of equal sample sizes, 

( 19) n(2m - k - 1). 

We therefore see at once that ET!= 0 if m = (k+l)/2 fork odd. For 

equal sample sizes it can be shown, analogously to the earlier proofs, 

that if m < (k+l)/2, the limit of the probability of rejecting H0 in 

favor of H2 is 1, and hence the limit of the probability of rejecting 

H0 in favor of H1 is zero. The opposite holds form> (k+l)/2. These 

situations are, in turn, reversed for~< 0. 

For unequal sample size:1.1no such statement can be made. The probabili­

ties depend on whether L n < t n. or vice versa. 
i ]. 

i=l i=m+l 

3. COMMENTS 

In Section 2 we dealt with what Mosteller [12] calls "the error of the 

third kind": rejecting H0 correctly, but for the wrong reason. It is 

of course a matter of opinion whether it is worse in general to accept 

or reject H0 under such circumstances. However, in particular cases it 

does seem reasonable "to prefer one wrong decision over the other". 

For example, if a population has slipped upward form> (k+l)/2, parti­

cularly form= k-1, it seems worse to reject H0 in favor of H2 than to 

reject it in favor of H1 ; the opposite situation would hold for 

m < (k+l)/2, especially m = 2. The Terpstra test will only make the less 

poor decision in these cases, at least for reasonably equal sample sizes. 

The other tests can make both. 

If the central population has slipped, m = (k+l)/2, it seems preferable 

to accept H0 , since no "trend" of any sort can possibly be claimed. 

Terpstra's test will accept H0 here, not only for equal sample sizes 
m-1 ~ 

but whenever L n. = l n .. 
i=l 1 i=m+l 1 
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T4 . 
k l.S 

Ti, j 

of course a test designed for a more fully specified model than 

= 1, 2, 3. As shown in [3], it should have better power than the 

tests against ordering when there is a (reasonably) linear trend, and 

poorer power when there is considerable variation in the differences 

between successive means. (Asymptotic efficiency comparisons have not 

been possible because the tests have different limiting distributions.) 

However, fork= 3 or 4, the difference in power between Ti and the 

other tests appears to be quite small. 

4 
Tk cannot be used unless a complete a priori ranking of the µ'sis 

feasible. But if this can be done, then in view of its comparable power 

and the protection which it offers against really bad slippage decisions, 
4 

Tk would seem to be preferable fork= 3 and 4, and possibly 5. This is 

particularly so fork= 3, since here any interior slippage must be that 

of the central population. 

4 1 
It may also be noted that Tk, unlike Tk and does not presuppose 

underlying normal distributions and, unlike can be used with unequal 

n. 's. (The use of the three conditional tests mentioned may be hard to 
l. 

justify, since the value of m obtained is clearly not irrelevant for 

deciding between HO and H1 or H2 ; also, some power studies in [2] indi­

cate that these tests have distinctly lower power than their unconditio­

nal counterparts.) 

Incidentally, the two tests given by Whitney [14] fork 

behavior under in~erior slippage as Ti. 

3 show the same 

Finally, when several interior populations have slipped in the same 

direction but by arbitrary amounts, the preceding results will of course 

hold true. When some have slipped upwards and some downwards, it is 

possible to have a "weighted mean slippage" of zero; in this case only 

one of the alternative hypotheses would be rejected. In general, however, 

both H1 and H2 would again be rejected with probability 1 in the limit. 
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THE DEVELOPMENT OF THE CONCEPT OF STATISTICAL DECISION THEORY 

By D. Bierlein, Germany 

Technische Hochschule, Karlsruhe 

1. A. WALD'S MODEL AND ITS PRACTICAL APPLICATION 

What is a "good" statistical procedure? - Up to the midd,le of the 

20th century the answer to this question generally was given by an 

ad-hoc definition of an "optimum" property for a special case. 

Dissatisfaction with that divergent tendency has led A. Wald {about 

1939) to the outline of statistical decision theory. Its concern is 

a uniform model for quite different statistical decision problems, 

with an accent on the consideration of the consequences of every 

decision. The model for a general statistical decision situation is -

as is well known - characterized by the following data: 

1) sample space M (= set of potential results of the planned observ­

ation of a random vector A/t'J 
' 

2) set j of distribution functions which have to be taken into 

consideration for µt. 

3) set D of possible decisions 

4) loss function W by which for every element of j:the consequence of 

a decision is evaluated. 

A statistical procedure o for a decision pr,oblem formalized in this 

way is a map from Minto D and may be interpreted as a strategy which 

attaches a decision to every potential information. If, concerning o, 
you make the additional assumption that for every F £cf the expectation 

of the loss function exists - and therefore the risk function r 0 lf -
you get to the definition of the statisticaZ decision function, Let~ 

be the set of all decision functions of the decision problem (M,;,D,W). 

The question which statistical procedure from~ should be used is 

reduced to the choice of a suitable principle of optimnlity. The main 

principles in statistical decision theory are the dominance principle, 

related to classes of unbiased or invariant procedures, and the 
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minimax principle. 

The task of mathematical statistics is to find explicitly, for as 

extensive classes of statistical decision problems as possible, the 

optimal procedures based on the most important principles of optimality 

or at least to give a practicable algorithm for finding them. For the 

practical statistician or for the consumer of statistics in economics, 

engineering and empirical sciences there remains the task 'to give, 

in an adequate manner, a concrete value to the parameters M,cf,D and W of 

the statistical decision problem. This task meets some difficulties: for 

example it strikes against the old custom of many experimental scientists 

to use rigorously a-level tests with a value a which depends only on the 

scientist's special branch. But, there are even men in statistical 

practice who increasingly regret that an a-level test does not give any 

concrete recommendation how to act. This is just recently pointed out 

again by J. Wolfowitz 1 ). My own experience as statistical consultant 

mainly to engineers encourages me to hope that in a large area of applic~ 

ation the consumers of statistics will rather soon accept the framework 

of decision theory. As soon as mathematical statistics will present a way -

with or without the help of a computer - to calculatetne optimal procedure, 

in practice most of the classical standard methods will be replaced by 

more adequate procedures of statistical decision theory. 

However, many of the classical procedures, which do not fit (or fit 

only in an insatisfactory manner) into the scheme of statistical decision 

theory, will remain practically important. In the first place that seems 

to be true for the methods of correlation and regression theory and, 

generally, for descriptive statistics. But in the model of a statistical 

decision problem they have their legitimate place too: In addition to 

intuition and special scientific investigations, they are useful for 

making precise the datum f (in several cases also D) of the statistical 

decision problem. That takes place in a preceding analysis of a 

separated sample with the help of descriptive statistics. In general the 

preceding inspections and considerations supply more information than 

may be inferred for the formal decision problem by a suitable choice of 

J, but not enough information to be able to determine a precise a-priori 

1 ) J. Wolfowitz: Remarks on the theory of testing hypotheses. The New 
York Statistician 18 (1967). 
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probability a la Bayes. This situation gave rise to several modific­

ations of statistical decision theory: Hodges and Lehmann, for example, 

offer the "Restricted Bayes Solution" as an alternative to the minimax 

solution 2). In the following we will discuss a generalization of 

Wald's decision model where<f is replaced by the set¢ of all such 

probability measures on J- which are compatible with the "pre-statistical 

information" of the decision maker (R. Bartoszynski, D. Bierlein, 

0. Bunke, H. Richter and others). 

2. EXAMPLES 

How important a pre-statistical information may be in practice, will 

be demonstrated by means of some examples of point estimation of a 

probability: 

Consider the situation that for a river there are constructed new 

installations regulating the stream, for instance a new dam. Let A be 

the event that a flood of well-defined power will occur at least once 

during a time-interval of ten years and put x = Pr(A). It is required 

to estimate x as soon as possible, say after 10, 20 or 30 years; i.e. 

it is not possible to make a sample of size greater than 1, 2 or 3. But 

beyond that there may be given a number of flood-observations which 

were made during many decades before the construction of the new instal­

lations. Add to this the hydrologically established knowledge, that 

Pr(A) is not increased by the new construction, perhaps is even decreased. 

Both these facts - the knowledge of results of former observations made 

under similar conditions and the use of theoretical considerations -

allow to estimate a subjective probability¢ for that x does not exceed 

a certain bound x : 
0 

¢(x < x) = ¢ or ¢(x < x) > ¢ . -o O -o-o 

Already these crude specifications of¢ can represent a pre-statistical 

information diminishing the minimax risk. 

A quite similar situation occurs in medium range or long-term weather-

2) J,L. Hodges and E.L. Lehmann: The use of previous experience in 
reaching statistical decisions. Ann. Math. Stat. 23 (1952). 
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forecast. To be able to make observations in order to test a fore­

casting rule one has to wait for the - in general rare - years where 

the conditional meteorological situation, to which the rule attaches 

a forecast, is obtained. For that reason the pre-statistical inform­

ation which results from theoretical meteorology and from observations 

made under similar situations should not be disregarded. 

Further actual examples can be found in techniques of astronautics. 

Here the sample size is bounded drastically by high costs of experim­

ents and by time limitation. The information resulting from former 

experiments with older construction units and a knowledge about the 

tendency of the effects of technical innovations should - compared 

with the information resulting from sampling - be of some importance 

for the decision. In this example too, it should not be difficult to 

express the pre-statistical information as a system of subjective 

probabilities for a certain number of subsets A. of the parameter 
l. 

interval !9, 1]. 

3. ~-OPTIMAL PROCEDURES 

To develop a general model for these examples, let us assume that 

for certain subsets Ai, Bk of J the subjective probabilities them­

selves or bounds for them are known: 

qi (A. ) 
l. 

By these data qi is, in general, not made suffciently precise in order 

to form the risk expectation ffr 0 (F)dqi. The set of all precise a­

priori probabilities is the set P of all probability measures p, 

for which 

exists for all o € 6. Under these measures p the elements of the subset 
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are compatible with¢· For that¢ is not empty, the data for¢ must, 

of course, not be self-contradictory. 

In the generalized decision theory other non-empty subsets of Pare 

also admitted as pre-statistical informations. 

For a generalized- statistical decision situation, characterized by 

the data M,¢,D and W, a statistical decisions function 62 is called 

¢-oritimal,, if 

:It 
sup r 0 
pU 

(p) = min sup r 0 
ot:6 pE¢ 

(p)' 

i.e. 62 is minimax strategy of player 2 in the zero-sum two-person 

game (¢,t,r 0(p)). The term 

inf sup r O (p), 
6ft pU 

i.e. the upper value of the game (¢,t,r 0 (p)), is called ¢-minima;;c Piak. 

A ¢-optimal procedure guarantees that the expected loss r 0 (p) does 

not exceed the bound v2 (¢,1',). 

4. EFFECTIVITY OF AN INFORMATION¢ 

At first there is the question: Under what conditions is it possible 

to take advantage of a pre-statistical information, i.e. under what 

conditions is the minimax risk v•(¢,6) less than v*(P,6), which is 

equal to the minimax risk of the decision problem without using a 

pre-statistical information (or - more precisely - with respect to the 

trivial information ¢(,f) = 1)? 

We say¢ is effective, if 

2 * V ( ¢, I',) < V ( P, 6) , 

and define as e.ftectim'.ty of ¢ the term 
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Eff (<!>): 
lt lt 

v (P,ll) -v (<P,ll), 

vll(P,ll) - r 
lt 

3 
where rlt is the infimum of the risk function r 0 (p) on 6 )( P. ). It 

is easy to see that 

0 Eff(P) < Eff(<P) < Eff({F }) 

inf W(F ,d) 
dED o 

- - 0 

r . 
Jt 

1 

Necessary and sufficient conditions for <P to be effective are 
4 5 

formulated ) making use of Wald's ) intrinsic metric on the space 

P and of the condition that the games (P,6,r) and (<P,6,r), respectively, 

are strictly determined. 

Because of this aspect - and in another connection - criteria for that 

(<l>,ll,r) is strictly determined are interesting. With the help of a 
6 

minimax theorem of Ky Fan ) such criteria are offered in a form which 

allowes applications to important special cases of point estimation 4 ). 

One may ask about the relation between effective pre-statistical 

information and Bayesian a-priori probabilities. The guess, that 

every precise a-priori probability is an effective pre-statistical 

information, is wrong. 

Indeed, if (P,ll,r) is strictly determined, then for every minimax 

* strategy p of "player 1" 

Jt lf 
V ({p },LI) 

Jt 
v (P, fl) 

and consequently 

lt 
thus the information p is not effective. 

3 ) r!t is zero, if the loss function Wis reduced, that 

inf W(F,d)=O for all FE f· 
dED 

is, if 
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On the other side, just that a-priori probability which is not 

seldom taken to be equivalent with absolute ignorance, namely the 

rectangular distribution L, is effective by all means: In the example 

of point estimation of a probability with quadratic loss function and 

sample size 1 you have 

Eff ({L}) 

5. HOW TO GAIN A ~-OPTIMAL PROCEDURE 

The statistical decision theory often meets the reproof that the gap 

between theory and application is rather large, Is not this gap increased 

further by including an additional parameter into the model of a 

decision situation? - Just in the practically important case of a 

quite vague pre-statistical information a ~-optimal procedure can be 

found in a relatively convenient manner. That may be demonstrated on 

the example of point estimation of a probability x: Let W be a quadratic 

loss function, and a pre-statistical information be given in the form 

Then in the first instance you can use tables or diagrams of those 

pairs (T,A) for which the information 

cj)(x _::. 1) = A 

is effective. If the pre-statistical information is effective, you can 

find the ~-optimal estimator in a table, which till now has been 

computed for sample sizes 1 and 2 and is being prepared for sample 

sizes 3 and 4. 

4) D. Bierlein: Zur Einbeziehung der Erfahrung in spieltheoretische 
Modelle. Op. Res. Verf. 111(1967). 

5 ) A. Wald: Statistical decision functions. Wiley (1950). 

6 ) Ky Fan: Minimax theorems. Proc. Nat. Ac. Sc. 39 (1953). 
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The e_f'feativity o.f ii> and the il>-optimal, estimator> o ... lM as a _function 

o_f T and A. 

Sample size 1 

Eff(i!>) ... 
o (0) (in °/oo) 

o""C1> 

0,01 0,1 0,2 o,3 o,4 o,5 o,6 0,1 o,8 o,9 o,99 

0,01 11 80 192 341 517 717 
215 164 123 88 57 31 
738 720 705 691 676 656 

0,1 

0,2 

8 51 128 
222 182 148 
737 717 697 

-1 24~ 15 2~: 
I 

0,3 

0,4 

-: --~!! l 
: 752 

! 118 26·-1 
: 389 308 

I 746 726 

LC l ~:: 
lli_l 

0,5 

0,6 

0,1 

0,8 

0,9 

; 767 761 -···-·1 
I 282 91 8 

483 367 282 
793 780 760 

462 
574 
825 

630 
659 
862 

170 
414 
803 

243 
449 
826 

32 I 
313 ! 

7:: L.; -, 
337 263 
788 155 l' 

765 
732 
903 

853 
770 
913 

307 
472 
847 

386 
426 
900 

90 19 - ·o.~ 
355 274 254 i 
801 791 757 I 

L__, 
232 128 51 8 ! 
327 303 283 263 
882 852 818 778 

0,99 922 717 517 341 192 80 11 
493 344 324 309 295 280 262 
990 969 913 912 877 836 785 

I 
' 

232 
118 
673 

90 
199 
645 

61 
212 
663 

32 
226 
687 

8 
240 
718 

386 
100 
574 

307 
153 
528 

243 
174 
551 

170 
197 
586 

91 
220 
633 

, 26 

L.2 39 
692 

7 

922 
10 

507 

853 
57 

230 

765 
97 

268 

630 
138 
341 

462 
175 
426 

282 
207 
517 

118 
233 
611 
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Sam!!le size 2 

Eff(.P) 

0*<0> (in °/oo) 

6 ... (1) 

6 ... (2) 

>. 
0,01 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,99 

T 

0,01 22 91 190 310 445 593 752 950 
162 122 92 69 49 33 19 11 
493 484 475 467 458 446 424 131 
780 768 758 750 742 736 727 711 

0,1 5 33 83 164 317 550 870 
186 155 131 117 110 85 58 
493 480 461 406 319 237 113 
787 776 765 756 738 704 541 

0,2 2 21 92 219 414 714 
221 185 162 141 122 96 
497 454 401 343 274 200 
796 778 757 730 680 440 

0,3 63 2 36 117 259 552 
307 225 185 169 155 126 
497 501 438 387 333 300 
808 797 765 735 684 411 

0,4 168 25 35 119 404 
390 266 192 179 151 
516 511 441 400 400 
819 805 756 701 455 

0,5 285 58 0,2 ('°:) 0,2 58 285 
470 298 212 206 187 169 
546 529 502 500 498 471 454 
831 813 794 793 788 702 530 

0,6 404 119 35 25 168 
545 299 244 195 181 
600 600 559 489 484 
849 821 808 734 610 

0,7 552 259 117 36 2 63 
589 316 265 235 203 192 
700 667 613 562 499 503 
874 845 831 815 775 693 

0,8 714 414 219 92 21 2 
560 320 270 243 222 204 
800 726 657 599 546 503 
904 878 859 838 815 779 

0,9 870 550 317 164 83 33 5 
459 296 262 244 235 224 213 
887 763 681 594 539 520 507 
942 915 890 883 869 845 814 

0,99 950 752 593 445 310 190 91 22 
289 273 264 258 250 242 232 220 
869 576 554 542 533 525 516 507 
989 981 967 951 931 908 878 838 
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METHOOO OF INVESTIGATING WHETHER A REGRESSION REIATIONSHIP 

IS CONSTANT OVER TIME 

by R.L. Brown and J. Durbin (England) 

Central Statistical Office, London, and 

London School of Economics and Political Science 

1. INTRODUCTION 

Regression analysis of time-series data is usually based on the 

assumption that the regression relationship is constant over time. In 

some applications, particularly in the social and economic field, the 

validity of this assumption is open to question and it is important that 

methods of detecting and allowing for changes should be included in the 

analysis. 

In this paper we consider a number of techniques for detecting 

departures from constancy. Although we shall present several formal 

tests of significance our approach is essentially that of Tukey's 

data analysis (Tukey, 1962), that is we try to develop techniques which 

bring out in a graphic way whatever departures from constancy are present 

in the data rather than parametrise in advance particular types of depar­

ture and develop formal significance tests which have high power against 

these particular alternatives. 

The present paper should be regarded as a preliminary report on and 

summary of our work on this subject, a full acount of which will be pu­

blished later (Brown and Durbin, 1969). The later paper will contain proofs 

of theoretical results and applications to real and artificial examples. 

The basic regression model we are concerned with is 

(1) 

where xt is the column vector of observations at time ton each of k 

regressors, St is the vector of regression coefficients, where we have 

attached the suffix t to indicate that St may not be constant, and 

u1 , ••• , uT are independent normal variables with zero means and variances 
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02 2 
1 , •.. , aT. The first element in each xt is unity, representing the 

constant term in the model, and the remaining elements are assumed to 

be non-stochastic, Thus autoregressive and other models containing 

lagged y's are excluded from consideration, The hypothesis H0 we wish 

to investigate is B1 = ••. BT= Band a~= ••• =a~ = a 2 ; we are, how­

ever, more concerned about departures from equality among the B's than 

among the o's, 

2. METHODS BASED ON LFAST-SQUARES RESIDUALS 

Assuming Ht to be true,let b denote the least-squares estimate 

of B, i.e. b = I xtx;J-l I xtyt' and let z 1 , ••• , zT denote the least-
1 1 

squares residuals, i.e. zt = yt - x;b, t = 1, ... ' T. The desirability 

of examining the residuals as a means of detecting departures from 

model specification is now generally accepted; see Anscombe (1961) and 

Anscombe and Tukey (1963) for details of a variety of procedures. For 

the present problem a natural first step is to plot zt as a function 

oft. If there were an abrupt and substantial change in Bt at some 

point one would expect this to be indicated fairly clearly on the diagram. 

Experience shows, however, that this is not a very effective method of 

detecting changes which are small or gradual. 

In this respect the problem resembles that of detecting changes in 

the mean in industrial quality control for which the cumulative sum or 

cusum technique, introduced by Page (1954) and discussed further by 

Barnard (1959) and by Woodward and Goldsmith (1964), has been found 

to be a more effective tool for detecting small changes than the ordi­

nary control chart. This suggests that instead of plotting out the 

individual zt the cusums Zr=¼ f zt' r = 1, ••. , T should be plotted, 

where we have divided by the estimated standard deviations to eliminate 

the irrelevant scale factor, The difficulty about this suggestion is 

that there seems to be no way of assessing the significance of the 

departure of the observed graph of Z against r from the mean-value 
r 

line E(Zr) = 0, The intractability of the problem arises from the fact 

that in general the covariance function E(Z Z) does not reduce to a 
r s 
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form that is manageable by standard Gaussian-process techniques (c.f. 

Mehr and McFadden, 1965). For instance, for the simple case of regres­

sion through the origin on a linear time trend the covariance function is 

asymptotically r - 3r2 s 2 /4T3 (r < s) which is an unmanageable form. 
1 f 2 

An alternative is to consider the cusum of squares? l zt. Although 
s 1 

more tractable, this is still fairly difficult to deal with and is hard 

to interpret. Instead of considering this we prefer to make the transfor­

mation given in the following section which enables us to treat the 
2 

problem in terms of cusums and cusums of squares of independent N(O,o) 

variables. 

3. METHODS BASED ON RECURSIVE RESIDUAI.S 

Let br be the least-squares estimate of S based on the first r 

observations and let 

w 
r 

yr - x'b r r-1 
= -~-------==-==== 

£-x'(X' X )-l----, 
r r-1 r-1 xr 

' r = k+l, ••• , T 

where x;_1 = ~l' ••. , xr_1]. It can be shown that wk+l' ... , wT are 

independent N(O,o2 ). These quantities are easy to obtain recursively 

(2) 

on a modern computer without the necessity of repeated matrix inversions 

in virtue of the relations 

and 

b 
r 

-1 
= b + (X'X) x'(y - x'b ) 

r-1 r r r r r r-1 

(X' X )-l 
r-1 r-1 -1 

1 + x'(X' lx 1) x r r- r- r 

(3) 

(4) 

Denoting by Sr the residual sum of squares after fitting the model from 

the first r observations, we have the further relation 

s 
r 

(5) 

B&D 3 



40 

To avoid difficulties due to ill-conditioning of the matrices 

X'X, it is recommended that all elements of xt except the value unity 
r r 

in the leading position should be replaced by their differences from 

the overall sample mean. 

(2) is a generalisation of the regression model of the Helmert 

transfonnation. Interesting applications of (3) and (4) t'o the fitting 

of regression models in the frequency domain and to the fitting of non­

linear models are given by Duncan and Jones (1966) and by Walker and 

Duncan (1967). The basic relation (4) which enables repeated matrix 

inversions to be avoided is due to Bartlett (1951). 

If St is constant up to time t = t 0 and differs from this constant 

value from then on, the wr's will have mean zero up tor= t 0 but in 

general will have non-zero means subsequently. This suggests that plotting 

the cusum quantity 

w 
r 

1 r 
s l wj, r = k+l, ••• , T 

k+l 

against r should be a useful technique for detecting changes in St. As 

previously, s denotes the estimated standard deviation determined by 
2 

s = Sl(T - k). 

We require a method of testing the significance of the departure 

(6) 

of the sample path of Wr from its mean-value line Wr = O. A suitable 

procedure is to find a pair of lines lying symmetrically above and below 

the line Wr = 0 such that the probability of crossing one or both lines 

is a, the required significance level. Since the variance of Wr increases 

with r, it is clearly desirable to choose the slopes of the lines so that 

they diverge with increasing r. We suggest taking slopes such that the 

probability that the point (r,wr) lies outside the lines is a maximum 

for r half-way between r = k and r = T. This leads to the lines joining 

the points (k, + a~) and (T, ~ 3a~) where a is determined 

by the equation 

in which <P(z) 1 

v;-; 

-4a2 1 
¢(3a) + e {1 - <P(a)} = 2 a 

J"' _ _1u2 
e 2 du. 

z 

(7) 
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These results are obtained by approximating Wr by the continuous 

Gaussian process having the same mean and covariance functions. We have 

assumed that the probability that a particular sample path of Wr crosses 

both lines is negligible which will be justifiable for values of a nor­

mally used for significance testing, say 0.1 or less. Useful values of 

a are: a= 0.05, a= 0.948; a= 0.01, a= 1.143. 

We believe that the proper function of these lines is to provide 

a yardstick against which to assess the observed pattern of the sample 

path, though of course they can be used to provide a formal test of 

significance by rejecting if the sample path travels outside the region 

between the lines. 

Another useful plot is that of the cusum of squares 

r 
2 I wt s 

k+l r 
k+l, T (8) s = = r = ... ' r T 

2 ST 
I wt 

k+l 

where we have standardised by dividing by the overall residual sum of 

squares ST. On H0 , E(s) =; = ! . This suggests drawing a pair of 

lines sr = .:!: c0 +;=!on the diagram parallel to the mean-value line 

such that the probability that the sample path crosses one or both lines 

is a, the significance level. 

We are able to obtain the required significance values c0 from the 

theory of Kolmogorov-Smirnov statistics in the study of the sample 

distribution function. This possibility arises because when T - k is 

even the joint distribution o: sk+2 , sk+4 ' ••• , sT+k-2 is the same as 

that of an ordered sample of 2 (T - k) - 1 independent observations 

from the uniform (0,1) distribution. Let 

+ 
C = 

j 
max (sk+2 j - ;) 

j=l, ••• ,m-1 

C = max (~ - sk+2 j) 
j=l, .•• ,m-1 
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1 + 
where m = 2 (T - k). Then c and c have the same distribution and are 

+ 
distributed as Pyke's modified Kolmogorov-Smirnov statistic en with 

n = m - 1; significance values have been computed by C.E. Rogers and 

are tabulated in Table 1 of Durbin (1969). We suggest that these values 

are used as approximations to the significance values of 

i 
max (sk+i - T _ k) and 

i=l, ••• ,T-k-1 

i 
max (~ - sk+i), 

i=l, .•• , T-k-1 

1 
entering the table at m = 2 (T - k) when T - k is even and interpolating 

1 1 
linearly between the values form= 2 (T - k) - 2 

1 1 
and m = - (T - k) + -

2 2 
when T - k is odd. Our expectation is that the approximation should be 

good unless T - k is small. 

Let c 0 be the significance value obtained in 
1 

to significance level 2 a. The pair of lines sr = 

this way corresponding 
r - k 

~ c 0 +~are then 

drawn on the diagram plotting sr against r. Since 

normally used, say 0.1 or less, the probability of 

for the values of a 

crossing both lines 

is negligible, we may take a as the probability of crossing either line. 

It is sometimes appropriate to consider a one-sided test. For 

s* s- -/, s * example, if it is assumed that s = fort < rand s = for 
2 2 

t 
2 2 

t 
2 2 

t > r while at = a for all t' then E(wt) = a fort < r and E(wt) > a 

for t > r. One would therefore expect the departure from the null 

hypothesis to be indicated by a tendency for the sample path of sr to 

lie below the mean-value line, and would therefore use a one-sided test. 

For this purpose, one would take the significance value of c 0 corres-
1 

ponding to significance level a, not 2 a. 

But whether the two-sided or one-sided situations are envisaged 

we ourselves prefer to regard the lines constructed in this way as 

yardsticks against which to assess the observed sample path rather than 

as providing formal tests of significance. 

These procedures based on the plot of sr represent a development 

of a test of constancy proposed by Durbin (1960). 
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Further useful plots are obtained by graphing the components of br 

against r. If the regression relationship does indeed vary over time, 

these plots may serve to identify the source of the variation. 

Finally, we remark that an alternative set of plots can be obtained 

by running the analysis backwards through time instead of forwards through 

time. The pictures provided by the two plots will differ according to 

where along the time scale any variation in the regression relationship 

takes place, Since both analyses are informative, we suggest that both 

should be carried out. 

4, MOVING REGRESSIONS 

Another useful way of investigating the time-variation of Bt and 

a! is to plot out the estimated regression coefficients and residual 

variance obtained from a segment of i successive observations, this 

segment being moved along the time scale. The significance of differences 

over time can then be assessed by a variant of the ordinary analysis-of­

variance test for non-overlapping groups. This technique will be consider­

ed in Brown and Durbin (1969). 

5, ILLUSTRATIONS 

Some examples will be presented at the Conference to illustrate 

the procedures desfribed in section 3. 

This work was done in the Research and Special Studies Division of 

the Central Statistical Office, Durbin's part of the work was done in 

the capacity of consultant to the Central Statistical Office, 
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SOME EFFECTS OF ERRORS OF MEASUREMENT IN MULTIPLE REGRESSION l) 

by W.G. Cochran (USA) 

Department of Statistics, Harvard University 

1. INTRODUCTION 

In recent years there has been an increase in multiple regression 

studies on problems in which some of the independent variables represent 

quantities that are obviously difficult to measure, and are presumably 

measured with substantial errors. In the social sciences, for example, 

these variables may include measures of a person's skills at certain 

tasks or his attitudes and psychological characteristics, the data being 

obtained from a questionnaire, plus perhaps some kind of examination. 

Such studies raise the question: to what extent do these errors of 

measurement vitiate the uses to which the multiple regression is put? 

In examining this question, my results are less general than is desirable. 

The only tractable model is simpler than is needed for many applications. 

Even with this model, the effects of the errors are complex. I have, 

however, tried to indicate approximately what happens in situations 

representative of at least a substantial number of applications. 

Frequent uses of multiple regression are: (1; to predict a variable 
2 2 

y. The relevant quantity here is the residual variance cr (1-R ), where y 
R is the population multiple correlation coefficient between y and the 

x's. (2) To study and try to interpret the values of the individual 

regression coefficients. The nature of the effects of errors of measurement 

on the values of the S. has been indicated in a previous paper, Cochran, 
i 

1968. Consequently, this paper deals mainly with R2, although the effects 

on the S. will be discussed briefly in section 8. 
i 

2. MATHEMATICAL MODEL 

Using capital letters to denote correctly measured values, we 

suppose that in the population the variate Yu has a linear regression 

a+ l SiXiu + du on the~ X's, where dis the random residual from the 

This work was assisted by a Contract between the Office of Naval Research 
and the Department of Statistics, Harvard University. 
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regression. Owing to errors of measurement, the variates actually 

recorded for Y and for the i X-variate are 
u 

(2.1) x. 
iu 

where~ and the ai represent overall constant biases of measurement, 

while eu and the eiu are fluctuating components which follow frequency 

distributions with means zero. 

For this type of model, Lindley, 1947, gave the necessary and suf­

ficient relations that must hold between the joint frequency function of 

the X. and that of thee. in order that the regression of y on the 
1U 1U U 

X. 
1U 

remain linear. In particular, if yu and the Xiu follow a multivariate 

normal distribution, the eiu must also follow a multivariate normal. This 

case is assumed here. Clearly, if Yu, eu' Xiu and the eiu jointly follow 

a multivariate normal, it follows from relation (2.1) that yu and the 

xiu also follow a multivariate normal and hence that the regression of 

yu on the xiu is linear. 

For the present it is assumed further that eu is independent of 

y 
u 

and that any eiu is independent of X. or any X. (j ii) and of any 
1U JU 

other e .• These last assumptions are 
JU 

not essential to ensure linearity 

of the regression of yu on the xiu' and some remarks 

independent case will be made in section 7. For many 

about the non­

applications in 

which both the X and thee. appear non-normal, it would be desirable 
iu iu 

to bypass the normality assumptions, but I have no results for this 

situation. 

The bias terms a and a. in (2.1) affect the constant term in the 
- 1 

regression of yon the xi, but do not affect the multiple correlation 

coefficient between y and the xi, and hence do not enter into the 

following sections on R2 • 

3. EFFECT ON R2 WHEN X's ARE INDEPENDENT 

With~ X-variates, the following notation will be used for the 

relevant population parameters. 
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2 
ai = variance of the correct Xiu; 

pij = correlation coefficient between Xiu and Xju; 

correlation coefficient between X. and Y. 
1U U 

The symbol oi is used instead of the more natural piy because this 

helps to avoid confusion between different kinds of correlation in later 

discussion. The sign attached to each Xiu is assumed chosen so that 

2 
The value of R, the population squared multiple correlation between 

Y and the X., is completely determined by the p .. and the o .• Primes will 
1 1J 2 1 

be used to denote the corresponding correlations R' , p~j' o~ between 

the observed y and the x .• From the assumptions we have 
1 

Cov(X.+e.)(X.+e.) p .. o .o. 
(3.1) p '.. 

1 1 J J 1J 1 J = 
V(O~+E~) (O~+E~) 11 2 2 2 2 1J ( a . +E . )( a . +E . ) 

1 1 J J 1 1 J J 

Cov(X.+e. )(y+e) 0 a 
i 0 Y (3.2) 0' 1 1 i 

= 
✓ ( 0~ +E~)(O~+E 2) J(a~ +E~)(O~ +E 2 ) i 

1 1 1 1 

In psychometric writings the quantity o~/(o~+E~) is often called the 
1 1 1 . 

aoeffiaient of reliability of x .• We shall follow this terminology and 
1 

define 

2 2 2 
g 1. = o./(o.+E.) = coefficient of reliability of x 1 .• 

1 1 1 

Similarly, 

gy = a;/(o;+E 2 ) = coefficient of reliability of y. 

Hence, from (3.1) and (3.2), 
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(3.3) pl'.J. =P. -~, 
lJ l J 

If the X's are mutually independent, it is well known that 

k 
(3.4) I 

i=l 

Since our assumptions guarantee that the x's are also independent 

in this case, 

(3.5) 

Hence, 

(3.6) 

'2 
R 

'2 
R 

k 

I 
i=l 

'2 
0. 

l 

2 k 
R gy l 

i=l 

2 -
R g g 

y w 

where gw is a weighted mean of the coefficients of reliability of the xi. 

Consider now the residual variance from the regression. With the 

correct measurements this is a~(l-R2 ). With the fallible measurements 

it becomes 

(3.7) 
2 2 2 - 2 

ay+E: - a g g R 
y y w 

2 2 
since a g ay. Equation (3.7) contains the well-known result that under 

y y 
this model the effect of errors of measurement of y with variance E: 2 

is simply to increase the residual variance by £ 2 , the variance of these 

errors. 

As regards errors of measurement of the x_, two points are worth 
l 

noting in relation to applications. For a given reliability of measurement, 

i.e. a given value of g, the deleterious effect on the residual variance 
2 w 

increases as R increases, being greater when the prediction formula is 

very good than when 

representing a poor 

it is mediocre. For example, suppose that gw = 0.5, 

reliability in measurement of the x .• If R2 = 0.9, 
l 
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the residual variance is increased from O,la~ to 0,55a 2 , over a five-
2 y 2 2 

fold increase, With R = 0.4, the increase is only from 0,6ay to 0.8ay, 

a 33% jump, 

Secondly, as would be expected, the quality of measurement _of 

those Xi that are individually good predictors is much more important 

than that of poorer 
2 2 

R = 0,90, (1-R) = 
predictors, With k = 2, 61 = 0,9, 6 = 0,3, we have 

2 '2 
0,1, If g1 = 0,5, g2 = 1,this gives (1-R ) = 0,505, 

'2 = 0,5, (1-R ) = 0.145, a much smaller increase. 

4, EFFECT OF CORRELATION BETWEEN X 1 s: TWO VARIATES 

After working several numerical examples, my approach was to try 
'2 2 -

to construct an approximation of the form R = R g g f, where f is a 
y w 

correction factor to allow for the effect of correlations among the X's, 

being equal to 1 when the X's are independent, But with numerous X 

variables, all intercorrelated, it soon appeared that no simple correction 

factor was likely to be generally applicable. However, we will continue 

to study the relation of R12 to R2 g g. Further, since the effect of 
y w 

errors in y under this present model is always just to introduce the 

factor g, this factor will be omitted in what follows so as to concentrate 
y 

attention on correlations among the X's. 
2 '2 

With 2 X-variates having a correlation p, the values of R and R 

work out as follows: 

(4.1) 

(4.2) 
'2 

R 

For given 61 , o 2 , the 

61 o 2 :!: /c1-0~)(1-o~), 

(4.3) 
'2 

R 

correlation p lies within the limits 

2 
otherwise R v.ould exceed 1. Within these limits, 
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2 2 2 2 
Taking out g w = (g11i 1+gz6 2 )/(li 1+1i 2 ) as a factor, we may write 

(4.4) 

where Bis the term 

(4.5) 

'2 
R 

B 

2-
R g (A){B) 

w 

For g1g2 < 1, pi o, this term is always< 1, For fixed g1g2 it decreases 

monotonically towards Oas p moves from O towards either +1 or -1. 

Factor A takes the form 

(4.6) 

For O < g g < 
1 2 

A ( 2P6' ) 
l _ 1 2 

= 
li2 li2 

1 + 2 - -
g2 gl 

1, it follows that A 

2pli 11i 2 ) li2 li2 
1+ 2 

> 1 if p is positive while A < 1 if 

pis negative, provided that li 1 , li 2 are both> O. 

Hence, if p is negative the factor f = AB is always< 1, decreasing 

towards zero asp approaches -1. If p is positive the situation is not 

so clear, since A> 1 and B < 1. However, when p is small the factor A, 

which contains only linear terms in p, tends to dominate B which is 

quadratic in p, Thus when p is positive, f AB increases and is greater 

than 1 for a time, but then decreases asp increases further, becoming 

less than 1 if pis high enough, The only exception is the case 

lil = li2, gl = g2 = g: f then reduces to (l+P )/(l+gp), which increases 

from f = 1 at p = O to f = 2/(l+g) at p 1. Incidentally, when Ii 1 = o 2 , 
2 

the range of p is from (-1 + 201) to +1. 

The size of the product g1g2 is also relevant to f. For given P, 

both A and B tend to approach 1 as g1g2 increases towards 1. Thus the 
'2 2 

formula R R gw is closer to the truth when g1 and g2 are high, 

In a previous paper, Cochran, 1961, the effect of p on the value 

of R2 was studied in connection with applications to the discriminant 
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function, From (4.1) it is clear that negative values of p are helpful 
2 

to prediction, since when p is negative, R always exceeds the value 

(o~+o!) that it would have if p were o. With p positive, R2 decreases 

at first but has a minimum at p = o 2/o 1 , where o 2 < o 1 , and thereafter 
2 2 2 2 

increases. It does not reach (o 1+o 2) until p = 2o 1o 2/(o 1+o 2 ), which is 

high if o1 and o~ are not too different. Thus, positive correlations 

are harmful to prediction unless p is high enough. 

As an illustration, table 4,1 shows the values of R2 and f for 

p = -.0.5(0.1) + 0,9, for six examples. In the first three, o 1 = 0.6, 

o2 = 0.4, and in the second, o1 = 0.7, o 2 = 0,2. The three pairs 

g1 ,g2 = (0.9,0,7), (0,8,0.6), and (0,7,0,5) are given. The behavior of 

R2 and fas described above may be noted, as well as the increasing 

departure off from 1 as the product g1g2 decreases. The principal dif­

ference between the cases o 1 = 0.6, o 2 = 0,4 and o 1 = 0.7, o 2 = 0,2 is 

as follows. When iS 1 and iS 2 differ greatly and p is positive, R2 begins 

to increase and f to decrease for quite moderate values of p (around 

o. 3 for iS 1 = , 7, iS 2 = • 2), while when iS 1 and iS 2 are more nearly equal, 

R2 decreases and f increases until p is closer to 1. The turning value of 
2 

f is a complicated expression, but is usually close to that of R. 

The complementary sets g1 ,g2 = (0,7,0.9), (0.6,0,8), (0.5,0,7), 

not shown here, exhibit the same behavior with flying a little nearer 1, 

except for high, positive P when f becomes less than 1, 
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p 

-.5 

-.4 

-.3 

-.2 

-.1 

0 

.1 

.2 

.3 

.4 

.5 

,6 

,7 

,8 

.9 

0 

gi = 
2 

R 

X -
.848 

.730 

.642 

.574 

.520 

.477 

.442 

.413 

.390 

.373 

.362 

.361 

.378 

.463 

-
g = w 
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Table 4.1 

values off R12/R2g for six examples, 
w 

= .6, 0 = .4 01 = • 7, 1 2 

• 9, .• 7 • 8, • 6 • 7, • 5 gi = • 9, • 7 • 8, • 6 

f f f R2 f f. 

- - - .893 0.84 0,78 

0.87 0.82 0.78 • 764 0.89 0.85 

0.91 0.88 0.85 .675 0.93 0.90 

0.95 0.92 0.90 .610 0.96 0.94 

0.98 o. 97 0.96 .564 0.98 o. 98 

1.00 1.00 1.00 .530 1.00 1.00 

1.02 1.03 1.04 .507 1.01 1.02 

1.04 1.06 1.07 .494 1.02 1.02 

1.06 1.08 1.10 .490 1.02 1.02 

1.07 1.10 1.12 .498 1.00 1.00 

1.08 1.11 1.14 .520 o. 98 0.97 

1.08 1.11 1.14 .566 0.94 0,91 

1.07 1.09 1.12 .655 0.86 0,82 

1.03 1.03 1.06 .850 0.73 0,67 

0.86 0.85 0.85 
X - - -

-.838 • 738 .638 g = w ,885 .785 

x Impossible because R2 > 1. 

02 = .2 

• 7, • 5 

f 

0.74 

0.81 

0.88 

0.93 

0.97 

1.00 

1.02 

1.03 

1.03 

1.01 

0,97 

0,90 

0.79 

0,63 

-

.685 
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In these examples g 
'2 ~ 

crude approximation R = 

lies between 0.638 and 0.885. As regards the 

R2g, in these examples this is correct to 
w 

within~ 15% for P lying between -0.3 and +0.5, being much closer than 

this throughout most of table 4.1, 

To summarize for two independent variates: when p is negative, 

f < 1 because the negative correlation p' = pVg1g2 is less helpful 
'2 2 

to R than the negative correlation p is to R • When p• is positive 

and small or modest, f exceeds 1, because the harmful positive cor­

relation is decreased by the errors of measurement, If p becomes high 

enough, however, positive correlation becomes helpful and f drops below 

1. For given P, f departs further from 1 as the product g1g2 decreases. 

With 3 X-variables denoted by the subscripts i, j, and k, the 
2 

value of R may be expressed as 

I 0~ 
2 

I (pij-pikPjk) 0i 0j (1-p jk) - 2 

R2 i 
l. j>i 

(4.7) 
2 1 - I p .. + 2P12P13P23 

j>i l.J 

while 
'2 

R has the corresponding value found by substituting 

o'. = o_ifr::, P'.. = P .. ✓g.g .• These expressions are discouraging to the 
l. l. l. l.J l.J l. J 

prospect of finding an approximation for f that would be valid over a 

wide range of values of the g. and the P ..• With regard to R2 itself, 
l. l.J 

(4,6) suggests that with all o. > O, negative values of P .. are likely 
l. l.J 

to be helpful, since the only linear term in the P .. is -2p .. o. o . in 
l.J l.J l. J 

the numerator. 

Before proceeding further, we digress to consider the values of 

the p .. and the gl.. likely to occur in practice. 
l.J 

5. SOME VALUES OF r .. IN PRACTICAL APPLICATIONS 
l.J 

When the sign attached to each xi is chosen so 

decisions determine the sign attached to every p ..• 
l.J 

that o . > O, these 
i-

In studying the 

estimates r .. of the p .. found in 12 well-known examples of the 
l.J l.J 

discriminant function, Cochran, 1961, I noted that most of the 
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are positive and modest in size, while those that are negative are 

usually small. The same situation appears to hold in many applications 

of multiple regression, Table 5,1 shows the distributions of the r .. in 
l.J 

(i) the discriminant function examples, (ii) the numerical examples of 

a multiple regression given in 12 standard statistical texts, (iii) a 

single large example--the prediction of verbal ability scores of 12th 

grade white students in the north of the U.S. from 20 variables repre­

senting data on the student, the quality of the school, and the student's 

home environment, Coleman et al,, 1966, 

Table 5,1 

Distributions of estimated correlations between x's 

Number of Cases Number of Cases 

r .. 
l.J 

D,F. Texts Verbal r 
ij 

D.F, Texts Verbal 

< -.5 1 1 0 0 to .1 15 5 58 

-.5 to -.4 2 0 0 .1 to ,2 22 8 41 

-.4 to -.3 1 0 1 .2 to .3 25 7 25 

-.3 to -.2 4 2 2 .3 to ,4 18 9 7 

-.2 to -.1 4 2 10 .4 to .5 6 7 3 

-.1 to 0 9 5 36 .5 to .6 10 6 6 

.6 to .7 4 5 1 

.7 to .8 1 4 0 

> .8 0 3 0 

Total 21 10 49 Total 101 54 141 
- -r -0.19 -0,17 -0.09 r +0.30 +0.41 +0.16 

The percentages of r's that are positive are 83%, 84%, and 74% 

in the three sets. The negative r's average to between -0,2 and 0, the 

averages of the positive r's being a little higher. While some allowance 

is needed for the sampling errors of the r .. , since our interest is in 
l.J 

the unknownp .. , my impression is that most of the degrees of freedom 
l.J 

are large enough so that the effect of sampling errors on the average 
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r's should be small. In the discriminant function and text examples there 

may have been some selection towards more interesting examples, but this 

would probably affect the sizes of oi rather than the pij" 

In calculations for 3 or more x's, these results led me to concent­

rate on p .. less than 0.5, and mainly on two cases: (1) all p_. positive, 
1J 1J 

(2) only a minority negative. 

6. THE PROBLEM OF ESTIMATING RELIABILITY 

With variables that are hard to measure, the problem of estimating 

the reliability of measurement is also formidable, and I have not come 

across any set of g values that might be regarded as representative. 

Direct estimation of g is possible only when it is feasible to measure 

both the correct value X and the fallible value x for a sample of items. 

This situation is likely to be confined mainly to applications in which 

(1) g is high and (2) the fallible measurement is enough cheaper or 

more convenient to make it preferable to the correct measurement. 

Occasionally, an opportunity to measure X may present itself even though 

Xis not usually available. Thus, the reliability of appraiser's estimates 

of the values of homes may be estimated by finding the actual selling­

prices for these homes that happen to have been sold recently: data of 

Kish and Lansing, 1954, indicate a g of around 0.83 in this situation. 

When X cannot be measured, assume first that for the uth item the 

correct measurement X is constant (i.e. not varying with time). If two 
u 

independent measurements x 1 , x 2 of each item by the fallible instrument 
u u 2 A 

can be made, the quantity Cov(xul'xu2) estimates ox, so that g = 

Cov(x 1;x 2)/s2 is an estimate of g. This method is widely used in ap-
u .. U X 

praising the reliability of examinations, the two measurements being 

either random halves or alternative forms of an examination. Naturally, 

values of g over 0.9 are sought, though values between 0.7 and 0.9 may be 

considered acceptable if the skill in question is difficult to measure by 

examination. The assumption of independence is crucial in this approach. 

With a positive correlation between the errors eul and eu2, Cov(xulru2 ) 

overestimates o! so that g is overestimated. 
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Alternatively, the same measurement may be made on the specimens 

at two different times. Examples are examinations given a week apart, 

or questions repeated to a respondent on a later occasion. If these 

questions refer to memory of a definite past event, the errors of 

measurement may be smaller on the first than on the second occasion. 

Fortunately, still.assuming independence and constant X for given~• 
u 

1 h t . . 2 2 d 2 b t· t d al t ree quan 1 ties o X' ox , an ox can e es ima e , as can 

g = o!/o!, the reliability1of the a~swers on the first occasion, 

With questions involving memory, however, positive correlation between 

errors is a constant danger, since the respondent may recall the same 

wrong answer on both occasions, 

When the correct measurement varies with time, interpretation 

becomes more complex. For the uth item on the jth occasion, 

the simplest model is to write the correct value as X +t ., where 
U UJ 

Xu now represents an average value over time for the uth item and t . 
UJ 

represents the fluctuation over time for the true value, The observed 

value on the Jth occasions is xuJ· = X + t . + e .• For simplicity, 
U UJ UJ 

assume t . and e . independent from item to item and from occasion to 
UJ UJ 

occasion. Then if the objective is to measure the correct value of X 

on a specific occasion, i.e. to measure X +t ., the reliability of our 
U UJ 

measuring process is 

g 

This quantity is estimated by g if our data are a sample of two 

independent measurements of each specimen on the jth occasion. But 

if our sample consists of independent measurements on two different 

occasions, g = Cov(x ., x .)/s2 estimates o 2;o 2 , which can be a serious 
2 UJ UJ X X X 

underestimate if ot is large. For instance, Guilford, 1959, from 

measurements one day apart on the same subjects, reports estimated g 

values of 0.22 for respiration period, 0.36 for white blood cell count, 

0.65 for blood sugar content, and 0,74 for systolic blood pressure. 

Presumably, these relatively low values are in part caused by real day 

to day variation in the values of the items. 

Further, when X varies through time, the relevant quantity for 
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prediction of y may not be the value of X on the first occasion, but 

some function of its levels over time, as for instance in the predict­

ion of death rate from cigarette smoking history. This po.int may be 

put more generally. In difficult problems of measurement we may be 

attempting, through ignorance, to measure the wrong quantity, At its 

simplest, suppose that the relevant true measurement for the uth item 

in the population is Xu' which does not vary with time. The "true" 

value which we attempt to measure is Xu+au' where au is a random 

variable representing the extent to which we are measuring the wrong 

quantity. Our observed values for two independent fallible measurements 
2 2 2 

are X +a +e , X +a +e 2 • Hence, g estimates (aX+cr )/a , whereas the 
u u ul 2u 2u u a x 

relevant g is ax/a • . X 

For these reasons I am unable to name any narrow range of values 

of g which can represent practical experience in difficult measurement 

problems. My calculations have been done for the range g.::_ 0.5: they 

should perhaps have been extended to lower g's. Ignorance of the values 

of the gi for a specific application of interest is, of course, a 

considerable detriment to the use of any results of this paper, There is, 

however, increased interest in studying errors of measurement, as 

evidenced by the work of the U.S. Census Bureau, e.g. Hansen, Hurwitz, 

and Bershad, 1961, and later papers, by Kish's study, 1962, of inter­

viewer variance, and by Mandel's study, 1959, of errors of measurement 

by different laboratories. 

It should not be forgotten that g is a measure of precision of 

meas~rement relative to the true variation in the population. High 

values of g may be found with what appears quite sloppy and imprecise 

measurements, because the population is highly variable. A low value, 

such as g = 0,41 reported by Kinsey, 1948, for "Age at first knowledge 

of venereal disease", (by repeating the question on a later occasion) 

may in part reflect the fact that the correct ages have a small standard 

deviation. 

7, EFFECT OF ERRORS WITH MORE THAN TWO X VARIATES 

'2 2 . 
Returning to the relation between R and R with k X-variates 
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(k>2), the only case which will be discussed algebraically is that 
2 '2 

in which p .. = p > O, g1, = g. In this case R and R have the simple 
1J 

formulas 

(7.1) 
I o ~ - 2 

R2 
kp I co . -o) 

1 
[1 + 1 2 ] 

l + (k-l)p c1-p )}:o. 
1 

(7.2) 

2 I - 2 
'2 g}: 6. [ gkp (6. - 6) 

] - 1 1 1 
R - 1 + (k-l)gp + 

(1-gp)}:o~ 
1 

If the oi are approximately equal, i.e. the Xi are individually 

about equally good, the first terms in (7.1) and (7.2) dominate. Then 

we have 

(7.3) f 
1 + (k-l)p 
1 + (k-l)gp 

For p positive, this f exceeds 1 and increase steadily asp goes from 

Oto 1. 

The case 6. = 6, p = 1 is of some interest, In measuring a trait 
1 

of a subject, such as aggressiveness, a common practice is to ask k 

questions, the answer to each being a measure of aggressiveness. If 

all the questions measuredaggressiveness correctly, we would have 

p = 1, 6. = 6, making R2 = o2 , reflecting the fact that in this event 
1 

any one question contains all the information. If the questions have 
' r '2 

reliability g and independent errors, 6. = Vgo, p = gP and R 
2 1 

kgo /{kg+ (1-g)} from (7.2). For example, with g = .6 and k = 5 questions, 

R12 = 36 2/3.4 = O.8802 , considerably better than the value R12 O,66 2 

that we would get by asking only one question. The argument here is the 

same as that used in the well-known correction for attenuation. If the 

errors of measurement in the different questions are positively correlated 

with one another though still uncorrelated with X, we do not do quite so 
'2 

well. With a correlation r between these errors, R works out as 

kgo2/{kg + (1-g)(l+kr-r)}. 
. 2 as against O.880. 

'2 
ThUs with g = .6, k = 5, r = .5, R 

2 
= Q.710 I 
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When the O vary in (7.1) and (7.2) the ratio of the second terms 
i 

inside the brackets is g(l-p)/(1-gp). This ratio is less than g, and 

therefore less than 1, and decreases asp increases. Thus this term slows 

down the increase inf. In applications the two terms in R2 are often of 

the same order of magnitude, so that f shows only a small rise above 1 for 

positive and moder·ate values of P. 

Table 7.1 shows the valuesof f for seven examples for 3, 5, and 10 x's, 

selected from those worked. In these examples, the reliability g is the 

same for all x's, f being given for g = .9(.1).5. For each example the 

number of x-variates k, and the values for the o_ and of the p are 

Ofi R2 2ij -- '02_, given. At the foot of the table are the values and of Rind l 1 

the value that R2 would have if the X's were independent. 

Table 7.1 

Values of f for seven selected examples 

All pij positive Some p .. negative 
1J 

3 5 10 3 3 5 10 

.6, .5, .4 .5, (.4) 
2 

.5,.4,(.3) 
2 

.6,.5,.4 .6, .5, .4 .5, .4, .3 
2 

.5, .4, (.3) , 

• 3,. 2 
3 3 

(.2) ,(.1) . 2,. 4 
2 3 

(.2) ,(.1) , 

.2 

.3 .3 • 3 .2,-.2, .3, .3, .3(#5) .3(#10) 

-.2 -.2 -. 3(J=5) -.2(j=10) 

f f f f f f f 

1.03 1.04 1.01 0.98 0.99 0.97 1.00 

1.07 1.08 1.02 0.97 1.00 0.94 1.00 

1.11 1.13 1.04 0.95 1.01 0,92 1.00 

1.16 1.19 1.08 0.94 1.04 0.90 1.01 

1.21 1.26 1.12 0.93 1.04 0.89 1.03 

""" __________ 

.497 .369 .390 .875 .630 .805 .511 

.770 .700 .740 .770 .770 .700 .740 
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In general, the values off in table 7.1 behave as would be expected 

from the results for k = 2 in section 4. In the three cases with p .. = 
2. l.J . 

+0.3, this correlation produces a marked decrease in R as compared with 
2 

Rind" Consequently, f rises above 1 because errors of measurement reduce 

the detrimental correlation to +0.3g. 

When some r .. -are positive and some negative, we may in general regard 
l.J 

the positive P .. as harmful to prediction and the negative P .. as helpful, 
l.J . l.J 

though this is an oversimplification of what can happen with more than 

2 x's. Two examples with substantial proportions of negative correlations 

have been included in table 7.1. The first example with k = 3 has 2 of 

the 3 P .. negative. In the example with k 
l.J 

5, all correlations between 

x 5 and the other x's are negative, making 4 negative P .. out of 10. In 
l.J 

both examples the net effect of the correlations is distinctly helpful, 

R2 exceeding R~ d" As would be anticipated, f < 1 in both examples. In the 
l.n 

two remaining examples, with k = 3 and k = 10, one p .. out of 3 and 9 out 
l.J 

of 45 are negative. The net effect of the correlations is a decrease in 
2 2 

R versus Rind' though less marked than when all pij are positive. In both 

examples f rises only very slightly above 1. 

When some P . . are negative and the g1. are very unequal, f is more 
l.J 

erratic. Its behavior still follows the lines indicated above. As an 

illustration, table 7.2 gives f for some unequal gi for the example in 

table 7.1 with k = 5 and Pi5 negative. 

Table 7.2 

Values off with unequal gi k=5, pij = .3,(j¢5), = -.3(j=5) 

gl • • .g4 = 1.0 .8 .6 ,5 

g5 = .5 .6 .8 1.0 

f = 0.76 0.85 0.99 1.09 

gw .886 .754 .646 .614 

In the first case in table 7.2, g1 ••• g4 are without error, while g5 

has reliability only 0.5. The harmful correlations P = +.3 are unaltered: 
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the helpful ones are reduced to -0.3/:s,:;:, -0.21. Consequently, f is well 

below 1 although gw = .BB~ is quite high. The opposite case, with 

g1 .•. g4 = 0.5, g5 = 1, gives f = 1.09, the harmful correlations being 

reduced more than the helpful one. The two middle examples illustrate 

less extreme si t_uations of the same type. 

Since with electronic computers, mul tipl,c1 regression calculations 

having as many as 50 independent variates are becoming commoner, a summary 

statement could be made with greater confidence if examples of this size, 

with all P .. , o. and g. different, had been worked, and if more were 
J.J ]. ]. 

known about the values of the gi likely to occur in such problems and 

about the cruciality of the assumption of a multivariate normal. As a 

guide to the effects of errors rough 
'2 '\, 

R = 2 -
R g g may serve, the value of 

y w 

of measurement, the relation 
'2 

R being perhaps 10-20% higher than 

this if most correlations among the X's are positive and harmful, and 

perhaps 10-20% lower if we are lucky enough to have mainly helpful 

correlations. This rule assumes that the errors of measurement are 

independent of one another and of the correct X's. 

If the e. and e. for two different X's have a correlation c .. but 
]. J J.J 

are still independent of the true Xi or Xj, we have, in the notation 

of section 3, 

Thus oi = 

With most 

QI 

i = 

o -~ as before, but if c .. > O, ]. ]. y J.J 
p .. positive and harn1ful, it looks 

J.J 

p ij now exceeds p i/gi gj. 

as if the effect of a 

positive c .. will be that f will lie closer to unity. 
J.J 

Suppose now that e. and X. are correlated, with Cov(e.X.) = ci. 
]. ]. if-]. 

To take the simplest case, ei is assumed uncorrelated with any other 

X. ore., though in applications it may happen that e. is correlated with 
J J 2 2 

some other X 's. The variance of x. now becomes (o.+E.+2c.), so that g1. 
2 j2 2 1 1 1 1 

becomes o./(o.+E.+2c.). With the above assumptions, the equation 
I ]. ]. ]. ]. 

p .. = p. -~ still holds. However, e. becomes correlated with y through 
J.J J.J ]. J ]. 
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(7.4) Cov(y,x.) = Cov(y,X.) + Cov{ (a + Is .X. + d),(e. )} 
1 1 J J 1 

Hence, 

' 0. = 
1 

oaa +Sc. 
i y i i i 

!3.c.vi:" 
1 1 1 

a a 
y i 

Equation (7.5) suggests that if S. has the same sign as o., as should 
1 1 

happen with the predominant regression coefficients, a positive correlation 
' '2 

between e. and X. will increase 6. and hence tend to increase R • This 
1 1 1 

might be expected since the ei, as it were, are doing some of the work of 

the X .• The most interesting case of a negative correlation is that 
1 

studied by Berkson, 1950, and Box, 1961, in controlled experiments in 

which the fallible xi are set at predetermined values, the errors of 

measurement e. being therefore uncorrelated with the fallible xi. Hence, 
1 2 2 

Cov(e.x.) = Cov(e x.) + E. = O, making c. = -E • In this case the effect 
;-1 j,S-1 1 1 i 

on R 1 is almost easily seen by considering the values of the regression 

coefficients in the next section. 

8, EFFECTS ON REGRESSION COEFFICIENTS 

The assumptions and notation are the same as in section 2, except 

that for the moment we assume that e. and X. have a covariance c .• The 

symbols a . . , 
1J 

1 1 2 1 , 

a . denote Cov (X . .J{ . ) and Cov (x .;r. . ) , where a . . = a , a 1. 1. iJ 1 J 1 J 11 i 
2 2 

ai+Ei+2ci, The assumption of multivariate normality guarantees that y has 

a linear regression both on the X. and on the x., These relations provide 
1 1 

two expressions for Cov(:v,xi). 

(8,1) = Cov{(a' + ' l B .x. + d'),(x.)} = l 
J J 1 

j j 

B 'a' 
j ij 
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(8.2) Cov{(a + Es.x. + d), (X_+e_)} =Es.a .. + B.c_ 
j J J l. l. j J l.J l l. 

since thee. are assumed uncorrelated with d. Hence the relations con­
i t 

necting the B and the B. are 
i l. 

(8.3) 

Since o 
ii 

(8.4) 

la . . B. + B.c .• 
j l.J J l. l. 

Io 1 ij(B•_-B_) 
j J J 

these relations may be written 

2 
-B _(c.+e:.) 

J l. l. 

Assuming o• non-singular, let its inverse be oij' Then 
ij 

(8.5) B. 
:i. 

B. 
l. 

• • I 2 Ec,iJ B .(c _+£.) • 
j J J J 

Thus the effect of errors of measurement is that 13 
i 

is a linear 

combination of 13. and of all the other B's. The only case in which 
l. I 

B. = 13. occurs when the values of all the x. have been set at predetermined 
2 J l. l. 

levels, making (c.+£.) = O for all j (the Berkson case). 
J J 

11' 2 2 
With a single x-variate, o = 1/(o +£ +2c) so that 

(8.6) 
2 2 2 

i3(o +c)/(o +£ +2c) 

Since with one x-variate R2 o2 
y 

this gives 

(8.7) 
'2 

R 
2 
R 

2 2 
(o +c) 

'2 2 2 
B (o +£ +2c), 

For c positive, this ratio increases steadily as suggested in section 7, 

reaching the value 1 if X and e have correlation 1, making c = 0£. In 

the Berkson case, with c = -£2 , 
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(8.8) 

this being a reminder that although B is unchanged, the residual variance 

is increased by the errors in x. In the Berkson case with~ variates, it 

is easily shown tbat 

(8.9) 

We now assume thee. and X. uncorrelated, and briefly consider the 
' l. ]. ' 

Bi. From (8.5) it is evident that the effects on a specific Bi are 

complicated, depending on the signs and sizes of the other B. and on the 
J 

terms in the inverse matrix. As an approximation to applications in which 

most correlations among the X's are positive and modest, the following is 
I 

the expression for B. when p .. = p, gi· = g: 
]. l.J 

(8.10) 
g(l-p)B. 

ei. = i + 1-gp 

gCl-g)p <I e. > 
]. 

( 1-gp) [l+(k-1 )gp] 

The first term, which predominates when g is high, amounts to a reduction 
I 

of B. to a value somewhat less than g8_. The second term is a common 
]. I ]. 

contribution to all the B., and is positive if (LB.) is positive. In the 
]. ]. I 

examples that I have worked, the net effect is to make B./B. slightly 
]. ]. 

greater than g for the larger B. and substantially greater than g for 
]. . I 

the smaller B .• The differences between the B are smaller than these 
]. i 

between the B. so that it becomes more difficult to distinguish the 
]. 

important from the unimportant regression coefficients. 

A further consequence of the general relations (8.4), (8.5) is 

if only one xi, say x1 , is subject to error, 

81 
2 il 

(8.11) 81 e. e. 
E\O 81 

(i > 1) = 2 11 = - ' ]. ]. (l 2 il) 1+£1 (1 +£1(1 

that 
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11 2 
Since a < 1/o1 unless x1 is uncorrelated with any other Xi, it follows 

that S1 < g1 S1 in this case. Also, every other Si that is correlated 

with s1 is affected by errors in x 1 • 

In examples worked with unequal g's, the 8'. for those x. having low 
]. ]. 

g1. are very substantially reduced, while some 3'. with higher g. may 
J J 

exceed S. because of the contributions from E~ in (8.5). Consequently in 
J ]. 

this situation, in ignorance of the gi, interpretations ~ased on the 

' relative sizes of the S. can become highly misleading. 
J 

In a more positive vein, equations (8.4) and (8.5) would also enable 

us to estimate the S. from the S., if we had good estimates of the g1. ]. ]. 

and if the model could be assumed to apply. 

SUMMARY 

Multiple regression studies in which some or all of the variables 

are difficult to measure, and therefore presumably are measured with 

substantial errors, are increasingly common, particularly in the social 

sciences. This paper attempts to discuss the effects of such errors of 

measurement on the utility of multiple regression, both when the objective 

is prediction and when it is interpretation of the regression coefficients. 

Several different mathematical models are possible, since there may be 

correlations between the error of measurement of a variable and the true 

value of that variable and also between the errors for different variables. 

A multivariate normal distribution of the correct Y's and the correct 

Xi is assumed. The errors of measurement are assumed normal with variances 

E2 and at first independent of the correct values and of each other. 
i 

Formulas available in the simplest cases and worked numerical examples 

indicate that the formula R12 R2 g g approximates the relation between 

the squared multiple correlation co!f;icients R12 and R2 in the presence 

and absence of errors. Here, g = a!l<a!+E 2) is the coefficient of 

reliability of y, while gw = l~~g./lo~ is a weighted mean of the coeffi-
1 ]. ]. '2 2 -

cients of reliability of the x .• The formula R R g g slightly under-
'2 ]. y w 

estimates R when the correlations among the Xi are positive, and may 

slightly overestimate R 12 when a minority of these correlations are negative, 

but appears correct to within+ 20% in most cases. The effects of correlation 
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between the ei and ej for different x's and between ei and Xi are also 

indicated. 

With errors of measurement in the xi, any regression coefficient 

Bi becomes in general a linear function of all the B's in the regression 

equation. Interpretation of the sizes of these B. may become highly mis-
1 

leading. The problem of estimating the gi in practice is also discussed. 

WGC 22 



69 

REFERENCES 

Berkson, J., 1950. Are there two regressions? Jour.Amer.Stat.Assoc., 

45, 164-180. 

Box, G.E.P., 1961.- The effects of errors in the factor levels and 

experimental design. Bull.Int.Stat.Inst., 38, 3, 339-355. 

Cochran, W.G., 1968. Errors of measurement in statistics. 

Technometrics, Vol. 10, (in press). 

Cochran, W.G., 1961. On the performance of the linear discriminant 

function. Bull.Int.Inst.Stat., 39, 2, 435-447. 

Coleman, J.B. et al., 1966. Equality of educational opportunity. 

U.S. Government Printing Office, Washington, D.C. 

Guilford, J.P., 1959. Personality. McGraw Hill, New York. 

Hansen, M.H., Hurwitz, W.N., and Bershad, M., 1961. Measurement 

errors in censuses and surveys. Bull.Int.Stat.Inst., 38, 2, 

359-374. 

Kinsey, A.C., Pomeroy, W.B., and Martin, C.E., 1948. Sexual behavior 

in the human male. W.B. Saunders, Philadelphia. 

Kish, L. and Lansing, J.B., 1954. Response errors in estimating the 

value of homes. Jour.Amer.Stat.Assoc., 49, 520-538. 

Kish, L., 1962. Studies of interviewer variance for attitudinal 

variables. Jour.Amer.Stat.Assoc., 57, 92-115. 

Lindley, D.V., 1947. Regression lines and the linear functional 

relationship. Jour.Roy.Stat.Soc. ~. 9, 218-224. 

Mandel, J., 1959. The measuring process. Technometrics, 1, 251-267. 

WGC 23 





SOME RECENT DEVELOPMENTS IN THE THEORY OF MARKOV CHAINS 

by J.F.C. Kingman (England) 

University of Sussex and Stanford University 

For many years the analysis of stochastic processes involving some 

degree of Markovian behaviour has depended, implicitly or explicitly, on 

the discovery of "regeneration points" for the process. This concept was 

introduced by Palm, and a systematic account has been given by Smith [s}. 
Roughly speaking, a regeneration point for a process Xt is a random time 

T such that the process XT+t (t > O) is independent of~ (u < T) and 

has the same stochastic structure as Xt (t > O). Thus at time T the 

process is "regenerated", and its random evolution from T follows the same 

laws as governed the process from t = O. 

If a regeneration point exists, it is not difficult to see that there 

is a whole sequence T1 , T2 , ••• of these points, forming a renewal sequence 

in the sense that the positive random variables T1 , T2 - T1 , T3 - T2 , •.. 

are independent and identically distributed. The process Xt can then be 

split up into independent segments X (T 1 < t < T) which can be t n- - n 
examined separately. In particular, many problems can be reduced to 

questions about the renewal theory of the sequemce {Tn}, (cf. [s], [9]). 
For some processes, however, regeneration points exist in much greater 

profusion than appears in the rather severe theory just mentioned, and to 

ignore all but a single sequence is to sacrifice a good deal of information, 

For example, in a queueing system fed by a Poisson arrival stream, every 

point of time at which the queue is empty is a regeneration point of the 

process, and the set of such instants is not a sequence, but a collection 

of intervals. More generally, if Xt is a Markov process with initial state 

x0 = x, then any time with Xt = x regenerates the process. 

In recent years a theory has been developed which generalizes classi­

cal renewal theory by allowing the set of regeneration points to be more 

substantial than a discrete sequence. This theory has application to the 

theory of continuous-time Markov chains (as developed for example in [2]), 
and in particular to the very difficult problem of characterizing Markov 

transition probabilities. The details may be found in [4] and [5] (and in 

other references cited in the latter paper). JK 1 



72 

Let zt (t > O) be a stochastic process taking only the values 0 and 

1. Suppose that, for any T for which the event {zT = l} has positive 

probability, the processes Zt(t < T) and zt (t > T) are independent 

conditionally on {zT = 1}, and that moreover the conditional distribu-

tions of the latter process Zt (u > O) are the same as the distribu­+u 
tions of the original process Z (u > O). Then the process Z is said 

u 
to define a regenerative phenomenon. The phenomenon is said to occur 

at time t if Zt = 1. A typical example of a regenerative phenomenon is 

provided by a Markov process Xt with initial state x, by means of the 

formula 

(1) 

where 

f(x) = 1, 

f(O = o, (E; ~ x). 

Denote the probability of occurrence at time t by 

p ( t) P{ Zt = 1} . (2) 

The regenerative condition on Z implies that, whenever O < t 1 < t 2 < ••• 

< tk, then 

It follows that the function p, called the p-function of the phenomenon, 

determines the finite-dimensional distributions of the process z. The 

first problem is therefore to determine which functions p can arise in 

this way. This accomplished, a second problem is to describe the behaviour 

of the process Zin terms of properties of the p-function. 

The first fact to notice about p-functions is that they have to 

satisfy certain functional inequalities. For instance, the probabilities 

P{z = o, z t = 1} = P{z s s+ s+t 
= 1} - P {z 

s 

= p(s+t) - p(s) p(t) 

= 1, Z t = i} s+ 
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and 

= o} = P{z = o} - P{z = o, z t = 1} s s s+ 

= 1 - p(s) - p(s+t) + p(s) p(t) 

must be non-negative, so that p necessarily satisfies 

p(s) p(t) .::_p(s+t) .::_ 1 + p(s) p(t) - p(s). 

More complicated inequalities may similarly be derived from the fact 

that 

> 0 

and 

(4) 

for every k. Conversely, the Daniell-Kolmogorov theorem can be used to 

prove that this infinite family of functional inequalities is sufficient, 

as well as necessary, for a function p to be a p-function. The study of 

p-functions is therefore the study of the consequence of these inequali­

ties. 

Of particular importance among p-functions are those which satisfy 

lim p(t) = 1; 
t+O 

(5) 

these are called standard. Their significance has recently been stressed 

by the proof [7] that any measurable p-function is either 

(i) of the form ap(t), where O <a.::_ 1 and pis a standard 

p-function, or 

(ii) equal to zero almost everywhere. 

It is an easy consequence of (4) that a standard p-function is (uniform­

ly) continuous on t ,:_ O, and the corresponding process Z is continuous 

in probability. 

The fundamental theorem in the theory of regenerative phenomena is 

an integral representation formula for the Laplace transform 
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r(8) Joo -at 
= O p(t) e dt 

of the standard p-function p. This can always be expressed in the form 

(6) 

whereµ is a positive measure on the interval (0,00], uniquely determined 

by p. Conversely, ifµ is any positive measure on this interval with 

(7) 

then there is a unique continuous function with Laplace transform given 

by (6), and this is a standard p-function. The formula (6) therefore 

sets up a one-to-one correspondence between the standard p-functions 

and the positive measures satisfying (7). 

Because (1-e-x) is small near x = O, condition (7) does not neces­

sarily imply thatµ is a finite measure. But if it has finite total mass 

q, µ has a simple interpretation. In this case it can be writtenµ = qff, 

where ff is the probability measure of a positive, but possibly infinite 

random variable. Then it can be shown that Zt is a step function, con­

stant on intervals whose lengths are independent random variables. The 

lengths of intervals on which Zt = 1 have the negative exponential dis­

tribution with density qe-qt, while the lengths of intervals on which 

Zt = 0 have distribution ff. Following Bartlett [1], we say thatµ is a 

multiple of the recurrence time distribution of the phenomenon. 

Whenµ has infinite total mass, the structure of Z is much more 

complicated to describe. Alt~ough such phenomena are in a sense patholo­

gical, they do occur in models of practical importance, for instance in the 

theory of dams. 

Using (6), a-number of properties of standard p-functions can be 

established: 

(a) p(t) is strictly positive, 

(b) p(t) has finite right and left derivatives D+p(t) and D-p(t) 
+ -at every positive value oft, and D p(t) - D p(t) is equal to the atom 

(if any) ofµ at t, (in particular pis continuously differentiable in 
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t > 0 if and only ifµ has no atoms in (0, 00)). 

+ (c) the derivative D p(O) exists, but may be 

the total mass ofµ, 

(d) p(t) tends to a limit p( 00 ) as t + 00 , and 

-oo 

' 
+ and -D p(O) is 

(8) 

The form of equation (6) may suggest to some readers a connection 

with the theory of processes with non-negative independent increments, 

and such a connection does indeed exist. Writing 

it is known that there exists such a process Yt with 

-t<P(0) 
e 

In terms of Y, define a process Z taking values O and 1 by 

s + y = t 
s 

for some s. 

(9) 

Then it has been shown by Kendall (in an as yet unpublished study of the 

sample functions of regenerative phenomena) that Z defines a regenerative 

phenomenon whose p-function satisfies 

(10) 

The most important example of a regenerative phenomenon arises as 

in (1), where Xt is a Markov chain in the sense of Chung [2], a Markov 

process taking values in a countable set S, For any i E. S, we may take 

x0 = i, and the phenomenon then occurs at time t if and only if the chain 

is in its initial state i. If the transition probabilities are written 

then the p-function of the phenomenon is just the diagonal transition 

probability p .. (t). It is usual to assume that 
l.l. 

(11) 
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in which case p .. (t) is a standard p-function, to which all the general 
ll 

results about such functions may be at once applied. 

This observation yields nearly all the known properties of the 

function p .. (t) (as given for example in [2}}. But there is one sur-
11 

prising exception, for it is known that every function of the form 

p, .(t) is continuously differentiable int> O. In view of the remark 
ll 

made under (b) above, this is equivalent to the statement that the 

corresponding measureµ has no atoms (except perhaps at 00). This can even 

be strengthened to show thatµ has a density in (0, 00). 

It therefore follows that not every standard p-function is of the 

form pii in some Markov chain. On the other hand, it is not difficult 

to show that every standard p-function is the limit of a sequence of 

such functions pii' It is therefore a delicate, and at present unsolved, 

problem to determine which standard p-functions can arise from Markov 

chains. All that can be presented here is an account of the few known 

partial results, 

Because (6) sets up a one-to-one correspondence, the problem of 

characterising the functions pii is equivalent to that of characterising 

the corresponding measures µ_ Call µ a Markov measure if the standard 

p-function corresponding to it in (6) can be expressed in the form pii 

for some Markov chain. Then the following facts are known [6]: 
(A) the value of the atom at 00 is irrelevant to deciding whether 

or not a measure is a Markov measure, 

(B) any multiple of a Markov measure is a Markov measure, 

(C) any finite or countable sum (subject to (7)) of Markov measures 

is a Markov measure, 

(D) any Markov measure of infinite total mass admits a decomposition 

as a countable sum of totally finite Markov measures, 

(E) the convolution of two totally finite Markov measures is a Markov 

measure, 

(F) any Markov measure has a density on (0, 00 ) which is lower-semi­

continuous and strictly positive (unless it is identically zero), 

(G) any measure on (0, 00 ) satisfying (7) and having a density of the 

form 
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00 00 

I I a 
mn 

(12) 

m=O n=O 

where amn .:::_ O, is a Markov measure. 

The difficulty of the characterization problem arises from the 

tension between the continuous time parameter and the essentially dis­

continuous nature of the stochastic process. If more general Markov 

processes are considered) the difficulty disappears. Indeed, let Z be 

any standard regenerative phenomenon, and let 

X = t - sup {u 2_ t; Z = 1} t u 

be the time elapsed at t since the last occurrence of the phenomenon. 

Then Xis a Markov process, and the phenomenon defined by (1) with 

x = 0 is a trivial modification of Z with the same p-function. 

It should be remarked; however, that for this process the pheno­

menon defined by (1) with any non-zero value of xis not standard. If 

p arises from a Markov process in which all states determine standard 

phenomena, then [6, III] similar restrictions on p apply as in the 

Markov chain case. 

The direct application of the theory of p-functions to Markov chains 

involves the functions pij(t) only for i = j, but the theory can be modi­

fied to deal also with the non-diagonal case i I j. The appropriate 

concept is that of a quasi··Markov cha-in, which is a stochastic process 

taking values O, 1, 2, "·•• N such that each of the states 1, 2, ••• , N, 

though not the anomalous state O, has the Markov property of regenerating 

the process. An example of such a process can be obtained from a Markov 

process X by taking distinct states x1 , x2 , ... , xN and setting 

where 

f(x) = r 
r 

f(f;) 0 

(14) 

(r = 1, 2, ... , N) 
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The analogue of the p-function is a matrix-valued function, whose Laplace 

transform has a representation similar to (6). In particular, in the 

countable case, a typical p-matrix with N = 2 is 

(15) 

The detailed consequences of the theory of quasi Markov chains for 

the characterization problem will be found in [6]; it suffices here to 

quote the main result. A function f(t) can be expressed in the form 

pij(t), where i and j are distinct states of some Markov chain, if and 

only if f is expressible as a convolution 

(16) 

or more explicitly 

where 

(i) p1 and p2 are diagonal Markov transition functions, 

(ii) µ is a totally finite measure on !9, 00) which, apart from a 

possible atom at O, is a Markov measure, and 

(iii) µ[O,oo) I:p1 (t) dt <1. 

It follows therefore that, if the class of Markov measures can once 

be determined, the characterization problem for the transition functions 

of Markov chains, both diagonal and non-diagonal, will have been solved, 

and the known theorems about the functions p .. will fall into their 
l.J 

natural perspective. This will not, however, dispose of all the outstanding 

problems even in the analytical part of Markov chain theory (leaving aside, 

that is, problems about sample function behavior). For example, Kendall 

and Speakman [s] have studied the function 

g(t) = inf pii(t), 
i 

(17) 

JK 8 



79 

and a systematic theory of such g-functions is urgently needed. Again, 

recent work of Williams (as yet unpublished) has added new interest to 

the problem of giving necessary and sufficient conditions for a set of 

numbers q .. (i, j ES) to be expressible as the derivatives at the origin 
l.J 

(18) 

of the transition functions of some Markov chain. Indeed, it would seem 

that the deep problems of the analytical theory of Markov chains are to 

characterize the various functions and matrices arising, of which the 

problem described in this brief survey is the simplest, if not the least 

demanding. 
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ON S~UENTIAL SEARCH 

by B. Eichhorn (Israel) 

Dept. of Statistics, Tel-Aviv University 

THE PRO Bl.BM IN GENERAL. 

We face an unknown function f, belonging to a family of real functions 

q;-, .r ] .., say on the interval I= L0,1 , with some given properties. For instan-

ce, the family of all monotone nonincreasing functions with exactly one 

zero on I. 

We want to estimate a point (or points) of I where f assumes values of 

particular interest (for instance, the value zero or its maximum) by 

using some specified estimate for which a loss function giving "the loss 

due to estimation" L (estimate, f) > 0 is defined. To help us make this 

estimate we are allowed to observe the values of the function fat 

points of the domain I which we can choose sequentially. 

The problem varies according to the specific assumptions about the class 

Yand the way f is obtained from it, by the kind of estimate to be used 

(point or interval),the requirements imposed on it and the loss function 

attached, by the kind of estimating procedure allowed and kind of opti­

mization sought, e.g. a minimax procedure. 

We distinguish between two kinds of sequential estimating procedures: 

(a) The fixed sample size sequential procedure, or n-observation 

sequential procedure Tn' where the fixed number of observations is n. 

The class of all Tn admissible with respect to the particular problem 

that is discussed will be denoted by :r:_. We shall call it briefly an n­

seq. procedure. Here we are allowed exactly n observations whose places 

we can choose sequentially, making the place of the ith observation a 

function of the places and values of the first i-1 observations, 

(b) The "true" sequential procedure Te: J"; the class of all such ad­

missible procedures, which we shall call just sequential procedures. 
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Here we do not fix ahead of time the number of observations. Instead we 

use a stopping rule o :s{ o 1, 02 , .... } which at each stage i tells us 

wether to stop or to continue and take the (i+l)st observation, or in a 

somewhat more general way tells us to stop with a certain probability oi, 

each oi being a function of the first i observations. 

In this case, where the number of observations is not fixed, we assume a 

cost of observation in addition to the loss due to estimation, Usually 

we shall assume a constant cost c > 0 per observation. In this case we 

are concerned with the "total" cost which is defined as the sum of the 

cost of observation and the loss due to estimation 

R(T,f) "' L(T,f) + cn(T,f) • 

R,L and n are functions of the procedure T and the function f. If T and 

f do not determine n and L completely but determine their distributions 

we define R(T,f) = E(L(T,f)) + cE(n(T,f)). We call a procedure nonran­

domized if the places of observation are completely determined by the 

procedure T and the function f, each observation being a function of the 

information obtained so far. This is in contrast to randomized procedures 

where our next observation could be chosen randomly according to some pro­

bability distribution which is determined by the previous observations. 

Let us state all this precisely. 

DEFINITION, A nonrandomized n-seq. estimating procedure Tn is given by 

(1) 

where x1 EI is the first place of observation, the other places of 

observation xk are given by 

I' 

which are functions of the former xi's and f(xi)'s; tis the estimate, 

which is a function of x2 , •.. ,xn and f(x1), •.• ,f(xn), and its range 

depends on the particular problem and the kind of estimate we use. For 

instance if we use an interval estimate, twill take values [s,tj with 

s,t EI ands< t. 
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DEFINITION. A nonrandomized sequential procedure Tis given by 

(2) T = {60,lo,x1,61,l1,g2,62,l2,,, .. } 

where x1 and gk, (k ~ 2) are as in (1), ck' k = 0,1, •.• is the probability 

of stopping with k observations given the values of the first k observa­

tions. So having reached stage k we stop with probability 

0 
k 

o k 
_ i;- k-1 0 

l l i=O i 

(usually Ok will be O or 1). 

For any 
er- c;;--

TE: 'J we require that for each f e: .r together leading to the 

sequence 

(3) 

x1 , f(x1), x2 , f(x2), ••• we shall have 
00 

l o k (T, sequence) = 1 
k=O 

but each o k depends only on the first 2k elements of the <sequence. As 

each sequence is completely determined by T and f (T being nonrandomized) 

we can also write ok(T,f) and (3) becomes 

(3') l ok(T,f) = 1, 
k=O 

for all T € T and for all f e: :f'. Condition (3) assures us also that T 

will stop with probability 1. Finally the 1. 's are the estimates we would 
]. 

make if we stop after i observations; they are also functions of x 1 ,."''xi 

and f(x1), ••• ,f(xi). 

In a former paper [5] we found the following result concerning minimax 

procedures. The theorem is stated in slightly more general terminology 

than of a search problem. 

THEOREM 1. Let 5°::{f} be a set of "states of nature," X be a set of 

possible places of observation on f, and di= Di(x1 , ••• ,xi,f(x1), ••• ,f(xi)), 

i = 1,2, •.• be a set of admissible decisions, given the first i observa­

tions. Let there be a bounded loss function L(d,f), giving the loss for 

taking decision d for state f 

(4) 0 5: L(d,f) 5: 1. 
BE 3 
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Then-seq. nonrandomized procedure T and the "true" sequential decision 
n 

procedure Tare defined in analogy with the estimating procedures (1) 

and (2) respectively, as dn replaces£ and d. replaces£.; a constant 
i i 

cost of observation c > 0 is assumed in the latter case. If for every 

integer n ~ 0 (and 

L* such that 

e:> 0) there exists a procedure T* e: T and a number n n 

n 

(5) sup L(d (T*,f),f)-¥- (-d ~ L* ~sup L(d (T ,f),f) 
fe: g; n n n - f e: J; n ~ 

for all T e: J"" and also 
n n 

(A) the sequence Lri - Lri-l + 0 is strictly decreasing, and 

(B) for each "true" sequential procedure T and any given 

integer k > O, there exists f* = f*(k,T) such that 

(6) L(d.(T,f*),f*) > L'!' I 
i = i 

then if we define n such that 
0 

(7) L* - L* >c>L* - L* n n -1 = n +l n 
0 0 0 0 

for i = 0,1,2, •.. ,k, 

or n0 = 0 if (7) does not hold for any n, Tri is (e:) minimax among all 

nonrandomized sequential decision procedures0 T e:J"". That means, if 

R(T,f) = E(L(T,f)) + cE(n(T,f)) ~ 

(8) = sup EL(d (T* ,f),f) + cEn 
fe:Ji no no o 

= sup L(d (T* ,f),f) + n c 
fe:$° no no o 

[L(d.(T,f),f) + ic]o.(T,f) 
i i 

for all T e: T. 

This was applied to the following slach problem. 

Let :f" be the class of all unimodal functions on I, that means, for 

each f e: j,there exists x(f) e: I such that 

(9) f is strictly increasing for x ~ x(f) 
- (f) 

and strictly decreasing for x > x , or 
(f) and 

strictly increasing for x < x 
{f) 

strictly decreasing for x x . 
BE 4 
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( f) 
We want to estimate x by means of an interval estimate [s,t] which 

(f) 
has to contain the true x • Our loss due to estimation will be the 

length of this interval L([s,t]) = t - s. J.Kiefer [1] found an £-minimax 

solution for then-seq. case. His procedure, called the Fibonacci method, 

which we shall denote T~(g),is £-minimax, namely, for any given c> 0 

(10) sup L(T*(c),f) -c SL* s sup L(T ,f) , for all T E J, 
fe: ;fa n n fe: Ji n n n 

where L(T ,f) is the loss due to estimation resulting from using proce-
n 

dure T on the function f. L* is known to be 1/U 1 , U being the nth 
n n n+ n 

Fibonacci number defined as follows: 

By showing that conditions A and B of Th. 1 hold for this problem we 

showed that the £-minimax sequential procedure here is of a fixed size. 

Let us consider the simpler search problem of finding a root (zero) of 

a monotone function. 

PROBLEM 2. 

Let :f' be the set of all monotone nonincreasing functions on I with one 
(f) . (f) 

zero at x EI. We want to estimate x again using interval esti-

mates that have to include the true x(f) and where the loss due to 

estimation is the length of this interval. 

(a) For each fixed n we have a minimax procedure T~ which is 

the Bolzano method of taking the next observation at the middle of the 

"interval of uncertainty". Thus T* n takes 

X = ½ 
0 

X = 
1 ½ + ½ sgn f(x) 

0 
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(D.J, Wilde [4]). L* = l/2n which is the length of the last interval of n 
uncertainty. 

Conditions (A) and (B) of Theorem 1 are easily seen to hold here, and 

using the theorem we have for part (b) of this problem we get: 

COROLLARY. For problem 2 1 the Bolzano procedure Tri 
0 

< 

with n such that 
0 

r:­
is minimax among all "true" sequential procedures T E :J • 

PROBLEM, 3. A PRIORI DISTRIBUTIONS ON x(f)AND OPTIMAL PROCEDURES. 

Let Jbe the class of all monotone nonincreasing functions on I with 
(f) 

one zero x E I. This time we assume that f is picked in such a way 

that there is a continuous a priori distribution G of x(f) on I, 

Again there is a constant cost c > 0 per observation and for each kind 

of estimate and loss function we want to find an optimal procedure, that 

is, the one which minimizes the expeated cost. 

For the fixed size procedure we aim to minimize E(L(T ,f)), for the 
n 

sequential procedure to minimize E(R(T,f)). We consider a few particular 

cases. 

(a) We use a point estimate x and assume loss due to estimation 

(11) L( A (f) ) - I A - (f)I X 1 X - X X , 

If we are given the a priori G with density g on I and have to estimate 
(f) 

x without taking any observations, the best estimate, namely the 

one which minimizes E(L), is M the median of G, 

From here we would like to proceed to then-seq. procedure. It may seem 

that if we take an observation the best place to look for information 

is where we were going to make our estimate, namely at M. However, this 

is not true in general as we can see from an example. Consider the 

a priori distribution G with density g(x) = 2x. Let us take one obser­
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vation 
(f) 

and then estimate x 
1 

The median of G is M = ✓2 and the 

expected loss due to estimation is 

E(L(M)) "' 0,096 

It is easy to calculate the optimal place of observation x1 = 0.645 

with expected loss E(L(X1)) = 0,02, 

For this G and other "nice" a-priori distributions one could, in prin­

ciple, find n-seq. optimal solutions by working backwards from stage n 

to 0. A particularly nice G is the uniform one. 

(b) Assume a uniform apriori distribution G for the problem 

in (a). 

THEOREM 2. Then-seq. procedure Tri defined by 

(12) { 1 1 1 
T* = 2, x1 + sgn f(x)2 , ... ,x 1 + sgn f(x 1) n 2 n- n- 2n 

=C21 max(0,x.lf(x.) ~ 0) + min(l,x.lf(x.):,:; 0)]} 
i i i i 

is optimal in T , namely 
n 

(13) E(L(T*)):,:; E(L(T )) 
n n 

for all T E 
n 

.r 
n 

PROOF. First we notice that after taking then observations the best 

estimate is in ~he middle of the interval of uncertainty Vn 

use V ambiguously to denote also its length), 

(we shall 

n 

giving expected loss 

E(LI V ) = .!. V 
n 4 n 

This is clear since the aposteriori distribution is uniform on V 
n 

Consequently 

(14) E(L(T ) ) ~ 4
1 E(V (T )) 

n n n 
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r,­
and we need only prove that E(V (T*)) $ E(V (T )) for all T E J . 

n n n n n n 

From here on we consider interval estimates which are the intervals of 

uncertainty. This will only change the scale of the loss function, 

nultiplying it by 4, and all results will hold as well for the point 

estimate. 

r.-" 

Let Tn be any procedure in Jn and Vk be the interval of uncertainty 

after k observations. If T 
n 

vk into two possible Vk+l's 

takes the next observation at xk+l dividing 

of size Yk+lVk and (1-yk+l)Vk, 0 $ yk $ 1 • 

At this stage we have a uniform apriori on Vk so we obtain 

This inequality holds for all yk+l and any Vk. We can conclude that 

and therefore 

(15) 

for all T 
n 

E(V (T )) > .!_ 
n n - 2n 

Since E(V (T*)) = 1/2n we have established (13) and proved Tn* to be 
n n 

optimal. 

(c) We now introduce a cost c > 0 per observation, and try to 

find an optimal "true" sequential procedure, using the interval of 

uncertainty as estimate. We want to minimize E(R) = E(V) + cE(n). n 

Let us consider the procedure T*(c) = 

(16) ___ 1__ < C $ _1_ 
2no + 1 2no 

T* 
n 

0 

for n = n (c) satisfying 
0 0 

This procedure takes observations in the middle of the interval of 

uncertainty as long as one further observation will reduce the interval 

of uncertainty by at least c. 

This however is not an optimal procedure. The following example will 

show this. 
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Let c = 31/120, then T'l'(c) = Tf , and we get R = 1/2 + 31/120 ~ 91/120 • 

Now consider instead the procedure T' which takes its first observation 

at x 1 < 1/2. If f(x) ~ 0 it stops with v 1 = [o,x 1J, if f(x 1) > O it takes 

a second observation at x 2 = x 1 + ;/2(1 - x 1) and stops with 

+ 2c] 

This is minimized for x1 = 1/3 + 1/3 c = 151/360. Therefore, let T' take 

x1 = 151/360, We obtain E(R(T')) = 65039/86400 < 91/120. It follows that 

T* is not optimal. This is even true when c = 1/4, E(R(T*)) = 3/4, while 

taking x1 = 5/12 in T' leads to 

E(R(T')) _ 71 < 72 = 
96 96 

3 4 • 

We can see, therefore, that for a small enough E> 0 we may put c = 1,4-E 

and have T' take fewer observations than T* and yet have a smaller 

expected total cost. 

These examples show that T* is not optimal, but we shall show that T'I' is 

still valuable. While the optimal procedure is hard to calculate in each 

case,T* is very simple and moreover: 

THEOREM 3. T* is c-optimal. That means the expected cost from T* is less 

than cover the optimal expected cost. The proof of this will follow from 

the following theorem by D,Blackwell. 

We introduce in our problem the following notation: 

n = expected sample size , 

A= expected length of final interval. 

We are interested in the question~ Which pairs (n,A) are attainable by 

sequential procedures? 

THEOREM* If (n,A) is attainable, 

A :e: 2-n • 
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PROOF. First we shall notice that if we prove the theorem for procedures 

that at each stage decide whether to stop or to take another observation 

without randomization, then it will follow also for procedures that 

allow randomization, This is a result of the convexity of the function 

2-x So if we decide to stop with probability 0 ~ s ~ 1 and state (n1 ,\1) 

and go on with probability 1 - s to state (n2 , \ 2), 

We are going to attain (sn1 + (1 - s)n2 , s\1 + (1 - s)\2 ) and from the 

convexity it follows that 

So we have to prove the theorem only for the first kind of procedures, 

We look at procedures truncated at k steps and use a proof by induction 

on k. Among procedures truncated at 0, the only point is (0,l) and the 

result holds, Suppose the result is true for procedures truncated at k. 

A procedure truncated at k+l can either take no observations in which 

case we get (0,1) or it definitely takes one observation. This means it 

specifies an initial x, 0 < x < 1 and two procedures n1 and n2 truncated 

at k: 

Use n1 when [0,x] occurs, n2 when [x,1] occurs, The resulting (n,\) 

is then 

x(l+n1 , x\1 ) + (1-x)(l+n2 , (1-x)\2) 

where n1 yields (n1 ,\1), n2 yields (n2 , \ 2), therefore, n1 applied on 

an interval [0,x] yields (n1 , x\1), etc,, 

So we must show that if \ 1 ~ f(n1 ) and \ 2 ~ f(n2), then 

x 2 \ 1 + (1-x) 2 \ 2 ~ f(l + xn1 + (1-x)n2) 

where f(t) = 2-t • For this it is enough to show that 

Say n1 ~ n2 and write n1 - n2 = t. Multiply both sides by f(-n2): 
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put 

f(t) = a: 2-k < < 1 0 < <_ 1 - a - , - X , 

X 2 
Fix x and maximi~e a - 2x a= ~(a) over a. Let us maximize it over a 

larger range: 0 < a, which may, if anything, increase the maximum which 

we want to show to be less than or equal to 2(1-x) 2 • 
x-1 2 x-1 1/x-1 

~•(a)= xa 2x i ~• = 0 : a = 2x: a= (2x) • The maximum of 

,~(a) occurs at a= (2x)l/x-l and is (1-x)x/x-l - 2x2(2x) 1/x-l 

(1-x)(2x)x/x-l • Is for O $ x $ 1, 

i.e., is 

i.e., is 

i.e., is 

Yes. Put 
X 1-x 

= x (1-x) ; then 

a = log 1 = xlogx + (1-x)log(l-x) 

is convex and symmetric about 1/2, assuming its minimum at x = 1/2. 

Since 1(1/2) = 1/2 this completes the proof of Theorem* 

Now we come back to prove Theorem 3, 

PROOF, Using T* we get an expected cost 

as 

-n 
E(R(T*,c)) = nc + 2 

For any other T we get an expected number of observations n(T) = x and 

E(L(T)) = \ ~ 2-x due to Theorem*• It follows that 

E(R(T,c)) -x 
~ min (2 +xc) 
Q$x<~ 
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Put p (x) 2-x+ xc, then E(R ~*,c)) = p(n), 

So the minimum occurs at c 2-x ln 2 ~ 2-x • 0.6931. It follows that 

n-1 -x -n 
2 < 0.6931 X 2 = C ~ 2 

therefore, 

So p(x) ~ (n-l)c + 2-n-l ~ p(n) - 2c. We can do better by considering 

separate cases: If x = n, 

P (x) P (n). 

If x > n, 
-n-1 p(x) ~ nc + 2 ~ p(n) - c. 

If x < n, p (x) ~ (n -1) c + 2 -n p (n) - C. 

Therefore, T* is c-optimal. 

r.­
Finally let us note that the last two results, T* optimal in J and 

n n 
T* c-optimal, remain true when we allow also randomized procedures. 

PROOF. Let Vi be the interval of uncertainty after i steps and let us 

take the next observation at yi+l in such a way that Vi is divided 

into two intervals of lengths xvi and (1-x)V. , where y is a random 
i i+l 

variable and therefore xis a random variable on [0,1]. Then 

Therefore, we could have taken x = E(x) constant and done at least as well. 

(d) Let us consider again a point estimate i for X(f) but with a 

square error loss function 

For this case we obtained results exactly analogous with the results for 
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the loss function L lx(f) - ii including theorems 2 and 3. 

RAND<»iIZED PROCEDURES. 

Let us return to Problem 2. In view of the results obtained for uniform 

a priori distributions we may try to see what we can say about randomi­

zations and minimax Procedures. 

THEOREM 4. For Problem 2(a) T* is minimax among all randomized n-seq. 
n 

procedures. 

PROOF. We know that T* 
n 

is the optimal procedure (Bayes solution) among 

all randomized procedures when a uniform a priori distribution is assumed. 

T* has constant risk R = 1/2n for all x(f) e I, therefore following a 
n 

known theorem and a lemma found in Lehmann [6] the uniform distribution 

is "least favorable" and T* is minimax among all randomized procedures 
n 

. this time. 

Let us go through the proof as a preparation for the next theorem. 

PROOF. T* 
n 

(f) 
is constant over x e I, therefore 

sup R(T* ,x) = J R(T* ,x)dx 
xeI n I n 

:S!R(T ,x)dx 
I n 

by optimality of Tri 

:S sup R(T ,x) 
n 

for all T e T 
n n' 

XE I tr' 
where :J 

n 
is the class of all randomized n-seq. 

procedures. Q. E.D. 

Now let us look at the problem 2(b). We know that T*(c) is c-optimal 

among all randomized procedures, given a uniform a priori distribution. 

T* has also a constant cost. 

THEOREM 5. T*(c) is c-minimax among all randomized procedures. 

PROOF. sup R(T*,x) = JR(T*,x)dx :S JR(T,x)dx - C :S sup R(T,x) - C 

XE I I I XE I 

for all TE Y. Q.E.D. 
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EXTENSIONS. 

There are many possible extensions of the search problem some of which 

were explored by Kiefer [2] and Wilde [4] and several others. We did 

some further work considering restricting the class ;j" by putting a 

bound on the slope off. This produced several new concepts and interes­

ting examples. 

J. Kiefer defines in [2] the order of the search problem as the minimum 

number of observations needed in order to be sure to obtain some infor­

mation on the location of x(f) . 

Here we considered only first and second order problems. In [2] Kiefer 

solves the minimax n-seq. problem for the third order search, the search 

for an inflection point. It would be interesting to see the effect of 

randomization on the second and third order procedures, as well as the 

effect of various a priori distributions on these problems. It seems 

likely also that one would be able to find "almost optimal procedures" 

for nonuniform a priori distributions at least for the first order 

problem. 

Another important extension would be the consideration of different 

loss functions; for instance, for the first order search problem with 

an a priori distribution given, define the loss function as the left 

end of the interval of uncertainty. Professor B. McGuire has some un­

published results on this problem which arose from a simplified 

practical problem. 

The most important extension, in my opinion, is the extension to 

higher dimensions. This may also be the hardest extension. Kiefer 

reports on the difficulties involved already in the two dimensional 

search in [2]. We have considered the search for two zeros on an inter­

val I, or equivalently, the search for an indicator function of a sub­

interval of I. This problem may be reduced to a search for a point of 

the subinterval. Under the assumption that we know a positive lower 

bound to the length of the sought interval, we could find a minimax 

search procedure, yet this procedure was not satisfactory, being inad­

missible, actually dominated by many other procedures out of WJ.ich we 
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could not find a best procedure. 

Another extension would be considering different families of functions. 

Th.is may not bring too many new results. Kiefer also reports on this in 

[2] and deals in particular with the problem of search on a lattice, 

where the domain off is just a finite number of points. This is done 

for both one and two dimensions. 

A last extension that is also mentioned by Kiefer is considering problems 

in which errors are involved in the observation. A paper on this subject 

was written by Kiefer and Wolfowitz [7] . 
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