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I 

SUMMARY 

In the beginning of this century, with the origination of the theory 

of relativity, extensive geometrical investigations of the 4-dimensional 
2 2 2 2 

space R4 (space-time) with invariant pseudo-norm x 0 -x1 -x2 -x3 were done 

by Klein, Minkowski and others. 

Later on this geometrical research developed in two directions, a 

differential-geometrical approach (related to the general theory of 

relativity) and an algebraical-geometrical one (related to quantum 

mechanics). 

In this tract we follow the latter direction. After 1925 more abstract 

techniques, such as representation theory and spinor calculus were 

introduced in this research by Cartan, Weyl, Veblen, Schouten and others. 

Especially the last decade with the use of group theoretical methods 

in physics there is a growing interest in these algebraical techniques 

in the geometrical study of R4 and other spaces in which these groups 

act. More recently also interesting topological investigations of R4 

have been carried out, e.g. by Zeeman. 

The subject of this tract may be seen as being situated in this 

border land between geometry on the one side and representation theory 

and physics on the other side. 

In chapter I we give an introduction to the representation theory of 

the Lorentz group. Besides the standard theory of the finite-dimensional 

representati01s which are used in relativistic quantum mechanics, we 

give in section 7 of this chapter a brief sketch of the theory of 

infinite-dimensional representations of the Lorentz group of Gel'fand 

and Neumark. In chapter II we start with the geometry of the Lorentz 

group. Especially the fact that the Lorentz group may be studied as a 

three-dimensional transformation group gives much insight into the 

geometrical structure.of the Lorentz group. In this way, for instance, 

a brief description of the so-called spin-space of Veblen can be given. 
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In chapter III, which is the principal part of this tract, we relate 

the foregoing geometrical investigations with physics. In fact, it is 

an investigation of the projective-geometrical background of some 

equations which are well-known in physics as the Proca, Ma:cweii, WeyZ 

and generaZized WeyZ equation. These equations are all linear first order 

equations in an n-component function $(x), i.e. 

a 
axµ 

The idea is that by developing $(x) in plane waves, i.e. $(x) = $(p)eip.x, 

one obtains equations L(ipµ, $(p)) = o, in the so-called momentum space 

which may be studied with the aid of projective geometry. We pay particular 

attention to the zero-mass equations. There we can make the following 

observation: the fact that photons are _only transversaly polarized and 

the fact that there exist only right-hartd neutrinos and left-hand anti

neutrinos is closely related to the fact that the complex light cone is 

covered by two systems of isotropic planes. Also, the fact that the 

Maxwell equations can be brought into neutrino form will be given a clear 

geometrical meaning. 

This chapter is aZready pubZished as '~ero mass equations and projective 
geometry" (thesis) by the author. 

In chapter IV which is again pure geometrical, the 3-dimensional trans

formation group corresponding to the Lorentz group is studied in more 

detail. It follows that every Lorentz transformation may be described 

as a screw in 3-dimensional hyperbolic geometry. For a compact descript

ion of this geometry, the method of Cartan is indispensable (this method 

is a description of orthogonal transformations in Rn by a generalisation 

of the quaternion concept). In section 2 of chapter IV, this method is 

also applied to the 6-dimensional space of anti-symmetric tensors pµv, 

and especially, the group which leaves the so-called configu:roation of 

Kurrqner invariant is studied. 
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Chapter I 

REPRESENTATIONS OF THE LORENTZ GROUP 

A. THE ALGEBRAIC METHOD 

1. Introduction 

The actual study of the Lorentz group found its origin in the theory 

of relativity. In this theory one of the principal postulates is the 

invariance of the velocity of light, that is to say: the measured 

velocity c of light is independent of the motion of the observer and the 

time-space coordinate system (t, x, y, z) cpnnected with him. 

If the progress of an electromagnetic spherical wave is described by the 

formula 

2 2 
C t 

2 2 2 
X +y +z, 

then the principal postulate requires that we study only coordinate 

transformations into systems in which this formula preserves its form. 

Such a transformation is called a Lorentz transJormation. In the usual 

four-dimensional notation one describes the components of a vector x 
µ . _o 1 2 3 

by x (µ=0,1,2,3) i.e. (ct, x, Y, z) = (x , x , x , x ). 

With the development of quantum mechanics around 1930 one became inte

rested in the study of vector-functions ,~(x) = (l/i 1 {x), \/J 2 (x), ••• 1/Jn(x)) 

defined on the four-dimensional vector space R4 , where the function 

values belong to an R. 
n 

A Lorentz transformation, x' = Lx, induces a linear transformation D(L) 

in this n-dimensional space of function values and by this a so-called 

n-dimensional representation of the Lorentz group. 

The classification of all n-dimensional irreducible representations of 

the Lorentz group was given by Cartan and Weyl using spinor calculus, 

and was applied to quantum mechanics by van der Waerden. 

In connection with the special interests of physicists in time and space 

reflections a systematic treatment of the representations of the Lorentz group 

including reflections was given (among others Watanabe 1951). 
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A closely related subject is the theory of linear partial differential 

equations, i.e. L(~(x)) = O, which are invariant under Lorentz transform

ations. The equations of Maxwell and Klein-Gordon were already known, 

but the theory found its real start with the equations of Dirac in 

1928. Since then the theory of Lorent,z invariant equations has been 

uniformized by Pauli, Fierz and especially by Bhabha (1945-1949). 

Dirac (1945) noted the existence of infinite-dimensional irreducible 

representations of the Lorentz group, In 1946-1954 Gel'fand and Neumark 

were able to give a classification of all infinite-dimensional represent

ations of the Lorentz group. 

They showed that in particular every infinite-dimensional representation 

may be realized in a suitable space of complex functions f(z). These 

results were applied to the study of the infinite-dimensional space of 

the functions. ~(x) = (~ 1 (x), ... , ~n(x)) , where x ~ a4 . It is well

known that the spherical functions ~lm form a basis of all single-valued 

representations of the rotation group. From 1955 onwards similar methods 

for the Lorentz group (the harmonica! analysis of the Lorentz group) are 

developed. 

Nowadays the study of infinite-dimensional representations of arbitrary 

semi-simple non-compact Lie groups is influenced by the representation 

theory of the Lorentz group. 

Chapter I gives a brief introduction to the representation theory of the 

Lorentz group. Proofs and examples are given only if they contribute to 

the understanding of the subject. 

In part A of chapter I the so-called algebraic method is treated. After 

the most important definitions in section 1: Section 2 serves as an 

example of the principal concepts of the representation theory. The 

fundamental theory may be found in section 3. The theory of Lorentz 

covariant equations is treated in section 4 ( and section 8), in which 

special attention is given to the equation of Dirac. 

In part B of chapter I, the theory is developed starting with the theory 

of Lie groups, the so-called infinitesimal method. The more "technical" 
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information is given in the sections 6 and 8, while in sections 5 and 

7 some theoretical background is given; however, this is not necessary 

for the understanding of the sections 6 and 8. In section 7 special 

attention is given to the work of Gel'fand and Neumark. 

A short note on the use of the representation theory of the Lorentz 

group in elementary particle physics may be found in the sections 3.4 

and 8.3. 
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1.1. The Lorentz group and its subgroups 

In the real, space R4 , with four-vectors x 

pseudo norm: 

µ 
- X , there is defined a 

Definition A Lorentz transformation Lis a linear transformation x' Lx, 

which leaves the norm of x invariant, i.e. (x)2 = (,c 'J2. 
All Lorentz transformations form by definition the ful,l, or general, 

Lorentz group L. 

Thus a Lorentz transformation leaves quadratic surfaces:(x) 2 = constant 

invariant, e.g. the light cone ,(x2 )= 0, a hyperboloid of two sheets, 

(x2 )= +1 and a hyperboloid of one sheet, (x2>= -1 . This is illustrated 
0 2 3 1 

in fig. 1.1 for the coordinates x, x, x, (x = O). The components of 

the matrix Lare denoted by Lµ' 

We wrl.. te x11 1 Lµ 1 xµ µ µ , where the 

convention is used. In our 

notations Greek letters µ, v, .•• 

always take the values O, 1, 2, 3 

While the letters i, j are reserved 

for the space values 1, 2, 3, thus 
->- i 4 

_..,rx = x. The symbol x is used for ict. 
-- ,-;.4~x,i 

fig. 1.1 

using the so called metric tensor 

2 
(x) 

Sometimes it is more convenient to 

transformation has an inverse. In an 

alternative way one may interprete 

Las a coordinate transformation as 

well as a point transformation. In 

the latter case one often writes: 
,µ µ \) 

x = L v x , We may write the norm(xT, 

g = g µv= g , as 

=['.-i _; "!J 
. -1 

(1-1) 

2 
or (x) T T 

x gx, where x is the transpose of x. 
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After substitution of x Lx', we obtain for every L. 

From 

(1-2) 

this it follows that det L = + 1 and (Lo ) 2 - (Lo_ Lo_)= 1 so 
0 2 0 i i 

that (L 0 ) .:_ 1. In view of these properties we shall define two important 

subgroups of L. 

1. The reflection group. This group consists of the following 4 reflections; 

the identity E, the space reflection P, the time reflection T and the 

total reflection J = PT 

p 

Sometimes we use the notation S to indicate E, P, Tor J. 
)J 

(1-3) 

During the last years this group has received much attention from 

physicists, see section 3.4. 

2. The restricted Lorentz group L::} This group consists of all Lorentz 

transformation A, such that 

det A = +1 and AO > 1. o- (1-4) 

The last condition implies that a vector directed upwards in the figure 

i.e. q(l, O, O, 0) remains upwards after Lorentz transformation, by 

which the index t is explained. Every Lorentz transformation L can be 

written as the product L = S A of a reflection s and a restricted 
)J )J 

Lorentz transformation A. 

Important subgroups of Lt 
+ 

are 

a. The three-dimensional rotation group o 3+. This group leaves invariant 

. 0 . ( 1)2 ( 2)2 ( 3)2 the time component x and hence the euclidean norm x + x + x . 

r =[~~1 0 0 01 
Thus a rotation r has the form: ~~ 

where the shaded matrix is a 3 x 3 orthogonal matrix with det = +1. 
➔ 23 31 12 -+ 

Every rotation is determined by a vector <Ji (¢ , q, , di ) where qi is 

"') One also calls this group the proper Lorentz groups (Roman, Corson) but 
it seems better to reserve this term for the larger subgroup L+ (det L = + 1) 
(Barut, llilgevoord). Another larger group is thE. orthochroneous group 

Lt (LO > 1). 
0 
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directed along the rotation axis (as a right-handed screw) and l;I ¢ 

is the rotation angle (0 < cp < n). 
- - 1 2 

For instance a rotation in the (x ,x )-plane is given by 

0 0 
cos cjJ -sin $ 
sin ¢ cos ¢ 

0 0 

(¢ (1-5) 

Thus the rotation group is a three-parameter group (see section 5). 

3 
2b. Hyperbolic screws or pure Lorentz transformations along the x-axis. 

0 3 
One can easily verify that the transformations h03 (¢) in the (x, x )-

plane 

[crh cjJ 

sinh <P 

0 
1 
0 
0 

0 
0 
1 
0 

srh ¢] 
cosh ¢ 

(¢ (1-6) 

leave (x0 ) 2 - (x3 ) 2 invariant. In figure 1.1 is drawn the transform

ation h03 (¢): x + x' , q + q'. All h03 (¢) form a one-parameter sub

group. 
0 3 

By rotating the (x , x )-plane the hyperbolic screw h03 (¢) transforms 
-1 + 

into an arbitrary hyperbolic screw h = r h03 r along the q'~axis, i.e. 

in the (x0 ,q")-plane. (it follows that his hermitian). Every point q" 
2 

on the upper branch of the hyperboloid x +1 determines one hyperbolic 

screw sothat q" = hq, q = (1, O, O, 0). Thus all hyperbolic screws can be 
2 

mapped uniquely onto the upper branch of x = +1. (Since this upper 

branch extends to infinity and therefore is not compact it follows that 

the Lorentz group is not compact, see section 5). 

In analogy to the rotation group we also often prefer to determine the 

screw h 3 (cp) by the vector (O, O, ¢) and an arbitrary hyperbolic screw 
O 01 02 03 . 0 

by the vector (cjl , ¢ , cjJ ) = r(O, O, cjl) which lies 1.n the (x , q")-

plane. 

Further, every Lorentz transformation A is the product of a rotation and 

a hyperbolic screw. For suppose that we have A : q + q", then there is 

one hyperbolic screw h so that h : q + q". The transformation Ah-l 
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0 . -1 
leaves q and thus the x-axis invariant, from which follows Ah = r. 

Theorem 1.1. Every full Lorentz transformation Lis the product of 

a reflection S and a restricted Lorentz transformation A, i.e. L = AS 
µ µ 

Every restricted Lorentz transformation A is the product of a rotation r 

and a hyperbolic screw h, i.e. A= rh. 

Hence a restricted Lorentz transformation is determined by the para-
01 02 03 23 31 12 t . . 

meters: (¢ , ¢ , ¢ ; ¢ , ¢ , ¢ ) , and L + is a six-parameter group. 

The fact that the time and space components are interrelated in a 

hyperbolic screw has important physical significance, about which we 

have to say some words in order not to loose touch with physics completely. 

If we substitute tanh ¢ = ~!:~ : = f3 in (1-6) we get 

ct 1 f3 ct' 

1-,3 2 113 
2 

z _f3_ 1 z' 

1-,3 2 1-,3 
2 

This is a well-known formula in the theory of relativity. It expresses the 

transformation of the coordinates of the system 0xyzt into the system 

0x'y'z't' which travels with a velocity v in positive direction along the 

z-axis (f3 = ~). The physical interpretation of this leads to phenomenon 
C 

of the Lorentz contraction of rigid bodies and the fact that clocks slow 

down. 

Further if two hyperbolic screws are performed in succession we get the 

addition law of velocities in the theory of relativity. For (1-6) implies 
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By substituting v = c tanh (¢1 + ¢2 ) and vi 

vl + v2 
follows that v = 

1 + 

See Bergman p. 43. 

V V 
1 2 

C 

c tanh ¢. (i 
1 

1, 2) it 

Other four-component quantities, with the same behaviour as time-space 

µ "h hl f . d vectors x, wh1c we s a 1 meet later on are obtained i we intro uce 

the 'distance" s along curves by integrating the expression 

If we now describe the time-space behaviour of a particle by the curve 

xµ(s) (world line) then the four-velocity a.xl-1(s) is also a vector, 
uµ = 

ds 

because "ds" is an invariant; sis called the proper time of the particle, 
-+ 0 0 

µ v dx dx 
Hence u = (1, ~) ds holds were ds 

One defines the four-momentum by 

mo is the 

].I 
p m cuµ, 

0 

restmass of the particle, and 

➔ mo 2 
m = 2 I energy E me and impuls p 

µ 
p 

1-8 

E ➔ 
(-, p). 

C 

The four-current density is defined by 

1 v 2 
--2 (8 = ~) and (u) = 1 

1-8 

(1-7) 

subs ti tu ting the mass 

➔ 
into l mv one obtains 

(1-8) 

where p O is the rest-charge density, with the charge p and current 

density j pt we obtain jµ = (Pc, j). 
See Barut p. 48, 94, 

1.2. Representations of the Lorentz group, definitions 

Definitions. An n-dimensionai representation D of the Lorentz group 

Lis a homomorphic continuous mapping D of Lorentz transformations 

L onto n x n matrices which will be denoted by D(L). 



9 

In a homomorphic mapping products are preserved. Thus if 

D : Ll ➔ D(L1 ) 

and L2 ➔ D(L2 ) 

then Ll L ➔ 
2 

D(L1 L2) = D(L1 ) D(L2 ). 

The identity E corresponds with the n x n unit matrix D(E). 

If the mapping is one to one, then the mapping is called isomorphic and 

the representationfaithfull. Although the definition of a representation 

may be generalized to a mapping onto bounded operators D(L), which act 

in an infinite-dimensional linear space; we restrict ourselves for the 

present to finite-dimensional representations which act in Rn. See 

remark 6.1. 

A representation D(L) is called (completely) reducible if there is 

exactly one coordinate transformation Sin R so that for all L the 
-1 n 

transformed matrices D'(L) = S D(L) Sare in a diagonal-block form, 

for instance 

D' (L) 

where n1 (L) and n2 (L) are n 1 x n 1 and n 2 x n 2 matrices respectively. 

Thus then-dimensional representation space Rn contains an invariant 

n1-dimensional linear space R and an invariant n 2-dimensional space 
nl 

R (n = n 1 + n 2 ) • 
n2 

With the symbol 11 + 11 (tensorsum) one describes 

or R 
n 

If there does not exist an invariant linear subspace (except the trivial 

ones: O and R) one calls the representation irreducible. 
n 

Representation D and D' which differ only by a coordinate transformation 

S, determine the same linear transformation in Rn and are called equivalent. 

In the representation theory often use is made of the following two 

lemma's of Schur. 



10 

Theorem 1.2. First lemma of Schur. If D(A) is an irreducible 

representation of a group then a matrix S corronutes with all matrices 

D(A) if and only if Sis a multiple of the unit matrix. 

D(A) irred,: D(A)S = SD(A) (for all A)<=> S = AE 

This lemma gives a criterion for irrreducibility. 

(l-9a) 

Theorem 1.3. Second lemma of Schur. If D(A) and E(A} are two non

equivalent representations then 

D(A)S = SE(A) (for all A)<=> S = 0 (1-9b) 

If there are given irreducible representations D1 (L), D2 (L), 

we can construct an infinite number of reducible representations by 

taking tensorsums: D(L) = D1 (L) + D2 (L) + ... 
Hence only the (non-equivalent) irreducible representation of a group 

give essential information about the possible representations of a 

group and therefore the first task of the representation theory of a 

group is to classify all irreducible representations of this group. 

One of the most important aids in constructing irreducible represent

ations of a group is formed by the concept of tensorproduct which 

will be considered in the following section, 

For literature concerning the general representation theory of groups 

see Ljubarski, Hamermesh, Lauwerier and the literature cited there in. 

2. Tensor representations of the Lorentz group 

This section serves as an introduction to the concepts of tensor product, 

reducibility with respect to a subgroup, pseudo tensors etc, Therefore 

special attention is devoted to the first-rank (vector) and second-rank 

tensor representations. 

The vector representation 

This is the trivial representation L ➔ L, i.e. the mapping of the group 

element L onto the 4 x 4 matrix L. The vector representation is ir

reducible, since there is no invariant linear sub-space, for the only 

invariant surfaces are hyperboloids and one cone, each of which span 

the whole space R4 . 



11 

representation. Instead of the dimension n of the irreducible subspaces, 

with respect to the rotation group, one often uses the spin value j 

defined by j = ½ (n-1)*). Thus in the vector representation we have 

the spin values j = O, 1. 

Equivalent to the vector representation is the representation one 

obtains by performing a coordinate transformation, e.g. a reflection: 
\) 

gx. One denotes the components of gx with lower indices i.e. xµ = gµvx 
µ 2 

(note that xµx = x ). 
-1 -1 T 

The matrix L transforms into g Lg= (L ) (formula (1-2)) or in 

components one writes 

µ I 

L µ + L µ, (1-10) 

Note that the indexµ' is lowered by g , , and that the indexµ is 
µ \) 

raised by gµv. In this way we obtain a consistent notation of aontra-

variant vectors -,!- which transform by -,!- = rP :if and aovariant vectors 

xµ which transform by xµ, 

There holds that 

L µ 
µ' 

µ 

X • µ 

I 

Thus besides the relation xµ = Lµ xµ we have xµ = L µ xµ 
µ µ 

(1-11) 

We obtain a non-trivial representation, equivalent to the vector 

representation, by defining now the four operators 

a 
µ 

we will show that a is transformed as a covariant vector. 
µ 

(1-12) 

Therefore we consider the space of all functions f(x), (x ~ R4), which 

*) Physicist would prefer perhaps the expression "possible spin values" 

One also uses "the weight j", but "highest weight j" would be better, 

seep. 26 and section 7.2. 
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transforms as 

f I (x I) f(x) x' Lx. (1-12a) 

Or replacing the argument x' by x we get the transformation D(L) such that 

D(L)f(x) = f'(x) = f(L-lx) 

It follows that D(L) is a representation because D(L) is a linear operator 
-1 -1 

and D(M) f' (x) = f(L M x), 

thus D(M)D(L) = D(ML) . 

Differentiating f'(x') with respect to~' = 

a f I (x I) : 

axµ 
a f(x) µ I 

--, 
axµ µ 

or a f' (x') = L I 

µ 
a f(x J, µ' µ µ 

rJl I xµ we obtain 
µ 

which indicates that a indeed transforms covariant. µ 

Through here the well-known comma notation is justified 

f' µ• = L µf 
> µ I > µ 

The second-rank tensor representation 

(1-12b) 

Starting from the vectors ~ and -/ one may form the set of 16 components 

which may be interpreted as a vector in a 16-dimensional space, Xis 

called the tensor product of x and y and all X span the 16-dimensional 

space R of second-rank tensors X(~v), in general det Xi o. To a 
16 I I 

Lorentz transformation xµ = r!1 xµ there corresponds a transformation 
µ 

of X i.e. 

or 

~ '\J' µ I 

r.: 

X' = LXLT. 

µ 

Thus the vector Xis transformed by the 16 x 16 matrix L x L 

where 1lv' indicate the rows and µv the columns 

(1-13) 

µ I VI 

(L L ) , 
µ V 
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LO' L 
0 . LO' L 

3 

L X L (1-14) 

L31 L 
0 

L31 L 
3 

The mapping L ➔ L x Lis called the second-rank tensor representation 

of the Lorentz group Land is reducible, as it is possible to write 

X as the sum of a symmetric and an anti-symmetric tensor 

T 
= ½<x T 

X s + F, where S = ½(X + X) and F - X ). 

The tensors s and F span a 10-dimensional linear space a10 and a 6-

dimensional linear space R6 respectively. 

[ 00 Oi ] 

FOl F02 F03 

:o, I s'j: 5;, 

0 

F -FOl Fl2 31 
(1-15) s 0 -F 

-F20 -Fl2 0 F23 

-F03 F31 -F23 0 

A Lorentz transformation X' = L X LT leaves both spaces invariant, i.e. 

it transforms an (anti-) symmetric tensor into an (anti-) symmetric 

tensor. Thus the second-rank tensor representation is reducible. The 

space a10 of symm&tric tensors is still further reducible into the 

invariant space R1 , formed by the metric tensor i.e. 

T 
g' = LgL = g, see (1-2), 

and the 9-dimensional space R9 of symmetric tensors with vanishing 

"trace", The "trace" Xis defined by 

"trace" X = x00 - x11 - x22 - x33 = ,fv ~µ, 

thus "trace" X = Xl.J and with (1-11) it is easy to prove that XµI' is a 
µ f l.J l.J . 

scalar i.e. X , = X • Thus a9 is an invariant space. It will be proved 
l.J µ 

later on that these representation spaces do not contain further invariant 

subspaces, thus that they are irreducible, (see formula (1-36». Hence we 

have: 
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However, with respect to the restricted group Lt, the space R of anti-
+ 6 

symmetric tensors is further reducible. Therefore we write the matrix 

Fµv, from formula (1-15), in abbreviated form as 

F)JV = (E, H), 

where Ei = FOi and Hi= Fjk (i, j, k = 1, 2, 3 and cycl.)*) 

Consider now the 3-dimensional spaces R3 and *3 of anti-symmetric tensors 

of form 

G 
➔ ➔ 

(G,-iG) 6 R3 

4 -+ 
(G,+iG) 6 *3 

(1-16a) 

(1-16b) 

Every Fµv may be written as the sum of anti-symmetric matrices of type 

G and G, Le. 

➔ ·➔ 

(E, H) ½(G,-iG) +½(t, + id) where G 
4 

and G 

-➔ ➔ 

E + iH 
-➔ ➔ 

E - iH 
(1-16c) 

We will prove that R3 remains invariant, thus that G' =AG AT is also 

of the same form as G, i.e. G' = (G', -iG'). By which 
➔ ➔ ➔ µV •)JV 

follows that G' = E' + iH' and that G and G defined by (l-16c) 
T ➔2 

indeed transform contravariant. Therefore we note that G g G = g (- G) , 

thus all G and G form two linear spaces of anti-symmetric tensors which 
➔2 

are also Lorentz transformations if G i 0, (More exactly they are complex 

Lorentz transformations up to a numerical factor). After a restricted 
T 

Lorentz transformation we obtain the matrix G' = AGA , which is again 
T 

anti-symmetric and a Lorentz transformation, because G' g G' = gp, This 
➔ ➔ 

implies that G' has necessarily the form G'=(G', - iG') or 
+ ➔ -+' 

G'=(G', + iG')(G i 0). All restricted Lorentz transformations A are 

continuously connected with the identity (section 5), thus starting from 
➔ ➔ ➔ ➔ • 

G=(G, - iG) it follows that G'=(G', - iG'). Thus R3 and R3 are two 
. t 

invariant subspac€s under the restricted group L+• Only with a space 

of time reflection G' = PGPT, or G' = TGTT we obtain 

➔ ➔ 

G' = (- G, - iG) 

and the spaces R3 and R.3 are interchanged. 

*) 
With this expression we always mean: 

32 
-F ••• etc. 
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Summarising, the space of second-rank tensors is reduced with respect 

to the restricted group into 

The actual proof that these representation spaces do not contain further 

invariant subspaces, thus that they are irreducible will be given later 

on by using spinor calculus, see formula (1-36). 

Finally we mention some notations which are often used. One writes 

+ 
EH-i) 

ff-
F = (H, or F (1-16d) 

µ'i) µ\I 

and raising the indicesµ,;, we have 

Fµ\I = (H, -E)(i) or ~Fµ", which is called the duai of Fµ"(l-16e) 

It follows that Gµ\I = Fµv + Fµ\I, see (1-16c), Because Gµ\I transforms 

contravariant it follows that Fµv transforms contravariant. 

Using this,the following invariants in the space of anti symmetric 

tensors may be constructed 

and 

¼ F_ Fµ\I = E. H (-i) 
µ\I 

+2 +2 
= H - E. 

(1-16f) 

The invariance of these expressions follow from the relation (1-11). 

For more detailled information, see the appendix of chapter II, 
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Once more we restrict ourselves to the subgroup o3+. Then a further 

redJction of the spaces R6 and R9 is possible; where R6 is the space 
+ -+ of anti-symmetric tensors F:: (E, H) and R9 the space of symmetric tensors 

T with trace zero, One may verify that after substitution of the rotation: 

A "[~~] into F' = A FAT 

and T' = A TAT 

-+ -+ -+ -+ -+ -+ 
E and H transform as 3-dimensional vectors E' = r E, H' r H 

oo oi ik 
and that the components T T , T (i, k = 1, 2, 3) transform as a 

scalar, a 3-vector and a 3 x 3 tensor respectively. 

We shall illustrate this with some examples from physics. By noting that 

as long we restrict ourselves to the rotation group o3+ we obtain the 

aLaesiaaL behaviour of the tensor components and the irreducible sub

spaces corresponds with classical entities, In the theory of relativity 
-+ -+ 

the anti-symmetric tensor F = (E, H) describes the electromagnetic field, 
-+ -+ 

where Eis the electric field strength and H the magnetic strength. (in 

a point x). 

"Classically", that is to say with respect to the rotation group, E and 
-+ 
H indeed transform as 3-dimensional vectors. Yet if one substitutes the 

hyperbolic screw A= h03 (~) from formula (1-6) into AFAT one obtains the 

important transformation laws of the electromagnetic field in the theory 
-+ -+ 

of relativity in which the components of E and Hare mixed. Thus with 

respect to the restricted Lorentz group the spaces (E, O) and (0, ff) do 

not form invariant subspaces, which is in accordance with (1-16c). The 

vector G is introduced by Laporte and Uhlenbeck in 1931, 

The symmetric tensor T appears as the symmetric energy-impuls tensor, 

where T00 determines the energy-density of the electromagnetic field, 

Toi the vector S =ix Hof Pointing and Tik the stress tensor of Maxwell, 

It is known that "classically" they behave as a scalar,a 3-vector and a 

(3 x 3)-tensor respectively, but in the theory of relativity they are 

obviously regarded as one system that is to say they form one irreducible 

space). 
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The rth-rank tensor representation, pseudotensors 

We may now construct the rth-rank tensor representation 
µ I µ I µ I 

L 4- L x L x • • • L = (L 1 L 2 r; r ) = [ IJ r , 
iii ~ µr 

(1-17) 

r 
µ 1 µ 

which acts on tensors (x ••• r). We recall that in the representation 

theory, lower anc upper indices are equivalent, seep. 11. 

The rth-rank tensor representation is reducible for r > 1 into spaces of 

tensors with a certain symmetry in the indices and with "traces" equal 

to zero. See Hamermesh. 

The irreducible representations of the rotation group induced by the 

tensor representation are always odd-dimensional, thus the spin values 

are always integral: j = O, 1, 2, •••• (see the 2nd-rank tensor 

represer,tation). 

Apart from the tensor representations there also exist the so-called 

pseudo-tensor representations i.e. 

If one chooses p = 1 for all Lorentz transformations one obtains the 

o,rdinary proper tensors which we have already considered. 

We w:Ul denote ti:is by p = p (L) so that 

L (J PT) 

p. = 1 1 1 1 

If one substitutes P then p takes on the values 

p = 1 1 -1 -1 

and we obtain tensors which have a "pseudo" behaviour wlth respect to 

time reflection which are called time-·pseudo tensoI's. Continuing in 

this way we obtain t;v~ following table. 



kind 

o. L ➔ [L] r 

LO 
1. L ➔ _Q [Lr 

IL0 01 
0 L 

2. L ➔ _Q det L [L] r 0 
IL ol 

3. L ➔ det L [LY 

(Watanabe 1951) 

E.g.: scalar 

pseudo scalar 

P, T 

P, T 
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acting on proper tensors 

p T 

+ + 

II 

II 

C ➔ c. 

C ➔ -c. 

"time-paeudotenaora + 

(1-18) 

"spaae-pseudotenaors + 

" pseudotensora 

a saalar remains invariant with space or time reflection, while a 

pseudo saalar changes sign. 

The question of equivalence of the different pseudotensor representations 

will be answered in the next section. 
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3. Spinor representations of the Lorentz group 

Until 1930 in physics one was only acquainted with tensors. About that 

time it became necessary, in connection with the development of quantum 

mechanics, to give a classification of ~zz possible representations of the 

Lorentz group. 

In quantum mechanics the space-time (and spin) behaviour of a particle is 

described by a state function ib(x) (field), with a certain number n of 

components 41(x) = (ef (x), ••. , ,t(x)), where lj!(x) may be a scalar

function, a tensor-function, generally any function w with values 
i 

~ (x), which transform by a representation D(L) of the Lorentz group 

w'(x) = D(L) ~(x) x' = Lx 

Hence a classification of all irreducible representations of the Lorentz 

group gives a classification of all functions w(x), and thus gives a 

classification of all possible elementary particles in their space-time 

symmetrjes, see section 3.4. 

It appears that next to the tensor representation L ➔ [L]r with integral 

spinvalues, there exists the so-called spinor representations with half

integral spinvalues j=O, ½, 1, ••• 

Although the formalism of spinor calculus of m-dimensional orthogonal 

groups was already developed in 1913 by Cartan (and in a different way 

by Weylin 1935), the application of the spinor calculus of the Lorentz 

group in quantum mechanics was made by van der Waerden in 1929, in 

connection with the equation of Dirac. 
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t Spinar representations of the restricted group L 1 

~lathcimatically spinors arise from the inverse problem of taking 'tensor 

products', roughly speaking from the problem of taking 'tensor roots'. 

We consider the problem of decc,mposing an Lorentz transfurmation A as 

the tensor product of two matrices A and B such that 

where A and Bare two-dimensional representations of the Lorentz group. 

Assuming the existence of such a decomposition we may give the following 

definition. 

Definition A two-dimensional representation A(/\) of the restricted 

Lorentz group Lt is called a spinor representation and vectors~ which - + 
are transformed by A(/\) are called spinors. 

The existence of spinors representations is proved in the following 

two lemma's. 

Lemma 3.1. There exists a spinor representation A(/\) such that the 4-

dimensional vector representation A is equivalent to the tensor product 

AX A *) 

PROOF. We map every vector x in R4 on a 2 x 2 matrix X with components 

xac (a, c"" o,1) 

X 

1 
X 

0 
X 

. 2) lX 

3 
X 

(1-19) 

and note that det X = (x) 2 holds and that Xis hermitian, i.e. X+ X. 

From this it follows that the transformation 

(det A= +1), (l-20a) 

is a Lorentz transformation. For, X' is also hermitian, thus X' can be 

written in the form (1-19) with xµ' instead of xµ. It follows that 

(l-20a) induces a linear transformation in R4 • 
2 2 

Moreover det X' det X or (x') = (x) and thus (1-20a) determines a 

Lorentz transformation A in R4 • 

_T 

The matrices A and A+= A denote the complex conjugate and the 

na1~itian conjurrate of the matrix A respectively. 
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We observe that the vector X(x00 , x01 , x10, x11 ) is obtained from f 

by a coordinate transformation X = Tx, If we now write (l-20a) in components 

A 
a' 

a 

we obtain the transformation 

X' = (AX A) X 

and it follows that 

- -1 
A= T(A X A)T 

(l-20b) 

(1-21) 

Using the conditions (1-4) one may verify that A is a restricted Lorentz 

transformation, Conversely one may show that it is possible to describe 

every restricted Lorentz transformation A by a 2 x 2 matrix A, see 

section 5, 

In this way we have constructed a two-dimensional irreducible represent

ation of the Lorentz group A, i.e. 

A<->~ A (det A=+ 1) 

and it follows that the 4-dimensional vector representation is equivalent 

to the tensor product Ax A. 

The natrices A are determined within sign, see formula (1-21), and the 

representation is essentially two-valued, If one denotes the group of 

2 x 2 complex unimodular matrices by SL2 , the unit matrix by E and the 

group consisting of E and-Eby z2 one may write 

where~ is the symbol for isomorphism, 

Remark 3,1. In addition to the above proof we mention that if A is 
' · A+ A-l un~tary, i.e. = , then 

thus 

tr X' = tr AXA+= tr AXA-l 

O' 
X 

0 
X 

#-) 
tr X, 

It follows that the unitary unimodular matrices A, forming the group su2 , 

The trace of an n x n matrix Xis defined by tr X 
holds tr (AB)= tr (BA). 

= l Xii and ther~ 
i 
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correspond with rotations, One may write 

We now consider two special matrices A and B. 

A (1-22) 

After substitution of A and Bin (l-20a) it follows that A describes the 

a rotation 8 about the z-axis, see (1-5), and that B describes a hyper

bolic screw 8 in the (xO, x 3)-plane. The matrix Bis hermitian and after 

applying a rotation R, R is unitary, we obtain an arbitrary hyperbolic 
-1 

screw given by the hermitian matrix R BR, see (l-6). 

Notations 

One often writes X = xµcrµ 

The four matrices crµ are 

and in particular the three matrices cri are called the Pauli matPiaea 

One may verify that 

or 

holds. 

a a -a a = 2i0 and cycl. 
1 2 2 1 3 

[ a , a ] = 2i cr3 , 
1 2 

(1-24) 

a 
One denotes the components of a spinor by W (a=O,l) and the letters 

a, b, c, ••• are used for spin-indices. 

The components of the spinor 7 which transforms by A, one denotes by 

WA (a with a dot). Equation (l-2Ob) then implies the components of the 
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vector X must be rewritten as Xac This notation expresses also that the 

four-dimensional space R is the tensor product of the 2-dimensional 
4 

spaces of spinors ( iJP ) and ( ijJc), thus spanned by 

(Xac) = (ijJal-) 

In components one writes the relation X = xµo as Xac µ 

The transformation of two spinors may be written as 

thus det 

(1-25) 

(1-26) 

is an invariant. One notes ¢ a = Cac ¢c, where C = (_~ ~) and with 

(1-26) we obtain the invariant indefinite "inner product" 

T 
Substituting¢= A¢' and ijJ = AijJ' in the scalar ijJ C¢ we have 

C (det A), (1-27) 

which may be also verified by direct calculation or by the remark that 

C is the two-dimensional Levi-Cevita symbol, which satisfies the 
ac 

relation det A= C 
ac 

The spinors ijJa and ijJa transform equivalently, for they differ only by a 
a a 

coordinate transformation C. This is not true for the spinors ijJ and ijJ • 

Lemma 3.2. The representations A++ A(A) and A++ A(A) of the restricted 

group are no~ equivalent. 

PROOF. From (1-27) we obtain, that for every unimodular A 

CAC-l = (A+)-l (1-28) 

+ -1 
holds. The representation A is equivalent to (A) • For the rotation 

group, (A+)-l = A holds and therefore A is equivalent to A and there is 

only one type of spinors. Suppose now that the representations A(A) and 

A(A) are equivalent for arbitrary Lorentz transformations A. 
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Then there is one and only one matrix T such that 

+ -1 
T(A) T 

for all unimodular A. 

A. C-29) 

Be ea use T is commuting with the irreducible subgroup of unitary ma trir;es, 

the lemma of Schur implies that necessarily T = AE holds see (1-9a) 

Substituting this in (1-29) it follows that (A+)-l = A, which is not 

true for every unimodular matrix. Hence the representations A(A) and 

A(A) of the restricted group are not equivalent. 

With the spinors Wa and Wa, one may construct tensor (spinor) product. 

In order to do this we first consider spinors with respect to the 

subgroup o3 of spatial rotations. 
+ a a 

The spinors W and W are equivalent in this case and we only need to 

consider the spinor products 

(a. = o, 1) 
l. 

of spinors Wa without dot. In particular, the space of r th-rank 

symmetria spinors is spanned by spinors with components 

a 
W r (a. 

l. 
o, 1). 

One often writes r = 2j and with w0 = u and w1 

become 

v these components 

2j-k k 
U V (k O 2 ') h k (h+k -- 2J') = , • , • , J , or u v 

2·-k k . 
All spinors (u J v ) span a (2j+l)-dimensional space RJ" The represent-

ation which acts in Rj is called Dj. 

Theorem 3.3. Every irreduaible representation of the rotation group o3+ 

is equivalent to the spinor representation r:J, whiah aats in the 

(2j+7)-dimensional spaae ~ of symmetria spinors of (2j)th-rank 

(,,,ar' .a2j) (J" = o, L 7 3 I 

'I' 2 J 2' . . . J 

PROOF. See theorem 6,2. where the theory of the infinitesimal operators 

is used. 
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Remark 3.2. 

h k 
The representation acting on (u v) is not unitary. In order to bring 

this representation in unitary form, we first observe that the representation 
a a a 

[A]r =Ax Ax . .'. A, which acts in space of spinors (ijJ 1 ¢ 2 ••• X r) of 

(2j)th-rank, is unitRry because it is the tensor product of unitary matrices A. 
a a a 

We now consider the set (h, k) of all components (ijJ 1¢ 2 ••• x r) with 

h indices O and k indices 1 (h + k = r). The transformation to the 

t . o ... o 1 ••• 1 subspace of symrne r~a spinors (iji• ) is given by the 'symmetric' 

sum: 

If we put l = 

~-------- al ar => ;t ... x 
al 

ijJ ••• x 
a 

r E. (h,k) 

x° u and 1/t" = 
1 

• • • = X = v we obtain 

h k 
U V 

r due to the factor (k) which is the number of terms in the sum. Since 

these terms are orthonormal coordinates the sum is normalized with aid 
r -½ of the theorem of Pythagoras by multiplying it with the factor (k) • 

Hence we obtain the {2j+l) orthonormal components 

(l-30a) 

The components uhvk are sometimes replaces by uj+mvj-m and the 

orthonormal components (1-30a) by ijJm (-j ~ m ~ +j) (one may again verify 

that the ijJm are orthonormal coordinates by the relation ltmfl = 
2· 

(u~ + v;) J = invariant, see Weyl p. 137~. 

For a moment we restrict ourselves to the subgroup o2+ of rotations 
3 

about the z-axis (x-axis). 

Formula (1-22) shows that 
8 8 

-i 2 +i 2 
u' = ·e u and v' = e v 
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anrl t~rns the r8presenta tion D½ is reducible with respect to o2+. 

In general we have the (2j+l)- coordinates 

2j-l 2· 
V J' U V , 

j+m j-m 
.... ,. 1 U V , .... , 

with respect to the basic vectors 

e ., 
-J 

and having the eigenvalues 

-i(-j)0 -i(-j+l)0 
e , e , .... , 

e . 
+J 

-im0 
e , .... 1 

< m .::_ +j) 

-ij e 
e 

(1-3Cb) 

with respect to rotations e about the z-axis. Introducing the infini

tesimal rotation J 3 = i( 0~~e)) about the z-axis, see section 6, we 
0=0 

have the following eigenvalues with respect to J 3 

-j, -j+l, ... , m, . . . +j (1-30c) 

Remark 3.3. 

Finally we note that sometimes one considers in an equivalent way the 
d 7,, <;' j+m j-m ua spaae of linear forms l amu v . In this case the expre3sions 
,,~ __ j+m j-m . 
o/ u v are not aomponents of a vector but funat~ons which span 

the representation space of Dj. 

To indicate that the vectors e span the representation space Djone 
m 

often denotes these vectors with two indices e. , and if the vectors 
Jm 

e. (-j .::_ m .::_ +j) are normalized then the system e. is called a 
Jm Jm 

aanoniaal,, basis of Dj. In the Dirac notation one writes e. = ljm>. 
Jm 

The index mis called the weight of e. and thus j is the highest 
Jm 

weight which characterizes the irreducible representation Dj. We will 

now obtain such a theorem for the Lorentz group. 

In section 7.2. we mention "the unitary trick of Weyl", which states 

that every irreducible finite-dimensional representation of the Lorentz 

group LJ corresponds with an irreducible representation of the real 

orthogonal group o4+ which leaves invariant the form 

The irreducible n,presenta tions of O 4+ are easy to determine. To do so, 

we transform the real V8ctors (x0 , ~) into 
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(yo, y) = (xo, i5i). 

The 2 x 2 hermitian matrices X from (1-19) transform into 2 x 2 
+ -1 unitary matrices Y. (unitary within a factor, i.e. U = pU ), so that 

2 2 2 2 
det Y = Yo + Y1 + Y2 + Y3 

An arbitrary orthogonal transformation in the real R4 is given by 

Y' = UYV 

(where U and V are arbitrary unitary, unimodular matrices), for Y' is 

unitary too and det Y' = det Y. 

So we have, cf. (1-20a, b) and (1-21) 

Lemma 3. 4 The real proper orthogonal group O 4+ in 4 dimensions is 

(1 <-> 2) isomorphic with the tensor product su2 x su2. 
The accent denotes that the matrices U and V which appear in the tensor 

product are independent. 

For compact groups A and B there holds that all irreducible representations 

of the tensor product Ax Bare given by all tensor products D(A) of A 

and D' (B) of B. 

Consequently 

where DjO and 

·o o·• 
all irreducible representation o 4 are of the form DJ x DJ 

o·• + 

respectively. 

One notes Djj' 

DJ are irreducible representations of su2 and SU~ 

In a similar way one may start with spinors. 

The spinors ta and ta are not equivalent with respect to the Lorentz 

group. Starting with these spinors, we now obtain spaces of (2j, 2j')th

rank syrronetric spinors with components 

(ai = O, 1 and <\ = O, 1) (1-31) 

By syrronetric is meant symmetric in the indices "a" without dot and 

symmetric in the indices "c" with dot. 
0 1 h k h' k' 

With t = u and~ = v we may also write u vu v or 
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rn -rn 
l/J l/J 

j+rn j-m -j'-rn' -j'+m' 
u V u V V (2j)'.(2j')!' I 

V(j+rn): (j-m): (j '-m'): (j '+m') !1 
(1-31a) 

etc. 

One denotes this representation by Djj' and the representation Djj' is 

(2j+l)•(2j'+l)-dimensional. 

Theorem 3.5. Every finite irreduaibZe representation of the restriated group 

L: is equivalent to the spinor representation rJj' (j,j'=O,~, 7, ... ) whiah 
a7 ... a2. br··a2·1 

aats in the spaae of (2j,2j')th-rank symmetria spinors ({/! J J ). 
t 

Thus we obtain the following list of irreducible representations of L+. 

Representation 

Doo 

D½O 

DO½ 

n10 

DOl 

DH 

Dll 

acting on spaces 
spanned by the spinors 

C 

a 
l/J. 

a 
l/J 

a C 
l/J ,l/J. 
I/Jal/Jc 

I/Jal/Jc 

dim spin values 

1 0 

2 ½ 

2 ½ 
3 1 

3 1 

4 0,1 

9 0,1,2 

equivalent to 

scalar 

spinor (lemma 3.1) 

spinor (lemma 3.2) 

equivalent to 
anti symmetric 

} tensor s= 

tensors (see (1-36) 
-vectors 

symmetric tensors 
with trace zero 

(2j+1)(2j'+l) /j-j' /, ... j+j' 

(1-32) 
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The 

and 

representation DI½ is the vector 

by forming tensor products oil x 

representation, see formula (1-25), 

DI½ (section 3.2) one may prove 

that the tensor representations are characterized by the fact that both 

j and j' are integral or half-integral. 

3.2. Products of representations 

Products of representations of o3+ 

In the fourth column of (1-32) we have considered the behaviour of 

spinors under the rotation group o3+. Since the spinors f and ljJa are 

equivalent with respect to this group (we will denote equivalence with 

respect to o3+ by the symbol"~"), we may write 

and 
·o o·• 

DJ X D J 

The representation Dj x nj' has the property of being reducible with 

respect to o3+• To show this, we draw a "weight diagram". Every point 

space Rjj' = RjO x ROj' (m,m') determines a vector emem, fr°!, the 

The eigenvalue of the vector emem, 

the z-axis is given by (see formula (1-13)) 

D(e)e e D(8)e • D(8)e 
-i(m+m') 

= e e e 
mm' m m' 

Thus the weight of e e is (m+m'). We shall write 
mm' 

e (n = m+m'). 
n 

mm' 

D(0) about 

(1-33) 
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So the line m + m' = n in the figure (co-diagonal) eon ta ins all vectors 

emem, with weight n. Clearly there is one vector with weight (j+j'), a 

two-dimensional space of vectors with weight (j+j')-1, .•• etc. The 

existence of a row of vectors with weights 

j + j', j + j' - 1, ••. , -j - j' 

expresses that the representation Dj x oj' contains tile irreducible 
j+j' 

representation D More precisely, we may say that by applying all 

rotations D(r) to the uniquely determined vector e.e., e .. , with 
J J J+J 

highest weight, an irreducible representation space of o3+ is obtained 

by all D(r)(e .. ,). The vector e .. , 1 is a certain linear combination 
J+J J+J -

of e. 1e., and e.e., 1 , ••. etc. We now consider the remaining vectors. 
J- J J J -

There is a second row of vectors with weights 

-(j+j'-1), .•• ,+(j+j'-1) 

which expresses that Dj x oj' also contains the irreducible represent

ations Dj+j'-l In this manner one obtains the famous Clebsch-Gordan series. 

Theorem 3.6. For irreducible representations of the rotation group hold 

the .following product rule. 

j+j I 

C 
l=ld-d'I 

(7-34a) 

Thus the irreducibLe representation Djj' of the Lorentz group contains 

the spin values I j-j' I, ... j+j', see fourth column of (1-32). 

9, 
The canonical basis of the representation D, i.e. etn (-t, n _:::_ t) is a 

certain linear combination of the vectors ejmej'm' (m+m' n). Hence if 

£, j, j' are given, then there is an uniquely determined matrix 

B(j,j',-0 with "input" index mm' and "output" index n so that 

I 
m,m' 

B e. e 
tn jm jm' Jm j'm' 

(1-34b) 

m+m'=n 

The Clebsch-Gordan coefficients Bi . . , , or ( jm j 'm' [ f n) have been 
n Jm J m µv 

tabulated. Just like the 2nd order tensors x are given by a matrLx, 
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-j 

n 

3 -j 

e 
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we observe that the vectors e. e_, , span a space of second-order 
mm, Jm J m 

tensors (c ) from which the matrix is given by the preceding figure, 

and are transformed by the representation Dj x Dj'. The vectors eln 

form a subspace of these second-order tensors, which we may visualize 

by putting the contribution B0 n .. , , of each vector 
JC Jm J m 

e. e., , to e,m (m + m' = n) in the corresponding place (m,m') in the 
Jm J ID JC 

figure. The vector eQ,n is thus represented by the row numbers on the 
Q 

line m+m' = n, and the space R is spanned by the "lines" n = -t, . . . , + 9 .• 

For Q = j+j' we obtain a tensor entirely filled with non-zero numbers, 

and we shall call ita(2Q.+1)-codiagonal matrix (Q = j+j'). Fort= j+j'-1 

we obtain a band matrix with zero's in the corners: (j,j') and-(j,j'), which 

is a (2i+l)- codiagonal matrix (Q, = j+j'-1), etc. until Q = lj-j' I 
Consequently, in the product basis e. ej'm' the tensor c. C 

j 'm' e. ej'm' Jm Jm . Jm 
reduces into the (2£+1)-codiagonal matrices: 

Q, = j+j', ... 
' 

I j-j I I • 

Example, reduction of Dj X Dj: 

+j e -j 
'-

',~ 0 0 (1-34c) 
'-
' "·,, 

' - + ... + + 
'- {) ·, '," '- C 

-~- ------'~• 
,. , 

2nd-order tensor (2j+l)-vector 3-vector scalar 

We shall use this result in section 7.3. 

Product of representations of the restricted Lorentz group L: 
From formula (1-34a) we may obtain the following product rules for the 

restricted group: 

DjO kO 
j+k io 

X D I D 
i =I j-k! 

o·• Ok' 
j'+k' oQ.• 

and D J X D I D 
Q, '=I j '-k' I 



In general one obtains 

Djj' X Dkk' 

so we have: 
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(oj0 x o0 j ') x cok0 x o0k') 

= (DjOX DkO)X (DOj' xoOk') 

j'+k' 01:.' 
l D 

R, '=I j '-k' I 

Theorem 3.7. For irreduaibZe representations of the restricted Lorentz 

group hoZds the foZZowing relation, i.e • 

. k ·i k' Jj I X Dkk I = JI J i 
kTj-kl Z'=lj'-k'I 

zz, 
D • 

In particular, the second-order tensor representation oil x oil 
decomposes as 

(7-35) 

(1-36) 

Thus the second-rank tensor representation decomposes into a 9-, 3-, ~

and 1-dimensional irreducible representation of the restricted group. 

They are the three irreducible representations, which work in the spaces 

of symmetric tensors with "trace" zero, anti-symmetric tensors (of type 

G and G) and the metric tensor respectively (seep, 15) 
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3.3. Spinor representations of the full group L. 

Introduction, bispinors. 

We now consider the effect of reflections in the space of spinors. 

Before developing the general theory, some introductory remarks will 

be made first: A space reflection 

0 + 0 + 
x(x, x)+ x'(x, -x) p 

may be written with the aid of the 2 x 2 matrices X as, 

p 

or in components 

X + X' - -1 ( 0 1) CXC , where C = 
-1 0 

aC a'C' 
P : X + X x. 

ac 

Therefore the space of spinors, is transformed by 

(l-37a) 

P: t + 
a' 

\/! \/!a' where a 

-] 

(l-37b) 
is arbitrary complex 

c' { + \/! 

Lowering the index 

\/!. + 
C \/JC I 

c, 

= 

= Ci. \/JC 

and using the fact that c2 

-1 C 
-a. \/! 

(1-37c) 

-1, we have for 

(1-37d) 

Accordingly to (1-37) the 2 x 2 transformation matrices A are transformed 

by 

- -1 
P:A+CAC 

see formula (1-28). 

Thus in the 2-dimensional space of spinors a space reflection is 

represented by the matrix C and complex conjugation. Yet the last 

operation is not a linear operation, so that the space of 2-component 

spinors (\/Ja) is not suitable for a linear representation of the full group L. 
a 

However, by introducing 4-component spinors (\/J, (/!.) a 4-dimensional 
a 

representation space of the full group is obtained. The representation 

matrices which act on (\/Ja, ¢.) are of the form 
a 
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D(A) (1-38) 

We have taken a i in D(P), then the Dirac equation which is invariant 

with respect to D(P) can be written in the simple form (1-52) 

If one takes a= 1 then an extra negative sign must be placed in the 

lowest row of (1-52).*) With respect to the restr~cted group Lt this representatic 
½o • o½ + 

D(A) is reducible into D + D , and with respect to the orthochroneous 

group Lt this representation is irreducible. The proof is based on the 

lemma of Schur, for one may show with formulae (1-9a, b) that a matrix 

S = (~ !) which commutes with all D(A) and D(P) is necessarily a 

multiple of the unit matrix. By which follows that the representation 

D(Lt) is irreducible, 

Considering the full group, we note that D(P) D(T) = -D(T) D(P). 

Consequently in order that D(Sµ) is a representation of the corronutative 

reflection group, it follows that D(S ) is essentially two-valued, i.e. 
µ 

E, P, T, J ➔ ! D(E), ! D(P), ! D(T), ! D(J), 

One obtains also a representation of the full group if one takes 

D(T) = ! D(P), however it follows from (1-37) that this representation 
. ud ac belongs to the t~me-pse o vectors X • In general there holds that 

(l-38a) 

-1 T 
D(A ) is called the conjugate representation,of D(A), and one may introduce 

bispinors i.e. 
a 1 ..• a 2 . • c 1 ••• c 2 J., 

( J. . ,l/J, ) t t' ljJ c1 .•. c 2 j, a 1 .•• a 2 j transforming by the represen a ion 

Djj' + Dj'j and which is irreducible with respect to the orthochroneous 

group Lt if j i j'. Only in the special case (j = j') a reflection has 

the form 

*) Sometimes one defines the operation of lowering indices in the space 
a -1 C 

of dotted spinors by (lj! ·) = -C(lj! ). Then (1-37d) becomes ljJ + a l/J 
a /0 E) C 

and with a= 1, one has D(P) = \E 0 
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General theory 

For a general treatment of the irreducible representations of the full 
. Djj, t 

group we consider a representation of the restricted group L+ and put 

the question in which way tt1is representation may be extended to an 

irreducible representation D of the full group L, There are two ways of 

doing this: 

.!.:_ The mapping of the reflections S = E, P, T, J onto D(E), D(P), D(T), 
µ 

D(J) is single valued or can be made single valued, 

By virtue of the homomorphism, the operators D(S) form a commutative group 
µ 

group i.e. 

In particular 

D(P)D(T) 

D(L)D(J) 

D(T)D(P). 

D(J)D(L) 

(1-39) 

holds for every full Lorentz transformation Land because we require 

that D(L) is irreducible it follows from the lemma of Schur that 

2 
(D (J) 

D(J) = :'.: E 

E) and with (1-39), that 

D(T) = :'.: D(P). (1-40) 

Hence, of the 4 reflections S only the operator D(P) is essential and 
µ 

the representations D(L) of the full group Lis simultaneously irreducible 

with the induced representation D(Lt) of the orthochroneous group. Now we 

consider the induced representation D(Lt) of the restricted group. The 
+ 

last one needs not be irreducible but may have the form D(Lt) Djj' + 
+ 

There exist two possibilities, 

la. The representation D(Lt) is also irreducible, so that it has the 
-- t .. , + 
form D(L) = DJJ • In other words the irreducible representation spaces 

+ t 
of Lt arid L+ coincide, It follows from (1-38a) that the relation D(L:) 

= Djj' if and only if j = j' holds. Further one may prove that the 

reflection D(P) is necessarily equal to a certain matrix S, determined 

within sign : 

D(P) + s. (1-41) 
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The differe.nt signs in (1-41) determine two non-equivalent representations 

Djj+, Djj- of the group Lt. 

For, suppose that they are equivalent. Then there is exactly one coordinate 

transformation T with 

and (1-42) 

Because T commutes with all irreducible operators Djj(J\.) of the 

group, it follows that T = \E. The condition (1-42) with T = \E however 

is not true. Hence Djj+ and Djj- are not equivalent. Thus by choice of the 

different signs in (1-40) and (1-41) one obtains four non-equivalent 

irreducible representations of the full group L. E.g., beside the vector 

representation D½½ there exist the pseudo vector, time-pseudo vector 

and space-pseudo vector representations, see (1-18). In this case the 

operator g is given by P = g 

lb. 

j i 

In the second case the representation D(Lt) ,is reducible 
••I •I• + 

j', and has the form D(L+) = DJJ + DJ J (j i j'). 

thus 

In this case the representation matrices have the following form: 

D(P) = (; 

(see formula (1-38)). 

Because there are two possible signs in (1-40) one now obtains two non

equivalent representations of the full group L. 

2. It is possible that the representation matrices are anti-commuting, 

i.e. 

D(P)D(T) = - D(T)D(P). 

Because the reflection group is com111utative, this case is only possible 

if the representation of the reflection group is essentially two valued 

i.e. 

E, P, T, J +: D(E),: D(P),: D(T), : D(J). 

The operators D(S) may be brought in the f0llowing form 

D(P) (: :l D(T) D(J) (
-iE O ) 

0 iE 

r,,r (k,t a ·i 1 eel infonaa tion see Gel' iand p. 11,:) and p. 207. Especially the 

i.hP.'l'Y of t·,,Jl0ctio11s in the r;pace of 4-c..o::i;,onent spinors see RzeVvUski p. 71-90. 
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3.4. Applications of the representation theory in elementary particle 

physics. 

We conclude this section with a short and simple note on the use of the 

representation theory of the Lorentz group into elementary particle 

physics, anticipating section 4 and 8. 

In the beginning of this section, we have remarked that by classifying 

all irreducible representations of the Lorentz group one obtains a 

classification of all elementary particles with respect to their space

time behaviour. 

We give some examples. 

1. -t If a beam of electrons is sent through an 

r inhomogenous magnetic field, the beam splits -- Jinto two separate parts. 

(A simplified Stern-Gerlach experiment, see Feynmarf,1° p. 6-1 ff,) 

This is explained by the assumption that electrons can only have an 

angular momentum: spin-up or spin-down, thus angular momentum is 

quantized, and electrons have an internal freedom of dimension two with 

respect to spatial rotations (spin j =½).From this it follows that 

W(x), which describes the behaviour of electrons, transforms by the 

representation D½o or Do½, which contains the spin value j = ½, see 

(1-32). It appears that the properties of electrons are invariant with 

respect to spatial reflection, and thus in relativistic quantummechanics 

one describes electrons (and protons, neutrons) by the representation 

D½o + Do½_ 

The function w(x) appears in the well-known equations of Dirac. The 

fact that W is four-dimensional is related to the fact that W describes 

negatively charged electrons as well as the positively chargedpositrons. 

2. On the contrary, spinors ¢ which transform by the representation D½o 
only, are used for describing neutrino's. This is a particle of spin½ 

and zero-mass, which travels with the velocity of light. The function 

appears in the so-called equation of Weyl, which is not invariant under 
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space reflectio,. This equation will be discussed in the next section. 

The discovery that not all laws of nature are invariant under space 

reflection was made in 1956 and is called the violation of parity. 

3. In the same way a particle, with non-zero mass and with spin 1 has 

an internal freedom of dimension 3, e.g. a H-atom in the ground-state 

and so-called vector-mesons. 

By a Stern-Gerlach experiment a beam of such particles will split into 

three separated beams. In the case of an H-atom the magnetic field 

must be infinitly small. See Feynman, p. 5-1 ff. and p. 12-13. 

One may describe such particles by representations which contain the 

DlO +" DOl. representation Yet, in order to construct a Lorentz invariant 

equation for~ one needs an additional field ~µ(x), which satisfies the 

so-called supplementary conditions and which transforms under the 

representation D½½ (see §8). Hence, particles with spin 1 and non-zero 

mass may be described by the representation 

DH + DlO + DOl 

The corresponding equation is the equation of Pr>oca, which will be 

considered in the next section. 

4. 
3 

Similarly particles with spin may be described by the represent-
2 

ation 

Here the function~ satisfies,the so-called Pauli-Pierz equation. The 

spin value j =~is contained in the last two terms and the supplement

ary conditions are responsible for the terms D½O + DO½ (see section 8) 

5. There exist also particles with spin 1 and zero mass viz. light 

particles or photons~ which bear the energy of the electromagnetic 

field. Their behaviour is described by the equation of Maxwell in which 

the six-dimensional representation 

10 01 
D + D 

appears (see section 2). 

6, Finally we mention that nowadays the pseudo representations play 
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an important role too. For instance the pi-meson is a spinless particle, 

thus it may be described by the representation 0°0 which works on scalar 
O+ 0 + O+ 

functions ~(x ,x). Experiments show that ~(x ,-x) =-~(x ,x) must hold 

so that the pi-meson is a so-called pseudo-scalar particle. 

Scalar particles may be described by the Klein-Gordon equation. 

For further details see Roman p. 256. 

In the next section we shall give a detailed discussion of the equations 

of Weyl, Dirac, Maxwell, Proca mentioned above, 

After the classification of all representations of a group, the next task 

of the representation theory as far as "physical" groups are concerned, 

is to describe all partial linear differential equations, which are 

invariant with respect to that group. 
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4. Lorentz covariant equations 

First we introduce the concept of a field, by considering in particular 

the tensor field fµv(x). This field is a 16-component function defined 

on R4 , which is transformed by a Lorentz transformation x' = Lx as 

fµ'v'(x') = (L x L)fµv(x). ~) 

Starting with tensor fields and remarking that a is also a vector 
µ 

(section 2.) one may construct Lorentz covariant equations simply by 

coupling lower and upper indices. For instance the formula 

transforms after a Lorentz transformation into 

1-1' v' , v' 
d If (X ) = g (XI ) 

µ 

the proof of which depends on formula (1-11). 

The fact that the components on the left- and the right-hand side of 

an equation transform in the same manner is expr·essed by saying that the 

equation is Lorentz covaria:nt, and so Lorentz covariance implies that 

the form of these equations remains invariant. In general, one requires 

that all physical laws are independent of the choice of our coordinate 

system and therefore one requires that they are expressible as Lorentz 

covariant equations. 

Below we shall give some examples of Lorentz covariant equations, 

constructed in this way. The more general theory will be given in section 8. 

It is important to remark, that the name "tensor field" denotes the 

behaviour of the space of function-values, thus the field fµv(x) is 

a second-rank tensor field. However, the space Hof functions fµv 

is in general infinite-dimensional and transforms by 

µv µ 'v' -1 
f (x) ➔ f (x) = L x L f (L x). 

This representation is not equivalent with L x L. For instance with 

respect to spatial rotations, the spherical functions Y(~) are scalar
➔ 

functions, because Y(x) has only one component. Yet the space Hof 
➔ 

all functions Y(x) is infinite-dimensional, spanned by the spherical 
➔ 

functions Y (x), which supply all representations D1 of the rotation 
lm 

grcup with integer 1 = O, 1, 2, •••. 
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4.1. Tensor equations 

1. We consider the equation of continuity of electric charge 

(1-43) 

➔ 

After substitution of a = <-aa ,'v) and jµ = 
µ C t (P,j), which is a vector 

see formula (1-8), there follows 

a _µ 0 
µ J = • (1-44) 

Consequently the equation of continuity of electric charge is Lorentz 

covariant. 

2. The equations of Ma.zweU in vacuum are: 

➔ 

l 'v E = p 

➔ 1 4- ➔ 
'v )I H - - E = j 

C 
(1-45a) 

➔ 

l 'v . H = 0 

➔ 1 ~ 'v X E + - H = 0 
C 

(1-45b) 

FµV ➔➔ iiv ➔ ➔ 
We substitute - (E,H) in equation (1-45a) and F (H, -E) in equation 

(l-45b) and obtain 

a Fµv _µ 
(l-46a) = J \) 

a µv 
= 0 (1-46b) 

\) 
F 

ft2m which follows the covariance of Maxwell equations. (The proof that 

Fµv is also a covariant tensor is given in chapter II, appendix theorem B-1.) 

Inversely if one requires a priori that the equations of Maxwell are 
µ\! ➔ ➔ 

covariant, it follows that F (E,H) is an antisymmetric tensor which 

D10 +• 001. transforms by the representation 

In absence of charge there holds jµ = O and if we introduce the anti

symmetric tensors 
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F].JV + iF].JV thus G].JV (G, -iG) where G ➔ ➔ 

E + iH 

~ ~- ~ ➔ ➔ 
(G,-iG) where G = E - iH 

see formula (1-16a,b,c), one may write equation (l-46a) and (l-46b) as 

cl G].JV = 0 1 
V 

av Gµv = o. 

The tensors Gµv and Gµv are transformed by the representations 010 and 0°1 
µ i i 

respectively. If we restrict ourselves to real x, E, H then (1-46a) 

and (1-46b) may be written as one equation, i.e. 

in components: 

(a,a,cl,cl) 
0 1 2 3 

0 -Gl -G 
2 -G3 

Gl 0 iG3 -iG2 

G2 -iG3 0 iGl 

G3 iG2 -iGl 0 

and interchanging the role of cl and 
]JV 

obtains G one 
).l 

f 

I -cl 
0 

-8 
1 

-cl 
2 

This equation is written in abbreviated form as 

(13).lcl )1/J = o. 
).l 

The 13).l are 4 x 4 matrices and follow from (1-47b). 

In general, equations of the form 

0 (1-47a) 

o. (1-47b) 
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where Sµ are n x n matrices and Ka scalar, are called Lorentz covariant 

equations in Bhabha form (see section 8). 

3. The Proca-equation. In this equation the 10-component quantity 

~ = (¢µ,Fµv) appears which is transformed by the representation 
11 • 10 • 01 

D22 + D + D i.e. 

a "' -a "' v'+'µ µ'+'v 

2 
- K qi 

µ 

= F µv 

(1-48a) 

If Kio, this equation may be written in the following abbreviated form 

4 6 ---
)(_,! ,) (l-48b) 

We. may consider for instance the lowest row. The 6 x 4 matrix D contains 

the symbols av in such a way that the vector D¢ has components 
T . 

31 ¢0 - 30¢ 1 = F01 , •.• etc. It follows that the vector D Fis equal to 

V O . 
a Fµv (after the subsitution (3 0 ,ai) + (3 ,-3 1 )). In components we obtain: 

l a3 

_ 30 _32 a1 
-- ----- -------

32 0 
-a 

3 0 
a - a 

- ----------
3 2 

a - a 
3 1 

- a a 

2 1 
a -a 

_,,,oM-----••• 

0 
¢ 
1 

¢ 

2 
¢ 
3 

¢ 

-iK 

1 
-i K 
1 

-i K 
1 

-i K 
1 

-iK 

F2 

2 
¢ 

cp3 
1 01 

-i K F 
_1_ F02 
-iK 

1 03 
-F 
-iK 

1 F23 
-i K 

1 F31 
-i K 

_1_ Fl2 
-i K 

(1-48c) 
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Thus in Bhabha form the equations of Proca are written as 

<aµa + iK)~ = o, 
µ 

where the 10 x 10 matrices Sµ are the so-called Kerroner matriaes which 

generate a group of 126 elements (Roman p. 147). 

4. For the sake of completeness we mention the second order Klein-Gordon 

equation 

2 
or (O + K )~ = 0 (1-49) 

which is a relativistic generalization of the Schr~dinger equation. 
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4.2. Spinar equations. The equations of Dirac. 

The operator a transforms as a vector x. Because x corresponds with 
µ µ µ 

the 2x2 matrix X = X. (formula (l-37a)) the matrix 
ac 

transforms as the matrix X and so one denotes the components of D by 

aac· Similarly as done in the previous section we may construct covariant 

spinor equations by contractions with respect to lower with upper indices. 

1, Equation of Weyl 

This is the simplestequation in spinor calculus viz. Dt 

in components 

0, Written out 

3• I/Jc 
ac o. 

Using the Pauli matrices oµ, one obtains D 

*) 
which is the equation of Weylin Bhabha-form 

2. Equation of Dirac 

Now we consider an inhomogenous equation in which the four-component 
a 

spinor ( ¢ , Xe) appears, i.e. 

(l-50) 

(1-51) 

or -i K (1-52) lo 3
ac l [ ¢a l"cpal 

a. l ca 3, 0 X• X, 
ca c c 

This equation is known as the equation of Dirac and due to the notation 

of upper and lower indices the covariance of the Dirac equations is clear. 
ac . 

We remark that out of a. we may construct a by the transformation 
ca 

(30 ,ai) -+(30 ,-ai). Thus in components, 

of oµ are obtained from the matrices o with 
µ 

The components oµ. 
ac ac 

components o (expression (1-23)) by raisingµ, lowering of ac, 
µ 

transposing the dot, which is the inverse operation. Thus for the 

matrices oµ from equation (1-51) there holds oµ = o. 
µ 

and 
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0 0 ao-a3 -,3i +ia 2 ¢01 I:: l 1 I 
0 0 - al-ia2 ao+a3 ¢ 

+ iK ! 0 ' 

l'o•a, al-ia2 0 0 x· I x • 0 0 ' 

a +· a a -a 0 0 Xi) l x· I 1 1 2 0 3 1) 

or abbreviated in Bhabhaform 

(yµa + ik) 0 (1-53) µ 

The matrices Yµ, where 

Yo= (o 
ao :J and l =~: -:] (1-54) 

are known as the Dirac matrices. They satisfy the following relations, 

o 2 1)2 -- -1 (y ) = 1, (y 

0 1 1 0 
Y Y = -y Y , •• , etc. 

(they-matrices are anti-commuting), 

Combining these properties one may write 

From this one may verify that they-matrices have the fundamental 

property 

(1-55) 

It is understood that on the right side multiplication with the unit

matrix is carried out, Applying the operator (yµa - iK) on the expression 
µ 

(1-53) one obtains with (1-55) 

(aµa + K 2 )1)i = 0 or (O + K 2)t = o. 
µ 

Thus every component of 1jl satisfies the Klein-Gordon equation. 

Historically the aim of Dirac was to decompose the Klein-Gordon equation 

into two first order equations. Therefore he introduced four symbolical 

quantities yµ which apparently had to satisfy (1-55) and by this it 
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followed that theyµ should be 4 x 4 matrices. 

The proof is an elegant application of the representation theory of 

finite groups and will also be used for proving the covariance of the 

Dirac equations independently of spinor calculus. The following is a 

sketch of the proof. 

We have seen they-matrices generate, with respect to addition and 

multiplication, a ring, the so-called Diraa-ring. 

Inversely, we shall show here that the conditions (1-55) are sufficient 

to determine they-matrices uniquely. 

We suppose that they-matrices are unknown. We have only four elements 

of an abstract Dirac-ring. Thus multiplication and addition are defined 

and the symbols yµ satisfy the relation (1-55), 

With respect to multiplication, these yµ gen~rate a group G of 32 elements 

y, i.e. 

0 1 
(+ y y , 

2 3 0 1 2 
+ y y ), (+ y y y, 1 2 3 0 1 2 3 + y y y ), + y y y y 

• • • I • • • I 

2 8 12 8 

We shall denote an arbitrary element of G by y. 

The problem is now which matrix representations M(y) of the Dirac ring, 

and in particular of the group G, are possible. 

Lemma 4.ltraac M(y) = 0 for every y 1 :t 7. 

(1-56) 

2 

PROOF. First we remark that for every y i + 1 there is a o E G such that 

oyo-1 = -y. 

For instance if one takes y = YO then one has o = YOYl and if one takes 
0 1 1 2 

y = y y then o = y y , etc. 

It follows that 

and thus 

M(o) M(y) M-1 (o) = -M(y) 

trace M(y) = - trace M(y), 

hence trace M(y) = 0 if y i: 1. 

Theorem 4;2 1 (theorem of Pauli or van der Waerden) There is oniy one ir~eduaibie 

representation of the Diraa ring and this representation is four-dimensionai. 

PROOF. Suppose one has two irreduciole presentations Mi and Mj which are 

respectively n- and nLdimensional. On the group Gone defines the 
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character x(y) as trace M(y), For finite groups, the orthonormality 

relations 

hold. 

l xi(y) xj(y) = oijg (g 
y 

order of the group) (1-57) 

Equations (1-57) form a criterion for equivalence, If Mi and Mj are non

equivalent (i i j) then this sum is equal to zero and if Mi and Mj are 

equivalent (i j) this sum is equal to the order g of the group. Now in 

the case of the group G (formula (1-56)) it holds that trace M(y) = 0 

for y i ± 1. Thus all terms, except those with Y = ± 1, vanish. It 

follows that the sum (1-57) is equal to 2nn'. 

Since 2nn' i O, the representations Mi and Mj are necessarily equivalent 

and n = n'. 

The order g of the group is 32, hence from (1-57) we have 

2 
2n = 32 

and it follows that n = 4, 

In this way we see that the only irreducible representation of the 

Y-matrices is four-dimensional. (Dewitt p. 117), 

µ I 

The theorem mentioned above implies that if there are four matrices Y 

which satisfy the relations (1-55), then there is necessarily a coordinate 

transformation S such that 

where theyµ are given by (1-54). 
µ' µ' u µ' 

Theorem 4,3, J!he matrices y = L µY • where L µ is a Lorentz transformation., 
are again IJ-£rac matrices. and Lµ' yµ = s-1(L)yµS(Ll holds 

µµ I 

PROOF, We have to prove that the Y satisfy the relations (l-55) 
' v' v' µ' µ' v' µ v µ 

i.e. yµ y + y y L µL V (Y yv + y y) 

µ' v' µv 
= 2L µ L vg (see formula (1-55)) 

µ'v' 
= 2g (see formula (1-2)). 

With the theorem mentioned above we may show the covariance of the Dirac 
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equations without using spinor calculus. 

To do this we substitute in the Dirac equation 

X 

(yµd + iK) ~(x) = 0 
µ 

1 T ' 
L- x' and a= La , and we obtain 

I -1 
(Lµ yµa I +iK) ~(L x') = o. 

µ µ 

(1-58) 

The matrices yµ' = Lµ' yµ are Dirac matrices and so there is a coordinate 
µ 

transformation S(L) such that 

The matrices S(L) give a 4-dimensional representation of the Lorentz 

group and after putting ~'(x~ = S(L) ~(x), the Dirac equation transforms 

into 

(l-59) 

Comparing this equation with (1-58), if follows that the Dirac equations 

are covariant. 
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B. THE INFINITESIMAL METHOD 

The fact that all representations of the Lorentz group can not be 

described by tensors was the motive to introduce spinors and by this it 

was possible to classify all n-dimensional representations of the Lorentz 

group. In spite of this important result it appears that the spinor 

calculus is in its turn insufficient. 

Between 1946 and 1953 it was shown that besidesthe spinor representations 

there also exists infinite-dimensional irreducible representations of the 

Lorentz group. In 1946 this was shown for unitary representations 

(Gel'fand), and in 1953 it was proved by Neumark that all irreducible 

infinite representations are obtained. Fortunately apart from these 

representations there are no other representations of the Lorentz group 

with which we have to occupy ourselves in the future. 

Gel'fand and Neumark have developed the representation theory of the 

Lorentz group by starting from the general theory of Lie groups (the 

infinitesimal method). 

By this it is possible to describe all irreducible representations of 

the Lorentz group, 

In particular it was shown that all finite-dimensional representations 

are formed by the spinor representations. 

Moreover the infinitesimal method is a powerful method to classify all 

linear partial differential equations (Sµaµ + iK) ~ = o, which are 

Lorentz covariant. Sections 6 and 8 give the most important techniques, 

while sections 5 and 7, which may be read independently from the 

sections 6 and 8, contain some theoretical background of the infinitesimal 

method. 
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5. Topologjcal properties of the Lorentz group. 

Every Lorentz transformation Lis the product of a reJlection Sµ and a 

restricted Lorentz transformation A(¢ 0 ) i.e. L = SµA(¢ 0 ), see section 

1.1. Therefore every Lorentz transformation Lis determined by 7 

parameters, the "discontinuous" parameterµ for reflections and the 6 

"continuous" parameters¢ which determine a restricted Lorentz trans-
a 

formation A. In the future we shall use the following six parameters. 

(1-60) 

are hyperbolic screws and the transformations 

< 1T 

(1-61) 

are spatial rotations. 

Thus the restricted Lorentz group Lt may be mapped onto a point-set V 
+ 

in the 6-dimensional space, the so-called paramete1' space V of L: or 

group space V. The multiplication of two Lorentz transformations 

A(¢ 0 ) and A(~0) i.e. 

fl( X ) = A(¢ ) A(~ ) a a a 

corresponds in the parameter space with 

functions 

continuous-differentiable 

A group Gin which the elements g can be described by points 

1, .•• r) in such a way that the group-multiplication corresponds 

with continuous differentiable functiorn is called a Lie group. Thus 
t 

L+ is a Lie group and with a suitable definition for "continuous dif-

ferentiable" for the parameterµ, the full Lorentz group Lis also a Lie 

group. 

If we take into account that every parameter space with metric 

,.,2 -- , "' 2 ~ l ~0 is a topological space then we may also say that the Lorentz 

group (and every Lie group) is a topological group, 
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First we consider some topological properties of the group space of L 

and U,eir consequences in the representation theory. 

Connectedness 

The restricted Lorentz 
t 

group is connected. This means that every L+ 
Lt *) 

two elements cpa and ljia of may be connected by a continuous curve 
+ t 

which lies totally in the group space V of L, defined by the formulae . + 
(1-60) and (1-61). 

The full Lorentz group L however is not connected but decomposes into 

four connected components: 

t PL t t JL t 
L+, +' TL+' + 

where P, T, J are the reflections defined in section 1.1. 
t 

In view of the property of connectedness, only the restricted group L+ may 

be described by the group SL2 of unimodular 2 x 2 matrices A. 

In order to prove this, we first mention that in section 3.1. we have 

shown that every matrix+ A represents a restricted Lorentz transformation 
t 

A, thus the group SL2 is (2 + 1) mapped onto a subgroup (SL2)' of L+. 

We still have to prove that inversely every restricted Lorentz transform-
- t 

ation can be represented by a 2 x 2 unimodular matrix A, i.e. (SL2)' = L+. 

Now the following theorem holds. 

Theorem 5,1. The group SL2 is a connected 6-parameter group. 

PROOF. We consider the 8-dimensional space of all 2 x 2 complex matrices. 

All matrices with det A= 0 form a 6-dimensional quadratic surface, 

which does not separate this 8-dimensional space. Thus with every two 

arbitrary unimodular matrices A0 and A1 there exists a curve A(t) of 

nonsingular matrices such that 

After a continuous deformation i.e. 

A' (t) A(t) 

Vdet(A(t)) 

we obtain a curve of u:nimodular matrices so that 

..._) More precisely, a continuous unique map of the interval ro,1], 



53 

A0 = A'(O) and A1 = +A'(l) or A1 = -A'(l). 

The sign+ or - depends on the number of times (even or odd) that the 

path det (A(t)) winds around the origin O in the complex plane, 

Thus all matrices A in SL2 are connected in SL2 with E = c1 °) or with 
0 1 -1 0 

-E = ( 0 _1 ) and because E and -E are connected by the curve 

A( 8) (O < 8 .:_ 271) 

t 
It follows that the group SL2 is connected and 6-dimensional just like L+. 

Because in the general theory of topological groups the theorem that the 

connected component of the identity of a group is uniquely determined 

holds, it follows that (SL)' = Lt. 
2 + 

Thus conversely every restricted Lorentz transformation may be represented 

by a 2 x 2 unimodular matrix :!: A. 

The Universal covering group 

The group SL2 is (2 -+ 1) mapped onto the Lorentz group which one may 

write as 

where z2 is the subgroup of SL2 consisting of the identity E and -E. 

In general if a connected Liegroup G' is (m ➔ 1) mapped by a continuous 

homomorphism onto a group G : G'/Z ~ G, then the group G' is called a 
m 

aovering group of G. 

Among all covering groups G' of G, there is one uniquely determined 

group a* which is simply aonneated. That is to say every closed 

curve in a* can be continuously deformed in the group space into a point 

(all curves in G are homotopia to zero) 

a* is called the universal aovering group of G. The importance of the 

* universal covering group G of a group G lies in the fact that every 
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multiple-valued representation of G may be replaced by a representation 

* * of G, which is single-valued, because G is simple connected. In 

further invcstir;ation of all representations of G!rwe then use the 

theory of single-valued representations, as orthonormality relations, 

... etc. We now wish to proof that SL2 is not only connected, but also 

simply connected. This is not true for the Lorentz group. We have 

Theorem 5.2. The group SL2 of unimodular 2 x 2 matrices, is the universal 
. t cover~ng group of L+. 

PROOF. We write every unimodular 2 x 2 matrix A with the Pauli matrices 

i.e. A= a aµ, the a are arbitrary complex numbers, thus A need not 
µ * µ 2 

be hermitian ). The matrix A is unimodular and because det A= a, 

(1-62) 

holds. 

Thus the group space of SL2 is formed by the complex 4-dimensional 

sphere c4 , given by (1-62). For the sub-group su2 of unitary unimodular 
+ + + 

matrices (a0 , a) (k0 , ik) holds, where k is a real vector, Consequent-

ly the group space of su2 is formed by the real sphere s4 C. c4 given by 

k 2 k 2 2 2 
0 + 1 + k2 + k3 1. 

The proof of the simply connectedness of the real sphere s4 (thus the 

fact that every closed curve on s4 may be continuously deformed 

on s4 into a point) may be found in Pontriagin II p. 30. Another proof 

one obtains by introducing spherical coordinates, 

The real surface s4 may be described by 4-dimensional real spherical 

coordinates e 0 , e 1 , e 2 such that 

(1-63) 

e, 
kO cos eo 

kl = sin eo cos el 

k2 sin eo sin el cos 
11 

e 
0 

el 

e e 
2 2 

<: [o, 

,s [o, 

-= [o, 

11] I (1-64) 

11], (1-65) 

211], (1-66) 
--- eo 

k3 sin e sin el sin e 
2· 0 

(1-67) 

0 211>-~~

wi ih every (k0 , k 1 , k 2 , k 3 ) on s4 there exists one e0 , which satisfies 

(1-64). If e0 I 0,11 then there exists one e1 which satisfies (1-65) and 

Here µ is only an index having values from O to :{. We leave undecided 

in ttjs ch-.1.pte,r vl,e: ther aµ transforms as a vector -:Jr not. 
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if 01 t 0,n then there exists one 02 which satisfies (l-66) and (1-67). 

If 00 0 then all 01 E. [o, nJ, 8,2 Ea [o, 2Tr] determine one point i.e. 

(1, 0, 0, 0), in the figure the corresponding plane 80 = 0 ( and 80 Tr) 

is shaded. 

Analogously if 8 o, Tf then all 82 E..[o, 2Tf] determine the point 
1 

(cos 8 o' sin 8 o' o, 0) (cos 8 
0' sin 80 , o, 0). The corresponding 

lines in the figure are drawing boldly. Finally, the points 

(80 , 81 , 0) and (80 , 01 , 2Tr) have to be identified, It is clear that 

every closed curve S(t) in the group space of su2 may be 

continuously contracted to a point in the group-space by the transform

ation 

Because 

and 

¢A (80 , e1 , 8/t) 

¢1 (80, 81' 8/t) 

(1x8 , 8 , 8 )(t), (1 > 1x .::_ 0) 
0 1 · Z 

(80' 81' 8/t) 

by which follows that su2 is simply connected. 

We remark that there are closed curves, e.g. S(t) = (80 , e1 , t82 ), 

which cannot be contracted to a point as long as we transform only the 

inner points of the cube, for (80 , e1 , 0) = (80 , e1 , 2Tr). 

With respect to the group SL2 the kµ are arbitrary complex and the 

proofs mentioned above fail, for there appear singularities, (there are 

no spherical coordinates to describe the points (1, 1, i, O), ••• etc,), 

which are difficult to remove, However, one may prove that every closed 

continuous curve k(t) on the complex sphere c4 may be continuously 

transformed into a real closed continuous curve on s4 and by this the 

simple connectedness of C 4 follows. 

In order to do this we separate the real and imaginary part of k(t) 

k(t) = u(t) + iv(t), 

2 
the fact that k = 1 implies 

u 2 - v 2 = 1 

Thus 
2 

u > 1 

o, (l-67a) 

(l-67b) 
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and we write 
2 

k = C~- + (u - ~ 1 ) +iv. 
\,u \u 

The continuous defJrmation of k(tJ LS now defined by 
2 

k;\ =k + ;\ (u - ~~) + i p v, >-e.[0,1]. 

(1-67c) 

(l-67d) 

where the parameter p is determined by the condition that for all;\ 

the curves k;\ (t) ly on the complex sphere, i.e. 

[ ~ (1 + > ,f? - ') ] 2 + ,2 V 
2 1 • 

First we consider the set Tc. [0,1] such that 

2 
V (t) = 0 for all t E. T 

then p is not defined and we have the "deformation" 

k;\ (t) = u(t) for all ;\ E.. [0,1]. 

Next we consider the set S = [0,1] \ T, thus 

Then we have for p 

2 
V (t) i O if t E. S, 

.~ 2 I 
+ >- vu-) -1 

By which follows that P is a continuous function of;\~ [0,1] and 

(1-67e) 

(l-67f) 

t ~ S. This statement remains true if we consider the limits points t 0 
2 2 

of S suc~(!~at ~ (t0 ) = O and u (t0 ) = 1. 

Because, ,-,y--. 1s a unit vector for all t €. S and the expression under 
s r vv-(t) 

the V -sign tends to zero if t ➔ t 0 , we may define p(t0 ) v(t0 ) = o. 
Consequently the sol~tions k;\ (t) = u(t) on Tare continuously connected 

with the solutions k (t) on S, The curves u(t) and v(t) are closed and 

because for the expression under theV-sign 

it follows that p(t)v(t) and thus also k;\ (t) is a closed curve. In this 

way we have constructed a continuous deformation of the closed curve 
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k1 (t) k(t) 

u(t) 

Vu2(t) 1 
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and by this the simple connectedness of c 4 follows. 

The proof mentioned above may be easily extended to the complex sphere 

C inn-dimensions. 
n 

The proof fails for the restricted Lorentz group L:, because opposite 

points A and -A on the complex sphere c 4 must be identified, Thus L: 

is described by the space of rays through the origin 

-E -E 

and the 2-valued function 

A + :!: A, of rays +Jpoints, 

consists of two single

valued branches i.e. 

A + E, A, 

A +-E, -A, ••• 

which are separated by the 

(x0 = 0) plane, e.g. 

It is intuitively clear that a closed curve+ A(t) in the group space 

of L: which does not intersect the (x0 = 0) plane may be contracted to 

one point:!: A. 

A curve B(t) however, which intersects the (x0 = O) plane one time in 
➔ 

the point (0, :!: b) may not be contracted into a point, 

Yet two curves B(t) and B'(t) (which intersects the x 0 = O plane 1 or 

3, 5, ••• times) may be continuously transformed into each other. 

The fact that there exist in L: two classes of curves A(t) and B(t), 

two homotopy classes, one expresses by saying that Lt is double connected 
+ 

and it follows that SL2 is the universal covering group of L:. 
Compactness 

The group space of the rotation group o3+ is formed by the solid sphere 

r, see formulae (1-61). Because r is a bounded and closed point set 

(which is equivalent to the statement that every infinite sequence of 

points of r has a limit point inf) r is a compact pointset and ac-
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cordingly the rotation group o3+ is called a aorrrpaat group. 

However, the group space of the restricted group Lt which is defined 
+' 

by (1-60) and (1-61) is not compact, 

The compactness of 0 implies that all irreducible representations 
3+ 

of o3+ are equivalent to an unitary representation in a finite-dimensional 

space, i.e. 

Dj : o3+ ➔ subgroup of su2j+l" 

For a non-compact group the irreducible representation need not be 

unitary and finite. The non-compactness of the Lorentz group implies 

that 

Theorem 5,3. 

1. AZZ finite-dimensionaZ representation of the Lorentz group are not 

unitary (exaept the triviaZ one: A ➔ 1). 

2. There exists infinite-dimensionaZ irreduaibZe representations on 

operators D(A), 

3. Every irreduaibZe representation is deterrrnined by the number pair 

(Jo, J1J where JO= o, ~, 1, ••• and J1 is arbitrary aorrrpZex. Thus 

the Lorentz group has a non-countabZe famiZy of irreduaibZe representations. 

A sketch of the proof is given in section 7,3. 

Local compactness 

t Although the Lorentz group is not compact, the Lorentz group L+ is 

ZoaaZZy aorrrpact. This means that every point of the group space of L: 

has a compact neighbourhood, 

Gel'fand and Raikov have proved that every local compact group has a 

sufficient number of non-trivial irreducible unitary representations 

D(A). 

Theorem 5,3. 

4. The Lorentz group has unitary irreduaibZe representations, and exaept 

the triviaZ one they are infinite-dimensionaZ. 
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6. The Lorentz group as a Lie group. 

In section 5 we have shown that the Lorentz group is a Lie group, where 

every element A is described by 6 parameters: A<-> ¢0 • 

The matrix components of a representation D(A) are continuous functions 

of ¢0 • Using a theorem from the theory of Lie groups it follows that 

the matr>ix components of D(A (¢ ) ) ar>e not only continuous functions, 
cr 

but analytic functions of ¢0 • (cf. Cohn p. 135, p.116.) Thus Taylor 

expansion of D(¢) gives 

(1-68) 

Definition 6.1. The infinitesimal oper>ator>s 

of the Lorentz group Lt are defined by 

DO of a representation D( ¢~ 

D cr 

+ 

( clD( ¢)) 
cl¢ cr ¢=o 

(1-69) 

The importance of the theory of infinitesimal operators is due to the 

fact that ¢0 D0 does not only determine D(¢) in first-order terms, but 

determines D(¢) completely. Because after a suitable parameter transform

ation, such that A(s¢ 0 )A(t¢0 ) = A(ls+t) ¢0 ), one may prove that 

holds, thus 

D(¢) = E + ¢cr Dcr + ;! (¢cr Dcr)2+ 

¢ D 
D( ¢) = e cr a 

(1-70) 

This last expression also implies that the matrices D(¢) are reducible 

if and only if the six matrices D0 are reducible. Further, if an operator 

S commutes with all D then S commutes with all D(¢), and so on. In this 
a 

way the problem of the determination of all representations D(A) is reduced 

to the determination of all six-tuples D0 • 

To determine D we first start with the vector representation and we use 
a 

the 4 x 4 matrices as given by formula (1-5), (1-6). After differentiating 

with respect to ¢ 0 and putting ¢ = 0 one obtaines the ma trices 

For finite-dimensional operators D the 

( clD) .. = (clDij) , see also remark 6.1. 
cl¢ l.J cl¢ 

clD 
components of a¢ are given by 
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0 

0 

0 

0 

0 

0 

0 
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We use the convenient notation~= n23 , •• etc, for the infinitesimal 

operators belonging to spatial rotations, and B1 = 001 , •• etc. for 

the infinitesimal operators belonging to hyperbolic screws, 

One may easily verify that 

A1A2 - A2A1 = A3 and cycl, *) 

holds. Using the Lie-product [A1 , A2]= A1A2 - A2A1 this aomrnutation PUZe 

may be written as [A1 , A2] = A3 , 

Similar formulae hold for the other Lie products, 

Now a theorem :~rom the theory of (connected) Lie group;i states that the 

commutation rules of a group are not only valid for the infinitesimal 

operators D of a special representation, but that they are valid for 

aZZ representations of this group, Thus in general the follo~ing theorem 

holds: 

Theorem 6,1, The commutation relations of the Lorentz group are: 

[A7 , A2] = A3 o:nd ayat. 

[A7 , B2] = B3 and ayat. 

[B7 , B2] = -A3 o:nd ayat. 

(1-72) 

(1-73) 

(1-74) 

The remaining combinations either vo:nish i.e. [A 7, B7] = O, ••• eta. or we 

obtain the o:nti-ayaUa combinations i.e. [A 2, B7] = -B3• 

(A proof of these commutation relations will also be given in section. 7.). 

Because the infinitesimal operators D0 of a representation form a closed 

'algebraic' system with respect to the Lie product"[,]", one says that 
. ., b t, the infinitesimal operators D form a L1,e a1,ge ra L given by the a + 

formulae (1-72, 73, 74), 

HE·reby is meant ~l' A2 ] = A3, rA2, A3] = A1, [A3, A1] = A2 and 

[A2 , A1 ] = -A3 , • , , E.-tc, 
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If one interprets the Lie algebra as a vectorspace spanned by 6 abstI'act 

entities D0 and with a multiplication given by (1-72, 73, 74) one also 

calls Lt' an abstI'act Lie algebra. The infinitesimal operators of an 
+ t 

arbitrary representation of the group L+ form a matrix representation 
t, 

of the abstract algebra L+. 

Inversely there is a second theorem of the theory of Lie groups which 

states that if we have 6 finite-matrices D0 , which satisfy the commutation 

rules (1-72, 73, 74) then the D0 are necessarily the infinitesimal 

operators of a uniquely determined representation D(¢). In other words, 

this theorem states that every matrix representation D of the Lie 
t O t 

algebra L 'uniquely determines a representation D of L. 
+ + 

(In ordei Do prove this theorem one must show conversely that the matrices 

D(¢) = e O 0 form a representation of Lt). 
+ 

The importance of this last theorem lies in the fact that by classifying 

all representations of the algebra Lt, one classifies all representations 
+ 

of the group. This fact implies the reduction of a problem concerning 
6 

a system of 00 elements (the Lie group), into a problem concerning a 

well defined system of only 6 base elements (the Lie algebra). see 

Ljubarski p. 158 *) 

Formerly the general solutions of the commutation rules (1-72) of the 

rotation group o3+ were found by Cartan in 1913. 

In order to describe these solutions we observe that o3+ is a compact 

group. In fact the compactness of o3+ also follows from the commutation 

rules (1-72) and the condition that the Ak are the infinitesimal operators 

of a group (with real parameters ¢1 , ¢2 , ¢3 ). 

Hence we may suppose that the representation Dis unitary: (D+)-l = D. 
-1 

Differentiating with respect to ¢ 0 , observing that 30 (DD ) = O which 
-1 -2 

implies that 30 (D ) - D 30 (D), and putting all ¢0 = Owe obtain 

(1-75a) 

Therefore one introduces the hermitian infinitesimal operators Jk 

with [J1 , J 2] = i J 3 and cycl. and further the operators 

J 3 , J+ = J 1 + iJ2 and J = J 1 - iJ2 , (or J+ = iA1 + A2 ). 

See also remark 6,1.on page 63 

iA 
k 
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So we have the following relations 

[J+' J_] = 2 J3 

and J+ = J 
+ 

(1-75b) 

(1-75c) 

(1-75d) 

Because J 3 is hermitian, there exists an orthogonal basis of n vectors 

e 111 which span the representation space and with eigenvalues m, i.e. 

J 3 em = m em. The number m is called the weight of em. We assume that 

e 
m 

are unit vectors. Thus a rotation 8 about the z-axis is described by 

D( 8)e 
m 

-im8 
e e and because D(8) is unimodular, det D(8) = + 1, it follows 

m 
that the sum of all eigenvalues vanishes. 

Further J+ and J are the so-called step-operators, such that J e and 
+ m 

J e have the eigenvalues m + 1 and m - 1 (or O and O) respectively, 
m 

Because (1-75b) implies that 

J3 (J e ) + m 

and thus it follows that 

J 

(x 

(x 

a 1) m+ 

(m+l) (Je ), 
+ m 

(or = 0) 

(or· = 0). 

(1-75e) 

Consequently the spectrum of J 3 consists of ladders of unit-spaced eigen-

values, i.e. , m-1, m, m + 1, ••• 

If one requires that Dis irreducible it follows that there is only one 

such a ladder, from which we will call the highest weight j, From the 

fact that the sum of the eigenvalues m vanishes it follows that this 

ladder lies symmetrical with respect to the origin and thus 

- j < n, < + j and j = 0, ½, 1, • • • Using the relation 

J+ = J or (J e 1 , e ) = (e 1 , J e ) it follows that a 
+ + m- m m- m 

= S and 
m m 

applying the operator 2J3 , see (1-75c), to a vector em it follows that 

2 m 

Adding all terms from m till m j, all terms on the left-hand side vanish, 



,·x,·,·pt ., and we get 
m 

,t = + 
Ill 

V(j+m)(j-m+l) 

In gc·1wral one normalizes the unit vectors cm in such a way that th,, 

formulae for ,J + holds with the + sign for am 

Su w,, have: (see also Gel 'fand p. 25, 73,Ljubarski p. 1G7,182) 

Theorem 6.2. l✓ith ever>y ir>l'educible r>epr>esentation of the r>otation gr>ouo 

ther>e exist a uniquely det,,r-mined j = O, -11, 7, and a uniquely deter>miv;,e l 

basz'.s of (2j+7) or>thonor>maZ vector>s e (-j < m .:_ +j), whfoh span the m -
l'epr>esentation space such that 

J3 em= m em 

J_ em = v,...(_j_+_m_)_(_J __ -_-m_+_7~)~m-7 (7-?Sf) 

J+ em= v(j + m + J)(j - m)~m+7 

This irreducible representation is denoted by Dj and we are back to the 
j+m j-m 

spinor representations if we substitute em= u v , see theorem 3.3 

and formula (1-30b), For the infinitesimal operators Jk of the spinor 

representation, see formula (l-79a). 

We now consider representations of the Lorentz group. In general the 

induced representation of the rotation group is reducible. The solution 

of the system (1-72), (1-73), (1-74) is more difficult, because there 

exist also infinite-dimensional solutions. We will enter into details 

in the next sections. 

Remark 6.1. 

In the case of infinite-dimensional representations the theory is 

considerably more complicated. An infinite-dimensional representation is 

a continuous homomorphism onto a group of bounded operators in a Banach 

space. The definitions of an irreducible representation and of an infini

tesimal operator need a supplement. 

(Gel' fand etc. p. 176, Neumark p. 70-71, 94-95). 

It remains true that by classifying all infinite representations of the 

Lie algebra one classifies all possible infinite representations of the 
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Lie' group, howPvot·, ii is not clear that given an "infinit<," roprusont

ation of tho algebra, there actually exi;;ts a corresponding reprr,sontation 

of th(, group. 
j I 

The inf'initP-dim(msional solutions of tho Lorentz algebra L~ in viow 

of unitary representations, were given by Gel'fand in 1944-6. Not before 

1954 Neumark succeeded in proving that conversely to every representation 

of the Lorentz algebra there actually correponds a representation of the 

Lorentz group. 

Hence, now all the irreducible representations of the Lorentz group 'are known. 

The infinitesimal operators of the spinor representation 

We end this section, by determining the infinitesimal operators Ak and Bk 

of the 2-dimensional spinor representation /1. ++A, which will be used 

in section 8.2. 

In order to calculate these operators we use the parameters ¢0 already 

introduced in section 5, and thus we first ~ave to specify the dependence 

of the matrix A on ¢0 • For that purpose we write every unimodular matrix 
µ 

as A= a oµ, where oµ are the Pauli-matrices i.e. 

3 
a 

. 2 
ia 

a1 - ia2 ) 

0 3 
a - a 

with det A= a 2 it follows that (a0 ) 2 - (a1 ) 2 - (a 2 ) 2 - (a 3 ) 2 = 1 must hold, 

Analogously to page 54 we write 

0 
a 

e + e ... 
cos - a= -i sin -2 k, 

2' 
i -72 

The numbers 0 and k are complex, If e ~ 0 then K 

+2 
then k = O. 

+ 
We have already shown that if we take 0 real and k 

the matrix 

C' ) 2 
0 

A E 0 . 8 3 e 
cos 0 - i Sl.n - 0 -

2 2 - 8 
0 

+i-
e 2 

1 and if 8 

(1-76) 

0 

(0, O, 1) we obtain 

(1-77) 

which corresponds to a spatial rotation 8 about the x 3-axis, so that 



➔ ➔2 
In general there holds that an arbitrary real k (k 1) substituted 

+ 
into (1-76) gives a spatial rotation about the axis k and with rotation 

angle 0. (chapter II, formula (2-15)). Now we take A purely imaginary 
➔ 

ll = i ¢ and k = (O, o, 1). Then we obtain the matrix 

A (1-78) 

which corresponds to a hyperbolic screw in the (x0 , x3)-plane, so that 
➔ 

¢ = ¢03 • Taking k arbitrary real we obtain a hyperbolic screw in the 

(xo, in-plane, see also formula (2-17). 

After differentiating the expressions (1-77), (1-78), ••• etc, with 

respect to ¢12, ¢03 , ••• respectively, we obtain the infinitesimal 

operators 

(1-79a) 

Using the commutation rules for the Pauli matrices i.e. 

we again obtain the original commutation relations for Ak and Bk from 

formulae (1-72), ... (1-74). 

In physical literature one often denotes the 2 x 2 spin matrices Jk = iAk, 

thus Jk = ½ crk by the letter sk. 

Next to the representation o½0 : A ➔~ A, there exists the representation 
01 + -1 a 

D ~ : A ➔ + (A) acting on spinors tjJ and t/J. respectively,(lemma 3,2) 
a 

and formula (1-37b) • 
+ -1 

For rotations there holds that (A) = A and for hyperbolic screws that 

(A+)-l= A-l (remark 3,1), Hence by differentiating and using formula 

(1-75a) we obtain the infinitesimal operators of DO½ 

i 
Ak =-2 °k or J = k ½ °k and B = k -½ crk acting on t/J. 

C 
(1-79b) 

and also ~ = + 
i 
2 crk or Jk = -½ crkand Bk=½ crk acting on tjlc . 
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Consequently on the Dirac spinor (wa, ¢,) acts the rotation matrices 
C 

which are sometimes called the Dirac spin matrices. 

Remark 6.3 
+ 

The fact that complex 0 and k appear in (1-76) may be expressed by saying 

that the Lorentz group is isomorphic with the complex 3-dimensional 

rotation group. 

al a2 
Finally we note that if w is an higher order spinor, e.g. w = <w w ... ), 
thus the 2 x 2 representation matrices A= D(r) act on w by 

al a2 al a2 
n<w w ... ) = n<w ) n<w ) •••• 

And infinitesimal it follows that the operators Jk act ~n the components 

al a2 w w ... in an additive way 
a a a a 2 a a 

1 2 1 1 2 
Jk<w w ... ) = 3k <w ) w ... + w <3kw ) ... + ••• 

thus J ( j+m j-m) ( . ) ( _ )j-m (. ) j+m (Jkv)j-m. k u v = J+m Jk u ••• + J-m u 

We will use these formulae in section 7.2. 
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7, The adjoint representation of the Lorentz group 

One can derive important properties of the infinitesimal operators by 

starting from the so-called adjoint representation or infinitesimal 

representation, which exists for every Lie group. 

One arrives at this representation by studying the transformation propert

ies of the infinitesimal operators themselves, 

Consider for instance a scalar field ~(x) and the representation~ ➔~• 
-1 

defined by ~•(x) = ~(L x), 

Let L be a rotation in the (x2 , x 3 )-plane, Henceforth we will denote the 

corresponding parameters~ by ~2 , thus . · a 3 
0 1 2 2 3 . 2 2 2 3 2 

~• (x) = ~(x , x , x cos ~ 3 + x sin ~ 3 , -x sin ~ 3 + x cos ~ 3 ) 

Differentiating with respect to ~2
3 and putting ~2

3 = 0 we obtain the 

infinitesimal operator 

It follows that the infinitesimal operators transforms as tensors 

Fµ or equivalently, transform as anti-syrrmetria tensors Fµv. Hence in 
\I 

the case of scalar functions the infinitesimal operators transform under 

DlO. 01 
the representation + D , see table (1-32), 

However the space of scalar functions ~(x) does not contain all irreducible 
*) 

representation spaces of the Lorentz group , therefore we wish to prove 

this theorem in greater accordance with the theory of Lie groups. 

Besides every representation D(L) of the full Lorentz group we define a 

representation which works in the space S of operators S by the formula 

S' = D( L) S D -l ( L) (l-80a) 

If D(L) is a finite-dimensional representation then one may write 

(l-80a) in components 

S - D D S1.J., where D = (D-l)T i'j' - i'i j'j 

In general there holds 
X X 

S' = D (L) S, where D (L) D(L) x D (L) (l-80b) 

Cf. with the spherical functions Y1 which form only irreducible ,m 
representation spaces of the rotation group with integer spin value 1. 
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We note that if S = D(A), where A is a restricted Lorentz transformation, 

then (l·-80a) corresr,onds to the coordinate transformation A' = LAL··l in 

R4 , due to the homomorphism, i.e. D(A)' = D(A'). 

We have written D(A)' and not D'(A) in order to indicate that the 

representation (l-80a) acts here in the n2-dimensional space of operators 

D(A) and not in the function space of all representationsD, 

We now consider the subspace D spanned by the infinitesimal operators. 

In the vector representation these operators are 4 x 4 matrices and 

because they are obtained from the matrices AP it follows that they 
a 

have components ¢P • Thus we have to rewrite formula (1-71) with ¢P 
a a 

instead of¢ , if we take into account the transformation properties 
pa 

of the infinitesimal operators with respect to the representation (l-80a), 
pa o j 

Raising the index a, we have that the components¢ = (-¢ i' ¢ k) form 

an antisymmetric tensor transforming by 

'a' p' a' ¢pa ¢p = L L (l-80c) p a 
¢pa p a p 'a' or LP, La, ¢ 

pa 
The components¢ are given with respect to the 6 infinitesimal operators 

D = (- DO Dj ) = (- B., A.). Because ¢pa are the parameters of the 
pa i' k 1 1 

Lorentz group, it also follows that the 6 infinitesimal operators Dpa = 

(- B., A.) of an arbitrary representation transform equivalent to the 6 
1 1 

➔ ➔ 
basic vectors F (E., H.), where 

µv 1 1 

➔ 
0) El (1, o, 0 o, 9, , ... etc. 

➔ 

Hl (0, o, 0 1, o, 0) , . . . etc • 

which span the space of antisymmetric tensors Fµv == <'E, H) (EiE.' HiH. ). 
1 1 

So we have 

Definition. The adjoint representation (or infinitesimal representation) 

is the representation which acts in the space spanned by the infinitesimal 

operators according to the formula 

X 
We will also use the matrix D = (D ) and write D (L)D 

pcr 

X 

(D (L)D ) 
pa 
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If we exclude the trivial representati.on A -• 1 and require that the 

space Dis 6-dimensional, we may state: 

Theorem 7 .1. The space D spanned by the infinitesimal oper-ators transforms 

under the adjoint 1•epresentation equivalent with the 6-dimensional space 
X 

oj' anti-symmetric tensors, i.e. if D (L)D 
po 

X 

= D 
po 

then 

(7-BOd) 

This formula may be also obtained by differentiating the formula 

with respect to ¢po and using formula (l-8Oc) 

Remark 7.1. 

(l-80e) 

Theorem 7,1 has a number of important consequences. Especially the fact 
➔ 

that the operators Bk~ Ek transform like 3-dimensional vectors under 

rotations was the general starting point of Gel'fand a.o. to construct 

the infinite-dimensional representations of the Lorentz group, see 

section 7.3, 

In the sections 7.1, 7.2, 7.3 we will apply the properties of the space 

of anti-symmetric tensors to the space D of infinitesimal operators. 

Some applications which are used in more physical literature are mentioned 

below. 

The infinitesimal operators of little groups. 

Finally we make the following important observations. For that purpose 

it is ne0essary to write the vector representation in the form 

A= D(Aµ I, where Aµ is the group element and A the corresponding 
\) \) 

linear transformation in R4 • However the considerations below, also holds 

for arbitrary representations. 

So far we have considered the transformation 

-1 
A' = L A L 

or AP' = LP' L OAP 
a' p a' a 

(1-8Of) 

as a point transformation which maps the point AP onto the point AP 
a a' 
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and Urns the 

llm.,.ever if L 

linear transformation/\= D(:\p) onto/\'= D(flp' ,) = DU,P )', 
0 0 0 

is a coor>d'inate tr>ansfor>mation then the components /\P 0 in 

the ,·oorclinatc, syst,,m x 1', determine the same linear transformation as 

1 lie corn;,o;ien ts /'. 11 ' 0 , in the coordinate system xµ: One may express this 

by introducing a new representation D' such that 

I 1 I 

D'(i\p ,) = D(J\P ),(AP)= L- (/\P ,)L 
0 0 0 0 

(1-80g) 

p' p 
or replacing the argument J\ , by J\ we get 

0 0 

D'(J\p) = D(L-l) D(J\p) D(L), 
0 0 

cf. (l-80e), Raising the index o, differentiating (l-80g) with respect 

to the parameter ¢po and putting all¢= Owe obtain 

D' L P L o D 
p'o' = p' o' po (1-80h) 

It follows that the operators Dpo transform as the covariant components 

of a vector, as contrasted with (1-80d), 

In fact one may verify that if one considers the space of functions f(x) 

defined on R4 (x E R4 ), transforming by 

-1 
D(J\) f(x) = f(J\ x), 

then under a coordinate transformation L, the operators D(J\) transform 

according to (l-80g). 

As an application we consider the four operators Wµ, i.e. 

Wµ Dj::i'v Pv where Pv = - iclv = -i cl and D __ = (A., B.) 
axv µv i i 

(see 1-16d), or theorem B-1 on p. 134, 

which acts on plane waves 1/J( x, p) = 1/J ( p)e ip .x ( p•x 

Cp2 , Po> 0), It follows that D_ Pv = D_pv • 
µv µv 

(1-80k) 

µ 
p •x ) • , where 

µ 

Because D_-pv is an invariant expression, under the adjoint representation 
)JV 

as defined above, we choose the coordinate systems such that 

pv = (1, o, o, 0) .. It follows that 
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which are the three rotation operators which leave the vector pv in

variant. A group G(p) which leave a vector p invariant, is called the 

little group of p and if p 2 > 0 then G(p) is obviously isomorphic with 

the rotation group o3 • Consequently in an arbitrary coordinate system 

the expressions 

(1-801) 

which act on plane waves w(x, p) are the infinitesimal operators of the 

little group of P. 

The Casimir operators of the Lorentz group 

µv-->- ->
It is further known that the space of anti-symmetric tensors F (E, H) 

-->-2 -->- -->- 2 
contains the complex number G = (E +iH) as an invariant, see (1-16f) 

or chapter II, section 3.2. Analogously the space of infinitesimal 

operators contains the invariant operator 

-->- -->- 2 1 2 
(A+ iB) = l (J\ + iBk) , 

k . 
that is to say an operator whi~h is invariant with respect to the adjoint 

representation i.e. 

If we separate the real and imaginary part we obtain the two operators 

F = A2 - Ii2 
➔ ➔ 

(1-80m) 
and G = A,B 

which commute with all the infinitesimal operators of the Lorentz group. 

Such operators, F, Gare known as the Casimir operators of the Lorentz 

group. If D(L) is an irreducible representation then the operators F and 

Gare multiples of the unit matrix fE, gE, (lemma of Schur) and irreducible 

representations of the Lorentz group may be characterized by f and g, 

See Joos p. 65. 
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7.1. The commutation rules of the Lorentz group. 

for the study of invariant subspaces in Sunder the representation 
;( 

D (L), formula (1-BOb), it is sufficient to study the behaviour of S 

under the infinitesimal operators 

D a 

X 
D0 • These are defined by 

D(L) S D -l (L) I 
S - SD a 

¢=0 

Thus 
X 

D S 
a 

[n , s] 
a 

(1-81) 

In order to obtain the commutation rules of the Lorentz group without 

referring to the general theory of Lie groups, we first consider the 

antisymmetric tensor Fµv (E, H) transforming by 

and infinitesimally by 

X 

L F = L a a 

It follows that under the rotation Al and the hyperbolic screw B1 the 
+ 

vectors E2 and H2 transform as follows. 

Ax + + + 
it3) 1 (E2, H2) (E3, and cycl. 

X + + + -E ) and cycl. Bl (E2, H2) (H3, 
3 

+ + 
Thus the vectors E and H transform under rotations as 3-vectors and they 

become mixed under hyperbolic screws. Because we may identify (E2 , it2 ) ~ 
X ➔ -+ X 

(-B2 , A2 ) the above equations A1 E2 = E3 , ... become A1 B2 = B3 , ... thus 

and 

[Al, (B2, A2)] 

[Bl, (B2, A2)] 

(B3 , A3 ) and cycl. 

(-A3 , B3 ) and cycl. 

(1-82a) 

Hence the commutation rules of the Lorentz group express the behaviour 

of the spaces A and B of infinitesimal operators under the adjoint 

representation. (A is spanned by Ai and B is spanned by Bi). 

These commutation rules can be easily formulated in a way which holds 
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for arbitrary(pseudo)orthogonal groups OP which leave invariant the 
n' 

norm: 

2 
- X 

p+l 
2 

- X 
p+2 

2 
- X 

n 

Therefore we note that also for these groups, the following formulae 

hold 

and 

oxµv D = [oµv, o] 

Dx(L) D = L D LT 

D - (Dpo ) cf.(1-81) 

Differentiating the last expression with respect to¢ and putting all µv 
¢ = 0 we obtain, 

L,µvD + DL'µvT where L,µv (~) 
, = a¢µv ¢=0 

Thus ~µv, o] = L,µv D + DL'µvT 

or in the components oP 0 of the tensor D: 

l-~""1&"~ = f-i~J co'"> + 

A more detailed analysis shows that starting from the 

ations LP, the infinitesimal operators D v = (LP ,), v have only 2 non-
P µ P µ 

zero components (µv) and (vµ). In the figure they are m ... rked with• or A 

or o corresponding to the cases that (µv), (vµ) are space-like, space

and time-like, time-like, i.e. 

l
a~:,~I ---1"'_,. (LP , ) , µv = , 

p 

I • , 
~ I 
-, I -/ 

Hence we obtain the commutation rule: 

pµ v pv µ 
g grJ -g gp' 

(l-82b) 
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7.2. Finite-dimensional representations. 

JJV ➔ ➔ The space of antisymmetric tensors F = (E, H) can be decomposed by 

the following formula 

➔ ➔ ➔ 
E + iH and G 

➔ ➔ 

E - iH 

for the basic vectors we have 

G = f - i H and a- = E + i Hk k k k k k 

see formula (1-16c). There holds 

~ ➔2 (a) u transforms like a 3-dimensional vector, for G is invariant, 

see (2-30). 

(b) d transforms like a 3-dimensional vector, for 02 is invariant, 

see (2-30). 

(c) G and a determine two invariant spaces which have only the zero 

vector in common. 

Because the space D of infinitesimal operators (D01 , Djk) = (-B1 , A1 ) ~ 

(Ek, Hk) transforms equivalent with the space of antisymmetric tensors, 

we reduce D by forming the vectors 

(1-83) 

which span the spaces C and D respectively. The properties (a), (b), (c) 

correspond to 

(al) [al' G2] iG3 and cycl. 

(bl) [<\, 62] i<\ and cycl. (1-84) 

(cl) [ai, G) 0 for all 1, j = 1, 2, 3. 

1 Proving (c ), we observe that [a. , G.] is necessarily a vector from the 
]. J 

space G as well as a vector from the space C. Because G and G have only 

the zero-vector in common, we obtain the relations (c 1). 

In order to solve the relations (1-84), we note that by the "unitary 

tric:k" it is possible to consider the opf'lrators from (1-84) as hermi t;:i.an. 
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The unitary trick (Weyl). Let us be given a finite-dimensional 

complex ¢Ok -plane 
representation D(¢) of the 

t 0 
Lorentz group L+ ; the numbers 

r7T 

_..,, 

~
/A_lj/////////1 /l11, 

~-(J~C~LIS)J 
~//$//////$' 

¢0 are real, see the ¢0k-axis in 

in the figure. ¢Ok belongs to hyp. screws. 

Because Dis an analytic function 

of ¢0 , it follows by analytic 

continuation that D(¢) is also 
o 

a representation of the aorrrplex Lorentz group Lt C which is analytic 
+ 

in the parameters ¢0 • 

The fact that all ¢0 are complex 
2 2 

leave invariant the norm x0 - x1 
Lo t L t G . . h" ren z group + · is 1somorp 1c 

implies that all matrices Aµ which 
2 2 v 

- x 2 - x 3 are complex. Now the complex 

with the complex 4-dimensional orthogonal 

group o4+ C, this follows after applying the transformation 
➔ . +. 

(y0 ,y) = (x0 , ix) to R4 , which transforms the invariant expression 

~ +2 2 -l2 
XO - X into Yo+ y 

In particular the matrices 

(
cosh 

sinh ¢0 k cosh 

are transformed (cos i¢ ok 

into sin i¢ ok 

thus for the group o4+ C the complex parameters 

-sin 

cos 

(woj' Wkl) = (i¢0 j, ¢kl) are more suitable. If we restrict ourselves 

to real w we obtain a representation of the real orthogonal group o4+, 

see figure. Hence it follows that to every representation D(¢) of the 
t 

real Lorentz group L+ there corresponds a representation D(W) of the real 

orthogonal group o4+, which is a compact group. 

It may be proved that the properties equivalence and irreducibility are 

preserved in this correspondence (see for instance Hamermesh p. 388) .• 

Thus the classification problem of all finite representations of the 

Lorentz group reduces to the problem of the classification of all 

(unitary) representations of the aompaat group o4+. This procedure is 

called by Weyl: the unitary triak and is only valid for finite-dimensional 

representations of(pseudo)orthogonal groups, (However the Lorentz group 
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is not compact, so there exists also infinite-dimensional represent"

ations, see remark 6.1.). 

After differentiating with respect to ~Oj and ~kl we obtain the 

infinitesimal operators -i Bk,~ of o4+. Because o4+ is a compact 

group it follows that these infinitesimal operators are anti

hermitian. Thus the operators Bk, iAk = Jk, or Gk and Gk of the 

Lorentz group are hermitian and with formula (1-84) it follows that 

the operators Gk and Gk are the infinitesimal operators of the 

rotation group. 

Applying theorem 6.2 we obtain that all eigenvectors em of G3 i.e. 

G3 em= mem -j ~ m ~ +j (see formula (1-75)) form a space Em. I~ view 

of property (cf), Em is an invariant subspace for the operators Gk, i.e. 

a3 (Gkem) = m(Gkem), hence Okem E.Em 

Thus in the space Em there are eigenvectors emm, of o3 i.e. 03 emm, = 

m'emm' (-j' ~ m' ~ +j'). If the representation D(A) of the Lorentz group 

is irreducible and finite, all the emm' span the representation space of 

D(A). In the theory of Lie groups (m,m') is called the weight of e , 
mm 

and analogously to the rotation group the irreducible representation 

D(A) is characterized by the highest weight (j, j'). Thus by the 

infinitesimal method we re-obtain the spinor representations Djj'. 

Ljubarski p. 248. (For the infinite-dimensional case see section 7.3.) 

In order to relate the infinitesimal method with the algebraical method, 

we consider the spinors 

j+m j-m -j'-m' -j'+m' 
U V U V 

emO eOm, 
(1-85a) 

Considering rotations about the z-axis we have 

-im 8) j+m j-m ( -im'8 .,j'-m'.,,j'+m' D(8) e , = (e u v e ) u v 
mm 

(1-85b) 

. (aD(8 >) The corresponding infinitesimal operator , J 3 = 1 a0 8=0' is given by 

J3 emm, G3(emo> eOm, + emo <03 eam,> (1-85c) 

= me mm' 
+ m' emm' 

= (m+m') e mm 
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Consequently the op~rator J 3 consists of an operator G3 which acts 

only in the space RJO of undotted spinors and an operator a3 which 

acts only the space ROj'of dotted spinors. 

In fact using the action of the infinitesimal operators Ak and Bk 
a a 

(1-79a, b), (1-83) ( 1/J ) , ( 1/J ) , see and using the definition of the 

infinitesimal operators Gk and Gk it follows 

Gk acts on each index a or a by the table. 

o·• 
R J 

that the operators Gk 

on the 

and 

½ cr 
k 

0 (1-85d) 

0 ½ cr 
k 

Consequently the indices m, and m' which are defined in (1-85a) are 

the eigenvalues of emm, with respect to the operators G3 and G3 , see 

(1-85). 

We draw a so-called weight-diagram or a Cartan-Stiefel diagram, 

Every vector emm, is represented in this diagram by its weight (m, m') 

m'rf;) 

• • 

• • • 

j' • ·4' --+ 5-
+ 

• 
-

(l-85e) 

• • • • 
• • • • • 

Besides the operators Gk and Gk, which belong to the representation 
10 01 . 

space of D and D respectively, one introduces a canonical basis 

by defining 

G Gl - iG2 GO G3 G Gl + iG2 
(l-85f) 

+ 

G Gl - i6 
2 60 G3 6 Gl + + iG2 (l-85g) 

spinors 
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The transformation property J 3 x+ = ! x+, which holdSfor a canonical 

basis x_, x0 , x+, takes here the form Q3 , G+J =: G+ (see (1-81)). 
- -Observing that in the space G of undotted spinors J 3 = G3 and in the 

space G of dotted spinors J 3 = G3 , we have the commutation rules 

[G3, G_] -G - [ G3, GJ = + G (1-85h) 
+ 

[63, a_] -G [a3, a+J + G + 

It follows that the operators G+ G+ are the so-called step-operators 

which act on the vectors emm' defined in (1-85a), by 

G e mm' e 
m+l, m' G e 

mm' e 
m-1, m' + -

G e mm' = e m'+l G e mm' = e m'-1' + m, m, 

or G+ emm, = O, ... etc. (see 1-85e). 

This can easily be proven by using (1-85h), i.e. 

G3 (G e ,) 
+ mm 

(1-85k) 

Or using the definitions (l-85a, f, g) and we have that G+ acts on the 

spinor (u, v) by G+ : v + u. By which follows the relation (1-85b) 

with A = 1. 
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7.3. Infinite-dimensional representations of the Lorentz group 

The third important consequence of theorem 7.1 is that it is possible 

to determine the matrices Bk also in the infinite-dimensional case and 

thus to classify all the irreducible representations of the Lorentz 

group. (Gel'fand etc. p. 133 and p. 188.) The operator Bk transforms 

under the adjoint representation according to B~ = D(L) x D'(L) Bk,cf.(1-SOb). 

In remark 7.1 we have noted that under spatial rotations i.e. D(r) x D'(r), 

every operator Bk transforms like a 3-dimensional vector, see also the 

first line of (l-82a). 

Thus Bk belongs to the 3-dimensional irreducible component Dj (j = 1), 

which is contained in the tensor product D(r) x D'(r), or irreducible 

components n1 if there are more. 

We shall select a suitable basis f and s., for D(r) and D' (r) respectively, 
l. 

we note that D' (r) = D-lT(r) is a "covariant" representation. If the 
i i 

components xi' of the vector Bk with respect to the tensorbasis I',; si, 

are determined, then the operator Bk is known. Now the representation 

D(r) of the rotation group acting in the space R is in general reducible 

into irreducible representations Dj, i.e. 

(1-86) 

For every Dj one may select the canonical basis s. of Rj(-j .::_ m .::_ +j) 
' Jm ' 

and for every Dj one may select the canonical basis n ., , of Rj 
-lT T -1 J m 

(-j' .::_m' .::_ j'),using D (r) = D (r ) one may proof that nj'-m' = sj'm'· 

If we require moreover that the representation D(A) of the restricted 

Lorentz group acting in R is irreducible, then from observation (1) on 

page 81 it follows that each irreducible component Dj of the· 

rotation group appears only once. 

All vectors f_;. f_;., , span the product space Rx R'. 
JID J m 

In order to visualize the zero's and non-zero's of the matrix componepts 

c .. , , of B, we draw the following figure. 
JmJ m · k 

In the figure all possible vectors I',;. (where j = O, ½, 1, ••• and 
Jm 

-j < m < +j) are indicated by the numbersjm on the vertical line, in the 

same way the vectors nj'm' = E,;j'-m' are given by the number j'm' on the 

h . t 1 1· Th f t th t 1 .. h lf . t · l 3 d h orizon a ine. e ac a on y J is a -in eger J = 2, 2, ... an tat 
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e,. 
7 

y) 

+ 0 

.A·. 

every j appears only once will be explained below. 

/j) 

The vectors~-~., , from the tensor product are given by the 
JIB J -m 

(2j + 1)(2j' + 1) lattice points in the square (j, j'). 

Each product Rj x Rj' is reduced by 

• o j+j I e 
RJ = C R (j, 

t= TJ=-j, I 
j') 

and consequently only tensor products with j' = j-1, j, j+l contain 
1 . 

a 3-dimensional representation space R (J, j'). Therefore only the 

spaces Rj x Rj' with j' = j-1, j, j+l may contribute to the operator 
1 

Bk I!:. R, where 

1 
R \ d ( . . I ) Rl ( . . I ) l J, J J, J • (1-87) 

• C 

·A 
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The corresponding squares in the figure are filled with dots and we 
1 3 5 

obtain two infinite chains of blocks, one with weights j = 2, 2, 2, 
(see figure), the two-valued spinor representations, and one with 

weights j = o, 1, 2, ••• , the tensor representations. 

Inspection of this diagram leads to the following observations. 

(1) It 

spaces 

is clear that the operators B transform the spaces Rj into 
. 1 . . 1 k 
J- J J+ . d 'b 1 R , R, R and thus every ~rre ue~ ve representation of 

the 

the 

Lorentz group is given by a large square along the main diagonal, 

containing a system of eonneeted dotted blocks with weight factors 

d(jj'), see figure. If the lowest weight of the rotation group appearing 

is j 0 , then the weights j 0 , j 0+1, j 0+2, •.• also appear (j0 = o, ½, 1, ... ). 

Thus if the representation D(A) is irreducible, then each irreducible 

component Dj of the rotation group appears only once. 

(2) The three-dimensional subspace R1 (j, j') of Rj x Rj' is spanned by 

the three diagonals of each block (see §3.2 and formula (l-34c). The 

upper,main, and lower diagonal are the 
x 1 -ix2 

where z:;l;-1 = V2 1;1,0 = x3, z:;1;1-1 

three vectors: 
x 1+ix2 

(.:.)---

V2 
Thus the operator B0 = iB3 is given by all main diagonals z:; 1p(j,j') 

each labelled with a number d(j, j'), which give the contribution of 

each space R1 (j, j') to R1 , see (1-87). Similarly the operators 

B iB1 + B2 and B+ = iB1 - B2 are given by the upper and lower 

diagonals respectively. It follows that the operators B_, B0 , B+ transform 

the vectors~- with eigenvalue m into vectors~. _1 , ~n , ~n 1 Jm ,., , m ,.,,m ,., , m+ 
respectively (JI,= j-1, j, j+l). 

Compare the formulae of Gel'fand on p, 188, 

In the actual calculation of the components of the vector Bk, we first 
1 . express the vectors 1; 0 (j, j') which span the space R (J, j'), as a ,.,k . 

linear combination of the vectors z:;. z:; ., ,. 
Jm J -m 

Using the Clebsch-Gordan coefficients we have 
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(see section 3.2 formula (1-34b) ,The C.G. coefficients may be found 

for instance in Gel'fand p. 152). 

In the second figure the coefficients Bik jm j'm (k = -1, O, +1) are 

written on the corresponding lines m+m' = k, where we have omitted the 

factors which are only dependent of j; these are incorporated into the 

coefficients d(j, j'). 

Thus the operators Bk in turn may be written as a linear combination 

of all ~ik(j, j') 

Bk= d(j, j') ~ik(j, j'} (summation over j = j 0 , j 0+1, ••• and 

j' = j-1, j, j+l). 

Now it may be easily verified, that by a coordinate transformation 

~•. = h(j} C , 
Jm Jm 

which does not alter the formulae for the infinitesimal rotation ,. 
operators A., the factors d(j, j') may be transformed in such a way that 

l. 

d(j-1, j) = d(j, j-1) = C. 
J 

and d(j, j} = A .• 
J 

The "weights" A., C. are written in the corresponding blocks and 
J J 

thus the formulae for the infinitesimal operators belonging to hyper-

bolic screws are 

B+ ~jm = + cjV(j-m}(j-m-1) ~j-l m+l - Aj V (j-m)(j+m+l) ~j m+l 

etc. + cj+l V (j+m+l)(j+m+2) ~j+l m+1· 

The coefficients A., C. still have to be determined. For that purpose 
J J 

we use the second line of (1-82) and obtain the commutation rules 

Substituting the expressions for B+, B0 , which are now known, and 

SJbstitutingA+ = J+ (formula 1-75b) in this commutation rule one 

obtains two simple recurrence relations for the A. and c .• 
J J 

It appears that there are only two independent coefficients: the number 
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JO indicating the lowest spin value, and the weight A. which may be 
Jo 

arbitrary complex. 

ijl 
Putting A. = ~ 

Jo Jo 
, where jl is arbitrary complex there follows 

A. 
J 

ijOjl 

j(j+l) 
and C. 

J 

Thus all irreducible representations of the Lorentz group are classified 

by the pair of numbers (jO, j 1 ) or equivalently by -(jO, j 1 ). We note 

that Gel'fand uses the notation t(tO, f1 ). 

It is clear that the irreducible representation is finite if there is 

a coefficient Cj = o, thus if jl is real and j = \j1 J. 
The irreducible representations of the r9tation group which appear in 

(jO, j 1 ) have weights 

jo' jo+l, jo+2 ' •••• 

In the finite case the sequence ends with \j1 \-1. The coefficients jO 

and jl are related to the coefficients j, j' of Djj' by 

jo = I j-j' I j O = o, ½, 1, : 

3 
jl (j+j'+l) x sign (j-j') jl + 1, ! 2, 

(see formula (1-34a)). 
3 

If jl is an arbitrary complex number jl f ~ 1, ! 2, ... then all 

C. f O, and the chain of blocks in the figure is infinite. In this 
J 

case we have obtained an infinite-dimensional irreducible representation 

of the Lorentz group, see remark 6.1. 

Unitary representations of the Lorentz group 

For an unitary representation the infinitesimal operators Dcr must be 
+ -1 + 

anti-hermitian, because D = D implies Dcr = -Dcr and thus the operators 

iDcr = iA3 , iB3 , .•• must be hermitian. For the rotation operators iAk 

this property is already satisfied and it is clear from the foregoing 

figure that the iBk are hermitian if the coefficients Aj are real and 
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C_ are purely imaginary. Using the expressions for A. and C. mentioned 
.I J J 

above we obtain that Aj is real implies that (1) jl is purely imaginary 

or (2) .i0 = 0, and that Cj is purely imaginary implies that the term 

positive: under the f-sign is 
.2 . 2 

Because (J -J 0 ) 
2 .2 . 2 

and (4j -1) are positive there follows J -J1 .:'._ 0. 

In case (1) this equality is satisfied. In case (2) it follows, because 

j=l is the lowest weight, that jl is real and lj1 1 < 1. Summarizing we 

obtain unitary irreducible (infinite-dimensional) representations in 

two cases, i.e. 

0 

pure imaginary ( the rzain series of 

representations) 

real and lj1 I ~ 1 (the supplementary 

series of representations). 
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8, Loren~z covariant equations in Bhabha form 

In this section we study, in a manner resembling the methods used in 

the foregoing section, the form of linear partial differential equations 

which are Lorentz covariant. 

It appears that the use of infinitesimal operators facilates considerably 

the solution of this problem. 
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8.1. General theory 

We shall use the following notations,w(x) denotes a vector function, 
1 n . 

t(x) = (t (x), ... , t (x)),wh1ch transforms by a representations D(L) 

of the Lorentz group i.e. 

if x' = Lx then w'(x') = D(L) t(x) and the operator a = (a O, a 1 , a 2 , a 3 ) 

transforms by a' (L-l)Ta. 

The symbol Lµ (µ O, 1, 2, 3} denotes an n x n matrix which appears 

in a Lorentz covariant equation (in general Lµ is an operator). In 

physics the letter Sµ = Lµ is also used. 

Definition The differential equation 

(1-87) 

is called Lorentz covariant if its form remains invariant under a 

Lorentz transformation, i.e. after a Lorentz transformation L there 

must hold 

One may also define equations which are only invariant with respect 

restricted 
t 

The problem is to determine all possible the group L+. 

Lorentz covariant equations, thus to determine all quartets Lµ *) 

Theorem 8.1 

The equation (Lµa + iK)t = 0 with KIO is Lorentz covariant if for 
µ 

all Lorentz transformations L = Lµ there holds 
V 

to 

PROOF. 

obtain 

Lµ D(L) LvD-J (L) = Lµ 
V 

-1 
We substitute t(x) = D (L)t'(x') and a 

(1-88) 

LTa' into (1-87) and 

(LvLµ a I+ iK)•D-1 (L)t'(x') = o. 
V µ 

(1-8!:.I) 

Premultiplying this equation by D(L), observing that D(L) commutes 

with the numbers Lµv' but not with Lv, we find 

(Lµ D(L) LvD-1 (L)3 , + iK)•t' (x') O. 
V µ 

After comparing this equation with (1-87) we obtain 

Th~ first proposal to formulate Lorentz covariant equations in the 

form (1-87) was done by Bhabha in 1946. 
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Lµ Lµ D(L) LvD-l(L). 
V 

Remark 8.1 

We observe that if K = 0 (zero-mass case) then it is already sufficient 

for the equation to be Lorentz covariant, that there is an additional 

m-dimensional representation E(L) so that after multiplying (1-89) from 

the left by E(L) there holds 

Lµ = Lµ E(L) LvD-l(L). 
V 

In this case the matrices Lµ are m x n. 

Example 8.1 

We substitute the rotations Lµ = rµ into (1-88), after which in the 
V V O 

first row(µ= 0) only the term with r O = 1 remains 

LO= D(r) LO D-1 (r). 

Thus LO commutes with all rotations D(r) o. 

Example 8.2 

Now we substitute a space reflection L = P. In the same way as in 

example 8.1 we obtain that LO commutes with D(P), 

i.e. o. 
t 

The matrix L = A belongs to the restricted Lorentz group L+ and formula 

(1-88) describes in fact an infinite number of equations. We restrict 

this number by using the infinitesimal operators. 

First we write equation (1-88) in abbreviated form: 

➔ -1 ➔ 
A D(A) L D (A)= L (l-90) 

Further we use the notation D0 and A0 for the infinitesimal operators 

of the representation D(A) and the vector representation A respectively, 

Theorem 8,2. In order that the equation (7-87) is Lorentz aovariant 

there must hold [D , L] = -A 1, (1-91) 
cr cr 

PROOF. We differentiate (1-90) with respect to the parameter ¢0 and put 

¢ = o. 
-D we obtain 

(J 
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A 1 + A (0) (D 1 - 1D ) = 0 
o o o 

from which theorem 8.2 follows, cf. (1-81). 

Example 8.3 

We substitute rotations in (1-91), e.g. D0 = A1 , in order to obtain the 

formulae 

[Al, LOJ 0 0 0 0 

[Al, Ll] 0 0 0 0 

L2] 
-

[Al, 0 0 0 -1 

[Al, L3j 0 0 1 0 

The commutation rules [Al, LO] [Al, Ll] = 
[Al, L3] 2 

relation [A., L°] = -L follow. The 
1 

which is equivalent to the statement made in 

ExamEle 8.4 

Now we substitute hyperbolic screws, e.g. D 
o 

[Bl, LO] 0 1 0 0 

[Bl, Ll] 1 0 0 0 

= 
[Bl, L2] 0 0 0 0 

[Bl' L3] 0 0 0 0 

From which the formulae [Bi' LO] = -Li 

and [Bi, Li] = -LO 

follow. 

0 and [ A1 , L 2] = L 3 , 

= o, holds for all rotations 

example 8,1. 

B1 , in order to obtain 

LO 

Ll 

L2 

L3 

(1-92) 

(1-93) 

The following conclusion may be made: If a representation D(A) in the 

space of w(x) with infinitesimal operators D0 is given, then in order 

to obtain the corresponding Lorentz covariant equations, it is sufficient 

to determine only the matrix Lo. 

With the aid of the relation (1-92) the remaining matrices Li may be 

found. The matrix LO is determined by the relations (1-92) and (1-93). 
i 

By eliminating L in (1-93) we obtain 
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(1-94) 

Also in the subsequent theory, e,g. determination of the rest mass and 

spin of particles, the matrix LO will play a fundamental role, 

Summarizing the matrix LO must satisfy the relations 

(1) [D(r), Lo] = o (r €. o3+) 

(2) [Bi, [Bi, L0 JJ = Lo 

(3) (D(P), LO] = 0, 

From these three equations one may obtain the general solution of the 
0 i 

matrices L and thus of the matrices L 
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8.2. Construction of covariant equations 

Instead of starting from the commutation relations (1) (2) (3) mentioned 

in the end of the preceding section, it is in individual cases easier 

to determine LO by using the more pictural method described in section 

7. For this purpose we remark that the left- and right-hand side of equation 
µ -lT 

(1-88) implies that L transforms under the representation D(L) x D (L) 
*) as a 4-vector • Thus 

Theorem 8.3. There only exist Lorentz aovariant equations in ~(x) if 
-7T · h t t' the representation D(L) x D (L) aonta~ns t e veator represen a ~on 

/2~. 
We suppose that Dis a representation of the full group, i.e. 

D = l (Djj' + nj'j), if j i j'. Then there holds that D-lT is equivalent 

to D. The proof of this depends on formula (1-28) on page 23 which shows 

that A-lT is equivalent with A, thus (D½O)-lT ~ n°½ and by taking tensor

products we have 

and 
-lT 

D ~ D. 

Now with the product farmula for representations i.e. 

D(L) x D-lT(L) 
~f'-i'+k' 

e= j-k, e·= j'-k' 

it follows that whenever the representation Djj' appears in D(L) there 
kk' 

necessarily existsa representation D such that k = j ± ½, k' = j' + ½ 
·te' H in order that there exists representations D = D • 

/ ' . ,z/·.·; 
·-o 

-~2)~0 

/•2 

Observe that Lµ does not transform as the component JI of a vector, 

but that eaah Lµ is a basis vector in the space of covariant vectors 

(x ), because the condition of Lorentz covariance implies that after 
µ 

substitution of L' µ = D(L)Lµ D-1 (L) in (1-87) there holds 
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0 
In order to determine the operator L we give similar arguments as in 

section 7. If ~i is a basis of D(L) and~-, a basis of D-lT(L) then 
-lT J. 0 

~-~-, is a basis of D(L) x D (L) and the operator-vector L is given 
]. ]. .. ' 

by the components xii with respect to~-~-, (see figure). On grounds 
J. J. .. , kk' 

of the arguments mentioned above only the blocks DJJ x D with 

k = j + ½, k' = j' + ½, in the figure contribute to Lo, With respect 

to rot:tions Dkk' r:duces into Dh (h lk-k'I, k+k'J and Djj' into 

nP (p = lj-j'I, ••• j+j') respectively. Because LO is, with respect 

to rotations, a scalar it follows that LO has only components in the 

representation spaces r:f x r:f and LO is given by the (2P+l) x (2P+l) 

scalar matrices c E. 
p 

See figure on the right and formula (1-34c). 

Example 8,5. We require that 1/J transforms by the representation 

D½o + D0 ½. There holds 

(D½o + Do½) x (D½o +DO½)= ••• + 2D½½ + 
Thus only the combinations D½o x Do½ contain the vector representation 

and it fol lows that a Lorentz covariant equation in 1/J with K -f. 0 may be 

constructed. 

For this purpose we consider the 

4 x 4 matrix Lo. 

It follows that only the blocks B02 
= (D½o x Do½) and B l = (Do½ x D½ ) 

can contribute to LB. With respect 

to rotations LO is a scalar, 

hence the blocks B12 and B21 are scalar matrices c!B E and
0

c21 E. 

By a space reflection P the spinors belonging to D and D ½ are 

interchanged and thus there must hold c12 = c21 • 

We have obtained 

(1-95) 
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cri o 
Using the infinitesimal op~rators Bi= ½< 0 _0 _) (formula (l-79a,b)) and 

the relation [Bi, LO] -L1 we obtain the matfices 

(1-96) 

which are the Dirac matrices yµ from section 4.2. and we have re-obtained 

the Dirac-equation. 

Example 8.6. 

On the contrary there is no equation with Ki Osuch that~ transforms 

by n10 ~ n°1 However, if we require that~ transforms by n10 + D½½ + n°1 

we obtain the combinations n10 x D½½ and D½½ x n°1 which contain the 

vector representation D½½. Consequently, .in the matrix LO we only have 

is 

Lit L)'".;.,l)0 ' 

? ,·HI 

the relation [n(P), 

to consider the shaded blocks and 

because LO is a scalar with respect to 
0 

rotations it follows that L consists 

only of 

in D(P) 

LO]= 0 

scalar matrices. By a reflect~ 
➔ ➔ ➔ ➔ 

: (x, E, H) + (Px, -E, F), it 

implies that LO is of the form 

Moreover if one requires that LO must be hermitian (see section 8.3) 

there follows 

(1-97) 

Together with the remaining 10 x 10 matrices Li we have re-obtained the 

Kemmer matrices, which appear in the Pr>oea equations (see section 4.1, 

formula (1-48c)) 
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Example 8.7 

There does exist an equation with K = O, in which~ transforms by 

DlO + 0°1 For that purpose we choose the additional representation 

E(L) as 

(see remark 8.1) 

The combinations DlO x D½½ and 0°1 x D½½ contain, as in example 8.6, 

the vector representation. If one chooses 

(the tensorsum of the vector and pseudo-vector representation) one 

obtains the equation of Ma:x:1.Jell. 

Example 8,8 

The Pauli-Fierz equation. We require that the vector~ transforms by 
½o · o½ . 1½. ½1 the representation D + D + D + D 

I jj{iJ I d' The vector representation is 

2510 contained in the 4 combinations 

,!)of D½O X DO½ 

' 
X X 

I D1½ D½l I 

l)'{ 
X ... 

I 

(see the shaded blocks) 

We consider in particular the 

1_ 
tensor product o1½ x D½l. With 

li' respect to rotations n1½ 

decomposes into D1 X D½ = 

Di-!- D½ 
' 

a four- and two-

dimensional representation, 

see figure. The same holds for D½1 • 

Thus the scalar Lo, with respect to rotations, is contained in the 

combinations D½ x D½ and 0312 x 0312 , see the letters d and e in the 

figure. The remaining coefficients a, b, c follows by the same argument 

as in example 8.6. 
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3 
Now we consider all submatrices with spin value½ and spin value 

2 

(1-98) 

and choose a b = -d =½and e = 1. 

In this case we obtain the equation of Pauli -Fierz. The choice of 

a, .. e ensures us that LO is hermitian with respect to some inner product, 

see section 8.3. 
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8.3 Spin and rest mass of particles 

In physics the number of covariant equations is limited by the 

condition that LO must be hermitian. 

This depends on the fact, that one requires that for w<x) there must 

be an invariant functional i.e.oL[w(x)] =~[$'(x')], the so-called 

invariant Lagrangian. One may prove that invariant Lagrangians exist 

only if the following two requirements are fullfilled: 

(1) There exists some invariant inner-product ($1 ,$2) = Wi H w2 i.e. 

(~1' ~2) = (D(L)~l' D(L)~2). 

This inner-product does not have to be positive definite. 

(2) If the matrices Lµ are hermitian with respect to this inner-product, 

i.e. L+H = HL. It is sufficient that LO is hermitian in order that all 

Lµ are hermitian. 

Gel'fand p. 284. 

In the finite-dimensional case there is alsways an invariant inner

product. In section 3 we have shown that in the space of spinors the 

expression ~ax is an invariant and in the space of 4-component 
a ½o o½ 

spinors, which transform by D + D , we define 

= o1, ~2. xi, X~) 

(: :) 
~1 

~2 
~+MW. = 

~i 
~2 

Noting that H = Yo, one often uses in physics the notation 
- + 0 ;r. µ 
~ = $ y, by which one can form scalars$~. vectors o/Y ~ •••• etc. 

By generalizing this expression to spinors belonging to the representation 

Djj' + nj'j' we obtain 

cl ••• 
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In the infinite-dimensional case there exists only an invariant hermitian 

form for unitary representations, 

Example 8,9 

One may verify, for instance, that the matrix LO in example 8,8 is 

hermitian, (LO)+H = HL0 , where 

E 

H 
E 

-E 

-E 

0 
and the same holds for the matrix L from example 8,6 where 

H = 

0 
Beside$the condition that L must be hermitian one requires further 

that the ~(x) span a space, which is invariant under translations in 

R4 : x' = x + a, The group, which contains Lorentz transformations as 

well as translations is called the Poinaare-group. The importance of 

the Poincare-·group lies in the fact that a physical law must be 

independent of place and time, For that purpose one requires that the 

covariant equation has solutions in the form of plane waves i.e. 

ipx µ 
«x) = «P) e (p .x = p x ) , in a homogeneous field, 

µ 

where pis the energy-momentum vector(~, mt) from formula (1-7), 

Substitution in 

yields 

(Lµa + iK)~(K) = o 
µ 

(1-99) 

(1-100) 

In order that this equation has a solution ~(x) ~ O, there must hold 
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det(Lµp - K) = 0, 
µ 

The investigation of equation (1-100) demands the fact that there holds 

D(A)LvD-1 (A) = A vLµ, 
µ 

see formula (1-88), Left- and right-multiplying equation (1-100) by 

D(A) and o-\A) respectively we obtain 

det(Lµpµ ~KI)= det(Lµp'µ - KI) where p'µ = LµVPv· 

There are two cases which are important in physics. 

I) p2 > o. Then there is a Lorentz transformation L v such that 

p'µ = (p0 , O, O, 0). The numbed= p0 is known as t~e Pest mass of 

the particle and equation (1-99) becomes 

0 
CL P0 > w<P> = K w<P>, 

If A is an eigenvalue of LO then K is related to the rest mass p0 by 

APO= Kor, in other words, the relation p0 =Xis a condition in 

order that w(x) = w(p)eip,x is a solution of equation (1-98), 

We consider only real A~ O, because if A= O then K = 0 and Pµ is 

entirely indetermined, 

The eigenvalues WA are easily determined. It is known from the general 

theory that the matrix LO consists of scalar matrices AE, subblocks 
.. , kk' 

oP x oP, which are contained in the blocks DJJ x D (k,k')=(j!½,j':i>, 

see theorem 8,3 and figure (1-lOla), After re-ordening rows and columns 

we obtain the matrix (1-lOlb) and using transformations <! _:) the 

matrix (1-lOlb) may be brought in the form (1-lOlc), 

kk' 
D 

p p 

(a) 

p 

---+-

p 

- (1-101) 

(b) (c) 
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From which follows: 

If A is an eigenvalue then -A is also an eigenvalue, Thus if 

there is a particle p with rest mass p0 > 0 then there is also a 

particle p with p0 = -p0 , the so-called anti-particle with mass l~ol. 

If the eigenvector~ (AiO) belongs to the irreducible represent-
. A 

ation space DJ of the rotation group o3+ then the number j is called 

the spin value of the partiele. In this case the spin value is uniquely 

determined, 

From formula (1-95) and the considerations given above it follows that 

the Dirac equation describes particles with spin value½ and from 

formula (1-97) it follows that the Proca equation describes particles 

with uniquely determined spin 1. 

The condition A IO plays an essential role here. 

From formula (1-98) it follows that the eigenvalue A of L½ is equal 
0 . 

to zero, thus L½ is the only matrix, which has non-zero eigenvalues 

and so the Pauli-Fierz equation describes particles with uniquely 

determined spin value~ . 
0 ➔ 

So far we have considered momentum vectors (p, 0), the corresponding 
µ 

x -system is called the rest system of the particle. For an arbitrary 

pµ' there is a coordinate transformation such that (po, 0) ➔ pµ' 

The rotation group o3+ transforms into the group G(p), which leaves p 

invariant. G(p) is called the stationary subgroup or little group 

of p, introduced by Wigner in 1939. From the foregoing considerations 

it is seen that G(p) is isomorphic with o3+ (if p2 IO!) and that it 

is also possible to derive the spin values j by starting from the 

irreducible representations of the little group G(p). 
2 

II) In the second case there holds p ~ O, thus plies on the light 

cone. This case corresponds with particles which travels with the 

velocity of light. It is possible to transform pµ arbitrarily near to 

(0, O, O, O) without changing the value of det(Lµp - K I)= o. This 
µ 

expression is a continuous function of p and there follows 

det (Lµ p - K I) = det (-K I) = 0 
µ 
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and thus K = O. 

Hence equations in which K = 0 describe particles with zero mass which 

travel with the velocity of light. Because in this case there is no 

transformation pµ + (po, 0) (po~ 0) it follows that such particles 

have no rest system. The little group G(p) is not isomorphic with o3+ 

but with the group of rotations and translations in a plane. See 

chapter II, formula (2-18). 
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Chapter II 

GEOMETRY WITH SPINORS 

In this chapter we consider first elementary projective geometry of 
t three dimensions and show that the Lorentz group L+ may be described 

as a special 3-dimensional transformation group. (section 1.) 

Next we introduce in this 3-dimensional space the concept of a spinor. 

By Cartans method for n-dimensional orthogonal groups On spinors are 

defined as derived quantities. That is to say, every isotropic plane 

is labelled by a row of numbers (spinor), which belongs to a seaond 

linear space and is transformed by a representation of On. However 

in the special case of the Lorentz group, spinors may be defined as 

concrete points in the 3-dimensional space itself and by this one 

may do the corresponding 3-dimensional projective geometry with spinors 

rather than with vectors. 

Using this, we study the transformation properties of the real and 

complex lightcone (sections 2, 3). As an application of this we 
➔ ➔ ➔ 

consider the vector G = E + iH, which is lying on the complex light 

cone and which is introduced in electrodynamics by Laporte and Uhlenbeck, 

In section 4 we obtain, with this method an easy description of the 

so-called spin-value of Veblen, Also a condition for Clifford parallelism 

in 3 and (4k-1) dimensions is derived by using the representation theory, 
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1. The Lorentz group as a three-dimensional transformation group 

For every vector xµ in R4 , we denote the corresponding ray through 

the origin O and xµ by pxµ (-00 < p < + 00). A linear transformation 

in R4 leaves the origin O fixed and thus the group of linear transform

ations in R4 corresponds to a group of transformations in the space 

of rays pxµ. Every ray pxµ has one intersection point with the hyperplane 

x 0=1 (we include the points at infinity in this hyperplane) and every 

plane through O has one intersection line with the hyperplane R3 (x0 =1). 

Thus the linear group in R4 corresponds to a transformation group 

in R3 which transforms lines into lines, the so-calledprojeative group 

in three dimensions, After dividing the formula xµ' = ~' ~ by the 
1' 2' 3' µ 

0' X X -X 
factor x and substituting (1, CJ' CJ' , CJ')= (1, x', y', z') 

X X Q X 

and after dividing the same formula by x and substituting x, y, z, one 

se_es that these transformations correspond to the group of broken 

linear transformations in R3 in which the linear group in R3 form a 

subgroup. In particular, the light cone in R4 intersects the space 

R3 in the unit sphere (see fig. 2.3) and thus the Lorentz group 

corresponds to the projective group in three dimensions, which leaves 

the unit sphere invariant. In order to formulate and extend the 

correspondence pR4 + R3 in a more precise way we introduce homogenous 

coordinates for points, planes and lines in R3 • The definitions given 

in section 1.1 are taken from elementary projective geometry. 
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1.1. Homogenous coordinates in R3, definitions. 

Point coordinates. 

We consider an arbitrary three-dimensional vectorspace R3 : Points of 

R3 will be described either by three affine eoordinates x 1 =i(x,y,z) or by 

fou:r> homogeneous eoordinates xµ(µ=0,1,2,3)*) 

so that 

➔ 

x(x,y,z) 
1 2 3 

( X X ~) 

o• o' o 
(2-1) 

X X X 

Thus two rows xµ and pxµ determine the same point in R3 • To express 

the fact that a point is only determined by the ratio of the components 

xµ, one also writes (x0 :x1 :x2 :x3 ). In particular, the origin has the 

coordinates (1,0,0,0) and the point (0,1,0,0) with x0=o is the point X 
0 

at infinity as "implied" by (2-1). All points with x =0 form the plane 

XYZ at infinity. The R3 extended in this way, is called the three

dimensional projeetive spaee P3 • There is no point with coordinates 

(0, o, o, 0). 

It follows that the space P3 is equivalent to the three-dimensional 

space of rays P £ in R 4 through the origin and that R3 is the subspace 

x0=1 in R4. 
0 

The rays with x i 1o are represented by their intersection with R3 
1 2 3 

X X X . 0 O' o' c5) and the rays with x =0 which are at the point (1, 

parallel with R3 

p. 5, 6). 

c3rre~pon~ to points at infinity of R3 • (cf. Heyting 

In particular, the light cone in R4 given by 

0 2 1 2 2 2 3 2 
(x) - (x) - (x) - (x) = 0, 

. h 2 2 2 . corresponds to the unit sp ere x + y + z = 1 in R3 • However, we 

prefer the description of the unit sphere in homogenous coordinates, 

x xµ = g xµxv 
µ µv 

O· . (2-2) 

see formula (1-1). 

See notation-convention in chapter I sections 1.1 and 3.1 
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In the same way, a plane Ors in R4 which passes through the origin 0 

and the vectors rands corresponds to its intersection line rs in 
0 

the space R3 (x =1). 

In homogeneous coordinates, the equation of the line rs (plane Ors) is 

xµ = arµ+ f3sµ 

0 0 0 
If we substitute the values x =r =s =1, we obtain 

; =a;+ f3~ (a+ f3 = 1) or ic = t + p(i-t), 

the well-known formula for a straight line in affine geometry. Similar 

formulae hold for a space Orst in R4 which corresponds to a plane rst 

in R3 • 

In the following, we will also introduce coordinates for planes rst and 

lines rs.However we will not use these definitions before section 4. 

Plane coordinates, 

To every point pµ in R4 , is 

which is orthogonal to J ; 
associated a 3-plane J x =0 

µ 
the numbers p are called the "space 

µ 
coordinates" of 

which is called 

p :il1:o. In R3 the equation pµx =0 describes a plane µ µ 
the polar plane of the point pµ and the numbers p 

µ 
are its plane coordinates, (The construction of p 

µ 
in the figure 2.1 

follows from geometry). 

fig. 

Line 

Thus the polar plane p represents 
µ 

the 3-dimensional space in R4 which 

is orthogonal to the vector tfl. 
In particular, if pµ lies on the 

unit sphere, i.e. p pµ=O, then p 
µ µ 

is the tangent plane to the point 

pµ. 

One may also define line coordinates in R3 (or 2-plane coordinates 

in R4). 

Definition The line coordinates of a line p through the points rµ 

andsµ in the 3-dimensional projective space are 

(µ,v = 0,1,2,3) (2-3) 
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The pµv form an anti-symmetric matrix and one may easily prove that the 

pµv are determined within a factor p and that they are independent of 

the choice of the points rands on p (for all properties concerning 

line coordinates, see the appendix of this chapter). We use the notation 

p = 1!-s ], where [] is a kind of exterior product, and we shall write. 

µv 
p = ~ 

0 1 
r r 

0 1 
s s 

01 02 P03 I p23, p31 = (p ' p 
12) p • (2-4) 

Thus we take the six sub-determinants formed by the µ th and v th column 
. Oi jk -+-, -+-,. •• 

and write them as the six-vector (p , p ) = (p, p) (i,J,k = 1,2,3 

and cycl,) We have 

p' 
and p" = "t: x 1 

by which follows p' . p" = 0 • 

(2-5) 

(2-6) 

(2-7) 

Conversely, the condition (2-7) implies that the anti-symmetric tensor 

pµv gives the coordinates of a line p. 

The dual line 
µ µv 

If the point p moves along the line p 

Then the corresponding polar planes, i.e. 

Pµ = arµ + Bsµ 

µv ~· are moving around a line p , the so-called duat tine or potal' ~~ne 

of pµv (see figure 2,1). One may prove, see appendix, that 

The number P is arbitrary. 
µv 

In order to make the map p -+-
µv 

p involutoric, 

one may choose p = i, see also formula (2-50). 

i.e., iiv p 
µv 

= p 

µv 
Returning to four-dimensional considerations, we remark that p and 
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pµv represent two planes Ors and Ors which are entirely orthogonal to 

each other, i.e., every vector in Ors is orthogonal to every vector in 

Ors. 

We note that in R4 the p>1 are non-homogenous (vectors) and one has also 

non-homogeneous pµv, the so-called biveators ("plane with a screw sense"). 

However, for the transformation properties of pµv, we may restrict our

selves to homogeneous pµv. Yet, if one introduces a (hyperbolic) metric 

in R3 it is also possible to construct a correspondence between bivectors 

and non-homogeneous entities in R3 , see chapter IV. 
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1.2. The Lorentz group and its little groups 

In the introduction of section 1 we observed that the linear group in R4 

corresponds to the projective group in P3 , because every linear transform

ation A corresponds with a projective transformation A. However all 

dilations in R4 (multiplication by a scalar) are mapped onto the identity 

in P3 . In order to construct a (1-1) map we exclude dilations by restrict

ing ourselves to the enlarged unimodular group in R4 (det A=+ 1). It 

follows that if a projective transformation pA is given, then 

det pA > 0 or det pA < 0 and there exists a real p such that 
4 

det pA = p det A=+ 1 or= -1 respectively. The number p is determined 

within sign. Hence with every projective transformation in P3 there 

exists the two transformations± pA in R4 • In particular the ortho

chroneous group Lt which leaves the light cone invariant corresponds to 

the projective group in P3 which leaves the "unit sphere" invariant, the 

so-called quadratic group. The number pis now determined by the 
0' 

condition PL O _::_ 1. So we have 

Theorem 2.1. The orthochroneous Lorentz group Lt is isomorphic with the 

quadratic group in P3 and the restricted Lorentz group L: is isomorphic 

with the restricted quadratic group (det pA > 0). 

See also Veblen and Neumann p. 1-10, 

It follows by the foregoing that this theorem may be generalized to the 

complex n-dimensional unimodular group SLn' which is (n ➔ 1) isomorphic 

with the complex projective group Pn-l' Because with every pA E. Pn-l 
1 

there are n numbers p = 11~ such that det pA = + 1. 
ydet A 

We will use this in section 2, where we observe that the 2-dimensional 

unimodular group SL2 is (2 ➔ 1) isomorphic with the projective group 

on a line, 

It is possible to extend theorem 2.1 to the full Lorentz group (including 

time reflection) by covering the projective space P3 with two sheets, 

see ch. IV, section 1. 
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y 

fig. 2.2 

Finally we make a few remarks 

about the behaviour of the plane 

XYZ at infinity in P3 • The point 

Q and the points X, Y, Z at 

infinity are transformed by 
µ' 

A into the points Q', X', Y', 
µ 

Z', which are in general affine 
O' 

points (x ~ 0), 
O' 1' 2' 

Q;~•o,o,o) -+ Q' (A 0 , A0 , A0 , 

A0 ), see fig. 2.2. 

If we return to 4-dimensional 

considerations we see that the 

simplex Q'X'Y'Z' corresponds to 
O' 1' 2' 3' . 

the X X X , X -axis, 

see fig. 2.3. Hence it follows 

that the simplex Q'X'Y'Z' is totally equivalent to the simplex QXYZ with 

respect to the projective group. After coordinate transformation to 

the simplex Q'X'Y'Z' these basic points are designated by the coordinates 

Q'=(l,O,O,O), ••• etc. 

The rotation group G+ (Q) = o3+' which leaves the origin Q fixed is 

transformed into another subgroup G (Q'), which leaves Q' invariant. 
+ 

The group G (Q) is isomorphic with G (Q'). These groups are known.in 
+ + 

physics as stationary subgroups or ZittZe groups of particular interest 

is the little group G (p) of a point which lies on the unit sphere, 
2 + 

p = O. If pis taken on the North Pole N(l,0,0,0,1) then the cor-

responding transformations which generateG (P) are given as 2 x 2 matrices 
+ 

A( A) in formulae (2-7a, b, c). 

p : 
3 

(c} 

0 

e 

(2-7) 

These transformations correspond with (a) rotations~ about the z-axis 

and (b) transformations a (a complex) which leave the only ray p(l,0,0,1) 

point wise invariant. 

We mention also (2-7 c), viz. hyperbolic screws h 3 (~) along the z-axis, 

fonnula (1-6), However, there holds h03 (~): p -+ esp and h03 (,p) belongs to 

* a larger group G+(p): p + Pp which leaves the ray ppµ invariant, but 

which we will exclude here. 
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Finally ~e note that the choice of the "affine" space R3 (x0=1), which is 

taken to represent the rays pxµ, is easy but not necessary. One may 

equivalently choose instead of R3 = QXYZ the plane TXYZ at infinity 

in R4 with points 
0 1 2 3 0 1 2 3 

(~ X X ~) (0, X I X, X, X) = ' 0 ' 0 ' 
cf. formula (2-1). 0 0 

See fig. 2.4 which is "obtained" from figure 2.3. by projective 

transformation in R4 • Especially if one studies the larger Poinaal'e 

fig. 

group , which consists of all 

transformations supplied with all 

translations x' = x+a, one is in 

general interested in properties 

which are invariant with respect 

to translations. 

Hence one studies classes of parallel 

rays pxµ, aµ+pxµ which are represented 

by one point pxµ in the 3-plane TXYZ. 
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2. The real light cone 

In chapter I, section 3.1 we mapped every vector x in R4 onto a 2 x 2 

hermitian matrix X = (Xae) (a, c o, 1) 

X (:~ 3 1 
:;2) = + X X (2-8) 2 0 + ix X 

Because det X 2 the "norm" of x, it follows that the transformation X , 

X' = AXA+ (det A=+l) (2-9) 

represents a restricted Lorentz transformation. 

We proceed in the same way with the points pxµ in the 3-dimensional 

space P3 , but observe that the pxµ are homogeneous coordinates and 

thus the restriction to unimodular matrices A is only a matter of 

normalization. In the following we shall write Xµ for the components 

of the matrix X, i.e., 

X = (XO 
Xl 

x2
) x3 • 

(2-10) 

We note that the transformation T = xµ + Xµ is a coordinate trans

formation <72 Tis unitary)we will denote the base points byeµ and 

Eµ, respectively. For the description of spinors, the coordinate 

system Xµ is more appropriate and in general we follow the convention 

of writing the vector components Xµ in a square. 

We consider now vectors PXµ lying on the light cone with x0 ~ O, 

(or points x lying on the unit sphere x2 = O in the three-dimensional 

language). Because det X=O, rows and columns of X are dependent and 

the matrix Xis of the form 

(2-11) 

Moreover, if we require that all xµ are real, then Xis hermitian, 

X+ = X and it follows that 



110 

(2-12) 

0 0 0 1 1 a c 
It follows that x =WW +WW > 0 or in components X = w w 
The 2-dimensional vec"tror w may be expresses in the coordinates xµ 

is determined within a factor i0 (2-12). After substitution and e 2 by 
+ + 

X = ww and X' = w'w' in formula (2-9), we get 

w' = Aw 

Hence w is transformed by a two-dimensional representation of the 

Lorentz group, i.e., D½o: A ➔~ A(A), and thus w is a spinor. 

of 

.e -z.,-

Thus the points p of the upper light aone are (1-7)-mapped on the rays e 2 w 
in the spaae R2 of spinors. 

See Veblen and Neumann p. 1-2. 

We also have that every light ray ppµ is (1-1) mapped on the ray 

0 
i-

re 2w. Now by going from rays in Rn to points in the projective space 

Pn-l' we observe that ppµ corresponds with a point on the unit fPhere 
i0 0 1 W 

and that re (w , w ) corresponds with the complex number w = wO. Thus 

the unit sphere is (1-1) covered with complex numbers w(p). It is easy 

to prove that this map ~(p) can also obtained by performing stereografic 

projection x <-> x' of the unit sphere upon the (x+iy)-plane. The 

South Pole S(l,O,O,-1) being the centre of projection. 

Thus we will prove that 

w(X) = x' + iy' , see fig. 2.5. 

The next sub-section is an application of the above "decomposition" 

of the vector X, but is not necessary for the understanding of the 

following sections. 

Stereographic projection 

We observe that the 2 x 2 matrix X' is a linear combination of the 

matrices 
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fig. 2.5 

X ( o 6 o !) 
= (: :) = 1p 1p 1p 1p. and S 

li llpl 
in such a way that the diagonal elements of X' are equal (which implies 

that z' = 0). We get 

x· = ( ljiolji? 
ljilljiO 

,o/) 
1po1po 

0 6 and after dividing by the homogeneous factor 1p 1p , we obtain 

X' =(1/:0 
1p 1 

Hence x' + iy' = 0 . 
x'+iy' ::1ji(x'), weljisee 

1ji i /iji 0) 
1 . 

Thus if we identify x' with the complex number 

that 1ji is transformed into 

and that 1ji in its homogeneous form (ijio, 1p1 ) is transformed as a spinor. 

Consequently by describing the points on the unit sphere by complex 

numbers~ (the Gaussian numbel' sphe:l'e), which are written in homogeneous 

form, one obtains the 2-dimensional space of spinors. 

It is important to note that projection from the South Pole S (North 

Pole N) gives a right-handed (Zeft-handed) Gaussian sphe:l'e with points 

1ji (or$). We note that the right-handed Gaussian sphere is a one

dimensional complex space, with N = 0 and S = oo and with homogeneous 

coordinates the Gaussian sphere is a one-dimensional complex projective 

space which is spanned by N = (1,0) and S = (0,1), So we have 
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Theorem 2.1. If Sis the Gaussian sphere consisting of aZZ Zight rays 

pxµ in the ray space P3, then the 2-dimensionaZ s.pinor representation 

D~O (or v0~J is given by the projective group of the right-handed (or 

Zeft-handed) Gaussian sphere S into itself. 

Applying total reflection Jin R4 : pµ ➔ qµ = - p)J or with the 2 x 2 

matrices P ➔ Q = - Pit follows that considering light vectors q 

with qo < o, formula (2-12) has to be replaced by 

+ 
Q = - l/J(q)l/J (q). (2-13) 

Thus the light vectors p)J and - p)J are mapped onto the same spinor, 

l/J(p) = ljJ(-p). 

We wish now to determine, by using stereographic projection, the form 

of the 2 x 2 matrices A(A), where A is (1) an arbitrary rotation, (2) 

an arbitrary hyperbolic screw, and (3) a so-called a-transformation. 

(1) Rotations We consider first a rotation 6 around the vector ri 

·• .. 

fig. 2,6 

i6 
along the z-axis, l/J' = e l/J, and thus by 

£ 0 1 writing l/J = 0 or (l/J , l/J ), we obtain the 
l/J 

➔ 

0 ) .e +1-
e 2 

(2-14) 

By a rotation S we now transform the vector n into an arbitrary vector 
➔ (el e2) 
e. The projection of i in the (x-y)-plane is ' 3 and by this we 

1 + e 
obtain in the complex plane the transformation 

e1+ie2 3 
3 or (1,0) ➔ (l+e , 

l+e 

1 . 2) e +1e 

l/J (S) 00 ➔ £ 
e 1+ie2 3 1 2 --- or (0,1) ➔ (1-e, -e -ie) • 
1-e3 

The columns of the transformation matrix Sare thus given by the vectors 
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£ and e:' 

+ 
A rotation 0 around the unit vector e is thus given by 

O ir-el-ie
2 

+i e 1 . 2 
e 2 -e -ie 

U · ( 1 ) 2+( 2) 2 1 - (e3) 2, we obtain: sing e e = 

A= (cos~ - i sin! e 3 

. . e < 1 . 2> -i sin 2 e +ie 

-i sin 

e 
cos 

e < 1 . 2> ) 
2 e -i: e3 

+ i sin 
2 2 

or with the Pauli matrices 

e 
A= cos 2 o0 - i sin 

oµ, see formula (1-23), 

0 k 2 e Ok• 

1 

(2-15) 

We shall write A= aµo and so, with respect to the basis o every 
µ + µ' 

rotation e around a vector e is determined by the vector 

µ < e .. e +> <+2 l) a = cos 2 , - isin 2 e e = • (2-16) 

In view of the vector i in (2-15), it follows that the matrix A is 

unitary for rotations, 

(2) Hyperbolic screws 

By substituting e = i$ in (2-6), we obtain the hyperbolic screw 

fig. 2.7 (®) 
s 

See formula (1-22), 

It corresponds to the multiplication transformation$'= e-~$ 
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in the complex plane and on the sphere to a transformation with N ands 
-+-

as fixed points. A hyperbolic screw~ along the vector e is determined 

by 

-i sin !ti) 
2 

(2-17) 

In view of the fact that all aµ are real, it follows that for hyperbolic 

screws A is hermitian (cf. remark 3.1 in chapter I). 

(3) a-transformations We wish to consider now especially those transform-

fig.~ 

2.8~ 

projection we 

ations which have Sas the onZy invariant point on the 

sphere. With a translation~•=~+ a in the complex 

plane, it is clear that there is only one invariant 

point, the point at infinity. Thus by the stereographic 

obtain a transformation of the sphere which has Sas the 

only fixed-point. In homogeneous form we may write 

With formula (2-16) and (2-17), one may calculate now the infinitesimal 

operators of the spinor representation (section 6, chapter I). If the 

vector tis arbitrary complex with t 2 = 1, one may prove that the matrix 

A determines an arbitrary screw around an axis not necessarily through o. 
(see chapter IV). 

Finally we consider the little group G (p) of all restricted Lorentz 
+ 

transformations which leave p invariant G+(p): p-+- p. 

If one takes for the North Pole N = (1,0,0,1) then the transformations 

which generate G+(N) are given in formula (2-18a) and (2-lSb) 

( :-, t 

i l 
t 

2 
0 

(: :) (: 
2 

0 ~) +i 
e e 

(2-18) 
(a) (b) (c) 
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We also mention (2-18c) which is a hyperbolic screw h (¢) along the 
03 

z-axis. However there holds h03 (¢) : p + e¢p and h03 (¢) belongs to 

the larger group G~(p): p + pp which leave the ray ppµ invariant, 
+ 

Remark 2.1. Connection with complex quaternions 

If we go from the basis a to jo ao = 1 and jk -icrk, then the µ 
matrices jµ are the quaternions of Hamilton, since 

.2 .2 .2 
-1, jlj2 j3' j2jl -j3 and cycl. J1 = J2 = J3 = = = 

With respect to the basis jµ' a rotation is denoted by the real 

4-vector 

j cos:+ sin:; 

(2-19a) 

For an arbitrary unimodular matrix, the number 8 and the vector e are 
t 

complex and one may state that the restricted Lorentz group L+ is 

isomorphic with the complex rotation group in three dimensions 
t 

(cf. Cartan II p. 73) or equivalently, L+ is isomorphic with the group 

of complex quaternions with norm j 2 + j 2
1 + j 2 + j 2 = 1. 

0 2 3 
Many calculations with 2 x 2 matrices are most easily performed by 

using the multiplication rule of quaternions 

(2-19b) 
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3. The complex light cone 

In this section we treat the complex light cone x 2=0. The representations 
½o 10 o½ 01 2 

D , D (and D , D ) will be realized by concrete points on x = 0 

and using this we will treat the properties of complex Lorentz transform

ations. Here, the geometrical theory, which in fact developed by F. Klein 

[Nicht Eukl. Geom. p. 112 p. 238-240], will be more compactly formulated 

by using the matrix method of E. Cartan. These results will be applied 

in section 4. 
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3.1. The spinor representations oi0 and Do½ 

We shall treat in greater detail the transformation (Xµ) = T(xµ), 
1 formula (2-10), where a factor~ has been added in order to make T 

unitary. 

XO 1 0 0 1 0 
X 

x1 0 1 i 0 1 
1 X 

x2 =~ 2 
(2-20) 

0 1 -i 0 X 

x3 1 0 0 -1 
3 

X 

If we interpret this transformation as a coordinate transformation, 
-1 + 

then the matrix T = T contain in its columns the new basic points. 

Eo, El, E2, E3. By Felix Klein Eo, El, E2, E3 is called the invariant 
tetraeder(invariant with respect to rotations about the z-axis) in 

physics one calls the new vectors in R4 : E0 , E1 , E2, E3 = 

Plµ, Pmµ, p;;iµ, Pnµ a nuU tetrad 

~ 1 0 0 1 
, --------
p -1 1 0 1 1 0 
.......... T = il2" (2-21) -..J>, 

~ 
;. :.-J 0 -i i 0 

' \f 

-- 'vlf.,, -~ 1 0 0 -1 --- \' 
~ 

fig. 2.9 EO El E E3 2 

In particular, we have the isotropic points E1 (o,1,-i,O) and E2(o,l,i,O) 

lying in the (x,y)-plane at infinity for E10 = E20 = O (see fig. 2.9,), 

Later on we will write again the vector X as a 2 x 2 matrix; thus an 
T arbitrary point X on the aompiex unit sphere is of the form X = ~~, 

see (2-11), or 

X = l (2-22) 
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Thus Xis a linear combination of the points 

(oo :01) and S = ~ .., 

from which follows that X lies on the line RS and is determined by the 

ratio (~0 : ~1 ). The line RS itself is determined by the spinor 1/J, Every 
T 

point of RS(ijJ) is of the form X = 1/J~ and because det X = 0 for all~. 

it follows that the line RS lies wholely on the complex unit sphere 

and RS is called an isotropia line, Thus the spinor 1/J determines the 
+ isotropic line RS as well as the real point X = 1/11/i on it, More 

important is that the spinor 1/J may be identified with the points R ors, 

0 1 
R = (1/J, 1/J, O, 0) (2-23) 

S = (0, 0, 1/Jo, 1/11 ) 

rience the Lorentz group induces the spinor representation D½O on the 

fixed E0E1 and E2E3-axis, 

Similarly we may write 

o r~o lJ X = 1/i 
0 0 

(2-24) 
+ 

-- ,,,,,,+ Thus the real point X ..,.., also determined another isotropic line 

RS with X = ~1/i+, and where Rand S lie on the E0 E2 and E1 E3 axis, 

respectively, i.e., 

cii. 
. 

it = o, w1. 0) (2-25) . 
1/Ji) s = (O, 1/Jo o, , 
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3.2. The representations 010 and 0°1 

Of particular interest is the intersection n of the complex unit sphere 
0 

with the plane (x =0) at infinity. 

The intersection point G(O,G) on n lies on an isotropic line RS and 

thus the corresponding 2 x 2 matrix G is a linear combination of Rand 
0 S. Because G =0, the diagonal elements of Gare 

3 3 G and -G 

and thus we must take a linear combination of Rand Sin such a way, 

that the diagonal elements have opposite signs. It follows that 

G (
0 1/Jo) 

o l 

T (0 ll 1/J(Cl/J) , where C - • 
- -1 0 

(2-26) 

C a 
One notes that 1/J = C 1/J (see formula (1-26)) and thus G = (1/J 1/J ) • a ac c 
The representation acting on (1/Jal/J) is equivalent with the representation 

C 

acting on the space of spinors (I/Pl/Jc) and thus the intersection 

0 1 0 1/Jl) (1/Ja ll/J > (2-27) G < 1/Jo, 1/Jo, 1/Jl, = 1 C C 

6 
. 

j . 1 9 (2-28) G < 1/Jo, 1/J•, 1/Jl, 1/J. ) 
0 1 

point G of RS with the fixed reference plane 
0 

(x =0) is transformed under 

the representation 
10 

D (see table (1-32)). 

Thus the point G is not transformed as a vector, i.e., X' 

the fundamental property of the matrix C 

it follows from (2-26) that G is transformed by 

G' = AGA-1 • 

T 
AXA, Using 

(2-29) 
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0 
Hence trace G' = trace G =2G = O and we see again that the point G 

remains in the plane at infinity as an intersection point of the line 

RS with the fixed reference plane at infinity. 

In the 4-dimensional case, pG is the intersection line of the complex 

light cone and the (x1x 2x 3)-space. In this non-homogeneous case, it 

is also true that 

det G' = det G or 

Thus G is transformed as a vector under the complex 3-dimensional 

rotation group. We separate the real and imaginary part of G, 
-+ -+ -+ 
G = E + iH, and obtain the invariants 

-+ -+ 
and E • H • 

(2-30) 

(2-31) 

These are important invariants of the electromagnetic field in the 

theory of relativity. In formula (1-80m) on page 71 we have used these 

invariants to obtain the Casimir operators of the Lorentz group. 

J' 
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3.3. Complex Lorentz transformations 

One may extend the Lorentz group L to the complex Lorentz group L(C) 

which leaves invariant the "norm", x2 = (x0?-cx1 ) 2-(x2) 2-(x3) 2 • 

However, it is not necessary that real xµ are mapped onto real xµ. 

The real Lorentz group Lis a subgroup of L(C). Besides L(C), there 

is another extension of L which leaves invariant the norm, 

x0x0 - x1x1 - x 2x 2 - x 3x 3 , see Barut p. 34. We note further that L(C) 

is isomorphic with the 4-dimensional complex orthogonal group o4{c). 

Using the 2 x 2 matrices X from formula (2-2), it follows tha·c the 

transformation 

T 
X" = AXB (det A = det B = 1) (2-32) 

is a complex Lorentz transformation. Because det X" = det X, then 
2 2 

x" = x. Thus the transformation 

T = A x B = (A x E). (E x B) (2-33) 

acts on the vector Xµ and det T = +1. Conversely, every complex Lorentz 

transformation T with det T = +1 , r E. L (C') , is of the form (2-i33 ) • 
+ 

Thus in group theoretical terms one may write 

Theorem 3.1. o4+ (C) ~ SL2 x SL2 (the homomorphism is: 1 + 2) 

Now we write the point x on the complex unit sphere as 
0 

'l' 
X0 = l/J 04' 0 1 where l/J O and q, 0 are 2-component spinors. 

Then l/! 0 determines the isotropic line X = {/J 0q,T through x0 , with q, 
as parameter and q, 0 determines an isotropic line X = l/J4'b through x0 

with l/J as parameter. The above and (2-33) imply 

Theorem 3.2. Every eomplex Lorentz transformation eonsists of a transformation 

X' = AX 

whieh transforms the isotropie lines l/Jo but leaves invariant the system 

q,0, followed by a transf<Prmation 

X" = X'BT 

whieh transforms the isotropie lines q,0 but leaves invariant the system 

l/Jo • 
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t 
Obviously, for the real Lorentz group L+' the matrix Bis chosen in 

such a way, i.e., B = A, that the reality conditions in R4 are restored; 

if X is hermitian (xµ real), then X" is hermitian (xµ" real). 
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4. Isotropic planes 

4.1. The representation 010 + 0°1 

µv 
We wish to determine the coordinates g of the isotropic lines (planes) 

of the unit sphere (light cone). In the first part of this section, we work 

in the coordinate system xµ, whereas later on we work in the coordinate 

system Xµ. 

In section 1 we have mentioned that along with every point pµ, its polar 

plane Pµ may be introduced and along with the line pµv with points pµ, 

its polar (dual) line p~~ may be introduced which is the carrier of all 

polar planes Pµ• Algebraically we have 

µv -+- -+- jjv -+- . -+-
P = (E, H) => p = (H, -E)i. 

Now an isotropic line g lies entirely on the complex sphere. Thus if 

a point pµ moves along g, then the polar (tangent) plane moves around g. 

One says that the isotropic lines are seZfduaZ, i.e., 

µv UV 
g = :!: g 

-+- - -+-
This implies that H = +i E and we obtain the two systems of isotropic 

lines 

UV -+- -+-
g = (G, -iG) 

.µv -+- -> 
g = (G, +iG) 

As a consequence of (2-7) it follows 

a2 = ri2 = 0 . 
-+- + 

Thus G and G are necessarily complex 

that 

vectors. 

(2-34) 

(2-35) 

(2-36) 

By a Lorentz transformation, the unit sphere is transformed into itself 

and thus the two systems of isotropic lines form two invariant spaces 
t 

for L+' but are transformed into each other by a space reflection 

P = (gµv> ' 
-+- -+- T -+- -+-

P(G, -iG)P = (-G, -iG) (2-37) 
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➔ 

Because G is transformed as an ordinary 3-vector under rotations 
➔ ➔ 

G' = rG, it is easy to prove that (2-34) and (2-35) determine two 

irreducible linear spaces under L:. This means we have obtained a 

geometrical interpretation of the reduction of the space of anti

symmetric tensors (see section 2 chapter I). 

Theorem 4.1. The spaces R3 and k3, into which the space of anti-symmetric 

tensors may be reduced, 

2rE, HJ= re, icJ + re, -icJ,c = E + iH, a= E -iH, <2-3s> 

are spanned by the two systems of isotropic lines (2-34) and (2-35), 
2 ·2 

respectively (G = G = OJ. 

By the general representation theory of the Lorentz group, see table 

(1-32), it follows that the only 3-dimensional representations of L: 
10 01 

are D and D . Thus the space of anti-symmetric tensors is transformed 
. 10 • 01 

by the representation D + D 

Without using the general theory, one may also prove that the space of 

anti-symmetric tensors is transformed by n10 + n°1 • Therefore, we observe 
0V ➔ µv 

that the first row g = (O,G) of g , which is defined by 

0V Ov Ov 
g = r s - s r 

00 
is a linear combination of two points rands so that g = O. From (2-34) 

➔ 

it follows that (O,G) is the intersection point of the isotropic line 

rs= ft1V with the plane at infinity. 

Using now section 3.1., it follows that G is transformed by n10 and, 
~ 01 

analogously, we obtain that G is transformed by the representation D 

We obtain the same result if we calculate the coordinates Gµv of the 

isotropic lines gin the coordinate system Xµ. From the points Rand S 

on the line g, which we have already obtained in formula (2-17), we get 

00 011 11 10 
(O, 1jJ 1jJ , 1jJ 1jJ O, -1/J 1jJ , 1jJ 1jJ ) • 

(2-39) 

If we restrict ourselves to the components of Gµv which are unequal 
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to zero, we get 

T 
ljJljJ • (2-40) 

a C 
Thus by definition, the coordinates (ljJ ljJ) of the isotropic lines 

f t . DlO . are trans ormed by the represen ation i.e., 

a' c' 
ljJ 1/1 

a' 
A 

a 
c' 

A 
C 

Similarly, we obtain for the other system 
a c 01 

coordinates (1/11/1) transformed bT D • If 

we obtain the matrix Gµv = ( O ¥1/1 ) = r x 

•µv 
of isotropic lines G the 

µv 
we write all components G , 

(1/11/JT), where C = ( o 1 ) and 
-1 0 -1/11/1 0 

for Gµv we obtain Gµv = (W) x C .summarizing: 

Theorem 4.2. After the aoordinate transformation xµ ➔ t-1, the aoordinates 

gµv = (G, -iG) of the isotropia Zines g may be deaomposed by 

A similar theorem holds for the isotropic lines g. 
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4,2. The representation D½o + Do½ (the spin-space of Veblen) 

By the foregoing method we also get an easy description of the (geometrical) 

spin-space P3 introduced by Veblen. 

Therefore, we consider the complex Lorentz group 

X" = AXBT (det A= det B = 1) 

and restrict ourselves to the six parameter subgroup I, 

X' = AX (det A= 1), 

which is homomorphic with the Lorentz group. With respect to the group I, 

all points R(wo, w1 , O, 0) and all points S(O,O,Wo,Wl) form two invariant 

subspaces, both transformed by the representation D½o. Every point X 

in P3 (I) may be covariantly written as X = A R+µS, where A andµ are 

scalars with respect to I. It follows that P 3 (I) is the representation 

space of D½o + D½o. 

· Now we transform P3 into P3 by the transformation 

2 3 -2 -3 
X, X ➔ X, X (complex conjugation) • 

. 0 3 1 2 
The unit-sphere XX-XX = 0 is transformed into a so-called anti-

,3""• 0-3 1-2 0 1 quaUJ.·~a XX-XX = O, In particular the spinors R(w , w , o, 0) remain 

invariant but S(o,o,w0 ,w1 ) is transformed into S(O,o,w6,w1). Because 

every point of P3 may be written in the form X =AR+ AS, it follows that 

P3 is the representation space of 

D½o + Do½. 

Analogously to (2-39) and (2-40), the line coordinates of the "isotropic" 

lines RS are now given by (WaWc) = WW+. 
It follows that the line coordinates X = WW+ span the original real 

+ space X = WW . Thus by the method of Veblen, the original 3-dimensional 

space P3 acts as the image space of the "isotropic" lines in the spin

spare P3 • See Veblen, geometry of four-component spinors. 
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4.3. Clifford parallels in 3- 1 7-, ••• (4k-1)-dimensions 

Clifford parallels in 3-dimensions. 

We consider the complex Lorentz group. 

Definition Two lines p and q are called Clifford parallel if there 

exists a Lorentz transformation (not the identity) which leaves p 

and q invariant. 

We seek the condition which the line coordinates pµv and qµv must 

obey in order that p and q are Clifford parallel. 

In section 4.1 chapter II, we have proved that every line p~v may be 

decomposed in the following way: 

Po= Go+ <\ 
where G0 and a0 belong to the invariant subspaces R3 and R3 , 

respectively, formula (2-38).Now every Lorentz transformation 

T =Ax Bis theproduct of a Lorentz transformation (Ax E) which 

works in the space R3 but not in ~he space R3 , and 

(Ex B) which works in the space R3 but not in the 

(2-33). Suppose now that T =Ax B leaves the line 

a transformation 

space R3 , formula 

the transformation (Ax E) has the eigenvector G 
. o. 

transformation (Ex B) has the eigenvector G0 in R3 • 

p0 invariant. 

in R3 and the 

Thus (Ax E) 

invariant, along with p0 , all lines 

(Gr~ R3, Gr arbitrary so that pr is a line) and (Ex B) leaves 

invariant, along with p0 , all lines 

'?t = Gt+ a0 • 

Then 

leaves 

In this way we obtain a system of lines pr which are called right 

Clifford parallel with p0 , and a system of lines pt which are called 

left Clifford parallel with p. Thus: 
0 • 

Theorem 4.3. Suppose that there is given a line p0 = G0 + G0. All lines 

p for which G = G0 (E + iB = E0 + iB0) are right Clifford parallel 
r r r r 

with p0 and all lines p1 for which G = G0 r;-i,=E0-iB0) are left 

Clifford parallel with p0. 
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This proof holds in the complex case and may be generalized ton

dimensions. For another proof in 3~dimensional elliptic geometry based 

on the introduction of a metric, see Godeaux. 

Clifford parallel planes in(4k-l) dimengions 

We wish to generalize the foregoing theorem. Therefore, we consider 

the linear space R2 v or, equivalently, the projective space P 2v-l 

In order to avoid lowering and raising of indices, we take the norm 

2 
X 

and we consider the complex orthogonal group which leaves invariant 

this norm. Similar to our introduction of bivectors p in R4 , we 
µV 

consider now v-vectors in R2 v. These are anti-symmetric tensors p whose 

components have v indices p . In order that p are the 
µ1•••µ µ1•··µ 

coordinates of av-plane, the comtonents p obey somi quadratic 
µ1 • · • µv 

relations; compare with formula (2-7) and see Veblen and Neumann p. (4.8). 

We call two v-vectors p and q Clifford parallel if there exists an 

orthogonal transformation (not the identity) which leaves p a:nd q in

variant. We will derive the conditions which p µl ... µ 
obey in order that p and q are Clifford paralle • v 

One may define, analogously to R4 , a duality relation in R2 v 

even permutation of 0,1, ••• 2v-1). 

In this way one obtains two families of selfdual v-vectors, 

+ 
G : p 

µ1 • • • µv 

and anti-selfdual v-vectors, 

see Weyland Brauwer p. 427. These two families correspond to the fact 

that in an even-dimensional space R2 v, the cone x 2 = O bears two families 
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of so called isotropic planes. 

If we separate the components of a v-vector into two groups, 

perm of 1, ••• 2v-1,) then the duality relation in R2v takes the form 

The selfdual and anti-selfdual tensors are characterized by 

and 

respectively, and belong to a space a: and Gv, respectively. Now every 

v-vector p may be decomposed into the form 

+ G + 

We now restrict ourselves to the case that vis even: v = 2k 

By a generalization of the 4-dimensional spinor theory, one may prove 

that every orthogonal transformation Tin R2v = R4k is the product of 

a transformation T+ works in the space G+ of the first system of 

isotropic planes G+ but leaves the system G invariant, and a transform

ation T which works in the space G 
+ planes G but leaves the system G 

of the second system of isotropic 

invariant, see Cartan II p. 49. 
+ -

Suppose now that the orthogonal transformation T =TT leaves the 

v-vector p0 invariant, 

+ 
Po= Go+ Go· 

+ +. G+ It follows that T has the eigenvector G0 in and T 
- -

has the eigen-

vector G0 in G. Thus we obtain the following system r of V-vectors. 
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which remains invariant with p0 under T+, and a system .t of v-vectors 

+ Pe = Gl + Go , 
-which remains invariant under T. Summarizing, we obtain the fo"lowing 

theorem: 

+ -
Theon·m 4,4. Suppose that there is a 2k-vector p0 = G0 + G0 in the space 

R4k, then there is a set r of 2k-vectors pr, so that G; = G~, wh~ch are 

right Clifford parallel with p0, and there is a set 1 of 2 k-vectors 

so that G~ = G;, which are left Clifford parallel with Po· 
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APPENDIX 

General properties of line coordinates and bivectors 

In the following sections A, B, C, we mention some well-known properties 
µv µv 

of line coordinates p and the associated dual p 

A. Definition. The coordinates of the line xµ =Arµ+ Ksµ (2-41) 

are 
µ\/ µ \/ \/ µ 

p = r s - r s (µ,v = 0,1,2,3). (2-42) 

Theorem A-1· All straight lines pin P3 can be mapped 1-1 onto the points 

of a quadratic surface in the five dimensional projective space R5• 

PROOF. (1). The line coordinates pµv are independent of the choice of 

the points r and s on p. For; if we choose r' and s' on p, i.e., 

Thus the coordinates pµv of a line pare determined within a factor p 
o· "k 

and because pµv has six independent components (p 1 , pJ )(i,j,k=l,2,3), 

every line pis mapped onto a ray ppµv in R6 or, equivalently, a point 

Ppµv in the projective space P5 • 
Oi jk 

(2) Conversely, suppose that the numbers (p , p ) = (p', p") are the 

coordinates of a line, Then (2-41) and (2-42) imply that the rows of 
µv 0\/ 0 v O v 1 . b · t · p e.g., p rs -s r, are inear com ina ions of rands and 

thus that the row pov is the intersection point of the line p with 

the plane x0=o. In general, the rows pµv (µ=0,1,2,3) are the intersection 

points of the line p with the planes xµ = O. Hence it follows that the 

six line coordinates pµv determine the line p uniquely, 

(3) The definition of pµv implies that for p' = poi and p" _ pjk 

(i,j,k=l,2,3 and cycl.), 

➔ ()+ ()+ 
p' =rs - s r 

➔ ➔ 

and p'.p" = O 

➔ ➔ ➔ 
p" = r XS 

(2-43) 

Thus in the space P5, a quadratic surface D (matrix D) is given so that 
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the following hold for all line coordinates: 

T 
p Dp O , where D = C 

➔ ➔ 
(4) Suppose now that we have a point p(p', p") in P 5 with 

1 1 1" 2 I 2" 3 I 3 11 

p p + p p + p p = 0 

or 
01 23 02 31 03 12 

p p + p p + p p = o. (2-44) 

We must prove that p corresponds 
➔ ➔ 1' 

point (O,O), we suppose that p 

to a line. Because there is in P 5 no 

i O and take the first two rows of 
µv Ov 1' 2' 3' 

p , i.e., p (O, p , p , p ) 
lv 1' 3" 2" 

and p (-p , O, p , -p ). 

It 11.s easy to prove that condition (2-44) is sufficient for the following 

r.:tation: 

➔ ➔ 1' 1' 2' 

Pl" (p I I p") p [ o, p p 

1' 3" 2" 
-p 0 p -p 

Thus the coordinates pµv determine a straight line through the points 
0V 1V 

p and p • (q.e.d.) 

a.13 yo One writes the form (2-44) as follows: 1 E p p - 0 z al3yo - • 
Here E 

al3yo is the Levi-Ci vita symbol and is defined by: 

if a, 13' Y, 0 form an even permutation of 0,1,2,3, r E al3yo = -1 if a, 13' Y, 0 form an odd permutation of 0,1,2,3, 

0 if two indices are equal. 

The fundamental property of the Levi-Civith symbol E is that 

Eal3yo aaa'al313'ayy'aoo, = det (a) Ea'S'y'o, 

We can verify this by taking a', 13', A', o' = 0,1,2,3. 

B. The covariant coordinates p and p--µv µv 

A Lorentz transformation L = Lµ , induces, in the space spanned by all 
µv µ V V µ .. µ µ V 

p = r s -r s , a transformation L x L = L µ , L v , , i.e., 
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µ µ µ' µv µ v µ'v' 
X =L x +p =L L µ' µ' v'P (2-45) 

One says that pµv is a oontZ'aVal'iant entity • We remark that pµv is 

only transformed under the irreducible part of L x L which works in the 

space of antisymmetri~ tensors. A tensor transformed by the represent-

atl.·on (L-l)Tx (L-l)T i~ called ' t , a OOVCW!,an entity. In order to construct 

covariant entities from pµv we first consider the indexµ in (2.,45), 

' • • • p 
µ •• 

By lowering this 

so that g Lµ, yµ µ 

µv -1 T index with g and using gL=(L ) g, 

-- y' Ly gy'µ' we obtain 

• • µ' 
p = L • • .p ' µ µ µ 

If we also lower v, the quantity pµv is transformed under the represent

ation (L-1 ) T x (L-1 ) T. 

There is also another way to construct covariant quantities. 

We lower indices in (2-45) with the operator e:µvµv, 

i.e., Pµv+p--=½e:-- 0 µv, µv µvµv 
+ + +· + 

into components (p', p") + (p", p') • 

From the fundamental property of the Levi-Civita symbol 
jl 'i1 µ V ' 

e:-~ T, -,L -,L ,L , = (det L) e:fl'"' , ,, it follows µvµV- µ ~• ij, V ~ v µ V 
= (det L)Lp L~ e:µ•v'µ•v• and thus after multiplying 

e:jj\1µv• we obtain 

ii' v' Pµ-" = L- L- p-,-, (det L) 
V µ V µ V 

This implies that Ppv is a covariant entity. The fact that (det L) appears 

implies that Pp~ is a pseudo tenaoP, that is to say in the non-homogeneous 

case Ppv gets an extra negative sign under (space and time) reflections. 

Summarizing: 
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Theorem B-1 Besides the contravariant pµv = (p', p"), we may construct 

two types of covariants, namely, p and p-- defined by: 
)lV )lV 

and 

- )l IV I 

P • t t ( ➔ I p➔") µv - gµµ'gvv'p ~no corrrponen s pµv _ -p, 

into components P-- _ (p", p 1 ). 
)lV 

Moreover, the tensor P-- is a pseudo tensor. 
)lV 

Geometrical meaning of p and p __ 
)lV V 

The equation of an arbitrary plane V with points xll is of the form 

rµxµ = o. The covariant components rµ are the so-called plane coordinates 

of V and in projective geometry one may prove that the relation 

rµ g rv, implies that the planer, xµg rv = O, is the polar-µv )l )lV 

plane of the point rll. (See construction of r in the figure). 

fig. 2.1 

)l 

The polar-planer represents the 3-
µ 

dimensional space in R4 which is 

orthogonal to rll. 

The line p, which Joins the points 

rµ andsµ (the ray p), has line 

coordinates pµv and one also says that 

the pµv are ray coordinates. 

Similarly, the planes r ands have an intersection line p (the a,xis 
)l )l 

p) with equation t Ar +ks, and in an analogous way, one may show 
)l )l )l 

that the components 

Pµv = rµsv - rvsµ 

are independent of the choice of the planet through p. Therefore, one 
)l 

says that the p are a,xis-coordinates of the axis p. One calls p the 
)lV -

dual (polar) line of p and pis unequal top in general. The lines p 
-

and p thus represent two orthogonal planes Op and Op in R4 • Now we 

consider the line pas an axis, that is to say, pis given as the 

intersection line of'the planes u and v. To avoid misunderstanding, we 

denote the axis coordinates of p by q , i.e., q 
)lV )lV 

U V - U V • 
V )l V )l 
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By comparing the covariant q with the covariant p_, which we have 
µv µv 

introduced in the foregoing section, in a suitable choosen coordinate 

system 

µv 
c-1,0,0 I o,o,o) [0,1,0,~]•" 

p = 1,0,0,0 ➔ P- = (o,o,o I 1,0,0) 
µv 

qµv 
[ o,o,o, 1] = (o,o,o I -1,0,0). 
0,0,1,0 

µv 

It follows that P-- = pq µv µv 
and thus the P-- are the axis coordinates of the line pµv itself, 

(2-46) 

µv -v -v 
Similarly, we may introduce pµ = Eµ µvp , which are the ray coordinates 

µ'J 
of the dual line p. 

An arbitrary plane wv through the line p contains rµ andsµ and thus 

pµvw = O. An arbitrary point xµ on plies in the planes v and w and . \) µ µ 

thus q x" O. Using (2-46) we obtain: µv 

Theorem B-2 The equation of a line p is pµ"w = 0 for planes w , and 
\) \) 

v O+' • v pi]'vx = Jor po~nts x. 

The equation of the dual line 

and for points p x" = 0. µv 

= 0 (2-47) 

(2-48) 

C. Invariants in the six-dimensional space of anti-symmetric tensors 

If we restrict ourselves to inhomogeneous pµv, i.e., bivectors, we 

find that there are two important invariants. 

Theorem c-1 The six dimensional space of anti-symmetric tensors posesses 

with respect to the restricted Lorentz group, two invariants, namely, 

µv ➔ 2 ➔ 2 µv ➔ ➔ 
F = WµvP = p" -p' and G = Ww = p'.p". (2-49) 

G is a pseudoscalar, which means that under a reflection, G changes sign. 

The proof of this theorem follows at once from the covariance of p µv 
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Definition Two bivectors are called duai if they determine two dual 
µv jTv µv jjv 

lines p and p and if the "norms" F of p and p are equal. 

Starting from pµv, we obtain pµv by 

Pµv -+- P -+- Pµv 
µv 

or (p' ,p")-+- (-p', p")-+- (p",-p') 

The requirement that pµv and pµv are dual is 

µv jjv -+-,.2 -+-,2 2(-+-,2 -+-,.2) p p - p p or p -p = p p -p , µv - µv 

so that p = + i. 
-+- -+- -+- -+-

Hence the dual bivector of (p', p") is:!: i(p",-p'). (2-50) 

The reduction of the space of anti-symmetric tensors into two invariant 

subspaces is discussed in detail in chapter I section 2, and in chapter II 

section 4. 
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chapter III 

GEOMETRY OF ZERO-MASS EQUATIONS 

In this chapter, we study the projective geometrical background of some 

equations which are known in physics as the Proca equation, the Maxwell 

equations, the Weyl equation and the generalized Weyl equation. 

These equations are linear first order equations in an n-component 

function $(x), i.e. L(a , $(x)) = o. 
µ 

The idea is that by developing $(X) in plane waves i.e. $(x) = $(p)eip.x 

one obtains equations in "momentum space" L(ip ·, $ (p)) = O which may 
µ 

be studied with aid of projective geometry. 

According to this method, the gmeralizedWeyl equation describes in 

fact the system of isotropic planes on the.light cone, and the one

dimensionality of the representation space to which $(P) belongs (for 

a fixed p) can be very clearly shown. Therefore this treatment gives 

the geometrical back ground of the fact that photons are only trans

versely polarized, that there exist only right-handed neutrino's (and 

only left-handed anti-neutrino's) and that the equations of Maxwell 

may be brought in neutrino form. 

In the sections 1, 2 and 3 of this chapter we treat the geometrical 

relations which appear in some special cases (the equations of Proca, 

Maxwell and Weyl); this serves at the same time as an introduction to 

section 4 (the generalized Weyl equation). Solutions of these equations 

may be written in terms of generalized spherical functions. 

Finally we note that in each section the study of the properties of 

$(p) is given first, followed by the properties of the covariant 

equations which $(p) obeys. 
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1, Geometry of the Proca equation 

1,1. Description of all lines in R4 by the representation D½½ + n10 + n°1 

Analogously to R3 , we now introduce in R4 along with the affine coordinates 

(ct, x, y, z) the five homogeneous coordinates x0 (o = -1, O, ..• , 3)*), 

such that 

(ct, x, y, z) 
0 

(~ 
-1 

X 

1 2 3 
X X ~) 

~· ~, -1 
X X X 

-1 
(x -,/ 0). 

The rows x 0 and px0 determine the same point in R4 • 

The equation of a line P through the points rµ andsµ, i.e. 

becomes, in homogeneous coordinates, the equation 

-1 
This may readily be seen after dividing both terms by x see also 

chapter II section 1.1. 

The 4-dimensional line coordinates POT of Pare defined by 

OT OT T 0 
p = r s - r s • (3-1) 

The following are properties of the 4-dimensional line coordinates. 

1) Non-homo~eneous line coordinates or line vectors, If we choose 

two other points r' and s' on P we get 0 1 T1 OT 
(as in R3). p = PP 

The result is that the coordinates of a line are homogeneous, thus 

independent of the choice of r and son P. 

The Lorentz group is an affine group, for the 3-plane at infinity 
-1 -1 

remains invariant. Hence we take affine coordinates, i.e. r = s = 1 

and thus p- lµ = sµ - rµ, The point and line coordinates are no longer 

homogeneous and it follows that po'T' = POT (p = 1) if and only if 

sµ' - rµ' sµ - rµ. 

*) o, T take the values -1, o, 1, 2, 3, and, in accordance with the on 

notation convention of chapter I section 1,1 and 3,1, the indices 

µ, \!, take on the values o, 1, 2, 3 

i, j, k, 1, 2, 3 

a, b, c, II II o, 1 
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If we call the class of all vectors rs which may be obtained from each 

other by translations along the line P, a line vector, then it follows 

that the non-homogeneous pOT determines a line vector in R4 • 

Notations: We use the notation 

r-, 0 
1 2 t =[: :]°' OT r r r r 

P = -1 0 1 2 
s s s s 

One may consider the components OT an anti-symmetric (5 x 5) tensor p as 

as well as a ten-dimensional vector, For that we first take the four 

components p-lµ = sµ - rµ, which we shall call pµ; there remains the 

anti-symmetric tensor 

pµv = [rs] µv. Thus POT= (pµ, pµv) = (s-r, [rs]). 

Analogously we have written the anti-symmetric tensor pµv in chapter II, 

formulae (2-4), ••• (2-7) as a six-vector (p', p") by first taking the 

components poi= r 0 si - s 0 ri of;, and afterwards the components 
jk j k j k ➔ 

p = r s - s r of p" (i, j, k = 1, 2, 3 and cycl.). 

Thus the anti-symmetric 5 x 5 matrix POT looks as follows 

0 1 2 3 
0 p p p p 

0 
0 

1' 2' 3' 
-p p p p p = s-r 

(pOT) 1 1' 3" 2" ➔• O➔ O➔ 
-p -p 0 p -p p = r s-s r 

2 2' 3" 1" p" ➔ ➔ 
-p -p -p 0 p r X S 

3 3' 2" 1" 
0 -p -p p -p 

The coritravariant tensor pµv was defined by (➔" p , -p')i (see also appendix 

to chapter II). 

2) Relations between the components (pµ, pµv) There is dependence 

between the 10 line coordinates (pµ, pµv). To show this, we note that 

( µ µ v _ rvpµ) P , r P 

which implies that the vector pµ lies in the plane pµv. Using formula 
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(2-47) we may equivalently write 

P--P \! = O. (3-2) µ\! 

Further, for the anti-symmetric tensor pµ\! = (p', p"), 

➔, ➔,, 
p .p = 0 . (3-3) 

Conversely (3-2) and (3-3) imply that (pµ, pµv) are the coordinates of 

a line. Because from (3-2, 3) follows that the 5 cofactors of the 

diagonal elements p 0 ' are zero. 

This is sufficient for an anti-symmetric matrix to make the cofactors 

of all elements be zero. All 3 x 3 sub-determinants of the 5 x 5 anti-

symmetric matrix also vanish. Hence it follows that 

the rank of p0 ' is two, 
-h o, . 

Suppose that p and p are two independent rows. Then the rows of 

p0 ' are linear combinations of p-l, and po, such that p00 = o. 

Consequently, 

( o,) Oo( -IT) -lo( OT) p = p p - p p 

The anti-symmetry of p0 ' implies p = 1. Hence (p0 ') are the coordinates 
a -h OT 

of the line which joins the points (p ) and (p ), and it follows 

that the relations (3-2, 3) are necessary and sufficient for (J1, J1\!) 
to be the coordinates of a line. 

3) Transformation properties of p0' The components p0' are written 

as p0' = (pµ, pµv). The vector pµ is transformed under the vector 

representation D½½ and the anti-symmetric tensor pµv is transf0rmed 
. 10 01 

under the representation D + D • (Chapter II, §4.1) From this follows: 

Theorem 1.1 With respect to the restricted Lorentz group, all lines 
OT • R t +'. d th . -t-t . 10 . 01 p ~n 4 ransJorm un er e representat~on D + D + D . 

We now consider the behaviour of p0 ' under the larger Poincare group, 

which consists of all Lorentz transformations supplied with all trans

lations in R4 • 

With a translation, x' = x + a, the components 
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P OT = p11 rsi OT e .J transform into 

[::: :r 
(s-r, [: : ~) = (s-r, [r, s] + (a, (s-r)]) 

It follows that the component pµ is translation invariant and pµ 

and pµv transform according to the (10 x 10) linear transformation 

T (3-4) 

The consequence of this is that the irreducible space of tensors 

Gµv = (G, -iG) transforming under n10 and the irreducible space of 

tensors Gµv = (d, + id) transforming under n°1 are transformed into 

each other, and the 6-dimensional space of anti-symmetric tensors for 

one irreducible space with respect to the Poincare group, 
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1.2. The Proca equation 

This may be 

of the line 

are exactly 

fig. 3,1 

(3-5) 

seen noting that x lies on P if and only if the coordinates 

vector which joins x and x+p, i.e. 

~· x:p1 
(pµ, xµpv - xvpµ) = 

1, 

the same as P(l, Pµv) • The above statement follows im-

mediately from this. Moreover, we 

now suppose the point xl1 lies in a 

space orthogonal to the vector pv, i,e. 

fp = o. 
µ 

(3-6) 

In the four-dimensional space, this 

means that pv is a tangent vector of 

the hyperboloid on which x1-1 lies, 

see fig, 3,1. 

Combining (3-5) and (3-6) we obtain 

JV p = (pv p )i"1 and we can replace 
V V 

(3-5) and (3-6) by the system 

3-• pV JV = K 2:,ll 

v µ µ v µv 
p X - p X = p , 

(3-7) 

(3-8) 

Because only the case pvp > 0 is important in physics, we have set 
V 2 V -

p Pv = K , where K is real, 

Assume now that pµv and xµ are functions of the vector y1 and substitute 
cl 

= -,i , then we obtain the following system 
ci/ 

a <ilv > -K2Xµ (3-7a) 
V 

a V xµ aµx V (ipµv) (3-8a) -
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which is transforming equivalent to (3-7, 8), Conversely, if the ten-

dimensional vector~, where ~(y) = (xµ(y), pµv(y) is developed in plane waves i,e 

~(y) = ~(p)eip•y (p•y = pµy ). W t t t· (3 7 8) µ ere urn o equa ions - , • 

Equations (3-7a, 8a), known in elementary-particle physics as the 

Proca equation, are used for describing particles with spin= 1; see 
E ➔ 

formula (1-48a). The vector p = (-, p) is called the four-momentum; 
C 

see formula (1-7) and I!::. is equal to the rest mass of the particle, 

within a constant factor, We shall call in future the equations (:.t-7, 8) 

also the Proca equation, If one chooses (pµ) as time-axis (new x O-axis) 

and three vectors xµ, with_. xµpµ = o, one obtains the rest system of 

the vector pµ (or particle), We call the vector xµ from the equation 

(3-7, 8) the point of application of the line vector P(pµ, pµv) which 

belongs to the spatial part of the rest system of P. So we have 

Theorem 1,2. The Proca equation in momentum space gives the impliciet 

relation which exists between the line vectors P (pµ, pµv) and its spatial 

points of applications xµ in the rest system of P. 

Considering now translations in the plane pv orthogonal to pv, we have 

Theorem 1.3. The Proca equation (3-7, 8) is invariant under translation 

in the 3-plane p. 
V 

PROOF, Using formula (3-4), a translation aµ in the plane p has the 
V 

form xµ x'µ+aµ 

O), 

where the accents are here set on the right side, 

Substituting these expressions into (3-7, 8) one may verify that these 

equations are invariant under translation in the plane Pv• 

We obtain another proof by observing that the equations (3-7, 8) are 

homogeneous in the components (xµ, pµv). Thus every linear combination 

of two solutions is again a solution of (2-7, 8). Because (aµ, aµp,v-avp,µ) 

is a solution, it follows that (x'µ, p'µv) is a solution of these 

equations. 

Finally we make some remarks which will be used in the following sections. 
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Remark 1.1. 

In order to study properties of the solutions (aµ(y), pµv(y)) for a 

fixed pµ one introduces the little group G (p) which consists of all 
+ 

restricted Lorentz transformations which leave pµ invariant. 

G+(p) is isomorphic to the 3-dimensional rotation group o3+, see 

section 1.2. of chapter II. 

The rest system of pµ is called PXYZ, then we may consider the sub

group o2 of G (p) of rotations about the z-axis, see fig. 3.1. 
+ + 

It follows that, with respect to o2+, we obtain 3 eigenvectors 
µ µv [ l (x , p ) , viz. the z-axis (Z, P,Z~ ) with eigenvalue :>,_ = 1 and the 

isotropic lines (I, [ P, I] ) and ( J, [ P, J] ) in the (x, y )-plane with 
-i8 +i8 

eigenvalues:>,_= e , e • Infinitesimally one obtains 
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2. Geometry of the Weyl equation. 

2.1. Introduction 

We require that the line P(pµ, pµv) is a light line - thus that the 

direction vector pµ of Pis a light vector, i.e. 

In order to study translation-invariant properties of P, it is suf

ficient to restrict ourselves to lines P(pµ, 0) through the origin. 

Thus in the future every line P(pµ, 0) represents the whole class of 

lines parallel with P. 

We wish to study the existence and properties of the space of functions 
_ 1 n 

1/J(p) = ( 1/J (p), • • • , 1/J (p)) which may be defined on the light cone by 

using methods from projective geometry. We require that the function 

value 1/J(p) belongs to an n-dimensional irreducible representation space 

Rjj' of the restricted Lorentz group Lt i e + , • • 

1/J'(p') = D(J\)ljJ(p) (p' = J\p). 

Considering now the subgroup G (p) of Lt, tha little group_ of p which 
+ + 

contains all Lorentz transformations which leave p invariant, it 

follows that all 1/J'(p) = D(G )1/J(p) span a subspace R of Rjj' which is 
+ p 

invariant with respect to G+. We will require that RP is an irreducible 

representation space of G+• Summarizing we require: 

I, The function value 1JJ(p) is transformed by an irreducible representation 

D(G+(p)) which is contained in the irreducible representation D(Lt) of 
th . d ~ + e restncte Lorentz group 

The research of properties of the function 1/J(p) is facilitated by the 
2 fact that if-p = 0 then every irreducible representation of G+(p) is 

one-dimensional, i.e. 

see section 4, 

*)The physical meaning of this condition is that the spin value j and 

the possible projections m on the z-axis of a particle are uniquely 

determined, 
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Therefore as long as we consider representations of the restricted group 

we replace I by requirement II: 

II. The function value ~(p) is transfomed by an irreducible representation 

of the restricted group and is invariant with respect to G+(p). 

Considering the full Lorentz group, it is necessary in order to avoid 

confusion to distinguish the proper little group G (p) which is contained 
+ 

in L; from the full little group G(p). Because irreducible representations 

of G(p) are in general 2-dimensional. 

0 ➔ 0 ➔ For instance if Pis a space reflection, P(p, p) = (p, -p), and r is a 
0 ➔ 0 ➔ 

rotation r(p, -p) = (p, p), then rP belongs to the little group G(p) 

but not to G+(p), 

With the representation space Rjj' and the representation space Rj'j 

(j -,i j') of the restricted group we may form an irreducible represent

ation space of the full group, i.e. 

(3-9) 

where both spaces are transformed into each other with space reflection. 

See chapter I section 3.3. 

Hence, if two vectors ~(p) and f(p) are given, transforming by 

irreducible one-dimensional repr~sentations of the restricted little 
t jj' •j'j 

group G+ and which are contained in the space R and R respectively, 

we may construct the irreducible two-dimensional representation space 

of the full little group G(p) by taking the linear combinations 

(3-10) 

Because the representation space Rjj {j' = j) is at the same time a 

representation space of the full group, the irreducible representation 

of the full little group remains in this case one-dimensional. 

In section 2 and 3 we study the properties of ~(p) with the aid of 

projective geometry. In section 2 we require that ~(p) be transformed 

by the representation D!O + DO½ in section 3 that ~(p) be transformed 

by the 
10. 

representation D + D 
01 . Finally in section 4, where we treat 

the general case, we require that ~(p) be transformed by the represent

ation Djj' + oj'j 
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2.2. ½o. O½ Description of the light vectors by the representation D + D 

In chapter II formula (2-12), every light vector p was mapped onto a 

2 x 2 matrix P i.e., 

with det P 

p 
1 2) p - ip 

0 3 
p p 

O. By this the matrix P was written in the form 

+ 
p = 1/J!/J , (3-11) 

where ljJ = 1/Ja (a= O, 1) is a spinor transforming by a two-dimensional 

representation of the restricted Lorentz group. Hence, every light 
0 1 

vector pis mapped onto a spinor (ljJ , ljJ ), or, more precisely, every 

light vector p(pO > 0) is (1-1) mapped onto the ray of spinors ei<P (iµ 0 , 

It follows, by this, that iµ(p) is the only invariant (spinor) on the 

sphere under the little group G (p), which leaves p invariant. 
+ 

Hence we have obtained the one-dimensional irreducible representation 

space of the little group G+(p). 

We further refer to the fact that this map can also be obtained by 

using the fact that every (po, p), on the light cone, lies in the space 

R O of all 

ffg. 3,2.) 

0 0 ➔2 2 
x such that (x = p) and on the sphere p = p0 in (see 

By describing the points on the sphere in R by the complex number 
,,,o Po 
'Y O 1 

1 
ljJ ) • 

1 (the Gaussian sphere), or in homogeneous form by ljJ = (ijJ , ljJ) or 
ljJ - D½O normalized such that 1/J•ljJ = 2p0 , one obtains the spinor representat~on 

mentioned above, By complex conjugation, one obtains spinors ~ = iµa 

transforming by the representation o0½. If we take the z-axis along the 

vector p, then iµ(p) corresponds with the point N, the North Pole on the 

Gaussian sphere and ~(p) with N, the North Pole on the complex conjugated 

Gaussian sphere.Further we have that 
0 ➔ 0 ➔ 

the light vectors (p, p) and (-p, -p) 

are mapped onto the same spinor 

1/J(p) = 1/J(q). 
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Considering now long with the spinor t(p0 , p) (p0 > O) also the spinor 

t(-p0 , p) we may compare these by taking ~he z-axis along p. It follows 

that the spinors t(-p0 , p) = tCP0 , -p) is equal to s, the South Pole 

of the Gaussi,, n sphere, So we have 

Theorem 2.1. If pis a point on the light cone p2 = O then every 
0 + 0 

t(p, p) (p > OJ transforming by an irreducible representation of the 

little group and which is contained in the representations D¾O or DO¾ is 

(after suitable coordinate transformation) given by the North Poles Nor 

N respectively and if (po< OJ by the South Poles Sor S respectively. 

If we take t(p) = N then, with respect to rotations 8 around the z-axis, .e 
t(p) is multiplie~ with e-1 2 thus t(p) is the vector e½ from the represent-

ation space of D½. Substituting this in the above theorem we obtain the 

following table 

D½O 

;<~ 
, ,_ 

(3-12) 

. = e_½ 

Cf Gel'fand, p. 338. 

We observe that we have obtained this result without referring to the 

invariant equation which t(p) satisfies and that the properties of t(p) 

simply follow from the geometrical structure of the light cone. 

We further note that every other map p + t(p) which may be constructed 

such that ~(p) is transformed by D½O can only differ a coordinate 

transformation from t(p), constructed in (3-11), and thus has the 

same properties. 
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2.3. The Weyl equation. 

Here we study the implicit relations which must exist between p and ~(p). 

The fact that the matrix P may be decomposed by (3-11) such that the 

elements of one row are in the ratio (~O: ~1 ) is expressed by the equation 

0 

With th at ix C ( O 1 ) and,,, = C ,,,b thus (''' ,,, ) em r = -1 o o/a abo/ ' o/0' o/1 

(see formula (1-26)), we obtain the equation 

ac,,, O 
P o/a = • 

ca 

(3-13) 

= <~1, -~o) 

(3-14) 

ac 
Using the fact that Pis Hermitian, p p we get by raising and 

lowering indices 

p. ~a= 0 
ca 

Finally, using the Pauli-matrices aµ, i.e. 

If we substitute p ➔ -ia and ~(p) + ~(p, x), just as we did in 
µ µ 

(3-15) 

(3-16) 

section 1.2, chapter III, we obtain the equation of Weyl. Conversely, 

if we develop ~(p, x) in plane waves, we reobtain equation (3-16) 

We observe that~. which appears in the decomposition (3-11), determines 

not only the point P but also the isotropic bivector of the system g 

through it. (chapter II, section 4.1) Hence we have 

Theorem 2.2. The isotropic bivectors ~(p) from the system g through 

pare described by the equation of Weyl. 

In the same way we may express the decomposition (3-11) by writing. 

C 
or Pac ~ = 0 (3-17) 

which is equivalent with the equations 

(oOpO - olp2 - o2p2 - o3p3) (ta) 0 (3-18) 
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Equation (3-16) and (3-18) are related to each other by spatial reflection, 

showing that the equation of Weyl is obviously not invariant for spatial 

reflection, It follows that equation (3-18) desaribes the isotropia 

biveators of the seaond system g. 

Remark 2.1. 

The equation of Weyl is used in physics for describing the behaviour 
0 -+ 0 

of neutrinos (chapter I section 3.4). The four-momentum (p, p) (p > O), 

of the particle lies on the light cone, Hence, a neutrino is a particle 

which travels with the velocity of light and has zero mass, 

We have obtained that W(p) is the vector e½ (the representation space 

of the little group G.(p) is one-dimensional), The physical meaning ... 
of this is that there is only one state of neutrinos in which the spin 

is right-handed. 

The spin projection m =+½is parallel with p (see fig, 3,2), 

Considering now anti-neutrinos with four-momentum (-p0 , p) it follows 

that w(-p0 , ;) is the vector e_½. Hence there is only one state of 

anti-neutrinos in which the spin is left-handed. 

The spin projection m =-½is anti-parallel with p *). 

Thus a consequence of the restriction to the representation D½o is that 

not all laws of nature (the equation of Weyl) are invariant with respect 

to spatial reflection. 

The consequence of the fact that the irreducible representation space of 

the little group G (p) is one-dimensional is that there is only one 
+ 

type of neutrino. 

We note that it is merely a convention which type of neutrino is 

called a neutrino and which an anti-neutrino. In the terminology 

used in physics, anti-neutrinos are right-handed and appear 

in S-decay: 

n-+ p + e + v. 
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3. Geometry of the Maxwell equations 

3.1. Introduction 

In section 2 we have obtained the spinors ~a(p), ~a(p) and now we may 

form tensor (spinor) products. In this section we take the spinor 

products ~a~c and ~a~c which are transformed by the representations 
10 01 

D and D respectively, see table (1-32). Hence we require that the 
10 • 01 

invariant function ~(p) is transformed by the representation D + D 

and using table (1-32) it follows that we may equivalently state that ~(p) 

is transformed as an anti-symmetric tensor JIV(p). 

Therefore the following will be formulated with tensors, without using 

the theory of spinors, and we will return to spinor calculus in section 

4.4. 

Remark 3.1. 

We start here with geometry by interpreting the JIV(p) as planes in R4 • 

Afterwards, in remark 4,1., we shall show that the geometrical properties 

of certain families of planes are closely related to properties which are 

obtained in the literature (De Vos). This depends on the fact that every 

other map p ➔ s/V (p), where nµv is an element of an "abstract" vector 
10 • 01 

space which is transformed under D + D has the same transformation 

properties as the anti-symmetric tensor pµv, since the representation 

matrices acting on pµv and nµv are the same or can only differ by a 

coordinate transformation. 
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3.2. Description of all light vectors by the representation n10 + n°1 

In the three-dimensional picture of the 

Lorentz group, light vectors pµ correspond 

with points p on the unit sphere. 

We will construct a map of the point p onto 

a line pµv(p), or linear sum of lines, 

which is invariant with respect to the 

little group G (p). We shall prove that pµv(p) is given by the isotropia 
+ 

lines gµv and ~µv through p. 

1. The isotropic lines g and g through pµ are defined as the intersection 

of the complex sphere ( with the tangent plane p at p. Because the 
µ 

tangent plane p and Care invariant under G (p), it follows that we have 
µ + 

the invariant lines gµv(p) and gµv(p). 

2. If mis a line which is also invariant under G (p), then the two or 
+ 

one complex intersection points of m with Care also invariant. Because 

pis the only invariant and real point on Cit follows that m necessarily 

coincides with g or g. 
µv ➔ ➔ 

All lines p (p', p") are (1-1) mapped onto points Pon the quadratic 

surface r: ; '• -~,, = 0 in the 5-dimensional space P 5 of rays p pµv (see 

p. 131) Consequently g = gµv and g = gµv are the only invariant points 

on r. 
3. Finally, if aµv = (;', ;") is an arbitrary anti-symmetric tensor 
➔ ➔ 

(a'.a" need not to be zero) which is invariant under G (p) then the lines 
+ 

ga and gain P5 are invariant and with that their intersection point with 

r. Because g and g are the only invariant points on r it follows that ga 

and ga coincides with gg and a with g or g, by which the statement made 

in the beginning of this intersection is proved. 

Returning to four-dimensional considerations we have to replace "isotropic 

lines" by "isotropic bivectors". 

Below in formula (3-21) we have for the coordinates g1v and giv that they 

are of the form 
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gµv = ca, - iG) 

gµv = ca, + it). 

This implies that gµv(p) and gµv{p) transform by the representations 
10 01 

D and D respectively and that for a fixed p they form the one-

dimensional irreducible representation spaces of the little group G {p). 
+ 

Considering now the fuZZ little group G(p), the bivectors gµv and 

gµv, span the 2-simensional irreducible space R of G(p), which consists 
p 

of all transport bivectors through p, i.e. 

(3-18a) 

see (3-10). 

So we have the following theorem. 

Theorem 3.1. If pis a point on the light cone p2 = O and R is the 
p 

2-dimensionaZ representation space of the fuZZ ZittZe group G(p), 

contained in the representation of D10 + D01 , then RP is formed by 

aZZ tangent bivectors in p and spanned by the two isotropic bivectors 
g = (gµv) and g = (gµv) through p. 

➔ 
If the spatial component pis taken as z-axis then with respect to 

rotations r(8) about the z-axis gµv and gµv are transformed into 
-i8 µv d +i8.µv e g an e g see formula (3-23). 

·(a r(a >) µv Using the infinitesimal operator J 3 =I as S=O we have that g and 
• µv 1 1 ' g have eigenvalues m = + , - respectively and therefore we shall 

µv • ,µv 
write G+ = g and G_ = g • 

The effect of a total reflection pµ ➔ -pµ is ~v ➔ ~v • Thus all vectors 

(po, p) are mapped on the same value gµv in R6 as the vectors -(po, p). 
In analogy to table (3-12) we obtain the table 

'1/lt'l-')~ DlO 

(p 0 > 0) (3-18b) 

{po < 0) 
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Generalized spherical functions 

In order to determine the coordinates gµv, gµv of the isotropic bivectors 

explici tely as functions of p. We consider the plane x = >,_p + ug through the 
0 ➔ "% 

vectors p = p (1, p) and g = (0, li) and require that this plane be 
2 

isotropic, i.e. lies on the complex cone x = o. It follows that 
2 2 

p = o, p.g. = O, g O, or,' what is the same, 

➔2 
p (3-19) 

c· + ➔ 
We substitute G = V2 

write G' 

iG" 
into (3-19), where G' and G" are real vectors, 

we shall also E and G" =Hand obtain 

p.H = O; E 2 = H 2 and E .R = 0. (3-20) 

Hence it follows that p, E, H form an orthogonal triad, and supposing 

that in this order they are oriented as a right-handed screw, then 

~ _ E - iH gives the left-handed screw. 
G - V2 

Using (3-20) we have that the coordinates of the isotropic bivectors are 

and 

p ➔ 

µv 
g = p 

hence we 

p°a with 

0 ['· :]'" = 
0 ➔ ➔ ➔ 

p (G, p X G) 
o, 

obtain the map 
0 ➔ 

p ➔ p (G, 

respect to the basis (k e , 

and thus gµv 

gµv 

➔ 
-iG), or 

-->-k 
-ie ), 

*) 

and analogously the isotropic lines gµv give the map 

= Po<a, -ia) (3-21) 

0-+ 
P (G, +iG) 

(3-22) 

p ➔ p~ with respect to the basis (:k, +i:k) (3-22a) 
-ie 

This map is determined within a factor re for the transformation 

..,. -i0-+ 
s = re G ( +,) (cose 

corresponds with: i .. = r . 
sine 

- sine) (] ) 

cose tt 
(3-23) 

-+ 
and it follows that also the vectors satisfies the conditions (3-20). 

However, with respect to the little group G (p) the number r is in-
+ 

variant (r is a scalar). In order to show this, we take p = (1, o, o, 1) 

and g (0, 1, -i, 0). Using formula (2-23), it follows that p and g 

*) -+ 
Although the 4-vector (0, G) is transformed by the representation 

D½½, we note that vector G, which appears in (G, -iG) is a 3-vector 

and transforming by the representation n10 (see also chapter II, 

section 3.2). 
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correspond with the spinors (1, 0) and (O, 1) respectively. Now applying 

the transformation A=(~ ~) of the little group tog= (O, 1), it 

follows that g is transformed as: 

A : g + g' = ap + g. 

Thus the coordinates of the bivector gµv are transformed 

,,= .. v, [:t,•to •. ,v, [:t ~p+.t, l:t 
Hence the factor rand thus jE] and IHI are invariant with respect 

to G+(p). 

In order to fix the map p + p~, we take for E and ff unit-vectors 

attached in the tangent plane of p (see fig. 3.4) and determine the ray 
z O + . 

'Z'J p (1, p) by the spherical coordinates 
c-,F...=----i~ e, ~- Now there is exactly one rotation 

D, such that the unit vectors :x and :y 

attached to the North Pole transform 

into E and H. If ~1 , e, ~2 are the 

Euler angles, then by a rotation e 
around the x-axis, followed by a 

rotation ~l =~+~around the z-axis 

the North Pole N is transformed into 
~ ~' +~ +y +y' +6 

P, the vector e into e = e, and the vector e into e = -e 

(;e and;~ are unit vectors attached in p and positive-directed along 

the 6- and ~-lines on the sphere). 

Finally, after a rotation ~2 around p (or starting with a rotation ~2 
+x' +y' ~ 

around the z-axis) the vectors e and e are transformed into~ 

and H . 
Hence in the first and second columns of the matrix D(~1 , e, ~2), stand 

the vectors E. and H respectively. We bring the matrix D(~1 , e, ~2) 

in canonical form; that is to say, we transform to a basis consisting 

of eigenvectors with respect to rotations around the z-axis; i.e. 
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(-; 
0 

Dl -1 1 
0 T DT where T = 1/2 

v2 

We note that by multiplying D from the right with T, we obtain the 

vector Gin the third row or (+)-row of o1 and we use the index 1 in o1 

in order to indicate that o1 is the representation matrix in canonical 

form, of the representation Dj(j = 1). 

o1 is the v"ctor representation of the rotation group. 

Hence it follows that d transforming by the representation 010 is given 
1 

by the components D 1 (¢1 , 0, ¢2 ) (n = ~1, 0, +1), and, by the same 
n,+ ➔ 

arguments, one can prove that the vector G transforming by the represent-

. Ol · · h o1 ( 1 0 1 ) ation D is given byte components -n _1 n = - , , + • , . 
If there is given a ,mi tary represe~ta tion DJ(¢ 1 , 0 , ¢ 2 ) of the rotation 

J group, then the matrix components Dmn (¢1 , 0, ¢ 2 ) are known as generalized 

spheriaal funations, see Gel'fand p, 78-106. 

Using formulae (3-22, 23 

= AP (G, 
0 1 

and 3-10), we have the following map: 
➔ ➔ 

p ➔ 1/J = (E, H) -iG) + µp0 (d, +id). Substituting the generalized 

spherical functions D we obtain: 

Theorem 3.2. If p = po (1, sin 0 aos ¢, sin 0 sin¢, aos 0) is a point 

on the light aome, then the funation 1/J(p) = (E, H) transformed by an 

irreduaible representation of the full little group, aontained in the 

representation D10 + DOl is given with aid of the generalized spheriaal 

funations rJmn (¢ 1, 0, ¢2), i.e. 

_ 1 1 
En - Po(ADn,1 + µD_n,-1) where n =· -1, O, +1. 

Hn = -ipo(AD~~l µD:n, -1) 
1T 

¢1 = ¢ + 2 and ¢2 
is arbitrary. 
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3.3. The Maxwell equations 

In the foregoing subsection, the mapping pµ + rfV of light vectors onto 

isotropic bivectors is given explicity. Now we study the implicit 

relations which exist between the vectors p and ~v. 

Theorem 3.3. AU tangent bivector-s are descr>ibed by the equations: 

i"P = 0 and 
V (3-24a) 

pµvp = 0, 
V (3-24b) 

"the Ma.:a,Je U equations". 

PROOF. In the three-dimensional terminology, it follows that equation 

(3-24a) expresses that the point pv lies on the line p-1v and equation 

(3-24b) expresses that this line lies in the plane pv' see chapter II, 

appendix, theorem B-2. 

Thus pv lies in its correlated plane pv, pv pv = o, hence pv lies on 

the unit sphere and lv is a tangent line in if . 
For the fixed four-vector J1, the tangent bivectors span a two-dimensional 

space. 

Analogously to§ 1.2 we observe that if we substitute p + -:lo and 
V V 

p µv +Fµv (x) we obtain the equations 

a #V = 0 and 
V 

a #V = 0 1 
V 

(3-25a) 

(3-25b) 

which are known in physics as the Maxwell equations. (See cbapter I). 

Conversely, if we develop the 6-dimensional vector ~(x) = #v(x) in 

plane-waves, i.e. ~(x) = ~(p)eip:x (p.x = ifx ), we re-obtain the 
E + µ 

equations (3-24a, b). The vector p = (-, p) is called the four-moment, 
C 

and hence, in §3.1, we have treated properties of the solution of the 

Maxwell equations in to so-called momentum space. 

Remark 3.1. In quantum mechanics, the Maxwell equations (3-25a, b) 

determine the state-function ~(p) = y1v(p) of,particles which are 

carriers of electromagnetic interaction, i.e. photons. 
+ 

Considering rotations around the p-axis the representation space of 

~ (p) is spanned by the eigenvectors jv (p) and fV (p) with eigenvalues 
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(m = + 1). 

One expresses this by saying that a photon is a spin-one particle with 
-+ . projection m = +1 and m = -1 on the p-axis. These two states correspond 

with right-handed circular-polarized and left-handed circular-polarized 

light. See Feynman p. 11-9, As contrasted with photons, a spin-one 

particle ~(p) with given p and non-zero mass has three independent 

states m = -1, O, +1. Hence the physical consequence of the fact 

that for fixed p the space of all ~(p) = pµv(p) is two-dimensional 

is that photons are only transversely polarized~ and the fact that the 

eigenvalue m = 0 does not appear follows from the considerations made 

in the beginning of section 3.1. 

An alternative form of Maxwell's equations (I). 

We can write equations (3-24a, b) in the form (3-26) or (3-27). 

1 -H2 3 
-H -H Po 

Hl E3 2 . -E pl 

H2 -E3 . El 
p2 

H3 E2 1 
-E . P3 

0 (3-26) = 

. El E2 E3 
Po 

-El li3 2 . -H Pl 

-E2 -H3 . Hl 
P2 

-E3 H2 -Hl . P3 

where pµv 

and cycl. 

-+ -+ oi 
- (E, H) thus p Hi where i, j, k = 1, 2, 3 
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Interchanging the role of pv and pµv we get 

. . . -pl -p2 -p3 El 

. -p3 p2 Po 
E2 

P3 . -pl -. Po . E3 

-p2 pl . . . Po 
0 (3-27) 

pl P2 P3 . . . Hl 

-po . . . -p3 P2 
H2 

. -po . P3 . -pl H3 

. . -po -p2 Pl . 

Equation (3-26) is of the form 

The vector t 11 is an ordinary vector, while the vectorsµ is a pseudo 

veotor. This means that s 11 obtains an extra negative sign with space 

and time reflection because pµv is a pseudo tensor (see chapter II, 

appendix, theorem B-1). 

If required, we can write system (3-27) in canonical form, That is to 

say, first 
10 

to D and 

µv -+ -+ 
decompose p (E, H) into its irreducible components belonging 

DOl, i, e,, 

-+ 
G 

-+ -+ 
E + iH 

+ -+ -+ 
G = E - iH. 

Applying this transformation to (3-27), we obtain an equation, say 

(3-27'). Then transform to eigenvectors with respect to rotations around 

the x3-axis, .Thus for the column of (3-27') we have the transformation: 

(Gk, a•k) 3 + ,- .3 ,+ T: -+ (G, G, G; G, G, G ), 

and for the rows we have that 

s , s 3, s + ; t O, t - , t 3 , t +) • 
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-1 In this way, the 8 x 6 matrix Bin (3-27) transforms into SBT 

which may be written as the sum of four matrices 8 : 
µ 

and equation (3-27) takes the canonical Bhabha form: 

-1 
8 pµ = SBT 

µ 

<8 pµ)lji = o. 
µ 

The four matrices 8µ 

p, 313. 

(in canonical form) can be found in Gel'fand 

Remark 3,2. 

If we restrict ourselves to the condition that f, H, pare real then 

we can bring the equations (3-24a) and (3-24b) into the form (l-47a, b) 

chapter I, in our notation gµvp = 0 (or gµvp = 0), which expresses 
V V 

the incidence of the real plane p (point pv) with the isotropic bivector 
V 

An alternative form of Maxwell equations (II) 

From the Proca equations 

(see 3-7, 8) one obtains Maxwell equations by putting K 

of a photon is zero), 

(3-28) 

(3-29) 

0 (the mass 

The same procedure is not possible with the Kemmer equation (l-48b, c) 

in view of the appearance of Kin the denominator, Nevertheless, it is 

possible to write the equations (3-28, 29) with K = 0 in the form 

(3-30) 

where Dis the matrix, containing pv in such a way that (3-30) is the 

same equation as (3-28, 29), See also the text after formula (l-48b), 

Thus equation (3-30) may be written in the Bhabha-like form 

(8µP + E)lji = 0 where E = (O 0 ) 
. µ 0 E 

(3-31) 

and where 8µ are the 10 x 10 Kemmer-matrices. 

We will show that this equation is relativistic invariant, 

The possibility of writing the Maxwell equations into this form was 

suggested by a remark in Roman p, 155, 



Consider first the Kemmer equation 

(SµP + idljJ = o 
µ 
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where l/J is transforming by the 10 x 10 representation matrices D(L). 

(3-32) 

-1 T 
We substitute l/J(x) = D {L) l/J'(x'), x' = Lx and a =La', into (3-32) 

and left multiply by D(L), to get 

Lµ D(L)SvD-l(L)o' l/1' + iKl/1' = 0 
\) µ 

(cf. theorem 8.1 chapter I). The Kemmer equation is relativistic invariant; 

hence, it follows that 

Now equation (3-31) is relativistic invariant if 

D(L) e:D-1 (L) = e: 

and this can easily be proven by noting that D(L) is of the form 

D(L) = (~ ~) • l] 
~ 
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3.4. The Maxwell equations in.neutrino and spinor form 

We now return to spinor calculus. The spinor w determines the point P 

on the light cone as well as the isotropic bivector through it (section 

3,1. chapter II). 

By the foregoing geometrical treatment of the Maxwell and Weyl equations 

it is easy to see tha,t both equations express, in a certain sense, the 

same thing: the incidence of the point P with its corresponding isotropic 

bi vector. 

In the Maxwell equations we clearly use the coordinates gµv(p) or gµv(p) 

for the isotropic bivectors, whereas, in the equation of Weyl, we use 

the spin coordinates wa(p) for the same bivectors. 

Using formula (2-26) of chapter II, it follows that if the isotropic 

bivector is given by 

µv + + + + + 
g (G, -iG), G = E + iH, 

+ 
·then the 2 x 2 matrix G corresponding to G may be decomposed by 

1 0 <w, - w > • (3-33) 

We obtain (wo)- ( 03 ) 
+ 1 

Wl - cr Gl+iG2 ' 
where cr = 

V01 
I 

+ iG2 

Thus 0

) 

0 3 

) 

~ ,,.,., ) w 
\jE1+iH1)+i(E2+iH2) = + V°_1 +l.G2 

( •i - V,1 +io, 
= + 

VE1+iH1)+i(E2+iH2) 

(3-34) 

Substituting equation (3-34) in the Weyl equation (3-15) and in equation 

(3-17), we obtain the MazweZZ equations in neutrino fo:rrrn. 

See also Barut p. 98, Laporte and Uhlenbeck, Whittaker. 

Remark 3.3, 

The same result can be obtained by writing the Maxwell equations 

(3-24 a, b), i.e. 
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\) 
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{

p\)gjJ\I = o, where gjJ\) = PJJV + PJJV 

in the form 
p gjJ\I = 0 and gjJ\I = PJJV - PJJV 

\) 

(3-35a) 

(3-35b) 

If we restrict ourselves to real pJJ and pµv then the equation (3-35a) 

is sufficient for obtaining (3-24a, b) since it can be separated into 

a real and imaginary part. However we shall consider the complex case 

and use the system (3-35a, b). 

After the coordinate transformation 

P (po, Pl, P2, p3) ➔ P (Poo, pl61 poi 1 pli) 

the equations (3-35a, b) are transformed into 

P GJJ,J = 0 
\) 

P GJJV 0 
\) 

we have that GJJV = 1/Jac and GJJV = 1/Jac, see (2-40), 

thus 

P. ala2 
ca1 1/J = 0 

c c2 
p, 1/J 1 = 0 

<\a 

These are the Ma.xwell equations in spinor form and they form a 

generalization of the Weyl eq11ation. 

(3-36a) 

(3-36b) 

ac a c Using the fact that 1/J = 1/J 1/J ,formula (2-40), or using the fact that 
2 

p = 0 1 thus that P = 1/J• 1/J , formula (3-11), it follows from 
cal C al 

(3-36a) 
0 1 

ala2 
that the components of a column of 1/J are in the ratio 

ala2 al a2 
( 1/J : 1/J ) • Hence 1/J = 1/J 1/J and one obtains from (3-36a) the equation 

of Weyl. The system (3-36a, b) reduces into 

P, 
ca 

0 

0 

which is in fact a special case of the Cartan form X~ O, 

see Cartan II p. 21. 

(3-36c) 

(3-36d) 
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4, Geometry of the generalized Weyl equation 

4.1. Description of all light vectors by the representation Djj' + Dj'j 

We take ~(p) = (~1 (p), •.• , ~n(p)) which is an n-component function 

defined on the light cone p 2 = O. We refer to section 2.1. of this 

chapter, where we have introduced the little group G (p), a subgroup 
+ 

of the restricted Lorentz group Lt which leaves the vector p invariant. 
+ 

Thus every representation D(L:) of the Lorentz group induces a represent-

ation of the little group which in general is not irreducible, After 

having studied some special cases in section 2 and 3, we consider here 

the general case and we require that ~ be transformed by an irreducible 

representation of the little group G (p), which is contained in the 
••I + ) 

representation vJJ of the restricted group. * 
Using the fact that the representation space Rjj', where the represent-

ation Djj' acts is spanned by the vectors em,m' (-j < m < + j, -j' < m' < + j'), 

we have 

f . l"h 2 0 Theorem 4.1. I p ~s a ~gt vector, p = 0 and p > O then every 

irreducible representation of the little group G (p) contained in the 
• • I + 

irreducible representation vJJ of the restricted Lorentz group is one-

dimensional and if the spatial component p of pis taken as z~azis then 

w(p) is given by the vector e. . , . The vector e. . , has in this case 
-i(j-j I )0 J, -J J,-J 

the eigenvalue e with respect to rotations e around the 
➔ • 
p-a::c1,s. 

PROOF. In chapter II, formula (2-12), every light vector pis mapped 

onto a spinor ~(p) = (u, v). More precisely, pis (1-1) mapped onto the 
. i0 

ray of sp1nors e (u, v). Considering the little group G+(p0 ) of a fixed 

vector p0 , it follows that.the fact that p0 is the only invariant vector 

on the light cone implies that the spinor ~ (p0 ) = (u0 , v 0 ) is the only 

invariant spinor with respect to G (p ). Hence the 2-dimensional space 
+ 0 

R2 of spinors contains only a one-dimensional irreducible subspace given 

by ~(po) • 

..:. ) 
Al though the transformation properties of the function~ (p) defined on 

the light cone were already studied by Dirac and Majorana, the first 

systemic treatment was given by Wigner. Wigner also studies represent-

s (1 z +iz ) i ( E; z + E; z ) . . ations of the form D :A
O 

1
1 

2 ➔ e 1 1 2 2 which are contained 

in irreducible representations of the Poincare group (Wigner p. 197, 

Hamermesh P. 486). (cont. see next oa~e) 
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Because the•space R2 is not completely reducible (R2 is not the tensor 

sum of two invariant subspaces) and R2 is not irreducible, one says that 

R2 is not aompletety reduaibte with respect to G+(p0). 

Now by taking tensor products, one obta1ns spinors with components 

h k . I k' 
p +,u v if v , where h+k = 2j and h'+k' = 2j', (3-37) 

or 
j+m j-m j-m' j'+m' 

= u V ti V P + lj,mm' 

which span the representation space of Djj' if p takes on all values on 
2 p = O (Chapter I, formula (1-3la)). 

It follows by the foregoing considerations that from all spinors (3-37), 

only the spinor with components 

(3-38) 

remains invariant under the little group G+(p0 ). 
+ 

We take the spatial component p0 as z-axis thus p0 = (a, o, o, a) by 

which follows 1j,(p0 ) = (u0 , 0) w~~~e u0 = :(28 and the corresponding 

spinor (3-37) transforming by DJJ has only one non-zero component 
2j -2j' 

lj,jj' = u Ou • 

In this coordinate system the group G+(p0 ) is generated by the transform

ations 

(3-39) 

(formula (2-18a, b) chapter II). 
2· _2j' -i('-'') 

It is clear that the spinor u J, u O has the eigenvalue e J J 

with respect to rotations B. 

It remain to show that e. j' is the only irreducible subspace under 
J,- Jj' 

G+(p) in the representation space of D , or what is the same thing, 

we have to prove that every subspace V which is invariant under G+(p) 

necessarily contains the vector ej,-j'' by which follows that Vis an 

However, by the proof given here, which requires only simple algebraic 

methods, it is also possible to expand the function lj,(p) into generalized 

spherical functions and to develop in the foregoing sections, the 

projective geometrical background of this theorem, 

Prof.dr. J. Hilgevoord drew my attention to the fact that this theorem 
... G•• I,.,.,.. ~,,...-....... 1a+-..1 -1'-.- +i...-. ___ ...,_.,.. ____ ..,.,....,_.,: __ njjr .:.--.4..-~.-..-1 -~ njQ r\.Qj' 
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irreducible space if and only if V coincides with the space Ae .. ,. 
J,-J 

For that purpose we take an arbitrary vector x e V, the components of 

x are a linear combination of 

kk' h k -h' -k' 
X = U V U V 

for different p (we omit the I-sign) 
p 

The transformation 

A: u ➔ u + vz, V ➔ V 

is represented in V by 

kk' 
X 

h k -h' -k I kk I 
UV UV ➔ x ( )h k(_ --)h' -k' u+vz v u+vz v 

+ ••• 

If we require that V be an invariant space, then V must also contain 

the vector y = x-x. 
kk' 

y 

Hence, if the space V contains the vector x with components, 

k k' 2. 2.' 
x(Ov O 'J V JV J ) , 

I • • • I 

( □ k+l o -k' □ k □ -k'+l then it also contains a vector. y v v + v v + ••• , 

Continuing this procedure (2j+l)(2j'+l)-l times, it follows that the 

space V contains the vector 

2j_2j' 
e. . , = (u u , O, • • • , 0) 
J,-J 

(3-40) 

This proves that the only irreducible representation space of G (p) is 
+ 

given by the vector e .. ,. 
J,-J 

Finally, we note that every other map p ➔ ljJ(p) which can be constructed 

such that 1/J(p) transforms by the spinor representation D½O can differ 

only by a coordinate transformation from the foregoing and thus has 

the same properties, 

Remark 4,1, The representation Djj (j j') is also an irreducible 

*) 
O stands for the components u. 

••• , 0) 
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representation of the full group. So the above theorem holds for 

irreducible representations Djj of the full group • 
. . ' 

If j ~ j' then DJJ is contained in the irreducible representation 

Djj' + nj'j of the full group, where the dot denotes that bjj' is the 

conjugate representation of Djj'. In this case, we have the full little 

group G(p) which contain reflection like transformation. Thus theorem 

4.1. becomes 

Theorem 4.2. Every irreducible representation of the full little group 

G(p) (p2 = 0) which is contained in the irreducible representation 
• • I • I • 

£i1J + £ii J (j i j') of the full Lorentz group is two-dimensional and 
spanned by the vectors 

e . . , and e., . 
J,-J J,-J 

Remark 4.2. In order to relate theorem 4.1. to the literature we note 

that De Vos has proved that every field ~(p) defined on the light cone 

p2 =O, satisfies the equation 

Q __ ~(p)=O ,cf. De Vos (1.20), 
IN 

where Q_ (n_ = -n_) is a set of operators which belong to the 
µv µv µv 

6~dimensional space I spanned by the infinitesimal operators I of the µv 
Lorentz group. The operators n are defined in D.V. (1.10) and 

µv 
satisfies the equation 

0 

nµvP = o , 
\) 

cf. n.v. (1.13) 

cf. D.V. (1.15). 

In order to obtain solutions of these equations we note that these 

equations are in fact the Maxwell equations (3-24a, b) with operators 

nµv instead of coordinates pµv_ In the table on page 153 it was 

shown that if ·pis taken on the North Pole N(l, O, O, 1) then the 

solutions of the equations (3-24a, b) are given by the isotropic G and 
• . f Dfo G through P. These planes belong to the representation space o 

01 . and D respectively and are eigenvectors of the infinitesimal rotation 
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We note that J 3 consists of 
10 • 

a component G3 which acts only in the space 
01 

D and a component G3 which acts 

(1-85d), so we may also write 

G 
+ 

only in the space D , see formula 

-G_ 

Considering now the space I of infinitesimal operators, we first refer 

to section 3,1., remark 3.1. There we have observed that with respect 

to the representation theory, this space I has the same properties of 

the space of antisymmetric tensors. An infinitesimal rotation J 3 acts 

in this space of operators I by the commutation role 
µv 

[J3 , Iµv] I~v , see (1-81). 

Consequently the solutions of D.V. (1,13) and D.V. (1.15) are two 
• 10 

operators G, G which belong to the represen~ation space of D and 
01 + -

D respectively, such that according to (-) 

Using (l-85h) it follows that G+ and G are the so-called step-operators 

acting on the first and second indices of the vectors emm' respectively. 

Consequently the solution of (x-) is thus a vector~ such that 

G ~ = 0 

cf. D.V. (1-35), and it follows that the only solution of this equation 

is the vector e j,-j', see the weight diagram (l-85e). 

·, 

---il-----!-----1,<-)'J? 
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4.2. Generalized spherical funct~~ 

j+m j-m _j'-m'-j'+m' 
We now wish to give the map p + u v u v in an explicit 

form. To that purpose we determine the light vector p by the component 
0 

p and the spherical o:,cordinates of the ray Pp. 

p 

0 
p (1, sin 0 cos¢, sin 0 sin¢, cos 0) (3-41) 

Substituting this in formula (2-12) we obtain 

0 (1 + cos e 
p = p +i¢ 

e sin 0 

-i¢ ) e sine 
= 

1 - cos e 

+ 
1/11/1 where 1/J 

Hence 

(
u' _ . (V l+cos 0 

v -\/Po 1/: l1-cos 0 
(3-42) 

We observe that (u, v) is determined within a factor e-i½¢.The meaning 

of this is the following. The spinor (u, v) is defined on the unit 

z 

l 

3.5 
7T 

sphere P(0, ¢). Now there is a 

rotation r(¢ 1 , 6', ¢ 2 ) such that the 

North Pole N is transformed into P. 

The angles ¢1 , 0', ¢2 are the Euler 

angles such that r(¢1 , e, ¢2 ) is the 

product of a rotation ¢2 around the 

z-axis, a rotation 0 about the x-axis 

and a rotation ¢1 around the z-axis 

(see figure 3.5). It is clear from 

the figure that¢= ¢1 - 2, 0' = 0. We substitute these expressions 

into (3-42) and observe that we may choose the rotation ¢2 arbitrary, 

this corresponds to a multiplication of (u, v) by a factor 

e-i½¢ 2 . We substitute ¢2 + ¢2 + ¢1 and obtain the spinor 
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-i 
4>1 

{~) ·Voo (: 
Vi+cos e e 2 4>2 

-i 
2 

4>1 e (3-43) 

Vi-cos 
+i 

2 
V2 e e 

The factor v½ is added to normalize (u, v) : uu + vv = p0 • 

By this procedure, we have obtained the result that the spinor ~(u, v) is 

defined not only on the unit sphere but also on the rotation group. 

By taking tensor products 

j+m j-m 
q>m = U V 

(2j)! 
(j+m)!(j-m)! 

(see formula (1-30a)) one obtains spinors with components 

j -imq> 1 -ijq> 2 
= p0 (l+cos e>j;m (1-cos e>j;m e e c, (3-44) 

where C = 
(2j)! 

(j+m) ! (j-m) ! , 

It fol lows that 

~m = Poj n;,j <4>1, e, 4>2> ' (3-45) 

where Dj . (4> 1 , e, 4> 2) are the so-called generalized spherical functions 
m,J . 

(see the formulae of DJ . in Gel'fand p. 85), 
m, J 

Finally, we construct the tensor products: 

_ j+m j-m -j'-m' -j'+m' v (2j)! ½ (2j')! 
ejm ej'm' - u v u v(j+m)!(j-m)! (j'+m')!(j'-m')! 

and obtain the map: 

where q, 1 = 4> + ~. 
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We observe that if ~(p) belongs to a reducible representation 

D = l Djj' of the Lorentz group and ~(p) = Ic j.,e .. , ,{p) then it 
j , j, j , j , J JmJ m 

remains true that ~(p) is invariant with respect to the little group 

G+ (p); i.e. 

(3-46) 

Conversely, the function ~(p) is invariant only if ~(p) is the tensor

sum of one-dimensional irreducible representation of the little group 

G+(p). Hence we have: 

Theorem 4.3. Every function ~(p) defined on the light cone p = po (1, sin a 
cos~, sin a sin~, cos a) suah that the function values belong to a 

finite-dimensional representation spaae of the Lorentz group and such that 

~(p) is invariant with respect to the little group G+(p), may be written 

after a suitable coordinate transformation, in the form 

~(p) = Icjj'PojPoj' v/n,j (~ 1, a, ~2) vi_~,. -j'(~1, a, ~2), where 

+ l! 
2 

(3-47) 

(In section 3,1., theorem 4.3 is illustrated by a geometrical example), 

The occurence of the generalized spherical functions follows also 

by more qualitative arguments, 

If a rotation r(~_ 1 , a, ~2) is given, then the matrices of a unitary 
J representation D (~ 1 , a, i> are functions of ~ 1 , a and ~ 2• The matrix 

components o;n (~ 1 , a, ~2) are by definition the generalized spherical 

functions. 

Now the map ~ p + ~(p), which is given in formula (2-12) and (3-37), 

is defined in such a way that the spinor ~(rP) belonging to the point 

rP may be obtained by transforming ~(p) by the corresponding represent

ation matrix Dj·(r); i.e., 

(3-48) 

If the North Pole N and the point Pare connected by the rotation r, i,e., 
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it follows that 

or, in components 

(m, i = -j, -j+l, ••• , +j). 

(3-49) 

2. 2j-l 2 · 
Because ~i(N) has the components (v J, v , ••• , u J) where (u, v) = 

(1,0), i.e., ~i(N) = (0, 0, 0, ~•• , 1), it follows that ~(p) is equal 

to the last column (i = j) of DJ_(r). mi 

~ (P) = Dj. ($ 1 , 8, $ 2). 
m mJ 

Remark 4.2. We add the following note. Consider the n2-dimensional 

space R which is spanned by the functions Dj (r). 
mn 

.The r>eguZar r>epresentation T acting in R is defined by 

T(r0 ) Dj (r) = 
mn 

Dj (rr0 ) 
mn 

(3-50) 

It follows that the functions in them-th row (which are now vectors 

and not components as above) are transformed into each other by the 

matrices D~n (r0 ). m . 

Hence, in the space R of the functions DJ. (r) (-j < i < +j) of the . mi 
m-th row, the representation DJ acts with the representation matrices 

Dj (r0 ). 
in 

For instance, a rotation 8 around the z-axis is represented by 

--(oe -ij8 D(r0 ) e -i(j-1) 8 O ) 

• +ji8 
• e 

(3-51) 

From this, it follows that the vect~rs ei 

basis in Rm. Now the vectors ej =DJ. (r) 
mJ 

(3-44). Hence, applying the operator J_e = 

remaining generalized spherical functions. 

= Dj (r) form the canonical 
mi 

are given for every min formula 

ce. 1 , one can construct the 
J-
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4.3. The generalized Weyl equation 

Supposing we are given the representation Djj', then, just as in 

2.3, section 3.4 by constructing the equation of Weyl, we note that 
a1a2•·• 

1/J • • 
clc2 

al a2 
= 1/J 1/1 

if and only if 

(3-52) 

and (3-53) 

Hence the spinor products constructed in formula (3-37) obeys the so-called 

generalized Weyl equation and these equations can be brought into the 

Weyl form (3-36c, d). Without using the results of §4.1., one can show 

that the solutions of this equation form a one-dimensional space and 
-i(j-j I )8 

have eigenvalues e with respect to spatial rotations 8 around 
-+ 

the p-axis. 
0 0 0 

Therefore, we take p = (p, O, O, p) (p > O), and thus the corresponding 

2 x 2 matrix Pis given by 

=(02po P•a 
C 1 

and the generalized Weyl equation becomes 

Oa 
(2po) 1/J 2... = o c\ c2 ... 

a a 
(2po) 1/J 1 2... • = o • 

Oc2 ••• 

11... . Hence the only non-vanishing component is 1/1 with eigenvalue 
-i(j-j') 11. •• 

e • 

Summarizing the geometrical content of .the generalized Weyl equation, it 
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fol lows from the results in section 2 and 3 that the generalized Weyl 

equation describes in fact the isotropic bivectors on the light cone. The 
+i(j-j') 

fact that only the eigenvalues e- appear with respect to rotations 

e around the p-axis depends on the non-invariance of the p-axis under the 

little group G+(p) (section 3.1 first page) and the possibility that the 

solutions of the generalized Weyl equation can be written with aid of the 

generalized spherical function follows from the constructions given in 

formula (3-22) or formula (3-42). 
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Chapter IV 

THE LOH.ENTZ GROUP AS A THREE-DIMENSIONAL TRANSFORMATION GROUP 

In chapter II, we remarked that the Lorentz group can be studied as the 

three-dimensional projective group which leaves the unit sphere invariant, 

In this chapter, we study this group in more detail, 

In section 1,, we shall show that every Lorentz transformation may be 

described as a sarew in hyperbolic geometry, For that purpose it is 

necessary to introduce the concepts of (hyperbolic) distance and angle, 

For a certain family of planes it is also possible to introduce a 

euclidean distance, In this study, we take advantage of what we know 

already about the four-dimensional geometry of the Lorentz group, 

For a depper analysis we need the method of Cartan, Cartan developed a 

method to describe (pseudo-) orthogonal transformations in R by 
n 

introducing a certain multiplication between vectors. In this way we 

obtained a so-called Clifford algebra, which is a generalization of the 

quaternion concept, 

In section 1,4, we show that this method is indispensable in hyperbolic 

geometry for the construction of screws with the aid of reflections. 

In section 2,, we give an application of this method to the 5-dimensional 

line space, In particular, it is shown that the anti-symmetric matrices 

which leave invariant the so-called configuration of Kummer are obtained 

from a 64-dimensional Clifford algebra, 
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1. Three-dimensional hyperbolic geometry 

1.1. Geometrical introduction 

In this section we still describe a Lorentz transformation as a screw 

in hyperbolic geometry. Before going on with the analytic treatment, 

we first give a more geometrical classification of Lorentz transformations. 

A . 2 . ( 0 1 2 3) . sin chapter II section , every point xx, x, x, x is mapped onto 

the 2 x 2 matrix x (we use small letters for 2 x 2 matrices in this 

chapter) 

( 
0 3 

X +x 
X = 1 2 

X +ix 

x 1-ix2 ) 
0 2 ' 

X -x 

which is transformed by x' = axa+ (det a 1). 

In particular, points on the complex sphere det x 

may be written as 

where~ and¢ are two-dimensional vectors transformed by the two

dimensional representation a· of the Lorentz group, i.e. 

~· a~ and¢' 

see formula (2-11). 

(4-1) 

(4-2) 

We shall determine the eigenvectors x of the transformation (4-1) which 

lie on the complex sphere. To that purpose we determine the two eigen

vectors ~ and ¢ of the transformation (4-2). 

There are two cases: 
+ 

(1) ~ = ¢. Hence x = ~~ , and it follows that xis hermitian. Thus, 

there is only one invariant and real point on the sphere. It follows 

that, if xis 

fig. 4.1 

positive z-axis, then the transformation a 
1 a 

has the form a= ( 0 1 ). We 

shall call this transformation 

a horiscrew (see fig, 4.1 and 
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(I I) ~J ,f ¢. In this case, we have the four invariant points 

+ + + + · f an invariant tetraeder. X = ~~, ¢¢, ~¢ and¢~, which orm 
+ + The real points~~ and¢¢ determine an invariant line a which intersects 

the real sphere, and, since the polar line a remains invariant too, it 

f . . "'+ + ollows that the complex-conJugate points~~ and¢~ of the complex 

sphere are on a. 

If there exists a fifth invariant point P such that Plies not in a plane 

through 3 invariant points, then the transformation a is the identity. 

If the transformation a is unequal to the identity, it follows that P 

lies in one of the 4 planes of the invariant tetraeder. 

fig. 4.2. 

(~) If Plies in a plane of the tetraeder through a, then a is also 

point-wise invariant. The line a is called a rotation-axis_ 

(~) If Plies in a plane of tetraeder through a the polar line of a, 
-then a is point-wise invariant and a rotation about a corresponds to a 

shift along a • 

(c) If there is no invariant fifth point, then the transformation which 

leaves a and a invariant is a product of a rotation and a shift, and we 

have a screw 

We will ca11 the transformation I a horiscrew, the cases Ila and IIb 

being degenerated screws. Thus we have that every Lorentz transformation 

determines a screw in the three-dimensional projective space P3 • 
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1.2. Introduction of a metric 

For the analytic treatment of screws, it is necessary to introduce the 

concepts of distance and angle, and thus to introduce a metric in the 

three-dimensional projective space P3 . We shall use the invariance 

of X•Y = xµy. 
µ 

First, we normalize every point in P 3 in such a way that, for points 
2 

x interior to the unit sphere, x = +1, and for points x exterior to 
2 

the unit sphere, x = -1. 

In this way, the coordinates of a point x are determined within sign 

x <-> + xµ. Now there are two possibilities: 

(A) One may consider the points :xl1 and -xl-l as the same. see Godeaux 

p. 15, but we prefer: 

(B). One may say that the projective space P 3 is twice covered, once 

with points such that x 0 > 0 and once with points such that x 0 < O. 

The advantage of method Bis explained in remark 4.1. 

However, in order to introduce a distance (pq) between two points 

p and q on a line a, it is necessary that p and q be connected by a 

Lorentz transformation. That is to say, there must exist a restricted 

Lorentz transformation which leaves the line a invariant and transforms 

pinto q. Starting first from the point pµ and afterwards from the 

point -pµ, and considering the points p+ and p which are connected 

with pµ and -pµ respectively, it follows that a is covered by at least 

two components P+ and P, each of which is connected. Below, we study 

in which cases the component P+ is connected with P • 

The best tool for this study is first to consider, instead of the 

3-dimensional projective group, the four-dimensional Lorentz group. 

~~~u --~~~---

fig. 4. 3 

We identify the project

ive space P 3 of rays pxµ 

with the 3-dimensional 

space, at infinity, in R4 

with coordinates 
0 1 2 3 

(0, x , x , x , x ) ,see p.108. 

By normalizing the points 
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pxµ such that x 2 = +1 or x 2 -1, we have in fact performed central 
2 2 

projection from the origin O, whereby the surface;x = +1 and x = -1 in 

R4 are mapped onto the interior and exterior of the unit sphere in P3 

respectively. Considering now the interior points of the unit sphere, 
+ 0 - 0 

it follows that the two branches P (p > 0) and P (p < 0) lie on the 

two branches of the hyperboloid x 2 = +1. Clearly, P+ and P are not 

connected and are separated by points of the unit sphere. Hence, we have: 

(1) Every line a which has two points in common with the surface of the 

unit sphere is separated into two segments (interior and exterior 
+ points) and every segment is covered by two separated branches P and 

- + µ - µ P (P is obtained starting from p and P is obtained starting from -p 

We will choose the coordinates xµ of interior points such that 

x 0 > O. As long as we consider the orthochroneous Lorentz group Lt, 

the branch (x0 > 0) is transformed into itself and we need not 

consider the branch (x0 < 0) for interior points. 

(2). A line a which has only one point in common with the surface of 

the unit sphere consists of one segment which is covered by two 

separatedbranches P+ and P which correspond to two straight and 
2 

parallel lines on the hyperboloid x = -1 in R4 . One can only introduce a 

distance (pq) if p and q be on the same branch of a. 

(3) Only in the case that a line has no point in common with the surface 

of the unit sphere does the line consist of one segment and is it covered 

by two aonneated components P + and P • In particular, a 2-plane r, v 

in the projective space which does not intersect the unit sphere is 

covered by points of the sphere S (x2 = -Dwhich lies in the 3-spaceV 

through the origin O. See fig. 4.3. It is significant in this case to 

introduce a distance jp+ q-j between points which lie on different 

branches. Corresponding to these three cases, we shall introduce a 

hyperbolic, parabolic (euclidean) and elliptic metric on the line a. 

Remark 4.1. Considering the sphere S, wenote that in the case (A), 

mentioned a page before, we have identif~ed the points +xµ and -xµ. 

One may prove that the surface of a sphere where opposite points are 
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identified is doubly connected (seep. 44). Hence, the projective 

plane P1 is doubly connected, 

However, by distinquishing the points+ x and -x (case B), we have 

covered the projective plane pV by the simply connected sphere S (the 

universal covering space of pV). In this way, the two-valuedness of 

the angle between two planes in P 3 : ¢ or TI-¢ is replaced by one 

angle between two half-planes. By this procedure we have also covered 

the non orientable projective plane pV by the orientable spheres. In 

Klein p. 16, 152, this is expressed by saying that the one-sided 

projective plane is covered by the two-sided sphere, 

Also, for the introduction of a parabolic measure, it is simpler to 

distinguish .points x and -x, 

(1) !!l}>erbolic measure 

Definition. The (hypeY'bolia) distanaelpql Jf two points p and q inside 

the unit sphere is defined by 

cos i IPql = pµq 
µ 

2 2 
where p q +1 

We observe that, if we take p 

screw h01 , i.e. 

(
cosh tjJ" 

sinh tjJ" 

or cosh IPql = pµ~ 
' 

(4-2) 

0 0 
IPql and p q > 0 . > 0 

(1, o, o, 0), then, by the hyperbo~.ic 

sinh tjJ" \ 

cosh tjJ"} 

1 4-3) 

p (1, o, 0, 0) is transformed into q(cosh tjJ", sinh tjJ", 0, 0) = (cosh tjJ") 

p + sinh tjJ" X; hence p•q = cosh tjJ" and/p•qJ = tjJ", and the transformation 

(4-3) is called a shift along the line p q over a distance tjJ" (see fig. 

4.2 (b)). 

Because p•q is an invariant, it further follows from this example 

that p•q _::. 1 always holds, and thus the distance lpql is always real. 

In the future we will take JPa[ positive. 

Because there are two real intersection points m and n of the line pq with 

the unit sphere which lie at infinity (lpmJ = IPnl = 00), the metric 

defined above is called hyper,boUa ar.d the interior of the sphere 

r,1etrized in this way is called the three-dimensional hypeY'boUa spaae H3 • 
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From the invarianae of IPql it foZZows that the Lorentz group is isomorphia 

with the group of dispZaaements in hyperboZia geometry. 

Considering now planes pµ' qµ which belong to the hyperbolic space tt3 , 

i,e. have points in common with tt3; the intersection line a of pµ and qµ 

may have 0, 1 or 2 real points in common with the unit sphere. In this 

case with 0 points, the distanae between the planes p, q may be defined 
µ µ 

by using the distance on the dual line a, If the intersection a belongs 

to tt3 , we shall introduce the concept of angle between pµ' \• or, what 

is the same, we shall introduce the distance between points pµ, qµ, which 

lie on the dual line a which has no points in common with the unit sphere, 

(2) Elliptic measure, 

Definition. The (eZZiptia) distanae !Pql between two points rJ1 cf on 
-a line a which has no real points in common with the unit sphere is 

defined by 

2 
q = -1 

The definition given above is at the same time a definition of the angle 

between the planes Pµ, qµ through the line a which has two real points 

in common with the unit sphere. 

The minus sign is chosen in order that IPPI = 0, We observe that if we 

take the point pµ(O, 1, 0, 0) (p is the yz-plane) and apply a rotation 
µ 

= (cos 1ji' 

sin 1j.l' 

(4-4) 

then we obtain the point qµ (0, cos 1/.J', sin lj.l', 0), and thus IPql = t'• 

Hence, the transformation (4-4) is a rotation through the angle lj.l' about 

the line a, or a shift over 

We note that the point + p -
- -pµ the point p - lying on 

the distanae 1/.J ' 

pµ lying on the 
-the branch P 

along the 

branch P + 

It follows 

line a. 

is connected to 
+ -

tha t j. p p I = 11 , 

the largest distance between points in elliptic geometry, and the longest 
+ - + arc in elliptic geometry (p ➔ p ➔ p) has length 211. Because there are 

no real points which lie at infinity, this metric is cal'ed eUiptia. 
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(3) Parabolic measure. 

Finally, we suppose that the intersection line of the planes pµ and '\i 
which belong to H3 is a tangentline a of the unit sphere. It follows 

that pµqµ = -1, and hence the angle between pµ and~ is zero. However 

it is possible to introduce a parabolic (euclidean) measure for the 

bundle of planes through a, or, what is the same, a measure on the 

dual line a. In this case, there is only one point which lies at 

infinity, the intersection point of a and a, and the metric is therefore 

called parabolic. See fig. 4.1 and fig. 4.4. 

Definition The distance IPQI between the planes pµ' ~ from which the 

intersection line a is a tangent line of the unit sphere is defined by 

2 
where p 

2 
q 

i£ 

-1 and pµ and qµ belong to the same connected component. 

Consider e.g. tangent lines a and a through the 
0 0 -

North Pole and the point pµ(p, 1, O, p) on a 
2 

(observe that p -1), see fig. 4,4. 

With a horiscrew along the line a, i.e. 

(c is real) 

(4-5) 

0 0 0 0 
the point p(p, 1, O, p) is transformed into q(p + c, 1, O, p + c). 

Hence I pql = c and (4-5) is a "translation" along the line a of a 

distance c. 

Applying an arbitrary horiscrew (~ 1 ) (y complex), one obtains 
0 0 0 l O 

p(p, 1, O, p) ➔ p'(p +Rey, 1, O, p + Rey). It follows that the 

measure lp0 -q0 1 of the points p and q on the tangent line a is invariant 

with respect to rotations and horiscrews (translations). 

Considering now all Lorentz transformations which leave the North Pole 

* invariant, we earlier observed in that they form the group G (N) 

isomorphic with the 2-dimensional similarity group (rotations, translations, 

multiplication with a factor). See section 1, chapter II p. 107, 
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Hence, only the last transformation, i.e. a shift along the z-axis 
0 0 0 $ 0 $ (p, 1, o, p) ➔ (p e, 1, O, p e ) , causes the distance between 

the planes of the bundle a to be multiplied by a factor e$. 

Suppose now that /1. is an arbitrary Lorentz transformation /1.: p + p'; 

then there exists a rotation r such that r : p ➔ p'. It follows that 
-1 -1 . * /1. r : p ➔ p, and thus /1.r E. G (p) and every Lorentz transformation 

is the product of a rotation and a similarity transformation from G"°(p). 

Thus, under the Lorentz group, the distanc·e I pq I between the planes of a 

horibundle a is only multiplied by a factor. 
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1.3. Screws in hyperbolic geometry 

Suppose that a restricted Lorentz transformation is given by 

x' =ax a+ 

We write the unimodular matrix a in the same way as x, i.e. 

(
ao + a3 

a = 1 2 
a + ia 

1 
a 

0 
a 

a
ia32 ) 

, det A 1. 

Every Lorentz transformation a is thus described by the complex 4-
0 + 0 2 ➔2 µ 

vector (a , a). Since (a) - a = 1, the components a can be 

parametrized as follows, if 12 i O or if ; 2 = 0 and;= O 
0 ➔ 

(a, a) ( Cos 1t - . s . n i +k) 
2' i i 2 ' 

+ + 

(4-6) 

where wand k are complex. The pair w, k have determined within sign. If 
➔2 w i O, then k = 1. We shall write 

w = w' + iw" and k = k' + ik", where w'' w", k' and k" are real. 

Theorem 1.1. If a restricted Lorentz transformation is given by the 

2 x 2 u:nimodular matrix a= (cos~, - i sin~ k), then the complex 

vector k = k' + ik" gives the screw axis k (k", k"), *) and the 

complex number w = w' + iw" gives the pitch of the screw; i.e., w' 

is the rotation angle about k and w" is the distance of the shift 
0 + ➔2 + ➔ 

along k. If a= (a ,a) with a = O and a IO then a determines a 

horiacrew along (t ', t 11 ) over a distance 2 It' I -

PROOF. With a Lorentz transformation b, the matrix a transforms as 

follows 

-1 
a + a' = bab • (4-7) 

Thus, a consists of the scalar tra = 2a and laJi bivector (0, a) which 
10 0 

transforms by the representation D ; see for~ula (2-29). Hence, a is 
. 00 10 . 

transformed under the representation D + D . Supposing b = a, then 
+ 

a and the bivector (0, a) belonging to it remain invariant under (4-7). 

➔ + . . . Oi jk 
(k', k~) are the six line coordinates (k , k ) i, j, k 1, 2, 3 

and c:ycl. 



185 

Now the only invariant bivector belonging to the transformation a is the 

screw axis k with line coordinates Ck', k"). The line k has the 

component k = k' + ik" in the representation space of 010 • Thus, it 

follows that ti= (k' + ik")p • We normalize k such that k.2 = +1, k is 
2 ➔2 !l! determined within sign. Because a 0 - a = 1, it follows that p = + i sin 2 • 

We choose the sign of wand k such that ti= - i sin t k . We 

now consider w. Since a 0 cos~ is a scalar, we may transform a by 

(4-7) in order to obtain the meaning of w. 

We distinguish two cases: 
➔ ➔ 

In this case we trans farm in such a way that the axis (a', a") 

goes over into the z-axis, thus 

(O, O, 1), or 

(4-8) 

This transformation is the product of a shift of a distance w" along 

the z-axis in positive direction followed by a rotation w' about the 

z-axis. 
➔ ➔ 

Hence, a is a right-handed screw about the (a', a") axis if W' W" > O. 
➔2 
a = The relatl.·on a➔• 2 - a➔"2 0 0 holds; it follows that the screw 

( +, a+") *) axis a , is a tangent line to the sphere. 

( ) (+, +a") We rotate the matrix a by 4-7 such that a , becomes the line 

(1, O, 0 I O, 1, 0) 11• I through the North Pole (1, O, O, 1) and the 

point X(O, 1, O, O). The lenghts Iii' I and lii"I are invariant with 

respect to rotations, and it follows that the matrix a*= (1, r+") where 

it*= (1, i, 0) Iii' I• Thus, 

* a 

I ➔ . 
This is a horiscrew along the x-axis over a distance 2 a'I. 

If rands are two points on a, then the condition that the line 
2 x =Ar+ µs has one intersection point with the sphere x = o, is 

that (r.s) 2 - r 2 s 2 = o. One may also verify that i:i• 2 - Ei"2 is equal 

to c~ s) 2 - r 2 s 2 by substituting!· = r 0 ; - s 0 ; and Ei" =; x; and 
. 0 0 2 0 0 2 

adding the term (r s) - (r s) • Hence, we obtain the condition 
➔ ,2 ➔ .. 2 
a - a = O for a to be a tangent line. 
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Remark 4.2. Concerning reflections. 

Because$ is a scalar, it follows that the matrices a fall into two 

disjunct groups, viz. $'·$'' > O (right-handed screws) and$'·$"< O 

(left-hand screws). 

With a reflection, the matrix a which is transformed by the represent-
00 • 10 - -1 ( 0 1) ation D + D goes over into the matrix cac , c = _1 0 see (1-37b), 

which is transiormed by 0°0 + 0°1 • 

The number$ is transformed into$, and one sees that with reflection 

the families of left-handed and right-handed screws are interchanged. 

Bivectors. A plane xµ = arµ + amµ in a4 corresponds with a line in 

the projective space P3 • After normalisation (x2 = + 1), the vectors xµ 

in the hyperbolic space H3 are no longer· homogeneous and neither are 

the line coordinates a:v• In a4 the non-homogeneous aµv is called a 

bivector, and in this sub-section we shall consider the corresponding 

·object in the hyperbolic space H3 • 

We consider all Lorentz transformations A in a4 which leave the plane 

aµv invariant. Then the vectors rand m, in a, are transformed into 

r' and m', in a. Hence the bivector aµv is t'ransformed into aµ'v' = oaµv. 

Because ½ a a µv = t 112 - t 12is an invariant (see formula (2-49)), we 
µv 

have that p = + 1 and we may take p = +1 as long as we consider 

transformations which do not invert the screw sense in a (the order of 

the rays). 

Hence, it follows that we can consider the bivector aµv as the class 

of all (r', m') in the plane a which are generated from the pair 

(r, m) by a Lorentz transformation in the plane a. In the hyperbolic 

space H3 we have accordingly 

Theorem 1.2. One may consider the bivector aµv as the line vector 

(r,m) which is the class of aU (r', m') generated from the pair (r, m) 

by a shift along the line a. 

Instead of using the coordinates ct•, ir11 ) (ii' - aOi 't11 _ ajk where 

i, j, k = 1, 2, 3) of the bivector [r, m], we perform a coordinate 
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transformation in the 6-dimensional space of bivectors. Then [r, m] is 
-+ .... -+ -+ -+ 4- -+ -+ 

given by (a, a) where a = a' + ia'' and a = a' - ia". 

Sometimes we shall denote the component; of [r, m] which belongs to the 

10 [- ]+ .... [ ] representation space of D by r, m and the component a of r, m 
01 [ 7 -which belongs to the representation space of D by r, mJ • 

Suppose two interior points rands on the line a are given. We wish to 

construct the Lorentz transformation 
-+ 

= (a0 , a)= (cosh 
ljl". ljl"-+ . 
2 , sinh 2 k) which 

transforms r into s by a shift along a, 

It follows from the foregoing theorem that 

lrsl = ljl", 

the distance between rands. We determine a 

point in the middle of rands, thus 

!I/' cosh 2 = r•m = a0 

Further, if aµv 
-+ 

it follows that the component a of the transformation is equal to 
-+ -+ 

substituting;, 0 -+ 0 -+ tit -+ -+ (a'+ia")p; after = r m - m r and r X m and 

adding the term ( 0 0)2 ( 0 0)2 + r m - r m , we have that 

-+2 [ 2 2 2] 2 a = (r,m) - rm p -- ( 2 1) 2 ao - P , 

and thus p 

theorem, 

+1. We shall write t = [r, m]+ and we have the following 

Theorem 1,3. If rands are two interior points on the line a, and m 

is the middle of r and s, then 

a(a0, ;) = (r,m, [r, mt) (4-9) 

is a shift along a which transforms r into s. 

Analogous formulae may be obtained if rands are exterior points. Hence 

we may associate every bivector [r, m] with a shift r -+ s along the line 

r m • 
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1,4, Reflections in hyperbolic geometry 

Every linear transformation in Rn which leaves a quadratic norm invariant 

can be represented by a product of reflections. Cartan has developed a 

method for describing such transformations. An application of this method 

to the line space P5 is given in section 2 of this chapter. Next we give 

an application tp P3 • 

Let us map every vector xµ in R4 (pxµ is a point in P3 ) onto a 4 x 4 

matrix X (we use small letters x to denote 2 x 2 matrices) 

(4-10) 

i.e., xµ ➔ X = (~ ~) , where x = (x~ + x\ x: - i;2 ) 

X + ix X - X 

and the 2 x 2 matrix xis constructed from x by space reflection, 

. ( 0 ) ( 0 ) 1,e, X I X ➔ X, -x • 

The fundamental property of Xis 

X2 = xµx = (x0)2 _ (x2)2 _ (x2)2 _ (x3)2. 
µ 

(4-11) 

(It is understood that multiplication by the unit matrix is carried 

out on the right sideJ.This property has the consequence that for the 

inner product of two vectors one may write 

In order to prove this, we observe that the map (4-10) implies 

!fence, 

AXµ+ Kyµ ➔ AX+ KY 

(Axµ+ K:f) 2 = (AX+KY) 2 

(4-12) 

By comparing the terms on the left- and right-hand sides we obtain 

(4-12). 

The images of the "orthonormal" vector e 
µ 

e (1, o, o, 0) 2 +1 = eo 0 

(0, 1, o, 0) 2 -1 etc,, el = el ' ... 
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are the Dirac matrices y • From (4-12), we obtain the well-known µ 
orthonormality rules 

-1 
-1 : ) . 

-1 

(4-13) 

They-matrices are called Clifford-nwnbers and form a Clifford algebra. 

In this special case, whereµ, v = o, ... , 3 one also speaks of a 

Dirao algebra, Consider the 3-plane a, where aµ is a space-like unit 
µ 

vector, a aµ 
µ -1. A reflection in the 3-plane a has the form 

µ 

x'µ = xµ - 2(xµa )aµ (a 2 = -1) 
µ 

(see fig. 4.6). Translating this 

equation by using the 4 x 4 

matrices, we obtain 

X' = -AXA, where A= 
2 

(A =-1). 

fig, 4.6 

(4-14) 

A reflection in R4 corresponds to 

a point-plane reflection in P3 • 

The point a= paµ and all points c= 

pcµ in the 2-plane pa remain 
µ 

invariant. Points X= pxµ on the line (a c) are transformed into x' on 

(a c) such that the points a, c and x, x' form a harmonic sequence, 

The product of an even number of reflections is a restricted Lorentz 

transformation, i.e. 

-1 
X' = TXT , where T BA (-) (ba -1 :1 ) 

0 b a 

The 2 x 2 matrices x transform by 

-1 -1 
x' = (ba ) x (a b) • 

If aµ and bµ are real, than the 2 x 2 matrices a and bare hermitian 

and one may write 

x' (4-15) 

➔ 

Analog~usly, in R3 we map every vector x onto the matrix 

(
X l:_1-ix2) 

x = 1 . 21 3 • The base vectors (1, O, 0), ••• etc. are mapped 
x +1x {-x 

onto the Pauli-matrices o1 , o2 , o3 with orthonormality rules 

½<a.a + a.a.) 61 .. 1 .• 
l .1 1 l 
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For the inner product rµs, we have obtained formula (4-12). Next we 
u 

consider the exterior product 

( µ' \) 

or, in reduced form, 

[rs] 
➔ -+ 

C[rst, [rs]-), - (p, p) = 

see the notation convention on p. 187. 

One may verify that the matrix 

P = ½(RS - SR) 

has the form 

P -- (-op Po) , where p 

or p 

Hence, we write 

½(RS - SR) = -[rs] 

(it is understood that the components (pj, 

given with respect to the basis I.= (crj 0 ) 
J O 0 

,k) p on 

' ik = 

Applying a Lorentz transformation, it follows that 

P' = TPT-l 

o, ... 3) 

(4-16) 

(4-17) 

(4-18) 

are 

j ,k, 
and one notes again that p Ij and p Ik form two invariant subspaces. 

fig. 4,7 

A Lorentz transformation is the product of 4 

reflections, This fact can be most easily 

analytically treated by the method of Cartan 

We shall show this as an application of the 

foregoing, 
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A shift A along the line a which transforms r into scan be constructed 

by a reflection in the point m, i,e, 

m: r ➔ s 

However, this reflection reverses the order of points on a, Hence, by 

performing a reflection in r first and the reflection in m afterwards 

we obtain the shift A along a, 

Applying the reflection formula (4-14), we get 

X' = MRXRM, 

Thus, the 4 x 4 transformation matrix A can be written as, 

A= MR=½ (MR+ RM)+ !(MR - RM) 

Using (4-12) and (4-18) for the inner and outer product, we obtain 

A = (r•m) + [r m]. 

Thus we have the 2 x 2 matrices x such that 

+ x' = axa, where a= 

a 

cf, formula (4-9), 

(r ,m) + 
11!" cosh 2 

[r, m] + 
11!" ➔ + sinh 2 k 

In an analogous way, a shift a along the dual line a may be calculated, 

and we obtain the two transformations 

and 

iljl" . ~" ➔ a= (cos 2 , - i sin 2 k) 

ljl_' 
a= (cos 2 - i 

11!' + sin 2 k) 

An arbitrary Lorentz transformation is obtained by the product aa 

thus by performing 4 reflections 

- 1jl 
aa = (cos 2 

,,, ➔ 
- i sin ~ k), where 1jl = 1jl' + iljl" 

The multiplication aa can be most easily performed by using the relation 

(2-19b), 
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2. Null correlations 

The space of anti symmetric tensors aµv is spanned by the 6 infinitesimal 

operators of the Lorentz group. 

In chapter !,section 7.1. we have observed that under the Lie product 

~. B] these infinitesimal operators form a 6-dimensional algebra. In 

this section we take the ordinary matrix product AB and study the 

properties of the algebra generated by the infinitesimal operators 

under this product, In order to do this we note that the antisymmetric 

tensor aµv appears in projective geometry as a null correlation, i.e. 

a (1-1) map of points onto planes. 

By an application of the method of Cartan to the 6-dimensional space R6 
of anti-symmetric tensors, we shall show that this method is indispensable 

for a uniform and compact description of properties of this space. 

In particular, we apply this method to thq study of the so-called 

configuration of Kummer. It follows that thie 6 "orthogonal" anti

symmetric matrices (infinitesimal operators of the Lorentz group), which 

span the R6 leave this configuration invariant and form a 32-dimensional 

Clifford algebra. 
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' 2.1. Null correlations, introduction. 

All straight lines in the three-dimensional space P3 can be described 

by the 6 line coordinates pµv, or 

i' i" i• Oi i" 'k 
(p , p ), where p = p and p = pJ with i, j, k = 1, 2, 3, 

which satisfy to the relation 

2 1' 1" 2' 2" 3' 3" 
r : (p) = P P + P P + P P o. (4-19) 

Hence, the study of all lines in P3 (or all bivectors in R4) may be 

reduced to the study of the quadratic surfacer in P5 (in R6). (See 

formula (2-44) and the appendix to chapter II). 

With the aid of formula (4-19) we can introduce an invariant inner 
+ + + + 

product (p, q) of two vectors p(p', p") and q(q', q") in R6 : 

(p, q) = ½ Pµv qµv = P, q" + p" q, . (4-20) 

It follows that pµv are point coordinates and piiv are plane coordinates 
µv µ 

of the plane orthogonal to the point p • Analogously to formula (4-10), 

we map every vector 
µv 

p onto an 8 x 8 matrix P· I i.e. 

µv 
+p (_:~ P:v) (4-21) p = 

Besides the coordinates pvand qv for points and planes in P3 , we 

introduce also the 8-dimensional vector r(pv, q) • The incidence of the 
V 

point pv or plane q with the line pµv is given by p_pv = 0 or 
µv v µv 

p qv = 0 respectively (formula 2-47, 48). Hence, we obtain the formula 

(4-22) 
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In components we have 

1' 2' 3' 0 
p p p p 

1' 3" 2" 1 
-p p -p p 

2' 3" 1" 2 
-p -p p p 

3' 2" 1" 3 
0 (4-23) -p p -p p = 

Pr 
1" 2" 3" 

= p -p -p qo 

1" 3' 2' 
p -p p ql 

2" 3' 1' 
p p -p q2 

3" 2' 1' 
p -p p q3 

1' 
ql q2 q3 p 

2' 
-qo -q3 q2 p 

3' 
-qo q3 -ql p 

1" 
or Rp 0 (4-24) = -qo -q2 ql p = 

-p' 2 3 2" 
-p -p p 

3 2 0 3" 
p -p p p 

3 1 0 
-p p p 

2 1 0 
p -p p 

The fundamental property of the matrix Pis that 

(It is understood that on the right hand side multiplication with the 

unit matrix is carried out). 

Analogously to (4-12), we may write the inner product (p, q) using 

the 8 x 8 matrices in the form 
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(p, q) = i (PQ + QP). (4-25) 

Remark 4.3. If r 
\I 

= (p, q) is an arbitrary vector not equal to the 

zero vector, then the rank of the matrix R is three; thus there are 

three independent solutions pµv for which Pr= 0 and which span a 

two-dimensional plane (2-plane) in P5, or, what is the same thing, it 

follows that the vector r(p", <Iv) describes a 3-plane in a6 • 
2 2 

Furthermore Pr= O;thus (p) = O, which implies that the system (4-24) 

describes a family of planes which lie on r. 
Hence, we see that the quadratic cone r in the even dimensional space 

\I \I a6 is covered by two systems of 3-planes viz. (p, 0) and (O, q ). 

This is well-known in projective geometry and is in analogy with four

dimensional spinor calculus, 
a In R4, the four-simensional spinors (w, $a) determine two families of 

isotropic planes on the light cone. 

If we restrict ourselves top"= q", then the equation (4-24) is 

equivalent to the equations of Maxwell, formula (3-24a, b). 

By considering reflections in a6 and applying formula (4-14) we obtain 

the result that a reflection with respect to the 5-plane a has the µv 
form 

2 P' =-APA, where A = 1 (4-26) 

In order that the relation Pr= 0 remains invariant, it follows that 

r is transformed as 

r' = Ar 

In components, we obtain 

P 'µ = aµ"q and q' a p" µ=-µv. 
\I This transformation maps points p in P3 onto planes q~ and is there 

fore called a oo?Tel,ation. We have 

a_p vpµ = 0 
µv 

for every p, because aµv is anti-symmetric. Thus, every point lies in 
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its correlated plane and a_ is called a null correlation µv 
(Supposing that a is symmetric, then a pupv = O determines a 

µv µv 
quadratic surface in P3 and one says that a determines a pole correlation 

µV 
or polarity). 

A ray in R6 corresponds with a point in P 5 and a reflection in R6 

corresponds with a point-plane reflection (or central-involutoric 

collineation) in P 5 • 

Hence we have. 

Theorem 2.1. A null correlation p~ in P3 corresponds, in the 5-dimensional 

line space, to a central-involutoric collineation which leave the 

point aµv and the plane ajni invariant. 

For a more synthetic proof, see Barran p. 391. 
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2.2. The Configuration of Kummer. 

We now consider the fundamental form 

where the x are arbitrary complex numbers. The corresponding group 
µ 

is the 4-dimensional complex orthogonal group, which is isomorphic to 

the complex Lorentz group LC • 

The 6-dimensional space of anti-symmetric tensors pµvCp', p") reduces 

now with respect to the group LC into two subspaces of selfdual tensors 

ct, t> and anti-selfdual tensors Cq, -q) we shall write 

➔ ➔ i ➔ ➔ i 
Cp, p) = p Bi and Cq, -q) = q B~ C-i), C4-27) 

where Bi, Bi, Ci= 1,2,3) are six anti-symmetric matrices 

B3 = Cl,o,ol 1,0,0) with norm B: = +1 

B1 , = co,o,ol -1, o, O) i with norm B:, = +1 

•••••• etc. 

Because the matrices Bare Canti-)selfdual, it follows that the 6 

vectors Bi, Bi, are mapped onto the 8 x 8 matrices 

B =( O Bl) 1 -B o 
1 

, ••• etc. C4-28) 

The orthonormality relations take the form 

Bi:- s + s s = 2 a , Cs , n = 1, 2, 3, 1 ' , 2 ' , 3 ' > , ., n rr. s sn C4-29) 

from which we derive 

C4-30) 
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. 
In condensed form, we get 

and 

(cf. Barut p. 98). 

The 13i and 13i, genera_te a group of 64 elements, namely 

e 

131, 132, 133, 1311• 132'' 1331 

131132, ••• ,132,133' 

131132133, ••• ,131,132,1331 

1311321331311• ••• ,133131113211331· 

1311321331311132 I 7 •• • I 132133131I13211331 

131132133131113211331 = -1 

In the projective space P3, two matrices 13 and pl3 

transformation. Thus, we can identify the elements 

(15) with the second row (15). For instance, 

where we have used (4-30). 

determine 

from the 

1 collin 

6 corral 

15 collin 

20 correlt 

15 collin 

6 correl 

1 collin 
64 

the same 

first row 

There remains a projeative group of 32 elements, namely the first 32 
*) elements of the above scheme • 

If we subject a point Pin the projective space P3 to this group of 

32 elements, we get 1 + 15 = 16 points and 6 + 10 = 16 planes. Every 

point lies in the planes to P correlated, and 16 points lie in every 

plane. This configurates 166 is known as the aonfiguration of Kummer 

and we have 

*) One may also identify the correlation 13 31 (point ➔ plane) with the 

collineation (point ➔ point) 13 11 13 21 = -13 31 , both are described by the 

same matrix (within a numerical factor). There remains a group of 16 

elements generated by the Dirac matrices, i.e. 
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Theorem 2.2. The six orthonormal vectors Si, Si' which span the 

irreducible spaces of anti-syrrmetric tensors (p, p) and (q, -q) 
respectively form a projective group of 32 elements with relations 

(4-30), which leaves invariant the configuration of Kurrmer. 
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2.3. Geometrical analysis of the Kummer group. 

The 6 elements Si; (~ = 1,21 ... 3') 

A null correlation transforms a point x into a plane x', and the line 

which joins two points x and y (the ray xy) is transformed by a null 

correlation into the intersection line of the planes x' and y' 

(the a.:x:is x'y'). 

In particular, if an arbitrary y lies in the plane 

x', i.e. 

a xµyv = O, 
p'tl 

fig. 4.8 then it follows that the point x lies in the plane y', 

thus the ray xy coincides with the axis x'y' and the line 

xy remains invariant under the null correlation a 
jj'v 

Definition. All lines in P3 which are invariant under a given null 

correlation form a linear complex. 

It follows from the above considerations that a linear complex is 

formed by all lines through the points x of P3 which lie in the plane 

x' correlated to x. 

In the line space P5 , the null correlations 

plane reflection. Because the points of the 

a corresponds to a point-
\J'iJ 

plane a remain invariant, 
jj'ii 

it follows that the intersection points of the plane a with the 
jj'v 

quadratic surfacer (a __ aµv = 0) are the image points of the lines 
µv 

of the linear complex a. 

Hence, the equation of a linear complex is given by 

and p-- pµv = O. 
µv 

Remark 4.4. On the relation between lj_near complexes and Clifford parallels. 

fig. 4. 9 

We make the collineation aµ (point ➔ point) from' 
\) 

the null correlation a= a by raising with the 
µv 

metric tensor g one index, 
µ J 

Supposing that the null correlation a has the form 
➔ ➔ µ\/ 

ac:(a, e: a)(e: = ! 1), then, be,.oause a is anti-symmetric 

and orthogonal, we have 
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-1 
(ga) = -(ga). 

Thus, aµ is involutoric. It follows that if 
V 

px'µ = aµvxv 

then pxµ = aµ x'v 
V 

and all lines xx' are invariant under the collineation aµ and thus 
V 

they are Clifford parallel (see also Barrau p. 20). 

In order to visualize the linear complex a and the corresponding µv 
Clifford parallels, we apply a coordinate transformation in such a way 

➔ 
that the correlation a (a,E a) transforms the point T(l, o, o, 0) into µv 
the plane TXY(O, O, o, 1), and the point Z(O, O, O, 1) into the plane 

ZXY(l, O, o, O). TZ is called the a.xis of the complex (Klein, Vorl. 

H~here G., p. 63). 
➔ ➔ 

The tensor a(a,E a) becomes 

u 
0 0 1 

a = 0 E 0 (E = + 1). 
µv 

-E 0 0 

0 0 0 

In particular, the points x(l, x, o, 0) of the x-axis are transformed 

by the collineation aµ into points x'(O, O, -Ex, 1) on the ZY-axis. 
V 

In figure 4.10., the Clifford parallels xx' are drawn for E = +1, -1. 

The planes (x ), through the point x and orthogonal to the line xx', µ 
which contain all lines of the linear complex are omitted. 

Thus, the reduction of the space of anti-symmetric tensors into matrices 
➔ ➔ 

of type (a,E a), E = + 1, can also be interpreted as the reduction of 

linear complexes into right- and left-handed systems of planes. 

fig. 4.10 

7 

)( 

E = 1 right-handed E = -1 left handed 
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The 15 elements B Bn~n = 1,2, ••• 3') 

The product ab of two null correlations a and b leaves all lines which 

belong to the intersection of the linear complexes a and b invariant. 

Definition. The intersection of two linea:r> complexes is called a linear 
congruence. 

Theorem 2.7. A linear congruence consists of all lines which intersect 
two fixed lines p and q (Klein p. 87). 

PROOF. The null correlations a and b determine two point-plane 
IT'iY µv iN 

reflections in P 5 with center a = a and b = If V • The product ab of 

the two point-plane reflections leaves the line at invariant and in 

particular the intersection points p and q of ab with the fundamental 

form r. Thus in the 3-dimensional space P3 , there are two lines pµv and 

µv h" h . . . f q w ic remain invariant under the trans ormation ab. Considering now 

all lines m which remain invariant under ab and thus belong to the linear 

complexes a.-m and b_, i.e. 
µV µv 

and 

(a, m) = 0 

(b, m) = 0 

a= ;\p + µq 

b PP + crq 

*) 
it follows that (p, m) = (q, m) = 0 • Hence, every line m invariant 

under ab cuts p and q, and we have obtained the intersection of the 

two linear complexes a and b 
µv µv 

We note that the intersection points P and Q of the line m with p and q 

respectively remain invariant and thus the lines p and q remain point

wise invariant. 

Further, we notice that through every point A not on p and q, there 

exists exactly one line which belongs to the congruence ab. 

Supposing now that a and bare orthogonal, i.e. (a, b) = o, we have: 

Theorem 2.4. The product of two orthogonal null correlations is a 

reflection in two lines. 

(p, m) = O is the condition that the lines p, and m lie in one plane. 

Therefore, we note that if u and v are two points which lie on p, and 

wand z are two points on m, then det (u, v, w, z) = o. If we write 

this determinant as the product of 2 x 2 sub determinants 
µv µ v v µ µv µ v v µ 

p = u v -u v and m = w z· - w z, we obtain the condition 

(p, m) = p-- mµv = o. µv 
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In the 5-dimensional space P5 , the relation 

(a, b) 0 implies that b lies in the polar plane 

of a and conversely that a lies in the polar plane 

of b. The plane-point reflection b leaves the 

point a= aµv and the plane a....-r invariant; hence, 
-1 2 2 2 ~v 

a= bab and (ab) =ab 1. 

Because (ab) is involutoric, it follows that if 

a point A is transformed into A' and P and Qare 

the invariant points on m = M', then A, A' and 

P, Q form a harmonic sequence and the transformation 

A ➔ A' is a reflection on m. 

Hence, we see that the row of the 15 elements s1s2 , 

of reflection in two lines. 

The 10 elements B~B B 
" n r;; 

<~,n. ¼ = 1,2, ••• 3'). 

The product of three correlations is again a correlation. Using the 

anti-symmetry of the matrices Bi , Bi, , we obtain, for instance, 

and, applying the relations (4-30), we have 

T 
(818281,) = 818281' 

It follows that the row (20) consists of 10 symmetric correlations 

(pole correlations) which determine 10 quadratic surfaces. F-rom the 

foregoing, it follows that the product of three null correlations 

a, b, cleaves the intersection of the linear complexes a, b, c invariant. 

One can show that this intersection is given by one system of describing 

lines of a quadratic surface. (F. Klein, Vorl. htlh. Geom. p. 88). 

To do so, we observe that the product abc of the 3 points-plane reflect

ions leaves the plane ).. a + µ b + v c invariant and, in particular, the 

intersection y of this plane with r • 

Taking three solutions p1 , p2 and p3 on y, it follows that there are 

three lines p1 , p2 , p3 in the projective space which remain invariant 

under abc (and every line ).. . p. t!:.. y ) • 
1 1 
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From the foregoing theory, it follows that every line on which belongs 

to the linear complexes a, band c intersects p1 , p 2 and p 3 • If A is a 

fig. 4.12 

point on p 3 , then mis the intersection 

line of the planes Ap1 and Ap2 • Since the 

two bundles Ap1 and Ap2 are projectively 

correlated, it follows that their intersection 

lines are the describing lines of a quadratic 

surface. 
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