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1. INTRODUCTION
1.1. GENERAL

This monograph is devoted to the study of recursive procedures. After
clarification of some of their mathematical properties, a proof technigue
is developed for showing equivalence of programs containing recursive
procedures, and a number of properties of this technique are derived.

Our study originated with some attempts to develop a generalization
of McCarthy's rule of recursion induction [23], which rule can be summa-
rized as follows: If one has two functions g and h, which both satisfy
the defining equation of a recursively defined function f, then g{x) = h(x)
for all those x, for which f(x) is defined. E.g., if one has for f the

recursive definition

fx) &= (x=0>1,x¢F(x~1))

"e=" gtands for "is recursively defined by", and where in the right

where
hand side we have used McCarthy's notation for conditional expressions

[23], and if one has established by some means that g and h satisfy

(x=0+1, xxg(x-1))
(x=071, xxn(x-1))

gl(x)
hix)

then one concludes that g(x) = h(x) for all x for which f(x) is defined.
At first glance one might consider this a rather obvious rule. Howe
ever, when one tries to justify it mathematically, some problems arise.
In particular one is confronted with the question as to what is the pre=
cise status of the "¢=—" relationship, and what is the connection between
the "¢==" and "=" relations. Note that it is certainly not the case that
"e—" and "=" are the same relations. E.g., each function f satisfies
f(x) = £(x), but it is clearly not true that for each f, we have
£(x) & f(x), since if f were defined recursively in this way, then f

would be undefined for all x.



We were led to the consideration of these problems when we tried to
apply recursion induction to two problems: An investigation of Yanov's
axiomatization of the equivalence of his "logical schemes of algorithms”
[39], and an axiomatic treatment of the equivalence of while statements.
Although we obtained some partial results, our framework remained unsatis-—
factory, precisely because of this problem sbout the meaning of "¢&=". The
solution to this was provided by Scott, who both showed what mathematical
objects correspond to recursive procedures, and how to exploit this
insight in the developmeﬁt of a formal system in which a proof rule which
generalizes recursion induction plays a central role.

We can therefore summarize the contents of our paper as: The descrip-
tion, application and investigation of Scott's mathematical theory of re-
cursive procedures. (This theory was described for the first time in the
unpublished notes [32].)

Scott's approach is based on the following central idea: Recursive
procedures are minimal fixed points of monotonic and continuous transfor-
mations. This way of looking at procedures is explained in section 2. In
this section we shall take as a starting point an ALGOL-like simple pro-
gramming languasge, and we use this as a tool to clarify what the mathe
matical properties of recursive procedures are. (The functional notation
we used in this introduction will be used only occasionally in the sequel,
since the imperative notation of section 2 provides a better transition
to the formel system to be developed in section 3.)

The notion of minimal fixed point apparently presupposes some partial
ordering, and the use of this ordering, together with the notions of
monotonicity and continuity, is essential to Scott's theory.

These notions have in fact a much wider scope in the theory of com-
putation than just the theory of procedures, as Scott has shown in a num-—
ber of subsequent papers. For a general treatment see [34], for other
applications [35] and [36].

Once it had been clarified what procedures "really are”, it became
possible to develop a formal system based on this insight, namely Scott's
W=calculus, which we describe in section 3. The core of this formal system

is the y~-induction rule, which is a generalization of recursion induction.



In section 4, we apply the u-calculus to a large number of examples,
partly taken from various places in the literature, partly new. We hope
to demonstrate in this section that the u-calculus can be used to prove
results taken from rather divergent sources (e.g. various properties of
while statements, McCarthy's 91~function) and, thus, to convince the
reader of its general scope.

The main result of our paper follows in sections 5 and 6. We prove
the completeness of the u~calculus for a restricted type of procedures,
viz. the "regular procedures", which can be considered as corresponding
to flow diagrams. The prbof is given in two parts. In section 5, we intro-
duce a normal form for this restricted class of procedures, and prove that
each regular procedure is equivalent to a regular procedure in normal
form. In section 6 we show that two regular procedures, which may be ag-
sumed to be in normal form by section 5, can be proved to be equivalent
in the y-calculus if and only if they are semantically equivalent (i.e.,
they denote the same functions under all interpretations).

Section T contains some conclusions. We mention some ways in which
the p«calculus has already been extended, and areas which may be of
interest for future investigation.

We have tried to make our paper more or less self contained. However,
we recommend the reader who is not familiar with the problem area of the
mathematical theory of computation to read first the classical papers by

McCarthy [22,23].
1.2. RELATED WORK

Recursion induction was introduced by McCarthy [23]1. It has been
applied and generalized in a number of papers, e.g. Cooper [4,5], and
Kaplan [1L4]. A veriant is Burstall's structural induction [3]. Some steps
towards Scott's theory were made independently by Morris [25,261.

The relationship between procedures and fixed points (expressed via
Curry's Y-operator) has been more or less well known for some time. See
e.g. Landin [16] and Strachey [37]. However, the minimality of the fixed

points was not exploited there. Minimelity considerations, including the



application of Knaster's result (see section 2) were introduced indepen-
dently by Park [27] and Bekié [1]; Bekic also obtained the simultaneous
versus iterated fixed point property, stated in section 2. The Y-operator
in relation to minimsl fixed points is discussed in Scott [35]; for a
comment see Park [28].

For the results of section 5 and 6 compare Yanov [39], Kaplan [13]
and Ito [12], who uses Salomaa's complete axiom system for regular events
[301. )

It may be of interest to clarify the relation between our normal form
and the one defined by Engeler [9].

Another attempt at an axiomatic treatment of recursive procedures is
given in Hoare [11], who uses "pre-Scott" notions in his statement of the
induetion rule.

A rather different approach is taken by a number of authors who base
themselves on the predicate calculus. This work originated with Floyd [{10],
and was developed further by Manna, e.g. [17,18] and Cooper [6,7]. See
also the "relational theory" in Scott and de Bakker [32].

For references to some extensions of the p-calculus see section T.



2. RECURSIVE PROCEDURES

In section 3, we shall present a formalism for the treatment of re-
cursive procedures: Scott's u-calculus. In this section, we give an in=-
tuitive explanation of some of the notions to be used later, and derive
some of their properties.

We shall be concerned with programs in a simple language. This lan-
guage compfises first of all a class of elementary statements, the struc-—
ture of which is not analyzed in the present context. Next, it has three
constructions to build up more complex statements from simpler ones,
starting with the elementary statements. Two of these are straightforward:
The composttion 81;82 of two statements S1 and 82, and the congtruction
of the conditional statement (p+S1,82), where p is some boolean expression.
(Throughout the paper, we shall use McCarthy's notation [23] for condi-
tionals, in which (p»8,,8,) is short for if p then S, else §,-) The third
construction is that of, possibly recursive, procedures which are intro-

duced by means of declarations of the form

(1) procedure P; T(P)

where the procedure body T(P) is some statement which may contain one or
more occurrences of P.

As an instance of (1), we have

(2) procedure P; (p+A1;P,A2)

where A1, A2 are elementary statements.
The reader who is more used to a functional notation may read this

as the declaration of the function P(o) by means of the definition
2(0) &= (p(0)o2(A,(0)), A, (0))

where "¢=" stands for "is recursively defined by". This notation empha-
sizes the functional aspect of statements: A statement S may be considered
as prescribing a mapping from a state ¢ of the computation to a new state

o', or, in functional notation, S(o) = ¢'. For our purposes, we are not



interested in the structure of the state. If one wishes to be more specif-
iec, one may think of the state as consisting of all variables manipulated
by the program. This is the approach taken by McCarthy in [22] with his
state vectors: E.g., let the elementary statement A be the assignment
statement x := x+1, let 0 be the state vector, the x-th component of which
has the value O, say. Then, the new state vector o' = A(o) is equal to o
in all its components, except for the x~th component which now has the
value 1. However, such articulation of the state vector is not considered
in our paper. All we need is the fact that each statement S determines
some functional relationship between o and o'.

The functional approach to statements gives us a way of expressing
equivalence between two statements: S1 and 82 are equivalent if and only
if the functions associated with them are the same, i.e., iff
51(0) = 82(“)’ for all o.

The next step is the realization of the fact that the function deterw
mined by some S may be partial, i.e., it may be undefined for certain
arguments. E.g., the statement L: goto L (using an example outside our
language) has an undefined effect for all o, i.e., there is no ¢' such
that (L:gotol) (o) = o'. Also, the statement (p>L:gotol,A) is undefined
for all those o for which p(o) happens to be true.

Once one has observed this, it becomes natural to introduce, besides

"=" of equivalence between statements, a second relationship

the relation
of tnelusion, S

fined, S

i € 829 meaning that for all those o for which 84 is dew

> is also defined, and yields the same answer. Formally,

S5, €8

1 iff [81(0) = 0'22982(0) = o] .

2

By the introduction of the notion of graph of a function, we can give

"e" pelation:

another formulation of the
The graph of the function S is the set of all pairs (o,0') such that

o' = 5(0). Note that

a. The graph of L:gotoL is the empty set.

b. The graph of S1;S2 is the set of all pairs (o,0') such that there

exists 0 with 51(0) = ¢ and 82(3) = gf,



c¢. The graph of (p+81,82) is the set of all (0,0') such that either

(a) p(o) is true, and ST(O) = g'

or

(8) plo) is false, and 82(0) =gt,

Thus, S1 = 82 can be phrased as: The graph of S, is included in the graph
of 82.
"C"

As examples of 'S we have:

1

a. L:gotol. ¢ 8 , for each S;
b. (p*L:i:gotoL,S) ¢ S, for each S.

It is clear that "c" determines a partial ordering between statements,

which means in particular that "c" is reflexive and transitive, and that

S, ¢ 8

1 and 82 = S1 together imply S, = S

2 1 2°

Wt "

and "<" relations between statements

The introduction of the
gives us the tools to discuss procedures in a proper framework., Consider

again the procedure declaration

(3) procedure P; T(P) .

According to the usual meaning of procedure declarations, one may
replace each call of P, as declared by (3), in the program by its body
T(P); i.e., one uses the fact that

(k) P = T(P) .

For our purposes, it is convenient to consider T as a transformation
of statements to statements, or, in other words, as a functional, which
has functions as arguments and values: For each statement S, T(8) yields
another statement S'. E.g., if we take the instance of T in (2), then
T(8) = (p+A1;S,A2) = 8%, In this terminology, we can now formulate (3)
as: P is a fimed point of the transformation T. This fixed point property
is the first basic fact to be noted about procedures. That this is not
the whole story will be explained by another example, where for the trans—

formation T we have taken the identity transformation:



(5) procedure P ;P .

Of course, it is again true that
(6) P =P

i.e., (k) is satisfied. However, we expect more from (5): If P, is called
in the program, it gives the infinite loop, i.e., it has the same effect
as Ligotol, say. Let us give this infinite loop a name: Q. Then, we may
say thaet (6) is not all we want from (5): we want that P1 = ), Now observe
that all statements are fixed points of the identity transformation

(8=S holds for all S), but that Q is distinguished among all those statew
ments by being the minimal statement satisfying (6), where minimal is
meant with respect to the partial ordering "¢". This follows from Q ¢ S
for all S. Thus, we have now some evidence that a procedure P, as declared
by (3) in the general case, has to be not only a fized point of T, but

even its minimal fiwxed point. Some more evidence is obtained by considering

(1) procedure P, (p+P2,A) .

Again, we have a whole class of statements satisfying the functional

equation
P2 = (P‘*PZ 9A)

viz., all statements of the form (p+S,A), for arbitrary S. This follows
from the equivalence of (p»>S,A) and (p>(p>S,A),A), which can easily be
seen to hold as a result of the properties of conditional statements.
Again, we choose the minimal element in this class: the statement
(p*Q,4), which satisfies (p*Q,A) ¢ (p>S,A), for all S. This choice corre=-
spond to our idea that (7) declares a procedure which loops when called
at a moment when the state o is such that p(o) is true.

These two examples may illustrate the general argument for the minie
mal fixed point approach: Consider again the procedure P declared by (3).
By (4), the graph of P must be the same as the graph of T(P). However,

according to the usual meaning of procedures, there is no reason to expect



this graph to contain more pairs than are necessary in order that it
satisfy this equality. (That it is always possible to achieve equality
will be proved below.)

Thus, we have as the first central idea of our paper:

Procedures are minimal fixed points of the transformations given by the
body of their declaration.

Next, we introduce another important aspect of our system, namely

that the transformations T are monotonic with respect to c:

(8) If S, ¢ S,., then T(S1) < T(8,) .

1= 72 2

For the simplest transformations, this will be clear. Consider e.g.
the following transformations:
a. T(8) = 8,
b, T(S) = A;S, for some fixed A,
c. T(S) = (p»8,8"), for some fixed S'.

For these cases, (8) reads:

a. If S1 = 82, then S1 = 52,
b. If 8, < 8,, then A3;8, € A5,
c. If 8, ¢ 8,, then (p+S1,S') < (pesz,s').

It is easily verified that these assertions are valid.
A somewhat more complicated instance of (8) is provided by the

following example:

procedure P; T(S,P) .

Here the procedure P depends on S, i.e., P = P(S). Hence, P can be con-

sidered as a transformetion on S. In this case, (8) becomes: If S, < S,

then P(S1) [ P(SQ). We shall at this stage not give the detailed ;ustifi«
cation of this and similar assertions; this will be postponed to section 3.
However, we can already introduce a first important consequence of the
monotonicity property.

First we introduce some notation. In the sequel, we will be interes-
ted in the greatest lower bound (g.l.b.) and the least upper bound

(1.u.b.) of families of functions, with respect to the partial ordering
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"<, The greatest lower bound of a family F will be denoted by N{F:FeF}.

This notation is chosen since it is clear that the graph of the greatest

lower bound of F is the intersection of the graphs of the functions F e F.

Similarly, for the least upper bound we write U{F:FeF}. Note that the

l.u.b. does not necessarily exist: If F1 and F2 are such that for some o,

F1(0) =0, Fg(c) = 0, and 9, $ Ops then there does not exist a function

F such that both F1 < F and F2

then, clearly, its graph is the union of the graphs of the functions F ¢ F.
Now consider the family of all functions X such that X = T(X). We

are interested in its l.u.b. F = N{X:X=T(X)}. We shall prove that F itself

c F. However, if the l.u.b. of F does exist

is a fixed point of T (and, hence, its minimal fixed point), i.e., that
T(F) = F. This will follow from the following, more general result: Let
G =N{X:T(X)cX}. We show that

(9) F=0{X:T(X)=X} = N{X:T(X)<X} = G .

In this proof, the monotonicity of T will be essential:
1. G ¢ F is clear.
2, Proof of F ¢ G. It is sufficient to show that T(G) = G.
2a. Proof of T(G) < G. Let X be such that T(X) < X. Then G ¢ X, and,
by monotonicity, T(G) < T(X); thus, T(G) ¢ X. We see that T(G) is
included in all X such that T(X) ¢ X; hence, T(G) is included in
the l.u.b. of all such X, i.e., T(G) < G.
2b. Proof of G ¢ T(G). Since T(G) ¢ G, we have T(T(G)) < T(G). But, G
is minimal with this property; hence, G < T(G).
That F = G is in fact an old result in set theory, cf. Knaster [15]
and Tarski [38].

We are now in a position to explain recursion induction. Remember
that recursion induction can be phrased as follows: Let the procedure P

be defined by

1

(10) procedure P1;T(P1)

and let Pg, P3 be such that
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b3 T(P,.)
(11) 2 2 .

P3 T(PB)

Then, by recursion induction, we conclude that P2(0) = P3(0) for all
those ¢ for which P1(o) is defined. The argument for this is the following:
By (10), P,
P, ¢ P2 and P1 [= PSB By the definition of ¢, we have: For all ¢ for which

is the least function satisfying P, = T(P1)e Hence, by (11),
1

P1(o) is defined, P1(o) = Pg(o), and P1(o) = PB(O)@ Thus we obtain that,

for these o, PQ(O) = P3(d)e

The transformations T are not only monotonic, they are also contin-
uous in a sense which we shall make precise presently. The introduction
of the notion of continuity arises from another way of looking at the
minimal fixed point property of procedures. This other approach is ine
spired by the construction of the minimal fixed point of a monotonic and
continuous real function f, from [0,1] to [0,1], say. The minimal fixed
point %, of f can be found as
= lim £(0)

3.0

*o

vhere £(0) = £(£(... £(0) ...)) .
A
1 times £

Thet X, is a fixed point follows from

£(xy) = £(1im £7(0)) = lim £(£7(0)) = lim £'(0) =

1 -0 19 10

XO»

x, is also minimal: Let x, be such that f(x1) = x,. Then

£(0) < £lx,) = x

£2(0)

L]
o
—
_‘N
S
L
L]

A
<]

= lim £7(0) <

1o

*o
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The minimal fixed point of a transformation T can in a similar way be

obtained by approximation from below. Consider the sequence

. .
(12) Q, T(R), T(R) s ens, T (R) ...
Note that, by monotonicity,
2 i
(13) Qcme) eTH(0) g vee €THA) & cuw &

o .
The sequence of partial functions (12) has a l.u.b. Py = J ().
i=0
The existence of this l.u.b. for (12) is a result of (13). We assert that
P. is the minimal fixed point we are looking for. Clearly, the above proof

0

for x, = lim £7(0) can be teken over, provided that we have given a proper

q-+00
meaning to the continuity for T. This is done as follows:
T is called continuous if, for each sequence

X cX

0 <X

C weo _C__X- C see

1 2 i

we have

(1k) (U x)=U 1(x.) .
. i . i
1=0 1=0
Just as with our assertion on the monotonicity of T, (14) can easily
be verified for simple T, involving only composition and conditionals,
but some further argument is needed for those T which themselves involve
procedures. Again, a further discussion of this is postponed to section 3.
Using (14) as definition of continuity, we thus have the result that

for monotonic and continuous T, its minimal fixed point is given by
© N
U 1*(a).

i=0

The result that for the procedure declared by

procedure Py T(P)

we have
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p=U T(a)
i=0

can also be explained in a somewhat different way. We have to justify the

two inclusions

O i) v
20

Pc U Ti(ﬂ) .
i=0

The argument for the first inclusion is the same as above: We have

QcbP
T(Q) < T(P) = P
ri(e) ¢ TH(p) = P

Hence, for the 1l.u.b. of the family {2,T(R),...,77(0),...} we have

D Ti(ﬂ) cP
i=0

Next, we consider the second inclusion: P ¢ U T (Q). According to
i=0

the definition of "c", this means that, for all o, if P(o) is defined,

say P(o) = o', then ( C} Ti(ﬂ)) (o) = o',
i=0

What does it mean that P(o) is defined? In order to explain this,
we look at the way in which the programmer determines P(o). He applies a
rule of rewriting, and in order to determine P(c¢), he tries to determine
(T(P)) (o). Executing the procedure body for this ergument may lead to
another "inner call” of P, which then, in turn, is rewritten as T(P), etc.
Eventually, this rewriting process must come to an end, since, otherwise,
¢ would not have been obtained as a result. This can be expressed by

saying that there exists an i > 1 such that, in the application of ™(p)
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to the given ¢, P is not encountered anymore. Because of this we may as
well replace P in T (P) everywhere by @, i.e., we use the fact that, for

this o, (TH(P)) (o) = (T(R)) (o) = o'. Then, clearly, (U TH()) (o) = o',
i=0
which is the desired result.

Example: Let T(P) = (pﬂA1;P,A2), and let ¢ be such that p(u) and
p(A1(c)) are true, but p(A1(A1(c))) is false. Then

P(o) = (p+A1,;(p+A1;(p+A1;P,A2),A2),A2) (o)
(poh 5 (£, 5 (B2, 32,8,) 1) 1) (o) =
A (A (a,(0))) = o',
Finally, we make some remarks on systems of procedures. For explan-
atory purposes, it is sufficient to consider a system of two procedures
procedure P1;T1(P1,P2)

procedure P2;T2(P1,P2)

(15)

The minimal fixed point approach in this case means that for P1 and

P2 we have

(16) (P1,P = N{(X,Y): X = T1(X,Y), Y = T2(X,Y)}

2)

and the analogon of Knaster's result (see (9)) is that
(17) (P1 =P2) =n{(XaY): T1(X9Y) = X: TQ(X:Y) 1= Y} B

This way of dealing with systems of procedures may be described as
the eimultaneous minimal fixed point technique. Now it turns out that this
technique can be replaced by an iterated taking of fixed points. This is

made precise in the following assertion: Let

(x',Y) 1}

(18) P; = N{X":X* T1(X',0{Y’:Y' =T

2

i

(19) Py = N{Y":Y! TZ(P!I,Y')} .
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Then,

(20) P

H]
lae)

H
g

(21) P2 5

This is shown as follows: By the definitions of P% and Pé we have

g
]

3 T1(P;,‘Q{Y':Y' = Tg(P',Y')}) = TT(P%,Pé)

g
i

= ¥ §
s T2(P1,P2) .

By the minimality of P, and P2, we infer that P1 c P!, and P2 < Pé@

1 i 1*
L - [‘] Wyt oo " s - 1] .
Let P2 {y":y T2(P19Y )}. Since TZ(P1,P2) P2, we have P2 [ P2,
11 -
hence, T1(P1,P2) [ T1(P1,P2) =P,
T1(P1,ﬂ{Y";Y" = T2(P1,Y")}) € Py
By (18) and (9) (Knaster's result), we see that P; € P,. From this,
¢ =
TZ(P1,PZ) < TQ(PT,PE) P,.
By (19) and (9), we finally infer that Pé € P,.
Thus, (20) and (21) are proved.

The fact that we may replace simultaneous fixed points by iterated

and, from this,

n

fixed points provides a simplification of the formel system to be dese
cribed in the next section. Before we preceed with this section, we sum-

marize the contents of section 2:

Procedures arve minimal fixzed points of monotonic and continuous trans—
formations.
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3. THE w-CALCULUS

The p-calculus is & formal system developed for the investigation of
properties of recursive procedures. We shall first describe the well form-—
ed formulae of the system (section 3.1), then we explain how to interpret
these formulae (section 3.2), next we give the axioms and rules of inferw
ence of the system (section 3.3), we justify the validity of these (sec-
tion 3.4), and finally we give some first applications of the u-calculus

(section 3.5).
3.1. LANGUAGE

In the formal language, we have
a. Two function constants, denoted by $ and E.
b. Function variables, denoted by any, possibly indexed, upper case letter
(different from Q and E), e.g. A9A1,“,,FN“,X,YW, .
¢. Predicate variables, denoted by, possibly indexed, lower case letters,
€.8: PsP sQsTsees
We shall in the sequel shorten the words "function constant™ and "function

"constant" and "variable".

variable" to
(In programming terminology:
a. ) corresponds to the undefined statement, E to the dummy statement.
b. Each variable corresponds to some elementary stetement.
¢. Each predicate variable corresponds to some boolean expression.)

We now give the definition of a term in the formal language, which

is the counterpart of the notion of statement in the programming language.

Definition 3.1,

a. Bach constant or variable is a term.

b. If T and T, are terms, then Ty3T, is a term.

c. If T, and T, are terms, and p is a predicate variable, then (p+r1,12)
is a term.

d. If T is a term and X is a variable, then pX[t] is a term.
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Examples:

Q, E, AT;A R
A;(P’*(Q"XJ) ,Z)
XX

uXC(p A, 3%, (oA, suY(p, A, 53X, (pA,5Y,E) ) 1,E) ) ]

There are three ways of constructing terms, starting from the basic

ones given in clause a. Clause b introduces composition, clause c gives

the conditional terms, and clause d introduces, by means of the variable

binding operator u, terms we shall see presently correspond to procedures.

Specifically, uX[1] denotes the minimal fixed point of the transformation

corresponding to the term 1, i.e., pX[t] corresponds to the procedure de-

clared by procedure P;t(P), where 1(P) is a provisional notation for the

result of substituting P for all occurrences of X in T.

Examples:

1.
2.

3.

uX[X] corresponds to the procedure declared by procedure P;P.

wxl (p+A1;X,A2) corresponds to the procedure declared by
procedure P;(p*Aj;PgAz).

Consider the system of declarations

procedure PT;(p1+A1;P1,(p2+A2;P29E));

procedure Pe;(p1+A1;PE,(92+A2;P7,E)).

By the results of section 2, in particular (20) and (21), we have:

i

(P-] 3P2) =ﬂ{(X’Y): X (P‘]'*A'];X’(Pe"Ae;Y:E))a

Y

i

(p]+A1;Y,(p2+A2;X,E))}

and, moreover,

Py = N{X:X = (py~Ay X, (pyhy s{Y:Y=(p, Ay 3Y, (pyAsX,E) ) 1,E)))

P, = MY:Y = (p oA Y, (p,>A 3P, ,E))} .

Hence, in the formal language, P, corresponds to the term

1

uX[(p1+A1;X,(pg*AE;uYE(p1»A1;Y,(92+A2;X,E))],E))]§
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and P2 to the term

uY[(p1+A Y,

13
(py*A, suXL(p +A, X, (AL suY L (p, A 5T, (pyAs iX,E) ) 1y

E))1;

The use of the u—oberator has the usual consequences for the dise
tinction between free and‘bound variables. In particular, all occurrences
of X in pX[t] are bound, and an occurrence of Y in t is free iff it is
not a bound occurrence.

We shall use the notation 11[T2/X] for the result of substituting 5
for all free occurrences of X in Tye Again, we have to take the usual
precautions in a case like uX[r1][12/Y]; this is defined as
uX’[T1[X'/X][T2/Y]]9 where X' is some variable which does not occur free

in Ty

Examples:
X[t/x1 =

T
(A, 3%, (A5 3X,E) JIA/XT = (p A, 34, (D A, 54,E))

1

uX[(p—>A1 ;X,Y)J[Az;X/Y] = uX'[(P‘*A1;X',A X)1

23
Using the notation for substitution, we can now describe in general
how systems of procedures fit into the language. Consider the procedure

declarations

procedure P1;11[P1/X][P2/Y];
procedure P2;T2[P1/X][P2/Y].

Then, in the formal language we have for the terms corresponding to

P, and P2 respectively:

uX[T1EUY[T2]/Y]]
uxtfztux[r.][uY[~c2]/Y]]/X]].
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The generalization to a system of more than two procedures is straight-
forward.
Terms are used to construct atomic formulae, formulae and assertions as
follows:

Definition 3.2. Let T and T be terms.

a. An atomic formula is either an equivalence t

1 = Tps OT &n inelusion
Ty & T, ‘

b. A formula is a list of zero or more atomic formulae, written as
@w%vuﬂmemh%,1iiin,mamMCEMMm

c. An assertion has the form ¢ |- ¢, where ¢, y are formulae.

Anticipating the formal rules for interpreting assertions, to be
given in the next subsection, we can already indicate their intended
meaning:

a. The atomic formulae are the counterparts of the relationships S1 = 82
and S1 < 32 of section 2.

b. A formula ¢ = ®1g®2,...,¢n holds iff the conjunction of its elements,
icee @, A O A L., A L holds.

1 2
¢. An assertion o h ¥ holds iff "® holds implies that ¢ holds™ holds.

Examples of assertions:
1. Xc¥, YeXxhkx=yY
2. }uX[(p+X,4)] = (p*Q,A)
(ef. the comments on the procedure declared by equation (7) of

section 2).

3. Aj(p>E,E) = (prA,A),
A(w,0) = (0)s | ) (pax,y) = (poasx,a0)
A;(WQE) = (P+99A)’

Ay (po0.0) = (pq,0).

In the sequel, we shall occasionally omit the ";" symbol between terms.
The notation for substitution is extended in an obvious way from terms to

assertions:
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it

(o b )lr/x] olt/x] | ylt/x]
(¢1,...,¢n)[r/x] (@1[T/X],...,¢HET/X])
(=t )lt/x] = (7,07/X] = 7, [t/X])
(T1 = TE)ET/X] (T1[T/X] < TEET/XJ) .

3.2. INTERPRETATION

We give a set of rules to give an interpretation I to an assertion
a: & by
Let PysPpsecesPsones be the predicate variables occurring in a, and let

A1,A2,.‘.,Ai,... be the free variables of a.

1. Choose some domain D.

2a, With Q, associate the nowhere defined function QI: D> D, With E,
associate the identity function EL: D > 0. (For all x ¢ D, EI(x) = X).

2b. Associate with each variable Ai a partial function Ag: DD,

2c. Associate with each predicate variable p; & partial function
pg: D> {0,1}.

3. Given the interpretation I of the constants, the Ai and the p., we
now define how to extend I to terms, formulae and assertions.

Lk, Interpretation of terms.

ha, Let Tf, 1L and pI be determined already. Then (11;1 )I and (p+r1912)I

2
are defined by: Let x e D,

2

If Tf(x) is undefined, then (11;12)I(x) is undefined.

If rf(x)

If rf(x)

]

vy, and T%(y) is undefined, then (11;12)I(x) is undefined.

y, and Tg(y) = 7z, then (T1;12)I(x) = g,

If pI(x) is undefined, then (p+r1,T2)I(x) is undefined.

If pI(x) = 1, and Tf(x) is undefined, then (p+r1912)1(x) is undefined.
If p'(x) = 1, and 11 (x) = y, then (p>1,,7,)7(x) = y.
If pI(x) = 0, and Té(x) is undefined, then (p+r19T2)I(x) is undefined.

If pI(x) = 0, and T;(X) = 7, then (p+11gr2)1(x) = gz,

kb, Let TI be determined already, except for the interpretation of the
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variable X. Then

wxCadl = O o x =D
X": D
i.e., uxCt1! is the g.1.b. of the family of all partial functions XI,

which satisfy XI = TI.

5. Interpretation of atomic formulse.

5a., ('r1 = rQ)I is true iff 1% c rg is true, i.e., iff for all x ¢ D, if

T%(x) = y, then T;(X) =y,

5b. ('r1 = 12)1 is true iff Tf = T; is true, i.e., iff for all x ¢ D,

y, then TI(X) =y, and

2

if Tf(x)
if Tg(x) =y, then Tf(x) =y
6. Interpretation of formulae.
A list ol = (@1,¢2,...,¢n)1 is true iff each @i is true, 1 < i < mn.
7. Interpretation of assertions.

An assertion (9 | w)I is true iff the implication ot o wI is true.

An assertion a: ¢ - ¥ is called valid if (& k ¢)I is true for all
interpretations. It should be emphasized that this means that for all
domains D, and for all choices of partial functions for the free varisbles
occurring in o (which are then extended in the given way to interpreta-
tions I of a), we have that (o |- w)I is true.

The statement "¢ | y is valid" is abbreviated to "o E AL

For examples of valid assertions, see the examples following
definition 3.2. in subsection 3.1. Consider the second example. In pro-
gramming terminology, its validity asserts that, whatever choice we make
for the boolean expression p and the elementary statement A (i.e. what-
ever functions pI and AT on D + {0,1} and D -~ D we choose), it is always
true that, if P is the procedure declared by procedure P;(p+P,A), then
P is equivalent to ( p*Q,A).

3.3. AXIOMS AND RULES

We shall not stretch the formalism to its limits: The usual formal

rules for dealing with L,=g and substitution will not be listed here, let
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alone systematically used. This would detract from the understanding of
the central part of our formal system, consisting of the following axioms

and rules:

1. Axioms for composition

a. - B3X = X I x:E=x
b. b X3(¥32) = (X3Y)32
c. b o3x =20

b x50 =0

(We have anticipated the associativity of ";", by omitting parentheses

around T, 3T, in definition 3.1.)
2. Axioms for ¢
a. X cx
b. XY, YeXhX=Y
c.XcY,YczZhxce
d. b2 cX
e. Xc¥ L t ¢ tLy/x]

3. Axioms for conditionals
a. b (p*E,E) ¢ E
b. b (pr(p*X,Y),2) = (pX,2Z)
F (02X, (p2Y,2)) = (pX,2)
c. b (pr(eX,Y), (0U,V)) =
(gr(px,U), (p>Y,V))
d. b (p*X,Y)32 = (p*X32,Y;2)

]

Lk, Axiom for the p-operator
b rluXCt1/%7 ¢ uxlt]

5. Rule of inference for the u-operator
p b ela/x]
P, | olt/X]
¥ b oluXCt1/%3]
provided thet X does not occur free in y.

This rule of inference, which will be called the u-induction rule,

is the foundation of the u~calculus.
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3.4, JUSTIFICATION

1. The three axioms for composition assert that
a. E is its identity element
b. It is associative
c.  is its zero element

These three assertions are clearly valid.

2. The first three axioms for "c"

assert that it is a reflexive, anti-
symmetric and transitive relation. Moreover, it is clear that the unw
defined function is included in every function. The fifth axiom will

be discussed below.

3. Consider the first axiom for conditionals. Observe that for each domain
D and each x € D, either (p+E,E)I(x) is undefined (in case pI(x) is
undefined) or (p+E,E)I(x) = x, This proves the validity of |(p*E,E) ¢ E.
Note that replacement of this axiom by L(p+E,E) = E would be valid
only if the predicates were interpreted as total functions on D.

The validity of the other three axioms for conditionals, which are

taken from McCarthy [23] is also easily verified.

L. In the language of the p-calculus, the fixed point property of proce
dures (if the procedure P is declared by procedure P; t(P), then
P = t(P)) is expressed by I uX[tl = tluX[1]/X]. The axiom for the
p~operator gives one half of this equivalence. The other half and the

minimality of pX[t] will be proved in subsection 3.5.

5. Before we discuss the u-induction rule, we first prove the validity of

the main axiom for inclusion
Xcyhkterly/x]
The proof of its validity

XcYkrecly/x]

amounts to showing that each term is monotonic in all of its free

varigbles. It is not difficult to verify this for those terms which
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involve only composition and conditionals. Also, it can be proved that
such simple terms (without u's) are continuous in all their free vari-
ables. These two facts provide the basis for an inductive argument -on
the complexity of 1- that monotonicity and continuity hold for arbi-
trary 1. Now assume that T is monotonic and continuous in two of its
free variasbles, X and Y, say. We indicate our special interest in these
by writing T = 1(X,Y). We show that then uY[T(X,Y)] is monotonic and

continuous in X.

Monotonicity
Since 1(X,Y) is continuous in Y, we have, using the notation 7 (X)(Y)
for T(X,Y): ,

-4

O x)i@)

i=0

wYlt(X,Y)]

o]

where T(X)O(Q) =

«(x) ¥ (a)

r(x,1(0)}(2)) .
Thus, in order to prove
X c X'k uylo(x,y)] ¢ wyle(x',Y)]
it is sufficient to show, for each i,
xcx b uxie) ¢ @) .

We use induction on i,

a. i =0: XcX' F Q c Q is clear.

b. Assume the assertion for i. Then
t(0H(0) = t(x,7(x)* ()

t(x',7(x)*(2))

(x' 1 (x)(0))

(x")*1(a)

where we have used the monotonicity of 1 in X, the induction assump-

in #

in

tion, and the monotonicity of 1 in Y.
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An alternative proof, which does not use the continuity of 1 can be
based on Knaster's result. Let u and u' be short for uY[t(X,Y)] and
wYLT(X',Y)] respectively. We have to show: If X ¢ X', then u < u'.

By the monotonicity of t in Y we have

o= MY: t(X,Y) Y}

in

who={Yy: t(X',Y) ¢ Y}

in

In order to prove g ¢ p', it is sufficient to show that, for all Y such
that t(X',Y) ¢ Y, we have y ¢ Y. But, if t(X',Y) ¢ Y, then

T(X,Y) ¢ 1(X',Y) ¢ Y, by the monotonicity of T in X. Since u is the
l.u.b. of all Y such that t(X,Y) ¢ Y, we see that u ¢ Y, and the result
follows

Continuity

Let X, € X,

We have to show that

S oo €X: € uee
1

(o] o0
wYle(O x.,v)1 = U wyle(x,,Y)]
. i . i
1=0 1=0
(Cf. definition (14) of section 2) or, using the continuity of v in Y,
that

U (U )da) = U

T(Xi)J(Q) .
j=0  i=0 i=0 j

0

o e o

Since

[=+]

U x)3e) = U U i)

i=0 j=0 J=0 i=0
it is sufficient to prove
(Ux)d(@) = U o(x,)9() .
) i . i
1=0 1=0

We use induction on J.
a. If j = 0, the assertion is clear.

b. Assume the assertion for j. Then
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T(k_)x *a = K,)X o k_) x,)%(0))
i=0

1=0 i=0

«(x, \J )

i=0 i=0

(ind. assumption)

o

L.) T X s T Xk)J

(s

(cont.in X and Y)

[ N
1]
(o]
=
o

]

o ;,Cs

(mon.in X and Y) kvj e (i k) T(Xmax(l k))j(ﬂ))

Ty, ©(%,)9(2))
n=0

«< _+1
= J «x) ) .
n
n=0
This completes the core of the proof that each term is monotonic and
continuous in each of its free varisbles. Extension to the full proof

is straightforward.

Now that the continuity of each 1 has been egtablished, we first of all

conclude that each 1 does have a minimal fixed point, viz.

o«

(_J 1*(Q); from this it follows that, for each interpretation I, the
i=0

definition of uX[T]I as {’\ {XI : XI = TI}, as given in section 3.2,
XD

makes sense, since we have now proved that, for each v, the set
I
{x

Secondly, we can now Jjustify the p~induction rule, which we repeat

e TI} is non-empty.

here for convenience:

v b ela/x]
v, & | olt/x]
¥ b elpx[t1/%]

provided that X does not occur free in .



27

The inductive pattern in this rule is clarified by phrasing it in-
formally as follows: If one wishes to prove an assertion o about a
procedure uX[t], one shows that

a. The basis step a(Q) holdss

b. If a(X) holds, then a(t(X)) holds,

and from these two results one then infers that o(uX[t]) holds.

For the formal justification of the u-induction rule, we introduce the

following notation:

o oo

a. Je=(Uoe,Uoe,...;.UUe),

i=0 i=0 1=0 i=0

where ¢ is the list of atomic formulae @1,¢2,...,®n.

i

(UT1
i=0 1=0

b. \j} (T1ST2)

i=0

in
)
N

E;é (1y=7,) = (E;%T1 = L~—JT2)

Using this notation, our continuity result reads: If

XO < X1 € oo & Xi € ... then
U e(x.) = o((Ux.)
) i ) i
i=0 i=0

The validity of the u~induction rule then follows easily:
Suppose

v E ola/x]
v, o E olt/x]

have been proved, or, is a more suggestive notation, that

v E o(o)
v, o(X) k e(r(x))

hold. Starting from the first result, snd repeatedly applying the

second, we then have
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v E e(a)
v E o(r(n))
v E o(<3(a))

v E o(xt(a))

®
®
°

Thus, we conclude that

v E U el<ia)

i=0

holds. By continuity, this means that
v E o U)tH(a))
i=Q
also holds, i.e., we have
v E o(uxlc(x)1)

which is the desired result.
3.5. FIRST APPLICATIONS

We give some first applications of the u~calculus; many other exam-

ples will be given in section L,

1. Proof that uX[t] is the minimal fixed point of t., First we show that
wXlt] is a fixed point, i.e., that

F uxlcl = t[uXCt1/X7 .
One half of this is given by the u-axiom

L tuxCt1/x] c uxlcl .
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In order to prove
b ux{t] ¢ <[uX[t1/x1

we use the y~induction rule. We have to establish
ko c tla/x]

which is clear, and
Xer L'T E\f[T/X]

which holds by monotonicity. (When we say that an assertion follows
by monotonicity, we mean that it can be derived from the axiom

XcYhbn
rules. Usually, this will need some use of the rules for substitution,

¢ tLY¥/X], by suitsble application of the other axioms and

deduction and equivalence, which we have not presented here formally.)

By the u-induction rule, from these two assertions we may infer that
b uxlt] ¢ tluxlt1/x]

holds. Next we show that uX[+t] is the minimal fixed point, i.e., that
Y= 1ly/x] | uxltlcy .

Again, we use the p-induction rule. We have
Y= qly/xlkocy

and, by monotonicity,
Y=1ly/X], XcYbrecy.

From these two assertions, the desired result follows.

Proof of the monotonicity of uX[t] from the monotonicity of 1.

We have to show

Ycv' b uxlt] ¢ uXCellY'/Y]
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In order to apply the u~induction rule, we have to prove the two

assertions
Yy bacuxley'/yl]
and
Ycv', Xcuxle[Y'/¥1l k1 c uxCelY'/¥1] .

The first is clear. By the fixed point property, for the second we can

write

Y c¥', Xcuxle[Y'/¥1] F v ¢ t0Y'/YIuxL<lY'/¥11/X]

and this follows by the monotonicity of t in X and Y.

An elementary property of while statements. Consider the procedure

declared by

procedure P; (p>A3;P.E)

(remember that E is the identity function, or, in programming termino-
logy, the dummy statement.) The action of this P can be described by:
Perform A as long as p is true, or, equivalently, as that of the while
statement while p do A, for which we shall use the shorter notation

p * A. Thus, in our formalism, p * A = uX[p*A;X,E)]. We apply the u-

calculus to prove the following simple property of while statements:
Fp o« Ash, = uXE(p+A1;X,A2)J

a. Proof of 2. By the fixed point property of p * AT’ we have
p*A = (p»A;p*A1,E); hence,
P * A A, = (prA DA LE); Ay = (oA sprA sAs.A0).
Thus, p * A1;A2
Since uXE(p+A1;X,A2)] ig its minimal fixed point, the result follows.

is a fixed point of t(X) = (p+A1;X,A2).

b. Proof of c. We apply the u~induction rule to show

b WXC(poA 5X,E)T; Ay € uXD(pA,3X,A,)]
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That | 234, € WX[(p>A 5X,A,)] is clear. Let R = uX[(pvA 3X.A,) 1.
For the second step of the u-induction rule, we have to verify

XAy < R b (p2A;3X,E)3h, S R .

Using the fixed point property of R, the last assertion follows from
Xihy € R F (p2A,3X345,4,) < (DA 3R.A)) .

(This last example, however simple its result, provides one of the
basic steps for the proof of the completeness theorem in sections 5
and 6. The proper generalization of it can be found in lemma's 5.10,

5.11 and 5.12),
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L, EXAMPLES
,1. WHILE STATEMENTS

A rich source of, mostly simple, examples on program equivalence is
provided by the while statement. First we introduce some auxiliary nota-
tion and corresponding axioms. We shall allow conditionals of the form

(pyAp,7X,Y)
(P.‘sz")'XaY)

(pX,Y)

which are characterized by the axioms

b (0,vp2%,Y) = (05X, (p,2X,Y))

(p>(p,2X,Y),Y)

L (pX,Y) = (poY,X) .

Note that "A" and "v" are not commutative: E.g., (p1+(p2+X$Y),Y) and
(p2+(p1*X,Y),Y) ere not necessarily equivalent, since p may be undefined Wy
some argument for which Py is false.

Uging this notation and the one for while statements introduced in

section 3.5, we have

pP*A = X[ (p>AX,E)]
P, A p, * A = uX[(p,>(py~AX,E) E)]
P, Vv b, * A = uX[(p >AX, (p,>AX,E))]
Tp * A = uX[ (p>E,AX)]

The following equivalences all hold for the predicates concerned
total (L(p+E,E)=E) and some of them also hold for partial predicates
(F(pE,E) ¢ E):



1. kp* A= (prA;p*A,E)
,L—p*A:P*p*A

.k p*A=px (A;pxa)

. l—p*A1;(p+A2,A3) =D * Ajhg
. kp*E= (p0a,E)

o L"p1*p2*E=p1*E
b p, * (A;pe*A) =-p1 * pVp, * A
F pyAp, * Aspy * A=p, * A

Py * Ap VD, * A = p,Vp, * A
10. b pvp, ¥ A= p, * Asp, * (Asp, * A)
1. b py % Aspy, * A=p, % A37p AD, ¥ p, % A
12. b p, % p, * A P, * (P Ap,*A; 7D, AD,*A)
13. b py % A =p, % (p,AD *A3p,ATDy*A)
e b oy py kA= py % piap, * by % A
15. b p, * Pp ¥ Py * Py ¥ A=Dp, % p, %A
etc.

O o ~N O VoW N

*

We shall prove here only examples 1, 2, 5, 10 and 15; the remaining
ones are left as exercises to the reader. A mechanical way of proving
these and other equivalences for while statements will follow from the
completeness proof of sections 5 and 6.

In our comments, we shall not indicate explicitly use of the axioms

on composition and conditionals.

1. b p* A= (pA;peA,E),
/This is a direct consequence of the fixed point property (f.p.p.):
Fp* A= uxX[(p*AX,E)] = (p>AX,E)[uX[ (p>AX,E)1/X] =
(prAsuxl (p*AX,E)1,E) = (p>A;p*A,E)

i
it

2. F p*A=7p*p*A,
By the f.p.p.
I p*p* A= (prpsasprpea,E).
Also, using the last result of section 3.5., and the f.p.p.,

33
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Fpxaspxpxas=
uwX[(p*AX,E)Jsp * p * A =
uXL (prAX,p*p*A) ]
uXL (p>AX, (prp*A;p*p*A,E))] =
uxXt(p>AX,E)] =
p * A.

]

Hence,

Fp#*Apxpw*ha=pxAa.

Thus,

Fp*pxA= (pp*4,E) = (p>(p>A;p*A,E) E) =
(prA;p*A,E) = p % A

which proves the desired result.

5. b p* E= (p0,E).
We have
l‘" p*E= UX[(P'*EX:«E):] = UX[(P"’XwE)]

a. Proof of ». By monotonicity and the f.p.p.,
I (p%0,E) ¢ (p>uX[(p>X,E)1,E) = uX[(p>X,E)]
b. Proof of ¢. We apply the u-induction rule. Thus, we must show
L @ ¢ (p»2,E), which is clear, and
X ¢ (pR,E) b (p2X,E) ¢ (po0,E).
Assume X ¢ (p*Q,E). Then
F (02X,E) g (p>(poR,E),E) = (p>0,E),
and the result follows.
A generalization of example 5 will be given in lemma 5.2.
Before we give the proofs of 10 and 15, we first list some auxiliary
results:

R.: b uXCpyCtll = p¥(tlY/X1]

Ryt b uX[A3t] = AsuX[t[AX/X]]
R3: Let Y not occur free in t. Then
b uX[(p>1,B)1 = (prux[tl(ps>Y,E)/X11,E)
Rh: Let t' be the result of replacing, in 1, one or more free occurrences

of X by uY[t[Y/X]], where Y is a variable which does not occur free
in 1.



Then
b uX[t] = uxltt'l.

These results can be transliterated back into results on the equiva-

lence of programs. We shall do this here for R1 and Rh’

R1:

Let P1 be the program

begin procedure P1;P2;
procedure PZ;T(P1,P2);
P1

end

and let P2 be the program

begin procedure P;t(P,P);
P

end.

Then P1 and P2 are equivalent.

R): We give only a specific instance.

Let P3 be the program

begin procedure P;

begin ... P ... P ... end;
P
end
and let Ph be the program
begin procedure P,
begin ... begin procedure Q;
begin ... § .. Q ... end;

end.

Then P3 and Ph are equivalent.

35
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We prove only R3. Call the left hand side P1 and the right hand side

P2.
8. P1 - P2,
We apply the u-induction rule. We have to show
X <P, b (p>1,E) ¢ P,.
By monotonicity, it is sufficient to show
XeP, F 1 ¢ uYltl(p>Y,E)/X1].
By the f.p.p., this is the same as
X <P, b1 ¢ t[(p+Y,E)/X1u¥ll (p>Y,E) /X11/Y1.
By a property of substitution, and since Y does not occur free in T,
this reduces to
X <P, bt ¢ t0(prpYltl(p>Y,E)/X]1,E)/X]
or
X ¢ P, bte 1P, /X]
which holds by monotonicity.
b. Py < P..
By the u-induction rule, it is sufficient to show
(p*Y,E) ¢ P, b (prt[{p>Y,E)/X1,E) ¢ P,
By the f.p. p., this is the same as
(p>Y,E) ¢ P, b (prt[(p>Y,E)/X],E) < (p+T[P1/X],E)
and the result follows by monotonicity.

(A somewhat more general version of Ry is given in lemma 5.7.)

We now proceed with the proof of

10. If Py and p, are total predicates, then
(1) bpy v, *A=p, * Aspy * (A3p,*A)

First we rewrite the left hand side of (1). Since b (p1+E,E) = (p2+E,E) = B,
we have h (p1+X,X) = (p2+X,X) = ¥, Using this, we obtain

l—p1 v p, * A = uX[(p>AX,(ps>AX,E))] =
uXL(p,>(p,~AX,AX) , (p,>AX,E)) ] =
uXl (py>(p>AX,AX) , (p,+AX,E))] =
WXL (pAX, (pAX,E))] .
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Thus,

(2) oy v oo, * A = uX[(py*AX, (p,*AX,E))] .

(What we have shown here is in effect that for total predicates, "V" is a
commutative operator.)
For the right hand side of (1) we write, using the last result of section

3.5. twice:

(3) - P, * Aspy * (Ajpy*A) =
uX[(p2+AXguYE(p1+A;uZ[(pewAZ,Y)J,E)])],

Applying Ry to uY[(p1+A;uZ[(p2»AZ,Y)],E)] we obtain

b wYl(p, 4302 (p,4%,¥)1,E) ] =
(P1+UU[A;UZ[(P2+A29(P1*U3E))]]9E)a

By R1 and R2 we then have

b wYD(p ~Asuzl(p,~AZ,Y) 1,E)] =
(p,A5uUL (py*AU, (p,~AU,E)) 1,E).

Combining this with (3), we see that

(4) L P, * Asp, * (A;p *a) =
XL (p,AX, (p +A;uUl (p,AU, (p +AU,E) ) 1,E) ) 1.

Comparing (2) and (4), we see that we can apply Rh; thus, (1) follows.
Using the notation A * p for A;p * A, result (1) can be phrased concisely
as:

F A % P1 Y] P2 B pa * p1@
Finally., we prove
15, L pT % PQ & f = P1 * P2 ) P] * pz % A,

For the left hand side we write, using R, and a result similar to example

5

3
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- D, * Py, * A=
uXE(p1+uY[(p2+AY,E)J;X,E)J =
uXC(p >uYl(p,>AY,X)1,E)] =
(p>u¥l(p,AY,(p 2Y,E)) 1,E) =
(p,uYl(p,AY, (p>02,E) ) 1,E).

Replacing in this result A by By * A, and using an analogue of R3, an

analogue of example 5, and the conditional axioms, we derive

L«p]*Pg*IH*A:
(pu¥l(pyuzl(p>AZ,Y) ], (p20,E) ) 1,E) =
(p>(py>uzl(p,*AZ,(p,>Z, (p20,E))) 1, (p0,E) ) ,E) =
(py>(pyuzl(p,*AZ, (p,>0,E) ) 1,0) ,E).

Replacing in this result A by by * A, using similar arguments as
above, and the f.p.p., it then follows that

F o %, *p *py *A=Dp *p, %A
4.2. A WHILE STATEMENT EXAMPLE FROM DIJKSTRA

In [8], p.31, the following example is discussed:

If the booleans B1 and B2 have no side effects, and if 52 is unaffected
either by S1 or 82, then the following two programs are equivalent:

if B, then while B, do 8

else while B, do 8

2 1

2
and

while B1 do if B2 then S1 else 5, .
In the uécalculus, this can be formulated as

AL (ppy*apsp *hy) = by % (py*A04,)

where A will have to reflect the assumptions made above.
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Since no predicate in our formalism is assumed to have side effects,
Dijkstra's first assumption does not concern us. The second assumption

can be formulated as

A1(P2‘*X:Y) (P2+A1X9A1Y)
A2(P2‘)’X,Y) = (P2"A2X,A2Y) .

As a third assumption, not made explicit by Dijkstra, we need the

totality of Pyt
(p2+E,E) =B ,

Thus, our formulation becomes

A (p%,Y) = (p*A X,AY), (7D A, . *hy)
(DB ,E) = E Py * (pyhyahy)
It is possible also to assume somewhat less, by using the following
assertion:
A(p0,E) = (p>Q,4),
(6) A(P"'Esﬂ) = (WAan)s A(P'*XQY) = (WAX,AY) o
A(p+E9E) = (P"A’A)

The proof of (6) goes as follows:

F A(pX,Y) = A(pr(poX,Y), (p2X,Y)) =
A(p+E,E) (poX,Y) = (psh,A) (psX,Y) =
(p+(p>E,Q) A, (p0,E)A) (poX,Y)
(p+A(p-E,0) ,A(p+0,E) ) (p+X,Y)
(pA(p+E,Q) (poX,Y) ,A(p+q, E) (paX,Y)) =
(pA(p> (DX, Y) 50) s A(Ds0, (p4X,Y))) =
(p+A(p+X,0) sA(paq,Y)) =
(p+A(p+E,Q) X, A(ps0 E)Y)
(ps(psE, ) AX, (poq,E)AY)
(pAX,AY).
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(6) is in fact a special case of a much more general result, the proof

of which is omitted here. Using (6), we can write for (5):

A,(p,0,E) = (p,22,4,),

A, (py7Es0) = (pyoa,,0), (7P %A, 5P *A,)

A (p,0,E) = (p0:4,), |- =

A (py2E,0) = (p,A,,0), py * (py7A AL)
(p*E,E) = E

The proof of (5) offers no difficulties:

Let P, = (p2+p1*A1,p1*A2). Then

k P, = (puxl(p A, X,E) 1,u¥l(p A Y ,E)]) .

Let P2 =D, * (p2¢A1,A2). Then

- P, = uzl(p,>(p,*A,,A,)2,E)]

uZ[(p1+(p2+A Z,AQZ),E)J

1
uZ[(p1+(p2+A1Z,A22),(p2+EsE))]

= uZ[(pz—*(p{*ATZ,E) ,(P1+AQZ pE) )]

Let A be short for the assumptions of (5).
a. Proof of A L P1 c Pee
Assume A. We first show
b (po2utl(p#A,Y,E)]) < Py
Clearly,
b (p,>0.0) < Py,
Next, we have to show
(p2:Y) € Py b (p0,(p, 78,7 ,E)) < Py
Applying A and the conditional axioms, we have



Applying the f.p.p. and monotonicity, we see that, indeed,

(p,2,Y) € P, | (0,20, (p A, (p,20,Y, ,E)) €
(p,*(p,*A.P,,E) s (p 7P, ,E)) .

Thus, we have proved

| (p2+9,uY[(p1+A2Y,E)]) cP

by the p-induction rule.

2’

By symmetry, we have
- (puXl(p >4, X,E)150) < P,.
Combining these, we obtain
F (pouXC(p A X,E) 1Yl (p,*A Y E)]) =
(py>(p>uXl(p,+A,X,E)].0),
(p>02,uY[(p >A Y,E) 1))
 (py*P,,P,) = Py
b. Proof of AL P, c P,.
Using A, it is easy to verify that
Z <P, b (p(pA2,E),(p>A 0, ) <
(p2+(p1*A1P1,E),(p1+A2P1,E)) =
(py>(p,>AuX[(p A, X,E)1,E),
(p,*AuYL(p>A Y,E)1,E))
(poouXl(p~A,X,E) J,u¥[ (p,~AY,E) 1) =
P2.
The result then follows by the p-induction rule.

4,3. A WHILE STATEMENT EXAMPLE FROM COOPER

In [6], Cooper considers the following three programs:

P1 is the program

if p1(x) then goto 2 else goto U4;

x = £(x);

goto 13

if pe(y) then goto 5 else goto T;
y = gly)s

goto 4;

: halt.

-~ 0N W W N -

L1
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—

g -~ O\ U =W N

—
oo

O 0 N O WU oW N

e
N = O

is the program

if p,(y) then

goto 2

else goto k4;

y = &ly)s;
goto 1,
ig.p1(x) then

goto 5

else goto T3

x = f(x);

goto Ly
halt

is the program

if p1(x) then

goto 2

else goto 6;

if.PQ(Y) then

goto 3

else goto 9;

i= £(x);

v = gly);
goto 1

if p,(x) then

X

vy :=gly)s;

goto 6;
if p1(x) then

goto T

else

goto 10 else goto 12

: ox = f(x),

goto 9;

¢ halt.

He proves the equivalence of P

1’

P2 and

P

in the Manna-Floyd frame-

work, using the predicate calculus. (See the references in section 1; for

this specific example, compare also Park [27,291.)

Let A

We
1.

We show how to transliterate this example into the u-calculus.

1 correspond

note that
A1A2 = A2A1.

to x

:= f(x) and A

2

2. A, does not change the value of Po

A

hence,
Ag(p1+X,Y) =

i

does not change the value of p1,

(p1+A2X,A2Y).

toy

= gly).
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Moreover, it is apparently necessary to require that P, and P, be
total.

The u~terms corresponding to P19 P, and P3 are:

g
]

15 Py F APy * A,

g
]

o = Py * Byipy ¥ Ay

g
t

= ux[(p1+(p2+A1A2x,p1*A1),pz*A2)]

In the derivation of the p-term for P3 we have used the well known
technigque of associating systems of recursive procedures with flow chart
programs. A possible version of this technique runs in this is case as

follows: To the program P. a system of four procedures is associated, one

3

for each occurrence of a predicate in P3, with the following declarations:

procedure P;;(p1+Pé,Pé);
procedure Pé;(p2+A1A2P;,Pﬂ);
procedure Pé;(p2+A2P§,E);
procedure Pﬂ;(p1+A1Pi,E).
According to the method for associating a term in the p-language with

a system of procedures, as described in section 3.1, we obtain for P3:

Py = ux[(p1+uy[(p2+A1A2x,qu(p1+A1Z,E)J)J,
uS[(p2+AQS,E)])]

or , after simplification, and using the * notation for while statements,

Py = ux[(p1¢(p2+A1A2xﬁp1*A1),pz*AQ)J .

Let A be the list of equivalences
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Ahy = AA,
A,(p,2X,Y) = (A X,A.Y)
A J Ae(p1+X,Y) = (p1+A2X,A2Y)

E

(p,*E,E)

(py*E,E) = E

«

Cooper's result can then be formulated as

AL P, = Py, P, = P,

We prove only A L P1 = P2; once this is understood, the reader should have

no difficulty in proving A | P, = P3 himself.

We use the notation
Aep=p for A(pX,Y) = (p*AX,AY).

By result (6) of section 4.2, we have, for P, total,

A1 ° p2 = p2 1ff A1(P2—)QSE) = (p2+Q!E)A1
A1(p2+E,Q) = (p2—>E,Q)A1 .
First we show
(1) Ajhy = ByAus Ay o by =) 2 Ay by % By =Dy * Ay Ay

Clearly, L AT;Q = Q3A,. Also, it is easily seen that

.
AA, =AM, A oD, =Dy AY = YA | A (p*AY,E) =

(p2+A2Y5E)A1 .

Next, we show
(8) Apemp =y k (pyay) o py = p,

Assume A1 ° Py = Py To prove (p1*A1) ° Py T Pps WE must show

2
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- P, * A 3(p,o0.E) = (p,o0.E)ip, * A

1

and

b P, * A 3(ppE,0) = (p2E,0)5p, * A, .

The second one will follow from the first by symmetry. In order to prove

the first, we have to verify whether

X(p,>2,E) = (p,20,E)X | (p>A X,E)(p>0,E) =

(py*®,E) (p, >4 X,E).

Using Ay ° pp = Py, and some manipulations with conditionals, this easily
follows.,
Replacing, in (7), A1 by p, * A1, we obtain

(9) Py % AjsAy = Ayipy % Au(py % A) e, =D, b Dy % Ayp, * Ay =
Py * Apipy ¥ Ay

Since the assumptions of (9) follow from A, using (7) with the indices

1 and 2 interchanged, and (8), the proof of

Ak P, * Asp, * Ay =p, * Aip, * A,
is complete.
4.4, REDUCTION OF FLOW CHARTS TO WHILE STATEMENTS

In [2], B8hm and Jacopini study the problem whether and how flow
charts can be rewritten as while statements. To be more specific, let Lf
and Lw be two languages such that
a. Lf and [, have the same elementary statements and the same predicates.
b. Lf has composition, conditionals and goto statements.

c. Lw has composition, conditionals and only while statements (which can,
of course, be considered as a restricted type of goto statements).

They conjecture that it is not the case that for each program in Lf

there exists an equivalent program in Lw‘ (This conjecture has been proved
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in the mean time by Scott [31].) Next, they introduce an extension of Lw
to L&, which has, in addition to Lw’ three special elementary statements
(function constants in our terminology), F, T and K, and a special pre-
dicate constant w. These have as intended interpretation:

F(x) = (x,1) ,

T(x) = (x,0) ,
K((x,1)) = x ,
K((x,0)) = x ,
w((x,1)) = 1,
w((x,0)) =0 .
They then show that each program in Lf is equivalent to a program
in Lw"

We give one of their examples of such an equivalence, and present its
proof in the p~calculus. v
First we introduce part of their notation:

For each p, p is defined by
p = (p»TF,FT) .

For each X, (X) is defined by
(X) = 0w+ X .

Their equivalence then reads:

UX[(WE 3A1 (q.”'E :A2X) )] =

F(K p (KTT) K(KA, g (KTT) K(KAFT))K)K .

In order to prove this in the u-calculus, we need a number of equi-

valences characterizing F, T, K and w:

FK = E,
TX = E,

At S R(eex,Y) = FX,
T(w>X,Y) = TY.



Thus, we have to show

Ak WXL(pE,A, (©F,4X))] =

F(K p (KTT) K(KA, g (KTT) K(KAFT))K)K .

k7

This is done as follows. Assume A, We first define five auxiliary proce

dures:

(1)
(2)
(3)
(%)
(5)

Using these

(6)
(7)
(8)
(9)

(10)
(11)
(12)

(13)
(1k)

(15)
(16)
(1)
(18)
(19)
(20)
(21)

P, = (KTT)

P, = (KAFT)

Py = (KA, g P KP,)
P, = (K p P KP_K)

X))]

PS = uX[(p+E,A1(q&E,A2

definitions, we have

I P, = (w+KTTP1,E)

(8 TP, =T

LP1=(wﬁﬂT£)
ImgP1=(pﬂTJTNmﬂme)

= (p>TTT,FT)
b p Pk = (pIT,F)
L 4 P.K = (g>TT,F)
b P, = (w KA FT,E)
b a P e, = (@17,4,FT)
. P = (0KA, (@*TT,AFT) ,E)
L £‘P1KP3 = (p+TT,A1(q+TT,A2FT))
b p PPk = (poT,4, (@27 ,45F))
kB, = uX[(wK(pT,4, (¢, A,F) )X, E) ]

Pe = u¥[(wK(p>T,A, (qT,A,FY)),E) ]
. TP, = T, TP = T
b P, = (wK(p>T,A (T ,AFP))),E)

(1)
(6),A
(6),(7)

(8),A
(9),A
(10)

(2) and similar

to (8)
(11),(12) A

(3),(13) and
similar to (8)

(10),(14),A
(15),A
(4),(16)
definition
(17),(18),A
(17),(19)
(18),(20)
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(22) - Pg = (wK(pTPg A, (TP ,AFP)) ,E) (18),(19)
(23) Fp, cp (17),(22)
(2k) |- P, = P (21),(23)

There remains the proof that
b FRK = Pg -

a. C.
It is sufficient to show
FYK ¢ P, L FwK(poT,A, (@T,AFY)) E)K ¢ P
This follows from
FYK ¢ Pg F (poE,A, (B, AFYK)) ¢
(p+E,A1(qéE.A2P5)) .

5

b. 2.
o FPK = F(w+K(I»T,A1(qﬁT,A2FP6)),E)K =
(p»E,A1(q+E,A2FP6K)).
Hence,

- Py € FPK .

This completes the proof of Bdhm and Jacopini's example.
L.5, MCCARTHY'S 91~FUNCTION

McCarthy's 91-function has become a wellknown test case in program-
ming theory. It has been used in particular in Manna's work {Manna and
Pnueli [20,21], Manna and McCarthy [197).

Its original form is:

Let, for integer x,

£{x)
g(x)

(%100 » x=10,F(F(x+11)))
(x>100 + x=10,91)

Then f(x) = g(x).

We shall concern ourselves with a slight generalization. Let
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£1(x) (x>a » x-b,£' (£ (x+b+1)))

g'(x)

(x>a + x-b,a+1-b)

for integer x > 0, & > 0, b > 1. (We do not allow b = 0 in order to avoid
some uninteresting special cases.)

In order to apply the p-calculus to obtain the proof of £'(x) = g'(x),
we have to reflect in some way in our assumptions that we are dealing with
the special domain of integers. This is done as follows: We introduce
0° and the predicate constant Py
where S1 stands for the successor function, M1 for the predecessor func-
0

In other words, S19 M1, AO

the domain N of non-negative integers:

three function constants S19 M19 and A

tion, A  for the zero~function, and Py for the test for zerc predicate.

and Py have as intended interpretation over

81(x) = x + 1 , for all x e N,

M1(x) = ¥ e , for all x e N, x % 0
= yndefined , for x = 0,

Ao(x) = 0 . Tor all x ¢ N,

PO(X) = 0 , for all x e N, x § 0
= 1 s, for x =0

These four constants are characterized by the list of four equivaw

lences A = A19A2,A3,Ah:
A1: S1M1 = F
AZ: 8,4y = AO
A3: AOM1 = )
A

% uX[(pO->A09M1XS1)] =g .

These equivalences are based on the axioms of Scott [331; note
that Ah asserts that the function h, defined by h(x) = {x=0-0,h{x-1)+1),
is the identity function.

Ah can be used to prove the following result in the uw-calculus which is

the counterpart of mathematical induction:
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b agF cac

XF e X6l XsF e X8,G

. FcaG

(see also Milner [2k])
PROOF. Assume the two premises. We show that then L F ¢ G follows. By Ah’

Lo
Fa

EF

uX[(pO4AO,M1XS1)]F,

H

EG

uX[(po+AO,M1XS1)]G.

Thus, by the u-induction rule, it is sufficient to show
L aF ¢ a6

which is clear, and

XF ¢ XG | (pyh

O,M1XS1)F < (pO+AO,M1XS1)G

which is easily seen to hold by the two premises.

Next, we introduce some other constants, defined in terms of the
given ones, for repeated addition and subtraction, and for dealing with
the ">" relation. From now on, we assume that a, b are given integers,
which remain fixed throughout the proof. Let c¢ = max(at+1,b). We define
2¢c - 2 new function constants 82,83,...,80, ME’MB’“'°’MC’ and ¢ + 1 new
predicate constants PyqoPyqoe e+ P

>c
Let, for 1 <y < c, BY be the equivalence

SY = 8181,. 1

vy times .
Let CY be the equivalence

M =MM...M
Y 11 1
[ S —)

v times .
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Let

B® =

8
=
-
[=5]
o~

CC =

§
(@)
-
-
.
N
B
»
o
o

Let DO be the equivalence

(P>O'*X3Y) (PO"Y’X)

and let UY be

(p>Y+X,Y) (p0—>Y9M1(p>Ym1+S1X,S1Y)) .

DO and DY(1§y§p) can be understood intuitively as expressing the equiva-

lences
(220 » X(x),¥(x)) = (x=0 » Y(x),X(x))
and
(x>y » X(x),¥(x)) =
(x=0 » Y(x),(x-1>y=1 » X(x-1+1) ,Y(x=1+1)))
respectively.
Let D% e
c oe
7= 00,01,...,00‘

After these preparations, we are now in a position to formulate McCarthy's

result as
(1) A,B°,C%,0° | uXC(p, o, ,8,8, )] =
(p>a$Mb9AOSa+1Mb) °

The proof of this is given in two parts. In the first part, we derive some

intermediate results, contained in the list E:

(2) ABS,cC0° L E
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where E is the list

E1: Sbe =E
E2: 5,81 = 8,8,
E3: (p>afE,E) =
Ey: (o, 2% Y) = (p, XM (p, >7,Y))
Eg: 8 (p, 2X,Y) = 8, (p, »X.M S, Y)

E6: uY[(p>a+E,S1Y)_J = (p>a+E,AoSa+1)

and in the second part we show that
(3) E b uxl(p, o4 ,5,5,xX)] = (p, M, »A4,5, M)

without using the elements of A, B®, Cc, ¢ again.
We begin with the proof of (3).
Assume E. By E6’

l" (p>a—)Mb’AOSa+1Mb) = uY[(p>a—>E’S1Y)]Mb‘

By the last result of section 3.5.,

b url(p, 2E.8 1) = u¥l(p, 24,85, Y)] .

Thus, we can replace (3) by
b uXC(p, M, ,S,5,%X) ] = u¥l(p, o4 ,8,Y)] .

Call the left hand side P, and the right hand side P

a. Proof of P1 < P2.

It is sufficient to show that
|- 8,PoPy € Py
We verify whether

b 5,09, € P

1 2°

2
and

8,YP, < P, b Sb(p>a+Mb,S1Y)P2 S B, .
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The first is clear. The second assertion is derived as follows:

SptFp £ Fy 2 Sp (2, 57,08 Y)P, =

S (p> oM M 5,8 Y)P
Sb(p> M, P,sM S S YP ) =
Sy (P, "M, F) ’MbS1SbYP2)
S, (P, "M Py s M S, Py) =
Sy (Py g M Posthy (p, , ,8,P5)) =
8y (P, "M, Po oM Py) =
SpMpFp =
Fa

b. Proof of L P2 c P

in

1
It is sufficient to show that

| P, £ §,P.P.

(QS)

(E)
(assumption)
(Eh)
(f.p.p.)
(£5)

(€))

By the p-induction rule, the proof of this follows from the proof of
XcP, X888, b (p, 24,881 <P, (p, oM .55 %K) ¢ 5P P .

The first conclusion of this assertion follows from the f.p.p. In order

to prove
X5P1,XCSPP1|-(p M 08, 8,XX) < 8PP,
we write for the left hand side of its conclusion

= (p, 571,58, S,XX) =
S, (P, oM 25,8 XK) =

5y (0, 34 (2, 570,15, 570) 1y, (2, My ,8,5,200)) =

S (2, > (2, > Mb=sbs1XX)* M, 8,8, 2X) =
S (B, g7, (2, M, 58,5 1K) 84 3X)

and for its right hand side
- 5,P4Py =
Sy (P, g, 25,5 1P P

Sb(p>a->Mb(p>a-+ SbS1P1P1) S 48 P1P P )

(€,)
(E5)
(E,)

(f.p.p.)
(f'P’P" ‘EE2)
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Comparing the results for the left hand side and right hand side,
and using, from left to right, the assumptions X ¢ P1, Xc P1, X ¢S PP

b1 1?
and X ¢ P_, the desired result follows, and the proof of (3) is complete.

13
There remains the proof of

A, BS, ¢, v° | E.
First we derive some consequences from A.

Ry A F (po-»E,E) = E

Ry: A l (py*E,M;S,) = E

Ry A F M5, = (p,>0,E)

Rh: A L (p0+M1X’Y) = (PO*ny)
Rg: A L §,(py*X,Y) = 8.Y

1 R3 and RS.

Proof of R,: By Ah and the f.p.p., we have

We prove only R

Proof of R3:

= = = Q
s, = BS, = (pprosM S M8, = (RAJLS M8 M8,
(pO*Q,M1S1) = (Po+ﬂs(P0+A0:M1S1)) = (pO+Q9E) °

Proof of RS:

L SI(PO+X§Y) = S1M181(PO+X:Y) = 81(PO*99E)(PO*X3Y) =
S1MTS1Y = STY.

We use R, to R5 in the proofs of E1 to E6.

a. The proofs of E1 and E2 are clear.

b. Ej follows from R,, R, and D%: Let E

2 3 = Eslal.

53(0) follows from
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c2.

e3.

cl,

F (p,,7B:E) = (p,°E,E) = E.
Assuming E(a~1), we have
F (p, ~EE) = (pg"B,M (p,, »8,.8,)) =
(pgEsM, (p,, *E,E)S,) = (p,>E.M,ES,) = E. V
Proof of Eh' Let Eh = Eu(a,b). We prove Eh(aﬁb) by mathematical ine
duction on a and b.
E(0,1) follows from R) . .
Proof of E(a=1,1) k E(a,1). Assume E(a-1,1). For the left hand side
of E(a,1), we have
F (p, XM Y) = (ppM Y, M (p, 48 X,8.M Y)) =
(PO*QaM1(P>am1*S1X,Y))
and for the right hand side of Ef(a,1):
b (p, %M, (p, 22,Y)) =
(py>0sM, (p,, ;78 ,X:8,M, (p, ~7,Y)))
(pg*8:M,(p, _,78.X,(p, ~Z,Y))).
To establish E(a,1), it is thus sufficient to show that
F e, 78,%:Y) = (p,, 7S .X,(p, +2,Y)).
This follows from
E(a~1,1) | (p,,_Us(p, VW) = (p,, 2U,W)
which is derived as follows:
F (o, 17Us(p, >VsW)) =
(B, 07U (B WM, (D, o 28,V,84H))) =
(p>am1+U9(pO+W9(p>awT+X,M1(p)am1»S1V,S1W)))) = (E(a=1,1))
(P>a»1¢U’(p0+w’(p>a—1+X’Mﬂs1W))) =
(P, g 1*Us (pgW5M,8,W))
(p,,_*Us(pg>E,M 5. )W)
W),

H]

]

> g

(p>a~1

55

From cy and Cos the proof of E(a,1) can be constructed for each given

a.
The proof of E(a,b-1) k E(a,b) is similar to the asbove ones, and

therefore omitted.
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d. Proof of E5°
d1. Using mathematical induction on b, one first shows that
- S, (D, 17XsY) = §.X

where, for b = 1, R5 is used.

d2. Using mathematical induction on b again, one shows that

FuS, = (py_ 7Es0)

using R, for the basis step.

d3. Using tgese results, we prove ES:
ks, (p, X MbS Y) = (by a2)
Sb(p>a Py E.0)Y) = (vy a1)
8, (B, ( b, 2%, (p,,_2Y,0)),2) =
8y (py_>(p, 2X.Y),2) = (by a1)
8, (p, ~X,Y).

e, Proof of 66.
We use mathematical induction on a. The proof of the basis step
b uY[(p>O+E,S1Y)] = (p>O»E,AOs1)
offers no difficulties.
Assume E6(au1). For the right hand side of E6(a) we write
F (o, SEAS, L) =

07 a

R AoS +1’M1(p>a- 7818 1ASg,q)) = (A

(g (P, 5 17815808540 ) My (B, 178 15405,,1)) =
(Po*(P>a~1 PB,AS )8 M (e, PEAS )S,) = (Egla=1))
(po+uZ[(p>am1+E,S1Z)]S1,M1uZ[(p>am1+E,S1Z)]S1).

(We have specially indicated use of A2 here, since this is the only

)

2

place in the proof of the 91-function where this axiom is used.)

There remains the proof of

(4) F uYl(p, »E,8,Y)] =

1

(pgouzl(p,,_,*E,8,2)18 ,Muzl(p, _,»E,85,2)18,)

1!

Call the left hand side P1 and the right hand side P2.
For P1 we have



b P, = u¥l(pps, ¥, M, (p, 128,,8,8,¥))] .

>ge1

Let P3 be defined by

P3 = uZ[(p>a_1+S1,S1Z)] .

Then we can write for P2:

L P, = (pO+P3,M1P3) .
(a) Proof of P, g P,.
It is sufficient to show
(pg>P3sM,P3)
From the assumption
we derive
S.Y < 8, (py*Py.M, 3).
Hence, by R5’
S1Y < S1M1P3 = P3°
Using this last result and the f.p.p., we see that, indeed,
b (pg>8 Y., (p, 428,,8,8,Y)) ¢
(pg P3aM, (p,, 178,58,P5)) .
(B) Proof of P, cP..

We have to verify

(5) (PO-)ZSM-‘Z) < P»] L"' (PO‘*(P 81 9812)3

-
>

>l 1°
For P, we have

1
By = (08P sty (B, o 814848,F)).
Hence,
F sy =8 M (e, 28,:8,8.F)) = (p,,_75,:8,8P ).
Thus,
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(6) Fp

1= (e, _478458,8,P )M (p, 18,,8,5,P))

= (pg?8,8:P;sM, (b, _178,,8,8.P,)).

Also, from the assumption
(pO+Z,M1Z) s P, ve derive, as above
(1) Zcsp, .
Using (6), we write for (5)
(pg>Z:M,2) < P, F (py>8,2.M,(p,,_,>6,.8,2)) ¢
(py*8,8,P M, (p, ,_475,,58,8,F)).
That this last assertion holds follows from (7).

>ge1

This completes the proof of E6; hence, the proof of (2), and, with
this, the proof of the generalization of McCarthy's 9l-function, i.e, of
(1), is completed.
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5. REGULAR TERMS AND THEIR NORMAL FORM

In this section, we introduce a subset of the set of terms of our
formal language, viz. the set of regular terms. Intuitively, the regular
terms correspond to flow charts, the predicate boxes of which are labelled
by elements of our set of predicate variables, and the action boxes of
which are labelled by our set of function variasbles. It is well known that
each such flow chart can be represented by a system of recursive proce-
dures (see e.g. McCarthy [22]). This system can then in turn be represent-
ed by a term in the u-language, in the way described in section 3.1, and
such a term will then be a regular term. It is also well known that there
is not a one-one correspondence between such flow charts and (systems of)
recursive procedures (or, equivalently, between flow charts and terms in
the u~language): No flow chart corresponds e.g. to uX[(p+A1XA2,E)]. Since
the equivalence problem for flow charts of the indicated type is decidable
(this follows e.g. from Yanov [39]), one may look for a completeness theo-
rem for the p-calculus restricted to regular terms. The completeness theo-
rem we shall prove in this and the next section is the following:

Let T and Ty be regular terms. Then
kE T, T if and only if = T, T T,

In words, b T, E T, is a valid assertion, i.e., Tf and Té denote
the same function in all interpretations I, if and only if b T, E T, is a
theorem of the p-calculus.

Note that this result is only a special case of the general problem:
If we know that ¢ |- ¢ is valid, can we then always obtain & proof of
® l ¥ as a theorem of the p-calculus? It has been proved by Scott [33]
that the answer to this general question is negative. (Clearly, the vali-
dity of the p-calculus, as justified in section 3.4, gusrantees that if
o b v i & theorem of the p-calculus, then © b ¢ is a valid assertion.)

The present section contains the first half of our proof of the
completeness theorem for regular terms. After the definition of these

terms, we introduce a normal form for them, derive a number of properties
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of regular terms in normal form, and show that each regular term is equi=-
valent to a regular term in normal form. In section 6, we then prove that,

for 045 O regular terms in normal form, we have

2

F o, =0, iff L 0, =0, .

Definition 5.2 gives the definition of a regular term; it uses defiw
nition 5.1, in which the notion of a term being regular in a variable is

introduced.
DEFINITION 5.1

a. X is regular in X.

b. If T, does not contain X free, and T, is regular in X, then T, and
T,5T, are regular in X.

c. If T, and T, are regular in X, then (p+11,T2) is regular in X, for each
predicate variable p.

d. If 1 is regular in X and T is regular in Y, then uY[t] is regular in

X, for each variable Y.

Examples .
1. AX and pY[(p+AY,X)] are regular in X,
2. XA, (pﬁA1XA2,E) and wZ[(p+2X,E)] are not regular in X.

DEFINITION 5.2

a. Bach constant or variable is regular.

b. If t, and 1, are regular, then 1 ) are regular, for

1 2
each predicate variable p.

3T, and (p+t1,r

1?2 2

c. If 1 is regular and T is regular in X, then uX[t] is regular.

Examples .
1. AX and wY[(p»AY,X)] are regular.
2. uX[xal, uX[(p»A1XA2,E)] and wZ[(p>ZX,E)] are not regular.

We now proceed with the definition of a normal form for regular
terms. One part of this definition is for technical convenience. This

concerns the notions introduced in definitions 5.3, 5.4 and 5.5. By
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technical convenience we mean that a proof of the completeness theorem
which does not use these notions in some way might well be possible. An=
other part, however, seems to be essential, viz. that property of regular
terms which amounts to the fact that for each term uX[T1];T2 there exists
t' such that |} uX[T1];12 = pX{1']. This is the property which was already
indicated in the third example of section 3.5, played an important role
in the proofs of section 4, and which will be stated precisely in lemmas
5.10, 5.11 and 5.12. "

Before we present the definition of normal form for regular terms,

we first give the following auxiliary definitions:
DEFINITION 5.3

A term T may be free from a predicate p.
a. Bach constant or variable is free from p.
b. Ayt is free from p, for each variable A and term Tt.
c. If t, and t, are free from p, then (g-T

1 2 12
predicate variable g which is different from p.

12) is free from p, for each

Examples.
1. B, AX, and (g»A(p>X,E),Q) are free from p.
2. (q*(P*A1,A2),A3) and uX[X] are not free from p.

Semantically, if a term T is free from p, then, for each interpreta-
I
(

tion I with domain D, and for each x € D, 1" (x) may be assumed not to

depend on pI(x). A more precise statement of this fact will be given in
the course of the proof of the completeness theorem (Lemma 6.4.) Roughly
speaking, we want to be able to reduce a certain argument on (p»01,02) to

arguments on ¢, and 0,. In our approach, this is, in general, allowed only

1 2
if ¢, and o, are free from p. To be more specific, we want to be able to

infer from k (p+o1,02) € o that Eo < o' and ko c o, where of and o"

are derived from 0 in a certain way1to be stated gelow. This inference is
not allowed in general: Although e.g. F (p>(p>Q,E),Q) < @ is valid, it is
not true that k (p»Q,E) ¢ @ is valid.

Note that no procedure is said to be free from p (this is again a

matter of convenience) and that, for q # p, (g~t ,12) is free from p iff

1
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both T1 and 12 are free from p.

Next we introduce the concepts of a (directly) open occurrence of a
varisble in a term (definition 5.4) and of a variable being shielded by
a term (definition 5.5). The main application of the notion of a directly
open occurrence can be found in Lemmas 5.1 and 5.2. For the notion of
shielding compare the third remark following the definition of normal

form (definition 5.6).
DEFINITION 5.4

A varisble X may occur (directly) open in a term t which is regular
in X.
a. X occurs directly open in (pWX,Ta) or in (p+11,X), for each p, T,, T,

b. If X occurs (directly) open in 1., or t,, then X occurs (directly) open

s
in (p+r1,12) for each p. 1 °

c. If X occurs directly open im 1, then X occurs open in T.

d. If X occurs open in 1, then X occurs open in A;T1, for each variable A
(which is ¥ X, by regularity).

e. If X occurs open in T, then X occurs open in w¥[r], for each Y + X

(where T is regular in Y).
DEFINITION 5.5

Let t be regular in X. T is said to shield X iff T contains no open

occurrences of X.

Examples.

1. X occurs directly open (and, hence, open) in (p»X,E) and in
(p(X,8,),4,).

2. X occurs open (but not directly open) in (p+A1(q+X,E),A2) and in
pY[(p>AY,X)]J.

3. X does not occur open in X or in (p+A1X,uY[(q+A2Y,A X)1).

3
Note that X shields X, that A;v shields X iff 7 shields X, that
(p+T1,12) shields X iff T, and T, shield X, and that pY(t] shields X iff

1t shields ¥X.

2
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First consequences of definitions 5.4 and 5.5 are lemmas 5.1 and 5.2:
LEMMA 5.1

Let t be regular in X. Let t' be the result of replacing, in 1, one

or more directly open occurrences of X by 1. Then L T=1',

PROOF. This follows easily by suitable application of the axioms on con=-

ditionals.

Examples:

1. k (p°X,E) = (p>(p*X,E),E)

2. F (p+(q+X,A1),A2) =
(pr(a@(p(aX,A,):4,)54,),4,).

We prove the second example. First we need an auxiliary result:

(p>(e2X,2),T).

“ (P‘*(Q‘*(P"X,Y) 1Z) sT)

This is shown as follows:

F (o+(ar(pox,¥),2),T)
(pr(p>(a>(p>X,Y),2), (a>(p»X,Y),2)),T) =
(> (g (p(p>X,Y), (p2X,Y)) , (p>2,2)),T) =
(pr (g (pX,Y) ,(p*2,2)),T) =
(p(pr(a>X,2) y(a2Y,2)),T) =
(pr(a>X,2),T) .

Replacing in this auxiliary result X by (q+X,A1), Y by A,, Z by A, and

T by A2 we obtain

i

b (pr(ar(pr(@oX,8,),85) 44,) 14,)
(p>r(a>(g>x 9A1 ) =A1 ’AQ)

Hence,

b (e (p(aoXi8,) 18,) 140) 14,)
(p(a>X,4,),4,).
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LEMMA 5.2

Let 1 be regular in X. Let t' be the result of replacing, in T, one

or more directly open occurrences of X by Q. Then F uX[t] = ux[t'J.

Examples:

1o b uXO(p>X,E) ] = uX[(p>R,E) ]

2. k WXL (p(@X,A,) 4,00 ] =
uXC(p(e>0,4,),4,X) ]

PROOF. If t has no directly open occurrences of X, we have nothing to

prove. Otherwise, let Y., Y2 be two variables which do not occur free in

1
T. Then there exists 1% such that 1 = r"[X/Y1][X/Y2], where t" is regular

in Y1 and Y2,

"= (p+(q+Y1,A1),A2Y2)). It is sufficient to show that

and Y, occurs directly open in t". (In example 2 above,

b ny Cuy, 013 = py Le"lo/y, 1]

a. 2 is clear.
b. Proof of ¢. Applying the u-induction rule twice, we see that it is

sufficient to show that

Y1 < UYZCT"[Q/Y.]]] }\ " c UY2[T"[Q/Y1J] .
Y2 = pY2[T [Q/Y1]]

Let 777! = uYg[T"[Q/Y1]]. Then

it = T"[Q/Y]][T"'/Yej.

Thus, we have to show

Y, ¢ Thre, Y, s L L T"[Q/Y1][T"'/Y2].

Since Y1 occurs directly open in 1", we have, using lemma 5.1,
boetCo/y J0crrr/y,d = ot /Y d0e /Y0

The desired result then follows by monotonicity.

We are now in a position to give the definition of a regular term in

normal form:
DEFINITION 5.6

a. Bach constant or variable is in normal form.
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b. If ¢ is in normal form, then Aj;0 is in normal form, for each variable
A,

c., If 9, and 02 are in normal form, and are both free from p, then
(p+o1,02) is in normal form, for each p.

d. If ¢ is in normal form, ¢ is regular in X, ¢ shields X, and ¢ is not a

procedure, then uXlol] is in normal form.

Examples:
1.9, B, A, A (pAy0A0), uX[ (p>AX,E) 1,
XL (p1+A1uY[(p+A2Y,A3X)],E)] :
are in normal form.
2. (prA, ,A2)A3, (p>(p*A,E),E), (puX[X1,E),
uX{xald, uxCuY[EDD, wX[(p>X,E)],
X[ (p*A(g>X,E),E) 1, nX[XJ;A

are not in normal form.

Remarks:

1. A regular term in normal form will also be called a normal term. o, 015
o' etc. always stand for normal terms.

2. Some of the general forms of regulsr terms which are pot in normsl form
are: (p+11,12);r3, ;1 or B3t uXlt, Iit,, (p+(p+r1,12),13) and its
analogues, (p+uX[r1],12) and similarly, wX[u¥Y(t11, and uX(t], where =
contains one or more open occurrences of X.

Some instances of such terms not in normal form, and their correspon-
ding equivalent terms in normal form are
(p+A1 ,A2)A3 and (p+A1A3,A2A3) .
QA and 9,
E;A and A,
uXC(p~A X,E)JA, and uX[(p+A1X,A2)],
(P+(F*A1,A2).A3) and (p->A1,A3),
(puX[ (p*AX,E) 1,E) and (prAuX[(p>AX,E)1,E),
uX[uY[(p—»A1X,A2Y)]] and uX[(p—>A1X,A2uY[(p+A1X,A2Y)])]9
pX[ (p+A(p>X,E)E)] and (pAuUL{p+AU,E) 1,E).
3. If uX[o] is in normal form, we want oluX[c1/X] also to be in normal

form. Without the restriction on shielding in clause 4, this would not
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be true in general. See

uXlt] = uX[(p>A(p>X,E),E)] and

tlexlt1/x] =

(prA(puXx[ (p>A(p>X,E) ,E) 1,E) ,E).

Since (p*uX[.],E) is not in normal form, the whole last term is not in

normal form.

Before we can give the proof that each regular term is equivalent to
a normal term, we need a number of properties of normal terms, contained

in lemmas 5.3 to 5.12.
LEMMA 5.3

Let 0.5 O be normal terms, let o, be regular in X and shield X. Then

2
a. 01[02/X] is a normal term.

1

b. If , is free from p, and o, # X, then 01[02/X] is free from p, for each

variable p.

PROOF. We use induction on the complexity of o., to prove both statements

13)
simultaneously.

1. If oy is a constant or variable, both statements are clear.
2. Let o, = Aj0,,, for some variable A( X, by regularity).

Since 944 is regular in X and shields X, we have that 011[0P/X] is a

normal term, by the induction hypothesis. Since (A;o11)[oP/X] =
= A;(011[0?/X]), statement a follows. Statement b is clear.

3. Let o, = (g»0, . ,0.,.). Since o, and o0, ., are regular in X and shield X,
1 11712 11 12

both 011[02/)(] and 012[02/}(] are normal terms, by the induction hypo-

thesis is for a. Since o, shields X, both o,  # X and o,  X. Since

0,, and o, are free from q, we have that 011[02/X] and 012E02/X] are

12
free from q, by the induction hypothesis for b, Since (q%011g012)[02/X]

= (q+o11[o?/X], 019[02/X]), statement a follows. As to b, if p = q, we
have nothing to prove. Otherwise, suppose that (q+011,c12) is free from

p. Then o”ﬁ ¢ are free from p, and both are % X. Thus, 011[02/X}

12

and 01?[02/X] are free from p, by the induction hypothesis for b. Thus,

(q+o11,o1e)[02/xj is free from p.
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L. Let o, = uY[c11]‘ Since 2P

is a normal term, by induction. We have uY[011][02/X] = uY[o11E02/X]],

is regular in X and shields X, 011[02/X]

assuming that Y does not occur free in 9y and, moreover, 011[02/X]
shields Y. Thus, uY[o11[02/X]] is a normal term. This proves a. Since

no procedure is free from p, b is trivially satisfied.
COROLLARY 5.3

If uXlo] is a normal term, then oluX[o]1/X] is a normal term which is

not a procedure.

PROOF. Follows from lemme 5.3 and the fact that, if uX[o] is & normal term,

then o is not a procedure.
LEMMA 5.4

If ¢ is a normal term which is regular in X, then, for each variable

A, o[AX/X] is a normal term, regular in X and shielding X.
PROOF. Follows easily from the definition of shielding.

For the next two lemmas, we need the notion of subterm of a normal term,
In this definition, we use the following notation: If T is a set of terms
{r1,r2,..,,Tn}, then T[1/X] is the set of terms

{11[T/X], Tz[t/X],...,Tn[T/X]}.

DEFINITION 5.7

The set (o) of all subterms of a normal term o is defined by
1. (o) = {Q} vy zo(o).
2.1, 20(9) = {Q}, EO(E) = {E}, zO(A)
2.2. ZO(A;O) = {A,A;0} U Zo(o)
2.3. ZO((rc1,02)) = zo(c1) UDNEN
{(pro',0")|o" € 20(01), o" € 20(02)}.
2.k, EO(uX[o]) = {uX[ol} u Zo(o) U Zo(o)[uxtol/xj,

{A}.

<
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Remarks:

1. For each o, (o) is a finite set.

2. For each o, 0 ¢ Zo(o).

3. It is convenient to have Q as a subterm of each term (hence clause 1)
and to have e.g. (p+c1,02) as a subterm of (p+(p+o1,o3),02) (hence
clause 2.3).

k. Since o € 20(0), we have o[pX[c]/X] € Zo(o)[uX[o3/X] < ZO(uX[GJ).

5. The notion of subterm will be of importance in a certain termination

argument in section 6.
LEMMA 5.5

For each normal term uX[o] there exists a o', such that b uxlo] = oty

o' not a procedure, and o' a subterm of uX[ol.

PROOF. Follows from corollary 5.3, definition 5.7 end the remarks follow-

ing it.
LEMMA 5.6

Let 945 9, be two normal terms. There exist o', ¢" such that, for

each predicate variable p,
a;L(pW1ﬁ2)=(pW'ﬂ"L
b. (pro',0") is a normal term.

c. o', 0" are subterms of o,, 0, respectively.

1 2

PROOF. We show the existence of o'; the proof for ¢" is similar. We use

induction on the complexity of o¢,. By lemma 5.5, we may assume that o, is

1 1

1 is a constant or variable, or if o, has the form

is clearly free from p, and of = 01. Now suppose

not a procedure. If o

Ao 1 then o

1 1

g, = (q»o11,o12), for some predicate variable q.

If g = p, we have

!s” (W(W0119012) 302) = (WO11302)»
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Since %44 has less complexity than o,

mal o''', free from p, such that ¢''' is a subterm of ¢

, there exists, by induction, a nor-
s and such that
), the

1

L (p+d11,02) = (p+o"',02). Since 0. is a subterm of (p»o, . ,0

11 12

statement of the lemma follows.

If q # p, we use the equivalence

b (pr(av0,50,5),0,) =

(P"(Q"(P"UH ’02)" (p+012302) ) ’02) e

By the induction hypothesis, applied to (p+011,02) and (p+c12,02),
there exist o''', o'’ such that
1. ottty oV are free from p.
2. b (pro,,40,) = (p+0:",02)9
b (p+072,02) = (pro v,ce).
SPRAR RN o " are subterms of 0,,, ©
Then

12 respectively.

F (or(@v04,0,,)50,) =
(pr(a>(pro,,50,),(p0,,5,0,)),0,) =
(pr(ar(pro' ' ,0,) ,(p20'V,0,)) 0,) =
(p+(q+o"‘,c'v),02).

Since (q»o''',0'") is free from p and is a subterm of o, = (q+°11’°12X
the statement of the lemma follows.
In the proof of lemma 5.8, which is one of the two key results in the

proof of the normal form theorem, we need the following auxiliary lemma:
LEMMA 5.7

Let 619 0, be terms which do not contain U, V, W or 8 free. Then

2
L uX[(p*G1,02)] =
(p+uU[01[(p+U,uV[02[(p*U,V)/X]])/X]},

uw[ce[(gﬁus[o1[(p+S,W)/X]],W)/XJJ),
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PROOF. The straightforward , but somewhat tedious proof of this lemma is
left to the reader. A special case of lemma 5.7 was proved as result R3

of section 4.1,

Example:

b uxC(poa, (@0X,B), Ay(rX,E))] =
(p—>11U[A1 ( q+(p+U,«uV[A2(r+(p—>U ,V),E)1).E)],

uW[Az(r—>(p—>uS[A1(q+(p~>S,W),E)],W) LE)1) .

The idea behind this lemma may become clear if one construets the

U~term for the procedure P, which is declared by the system

1

procedure P1;(p+P2,P3);
procedure P2;01[P1/X];
procedure P2;02[P2/X].

LEMMA 5.8

Let o be a normal term which is regular in X and which is not a pro=
cedure. There exists a normal term o', o' not a procedure, such that
L uXlol = o',

PROOF. Note that uX[o] itself is not necessarily a normal term, since o
may contain open occurrences of X.

We use an auxiliary function o(X,0) which is defined for ¢ as in the
statement of the lemma by

a. a(X,E) = a(X,0) = a(X,A) = a(X,A;0) = 0.

b. a(X,X)
c. a(X,(p+c1,02))= 1+max(a(X,c1),a(X,o2)).

Examples are

i

wn

a(X,(p*X,E)) = », and

a(Xs(WA1(q->X,E),(r-*AQ(S-*X,E),A3X)))) =2,
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Since neither o, mor o,

a non-negative integer, or «. First we consider the case that a(X,0) = o,

in clause ¢ is a procedure, a(X,0) is either

This case occurs iff either
a, 0 = X, or
b. o contains one or more directly open occurrences of X.
In case a, we use pX[X] = Q, in case b we apply lemma 5.2, yielding
l uxlol = ux[o'], where o' results from o by replacing all directly open
occurrences of X in ¢ by 2. Then, a(X,0') < =,

Next, we give the proof for a(X,0) < » by induction on the integer
a(X,0). (See also the example following this proof.)
a. a(X,0) = 0. If 0 = E, Q or A, the statement follows immediately. If

o = A;c1, we apply k- uX[A;c1] = A;uX[c1[AX/X]] (see result R, of section

2

k.1.) By lemma 5.5, we may assume that o, is not a procedure. Then, by

1
lemma 5.h4, uX[U1[AX/X]] is in normal form, and the desired result fol-

lows.
b. a(X,0) = n > 0. From the definition of a(X,0) it follows that then

o= (p»o1,02). By lemma 5.7, we have

F Xl (p>0,,0,)1 =

(p+uU[o1[(p+U,uV[02[(p*U,V)/X]])/X]]e
wwl. ).

First we consider uV[02[(p+U,V)/X]]. If 02[(p+U,V)/X] is not in normal form,
it can be brought into normal form by suitable application of the con-
ditional axioms. Let the result be Gé. Consider uV[cé]. Clearly, oé is not
& procedure, and, also, a(V,cé) < n, Thus, by the induction hypothesis,
there exists a normal cg, vith uV[cé] = cg.
Next, consider uU[01[(p+U,og)/X]]. Again, after suitable application of
the conditional axioms, we obtain a normal o!, such that L G1E(p+U,cg)/X] =

1

c;, 0; not a procedure. Also, a(U,c;) < n, Thus, by induction, there

exists a normel term cq such that L uU[c%] = c?. Similarly, we derive
i

L wWl.l = cé“, for some normal o)''. Then uX[(p+01,02)] = (p—»oi,oé")e

From the construction it follows that G;' and oé" are free from p. Hence,
(P*GY'Ué") is in normal form.

This completes the proof of lemma 5.8.
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Example:

We derive the normal form of

uX[ (p>(gA(p>X,E) ,E) ,X) 1 .

We have
F uX[(p>(q*A(p>X,E) ,E) ,X)] = (a(X,0) = )
UX[(P_)(Q')A(P'*X:E) QE) ’Q)] = (G.(X,U') = 2)
(p>uUL(g>A(p>(p>U,uvlal) ,E) ,E) 1,
wwiel) .
Also,

F wUL(q=A(p>(p>U,uvIQl) ,E) ,E)] =
nUl(g*A(p»U,E) ,E)] = (a(U,of*) = 1)
(g uVLA(p>(g>V,uWlE]) ,E) ], uSLE]) =
(q>Auvl (p>(q>AV,E),E)1,E) .

Thus, the desired normal form is
(P‘*(Q'*AUV[(P‘*(Q"AV’E) :E)]!E) :Q) .

The next group of lemmas contains the second key result to be used
in the proof of the normal form theorem. They are concerned with the rew
duction of a term uX[c1];02 to an equivalent normasl term uX[o']. This re-

duction is based on the following definition:

DEFINITION 5.8

Let £ be a finite (possibly empty) set of variebles, and let o,, o

1% 72

be normal terms.

o, o 0, is defined by
1 2
€
a. Q 00, =Q
2 3
€
b. E z Oy = 0y



c. Ao o, = A, if A e §
3
Aiczs ifAdg,

d. (A;o11) oo, = A;(c11 o 02),

g ? £
e. (p+011,612) 00, = (p+cr11 0 0,,0,, 0 02),
£ € €
f. uXlo,.] o o, = uXxlo o 0,1,
1 € 2 " gu{X} 2
provided that o, does not contain X free.

LEMMA 5.9

If o, is regular in X, ¢, shields X, ©

1 is not a procedure, 9, is

1 1
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not a procedure, o_ does not contain X free, then 0, 0 0, is regular in X,

. . ¢ {x}
shields X and is not a procedure.

PROOF. Follows easily from definition 5.8,

Lemmas 5.10 and 5.11 are preparatory to lemms 5.12, which contains

the main result on the "o" operation.

€

LEMMA 5.10
Let 01
terms which do not contain X free, and let £ be a finite set of variables

such that X ¢ £. Then

be a normal term which is regular in X, let Tps 03 be normal

X30, ¢ 0y L 0,00, ¢ (c1 ) 02)[03/X3

£ gu{X}

PROOF. We use induction on the complexity of 0,
a. o4 = Q.

Since @ o o, = @, this case is clear.

€

b 01 = H.

Then o, o 0, = o,, and (0, o o.)lo /X] = 0,,

1 £ 2 2 1EU{X} 2 3 2

since o, does not contain X free.
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c. o, = AFX.
Then (A o© 02)[03/X] = A o 9,, and
gu{X} gu{X}
Ao o, = A o Ips and the assertion follows.
€ gu{X}
d. o, = X.
Since X o o, = X30, (because of X ¢ E), and
13
(X o o,)l0,/X] = X[0_/X] = 0, the result follows from
2 3 3 3
gu{x}
X;02 < 03 L X;c2 =4 03.
e, 0, = Ajo

1 11°
Note that A # X by regularity. Then

(A;011) Z o, = A;(611202), and
(A0 o o,)lo,/X]1 = A;(0 o o.)lo./x1.
Mepgmy 273 Meyxy 273

Since

X;0,co, ko, oo, c (o o o,)lo,/X1,
2 3 11 £ 2 11€U{X} 2 3

holds by the induction hypothesis, the result follows by monotonicity.
f. 0, = (p+a11,o12).

This is similar to case e.
g. 0, = uY[o11],

We have to show

X0, < o3 L uY[011] o0

o S o, & (u¥lo,

£ gu{Xx}
or, by definition 5.8,

1] o 02)[03/XJ,

X;0, € @ L uYlo o o©.] cuYlo
2 3 11€U{Y} 2

or, by definition of substitution,

o 0,1 cu¥l(o o o )Lo. /X111,
Eu{y) © Meoix,yy 203

Since, by the induction hypothesis,

o O 3[03/X]

11EU{X,Y} 2

X;0, € 0g o utlo,

2 - 1

X;0, €0, ko o o,¢ (0,, o o, Lo, /X] ,
2 3 11£U{Y} 2 1|€U{X,Y} 2 3

the desired result follows from the fact that



] L 11 < 12

o | uYETTJ < uY[T2]

vhich holds provided that Y does not occur free in &.

This completes the proof of lemma 5,10,
LEMMA 5. 11

Let Gi’ 1 < i < nt+l, be regular in each X1,X23.“3Xn and let ¢ be a
normal term which does not contain any of the Xi free. Then
X, €9,350,K, € 0,30,...,X €0 30 |-

L o o< an+1[o1/X1][02/X2].,e[on/Xn];c .
{X19X2,.,.,Xn}

PROOF. Induction on the complexity of 0n+1'

8. °n+1 = ) or Un+1 = R,
Then the result is clear.
b.o . =A ] X;o 1= 1,2,000,m,
Then %41 o o= A;0, and

{X1,X2§aaasxn}
cn+1[c1/X1][02/X2],a,[cn/xn];o = A0,
whence the result.

. = X, i <i<n,
¢, 0,4 = X, for some 1, 1 <1 <n

Then © o o= X., and
n+l 1
(X seeX ]

0n+1[01/x1][02/x2],,.[cn/Xn];o = 030, The result then follows from

X, € 0,00, X © 0.30,.0:,X_ € 0 30 p X, € 0.:0.
1= T fp e Tpehs *n = "n?* k i="i°®

d. o = fsof,
n+1
Follows easily by the induction hypothesis and monotonicity.
- ¢ oyt
e o ., (prot,o").
Similar to 4.
= ¥
£o 0, w¥lo®].

We have to show

75
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X, ¢o0

1 1395 X2 < 02;0,...,Xn < an;o L

wlo'l o o c w¥lo' o, /X, o, /X ]...L0 /X ;0.
(K, Xy %) 1/l % n’“n

By definition 5.8, and the definition of substitution, this reduces to

X, € 0430, X, € 0,30,...,X €0 30 k-

uY[o'{x . o . .Y}o] < uY[o'[cT/X1][02/X2]...[cn/xn]];c .
Jofipeecesfys,

By the u-induction rule, it is sufficient to show

X1 = 0130, X2 < 02;0""’Xn [ cnga

Y ¢ uY[c'[c1/X1][02/X2]...[an/Xn]];U

of o oc
{X1,X2,,4.,Xn,Y}

0'[61/X1][02/X2]..u[cn/Xn][uY[o'[o1/X1][02/X2],es[cn/Xn]]/Y];o

where we have used the f.p.p. of
. \
uYlo [01/X1][02/x2]...[cn/xn]].

It can be seen that the last assertion holds by the induction hypothesis,
since it is of the form

X1 S 0430, X

p € 0y30,.00,X €030, ¥ g 530 |

n
[ 0 a .
o o x o . Y}G <o Ec1/X1][02/X2]...[on/Xn][o/Y],o
12 29"°‘"n?
This completes the proof of lemma 5.11.

LEMMA 5.12

Let Oys Op be two normal terms. Then



PROOF. Induction on the complexity of CPE For the cases where ¢

1

7

is not a

procedure, the argument is similar to the proofs of lemmas 5.10 and 5.11.

There remains the proof of

b ux[o11] ; o, = uX[o11];02

or, by definition 5.8,

= ux[o11 oo,l= uX[c11];c

x) 2 2’

a. Proof of c.

By the p-induction rule, we have to show

Xc uX[oH];c2 b 944 © O

c puXlo, . 130
(X} e

2

or

X < uxlo, Js0, L o, o o, g0, uxle, 1/x]50,.
{x}

This assertion follows from lemma 5.11, with n = 1,

Proof of 2.

By the u-induction rule, we have to show

X0

c uXlo,, o 0,1 b 0,139, € uXlo,, o o 1.

x) x) 2
Since, by the induction hypothesis of lemme 5.12,

L"’11""2 = "n; Ope

2 11 11

and since

L wxlo,, o 0,1 = (0., o o,)[uxle.. o 0,1/X1,
11{X} 2 11{X} 11{X} 2

the assertion follows from lemma 5.10 with £ = §J,

o)

This completes the proof of lemma 5.12.

We have now collected enough results to proceed with the proof of

the normel form theorem:

THEOREM (Normal form theorem)

For each regular term 1 there exists a normal term ¢ such that

bt=o.
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PROOF. We use induction on the complexity of t.

8.

b.

X

b2.

b3.

blh,

b6,

If 1 is a constant or variable, then 7T is itself in normal form.
TET3T,.
By the induction hypothesis, there exist normal Oys Op such that

F 11 = 01, L 12 = 02. We show that there exists a normal ¢ such that

0430, = 0. We use induction on the complexity of oy
o, = Q.
Then L 01;02 = Q; hence, 0 = Q .,
01 = K,
Then L 01302 = 02; hence, o = 02.
o, = A,
Then 0,50, = A;og, which is in normal form, and we take o = A;UQs
o, = A;011.
Then 0,30, = (A;O1]);62 = A;(G11;02). By the induction hypothesis on

the complexity of ¢, there exists o' such that | 01430, = o'. Thus,

1? 2

we can take o = Ajo',

9y = (2204459,)

We have | (p+o11,012);02 = (p+011;02,012;62). By the induction hypo-
thesis, there exist o',0" such that | 0,430, = o'y | 0,530, = o". By
lemma 5.6, there exist o''',0'V such that | (pro',0") = (p>o''',0' "),
and (p>0''*,0'V) is in normal form. Thus, we can take o = (p»o''',0'").

o, = uXlo,,J.

Then 0430, = uX[011J;02. By lemma 5.12, L uXLo11];02 = uX[o11J ; 05
hence, by definition 5.8, k uX[o, Jj0, = uXlo, o o,]. We
11 2 11{X} 2

may assume that 9 does not contain X free and is not a procedure.

o 0, is regular in X, shields X, and is not a pro-
{X}

cedure. After, if necessary, applying the conditional axioms,

By lemma 5.9, oﬂ

0., 0 o, is in normal form. Then uX[o,, o o,] is in normal form, and
1" 2 11 2
{x3} {x}
we can take o = uX[c1T o a2].

{x}

This completes the proof of case b.
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c. T = (p+T1,12).
By the induction hypothesis, there exist normal 945 O such that
b T, = 95 b T, = 0,. By lemma 5.6, there exist ¢', ¢" such that
(p>0',0") is & normal texm, and that } (p+c1,02) = (p>0’,0"). Thus,
F o= (po',0").

d., 1 = uX[T1].
By the induction hypothesis, there exists a normal o, such that

1

L Ty E 0y It can be verified that, if 1, is regular in X, then 9,

1
is regular in X. By lemma 5.5, we may assume that e, is not a proce-

dure. Application of lemma 5.8 to uX[01] yields the desired result.

This completes the proof of the normal form theorem.
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6. COMPLETENESS THEOREM
6.1. OUTLINE OF THE PROOF

This section is devoted to the proof of the main result of this

paper:
THEOREM (Completeness theorem)

Let « be regular terms. Then

10 T2
Fou= = kb=, .

(Remember that, in general, ® L ¥ holds iff (& h ¢)I is true for all in-
terpretations I (see section 3.2), and that ¢ L ¢y holds iff @ L Y is a
theorem of the p-calculus.)

PROOF
1. Proof of <. This follows from the validity of the p-calculus, as dis-
cussed in sections 2 and 3.h4.

2. Proof of ==, By the normal form theorem, it is sufficient to show that
(1) F 9, £0, — - 0, €0,

where 01, 02 are normal terms.
Note that equivalent terms may well have different normal forms (e.g.,
pX[(p>AX,E) ] and (pAuX[(p>AX,E)1,E)).

The proof of (1) proceeds essentially by an inductive argument on the

complexity of o,. However, intermediate steps in this proof will be of the

1
more general form

(2) o k 0,0, = . o, €0,

where ¢ consists of the accumulated hypotheses which are generated by our
treatment of procedures, and which will allow us, at suitable stages in

the proof, to apply the p-induction rule.
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Let ¢(k) and ¢(}) be short for the assertions o F o, <0, and
] F 01 [ 02 respectively. The general scheme of the proof is the following:
First we give a precise description of the structure of the assertions
o(E) (called normal assertions), which structure is determined by the way
in which the successive hypotheses concerning procedures are generated.
Secondly, we shall introduce a complexity measure I' for an assertion
; and @ in o (k).

Then, in order to prove ¢(F)::§¢(L) for normal assertions, we shall pro-

¢(L). This measure involves the complexity of both ¢

ceed by a case analysis of the various forms which o, and 9, in ¢(F) can
have, as determined by the normal form theorem, and we shall show that
in each case, ¢(F)::3¢(L) can be seen to hold on the basis of one of three

arguments (A1, A2 or A3):

A, ¢(F) is false, i.e., there exists at least one interw
pretation I for which (¢ k o, € 02)1 does not hold.
Example: ¢ F Ecq.

A2 : ¢(L) can be seen to be a theorem of the u-calculus
directly.
Example: ¢ La c A,

Ay '+ Assume that o(k) holds. We exnibit ¢ 1) (k), 1 <i<n,
such that the following conditions are satisfied:

A3.1: ¢(%)(F) is a normal assertion, 1 < i < n.

A3'2: ¢(l)(F) has less complexity than o(k), 1 <i<n.

A&3:MHzﬁﬁﬂ¢ﬁ,1iiin.

A3.h: From ¢(1)(L), ¢(2)(L),...,¢(n)(L) together, we can infer

o (k).

The following picture illustrates argument A3:

o (k) == e

i i

S I A PO
: = :

SY o) ()
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In order to show 1, we prove 2 (for each i), and 4, and, assuming
that 3. holds (this is the Jnductlon assumption, since, for each i, (1)(F)
has less complexity than ¢(P)), we then have the desired result.
Example of A3: ¢(F) is ¢ k Ao, < A;oz, n=1, and ¢(1)(F) is ¢ F g, € 0,
Details of this example will be given below, in particular in lemma 6.3.

6.2, NORMAL ASSERTIONS

We now give the definition of a normal assertion. This definition will
become clearer if it is considered together with the case analysis to be
given below, in perticular with the treatment of procedures (cases 6, T

and 8). Moreover, the definition is followed by an informal explanation.
DEFINITION 6.1

An assertion & F o, < 0, 1s a normal assertion iff

T2
1. 9, and o, are normal terms.
2, = & ,%.,...,0 , m > 0. We use the convention that, if m = 0, then ¢
1272 *m o

is the empty list, If m > 1, then we require, for each i, 1 < i < m,

. 0. o= . I . . > 0,
& ¢1 Xl =f i,0? X = p1,1’ ’xl = pl,ni’ B 2.0

b. Each p. ., 0 < J < n., is a normal term; p. is a normal term of
1, i 1,0
the form uXi[pj].
c. oy is regular in X.l and shields Xi’
d. Py is regular in Xj’ 1 < J < m, and shields Xj’ 1< <m.
e, X. does not occur free in o, or in any p. ,, !
1 2 J oK
£ If 3 + k, then pi,j + pi,k’ 1< .k B

& 0] and p. ,0 are subterms of p1 0;

<j<i, 0c<k i,nj'

02 and pl Y 1< J < n , are subterms of p1 1°

Be @10550 0050 }=p TS 0<J<n.
We give an intuitive exposition of the various points taken into
account in this definition. Firstly, we distinguish two aspects in the
conditions imposed upon the normel assertions, viz., those related to the
application of the p-induction rule, and those related to the termination

of the inductive argument described via arguments A1, A2 and A3 above,
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Conditions 2f and 2g belong to the second category, the remaining ones
to the first.

The conditions of definition 6.1 will be discussed by meens of a
simple example. In our treatment of this example, we shall not be complete
- the full argument follows in the case analysis below - but we give only
a first sketch.

Consider the following assertion:

(3) l=ux1[...ux2[...x1.»..x2...]...J502
e ——
)
L 2 5]
N
4
4 ]
'
[¢)

First we reduce this (case 6 below) to

(In the complete proof of this and the following reduction steps, argument
A3 has to be verified.)
(4) is in turn reduced to (case T below):

v

%

Note that ®, has the form prescribed by conditions 2a and 2b of dew

finition 6.1, with p1’o = ux1[p1], p1’1 =0, m=1, and n, = 1.
The continuation of the process now depends on the particular form of Py-
In general, a successive reduction takes place; e.g., if °y and o, are

of the form A;p; and A;0! respectively, we reduce (5) to
] ¥
@1FD1S°25

(cf. lemma 6.3 and case U4 below; note that p; and oé are subterms of p,

and o, respectively), and if p, is of the form (p*p%,p?) we reduce (5)

1
to both
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®Fo;

1

In
a

and
it "
¢, E P1 £

where cé and o; are subterms of 0, such that (p+dé,cg) is in normal form
and that E (pro,0) = (p+cé,05)’holds. (Cf. lemma 6.5 and case 5 below.)
Eventually, these and similar reductions will at some stage have reduced
(5) to, 8.0.,

(1)

(6) X, € uX1[p1],X1 < 9, F uX2[92] c o,

‘] =
(1) is a subterm of o,..
2 2

We are now in a situation where case 6 and then case T are again applica-

where ©

ble, and we derive

(1) (1)
(7 X, € ux1[p1],X1 € 950X, € uKle,1,X, < o ko, < oy e

Successive reduction of P will at some stage lead to the assertion

(1) (2)
(8) X, ¢ uX1[p1],X1 € 0%, € uX2[92],X2 € 9, E X, €0,
(2) . . (1) : =
where 02 1s a subterm of 02 (and, thus, of O, = oy 1).
" i)
Now there are two possibilities:
(2) .
(o) 0,70 = 0,
Then, clearly,
(1) (2)
X1 < uX1Ep13,X1 < 02,X2 = uX2[p2],X2 €0, L X1 € o,

holds, and we have reached an end point in our inductive argument

2
8) 052 4 o,.
Then we continue the process with another application of case 7, and we

reduce (8) to
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(9) X, cuX,lp LX, € 0,,X, ¢ 022),x2 s wXlp, 1%, € céw)
E oy £ Uég) .
Successive reduction of 04 will then lead to, a.0.,
(10) X, < ux1[p1],x1 € 0,.X, € céz),xe c uxz[pzl,xg c 0é1)
F uX2[92] < cé3)
with UéB) a subterm of oée)e Now case 8 applies: We encounter a procedure

(uX2[02]) which has already appeared before in the process (as can be seen

from the presence of X2 = uX2[02] in the list of assumptions). We then
reduce (10) to

(2) (1) (3)
(11) X1 c uX1[p1]@X1 S 05K, €077, X, € uxe[pgl,x2 €9, F P, S 0y
& Y b) [ ~ J
%y %

ete.
We now use this example to discuss the conditions of definition 6.1.

It is easily seen that the assumptions @1,¢2,,.. which are successively
generated are indeed of the form prescribed by conditions 2a and 2b, It
is also of importance to note that, in generasl, the number of o, which
will be generated is bounded by

a. For the assertion (3), the maximum number of "nested" procedures in

O3
b. For the assertions (L), (5),...,(11), the maximum number of "nested"

procedures in p .
1,0

This maximum number is certainly bounded by the total number of
subterms in 0, and 91,0 respectively. This fact, which will be applied
below in definition 6.2, case c¢ (definition of Sl(¢)) is of importance
in the termination argument. See for this the comments on the use of the

complexity measure I' of & normal assertion in section 6.3.
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Next, we consider clauses 2c¢ and 2d of definition 6.1. These condi=-
tions are vacuously satisfied for assertion (3), and can easily be seen
to hold for the remaining assertions. E.g., in (5), o, is regular in X1
and shields X, since uX1[p1] is in normal form.

As to condition 2e, by suitable rewriting of bound variables, we may
assume that none of the bound variables of o, in (3) occurs free in ¢
Since all generated pj,k’ for k > 1, are subterms of the initial ¢

o°
09 these
two facts imply that none of the Xi occurs free in any of the pj,k’ for
k > 1. The absence of free occurrences of Xi in pj,O’
trated in our example by the absence of free occurrences of X

1<j<i, is illus=~
N in uX1[p1]
(in assertions (7),...,(11)). Again, this can be achieved in the general
case by a suitable rewrite.

For condition 2f compare the treatment of assertion (8): No addition
of a new assumption to some @i takes place, if this assumption is identi-
cal to some assumption already contained in the list Qi' Therefore, we

know that, at each stage, all ch P contained in @i are different.

®
Next, we discuss condition 2g. Consider e.g. assertion (11). From the

construction which led from (3) to (11) we see that

a. P, is a subterm of uX2[02] which is a subterm of P, which is a subterm
e e o

b. 02 15 a subterm of 02 which 1s a subterm of 02 which 1s a subterm
Of Py =Py g

From these two facts we conclude that condition 2g is satisfied.
Combination of conditions 2f and 2g implies the following:

At each stage, we know an upper bound for the number of elements in each

of the lists o, This is given by "1 + the number of subterms in 91’1",

or, if 9131 is not yet present (cf. assertions (3) or (4)), by "1 + the

number of subterms in 05. This fact is used in definition 6.2, clause c

(definition of Sr(¢)) and in the termination argument (cf. section 6.3).
Finally, we consider condition 2h. Applied e.g. to the assertion (11),

this condition states that the following assertions all hold:
o ko e o koo o ke e,

and
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s % E Po S Py 00 10 & s Po £ P 4

or, specifically,

(12) o ko, cuxlp,]

(13) o, E P, €0,

(1k) o, E G Uéz)

(15) 0,0, E P, < uX,le,]
(16) 0,50, L P, < 021) .

That assertions (12) to (16) hold, can be seen from the "history"
of the derivation of (11): (12) is clear from the fixed point property

and monotonicity (since ¢, contains the assumption X, ¢ uX1[p1], we have

Py < p1[uX1[p1]/X1]; henc;, Py < uX1[913),(13) is im;lied vy (5), (14) by
(9), (15) follows also by the f.p.p. and monotonicity, and (16) follows
from (7).

This example illustrates the function of condition 2h.
For each given assertion which occurs at some stage in the inductive are
gument (by repeated use of A3), condition 2h states the validity of a
number of assertions which precede the given assertion in the inductive

process. As will be seen in the precise treatment of case 63 case 7 and

case 8 below, we must have the validity of these preceding assertions
available, in order to be able to verify, at suitable moments, arguments
A3.3 808 Ay

This transfer of information on the history of the derivation of an
assertion to a property of the assumptions of the assertion, by means
of condition 2h, allows us to do without the complications of the (im=

plicity present) tree~like structure of the inductive argument.
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6.3. COMPLEXITY OF NORMAL ASSERTIONS

The next definition introduces some notation for a normal assertion,

which will be used in the discussion of its complexity.
DEFINITION 6.2

Let ¢(F) = & F o, S 9, be a normal assertion, as described in defini-
tion 6.1. We define ‘

a. X(¢) = {x’,xg,...,xm}

m
b. L (¢) = i21(ni+1)
c. 8,(¢) = |z(p1,o)|, if m > 1
= |z(e))], ifm=0
Sr(¢) = 12(9151)|, ifm>1eandn, >1
= IZ(U2)|, otherwise

Here, |2(0)| is used to denote the number of elements in the set I(0)
of all subterms of ¢. See definition 5.7.
d. L (¢) =5,(¢) (145 (¢))
e. Lg(¢) =L () -~ L(¢)
We now give the motivation for the definition of the complexity
I'(¢) of a normal assertion ¢(F) = ¢ F 0, S s which follows in definition
6.4 velow.-

Consider a sequence of reduction steps as illustrated in the example

above. In general, we have, starting with the normal assertion ¢(L) =

¢(1)(E):

in

oDihy = o0 oD ¢ of1
oy = o L o2 ¢ 2

N
Q

o1 (k)

in
Q
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(i+1)

where each ¢(1)(L) is reduced to ¢ (F) as part of argument A_. We need
3

a complexity measure which decreases in each transition from ¢(1)(F) to
¢(1 1)(}:). Clearly, it is not sufficient to use as such a measure simply

(i)

. Consider as a counter example assertions (4) and

(5) above, where the complexity of 0( i)

1
+ . .
cgl 1) =Py Therefore, another entity must be taken into account in order

to make the inductive argument go through. For this, we use the function
Lg(¢), as defined in clause e of definition 6.2, by Lg(@) =L (¢) -

La(¢). The idea behind its introduction is the following: We compare the
(1) (i+1)

this number either remeins the same, or it increases. However, this in-

the complexity of 9

= X, increases to that of

number of elements in the lists ¢ and & . In each reduction step,

crease cannot go on indefinitely: At each stage, it is possible to predict

(1)

, namely, as the difference between the actual

the maximum future growth of the number of elements in & , and this is

(i))
length La(¢(l)) -cf. definition 6.2, clause b~ and the upper bound for the
number of elements in Q(J)
bound is given by L (¢(l)) S (¢<1))(1 + 8 (¢(l))) The upper bound

the number given by L (¢
which can occur in future steps, which upper

L (¢ (1)) is determlned as followse
max

We note that ¢ may grow in two ways:
a. Some ¢i in ¢ may be extended by the addition of another assumption

X, cop

1 TR Condition 2f of definition 6.1 ensures that in this newly
R
i

added hypothesis, pi is different from all previously added

.+1
Pi.j° 1<d < ng . (Cf. the reduction from (8) to (9) above.) Since,
by condition Zg of definition 6.1, all pi,j are subterms of p1,1, it
follows that the number of elements in o, is bounded by 1 + S (¢)3 A
proviso has to be made for the case that p1 1 is not yet present Then
¢(k) is of the form ¢ k o, S 0, with ® empty. or ¢ =X, cp 1,0° (In
the example above, this holds for assertions (3) and (L4).) From the
way in which assumptions are added to & -case 7 above~ it will follow
that in the possibly added assumption X

1
. This explains the second alternative

P, L. P will be either
= P1,12 Pags

9, itself, or a subterm of ©
in the definition of sr(¢),

2
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b. A new Qm+1 may be added to ¢ = ¢1’¢2"°”¢m' An upper bound for the
number of times such an addition can occur, is given by the total num-
ber of subterms in p1’0, or, in case ¢ is empty, in o,

Now we assert —and we shall have to verify this at each stage in the

case analysis below- that, if according to argument A_, the proof of

¢(i)(F)::>¢(i)(F) is reduced, a.0., to that of ¢(i+1)(L) ::>¢(i+1)(L),
then Lg(¢(i+1))
each case:

(@) 1) > p ()

(&) 1, () <1 o)),

max o max

i.Lg(¢(1)). In order to verify this, we must show in

After these explanstions, the definition of the complexity I'(¢) will
offer no difficulties. First we give the definition of the complexity
v(o) of a normal term o. This is the same notion we used already in

section 5, but which is defined here formally for completeness sake.

DEFINITION 6.3

Let ¢ be & normal term.
a. If 0 is a constant or variable, then y(o) = 1.
b. y(A;0) = 1 + y(o).
c. Y((pro,,0,)) = 1+ v(o,) + v(o,).
d. y(uxlol) = 1 + y(o).

DEFINITION 6.4

c 0, be a normal assertion.

Let ¢(L) = ¢ F o, 5

I'(¢) is defined as a pair:
r(¢) = (Lg(¢)*v(o1)).

The ordering between these pairs is the lexicographical one:
Let:
¢(1)(F) = ¢(1) L 021) = 021)
ROIBERCNRCINOS
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(1),

Then T (¢ < r(¢(2)) iff either

() Lg(¢(1)) < Lg(¢(2))9 or

(1), (2))’ (1) (2),

and Y(o1 ) < Y(U1 .

(8) Lg(¢ = Lg(¢

6.4, AUXILIARY LEMMAS

Before we proceed with the case analysis in section 6.5, we first

collect in a number of lemmas some results to be used below.

PROOF. Clear.
LEMMA 6.2

None of the following normal assertions ¢(k) holds:
8. ® FEcq
b. 0k EcA
c. & L E < bjo
d. @ F E (p+c1,c2) .

in oin in

in

PROOF. a is clear. As to b, ¢ and d, select some interpretation I with
domain U, and x € D, such that AI(x), Al(x)a and pI(x) respectively are
undefined, and, if necessary, Xi, for X. e X(¢), (cf. def.6.2) is unde-

fined on . Since EI(x) = x, the lemma follows.
1)
LEMMA 6.3

Let ¢(F) = ¢ L A;c11 [= 02 be a normel assertion. Let 02 be neither a

1)

The need for this lemma, and its proof, were pointed out to us by Scott.
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deine 6 (k) as

variable nor a procedure. If 02 has the form 02 = A;o219
¢(1)(F) =ok 0,4 € 0y, Otherwise, define

1
¢( )(P) =0k 0., € 2

Then ¢ (k) =>¢¢")(k) nolas.

PROOF .

a. 02 = A;021.

We have to show:

o F A;c11 [ A;021 i $ F 011 c 021.
Suppose & F 944 € 94 does not hold. Then there exists an interpretation
IO with domain DO' satisfying ¢, and some X, € DO’ such that

I I
0 » 0
011(x0) =y, and 02](x0) + v.

Let I1 be the following interpretation: 01 = DO ] {x1}, for some

X, ¢ DO' On DO’ I1 is defined to coincide with Io. In x,, we define
I

A 1(x1) = x ., Note that, since Ao

o is regular in each X, € X(¢) (by

11

clause 2c¢ of definition 6.1), A ¢ X(¢); hence, we are not restricted in

. I1 I1 I1 I?
our choice for A . We then have: (A;c11) (x1) = 011(A (x1)) =
I

I
. 1 . 1
= 011(x0). Since Xy € DO’ 9,4(%,

I1 IT IT 1 IO
(A;021) (xi) = 0,,(A (x1)) = 021(x0) = 021(x0) %+ y. Thus, I, contra-
dicts the wvalidity of ¢ F A;c11 c Azo
b. o cannot be written as A;021.
We have four possibilities for o

I0
(x,) = 0,7(x,) = y. Also,

21"

ot s E, A';oé, or (pro',0''). We give

the proof of the third case, the other ones being similar. Assume

ok A;c11 [~ A';oé, and suppose that @ F 080 does not hold. Then

there exists I. and DO, and x. € DO‘ such that 01?(xo) =y, Let

0 0 ¢
= 1 = i1 o
D Dy v {x,}, for some x, ¢ DO’ let A (x1) X, let A . (x1) be un

1 0°?
defined (by clause 2e of definition 6.1, the choice for A' ! is not
restricted by ¢), and let I, beasI

validity of ¢ F A;oH c A';oé.

on DO’ This I, contradicts the

0 1
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LEMMA 6.4

Let 01, o, be normal terms, both of which are free from p. Then the

2
following holds:

For all interpretations I, with domain 00, end all x, € DO’ if
I
6.0 % ) =y, then there exists an interpretation 11 with domain 01 and

1 4]
X, € 01 such that

a. 011(x1) = Y.
I1
b. p (x1) = 1,
I. I IO
c. For all ¢ # p, q ‘(x1) =q O(XO), if g (xo) ig defined,
' I I

q 1(xq) is undefined, if q O(xo) is undefined.

I1 IO
d. If o, (x1) =y, then o, (xO) =y,

Moreover, there also exists an interpretation I_, which satisfies a, c,

T 2
d (with I, replaced by 12), and b': p 2(x1) = Q,

The main statement of this lemma can be phrased as: If ¢ is free from

p, then for each % and IO we can find Xy and 1'1 such that ¢ 1(x1) delivers
I0
the same result as ¢ (xo), but, moreover, we are free to choose for
I I
).

P 1(x1) either 1 or 0, without influencing the value of ¢ 1(x1

PROOF. We prove only the existence of 11; the proof for 12 follows by
symmetry. We use induction on the complexity of the pair (01902). The full

proof will not be given, but only three representative cases.

= pe w AT
1o 0y = A30,,, 0, = A's0,,.
Choose 11 and 01 as follows: D1 = DO ] {x1}, for some X, ¢ DO' I1
11 I0 IT I0

. . - . _

coincides with I on Dys A (x1) A (xo), A (x1) A (xo),
I1 11 I0
p (x;) =1, and for all q $p, q (x1) = q (xo) (or both are un-
I

) %x.) = y. We verify a, b, ¢ and d. We have

defined). Assume (A0 5

11
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2.2

I I, I I, I I, I
) = o 18 T = ol Ox)) = 0.0 Ox)) =

(A 1 11 0

991
(A;c11) o(x ) = y, where we have used the fact that I? coincides I
I

) 1(x1) = y, then

6]
on DO' b and ¢ are clear. As to d, if (A';0

I I I I I
) %xg) = 058" Ox ) = 0,700 T(x))) =y

21

i
(A 39,4

0y = (@20,,50,,).
T
0
Let e (xo

I
qQ O(XO) is defined, say q O(XO) = 1. We apply the induction hypothesis

) = y. Two cases arise:

21), both of which are free from p. Thus, there
I I

exists I, and x, € 01 such that 011(x1) =y, p 1(xl) = 1,
I1 I
T (x1) = r
I

to the pair (01,0

O(XO), for all r # p (or both are undefined), in parti-
IO I1 IO
(xo) = 1, and, if (x1) = y, then 021(x0) =y,

cular, g 1(x1) = q oy,

This proves clauses a, b and ¢. As to clause d, suppose that

I1 11 IT 11 IT

oy (x,) = y. Then (qv0,,50,,) (x) = (@ (x;) > 0,0}, 05(x)) =
I1 IO

021(x1) = y, Hence, 021(x0) = y, by the induction hypothesis. From

I I
= 0 =
5 (XO) (q*021,022) (xo) y follows.

q O(xo) is undefined. Apply the induction hypothesis to the pair

this, ©

(01,021)i The argument is the same as for 2.1, apart from the fact
that g 1(x1) is now undefined, which implies that clause 4 is triw

vially satisfied.
o = (woyq,0,,).

I I I

Assume 610(x0) = y. Then either g O(xo) = 1 or q o(xo) = 0, Assume

the first. Apply the induction hypothesis to the pair (011,62), both

of which are free from p. This yields an I, and x, € D1§ such that

11 11 I1 IO

011(x1) =y, p (x1) =1, r (x1) =7 (xo) (or both are undefined),
I1 IO I1

and, if o, (x1) =y, then o, (xo) =y, Then (q+011,012) (x1) =y
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hence, clause a. Clauses b, ¢ and d are clear.
LEMMA 6.5

Let ¢(k) = ¢ F (p+c1,02) < 0 be a normal assertion. There exist o' ,o"
such that
a. o',0" are subterms of o, and (p>0',0") is a normal term.
b. k (pro',0") = (pro,0).
c. Let ¢ (k) = o k o, 0
o2 k) = ok o, g o

Then ¢(F)::$¢(1)(L)
s(k) =42 (k).

in

in

PROOF. Assume that ¢ k (p+c1,02) c ¢ holds. This implies ¢ L (p+(p+o1,02),
(p+o1,02)) c (p>0,0); hence, we have o k (p+01,62) c (p+0,0). By lemma
5.6, there exists a normal term (p+o',0") such that k (p>o',0") = (p+0,0),

with o', ¢" subterms of ¢. Hence,
(17) @F (P“*G11,012) < (prot,o") .

Assume that, e.g., @ F 94 € ¢' does not hold. Then there exists IO and
I I
€ DO such that I satisfies ¢, and such that 01?(xo) =y, o O(xo) ty.

I
and x, € 01 such that p 1(x1) = 1, and

%o 0

By lemma 6.4, there exists I
I

01:(x1) =y, Since (p+011,012) is regular in all X; ¢ X(¢) and shields

all Xi € X(¢), it can be verified that I1 also satisfies &. Thus,

o

1

1

I I
(p+011,012) 1(x1) = g (x1) = y. Hence, by (17), (p»>of,c") 1(x1) =

I1 I0
of (x1) =y, Then, by lemma 6.k, o' (xo) =y,
Contradiction.

6.5. CASE ANALYSIS

After the preparations of the preceding sections, we are in & posie

tion to give the proof of the completeness theorem: If ¢(P) = & F °, € 9,

is a normal assertion, then
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(18) ok 0,0, = ¢ . o, €0,

By lemma 5.5, we may assume that o, is not a procedure. Since F A = AE,

2

we may also assume that o, is not a variable. Moreover, after suitable

2
rewriting of bound varisbles, we may assume that in no term are there two
occurrences of terms uX[c1] and uX[02] with the same bound variable X.
(E.g., a term uX[...uX[o']...uX[o"]1...] is rewritten as

pXCe.w¥lo'LY/x3]...u2lo"(z/x77...1.)

CASE 1. 01 = Q.

We have to show:

By lemma 6.1, argument A2 applies.

CASE 2. o, = E,

2.1, g, = Q. Follows by lemma 6.2 and argument A1s
2.2. 02 = K, Follows by lemma 6.1 and argument Ag.
2.3 02 = A;021. Follows by lemma 6.2 and argument A14
2.4, o, = (p+0219022). Follows by lemma 6.2 and argument A1,

CASE 3. 0, = A, A ¢ X(4).

Since kA = A3E, we can apply the argument which follows in case k. (The

case that o, = X, X ¢ X(¢) follows as case T.)

CASE 4. o, = A30,,.
Note that A ¢ X(¢), since o

= A0

1 is regular in all elements of X(¢). By

lemma 6.3, either o ;» end

2 2

o) =>0V(k) =0k o, 2o,

or 02 cannot be written as A;021, and

o) =0 Vk) =e ko, ca.

We assert that in both cases, argument A3 applies.

We have to verify A3.1 to A3-h'
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A3 1 ¢(1)(F) is a normal assertion. Since ¢ is not changed, we have

nothing to verify for clauses 2a, 2b, 2d, 2f and 2h of definition 6.1,
Clause 2c follows from the fact that, if A;c11 is regular in X and shields

X, then 941 is regular in X and shields X. If X, does not occur free in

A;021, then it does not occur free in 021;

follows since o0, is a subterm of A;d11, and since 94 and Q are subterms

11
of Aj;o,, and o, respectively.

21 2 .
A, ¢ r(¢(1)) < I'(¢). Clearly, Y(c ) < yv(A; 011). If ¢ is non empty, then

hence, clause 2e. Clause 2g

3.2
5,9) = 5,60 = [26, )], snas 0= 568 = Iste, i 3t @ s
empty, then S.(¢) = |z(A o, )| > Iz(o )| =8 (¢( )), and either

sr(q») = |x( Aso, «)l > |):(0 '| = 8 (¢(')), or

sr(¢) = |>:(o )| > |z(e)| =8 (¢(1)) Since, clearly, L (¢) BL(cp(”), we

see that Lg(¢) 3'Lg(¢( )), from which I'(¢) » P(¢(1)) follows.

AS 3¢ Thet ¢(F):::>¢(1)(k) follows from lemma 6.3.

A3 Le We have to show that ¢(1)(L):::>¢(L)

(o) e ko, s,

o b Ajo < Aso,,

This follows by monotonicity.

(8) ¢fbo . c0
¢,L A;011

c AjQ

Since | 430 = 2, and | @ ¢ 0,, the result follows.
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meS.o1=(pwH,%2L

Let ¢', 0" be as in the proof of lemma 6.5. Let

¢(1)(F) =0k 0,y €0
¢(2)(F) =0k 0., € 0"
We shall verify A3a
A3'1: This is similar to the vérification of A3.1 in case 4 above. Note
the use of the fact that o' and o" are subterms of Oy
A3'2: This is again similar to case k.
A3.3: Follows by lemma 6.5.
A3.h: Clear, by monotonicity.
CASE 6. o, = uX[cHL and X ¢ X(¢).
Then
o(k) = o uX[011] <o, .
(a) X does not occur free in 0, Let
sk = sk o, co,
We omit the simple proof that A3 applies to ¢(1)(L).
(8) X does occur free in L
Let X, = Xand p_ . =0 . Let 61 (E) ve the assertion
Oy Xppq S Kb ] F X1 €%

We prove that A3 applies to ¢(1)(F).

AB x ¢(1)(L) is a normal assertion. Clauses 2a, 2b and 2c are clear.

After rewriting, if necessary, we may assume that Xm+1 does not occur

free in o, nor in any pj K? 1<Jj <m0 <k i_nj. Together with the nor-
3

mality of ¢(k), this yields clause 2e of the normality of ¢(1)(F). Since

0 is regular in X and shields X , and since X does not occur
m+ m+ 1 m+

m 1 1 1
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free in Pis 1<i<m (by clause 2e), clause 2d follows from the normali
ty of ¢(F). Clasuse 2f is trivislly satisfied. Clause 2g follows from the
normality of ¢(F) and the fact that X and o, are subterms of

w1 2

m+1[° 1 (since X —_ occurs free in 011) and 02 respectively. The proof

of 2h follows from the normality of ¢(E) and the fact that

]Fp

uX o .1

¢ X 1Pt 1

[ (=
m+1 = m+1 m+l ~

which is clear from monotonicity and the f.p.p.

A3‘2: It is easily seen that Lmax(¢) = Lmax(¢(1)). Since L&(¢) < La(¢

we have Lg(¢) > Lg(¢(1)); hence, I'(¢) > T(¢(1)).
(M)

M),

A _: That ¢(F)::$ ) (F) is clear.

3.3
A3.h: Assume ¢(1)(L), i.e.

o, X cux [p 1Fx € 0,

m+t = T Tmkl T mt m+1 =~

Since X S does not occur free in ¢ or 02, substituting uXm+1[pm*1J
for X 1 yields

e, “me1[pm+1] € Wi m+1] Fux X1 mﬂ:i = 9
Hence, ¢(L)% ie.,

L S SIS A
follows.
CASE 7. o, = X,, for some X € X(¢).
Then ¢(F is of the form

@1%.,~,®im1,Xi < ui[pijgxi [ pigﬁa..,xl < pl’n.3®1+1,.@?®m F X, < Oy

We distinguish two cases:
(a) o, = pi’55 for some J, 1 < J <n.

Then, by lemme 6.1, argument A2 applies.
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(MG2+phj,mrMJJ,1iJinf

Let "i,ni+1 = 0,, and let, for 0 < j < n.+1,

203 (k) =

Oppenen® Xy cuXilo  1X 20y gaeenX S Pi,n 41
q>i+1,...,q>m|= by €05 ;5 -

We assert that A3 applies.
s0d)

A, .3 For each j, 0 < J f'ni+1’ (L) is a normal assertion. Clauses 2a

3.1
and 2b of definition 6.1 are clear. Clauses 2c, 2d and 2e follow from the

normality of ¢ (k). Clause 2f follows, since 9, $ T 1<J <n;. Since
¥
) is a subterm of 0,, clause 2g

p; is a subterm of pi,O and p (=0

i,n.+1 2
i

follows from the normality of ¢(F). The proof of 2h follows under A3 3

A3.2: Since Lmax(¢) = Lmax(¢(j)), and La(¢) = La(¢(j)) - 1, we have

(3)
Lg(t#) > Lg(¢ ).
A3 3¢ Assume ¢(F). By clause 2h of the normality of ¢(F), we have

(19) @1,.9@9¢i_1gxi « uxi[pi],xi < pi,1”°°”Xi c pi’Bmi k CH= pi,j

0<J<mn., .
Sod Lns

Since none of X. g‘..9){m occurs free in ¢ ,,.agéi, from ¢(L) we derive

1+l 1
(20) L PTRN AT S uxi[pi],xi < pi,1”"’xi < pigni E X, g0, .
Combination of (19) and (20) yields
raeeen® Xy SuXlo X €0y X € Pin, F P; £9 -
Thus, & fortiori,
Opoecen®y X c BEDP 1Ky € 0y yoeeenXy Pim,
X <o Eo. o 9,
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(n.+1)
which proves clause 2h of the normality of ¢ 1 (F), and

®1""’¢i—1’xi < uXi[pi],Xi < p. X, ¢p

seoesy . .
1,1 1 1,ni+1

¢i+1g...,¢m P P; & 9s

(n;+1)
which proves ¢ (F).
(0) (n; .
That ¢ (F),...,¢ (F) hold follows from clause 2h of the normality of

o (k).

Ag.)¢ Assume o) holds, for each j, 0 < j < n.+1, i.e.,

@1:*-«’34)]'__13}{]-_ = uXi[Pi]in =3 pi,‘l’“.'xi < pi,ni"“'ls

Oipqeersly Py S0y

holds, for 0 < j i_ni+1.

Since none of X. ,...,Xm occurs free in 9

cos3®. , We also have
1+1 % ’1?

1

i,n.+1 Fo; e i3

(21) @Pu”,%_wxigu&I%]Jigpi”,“axigp
for 0 < j < n.+1.

Since X, does not occur free in @1,a,,,¢i 1+ Ve can apply the u-induction
rule, yielding

O seees® 4 . uXi[pi] S0y 5

N
kel

°0<—‘jf—ni+1°
In particular, for j = ni+1,

@1"‘°9®i—1 L uXi[piJ [ pi,ni+1 (=02) .

From this, ¢(}), i.e.,

®1”"’¢i—1’xi =4 uXi[pi],Xi = pi,1""’xi [ pi,ni

8 vt b X co

i+1®’ 2

follows.
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CASE 8. o, = uX[o11], for some X € X(¢), say X = X .
¢(k) then has the form

n

paeeesty g Xy S WKle 1X; 0 he X € Pin,

LTFPERR l= uxi[pi] co,
with p. = o,.. Let p, = ¢g_, and let ¢(j)(l=) 0 < j < n.+1 be defined
i 11 1,ni+1 2° P e e
as
o k) =
¢ ] X, <

WKLoy X, s 0y qaeeeaX; € Pin,?

ppoceetiagety =
O pqseeesd E Py S Py s

We verify A3,

A : This is similar to case 7.

3.17
. - (3) s
A3‘2, Cleariy, Lg(¢) = Lg(¢ )s 0 < § <m;+1. Also, v(p,) < wr(uixi[oi])°
A3 3 Assume ¢(F)a This implies that
@1,...,®i*1,xi c uXi[pi],Xi = pi,1""’Xi = pi@ni’

holds. The proof of ¢ (k)= ¢(J)(I=), 0 <j <m+1, is then similar to that

of A3e3 in case T.
A3 )¢ Assume ¢(J)(L), 0 <3 :-ni+1° Similar to A3 L in case T, we infer
from this

¢1§,e,9®1ﬁ1 F qu[pl] = pl’J5 0< sy 1

and, & fortiori, taking j = ni+1,

©iaeensd X € “Xi["i]‘xi < D]-_,1=...,Xi < "i,ni’

s qreea | uXi[oi] €0,
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i.e., ¢(L) holds.

This completes the case analysis of the proof of (18). Thus, the proof of

the completeness theorem is completed.
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7. CONCLUSIONS

Ever since their first appearance in a number of programming languages,
recursive procedures have been a much discussed concept. Initially, their
practical feasibility was hotly debated, as caused by the alleged difficul-
ties in their implementation. This argument settled down after some years,
and interest turned to investigations centring around the question of what
type of problems are particularly suited for recursive formulation. In pa=-
rallel with this, the first proof technique (recursion induction) for pro-
ving equivalence of procedures was proposed, and then applied and extended
in a number of papers (see the references in section 1.2). Recently, as
part of the current heigthened activity in the field of the theory of pro-
gramming, more exphasis has been given to the clarification of the mathe-
matical properties of recursive procedures.

With the present paper, in which we have explained Scott's theory
(sections 2 and 3), spplied it to various examples (section 4), and inves-
tigated some of its properties (sections 5 and 6), we hope to have contri-
buted to this clarification.

It will not have escaped the readers attention that we have dealt
only with a restricted case of recursive procedures, viz., those which may
be called "monadic", i.e., in which only functions of one variable occur.
Extensions to a treatment of the general case ~functions of more than one
variable~ have been made in two directions:

a. Milner [2L] has developed a generalization of the u~calculus in which
the functions concerned are polyadic, i.e., they are interpreted as
functions from D" - Dm, for arbitrary integer n, m > 0. In this forma-
lism, he is also able to deal with assignment statements.

b. As mentioned in section 1, Scott has exploited the notions of monotoni-
city and continuity in a framework where a number of problems in the
theory of computation can be dealt with in a very general way. Central
to this approach is the idea of building a hierarchy of domains. Star

ting with some initial domain DO’ which is provided with a suitable
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partial ordering, one constructs domains DO > DO’ DO > (DO+UO),
(DO+DO) > (DO+DO), etc. Each D' - D" consists of all continuous funce
tions from D' to D". This gives -among many other results- a natural
way of dealing with functions of more than one variable. E.g., a funce
tion of two variables is considered as an element of ¥ - (T»D). In un-
published notes Scott has shown how to extend the u-calculus to such
structures.

The "monadic” p~calculus also offers a number of problems for further
investigation. To the list of applications in section 4, many more might
be added. Usually, the interesting part will be to develop a special set
of axioms, adapted to a specific problem area. After one has obtained some
experience with the u-calculus, the formal proofs themselves are mostly
straightforward. As a further example, we have a system for dealing with
symbol manipulation, which we plan to publish in a forthcoming paper.

The regular procedures of sections 5 and 6 are clearly the best underw
stood type of procedures. As a first extension of our completeness proof,
one might wish to incorporate Yanov's shift distributions [39]. These are
easily formulated as assumptions in the up~calculus: If a certain variable
A does not change the value of the predicate p, one assumes A(p+X,Y) =
(prAX,AY) (cf. section L4.2). Some modifications will have to be made in
the completeness proof, in order to deal with these assumptions.

One might also be interested in implementing the strategy of the
completeness proof as a computer program.

Another possible extension is the introduction of compound predicates,
in particular, of having predicates which themselves are defined as recur-
sive (boolean) procedures.

Almost nothing is known about general properties of non-regular pro-
cedures. If the u-calculus were to play a part in the solution of the meny

open problems in this area, we would have achieved one of our main goals.
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