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1. INTRODUCTION 

1 • 1 • GENERAL 

This monograph is devoted to the study of recursive procedures, After 

clarification of some of their mathematical properties, a proof technique 

is developed for showing equivalence of programs containing recursive 

procedures, and a number of properties of this technique are derived, 

Our study originated with some attempts to develop a generalization 

of McCarthy's rule of recursion induction [23], which rule can be summa­

rized as follows: If one has two functions g and h, which both satisfy 

the .defining equation of' a recursively defined function f, then g(x) = h(x) 

for all those x, for which f(x) is defined, E.g., if one has for f the 

recursive definition 

f(x) ¢::.--:: (x==0➔ 1,xxf(x-1)) 

where" stands for "is recursively defined by", and where in the right 

hand side we have used McCarthy 1 s notation for conditional expressions 

[23], and if one has established by some means that g and h satisfy 

g(x)"' (x==o➔ 1, xxg(x-1)) 

h(x) "' (x==0--,.1, xxh(x-1)) 

then one concludes that g(x) "'h(x) for all x for which f(x) is defined. 

At first glance one might consider this a rather obvious rule, How­

ever, when one tries to justify it mathematically, some problems arise, 

In particular one is confronted with the question as to what is the pre­

cise status of the"¢=" relationship. and what is the connection between 

the and"=" relations. Note that it is certainly not the case that 

and "::::" are the same relations. E.g.• each function f satisfies 

"' f(x), but it is clearly not true that for each f • we have 

F f(x), since if f were defined recursively in this way, then f 

would be undefined for all L 
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We were led to the consideration of these probleDJB when we tried to 

apply recursion induction to two probleDJB: An investigation of Yanov's 

axiomatization of the equivalence of his "logical schemes of algo:dthDJB" 

[39], and an axiomatic treatment of the equivalence of while statements. 

JU.though we obtained some partial results, our framework remained unsatis­

factory, precisely because of this problem about the meaning of "¢:= 11 , The 

solution to this was provided by Scott, who both showed what mathematical 

objects correspond to recursive procedures, and how to exploit this 

insight in the development of a formal system in which a proof rule which 

generalizes recursion induction plays a central role. 

We can therefore summarize the contents of our paper as: The descrip­

tion, application and investigation of Scott's mathematical theory of re­

cursive procedures. (This theory was described for the first time in the 

unpublished notes [32].) 

Scotts approach is based on the following central idea: Recursive 

procedures are minimal fixed points of monotonic and continuous transfor­

mations. This way of looking at procedures is explained in section 2. In 

this section we shall take as a starting point an ALGOL-like simple pro­

gramming language, and we use this as a tool to clarify what the mathe­

matical properties of recursive procedures are, (The functional notation 

we used in this introduction will be used only occasionally in the sequel, 

since the imperative notation of section 2 provides a better transition 

to the formal system to be developed in section 3.) 

'I'he notion of rrrinimal fixed point apparently presupposes some partial 

ordering, and the use of this ordering, together with the notions of 

monotonicity and continuity, is essential to Scott's theory, 

These notions have in fact a much wider scope in the theory of com­

putation than just the theory of procedures• as Scott has shown 1.n a num­

ber of subsequent papers. For a general treatment see [34], for other 

applications [35] and [36], 

Once it had been clarified what procedures "really are", it became 

to develop a formal system based on this insight, namely Scotts 

µ-calculus, which we describe in section 3, The core of this formal system 

is the µ-induction ru..le • which is a generalization of recursion induction, 



In section ~-, we apply the µ-calculus to a large number of examples, 

partly taken from various places in the literature new, We hope 

to demonstrate in this section that the µ-calculus can be used to prove 

results taken from rather divergent sources ( e, g, various properties of 

while statements, McCarthy's 91-f'unction) and. thus, to convince the 

reader of' its general scope, 

The main result of' our paper follows in sections 5 and 6. We prove 

the completeness of the µ-calculus for a restricted type of procedures, 

viz. the "regular procedures", which can be considered as corresponding 
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to flow diagrams, 'J.'he proof is given in two parts, In section 5, we intro­

duce a normal form for this restricted class of procedures, and prove that 

each regular procedure is equivalent to a regular procedure in normal 

form, In section 6 we show that two regular procedures, which may be as­

sumed to be in normal form by section 5, can be proved to be equivalent 

in the µ-calculus if and only if they are semantically equivalent (i.e., 

they denote the same functions under all interpretations). 

Section 7 contains some conclusions. We mention some ways in which 

the 1,-calculus has already been extended, and areas which may be of 

interest for future investigation. 

We have tried to make our paper more or less self contained, However 

we recommend the reader who is not familiar with the problem area of the 

mathematical theory of computation to read first the classical papers 

McCarthy [22,23], 

1 , 2. RELATI:l:D WORK 

Recursion induction was introduced by McCarthy . It has been 

applied and generalized in a number of papers, e.g. Cooper [ l, • 5 J, a.nd 

Kaplan [ 1 , A variant is Burstall Is structural induction [3]. Some steps 

towards Scott's theory were made independently Morris ,26]. 

The relationship between procedures and fixed points (expressed via 

Curry's Y-operator) has been more or less well known for some time. See 

e, g, Landin [ 16] and Strachey [ 37]. However• the of the fixed 

was not exploited there, Minimality considerations including the 
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application of Knaster's result (see section 2) were introduced indepen­

dently by Park [27] and Bekic [1]; Beki; also obtained the simultaneous 

versus iterated fixed point property, stated in section 2. The Y-operator 

in relation to :minimal fixed points is discussed in Scott [35]; for a 

comment see Park [28]. 

For the results of section 5 and 6 compare Yanov [39], Kaplan [13] 

and Ito [12], who uses Salomaa's complete axiom system for regular events 

[30], 

It may be of interest to clarify the relation between our normal form 

and the one defined by Engeler [9]. 

Another attempt at an axiomatic treatment of recursive procedures is 

given in Hoare [ 11], who uses "pre-Scott" notions in his statement of the 

induction rule, 

A rather different approach is taken by a number of authors who base 

themsel\res on the predicate calculus, This work originated with Floyd [ 10], 

and was developed further by Manna. e.g. [17,18] and Cooper [6,7]. See 

also the "relational theory" in Scott and de Bakker [32]. 

For references to some extensions of the µ-calculus see section 7, 



2. RECURSIVE PROCEDURES 

In section 3, we shall present a formalism for the treatment of re­

cursive procedures: Scott's µ-calculus, In this section, we give an in­

tuitive explanation of some of the notions to be used later, and derive 

some of their properties. 

5 

We shall be concerned with programs in a simple language. This lan­

guage comprises first O•f all a class of elementary statements, the struc­

ture of which is not analyzed in the present context. Next, it has three 

constructions to build up more complex statements from simpler ones, 

starting with the elementary statements. Two of these are straightforward: 

The composition s1;s2 of two statements s1 and s2 , and the construction 

of the conditional statement (p+S 1 ,s2 ), where p is some boolean expression. 

(Throughout the paper, we shall use McCarthy's notation [23] for condi­

tionals, in which (p+S 1,s2 ) is short for if p then s1 else s2 ,) The third 

construction is that of, possibly recursive, procedures which are intro­

duced by means of declarations of the form 

( 1 ) procedure P; T(P) 

where the procedure body T(P) is some statement which may contain one or 

more occurrences of P. 

As an instance of (1), we have 

(2) procedure P; (p+A 1 ;P,A2 ) 

where A1, A2 are elementary statements. 

The reader who is more used to a functional notation may read this 

as the declaration of the function P(o) by means of the definition 

where " stands for "is recursively defined by". This notation empha-

sJzes the functional aspect of statements: A statement Smay be considered 

as prescribing a mapping from a state a of the computation to a new state 

o', or, in functional notation, S(o) = o', For our purposes, we are not 
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interested in the structure of the state, If one wishes to be more specif­

ic, one may think of the state as consisting of all variables manipulated 

by the program. This is the approach taken by McCarthy in [22] with his 

state vectors: E.g., let the elementary statement A be the assignment 

statement x := x+1, let a be the state vector, the x-th component of which 

has the value O, say. Then, the new state vector a'= A(cr) is equal to a 

in all its components, except for the x-th component which now has the 

value 1. However, such articulation of the state vector is not considered 

in our paper. All we need is the fact that each statement S determines 

some functional relationship between a and a'. 

The functional approach to statements gives us a way of expressing 

equivalence between two statements: s1 and s2 are equivalent if and 

if the functions associated with them are the same, Le., iff 

S 1 (CT) = s2 (CT) , for all a. 

'.Ihe next step is the realization of the f'act that the function deter­

mined by some Smay be partial, i.e., it may be undefined for certain 

arguments. E.g., the statement L: goto L ( using an example outside our 

language) has an undefined effect for all a, i. e,, there is no o' such 

that (L:ao.toL) (a) :::: cr 1 • Also, the statement (p+L:gotoL,A) is undefined 

for all those a for which p(a) happens to be true. 

Once one has observed this, it becomes natural to introduce, besides 

the relation 11 =" of equivalence between statements, a second relationship 

of inclusion, S 1 s s2 meaning that for all those o for which S 1 is de­

fined, s2 is also defined, and yields the same answer. Formally 

8 C 8 iff 
1 - 2 

By the introduction of the notion of gro:ph of a 

another formulation of the "c" relation: 

we can 

'I'he graph of the function S is the set of all pairs ( o, a ) such that 

0 1 = S(cr). Note that 

a. The graph of L:a~~pL is the empty set, 

b, The graph of S is the set of' all pairs ( a a 1 ) such that there 

exists o with s1(o) = o and s2(a) "'a'. 



c, The graph of (p+S 1,s2) is the set of all (cr,0 1 ) such that either 

(a) p(cr) 1s true, and s1(cr) = o' 

or 

(B) p(cr) is false, and s2(o) =a', 

Thus, 81 s 82 can be phrased as: The graph of s1 is included in the graph 

of 82 • 

As examples of "s" we have: 

a, L:~O:E,OL s S , for each 8; 

b, (p+L:gotoL,8) s S, for each 8. 

It is clear that "s" determines a partial ordering between statements, 

which means 1n particular that "s" 1s reflexive and transitive, and that 

8 1 s. 82 and 82 .s, 8 1 together imply 8 1 = 82 , 

The introduction of the"=" and "s" relations between statements 

gives us the tools to discuss procedures in a proper framework, Consider 

again the procedure declaration 

(3) 

According to the usual meaning of procedure declarations, one may 

replace each call of P, as declared by (3), in the program by its body 

T(P); Le,, one uses the fa.ct that 

(4) P ""T(P) 

For our purposes, it is convenient to consider T as a transformation 

of statements to statements, or, in other words, as a functional, which 

has functions as arguments and values: For each statement S, T(8) yields 

another statement 8 1 , E, g, , if we take the instance of T in ( 2) , then 

T(8) = (p+A1;s,A2 ) = S', In this terminology, we can now formulate (3) 

as: Pis a fixed point of the transfomation T. This fixed point property 

is the first basic fact to be noted about procedures. That this is not 

7 

the whole story will be explained by another example, where for the trans­

formation T we have taken the identity transformation: 
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( 5) procedure P 1 ;P 1 

Of course, it is again true that 

i.e,, (4) is satisfied. However, we expect more from (5): If P1 is called 

1n the program, it gives the infinite loop, i.e., it has the same effect 

as L:gotoL, say. Let us give this infinite loop a name: £1. Then, we may 

say that (6) is not all we want from (5): we want that P1 "'n. Now observe 

that all statements are fixed points of the identity transformation 

(S==S holds for all S), but that rl is distinguished among all those state-

ments by being the minimal statement satisfying ( 6)' where minimal is 

meant with respect to the partial ordering n.S" 41 This follows from rl s. s 

for all S, Thus, we have now some evidence that a procedure P, as declared 

by (3) in the general case, has to be not only a fixed point of T, but 

even its minimal, fixed point. Some more evidence is obtained by considering 

Again, we have a whole class of statements satisfying the functional 

equation 

viz., all statements of the form (p+S,A), for arbitrary S. This follows 

from the equivalence of (p+S,A) and (p+(p+S,A) ,A), which can easily be 

seen to hold as s, result of the properties of conditional statements, 

Again, we choose the minimal element in this class: the statement 

(p+n , which satisfies (p+rl ,A) s (p+S • for all S. This choice corre­

spond to our idea that (7) declares a procedure which loops when called 

at a moment when the state cr is such that p(o) is true. 

These two examples may illustrate the general argument for the mini­

mal fixed point approach: Consider again the procedure P declared by (3). 

By (4), the graph of P must be the same as the graph of 'J'(P), However, 

to the usual meaning of procedures, there is no reason to 



this graph to contain more pairs than a.re necessary in order that it 

satisfy this equa.li ty. ( That it is always possible to achieve equality 

will be proved below.) 

Thus• we have a.s the first central idea. of our paper: 

Prooedures are minimal fixed points of the transformations given by the 

body of their dealaration. 

Next, we introduce another important aspect of our system, namely 

that the transformations Tare monotonic with respect to s: 

( 8) 

For the simplest transformations, this will be clear, Consider e.g. 

the following transformations 

a., T(S) "" S, 

b. T(S) "'A;8, for some fixed .A, 

c. T(S) = (p->6,S 1 ) for some fixed S 1 • 

For these cases, (8) reads: 

a. If 81 s 82• then s1 s s2• 
b, If s1 C s2• then A;S 1 S A;S2• 

C, If S.1 s s2• then (p->61,S') S (p->6 0 ,S 1 ), 
C 

It is easily verified that these assertions 

A somewhat more complicated instance of ( 8) 

following example: 

procedure P; T(S ) • 

are valid, 

is provided by the 

Here the procedure P depends on S, i ,e. • P = P(S). Hence, P can be con­

sidered as a transformation on S, In this case, (8) becomes: If 8 s 
then P(S 1) S s2). We shall at this stage not give the detailed justifi~ 
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cation of this and similar assertions; this will be postponed to section 3. 

However, we can alreacly introduce a first important consequence of the 

monotonicity 

First we introduce some notation. In the sequel we will be interes­

ted in the greatest lower bound (g.Lb,) and the least upper bound 

(Lu,b.) of families of functions, with respect to the partial ordering 
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• The greatest lower bound of a family F will be denoted by n{F:Fe:FL 

This notation is chosen since it is clear that the graph of the greatest 

lower bound of F is the intersection of the graphs of the functions F E F, 

Similarly, for the least upper bound we write V{F:FEF}, Note that the 

l,u.b. does not necessarily exist: If F 1 and F2 are such that for some o, 

F 1(o) = cr 1, F2(o) = o2 , and o 1 f o2 , then there does not exist a function 

F such that both F 1 E F and F2 E F. However, if the l,u.b, of F does exist 

then, clearly• its graph is the union of the graphs of the functions F e: F. 

Now consider the family of all functions X such that X "' T(X), We 

are interested in its Lu,b, F::: n{x:X=T(X)L We shall prove that F itself 

is a fixed point of T (and, hence, its minimal fixed point), i.e., that 

T(F') '" F, This will follow from the following, more general result: Let 

G "'n{X:T(X):;;X}. We show that 

(9) 

In this proof, the monotonicity of Twill be essential 

L G s F is clear, 

2, Proof of' F E G, It is sufficient to show that T(G) = G. 

2a, Proof of' T(G) S G. I~t X be such that T(X) S X, Then GE X, and, 

by monotonicity, T(G) s T(X); thus, T(G) s X, We see that T(G) is 

included in all X such that T(X) s X; hence, T(G) is included in 

the Lu,b. of all such X, i.e., T(G) S: G, 

2b, Proof of GS T(G), Since T(G) S G, we have T(T(G)) c T(G), But, G 

is minimal with this property; hence, Gs T(G), 

That F "' G is in fact an old resu1t in set theory, cf, Knaster [ 15] 

and Tarski [38], 

We are now in a position to explain recursion induction, Remember 

that recursion induction can be phrased as follows: Let the procedure P 1 

be defined by 

( W) 

and let P2 , P3 be such that 



( 11) 
p2 "' T(P2) 

p3 :::: T(P3) 

11 

Then, by recursion induction, we conclude that P2(cr) = P3(a) for all 

those a for which P 1(a) is defined. The argument for this is the following: 

By (10), P1 is the lea.st function satisfying P1 = T(P 1). Hence, by (11), 

P1 s P2 and P1 s P3• By the definition of f, we have: For all cr for which 

P1(a) is defined, P1(a) .= P2(cr), and P1(a) = P3(a). Thus we obtain that, 

for these a, P2(a) = P3(cr). 

The transformations Tare not only monotonic, they are also contin­

uous in a sense which we shall make precise presently. The introduction 

of the notion of continuity arises from another wey of looking at the 

minimal fixed point property of procedures. This other approach is in­

spired by the construction of the minimal fixed point of a monotonic and 

continuous real function f, from [0,1] to [0,1], sey. The minimal fixed 

point :l'Q of f can be found as 

x0 == ~im i(o) 
J.-+oo 

where i ( 0) = f( f( • • • f( 0) ••• ) ) • 
<;--:--v----' 
J. times f 

That x0 is a fixed point follows from 

f(x0 ) = f(~im fi(O)) = ~im f(fi(O)) 
J.-+oo 1➔00 

== lim i(o) = 
i-+oo 

:l'Q is also minimal: Let x1 be such that f( x1 ) == x 1 • Then 

0 ~ x, 
f(O) ~ f(x1) = x 1 

f 2(o) ~ f 2(x1) = x 1 

x0 = lim i(o) ~ x1 
i-+oo 
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The minimal fixed point of a trans:formation T can in a similar way be 

obtained by approximation from below, Consider the sequence 

( 12) 
2 . 

II , T ( rl) • T ( rl) , , , • , T1 ( rl) , • , • 

Note that, by monotonicity, 

(13) 

00 

The sequence of partial functions ( 12) has a L u,b. "'u 
i=O 

The existence of this Lu,b for ( 12) is a result of ( 13), We assert that 

is the minimal fixed point we are looking for. Clearly, the above proof 

for x0 :::: ~m ? ( 0) can be ta.ken over• provided that we have given a proper 
J.-l-00 

meaning to the continuity for T. This is done as follows: 

T is called continuous if• for each sequence 

we have 

( 14) 
00 

•r( U X.) 
i==O l 

:::: LJ T(Xi) 
j_::::Q 

Just as with our assertion on the monotonicity of T, (14) can easily 

be verified for simple T, involving only composition and conditionals, 

but some further argument is needed for those T which thelllSelves inv-olve 

• Again a further discussion of this is postponed to section 3, 

Using (14) as definition of continuity, we thus have the result that 

for monotonic and continuous 'r, its minimal fixed is by 

The result that for the procedure declared by 

procedure P T 

we have 
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P = U Ti(rl) 
i==O 

can also be explained m a somewhat different wey. We have to justify the 

two inclusions 

00 

U Ti(rl) SP 
i==O 

"' 
p s u 

i=O 

The argwnent for the first inclusion is the same as above: We have 

Q s p 

T(rl) S T(P) = P 

(P) "' p 

Hence, for the 1.u.b, of the family Hl,T(rl), ... ,Ti(n), ... } we have 

lJ Ti(rl) S P 
i=O 

00 

Next, we consider the second inclusion: P s U Ti(rl). According to 
i==O 

the definition of • this means that, for all a, if P(o) is defined, 

00 • 

say P(o) "'0 1 • then ( U T1 (rl)) (o) =a'. 
i=O 

What does it mean that P( a) is defined? In order to ex-plain this, 

13 

we look at the way in which the programmer determines o) He applies a 

rule of rewriting, and in order to determine P(o), he tries to determine 

(T(P)) (a). Executing the procedure body for this argument mey lead to 

another 11 inner call11 of P, which then, in turn, is rewritten a.s T(P), etc. 

Eventually, this rewriting process must come to an end, since, otherwise, 

0 1 would not have been obtained as a result. This can be expressed by 

saying that there exists an i > 1 such that, in the application of Ti(P) 
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to the given o, Pis not encountered anymore, Because of this we :may as 

well replace Pin Ti(P) everywhere by n, i,e,, we use the fact that. for 

this cr, (Ti(P)) (cr) = (Ti(n)) (cr) = cr 1 , Then, clearly, (UTi(n)) (a)"' cr', 
i==O 

which is the desired result, 

Exa.mple: Let 'r(P) == (p+A1 ;P,A2 ), and let cr be such that er) and 

p(A1(cr)) a.re true, but p(A1(A1(cr))) is false. Then 

P(cr) = (p+A1.;(p+A1 ;(p+A1 ;P,A2 ) ,A2 ) ,A2 ) (cr) == 

(p+A 1; (p+A 1; (p+A1 ;rl ,A2 ) ,A2 ) ,A2 ) ( o) :::: 

A2 (A 1(A1(cr)))"' cr 1 , 

Finally, we make some remarks on systems of procedures, For explan= 

atory purposes, it is sufficient to consider a system of two procedures 

( 15) 
procedure P 1 ;T 1 (P 1 ,P 2 ) 

procedure P2 ;T2(P 1,P2 ) 

The m:.i.nimal fixed point approach in this case means that for P 1 and 

P2 we have 

and the a.nalogon of K:naster's result (see (9)) is that 

'rhis way of dealing with systems of procedures may be described as 

the simultaneous minimal fixed point technique, Now it turns out that this 

technique can be replaced by an iterated taking of fixed This is 

made precise in the :following assertion Let 

( 18) 

( 19) 



Then, 

(20) 

(21) 

This is shown as follows; By the definitions of P1 and P2 we have 

By the minimality of P1 and P2 , we infer that P1 s: P1, and P2 S: P2. 
Let P~ "'n{Y":Y" :a T2 (P1,Y")}. Since T2 (P1 ,P2 ) = P2 we have P; S P2 ; 

hence, T1(P1,P2) s T1(P1 ) "'P1, an.d, from this, 

T,(P,. (l{Y 11 :Y" == T2(P1,Y")}) SP,, 

By (18) and (9) (Knaster's result), we see that P1 s P1 . Fro:m this, 

T2(P1,P2) S T2(P1,P2 ) = P2 , 

By (19) and (9), we finally infer that P2 s P2 • 

Thus, (20) and (21) are proved. 

The fact that we may replace simultaneous fixed points by i te:rated 

fixed points provides a simplification of the formal system to be des­

cribed in the next section, Before we preceed with this section, we sum­

marize the contents of section 2: 

P:roaedures a;;.•e rnin-irnaZ fixed pointB of monotonic and continuous trians~ 

fo:r>mations. 

15 
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3, THE µ-CALCULUS 

The µ-calculus is a formal system developed for the investigation of 

properties of recursive procedures. We shall first describe the well fol'."!!1-

ed formulae of the system (section 3,1), then we explain how to interpret 

these formulae (section 3,2), next we give the axioms and rules of infer­

ence of the system (section 3,3), we justify the validity of these (sec­

tion 3,4), and finally: we give some first applications of the µ-calculus 

(section 3.5). 

3, 1 , LANGUAGE 

In the formal language, we have 

a. Two function constants, denoted by n and E. 

b. Function variables, denoted by any, possibly indexed, upper case letter 

(different from n and E), e.g. A,A1, ... ,F, .. ,,X,Y, .•. 

c. Predicate variables, denoted by, possibly indexed, lower case letters, 

e.g. p,p 1 ,q,r 1 •••• 

We shall in the sequel shorten the words "function constant" and "function 

variable" to "constant" and "variable". 

(In progrru:nming terminology 

a, n corresponds to the undefined statement, E to the dtl.lll!ey statement. 

b, Each variable corresponds to some elementary statement, 

c, Each predicate variable corresponds to some boolean expression.) 

We now give the definition of a term in the formal language, which 

is the counterpart of the notion of statement in the programming language. 

Definition 3, ·1 • 

a, Each constant or variable is a term. 

b, If 1 1 and are terms, then T 1 ;T2 is a term, 

c. If T 1 and 1 2 are terms, and pis a predicate variable, then 

is a term, 

d, If Tis a term and Xis a variable, then ] is a term, 



Examples: 

11, E, A1 ;A2 , 

A;(p+(q+X,Y) ,Z) 

µX[X] 

µX[(p 1➔A 1 ;X.(p2➔A2 ;µY[(p 1➔A 1 ;X,(p2➔A2 ;Y,E))J,E))J 

There are three wa:ys of constructing terms, starting from the basic 

ones given in clause a_, Clause b introduces oomposition, clause c 

the aonditionaZ terms• and clause d introduces• by means of the varicibl,e 

binding opePatoP µ. terms we shall see presently correspond to n~nn,,.d1L1r¾;1R 

Specifically, µX[1] denotes the minimal fixed point of the transformation 

corresponding to the term 1, i,e,, µX[1] corresponds to the procedure de= 

clared by procedure P;-r(P) • where -r(P) is a provisional notation for the 

result of substituting P for all occurrences of X in 1, 

Ex8lllples: 

1, µX[X] corresponds to the procedure declared by procedure P;P, 

2, 11X[ (p➔A 1 ;X,A2 ) corresponds to the procedure declared by 

procedure P;(p➔A 1 ;P,A2 ), 

3, Consider the system of declarations 

procedure P 1; (p ;P 1 • (p2➔A2 ;P 2 ) ; 

procedure P2 ;(p 1➔A 1 ;P2 ,(p2➔A2 .E)), 

By the results of section 2, in partictLla.r ( 20) and ( 21 ) , we have 

and, moreover, 

) = fl{(X,Y): X:::: (p 1+A1 ;X,(p2+A2 ;Y.E)) 

Y"' (p 1 ➔A 1 ;Y,(p2➔A2 ;X,E))} 

17 

P1 ==Cl{X:X"' (p 1+A 1 ;X,(p2➔A2 ;n{Y:Y==(p 1➔A 1 ;Y,(p2+A2 ;X,E))},E))} 

P2 "' Y"" (p 1+A 1;Y,(p2+A2 ;P1 ,E))} 

Hence in the formal language• P .1 corresponds to the term 
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and P2 to the term 

µY[ (p1-+A1 ;Y, 

(p2-+A2 ;µX[(p 1+A1;X,(p2-+A2 ;µY[(p 1+A1;Y,(p2+A2 ,X,E))J, 

E))]; 

The use of the µ-operator has the usual consequences for the dis­

tinction between free and,bound variables. In particular, all occurrences 

of X in µX[T] are bound, and an occurrence of Yin T is free iff it is 

not a bound occurrence. 

We shall use the notation T1[T 2 /X] for the result of substituting T2 

for all free occurrences of X in T1 • Again, we have to take the usual 

precautions in a case like µX[,: 1 J[T2 /Y]; this is defined as 

µX'[T 1[X'/X][T 2 /Y]], where X' is some variable which does not occur free 

in T 2 • 

Examples: 

X[,/X] = T 

(p1-+A 1 ;X,(p2-+A2 ;X,E) )[A/X] == (p1-+A1 ;A,(p2+A2 ;A,E)) 

µX[ (p-i.A1 ;X,Y) ][A2 ;X/Y] = µX 1 [ (p➔A 1 ;X 1 ,A2 ;X)] 

Using the notation for substitution, we can now describe in general 

how systems of procedures fit into the language, Consider the procedure 

declarations 

procedure P1;, 1[P1/X][P2/Y]; 

procedure P2 ;T2[P1/X][P2/YJ, 

Then, in the formal language we have for the terms corresponding to 

and respectively: 

µX[T 1[µY[T 2]/Y]] 

µY[T 2[µX[T 1[µY[, 2 ]/XJ]. 



The generalization to a system of more than two procedures is straight­

forward, 

Terms are used to construct atomic formulae~ foY'TnUlae and assertions as 

follows: 

Definition 3.2. Let , 1 and , 2 be terms. 

a. An atomic formula is either an. equivalence , 1 == , 2 • or an inclusion 

'1 S '2• 
b, A formula is a list of zero or more atomic formulae, written as 

w1,w2 ,.,,,w , each w., 1 < i < n, an atomic formula, 
n l. - -

c. An assertion has the form w ~ ijJ, where w, ijJ are formulae. 

Anticipating the formal rules for interpreting assertions, to be 

given in the next subsection, we can already indicate their intended 

meaning: 

a, The atomic formulae are the counterparts of the relationships s1 = s2 
and s1 s s2 of section 2. 

b, A formula qi:::: qi 1 ,w2 .... ,cj)n holds iff the conjunction of its elements, 

i.e. w, A qi2 A A cj)n• holds. 

c. An assertion qi~ ijJ holds iff "w holds implies that w holds" holds, 

Examples of assertions: 

L X_sY,Ysx~x::::y 

2. ~ µX[(p+X,A)] = (p+rl,A) 

(cf. the comments on the procedure declared by equation ('7) of 

section 2), 

3, A; (p+E,E) == (p+A,A), 

A; (p+E,rl) "' (p+A,rl), A;(p+X,Y) (p+A;X,A;X) :,:: 

A; (p+Q,E) ::::: ( p+Q ,A) • 

A; (p+fl ,fl) "' (p+fl,fl), 
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In the sequel, we shall occasionally omit the ";" symbol between terDJB, 

The notation for substitution is extended in an obvious way from terms to 

assertions: 
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( 4>1 '.', ••n)[t/X] 

(t1 :::: t 2 )[t/X] 

(-r 
1 .s '2)[1-/X] 

:::: 

::: 

::: 

• l[,/X] ~ t[,/X] 

(1 1[1/X],.,.,ln[t/X]) 

(1 1[1/XJ = , 2[t/XJ) 

(1 1[1/X] S 12[,/XJ) 

3,2, INTERPRETATION 

We give a set of rules to give an interpretation I to an assertion 

et:<l.i~lj!. 

Let p 1 ,p2 •,,.,pi, ... be the predicate variables occurring in a• and let 

A1 ,A2 •. , , ,Ai• .• , be the free variables of et. 

1, Choose some do:main V. 
2a. With n, associate the nowhere defined function rl: V + V. With E, 

associate the identity function EI: V + V, (For all x EV, EI(x) ~ x), 

2b, Associate with each variable A. a partial function A!: V + V. 
l. -,_ 

2c. Associate with each predicate variable p. a partial function 
I i 

p.: V -► {0,1}, 
1 

Given the interpretation I of the constants, the A. and the p., we 
1 1 

now define how to extend I to ter:ms, formulae and assertions. 

4, Interpretation of ter!1lB, 

4a. Let 1;, T~ and pI be determined already, 'rhen (1 1;12 )I and (:p+r 1,1 2 )I 

are defined by: Let x EV. 
If r;(x) is imdefined, then ( r 1 ;1 2 )I(x) is undefined. 

If t~(x) ""y, and t~(y) is imdefined, then (, 1 ;12 )1 (x) is undefined, 

I l I If 1 1(.x:) = y, and 12 (y) "'z, then (T 1;1 2 ) (x) = z, 

If pI(x) is undefined, then (p+T 1,r2 )I(x) is imdefined, 

If p1(x) "' 1, and T~(x) is undefined, then (p+r 1,r2 )I(x) is undefined, 

I( . I I If p x) = 1, and 1 1(x) "'y, then (p-+1 1 ,1 2 ) (x) "'y, 

If pI(x) = O, and T~(x) is imdefined 0 then (p+1 1,1 2)1(x) is imdefined, 

I I I If p (x) = o, and T 2 (x) "'z, then (p+1 1 ,1 2 ) (x) "' z, 

4b, Let TI be determined already, except for the interpret a.ti on of the 



variable X. Then 

µX[,JI :::: /I {XI : XI ::::: } 
XI: V+V 

Le, • µX[, J1 is the g. 1. b. of the family of all partial :functions x1 • 

h . . I I w ich satisfy X =, . 
5. Interpretation of' atomic formulae. 

5a, (, 1 s , 2 )1 is true iff ,f s t~ is true, Le,• if'f for all x c: V if 

I · I 
, 1(x) = y, then , 2 (~):::; y. 

(,, I is iff '~ 
I is i /i)e ~, iff for all x € V, 5b, :::; '2) true ::::: 

'2 true, 

1 ( X) 
I and if :::: y. then '2(x) :::: Y, 

if I ( x) '2(x) :::: y. then :::: y 
1 

6, Interpretation of formulae, 

A list <!?I:::: (<!? 1,4i2 , ••. ,<!>n)1 is true iff each <Iii is true. 1 < i < n. 

7, Interpretation of assertions, 

An assertion (q, I- 1/)) 1 is true iff the implication <!>I::, I/JI is true, 

An assertion a <!> I- ijJ is called vaUd if ( <l> ~ ijJ) I is true for all 
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interpretations, It should be emphasized that this means that for ~ 

domains V, and for all choices of partial functions for the free variables 

occurring in a (which are then extended in the given way to interpreta­

tions I of a) • we have that ( (!) ~ 1/J) I is true. 

The statement "q, I- 1/J is valid" is abbreviated to "q, ~ iµ", 

For examples of valid assertions, see the examples following 

definition 3,2. in subsection 3,1. Consider the second example. In pro­

gramming terminology, its validity asserts that, whatever choice we make 

for the boolean expression p and the elementary statement A ( i, e, what-
I I ever functions p and A on V ➔ {0,1} and V ➔ V we choose), it is always 

true that • if P is the procedure declared by :procedure P; ( p+P ,A) • then 

Pis equivalent to ( p+Q,A), 

3,3, AXIOMS AND RULES 

We shall not stretch the formalism to its limits: The usual formal 

rules for dealing with ~ • = • and substitution will not be listed here• let 
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alone systematically used, This would detract from the understanding of 

the central part of our formal system, consisting of the following axioms 

and rules: 

1. Axioms for composition 

a, ~ E;X"' X ~ X;E = X 

b. ~ X;(Y;Z) :::: (X;Y) ;Z 

C, ~ n;x = n 
~ x;n = n 

(We have anticipated the associativity of 

around r 1 in definition 3,1,) 

2 , Axioms for s 
a. ~XS X 

b, XS Y, Y_sX~X==Y 

c. XS Y0 Y S Z ~XS Z 

d, 1-n.sx 
e, XS Y ~ TS r[Y/X] 

3, Axioms for conditionals 

a, ~ (p+E,E) .SE 

b, I- (p+(p+X,Y) ,Z) == (p+X,Z) 

~ (p+Y ,z)) "' (p+X,Z) 

C, ~ (p+(q+X,Y) • (q+U ,V)) = 

(q+(p+X,U), (p+Y,V)) 

d. I- (p+X,Y) ;Z == (p+X;Z,Y;Z) 

4, Axiom for the µ-operator 

~ r[µX[r]/X] s µX[r] 

5, Rule of inference for the µ-operator 

VJ I- <l![fl/X] 

Y:m'1> ~ <11[1:/Xl 

l/; I- \ll[µX[,: ]/X] 

n.n 
' . 

provided that X does not occur free in l/;, 

by omitting parentheses 

This rule of inference, which will be called the µ-induction ru.le • 

is the foWldation of the µ-calculus, 



3.4, JUSTIFICATION 

1, The three axio:ms for composition assert that 

a, Eis its identity element 

b, It is associative 

c. Q is its zero element 

'l'hese three assertions are clearly valid. 

2, The first three axioms for "s" assert that it is a reflexive• anti­

symmetric and transitive relation, Moreover, it is clear that the un­

def'ined function is included in every function, The fif'th axiom will 

be discussed below. 

23 

3, Consider the first axiom for conditionals, Observe that for each domain 

V and each x £ V, either (p-+E,E)I(x) is undefined (in case p1 ( is 

undefined) or (p+E,E)1(x) ~ x. This proves the validity of ~(p+E,E) s E, 

Note that replacement of this axiom by ~(p+E,E) = E would be valid 

only if the predicates were interpreted as~ functions on V, 

The validity of the other three axioms for conditionals, which are 

taken from McCarthy [23] is also easily verified. 

4, In the language of the µ-calculus. the fixed point property of proce­

dures (if the procedure Pis declared by procedure P; -r(P), then 

P ~ T(P)) is expressed by ~ µX[T] = T[µX[T]/X], The axiom for the 

µ-operator gives one half of this equivalence. The other half and the 

minimality of µX[T] will be proved in subsection 3,5, 

5, Before we discuss the µ-induction rule, we first prove the 

the main axiom for inclusion 

X 5 Y ~TS T[Y/X] 

The proof of its validity 

X c Y ~ T 5 T[Y/X] 

amounts to showing that each term is monotonic in all of its free 

variables, It is not difficult to verify this for those terms which 

of 
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involve only composition and conditionals. Also, it can be proved that 

such simple terms (without µ's) are continuous in all their free vari­

ables, These two facts provide the basis for an inductive argument -on 

the complexity of T- that monotonicity and continuity hold for arbi­

trary T. Now assume that Tis monotonic and continuous in two of its 

free variables, X and Y, say, We indicate our special interest in these 

by writing T = T(X,Y). We show that then µY[T(X,Y)] is monotonic and 

continuous in X, 

1, Monotonicity 

Since -r(X.Y) is continuous in Y, we have, using the notation -r(X)(Y) 

for -r(X,Y): 

00 

µY[T(X,Y)] :::, u .:(X)i(n) 
i=O 

where -r(x) 0 Ui) "' n 

T(X)i+ 1 (fl) :::: T(x,r(x)i(S?.)) 

Thus, in order to prove 

it is sufficient to show, for each i, 

We use induction on i. 

a, i = 0 X .s x 1 ~ n .s n is clear. 

b. Assume the assertion for i, 'I'hen 

T(X)i+ 1(n) = t(X,.:(X)i(n)) 

S t(X' ,t(X)i(rl)) 

S T(X' ,T(X 1 )i(fl)) 

= T(X' )i+l (Q) 

where we have used the :monotonicity of Tin X, the induction assump­

and the monotonicity of Tin Y. 



An alternative proof, which does not use the continuity of 1 can be 

based on Knaster' s result, Let µ and µ ' be 

µY[,(X' ,Y)] respectively. We have to show: 

By the monotonicity of 1 in Y we have 

short for 1 )] and 

If X s X 1 , then µ .s µ ' . 
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In order to proveµ s µ'•it is sufficient to show that, for all Y such 

that ,(X',Y) .SY, we haveµ SY, But, if t(X'.Y) SY, then 

,(X,Y) .s 1(X 1 ,Y) s Y, by the monotonicity oft in X, Sinceµ is the 

Lu.b. of all Y such that ,(X,Y) .s Y, we see thatµ .s Y, and the result 

follows 

2, Continuity 

Let XO s x, s ... s xi C 

We have to show that 

00 

µY[·r( LJ X. ,Y)] 
i=O l 

00 

= U µY[,(X. ,Y)] 
l i=O 

(Cf, definition (14) of section 2) or, using the continuity oft in Y, 
that 

Since 

it is sufficient to prove 

We use induction on j, 

i=O j==O 

CO 00 

U U t(X. )j (fl) 
j=O i=O 1 

a. If j:::: O, the assertion is clear. 

b, Assume the assertion for j, Then 



(ind. assumption) 

(cont.in X and Y) 

(mon.in X and Y) 
00 "" "'~ Yo ,(X:ma.x(i,k)' ,(X:ma.x(i,k))j(n)) 

00 

,(X )j (Q)) "' u ,(Xn• 
n=O n 

00 

,(X )j+ 1 (n) == u 
n=O n 

This completes the core of the proof that each term is monotonic and 

continuous in each of its free va.ria.b.les. Extension to the full proof 

is straightforward. 

Now that the continuity of each T has been established, we first of all 

conclude that each, does have a minimal fixed point, viz. 

"' u i(n); from this it follows that, for each interpretation I, the 
i"'O 

definition of µX[,J 1 as xflv {XI : XI "' TI}, as given in section 

makes sense, since we have now proved that, for each'• the set 

{XI x1 = } is non-empty. 

Secondly, we can now justify the µ-induction rule, which we repeat 

here for convenience: 

vi ~ <!>[!1/X] 

vi, <l> ~ H,/X] 
1/i f., <i>[µX[T]/X] 

provided that X does not occur free in W• 

3,2. 



The inductive pattern in this rule is clarified by phrasing it in­

formally as follows: If one wishes to prove an assertion a about a 

procedure µX[T], one shows that 

a. The basis step a(n) holds, 

b, If a(X) holds, then a(T(X)) holds, 

and from these two results one then infers that a(µX[1]) holds, 
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For the formal justification of the µ-induction rule• we introduce the 

:following notation:· 

oo ro co oo 

a. U q, =<U 4> 1 , U <i> 2 , .. ,.u 4> l. 
i=O i=O i=O i=O n 

where <l) is the list of atomic formulae <l) 1 , 1> 2 •, , , • 4>n, 

00 00 "" 
b, u (1 C'[ ) .. <U1, s LJ,2l 

i=O 
1- 2 

i=O i=O 

00 00 ro u (,: ,=,2) = < U1, ::: U,2) 
i=O i::::O i=O 

Using this notation, our continuity result reads: If 

then 

00 

U 4>(X.) == 
i=O 1 

The validity of the µ-induction rule then follows easily: 

Suppose 

iJ! ~ w[n/xJ 
1jJ • <!> ~ 4>[ T /X] 

have been proved, or, is a more suggestive notation, that 

w ~ 4>U2l 

iJI, q,(X} ~ 4>( T(X)) 

hold, Starting from the first result, and repeatedly applying the 

second, we then have 
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1jl ~ 4>(11) 

lj; ~ wCr(n)) 

lj; ~ 2 cp(-r (n)) 

lj; ~ <P(Ti(\1)) 

Thus. we conclude that 

00 

1/i ~ u iP(Ti(!1)) 
i::::O 

holds, By continuity, this means that 

00 

w ~ <P(UTi(n)) 
i=O 

also holds, i,e,, we have 

which is the desired result. 

3, 5, FIRST APPLICA'l'IONS 

We give some first applications of the µ-calculus; many other exam­

ples will be given in section 4, 

1 , Proof that µX[ T J is the minimal fixed point of , , First we show that 

µX[,J is a fixed point, i,e .• that 

One half of this is given by the µ-axiom 

~ ,[µX[,]/X] S µX[T] , 



In order to prove 

we use the µ-induction rule, We have to establish 

which is clear, and 

which holds by monotonicity. (When we say that an assertion follows 

by monotonicity, we mean that it can be derived from the axiom 

X 5 Y ~, 5 ,[Y/X], by suitable application of the other axioms and 

rules. Usually, this will need some use of the rules for substitution, 

deduction and equivalence, which we have not presented here formally,) 

By the µ-induction rule, from these two assertions we may infer that 

holds, Next we show that µX[-r] is the minimal fixed point, i.e. that 

Y ~ ,[Y/X] ~ µX[t] 5 Y 

Again, we use the µ-induction rule. We have 

Y = t[Y/X]~ n 5 Y 

and, monotonicity, 

From these two assertions, the desired result follows. 

2, Proof of the monotonicity of µX[-r] :from the monotonicity of,, 

We have to show 

29 
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In order to apply the µ-induction rule, we have to prove the two 

assertions 

Y S Y1 ~ n 5 µX[T[Y'/Y]] 

and 

Y £ Y', XS µX[T[Y'/Y]] ~TS µX[T[Y'/Y]] . 

The first is clear. By the fixed point property, for the second we can 

write 

Y SY', XS µX[T[Y'/Y]] ~TS T[Y'/Y][µX[,[Y'/Y]]/X] 

and this follows by the monotonicity of Tin X and Y. 

3, An elementary property of while statements. Consider the procedure 

declared by 

procedure P; (p+A;P,E) 

(remember that E is the identity function, or, in programming termino­

logy, the d1.llllJili' statement.) The action of this P can be described by: 

Perform A as long asp is true, or, equivalently, as that of the while 

statement~ p do A, for which we shall use the shorter notation 

p * A. Thus, in our formalism, p * A = µX[p+A;X,E)], We apply the µ­

calculus to prove the following simple property of while statements: 

a. Proof of 2• By the fixed point property of p * A1, we have 

p * A1 "" (p+A;p*A 1 ,E); hence, 

p * A1;A2 = (p+A 1;p*A1,E); A2 "' (p+A 1;p*A1;A2 ,A2 ). 

Thus, p * A1 ;A2 is a fixed point of T(X) == (p-+A1 ;X,A2 ). 

Since µX[(p-+A 1 ;X,A2 )J is its minimal fixed point, the result follows. 

b. Proof of s, We apply the µ-induction rule to show 



That~ n;A2 S µX[(p-rA,;X,A2)] is clear. Let R = µX[(rA,;X,A2)]. 

For the second step of the µ-induction rule, we have to 
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Using the fixed point property of R, the last assertion follows from 

(This last example, however simple its result, provides one of the 

basic steps for the proof of the completeness theorem in sections 5 

and 6. The proper generalization of it can be found in lemma 1 s 5.10, 

5,11 and 5,12). 
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4. EXAMPLES 

4.1. WHILE STATEMENTS 

A rich source of, mostly simple, examples on program equivalence is 

provided by the while statement, First we introduce some auxiliary nota­

tion and corresponding axioms. We shall allow conditionals of the form 

(p1Ap2-►X,Y) 

(p 1vp2+X,Y) 

(....,p➔X,Y) 

which are characterized by the axioms 

~ (p 1Ap2+X,Y) = (p 1+(p2+X,Y),Y) 

~ (p 1vp2+X,Y) = (p 1+X,(p2+X,Y)) 

~ (~p➔X,Y) = (p➔Y,X) • 

Note that "A" and "v 11 are not commutative: E.g., (p1+(p2+X,Y) ;Y-) and 

(p2+(p 1+X,Y),Y) are not necessarily equivalent, since p1 ma:y be undefined l:u 

some argument for which p2 is false. 

Using this notation and the one for while statements introduced 1n 

section 3,5, we have 

p * A == µX[(p➔AX,E)] 

A *A= µX[(p 1+(p2+AX,E),E)] 

p1 v p2 * A - µX[(p 1+AX,(p2➔AX,E))J 

* A = µX[(p➔E,AX)J 

The following equivalences all hold for the predicates concerned 

total (~(p➔E,E)=E) and some of them also hold for partial predicates 

p➔E ) S E) 



1. ~ p *A= (p-+A;p*A,E) 

2, ~ p *A= p * p * A 

3, ~ p *A= p * (A;p*A) 

4. ~ p * A1 ;(p->A2 ,A3) = p * A1 ;A3 
5, ~ p * E = (p-+n,E) 

6. ~ P1 * P2 * E = P1 * E 

1, ~ P1 * (A;p2*A) = P1 * p1vp2 * A 

8, ~ p1Ap2 * A;p1 *A= P1 * A 

9, ~ P1 * A;p,vp2 *A~ p1vp2 * A 

10, ~ p1vp2 *A= p2 * A;p 1 * (A;p2 * A) 

11. ~ P1 * A;p2 *A= P1 * A;'p1Ap2 * P2 * A 

12, ~ p 1 * p2 *A= p1 * (p1Ap2•A;'p1Ap2*A) 

13, ~ p 1 *A= * (p 1Ap2*A;p1A'p2*A) 

14. ~ P1 * P2 *A~ P1 * p1Ap2 * P2 * A 

15, ~ P1 * P2 * P1 * *A= P1 * P2 * A 
etc, 

We shall prove here only examples 1, 2, 5, 10 and 15; the remaining 

ones are left as exercises to the reader. A mechanical way of proving 

these and other equivalences for while statements will follow from the 

completeness proof of sections 5 and 6, 

In our comments, we shall not indicate explicitly use of the axioms 

on composition and conditionals. 

1. ~ p *A= (p-+A;p*A,E), 

'.L'his is a direct consequence of the fixed point property (f,p.p.): 

~ p *A= µX[(p-+AX,E)] = (p-+AX,E)[µX[(p-+AX,E)]/X] = 

(p➔A;µX[(p➔AX,E)],E) = (p-+A;p*A,E) 

2, ~ p *A• p * p * A. 

By the f.p.p. 

~ p * p *A= (p-+p*A;p*p*A,E). 

Also, using the last result of section 3,5,, and the .p, 
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~ p * A;p * p *A= 

µX[(p+AX,E)];p * p *A= 

µX[(p+AX,p*p*A)] = 

µX[(p+AX,(p+p*A;p*p*A,E))J = 

µX[ (p+AX,E)] == 

p * A. 

Hence, 

~ p * A;p * p *A~ p * A. 

Thus, 

~ p * p *A= (p+p*A,E) = (p+(p+A;p*A,E),E) = 

(p+A;p*A,E) = p * A 

which proves the desired result, 

5, ~ p * E = (p+n,E). 

We have 

~ p * E ~ µX[(p+EX,E)] = µX[(p+X,E)] 

a. Proof of 2· By monotonicity and the f.p.p., 

~ (p+Q,E) S (p+µX[(p+X,E)],E) = µX[(p+X,E)J 

b. Proof of s, We apply the µ-induction rule. Thus, we must show 

~ Q s {p+Q,E), which is clear, and 

XS (p+Q,E) ~ (p+X,E) S (p+n,E), 

Assume X s (p+n,E). Then 

~ (p+X,E) S (p+(p-+£1 ,E) ,E) = (p+rl ,E), 

and the result follows, 

A generalization of example 5 will be given in lemma 5,2. 

Before we give the proofs of 10 and 15, we first list some auxiliary 

results: 

R1 : ~ µX[µY[T]] "' µY[T[Y/XJ] 

R2 : ~ µX[A;T] = A;µX[T[AX/X]] 

R3: Let Y not occur free in T, Then 

I- µX[ ,E)J = (p+µX[T[(p+Y,E)/X]],E) 

R4: Let T' be the result of replacing, in T, one or more free occurrences 

of X by µY[T[Y/X]], where Y is a variable which does not occur free 
in 1, 



Then 

I- µX[ T J = µX[T I J. 

These results ca.n be transliterated back into results on the equiva­

lence of programs. We shall do this here for R1 a.nd R4, 

R1: 

Let P1 be the program 

begin procedure P 1 ;P 2; 

procedure P2;,(P1,P2); 

p1 

~ 
and let P2 be the program 

begin procedure P;,(P,P); 
p 

end. 

Then P1 a.nd P2 are equivalent. 

R4: We give only a specific instance, 

Let P3 be the program 

E_egin procedure P; 

begin • • • P • • • P • , • ~; 

p 

end 

and let P4 be the program 

begin procedure P; 

begin •• , begin procedure Q; 

end· __ , 
p 

end, 

begin Q • .. Q • .. ~; 

Q 

p 

Then P3 and P4 are equivalent. 
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We prove only R3. Call the left hand side P1 and the right hand side 

P2. 

a. p1 S P2. 

We apply the µ-induction rule, We have to show 

X .S P2 ~ (p-+r,E) S P2 • 

By monotonicity, it is sui'ficient to show 

XS P2 ~TS µY[r[(p-+Y,E)/X]]. 

By the f.p.p., this is the same as 

XS P2 ~TS r[(p-+Y,E)/X][µY[r[(p-+Y,E)/X]]/Y]. 

By a property of substitution, and since Y does not occur free in r, 

this reduces to 

XS P2 ~ t S r[(p-+µY[r[(p-+Y,E)/X]],E)/X] 

or 

XS P2 ~TS r[P2/X] 

which holds by monotonicity. 

b,P2 sP1, 

By the µ-induction rule, it is sufficient to show 

(p+Y,E) S P1 ~ (p-+t[(p-+Y,E)/X],E) S P1 • 

By the f.p.p., this is the same as 

(p-+Y,E) £ P1 ~ (p-+r[(p-+Y,E)/X],E) S (p-+r[P 1/X],E) 

and the result follows by monotonicity. 

(A somewhat more general version of R3 is given in lemma 5.7.) 

We now proceed with the proof of 

1~ If p 1 and p2 are total predicates, then 

( 1) 

F'irst we rewrite the left hand side of ( 1). Since ~ (p 1-+E,E) "" (p2►E,E) "' E, 

we have ~ (p 1+X,X) "' (p2-+X,X) = X. Using this, we obtain 

~ p 1 v p2 *A:::: µX[(ptAX,(pi?AX,E))J = 

µX[ (p 1 -+(p2-►AX,AX) ,(p2+AX,E)) J "' 

µX[(p2-+(p 1+AX,AX),(p1+AX,E))J = 

µX[ ( p2-+AX • ( p1-+AX ,E) )] • 



Thus, 

(2) 

(What we have shown here is in effect that for total predicates, "v" is a 

commutative opera.tor.) 

For the right hand side of (1) we write, using the last result of section 

3.5. twice: 

(3) ~ p2 * A;p1 * (A;p2*A) = 
µX[(p2+A.X,µY[(p 1+A;µZ[(p2+AZ,Y)] 9E)])]. 

~ µY[(pf)-A;µZ[(p 2+AZ,Y)J,E)] = 

(p 1+µU[A;µZ[(p 2+AZ,(p1+U,E))JJ,E). 

By R1 and R2 we then have 

~ µY[(p 1+A;µZ[(p2+AZ,Y)J,E)] = 

(p1+A;µU[(p2+AU,(p 1+AU,E))J,E). 

Combining this with (3), we see that 

(4) ~ p2 * A;p1 * (A;p2*A) = 

µX[(p2+AX,(p 1+A;µU[(p 2+AU,(p1+AU,E))J,E))J, 

Comparing (2) and (4), we see that we can apply R4, thus, (1) follows, 

Using the notation A* p for A;p * A, result (1) can be phrased concisely 

as: 

Finally, we prove 

15. 

For the left hand side we write, using R3 and a result similar to example 

5: 
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~ P7 * P2 * A "' 

µX[(p 1+µY[(p2+AY,E)];X,E)J = 

µX[(p 1+µY[(p 2+AY,X)J,E)J = 

(p 1+µY[(p2+AY,(p 1+Y,E))J,E) = 

(p 1+µY[(p 2+AY,(p 1+n,E))],E). 

Replacing in this result A by p1 * A, and using an analogue of R3 , an 

analogue of example 5, and the conditional axioms, we derive 

~ P1 * P2 * P1 *A= 
(p 1 ➔µY[(p2+µZ[(p 1+AZ,Y)],(p 1+n,E))J,E) = 

(p 1+(p2+µZ[ (p 1+AZ,(p2+z, (p1+n,E))) J ,(p1+n,E)) ,E) = 

(p.l+(p2+µZ[ (p 1+AZ, (p2+n ,E)) J ,n) ,E), 

Replacing in this result A by p2 * A, using similar arguments as 

above, and the f.p.p., it then follows that 

4.2. A WHILE STATEMENT EXAMPLE FROM DIJKSTRA 

In [8], p.31, the following example is discussed: 

If the booleans B1 and B2 have no side effects, and if B2 1.s unaffected 

either by s1 or s2 , then the following two programs are equivalent 

if B2 then while B1 do s1 

else while B1 do s2 

and 

In the µ-calculus, this can be formulated as 

where A will have to reflect the assumptions made above, 



Since no predicate in our formalism is assumed to have side effects, 

Dijkstra's first assumption does not concern us. 1'he second assumption 

can be formu..lated as 

A1(p2+X,Y):::: (p2+A1X,A1Y) 

A2(p2+X,Y) = (p2+A2x,A2Y) 

As a third assumption, not made explicit by Dijkstra, we need the 

totality of' p2 : 

Thus, our formulation becomes 

A1 (p2+X,Y) :,: (p2+A1X,A,Y), 

~ 
(p2+p1"'A1 •P,*A2) 

(5) A2(p2+X,Y) :::: (p2+A2X,A2Y), :::: 

(p2+E,E) :::: E P1 * (p2+A1 ,A2) 

It is possible also to assume somewhat less, by using the following 

assertion: 

A(p+ri,E) "' (p+Q ,A)• 

~ (6) A(p➔E,n) :::: (p+A,rl), A(p+X,Y) 

A(p+E,E) :::: (p+A,A) 

The proof of (6) goes as follows: 

~ A(p+X,Y) :::: A(p+(p+X,Y) ,(p+X,Y)) :::: 

A(p+E,E)(p+X,Y) = (p+A,A)(p+X,Y):::: 

(p+(p+E,Q)A,(p+Q,E)A)(p+X,Y) = 

(p+A(p+E,Q),A(p+Q,E))(p+X,Y) = 

(p+A( p+E ,Q )(p+X, Y) ,A( p+Q ,E) ( p+X, Y)) :::: 

(p+A(p+(p+X,Y),Q),A(p+Q,(p+X,Y))) = 

( p+A( p+X ,n) ,A ( p+Q ) ) "' 

(p+A(p+E,n)X,A(p+n,E)Y) = 

(p+(p-,E,n)AX,(p+Q,E)AY):::: 
(p+AX,AY), 

= (p+AX,AY} , 
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(6) is in fact a special case of a much more general result, the proof 

of which is omitted here. Using (6), we can write for (5): 

A1 (p2-;fl,E) ::: (p2➔rl,A1)' 

A 1 (p2➔E,rl) ::: (p2➔A1 ,rl)' (p2➔P1*A1 •Pi*A2) 

A2(p2➔Q,E) = (p2 ➔Q ,A2)' :::: 

A2 (p2➔E,rl) :::: (p2-,A2,Q) • 

(p2-,.E,E) :::: E 

The proof of (5) offers no difficulties: 

Let P1 == (p2➔p 1 *A 1 ,p 1 *A2 ). Then 

~ P2 "'1,Z[(p 1➔ (p2➔A 1 ,A2 )z,E)J 

= µZ[(p 1➔ (p2➔A 1 Z,A2Z),E)J 

P1 * (p2➔A1,A2) 

:::: pZ[(p 1➔ (p2➔A 1 Z,A2Z) ,(p2➔E,E)) J 

"'pZ[(p2➔(ptA 1 Z,E),(p 1➔~Z,E))J 

Let A be short for the assumptions of ( 5) . 

a. Proof of A~ P 1 s P2 • 

Assume A. We first show 

~ (p2➔rl,µY[(p 1➔A2Y,E)J) S P2 . 

Clearly, 

~ (p2➔n,n) s P2 • 

Next, we have to show 

(p2➔rl,Y) S P2 ~ (p2➔rl,(p 1➔A2Y,E)) S P2 , 

Applying A and the conditional axioms, we have 

~ (p2➔n,(p 1➔A2Y,E)) = 

(p2➔n, (p 1➔A2 (p2+n ,Y) ,E)). 



Applying the f.p.p. and monotonicity, we see that, indeed, 

(p2+Q,Y) S p2 ~ (p2-+n,(p1+A2(p2+Q"Y, ,E)) S 

(p2+(p1+Al2•E) ,(Pf'A2P2.E)) 

Thus, we have proved 

~ (p2+Q,µY[(p 1+A2Y,E)J) S P2 , 

by the µ-induction rule. 

By symmetry, we have 

~ (p2+µX[(p 1+A,X,E)J,n) s P2 • 

Combining these, we obtain 

~ (p2-rµX[(p 1+A 1X,E)],µY[(p 1+A2Y,E)J) = 

(p2+(p2➔µX[(p,➔A,x,E)J.n), 

(p2+ri ,µY[ (p1+A2Y ,E) J)) 

S (p2+P2,P2) = P2. 

b. Proof of A~ P2 S P1• 

Using A, it is easy to verify that 

ZS P1 ~ (p2+(p 1+A1Z,E),(p 1+A2Z,E)) c 

(p2+(1_y►A 1 P 1 ,E),(p 1+A2P 1 ,E)) = 

(p2 +(p1+A.1 µX[ (p,-•A,X,E)] ,E), 

(p 1+A2µY[(p,+A2Y,E)],E)) = 

(p2-rµX[(p 1+A1X,E)],µY[(p 1+A2Y,E)]) = 

P2, 

The result then follows by the µ-induction rule. 

4,3, A WHILE STATEMENT EXAMPLE FROM COOPER 

In ], Cooper considers the following three programs: 

P1 is the program 

1: p 1(:x} ~ goto 2 ~ goto 4; 
2: X ::::: f(x); 

3: goto 1; 

4 p2 (y) ~ £59!,Q. 5 else g__oto 7 

5: y := g(y); 

6: goto li; 

7: halt, 
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p2 is the program 

1: if P)Y) ~ goto 2 else goto 4; 
2: y := g(y); 

3: goto 1; 

4: if p 1 (x) ~ goto 5 ~ e;oto 7; 

5: X := f(x); 

6 e11oto 4; 

7: halt 

P3 is the program 

1 : 

2: 

3: 

4: 
5: 
6: 
r(: 

8: 

9: 
10: 

if p 1(x) then goto 2 else g9to 6; 

if p2(y) then gs,to 3 ~ goto 9; 

.x := f(x); 

y := g(y); 

goto 1; 

if p2 (x) then goto 7 

y:=g(y); 

goto 6; 

goto 12; 

p /x:l ~ goto 10 else goto 12; 

x:=f(x); 

1 L s_o~o 9; 

12: halt, 

He proves the equivalence of P1, P2 and P3 in the Manna-Floyd frame­

work, using the predicate ca.lcu..lus, ( See the references in section 1; for 

this specific example, compare al~o Park [27,29],) 

We show how to transliterate this example into the iL-calculus, 

Let A1 correspond to .x :; f(x) and A2 toy := g(y), 

We note that 

1, A.1A2 '-"' A2A 1, 

2, A1 does not change the value of p2 , 

does not change the value of' p 1, 

hence 

(p2+X,Y) = (p2+A 1X,A1Y), 

A2(p ) "' (p 1+A2X,A2Y), 



Moreover, it is apparently necessary to require that p 1 and p2 be 

total, 

The µ-terms corresponding to P1, P2 and P3 are: 

p 1 "' p.l * A1 ;p2 * A2 

p2 = P2 * A2,P1 * A1 

p3"' µX[(p,➔(p2➔A1A2X,P1*A1)•P2*A2)] 
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In the derivation of the µ-term for P3 we have used the well known 

technique of associating systems of recursive procedures with flow chart 

programs. A possible version of this technique runs in this is case as 

follows To the program P3 a system of four procedures is associated, one 

for each occurrence of a predicate in P3 , with the following declarations: 

procedure PJ;(p 1➔P;,P3 ); 

procedure P2;(p2-+A1A2P;,P4); 
procedure P3;(p2-+A2PJ,E); 

procedure P4;(p1-+A1P4,E), 

According to the method for associating a term in the µ-language with 

a system of procedures, as described in section 3. 1 , we obtain for P 3: 

P 3 "' µX[( Pf•JJY[ ( P2 ➔Al2X ,µZ[ ( Pf'A1 Z ,E) J )J • 

pS[(pi+A2S,E) ]) J 

or , after simplification, and using the* notation for while statements, 

Let A be the list of equivalences 
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A1A2 = A2A.1 

A1 (p2➔X,Y) = (p2 ➔A 1 X,A,Y) 

A: A2 (p 1➔X,Y) :::: (p 1+A2X,A2Y) 

(p 1-+E,E) == E 

(p2+E,E) "' E 

Cooper's result can then be formulated as 

A ~ p :::: 
1 P2• = P3, 

We prove only A~ P1 = P2 ; once this is understood, the reader should have 

no difficulty in proving A~ P1 = P3 himself. 

We use the notation 

A e p ~ p for A(p-+X,Y) = (p-+AX,AY). 

By result (6) of section 4.2, we have, for p2 total, 

A1 ° p2 = p2 iff A1(p2+Q,E) = (p2+Q,E)A 1 

A1(p2-►E,Q) ::: (p2-+E,Q)A1 

First we show 

(T) 

Also, it is easily seen that 

A1A2 =- A2A1, A1 ° p2 = p 2, A1Y::: YA 1 ~ A1(p2+A2Y,E) = 

(p2+A2Y,E)A 1 

Next, we show 

(8) 



a.nd 

The second one will follow from the first by symmetry. In order to prove 

the first, we have to verify whether 

X(p2➔n.E) = (p2➔n,E)X ~ (p,➔A1X,E)(p2➔Q,E) = 

(p2➔n,E)(p 1➔A 1 X,E). 

Using A1 ° p2 = p2 , and some manipulations with conditionals, this easily 

follows, 

Replacing, in (7), A1 by p1 * A1, we obtain 

(9) P1 * A1 ;A2"" A2,P1 * A,,(p1 * A1) o P2 :::: P2 ~ P1 * A1 

P2 * A2 

Since the assumptions of (9) follow from A, using (7) with the indices 

1 and 2 interchanged, and (8), the proof of 

is complete. 

4. 4. REDUCTION OF FLOW CHARTS 'I'O WHILE STATEMENTS 

In [2], Bohm and Jacopini study the problem whether a.nd how flow 

charts can be rew:ritten as while statements, To be more specific, let Lf 

and be two languages such that 

a, Lf and 4, have the same elementary statements and the same predicates. 

b. Lf has composition, conditionals and goto statements. 

c. has composition, conditionals and only while statements (which can, 

of course, be considered as a restricted type of goto statements). 

conjecture that it is not the case that for each program in 

there exists an equivalent program in Lw' (This conjecture has been proved 



in the mean time by Scott [31],) Next, they introduce an extension of L 
w 

to L' • which has, in addition to L • three special elementary statements w w 
(function constants in our terminology), F, T and K, and a special pre-

dicate constant w, These have as intended interpretation: 

F'(x) = (x, 1) 

T(x) = (x,O) 

K( (x, 1)) "'X 

K{(x,O)) ::: X 

w((x,1)) :::: 

w((x,O)) = 0 

They then show i;hat each program 1.n Lf is equivalent to a program 

l.n L 1 , 
w 

We give one of their examples of' such an equivalence, and present its 

proof in the µ-calculus. 

First we introduce part of their notation: 

For each p, E. is defined by 

_g,"" (p+TF ,FT) , 

For each X, (X) is defined by 

(X) "' w * X • 

Their equivalence then reads: 

µX[(p+E,A 1(q+E,A2X))J = 

F(K 12, (KTT) K(KA1 _g._ (KT"r) K(KA2FT) )K)K 

In order to prove this in the µ-calculus, we need a number of equi­

valences characterizing F, T, Kand w: 

FK = E, 

TK == E. 
A: F(w+X,Y) FX, "" 

T(w+X,Y) "" TY, 



Thus, we have to show 

A~ µX[(p+E,A 1 (q➔E,A2X))J = 

F(K £ (KTT) K(KA 1 .9. (KTT) K(KA2FT))K)K, 

i'his is done as follows. Assume A. We first define five auxiliary proce­

dures: 

(1) P1 = (KTT) 

(2) P2 = (KA2FT) 

(3) p3 ~ (KA1 Sl P1KP2) 
(4) P4 = (K £ P1KP3K) 

(5) P5 :::: µX[(p+E.A 1 (q➔E,A2X))J 

Using these definitions, we have 

(6) 

(7) 
(8) 
(9) 

( 10) 

( 11) 

( 12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

~ P 1 ::: (w-+KTTP 1 .E) 

I- TP 1 == T 

~ P 1 = (w-+KTT ,E) 

~ g P1 ~ (p+TF,FT)(w+KTT,E) 

= (p+TTT,FT) 

~ _;e, P1K = (p+TT,F) 

~ 51 P1K:::: (q➔TT,F) 

~ P2 :::: (w➔KA2FT,E) 

~ 51 P 1KP2 = (q➔TT,A2FT) 
~ P3 = (w+KA 1 (q➔TT,A2FT),E) 

~ !:, = (p+TT,A 1 (q➔TT,A2FT)) 
~ !:, P 1KP3K "" (p+T,A1 (q➔T.A2F)) 
~ P4 = µX[(w-+K(p+T,A 1 (q➔T,A2F))X,E)J 
P6 = µY[(w+K(p+T,A 1(q-+T,A2FY)),E)J 

~ TP4 = T, TP6 = T 

~ P4 = (w+K(p+T ( ,A2FP4)),E) 

~ p6 S P4 

( 1 ) 

(6) 
(6) ,(7) 

(8) 

(9) 
( 10) 

(2) and similar 
to (8) 

(11),(12) 

( 3) , ( 13) and 
similar to (8) 
( 10) ,( 14) 

( 15) ,A 

(4),(16) 

definition 

(17),(18) 

( 17) ro( 19) 

( 18) , ( 20) 
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(22) 

(23) 

(24) 

f- P6 = (w+K(p-+TP6 ,A 1 (q-+TP6 ,A2 FP6)),E) 

~ P4 S p6 

~pl+"' p6 

There remains the proof that 

It is sufficient to show 

FYK S P5 ~ F(w+K(p-+T,A1(q-+T,Ai'Y)),E)K S P5 , 

This follows from 

FYK S P5 ~ (p-+E,A1(q+E,A2FYK)) S 

( p-+E ,A1 ( q-►E ,A2P 5)) 

b. ~. 

f- FP6K == F'(w+K(p-+T,A 1 (q·+T,A2FP6 )) ,E)K = 

(p-+E ,A1 ( q+E ,A2FP 6K)). 

Hence, 

~ P5 S FP6K. 

This completes the proof of Bohm and J·acopini 's example, 

4.5. MCCARTHY 1 S 91-FUNCTION 

(18),(19) 

( 17) , ( 22) 

(21) ,(23) 

McCarthy 1 s 91-function has become a wellknown test case in program­

ming theory. It has been used in particular in Manna I s work (Manna and 

Pnueli [20,21], Manna and McCarthy [19]), 

Its original form is 

Let, for integer x, 

f(x) = (x>100 + x-10,f(f(x+11))) 

g(x) = (x>100 ➔ x-10,91) 

Then f(x) = g(x). 

We shall concern ourselves with a slight generalization. Let 



f 1 (x) == (x>a ➔ x-b,f 1 (f'(x+b+1))) 

g 1 (x) = (x>a ➔ x-b,a+1-b) 

for integer x ~ 0 • a ~ 0 • b ~ 1 . (We do not allow b = 0 in order to a.void 

some uninteresting special cases.) 

In order to apply the µ-calculus to obtain the proof of f'(x) = g'(x), 
we have to reflect in some wa;y in our assumptions that we are dealing with 

the special domain of integers·. This is done as fol.lows: We introduce 

three f'u.nction constants s1 , M1 , and A0 , and the predicate constant Po• 
where s1 stands for the successor f'u.nction, M1 for the predecessor f'u.nc­

tion, A0 for the zero-f'u.nction, and p0 for the test for zero predicate. 

In other words, s1• M1, A0 and p0 have as intended interpretation over 

the domain N of non-negative integers: 

s1 {x) .. X + for all X E N, 
M1 (x) :::: X - for all X E N, X + 0 

"' undefined for X::: o. 
A0 (x) "' 0 • for all X € N, 
p0 (x) "' 0 for all X E N, X + 0 

== for X::: 0 

These four constants are characterized by the list of four equiva-

lences A== A1 ,A2 ,A3 ,A4: 

A,: S1M1 = E 

A2: S,Ao "' AO 

A3: A0M1 == Q 

A4: µX[(p0➔A0 ,M1 xs 1 )J == E 

These equivalences are based on the axioms of Scott [33]; note 

that A4 asserts that the function h, defined by h(x) = (x=o-+o,h(x-1)+1), 

is the identity function. 

A4 can be used to prove the following result in the µ-calculus which is 

the counterpart of mathematical induction: 
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I- A0F .S A0G 

XF S XG ~ XS? .S XS 1 G 

~ F C G 

( see also Milner [2!,J) 

PROOF. Assume the two premises. We show that then I- F s G follows, By A4, 

I- F:::: EF = µX[(po-•Ao,M1xs,)JF, 

I- G:::: EG = µX[(pO➔A0 ,M 1 xs 1 )JG. 

Thus, by the µ-induction rule, it is sufficient to show 

which is clear, and 

which is easily· seen to hold by the two premises. 

Next, we introduce some other constants, defined in terms of the 

given ones, for repeated addition and subtraction, and for dealing with 

the">" relation, From now on, we assume that a, bare given integers, 

which remain fi.xed throughout the proof. Let c == max(a·l-"I ,b). We define 

2c - 2 new function constants s2 ,s3 , •.. ,Sc• M2 ,M3 , ... ,Mc, and c + 1 new 

predicate constants P>o'P> 1,.,.,p>c" 

Let, for 1 .:. y .:. c, B be the equivalence 
y 

sy = s 1s 1 ., .s 1 
L--y----J 

y times 

Let C be the equivalence 
y 

"'M/-11 ••• M1 
'---~ 

y times 



Let 

BC = B2 ,B3' ' • ' ,BC 

cc :,: C .c •... ,c 
2 3 C 

Let V0 be the equivalence 

and let V be y 

V0 and VY(1:5..y:5..c) can be understood intuitively as expressing the equiva­

lences 

(x>O ➔ X(x),Y(x)) = (x=O + Y(x),X(x)) 

and 

(x>y + X(x),Y(x)) ~ 

(x=O + Y(x),(x-1>y-1 + X(x-1+1),Y(x-1+1))) 

respectively. 

Let Ve be 

After these preparations, we are now in a position to formulate McCarthy's 

result as 

( 1) A ~ µX[(p>a~'sbs 1xx)J "' 

(p>a+Mb,A08a+1~) ' 

The proof of this is given in two parts. In the first part, we derive some 

intermediate results, contained in the list E: 

(2) A 

51 



52 

where E J.s the list 

Sb!\ :::: E 

sbs 1 = s 1sb 

(p +E,E) ::: E 
>a 

(p +X,M. Y) = (p +X,M (p +Z,Y)) >a -1> >a -1> >a 
sb(p +X,Y) = sb(p +X,M. SbY) >a >a -1, 

µY[(p +E,S 1Y)] = (p +E,A0S +1) 
>a · >a a 

and in the second pa.rt we show that 

(3) 

without using the elements of A, Be, Cc, Ve again, 

We begin with the proof of (3). 
Assume E. By E6, 

By the last result of section 3,5,, 

~ µY[(p +E,S Y)]Mb = µY[(p -►M ,S1Y)] >a 1 >a -1> 

Thus, we can replace (3) by 

Call the left hand side P1 and the right hand side P2 . 

a. Proof of P1 s P2 , 

It is sufficient to show that 

~ SbP2P2 S P2 • 

We whether 

~ SbllP2 S P2 
and 

SbYP2 S p2 ~ Sb(p>a+J\,s,Y)P2 S p2 . 



The first is clear. The second assertion 

SbYP2 S P2 ~ Sb(p>a-+~,S1Y)P2 = 

¾(p>a-+~•~¾S,Y)P2 = 

is derived as follows 

¾ (p>a-+~\l2•~8b8 1 YP2) "' 

¾(p>a-+~P2 ,~s 1¾YP2) S 

sb(p>a-+~P2•~8 1P2) = 

Sb(p>a-+~P2•~(p>a ~• 81P2))"' 
¾(P>a+~P2•~P2) = 

¾l\P2 "' 
p2 

b, Proof of~ P2 s P1. 

It is sufficient to show that 

~ P 1 S SbP,P1 , 

(~) 

(assumption) 

(t4) 

(f.p.p.) 

( E3) 

( Ei ) 

By the µ-induction rule, the proof of this follows from the proof of 

x s P1 , x s sbs 1s 1 ~ (p>a-+~,sbs 1xx) s P1, (p>a-+l\•¾s,xx) s ¾P 1P1, 

The first conclusion of this assertion follows from the f,p,p, In order 

to prove 

we write for the left hand side of its conclusion 

~ (p>a+~,sbs 1xx) = (E1 ) 

¾l\(P>a-+~•¾s,xx) ,:; (E3) 

sb{p>a+l\(P>a+~,sbs 1xx), l\(P>a-+~•¾s,xx)) = (E4) 

(p>a-+l\(P>a+~•¾S?.X). l\¾s,xx) "' (E5) 

¾ (p>a-+l\ (p> a-+l\ •¾s,xx) ,s 1xx) 

and for its hand side 
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~ E\iP,P1 "' 
¾(P>a➔l\•¾S,Pl,)P 1 = 

¾<P>a-+~(p>a-+~•8b81P1P,),s,sbP1P1P,) 

(Lp.p.) 
(Lp.p. ,E2) 



54 

Comparing the results for the left hand side and right hand side, 

and using, from lef't to right, the a.ssUlllptions X s P 1, X S P 1, X S SbP ,P 1 • 

and X £ P1, the desired result follows, and the proof of (3) is complete. 

There remains the proof of' 

C C C I A, B • C • V ~ E, 

First we derive some consequences from A. 

R1: A~ (p0+E,E) = E 

R2 : A~ (p0+E,M1s1) == E 

R3 : A~ M1s1 == (p0+n,E) 

R4: A~ (po+M1X,Y) = (po+Q,Y) 

R5: A~ s1(p0+X,Y) = s 1Y 

We prove only R.1 • R3 and R5 • 

Proof of R1: By A4 and the f,p.p,, we have 

Proof of R3 

Proof of n5: 

~ E "' (po+AO,M1ES1) ::: (po+Ao,M-181) ::: 

(pci'~(po-+Ao 8 1) (po+Ao,M1 8 1)) "' (po+E,E)' 

~ M1S1 = EM181 = (po+AO,M1S1 )M1S1 ::: (po+AOM1S1 ,M1S1M1S1) 

(po-+n,M1 8 1l == (po+Q,(po+Aa,M1 8 1l) = (po+n,E) • 

~ 81 (po+X,Y) :::: s,M1S1 (po+X,Y) = 81 (po➔Q,E)(po+X,Y) "' 

S1(po-+Q (po-+X,Y)) == 81(po+Q,Y) = 81(po-+Q,E)Y == 

S 1M1S,Y = S?. 

We use R1 to R5 in the proofs of E1 to E6. 

a. The proofs of E1 and E2 are clear, 

b. E3 follows from R1, R2 and Ve: Let 

( 0 ) follows from 



~ (p +E,E) = (p +E,E) = E. 
>O 0 

Assuming E(a-1), we have 

~ (p>a+E,E) = (po+E,M,(p>a-1+s,.s,)) = 

(po+E,M,(p>a-1+E,E)s,) = (po+E,M,Es,) = E. 

c. Proof of E4• Let c4 = E4(a,b), We prove E4(a,b) by mathematical in­

duction on a and b, 

c1. E(0,1) follows from R4• 

c2. Proof of E(a-1,1) ~ E(a,1). Assume E(a-1,1). For the left hand side 

of E(a,1), we have 

~ (p>a+X,M1Y) = (p0+M1Y,M1(p>a-l+s1x,s1M1Y)) = 

(p0+o,M1(p>a-1+s 1x,Y)) 

and for the right hand side of E(a,1): 

~ (p>a+x,M,(p>a+Z,Y)) = 

(p0+n,M1(p>a,..1+s 1x,s 1M1(p>a+Z,Y))) 

(p0+n,M1(p 1+s 1x.(p +Z,Y))). 
>a- >a 

To establish E(a.,1), it is thus sufficient to show that 

~ (p>a-1+s 1x,Y) = (p>a.-1+s 1x,(p>a+Z,Y)). 

This follows from 

E(a-1,1) ~ (p>a.-l+U,(p>a+V,W)) = (p>a-l+U,W) 

which is derived as follows: 

I- (p 1+u,(p +V ,w)) = >a- >a 
(p>a._,+u,(p0-+W,M1(p>a.-,+s 1v.s 1w))) = 

(p>a-1+u,(p0+W,(p>a.-,+x,M1(p>a.-,+s1v.s1w)))) = (E(a-1,1)) 
(p 1-+-u,(p0+w,(p 1+x,M_1s 1w))) == 

>a- >a-
(p>a-1+U,(p0+W ,M1s1w)) = 
(p>a.-1+u,(p0+E,M1s 1)w) = 

(p>a.-l+U,W). 
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c3. From c1 and c2 , the proof of E(a,1) can be constructed for each given 

a, 

c4. The proof of E(a,b-1) ~ E(a,b) is similar to the above ones, and 

therefore omitted. 



56 

d. Proof of E5 . 

d1. Using mathematical induction on b, one first shows that 

~ i\(P>b-1+X,Y) = sbx 
where, for b = 1, R5 is used, 

d2. Using mathematical induction on b again, one shows that 

~ ~Sb = (p>b- 1-,E,rl) 

using R3 for the basis step. 

d3, Using these results, we prove E5: 

~ Sb(p>a+X,~SbY) = 

3t(p>a+X,(p>b-1+E,Q)Y) = 

sb(p>b-1+(p>a➔X,(p>b-1➔Y,n)),Z) == 

Sb(p b 1+(p +X,Y),z) == 
> - >a 

Sb(p +X,Y). >a 

(by d2) 

(by d1) 

(by d1) 

e, Proof of E6• 

We use mathematical induction on a. The proof of the basis step 

~ µY[ {p>O+E,S 1 Y)] == (p> 0+E,A0s1) 

offers no difficulties. 

Assume E6(a-1), For the right hand side of E6(a) we write 

~ (p>a+E,Ao8a+1) == 

(pO+AOSa+1 (p>a-1+8 1 •8 1Ao8a+1)) == (A2) 

(pO-+(p>a-178 1 ,Ao8a+1) ,M1 (p>a-1+S1 ,Ao8a+1)) = 

(pO+(p>a-1+E ,AOSa)S1 ,M1 (p>a-1+E,AOSa)S1) == (E6(a-1)) 

(p0+µZ[ Ct\a- ,s 1z) Js 1 ,M1µZ[ (p>a- 1+E,s 1z) Js 1). 

(We have specially indicated use of A2 here, since this is the only 

place in the proof of the 91-function where this axiom is used,) 

There remains the proof of 

(4) ~ µY[(p +E,S 1Y)J == >a 

Call the left hand side 

For P1 we have 

and the right hand side P2 , 



Let P3 be defined by 

Then we can write for P2 : 

(a) Proof of P1 s P2 , 

It is sufficient to show 

Y s (p0➔P3 ,M,P3 ) 1-- (p0➔s,1.M 1 (p>a- 1 -,.s 1 ,s 1 s?)) s 
(pO➔P3,M,P3) 

From the assumption 

y S (pO-+P 3 ,M,P 3) 

we derive 

s,Y s s,(po➔P3,M1P3). 
Hence, by n5• 

s,Y S s,M1P3 = P3, 
Using this last result and the f,p.p., we see that, indeed, 

I- (p0-,.s 1Y.M1(p>a-1-,.s 1.s1s1Y)) s 

(po -,.p 3 •M1 (p>a.•- ,+s 1 •8 ,P 3)) 

(6) Proof of P2 S P1, 

We have to verify 

(p0-►z,M1 z) s P1 I- (p0➔(p>a- 1 -+s 1 ,s 1 z), 

M1(p>a-1-,.s 1 ,s1z)) s P1 • 

For P 1 we have 

I.. P1 = (p0➔S,P,-M 1 (p>a- 1 -,.s 1 ,s 1 s,r 1 )). 
Hence, 

~ s 1P1 = s1M1(p>a-1-,.s 1,s 1s 1P1) = (p>a- 1-,.s 1 ,s 1s 1). 

Thus• 
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(6) 

(7) 

~ p1 = (pO➔(p>a-1+8 1• 8 1 8 1P1)•M1(p>a-1+S1• 8 1 8 1)) 

= (pO+S1S1P1,M1(p>a-1+S1•8 181P1)), 

Also, from the assumption 

( Po +Z ,M1 Z) S P 1 , we derive, as above 

Z C 8 p 
- 1 1 

Using (6), we write for (5) 

(p0+z,M1z) s P1 ~ (p0+s 1z,M1(p>a-1+s 1,s 1z)) c 

(po-+-8 18 ,P 1 ,M1 (p>a-1+8 1 •8 18? 1)) · 

That this last assertion holds follows from ('r), 

This completes the proof of E6; hence, the proof of (2), and, with 

this, the proof of the generalization of McCarthy's 91-f'unction, i,e. of 

(1), is completed, 



59 

5, REGULAR TERMS AND THEIR NORMAL FORM 

In this section, we introduce a subset of the set of terms of our 

formal language, viz. the set of regular terms, Intuitively. the regular 

terms correspond to flow charts. the predicate boxes of which are labelled 

by elements of our set of predicate variables. and the action boxes of 

which are labelled by our set of function variables. It is well known that 

each such flow chart can be represented by a system of recursive proce­

dures (see e.g. McCarthy [22]). This system can then in turn be represent­

ed by a term in the µ-language. in the way described in section 3.1 0 and 

such a term will then be a regular term. It is also well known that there 

is not a one-one correspondence between such flow charts and (systems of) 

recursive procedures (or. equivalently. between flow charts and terms in 

the µ-language): No flow chart corresponds e.g. to µX[(p+A 1XA2 ,E)J. Since 

the equivalence problem for flow charts of the indicated type is decidable 

(this follows e.g. from Yanov [39]), one may look for a completeness theo­

rem for the µ-calculus restricted to regular terms. The completeness theo­

rem we shall prove in this and the next section is the following: 

Let , 1 and , 2 be regular terms, Then 

f ,1 = , 2 if and only if~ , 1 = , 2 

In words• ~ , 1 :::: , 2 is a valid assertion• i. e, • and denote 

the same function in all interpretations I, if and only if~ , 1 "',2 is a 

theorem of the µ-calculus, 

Note that this result is only a special case of the general problem: 

If we know tha·~ 4> ~ 1jJ is valid, can we then always obtain a proof of 

4> ~ 1µ as a theorem of the µ-calculus? It has been proved by Scott [33] 

that the answer to this general question is negative, (Clearly, the vali-

of the µ-calculus, as justified in section 3,4, guarantees that if 

IP f.. 1/J :i.s a theorem o:f the µ-calcul.UB, then qi f'" ijJ is a valid assertion,) 

'l'he present section contains the first half of our proof of the 

completeness theorem far regular terms, After the definition of these 

terll'.IS, we introduce a normal form for them, derive a number of properties 
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of regular terms in normal form, and show that ea.ch regular term is e qui-

valent to a. regular term in normal form. In section 

for a 1, cr2 regular terms in normal form, we have 

we then prove that, 

Definition 5,2 gives the definition of a regular term; it uses defi­

nition 5,1, in which the notion of a term being regular in a variable is 

introduced. 

DEFINITION 5. 1 

a.. Xis regular in X. 
b, If , 1 does not contain X free• and 1 is regu.lar in X, then '1 and 

2 ' 
T 1; T 2 are regular in X, 

C, If T1 and t 2 are regular in x. then (p-+T J' t 2 ) is regular in x. for ea.ch 

predicate variable p, 

d. If T is regular in X and t is regular in Y, then µY[T] is regular in 

X, for ea.ch variable Y. 

Examples. 

1 • AX and µY [ ( p+AY ,X) J are regular in X. 

2, XA, (p+A1XA2 ,E) and µZ[(p+ZX,E)J are not reguJ.ar in X, 

DEFINI'I'ION 5, 2 

a.. Ea.ch constant or variable is regular. 

b. If r 1 and are regular, then r 1;r2 and (p+r 1, are regular• for 

each predicate variable p. 

c. If Tis regular and tis regular in X, then µX[t] is regular. 

Examples. 

L AX and µY[(p-+AY )] are regular, 

2, µX[XA], µX[(p-+A 1XA2 ,E)J and µZ[(p+ZX,E)J are not regular. 

We now proceed with the definition of a normal form for regular 

terms. One part of this definition is for technical convenience, This 

concerns the notions introduced in definitions 5. 5.4 and 5, 5, By 
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technical convenience we mean that a proof of the completeness theorem 

which does not use these notions in some way might well be possible, An­

other part, however, seems to be essential, viz. that property of regular 

terms which amounts to the fact that for each term µX[r 1J;r 2 there exists 

t 1 such that~ µX[r 1J;,2 = µX[,']. This is the property which was already 

indicated in the third example of section 3.5, played an importan.t role 

in the proofs of section 4, and which will be stated precisely in lemmas 

5,10, 5,11 and 5,12. 

Before we present the definition of normal form for regular terms• 

we first give the following auxiliary definitions: 

DEFINITION 5. 3 

A term t may be free from a predicate p. 

a. Each constant or variable is free from p. 

b. A;t is free from p, for each variable A and term ,. 

c. If , 1 and -r 2 are free from p, then (g_+-r 1 ,-r 2 ) is free from p, for each 

predicate variable q which is different f'rom p. 

Examples. 

1, E, AX, and (q-+A(p-+X,E),~) are free from p. 

2. (q-+(p-+A1,A2 ),A3 ) and µX[X] are not free from p, 

Semantically, if a term Tis free from p, then, for each interpreta­

tion I with domain V, and for each x E V, ,I(x) may be assumed not to 

depend on :l(x). A more precise statement of this fact will be given in 

the course of the proof of the completeness theorem (Lemma 6,4,) Roughly 

speaking, we want to be able to reduce a certain argument on {p+cr 1 ,o2 ) ·to 

arguments on o 1 and o2 , In our approach. this is, in general, allowed only 

if o 1 and o2 are free from p, To be more specific, we want to be able to 

infer from~ (p-+01'02 ) so that~ o 1 s 0 1 and~ o2 son, where cr' and o" 
are derived from cr in a certain way to be stated below, 'l'his inference is 

not allowed in general: Although e.g. ~ (p-+(p-+0.,E) ,n) s Q is valid, it i.s 

not true that f= (p-+0.,E) s Q 1s valid, 

Note that no procedure is said to be free from p ( this is again a 

matter of convenience) and that, for q + p, ( q+t 1, T 2 ) is free from p iff 
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both t 1 and , 2 a.re free from p. 

Next we introduce the concepts of a (directly) open occurrence of a 

variable in a term (definition 5,4) and of a variable being shielded by 

a term (definition 5,5). The main application of the notion of a directly 

open occurrence can be found in Lemmas 5. 1 and 5, 2, For the notion of 

shielding compare the third remark following the definition of normal 

form ( definition 5, 6). 

DEFINITION 5, 4 

A variable X may occur ( directly) open in a term T which is regular 

in X. 

a, X occu.rs directly open in (p+X,r2 ) or in (p+, 1,x). for each p, '1 '2· 
b, If X occurs ( directly) open in '1 or '2• then X occurs (directly) open 

in ( p+T 1 • T 2) for each p. 

c. HX occurs directly open in '• then X occurs open in T, 

d, If' X occurs open in t • then X occurs open in A; t, for each variable A 

(which is f X, by regularity). 

e. If X occurs open in T, then X occurs open in µY [ T J, for each Y + X 

(where T is regular in Y). 

DEFINITION 5, 5 

Let T be regular in X. T is said to shield X iff T contains no open 

occurrences of X. 

Examples, 

1, X occurs directly open ( and, hence• open) in (p-+X,E) and in 

(p-+( g_➔X ,A1 ) ,A2 ). 

2. X occurs open (but not directly open) in (p+A 1 ( g➔X and in 

µY[(p->AY,X)J, 

3, X does not occur open in X or in (p➔A 1X,µY[(q➔A2Y,A3X)]), 

Note that X shields X, that A;t shields X iff' T shields that 

(p-+, 1,,2 ) shields X iff T 1 and T2 shield X, and that µY[t] shields X iff 

T shields X, 



First consequences of definitions 5,4 and 5,5 are lemmas 5,1 and 5,2: 

LEMMA 5. 1 

Let T be regular in X. Let ,i be the result of replacing. in'• one 

or more directly open occurrences of X by T • 'rhen ~ r "' r' . 

PROOF, 'rhis follows easily by suitable application of the axioms on con­

ditionals. 

Examples: 

1, ~ (p-+X,E)::::: (p-+(p-+X,E),E) 

2, ~ (p+(q➔X,A1 ),A2 ) = 

(p➔(q+(p-+(q➔X,A 1 ) ,A2 ) ,A1 ) ,A2 ), 

We prove the second example. First we need an auxiliary result: 

This is shown as follows: 

~ (p-+(q+(p-+X,Y),z),T) = 

(p-+(p-+(q➔(p-+X,Y) .z). (q-+(p-+X,Y) ,z)) .T) ::: 

(p-+(q-+(p-+(p-+X,Y) ,(p-+X,Y)) (p-+Z,Z)) ,T) ::::: 
(p-+(q+(p-+X,Y),(p-+Z,Z)),T)::::: 

(p-+(p-+(q+X,Z),(q+Y,Z)),T)"' 

(p-+(q-+X,Z),T) 

Replacing in this auxiliary result X by (q+X,A1), Y by A2, Z by A1 and 

T by A2 we obtain 

Hence, 

~ ( q➔(p+(q➔X,A 1 ),A2 ),A 1 ),A2 )::::: 

(p-+(q+(q+X,A1),A1,A2) , 

~ (p-+(q-+(p-+(q-+X ),A2),A1),A2)"' 

(p-+(q-+X,A1) ,A2), 
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LEMMA 5,2 

Let T be regular in X. Let,' be the result of replacing, in T, one 

or more directly open occurrences of X by a. Then~ µX[T] = µX[,'J. 

Examples: 

L ~ µX[(p-+X,E)] ::: µX[(p-+a,E)] 

2. ~ µX[(p-+(q+X 0A1),A2X)J = 

µX[(p-+(q+Q,A 1),A2X)] 

PROOF. If T has no directly open occurrences of X, we have nothing to 

prove. Otherwise, let Y1 , Y2 be two variables which do not occur free in 

T, Then there exists," such that T:::: -r"[X/Y 1][X/Y2 ], where T" is regular 

in Y1 and Y2 , and Y1 occurs directly open in,". (In example 2 above, 

-r""' (p-+(q+Y 1 ,A1 ),A2Y2 )). It is sufficient to show that 

a. 2 is clear. 

b, Proof of _s. Applying the µ-induction rule twice, we see that it is 

sufficient to show that 

Y1 S µY2[T"[Q/Y 1JJ 

Y2 S µYiT"[Q/Y 1JJ 

Let ,''' "'µYit"[n/Y 1JJ. Then 

~ T 111 ""T"[Q/Y,J[,"'/Y2], 

Thus, we have to show 

y c ,' ,, y c T'', ~ ," c ,"[a/Y 1J[,' ''/Y2J. 
l - • 2 - -

Since Y1 occu.Ts directly open int", we have, using lemma 5.1, 

~ T 11 [Q/Y,Jh'"/Y2]:;;; t"[,'"/Y,J[,'"/Y2], 

'fi1e desired result then follows by monotonicity, 

We are now in a position to give the definition of a regular term in 

normal form: 

DEFINITION 5. 6 

a. Each constant or variable 1s in normal form. 



b. If o is in normal form, then A;o is in normal form, for each variable 

c, If a 1 a.nd a 2 are in normal form, and are both free from p, then 

(p+o 1 ,o2 ) is in normal form, for each p. 

d, If o is in normal form, cr is regular in X, a shields X, and o is not a 

procedure, then µX[a] is in normal form, 

Examples: 

1, Q, E, A, A1(p+A2 ,A3 ), µX[(p-+AX,E)J, 

µX[(p 1+A1µY[(p+A2Y,A3X)],E)] 

are in normal form. 

2. (p+A.I ,A2 )A3 , (p+(p+A,E),E), (p+µX[X],E), 

µX[XA], µX[µY[E]], µX[(p+X,E)], 

µX[ (p+A(q-+X,E) ,E) J, µX[X];A 

are not in normal form. 

Remarks: 

1. A regular term in normal form will also be called a normal term, o, a1 , 

0 1 etc. always stand for normal terms. 

2, Some of the general forms of regular terms which are not in normal form 

a.re: (p+,,-1: 2);,3 , Q;,: or E;1:, µX[i: 1];,2 , (p+(p+i: 1 ),, 3 ) and its 

analogues, (p+µX[1: 1 J,1:2 ) and similarly, µX[µY[,:JJ, and µX[i:], where, 

contains one or more open occurrences of X. 

Some instances of such terms not in normal form, and their correspon­

ding equivalent terms in normal form are 

(p-+A1 ,A2 )A3 and (p+A1A3 ,A2A3 ), 

Q;A and ri, 

E;A and A, 

µX[(p+A 1X,E)]A2 and µX[(p+A 1X,A2)J, 

(p+(p+A1,A2 ),A3) and (p+A1,A3), 

(p+µX[ (p+AX,E)] ,E) and (p+AµX[ (p+AX ,E)] ,E) • 

µX[µY[(p+A1X•A2Y)]J and µX[(p+A1X•A2µY[(p+A,x,A2Y)J)J. 

µX[ ( p+A(p-+X,E ),E)] and (p+AµU[ ( p+AU ,E)] ,E). 

3. If µX[a] is in normal form, we want a[µX[a]/X] also to be in normal 

form. Without the restriction on shielding in clause d, this would not 
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be true in general, See 

µX[t] "'µX[(p-+A(p+X,E),E)J and 

T[µX[T]/X] = 

(p+A(p+µX[(p+A(p+X,E),E)],E),E). 

Since (p+µX[,],E) is not in normal form, the whole last term is not in 

normal form. 

Before we can give the proof that each regular term is equivalent to 

a normal term, we need a number of properties of normal terms, contained 

in lemmas 5,3 to 5,12. 

LEMMA 5,3 

Let (J1' a2 be normal terms, let (J1 be regular in X and shield X, Then 

a, [a2/X] lS a normal term. 

b, If' (J1 1.S free from p, and a, + x, then a.1 [a/XJ J.S free from p, for each 

variable p. 

PROOF. We use induction on the complexity of a 1 , to prove both statements 

simultaneously. 

·i. If a 1 is a constant or variable, both statements are clear. 

2, Let o 1 "'A;o 11 , for some variable A(f X, by regularity). 

Since 0 11 is regular in X and shields X, we have that o1 ,Ca/XJ is a 

normal term, by the induction hypothesis. Since (A;a11 )[o/XJ = 

~ A;( 1[o2/XJ), statement a follows. Statement bis clear, 

3, Leto "'(q+a 11 ,o.12 ). Since a 11 and a.12 are regular in X and shield X 

both o 11 [a2/x] and a 1io/XJ are normal terms, by the induction hypo­

thesis is for a. Since o1 shields X, both cr 11 f X and 0 12 + X. Since 

a.1 and 2 a.re free from q, we have that a.11 [cr2/xJ and a 1ia/XJ are 

free from q. by the induction hypothesis for b. Since (q+cr 11 o12 )[cr2/XJ 

"' ( J 2Co/XJ), statement a follows. As to b if p "' q, we 

have nothing to prove. Otherwise. suppose that (q+a 11 ,012 ) is free from 

p. Then cr 11 er 12 are free from p, and both are + X. Thus, o 11 
and a.1rJcr,..,/X] are free from p, by the induction hypothesis for b. Thus, 

C C 

(q-•o 11 ,cr 12 )Co/Xl is free from p. 



4. Let cr 1 = µY[o 11 J, Since 0 11 is regular in X and shields X, o11 [a2/X] 

is a normal term, by induction. We have 11Y[o 11 J[cr/XJ = µY[a 11 [o/XJ], 

assuming that Y does not occur free in o2 , and, moreover, 1[o2/X] 

shields L Thus. pY[o11 [o/XJ] is a normal term. This proves a. Since 

no procedure is free from p, bis triviaLly satisfied. 

COROLLARY 5,3 

If µX[o] is a normal term, then o[µX[o]/X] is a normal term which is 

not a procedure. 
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PROOF. Follows from lemma 5,3 and the fact that, if µX[o] is a normal term, 

then a is not a procedure. 

LEMMA 5,4 

If o is a normal term which is regular in X, then for each variable 

A. o[AX/X] is a normal term, regular in X and shielding X, 

PROOF. Follows easily from the definition of shielding. 

For the next two lemmas, we need the notion of eubterm of a normal term. 

In this definition, we use the following notation: If T is a set of' terms 

{, 1,,2 ,.,.,,n}, then T[-i:/X] is the set of terms 

{, 1[,/X], , 2[1:/X], ••• ,1:n[t/X]}. 

DEFINITION 5,7 

The set E(o) of all subterms of a normal term a is defined by 

1. E(o) ~ {n} u r 0(o). 

2.1, Eo(n) ~ {n}, Eo(E) = {E}, Eo(A) ~ {A}. 
2.2. E0 (A;o) = {A,A;o} u r0 (o) 

2,3, r 0 ((p+o 1 ,o2 )) = r0 (a 1) u r0 (a2 ) u 

{(p+cr',cr")lo'E i: 0 (cr1), o"e:: i: 0 (o2 )L 

2,4, J) = {µX[crJ} u i:0 (a) u i:0 (o)[µX[a]/XJ, 
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Remarks: 

L li'or each a, i:: ( 0) J.S a finite set. 

2. For each a, a E i::o ( o). 

3. It J.S convenient to have S"I as a subterm of each term clause 1) 

and to have e.g. (p➔o 1 ,a2 ) as a subterm of (p➔ (p➔a 1 ,a3 ),a2 ) (hence 

clause 2.3). 

4. Since a E i:: 0 (a), we have a[µX[a]/X] E i:: 0 (o)[µX[o]/X] s i: 0 (µX[o ) , 

5. The notion of subterm will be of importance in a certain termination 

argument in section 6. 

LEMMA 5,5 

For each normal term µX[o] there exists a a', such that~ 

a' not a procedure, and o' a subterm of µX[o]. 

] ::: 

PROOF. Follows from corollary 5,3, definition 5,7 and the remarks follow­

ing it. 

LEMMA 5,6 

Let a 1, o2 be two normal terms. There exist a', a" such that, for 

each predicate variable p, 

a, ~ (p➔a 1 ,o2 ) = (p➔o ,o"). 

b. (p➔a' ,o") is a normal term. 

c. a', a" are subterms of a1 , o2 respectively. 

PROOF. We show the existence of a'; the proof for a" is similar, We use 

induction on the complexity of o1. By lemma 5,5, we may assume that is 

not a If' a 1 is a constant or variable, or if a 1 has the form 

A; 1 then is clearly free from p, and o' = • Now suppose 

= (g_➔ o 11 ,o 12 ) for some predicate variable g_, 

If q_ "' p, we have 
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Since 0 11 has less complexity than cr 1 , there exists, by induction, a nor­

mal 0 111 • free from p. such that o' 11 is a subterm of 0 11 , and such that 

l- (p-+a 11 ,a2 ) == (p-+0 111 ,02 ). Since 0 11 is a subterm of (p+cr 11 ,o 12), the 

statement of the lemma follows. 

If q + p, we use the equivalence 

~ (p+(q+o 11 ,cr12 ).cr2 ) = 

(p-+(q+(p+a, 1 ) • (p+cr 12"02)) •0 2) • 

By the induction hypothesis, applied to (p-+a 11 ,cr2 ) and (p➔o 12 .o2 ). 

there exist 0 111 • cr'V such that 

1 , cr 1 1 ' • cr I v a.re free from p , 

2, ~ (p+on, ,cr2 ) :::: 

~ (p+o12• 0 2)"" 

(p-+01 I I •02); 
iv 

(p-+o ,o2 ). 

3. g-11', CJ 
IV 

are subterms of cr 11 , 0 12 respectively, 

Then 

~ (p-+(q+cr 11 ,o 12 ),o2 ) = 

( p-+( q->-{ p-+a 11 ' 0 2) '(p+cr 12 'cr 2) ) 'a 2) = 
(p-+(q+(p+crl 11 ,02) ,(p+o'V ,02)) ,02) "" 

(p+(q+cr' I I ,cr'V) ,02). 

Since (q+o''' ,o'v) is free from p and is a. subterm of o1 ~ (q+o11 ,o12i 
the statement of the lemma follows. 

In the proof of lemma. 5.8, which is one of the two key results in the 

proof of the normal form theorem, we need the following auxiliary lemma: 

LEMMA 5,7 

Let o1, o2 be terms which do not contain U, V, W or S free, Then 

~ µX[(p-+o 1 ,o2 )J = 

(p-+µU[cr 1[(p-+U,µV[a 2[(p-+U,V)/X]])/X]], 

µW[o 2[(p-+µS[o 1 [(p-+S,W)/X]],W)/XJ]), 
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PROOF. The straightforward • but somewhat tedious proof of this lemma is 

left to the reader. A special case of lemma 5. 7 was proved as resu.1.t R3 
of section 4.1. 

Example: 

~ µX[(p-+.A 1 (q·+X.E) • A2 (:r➔X,E))] :::: 

( p-+µU[A 1 ( q-+( p-+U ,µV[A 2 ( r-+( p-+U • V) ,E)]) ,E)], 

µW[A 2 (r-+(p-+µS[A 1(q-+(p-+S,W),E)J,W),E)]) 

The idea behind this lemma may become clear if one constructs the 

µ-term for the procedure P 1 wr.ich is declared by· the system 

procedure P1;(p-+P2 ,P3 ); 

procedure P2;a1[P 1/X]; 

procedure P2 ;a2[P2 /X]. 

LEMMA 5,8 

Leto be a normal term which is regular in X and which is not a pro­

cedure. There exists a normal term a'• a' not a procedure, such that 

~ µX[o] "' a'. 

PROOF. Note that µX[o] itself is not necessarily a normal term, since o 

may contain open occurrences of X. 

We use an auxiliary function a(X,o) which is defined for a as in the 

statement of the lemma by 

a. o: ( X ,E) :::: a(x,n) :::: a(X,A) :::: o: ( X ,A; o) "' 0. 

b. a(X,X) :::: 00. 

c. o:(x.( ,02)) ::: Hmax(o.(X,o 1) ,a(X,o)). 

are 

o:(X,(p+X,E)) = 00 , and 



Since neither o1 nor o2 in clause c is a procedure, a(X,o) is either 

a non-negative integer, or 00 , First we consider the case that a(X,o) = 00 • 

This case occurs iff either 

a, er == X, or 

b. a contains one or more directly open occurrences of X, 

In case a, we use µX[X] == 11, in case b we apply lemma 5112, yielding 

~ µX[o] "'µX[o'], where 0 1 results from cr by replacing all directly open 

occurrences of X in o by Q, Then, a(X,cr 1 ) < 00 , 

Next• we give the proof for a(X .o) < 00 ·by induction on the integer 

a(X,o), (See also the example following this proof,) 

a. a(X,o) = O. If a= E, nor A, the statement follows immediately. If 
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o ""A;cr'I" we apply~ µX[A;o 1] = A;µX[o 1[AX/X]] (see result R2 of section 

4,1,) By lemma 5,5, we may assume that o1 is not a procedure. Then, by 

lemma 5,4, µX[o 1[AX/X]J is in normal form, and the desired result fol­

lows, 

b, a(X,o)::: n > 0, From the definition of a(X,o) it follows that then 

o = (p+o1,o2 ). By lemma 5,7, we have 

~ µX[(p+o 1 ,a2 )J = 

(p+µU[o 1[(p-+U,µV[o 2[(p-+U,V)/X]])/X]], 

' ] ) ' 

First we consider µV[o 2[(p-+U,V)/X]], If o2[(p+U,V)/X] is not in normal form, 

it can be brought into normal form by suitable application of the con­

ditional axioms. Let the result be a2. Consider µV[o2J. Clearly. o2 is not 

a procedure, and. also, a(V,cr2) < n. Thus by the induction hypothesis, 

there exists a normal cr;, with~ µV[o2J = a;. 
Next, consider µU[o 1[(p+U,cr~)/X]]. Again, after suitable application of 

the conditional axioms, we obtain a normal o 1, such that ~ er 1 [ ( p+U ) /XJ "' 

a 1, cr 1 not a procedure. Also. a(U ') < n, Thus, by induction, there 

exists a normal term a" such that µU[o 1] ::::: cr" Similarly, we derive 
1 1 ' 

~ µW[,J "'02•1 , for some normal o2 1 '. Then µX[(p+o 1 ,cr2)] :::: (p+o" 0 1 ' ) . 
1 ' 2 

From the construction it follows that 0' I 
1 

and o"' 
2 

are free from p. Hence, 

1 ) is in normal form, 

This completes the proof of lemma 5,8. 
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Ex8l!lple: 

We derive the normal form of 

We have 

Also, 

µX[ (p-+( q-+A(p-+X ,E) ,E) ,X) J 

~ µX[(p➔(q➔A(p-+X,E),E),X)J:::: 

µX[(p-+(q-+A(p-+X,E),E),n)J = 

(p➔µU[ ( q+A( p-+(p-+U ,,µV[Q]) ,E) ,E)], 

µW[QJ) • 

~ µU[(q-+A(p-+(p-+U,µV[Q]),E),E)] = 

(ci(X,a) "' 00 ) 

(a(X,cr ) :::: 2) 

µU[(q+A(p-+U,E),E)] = (a(U,0 11 ) - 1) 

(q-+µV[A(p-+(q-+V,µW[EJ),E)J, µS[E]) = 

(q-+AµV[(p-+(q-+AV,E),E)] ) 

Thus, the desired normal form is 

(p-+( q+AµV[ (p-+( q-+AV ,E) ,E) J ,E) ,Q) . 

'rhe next group of lemmas contains the second key result to be used 

in the proof of the normal form theorem. They are concerned with the re­

duction of a term µX[cr 1 J;o2 to an equivalent normal term µX[cr ]. This re­

duction is based on the following definition 

DEFINITION 5,8 

Let I; be a finite (possibly empty) set of variables, and let , o2 
be normal terms, 

o a2 is defined by 
(; 

a. Q o a2 = iil, 
i; 



c, Ao cr2 = A, if A€!; 
l; 

d, (A;cr11 ) o cr = A;(a11 0 02). 
i; 2 c; 

e. (p-+cr11• 0 12) 0 0 2 = (p-+o11 ° 
c; !; 

0 2• 0 12 0 02)• 
c; 

provided that cr2 does not contain X free, 

LEMMA 5.9 

If cr 1 is regular in X, cr 1 shields X, cr 1 is not a procedure, cr2 is 
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not a procedure, cr2 does not contain X free, then cr1 o cr2 is regular in X, 
{X} 

shields X and is not a procedure, 

PROOF. Follows easily from definition 5,8, 

Lemmas 5,10 and 5,11 are preparatory to le1lllll.a 5,12, which contains 

the main result on the non operation, 
!; 

LEMMA 5, 10 

Let cr 1 be a normal term which is regular in x. let cr 2 , cr3 be normal 

terms which do not contain X free• and let !; be a finite set of variables 

such that Xi c;, Then 

PROOF, We use induction on the complexity of 

a. o 1 "' n. 
Since £1 o 

c; 

b, o1 "" E, 

'I'hen o 1 o 
l; 

= n, this case is clear, 

since does not contain X free, 
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C, 01 "'A+ X, 

Then (A o o2)[o3/X] = A o a2 , and 
l;u{X} l;u{X} 

Ao o2 = A o o2 , and the assertion follows, 
I; l;u{X} 

d. o1 = X. 

Since X o o2 = X;o2 (because of X d !;), and 
c; 

(X o o2 )[cr/XJ "" X[o/XJ = o3 • the result follows from 
l;u{X} 

X;o2 5 o3 ~ X;o2 5 a3 . 

e. o 1 = A;o 11 , 

Note that A+ X by regularity, Then 

(A; a 11 ) o o 2 = A; ( a 1 1 oo 2 ) , and 
I; I; 

(A;o 11 o a 2 )[cr/XJ = A;(o 11 o o2)[o/XJ, 
l;u{X} l;u{X} · 

Since 

X;o2 5 o3 ~ 0 11 o o2 5 (o 11 o o2 )[cr3/x], 
I; l;u{X} 

holds by the induction hypothesis, the result follows by monotonicity, 

f. 0 ·1"' (p-+o11• 0 12). 

This is similar to case e. 

g. o 1 = µY[o 11 J. 
We have to show 

X;o2 5 o3 ~ µY[o 11 J o o2 5 
I; 

or, by definition 5,8, 

X;o2 5 a3 ~ µY[o 11 o ~2J S µY[cr 11 o a2J[o3/XJ 
l;u{Y} l;u{X,Y} 

or, by definition of substitution, 

X· 
' 

Since, by the induction hypothesis, 

X;o2 5 o3 ~ 0 11 o o2 5 (o 11 o o2)[o3/x] , 
l;u{Y} l;u{X,Y} 

the desired result follows from the fact that 



which holds provided that Y does not occur free in~. 

This completes the proof of lemma 5.10. 

LEMMA 5.11 

Let ai • 1 ~ i ~ n+1 • be regular in each x1 ,x2 •.,. ,Xn and let a be a 

normal term which does not contain any of the X. free. Then 
l. 

PROOF. Induction on the complexity of crn+l' 

a. crn+l =nor crn+ 1 = E. 
Then the result is clear. 

"'A+ X., i == 1 0 2, ... ,n. 
l. 

Then crn+l o a= A;a. 
{x1 .x2 , •••• xn} 

and 

crn+ 1fo 1/x1J[criX2 ] ••• [cr/Xn];cr -· A;cr, 

whence the result. 

c. crn+l = Xi, for some i, 1 < i < n. 

Then crn+l o cr = Xi• and 
{x1 •••• ,xn} 

crn+ 1[cr1/x1J[cr2/x2J ••• [crn/Xn];cr = cri;cr. The result then follows from 

x1 £ cr 1;a, x2 s a2 ,a •..•• xn £ on;o ~Xi£ oi;o. 

d. on+ 1 = A;o'. 

Follows easily by the induction hypothesis and monotonicity. 

e. a0 +1 = (p+a' ,a"). 

Similar to d, 

f, an+l = µY[o']. 

We have to show 
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By definition 5.8, and the definition of substitution, this reduces to 

By the µ-induction rule, it is sufficient to show 

a' o a c 

{X 1 ,X2 ,.,. ,Xn,Y} 

a' /X1J[o2/x2J.,,[on/Xn][µY[o'[a 1/x1][a2/x2J,,,[on/Xn]]/Y];o 

where we have used the f,p,p, of 

It can be seen that the last assertion holds by the induction hypothesis, 

since it is of the form 

This completes the proof of lemma 5,11. 

LEMMA 5, 12 

Let o1 , o2 be two normal terms, Then 
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PROOF, Induction on the complexity of o1• For the cases where cr 1 is not a 

procedure. the argument is similar to the proofs of lemmas 5.10 and 5.11. 

There remains the proof of 

or, by definition 5,8. 

a, Proof of £, 

By the µ-induction rule, we have to show 

XS µX[o 11 ];cr2 ~ 1 {~} o2 s µX[o 11 J;o2 

or 

This assertion follows from lemma 5,11, with n = 1. 

b, Proof of ;;2. 

By the µ-induction rule, we have to show 

X;o2 s µX(o 11 o o2] ~ o11 ;cr2 s µX[cr 11 o o2J. 
{X} {X} 

Since, by the induction hypothesis of lemma 5.12, 

~ 0 11' 0 2 = 0 11 ° 0 2 • 
(I) 

and since 

~ µX[o 11 o o2] = (cr 11 o cr2)[µX[o 11 o o2]/X], 
{X} {X} {X} 

the assertion follows from lemma 5,10 with~= (I). 

This completes the proof of lemma 5,12. 

We have now collected enough results to proceed with the proof of 

the normal form theorem: 

THEOREM (Normal form theorem) 

For each regular term, there exists a normal term o such that 

~ ' "' CJ. 



PROOF. We use induction on the complexity of,, 

a. If, is a constant or variable, then, is itself in normal form, 

b. ,=r.,;r.2. 

By the induction hypothesis, there exist normal o 1, o2 such that 

~ , 1 = o 1 • ~ r. 2 == o2 • We show that there exists a normal o such that 

~ o 1 ;cr2 "' a. We use induction on the complexity of a 1 , 

bL o 1 :::: IL 

b2. 

b3, 

b4, 

Then ~ o1 ;o2 :::: Q; hence, a ::::: Q 

a, -- E, 

Then ~ o1 ;o2 :::: 02; hence, o "' 02. 

a, ::::: A, 

Then cr 1 ;cr2 :::: A;a2 which is in normal form, and we take a :::: A;o2 • 

o1 :::: A;o11' 
Then o1 ;o2 "' (A;o 11 ) ;o2 = A;(a 11 ;o2 ). By the induction hypothesis on 

the complexity of o1 , there exists o' such that~ o11 ;o2 = o'. Thus 

we can take o = A;a'. 

b 5 , CY 1 "' ( p+O 11 '0 1 2 ) • 

We have~ (p+o11 ,o12 );o2 = (p+a 11 ;o2 o12 ;cr2 ). By the induction hypo­

thesis, there exist cr',cr" such that~ cr 11 ;cr2 =a',~ a12 ;a2 "' a". By 

lemma 5,6, there exist a''' ,o'v such that ~ (p+o' ,cr") :::: (p+o' ',a'V) 

and (p+cr''' ,a'v) is in normal form. Thus, we can take o :::: (p+o''' ,o'v), 

cr 1 = µX[cr 11 J. 

Then o1;a2 == µX[a 11 J;o2 , By lemma 5,12, ~ µX[cr 1.1J;o2 = 

hence, by definition 5.8, ~ µX[o 11 J;o2 == µX[o 11 o o2J, 
{X} 

We 

may assume that o2 does not contain X free and is not a procedure, 

By lemma 5,9, 0 11 o o2 is regu.la:r in X, shields X, and is not a pro­
{X} 

cedure. After, if necessary, applying the conditional axioms, 

o a2 is in normal form, Then µX[o 11 o J is in normal form, and 
{X} {X} 

we can take a= µX[o 11 o a2 J, 
{X} 

This completes the proof of case b. 



C , T "' ( p-+T 1 , T 2 ) , 

By the induction hypothesis, there exist normal such that 

~ , 1 == o1 , ~ T2 = a2 • By lemma 5,6, there exist a', a" such that 

(p-►a' ,0 11 ) is a normal term, and that ~ (p-+o1 ,cr2 ) = (p+a' ,cr"). Thus, 

~ i: = ( p-+cr' , cr") • 

d. 1 = µX[T 1J. 

By the induction hypothesis, there exists a normal cr 1 such that 

~ i: 1 = cr 1 • It can be verified that, if T 1 1s regular in X, then a 1 

is regular in X, By lemma 5,5, we .rn.ey assume that a 1 is not a proce­

dure. Application of lemma 5, 8 to µX[ a 1 J yields the desired result. 

This completes the proof of the normal form theorem. 
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6. COMPLETENESS 'rHEOREM 

6 . 1 , OUTLINE OF 'I.'HE PROOF 

'l'his section is devoted to the proof of the ma:rn result of this 

paper 

THEOREM (Completeness theorem) 

Let t 1, T 2 be regular terms. Then 

(Remember that, in general, <Ii ~ 1/J holds iff (<i> ~ 1ji)1 is true for all in-

terpretations I (see section 3,2), and that <i> ~ 1jJ holds iff@ ~ 1/J is a 

theorem of the µ-calculus.) 

PROOF 

·1, Proof of<=::, This follows from the validity of the µ-calculus, a.s dis­

cussed in sections 2 and 3,4. 
2. Proof of=⇒. By the normal form theorem, it is sufficient to show that 

( 1) 

where 0 1 , 0 2 are normal terms. 

Note that equivalent terms may well have different normal forms (e.g., 

(p+AX ,F~)] and (p+AµX[ (p+AX ,E)] ,E)). 

'I.'he proof of ( 1) proceeds essentially by an inductive argument on the 

complexity of 0 1. However, intermediate steps in this proof will be of the 

more general form 

C(J --⇒ <jlj (J C(J 
-2 r-1-2 

where<!> consists of the accumulated hypotheses which are generated by our 

treatment of procedures, and which will allow us, at suitable stages in 

the , to apply the µ-induction rule, 
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Let¢(~) and¢(~) be short for the assertions~~ o1 s o2 and 

~ ~ o1 s o2 respectively. 1~e general scheme of the proof is the following: 

First we give a precise description of the structure of the assertions 

¢(~) (called normaZ assertions). which structure is determined by the wa;y 

in which the successive hypotheses concerning procedures are generated, 

Secondly, we shall introduce a complexity measurer for an assertion 

¢(~). This measure involves the complexity of both o1 and win¢(~). 

Then, in order to prove¢(~)⇒$(~) for normal assertions, we shall pro-

ceed by a case analysis of the various forms which can 

have, as determined by the no:r:mal form theorem, and we shall show that 

in each case, ¢(~)==:>(j>(~) can be seen to hold on the basis of one of three 

arguments (A 1 • A2 or A3): 

The 

(j,(~) is false, i.e., there exists at least one inter-

pretation I for which (w ~ o co )1 does not hold, 
1 - 2 

Example: ¢~Es~, 

¢(~) can be seen to be a theorem of the µ-calculus 

directly. 

Example: w ~AS A, 

A3 Assume that¢(~) holds, We exhibit qi(i)(~). 1 ,:.i ,:.n, 

such that the following conditions are satisfied 

A ip(i)(~) is a normal assertion, 1 < i < n, 

/ 3•2
1

: ¢ (i) (~) has less complexity than;(~)~ < i < n, 
. ( i) . 

A3 3: ¢(~)~¢ {~), 1 .::_ 1 ,:. n, 
' (1) (2) I (n) 
. 4: From qi ( , qi ( 1-) •. ,. ,qi ( together, we can infer 

qi(~). 

following illustrates argument 

1 
¢ (~) qi ===> 

2.il D 4 
l r 'ti 3. r) l 

~ 

qi (n~ (~) ¢(n)(~) 



82 

In order to show 1 • we prove 2. ( for each i) , and l, • and• assuming 

that 3. holds (this is the inductio~ assumption, since, for each i, cp(i)(~) 
1 

has less complexity than cp(]=)), we then have the desired resu1t, 

Examp1e of A3: cp(~) is<!> f A;cr 1 s A;o2 , n = 1, and <1>( 1)(~) 1s <I>~ cr 1 f o2 • 

Details of this example will be given below, in particular 1n lemma 6,3. 

6.2. NORMAL ASSERTIONS 

We now give the definition of a normal assePtion, This definition will 

become clearer if it is considered together with the case analysis to be 

given ·below• in particular with the treatment of procedures (~ .§., J 
and .§) , Moreover, the definition is followed by an informal explanation. 

DEFINITION 6.1 

An assertion <I>~ CJ c CJ is a normal assertion iff 
1 -- 2 

1, a 1 and cr2 are normal terms. 

2. <!> = <l> 1 ,w2 ,,,, ,'¾':m• m.::,. 0, We use the convention that, if m = O, then <I> 

is the empty 1ist. If m.::,. 1, then we require, for each i • < i ::_ m, 

a, <I>i "'xis Pi,O' xis Pi,1'"''xi s p. , n. > 0, 
1,ni 1 -

b, Each p . . , O < j < n1., is a normal 
1,J - -

term; pi O is a normal term of 

' the form µ\ [pi J. 

c, a 1 is regular :rn Xi and shields Xi. 

d, p. is regular in x., 1 _< j ::_ m, and shields X., 1 < j < m, 
1 J ....... J - -

e. x. does not occur free in a2 or in any p. k • 1 _::... j < i, 0 
l J' 

f, If j .L k , then p . . .!. p . k • 1 < j ,k < n. , 
T 1 ,J T 1, - - 1 

g, cr.1 and Pi,O are subterms of p 100 ; 

CJ2 and p. . • 1 < j < n. • are subterms of p 1 1 , 
1,J - - 1 , 

h' <!> 1'4> 2 • " ' '<!> m ~ Pi S Pi • j • O :5... j :5... ni ' 

<k<n., 
- J 

We give an intuitive exposition of the various points taken into 

account in this definition, Firstly, we distinguish two aspects in the 

conditions imposed upon the normal assertions, viz., those related to the 

application of the µ-induction ru1e, and those related to the termination 

of the inductive argument described via arguments A1, A2 and A3 above, 



Conditions 2f and 2g belong to the second category. the remaining ones 

to the first, 

The conditions of definition 6.1 win be discussed by means of a 

simple example, In our treatment of this example, we shall not be complete 

- the full argument follows in the case analysis below - but we only 

a. first sketch, 

( 3) 

Consider the following assertion: 

~ µX1[ ... µX2[ ... X1""X2 ... J ... ] .S o2 

P2 

First we reduce this (case 6 below) to 

(4) 

(In the complete proof of this and the following reduction steps, argument 

A3 has to be verified.) 

(4) is in turn reduced to (~se 1 below): 

(5) x1 s µX1[p1],X1 s 0'2 ~ P1 s cr2 

qi 1 

Note that qi 1 has the form prescribed by conditions 2a and 2b of de-

finition 6,1, with p 1 0 ~ µX 1[p 1J, p 1 1 = o2 , m = 1, and = 1, 
• • 

The continuation of the process now depends on the particular form of p .1, 

In general, a successive reduction takes place; e, g. • if p 1 and are 

of the form A;p 1 and A;cr2 respectively. we reduce (5) to 

p 1 C 0' 1 

1 - 2 ' 

(cf, lemma 6,3 and case 4 below; note that p 1 and o2 are subterms of P1 
and cr2 respectively), and if p1 is of the form (p+p 1,i:i;') we reduce (5) 

to both 
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p'_scr' 
1 2 

and 

lj> ~ p 11 C 0 11 

1 1 - 2 

where cr2 and a; are subtenns of' o2 , such that (p+a2,o;) is in normal form 

and that~ (p➔o,o) = (p+cr2.o;)-holds. (Cf. lemma 6,5 and case 5 below,) 

Eventually. these and similar reductions will at some stage have reduced 

(5) to, a.o., 

(6) 

where a1 1) is a subter.m of o2 , 

We are now 1.n a situation where case 6 and then case 1 are again applica­

ble• and we derive 

Successive reduction of p 2 will at some stage lead to the assertion 

( 8) 

where 012 ) is a subterm of a1 1) (and. thus. of o2 = P1 , 1), 

Now there are two possibilities: 

(a) o12) "'o2, 

Then• clearly, 

holds, and we have reached an end point in our inductive argument 

(S) o12) f o2. 

Then we continue the process with another application of ca.s_e I, and we 

reduce ( 8) to 



(9) X1 .S µX1[p1],X1 s 02 .x, (2) 
.s a2 ,x2 S µXip2]•X2 £ 

( 1 ) 
02 

~ p C Ci( 2 ) 
1 - 2 

Successive reduction of p 1 will then lead to• a,o, • 

( 10) x1 S µX 1[p 1J,X1 S a 2 .x1 .s (2) 
0 2 .x2 S µX2[p2],X2 s 

("1) 
02 

~ ( 3) 
µX2[p2] S o2 

with cr13) a subterm of cr ~ 2), Now case 8 applies: We encounter a. procedure 

(µX2 [p2 ]) which has already appeared before in the process (as can be seen 

from the presence of x2 s µX2[p 2 ] in the list of assumptions), We then 

reduce ( 10) to 

( 11) 

etc, 

We now use this example to discuss the conditions of definition 6,1, 

It is easily seen that the assumptions 11,12 ,,,, which are successively 

generated a.re indeed of the form prescribed by conditions 2a and 2b, It 

is also of importance to note that, in general, the number of~- which 
l 

will be generated is bounded by 

a, For the assertion (3), the l.1'.l8.Ximum number of "nested" procedures in 

a,; 
b. For the assertions ( 4) • ( 5) •, , , , ( 11) i; the max.i.mum number of "nested0 

procedures in p1,0 , 

This maximum number is certainly bounded by the total number of 

subterms in cr 1 and p1,0 respectively, This fact, which will be applied 

below in def'ini tion 6, 2 • case c (definition of s1 ( ¢) ) is of importance 

in the termination argument, See for this the comments on the use of the 

complexity measurer of a normal assertion in section 6,3. 
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Next, we consider clauses 2c and 2d of definition 6.1. '.l'hese condi­

tions are vacuously satisfied for assertion ( 3), and can easily be seen 

to hold for the remaining assertions. E.g., in (5), p 1 is regular in x1 

and shields x1 • since JlX 1 [p 1 J is in normal form. 

As to condition 2e, by suitable rewriting of bound variables we may 

assume that none of the bound variables of cr 1 in ( 3) occurs free in cr 2 , 

Since all generated p j ,k • for k .:::_ 1 , are subterms of the ini tia1 a 2 , these 

two facts imply that none of the X. occurs free in any of the 1 , for 
l ~ 

k. > 1. The absence of free occurrences of Xi in p j ,O, ·1 :s_ ,j < i, is illus-

trated in our example by the absence of free occurrences of x2 in µX_I 1 J 

(in assertions (7), ... ,(11)). Again, this can be achieved in the general 

case by a suitable rewrite. 

For condition 2f compare the treatment of assertion (8) No addition 

of a new assumption to some <P. takes place, if this assumption is identi-
1 

cal to some assumption already contained in the list w .. Therefore, we 
1. 

know that at each stage, all p •. contained 1n <P. are different, 
1,J l 

Next, we discuss condition 2g. Consider e.g. assertion (11). From the 

construction which led from ( 3) to ( 11) we see that 

a. p2 is a subterm of µX2 [p 2J which is a subterm of p 1 which is a subterm 

of µX 1[p 1J = p 1 0 • 
(2) ( 1 ) 

b, ( 3) . ' which a subterm of which a subterm cr2 1s a subterm of 02 lS Cl2 lS 

of p :::: 
2 p 1 • 1 ' 

From these two facts we conclude that condition 2g is satisfied. 

Combination of conditions 2f and 2g implies the following: 

At each stage, we know an upper bound for the number of elements 1.n each 

of the lists $. : This is given by "1 + the number of subterms in p ", 1. 1 , 1 
or if p 1 • 1 is not yet present ( cL assertions ( 3) or ( 4)), by "1 + the 

number of subterms 1.n a;. This fact is used in definition 6.2, clause c 

(definition of S (~)) and in the termination argument (cf, section 6,3), 
r 

Finally, we consider condition 2h, Applied e.g. to the assertion ( 11) 

this condition states that the following assertions all hold: 

q) 1 ~ P1 C p 1 ' w, ~ P1 s p 1 1' q) 1 ~ p1 C p 1 ,2 

and 



<!>,, <1>2 ~ p2 s P2 o• <l>1,<l>2~p2 s p2 • 1 • 
or, specifically• 

( 12) (j,1 ~ P1 S µX 1[P 1J 

( 13) ~ P1 .s 02 

(14) ()) 1 ~ p 1 s 
(2) 

a2 

( 15) q, 1 • 42 ~ P2 S µXiP 2 ] 

( 16) q, 1 ,<1>2 ~ P2 5 
( 1 ) 

02 

'l'hat assertions ( 12) to ( 16) hold, can be seen from the "history" 

of the derivation of ( 11) : ( 12) is clear from the fixed point property 

and monotonicity (since ()) 1 contains the assumption x1 s µX 1[i:i 1J we have 

P1 S P1[µX1[P 1]/X1J; hence, p 1 S µX 1[i:i 1J),(13) is implied by (5), (14) by 

(9), (15) follows also by the f,p,p, and monotonicity, and (16) follows 

from (7), 
This example illustrates the function of condition 2h, 

For each given assertion which occurs at some stage in the inductive ar­

gument (by repeated use of A3), condition 2h states the validity of a 

number of assertions which precede the given assertion in the inductive 

process, As will be seen in the precise treatment of case 6, case 7 and 

case 8 below, we must have the validity of these preceding assertions 

available, in order to be able to verify, at suitable moments, arguments 

A3 _3 and i\. 4, 

This transfer of information on the history of the derivation of an 

assertion 'to a property of the assumptions of the assertion, by means 

of condition 2h • allows us to do without the complications of the ( im­

present) tree-like structure of the inductive argument, 
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6,3, COMPLEXITY OF NORMAL ASSERTIONS 

The next definition introduces some notation for a normal assertion, 

which will be used in the discussion of its complexity, 

DEFINITION 6.2 

Let $(~) "" <!> ~ a 1 .s a2 be a normal assertion, as described in defini-

tion 6. 1. We define 

•...• x } 
m 

m 
b, L (cJ>) = I (n.+1) 

a 
i=1 l 

c. Sl (ti>) :::: IE(p, o)I, if m > 1 
• 

::::: lr(a,)I, if m:::: O 

s (qi ) "' jE(p1 1) I, if m > 1 and n 1 > 1 r • 
::::; lr(a2ll, otherwise 

Here IE(o)j is used to denote the number of elements in the set i:(cr) 

of all subterms of o. See definition 5. 7. 

d. L ($)::::: s1 ($)(1+S ($)) max r 

e. L (cJ>) = L ($) - L (cJ>) 
g max a 

We now give the motivation f'or the definition of the complexity 

r(<j>) of a normal assertion cJ>(~) = <!> ~ o 1 .s a2 , which follows in definition 

6.4 below, 

Consider a sequence of reduction steps as illustrated in the example 

above. In general• we have• starting with the normal assertion <j) (~) = 
$ ( 1 ) ( 

$(1)(~):::: ¢(1) ~ 

$(2)(~) = ¢(2) ~ 
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where each <jl(i)(~) is reduced to cj)(i+ 1)(~) as part of argument 1\, ye need 

a complexity measure which decreases in each transition from $( 1 )(~) to 
,. (i+1) (I-) · · · · . 1 
'I' F , Clearly i 1 t 1s not suff1c1ent to use as such a measure sunp y 

the complexity of o~i). Consider as a_counter example assertions (4) and 

( 5) above, where the complexity of o; 1 ) = X, increases to that of 
(i+1) . . d o1 ~ p 1 , Therefore. another entity must be taken into account 1n or er 

to make the inductive argUlllent go through, For this, we use the function 

La(cp), as defined in clause e of definition 6,2, by L (¢); L (cp) -
a _ g max 

L ( (j)) • '.rhe idea behind its introduction is the fol.lowing: We compare the 
a 

n1.l.l!lber of elements in the lists ~(i) and ~(i+ 1 ). In each reduction step, 

this number either remains the same, or it increases. However, this in­

crease cannot go on indefinitely: At each stage. it is possible to predict 

the maximum future growth of the number of elements in ~ ( i) , and this is 

the number given by L ( ¢ ( i) ) • namely, as the diff'erence between the actual 

length L ( cp ( i) ) -cf. ~efini tion 6, 2, clause ·b- and the upper bound for the 

number o: elements in ¢(j) which can occur in future steps, which upper 

bound is given by L (¢,(i)) "'S (<ji(i))(1 + S (cj>(i))). '.rh.e upper bound 
(") max 1 r 

Lma:x:((j) 1 ) is determined as follows, 

We note that <D mey grow in two ways: 

a, Some~- in~ mey be extended by the addition of another assumption 
]. 

Xi S pi .ni + 1, Condition 2f of definition 6, 1 ensures that in this newly 

added hypothesis, p. +l is different from all previously added 
1.ni 

p. . • 1 < j < n .. 
]. ,J - - ]. 

(Cf. the reduction from ( 8) to ( 9) above,) Since• 

by condition 2g of definition 6.1, a11 pi, j are subterms of p 1 , 1 , it 

follows that the number of elements in <D. is bounded by 1 + S ( $) , A 
l r 

proviso has to be made for the case that p 1 , .1 is not yet present, Then 

qi(~) is of the form¢~ o 1 s a2 , with <D emptyi or~"' x1 s P1 ,o· (In 

the example above, this holds for assertions (3) and (4),) From the 

wey in which assumptions are added to <l\ -£~Se 1 above- it will follow 

that in the possibly added assumption x1 s p 1 , 1 , p 1 • 1 will be either 

o2 itself", or a subterm of o2 , This explains the second alternative 

in the definition of S ( cj)) . 
r 
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b. A new <t>m+ 1 may be added to <D = q, 1,w2 , .••• wm' An upper bound for the 

number of times such an addition can occur, is given by the total num­

ber of subterms in p,.o• or, in case q, is empty, in o 1, 

Now we assert -and we shall have to verify this at each stage in the 

case analysis below- that, if according to argument A3, the proof of 

<P(i)(~):=:>q,(i)( is reduced, a.o •• to that of ljl(i+l)(~) ::::::'.;>tj)(i+l)(~). 

then L ($(i+l)) < L (•(i)). In order to verify this, we must show in 
g - g 

each 

After these explanations, the definition of the complexity r(•) will 

offer no difficulties. First we give the definition of the complexity 

y(cr) of a normal term cr, This is the same notion we used already in 

section 5, but which is defined here formally for completeness sake. 

DEFINITION 6,3 

Let cr be a normal term, 

a, If cr is a constant or variable, then y(cr) ~ 1. 

b. y(A;cr)"' 1 + o). 

c, y( (p-,-cr 1 ,o2 )) :::: 1 + y(cr 1) + y(cr2 ), 

d. y(µX[o]) = 1 + y(o). 

DEFINITION 6.4 

Let$(~) ~ q, ~ cr 1 s o2 be a normal assertion. 

r(•) is defined as a pair: 

r(•) = (L1($),y(cr 1)). 

1rhe ordering between these pairs is the lexicographical 

Let: 

.(1)(~) "' 
<!> ( 1 ) ~ ( 1 ) a, s 

( 1 ) 
02 

<P ( 2) ) "' 
<!> ( 2) ~ (2) a, s 

(2) 
02 

one 



Then r(¢( 1)) < r(cp( 2)) iff either 

(a) L (A(l)) < L (A( ) or g 'I' g 'P > 

($) Lg(¢( 1)) = Lg(cp( 2)), and y(o~ 1)) < y(a~ 2 l), 

6, 4. AUXILIARY LEMMAS 

Before we proceed with the case analysis in section 6,5, we first 

collect in a number of lemmas some results to be used below, 

LEMMA 6, 1 

a, <j) ~ Q s CJ 

b. <!> ~ E SE 

C, <j) ~ASA 

d, w, X_sa~xsa 

PROOF, Clear. 

LEMMA 6.2 

None of the following normal assertions H~) holds: 

a. <!> ~ E s Q 

b, ip ~ E SA 

C, q> ~ E S A;o 

d, ip ~ E s (p+o 1 ,o2 ) 

PROOF, a is clear, As to b, c and d, select some interpretation I with 

domain V, and x EV, such that AI(x), AI(x), and. pI(x) respectively are 

undefined, and, if necessary X~, for X. EX(¢), (cf, def,6,2) is unde-
I 1 1 

fined on V, Since E (x) "'x, the lemma follows. 

LEMMA 6,3 1) 

Let ¢ = ili ~ A;o 11 f. o2 be a normal assertion, Let o2 be neither a 
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l) The need for this lemma, and its proof, were pointed out to us by Scott, 
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variable nor a procedure~ If o2 has the form o2 = define qi ( 1) (~) as 

q,(1)(~) "'<I?~ S 0 12 • Otherwise, define 

~ 4>( 1)(~) = <I? 0 11 s n, 

Then q,(~)==><P(l)(~) holds. 

PROOF. 

a. cr2 = A;cr21 , 

We have to show: 

<I?~ A;o 11 s A;cr21 ===,. cJ> ~ 0 11 S a 21 • 

Suppose cJ> ~ 0 11 S 0 21 does not hold, Then there exists an interpretation 

I 0 with domain V0 , satisfying 4>, and some x0 E V0 , such that 

Io Io 
o 11 (x0 ) = y. and cr21 (x0 ) ~ y. 

Let I 1 be the following interpretation: V 1 == VO u {x1}, for some 

x 1 t!. V0 • On V0 , r 1 is defined to coincide with r 0 • In we define 

r, 
A (x1) = x0 • Ifote that, since A;a 11 is regular in each Xi E X(cp) (by 

clause 2c of definition 6.1), At!. X(,P); hence, we are not restricted in 
r 1 r 1 r 1 r 1 . 

our choice for A We then have: (A;a 11 ) (x1) = a 11 (A (x1)) == 

I 1 . I 1 IO 
:::: a 11 (x0 ). Since x0 E V0 , o 11 (x0 ) = a 11 (x0 ) = y. Also, 

r 1 I 1 r 1 I 1 I 0 
(A;cr21 ) (x 1) == a 21 (A (x1)) == a 21 (x0 ):::: a 21 (x0 ) t y. '.rhus, r 1 contra-

dicts the validity of w ~ A;a 11 S A;a21 • 

b, cannot be written as A;cr 21 • 

We have four possibilities for o2 : n. E, A' ;o2, or (p+o 1 ,o' '). We give 

the proof of the third case• the other ones being similar. Assume 

cJ> ~ A;cr 11 s A' ;cr2, and suppose that~~ cr 11 s n foes not hold, Then 

there exists and v0 , and x0 E V0 , suih that ~(x0 ) == y1 Let 

= V0 u {x1} for some x1 ¢ V0 , let A 1(x1) = x0 , let A1
1

1 ) be un­

defined (by clause 2e of definition 6, 1 • the choice :for A' 1 is not 

restricted by~) and let I 1 be as r 0 on V0 , This r 1 contradicts the 

of¢~ A;a 11 s A' ;a2, 



LEMMA 6.lr 

Let o 1 , o2 be normal terms, both of which are free from p, 'rhen the 

following holds: 

For all interpretations r0 with domain v0 , and all x0 E V0 , if 
IO 

o1 x0 ) = y 1 then there exists an interpretation I 1 with domain V1 and 

x 1 E V 1 such that 

r, 
a, o 1 (x1) = y, 

I, 
b, p (x1) = L 

c. For all q T P1 
I 

q '( 

I1 
q (x.1 ) is undefined, if 

IO 
o2 (xo) = y, 

defined, 

is undefined, 

Moreover. there also exists an interpretation I 2 , which satisfies a, c, 

d (with I 1 replaced by r2 ), and b': p 2 (x1) = O. 
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The main statement of this lemma can be phrased as: If o is free from 
I 

p, then for each x0 and r0 we can find x1 and I 1 such that o 1 ( ) delivers 

IO 
the same result as o (x0 ), but, moreover, we are free to choose for 

I I 
p 1 ( x 1) either 1 or O • without influencing the value of o ( x 1 ) • 

PROOF, We prove only the existence of I 1 ; the proof for I 2 follows by 

symmetry, We use :induction on the complexity of the pair (o 1 ,o2 ). The full 

proof will not be given, but only three representative cases, 

o1 = A;o 111 o2 ~ A1 ;a21 • 

Choose I 1 and D 1 as follows V 1 "" VO u {x1}, for some 

r 1 r O r 1 
coincides with 1 0 on V0 , A (x1) ""A (x0 ), A' (x1) "'A' 

I 
P 1( ) 4 "'1, and for all q T p 

IO 
defined), Assume (A;cr 11 ) (x0 ) 

I1 IO 
q ( ) = q ( x0 ) ( or both are un-

"' y. We verify a, b • c and d. We have 



2. 

2.2, 

::::: y, where we have used the fact that I 1 coincides I 0 
I1 

on V0 , band care clear, As to d, if (A' ;cr21 ) (x1) = y, then 

I 0 I 0 I 0 I 1 I 1 
(A' ;cr21 ) (x0) = a21 (A' (x0)) = a21 (A' (x1)) = y, 

0 2 ~ (q+cr21• 0 22). 

IO 
Let cr 1 (x0 )::::: y. Two cases arise: 

Io Io 
q (x0 ) is defined, say q (x0 ) = 1, We apply the induction hypothesis 

to the pair (o 1 ,o21 ), both of which are free from p. Thus, there 

I 1 I 1 
V1 such that o 1 (x1) == y, p (x1)"' 1, 

r f p (or both are 
11 

1, and, if 0 21 (x1) 

This proves clauses a, band c. As 
r 1 1 1 

0 2 ( ""y. 'I'hen (q+o21• 0 22) (x1) 

I 1 I 0 
o21 (x1) = y, Hence, o21 (x0 ) = y, by the induction hypothesis. F'rom 

. Io Io 
this, cr2 (x0 ) ~ (q+o21 ,a22 ) (x0 ) = y follows, 

I 
q 0 (x0 ) is undef'ined. Apply the induction hypothesis to the pair 

(a 1,o21 )1 The argument is the same as for 2,1, apart from the fact 

that q 1 (x1) is now undefined, which implies that cJ.ause d is tri­

vially satisfied. 

0 1 "'(q+cr11• 0 12). 

Assume (x0 ) = y. Then either / 0(x0 ) ::::: 1 or / 0 (x0 ) "' CL Assume 

the first, Apply the induction hypothesis to the pair (cr 11 ,a2 ) both 

of which are free from p. This yields an I 1 and x 1 E V1, such that 

I 1 I I I1 IO 
o11 (x 1) "' Y, p = 1, r (x 1) "' r (x0 ) (or both are undefined), 

I 0 I 
) "' y, then a 2 ( x0 ) = y, Then ( q+o 11 a 12 ) 
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hence. clause a. Clauses b, c and d. are clear, 

LEMMA 6,.5 

Let$(~):::: c!l ~ (p➔a 1 .a2 ) :s a be a normal assertion There exist 0 1 ,a" 

such that 

a. a' ,a" are subterms of a, and (p-►o' ,er") 1s a normal term, 

b. ~ (p➔o' ,a") == (p➔o,cr). 
c. Let ¢( 1)(~) = w ~ o .s cr' 

1 
tj)( 2 ){~) == w ~ a :so" 

2 
L. ( 1) I 

~'hen <p(F) =:> r;t (F) 

¢(~) =>4' (2) (~). 

PROOF. Assume that ~ ~ (p➔o 1 ,o2 ) s o holds. 'I'his implies ~ ~ (p-► (p➔cr 1 ,cr2 ) • 

(p➔cr 1 ,o2 )) s (p➔cr,o); hence, we have c!l ~ (p-+o 1 ,cr2 ) .s (p-➔cr,o). By lemma 

5.6, there exists a normal term (p➔o' ,o") such that ~ (p+o' ) :::: (p+o,o), 

with a' • a" subterms of o, Hence, 

( 17) 

Assume that, e.g., c!l ~ o11 .s a' does not hold. Then there exists I 0 and 
. Io ,Io ~ 

x0 E V0 such that I 0 satisfies c!l, and such that cr 11 (x0 ) = y, a (x0 ) r y. 

I1 
x 1 E V1 such that p (x1)"' 1, and By lemma. 6,4, there exists 1 1 and 

I 
o 1 ~ ( ) = y. Since (p+cr 11 ,0 12 ) is regular 

all X. ,s X(cj)), it can be verified that r 1 l 

in all X. EX(¢) and shields 
1 

also satisfies~. Thus, 
I 1 I l 

(p+o 11 ,cr 12 ) (x1) = 0 11 ( ) = y. Hence, by (17), 
I 

(p➔cr•,o") 1 

1, 
o' (x1) "'y, 'l'hen, by 

I 
le!J!I1la 6. l+ 1 o' O ( x 0 ) "' y , 

Contradiction, 

6,5, CASE ANALYSIS 

After the preparations of the preceding sections• we are in a posi­

tion to give the proof of the completeness theorem: If¢(~) "' c!l ~ cr 1 ::.: o2 

is a normal assertion then 
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( 1 8) 

By lemma 5.5, we ma;y assume that a2 is not a procedure. Since~ A= A;E, 

we ma;y also assume that o2 is not a variable. Moreover, after suitable 

rewriting of bound variables, we may assume that in no term are there two 

occurrences of terms µX[cr 1J and µX[a 2J with the same bound variable X. 

(E.g.• a term µX[ ... µX[cr'] ... µX[cr"J ... J is rewritten as 

µX[,, .µY[at[Y/X]],, .µZ[cr"[Z/X]] ••• ].) 

CASE 1 • o 1 == fl • 

We have to show: 

By lemma 6. 1, argument A2 applies, 

CASE 2. a, ::::: E, 

2,1, 0'2 :::: n. Follows by lemma 6.2 and argument A1, 

2.2. a2 "'E. Follows by lemma 6. 1 and argument A2. 
2.3 a2 "' A;cr21' Follows by lemma 6,2 and argument Ar 
2.4. a "" 2 ( p-+O 21 • O 22 ) ' Follows by lemma 6.2 and argument A1, 

CASE 3. o1 ::::: A• Ai X(<j>). 

Since~ A== A;E, we can apply the argument which follows in case 4. (The 

case that 0'1 "' X, X E X( <j>) follows as case 7,) 

CASE 4. "" A;cr11' 

Note that A i X( cjJ) • since a 1 is regular in all elements of x(cp). By 

lemma 6,3, either cr2 == A;o21 , and 

or o2 cannot be written as A;o21 , and 

We assert that in both cases. argument A3 applies, 

We have to verify A3 , 1 to A3, 4, 
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A3• 1: $( 1)(~) is a normal assertion, Since~ is not changed, we have 

nothing to verify for clauses 2a. 2b, 2d, 2f and 2h of definition 6.1. 
Clause 2c follows from the fact that. if A;cr 11 is regular in X and shields 

X, then cr 11 is regular in X and shields X. If Xi does not occur free in 

A;cr21 , then it does not occur free in cr21 ; hence, clause 2e. Clause 2g 

follows since cr 11 is a subterm of A;a 11 , and since 0 21 and n are subterms 

of A,o21 and o2 respectively. 

A3, 2 : f($( 1)) < f(<j)). Clearly, y(o11 ) < y(A;cr 11 ) •. If c!J is non empty then 

S ($) "'s ($( 1))"' lr(p )I, ands(<!>)"" s (<!>( )) "'IE(p )!, If <!l is 
l 1 1 ,o r r (,) 1 • 1 

empty, then s1 (<t>)"' lr(A;cr11 )1 > lr(cr11 )1 == s1 (4> ·).and either 

Sr(q,) = IE(A;cr2 )I > IE(cr21 )1 = Sr(<t>(i)), or 

S (!J>) == lr(o2 )1 > lr(ri)I = S (<1>(1)). Since, clearly, L (<j>) "'L (4>(1)), we 

s~e that L (<j)) > L (<1>( 1)), f;om which f($) > r(rp(i}) f~llows. a 
g - g 

A3, 3: That 4> (~) ~ 4> ( 1) (~) follows from le:mma. 6. 3. 

A3 , 4: We have to show that 4>(1)(~)=⇒ 4>(~) 

(a.) 

This follows by monotonicity. 

( f3) 

Since~ A;l"l"" fl, and~ fl S cr2 , the result follows, 
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CASE 5, cr ·1 :::: (p+cr11 • 0 12) · 

Let a', o" be as in the proof of lemma 6,5, Let 

<P ( 1) (~) :::: 'l? ~ 0 ·11 s cr' 

¢ (2) (~) :::: 'l? ~ cr12 s cr" 

We shall verify A3, 

A3• 1: This is similar to the verification of A3, 1 in case 4 above. Note 

the use of the fact that cr' and cr" are subterms of' a 2 • 

A3• 2 : This is again similar to case li. 

A3, 3: Follows by lemma 6,5, 

A3, 4: Clear, by monotonicity. 

CASE 6. cr 1 "'µX[cr 11 J, and X ,/. X(cp), 

Then 

( o:) X does not occw~ free in a 11 , Let 

¢(1)(~) = ¢ ~ 011 s 02 

We omit the simple proof that A3 applies to ¢( 1)(~). 

(B) X does occur free in 0 11 • 

Let Xm·l-'I :::: X and Pm+ 1 = cr1 f Let 4 ( 1) (~) be the assertion 

¢' Xm+1 S µXm·+-'I [pm+1] ~ Xm+·t S 0 2 

We prove that A3 applies to ¢ ( 1 ) ( ~) , 

A3, 1 : (p(l)(~) is a normal assertion. Clauses 2a, 2b and 2c are clear, 

After rewriting, if necessary, we may assume that X 1 does not occur 
m+ 

free in a2 nor in any p. k' 1 < j < m,O < k < n .• Together with the nor-
J, - - - - J ) 

mality of¢(~), this yields clause 2e of the normality of (/l(l (~). Since 

Pm+l is regular in Xm+l and shields Xm+l, and since Xm+l does not occur 



99 

free in p., 1 < i < m 
l. 

(by clause 2e), clause 2d follows from the normali-

ty of q,(~). Clause 2f is trivially satisfied. Clause 2g follows from the 

normality of it>(~) and the fact that xm+ 1 and cr2 are subterms of 

µXm+ 1[o.11 J (since Xm+ 1 occurs free in 0 11 ) and cr2 respectively. The proof 

of 2h follows from the normality of¢(~) and the fact that 

which is clear from monotonicity and the f.p.p. 

A It . ·1 th t L (,.) I (..(1)) Since La(,.)< 1
0

(,.(
1)). 3•2 : is easi y seen a max o/ = 'max o/ • o/ = o/ , 

we have L (¢) > L (rp( 1)); hence, r(¢) > r(¢( 1)). 
g g 

A3•3 That$(~);;;;;;;;:> 'fl(l)(~) is clear. 

A3 l.: Assume <P ( 1 ) ( ~) • i, e. 
• l 

Since Xm+l does not occur free in <ll or a2 , substituting µXm+l[pm+l J 
for yields 

follows, 

CASE 7~ cr 1 = , for some Xie X(~)~ 

Then ¢(~) is of the form 

We distinguish two cases: 

(a) 02 :::: . . for some j. 1 .::., j < n .• 
,J - l. 

Then, by lemma. 6. 1 • argument A2 applies. 
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( 8) cr2 .I. p. . , for all j , 1 < j < n .• 
T i,J - - l 

Let Pi,ni+l = a2 , and let, for O.::.. j .::.. ni+1, 

p. ·1• 00 ·,X· S Pi n.+1' 
]. . ]. . ]. 

<I>i+1''"'•im ~ Pi .S 

We assert that A3 applies. 

A3 , 1 : For each j, 0 .::..j .::..ni+1, ¢(j)(~) is a normal assertion, Clauses 2a. 

and 2b of definition 6, 1 are clear. Clauses 2c, 2d and 2e follow from the 

normality of ¢(~). Clause 2f follows• since o2 .I. p .. , ·1 < j < n .• Since 
T l;J - - l 

p. is a subterm of p. 0 and p. 1 1 1, :i.,ni+ 
(=o2 ) is a subterm of o2 , clause 2g 

follows from the no:rm.ali ty of ¢ ( ~) • The proof of 2h follows under A3 • 3 • 

A3, 2 : Since Lma.x(¢)::: Lma.x(¢(j)), and La(<j)) = La(cj,{j)) - 1, we have 

L (¢) > L (¢(j)). 
g g 

A3, 3 : Assume ,P(~). By clause 2h of the normality of¢(~), we have 

( 19) ~ p • C p • • 
]. - J. ,J 

0 < j < n. - - ]. 

Since none of X.+ 1, •. ,,X occurs free in w1, •.. ,w., from¢(~) we derive 
l m l 

(20) 

Combination of ( 19) and (20) yields 

w1,, •. ,wi-1'xi S µXi[pi]'Xi s p. 1 ' •• ',x. C p. ~ p. s 02 l, l l ,ni ]. 

Thus, ... fortiori, a 

q,1•'"'' 41 i-1 1 \ .S µXi[Pi]'Xi s p. 1 ' ••• ,x. 
l, l 

C p. ' i,ni 

x. s Pi,n.+1 ~ p. s 02 ]. l 
]. 



(n. +1) 
which proves clause 2h of the normality of qi 1 (~). and 

+1) 
which proves$ (~). 

p. ·1 •••• 
1, S Pi,n.+1' 

l 

q,i+P • '"•q,m ~ pi S. 0 2 
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(o) (n.) 
'I'hat qi (~) , ... ,$ 1 (~) hold follows from clause 2h of the normality of 

$ (~)' 

1 .x. c µX.[p.J,x . .s p. 1 , ••• ,x. s P1· 1 - 1 1 1 1, 1 

holds, for O < j < n.+1. 
- - 1 

Since none of Xi+ 1, ••• ,Xm occurs free in <1> 1, ••• ,q,i' we also have 

(21) 

for O < j < n.+1. 
- l 

Since Xi does not occur free in 4> 1 , • , • • <I> i-1 • we can apply the µ-induction 

rule, yielding 

In particular, for j = n.+1, 
1 

follows. 

] .x. 5. 
l 

, 0 < j < n.+1 
- 1 



102 

CASE 8. cr 1 = µX[cr 11 J, for some XE X(¢), say X = 

¢(~) then has the form 

X., 
l 

p. j > • , , ,X. C p. 
l, l - i,ni 

wi+1''"''wm ~ µXi 

with p. == cr Let p 
l 11° i,n.+1 

l as 

p. 1, ••• ,x. s p. 
l, l ]. 

We verify A3 . 

This is similar to case 7, 

] C 0 
- 2 

A3, 2 : Clearly, Lg(q,):::: Lg(¢(j)), 0 .:::_j ::_ni+L Also, y( 

A3 _3 : Assume $(~). 'l'his implies that 

) < y(µX. 
l 

J). 

holds, The proof of q,(~)=H/j)(~), 0 ::_j < n.+1, is then similar to that 
...... - l 

of A3_3 in case 7. 

A3 , 4: Assume q,(j)(~), 0 .;:_j .:,ni+L Similar to A3 ,!r rn case 7 we infer 

from this 

<!)1 •·'. •"\-1 ~ µX. [p. J C p. . ' 0 < j < n.+1 
l l l ,J - ]. 

and, .. 
fortiori• ta.king j :::: n.+1, a 

l 

C p. 
- J. ,n. 

l 
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This completes the case analysis of the proof of (18). Thus, the proof of 

the completeness theorem is completed, 



7. CONCLUSIONS 

Ever since their first appearance in a number of prograrrrm:ing languages, 

recursive procedures have been a much discussed concept. their 

practical feasibility was hotly debated, as caused by the alleged difficul­

ties in their implementation, This argument settled down after some years. 

and interest turned to investigations centring around the question of what 

type of problems are particularly suited for recursive formulation, In pa­

rallel with this the :first proof technique (recursion induction) for pro­

ving equivalence of procedures was proposed, and then applied and extended 

in a number of papers ( see the references in section ·1. 2). Recently• as 

part of the current heigthened activity in the field of the theory of pro­

granuning, more exphasis has been given to the clarification of the mathe­

matical properties of recursive procedures, 

With the present paper, in which we have explained Scott's theory 

(sections 2 and 3), applied it to various examples (section 4), and inves­

tigated some of its properties (sections 5 and 6), we hope to have contri­

buted to this clarification, 

It will not have escaped the readers attention that we have dealt 

only with a restricted case of recursive procedures viz,, those which may 

be called "monadic", i ,e, • in which only functions of one variable occur, 

Extensions to a treatment of the general case -functions of more than one 

variable- have been made in two directions: 

a, rtri.lner [211] has developed a generalization of the µ-calculus in which 

the functions concerned are polyadic, i,e, they are as 

functions from if1 ➔ d11, for arbitrary integer n, m > 0, In this forma­

lism, he is also able to deal with assignment statements, 

b, As mentioned in section ·1, Scott has the notions of monotoni-

city and continuity in a framework where a number of problems in the 

theory of computation can be dealt with in a very general way, Central 

to this approach is the idea of building a hierarchy of domains, Star­

ting with some initial domain V0 , which is provided with a suitable 
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partial ordering, one constructs domains V0 ➔ V0 , V0 ➔ (V0➔V0 ), 

(V0-,.V0 )-+ (V0+V0 ), etc. Each V'-+ V" consists of all oontinuous func­

tions from V1 to V". This gives -among many other results- a natural 

way of dealing with functions of more than one variable, E.g., a func­

tion of two variables is considered as an element of V ➔ (V+V). In un­

published notes Scott has shown how to extend the µ-calculus to such 

structures. 

The "monadic" µ-calculus also offers a number of problems for further 

investigation. To the list of applications in section many more might 

be added. Usually, the interesting part will be to develop a special set 

of axio=, adapted to a specific problem area, After one has obtained some 

experience with the µ-calculus, the formal proofs themselves are mostly 

straightforward. As a further example. we have a system for dealing with 

symbol manipulation, which we plan to publish in a forthcoming paper. 

The regular procedures of sections 5 and 6 are clearly the best under­

stood type of procedures. As a first extension of our completeness proof, 

one might wish to incorporate Yanov's shift distributions [39], These are 

easily formulated as assumptions in the µ-calculus: If a certain variable 

A does not change the value of the predicate p, one assumes A(p-+X,Y) = 

(p➔AX,AY) (cf, section 4,2), Some modifications will have to be made in 

the completeness proof, in order to deal with these assumptions. 

One might also be interested in implementing the strategy of the 

completeness proof as a computer program. 

Another possible extension is the introduction of compound predicates, 

in particular, of having predicates which themselves are defined as recur­

sive (boolean) procedures. 

Almost nothing is known about general properties of non-regular pro­

cedures, If the µ-calculus were to play a part in the solution of the many 

open problems in this area, we would have achieved one of our main goals. 
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